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Preface to the First Edition

Welcome to Free Convection Film Flows and Heat Transfer! Free convection film
flows occur in many industrial processes. However, engineers still have to deal
with many unresolved problems. This book systematically summarizes my recent
research results that have been referred to and cited by many other researchers in
this field. The purpose of this book is to provide a practical guide to university
students, graduate students, design engineers, researchers and scientists who wish
to further understand the characteristics of Free Convection Film Flows and Heat
Transfer. 1 hope that this book will serve as a useful tool for them, as well as a
guide to future research.

This book includes three related parts: (1) accelerating free convective boundary
layers of Newtonian fluids; (2) accelerating free convection film boiling and con-
densation of Newtonian fluids, (3) accelerating film flows of non-Newtonian
power—law fluids. These phenomena are all caused by buoyancy or gravity flows,
and can be summed up in terms of the free convection film flows. In addition, the
free convection film flows of Newtonian fluids can be taken as a special case of
non-Newtonian power—law fluids.

In this book, I present my recent studies of free convection film flows and heat
transfer on both vertical and inclined plates. Because of a lack of related books
presenting the effects of variable thermophysical properties on heat and mass
transfer, these effects are especially emphasized in this book with respect to free
convection, free convection film boiling, and free convection film condensation of
Newtonian fluids. A system of models for the treatment of variable thermophysical
properties is introduced in this book, with an innovative temperature parameter
method for gases and temperature-dependent models for liquids. A novel system of
analysis and transformation models with an innovative velocity component
method is applied throughout the book. This is a better alternative to the traditional
Falkner—Skan-type transformation. The new analytical system and models lead to
simplification for treatment of variable thermophysical properties of fluids, as well
as hydrodynamics and heat transfer analysis. A system of reliable and rigorous
computations solving the problems for two-point or three-point boundary values is
provided in this book. In the analyses and calculations of the first two parts of this
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book, I focus on clarifying the effects of variable thermophysical properties on
heat and mass transfer. A system of numerical solutions is formulated to predict
heat and mass transfer simply and reliably. In the last part of this book, heat and
mass transfer of the accelerating film flows of Newtonian fluids are extended to
that of non-Newtonian power—law fluids. So far, there has been a lack of such
information and analysis for advanced heat and mass transfer of accelerating film
flows of non-Newtonian power—law fluids.

In addition, a collection of novel terminologies has arisen in this book, e.g.,
velocity component method, temperature parameter method, thermal conductivity
parameter, viscosity parameter, specific heat parameter, overall temperature
parameters, thermal physical property factors, boundary temperature ratio, buoy-
ancy factor, wall superheated grade, wall subcooled grade, reference wall
subcooled grade vapor bulk superheated grade, liquid bulk subcooled grade,
computation for three-point boundary value problem, temperature gradient on the
wall, velocity components at the interface, vapor film thickness, liquid film thickness,
mass flow rate through the interface, mass flow rate parameter, Non-Newtonian
power—law fluids, length of boundary layer region, boundary layer thickness, local
Prandtl number, critical local Prandtl number, critical boundary layer thickness,
and so on. These terminologies reflect the recent developments on my study of free
convection film flows and heat transfer. Therefore, 1 strongly urge readers to pay
particular attention to the special physical significance of these terminologies.
Readers will find them beneficial to understanding the essence of this book.

I am greatly indebted to Professor B.X. Wang, Academician of Chinese
Academy of Science, and member of the Executive Committee of the International
Center for Heat and Mass Transfer, who was my guide Professor for my Ph.D.
studies of Tsinghua University, China. The recent developments devoted to Part 1
and Part 2 of this book relied on our long-term research cooperation. In addition,
he carefully proofread the second chapter of this book and provided many valuable
suggestions to the whole book. He even suggested the title of this book.

I am very grateful to Professor H. I. Andersson, Department for Energy and
Process Engineering, Norwegian University of Science and Technology, Norway,
for his highly effective cooperation related to the research developments shown in
Part 3 of this book. As a distinguished researcher in the field of accelerating film
flows of non-Newtonian fluids, his erudite and honorable character deeply
impressed me. At the same time, I gratefully acknowledge the Norwegian
Research Council for awarding me the very prestigious title of international sci-
entist and providing financial support for my extensive research there in cooper-
ation with Professor Andersson.

In addition, many friends and colleagues have contributed to this book. Here,
I would particularly like to thank Professor Liangcai Zhong, Northeastern
University, China, as well as some of my previous students, notably Yu Quan,
Yang Wang, Yue Yuan, Hongyi Wang and Li Ren. They will see their contri-
butions presented in the book. Without their collaborative research efforts this
book would not have been possible.
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I would like to offer my sincere gratitude to Professor Hongtan Liu, Department
of Mechanical and Aerospace Engineering, University of Miami, USA, and Pro-
fessor Ben Q. Li, School of Mechanical and Materials Engineering, Washington
State University, USA. As good friends in my academic circles in North America,
their warm encouragement gave me the full confidence to complete this book.

I would like to thank my respectable friend, Professor Pran Manga, School of
Management, Department of Economy, University of Ottawa, who spent time
going through parts of the manuscript. Owing to his generous help, this book could
be completed in time.

Last and most of all, I offer a special word of thanks to my wife, Shihua Sun.
During most of the past one and half years when I devoted to writing this book, she
provided the loving family environment that offered me the tranquility and peace
of mind that made writing it possible. This book is dedicated to her.

January, 2006 De-Yi Shang



Preface to the Second Edition

In the 5 years since the first edition of this book was published, its second edition
has been published. During the past 5 years, we reported our extensive investiga-
tion results on heat and mass transfer of laminar free convection film condensation
of vapour—gas mixture, with the following research developments: (i) a complete
similarity mathematical model for convenient analysis and simultaneous numerical
solution; (ii) a complete method for treatment of temperature- and concentration-
dependent variable physical properties of vapour—gas mixture; (iii) an available
method and procedure to resolve the challenge associated with obtaining the
interfacial vapour saturations temperature; (iv) a system of analysis and calculation
results on velocity and temperature fields, as well as heat and mass transfer
of laminar free convection film condensation of vapour—mass mixture. Beyond my
expectation, these new research developments are paid a particular attention by the
“Global Thermal Fluids Central” who sent me a congratulations letter on the
inclusion of my biographical sketch in the “Who’s Who in Thermal-Fluids”. These
research developments have been collected in the existing second edition.

In addition, with an additional part “Theoretical Foundation”, a particular
emphasis is laid on the theoretical description in the second edition. Two addi-
tional chapters are involved in this part. They are “New similarity analysis method
for laminar free convection boundary layer and film flows” and “New Method for
Treatment of Variable Physical Properties”. In the former chapter, a system of
detailed theoretical analysis and derivation is provided for creation of the new
similarity method and construction of the complete theoretical model. In the latter
chapter, an advanced method and some comprehensive models are reported for
treatment of temperature-dependent physical properties of gas and liquid, as well
as concentration- and temperature-dependent physical properties of vapour—gas
mixture. Since these models for treatments of variable physical properties are
based on the typical experimental values, they will guarantee the research results
provided in this book have the practical application values.

Furthermore, during the work on second edition of the book, a series of sig-
nificant work was done for serious examination of the system of numerical results,
and careful modification of the system of formulated equations proposed for

ix
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practical and reliable prediction of heat and mass transfer. Then, I expect the
second edition would be obviously improved book based on its first edition. I
welcome the comments on any aspect of it.

At last, I have found that it is necessary to change the expression on the author
name of this book from “Deyi Shang” to “De-Yi Shang”, in order to match that in
my numerous other publications. Although both of them are definitely same
expression in Chinese Phonetic Alphabet, they have caused a big confusion for
identification in English.

October, 2011 De-Yi Shang
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Symbols

a Thermal diffusive coefficient, m?/s; assumption for ignoring the
variable thermophysical properties (or for Boussinesq approximation)

A Area, m?

b Width of plate, m; assumption for ignoring the shear force at the
liquid—vapor interface

c Assumption for ignoring inertia force of condensate film

Cyy Local skin-friction coefficient of non-Newtonian power—law fluids,
SRe—1/ (1) [(d_W) }

X dn /o

Cing Gas mass fraction in vapour—gas mixture

Chv Vapor mass fraction in vapour—gas mixture

Civ.s Interfacial vapor mass fraction

Cy, 0 Bulk vapor mass fraction

Cinv,oo” Critical bulk vapor mass fraction (corresponding to the case for

interfacial vapor saturation temperature Tgine — Tw)

Cp Specific heat at constant pressure, J/(kg k)

Cp, Gas specific heat, J/(kg K)

Cp, Vapor specific heat, J/(kg K)

Cp, Specific heat of vapor—gas mixture, J/(kg K)

d Assumption for ignoring the thermal convection of condensate film
D, Vapor mass diffusion coefficient in gas, m*/s

e Internal energy per unit mass, J/kg

E Internal energy, J

E Internal energy per unit time in system, 0 E = Q + Wy, W

AE Increment of internal energy in a system, J

AE Increment of internal energy per unit time in system, W

E,” Deviation of heat transfer of free convection predicted by using

Boussinesq approximation to that with considering variable
physical properties
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Symbols

Force, N

Mass force acting on the control, N
Surface force acting on the control, N
Surface force per unit mass, m/s?

Gravity acceleration, m/s?
Momentum increment per unit time in system, kg m/s

Grashof number

Local Grashof number

. . Ty/Too— 1]
Local Grashof number for gas laminar free convection, g‘”/vfx‘x

i}

local Grashof number for liquid laminar free convection,

2
%
2

v v,§

Local Grashof number of liquid film for film boiling, w
Loo

Local Grashof number of vapor film for film boiling,

Local Grashof number of liquid film for film condensation of
8(P1y = Pro)X

V7 Pl
Local Grashof number of vapour film for film condensation of

X vx71 X3
vapour, g(py, /52. )

vapour,

Local Grashof number of condensate liquid film for film conden-
8(PLw—Pimoc)¥

Vi P
Local Grashof number of vapor—gas mixture film or film conden-

. . ; —1)x
sation of vapour—gas mixture, W+)

m,o0

sation of vapour—gas mixture,

Local mass flow rate entering the vapor film at position x per unit
area of the plate, kg/(m2 S)

Total mass flow rate entering the vapor film for position x = 0 to x
with width of b of the plate, kg/s

Defined temperature gradient for pseudo-similarity case, %’}4)
Enthalpy, E +pV, ¢,t, ]

Specific enthalpy (enthalpy per unit mass), e + pv, J/kg

Latent heat of vaporization, J/kg

Basis dimension for quantity of heat

Coefficient of consistency of non-Newtonial power—law fluids,
kg s" /m

Basis dimension for temperature

Basis dimension for mass

Reference length of plate, m

Laser Doppler Velocimeter

More complete condition

Mass increment per unit time, kg/s



Symbols

[m]

n

ne
n;y

Pyg

Ny
Nuy,,

Nu,,,

s

Pr
Pr,

Pr.*
Pr,

Pr,
Pr,,

Qin
qx

XXV

Basis dimension for length

Power law index; number of independent physical variables
Thermal conductivity parameter

Viscosity parameter

Specific heat parameter
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Chapter 2
Basic Conservation Equations for Laminar
Free Convection

Abstract In this chapter, the basic conservation equations related to laminar free
fluid flow conservation equations are introduced. For this purpose, the related general
laminar free conservation equations on continuity equation, momentum equation, and
energy equation are derived theoretically. On this basis, the corresponding conserva-
tion equations of mass, momentum, and energy for steady laminar free convection
boundary layer are obtained by the quantities grade analysis.

2.1 Continuity Equation

The conceptual basis for the derivation of the continuity equation of fluid flow is the
mass conservation law. The control volume for the derivation of continuity equation
is shown in Fig.2.1 in which the mass conservation principle is stated as

[ ] [ ] L[]
M increment = M in — M out 2.1)

o . . . .
where M increment €Xpresses the mass increment per unit time in the control volume,
L]

m i represents the mass flowing into the control volume per unit time, and m out 18
the mass flowing out of the control volume per unit time. The dot notation signifies
a unit time.

In the control volume, the mass of fluid flow is given by pdxdydz, and the mass
increment per unit time in the control volume can be expressed as

a
M increment = %dx dde- 2.2)

The mass flowing into the control volume per unit time in the x direction is given by
pwydydz. The mass flowing out of the control volume in a unit time in the x direction
is given by [pwy + 0 (pwy) /0x - dx] dydz. Thus, the mass increment per unit time

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 27
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_2,
© Springer-Verlag Berlin Heidelberg 2012



28 2 Basic Conservation Equations for Laminar Free Convection

Fig. 2.1 Control volume for
the derivation of the continuity
equations

Mincrement = Min — Mout

out

dz

m

/V dx

in the x direction in the control volume is given by a(g—;’”dxdydz. Similarly, the mass
increments in the control volume in the y and z directions per unit time are given by

%dydxdz and a(g—?Z)dzdxdy, respectively. We, thus, obtain

. ° d(pw ad pw d(pw
Mout — Min :( (';)x x) + (E)yy) + (gz Z))dxdydz. (2.3)

Combining Eq. (2.1) with Egs.(2.2) and (2.3), we obtain the following continuity
equation in Cartesian coordinates:

dp 3w 3 (pwy) L 3w _

0 2.4)
T ox ay 0z
or in the vector notation
ap —
at
or
Dp —
—+pV-W)=0 (2.6)
Dt

=
when p is constant and W = iwy + jw, + kw; is the fluid velocity.

For steady state, the vector and Cartesian forms of the continuity equation are
given by

a 0 a
7 o) + @(pwy) + &(pwz) =0. 2.7)

or N
V-(pW)=0 2.8)
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Fig. 2.2 Control volume for
the derivation of momentum
equations

dy

dx

2.2 Momentum Equation (Navier—Stokes Equations)

The control volume for the derivation of the momentum equation of fluid flow is
shown in Fig.2.2. Meanwhile, take an enclosed surface A that includes the control
volume. According to momentum law, the momentum increment of the fluid flow
per unit time equals the sum of the mass force and surface force acting on the fluid.
The relationship is shown as below:

[ -

G increment = ﬁm + Fs (29)

— —
where F ,, and F ; denote mass force and surface force, respectively.

. o . . .
In the system, the momentum increment 1 increment Of the fluid flow per unit time
can be described as

° D —
G increment = —— / powdv (2.10)
Dt
\4

In the system, the sum of mass force F,, and surface force Fyacting on the fluid is
expressed as

Fo+F, =/dev+/?ndA @.11)
\% A

where V and A are volume and surface area of the system respectively, T n 18 surface
force acting on unit area.
Combining Eq. (2.9) with Eqgs. (2.10) and (2.11), we have the following equation:

D — — —

D—/,oWdV: /deV+/rndA (2.12)

T
Vv \%4 A

According to tensor calculation, the right side of Eq.(2.12) is changed into the fol-
lowing form:
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/dev+/?ndA=/dev+/v-[r]dv (2.13)

1% A 14 14

where V - [1] is divergence of the shear force tensor.
The left side of Eq.(2.12) can be rewritten as

_/ wdv — / (pW) (2.14)

With Egs. (2.13) and (2.14), Eq. (2.12) can be simplified as

D —
/ W) _ 7 v.mlav=o (2.15)
Dt
\%
Therefore,
D( ﬁ)/) i
P FFV-Ir] (2.16)
Dt

This is the Navier—Stokes equations of fluid flow. For Cartesian Coordinates,
Eq.(2.16) can be expressed as

D(pwy) N 0Txx n 0Tyx n 0Ty

= 2.17

Dt ox oy T g P& @17
D(pwy) 0Ty 0Ty = 0Ty

= — 2.18

Dt ax + ay + 0z + 08y (-18)
D(pw;) 07y,  0Ty; = 0Ty

= = —= 2.19

Dt ox + ay + 0z +re: ( )

where

D(pwy) _ d(pwx) n Opwy) n Opwy) n Opwy)

Dt ot x ay 7 az  °
D(pwy) _ d(pwy) _ (Bpwy) — (Bpwy) | (Bpwy)

D ar T ax M Ty Mt
D(pw;) _ d(pwy) (dpwy) (dpwy) (dpwy)

Dr o T ax Mty Mt

InEqs. (2.17)—(2.19), gx , &y, and g, are gravity accelerations in x, y, and z directions,
respectively, while the related shear forces are given below:
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_ N 2 oWy n owy 0w, ] 42 oWy
T = — —_ _ JE—
w =PI Ty T ez )] T e
[ 2 fowy  Owy,  Ow )] Wy
- t Dy 2
oy _p+3u(8x * dy * 0z _+ May
[ 2 [(owy Owy,  Ow )] ow;
- z Dy )1
fiz _p+3'u(8x + ay + 0z _+ MBZ

T”:’”:“(WJray

Then, (2.17)—(2.19) are rewritten as follows, respectively:
D(pw ad d aw ad ow aw
(’O—y) - _r +2— % * + —(u * + Y

Dt Oy Oy Ox dy dy O

n a owy N ow, a[2 owy N owy n ow, n
o, M\ o, T, o 3" o, T e, T e, p8x

(2.20)
Similarly, the momentum equations in the y and z directions are given by
D(pw a ad ow ow a ow
(p y):__p_i__u x+ y 122 M_y
Dt dy Oy ay ox ay ay
L+ 0 owy n ow 0 [2 [owy n owy n ow; n
o. "\, T, o, 13" o, "o, T Py
(2.21)

D(pw;) 9y ad owy 0w, a owy  Ow, a
i T AT 2 il - 27—
Dt d; + Oy ” 0z + ax + ay H 9z + ay + 9z

awz) 9 [2 (awx Iwy E)wz)]
+ln—)—-=|=zu +—=+—) | +nrs: (2.22)
( 3" \a 8 @ :

For steady state, the momentum Eqgs. (2.20)—(2.22) are given as follows respectively:

C ) i) 0, 0, 0,
0 ( iy + aly"wy + %;Wz) + Wy (wxﬁ —i—wyﬁ —i—wz£)

__9p 9 Wy f) Iw, owy 9 Wy Iw,
__ﬁ+2ﬁ(u 3x)+3_y|:u“<3y +3_x‘):|+5|:'u(31 + 35
d 12 Iwy owy ow,
“ax | 3M ( dx dy + 9z + 08x

)] (2.23)
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owy
p B_Jé‘wx—i_ 3y y+ 3z WZ)+WV(WX8X+Wy<)p+WZ

)
=% oo (e )] 028 () 2 (5] e

o
=+ az) + gy

_ 2|2 3Wx
13 +

ow;
p(axwx+ Towy + 5 W7)+WZ(Wxax+W>ap+Wz

Wy aw 9
__8_z+5[ (w +8x)]+$[ ( y+az)]+2az(u,g;) (2.25)
d
Baz [%M(dgix W} ):I_‘_’OgZ

Iy

ow oWy . ap
Let us compare term p( Wy + avvw}—i- . wz) with termw, (wxﬁ

ap oWy Owy wa
+wygy —i—wz ) In general, derivatives =%, 7y and are much larger than the

9px  9px aﬂx
derivatives 37, BN and respectively. In this case, the term wy (wx xt wy 3y Ly

we gp ) is omitted, and (2.23) is rewritten as generally

owy owy owy ap a0 owy
T X X S I, Y
p(axWX+3yW}+8zwz) 8x+ ax \Mox
o[ fowe ow,
ol (G + 5 )}
o[ [owy 0w,
+8z _M( 0z * 8x)i|

9 [2 [owy 4 Iwy . Iw, .
ax _3'u 0x ay 0z Pex

Similarly, in general, (2.24) and (2.25) are rewritten as, respectively,
awy owy, owy ap d owy  Owy
e+ —Zwy + —w, ) = -+ — +
p( ax ET Ty YT oy Tox M\ oy T ax
a ow a ow ow
2 —2 - Y T2
+ ay (M 8y)+8z |:M( 0z * ay

a [2 awx+awy+awz n
ay 13" \ox Ty T oz P8y

(2.242)
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Fig. 2.3 Control volume 0 /
for derivation of the energy w

equations of fluid flow

dz
AE

Q-/ dy

dx

ow; n ow; n ow; ap n ad oWy n ow;
— Wyt —wy+ —w, | =—— 4+ — —
Pl Ty ™ ™ oz " ox | \oz T ax
ad owy  Owy ad ow;
Z 2y 2, 2=
+8y|:'u(8z * 8y)]+ az(“ax
9
0z

2 owy n owy N ow; n
3\ ox Ty T a2 pe:

2.3 Energy Equation

The control volume for derivation of the energy equation of fluid flow is shown in
Fig.2.3. Meanwhile, take an enclosed surface A that includes the control volume.
According to the first law of thermodynamics, we have the following equation:

AE =0+ Wou (2.26)

L] °
where A E is energy increment in the system per unit time, Q is heat increment in
L]
the system per unit time, and Wy, denotes work done by the mass force and surface
force on the system per unit time.
The energy increment per unit time in the system is described as

AE = D/ +W2 av (2.27)
o) P\¢T ’
\%

where T denotes time, WTz is the fluid kinetic energy, W is fluid velocity, and the
symbol e represents the internal energy per unit mass.

The work done by the mass force and surface force on the system per unit time is
expressed as
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. - = o =
Wour = / pF-wdV + / T, - WdA (2.28)
Vv A

- . - . . .
where F is the mass force per unit mass, and 7, is surface force acting on unit area.

The heat increment entering into the system per unit time through thermal con-
duction is described by using Fourier’s law as follows:

0= / 3 2L 4a (2.29)
on
A

where n is normal line of the surface, and here the heat conduction is considered
only.
With Eqgs. (2.27)-(2.29), Eq. (2.26) is rewritten as

D w2 > - 5 - at
— [ ple+—)dv=[ pF -wdV+ [ 1, -WdA+ | A—dA (2.30)
Dt 2 on

\%4

Vv A A

D w2 D w?
E/p(e—i-T)dV:/E[p(e—i—T)}dV (2.31)
1% 1%

/?,,WdA:/Z t]~\7/dA=/Z[t]-V_i)/)dA=/V~([t]~V_[)/)dV (2.32)
A A A

v

where

ot
/Aa—dA =/V-(AVt)dV (2.33)
n
A v

With Egs. (2.31)-(2.33), Eq. (2.30) is rewritten as

D W2 — — —
/D—T |:,0 (e+7)]dV:/pF-de+/v-([r].w)dv+/v-(m)dv.
1 \% v Vv

(2.34)
Then,

D w2 RN N
—[p(eJr—)}=pF-W+V-([r]-W)+V-(?»Vt) (2.35)
Dt 2

where [7] denotes tensor of shear force.
Equation (2.35) is the energy equation.
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Through tensor and vector analysis, Eq.(2.35) can be further derived into the

following form:

Dwo) . e+ - v (2.36)
Dt

Equation (2.36) is an another form of the energy equation. Here, [t] - [¢] is the scalar
quantity product of force tensor [ 7] and deformation rate tensor [¢], and represents the
work done by fluid deformation surface force. The physical significance of Eq. (2.36)
is that the internal energy increment of fluid with unit volume during the unit time
equals the sum of the work done by deformation surface force of fluid with unit
volume, [7] - [¢], and the heat entering the system.

The general Newtonian law is expressed as

2 —
[t]=2ule] - (P + §MV . W) [7] (2.37)

where [/] is unit tensor.
According to Eq.(2.37), the following equation can be obtained:

- 2 —
[e]-[e] = =pV - W =S (V- W)? + 2ulel? (2.38)

Then, Eq. (2.36) can be rewritten as

D(pe) —
=—pV-W+d+ V. (AVr) (2.39)
Dt
R
where ® = —% u(v - W)? + 2u[s]2 is viscous dissipation function, which is further

described as
e\ owy 2 aw, 2 (wa owy 2
D= 2 2 — 21— —
M[ (8x)+(3y)+ 0z + 8y+8x
owy  Ow, 2 ow;  Owy 2 2[ N
—_— 4+ — — — = |div(W ] 2.40
+(82+3y)+ ox | oz 3 (40N (240)

Equation (2.6) can be rewritten as

With the above equation, Eq. (2.39) is changed into the following form:

D(pe) D (1\]_
[ e (;)] —d+V-(AVD) (2.41)
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According to thermodynamics equation of fluid

D(ph)  D(pe) D (1 Dp
— ita — (= — 242
Dt Dt +p'0D1: P +D‘L’ ( )
Equation (2.41) can be expressed as the following enthalpy form:
D(ph) _ Dp
=—4+d4+V- AVt 2.43
Dr D To+ (AVr) (2.43)
or D( y D
t
209D 2P o4 v Vi) (2.44)
Dt Dt

where h = cpt, while ¢, is specific heat.
In Cartesian form, the energy Eq. (2.44) can be rewritten as

d(pcpt) d(pcpt) d(pcpt) d(pcpt)
ar M Ty T e

_DP+3 Aat +a Aat +a Aat o (2.45)
Dt ax \ox ay 9y 9z \ 0z '

For steady state and nearly constant pressure processes, the viscous dissipation can
be ignored, and then the Cartesian form of the energy equation (2.45) is changed into

w 8(pc”t)+w,a(pc”t)+w 9pept) _ 3 i +i i +i P
T ox Y dy oz dx \ dx ay \| oy dz \ 0z
(2.46)

Above equation is usually approximately rewritten as

dept)  dlepr) B @ (Lot [ or\ B (.0
p[Wx ox Ty Wy, ox Uax ) Tay Moy ) Taz Mz
(2.464)

or

ot n ot n ot il /\at n a )Lat n 0 Aat (2.46b)
cplwi—4+wy—+w,— | =—(A—)J+— (A —)+— | r2— .
Pep | W ox Y dy ‘oz dx \ ox ay | dy dz \ 0z
In fact, in (2.46a) the temperature-dependent density is ignored, and in (2.46b) both
the temperature-dependent density and specific heat are ignored.
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Fig. 2.4 Physical model (a) (b)
and coordinate system of
boundary layer of laminar
free convection. a Ascending
flow on the inclined surface
(ty > txo). b Falling flow on
the inclined surface (f,, < t~o)

2.4 Basic Equations of Laminar Free Convection
Boundary Layer

In Fig.2.4 the physical model and coordinate system of boundary layer with 2D
laminar free convection are shown schematically. An inclined flat plate is suspended
in fluid. The surface temperature is 7, and the fluid bulk temperature is T. If Ty, is
not equal to 7, the laminar free convection can be produced on the inclined surface
in both the cases as shown in Fig.2.4a, b, respectively.

In the following sections, we will make quantitative grade analysis successively
to investigate the governing equations of mass, momentum, and energy conservation
for steady laminar free convection in the 2D boundary layer.

2.4.1 Continuity Equation
Based on the Eq. (2.7), the steady state 3D continuity equation is given by
L (o) + A (pwy) + A (o) = 0 2.47)
—(pw —(pwy) + —(pw;) = 0. .
ox pWx ay e 9z o
While, the steady state 2D continuity equation is given by

i) i) i)
)+ 2 2 -0 2.48
oy (Pwe) + oy (pwy) + aZ(/)Wz) (2.48)

In Egs. (2.47) and (2.48), variable fluid density with temperature is considered.

Before the quantitative grade analysis, it is necessary to define its analytical stan-
dard. A normal quantitative grade is regarded as {1}, i.e., unit quantity grade, a very
small quantitative grade is regarded as {3}, even very small quantitative grade is
regarded as {62}, and so on. The ration of the quantities is easily defined, and some
examples of ratios are introduced as follows:

L
0]

) 1 1
Oy, Wy, Dy

1, =
W {6} {8} {82}
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According to the theory of laminar free boundary layer, the quantities of the
velocity component w, and the coordinate x can be regarded as unity, i.e., {wy} =
{1} and {x} = {1}. However, the quantities of the velocity component w, and the
coordinate y should be regarded as §, i.e., {w,} = {8} and {y} = {6}.

For the terms of Eq.(2.48), the following ratios of quantity grade are obtained:
{pw}x} = { } = {1}and {T;}”} = ﬁ = {1}. Therefore, both the two terms of Eq. (2.48)
should be kept, and Eq. (2.48) can be regarded as the continuity equation of the steady
state laminar 2D boundary layers. Of course, Eq. (2.48) is also suitable for the steady
state 2D boundary layers with laminar free convection.

2.4.2 Momentum Equations (Navier-Stokes Equations)

According to Egs. (2.23a) and (2.24a), the momentum equations for steady 2D con-
vection are

owy owy ap 0 owy  Ow,y
p(w"ax +Wy8y>_ 8y+8x " 8y+8x
I d owy d [2 oWy n owy n (2.50)
dy ’ dy dy 34 ox dy PEy '
According to the theory of boundary layer, the quantity grade of the pressure gradient
g” can be regarded as unity, i.e., { op } = {1}, but the quantity grade of the pressure

gradient 5+ p is only regarded as very small quantity grade, i.e., { } {5}.

The quantlty grades of the terms of Eqs. (2.49) and (2.50) are expressed as follows,
respectively:

owy Wy op 0 0wy 0 owy  doy
—_ , = 2— — —_—
p(w)‘ax +W}ay) T T ax(“ax)+ay[“(ay+ax
d[2 0wy n owy n
ax 3” ox ay p8x

TR M o (1) (1), (1) )
s st Wiyt 1
{ }({ TR }{a}) W+ + 50 }({8} {1})

{1} 2({1} {8})
-4 1}{1 2.49
o gt rom (2.49a)
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owy owy ap 0 owy 0wy ad owy
Wy—+WwWy— ) =—7—+ — +—)|+2—= -
p("ax yay) oy Tox M\ oy T o oy Moy

0 [2 owy 0wy
dy [ 3 ax ay

6y ) 1, ({1} {a}) (1 (5)
A (X s ) = oy + Sy (L ) 4 U2y 1
+pg’”(”{l}“}w}) T CrTRETTY RS
T ({1} {8})
— —1{6 e 1Hs 2.50
516 (i + 15 ) + 0 (2.50a)

The quantity grades of Egs.(2.49a) and (2.50a) are simplified as follows,
respectively:

oWy oWy op 0 oWy 0 owy  Ow,y
(g ) == g () + o [ (5 + 52
2 (owe Ow,
Ty [3“ (W+Wﬂ s
(A1 + (1)) = (1} + {82} + (1} + {8%} — (8%} + {8*) + {1}
(2.49b)

owy 9wy _ _dp 9 (dwx  dwy 9 (, 3wy
P(wx ox + wy By)_ 8y+8x [M(ay + ox )i|+23y (M ay)
92 (9w a&)
_ay[3“(ax oy }”’g”
(1({8) + (8) = {8} + ({8} + (&) + (8) — ({8Y(1) + (1)) + {8}
(2.50b)

Observing the quantity grades in Eq. (2.49b), it is found that the terms 2% (M ag;'“ ),

awy . 9 Wy awy 3 |2 Wy awy
% interm 5= I:/L ( oy + 57 ) |-and 1 | s | S5+ =y ) | are very small and can

be ignored from Eq. (2.49). Then, Eq. (2.49) is simplified as follows:

oW, oW, ap 0 owy
— ) = —— 4+ — 2.51
p(Wx ox ay) ax+ay(“(ay))+pgx >

Comparing the quantity grades of Eq. (2.49b) with that of Eq. (2.50b), it is found that
the quantity grades of Eq.(2.50b) are very small. Then, Eq.(2.50) can be ignored,
and only Eq. (2.51) is taken as the momentum equation of 2D boundary layer.

From Fig.2.4 it is found that for free convection on inclined plate the gravity
acceleration component g, is expressed as

gx = g -cosu (2.52)

where g is gravity acceleration and « is the inclined angle of the plate.
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With Eq. (2.52), Eq.(2.51) is rewritten as

oWy oWy ap 0 owy
X R T . 2.53
p(w’“ ox ay) ax+8y(“(ay))+pg coser @239

Suppose, the direction of g - cos « is reverse to that of the velocity component w,
Eq. (2.53) can be rewritten as

owy owy ap d owy
(Wx 0x e ay ) 0x ay dy g - co8 ( )

Beyond the boundary layer, where the effects of viscosity can be ignored, the momen-
tum equation (2.54) is simplified into the following equation:

dp dwy 0o

- = - COS U + PooW
dx Poc8 PooWx,00 dr

(2.55)

where poo and wy o are fluid density and velocity component beyond the boundary
layer.
With Eq. (2.55), Eq.(2.54) becomes

oWy n oWy 0 owy + o )+ dweo (2.56)
Wy——+wy—— | = — — Woo——— .
P\ Wx 9x y 3y 3y w dy 8(Poo — P PooWoo d

For constant wy ~ the Eq.(2.56) transforms to

aw aw d ow
o (wxa—):C + wya—yx) = 5 (M 8;) + g(pso — p) cOS (2.57)

This is the momentum equation of 2D boundary layer on an inclined plate with
laminar free convection.
Equation (2.57) can be rewritten as

ow ow ad ow
p(wxa—xx—i-wya—yx) =5(,u ayx)+g|,ooo—,o|cosoc (2.57a)

In (2.57a), the absolute value of buoyancy factor |p, — p| shows that the buoy-
ancy term g |pso — p| cos « has always positive sign no matter which one is larger
between p and poo. In this case, the buoyancy term g |poc — p| cos @ and the velocity
component w, have same sign.

For the free convection of a perfect gas (ideal gas), the following simple power
law can be used: £2 = Tl where T denotes absolute temperature. In fact, for general
real gas, this relation is also available. Therefore,
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cos o (2.58)

| —p| = — =1
coSo =
Poo — P P T

Thus, for the laminar free convection of a perfect gas, Eq. (2.57) can be changed into

oWy n oWy d oWy n T |
w wy— ) = — —_— =
P ox Y 9y dy ” ay 8P Too
If the temperature difference |T,, — To| is very small, which will lead to a very small
density difference |pso — pw |, the Boussinesq approximation can be applied. In this

case, buoyancy factor in Eq.(2.57a) becomes |poo — p| = pB|T — Twol, and then,
Eq.(2.57a) is changed to

cos (2.59)

an an azwx
Wy —— +Wy—— =V
Y ox Y 9y dy?

+ gB|T — Teo| cos o (2.57b)

where B is Coefficient of expansion.

2.4.3 Energy Equations

According to Eq. (2.46a), the energy equation for steady 2D convection is shown as

follows: 9 3 3 P P 9
t t ! !

0| wy (cpt) +wy (cpt) = A—)+— A= (2.60)
ax dy ax ax ay ay

With the quantity grade analysis similar to that mentioned above, Eq. (2.60) can be
changed into the following form for energy equation of 2D boundary layer.

d(cpt) d(cpt) . i 2
phxw'W’w}‘wa) @ob

Up to now, it is the time to summarize the basic governing equations for description of
mass, momentum, and energy conservation of 2D boundary layers with consideration
of variable physical properties for laminar steady-state free convection as follows:

0 ad 0
—(pwx) + —(pwy) + —(pw;) =0 (2.48)
ax dy 9z
ow ow d ow
p(wxa—xx+wya—yx) = 5(# ayx) + glpoco — plcosa (2.57a)

d(cpt) d(cpt) . i 2
phxw'W’w}‘wa) @ob
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For rigorous solutions of the governing equations, the fluid temperature-dependent
properties, such as density p in mass equation and in buoyancy factor of momentum
equation, absolute viscosity u, specific heat ¢, and thermal conductivity A will be
considered in the successive chapters of this book.

The laminar free convection with two-dimensional boundary layer belongs to two-
point boundary value problem, which is the basis of three-point boundary value prob-
lem, such as for film boiling and film condensation. For isothermal plate for exam-
ple, the boundary conditions for the two-point boundary problem can be expressed
as follows:

y=0: wy=0, wy=0, r=1, (2.62)

y—>o00: wy >0, t=tx (2.63)

where 1,, is plate temperature, f is the fluid temperature beyond the boundary layer,
and wy ~ denotes the fluid velocity component in x-direction beyond the boundary
layer.

The term g |po — p|cosa in Eq.(2.57a) is regarded as buoyancy factor. For

perfect gas, the buoyancy factor can be expressed as g | o0 — p| cOS = pg ‘% — 1)

cos «, then the basic governing equation for description of momentum conservation of
2D boundary layers with laminar steady state gas free convection can be expressed as

oWy oWy 0 OWy T |
o (e oy ) =y (5 ol -
In addition, although the Eq.(2.57b) is originally for perfect gas, it is well known
that it can be very accurately applied to free convection and film flows of general
gases (Tables 2.1 and 2.2).
However, for Boussinesq approximation (in fact, only suitable for very small tem-

perature difference of the boundary layer), the partial differential equations (2.48),
(2.57) and (2.61) becomes

cosa (2.57b)

9 9
a(ﬂwx) + E(I)Wy) =0 (2.48a)
Ws |y, W P | BIT — Tl (2.57¢)
Wy — Wy——— =1V — COoS o . C
*ox Ty ay? 8 OO
ot ot 0%t
Wy e (2.61a)

ox "oy T Proy?
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Table 2.1 Governing partial differential conservation equations in rectangular coordinate system
for laminar free convection (with consideration of variable physical properties)

Mass equation %(pwx) + a%(,owy) + 8%(pwz) =0
Momentum equation P (36? Wy 3(?; wy + wa _ ap _|_2 r”av;x)
o 52 3 )
-2 12 (aw‘ + 5 4 o )] +pgx
o (G + T+ ) 5 LG+ 5]
28 (45) £ (2 %)
~a [%"“(M Ty +r8gy

Iw. w, w 9
d%m+%m+%wy—”+w[ﬁM+wﬂ

é awy
s [ (4 ) [+ 235 (5
8 2 Iwy 3Wv
3K ( + dy + 62) + 08z
Energy equation [ a(c,, Dy B(c" ’)—i— w, a(?ﬁ k)

31( i +3V(M) o Adt)-l—dD
b= [2 (dgm) (3 ) (aw) (wa + Iwy )2 + (3;V> " adm)z
) < y

+ dw BwY -‘ le(W):I -‘

Table 2.2 Governing partial differential equations in rectangular coordinate system for laminar
free convection boundary layer

Governing partial differential equations for laminar free boundary layer
(with consideration of variable physical properties)

Mass equation %(pwx) + %(,owy) =0

Momentum equation P (wx ‘%‘ +wy ag('“ ) = ( ) + g |poo — plcosa
(for fluid free convectlon)

p(wxag;‘er)aw'): ( dws ‘%fl‘cosa

(for gas free convection)

Energy equation P [wx 8(;;[) +wy 3(;51)] = 9% ()\g—()

(with ignoring variable physical properties)

Mass equation 35;‘ + 85;‘ =0

Momentum equation Wiy aw‘ +wy "7;‘
= ( d W*) + gBIT — To| cos

Energy equation a L+ wy ot By =g g‘iz
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2.5 Summary

Up to now the governing partial differential conservation equations for laminar free
convection and those for laminar free boundary layer can be summarized as Table 2.1
and 2.2.

2.6 Exercises

N =

Point out the advantages of inducing the boundary layer theory.

. From the related governing equations, tell us the importance and necessity

of consideration of variable physical properties in investigation of convection
heat transfer, and point out the limitation with ignoring the variable physical
properties.

Please review the governing partial differential conservation equations in rec-
tangular coordinate system for laminar free convection (with consideration of
variable physical properties), and use the quantitative grade analysis to derive out
the related boundary layer governing ordinary differential equations with consid-
eration of variable physical properties.



Chapter 3
Review of Falkner—Skan Transformation
for Fluid Laminar Free Convection

Abstract In this chapter, the traditional Falkner—Skan type transformation for lam-
inar free convection boundary layer is reviewed. The typical two-dimensional basic
conservation equations for laminar free convection boundary layer are taken as exam-
ple for derivation of the related similarity variables for Falkner—Skan type transfor-
mation. By means of the stream function and the procedure with the method of
group theory, the similarity intermediate function variable f(n) is induced. Then,
the velocity components are transformed to the related functions with the similarity
intermediate function variable (fn). On this basis, partial differential momentum
equation of the free convection boundary layer is transformed to related ordinary
equation. At last, the limitations of the Falkner—Skan type transformation are ana-
lyzed in detail.

3.1 Introduction

For solution of the laminar boundary layer problem, Falkner and Skan [1] proposed
their similarity method in 1931. Up to now, the widely applied similarity analysis and
transformation for the laminar convection boundary layer and film flows is based on
the Falkner—Skan type transformation. So far, the Falkner—Skan type transformation
has been collected in numerous publications, and only some of them such as [2—
14] are listed here for saving space. So, before the presentation of my related new
similarity analysis method in this book for laminar free convection and film flows, it
is necessary here to review briefly the Falkner—Skan type similarity method.

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 45
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3.2 Falkner-Skan Transformation Related to Governing
Equations Under Boussinesq Approximation

Let us consider the governing equations of the boundary layer of steady state fluid
laminar free convection. Based on Chap. 2, the governing equations of the boundary
layer of steady state fluid laminar free convection are as follows for Boussinesq
approximation (For convenient derivation, only vertical case is considered here):

d ow,,
LA T 3.1)

ax dy

oWy oWy 32Wx
WXW—FwyW:v 9y? + g lpoo — Pl (3.2)
at at v 9%t

o i 33
(Wx x Wy 3y) Pr 9y2 G-

For rigorous solutions of the governing equations, the fluid temperature dependent
properties, such as density, absolute viscosity, specific heat, and thermal conductivity
will be considered in the successive chapters of this book.

The laminar free convection with two-dimensional boundary layer belongs to two-
point boundary value problem. For isothermal flat plate for example, the boundary
conditions for the two-point boundary problem can be expressed as follows:

y=0: wy=0, wy=0, 1=1,. (3.4)
Y= 00! Wyoo =0, t=tx. 3.5)

Here, w, and wy, are velocity components of the fluids in x and y directions respec-
tively, wy o 1S constant main stream velocity, ¢ is temperature. While, the subscript
“f’ is induced in the equations for inferring in particular to the constant physical
properties with the average temperature of boundary layer, i.e., ty = % (Here-
inafter the same). Here, Eqs. (3.1)—(3.3) will be taken as a basis for introduction of
the Falkner—Skan type transformation method.

The detailed derivation for the related expressions of the Falkner—Skan transfor-
mation is omitted here, which need inducing the stream function ¥ (x, y) at first,
and then requires a group theorem discussed at length by Hansen [15] and Na [16].
Meanwhile, the stream function is expressed by

oy 9y

= —, = ) 3.6
dy Wy ax (36)

Wx

With Falkner—Skan transformation for fluid laminar free convection, we get the fol-
lowing variables for describing expressions for the stream function i and dimen-
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sionless coordinate variable n:

1 1/4 y 1 1/4
y— (ZGr) Yoy —a (—Gr) £ 3.7)

where Grashof number is expressed as

_ 8BITy — Tool x?
=
v

Gr (3.8)

Combined with Egs. (3.7) and (3.8), then, the dimensionless variables, w, and wy
are derived from Eq. (3.6) respectively as follows:

4v (1 172

Wr = (ZGT) o, 3.9
v 1 1/4

Wy =< (ZGT) () f'(m) = 3] (3.10)

Dimensionless temperature 0 (n) is also given by

t— I

0(n)= 3.11)

z‘W oo

With Egs. (3.9)—(3.11), Egs.(3.1)—(3.3) lead to the following ordinary differential
equations

S A3 ) =20/ () +0(n) =0 (3.12)
0" () + 3Prf (' (n) =0 (3.13)

with the boundary conditions
n=0: fp=r0m=0 0m=1 (3.14)

n—oo: f'(n)=0, 6(1n) =0. (3.15)

3.3 Falkner-Skan Transformation Related to Governing
Equations with Consideration of Variable Physical Properties

Consider the boundary layer of the fluid laminar free convection from an isothermal
vertical plate, the following governing partial differential equations of laminar free
convection with consideration of variable physical properties are given by consulting
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Eqgs.(2.48), (2.57a) and (2.61):

(,wa)+ (pwv) = (3.16)
p(wx%wyag)“):%( a(,:;’C)+g|poo—p| (3.17)
ot ot 9 ot
)5 (2) e
with the boundary conditions
y=0: w,=0, wy=0, =ty (3.19)
y—>00: wy >0, =ty (3.20)

where p is the absolute viscosity, p is the density, A is the thermal conductivity, g is
the gravity acceleration, and ¢ is temperature.
For variable physical properties, we set up following definition of the stream

function :

b b
Ly o, (3.21)

Pw dy Pw dx

For variable physical properties we can give expressions for stream function ¥ and
dimensionless coordinate variable n as defined by:

y

1 1/4
n= Cx_l/4/ ﬁdy, Y =4dvy (ZGIX,W) f)

Pw
0

where
810/ pw — 1x°

GXW_ 1)2
w

(3.22)

Dimensionless temperature 0 (n) is defined by Eq. (3.11) too.
The function 6 is a dimensionless temperature and f'is related to the velocities in
the following way

12 _ (2 _
o = dnex 2 £, wy—(p)( SE)arm=3fm (23

where
C = Gr, x4 (3.24)
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With the variables used in Eqgs.(3.11), (3.21)—(3.24), Egs.(3.16)—(3.18) are now
transformed into the following equations:

d

an [p f”(n)} +3£) ") =20 P +60) =0 (3.25)

d
dn
where A, p, ¢, and Pr are thermal conductivity, density, specific heat and Prandtl

number, respectively, while subscript w denotes the temperature on the wall.
The boundary conditions, (3.19) and (3.20) are transformed into

] + 3 Pry, (cC_p) fme'(m) =0 (3.26)
Pw

n=0: f=/f=0 0@m=1 (3.27)

n—oo: f'(m)=0, 6(n) =0. (3.28)

3.4 Limitations of the Falkner-Skan Type Transformation

From the similarity governing equations on laminar free convection boundary layer
produced by Falkner—Skan type transformation, it is not difficult to find the disad-
vantages of this traditional similarity method.

By means of group theorem, obtaining the appropriate dimensional variables
related to two-dimensional velocity components is complicated process, which has
caused a restriction for application of the Falkner—Skan type transformation on exten-
sive study of laminar free convection boundary layer and two-phase film flows.

By using the Falkner—Skan type similarity transformation, the dimensionless func-
tion f(n) and its derivatives become the main dimensionless similarity variables of
momentum field, and the velocity components are algebraic expressions with inter-
mediate function f(n) and its derivatives. Then, inconvenience is caused for inves-
tigation of the velocity field of laminar free convection and even for investigation of
two-phase free film condensation and boiling.

With the Falkner—Skan transformation, a difficulty is encountered for similarity
transformation of the governing equations for the laminar free convection with con-
sideration of variable physical properties. It is because that derivation for obtaining
an appropriate stream function expression as well as the expressions of the two-
dimensional velocity components is difficult in particular consideration of variable
physical properties. In addition, the velocity components can not easily be replaced
by the stream function v. Furthermore, the great difficulty is encountered in the
treatment of the variable physical properties in Egs. (3.25) and (3.26), because the
physical property factors —Pr_ and “_ are function of temperature, and there-

Pw /‘f w)tw
fore are functions of 7. Since rigorous cons1derat10n of variable physical properties is
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closely related to the reliability of investigation of laminar free convection and two-
phase film flows, such difficulty has hindered the research development of laminar
free convection and its two-phase film flows.

To resolve the above problems caused by the traditional Falkner—Skan type trans-
formation, in the following chapters, a related novel similarity analysis method will
be presented for extensive investigation of laminar forced convection and two-phase
film flows.

3.5 Questions

1. Please list all similarity variables for Falkner—Skan type transformation for lam-
inar free convection boundary layer.

2. How to express the two-dimensional velocity components by using the Falkner—
Skan type transformation for laminar free convection?

3. Can you point out the limitations of the Falkner—Skan type transformation in its
application?

4. Suppose that the dimensionless coordinate variable 1 in Eq. (3.7) is replaced by the
form n = (Gr)!/ 4)%’ and the forms of other similarity variables are kept, please
try to transform similarly the governing partial differential equations (3.1) to
(3.3) and the boundary condition equations (3.4) and (3.5) to the related ordinary
differential equations.

5. From question 2, what relationship can you find between the similarity coordinate
variable 7 and the transformed governing ordinary differential equations?
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Chapter 4

New Similarity Analysis Method for Laminar
Free Convection Boundary Layer and

Film Flows

Abstract A new similarity analysis method with a new set of dimensionless simi-
larity variables is provided for complete similarity transformation of the governing
partial differential equations of laminar free convection and two multi-phase film
flows. The derivation of the Reynolds number together with the Nusselt number
and Prandtl number is reviewed by means of Buckingham r-theorem and dimen-
sion analysis, where the Reynolds number is taken as the one of the new set of
dimensionless analysis variables. The essential work focuses on derivation of equa-
tions for the dimensionless velocity components and the dimensionless coordinate
variable, by means of a detailed analysis of quantity grade of the governing con-
servation partial differential equations of laminar free convection. On this basis, the
new similarity analysis method is produced for complete similarity transformation of
the conservation partial differential equations of laminar free convection and its film
flows. With the novel dimensionless velocity components devoted in this chapter, the
new similarity analysis method has obvious advantages compared with the Falkner—
Skan transformation. These advantages are (i) more convenient for consideration
and treatment of the variable physical properties, (ii) more convenient for analysis
and investigation of the two-dimensional velocity field, and (iii) more convenient for
satisfaction of the interfacial mass transfer matching conditions in the numerical cal-
culation and for rigorous investigation of mass transfer for two-phase film flows with
three-point boundary problem. These advantages will be found from the successive
chapters.

4.1 Introduction

In Chap.3 the traditional similarity analysis method, Falkner—Skan type
transformation, for similarity transformation of governing partial differential equa-
tions of laminar convection was reviewed. With this method a flow function has to be
induced at first, and then function f (1) and its derivatives will become the unknown
variables of the transformed dimensionless governing equations. Obviously, with
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this method, it is not convenient for similarity transformation of the governing
partial differential equations of laminar convection and film flows, never convenient
to treat fluid variable thermophysical properties in the governing equations, and not
easy to investigate heat and mass transfer, especially for multi-phase film flows, such
as laminar film boiling and condensation.

To overcome these difficulties, a new similarity analysis method will be presented
in this chapter. This method was at first reported in Ref. [1], and has been widely
applied in our investigations on fluid laminar free convection [1-3], laminar free
film boiling and condensation [4-6], and film flow of non-Newtonian fluids [7-9]. It
has been found from these studies that, compared with the traditional Falkner—Skan
transformation, the new similarity analysis method has obvious advantages on deep
investigations on heat and mass transfer problems of free convection boundary layer
and film flows, especially with consideration of variable physical properties.

In this chapter, we will take laminar free convection as an example to determine and
derive a system of dimensionless similarity variables, such as local Grashof number,
dimensionless coordinate variable, and dimensionless velocity components. In the
derivation of the dimensionless similarity variables by using this method, it is never
necessary to induce the flow function {, as well as the intermediate variable f ()
and its derivatives in the transformed governing equation. In the following chapters
of this book, it can be found that for investigation of fluid free convection, film
boiling and condensation, and even falling film flow of non-Newtonian fluids, with
this method, the treatment of fluid variable physical properties will be easier, and
analysis of heat and mass transfer will become much more convenient than those
based on Falkner—Skan type transformation.

4.2 Governing Equations of Fluid Laminar Free Convection

In this section, governing partial differential equations of fluid laminar free convec-
tion will be taken as example for investigation of the new similarity analysis method.
Here, the key work is to derive and determine the related similarity variables, dimen-
sionless coordinate variable, and dimensionless velocity components for similarity
transformation of the governing partial differential equations. To this end, we take
a fluid flow on a flat plate shown in Fig.2.4 as the physical analysis model and
co-ordinate system of laminar free convection.

According to Chap. 2 the present governing partial differential equations of fluid
laminar free convection with Boussinesq approximation are expressed as follows:

) 9
W Wy g A.1)
dax ay
ow ow 92w
Wxa—;—i—wya—;:v ay; + gBI|T — Tao| cos 4.2)
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at N a vk “3)
Wy— +Wy— = —— .
T ox Y9y~ Pray?
with the boundary conditions
y=0: W, =0, W, =0, t=ty 4.4
y—>o00: W,—0, t=t 4.5)

where the values of the physical properties are mean values, for instance v = (vy, +
Vso)/2 and Pr = (Pry + Proo)/2 for the Boussinesq approximation. The absolute
value of buoyancy term gf |T — Too| shows that it has always positive sign no matter
which one is larger between p and p. In this case, the buoyancy term gB |T — Txo|
and the velocity component w, have the same sign.

Here, the plate temperature is isothermal, and the Boussinesq approximation is
applied in the governing equations in order to simplify derivation of the similarity
variables and the transformation of the governing partial differential equations.

The above equations will be used for derivation of similarity variables for trans-
formation of the governing partial differential equations. For such purpose, Grashof
number will be derived at first.

4.3 Derivation on Dimensionless Physical Parameters

There are different methods for derivation of the dimensionless physical parameters,
such as Falkner—Skan analysis [ 10—12], differential equation analysis, and 7 -theorem
[13] with dimension analysis. Here, the i -theorem with dimension analysis is applied
to derive the dimensionless physical parameters.

4.3.1 Select Whole Physical Variables Related to the Physical
Phenomena

The whole physical variables should be selected from the governing
Egs. (4.1)—(4.3), and then the following equation can be obtained in principle:

f()"val'l/vgﬁlTW_TOO|C08a»a7pvcp):O (4'6)

Here, L is reference length of the plate,A, i, o, and c), are thermal conductivity,
absolute viscosity, density and specific heat of the fluid, « is the heat transfer coef-
ficient, and g is the gravity acceleration. While, gf |7y — Too| cos« is related to
the buoyancy. The above seven physical variables (i.e. n = 7) are independent, and
decisive variables of fluid free convection.
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4.3.2 Select Basic Dimension System

For investigation of the problem such as free convection heat transfer, the fol-
lowing five physical dimensions can be taken as basic ones: time [s], length [m],
mass [kg], temperature [K], and quantity of heat, [J], where the symbols in square
brackets [ ] express the basic physic dimensions. The above independent physical
dimensions A, L, i, g, o, p and ¢, can be derived from them, and expressed as

J kg m J kg ] .
[m -S> K} ml [m : J ’ [s_z] [m} ’ [E] and [1«5—-1(}’“51’““%1“

Here, the basic physical dimensions [J] and [K] can be combined as an independent
basic dimension £l In this case, the above five basic dimensions are changed to

the following four basic dimension [s], [m], [kg], and [J/K] (i.e. r = 4).

Buckingham’s i -theorem states that if a dependent variable I" is completely deter-
mined by the values of a set of n independent variables, of which the basic dimensions
with number of r involved, then a suitable dimensionless I'g will be completely deter-
mined by n—r dimensionless similarity parameters, i.e. the number of independent
variables may be reduced by the number r.

Here, the number of independent physical variables is n = 7, the number of the
related basic dimensions is r = 4. Then, the number of the related dimensionless
similarity parameters should be n — r = 7 — 4 = 3. According to the w-theorem,
the dimensional analysis thus yields the result

Lo = f(my, m2, m3) 4.7

where 11, 2, and 73 are dimensionless similarity parameters dependent on fluid
free convection.

4.3.3 Determine the Dimensionless Similarity Parameters

According to the -theorem, the dimensionless similarity parameters 11, my and 73
can be expressed as the following equations, respectively:

7 =20 x LPY x ufl x (gB | Tw — Too| cos@)?! x a2 = 0 (4.8)
7= A% x LP? x u? x (gB |Tw — Too| cos)?? x p =0 4.9)
w3 = A% % LY % u® x (g8 |Tw — Tool cos ) x ¢, =0 (4.10)

Then, the power indexes al to d1, a2 to d2, and a3 to d3 are determined as follows:
a. Determine the dimensionless similarity parameter m|

By using dimensional analysis, the following dimensional equation is obtained for
the dimensionless similarity parameter 71 :
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J al bl kg cl madl J B
|:s-K~mi| m] [m} [s_z] 'I:S-K-mz]_o “-11)

Obviously, the indexes al to d1 are suitable to the following equations:

For dimension [kg] balance: cl=0

For dimension [m] balance: —al+bl —cl+dl —2=0
For dimension [s] balance: —al —cl—2d1—1=0

For dimension [J/K]: al+1=0

Their solutions are al=—-1,b1=1,¢c1=0,d1 =0

Then, the dimensionless similarity parameter 7y is

al

- 4.12)

T =

Obviously, the dimensionless similarity parameter 7y is Nusselt number Nuy . Then,

Eq. (4.12) is expressed as

L
Nuy = “T (4.13)

If the reference length L is replaced by the coordinate variable x, (4.13) becomes

Nu, = % (4.132)

where Nu, is called local Nusselt number.
b. Determine the dimensionless similarity parameter 13

By using dimensional analysis, the following dimensional equation is obtained for
the dimensionless similarity parameter m;:

[Km} [m] [m—] 2] '[E}—O 19

Obviously, the indexes a2 to d2 are suitable to the following equations:

For dimension [kg] balance: 2+1=0

For dimension [m] balance: —a2+b2—c24+d2—-3=0

For dimension [s] balance: —a2—c2-2d2=0

For dimension [J/K]: a2=0

They solutions are a2=0,02=3/2,c2=-1,d2=1/2

Then, we can obtain a following dimensionless parameter:
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y — 8B Ty — Toc| cosa]'?- L32p  [gB|Ty — Tl cosa]'/? - L2
" v

Set my, = 7122, we obtain the following expression for the dimensionless parameter
D!
gB Ty — Too| cOS ¢ - L3

= (4.15)

TT2a

Obviously, the dimensionless similarity parameter 75, is Grashof number Gr . Then,
local Grashof number can be expressed as follows:

_ 8BITy — Tl cosa x3

Gry (4.16)

v2
where Gr, is called local Grashof number.
c. Determine the dimensionless similarity parameter w3

By using dimensional analysis, the following dimensional equation is obtained for
the dimensionless similarity parameter m3:

J a3 b3 kg c3 md3 T B
e IR el IR E e R

Obviously, the indexes a3 to d3 are suitable to the following equations:

For dimension [kg] balance: c3—1=0
For dimension [m] balance: —a3+b3—-c34+d3=0
For dimension [s] balance: —a3—¢3—-2d3=0
For dimension [J/K]: a3+1=0
They solutions are a3 =-1,b3=0,c3=1,d3=0
w =k ';” (4.18)

Obviously, the dimensionless similarity parameter 73 is Prandtl number Pr. Then,
Eq. (4.18) is expressed as
= —M i CI)

-, (4.19)

Pr

So far, we have derived three dimensionless similarity variables, local Nusselt num-
ber Nuy, local Grashof number Gry, and Prandtl number Pr, respectively, for gas
laminar free convection. While, the local Grashof number will be used for similarity
transformation of its partial differential equations.
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4.4 Investigation of Similarity Variables on Hydrodynamics

First of all, we assume the following equation for expression of dimensionless coor-
dinate variable n:

I A
T Kx"  xK

n (4.20)

where variables K and index » need to be determined.

Now, we assume the dimensionless variable relayed to the velocity components
wy and wy, respectively.

Obviously, the velocity component w, in the boundary layer is caused by buoy-
ancy. If we take a control volume with density p in the boundary lay, and assume

1
the fluid density in the fluid bulk to be po, the kinetic energy EGW% of the control

volume is balanced to its following potential energy caused by the buoyancy:

1
EGWJ% = Vgx|pso — p|cosa

or
1
5Gwﬁ = VgxB|T — Tno| cosa (a)

for Boussinesq approximation. Here, V and G are volume and mass of the control
volume, respectively,and G = p - V.
The above equation is simplified to

Wy = \/ng

For Boussinesq approximation. Equation (b) describes the velocity component wx
caused by the buoyancy.
The above equation can be expressed as

Poo — P

cos o

wy = V28xB |T — Too| cos (b)

for Boussinesq approximation.
Equation (b) describes the velocity component w, caused by the buoyancy.
According to Eq. (b), we induce the following equation:

Wy = 2\/gx/3 [Ty — Too| cosa - W,y “4.21)

Obviously, W, is a dimensionless variable dependent on the velocity component w.
Meanwhile, the velocity component wy is assumed as

wy = 2/gxB | Ty — To| cosa - BxPW, (4.22)
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where Wy is dimensionless velocity component in y-coordinate, while, variable B
and index p need to be determined.
From Eq. (4.20) we have

an y
ad 1
K (4.24)
dy  Kx"
From Eq.(4.21) we have
0 dw, o
L. \/5,3 T — Too| cos Wy + 2/gxB [ Toy — Too| cos ot 21
X dn ox
With Eq. (4.23), the above equation becomes
ow dw.
x \/ B | Tw — Tso| cos a W, —2\/gx,3|TW—Too|Cosa nK)il-H dnx
(4.25)
With Eq. (4.21) we have
0 dw, a
" = 2/gxB [Ty — Tool cOS@— > -
dy dn dy
With Eq. (4.24) the above equation becomes
ow dw.
ayx =2/gxp |Ty — Too| coOSx oo dnx (4.26)
Then,
P = 2/gxB | Ty — T &V 4.27)
= X — COS Ol ———— .
ay2 8 o0 K2x2n dn
With Egs. (4.20)—-(4.22), and (4.25)-(4.27), Eq. (4.2) is changed to
8
2V 8xB | Tw — Too| cOsa - Wy [\/—5 [T — Too| cOSCt - W,
X
dw.
—2/8xB | Ty — Too| cOS cx - T }:1+1 d’7x1|
dw;,
+2/gxB | Ty — To| cosa - BxPWy2,/gxB | Ty — Tool cos
Kx™ dn
d*w,
=20/ gxB | Ty — To| COS 0t ——— + gBIT — Too| cos (4.28)

K2x2n dn?



4.4 Investigation of Similarity Variables on Hydrodynamics 61

Compare the two terms on the right side of the above equation. Their power indexes
of variable x should be equal for the similarity transformation. Then,

- —2n=0
2

or
(4.29)

PN

With Eq. (4.29), Eq. (4.20) is expressed as

1
Y Y 34

T=%x7A T XK

Compared with Eq. (4.16), the above equation can be expressed as a quarter of the
power of Grashof number as follows to keep the power of variable x:

1 1/4
n= % (ZG“) (4.30)

where

431

1 gB8|Tw — Teo| cos & —l/4
K=1|-
4 v2

Compare the last terms on both sides of Eq. (4.28), and their power indexes of variable
x should be equal then,
l+p—n=0

for similarity of the equation.
With Eq. (4.29), the above equation becomes

1
1 —-=0
+p 1

Then,
(4.32)

With Eq. (4.32), Eq. (4.22) becomes

wy = 2\/gx,3 | Ty — Tol cOS €@ - Bx_3/4Wy

Compared with Eq.(4.16), the above equation can be expressed as follows with
Grashof number Gr,:
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1/4 —1/4

1 Ty — Too| COSQ - X3 1

Wy = 2\/gxﬁ |Tw - Too| Cosa'BX_3/4 [Z gﬂ | s O;l el :| (Zer) Wy
v

or

1 gB8|Tw — Too| cos 174 1 —l/4
- —Gry, 1%
4 v2 4 y

Wy = 2/ gxB |Ty — Too| coscr - B |:

_ 1/4
From the above equation, it is found that the factor B [}‘ M] has zero

dimension. For simplicity, we can set

1 ¢B|Tw — Txo| cOs & 174
B|- =1
4 2

Therefore,

1 —1/4
wy = 2/gxB | Ty — To| cosa (ZG“) Wy (4.33)

where

434
4 2 (34

|:1 gB 1 Tw — Tool cosozi|1/4
B=|-

So far, we have derived four similarity variables, i.e. local Grashof number Gry,
dimensionless coordinate variable 1, dimensionless velocity components Wy and Wy,
From Egs. (4.16), (4.21), (4.30), and (4.33), these dimensionless similarity variables
can be summarized as follows:

y 1 1/4
ne? <_er) (4.30)
x \4
Ty — T, - x3
Gr, = 8817w — Toolcose % (4.16)
v
—1
W, = [2ngﬁ T — Too] cosa] " 4.21)
1 —1/47!
W, = |:2\/gxl3 | Ty — Tso| cos (Zer) ] wy, 4.33)

Additionally, for similarity transformation of the governing partial differential equa-
tions of fluid laminar free convection, it is also necessary to assume a dimensionless
temperature variable 0 as follows:
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I — oo

6(n) = (4.35)

lW oo

where 1 denotes the dimensionless coordinate variable.

So far, five dimensionless similarity variables, dimensionless coordinate vari-
able n, local Grashof number Gr, dimensionless velocity components W, and W,
and dimensionless temperature variable 0 are presented. They form a new similar-
ity analysis method for laminar free film convection and film flows. Among these
dimensionless similarity variables, dimensionless velocity components W, and W,
are new similarity variable, different from those, which inform the Falkner—Skan
type transformation.

4.5 An Application Example of the New Similarity
Analysis Method

For an application example of the new similarity analysis method, the above equations
for dimensionless variables n, local Grashof number Gry, dimensionless velocity
components W, and Wy, and dimensionless temperature 6 will be used to transform
the governing partial differential equation (4.1)—(4.3) with their boundary condition
equations, to the equivalent governing ordinary differential equations for laminar free
convection. The related application processes of the new similarity analysis method
are presented as follows:

4.5.1 Similarity Transformation of Eq. (4.1)

With Eq. (4.35), we have

9 AW,
Wx \/5,3 1T — Tool cosaWy + 2./2xB | Ty — Toolcosa —> 21 (4.36)
ax X dn ox
With Eq. (4.30), we obtain
5
1/4
8_77 _ _lx_zy lgﬂlwaToolcosot /
ax 4 4 v?
1, [1gBITw — Toolcosa-x37""
= ——X —
AR V2 (4.37)
1 1 1/4
— 2| a6,
4 x | 4
1
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Then,

wa

dw.
\/ BTy — Too| cosa - Wx——\/gxﬂ|T — Txolcosa-x 1 al

With Eq. (4.33), we have

dwy 1 Y daw, an
—2 = 2/gxB|Tw — Too| cosa | =Gry —r L (4.39)
dy 4 dn dy
With Eq. (4.30), we obtain
an  1(1 174
— =~ | =GCr, (4.40)
ay x \4

Then,

Bwv 1 —1/41 (1 1/4 dw,
=2/gxB |Tw — Too| cos (4Gr )W T (Zer) d—n’ (441)
=2gxB Ty — Tno| COSC - X 1d—>'

With Egs. (4.38) and (4.41), Eq. (4.1) is changed to

1 dw.
\/g,B | Ty — Too| cOscx - Wy — —\/gx,B |Tw — To| cOS & ~x_1n al
X 2 dn
dw
+2\/gxﬂ |Tw — Txo| cOs & cx! 1 Y =
n
The above equation is simplified to
dW ow,
2W, — 4 =0 (4.42)
d an

This is the dimensionless form of Eq. (4.1).

4.5.2 Similarity Transformation of Eq. (4.2)

With Eq. (4.21), we have

a dwW, a
X = 2/gxf [Ty — Tool cOS@— >
dy dn oy

With Eq. (4.40), the above equation becomes
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3 1 /1 174 aw.
WX 2 /exB | Tw — Too| cosa— ( =Gy x (4.43)
dy x \ 4 dn
Then, "
9%w 1 /1 dzw,
ay;‘ =2 gxB | Ty — Tnol cosa— (ZG”) sz (4.44)

Therefore, Eq. (4.2) is changed to

2/ gxB [T — Too| cOS @ - Wy [\/gﬂ T — Too| cos a W,
X

1 dw
— ~VgxB Ty — Tool cosax ™' ——>
2 dn

1 —1/4
+ 4\/gxﬂ |Tw — Tol| cOS (Zer)

1 (1 V4 aw

Wy\/gx,B | T — Too| cosx— | —Gry, o

x \4 dn

1 (1 2 a2w
=2v\/gx,3|Tw—Too|cosoz— —Gr, —x—l—g,BIT—Toolcosoz

x2 \4 dn?

With definition of local Grashof number in Eq. (4.16), the above equation is further
simplified to

2/ 8xB | T — Too| cosa W, [/5;9 | T — Too| cos @ W,
X

1 dw
—~/gxB Ty — Tol cosax™'np——
2 dn

1dw
+4y/gxB | Ty — Tool cos aWy\/gxB | Ty, — Too| cosa— 5 al
x dn

1 (188 |Tw — Too| cosa -x3)”2
v

=2v\/gxﬂ|TW—Too|cosocﬁ (4 5

d2w,
dn?

+ gB|T — Txo| cos o

The above equation is divided by g8 |Tw — To| cos &, and simplified to

1 dWwy

2We | Wy — = 0
x|:x 277dn +

dw 11\ d2w,
42

AW, —= =2 —
}Jr Yap T dn?
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i.e.

dw, dw,  d*w,
w, (2w, — AW, —= = 0 4.45
x( SO )+ ap T A ¢ 44

This is the dimensionless form of Eq. (4.2).

4.5.3 Similarity Transformation of Eq. (4.3)

From Eq. (4.35), we have
ot do an

= (tw_ oo)

ax @ ax

With Eq. (4.37), the above equation becomes

" Lt (4.46)
ax | 4w et ndn '
From Eq. (4.35), we have
or (t )de an
gy " dnay
With Eq. (4.40), the above equation becomes
at 1 (1 /% a9
— =ty —tx)— | =G — 4.47
dy (tw OO)X (4 rx) dy ( )
Then,
32t 1 (1 172 429
W = ([W — tOO)_x_Z Zer 3_772 (448)

Therefore, Eq. (4.3) is changed to

1 _; do
2\/gx/3|Tw_Too|Cosan _Z(tw_too)x na

1 —l/4 1/1 4 dg
+ 2\/gxﬂ [Ty — Too| cOS (Zer) Wy (tw — too); (—er) —

4 dn

A o — 1) L (1, 12 42

= — — —_— —Qr —_—
pcp T2 \4 T dn?

With the definition of local Grashof number in Eq. (4.16), the above equation becomes
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1 _, do
2/gxB Ty — Too| cos a W, _Z(tw_too)x n—

dn
1 do
+2/8xB | To — Too| cOs @ Wy (ty — too) — —
’ x dn
! 1 gB | Tw — Too| cosa - x3\ /% a2
T ope, a2 \4 v2 dn?

The above equation is divided by (fw — f00)v/gXB |Tw — To| cOs &, and becomes

1/ do o A (1 1\'?d%
oW (- (052 )) +2m = = = (55) S5
4 \"dp dn  pcp \4v? dn?

The above equation is further simplified to

(—nW —|—4W)d9 = L d% (4.49)
e Ydn  Prdp? '

With Eqgs. (4.20), (4.35)—(4.37), Eqs.(4.4) and (4.5) are transformed to as follows
respectively:

n=0: W,=0, W, =0, 6=1 (4.50)
n—o00: Wy=0, 0=0 4.51)

The transformed governing dimensionless equations of laminar free convection of
gas with Boussinesq approximation are summarized as below:

dw, = oW,

2We — 1 +4—2=0 (4.42)
dn on
dw, dw,  d*w,
w, (2w, — 4w, —= = 0 4.45
x( x—1 dy ) y d d772 + ( )
(—nW. +4W)d0 _ L& (4.49)
e Y T Prdg? '

with the dimensionless boundary condition Egs. (4.50) and (4.51).

From Chap. 3, it is seen that by using Falkner—Skan type transformation, the
related unknown variables of transformed governing dimensionless equations are
function f(n) and its derivatives, except dimensionless temperature 6. While, in gov-
erning dimensionless equations transformed by the present transformation method,
the related unknown variables are dimensionless velocity components Wy and W,
proportional to the related velocity components. Therefore, for differentiating the


http://dx.doi.org/10.1007/978-3-642-28983-5_3

<
=]
k=
=
0= (g ‘0= () 00« 0=6 0="M 100« L
2 ) ) suonIpuod Arepunog
2 1=We o=Wif=W/S o=1l 1=6 ‘0="M 0= Moo=l P
u
m MNM % = %d\sv.f l—) uonenbo A31oug
z 6+ &b =
g 0= (W) f 1d ¢+ (Wug P " MeP uonenbs WMUSWOA
= s M+ (sl — M) M
5 o+ (Wf)e . "
2 0= < - = oy onenba sse
z Wy f @ f () f + W f 0= Thgt * Thp ~ T HOREIDa SSEN
Z (uonpuirxosddp bsauissnog yim) suoypnba ssajuoisuaulp SuiLid2a0s paariaq
< [(W) f¢— (Wf - U] NEAJOWV z i i_lAﬁva 0500 | — M| gxS T <m yuouodwiod A110019A
(W) f NETGO ) 7 Y0800 X — Mp| gxS T Y yuauodwod AI00[oA
M=
ot =0 ¢ 2mmesodwo) SSOUOISUAWI(]
%ﬁlﬁim Y10 Jequinu Joyseir) [ed0]
o (*1o}) £ lt S]QBLIBA 9)BUIPIOOD SSI[UOISUSUIL(]
$2]q1LIPA {JLIDJIULS PIALID
Xp=3 D<M 00« A«
. suonIpuod Aepuno
M= .AoH,«s ‘0="M 0=« nip punog
o F«u = N\@ gt 3 m uonenba ASroug
T
a 0 0
08500 |®] — 1|93+ xﬁ% a= Raam Am 4 M%m m uonenbo wnjuawo
0= ;% + ;% uonenba ssejy

(uoyvuiixosddp bsauissnog yim) uo122auod 22.4f spunun] Jo suoyvnba pyuaLaffip iivd Suiuiaaor)

UONRULIOJSURT) UBYS—IOW[E YIIA

poypout sisATeue AJLIR[IWIS MU [JIA

uonenbg

wiay,

uonewrxoidde

bsaurssnog yjim uonodAUOd 991) JEUTWE] JOJ UOTIRULIOJSULT) UBYS—IoUN[E] PUe poyjoul sisA[eue AJLie[ruis mau ay) jo uoneordde uo uonezuewwing [ A[qEL

0
]



4.5 An Application Example of the New Similarity Analysis Method 69

traditional Falkner—Skan type transformation, the present transformation method
can be called as dimensionless velocity component method.

From the above successful verification, it is found that the derived dimensionless
coordinate variable 1, local Grashof number Gry, dimensionless velocity compo-
nents Wy and Wy, and dimensionless temperature 0 are validity of similarity analysis
of fluid laminar free convection. It follows that the new similarity analysis method
is available for the similarity analysis of fluid laminar free convection.

In the following chapters, the present new similarity analysis method will be used
for the investigation of fluid laminar free convection, laminar free film boiling of
liquid, laminar free film condensation of pure vapor, laminar free film condensation
of vapor—gas mixture, and film flow of non-Newtonian power-law fluid. It will be
seen that by using the new similarity analysis method, it will be more convenient for
investigation of heat and mass transfer than that by using traditional Falkner—Skan
type transformation, especially for consideration and treatment of variable physical
properties.

4.6 Summary

In this chapter, taking governing partial differential equations of laminar free con-
vection as example, we have derived the related local Grashof number Gr, by using
the w-theorem with dimension analysis, derived the expressions of similarity vari-
ables on hydrodynamics, such as dimensionless coordinate variable 1, as well as
dimensionless velocity components Wy and W, by means of dimensional analysis
of the governing partial differential equations. Furthermore, with these dimensionless
variables, the governing partial differential equations of laminar free convection are
transformed similarly to the related dimensionless equations. Then, the validity of the
derived dimensionless similarity variables for the similarity transformation has been
verified. The related governing partial differential equations, derived similarity vari-
ables, and the dimensionless governing equations transformed by the new similarity
analysis method and Falkner—Skan transformation are summarized in Table4.1.

4.7 Remarks

In this chapter, a new similarity analysis method, for laminar free convection bound-
ary layer was presented in detail. Meanwhile, the approach for determination of
a system of similarity parameters and variables, such as dimensionless coordinate
variable 7, local Grashof number Gr,, dimensionless velocity components W, and
Wy, were induced by means of the related examples for laminar free convection. The
local Grashof number Gry is derived by means of & -theorem and dimension analysis,
while, the dimensionless coordinate variable n and dimensionless velocity compo-
nents W, and W, are derived by using the dimension analysis for the governing



70 4 New Similarity Analysis Method

partial differential equations. Finally, by using these derived similarity variables, the
verifications were done by using the similarity transformation of the governing partial
differential equations of laminar free convection. The verification results proved that
these derived similarity variables are available, and the present similarity analysis
method is reliable for similarity analysis of fluid laminar free convection.

In the following respects, the present new similarity analysis method is more
convenient for application than the traditional Falkner—Skan type transformation:

For derivation of the similarity variables by using the new similarity analysis
method, it is never necessary to induce the flow function. Then, it is more convenient
to derive the similarity variables by using the present new similarity analysis method
than that by Falkner-Skan transformation.

The obvious difference of the present new similarity analysis method from the tra-
ditional Falkner—Skan transformation lies in the similarity transformation of velocity
components. For the former method, in the provided similarity expressions, the veloc-
ity components are proportional to the related dimensionless velocity components
W, and Wy, respectively. Then, the dimensionless velocity components W, and W,
exist in the transformed dimensionless governing equations. While, for the latter
transformation, in the provided similarity expressions, the velocity components are
functions of induced intermediate variable f (1) and its derivatives, respectively.
Then, the intermediate variable f(n) and its derivatives exist in the transformed
dimensionless governing equations.

The dimensionless velocity components Wy and W, have definite physical sig-
nificance compared with the variable f(n) and its derivatives. Then, the dimension-
less governing equations transformed by using the new similarity analysis method
demonstrate more obvious physical significance compare with those transformed by
the Falkner—Skan type transformation.

In the successive chapters, we will find by using the new similarity analysis
method that (i) it will be more convenient to treat variable physical properties of the
governing equations, and (ii) it will be more convenient to investigate momentum
field and mass transfer than that by means of the Falkner—Skan type transformation,
especially for the investigation of multi-phase film flow problem.

4.8 Exercises

1. Please review the derivation for creating the present new similarity analysis
method for laminar free convection boundary layer and film flows.

2. Please list all similarity variables for the new similarity analysis method on lam-
inar free convection.

3. Please tell me the common grounds and differences of the similarity variables
between the new similarity analysis method and Falkner—Skan type transforma-
tion for laminar free convection.

4. Can you list the advantages of the new similarity analysis method over the tradi-
tional Falkner—Skan type transformation in their application?
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Suppose that the dimensionless coordinate variable n in Eq.(4.30) is replaced
by the form n = %(er) 1/4 " and the forms of other similarity variables are
kept, please try to transform similarly the governing partial differential equations
(4.1)—(4.3) and the boundary condition Egs. (4.4) and (4.5) to the related ordinary
differential forms.

From question 2, what relationship can you find between the similarity coordinate
variable 7 and the transformed governing ordinary differential equations?
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Chapter 5
New Method for Treatment of Variable Physical
Properties

Abstract The advanced method reported in this chapter for treatment of fluid
variable physical properties involves temperature parameter method for treatment of
temperature-dependent physical properties of gases, theoretical equation method for
treatment of concentration- and temperature-dependent density of vapour-gas mix-
ture, weighted sum method for treatment of other concentration- and temperature-
dependent physical properties of vapour-gas mixture and polynomial method for
treatment of temperature-dependent physical properties of liquids. These methods
are taken as a theoretical foundation of this book for extensive investigation of hydro-
dynamics and heat transfer of free convection of gases, free convection of liquids,
free convection film boiling of liquid and free convection film condensation of pure
vapour or vapour-gas mixture with consideration of coupled effects of variable physi-
cal properties. For the temperature parameter method based on the simple power-law
of the temperature-dependent physical properties of gases, a system of the tempera-
ture parameters such as n;,, n, and n., are reported. From these temperature para-
meters, it is seen that the specific heat parameter is much small, and then, it follows
that the variable temperature will have more obvious effects on viscosity, thermal
conductivity and density of gases than that of the specific heat. Since the determi-
nation of the temperature parameter is based on the typical experimental data, with
the provided temperature parameters, the temperature-variable physical properties
of gases can be stimulated very well by using the temperature parameter method.
Furthermore, with the temperature parameter method the treatment of variable phys-
ical properties of vapour or gas becomes very simple and convenient. Taking water
as an example, the temperature-dependent polynomials of the density, thermal con-
ductivity and viscosity are introduced for liquid variable physical properties, while
the specific heat at constant pressure is so small that it can be disregarded generally
with variation of temperature. These polynomials are reliable, since the related typi-
cal experimental data. The concentration-dependent density equations of vapour-gas
mixture are reported through the rigorously theoretical derivation, while the other
concentration-dependent physical properties of vapour-gas mixture are expressed as
the weighted sum of the physical properties of the involved vapour and gas with their

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 73
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_5,
© Springer-Verlag Berlin Heidelberg 2012
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concentrations (mass fraction). Since the involved vapour and gas are temperature-
dependent, the physical properties of the vapour-gas mixture are concentration- and
temperature-dependent.

5.1 Introduction

The study of laminar free convection of gases with variable physical properties can be
traced back to the perturbation analysis of Hara [1] for air free convection. The solu-
tion s applicable for small values of the perturbation parameter, ey = (T —Too)/ Too-
Later, Tataev [2] investigated the free convection of a gas with variable viscosity. A
well-known analysis of the variable fluid property problem for laminar free convec-
tion on an isothermal vertical flat plate has been presented by Sparrow and Gregg
[3], giving solutions of the boundary layer equations for five assumed gases. They
proposed a reference temperature and suggested that with it the problem of vari-
able physical properties can be treated as a constant property problem, i.e. using
the Boussinesq approximation. Gray and Giogini [4] discussed the validity of the
Boussinesq approximation and proposed a method for analysing natural convection
flow with fluid properties assumed to be a linear function of temperature and pressure.
Clausing and Kempka [5] reported their experimental study of the influence of prop-
erty variations on natural convection and showed that, for the laminar region, Nus is a
function of Ras (= Gry Pry) only, with the reference temperature 7t taken as the aver-
age temperature in the boundary layer. Herwig [6] expanded the functions describ-
ing the temperature dependence of the fluid properties as Taylor series to analyse
the influence of variable properties on laminar fully developed pipe flow. Pozzi and
Lupo [7] assumed viscosity and thermal conductivity to depend on temperature in a
polynomial form to analyse the variable property effects in free convection. In this
chapter, I will present a temperature parameter method proposed in our Ref.[8, 9]
for treatment of variable physical properties of gases, and a polynomial method pro-
vided in Ref. [10] for treatment of variable physical properties of liquids. Both of the
methods were applied respectively in our series of studies for investigation of effects
of variable physical properties on gas free convection [8, 9], liquid free convection
[10], free convection film convection boiling [11], free convection film condensation
of pure gas [12, 13], and free convection film condensation of vapour-gas mixture
[14], as well as were partially applied in investigation for my recent book [15].
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5.2 Treatment of Temperature-Dependent Physical
Properties of Gas

5.2.1 Temperature Parameter Method

For treatment of variable physical properties, a temperature parameter method devel-
oped in [8, 9] is presented here, which is based on a simple power-law of gases.
According to the measurement values of physical properties of gases, it is found that
at constant pressure the physical properties of gases such as density, viscosity, ther-
mal conductivity and specific heat with absolute temperature, very closely follow a
simple power-law, i.e. p & T wR T, A~ T"™andc, ~ T"<r , where Ny, Ny,
and n., are temperature parameters, respectively called viscosity parameter, ther-
mal conductivity parameter and specific heat parameter. Obviously, different gases
have different temperature parameters. Then, for absolute temperatures Ty and T5,

we have
"1 T\
A i\
A_2 = Fz (5.2)
Cpl Tl s
o _ (2 53
Cp2 T (5-3)

While the change of density with absolute temperature at constant pressure can be
expressed as

-1
o _ (ﬁ) (5.4)
P2 L}

While, the dimensionless exponents 7, n), and n p are exponents of absolute tem-
perature, and then named temperature parameter here. Obviously, the different gases
have different temperature parameter n,,, n; and nc .

For practical issues of free convection and its film flows, the absolute temper-
ature Ty is usually replaced by any temperature T in the boundary layer or film
flows, and 7> is usually replaced by T, which is located at the boundary of the
boundary layer or film flows. Then, the above equations become the following ones
respectively:

T \"™

T—) (5.5
o0
T

To

) ' (5.6)
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Table 5.1 The value of parameters n,, n, and n. » for several monatomic and diatomic gases, and
also for air and water vapour, cited from Shang and Wang [8]

Gas Tw ny Temperature n; Temperature ne, Temperature Recommended
(K) range range range Pr
(K) (K) (K)
Ar 273 0.72 220-1500 0.73 210-1500 0.01 220-1500 0.622
He 273 0.66 273-873 0.725 273-873 0.01 273-873 0.675
H, 273 0.68 80-1000 0.8 220-700 0.042 220-700 0.68
Air 273 0.68 220-1400 0.81 220-1000 0.078 230-1000 0.7
CO 273 0.71 230-1500 0.83 220-600 0.068 220-600 0.72
N» 273 0.67 220-1500 0.76 220-1200 0.07 220-1200 0.71
0O, 273 0.694 230-2000 0.86 220-600 0.108 230-600 0.733
Water vapour 380 1.04 380-1500  1.185 380-800 0.003 380-800 1

(5.7)
(5.8)

5.2.2 For Monatomic and Diatomic Gases,
Air and Water Vapour

According to the experimental values for several monatomic and diatomic gases,
and also for air and water vapour, reported by Hisenrath et al. [16], n;,, n; and nc,
values are given in Table 5.1, with the percentage deviations for predicted values of
w and A predicted from Egs. (5.5) and (5.6).

The Prandtl number is defined as Pr = jic),/A. Strictly speaking, Pr should also
depend on temperature. However, it is well known that Pr &~ 0.72 for a diatomic
gas, Pr & 0.7 for air and Pr = 1 for water vapour. Hence, Pr can be taken as a
constant for monatomic and diatomic gases, and for air and water vapour in the
related temperature ranges from 7' to To.

It can be found from Table 5.1 that the values of the specific heat parameter n.
are around 0.01 for monatomic gases, and lower than 0.11 for diatomic gases, air
and water vapour. For the case 1/2 < (T/Tw) < 2, it is possible to treat c,, as a
constant value for these gases, so as to simplify the analysis but still suit the needs
of engineering application.

5.2.3 For Polyatomic Gas

According to the summarised experimental values of 1, A and ¢, for several poly-
atomic gases reported in Refs. [17-20], the temperature parameters ny, ny, and nc
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and the deviation of u, A and c,, arising from the corresponding experimental data
are listed in Table 5.2.

5.3 Treatment of Concentration- and Temperature-Dependent
Physical Properties of Vapour-Gas Mixture

Treatment of variable physical properties of vapour-gas mixture is more complicated
work than that of gas since the concentration-dependent physical properties should
be first taken into account, and on this basis, the temperature-dependent physical
properties are considered.

5.3.1 For Density

Take pp, as density of vapour-gas mixture, pmy and pmg as local densities of vapour
and gas in the vapour-gas mixture, and py and p, as densities of vapour and gas,
respectively, then, we will have the following equations for their relations:

Pm = Pmv T Pmg

Cmvpm = Pmv
@ + @ =1
Pv Pg

The solutions of the above group of equations are

PvPg
O = (5.9)
T (1= Cy)py + Cinype

Cinv v Pg

Pmy = (5.10)

" (1 = Cmv)pv + Cmv g
(1 - Cmv)pvpg

- (I = Cmv)pv + Cmvpg

Pmg 5.11)

where Cp,y is the vapour mass fraction of the vapour-gas mixture, py, is vapour-gas
mixture density, pmy is local vapour density, and pm is local gas density and py
and pg are vapour and gas density respectively. Although, Egs.(5.9)—(5.11) seem
for expression of concentration-dependent densities of the vapour-gas mixture, they
actually cover the concentration- and temperature-dependent densities, because the
vapour and gas densities py and pg are temperature-dependent, and need to be further
treated by the temperature parameter method.
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5.3.2 For Other Physical Properties

According to equations recommended by [15], the other concentration-dependent
physical properties, su as tm, Am, ¢p,,, and Pry of vapour-gas mixture are assumed
as following weighted sum formulae:

Um = Cmypty + (1 — Ciy) g (5.12)
Am = CmyAy + (1 — Ciny)Ag (5.13)
pm = Cmvep, + (1 = Cmv)cp, (5.14)
Prpy = CiyPry + (1 — Cy)Prg (5.15)

where fm, Am, ¢p,, and Pry denote the related physical properties of vapour-gas
mixture.

Since the vapour physical properties 1y, Ay, ¢, and Pry, as well as gas physical
properties [tg, Ag, ¢p, and Prg are temperature-dependent physical properties, and
need to be further treated by using the temperature parameter method, Eqs. (5.12)—
(5.15) actually cover for treatment of the concentration- and temperature-dependent
physical properties (tm, Am, ¢p,, and Pry, of vapour-gas mixture.

5.4 Treatment of Temperature-Dependent Physical
Properties of Liquids

For treatment of variable physical properties of liquids, Ref. [10] suggested a poly-
nomial method. Now we take water at atmospheric pressure as an example, the
temperature-dependent expressions of density and thermal conductivity with the
temperature range between 0 and 100 °C are expressed with polynomial as

p=—4.48 x 107342 +999.9 (5.16)
A =—8.01x 107%% + 1.94 x 1073t + 0.563 (5.17)

The deviation predicted is less than 0.35 % by Eq.(5.16) and less than 0.18 % by
Eq.(5.17), compared with the typical experimental data shown in appendix of this
book.

For the absolute viscosity of water, the following expression described in Ref. [22]

is applied:
1150  [£690)>
w=10"3exp |:—1.6— — (T) ] (5.18)

The deviation predicted by Eq. (5.18) is less than 1.8 %, as compared with the exper-
imental data shown in appendix of this book.
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In addition, for a lot of liquid, the specific heat varies very little with temperature,
and can be regarded as constant.

5.5 Physical Property Factor

It will be found in the successive chapters that the variable physical properties always
exist as the related physical property factors in the dimensionless ordinary partial
differential equations of laminar free convection. In fact, there are two types of
physical property factors, the temperature-dependent physical property factors for

qui 1dp 1dp 1dx 1dep Voo ;
gases and liquids such as pdn wdne xdn o ) and 2 and the concentration-
1 dom 1 dum 1 dim

dependent physical property factors such as — == — d — 2. Here, n is
. . . . Pm dUm L Hm dnm Am dm . .

the dimensional coordinate variable for gas and liquid, ny, denotes the dimensional
coordinate variable for vapour-gas mixture, and the subscript denotes vapour-gas

mixture. These physical property factors are presented as follows respectively:

5.5.1 For Gases

Transformation of the density facto (}—) g—ﬁ) :
With Eq. (5.8) we obtain

1dp 1d Too
pdn  pdp\"*T )

Suppose Ty, and T, are boundary temperatures of the boundary layer, i.e. water
temperature and fluid bulk temperature respectively, they can express a dimensionless
temperature variable

T —T t—t
0=—> or 6= o (5.19)
Tw - Too Iw — lo
i.e.
T =Ty —Too)0 + Too Or t = (tw —tx0)8 + txo
Therefore,
1dp  poo d |: T ]
pdn  p dp [(Tw — To)0 + Too

_rd 1
T T dy [(TW/Too - 1o + 1]

(Tw/T — D5
[(Tw/Too — DO + 117

=—[(Tw/Too — DO + 1]
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Then,
1d Tw/Too — 1 do
1dp (BT —1)  do 520,
o dn (Tw/Txo — DO+ 1 dn
du

Transformation of the viscosity facto ﬁﬁ r

With Eq. (5.5) we get

ldp 1d T \"™
Moo Too

pwdn — pdn

-anl() ]

B w dn T

(T T d (Tw — Too)O + Too \ ™

B Too dn Too

d
= ((Tw/Too — 1O + 1)_nﬂa((Tw/Too — Do+ 1D
= ((Tw/Too = DO + )"0, (To/ Too — DO + 1"~ (Tyy/ Too — ) —
Then, the viscosity factor is described as
(5.21)

Lduw — nu(Ty/Too —1) dO
wdnp  (Tw/To — 1O +1 dn

Transformation of the thermal conductivity factor %3—2:
With a derivation similar to that for the factor(% g—‘; we can obtain the following

equation for description of the thermal conductivity factor:

1dr  m(Tw/To —1)  do
rdn  (Ty/Teo — DO +1 dp

(5.22)

Transformation of physical factor ‘%’"
The physical factor * can be expressed as

Hoo
Yoo _ px _ Moo P
v % Hn Poo

By using Eqgs. (5.5) and (5.8), we have

Vo (Tw\" (T _ (T=)"""
A\ T )] \T

Vv

i.e.
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Voo _( Too )nu-i-l
v \(Tw = Teo)b + Teo

Y (T Too — 1)O + 1]~ +D (5.23)
V

Therefore,

5.5.2 For Liquids

Taking water as an example, the above temperature-dependent physical property
factors are described as .
1dp

Transformation for density factor >

At first, the density factor %g—ﬁ is expressed as

ldp 1dpd:

pdn  pdrdy

where with Eq. (5.16) the following equation is obtained

d
P o 2% 448 % 107
dr
With Eq. (5.19) we obtain
dr 0
d_ = (ts — too)d_
Therefore, q
1 1 dé
—8P (2 x 448 X 10730) (1 — too)
pdn  p dn
Then,
1dp (=2 x 4.48 x 10734)(ty — too) dO
— L= L (5.24)
p dn —4.48 x 107312 +999.9 dn
Transformation for viscosity factor id—‘;

With (5.18) we have

|6 1150 (6% 2 103
=exp|—1.6 - —— —
I = exp T T

1d 1d 1150 [690\*
_e_ 9 exp| —-1.6 — — + | — x 1073
wdn wdn T T
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M 1150
=7
where,
dT
dn
Then,
1du _ 1150
wdn T2

Transformation for thermal conductivity factor

With Eq. (5.17) we have

—2x

T3

6902
T3

6902} dT

dn

de

= (Ty — Too)—

)(T - T )d—e

1dx
A dn

62 41.94 x 10731 4 0.563)

dr
% +1.94 x 1073)—
dn

1dr 1d (=801 x 10~
—— = ——(—8.01 x
Adnp  Adpy
i.e.
1da 1 _
—— = —(—-8.01 x2x 10
Adnp A
where,
d
d_ (tw too)_
Then,

1dr (—8.01 x 2 x 1070 + 1.94 x 107%)(fyy — 1) d6

rdn  —8.01 x 10762 + 1.94 x 1037 + 0.563

5.5.3 For Vapour-Gas Mixture

1 dpm

Transformation for density factor — --

Pm dim

83

(5.25)

(5.26)

With Eq.(5.9), the density factor of the vapour-gas mixture in the governing
dimensional differential equations will be derived as

1 dom 1

om dnm B Oom dnm

Then,

|

PvPg ]
(1 - Cmv)pv + Cmvpg
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dp dpy
1 d,Om i P T £ +:0gd,7m B PvPg

pm dnm B Pm | (1 = Crmy)py + Crypg (1 = Cmv)py + Cmvpg)2 .

d,OV dCuy dpg dCny
1= Coy) 2% —
( mv) i + pg—— dm

With Eq. (5.9) we have

1dpm  1dpy 1 dpy 1
PmdNm  pgdnm  pyvdim

(I = Cmv)pv + Cmvpg .

d dcC d dC
|:(1 - Cmv)ﬂ — Pv - + Cry— Pe mv:|
dnm dnm dnm

The above equation is further changed to

1 dpm 1 dpg 1 dpy 1
_—— = —— =+ — —
om dnm  pg dnm pv dnm

(I = Cmv)py + Cmvpg .

dpg dCpy
1-C Coyv— — -
|:( mV)dﬂm + Chy . (py pg) i i|

or

l dpm _ 1 dpg 1 dpy _ Cv (v — pg)

Pm d’lm ,Og dnm ; dnm (I = Cmv)pov + Crvpog .
|:1_Cmv‘ Pv idﬂ_'_ pg 1 dpg 1 dev:|

Cy Pv — Pg  Pv dim oy — Pg  Pg dnm Cry dfm

Now, we introduce the vapour relative mass fraction I'n,y as

Cry — Cmv,oo

Cmv,s -

Chy =

Cmv,oo

where Cpy,s and Cry, oo are vapour mass fractions at the liquid—vapour interface and
in vapour-gas bulk respectively,

Then, we have

1 d,om 1 dpg 1 dpy
Pm A1 Pgdnm  pydim

Crv(pyv — pg) ) |:1 — Cmy Py
(I = Cmv)pv + Cmvpg Crv

Pv — Pg -
i dpv + Pg 1 dpg Chy — Cmv,oo drmV:|

pydnm Py — pg  Pg dim Crv

(5.27)
dnm
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. . . d
Transformation for viscosity factor l% d’;—“‘
m m

With Eq. (5.12) the viscosity factorl%m ?‘T: is

1 dum 1 d
—— = — —[Crvitv + (1 = Ciny) 11¢]
Mm dnm Mm dny

1 [ duy dCry

Mm

C -
mvdnm + Uy dnm

du
+ (1 = Coy) —= —
dnm

i.e.

1 dpm 1 [ duy dpeg dCry
=S o Y (1= G TEE Gy — )
fm dm MmO A ™ A YT dp

Then, we have

1d 1d 1d - dc
Udum e Ui kg iy G
Mm dnm Mm My A7, My g dim Mm dnm

With definition of vapour relative mass fraction T',,;, we have

1d 1d 1d — dr
- %Hm _ Cmvﬂi My +(1=Cpny &7ﬂ+u(cmvys_cquw)ﬂ
Um dnm Mm My dim Mm Kg dnm M“m dnm

(5.28)

g‘;‘“ of vapour-gas mixture is dominated
m
. . . d
by the concentration Cy,y, as well as the gas and vapour viscosity factors ;%dnﬁ
g m
1 duy

. . dug
and — respectively. Since - - and Lduy ype temperature-dependent, the
Iy dijm Mg dnm wy dnm

viscosity factor I%‘;“Tm of vapour-gas mixture is concentration- and temperature-
m m
dependent.

Thus, itis seen that the viscosity factor MLm

Transformation for thermal conductivity factor ﬁ ?l)‘T'n‘:

Similar to derivation for Eq. (5.28), the viscosity factor ;%m ?‘Tr‘: of vapour-gas mixture
1 dapy

the thermal conductivity factor T A of the vapour-gas mixture can be expressed
as

The concentration-dependent thermal conductivity factor is described as

1 dim e 1 diy e 1 drg Ay —Ag Ty
B RS R A 1= Cpy) o8 — 78 Conv.s—C

b d77m mv o oy dnm+( mv) P )\g dnm+ o ( mv,s mv,oo) dnm

(5.29)

1 dum

Similar to the analysis on the viscosity factor T of vapour-gas mixture, the
m m
di

thermal conductivity factor AL e of the vapour-gas mixture is concentration- and
temperature-dependent also.
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It is seen that the concentration-dependent physical property factors are function
of the temperature-dependent physical property factors.

Eqgs. (5.1)—(5.29) consist of the theoretical foundation for treatment of variable
physical properties of gas, liquid and vapour-gas mixture for this book. These models
will be used in the successive related chapters for serious investigation of heat and
mass transfer on laminar free convection and two-phase free convection film boiling
and condensation.

5.6 Summary

So far, it is time to summarise the models for treatment of fluid variable physical
properties in Table5.3.

5.7 Remarks

The advanced method for treatment of variable physical properties of fluids is
proposed. This method involves temperature parameter method for treatment of
temperature-dependent physical properties of gases, weighted sum method for treat-
ment of concentration- and temperature-dependent physical properties of vapour-gas
mixture and polynomial method for treatment of temperature-dependent physical
properties of liquids. These methods for treatment of variable physical properties of
fluids will be taken as a theoretical foundation of this book for extensive investiga-
tion of hydrodynamics and heat transfer of free convection of gases, free convection
of liquids, free convection film boiling of liquid, free convection film condensation
of pure vapour and free convection film condensation of vapour-gas mixture with
consideration of coupled effects of variable physical properties.

The fundamentals of the temperature parameter method for treatment of variable
physical properties of gases come from the simple power-law for description of
the temperature-dependent physical properties of gases. The temperature parameters
are representatives of the power-law indexes. A series of values of the temperature
parameters n,, n, and nc, are reported based on the typical experimental results.
For monatomic and diatomic gases, air and water vapour the value of n;, varies from
autoedited10.64 to 1.04, while the value of i, varies from 0.71 to 1.185. Additionally,
the density of gases is inversely proportion to its absolute temperature. Compared
with the viscosity and thermal conductivity parameters, the specific heat parameter
is much small. Therefore, the variable temperature will have more obvious effects on
viscosity, thermal conductivity and density of gases than the specific heat. Since the
determination of the temperature parameter is based on the typical experimental data,
the simple power-law can simulate well the temperature-variable physical properties
of gases. Obviously, with the temperature parameter method the treatment of variable
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physical properties of vapour or gas is not only reliable, but also very simple and
convenient for heat transfer application.

Taking water as an example, the temperature-dependent polynomials of the den-
sity, thermal conductivity and viscosity are introduced for liquids, while the specific
heat at constant pressure varies so small with variation of temperature that it can
be disregarded. These polynomials are reliable since they are based on the typical
experimental data.

The concentration-dependent density equations of vapour-gas mixture are reported
through the rigorously theoretical derivation, while the other concentration-dependent
physical properties of vapour-gas mixture are expressed as the weighted sum of the
physical properties of the involved vapour and gas with their concentrations (mass
fraction). Since the involved vapour and gas are temperature-dependent, the physical
properties of the vapour-gas mixture are concentration- and temperature-dependent.

5.8 Questions

1. Please explain the meanings of the temperature-dependent physical properties,
concentration-dependent physical properties and concentration- and temperature-
dependent physical properties?

2. Please tell me the advantages of the temperature parameter method for descrip-
tion of temperature-dependent physical properties of gas? Do you know how the
temperature parameters of gases reported in Tables 5.1 and 5.2 were obtained?

3. Which kind of fluid is suggested to use the polynomial expression method for
describing the temperature-dependent physical properties? please tell me how
the polynomials were obtained for description of water temperature-dependent
physical properties?

4. Please explain why the physical properties of vapour-gas mixture are
concentration- and temperature-dependent?

5. How are the physical properties of vapour-gas mixture concentration- and
temperature-dependent?

6. What is the relationship between the temperature-dependent physical properties
and the concentration-dependent physical properties for vapour—gas mixture?

7. Please derive out Egs. (5.9)—(5.11) on the densities related to the vapour-gas mix-
ture.

8. From equations for gas temperature-dependent physical properties, water
temperature-dependent physical properties and concentration- and temperature-
dependent physical properties, please analyze the necessity and importance of
treatment of variable physical properties on laminar free convection and film
flows.
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Consideration of Coupled Effects of
Variable Physical Properties



Chapter 6

Heat Transfer of Laminar Free Convection
of Monatomic and Diatomic Gases, Air,
and Water Vapor

Abstract The new similarity analysis method is used to replace the traditional
Falkner-Skan type transformation for creating similarity governing models of laminar
free convection. With this method, the velocity components are directly transformed
into the corresponding dimensionless velocity components. Then, it is more conve-
nient to equivalently transform the governing partial differential equations into the
related ordinary differential ones, without inducing stream function and the interme-
diate function variable required by the traditional Falkner-Skan type transformation.
Furthermore, with this method, it is more convenient for treatment of variable phys-
ical properties. The temperature parameter method is used for treatment of variable
physical properties of gases. With this method the physical property factors coupled
with the governing ordinary differential equations are transformed to the functions
of the Prandtl number, temperature parameters, and the boundary temperature ratio
for simultaneous solution. There are obvious effects of variable physical properties
on velocity and temperature fields, as well as heat transfer of free convection of
gas. Based on the heat transfer analysis and related rigorous numerical results, the
prediction equations of gas free convection heat transfer is created. Since the Prandtl
number and temperature parameters of gases are based on the experimental data,
these prediction equations of gas free convection heat transfer are reliable and then
have practical application value.

6.1 Introduction

The study of laminar free convection of gases with variable thermophysical properties
can be traced back to the perturbation analysis of Hara [1] for air free convection.
The solution is applicable for small values of the perturbation parameter, eg =
(Tw — Tso)/ To- Later, Tataev [2] investigated the free convection of a gas with
variable viscosity. A well-known analysis of the variable fluid property problem for
laminar free convection on an isothermal vertical flat plate has been presented by

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 95
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_6,
© Springer-Verlag Berlin Heidelberg 2012
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Sparrow and Gregg [3], giving solutions of the boundary layer equations for five
assumed gases. They proposed a reference temperature and suggested that with it the
problem of variable thermophysical properties can be treated as a constant property
problem, i.e., using the Boussinesq approximation. Gray and Giogini [4] discussed
the validity of the Boussinesq approximation and proposed a method for analyzing
natural convection flow with fluid properties assumed to be a linear function of
temperature and pressure. Clausing and Kempka [5] reported their experimental
study of the influence of property variations on natural convection and showed that,
for the laminar region, Nu s is a function of Ra ¢ (= Gr s Pr ) only, with the reference
temperature 7 taken as the average temperature in the boundary layer.

In this chapter and Chap. 7 I will present respectively our recent studies [6, 7], for
effect of variable physical properties on laminar free convection of different kind of
gases. In this chapter, the gases involved are monatomic and diatomic gases as well
as air and water vapor. The variation of specific heat of these gases is very small, and
so can be neglected when considering variable physical properties. In this chapter,
the gases involved are polyatomic gases in which the variation of specific heat cannot
be neglected. In these studies a recently developed dimensionless velocity compo-
nent method provided in Chap. 4 is provided for the similarity transformation of the
governing partial differential equations of the laminar boundary layer, to replace the
traditional Falkner-Skan transformations.

Additionally, a temperature parameter method for the treatment of a gas with
variable thermophysical properties is proposed. With this method, the thermal
conductivity, dynamic viscosity and specific heat of gases are assumed to vary with
absolute temperature according to a simple power law. The parameters of thermal
conductivity, absolute viscosity, and specific heat are proposed and the correspond-
ing values are provided from the typical experimental data of the thermophysical
properties. The density is taken to be inversely proportional to the absolute tem-
perature at constant pressure, while the Prandtl number is assumed to be constant.
The governing equations for the laminar free convection of gas are transformed into
the dimensionless ordinary equations by using the dimensionless velocity compo-
nent method, and meanwhile the variable thermophysical properties are treated by
employing the temperature parameter method. The governing ordinary differential
equations with the boundary conditions are solved for various boundary temperature
ratios for the various gases mentioned above, and the rigorous numerical results are
provided. These numerical results have shown that there are different velocity and
temperature distributions for different boundary temperature ratios, as well as for
different gases. Curve-fit formulas for the temperature gradient at the wall with very
good agreement to the numerical solutions are provided, which facilitate rapid and
yet accurate estimates of the heat transfer coefficient and the Nusselt number together
with various boundary temperature ratios T/ T, and different gases.
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Fig. 6.1 Physical model S
and coordinate system of X

boundary layer for laminar A
free convection

6.2 Governing Partial Differential Equations

The physical analytical model and co-ordinate system used for laminar free convec-
tion of gas on an isothermal vertical flat plate is shown in Fig.6.1. The boundary
layer is laminar when Raleigh number, Ra (= Gr Pr) is less than 10° [8].

According to the presentation in Chap.2 the governing partial differential equa-
tions for mass, momentum and energy for a steady laminar flow in the boundary
layer for gas laminar vertical free convection with consideration of variable physical
properties can be given by

0 0
a(PWx) + 5(/0Wy) =0 (6.1)
oWy n oWy . 0 oWy n T ! 62)
P\ T ay | dy ” dy &P Too )
aoT oT 0 oT
- — === 6.3
pc”(Wxanyay) ay( ay) (©3)

The absolute value of buoyancy term pg |7/ T — 1| shows that it has always
positive sigh no matter which one is larger between T and T. In this case, the
buoyancy term pg |T /T~ — 1| and the velocity component w, have the same sigh.
The boundary conditions are,

y=0 wy,=0, Wy =0, T=T (6.4)
y—>o00: wy >0, T="Tk. (6.5)
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6.3 Similarity Transformation of the Governing Equations

6.3.1 Dimensionless Similarity Variables Based on the New
Similarity Analysis Method

According to Chap.4 for the dimensionless similarity variables based on the new
similarity analysis method, the related dimensionless similarity variables are assumed
as follows, respectively, for laminar free convection of gases on a vertical flat plate
with consideration of variable physical properties:

The dimensionless coordinate variable is expressed as

y 1 1/4
n= ; (Zer,oo) (6.6)

where the local Grashof number Gry « is defined as

_ gITw/Te — 117

2
0

Gry oo 6.7)

v,

Here, kinematic viscosity v has the subscript co. It means that the physical property
to be considered is related to boundary temperature 7, for consideration of variable
physical properties.

A dimensionless temperature variable is defined as

T —T
9 — o0

= 6.8
To T (6.8)

Dimensionless velocity components for consideration of variable physical properties
are assumed to be:

-1

Wo = [2Vex T/ Toe = 11| 6.9)
1 —1747!

W, = |:2,/gx [T/ Too — 1] (Zer*“) } wy. (6.10)

6.3.2 Similarity Transformation of the Governing Equations

With the above assumed dimensionless variables the governing partial differential
equations governing partial differential equations can be transformed similarly as
follows:

For Eq.(6.1)
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Equation (6.1) is initially changed into

owy  dwy ap ap
- 0 6.11
p(8x+8y)+ Yoy —i—wyay (6.11)

With the dimensionless variables assumed in Egs. (6.6), (6.7), (6.9) and (6.10) we
obtain the following relations:

3 dw, an 1
" = [2VER T/ Too — 112 52 4 2x7E [ 208 1T/ Too = 112 Wi,
ox dn ax 2
where
o _ 0y (1 174
ax  ox | x \4 %
o[ (1g1T/ T — 11 x\
“ox [T \4 v,
L (1gITw/Te — 1N\"*| _s
= —— y _ X 4
4 4 vZ
| (11T T — 1N L,
R RV V2 *
1
:—foln
Then,
owy 127 AWy I
= [2/ex 1T/ Too — 1 /] -
o [\/gxl w/ | a TR
1 1
+ 33 [2\/§|TW/TOO - 1|1/2] W
dw,
=——[f|TW/T —1|1/2} [[WTOO—MW]
1 dw
:\/7|TW/T 1|1/2(W _E”d_nx) (6.12)
ow

1
B_yy - |:2./_gx |Tw/Too — 11177 (ZGr""’")
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1 “V4ldw, 1 (1 174
= |:2,/_gx|TW/Too—l|1/2 (ZGrW) } (4er oo)

dnx

aw,
=2 8Ty T — 1]12 22 (6.13)
X dn

dp dpd 1 d
9 %P _ _2y1,%P (6.14)
dx  dnox 4 dn
dp dpon 1 (1 4 dp
~ o L= Gxoo

=—\|- —. 6.15
dy dnoy x\4 : dn ( )

By using Eqs. (6.12)—(6.15), Eq. (6.12) can be changed to

1 dW dW
[\fww/Too—u”z(Wx— )+2/>|TW/TOO—1|”2 }

1 d
+2./8x [T/ Too — 1|V/* W, (—Zn —ld;’) + 28X | Tw/ Too — 1]/

X T T X - .
1 X,00 y L ] I X,00

Equation (6.16) is divided by |Ty/ T — 1)1/2 f and transformed into
1 dw dw 1 dp dp
Wy — = n—= ) +2—2 | +2W, (—=n-" ) +2Wy,— =0  (6.17
”[( "a )+ dn]+ *(4”dn)+ "ay ©17

or
2Wx -1

daw, dw, 1d
L 4= P W, — AWy =0 (6.18)
dn dnp  pdnp

For Eq.(6.2)
Equation (6.2) can be rewritten as

dIwy owy azwx oWy O
- — ) = — T/ Ty . 6.19
p(wx ™ +wy 8y) 7 P 3y 3y + pg(T/ 1) (6.19)

The absolute value of buoyancy factor |7/ T, — 1| shows that the buoyancy term
pg |T/Tsx — 1| has always positive sign no matter which one is larger between 7
and 7. In this case, the buoyancy term pg | T/ Too — 1] and the velocity component
w, have same sign.

With the dimensionless variables assumed in Egs. (6.6), (6.7), (6.9), and (6.10)
we obtain the following equations:
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aatx =2/8% | T/ Too — uw%g—’;,
where - { 1/4
5 =x! (Zer,oo) .
Then, 1/4
aav;x g T Ty — 117 dVZ . (zlthxﬁoo) ! (6.20)
aazy = 2gF ITu/ Too — 112 = et GGD"‘"’)W%

d W 1 1/4 1 1/4
=2./8x |Tw/Too — 1|1/2 —x! (ZGr""’") x! (ZGIX*‘”)

d W 1/2
=2./8%|Tw/Tno —1|1/2 (ZGr""X’) x 2 (6.21)
9 dpon d 174
dp _dpdn _du (Lo N (6.22)
ay dn By dr; 4 ’

Using Eqgs. (6.9), (6.10), (6.12), (6.20)—(6.22), Eq. (6.19) becomes

[2\/_gx|Tw/Tm—1|1/2W\ﬁTW/Too 1|1/2(W — 50

—1/4

1
+ 28X | Tw/ Too — 1|2 (Zer,oo) Wy

dw, 1 1/4
(zx/—gxrfw/no—1|1/2 rad (Zer,oo)

1/2
o2 W d? Wx / -2
=2u./gx |Tw/Too — 1| 4Gxoo X
dw. 1 174
+2./8% | Tw/Too — 11"* —2x71 [ =Gry 00
dn 4 ’
du (1 4
X G (Zer""’) x4 pg T/ Tao — 1] (6.23)

Equation (6.23) is divided by pg(Tw/Tsc — 1), meanwhile, the definition of local
Grashof number Gry  is considered, and then, Eq. (6.23) is simplified to
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1 dw dw.
ZWX(WX——r; ")+2Wy(2dx)
1

2 dn
AW, (1 1\ 1dWedp (1 1\?
S NEEN (i I b ol (S B
dn? \4v% p dn dn \4vZ

or

1 dw, dw, v &W, 1dW,du 1
QW | Wy — = 2W, | 2 = Z KL g
x(x 2ndn)+ y( dn) Voo dn? +p dn dnvoo+(624)

Equation (6.24) is multiplied by VTOO and is simplified to

dw. dw W, 1dudw
ol wy (2w, — n k) paw, o | = S0 S SEC | Ty (605
v dn dn dn?2  pdn dn v

For Eq. (6.3)
Finally, Eq. (6.3) can be rewritten as:

or 3T _/\82T L AT 6.26)
Pep\Wegx T ay )] Tayr  ayay’ '
where
T =Ty —Tx)0 + T
oT de an do (1 _1
e (Ty = To)—— = —(Ty — Too)— | ~ 6.27
9x (Tw OO)dT’]ax (Tw OO)dT] (4)77)6 ( )
aT do an o (1 AN
— =Ty —Too)—— = (Tyw — Too)— | -G 6.28
dy (T oo)d’7 dy (Tyw <>o)d’7 (4 rx,oo) X ( )
92T 1 V4 d% an
02 = (Tw — To) (Zer,oo) x an? 3y
a0 (1 iz,
= (TW — Too)d—nz (Zer’oo) X (629)
o dian  dr (1 A 6.30)
_———— = — —Qr . .
dy  dnoy dp\4 7% *

Then, Eq. (6.26) will be transformed into

1

de _
pCp (Zng |Tw/Too — 1"2 Wy (= 1)(Tyy — T"‘”& (Z) nx~!

| —1/4
+2/8x | Tw/Teo — 1|1/2 (Zer,oo) Wy (Tw — To)
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40 A
dﬂ( eroo) X 1)

d2o 12
= MTy — )d : ( Gry, oo) x2
da 174 1 do (1 174 1
+ a ( Gr, oo) x  (Ty — Too)& (Zer’oo) x . (6.31)

Equation (6.31) is divided by (Tw — To) | Tw/ Too — 1]1/? f meanwhile, the defini-
tion of local Grashof number Gr, o is considered, and then, Eq. (6.31) is simplified to

W 1)d9 1 Cow do /\dz N 11\ adrde /1 1\"?
c ¥ (L _ dado (1 1
per * dn \ 4 7 Ydn dn? 4v2 dndn \4vZ

or
do (1 do 1 d%0 1 drdd
pep | 2We— (- )n+2W,— )= —A— + — . (6.32)
dn \ 4 dn 2o dn?  2vy dn dn
Equation is multiplied by - and simplified into

d9 d%0 1drdo

Voo
Pr—=(—nW, +4W,)— = — 4+ —— —, 6.33
' v( T y)dn dn?  Adndp (633)

The governing ordinary differential equations can be summarized as follows:

U2 RUAWRE
2W, — )22 w, —aw,) =0 6.18
( Ty 4 dn) p dn (0 ) (6.18)

Voo dw, dw 2w,  1dpdW, v
= \w, 2w, — AW, — | = =0 (625
v[x( ) ndn)+ }dn] o Yuagay T 0 O

d9 d%0 1drde

— = — 6.33
dnp  dn? +Adr}dn ( )

Pr v%o (—an + 4Wy)

With the assumed dimensionless variables the following dimensionless boundary
conditions are easily obtained from Eqgs. (6.4) and (6.5):

n=0:W,=0,W,=0,0=1 (6.34)
n—oo: Wy —> 0,0 - 0. (6.35)
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6.4 Heat Transfer Analysis
The local heat transfer rate g, at position x per unit area from the surface of the plate

to the gas can be calculated by Fourier’s law as

oT
R
8y y:()
with Eq. (5.28) we have

aT do\ (1 1/4
()= (5) (o)
9y / y=o dn/ \4

Then,
1 V4 rde
qx = —Aw(Ty — To) | 7Gx, 00 X - . (6.36)
4 ’ dn n=0
The local heat transfer coefficient oy, defined as g, = oy (Ty — Two), Will be
given by
1 /4 do
oy = Ay (—er,oo) x~! (——) . (6.37)
4 dn/,—o

€29

The local Nusselt number defined by Nuy ,, = /\; will be

N N (1G )1/4 _1( de) x
Uy yw = —Qr X _— -
X, W w 4 X,00 d”] =0 )\w

1 14 de
Nllx’W = (ZGrX'OO) (—&) . (638)
n=0

Total heat transfer ratefor position x = 0 to x with width of b on the plate is a
integration Oy = [ [, gxdA = [; g<bdx, and hence

X
do 1 AN
Ox = b (Tw — To) (__) / (_er,oo) x~dx,

with Eq. (5.7) for definition of local Grashof number Gry , we obtain

i.e.

4 1 V4 de
Oy = 5bry(Ty — To) | =Gy, 0 -0 . (6.39)
3 4 dn =0
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The average heat transfer rate, defined as O, = Q. /(b x x) is given by

— 4 1 4 do
0, =-x" (Tw — To) | =Cry. 0 —— . (6.40)
3 4 dn/,—o
The average heat transfer coefficient o, defined as ax = oy (Ty — Ty) is
expressed as
41 Va8 de
oy = =Xy | =Gry o X - . (6.41)
3 4 7 dn =0
The average Nusselt number is defined as Nuy ,, = %", and hence
N Y (Lo (L >
u = — —0r X _— J—
X, W 3 w 4 X,00 d77 10 )"W
ie.
N (! G v do (6.42)
Uy =-(-Gr - . .
X, W 3\2 X,00 dn 10
It is seen that, for practical calculation of heat transfer, only wall dimension-

less temperature gradient (—%) 0 dependent on numerical solution is no-given
n:

variable.

6.5 Numerical Results

6.5.1 Treatment of Variable Physical Properties

According to the temperature parameter of gases demonstrated in Chap. 5, the gas
variable physical properties can be described by the following equations for laminar
free convection:

T\
e
A T \"
=) G0
CC_P _ (Ti) v (5.7)
Poo oo
T —1
)
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where several values of the temperature parameter of monatomic and diatomic gases,
and also for air and water vapor can be seen in Table 5.1.

It is seen that the temperature-dependent physical property factors %g—’;, ﬁ?j—’;,
%g—;\], and 2 are coupled in governing ordinary differential equations (6.18), (6.25),
and (6.33). These factors tend to greatly increase the difficulty of getting a solution
of the governing equations. However, with the provided gas temperature parameters,
the physical property factors can be transformed into the functions of temperature 6.
Then, the governing dimensionless equations can be solved. The transformation of

these physical property factors is expressed as follows:
Transformation of the density factor (% g—’;):
With Eq. (5.8) we obtain

1dp 1d Too
pdy ~ pdp "1 )

By using Eq. (6.8) we have
T =(Ty —Tw)0 + T

Then,

1dp  poo d |: T :|
pdn  p dn [(Ty — Teo)0 + Teo

_Td 1

_?;E[mwmr4w+J
(Tw/Too = DG

[(Tw/Too — DO + 117

= —[(Tw/Too — DO +1]

i.e. the density factor is expressed as

1 dp (Tw/ T = D

pdn (Tw/Tee— DO+ 1 (643)

Transformation of the viscosity factor (/LL g—‘;):

With Eq. (5.5) we get

ldu_uood(T)"“
wdyp — podyp \Tw

T e d (Tw - Too)9 + Too e
T dn Tx
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—n d n
=(Tw/Txo — DO+ 1) "&((Tw/Too - Do+ 1™
“n - do
=(Tw/Teo — DO+ 1) “n;/.((Tw/Too_l)Q‘l‘l) " (TW/TOO_1)£~

Then, the viscosity factor is described as

Ldu  nu(Tw/Too — 1)d6/dn
wdn — (Tw/Te — DO + 1

(6.44)

Transformation of the thermal conductivity factor (% %)

With a derivation similar to that for the factor (% %) we can obtain the following

equation for description of the thermal conductivity factor:

Ldh  mu(Tw/Too — 1)d6/dy

— (6.45)
Adn (Tw/Too — DO + 1
Transformation of factor (‘%’O)
By using Eqgs. (5.5) and (5.8), we have
‘%’" = [(Tw/ Too — 1O + 1]~ w+D (6.46)

6.5.2 Numerical Results

Itis obvious that the velocity and temperature fields can be obtained from the solution
of the governing ordinary differential equations (6.18), (6.25) and (6.33) with bound-
ary conditions, Eqgs. (6.34) and (6.35), combined with the property factor Egs. (5.13)—
(5.15), and (5.17). It is expected that, for the case of constant properties, the dimen-
sionless velocity field w, and dimensionless temperature field 6 will be functions of
Pr only. But for the case of variable properties, both the dimensionless velocity field
and the dimensionless temperature field will depend not only on Pr but also on the
temperature parameters 7, and n,, and the boundary temperature ratio T/ Tso.

The nonlinear two-point boundary value problem defined by Egs. (6.18), (6.25),
and (6.33) were solved, and calculations were carried out numerically by using a
shooting method. First, Egs. (6.18), (6.25), and (6.33) were written as a system of
five first-order differential equations, which were solved by means of fifth-order
Runge-Kuta iteration iteration.

The Runge—Kutta integration scheme, along with Newton—Raphson shooting
method is one of the most commonly used techniques for the solution of such two-
point boundary value problem. Although this method provides satisfactory result for
such type of problems, it may fail when applied to problems in which the differential
equations are very sensitive to the choice of the missing initial conditions.


http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5

108 6 Heat Transfer of Laminar Free Convection

o 2 4 6 8
n

Fig. 6.2 Comparison of velocity profiles for free convection of different gases, cited from Shang
and Wang [6] e—e, [1—[J, Ar (Pr = 0.622, nj ~ n, ~ nyy), +—=+, x—x,02 (Pr =0.733, n,y =
0.79), *—*, &>—<, Water vapour (Pr = 1, ny; = 1.12)

Fig. 6.3 Comparison of temperature profiles for free convection of different gases, cited from
Shang and Wang [6] e—e, [J—[], Ar (Pr = 0.622,n, ~ n, ~ nu), +—+, x—x, Oy (Pr =
0.733, nyy = 0.79), *—*, &—<, Water vapour (Pr = 1, ny; = 1.12)

Moreover, another serious difficulty which may be encountered in the boundary-
value problems is in linear instability. Difficulty also arises in the case in which one
end of the range of integration is at infinity. The end-point of integration is usually
approximated by assigning a finite value to this point, and by estimating a value
at this point the solution will reach its asymptotic state. The computing time for
integrating differential equations sometimes depends critically on the quality of the
initial guesses of the unknown boundary conditions and the initial end-point.

Then, a Newton iteration procedure was employed to satisfy the outer boundary
equations. The present fifth-order scheme utilizes variable grid spacing. The typi-
cal results for the velocity and temperature field together with different boundary
temperature ratios Ty, /T are plotted in Figs.6.2, 6.3, 6.4, and 6.5 for compari-
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Fig. 6.4 Comparison of velocity profiles for free convection of air (Pr = 0.7, n,; = 0.79) with
different Ty, / Too, cited from Shang and Wang [6]

Fig. 6.5 Comparison of temperature profiles for free convection of air (Pr = 0.7, n,, = 0.79)
with different temperature ratio 7y, / Two, cited from Shang and Wang [6]

son of velocity and temperature profiles with different gases and different boundary
temperature ratios Tyw/ Too, respectively.

It is found that both the velocity and temperature fields of argon laminar free
convection are higher than those of oxygen laminar free convection, while, both
the velocity fields of oxygen free convection are higher than those of water vapor
laminar free convection. It follows that with increasing the temperature parameters
n, and ny the level both of the velocity and temperature fields of free convection
will decrease.

Additionally, itis seen that with increasing the boundary temperature ratio Ty, / Too,
the temperature field will raise and the maximum of velocity field will increase and
shift far from the plate.
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Furthermore, from the numerical calculations it is found that, even for the diatomic
gases, air and water vapor, the modifications using n,, and n; by n,; are unnecessary,
because the numerical results obtained either with the actual n,, and n, values or
with the modified n,,; values are almost the same.

6.6 Wall Dimensionless Temperature Gradient

From the heat transfer analysis we find that the wall dimensionless temperature
gradient (g—i) 0 is only one variable which depends on numerical solution for
r]:

prediction of heat transfer coefficient.

The numerical solution (%) 0 of the governing equations (6.18), (6.25) and
n=

(6.33) for some monatomic and diatomic gases, air and water vapor are obtained.
Some solutions (%)nzo are listed in Table 6.1 and plotted in Fig. 6.6 for laminar free
convection of different gases. By using curve-fitting method, Shang and Wang [7]
obtained the following formulated equations for simple and reliable prediction of the

Table 6.1 Calculated results of (— %) 0
=

Tw/ T Ar Hj Air N CcO (03 Water vapor
Pr=0.622 Pr=0.68 Pr=0.7 Pr=0.71 Pr=0.72 Pr=0.733 Pr=1
n, =072 n, =0.68 n, =0.68 n, =0.67 n, =0.71 n, =0.694 n, =1.04
n, =073 n, =08 n; =0.81 ny, =0.76 n, =0.83 n; =0.86 n; =1.185

3 A 0.1940 0.1974 0.1987 0.2043 0.1973 0.1973 0.1738
B 0.1935 0.1975 0.1988 0.2044 0.1975 0.1975 0.1738
5/2 A 0.2256 0.2300 0.2316 0.2374 0.2306 0.2307 0.2110
B 0.2249 0.2300 0.2318 0.2374 0.2308 0.2311 0.2115
2 A 02714 0.2772 0.2794 0.2852 0.2792 0.2796 0.2679
B 0.2703 0.2772 0.2796 0.2850 0.2794 0.2801 0.2689
312 A 0.3438 0.3526 0.3557 0.3609 0.3570 0.3582 0.3651
B 0.3427 0.3527 0.3561 0.3609 0.3575 0.3590 0.3665
5/4 A 0.3990 0.4105 0.4144 0.4188 0.4172 0.4193 0.4448
B 0.3983 0.4109 0.4151 0.4191 0.4179 0.4201 0.4459
— 1 A 04784 0.4943 0.4995 0.5021 0.5046 0.5079 0.5671
B 0.4787 0.4953 0.5007 0.5033 0.5059 0.5092 0.5670
3/4 A 0.6035 0.6276 0.6351 0.6336 0.6446 0.6507 0.7775
B 0.6011 0.6247 0.6333 0.6312 0.6423 0.6479 0.7761
172 A 0.8344 0.8774 0.8898 0.8776 0.9093 0.9225 1.2181
B 0.8285 0.8666 0.8786 0.8684 0.8993 0.9098 1.2081
173 A 1.1492 1.2247 1.2448 1.2124 1.2812 1.3075 1.9198
B 1.1419 1.2022 1.2209 1.1949 1.2591 1.2774 1.8805

Note A. numerical solution, B. evaluated by Eq.(6.47) with Egs. (6.48)—(6.50), cited from Shang
and Wang [6]
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Fig. 6.6 Numerical solutions of temperature gradient (—%) 0 for laminar free convection of
7]:

argon, hydrogen, air, oxygen and water vapour

values (%) 0 for laminar free convection of monatomic and diatomic gases, air,
’f’]:
and water vapor:
do To\ "
- =y @Pr){ — (6.47)
df} 77:() TOO
where
Y (Pr) =0.567 +0.186 x In(Pr) (0.6 <Pr<1) (6.48)
m = 0.35n; +0.29n, + 0.36 (T,,/Tx > 1) (6.49)
m =0.42n; +0.34n, +0.24 (T,,/Too < 1). (6.50)

The predicted results (— %) 0 of Egs. (6.47) with (6.48) to (6.50) are compared
}7:

with those of the numerical results shown in Table 6.1. The agreement is quite good.

6.7 Practical Prediction Equations on Heat Transfer

By using Eq. (6.47) with Egs. (6.48)—(6.50), Eqgs. (6.36)—(6.42) are available for pre-
diction of heat transfer on laminar gas free convection on vertical flat plate with
consideration of coupled effect of variable physical properties, for example:

The local heat transfer rate g, at position x per unit area from the surface of the
plate to the gas is expressed as
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1 1/4 Tw —m
qx = (T — To) (Zer,oo) xilw(Pr) (T_) . (6.36%)

oo

The local Nusselt number defined by Nuy ,, = D;\"Lx will be

1 1/4 T —m
w
Nuy = (—er oo) ¥ (Pr) (—) . (6.38%)
’ 4 7 Toso

Total heat transfer rate for position x = 0 to x with width of b on the plate will be
4 1 1/4 T\~
Qx = zbhy(Ty — Too) | -Grroo ) ¥ (P () . (6.39%)
3 4 Two

The average Nusselt number is defined as Nu, ,, = “‘k‘v" , will be

a1 1/4 T\ ™"
Nuy = 3 (Zer’oo) ¥ (Pr) (K) , (6.42%)
where
Y (Pr) =0.567 4 0.186 x In(Pr) (0.6 <Pr<1) (6.48)
m =0.35n, + 0291, +0.36 (T,/Te > 1) (6.49)
m = 0.42n) +0.34n, + 024 (T,,/Ts < 1). (6.50)

It is indicated that Eqgs. (6.36%)—(6.42*) will be reliable for prediction of heat
transfer on laminar free convection on a vertical flat plate with consideration of cou-
pled effect of variable physical properties. It is reason that these prediction equations
come from the theoretical equations on heat transfer coupled with the formulated
equation of the solution of governing equations (6.1)—(6.5), the wall dimensionless

temperature gradient (—g—i) o While, Egs. (6.1)—(6.5) as well as (6.43)—(6.46)
n=

have well simulated the practical laminar free convection by means of the rigorous
consideration and treatment of variable physical properties.

6.8 Effect of Variable Physical Properties on Heat Transfer

From the theoretical equations (6.36%)—(6.42%), it is seen that effect of variable

physical properties on heat transfer is dominated by the factor ¥ (Pr) (TTTWC) ,
which demonstrates the effect of Prandtl number Pr, boundary temperature ratio

1
% and temperature parameters of gas. If we change the factor to v (Pr) (TTTVZ) =
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Table 6.2 Effects of Pr, n,,n;, and T,,/To on heat transfer of laminar free convection of
monatomic and diatomic gases, air, and water vapor

Term Heat transfer
for Ty /Too > 1 for Ty /Too < 1
For effect of Pr Heat transfer increases with increase of Pr
For effect of 7,,/ Too Heat transfer increases with increase of Ty / To
For effect of Temperature Heat transfer decreases with increase of Ty / Too, 11y, OF 1,

parameter ny Orny

m
¥ (Pr) (%) , we can easily see that with increasing the Prandtl number Pr or bound-

ary temperature ratio 7y /7o, heat transfer will increase. However, for Ty, / Too>1,
heat transfer will decrease with increasing the temperature parameters of gas. While,
for Ty / Too <1 heat transfer will increase with increasing the temperature parameters

of gas.

The numerical solutions on temperature gradient — (%) 0 can be briefly sum-
)’]:

marized in Table 6.1 for laminar free convection of monatomic and diatomic gases,
air, and water vapor, with effect of Pr, n;,, n;, and Ty, / T (Table 6.2).

6.9 Heat Transfer Under Boussinesq Approximation

Obviously, when boundary temperature ratio 7Ty /T is very close to unity, i.e.,
Tw/Tso — 1, the free convection is corresponding to Boussinesq approximation. In

this case, the effect of variable physical properties will not need to be considered,

and then the temperature gradient (— g—f}) 0 only depends on Pr, i.e.,
7]:

(_3_9) =¥ (Pr) =0.567 +0.186 x In(Pr) (0.6 <Pr<1) (6.51)
N/ n=0

where 1/ (Pr) expresses the well-known Boussinesq solution.
With Egs.(6.51), (6.36)—(6.42) become the equations on heat transfer under
Boussinesq approximation, for example:

1 1/4
qx = (T — To) (Zer,oo) x71 ¥ (Pr) (6.36™)

1 1/4
Nuy = (Zer,oo) ¥ (Pr) (6.38*)
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6.10 Summary

So far, the governing equations for laminar free convection of monatomic and
diatomic gases, air, and water vapor and expressions related to heat transfer can
be summarized in Table 6.3 with consideration of variable physical properties.

6.11 Remarks

In this chapter, a novel system of analysis and transformation models is introduced
by using the new similarity analysis method to transform the governing partial differ-
ential equations of laminar free convection. With the new similarity analysis method,
the velocity components are directly transformed into the corresponding dimension-
less velocity components, so that it is not necessary to induce the flow function as
well as the intermediate function variable with Falkner-Skan transformation. In addi-
tion, with the new analysis and transformation models based on the new similarity
analysis method, a convenience is provided to treat the variable physical properties
for free convection and film flows.

The temperature parameter method is used for treatment of variable physical
properties of gases. With this method the physical property factors coupled with the
governing ordinary differential equations are transformed to the functions with the
dimensionless temperature and the related temperature parameters for convenient
simultaneous solution.

It is seen from the calculated results that there are obvious effects of variable
physical properties on velocity and temperature fields, as well as heat transfer of
free convection of gases, and such effects depend on the boundary temperature ratio
T,,/ T\, the temperature parameter n,, and n; as well as the Prandtl number of gases.
The prediction equations on gas free convection heat transfer are created based on
the heat transfer analysis and the related numerical solutions. It is found that the gas
temperature parameters, Prandtl number, and boundary temperature ratio dominate
the heat transfer of gas laminar free convection. Since the temperature parameters
are based on the experimental data, such prediction equations of gas free convection
heat transfer are reliable, and have practical application value.

6.12 Calculation Examples

Question:

A flat plate with » = 2m in width and x = 0.25 m in length is suspended vertically in
air. The ambient temperature is fo, = 20 °C . Calculate the free convection heat trans-
fer of the plate for boundary temperature ratio 75,/ To = 1.1, 1.2, 1.4, 1.7 and 2.1.
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Table 6.3 Governing equations for laminar free convection of monatomic and diatomic gases, air
and water vapor and expressions related to heat transfer

Term

Expression

Governing partial differential equations

Mass equation

Momentum equation

Energy equation

Boundary conditions

Assumed similarity variables
n

Gry, 00

0

Wy

Wy

Governing ordinary differential equations

Mass equations

Momentum Equation

Energy equation

Boundary conditions

Boussinesq solution

(),

% (owx) + % (/Owy) =0

ow. Bw
P (w,C T Wy 5y

y=0: wy=0,

wy=0, T=Ty

y—>o00:wy >0, T=Tx

¥ (§Grene)

_ glTw/Teo—11x3
(Gry,00)y = = ng

T-Tx
0=1-7s
2y/ex Ty /Too —
2/8x|Tw/Teo —

dw,
2W, — 1 7(71 @ +4
—;ﬁ(nWX

= (v o

112w,

172 (1Gre00) 1wy

dW‘

4Wy) =0

_ o dWy dW,

U )+4W>’Tn )
W 1 du dWy
dn? wdn dn

+ 20

Pr i (—nW, +4W) = L4 4 4 &6
I;

n=0: Wy=0,

X dn dn
0

Il ‘l\

Wy =0,

n—oo: Wy=0, 6=0

Heat transfer under Boussinesq approximation

Local heat transfer rate

Local heat transfer coefficient
defined by Nu, ,, = %=

ow
Local Nusselt number defined by
N, = 52

Total heat transfer rate
Oy = f]A qxdA = j(;c q.bdx

qx = )"W(TW

- Too>l(4%er,oo
ax = Ay (%er,oc) /

=¥ (Pr) =0.567 4+ 0.186 x In(Pr) (0.6 <Pr<1)

) ey (pr)

x~ 'y (Pr)

1/4
Nug, = (3Gre o) wrPr)

Qx = %b)"w(Tw

— Too) ($Gruce) " wr(Pr)

(continued)
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Table 6.3 (continued)

Average heat transfer coefficient oty oy = %)\w (%er’oo) V4 ¥ (Pr)
defined as Qy = oy (Tw — To)
Average Nusselt number is defined Nuy,, = 3 (%er,oo)l/4 ¥ (Pr)

as Nuy ,, = Oj\:f

Wall dimensionless temperature gradient

(—%)FO =y (Pr) (TTTWO) " 0.6<Pr<1)
where
¥ (Pr) = 0.567 + 0.186 x In(Pr)
m = 0.35n) + 0.29n,, + 0.36 (Ty/ T > 1)
m = 0.42n) + 0.34n, +0.24 (Ty/Tx < 1)
Heat transfer for consiceration of coupled effect of variable physical properties variable
Local heat transfer rate qx = Ap(Ty —To) (%er,oo)l/4 x! ¥ (Pr) (;—;) "
Local heat transfer coefficient Ay = Ay (%er,oo) 1/4 xill//(Pr) (%) "
defined by Nu, ,, = “A'MX
Local Nusselt number defined by Nuy = (%er,oo) 1/4 ¥ (Pr) ( %) "
Nux,w = %
4 1 1/4 T, \ "
Total heat transfer rate Or = 307 (Ty — Too) (Grr0) ¥ (Pr) (ﬁ)
0= [[,q:dA = [ gcbdx
Average heat transfer rate, defined @x = %x‘l)Lw(Tw —Tso)

as Ox = Qx/(b x x)
x (§Gr o) "y R) ()

Average heat transfer coefficient @y o = %)w (%er,oo) /4 =1 W (Pr) (%)7
defined as O, = ox (Tw — Too)
—m
Average Nusselt number is defined Nuy,, = 3 (%er,oo)l/4 ¥ (Pr) (%)

as Nuy ,, = oj\‘wx

Solution:

From too = 20°C and T,/Tx = 1.1,1.2,1.4,1.7,2.1, we obtain T,, = 322.3,
351.6, 410.2, 498.1, 615.3K or 1, = 49.3,78.6,137.2,225.1,342.3°C. The air
physical properties are as follows:

Voo = 15.06 x 1070 m? /s for air 150 = 20°C; A, = 2.825 x 1072, 3.037 x
1072, 3.4675 x 1072, 4.1007 x 1072 and 4.8622 x 1072 W/(m°C) for air at
tw = 49.3,78.6, 137.2,225.1 and 342.3 °C respectively. From Tables 6.1 and 6.3,
we obtain n,, = 0.68, n) =0.81 and Pr = 0.7 for air.

Then,
Y (Pr) = 0.567 + 0.186 x In 0.7 = 0.50066

m is evaluated as below with Ty, / Too
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Table 6.4 Calculated results

To/ Too 1.1 1.2 1.4 1.7 2.1
1w (°C) 49.3 78.6 137.2 225.1 3423
150 (°C) 20 20 20 20 20
Jw[W/(m°C)] 2.825 x 1072 3.037 x 1072 3.4675 x 1072 4.1007 x 1072 4.8622 x 102
- (gg) , 04621 0.4295 03773 03205 0.2683

=
Gry oo 6.75 x 107 1.35x 108 2.7 x 108 4.73 x 108 7.43 x 108
Nu, ., 39.4927 43.652 45.602 44.550 41.761
o [W/(m2K)] 4.46237 5.3026 6.3247 7.3074 8.1218
QW) 65.3782 154.37 370.63 749.38 1308.83

m = 0.35n; +0.29n,, + 0.36
= 0.35x0.81 + 0.29x0.68 + 0.36 = 0.8407.

In this case, the dimensionless temperature gradient (—%) 0 can be evaluated as
)7:

() v ()
dn ;7=()_ T

—0.8407
Ty
= 0.50066 x (T—) .

o]

The evaluated values of ( — %) are plotted in Table 6.4 for different temperature

rations.
Also
g’Tw/Too —1x3
Gry 00 = v§o

9.8 x|Ty/Too — 1] x 0.25°
B (15.06 x 106)2

The calculated values of Gry o are plotted in Table 6.4.
With Eq. (4.53) the average Nusselt number can expressed as

4 (1 174 rde
Nllx)w = —5 Zer’oo &
n=0

Then, the average Nusselt number Nu, ,, are evaluated with the calculated values of

Gry, and (_%)n—o and then, plotted in Table 6.4.
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From the definition of the average Nusselt number Nuy ,, = ‘f\j—x, the average heat
transfer coefficientcan be calculated as

The average heat transfer coefficient o, are calculated with the related Nuy ,, and
Aw, and plotted in Table 6.4 also.
Finally, heat transfer Q, is calculated as

Oy =0y (ty —tog)X X b =0y (ty — too) X 0.25 x 2

The values of Q, is calculated with the related values of @y and ¢, — 7, and
plotted in Table 6.4.

6.13 Exercises

1. From this chapter, tell me the importance for consideration of variable physical
properties on laminar free convection.

2. Please explain the necessity and importance of consideration of variable physical
properties for deep investigation of laminar free convection.

3. Can you tell me if Egs. (6.36%)—(6.42%*) are qualified for reliable prediction of
heat transfer of laminar free convection? Why?

4. Follow the question of calculation example, only change air to water vapour
as the ambient gas, and keep other conditions, and calculate the average heat
transfer coefficients and free convection heat transfer on the plate.

5. Please calculate the question of exercise 4 by using the related empirical equation.

6. Compare the calculated results in exercises 4 and 5, and tell me which calculated
result is more reliable for practical application, why?

7. Do you think the treatment of variable physical properties in this chapter is
reliable? Why?

8. Compare the governing similarity models (6.18), (6.25) and (6.33), to (3.25)
and (3.26), respectively transformed by the new similarity analysis method and
Falkner-Skan type transformation, please find out which model is more conve-
nient for consideration of variable physical properties.
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Chapter 7
Heat Transfer of Laminar Free Convection
of Polyatomic Gas

Abstract Based on the study of Chap. 6, the temperature-dependent specific heat is
further considered for investigation of laminar free convection of polyatomic gases
with consideration of variable physical properties. The viscosity, thermal conductiv-
ity, and specific heat parameters are provided for a series of polyatomic gases. The
governing energy ordinary differential equation is further derived out for consider-
ation of temperature-dependent specific heat, by using the new similarity analysis
method. A system of numerical solutions are obtained for variation of the tempera-
ture parameters n,,, 1), and n p> Prandtl number, and the boundary temperature ratio.
Itis seen from the numerical results that there are obvious effects of variable physical
properties on velocity and temperature fields, as well as heat transfer of free convec-
tion of polyatomic gases. The theoretical equations of heat transfer of polyatomic
gas free convection created based on the heat transfer analysis contain a only one
no-given variable, the wall temperature gradient. Based on the system of numerical
solutions on the wall dimensionless temperature gradient, the prediction equation
of the wall temperature gradient is created by means of a curve-fitting method, and
then, the theoretical equations on heat transfer are available for prediction of heat
transfer. It is found that the gas temperature parameters, Prandtl number, and the
boundary temperature ratio dominate the heat transfer of laminar free convection
of polyatomic gases. Because the temperature parameters are based on the typi-
cal experimental data, these equations on heat transfer are reliable for engineering
prediction of laminar free convection of polyatomic gas.

7.1 Introduction

In Chap. 6, the new similarity analysis method and temperature parameter method
were introduced for the similarity transformation of the governing partial differ-
ential equations of laminar free convection of monatomic and diatomic gases, air,
and water vapor with consideration of variable physical properties. The tempera-
ture parameter method, density, thermal conductivity, and absolute viscosity of the

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 121
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gases are assumed to vary with absolute temperature according to a simple power
law. The temperature parameters of thermal conductivity and the absolute viscosity
are proposed and the corresponding values are provided according to the typical
experimental data of the corresponding physical properties. The density is taken as
inversely proportional to absolute temperature at constant pressure, while the Prandtl
number is assumed constant. Since the variation of specific heat for these gases with
temperature is very small, it is taken as constant for the treatment of variable physical
properties.

However, for polyatomic gases, the variation of specific heat is not so small, and
then it cannot be taken as constant. In this Chapter] focus on the presentation of
free convection of polyatomic gases along an isothermal vertical flat plate with large
temperature difference [1]. For this purpose the governing equations for laminar free
convection of gas are also transformed to dimensionless ordinary equations by the
new similarity analysis method. For treatment of variable physical properties the
temperature parameter method is used to further treat variation of specific heat with
temperature. Not only the density, thermal conductivity, and dynamic viscosity but
also the specific heat is assumed to vary with absolute temperature according to the
simple power law. The temperature parameters n; , n,, and n, are further introduced
and the corresponding values are proposed according to the typical experimental
results for polyatomic gases. On this basis, heat transfer of laminar free convection
of polyatomic gas will be further presented in this chapter for laminar free convection
of polyatomic gases.

7.2 Variable Physical Properties of Polyatomic Gases

The effect of the variable physical properties on laminar free convection and heat
transfer of monatomic and diatomic gases, air and water vapor along an isothermal
vertical flat plate has been reported in Chap. 6. However, for the polyatomic gases
the variation of specific heat with temperature is more obvious. For this reason,
an additional equation for specific heat has to be added to the equations based on
Chap. 6 in order to further considerate variable physical properties of polyatomic
gases. Thus, for polyatomic gas, the equations of viscosity, thermal conductivity,
density, and specific heat with temperature are described as follows:

T \"™
ML _ (T_) 7.1
A T \™
o (a) 72

o _ (T o (7.3)
Cpoo TOO .
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p (T !
P (a) 74
cp/cpoo =(T/ Too)”fp (7.5)

According to the summarized experimental values of ., A and ¢, for several poly-
atomic gases reported in Refs. [2-5], the temperature parameters n;, n,, and n., and
arising from the corresponding experimental data are listed in Table 5.2.

7.3 Governing Differential Equations and Their Similarity
Transformation

The physical analytical model and co-ordinate system used for laminar free con-
vection of monatomic and diatomic gases, as well as air and water vapor on an
isothermal vertical flat plate is also shown in Fig.6.1. Then, we can express the
following governing partial differential equations for continuity, momentum, and
energy conservations and their boundary conditions for laminar free convection of
polyatomic gases along an isothermal vertical plate:

d 0
a(,owxﬁa(pwy) =0 (7.6)
an an ad an T

w22 ) =2 1 7.7
"(Wx ox ay) ay(“ ay)“”’ To ‘ 77

d(c, T d(c, T 0 oT
o (2D | Wy (1)) _ 9 (5T (7.8)

ox dy ay ay
y=0: wy =0, wy=0, T=T, (7.9)
Y00t wy = 0, T =Te (7.10)

where the temperature-dependent specific heat of polyatomic gas is considered in
the energy equation.

For similarity transformation of the governing Egs. (7.6)—(7.8) we use the new
similarity analysis method and assume the following dimensionless variables, which
are same as those for laminar free convection of monatomic and diatomic gases, air,
and water vapor in Chapter 6:

)7:

==

1 1/4
(ZGr’““"’) (7.11)
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8T/ T — 1]%°

Gty o0 < (7.12)
\%
o
T—T
H=—" (7.13)
T — Too
—1
W, = [24/_gx T/ Too — 1|‘/2] Wy (7.14)

—1
| —1/4
W, = [2./—gx To/Too — 1]'/2 (Zer’“’) } Wy (7.15)

According to the derivation similar to that in Chap. 6, the corresponding governing
dimensionless equations of Eqgs. (7.6)—(7.7) should be

4—= — ——(W, —4W,) =0 (7.16)
pdn

dw. dw d*W, 1dpdw
2w, (2w, —n =2 ) 44w, S ) = S5 4 — SR L P2 (79
n dn pdn dn v

However, because the variation of specific heat of the polyatomic gases with tem-
perature must be considered, the similarity transformation for Eq.(7.8) should be
done.

At first, Eq. (7.8) can be further expressed as

aT aT d(c d(c aroT 92T
pcp(wx— )+pT(wxﬁ+ (p))—— tho—s

ax +Wy5 ax Wy ay | ByE dy
or
8T+ G N aT T dep)]  9AIT +Aa2T
CpWy — w CpWy — w = —— —
popW Ty TP T p‘”ay p Y 9y dy dy dy?
(7.18)
According to Chap. 6, we have
0% _dr (1. A 7.19)
—=—|[-Gr .
dy dp\4 % *
or (Ty — T, )d9 L) (7.20)
— == — — =) nx .
ax v ) \g) !

oT o (1 AR
3y = B =Tl g (3Cree ) (7.21)
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3T a2 (1 12
W =Ty — TOO)d_nz (Zer,oo) x? (7.22)

Similar to Eq. (7.14) we have

acy 1 _; dep
— = — 7.23
ax 4T Ty (7.23)
Similar to Eq. (6.22) we have
3 de, (1 /4
% %2 6r ) x7! (7.24)
dy dn \4 '
where
T = (Tw — Teo)0 + Teo (7.25)

Then, Eq. (7.18) is changed to

1 1 _,dc do (/1 _
20/8X [T/ Too — 112 W, [T (—an ld—;) +ep X (— T=Tod @ (Z) nx 1)}

ya! —l/4 dey (1 174
+2p./_gx|Tw/Too—1|2(Zer,oo) x Wy —p(-er,oo) x!

4
do (1 174
+ep X (Tyy — Too)d— (-er,oo) x!
1

4
(1 /4 g - 1% (g /4
=—|-Gr — — | -Gr
dn 4 X,00 X w %) dn 4 X,00
. a0 (1 2,
X x U ATy = Too) 5 [ Greoe ) x (7.26)
dn? \4

With the definition of Local Grashof number, the above equation is simplified to

1 dc do (1
2p/8x |Tw/Too — 11172 wy [T (—Zﬂxildfi) +¢p (_ (Tw — Too) a (Z) Uxil)]

de, de
+2p /8% [T/ Too — 11172 Wy [Td—px_l +ep(Tw — Too)d—x_l]
n n

12

3 2

-1 8lTw/Too — 1| x 1 d-e
= — Tw—Too)—| ——mm— My — Too) —=
dﬂx (Tw oo)d ( 41%0 X+ AMTw 00) d772

2
(g|TW/Too - 1|x3)” 5
Voo
(7.27)

The above equation is divided by \/g |Tw/ Too — 1|1/ 2 (Tw — Tso)and this leads to

da do
n
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oW T L), o (1 oW T dg 4
R en =22 = R R
P Ty =T UaTan ) TP Ty \a)" P Ty = Too dn Py
dado (1 \Y?2 d%e 1\
T dndn \ 1,2 3\
dn dn \4vz, dn= \4v5,
The above equation is multiplied by — and is simplified, then
% T dc de
oWy | ————n—=) —cp | =
A Tw — T dn dn

T dcp+ do 1d,\d9+d29
To— T dn  Pdn | = 2dndy  dan?

(7.28)

) v v . L
Since %Ocp p = Pr ==, the above equation can be simplified to
v

Voo T 1 dcp do T 1 dcp do
—Pr—nW, | —— + +4Pr W —_—
v Tw—Tx \¢p dn dn v Tw—Txcp dn dn

_ldrdo d%6
T adpdnp o dp?
or
Pe YR w4 AW d9+ T  1de 1d/\d6+d20 (7.29)
r—(— —_—t — .
y LT Y\dn " Ty —Tx cp dn rAdnpdn  dn?
Now we simplify . TToo o dn From Egs. (7.5) and (7.25) we obtain the following
equation:
d (Tw — Too)0 + Teo |
dep Tw
P _.
dn Poo dn
(Tw = Too)0 + Too "~ Ty — Too dO
= Cpecllep T T dy
00 00 n

—epne (L) T T d0
TP\ T T dn

Then



7.3 Governing Differential Equations and Their Similarity Transformation 127

T 1dey cpo (T )”vp‘l T do

Tw_Toogdn_ Cp K aa
T\ "o T\ ! 17 do
= P — Ne — -
Too "\ T T dn
do
= nCPE

Consequently Eq.(7.29) is changed as

do do  1dxdo +d29
~ adpdp  dp?

Voo
Pr T(—)’]WX +4Wy) a +I1Cp%

i.e.

(14 1) Pr 2 oW, + 4w, 32 1d“w+dze (7.30)
ne ) Pr—(— )— = ——— + — .
@ p o T Y dn Adndn  dn?

Now we summarize the transformed dimensionless equations for the laminar free
convection of polyatomic gases as follows:

dw, dw, ldp

2Wy—np——+4—— — ——(W, —4W,) =0 7.16
x—1 dy + dn pdn(n x y) ( )

Voo dw, dw, 2w, 1dpdW, vs
=2 w, 2w, — AW, — ) = —= =26 (7.17
V(X(X ndn)+ ydn) a2 Tuaga P00

do  1drde  d%0

(14 ne,) Pr '%’"(—nwx AW = T (7.30)

with boundary conditions
n=0 W,=0 W, =00=1 (7.31)
n—o00, Wy— 0,0—>0 (7.32)

Itis obvious that when n., = 0 the Eq. (7.30) will turn back to Eq. (6.33) for laminar
free convection of monatomic and diatomic gases, air, and water vapor. Therefore,
the energy equation of laminar free convection of monatomic and diatomic gases,
air and water vapour is a special case of that of the polyatomic gas laminar free
convection with Ne, = 0.
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7.4 Treatment of Physical Property Factors

According to Chap. 5, the physical property factors for gases coupled with the govern-
ing ordinary differential equations are expressed as following equations respectively:

1do (£-1)
pdn = (B 1Yo 410 e
ldp ”“(TTTZVO_I) do
EE—WE (7.34)
ldr ™ (TTT.WC_I) do 735)

hdn (%—1)9“5

T. _(nu"l‘])
Yoo _ ((—W — 1) o+ 1) (7.36)
v To

Combined with the physical property factor Eqgs.(7.33)-(7.36), and Egs.(7.16),
(7.17), and (7.30) with boundary conditions, (7.31) and (7.32) can be solved for
the velocity and temperature fields. It will be expected that, with consideration of
variable physical properties, the dimensionless velocity field and the dimensionless
temperature field depend on ;—;, Pr, n,, ny and ne, for the laminar free convection
of polyatomic gases.

7.5 Heat Transfer Analysis

With the same heat transfer analysis as that in Chap. 6, the analytical expressions on
heat transfer for laminar free convection of polyatomic gases are as follows:

The local heat transfer rate g, at position x per unit area from the surface of the
plate to the gas will be expressed as

1 1/4 do
Qe = 2Ty — Too) [ =Grroo ) 71— (7.37)
4 7 dn/,—o

The local heat transfer coefficient o, defined as g, = oy (Tw — To), Will be given

by
1 174 do
oy = Ay (-er,oo) x! (——) (7.38)
4 dn 77:0

The local Nusselt number defined by Nu, ,, = "‘f; will be
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1 Y ode
Nu, ,» = (Zer,oo) (_a) (7.39)
n=0

Total heat transfer rate for position x = 0 to x with width of b on the plate is a
integration Oy = [ [, gxdA = [; gxbdx, and hence

4 1 V4 a6
Oy = zbiw(Tw — Too) | =Gry 00 - (7.40)
3 4 ’ =0

The average heat transfer rate, defined as O, = Q. /(b x x) is given by

— 4 1 14 7 qe
0, = 33 Aw(Ty = Too) ( 7 G0 - (7.41)
n=0

The average heat transfer coefficient o, defined as @x = o, (Ty—Tx) isexpressed as

@ = o (LG (e (7.42)
ay = = —Gr X - .
X 3 w 4 X,00 dT} 10
The average Nusselt number is defined as Nuy ,, = ﬁx hence
N (! G V(o (7.43)
U w==|-Gr - . .
X, W 3 4 X,00 d]” )7=()
Obviously, in the above theoretical equations on heat transfer, only the wall dimen-

sionless temperature gradient (—g—z) 0 dependent on numerical solution is
n:

no-given variable.

7.6 Numerical Solutions

The governing dimensionless Eqs. (7.16), (7.17) and (7.30) with the boundary con-
dition Egs. (7.31) and (7.32) were calculated numerically combined with the physical
property factor Eqs. (7.33)—(7.36) for the velocity and temperature fields. The cal-
culations were carried out by the shooting method presented in Chap. 6. The typical
results for the velocity and temperature field were obtained with different Pr, ny, n,

. . T .
and ng, at different boundary temperature ratios T—W Some of the solutions were

plotted in Figs.7.1, 7.2, 7.3, and 7.4. Meanwhile,otohe solutions of dimensionless

temperature gradient (—?1—2) . for laminar free convection of several polyatomic
T]:
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Fig. 7.1 Velocity profiles for free convection of different polyatomic gases, cited from Shang and
Wang [1]. / gas mixture (CO, = 0.13, HoO = 0.11, Ny = 0.76); 2 SO»; 3 NH3
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Fig. 7.2 Temperature profiles for free convection of different polyatomic gases, cited from Shang
and Wang [1]. / gas mixture (CO, = 0.13, H,O = 0.11, N = 0.76); 2 SO3; 3 NH3

. . . T
gases with the related Pr, ny, ny, and n., at various boundary temperature ratios .

oo
are shown in Table 7.1 and plotted in Fig.7.5. These solutions describe the effects
of Pr,n;, n, and n., on velocity and temperature fields as well as heat transfer of
polyatomic gas laminar free convection. It is found that the effects of Pr, n; and n,

. . T .
with the boundary temperature ratios T—W on the velocity and temperature fields of

oo
polyatomic laminar free convection are same as those on the velocity and tempera-
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Fig. 7.3 Velocity profiles for free convection of CO, with different boundary temperature rations,
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Fig. 7.4 Temperature profiles for free convection of CO; with different boundary temperature
’3

rations, cited from Shang and Wang [1]. / ;—“ = 3;2 ;—W = %; 3 ™ = 2; 4 TTi = 3;
o (o] o0 o0
Tw _ 3.0Tw _ 1.7 Ty _ 1
S = =37 =3

ture fields of laminar free convection of monatomic and diatomic gases, air and water
vapor. The effect of Pr, ny, n;, ne, and T,/ T on temperature gradient — (g—?}) 0
n:

can be briefly summarized in Table 7.3 for laminar free convection of polyatomic

gases.
For consideration of variation of specific heat of the monatomic and diatomic
gases, air, and water vapor with temperature, the corresponding numerical solutions
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2,
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Fig. 7.5 Numerical solutions of temperature gradient (—%) for laminar free convection of
=

polyatomic gas

are calculated by Egs. (7.16), (7.17) and (7.30) with the boundary condition Egs. (7.31)
and (7.32) as well as Eqs. (7.33)—(7.37) for the physical property factors, and listed
in Table 7.2. It is found that these numerical solutions are very identical to the related
numerical solutions without consideration of variation of specific heat. Then, it fol-
lows that it is acceptable to neglect the effect of the specific heat for calculation of
the free convection heat transfer coefficient of the monatomic and diatomic gases,
air, and water vapor.

7.7 Dimensionless Wall Temperature Gradient

With the system of numerical solutions wall dimensionless temperature gradient

(—%) o the only one no-given physical variable in the above heat transfer
n:

theoretically analytical equations, a curve-fit formula of (—%) 0 was obtained
1’]:

by Shang and Wang [1], and shown as follows for laminar free convection of poly-
atomic gases with consideration of variable physical properties:

— (d_@) = (14 0.3n. )y (Pr) (&)_m (7.44)
dn n=0 B e T .

where v (Pr) is Boussinesq approximation solution in the range of gas Prandtl num-
ber, and is expressed as follows:
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Table 7.3 Effects of Pr, n,, n;, Tw/Tx and Ty /T on temperature gradient — (%) 0 for
=

laminar free convection of polyatomic gases

Term Heat transfer
for Ty /Too > 1 for Ty /T < 1
For effect of Pr Heat transfer increases with increase of Pr
For effect of Heat transfer increases with increase of Ty, / To
Tw/Two
For effect of Heat transfer decreases with increase of ny,, n;,, or Ne,
Temperature
parameter ny,,
Ny, O 7,
W (Pr) = 0.567+0.186 x InPr (0.6 <Pr< 1) (6.48)
While,
m = 0.35n, +0.29, +0.36 (Tw/Tx > 1) (7.45)
m = 0.42n; 4 0.34n, +0.28 (Ty/Too < 1) (7.46)

Some results of temperature gradient (— %) o for laminar free convection of dif-
n:

ferent polyatomic gases predicted by using above equations are listed in Table 7.1
also, where it is found that these predicted results are well identical to the related
numerical solutions.

On the other hand, it is clear from the curve-fitting formulae to see that the effect
of Prandtl number Pr, the temperature parameters n,,, n,, and n,,, and the boundary
temperature ratio Ty /T on the wall temperature gradient (—%)nzo. Such effect
regulation is summarized in Table 7.3. Obviously, these effect regulations are same
both for laminar free convection of all gases.

Also, if boundary temperature ratio Ty, / T tends to unity, the specific heat para-
meter n, will be regarded as zero, and Eq. (7.44) is transformed to

dé
- (—) — ¥ (Pr) (7.47)
d’l n=0

It is identical to Boussinesq approximation, while ¥ (Pr) expresses well-known
Boussinesq solution.
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7.8 Practical Prediction Equations on Heat Transfer

By using Eq. (7.44) with Eqs. (6.48), (7.45) and (7.46), Eqgs. (7.37)—(7.43) are avail-
able for prediction of heat transfer, and become the following corresponding equa-
tions for reliable prediction of heat transfer on laminar gas free convection on vertical
flat plate with consideration of coupled effect of variable physical properties:

The local heat transfer rate g, at position x per unit area from the surface of the
plate to the gas is expressed as

1 1/4 T\
Qx = Aw (T — To) (ZGr"’“’) x N1+ 0.3n.,) 9 (Pr) ( ) (7.37%)

w
T

The local heat transfer coefficient «,, defined as g, = o, (Tw — Tx), Will be
given by

1 1/4 T\
oy = Ay (ZGr”") x N1+ 0.3nc,) 9 (Pr) (T—W) (7.38%)
o0

The local Nusselt number defined by Nuy y = o;x_x will be
w
1 1/4 T, \ "
Nuy y» = | =Gry .0 1 +03n. )Yy Pr){ — (7.39%)
' 4 7 P T
Total heat transfer rate for position x = 0 to x with width of b on the plate will be

4 1 1/4 T
Oy = gb)&w(Tw — Too) (Zer,oo) 1+ O.SI’ICP)W(PI‘) (

-
To

—m
) (7.40%)
The average heat transfer rate, defined as O, = Q. /(b x x) is given by

0. =2t T)(lG )1/4(1 0.3n.,)¢ (P ﬂ)_m 7.41%)
Qx—3x w(Tw — To 4rx,<>o +~ncp1//(r)(T (7.

oo

The average heat transfer coefficient o, defined as 0, = o (Tw — Tso) is
expressed as)

4 1 1/4 T. —m
@ = —Aw | -Cr 1A +03n. ) @) [ =X 7.42%
(045 w X,00 x~ (140.3n)y(Pr) (7. )
3 4 P Too

—  OxX
The average Nusselt number is defined as Nuy w = )»L’ will be
w
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4 (1 /4 Tw\ "
Nugw = 3 (ZGY)"‘”) (1+0.3n¢,) ¥ (Pr) (a) . (7.43%)
where
Y (Pr) =0.567 4+ 0.186 x In(Pr) (0.6 <Pr<1) (6.48)
m = 0.35n; +0.29n, + 036 (Tyy/Tno > 1) (7.45)
m = 0.42n; +0.34n, +0.28 (Tyw/Too < 1) (7.46)

Obviously, Egs. (6.37%)—(6.43*) will be reliable for prediction of heat transfer on
laminar free convection of polyatomic gas on a vertical flat plate with consideration
of coupled effect of variable physical properties. It is reason that these prediction
equations come from the theoretical equations on heat transfer coupled with the
formulated equation of the solution of governing Egs. (7.16), (7.17), and (7.30), which
have very well simulated the practical laminar free convection of polyatomic gas by
means of the rigorous consideration and treatment of variable physical properties.

7.9 Effect of Variable Physical Properties on Heat Transfer

From the theoretical Eqs. (7.37%)—(7.43%), it is seen that effect of variable physical
—m
properties on heat transfer is dominated by the factor (1 + 0.3ncp)1p(Pr) (%) s

which demonstrates the effect of Prandtl number Pr, boundary temperature ratio ——

and temperature parameters of gas. If we change the factor to (1 + O.3ncp)1/f(Poro)

To
Prandtl number Pr, heat transfer will increase. However, for Ty / Too > 1, heat transfer
will decrease with increasing the temperature parameters of gas. While, for Ty, / Tso <
1 heat transfer will increase with increasing the temperature parameters of gas.
The above analysis on effect regulation Pr, n,, n, and Ty, / T, on temperature gra-

—m m
(ﬂ) = (1 +0.3n.,)¥(Pr) (%) , we can easily see that with increasing the

dient — (%) 0 can be briefly summarized in Table 7.3 for laminar free convection
7’]:

of polyatomic gasespolyatomic gases.

7.10 Heat Transfer Under Boussinesq Approximation

Obviously when boundary temperature ratio Ty /7o is very close to unity, i.e.
Tw/Tx — 1, the effect of all physical properties on laminar free convection will
never exist. In this case, ne, will be regarded as zero. Then, from Egs.(7.45) and
(6.49), we have the same equation on Boussinesq solution for laminar free convec-
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tion of polyatomic gas as that in Chap. 6:

(_3_0) =Y (Pr) =0.567+0.186 x In(Pr) (0.6 <Pr<1) (7.51)
N/ =0

In this case, we have the same equations as those in Chap. 6 for heat transfer of
laminar free convection of polyatomic gas on vertical flat plate under Boussinesq
approximation:

1 1/4
Qx = )VW(TW - Too) (ZGI‘X’OO) xillﬁ(Pr) (737**)
| 1/4
oy = Ay (ZGr"*“’) x 1y (Pr) (7.38%%)
1 1/4
Nu, ,» = (Zer,oo) ¥ (Pr) (7.39%%)
4 1 1/4
Qx = gb)tw(Tw - Too) (Zer’oo) Iﬂ(Pr) (740**)
_ 4 1 1/4
0, = gx_l)\w(Tw —Too) (Zer,oo) ¥ (Pr) (7.41%%)
4 1 174
oy = 5)‘*W (Zer,oo) xilw(Pr) (7.42%%)
4 (1 174
Nuy,, = 3 (Zer,oo) ¥ (Pr) (7.43%%)

7.11 Summary

Comparing the analyses and results in Chap. 4 with that in this chapter, it is obvious
to find that laminar free convection and heat transfer of the monatomic and diatomic
gases, air, and water vapor can be regarded as a special case of that of polyatomic
gases. In fact, the results of free convection heat transfer of polyatomic gases are very
well identical to those of the monatomic and diatomic gases, air and water vapor.
So far, the governing equations of laminar free convection for general gases and
expressions related to heat transfer can be summarized in Table 7.4.
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7.12 Remarks

On the basis of study of Chap. 6, the temperature-dependent specific heat is further
considered for investigation of laminar free convection of polyatomic gases with
consideration of variable physical properties. The temperature parameters, such as
viscosity, thermal conductivity, and specific heat parameters are presented for a series
of polyatomic gases. The governing energy ordinary differential equation is derived
out for further consideration of temperature-dependent specific heat. With the tem-
perature parameter method, the physical property factors coupled with the governing
ordinary differential equations are transformed to the functions with the dimension-
less temperature and the related temperature parameters for convenient simultaneous
solution. A system of solutions is obtained numerically. It is seen from the calculated
results that there are obvious effects of variable physical properties on velocity and
temperature fields, as well as heat transfer of free convection of polyatomic gases.
The theoretical equations of heat transfer of polyatomic gas free convection are cre-
ated based on the heat transfer analysis, where the wall dimensionless temperature
gradient is the only one no-given variable. Then, the system of numerical solutions
on the wall temperature gradient is formulated into a prediction equation. Then, it is
found that the gas temperature parameters ny,, n; and Ne, Prandtl number, and the
boundary temperature ratio dominate the heat transfer of laminar free convection of
polyatomic gases. Since the temperature parameters are based on the experimental
data, the heat transfer prediction equations are reliable for practical application. The
method proposed in this chapter, for analyzing the laminar free convection of poly-
atomic gases along a vertical isothermal flat plate can be suitable for laminar free
convection for all gases, and could yield reliable results.

7.13 Calculation Examples

Example 1:

An plate with uniform temperature ¢, = 0°C, width » = 2 m and height x =
0.9 m is suspended in a gas mixture with temperature /o, = 500 °C. The kinetic
viscosity of the gas mixture is Voo = 7.63 x 107 m?/s at 15, = 500°C, and the
thermal conductivity of the gas mixture is A,, = 0.0228 W/(m°C) at #,, = 0°C.
The temperature parameters of the gas mixture are n, = 0.75,n; = 1.02 and
ne, = 0.134 respectively. The gas mixture Prandtl number is Pr = 0.63. Suppose
the free convection is laminar.

Please calculate the average heat transfer coefficients and free convection heat
transfer on the plate.

Solution:
The temperature ratio 7y, / T of the gas laminar free convection is

Tw/Teo = 273/(500 + 273) = 0.35317


http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Since Ty /T < 1 from Eq.(5.46) we have

m = 0.42n; + 0.34n, +0.28
=0.42 x 1.02 4+ 0.34 x 0.75 4+ 0.28
= 0.9634

Also

Y (Pr) = 0.567 4+ 0.186 x In Pr
= 0.567 + 0.186 x Ln(0.63)
=0.48106

Then, temperature gradient — (%) o is evaluated as
r]:

do =(1+03 P Tw )™
_(a>r/:()_( + 0.3n¢,)¥ (Pr) (ﬂ)

= (14 0.3 x 0.134) x 0.48106 x 0.3531770-963
= 1.3639

Then, local Grashof number is calculated as

_ 811w/ Too — llx3
V3
9.8 x |0.35317 — 1] x 0.93
(7.63 x 1079 )2
793770003

=0.79377 x 10°

Gry o0

In this case, average Nusselt number Nu, y, can be calculated as follows by using

Eq.(7.42):
_ 4 (do 1 174
Nuy w = _5 & - Zer,oo

4 1 1/4
3 x 1.3639 x (Z X 793770003)

= 215.84
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. .. e O o .
With the definition of Nuy w, Nuy w = )LL, the average heat transfer coefficient o,
w
is expressed as

Nty A 215.84 x 0.0228
@y = e Oxg = 5.468 W/(m? ° C)
X .

Then, total heat transfer rate on the plate is

Ox =0y (Tyy — Too)x X b
=5.468 x (0 —500) x 0.9 x 2
= —4921.2W

where the negative sign implies that the total heat transfer rate Q. is from gas mixture
to the plate.

7.14 Exercises

1. Please analyze the relation of the energy equations of Chaps. 6 and 7. What does
it mean?

2. Can you tell me if Egs. (7.37%)—(7.43*) with Egs. (6.48), (7.45) and (7.46) are
qualified for practical prediction of heat transfer of laminar gas free convection?
Why?

3. Follow the example 1 of calculation examples, only change gas mixture to CO;
air, and water vapour as the ambient gas, and keep other conditions.

(i) Calculate the average heat transfer coefficients and free convection heat
transfer of the plate for boundary temperature ratio 7w/ Too = 1.1, 1.2, 1.4,
1.7 and 2.1.
(ii) Calculate the free convection heat transfer of the plate under Boussinesq
approximation.
(iii) From the above calculated results on heat transfer, which conclusions will
be obtain?

4. Please calculate the questions (i) and (ii) of exercise 3 by using the related empir-
ical equation.

5. Compare the calculated results in exercises 3 and 4, and tell me which calculated
result is more reliable for practical application, why?

6. Do you think the treatment of variable physical properties in this chapter is reli-
able? Why?


http://dx.doi.org/10.1007/978-3-642-28983-6
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Chapter 8
Heat Transfer on Liquid Laminar Free
Convection

Abstract The new similarity analysis method is used to transform the governing par-
tial differential equations of laminar free convection of liquid into the corresponding
governing dimensionless system, which are identical to the corresponding governing
dimensionless system of gas laminar free convection, except different treatment of
variable physical properties. Due to the different variable physical properties from
gases, the polynomial approach is suggested for treatment of temperature-dependent
physical properties of liquid. Taking water as an example, the polynomial approach
is applied for expressions of temperature-dependent density, thermal conductivity,
and viscous. These expressions are reliable because they are based on the typical
experimental values of the physical properties. By means of the equations of the
physical property factors coupled with the governing ordinary differential equations
of liquid laminar free convection created by the new similarity analysis method, the
non-linear governing equations with corresponding boundary conditions are simul-
taneously solved numerically. The effect of variable physical properties on water
laminar free convection along an isothermal vertical plate is investigated. It is found
that the wall temperature gradient is the only one no-given condition for prediction
of heat transfer. Compared with wall temperature, the bulk temperature dominates
heat transfer of laminar free convection. By means of the curve-fitting equation on
the wall temperature gradient, the heat transfer analysis equations based on the new
similarity analysis model become those with the practical application value for heat
transfer prediction.

8.1 Introduction

The theoretical analysis of laminar free convection of liquid along an isothermal ver-
tical flat plate was also started by means of Boussinesq approximation. For the case
of larger temperature difference, the effects of variable physical properties should
be taken into consideration, as those in Refs. [1-9]. In Ref. [1] Fuji et al. used two

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 145
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methods of correlating to examine the effects of variable physical properties on heat
transfer for free convection from vertical surfaces in liquids. The first method of corre-
lating the data consisted of using the constant property correlations for Nusselt num-
ber and evaluating all properties at a reference temperature, 7, = Ty — (Ty — Too) /4.
They noted that the choice of the reference temperature agrees with the solution pro-
vided by two previous studies of Fujii [2] and Akage [3]. The second method that they
used to correlate their data in oils was first proposed by Akagi [3] and applies only
to liquids for which viscosity variation is dominant. Piau [4] treated the similarity
analysis of variable property effects in free convection from vertical surfaces in high
Prandt]l number liquids. It was indicated that the main property variations in water at
moderate temperature levels are in the viscosity, ;« and the volumetric coefficient of
thermal expansion, B and that for higher Prandtl number liquids, the variation of S is
often negligible. In Ref. [5], Piau included the effect of thermal stratification of the
ambient fluid in an analysis, which also include variables p and g for water. Brown
[6] used an integral method and studied the effect of the coefficient of volumetric
expansion on laminar free convection heat transfer. Carey and Mollendorf [7] have
shown the mathematical forms of viscosity variation with temperature, which results
in similarity solutions for laminar free convection from a vertical isothermal surface
in liquids with temperature-dependent viscosity. Sabhapathy and Cheng [8] studied
the effects of temperature-dependent viscosity and coefficient of thermal expansion
on the stability of laminar free convection boundary-layer flow of a liquid along an
isothermal, vertical surface, employing linear stability theory for Prandtl numbers
between 7 and 10. Qureshi and Gebhart [9] studied the stability of vertical thermal
buoyancy-induced flow in cold and saline water. They indicated that the anomalous
density behavior of cold water, for example, a density extremum at about 4 °C in pure
water at atmospheric pressure, commonly has very large effects on flow and transport.
However, the results reported are so far not convenient for heat transfer prediction due
to difficulty of treating the variable thermophysical properties in governing equations.

In this chapter, an advanced development [ 10] of laminar free convection of liquid
with large temperature difference is introduced. The new similarity analysis method,
i.e. velocity component method for similarity transformation presented in this book
is used here for similarity transformation of the governing partial differential equa-
tions of liquid free convection. Meanwhile, the polynomial equations are suggested
to express the variable physical properties of a liquid. For example, polynomial equa-
tions of the density and thermal conductivity of water are proposed, and expression
of absolute viscosity of water is also based on a polynomial. A typical example of the
laminar free convection of water was provided. It is concluded that the Nusselt num-
ber could be predicted by local Grashof number and the dimensionless temperature
gradient on the wall. Furthermore, a reliable curve-fit formula of the dimensionless
temperature gradient is presented for simple and accurate prediction of water free
convection with large temperature difference.
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8.2 Governing Partial Differential Equations

The physical analytical model and co-ordinate system used for laminar free convec-
tion of liquid on an isothermal vertical flat plate is shown in Fig. 6.1 also. According
to the presentation in Chap. 2, the conservation equation for mass, momentum, and
energy of steady laminar free convection of liquid in the boundary layer are

d d
—(pwy) + —(pwy) =0 8.1)
ax ay
8wx 8Wx ) an
= — ) =—(u— - 8.2
p(wx o T Wy ay) 3 (u 8y)+g|,000 ol (8.2)
ot n at d N at 83)
cp\wy—+wy— )= — (22— .
per T ox Y dy ay \ dy

The boundary conditions are

y=0: wy=0, wy=0, t=1ty (8.4)
y—>00: wy >0, t=ty (8.5)

where the variable physical properties are considered except the specific heat. In fact,
such treatment for physical properties is suitable for a lot of liquids. Additionally,
the absolute value of buoyancy term g |poo — p| in Eq. (7.2) shows that it has always
positive sigh no matter which one is larger between p and poo. In this case, the
buoyancy term g | oo — p| and the velocity component w, have the same sigh.

8.3 Similarity Variables

For similarity transformation of the governing partial differential equations for the
laminar free convection of liquid, the velocity component method is also used. Con-
sulting the assumed dimensionless variables in Chap. 6 for the similarity transfor-
mation of the governing partial differential equations of gas laminar free convection,
the following dimensionless transformation variables can be assumed for the trans-
formation of governing equations of liquid laminar free convection:

1/4
y (1

n== (—er,oo) (8.6)
x \4
I — oo

6 = 8.7
P (8.7)

19—1
2
W, = [24 fax |22 } W, (8.8)
Pw
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-1
-2 1 3
(Zer’oo) wy (8.9)
_ 8 lpoo/ pw — 1|x3

Gry oo = S0/ 0w = 11X (8.10)

2
Voo

w

Wy = |:2\/8_X

8.4 Similarity Transformation

For convenience of similarity transformation, it is necessary to rewrite the governing
Eqgs. (8.1)—(8.3) into the following format respectively:

owy  Owy ap ap
— — ,— =0 8.1
p(ax + 8y)+wx8x+w"8x §.12)
Iwx owy 32Wx owy Ol
-— = — - 8.2
p(wx oy T Wy ay) P + 3y 3y + & 1P = P (8.2a)
or 01 ka% Lo 8.32)
c Wy — Wy — = A— - X
Per\ " 55 Y9y 9y2 9y dy

Similar to the derivation of the related partial differential equations in Chap. 6,
the related derivatives by means of Egs. (8.6)—(8.10) are obtained and expressed
as follows:

we  [g]p |7 1 dW,
= [2]= 1 Wy — —p—— 8.11
0x X | pw . 2)7 dn ( )
ow g | poo 2 aw
Y =p /2= _q = (8.12)
ay x| pw dn
9 1 d
X 2P (8.13)
ox 4 dn
dp dp (1 A
—="L1(-G 8.14
dy — dn (4 rx,oo) ) &1
owy Poo 172 dw, _, (1 174
=2/ex | = -1 —= -G 8.15
3y 8x P ay X I Tx,c0 ( )
32w, oo 22w, (1 172
a—yz = 2«/gx p—w -1 dnz X ZGI‘X’OO (816)

o du (1 174
— = -G 8.17
oy dnx 7G0x.00 (8.17)
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ot do /1y
Pyl —(tw — foo)d—n(z)ﬂx (8.18)
-0 (Lo e (8.19)
— = — — | -Gr X .
ay w 00 d’? 4 X,00
1
3%t d?0 (1 L,
8_))2:(IW_IOO)W (Zer’OO) X (8.20)
1
ar dxa (1 3
—=2=(=cG -1 8.21
dy  dy (4 rx,oo) ! (®:2D
where
t = (ty — to0)0 + teo (8.22)

Similar to the derivations in Chap. 6, by using Eqs. (8.11)—(8.22), the following gov-
erning ordinary differential equations can be obtained from the Eqs. (8.1a)—(8.3a):

aw,  dw, 1dp

2W, —n ——— MW, —4W,) =0 (8.23)
dn dp  pdp ’
Voo aw, AW, d2W,  1dpdW,  ve 22—
= w, (2w, - 4W. = e Yoo
v(x( ' ndn)Jr ydn) & pdp g v B
(8.24)
Voo do 1drde d%
Pr X W +aw) L — 24 Y 8.25
rv(nx+ y)d77 Adndn+dn2 ( )
with boundary conditions
n=0 W,=0, W,=0, 6=1 (8.26)
n—o0, W,—0 6—-0 (8.27)

Equations (8.23)—(8.27) are dimensionless governing equations and the boundary
conditions of laminar free convection of liquid.

£oo g
In fact, the buoyancy factor LOO—4 in Eq. (8.24) is suitable for all fluid, i.e., both
liquid and gas. For gas, the buoy/ajlv;lcy factor can be rewritten as follows by using the
simple power law of gas:

Lo T

0
-1 v 1 Ty—Tx (828)

>
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8.5 Treatment of Variable Physical Properties

8.5.1 Variable Physical Properties of Liquids

We take water as an example to introduce the treatment of variable physical prop-
erties of liquid. According to Chap.5, the temperature-dependent expressions of
density, thermal conductivity, and absolute viscosity of water at atmospheric pres-
sure with the temperature range between 0 and 100°C are, respectively, expressed
by polynomials as

p=—448 x 1073% +999.9 (5.16)

A= —8.01 x 107%% +1.94 x 1073 + 0.563 (5.17)
1150  [690)\>

L = exp |:—1.6—T+(T) ] x 1073 (5.18)

Meanwhile, specific heat of water can be regarded as constant with temperature
variation.

8.5.2 Physical Property Factors

According to the derivation of Chap.5, the dimensionless physical property factors
%g—ﬁ, i‘é—‘; and 5 1 d)‘ in the transformed dimensionless governing Egs. (8.23)—(8.25)
for water lammar free convection with consideration of the variable physical prop-

erties can be derived out and shown as:

ldp =2 x4.48 x 10731 (ty — teo)dd

_8_ (5.24)
o dn —4.48 x 107312 +999.9dn
1dp 1150 6902 deo
9 P 5.25
e dn (T2 : 3)(W ~an 52
Tdh (=2 x8.01 x 107% + 1.94 5 107) (1w — fo0)
1 (5.26)

adyp — —8.01 x 1062+ 1.94 x 10737 + 0.563

where t = (t; — to0)0 + 1o and T =t + 273.
In addition, for water and a lot of liquids in the special temperature range for
engineering application, it is known that the physical factor Pr > can be expressed as

Aoo
Prv;.o — PrOOL_

v Poo A
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Up to now, the physical property factors of Egs. (8.26)—(8.28) have been transformed
to the functions with the dimensionless temperature for convenient simultaneous
solution of the governing equations.

8.6 Heat Transfer Analysis

Consulting the heat transfer analysis in Chap. 6 for gas laminar film free convection,
the analytic expressions related to heat transfer of liquid laminar free convection are
obtained as follows:

The local heat transfer rate g, at position x per unit area from the surface of the
plate to the gas will be expressed as

1 174 de
qx = Aty — t0) (_er,oo) x_l (__) (8.29)
4 =0

The local heat transfer coefficient o, defined as g, = o, (Ty, — To), Will be given by

1 /4 de
oy = Ay (—er,oo) x! (——) (8.30)
The local Nusselt number defined by Nuy ,, = %)\W will be
N ! G v do (8.31)
uy = (-Gr - .
xX,W 4 X,00 dTl 10

Total heat transfer rate for position x = 0 to x with width of b on the plate is a
integration Oy = [ [,qxdA = [ g.bdx and hence

4 1 V4 dg
Ox = zbhy(tw — too) _er,oo - (8.32)
3 4 dn/,—o

The average heat transfer rate, defined as Q, = Q, /(b x x) is given by
— 4 1 174 7 ae
0, ==x" 2Ty — Txo) | -Gry .0 - (8.33)
3 4 dn/,—o

The average heat transfer coefficient oy defined as E = oy (Tw—Tso) is expressed as

4. (1 1/4 do
Ty = =~y (—er,oo) x~! (——) (8.34)
3 4 dn =0
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The average Nusselt number is defined as Nu, ,, = %=, and hence
w

— 4 (1 V4 a0
Nllx’w = § ZGI‘X’OO —a (835)
n=0

Obviously, for practical calculation of heat transfer, only the wall dimensionless

temperature gradient (—g—g) 0 dependent on the solution of governing equations
7]:

is no-given variable.

8.7 Numerical Solutions

As atypical liquid laminar free convection, the water laminar free convection can be
taken as an example for presentation of the numerical calculation.

The shooting method has been adopted to solve numerically the nonlinear gov-
erning Eqs. (8.23)—(8.25) with the boundary conditions (8.26) and (8.27) at different
temperature conditions f, and 7. The water physical property values of poo, Pws Voos
Moo, and Pro, at different temperatures are taken directly from the appendix of this
book. The typical results for velocity and temperature fields of the boundary layer

are plotted as Figs. 8.1, 8.2, 8.3 and 8.4, respectively. The corresponding solutions

for the dimensionless temperature gradient (— %) 0 are described in Table 8.1 and
]’]:

plotted in Fig. 8.5. The velocity and temperature profiles show clearly the effects of
the variable physical properties on velocity and temperature distributions as well as
heat transfer of the water free convection. The related influences are presented as
follows:

Effects of bulk temperature tx:

The bulk temperature 7+, causes a great effect on the velocity and temperature pro-
files. With increase of bulk temperature 7., the velocity W, and the temperature 6
obviously increase, meanwhile, the maximum of w, shifts further from the plate.

While, with increase of bulk temperature 7, the temperature gradient (—g—f}) 0
n:

decreases obviously.

Fig. 8.1 The velocity profiles 0.25
at ty, = 40 °C (corresponding
to Pr, = 4.42) with dif-

ferent 1o, (1—5 cited from 0.15—
Shang et al. [10]) Note to, =

1

Wy

20, 39.99, 60, 80, and 100 °C, 010 ¥
(corresponding to Pro, = 0.05
7.164,4.42,3.019, 2.232 and | |1 7 |
. 0 |
1.758, respectively) 0 1.0 20 30 4.0 50 6.0
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Fig. 8.2 The velocity pro- 0.25
files at too = 40°C and F
different surface tempera- 0.20 —
tures ty, (I — 5: ty =20,
39.99, 60, 80, and 100 °C), MLSEN o 1
cited from Shang et al. [10] 2 0.10
5
0.05
0 ! | | 4 J
0 1.0 2.0 3.0 4.0 5.0

Fig. 8.3 The temperature

profiles at #,, = 40 °C and dif-

ferent to0, (I — 5: too =

20, 39.99, 60, 80, and

100 °C), cited from Shang e)
etal. [10]

Fig. 8.4 The temperature
profiles at tooc = 40°C and
different surface tempera-
tures ty, (1 — 5: ty =
20, 39.99, 60, 80, and
100°C), cited from Shang
etal. [10]

Effects of wall temperature ty:

The effects of wall temperature #,, on the velocity W, and temperature € are much
less than those of wall temperature 7,. With the increase of wall temperature t,,
the maximum velocity of W, increases and shifts slightly close to the plate. Gener-
ally, the effects of wall temperature f, on the temperature € and temperature gradient

(— %) o are slightly. With increasing bulk temperature ¢, the effects of wall tem-
n:

perature #,, on the temperature 6 and temperature gradient (— f‘l—z) 0 will decrease.
n:
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Table 8.1 The typical numerical solutions of dimensionless temperature gradient ( gz) 0 for
=
water laminar free convection along a vertical plate, cited from Shang et al. [10]
to(°C)  Preo tw(°C)
5 10 20 30 40 60 80 100

Pr,,
11.207 9.565 7.164 5.547 4420 3.019 2232 1.758

(-5)
dn =0

5 11.207 121 1.169  1.156 1.164 1179 1212 1245 1.275
10 9.565 1.153 1137 1.13 1.131 1.139  1.162 1.187 1.211
20 7.164 1.076 1.063  1.05 1.0s1  1.054 1.068 1.083 1.1
30 5.547  0.989 0983  0.977 0971 0977 0988 0.999 1.012
40 4420 0917 0913 0091 0.91 0914 092 0929  0.938
60 3.019  0.809 0.808  0.807 0.809  0.81 0.814 0.821  0.827
80 2232 0.733 0.732  0.733 0.734  0.735 0.739  0.74 0.746

100 1.758  0.679 0.679  0.6790  0.68 0.681 0.683 0.685 0.686

Note The number with mark corresponding to Boussinesq approximation solutions

1.4

de
(_%)nz

1.2

0.8 /4_4[/: '. | | B .

0.6 T T T T T

0 2 4 6 8 Pr, 10 12

Fig. 8.5 Numerical solutions of dimensionless temperature gradient ( 32) for water laminar
=0

free convection along vertical plate. Note Lines 1 — 8 forto, = 5, 10, 20, 30, 40, 60, 80 and 100 °C
(corresponding to Pro = 11.207,9.565, 7.164, 5.547, 4.42,3.019, 2.232 and 1.758, respectively).
Line 9 for Pr,, — Pry (identical to Boussinesq approximation solution)

Furthermore, compared with wall temperature t,, temperature o, dominates the
velocity and temperature fields, as well as the wall temperature gradient ( — 3¢
Tdn = -0

Due to the reason that only the wall dimensionless temperature gradient (— E) o
=

is no-given variable from Egs. (8.29)—(8.35), the temperature dominates heat transfer
prediction of the laminar liquid free convection.
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The velocity and temperature profiles show the large differences between the
momentum and temperature boundary layer thicknesses for laminar free convection
of liquid due to Pr > 1. Therefore, it is very difficult to make a solution of the gov-
erning equations for liquid free convection, especially for consideration of variable
thermophysical properties.

8.8 Approximation Equation on Wall Dimensionless
Temperature Gradient

Boussinesq approximation could be obtained from Table 8.1 in which the plate tem-
perature ty, is very close to the bulk temperature 7.

Then, a curve-fit formula (8.36) is obtained for prediction of the solutions of liquid
laminar free convection under the Boussinesq approximation.

do\*
(_—) =0.5812Pr%3% (1.7 < Pr < 11.3) (8.36)
n=0

It can be seen from the predicted values in Table 8.1 that Eq. (8.36) can very accurately
simulate the related Boussinesq solutions.

From the typical solutions for temperature gradient (—g—i) 0 in Table 8.1 it is
r]:

found that the effect of t,, on temperature gradient (— %) o is not obvious generally,
)7:

but the temperature 7o, dominates the effect on the temperature gradient (—g—f’) o

n=
On this basis, if the Prandtl number Pr in Eq. (8.36) for Boussinesq approximation
solutions is replaced by a reference Prandtl number Pry, as Eq.(8.37), the maximal

deviation for prediction of the temperature gradient (— g—g) 0 of water laminar free

convection is less than 6 % for 7o, range from 5 to 100 °C with consideration of
variable physical properties. However, the maximal deviation will be less than 2 %
for ¢+, from 50 to 100 °C, as shown in Fig. 8.6.

do
(_—) = 0.5812Pro, "3 (1.7 < Proy < 11.3) (8.37)
n=0

where Pr is Prandtl number at bulk temperature 7.
Then, Eq. (8.37) is suggested as an approximation equation on wall dimensionless
temperature gradient on an isothermal vertical flat plate.
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Fig. 8.6 Maximum calcu- 10 —
lated deviation of (—%)nzo g B
by Eq.(6.52), cited from S T+
Shang et al. [10] = g —
24
g5
2 -
1 —

0 | | | | | | | | | |

8.9 Approximation Equations on Heat Transfer

Therefore, combining Eq.(8.37) with Egs. (8.29)—(8.35), we have the following
approximation equations on heat transfer of laminar free convection of water on
an isothermal vertical flat plate:

1 1/4
gx = 0.58124,, (ty — fo0) (ZG”"”) x " Prg 030! (8.29%)
1 1/4
ay = 0.58124,, (Zer""’) x " 1Pry 030 (8.30%)
1 1/4
Nuy,, = 0.5812 (ZG“"“’) Prog 230! (8.31%)
4 1 4
0, = 0.5812 x gbxw(zw — fso) (ZGrX,oo) Pro 030! (8.32%)
— 4 1 74
0, = 0.5812 x §x—lxw(Tw — Tso) (ZGr"“’O) Proo 030! (8.33%)
4. (1 4
@, = 0.5812 x hw (ZG”*"") x 7 Pry 0301 (8.34%)
— 4 (1 4
Nu, = 05812 x 3 (ZGr"""’) Pry, 030! (8.35%)

Equations (8.29%)—(8.35*) are used for prediction of laminar free convection of
water on an isothermal vertical flat plate with the prediction deviations between 6
and 2% from 1o = 5 to 50 °C, and lower than 2 % between 7, = 50 and 100 °C.
Anyway, the prediction deviation decreases with increasing the bulk temperature 7
increases.
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Table 8.2 Summary of the governing equations of liquid laminar free convection and the equations
related to heat transfer

Term Expression
Governing partial deferential equations
0 a
Mass ti — — =0
ass equation Py (pwy) + By (pwy)
. oWy Iwy 0 owy
Momentum equation piwy—F+wy— )= —|n + g poo — Pl
dx Sy dy dy
E i oT n aT a N aT
nergy equation cp(Wwe—+wy— )= —|r—
gy eq PCp | Wx o >3y 3y 3y

y=0: wy=0, wy=0, T=Ty

Boundary conditions V00t wy— 0, T=Ts

Similarity variables

1/4
y (1
n x (Zer’oo>
v = 11x°
G glpes/py 110
(o]
T —Tw
0 —_
Ty — T
19—l
2
Wy |:2./gx /;ﬁ—l :| Wy
w
-1 /1 -7
Wy |:24/gx /;—TO -1 (ZGrX’OO) i| wy
W

Governing ordinary differential equations
dw, 4 dw, 1dp

M ti 2Wy — ——— (W, —4W,) =0
ass equations =1 n a  pdy (nWy y)
dw. dw.
Momentum Equation Yoo (WX (ZWX - X) +4Ww, X)
v dn dn
W, LdpdWe v B
Todn? wdn dn v % —1
, Voo do  1drdo  d%
Energy equation Pr T(—nWX + 4Wy)a = Xa@ + dinz

n=0: Wy=0, W,=0, 6=1

Boundary condition N o00: Wy=0, 0=0

(continued)

8.10 Summary

So far, the governing equations of liquid laminar free convection and the equations
related to heat transfer can be summarized in Table 8.2.
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Table 8.2 (continued)

Term Expression

Treatment of variable physical properties

Temperature-dependent properties Take water as example for polynomial expressions
o = —4.48 x 107312 4 999.9
A =—8.01 x 10752 +1.94 x 107% +0.563

1150 (690>
= —1.6 — —— R —— 1 -3
n exp|: 6 T +( T ) :| x 10

Physical property factors Take water as example for polynomial expressions
Ldp =2 x 448 x 10731 (ty — 1) 6
pdnp —448 x1073124999.9 dy
1d 1150 690° do
(ko )t — 1)
w dn T2 T3 dn
1dn  (=2x8.01x 107 4+ 1.94 x 1073)(z,, — tw)gg
adn  —8.01 x 10752 + 1.94 x 1031 + 0.563
Wall dimensionless temperature gradient (— %)nzo (for water free convection)
: : LAY 0.301
For Boussinesq solution 3 = 0.5812Pr"" (1.7 < Pr < 11.3)
N7/ n=0
I . do 0.301
Approximation equation for - = 0.5812Pr " (1.7 < Pr < 11.3)
consideration of variable physical dn /=0
properties

Approximation equations on heat transfer for water free convection with consideration of variable
physical properties (for water free convection)

aT 1 14
qx (deﬁned as — Ay (T)y) ) gx = 0.5812Pr o0 %301, (1 — £o0) (ZGTX,OO) x 1 Pra, 0301
y=0

1 1/4
oy (defined as ﬁ) @y = 0.5812Pro 03010, (ZGr)""") x ™ 1Pry 0301
w — 1oo
x 4 1 v 0.301
O (defined as [y q.bdx) 0, =0.5812 x gbk,v(tw — 1) ZGFX’OO Prog ¥~
) -5 4 1 v 0.301
Q,, defined as Q, /(b x x) 0, =0.5812 x gx (T — To) Zer’oo Proo™

_ Ox _ 4 1 E ~1p,. 0301
o, | defined as m o, = 0.5812 x g)\w ZGrX’Do X 'Prog

1 1/4
Nuy (deﬁned asor—x) Nu,,, = 0.5812 x (Zer’oo) Proo0-301

w

— oy X — 4 (1 /4
Nuy (deﬁned as T) Nu, = 0.5812 x 3 (ZGrX’OO) Proo 030!

W
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8.11 Remarks

In this chapter, laminar free convection of liquids is extensively investigated. The
new similarity analysis method is used conveniently to transform the governing par-
tial differential equations of laminar free convection of liquid into the corresponding
dimensionless system. Taking water as an example, the polynomial is used for expres-
sions of temperature-dependent density, thermal conductivity, and viscous, while the
specific heat at constant pressure is taken as constant with maximum possible devi-
ation of 0.45 % only. These expressions are reliable because they are based on the
typical experimental data of the physical properties.

By means of the provided equations on the physical property factors coupled with
the governing ordinary differential equations, the non-linear governing equations
with corresponding boundary conditions can be simultaneously solved numerically
for velocity and temperature fields. Taking water laminar free convection along an
isothermal vertical plate as an example, the coupled effect of variable physical prop-
erties was investigated. It is found that compared with the wall temperature, the effect
of bulk temperature dominates heat transfer of laminar free convection. By means of
heat transfer analysis based on the new similarity analysis model, it is found that the
wall temperature gradient (—g—i) 0 is the only one no-given condition for predic-
tion of heat transfer. The approxirrilation equation for prediction of the temperature
gradient (— %) - of laminar water free convection is presented for consideration

of coupled effect of variable physical properties. Then, the equations for practical
prediction of heat transfer of laminar water free convection are provided.

8.12 Calculation Examples

Example 1:

A flat plate with » = 1 min width and x = 0.25 m in length is suspended vertically in
the space of water. The ambient temperature is 7o, = 5 °C, and the plate temperature
is ty, = 60 °C. The water properties are as follows:

Voo = 1.5475 x 1079m?/s,Proo = 11.16 and pse = 999.8kg/m? at 1o, =
5°C; A,y = 0.659 W/(m °C) and p,, = 983.3kg/m? at t,, = 60°C.

Suppose the free convection is laminar, please calculate the free convection heat
transfer on the plate.

Solution:

With the definition of local Grashof number shown in Eq. (8.10), we have
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Gro o = 8 |poo/,0;/ —1]x3
I)OO
9.8 x 1999.8/983.8 — 1| x 0.253
- (1.5475 x 10-6)2
=1.04 x 10°

The flow of free convection can be regarded as laminar flow.
With Eq. (8.37), the dimensionless temperature gradient (— %) for water lam-

n=0
inar free convection can be calculated by the following equation:

de
(——) = 0.5812Prs, 3!
n=0

=0.5812 x 11.207%301
= 1.202879

On this basis, the following average Nusselt number mx,w can be obtained as

— 4 (1 4 de
Nux,w = —5 ZGrX'Oo E
n=0

= (4/3) x (0.25 x 1.04 x 10”)/* x 1.202879
=203.6

With the definition of average Nusselt number, mx,w = E{—WX, the following average
heat transfer coefficient can be calculated as

Y 0.659
¥, = Nux,W?W =203.6 x = =536.7 W/(m?°C)

With the definition of the average heat transfer coefficient, O, = o, (tyw —ty) X x X b,
we obtain the following total free convection heat transfer on the plate

Oy =y (tyw —ty) X x X b
=536.7 x (60 —5) x 0.25 x 1
= 7379.6 W
= 7.3796 kW

Example 2:

For the flat plate of question 1, if the plate height is changed into 0.11 m, and tempera-
tures are changed into 7o, = 60 °C and t,, = 5 °C, please calculate the corresponding
heat transfer.

The water physical properties are as follows:
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kinematic viscosity vs, = 0.478 x 10~°m? /s, Prandtl number Pro, = 3, and the
density at poo = 983.1kg/m? at 5, = 60 °C thermal conductivity A,, = 0.5625 and
density py, = 999.8kg/m? at £, = 5°C.

Solution:

With the definition of local Grashof number shown in Eq. (8.10), we get

Gryo0 = S1000/ P = UES
UOO
9.8 x [983.1/999.8 — 1| x 0.113
- (0.478 x 10-6)2
=0.95357 x 10°

The free convection can be regarded as laminar flow.

With Eq. (8.37), the dimensionless temperature gradient (—%) 0 will be
=

do
(——) = 0.5812Prq 030!
n=0

—0.5812 x 3.0190-301
= 0.810521

On this basis, with Eq. (8.49) the following average Nusselt number, mx,w, can be

obtained as
Nu 4 1G (e
u = —— —Qr R—
X, W 3\2 X,00 dn 10

(4/3) x (0.25 x 0.95357 x 107)'/* x 0.810521
= 133.5482

With the definition of average Nusselt number, N_ux,w = EA)‘—WX, the following mean
heat transfer coefficient can be calculated as

0.5625

—
@ = Nuy, " = 133.5482 = 682.9169 W/m?°C

With the definition of the average heat transfer coefficient oy, Oy = @y (tw — fo0) X
x x b, we have the following free convection heat transfer on the plate
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Oy =0y(ty —1o0) XX X b
=682.9169 x (5 —60) x 0.11 x 1
= —4131.65W
= —4.131615kW

The negative sign denotes the heat flux is to the plate from the liquid.

8.13 Exercises

1. Please give a detailed derivation for obtaining the governing ordinary differential
Egs. (8.23)—(8.25) for liquid laminar free convection.

2. Please analyze the identity of the similarity mathematical models of laminar free
convection of liquid and gas.

3. Please explain the reason to, respectively, investigate laminar free convection of
liquid and gas with consideration of variable physical properties.

4. Please give out the related derivations for obtaining the heat transfer analysis
Egs. (8.29)—(8.35) for liquid laminar free convection.

5. Please point out the effect of wall temperature on velocity and temperature fields
of laminar liquid free convections.

6. Please point out the effect of bulk temperature on velocity and temperature fields
of laminar liquid free convection.

7. How do you know the bulk temperature dominates heat transfer of laminar liquid
free convection?

8. Follow example 1. Only the ambient temperature is /o, = 60 °C, and the plate
temperature is t, = 5 °C. Suppose the free convection is laminar.

(1) Please calculate the free convection heat transfer on the plate.
(ii) Please calculate the free convection heat transfer on the plate under Boussi-
nesq approximation.

9. Please calculate the questions (i) and (ii) of exercise 9 by using the related

empirical equation.
10. Do you think the treatment of variable physical properties in this chapter is
reliable?
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Chapter 9
Experimental Measurements of Free Convection
with Large Temperature Difference

Abstract Experimental investigations were carried out to verify the results of the
previous chapters for effects of variable physical properties on laminar free con-
vection of air and water. By increasing the wall temperature for the liquid laminar
free convection or increasing the boundary temperature ratio for gas laminar free
convection of gas, the velocity component of the free convection increases, and the
velocity profile moves to the direction of the flat plate. Consequently, the thickness
of the velocity boundary layer decreases. With an increase of the plate height x, the
velocity component of water or air free convection increases, and the velocity pro-
file moves toward to the fluid bulk. As a result, the thickness of velocity boundary
layer increases. It is found that the agreement between the measured and calculated
velocity fields is good, thus it is confirmed that the results in Chaps. 6-8 are reliable.

9.1 Introduction

The classical measurement of the velocity field for free convection of air along an
isothermal vertical plate was originally made by Schmidt and Beckman [1]. Their
results showed excellent agreement with the corresponding numerical results for
the Boussinesq approximation calculated by Pohlhausen [2] shown in Fig.9.1. It is
further seen that the velocity and thermal boundary-layer thicknesses are proportional
to x!/4.

However, in their experimental measurements only small differences between
the surface and the ambient temperatures were considered, since there has been a
shortage of accurate measuremental results for consideration of the larger temper-
ature differences. The reasons of this shortage are twofold: (i) the lower velocity
of free convection and (ii) the restriction of the measuring devices. First of all, the
fluid velocity in free convection is typically much slower. In consequence of this,
the experimental measurements become more difficult and less reliable due to the
increasing influence of various interferences. In addition, due to the weak flow of
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Fig. 9.1 Velocity distribution in the laminar boundary layer on a hot vertical flat plate in natural
convection of air, as measured by Schmidt and Beckmann [1] (From Schlichting [3])

free convection, the pressure gradients are also quite small and the measuremental
techniques based on pressure differences, such as the Pitot tube, cannot be used very
accurately. The hot-wire anemometer has been used in velocity measurements, but
its basic principle is heat transfer from a heated wire. The heat transfer from the
wire is dependent on the flow velocity. However, the major problem that easily pro-
duces deviation for the measurement in free convection is the small magnitude of
the velocity. Additionally, since the velocity boundary layer for the free convection
is very thin, with the above instrument, the interference, which cannot be negligible,
will be manifest in the measurement.

Fortunately, the laser doppler velocimeter (LDV) has been developed in recent
years. The LDV demonstrates higher accuracy for the measurement of fluid velocity.
An instrument, which does not contact the flow field, will not produce any interfer-
ence in the velocity field. It can measure very low velocity flow. All these features
give LDV great advantage over hot-wire anemometers. With consideration of vari-
able thermophysical properties, two experimental results of the laminar free convec-
tion for air and water for larger temperature differences, which were provided by
Shang and Wang [4-6], are introduced in this chapter. The experimental results were
verified by the calculation methods with consideration of variable thermophysical
properties introduced in Chaps. 6 and 8 respectively. In this chapter we discuss the
measurements of the velocity fields in the laminar boundary layer for free convection
of air and water studied with the LDV. Large temperature differences were consid-
ered in the experimental measurements for the free convection. The experimental
results were verified by the corresponding numerical solutions, and it is shown that
the experimental results agreed well with the corresponding numerical solutions for
variable thermophysical properties.
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Fig. 9.2 Schematic diagram
of experimental device, cited
from Shang and Wang [4]: /
particulate generator, 2 cham-
ber of mosquito-repellent
incense, 3 spacer, 4 storage
smoke chamber, 5 wire net of
copper, 6 isothermal flat plate,
7. thermocouples, 8 focus of
lasers

9.2 Experimental Measurements of Velocity Field for Air
Laminar Free Convection

9.2.1 Experimental Devices and Instruments

The experimental device established is shown schematically in Fig.9.2. It consists
essentially of three parts: an isothermal vertical testing plate, LDV, and a particulate
generator.

Isothermal testing plate. This is a flat copper plate with a polished surface, 300 mm
in height, 195 mm in width, and 7 mm in thickness. A sharp angle is made at the
bottom of the plate to minimize the possible distortion of the measured velocity
field for air free convection. A thin film heater is embedded in the testing plate,
the electric power supplied to the heater being adjusted by a current transformer.
¢ 0.1 mm Cu—Constantan thermocouples are installed in the plate to monitor and
measure the temperature.

LDV. The short wavelength LDV at Northeastern University was used to measure
the velocity field of air free convection. The velocity measured with this LDV is so
small that it is suitable for detecting the air velocity field being studied.

Particulate generator. The experimental measurement of the velocity field by
the LDV requires a particulate generator with an ability to track the air convection.
The particulate generator, as shown in Fig.9.2, consists of a chamber for burning
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Table 9.1 The measurement conditions with the related thermophysical properties for air free
convection

Heights (m) Temperature conditions (K) Voo X 100 (m?2 /s)
x = 0.025 Tw/Tso = 1.1 and T, =291 14.88
Tw/Ts = 1.5 and T =293 15.06
Tw/Ts = 1.8 and T = 287 14.52
x = 0.05 Tw/Tso = 1.1 and T, =291 14.88
Tw/Ts = 1.5 and T =293 15.06
Tw/Ts = 1.8 and T, = 287 14.52
x=0.1 Tw/Tso = 1.1 and T, =291 14.88
Tw/Ts = 1.5 and T =293 15.06
Tw/Ts = 1.8 and To, = 287 14.52
x =0.15 Tw/Tso = 1.1 and T, =291 14.88
Tw/Ts = 1.5 and T, =293 15.06
Tw/Ts = 1.8 and Too, = 287 14.52

mosquito-repellent incense, a storage chamber of smoke, and a net made of copper
wire. The mosquito-repellent incense is burnt in the burning chamber and the smoke
produced enters into the storage chamber through the upper gap of the spacer. The
smoke cools down in a storage chamber, and then, diffuses through a copper-wire
net into the air stream. The velocity of the smoke through the net is very small, and
consequently it will disturb the velocity field only to a very small extent.

9.2.2 Measurement Results

Experiments were conducted at three temperature conditions: Ty /T = 1.1 and
Too =291K; T/ Too = 1.5and T, = 293K; and T/ Too = 1.8 and T, = 287 K.
For each case, the measurements were made at four heights counted from the bottom
edge of the testing plate, i.e. x = 25mm, x = 50mm, x = 100mm and x = 150 mm.
The measurement conditions with the related thermophysical properties for air are
listed in Table9.1. Measured velocities w, are plotted in Figs.9.3, 9.4 and 9.5. It is
clear from each of the figures that, w, would increase along x, and simultaneously, the
position for maximum w, shifts far away from the surface. Comparing the results
shown in Figs.9.3-9.5, it is also seen that, for the same height, x, the larger the
boundary temperature ratio Ty, / T the thinner the thickness of boundary layer would
be, and so, the position of maximum w, will be closer to the plate surface with an
increased value of maximum w, . Additionally, the dimensionless velocity component
wy transformed by using Egs. (9.1) and (9.2) are plotted in Figs.9.6, 9.7, and 9.8,
respectively.
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Fig. 9.3 Measured and calculated values for the dimensional velocity of air free convection for
conditions Ty /Tx = 1.1 and T, = 291K, cited from Shang and Wang [4]: +, x = 0.025m; W,
x =0.050m; O, x = 0.100m; x, x = 0.150 m;— numerical prediction

Fig. 9.4 Measured and calcu-
lated values for dimensional
velocity of air free convection
for conditions Ty /T = 1.5
and T, = 293K, cited
from Shang and Wang

[4]: +, x = 0.025m; A,

x =0.050m; 0, x = 0.100m;
X, x = 0.150 m; —numerical
prediction

Fig. 9.5 Measured and calcu-
lated values for dimensional
velocity of air free convection
for condition Ty /Too = 1.8
and T, = 287K, cited
from Shang and Wang

[4]: +, x = 0.025m; A,

x =0.050m; 0, x = 0.100m;
X, x = 0.150 m;—numerical
prediction

9.2.3 Governing Equations

The governing partial differential equations of gas laminar free convection and their
boundary conditions are shown as Egs. (6.1)—(6.5) in Chapter 6. According to Chap. 6,
the related defined similarity variables are shown as
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Fig. 9.6 Measured and calculated values for dimensionless velocity of air free convection for
condition Ty, /Ts = 1.1 and T, = 291K, cited from Shang and Wang [4]: +, x = 0.025m; W,
x =0.050m; O, x = 0.100m; x, x = 0.150 m;— numerical prediction

Fig. 9.7 Measured and calculated values for dimensionless velocity of air free convection for
condition Ty, /Ts = 1.5 and Tse = 293K, cited from Shang and Wang [4]: +, x = 0.025m; W,
x =0.050m; O, x = 0.100m; x, x = 0.150 m;—numerical prediction

1 174 Tw/ T — x°
n:X(-er,oo) Gty oo = S0 e = DX 0-1)
x \4 Vi
-1
Wy = 28X (T/Too = D], 9.2)
-1
1 —1/4
Wy = | 2/8x [T/ Too — 1]'/? (Zer""’) Wy 9.3)

and the transformed dimensionless governing equations and boundary conditions are

dw,  dwy\  1d
(2Wx—n x+4—y) P

——— W, —4W,) =0 9.4
dy dy pdn(n x y) 9.4
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Fig. 9.8 Measured and calculated values for dimensionless velocity of air free convection for
condition Ty, /Ts = 1.8 and T, = 287K, cited from Shang and Wang [4]: +, x = 0.025m; W,
x =0.050m; O, x = 0.100m; x, x = 0.150 m;—numerical prediction

dw. dw. W,  1dudw
L’"[Wx(zwx—ndnx)+4w xi|: SR ot x+‘%’°9 9.5)

v Y dp dn?  wdn dn
Voo do d?0  1drdo
Pr—>=(—-nW, +4W,)— ) = — + —— — 9.6
rv(nx+ y)dn) danrmnd77 9.6)
n=0, W,=0 W,=0, 6=1 9.7)
n—o00, Wy—0, 60 9.8)

for the gas laminar free convection.

9.2.4 The Numerical Solutions

By using the shooting method, the governing dimensionless differential equations
(9.4)—(9.6) with their boundary conditions are solved for 7y, /Too = 1.1 and T, =
291K Tw/Too = 1.5 and Ts = 293K; and Ty /Too = 1.8 and T, = 287K,
respectively, for the air free convection (1, = 0.68, n, = 0.81). The numerical
solutions for dimensionless velocity components W, are plotted also in Figs. 9.3,
9.4, and 9.5. The dimensionless numerical solutions transformed by using Eq. (9.1)
and (9.2) are plotted in Figs.9.6-9.8, respectively. It can be seen that the measured
results agree very well with the predicted results.
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Fig. 9.9 Schematic diagram of the device used in the experiment of water free convection, cited
from Shang et al. [6]: / water tank, 2 isothermal vertical flat plate, 3 thermocouples, 4 metal plate,
5 focus of laser, 6 laser paths, 7 drilled hole for laser path

9.3 Experimental Measurements of Velocity Field for Water
Laminar Free Convection

9.3.1 Main Experimental Apparatus

An isothermal vertical flat plate, a LDV, and a water tank (see Fig.9.9) constitute the
main experimental apparatus.

Isothermal vertical flat plate. The isothermal vertical flat plate (called here the
plate) made of copper, is 250 mm in length, 140 mm in width and 7 mm in thickness.
The surface of the plate is well polished. In the Plate, a Nickel-Chromium wire of
0.5 mm in diameter and 389 min length is uniformly inserted. The Nickel-Chromium
wire serves as an electrical heat source, and it is insulated. A sharp angle is made in
the bottom of the plate so that the velocity field would not be influenced by the free
convection near to the bottom surface. Thermocouples are installed in the Plate and
are very close to the surface. By controlling the electric current passing through the
Nickel-Chromium wire, the temperature at the surface of the Plate will be maintained
at a certain level. On the top of the plate, two metal plates with 150 mm in length
and 3 mm in thickness are welded. The upper part of both metal plates is drilled so
that the Plate can be suspended on the frame.

LDV. The equipment used to measure the velocity field of the water free convection
on the plate is the LDV of the 606 Institute in Shenyang. In order to measure very
small velocities such as that of water free convection, the technique of frequency-
deviation-shift is applied to the LDV.

Water tank. The water tank is rectangular in shape. It is made of organic glass
plate with 8 mm thickness. The top of the water tank is open. The tank is 1.1 m
in length, 0.7 m in width and 0.35 m in height. With such a large space the water
tank can efficiently keep away the free convection near to the surface of the plate
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Table 9.2 The measurement conditions

Heights (m) Temperature (°C)

x =0.05 tw = 40 and to = 20
tw = 50and too = 20
tw = 60 and 1o = 20
x =0.10 tw = 40 and to = 20
tw = 50and too = 20
tw = 60 and 1o = 20
x =0.15 tw = 40 and to = 20
tw = 50and too = 20
tw = 60 and 1o = 20
x =0.20 tw = 40 and toc = 20
tw = 50and too = 20
tw = 60 and 1o = 20

face from any disturbing influences. In the side of the tank are drilled four drill ways
of 20 mm diameter each. The drilled ways serve as paths of laser light. Through the
drill ways the laser will reach the surface of the plate to measure the velocity field of
the water free convection. The distance between each two centers of the drilled ways
is 50 mm, which just matches the measured heights. The locations of the drilled
ways are covered with the thin organic glass, 1 mm in thickness, so that the laser
power wasted though the organic glass can be minimized.

9.3.2 The Results of Experiment

At the start of this experiment the surface of the plate should be heated slowly so that
the temperature of the plate rises slowly. For this purpose the voltage and electricity
current through the Nickel-Chromium wire is increased slowly by means of a voltage
regulator. After the temperature of the measured surface is raised to given level, the
temperature is stabilized for three minutes, and then the measurements commenced.

In this experiment, the measurements are carried out under three temperature con-
ditions: ty, = 40°C and 1, = 20°C, t,, = 50°C and t5, = 20°C, t, = 60°C and
to = 20°C, respectively. For each condition the measurements are made at four
heights from the bottom of the Plate, i.e., x = 0.05m, x = 0.10m, x = 0.15m
and x = 0.20m. The measurement conditions are listed in Table 9.2 in detail. The
measured values of the velocity components w, are described in Tables 9.4-9.6 and
plotted in Figs. 9.10-9.12, respectively. The measured values w, and the correspond-
ing co-ordinate variable x are further transformed to the dimensionless values by
using the expressions (9.9)—(9.11), described in Tables 9.4-9.6 and Figs.9.13-9.15,
respectively.
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Table 9.3 Water property values

1 (°C) 20 40 50 60
o(kg/m3) 998.3 992.3 988.1 983.2
A[W/(mK)] 0.5996 - - -

v x 10~%[kg/(ms)] 1.004 - - -

Pr 6.99 - - -

9.3.3 Governing Equations

The governing partial differential equations of liquid laminar free convection and
their boundary conditions are shown as Egs. (8.1)—(8.5) in Chapter 8. According to
Chapter 8, the related defined similarity variables for liquid laminar free convection
are shown as

1 14 —1|x3
n= (_er’oo) X Gry 00 = w (9.9)
4 x Vi
1/2 -1
We = (2V8% Iose/pw = 112) w,y (9.10)
-3 /1 -1
Wy = [2 Jox |22 1 (ZGr""”) } wy (9.11)
P

The transformed dimensionless governing equations and boundary conditions for
liquid laminar free convection are

dw, dw, 1dp

2W, — 4 ——— MW, —4W,) =0 9.12
x—nN dn + dn pdn(n X )) ( )
Poo
Voo dw, dW, AW, LdudW,  ve 5~
— | W, | 2W, — aW,—= | = —= + — = )
V(x(x ndn)+ ydn) dn2+udndn+V%"—1
(9.13)
pr U (g, 4wy 9 14140 &6 9.14)
r—(— — =4 — .
y Ydn T adndn  dp?
with boundary conditions
n=0, W,=0 W,=0, 6=1 (9.15)

n—>oo, Wy—0, 6—>0 (9.16)
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Table 9.4 The measurement results for velocities w, and the transformed values of W, for water
laminar free convection at t,, = 40 °C and #», = 20 °C, cited from Shang et al. [6]

x =0.05m x =0.10m

y (mm) n wy (m/s) Wi y (mm) n wy (m/s) Wy
0.2 0.147 0.007 0.0707 0.2 0.124 0.007 0.0500
0.3 0.221 0.0093 0.0854 0.3 0.186 0.0119 0.0773
04 0.294 0.0115 0.1056 0.4 0.248 0.0135 0.0877
0.5 0.368 0.0129 0.1185 0.5 0.309 0.0156 0.1013
0.6 0.441 0.0136 0.1249 0.6 0.371 0.0182 0.1182
0.7 0.515 0.0143 0.1313 0.7 0.433 0.0190 0.1234
0.8 0.589 0.0150 0.1377 0.8 0.495 0.0193 0.1253
0.9 0.662 0.0142 0.1304 0.9 0.557 0.0195 0.1266
1.0 0.736 0.0139 0.1276 1.0 0.619 0.0209 0.1357
1.2 0.883 0.0129 0.1185 1.3 0.804 0.0185 0.1201
1.4 1.030 0.0126 0.1157 1.5 0.928 0.0182 0.1182
1.5 1.104 0.0118 0.1084 1.7 1.052 0.0161 0.1104
1.7 1.251 0.0111 0.1019 1.9 1.176 0.0160 0.1039
1.9 1.398 0.0096 0.0882 2.1 1.299 0.0141 0.0916
2.1 1.545 0.0089 0.0817 2.4 1.485 0.0142 0.0922
2.4 1.766 0.0078 0.0716 2.7 1.671 0.0107 0.0695
2.6 1.913 0.0061 0.0560 3.0 1.856 0.0105 0.0682
2.8 2.060 0.0056 0.0514 33 2.042 0.0085 0.0552
x=0.15m x =0.20m

y (mm) n wy (m/s) Wi y (mm) n wy (m/s) Wiy

0.2 0.112 0.0109 0.0578 0.2 0.104 0.0120 0.0551
0.3 0.168 0.0136 0.0721 0.3 0.156 0.0168 0.0771
0.4 0.224 0.0168 0.0890 0.4 0.208 0.0190 0.0872
0.5 0.280 0.0201 0.1065 0.5 0.260 0.0206 0.0946
0.7 0.391 0.0226 0.1198 0.7 0.364 0.0247 0.1134
0.9 0.503 0.0239 0.1267 0.9 0.468 0.0270 0.1240
1.1 0.615 0.0249 0.1320 1.1 0.572 0.0278 0.1276
1.3 0.727 0.0252 0.1335 1.2 0.624 0.0294 0.1350
1.4 0.783 0.0237 0.1229 1.3 0.676 0.0297 0.1364
1.6 0.894 0.0229 0.1214 1.4 0.728 0.0278 0.1276
1.8 1.056 0.0217 0.1130 1.6 0.832 0.0270 0.1240
2.0 1.118 0.0216 0.1145 1.8 0.937 0.0260 0.1194
2.2 1.230 0.0197 0.1044 2.0 1.041 0.0250 0.1148
2.4 1.342 0.0185 0.0980 2.3 1.197 0.0229 0.1051
2.6 1.453 0.0182 0.0964 2.6 1.353 0.0206 0.0946
2.8 1.565 0.0163 0.0864 2.9 1.509 0.0180 0.0826
3.1 1.733 0.0123 0.0650 3.1 1.613 0.0167 0.0767

3.4 1.901 0.0116 0.0615 3.4 1.719 0.0146 0.0670
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Table 9.5 The measurement results for velocities w, and the transformed value W, for water
laminar free Convection at t,, = 50 °C and 7o, = 20 °C, cited from Shang et al. [6]

x =0.05m x = 0.10m

y (mm) n wy (m/s) Wiy y (mm) U wy (m/s) Wy
0.2 0.168 0.0116 0.0819 0.2 0.141 0.0146 0.0729
0.3 0.252 0.0148 0.1045 0.3 0.212 0.0184 0.0919
04 0.336 0.0162 0.1144 0.4 0.282 0.0221 0.1103
0.5 0.419 0.0174 0.1229 0.5 0.353 0.0249 0.1243
0.6 0.503 0.0184 0.1299 0.6 0.423 0.0259 0.1293
0.7 0.587 0.0188 0.1328 0.8 0.565 0.0266 0.1328
0.8 0.671 0.0187 0.1321 1.0 0.706 0.0263 0.1313
1.0 0.839 0.0172 0.1215 1.1 0.776 0.0256 0.1278
1.1 0.923 0.0168 0.1186 1.4 0.988 0.0234 0.1168
1.3 1.091 0.0155 0.1095 1.6 1.129 0.0206 0.1028
1.4 1.174 0.0148 0.1045 1.7 1.200 0.0209 0.1043
1.5 1.258 0.0141 0.0996 1.8 1.270 0.0196 0.0979
1.7 1.426 0.0122 0.0862 2.0 1.411 0.0180 0.0899
1.8 1.510 0.0118 0.0833 2.1 1.482 0.0167 0.0834
2.0 1.678 0.0107 0.0756 2.3 1.623 0.0151 0.0754
2.2 1.846 0.0086 0.0607 2.5 1.764 0.0133 0.0664
2.4 2.013 0.0081 0.0572 2.6 1.835 0.0126 0.0629
2.6 2.181 0.0064 0.0452 2.9 2.047 0.0102 0.0509
x = 0.15m x = 0.20m

y (mm) n wy (m/s) Wy y (mm) n wy (m/s) Wy

0.2 0.127 0.0167 0.0681 0.2 0.119 0.0194 0.0685
0.3 0.191 0.0219 0.0893 0.3 0.178 0.0264 0.0932
0.4 0.255 0.0242 0.0987 0.4 0.237 0.0294 0.1028
0.5 0.319 0.0277 0.1129 0.5 0.297 0.0321 0.1133
0.6 0.382 0.0309 0.1260 0.6 0.356 0.0340 0.1201
0.7 0.446 0.0310 0.1264 0.7 0.415 0.0360 0.1271
0.9 0.574 0.0334 0.1362 0.9 0.534 0.0384 0.1356
1.0 0.637 0.0332 0.1353 1.0 0.593 0.0389 0.1374
1.2 0.765 0.0315 0.1284 1.1 0.652 0.0372 0.1314
1.3 0.828 0.0312 0.1272 1.3 0.771 0.0365 0.1289
1.4 0.892 0.0301 0.1227 1.5 0.890 0.0342 0.1208
1.5 0.956 0.0293 0.1194 1.7 1.008 0.0317 0.1119
1.6 1.020 0.0281 0.1151 2.9 1.127 0.0304 0.1073
1.8 1.147 0.0255 0.1040 2.2 1.305 0.0272 0.0960
2.0 1.275 0.0233 0.0950 2.5 1.483 0.0239 0.0844
2.3 1.466 0.0208 0.0848 2.9 1.720 0.0193 0.0682
2.8 1.784 0.0168 0.0685 3.2 1.898 0.0174 0.0614

33 2.103 0.0125 0.0510 3.4 2.017 0.0161 0.0569
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Table 9.6 The measurement results for velocities w, and the transformed values W, for water
laminar free convection at t,, = 60 °C and #r, = 20 °C cited from Shang et al. [6]

x = 0.05m x = 0.10m

y (mm) n wy (m/s) Wy y (mm) n wy (m/s) Wy
0.2 0.186 0.0149 0.0858 0.2 0.156 0.0208 0.0847
0.3 0279  0.0200 0.1152 03 0234 0.0258 0.1051
04 0.371 0.0220 0.1267 04 0.313 0.0299 0.1218
0.5 0.464 0.0234 0.1348 0.5 0.391 0.0315 0.1283
0.6 0.557  0.0236 0.1359 0.6 0469  0.0321 0.1308
0.7 0.650  0.0235 0.1354 0.7 0.547  0.0340 0.1385
0.9 0.836 0.0206 0.1187 0.8 0.625 0.0328 0.1336
1.0 0.929 0.0200 0.1152 0.9 0.703 0.0317 0.1291
1.1 1.021 0.0197 0.1135 1.1 0.859 0.0298 0.1214
1.2 1.114 0.0196 0.1129 1.2 0.938 0.0289 0.1177
1.3 1.207 0.0178 0.1025 1.3 1.016 0.0279 0.1136
1.4 1.300 0.0161 0.0927 14 1.094 0.0267 0.1088
1.5 1.393 0.0151 0.0870 1.5 1.172 0.0254 0.1035
1.6 1.486 0.0145 0.0835 1.7 1.328 0.0230 0.0937
1.8 1.671 0.0121 0.0697 1.8 1.406 0.0213 0.0868
2.0 1.857 0.0104 0.0599 2.0 1.563 0.0183 0.0745
2.1 1.950 0.0105 0.0605 2.4 1.875 0.0145 0.0591
23 2.136 0.0095 0.0547 2.9 2.266 0.0112 0.0456
x = 0.15m x = 020m

y (mm) n wy (m/s) Wy y (mm) n wy (m/s) Wy
0.2 0.141 0.0230 0.0765 0.2 0.131 0.0243 0.0700
0.3 0.212 0.0299 0.0994 0.3 0.197 0.0336 0.0968
04 0.282 0.0353 0.1174 04 0.263 0.0379 0.1092
0.5 0.353 0.0384 0.1277 0.5 0.329 0.0420 0.1210
0.7 0.494 0.0408 0.1357 0.7 0.460 0.0460 0.1325
0.9 0.635 0.0405 0.1347 0.9 0.591 0.0470 0.1354
1.1 0.776 0.0393 0.1307 1.1 0.723 0.0455 0.1310
1.3 0.917 0.0355 0.1181 1.2 0.788 0.0449 0.1293
1.4 0.988 0.0342 0.1137 1.3 0.854 0.0425 0.1224
1.6 1.129 0.0314 0.1044 1.7 1.117 0.0364 0.1048
1.8 1.270 0.0290 0.0964 2.0 1.314 0.0319 0.0919
2.0 1411 0.0264 0.0878 2.2 1.445 0.0294 0.0847
2.1 1.482 0.0249 0.0828 2.4 1.577 0.0258 0.0743
23 1.623 0.0220 0.0732 2.6 1.708 0.0243 0.0700
2.5 1.764 0.0196 0.0652 2.8 1.840 0.0219 0.0631
2.7 1.905 0.0175 0.0582 2.9 1.905 0.0201 0.0579
3.0 2.117 0.0152 0.0505 3.1 2.037 0.0188 0.0541

33 2.329 0.0126 0.0419 3.4 2234 0.0157 0.0452




178 9 Experimental Measurements of Free Convection with Large Temperature Difference

Wy, m/s

0,06

0.05

0.04

bl

\
bl - T~ a .
0.01—=] NE::E$Q>\
- 4

ﬁ\,?

0.02

0.03 - 4
//‘;::%\
/HO"U'“

0,00
0,00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
y mm

Fig. 9.10 Measured and numerical values of velocity w, of water laminar free convection for
tw = 40°C and 1, = 20°C, cited from Shang et al. [6]: Full line numerical solution, symbol
corresponding measured value: 1. x, x = 0.05m; 2. [0, x = 0.10m; 3. A, x = 0.15m; and 4. O,
x =0.20m
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Fig. 9.11 Measured and numerical values of velocity w, of water laminar free convection for
tw = 50°C and 7o, = 20°C, cited from Shang et al. [6]: full line numerical solution, symbol
corresponding measured value: 1. x, x = 0.05m; 2. [0, x = 0.10m; 3. A, x = 0.15m; and 4. O,
x=0.20m

9.3.4 Numerical Solutions

As the analysis in Chap. 8, if the specific heat ¢, of water is substituted by ¢,
i.e., at the temperature at infinity, the maximum predicted deviation will be less than


http://dx.doi.org/10.1007/978-3-642-28983-5_8
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Fig. 9.12 Measured and numerical values for velocity w, of water laminar free convection for
tw = 60°C and 7o, = 20°C, cited from Shang et al. [6]: full line numerical solution, symbol
corresponding measured value: 1. x, x = 0.05m; 2. [0, x = 0.10m; 3. A, x = 0.15m; and 4. O,
x =0.20m

Fig. 9.13 Measured and calculated values of the dimensionless velocity W, of water laminar free
Convection, for t, = 40°C and 7o, = 20 °C cited from Shang et al. [6]: full line numerical solution,
symbol corresponding measured value: 1. X, x = 0.05m; 2. [, x =0.10m; 3. A, x = 0.15m; and
4.0, x =0.20m

0.455 % for the temperature range from 0 to 100 °C according to typical experiment
values [8]. Such small deviation is allowed for the treatment of variable physical

properties. Consequently, property factor Pr Yoo of Eq.9.14 can be changed to the
%

following form for water laminar free convection:
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Fig. 9.14 Measured and calculated values for dimensionless velocity W, of water laminar free
convection, for t, = 50 °C and t, = 20 °C, cited from Shang et al. [6]: full line numerical solution,
symbol corresponding measured value: 1. x, x = 0.05m; 2.0, x =0.10m; 3. A, x = 0.15m; and
4.0, x =0.20m
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Fig. 9.15 Measured and calculated values for dimensionless velocity W, of water laminar free
convection, for condition #, = 60°C and to, = 20°C, cited from Shang et al. [6]: full line
numerical solution, symbol corresponding measured value: 1. x, x = 0.05m; 2. [J, x = 0.10m; 3.
A, x =0.15m;and 4. O, x = 0.20m

Aoo

Pr 2 — pr (9.17)
) A

T
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The physical property values of p, u, v, A, and Pr are taken from those listed in
Chapter 8. For convenience some specimen values of the physical properties for the
experiment are listed in Table9.3.

According to the approach of the numerical calculation of Chapter 8, the solutions
for water laminar free convection are obtained from the governing ordinary differen-
tial equations (9.12)—(9.14) with Eq.(9.17) and the boundary conditions (9.15) and
(9.16) by shooting method, respectively, for t, = 40°Candt,, = 20°C, t, = 50°C
and 7o, = 20°C, 1, = 60°C and ¢, = 20 °C. While, the water physical properties
such as p, A and v are described, respectively, by Eqgs. (5.16)—(5.18). Meanwhile
Eqgs. (5.24)—(5.26) are applied for describing the related water physical property fac-
tors of the governing equations. The numerical solutions for velocity component w,
obtained for the water laminar free convection are listed in Tables 9.4, 9.5 and 9.6
and plotted in Figs.9.10, 9.11, and 9.12, respectively. In addition, these numerical
solutions w, are transformed into the corresponding dimensional ones W, by means
of Egs.(9.9) and (9.10). The transformed dimensionless solutions are described in
Tables 9.4-9.6 and plotted in Figs.9.13-9.15, respectively. It can be seen that the
measured results agree very well with the predicted results.

o0 =448 x 107312 +999.9 (5.16)
A= —8.01 x 107%% +1.94 x 1073 + 0.563 (5.17)
e 1.6 “50+ 690)* x 1073 (5.18)
=exp|—1.6 — —— — ; .
w p T T

9.4 Remarks

Experimental investigations were carried out to study effects of variable physical
properties on laminar free convection of air and water and to further verify the
results of the previous chapters, Chaps. 6 and 8. The following points are made.

By increasing the temperature #,, for the liquid laminar free convection or with
increasing the boundary temperature ratio Ty, /T for gas laminar free convection
of gas, the velocity component wx of the free convection increases, and the velocity
profile moves to the direction of the flat plate. Consequently, the thickness of the
velocity boundary layer decreases.

With an increase of the height x, the velocity component w, of water or air free
convection increases, and the velocity profile moves toward the fluid bulk. As a result
the thickness of velocity boundary layer increases.

It is found that the agreement between the measured and calculated velocity fields
is good, thus confirming that the results in Chaps. 6, 7 and 8 are reliable.
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Table 9.7 The numerical solutions of velocity components w, and W, at t,, = 40°C and 7, =
20 °C, cited from Shang et al. [6]

x = 0.05m x = 0.10m

n y (mm) Wi wy (m/s) Ui y (mm) Wi wy (m/s)
0 0 0 0 0 0 0 0
0.075 0.102 0.0378 0.0041 0.075 0.121 0.0378 0.0058
0.150 0.204 0.0674 0.0073 0.150 0.242 0.0674 0.0104
0.225 0.306 0.0898 0.0098 0.225 0.364 0.0898 0.0138
0.300 0.408 0.1063 0.0116 0.300 0.485 0.1063 0.0164
0.375 0.510 0.1178 0.0128 0.375 0.606 0.1178 0.0181
0.450 0.612 0.1253 0.0136 0.450 0.727 0.1253 0.0193
0.525 0.713 0.1297 0.0141 0.525 0.848 0.1297 0.0200
0.600 0.815 0.1314 0.0143 0.600 0.970 0.1314 0.0202
0.700 0.951 0.1308 0.0142 0.700 1.131 0.1308 0.0201
0.800 1.087 0.1277 0.0139 0.800 1.293 0.1277 0.0197
0.900 1.223 0.1231 0.0134 0.900 1.454 0.1231 0.0190
1.050 1.427 0.1143 0.0124 1.050 1.700 0.1143 0.0176
1.200 1.631 0.1046 0.0114 1.200 1.939 0.1046 0.0161
1.350 1.835 0.0948 0.0103 1.350 2.182 0.0948 0.0146
1.500 2.039 0.0853 0.0093 1.500 2.424 0.0853 0.0131
1.800 2.446 0.0681 0.0074 1.800 2.909 0.0681 0.0105
2.100 2.854 0.0536 0.0058 2.100 3.394 0.0536 0.0083
x = 0.15m x = 0.20m

n y (mm) Wy wy (m/s) n y (mm) Wy wy (m/s)
0 0 0 0 0 0 0 0
0.075 0.134 0.0378 0.0071 0.075 0.144 0.0378 0.0082
0.150 0.268 0.0674 0.0127 0.150 0.288 0.0674 0.0147
0.225 0.403 0.0898 0.0169 0.225 0.432 0.0898 0.0196
0.300 0.537 0.1063 0.0201 0.300 0.577 0.1063 0.0232
0.375 0.671 0.1178 0.0222 0.375 0.721 0.1178 0.0257
0.450 0.805 0.1253 0.0236 0.450 0.865 0.1253 0.0273
0.525 0.939 0.1297 0.0245 0.525 1.009 0.1297 0.0282
0.600 1.073 0.1314 0.0248 0.600 1.153 0.1314 0.0286
0.700 1.252 0.1308 0.0247 0.700 1.345 0.1308 0.0285
0.800 1.431 0.1277 0.0241 0.800 1.538 0.1277 0.0278
0.900 1.610 0.1231 0.0232 0.900 1.730 0.1231 0.0268
1.050 1.878 0.1143 0.0216 1.050 2.018 0.1143 0.0249
1.200 2.147 0.1046 0.0197 1.200 2.306 0.1046 0.0228
1.350 2.415 0.0948 0.0179 1.350 2.595 0.0948 0.0206
1.500 2.684 0.0853 0.0161 1.500 2.883 0.0853 0.0186
1.800 3.220 0.0681 0.0129 1.800 2.460 0.0681 0.0148

2.100 3.757 0.0536 0.0101 2.100 4.036 0.0536 0.0117
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Table 9.8 The numerical solutions of velocity components w, and W, at t,, = 50°C and 7o, =
20 °C, cited from Shang et al. [6]

x = 0.05m x = 0.10m

n y (mm) Wi wy (m/s) Ui y (mm) Wi wy (m/s)
0 0 0 0 0 0 0 0
0.075 0.089 0.0416 0.0059 0.075 0.106 0.0416 0.0083
0.150 0.179 0.0732 0.0104 0.150 0.213 0.0732 0.0147
0.225 0.268 0.0964 0.0137 0.225 0.319 0.0964 0.0193
0.300 0.358 0.1127 0.0160 0.300 0.425 0.1127 0.0226
0.375 0.447 0.1235 0.0175 0.375 0.531 0.1235 0.0247
0.450 0.536 0.1300 0.0184 0.450 0.638 0.1300 0.0260
0.525 0.626 0.1331 0.0188 0.525 0.744 0.1331 0.0267
0.600 0.715 0.1337 0.0189 0.600 0.850 0.1337 0.0268
0.700 0.834 0.1317 0.0186 0.700 0.992 0.1317 0.0264
0.800 0.954 0.1274 0.0180 0.800 1.134 0.1274 0.0255
0.900 1.073 0.1219 0.0173 0.900 1.275 0.1219 0.0244
1.050 1.252 0.1123 0.0159 1.050 1.488 0.1123 0.0225
1.200 1.430 0.1022 0.0145 1.200 1.700 0.1022 0.0205
1.350 1.609 0.0922 0.0131 1.350 1.913 0.0922 0.0185
1.650 1.967 0.0740 0.0105 1.650 2.338 0.0740 0.0148
1.950 2.324 0.0586 0.0083 1.950 2.763 0.0586 0.0117
2.250 2.682 0.0459 0.0065 2.250 3.188 0.0459 0.0092
x = 0.15m x = 0.20m

n y (mm) Wy wy (m/s) n y (mm) Wy wy (m/s)
0 0 0 0 0 0 0 0
0.075 0.118 0.0416 0.0102 0.075 0.126 0.0416 0.0118
0.150 0.235 0.0732 0.0180 0.150 0.253 0.0732 0.0207
0.225 0.353 0.0964 0.0236 0.225 0.379 0.0964 0.0273
0.300 0.471 0.1127 0.0276 0.300 0.506 0.1127 0.0319
0.375 0.588 0.1235 0.0303 0.375 0.632 0.1235 0.0350
0.450 0.706 0.1300 0.0319 0.450 0.759 0.1300 0.0368
0.525 0.824 0.1331 0.0326 0.525 0.885 0.1331 0.0377
0.600 0.941 0.1337 0.0328 0.600 1.012 0.1337 0.0379
0.700 1.098 0.1317 0.0323 0.700 1.180 0.1317 0.0373
0.800 1.255 0.1274 0.0313 0.800 1.349 0.1274 0.0361
0.900 1.412 0.1219 0.0299 0.900 1.517 0.1219 0.0345
1.050 1.647 0.1123 0.0275 1.050 1.770 0.1123 0.0318
1.200 1.883 0.1022 0.0251 1.200 2.023 0.1022 0.0289
1.350 2.118 0.0922 0.0226 1.350 2.276 0.0922 0.0261
1.650 2.589 0.0740 0.0182 1.650 2.782 0.0740 0.0210
1.950 3.064 0.0586 0.0144 1.950 3.288 0.0586 0.0166

2.250 3.530 0.0459 0.0113 2.250 3.794 0.0459 0.0130
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Table 9.9 The numerical solutions of velocities components w, and W, at t,, = 60 °C and 7o, =
20 °C, cited from Shang et al. [6]

x = 0.05m x = 0.10m

n y (mm) Wi wy (m/s) Ui y (mm) Wi wy (m/s)
0 0 0 0 0 0 0 0
0.075 0.081 0.0454 0.0079 0.075 0.096 0.0454 0.0111
0.150 0.162 0.0789 0.0137 0.150 0.192 0.0789 0.0194
0.225 0.242 0.1028 0.0178 0.225 0.288 0.1028 0.0252
0.300 0.323 0.1189 0.0206 0.300 0.384 0.1189 0.0292
0.375 0.404 0.1290 0.0224 0.375 0.480 0.1290 0.0317
0.450 0.485 0.1345 0.0233 0.450 0.576 0.1345 0.0330
0.525 0.565 0.1365 0.0237 0.525 0.672 0.1365 0.0335
0.600 0.646 0.1360 0.0236 0.600 0.768 0.1360 0.0334
0.700 0.754 0.1326 0.0230 0.700 0.896 0.1326 0.0326
0.800 0.862 0.1273 0.0221 0.800 1.024 0.1273 0.0313
0.900 0.969 0.1209 0.0210 0.900 1.152 0.1209 0.0297
1.050 1.131 0.1106 0.0192 1.050 1.344 0.1106 0.0272
1.200 1.292 0.1001 0.0174 1.200 1.536 0.1001 0.0246
1.350 1.454 0.0901 0.0156 1.350 1.728 0.0901 0.0221
1.650 1.777 0.0721 0.0125 1.650 2.112 0.0721 0.0177
1.950 2.100 0.0570 0.0099 1.950 2.496 0.0570 0.0140
2.250 2.423 0.0446 0.0077 2.250 2.880 0.0446 0.0109
x = 0.15m x = 0.20m

n y (mm) Wy wy (m/s) n y (mm) Wy wy (m/s)
0 0 0 0 0 0 0 0
0.075 0.106 0.0454 0.0137 0.075 0.114 0.0454 0.0158
0.150 0.213 0.0789 0.0237 0.150 0.228 0.0789 0.0274
0.225 0.319 0.1028 0.0309 0.225 0.342 0.1028 0.0357
0.300 0.425 0.1189 0.0358 0.300 0.457 0.1189 0.0413
0.375 0.531 0.1290 0.0388 0.375 0.571 0.1290 0.0448
0.450 0.638 0.1345 0.0404 0.450 0.685 0.1345 0.0467
0.525 0.744 0.1365 0.0410 0.525 0.799 0.1365 0.0474
0.600 0.850 0.1360 0.0409 0.600 0.913 0.1360 0.0472
0.700 0.992 0.1326 0.0399 0.700 1.065 0.1326 0.0464
0.800 1.134 0.1273 0.0383 0.800 1.218 0.1273 0.0442
0.900 1.275 0.1209 0.0364 0.900 1.370 0.1209 0.0420
1.050 1.488 0.1106 0.0333 1.050 1.598 0.1106 0.0384
1.200 1.700 0.1001 0.0301 1.200 1.827 0.1001 0.0348
1.350 1.913 0.0901 0.0271 1.350 2.055 0.0901 0.0313
1.650 2.338 0.0721 0.0217 1.650 2.511 0.0721 0.0250
1.950 2.763 0.0570 0.0171 1.950 2.968 0.0570 0.0198

2.250 3.188 0.0446 0.0134 2.250 3.425 0.0446 0.0155
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9.5 Questions

1.

What is proved through the experimental measurement results in this chapter?

2. Do you think the measurement by using LDV is the best way to obtain the

velocity field of fluid flow? Why?
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Chapter 10
Identical Laminar Free Convection for Inclined
and Vertical Cases

Abstract The new similarity analysis method is applied to the similarity transfor-
mation of the governing partial differential equations of laminar free convection on
inclined plate. It is seen that the transformed governing ordinary differential equa-
tions on the inclined plate are same as those on the vertical plate. Then, it follows
that there are identical governing ordinary differential equations and dimensionless
prediction equations on heat transfer both for inclined and vertical cases of laminar
convection. In this case, the vertical case can only be regarded as a special example
of the inclined case. Therefore, the numerical solutions and prediction equations
on heat transfer for vertical case can be directly used for the inclined case. Finally,
the simple and direct correlations for describing the transformation of the velocity
components and heat transfer from the vertical case to the inclined case for the free
convection are derived.

10.1 Introduction

It was Rich [1] who first suggested theoretically the procedure for obtaining the
heat transfer rate from an inclined surface. According to his procedure, the problem
of free convection on an inclined surface is identical to that of flow over a vertical
surface except that g is replaced by g cos y, and therefore, a replacement of g by g
cos y in all the relationships derived earlier. This implies using Gry cos y for Gry. As
a result, his experimental data are in general agreement with the anticipated values.
The data obtained by Vliet [2] for a uniform-flux, heated surface in air and in water
indicate the validity of the procedure mentioned above up to inclination angles as
large as 60°. Detailed experimental results on this were obtained by Fujii and Imura
[3]. They also discuss the separation of the boundary layer for the inclined surface
facing upward.

However, so far, there has been a shortage of theoretically rigorous derivations
to support the above conclusions by means of a replacement of g with g cos y

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 187
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_10,
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for all the relationships, and there is a shortage of clear correlations in describing
the transformations of heat transfer, momentum transfer, and mass flow rate drawn
from the vertical case to the inclined case for the free convection. As we know, the
traditional method for the treatment of similarity transformation of the governing
equations for laminar free convection is the Falkner—Skan transformation [4-6]. It is
difficult with the traditional Falkner—Skan transformation to realize such a derivation.

Fortunately, the new similarity analysis method presented in Chap. 4 [7-9] for sim-
ilarity transformation of the governing partial differential equations of fluid laminar
boundary layer has provided the possibility to realize such derivation. It is shown
that in these studies the velocity component method has its advantages over the
Falkner—Skan transformation for the treatment of variable thermophysical proper-
ties and other various physical factors. On this basis, Shang and Takhar [10] clarified
the relationships of heat, momentum, and mass transfer of laminar fluid free convec-
tion between inclined and vertical cases for consideration of variable thermophysical
properties.

In this chapter, I will introduce the exact relationships of heat, momentum, and
mass transfer between inclined and vertical cases with consideration of variable ther-
mophysical properties in order to satisfy the requirement in industrial applications.
To this end, the governing equations of laminar free convection of fluid in the inclined
case are transformed by means of a developed similarity transformation approach,
viz, the velocity component method, instead of traditional Falkner—Skan type of
transformation. Meanwhile, the suitable forms of some dimensionless variables such
as an appropriate suitable local Grashof number Gry o, and suitable dimensionless
velocity components for the free convection are proposed. It will be found that the
formation of the transformed dimensionless governing equations for the inclined case
is fully same as those for the corresponding vertical cases. Then, it is obvious that,
except the different assumption of local Grashof number and dimensionless velocity
components, the prediction correlations of heat transfer, momentum transfer, and
mass flow rate for fluid laminar free convection for the vertical case presented in the
previous chapters can be completely taken as those for the related inclined case.

10.2 Fluid Laminar Free Convection on Inclined Plate

10.2.1 Physical Model and Basic Equations

The physical model and co-ordinate system are shown schematically in Fig. 10.1.
An isothermal inclined flat plate is suspended in a quiescent liquid. The surface
temperature is f,, and the fluid bulk temperature is 7. It is assumed that t,, is not
equal to 7, so that laminar free convection can be produced easily on the inclined
surface in both the cases as shown in Fig. 10.1a, b, respectively. The governing
partial differential equations for mass, momentum, and energy for consideration of
variable thermophysical properties applied to the liquid laminar free convection on
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Fig. 10.1 Physical model and coordinate system. a Ascending flow on the inclined surface (ty >
to). b Falling flow on the inclined surface (ty < too)

the inclined surface are

9 9
o [Pwoil + % [p(w,))i] =0 (10.1)

[( ).3(wx)i+( ).8(wx)ii|_i|: 8(wx)ii|+ | — ol (10.2)
P | (Wx)i ax Wy )i dy = 9y 128 dy 8 1Poo — pCOSY .

ot ot 0 ot
pPCp [(wx)ia + (wy)i5:| = 5 (15) (10.3)

where y expresses the inclined angle of the plate. Here, the buoyancy fact |poo — oI
is taken as the absolute value because its direction is same as that of the velocity
component (wy);.

The boundary conditions are

y=0: (W) =0, (wy);=0, 1=t, (10.4)

y—=>00: (wy); =0, t=ts (10.5)

10.2.2 Similarity Transformation of the Basic Equations

For similarity transformation of the basic equations, we use the velocity component
method which was developed in Refs. [7-9] and presented in Chaps. 5-7. If subscripts
iand v are taken to express the case on the isothermal inclined and vertical surfaces,
respectively, for laminar free convection, we assume the following dimensionless
co-ordinate variables for similarity transformation of the above governing partial
differential equations of liquid laminar free convection on inclined plate:


http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_7
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1 1/4
0 = f [Z(er,oo)i} (10.6)

where 7; is the dimensionless co-ordinate variable for boundary layer. The local
Grashof number (Gry »); can be assumed to be

gCos Yy |poo/pw — 1|23

(Gry,00)i = 3 (10.7)
l)OO
The dimensionless temperature is given by
r— 1o
0 = 10.8
PR (10.8)
The dimensionless velocity components are assumed to be
—1
Wi = (208005 7% po/pw = 11'2)  (wa); (10.9)

1 —1/4) !
(Wy)i=[2~/7gcosyx oo/ pw — 1112 [Zmrx,oo),} } (wy); (10.10)

With the above similarity variables defined in Eqgs. (10.6)—(10.10), Egs. (10.1)-(10.3)
with the boundary conditions (10.4) and (10.5) can be transformed into the following
governing ordinary differential equations:

d(Wy); +4d(Wy)i _1dp

20W); — —— | (Wy); —4(W,);| =0 10.11
Wy)i—n dn; dni o dn; [771( )i ( y)l] ( )

v d(W,); d(Wy);

= [(Wx)i (2(Wx>i —ni— ) + 4(Wy); —— ]

v dn; i

Wy 1 du d(Wy); oo —
_ ( 2x)1 1 au (Wy); V;oo pp (10.12)
dn; wdn; dn; v 21

Voo do d?60 1dr do
P i (W) +4(W,);] — = — + - —— 10.13
T N [ ni (Wy)i +4( ))l] dni dn,~2 + A dn; di; ( )

ni=0: (Wy); =0, (Wy); =0, 6=1 (10.14)
ni—>0: (Wy);=0, 6=0 (10.15)

The derivation processes for Eqs. (10.11)—(10.13) are described in Appendix A
in detail.
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10.2.3 Relationships of Momentum, Heat, and Mass Transfer
Between Inclined and Vertical Cases

For heat transfer

Equations (10.11)—(10.13) and their boundary conditions Egs. (10.14)—(10.15) are
dimensionless forms of the equations of liquid laminar free convection in the inclined
case. They are completely identical to Eqs.(8.23)—(8.27) for the vertical case in
Chap. 8. Therefore, for same fluid laminar free convection with same boundary tem-
perature conditions #,, and 7, we have

g (0 R (O R

With the same derivation as that in Chap. 6, the correlation for [(%) 0} in the
n=y;

following form for water laminar free convection can be taken for consideration of
variable thermophysical properties:

—{= =—|{—= = 0.5812Pr%%1 (1.7 < Proo < 11.3)
dn/,—o|. dn/,—o
n i n

(10.17)
where the liquid bulk temperature #, is defined as that of reference Prandtl number
Proo.

In addition, the heat transfer equations for laminar free convection on vertical flat
plate can be followed as those on inclined plate, i.e.,

The local heat transfer rate g, at position x per unit area from the surface of the
plate to the gas will be

1 Ve (de
(@x); = —Aw(tw — t0) | =Grx 00 x{— (8.291)
4 dn/,—o

1
The local heat transfer coefficient o, defined as g, = oy (Ty — Teo), Will be

given by
1 1/4 do
(ax); = —huw (—er,oo) ¥t (—) (8.30i)
4 : dr] n=0

1

The local Nusselt number defined by Nuy ,, = Off will be

1 V4 ae
(Nux,w)i = (_er,oo) (__) (8.311)
4 ; dn/,—o

1



http://dx.doi.org/10.1007/978-3-642-28983-5_8
http://dx.doi.org/10.1007/978-3-642-28983-5_8
http://dx.doi.org/10.1007/978-3-642-28983-5_8
http://dx.doi.org/10.1007/978-3-642-28983-5_6

192 10 Identical Laminar Free Convection for Inclined and Vertical Cases

Total heat transfer rate for position x = 0 to x with width of b on the plate is an
integration Oy = [[, gxdA = [; gxbdx, and hence

Qi = bt t>(1G )1/4( %) 8.32i)
Qxl—3 wllw — loo 4rx,oo. _dn 10 (8.321

1

The average heat transfer rate, defined as Q, = Q, /(b x x) is given by

o=3 (i) (-5) |
(0)i = 5bAw(Ty — Too) | ~Grr,0 - (6.331)
3 4 o

dn
The average heat transfer coefficient oy defined as Q, = oy (Ty — Two) is
expressed as
4. (1 74 do
@x)i = = A (—er,oo) x! (——) (8.34i)
3 4 ; dn/,—o
The average Nusselt number is defined as Nuy ,, = ”/‘?—wx, and hence
_ 4 (1 V4 de ,
(Nux,w)i = - -Gry, - (8.351)
3\4 i dn/,—o
Obviously, for practical calculation of heat transfer, only the wall dimensionless

temperature gradient (—g—z) 0 dependent on the solution of governing equations
7]:

is no-given variable.
While, the corresponding practical prediction equations on heat transfer of water
laminar free convection on an inclined flat plate will be, respectively,

1 1/4
(qi = 0.581224, (fyy — 00) (ZG“"‘”)‘ x~ 1 pr230 (8.29iw)
1
1 1/4
- —1 0.301 .
(ax)i = 0.58121,, (Zer’oo) x Prg (8.30iw)
i
1 1/4
- - 0.301 .
(Nity )i = 0.5812 (4er,oo) Pro: (8.31iw)
i

4 1 74
Qi = 0.5812 x §b,\w(tw — 1) (ZGV"*"") pr2:301 (8.32iw)

1

%) 4 -1 1 Ve 0.301 :
()i = 05812 x 2x ™" Au(Ty = Too) 7 Grro0 ) PrS™ (833iw)

1
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4 (1 174
(@y)i = 0.5812 x Fhw (ZG”'“’) x 1 pr230 (8.34iw)
i
L 4 /1 1/4
(Nuy)i = 0.5812 x 3 (ZG”*"") pr2:301 (8.35iw)

1

From definitions of local Grashof number for the inclined and vertical cases
defined in Eqgs. (10.7) and (8.10), respectively, we obtain the following equation:

(Gry,00)i

———— = oS8 (10.18)
(Greooy Y

From the definition of local Nusselt number of laminar free convection, we have

_(1 /41 (a0
(Nux,w),' _ (4er’00)i [(dﬂ)n_o]i 1/4

(N ) = = COS
Uxw)y 1 1/4 (dﬂ)
—(lg do
(4 VX,OO)U |: dn 77:0 ;

For momentum transfer

Since the dimensionless governing Egs. (10.11)—(10.13) are completely identical
to Egs. (8.23)—(8.25), the solutions for dimensionless velocity components both for
the inclined and vertical cases for liquid laminar free convection are identical, i.e.,

y (10.19)

(Wx)i = (Wy)y (10.20)
(Wy)i = (Wy)v (10.21)

Combining Eq. (10.20) with Eqgs. (10.9) and (8.8), we have

17—1
-1 2
(2v/Ees 7% oo/ P — 117 (wx>i=[2~/—gx %”—1” (w)y

v

ie.
(wy)i _ COSl/z
(Wy)y

14 (10.22)

Combining Eq. (10.21) with Eqgs. (10.10) and (8.9), we have
1 174771
izx/ig C0S VX | oo/ — 111/ [Z (er,oo)i] ] (wy);

1 191
0 ~2 /] -1
= |:2~/gx o 1‘ (—er,oo) :| (wy)y
Pw 4
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(wy);
(wy)v

! —1/4
= [2vgcos VX |poo/Pw — 1|1/2 |:Z (er,oo)ii| ]

1 ) B
2 1 1
x |28 |22 — 1‘ (—er,oo)
Pw 4

—1/4
()i 2JTCSTF |poo/puw — 2 [} (Greo) ]

Wy ! N

y 2./gx ‘% - 1‘ (Ll—‘er’oo) 4

()i _ V57 [(Gren) ]

(wy)y (er,oo);Z
wy)i _ eo57[(Greeo), ]
(wy)y (er)oo)i—l
i.e
% = cos'/* y (10.23)
ylv

The governing basic equations and relationships of momentum and heat transfer
between the inclined and vertical cases for liquid laminar free convection are sum-
marized in Table 10.1.

10.3 Gas Laminar Free Convection on Inclined Plate

In principle, the governing equations of laminar free convection of liquid are com-
pletely suitable to those of gas. Then, the relationship equations between the inclined
and vertical for liquid laminar free convection derived in Sect. 10.2 are completely
suitable to those of gas laminar free convection.

However, for convenience, it is necessary to use the temperature parameter method
for the expression of gas density variation with absolute temperature, i.e.,

T
pi =2 (10.24)
o0

to rewrite the equations for buoyancy factor, local Grashof number, and velocity
components as follows for gas laminar free convection.

For inclined case:
The buoyancy force is expressed as

T — Two
glpoc — plcosy = pg T

o0

cos y (10.25)
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The local Grashof number is expressed as

gcosy |Ty/Too — 1] x3
(Gry,c0)i = S

2
Voo

The dimensionless velocity components are
—1
(Wi = (2vEEOS VX [T/ Tow = 11'7) (w0
| —1/4) 7!
(Wy)i = [2\/757 c08 Y | Tw/ Too — 1117 [z (er,oo),} ] (wy)i

For vertical case:
The buoyancy force is expressed as

T —-Ty
Teo

g(poo — p) = pg

The local Grashof number is expressed as

_ 3
(Grom), = &I/ T = I

2
Voo

The dimensionless velocity components are
-1
W) = (285 1T/ T = 11'2) (),

—1/4) !
(Wy)v = [2«/g_x|Tw/Too - 1|1/2 [% (er,oo)v:| ] (wy)v

P

Furthermore, with the simple power law of gas, the buoyancy factor z&—

Pw
transformed into

P T
T_I_E_l I'—Tw

= — -0
b1 o1 Ty - T
Then, Eq. (10.12) is transformed into equation
v d(Wy); d(W,);
— [(Wx)i (2(Wx)l~ — i ) A=
4 i

W) LdpdWy)i v
—_ 3 — +
dn; wdn; dm; v

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)

can be

(10.33)
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The dimensionless governing Eqgs. (10.11), (10.13), and (10.33) for fluid laminar free
convection for inclined case are completely identical to those for vertical case for gas
laminar free convection. Then, the following curve-fitting formulae of dimensionless
temperature gradient are suitable both to inclined and vertical cases for laminar free
convection of diatomic gases, air, and water vapor:

[(dﬁ) }z[(%) ]zw(pr)(&)_m (10.34)
dn/,—o ; dn/,—o ) Too

where
Y (Pr) = (0.567 + 0.186 - Ln(Pr)) (6.48)
m = 0.35n; +0.291,, 4+ 0.36 for Ty/Tx > 1 (6.49)
m = 0.42n; + 0.34n, +0.24 for Ty/T > 1 (6.50)

Obviously, the heat transfer Egs. (8.291)—(8.351) for laminar free convection on ver-
tical flat plate will also be followed, respectively, as those for gas laminar free con-
vection on inclined plate, i.e.,

1/4
(Gx)i = Aw(fw — o) (ler,oo) x! (_d_g) (8.291)
4 i dn /o ;
1/4
(@x)i = dy (ler,oo) x! [(—d—e) } (8.30i)
4 i dn n=0 i
1/4
(Nuyw)i = (ler,oo) (_%) (8.311)
4 i dn n=0 i
i = ib)u (t t )(lG )1/4 ( % 8.32i
Qyi = _3 wllw — loo 4 I'x,00 i _dn)nzo i (8.321)
1/4
‘-Lx—lxw(rw — Two) (ler,oo) [(—%) } (8.33i)
3 4 ; dn =0,
4 1 14 do
(@x)i = 5Aw (_er,oo) x_l (__) (8.341)
3 4 i d?] n=0 i

(Nutx.w) 4 1G v do (8.351)
xwwlhi = 5 | 707 - .01
"z, 3\g 7). )0l

(ax)i
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While, the corresponding practical prediction Egs. (6.36*)—(6.42%*) on heat trans-
fer of gas laminar free convection on an vertical flat plate will be, respectively,
followed as those on inclined flat plate, i.e.,

1 1/4 T —m
Q)i = *w(Ty — Teo) (‘—‘Grm)i x "1y (Pr) (ﬁ) (6.36%)
@) = —uy (1er oo)l/4x—11/f<Pr> (&) 6.37%)
40%), Too
1 1/4 7,0\ "
(Nux w)i = (Zer,oo)i ¥ (Pr) (a) (6.38%)
4 1 1/4 Tw —m
(Ox)i = gb)\w(Tw —T) (Zer,oo) ¥ (Pr) (K) (6.39%)
__ 4 1 1/4 T,\ "
Or = 3 bhu(Ty = Too) (ZGV’"“’) ¥ (Pr) (K) (6.40%)
- 4 1 1/4 . T,\ "
(@x)i = 5)”" (ZG"x,oo)l~ X~y (Pr) (E) (6.41%)
- 4 /1 1/4 T,\ ™"
Wira)i = 5 (Zer,oo)i ¥ (Pr) (K) . (6.42%)
where
¥ (Pr) = 0.567 4+ 0.186 x In(Pr) (0.6 < Pr < 1) (6.48)

m = 0.64n,; + 0.36 = 0.35n, +0.29n, +0.36 (Ty/Too > 1) (6.49)

m = 0.76n,; + 0.24 = 0.42n; + 0.34n, +0.24 (T,/Tx < 1) (6.50)

10.4 Summary

So far, the governing equations of fluid laminar free convection both with the vertical
and inclined cases, and the relationships for heat, momentum, and mass transfer
between the vertical and inclined cases are summarized in Table 10.1.


http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6

10.5 Remarks 201

10.5 Remarks

In this chapter, the new similarity analysis method is applied to the similarity trans-
formation of the governing partial differential equations of laminar free convection
on inclined plate. Such transformed governing ordinary differential equations are
same as those of the corresponding equations on the vertical plate; then, they have
the same numerical solutions and prediction equations on heat transfer. Finally, the
following simple and direct correlations for describing the transformations of the
velocity components, heat transfer, and mass flow rate from the vertical case into the
inclined case for the free convection are derived:

(wy); cos]/z (wy)i _ 051/4 (Nux,w)i — oocl/ (Gx)i —cos]/4
(wx)y (Nux,w)v (Gx)v

- - ’

7 (wy)v

The successful derivation for the relationships of heat, momentum, and mass transfer
for laminar free convection between the inclined and vertical plates, in this chapter,
once again reveals the advantage of the new similarity analysis method over the tradi-
tional Falkner—Skan transformation, for studying laminar boundary layer problems.

10.6 Calculation Example

Question:

A flat plate with b = 1 m in width and x = 0.3 m in length is suspended vertically
in air. The ambient temperature is fo, = 20 °C. Calculate the free convection heat
transfer of the plate for the temperature ratio Ty, / T, = 1.7. What is its heat transfer
rate, if the plate’s inclined angle is 45°.

Solution:

From to, = 20°Cand Ty, / Too = 1.7, we have Ty, = 498.1 Kor T,, = 225.1°C.

The air physical properties are as follows: kinetic viscosity is Voo = 15.06 X
1079 m?/sattoo = 20°C, Ay = 4.07x 1072 W/(m°C)at T, = 225.1°C. From
Tables4.1 and 4.3, we get n,, = 0.68, ny = 0.81, and Pr = 0.7 for air.

1. For vertical case:

From Eq. (5.51), the local Nusselt number is expressed as

== (30r) ()
u =—\-Gr —
x,wlv 4 X,00 , dn 10

where (Nuy )y is defined as
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(ax)vx
Aw

(Nux,w)v =

The local Grashof number is evaluated as

(er,oo)v = & |Tw/To; — 1|X3
vOO
9.8 x [(498.1/293 — 1| x 0.3
- (15.06 x 10-6)2
=0.81665 x 10° < 10°

Then, the flow is laminar free convection.
According to Egs. (5.54) and (5.55), the temperature gradient is expressed as

() v ()
dn 7)=0_ T

where parameter m is expressed as

m = 0.35n; +0.29n,, + 0.36
=0.35 x 0.81 4 0.29 x 0.68 4 0.36 = 0.8407

for Ty / Too >1. Then,

do T,\™"
- (@)FO = ¥ (Pr) (@) — 0.32048

On these bases, (Nuy )y can be evaluated as follows:

1 174 40
o= (lon) '(2)
X, w/v 4 X ) d]” 17=0

1 1/4
= (Z x (0.81665 x 109)) x 0.32048

= 38.3085

With the definition of local Nusselt number for vertical case, Nuy , = 5=, the
local heat transfer coefficient for vertical case can be calculated as

Aw
(oy)y = (Nux,w)v7

0.0407
= 38.3085 x

=5.197W/(m?K)
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The average heat transfer coefficient can be calculated as

(ax)y = 4( )
Oy )y = 3 Ux )y
4
= - x5.197
3
= 6.9296 W/(m” K)

The heat transfer rate of the free convection on the vertical plate is

(QX)U = (ax)v X (Tw - Too) X bx
=6.9296 x (498.1 —293) x 1 x 0.3
=426.38W

2. For inclined case:

From Table 9.2, the local Nusselt number for inclined case can be expressed as

(Nux,w)i = (Nux,w)v . COSl/4 Yy
= 38.3085 x - cos!'/*(45%)
=35.129

With the definition of local Nusselt number for inclined case, Nuy ,, = ";Xx , the

local heat transfer coefficient for inclined case can be calculated as

Aw
(ay)i = (Nux,w)i7

4.07 x 1072
0.3
= 4.7658 W/(m” K)

= 35.129 x

The average heat transfer coefficient can be calculated as

— 4 '
(ax); = g(ax)t

4 47658
= — X 4.
3
= 6.3544 W /(m°K)

The heat transfer rate of the free convection on the inclined plate is


http://dx.doi.org/10.1007/978-3-642-28983-5_9

204 10 Identical Laminar Free Convection for Inclined and Vertical Cases

(0x)i = (ax); x (Ty — Txo) X bx
= 6.3544 x (498.1 —293) x 1 x 0.3
=391W

10.7 Question

1. How to understand the identity of laminar free convection for inclined and vertical
gases?

10.8 Exercise

1. Please explain the identity of the governing mathematical models between the
laminar free convection on the inclined and vertical cases.

Appendix A Derivation of Eqs. (10.1)—(10.3)

Al. Derivation of Eq. (10.1)

Equation (10.1) can be changed to

8x+8x

o |:8(wx)i a(wy)i:| + (w x)z +( y)t = (10.1a)

With the dimensionless variables assumed in Egs. (10.6), (10.7), (10.9), and (10.10),
the following correlations are obtained:

d(wy);
ax

A om
dn; 0x

=|2/gx ‘pﬁ —1
Pw

1

1
+ 5 2[2[‘——1

1/2
} (Wy); cos'/?y

where

o _ 9 |y (1, 14
2 _ 212 2oy
ax  oax [x \4 % ;



Appendix A Derivation of Egs. (10.1)—(10.3)

1/4
oo 1] =1
o, [relE
“ax |73 V2
1 18] 1 s
= —— x4
4 4 vZ,
i Poo 3
| sy
A A .
o0
.
Z_Zx 1771

Then,

3(wx)l

dni 4

1/2
x [2[‘— -1 ](Wx),- cos!/?y
1 \/E Poo 172 d(Wy); 172
= ——= — n COS Y
2 Pw ni
1/2
+[ Bll= ](Wx)i cos'/? y
Pw
1/2 1 d(Wy);
=\/g Poc cos'/?y ((Wx)i — =N ( X)l)
Pw 27 dn;
1/2
d(wy)i 22\/g peo | cost/2, S
dy x| pw dn
dp _dpom 1 _ydp

ax dp x4 dy

a_p:d_pam _dr [ (Gr ):|1/4x_1
dy dp; 9y  dmy; reeoli],

With Eqgs. (A1)—(A4), Eq. (10.1a) can be transformed into

[2\/—/000 11/2} d(Wo)i (_lx—lm) cos”2 y

205

(AL)

(A2)

(A3)

(A4)
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172 1 d(Wy),
P ,/5 Py 0051/27/((Wx)i__77i ( X)l)
x| pw 27 dny;
1/2 AW
+2 g ,0;.0_1 cos!/?y (Wy)i
Pw dn;

1 _,dp
+2./8x 08 ¥ |poo/ow — 1Y% (Wy); (—me 15)

—1/4 do /1 1/4
14 _
+2./8X €08 Y | poo/puw — 1|1/2 [ (er oo) :| (Wy)id_n_ (Zer,oo) x!

1

=0 (AS5)

172
Equation (AS) is divided by /£ ‘g—j — 1‘ then it is simplified to

AW | AWy 1 dp

2W,)i — do
e dn; dn; p dn; [

ni(We)i —4(Wy);] =0  (10.11)

This is the dimensionless continuity equation of fluid laminar free convection for
inclined case.

A2. Derivation of Eq. (10.2)

Equation (10.2) is rewritten as

(W) 3 (wy); ICwy)i | d(wy); Op
P[(wx)z + (wy); oy :|—,U« 512 3y By + g lpoc — plcosy
(10.2a)
where
d(wy)i _ d(Wy)i an, _, f‘ (R AW
dy dn; dn; dy
an; T 1/4
W = X Z (er’oo)i i
Then,
d(w)i ‘ v [1 ]1/4 12
=2/gx — —x —(Gry.00): cos' /7y (A6)
8)’ dn; 4 ( * 00)1 i
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9w, peo P W [1 }”“ N
= 2 x|— —1 X — (G . — CO /
5,7 2Vex | ar 7 (Gric); By 14
1/2 12 1/4
Poo d“(Wy)i 4 [1 } -
=2./gx|— —1 X — (Gr . X
1o dn; 3 (Oreee),

1 1/4
X |:Z (er,oo)i] cos'/?y

2 2wy, 1

N ';’);” 1 fin;)l (Zer,oo)il/zxfzcosl/z (A7)

w i

dp _ dp omi

dy  dm; dy

du (1 Ve
= E (ZGVX'OO) X 1 (AS)
1

With (A6)—-(A8), Eq. (10.2a) is changed into

1/2

g o
p [A/gx oS ¥ | oo/ pw — 11"/ (Wx)i\/g‘iO —1

Pw

12 1 d(Wy)i 121 -4
cos' /%y | (Wa)i = 5m an +2/8x 05 ¥ | poo/pw — 11 Z(er,oo)i
1

12 4w, | 1/4
x(Wy)i2./8x dn)f Cx! |:4_1 (er,oo)i] cos'/?y
1

'O;'O_l
Pw

i

=2pn/gx

12 20w T1 12
'(;;'0 -1 —c(in;)l [— (er,w)i} x2cos!?y
w

4
1/2 d(W.); 1 1/4 d
Wi 1 Grne) | cos'?y 2
dn; 4 R P dn;

+2./gx

P
Pw

1 1/4
X [Z (er,oo)ii| x4+ glpoo — plcosy (A9)

l
With definition of (Gry ), Eq.(A9) is rewritten as

1/2
cos

'0;’0_1
w

Je

172

p [2\/gx cos ¥ |poc/ow — 11'2 (Wx)i\/g %

1 d(W,);
x ((Wx)i — 37 (d;)l) +2/gxcosy |pec/pw — 11'2

1/2 d(Wx)l _x_l 0051/2 y
dn;

X (Wy)i2 /3% ’;;’O —1
w
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— 2 2w, 1 —1]x37"
O L s |:_gCOSV|pooz/)0w | x } x2cos!2y
Pw dn; 4 VS,
172
VWi [ (geosy lpso/ow — 1157\ ]
dn; 4 v ;
d
x cos!/? yd—x_l + g |psc — plcosy (A10)
i

Equation (A10) is divided by pg ‘% —1 ‘ cos y, and simplified to

1 d(Wy); Wi
|:2«/;(Wx)i\/7((wx)t — A ( ) ) +2«/_(Wy)12\/_ ( ) 1]

2 dn;
2wy 113772 2 _d(Wy); 13‘/2
= 2y x LU [—%} Iy LA [— (XT)}
dn; 4 v5, P dn; 4 \vy /]l
d _
x M1y Pw| Po= P
dn; P | Poo = Pu

The above equation is divided by t, and simplified to

Voo I d(Wy);
i |:2(Wx)z ((Wx)z - 5771 n;

) + 2(Wy>,-2d(W’“)"]

i

_ Wi | 2 veo AW [1 (L)}“Zd_uﬂ;.op_w poo =
dn? pv dp 4L /)], dni v oo |pso— puw
i.e.,
d(Wy); d(Wo);
= [(Wm(z(WX),- — i)+ AWy) ——
dn; dn;
:d2<W2x),- 1AW du Voo pu | oo = p AL
dn; pwodn dni o vop | poo — Pw

Because 2=~
Poo—Pw

is always positive, the above equation is rewritten as

— I:(Wx)i(Z(Wx)i — i (an)l ) + 4(Wy); d(W_) ] (10.12)
Wi TdpdWa)i | ve ot
o dp? wdn; dn; v e

Pw
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This is the dimensionless momentum equation of fluid laminar free convection
for inclined case.

A3. Derivation of Eq. (10.3)

Equation (10.3) is rewritten as

() ot + () ot kazt N A ot A12)
w2, S a0t
pep | Wx)igs Yy ay2  dy dy
where
t = (ty — 1x0)0 + 1o (A13)
at do (1 .
— = —(ty —to)— (= ) nx™ Al4
ax (tw OO)dm (4) nx ( )
at do (1 74
= (tw — roo)d—n (Zer,oo) X! (A15)
i i
92t d2e (1 172
—— = (fyy — foo)— (—Gr, ) x 2 (A16)
0% _ i (1 i AL
— = — | =-Gr X
gy dng \4 %),

With Egs. (A13)—(A17), Eq. (A12) becomes

o (1\ _
PCp [—A/g COS VX | poo/ pw — 12 (Wi (tu — fo0) gy (—) nix”!
1

4
| —1/4
—|—2ng0$ VX |poo/Pw — 1|1/2 (Zer,oo)
i
o (1 AR
x (Wy)i(tw — too)d—ni (Zer’oo)i X
d?0 (1 V2 da (1 74
=Mty —to)— | =G 4+ — -G
(tw oo)dniz (4 rx,oo)i x ° 4+ dn; (4 rx,oo)i

do (1 174
X x Mty —toe)— (-Grioo) x7! (A18)
dn; \ 4 ’
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Equation (A18) is divided by (t,, — ), simplified to the following form by
consideration of the definition of Grashof number, Gr, :

do (1 _
PCp [_2«/8005 VX 0o/ pw — 11" (Wx)id—n_ (Z) nix~!
l

o _
—2,/8C0S VX | poc/ puw — 1]'/ Wy g ‘]
1

%0 (Lgcosy|poo/pw—1|x3)”2 5
=A - X

W 4 v i
3\ 1/2
da (1gcosy|poo/,ow—l|x ) 4o,
+— 1\~ 3 X —x
dm 4 Voo i dr]i

12
The above equation is divided by ’Z—f -1 ‘ 55 then, we get

2(Wy) o (1 +2(W,) dd
cnl— Z . Y —
PCp x ldni 4 ni y ld?’]i

2o (1 1\ dr /1 1\'% de
) (_T) + (_T) . (A19)
dn; 4v5,/; dn; \4v5,/; dn;

This equation is multiplied by 2”T°° and on simplification, finally becomes

Voo

A

de} d?0 1dx do
n; dn;

de
(W) —mi + (W) — | = — 4 227
Pcp[ ( x)td ni +4(Wy); d77i2+)Ld77i dn;

ie.,

Voo do d%* 1dx do
Pr—=[—n:(W,), +4W,));| — = — + —— 10.13
P [~ (We)i +4( y)l]dm dn?+/\dm an (10.13)

This is the dimensionless energy equation of fluid laminar free convection for inclined
case.
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Laminar Free Convection Film Boiling
and Condensation with Consideration
of Coupled Effect of Variable Physical
Properties



Chapter 11
Complete Mathematical Models

of Laminar Free Convection Film Boiling
of Liquid

Abstract The new similarity analysis method is successfully applied for complete
similarity transformation of the governing partial differential equations of laminar
free film boiling of subcooled liquid with consideration of coupled effects of variable
physical properties, where the laminar free film boiling of saturated liquid is only
regarded as its special case. The dimensionless velocity components as the solutions
for vapor and liquid films have definite physical meanings. It follows that the new
similarity analysis method is appropriate for extensive investigation of the two-phase
boundary layer problems with consideration of coupled effects of variable physical
properties, such as the temperature-dependent density, thermal conductivity, and
absolute viscosity of the medium of vapor and liquid films. The interfacial balance
equations between the vapor and liquid films are considered in detail, such as mass
flow rate balance, velocity component balance, shear force balance, temperature
balance, and energy balance.

11.1 Introduction

Bromley [1] first treated the laminar film boiling heat transfer of saturated liquid
from a horizontal cylinder, using a simple theoretical model. Later, analytical inves-
tigations [2—7] were made to analyze pool film boiling from a vertical plate, in which
only a few researches [5] and [7] took into account temperature-dependence of fluid
physical properties. McFadden and Grosh [5] developed the analysis of saturated
film boiling where the temperature-dependence of density and specific heat were
taken into account. Nishikawa, Ito, and Matsumoto [7] made an analysis of pool film
boiling as a variable property problem on the basis of the two-phase boundary layer
theory, but only the effect of variation of vapor’s physical properties with temperature
was examined in the range of lower degree of subcooling (75 — Too = 0, 20,40°C).

However, in film boiling, the temperature difference between the heating surface
and bulk liquid is very large, where large superheated degrees on the surface and
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large subcooled degrees of liquid are often included. In Chaps. 68 it is shown that the
physical property variations of gas and liquid with temperature have great influences
on their free convection. Of course, they have definitely great effect on the film
boiling of liquid. Therefore, from now on, two chapters will be devoted in this
book to introduce the recent studies of Shang, Wang, and Zhong [8—10] on the film
boiling of liquid, respectively. In this chapter, the rigorous theoretical models for
film boiling of liquid along an isothermal vertical plate are established by means
of the new similarity analysis method. The purpose of this chapter is to set up a
theoretical foundation for the laminar free film boiling of subcooled liquid, and the
related boiling of saturated liquid is regarded as its special case.

11.2 Governing Partial Differential Equations

The analytical model and coordinating system used in laminar free film boiling
of liquid are shown in Fig. 11.1. The heated plate with uniform temperature 7, is
submerged vertically in stagnant liquid whose temperature is higher than the liquid
saturated temperature7. The bulk liquid temperature is less than the liquid saturated
temperature 7;. We assume that the heating surface of the plate is covered with
continuous laminar vapor film, which moves upward with the vapor. Thus, a two-
phase boundary layer is formed. Heat flux produced from the heating surface of the
plate transfers through the two-phase boundary layer to the bulk liquid. Meanwhile,
mass transfer is produced at the vapor-liquid interface due to the film boiling of liquid.

The governing conservation equations of mass, momentum, and energy conserva-
tion for steady laminar free convection of the laminar free film boiling of subcooled
liquid can be described as

Fig. 11.1 Physical model XA
and coordinate system of film S 8
boiling of subcooled liquid

v
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11.2.1 For Vapor Film

The governing conservation equations of mass, momentum, and energy conservation
of vapor film for steady laminar free convection of the laminar free film boiling of
subcooled liquid can be described as follows with consideration of variable physical
properties of vapor medium:

d ad
a(Pvav) + a(l?vav) =0 (11.1)
ow ow a ow
Pv (vawxv + Wyy B;V) = 5 (Mv B;V) + g(p1,00 — Pv) (11.2)
aTy n aTy d N aTy (11.3)
cp [ Weov— FWyy— ) = — .
PvCp, XV ax yv ay ay v ay

11.2.2 For Liquid Film

For the laminar free film boiling of subcooled liquid, the thermal boundary layer
of liquid appears together besides the velocity boundary layer. Also, the variable
physical properties must be considered in the following mass, momentum, and energy
governing partial differential equations for the liquid film:

d d
a(plwxl) + 5(,01%1) =0 (11.4)
OWyl OWy] 0 IWy]
_* = — - — 11.5
o1 (le o + wyl oy ) oy (Ml By )+g(p1,oo o1) (11.5)
on on 0

at
()\1—1) (11.6)
dy \ 9y

11.2.3 For Boundary Conditions

PICp; (lea + Wyl@) =

The boundary conditions of the laminar free convection film boiling of subcooled
liquid are as follows with consideration of variable physical properties of both liquid
and vapor films:

y=0: wyw=0, wyy=0, Ty=Ty (11.7)
Y =308y Wyys = Wails (11.8)

) 4]
Pv.s (wxva—xV - Wyv)s = pls (lea — Wyl)s (11.9)
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ow OWy
uv,s( “) = m,s( - ) (11.10)
ay /s ay /s
aT, 961 on

—Av,s ( V) = htgp1,s (le— — Wyl) — Als (—) (11.11)

ay y=38y 0x K ay y=&y
T =T, (11.12)
y =000 wy =0, 11— I (11.13)

Here, Eqgs. (11.7)—(11.11) express physical matching conditions of the continuities
of velocity, mass flow rate, shear force, heat flux, and temperature at the vapor—liquid
interface.

In order to solve easily the governing partial differential equations, it is better to
transform them into the related identical dimensionless forms. In this purpose, the
present new similarity analysis method is carried out for their similarity transforma-
tion. At first, we introduce the following similarity variables:

11.3 Similarity Variables

Due to the two-phase boundary layer, there should be two sets of the transformation
variables: the transformation variables for vapor and liquid films.

11.3.1 For Vapor Film

For similarity transformation of the governing equations of the vapor film, the fol-
lowing similarity variables are up:
ny is set up at first as the dimensionless coordinate variable, i.e.,

1/4 y
Ny = (—erv’s) = (11.14)
4 X
where the local Grashof number Gr,y s is defined as

— D3
erv,s _ g(Pl,oo/pv,w )x (11.15)

2
VV.s

The dimensionless temperature is given as

T, T,

0, =
YTy - Ty

(11.16)
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The dimensionless velocity components are given as

Wey = 2/8X(P1oo/ Py — DV gy (11.17)

—1
1 —1/4
Wyy = (2«/—gx<pl,oo/pv,w -2 (Zer,s) ) Wy (11.18)

11.3.2 For Liquid Film

For similarity transformation of the governing equation for liguid film, the following
similarity variables are set up:

For liquid film, the dimensionless coordinate variable n; is defined at first as
follows:

| 4y,
nm = (Zerl,oo) " (11.19)

where the local Grashof number Gry|  is defined as

— Dx3
Grue = g(pr00/01,s — Dx (11.20)

V1,002

The dimensionless temperature is given as

n—t
g = (11.21)

s — o

The dimensionless velocity components are defined as

W = 2/8x(p1oo/ps — DY) 7wy (11.22)

-1
1 —1/4
Wy = (A/‘gx(pl,oo/m,s —pl (Zerl,oo) ) Wyl (11.23)

11.4 Governing Ordinary Differential Equations

11.4.1 For Vapor Film

Consulting the derivations in Chap. 6 for laminar free convection of gas, respectively,
the governing partial differential Eqs.(11.1)—-(11.3) for laminar free film boiling
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of liquid can be equivalently transformed into the following governing ordinary
differential equations (see the detailed transformation in Appendix A):

dWyy +4dWyv . Ldpv

2Wyy — Wy —4W,) =0 11.24
xv — v i e oy dny (v Wiy yv) ( )
dw. dw.
Vy,s I:va (2va _ nv_xv> + 4Wyv_xv]
vy dn dny
_ dZva Lde dW,y + b Pv,w Plioco — Pv (11.25)
dn% Wy dny dny Vv Pv Plioo — Pv,w '
Vys doy  d*6, 1 daydéy
P = (—nyW. 4Wy)— = — + — —~ 11.26
Iy " (=nyWyy + }V)dr}v dn% oy dr7y iy ( )

where Eqgs. (11.24)—(11.26), respectively, express the mass, momentum and energy
equations of vapour film.

11.4.2 For Liquid Film

Consulting the derivations in Chap. 8 for laminar free convection of liquid, respec-
tively, the governing partial differential Eqs. (11.4)—(11.6) for laminar free convection
film boiling of liquid can be equivalently transformed into the following governing
ordinary differential equations (see the detailed transformation in Appendix A):

dWy  dWy 1 d
1o g P g —awy) =0 (11.27)

2Wy —m

dm dp ppdn
v dw. dw.
= W (2 — == ) + 4wy =
V| dm dm

EWy 1 du dW B —1
_ x1 _ﬂ xl+vl,oo Pl

(11.28)
dpf o dm dm v (;2_00 _ 1)
1,8
Pry P w4 awy) = S L dbr (11.29)
1 —— (—nWx N=—5+———— .
vy ' Y dpE admom

where Eqgs. (11.27)—(11.29), respectively, express the mass, momentum, and energy
equations of liquid film.
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11.4.3 For Boundary Conditions

With the corresponding assumed variable equations mentioned above, the physi-
cal boundary conditions (11.7)—(11.13) for the laminar free film boiling of sub-
cooled liquid are transformed equivalently to the following ones, respectively (see
Appendix B):

=0 Wy=0, W,,=0, 6,=1 (11.30)
12 ~12
L1, L1,
Ny = nvs(m = 0): Wils = ( = - 1) ( S 1) Wiy (11.31)
V,W Pl,s
1 pus { e )2 )
Wy === —=2) (oroo/pvw — D (o1oo/o1s — DT
4 ;s \ Voo
X (s Way — 4W,yy) (11.32)
1
dWy Pvs (Voo )2
( d ’ ) - VS( " (O1,00/ Pv,w — 1)3/4
m Jp=0 Mls \ Vv,s
dw.
X (proo/prs — D7/ (—”) (11.33)
dny s
12
—Ayv,s(Tw — Ts) (giz)n . (1;1‘];.‘:) (01,00/ Pv,w — 1)1/4
v="vs ’
(@) _ X (p1,00/ P15 — 1)_1/4 + 4hfg,01,svl,ooWyl,s (11.34)
dm m=0 _)\l,s(ts — txo) ’
6, =0, 6, =1 (11.35)
m—>oo: Wyy—>0, 6,—0 (11.36)

For vapor film where Eqgs. (11.31)—(11.35) express the physical matching conditions
such as velocity, local mass flux, shear force, heat flux, and temperature balances at
the vapor-liquid interface, respectively, Eqs. (11.30) and (11.36) express the related
conditions at the wall and bulk, respectively.

11.5 Identical Mathematical Models of Laminar
Free Convection Film Boiling of Saturated
or Subcooled Liquid

The laminar free convection film boiling of saturated liquid with the subcooled tem-
perature Atoo = ts—too = 0 can be regarded as a special case of that of the film boil-
ing of subcooled liquid. Tt follows that such two boiling have identical mathematical
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model, and the above mathematical model of the laminar free convection film boiling
of subcooled liquid is completely suitable for that of saturated liquid, if the following
simplifications are done:

(i) The energy equation of liquid film Eq. (11.6) is omitted. Then, its related dimen-
sionless form, i.e., Eq. (11.29) is ignored.
(i) The defined dimensionless temperature variable in Eq.(11.21) for liquid film
is omitted.
(ii1) The liquid film heat conduction in the boundary condition Eq. (11.11) for energy
balance at the vapor-liquid interface is ignored as follows:

a7, a4
- )\'V,S <_V) == hfg,ov,s (W)cvi — Wyv) (llllsat)
3)7 y=éy dx K

Then, its corresponding dimensionless form, Eq. (11.34), should be simplified to

do. V] 172
_)Lv,s(Tw - 1T) ( v) ( ’OO) (pl,oo/pv,w - 1)1/4
dny s \Vv;s

X (;Ol,oo/;ol,s - D~

1/4 + 4hfgpl,sv1,OOWyl,S =0 (1134sat)

Strictly speaking, the defined similarity variable Gryj o in Eq.(11.20) should be zero
for laminar free convection film boiling of saturated liquid, since the liquid density
Pl,00 At foo s equal to pj s at £ for the saturated situation. If so, it will be never possible
to do all above similarity transformation. For solving this problem, the temperature
t~ocan be regarded very close to #, so that the value of pj « is very close to the value
of p1s. For example, if the temperature relative deviation (f; — #~) /% 1S less than
an arbitrary small number ¢, the film boiling of subcooled liquid will be very close
to that of saturated liquid. Such arbitrary number ¢ can be found out by using an
asymptotic approach.

The advantage of the above treatment is that the mathematical models of the
laminar free film boiling of subcooled and saturated liquids become identical.

11.6 Remarks

The new similarity analysis method is successfully applied for similarity transfor-
mation of the governing partial differential equations of laminar free film boiling
of subcooled liquid with consideration of coupled effects of variable physical prop-
erties. The governing partial differential equations of the laminar free film boiling
of saturated liquid are only their special case. The provided dimensionless velocity
components of vapor and liquid films have definite physical meanings, and then as
the solutions of the governing models, they can be understood easily. It follows that
the new similarity analysis method is appropriate for the treatment of the two-phase
boundary layer problems with consideration of variable physical properties.
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In this extensive investigation of the laminar free film boiling of liquid, the
temperature-dependent physical properties, such as density, thermal conductivity,
and absolute viscosity of the medium of vapor and liquid films are seriously taken
into account. Meanwhile, the interfacial balance equations between the vapor and lig-
uid films are considered in detail, such as mass flow rate balance, velocity component
balance, shear force balance, temperature balance, and energy balance.

11.7 Exercises

1. Which boundary conditions are considered at the vapor-liquid interface of laminar
free film boiling of subcooled liquid?

2. How do you know that the mathematical model of laminar free film boiling of
subcooled liquid covers the case for the saturated liquid?

3. Point out the physical property factors coupled with the governing ordinary dif-
ferential equations of laminar free film boiling of liquid.

4. Please point out the relation and difference of the laminar free film boiling of
liquid from laminar free convection boundary layers of liquid or gas.

5. How to use the system of governing mathematical model on laminar free convec-
tion film boiling of subcooled liquid to treat the issue on laminar free film boiling
of saturated liquid?

Appendix A Similarity Transformation for Eqgs. (11.1)-(11.6)

Similarity transformation of partial differential equations of laminar free film boiling
of liquid is given below:

Al For vapor film
Transformation of Eq. (11.1):
At first, Eq. (11.1) is rewritten as

MWy OWyy apy dpy
- —-— v— =0 Al
Pv ( ax + dy + Wiy ax + Wyy dy (AD)

With Egs. (11.14), (11.15), (11.17), and (11.18), we can obtain the following corre-
lations:
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aw 1 dw

— = \/gm,oo/pv,w — DY Wy — zpy—— (A1)
ax X 2 dn

8Wyv \/? 1/2 dWyv

W _o 8 -1 — A2
3y . (pl,oo/pv,w ) e (A2)
9 1 d
£ o gt (A3)
dx 4 dny
9 d 1 1/4
v P (lGr, ) x! (A4)
ay dny \ 4 ’

With Egs. (11.17), (11.18), and (A1)—(A4), the Eq. (A1) can be changed to

/ 1 dw. / dw
Pv g(lol,oo/lov,w - 1)1/2 Wev — =1y al +2 g(,Ol,oo/)ov,w - 1)1/2_yv
X 2 dn X dny

1 d
+2/8x(p1,00/ Pv,w — 1)1/2Wx1 ——nvx_lﬂ
4 dny

a1 A 4 (1 -
+ 2V gx(;ol,oo/lov,w -1 Zerl,oo Wyla Zerl,oo x =0
v

1/2

The above equation is divided by (p1,00/0v.w — 1) ;% and is simplified to

dWyy +4dWyv _ idpv

2Wyey — 1
H ' dny dny Py dny

(my Wiy — 4Wyv) =0 (11.24)

Transformation of Eq. (11.2):
The Eq.(11.2) is rewritten as

aw aw 3w Wy
pv( v W,J): I DI EY | (e — o) (A6)

dy? dy 9y

With the dimensionless transformation variables assumed in Eqgs.(11.14), (11.15),
(11.17), and (11.18), we get

aw AWy _, (1 1/4
a;” = 2./8x(p1s/ Py — I)Wﬁx ! (Zerv,s) (A7)
32w AWy (1 1/4 4
ay;w = 2V gx(pl,s/pv,w - l)I/ZTgVX ! (Zerv,s) (Zerv,s) X !
d*W,, (1 _
= 2/8X(pLoo/ v — DP—= (—erv,s) x? (A8)
dny \4 12
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) d 1 1/4
v o S (CGryy) a7t (A9)
ay dny \ 4 ’

With Egs. (11.17), (11.18), and (A7)—(A9), Eq. (A6) will be changed to

1 dva)

Pv |:2\/ gx(p],oo/pv,w - 1)1/2va\/§(pl,oo/pv,w - 1)1/2 (va - 577\/ dn

| —1/4
+2/8x(p1,00/ Pv.w — 1)1/2 (Zerv,s) Wyvzf\/ 8x

AW,y _, (1 14
X (Pl,oo/pv,w - 1)1/2lx ! _erv‘s
dny 4

2P Wey (1 R
= MVZ\/ gx(pl,oo/pv,w -1 d—772 Zerv,s X
v

dw. 1 4 du
2/gx -G ’
+ 8X (pl,oo/pv,w ) iy X 4 Txv,s e

| 1/4
X (ZGIXV’S) X+ g(prLoe — pv)

The above equation is divided by g(p1,00/0v,w — 1) and with the definition of Gr,y g
the equation is further simplified to

1 dw dw.
Py | 2Wyy va_nv_xv +4Wyv_xv
2 dp

dZva 1 dWyy 1 duy Pl,oo — Pv
dn\z, Vy,s dny vy dny Ploo/Pv,w — 1

= MUv

V;

dw. dw.
s |:va (2va —Nv df;v) + 4W,Vv_xv]

Vy

The above equation is multiplied by i Uvj and further simplified to

N dZva I dupy dWyy n Vy,s Pv,w Pl,oc — Poo

> — (11.25)
dnv Wy dny dny Vv Pv Pv— Pv,w
Transformation of Eq. (11.3):
Equation (11.3) is first rewritten as
ATy aTy 32T, 3y ATy
,OVva (WXVW =+ Wyv@) = )\.Va—y2 ay ay (AlO)
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where
Tv = (Tw - Ts)ev + Ts (All)
aT, do, (1 i
axv =—(Ty — TS)# (Z) NvvX : (A12)
v
aT, o, (1 AN
ay = _(Tw - TS)J Zerv,s X (A13)
\%
T, do, (1 1z
ayv = —(Tw — Ts)ﬁ (Zerv ) x72 (Al14)
v
AT, diy (1 174
; A ; v (ZGrXV,S) x! (A15)
x Ny

With Egs. (11.17), (11.18), and (A11)—(A15), Eq. (A10) will become
PvCp, 2/8x(P00/pvw — D) Wyy | —(Tw — TS)H Z nvx
A%
| —1/4
+ 2V gx(Pl,oo/Pv,w - 1)1/2 (Zerv,s) Wyv

doy (1 ., \'*
X (TW_TS)d_nv Zerv,s X

d26, (1 V2 day (1 s
= Ayw(Tyw — TS)HZV (Zerv,s) X 2 + - (_erv,s) X !
\%

o, (1 4
x |:(TW — Ts)ﬁ (ZGr;V)S) x~!

The above equation is divided by (T — Ts) and is further simplified to

e, (1 _
vy 1 2/8X (PLoo/ v — DV Wy | === = ) mex ™!
dny \ 4

do
2B (Do uy — VW [#xl] ]

\4
d%6, (1 V2 day (1 V2 Tde,
=h— (-G - -G 2|
Vap? (4 r) ST (4 r) ! [dnv}

The above equation is divided by \/g (o1s/pv.w—1) 172 'and then is simplified to the
following form with consideration of the definition of Gry g:
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W doy LW dé, N d?e, (1 N dry (1 o,
C _— ) —_— f —_—
PvCp, xv dn, Ny yv e v d’]% Vrs dn. s dn.

The above equation is multiplied b

v do d 0 1 day dé
Ty = (_nvwxv+4wyv) - — -

-V + — (11.26)
Vy dnv dn Ay dnv dny

HvCpy

v

where Pry is, vapor Prandtl number, defined as Pry =

A2 For liquid film
After the assumptions of the dimensionless variables, the similarity transforma-
tions of the governing partial differential equations for liquid will be done as below:

Transformation of Eq. (11.4):
The similarity transformation of Eq.(11.4) is done, initially yielding

ow oW, 0 0
p (2 S0 w2 P oo (A16)
ox dy ox ay

With the similarity variables assumed in Eqs. (11.19), (11.20), (11.22), and (11.23),
we can obtain the following correlations:

OWy] 1 dWy
- ,/ (Proo/prs — D2 [ Wa — > - (A17)
0x dm
owy dWy,
— = 2,/ (PLoc/ors — D'V? (—)) (A18)
ay dm
9 d
9P _ __mxflﬂ (A19)
ax 4 dm
9 do (1 174
B G, ) k! (A20)
dy dm \ 4 ’

With the above Eqgs. (A17)—(A20), (A16) can be changed to

1 dWy dw,,;
o1/ g(/Ol,oo/,Ol,s D2 W — m—— ) + 2,/ g(/Ol,oo/;ol,s — =
X 27 dm X dm

1 _dop
+2/8x (P1oo/prs — DV2Wa (me ld—m)

1 VA dp _
+ 28X (pro0/p1s — D2 (Zerl,oo) Wyld_m (—erl,oo) x'=0

The above equation is divided by \/g (p1,00/ P18 — 1)!/2 and is further simplified to
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dWy dWy, 1 dp
Wy — a2 =P W —awy) =0 (11.27)
dm dm  prdm

Transformation of Eq. (11.5):
Equation (11.5) is first rewritten as

O0Wy] OWy 9w 1 0wyl O
o | wa—— +wy——) = w 2x + ————+2g(pc — o) (A2])
ox ay ay

ay dy
With the similarity variables assumed in Egs. (11.19), (11.20), (11.22), and (11.23)
we can obtain the following correlations:

OWyl dWy _, (1 174
8—; =2/8x(p1oc/p1s — D'/? nf ! (—erl,oo) (A22)
32w, d2 W1 /1 1/4 1/4 -
1 — 2 /gx (o, oo/ms—l)“2 x| = Gryio0 —Gryeo) x7!
dy? 4 4
d? W1 1 1z
=2./gx(p1,00/p1s — D'/? nx (Zerl,oo) x? (A23)
1
9 d 1/4
- m( ~Gry, oo) x! (A24)
By dny

With Eqgs. (11.19), (11.20), (11.22), (11.23), and (A22)—(A24), Eq.(A21) becomes

1 dWy
o [2«/_gx<m,oo/m,s - 1>1/2le\/§(m,oo/pz,s — 2 (le =5 dn)f )

1 —1/4
+2/8% (proo/prs — D2 (Zerz,oo) Wyi2/gx

dw,, (1 1/4
X (proo/prs — D2 —x71 [ ~Gruoo
dm 4

1 W (1 2,
= w2/gx(pr00/01,s — 1) d—772 Zerl,oo X
1

dwWy _, (1 174 duy
+2/8x(pro0/p1s — D2 UT ! (Zerl,oo)

| 1/4
X (Zerl,oo) x N g(proe — 1)

With the definition of Gry ~, the above equation is simplified to
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1 dWy
o [2\/_gx(m,oo/m,s - 1)1/2Wx1\/§(m,oo/m,s -2 (le =5 dn;‘ )

«/ dWy, _
+2/2x (proo/p1s — D'2Wy2/gx(poo/p1s — D2 d?’/): ! 1]

1/2
d?wy (1 — D3
= 128X (Proo/Prs — D12 =1 (_g(pl,oo/pl,s > ) x?

dn12 4 vfoo

1/2
AWy d (1g(oee/ps — DY
) S PURRME S el - At TR
V8x(P1,00/ P15 ) dm . dm \ 4 1)1200 )
+ g(PL.00 — 1)

The above equation is divided by g(01.00/p01,s — 1) and simplified to

1 dWy dWy
o1 [Zle (le - —m—x) +4Wy f }

27 dm dn
_ 1dZle 1 dle%( 1 ) o (P1.00 — P1)
dn? e dm dm \vieo * (Ploo — PLs)

v
The above equation is multiplied by 1% and simplified to
21

v dw dw
20w (2w — m—2 ) + 4wy —
v dm dm

Pl,0o
Wy 1 d dW (— - 1)
_ 2xl Lam xl + Voo \ A (11.28)
dpf i dm dm vy (/2»_00 _ 1)
1,s

For transformation of Eq. (11.6):
Equation (11.6) is first rewritten as

on n on N 321‘1 n oA 0f (A25)
C Wyl — Wyl — = —_— _
PICp \ W¥155 }lay l8y2 dy dy

With the similarity variables assumed in Eqgs. (11.19)—(11.23), the following corre-
lations are produced:

= — too)el + I (A26)

on =—(ty — t )del ! -1 (A27)
— = —(ty — — | - X
0x S dm \ 4 n
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a do, (1 /4
5 = (s — tOO)d_m (ZerLOO) x7! (A28)
921 d% (1 -,
a_yz = (s — too)d_nz Zerl,oo X (A29)
1
an da (1 1/4
3_1 = d—l (Zerl,oo) x! (A30)
y ]

With Egs. (11.19), (11.20), and (A26)—(A30), the Eq. (A25) is transformed into

do; (1 _
PICp, [ngxm,oo/m,s — 2wy (—(rs —leo) g (Z) mx 1)

1 do;
+2/gx(pr00/p1s — D2 (Zerl,oo) Wiy (ts — roo>d—m

1 —1/4
X | =Gryq x!
4 x1,00

a2, (1 vz,
=Mt —toc)—5 | =G B
1 (s 00) dTIlz (4 rxl,oo) X

dn (1 AN g (1 s
+ — (_erl,oo) X l(ts — loo) — (_erl,oo) X !
dn \4 n

With the definition of Gry1,«, the above equation is simplified to

do; (1 _
PICp, [ngx(ﬁ)l,oo/m,s —DPwy (—(ts - too)d_m (4_1) nx 1)

do; _
+2./8%(proo/prs — DA Wa 1y — foo) X ‘]

m
1/2
d%; ( 1 8(proo/Prs — 1>x3) -

= A (ts — too)
* > dn12 4 V1,00

ts — loo) —
an (ts oo)dm

1/2
dx; 1 do (1 g(pl,oo/,ol,s - 1)x3) / 1
+ —x — X
4 1)1’00

The above equation is divided by \/% (P100/P1s — 1)1/ 2 (ts — o), and simplified to

do, do, d3g ! da dg 1
o1¢p, | =W d_mm +A4Wy— | =M —+ 55—+ ————

dm dm vl dndmvie
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This equation is multiplied by vl)\—oo and simplified to
1

Voo do;, d%¢;, 1 dxn dg
Pr—2 (=g Wy +4W)— = — 4 — — —* 11.29
Iy " (=n Wy + yl)dm an? + % dn ( )

Appendix B Similarity Transformation for Boundary Condition
Equations

With the corresponding transformation variables the physical boundary conditions
(11.7)—(11.13) are transformed equivalently to the following ones, respectively:
Derivation of Eq. (11.7)
With the related defined variables in Egs. (11.14), (11.16)—(11.18), Eq. (11.7) can
be easily derived to

Mm=0: Wey=0, Wew=0, 6 =0 (11.30)

Derivation of Eq. (11.8)
With Egs. (11.17) and (11.22), Eq. (11.8) can be easily changed to

28X (01oo/Pyw — D2 Wey = 2/8x(01.00/ 015 — D/ Wy

i.e.,
Wyt = (01.00/Pv.w — DY (0100/p1s — DTV Wyy (11.31)

Derivation of Eq.(11.9)
With Egs. (11.17), (11.18), (11.22) and (11.23), Eq.(11.9) is changed to

a4y

Pv,s |:2vgx(,01,oo//0v,w - l)l/zwxvg

| —1/4
_2\/ gx(pl,oo/)ov,w - 1)1/2 (Zerv,s) Wyv:|

N

6]
= Pls |:2\/gx(/01,oo/pl,s — DWW"IE
1 —1/4
—2/8x(pr.oo/prs — D2 (Zerl,oo) Wy (B1)
N

With Eq. (11.14), the following equations will be obtained, respectively:
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1 1/4
Sy =y (Zerv,s) X

By using the definition of Gr,y s, we have

232 11

s, 1 1 —l4

E = Z’]v& Zerv,s (B2)
Similarly, we have

s, 1 1 —l/4

Ix Zerl,oo (B3)

With Egs. (B2) and (B3), Eq.(B1) is changed to

1 1 —1/4
Pv,s |:2\/ gx(pl,oo/)ov,w - 1)1/2va (vaé (Zerv,s) )

| —1/4
_2V gx(pl,oo/pv,w - 1)1/2 (Zerv,s) W,Vv:|

N

| | —1/4
= Pls |:2vgx(01,oo/pl,s - 1)1/2le(znl5 (Zerl,oo)

1 —1/4
—2/gx(pr.oo/prs — D12 (Zerl,oo) Wy1:| (B4)

N

At the liquid—vapor interface, 1;s = 0, then, the above equation is changed to

1 1 -1/
Pv,s |:2\/ 8x(01,00/ Py, w — 1)1/2va (Z”vS (Zerv,s)

| —1/4
_2\/ gx(pl,oo/pv,w - 1)1/2 (Zerv,s) Wyvj|

N

N

] —1/4
= OLs [—2\/8)6 (lol,oo/lol,s - 1)1/2(Zerl,oo) Wy

With the definitions of Gr,y s and Gryj ~, We have the following equations, respec-

tively:
2

1= %Grm (B5)

Pl,oo//ov,w -
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2
V],
Proo/prs — 1 = g—;‘;Grn,m (B6)

With Egs. (B5) and (B6), Eq. (B4) is changed to

1/2 1 1 —1/4
Pv,s 2V 8X ( erv s) Wiy (Z’lvﬁ (Zerv,s) )

172 | —1/4
—2./gx ( erv g) (ZGIW’S) Wiy
N

i.e.,

02 \ 2 | N4
Pv,s 2\/8)‘7( Vs) Wiy (vaé (Z) erv,sl/4)
02 \'"? N4

N

2 12 -1
= PLs —ngx(g’To;) (Z) erl,ool/4wyl

The above equation can be simplified to

N

l _ 1/4 _ _ 1/4
Pvs | Vv,s Wiy 477v6 Vy,s Wyv erv,s = pl,s[ V1,00 Wyl]serl,oo
s

i.e.,

1/4
Pv;s Vs 1 Gryy,s
_Pvs Wey — Wy | (==222) =
Pls Voo |:477v6 xv )vi|s ( ) yl

With definitions of Gryy s and Gry o, We have

172

Pvs Vys |1 v,

—Wy = —— |:_77v8va - Wyvi| ( oo)
Pl,s VI,00 4 s \Vv;s

X (Pro0o/Pvw — DY (01,00/ P15 — 1)

—1/4
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ie.,

Lovs ((vvs)'? _
Wy = — -5 (L) (pl,oo/pv,w_1)1/4(,01,00/,01,5_1) 1/4(nv8va_4Wyv)
4 Pl,s \ VI,oo
(11.32)

Derivation of Eq. (11.10)
Equation (11.10) is changed to

dw. 1
Hv,s |:2\/ gx(pl,oo/,ov,w - 1)1/2 (_xv) x_l(_erv,s)l/4]
dny /, 4

s

dw. 1 /4
= HMl,s |:2\/ gx(lol,oo/p],s - 1)1/2 (_XI) x_l (_erl,oo)
s s

dn 4

The above equation is simplified to

dw. ~ dw Gryvs \ '/
( xl) _ Mv,s (PLoo/PLs — 1)_1/2 ( xv) ( Txv,s )
dm s Ml,s dny s erl,oo

With the definitions of Gryy s and Gry] 0, the above equation is simplified to

AW, Lv.s 1 (AW Grovs \
( ) = M“(pl,oo/pv,w—1)1/2(p1,oo/p1,s—1) 1/2 (—) ( )
S \}

dm Ls dny Gryl,00
dWy Hv.s [ v, 172 _ dw

( - ) === ( =) Proo/pvw — D (oroo/ps = DTV =
dm s Ml,s Vs dny s

B Grov o \ 4
X (Proo/ Py — D2 (proo/o1s — D72 (W)
x1,00

i.e.,
dWy Mv,s [ V1,00 172 3/4 —3/4 dWyy
— = (pl,oo/:ov,w -1 (;Ol,oo/:ol,s -1 -
dm s Mls \ Vv,s dny s

(11.33)

Derivation of Eq. (11.11)
Equation (11.11) is changed to

de 1 4
- )"V,S(TW - Ts) (dni) K (ZGr;v,s) X !

| | —1/4
= htgp1s |:2\/gx('01,oo/,01,s - 1)1/2le,sz7718 (Zerl,oo)
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1 —1/4
—2/8%(proo/prs — D'/ (Zerl,oo) Wyt

As(ts — 1, )(dgl) (1G )1/4 -1
— As(ts — — ) {=Gry, x
S\tS o0 drn R 4 X1,00

Since n;5 = 0 at the vapor-liquid interface, the above equation is simplified as
follows:

de 1 4
- )‘«V,S(Tw —Ts) (d_n://)s (Zerv,s) X !

| —1/4
= _hfgpl‘s |:2\/ gx(/ol,oo/lol,s - 1)1/2 (Zerl,oo) Wy],s

a0, 1 4
- )hl,s(ts — Ieo) (d_m)A (Zerl,oo) X !

— a3 . .
With Gryj oo definition, Gryj, 00 = w, the above equation is changed to

N

N

VI, 00
o\ (1., \"* -
_)"V,S(TW_TS) d_77\/ . Zerv,s X
V1,002 172 1 i
= _hfgpl,s 2\/ gx( gx3 erl,oo) Zerl,oo Wyl,s
s

de, 1 4
- )\l,s(ts — Io) (d_nl)y (Zerl,oo) X !

de 1 e

VL 002 1z 1/4
= —hfgpl,s |:24/gx (?) 2 (ZGI‘XLOO) Wy],5:|
N

As(ts — ¢ )(del) (IG )1/4 -1
— Al s\Us — - —Q0Ty, X
s\ls 00 dnl . 4 xl,00

With definitions of Gryy s and Gryj o, the above equation is changed to

ie.,
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1/4
de 1 ~ a3
— Av,s(Tw — T5) ( V) _g(pLOO/P\;,w )x o
ng s 4 vV,S

2\ 1/2 3\ 174
vy, 1 g(p1,00/p1,s — Dx
= _hfglol,s |:2Vgx ( ;C; ) 2 (Z — 52 Wil
N

8 V1,00
1/4
o\ (1g(oso/ms — D3\
- )Ll,s(ts - too) - - ) X
dm s 4 VI, 00

1/4,—1/4

The above equation is divided by g , and simplified to

1/4
do .
—hvs(Ty = T) (—V) (le/pz#
ng s vV,S
2\'/? 1/4
M, (PLoo/pLs — 1)
+ hfgpl,s |:2 (;.o) 2 (% WYLS
1 V], 00

da\ ((oroo/ors — DY
== _)\l,s(ts - too) d_m T
s ,00

N

ie.,
1/2
s =T ($) (22) " (oroe/pr = DI
(@) B X (P1,00/P1s — D)7V + dhgg p1,5V1,00 Wy s (11.34)
dm s _kl,s([s — to) ’
In addition, Eqgs. (11.12) and (11.13) can be easily be changed to
6y, =0, 6,=1 (11.35)
n—>oo: Wyqu—0, =0 (11.36)
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Chapter 12
Velocity and Temperature Fields of Laminar
Free Convection Film Boiling of Liquid

Abstract Physical property factors coupled with the theoretical and mathematical
models of the laminar free convection film boiling of liquids are treated into the func-
tions of dimensionless temperature, for simultaneous solutions with the three-point
boundary values conditions of the two-phase film flow. Then, the numerical solutions
of momentum and temperature fields at different wall superheated grades and liquid
bulk subcooled grades are theoretically reliable, because the variable physical prop-
erties are treated rigorously. On this basis, a system of rigorous numerical solutions
for momentum and temperature fields of the two-phase film flows are calculated
with taking the film of boiling water as the example, in which the related boiling of
saturated water is only the special case. The numerical procedure presented here is
reliable for rigorous solutions of the theoretical models of three-point boundary value
problem with the two-phase flow. The dimensionless velocity components have defi-
nite physical meanings; then, the corresponding solutions of the models can be easily
understood. With increasing the wall superheated grades, the maximum of velocity
field of vapor film will increase and shift far away from the plate. The velocity of
vapor film will decrease with increasing the liquid subcooled grade. With increas-
ing the liquid subcooled degree, the thickness of liquid film will increase, and the
velocity profile level of liquid film will decrease slower and slower. Furthermore,
with increasing wall superheated grade, the effect of wall superheated grade on the
velocity field of liquid film will decrease.

12.1 Introduction

In Chap. 11, the complete similarity mathematical model was derived for laminar
free convection film boiling of subcooled liquid, where the model of the film boiling
of saturated liquid are regarded as its special case.

On the basis of Chap. 11, in this chapter, the mathematical model with the gov-
erning ordinary differential equations and the complete boundary conditions are
solved by a successively iterative procedure at different wall superheated degrees and

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 239
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different liquid subcooled degrees. Meanwhile, the temperature parameter method
and polynomial formulae are used for treatment of the variable thermophysical prop-
erties of the vapor and liquid films, respectively. The distributions of velocity and
temperature fields of the laminar free convection film boiling of liquid are rigorously
determined.

12.2 Treatment of Variable Physical Properties

For solution of the dimensionless governing equations of the laminar free convection
film boiling, the treatment of variable physical properties for vapor and liquid films
must be, respectively, performed. To this end, the approach reported in Chap.5 for
treatment of variable physical properties will be used as follows.

12.2.1 For Variable Physical Properties of Vapor Film

The temperature parameter method [1] will be used for description of the temperature-
dependent physical properties of gas. In this case, the boundary temperature T, (the
bulk temperature) should be replaced by 75 (the saturation temperature), and then,
the simple power law equations (5.5)—(5.8) become

T\
Mo _ (—) (12.1)
My, s T
Ay T\™
= — (12.2)
hos T
7\"!
P _ (—) (12.3)
Pv,s T
Here we omit the equation for specific heat. With Egs. (12.1) and (12.3), we have
vy T \"*!
= ( ) (12.4)
Vy,s Tv,s

where the subscript v denotes vapor and the subscript s denotes saturation tempera-
ture, respectively.

12.2.2 For Physical Property Factors of Vapor Film

In the governing ordinary differential eguatlons (11.24) to (11.26) for vapor film

the physical property factors Ldpy and V‘v‘ are involved. In order

oy dny y dny 0 Ry dn
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to solve these equations, these physical property factors must be transformed in
the form of temperature and temperature gradient. Consulting Eqs. Chapter 5, we
have the following equations for description of the vapour physical property factors
Ldpy 1 dpy 1 dhy 2, respectively:

VS
pv dny py dny? Ay dny? and

dp, _ (Tw/T, — )dé,/dy,

= 12.5
Py dnv (Tw/Ts — 1)6, + 1 ( )
i% _ nu (T /Ts — 1d6,/dn, (12.6)
py dny  (Ty/Ty— 16, + 1 '
id)\v _ ny(T/Ts — l)dev/dnv (12.7)
Ay dnv (TW/TS - Do, +1 '
V:’s = [(Ty/ Ty — )6, + 1]~ HD (12.8)
v

12.2.3 For Variable Physical Properties of Liquid Film

For treatment of variable physical properties of liquid, the polynomial method sug-
gested in Chap. 5 will be used for description of the temperature-dependent physical
properties of liquid. For example, for water the temperature-dependent expressions
of density, thermal conductivity, and absolute viscosity can be expressed as follows:

o = —4.48 x 107342 +999.9 (12.9)
A= —8.01 x 107%2 + 1.94 x 10731 + 0.563 (12.10)
1150 (690* .,
p=exp| =16 - ——+ (=) | x10 (12.11)

12.2.4 For Physical Property Factors of Liquid Film

Consulting Chapter 5 (5.24) to (5.26) the physical property factors i}g—fx L,i_%

and 1 d)" in governing Eqgs. (11.27) to (11.29) become the following equations at
atmospherlc pressure for water film flow of laminar free convection film boiling of
liquid:

1dpy =2 x4.48 x 10731 (t; — to0) d6;

= — (12.12)
o1 dng —4.48 x 107312 4+999.9 dpy,
1dw 1150 6902 de;

=\—5 —2x =5 ) (ts — 1)) — (12.13)
g dny T dm
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1dy  (=2x8.01 x 1070 +1.94 x 1073) (s, —roo)j—;’i s
adp  —8.01 x 10762 + 1.94 x 1037 + 0.563 (1219

12.3 Numerical Calculation

12.3.1 Calculation Procedure

The present numerical calculation for the laminar free convection film boiling of
liquid belongs to a three-point boundary value problem. The general procedure of
the calculation with the theoretical model for the film boiling of liquid is described as
follows: first the values of 1,5 and Wyy s of the vapor film at the vapor-liquid interface
are guessed. The two values combined with Egs. (11.30) and (11.35) as the boundary
conditions allow us to solve the governing equations (11.24) to (11.26) for vapor film
by using the shooting method. The solutions include the values Wyys, (dWyy/dny)s

and (%) at the vapor-liquid interface. With the values nys, Wyy,s and Wy, the
v)s

values of Wy s and Wy can be calculated from the corresponding boundary condi-
tion equations, (11.31) and (11.32). Then, the values Wy s and Wy s together with the
boundary conditions (11.35) and (11.36) are used to solve the governing equations for
liquid film (11.27) to (11.29) by using the shooting method again. The solutions will

yield the values of (dWyj/dn;)s and (de’ ) Equations (11.33) and (11.34) are taken

to adjudge the convergence of the solutlons for the two-phase boundary governing
equations. Thus, the calculation is successively iterated by changing the values of
nys and va,s-

12.3.2 Numerical Results

As an example of application for solving the theoretical and mathematical mode of
laminar free convection film boiling of water on an isothermal vertical plate, the
numerical calculation was carried out. The film boiling of saturated water is taken
as its special case. From Chap.5 we know that the temperature parameters n,, n;
and ne, of water vapor are 1.04, 1.185, and 0.003. Such low value of ne, make it
possible to actually treat n., of water vapor as zero, i.e., ¢, is taken as constant.
By using the above procedure, the numerical calculations have been done by using
the shooting method for solving the three-point values problem at wall superheated
grade & = b=h — 2.77,3.77,4.77,5.77 and 7.27 °C as well as water subcooled

grade = A’m = ’S:’m =0,0.1,0.3 and 1 respectively. The densities of water vapor at

the above spemﬁed temperatures, the physical values of saturated water vapor and
water needed in the calculations are taken from Ref. [2]. A system of numerical
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results of velocity and temperature profiles for the two-phase flow films are shown in
Figs.12.1, 12.2, 12.3, 12.4 respectively. From these numerical results, the following
phenomena are found:

12.4 Variation of Velocity and Temperature Fields

From these numerical results, the following variations of velocity and temperature
fields are found together with wall superheated grade and liquid subcooled grade.

12.4.1 For Velocity Fields of Vapour Film

From Figs. 12.1a, 12.2a, 12.3a and 12.44a, it is seen that the velocity of vapor film will
increase with increasing wall superheated grades = A’” (: ’”t__’J ) With increasing the

Atw e
= _ls

and shift far away from the plate In addition, the velocity of vapour film will decrease

wall superheated grades = , the maximum of velocity field will increase

with increasing the water subcooled grade, A’f’c (: t“[;"’o)

12.4.2 For Temperature Fields of Vapor Film

From Figs. 12.1b, 12.2b, 12.3b and 12.4b, it is seen that the temperature profiles of
vapor film will increase with increasing wall superheated grade, A’“ (: %) and

decrease with increasing water subcooled grade, A’“ (: “tﬁ) Furthermore, the

temperature profile level will decrease slower and slower with increasing the water
subcooled degree = A’OC (: frtoo)_

Iy

12.4.3 For Velocity Fields of Liquid Film

From Figs. 12.1c, 12.2¢, 12.3c, and 12.4c, it is seen that the velocity of liquid film will
increase with increasing the wall superheated grades = At‘” (: %), and decrease

with increasing water subcooled grade, At"" (= tﬁ&) Furthermore, with increas-
s

ing the water subcooled degree At% (: “tﬁ) the thickness of liquid film will

increase, and the velocity profile level of liquid film will decrease slower and slower.
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Fig. 12.1 Numerical results on a velocity profiles of vapour film, W,,, and b temperature
profiles of vapour film, 6,, as well as ¢ velocity profiles of liquid film, W,;, for laminar free

convection film boiling of water at At@ (: ’57&) = 0 and different % = "‘t;" Lines 1-5:
s 5 s s

Ay % =2.77,3.77,4.77,5.77 and 7.27 °C respectively

I
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Fig. 12.2 Numerical results on a velocity profiles of vapor film, Wy,, and b temperature
profiles of vapor film, 6,, as well as ¢ velocity profiles of liquid film, W,;, for laminar con-
vection film boiling of water at A% (: %) = 0.3 and different % = % Lines 1-5:

Aty _ tw—ly

7 == 2.77,3.77,4.77,5.77 and 7.27 °C, respectively
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Fig. 12.3 Numerical results on a velocity profiles of vapor film, Wy,, and b temperature
profiles of vapor film, 6,, as well as ¢ velocity profiles of liquid film, Wy;, for laminar free con-

vection film boiling of water at At@ (: ’f;&) = 0.7 and different % = "’[;tf Lines 1-5:
s s s 5

Ay % =2.77,3.77,4.77,5.77 and 7.27 °C respectively
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Fig. 12.4 Numerical results on a velocity profiles of vapor film, W,,, and b temperature
profiles of vapor film, 6,, as well as ¢ velocity profiles of liquid film, Wy;, for laminar film boil-

ing of water at £ (: ";ﬁ) = 1 and different &% = %= Ljnes [-5: & = fh —
s s s s s )

2.77,3.77,4.77,5.77 and 7.27 °C, respectively
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Furthermore, with increasing wall superheated grade, 2 (: ”“”) the effect of
wall superheated grade on the velocity field of liquid ﬁlm will decrease.

12.5 Remarks

In the theoretical and mathematical models of the laminar free convection film boil-
ing of liquids, the various physical matching conditions including variable physical
properties and three-point boundary values conditions of the two-phase film flow are
rigorously taken into account. Then, the numerical solutions of momentum and tem-
perature fields at different wall superheated grades = Al and liquid bulk subcooled

grades + are theoretically reliable. On this basis, a system of rigorous numeri-
cal solutions for momentum and temperature fields of the two-phase film flows are
calculated for taking the film boiling of water as the example, in which the related
boiling of saturated water is only a special case.

The numerical procedure presented in Sect. 12.3 is reliable for rigorous solutions
of the theoretical models with three-point boundary value problem of the laminar
free convection film boiling of liquids with consideration of a system of physical
conditions including variable physical properties.

The dimensionless velocity components Wy and W, have definite physical mean-
ings; then, the corresponding solutions of the models can be understood easily. There-
fore, the new similarity analysis method has its special advantage over the traditional
Falkner-Skan transformation for the theoretical and calculative models of the film
boiling of liquids.

Velocity of vapor film will increase with increasing wall superheated grades

Atw — tw_t,\ Atw — tw —I
ts ts Is

imum of velocity field will increase and shift far away from the plate. In addition,
the velocity of vapor film will decrease with increasing the liquid subcooled grade,
At (_ tfzoo)

ts i .

The temperature profiles of vapor film will increase with increasing wall super-

) With increasing the wall superheated grades = , the max-

heated grade, A’W (: %), and decrease with increasing liquid subcooled grade,

Af# (: “tﬁ) Furthermore, the temperature profile level will decrease slower and

slower with increasing the liquid subcooled degree At”" (: %)
The velocity of liquid film will increase with 1ncreasing the wall superheated

Atso

grade 2l (: M), and decrease with increasing liquid subcooled grade, =

Is Is

= B3 ). With increasing the liquid subcooled degree Bl (: Lleo ) “the thick-
ness of liquid film will increase, and the velocity proﬁle level of 11qu1d film will
decrease slower and slower. Furthermore, with increasing wall superheated grade,

Shw (= bl the effect of wall superheated grade on the velocity field of liquid film
w111 decrease
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12.6 Exercises

1. Please give out a detailed derivation for obtaining Eqs. (12.5)—(12.8) on physical
property factors of vapor film flow for laminar free convection film boiling of
liquid.

2. Please give out a detailed derivation for obtaining Egs. (12.12)—(12.14) on phys-
ical property factors of water film flow for laminar free convection film boiling
of liquid.

3. Which differences are there for treatment of variable physical properties between
the vapor film flow on laminar free convection film boiling of liquid and gas
laminar free convection?

4. Which differences are there for treatment of variable physical properties between
the liquid film flow on laminar free convection film boiling of liquid and liquid
laminar free convection?

5. Do you think that the variable physical properties are rigorously considered and
treated in this present system of mathematical models on laminar free convection
film boiling of liquid? Why?

6. Which variations of the velocity and temperature fields of the laminar free con-
vection film boiling of liquid happen together with the wall superheated grade,

%(: %) and liquid subcooled degree A%(: %)? Why?

References

1. D.Y. Shang, B.X. Wang, Effect of variable thermophysical properties on laminar free convection
of gas. Int. J. Heat Mass Transf. 33(7), 1387—-1395 (1990)

2. VDI—Warmeatlas, Berechnungs bldtter fur Warmeubertragung, 5, erweiterte Auflage, (VDI
Verlage GmbH, Dusseldorf, 1988)



Chapter 13
Heat and Mass Transfer of Laminar Free
Convection Film Boiling of Liquid

Abstract By means of the heat and mass transfer analysis based on the new similar-
ity analysis method, it is found that only the wall temperature gradient and mass flow
rate parameter are no-given variables respectively, for prediction of heat and mass
transfer of the film boiling. The wall temperature gradient is proportional to heat
transfer, and will decrease with increasing the wall superheated grade, and increase
with increasing the bulk subcooled grade. Additionally, the wall temperature gradient
is steeper with higher liquid bulk subcooled grade and with lower wall superheated
grade. The curve-fit equation for evaluation of the wall temperature gradient pro-
vided in this chapter agrees very well with the related rigorous numerical solutions,
and useful for a reliable prediction of heat transfer of the laminar film boiling of
water. From the numerical results, it is seen that vapor film thickness will increase
with increasing wall superheated grade or with decreasing the water bulk subcooled
grade, and in the iterative calculation it is a key work to correctly determine the suit-
able value. The solutions of the governing equations are converged in very rigorous
values of vapor film thickness. The interfacial velocity component will increase with
increasing the wall superheated grade except the case for very low liquid bulk sub-
cooled grade, and will decrease with increasing the liquid bulk subcooled grade. The
boiling mass flow rate is proportional to the induced mass flow rate parameter. The
mass flow rate parameter will increase with increasing the wall superheated grade,
decrease obviously with increasing the liquid subcooled grade, and decrease slower
and slower with increasing the liquid subcooled grade. The mass flow rate parameter
is formulated according to the numerical solutions, and then, prediction equation for
boiling mass transfer is created for reliable evaluation.

13.1 Introduction

In Chap. 12 we presented the solutions to velocity and temperature fields of laminar
free convection film boiling of liquid, where the film condensation of saturated lig-
uid is regarded as the special case. In this chapter, studies will be further carried

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 251
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_13,
© Springer-Verlag Berlin Heidelberg 2012
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out on heat and mass transfer for the laminar free convection film boiling of liquid
provided by Shang, Wang and Zhong [1-3]. Based on the mathematical model and
numerical method presented in Chaps. 11 and 12, the calculation results on heat and
mass transfer of the two-phase boundary-layer problem are further obtained with the
successively iterative procedure. The laminar free convection film boiling of water is
taken as an example, and the theoretical models have been rigorously solved at dif-
ferent wall superheated grade with different liquid subcooled grade. The numerical
solutions on heat and mass transfer of the film boiling of liquid are rigorously evalu-
ated at the different conditions, and the film boiling of saturated liquid is taken as its
special case. Using heat and mass transfer analysis, the theoretical equations of heat
transfer coefficient and mass flow rate are derived. With the numerical solutions the
wall temperature gradient and interfacial mass flow rate parameter are formulated,
and then, the prediction of heat and mass transfer of laminar free convection film
boiling of liquid is realized for different wall superheated grade and different liquid
subcooled grade.

13.2 Heat Transfer Analysis

Consulting the heat transfer analysis in Chap.6 for heat transfer analysis on gas
laminar free convection, the heat transfer theoretical equations can be expressed as
follows for laminar free convection film boiling of liquid:

The local heat transfer rate is described as

1 1/4 B do
qx = )\v,w(Tw —1Ty) (Zerv,s) X ! (_ v) (13.1)
n=0

dny

With the Newtonian cooling law, the local heat transfer coefficient on the surface,
defined as g, = oy (T, — T;), will be

1 Ve 1 de,
ay = Ay | =Gras X -7 (13.2)
4 dnv =0
The local Nusselt number, defined as Nuy,, ,, = %, is expressed by
1 V40 de
Nuy,,y = (_erv,s) (_ v) (13.3)
4 dnv /=0

The fotal heat transfer rate for position x = 0 to x with width of b on the plate is an
integration Oy = [, gxdA = [ g<bdx where A = b x x, and hence
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4 1 4 a0
O = _b)\v,w(Tw —Ty) (_erv,s) (_ V) (13.4)
3 4 ng nv:()

The average heat transfer rate, defined as O, = Q,/(b x x) is given by

0 L (T, T)(IG )1/4( de) (13.5)
==X —T5) | =Gryy s - .
X 3 w w N 4 XV, s d)’] nv:o

The average heat transfer coefficient o, defined as @x =ax (T, — Ty) x b x xis
expressed as

4 1 1/4 de
oy = _)Lv,w (“erv,s) x_l <_ V) (13.6)
3 4 dnv /. —o
The average Nusselt number is defined as Nuy, ,, = % and hence
N 4 1G (g (13.7)
Uy = = | =Gr — .
xX,W 3\ 2 XV, dnv -

Therefore, we have

4
Oy = gbqu
_ 4
Oy = §le

— 4
Nuy ,, = gNMx,w

Obviously, the theoretical Eqs. (13.1)—(13.7) on heat transfer of laminar free con-
vection film boiling of liquid are identical to the corresponding Egs. (6.36)—(6.42) in
Chap. 6 on laminar free convection, with only differences that the bulk temperature
T and the local Grashof number Gr, o, of former case are, respectively, replaced
by the vapor saturated temperature 7 and the local Grashof number Gry, s for the
latter case.

It is seen that for practical calculation of heat transfer, only the wall dimen-

%) 0 dependent on the solution is no-given

sionless temperature gradient ( O
)
n

variable.
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13.3 Wall Dimensionless Temperature Gradient

From the heat transfer analysis, it is found that heat transfer for the film boiling of

liquid is in direct proportion to wall dimensionless temperature gradient (g%) o
v/ y=
the only one no-given variable for prediction of heat transfer. Then, correct prediction
ds,
dn,

of the temperature gradient ( ) 0 is the key work for prediction of heat transfer
ny=

of the film boiling of liquid.
The rigorous solutions on the dimensionless temperature gradients (g—z‘v') o for

the film boiling of water are computed, and the results are tabulated and pylotted,
respectively, in Table 13.1 and Fig. 13.1.

It is obviously seen from Fig.13.1 that the temperature gradient (g;f]") 0
v/ =

will decrease slower and slower with increasing the wall superheated grade, Aty
g—z“) o will increase with increas-
=

v

(: t‘”t;") .In addition, the temperature gradient (

Atso

ing the bulk water subcooled grade 2

Based on the rigorous numerical solutions (g%") 0 in Table 13.1, the following
V=

correlation was obtained by means of a curve-fit method for laminar free convection
film boiling of water:

deo INP Aty
- ( V) —A ( ”) (2.77 <Y< 8.27) (13.8)
dnv /) o ts I
IN At At
A:25.375( t°°) +7.2275( t°°)+1.2993 0< t°° 50.3)
) ) s

2
A= —6.7567 (At‘”) +21.563 (At‘”) —0.1131 (0.3 oAl
2 (

t t ts )
At At At
B=22117 ( °°) —2.3472 ( °°) —0.843 0< —>2< 0.3)
t 1 1
N At At
B = 0.3585 ( °°) —0.6057 ( t°°) —1.2017 (0.3 < - < 1)
A A S

The results of (—S—Z‘;) calculated by Eq.(13.8) are also listed in Table 13.1. It

is shown that the calculated results by the correlation (13.8) coincide very well with
the corresponding rigorous numerical solutions — 49, .
dny ny=0

Equation (13.8) is corresponding to the laminar free film boiling of subcooled
water. However, if the liquid subcooled grade tends to zero, Eq. (13.8) will be simpli-
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Fig. 13.1 Temperature gradi- de,
ent (de" ) with variation 7(7'7)”‘:“
dny ny=0 3.5
of wall superheated grade ——1
Aty _ =l —rs 3 e —
= and bulk sub- =2
cooled grade Bloo — Lol 2.5 —a—3
for laminar free 'film b0111ng \ —>—4
of water. Note 1-7: &= = 2 \ —*—5] |
0,0.1,0.3,0.5, 0709 and 15 —o—6—
1 (A”” = 0 is corresponding \ \-\\: 7
to the film boiling of saturated 1 LN w
water) 0.5 '\L\‘\.‘%\é\\i
. ’Aﬁ% =
g;g
0 i
2 4 6 8 10

At

~

“

fied to the following equation for describing the laminar free film boiling of saturated
water:

de At 03 At
(— ) = 1.2993 ( W) (2.77 <=
dnv n,=0 Aloo=0 ts ts

13.4 Practical Prediction Equations on Boiling Heat Transfer

< 8.27) (13.9)

By using Eq.(13.8), the Egs.(13.1) and (13.3) are reliable for prediction of heat
transfer of laminar free film convection boiling of water.
The local heat transfer rate is described as

1 1/4 At \B
Ty) ( Gryy, A) x! (_w)
I
With the Newtonian cooling law, the local heat transfer coefficient on the surface,
defined as qy = o (T,, — T), will be

qx =A)"V,W(T (13.1%)

1 1/4 NS B
ay =Alyw | =Grays X —_— (13.2%)
4 ty
The local Nusselt number, defined as Nuy, ,, = )‘:‘:i , is expressed by
1 V4 Ap\B
Nuyyyw =A | =Gryp s (13.3%)
4 ts
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Total heat transfer rate for position x = 0 to x with width of b on the plate is
expressed as

4 1 4 At \B
O = §Ab)\v,w(Tw —1Ty) Zerv,s (13.4%)

Is

The average heat transfer rate, defined as Q, = Q. /(b x x) is given by

— 4, 1 V4 0 an\?
Qx = —Ax" A(Ty —Ty) _erv,s (13.5%)
3 4 tg

The average heat transfer coefficient o defined as Qy = ax(T,, — Tg) X b X x is
expressed as

_ 4 1 Ve an\®
(xngA)\v,w Zerm X : (13.6%)

The average Nusselt number is defined as Ny, ,, = 7>, and hence
v,w

N 4A 1G EAY (13.7%)
u = — — T 7°
XV, W 3 4 xV,S§ ts
where
ty
277 < <827
s
N At At
A = 25375 ( °°) +7.2275 ( °°) + 1.2993 (0 < —>2 < 0.3)
tS ) tS
N At At
A=—6.7567( °°) +21.563< °°) —0.1131 (0.3 <2< 1)
t 1 1
N At At
B=22117 ( °°) - 2.3472( °°) —0.843 (o < —>2 < 0.3)
tS ts IS
IN At At
B= 0.3585( t°°) —0.6057( t“) —1.2017 (0.3 < t°° < 1)
S S S

With the reliable equation on the dimensionless temperature gradient, Eqs. (13.1)—
(13.7) become reliable equations for practical prediction of heat transfer for laminar
free film boiling of water on a vertical flat plate.
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13.5 Mass Transfer Analysis

Set g, to be a local mass flow rate entering the vapor film at position x per unit area of
the plate. According to the boundary layer theory of fluid mechanics, g, is expressed
as

ds,
8x = Py,s WXV’SE — Wyys .

With the corresponding dimensionless variables in (11.17) and (11.18), the above
equation is changed into the following one:

12
o1, dé
8x = Py,s |:2\/ gx( S 1) va,s (dv)
X /s

Pv,w

o 12 /4 —1/4

,00

—Za/gx( — 1) (_G"xv,s) Wyv,{|
Pv,w 4

With definition of Gry, g, we have

Then, gy is expressed as

a8 | —1/4 L2 172
v X
8x = Pv,s |:2V 8XWyy s (E)Y —2/8x (Zerv,s) Wyu,s:| (gVT;erv,s)

ds 1 —l/4
=20y |:2\/ 8XWyy s (d_):) - ZV 8X (Zerv,S) Wyu,si|
S

ARG
X gx3 Zerv,s

where the boiled vapor film thickness is expressed as follows according to Eq. (11.14):

1 —1/4
3y = Mus (Zerv,s) X (13.10)

With the definition of the local Grashof number Gryy s, Eq. (13.10) is changed into

I\ /4
s (1 g(pl,oo/pv,w — Dx )
v =T | & X

2
4 vy
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Hence,

ds, 1 1 —l/4
E = vaﬁ Zerv,s (13.11)
s

Then,

—1/4

1 1 1/4
8x =2y |:2\/ ngxv,svaa (Zerv,s) —2/8x ( Gryy, s) Wyp,s

2N (o )
X gx3 Zerv's

1 2 \'? /4
= 2,0v s |:2\/ gXva Y —Mvs — 2\/ ngyv s] ( L ) (Zerv,s)

8X
ie.
| 1/4
8x = ,va,sx_1 (Zerv,s) (mvs Wyv,s — 4Wyy 5)
i.e.
| 1/4
8 = Mygx ! (Zerv,s) @, (13.12)
where
D, = (nvéwxv,s - 4Wyv,s) (13.13)

is regarded as mass flow rate parameter of the film boiling of liquid.
If G, is taken to express total mass flow rate entering the boundary layer for
position x = 0 to x with width of b of the plate, it should be the following integration:

G, = / / (gx)idA
A
:b/(gx)id-x
0

where A = b - x is the related area of the plate.
Then, G, is expressed as



13.5 Mass Transfer Analysis 261

X

1 1/4
G, =b / [M”x‘ (ZGr"V’S) q%} dx

0

i.e.

4 1 74
G = 2.4ty (ZGFW) D, (13.14)

It is seen that, for practical calculation of boiling mass transfer, only ®; dependent
on numerical solution is no-given variable.

13.6 Mass Flow Rate Parameter

From Eq.(13.13), it is seen that the mass flow rate parameter ®g, the only no-
given variable for prediction of the boiling mass transfer, depends on the vapor film
thickness 7,s, as well as the vapor velocity components at the vapor-liquid interface,
Wyy,s, and Wy, . Now, it is necessary to investigate these physical variables.

13.6.1 Vapor Film Thickness

The numerical results for vapor film thickness n,s of the film boiling of subcooled
water are listed in Table 13.1 and plotted in Fig. 13.2 together with wall superheated
grade = At‘“ and water bulk subcooled grade = A"’O . It is seen that n,s will increase with

1ncreas1ng wall superheated grade A,’_” . The reason is easy to be understood that with

increasing the wall superheated grade Attw

the vapor film thickness n,s will increase.

In Fig. 13.2 it is seen that with increasing the water bulk subcooled grade Atﬁ
the vapor film thickness 7,5 will decrease. The reason is that with increasing the
water bulk subcooled grade === A , the vaporization of the bulk liquid will become
more difficult at the llquld—vapor interface. Meanwhile, with increasing the water
bulk subcooled grade ’°C , the vapor film thickness 7,5 will decrease slower and
slower.

It should be indicated that in the iterative calculation of the film boiling problem,
it is a key work to correctly determine suitable value ;. The solutions of the models
are converged in very rigorous values of 7,5 as shown in Table 13.1 and Fig. 13.2;
otherwise, the convergence solutions will not be obtained.

Based on the rigorous numerical solutions listed in Table 13.1, the following curve-
fit equation is obtained for vapor film thickness n,s above the laminar free film boiling
of saturated water:

, the vaporization rate will increase; thus,



262 13 Heat and Mass Transfer of Laminar Free Film Boiling

Fig. 13.2 The film thickness 35

nys With wall superheated . ——1
grade tf” and water bulk 3 / =20
subcooled grade 22 for 25 N

Ls : 4]
laminar free film boiling of //// +g
water. Note 1-7: Sl — 2

Iy ——
0,0.1,03,0.5,07,0.9, and ™, /’/,/'/ L 6
1 (A’” = 0 is corresponding

| - / ——7J
to ﬁlm boiling of saturated 1 / /)6
water) M
0.5 W

0 T
2 4 6 8 10
A,
lS
Fig. 13.3 Variation of Wy, ¢ 0.012
with At’” and At’” for lam- —
inar free film boiling of 0.01 be |~ 1]
water. Note 1-7: A= = ./-//"/_"_’_.7J =2
00103050709 and ——3
At 0.008 L, I
1 (52 = 0 is corresponding / ——4
to ﬁlm boiling of saturated W, 0.006 % |=*=5]
water) ?// x |6
| @
0.004- % e |7
0.002 T T
2 4 6 8 10
Ay
tS
Aty
nvs = 0.291 + 0.631 (13.15)

I

13.6.2 Interfacial Velocity Components

The rigorous numerical solutions of interfacial velocity components Wy, s and Wy, ¢
for the film boiling of subcooled water are described in Table 13.1, and plotted in
Figs.13.3 and 13.4, respectively, with variations of wall superheated grade = ﬂ and

the water bulk subcooled grade Attoo It is found that the variations of 1nterfa(:1al
velocity components Wy, s and Wyv s vary as follows with wall superheated grade
A’” and the water bulk subcooled degree A’“’

The interfacial velocity component va s w111 increase with increasing the wall

superheated grade Ar, except for very low water bulk subcooled grade tt°° In
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Fig.13.4 Variation of —W,, ¢ 0.12 1

with % and Atﬁ for lam-
s

inar free film boiling of 0.1 ——1
water. Note 1-7: Ar% = 0.08 o
0,0.1,0.3,0.5,0.7,0.9, and ' / o
1 (Atoo = 0 is corresponding _y 006 — -y
to the film boiling of saturated e / B
water) 0.04 By
/ —
0.02

\

addition, the interfacial velocity component Wy, ¢ will decrease with increasing the
water bulk subcooled grade At’“ Meanwhile, the interfacial velocity component
Wyv.s Will decrease slower and slower with increasing the water bulk subcooled
grade &=

The 1nterfac1al velocity component W,, ¢ will increase with increasing the wall
superheated grade At,, especially in the range of lower water subcooled grade = Alog

In addition, they will decrease with increasing the water bulk subcooled grade A’“’

and will decrease slower and slower with increasing the water subcooled grade == A’°° .

It is seen that the value of the interfacial velocity component Wy, g is usually much
more than that of the interfacial velocity component Wy, ;. Then, it is follows that
the interfacial velocity component Wy, ; will dominate the interfacial mass flow rate
in general. However, the effect of the interfacial velocity component Wy, s on the
interfacial mass flow rate can never be ignored.

13.6.3 Mass Flow Rate Parameter

The mass flow rate parameters ®; = 1,5 Wy, s — Wy, s for the film boiling of sub-

cooled water are described in Table 13.1, and plotted in Fig. 13.5, respectively, with

variations of wall superheated grade At,, and the water bulk subcooled grade Aloo

It is found that the mass flow rate parameter 17,5 Wxy s — Wyy s varies as follows w;th
wall superheated grade At,, and the water bulk subcooled degree At""

From Fig. 13.5 itis obviously seen that the mass flow rate parameter CDS_ (vs Wyy.s

— 4Wy, s) will increase with increasing the wall superheated grade At,,, especially
in the range of lower water subcooled grade At’“’ Meanwhile, it will decrease with
increasing the water bulk subcooled grade. With i increasing the water bulk subcooled
grade, the mass flow rate parameter with decrease slower and slower.

Based on the rigorous numerical solutions, the following curve-fit equation is

obtained for mass flow rate parameter @ with A[ﬁ = 0 for the laminar film boiling
s
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Fig. 13.5 Variation of s Wos =AWy
mass flow rate parameter 057
Dy = nusWivs — Wyv,s

—a—2

with % and AIQ for lam- 0.4 /

. s S, —h—

inar free film boiling of // i
V.

water. Note 1-7: Ar@ = 03 /

——1

0,0.1,0.3,0.5,0.7,0.9, and -
1 (Atoo = 0 is corresponding 0.2

——f

. —7
to the film boiling of saturated /
water) o1 ////A
0 u‘,—x——’;@
2 4 6 8 10
Ar,
o
of saturated water:
Aty \? At
(P9 At =0 = —0.002( t”) +0.0635 IW +0.0705 (13.16)
N s

13.7 Practical Prediction Equation on Boiling Mass Transfer

With Eq. (13.16), Eq. (13.14) becomes

4 1 174 Aty \? Aty
= by (~Grons —0.002 +0.0635=2 1+ 0.0705
3 4 I 1
(13.14%)

This equation can be used as practical prediction equation on boiling mass transfer
of laminar free convection film boiling of saturated water on a vertical flat plate.

13.8 Summary

So far, governing equations and the equations for heat and mass transfer of the laminar
free film boiling of liquid can be summarized in Tables 13.2 and 13.3, respectively.
Meanwhile, the film boiling of saturated liquid can be regarded as its special case of
the film boiling.



265

13.8 Summary

Xy« 11 )<« Fm 00 «— «
L=1
(prnbry pajenyes

ag=(
Jo Sur[ioq Wy 991y Jeurwe[ Ay} I0J POPIWO q [[IM ¢ AW‘WV $‘Iy— wiI19) UoNONPUOd 18AY AYL,)

o={ 1 ¢ s . to=«
A€ sy aly . X0 ax s‘ag8fy — L0\ san_
(1) e = (v o) w0y = (5 ) v

S0« " SO« .
() o1="(c) 7

A}x — ?\xv $'lg = inﬁ — iiv ad

Fee ee
S = Staxy >w = A
“p=0 ‘0="m ‘9="m 0=«
suonpuod Livppunog

(pmbiy pajernies jo Sulfioq Wy 991 Jeurwe| Y} Joj PANIWO SI J])

A = ?«v % = Amm m + MM FSV ldy19 uonenba AS1oug

(10 — '10)8 + A_%mm ﬁiv fe _ A_mm@ 1 + i _ssv 1o uonenba WMUAWON
0= (Knld) 2  (Kmlg) uonenba ssepy

wipyf pinbiy pajooogns aof suoypnba pruaiaffip [pi1avd

A% ><v a\% _ A ,smm iy 4 & xe i\sv tdyag uonenbo A31oug

(10 — )3 + A&mm >iv a_@ _ A&mm o 4 \;.EV agf uonenbo wnuswoy
0= 4:%;5 L4 oﬁs@@% uonenba ssey

wijyf 4odpa aof suoypnba [p1juaiaffip (p11vJ

uorssaxdxg Wiy,

pmbiy jo Surfroq wiy 9913 Jeurwe] ay) Jo suonenba Juruoao3 jo Arewwing gy dqEL



13 Heat and Mass Transfer of Laminar Free Film Boiling

266

(panunuoo)

o T?Lgsuv (1 = 10/10)x3/)

P (01— 10/ 10)38/)

71—

-1

00°]
e e — N\—
(1= 1deg)s

mv\kooﬁxwwv

(pmbr pajenyes jo Sur[ioq W[y 9Y) 10§ paPTWo aq pnoys uonenba AS1oua sIy)
Aup “up “y 2 up ¢ ax A\ a
w1 T 0 = o (MY + M) =

Mag_o0'lg  ag dq Up  Aup Ml mSu _
gt g vyt mypmp 1 T THp

;Q >\\~ qa
(s “mr+ (g = “mz) “m) =

— (af _Axg A Mup 4 _ ‘up
O |A \S.V \S ?v >Qv _ ,S.\Sw

v + ;“\ﬁvﬁ al — >R\$N

. . v . .
ady _\Av}\Aw EQUAV NEQ M >Q\oo NQVR% \(NV

S (g, (1 = 20/ 10)38/)

Hr.h‘.i,h
-1

(pmbiy pajermes jo FulIoq Wy oY) 10§ PAIWO SI g JO UONIUYP YL
ﬂMQ

o

@
Pp

o
OO.NR.\U

1
wigif pinbip 4of sajquiiva (ravjuulg

uonenbo A31oug

uonenbo wnjuawoN

uonenbo ssey
wijif 4odva aof suoyipnba (pryuasaffip Livuipao

al ‘M
o
‘0

uﬂ.«Cm.\b

wiif 1odpa 10f $2]qD1IDA £314D]1UIS

uorssaxdxyg

wiay,




267

() =
w\ "L ’

i:A“,\mV = wﬁ poyow 1jowered armeradwa) ym suonenbyg

sonaadoid [eorsAyd d[qerrea 104

wipif 1odpa 10f sanaadoud po1syd a1qpriva Jo juauignall uo suonvnbry

0«0 0« "M
1=1lg ‘0="9

(ST
T
[ \EA w_“m v 1—"7) H.;&+An.;>.\$¢| m;rm,i.\Sv s 8fy

(52),,.0-4), - 52) =" ()
2=\ - =) = o

) (), () ()
e ) o\ ) e S0 e

X

wig\ st ==l g

oo,:\v syl T A?\SUV

s‘ak af,stax Slo a.;Q Xl S . s
My — UM O - = V G - v A v 719 ST0—

( ) v/1- ) wn ) g\ )

w::\\s A :Qv A~ _ Mcww\v .3&\5
/1= /1
=1

‘0="“M

|
=

‘0="M

(prbiy pajeanyes jo Surfroq Wy 991y JeUrWe| Ay} J0J PIPIWO ST I])

]
p lup 1 i 10 la
DIRN 4 £8 = TR (up + FMU—) < ad

Top yp 1 P lop
AT S'ly v I
0]y Ia thp p Il U _ ip Hip Ia
fl‘avz‘.s o Tr T T mgp = |y MY+ (gl — FMT) M|
0]y

. p 1d 1
= (Kpp — Pyl 22 _ 1P
0= "My — M) 755 Tup

b+ sl — FMT

100 <« I

NOELD KRR

0=
suopnba uoyIpUod LIDPUNOQG SSIPUOISUIUNP JUIIPAINDIT
uornenbo A31oug

uonenbyg wnuawop

suorjenba ssejy

wipyf pinbiy aof suoypnba (pryuataffip Livuipao

uorssaxdxg

wiaJ,

13.8 Summary

(ponunuod) Z'€1 dqeL,



13 Heat and Mass Transfer of Laminar Free Film Boiling

268

£95°0+1¢ 0T X¥6 T+ 119-01X10'8— 6666+ 1 01X8P T~ | Iy S0 g
€960+ 101X 46" 1+19-01 X 10°8— 6'666+1¢_01X8p"v—

6666t/ c-01x8vy— [ (1L _ 5L ) . _ S i a
coosrir,_orsrr— [\ T~ 1) 009 (T =T )0STT [ =77 o7 = =7,

£95°0He_ 01 XP6 T +lo-01X10'8—  _ lup Iy

1 — T
TR =D (e 0Tx¥6 T+, 01 x10gxT—) P!
p 00y _ s el _ el ) _ Mp i
o CF =D (06 X T~ 1) = mp 1
ip _6'666+¢7e 01x8yy— _ lip 1o
Iop (*1="D1c_01X8y ¥ XT— dp 1

1 1

1p o0y _ s ¢l _ ol ) _
o O =D\ e X T wert ) = p
(6°666+71¢-01x8tv—) _ lpid
7 : =T
ﬁ%ETS?To_éixmwv_ 1

191eMm 10 s10)oef Ajradoid [eorsAyd jo suonenbg

) L . _
¢-0T X NAav._.@Ioﬁl dxo = I71

€960+ 101 X ¥6'T + %oloﬁ X 10'8— =1y
6'666 + 101 X 8y H— =10

191em 10§ yoroxdde rerwoukjod yyim suonenbyg
wipyf pinbiy

a,

qamy—LT+ 900 = L/ D] = ==

a Sy /M _
w1+ 90 = L/ D)] = =y
o=/t ety
‘up/fop(1—"L/"D%u — P 1
1+%90—°"2/"D  _ “up ‘1
up/top(1—51/")"u ~ p 1
I+t =2/ _ _ *up *d
up/ep(1—"2/"0)  — “Ip 1

(AR
[+ "L

s10308} A11adoid [eorsAyd jo suonenbyg

sonradoxd [eorsAyd o[qerrea 10,4

d0f sanaadoad o1s€yd apqoriva Jo juawvaly uo suoyvnby

s1030e] A11adoad TeorsAyd jo suonenbyg

uorssaxdxg

way,




(panunuod)

Q
" (ws=weswe)  (s)esci= (7 (-
> mg > a = Tp
v cpgo— LV op
SMUM
(15 =5 > m.@v LI0T'T — =70 LS09°0 — %gqu 850 =4¢
Am.o S o S ov €r8'0 — ?,qu wreT - NA&L Ltze=9
G S o > m.Ov 11170 — Agw«v 51Tt aqu L9SL9— =V
Am.o S o S OV €66T'1 + Ag,qu SLTTL+ NA &M«v SLEST=V
e . 51 _ 0=" AUp
Ahm 8> my > LL Nv mAgEv V= A;% \v uonenbo uonoipaig
(4210 Jo Suijroq wipif avunun] ayj 40f) Jua1pnas 2uniniadud) SSPUOISUIUIP [JOM
0="1U W . N Mia M
(%), 08 £ s paugp iy
=,
[0} A&WV ~IR i An,\Qwav »ﬁ(_&w‘ A& _ \x@»\‘d — k@ se paulyop xp
0=Alt
A%lv v\ﬁAu \:CQWV (% — i&vi.,:lkw| (xxq)/*0 = a@ Se pauyap .k@
0="4t 14 . . ! v
A>MMV v\_ﬁw ;R&Uwv (R — 4™ >&&W\ xpg*h »\o.\. vp*b .\,\ = YO se pauyap ‘X0
0="01 7 4 . .
A;N“v v\_ﬁ ixbwv _ Se pauyap M Yy
0="0 7 4 i . ) -
m () 1ox, (o t) o= (% = ")*0 = *b se pouyap**»
£ (e . . ‘ 0=Cr ‘
n\uU Aawwv _\Rw\_ﬁa \GQQWV A»& _ \:&v,ﬁ f«l Amv M dy — se Uuﬁ@ot&@
0 A2fsuv.y 1ay Su1j1oq uo suonpnba [PI12.102Y |
= pnbiy Jo Surfioq Wy 921 JeUIWE] Ay} JO JoJsuen) ssew pue Jedy 3urfioq uo suonenbs jo Arewwung  ¢'¢Y dqeL



13 Heat and Mass Transfer of Laminar Free Film Boiling

270

1

1€9°0 + g [6T°0 1Jem PAJEINes Jo SUI[Ioq W[y 9dIf Teurtie] oy} 104

S0L0°0 + w5 S€90°0 + NA $<v 00°0—

S0LO'0 + s SE90°0 + NA

51

51

ay v 2000—

51

v\ﬁﬁw,ﬁxwwv sfaqq . &W =*n

x 4o b :
T o/ (st se paugep 9l
ssauyorys wf 1odva ssaquorsuIui

D

(4210M p2gaNIDS [0 SUI]10q WijLf ADUIUD] Y] 40f) 4dfSup.4) SspUL Su1j10q uo uopnba uoydpaid Po11I01g

= ¢ 10Jem pajeInies Jo Sur[roq Wy Jeurwe| oy} 1o

A.ﬁ;@»\—v _ .3:«\3 ) =S¢

5P AHJGQ.OWV stagf . QW =n

¥/1

S o Ah,;»\\cwv ﬁlR.ﬂii — X8

uonenba uonorpaid [eonoerd S

uontuyap ‘e
42121nand 2104 MO SSD
vp!(“8) V[ [ = D se paugop ‘*n
s
faky — P st g —
Au> M ;mﬁu >R§VV>Q|»\%
se pauyop ¥§

Aafsup.y ssput 3u1j10q uo uopnba po112.1021y |

(ponunuoo) €Y AqeL



13.9 Remarks 271

13.9 Remarks

Through the theoretical analysis of heat and mass transfer of laminar free convection
film boiling of liquid, it is found that heat transfer of laminar free film boiling is

proportional to wall temperature gradients (dzﬁ ) o the only one no-given variable

for prediction of heat transfer of the film boiling. The wall temperature gradients

— (g—z") 0 and heat transfer of the film boiling will decrease with increasing the
v ny=

wall superheated grade = A’W , and increase with increasing the bulk subcooled grade

A'“ . Additionally, the wall temperature gradient (dgv) and heat transfer of the

ﬁlm boiling are steeper with higher liquid bulk subcooled grade < and with lower
wall superheated grade = ’” . The curve-fit equation for evaluation of the temperature

gradient (— gzv) 0 1ntroduced in this chapter agrees very well with the related
Yy =

rigorous numerical solutions, and then useful for a reliable prediction of heat transfer
of the laminar film boiling of water.

The vapor film thickness 7,s will increases with increasing wall superheated
grade z_ or with decreasing the water bulk subcooled grade . In the iterative
calculation of the film boiling problem, itis a key work to correctly determine suitable
value n;. The solutions of the governing models are converged in very rigorous values
of 1,5 as shown in Table 13.1 and Fig. 13.2, otherwise the convergence solutions will
not be obtained.

The interfacial Velocity component Wy, ¢ will increases with increasing the wall
Azw

Meanwhile, the 1nterfac1a1 velocity component Wy, ¢ will decreases with i 1ncreas1ng
the liquid bulk subcooled grade A’C’C

The interfacial velocity component —Wy, s will increases with increasing the
wall superheated grade At,,, and will decreases obviously with increasing the liquid
subcooled grade l’fc In addition, the interfacial velocity component Wy, ; will

decreases slower and slower with increasing the liquid subcooled grade Al°° . The
value of the interfacial velocity component — Wy, ; is usually much larger than that
of the interfacial velocity component Wy, s usually. Then, it follows that —Wy,
will dominates the interfacial mass flow rate in general. However, the effect of the
interfacial velocity component Wy,  on the interfacial mass flow rate can never be
ignored.

The boiling mass flow rate is proportional to the induced mass flow rate parameter
which is the only one no-given variable for prediction of the mass flow rate. The mass
flow rate parameter will increases with increasing the wall superheated grade Az,
decreases obviously with increasing the liquid subcooled grade A’“’ , and decreases

slower and slower with increasing the liquid subcooled grade = A’OC

Atw

The effects of the wall superheated grade =* and liquid bulk subcooled grade

A[’OO on the momentum, heat, and mass transfer presented here also reveal effects
5
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of variable physical properties of both vapor and liquid film on the film boiling of
liquid.

13.10 Calculation Examples

Example 1: A flat plate 0.3 m in width and 0.3 m in length is suspended vertically in
water. The plate temperature #,, = 577 °C, and the water temperature is foo = ts =
100 °C. Assume that the boiling is the laminar film boiling, please calculate

(i) boiling heat and mass transfer of the plate,
(ii) vapor film thicknesses at x = 0, 0.01, 0.05, 0.1, 0.15, 0.2, and 0.3 m

Solution:
The wall superheated grade is 2% = b=t — 5772100 — 4 77 and the water bulk
subcooled grade is Atﬁ = bl — W = 0, which shows that it is the film

boiling of saturated water. For water saturated physical properties at z;, = 100°C
we obtain p; ; = 958.4kg/ m?, and for saturated water vapor at 100 °C, we obtain
vys = 20.55x 1079 m?%/s, p, ; = 0.5974 kg/m3, and 1, s = 12.28 x 10~0 kg/ (ms).
In addition, for water vapor at the wall temperature #,, = 577 °C we obtain p, ,, =
0.2579kg/m? and A,,, = 0.0637 kg/m°.

(i) Calculate the condensate heat and mass transfer
For heat transfer

With Eq. (12.15) the local Grashof number is evaluated as

8(p100/ Pv,w — 1)x3
erv,s = )
Vis

9.8 x (958.4/0.2579 — 1) x 0.3
- (20.55 x 1076)2
=2.3278 x 10'?

With Eq. (13.9), the dimensionless temperature gradient of the film boiling of satu-
rated liquid is evaluated as

do At —0.843
(_ V) = 1.2993( W) = 1.2993 x 4.7779843 — 0.3481
dry =0/ A1—0 fs

With Eq. (13.3), the local Nusselt number is evaluated as
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1 Va4 (a6
Nuxv,w:_ Zerv,s a =) o

1 1/4
= (Z x 2.3278 x 1012) x 0.3481

= 304.036

The mean Nusselt number is evaluated as

Oy X

Nuyy yy = _)»
v,w

4
= 3 x 304.036 = 405.38

With definition of the mean Nusselt number, the mean heat transfer coefficient is
evaluated as

— A
oy = Nityy,,y = ;W = 405.38 x 0.0637/0.3 = 86.076 W/(m K)

With Newtonian cooling law, the total heat transfer rate of plate at the plate temper-
ature t,, = 577 °C is calculated as follows:

O = U (ty — t5)A
=y (ty — 1) X b X x
=86.076 x (577 — 100) x 0.3 x 0.3
=3,605W

For mass flow rate of the boiling
With Eq. (13.15), the mass flow rate parameter @ (1,5 Wy, s — 4 W), ;) of film boiling
of saturated water at r, =100 °C can be evaluated as
cbs = Nvs va,s - 4Wyv,s
Aty

2
Aty
= —0.002 ( ) + 0.0635 + 0.0705

s N

= —0.002 x 4.77% 4 0.0635 x 4.77 4 0.0705
= (.327889

Then, the total mass flow rate entering the boiled vapor film through the area with
width of b and with length from x = 0 to x for the film boiling is
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4 1 174
Gy = gb * Hy,s (Zerv,s) o

4 1 1/4
=3 X 0.3 x 12.28 x 107 x (Z x 2.3278 x 10‘2) x 0.327889

= 0.001407 kg/s
= 5.0652 kg/h

(ii) Calculate the vapor film thicknesses

For the laminar film boiling of saturated water, Eq. (13.14) is taken to evaluate ;5 as

Aty

s = 0.291—2 4 0.631

s

= 0.291 x 4.77 + 0.631
= 2.01907

From Eq.(10.14), the condensate film thickness §, is expressed as

| —1/4
d = ns,xX (Zerv,s)

14
(1 g(p1s/ pvaw — Dx )
=nsxX\{ ~

2
4 vy

—1/4
=7 lg(pl,s/pv,w -1 /4
\ 4 V2,

1 9.81 x (958.4/0.2579 — 1)\ ~'/*
=2.01907 x ( = x x 0584/ ) x x\/4
4 (20.55 x 10-6)2

= 0.00093707 x x'/*

For x =0, 8y, = 0m

For x = 0.01 m, §, = 0.00093707 x 0.05'/4 = 0.000296 m
For x = 0.05m, 8, = 0.00093707 x 0.01'/4 = 0.000443 m
For x =0.1m, &, = 0.00093707 x 0.1'/% = 0.0005268 m
For x = 0.15m, 8, = 0.00093707 x 0.15'/4 = 0.000583 m
For x =0.2m, §, = 0.00093707 x 0.2/% = 0.000627 m
For x = 0.25m, 8, = 0.00093707 x 0.25'/4 = 0.000663 m
For x =0.3m, §, = 0.00093707 x 0.3'/% = 0.000694 m


http://dx.doi.org/10.1007/978-3-642-28983-5_10

13.10 Calculation Examples 275

Table 13.4 The variation of condensate film thickness y with the position x
x(m) 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3
8y (m) 0 0.000296 0.000443 0.0005268 0.000583 0.000627 0.000663 0.000694

Fig. 13.6 The variation of 0.0007
condensate film thickness §,

with the position x 0.0006 /
0.0005
&,,m 0.0004 //
0.0003
0.0002 (/

0.0001

0

0 0.05 0.1 0.15 0.2 0.25 0.3
x,m

For clear expression, the variation of condensate film thickness y with the position x
is listed and plotted as the Table 13.4 and Fig. 13.6.

Example 2: A flat plate with 0.3 m in width and 0.3 m in length is suspended vertically
in water. The plate temperature is kept at #,, = 577 °C. The water bulk temperature is
to = 90 °C. Assume the steady laminar film boiling occurs on the plates. Calculate
the heat transfer and mass flow rate of the film boiling.

Solutions:
The wall superheated grade is % = t“t;t‘ = W = 4.77, and the water bulk
s s
to Afoo _ ti—too _ 100-90 __
subcooled grade is SE=ETE =T = 0.1.

The related physical properties are water saturated density p; ; = 958.4kg/m? at
t; = 100 °C, saturated water vapor kinetic v, ; = 20.55 x 10~%m? /s, density p, s =
0.5974kg/m? and absolute viscosity Hys = 12.28 % 10~%atr; = 100 °C, water vapor
density pyw = 0.2579kg/m?> and thermal conductivity Ay = 0.0637W/(m K) at
t, = 577 °C, and subcooled water density p; oo = 965.3kg/m3 at foo = 90°C.

1. For heat transfer

With Eq. (13.8) the temperature gradient of the film boiling of subcooled water vapor
is evaluated as

de, A\ P Aty
_ —A (277 < <8.27) (13.8)
ng 7,=0 tS ts




276 13 Heat and Mass Transfer of Laminar Free Film Boiling

At At
A=25.375( ) 72275( t°°)+1.2993 0 < t°° <0.3)
A

N

At At
A=—6.7567( ) +21.563( °°)—O.1131 03 < =<1

s N

A A A
B —22117 ( t°°) 23472 ( t°°) _0843  (0< t"” <023)

N N s

At Atso Al

—1.2017 03 <

N N

2
B = 0.3585 ( °°) —0.6057 <1

Is
Since & — (0.1 < 0.3

The followmg formulae and calculations for the coefficients A, B, and C are
available:

N At At
A=25.375( t°°) +7.2275( t°°)+1.2993 0 < t°° <0.3)
S A

s

N At At
B=2.2117( t“) —2.3472( t"") —0.843 0 < t°° <0.3)
A A )

IN At
A =25.375 ( t“) +7.2275 ( t°°) +1.2993
S )

=25.375 x (0.1)> 4 7.2275 x (0.1) + 1.2993
=2.2758

2
At At
B =122117 ( t°°) —2.3472( t°°) —0.843
) )

=2.2117 x (0.1)2=2.3472 x (0.1) — 0.843
= —1.0556

Then,

de N
— ( ) =A ( W) =2.2758 x 477710556 — 0.437411
dn, ts

With Eq. (11.15) local Grashof number Gry, s is evaluated as
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Grn - — 8(Proc/Prw = 1)x?
Tyy,s = 3
])V,S
~9.8(965.3/0.2579 — 1) x 0.3°
o (20.55 x 109)2
= 2.34456 x 10'2

With Eq. (13.14) the local Nusselt number is evaluated as

1 4 1 de,
Nuxv,w = - Zerv,S d77
v 77\1:0

1 1/4
= (Z x 2.34456 x 1012) x 0.437411

= 382.73
According to the definition of the local Nusselt number, Nuy, ., = %, then

Nuxv,w)\v,w
oy = ———
X
. 382.73 x 0.0637
N 0.3

= 81.266W/(m?> K)

At last, average heat transfer coefficient o, and total heat transfer rate Q, of the film
boiling on the plate are calculated

= - x 81.266
3

= 108.35W/(m> K)

Oy = oy (ty — 15)A
=108.35 x (577 — 100) x 0.3 x 0.3
= 4651.47W

2. For mass flow rate of the boiling

The total mass flow rate of the film boiling of water is expressed as

4 1 174
G, = gb * Hy,s (Zerv,s) o
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From Table 13.1, the related mass flow rate parameter ®; = (17,5 Wy, s — 4W,y, ;) is
obtained as 0.16399 for % = 4.77 and A% =0.1.
Then, ’ ’

4 1 /4
Gy = gb * Mys (Zerv,s) Dy

4 1 4
=3 % 0.3 x 12.28 x 107° x (Z x 2.34456 x 1012) x 0.16399

= 0.000705kg/s
=2.537kg/h

13.11 Exercises

1. Please give a detailed derivation for the theoretical Eqgs.(13.1)—(13.7) on heat
transfer analysis of laminar free convection film boiling of liquid.

2. Please tell me the effect of the wall superheated grade on the boiling heat and
mass transfer of laminar free convection film boiling of liquid, and explain the
reason.

3. Please tell me the effect of the bulk subcooled grade on the boiling heat and mass
transfer of laminar free convection film boiling of liquid, and explain the reason.

4. Please tell me effect of which grade (wall superheated or bulk subcooled grade)
is stronger on laminar free convection film boiling of liquid.

5. Please explain why Eqgs. (13.1%)—(13.7%) are able to be recommended for practical
prediction of heat transfer of laminar free convection film boiling of liquid on an
isothermal vertical flat plate?

6. Please explain why Eq.(13.14%) is able to be recommended for practical predic-
tion of condensate mass transfer of laminar free convection film boiling of liquid
on an isothermal vertical flat plate?
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Chapter 14
Complete Mathematical Model of Laminar Free
Convection Film Condensation of Pure Vapour

Abstract In this chapter, the work is focused on constitution of mathematical mod-
els of the laminar free convection film condensation of superheated vapor, while,
the film condensation of saturated vapor is only regarded as its special case. The
new similarity analysis method is successfully applied for similarity transformation
of the governing partial differential equations of laminar free convection film con-
densation of superheated vapor with consideration of coupled effects of variable
physical properties of liquid and vapor films. In the transformed governing ordinary
differential equations, the dimensionless velocity components of liquid and vapor
films have definite physical meanings, and then the solutions of the governing mod-
els can be understood easily. In the analysis and similarity transformation of the
mathematical models, the interfacial balance equations between the liquid and vapor
films are considered in detail, such as mass flow rate balance, velocity component
balance, shear force balance, temperature balance, and energy balance. Therefore,
such mathematical model is serious theoretically and has its application value in
practice.

14.1 Introduction

It was Nusselt [1] who first treated the laminar free convection film condensation
of saturated steam on a vertical isothermal flat plate. His theory was based on the
assumption that the inertia and thermal convection of condensate film, the vapor
drag due to the shear force at the liquid—vapor interface, the dependence of the
physical properties of the condensate medium on temperature, and the effect of the
liquid—vapour interfacial wave are neglected. Bromley [2] and Rohsenow [3] first
investigated the effects of thermal convection. Later on, the study of Sparrow and
Gregg [4] included also the effects of thermal convection and inertia forces in the
liquid film by using the boundary layer analysis, and Koh et al. [5] further solved
numerically a boundary-layer model for both the condensate and vapor films. Chen
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[6] has considered analytically the effect of thermal convection, the inertia, and the
interfacial shear force.

On the basis of previous studies on the independent-temperature physical prop-
erties Drew [7], Labuntsov [8] made relatively simple modifications for variable
thermophysical properties. Then, Poots and Miles [9] studied the effects of variable
thermophysical properties on laminar free convection film condensation of saturated
steam on a vertical flat plate. They simplified the governing equations of the liquid
and vapor phases by neglecting the effects of surface tension at the liquid—vapor
interface, and obtained solutions of the ordinary differential equations. Stinnesbeck
and Herwig [10] provided an asymptotic analysis of laminar free convection film
condensation on a vertical flat plate including variable property effect. Nevertheless,
the results obtained do not allow heat and mass transfer prediction, probably due to
the difficulty of getting a solution.

Actually, a lot of related phenomena are the film condensation of superheated
vapor. Then, the study on heat and mass transfer of this problem has a strong practical
background. Minkowycz and Sparrow reported their study results for film condensa-
tion heat transfer with consideration of superheated vapor [11]. Their work showed
that superheated temperature brings about only a slight increase in the heat transfer
during the condensation of a pure vapor. They also indicated that for a given degree
of superheating, g /gny is almost independent on Aty,. Anyway, study of the conden-
sation of superheated vapor is scarcely found in the literature. Then, there is lack of a
theoretical development for prediction of heat transfer of the film condensation, and
especially, the theoretical study of the effect of the vapor superheated temperature
on the condensate mass transfer did not appear in the common literature. The reason
is that it is difficult to study the two-phase boundary layer problem, because the tra-
ditional theoretical methods, such as Falkner—Skan transformation for the similarity
transformation of the governing partial differential equations and for treatment of
variable thermophysical properties are not suitable for the successive studies.

In this book, Chaps. 14—17 will be used to present the extensive study results
of Shang, Wang, etc. [12—14] for film condensation free convection of vapor with
consideration of various physical factors including variable thermophysical proper-
ties. Meanwhile, following the previous chapters, the velocity component method is
further applied for a novel similarity transformation of the governing partial equa-
tions of the two-phase boundary layers, and the advanced approach presented in the
previous chapters for treatment of variable thermophysical properties of the medium
in condensate and vapor films is used. Then, the mathematical models are presented
for description of the laminar free convection film condensation of vapor. The math-
ematical models with three-point boundary value problem are further solved with
different wall subcooled and vapor superheated grades. According to the numerical
results, the effects of wall subcooled and vapor superheated grades on velocity and
temperature fields as well as heat and mass transfer of laminar free film condensation
of superheated vapor is further clarified. On these bases, theoretically rigorous and
practically simple formulae are obtained for prediction of heat transfer and mass flow
rate of the film condensation of water.
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At first, in this chapter the detailed mathematical model on extended theory of
steady-state laminar free convection film condensation process of vapor on an isother-
mal vertical flat plate is established. Its equations provide a complete account of the
physical process for consideration of various physical factors including variable ther-
mophysical properties. It will be taken as a foundation of the study on the laminar
film condensation of vapor for the following chapters.

14.2 Governing Partial Differential Equations

The analytical model and coordinating system used for the laminar free convection
film condensation of superheated vapor on a vertical flat plate is shown in Fig. 14.1.
An isothermal vertical flat plate is suspended in a large volume of quiescent pure su-
perheated vapor at atmospheric pressure. The plate temperature is t,, the saturation
temperature of the vapor is 75, and the ambient temperature is 7. If the provided
condition for the model is ty < s, a steady two-dimensional film condensation will
occur on the plate. We assume that laminar flow within the liquid and vapor phases is
induced by gravity, and take into account the various physical factors including shear
force between the condensate and vapor films, as well as variable thermophysical
properties, and the inertia force and thermal convection of the medium in the conden-
sate and vapor films. Then the conservation governing partial differential equations of
mass, momentum, and energy for steady laminar condensation in two-phase bound-
ary layer are as follows:
For condensate liquid film

aa ( )+—8 (owy) =0 (14.1)
w wyl) = .

ax PIWx1 3y PIWyl
Wyl oWyl 0 Owxl

AL — 14.2

o1 (le o T % ) % (m % )+g(p1 Pv.00) (14.2)

an an d an
— 1—)=—trM— 14.3
PICpl (le o + W}]ay) 3y ( lay) (14.3)

where Egs. (14.1)—(14.3) are mass, momentum, and energy equations of liquid film.
For vapor film

a a
a (oyWxy) + 5 (:vayv) =0 (14.4)
ow ow ow
Py (va_xv + Wyv_xv) = (Mv xv) +8 (pv - Pv,oo) (14.5)
ax dy

9
ay dy
aT, aT, 9 aT,
o (o ) - 3 (22)

14.6
ox ay ( )
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Fig. 14.1 Physical model
and coordinate system of
laminar free convection film
condensation of superheated t
vapor

>y

where Eqs. (14.4)—(14.6) are mass, momentum, and energy equations of vaporid film.
The boundary conditions are

y=0: wy=0,wy =0,1=1ty (14.7)
y =4
Wxl,s = Wxv,s (14.8)
06,1 L)
Pl,s (WXIB_; - Wyl)S = Pvs (vaa_;v - Wyv)S (14.9)
0Wy; aw
L5 ( - ) = s ( ) (14.10)
ay J, ay J,
oy 98 ot
)\l,s (_) :hfgpv,s (va_v - Wyv) + )\v,s (_v) (14.11)
9/ y=s dx s 9y /y=y
T =T, (14.12)
y—=>00 1 Wyy =0, Ty = Too (14.13)

where Eqgs. (14.8)—(14.12) express the physical matching conditions such as velocity,
local mass flux, shear force, heat flux, and temperature balances at the liguid—vapor
interface respectively. While, Egs. (14.7) and (14.13) express the related conditions
at the wall and bulk respectively.

In order to conveniently solve the governing equations in a suitable dimensionless
form, it is necessary to transform similarly the governing partial differential equations
and the boundary conditions into their dimensionless forms. We still use the new
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similarity analysis method to carry out this transformation. At first, we introduce the
similarity variables as follows:

14.3 Similarity Variables

Due to the two-phase boundary layer there should be two sets of the transformation
variables, the transformation variables for vapor and liquid films.

For liquid film

For liquid film the dimensionless coordinate variable 1 and the local Grashof
number Gry s are set up at first as follows:

1 1/4 y
nm= (ZGfxl,s) )—C

_ 3
Gy = SPw = Prc)X” (14.14)

2
VisPLs

and

Dimensionless temperature is assumed as

n—1t

6 = .
ty — s

(14.15)

The dimensionless velocity components are given as

Plw — P 12\
WX1=(24/_gx (W—V"o) ) Wil (14.16)

Pl,s

-1

Pl — Puoo ) 4
W v, 00 =
Wy = (2«/gx (—) (3Gray) ) Wyl. (14.17)

Pl,s

For vapor film
For vapor film, the dimensionless coordinate variable 7, and the local Grashof
number Gryy, oo are assumed as respectively

1 1/4 y
Nv = Zerv,oo ; (1418)

_ 8(pus/pv.co — DxX?

Grxv,oo =

(14.19)

2
Yy 00

The dimensionless temperature is defined as
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T — T
oy = L= 14.20
T - T (1420

The dimensionless velocity components are assumed as

12\ !
Wev = (2785 (pvs/pvoe = 1)'%) iy (14.21)

—1/4\ !
12 (1
Wyy :(2,/—gx (Pvis/ Pv,o0 — 1)/ (ZGr’”’W) ) Wyy. (14.22)

14.4 Governing Ordinary Differential Equations

Consulting the derivations in Chap. 11 for laminar free convection film boiling of
subcooled liquid and by means of the above equations of the similarity variables,
the governing partial differential equations Eqs.(14.1)-(14.6) and their boundary
condition equations (14.7)—(14.13) for laminar free convection film condensation
of superheated vapor can be equivalent transformed into the following governing
ordinary differential equations, respectively (see the transformation in Appendix A
and B):

For liquid film
dWy dwy, 1 dp
2We —m +4—— = —— Wy —4W,) =0 (14.23)
dn dg prdy
v dw dw.
s (le (2Wx1 - x‘) +4Wy XI)
v dm dm
d>w. 1 dpy dW —
_ ;l _ﬂ xl + & Pl — Pv,c0 (14.24)
dm wp dnp dy M1 Plw — Pv,c0
py Vs [ Wom + 4W,1] do,  d?6 N 1 dx; dg (14.25)
n— [—Wum |l—=——+t-——— .
vy ' T dp? A dpdn

where Eqs. (14.23)—(14.25) respectively express the mass, momentum, and energy
equations of liquid film.

For vapor film

dw. dw, 1d
2Wyy — 1y xv+4_yv__ Py
dn dny pv dny

(MyWyy —4wyy) =0 (14.26)
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dw dw.
Vv,oo va 2va — 0y XV + 4Wyv XV
Vy dnv dﬂv

_ dexv i diy dWyy + Mv,c0 Pv — Pv,00

(14.27)
dﬂ% Wy dny dny My Pvs — Pv,00
Vy.0o dy 1 dia,do, d%,
Iy vy (=nyWyy + yv) dn o dn dipy + dn% ( )

where Egs. (14.26)—(14.28) respectively express the mass, momentum, and energy
equations of vapor film.

For Boundary conditions:
By means of the above equations of the similarity variables, the boundary condi-
tion equations are transformed into the following dimensionless ones respectively:

m=0:Wuy=0,W;=0,6=1 (14.29)
Plw — P V2 ous —p -l
Wivs = ( = V’°°) ( °°) Was (14.30)
Pl,s Pv, 00
Weo = — lpl,s ( Vis )1/2 (,Ol,w - ,Ov,oo)l/4
- 4 Pv,s \ Vv, 00 Pl,s
—1/4
X (pv,s/Pv,oo - 1) / [lema - 4Wy1] (14.31)
(dwxv) s (vv,oo)”z (pl,w —pv,oo)”“
dny nv=0 Mv,s Vs Pl,s
—3/4
x (ﬂ — 1) (%) (14.32)
Pv, 00 dm Jy=n.s
(an)
d77v nv=nys 1/4
Vv, 00 172 Pl,w —Pv,00 -
M (tw—ts) ( Vi,s ) (1T) (,Ov,s//)v,oofl) 74 (%)nl:m +4hgg pv.svv,co Wyvs
- hovs (Ts = Too)
(14.33)
6=0,6,=1 (14.34)
ny—00: Wyy—60,0,—0. (14.35)

Equations (14.30)—(14.34) express the physical matching conditions such as velocity,
local mass flux, shear force, heat flux, and temperature balances at the vapor—liquid
interface respectively. While, Eqs. (14.29) and (14.35) express the related conditions
at the wall and bulk respectively.
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14.5 Identical Governing Equations on Laminar Free Film
Condensation of Saturated or Superheated Vapor

In fact, the laminar free convection film condensation of saturated vapor with the
superheated temperature Ao, = fo, —ts = 0 can be regarded as a special case of that
of superheated vapor. Therefore, the above mathematical model of the laminar free
film condensation of superheated vapor is completely suitable for that of saturated
vapor, if the following simplifications are done:

(i) The energy equation of vapour film is omitted. Then, its related dimensionless
form is ignored.
(i) The defined dimensionless temperature variable for vapor film is omitted.
(iii) The vapor film heat conduction in the interfacial boundary condition is ignored.

Strictly speaking, the defined similarity variable Gryy o in (14.19) should be zero
for the film condensation of saturated vapor, since the liquid density pj o at foo is
equal to pjs at % in this case. If so, it will never be possible to do all the above
similarity transformations of the governing equations. For solving this problem, the
temperature 7, can be regarded very close to f, so that the value of py  is very close
to the value of pys. For example, if the temperature relative deviation (foo — #5)/1s
is less than an arbitrary small number ¢, the film condensation of superheated vapor
will be very close to that of saturated vapor. Such arbitrary number ¢ can be found
out by using an asymptotic approach.

The advantage of the above treatment is that the mathematical models of the
laminar free film condensation of superheated and saturated vapor become identical.

14.6 Remarks

The new similarity analysis method is successfully applied for similarity transfor-
mation of the governing partial differential equations of laminar free convection film
condensation of superheated vapor with consideration of coupled effects of variable
physical properties of liquid and vapor films. In the transformed governing ordinary
differential equations, the dimensionless velocity components of liquid and vapor
films have definite physical meanings, and then the solutions of the models can be
understood easily. The new similarity analysis method is appropriate for the treatment
of the three-point value problem.

In the analysis and similarity transformation of the mathematical models, the
interfacial balance equations between the liquid and vapor films are considered in
detail, such as mass flow rate balance, velocity component balance, shear force
balance, temperature balance, and energy balance. Therefore, such a mathematical
model is serious theoretically and has its application value in practice.

In this chapter, our work is focused on constitution of mathematical models of
the laminar free convection film condensation of superheated vapor, while, the film
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condensation of saturated vapor is only regarded as its special case. Thus, the mathe-
matical models of the laminar free convection film condensation of superheated and
saturated vapors become identical.

14.7 Exercises

1. Which boundary conditions are considered at the liquid—vapor interface of laminar
free convection film condensation of pure vapor?

2. Please compare the governing mathematical models between the laminar film
boiling and condensation, and find out their differences.

3. Please compare the interfacial boundary condition equations between the laminar
free convection film boiling and condensation, and find out their differences.

4. Please compare the dimensionless similarity variables between the laminar free
convection film boiling and condensation, and point out their differences.

5. Based on the governing partial differential equations of laminar free convection
film condensation of superheated vapour, please give the corresponding equations
of saturated vapor.

6. Please explain the identical governing system of mathematical model laminar
free convection film condensation of superheated and saturated vapor.

Appendix A: Similarity Transformation for Governing Ordinary
Differential Equations

Al. For liquid film
Transformation of Eq. (14.1):
At first, Eq. (14.1) is rewritten as

ow ow 0 a
P1 20 + deZ + leﬂ + Wylﬂ =0. (A.D)
ax ay ax Ty

With Egs. (14.14), (14.15) and (14.16) we can obtain the following correlations:

oWyl :\/g Plw — Pv,00 12 W _l dWy (A2)
ox X Pls HT R dm )

1/2
Iwy _ ) /8 (m’w _ PV»OO) “ o (A.3)
ay X Pl,s dm
ap 1 _idp
o _ 1, 1901 (A.4)

ox 4 dn

9 do (1 174
oo _ dpi (_erl,s) =~ (A5)
dy  dm
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With Eqs. (14.16), (14.17) and (A.2)—-(A.5), Eq. (A.1) is changed to

- 12 1 dw - 12 aw
o \/g (pl,w pv,oo) (le — xl) +2\/g (:Ol,w pv,oo) vl
X Pls 27 dn x Pls dm

_ 12 1 d
sy (2 ) Dy (gt )

Pl,s
12 —1/4 1/4
Plw — Pv,oco 1 do (1 -1
2. /gx | —— 2= —Gry w G =0.
+ 8Xx ( PLs ) (4 rxl,s) vyl dn (4 Tx] s) X

B 12
The above equation is divided by (%) \/g and is simplified to

dW, dWy] 1 dp
a0 L0A G w aw) = o (14.23)
dny dm prdm (W )

Transformation of Eq. (14.2):
Equation (14.2) is rewritten as

3Wx1) O dwy 32wy

= — . A.6
3y 3y dy n 8y2 (/01 ,Ov,oo) ( )

0wyl
01 leg + wyi

With the dimensionless transformation variables assumed in Eqgs.(14.14), (14.15)
and (14.16) we get

9 _ 1/2 dw. 1 1/4
le _ ZJ_ (pl,w Pv, oo) x1 _1 (Zerl,s> (A7)
32 0" Wal Plw — Pv,00 172 dexl _1 1 4 1 4 1
=2/gx -G -G
8y ( dfll 4 Txl,s 2 Ixl,s X
12 12
d-w.
—2/ax (:01 W~ Pv,00 xl ( Gry s) 2 (A8)
d’71
3 dup (1 /4
% Sl (-erl,s) X (A.9)
y m \4

With Egs. (A.7)—(A.9), Eq. (A.6) is changed to

1/2 1/2
Plw — Pv,co Plw — Pv,00
ol 2/gx (— : ) Wi (— )
( Pls W Pls

1 dwy P — pro\ 2 (1 —1/4
X (le —3m an - ) +2./8x (% Zerl,s

S

- 2aw 1 /4
% Wylzx/g_x(pl’w pv,oo) xlx_l (Zerl,s)
L1

S dm
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d 1/4 _ 172 qw 1 1/4
di ( Gry s) 1 73 (,Ol,w ,Ov,oo) xlel (Zerl,S)

~dm Pls dm

12 2 12
P — pce\ 2 Wy (1 .
+ Mﬂ«/gx ( d o A OO) 2x (Zerl,s) X 2 +8 (:01 - ,Ov,oo) .
S

dn;

The above equation is divided by g (M) and further simplified to the following
one by using the definition of Gry:

172
I dWy dWy dm dWy
ol 2W1(W1——771 )+2W12—) 2
( SUT 2T an Y dny din \ 407, dni

d>w 11 —
L EWa (__)uzmsm,

dn 2 4 1)12S Plw — Pv,c0

The above equation is multiplied by % and simplified to

% dw. dw.
= (W (2Wa = =) + 4wy —
vy dm dmy

_EWa L dwdWa s o

Pv,00

_ (14.24)
dpf  wmdm o dm o m pLw — Pv.co
Transformation of Eq. (14.3):
Equation (14.3) is first rewritten as
an N an Y 3% L dh1 dn (A.10)
cp | w w = .
PICp, xla Rl o dy 9y? dy 8y
where
f = (tw — 1) 01 + s (A.11)
on dg, /1 1
Py (tw — 15) an \4 nmx (A.12)
an o (1 AR
5 = (tw — Is) d_ﬂl ZGIXI’S X (A.13)
%1 d’o (1 2,
a—yz = (tw — ts) d—nz ZerLS X (A14)
1
0A] dry (1 1/4 .
—=—1-G . A.15
By dm (4 r’“’s) } (A1

With Egs. (14.16), (14.17) and (A.11)~(A.14), Eq. (A.10) will become
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1/2
Plw — Pv,00 dop (1 -1
PiCp, (2v 8x (—Pl,s ) Wi (— (tw — 15) an (Z) mx
_ 12 14 a6 /1 1/4
+2/gx Plw = Py, erlls/ Wyt (tw — t5) il —Gryls x!
Pls dm \4

&6 (1 V2 (1 4
=AM (tw — t5) -7 (_erl,s) X 2 + — (_erl,s) X !
dn; 4

The above equation is divided by (¢ — #5), and is expressed as follows by using
the definition of local Grashof number Gry:

_ 1/2 do
Picp, (2vgx (—m,w pv,oo) Wi (——1( ymx— 1)
_kdzel(lg(mw pv.c0) )
B 4

Pl
)
d’71 V1 <Pls

+% lg(pl,w pvoo _I@x_l
dm \ 4 VLS,OI s dm .

1/2
The above equation is divided by \/> ( Bl —Pr.co ) , and simplified to the following
one

do, do, d%o 12 da 1 12 do,
| | | 1

w. _— +4W. M— —= + —1 = —
PICp, ( xl( dn nl) Jldn ) dn1 ( 128) dm (Ulzs) dm

Vls

+2\/—(101W_IOVOO

The above equation is multiplied by -

pIC do, do, d291 1 d)»l d91
Poong ( War { ——m ) +4Wy— +
A dm dm dn1 A dny dm

, and simplified to

i.e.
Vs do, d%6, 1 dx ds
Pr—= [-Wym +4Wy| — = — + ———. (14.25)
v [ W ] dg dp? A dpdn

In addition, from the analysis in Chap.6, it is known that the physical factor
Prl— in


http://dx.doi.org/10.1007/978-3-642-28983-5_6

Appendix A: Similarity Transformation for Governing Ordinary Differential Equations 291

A2. For vapor film
Transformation of Eq. (14.4):
Equation (14.4) is rewritten as

d 0 d 0
y Wiy n Wyy n vaﬂ + Wyvﬂ =0. (A.16)
ax ay

With the similarity variables assumed in Eqgs. (14.18), (14.19), (14.21) and (14.22)
we can obtain the following correlations:

ow 172 1 dw,
o= \/g (ovs/Pvco — 1) (va — 3 dn) (A.17)
owy 172 AW
= = 2\/§ (vs/Prco — )2 =220 (A.18)
ay X dny

dpv 1 —1dpv

= —- A.19
0x 477vx dny ( )
dpy _dpy (1 1/4 1

= -G . A.20
3y dny (4 I')cv,s) X ( )

With equations (A.17)—(A.20), (A.16) can be changed into

1/2 1 dw
o ([Elmne (o 1)

> (AW,
+2./% (pus/ov.oo — 1) (—”))
X dny

12 I _,dp
+2/8x (pv,s/lov,oo - 1) / Wxv (_vax ldnv)
v

—1/4
12 (1
+2./8x (Pv,s/pv,oo - 1) / (Zerv, OO)

dpy (1 1/4 -
X wyvd—n: (Zerv, s) x ' =o.

The above equation is divided by § (,ov,S /Pv.co — 1) 12 and is further simplified to

AWy | Wy, 1 dpy

2Wyey — 1
T dy dnpy  pydny

(nvwxv - 4Wyv) =0. (14.26)

Transformation of Eq. (14.5):
Equation (14.5) is rewritten as
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w ow 92w IWyy 0
o ( XV xv) _ XV xv Oy +g (pv — pv,oo) . (A21)

W T dy Yay? dy dy

With the similarity variables assumed in Egs. (14.18), (14.19), (14.21) and (14.22)
we can obtain the following correlations:

aw 1 dWey o (1 1/4
va =2/8x (pv,s//ov,oo - 1) / vax ! (Zerv,oo) (A.22)
v
32w o d2Wey (1 l/4 s
3),;”/ = 2\/ 8X (pv,s/:ov,oo - 1) / dﬂéwx ! (Zerv,oo) (Zerv,oo) x~!
12 &2W. 1 _
= 287 (pus/Pro — 1) 12—~ (—erv,oo) x? (A.23)
dny \4 12
3 d 1 174
8‘;V — dl;V (ZGIXV’OO) XL (A.24)
v

With Egs. (A.22)~(A.24), (14.18), (14.19), (14.21) and (14.22), Eq. (A.21) becomes

1 dWXV)

1/2 8 1/2
Pv (2\/ 8Xx (pv,s/pv,oo - 1) / va\/g (pv,s/pv,oo - 1) / (va - Env dn

1

—1/4
1/2
+2/gx (Pv,s//ov,oo - ]) / (Zerv,oo) Wy2/gx ()Ov,s//)v,oo - 1)

dw 1 174
X A —Gryv.00
dny 4 ’

2
12 d“W. 1 _
= Mvzv 8X (pv,s/Pv,oo - ]) / 2xv (—erv,oo) X 2
dny \4 12

1/2

12dW, (1 174
+2/gx (IOV,S/IOV,OO - 1) / vax ! (Zerv,oo)
v

ey (1 14
X dn: (Zerv,oo) x~! + g (pv - pv,oo) .

The above equation is divided by (py,s/pv,00 — 1) 12 and simplified to the following
one by using the definition of Gr,y, o:
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12
AW,y AWy EWe (1
W 2Wey — fy——— 4W, =
pv( xv( xv — Ny dn )+ v e My dn% V\%,oo

1/2
" dW,y ( 1 ) duy ¥ puoe Pv — Pv,c0 .

dny v\%,oo dny Pv,s — Pv,00

The above equation is multiplied by

Vy, 00
Vy

dw. dw
Vv, 00 va 2va —ny xv) + 4Wyv ( xv))
Vy dny dny

_ dZva I dpy dWyy Hy,0o Pv — Pv,c0

%, and simplified to

— (14.27)
dn% iy dny dny Ky Pvs — Pv,00
Transformation of Eq.(14.6):
Equation (14.6) is rewritten as
Ty ATy Iy T, 3T,
PvCpy (vag +Wyvg) = 3y 9y + V8_y2. (A.25)

With the similarity variables assumed in Eqs. (14.18)—(14.22) the following correla-
tions are produced:

Ty = (Ty — Too) 01 + Too (A.26)
Bazv = —(Ts — Tno) j% (%) nyx ! (A.27)
aazv = (Ty — Two) g—zt (%erv,oo)mx—l (A.28)
382yT2V = (T — Two) ‘f—:%v (}1(}%“%)1/2);—2 (A.29)
aakyv _ % (ierv,m)l/4x—l. (A30)

With Egs. (14.21), (14.22), (A.26)—(A.30), Eq. (A.25) is transformed into
1/2 doy (1 _
PvCpv (2\/ 8X (pv,s/lov,oo - 1) / )va —(Ts — Two) — - NyX !
dny \ 4
a1 —1/4
+ 2V 8X (pv,s/pv,oo - 1) Zerv,oo Wyv
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e, (1 —1/4
x (Ts — To) — (_erv,oo) x_l

dny \ 4
diry (1 4 do, (1 4
— dn“ (ZGr” oo) x N (T = Tao) dni (Zerv,oo) x
a6, (1 172
+ Ay (Ts — To) d77\2/ (Zerv oo) X

The above equation is divided by Ty — T, and simplified to the following one by
means of definition of local Grashof number Gryy o:

1\ /2 doy (1 _
PvCpy [(2\/ 8X (pv,s/pv,clxg) ) Wyxv ( dr)v (Z) NyX 1)
v

12 doy _
+ (2«/gx (Pvis/ Pv,o0 — 1) / wyvd—n:x 1)}
12
dry _ldﬁ(lg@v,s/pvm—l)ﬁ)

dn " dm\ 4 V2

12
L &0, (1 g (Pv.s/pv.00 = 1)x3) -

v
dn? 2 o

The above equation is divided by f (,ov,S /Pv.co — 1) 1 2, and simplified to

2 d@v 1 +2W aoy
c Wyy | — -
PvCpv paY 4 Wi e
1/2
_day 11
dnv dnv 42 )
The above equation is multiplied by , and simplified to
v
doy 1dir,de,  d%0
Pr, Vy,o00 (_nVva +4Wyv) v v v

vy dp Ay dp dp, dp?

(14.28)

Appendix B: Similarity Transformation for Boundary Condition
Equations

1. Derivation of Eq. (14.7)
With the related defined variables in Eqgs.(14.15) to (14.17), Eq.(14.7) can be

easily derived to
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m=0: Wy=0,W,;=0,0; =1

By the way, the equation y = § can be changed to 1 = 115 (ny = 0):

2. Derivation of Eq. (14.8)

295

(14.29)

With Egs. (14.16), (14.17) and (14.14), Eq. (14.8) can be easily changed to

_ 12 _ ~12
Wiys = (pl,w Pv,00 ) (pv,s Pv,00 ) Wils.

Pl,s

Pv, 00

3. Derivation of Eq. (14.9)
With Eq. (14.14) we have

1 /45
ns = (ZerLS) )_c

for liquid film.
ie.

N
1g(p,w—py,5)x

Si=ms| 3 x
4 VisPLs

With definition of Gr,s, we have

s, 1 1 —l/4
o am (Zerl,s> .

Similarly, we obtain

as, 1 1 —1/4
a = vazS Zerv,s

for vapor film.

(14.30)

(B.1)

(B.2)

(B.3)

With Egs. (B.1)—(B.3), (14.14), (14.16), (14.17), (14.19), (14.21) and (14.22),

Eq.(14.9) is changed to

1/2 —1/4
Plw — Py, 1 1
Pls |:2\/gx (W—VOO) lezms (Zerl,s)

Pl,s

Pl,s

12
Plw = P, 14
yE (u) (LGry) ™" Wyl}

4

—1/4
172 1 1
= Pv,s |:2\/ 8X (Iov,s/lov,oo - 1) / Wiy =1vs (ZGrvl,oo)
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(1 —1/4\ !
- (2V 8x (pv,s/pv,oo - 1) (Zerv,oo) Wyv

S

ie.

Plw — Pv,00 172 1 1 —l/4
Pls | 2 T o lezms Zerl,s
.S

172

PLw = P, ~1/4

_2( wm VOO) (3Grs) /Wyl]
,S

S

1/2 1 1 1/
= Pvs 2 (pv,s/Pv,oo - 1) vaznva ZGrvl,oo

o (1 —1/4\ !
- (2 (pv,s/,ov,oo - 1) (Zerv,oo) ) Wyv

S

With the definitions of Gr,js and Gryy, 0, the above equation is simplified to

12 3\ /4
Plw — Py, 1g(ow — Pv,oo) X
s [Wamis — 4W,]. (u) 1g( v v.00)
Pls 4 Vi sPLs

3\ 1/4
lg(Pv,s/Pv,oo — Dx )
4

= Pvs [vanvé - (4'Wyv)]S (pv,s//)v,oo — 1)1/2(

2
V¥, 00

i.e.

1/4 —1/4
Plw — Py, 1
pLs [Waims — 4Wy ] (W—W) (—2)
Pl,s Vis

—1/4
1
= Pvs [van\/S - (4Wyv)]s (IOV,S/pv,oo _ 1)1/4 (Uz_) .
o

v,

Since nys = 0 at the liquid—vapor interface, the above equation can be further
simplified to

Plw — Pv,00 /4 —1/4 [ Vis 172
Pls [le7715 - 4'Wy1]S (7’) (Pv,s/ﬂv,oo - 1) (7) = _Pv,s4Wyv-

Pl,s Vv, 00

Then,



Appendix B: Similarity Transformation for Boundary Condition Equations 297

I pis Vl,s 12 Plw — Pv,00 /4 —1/4
g = —— —— : _ S —1 w —4W .
Wyv,s 4 Pvs \Wy.oo PLs (Pv,s/ﬂv,oo ) [ x1Ms 1:13]51
(14.31)

4. Derivation of Eq.(14.10)
With Egs. (14.15) and (14.20), Eq. (14.10) is changed to

_ 1/2 dw 1 1/4
Ml,szx/g_x ()Ol,w Proe ) ( XI) x71 (Zerl,s)
s

Pls dm

172 (AW (1 174
= I'LV,SQ’\/ 8X (pv,s/pv,oo - 1) / ( XV) x! (Zerv,s) .
N

dny

With the definitions of Gryj s and Gr,y, 0, the above equation is simplified to

(dwxv) s (vv,oo)”z (pl,w — pv,oo)”“
dny 7y=0 Mv,s Vi,s Pl,s
=34 raw
x (& - 1) ( “) . (14.32)
Pv,00 dm- J p=ms
5. Derivation of Eq. (14.11)

With Eqs. (14.14), (14.15), (14.18) and (14.20) Eq. (14.11) is changed to

de, 1 AN
)»v,s (Ts — Too) | — _erv,oo X
dnl Ny=nvd 4

doy 1 e
= Als (tw — )| — _erl,s X
dm/ y=ps \4

—1/4
172 1 1
- hfgpv,s |:2\/ 8X (pv,s/pv,oo - 1) / Wivs = 1vs (Zerv,oo)

4

—1/4
12 (1
—2,/gx (Pv,s/pv,oo - 1) / (Zerv,oo) Wyv,sj|

i.e.

de 1 4
)\v,s (Ts — To) (d_v) (_erv,oo) X !
m ny=1nyé 4

déy 1 A
= Al,s (tw —t) | — _erl,s X
dm/ y=ps \4
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1 1 —1/4
- hfgpv,s |:2va,5177sz - 2Wyv,s] (Zerv,oo)

X A/ 8X (pv,s/pv,oo - 1)1/2 .

With the definition of Gryy, o, we have

2
Pv,s/Pv,oo - 1= gV’TO;erv,oo

With Eq. (B.5), (B.4) is changed to

do 1 4
Avs (Ts — Too) (_V) (_erv,oo) X !
dm /=y, \4

oy 1 AR
= )\l,s (tw — 15) d_ Zerl,s X
nl m=ms

1 1 -l
- hfgpv,s |:2va,517%5 - 2VVyv,s:| (ZerV,oo)

2 1/2
W oo
X /88X —3er\;’00 .
8gX

The above equation is simplified to

de, 1 AR
)\v,s (Ts — Too) | — _erv,oo X
dnl Nv=T1vs 4

do, 1 7
= )\],s (tw — 1) d_ Zerl,s X
M7 m=ms

1 1 —1/4
- hfgpv,s |:2va,sz77v5 - 2Wyv,si| (Zerv,oo)

2 172 1 172
X \/gx V—O; 2(—erv,oo)
gx 4

déy 1 A
)»v,s (Ts — Too) | — _erv,oo X
dT)] Nv="nvs 4

i.e.

(B.4)

(B.5)
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6, 1 4
= )»l,s (tw — t5) (d_) (ZG xl,s) X !
M7 m=nis

| 4
— hfgpv,s [nvé Wivs — 4Wyv,s] (Zerv,oo) X lVv,oo-

With the definitions of Gr, s and Gryy, 0, the above equation is changed to

1/4

do 1 —1)x3

hovs (T = Too) (—) ¢ (pV’S/pVZ’“’ ) X!
dnl Nv="nvs 4 v

V,00

1/4
do l1g (Pl,w - Pv,oo) x3 -1
= ALs (tw — 1) I I 3 x
M7 m=ms VisPLs

1 g (ovs/p 1) x3 v
v,s/ Pv,00 — _
- hfgpv,s [7lv8 va,s - 4Wyv,s] (Z ° 2 ) X lvvyoo
V,00

i.e.

1/4
do —1

hus (T — Too) (—) Prs/Pvoo = |
dnl Nv=nvs stOO

40 1/4
1 Plw — Py,
= )\l,s (tw - ts) (d_) wz—voo

M/ m=ms VsPLs

1/4
Pvs/Pv,oo — 1
— hfgpv,s [nvé Wivs — 4Wyv,s] (%) Vv, 00-

VY, 00

The above equation is further simplified to

(d9v ) _
dn nV=nys

w00 \1/2 [ PLw—pv,00 ) 1/4 Z1/4 [ doy
Als (tw — 1s) ( Vs ) ( Pls ) (Pv,s/ﬂv.oc - 1) (dT”)’ll=’718
Av,s (Ts — Too)

- hfgﬂv,svv.oclnva Wyv,s — 4Wyv,sJ

Since nys = 0 at the liquid—vapor interface, the above equation is simplified to

(%) _ (14.33)
d]’}l Nv=1ys

U2 pw=pv.co Y /4 —1/4 (dg
Als (tw — s) (U,V)lzo) (71,WPI.SV‘OO) (ﬂv,s/ﬂv,oo - 1) / (dini)m:’na
Avs (Ts — Too)

+ 4hfg Py.sVv,00 Wyv,s
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In addition, Egs. (14.12) and (14.13) can be easily changed to

6 =00 =1 (14.34)

ny—00: W,y—0, 6,—0. (14.35)
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Chapter 15

Velocity and Temperature Fields of Laminar
Free Convection Film Condensation

of Pure Vapour

Abstract The work is dealt with for solutions of velocity and temperature fields
on laminar free film condensation of superheated vapor on a vertical flat plate at
atmospheric pressure with consideration of various factors including variable phys-
ical properties. The film condensation of saturated vapor is only its special case.
The system of ordinary differential equations is computed by a successively iter-
ative procedure and an iterative method is adopted for the numerical solutions of
the three-point boundary value problem. With increasing the wall subcooled grades,
the maximum of velocity field of liquid film will increase and shift far away from
the plate. In addition, the velocity of liquid film will decrease with increasing the
vapor superheated grade. Compared with the effect of wall subcooled grades on the
velocity of liquid film, the related effect of the vapor superheated grade is obviously
weak. With increasing the wall subcooled grades, the thickness of liquid film will
increase. With increasing the vapor superheated grade, the thickness of liquid film
will decrease. The temperature grade of liquid film on the wall will decrease with
increase in wall subcooled grade, and increase with increasing vapor superheated
grade. Compared with the effect of wall subcooled grades on the temperature of
liquid film, the related effect of the vapor superheated grade is obviously weak. The
velocity of vapor film will increase with increasing the wall superheated grades, and
decrease with increasing vapor superheated grade. With increasing wall subcooled
grade, the velocity of vapor film will decrease slightly. With increasing the vapor
superheated grade, the velocity of vapor film will decrease obviously.

15.1 Introduction

In Chap. 14, the complete mathematical model was derived for laminar free film
condensation of vapor, where the model of the film condensation of saturated vapor
is regarded as its special case. On the basis of Chap. 14, in this chapter, the mathe-
matical model with the governing ordinary differential equations and the complete

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 301
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_15,
© Springer-Verlag Berlin Heidelberg 2012
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boundary conditions are solved by a successively iterative procedure at different
wall subcooled degrees and different vapor superheated degrees. Meanwhile, the
temperature parameter method and polynomial formulae are used for treatment of
the variable physical properties of the vapor and liquid films respectively. The dis-
tributions of velocity and temperature fields of the laminar free film condensation of
liquid are rigorously determined.

15.2 Treatment of Variable Physical Properties

The treatment of variable physical properties for the medium of the liquid and vapor
films must be done for solving the ordinary differential equations with the boundary
condition equations. The approaches for the treatment of variable physical properties
are presented as follows:

15.2.1 For Liquid Film

Treatment of variable physical properties of liquid will be done according to the
polynomial method. For example, for water the temperature-dependent expressions
of density, thermal conductivity, and absolute viscosity can be expressed as follows:

o = —4.48 x 107342 +999.9 (15.1)
A1 = —8.01 x 10752 +1.94 x 10731 4+ 0.563 (15.2)
1150  [690)>

= 16— —+(— 1073 15.3

"1 eXP|: T+(T)i|x (15.3)

ccording to Egs. (3. to (3.20), the pnysical property factors — 5=, ——=— an
According to Eqs. (5.24) to (5.26), the physical f [;gg; ljl‘j‘;;; d
%,3—25 in governing Eqs.(14.23) to (14.25) for water film become the following

equations at atmospheric pressure:

Ldor =2 x 448 x 1071 (1w — 15) d6;

—— = 15.4
o1 dny —4.48 x 107312 +999.9 dp, (154
1 duwy 1150 6902 de
——— =7 22X /5 ) v — 1) — (15.5)
i dnl T2 T3 dm
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Ldy (=2 x8.01 x 1070 4 1.94 x 1073 (ty, — 1) §% s
adpy  —8.01 x 10762 + 1.94 x 1037 + 0.563 (15.6)

15.2.2 For Vapor Film

The temperature parameter method introduced in Chap.5 [1] will be used for the
treatment of variable physical properties of the vapor medium. For the situation
here, the boundary temperature T, is taken, and the simple power-law equations

will be "
T \™
M“V = (T—) (15.7)
V,00 0
A T \"
- - (T—) (15.8)
V,00 o)
7\
pﬂ - (T—) (15.9)
V,00 00
Here we omit the equation for specific heat. With Egs. (15.7) and (15.9), we have
vy T ny+1
” = (T_) (15.10)
v,00 o

In addition, according to Chap. 5, we have the following equations for description of
the physical property factors Ldpy Lduy L dhy gpqg v‘v—‘w

v dny’ oy W’ Ay dny

1dpy _ (Ty/Too — d8y/dny (15.11)
oy dipy (Ts/ Too — 1B, + 1
L dpy _ nu(Ty/ Too — 1)d6, /dny (15.12)
wy dny, (Ts/Too — DO, + 1
1diy _ m(Ty/Too — Dd6y/dy, (15.13)
Ay dny (Ts/Too — DO, + 1
vtjﬁ = [(Ty/ Too — DB, + 117w FD (15.14)

v
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15.3 Numerical Solutions

15.3.1 Calculation Procedure

The calculation procedure of the equations of the two-phase boundary layer of the
film condensation of vapor belongs to three-point boundary value problem, and is
carried out numerically by two steps. In the first step, the solutions of Eqs. (14.23) to
(14.25) of the liquid film of Chap. 14 are assumed to be without shear force of vapor
at the liquid—vapor interface. For this case, the boundary condition (14.23) must be

changed into
dw.
( "’) =0 (15.15)
d?’}] n=nis

In this case, Eqs.(14.29) and (14.34) are taken as the boundary conditions of
the two-point boundary value problem of Egs.(14.23) to (14.25) for liquid film,
and are solved by the shooting method. Furthermore, the second step for carrying
out calculation of three-point boundary value problem for coupling equations of
liquid film with equations for vapor films is started. In this step, first the boundary
values Wy, s and Wy, , are found out by Egs. (14.30) and (14.31) respectively. Then,
Eqgs. (14.26) to (14.28) for the vapor film are calculated with the boundary conditions
(14.34) and (14.35) and the above values of Wy, ; and Wy,, ;. On this basis, judgment
Egs. (14.32) and (14.33) are used for checking convergence of the solutions. By means
of the judgment equations the calculation is iterated with appropriate change of the
values W,; s and ;5. In each iteration, the calculations of Eqgs. (14.23) to (14.25) for
liquid film and Egs. (14.26) to (14.28) for vapor film are made successively by the
shooting method.

15.3.2 Numerical Solution

From the governing ordinary equations and their boundary conditions, it will be
expected that for consideration of variable thermophysical properties of the liquid
and vapor medium, the dimensionless velocity and temperature fields for the film
condensation of vapor will depend on the temperature-dependent properties of the
liquid and vapor medium, and finally on the temperature conditions ty, 5 and 7.

All physical properties for water and water vapor at saturated temperature used
in the calculation come from Ref. [2—4]. For convenience some special values of the
physical properties are listed in Tables 15.1 and 15.2.

As an example of application for solving the theoretical and mathematical mode
of laminar film condensation of water vapor on an isothermal vertical plate, the
numerical calculation was carried out, while the film boiling of saturated water is
taken as its special case. From Chap.5 we know that the temperature parameters
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Table 15.1 The physical property values for water and water vapor at saturated temperature

Term value
For water For water vapour
1;(°C) 100 100
¢p (J/(kg/K)) 4216 -
hre (kJ/kg) - 2257.3
Pr 1.76 1
o(kg/m?) 958.1 0.5974
w (kg/(m/s)) 282.2 x 1076 12.28 x 10~°
v(m?/s) 0.294 x 107© 20.55 x 107©
A (W/(m/K)) 0.677 0.02478

Table 15.2 The values of water density at different temperatures
1(°C) 0 20 40 60 80 95 99.9
o (kg/m?) 999.8 998.3 992.3 983.2 971.4 961.7 958.1

ny.ny and ne, of water vapor are 1.04, 1.185, and 0.003. Such low value of ne, make
it possible to actually treat n, of water vapor as zero, i.e., ¢p is taken as constant.
For laminar free film condensation of water vapor for vapor superheated grade
A’°° (= ’°° lo~lsy — (), the numerical calculations have been carried out and some
typlcal calculated results for velocity fields Wy; and temperature fields 6; of liquid
film, and velocity field Wy, of vapor film are plotted in Figs. 15.1-15.4 with different

wall subcooled grades = A’W = ’S ’W and vapor superheated grades AIOO = ts:ﬂ
S

15.4 Variations of Velocity and Temperature Fields

From these numerical results, the following variations of velocity and temperature
fields are found together with wall subcooled grades and vapor superheated grade:

15.4.1 For Velocity Fields of Liquid Film

From Figs. 15.1-15.4, it is seen that the velocity of liquid film will increase with

increase in wall subcooled grades =™ Atw = &7 Increasing the wall subcooled grades

% = 57, the maximum of velocuy ﬁeld of liquid film will increase and shift
far away from the plate. In addition, the velocity of liquid film will decrease with
increase in the water vapor superheated grade, 2 = ==%However, compared
with the effect of wall subcooled grades on the Ves:locr[y of liquid film, the related

effect of the water vapor superheated grade is obviously weak.
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Fig. 15.1 Numerical results on a velocity profiles of liquid film, w,;, and b temperature profiles
of liquid film, 6;, and ¢ velocity profiles of vapor film, wy,, for laminar free film condensation of
subcooled water vapor with wall subcooled grade Ay — (.05 (Lines 1-5: vapor superheated grade

t.Y
%& =0,1.27,2.27,3.27, and 4.27)
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Fig. 15.2 Numerical results on a velocity profiles of liquid film, w,;, and b temperature profiles
of liquid film, 6;, and ¢ velocity profiles of vapor film, wy,, for laminar free film condensation of
subcooled water vapor with wall subcooled grade A — 0.2 (Lines 1-5: vapor superheated grade

1y
Al — (), 1.27,2.27, 3.27, and 4.27)
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Fig. 15.3 Numerical results on a velocity profiles of liquid film, w,;, and b temperature profiles
of liquid film, 6;, and ¢ velocity profiles of vapor film, wy,, for laminar free film condensation of
subcooled water vapor with wall subcooled grade Ahw — (.6 (Lines 1-5: vapor superheated grade

ty
A% =0,1.27,2.27,3.27, and 4.27)
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Fig. 15.4 Numerical results on a velocity profiles of liquid film, w,;, and b temperature profiles
of liquid film, 6;, and ¢ velocity profiles of vapor film, wy,, for laminar free film condensation of

subcooled water vapor with wall subcooled grade
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Furthermore, with increase in the wall subcooled grades £ = B the thick-
ness of liquid film will increase. With increase in the Water vapor superheated
grade, At"o = t°°t—_'s the thickness of liquid film will decrease.

S

15.4.2 For Temperature Fields of Liquid Film

From Figs. 15.1-15.4, it is seen that the temperature field of liquid film on the wall
will decrease with increase in wall sobcooled grade = Atw = ﬂ , and increase with

increase in water vapor superheated grade A’” = ’°°t ks However compared with

the effect of wall subcooled grades on the temperature of liquid film, the related
effect of the water vapor superheated grade is obviously weak.

15.4.3 For Velocity Fields of Vapor Film

From Figs. 15.1-15.4, it is seen that the velocity of vapor film will increase with
increase in the wall subcooled grades At_zw = "7'W , and decrease with increase in

Atoo

vapor superheated grade = % Furthermore, by increasing wall subcooled

grade = A’W = L7, the Veloc1ty of vapor film will decrease slightly. By increasing
the vapor superheated grade A’OC = P2k the velocity of vapor film will decrease
obviously. )

15.5 Remarks

In this chapter we deal with the solutions of velocity and temperature fields on
laminar free film condensation of vapor on a vertical flat plate at atmospheric pressure
with consideration of various physical property factors including variable physical
properties. The film condensation of saturated vapor is only its special case.

The system of ordinary differential equations and its related boundary conditions
is computed by a successively iterative procedure and an iterative method is adopted
for the numerical solutions of the three-point boundary value problem. On the basis
of the rigorous numerical solutions, the following points are included for the velocity
and temperature fields of laminar free convection film condensation of vapor:

With increase in the wall subcooled grades AI’W = 577, the maximum of velocity
field of liquid film will increase and shift far away from the plate. In addition, the
veloc1t)£ of liquid film will slightly decrease with increase in the vapor superheated

Ioo Ioo

grade = = [—:’5 Compared with the effect of wall subcooled grades on the
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velocity of liquid film, the related effect of the vapor superheated grade is obviously
weak.
With increase in the wall subcooled grades = ’S_’W , the thickness of liquid

film will increase. With increase in the vapor superheated grade, At"" = t“’ts =i the
thickness of liquid film will decrease.
The temperature grade of hquid film on the wall will decrease with increase in

the wall sobcooled grade = bt lW , and increase slightly with increasing vapor

superheated grade = Al — ’°°t ks Compared with the effect of wall subcooled grades

on the temperature of liquid ﬁlm the related effect of the vapor superheated grade
is obviously weak.

The velocity of vapor film will increase with increase in the wall superheated
grades = Ay — M , and decrease slightly with increase in vapor superheated grade

At’m = ’°°t_’5 Wlth increasing wall subcooled grade = A’W = ’S_’W , the velocity of

vapor film will decrease slightly. With increasing Vapor superheated grade At"" =

t°°ts lo~ls the velocity of vapor film will decrease obviously.

15.6 Exercises

1. Please give out a detailed derivation for obtaining Eqgs. (15.4-15.6) on physical
property factors for water condensate film flow of laminar free convection film
condensation of pure vapor.

2. Please give out a detailed derivation for obtaining Eqs. (15.11-15.14) on physical
property factors for vapor film flow of laminar free convection film condensation
of pure vapor.

3. Do you think that the variable physical properties are rigorously considered and
treated in this present system of mathematical models on the laminar free con-
vection film condensation of vapor? Why?

4. Please describe the variations of the velocity and temperature fields of the laminar
free convection film condensation of vapor caused by the wall superheated grade,

% (: ’Wt;ts) and liquid subcooled degree At” (: ’S:ﬁ ?
S S S

5. Compare the variation regulation of the velocrty and temperature fields on the
laminar free film condensation of vapor to that on laminar free convection film
boiling of liquid.

6. Please find out the difference in the variation regulation of the velocity and tem-
perature fields on the laminar free convection film condensation of vapor from
that on laminar free film boiling of liquid, and explain the reason.
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Chapter 16

Heat and Mass Transfer of Laminar Free
Convection Film Condensation of Pure
Vapor

Abstract With heat and mass transfer analysis, the theoretical equations for
Nusselt number and mass flow rate are provided for the laminar free convection
film condensation of vapor where only the wall temperature gradient and conden-
sate mass flow rates are unknown variables, respectively. With increase of the wall
subcooled grade, the wall temperature gradient will decrease, especially for lower
wall subcooled grade. While, with increase of the vapor bulk superheated grade,
the wall temperature gradient will increase. However, the effect of the wall sub-
cooled grade on the wall temperature gradient is more obvious than that of the vapor
bulk superheated grade. With increase of the wall subcooled grade, the condensate
film thickness will increase, especially for lower wall subcooled grade, while with
increase of the superheated grade, the condensate film thickness will decrease. How-
ever, the effect of the wall subcooled grade on the condensate film thickness is more
obvious than that of the vapor bulk superheated grade. With increase of the wall sub-
cooled grade, the velocity components will increase, especially for the small value of
the wall subcooled grade. While with increase of the vapor bulk superheated grade,
the velocity components will decrease. As per the results, with increase of the wall
subcooled grade, the condensate mass flow rate parameter will increase, especially
due to the function of condensate film thickness. While with increase of the vapor
bulk superheated grade, the mass flow rate parameter will decrease. However, the
effect of the wall subcooled grade on the condensate mass flow rate parameter is
more obvious than that of the vapor bulk superheated grade. On the basis of the
rigorous numerical solutions, the wall temperature gradient and then mass flow rate
parameter are formulated, and then the formulated equations for reliable predictions
of heat and mass transfer are created for heat and mass transfer application of the
laminar free convection film condensation of water vapor.

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 313
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_16,
© Springer-Verlag Berlin Heidelberg 2012
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16.1 Introduction

In Chap. 14, the complete mathematical model was provided for laminar free convec-
tion film condensation of vapor, where the model of film condensation of saturated
vapor is regarded as its special case [1-3]. In Chap. 15, the mathematical model
with the governing ordinary differential equations and the complete boundary con-
ditions were solved by a successively iterative procedure at different wall subcooled
degrees and different vapor superheated degrees. Meanwhile, the temperature para-
meter method and polynomial formulae reported in Chap. 5 are used for treatment of
the variable thermophysical properties of the vapor and liquid films, respectively. The
distributions of velocity and temperature fields of the laminar free film condensation
of vapor were rigorously calculated.

In this chapter, the effect of wall subcooled grade and vapor superheated grade
on heat and mass transfer of laminar free convection film condensation of vapor
is further clarified. On this basis, the theoretically rigorous and practically simple
formulae will be obtained for prediction of heat transfer and mass flow rate of the
film condensation of vapor.

16.2 Heat Transfer Analysis

Consulting the heat transfer analysis in Chap. 8 for heat transfer analysis on liquid
laminar free convection, the heat transfer theoretical equations can be expressed as
follows for laminar free convection film condensation of liquid:

The local heat transfer rate is described as

1 Ve de
qx = M w(tw — t5) (_erl,s) X (__) (16.1)
4 d’?l =0

With the Newtonian cooling law, the local heat transfer coefficient on the surface,
defined as gy = o (Tw — Tg), will be

1 1/4 40
Ay = Alw (_erl,s) x_l (__1) . (16.2)
4 dn; =0
The local Nusselt number, defined as Nuy; = i‘;‘—x, is expressed by
1 V4 dg
Nu, w = | Gry s - . (16.3)
4 dni / =0

The total heat transfer rate for position x = 0 to x with width of b on the plate

is an integration
X
Ox Z// Cbchz/ qxbdx
A 0


http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_15
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_8
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where A = b x x, and hence

4 1 40 dg,
Oy = _b)\l,w(tw — 1) _erl,s - . (16.4)
The average heat transfer rate, defined as Q, = Q, /(b x x) is given by
_ 4 1 174 do
0, = —x "hw(tw — ts) | - Gra s -— : (16.5)
3 4 ’ dn =0
The average heat transfer coefficient Q, defined as Q, = Gy (tw — f5)A is
expressed as
_ 4 1 V41 de
Ay = =Mw | —Gry s X - . (16.6)
3 4 dni /=0
The average Nusselt number defined as mx,,w = f:v will be
Nu ‘(i (_da (16.7)
u =-|-Gr - . .
xl,w 3\ 4 xl,s dnl 0

Therefore, we have

4
Oy = ngCIx
_ 4
(0% gle

_ 4

Nu, w = =Nuy w.

Obviously, the theoretical Egs. (16.1)—(16.7) on heat transfer of laminar free con-
densation of liquid are identical to the corresponding equations in Chap. 8 on liquid
laminar free convection, with only differences that the bulk temperature 7o, and the
local Grashof number Gry o of latter case are, respectively, replaced by the saturated
temperature 7 and the local Grashof number Gry; .

It is seen that, for practical calculation of heat transfer, only (g_zlz) o dependent
m=

on the solutions is no-given variable.

16.3 Wall Dimensionless Temperature Gradient

From the heat transfer analysis, it is found that heat transfer for the film condensation

of vapor is in direct proportion to wall dimensionless temperature gradient (%) o
m=


http://dx.doi.org/10.1007/978-3-642-28983-5_8
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the only one no-given variable for prediction of heat transfer. Then, correct prediction

of the temperature gradient (d(;i ) o is the key work for prediction of heat transfer
m=

of the film condensation of vapor.

The numerical solutions for dimensionless temperature gradient (g%) o for the
=

film condensation of water vapor at the different wall subcooled grades = AtW = tS;J
S

and vapor superheated grades = A’” = ZWIS s are obtained and described in Table 16.1,
and plotted in Fig. 16.1.
It is seen that with increasing the wall subcooled grade Atw = ’S_tw , the tem-

perature gradient (g%) 0 will decrease slower and slower. With increase of the

Atoc

vapor bulk superheated grade == = t°° I | the temperature gradient (df]; ) 0 will
m=

increase. However, the effect of the wall subcooled grade = A’W = 5= on the tem-

perature gradient (d_m) o is more obvious than that of the vapor bulk superheated
m=

grade Atoo _ loo—ts

Based on the numerlcal solutions, the wall dimensionless temperature gradient

(— (%) 0) for the film condensation of saturated water vapor is formu-
K Atoo=0

lated by using a curve-fitting method. Then, the formulation equation of the wall
dimensionless temperature gradient is shown as follows for the film condensation
of saturated water vapor:

a6, 1.74 — 0.198% Aty
_ (_) - (0.001 < B 1) (16.8)
d’]l =0 Alpo=0 (ﬂ) tS

Iy

The results predicted the numerical solutions, the wall dimensionless temperature

gradient (— (g—zi) 0) for the film condensation of saturated water vapor
n Atn =

by using Eq.(16.8) are listed in Table 16.1 compared with the related numerical
solutions. It is seen that their agreement is very good.

Based on these numerical solutions, the following formulae are obtain by using
a curve matching method for practical prediction equation of wall dimensionless

temperature gradient ( an ) 0 for the laminar free convection film condensation

of water vapor (saturated and superheated):

(d@]) (d@l) Atso
— _ e — | — + a -
dm / =0 dni / =0 Atog=0 Is
At At
(0.05 < t‘” < 1) and (o < t°° < 4.27) (16.9)
S S
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16.3 Wall Dimensionless Temperature Gradient
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4 -
3
e, 6
(—d—ﬂim:n
2 1
1 ‘ ; ; ‘ |
0 0.2 0.4 0.6 0.8 1

At/ t,

Fig. 16.1 Numerical solution of — (3%) 0 for laminar free convection film condensation of
m=

water vapor lines 1 to 6:% = % =0,0.27,1.27,2.27, 3.27, and 4.27, respectively

Ag\ 03119
a=0.0315x( tw) . (16.10)
N
The results predicted by using Eqs. (16.8)—(16.10) on the wall dimensionless tem-
perature gradient — (%) o for the film condensation of water vapor on a flat plate
m=

are listed in Table 16.1 compared with the related numerical solutions. It is seen that
their agreement is pretty good.

16.4 Practical Prediction Equations on Condensation
Heat Transfer

Combined with Egs. (16.8)—(16.10), Egs. (16.1)—(16.6) will become the following
equations, respectively, for prediction on the heat transfer of laminar free convection
film condensation of water vapor on a veridical flat plate:

Local heat transfer rate at position x per unit area on the plate can be predicted by

1 AR de, Alos
Gx = AMw(ty —ts) | =Gry s X —(— +a-
4‘ dn[ 7”:0 Atoozo tS

(16.19

The local Nusselt number can be predicted by

1 V4 ( (dp At .
Nuy w = (_erl,s) (_l) +a- > (16.37)
4 dr” )7[:0 Atpo=0 tS
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The total heat transfer rate for position x = 0tox with width of b on the plate
can be predicted by

4 1 174 do, At
Oy = _b)\l,w(tw — 1) (_erl,s) - (_) +a- x
3 4 an)yo) I

(16.4™)

Here, the dimensionless temperature gradient on the wall for the film conden-

sation of superheated water vapor, (— (g—g’l) 0) , and the coefficient a are
M=Y/) Atoo=0

calculated by Egs. (16.8) to (16.10) respectively.

16.5 Mass Transfer Analysis

The condensate mass transfer analysis expressions for film condensation of vapor
can be given below:

Set g, to be a local mass flow rate entering the liquid film at position x per unit
area of the plate. According to the boundary layer theory of fluid mechanics, g, is

expressed as
dé;
8x = Pl,s WXI’SE — Wyls .

With Egs. (14.16) and (14.17), the above equation is finally changed as

o —p 12 . ! —1/4
W V,00
8x = Pl,s |:2\/ 8Xx <—) le,s ané (Zerl,s)

PL,s

12 —4
Plw — P, 1
e (w—w) (ZG“‘I'S) Wyl,s}

PlL,s

The above equation is simplified to
1 Plow — Py, 1/2 —1/4
8x = 2;Ol,s |:le,‘¥_7716 — Wyl,s] A/ 8X (W—VOO _erl,s (16.11)
4 Pl,s 4
With Eq. (14.14) for definition of Gry; 5, we have

2

- vV
Piw — Pvoo _ ﬁGrﬂ,S (16.12)

Pl,s

With Egs. (16.12), Eq.(16.11) is changed to


http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_14
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1 Vi V2 174
8x = 2:01,& [le,sZUZS - vgxwyl,s] (g_);;erl,s) (Zerl,s)

ie.,

1 vlz 12 1 12 11 —l/4
8x = 4,01,3 [le,sznl(S - Wyl,si| A/ 8X (g_;) (Zerl,s) (Zerl,s)

The above equation is further simplified to

1 1/4
8x = MUl sX ! (Zerl,s) (15 le,x - 4Wyl,s]

i.e.,

1 1/4
&x = /vbz,sx*‘ (Zerz,s) o (16.13)

where
Dy = nisWii s — 4Wyl,s (16.14)

is defined as the mass flow rate parameter of the film condensation.
Take G, to express fotal mass flow rate entering the boundary layer for position
x = 0 to x with width of b of the plate, it should be the following integration:

ze//gdi
A
X
:b/gxdx

0

where A = b - x is related area of the plate, and b is the related width of the plate.
Then, we obtain

X

1 1/4
Gy = b/ﬂ-l,sx ! (Zerl,s) (nlSle,s - 4Wyl,s)dx
0

With Eq. (13.15) for definition of Gry; s, we obtain

A : 1/4
Gy = §b s (Zerl,s) (s Wxt,s — 4Wyi5)

or


http://dx.doi.org/10.1007/978-3-642-28983-5_13
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4 1 14
Go=3b- s (ZGr"l*s) @, (16.15)

16.6 Mass Flow Rate Parameter

From Eqgs. (16.13) to (16.15), it follows that the mass flow rates of the condensate,
gx and Gy, depend on the defined local Grashof number Gr,; s, absolute viscos-
ity u;s and mass flow rate parameter ®; of the film condensation. Obviously, for
practical evaluation of the mass flow rate of the film condensation, only mass flow
rate parameter ®; dependent on the numerical solutions is unknown variable. From
Eq.(16.14), it is known that mass flow rate parameter ®; depends on the dimension-
less condensate film thickness 7;s, as well as the dimensionless condensate velocity
components at the liquid—vapor interface, Wy; s and Wy .

16.6.1 Condensate Film Thickness and Velocity Components
at the Interface

The numerical solutions on dimensionless condensate film thickness 1;s for the film
condensation of water vapor (saturated and superheated) with variation of Varia-

tion of the wall subcooled grade ISW = ts:—tw and vapor bulk superheated grade

Aloe (: foo— *) are listed in Table 16.2, and plotted in Fig. 16.2, respectively. Then ,

Is

we can understand the following effects of wall subcooled Grade A’W = 57" and

At ot
vapor bulk superheated temperature = (— = 5) on 1;s.

From Fig. 16.2, it is seen that wrth increasing the wall subcooled grade = A’W =

Is—tw
ts

vapor bulk superheated grade %(: %), the condensate film thickness ns, will
decrease.

Furthermore, the effect of the wall subcooled grade At’W :’W on the conden-
sate film thickness 7s, is more obvious than that of vapor bulk superheated grade
Ao (= foo=ts )

, the condensate film thickness ns, will increase, while with 1ncreasmg

Is

15 s
Meanwhile, the rigorous numerical solutions of the condensate liquid film thick-
ness (1;s) Ar,,=0 for the film condensation of saturated water vapor on a flat plate are
formulated as follows by using a curve-fitting method:

At 0.2562 At
(MN15) Aray=0 = 0.5934( W) (0.001 <Y< 0.2) (16.16)

S S
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Fig. 16.2 Numerical solution of ns, with At—zw = % and At%(: %) for laminar film

condensation of water vapor (saturated and superheated) lines 1-6: A[% (: %) = 0,0.27,
1.27,2.27,3.27, and 4.27, respectively

At
(115) Atso=0 = 0.417 —

Is

Aty
+0.3223 (0.2 < < 1) (16.17)

Is

The results of the condensate liquid film thickness (7;5) Az,, =0 of the film conden-
sation of saturated water vapor on a flat plate predicted by Eqgs. (16.16) and (16.17)
are listed in Table 16.2 compared with the related numerical solutions. It is seen that
Eqgs. (16.16) and (16.17) are coincident very well to the numerical solutions.

The rigorous numerical solutions of the condensate liquid film thickness 7;s of
the film condensation of water vapor (saturated and superheated) on a flat plate are
formulated as following by using the curve-fitting method:

At At
N1s = (Mis) Atee=0 + @ too (0 < too < 4.27) (16.18)
S S
where
N Aty Aty
a= 0.0045( . ) — 0.0132( ; ) — 0.005 (0.05 < . < 1) (16.19)
S S S

The results on the condensate liquid film thickness 7;s of the film condensation of
superheated water vapor on a flat plate predicted by using Egs. (16. 18) and (16.19)
are listed in Table 16 2 with the variation of wall subcooled grade ¥ and vapor

superheated grade , and compared with the related numerical results It is found
that such predrcted results are very well coincident to the numerical solutions.
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Table 16.3 Numerical solutions of Wy s with At—iw = % and At% (: %) for laminar free

convection film condensation of water vapor (saturated and superheated)
Atoo (_ loo—ls o
A (=) woC
99.9 95 90 80 60 40 20 0

Aty _ ti—ty
rS - tS

0.001 0.05 0.10 0.20 0.40 0.60 0.80 1.00

Wx1,<3
0 0.005124 0.03542 0.04895 0.06609 0.08501 0.09455 0.09920 0.10100
0.27 0.005025 0.035019 0.04840 0.06534 0.08407 0.09353 0.09811 0.10003
1.27 0.00446 0.03360 0.04644 0.06272 0.08079 0.08995 0.09435 0.09657
2.27 0.003844 0.03230 0.04466 0.06032 0.07779 0.08667 0.09100 0.09308
3.27 0.00323 0.03112 0.04295 0.05814 0.07496 0.08360 0.08780 0.08987
4.37 0.00267 0.03000 0.04152 0.05611 0.07240 0.08078 0.08495 0.08692

Table 16.4 Numerical solutions of —Wy; 5 with % = 57h and Ar@ (: ”"’t—"‘) for laminar film

condensation of water vapor (saturated and superheated)
At

w
(Z; % ) 99.9 95 90 80 60 40 20 1

—

A A

0.001 0.05 0.10 0.20 0.40 0.60 0.80 1.00

_Wyl,(S
0 0.00013  0.00241 0.00399 0.00648 0.01004 0.01230 0.01346 0.01362
0.27 0.000125 0.002367 0.003918 0.00636 0.0099 0.01209 0.01324 0.01339
1.27 0.000103 0.002219 0.003675 0.00597 0.00934 0.01135 0.01241 0.0121263
2.27 0.000082 0.002087 0.00346 0.00562 0.00873 0.01070 0.01171 0.01189
3.27 0.000062 0.001969 0.003258 0.00531 0.00823 0.01010 0.01106 0.01124
4.27 0.000046 0.001861 0.003093 0.00503 0.00780 0.0096 0.01048 0.01064

16.6.2 Interfacial Velocity Components

Furthermore, the numerical solutions on the dimensionless condensate velocity com-
ponents at the liquid-vapor interface, W,; ¢ and Wy, s, for the film condensation

of water vapor (saturated and superheated) with variation of the wall subcooled

grade 2™ = “—" and vapor bulk superheated grade £ (: et ‘) are listed in

Tables 16 3 and 16 4, and plotted in Figs. 16.3 and 16.4 respectlvely Then, we can
understand the effects of wall subcooled Grade 2 = [:W and vapor bulk super-

heated temperature A’°° (= t°°t lo—lsy op W15 and Wyl 5.

It is seen from F1gs 16.3 and 16.4 that with i increasing the wall subcooled grade

% = ’S:[W the velocity components W,; ; and —W,; ; will increase, especially
S
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Fig. 16.3 Numerical solution of W,; s with A[—zw = % and At’—s“’(z %) for laminar

film condensation of water vapor (saturated and superheated) lines 1-6: 6%(: %) =
0,0.27, 1.27,2.27,3.27, and 4.27, respectively

0.014

0.012 /Aﬁ
e ————
v 0.008 // :2

—*—5
0.004 —e6
0.002
0 T T T T
0 0.2 0.4 0.6 0.8 1
At /1,
Fig. 16.4 Numerical solution of —W,; 5 with % = ’5;—"” and At#(: ’ﬁ—__’s) for laminar free

convection film condensation of water vapor (saturated and superheated) lines 1-6: Af% (= %) =
0,0.27, 1.27,2.27, 3.27, and 4.27, respectively ’ )

Aty
X

superheated grade At# (: t@"’t—:’*), the velocity components Wy s and —W,y; ; will
decrease.

for smaller wall subcooled grade = % While with increasing the bulk
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16.6.3 Condensate Mass Flow Rate Parameter

Based on the numerical solutions listed in Table 16.2 to Fig.16.4 on the dimen-
sionless condensate film thickness 7;s5, and dimensionless condensate film velocity
components at the liquid—vapor interface, Wy; ; and — W, , the numerical solutions
on &, for the film condensation of water vapor (saturated and superheated) on a

flat plate, with variation of the wall subcooled grade = A’W = ’S w and vapor vapor

bulk superheated grade At” (— foo— S) are evaluated by using Eq (16.14), listed in

Table 16.5, and plotted in F1g 16. 5
Itis seen from Fig. 16.5 that with increase of the wall subcooled grade 2% = B
the mass flow rate parameter ®; will increase, especially for the smaller wall sub-

cooled grade AIZW = ts:‘”. While with increase of the vapor bulk superheated

grade Alog (: foots ) the mass flow rate parameter ®; will decrease. On the

[ [
other hand, effect of the wall subcooled grade Attw = :IW on the mass flow

rate parameter ®; is more obvious than that of the vapor bulk superheated grade
Ao (= m)
ts ts )
According to the corresponding numerical solutions, the expressions for the con-
densate mass flow rate parameter (®;)as,,—o of the film condensation of saturated
water vapor are obtained as follows by means of a curve-matching method:

At Aty \ 74 At
(P) Atyo=0 = (0.186 —0.057 tW) ( tw) (0.001 <
N S S

< 1) (16.20)

The predicted values on (®)as,,=0 by using Eq. (16.20) are listed in Table 16.5
compared with the related numerical solutions, and it is seen that the agreement is
pretty good.

According to the corresponding numerical solutions, the expressions for the con-
densate mass flow rate parameter ®;of the film condensation of water vapor (both
of saturated vapor and superheated vapor) are obtained as follows by means of a
curve-matching method:

For0 < &= <4.27

At At
Oy = (Ps)ar—0 — B t°° (0.05 <Y< 1) (16.21)

S tS

where

At Aty \2 At
=10"%x |:2.756+ 121.4 t‘” —60( tw) } (0.05 < tw < 1) (16.22)
S S S
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s s s Is
for laminar free convection film condensation of water vapor (saturated and superheated) Lines 1

0 6: Al (: @) —0,0.27, 1.27, 2.27, 3.27 and 4.27, respectively

Fig. 16.5 Numerical results of ®; = ;s Wy s — 4Wy; 5 with AZ—:W (: 5w ) and AI% = lols

The results on the condensate mass flow rate parameter ®; evaluated by using
Eqgs. (16.20)—(16.22) are listed in Table 16.5 compared with the related numerical
solutions. It is seen that their agreement is pretty good.

16.7 Practical Pr