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Preface to the First Edition

Welcome to Free Convection Film Flows and Heat Transfer! Free convection film
flows occur in many industrial processes. However, engineers still have to deal
with many unresolved problems. This book systematically summarizes my recent
research results that have been referred to and cited by many other researchers in
this field. The purpose of this book is to provide a practical guide to university
students, graduate students, design engineers, researchers and scientists who wish
to further understand the characteristics of Free Convection Film Flows and Heat
Transfer. I hope that this book will serve as a useful tool for them, as well as a
guide to future research.

This book includes three related parts: (1) accelerating free convective boundary
layers of Newtonian fluids; (2) accelerating free convection film boiling and con-
densation of Newtonian fluids, (3) accelerating film flows of non-Newtonian
power–law fluids. These phenomena are all caused by buoyancy or gravity flows,
and can be summed up in terms of the free convection film flows. In addition, the
free convection film flows of Newtonian fluids can be taken as a special case of
non-Newtonian power–law fluids.

In this book, I present my recent studies of free convection film flows and heat
transfer on both vertical and inclined plates. Because of a lack of related books
presenting the effects of variable thermophysical properties on heat and mass
transfer, these effects are especially emphasized in this book with respect to free
convection, free convection film boiling, and free convection film condensation of
Newtonian fluids. A system of models for the treatment of variable thermophysical
properties is introduced in this book, with an innovative temperature parameter
method for gases and temperature-dependent models for liquids. A novel system of
analysis and transformation models with an innovative velocity component
method is applied throughout the book. This is a better alternative to the traditional
Falkner–Skan-type transformation. The new analytical system and models lead to
simplification for treatment of variable thermophysical properties of fluids, as well
as hydrodynamics and heat transfer analysis. A system of reliable and rigorous
computations solving the problems for two-point or three-point boundary values is
provided in this book. In the analyses and calculations of the first two parts of this
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book, I focus on clarifying the effects of variable thermophysical properties on
heat and mass transfer. A system of numerical solutions is formulated to predict
heat and mass transfer simply and reliably. In the last part of this book, heat and
mass transfer of the accelerating film flows of Newtonian fluids are extended to
that of non-Newtonian power–law fluids. So far, there has been a lack of such
information and analysis for advanced heat and mass transfer of accelerating film
flows of non-Newtonian power–law fluids.

In addition, a collection of novel terminologies has arisen in this book, e.g.,
velocity component method, temperature parameter method, thermal conductivity
parameter, viscosity parameter, specific heat parameter, overall temperature
parameters, thermal physical property factors, boundary temperature ratio, buoy-
ancy factor, wall superheated grade, wall subcooled grade, reference wall
subcooled grade vapor bulk superheated grade, liquid bulk subcooled grade,
computation for three-point boundary value problem, temperature gradient on the
wall, velocity components at the interface, vapor film thickness, liquid film thickness,
mass flow rate through the interface, mass flow rate parameter, Non-Newtonian
power–law fluids, length of boundary layer region, boundary layer thickness, local
Prandtl number, critical local Prandtl number, critical boundary layer thickness,
and so on. These terminologies reflect the recent developments on my study of free
convection film flows and heat transfer. Therefore, I strongly urge readers to pay
particular attention to the special physical significance of these terminologies.
Readers will find them beneficial to understanding the essence of this book.

I am greatly indebted to Professor B.X. Wang, Academician of Chinese
Academy of Science, and member of the Executive Committee of the International
Center for Heat and Mass Transfer, who was my guide Professor for my Ph.D.
studies of Tsinghua University, China. The recent developments devoted to Part 1
and Part 2 of this book relied on our long-term research cooperation. In addition,
he carefully proofread the second chapter of this book and provided many valuable
suggestions to the whole book. He even suggested the title of this book.

I am very grateful to Professor H. I. Andersson, Department for Energy and
Process Engineering, Norwegian University of Science and Technology, Norway,
for his highly effective cooperation related to the research developments shown in
Part 3 of this book. As a distinguished researcher in the field of accelerating film
flows of non-Newtonian fluids, his erudite and honorable character deeply
impressed me. At the same time, I gratefully acknowledge the Norwegian
Research Council for awarding me the very prestigious title of international sci-
entist and providing financial support for my extensive research there in cooper-
ation with Professor Andersson.

In addition, many friends and colleagues have contributed to this book. Here,
I would particularly like to thank Professor Liangcai Zhong, Northeastern
University, China, as well as some of my previous students, notably Yu Quan,
Yang Wang, Yue Yuan, Hongyi Wang and Li Ren. They will see their contri-
butions presented in the book. Without their collaborative research efforts this
book would not have been possible.
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I would like to offer my sincere gratitude to Professor Hongtan Liu, Department
of Mechanical and Aerospace Engineering, University of Miami, USA, and Pro-
fessor Ben Q. Li, School of Mechanical and Materials Engineering, Washington
State University, USA. As good friends in my academic circles in North America,
their warm encouragement gave me the full confidence to complete this book.

I would like to thank my respectable friend, Professor Pran Manga, School of
Management, Department of Economy, University of Ottawa, who spent time
going through parts of the manuscript. Owing to his generous help, this book could
be completed in time.

Last and most of all, I offer a special word of thanks to my wife, Shihua Sun.
During most of the past one and half years when I devoted to writing this book, she
provided the loving family environment that offered me the tranquility and peace
of mind that made writing it possible. This book is dedicated to her.

January, 2006 De-Yi Shang
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Preface to the Second Edition

In the 5 years since the first edition of this book was published, its second edition
has been published. During the past 5 years, we reported our extensive investiga-
tion results on heat and mass transfer of laminar free convection film condensation
of vapour–gas mixture, with the following research developments: (i) a complete
similarity mathematical model for convenient analysis and simultaneous numerical
solution; (ii) a complete method for treatment of temperature- and concentration-
dependent variable physical properties of vapour–gas mixture; (iii) an available
method and procedure to resolve the challenge associated with obtaining the
interfacial vapour saturations temperature; (iv) a system of analysis and calculation
results on velocity and temperature fields, as well as heat and mass transfer
of laminar free convection film condensation of vapour–mass mixture. Beyond my
expectation, these new research developments are paid a particular attention by the
‘‘Global Thermal Fluids Central’’ who sent me a congratulations letter on the
inclusion of my biographical sketch in the ‘‘Who’s Who in Thermal-Fluids’’. These
research developments have been collected in the existing second edition.

In addition, with an additional part ‘‘Theoretical Foundation’’, a particular
emphasis is laid on the theoretical description in the second edition. Two addi-
tional chapters are involved in this part. They are ‘‘New similarity analysis method
for laminar free convection boundary layer and film flows’’ and ‘‘New Method for
Treatment of Variable Physical Properties’’. In the former chapter, a system of
detailed theoretical analysis and derivation is provided for creation of the new
similarity method and construction of the complete theoretical model. In the latter
chapter, an advanced method and some comprehensive models are reported for
treatment of temperature-dependent physical properties of gas and liquid, as well
as concentration- and temperature-dependent physical properties of vapour–gas
mixture. Since these models for treatments of variable physical properties are
based on the typical experimental values, they will guarantee the research results
provided in this book have the practical application values.

Furthermore, during the work on second edition of the book, a series of sig-
nificant work was done for serious examination of the system of numerical results,
and careful modification of the system of formulated equations proposed for
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practical and reliable prediction of heat and mass transfer. Then, I expect the
second edition would be obviously improved book based on its first edition. I
welcome the comments on any aspect of it.

At last, I have found that it is necessary to change the expression on the author
name of this book from ‘‘Deyi Shang’’ to ‘‘De-Yi Shang’’, in order to match that in
my numerous other publications. Although both of them are definitely same
expression in Chinese Phonetic Alphabet, they have caused a big confusion for
identification in English.

October, 2011 De-Yi Shang
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Symbols

a Thermal diffusive coefficient, m2/s; assumption for ignoring the
variable thermophysical properties (or for Boussinesq approximation)

A Area, m2

b Width of plate, m; assumption for ignoring the shear force at the
liquid–vapor interface

c Assumption for ignoring inertia force of condensate film
Cx,f Local skin-friction coefficient of non-Newtonian power–law fluids,

2Re�1=ðnþ1Þ
x

dWx

dg

� �
g¼0

� �n

Cmg Gas mass fraction in vapour–gas mixture
Cmv Vapor mass fraction in vapour–gas mixture
Cmv,s Interfacial vapor mass fraction
Cmv;1 Bulk vapor mass fraction
Cmv;1

� Critical bulk vapor mass fraction (corresponding to the case for
interfacial vapor saturation temperature Ts;int ! Tw)

cp Specific heat at constant pressure, J/(kg k)
cpg

Gas specific heat, J/(kg K)
cpv Vapor specific heat, J/(kg K)
cpm Specific heat of vapor–gas mixture, J/(kg K)
d Assumption for ignoring the thermal convection of condensate film
Dv Vapor mass diffusion coefficient in gas, m2/s
e Internal energy per unit mass, J/kg
E Internal energy, J
_E Internal energy per unit time in system, d E

�
¼ Q
�
þWout

�
, W

DE Increment of internal energy in a system, J

D E
� Increment of internal energy per unit time in system, W

Eqx
� Deviation of heat transfer of free convection predicted by using

Boussinesq approximation to that with considering variable
physical properties
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F Force, N
Fm Mass force acting on the control, N
Fs Surface force acting on the control, N

F
! Surface force per unit mass, m/s2

g Gravity acceleration, m/s2

G
� Momentum increment per unit time in system, kg m/s2

Gr Grashof number
Grx Local Grashof number
Grx;1 Local Grashof number for gas laminar free convection, g Tw=T1�1j jx3

m2
1

,

local Grashof number for liquid laminar free convection,
g q1=qw�1j jx3

m2
1

Grxv;s Local Grashof number of vapor film for film boiling,
gðql;1=qv;w�1Þx3

m2
v;s

Grxl;1 Local Grashof number of liquid film for film boiling,
gðql;1=ql;s�1Þx3

m2
l;1

Grxl;s Local Grashof number of liquid film for film condensation of

vapour,
gðql;w�qv;1Þx3

m2
l;sql;s

Grxv;1 Local Grashof number of vapour film for film condensation of

vapour,
gðqv;s=qv;1�1Þx3

m2
v;1

Grxl;s Local Grashof number of condensate liquid film for film conden-

sation of vapour–gas mixture,
gðql;w�qm;1Þx3

m2
l;sql;s

Grxm;1 Local Grashof number of vapor–gas mixture film or film conden-

sation of vapour–gas mixture,
gðqm;s=qm;1�1Þx3

m2
m;1

gx Local mass flow rate entering the vapor film at position x per unit
area of the plate, kg/(m2 s)

Gx Total mass flow rate entering the vapor film for position x ¼ 0 to x
with width of b of the plate, kg/s

gðg; fÞ Defined temperature gradient for pseudo-similarity case, ohðg;fÞ
of

H Enthalpy, E þ pV , cpt, J
h Specific enthalpy (enthalpy per unit mass), e ? pv, J/kg
hfg Latent heat of vaporization, J/kg
[J] Basis dimension for quantity of heat
K Coefficient of consistency of non-Newtonial power–law fluids,

kg sn-2 /m
[K] Basis dimension for temperature
[kg] Basis dimension for mass
L Reference length of plate, m
LDV Laser Doppler Velocimeter
m More complete condition

m
� Mass increment per unit time, kg/s
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[m] Basis dimension for length
n Power law index; number of independent physical variables
nk Thermal conductivity parameter
nl Viscosity parameter
ncp Specific heat parameter
nlk Overall temperature parameter
nk;g Thermal conductivity parameter of gas
nk;v Thermal conductivity parameter of vapor
nl;g Viscosity parameter of gas
nl;v Viscosity parameter of vapour
Nux;w Local Nusselt number with wall temperature tw as reference

temperature, axx=kw
Nux;w Average Nusselt number with wall temperature tw as reference

temperature, axx=kw
p Pressure, N/m2

Pr Randtl number
Prx Local Prandtl number of falling film flow of non-Newtonian

power–law fluids, xwx;1
a Re�2=ðnþ1Þ

x

Prx
� Critical Prandtl number of falling flim flow of non-Newtonian

power–law fluids
Prg Gas Prandtl number
Prv Vapor Prandtl number
Prm Prandtl number of vapor–gas mixture
Q Heat, J

Q
� Heat entering the system per unit time, W

Qin Heat transferred into the system from its surroundings, J
qx Local heat transfer rate at position x per unit area on the plate,

W/m2

qx
� Local heat transfer rate at position x per unit area on the plate under

Boussinesq approximation, W/m2

Qx Total heat transfer rate for position x ¼ 0 to x with width of b on
the plate, W

r Number of basic dimension
Rex Local Reynolds number
[s] Basis dimension for time
Scm,? Local Schmidt number, defined as Scm;1 ¼ mm;1

Dv

t Temperature, �C
T Absolute temperature, K
ts Saturation temperature of pure vapour, �C
tw Wall temperature, �C
Dtw Wall superheated temperature for film boiling, tw � ts; wall

subcooled temperature for film condensation, ts�tw , �C
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Dtw
ts

Wall superheated grade or film boiling, tw�ts
ts

, wall subcooled grade

for film condensation of vapour, ts�tw
ts

Dt1 Liquid subcooled temperature, for film boiling ts � t1,
vapour superheated temperature, for film condensation of vapour,
t1 � ts, �C

Dt1
ts

Liquid subcooled temperature, for film boiling ts�t1
ts

, vapour

superheated temperature for film condensation of vapour, t1�ts
ts

, �C

ts;int Interfacial vapor saturation temperature related to film condensa-
tion of vapour–gas mixture, �C

ts;int � tw Wall subcooled temperature related to film condensation of
vapour–gas mixture, �C

ts;ref Reference saturation temperature expressed by the saturation
temperature of pure vapour with Cmv;1 ¼ 1 �C

ts;ref�tw
ts;ref

Reference wall subcooled grade, �C

Tw/T? Boundary temperature ratio for free convection
Tw/Ts Film boundary temperature ratio for vapour film
V Volume, m3

v Specific volume, m3/kg
wx, wy, wz Velocity components in x, y, z direction respectively, m/s
Wx, Wy, Wz Dimensional velocity component in x, y, z direction respectively,

respectively
wxl, wyl Condensate liquid velocity components in x and y-coordinates,

respectively, m/s
Wxl, Wyl Dimensionless condensate liquid velocity components in x and

y-coordinates, respectively
wxl,s, wyl,s Condensate liquid velocity components at liquid–vapor interface in

x and y-coordinates, respectively, m/s
Wxl,s, Wyl,s Dimensionless condensate liquid velocity components at liquid–

vapor interface in x and y-coordinates, respectively
wxv, wyv Vapour velocity components in x and y-coordinates, respectively,

m/s
Wxv, Wyv Dimensionless vapour velocity components in x and y-coordinates,

respectively
wxv,s, wyv,s Vapour velocity components at liquid–vapor interface in x and

y-coordinates, respectively, m/s
Wxv,s, Wyv,s Dimensionless vapour velocity components at liquid–vapor inter-

face in x and y-coordinates, respectively
wxm, wym Velocity components of vapor–gas mixture in x and y-coordinates,

respectively, m/s
Wxm, Wym Dimensionless vapor–gas mixture velocity components in x and

y-coordinates, respectively
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wxm,s, wym,s Velocity components of vapor–gas mixture at liquid–vapor inter-
face in x and y-coordinates, respectively, m/s

Wxm,s, Wym,s Dimensionless vapor–gas mixture velocity components at liquid–
vapor interface in x and y-coordinates, respectively

wx,? Velocity component beyond the boundary layer

W
! Velocity, wxiþ wyjþ wzk

W
� Work done per unit time, W

Wout
� Work per unit time acting on the system, J

x0 Length of the boundary layer region, m
x, y, z Dimensional coordinate variables
�dwx=dy Shear rate, 1/s
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Greek Symbols

q Density, kg/m3

qg Gas density, kg/m3

qv Density of vapor, kg/m3

qm Density of vapour–gas mixture, kg/m3

qmg Local density of gas in vapor–gas mixture, kg/m3

qmv Local density of vapor in vapor–gas mixture, kg/m3

k Thermal conductivity, W/(m K)
kg Thermal conductivity of gas, W/(m K)
kv Thermal conductivity of vapor, W/(m K)
km Thermal conductivity of vapor–gas mixture, W/(m K)
l Absolute viscosity, kg/(m s)
lg Gas absolute viscosity, kg/(m s)
lv Vapor absolute viscosity, kg/(m s)
lm Absolute viscosity of vapor–gas mixture, kg/(m s)
ll,s Liquid absolute viscosity at the liquid–vapor interface
la The apparent viscosity, kg/(m s)
m Kinetic viscosity, m2/s
b Thermal volumetric expansion coefficient, K-1

s Shear stress, N/m2

s
! Surface force acting on unit area; shear stress, N/m2

e Deformation rate
[ ] Symbol of tensor
{ } Symbol of quantity grade
g Dimensionless coordinate variable for boundary layer and film flow
gvd Dimensionless thickness of vapor film
gl Dimensionless co-ordinate variable of condensate liquid film
gv Dimensionless co-ordinate variable of vapour film
gm Dimensionless co-ordinate variable of vapor–gas mixture
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gld Dimensionless thickness for liquid film
gdl

Dimensionless momentum boundary layer thickness
gdT

Dimensionless thermal boundary layer thickness
gdl
� Dimensionless critical boundary layer thickness

d Boundary layer thickness, m
dl Condensate liquid film thickness, m
dv Thickness of vapor film, m
dc Concentration boundary layer thickness of vapor–gas mixture, m
dm Momentum boundary layer thickness of vapor–gas mixture, m
dlðxÞ Boundary layer thickness at the x position, m
dlðx0Þ Critical film thickness related to x0, m
Us Mass flow rate parameter
w Flow function
a, c Inclined angle of surface
ax Local heat transfer coefficient, W/(m2 K)
ax Average heat transfer coefficient, W/(m2 K)
h Dimensionless temperature
hv Dimensionless temperature of vapor film
hl Dimensionless temperature of liquid film
hm Dimensionless temperature of vapor–gas mixture film
hðg; fÞ Pseudo-similarity solution of dimensionless temperature
Cmv Vapor relative mass fraction, Cmv�Cmv;1

Cmv;s�Cmv;1

dh
dg

� �
g¼0

Dimensionless temperature gradient on the plate

1
q

dq
dx

Density factor

1
qg

dqg

dgm

Density factor of gas

1
qv

dqv

dgm

Density factor of vapor

1
qm

dqm

dgm

Density factor of vapor–gas mixture

1
k

dk
dg

Thermal conductivity factor

1
kg

dkg

dgm

Thermal conductivity factor of gas

1
kv

dkv

dgm

Thermal conductivity factor of vapor

1
km

dkm

dgm

Thermal conductivity factor of vapor–gas mixture

1
l

dl
dg

Viscosity factor

1
lg

dlg

dgm

Viscosity factor of gas

1
lv

dlv

dgm

Viscosity factor of vapor
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1
lm

dlm

dgm

Viscosity factor of vapor–gas mixture

mv;s

mv
Kinetic viscosity factor

wðPrÞ Boussinesq solution
f x

x0
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Subscripts

a Assumption a
b Assumption b
c Assumption c
d Assumption d
f Film
g Gas
i Inclined caseapply
int Interfacial
l Liquid
m More complete condition
s Surface force
v Vertical case; vapour case
w At wall
? Far from the wall surface
d Thickness of boundary layer
sub Subcooling state
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Chapter 2
Basic Conservation Equations for Laminar
Free Convection

Abstract In this chapter, the basic conservation equations related to laminar free
fluid flow conservation equations are introduced. For this purpose, the related general
laminar free conservation equations on continuity equation, momentum equation, and
energy equation are derived theoretically. On this basis, the corresponding conserva-
tion equations of mass, momentum, and energy for steady laminar free convection
boundary layer are obtained by the quantities grade analysis.

2.1 Continuity Equation

The conceptual basis for the derivation of the continuity equation of fluid flow is the
mass conservation law. The control volume for the derivation of continuity equation
is shown in Fig. 2.1 in which the mass conservation principle is stated as

•
m increment = •

m in − •
m out (2.1)

where
•
m increment expresses the mass increment per unit time in the control volume,

•
m in represents the mass flowing into the control volume per unit time, and

•
m out is

the mass flowing out of the control volume per unit time. The dot notation signifies
a unit time.

In the control volume, the mass of fluid flow is given by ρdxdydz, and the mass
increment per unit time in the control volume can be expressed as

•
m increment = ∂ρ

∂τ
dxdydz. (2.2)

The mass flowing into the control volume per unit time in the x direction is given by
ρwx dydz. The mass flowing out of the control volume in a unit time in the x direction
is given by [ρwx + ∂ (ρwx ) /∂x · dx] dydz. Thus, the mass increment per unit time

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 27
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_2,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 2.1 Control volume for
the derivation of the continuity
equations

outinincrement mmm
•

= −
••

dz

dy 
dx

•

inm

outn
•

in the x direction in the control volume is given by ∂(ρwx )
∂x dxdydz. Similarly, the mass

increments in the control volume in the y and z directions per unit time are given by
∂(ρwy)

∂y dydxdz and ∂(ρwz)
∂z dzdxdy, respectively. We, thus, obtain

•
mout − •

min =
(

∂(ρwx)

∂x
+ ∂

(
ρwy

)
∂y

+ ∂(ρwz)

∂z

)
dxdydz. (2.3)

Combining Eq. (2.1) with Eqs. (2.2) and (2.3), we obtain the following continuity
equation in Cartesian coordinates:

∂ρ

∂τ
+ ∂ (ρwx )

∂x
+ ∂

(
ρwy

)
∂y

+ ∂ (ρwz)

∂z
= 0 (2.4)

or in the vector notation
∂ρ

∂τ
+ ∇ · (ρ

→
W ) = 0. (2.5)

or
Dρ

Dτ
+ ρ∇ · (

→
W ) = 0 (2.6)

when ρ is constant and
→
W = iwx + jwy + kwz is the fluid velocity.

For steady state, the vector and Cartesian forms of the continuity equation are
given by

∂

∂x
(ρwx ) + ∂

∂y
(ρwy) + ∂

∂z
(ρwz) = 0. (2.7)

or
∇ · (ρ

→
W ) = 0 (2.8)
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Fig. 2.2 Control volume for
the derivation of momentum
equations

inxG ,

dy
dx

dz

outxG ,

•
•

xF

2.2 Momentum Equation (Navier–Stokes Equations)

The control volume for the derivation of the momentum equation of fluid flow is
shown in Fig. 2.2. Meanwhile, take an enclosed surface A that includes the control
volume. According to momentum law, the momentum increment of the fluid flow
per unit time equals the sum of the mass force and surface force acting on the fluid.
The relationship is shown as below:

•
G increment = �Fm + �Fs (2.9)

where
→
F m and

→
F s denote mass force and surface force, respectively.

In the system, the momentum increment
•
m increment of the fluid flow per unit time

can be described as

•
G increment = D

Dτ

∫
V

ρ
→
W dV (2.10)

In the system, the sum of mass force Fm and surface force Fsacting on the fluid is
expressed as

Fm + Fs =
∫
V

ρ
→
F dV +

∫
A

→
τ ndA (2.11)

where V and A are volume and surface area of the system respectively,
→
τ n is surface

force acting on unit area.
Combining Eq. (2.9) with Eqs. (2.10) and (2.11), we have the following equation:

D

Dτ

∫
V

ρ
→
W dV =

∫
V

ρ
→
F dV +

∫
A

→
τ ndA (2.12)

According to tensor calculation, the right side of Eq. (2.12) is changed into the fol-
lowing form:
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V

ρ
→
F dV +

∫
A

→
τ ndA =

∫
V

ρ
→
F dV +

∫
V

∇ · [τ ]dV (2.13)

where ∇ · [τ ] is divergence of the shear force tensor.
The left side of Eq. (2.12) can be rewritten as

D

Dτ

∫
V

ρ
→
W dV =

∫
V

D(ρ
→
W )

Dτ
dV (2.14)

With Eqs. (2.13) and (2.14), Eq. (2.12) can be simplified as

∫
V

⎧⎨
⎩ D(ρ

→
W )

Dτ
− ρ

→
F −∇ · [τ ]

⎫⎬
⎭ dV = 0 (2.15)

Therefore,

D(ρ
→
W )

Dτ
= ρ

→
F+ ∇ · [τ ] (2.16)

This is the Navier–Stokes equations of fluid flow. For Cartesian Coordinates,
Eq. (2.16) can be expressed as

D(ρwx )

Dτ
= ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ ρgx (2.17)

D(ρwy)

Dτ
= ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
+ ρgy (2.18)

D(ρwz)

Dτ
= ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
+ ρgz (2.19)

where

D(ρwx )

Dτ
= ∂(ρwx )

∂τ
+ (∂ρwx )

∂x
wx + (∂ρwx )

∂y
wy + (∂ρwx )

∂z
wz

D(ρwy)

Dτ
= ∂(ρwy)

∂τ
+ (∂ρwy)

∂x
wx + (∂ρwy)

∂y
wy + (∂ρwy)

∂z
wz

D(ρwz)

Dτ
= ∂(ρwz)

∂τ
+ (∂ρwz)

∂x
wx + (∂ρwz)

∂y
wy + (∂ρwz)

∂z
wz

In Eqs. (2.17)–(2.19), gx , gy , and gz are gravity accelerations in x, y, and z directions,
respectively, while the related shear forces are given below:
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τxx = −
[

p + 2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ 2μ

∂wx

∂x

τyy = −
[

p + 2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ 2μ

∂wy

∂y

τzz = −
[

p + 2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ 2μ

∂wz

∂z

τxy = τyx = μ

(
∂wy

∂x
+ ∂wx

∂y

)

τyz = τzy = μ

(
∂wz

∂y
+ ∂wy

∂z

)

τzx = τxz = μ

(
∂wx

∂z
+ ∂wz

∂x

)

Then, (2.17)–(2.19) are rewritten as follows, respectively:

D(ρwy)

Dτ
= −∂p

∂x
+ 2

∂

∂x

(
μ

∂wx

∂x

)
+ ∂

∂y

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]

+ ∂

∂z

[
μ

(
∂wx

∂z
+ ∂wz

∂x

)]
− ∂

∂x

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ ρgx

(2.20)

Similarly, the momentum equations in the y and z directions are given by

D(ρwy)

Dτ
= −∂p

∂y
+ ∂

∂x

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]
+ 2

∂

∂y

(
μ

∂wy

∂y

)

+ ∂

∂z

[
μ

(
∂wy

∂z
+ ∂w

∂y

)]
− ∂

∂y

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ ρgy

(2.21)

D(ρwz)

Dτ
= −∂p

∂z
+ ∂

∂x

[
μ

(
∂wx

∂z
+ ∂wz

∂x

)]
+ ∂

∂y

[
μ

(
∂wy

∂z
+ ∂wz

∂y

)]
+ 2

∂

∂z

+
(

μ
∂wz

∂z

)
− ∂

∂z

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ ρgz (2.22)

For steady state, the momentum Eqs. (2.20)–(2.22) are given as follows respectively:

ρ
(

∂wx
∂x wx + ∂wx

∂y wy + ∂wx
∂z wz

)
+ wx

(
wx

∂ρ
∂x + wy

∂ρ
∂y + wz

∂ρ
∂z

)
= − ∂p

∂x + 2 ∂
∂x

(
μ∂wx

∂x

)
+ ∂

∂y

[
μ

(
∂wx
∂y + ∂wy

∂x

)]
+ ∂

∂z

[
μ

(
∂wx
∂z + ∂wz

∂x

)]
− ∂

∂x

[
2
3μ

(
∂wx
∂x + ∂wy

∂y + ∂wz
∂z

)]
+ ρgx

(2.23)
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ρ
(

∂wy
∂x wx + ∂wy

∂y wy + ∂wy
∂z wz

)
+ wy

(
wx

∂ρ
∂x + wy

∂ρ
∂y + wz

∂ρ
∂z

)
= − ∂p

∂y + ∂
∂x

[
μ

(
∂wx
∂y + ∂wy

∂x

)]
+ 2 ∂

∂y

(
μ

∂wy
∂y

)
+ ∂

∂z

[
μ

(
∂wy
∂z + ∂wz

∂y

)]
− ∂

∂y

[
2
3μ

(
∂wx
∂x + ∂wy

∂y + ∂wz
∂z

)]
+ ρgy

(2.24)

ρ
(

∂wz
∂x wx + ∂wz

∂y wy + ∂wz
∂z wz

)
+ wz

(
wx

∂ρ
∂x + wy

∂ρ
∂y + wz

∂ρ
∂z

)
= − ∂p

∂z + ∂
∂x

[
μ

(
∂wx
∂z + ∂wz

∂x

)]
+ ∂

∂y

[
μ

(
∂wy
∂z + ∂wz

∂z

)]
+ 2 ∂

∂z

(
μ

∂wz
∂x

)
− ∂

∂z

[
2
3μ

(
∂wx
∂x + ∂wy

∂y + ∂wz
∂z

)]
+ ρgz

(2.25)

Let us compare term ρ
(

∂wx
∂x wx + ∂wx

∂y wy + ∂wx
∂z wz

)
with termwx

(
wx

∂ρ
∂x

+wy
∂ρ
∂y + wz

∂ρ
∂z

)
. In general, derivatives ∂wx

∂x , ∂wx
∂y and ∂wx

∂z are much larger than the

derivatives ∂ρx
∂x , ∂ρx

∂y and ∂ρx
∂z respectively. In this case, the term wx

(
wx

∂ρ
∂x + wy

∂ρ
∂y +

wz
∂ρ
∂z

)
is omitted, and (2.23) is rewritten as generally

ρ

(
∂wx

∂x
wx + ∂wx

∂y
wy + ∂wx

∂z
wz

)
= −∂p

∂x
+ 2

∂

∂x

(
μ

∂wx

∂x

)

+ ∂

∂y

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]

+ ∂

∂z

[
μ

(
∂wx

∂z
+ ∂wz

∂x

)]

− ∂

∂x

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ ρgx

(2.23a)

Similarly, in general, (2.24) and (2.25) are rewritten as, respectively,

ρ

(
∂wy

∂x
wx + ∂wy

∂y
wy + ∂wy

∂z
wz

)
= −∂p

∂y
+ ∂

∂x

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]

+ 2
∂

∂y

(
μ

∂wy

∂y

)
+ ∂

∂z

[
μ

(
∂wy

∂z
+ ∂wz

∂y

)]

− ∂

∂y

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ ρgy

(2.24a)
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Fig. 2.3 Control volume
for derivation of the energy
equations of fluid flow outW

  dz

dy
inQ

 dx

EΔ

ρ

(
∂wz

∂x
wx + ∂wz

∂y
wy + ∂wz

∂z
wz

)
= −∂p

∂z
+ ∂

∂x

[
μ

(
∂wx

∂z
+ ∂wz

∂x

)]

+ ∂

∂y

[
μ

(
∂wy

∂z
+ ∂wz

∂y

)]
+ 2

∂

∂z

(
μ

∂wz

∂x

)

− ∂

∂z

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z

)]
+ ρgz

(2.25a)

2.3 Energy Equation

The control volume for derivation of the energy equation of fluid flow is shown in
Fig. 2.3. Meanwhile, take an enclosed surface A that includes the control volume.
According to the first law of thermodynamics, we have the following equation:

�
•
E = •

Q + •
Wout (2.26)

where �
•
E is energy increment in the system per unit time,

•
Q is heat increment in

the system per unit time, and
•

Wout denotes work done by the mass force and surface
force on the system per unit time.

The energy increment per unit time in the system is described as

�
•
E = D

Dτ

∫
V

ρ

(
e + W 2

2

)
dV (2.27)

where τ denotes time, W 2

2 is the fluid kinetic energy, W is fluid velocity, and the
symbol e represents the internal energy per unit mass.

The work done by the mass force and surface force on the system per unit time is
expressed as
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•
Wout =

∫
V

ρ
→
F · →

W dV +
∫
A

→
τn · →

W dA (2.28)

where
→
F is the mass force per unit mass, and

→
τn is surface force acting on unit area.

The heat increment entering into the system per unit time through thermal con-
duction is described by using Fourier’s law as follows:

•
Q =

∫
A

λ
∂t

∂n
dA (2.29)

where n is normal line of the surface, and here the heat conduction is considered
only.

With Eqs. (2.27)–(2.29), Eq. (2.26) is rewritten as

D

Dτ

∫
V

ρ

(
e + W 2

2

)
dV =

∫
V

ρ
→
F · →

W dV +
∫
A

→
τn · →

W dA +
∫
A

λ
∂t

∂n
dA (2.30)

where
D

Dτ

∫
V

ρ

(
e + W 2

2

)
dV =

∫
V

D

Dτ

[
ρ

(
e + W 2

2

)]
dV (2.31)

∫
A

→
τn · →

W dA =
∫
A

→→
n [τ ] · →

W dA =
∫
A

→→
n ([τ ] · →

W )dA =
∫
v

∇ · ([τ ] · →
W )dV (2.32)

∫
A

λ
∂t

∂n
dA =

∫
V

∇ · (λ∇t)dV (2.33)

With Eqs. (2.31)–(2.33), Eq. (2.30) is rewritten as

∫
V

D

Dτ

[
ρ

(
e + W 2

2

)]
dV =

∫
V

ρ
→
F · →

W dV +
∫
v

∇·([τ ]· →
W )dV +

∫
V

∇ · (λ∇t)dV .

(2.34)
Then,

D

Dτ

[
ρ

(
e + W 2

2

)]
= ρ

→
F · →

W +∇ · ([τ ] · →
W ) + ∇ · (λ∇t) (2.35)

where [τ ] denotes tensor of shear force.
Equation (2.35) is the energy equation.
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Through tensor and vector analysis, Eq. (2.35) can be further derived into the
following form:

D(ρe)

Dτ
= [τ ] · [ε] + ∇ · (λ∇t) (2.36)

Equation (2.36) is an another form of the energy equation. Here, [τ ] · [ε] is the scalar
quantity product of force tensor [τ ] and deformation rate tensor [ε], and represents the
work done by fluid deformation surface force. The physical significance of Eq. (2.36)
is that the internal energy increment of fluid with unit volume during the unit time
equals the sum of the work done by deformation surface force of fluid with unit
volume, [τ ] · [ε], and the heat entering the system.

The general Newtonian law is expressed as

[τ ] = 2μ[ε] −
(

p + 2

3
μ∇ · →

W

)
[I ] (2.37)

where [I ] is unit tensor.
According to Eq. (2.37), the following equation can be obtained:

[τ ] · [ε] = −p∇ · →
W −2

3
μ(∇ · →

W )2 + 2μ[ε]2 (2.38)

Then, Eq. (2.36) can be rewritten as

D(ρe)

Dτ
= −p∇ · →

W +� + ∇ · (λ∇t) (2.39)

where � = − 2
3μ(∇ · →

W )2 + 2μ[ε]2 is viscous dissipation function, which is further
described as

� = μ

{
2

(
∂wx

∂x

)2

+ 2

(
∂wy

∂y

)2

+ 2

(
∂wz

∂z

)2

+
(

∂wx

∂y
+ ∂wy

∂x

)2

+
(

∂wy

∂z
+ ∂wz

∂y

)2

+
(

∂wz

∂x
+ ∂wx

∂z

)2

− 2

3

[
div( �W )

]2
}

(2.40)

Equation (2.6) can be rewritten as

∇ · →
W = − 1

ρ

Dρ

Dτ
= ρ

D

Dτ

(
1

ρ

)

With the above equation, Eq. (2.39) is changed into the following form:

[
D(ρe)

Dτ
+ pρ

D

Dτ

(
1

ρ

)]
= � + ∇ · (λ∇t) (2.41)
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According to thermodynamics equation of fluid

D(ρh)

Dτ
= D(ρe)

Dτ
+ pρ

D

Dτ

(
1

ρ

)
+ Dp

Dτ
(2.42)

Equation (2.41) can be expressed as the following enthalpy form:

D(ρh)

Dτ
= Dp

Dτ
+ � + ∇ · (λ∇t) (2.43)

or
D(ρcpt)

Dτ
= Dp

Dτ
+ � + ∇ · (λ∇t) (2.44)

where h = cpt , while cp is specific heat.
In Cartesian form, the energy Eq. (2.44) can be rewritten as

∂(ρcpt)

∂τ
+ wx

∂(ρcpt)

∂x
+ wy

∂(ρcpt)

∂y
+ wz

∂(ρcpt)

∂z

= D P

Dτ
+ ∂

∂x

(
λ

∂t

∂x

)
+ ∂

∂y

(
λ

∂t

∂y

)
+ ∂

∂z

(
λ

∂t

∂z

)
+ � (2.45)

For steady state and nearly constant pressure processes, the viscous dissipation can
be ignored, and then the Cartesian form of the energy equation (2.45) is changed into

wx
∂(ρcpt)

∂x
+wy

∂(ρcpt)

∂y
+wz

∂(ρcpt)

∂z
= ∂

∂x

(
λ

∂t

∂x

)
+ ∂

∂y

(
λ

∂t

∂y

)
+ ∂

∂z

(
λ

∂t

∂z

)
(2.46)

Above equation is usually approximately rewritten as

ρ

[
wx

∂(cpt)

∂x
+ wy

∂(cpt)

∂y
+ wz

∂(cpt)

∂z

]
= ∂

∂x

(
λ

∂t

∂x

)
+ ∂

∂y

(
λ

∂t

∂y

)
+ ∂

∂z

(
λ

∂t

∂z

)
(2.46a)

or

ρcp

[
wx

∂t

∂x
+ wy

∂t

∂y
+ wz

∂t

∂z

]
= ∂

∂x

(
λ

∂t

∂x

)
+ ∂

∂y

(
λ

∂t

∂y

)
+ ∂

∂z

(
λ

∂t

∂z

)
(2.46b)

In fact, in (2.46a) the temperature-dependent density is ignored, and in (2.46b) both
the temperature-dependent density and specific heat are ignored.
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Fig. 2.4 Physical model
and coordinate system of
boundary layer of laminar
free convection. a Ascending
flow on the inclined surface
(tw > t∞). b Falling flow on
the inclined surface (tw < t∞)

2.4 Basic Equations of Laminar Free Convection
Boundary Layer

In Fig. 2.4 the physical model and coordinate system of boundary layer with 2D
laminar free convection are shown schematically. An inclined flat plate is suspended
in fluid. The surface temperature is Tw and the fluid bulk temperature is T∞. If Tw is
not equal to T∞, the laminar free convection can be produced on the inclined surface
in both the cases as shown in Fig. 2.4a, b, respectively.

In the following sections, we will make quantitative grade analysis successively
to investigate the governing equations of mass, momentum, and energy conservation
for steady laminar free convection in the 2D boundary layer.

2.4.1 Continuity Equation

Based on the Eq. (2.7), the steady state 3D continuity equation is given by

∂

∂x
(ρwx ) + ∂

∂y
(ρwy) + ∂

∂z
(ρwz) = 0. (2.47)

While, the steady state 2D continuity equation is given by

∂

∂x
(ρwx ) + ∂

∂y
(ρwy) + ∂

∂z
(ρwz) = 0 (2.48)

In Eqs. (2.47) and (2.48), variable fluid density with temperature is considered.
Before the quantitative grade analysis, it is necessary to define its analytical stan-

dard. A normal quantitative grade is regarded as {1}, i.e., unit quantity grade, a very
small quantitative grade is regarded as {δ}, even very small quantitative grade is
regarded as {δ2}, and so on. The ration of the quantities is easily defined, and some
examples of ratios are introduced as follows:

{1}
{1} = {1}, {δ}

{δ} = {1}, {1}
{δ} = {δ−1}, {1}

{δ2} = {δ−2}
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According to the theory of laminar free boundary layer, the quantities of the
velocity component wx and the coordinate x can be regarded as unity, i.e., {wx } =
{1} and {x} = {1}. However, the quantities of the velocity component wy and the
coordinate y should be regarded as δ, i.e., {wy} = {δ} and {y} = {δ}.

For the terms of Eq. (2.48), the following ratios of quantity grade are obtained:
{ρwx }
{x} = {1}

{1} = {1} and {ρwy}
{y} = {δ}

{δ} = {1}. Therefore, both the two terms of Eq. (2.48)
should be kept, and Eq. (2.48) can be regarded as the continuity equation of the steady
state laminar 2D boundary layers. Of course, Eq. (2.48) is also suitable for the steady
state 2D boundary layers with laminar free convection.

2.4.2 Momentum Equations (Navier–Stokes Equations)

According to Eqs. (2.23a) and (2.24a), the momentum equations for steady 2D con-
vection are

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ 2

∂

∂x

(
μ

∂wx

∂x

)

+ ∂

∂y

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]
− ∂

∂x

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y

)]
+ ρgx (2.49)

ρ

(
wx

∂wy

∂x
+ wy

∂wy

∂y

)
= −∂p

∂y
+ ∂

∂x

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]

+ 2
∂

∂y

(
μ

∂wy

∂y

)
− ∂

∂y

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y

)]
+ ρgy (2.50)

According to the theory of boundary layer, the quantity grade of the pressure gradient
∂p
∂x can be regarded as unity, i.e.,

{
∂p
∂x

}
= {1}, but the quantity grade of the pressure

gradient ∂p
∂y is only regarded as very small quantity grade, i.e.,

{
∂p
∂y

}
= {δ}.

The quantity grades of the terms of Eqs. (2.49) and (2.50) are expressed as follows,
respectively:

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ 2

∂

∂x

(
μ

∂wx

∂x

)
+ ∂

∂y

[
μ

(
∂wx

∂y
+ ∂σy

∂x

)]

− ∂

∂x

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y

)]
+ ρgx

{1}
(

{1} {1}
{1} + {δ} {1}

{δ}
)

= {1} + {1}
{1} {δ

2} {1}
{1} + {1}

{δ} {δ2}
( {1}

{δ} + {δ}
{1}

)

− {1}
{1}δ

2
( {1}

{1} + {δ}
{δ}

)
+ {1}{1} (2.49a)
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ρ

(
wx

∂wy

∂x
+ wy

∂wy

∂y

)
= −∂p

∂y
+ ∂

∂x

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]
+ 2

∂

∂y

(
μ

∂wy

∂y

)

− ∂

∂y

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y

)]

+ ρgy{1}
(

{1} {δ}
{1} + {δ} {δ}{δ}

)
= {δ} + {1}

{1} {δ
2}

( {1}
{δ} + {δ}

{1}
)

+ {1}
{δ} {δ2} {δ}{δ}

− {1}
{δ} {δ2}

( {1}
{1} + {δ}

{δ}
)

+ {1}{δ} (2.50a)

The quantity grades of Eqs. (2.49a) and (2.50a) are simplified as follows,
respectively:

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= − ∂p

∂x
+ 2

∂

∂x

(
μ

∂wx

∂y

)
+ ∂

∂y

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]

− ∂

∂y

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y

)]
+ ρgx

{1}({1} + {1}) = {1} + {δ2} + {1} + {δ2} − ({δ2} + {δ2}) + {1}
(2.49b)

ρ

(
wx

∂wy

∂x
+ wy

∂wy

∂y

)
= − ∂p

∂y
+ ∂

∂x

[
μ

(
∂wx

∂y
+ ∂wy

∂x

)]
+ 2

∂

∂y

(
μ

∂wy

∂y

)

− ∂

∂y

[
2

3
μ

(
∂wx

∂x
+ ∂wy

∂y

)]
+ ρgy

{1}({δ} + {δ}) = {δ} + ({δ} + {δ3}) + {δ} − ({δ}({1} + {1})) + {δ}
(2.50b)

Observing the quantity grades in Eq. (2.49b), it is found that the terms 2 ∂
∂x

(
μ∂wx

∂x

)
,

∂wy
∂x in term ∂

∂y

[
μ

(
∂wx
∂y + ∂wy

∂x

)]
, and ∂

∂x

[
2
3μ

(
∂wx
∂x + ∂wy

∂y

)]
are very small and can

be ignored from Eq. (2.49). Then, Eq. (2.49) is simplified as follows:

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ ∂

∂y

(
μ

(
∂wx

∂y

))
+ ρgx (2.51)

Comparing the quantity grades of Eq. (2.49b) with that of Eq. (2.50b), it is found that
the quantity grades of Eq. (2.50b) are very small. Then, Eq. (2.50) can be ignored,
and only Eq. (2.51) is taken as the momentum equation of 2D boundary layer.

From Fig. 2.4 it is found that for free convection on inclined plate the gravity
acceleration component gx is expressed as

gx = g · cos α (2.52)

where g is gravity acceleration and α is the inclined angle of the plate.
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With Eq. (2.52), Eq. (2.51) is rewritten as

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ ∂

∂y

(
μ

(
∂wx

∂y

))
+ ρg · cos α (2.53)

Suppose, the direction of g · cos α is reverse to that of the velocity component wx ,
Eq. (2.53) can be rewritten as

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ ∂

∂y

(
μ

(
∂wx

∂y

))
− ρg · cos α (2.54)

Beyond the boundary layer, where the effects of viscosity can be ignored, the momen-
tum equation (2.54) is simplified into the following equation:

− dp

dx
= ρ∞g · cos α + ρ∞wx,∞

dwx,∞
dx

(2.55)

where ρ∞ and wx,∞ are fluid density and velocity component beyond the boundary
layer.

With Eq. (2.55), Eq. (2.54) becomes

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ g(ρ∞ − ρ) + ρ∞w∞

dw∞
dx

(2.56)

For constant wx,∞ the Eq. (2.56) transforms to

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ g(ρ∞ − ρ) cos α (2.57)

This is the momentum equation of 2D boundary layer on an inclined plate with
laminar free convection.

Equation (2.57) can be rewritten as

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ g |ρ∞ − ρ| cos α (2.57a)

In (2.57a), the absolute value of buoyancy factor |ρ∞ − ρ| shows that the buoy-
ancy term g |ρ∞ − ρ| cos α has always positive sign no matter which one is larger
between ρ and ρ∞. In this case, the buoyancy term g |ρ∞ − ρ| cos α and the velocity
component wx have same sign.

For the free convection of a perfect gas (ideal gas), the following simple power
law can be used: ρ∞

ρ
= T

T∞ where T denotes absolute temperature. In fact, for general
real gas, this relation is also available. Therefore,
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|ρ∞ − ρ| cos α = ρ

∣∣∣∣ T

T∞
− 1

∣∣∣∣ cos α (2.58)

Thus, for the laminar free convection of a perfect gas, Eq. (2.57) can be changed into

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ gρ

∣∣∣∣ T

T∞
− 1

∣∣∣∣ cos α (2.59)

If the temperature difference |Tw − T∞| is very small, which will lead to a very small
density difference |ρ∞ − ρw|, the Boussinesq approximation can be applied. In this
case, buoyancy factor in Eq. (2.57a) becomes |ρ∞ − ρ| = ρβ |T − T∞|, and then,
Eq. (2.57a) is changed to

wx
∂wx

∂x
+ wy

∂wx

∂y
= ν

∂2wx

∂y2 + gβ |T − T∞| cos α (2.57b)

where β is Coefficient of expansion.

2.4.3 Energy Equations

According to Eq. (2.46a), the energy equation for steady 2D convection is shown as
follows:

ρ

[
wx

∂(cpt)

∂x
+ wy

∂(cpt)

∂y

]
= ∂

∂x

(
λ

∂t

∂x

)
+ ∂

∂y

(
λ

∂t

∂y

)
(2.60)

With the quantity grade analysis similar to that mentioned above, Eq. (2.60) can be
changed into the following form for energy equation of 2D boundary layer.

ρ

[
wx

∂(cpt)

∂x
+ wy

∂(cpt)

∂y

]
= ∂

∂y

(
λ

∂t

∂y

)
(2.61)

Up to now, it is the time to summarize the basic governing equations for description of
mass, momentum, and energy conservation of 2D boundary layers with consideration
of variable physical properties for laminar steady-state free convection as follows:

∂

∂x
(ρwx ) + ∂

∂y
(ρwy) + ∂

∂z
(ρwz) = 0 (2.48)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ g|ρ∞ − ρ| cos α (2.57a)

ρ

[
wx

∂(cpt)

∂x
+ wy

∂(cpt)

∂y

]
= ∂

∂y

(
λ

∂t

∂y

)
(2.61)
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For rigorous solutions of the governing equations, the fluid temperature-dependent
properties, such as density ρ in mass equation and in buoyancy factor of momentum
equation, absolute viscosity μ, specific heat cp, and thermal conductivity λ will be
considered in the successive chapters of this book.

The laminar free convection with two-dimensional boundary layer belongs to two-
point boundary value problem, which is the basis of three-point boundary value prob-
lem, such as for film boiling and film condensation. For isothermal plate for exam-
ple, the boundary conditions for the two-point boundary problem can be expressed
as follows:

y = 0: wx = 0, wy = 0, t = tw (2.62)

y → ∞: wx → 0, t = t∞ (2.63)

where tw is plate temperature, t∞ is the fluid temperature beyond the boundary layer,
and wx,∞ denotes the fluid velocity component in x-direction beyond the boundary
layer.

The term g |ρ∞ − ρ| cos α in Eq. (2.57a) is regarded as buoyancy factor. For

perfect gas, the buoyancy factor can be expressed as g |ρ∞ − ρ| cos α = ρg
∣∣∣ T

T∞ − 1
∣∣∣

cos α, then the basic governing equation for description of momentum conservation of
2D boundary layers with laminar steady state gas free convection can be expressed as

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ ρg

∣∣∣∣ T

T∞
− 1

∣∣∣∣ cos α (2.57b)

In addition, although the Eq. (2.57b) is originally for perfect gas, it is well known
that it can be very accurately applied to free convection and film flows of general
gases (Tables 2.1 and 2.2).

However, for Boussinesq approximation (in fact, only suitable for very small tem-
perature difference of the boundary layer), the partial differential equations (2.48),
(2.57) and (2.61) becomes

∂

∂x
(ρwx ) + ∂

∂y
(ρwy) = 0 (2.48a)

wx
∂wx

∂x
+ wy

∂wx

∂y
= ν

(
∂2wx

∂y2

)
+ gβ |T − T∞| cos α (2.57c)

wx
∂t

∂x
+ wy

∂t

∂y
= ν

Pr

∂2t

∂y2 (2.61a)
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Table 2.1 Governing partial differential conservation equations in rectangular coordinate system
for laminar free convection (with consideration of variable physical properties)

Mass equation ∂
∂x (ρwx ) + ∂

∂y (ρwy) + ∂
∂z (ρwz) = 0

Momentum equation
ρ

(
∂wx
∂x wx + ∂wx

∂y wy + ∂wx
∂z wz

)
= − ∂p

∂x + 2 ∂
∂x

(
μ∂wx

∂x

)
+ ∂

∂y

[
μ

(
∂wx
∂y + ∂wy

∂x

)]
+ ∂

∂z

[
μ

(
∂wx
∂z + ∂wz

∂x

)]
− ∂

∂x

[
2
3 μ

(
∂wx
∂x + ∂wy

∂y + ∂wz
∂z

)]
+ ρgx

ρ
(

∂wy
∂x wx + ∂wy

∂y wy + ∂wy
∂z wz

)
= − ∂p

∂y + ∂
∂x

[
μ( ∂wx

∂y + ∂wy
∂x )

]
+2 ∂

∂y

(
μ

∂wy
∂y

)
+ ∂

∂z

[
μ

(
∂wy
∂z + ∂wz

∂y

)]
− ∂

∂y

[
2
3 μ

(
∂wx
∂x + ∂wy

∂y + ∂wz
∂z

)]
+ ρgy

ρ
(

∂wz
∂x wx + ∂wz

∂y wy + ∂wz
∂z wz

)
= − ∂p

∂y + ∂
∂x

[
μ

(
∂wx
∂z + ∂wz

∂x

)]
+ ∂

∂y

[
μ

(
∂wy
∂z + ∂wz

∂y

)]
+ 2 ∂

∂z

(
μ

∂wz
∂z

)
− ∂

∂z

[
2
3 μ

(
∂wx
∂x + ∂wy

∂y + ∂wz
∂z

)]
+ ρgz

Energy equation ρ
[
wx

∂(cp ·t)
∂x +wy

∂(cp ·t)
∂y +wz

∂(cp ·t)
∂z

]
= ∂

∂x

(
λ ∂t

∂x

) + ∂
∂y

(
λ ∂t

∂y

)
+ ∂

∂z

(
λ ∂t

∂z

)
+ �

�=μ

[
2

(
∂wx
∂x

)2 +2
(

∂wy
∂y

)2 +2
(

∂wz
∂z

)2 +
(

∂wx
∂y + ∂wy

∂x

)2 +
(

∂wy
∂z + ∂wz

∂y

)2

+
(

∂wz
∂x + ∂wx

∂z

)2
]

− 2
3

[
div( �W )

]2
]

Table 2.2 Governing partial differential equations in rectangular coordinate system for laminar
free convection boundary layer

Governing partial differential equations for laminar free boundary layer
(with consideration of variable physical properties)

Mass equation ∂
∂x (ρwx ) + ∂

∂y (ρwy) = 0

Momentum equation ρ
(

wx
∂wx
∂x + wy

∂wx
∂y

)
= ∂

∂y

(
μ∂wx

∂y

)
+ g |ρ∞ − ρ| cos α

(for fluid free convection)

ρ
(

wx
∂wx
∂x + wy

∂wx
∂y

)
= ∂

∂y

(
μ∂wx

∂y

)
+ ρg

∣∣∣ T
T∞ − 1

∣∣∣ cos α

(for gas free convection)

Energy equation ρ
[
wx

∂(cpt)
∂x + wy

∂(cpt)
∂y

]
= ∂

∂y

(
λ ∂t

∂y

)
(with ignoring variable physical properties)

Mass equation ∂wx
∂x + ∂wy

∂y = 0

Momentum equation wx
∂wx
∂x + wy

∂wx
∂y

=
(
ν ∂2wx

∂y2

)
+ gβ |T − T∞| cos α

Energy equation wx
∂t
∂x + wy

∂t
∂y = ν

Pr
∂2t
∂y2
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2.5 Summary

Up to now the governing partial differential conservation equations for laminar free
convection and those for laminar free boundary layer can be summarized as Table 2.1
and 2.2.

2.6 Exercises

1. Point out the advantages of inducing the boundary layer theory.
2. From the related governing equations, tell us the importance and necessity

of consideration of variable physical properties in investigation of convection
heat transfer, and point out the limitation with ignoring the variable physical
properties.

3. Please review the governing partial differential conservation equations in rec-
tangular coordinate system for laminar free convection (with consideration of
variable physical properties), and use the quantitative grade analysis to derive out
the related boundary layer governing ordinary differential equations with consid-
eration of variable physical properties.



Chapter 3
Review of Falkner–Skan Transformation
for Fluid Laminar Free Convection

Abstract In this chapter, the traditional Falkner–Skan type transformation for lam-
inar free convection boundary layer is reviewed. The typical two-dimensional basic
conservation equations for laminar free convection boundary layer are taken as exam-
ple for derivation of the related similarity variables for Falkner–Skan type transfor-
mation. By means of the stream function and the procedure with the method of
group theory, the similarity intermediate function variable f (η) is induced. Then,
the velocity components are transformed to the related functions with the similarity
intermediate function variable ( f η). On this basis, partial differential momentum
equation of the free convection boundary layer is transformed to related ordinary
equation. At last, the limitations of the Falkner–Skan type transformation are ana-
lyzed in detail.

3.1 Introduction

For solution of the laminar boundary layer problem, Falkner and Skan [1] proposed
their similarity method in 1931. Up to now, the widely applied similarity analysis and
transformation for the laminar convection boundary layer and film flows is based on
the Falkner–Skan type transformation. So far, the Falkner–Skan type transformation
has been collected in numerous publications, and only some of them such as [2–
14] are listed here for saving space. So, before the presentation of my related new
similarity analysis method in this book for laminar free convection and film flows, it
is necessary here to review briefly the Falkner–Skan type similarity method.

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 45
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_3,
© Springer-Verlag Berlin Heidelberg 2012
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3.2 Falkner–Skan Transformation Related to Governing
Equations Under Boussinesq Approximation

Let us consider the governing equations of the boundary layer of steady state fluid
laminar free convection. Based on Chap. 2, the governing equations of the boundary
layer of steady state fluid laminar free convection are as follows for Boussinesq
approximation (For convenient derivation, only vertical case is considered here):

∂wx

∂x
+
∂wy

∂y
= 0. (3.1)

wx
∂wx

∂x
+ wy

∂wx

∂y
= ν

∂2wx

∂y2 + g |ρ∞ − ρ| . (3.2)

(
wx
∂t

∂x
+ wy

∂t

∂y

)
= ν

Pr

∂2t

∂y2 . (3.3)

For rigorous solutions of the governing equations, the fluid temperature dependent
properties, such as density, absolute viscosity, specific heat, and thermal conductivity
will be considered in the successive chapters of this book.

The laminar free convection with two-dimensional boundary layer belongs to two-
point boundary value problem. For isothermal flat plate for example, the boundary
conditions for the two-point boundary problem can be expressed as follows:

y = 0 : wx = 0, wy = 0, t = tw. (3.4)

y → ∞ : wx,∞ = 0, t = t∞. (3.5)

Here, wx and wy are velocity components of the fluids in x and y directions respec-
tively, wx,∞ is constant main stream velocity, t is temperature. While, the subscript
“f” is induced in the equations for inferring in particular to the constant physical
properties with the average temperature of boundary layer, i.e., t f = tw+t∞

2 (Here-
inafter the same). Here, Eqs. (3.1)–(3.3) will be taken as a basis for introduction of
the Falkner–Skan type transformation method.

The detailed derivation for the related expressions of the Falkner–Skan transfor-
mation is omitted here, which need inducing the stream function ψ(x, y) at first,
and then requires a group theorem discussed at length by Hansen [15] and Na [16].
Meanwhile, the stream function is expressed by

wx = ∂ψ

∂y
, wy = −∂ψ

∂x
. (3.6)

With Falkner–Skan transformation for fluid laminar free convection, we get the fol-
lowing variables for describing expressions for the stream function ψ and dimen-
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sionless coordinate variable η:

η =
(

1

4
Gr

)1/4 y

x
; ψ = 4ν

(
1

4
Gr

)1/4

f (η) (3.7)

where Grashof number is expressed as

Gr = gβ |Tw − T∞| x3

ν2
f

. (3.8)

Combined with Eqs. (3.7) and (3.8), then, the dimensionless variables, wx and wy

are derived from Eq. (3.6) respectively as follows:

wx = 4ν

x

(
1

4
Gr

)1/2

f ′(η), (3.9)

wy = ν

x

(
1

4
Gr

)1/4

[(η) f ′(η)− 3 f (η)]. (3.10)

Dimensionless temperature θ(η) is also given by

θ(η)=
t − t∞

tw − t∞
. (3.11)

With Eqs. (3.9)–(3.11), Eqs. (3.1)–(3.3) lead to the following ordinary differential
equations

f ′′′ + 3 f (η) f ′′(η)− 2( f ′(η))2 + θ(η) = 0 (3.12)

θ ′′(η)+ 3Pr f (η)θ ′(η) = 0 (3.13)

with the boundary conditions

η = 0 : f (η) = f ′(η) = 0, θ(η) = 1 (3.14)

η → ∞ : f ′(η) = 0, θ(η) = 0. (3.15)

3.3 Falkner–Skan Transformation Related to Governing
Equations with Consideration of Variable Physical Properties

Consider the boundary layer of the fluid laminar free convection from an isothermal
vertical plate, the following governing partial differential equations of laminar free
convection with consideration of variable physical properties are given by consulting
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Eqs. (2.48), (2.57a) and (2.61):

∂

∂x
(ρwx )+

∂

∂y
(ρwy) = 0 (3.16)

ρ

(
wx
∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ
∂wx

∂y

)
+ g|ρ∞ − ρ| (3.17)

ρcp

(
wx
∂t

∂x
+ wy

∂t

∂y

)
= ∂

∂y

(
λ
∂t

∂y

)
(3.18)

with the boundary conditions

y = 0 : wx = 0, wy = 0, t = tw (3.19)

y → ∞ : wx → 0, t = t∞ (3.20)

where μ is the absolute viscosity, ρ is the density, λ is the thermal conductivity, g is
the gravity acceleration, and t is temperature.

For variable physical properties, we set up following definition of the stream
function ψ :

ρ

ρw
wx = ∂ψ

∂y
,

ρ

ρw
wy = −∂ψ

∂x
. (3.21)

For variable physical properties we can give expressions for stream function ψ and
dimensionless coordinate variable η as defined by:

η = cx−1/4

y∫
0

ρ

ρw
dy, ψ = 4νw

(
1

4
Grx,w

)1/4

f (η)

where

Gx,w = g|ρ∞/ρw − 1|x3

ν2
w

. (3.22)

Dimensionless temperature θ(η) is defined by Eq. (3.11) too.
The function θ is a dimensionless temperature and f is related to the velocities in

the following way

wx = 4νwc2x1/2 f ′(η), wy =
(
ρw

ρ

) ( νwc

x1/4

)
(η f ′(η)− 3 f (η)) (3.23)

where
C = Grx,wx−3/4. (3.24)
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With the variables used in Eqs. (3.11), (3.21)–(3.24), Eqs. (3.16)–(3.18) are now
transformed into the following equations:

d

dη

[
ρμ

ρwμw
f ′′(η)

]
+ 3 f (η) f ′′(η)− 2[ f ′(η)]2 + θ(η) = 0 (3.25)

d

dη

[
ρλ

ρwλw
θ ′(η)

]
+ 3 Prw

(
cp

cpw

)
f (η)θ ′(η) = 0 (3.26)

where λ, ρ, cp and Pr are thermal conductivity, density, specific heat and Prandtl
number, respectively, while subscript w denotes the temperature on the wall.

The boundary conditions, (3.19) and (3.20) are transformed into

η = 0 : f (η) = f ′(η) = 0, θ(η) = 1 (3.27)

η → ∞ : f ′(η) = 0, θ(η) = 0. (3.28)

3.4 Limitations of the Falkner–Skan Type Transformation

From the similarity governing equations on laminar free convection boundary layer
produced by Falkner–Skan type transformation, it is not difficult to find the disad-
vantages of this traditional similarity method.

By means of group theorem, obtaining the appropriate dimensional variables
related to two-dimensional velocity components is complicated process, which has
caused a restriction for application of the Falkner–Skan type transformation on exten-
sive study of laminar free convection boundary layer and two-phase film flows.

By using the Falkner–Skan type similarity transformation, the dimensionless func-
tion f (η) and its derivatives become the main dimensionless similarity variables of
momentum field, and the velocity components are algebraic expressions with inter-
mediate function f (η) and its derivatives. Then, inconvenience is caused for inves-
tigation of the velocity field of laminar free convection and even for investigation of
two-phase free film condensation and boiling.

With the Falkner–Skan transformation, a difficulty is encountered for similarity
transformation of the governing equations for the laminar free convection with con-
sideration of variable physical properties. It is because that derivation for obtaining
an appropriate stream function expression as well as the expressions of the two-
dimensional velocity components is difficult in particular consideration of variable
physical properties. In addition, the velocity components can not easily be replaced
by the stream function ψ . Furthermore, the great difficulty is encountered in the
treatment of the variable physical properties in Eqs. (3.25) and (3.26), because the
physical property factors ρμ

ρwμw
, ρλ
ρwλw

and cp
cpw

are function of temperature, and there-
fore are functions of η. Since rigorous consideration of variable physical properties is
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closely related to the reliability of investigation of laminar free convection and two-
phase film flows, such difficulty has hindered the research development of laminar
free convection and its two-phase film flows.

To resolve the above problems caused by the traditional Falkner–Skan type trans-
formation, in the following chapters, a related novel similarity analysis method will
be presented for extensive investigation of laminar forced convection and two-phase
film flows.

3.5 Questions

1. Please list all similarity variables for Falkner–Skan type transformation for lam-
inar free convection boundary layer.

2. How to express the two-dimensional velocity components by using the Falkner–
Skan type transformation for laminar free convection?

3. Can you point out the limitations of the Falkner–Skan type transformation in its
application?

4. Suppose that the dimensionless coordinate variableη in Eq. (3.7) is replaced by the
form η = (Gr)1/4 y

x , and the forms of other similarity variables are kept, please
try to transform similarly the governing partial differential equations (3.1) to
(3.3) and the boundary condition equations (3.4) and (3.5) to the related ordinary
differential equations.

5. From question 2, what relationship can you find between the similarity coordinate
variable η and the transformed governing ordinary differential equations?
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Chapter 4
New Similarity Analysis Method for Laminar
Free Convection Boundary Layer and
Film Flows

Abstract A new similarity analysis method with a new set of dimensionless simi-
larity variables is provided for complete similarity transformation of the governing
partial differential equations of laminar free convection and two multi-phase film
flows. The derivation of the Reynolds number together with the Nusselt number
and Prandtl number is reviewed by means of Buckingham π -theorem and dimen-
sion analysis, where the Reynolds number is taken as the one of the new set of
dimensionless analysis variables. The essential work focuses on derivation of equa-
tions for the dimensionless velocity components and the dimensionless coordinate
variable, by means of a detailed analysis of quantity grade of the governing con-
servation partial differential equations of laminar free convection. On this basis, the
new similarity analysis method is produced for complete similarity transformation of
the conservation partial differential equations of laminar free convection and its film
flows. With the novel dimensionless velocity components devoted in this chapter, the
new similarity analysis method has obvious advantages compared with the Falkner–
Skan transformation. These advantages are (i) more convenient for consideration
and treatment of the variable physical properties, (ii) more convenient for analysis
and investigation of the two-dimensional velocity field, and (iii) more convenient for
satisfaction of the interfacial mass transfer matching conditions in the numerical cal-
culation and for rigorous investigation of mass transfer for two-phase film flows with
three-point boundary problem. These advantages will be found from the successive
chapters.

4.1 Introduction

In Chap. 3 the traditional similarity analysis method, Falkner–Skan type
transformation, for similarity transformation of governing partial differential equa-
tions of laminar convection was reviewed. With this method a flow function has to be
induced at first, and then function f (η) and its derivatives will become the unknown
variables of the transformed dimensionless governing equations. Obviously, with
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this method, it is not convenient for similarity transformation of the governing
partial differential equations of laminar convection and film flows, never convenient
to treat fluid variable thermophysical properties in the governing equations, and not
easy to investigate heat and mass transfer, especially for multi-phase film flows, such
as laminar film boiling and condensation.

To overcome these difficulties, a new similarity analysis method will be presented
in this chapter. This method was at first reported in Ref. [1], and has been widely
applied in our investigations on fluid laminar free convection [1–3], laminar free
film boiling and condensation [4–6], and film flow of non-Newtonian fluids [7–9]. It
has been found from these studies that, compared with the traditional Falkner–Skan
transformation, the new similarity analysis method has obvious advantages on deep
investigations on heat and mass transfer problems of free convection boundary layer
and film flows, especially with consideration of variable physical properties.

In this chapter, we will take laminar free convection as an example to determine and
derive a system of dimensionless similarity variables, such as local Grashof number,
dimensionless coordinate variable, and dimensionless velocity components. In the
derivation of the dimensionless similarity variables by using this method, it is never
necessary to induce the flow function ψ, as well as the intermediate variable f (η)

and its derivatives in the transformed governing equation. In the following chapters
of this book, it can be found that for investigation of fluid free convection, film
boiling and condensation, and even falling film flow of non-Newtonian fluids, with
this method, the treatment of fluid variable physical properties will be easier, and
analysis of heat and mass transfer will become much more convenient than those
based on Falkner–Skan type transformation.

4.2 Governing Equations of Fluid Laminar Free Convection

In this section, governing partial differential equations of fluid laminar free convec-
tion will be taken as example for investigation of the new similarity analysis method.
Here, the key work is to derive and determine the related similarity variables, dimen-
sionless coordinate variable, and dimensionless velocity components for similarity
transformation of the governing partial differential equations. To this end, we take
a fluid flow on a flat plate shown in Fig. 2.4 as the physical analysis model and
co-ordinate system of laminar free convection.

According to Chap. 2 the present governing partial differential equations of fluid
laminar free convection with Boussinesq approximation are expressed as follows:

∂wx

∂x
+ ∂wy

∂y
= 0 (4.1)

wx
∂wx

∂x
+ wy

∂wx

∂y
= ν

∂2wx

∂y2 + gβ |T − T∞| cos α (4.2)
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wx
∂t

∂x
+ wy

∂t

∂y
= ν

Pr

∂2t

∂y2 (4.3)

with the boundary conditions

y = 0 : Wx = 0, Wy = 0, t = tw (4.4)

y → ∞ : Wx → 0, t = t∞ (4.5)

where the values of the physical properties are mean values, for instance ν = (νw +
ν∞)/2 and Pr = (Prw + Pr∞)/2 for the Boussinesq approximation. The absolute
value of buoyancy term gβ |T − T∞| shows that it has always positive sign no matter
which one is larger between ρ and ρ∞. In this case, the buoyancy term gβ |T − T∞|
and the velocity component wx have the same sign.

Here, the plate temperature is isothermal, and the Boussinesq approximation is
applied in the governing equations in order to simplify derivation of the similarity
variables and the transformation of the governing partial differential equations.

The above equations will be used for derivation of similarity variables for trans-
formation of the governing partial differential equations. For such purpose, Grashof
number will be derived at first.

4.3 Derivation on Dimensionless Physical Parameters

There are different methods for derivation of the dimensionless physical parameters,
such as Falkner–Skan analysis [10–12], differential equation analysis, and π -theorem
[13] with dimension analysis. Here, the π -theorem with dimension analysis is applied
to derive the dimensionless physical parameters.

4.3.1 Select Whole Physical Variables Related to the Physical
Phenomena

The whole physical variables should be selected from the governing
Eqs. (4.1)–(4.3), and then the following equation can be obtained in principle:

f (λ, L , μ, gβ |Tw − T∞| cos α, α, ρ, cp) = 0 (4.6)

Here, L is reference length of the plate,λ,μ, ρ, and cp are thermal conductivity,
absolute viscosity, density and specific heat of the fluid, α is the heat transfer coef-
ficient, and g is the gravity acceleration. While, gβ |Tw − T∞| cos α is related to
the buoyancy. The above seven physical variables (i.e. n = 7) are independent, and
decisive variables of fluid free convection.
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4.3.2 Select Basic Dimension System

For investigation of the problem such as free convection heat transfer, the fol-
lowing five physical dimensions can be taken as basic ones: time [s], length [m],
mass [kg], temperature [K], and quantity of heat, [J], where the symbols in square
brackets [ ] express the basic physic dimensions. The above independent physical
dimensions λ, L , μ, g, α, ρ and cp can be derived from them, and expressed as[

J

m · s · K

]
, [m],

[
kg

m · s

]
,
[m

s2

]
,

[
J

m2 · s · K

]
,

[
kg

m3

]
and

[
J

kg · K

]
, respectively.

Here, the basic physical dimensions [J] and [K] can be combined as an independent

basic dimension

[
J

K

]
. In this case, the above five basic dimensions are changed to

the following four basic dimension [s], [m], [kg], and [J/K] (i.e. r = 4).
Buckingham’s π -theorem states that if a dependent variable 
 is completely deter-

mined by the values of a set of n independent variables, of which the basic dimensions
with number of r involved, then a suitable dimensionless 
0 will be completely deter-
mined by n–r dimensionless similarity parameters, i.e. the number of independent
variables may be reduced by the number r .

Here, the number of independent physical variables is n = 7, the number of the
related basic dimensions is r = 4. Then, the number of the related dimensionless
similarity parameters should be n − r = 7 − 4 = 3. According to the π -theorem,
the dimensional analysis thus yields the result


0 = f (π1, π2, π3) (4.7)

where π1, π2, and π3 are dimensionless similarity parameters dependent on fluid
free convection.

4.3.3 Determine the Dimensionless Similarity Parameters

According to the π -theorem, the dimensionless similarity parameters π1, π2 and π3
can be expressed as the following equations, respectively:

π1 = λa1 × Lb1 × μc1 × (gβ |Tw − T∞| cos α)d1 × α = 0 (4.8)

π2 = λa2 × Lb2 × μc2 × (gβ |Tw − T∞| cos α)d2 × ρ = 0 (4.9)

π3 = λa3 × Lb3 × μc3 × (gβ |Tw − T∞| cos α)d3 × cp = 0 (4.10)

Then, the power indexes a1 to d1, a2 to d2, and a3 to d3 are determined as follows:

a. Determine the dimensionless similarity parameter π1

By using dimensional analysis, the following dimensional equation is obtained for
the dimensionless similarity parameter π1:
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[
J

s · K · m

]a1

· [m]b1 ·
[

kg

m · s

]c1

·
[m

s2

]d1 ·
[

J

s · K · m2

]
= 0 (4.11)

Obviously, the indexes a1 to d1 are suitable to the following equations:

For dimension [kg] balance: c1 = 0
For dimension [m] balance: −a1 + b1 − c1 + d1 − 2 = 0
For dimension [s] balance: −a1 − c1 − 2d1 − 1 = 0
For dimension [J/K]: a1 + 1 = 0

Their solutions are a1 = −1, b1 = 1, c1 = 0, d1 = 0

Then, the dimensionless similarity parameter π1 is

π1 = αL

λ
(4.12)

Obviously, the dimensionless similarity parameter π1 is Nusselt number NuL . Then,
Eq. (4.12) is expressed as

NuL = αL

λ
(4.13)

If the reference length L is replaced by the coordinate variable x, (4.13) becomes

Nux = αx

λ
(4.13a)

where Nux is called local Nusselt number.

b. Determine the dimensionless similarity parameter π2

By using dimensional analysis, the following dimensional equation is obtained for
the dimensionless similarity parameter π2:

[
J

s · K · m

]a2

· [m]b2 ·
[

kg

m · s

]c2

·
[m

s2

]d2 ·
[

kg

m3

]
= 0 (4.14)

Obviously, the indexes a2 to d2 are suitable to the following equations:

For dimension [kg] balance: c2 + 1 = 0
For dimension [m] balance: −a2 + b2 − c2 + d2 − 3 = 0
For dimension [s] balance: −a2 − c2 − 2d2 = 0
For dimension [J/K]: a2 = 0

They solutions are a2 = 0, b2 = 3/2, c2 = −1, d2 = 1/2

Then, we can obtain a following dimensionless parameter:
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π2 = [gβ |Tw − T∞| cos α]1/2 · L3/2ρ

μ
= [gβ |Tw − T∞| cos α]1/2 · L3/2

ν

Set π2a = π2
2 , we obtain the following expression for the dimensionless parameter

π2:

π2a = gβ |Tw − T∞| cos α · L3

ν2 (4.15)

Obviously, the dimensionless similarity parameter π2a is Grashof number GrL . Then,
local Grashof number can be expressed as follows:

Grx = gβ |Tw − T∞| cos α · x3

ν2 (4.16)

where Grx is called local Grashof number.

c. Determine the dimensionless similarity parameter π3

By using dimensional analysis, the following dimensional equation is obtained for
the dimensionless similarity parameter π3:

[
J

s · K · m

]a3

· [m]b3 ·
[

kg

m · s

]c3

·
[m

s2

]d3 ·
[

J

kg · K

]
= 0 (4.17)

Obviously, the indexes a3 to d3 are suitable to the following equations:

For dimension [kg] balance: c3 − 1 = 0
For dimension [m] balance: −a3 + b3 − c3 + d3 = 0
For dimension [s] balance: −a3 − c3 − 2d3 = 0
For dimension [J/K]: a3 + 1 = 0

They solutions are a3 = −1, b3 = 0, c3 = 1, d3 = 0

π ′
3 = μ · cp

λ
(4.18)

Obviously, the dimensionless similarity parameter π3 is Prandtl number Pr. Then,
Eq. (4.18) is expressed as

Pr = μ · cp

λ
(4.19)

So far, we have derived three dimensionless similarity variables, local Nusselt num-
ber Nux , local Grashof number Grx , and Prandtl number Pr, respectively, for gas
laminar free convection. While, the local Grashof number will be used for similarity
transformation of its partial differential equations.
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4.4 Investigation of Similarity Variables on Hydrodynamics

First of all, we assume the following equation for expression of dimensionless coor-
dinate variable η:

η = y

K xn
= y

x

1

K
x−n+1 (4.20)

where variables K and index n need to be determined.
Now, we assume the dimensionless variable relayed to the velocity components

wx and wy , respectively.
Obviously, the velocity component wx in the boundary layer is caused by buoy-

ancy. If we take a control volume with density ρ in the boundary lay, and assume

the fluid density in the fluid bulk to be ρ∞, the kinetic energy
1

2
Gw2

x of the control

volume is balanced to its following potential energy caused by the buoyancy:

1

2
Gw2

x = V gx |ρ∞ − ρ| cos α

or
1

2
Gw2

x = V gxβ |T − T∞| cos α (a)

for Boussinesq approximation. Here, V and G are volume and mass of the control
volume, respectively, and G = ρ · V .

The above equation is simplified to

wx =
√

2gx

∣∣∣∣ρ∞ − ρ

ρ

∣∣∣∣ cos α

For Boussinesq approximation. Equation (b) describes the velocity component wx
caused by the buoyancy.

The above equation can be expressed as

wx = √
2gxβ |T − T∞| cos α (b)

for Boussinesq approximation.
Equation (b) describes the velocity component wx caused by the buoyancy.
According to Eq. (b), we induce the following equation:

wx = 2
√

gxβ |Tw − T∞| cos α · Wx (4.21)

Obviously, Wx is a dimensionless variable dependent on the velocity component wx .
Meanwhile, the velocity component wy is assumed as

wy = 2
√

gxβ |Tw − T∞| cos α · Bx pWy (4.22)
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where Wy is dimensionless velocity component in y-coordinate, while, variable B
and index p need to be determined.

From Eq. (4.20) we have

∂η

∂x
= −n

y

K xn+1 (4.23)

∂η

∂y
= 1

K xn
(4.24)

From Eq. (4.21) we have

∂wx

∂x
=

√
g

x
β |Tw − T∞| cos αWx + 2

√
gxβ |Tw − T∞| cos α

dWx

dη

∂η

∂x

With Eq. (4.23), the above equation becomes

∂wx

∂x
=

√
g

x
β |Tw − T∞| cos αWx − 2

√
gxβ |Tw − T∞| cos α · n

y

K xn+1

dWx

dη
(4.25)

With Eq. (4.21) we have

∂wx

∂y
= 2

√
gxβ |Tw − T∞| cos α

dWx

dη

∂η

∂y

With Eq. (4.24) the above equation becomes

∂wx

∂y
= 2

√
gxβ |Tw − T∞| cos α

1

K xn

dWx

dη
(4.26)

Then,
∂2wx

∂y2 = 2
√

gxβ |Tw − T∞| cos α
1

K 2x2n

d2Wx

dη2 (4.27)

With Eqs. (4.20)–(4.22), and (4.25)–(4.27), Eq. (4.2) is changed to

2
√

gxβ |Tw − T∞| cos α · Wx

[√
g

x
β |Tw − T∞| cos α · Wx

−2
√

gxβ |Tw − T∞| cos α · n
y

K xn+1

dWx

dη

]

+ 2
√

gxβ |Tw − T∞| cos α · Bx pWy2
√

gxβ |Tw − T∞| cos α
1

K xn

dWx

dη

= 2ν
√

gxβ |Tw − T∞| cos α
1

K 2x2n

d2Wx

dη2 + gβ |T − T∞| cos α (4.28)
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Compare the two terms on the right side of the above equation. Their power indexes
of variable x should be equal for the similarity transformation. Then,

1

2
− 2n = 0

or

n = 1

4
(4.29)

With Eq. (4.29), Eq. (4.20) is expressed as

η = y

K x1/4 = y

x

1

K
x3/4

Compared with Eq. (4.16), the above equation can be expressed as a quarter of the
power of Grashof number as follows to keep the power of variable x :

η = y

x

(
1

4
Grx

)1/4

(4.30)

where

K =
[

1

4

gβ |Tw − T∞| cos α

ν2

]−1/4

(4.31)

Compare the last terms on both sides of Eq. (4.28), and their power indexes of variable
x should be equal then,

1 + p − n = 0

for similarity of the equation.
With Eq. (4.29), the above equation becomes

1 + p − 1

4
= 0

Then,

p = −3

4
(4.32)

With Eq. (4.32), Eq. (4.22) becomes

wy = 2
√

gxβ |Tw − T∞| cos α · Bx−3/4Wy

Compared with Eq. (4.16), the above equation can be expressed as follows with
Grashof number Grx :
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wy = 2
√

gxβ |Tw − T∞| cos α·Bx−3/4
[

1

4

gβ |Tw − T∞| cos α · x3

ν2

]1/4 (
1

4
Grx

)−1/4

Wy

or

wy = 2
√

gxβ |Tw − T∞| cos α · B

[
1

4

gβ |Tw − T∞| cos α

ν2

]1/4 (
1

4
Grx

)−1/4

Wy

From the above equation, it is found that the factor B
[

1
4

gβ|Tw−T∞| cos α

ν2

]1/4
has zero

dimension. For simplicity, we can set

B

[
1

4

gβ |Tw − T∞| cos α

ν2

]1/4

= 1

Therefore,

wy = 2
√

gxβ |Tw − T∞| cos α

(
1

4
Grx

)−1/4

Wy (4.33)

where

B =
[

1

4

gβ |Tw − T∞| cos α

ν2

]−1/4

(4.34)

So far, we have derived four similarity variables, i.e. local Grashof number Grx ,
dimensionless coordinate variable η, dimensionless velocity components Wx and Wy .
From Eqs. (4.16), (4.21), (4.30), and (4.33), these dimensionless similarity variables
can be summarized as follows:

η = y

x

(
1

4
Grx

)1/4

(4.30)

Grx = gβ |Tw − T∞| cos α · x3

ν2 (4.16)

Wx =
[
2
√

gxβ |Tw − T∞| cos α
]−1

wx (4.21)

Wy =
[

2
√

gxβ |Tw − T∞| cos α

(
1

4
Grx

)−1/4
]−1

wy (4.33)

Additionally, for similarity transformation of the governing partial differential equa-
tions of fluid laminar free convection, it is also necessary to assume a dimensionless
temperature variable θ as follows:
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θ(η) = t − t∞
tw − t∞

(4.35)

where η denotes the dimensionless coordinate variable.
So far, five dimensionless similarity variables, dimensionless coordinate vari-

able η, local Grashof number Grx , dimensionless velocity components Wx and Wy ,
and dimensionless temperature variable θ are presented. They form a new similar-
ity analysis method for laminar free film convection and film flows. Among these
dimensionless similarity variables, dimensionless velocity components Wx and Wy

are new similarity variable, different from those, which inform the Falkner–Skan
type transformation.

4.5 An Application Example of the New Similarity
Analysis Method

For an application example of the new similarity analysis method, the above equations
for dimensionless variables η, local Grashof number Grx , dimensionless velocity
components Wx and Wy , and dimensionless temperature θ will be used to transform
the governing partial differential equation (4.1)–(4.3) with their boundary condition
equations, to the equivalent governing ordinary differential equations for laminar free
convection. The related application processes of the new similarity analysis method
are presented as follows:

4.5.1 Similarity Transformation of Eq. (4.1)

With Eq. (4.35), we have

∂wx

∂x
=

√
g

x
β |Tw − T∞| cos αWx + 2

√
gxβ |Tw − T∞| cos α

dWx

dη

∂η

∂x
(4.36)

With Eq. (4.30), we obtain

∂η

∂x
= −1

4
x

−5

4 y

[
1

4
gβ|Tw−T∞| cos α

ν2

]1/4

= −1

4
x−2 y

[
1

4

gβ |Tw − T∞| cos α · x3

ν2

]1/4

= −1

4
x−1 y

x

[
1

4
Grx

]1/4

= −1

4
x−1η

(4.37)
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Then,

∂wx

∂x
=

√
g

x
β |Tw − T∞| cos α ·Wx − 1

2

√
gxβ |Tw − T∞| cos α · x−1η

dWx

dη
(4.38)

With Eq. (4.33), we have

∂wy

∂y
= 2

√
gxβ |Tw − T∞| cos α

(
1

4
Grx

)−1/4 dWy

dη

∂η

∂y
(4.39)

With Eq. (4.30), we obtain
∂η

∂y
= 1

x

(
1

4
Grx

)1/4

(4.40)

Then,

∂wy
∂y = 2

√
gxβ |Tw − T∞| cos α

( 1
4 Grx

)−1/4 1
x

( 1
4 Grx

)1/4 dWy
dη

= 2
√

gxβ |Tw − T∞| cos α · x−1 dWy
dη

(4.41)

With Eqs. (4.38) and (4.41), Eq. (4.1) is changed to

√
g

x
β |Tw − T∞| cos α · Wx − 1

2

√
gxβ |Tw − T∞| cos α · x−1η

dWx

dη

+ 2
√

gxβ |Tw − T∞| cos α · x−1 dWy

dη
= 0

The above equation is simplified to

2Wx − η
dWx

dη
+ 4

∂Wy

∂η
= 0 (4.42)

This is the dimensionless form of Eq. (4.1).

4.5.2 Similarity Transformation of Eq. (4.2)

With Eq. (4.21), we have

∂wx

∂y
= 2

√
gxβ |Tw − T∞| cos α

dWx

dη

∂η

∂y

With Eq. (4.40), the above equation becomes
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∂wx

∂y
= 2

√
gxβ |Tw − T∞| cos α

1

x

(
1

4
Grx

)1/4 dWx

dη
(4.43)

Then,
∂2wx

∂y2 = 2
√

gxβ |Tw − T∞| cos α
1

x2

(
1

4
Grx

)1/2 d2Wx

dη2 (4.44)

Therefore, Eq. (4.2) is changed to

2
√

gxβ |Tw − T∞| cos α · Wx

[√
g

x
β |Tw − T∞| cos αWx

− 1

2

√
gxβ |Tw − T∞| cos αx−1η

dWx

dη

]

+ 4
√

gxβ |Tw − T∞| cos α

(
1

4
Grx

)−1/4

Wy

√
gxβ |Tw − T∞| cos α

1

x

(
1

4
Grx

)1/4 dWx

dη

= 2ν
√

gxβ |Tw − T∞| cos α
1

x2

(
1

4
Grx

)1/2 d2Wx

dη2 + gβ |T − T∞| cos α

With definition of local Grashof number in Eq. (4.16), the above equation is further
simplified to

2
√

gxβ |Tw − T∞| cos αWx

[√
g

x
β |Tw − T∞| cos αWx

−1

2

√
gxβ |Tw − T∞| cos αx−1η

dWx

dη

]

+ 4
√

gxβ |Tw − T∞| cos αWy

√
gxβ |Tw − T∞| cos α

1

x

dWx

dη

= 2ν
√

gxβ |Tw − T∞| cos α
1

x2

(
1

4

gβ |Tw − T∞| cos α · x3

ν2

)1/2

d2Wx

dη2 + gβ |T − T∞| cos α

The above equation is divided by gβ |Tw − T∞| cos α, and simplified to

2Wx

[
Wx − 1

2
η

dWx

dη

]
+ 4Wy

dWx

dη
= 2ν

(
1

4

1

ν2

)1/2 d2Wx

dη2 + θ
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i.e.

Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη
= d2Wx

dη2 + θ (4.45)

This is the dimensionless form of Eq. (4.2).

4.5.3 Similarity Transformation of Eq. (4.3)

From Eq. (4.35), we have
∂t

∂x
= (tw − t∞)

dθ

dη

∂η

∂x

With Eq. (4.37), the above equation becomes

∂t

∂x
= −1

4
(tw − t∞)x−1η

dθ

dη
(4.46)

From Eq. (4.35), we have
∂t

∂y
= (tw − t∞)

dθ

dη

∂η

∂y

With Eq. (4.40), the above equation becomes

∂t

∂y
= (tw − t∞)

1

x

(
1

4
Grx

)1/4 dθ

dη
(4.47)

Then,
∂2t

∂y2 = (tw − t∞)
1

x2

(
1

4
Grx

)1/2 d2θ

∂η2 (4.48)

Therefore, Eq. (4.3) is changed to

2
√

gxβ |Tw − T∞| cos αWx

(
−1

4
(tw − t∞)x−1η

dθ

dη

)

+ 2
√

gxβ |Tw − T∞| cos α

(
1

4
Grx

)−1/4

Wy(tw − t∞)
1

x

(
1

4
Grx

)1/4 dθ

dη

= λ

ρcp
(tw − t∞)

1

x2

(
1

4
Grx

)1/2 d2θ

dη2

With the definition of local Grashof number in Eq. (4.16), the above equation becomes
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2
√

gxβ |Tw − T∞| cos αWx

(
−1

4
(tw − t∞)x−1η

dθ

dη

)

+ 2
√

gxβ |Tw − T∞| cos αWy(tw − t∞)
1

x

dθ

dη

= λ

ρcp
(tw − t∞)

1

x2

(
1

4

gβ |Tw − T∞| cos α · x3

ν2

)1/2
d2θ

dη2

The above equation is divided by (tw − t∞)
√

gxβ |Tw − T∞| cos α, and becomes

2Wx

(
−1

4

(
η

dθ

dη

))
+ 2Wy

dθ

dη
= λ

ρcp

(
1

4

1

ν2

)1/2 d2θ

dη2

The above equation is further simplified to

(−ηWx + 4Wy)
dθ

dη
= 1

Pr

d2θ

dη2 (4.49)

With Eqs. (4.20), (4.35)–(4.37), Eqs. (4.4) and (4.5) are transformed to as follows
respectively:

η = 0 : Wx = 0, Wy = 0, θ = 1 (4.50)

η → ∞ : Wx = 0, θ = 0 (4.51)

The transformed governing dimensionless equations of laminar free convection of
gas with Boussinesq approximation are summarized as below:

2Wx − η
dWx

dη
+ 4

∂Wy

∂η
= 0 (4.42)

Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη
= d2Wx

dη2 + θ (4.45)

(−ηWx + 4Wy)
dθ

dη
= 1

Pr

d2θ

dη2 (4.49)

with the dimensionless boundary condition Eqs. (4.50) and (4.51).
From Chap. 3, it is seen that by using Falkner–Skan type transformation, the

related unknown variables of transformed governing dimensionless equations are
function f (η) and its derivatives, except dimensionless temperature θ . While, in gov-
erning dimensionless equations transformed by the present transformation method,
the related unknown variables are dimensionless velocity components Wx and Wy

proportional to the related velocity components. Therefore, for differentiating the

http://dx.doi.org/10.1007/978-3-642-28983-5_3
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traditional Falkner–Skan type transformation, the present transformation method
can be called as dimensionless velocity component method.

From the above successful verification, it is found that the derived dimensionless
coordinate variable η, local Grashof number Grx , dimensionless velocity compo-
nents Wx and Wy , and dimensionless temperature θ are validity of similarity analysis
of fluid laminar free convection. It follows that the new similarity analysis method
is available for the similarity analysis of fluid laminar free convection.

In the following chapters, the present new similarity analysis method will be used
for the investigation of fluid laminar free convection, laminar free film boiling of
liquid, laminar free film condensation of pure vapor, laminar free film condensation
of vapor–gas mixture, and film flow of non-Newtonian power-law fluid. It will be
seen that by using the new similarity analysis method, it will be more convenient for
investigation of heat and mass transfer than that by using traditional Falkner–Skan
type transformation, especially for consideration and treatment of variable physical
properties.

4.6 Summary

In this chapter, taking governing partial differential equations of laminar free con-
vection as example, we have derived the related local Grashof number Grx by using
the π -theorem with dimension analysis, derived the expressions of similarity vari-
ables on hydrodynamics, such as dimensionless coordinate variable η, as well as
dimensionless velocity components Wx and Wy by means of dimensional analysis
of the governing partial differential equations. Furthermore, with these dimensionless
variables, the governing partial differential equations of laminar free convection are
transformed similarly to the related dimensionless equations. Then, the validity of the
derived dimensionless similarity variables for the similarity transformation has been
verified. The related governing partial differential equations, derived similarity vari-
ables, and the dimensionless governing equations transformed by the new similarity
analysis method and Falkner–Skan transformation are summarized in Table 4.1.

4.7 Remarks

In this chapter, a new similarity analysis method, for laminar free convection bound-
ary layer was presented in detail. Meanwhile, the approach for determination of
a system of similarity parameters and variables, such as dimensionless coordinate
variable η, local Grashof number Grx , dimensionless velocity components Wx and
Wy were induced by means of the related examples for laminar free convection. The
local Grashof number Grx is derived by means of π -theorem and dimension analysis,
while, the dimensionless coordinate variable η and dimensionless velocity compo-
nents Wx and Wy are derived by using the dimension analysis for the governing
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partial differential equations. Finally, by using these derived similarity variables, the
verifications were done by using the similarity transformation of the governing partial
differential equations of laminar free convection. The verification results proved that
these derived similarity variables are available, and the present similarity analysis
method is reliable for similarity analysis of fluid laminar free convection.

In the following respects, the present new similarity analysis method is more
convenient for application than the traditional Falkner–Skan type transformation:

For derivation of the similarity variables by using the new similarity analysis
method, it is never necessary to induce the flow function. Then, it is more convenient
to derive the similarity variables by using the present new similarity analysis method
than that by Falkner-Skan transformation.

The obvious difference of the present new similarity analysis method from the tra-
ditional Falkner–Skan transformation lies in the similarity transformation of velocity
components. For the former method, in the provided similarity expressions, the veloc-
ity components are proportional to the related dimensionless velocity components
Wx and Wy , respectively. Then, the dimensionless velocity components Wx and Wy

exist in the transformed dimensionless governing equations. While, for the latter
transformation, in the provided similarity expressions, the velocity components are
functions of induced intermediate variable f (η) and its derivatives, respectively.
Then, the intermediate variable f (η) and its derivatives exist in the transformed
dimensionless governing equations.

The dimensionless velocity components Wx and Wy have definite physical sig-
nificance compared with the variable f (η) and its derivatives. Then, the dimension-
less governing equations transformed by using the new similarity analysis method
demonstrate more obvious physical significance compare with those transformed by
the Falkner–Skan type transformation.

In the successive chapters, we will find by using the new similarity analysis
method that (i) it will be more convenient to treat variable physical properties of the
governing equations, and (ii) it will be more convenient to investigate momentum
field and mass transfer than that by means of the Falkner–Skan type transformation,
especially for the investigation of multi-phase film flow problem.

4.8 Exercises

1. Please review the derivation for creating the present new similarity analysis
method for laminar free convection boundary layer and film flows.

2. Please list all similarity variables for the new similarity analysis method on lam-
inar free convection.

3. Please tell me the common grounds and differences of the similarity variables
between the new similarity analysis method and Falkner–Skan type transforma-
tion for laminar free convection.

4. Can you list the advantages of the new similarity analysis method over the tradi-
tional Falkner–Skan type transformation in their application?
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5. Suppose that the dimensionless coordinate variable η in Eq. (4.30) is replaced
by the form η = y

x (Grx )
1/4, and the forms of other similarity variables are

kept, please try to transform similarly the governing partial differential equations
(4.1)–(4.3) and the boundary condition Eqs. (4.4) and (4.5) to the related ordinary
differential forms.

6. From question 2, what relationship can you find between the similarity coordinate
variable η and the transformed governing ordinary differential equations?
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Chapter 5
New Method for Treatment of Variable Physical
Properties

Abstract The advanced method reported in this chapter for treatment of fluid
variable physical properties involves temperature parameter method for treatment of
temperature-dependent physical properties of gases, theoretical equation method for
treatment of concentration- and temperature-dependent density of vapour-gas mix-
ture, weighted sum method for treatment of other concentration- and temperature-
dependent physical properties of vapour-gas mixture and polynomial method for
treatment of temperature-dependent physical properties of liquids. These methods
are taken as a theoretical foundation of this book for extensive investigation of hydro-
dynamics and heat transfer of free convection of gases, free convection of liquids,
free convection film boiling of liquid and free convection film condensation of pure
vapour or vapour-gas mixture with consideration of coupled effects of variable physi-
cal properties. For the temperature parameter method based on the simple power-law
of the temperature-dependent physical properties of gases, a system of the tempera-
ture parameters such as nμ, nλ and nc p are reported. From these temperature para-
meters, it is seen that the specific heat parameter is much small, and then, it follows
that the variable temperature will have more obvious effects on viscosity, thermal
conductivity and density of gases than that of the specific heat. Since the determi-
nation of the temperature parameter is based on the typical experimental data, with
the provided temperature parameters, the temperature-variable physical properties
of gases can be stimulated very well by using the temperature parameter method.
Furthermore, with the temperature parameter method the treatment of variable phys-
ical properties of vapour or gas becomes very simple and convenient. Taking water
as an example, the temperature-dependent polynomials of the density, thermal con-
ductivity and viscosity are introduced for liquid variable physical properties, while
the specific heat at constant pressure is so small that it can be disregarded generally
with variation of temperature. These polynomials are reliable, since the related typi-
cal experimental data. The concentration-dependent density equations of vapour-gas
mixture are reported through the rigorously theoretical derivation, while the other
concentration-dependent physical properties of vapour-gas mixture are expressed as
the weighted sum of the physical properties of the involved vapour and gas with their

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 73
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_5,
© Springer-Verlag Berlin Heidelberg 2012
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concentrations (mass fraction). Since the involved vapour and gas are temperature-
dependent, the physical properties of the vapour-gas mixture are concentration- and
temperature-dependent.

5.1 Introduction

The study of laminar free convection of gases with variable physical properties can be
traced back to the perturbation analysis of Hara [1] for air free convection. The solu-
tion is applicable for small values of the perturbation parameter, εH = (Tw−T∞)/T∞.
Later, Tataev [2] investigated the free convection of a gas with variable viscosity. A
well-known analysis of the variable fluid property problem for laminar free convec-
tion on an isothermal vertical flat plate has been presented by Sparrow and Gregg
[3], giving solutions of the boundary layer equations for five assumed gases. They
proposed a reference temperature and suggested that with it the problem of vari-
able physical properties can be treated as a constant property problem, i.e. using
the Boussinesq approximation. Gray and Giogini [4] discussed the validity of the
Boussinesq approximation and proposed a method for analysing natural convection
flow with fluid properties assumed to be a linear function of temperature and pressure.
Clausing and Kempka [5] reported their experimental study of the influence of prop-
erty variations on natural convection and showed that, for the laminar region, Nuf is a
function of Raf(= Grf Prf) only, with the reference temperature Tf taken as the aver-
age temperature in the boundary layer. Herwig [6] expanded the functions describ-
ing the temperature dependence of the fluid properties as Taylor series to analyse
the influence of variable properties on laminar fully developed pipe flow. Pozzi and
Lupo [7] assumed viscosity and thermal conductivity to depend on temperature in a
polynomial form to analyse the variable property effects in free convection. In this
chapter, I will present a temperature parameter method proposed in our Ref. [8, 9]
for treatment of variable physical properties of gases, and a polynomial method pro-
vided in Ref. [10] for treatment of variable physical properties of liquids. Both of the
methods were applied respectively in our series of studies for investigation of effects
of variable physical properties on gas free convection [8, 9], liquid free convection
[10], free convection film convection boiling [11], free convection film condensation
of pure gas [12, 13], and free convection film condensation of vapour-gas mixture
[14], as well as were partially applied in investigation for my recent book [15].
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5.2 Treatment of Temperature-Dependent Physical
Properties of Gas

5.2.1 Temperature Parameter Method

For treatment of variable physical properties, a temperature parameter method devel-
oped in [8, 9] is presented here, which is based on a simple power-law of gases.
According to the measurement values of physical properties of gases, it is found that
at constant pressure the physical properties of gases such as density, viscosity, ther-
mal conductivity and specific heat with absolute temperature, very closely follow a
simple power-law, i.e. ρ ≈ T −1, μ ≈ T nμ , λ ≈ T nλ and cp ≈ T ncp , where nμ, nλ

and nc p are temperature parameters, respectively called viscosity parameter, ther-
mal conductivity parameter and specific heat parameter. Obviously, different gases
have different temperature parameters. Then, for absolute temperatures T1 and T2,
we have

μ1

μ2
=

(
T1

T2

)nμ

(5.1)

λ1

λ2
=

(
T1

T2

)nλ

(5.2)

cp1

cp2
=

(
T1

T2

)nλ

(5.3)

While the change of density with absolute temperature at constant pressure can be
expressed as

ρ1

ρ2
=

(
T1

T2

)−1

(5.4)

While, the dimensionless exponents nμ, nλ and nc p are exponents of absolute tem-
perature, and then named temperature parameter here. Obviously, the different gases
have different temperature parameter nμ, nλ and nc p.

For practical issues of free convection and its film flows, the absolute temper-
ature T1 is usually replaced by any temperature T in the boundary layer or film
flows, and T2 is usually replaced by T∞ which is located at the boundary of the
boundary layer or film flows. Then, the above equations become the following ones
respectively:

μ

μ∞
=

(
T

T∞

)nμ

(5.5)

λ

λ∞
=

(
T

T∞

)nλ

(5.6)
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Table 5.1 The value of parameters nμ, nλ and ncp for several monatomic and diatomic gases, and
also for air and water vapour, cited from Shang and Wang [8]

Gas T∞ nμ Temperature nλ Temperature ncp Temperature Recommended
(K) range range range Pr

(K) (K) (K)

Ar 273 0.72 220–1500 0.73 210–1500 0.01 220–1500 0.622
He 273 0.66 273–873 0.725 273–873 0.01 273–873 0.675
H2 273 0.68 80–1000 0.8 220–700 0.042 220–700 0.68
Air 273 0.68 220–1400 0.81 220–1000 0.078 230–1000 0.7
CO 273 0.71 230–1500 0.83 220–600 0.068 220–600 0.72
N2 273 0.67 220–1500 0.76 220–1200 0.07 220–1200 0.71
O2 273 0.694 230–2000 0.86 220–600 0.108 230–600 0.733
Water vapour 380 1.04 380–1500 1.185 380–800 0.003 380–800 1

cp

cp∞
=

(
T

T∞

)nλ

(5.7)

ρ

ρ∞
=

(
T

T∞

)−1

(5.8)

5.2.2 For Monatomic and Diatomic Gases,
Air and Water Vapour

According to the experimental values for several monatomic and diatomic gases,
and also for air and water vapour, reported by Hisenrath et al. [16], nμ, nλ and nc p
values are given in Table 5.1, with the percentage deviations for predicted values of
μ and λ predicted from Eqs. (5.5) and (5.6).

The Prandtl number is defined as Pr = μcp/λ. Strictly speaking, Pr should also
depend on temperature. However, it is well known that Pr ≈ 0.72 for a diatomic
gas, Pr ≈ 0.7 for air and Pr ≈ 1 for water vapour. Hence, Pr can be taken as a
constant for monatomic and diatomic gases, and for air and water vapour in the
related temperature ranges from T to T∞.

It can be found from Table 5.1 that the values of the specific heat parameter nc p
are around 0.01 for monatomic gases, and lower than 0.11 for diatomic gases, air
and water vapour. For the case 1/2 ≤ (T/T∞) ≤ 2, it is possible to treat cp as a
constant value for these gases, so as to simplify the analysis but still suit the needs
of engineering application.

5.2.3 For Polyatomic Gas

According to the summarised experimental values of μ, λ and cp for several poly-
atomic gases reported in Refs. [17–20], the temperature parameters nλ, nμ and nc p
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and the deviation of μ, λ and cp arising from the corresponding experimental data
are listed in Table 5.2.

5.3 Treatment of Concentration- and Temperature-Dependent
Physical Properties of Vapour–Gas Mixture

Treatment of variable physical properties of vapour-gas mixture is more complicated
work than that of gas since the concentration-dependent physical properties should
be first taken into account, and on this basis, the temperature-dependent physical
properties are considered.

5.3.1 For Density

Take ρm as density of vapour-gas mixture, ρmv and ρmg as local densities of vapour
and gas in the vapour-gas mixture, and ρv and ρg as densities of vapour and gas,
respectively, then, we will have the following equations for their relations:

ρm = ρmv + ρmg

Cmvρm = ρmv

ρmv

ρv
+ ρmg

ρg
= 1

The solutions of the above group of equations are

ρm = ρvρg

(1 − Cmv)ρv + Cmvρg
(5.9)

ρmv = Cmvρvρg

(1 − Cmv)ρv + Cmvρg
(5.10)

ρmg = (1 − Cmv)ρvρg

(1 − Cmv)ρv + Cmvρg
(5.11)

where Cmv is the vapour mass fraction of the vapour-gas mixture, ρm is vapour-gas
mixture density, ρmv is local vapour density, and ρmg is local gas density and ρv
and ρg are vapour and gas density respectively. Although, Eqs. (5.9)–(5.11) seem
for expression of concentration-dependent densities of the vapour-gas mixture, they
actually cover the concentration- and temperature-dependent densities, because the
vapour and gas densities ρv and ρg are temperature-dependent, and need to be further
treated by the temperature parameter method.
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5.3.2 For Other Physical Properties

According to equations recommended by [15], the other concentration-dependent
physical properties, su as μm, λm, cpm and Prm of vapour-gas mixture are assumed
as following weighted sum formulae:

μm = Cmvμv + (1 − Cmv)μg (5.12)

λm = Cmvλv + (1 − Cmv)λg (5.13)

cpm = Cmvcpv + (1 − Cmv)cpg (5.14)

Prm = CmvPrv + (1 − Cmv)Prg (5.15)

where μm, λm, cpm and Prm denote the related physical properties of vapour-gas
mixture.

Since the vapour physical properties μv, λv, cpv and Prv, as well as gas physical
properties μg, λg, cpg and Prg are temperature-dependent physical properties, and
need to be further treated by using the temperature parameter method, Eqs. (5.12)–
(5.15) actually cover for treatment of the concentration- and temperature-dependent
physical properties μm, λm, cpm and Prm of vapour-gas mixture.

5.4 Treatment of Temperature-Dependent Physical
Properties of Liquids

For treatment of variable physical properties of liquids, Ref. [10] suggested a poly-
nomial method. Now we take water at atmospheric pressure as an example, the
temperature-dependent expressions of density and thermal conductivity with the
temperature range between 0 and 100 ◦C are expressed with polynomial as

ρ = −4.48 × 10−3t2 + 999.9 (5.16)

λ = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563 (5.17)

The deviation predicted is less than 0.35 % by Eq. (5.16) and less than 0.18 % by
Eq. (5.17), compared with the typical experimental data shown in appendix of this
book.

For the absolute viscosity of water, the following expression described in Ref. [22]
is applied:

μ = 10−3 exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

(5.18)

The deviation predicted by Eq. (5.18) is less than 1.8 %, as compared with the exper-
imental data shown in appendix of this book.
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In addition, for a lot of liquid, the specific heat varies very little with temperature,
and can be regarded as constant.

5.5 Physical Property Factor

It will be found in the successive chapters that the variable physical properties always
exist as the related physical property factors in the dimensionless ordinary partial
differential equations of laminar free convection. In fact, there are two types of
physical property factors, the temperature-dependent physical property factors for
gases and liquids such as 1

ρ
dρ
dη

, 1
μ

dμ
dη

, 1
λ

dλ
dη

, 1
cp

dcp
dη

and ν∞
ν

and the concentration-

dependent physical property factors such as 1
ρm

dρm
dηm

, 1
μm

dμm
dηm

and 1
λm

dλm
dηm

. Here, η is
the dimensional coordinate variable for gas and liquid, ηm denotes the dimensional
coordinate variable for vapour-gas mixture, and the subscript denotes vapour-gas
mixture. These physical property factors are presented as follows respectively:

5.5.1 For Gases

Transformation of the density facto
(

1
ρ

dρ
dη

)
:

With Eq. (5.8) we obtain

1

ρ

dρ

dη
= 1

ρ

d

dη

(
ρ∞

T∞
T

)
.

Suppose Tw and T∞ are boundary temperatures of the boundary layer, i.e. water
temperature and fluid bulk temperature respectively, they can express a dimensionless
temperature variable

θ = T − T∞
Tw − T∞

or θ = t − t∞
tw − t∞

(5.19)

i.e.
T = (Tw − T∞)θ + T∞ or t = (tw − t∞)θ + t∞

Therefore,

1

ρ

dρ

dη
= ρ∞

ρ

d

dη

[
T∞

(Tw − T∞)θ + T∞

]

= T

T∞
d

dη

[
1

(Tw/T∞ − 1)θ + 1

]

= − [(Tw/T∞ − 1)θ + 1]
(Tw/T∞ − 1) dθ

dη

[(Tw/T∞ − 1)θ + 1]2
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Then,
1

ρ

dρ

dη
= − (Tw/T∞ − 1)

(Tw/T∞ − 1)θ + 1
· dθ

dη
(5.20)

Transformation of the viscosity facto 1
μ

dμ
dη

r:
With Eq. (5.5) we get

1

μ

dμ

dη
= 1

μ

d

dη

[
μ∞

(
T

T∞

)nμ
]

= μ∞
μ

d

dη

[(
T

T∞

)nμ
]

=
(

T

T∞

)−nμ d

dη

[(
(Tw − T∞)θ + T∞

T∞

)nμ
]

= ((Tw/T∞ − 1)θ + 1)−nμ
d

dη
((Tw/T∞ − 1)θ + 1)nμ

= ((Tw/T∞ − 1)θ + 1)−nμnμ((Tw/T∞ − 1)θ + 1)nμ−1(Tw/T∞ − 1)
dθ

dη

Then, the viscosity factor is described as

1

μ

dμ

dη
= nμ(Tw/T∞ − 1)

(Tw/T∞ − 1)θ + 1
· dθ

dη
(5.21)

Transformation of the thermal conductivity factor 1
λ

dλ
dη

:

With a derivation similar to that for the factor
(

1
μ

dμ
dη

)
we can obtain the following

equation for description of the thermal conductivity factor:

1

λ

dλ

dη
= nλ(Tw/T∞ − 1)

(Tw/T∞ − 1)θ + 1
· dθ

dη
(5.22)

Transformation of physical factor ν∞
ν

The physical factor ν∞
ν

can be expressed as

ν∞
ν

=
μ∞
ρ∞
μ
ρ

= μ∞
μ

· ρ

ρ∞

By using Eqs. (5.5) and (5.8), we have

ν∞
ν

=
(

T∞
T

)nμ

·
(

T∞
T

)
=

(
T∞
T

)nμ+1

i.e.
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ν∞
ν

=
(

T∞
(Tw − T∞)θ + T∞

)nμ+1

Therefore,
ν∞
ν

= [(Tw/T∞ − 1)θ + 1]−(nμ+1) (5.23)

5.5.2 For Liquids

Taking water as an example, the above temperature-dependent physical property
factors are described as

Transformation for density factor 1
ρ

dρ
dη

At first, the density factor 1
ρ

dρ
dη

is expressed as

1

ρ

dρ

dη
= 1

ρ

dρ

dt

dt

dη

where with Eq. (5.16) the following equation is obtained

dρ

dt
= −2 × 4.48 × 10−3t

With Eq. (5.19) we obtain
dt

dη
= (ts − t∞)

dθ

dη

Therefore,
1

ρ

dρ

dη
= 1

ρ
(−2 × 4.48 × 10−3t)(ts − t∞)

dθ

dη

Then,
1

ρ

dρ

dη
= (−2 × 4.48 × 10−3t)(ts − t∞)

−4.48 × 10−3t2 + 999.9
· dθ

dη
(5.24)

Transformation for viscosity factor 1
μ

dμ
dη

With (5.18) we have

μ = exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

× 10−3

1

μ

dμ

dη
= 1

μ

d

dη

{
exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

× 10−3

}
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= μ

μ

[
1150

T 2 − 2 × 6902

T 3

]
dT

dη

where,
dT

dη
= (Tw − T∞)

dθ

dη

Then,
1

μ

dμ

dη
=

(
1150

T 2 − 2 × 6902

T 3

)
(Tw − T∞)

dθ

dη
(5.25)

Transformation for thermal conductivity factor 1
λ

dλ
dη

With Eq. (5.17) we have

1

λ

dλ

dη
= 1

λ

d

dη
(−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563)

i.e.
1

λ

dλ

dη
= 1

λ
(−8.01 × 2 × 10−6t + 1.94 × 10−3)

dt

dη

where,
dt

dη
= (tw − t∞)

dθ

dη

Then,

1

λ

dλ

dη
= (−8.01 × 2 × 10−6t + 1.94 × 10−3)(tw − t∞)

−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563

dθ

dη
(5.26)

5.5.3 For Vapour–Gas Mixture

Transformation for density factor 1
ρm

dρm
dηm

With Eq. (5.9), the density factor of the vapour-gas mixture in the governing
dimensional differential equations will be derived as

1

ρm

dρm

dηm
= 1

ρm

d

dηm

[
ρvρg

(1 − Cmv)ρv + Cmvρg

]

Then,
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1

ρm

dρm

dηm
= 1

ρm

⎡
⎣ ρv

dρg
dηm

+ ρg
dρv
dηm

(1 − Cmv)ρv + Cmvρg
− ρvρg

((1 − Cmv)ρv + Cmvρg)2 ·

(1 − Cmv)
dρv

dηm
− ρv

dCmv

dηm
+ Cmv

dρg

dηm
+ ρg

dCmv

dηm

⎤
⎦

With Eq. (5.9) we have

1

ρm

dρm

dηm
= 1

ρg

dρg

dηm
+ 1

ρv

dρv

dηm
− 1

(1 − Cmv)ρv + Cmvρg
·

[
(1 − Cmv)

dρv

dηm
− ρv

dCmv

dηm
+ Cmv

dρg

dηm
+ ρg

dCmv

dηm

]

The above equation is further changed to

1

ρm

dρm

dηm
= 1

ρg

dρg

dηm
+ 1

ρv

dρv

dηm
− 1

(1 − Cmv)ρv + Cmvρg
·

[
(1 − Cmv)

dρv

dηm
+ Cmv

dρg

dηm
− (ρv − ρg)

dCmv

dηm

]

or

1

ρm

dρm

dηm
= 1

ρg

dρg

dηm
+ 1

ρv

dρv

dηm
− Cmv(ρv − ρg)

(1 − Cmv)ρv + Cmvρg
·

[
1 − Cmv

Cmv
· ρv

ρv − ρg
· 1

ρv

dρv

dηm
+ ρg

ρv − ρg
· 1

ρg

dρg

dηm
− 1

Cmv

dCmv

dηm

]

Now, we introduce the vapour relative mass fraction �mv as

�mv = Cmv − Cmv,∞
Cmv,s − Cmv,∞

where Cmv,s and Cmv,∞ are vapour mass fractions at the liquid–vapour interface and
in vapour-gas bulk respectively,

Then, we have

1

ρm

dρm

dηm
= 1

ρg

dρg

dηm
+ 1

ρv

dρv

dηm
− Cmv(ρv − ρg)

(1 − Cmv)ρv + Cmvρg
·
[

1 − Cmv

Cmv
· ρv

ρv − ρg
·

1

ρv

dρv

dηm
+ ρg

ρv − ρg
· 1

ρg

dρg

dηm
− Cmv − Cmv,∞

Cmv

d�mv

dηm

]
(5.27)
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Transformation for viscosity factor 1
μm

dμm
dηm

With Eq. (5.12) the viscosity factor 1
μm

dμm
dηm

is

1

μm

dμm

dηm
= 1

μm

d

dηv
[Cmvμv + (1 − Cmv)μg]

= 1

μm

[
Cmv

dμv

dηm
+ μv

dCmv

dηm
+ (1 − Cmv)

dμg

dηm
− μg

dCmv

dηm

]

i.e.
1

μm

dμm

dηm
= 1

μm

[
Cmv

dμv

dηm
+ (1 − Cmv)

dμg

dηm
+ (μv − μg)

dCmv

dηm

]

Then, we have

1

μm

dμm

dηm
= Cmv

μv

μm

1

μv

dμv

dηm
+ (1 − Cmv)

μg

μv

1

μg

dμg

dηm
+ μv − μg

μm
· dCmv

dηm

With definition of vapour relative mass fraction �mv we have

1

μm

dμm

dηm
= Cmv

μv

μm

1

μv

dμv

dηm
+(1−Cmv)

μg

μm

1

μg

dμg

dηm
+ μv − μg

μm
(Cmv,s−Cmv,∞)

d�mv

dηm
(5.28)

Thus, it is seen that the viscosity factor 1
μm

dμm
dηm

of vapour-gas mixture is dominated

by the concentration Cmv, as well as the gas and vapour viscosity factors 1
μg

dμg
dηm

and 1
μv

dμv
dηm

respectively. Since 1
μg

dμg
dηm

and 1
μv

dμv
dηm

are temperature-dependent, the

viscosity factor 1
μm

dμm
dηm

of vapour-gas mixture is concentration- and temperature-
dependent.

Transformation for thermal conductivity factor 1
λm

dλm
dηm

Similar to derivation for Eq. (5.28), the viscosity factor 1
μm

dμm
dηm

of vapour-gas mixture

the thermal conductivity factor 1
λm

dλm
dηm

of the vapour-gas mixture can be expressed
as

The concentration-dependent thermal conductivity factor is described as

1

λm

dλm

dηm
= Cmv

λv

λm

1

λv

dλv

dηm
+(1−Cmv)

λg

λm

1

λg

dλg

dηm
+λv − λg

λm
(Cmv,s−Cmv,∞)

d�mv

dηm
(5.29)

Similar to the analysis on the viscosity factor 1
μm

dμm
dηm

of vapour-gas mixture, the

thermal conductivity factor 1
λm

dλm
dηm

of the vapour-gas mixture is concentration- and
temperature-dependent also.
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It is seen that the concentration-dependent physical property factors are function
of the temperature-dependent physical property factors.

Eqs. (5.1)–(5.29) consist of the theoretical foundation for treatment of variable
physical properties of gas, liquid and vapour-gas mixture for this book. These models
will be used in the successive related chapters for serious investigation of heat and
mass transfer on laminar free convection and two-phase free convection film boiling
and condensation.

5.6 Summary

So far, it is time to summarise the models for treatment of fluid variable physical
properties in Table 5.3.

5.7 Remarks

The advanced method for treatment of variable physical properties of fluids is
proposed. This method involves temperature parameter method for treatment of
temperature-dependent physical properties of gases, weighted sum method for treat-
ment of concentration- and temperature-dependent physical properties of vapour-gas
mixture and polynomial method for treatment of temperature-dependent physical
properties of liquids. These methods for treatment of variable physical properties of
fluids will be taken as a theoretical foundation of this book for extensive investiga-
tion of hydrodynamics and heat transfer of free convection of gases, free convection
of liquids, free convection film boiling of liquid, free convection film condensation
of pure vapour and free convection film condensation of vapour-gas mixture with
consideration of coupled effects of variable physical properties.

The fundamentals of the temperature parameter method for treatment of variable
physical properties of gases come from the simple power-law for description of
the temperature-dependent physical properties of gases. The temperature parameters
are representatives of the power-law indexes. A series of values of the temperature
parameters nμ, nλ and ncp are reported based on the typical experimental results.
For monatomic and diatomic gases, air and water vapour the value of nμ varies from
autoedited10.64 to 1.04, while the value of nλ varies from 0.71 to 1.185. Additionally,
the density of gases is inversely proportion to its absolute temperature. Compared
with the viscosity and thermal conductivity parameters, the specific heat parameter
is much small. Therefore, the variable temperature will have more obvious effects on
viscosity, thermal conductivity and density of gases than the specific heat. Since the
determination of the temperature parameter is based on the typical experimental data,
the simple power-law can simulate well the temperature-variable physical properties
of gases. Obviously, with the temperature parameter method the treatment of variable



5.7 Remarks 87

Ta
bl

e
5.

3
M

od
el

s
fo

r
tr

ea
tm

en
to

f
flu

id
va

ri
ab

le
ph

ys
ic

al
pr

op
er

tie
s

Te
rm

E
qu

at
io

ns

T
re

at
m

en
to

f
ga

s
te

m
pe

ra
tu

re
-

de
pe

nd
en

tp
hy

si
ca

lp
ro

pe
rt

ie
s

Te
m

pe
ra

tu
re

-d
ep

en
de

nt
ph

ys
ic

al
pr

op
er

ty
eq

ua
ti

on
s:

ρ ρ
∞

=
( T T ∞

) −
1

μ μ
∞

=
( T T ∞

) n μ

λ λ
∞

=
( T T ∞

) n λ

c p c p
∞

=
( T T ∞

) n c
p

Te
m

pe
ra

tu
re

-d
ep

en
de

nt
ph

ys
ic

al
pr

op
er

ty
fa

ct
or

eq
ua

ti
on

s:
1 ρ

dρ dη
=

−
(T

w
−

T ∞
)

(T
w

−
T ∞

)θ
+

T ∞
dθ dη

1 μ

dμ dη
=

n μ
(T

w
/

T ∞
−

1)

(T
w
/

T ∞
−

1)
θ

+
1

dθ dη
1 λ

dλ dη
=

n λ
(T

w
/

T ∞
−1

)

T w
/

T ∞
−

1θ
+

1

dθ dη
1 c p

dc
p

dη
=

n c
p
(T

w
/

T ∞
−

1)

(T
w
/

T ∞
−

1)
θ

+
1

dθ dη
ν
∞ ν

=
[(

T w
/

T ∞
−

1)
θ

+
1 ]

−(
n μ

+1
)

w
he

re
η

is
th

e
di

m
en

si
on

le
ss

co
or

di
na

te
va

ri
ab

le
,T

w
an

d
T ∞

at
e

bo
un

da
ry

te
m

pe
ra

tu
re

of
th

e
bo

un
da

ry
la

ye
r

an
d

θ
is

di
m

en
si

on
le

ss
te

m
pe

ra
tu

re
,w

he
re

θ
=

T
−T

∞
T w

−T
∞

or

θ
=

t
−

t ∞
t w

−
t ∞



88 5 New Method for Treatment of Variable Physical Properties

Te
rm

E
qu

at
io

ns

T
re

at
m

en
to

f
liq

ui
d

te
m

pe
ra

tu
re

-d
ep

en
de

nt
Te

m
pe

ra
tu

re
-d

ep
en

de
nt

ph
ys

ic
al

pr
op

er
ty

eq
ua

ti
on

s:
pr

op
er

tie
s

(t
ak

in
g

w
at

er
as

ex
am

pl
e)

ρ
=

−4
.4

8
×

10
−3

t2
+

99
9.

9

λ
=

−8
.0

1
×

10
−6

t2
+

1.
94

×
10

−3
t
+

0.
56

3

μ
=

10
−3

ex
p

[ −1
.6

−
11

50 T
+

( 69
0

T

) 2]

sp
ec

ifi
c

he
at

c p
ca

n
be

re
ga

rd
ed

as
co

ns
ta

nt
fo

r
at

m
os

ph
er

ic
pr

es
su

re
Te

m
pe

ra
tu

re
-d

ep
en

de
nt

ph
ys

ic
al

pr
op

er
ty

fa
ct

or
eq

ua
ti

on
s:

1 ρ

dρ dη
=

(−
2

×
4.

48
×

10
−3

t)
(t

s
−

t ∞
)

−4
.4

8
×

10
−3

t2
+

99
9.

9
·dθ dη

1 μ

dμ dη
=

(
11

50

T
2

−
2

×
69

02

T
3

)(
T w

−
T ∞

)
dθ dη

1 λ

dλ dη
=

(−
8.

01
×

2
×

10
−6

t
+

1.
94

×
10

−3
)(

t w
−

t ∞
)

−8
.0

1
×

10
−6

t2
+

1.
94

×
10

−3
t
+

0.
56

3
·dθ dη

T
re

at
m

en
to

f
co

nc
en

tr
at

io
n-

an
d

te
m

pe
ra

tu
re

-
de

pe
nd

en
tp

ro
pe

rt
ie

s
of

va
po

ur
-g

as
m

ix
tu

re
E

qu
at

io
ns

on
co

nc
en

tr
at

io
n-

de
pe

nd
en

tp
hy

si
ca

lp
ro

pe
rt

ie
s

of
va

po
ur

-g
as

m
ix

tu
re

:

ρ
m

v
=

C
m

v
ρ

v
ρ

g

(1
−

C
m

v
)ρ

v
+

C
m

v
ρ

g

ρ
m

g
=

(1
−

C
m

v
)ρ

v
ρ

g

(1
−

C
m

v
)ρ

v
+

C
m

v
ρ

g

ρ
m

=
ρ

v
ρ

g

(1
−

C
m

v
)ρ

v
+

C
m

v
ρ

g

μ
m

=
C

m
v
μ

v
+

(1
−

C
m

v
)μ

g

λ
m

=
C

m
v
λ

v
+

(1
−

C
m

v
)λ

g

c p
m

=
C

m
v
c p

v
+

(1
−

C
m

v
)c

p g
Pr

m
=

C
m

v
Pr

v
+(

1
−

C
m

v
)

Pr
g

E
qu

at
io

ns
on

co
nc

en
tr

at
io

n-
de

pe
nd

en
td

en
si

ty
fa

ct
or

s:
1 ρ
m

dρ
m

dη
m

=
1 ρ
g

dρ
g

dη
m

+
1 ρ
v

dρ
v

dη
m

(c
on

tin
ue

d)



5.7 Remarks 89

Ta
bl

e
5.

3
(c

on
tin

ue
d)

Te
rm

E
qu

at
io

ns

−
C

m
v
(ρ

v
−

ρ
g
)

(1
−

C
m

v
)ρ

v
+

c m
v
ρ

g

[ (1
−

c m
v
)

C
m

v

ρ
v

ρ
v

−
ρ

g

1 ρ
v

dρ
v

dη
m

+
ρ

g

(ρ
v

−
ρ

g
)

1 ρ
g

dρ
g

dη
m

−
C

m
v,

s
−

C
m

v,
∞

C
m

v

d�
m

v

dη
m

w
he

re
,t

he
in

vo
lv

ed
te

m
pe

ra
tu

re
-d

ep
en

de
nt

de
ns

ity
fa

ct
or

s:
1 ρ
v

dρ
v

dη
m

=
−(T

s,
in

t/
T ∞

−
1)

dθ
m

/
dη

m

(T
s,

in
t/

T ∞
−

1)
θ m

+
1

1 ρ
g

dρ
g

dη
m

=
−(T

s,
in

t/
T ∞

−
1)

dθ
m

/
dη

m

(T
s,

in
t/

T ∞
−

1)
θ m

+
1

w
he

re
T s

,i
nt

is
liq

ui
d–

va
po

ur
in

te
rf

ac
ia

lt
em

pe
ra

tu
re

C
on

ce
nt

ra
ti

on
-d

ep
en

de
nt

vi
sc

os
it

y
fa

ct
or

eq
ua

ti
on

:
1 μ
m

dμ
m

dη
m

=
C

m
v

μ
v

μ
m

1 μ
v

dμ
v

dη
m

+
(1

−
C

m
v
)
μ

g

μ
m

1 μ
g

dμ
g

dη
m

+
(C

m
v,

s
−

C
m

v
,∞

)
μ

v
−

μ
g

μ
m

d�
m

v

dη
m

w
he

re
�

m
v

=
C

m
v

−
C

m
v
,∞

C
m

v,
s
−

C
m

v
,∞

is
va

po
ur

re
la

tiv
e

m
as

s
fr

ac
tio

n
an

d
th

e
in

vo
lv

ed

va
po

ur
an

d
ga

s
te

m
pe

ra
tu

re
-d

ep
en

de
nt

vi
sc

os
ity

fa
ct

or
s

ar
e

re
sp

ec
tiv

el
y

1 μ
v

dμ
v

dη
m

=
n μ

v
(T

s,
in

t/
T ∞

−
1)

dθ
m

/
dη

m

(T
s,

in
t/

T ∞
−

1)
θ m

+
1

1 μ
g

dμ
g

dη
m

=
n μ

(T
s,

in
t/

T ∞
−

1)
dθ

m
/
dη

m

(T
s,

in
t/

T ∞
−

1)
θ m

+
1

C
on

ce
nt

ra
ti

on
-d

ep
en

de
nt

vi
sc

os
it

y
fa

ct
or

eq
ua

ti
on

:
1 λ
m

dλ
m

dη
m

=
C

m
v

λ
v

λ
m

1 λ
v

dλ
v

dη
m

+
(1

−
C

m
v
)
λ

g

λ
m

1 λ
g

dλ
g

dη
m

+
λ

v
−

λ
g

λ
m

(C
m

v,
s
−

C
m

v,
∞

)
d�

m
v

dη
m

w
he

re
th

e
in

vo
lv

ed
te

m
pe

ra
tu

re
-d

ep
en

de
nt

th
er

m
al

co
nd

uc
tiv

ity
fa

ct
or

s:
1 λ
v

dλ
v

dη
m

=
n λ

(T
s/

T ∞
−

1)
dθ

v
/
dη

v

(T
s/

T ∞
−

1)
θ v

+
1

1 λ
g

dλ
g

dη
m

=
n λ

(T
s,

in
t/

T ∞
−

1)
dθ

m
/
dη

m

(T
s,

in
t/

T ∞
−

1)
θ m

+
1



90 5 New Method for Treatment of Variable Physical Properties

physical properties of vapour or gas is not only reliable, but also very simple and
convenient for heat transfer application.

Taking water as an example, the temperature-dependent polynomials of the den-
sity, thermal conductivity and viscosity are introduced for liquids, while the specific
heat at constant pressure varies so small with variation of temperature that it can
be disregarded. These polynomials are reliable since they are based on the typical
experimental data.

The concentration-dependent density equations of vapour-gas mixture are reported
through the rigorously theoretical derivation, while the other concentration-dependent
physical properties of vapour-gas mixture are expressed as the weighted sum of the
physical properties of the involved vapour and gas with their concentrations (mass
fraction). Since the involved vapour and gas are temperature-dependent, the physical
properties of the vapour-gas mixture are concentration- and temperature-dependent.

5.8 Questions

1. Please explain the meanings of the temperature-dependent physical properties,
concentration-dependent physical properties and concentration- and temperature-
dependent physical properties?

2. Please tell me the advantages of the temperature parameter method for descrip-
tion of temperature-dependent physical properties of gas? Do you know how the
temperature parameters of gases reported in Tables 5.1 and 5.2 were obtained?

3. Which kind of fluid is suggested to use the polynomial expression method for
describing the temperature-dependent physical properties? please tell me how
the polynomials were obtained for description of water temperature-dependent
physical properties?

4. Please explain why the physical properties of vapour-gas mixture are
concentration- and temperature-dependent?

5. How are the physical properties of vapour-gas mixture concentration- and
temperature-dependent?

6. What is the relationship between the temperature-dependent physical properties
and the concentration-dependent physical properties for vapour–gas mixture?

7. Please derive out Eqs. (5.9)–(5.11) on the densities related to the vapour-gas mix-
ture.

8. From equations for gas temperature-dependent physical properties, water
temperature-dependent physical properties and concentration- and temperature-
dependent physical properties, please analyze the necessity and importance of
treatment of variable physical properties on laminar free convection and film
flows.



References 91

References

1. T. Hara, The free-convection flow about a heated vertical plate in air. Trans. Jpn. Soc. Mech.
Eng. 20, 517–520 (1954)

2. A.A. Tataev, Heat exchange in condition of free laminar movement of gas with variable viscosity
at a vertical wall. Zh. Tekh. Fiz. 26, 2714–2719 (1956)

3. E.M. Sparrow, J.L. Gregg, The variable fluid-property problem in free convection. Trans. ASME
80, 879–886 (1958)

4. D.D. Gray, A. Giogini, The validity of the Boussinesq approximation for liquids and gases.
Int. J. Heat Mass Trans. 19, 546–577 (1977)

5. A.M. Clausing, S.N. Kempka, The influences of property variations on natural convection from
vertical surfaces. J. Heat Transfer 103, 609–612 (1981)

6. H. Herwig, The effect of variable properties on momentum and heat transfer in a tube with
constant heat flux across the wall. Int. J. Heat Mass Transf. 28(2), 423–431 (1985)

7. A. Pozzi, M. Lupo, Variable-property effects in free convection. Int. J. Heat Fluid Flow 11(2),
135–141 (1990)

8. D.Y. Shang, B.X. Wang, Effect of variable thermophysical properties on laminar free convection
of gas. Int. J. Heat Mass Transf. 33(7), 1387–1395 (1990)

9. D.Y. Shang, B.X. Wang, Effect of variable thermophysical properties on laminar free convection
of polyatomic gas. Int. J. Heat Mass Transf. 34(3), 749–755 (1991)

10. B.X. Shang, Y. Wang, Wang, Y. Quan, Study on liquid laminar free convection with consid-
eration of variable thermophysical properties. Int. J. Heat Mass Transf. 36(14), 3411–3419
(1993)

11. D.Y. Shang, B.X. Wang, L.C. Zhong, A study on laminar film boiling of liquid along an
isothermal vertical plates in a pool with consideration of variable thermophysical properties.
Int. J. Heat Mass Transfer 37(5), 819–828 (1994)

12. D.Y. Shang, T. Adamek, Study on laminar film condensation of saturated steam on a vertical flat
plate for consideration of various physical factors including variable thermophysical properties.
Wärme- und Stoffübertragung 30, 89–100 (1994)

13. D.Y. Shang, B.X. Wang, An extended study on steady-state laminar film condensation of a
superheated vapor on an isothermal vertical plate. Int. J. Heat Mass Transf. 40(4), 931–941
(1997)

14. D.Y. Shang, L.C. Zhong, Extensive study on laminar free film condensation from vapor-gas
mixture. Int. J. Heat Mass Transf. 51, 4300–4314 (2008)

15. D.Y. Shang, Theory of heat transfer with forced convection film flows (Springer, Heiderberg,
2010)

16. J. Hisenrath et al., Tables of Thermodynamic and Transport Properties (National Bureau of
Standards, Washington, 1955)

17. Y.S. Touloukian, S.C. Saxena, P. Hestermans, Thermophysical Properties of Matter. Viscosity,
vol. 2 (IFI/Plenum, New York, 1970)

18. Y.S. Touloukian, P.E. Liley, S.C. Saxena, Thermophysical Properties of Matter. Thermal Con-
ductivity, Non-Metallic Liquids and Gases, vol. 3 (IFI/Plenum, New York, 1970)

19. Y.S. Touloukian, T. Makita, Thermophysical Properties of Matter. Specific Heat, Non-Metallic
Liquids and Gases, vol. 6 (IFI/Plenum, New York, 1970)

20. VDI—Warmeatlas, Berechnungsblatter fur den Warmeübertragung, 5, erweiterte edn. (VDI
Verlage GmbH, Düsseldorf, 1988)

21. S.M. Yang, Heat Transfer, 2nd edn. (Higher Education Press, 1987), pp. 443
22. J.Q. Chang, Real Fluid Mechanics (Tsinghua University Press, Beijing, 1986)



Part II
Laminar Free Convection with

Consideration of Coupled Effects of
Variable Physical Properties



Chapter 6
Heat Transfer of Laminar Free Convection
of Monatomic and Diatomic Gases, Air,
and Water Vapor

Abstract The new similarity analysis method is used to replace the traditional
Falkner-Skan type transformation for creating similarity governing models of laminar
free convection. With this method, the velocity components are directly transformed
into the corresponding dimensionless velocity components. Then, it is more conve-
nient to equivalently transform the governing partial differential equations into the
related ordinary differential ones, without inducing stream function and the interme-
diate function variable required by the traditional Falkner-Skan type transformation.
Furthermore, with this method, it is more convenient for treatment of variable phys-
ical properties. The temperature parameter method is used for treatment of variable
physical properties of gases. With this method the physical property factors coupled
with the governing ordinary differential equations are transformed to the functions
of the Prandtl number, temperature parameters, and the boundary temperature ratio
for simultaneous solution. There are obvious effects of variable physical properties
on velocity and temperature fields, as well as heat transfer of free convection of
gas. Based on the heat transfer analysis and related rigorous numerical results, the
prediction equations of gas free convection heat transfer is created. Since the Prandtl
number and temperature parameters of gases are based on the experimental data,
these prediction equations of gas free convection heat transfer are reliable and then
have practical application value.

6.1 Introduction

The study of laminar free convection of gases with variable thermophysical properties
can be traced back to the perturbation analysis of Hara [1] for air free convection.
The solution is applicable for small values of the perturbation parameter, εH =
(Tw − T∞)/T∞. Later, Tataev [2] investigated the free convection of a gas with
variable viscosity. A well-known analysis of the variable fluid property problem for
laminar free convection on an isothermal vertical flat plate has been presented by

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 95
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_6,
© Springer-Verlag Berlin Heidelberg 2012
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Sparrow and Gregg [3], giving solutions of the boundary layer equations for five
assumed gases. They proposed a reference temperature and suggested that with it the
problem of variable thermophysical properties can be treated as a constant property
problem, i.e., using the Boussinesq approximation. Gray and Giogini [4] discussed
the validity of the Boussinesq approximation and proposed a method for analyzing
natural convection flow with fluid properties assumed to be a linear function of
temperature and pressure. Clausing and Kempka [5] reported their experimental
study of the influence of property variations on natural convection and showed that,
for the laminar region, Nu f is a function of Ra f (= Gr f Pr f ) only, with the reference
temperature T f taken as the average temperature in the boundary layer.

In this chapter and Chap. 7 I will present respectively our recent studies [6, 7], for
effect of variable physical properties on laminar free convection of different kind of
gases. In this chapter, the gases involved are monatomic and diatomic gases as well
as air and water vapor. The variation of specific heat of these gases is very small, and
so can be neglected when considering variable physical properties. In this chapter,
the gases involved are polyatomic gases in which the variation of specific heat cannot
be neglected. In these studies a recently developed dimensionless velocity compo-
nent method provided in Chap. 4 is provided for the similarity transformation of the
governing partial differential equations of the laminar boundary layer, to replace the
traditional Falkner-Skan transformations.

Additionally, a temperature parameter method for the treatment of a gas with
variable thermophysical properties is proposed. With this method, the thermal
conductivity, dynamic viscosity and specific heat of gases are assumed to vary with
absolute temperature according to a simple power law. The parameters of thermal
conductivity, absolute viscosity, and specific heat are proposed and the correspond-
ing values are provided from the typical experimental data of the thermophysical
properties. The density is taken to be inversely proportional to the absolute tem-
perature at constant pressure, while the Prandtl number is assumed to be constant.
The governing equations for the laminar free convection of gas are transformed into
the dimensionless ordinary equations by using the dimensionless velocity compo-
nent method, and meanwhile the variable thermophysical properties are treated by
employing the temperature parameter method. The governing ordinary differential
equations with the boundary conditions are solved for various boundary temperature
ratios for the various gases mentioned above, and the rigorous numerical results are
provided. These numerical results have shown that there are different velocity and
temperature distributions for different boundary temperature ratios, as well as for
different gases. Curve-fit formulas for the temperature gradient at the wall with very
good agreement to the numerical solutions are provided, which facilitate rapid and
yet accurate estimates of the heat transfer coefficient and the Nusselt number together
with various boundary temperature ratios Tw/T∞ and different gases.

http://dx.doi.org/10.1007/978-3-642-28983-5_7
http://dx.doi.org/10.1007/978-3-642-28983-5_4
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Fig. 6.1 Physical model
and coordinate system of
boundary layer for laminar
free convection
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6.2 Governing Partial Differential Equations

The physical analytical model and co-ordinate system used for laminar free convec-
tion of gas on an isothermal vertical flat plate is shown in Fig. 6.1. The boundary
layer is laminar when Raleigh number, Ra (= Gr Pr) is less than 109 [8].

According to the presentation in Chap. 2 the governing partial differential equa-
tions for mass, momentum and energy for a steady laminar flow in the boundary
layer for gas laminar vertical free convection with consideration of variable physical
properties can be given by

∂

∂x
(ρwx )+ ∂

∂y
(ρwy) = 0 (6.1)

ρ

(
wx
∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ
∂wx

∂y

)
+ gρ

∣∣∣∣ T

T∞
− 1

∣∣∣∣ (6.2)

ρcp

(
wx
∂T

∂x
+ wy

∂T

∂y

)
= ∂

∂y

(
λ
∂T

∂y

)
. (6.3)

The absolute value of buoyancy term ρg |T/T∞ − 1| shows that it has always
positive sigh no matter which one is larger between T and T∞. In this case, the
buoyancy term ρg |T/T∞ − 1| and the velocity component wx have the same sigh.
The boundary conditions are,

y = 0: wx = 0, wy = 0, T = Tw (6.4)

y → ∞: wx → 0, T = T∞. (6.5)

http://dx.doi.org/10.1007/978-3-642-28983-5_2
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6.3 Similarity Transformation of the Governing Equations

6.3.1 Dimensionless Similarity Variables Based on the New
Similarity Analysis Method

According to Chap. 4 for the dimensionless similarity variables based on the new
similarity analysis method, the related dimensionless similarity variables are assumed
as follows, respectively, for laminar free convection of gases on a vertical flat plate
with consideration of variable physical properties:

The dimensionless coordinate variable is expressed as

η = y

x

(
1

4
Grx,∞

)1/4

(6.6)

where the local Grashof number Grx,∞ is defined as

Grx,∞ = g |Tw/T∞ − 1| x3

ν2∞
(6.7)

Here, kinematic viscosity ν has the subscript ∞. It means that the physical property
to be considered is related to boundary temperature t∞ for consideration of variable
physical properties.

A dimensionless temperature variable is defined as

θ = T − T∞
Tw − T∞

. (6.8)

Dimensionless velocity components for consideration of variable physical properties
are assumed to be:

Wx =
[
2
√

gx |Tw/T∞ − 1|
]−1

wx (6.9)

Wy =
[

2
√

gx |Tw/T∞ − 1|
(

1

4
Grx,∞

)−1/4
]−1

wy . (6.10)

6.3.2 Similarity Transformation of the Governing Equations

With the above assumed dimensionless variables the governing partial differential
equations governing partial differential equations can be transformed similarly as
follows:
For Eq. (6.1)

http://dx.doi.org/10.1007/978-3-642-28983-5_4
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Equation (6.1) is initially changed into

ρ

(
∂wx

∂x
+ ∂wy

∂y

)
+ wx

∂ρ

∂x
+ wy

∂ρ

∂y
= 0 (6.11)

With the dimensionless variables assumed in Eqs. (6.6), (6.7), (6.9) and (6.10) we
obtain the following relations:

∂wx

∂x
=

[
2
√

gx |Tw/T∞ − 1|1/2
] dWx

dη

∂η

∂x
+ 1

2
x− 1

2

[
2
√

g |Tw/T∞ − 1|1/2
]

Wx ,

where

∂η

∂x
= ∂

∂x

[
y

x

(
1

4
Grx,∞

)1/4
]

= ∂

∂x

[
y

(
1

4

g |Tw/T∞ − 1| x−1

ν2∞

)1/4
]

= −1

4

[
y

(
1

4

g |Tw/T∞ − 1|
ν2∞

)1/4
]

x= 5
4

= −1

4

[
y

(
1

4

g |Tw/T∞ − 1| x3

ν2∞

)1/4
]

x=2

= −1

4
x−1η.

Then,

∂wx

∂x
=

[
2
√

gx |Tw/T∞ − 1|1/2
] dWx

dη

(
−1

4
x−1η

)

+ 1

2
x− 1

2

[
2
√

g |Tw/T∞ − 1|1/2
]

Wx

= −1

2

[√
g

x
|Tw/T∞ − 1|1/2

]
η

dWx

dη
+

[√
g

x
|Tw/T∞ − 1|1/2

]
Wx

=
√

g

x
|Tw/T∞ − 1|1/2

(
Wx − 1

2
η

dWx

dη

)
(6.12)

∂wy

∂y
=

[
2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4
]

dWy

dη

∂η

∂y
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=
[

2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4
]

dWy

dη

1

x

(
1

4
Grx,∞

)1/4

= 2

√
g

x
|Tw/T∞ − 1|1/2 dWy

dη
(6.13)

∂ρ

∂x
= dρ

dη

∂η

∂x
= −1

4
x−1η

dρ

dη
(6.14)

∂ρ

∂y
= dρ

dη

∂η

∂y
= 1

x

(
1

4
Grx,∞

)1/4 dρ

dη
. (6.15)

By using Eqs. (6.12)–(6.15), Eq. (6.12) can be changed to

ρ

[√
g

x
|Tw/T∞ − 1|1/2

(
Wx − 1

2
η

dWy

dη

)
+ 2

√
g

x
|Tw/T∞ − 1|1/2 dWy

dη

]

+ 2
√

gx |Tw/T∞ − 1|1/2 Wx

(
−1

4
ηx−1 dρ

dη

)
+ 2

√
gx |Tw/T∞ − 1|1/2

×
(

1

4
Grx,∞

)−1/4

Wy
dρ

dη

(
1

4
Grx,∞

)1/4

x−1 = 0 (6.16)

Equation (6.16) is divided by |Tw/T∞ − 1|1/2
√

g
x and transformed into

ρ

[(
Wx − 1

2
η

dWy

dη

)
+ 2

dWy

dη

]
+ 2Wx

(
−1

4
η

dρ

dη

)
+ 2Wy

dρ

dη
= 0 (6.17)

or

2Wx − η
dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0 (6.18)

For Eq. (6.2)
Equation (6.2) can be rewritten as

ρ

(
wx
∂wx

∂x
+ wy

∂wx

∂y

)
= μ

∂2wx

∂y2 + ∂wx

∂y

∂μ

∂y
+ ρg(T/T∞ − 1). (6.19)

The absolute value of buoyancy factor |T/T∞ − 1| shows that the buoyancy term
ρg |T/T∞ − 1| has always positive sign no matter which one is larger between T
and T∞. In this case, the buoyancy term ρg |T/T∞ − 1| and the velocity component
wx have same sign.

With the dimensionless variables assumed in Eqs. (6.6), (6.7), (6.9), and (6.10)
we obtain the following equations:
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∂wx

∂y
= 2

√
gx |Tw/T∞ − 1|1/2 dWx

dη

∂η

∂y
,

where
∂η

∂y
= x−1

(
1

4
Grx,∞

)1/4

.

Then,
∂wx

∂y
= 2

√
gx |Tw/T∞ − 1|1/2 dWx

dη
x−1

(
1

4
Grx,∞

)1/4

(6.20)

∂2wx

∂y2 = 2
√

gx |Tw/T∞ − 1|1/2 d2Wx

dη2 x−1
(

1

4
Grx,∞

)1/4
∂η

∂y

= 2
√

gx |Tw/T∞ − 1|1/2 d2Wx

dη2 x−1
(

1

4
Grx,∞

)1/4

x−1
(

1

4
Grx,∞

)1/4

= 2
√

gx |Tw/T∞ − 1|1/2 d2Wx

dη2

(
1

4
Grx,∞

)1/2

x−2 (6.21)

∂μ

∂y
= dμ

dη

∂η

∂y
= dμ

dη

(
1

4
Grx,∞

)1/4

x−1. (6.22)

Using Eqs. (6.9), (6.10), (6.12), (6.20)–(6.22), Eq. (6.19) becomes

ρ

[
2
√

gx |Tw/T∞ − 1|1/2 Wx

√
g

x
|Tw/T∞ − 1|1/2

(
Wx − 1

2
η

dWx

dη

)

+ 2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4

Wy

×
(

2
√

gx |Tw/T∞ − 1|1/2 dWx

dη
x−1

(
1

4
Grx,∞

)1/4
)]

= 2μ
√

gx |Tw/T∞ − 1|1/2 d2Wx

dη2

(
1

4
Grx,∞

)1/2

x−2

+ 2
√

gx |Tw/T∞ − 1|1/2 dWx

dη
x−1

(
1

4
Grx,∞

)1/4

× dμ

dη

(
1

4
Grx,∞

)1/4

x−1 + ρg |T/T∞ − 1| (6.23)

Equation (6.23) is divided by ρg(Tw/T∞ − 1), meanwhile, the definition of local
Grashof number Grx,∞ is considered, and then, Eq. (6.23) is simplified to
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2Wx

(
Wx − 1

2
η

dWx

dη

)
+ 2Wy

(
2

dWx

dη

)

= 2ν
d2Wx

dη2

(
1

4

1

ν2∞

)1/2

+ 2
1

ρ

dWx

dη

dμ

dη

(
1

4

1

ν2∞

)1/2

+ θ

or

2Wx

(
Wx − 1

2
η

dWx

dη

)
+ 2Wy

(
2

dWx

dη

)
= ν

ν∞
d2Wx

dη2 + 1

ρ

dWx

dη

dμ

dη

1

ν∞
+ θ.

(6.24)
Equation (6.24) is multiplied by ν∞

ν
and is simplified to

ν∞
ν

[
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

]
= d2Wx

dη2 + 1

μ

dμ

dη

dWx

dη
+ ν∞

ν
θ (6.25)

For Eq. (6.3)
Finally, Eq. (6.3) can be rewritten as:

ρcp

(
wx
∂T

∂x
+ wy

∂T

∂y

)
= λ

∂2T

∂y2 + ∂λ

∂y

∂T

∂y
, (6.26)

where

T = (Tw − T∞)θ + T∞
∂T

∂x
= −(Tw − T∞)

dθ

dη

∂η

∂x
= −(Tw − T∞)

dθ

dη

(
1

4

)
ηx−1 (6.27)

∂T

∂y
= (Tw − T∞)

dθ

dη

∂η

∂y
= (Tw − T∞)

dθ

dη

(
1

4
Grx,∞

)1/4

x−1 (6.28)

∂2T

∂y2 = (Tw − T∞)
(

1

4
Grx,∞

)1/4

x−1 d2θ

dη2

∂η

∂y

= (Tw − T∞)
d2θ

dη2

(
1

4
Grx,∞

)1/2

x−2 (6.29)

∂λ

∂y
= dλ

dη

∂η

∂y
= dλ

dη

(
1

4
Grx,∞

)1/4

x−1. (6.30)

Then, Eq. (6.26) will be transformed into

ρcp

(
2
√

gx |Tw/T∞ − 1|1/2 Wx (−1)(Tw − T∞)
dθ

dη

(
1

4

)
ηx−1

+ 2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4

Wy(Tw − T∞)
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dθ

dη

(
1

4
Grx,∞

)1/4

x−1

)

= λ(Tw − T∞)
d2θ

dη2

(
1

4
Grx,∞

)1/2

x−2

+ dλ

dη

(
1

4
Grx,∞

)1/4

x−1(Tw − T∞)
dθ

dη

(
1

4
Grx,∞

)1/4

x−1. (6.31)

Equation (6.31) is divided by (Tw−T∞) |Tw/T∞ − 1|1/2
√

g
x , meanwhile, the defini-

tion of local Grashof number Grx,∞ is considered, and then, Eq. (6.31) is simplified to

ρcp

(
2Wx (−1)

dθ

dη

(
1

4

)
η + 2Wy

dθ

dη

)
= λ

d2θ

dη2 +
(

1

4

1

ν2∞

)1/2 dλ

dη

dθ

dη

(
1

4

1

ν2∞

)1/2

or

ρcp

(
−2Wx

dθ

dη

(
1

4

)
η + 2Wy

dθ

dη

)
= 1

2ν∞
λ

d2θ

dη2 + 1

2ν∞
dλ

dη

dθ

dη
. (6.32)

Equation is multiplied by
2ν∞
λ

and simplified into

Pr
ν∞
ν
(−ηWx + 4Wy)

dθ

dη
= d2θ

dη2 + 1

λ

dλ

dη

dθ

dη
. (6.33)

The governing ordinary differential equations can be summarized as follows:

(
2Wx − η

dWx

dη
+ 4

dWy

dη

)
− 1

ρ

dρ

dη

(
ηWx − 4Wy

) = 0 (6.18)

ν∞
ν

[
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dW

dη

]
= d2Wx

dη2 + 1

μ

dμ

dη

dWx

dη
+ ν∞

ν
θ (6.25)

Pr
ν∞
ν

(−ηWx + 4Wy
) dθ

dη
= d2θ

dη2 + 1

λ

dλ

dη

dθ

dη
(6.33)

With the assumed dimensionless variables the following dimensionless boundary
conditions are easily obtained from Eqs. (6.4) and (6.5):

η = 0: Wx = 0,Wy = 0, θ = 1 (6.34)

η → ∞: Wx → 0, θ → 0. (6.35)
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6.4 Heat Transfer Analysis

The local heat transfer rate qx at position x per unit area from the surface of the plate
to the gas can be calculated by Fourier’s law as

qx = −λw

(
∂T

∂y

)
y=0

with Eq. (5.28) we have

(
∂T

∂y

)
y=0

= (Tw − T∞)
(

dθ

dη

)(
1

4
Grx,∞

)1/4

x−1

Then,

qx = −λw(Tw − T∞)
(

1

4
Grx,∞

)1/4

x−1
(

dθ

dη

)
η=0

. (6.36)

The local heat transfer coefficient αx , defined as qx = αx (Tw − T∞), will be
given by

αx = λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

. (6.37)

The local Nusselt number defined by Nux,w = αx x
λw

will be

Nux,w = λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

x

λw

i.e.

Nux,w =
(

1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

. (6.38)

Total heat transfer ratefor position x = 0 to x with width of b on the plate is a
integration Qx = ∫ ∫

A qx dA = ∫ x
0 qx bdx , and hence

Qx = λwb (Tw − T∞)
(

−dθ

dη

)
η=0

x∫
0

(
1

4
Grx,∞

)1/4

x−1dx,

with Eq. (5.7) for definition of local Grashof number Grx,∞ we obtain

Qx = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

. (6.39)

http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
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The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

Qx = 4

3
x−1λw(Tw − T∞)

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

. (6.40)

The average heat transfer coefficient αx defined as Qx = αx (Tw − T∞) is
expressed as

αx = 4

3
λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

. (6.41)

The average Nusselt number is defined as Nux,w = αx x
λw

, and hence

Nux,w = 4

3
λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

x

λw

i.e.

Nux,w = 4

3

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

. (6.42)

It is seen that, for practical calculation of heat transfer, only wall dimension-

less temperature gradient
(
− dθ

dη

)
η=0

dependent on numerical solution is no-given

variable.

6.5 Numerical Results

6.5.1 Treatment of Variable Physical Properties

According to the temperature parameter of gases demonstrated in Chap. 5, the gas
variable physical properties can be described by the following equations for laminar
free convection:

μ

μ∞
=

(
T

T∞

)nμ
(5.5)

λ

λ∞
=

(
T

T∞

)nλ
(5.6)

cp

cp∞
=

(
T

T∞

)ncp

(5.7)

ρ

ρ∞
=

(
T

T∞

)−1

(5.8)

http://dx.doi.org/10.1007/978-3-642-28983-5_5
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where several values of the temperature parameter of monatomic and diatomic gases,
and also for air and water vapor can be seen in Table 5.1.

It is seen that the temperature-dependent physical property factors 1
ρ

dρ
dη , 1

μ
dμ
dη ,

1
λ

dλ
dη , and ν∞

ν
are coupled in governing ordinary differential equations (6.18), (6.25),

and (6.33). These factors tend to greatly increase the difficulty of getting a solution
of the governing equations. However, with the provided gas temperature parameters,
the physical property factors can be transformed into the functions of temperature θ .
Then, the governing dimensionless equations can be solved. The transformation of
these physical property factors is expressed as follows:

Transformation of the density factor
(

1
ρ

dρ
dη

)
:

With Eq. (5.8) we obtain

1

ρ

dρ

dη
= 1

ρ

d

dη

(
ρ∞

T∞
T

)
.

By using Eq. (6.8) we have

T = (Tw − T∞)θ + T∞

Then,

1

ρ

dρ

dη
= ρ∞

ρ

d

dη

[
T∞

(Tw − T∞)θ + T∞

]

= T

T∞
d

dη

[
1

(Tw/T∞ − 1)θ + 1

]

= − [(Tw/T∞ − 1)θ + 1]
(Tw/T∞ − 1) dθ

dη

[(Tw/T∞ − 1)θ + 1]2

i.e. the density factor is expressed as

1

ρ

dρ

dη
= − (Tw/T∞ − 1) dθ

dη

(Tw/T∞ − 1)θ + 1
. (6.43)

Transformation of the viscosity factor
(

1
μ

dμ
dη

)
:

With Eq. (5.5) we get

1

μ

dμ

dη
= μ∞

μ

d

dη

(
T

T∞

)nμ

=
(

T

T∞

)−nμ d

dη

[
(Tw − T∞)θ + T∞

T∞

]nμ

http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
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= ((Tw/T∞ − 1)θ + 1)−nμ d

dη
((Tw/T∞ − 1)θ + 1)nμ

= ((Tw/T∞ − 1)θ + 1)−nμnμ((Tw/T∞ − 1)θ + 1)nμ−1(Tw/T∞ − 1)
dθ

dη
.

Then, the viscosity factor is described as

1

μ

dμ

dη
= nμ(Tw/T∞ − 1)dθ/dη

(Tw/T∞ − 1)θ + 1
. (6.44)

Transformation of the thermal conductivity factor
(

1
λ

dλ
dη

)

With a derivation similar to that for the factor
(

1
μ

dμ
dη

)
we can obtain the following

equation for description of the thermal conductivity factor:

1

λ

dλ

dη
= nλ(Tw/T∞ − 1)dθ/dη

(Tw/T∞ − 1)θ + 1
. (6.45)

Transformation of factor
(
ν∞
ν

)
By using Eqs. (5.5) and (5.8), we have

ν∞
ν

= [(Tw/T∞ − 1)θ + 1]−(nμ+1) . (6.46)

6.5.2 Numerical Results

It is obvious that the velocity and temperature fields can be obtained from the solution
of the governing ordinary differential equations (6.18), (6.25) and (6.33) with bound-
ary conditions, Eqs. (6.34) and (6.35), combined with the property factor Eqs. (5.13)–
(5.15), and (5.17). It is expected that, for the case of constant properties, the dimen-
sionless velocity field wx and dimensionless temperature field θ will be functions of
Pr only. But for the case of variable properties, both the dimensionless velocity field
and the dimensionless temperature field will depend not only on Pr but also on the
temperature parameters nμ and nλ, and the boundary temperature ratio Tw/T∞.

The nonlinear two-point boundary value problem defined by Eqs. (6.18), (6.25),
and (6.33) were solved, and calculations were carried out numerically by using a
shooting method. First, Eqs. (6.18), (6.25), and (6.33) were written as a system of
five first-order differential equations, which were solved by means of fifth-order
Runge-Kuta iteration iteration.

The Runge–Kutta integration scheme, along with Newton–Raphson shooting
method is one of the most commonly used techniques for the solution of such two-
point boundary value problem. Although this method provides satisfactory result for
such type of problems, it may fail when applied to problems in which the differential
equations are very sensitive to the choice of the missing initial conditions.

http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
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Fig. 6.2 Comparison of velocity profiles for free convection of different gases, cited from Shang
and Wang [6] •−•,�−�, Ar (Pr = 0.622, nλ ≈ nμ ≈ nμλ), +−+,×−×, O2 (Pr = 0.733, nμλ =
0.79), ∗−∗,♦−♦, Water vapour (Pr = 1, nμλ = 1.12)

Fig. 6.3 Comparison of temperature profiles for free convection of different gases, cited from
Shang and Wang [6] •−•,�−�, Ar (Pr = 0.622, nλ ≈ nμ ≈ nμλ), +−+,×−×, O2 (Pr =
0.733, nμλ = 0.79), ∗−∗,♦−♦, Water vapour (Pr = 1, nμλ = 1.12)

Moreover, another serious difficulty which may be encountered in the boundary-
value problems is in linear instability. Difficulty also arises in the case in which one
end of the range of integration is at infinity. The end-point of integration is usually
approximated by assigning a finite value to this point, and by estimating a value
at this point the solution will reach its asymptotic state. The computing time for
integrating differential equations sometimes depends critically on the quality of the
initial guesses of the unknown boundary conditions and the initial end-point.

Then, a Newton iteration procedure was employed to satisfy the outer boundary
equations. The present fifth-order scheme utilizes variable grid spacing. The typi-
cal results for the velocity and temperature field together with different boundary
temperature ratios Tw/T∞ are plotted in Figs. 6.2, 6.3, 6.4, and 6.5 for compari-
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Fig. 6.4 Comparison of velocity profiles for free convection of air (Pr = 0.7, nμλ = 0.79) with
different Tw/T∞, cited from Shang and Wang [6]

Fig. 6.5 Comparison of temperature profiles for free convection of air (Pr = 0.7, nμλ = 0.79)
with different temperature ratio Tw/T∞, cited from Shang and Wang [6]

son of velocity and temperature profiles with different gases and different boundary
temperature ratios Tw/T∞, respectively.

It is found that both the velocity and temperature fields of argon laminar free
convection are higher than those of oxygen laminar free convection, while, both
the velocity fields of oxygen free convection are higher than those of water vapor
laminar free convection. It follows that with increasing the temperature parameters
nμ and n∞ the level both of the velocity and temperature fields of free convection
will decrease.

Additionally, it is seen that with increasing the boundary temperature ratio Tw/T∞,
the temperature field will raise and the maximum of velocity field will increase and
shift far from the plate.
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Furthermore, from the numerical calculations it is found that, even for the diatomic
gases, air and water vapor, the modifications using nμ and nλ by nμλ are unnecessary,
because the numerical results obtained either with the actual nμ and nλ values or
with the modified nμλ values are almost the same.

6.6 Wall Dimensionless Temperature Gradient

From the heat transfer analysis we find that the wall dimensionless temperature

gradient
(

dθ
dη

)
η=0

is only one variable which depends on numerical solution for

prediction of heat transfer coefficient.

The numerical solution
(

dθ
dη

)
η=0

of the governing equations (6.18), (6.25) and

(6.33) for some monatomic and diatomic gases, air and water vapor are obtained.
Some solutions ( dθ

dη )η=0 are listed in Table 6.1 and plotted in Fig. 6.6 for laminar free
convection of different gases. By using curve-fitting method, Shang and Wang [7]
obtained the following formulated equations for simple and reliable prediction of the

Table 6.1 Calculated results of
(
− dθ

dη

)
η=0

Tw/T∞ Ar H2 Air N2 CO O2 Water vapor
Pr = 0.622 Pr = 0.68 Pr = 0.7 Pr = 0.71 Pr = 0.72 Pr = 0.733 Pr = 1
nμ = 0.72 nμ = 0.68 nμ = 0.68 nμ = 0.67 nμ = 0.71 nμ = 0.694 nμ = 1.04
nλ = 0.73 nλ = 0.8 nλ = 0.81 nλ = 0.76 nλ = 0.83 nλ = 0.86 nλ = 1.185

3 A 0.1940 0.1974 0.1987 0.2043 0.1973 0.1973 0.1738
B 0.1935 0.1975 0.1988 0.2044 0.1975 0.1975 0.1738

5/2 A 0.2256 0.2300 0.2316 0.2374 0.2306 0.2307 0.2110
B 0.2249 0.2300 0.2318 0.2374 0.2308 0.2311 0.2115

2 A 0.2714 0.2772 0.2794 0.2852 0.2792 0.2796 0.2679
B 0.2703 0.2772 0.2796 0.2850 0.2794 0.2801 0.2689

3/2 A 0.3438 0.3526 0.3557 0.3609 0.3570 0.3582 0.3651
B 0.3427 0.3527 0.3561 0.3609 0.3575 0.3590 0.3665

5/4 A 0.3990 0.4105 0.4144 0.4188 0.4172 0.4193 0.4448
B 0.3983 0.4109 0.4151 0.4191 0.4179 0.4201 0.4459

→ 1 A 0.4784 0.4943 0.4995 0.5021 0.5046 0.5079 0.5671
B 0.4787 0.4953 0.5007 0.5033 0.5059 0.5092 0.5670

3/4 A 0.6035 0.6276 0.6351 0.6336 0.6446 0.6507 0.7775
B 0.6011 0.6247 0.6333 0.6312 0.6423 0.6479 0.7761

1/2 A 0.8344 0.8774 0.8898 0.8776 0.9093 0.9225 1.2181
B 0.8285 0.8666 0.8786 0.8684 0.8993 0.9098 1.2081

1/3 A 1.1492 1.2247 1.2448 1.2124 1.2812 1.3075 1.9198
B 1.1419 1.2022 1.2209 1.1949 1.2591 1.2774 1.8805

Note A. numerical solution, B. evaluated by Eq. (6.47) with Eqs. (6.48)–(6.50), cited from Shang
and Wang [6]
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Fig. 6.6 Numerical solutions of temperature gradient
(
− dθ

dη

)
η=0

for laminar free convection of

argon, hydrogen, air, oxygen and water vapour

values
(

dθ
dη

)
η=0

for laminar free convection of monatomic and diatomic gases, air,

and water vapor: (
−dθ

dη

)
η=0

= ψ(Pr)

(
Tw

T∞

)−m

(6.47)

where

ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1) (6.48)

m = 0.35nλ + 0.29nμ + 0.36 (Tw/T∞ > 1) (6.49)

m = 0.42nλ + 0.34nμ + 0.24 (Tw/T∞ < 1). (6.50)

The predicted results
(
− dθ

dη

)
η=0

of Eqs. (6.47) with (6.48) to (6.50) are compared

with those of the numerical results shown in Table 6.1. The agreement is quite good.

6.7 Practical Prediction Equations on Heat Transfer

By using Eq. (6.47) with Eqs. (6.48)–(6.50), Eqs. (6.36)–(6.42) are available for pre-
diction of heat transfer on laminar gas free convection on vertical flat plate with
consideration of coupled effect of variable physical properties, for example:

The local heat transfer rate qx at position x per unit area from the surface of the
plate to the gas is expressed as
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qx = λw(Tw − T∞)
(

1

4
Grx,∞

)1/4

x−1ψ(Pr)

(
Tw

T∞

)−m

. (6.36∗)

The local Nusselt number defined by Nux,w = αx x
λw

will be

Nux,w =
(

1

4
Grx,∞

)1/4

ψ(Pr)

(
Tw

T∞

)−m

. (6.38∗)

Total heat transfer rate for position x = 0 to x with width of b on the plate will be

Qx = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4

ψ(Pr)

(
Tw

T∞

)−m

. (6.39∗)

The average Nusselt number is defined as Nux,w = αx x
λw

, will be

Nux,w = 4

3

(
1

4
Grx,∞

)1/4

ψ(Pr)

(
Tw

T∞

)−m

, (6.42∗)

where

ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1) (6.48)

m = 0.35nλ + 0.29nμ + 0.36 (Tw/T∞ > 1) (6.49)

m = 0.42nλ + 0.34nμ + 0.24 (Tw/T∞ < 1). (6.50)

It is indicated that Eqs. (6.36*)–(6.42*) will be reliable for prediction of heat
transfer on laminar free convection on a vertical flat plate with consideration of cou-
pled effect of variable physical properties. It is reason that these prediction equations
come from the theoretical equations on heat transfer coupled with the formulated
equation of the solution of governing equations (6.1)–(6.5), the wall dimensionless

temperature gradient
(
− dθ

dη

)
η=0

. While, Eqs. (6.1)–(6.5) as well as (6.43)–(6.46)

have well simulated the practical laminar free convection by means of the rigorous
consideration and treatment of variable physical properties.

6.8 Effect of Variable Physical Properties on Heat Transfer

From the theoretical equations (6.36*)–(6.42*), it is seen that effect of variable

physical properties on heat transfer is dominated by the factor ψ(Pr)
(

Tw
T∞

)−m
,

which demonstrates the effect of Prandtl number Pr, boundary temperature ratio
Tw
T∞ and temperature parameters of gas. If we change the factor to ψ(Pr)

(
Tw
T∞

)−m =
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Table 6.2 Effects of Pr, nμ, nλ, and Tw/T∞ on heat transfer of laminar free convection of
monatomic and diatomic gases, air, and water vapor

Term Heat transfer
for Tw/T∞ > 1 for Tw/T∞ < 1

For effect of Pr Heat transfer increases with increase of Pr
For effect of Tw/T∞ Heat transfer increases with increase of Tw/T∞
For effect of Temperature

parameter nμ or nλ
Heat transfer decreases with increase of Tw/T∞, nμ or nλ

ψ(Pr)
(

T∞
Tw

)m
, we can easily see that with increasing the Prandtl number Pr or bound-

ary temperature ratio Tw/T∞, heat transfer will increase. However, for Tw/T∞>1,
heat transfer will decrease with increasing the temperature parameters of gas. While,
for Tw/T∞<1 heat transfer will increase with increasing the temperature parameters
of gas.

The numerical solutions on temperature gradient −
(

dθ
dη

)
η=0

can be briefly sum-

marized in Table 6.1 for laminar free convection of monatomic and diatomic gases,
air, and water vapor, with effect of Pr, nμ, nλ, and Tw/T∞ (Table 6.2).

6.9 Heat Transfer Under Boussinesq Approximation

Obviously, when boundary temperature ratio Tw/T∞ is very close to unity, i.e.,
Tw/T∞ → 1, the free convection is corresponding to Boussinesq approximation. In
this case, the effect of variable physical properties will not need to be considered,

and then the temperature gradient
(
− dθ

dη

)
η=0

only depends on Pr, i.e.,

(
−dθ

dη

)
η=0

= ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1) (6.51)

where ψ(Pr) expresses the well-known Boussinesq solution.
With Eqs. (6.51), (6.36)–(6.42) become the equations on heat transfer under

Boussinesq approximation, for example:

qx = λw(Tw − T∞)
(

1

4
Grx,∞

)1/4

x−1ψ(Pr) (6.36∗∗)

Nux,w =
(

1

4
Grx,∞

)1/4

ψ(Pr) (6.38∗∗)
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6.10 Summary

So far, the governing equations for laminar free convection of monatomic and
diatomic gases, air, and water vapor and expressions related to heat transfer can
be summarized in Table 6.3 with consideration of variable physical properties.

6.11 Remarks

In this chapter, a novel system of analysis and transformation models is introduced
by using the new similarity analysis method to transform the governing partial differ-
ential equations of laminar free convection. With the new similarity analysis method,
the velocity components are directly transformed into the corresponding dimension-
less velocity components, so that it is not necessary to induce the flow function as
well as the intermediate function variable with Falkner-Skan transformation. In addi-
tion, with the new analysis and transformation models based on the new similarity
analysis method, a convenience is provided to treat the variable physical properties
for free convection and film flows.

The temperature parameter method is used for treatment of variable physical
properties of gases. With this method the physical property factors coupled with the
governing ordinary differential equations are transformed to the functions with the
dimensionless temperature and the related temperature parameters for convenient
simultaneous solution.

It is seen from the calculated results that there are obvious effects of variable
physical properties on velocity and temperature fields, as well as heat transfer of
free convection of gases, and such effects depend on the boundary temperature ratio
Tw/Tw, the temperature parameter nμ and nλ as well as the Prandtl number of gases.
The prediction equations on gas free convection heat transfer are created based on
the heat transfer analysis and the related numerical solutions. It is found that the gas
temperature parameters, Prandtl number, and boundary temperature ratio dominate
the heat transfer of gas laminar free convection. Since the temperature parameters
are based on the experimental data, such prediction equations of gas free convection
heat transfer are reliable, and have practical application value.

6.12 Calculation Examples

Question:
A flat plate with b = 2 m in width and x = 0.25 m in length is suspended vertically in
air. The ambient temperature is t∞ = 20 ◦C . Calculate the free convection heat trans-
fer of the plate for boundary temperature ratio Tw/T∞ = 1.1, 1.2, 1.4, 1.7 and 2.1.
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Table 6.3 Governing equations for laminar free convection of monatomic and diatomic gases, air
and water vapor and expressions related to heat transfer

Term Expression

Governing partial differential equations
Mass equation ∂

∂x (ρwx )+ ∂
∂y

(
ρwy

) = 0

Momentum equation
ρ

(
wx

∂wx
∂x + wy

∂wx
∂y

)
= ∂

∂y

(
μ∂wx

∂y

)
+ ρg T −T∞

T∞

Energy equation
ρcp

(
wx

∂T
∂x + wy

∂T
∂y

)
= ∂

∂y

(
λ ∂T
∂y

)

Boundary conditions
y = 0 : wx = 0, wy = 0, T = Tw

y → ∞: wx → 0, T = T∞

Assumed similarity variables

η
y
x

( 1
4 Grx,∞

)1/4

Grx,∞ (Grx,∞)v = g|Tw/T∞−1|x3

ν2∞
θ θ = T −T∞

Tw−T∞
Wx (2

√
gx |Tw/T∞ − 1|1/2)−1wx

Wy (2
√

gx |Tw/T∞ − 1|1/2 ( 1
4 Grx,∞

)−1/4
)−1wy

Governing ordinary differential equations

Mass equations
2Wx − η dWx

dη + 4 dWy
dη

− 1
ρ

dρ
dη (ηWx − 4Wy) = 0

Momentum Equation
ν∞
ν

(
Wx

(
2Wx − η dWx

dη

)
+ 4Wy

dWx
dη

)
= d2Wx

dη2 + 1
μ

dμ
dη

dWx
dη + ν∞

ν
θ

Energy equation Pr ν∞
ν
(−ηWx + 4Wy)

dθ
dη = 1

λ
dλ
dη

dθ
dη + d2θ

dη2

Boundary conditions η = 0: Wx = 0, Wy = 0, θ = 1;
η → ∞: Wx = 0, θ = 0

Boussinesq solution(
− dθ

dη

)
η=0

= ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1)

Heat transfer under Boussinesq approximation

Local heat transfer rate qx = λw(Tw − T∞)
( 1

4 Grx,∞
)1/4

x−1ψ(Pr)

Local heat transfer coefficient
defined by Nux,w = αx x

λw

αx = λw
( 1

4 Grx,∞
)1/4

x−1ψ(Pr)

Local Nusselt number defined by
Nux,w = αx x

λw

Nux,w = ( 1
4 Grx,∞

)1/4
ψ(Pr)

Total heat transfer rate
Qx = ∫ ∫

A qx dA = ∫ x
0 qx bdx

Qx = 4
3 bλw(Tw − T∞)

( 1
4 Grx,∞

)1/4
ψ(Pr)

(continued)
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Table 6.3 (continued)

Average heat transfer coefficient αx
defined as Qx = αx (Tw − T∞)

αx = 4
3λw

( 1
4 Grx,∞

)1/4
x−1ψ(Pr)

Average Nusselt number is defined
as Nux,w = αx x

λw

Nux,w = 4
3

( 1
4 Grx,∞

)1/4
ψ(Pr)

Wall dimensionless temperature gradient(
− dθ

dη

)
η=0

= ψ(Pr)
(

Tw
T∞

)−m
(0.6 ≤ Pr ≤ 1)

where
ψ(Pr) = 0.567 + 0.186 × ln(Pr)
m = 0.35nλ + 0.29nμ + 0.36 (Tw/T∞ > 1)
m = 0.42nλ + 0.34nμ + 0.24 (Tw/T∞ < 1)
Heat transfer for consiceration of coupled effect of variable physical properties variable

Local heat transfer rate qx = λw(Tw −T∞)
( 1

4 Grx,∞
)1/4

x−1ψ(Pr)
(

Tw
T∞

)−m

Local heat transfer coefficient
defined by Nux,w = αx x

λw

αx = λw
( 1

4 Grx,∞
)1/4

x−1ψ(Pr)
(

Tw
T∞

)−m

Local Nusselt number defined by
Nux,w = αx x

λw

Nux,w = ( 1
4 Grx,∞

)1/4
ψ(Pr)

(
Tw
T∞

)−m

Total heat transfer rate
Q = ∫ ∫

A qx dA = ∫ x
0 qx bdx

Qx = 4
3 bλw(Tw − T∞)

( 1
4 Grx,∞

)1/4
ψ(Pr)

(
Tw
T∞

)−m

Average heat transfer rate, defined
as Qx = Qx/(b × x)

Qx = 4
3 x−1λw(Tw − T∞)

× ( 1
4 Grx,∞

)1/4
ψ(PR)

(
Tw
T∞

)−m

Average heat transfer coefficient αx
defined as Qx = αx (Tw − T∞)

αx = 4
3λw

( 1
4 Grx,∞

)1/4
x−1ψ(Pr)

(
Tw
T∞

)−m

Average Nusselt number is defined
as Nux,w = αx x

λw

Nux,w = 4
3

( 1
4 Grx,∞

)1/4
ψ(Pr)

(
Tw
T∞

)−m

Solution:

From t∞ = 20 ◦C and Tw/T∞ = 1.1, 1.2, 1.4, 1.7, 2.1, we obtain Tw = 322.3,
351.6, 410.2, 498.1, 615.3 K or tw = 49.3, 78.6, 137.2, 225.1, 342.3 ◦C. The air
physical properties are as follows:
ν∞ = 15.06 × 10−6 m2/s for air t∞ = 20 ◦C; λw = 2.825 × 10−2, 3.037 ×

10−2, 3.4675 × 10−2, 4.1007 × 10−2 and 4.8622 × 10−2 W/(m ◦C) for air at
tw = 49.3, 78.6, 137.2, 225.1 and 342.3 ◦C respectively. From Tables 6.1 and 6.3,
we obtain nμ = 0.68, nλ = 0.81 and Pr = 0.7 for air.
Then,

ψ(Pr) = 0.567 + 0.186 × ln 0.7 = 0.50066

m is evaluated as below with Tw/T∞
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Table 6.4 Calculated results

Tw/T∞ 1.1 1.2 1.4 1.7 2.1

tw(◦C) 49.3 78.6 137.2 225.1 342.3
t∞(◦C) 20 20 20 20 20
λw[W/(m ◦C)] 2.825 × 10−2 3.037 × 10−2 3.4675 × 10−2 4.1007 × 10−2 4.8622 × 10−2

−
(

dθ
dη

)
η=0

0.4621 0.4295 0.3773 0.3205 0.2683

Grx,∞ 6.75 × 107 1.35 × 108 2.7 × 108 4.73 × 108 7.43 × 108

Nux,w 39.4927 43.652 45.602 44.550 41.761
αx [W/(m2 K)] 4.46237 5.3026 6.3247 7.3074 8.1218
Q (W) 65.3782 154.37 370.63 749.38 1308.83

m = 0.35nλ + 0.29nμ + 0.36

= 0.35×0.81 + 0.29×0.68 + 0.36 = 0.8407.

In this case, the dimensionless temperature gradient
(
− dθ

dη

)
η=0

can be evaluated as

(
−dθ

dη

)
η=0

= ψ(Pr)

(
Tw

T∞

)−m

= 0.50066 ×
(

Tw

T∞

)−0.8407

.

The evaluated values of
(
− dθ

dη

)
η=0

are plotted in Table 6.4 for different temperature

rations.
Also

Grx,∞ =
g

∣∣∣∣Tw/T∞ − 1

∣∣∣∣x3

ν2∞

= 9.8 × |Tw/T∞ − 1| × 0.253

(15.06 × 10−6)2

The calculated values of Grx,∞ are plotted in Table 6.4.
With Eq. (4.53) the average Nusselt number can expressed as

Nux,w = −4

3

(
1

4
Grx,∞

)1/4 (
dθ

dη

)
η=0

Then, the average Nusselt number Nux,w are evaluated with the calculated values of

Grx,∞ and
(
− dθ

dη

)
η=0

and then, plotted in Table 6.4.
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From the definition of the average Nusselt number Nux,w = αx x
λw

, the average heat
transfer coefficientcan be calculated as

αx = λw

x
Nux,w = λw

0.25
Nux,w

The average heat transfer coefficient αx are calculated with the related Nux,w and
λw, and plotted in Table 6.4 also.

Finally, heat transfer Qx is calculated as

Qx = αx (tw − t∞)x × b = αx (tw − t∞)× 0.25 × 2

The values of Qx is calculated with the related values of αx and tw − t∞, and
plotted in Table 6.4.

6.13 Exercises

1. From this chapter, tell me the importance for consideration of variable physical
properties on laminar free convection.

2. Please explain the necessity and importance of consideration of variable physical
properties for deep investigation of laminar free convection.

3. Can you tell me if Eqs. (6.36*)–(6.42*) are qualified for reliable prediction of
heat transfer of laminar free convection? Why?

4. Follow the question of calculation example, only change air to water vapour
as the ambient gas, and keep other conditions, and calculate the average heat
transfer coefficients and free convection heat transfer on the plate.

5. Please calculate the question of exercise 4 by using the related empirical equation.
6. Compare the calculated results in exercises 4 and 5, and tell me which calculated

result is more reliable for practical application, why?
7. Do you think the treatment of variable physical properties in this chapter is

reliable? Why?
8. Compare the governing similarity models (6.18), (6.25) and (6.33), to (3.25)

and (3.26), respectively transformed by the new similarity analysis method and
Falkner-Skan type transformation, please find out which model is more conve-
nient for consideration of variable physical properties.
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Chapter 7
Heat Transfer of Laminar Free Convection
of Polyatomic Gas

Abstract Based on the study of Chap. 6, the temperature-dependent specific heat is
further considered for investigation of laminar free convection of polyatomic gases
with consideration of variable physical properties. The viscosity, thermal conductiv-
ity, and specific heat parameters are provided for a series of polyatomic gases. The
governing energy ordinary differential equation is further derived out for consider-
ation of temperature-dependent specific heat, by using the new similarity analysis
method. A system of numerical solutions are obtained for variation of the tempera-
ture parameters nµ, nλ, and ncp , Prandtl number, and the boundary temperature ratio.
It is seen from the numerical results that there are obvious effects of variable physical
properties on velocity and temperature fields, as well as heat transfer of free convec-
tion of polyatomic gases. The theoretical equations of heat transfer of polyatomic
gas free convection created based on the heat transfer analysis contain a only one
no-given variable, the wall temperature gradient. Based on the system of numerical
solutions on the wall dimensionless temperature gradient, the prediction equation
of the wall temperature gradient is created by means of a curve-fitting method, and
then, the theoretical equations on heat transfer are available for prediction of heat
transfer. It is found that the gas temperature parameters, Prandtl number, and the
boundary temperature ratio dominate the heat transfer of laminar free convection
of polyatomic gases. Because the temperature parameters are based on the typi-
cal experimental data, these equations on heat transfer are reliable for engineering
prediction of laminar free convection of polyatomic gas.

7.1 Introduction

In Chap. 6, the new similarity analysis method and temperature parameter method
were introduced for the similarity transformation of the governing partial differ-
ential equations of laminar free convection of monatomic and diatomic gases, air,
and water vapor with consideration of variable physical properties. The tempera-
ture parameter method, density, thermal conductivity, and absolute viscosity of the
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122 7 Heat Transfer of Laminar Free Convection

gases are assumed to vary with absolute temperature according to a simple power
law. The temperature parameters of thermal conductivity and the absolute viscosity
are proposed and the corresponding values are provided according to the typical
experimental data of the corresponding physical properties. The density is taken as
inversely proportional to absolute temperature at constant pressure, while the Prandtl
number is assumed constant. Since the variation of specific heat for these gases with
temperature is very small, it is taken as constant for the treatment of variable physical
properties.

However, for polyatomic gases, the variation of specific heat is not so small, and
then it cannot be taken as constant. In this Chapter I focus on the presentation of
free convection of polyatomic gases along an isothermal vertical flat plate with large
temperature difference [1]. For this purpose the governing equations for laminar free
convection of gas are also transformed to dimensionless ordinary equations by the
new similarity analysis method. For treatment of variable physical properties the
temperature parameter method is used to further treat variation of specific heat with
temperature. Not only the density, thermal conductivity, and dynamic viscosity but
also the specific heat is assumed to vary with absolute temperature according to the
simple power law. The temperature parameters nλ, nµ and ncp are further introduced
and the corresponding values are proposed according to the typical experimental
results for polyatomic gases. On this basis, heat transfer of laminar free convection
of polyatomic gas will be further presented in this chapter for laminar free convection
of polyatomic gases.

7.2 Variable Physical Properties of Polyatomic Gases

The effect of the variable physical properties on laminar free convection and heat
transfer of monatomic and diatomic gases, air and water vapor along an isothermal
vertical flat plate has been reported in Chap. 6. However, for the polyatomic gases
the variation of specific heat with temperature is more obvious. For this reason,
an additional equation for specific heat has to be added to the equations based on
Chap. 6 in order to further considerate variable physical properties of polyatomic
gases. Thus, for polyatomic gas, the equations of viscosity, thermal conductivity,
density, and specific heat with temperature are described as follows:

μ

μ∞
=

(
T

T∞

)nμ
(7.1)

λ

λ∞
=

(
T

T∞

)nλ
(7.2)

cp

cp∞
=

(
T

T∞

)ncp

(7.3)
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ρ

ρ∞
=

(
T

T∞

)−1

(7.4)

cp/cp∞ = (T/T∞)ncp (7.5)

According to the summarized experimental values of µ, λ and cp for several poly-
atomic gases reported in Refs. [2–5], the temperature parameters nλ, nμ and ncp and
arising from the corresponding experimental data are listed in Table 5.2.

7.3 Governing Differential Equations and Their Similarity
Transformation

The physical analytical model and co-ordinate system used for laminar free con-
vection of monatomic and diatomic gases, as well as air and water vapor on an
isothermal vertical flat plate is also shown in Fig. 6.1. Then, we can express the
following governing partial differential equations for continuity, momentum, and
energy conservations and their boundary conditions for laminar free convection of
polyatomic gases along an isothermal vertical plate:

∂

∂x
(ρwx )+

∂

∂y
(ρwy) = 0 (7.6)

ρ

(
wx
∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
µ
∂wx

∂y

)
+ gρ

∣∣∣∣ T

T∞
− 1

∣∣∣∣ (7.7)

ρ

(
wx
∂(cpT )

∂x
+ wy

∂(cpT )

∂y

)
= ∂

∂y

(
λ
∂T

∂y

)
(7.8)

y = 0 : wx = 0, wy = 0, T = Tw (7.9)

y → ∞: wx → 0, T = T∞ (7.10)

where the temperature-dependent specific heat of polyatomic gas is considered in
the energy equation.

For similarity transformation of the governing Eqs. (7.6)–(7.8) we use the new
similarity analysis method and assume the following dimensionless variables, which
are same as those for laminar free convection of monatomic and diatomic gases, air,
and water vapor in Chapter 6:

η = y

x

(
1

4
Grx,∞

)1/4

(7.11)
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Grx,∞ = g |Tw/T∞ − 1| x3

ν2∞
(7.12)

θ = T − T∞
Tw − T∞

(7.13)

Wx =
[
2
√

gx |Tw/T∞ − 1|1/2
]−1

wx (7.14)

Wy =
[

2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4
]−1

wy (7.15)

According to the derivation similar to that in Chap. 6, the corresponding governing
dimensionless equations of Eqs. (7.6)–(7.7) should be

2Wx − η
dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0 (7.16)

ν∞
ν

(
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

)
= d2Wx

dη2 + 1

µ

dµ

dη

dWx

dη
+ ν∞

ν
θ (7.17)

However, because the variation of specific heat of the polyatomic gases with tem-
perature must be considered, the similarity transformation for Eq. (7.8) should be
done.

At first, Eq. (7.8) can be further expressed as

ρcp

(
wx
∂T

∂x
+ wy

∂T

∂y

)
+ ρT

(
wx
∂(cp)

∂x
+ wy

∂(cp)

∂y

)
= ∂λ

∂y

∂T

∂y
+ λ

∂2T

∂y2

or

[
ρcpwx

∂T

∂x
+ ρT wx

∂(cp)

∂x

]
+

[
ρcpwy

∂T

∂y
+ ρT wy

∂(cp)

∂y

]
= ∂λ

∂y

∂T

∂y
+ λ

∂2T

∂y2

(7.18)
According to Chap. 6, we have

∂λ

∂y
= dλ

dη

(
1

4
Grx,∞

)1/4

x−1 (7.19)

∂T

∂x
= −(Tw − T∞)

dθ

dη

(
1

4

)
ηx−1 (7.20)

∂T

∂y
= (Tw − T∞)

dθ

dη

(
1

4
Grx,∞

)1/4

x−1 (7.21)
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∂2T

∂y2 = (Tw − T∞)
d2θ

dη2

(
1

4
Grx,∞

)1/2

x−2 (7.22)

Similar to Eq. (7.14) we have

∂cρ
∂x

= −1

4
ηx−1η

dcρ

dη
(7.23)

Similar to Eq. (6.22) we have

∂cρ
∂y

= dcρ
dη

(
1

4
Grx,∞

)1/4

x−1 (7.24)

where
T = (Tw − T∞)θ + T∞ (7.25)

Then, Eq. (7.18) is changed to

2ρ
√

gx |Tw/T∞ − 1| 1
2 Wx

[
T

(
−1

4
ηx−1 dcp

dη

)
+cp ×

(
− (Tw−T∞)

dθ

dη

(
1

4

)
ηx−1

)]

+ 2ρ
√

gx |Tw/T∞ − 1| 1
2

(
1

4
Grx,∞

)−1/4

× Wy

[
T

dcp

dη

(
1

4
Grx,∞

)1/4

x−1

+cp × (Tw − T∞)
dθ

dη

(
1

4
Grx,∞

)1/4

x−1

]

= dλ

dη

(
1

4
Grx,∞

)1/4

x−1(Tw − T∞)
dθ

dη

(
1

4
Grx,∞

)1/4

× x−1 + λ(Tw − T∞)
d2θ

dη2

(
1

4
Grx,∞

)1/2

x−2 (7.26)

With the definition of Local Grashof number, the above equation is simplified to

2ρ
√

gx |Tw/T∞ − 1|1/2 Wx

[
T

(
−1

4
ηx−1 dcp

dη

)
+ cp

(
− (Tw − T∞)

dθ

dη

(
1

4

)
ηx−1

)]

+ 2ρ
√

gx |Tw/T∞ − 1|1/2 Wy

[
T

dcp

dη
x−1 + cp(Tw − T∞)

dθ

dη
x−1

]

= dλ

dη
x−1(Tw − T∞)

dθ

dη

(
g |Tw/T∞ − 1| x3

4ν2∞

)1/2

x−1 + λ(Tw − T∞)
d2θ

dη2

×
(

g |Tw/T∞ − 1| x3

4ν2∞

)1/2

x−2

(7.27)

The above equation is divided by
√

g
x |Tw/T∞ − 1|1/2 (Tw − T∞)and this leads to
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2ρWx

[
T

Tw − T∞

(
−1

4
η

dcp

dη

)
+ cp

(
−dθ

dη

(
1

4

)
η

)]
+ 2ρWy

[
T

Tw − T∞
dcp

dη
+ cp

dθ

dη

]

= dλ

dη

dθ

dη

(
1

4ν2∞

)1/2
+ λ

d2θ

dη2

(
1

4ν2∞

)1/2

(7.28)

The above equation is multiplied by
2ν∞
λ

and is simplified, then

ν∞
λ
ρWx

[
T

Tw − T∞

(
−ηdcp

dη

)
− cp

(
dθ

dη
η

)]

+ 4
ν∞
λ
ρWy

[
T

Tw − T∞
dcp

dη
+ cp

dθ

dη

]
= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2

Since
ν∞
λ

cpρ = Pr
ν∞
ν

, the above equation can be simplified to

− Pr
ν∞
ν
ηWx

[
T

Tw−T∞

(
1

cp

dcp

dη

)
+

(
dθ

dη

)]
+4Pr

v∞
v

Wy

(
T

Tw−T∞
1

cp

dcp

dη
+dθ

dη

)

= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2

or

Pr
ν∞
ν
(−ηWx + 4Wy)

(
dθ

dη
+ T

Tw − T∞
1

cp

dcp

dη

)
= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2 (7.29)

Now we simplify T
Tw−T∞

1
cp

dcp
dη . From Eqs. (7.5) and (7.25) we obtain the following

equation:

dcp

dη
= cp∞

d

(
(Tw − T∞)θ + T∞

T∞

)ncp

dη

= cp∞ncp

(
(Tw − T∞)θ + T∞

T∞

)ncp−1 Tw − T∞
T∞

dθ

dη

= cp∞ncp

(
T

T∞

)ncp−1 Tw − T∞
T∞

dθ

dη

Then
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T

Tw − T∞
1

cp

dcp

dη
= cp∞

cp
ncp

(
T

T∞

)ncp−1 T

T∞
dθ

dη

=
(

T

T∞

)−ncp

ncp

(
T

T∞

)ncp−1 T

T∞
dθ

dη

= ncp

dθ

dη

Consequently Eq. (7.29) is changed as

Pr
ν∞
ν
(−ηWx + 4Wy)

(
dθ

dη
+ ncp

dθ

dη

)
= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2

i.e.

(1 + ncp)Pr
ν∞
ν
(−ηWx + 4Wy)

dθ

dη
= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2 (7.30)

Now we summarize the transformed dimensionless equations for the laminar free
convection of polyatomic gases as follows:

2Wx − η
dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0 (7.16)

ν∞
ν

(
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

)
= d2Wx

dη2 + 1

μ

dμ

dη

dWx

dη
+ ν∞

ν
θ (7.17)

(1 + ncp)Pr
ν∞
ν
(−ηWx + 4Wy)

dθ

dη
= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2 (7.30)

with boundary conditions

η = 0, Wx = 0, Wy = 0, θ = 1 (7.31)

η → ∞, Wx → 0, θ → 0 (7.32)

It is obvious that when ncp = 0 the Eq. (7.30) will turn back to Eq. (6.33) for laminar
free convection of monatomic and diatomic gases, air, and water vapor. Therefore,
the energy equation of laminar free convection of monatomic and diatomic gases,
air and water vapour is a special case of that of the polyatomic gas laminar free
convection with ncp = 0.
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7.4 Treatment of Physical Property Factors

According to Chap. 5, the physical property factors for gases coupled with the govern-
ing ordinary differential equations are expressed as following equations respectively:

1

ρ

dρ

dη
= −

(
Tw
T∞ − 1

)
(

Tw
T∞ − 1

)
θ + 1

dθ

dη
(7.33)

1

µ

dµ

dη
=

nµ

(
Tw
T∞ − 1

)
(

Tw
T∞ − 1

)
θ + 1

dθ

dη
(7.34)

1

λ

dλ

dη
=

nλ
(

Tw
T∞ − 1

)
(

Tw
T∞ − 1

)
θ + 1

dθ

dη
(7.35)

ν∞
ν

=
((

Tw

T∞
− 1

)
θ + 1

)−(nµ+1)

(7.36)

Combined with the physical property factor Eqs. (7.33)–(7.36), and Eqs. (7.16),
(7.17), and (7.30) with boundary conditions, (7.31) and (7.32) can be solved for
the velocity and temperature fields. It will be expected that, with consideration of
variable physical properties, the dimensionless velocity field and the dimensionless
temperature field depend on Tw

T∞ , Pr, nλ, nµ and ncp for the laminar free convection
of polyatomic gases.

7.5 Heat Transfer Analysis

With the same heat transfer analysis as that in Chap. 6, the analytical expressions on
heat transfer for laminar free convection of polyatomic gases are as follows:

The local heat transfer rate qx at position x per unit area from the surface of the
plate to the gas will be expressed as

qx = λw(Tw − T∞)
(

1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

(7.37)

The local heat transfer coefficient αx , defined as qx = αx (Tw − T∞), will be given
by

αx = λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

(7.38)

The local Nusselt number defined by Nux,w = αx x
λw

will be
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Nux,w =
(

1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

(7.39)

Total heat transfer rate for position x = 0 to x with width of b on the plate is a
integration Qx = ∫ ∫

A qx dA = ∫ x
0 qx bdx , and hence

Qx = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

(7.40)

The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

Qx = 4

3
x−1λw(Tw − T∞)

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

(7.41)

The average heat transfer coefficient αx defined as Qx = αx (Tw−T∞) is expressed as

αx = 4

3
λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

(7.42)

The average Nusselt number is defined as Nux,w = αx x
λw

hence

Nux,w = 4

3

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

. (7.43)

Obviously, in the above theoretical equations on heat transfer, only the wall dimen-

sionless temperature gradient
(
− dθ

dη

)
η=0

dependent on numerical solution is

no-given variable.

7.6 Numerical Solutions

The governing dimensionless Eqs. (7.16), (7.17) and (7.30) with the boundary con-
dition Eqs. (7.31) and (7.32) were calculated numerically combined with the physical
property factor Eqs. (7.33)–(7.36) for the velocity and temperature fields. The cal-
culations were carried out by the shooting method presented in Chap. 6. The typical
results for the velocity and temperature field were obtained with different Pr, nλ, nµ

and ncp at different boundary temperature ratios
Tw

T∞
. Some of the solutions were

plotted in Figs. 7.1, 7.2, 7.3, and 7.4. Meanwhile, the solutions of dimensionless

temperature gradient
(
− dθ

dη

)
η=0

, for laminar free convection of several polyatomic

http://dx.doi.org/10.1007/978-3-642-28983-7
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Fig. 7.1 Velocity profiles for free convection of different polyatomic gases, cited from Shang and
Wang [1]. 1 gas mixture (CO2 = 0.13, H2O = 0.11, N2 = 0.76); 2 SO2; 3 NH3

Fig. 7.2 Temperature profiles for free convection of different polyatomic gases, cited from Shang
and Wang [1]. 1 gas mixture (CO2 = 0.13, H2O = 0.11, N2 = 0.76); 2 SO2; 3 NH3

gases with the related Pr, nλ, nµ and ncp at various boundary temperature ratios
Tw

T∞
are shown in Table 7.1 and plotted in Fig. 7.5. These solutions describe the effects
of Pr, nλ, nµ and ncp on velocity and temperature fields as well as heat transfer of
polyatomic gas laminar free convection. It is found that the effects of Pr, nλ and nµ

with the boundary temperature ratios
Tw

T∞
on the velocity and temperature fields of

polyatomic laminar free convection are same as those on the velocity and tempera-
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Fig. 7.3 Velocity profiles for free convection of CO2 with different boundary temperature rations,
cited from Shang and Wang [1]. 1 Tw

T∞ = 3; 2 Tw
T∞ = 5

2 ; 3 Tw
T∞ = 2; 4 Tw

T∞ = 3
2 ; 5 Tw

T∞ = 3
4 ;

6 Tw
T∞ = 1

2 ; 7 Tw
T∞ = 1

3

Fig. 7.4 Temperature profiles for free convection of CO2 with different boundary temperature
rations, cited from Shang and Wang [1]. 1 Tw

T∞ = 3; 2 Tw
T∞ = 5

2 ; 3 Tw
T∞ = 2; 4 Tw

T∞ = 3
2 ;

5 Tw
T∞ = 3

4 ; 6 Tw
T∞ = 1

2 ; 7 Tw
T∞ = 1

3

ture fields of laminar free convection of monatomic and diatomic gases, air and water

vapor. The effect of Pr, nµ, nλ, ncp and Tw/T∞ on temperature gradient −
(

dθ
dη

)
η=0

can be briefly summarized in Table 7.3 for laminar free convection of polyatomic
gases.

For consideration of variation of specific heat of the monatomic and diatomic
gases, air, and water vapor with temperature, the corresponding numerical solutions
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Fig. 7.5 Numerical solutions of temperature gradient
(
− dθ

dη

)
η=0

for laminar free convection of

polyatomic gas

are calculated by Eqs. (7.16), (7.17) and (7.30) with the boundary condition Eqs. (7.31)
and (7.32) as well as Eqs. (7.33)–(7.37) for the physical property factors, and listed
in Table 7.2. It is found that these numerical solutions are very identical to the related
numerical solutions without consideration of variation of specific heat. Then, it fol-
lows that it is acceptable to neglect the effect of the specific heat for calculation of
the free convection heat transfer coefficient of the monatomic and diatomic gases,
air, and water vapor.

7.7 Dimensionless Wall Temperature Gradient

With the system of numerical solutions wall dimensionless temperature gradient(
− dθ

dη

)
η=0

, the only one no-given physical variable in the above heat transfer

theoretically analytical equations, a curve-fit formula of
(
− dθ

dη

)
η=0

was obtained

by Shang and Wang [1], and shown as follows for laminar free convection of poly-
atomic gases with consideration of variable physical properties:

−
(

dθ

dη

)
η=0

= (1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

(7.44)

where ψ(Pr) is Boussinesq approximation solution in the range of gas Prandtl num-
ber, and is expressed as follows:
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Table 7.3 Effects of Pr, nµ, nλ, Tw/T∞ and Tw/T∞ on temperature gradient −
(

dθ
dη

)
η=0

for

laminar free convection of polyatomic gases

Term Heat transfer
for Tw/T∞ > 1 for Tw/T∞ < 1

For effect of Pr Heat transfer increases with increase of Pr
For effect of
Tw/T∞

Heat transfer increases with increase of Tw/T∞

For effect of
Temperature
parameter nµ,
nλ, or ηcp

Heat transfer decreases with increase of nµ, nλ, or ηcp

ψ(Pr) = 0.567 + 0.186 × ln Pr (0.6 ≤ Pr ≤ 1) (6.48)

While,
m = 0.35nλ + 0.29nµ + 0.36 (Tw/T∞ > 1) (7.45)

m = 0.42nλ + 0.34nµ + 0.28 (Tw/T∞ < 1) (7.46)

Some results of temperature gradient
(
− dθ

dη

)
η=0

for laminar free convection of dif-

ferent polyatomic gases predicted by using above equations are listed in Table 7.1
also, where it is found that these predicted results are well identical to the related
numerical solutions.

On the other hand, it is clear from the curve-fitting formulae to see that the effect
of Prandtl number Pr, the temperature parameters nµ, nλ, and ncp , and the boundary
temperature ratio Tw/T∞ on the wall temperature gradient (− dθ

dη )η=0. Such effect
regulation is summarized in Table 7.3. Obviously, these effect regulations are same
both for laminar free convection of all gases.

Also, if boundary temperature ratio Tw/T∞ tends to unity, the specific heat para-
meter ncp will be regarded as zero, and Eq. (7.44) is transformed to

−
(

dθ

dη

)
η=0

= ψ(Pr) (7.47)

It is identical to Boussinesq approximation, while ψ(Pr) expresses well-known
Boussinesq solution.
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7.8 Practical Prediction Equations on Heat Transfer

By using Eq. (7.44) with Eqs. (6.48), (7.45) and (7.46), Eqs. (7.37)–(7.43) are avail-
able for prediction of heat transfer, and become the following corresponding equa-
tions for reliable prediction of heat transfer on laminar gas free convection on vertical
flat plate with consideration of coupled effect of variable physical properties:

The local heat transfer rate qx at position x per unit area from the surface of the
plate to the gas is expressed as

qx = λw(Tw − T∞)
(

1

4
Grx,∞

)1/4

x−1(1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

(7.37*)

The local heat transfer coefficient αx , defined as qx = αx (Tw − T∞), will be
given by

αx = λw

(
1

4
Grx,∞

)1/4

x−1(1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

(7.38*)

The local Nusselt number defined by Nux,w = αx x

λw
will be

Nux,w =
(

1

4
Grx,∞

)1/4

(1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

(7.39*)

Total heat transfer rate for position x = 0 to x with width of b on the plate will be

Qx = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4

(1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

(7.40*)

The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

Qx = 4

3
x−1λw(Tw − T∞)

(
1

4
Grx,∞

)1/4

(1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

(7.41*)

The average heat transfer coefficient αx defined as Qx = αx (Tw − T∞) is
expressed as)

αx = 4

3
λw

(
1

4
Grx,∞

)1/4

x−1(1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

(7.42*)

The average Nusselt number is defined as Nux,w = αx x

λw
, will be

http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Nux,w = 4

3

(
1

4
Grx,∞

)1/4

(1 + 0.3ncp)ψ(Pr)

(
Tw

T∞

)−m

. (7.43*)

where
ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1) (6.48)

m = 0.35nλ + 0.29nµ + 0.36 (Tw/T∞ > 1) (7.45)

m = 0.42nλ + 0.34nµ + 0.28 (Tw/T∞ < 1) (7.46)

Obviously, Eqs. (6.37*)–(6.43*) will be reliable for prediction of heat transfer on
laminar free convection of polyatomic gas on a vertical flat plate with consideration
of coupled effect of variable physical properties. It is reason that these prediction
equations come from the theoretical equations on heat transfer coupled with the
formulated equation of the solution of governing Eqs. (7.16), (7.17), and (7.30), which
have very well simulated the practical laminar free convection of polyatomic gas by
means of the rigorous consideration and treatment of variable physical properties.

7.9 Effect of Variable Physical Properties on Heat Transfer

From the theoretical Eqs. (7.37*)–(7.43*), it is seen that effect of variable physical

properties on heat transfer is dominated by the factor (1 + 0.3ncp)ψ(Pr)
(

Tw
T∞

)−m
,

which demonstrates the effect of Prandtl number Pr, boundary temperature ratio
Tw

T∞
and temperature parameters of gas. If we change the factor to (1 + 0.3ncp)ψ(Pr)(

Tw
T∞

)−m = (1 + 0.3ncp)ψ(Pr)
(

T∞
Tw

)m
, we can easily see that with increasing the

Prandtl number Pr, heat transfer will increase. However, for Tw/T∞ > 1, heat transfer
will decrease with increasing the temperature parameters of gas. While, for Tw/T∞ <

1 heat transfer will increase with increasing the temperature parameters of gas.
The above analysis on effect regulation Pr, nµ, nλ, and Tw/T∞ on temperature gra-

dient −
(

dθ
dη

)
η=0

can be briefly summarized in Table 7.3 for laminar free convection

of polyatomic gasespolyatomic gases.

7.10 Heat Transfer Under Boussinesq Approximation

Obviously when boundary temperature ratio Tw/T∞ is very close to unity, i.e.
Tw/T∞ → 1, the effect of all physical properties on laminar free convection will
never exist. In this case, ncp will be regarded as zero. Then, from Eqs. (7.45) and
(6.49), we have the same equation on Boussinesq solution for laminar free convec-

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-6
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tion of polyatomic gas as that in Chap. 6:

(
−dθ

dη

)
η=0

= ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1) (7.51)

In this case, we have the same equations as those in Chap. 6 for heat transfer of
laminar free convection of polyatomic gas on vertical flat plate under Boussinesq
approximation:

qx = λw(Tw − T∞)
(

1

4
Grx,∞

)1/4

x−1ψ(Pr) (7.37**)

αx = λw

(
1

4
Grx,∞

)1/4

x−1ψ(Pr) (7.38**)

Nux,w =
(

1

4
Grx,∞

)1/4

ψ(Pr) (7.39**)

Qx = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4

ψ(Pr) (7.40**)

Qx = 4

3
x−1λw(Tw − T∞)

(
1

4
Grx,∞

)1/4

ψ(Pr) (7.41**)

αx = 4

3
λw

(
1

4
Grx,∞

)1/4

x−1ψ(Pr) (7.42**)

Nux,w = 4

3

(
1

4
Grx,∞

)1/4

ψ(Pr) (7.43**)

7.11 Summary

Comparing the analyses and results in Chap. 4 with that in this chapter, it is obvious
to find that laminar free convection and heat transfer of the monatomic and diatomic
gases, air, and water vapor can be regarded as a special case of that of polyatomic
gases. In fact, the results of free convection heat transfer of polyatomic gases are very
well identical to those of the monatomic and diatomic gases, air and water vapor.
So far, the governing equations of laminar free convection for general gases and
expressions related to heat transfer can be summarized in Table 7.4.

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_4
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7.12 Remarks

On the basis of study of Chap. 6, the temperature-dependent specific heat is further
considered for investigation of laminar free convection of polyatomic gases with
consideration of variable physical properties. The temperature parameters, such as
viscosity, thermal conductivity, and specific heat parameters are presented for a series
of polyatomic gases. The governing energy ordinary differential equation is derived
out for further consideration of temperature-dependent specific heat. With the tem-
perature parameter method, the physical property factors coupled with the governing
ordinary differential equations are transformed to the functions with the dimension-
less temperature and the related temperature parameters for convenient simultaneous
solution. A system of solutions is obtained numerically. It is seen from the calculated
results that there are obvious effects of variable physical properties on velocity and
temperature fields, as well as heat transfer of free convection of polyatomic gases.
The theoretical equations of heat transfer of polyatomic gas free convection are cre-
ated based on the heat transfer analysis, where the wall dimensionless temperature
gradient is the only one no-given variable. Then, the system of numerical solutions
on the wall temperature gradient is formulated into a prediction equation. Then, it is
found that the gas temperature parameters nµ, nλ and ncp , Prandtl number, and the
boundary temperature ratio dominate the heat transfer of laminar free convection of
polyatomic gases. Since the temperature parameters are based on the experimental
data, the heat transfer prediction equations are reliable for practical application. The
method proposed in this chapter, for analyzing the laminar free convection of poly-
atomic gases along a vertical isothermal flat plate can be suitable for laminar free
convection for all gases, and could yield reliable results.

7.13 Calculation Examples

Example 1:
An plate with uniform temperature tw = 0 ◦C, width b = 2 m and height x =

0.9 m is suspended in a gas mixture with temperature t∞ = 500 ◦C. The kinetic
viscosity of the gas mixture is ν∞ = 7.63 × 10−5 m2/s at t∞ = 500 ◦C, and the
thermal conductivity of the gas mixture is λw = 0.0228 W/(m◦C) at tw = 0 ◦C.
The temperature parameters of the gas mixture are nμ = 0.75, nλ = 1.02 and
ncp = 0.134 respectively. The gas mixture Prandtl number is Pr = 0.63. Suppose
the free convection is laminar.

Please calculate the average heat transfer coefficients and free convection heat
transfer on the plate.
Solution:

The temperature ratio Tw/T∞ of the gas laminar free convection is

Tw/T∞ = 273/(500 + 273) = 0.35317

http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Since Tw/T∞ < 1 from Eq. (5.46) we have

m = 0.42ηλ + 0.34ηµ + 0.28

= 0.42 × 1.02 + 0.34 × 0.75 + 0.28

= 0.9634

Also

ψ(Pr) = 0.567 + 0.186 × ln Pr

= 0.567 + 0.186 × Ln(0.63)

= 0.48106

Then, temperature gradient −
(

dθ
dη

)
η=0

is evaluated as

−
(

dθ

dη

)
η=0

= (1 + 0.3ηcp)ψ(Pr)

(
Tw

T∞

)−m

= (1 + 0.3 × 0.134)× 0.48106 × 0.35317−0.9634

= 1.3639

Then, local Grashof number is calculated as

Grx,∞ = g |Tw/T∞ − 1| x3

ν2∞

= 9.8 × |0.35317 − 1| × 0.93

(7.63 × 10−5 )2

= 793770003

= 0.79377 × 109

In this case, average Nusselt number Nux,w can be calculated as follows by using
Eq. (7.42):

Nux,w = −4

3

(
dθ

dη

)
η=0

(
1

4
Grx,∞

)1/4

= 4

3
× 1.3639 ×

(
1

4
× 793770003

)1/4

= 215.84

http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-7
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With the definition of Nux,w,Nux,w = αx x

λw
, the average heat transfer coefficient αx

is expressed as

αx = Nux,w · λw

x
= 215.84 × 0.0228

0.9
= 5.468 W/(m2 ·◦ C)

Then, total heat transfer rate on the plate is

Qx = αx (Tw − T∞)x × b

= 5.468 × (0 − 500)× 0.9 × 2

= −4921.2W

where the negative sign implies that the total heat transfer rate Qx is from gas mixture
to the plate.

7.14 Exercises

1. Please analyze the relation of the energy equations of Chaps. 6 and 7. What does
it mean?

2. Can you tell me if Eqs. (7.37*)–(7.43*) with Eqs. (6.48), (7.45) and (7.46) are
qualified for practical prediction of heat transfer of laminar gas free convection?
Why?

3. Follow the example 1 of calculation examples, only change gas mixture to CO2
air, and water vapour as the ambient gas, and keep other conditions.

(i) Calculate the average heat transfer coefficients and free convection heat
transfer of the plate for boundary temperature ratio Tw/T∞ = 1.1, 1.2, 1.4,
1.7 and 2.1.

(ii) Calculate the free convection heat transfer of the plate under Boussinesq
approximation.

(iii) From the above calculated results on heat transfer, which conclusions will
be obtain?

4. Please calculate the questions (i) and (ii) of exercise 3 by using the related empir-
ical equation.

5. Compare the calculated results in exercises 3 and 4, and tell me which calculated
result is more reliable for practical application, why?

6. Do you think the treatment of variable physical properties in this chapter is reli-
able? Why?

http://dx.doi.org/10.1007/978-3-642-28983-6
http://dx.doi.org/10.1007/978-3-642-28983-7
http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Chapter 8
Heat Transfer on Liquid Laminar Free
Convection

Abstract The new similarity analysis method is used to transform the governing par-
tial differential equations of laminar free convection of liquid into the corresponding
governing dimensionless system, which are identical to the corresponding governing
dimensionless system of gas laminar free convection, except different treatment of
variable physical properties. Due to the different variable physical properties from
gases, the polynomial approach is suggested for treatment of temperature-dependent
physical properties of liquid. Taking water as an example, the polynomial approach
is applied for expressions of temperature-dependent density, thermal conductivity,
and viscous. These expressions are reliable because they are based on the typical
experimental values of the physical properties. By means of the equations of the
physical property factors coupled with the governing ordinary differential equations
of liquid laminar free convection created by the new similarity analysis method, the
non-linear governing equations with corresponding boundary conditions are simul-
taneously solved numerically. The effect of variable physical properties on water
laminar free convection along an isothermal vertical plate is investigated. It is found
that the wall temperature gradient is the only one no-given condition for prediction
of heat transfer. Compared with wall temperature, the bulk temperature dominates
heat transfer of laminar free convection. By means of the curve-fitting equation on
the wall temperature gradient, the heat transfer analysis equations based on the new
similarity analysis model become those with the practical application value for heat
transfer prediction.

8.1 Introduction

The theoretical analysis of laminar free convection of liquid along an isothermal ver-
tical flat plate was also started by means of Boussinesq approximation. For the case
of larger temperature difference, the effects of variable physical properties should
be taken into consideration, as those in Refs. [1–9]. In Ref. [1] Fuji et al. used two

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 145
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_8,
© Springer-Verlag Berlin Heidelberg 2012
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methods of correlating to examine the effects of variable physical properties on heat
transfer for free convection from vertical surfaces in liquids. The first method of corre-
lating the data consisted of using the constant property correlations for Nusselt num-
ber and evaluating all properties at a reference temperature, Tr = Tw −(Tw −T∞)/4.
They noted that the choice of the reference temperature agrees with the solution pro-
vided by two previous studies of Fujii [2] and Akage [3]. The second method that they
used to correlate their data in oils was first proposed by Akagi [3] and applies only
to liquids for which viscosity variation is dominant. Piau [4] treated the similarity
analysis of variable property effects in free convection from vertical surfaces in high
Prandtl number liquids. It was indicated that the main property variations in water at
moderate temperature levels are in the viscosity, μ and the volumetric coefficient of
thermal expansion, β and that for higher Prandtl number liquids, the variation of β is
often negligible. In Ref. [5], Piau included the effect of thermal stratification of the
ambient fluid in an analysis, which also include variables μ and β for water. Brown
[6] used an integral method and studied the effect of the coefficient of volumetric
expansion on laminar free convection heat transfer. Carey and Mollendorf [7] have
shown the mathematical forms of viscosity variation with temperature, which results
in similarity solutions for laminar free convection from a vertical isothermal surface
in liquids with temperature-dependent viscosity. Sabhapathy and Cheng [8] studied
the effects of temperature-dependent viscosity and coefficient of thermal expansion
on the stability of laminar free convection boundary-layer flow of a liquid along an
isothermal, vertical surface, employing linear stability theory for Prandtl numbers
between 7 and 10. Qureshi and Gebhart [9] studied the stability of vertical thermal
buoyancy-induced flow in cold and saline water. They indicated that the anomalous
density behavior of cold water, for example, a density extremum at about 4 ◦C in pure
water at atmospheric pressure, commonly has very large effects on flow and transport.
However, the results reported are so far not convenient for heat transfer prediction due
to difficulty of treating the variable thermophysical properties in governing equations.

In this chapter, an advanced development [10] of laminar free convection of liquid
with large temperature difference is introduced. The new similarity analysis method,
i.e. velocity component method for similarity transformation presented in this book
is used here for similarity transformation of the governing partial differential equa-
tions of liquid free convection. Meanwhile, the polynomial equations are suggested
to express the variable physical properties of a liquid. For example, polynomial equa-
tions of the density and thermal conductivity of water are proposed, and expression
of absolute viscosity of water is also based on a polynomial. A typical example of the
laminar free convection of water was provided. It is concluded that the Nusselt num-
ber could be predicted by local Grashof number and the dimensionless temperature
gradient on the wall. Furthermore, a reliable curve-fit formula of the dimensionless
temperature gradient is presented for simple and accurate prediction of water free
convection with large temperature difference.
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8.2 Governing Partial Differential Equations

The physical analytical model and co-ordinate system used for laminar free convec-
tion of liquid on an isothermal vertical flat plate is shown in Fig. 6.1 also. According
to the presentation in Chap. 2, the conservation equation for mass, momentum, and
energy of steady laminar free convection of liquid in the boundary layer are

∂

∂x
(ρwx ) + ∂

∂y
(ρwy) = 0 (8.1)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ g |ρ∞ − ρ| (8.2)

ρcp

(
wx

∂t

∂x
+ wy

∂t

∂y

)
= ∂

∂y

(
λ

∂t

∂y

)
(8.3)

The boundary conditions are

y = 0 : wx = 0, wy = 0, t = tw (8.4)

y → ∞ : wx → 0, t = t∞ (8.5)

where the variable physical properties are considered except the specific heat. In fact,
such treatment for physical properties is suitable for a lot of liquids. Additionally,
the absolute value of buoyancy term g |ρ∞ − ρ| in Eq. (7.2) shows that it has always
positive sigh no matter which one is larger between ρ and ρ∞. In this case, the
buoyancy term g |ρ∞ − ρ| and the velocity component wx have the same sigh.

8.3 Similarity Variables

For similarity transformation of the governing partial differential equations for the
laminar free convection of liquid, the velocity component method is also used. Con-
sulting the assumed dimensionless variables in Chap. 6 for the similarity transfor-
mation of the governing partial differential equations of gas laminar free convection,
the following dimensionless transformation variables can be assumed for the trans-
formation of governing equations of liquid laminar free convection:

η = y

x

(
1

4
Grx,∞

)1/4

(8.6)

θ = t − t∞
tw − t∞

(8.7)

Wx =
[

2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1
2
]−1

wx (8.8)

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_2
http://dx.doi.org/10.1007/978-3-642-28983-5_7
http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Wy =
[

2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
− 1

2
(

1

4
Grx,∞

)− 1
4
]−1

wy (8.9)

Grx,∞ = g |ρ∞/ρw − 1| x3

ν2∞
(8.10)

8.4 Similarity Transformation

For convenience of similarity transformation, it is necessary to rewrite the governing
Eqs. (8.1)–(8.3) into the following format respectively:

ρ

(
∂wx

∂x
+ ∂wy

∂y

)
+ wx

∂ρ

∂x
+ wy

∂ρ

∂x
= 0 (8.1a)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= μ

∂2wx

∂y2 + ∂wx

∂y

∂μ

∂y
+ g |ρ∞ − ρ| (8.2a)

ρcp

(
wx

∂t

∂x
+ wy

∂t

∂y

)
= λ

∂2t

∂y2 + ∂λ

∂y

∂t

∂y
(8.3a)

Similar to the derivation of the related partial differential equations in Chap. 6,
the related derivatives by means of Eqs. (8.6)–(8.10) are obtained and expressed
as follows:

∂wx

∂x
=

√
g

x

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2 (

Wx − 1

2
η

dWx

dη

)
(8.11)

∂wy

∂y
= 2

√
g

x

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2 dWy

dη
(8.12)

∂ρ

∂x
= −1

4
ηx−1 dρ

dη
(8.13)

∂ρ

∂y
= dρ

dη

(
1

4
Grx,∞

)1/4

x−1 (8.14)

∂wx

∂y
= 2

√
gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2 dWx

dη
x−1

(
1

4
Grx,∞

)1/4

(8.15)

∂2wx

∂y2 = 2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2 d2Wx

dη2 x−2
(

1

4
Grx,∞

)1/2

(8.16)

∂μ

∂y
= dμ

dη
x−1

(
1

4
Grx,∞

)1/4

(8.17)
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∂t

∂x
= −(tw − t∞)

dθ

dη

(1

4

)
ηx−1 (8.18)

∂t

∂y
= (tw − t∞)

dθ

dη

(
1

4
Grx,∞

) 1
4

x−1 (8.19)

∂2t

∂y2 = (tw − t∞)
d2θ

dη2

(
1

4
Grx,∞

) 1
2

x−2 (8.20)

∂λ

∂y
= dλ

dη

(
1

4
Grx,∞

) 1
4

x−1 (8.21)

where
t = (tw − t∞)θ + t∞ (8.22)

Similar to the derivations in Chap. 6, by using Eqs. (8.11)–(8.22), the following gov-
erning ordinary differential equations can be obtained from the Eqs. (8.1a)–(8.3a):

2Wx − η
dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0 (8.23)

ν∞
ν

(
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

)
= d2Wx

dη2 + 1

μ

dμ

dη

dWx

dη
+ ν∞

ν

ρ∞
ρ

− 1
ρ∞
ρw

− 1

(8.24)

Pr
ν∞
ν

(−ηWx + 4Wy)
dθ

dη
= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2 (8.25)

with boundary conditions

η = 0, Wx = 0, Wy = 0, θ = 1 (8.26)

η → ∞, Wx → 0, θ → 0 (8.27)

Equations (8.23)–(8.27) are dimensionless governing equations and the boundary
conditions of laminar free convection of liquid.

In fact, the buoyancy factor
ρ∞
ρ

−1
ρ∞
ρw

−1
in Eq. (8.24) is suitable for all fluid, i.e., both

liquid and gas. For gas, the buoyancy factor can be rewritten as follows by using the
simple power law of gas:

ρ∞
ρ

− 1
ρ∞
ρw

− 1
=

T
T∞ − 1
Tw
T∞ − 1

= T − T∞
Tw − T∞

= θ (8.28)
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8.5 Treatment of Variable Physical Properties

8.5.1 Variable Physical Properties of Liquids

We take water as an example to introduce the treatment of variable physical prop-
erties of liquid. According to Chap. 5, the temperature-dependent expressions of
density, thermal conductivity, and absolute viscosity of water at atmospheric pres-
sure with the temperature range between 0 and 100 ◦C are, respectively, expressed
by polynomials as

ρ = −4.48 × 10−3t2 + 999.9 (5.16)

λ = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563 (5.17)

μ = exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

× 10−3 (5.18)

Meanwhile, specific heat of water can be regarded as constant with temperature
variation.

8.5.2 Physical Property Factors

According to the derivation of Chap. 5, the dimensionless physical property factors
1
ρ

dρ
dη

, 1
μ

dμ
dη

, and 1
λ

dλ
dη

in the transformed dimensionless governing Eqs. (8.23)–(8.25)
for water laminar free convection with consideration of the variable physical prop-
erties can be derived out and shown as:

1

ρ

dρ

dη
= −2 × 4.48 × 10−3t (tw − t∞)dθ

−4.48 × 10−3t2 + 999.9dη
(5.24)

1

μ

dμ

dη
=

(
1150

T 2 − 2 × 6902

T 3

)
(tw − t∞)

dθ

dη
(5.25)

1

λ

dλ

dη
= (−2 × 8.01 × 10−6t + 1.94 × 10−3)(tw − t∞) dθ

dη

−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563
(5.26)

where t = (ts − t∞)θ + t∞ and T = t + 273.
In addition, for water and a lot of liquids in the special temperature range for

engineering application, it is known that the physical factor Pr ν∞
ν

can be expressed as

Pr
ν∞
ν

= Pr∞
ρ

ρ∞
λ∞
λ

http://dx.doi.org/10.1007/978-3-642-28983-5_5
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Up to now, the physical property factors of Eqs. (8.26)–(8.28) have been transformed
to the functions with the dimensionless temperature for convenient simultaneous
solution of the governing equations.

8.6 Heat Transfer Analysis

Consulting the heat transfer analysis in Chap. 6 for gas laminar film free convection,
the analytic expressions related to heat transfer of liquid laminar free convection are
obtained as follows:

The local heat transfer rate qx at position x per unit area from the surface of the
plate to the gas will be expressed as

qx = λw(tw − t∞)

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

(8.29)

The local heat transfer coefficient αx , defined as qx = αx (Tw −T∞), will be given by

αx = λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

(8.30)

The local Nusselt number defined by Nux,w = αx
x λw will be

Nux,w =
(

1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

(8.31)

Total heat transfer rate for position x = 0 to x with width of b on the plate is a
integration Qx = ∫ ∫

Aqx dA = ∫ x
0 qx bdx and hence

Qx = 4

3
bλw(tw − t∞)

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

(8.32)

The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

Qx = 4

3
x−1λw(Tw − T∞)

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

(8.33)

The average heat transfer coefficient αx defined as Qx = αx (Tw−T∞) is expressed as

αx = 4

3
λw

(
1

4
Grx,∞

)1/4

x−1
(

−dθ

dη

)
η=0

(8.34)
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The average Nusselt number is defined as Nux,w = αx x
λw

, and hence

Nux,w = 4

3

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)
η=0

(8.35)

Obviously, for practical calculation of heat transfer, only the wall dimensionless

temperature gradient
(
− dθ

dη

)
η=0

dependent on the solution of governing equations

is no-given variable.

8.7 Numerical Solutions

As a typical liquid laminar free convection, the water laminar free convection can be
taken as an example for presentation of the numerical calculation.

The shooting method has been adopted to solve numerically the nonlinear gov-
erning Eqs. (8.23)–(8.25) with the boundary conditions (8.26) and (8.27) at different
temperature conditions tw and t∞. The water physical property values of ρ∞, ρw, ν∞,
λ∞, and Pr∞ at different temperatures are taken directly from the appendix of this
book. The typical results for velocity and temperature fields of the boundary layer
are plotted as Figs. 8.1, 8.2, 8.3 and 8.4, respectively. The corresponding solutions

for the dimensionless temperature gradient
(
− dθ

dη

)
η=0

are described in Table 8.1 and

plotted in Fig. 8.5. The velocity and temperature profiles show clearly the effects of
the variable physical properties on velocity and temperature distributions as well as
heat transfer of the water free convection. The related influences are presented as
follows:
Effects of bulk temperature t∞:

The bulk temperature t∞ causes a great effect on the velocity and temperature pro-
files. With increase of bulk temperature t∞, the velocity Wx and the temperature θ

obviously increase, meanwhile, the maximum of wx shifts further from the plate.

While, with increase of bulk temperature t∞, the temperature gradient
(
− dθ

dη

)
η=0

decreases obviously.

Fig. 8.1 The velocity profiles
at tw = 40 ◦C (corresponding
to Prw = 4.42) with dif-
ferent t∞ (1→5 cited from
Shang et al. [10]) Note t∞ =
20, 39.99, 60, 80, and100 ◦C,
(corresponding to Pr∞ =
7.164, 4.42, 3.019, 2.232 and
1.758, respectively)
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Fig. 8.2 The velocity pro-
files at t∞ = 40 ◦C and
different surface tempera-
tures tw, (1 → 5: tw = 20,

39.99, 60, 80, and100 ◦C),
cited from Shang et al. [10]

Fig. 8.3 The temperature
profiles at tw = 40 ◦C and dif-
ferent t∞, (1 → 5: t∞ =
20, 39.99, 60, 80, and
100 ◦C), cited from Shang
et al. [10]

Fig. 8.4 The temperature
profiles at t∞ = 40 ◦C and
different surface tempera-
tures tw, (1 → 5: tw =
20, 39.99, 60, 80, and
100 ◦C), cited from Shang
et al. [10]

Effects of wall temperature tw:

The effects of wall temperature tw on the velocity Wx and temperature θ are much
less than those of wall temperature t∞. With the increase of wall temperature tw,
the maximum velocity of Wx increases and shifts slightly close to the plate. Gener-
ally, the effects of wall temperature tw on the temperature θ and temperature gradient(
− dθ

dη

)
η=0

are slightly. With increasing bulk temperature t∞, the effects of wall tem-

perature tw on the temperature θ and temperature gradient
(
− dθ

dη

)
η=0

will decrease.
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Table 8.1 The typical numerical solutions of dimensionless temperature gradient
(
− dθ

dη

)
η=0

for

water laminar free convection along a vertical plate, cited from Shang et al. [10]

t∞(◦C) Pr∞ tw(◦C)

5 10 20 30 40 60 80 100
Prw

11.207 9.565 7.164 5.547 4.420 3.019 2.232 1.758(
− dθ

dη

)
η=0

5 11.207 1.21 1.169 1.156 1.164 1.179 1.212 1.245 1.275
10 9.565 1.153 1.137 1.13 1.131 1.139 1.162 1.187 1.211
20 7.164 1.076 1.063 1.05 1.051 1.054 1.068 1.083 1.1
30 5.547 0.989 0.983 0.977 0.971 0.977 0.988 0.999 1.012
40 4.420 0.917 0.913 0.91 0.91 0.914 0.92 0.929 0.938
60 3.019 0.809 0.808 0.807 0.809 0.81 0.814 0.821 0.827
80 2.232 0.733 0.732 0.733 0.734 0.735 0.739 0.74 0.746

100 1.758 0.679 0.679 0.6790 0.68 0.681 0.683 0.685 0.686

Note The number with mark corresponding to Boussinesq approximation solutions

0.6

0.8

1

1.2

1.4
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1 2
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wPr

0)( =− ηη
θ

d

d

Fig. 8.5 Numerical solutions of dimensionless temperature gradient
(
− dθ

dη

)
η=0

for water laminar

free convection along vertical plate. Note Lines 1 → 8 for t∞ = 5, 10, 20, 30, 40, 60, 80 and 100 ◦C
(corresponding to Pr∞ = 11.207, 9.565, 7.164, 5.547, 4.42, 3.019, 2.232 and 1.758, respectively).
Line 9 for Prw → Pr∞ (identical to Boussinesq approximation solution)

Furthermore, compared with wall temperature tw, temperature t∞ dominates the

velocity and temperature fields, as well as the wall temperature gradient
(
− dθ

dη

)
η=0

.

Due to the reason that only the wall dimensionless temperature gradient
(
− dθ

dη

)
η=0

is no-given variable from Eqs. (8.29)–(8.35), the temperature dominates heat transfer
prediction of the laminar liquid free convection.
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The velocity and temperature profiles show the large differences between the
momentum and temperature boundary layer thicknesses for laminar free convection
of liquid due to Pr � 1. Therefore, it is very difficult to make a solution of the gov-
erning equations for liquid free convection, especially for consideration of variable
thermophysical properties.

8.8 Approximation Equation on Wall Dimensionless
Temperature Gradient

Boussinesq approximation could be obtained from Table 8.1 in which the plate tem-
perature tw is very close to the bulk temperature t∞.

Then, a curve-fit formula (8.36) is obtained for prediction of the solutions of liquid
laminar free convection under the Boussinesq approximation.

(
−dθ

dη

)∗

η=0
= 0.5812Pr0.301 (1.7 < Pr < 11.3) (8.36)

It can be seen from the predicted values in Table 8.1 that Eq. (8.36) can very accurately
simulate the related Boussinesq solutions.

From the typical solutions for temperature gradient
(
− dθ

dη

)
η=0

in Table 8.1 it is

found that the effect of tw on temperature gradient
(
− dθ

dη

)
η=0

is not obvious generally,

but the temperature t∞ dominates the effect on the temperature gradient
(
− dθ

dη

)
η=0

.

On this basis, if the Prandtl number Pr in Eq. (8.36) for Boussinesq approximation
solutions is replaced by a reference Prandtl number Pr∞ as Eq. (8.37), the maximal

deviation for prediction of the temperature gradient
(
− dθ

dη

)
η=0

of water laminar free

convection is less than 6 % for t∞ range from 5 to 100 ◦C with consideration of
variable physical properties. However, the maximal deviation will be less than 2 %
for t∞ from 50 to 100 ◦C, as shown in Fig. 8.6.

(
−dθ

dη

)
η=0

= 0.5812Pr∞0.301 (1.7 < Pr∞ < 11.3) (8.37)

where Pr∞ is Prandtl number at bulk temperature t∞.
Then, Eq. (8.37) is suggested as an approximation equation on wall dimensionless

temperature gradient on an isothermal vertical flat plate.
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Fig. 8.6 Maximum calcu-

lated deviation of
(
− dθ

dη

)
η=0

by Eq. (6.52), cited from
Shang et al. [10]

8.9 Approximation Equations on Heat Transfer

Therefore, combining Eq. (8.37) with Eqs. (8.29)–(8.35), we have the following
approximation equations on heat transfer of laminar free convection of water on
an isothermal vertical flat plate:

qx = 0.5812λw(tw − t∞)

(
1

4
Grx,∞

)1/4

x−1Pr∞0.301 (8.29*)

αx = 0.5812λw

(
1

4
Grx,∞

)1/4

x−1Pr∞0.301 (8.30*)

Nux,w = 0.5812

(
1

4
Grx,∞

)1/4

Pr∞0.301 (8.31*)

Qx = 0.5812 × 4

3
bλw(tw − t∞)

(
1

4
Grx,∞

)1/4

Pr∞0.301 (8.32*)

Qx = 0.5812 × 4

3
x−1λw(Tw − T∞)

(
1

4
Grx,∞

)1/4

Pr∞0.301 (8.33*)

αx = 0.5812 × 4

3
λw

(
1

4
Grx,∞

)1/4

x−1Pr∞0.301 (8.34*)

Nux = 0.5812 × 4

3

(
1

4
Grx,∞

)1/4

Pr∞0.301 (8.35*)

Equations (8.29*)–(8.35*) are used for prediction of laminar free convection of
water on an isothermal vertical flat plate with the prediction deviations between 6
and 2 % from t∞ = 5 to 50 ◦C, and lower than 2 % between t∞ = 50 and 100 ◦C.
Anyway, the prediction deviation decreases with increasing the bulk temperature t∞
increases.

http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Table 8.2 Summary of the governing equations of liquid laminar free convection and the equations
related to heat transfer

Term Expression

Governing partial deferential equations

Mass equation
∂

∂x
(ρwx ) + ∂

∂y

(
ρwy

) = 0

Momentum equation ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ∂

∂y

(
μ

∂wx

∂y

)
+ g |ρ∞ − ρ|

Energy equation ρcp

(
wx

∂T

∂x
+ wy

∂T

∂y

)
= ∂

∂y

(
λ

∂T

∂y

)

Boundary conditions
y = 0 : wx = 0, wy = 0, T = Tw

y → ∞ : wx → 0, T = T∞
Similarity variables

η
y

x

(
1

4
Grx,∞

)1/4

Grx,∞
g |ρ∞/ρw − 1| x3

ν2∞

θ
T − T∞
Tw − T∞

Wx

[
2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1
2
]−1

wx

Wy

[
2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
− 1

2
(

1

4
Grx,∞

)− 1
4
]−1

wy

Governing ordinary differential equations

Mass equations 2Wx − η
dWx

dη
+ 4

dWx

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0

Momentum Equation
ν∞
ν

(
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

)

= d2Wx

dη2 + 1

μ

dμ

dη

dWx

dη
+ ν∞

ν

ρ∞
ρ

− 1
ρ∞
ρw

− 1

Energy equation Pr
ν∞
ν

(−ηWx + 4Wy)
dθ

dη
= 1

λ

dλ

dη

dθ

dη
+ d2θ

dη2

Boundary condition
η = 0 : Wx = 0, Wy = 0 , θ = 1
η → ∞ : Wx = 0, θ = 0

(continued)

8.10 Summary

So far, the governing equations of liquid laminar free convection and the equations
related to heat transfer can be summarized in Table 8.2.
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Table 8.2 (continued)

Term Expression

Treatment of variable physical properties

Temperature-dependent properties Take water as example for polynomial expressions

ρ = −4.48 × 10−3t2 + 999.9

λ = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563

μ = exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

× 10−3

Physical property factors Take water as example for polynomial expressions
1

ρ

dρ

dη
= −2 × 4.48 × 10−3t (tw − t∞)

−4.48 × 10−3t2 + 999.9

dθ

dη

1

μ

dμ

dη
=

(
1150

T2 − 2 × 6902

T3

)
(tw − t∞)

dθ

dη

1

λ

dλ

dη
= (−2 × 8.01 × 10−6t + 1.94 × 10−3)(tw − t∞) dθ

dη

−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563

Wall dimensionless temperature gradient
(
− dθ

dη

)
η=0

(for water free convection)

For Boussinesq solution

(
−dθ

dη

)∗

η=0
= 0.5812Pr0.301 (1.7 < Pr < 11.3)

Approximation equation for
consideration of variable physical
properties

(
−dθ

dη

)
η=0

= 0.5812Pr∞0.301 (1.7 < Pr < 11.3)

Approximation equations on heat transfer for water free convection with consideration of variable
physical properties (for water free convection)

qx

(
defined as − λw

(
∂T

∂y

)
y=0

)
qx = 0.5812Pr∞0.301λw(tw − t∞)

(
1

4
Grx,∞

)1/4

x−1Pr∞0.301

αx (defined as
qx

(Tw − T∞)
) αx = 0.5812Pr∞0.301λw

(
1

4
Grx,∞

)1/4

x−1Pr∞0.301

Qx
(
defined as

∫ x
0 qx bdx

)
Qx = 0.5812 × 4

3
bλw(tw − t∞)

(
1

4
Grx,∞

)1/4

Pr∞0.301

Qx , defined as Qx/(b × x) Qx = 0.5812 × 4

3
x−1λw(Tw − T∞)

(
1

4
Grx,∞

)1/4

Pr∞0.301

αx

(
defined as

Qx

(Tw − T∞)bx

)
αx = 0.5812 × 4

3
λw

(
1

4
Grx,∞

)1/4

x−1Pr∞0.301

Nux,w

(
defined as

αx x

λw

)
Nux,w = 0.5812 ×

(
1

4
Grx,∞

)1/4

Pr∞0.301

Nux,w

(
defined as

αx x

λw

)
Nux = 0.5812 × 4

3

(
1

4
Grx,∞

)1/4

Pr∞0.301
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8.11 Remarks

In this chapter, laminar free convection of liquids is extensively investigated. The
new similarity analysis method is used conveniently to transform the governing par-
tial differential equations of laminar free convection of liquid into the corresponding
dimensionless system. Taking water as an example, the polynomial is used for expres-
sions of temperature-dependent density, thermal conductivity, and viscous, while the
specific heat at constant pressure is taken as constant with maximum possible devi-
ation of 0.45 % only. These expressions are reliable because they are based on the
typical experimental data of the physical properties.

By means of the provided equations on the physical property factors coupled with
the governing ordinary differential equations, the non-linear governing equations
with corresponding boundary conditions can be simultaneously solved numerically
for velocity and temperature fields. Taking water laminar free convection along an
isothermal vertical plate as an example, the coupled effect of variable physical prop-
erties was investigated. It is found that compared with the wall temperature, the effect
of bulk temperature dominates heat transfer of laminar free convection. By means of
heat transfer analysis based on the new similarity analysis model, it is found that the

wall temperature gradient
(
− dθ

dη

)
η=0

is the only one no-given condition for predic-

tion of heat transfer. The approximation equation for prediction of the temperature

gradient
(
− dθ

dη

)
η=0

of laminar water free convection is presented for consideration

of coupled effect of variable physical properties. Then, the equations for practical
prediction of heat transfer of laminar water free convection are provided.

8.12 Calculation Examples

Example 1:

A flat plate with b = 1 m in width and x = 0.25 m in length is suspended vertically in
the space of water. The ambient temperature is t∞ = 5 ◦C, and the plate temperature
is tw = 60 ◦C. The water properties are as follows:

ν∞ = 1.5475 × 10−6 m2/s, Pr∞ = 11.16 and ρ∞ = 999.8 kg/m3 at t∞ =
5 ◦C; λw = 0.659 W/(m ◦C) and ρw = 983.3 kg/m3 at tw = 60 ◦C.

Suppose the free convection is laminar, please calculate the free convection heat
transfer on the plate.

Solution:

With the definition of local Grashof number shown in Eq. (8.10), we have
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Grx,∞ = g |ρ∞/ρw − 1| x3

ν2∞

= 9.8 × |999.8/983.8 − 1| × 0.253

(1.5475 × 10−6)2

= 1.04 × 109

The flow of free convection can be regarded as laminar flow.

With Eq. (8.37), the dimensionless temperature gradient
(
− dθ

dη

)
η=0

for water lam-

inar free convection can be calculated by the following equation:

(
−dθ

dη

)
η=0

= 0.5812Pr∞0.301

= 0.5812 × 11.2070.301

= 1.202879

On this basis, the following average Nusselt number Nux,w can be obtained as

Nux,w = −4

3

(
1

4
Grx,∞

)1/4 (
dθ

dη

)
η=0

= (4/3) × (0.25 × 1.04 × 109)1/4 × 1.202879

= 203.6

With the definition of average Nusselt number, Nux,w = αx X
λw

, the following average
heat transfer coefficient can be calculated as

αx = Nux,w
λw

x
= 203.6 × 0.659

0.25
= 536.7 W/(m2 ◦C)

With the definition of the average heat transfer coefficient, Qx = αx (tw − tα)×x ×b,
we obtain the following total free convection heat transfer on the plate

Qx = αx (tw − tα) × x × b

= 536.7 × (60 − 5) × 0.25 × 1

= 7379.6 W

= 7.3796 kW

Example 2:

For the flat plate of question 1, if the plate height is changed into 0.11 m, and tempera-
tures are changed into t∞ = 60 ◦C and tw = 5 ◦C, please calculate the corresponding
heat transfer.

The water physical properties are as follows:
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kinematic viscosity ν∞ = 0.478 × 10−6 m2/s, Prandtl number Pr∞ = 3, and the
density at ρ∞ = 983.1 kg/m3 at t∞ = 60 ◦C thermal conductivity λw = 0.5625 and
density ρw = 999.8 kg/m3 at tw = 5◦C.

Solution:

With the definition of local Grashof number shown in Eq. (8.10), we get

Grx,∞ = g |ρ∞/ρw − 1| x3

ν2∞

= 9.8 × |983.1/999.8 − 1| × 0.113

(0.478 × 10−6)2

= 0.95357 × 109

The free convection can be regarded as laminar flow.

With Eq. (8.37), the dimensionless temperature gradient
(
− dθ

dη

)
η=0

will be

(
−dθ

dη

)
η=0

= 0.5812Pr∞0.301

= 0.5812 × 3.0190.301

= 0.810521

On this basis, with Eq. (8.49) the following average Nusselt number, Nux,w, can be
obtained as

Nux,w = −4

3

(
1

4
Grx,∞

)1/4 (
dθ

dη

)
η=0

= (4/3) × (0.25 × 0.95357 × 109)1/4 × 0.810521

= 133.5482

With the definition of average Nusselt number, Nux,w = αx X
λw

, the following mean
heat transfer coefficient can be calculated as

αx = Nux,w
λw

x
= 133.5482 × 0.5625

0.11
= 682.9169 W/m2 ◦C

With the definition of the average heat transfer coefficient αx , Qx = αx (tw − t∞) ×
x × b, we have the following free convection heat transfer on the plate
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Qx = αx (tw − t∞) × x × b

= 682.9169 × (5 − 60) × 0.11 × 1

= −4131.65 W

= −4.131615 kW

The negative sign denotes the heat flux is to the plate from the liquid.

8.13 Exercises

1. Please give a detailed derivation for obtaining the governing ordinary differential
Eqs. (8.23)–(8.25) for liquid laminar free convection.

2. Please analyze the identity of the similarity mathematical models of laminar free
convection of liquid and gas.

3. Please explain the reason to, respectively, investigate laminar free convection of
liquid and gas with consideration of variable physical properties.

4. Please give out the related derivations for obtaining the heat transfer analysis
Eqs. (8.29)–(8.35) for liquid laminar free convection.

5. Please point out the effect of wall temperature on velocity and temperature fields
of laminar liquid free convections.

6. Please point out the effect of bulk temperature on velocity and temperature fields
of laminar liquid free convection.

7. How do you know the bulk temperature dominates heat transfer of laminar liquid
free convection?

8. Follow example 1. Only the ambient temperature is t∞ = 60 ◦C, and the plate
temperature is tw = 5 ◦C. Suppose the free convection is laminar.

(i) Please calculate the free convection heat transfer on the plate.
(ii) Please calculate the free convection heat transfer on the plate under Boussi-

nesq approximation.

9. Please calculate the questions (i) and (ii) of exercise 9 by using the related
empirical equation.

10. Do you think the treatment of variable physical properties in this chapter is
reliable?
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Chapter 9
Experimental Measurements of Free Convection
with Large Temperature Difference

Abstract Experimental investigations were carried out to verify the results of the
previous chapters for effects of variable physical properties on laminar free con-
vection of air and water. By increasing the wall temperature for the liquid laminar
free convection or increasing the boundary temperature ratio for gas laminar free
convection of gas, the velocity component of the free convection increases, and the
velocity profile moves to the direction of the flat plate. Consequently, the thickness
of the velocity boundary layer decreases. With an increase of the plate height x, the
velocity component of water or air free convection increases, and the velocity pro-
file moves toward to the fluid bulk. As a result, the thickness of velocity boundary
layer increases. It is found that the agreement between the measured and calculated
velocity fields is good, thus it is confirmed that the results in Chaps. 6–8 are reliable.

9.1 Introduction

The classical measurement of the velocity field for free convection of air along an
isothermal vertical plate was originally made by Schmidt and Beckman [1]. Their
results showed excellent agreement with the corresponding numerical results for
the Boussinesq approximation calculated by Pohlhausen [2] shown in Fig. 9.1. It is
further seen that the velocity and thermal boundary-layer thicknesses are proportional
to x1/4.

However, in their experimental measurements only small differences between
the surface and the ambient temperatures were considered, since there has been a
shortage of accurate measuremental results for consideration of the larger temper-
ature differences. The reasons of this shortage are twofold: (i) the lower velocity
of free convection and (ii) the restriction of the measuring devices. First of all, the
fluid velocity in free convection is typically much slower. In consequence of this,
the experimental measurements become more difficult and less reliable due to the
increasing influence of various interferences. In addition, due to the weak flow of
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Fig. 9.1 Velocity distribution in the laminar boundary layer on a hot vertical flat plate in natural
convection of air, as measured by Schmidt and Beckmann [1] (From Schlichting [3])

free convection, the pressure gradients are also quite small and the measuremental
techniques based on pressure differences, such as the Pitot tube, cannot be used very
accurately. The hot-wire anemometer has been used in velocity measurements, but
its basic principle is heat transfer from a heated wire. The heat transfer from the
wire is dependent on the flow velocity. However, the major problem that easily pro-
duces deviation for the measurement in free convection is the small magnitude of
the velocity. Additionally, since the velocity boundary layer for the free convection
is very thin, with the above instrument, the interference, which cannot be negligible,
will be manifest in the measurement.

Fortunately, the laser doppler velocimeter (LDV) has been developed in recent
years. The LDV demonstrates higher accuracy for the measurement of fluid velocity.
An instrument, which does not contact the flow field, will not produce any interfer-
ence in the velocity field. It can measure very low velocity flow. All these features
give LDV great advantage over hot-wire anemometers. With consideration of vari-
able thermophysical properties, two experimental results of the laminar free convec-
tion for air and water for larger temperature differences, which were provided by
Shang and Wang [4–6], are introduced in this chapter. The experimental results were
verified by the calculation methods with consideration of variable thermophysical
properties introduced in Chaps. 6 and 8 respectively. In this chapter we discuss the
measurements of the velocity fields in the laminar boundary layer for free convection
of air and water studied with the LDV. Large temperature differences were consid-
ered in the experimental measurements for the free convection. The experimental
results were verified by the corresponding numerical solutions, and it is shown that
the experimental results agreed well with the corresponding numerical solutions for
variable thermophysical properties.

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_8
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Fig. 9.2 Schematic diagram
of experimental device, cited
from Shang and Wang [4]: 1
particulate generator, 2 cham-
ber of mosquito-repellent
incense, 3 spacer, 4 storage
smoke chamber, 5 wire net of
copper, 6 isothermal flat plate,
7. thermocouples, 8 focus of
lasers

9.2 Experimental Measurements of Velocity Field for Air
Laminar Free Convection

9.2.1 Experimental Devices and Instruments

The experimental device established is shown schematically in Fig. 9.2. It consists
essentially of three parts: an isothermal vertical testing plate, LDV, and a particulate
generator.

Isothermal testing plate. This is a flat copper plate with a polished surface, 300 mm
in height, 195 mm in width, and 7 mm in thickness. A sharp angle is made at the
bottom of the plate to minimize the possible distortion of the measured velocity
field for air free convection. A thin film heater is embedded in the testing plate,
the electric power supplied to the heater being adjusted by a current transformer.
φ 0.1 mm Cu–Constantan thermocouples are installed in the plate to monitor and
measure the temperature.

LDV. The short wavelength LDV at Northeastern University was used to measure
the velocity field of air free convection. The velocity measured with this LDV is so
small that it is suitable for detecting the air velocity field being studied.

Particulate generator. The experimental measurement of the velocity field by
the LDV requires a particulate generator with an ability to track the air convection.
The particulate generator, as shown in Fig. 9.2, consists of a chamber for burning
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Table 9.1 The measurement conditions with the related thermophysical properties for air free
convection

Heights (m) Temperature conditions (K) ν∞ × 106 (m2/s)

x = 0.025 Tw/T∞ = 1.1 and T∞ = 291 14.88
Tw/T∞ = 1.5 and T∞ = 293 15.06
Tw/T∞ = 1.8 and T∞ = 287 14.52

x = 0.05 Tw/T∞ = 1.1 and T∞ = 291 14.88
Tw/T∞ = 1.5 and T∞ = 293 15.06
Tw/T∞ = 1.8 and T∞ = 287 14.52

x = 0.1 Tw/T∞ = 1.1 and T∞ = 291 14.88
Tw/T∞ = 1.5 and T∞ = 293 15.06
Tw/T∞ = 1.8 and T∞ = 287 14.52

x = 0.15 Tw/T∞ = 1.1 and T∞ = 291 14.88
Tw/T∞ = 1.5 and T∞ = 293 15.06
Tw/T∞ = 1.8 and T∞ = 287 14.52

mosquito-repellent incense, a storage chamber of smoke, and a net made of copper
wire. The mosquito-repellent incense is burnt in the burning chamber and the smoke
produced enters into the storage chamber through the upper gap of the spacer. The
smoke cools down in a storage chamber, and then, diffuses through a copper-wire
net into the air stream. The velocity of the smoke through the net is very small, and
consequently it will disturb the velocity field only to a very small extent.

9.2.2 Measurement Results

Experiments were conducted at three temperature conditions: Tw/T∞ = 1.1 and
T∞ = 291 K; Tw/T∞ = 1.5 and T∞ = 293 K; and Tw/T∞ = 1.8 and T∞ = 287 K.
For each case, the measurements were made at four heights counted from the bottom
edge of the testing plate, i.e. x = 25 mm, x = 50 mm, x = 100 mm and x = 150 mm.
The measurement conditions with the related thermophysical properties for air are
listed in Table 9.1. Measured velocities wx are plotted in Figs. 9.3, 9.4 and 9.5. It is
clear from each of the figures that, wx would increase along x , and simultaneously, the
position for maximum wx shifts far away from the surface. Comparing the results
shown in Figs. 9.3–9.5, it is also seen that, for the same height, x , the larger the
boundary temperature ratio Tw/T∞ the thinner the thickness of boundary layer would
be, and so, the position of maximum wx will be closer to the plate surface with an
increased value of maximum wx . Additionally, the dimensionless velocity component
wx transformed by using Eqs. (9.1) and (9.2) are plotted in Figs. 9.6, 9.7, and 9.8,
respectively.
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Fig. 9.3 Measured and calculated values for the dimensional velocity of air free convection for
conditions Tw/T∞ = 1.1 and T∞ = 291 K, cited from Shang and Wang [4]: +, x = 0.025 m; �,
x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical prediction

Fig. 9.4 Measured and calcu-
lated values for dimensional
velocity of air free convection
for conditions Tw/T∞ = 1.5
and T∞ = 293 K, cited
from Shang and Wang
[4]: +, x = 0.025 m; �,
x = 0.050 m; �, x = 0.100 m;
×, x = 0.150 m; — numerical
prediction

Fig. 9.5 Measured and calcu-
lated values for dimensional
velocity of air free convection
for condition Tw/T∞ = 1.8
and T∞ = 287 K, cited
from Shang and Wang
[4]: +, x = 0.025 m; �,
x = 0.050 m; �, x = 0.100 m;
×, x = 0.150 m; — numerical
prediction

9.2.3 Governing Equations

The governing partial differential equations of gas laminar free convection and their
boundary conditions are shown as Eqs. (6.1)–(6.5) in Chapter 6. According to Chap. 6,
the related defined similarity variables are shown as

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Fig. 9.6 Measured and calculated values for dimensionless velocity of air free convection for
condition Tw/T∞ = 1.1 and T∞ = 291 K, cited from Shang and Wang [4]: +, x = 0.025 m; �,
x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical prediction

Fig. 9.7 Measured and calculated values for dimensionless velocity of air free convection for
condition Tw/T∞ = 1.5 and T∞ = 293 K, cited from Shang and Wang [4]: +, x = 0.025 m; �,
x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical prediction

η = y
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1
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ν2∞
(9.1)

Wx =
[
2
√

gx(Tw/T∞ − 1)1/2
]−1

wx (9.2)

Wy =
[

2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4
]−1

wy (9.3)

and the transformed dimensionless governing equations and boundary conditions are
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− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0 (9.4)
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Fig. 9.8 Measured and calculated values for dimensionless velocity of air free convection for
condition Tw/T∞ = 1.8 and T∞ = 287 K, cited from Shang and Wang [4]: +, x = 0.025 m; �,
x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical prediction

ν∞
ν

[
Wx
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dθ
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= d2θ

dη2 + 1

λ

dλ

dη

dθ

dη
(9.6)

η = 0, Wx = 0, Wy = 0, θ = 1 (9.7)

η → ∞, Wx → 0, θ → 0 (9.8)

for the gas laminar free convection.

9.2.4 The Numerical Solutions

By using the shooting method, the governing dimensionless differential equations
(9.4)–(9.6) with their boundary conditions are solved for Tw/T∞ = 1.1 and T∞ =
291 K; Tw/T∞ = 1.5 and T∞ = 293 K; and Tw/T∞ = 1.8 and T∞ = 287 K,
respectively, for the air free convection (nμ = 0.68, nλ = 0.81). The numerical
solutions for dimensionless velocity components Wx are plotted also in Figs. 9.3,
9.4, and 9.5. The dimensionless numerical solutions transformed by using Eq. (9.1)
and (9.2) are plotted in Figs. 9.6–9.8, respectively. It can be seen that the measured
results agree very well with the predicted results.
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Fig. 9.9 Schematic diagram of the device used in the experiment of water free convection, cited
from Shang et al. [6]: 1 water tank, 2 isothermal vertical flat plate, 3 thermocouples, 4 metal plate,
5 focus of laser, 6 laser paths, 7 drilled hole for laser path

9.3 Experimental Measurements of Velocity Field for Water
Laminar Free Convection

9.3.1 Main Experimental Apparatus

An isothermal vertical flat plate, a LDV, and a water tank (see Fig.9.9) constitute the
main experimental apparatus.

Isothermal vertical flat plate. The isothermal vertical flat plate (called here the
plate) made of copper, is 250 mm in length, 140 mm in width and 7 mm in thickness.
The surface of the plate is well polished. In the Plate, a Nickel–Chromium wire of
0.5 mm in diameter and 389 m in length is uniformly inserted. The Nickel–Chromium
wire serves as an electrical heat source, and it is insulated. A sharp angle is made in
the bottom of the plate so that the velocity field would not be influenced by the free
convection near to the bottom surface. Thermocouples are installed in the Plate and
are very close to the surface. By controlling the electric current passing through the
Nickel–Chromium wire, the temperature at the surface of the Plate will be maintained
at a certain level. On the top of the plate, two metal plates with 150 mm in length
and 3 mm in thickness are welded. The upper part of both metal plates is drilled so
that the Plate can be suspended on the frame.

LDV. The equipment used to measure the velocity field of the water free convection
on the plate is the LDV of the 606 Institute in Shenyang. In order to measure very
small velocities such as that of water free convection, the technique of frequency-
deviation-shift is applied to the LDV.

Water tank. The water tank is rectangular in shape. It is made of organic glass
plate with 8 mm thickness. The top of the water tank is open. The tank is 1.1 m
in length, 0.7 m in width and 0.35 m in height. With such a large space the water
tank can efficiently keep away the free convection near to the surface of the plate
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Table 9.2 The measurement conditions

Heights (m) Temperature (◦C)

x = 0.05 tw = 40 and t∞ = 20
tw = 50 and t∞ = 20
tw = 60 and t∞ = 20

x = 0.10 tw = 40 and t∞ = 20
tw = 50 and t∞ = 20
tw = 60 and t∞ = 20

x = 0.15 tw = 40 and t∞ = 20
tw = 50 and t∞ = 20
tw = 60 and t∞ = 20

x = 0.20 tw = 40 and t∞ = 20
tw = 50 and t∞ = 20
tw = 60 and t∞ = 20

face from any disturbing influences. In the side of the tank are drilled four drill ways
of 20 mm diameter each. The drilled ways serve as paths of laser light. Through the
drill ways the laser will reach the surface of the plate to measure the velocity field of
the water free convection. The distance between each two centers of the drilled ways
is 50 mm, which just matches the measured heights. The locations of the drilled
ways are covered with the thin organic glass, 1 mm in thickness, so that the laser
power wasted though the organic glass can be minimized.

9.3.2 The Results of Experiment

At the start of this experiment the surface of the plate should be heated slowly so that
the temperature of the plate rises slowly. For this purpose the voltage and electricity
current through the Nickel–Chromium wire is increased slowly by means of a voltage
regulator. After the temperature of the measured surface is raised to given level, the
temperature is stabilized for three minutes, and then the measurements commenced.

In this experiment, the measurements are carried out under three temperature con-
ditions: tw = 40 ◦C and t∞ = 20 ◦C, tw = 50 ◦C and t∞ = 20 ◦C, tw = 60 ◦C and
t∞ = 20 ◦C, respectively. For each condition the measurements are made at four
heights from the bottom of the Plate, i.e., x = 0.05 m, x = 0.10 m, x = 0.15 m
and x = 0.20 m. The measurement conditions are listed in Table 9.2 in detail. The
measured values of the velocity components wx are described in Tables 9.4–9.6 and
plotted in Figs. 9.10–9.12, respectively. The measured values wx and the correspond-
ing co-ordinate variable x are further transformed to the dimensionless values by
using the expressions (9.9)–(9.11), described in Tables 9.4–9.6 and Figs. 9.13–9.15,
respectively.
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Table 9.3 Water property values

t (◦C) 20 40 50 60
ρ(kg/m3) 998.3 992.3 988.1 983.2
λ[W/(mK)] 0.5996 – – –
ν × 10−6[kg/(ms)] 1.004 – – –
Pr 6.99 – – –

9.3.3 Governing Equations

The governing partial differential equations of liquid laminar free convection and
their boundary conditions are shown as Eqs. (8.1)–(8.5) in Chapter 8. According to
Chapter 8, the related defined similarity variables for liquid laminar free convection
are shown as
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The transformed dimensionless governing equations and boundary conditions for
liquid laminar free convection are
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with boundary conditions

η = 0, Wx = 0, Wy = 0, θ = 1 (9.15)

η → ∞, Wx → 0, θ → 0 (9.16)

http://dx.doi.org/10.1007/978-3-642-28983-5_8
http://dx.doi.org/10.1007/978-3-642-28983-5_8
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Table 9.4 The measurement results for velocities wx and the transformed values of Wx for water
laminar free convection at tw = 40 ◦C and t∞ = 20 ◦C, cited from Shang et al. [6]

x = 0.05 m x = 0.10 m
y (mm) η wx (m/s) Wx y (mm) η wx (m/s) Wx

0.2 0.147 0.007 0.0707 0.2 0.124 0.007 0.0500
0.3 0.221 0.0093 0.0854 0.3 0.186 0.0119 0.0773
0.4 0.294 0.0115 0.1056 0.4 0.248 0.0135 0.0877
0.5 0.368 0.0129 0.1185 0.5 0.309 0.0156 0.1013
0.6 0.441 0.0136 0.1249 0.6 0.371 0.0182 0.1182
0.7 0.515 0.0143 0.1313 0.7 0.433 0.0190 0.1234
0.8 0.589 0.0150 0.1377 0.8 0.495 0.0193 0.1253
0.9 0.662 0.0142 0.1304 0.9 0.557 0.0195 0.1266
1.0 0.736 0.0139 0.1276 1.0 0.619 0.0209 0.1357
1.2 0.883 0.0129 0.1185 1.3 0.804 0.0185 0.1201
1.4 1.030 0.0126 0.1157 1.5 0.928 0.0182 0.1182
1.5 1.104 0.0118 0.1084 1.7 1.052 0.0161 0.1104
1.7 1.251 0.0111 0.1019 1.9 1.176 0.0160 0.1039
1.9 1.398 0.0096 0.0882 2.1 1.299 0.0141 0.0916
2.1 1.545 0.0089 0.0817 2.4 1.485 0.0142 0.0922
2.4 1.766 0.0078 0.0716 2.7 1.671 0.0107 0.0695
2.6 1.913 0.0061 0.0560 3.0 1.856 0.0105 0.0682
2.8 2.060 0.0056 0.0514 3.3 2.042 0.0085 0.0552

x = 0.15 m x = 0.20 m
y (mm) η wx (m/s) Wx y (mm) η wx (m/s) Wx

0.2 0.112 0.0109 0.0578 0.2 0.104 0.0120 0.0551
0.3 0.168 0.0136 0.0721 0.3 0.156 0.0168 0.0771
0.4 0.224 0.0168 0.0890 0.4 0.208 0.0190 0.0872
0.5 0.280 0.0201 0.1065 0.5 0.260 0.0206 0.0946
0.7 0.391 0.0226 0.1198 0.7 0.364 0.0247 0.1134
0.9 0.503 0.0239 0.1267 0.9 0.468 0.0270 0.1240
1.1 0.615 0.0249 0.1320 1.1 0.572 0.0278 0.1276
1.3 0.727 0.0252 0.1335 1.2 0.624 0.0294 0.1350
1.4 0.783 0.0237 0.1229 1.3 0.676 0.0297 0.1364
1.6 0.894 0.0229 0.1214 1.4 0.728 0.0278 0.1276
1.8 1.056 0.0217 0.1130 1.6 0.832 0.0270 0.1240
2.0 1.118 0.0216 0.1145 1.8 0.937 0.0260 0.1194
2.2 1.230 0.0197 0.1044 2.0 1.041 0.0250 0.1148
2.4 1.342 0.0185 0.0980 2.3 1.197 0.0229 0.1051
2.6 1.453 0.0182 0.0964 2.6 1.353 0.0206 0.0946
2.8 1.565 0.0163 0.0864 2.9 1.509 0.0180 0.0826
3.1 1.733 0.0123 0.0650 3.1 1.613 0.0167 0.0767
3.4 1.901 0.0116 0.0615 3.4 1.719 0.0146 0.0670
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Table 9.5 The measurement results for velocities wx and the transformed value Wx for water
laminar free Convection at tw = 50 ◦C and t∞ = 20 ◦C, cited from Shang et al. [6]

x = 0.05 m x = 0.10 m
y (mm) η wx (m/s) Wx y (mm) η wx (m/s) Wx

0.2 0.168 0.0116 0.0819 0.2 0.141 0.0146 0.0729
0.3 0.252 0.0148 0.1045 0.3 0.212 0.0184 0.0919
0.4 0.336 0.0162 0.1144 0.4 0.282 0.0221 0.1103
0.5 0.419 0.0174 0.1229 0.5 0.353 0.0249 0.1243
0.6 0.503 0.0184 0.1299 0.6 0.423 0.0259 0.1293
0.7 0.587 0.0188 0.1328 0.8 0.565 0.0266 0.1328
0.8 0.671 0.0187 0.1321 1.0 0.706 0.0263 0.1313
1.0 0.839 0.0172 0.1215 1.1 0.776 0.0256 0.1278
1.1 0.923 0.0168 0.1186 1.4 0.988 0.0234 0.1168
1.3 1.091 0.0155 0.1095 1.6 1.129 0.0206 0.1028
1.4 1.174 0.0148 0.1045 1.7 1.200 0.0209 0.1043
1.5 1.258 0.0141 0.0996 1.8 1.270 0.0196 0.0979
1.7 1.426 0.0122 0.0862 2.0 1.411 0.0180 0.0899
1.8 1.510 0.0118 0.0833 2.1 1.482 0.0167 0.0834
2.0 1.678 0.0107 0.0756 2.3 1.623 0.0151 0.0754
2.2 1.846 0.0086 0.0607 2.5 1.764 0.0133 0.0664
2.4 2.013 0.0081 0.0572 2.6 1.835 0.0126 0.0629
2.6 2.181 0.0064 0.0452 2.9 2.047 0.0102 0.0509

x = 0.15 m x = 0.20 m
y (mm) η wx (m/s) Wx y (mm) η wx (m/s) Wx

0.2 0.127 0.0167 0.0681 0.2 0.119 0.0194 0.0685
0.3 0.191 0.0219 0.0893 0.3 0.178 0.0264 0.0932
0.4 0.255 0.0242 0.0987 0.4 0.237 0.0294 0.1028
0.5 0.319 0.0277 0.1129 0.5 0.297 0.0321 0.1133
0.6 0.382 0.0309 0.1260 0.6 0.356 0.0340 0.1201
0.7 0.446 0.0310 0.1264 0.7 0.415 0.0360 0.1271
0.9 0.574 0.0334 0.1362 0.9 0.534 0.0384 0.1356
1.0 0.637 0.0332 0.1353 1.0 0.593 0.0389 0.1374
1.2 0.765 0.0315 0.1284 1.1 0.652 0.0372 0.1314
1.3 0.828 0.0312 0.1272 1.3 0.771 0.0365 0.1289
1.4 0.892 0.0301 0.1227 1.5 0.890 0.0342 0.1208
1.5 0.956 0.0293 0.1194 1.7 1.008 0.0317 0.1119
1.6 1.020 0.0281 0.1151 2.9 1.127 0.0304 0.1073
1.8 1.147 0.0255 0.1040 2.2 1.305 0.0272 0.0960
2.0 1.275 0.0233 0.0950 2.5 1.483 0.0239 0.0844
2.3 1.466 0.0208 0.0848 2.9 1.720 0.0193 0.0682
2.8 1.784 0.0168 0.0685 3.2 1.898 0.0174 0.0614
3.3 2.103 0.0125 0.0510 3.4 2.017 0.0161 0.0569
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Table 9.6 The measurement results for velocities wx and the transformed values Wx for water
laminar free convection at tw = 60 ◦C and t∞ = 20 ◦C cited from Shang et al. [6]

x = 0.05 m x = 0.10 m
y (mm) η wx (m/s) Wx y (mm) η wx (m/s) Wx

0.2 0.186 0.0149 0.0858 0.2 0.156 0.0208 0.0847
0.3 0.279 0.0200 0.1152 0.3 0.234 0.0258 0.1051
0.4 0.371 0.0220 0.1267 0.4 0.313 0.0299 0.1218
0.5 0.464 0.0234 0.1348 0.5 0.391 0.0315 0.1283
0.6 0.557 0.0236 0.1359 0.6 0.469 0.0321 0.1308
0.7 0.650 0.0235 0.1354 0.7 0.547 0.0340 0.1385
0.9 0.836 0.0206 0.1187 0.8 0.625 0.0328 0.1336
1.0 0.929 0.0200 0.1152 0.9 0.703 0.0317 0.1291
1.1 1.021 0.0197 0.1135 1.1 0.859 0.0298 0.1214
1.2 1.114 0.0196 0.1129 1.2 0.938 0.0289 0.1177
1.3 1.207 0.0178 0.1025 1.3 1.016 0.0279 0.1136
1.4 1.300 0.0161 0.0927 1.4 1.094 0.0267 0.1088
1.5 1.393 0.0151 0.0870 1.5 1.172 0.0254 0.1035
1.6 1.486 0.0145 0.0835 1.7 1.328 0.0230 0.0937
1.8 1.671 0.0121 0.0697 1.8 1.406 0.0213 0.0868
2.0 1.857 0.0104 0.0599 2.0 1.563 0.0183 0.0745
2.1 1.950 0.0105 0.0605 2.4 1.875 0.0145 0.0591
2.3 2.136 0.0095 0.0547 2.9 2.266 0.0112 0.0456

x = 0.15 m x = 0.20 m
y (mm) η wx (m/s) Wx y (mm) η wx (m/s) Wx

0.2 0.141 0.0230 0.0765 0.2 0.131 0.0243 0.0700
0.3 0.212 0.0299 0.0994 0.3 0.197 0.0336 0.0968
0.4 0.282 0.0353 0.1174 0.4 0.263 0.0379 0.1092
0.5 0.353 0.0384 0.1277 0.5 0.329 0.0420 0.1210
0.7 0.494 0.0408 0.1357 0.7 0.460 0.0460 0.1325
0.9 0.635 0.0405 0.1347 0.9 0.591 0.0470 0.1354
1.1 0.776 0.0393 0.1307 1.1 0.723 0.0455 0.1310
1.3 0.917 0.0355 0.1181 1.2 0.788 0.0449 0.1293
1.4 0.988 0.0342 0.1137 1.3 0.854 0.0425 0.1224
1.6 1.129 0.0314 0.1044 1.7 1.117 0.0364 0.1048
1.8 1.270 0.0290 0.0964 2.0 1.314 0.0319 0.0919
2.0 1.411 0.0264 0.0878 2.2 1.445 0.0294 0.0847
2.1 1.482 0.0249 0.0828 2.4 1.577 0.0258 0.0743
2.3 1.623 0.0220 0.0732 2.6 1.708 0.0243 0.0700
2.5 1.764 0.0196 0.0652 2.8 1.840 0.0219 0.0631
2.7 1.905 0.0175 0.0582 2.9 1.905 0.0201 0.0579
3.0 2.117 0.0152 0.0505 3.1 2.037 0.0188 0.0541
3.3 2.329 0.0126 0.0419 3.4 2.234 0.0157 0.0452
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Fig. 9.10 Measured and numerical values of velocity wx of water laminar free convection for
tw = 40 ◦C and t∞ = 20 ◦C, cited from Shang et al. [6]: Full line numerical solution, symbol
corresponding measured value: 1. ×, x = 0.05 m; 2. �, x = 0.10 m; 3. �, x = 0.15 m; and 4. ♦,
x = 0.20 m

Fig. 9.11 Measured and numerical values of velocity wx of water laminar free convection for
tw = 50 ◦C and t∞ = 20 ◦C, cited from Shang et al. [6]: full line numerical solution, symbol
corresponding measured value: 1. ×, x = 0.05 m; 2. �, x = 0.10 m; 3. �, x = 0.15 m; and 4. ♦,
x = 0.20 m

9.3.4 Numerical Solutions

As the analysis in Chap. 8, if the specific heat cp of water is substituted by cp∞ ,

i.e., at the temperature at infinity, the maximum predicted deviation will be less than

http://dx.doi.org/10.1007/978-3-642-28983-5_8
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Fig. 9.12 Measured and numerical values for velocity wx of water laminar free convection for
tw = 60 ◦C and t∞ = 20 ◦C, cited from Shang et al. [6]: full line numerical solution, symbol
corresponding measured value: 1. ×, x = 0.05 m; 2. �, x = 0.10 m; 3. �, x = 0.15 m; and 4. ♦,
x = 0.20 m

Fig. 9.13 Measured and calculated values of the dimensionless velocity Wx of water laminar free
Convection, for tw = 40 ◦C and t∞ = 20 ◦C cited from Shang et al. [6]: full line numerical solution,
symbol corresponding measured value: 1. ×, x = 0.05 m; 2. �, x = 0.10 m; 3. �, x = 0.15 m; and
4. ♦, x = 0.20 m

0.455 % for the temperature range from 0 to 100 ◦C according to typical experiment
values [8]. Such small deviation is allowed for the treatment of variable physical

properties. Consequently, property factor Pr
ν∞
ν

of Eq. 9.14 can be changed to the

following form for water laminar free convection:
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Fig. 9.14 Measured and calculated values for dimensionless velocity Wx of water laminar free
convection, for tw = 50 ◦C and t∞ = 20 ◦C, cited from Shang et al. [6]: full line numerical solution,
symbol corresponding measured value: 1. ×, x = 0.05 m; 2. �, x = 0.10 m; 3. �, x = 0.15 m; and
4. ♦, x = 0.20 m

Fig. 9.15 Measured and calculated values for dimensionless velocity Wx of water laminar free
convection, for condition tw = 60 ◦C and t∞ = 20 ◦C, cited from Shang et al. [6]: full line
numerical solution, symbol corresponding measured value: 1. ×, x = 0.05 m; 2. �, x = 0.10 m; 3.
�, x = 0.15 m; and 4. ♦, x = 0.20 m

Pr
ν∞
ν

= Pr∞
λ∞
λ

ρ

ρ
(9.17)
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The physical property values of ρ, μ, ν, λ, and Pr are taken from those listed in
Chapter 8. For convenience some specimen values of the physical properties for the
experiment are listed in Table 9.3.

According to the approach of the numerical calculation of Chapter 8, the solutions
for water laminar free convection are obtained from the governing ordinary differen-
tial equations (9.12)–(9.14) with Eq. (9.17) and the boundary conditions (9.15) and
(9.16) by shooting method, respectively, for tw = 40 ◦C and t∞ = 20 ◦C, tw = 50 ◦C
and t∞ = 20 ◦C, tw = 60 ◦C and t∞ = 20 ◦C. While, the water physical properties
such as ρ, λ and ν are described, respectively, by Eqs. (5.16)–(5.18). Meanwhile
Eqs. (5.24)–(5.26) are applied for describing the related water physical property fac-
tors of the governing equations. The numerical solutions for velocity component wx

obtained for the water laminar free convection are listed in Tables 9.4, 9.5 and 9.6
and plotted in Figs. 9.10, 9.11, and 9.12, respectively. In addition, these numerical
solutions wx are transformed into the corresponding dimensional ones Wx by means
of Eqs. (9.9) and (9.10). The transformed dimensionless solutions are described in
Tables 9.4–9.6 and plotted in Figs.9.13–9.15, respectively. It can be seen that the
measured results agree very well with the predicted results.

ρ = 4.48 × 10−3t2 + 999.9 (5.16)

λ = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563 (5.17)

μ = exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

× 10−3 (5.18)

9.4 Remarks

Experimental investigations were carried out to study effects of variable physical
properties on laminar free convection of air and water and to further verify the
results of the previous chapters, Chaps. 6 and 8. The following points are made.

By increasing the temperature tw for the liquid laminar free convection or with
increasing the boundary temperature ratio Tw/T∞ for gas laminar free convection
of gas, the velocity component wx of the free convection increases, and the velocity
profile moves to the direction of the flat plate. Consequently, the thickness of the
velocity boundary layer decreases.

With an increase of the height x , the velocity component wx of water or air free
convection increases, and the velocity profile moves toward the fluid bulk. As a result
the thickness of velocity boundary layer increases.

It is found that the agreement between the measured and calculated velocity fields
is good, thus confirming that the results in Chaps. 6, 7 and 8 are reliable.

http://dx.doi.org/10.1007/978-3-642-28983-5_8
http://dx.doi.org/10.1007/978-3-642-28983-5_8
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_8
http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_7
http://dx.doi.org/10.1007/978-3-642-28983-5_8
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Table 9.7 The numerical solutions of velocity components wx and Wx at tw = 40 ◦C and t∞ =
20 ◦C, cited from Shang et al. [6]

x = 0.05 m x = 0.10 m
η y (mm) Wx wx (m/s) η y (mm) Wx wx (m/s)

0 0 0 0 0 0 0 0
0.075 0.102 0.0378 0.0041 0.075 0.121 0.0378 0.0058
0.150 0.204 0.0674 0.0073 0.150 0.242 0.0674 0.0104
0.225 0.306 0.0898 0.0098 0.225 0.364 0.0898 0.0138
0.300 0.408 0.1063 0.0116 0.300 0.485 0.1063 0.0164
0.375 0.510 0.1178 0.0128 0.375 0.606 0.1178 0.0181
0.450 0.612 0.1253 0.0136 0.450 0.727 0.1253 0.0193
0.525 0.713 0.1297 0.0141 0.525 0.848 0.1297 0.0200
0.600 0.815 0.1314 0.0143 0.600 0.970 0.1314 0.0202
0.700 0.951 0.1308 0.0142 0.700 1.131 0.1308 0.0201
0.800 1.087 0.1277 0.0139 0.800 1.293 0.1277 0.0197
0.900 1.223 0.1231 0.0134 0.900 1.454 0.1231 0.0190
1.050 1.427 0.1143 0.0124 1.050 1.700 0.1143 0.0176
1.200 1.631 0.1046 0.0114 1.200 1.939 0.1046 0.0161
1.350 1.835 0.0948 0.0103 1.350 2.182 0.0948 0.0146
1.500 2.039 0.0853 0.0093 1.500 2.424 0.0853 0.0131
1.800 2.446 0.0681 0.0074 1.800 2.909 0.0681 0.0105
2.100 2.854 0.0536 0.0058 2.100 3.394 0.0536 0.0083

x = 0.15 m x = 0.20 m
η y (mm) Wx wx (m/s) η y (mm) Wx wx (m/s)

0 0 0 0 0 0 0 0
0.075 0.134 0.0378 0.0071 0.075 0.144 0.0378 0.0082
0.150 0.268 0.0674 0.0127 0.150 0.288 0.0674 0.0147
0.225 0.403 0.0898 0.0169 0.225 0.432 0.0898 0.0196
0.300 0.537 0.1063 0.0201 0.300 0.577 0.1063 0.0232
0.375 0.671 0.1178 0.0222 0.375 0.721 0.1178 0.0257
0.450 0.805 0.1253 0.0236 0.450 0.865 0.1253 0.0273
0.525 0.939 0.1297 0.0245 0.525 1.009 0.1297 0.0282
0.600 1.073 0.1314 0.0248 0.600 1.153 0.1314 0.0286
0.700 1.252 0.1308 0.0247 0.700 1.345 0.1308 0.0285
0.800 1.431 0.1277 0.0241 0.800 1.538 0.1277 0.0278
0.900 1.610 0.1231 0.0232 0.900 1.730 0.1231 0.0268
1.050 1.878 0.1143 0.0216 1.050 2.018 0.1143 0.0249
1.200 2.147 0.1046 0.0197 1.200 2.306 0.1046 0.0228
1.350 2.415 0.0948 0.0179 1.350 2.595 0.0948 0.0206
1.500 2.684 0.0853 0.0161 1.500 2.883 0.0853 0.0186
1.800 3.220 0.0681 0.0129 1.800 2.460 0.0681 0.0148
2.100 3.757 0.0536 0.0101 2.100 4.036 0.0536 0.0117
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Table 9.8 The numerical solutions of velocity components wx and Wx at tw = 50 ◦C and t∞ =
20 ◦C, cited from Shang et al. [6]

x = 0.05 m x = 0.10 m
η y (mm) Wx wx (m/s) η y (mm) Wx wx (m/s)

0 0 0 0 0 0 0 0
0.075 0.089 0.0416 0.0059 0.075 0.106 0.0416 0.0083
0.150 0.179 0.0732 0.0104 0.150 0.213 0.0732 0.0147
0.225 0.268 0.0964 0.0137 0.225 0.319 0.0964 0.0193
0.300 0.358 0.1127 0.0160 0.300 0.425 0.1127 0.0226
0.375 0.447 0.1235 0.0175 0.375 0.531 0.1235 0.0247
0.450 0.536 0.1300 0.0184 0.450 0.638 0.1300 0.0260
0.525 0.626 0.1331 0.0188 0.525 0.744 0.1331 0.0267
0.600 0.715 0.1337 0.0189 0.600 0.850 0.1337 0.0268
0.700 0.834 0.1317 0.0186 0.700 0.992 0.1317 0.0264
0.800 0.954 0.1274 0.0180 0.800 1.134 0.1274 0.0255
0.900 1.073 0.1219 0.0173 0.900 1.275 0.1219 0.0244
1.050 1.252 0.1123 0.0159 1.050 1.488 0.1123 0.0225
1.200 1.430 0.1022 0.0145 1.200 1.700 0.1022 0.0205
1.350 1.609 0.0922 0.0131 1.350 1.913 0.0922 0.0185
1.650 1.967 0.0740 0.0105 1.650 2.338 0.0740 0.0148
1.950 2.324 0.0586 0.0083 1.950 2.763 0.0586 0.0117
2.250 2.682 0.0459 0.0065 2.250 3.188 0.0459 0.0092

x = 0.15 m x = 0.20 m
η y (mm) Wx wx (m/s) η y (mm) Wx wx (m/s)

0 0 0 0 0 0 0 0
0.075 0.118 0.0416 0.0102 0.075 0.126 0.0416 0.0118
0.150 0.235 0.0732 0.0180 0.150 0.253 0.0732 0.0207
0.225 0.353 0.0964 0.0236 0.225 0.379 0.0964 0.0273
0.300 0.471 0.1127 0.0276 0.300 0.506 0.1127 0.0319
0.375 0.588 0.1235 0.0303 0.375 0.632 0.1235 0.0350
0.450 0.706 0.1300 0.0319 0.450 0.759 0.1300 0.0368
0.525 0.824 0.1331 0.0326 0.525 0.885 0.1331 0.0377
0.600 0.941 0.1337 0.0328 0.600 1.012 0.1337 0.0379
0.700 1.098 0.1317 0.0323 0.700 1.180 0.1317 0.0373
0.800 1.255 0.1274 0.0313 0.800 1.349 0.1274 0.0361
0.900 1.412 0.1219 0.0299 0.900 1.517 0.1219 0.0345
1.050 1.647 0.1123 0.0275 1.050 1.770 0.1123 0.0318
1.200 1.883 0.1022 0.0251 1.200 2.023 0.1022 0.0289
1.350 2.118 0.0922 0.0226 1.350 2.276 0.0922 0.0261
1.650 2.589 0.0740 0.0182 1.650 2.782 0.0740 0.0210
1.950 3.064 0.0586 0.0144 1.950 3.288 0.0586 0.0166
2.250 3.530 0.0459 0.0113 2.250 3.794 0.0459 0.0130
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Table 9.9 The numerical solutions of velocities components wx and Wx at tw = 60 ◦C and t∞ =
20 ◦C, cited from Shang et al. [6]

x = 0.05 m x = 0.10 m
η y (mm) Wx wx (m/s) η y (mm) Wx wx (m/s)

0 0 0 0 0 0 0 0
0.075 0.081 0.0454 0.0079 0.075 0.096 0.0454 0.0111
0.150 0.162 0.0789 0.0137 0.150 0.192 0.0789 0.0194
0.225 0.242 0.1028 0.0178 0.225 0.288 0.1028 0.0252
0.300 0.323 0.1189 0.0206 0.300 0.384 0.1189 0.0292
0.375 0.404 0.1290 0.0224 0.375 0.480 0.1290 0.0317
0.450 0.485 0.1345 0.0233 0.450 0.576 0.1345 0.0330
0.525 0.565 0.1365 0.0237 0.525 0.672 0.1365 0.0335
0.600 0.646 0.1360 0.0236 0.600 0.768 0.1360 0.0334
0.700 0.754 0.1326 0.0230 0.700 0.896 0.1326 0.0326
0.800 0.862 0.1273 0.0221 0.800 1.024 0.1273 0.0313
0.900 0.969 0.1209 0.0210 0.900 1.152 0.1209 0.0297
1.050 1.131 0.1106 0.0192 1.050 1.344 0.1106 0.0272
1.200 1.292 0.1001 0.0174 1.200 1.536 0.1001 0.0246
1.350 1.454 0.0901 0.0156 1.350 1.728 0.0901 0.0221
1.650 1.777 0.0721 0.0125 1.650 2.112 0.0721 0.0177
1.950 2.100 0.0570 0.0099 1.950 2.496 0.0570 0.0140
2.250 2.423 0.0446 0.0077 2.250 2.880 0.0446 0.0109

x = 0.15 m x = 0.20 m
η y (mm) Wx wx (m/s) η y (mm) Wx wx (m/s)

0 0 0 0 0 0 0 0
0.075 0.106 0.0454 0.0137 0.075 0.114 0.0454 0.0158
0.150 0.213 0.0789 0.0237 0.150 0.228 0.0789 0.0274
0.225 0.319 0.1028 0.0309 0.225 0.342 0.1028 0.0357
0.300 0.425 0.1189 0.0358 0.300 0.457 0.1189 0.0413
0.375 0.531 0.1290 0.0388 0.375 0.571 0.1290 0.0448
0.450 0.638 0.1345 0.0404 0.450 0.685 0.1345 0.0467
0.525 0.744 0.1365 0.0410 0.525 0.799 0.1365 0.0474
0.600 0.850 0.1360 0.0409 0.600 0.913 0.1360 0.0472
0.700 0.992 0.1326 0.0399 0.700 1.065 0.1326 0.0464
0.800 1.134 0.1273 0.0383 0.800 1.218 0.1273 0.0442
0.900 1.275 0.1209 0.0364 0.900 1.370 0.1209 0.0420
1.050 1.488 0.1106 0.0333 1.050 1.598 0.1106 0.0384
1.200 1.700 0.1001 0.0301 1.200 1.827 0.1001 0.0348
1.350 1.913 0.0901 0.0271 1.350 2.055 0.0901 0.0313
1.650 2.338 0.0721 0.0217 1.650 2.511 0.0721 0.0250
1.950 2.763 0.0570 0.0171 1.950 2.968 0.0570 0.0198
2.250 3.188 0.0446 0.0134 2.250 3.425 0.0446 0.0155
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9.5 Questions

1. What is proved through the experimental measurement results in this chapter?
2. Do you think the measurement by using LDV is the best way to obtain the

velocity field of fluid flow? Why?
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Chapter 10
Identical Laminar Free Convection for Inclined
and Vertical Cases

Abstract The new similarity analysis method is applied to the similarity transfor-
mation of the governing partial differential equations of laminar free convection on
inclined plate. It is seen that the transformed governing ordinary differential equa-
tions on the inclined plate are same as those on the vertical plate. Then, it follows
that there are identical governing ordinary differential equations and dimensionless
prediction equations on heat transfer both for inclined and vertical cases of laminar
convection. In this case, the vertical case can only be regarded as a special example
of the inclined case. Therefore, the numerical solutions and prediction equations
on heat transfer for vertical case can be directly used for the inclined case. Finally,
the simple and direct correlations for describing the transformation of the velocity
components and heat transfer from the vertical case to the inclined case for the free
convection are derived.

10.1 Introduction

It was Rich [1] who first suggested theoretically the procedure for obtaining the
heat transfer rate from an inclined surface. According to his procedure, the problem
of free convection on an inclined surface is identical to that of flow over a vertical
surface except that g is replaced by g cos γ , and therefore, a replacement of g by g
cos γ in all the relationships derived earlier. This implies using Grx cos γ for Grx. As
a result, his experimental data are in general agreement with the anticipated values.
The data obtained by Vliet [2] for a uniform-flux, heated surface in air and in water
indicate the validity of the procedure mentioned above up to inclination angles as
large as 60◦. Detailed experimental results on this were obtained by Fujii and Imura
[3]. They also discuss the separation of the boundary layer for the inclined surface
facing upward.

However, so far, there has been a shortage of theoretically rigorous derivations
to support the above conclusions by means of a replacement of g with g cos γ

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 187
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for all the relationships, and there is a shortage of clear correlations in describing
the transformations of heat transfer, momentum transfer, and mass flow rate drawn
from the vertical case to the inclined case for the free convection. As we know, the
traditional method for the treatment of similarity transformation of the governing
equations for laminar free convection is the Falkner–Skan transformation [4–6]. It is
difficult with the traditional Falkner–Skan transformation to realize such a derivation.

Fortunately, the new similarity analysis method presented in Chap. 4 [7–9] for sim-
ilarity transformation of the governing partial differential equations of fluid laminar
boundary layer has provided the possibility to realize such derivation. It is shown
that in these studies the velocity component method has its advantages over the
Falkner–Skan transformation for the treatment of variable thermophysical proper-
ties and other various physical factors. On this basis, Shang and Takhar [10] clarified
the relationships of heat, momentum, and mass transfer of laminar fluid free convec-
tion between inclined and vertical cases for consideration of variable thermophysical
properties.

In this chapter, I will introduce the exact relationships of heat, momentum, and
mass transfer between inclined and vertical cases with consideration of variable ther-
mophysical properties in order to satisfy the requirement in industrial applications.
To this end, the governing equations of laminar free convection of fluid in the inclined
case are transformed by means of a developed similarity transformation approach,
viz, the velocity component method, instead of traditional Falkner–Skan type of
transformation. Meanwhile, the suitable forms of some dimensionless variables such
as an appropriate suitable local Grashof number Grx,∞ and suitable dimensionless
velocity components for the free convection are proposed. It will be found that the
formation of the transformed dimensionless governing equations for the inclined case
is fully same as those for the corresponding vertical cases. Then, it is obvious that,
except the different assumption of local Grashof number and dimensionless velocity
components, the prediction correlations of heat transfer, momentum transfer, and
mass flow rate for fluid laminar free convection for the vertical case presented in the
previous chapters can be completely taken as those for the related inclined case.

10.2 Fluid Laminar Free Convection on Inclined Plate

10.2.1 Physical Model and Basic Equations

The physical model and co-ordinate system are shown schematically in Fig. 10.1.
An isothermal inclined flat plate is suspended in a quiescent liquid. The surface
temperature is tw and the fluid bulk temperature is t∞. It is assumed that tw is not
equal to t∞, so that laminar free convection can be produced easily on the inclined
surface in both the cases as shown in Fig. 10.1a, b, respectively. The governing
partial differential equations for mass, momentum, and energy for consideration of
variable thermophysical properties applied to the liquid laminar free convection on

http://dx.doi.org/10.1007/978-3-642-28983-5_4
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Fig. 10.1 Physical model and coordinate system. a Ascending flow on the inclined surface (tw >
t∞). b Falling flow on the inclined surface (tw < t∞)

the inclined surface are

∂

∂x
[ρ(wx )i ] + ∂

∂y

[
ρ(wy)i

] = 0 (10.1)

ρ

[
(wx )i

∂(wx )i

∂x
+ (wy)i

∂(wx )i

∂y

]
= ∂

∂y

[
μ
∂(wx )i

∂y

]
+ g |ρ∞ − ρ| cos γ (10.2)

ρcp

[
(wx )i

∂t

∂x
+ (wy)i

∂t

∂y

]
= ∂

∂y

(
λ
∂t

∂y

)
(10.3)

where γ expresses the inclined angle of the plate. Here, the buoyancy fact |ρ∞ − ρ|
is taken as the absolute value because its direction is same as that of the velocity
component (wx )i .

The boundary conditions are

y = 0 : (wx )i = 0, (wy)i = 0, t = tw (10.4)

y → ∞ : (wx )i = 0, t = t∞ (10.5)

10.2.2 Similarity Transformation of the Basic Equations

For similarity transformation of the basic equations, we use the velocity component
method which was developed in Refs. [7–9] and presented in Chaps. 5–7. If subscripts
i and v are taken to express the case on the isothermal inclined and vertical surfaces,
respectively, for laminar free convection, we assume the following dimensionless
co-ordinate variables for similarity transformation of the above governing partial
differential equations of liquid laminar free convection on inclined plate:

http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_7
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ηi = y

x

[
1

4
(Grx,∞)i

]1/4

(10.6)

where ηi is the dimensionless co-ordinate variable for boundary layer. The local
Grashof number (Grx,∞)i can be assumed to be

(Grx,∞)i = g cos γ |ρ∞/ρw − 1| x3

ν2∞
(10.7)

The dimensionless temperature is given by

θ = t − t∞
tw − t∞

(10.8)

The dimensionless velocity components are assumed to be

(Wx )i =
(

2
√

g cos γ x |ρ∞/ρw − 1|1/2
)−1

(wx )i (10.9)

(Wy)i =
{

2
√

g cos γ x |ρ∞/ρw − 1|1/2
[

1

4
(Grx,∞)i

]−1/4
}−1

(wy)i (10.10)

With the above similarity variables defined in Eqs. (10.6)–(10.10), Eqs. (10.1)–(10.3)
with the boundary conditions (10.4) and (10.5) can be transformed into the following
governing ordinary differential equations:

2(Wx )i − η
d(Wx )i

dηi
+ 4

d(Wy)i

dηi
− 1

ρ

dρ

dηi

[
ηi (Wx )i − 4(Wy)i

] = 0 (10.11)

ν∞
ν

[
(Wx )i

(
2(Wx )i − ηi

d(Wx )i

dηi

)
+ 4(Wy)i

d(Wx )i

dηi

]

= d2(Wx )i

dη2
i

+ 1

μ

dμ

dηi

d(Wx )i

dηi
+ ν∞

ν

ρ∞
ρ

− 1
ρ∞
ρw

− 1
(10.12)

Pr
ν∞
ν

[−ηi (Wx )i + 4(Wy)i
] dθ

dηi
= d2θ

dη2
i

+ 1

λ

dλ

dηi

dθ

dηi
(10.13)

ηi = 0 : (Wx )i = 0, (Wy)i = 0, θ = 1 (10.14)

ηi → 0 : (Wx )i = 0, θ = 0 (10.15)

The derivation processes for Eqs. (10.11)–(10.13) are described in Appendix A
in detail.
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10.2.3 Relationships of Momentum, Heat, and Mass Transfer
Between Inclined and Vertical Cases

For heat transfer
Equations (10.11)–(10.13) and their boundary conditions Eqs. (10.14)–(10.15) are

dimensionless forms of the equations of liquid laminar free convection in the inclined
case. They are completely identical to Eqs. (8.23)–(8.27) for the vertical case in
Chap. 8. Therefore, for same fluid laminar free convection with same boundary tem-
perature conditions tw and t∞, we have

−
[(

dθ

dη

)

η=0

]

i

= −
[(

dθ

dη

)

η=0

]

v

. (10.16)

With the same derivation as that in Chap. 6, the correlation for

[(
dθ
dη

)

η=0

]

i
in the

following form for water laminar free convection can be taken for consideration of
variable thermophysical properties:

−
[(

dθ

dη

)

η=0

]

i

= −
[(

dθ

dη

)

η=0

]

= 0.5812Pr0.301∞ (1.7 < Pr∞ < 11.3)

(10.17)
where the liquid bulk temperature t∞ is defined as that of reference Prandtl number
Pr∞.

In addition, the heat transfer equations for laminar free convection on vertical flat
plate can be followed as those on inclined plate, i.e.,

The local heat transfer rate qx at position x per unit area from the surface of the
plate to the gas will be

(qx)i = −λw(tw − t∞)
(

1

4
Grx,∞

)1/4

i
x−1

(
dθ

dη

)

η=0
(8.29i)

The local heat transfer coefficient αx , defined as qx = αx (Tw − T∞), will be
given by

(αx)i = −λw
(

1

4
Grx,∞

)1/4

i
x−1

(
dθ

dη

)

η=0
(8.30i)

The local Nusselt number defined by Nux,w = αx x
λw

will be

(Nux,w)i =
(

1

4
Grx,∞

)1/4

i

(
−dθ

dη

)

η=0
(8.31i)

http://dx.doi.org/10.1007/978-3-642-28983-5_8
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Total heat transfer rate for position x = 0 to x with width of b on the plate is an
integration Qx = ∫∫

A qx dA = ∫ x
0 qx bdx , and hence

(Qx)i = 4

3
bλw(tw − t∞)

(
1

4
Grx,∞

)1/4

i

(
−dθ

dη

)

η=0
(8.32i)

The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

(Qx )i = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4 (
−dθ

dη

)

η=0
(6.33i)

The average heat transfer coefficient αx defined as Qx = αx (Tw − T∞) is
expressed as

(αx)i = 4

3
λw

(
1

4
Grx,∞

)1/4

i
x−1

(
−dθ

dη

)

η=0
(8.34i)

The average Nusselt number is defined as Nux,w = αx x
λw

, and hence

(Nux,w)i = 4

3

(
1

4
Grx,∞

)1/4

i

(
−dθ

dη

)

η=0
(8.35i)

Obviously, for practical calculation of heat transfer, only the wall dimensionless

temperature gradient
(
− dθ

dη

)

η=0
dependent on the solution of governing equations

is no-given variable.
While, the corresponding practical prediction equations on heat transfer of water

laminar free convection on an inclined flat plate will be, respectively,

(qx)i = 0.5812λw(tw − t∞)
(

1

4
Grx,∞

)1/4

i
x−1 Pr0.301∞ (8.29iw)

(αx)i = 0.5812λw

(
1

4
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)1/4

i
x−1 Pr0.301∞ (8.30iw)
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(
1

4
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i
Pr0.301∞ (8.31iw)

(Qx)i = 0.5812 × 4
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1

4
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i
Pr0.301∞ (8.33iw)
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(αx)i = 0.5812 × 4

3
λw

(
1

4
Grx,∞

)1/4

i
x−1 Pr0.301∞ (8.34iw)

(Nux)i = 0.5812 × 4

3

(
1

4
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)1/4

i
Pr0.301∞ (8.35iw)

From definitions of local Grashof number for the inclined and vertical cases
defined in Eqs. (10.7) and (8.10), respectively, we obtain the following equation:

(Grx,∞)i
(Grx,∞)v

= cos γ (10.18)

From the definition of local Nusselt number of laminar free convection, we have

(Nux,w)i

(Nux,w)v
=

− ( 1
4 Grx,∞

)1/4
i

[(
dθ
dη

)

η=0

]

i

− ( 1
4 Grx,∞

)1/4
v

[(
dθ
dη

)

η=0

]

v

= cos1/4 γ (10.19)

For momentum transfer
Since the dimensionless governing Eqs. (10.11)–(10.13) are completely identical

to Eqs. (8.23)–(8.25), the solutions for dimensionless velocity components both for
the inclined and vertical cases for liquid laminar free convection are identical, i.e.,

(Wx )i = (Wx )v (10.20)

(Wy)i = (Wy)v (10.21)

Combining Eq. (10.20) with Eqs. (10.9) and (8.8), we have

(
2
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= cos1/2 γ (10.22)

Combining Eq. (10.21) with Eqs. (10.10) and (8.9), we have
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(wy)i

(wy)v
= cos1/4 γ (10.23)

The governing basic equations and relationships of momentum and heat transfer
between the inclined and vertical cases for liquid laminar free convection are sum-
marized in Table 10.1.

10.3 Gas Laminar Free Convection on Inclined Plate

In principle, the governing equations of laminar free convection of liquid are com-
pletely suitable to those of gas. Then, the relationship equations between the inclined
and vertical for liquid laminar free convection derived in Sect. 10.2 are completely
suitable to those of gas laminar free convection.

However, for convenience, it is necessary to use the temperature parameter method
for the expression of gas density variation with absolute temperature, i.e.,

ρ

ρ∞
= T∞

T
(10.24)

to rewrite the equations for buoyancy factor, local Grashof number, and velocity
components as follows for gas laminar free convection.

For inclined case:
The buoyancy force is expressed as

g |ρ∞ − ρ| cos γ = ρg

∣∣∣∣
T − T∞

T∞

∣∣∣∣ cos γ (10.25)
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The local Grashof number is expressed as

(Grx,∞)i = g cos γ |Tw/T∞ − 1| x3

ν2∞
(10.26)

The dimensionless velocity components are

(Wx )i =
(

2
√

g cos γ x |Tw/T∞ − 1|1/2
)−1

(wx )i (10.27)

(Wy)i =
{

2
√

g cos γ x |Tw/T∞ − 1|1/2
[

1

4

(
Grx,∞

)
i

]−1/4
}−1

(wy)i (10.28)

For vertical case:

The buoyancy force is expressed as

g(ρ∞ − ρ) = ρg
T − T∞

T∞
(10.29)

The local Grashof number is expressed as

(
Grx,∞

)
v

= g |Tw/T∞ − 1| x3

ν2∞
(10.30)

The dimensionless velocity components are

(Wx )v =
(

2
√

gx |Tw/T∞ − 1|1/2
)−1

(wx )v (10.31)

(Wy)v =
{

2
√

gx |Tw/T∞ − 1|1/2
[

1

4

(
Grx,∞

)
v

]−1/4
}−1

(wy)v (10.32)

Furthermore, with the simple power law of gas, the buoyancy factor
ρ∞
ρ

−1
ρ∞
ρw

−1
can be

transformed into
ρ∞
ρ

− 1
ρ∞
ρw

− 1
=

T
T∞ − 1
Tw
T∞ − 1

= T − T∞
Tw − T∞

= θ

Then, Eq. (10.12) is transformed into equation

ν∞
ν

[
(Wx )i

(
2(Wx )i − ηi

d(Wx )i

dηi

)
+ 4(Wy)i
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dηi
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dη2
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+ 1

μ

dμ

dηi

d(Wx )i

dηi
+ ν∞

ν
θ (10.33)
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The dimensionless governing Eqs. (10.11), (10.13), and (10.33) for fluid laminar free
convection for inclined case are completely identical to those for vertical case for gas
laminar free convection. Then, the following curve-fitting formulae of dimensionless
temperature gradient are suitable both to inclined and vertical cases for laminar free
convection of diatomic gases, air, and water vapor:

[(
dθ

dη

)

η=0

]

i

=
[(

dθ

dη

)

η=0

]

v

= ψ(Pr)

(
Tw
T∞

)−m

(10.34)

where

ψ(Pr) = (0.567 + 0.186 · Ln(Pr)) (6.48)

m = 0.35nλ + 0.29nμ + 0.36 for Tw/T∞ > 1 (6.49)

m = 0.42nλ + 0.34nμ + 0.24 for Tw/T∞ > 1 (6.50)

Obviously, the heat transfer Eqs. (8.29i)–(8.35i) for laminar free convection on ver-
tical flat plate will also be followed, respectively, as those for gas laminar free con-
vection on inclined plate, i.e.,

(qx)i = λw(tw − t∞)
(
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4
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While, the corresponding practical prediction Eqs. (6.36*)–(6.42*) on heat trans-
fer of gas laminar free convection on an vertical flat plate will be, respectively,
followed as those on inclined flat plate, i.e.,

(qx)i = λw(Tw − T∞)
(

1

4
Grx,∞

)1/4

i
x−1ψ(Pr)

(
Tw
T∞

)−m

(6.36*)

(αx )i = −λw
(

1

4
Grx,∞

)1/4

i
x−1ψ(Pr)

(
Tw
T∞

)−m

(6.37*)

(Nux,w)i =
(

1

4
Grx,∞

)1/4

i
ψ(Pr)

(
Tw
T∞

)−m

(6.38*)

(Qx )i = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4

ψ(Pr)

(
Tw
T∞

)−m

(6.39*)

Qx = 4

3
bλw(Tw − T∞)

(
1

4
Grx,∞

)1/4

ψ(Pr)

(
Tw
T∞

)−m

(6.40*)

(αx )i = 4

3
λw

(
1

4
Grx,∞

)1/4

i
x−1ψ(Pr)

(
Tw
T∞

)−m

(6.41*)

(Nux,w)i = 4

3

(
1

4
Grx,∞

)1/4

i
ψ(Pr)

(
Tw
T∞

)−m

. (6.42*)

where
ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1) (6.48)

m = 0.64nµλ + 0.36 = 0.35nλ + 0.29nµ + 0.36 (Tw/T∞ > 1) (6.49)

m = 0.76nμλ + 0.24 = 0.42nλ + 0.34nμ + 0.24 (Tw/T∞ < 1) (6.50)

10.4 Summary

So far, the governing equations of fluid laminar free convection both with the vertical
and inclined cases, and the relationships for heat, momentum, and mass transfer
between the vertical and inclined cases are summarized in Table 10.1.

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6
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10.5 Remarks

In this chapter, the new similarity analysis method is applied to the similarity trans-
formation of the governing partial differential equations of laminar free convection
on inclined plate. Such transformed governing ordinary differential equations are
same as those of the corresponding equations on the vertical plate; then, they have
the same numerical solutions and prediction equations on heat transfer. Finally, the
following simple and direct correlations for describing the transformations of the
velocity components, heat transfer, and mass flow rate from the vertical case into the
inclined case for the free convection are derived:

(wx )i

(wx )v
= cos1/2 γ,

(wy)i

(wy)v
= cos1/4 γ,

(Nux,w)i

(Nux,w)v
= cos1/4 γ and

(Gx )i

(Gx )v
= cos1/4 γ

The successful derivation for the relationships of heat, momentum, and mass transfer
for laminar free convection between the inclined and vertical plates, in this chapter,
once again reveals the advantage of the new similarity analysis method over the tradi-
tional Falkner–Skan transformation, for studying laminar boundary layer problems.

10.6 Calculation Example

Question:

A flat plate with b = 1 m in width and x = 0.3 m in length is suspended vertically
in air. The ambient temperature is t∞ = 20 ◦C. Calculate the free convection heat
transfer of the plate for the temperature ratio Tw/T∞ = 1.7. What is its heat transfer
rate, if the plate’s inclined angle is 45◦.

Solution:

From t∞ = 20 ◦C and Tw/T∞ = 1.7, we have Tw = 498.1 K or Tw = 225.1 ◦C.
The air physical properties are as follows: kinetic viscosity is ν∞ = 15.06 ×

10−6 m2/s at t∞ = 20 ◦C, λw = 4.07×10−2 W/(m ◦C) at Tw = 225.1 ◦C. From
Tables 4.1 and 4.3, we get nμ = 0.68, nλ = 0.81, and Pr = 0.7 for air.

1. For vertical case:

From Eq. (5.51), the local Nusselt number is expressed as

(Nux,w)v = −
(

1

4
Grx,∞

)1/4

v

(
dθ

dη

)

η=0

where (Nux,w)v is defined as

http://dx.doi.org/10.1007/978-3-642-28983-5_4
http://dx.doi.org/10.1007/978-3-642-28983-5_4
http://dx.doi.org/10.1007/978-3-642-28983-5_5
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(Nux,w)v = (αx )vx

λw

The local Grashof number is evaluated as

(Grx,∞)v = g |Tw/T∞ − 1| x3

ν2∞

= 9.8 × |(498.1/293 − 1| × 0.33

(15.06 × 10−6)2

= 0.81665 × 109 < 109

Then, the flow is laminar free convection.
According to Eqs. (5.54) and (5.55), the temperature gradient is expressed as

−
(

dθ

dη

)

η=0
= ψ(Pr)

(
Tw
T∞

)−m

where parameter m is expressed as

m = 0.35nλ + 0.29nµ + 0.36

= 0.35 × 0.81 + 0.29 × 0.68 + 0.36 = 0.8407

for Tw/T∞ >1. Then,

−
(

dθ

dη

)

η=0
= ψ(Pr)

(
Tw
T∞

)−m

= 0.32048

On these bases, (Nux,w)v can be evaluated as follows:

(Nux,w)v = −
(

1

4
Grx,∞

)1/4

v

(
dθ

dη

)

η=0

=
(

1

4
× (0.81665 × 109)

)1/4

× 0.32048

= 38.3085

With the definition of local Nusselt number for vertical case, Nux,w = αx x
λw

, the
local heat transfer coefficient for vertical case can be calculated as

(αx )v = (Nux,w)v
λw

x

= 38.3085 × 0.0407

0.3
= 5.197 W/(m2 K)

http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_5


10.6 Calculation Example 203

The average heat transfer coefficient can be calculated as

(αx )v = 4

3
(αx )v

= 4

3
× 5.197

= 6.9296 W/(m2 K)

The heat transfer rate of the free convection on the vertical plate is

(Qx )v = (αx )v × (Tw − T∞)× bx

= 6.9296 × (498.1 − 293)× 1 × 0.3

= 426.38 W

2. For inclined case:

From Table 9.2, the local Nusselt number for inclined case can be expressed as

(Nux,w)i = (Nux,w)v · cos1/4 γ

= 38.3085 × · cos1/4(45o)

= 35.129

With the definition of local Nusselt number for inclined case, Nux,w = αx x
λw

, the
local heat transfer coefficient for inclined case can be calculated as

(αx )i = (Nux,w)i
λw

x

= 35.129 × 4.07 × 10−2

0.3
= 4.7658 W/(m2 K)

The average heat transfer coefficient can be calculated as

(αx )i = 4

3
(αx )i

= 4

3
× 4.7658

= 6.3544 W/(m2K)

The heat transfer rate of the free convection on the inclined plate is

http://dx.doi.org/10.1007/978-3-642-28983-5_9
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(Qx )i = (αx )i × (Tw − T∞)× bx

= 6.3544 × (498.1 − 293)× 1 × 0.3

= 391 W

10.7 Question

1. How to understand the identity of laminar free convection for inclined and vertical
gases?

10.8 Exercise

1. Please explain the identity of the governing mathematical models between the
laminar free convection on the inclined and vertical cases.

Appendix A Derivation of Eqs. (10.1)–(10.3)

A1. Derivation of Eq. (10.1)

Equation (10.1) can be changed to

ρ

[
∂(wx )i

∂x
+ ∂(wy)i

∂x

]
+ (wx )i

∂ρ

∂x
+ (wy)i

∂ρ

∂y
= 0 (10.1a)

With the dimensionless variables assumed in Eqs. (10.6), (10.7), (10.9), and (10.10),
the following correlations are obtained:

∂(wx )i

∂x
=

[

2
√

gx

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2
]

d(Wx )i

dηi

∂ηi

∂x
cos γ

+ 1

2
x− 1

2

[

2
√

g

∣∣
∣∣
ρ∞
ρw

− 1

∣∣
∣∣

1/2
]

(Wx )i cos1/2 γ

where

∂ηi

∂x
= ∂

∂x

[
y

x

(
1

4
Grx,∞

)1/4

i

]
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= ∂

∂x

⎡

⎢
⎣y

⎛

⎝1

4

g
∣
∣∣ρ∞
ρw

− 1
∣
∣∣ x−1

ν2∞

⎞

⎠

1/4⎤

⎥
⎦

= −1

4

⎡

⎢
⎣y

⎛

⎝1

4

g
∣∣∣ρ∞
ρw

− 1
∣∣∣

ν2∞

⎞

⎠

1/4⎤

⎥
⎦ x= 5

4

= −1

4

⎡

⎢
⎣y

⎛

⎝1

4

g
∣∣∣ρ∞
ρw

− 1
∣∣∣ x3

ν2∞

⎞

⎠

1/4⎤

⎥
⎦ x=2

= −1

4
x−1ηi

Then,

∂(wx )i

∂x
=

[
2
√

gx
ρ∞
ρw

− 11/2
]

d(Wx )i

dηi

(
−1

4
x−1ηi

)
cos1/2 γ

+ 1

2
x− 1

2

[

2
√

g

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2
]

(Wx )i cos1/2 γ

= −1

2

[√
g

x

∣
∣∣∣
ρ∞
ρw

− 1

∣
∣∣∣

1/2
]

η
d(Wx )i

dηi
cos1/2 γ

+
[√

g

x

∣∣∣
∣
ρ∞
ρw

− 1

∣∣∣
∣

1/2
]

(Wx )i cos1/2 γ

=
√

g

x

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2

cos1/2 γ

(
(Wx )i − 1

2
ηi

d(Wx )i

dηi

)
(A1)

∂(wy)i

∂y
= 2

√
g

x

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2

cos1/2 γ
d(Wy)i

dη
(A2)

∂ρ

∂x
= dρ

dηi

∂ηi

∂x
= −1

4
ηi x−1 dρ

dηi
(A3)

∂ρ

∂y
= dρ

dηi

∂ηi

∂y
= dρ

dηi

[
1

4

(
Grx,∞

)
i

]1/4

i
x−1 (A4)

With Eqs. (A1)–(A4), Eq. (10.1a) can be transformed into
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ρ

[√
g

x

∣∣
∣∣
ρ∞
ρw

− 1

∣∣
∣∣

1/2

cos1/2 γ

(
(Wx )i − 1

2
ηi

d(Wx )i

dηi

)

+2

√
g

x

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2

cos1/2 γ
d(Wy)i

dηi

]

+ 2
√

gx cos γ |ρ∞/ρw − 1|1/2 (Wx )i

(
−1

4
ηi x−1 dρ

dη

)

+ 2
√

gx cos γ |ρ∞/ρw − 1|1/2
[

1

4

(
Grx,∞

)
i

]−1/4

(Wy)i
dρ

dηi

(
1

4
Grx,∞

)1/4

i
x−1

= 0 (A5)

Equation (A5) is divided by
√

g cos γ
x

∣∣∣ρ∞
ρw

− 1
∣∣∣
1/2

then it is simplified to

2(Wx )i − η
d(Wx )i

dηi
+ 4

d(Wy)i

dηi
− 1

ρ

dρ

dηi

[
ηi (Wx )i − 4(Wy)i

] = 0 (10.11)

This is the dimensionless continuity equation of fluid laminar free convection for
inclined case.

A2. Derivation of Eq. (10.2)

Equation (10.2) is rewritten as

ρ

[
(wx )i

∂(wx )i

∂x
+ (wy)i

∂(wx )i

∂y

]
= μ

∂(2wx )i

∂x2 + ∂(wx )i

∂y

∂μ

∂y
+ g |ρ∞ − ρ| cos γ

(10.2a)
where

∂(wx )i

∂y
= d(Wx )i

dηi

∂ηi

∂y
= 2

√
gx

∣∣∣∣
ρ∞
ρw

− 1
1/2

∣∣∣∣

1/2 d(Wx )i

dηi

∂ηi

∂y
cos1/2 γ

∂ηi

∂y
= x−1

[
1

4

(
Grx,∞

)
i

]1/4

i

Then,

∂(wx )i

∂y
= 2

√
gx

∣∣
∣∣
ρ∞
ρw

− 1

∣∣
∣∣

1/2 d(Wx )i

dηi
x−1

[
1

4

(
Grx,∞

)
i

]1/4

i
cos1/2 γ (A6)
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∂2wx

∂y2 = 2
√

gx

∣
∣∣∣
ρ∞
ρw

− 1

∣
∣∣∣

1/2 d2(Wx )i

dη2
i

x−1
[

1

4

(
Grx,∞

)
i

]1/4

i

∂ηi

∂y
cos1/2 γ

= 2
√

gx

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2 d2(Wx )i

dη2
i

x−1
[

1

4

(
Grx,∞

)
i

]1/4

x−1

×
[

1

4

(
Grx,∞

)
i

]1/4

cos1/2 γ

= 2
√

gx

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2 d2(Wx )i

dη2
i

(
1

4
Grx,∞)1/2i x−2 cos1/2 (A7)

∂μ

∂y
= dμ

dηi

∂ηi

∂y

= dμ

dηi

(
1

4
Grx,∞

)1/4

x−1 (A8)

With (A6)–(A8), Eq. (10.2a) is changed into

ρ

[

2
√

gx cos γ |ρ∞/ρw − 1|1/2 (Wx )i

√
g

x

∣
∣∣∣
ρ∞
ρw

− 1

∣
∣∣∣

1/2

cos1/2 γ

(
(Wx )i − 1

2
η

d(Wx )i

dηi

)
+ 2

√
gx cos γ |ρ∞/ρw − 1|1/2

[
1

4

(
Grx,∞

)
i

]−1/4

×(Wy)i 2
√

gx

∣∣∣∣
ρ∞
ρw

− 1

∣∣∣∣

1/2 d(Wx )i

dηi
x−1

[
1

4

(
Grx,∞

)
i

]1/4

i
cos1/2 γ

]

= 2μ
√

gx

∣
∣∣∣
ρ∞
ρw

− 1

∣
∣∣∣

1/2 d2(Wx )i

dη2

[
1

4

(
Grx,∞

)
i

]1/2

x−2 cos1/2 γ

+ 2
√

gx

∣∣
∣∣
ρ∞
ρw

− 1

∣∣
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1/2 d(Wx )i

dηi
x−1

[
1

4

(
Grx,∞

)
i

]1/4

i
cos1/2 γ

dμ

dηi

×
[

1

4

(
Grx,∞

)
i

]1/4

i
x−1 + g |ρ∞ − ρ| cos γ (A9)

With definition of
(
Grx,∞

)
i , Eq. (A9) is rewritten as

ρ

[

2
√

gx cos γ |ρ∞/ρw − 1|1/2 (Wx )i

√
g

x

∣∣∣
∣
ρ∞
ρw

− 1

∣∣∣
∣

1/2

cos1/2 γ

×
(
(Wx )i − 1

2
η

d(Wx )i

dη

)
+ 2

√
gx cos γ |ρ∞/ρw − 1|1/2

×(Wy)i 2
√

gx

∣∣
∣∣
ρ∞
ρw

− 1

∣∣
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1/2 d(Wx )i

dηi
x−1 cos1/2 γ

]
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= 2μ
√

gx

∣∣∣
∣
ρ∞
ρw

− 1

∣∣∣
∣

1/2 d2Wx

dη2
i

[
1

4

g cos γ |ρ∞/ρw − 1| x3

ν2∞

]1/2

x−2 cos1/2 γ

+ 2
√

gx

∣∣∣
∣
ρ∞
ρw

− 1

∣∣∣
∣

1/2 d(Wx )i

dηi
x−1

[
1

4

(
g cos γ |ρ∞/ρw − 1| x3

ν2∞

)]1/2

i

× cos1/2 γ
dμ

dηi
x−1 + g |ρ∞ − ρ| cos γ (A10)

Equation (A10) is divided by ρg
∣∣∣ρ∞
ρw

− 1
∣∣∣ cos γ , and simplified to

[

2
√

x(Wx )i

√
1

x

(
(Wx )i − 1

2
η

d(Wx )i

dηi

)
+ 2

√
x(Wy)i 2

√
x

d(Wx )i

dηi
x−1

]

= 2ν
√

x
d2(Wx )i

dη2
i

[
1

4

x3

ν2∞

]1/2

x−2 + 2

ρ

√
x

d(Wx )i

dηi
x−1

[
1

4

(
x3

ν2∞
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i

× dμ

dηi
x−1 + ρw

ρ

∣
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ρ∞ − ρ

ρ∞ − ρw

∣
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The above equation is divided by ν
ν∞ , and simplified to

ν∞
ν

[
2(Wx )i

(
(Wx )i − 1

2
ηi

d(Wx )i

dηi
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+ 2(Wy)i 2

d(Wx )i

dηi
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= d2(Wx )i

dη2
i
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ρ
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d(Wx )i

dηi
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4

(
1
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i
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dηi
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ρw
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ρ∞ − ρw

∣
∣∣∣

i.e.,

ν∞
ν

[
(Wx )i (2(Wx )i − ηi

d(Wx )i

dηi
)+ 4(Wy)i

d(Wx )i

dηi

]

= d2(Wx )i

dη2
i

+ 1

μ

d(Wx )i

dηi

dμ

dηi
+ ν∞
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ρw

ρ
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ρ∞ − ρw

∣
∣∣∣ (A11)

Because ρ∞−ρ
ρ∞−ρw is always positive, the above equation is rewritten as

ν∞
ν

[
(Wx )i (2(Wx )i − ηi

d(Wx )i

dηi
)+ 4(Wy)i

d(Wx )i

dηi

]
(10.12)

= d2(Wx )i

dη2
i

+ 1

μ

dμ

dηi

d(Wx )i

dηi
+ ν∞

ν

ρ∞
ρ

− 1
ρ∞
ρw

− 1
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This is the dimensionless momentum equation of fluid laminar free convection
for inclined case.

A3. Derivation of Eq. (10.3)

Equation (10.3) is rewritten as

ρcp

[
(wx )i

∂t

∂x
+ (wy)i

∂t

∂y

]
= λ

∂2t

∂y2 + ∂λ

∂y

∂t

∂y
(A12)

where
t = (tw − t∞)θ + t∞ (A13)

∂t

∂x
= −(tw − t∞)

dθ

dηi

(
1

4

)
ηx−1 (A14)

∂t

∂y
= (tw − t∞)

dθ

dηi

(
1

4
Grx,∞

)1/4

i
x−1 (A15)

∂2t

∂y2 = (tw − t∞)
d2θ

dη2
i

(
1

4
Grx,∞

)1/2

i
x−2 (A16)

∂λ

∂y
= dλ

dηi

(
1

4
Grx,∞

)1/4

i
x−1 (A17)

With Eqs. (A13)–(A17), Eq. (A12) becomes

ρcp
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i
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4
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i
x−1 (A18)
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Equation (A18) is divided by (tw − t∞), simplified to the following form by
consideration of the definition of Grashof number, Grx,∞:

ρcp
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]
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i
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The above equation is divided by
∣∣∣ρ∞
ρw

− 1
∣∣∣
1/2 √

g cos γ
x , then, we get

ρcp

[
−2(Wx )i

dθ

dηi

(
1

4

)
ηi + 2(Wy)i

dθ

dηi

]

= λ
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i

(
1
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1
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(
1
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1
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i

dθ
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(A19)

This equation is multiplied by 2ν∞
λ

and on simplification, finally becomes

ν∞
λ
ρcp

[
−(Wx )i

dθ

dηi
ηi + 4(Wy)i

dθ

dηi

]
= d2θ

dη2
i

+ 1

λ

dλ

dηi

dθ

dηi

i.e.,

Pr
ν∞
ν

[−ηi (Wx )i + 4(Wy)i
] dθ

dηi
= d2θ

dη2
i

+ 1

λ

dλ

dηi

dθ

dηi
(10.13)

This is the dimensionless energy equation of fluid laminar free convection for inclined
case.
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Chapter 11
Complete Mathematical Models
of Laminar Free Convection Film Boiling
of Liquid

Abstract The new similarity analysis method is successfully applied for complete
similarity transformation of the governing partial differential equations of laminar
free film boiling of subcooled liquid with consideration of coupled effects of variable
physical properties, where the laminar free film boiling of saturated liquid is only
regarded as its special case. The dimensionless velocity components as the solutions
for vapor and liquid films have definite physical meanings. It follows that the new
similarity analysis method is appropriate for extensive investigation of the two-phase
boundary layer problems with consideration of coupled effects of variable physical
properties, such as the temperature-dependent density, thermal conductivity, and
absolute viscosity of the medium of vapor and liquid films. The interfacial balance
equations between the vapor and liquid films are considered in detail, such as mass
flow rate balance, velocity component balance, shear force balance, temperature
balance, and energy balance.

11.1 Introduction

Bromley [1] first treated the laminar film boiling heat transfer of saturated liquid
from a horizontal cylinder, using a simple theoretical model. Later, analytical inves-
tigations [2–7] were made to analyze pool film boiling from a vertical plate, in which
only a few researches [5] and [7] took into account temperature-dependence of fluid
physical properties. McFadden and Grosh [5] developed the analysis of saturated
film boiling where the temperature-dependence of density and specific heat were
taken into account. Nishikawa, Ito, and Matsumoto [7] made an analysis of pool film
boiling as a variable property problem on the basis of the two-phase boundary layer
theory, but only the effect of variation of vapor’s physical properties with temperature
was examined in the range of lower degree of subcooling (Ts − T∞ = 0, 20, 40 ◦C).

However, in film boiling, the temperature difference between the heating surface
and bulk liquid is very large, where large superheated degrees on the surface and
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large subcooled degrees of liquid are often included. In Chaps. 6–8 it is shown that the
physical property variations of gas and liquid with temperature have great influences
on their free convection. Of course, they have definitely great effect on the film
boiling of liquid. Therefore, from now on, two chapters will be devoted in this
book to introduce the recent studies of Shang, Wang, and Zhong [8–10] on the film
boiling of liquid, respectively. In this chapter, the rigorous theoretical models for
film boiling of liquid along an isothermal vertical plate are established by means
of the new similarity analysis method. The purpose of this chapter is to set up a
theoretical foundation for the laminar free film boiling of subcooled liquid, and the
related boiling of saturated liquid is regarded as its special case.

11.2 Governing Partial Differential Equations

The analytical model and coordinating system used in laminar free film boiling
of liquid are shown in Fig. 11.1. The heated plate with uniform temperature Tw is
submerged vertically in stagnant liquid whose temperature is higher than the liquid
saturated temperatureTs. The bulk liquid temperature is less than the liquid saturated
temperature Ts. We assume that the heating surface of the plate is covered with
continuous laminar vapor film, which moves upward with the vapor. Thus, a two-
phase boundary layer is formed. Heat flux produced from the heating surface of the
plate transfers through the two-phase boundary layer to the bulk liquid. Meanwhile,
mass transfer is produced at the vapor–liquid interface due to the film boiling of liquid.

The governing conservation equations of mass, momentum, and energy conserva-
tion for steady laminar free convection of the laminar free film boiling of subcooled
liquid can be described as

Fig. 11.1 Physical model
and coordinate system of film
boiling of subcooled liquid

y 

x

wt

v l

w w ,xw

t

t

x,v x,l

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_8
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11.2.1 For Vapor Film

The governing conservation equations of mass, momentum, and energy conservation
of vapor film for steady laminar free convection of the laminar free film boiling of
subcooled liquid can be described as follows with consideration of variable physical
properties of vapor medium:

∂

∂x
(ρvwxv) + ∂

∂y
(ρvwyv) = 0 (11.1)

ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
= ∂

∂y

(
μv

∂wxv

∂y

)
+ g(ρl,∞ − ρv) (11.2)

ρvcpv

(
wxv

∂Tv

∂x
+ wyv

∂Tv

∂y

)
= ∂

∂y

(
λv

∂Tv

∂y

)
(11.3)

11.2.2 For Liquid Film

For the laminar free film boiling of subcooled liquid, the thermal boundary layer
of liquid appears together besides the velocity boundary layer. Also, the variable
physical properties must be considered in the following mass, momentum, and energy
governing partial differential equations for the liquid film:

∂

∂x
(ρlwx l) + ∂

∂y
(ρlwyl) = 0 (11.4)

ρl

(
wx l

∂wx l

∂x
+ wyl

∂wx l

∂y

)
= ∂

∂y

(
μl

∂wx l

∂y

)
+ g(ρl,∞ − ρl) (11.5)

ρlcpl

(
wx l

∂tl
∂x

+ wyl
∂tl
∂y

)
= ∂

∂y

(
λl

∂tl
∂y

)
(11.6)

11.2.3 For Boundary Conditions

The boundary conditions of the laminar free convection film boiling of subcooled
liquid are as follows with consideration of variable physical properties of both liquid
and vapor films:

y = 0 : wxv = 0, wyv = 0, Tv = Tw (11.7)

y = δv : wxv,s = wx l,s (11.8)

ρv,s

(
wxv

∂δv

∂x
− wyv

)
s

= ρl,s

(
wx l

∂δl

∂x
− wyl

)
s

(11.9)
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μv,s

(
∂wxv

∂y

)
s

= μl,s

(
∂wx l

∂y

)
s

(11.10)

−λv,s

(
∂Tv

∂y

)
y=δv

= hfgρl,s

(
wx l

∂δl

∂x
− wyl

)
s
− λl,s

(
∂tl
∂y

)
y=δv

(11.11)

T = Ts, (11.12)

y → ∞: wx l → 0, tl → t∞ (11.13)

Here, Eqs. (11.7)–(11.11) express physical matching conditions of the continuities
of velocity, mass flow rate, shear force, heat flux, and temperature at the vapor–liquid
interface.

In order to solve easily the governing partial differential equations, it is better to
transform them into the related identical dimensionless forms. In this purpose, the
present new similarity analysis method is carried out for their similarity transforma-
tion. At first, we introduce the following similarity variables:

11.3 Similarity Variables

Due to the two-phase boundary layer, there should be two sets of the transformation
variables: the transformation variables for vapor and liquid films.

11.3.1 For Vapor Film

For similarity transformation of the governing equations of the vapor film, the fol-
lowing similarity variables are up:

ηv is set up at first as the dimensionless coordinate variable, i.e.,

ηv =
(

1

4
Grxv,s

)1/4 y

x
(11.14)

where the local Grashof number Grxv,s is defined as

Grxv,s = g(ρl,∞/ρv,w − 1)x3

ν2
v,s

(11.15)

The dimensionless temperature is given as

θv = Tv − Ts

Tw − Ts
(11.16)
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The dimensionless velocity components are given as

Wxv = (2
√

gx(ρl,∞/ρv,w − 1)1/2)−1wxv (11.17)

Wyv =
(

2
√

gx(ρl,∞/ρv,w − 1)1/2
(

1

4
Grxv,s

)−1/4
)−1

wyv (11.18)

11.3.2 For Liquid Film

For similarity transformation of the governing equation for liquid film, the following
similarity variables are set up:

For liquid film, the dimensionless coordinate variable ηl is defined at first as
follows:

ηl =
(

1

4
Grx l,∞

)1/4 y

x
(11.19)

where the local Grashof number Grx l,∞ is defined as

Grx l,∞ = g(ρl,∞/ρl,s − 1)x3

νl,∞2 (11.20)

The dimensionless temperature is given as

θl = tl − t∞
ts − t∞

(11.21)

The dimensionless velocity components are defined as

Wx l = (2
√

gx(ρl,∞/ρl,s − 1)1/2)−1wx l (11.22)

Wyl =
(

2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grx l,∞

)−1/4
)−1

wyl (11.23)

11.4 Governing Ordinary Differential Equations

11.4.1 For Vapor Film

Consulting the derivations in Chap. 6 for laminar free convection of gas, respectively,
the governing partial differential Eqs. (11.1)–(11.3) for laminar free film boiling

http://dx.doi.org/10.1007/978-3-642-28983-5_6
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of liquid can be equivalently transformed into the following governing ordinary
differential equations (see the detailed transformation in Appendix A):

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
− 1

ρv

dρv

dηv
(ηvWxv − 4Wyv) = 0 (11.24)

νv,s

νv

[
Wxv

(
2Wxv − ηv

dWxv

dη

)
+ 4Wyv

dWxv

dηv

]

= d2Wxv

dη2
v

+ 1

μv

dμv

dηv

dWxv

dηv
+ νv,s

νv

ρv,w

ρv

ρl,∞ − ρv

ρl,∞ − ρv,w
(11.25)

Prv
νv,s

νv
(−ηvWxv + 4Wyv)

dθv

dηv
= d2θv

dη2
v

+ 1

λv

dλv

dηv

dθv

dηv
(11.26)

where Eqs. (11.24)–(11.26), respectively, express the mass, momentum and energy
equations of vapour film.

11.4.2 For Liquid Film

Consulting the derivations in Chap. 8 for laminar free convection of liquid, respec-
tively, the governing partial differential Eqs. (11.4)–(11.6) for laminar free convection
film boiling of liquid can be equivalently transformed into the following governing
ordinary differential equations (see the detailed transformation in Appendix A):

2Wx l − ηl
dWx l

dηl
+ 4

dWyl

dηl
− 1

ρ1

dρl

dηl
(ηlWx l − 4Wyl) = 0 (11.27)

νl,∞
νl

[
Wx l

(
2Wx l − ηl

dWx l

dηl

)
+ 4Wyl

dWx l

dηl

]

= d2Wx l

dη2
l

+ 1

μl

dμl

dηl

dWx l

dηl
+ νl,∞

νl

(
ρl,∞
ρl

− 1
)

(
ρl,∞
ρl,s

− 1
) (11.28)

Prl
νl,∞
νl

(−ηWx l + 4Wyl) = dθl

dη2
l

+ 1

λl

dλl

dηl

dθl

ηl
(11.29)

where Eqs. (11.27)–(11.29), respectively, express the mass, momentum, and energy
equations of liquid film.

http://dx.doi.org/10.1007/978-3-642-28983-5_8
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11.4.3 For Boundary Conditions

With the corresponding assumed variable equations mentioned above, the physi-
cal boundary conditions (11.7)–(11.13) for the laminar free film boiling of sub-
cooled liquid are transformed equivalently to the following ones, respectively (see
Appendix B):

ηv = 0: Wxv = 0, Wyv = 0, θv = 1 (11.30)

ηv = ηvδ(ηl = 0): Wx l,s =
(

ρl,∞
ρv,w

− 1

)1/2 (
ρl,∞
ρl,s

− 1

)−1/2

Wxv,s (11.31)

−Wyl = 1

4

ρv,s

ρl,s

(
νv,s

νl,∞

)1/2

(ρl,∞/ρv,w − 1)1/4(ρl,∞/ρl,s − 1)−1/4

×(ηvδWxv − 4Wyv) (11.32)
(

dWx l

dηl

)
ηl=0

= μv,s

μl,s

(
νl,∞
νv,s

) 1
2

(ρl,∞/ρv,w − 1)3/4

×(ρl,∞/ρl,s − 1)−3/4
(

dWxv

dηv

)
s

(11.33)

(
dθl

dηl

)
ηl=0

=

−λv,s(Tw − Ts)
(

dθv
dηv

)
ηv=ηvδ

(
νl,∞
νv,s

)1/2
(ρl,∞/ρv,w − 1)1/4

×(ρl,∞/ρl,s − 1)−1/4 + 4hfgρl,sνl,∞Wyl,s

−λl,s(ts − t∞)
(11.34)

θv = 0, θl = 1 (11.35)

ηl → ∞: Wx l → 0, θl → 0 (11.36)

For vapor film where Eqs. (11.31)–(11.35) express the physical matching conditions
such as velocity, local mass flux, shear force, heat flux, and temperature balances at
the vapor–liquid interface, respectively, Eqs. (11.30) and (11.36) express the related
conditions at the wall and bulk, respectively.

11.5 Identical Mathematical Models of Laminar
Free Convection Film Boiling of Saturated
or Subcooled Liquid

The laminar free convection film boiling of saturated liquid with the subcooled tem-
perature 	t∞ = ts − t∞ = 0 can be regarded as a special case of that of the film boil-
ing of subcooled liquid. It follows that such two boiling have identical mathematical
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model, and the above mathematical model of the laminar free convection film boiling
of subcooled liquid is completely suitable for that of saturated liquid, if the following
simplifications are done:

(i) The energy equation of liquid film Eq. (11.6) is omitted. Then, its related dimen-
sionless form, i.e., Eq. (11.29) is ignored.

(ii) The defined dimensionless temperature variable in Eq. (11.21) for liquid film
is omitted.

(iii) The liquid film heat conduction in the boundary condition Eq. (11.11) for energy
balance at the vapor–liquid interface is ignored as follows:

− λv,s

(
∂Tv

∂y

)
y=δv

= hfgρv,s

(
wxv

∂δxv

∂x
− wyv

)
s

(11.11sat)

Then, its corresponding dimensionless form, Eq. (11.34), should be simplified to

−λv,s(Tw − Ts)

(
dθv

dηv

)
s

(
νl,∞
νv,s

)1/2

(ρl,∞/ρv,w − 1)1/4

×(ρl,∞/ρl,s − 1)−1/4 + 4hfgρl,sνl,∞Wyl,s = 0 (11.34sat.)

Strictly speaking, the defined similarity variable Grx l,∞ in Eq.(11.20) should be zero
for laminar free convection film boiling of saturated liquid, since the liquid density
ρl,∞ at t∞ is equal to ρl,s at ts for the saturated situation. If so, it will be never possible
to do all above similarity transformation. For solving this problem, the temperature
t∞can be regarded very close to ts, so that the value of ρl,∞ is very close to the value
of ρl,s. For example, if the temperature relative deviation (ts − t∞)/ts is less than
an arbitrary small number ε, the film boiling of subcooled liquid will be very close
to that of saturated liquid. Such arbitrary number ε can be found out by using an
asymptotic approach.

The advantage of the above treatment is that the mathematical models of the
laminar free film boiling of subcooled and saturated liquids become identical.

11.6 Remarks

The new similarity analysis method is successfully applied for similarity transfor-
mation of the governing partial differential equations of laminar free film boiling
of subcooled liquid with consideration of coupled effects of variable physical prop-
erties. The governing partial differential equations of the laminar free film boiling
of saturated liquid are only their special case. The provided dimensionless velocity
components of vapor and liquid films have definite physical meanings, and then as
the solutions of the governing models, they can be understood easily. It follows that
the new similarity analysis method is appropriate for the treatment of the two-phase
boundary layer problems with consideration of variable physical properties.
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In this extensive investigation of the laminar free film boiling of liquid, the
temperature-dependent physical properties, such as density, thermal conductivity,
and absolute viscosity of the medium of vapor and liquid films are seriously taken
into account. Meanwhile, the interfacial balance equations between the vapor and liq-
uid films are considered in detail, such as mass flow rate balance, velocity component
balance, shear force balance, temperature balance, and energy balance.

11.7 Exercises

1. Which boundary conditions are considered at the vapor–liquid interface of laminar
free film boiling of subcooled liquid?

2. How do you know that the mathematical model of laminar free film boiling of
subcooled liquid covers the case for the saturated liquid?

3. Point out the physical property factors coupled with the governing ordinary dif-
ferential equations of laminar free film boiling of liquid.

4. Please point out the relation and difference of the laminar free film boiling of
liquid from laminar free convection boundary layers of liquid or gas.

5. How to use the system of governing mathematical model on laminar free convec-
tion film boiling of subcooled liquid to treat the issue on laminar free film boiling
of saturated liquid?

Appendix A Similarity Transformation for Eqs. (11.1)–(11.6)

Similarity transformation of partial differential equations of laminar free film boiling
of liquid is given below:

A1 For vapor film

Transformation of Eq. (11.1):

At first, Eq. (11.1) is rewritten as

ρv

(
∂wxv

∂x
+ ∂wyv

∂y

)
+ wxv

∂ρv

∂x
+ wyv

∂ρv

∂y
= 0 (A1)

With Eqs. (11.14), (11.15), (11.17), and (11.18), we can obtain the following corre-
lations:
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∂wxv

∂x
=

√
g

x
(ρl,∞/ρv,w − 1)1/2

(
Wxv − 1

2
ηv

dWxv

dη

)
(A1)

∂wyv

∂y
= 2

√
g

x

(
ρl,∞/ρv,w − 1

)1/2
(

dWyv

dηv

)
(A2)

∂ρv

∂x
= −1

4
ηvx−1 dρv

dηv
(A3)

∂ρv

∂y
= dρv

dηv

(
1

4
Grxv,s

)1/4

x−1 (A4)

With Eqs. (11.17), (11.18), and (A1)–(A4), the Eq. (A1) can be changed to

ρv

[√
g

x
(ρl,∞/ρν,w − 1)1/2

(
Wxv − 1

2
ην

dWxv

dη

)
+ 2

√
g

x
(ρl,∞/ρv,w − 1)1/2 dWyv

dηv

]

+ 2
√

gx(ρl,∞/ρv,w − 1)1/2Wx l

(
−1

4
ηvx−1 dρv

dηv

)

+ 2
√

gx(ρl,∞/ρv,w − 1)1/2
(

1

4
Grx l,∞

)−1/4

Wyl
dρv

dηv

(
1

4
Grx l,∞

)−1/4

x−1 = 0

The above equation is divided by (ρl,∞/ρv,w − 1)1/2
√

g
x and is simplified to

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
− 1

ρv

dρv

dηv
(ηvWxv − 4Wyv) = 0 (11.24)

Transformation of Eq. (11.2):
The Eq. (11.2) is rewritten as

ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
= μv

∂2wxv

∂y2 + ∂wxv

∂y

∂μv

∂y
+ g(ρl,∞ − ρv) (A6)

With the dimensionless transformation variables assumed in Eqs. (11.14), (11.15),
(11.17), and (11.18), we get

∂wxv

∂y
= 2

√
gx(ρl,s/ρv,w − 1)1/2 dWxv

dηv
x−1

(
1

4
Grxv,s

)1/4

(A7)

∂2wxv

∂y2 = 2
√

gx(ρl,s/ρv,w − 1)1/2 d2Wxv

dη2
v

x−1
(

1

4
Grxv,s

)1/4 (
1

4
Grxv,s

)1/4

x−1

= 2
√

gx(ρl,∞/ρv,w − 1)1/2 d2Wxv

dη2
v

(
1

4
Grxv,s

)
1/2

x−2 (A8)
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∂μv

∂y
= dμv

dηv

(
1

4
Grxv,s

)1/4

x−1 (A9)

With Eqs. (11.17), (11.18), and (A7)–(A9), Eq. (A6) will be changed to

ρv

[
2
√

gx(ρl,∞/ρv,w − 1)1/2Wxv

√
g

x
(ρl,∞/ρv,w − 1)1/2

(
Wxv − 1

2
ηv

dWxv

dη

)

+2
√

gx(ρl,∞/ρv,w − 1)1/2
(

1

4
Grxv,s

)−1/4

Wyv2
√

gx

× (ρl,∞/ρv,w − 1)1/2 dWxv

dηv
x−1

(
1

4
Grxv,s

)1/4
]

= μv2
√

gx(ρl,∞/ρv,w − 1)1/2 d2Wxv

dη2
v

(
1

4
Grxv,s

)1/2

x−2

+2
√

gx(ρl,∞/ρv,w − 1)1/2 dWxv

dηv
x−1

(
1

4
Grxv,s

)1/4 dμv

dηv

×
(

1

4
Grxv,s

)1/4

x−1 + g(ρl,∞ − ρv)

The above equation is divided by g(ρl,∞/ρv,w − 1) and with the definition of Grxv,s
the equation is further simplified to

ρv

[
2Wxv

(
Wxv

1

2
ηv

dWxv

dη

)
+ 4Wyv

dWxv

dηv

]

= μv
d2Wxv

dη2
v

1

νν,s
+ dWxv

dηv

1

νν,s

dμv

dην

+ ρl,∞ − ρv

ρl,∞/ρv,w − 1

The above equation is multiplied by 1
ρv

νv,s
νv

and further simplified to

νv,s

νv

[
Wxv

(
2Wxv − ηv

dWxv

dη

)
+ 4Wyv

dWxv

dηv

]

= d2Wxv

dη2
v

+ 1

μv

dμv

dηv

dWxv

dηv
+ νv,s

νv

ρv,w

ρv

ρl,∞ − ρ∞
ρv − ρv,w

(11.25)

Transformation of Eq. (11.3):
Equation (11.3) is first rewritten as

ρvcpv

(
wxv

∂Tv

∂x
+ wyv

∂Tv

∂y

)
= λv

∂2Tv

∂y2 + ∂λv

∂y

∂Tv

∂y
(A10)
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where
Tv = (Tw − Ts)θv + Ts (A11)

∂Tv

∂x
= −(Tw − Ts)

dθv

dηv

(
1

4

)
ηvvx−1 (A12)

∂Tv

∂y
= −(Tw − Ts)

dθv

dηv

(
1

4
Grxv,s

)1/4

x−1 (A13)

∂Tv

∂y
= −(Tw − Ts)

dθv

dηv

(
1

4
Grxv,s

)1/2

x−2 (A14)

∂Tv

∂x
= dλv

dηv

(
1

4
Grxv,s

)1/4

x−1 (A15)

With Eqs. (11.17), (11.18), and (A11)–(A15), Eq. (A10) will become

ρvcpv

{
2
√

gx(ρl,∞/ρv,w − 1)1/2Wxv

[
−(Tw − Ts)

dθv

dηv

(
1

4

)
ηvx−1

]

+ 2
√

gx(ρl,∞/ρv,w − 1)1/2
(

1

4
Grxv,s

)−1/4

Wyv

×
[
(Tw − Ts)

dθv

dηv

(
1

4
Gr′xv,s

)1/4

x−1

]}

= λvv(Tw − Ts)
d2θv

dη2
v

(
1

4
Grxv,s

)1/2

x−2 + dλv

dηv

(
1

4
Grxv,s

)1/4

x−1

×
[
(Tw − Ts)

dθv

dηv

(
1

4
Gr′xv,s

)1/4

x−1

]

The above equation is divided by (Tw − Ts) and is further simplified to

ρvcpv

{
2
√

gx(ρl,∞/ρv,w − 1)1/2Wxv

[
− dθv

dηv

(
1

4

)
ηvx−1

]

+ 2
√

gx(ρl,∞/ρv,w − 1)1/2Wyv

[
dθv

dηv
x−1

] }

= λv
d2θv

dη2
v

(
1

4
Grxv,s

)1/2

x−2 + dλv

dηv

(
1

4
Grxv,s

)1/2

x−2
[

dθv

dηv

]

The above equation is divided by
√

g
x (ρl,s/ρv,w − 1)1/2, and then is simplified to the

following form with consideration of the definition of Grxv,s:
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ρvcpv

{
Wxv

[
− dθv

dηv
ηv

]
+ 4Wyv

[
dθv

dηv

]}
= λv

d2θv

dη2
v

(
1

νv,s

)
+ dλv

dηv

(
1

νv,s

) [
dθv

dηv

]

The above equation is multiplied by νv,s
λv

and simplified to

Prv
νv,s

νv
(−ηvWxv + 4Wyv)

dθv

dηv
= d2θv

dη2
v

+ 1

λv

dλv

dηv

dθv

dηv
(11.26)

where Prv is, vapor Prandtl number, defined as Prv = μvcpv

λv

A2 For liquid film
After the assumptions of the dimensionless variables, the similarity transforma-

tions of the governing partial differential equations for liquid will be done as below:

Transformation of Eq. (11.4):
The similarity transformation of Eq. (11.4) is done, initially yielding

ρl

(
∂wx l

∂x
+ ∂Wyl

∂y

)
+ wx l

∂ρl

∂x
+ wyl

∂ρl

∂y
= 0 (A16)

With the similarity variables assumed in Eqs. (11.19), (11.20), (11.22), and (11.23),
we can obtain the following correlations:

∂wx l

∂x
=

√
g

x
(ρl,∞/ρl,s − 1)1/2

(
Wx l − 1

2
ηl

dWx l

dηl

)
(A17)

∂wyl

∂y
= 2

√
g

x
(ρl,∞/ρl,s − 1)1/2

(
dWyl

dηl

)
(A18)

∂ρl

∂x
= −1

4
ηlx

−1 dρl

dηl
(A19)

∂ρl

∂y
= dρl

dηl

(
1

4
Grx l,∞

)1/4

x−1 (A20)

With the above Eqs. (A17)–(A20), (A16) can be changed to

ρl

[√
g

x
(ρl,∞/ρl,s − 1)1/2

(
Wx l − 1

2
ηl

dWx l

dηl

)
+ 2

√
g

x
(ρl,∞/ρl,s − 1)1/2 dWyl

dηl

]

+ 2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l

(
1

4
ηlx

−1 dρl

dηl

)

+ 2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grx l,∞

)1/4

Wyl
dρl

dηl

(
1

4
Grx l,∞

)1/4

x−1 = 0

The above equation is divided by
√

g
x (ρl,∞/ρl,s − 1)1/2 and is further simplified to
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2Wx l − η1
dWx l

dηl
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(η1Wx l − 4Wyl) = 0 (11.27)

Transformation of Eq. (11.5):
Equation (11.5) is first rewritten as

ρl

(
wx l

∂wx l

∂x
+ wyl

∂wx l

∂y

)
= μl

∂2wx l

∂y2 + ∂wx l

∂y

∂μl

∂y
+ g(ρl,∞ − ρl) (A21)

With the similarity variables assumed in Eqs. (11.19), (11.20), (11.22), and (11.23)
we can obtain the following correlations:

∂wx l

∂y
= 2

√
gx(ρl,∞/ρl,s − 1)1/2 dWx l

dηl
x−1

(
1

4
Grx l,∞

)1/4

(A22)

∂2wx l

∂y2 = 2
√

gx(ρl,∞/ρl,s − 1)1/2 d2Wx l

dη2
l

x−1
(

1

4
Grx l,∞

)1/4 (
1

4
Grx l,∞

)1/4

x−1

= 2
√

gx(ρl,∞/ρl,s − 1)1/2 d2Wx l

dη2
l

(
1

4
Grx l,∞

)1/2

x−2 (A23)

∂μl

∂y
= dμl

dηl

(
1

4
Grx l,∞

)1/4

x−1 (A24)

With Eqs. (11.19), (11.20), (11.22), (11.23), and (A22)–(A24), Eq. (A21) becomes

ρl

[
2
√

gx(ρl,∞/ρl,s − 1)1/2Wxl

√
g

x
(ρl,∞/ρl,s − 1)1/2

(
Wxl − 1

2
ηl

dWxl

dηl

)

+ 2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grxl,∞

)−1/4

Wyl2
√

gx

× (ρl,∞/ρl,s − 1)1/2 dWxl

dηl
x−1

(
1

4
Grxl,∞

)1/4
]

= μl2
√

gx(ρl,∞/ρl,s − 1)1/2 d2Wxl

dη2
l

(
1

4
Grxl,∞

)1/2

x−2

+ 2
√

gx(ρl,∞/ρl,s − 1)1/2 dWxl

dηl
x−1

(
1

4
Grxl,∞

)1/4 dμl

dηl

×
(

1

4
Grxl,∞

)1/4

x−1 + g(ρl,∞ − ρl)

With the definition of Grx l,∞, the above equation is simplified to
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ρl

[
2
√

gx(ρl,∞/ρl,s − 1)1/2Wxl

√
g

x
(ρl,∞/ρl,s − 1)1/2

(
Wxl − 1

2
ηl

dWxl

dηl

)

+2
√

gx(ρl,∞/ρl,s − 1)1/2Wyl2
√

gx(ρl,∞/ρl,s − 1)1/2 dWxl

dηl
x−1

]

= μl2
√

gx(ρl,∞/ρl,s − 1)1/2 d2Wxl

dη2
l

(
1

4

g(ρl,∞/ρl,s − 1)x3

ν2
l,∞

)1/2

x−2

+ 2
√

gx(ρl,∞/ρl,s − 1)1/2 dWxl

dηl
x−1 dμl

dηl

(
1

4

g(ρl,∞/ρl,s − 1)x3

ν2
l,∞

)1/2

x−1

+ g(ρl,∞ − ρl)

The above equation is divided by g(ρl,∞/ρl,s − 1) and simplified to

ρl

[
2Wx l

(
Wx l − 1

2
ηl

dWx l

dηl

)
+ 4Wyl

dWx l

dηl

]

= μl
d2Wx l

dη2
l

1

νl,∞
+ dWx l

dηl

dμl

dηl

(
1

νl,∞

)
+ ρl,s

(ρl,∞ − ρl)

(ρl,∞ − ρl,s)

The above equation is multiplied by
νl,∞
μl

and simplified to

νl,∞
νl

[
Wx l

(
2Wx l − ηl

dWx l

dηl

)
+ 4Wyl

dWx l

dηl

]

= d2Wx l

dη2
l

+ 1

μl

dμl

dηl

dWx l

dηl
+ νl,∞

νl

(
ρl,∞
ρl

− 1
)

(
ρl,∞
ρl,s

− 1
) (11.28)

For transformation of Eq. (11.6):
Equation (11.6) is first rewritten as

ρlcpl

(
wx l

∂tl
∂x

+ wyl
∂tl
∂y

)
= λl

∂2tl
∂y2 + ∂λl

∂y

∂tl
∂y

(A25)

With the similarity variables assumed in Eqs. (11.19)–(11.23), the following corre-
lations are produced:

tl = (ts − t∞)θl + t∞ (A26)

∂tl
∂x

= −(ts − t∞)
dθl

dηl

(
1

4

)
ηlx

−1 (A27)
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∂tl
∂y

= (ts − t∞)
dθl

dηl

(
1

4
Grx l,∞

)1/4

x−1 (A28)

∂2tl
∂y2 = (ts − t∞)

d2θl

dη2
l

(
1

4
Grx l,∞

)1/2

x−2 (A29)

∂λl

∂y
= dλl

dη

(
1

4
Grx l,∞

)1/4

x−1 (A30)

With Eqs. (11.19), (11.20), and (A26)–(A30), the Eq. (A25) is transformed into

ρlcpl

[
2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l

(
−(ts − t∞)

dθl

dηl

(
1

4

)
ηlx

−1
)

+ 2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grx l,∞

)−1/4

Wyl(ts − t∞)
dθl

dηl

×
(

1

4
Grx l,∞

)−1/4

x−1

]

= λ1(ts − t∞)
d2θl

dη2
l

(
1

4
Grx l,∞

)1/2

x−2

+ dλl

dη

(
1

4
Grx l,∞

)−1/4

x−1(ts − t∞)
dθl

dηl

(
1

4
Grx l,∞

)1/4

x−1

With the definition of Grx l,∞, the above equation is simplified to

ρlcpl

[
2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l

(
−(ts − t∞)

dθl

dηl

(
1

4

)
ηlx

−1
)

+2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l(ts − t∞)
dθl

dηl
x−1

]

= λ1(ts − t∞)
d2θl

dη2
l

(
1

4

g(ρl,∞/ρl,s − 1)x3

ν1,∞

)1/2

x−2

+ dλl

dη
x−1(ts − t∞)

dθl

dηl

(
1

4

g(ρl,∞/ρl,s − 1)x3

ν1,∞

)1/2

x−1

The above equation is divided by
√

g
x (ρl,∞/ρl,s − 1)1/2(ts − t∞), and simplified to

ρlcpl

[
−Wx l

(
dθl

dηl
η1

)
+ 4Wyl

dθl

dηl

]
= λl

d2θl

dηl
+ l

ν2
l,∞

+ dλl

dη

dθl

dηl

1

νl,∞
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This equation is multiplied by
νl,∞
λl

and simplified to

Prl
νl,∞
νl

(−ηWx l + 4Wyl)
dθl

dηl
= d2θl

dη2
l

+ 1

λl

dλl

dηl

dθl

dηl
(11.29)

Appendix B Similarity Transformation for Boundary Condition
Equations

With the corresponding transformation variables the physical boundary conditions
(11.7)–(11.13) are transformed equivalently to the following ones, respectively:

Derivation of Eq. (11.7)
With the related defined variables in Eqs. (11.14), (11.16)–(11.18), Eq. (11.7) can

be easily derived to

ηl = 0: Wxv = 0, Wxv = 0, θl = 0 (11.30)

Derivation of Eq. (11.8)
With Eqs. (11.17) and (11.22), Eq. (11.8) can be easily changed to

2
√

gx(ρl,∞/ρv,w − 1)1/2Wxv = 2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l

i.e.,
Wx l = (ρl,∞/ρv,w − 1)1/2(ρl,∞/ρl,s − 1)−1/2Wxv (11.31)

Derivation of Eq. (11.9)
With Eqs. (11.17), (11.18), (11.22) and (11.23), Eq. (11.9) is changed to

ρv,s

[
2
√

gx(ρl,∞/ρv,w − 1)1/2Wxv
∂δv

∂x

−2
√

gx(ρl,∞/ρv,w − 1)1/2
(

1

4
Grxv,s

)−1/4

Wyv

]
s

= ρl,s

[
2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l
∂δl

∂x

−2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grx l,∞

)−1/4

Wyl

]
s

(B1)

With Eq. (11.14), the following equations will be obtained, respectively:
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δv = ηvδ

(
1

4
Grxv,s

)1/4

x

By using the definition of Grxv,s, we have

dδv

dx
= 1

4
ηvδ

(
1

4
Grxv,s

)−1/4

(B2)

Similarly, we have
dδl

dx
= 1

4
ηlδ

(
1

4
Grx l,∞

)−1/4

(B3)

With Eqs. (B2) and (B3), Eq. (B1) is changed to

ρv,s

[
2
√

gx(ρl,∞/ρv,w − 1)1/2Wxv

(
1

4
ηvδ

(
1

4
Grxv,s

)−1/4
)

−2
√

gx(ρl,∞/ρv,w − 1)1/2
(

1

4
Grxv,s

)−1/4

Wyv

]
s

= ρl,s

[
2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l

(
1

4
ηlδ

(
1

4
Grx l,∞

)−1/4
)

−2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grx l,∞

)−1/4

Wyl

]
s

(B4)

At the liquid–vapor interface, ηlδ = 0, then, the above equation is changed to

ρv,s

[
2
√

gx(ρl,∞/ρv,w − 1)1/2Wxv

(
1

4
ηvδ

(
1

4
Grxv,s

)−1/4
)

−2
√

gx(ρl,∞/ρv,w − 1)1/2
(

1

4
Grxv,s

)−1/4

Wyv

]
s

= ρl,s

[
−2

√
gx

(
ρl,∞/ρl,s − 1)1/2(

1

4
Grx l,∞

)−1/4

Wyl

]
s

With the definitions of Grxv,s and Grx l,∞, we have the following equations, respec-
tively:

ρl,∞/ρv,w − 1 = ν2
v,s

gx3 Grxv,s (B5)
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ρl,∞/ρl,s − 1 = νl,∞2

gx3 Grx l,∞ (B6)

With Eqs. (B5) and (B6), Eq. (B4) is changed to

ρv,s

⎡
⎣2

√
gx

(
ν2

v,s

gx3 Grxv,s

)1/2

Wxv

(
1

4
ηvδ

(
1

4
Grxv,s

)−1/4
)

−2
√

gx

(
ν2

v,s

gx3 Grxv,s

)1/2 (
1

4
Grxv,s

)−1/4

Wyv

⎤
⎦

s

= ρl,s

⎡
⎣−2

√
gx

(
ν2

l,∞
gx3 Grx l,∞

)1/2 (
1

4
Grx l,∞

)−1/4

Wyl

⎤
⎦

s

i.e.,

ρv,s

⎡
⎣2

√
gx

(
ν2

v,s

gx3

)1/2

Wxv

(
1

4
ηvδ

(
1

4

)−1/4

Grxv,s
1/4

)

−2
√

gx

(
ν2

v,s

gx3

)1/2 (
1

4

)−1/4

WyvGrxv,s
1/4

⎤
⎦

s

= ρl,s

⎡
⎣−2

√
gx

(
ν2

l,∞
gx3

)1/2 (
1

4

)−1/4

Grx l,∞1/4Wyl

⎤
⎦

s

The above equation can be simplified to

ρv,s

[
νv,sWxv

(
1

4
ηvδ

)
− νv,sWyv

]
s

Grxv,s
1/4 = ρl,s[−νl,∞Wyl]sGrx l,∞1/4

i.e.,

−ρv,s

ρl,s

νv,s

νl,∞

[
1

4
ηvδWxv − Wyv

]
s

(
Grxv,s

Grx l,∞

)1/4

= Wyl

With definitions of Grxv,s and Grx l,∞, we have

−Wyl = ρv,s

ρl,s

νv,s

νl,∞

[
1

4
ηvδWxv − Wyv

]
s

(
νl,∞
νv,s

)1/2

×(ρl,∞/ρv,w − 1)1/4(ρl,∞/ρl,s − 1)−1/4
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i.e.,

−Wyl = 1

4

ρv,s

ρl,s

(
νv,s

νl,∞

)1/2

(ρl,∞/ρv,w −1)1/4(ρl,∞/ρl,s −1)−1/4(ηvδWxv −4Wyv)

(11.32)

Derivation of Eq. (11.10)

Equation (11.10) is changed to

μv,s

[
2
√

gx(ρl,∞/ρv,w − 1)1/2
(

dWxv

dηv

)
s

x−1(
1

4
Grxv,s)

1/4
]

s

= μl,s

[
2
√

gx(ρl,∞/ρl,s − 1)1/2
(

dWx l

dηl

)
s

x−1
(

1

4
Grx l,∞

)1/4
]

s

The above equation is simplified to

(
dWx l

dηl

)
s

= μv,s

μl,s
(ρl,∞/ρl,s − 1)−1/2

(
dWxv

dηv

)
s

(
Grxv,s

Grx l,∞

)1/4

With the definitions of Grxv,s and Grx l,∞, the above equation is simplified to

(
dWx l

dηl

)
s

= μv,s

μl,s
(ρl,∞/ρv,w − 1)1/2(ρl,∞/ρl,s − 1)−1/2

(
dWxv

dηv

)
s

(
Grxv,s

Grx l,∞

)1/4

(
dWx l

dηl

)
s

= μv,s

μl,s

(
νl,∞
νν,s

)1/2

(ρl,∞/ρv,w − 1)1/2(ρl,∞/ρl,s − 1)−1/2
(

dWxv

dηv

)
s

× (ρl,∞/ρv,w − 1)1/2(ρl,∞/ρl,s − 1)−1/2
(

Grxv,s

Grx l,∞

)1/4

i.e.,

(
dWx l

dηl

)
s

= μv,s

μl,s

(
νl,∞
νv,s

)1/2

(ρl,∞/ρv,w − 1)3/4(ρl,∞/ρl,s − 1)−3/4
(

dWxv

dηv

)
s

(11.33)

Derivation of Eq. (11.11)

Equation (11.11) is changed to

− λv,s(Tw − Ts)

(
dθv

dηv

)
s

(
1

4
Gr′xv,s

)1/4

x−1

= hfgρl,s

[
2
√

gx(ρl,∞/ρl,s − 1)1/2Wx l,s
1

4
ηlδ

(
1

4
Grx l,∞

)−1/4
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−2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grx l,∞

)−1/4

Wyl,s

]
s

− λl,s(ts − t∞)

(
dθl

dηl

)
s

(
1

4
Grx l,∞

)1/4

x−1

Since ηlδ = 0 at the vapor–liquid interface, the above equation is simplified as
follows:

− λv,s(Tw − Ts)

(
dθv

dηv

)
s

(
1

4
Grxv,s

)1/4

x−1

= −hfgρl,s

[
2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grx l,∞

)−1/4

Wyl,s

]
s

− λl,s(ts − t∞)

(
dθl

dηl

)
s

(
1

4
Grx l,∞

)1/4

x−1

With Grx l,∞ definition, Grx l,∞ = g(ρl,∞/ρl,s−1)x3

νl,∞2 , the above equation is changed to

− λv,s(Tw − Ts)

(
dθv

dηv

)
s

(
1

4
Gr′xv,s

)1/4

x−1

= −hfgρl,s

[
2
√

gx(
νl,∞2

gx3 Grx l,∞)1/2
(

1

4
Grx l,∞

)−1/4

Wyl,s

]
s

− λl,s(ts − t∞)

(
dθl

dηl

)
s

(
1

4
Grx l,∞

)1/4

x−1

i.e.,

− λv,s(Tw − Ts)

(
dθv

dηv

)
s

(
1

4
Gr′xv,s

)1/4

x−1

= −hfgρl,s

[
2
√

gx

(
νl,∞2

gx3

)1/2

2

(
1

4
Grx l,∞

)1/4

Wyl,s

]
s

− λl,s(ts − t∞)

(
dθl

dηl

)
s

(
1

4
Grx l,∞

)1/4

x−1

With definitions of Grxv,s and Grx l,∞, the above equation is changed to
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− λv,s(Tw − Ts)

(
dθv

dηv

)
s

(
1

4

g(ρl,∞/ρv,w − 1)x3

ν2
v,s

)1/4

x−1

= −hfgρl,s

[
2
√

gx

(
νl,∞2

gx3

)1/2

2

(
1

4

g(ρl,∞/ρl,s − 1)x3

νl,∞2

)1/4

Wyl,s

]
s

− λl,s(ts − t∞)

(
dθl

dηl

)
s

(
1

4

g(ρl,∞/ρl,s − 1)x3

νl,∞2

)1/4

x−1

The above equation is divided by g1/4x−1/4, and simplified to

− λv,s(Tw − Ts)

(
dθv

dηv

)
s

(
(ρl,∞/ρv,w − 1)

ν2
v,s

)1/4

+ hfgρl,s

[
2

(
νl,∞2

1

)1/2

2

(
(ρl,∞/ρl,s − 1)

νl,∞2

)1/4

Wyl,s

]
s

= −λl,s(ts − t∞)

(
dθl

dηl

)
s

(
(ρl,∞/ρl,s − 1)

νl,∞2

)1/4

i.e.,

(
dθl

dηl

)
s

=

−λv,s(Tw − Ts)
(

dθv
dηv

)
s

(
νl,∞
νv,s

)1/2
(ρl,∞/ρv,w − 1)1/4

×(ρl,∞/ρl,s − 1)−1/4 + 4hfgρl,sνl,∞Wyl,s

−λl,s(ts − t∞)
(11.34)

In addition, Eqs. (11.12) and (11.13) can be easily be changed to

θv = 0, θl = 1 (11.35)

ηl → ∞: Wx l → 0, θl = 0 (11.36)
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Chapter 12
Velocity and Temperature Fields of Laminar
Free Convection Film Boiling of Liquid

Abstract Physical property factors coupled with the theoretical and mathematical
models of the laminar free convection film boiling of liquids are treated into the func-
tions of dimensionless temperature, for simultaneous solutions with the three-point
boundary values conditions of the two-phase film flow. Then, the numerical solutions
of momentum and temperature fields at different wall superheated grades and liquid
bulk subcooled grades are theoretically reliable, because the variable physical prop-
erties are treated rigorously. On this basis, a system of rigorous numerical solutions
for momentum and temperature fields of the two-phase film flows are calculated
with taking the film of boiling water as the example, in which the related boiling of
saturated water is only the special case. The numerical procedure presented here is
reliable for rigorous solutions of the theoretical models of three-point boundary value
problem with the two-phase flow. The dimensionless velocity components have defi-
nite physical meanings; then, the corresponding solutions of the models can be easily
understood. With increasing the wall superheated grades, the maximum of velocity
field of vapor film will increase and shift far away from the plate. The velocity of
vapor film will decrease with increasing the liquid subcooled grade. With increas-
ing the liquid subcooled degree, the thickness of liquid film will increase, and the
velocity profile level of liquid film will decrease slower and slower. Furthermore,
with increasing wall superheated grade, the effect of wall superheated grade on the
velocity field of liquid film will decrease.

12.1 Introduction

In Chap. 11, the complete similarity mathematical model was derived for laminar
free convection film boiling of subcooled liquid, where the model of the film boiling
of saturated liquid are regarded as its special case.

On the basis of Chap. 11, in this chapter, the mathematical model with the gov-
erning ordinary differential equations and the complete boundary conditions are
solved by a successively iterative procedure at different wall superheated degrees and
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different liquid subcooled degrees. Meanwhile, the temperature parameter method
and polynomial formulae are used for treatment of the variable thermophysical prop-
erties of the vapor and liquid films, respectively. The distributions of velocity and
temperature fields of the laminar free convection film boiling of liquid are rigorously
determined.

12.2 Treatment of Variable Physical Properties

For solution of the dimensionless governing equations of the laminar free convection
film boiling, the treatment of variable physical properties for vapor and liquid films
must be, respectively, performed. To this end, the approach reported in Chap. 5 for
treatment of variable physical properties will be used as follows.

12.2.1 For Variable Physical Properties of Vapor Film

The temperature parameter method [1] will be used for description of the temperature-
dependent physical properties of gas. In this case, the boundary temperature T∞ (the
bulk temperature) should be replaced by Ts (the saturation temperature), and then,
the simple power law equations (5.5)–(5.8) become

μv

μv,s
=

(
T

Ts

)nμ

(12.1)

λv

λv,s
=

(
T

Ts

)nλ

(12.2)

ρv

ρv,s
=

(
T

Ts

)−1

(12.3)

Here we omit the equation for specific heat. With Eqs. (12.1) and (12.3), we have

νv

νv,s
=

(
T

Tv,s

)nμ+1

(12.4)

where the subscript v denotes vapor and the subscript s denotes saturation tempera-
ture, respectively.

12.2.2 For Physical Property Factors of Vapor Film

In the governing ordinary differential equations (11.24) to (11.26) for vapor film
the physical property factors 1

ρv

dρv
dηv

, 1
μv

dμv
dηv

, 1
λv

dλv
dηv

, and νv,s
νv

are involved. In order
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to solve these equations, these physical property factors must be transformed in
the form of temperature and temperature gradient. Consulting Eqs. Chapter 5, we
have the following equations for description of the vapour physical property factors
1
ρv

dρv
dηv

, 1
μv

dμv
dηv

, 1
λv

dλv
dηv

, and νv,s
νv

, respectively:

1

ρv

dρv

dηv
= − (Tw/Ts − 1)dθv/dηv

(Tw/Ts − 1)θv + 1
(12.5)

1

μv

dμv

dηv
= nμ(Tw/Ts − 1)dθv/dηv

(Tw/Ts − 1)θv + 1
(12.6)

1

λv

dλv

dηv
= nλ(Tw/Ts − 1)dθv/dηv

(Tw/Ts − 1)θv + 1
(12.7)

νv,s

νv
= [(Tw/Ts − 1)θv + 1]−(nμ+1) (12.8)

12.2.3 For Variable Physical Properties of Liquid Film

For treatment of variable physical properties of liquid, the polynomial method sug-
gested in Chap. 5 will be used for description of the temperature-dependent physical
properties of liquid. For example, for water the temperature-dependent expressions
of density, thermal conductivity, and absolute viscosity can be expressed as follows:

ρl = −4.48 × 10−3t2 + 999.9 (12.9)

λl = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563 (12.10)

μl = exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

× 10−3 (12.11)

12.2.4 For Physical Property Factors of Liquid Film

Consulting Chapter 5 (5.24) to (5.26) the physical property factors 1
ρl

dρl
dηl

, 1
μl

dμl
dηl

,

and 1
λl

dλl
dηl

in governing Eqs. (11.27) to (11.29) become the following equations at
atmospheric pressure for water film flow of laminar free convection film boiling of
liquid:

1

ρl

dρl

dηl
= −2 × 4.48 × 10−3t (ts − t∞)

−4.48 × 10−3t2 + 999.9

dθl

dηl
(12.12)

1

μl

dμl

dηl
=

(
1150

T 2 − 2 × 6902

T 3

)
(ts − t∞)

dθl

dηl
(12.13)
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1

λl

dλl

dηl
= (−2 × 8.01 × 10−6t + 1.94 × 10−3)(ts − t∞)

dθl
dηl

−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563
(12.14)

12.3 Numerical Calculation

12.3.1 Calculation Procedure

The present numerical calculation for the laminar free convection film boiling of
liquid belongs to a three-point boundary value problem. The general procedure of
the calculation with the theoretical model for the film boiling of liquid is described as
follows: first the values of ηvδ and Wxv,s of the vapor film at the vapor–liquid interface
are guessed. The two values combined with Eqs. (11.30) and (11.35) as the boundary
conditions allow us to solve the governing equations (11.24) to (11.26) for vapor film
by using the shooting method. The solutions include the values Wyv,s, (dWxv/dηv)s

and
(

dθv
dηv

)
s

at the vapor–liquid interface. With the values ηvδ, Wxv,s and Wyv,s, the

values of Wxl,s and Wyl,s can be calculated from the corresponding boundary condi-
tion equations, (11.31) and (11.32). Then, the values Wxl,s and Wyl,s together with the
boundary conditions (11.35) and (11.36) are used to solve the governing equations for
liquid film (11.27) to (11.29) by using the shooting method again. The solutions will

yield the values of (dWxl/dηl)s and
(

dθl
dηl

)
s
. Equations (11.33) and (11.34) are taken

to adjudge the convergence of the solutions for the two-phase boundary governing
equations. Thus, the calculation is successively iterated by changing the values of
ηvδ and Wxv,s.

12.3.2 Numerical Results

As an example of application for solving the theoretical and mathematical mode of
laminar free convection film boiling of water on an isothermal vertical plate, the
numerical calculation was carried out. The film boiling of saturated water is taken
as its special case. From Chap. 5 we know that the temperature parameters nμ, nλ

and ncp of water vapor are 1.04, 1.185, and 0.003. Such low value of ncp make it
possible to actually treat ncp of water vapor as zero, i.e., cp is taken as constant.
By using the above procedure, the numerical calculations have been done by using
the shooting method for solving the three-point values problem at wall superheated
grade �tw

ts
= tw−ts

ts
= 2.77, 3.77, 4.77, 5.77 and 7.27 ◦C as well as water subcooled

grade �t∞
ts

= ts−t∞
ts

= 0, 0.1, 0.3 and 1 respectively. The densities of water vapor at
the above specified temperatures, the physical values of saturated water vapor and
water needed in the calculations are taken from Ref. [2]. A system of numerical
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results of velocity and temperature profiles for the two-phase flow films are shown in
Figs. 12.1, 12.2, 12.3, 12.4 respectively. From these numerical results, the following
phenomena are found:

12.4 Variation of Velocity and Temperature Fields

From these numerical results, the following variations of velocity and temperature
fields are found together with wall superheated grade and liquid subcooled grade.

12.4.1 For Velocity Fields of Vapour Film

From Figs. 12.1a, 12.2a, 12.3a and 12.4a, it is seen that the velocity of vapor film will

increase with increasing wall superheated grades �tw
ts

(
= tw−ts

ts

)
. With increasing the

wall superheated grades �tw
ts

(
= tw−ts

ts

)
, the maximum of velocity field will increase

and shift far away from the plate. In addition, the velocity of vapour film will decrease

with increasing the water subcooled grade, �t∞
ts

(
= tw−t∞

ts

)
.

12.4.2 For Temperature Fields of Vapor Film

From Figs. 12.1b, 12.2b, 12.3b and 12.4b, it is seen that the temperature profiles of

vapor film will increase with increasing wall superheated grade, �tw
ts

(
= tw−ts

ts

)
, and

decrease with increasing water subcooled grade, �t∞
ts

(
= ts−t∞

ts

)
. Furthermore, the

temperature profile level will decrease slower and slower with increasing the water

subcooled degree �t∞
ts

(
= ts−t∞

ts

)
.

12.4.3 For Velocity Fields of Liquid Film

From Figs. 12.1c, 12.2c, 12.3c, and 12.4c, it is seen that the velocity of liquid film will

increase with increasing the wall superheated grades �tw
ts

(
= tw−ts

ts

)
, and decrease

with increasing water subcooled grade, �t∞
ts

(
= ts−t∞

ts

)
. Furthermore, with increas-

ing the water subcooled degree �t∞
ts

(
= ts−t∞

ts

)
, the thickness of liquid film will

increase, and the velocity profile level of liquid film will decrease slower and slower.
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Fig. 12.1 Numerical results on a velocity profiles of vapour film, Wxv, and b temperature
profiles of vapour film, θv, as well as c velocity profiles of liquid film, Wxl , for laminar free

convection film boiling of water at �t∞
ts

(
= ts−t∞

ts

)
= 0 and different �tw

ts
= tw−ts

ts
. Lines 1–5:

�tw
ts

= tw−ts
ts

= 2.77, 3.77, 4.77, 5.77 and 7.27 ◦C respectively
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Fig. 12.2 Numerical results on a velocity profiles of vapor film, Wxv, and b temperature
profiles of vapor film, θv, as well as c velocity profiles of liquid film, Wxl , for laminar con-

vection film boiling of water at �t∞
ts

(
= ts−t∞

ts

)
= 0.3 and different �tw

ts
= tw−ts

ts
. Lines 1–5:

�tw
ts

= tw−ts
ts

= 2.77, 3.77, 4.77, 5.77 and 7.27 ◦C, respectively
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Fig. 12.3 Numerical results on a velocity profiles of vapor film, Wxv, and b temperature
profiles of vapor film, θv, as well as c velocity profiles of liquid film, Wxl , for laminar free con-

vection film boiling of water at �t∞
ts

(
= ts−t∞

ts

)
= 0.7 and different �tw

ts
= tw−ts

ts
. Lines 1–5:

�tw
ts

= tw−ts
ts

= 2.77, 3.77, 4.77, 5.77 and 7.27 ◦C respectively
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Fig. 12.4 Numerical results on a velocity profiles of vapor film, Wxv, and b temperature
profiles of vapor film, θv, as well as c velocity profiles of liquid film, Wxl , for laminar film boil-

ing of water at �t∞
ts

(
= ts−t∞

ts

)
= 1 and different �tw
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= tw−ts

ts
. Lines 1–5: �tw
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= tw−ts
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=

2.77, 3.77, 4.77, 5.77 and 7.27 ◦C, respectively
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Furthermore, with increasing wall superheated grade, �tw
ts

(
= tw−ts

ts

)
, the effect of

wall superheated grade on the velocity field of liquid film will decrease.

12.5 Remarks

In the theoretical and mathematical models of the laminar free convection film boil-
ing of liquids, the various physical matching conditions including variable physical
properties and three-point boundary values conditions of the two-phase film flow are
rigorously taken into account. Then, the numerical solutions of momentum and tem-
perature fields at different wall superheated grades �tw

ts
and liquid bulk subcooled

grades �t∞
ts

are theoretically reliable. On this basis, a system of rigorous numeri-
cal solutions for momentum and temperature fields of the two-phase film flows are
calculated for taking the film boiling of water as the example, in which the related
boiling of saturated water is only a special case.

The numerical procedure presented in Sect. 12.3 is reliable for rigorous solutions
of the theoretical models with three-point boundary value problem of the laminar
free convection film boiling of liquids with consideration of a system of physical
conditions including variable physical properties.

The dimensionless velocity components Wx and Wy have definite physical mean-
ings; then, the corresponding solutions of the models can be understood easily. There-
fore, the new similarity analysis method has its special advantage over the traditional
Falkner-Skan transformation for the theoretical and calculative models of the film
boiling of liquids.

Velocity of vapor film will increase with increasing wall superheated grades
�tw
ts

(
= tw−ts

ts

)
. With increasing the wall superheated grades �tw

ts

(
= tw−ts

ts

)
, the max-

imum of velocity field will increase and shift far away from the plate. In addition,
the velocity of vapor film will decrease with increasing the liquid subcooled grade,
�t∞

ts

(
= ts−t∞

ts

)
.

The temperature profiles of vapor film will increase with increasing wall super-

heated grade, �tw
ts

(
= tw−ts

ts

)
, and decrease with increasing liquid subcooled grade,

�t∞
ts

(
= ts−t∞

ts

)
. Furthermore, the temperature profile level will decrease slower and

slower with increasing the liquid subcooled degree �t∞
ts

(
= ts−t∞

ts

)
.

The velocity of liquid film will increase with increasing the wall superheated

grade �tw
ts

(
= tw−ts

ts

)
, and decrease with increasing liquid subcooled grade, �t∞

ts(
= ts−t∞

ts

)
. With increasing the liquid subcooled degree �t∞

ts

(
= ts−t∞

ts

)
, the thick-

ness of liquid film will increase, and the velocity profile level of liquid film will
decrease slower and slower. Furthermore, with increasing wall superheated grade,
�tw
ts

(= tw−ts
ts

), the effect of wall superheated grade on the velocity field of liquid film
will decrease.
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12.6 Exercises

1. Please give out a detailed derivation for obtaining Eqs. (12.5)–(12.8) on physical
property factors of vapor film flow for laminar free convection film boiling of
liquid.

2. Please give out a detailed derivation for obtaining Eqs. (12.12)–(12.14) on phys-
ical property factors of water film flow for laminar free convection film boiling
of liquid.

3. Which differences are there for treatment of variable physical properties between
the vapor film flow on laminar free convection film boiling of liquid and gas
laminar free convection?

4. Which differences are there for treatment of variable physical properties between
the liquid film flow on laminar free convection film boiling of liquid and liquid
laminar free convection?

5. Do you think that the variable physical properties are rigorously considered and
treated in this present system of mathematical models on laminar free convection
film boiling of liquid? Why?

6. Which variations of the velocity and temperature fields of the laminar free con-
vection film boiling of liquid happen together with the wall superheated grade,
�tw
ts

(= tw−ts
ts

) and liquid subcooled degree �t∞
ts

(= ts−t∞
ts

)? Why?
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Chapter 13
Heat and Mass Transfer of Laminar Free
Convection Film Boiling of Liquid

Abstract By means of the heat and mass transfer analysis based on the new similar-
ity analysis method, it is found that only the wall temperature gradient and mass flow
rate parameter are no-given variables respectively, for prediction of heat and mass
transfer of the film boiling. The wall temperature gradient is proportional to heat
transfer, and will decrease with increasing the wall superheated grade, and increase
with increasing the bulk subcooled grade. Additionally, the wall temperature gradient
is steeper with higher liquid bulk subcooled grade and with lower wall superheated
grade. The curve-fit equation for evaluation of the wall temperature gradient pro-
vided in this chapter agrees very well with the related rigorous numerical solutions,
and useful for a reliable prediction of heat transfer of the laminar film boiling of
water. From the numerical results, it is seen that vapor film thickness will increase
with increasing wall superheated grade or with decreasing the water bulk subcooled
grade, and in the iterative calculation it is a key work to correctly determine the suit-
able value. The solutions of the governing equations are converged in very rigorous
values of vapor film thickness. The interfacial velocity component will increase with
increasing the wall superheated grade except the case for very low liquid bulk sub-
cooled grade, and will decrease with increasing the liquid bulk subcooled grade. The
boiling mass flow rate is proportional to the induced mass flow rate parameter. The
mass flow rate parameter will increase with increasing the wall superheated grade,
decrease obviously with increasing the liquid subcooled grade, and decrease slower
and slower with increasing the liquid subcooled grade. The mass flow rate parameter
is formulated according to the numerical solutions, and then, prediction equation for
boiling mass transfer is created for reliable evaluation.

13.1 Introduction

In Chap. 12 we presented the solutions to velocity and temperature fields of laminar
free convection film boiling of liquid, where the film condensation of saturated liq-
uid is regarded as the special case. In this chapter, studies will be further carried
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out on heat and mass transfer for the laminar free convection film boiling of liquid
provided by Shang, Wang and Zhong [1–3]. Based on the mathematical model and
numerical method presented in Chaps. 11 and 12, the calculation results on heat and
mass transfer of the two-phase boundary-layer problem are further obtained with the
successively iterative procedure. The laminar free convection film boiling of water is
taken as an example, and the theoretical models have been rigorously solved at dif-
ferent wall superheated grade with different liquid subcooled grade. The numerical
solutions on heat and mass transfer of the film boiling of liquid are rigorously evalu-
ated at the different conditions, and the film boiling of saturated liquid is taken as its
special case. Using heat and mass transfer analysis, the theoretical equations of heat
transfer coefficient and mass flow rate are derived. With the numerical solutions the
wall temperature gradient and interfacial mass flow rate parameter are formulated,
and then, the prediction of heat and mass transfer of laminar free convection film
boiling of liquid is realized for different wall superheated grade and different liquid
subcooled grade.

13.2 Heat Transfer Analysis

Consulting the heat transfer analysis in Chap. 6 for heat transfer analysis on gas
laminar free convection, the heat transfer theoretical equations can be expressed as
follows for laminar free convection film boiling of liquid:

The local heat transfer rate is described as

qx = λv,w(Tw − Ts)

(
1

4
Grxv,s

)1/4

x−1
(

− dθv

dηv

)
η=0

(13.1)

With the Newtonian cooling law, the local heat transfer coefficient on the surface,
defined as qx = αx(Tw − Ts), will be

αx = λv,w

(
1

4
Grxv,s

)1/4

x−1
(

− dθv

dηv

)
ηv=0

(13.2)

The local Nusselt number, defined as Nuxv,w = αxx
λv,w

, is expressed by

Nux,w =
(

1

4
Grxv,s

)1/4 (
− dθv

dηv

)
ηv=0

(13.3)

The total heat transfer rate for position x = 0 to x with width of b on the plate is an
integration Qx = ∫∫

A qxdA = ∫ x
0 qxbdx where A = b × x, and hence

http://dx.doi.org/10.1007/978-3-642-28983-5_11
http://dx.doi.org/10.1007/978-3-642-28983-5_12
http://dx.doi.org/10.1007/978-3-642-28983-5_6
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Qx = 4

3
bλv,w(Tw − Ts)

(
1

4
Grxv,s

)1/4 (
− dθv

dηv

)
ηv=0

(13.4)

The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

Qx = 4

3
x−1λw(Tw − Ts)

(
1

4
Grxv,s

)1/4 (
−dθ

dη

)
ηv=0

(13.5)

The average heat transfer coefficient αx defined as Qx = αx(Tw − Ts) × b × x is
expressed as

αx = 4

3
λv,w

(
1

4
Grxv,s

)1/4

x−1
(

− dθv

dηv

)
ηv=0

(13.6)

The average Nusselt number is defined as Nuxv,w = αxx
λv,w

, and hence

Nux,w = 4

3

(
1

4
Grxv,s

)1/4 (
− dθv

dηv

)
ηv=0

(13.7)

Therefore, we have

Qx = 4

3
bxqx

αx = 4

3
αx

Nux,w = 4

3
Nux,w

Obviously, the theoretical Eqs. (13.1)–(13.7) on heat transfer of laminar free con-
vection film boiling of liquid are identical to the corresponding Eqs. (6.36)–(6.42) in
Chap. 6 on laminar free convection, with only differences that the bulk temperature
T∞ and the local Grashof number Grx,∞ of former case are, respectively, replaced
by the vapor saturated temperature Ts and the local Grashof number Grxv,s for the
latter case.

It is seen that for practical calculation of heat transfer, only the wall dimen-

sionless temperature gradient
(

dθv
dηv

)
ηv=0

dependent on the solution is no-given

variable.

http://dx.doi.org/10.1007/978-3-642-28983-5_6
http://dx.doi.org/10.1007/978-3-642-28983-5_6
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13.3 Wall Dimensionless Temperature Gradient

From the heat transfer analysis, it is found that heat transfer for the film boiling of

liquid is in direct proportion to wall dimensionless temperature gradient
(

dθv
dηv

)
ηv=0

,

the only one no-given variable for prediction of heat transfer. Then, correct prediction

of the temperature gradient
(

dθv
dηv

)
ηv=0

is the key work for prediction of heat transfer

of the film boiling of liquid.

The rigorous solutions on the dimensionless temperature gradients
(

dθv
dηv

)
ηv=0

for

the film boiling of water are computed, and the results are tabulated and plotted,
respectively, in Table 13.1 and Fig. 13.1.

It is obviously seen from Fig. 13.1 that the temperature gradient
(

dθv
dηv

)
ηv=0

will decrease slower and slower with increasing the wall superheated grade, �tw
ts(

= tw−ts
ts

)
. In addition, the temperature gradient

(
dθv
dηv

)
ηv=0

will increase with increas-

ing the bulk water subcooled grade �t∞
ts

.

Based on the rigorous numerical solutions
(

dθv
dηv

)
ηv=0

in Table 13.1, the following

correlation was obtained by means of a curve-fit method for laminar free convection
film boiling of water:

−
(

dθv

dηv

)
ηv=0

= A

(
�tw

ts

)B (
2.77 ≤ �tw

ts
≤ 8.27

)
(13.8)

A = 25.375

(
�t∞

ts

)2

+ 7.2275

(
�t∞

ts

)
+ 1.2993

(
0 ≤ �t∞

ts
≤ 0.3

)

A = −6.7567

(
�t∞

ts

)2

+ 21.563

(
�t∞

ts

)
− 0.1131

(
0.3 <

�t∞
ts

≤ 1

)

B = 2.2117

(
�t∞

ts

)2

−2.3472

(
�t∞

ts

)
− 0.843

(
0 ≤ �t∞

ts
≤ 0.3

)

B = 0.3585

(
�t∞

ts

)2

−0.6057

(
�t∞

ts

)
−1.2017

(
0.3 <

�t∞
ts

≤ 1

)

The results of
(
− dθv

dηv

)
ηv=0

calculated by Eq. (13.8) are also listed in Table 13.1. It

is shown that the calculated results by the correlation (13.8) coincide very well with

the corresponding rigorous numerical solutions −
(

dθv
dηv

)
ηv=0

.

Equation (13.8) is corresponding to the laminar free film boiling of subcooled
water. However, if the liquid subcooled grade tends to zero, Eq. (13.8) will be simpli-
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Fig. 13.1 Temperature gradi-

ent
(

dθv
dηv

)
ηv=0

with variation

of wall superheated grade
�tw

ts
= tw−ts

tx
and bulk sub-

cooled grade �t∞
ts

= ts−t∞
ts

for laminar free film boiling
of water. Note 1–7: �t∞

ts
=

0, 0.1, 0.3, 0.5, 0.7, 0.9, and
1 ( �t∞

ts
= 0 is corresponding

to the film boiling of saturated
water)
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fied to the following equation for describing the laminar free film boiling of saturated
water:

((
− dθv

dηv

)
ηv=0

)
�t∞=0

= 1.2993

(
�tw

ts

)−0.843 (
2.77 ≤ �tw

ts
≤ 8.27

)
(13.9)

13.4 Practical Prediction Equations on Boiling Heat Transfer

By using Eq. (13.8), the Eqs. (13.1) and (13.3) are reliable for prediction of heat
transfer of laminar free film convection boiling of water.

The local heat transfer rate is described as

qx = Aλv,w(Tw − Ts)

(
1

4
Grxv,s

)1/4

x−1
(

�tw
ts

)B

(13.1*)

With the Newtonian cooling law, the local heat transfer coefficient on the surface,
defined as qx = αx(Tw − Ts), will be

αx = Aλv,w

(
1

4
Grxv,s

)1/4

x−1
(

�tw
ts

)B

(13.2*)

The local Nusselt number, defined as Nuxv,w = αxx
λv,w

, is expressed by

Nuxv,w = A

(
1

4
Grxv,s

)1/4 (
�tw

ts

)B

(13.3*)
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Total heat transfer rate for position x = 0 to x with width of b on the plate is
expressed as

Qx = 4

3
Abλv,w(Tw − Ts)

(
1

4
Grxv,s

)1/4 (
�tw

ts

)B

(13.4*)

The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

Qx = 4

3
Ax−1λw(Tw − Ts)

(
1

4
Grxv,s

)1/4 (
�tw

ts

)B

(13.5*)

The average heat transfer coefficient αx defined as Qx = αx(Tw − Ts) × b × x is
expressed as

αx = 4

3
Aλv,w

(
1

4
Grxc,s

)1/4

x−1
(

�tw
ts

)B

(13.6*)

The average Nusselt number is defined as Nuxv,w = αxx
λv,w

, and hence

Nuxv,w = 4

3
A

(
1

4
Grxv,s

)1/4 (
�tw

ts

)B

(13.7*)

where

2.77 ≤ �tw
ts

≤ 8.27

A = 25.375

(
�t∞

ts

)2

+ 7.2275

(
�t∞

ts

)
+ 1.2993

(
0 ≤ �t∞

ts
≤ 0.3

)

A = −6.7567

(
�t∞

ts

)2

+ 21.563

(
�t∞

ts

)
− 0.1131

(
0.3 <

�t∞
ts

≤ 1

)

B = 2.2117

(
�t∞

ts

)2

− 2.3472

(
�t∞

ts

)
− 0.843

(
0 ≤ �t∞

ts
≤ 0.3

)

B = 0.3585

(
�t∞

ts

)2

− 0.6057

(
�t∞

ts

)
− 1.2017

(
0.3 <

�t∞
ts

≤ 1

)

With the reliable equation on the dimensionless temperature gradient, Eqs. (13.1)–
(13.7) become reliable equations for practical prediction of heat transfer for laminar
free film boiling of water on a vertical flat plate.
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13.5 Mass Transfer Analysis

Set gx to be a local mass flow rate entering the vapor film at position x per unit area of
the plate. According to the boundary layer theory of fluid mechanics, gx is expressed
as

gx = ρv,s

(
wxv,s

dδv

dx
− wyv,s

)
s

With the corresponding dimensionless variables in (11.17) and (11.18), the above
equation is changed into the following one:

gx = ρv,s

[
2
√

gx

(
ρl,∞
ρv,w

− 1

)1/2

Wxv,s

(
dδv

dx

)
s

−2
√

gx

(
ρl,∞
ρv,w

− 1

)1/2 (
1

4
Grxv,s

)−1/4

Wyv,s

]

With definition of Grxv,s, we have

ρl,∞/ρv,w − 1 = ν2
v,s

gx3 Grxv,s

Then, gx is expressed as

gx = ρv,s

[
2
√

gxWxv,s

(
dδv

dx

)
s
− 2

√
gx

(
1

4
Grxv,s

)−1/4

Wyu,s

] (
ν2

v,s

gx3 Grxv,s

)1/2

= 2ρv,s

[
2
√

gxWxv,s

(
dδv

dx

)
s
− 2

√
gx

(
1

4
Grxv,s

)−1/4

Wyu,s

]

×
(

ν2
v,s

gx3

)1/2 (
1

4
Grxv,s

)1/2

where the boiled vapor film thickness is expressed as follows according to Eq. (11.14):

δv = ηvδ

(
1

4
Grxv,s

)−1/4

x (13.10)

With the definition of the local Grashof number Grxv,s, Eq. (13.10) is changed into

δv = ηvδ

(
1

4

g(ρl,∞/ρv,w − 1)x3

ν2
v,s

)1/4

x

http://dx.doi.org/10.1007/978-3-642-28983-5_11
http://dx.doi.org/10.1007/978-3-642-28983-5_11
http://dx.doi.org/10.1007/978-3-642-28983-5_11
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Hence,

(
dδv

dx

)
s
= 1

4
ηvδ

(
1

4
Grxv,s

)−1/4

(13.11)

Then,

gx = 2ρv,s

[
2
√

gxWxv,s
1

4
ηvδ

(
1

4
Grxv,s

)−1/4

− 2
√

gx

(
1

4
Grxv,s

)−1/4

Wyv,s

]

×
(

ν2
v,s

gx3

)1/2 (
1

4
Grxv,s

)1/2

= 2ρv,s

[
2
√

gxWxv,s
1

4
ηvδ − 2

√
gxWyv,s

] (
ν2

v,s

gx3

)1/2 (
1

4
Grxv,s

)1/4

i.e.

gx = μv,sx
−1

(
1

4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s)

i.e.

gx = μv,sx
−1

(
1

4
Grxv,s

)1/4

�s (13.12)

where

�s = (ηvδWxv,s − 4Wyv,s) (13.13)

is regarded as mass flow rate parameter of the film boiling of liquid.
If Gx is taken to express total mass flow rate entering the boundary layer for

position x = 0 to x with width of b of the plate, it should be the following integration:

Gx =
∫∫
A

(gx)idA

= b

x∫
0

(gx)idx

where A = b · x is the related area of the plate.
Then, Gx is expressed as
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Gx = b

x∫
0

[
μv,sx

−1
(

1

4
Grxv,s

)1/4

�s

]
dx

i.e.

Gx = 4

3
b.μv,s

(
1

4
Grxv,s

)1/4

�s (13.14)

It is seen that, for practical calculation of boiling mass transfer, only �s dependent
on numerical solution is no-given variable.

13.6 Mass Flow Rate Parameter

From Eq. (13.13), it is seen that the mass flow rate parameter �s, the only no-
given variable for prediction of the boiling mass transfer, depends on the vapor film
thickness ηvδ , as well as the vapor velocity components at the vapor–liquid interface,
Wxv,s, and Wyv,s. Now, it is necessary to investigate these physical variables.

13.6.1 Vapor Film Thickness

The numerical results for vapor film thickness ηvδ of the film boiling of subcooled
water are listed in Table 13.1 and plotted in Fig. 13.2 together with wall superheated
grade �tw

ts
and water bulk subcooled grade �t∞

ts
. It is seen that ηvδ will increase with

increasing wall superheated grade �tw
ts

. The reason is easy to be understood that with

increasing the wall superheated grade �tw
ts

, the vaporization rate will increase; thus,
the vapor film thickness ηvδ will increase.

In Fig. 13.2 it is seen that with increasing the water bulk subcooled grade �t∞
ts

,
the vapor film thickness ηvδ will decrease. The reason is that with increasing the
water bulk subcooled grade �t∞

ts
, the vaporization of the bulk liquid will become

more difficult at the liquid–vapor interface. Meanwhile, with increasing the water
bulk subcooled grade �t∞

ts
, the vapor film thickness ηvδ will decrease slower and

slower.
It should be indicated that in the iterative calculation of the film boiling problem,

it is a key work to correctly determine suitable value ηl. The solutions of the models
are converged in very rigorous values of ηvδ as shown in Table 13.1 and Fig. 13.2;
otherwise, the convergence solutions will not be obtained.

Based on the rigorous numerical solutions listed in Table 13.1, the following curve-
fit equation is obtained for vapor film thickness ηvδ above the laminar free film boiling
of saturated water:
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Fig. 13.2 The film thickness
ηvδ with wall superheated
grade �tw

ts
and water bulk

subcooled grade �t∞
ts

for
laminar free film boiling of
water. Note 1–7: �t∞

ts
=

0, 0.1, 0.3, 0.5, 0.7, 0.9, and
1 ( �t∞

ts
= 0 is corresponding

to film boiling of saturated
water)
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Fig. 13.3 Variation of Wxv,s

with �tw
ts

and �t∞
ts

for lam-
inar free film boiling of
water. Note 1–7: �t∞

ts
=

0, 0.1, 0.3, 0.5, 0.7, 0.9, and
1 ( �t∞

ts
= 0 is corresponding

to film boiling of saturated
water)
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Wxv s,

ηv δ = 0.291
�tw

ts
+ 0.631 (13.15)

13.6.2 Interfacial Velocity Components

The rigorous numerical solutions of interfacial velocity components Wxv,s and Wxv,s

for the film boiling of subcooled water are described in Table 13.1, and plotted in
Figs. 13.3 and 13.4, respectively, with variations of wall superheated grade �tw

ts
and

the water bulk subcooled grade �t∞
ts

. It is found that the variations of interfacial
velocity components Wxv,s and Wyv,s vary as follows with wall superheated grade
�tw

ts and the water bulk subcooled degree �t∞
ts

:
The interfacial velocity component Wxv,s will increase with increasing the wall

superheated grade �tw except for very low water bulk subcooled grade �t∞
ts

. In
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Fig. 13.4 Variation of −Wyv,s

with �tw
ts

and �t∞
ts

for lam-
inar free film boiling of
water. Note 1–7: �t∞

ts
=

0, 0.1, 0.3, 0.5, 0.7, 0.9, and
1 ( �t∞

ts
= 0 is corresponding

to the film boiling of saturated
water)
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addition, the interfacial velocity component Wxv,s will decrease with increasing the
water bulk subcooled grade �t∞

ts
. Meanwhile, the interfacial velocity component

Wxv,s will decrease slower and slower with increasing the water bulk subcooled
grade �t∞

ts
.

The interfacial velocity component Wxv,s will increase with increasing the wall
superheated grade �tw, especially in the range of lower water subcooled grade �t∞

ts
.

In addition, they will decrease with increasing the water bulk subcooled grade �t∞
ts

,

and will decrease slower and slower with increasing the water subcooled grade �t∞
ts

.
It is seen that the value of the interfacial velocity component Wyv,s is usually much
more than that of the interfacial velocity component Wxv,s. Then, it is follows that
the interfacial velocity component Wyv,s will dominate the interfacial mass flow rate
in general. However, the effect of the interfacial velocity component Wxv,s on the
interfacial mass flow rate can never be ignored.

13.6.3 Mass Flow Rate Parameter

The mass flow rate parameters �s = ηvδWxv,s − Wyv,s for the film boiling of sub-
cooled water are described in Table 13.1, and plotted in Fig. 13.5, respectively, with
variations of wall superheated grade �tw and the water bulk subcooled grade �t∞

ts
.

It is found that the mass flow rate parameter ηvδWxv,s − Wyv,s varies as follows with
wall superheated grade �tw and the water bulk subcooled degree �t∞

ts
.

From Fig. 13.5 it is obviously seen that the mass flow rate parameter �s=(ηvδWxv,s

− 4Wyv,s) will increase with increasing the wall superheated grade �tw, especially
in the range of lower water subcooled grade �t∞

ts
. Meanwhile, it will decrease with

increasing the water bulk subcooled grade. With increasing the water bulk subcooled
grade, the mass flow rate parameter with decrease slower and slower.

Based on the rigorous numerical solutions, the following curve-fit equation is
obtained for mass flow rate parameter �s with �t∞

ts
= 0 for the laminar film boiling
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Fig. 13.5 Variation of
mass flow rate parameter
�s = ηvδWxv,s − Wyv,s

with �tw
ts

and �t∞
ts

for lam-
inar free film boiling of
water. Note 1–7: �t∞

ts
=

0, 0.1, 0.3, 0.5, 0.7, 0.9, and
1 ( �t∞

ts
= 0 is corresponding

to the film boiling of saturated
water)

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

1

2

3

4

5

6

7

v vx s vy sWW ,, 4−δη

s

w

t

tΔ

of saturated water:

(�s)�t∞=0 = −0.002

(
�tw

ts

)2

+ 0.0635
�tw

ts
+ 0.0705 (13.16)

13.7 Practical Prediction Equation on Boiling Mass Transfer

With Eq. (13.16), Eq. (13.14) becomes

Gx = 4

3
b · μv,s

(
1

4
Grxv,s

)1/4
[
−0.002

(
�tw

ts

)2

+ 0.0635
�tw

ts
+ 0.0705

]

(13.14*)

This equation can be used as practical prediction equation on boiling mass transfer
of laminar free convection film boiling of saturated water on a vertical flat plate.

13.8 Summary

So far, governing equations and the equations for heat and mass transfer of the laminar
free film boiling of liquid can be summarized in Tables 13.2 and 13.3, respectively.
Meanwhile, the film boiling of saturated liquid can be regarded as its special case of
the film boiling.
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13.9 Remarks

Through the theoretical analysis of heat and mass transfer of laminar free convection
film boiling of liquid, it is found that heat transfer of laminar free film boiling is

proportional to wall temperature gradients
(

dθv
dηv

)
ηv=0

, the only one no-given variable

for prediction of heat transfer of the film boiling. The wall temperature gradients

−
(

dθv
dηv

)
ηv=0

and heat transfer of the film boiling will decrease with increasing the

wall superheated grade �tw
ts

, and increase with increasing the bulk subcooled grade
�t∞

ts
. Additionally, the wall temperature gradient

(
dθv
dηv

)
ηv=0

and heat transfer of the

film boiling are steeper with higher liquid bulk subcooled grade �t∞
ts

and with lower

wall superheated grade �tw
ts

. The curve-fit equation for evaluation of the temperature

gradient
(
− dθv

dηv

)
ηv=0

introduced in this chapter agrees very well with the related

rigorous numerical solutions, and then useful for a reliable prediction of heat transfer
of the laminar film boiling of water.

The vapor film thickness ηvδ will increases with increasing wall superheated
grade �tw

ts
or with decreasing the water bulk subcooled grade �t∞

ts
. In the iterative

calculation of the film boiling problem, it is a key work to correctly determine suitable
value ηl. The solutions of the governing models are converged in very rigorous values
of ηvδ as shown in Table 13.1 and Fig. 13.2, otherwise the convergence solutions will
not be obtained.

The interfacial velocity component Wxv,s will increases with increasing the wall
superheated grade �tw

ts except the case for very low liquid bulk subcooled grade �t∞
ts

.
Meanwhile, the interfacial velocity component Wxv,s will decreases with increasing
the liquid bulk subcooled grade �t∞

ts
.

The interfacial velocity component −Wyv,s will increases with increasing the
wall superheated grade �tw, and will decreases obviously with increasing the liquid
subcooled grade �t∞

ts
. In addition, the interfacial velocity component Wyv,s will

decreases slower and slower with increasing the liquid subcooled grade �t∞
ts

. The
value of the interfacial velocity component −Wxv,s is usually much larger than that
of the interfacial velocity component Wxv,s usually. Then, it follows that −Wyv,s

will dominates the interfacial mass flow rate in general. However, the effect of the
interfacial velocity component Wxv,s on the interfacial mass flow rate can never be
ignored.

The boiling mass flow rate is proportional to the induced mass flow rate parameter
which is the only one no-given variable for prediction of the mass flow rate. The mass
flow rate parameter will increases with increasing the wall superheated grade �tw,
decreases obviously with increasing the liquid subcooled grade �t∞

ts
, and decreases

slower and slower with increasing the liquid subcooled grade �t∞
ts

.

The effects of the wall superheated grade �tw
ts

and liquid bulk subcooled grade
�t∞

ts
on the momentum, heat, and mass transfer presented here also reveal effects
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of variable physical properties of both vapor and liquid film on the film boiling of
liquid.

13.10 Calculation Examples

Example 1: A flat plate 0.3 m in width and 0.3 m in length is suspended vertically in
water. The plate temperature tw = 577 ◦C, and the water temperature is t∞ = tS =
100 ◦C. Assume that the boiling is the laminar film boiling, please calculate

(i) boiling heat and mass transfer of the plate,
(ii) vapor film thicknesses at x = 0, 0.01, 0.05, 0.1, 0.15, 0.2, and 0.3 m

Solution:
The wall superheated grade is �tw

ts
= tw−ts

ts
= 577−100

100 = 4.77, and the water bulk

subcooled grade is �t∞
ts

= ts−t∞
ts

= 100−100
100 = 0, which shows that it is the film

boiling of saturated water. For water saturated physical properties at ts = 100 ◦C
we obtain ρl,s = 958.4 kg/m3, and for saturated water vapor at 100 ◦C, we obtain
νv,s = 20.55×10−6 m2/s, ρv,s = 0.5974 kg/m3, and μv,s = 12.28×10−6 kg/ (ms).
In addition, for water vapor at the wall temperature tw = 577 ◦C we obtain ρv,w =
0.2579 kg/m3 and λv,w = 0.0637 kg/m3.

(i) Calculate the condensate heat and mass transfer

For heat transfer

With Eq. (12.15) the local Grashof number is evaluated as

Grxv,s = g(ρl,∞/ρv,w − 1)x3

ν2
v,s

= 9.8 × (958.4/0.2579 − 1) × 0.33

(20.55 × 10−6)2

= 2.3278 × 1012

With Eq. (13.9), the dimensionless temperature gradient of the film boiling of satu-
rated liquid is evaluated as

((
− dθv

dηv

)
ηv=0

)
�t=0

= 1.2993

(
�tw

ts

)−0.843

= 1.2993 × 4.77−0.843 = 0.3481

With Eq. (13.3), the local Nusselt number is evaluated as

http://dx.doi.org/10.1007/978-3-642-28983-5_12
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Nuxv,w = −
(

1

4
Grxv,s

)1/4
((

dθ

dη

)
η=0

)
�t∞=0

=
(

1

4
× 2.3278 × 1012

)1/4

× 0.3481

= 304.036

The mean Nusselt number is evaluated as

Nuxv,w = αxx

λ v,w
= 4

3
× 304.036 = 405.38

With definition of the mean Nusselt number, the mean heat transfer coefficient is
evaluated as

αx = Nuxv,w = λv,w

x
= 405.38 × 0.0637/0.3 = 86.076 W/(m K)

With Newtonian cooling law, the total heat transfer rate of plate at the plate temper-
ature tw = 577 ◦C is calculated as follows:

Qx = αx(tw − ts)A

= αx(tw − ts) × b × x

= 86.076 × (577 − 100) × 0.3 × 0.3

= 3,695 W

For mass flow rate of the boiling

With Eq. (13.15), the mass flow rate parameter �s(ηvδWxv,s −4Wyv,s) of film boiling
of saturated water at ts =100 ◦C can be evaluated as

�s = ηvδWxv,s − 4Wyv,s

= −0.002

(
�tw

ts

)2

+ 0.0635
�tw

ts
+ 0.0705

= −0.002 × 4.772 + 0.0635 × 4.77 + 0.0705

= 0.327889

Then, the total mass flow rate entering the boiled vapor film through the area with
width of b and with length from x = 0 to x for the film boiling is
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Gx = 4

3
b · μv,s

(
1

4
Grxv,s

)1/4

�s

= 4

3
× 0.3 × 12.28 × 10−6 ×

(
1

4
× 2.3278 × 1012

)1/4

× 0.327889

= 0.001407 kg/s

= 5.0652 kg/h

(ii) Calculate the vapor film thicknesses

For the laminar film boiling of saturated water, Eq. (13.14) is taken to evaluate ηlδ as

ηvδ = 0.291
�tw

ts
+ 0.631

= 0.291 × 4.77 + 0.631

= 2.01907

From Eq. (10.14), the condensate film thickness δv is expressed as

δv = ηδv x

(
1

4
Grxv,s

)−1/4

= ηδv x

(
1

4

g(ρl,s/ρv,w − 1)x3

ν2
v,s

)−1/4

= ηδv

(
1

4

g(ρl,s/ρv,w − 1)

ν2
v,s

)−1/4

x1/4

= 2.01907 ×
(

1

4
× 9.81 × (958.4/0.2579 − 1)

(20.55 × 10−6)2

)−1/4

× x1/4

= 0.00093707 × x1/4

For x = 0, δv = 0 m

For x = 0.01 m, δv = 0.00093707 × 0.051/4 = 0.000296 m

For x = 0.05 m, δv = 0.00093707 × 0.011/4 = 0.000443 m

For x = 0.1 m, δv = 0.00093707 × 0.11/4 = 0.0005268 m

For x = 0.15 m, δv = 0.00093707 × 0.151/4 = 0.000583 m

For x = 0.2 m, δv = 0.00093707 × 0.21/4 = 0.000627 m

For x = 0.25 m, δv = 0.00093707 × 0.251/4 = 0.000663 m

For x = 0.3 m, δv = 0.00093707 × 0.31/4 = 0.000694 m

http://dx.doi.org/10.1007/978-3-642-28983-5_10
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Table 13.4 The variation of condensate film thickness y with the position x

x (m) 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3

δv (m) 0 0.000296 0.000443 0.0005268 0.000583 0.000627 0.000663 0.000694

Fig. 13.6 The variation of
condensate film thickness δv
with the position x
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For clear expression, the variation of condensate film thickness y with the position x
is listed and plotted as the Table 13.4 and Fig. 13.6.

Example 2: A flat plate with 0.3 m in width and 0.3 m in length is suspended vertically
in water. The plate temperature is kept at tw = 577 ◦C. The water bulk temperature is
t∞ = 90 ◦C. Assume the steady laminar film boiling occurs on the plates. Calculate
the heat transfer and mass flow rate of the film boiling.

Solutions:

The wall superheated grade is �tw
ts

= tw−ts
ts

= 577−100
100 = 4.77, and the water bulk

subcooled grade is �t∞
ts

= ts−t∞
ts

= 100−90
100 = 0.1.

The related physical properties are water saturated density ρl,s = 958.4kg/m3 at
ts = 100 ◦C, saturated water vapor kinetic νv,s = 20.55 × 10−6m2/s, density ρv,s =
0.5974kg/m3 and absolute viscosity μv,s = 12.28×10−6 at ts = 100 ◦C, water vapor
density ρv,w = 0.2579kg/m3 and thermal conductivity λv,w = 0.0637W/(m K) at
tw = 577 ◦C, and subcooled water density ρl,∞ = 965.3kg/m3 at t∞ = 90 ◦C.

1. For heat transfer

With Eq. (13.8) the temperature gradient of the film boiling of subcooled water vapor
is evaluated as

−
(

dθv

dηv

)
ηv=0

= A

(
�tw

ts

)B

(2.77 ≤ �tw
ts

≤ 8.27) (13.8)
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A = 25.375

(
�t∞

ts

)2

+ 7.2275

(
�t∞

ts

)
+ 1.2993 (0 ≤ �t∞

ts
≤ 0.3)

A = −6.7567

(
�t∞

ts

)2

+ 21.563

(
�t∞

ts

)
− 0.1131 (0.3 <

�t∞
ts

≤ 1)

B = 2.2117

(
�t∞

ts

)2

−2.3472

(
�t∞

ts

)
− 0.843 (0 ≤ �t∞

ts
≤ 0.3)

B = 0.3585

(
�t∞

ts

)2

−0.6057
�t∞

ts
−1.2017 (0.3 <

�t∞
ts

≤ 1)

Since �t∞
ts

= 0.1 < 0.3

The following formulae and calculations for the coefficients A, B, and C are
available:

A = 25.375

(
�t∞

ts

)2

+ 7.2275

(
�t∞

ts

)
+ 1.2993 (0 ≤ �t∞

ts
≤ 0.3)

B = 2.2117

(
�t∞

ts

)2

−2.3472

(
�t∞

ts

)
− 0.843 (0 ≤ �t∞

ts
≤ 0.3)

A = 25.375

(
�t∞

ts

)2

+ 7.2275

(
�t∞

ts

)
+ 1.2993

= 25.375 × (0.1)2 + 7.2275 × (0.1) + 1.2993

= 2.2758

B = 2.2117

(
�t∞

ts

)2

−2.3472

(
�t∞

ts

)
− 0.843

= 2.2117 × (0.1)2−2.3472 × (0.1) − 0.843

= −1.0556

Then,

−
(

dθv

dηv

)
ηv=0

= A

(
�tw

ts

)B

= 2.2758 × 4.77−1.0556 = 0.437411

With Eq. (11.15) local Grashof number Grxv,s is evaluated as

http://dx.doi.org/10.1007/978-3-642-28983-5_11
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Grxv,s = g(ρl,∞/ρv,w − 1)x3

ν2
v,s

= 9.8(965.3/0.2579 − 1) × 0.33

(20.55 × 10−6)2

= 2.34456 × 1012

With Eq. (13.14) the local Nusselt number is evaluated as

Nuxv,w = −
(

1

4
Grxv,s

)1/4 (
dθv

dηv

)
ηv=0

=
(

1

4
× 2.34456 × 1012

)1/4

× 0.437411

= 382.73

According to the definition of the local Nusselt number, Nuxv,w = αxx
λv,w

, then

αx = Nuxv,wλv,w

x

= 382.73 × 0.0637

0.3
= 81.266W/(m2 K)

At last, average heat transfer coefficient αx and total heat transfer rate Qx of the film
boiling on the plate are calculated

αx = 4

3
αx

= 4

3
× 81.266

= 108.35 W/(m2 K)

Qx = αx(tw − ts)A

= 108.35 × (577 − 100) × 0.3 × 0.3

= 4651.47 W

2. For mass flow rate of the boiling

The total mass flow rate of the film boiling of water is expressed as

Gx = 4

3
b · μv,s

(
1

4
Grxv,s

)1/4

�s
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From Table 13.1, the related mass flow rate parameter �s = (ηvδWxv,s − 4Wyv,s) is
obtained as 0.16399 for �tw

ts
= 4.77 and �t∞

ts
= 0.1.

Then,

Gx = 4

3
b · μv,s

(
1

4
Grxv,s

)1/4

�s

= 4

3
× 0.3 × 12.28 × 10−6 ×

(
1

4
× 2.34456 × 1012

)1/4

× 0.16399

= 0.000705 kg/s

= 2.537 kg/h

13.11 Exercises

1. Please give a detailed derivation for the theoretical Eqs. (13.1)–(13.7) on heat
transfer analysis of laminar free convection film boiling of liquid.

2. Please tell me the effect of the wall superheated grade on the boiling heat and
mass transfer of laminar free convection film boiling of liquid, and explain the
reason.

3. Please tell me the effect of the bulk subcooled grade on the boiling heat and mass
transfer of laminar free convection film boiling of liquid, and explain the reason.

4. Please tell me effect of which grade (wall superheated or bulk subcooled grade)
is stronger on laminar free convection film boiling of liquid.

5. Please explain why Eqs. (13.1*)–(13.7*) are able to be recommended for practical
prediction of heat transfer of laminar free convection film boiling of liquid on an
isothermal vertical flat plate?

6. Please explain why Eq. (13.14*) is able to be recommended for practical predic-
tion of condensate mass transfer of laminar free convection film boiling of liquid
on an isothermal vertical flat plate?
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Chapter 14
Complete Mathematical Model of Laminar Free
Convection Film Condensation of Pure Vapour

Abstract In this chapter, the work is focused on constitution of mathematical mod-
els of the laminar free convection film condensation of superheated vapor, while,
the film condensation of saturated vapor is only regarded as its special case. The
new similarity analysis method is successfully applied for similarity transformation
of the governing partial differential equations of laminar free convection film con-
densation of superheated vapor with consideration of coupled effects of variable
physical properties of liquid and vapor films. In the transformed governing ordinary
differential equations, the dimensionless velocity components of liquid and vapor
films have definite physical meanings, and then the solutions of the governing mod-
els can be understood easily. In the analysis and similarity transformation of the
mathematical models, the interfacial balance equations between the liquid and vapor
films are considered in detail, such as mass flow rate balance, velocity component
balance, shear force balance, temperature balance, and energy balance. Therefore,
such mathematical model is serious theoretically and has its application value in
practice.

14.1 Introduction

It was Nusselt [1] who first treated the laminar free convection film condensation
of saturated steam on a vertical isothermal flat plate. His theory was based on the
assumption that the inertia and thermal convection of condensate film, the vapor
drag due to the shear force at the liquid–vapor interface, the dependence of the
physical properties of the condensate medium on temperature, and the effect of the
liquid–vapour interfacial wave are neglected. Bromley [2] and Rohsenow [3] first
investigated the effects of thermal convection. Later on, the study of Sparrow and
Gregg [4] included also the effects of thermal convection and inertia forces in the
liquid film by using the boundary layer analysis, and Koh et al. [5] further solved
numerically a boundary-layer model for both the condensate and vapor films. Chen

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 279
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_14,
© Springer-Verlag Berlin Heidelberg 2012



280 14 Complete Mathematical Model of Laminar Free Convection Film Condensation

[6] has considered analytically the effect of thermal convection, the inertia, and the
interfacial shear force.

On the basis of previous studies on the independent-temperature physical prop-
erties Drew [7], Labuntsov [8] made relatively simple modifications for variable
thermophysical properties. Then, Poots and Miles [9] studied the effects of variable
thermophysical properties on laminar free convection film condensation of saturated
steam on a vertical flat plate. They simplified the governing equations of the liquid
and vapor phases by neglecting the effects of surface tension at the liquid–vapor
interface, and obtained solutions of the ordinary differential equations. Stinnesbeck
and Herwig [10] provided an asymptotic analysis of laminar free convection film
condensation on a vertical flat plate including variable property effect. Nevertheless,
the results obtained do not allow heat and mass transfer prediction, probably due to
the difficulty of getting a solution.

Actually, a lot of related phenomena are the film condensation of superheated
vapor. Then, the study on heat and mass transfer of this problem has a strong practical
background. Minkowycz and Sparrow reported their study results for film condensa-
tion heat transfer with consideration of superheated vapor [11]. Their work showed
that superheated temperature brings about only a slight increase in the heat transfer
during the condensation of a pure vapor. They also indicated that for a given degree
of superheating, q/qNu is almost independent on �tw. Anyway, study of the conden-
sation of superheated vapor is scarcely found in the literature. Then, there is lack of a
theoretical development for prediction of heat transfer of the film condensation, and
especially, the theoretical study of the effect of the vapor superheated temperature
on the condensate mass transfer did not appear in the common literature. The reason
is that it is difficult to study the two-phase boundary layer problem, because the tra-
ditional theoretical methods, such as Falkner–Skan transformation for the similarity
transformation of the governing partial differential equations and for treatment of
variable thermophysical properties are not suitable for the successive studies.

In this book, Chaps. 14–17 will be used to present the extensive study results
of Shang, Wang, etc. [12–14] for film condensation free convection of vapor with
consideration of various physical factors including variable thermophysical proper-
ties. Meanwhile, following the previous chapters, the velocity component method is
further applied for a novel similarity transformation of the governing partial equa-
tions of the two-phase boundary layers, and the advanced approach presented in the
previous chapters for treatment of variable thermophysical properties of the medium
in condensate and vapor films is used. Then, the mathematical models are presented
for description of the laminar free convection film condensation of vapor. The math-
ematical models with three-point boundary value problem are further solved with
different wall subcooled and vapor superheated grades. According to the numerical
results, the effects of wall subcooled and vapor superheated grades on velocity and
temperature fields as well as heat and mass transfer of laminar free film condensation
of superheated vapor is further clarified. On these bases, theoretically rigorous and
practically simple formulae are obtained for prediction of heat transfer and mass flow
rate of the film condensation of water.

http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_17
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At first, in this chapter the detailed mathematical model on extended theory of
steady-state laminar free convection film condensation process of vapor on an isother-
mal vertical flat plate is established. Its equations provide a complete account of the
physical process for consideration of various physical factors including variable ther-
mophysical properties. It will be taken as a foundation of the study on the laminar
film condensation of vapor for the following chapters.

14.2 Governing Partial Differential Equations

The analytical model and coordinating system used for the laminar free convection
film condensation of superheated vapor on a vertical flat plate is shown in Fig. 14.1.
An isothermal vertical flat plate is suspended in a large volume of quiescent pure su-
perheated vapor at atmospheric pressure. The plate temperature is tw, the saturation
temperature of the vapor is ts, and the ambient temperature is t∞. If the provided
condition for the model is tw < ts, a steady two-dimensional film condensation will
occur on the plate. We assume that laminar flow within the liquid and vapor phases is
induced by gravity, and take into account the various physical factors including shear
force between the condensate and vapor films, as well as variable thermophysical
properties, and the inertia force and thermal convection of the medium in the conden-
sate and vapor films. Then the conservation governing partial differential equations of
mass, momentum, and energy for steady laminar condensation in two-phase bound-
ary layer are as follows:

For condensate liquid film

∂

∂x
(ρlwx l) + ∂

∂y

(
ρlwyl

) = 0 (14.1)

ρl

(
wx l

∂wx l

∂x
+ wyl

∂wx l

∂y

)
= ∂

∂y

(
μl

∂wx l

∂y

)
+ g

(
ρl − ρv,∞

)
(14.2)

ρlcpl

(
wx l

∂tl
∂x

+ wyl
∂tl
∂y

)
= ∂

∂y

(
λl

∂tl
∂y

)
(14.3)

where Eqs. (14.1)–(14.3) are mass, momentum, and energy equations of liquid film.
For vapor film

∂

∂x
(ρvwxv) + ∂

∂y

(
ρvwyv

) = 0 (14.4)

ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
= ∂

∂y

(
μv

∂wxv

∂y

)
+ g

(
ρv − ρv,∞

)
(14.5)

ρvcpv

(
wxv

∂Tv

∂x
+ wyv

∂Tv

∂y

)
= ∂

∂y

(
λv

∂Tv

∂y

)
(14.6)
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Fig. 14.1 Physical model
and coordinate system of
laminar free convection film
condensation of superheated
vapor
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t

where Eqs. (14.4)–(14.6) are mass, momentum, and energy equations of vaporid film.
The boundary conditions are

y = 0: wx l = 0, wyl = 0, tl = tw (14.7)

y = δl:

wx l,s = wxv,s (14.8)

ρl,s

(
wx l

∂δx l

∂x
− wyl

)

s
= ρv,s

(
wxv

∂δxv

∂x
− wyv

)

s
(14.9)

μl,s

(
∂wxl

∂y

)

s
= μv,s

(
∂wxv

∂y

)

s
(14.10)

λl,s

(
∂tl
∂y

)

y=δl

=h f gρv,s

(
wxv

∂δv

∂x
− wyv

)

s
+ λv,s

(
∂tv
∂y

)

y=δl

(14.11)

T = Ts (14.12)

y→∞ : wxv = 0, Tv → T∞ (14.13)

where Eqs. (14.8)–(14.12) express the physical matching conditions such as velocity,
local mass flux, shear force, heat flux, and temperature balances at the liquid–vapor
interface respectively. While, Eqs. (14.7) and (14.13) express the related conditions
at the wall and bulk respectively.

In order to conveniently solve the governing equations in a suitable dimensionless
form, it is necessary to transform similarly the governing partial differential equations
and the boundary conditions into their dimensionless forms. We still use the new
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similarity analysis method to carry out this transformation. At first, we introduce the
similarity variables as follows:

14.3 Similarity Variables

Due to the two-phase boundary layer there should be two sets of the transformation
variables, the transformation variables for vapor and liquid films.

For liquid film
For liquid film the dimensionless coordinate variable ηl and the local Grashof

number Grx l,s are set up at first as follows:

ηl =
(

1

4
Grx l,s

)1/4 y

x

and

Grx l,s = g(ρl,w − ρv,∞)x3

ν2
l,sρl,s

. (14.14)

Dimensionless temperature is assumed as

θl = tl − ts
tw − ts

. (14.15)

The dimensionless velocity components are given as

Wx l =
(

2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2
)−1

wx l (14.16)

Wyl =
(

2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 ( 1
4 Grx l,s

)−4

)−1

wyl. (14.17)

For vapor film
For vapor film, the dimensionless coordinate variable ηv and the local Grashof

number Grxv,∞ are assumed as respectively

ηv =
(

1

4
Grxv,∞

)1/4 y

x
(14.18)

Grxv,∞ = g(ρv,s/ρv,∞ − 1)x3

ν2
v,∞

. (14.19)

The dimensionless temperature is defined as
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θv = Tv − T∞
Ts − T∞

. (14.20)

The dimensionless velocity components are assumed as

Wxv =
(

2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
)−1

wxv (14.21)

Wyv =
(

2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
(

1

4
Grxv,∞

)−1/4
)−1

wyv. (14.22)

14.4 Governing Ordinary Differential Equations

Consulting the derivations in Chap. 11 for laminar free convection film boiling of
subcooled liquid and by means of the above equations of the similarity variables,
the governing partial differential equations Eqs. (14.1)–(14.6) and their boundary
condition equations (14.7)–(14.13) for laminar free convection film condensation
of superheated vapor can be equivalent transformed into the following governing
ordinary differential equations, respectively (see the transformation in Appendix A
and B):

For liquid film

2Wx l − ηl
dWx l

dηl
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(ηlWx l − 4Wyl) = 0 (14.23)

νl,s

νl

(
Wx l

(
2Wx l − ηl

dWx l

dηl

)
+ 4Wyl

dWx l

dηl

)

= d2Wx l

dηl
2 + 1

μl

dμl

dηl

dWx l

dηl
+ μl,s

μl

ρl − ρv,∞
ρl,w − ρv,∞

(14.24)

Prl
νl,s

νl

[−Wx lηl + 4Wyl
] dθl

dηl
= d2θl

dη2
l

+ 1

λl

dλl

dηl

dθl

dηl
(14.25)

where Eqs. (14.23)–(14.25) respectively express the mass, momentum, and energy
equations of liquid film.

For vapor film

2Wxv − ηv
dWxv

dη
+ 4

dWyv

dηv
− 1

ρv

dρv

dηv
(ηvwxv − 4wyv) = 0 (14.26)
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νv,∞
νv

(
Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

(
dWxv

dηv

))

= d2Wxv

dη2
v

+ 1

μv

dμv

dηv

dWxv

dηv
+ μv,∞

μv

ρv − ρv,∞
ρv,s − ρv,∞

(14.27)

Prv
νv,∞
νv

(−ηvWxv + 4Wyv)
dθv

dηl
= 1

λv

dλv

dη

dθv

dηv
+ d2θv

dη2
v

(14.28)

where Eqs. (14.26)–(14.28) respectively express the mass, momentum, and energy
equations of vapor film.

For Boundary conditions:
By means of the above equations of the similarity variables, the boundary condi-

tion equations are transformed into the following dimensionless ones respectively:

ηl = 0 : Wx l = 0, Wyl = 0, θl = 1 (14.29)

Wxv,s =
(

ρl,w − ρv,∞
ρl,s

)1/2 (
ρv,s − ρv,∞

ρv,∞

)−1/2

Wx l,s (14.30)

wyv = − 1

4

ρl,s

ρv,s

(
νl,s

νv,∞

)1/2 (
ρl,w − ρv,∞

ρl,s

)1/4

× (
ρv,s/ρv,∞ − 1

)−1/4 [
Wx lηlδ − 4Wyl

]
(14.31)

(
dWxv

dηv

)

ηv=0
= μl,s

μv,s

(
νv,∞
νl,s

)1/2 (
ρl,w − ρv,∞

ρl,s

)3/4

×
(

ρv,s

ρv,∞
− 1

)−3/4 (
dWx l

dηl

)

ηl=ηl,δ

(14.32)

(
dθv

dηv

)

ηv=ηvδ

=
λl,s (tw−ts)

(
νv,∞
νl,s

)1/2
(

ρl,w−ρv,∞
ρl,s

)1/4 (
ρv,s/ρv,∞−1

)−1/4
(

dθl
dηl

)

ηl=ηlδ
+4hfgρv,sνv,∞Wyv,s

λv,s (Ts − T∞)

(14.33)

θl = 0, θv = 1 (14.34)

ηv→∞: Wxv→θ, θv→0. (14.35)

Equations (14.30)–(14.34) express the physical matching conditions such as velocity,
local mass flux, shear force, heat flux, and temperature balances at the vapor–liquid
interface respectively. While, Eqs. (14.29) and (14.35) express the related conditions
at the wall and bulk respectively.
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14.5 Identical Governing Equations on Laminar Free Film
Condensation of Saturated or Superheated Vapor

In fact, the laminar free convection film condensation of saturated vapor with the
superheated temperature �t∞ = t∞− ts = 0 can be regarded as a special case of that
of superheated vapor. Therefore, the above mathematical model of the laminar free
film condensation of superheated vapor is completely suitable for that of saturated
vapor, if the following simplifications are done:

(i) The energy equation of vapour film is omitted. Then, its related dimensionless
form is ignored.

(ii) The defined dimensionless temperature variable for vapor film is omitted.
(iii) The vapor film heat conduction in the interfacial boundary condition is ignored.

Strictly speaking, the defined similarity variable Grxv,∞ in (14.19) should be zero
for the film condensation of saturated vapor, since the liquid density ρl,∞ at t∞ is
equal to ρl,s at ts in this case. If so, it will never be possible to do all the above
similarity transformations of the governing equations. For solving this problem, the
temperature t∞ can be regarded very close to ts, so that the value of ρv,∞ is very close
to the value of ρv,s. For example, if the temperature relative deviation (t∞ − ts)/ts
is less than an arbitrary small number ε, the film condensation of superheated vapor
will be very close to that of saturated vapor. Such arbitrary number ε can be found
out by using an asymptotic approach.

The advantage of the above treatment is that the mathematical models of the
laminar free film condensation of superheated and saturated vapor become identical.

14.6 Remarks

The new similarity analysis method is successfully applied for similarity transfor-
mation of the governing partial differential equations of laminar free convection film
condensation of superheated vapor with consideration of coupled effects of variable
physical properties of liquid and vapor films. In the transformed governing ordinary
differential equations, the dimensionless velocity components of liquid and vapor
films have definite physical meanings, and then the solutions of the models can be
understood easily. The new similarity analysis method is appropriate for the treatment
of the three-point value problem.

In the analysis and similarity transformation of the mathematical models, the
interfacial balance equations between the liquid and vapor films are considered in
detail, such as mass flow rate balance, velocity component balance, shear force
balance, temperature balance, and energy balance. Therefore, such a mathematical
model is serious theoretically and has its application value in practice.

In this chapter, our work is focused on constitution of mathematical models of
the laminar free convection film condensation of superheated vapor, while, the film
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condensation of saturated vapor is only regarded as its special case. Thus, the mathe-
matical models of the laminar free convection film condensation of superheated and
saturated vapors become identical.

14.7 Exercises

1. Which boundary conditions are considered at the liquid–vapor interface of laminar
free convection film condensation of pure vapor?

2. Please compare the governing mathematical models between the laminar film
boiling and condensation, and find out their differences.

3. Please compare the interfacial boundary condition equations between the laminar
free convection film boiling and condensation, and find out their differences.

4. Please compare the dimensionless similarity variables between the laminar free
convection film boiling and condensation, and point out their differences.

5. Based on the governing partial differential equations of laminar free convection
film condensation of superheated vapour, please give the corresponding equations
of saturated vapor.

6. Please explain the identical governing system of mathematical model laminar
free convection film condensation of superheated and saturated vapor.

Appendix A: Similarity Transformation for Governing Ordinary
Differential Equations

A1. For liquid film
Transformation of Eq. (14.1):

At first, Eq. (14.1) is rewritten as

ρl

(
∂wx l

∂x
+ ∂wyl

∂y

)
+ wx l

∂ρl

∂x
+ wyl

∂ρl

∂y
= 0. (A.1)

With Eqs. (14.14), (14.15) and (14.16) we can obtain the following correlations:

∂wx l

∂x
=

√
g

x

(
ρl,w − ρv,∞

ρl,s

)1/2 (
Wx l − 1

2
ηl

dWx l

dηl

)
(A.2)

∂wyl

∂y
= 2

√
g

x

(
ρl,w − ρv,∞

ρl,s

)1/2 dWyl

dηl
(A.3)

∂ρl

∂x
= −1

4
ηlx

−1 dρl

dηl
(A.4)

∂ρl

∂y
= dρl

dηl

(
1

4
Grx l,s

)1/4

x−1. (A.5)
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With Eqs. (14.16), (14.17) and (A.2)–(A.5), Eq. (A.1) is changed to

ρl

(√
g

x

(
ρl,w − ρv,∞

ρl,s

)1/2 (
Wx l − 1

2
ηl

dWx l

dηl

)
+2

√
g

x

(
ρl,w − ρv,∞

ρl,s

)1/2 dWyl

dηl

)

+ 2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2

Wx l

(
−1

4
ηlx

−1 dρl

dηl

)

+ 2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 (
1

4
Grx l,s

)−1/4

Wyl
dρl

dηl

(
1

4
Grx l,s

)1/4

x−1 = 0.

The above equation is divided by
(

ρl,w−ρv,∞
ρl,s

)1/2 √
g
x and is simplified to

2Wx l − ηl
dWx l

dηl
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl

(
ηlWx l − 4Wyl

) = 0. (14.23)

Transformation of Eq. (14.2):
Equation (14.2) is rewritten as

ρl

(
wx l

∂wx l

∂x
+ wyl

∂wx l

∂y

)
= ∂μl

∂y

∂wx l

∂y
+ μl

∂2wx l

∂y2 + g
(
ρl − ρv,∞

)
. (A.6)

With the dimensionless transformation variables assumed in Eqs. (14.14), (14.15)
and (14.16) we get

∂wx l

∂y
= 2

√
gx

(
ρl,w − ρv,∞

ρl,s

)1/2 dWx l

dηl
x−1

(
1

4
Grx l,s

)1/4

(A.7)

∂2wx l

∂y2 = 2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 d2Wx l

dη2
l

x−1
(

1

4
Grx l,s

)1/4 (
1

4
Grx l,s

)1/4

x−1

= 2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 d2Wx l

dη2
l

(
1

4
Grx l,s

)1/2

x−2 (A.8)

∂μl

∂y
= dμl

dηl

(
1

4
Grx l,s

)1/4

x−1. (A.9)

With Eqs. (A.7)–(A.9), Eq. (A.6) is changed to

ρl

(

2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2

Wx l

√
g

x

(
ρl,w − ρv,∞

ρl,s

)1/2

×
(

Wx l − 1

2
ηl

dWx l

dηl

)
+ 2

√
gx

(
ρl,w − ρv,∞

ρl,s

)1/2 (
1

4
Grx l,s

)−1/4

× Wyl2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 dWx l

dηl
x−1

(
1

4
Grx l,s

)1/4
)
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= dμl

dηl

(
1

4
Grx l,s

)1/4

x−12
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 dWx l

dηl
x−1

(
1

4
Grx l,s

)1/4

+ μl2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 d2Wx l

dη2
l

(
1

4
Grx l,s

)1/2

x−2 + g
(
ρl − ρv,∞

)
.

The above equation is divided by g
(

ρl,w−ρv,∞
ρl,s

)
and further simplified to the following

one by using the definition of Grxv,s:

ρl

(
2Wx l

(
Wx l − 1

2
ηl

dWx l

dηl

)
+ 2Wyl2

dWx l

dηl

)
= dμl

dηl

(
1

4

1

ν2
l,s

)1/2

2
dWx l

dηl

+ μl2
d2Wx l

dη2
l

(
1

4

1

ν2
l,s

)
1/2 + ρl,s

ρl − ρv,∞
ρl,w − ρv,∞

.

The above equation is multiplied by νl,s
μl

and simplified to

νl,s

νl

(
Wx l

(
2Wx l − ηl

dWx l

dηl

)
+ 4Wyl

dWx l

dηl

)

= d2Wx l

dη2
l

+ 1

μl

dμl

dηl

dWx l

dηl
+ μl,s

μl

ρl − ρv,∞
ρl,w − ρv,∞

. (14.24)

Transformation of Eq. (14.3):
Equation (14.3) is first rewritten as

ρlcpl

(
wx l

∂tl
∂x

+ wyl
∂tl
∂y

)
= λl

∂2tl
∂y2 + ∂λl

∂y

∂tl
∂y

(A.10)

where

tl = (tw − ts) θl + ts (A.11)

∂tl
∂x

= − (tw − ts)
dθl

dηl

(
1

4

)
ηlx

−1 (A.12)

∂tl
∂y

= (tw − ts)
dθl

dηl

(
1

4
Grx l,s

)1/4

x−1 (A.13)

∂2tl
∂y2 = (tw − ts)

d2θl

dη2
l

(
1

4
Grx l,s

)1/2

x−2 (A.14)

∂λl

∂y
= dλl

dηl

(
1

4
Grx l,s

)1/4

x−1. (A.15)

With Eqs. (14.16), (14.17) and (A.11)–(A.14), Eq. (A.10) will become
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ρlcpl

(

2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2

Wx l

(
− (tw − ts)

dθl

dηl

(
1

4

)
ηlx

−1
)

+ 2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 (
1

4
Gr−1/4

x l,s

)
Wyl (tw − ts)

dθl

dηl

(
1

4
Grx l,s

)1/4

x−1

)

= λl (tw − ts)
d2θl

dη2
l

(
1

4
Grx l,s

)1/2

x−2 + dλl

dηl

(
1

4
Grx l,s

)1/4

x−1

× (tw − ts)
dθl

dηl

(
1

4
Grx l,s

)−1/4

x−1.

The above equation is divided by (tw − ts), and is expressed as follows by using
the definition of local Grashof number Grx l,s:

ρlcpl

(

2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2

Wx l

(
− dθl

dηl
(
1

4
)ηlx

−1
)

+ 2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2

Wyl
dθl

dηl
x−1

)

= λl
d2θl

dη2
l

(
1

4

g
(
ρl,w − ρv,∞

)
x3

ν2
l,sρl,s

)1/2

x−2

+ dλl

dηl

(
1

4

g
(
ρl,w − ρv,∞

)
x3

ν2
l,sρl,s

)1/2

x−1 dθl

dηl
x−1.

The above equation is divided by
√

g
x

(
ρl,w−ρv,∞

ρl,s

)1/2
, and simplified to the following

one

ρlcpl

(
Wx l

(
− dθl

dηl
ηl

)
+ 4Wyl

dθl

dηl

)
= λl

d2θl

dη2
l

(
1

ν2
l,s

)1/2

+ dλl

dηl

(
1

ν2
l,s

)1/2
dθl

dηl
.

The above equation is multiplied by νl,s
λl

, and simplified to

ρlcpl

λl
νl,s

(
Wx l

(
− dθl

dηl
ηl

)
+ 4Wyl

dθl

dηl

)
= d2θl

dη2
l

+ 1

λl

dλl

dηl

dθl

dηl

i.e.

Prl
νl,s

νl

[−Wx lηl + 4Wyl
] dθl

dηl
= d2θl

dη2
l

+ 1

λl

dλl

dηl

dθl

dηl
. (14.25)

In addition, from the analysis in Chap. 6, it is known that the physical factor
Prl

νl,s
νl

in

http://dx.doi.org/10.1007/978-3-642-28983-5_6
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A2. For vapor film
Transformation of Eq. (14.4):

Equation (14.4) is rewritten as

ρv

(
∂wxv

∂x
+ ∂wyv

∂y

)
+ wxv

∂ρv

∂x
+ wyv

∂ρv

∂y
= 0. (A.16)

With the similarity variables assumed in Eqs. (14.18), (14.19), (14.21) and (14.22)
we can obtain the following correlations:

∂wxv

∂x
=

√
g

x

(
ρv,s/ρv,∞ − 1

)1/2
(

Wxv − 1

2
ηv

dWxv

dη

)
(A.17)

∂wyv

∂y
= 2

√
g

x

(
ρv,s/ρv,∞ − 1

)1/2 dWyv

dηv
) (A.18)

∂ρv

∂x
= −1

4
ηvx−1 dρv

dηv
(A.19)

∂ρv

∂y
= dρv

dηv

(
1

4
Grxv,s

)1/4

x−1. (A.20)

With equations (A.17)–(A.20), (A.16) can be changed into

ρv

(√
g

x

(
ρv,s/ρv,∞ − 1

)1/2
(

Wxv − 1

2
ηv

dWxv

dη

)

+2

√
g

x

(
ρv,s/ρv,∞ − 1

)1/2
(

dWyv

dηv

))

+ 2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
wxv

(
−1

4
ηvx−1 dρv

dηv

)

+ 2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
(

1

4
Grxv,∞

)−1/4

× wyv
dρv

dηv

(
1

4
Grx v, s

)1/4

x−1 = 0.

The above equation is divided by
√

g
x

(
ρv,s/ρv,∞ − 1

)1/2 and is further simplified to

2Wxv − ηv
dWxv

dη
+ 4

dWyv

dηv
− 1

ρv

dρv

dηv

(
ηvwxv − 4wyv

) = 0. (14.26)

Transformation of Eq. (14.5):
Equation (14.5) is rewritten as
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ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
= μv

∂2wxv

∂y2 + ∂wxv

∂y

∂μv

∂y
+ g

(
ρv − ρv,∞

)
. (A.21)

With the similarity variables assumed in Eqs. (14.18), (14.19), (14.21) and (14.22)
we can obtain the following correlations:

∂wxv

∂y
= 2

√
gx

(
ρv,s/ρv,∞ − 1

)1/2 dWxv

dηv
x−1

(
1

4
Grxv,∞

)1/4

(A.22)

∂2wxv

∂y2 = 2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2 d2Wxv

dη2
v

x−1
(

1

4
Grxv,∞

)1/4 (
1

4
Grxv,∞

)1/4

x−1

= 2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2 d2Wxv

dη2
v

(
1

4
Grxv,∞

)

1/2
x−2 (A.23)

∂μv

∂y
= dμv

dηv

(
1

4
Grxv,∞

)1/4

x−1. (A.24)

With Eqs. (A.22)–(A.24), (14.18), (14.19), (14.21) and (14.22), Eq. (A.21) becomes

ρv

(
2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
Wxv

√
g

x

(
ρv,s/ρv,∞ − 1
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(

Wxv − 1

2
ηv

dWxv

dη

)
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√

gx
(
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)1/2
(

1

4
Grxv,∞

)−1/4

Wyv2
√

gx
(
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)1/2

× dWxv

dηv
x−1

(
1

4
Grxv,∞

)1/4
)

= μv2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2 d2Wxv

dη2
v

(
1

4
Grxv,∞

)

1/2
x−2

+ 2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2 dWxv

dηv
x−1

(
1

4
Grxv,∞

)1/4

× dμv

dηv

(
1

4
Grxv,∞

)1/4

x−1 + g
(
ρv − ρv,∞

)
.

The above equation is divided by
(
ρv,s/ρv,∞ − 1

)1/2, and simplified to the following
one by using the definition of Grxv,∞:
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ρv

(
Wxv

(
2Wxv − ηv

dWxv

dη

)
+ 4Wyv

dWxv

dηv

)
= μv

d2Wxv

dη2
v

(
1

ν2
v,∞

)1/2

+ dWxv

dηv

(
1

ν2
v,∞

)1/2
dμv

dηv
+ ρv,∞

ρv − ρv,∞
ρv,s − ρv,∞

.

The above equation is multiplied by νv,∞
νv

1
ρv

, and simplified to

νv,∞
νv

(
Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

(
dWxv

dηv

))

= d2Wxv

dη2
v

+ 1

μv

dμv

dηv

dWxv

dηv
+ μv,∞

μv

ρv − ρv,∞
ρv,s − ρv,∞

. (14.27)

Transformation of Eq. (14.6):
Equation (14.6) is rewritten as

ρvcpv

(
wxv

∂Tv

∂x
+ wyv

∂Tv

∂y

)
= ∂λv

∂y

∂Tv

∂y
+ λv

∂2Tv

∂y2 . (A.25)

With the similarity variables assumed in Eqs. (14.18)–(14.22) the following correla-
tions are produced:

Tv = (Ts − T∞) θl + T∞ (A.26)

∂Tv

∂x
= − (Ts − T∞)

dθv

dηv

(
1

4

)
ηvx−1 (A.27)

∂Tv

∂y
= (Ts − T∞)

dθv

dηv

(
1

4
Grxv,∞

)1/4

x−1 (A.28)

∂2Tv

∂y2 = (Ts − T∞)
d2θv

dη2
v

(
1

4
Grxv,∞

)1/2

x−2 (A.29)

∂λv

∂y
= dλv

dη

(
1

4
Grxv,∞

)1/4

x−1. (A.30)

With Eqs. (14.21), (14.22), (A.26)–(A.30), Eq. (A.25) is transformed into

ρvcpv

[(
2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
)

wxv

(
− (Ts − T∞)

dθv
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(
1

4

)
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)

+
(

2
√
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(
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)1/2
(

1

4
Grxv,∞

)−1/4
)

wyv
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× (Ts − T∞)
dθv

dηv

(
1

4
Grxv,∞

)−1/4

x−1

]

=dλv

dη

(
1

4
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)1/4
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(
1

4
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)1/4

x−1

+ λv (Ts − T∞)
d2θv

dη2
v

(
1

4
Grxv,∞

)1/2

x−2.

The above equation is divided by Ts − T∞, and simplified to the following one by
means of definition of local Grashof number Grxv,∞:

ρvcpv

[(
2
√

gx
(
ρv,s/ρ

−1
v,∞

)1/2
)

wxv
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− dθv
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1
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)
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)
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2
√
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= dλv
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1

4
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)
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v,∞
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dη2
v

(
1

4

g
(
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)
x3

ν2
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The above equation is divided by
√

g
x

(
ρv,s/ρv,∞ − 1

)1/2, and simplified to

ρvcpv

[
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(
− dθv

dηv

(
1

4

)
ηv

)
+ 2Wyv

dθv

dηv

]

= dλv

dηv

dθv
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(
1

4

1
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v,∞

)1/2

+ λv
d2θv

dη2
v

(
1

4

1
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v,∞
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.

The above equation is multiplied by
2νv,∞

λv
, and simplified to

Prv
νv,∞
νv

(−ηvWxv + 4Wyv
) dθv

dηl
= 1

λv

dλv

dη

dθv

dηv
+ d2θv

dη2
v

. (14.28)

Appendix B: Similarity Transformation for Boundary Condition
Equations

1. Derivation of Eq. (14.7)
With the related defined variables in Eqs. (14.15) to (14.17), Eq. (14.7) can be

easily derived to
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ηl = 0: Wx l = 0, Wyl = 0, θ1 = 1. (14.29)

By the way, the equation y = δl can be changed to ηl = ηlδ(ηv = 0):

2. Derivation of Eq. (14.8)
With Eqs. (14.16), (14.17) and (14.14), Eq. (14.8) can be easily changed to

Wxv,s =
(

ρl,w − ρv,∞
ρl,s

)1/2 (
ρv,s − ρv,∞

ρv,∞

)−1/2

Wx l,s. (14.30)

3. Derivation of Eq. (14.9)
With Eq. (14.14) we have

ηlδ =
(

1

4
Grx l,s

)1/4
δ

x
(B.1)

for liquid film.
i.e.

δl = ηlδ

(
1

4

g (ρl, w − ρv, s) x3

v2
l,sρl,s

)−1/4

x .

With definition of Grx l,s, we have

dδl

dx
= 1

4
ηlδ

(
1

4
Grx l,s

)−1/4

. (B.2)

Similarly, we obtain
dδv

dx
= 1

4
ηvδ

(
1

4
Grxv,s

)−1/4

(B.3)

for vapor film.
With Eqs. (B.1)–(B.3), (14.14), (14.16), (14.17), (14.19), (14.21) and (14.22),

Eq. (14.9) is changed to

ρl,s

[

2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2

Wx l
1

4
ηlδ

(
1

4
Grx l,s

)−1/4

−2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 ( 1
4 Grx l,s

)−1/4
Wyl

]

s

= ρv,s

[

2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
Wxv

1

4
ηvδ

(
1

4
Grvl,∞

)−1/4
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−
(

2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
(

1

4
Grxv,∞

)−1/4
)−1

wyv

⎤

⎦

s

i.e.

ρl,s

[

2

(
ρl,w − ρv,∞

ρl,s

)1/2

Wx l
1

4
ηlδ

(
1

4
Grx l,s

)−1/4

−2

(
ρl,w − ρv,∞

ρl,s

)1/2 ( 1
4 Grx l,s

)−1/4
Wyl

]

s

= ρv,s

[

2
(
ρv,s/ρv,∞ − 1

)1/2
Wxv

1

4
ηvδ

(
1

4
Grvl,∞

)−1/4

−
(

2
(
ρv,s/ρv,∞ − 1

)1/2
(

1

4
Grxv,∞

)−1/4
)−1

wyv

⎤

⎦

s

.

With the definitions of Grx l,s and Grxv,∞, the above equation is simplified to

ρl,s
[
Wx lηlδ − 4Wyl

]
s

(
ρl,w − ρv,∞

ρl,s

)1/2
(

1

4

g
(
ρl,w − ρv,∞

)
x3

ν2
l,sρl,s

)−1/4

= ρv,s
[
Wxvηvδ − (

4wyv
)]

s

(
ρv,s/ρv,∞ − 1

)1/2

(
1

4

g(ρv,s/ρv,∞ − 1)x3

ν2
v,∞

)−1/4

i.e.

ρl,s
[
Wx lηlδ − 4Wyl

]
s

(
ρl,w − ρv,∞

ρl,s

)1/4
(

1

ν2
l,s

)−1/4

= ρv,s
[
Wxvηvδ − (

4wyv
)]

s

(
ρv,s/ρv,∞ − 1

)1/4

(
1

ν2
v,∞

)−1/4

.

Since ηvδ = 0 at the liquid–vapor interface, the above equation can be further
simplified to

ρl,s
[
Wx lηlδ − 4Wyl

]
s

(
ρl,w − ρv,∞

ρl,s

)1/4 (
ρv,s/ρv,∞ − 1

)−1/4
(

νl,s

νv,∞

)1/2
= −ρv,s4wyv.

Then,
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wyv,s = −1

4

ρl,s

ρv,s

(
νl,s

νv,∞

)1/2 (
ρl,w − ρv,∞

ρl,s

)1/4 (
ρv,s/ρv,∞ − 1

)−1/4 [
Wx lηlδ − 4Wyl

]
s .

(14.31)

4. Derivation of Eq. (14.10)
With Eqs. (14.15) and (14.20), Eq. (14.10) is changed to

μl,s2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 (
dWx l

dηl

)

s
x−1

(
1

4
Grx l,s

)1/4

= μv,s2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
(

dWxv

dηv

)

s
x−1

(
1

4
Grxv,s

)1/4

.

With the definitions of Grx l,s and Grxv,∞, the above equation is simplified to

(
dWxv

dηv

)

ηv=0
= μl,s

μv,s

(
νv,∞
νl,s

)1/2 (
ρl,w − ρv,∞

ρl,s

)3/4

×
(

ρv,s

ρv,∞
− 1

)−3/4 (
dWx,l

dηl

)

ηl=ηl,δ

. (14.32)

5. Derivation of Eq. (14.11)
With Eqs. (14.14), (14.15), (14.18) and (14.20) Eq. (14.11) is changed to

λv,s (Ts − T∞)

(
dθv

dηl

)

ηv=ηvδ

(
1

4
Grxv,∞

)1/4

x−1

= λl,s (tw − ts)

(
dθl

dηl

)

ηl=ηlδ

(
1

4
Grx l,s

)1/4

x−1

− hfgρv,s

[

2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
Wxv,s

1

4
ηvs

(
1

4
Grxv,∞

)−1/4

−2
√

gx
(
ρv,s/ρv,∞ − 1

)1/2
(

1

4
Grxv,∞

)−1/4

Wyv,s

]

i.e.

λv,s (Ts − T∞)

(
dθv

dηl

)

ηv=ηvδ

(
1

4
Grxv,∞

)1/4

x−1

= λl,s (tw − ts)

(
dθl

dηl

)

ηl=ηlδ

(
1

4
Grx l,s

)1/4

x−1
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− hfgρv,s

[
2Wxv,s

1

4
ηvδ − 2Wyv,s

] (
1

4
Grxv,∞

)−1/4

× √
gx

(
ρv,s/ρv,∞ − 1

)1/2
. (B.4)

With the definition of Grxv,∞, we have

ρv,s/ρv,∞ − 1 = ν2
v,∞

gx3 Grxv,∞ (B.5)

With Eq. (B.5), (B.4) is changed to

λv,s (Ts − T∞)

(
dθv

dηl

)

ηv=ηvδ

(
1

4
Grxv,∞

)1/4

x−1

= λl,s (tw − ts)

(
dθl

dηl

)

ηl=ηlδ

(
1

4
Grx l,s

)1/4

x−1

− hfgρv,s

[
2Wxv,s

1

4
ηvδ − 2Wyv,s

] (
1

4
Grxv,∞

)−1/4

× √
gx

(
ν2

v,∞
gx3 Grxv,∞

)1/2

.

The above equation is simplified to

λv,s (Ts − T∞)

(
dθv

dηl

)

ηv=ηvδ

(
1

4
Grxv,∞

)1/4

x−1

= λl,s (tw − ts)

(
dθl

dηl

)

ηl=ηlδ

(
1

4
Grx l,s

)1/4

x−1

− hfgρv,s

[
2Wxv,s

1

4
ηvδ − 2Wyv,s

] (
1

4
Grxv,∞

)−1/4

× √
gx

(
ν2

v,∞
gx3

)1/2

2

(
1

4
Grxv,∞

)1/2

i.e.

λv,s (Ts − T∞)

(
dθv

dηl

)

ηv=ηvδ

(
1

4
Grxv,∞

)1/4

x−1



Appendix B: Similarity Transformation for Boundary Condition Equations 299

= λl,s (tw − ts)

(
dθl

dηl

)

ηl=ηlδ

(
1

4
Grx l,s

)1/4

x−1

− hfgρv,s
[
ηvδWxv,s − 4Wyv,s

] (
1

4
Grxv,∞

)1/4

x−1νv,∞.

With the definitions of Grx l,s and Grxv,∞, the above equation is changed to

λv,s (Ts − T∞)

(
dθv

dηl

)

ηv=ηvδ

(
1

4

g
(
ρv,s/ρv,∞ − 1

)
x3

ν2
v,∞

)1/4

x−1

= λl,s (tw − ts)

(
dθl

dηl

)

ηl=ηlδ

(
1

4

g
(
ρl,w − ρv,∞

)
x3

ν2
l,sρl,s

)1/4

x−1

− hfgρv,s
[
ηvδWxv,s − 4Wyv,s

]
(

1

4

g
(
ρv,s/ρv,∞ − 1

)
x3

ν2
v,∞

)1/4

x−1νv,∞

i.e.

λv,s (Ts − T∞)

(
dθv

dηl

)

ηv=ηvδ

(
ρv,s/ρv,∞ − 1

ν2
v,∞

)1/4

= λl,s (tw − ts)

(
dθl

dηl

)

ηl=ηlδ

(
ρl,w − ρv,∞

ν2
l,sρl,s

)1/4

− hfgρv,s
[
ηvδWxv,s − 4Wyv,s

]
(

ρv,s/ρv,∞ − 1

ν2
v,∞

)1/4

νv,∞.

The above equation is further simplified to

(
dθv

dηl

)

ηv=ηvδ

=

λl,s (tw − ts)
(

νv,∞
νl,s

)1/2 (
ρl,w−ρv,∞

ρl,s

)1/4 (
ρv,s/ρv,∞ − 1

)−1/4
(

dθl
dηl

)

ηl=ηlδ
− hfgρv,sνv,∞[ηvδWxv,s − 4Wyv,s]

λv,s (Ts − T∞)
.

Since ηvδ = 0 at the liquid–vapor interface, the above equation is simplified to

(
dθv

dηl

)

ηv=ηvδ

= (14.33)

λl,s (tw − ts)
(

νv,∞
νl,s

)1/2 (
ρl,w−ρv,∞

ρl,s

)1/4 (
ρv,s/ρv,∞ − 1

)−1/4
(

dθl
dηl

)

ηl=ηlδ
+ 4hfgρv,sνv,∞Wyv,s

λv,s (Ts − T∞)
.
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In addition, Eqs. (14.12) and (14.13) can be easily changed to

θl = 0, θv = 1 (14.34)

ηv→∞: Wxv→0, θv→0. (14.35)
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Chapter 15
Velocity and Temperature Fields of Laminar
Free Convection Film Condensation
of Pure Vapour

Abstract The work is dealt with for solutions of velocity and temperature fields
on laminar free film condensation of superheated vapor on a vertical flat plate at
atmospheric pressure with consideration of various factors including variable phys-
ical properties. The film condensation of saturated vapor is only its special case.
The system of ordinary differential equations is computed by a successively iter-
ative procedure and an iterative method is adopted for the numerical solutions of
the three-point boundary value problem. With increasing the wall subcooled grades,
the maximum of velocity field of liquid film will increase and shift far away from
the plate. In addition, the velocity of liquid film will decrease with increasing the
vapor superheated grade. Compared with the effect of wall subcooled grades on the
velocity of liquid film, the related effect of the vapor superheated grade is obviously
weak. With increasing the wall subcooled grades, the thickness of liquid film will
increase. With increasing the vapor superheated grade, the thickness of liquid film
will decrease. The temperature grade of liquid film on the wall will decrease with
increase in wall subcooled grade, and increase with increasing vapor superheated
grade. Compared with the effect of wall subcooled grades on the temperature of
liquid film, the related effect of the vapor superheated grade is obviously weak. The
velocity of vapor film will increase with increasing the wall superheated grades, and
decrease with increasing vapor superheated grade. With increasing wall subcooled
grade, the velocity of vapor film will decrease slightly. With increasing the vapor
superheated grade, the velocity of vapor film will decrease obviously.

15.1 Introduction

In Chap. 14, the complete mathematical model was derived for laminar free film
condensation of vapor, where the model of the film condensation of saturated vapor
is regarded as its special case. On the basis of Chap. 14, in this chapter, the mathe-
matical model with the governing ordinary differential equations and the complete
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boundary conditions are solved by a successively iterative procedure at different
wall subcooled degrees and different vapor superheated degrees. Meanwhile, the
temperature parameter method and polynomial formulae are used for treatment of
the variable physical properties of the vapor and liquid films respectively. The dis-
tributions of velocity and temperature fields of the laminar free film condensation of
liquid are rigorously determined.

15.2 Treatment of Variable Physical Properties

The treatment of variable physical properties for the medium of the liquid and vapor
films must be done for solving the ordinary differential equations with the boundary
condition equations. The approaches for the treatment of variable physical properties
are presented as follows:

15.2.1 For Liquid Film

Treatment of variable physical properties of liquid will be done according to the
polynomial method. For example, for water the temperature-dependent expressions
of density, thermal conductivity, and absolute viscosity can be expressed as follows:

ρl = −4.48 × 10−3t2 + 999.9 (15.1)

λ1 = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563 (15.2)

μ1 = exp

[
−1.6 − 1150

T
+

(
690

T

)2
]

× 10−3 (15.3)

According to Eqs. (5.24) to (5.26), the physical property factors 1
ρl

dρl
dηl

, 1
μl

dμl
dηl

and
1
λl

dλl
dηl

in governing Eqs. (14.23) to (14.25) for water film become the following
equations at atmospheric pressure:

1

ρl

dρl

dηl
= −2 × 4.48 × 10−3t (tw − ts)

−4.48 × 10−3t2 + 999.9

dθl

dηl
(15.4)

1

μl

dμl

dηl
=

(
1150

T 2 − 2 × 6902

T 3

)
(tw − ts)

dθl

dηl
(15.5)
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1

λl

dλl

dηl
= (−2 × 8.01 × 10−6t + 1.94 × 10−3)(tw − ts)

dθl
dηl

−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563
(15.6)

15.2.2 For Vapor Film

The temperature parameter method introduced in Chap. 5 [1] will be used for the
treatment of variable physical properties of the vapor medium. For the situation
here, the boundary temperature T∞ is taken, and the simple power-law equations
will be

μv

μv,∞
=

(
T

T∞

)nμ

(15.7)

λv

λv,∞
=

(
T

T∞

)nλ

(15.8)

ρv

ρv,∞
=

(
T

T∞

)−1

(15.9)

Here we omit the equation for specific heat. With Eqs. (15.7) and (15.9), we have

νv

νv,∞
=

(
T

T∞

)nμ+1

(15.10)

In addition, according to Chap. 5, we have the following equations for description of
the physical property factors 1

ρv

dρv
dηv

, 1
μv

dμv
dηv

, 1
λv

dλv
dηv

and νv,∞
νv :

1

ρv

dρv

dηv
= − (Ts/T∞ − 1)dθv/dηv

(Ts/T∞ − 1)θv + 1
(15.11)

1

μv

dμv

dηv
= nμ(Ts/T∞ − 1)dθv/dηv

(Ts/T∞ − 1)θv + 1
(15.12)

1

λv

dλv

dηv
= nλ(Ts/T∞ − 1)dθv/dηv

(Ts/T∞ − 1)θv + 1
(15.13)

νv,∞
νv

= [(Ts/T∞ − 1)θv + 1]−(nμ+1) (15.14)
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15.3 Numerical Solutions

15.3.1 Calculation Procedure

The calculation procedure of the equations of the two-phase boundary layer of the
film condensation of vapor belongs to three-point boundary value problem, and is
carried out numerically by two steps. In the first step, the solutions of Eqs. (14.23) to
(14.25) of the liquid film of Chap. 14 are assumed to be without shear force of vapor
at the liquid–vapor interface. For this case, the boundary condition (14.23) must be
changed into (

dWxl

dηl

)
ηl=ηl,δ

= 0 (15.15)

In this case, Eqs. (14.29) and (14.34) are taken as the boundary conditions of
the two-point boundary value problem of Eqs. (14.23) to (14.25) for liquid film,
and are solved by the shooting method. Furthermore, the second step for carrying
out calculation of three-point boundary value problem for coupling equations of
liquid film with equations for vapor films is started. In this step, first the boundary
values Wxv,s and Wyv,s are found out by Eqs. (14.30) and (14.31) respectively. Then,
Eqs. (14.26) to (14.28) for the vapor film are calculated with the boundary conditions
(14.34) and (14.35) and the above values of Wxv,s and Wyv,s . On this basis, judgment
Eqs. (14.32) and (14.33) are used for checking convergence of the solutions. By means
of the judgment equations the calculation is iterated with appropriate change of the
values Wxl,s and ηlδ . In each iteration, the calculations of Eqs. (14.23) to (14.25) for
liquid film and Eqs. (14.26) to (14.28) for vapor film are made successively by the
shooting method.

15.3.2 Numerical Solution

From the governing ordinary equations and their boundary conditions, it will be
expected that for consideration of variable thermophysical properties of the liquid
and vapor medium, the dimensionless velocity and temperature fields for the film
condensation of vapor will depend on the temperature-dependent properties of the
liquid and vapor medium, and finally on the temperature conditions tw, ts and t∞.

All physical properties for water and water vapor at saturated temperature used
in the calculation come from Ref. [2–4]. For convenience some special values of the
physical properties are listed in Tables 15.1 and 15.2.

As an example of application for solving the theoretical and mathematical mode
of laminar film condensation of water vapor on an isothermal vertical plate, the
numerical calculation was carried out, while the film boiling of saturated water is
taken as its special case. From Chap. 5 we know that the temperature parameters
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Table 15.1 The physical property values for water and water vapor at saturated temperature

Term value
For water For water vapour

ts(◦C) 100 100
cp (J/(kg/K)) 4216 –
h f g (kJ/kg) – 2257.3
Pr 1.76 1
ρ(kg/m3) 958.1 0.5974
μ (kg/(m/s)) 282.2 × 10−6 12.28 × 10−6

ν(m2/s) 0.294 × 10−6 20.55 × 10−6

λ (W/(m/K)) 0.677 0.02478

Table 15.2 The values of water density at different temperatures

t (◦C) 0 20 40 60 80 95 99.9

ρ(kg/m3) 999.8 998.3 992.3 983.2 971.4 961.7 958.1

nμ,nλ and ncp of water vapor are 1.04, 1.185, and 0.003. Such low value of ncp make
it possible to actually treat ncp of water vapor as zero, i.e., cp is taken as constant.

For laminar free film condensation of water vapor for vapor superheated grade
�t∞

ts
(= t∞−ts

ts
) = 0, the numerical calculations have been carried out and some

typical calculated results for velocity fields Wxl and temperature fields θl of liquid
film, and velocity field Wxv of vapor film are plotted in Figs. 15.1–15.4 with different
wall subcooled grades �tw

ts
= ts−tw

ts
and vapor superheated grades �t∞

ts
= ts−t∞

ts
.

15.4 Variations of Velocity and Temperature Fields

From these numerical results, the following variations of velocity and temperature
fields are found together with wall subcooled grades and vapor superheated grade:

15.4.1 For Velocity Fields of Liquid Film

From Figs. 15.1–15.4, it is seen that the velocity of liquid film will increase with
increase in wall subcooled grades �tw

ts
= ts−tw

ts
. Increasing the wall subcooled grades

�tw
ts

= ts−tw
ts

, the maximum of velocity field of liquid film will increase and shift
far away from the plate. In addition, the velocity of liquid film will decrease with
increase in the water vapor superheated grade, �t∞

ts
= t∞−ts

ts
. However, compared

with the effect of wall subcooled grades on the velocity of liquid film, the related
effect of the water vapor superheated grade is obviously weak.
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Fig. 15.1 Numerical results on a velocity profiles of liquid film, wxl , and b temperature profiles
of liquid film, θl , and c velocity profiles of vapor film, wxv, for laminar free film condensation of
subcooled water vapor with wall subcooled grade �tw

ts
= 0.05 (Lines 1–5: vapor superheated grade

�t∞
ts

= 0, 1.27, 2.27, 3.27, and 4.27)
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Fig. 15.2 Numerical results on a velocity profiles of liquid film, wxl , and b temperature profiles
of liquid film, θl , and c velocity profiles of vapor film, wxv, for laminar free film condensation of
subcooled water vapor with wall subcooled grade �tw

ts
= 0.2 (Lines 1–5: vapor superheated grade

�t∞
ts

= 0, 1.27, 2.27, 3.27, and 4.27)
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Fig. 15.3 Numerical results on a velocity profiles of liquid film, wxl , and b temperature profiles
of liquid film, θl , and c velocity profiles of vapor film, wxv, for laminar free film condensation of
subcooled water vapor with wall subcooled grade �tw

ts
= 0.6 (Lines 1–5: vapor superheated grade
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Fig. 15.4 Numerical results on a velocity profiles of liquid film, wxl , and b temperature profiles
of liquid film, θl , and c velocity profiles of vapor film, wxv, for laminar free film condensation of
subcooled water vapor with wall subcooled grade �tw

ts
= 1 (Lines 1–5: vapor superheated grade

�t∞
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= 0, 1.27, 2.27, 3.27, and 4.27)



310 15 Velocity and Temperature Fields of Laminar

Furthermore, with increase in the wall subcooled grades �tw
ts

= ts−tw
ts

, the thick-
ness of liquid film will increase. With increase in the water vapor superheated
grade,�t∞

ts
= t∞−ts

ts
, the thickness of liquid film will decrease.

15.4.2 For Temperature Fields of Liquid Film

From Figs. 15.1–15.4, it is seen that the temperature field of liquid film on the wall
will decrease with increase in wall sobcooled grade �tw

ts
= ts−tw

ts
, and increase with

increase in water vapor superheated grade �t∞
ts

= t∞−ts
ts

. However, compared with
the effect of wall subcooled grades on the temperature of liquid film, the related
effect of the water vapor superheated grade is obviously weak.

15.4.3 For Velocity Fields of Vapor Film

From Figs. 15.1–15.4, it is seen that the velocity of vapor film will increase with
increase in the wall subcooled grades �tw

ts
= ts−tw

ts
, and decrease with increase in

vapor superheated grade �t∞
ts

= t∞−ts
ts

. Furthermore, by increasing wall subcooled

grade �tw
ts

= ts−tw
ts

, the velocity of vapor film will decrease slightly. By increasing

the vapor superheated grade �t∞
ts

= t∞−ts
ts

, the velocity of vapor film will decrease
obviously.

15.5 Remarks

In this chapter we deal with the solutions of velocity and temperature fields on
laminar free film condensation of vapor on a vertical flat plate at atmospheric pressure
with consideration of various physical property factors including variable physical
properties. The film condensation of saturated vapor is only its special case.

The system of ordinary differential equations and its related boundary conditions
is computed by a successively iterative procedure and an iterative method is adopted
for the numerical solutions of the three-point boundary value problem. On the basis
of the rigorous numerical solutions, the following points are included for the velocity
and temperature fields of laminar free convection film condensation of vapor:

With increase in the wall subcooled grades �tw
ts

= ts−tw
ts

, the maximum of velocity
field of liquid film will increase and shift far away from the plate. In addition, the
velocity of liquid film will slightly decrease with increase in the vapor superheated
grade �t∞

ts
= t∞−ts

ts
. Compared with the effect of wall subcooled grades on the
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velocity of liquid film, the related effect of the vapor superheated grade is obviously
weak.

With increase in the wall subcooled grades �tw
ts

= ts−tw
ts

, the thickness of liquid

film will increase. With increase in the vapor superheated grade,�t∞
ts

= t∞−ts
ts

, the
thickness of liquid film will decrease.

The temperature grade of liquid film on the wall will decrease with increase in
the wall sobcooled grade �tw

ts
= ts−tw

ts
, and increase slightly with increasing vapor

superheated grade �t∞
ts

= t∞−ts
ts

. Compared with the effect of wall subcooled grades
on the temperature of liquid film, the related effect of the vapor superheated grade
is obviously weak.

The velocity of vapor film will increase with increase in the wall superheated
grades �tw

ts
= ts−tw

ts
, and decrease slightly with increase in vapor superheated grade

�t∞
ts

= t∞−ts
ts

. With increasing wall subcooled grade �tw
ts

= ts−tw
ts

, the velocity of

vapor film will decrease slightly. With increasing vapor superheated grade �t∞
ts

=
t∞−ts

ts
, the velocity of vapor film will decrease obviously.

15.6 Exercises

1. Please give out a detailed derivation for obtaining Eqs. (15.4–15.6) on physical
property factors for water condensate film flow of laminar free convection film
condensation of pure vapor.

2. Please give out a detailed derivation for obtaining Eqs. (15.11–15.14) on physical
property factors for vapor film flow of laminar free convection film condensation
of pure vapor.

3. Do you think that the variable physical properties are rigorously considered and
treated in this present system of mathematical models on the laminar free con-
vection film condensation of vapor? Why?

4. Please describe the variations of the velocity and temperature fields of the laminar
free convection film condensation of vapor caused by the wall superheated grade,
�tw

ts

(
= tw−ts

ts

)
and liquid subcooled degree �t∞

ts

(
= ts−t∞

ts

)
?

5. Compare the variation regulation of the velocity and temperature fields on the
laminar free film condensation of vapor to that on laminar free convection film
boiling of liquid.

6. Please find out the difference in the variation regulation of the velocity and tem-
perature fields on the laminar free convection film condensation of vapor from
that on laminar free film boiling of liquid, and explain the reason.
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Chapter 16
Heat and Mass Transfer of Laminar Free
Convection Film Condensation of Pure
Vapor

Abstract With heat and mass transfer analysis, the theoretical equations for
Nusselt number and mass flow rate are provided for the laminar free convection
film condensation of vapor where only the wall temperature gradient and conden-
sate mass flow rates are unknown variables, respectively. With increase of the wall
subcooled grade, the wall temperature gradient will decrease, especially for lower
wall subcooled grade. While, with increase of the vapor bulk superheated grade,
the wall temperature gradient will increase. However, the effect of the wall sub-
cooled grade on the wall temperature gradient is more obvious than that of the vapor
bulk superheated grade. With increase of the wall subcooled grade, the condensate
film thickness will increase, especially for lower wall subcooled grade, while with
increase of the superheated grade, the condensate film thickness will decrease. How-
ever, the effect of the wall subcooled grade on the condensate film thickness is more
obvious than that of the vapor bulk superheated grade. With increase of the wall sub-
cooled grade, the velocity components will increase, especially for the small value of
the wall subcooled grade. While with increase of the vapor bulk superheated grade,
the velocity components will decrease. As per the results, with increase of the wall
subcooled grade, the condensate mass flow rate parameter will increase, especially
due to the function of condensate film thickness. While with increase of the vapor
bulk superheated grade, the mass flow rate parameter will decrease. However, the
effect of the wall subcooled grade on the condensate mass flow rate parameter is
more obvious than that of the vapor bulk superheated grade. On the basis of the
rigorous numerical solutions, the wall temperature gradient and then mass flow rate
parameter are formulated, and then the formulated equations for reliable predictions
of heat and mass transfer are created for heat and mass transfer application of the
laminar free convection film condensation of water vapor.

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 313
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_16,
© Springer-Verlag Berlin Heidelberg 2012
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16.1 Introduction

In Chap. 14, the complete mathematical model was provided for laminar free convec-
tion film condensation of vapor, where the model of film condensation of saturated
vapor is regarded as its special case [1–3]. In Chap. 15, the mathematical model
with the governing ordinary differential equations and the complete boundary con-
ditions were solved by a successively iterative procedure at different wall subcooled
degrees and different vapor superheated degrees. Meanwhile, the temperature para-
meter method and polynomial formulae reported in Chap. 5 are used for treatment of
the variable thermophysical properties of the vapor and liquid films, respectively. The
distributions of velocity and temperature fields of the laminar free film condensation
of vapor were rigorously calculated.

In this chapter, the effect of wall subcooled grade and vapor superheated grade
on heat and mass transfer of laminar free convection film condensation of vapor
is further clarified. On this basis, the theoretically rigorous and practically simple
formulae will be obtained for prediction of heat transfer and mass flow rate of the
film condensation of vapor.

16.2 Heat Transfer Analysis

Consulting the heat transfer analysis in Chap. 8 for heat transfer analysis on liquid
laminar free convection, the heat transfer theoretical equations can be expressed as
follows for laminar free convection film condensation of liquid:

The local heat transfer rate is described as

qx = λl,w(tw − ts)

(
1

4
Grxl,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

(16.1)

With the Newtonian cooling law, the local heat transfer coefficient on the surface,
defined as qx = αx (Tw − Ts), will be

αx = λl,w

(
1

4
Grxl,s

)1/4

x−1
(

−dθ1

dηl

)
ηl=0

. (16.2)

The local Nusselt number, defined as Nuxl,w = αx x
λl,w

, is expressed by

Nux,w =
(

1

4
Grxl,s

)1/4 (
− dθl

dηl

)
ηl=0

. (16.3)

The total heat transfer rate for position x = 0 to x with width of b on the plate
is an integration

Qx =
∫∫

A
qx dA =

∫ x

0
qx bdx

http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_15
http://dx.doi.org/10.1007/978-3-642-28983-5_5
http://dx.doi.org/10.1007/978-3-642-28983-5_8
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where A = b × x , and hence

Qx = 4

3
bλl,w(tw − ts)

(
1

4
Grxl,s

)1/4 (
− dθl

dηl

)
ηl=0

. (16.4)

The average heat transfer rate, defined as Qx = Qx/(b × x) is given by

Qx = 4

3
x−1λw(tw − ts)

(
1

4
Grxl,s

)1/4 (
−dθ

dη

)
ηv=0

. (16.5)

The average heat transfer coefficient Qx defined as Qx = αx (tw − ts)A is
expressed as

αx = 4

3
λl,w

(
1

4
Grxl,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

. (16.6)

The average Nusselt number defined as Nuxl,w = αx x
λl,w

will be

Nuxl,w = 4

3

(
1

4
Grxl,s

)1/4 (
− dθl

dηl

)
ηl=0

. (16.7)

Therefore, we have

Qx = 4

3
bxqx

αx = 4

3
αx

Nux,w = 4

3
Nux,w.

Obviously, the theoretical Eqs. (16.1)–(16.7) on heat transfer of laminar free con-
densation of liquid are identical to the corresponding equations in Chap. 8 on liquid
laminar free convection, with only differences that the bulk temperature T∞ and the
local Grashof number Grx,∞ of latter case are, respectively, replaced by the saturated
temperature Ts and the local Grashof number Grxl,s .

It is seen that, for practical calculation of heat transfer, only
(

dθl
dηl

)
ηl=0

dependent

on the solutions is no-given variable.

16.3 Wall Dimensionless Temperature Gradient

From the heat transfer analysis, it is found that heat transfer for the film condensation

of vapor is in direct proportion to wall dimensionless temperature gradient
(

dθl
dηl

)
ηl=0

http://dx.doi.org/10.1007/978-3-642-28983-5_8
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the only one no-given variable for prediction of heat transfer. Then, correct prediction

of the temperature gradient
(

dθl
dηl

)
ηl=0

is the key work for prediction of heat transfer

of the film condensation of vapor.

The numerical solutions for dimensionless temperature gradient
(

dθl
dηl

)
ηl=0

for the

film condensation of water vapor at the different wall subcooled grades �tw
ts

= ts−tw
ts

and vapor superheated grades �t∞
ts

= t∞−ts
ts

are obtained and described in Table 16.1,
and plotted in Fig. 16.1.

It is seen that with increasing the wall subcooled grade �tw
ts

= ts−tw
ts

, the tem-

perature gradient
(

dθl
dηl

)
ηl=0

will decrease slower and slower. With increase of the

vapor bulk superheated grade �t∞
ts

= t∞−ts
ts

, the temperature gradient
(

dθl
dηl

)
ηl=0

will

increase. However, the effect of the wall subcooled grade �tw
ts

= ts−tw
ts

on the tem-

perature gradient
(

dθl
dηl

)
ηl=0

is more obvious than that of the vapor bulk superheated

grade �t∞
ts

= t∞−ts
ts

.
Based on the numerical solutions, the wall dimensionless temperature gradient(

−
(

dθl
dηl

)
ηl=0

)
�t∞=0

for the film condensation of saturated water vapor is formu-

lated by using a curve-fitting method. Then, the formulation equation of the wall
dimensionless temperature gradient is shown as follows for the film condensation
of saturated water vapor:

(
−

(
dθl

dηl

)
ηl=0

)
�t∞=0

= 1.74 − 0.19�tw
ts(

�tw
ts

)1/4

(
0.001 ≤ �tw

ts
≤ 1

)
(16.8)

The results predicted the numerical solutions, the wall dimensionless temperature

gradient

(
−

(
dθl
dηl

)
ηl=0

)
�t∞=0

for the film condensation of saturated water vapor

by using Eq. (16.8) are listed in Table 16.1 compared with the related numerical
solutions. It is seen that their agreement is very good.

Based on these numerical solutions, the following formulae are obtain by using
a curve matching method for practical prediction equation of wall dimensionless

temperature gradient
(

dθl
dηl

)
ηl=0

for the laminar free convection film condensation

of water vapor (saturated and superheated):

−
(

dθl

dηl

)
ηl=0

=
(

−
(

dθl

dηl

)
ηl=0

)
�t∞=0

+ a · �t∞
ts(

0.05 ≤ �tw
ts

≤ 1

)
and

(
0 ≤ �t∞

ts
≤ 4.27

)
(16.9)
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Fig. 16.1 Numerical solution of −
(

dθl
dηl

)
ηl =0

for laminar free convection film condensation of

water vapor lines 1 to 6: �t∞
ts

= t∞−ts
ts

= 0, 0.27, 1.27, 2.27, 3.27, and 4.27, respectively

a = 0.0315 ×
(

�tw
ts

)−0.3119

. (16.10)

The results predicted by using Eqs. (16.8)–(16.10) on the wall dimensionless tem-

perature gradient −
(

dθl
dηl

)
ηl=0

for the film condensation of water vapor on a flat plate

are listed in Table 16.1 compared with the related numerical solutions. It is seen that
their agreement is pretty good.

16.4 Practical Prediction Equations on Condensation
Heat Transfer

Combined with Eqs. (16.8)–(16.10), Eqs. (16.1)–(16.6) will become the following
equations, respectively, for prediction on the heat transfer of laminar free convection
film condensation of water vapor on a veridical flat plate:

Local heat transfer rate at position x per unit area on the plate can be predicted by

qx = λl,w(tw − ts)

(
1

4
Grxl,s

)1/4

x−1

[(
−

(
dθl

dηl

)
ηl=0

)
�t∞=0

+ a · �t∞
ts

]

(16.1*)
The local Nusselt number can be predicted by

Nuxl,w =
(

1

4
Grxl,s

)1/4
[((

dθl

dηl

)
ηl=0

)
�t∞=0

+ a · �t∞
ts

]
(16.3*)
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The total heat transfer rate for position x = 0 to x with width of b on the plate
can be predicted by

Qx = 4

3
bλl,w(tw − ts)

(
1

4
Grxl,s

)1/4
[(

−
(

dθl

dηl

)
ηl=0

)
�t∞=0

+ a · �t∞
ts

]

(16.4*)
Here, the dimensionless temperature gradient on the wall for the film conden-

sation of superheated water vapor,

(
−

(
dθl
dηl

)
ηl=0

)
�t∞=0

, and the coefficient a are

calculated by Eqs. (16.8) to (16.10) respectively.

16.5 Mass Transfer Analysis

The condensate mass transfer analysis expressions for film condensation of vapor
can be given below:

Set gx to be a local mass flow rate entering the liquid film at position x per unit
area of the plate. According to the boundary layer theory of fluid mechanics, gx is
expressed as

gx = ρl,s

(
wxl,s

dδl

dx
− wyl,s

)
s

With Eqs. (14.16) and (14.17), the above equation is finally changed as

gx = ρl,s

[
2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2

Wxl,s
1

4
ηlδ

(
1

4
Grxl,s

)−1/4

−2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 (
1

4
Grxl,s

)−4

Wyl,s

]

The above equation is simplified to

gx = 2ρl,s

[
Wxl,s

1

4
ηlδ − Wyl,s

] √
gx

(
ρl,w − ρv,∞

ρl,s

)1/2 (
1

4
Grxl,s

)−1/4

(16.11)

With Eq. (14.14) for definition of Grxl,s , we have

ρl,w − ρv,∞
ρl,s

= v2
l,s

gx3 Grxl,s (16.12)

With Eqs. (16.12), Eq. (16.11) is changed to

http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_14
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gx = 2ρl,s

[
Wxl,s

1

4
ηlδ − √

gxWyl,s

] (
v2

l,s

gx3 Grxl,s

)1/2 (
1

4
Grxl,s

)−1/4

i.e.,

gx = 4ρl,s

[
Wxl,s

1

4
ηlδ − Wyl,s

] √
gx

(
ν2

l,s

g3

)1/2 (
1

4
Grxl,s

)1/2 (
1

4
Grxl,s

)−1/4

The above equation is further simplified to

gx = μl,s x−1
(

1

4
Grxl,s

)1/4

[ηlδWxl,s − 4Wyl,s]

i.e.,

gx = μl,s x−1
(

1

4
Grxl,s

)1/4


s (16.13)

where

s = ηlδWxl,s − 4Wyl,s (16.14)

is defined as the mass flow rate parameter of the film condensation.
Take Gx to express total mass flow rate entering the boundary layer for position

x = 0 to x with width of b of the plate, it should be the following integration:

Gx =
∫∫
A

gx d A

= b

x∫
0

gx dx

where A = b · x is related area of the plate, and b is the related width of the plate.
Then, we obtain

Gx = b

x∫
0

μl,s x−1
(

1

4
Grxl,s

)1/4

(ηlδWxl,s − 4Wyl,s)dx

With Eq. (13.15) for definition of Grxl,s , we obtain

Gx = 4

3
b · μl,s

(
1

4
Grxl,s

)1/4

(ηlδWxl,s − 4Wyl,s)

or

http://dx.doi.org/10.1007/978-3-642-28983-5_13
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Gx = 4

3
b · μl,s

(
1

4
Grxl,s

)1/4


s (16.15)

16.6 Mass Flow Rate Parameter

From Eqs. (16.13) to (16.15), it follows that the mass flow rates of the condensate,
gx and Gx , depend on the defined local Grashof number Grxl,s , absolute viscos-
ity μl,s and mass flow rate parameter 
s of the film condensation. Obviously, for
practical evaluation of the mass flow rate of the film condensation, only mass flow
rate parameter 
s dependent on the numerical solutions is unknown variable. From
Eq. (16.14), it is known that mass flow rate parameter 
s depends on the dimension-
less condensate film thickness ηlδ , as well as the dimensionless condensate velocity
components at the liquid–vapor interface, Wxl,s and Wyl,s .

16.6.1 Condensate Film Thickness and Velocity Components
at the Interface

The numerical solutions on dimensionless condensate film thickness ηlδ for the film
condensation of water vapor (saturated and superheated) with variation of Varia-
tion of the wall subcooled grade �tw

ts
= ts−tw

ts
and vapor bulk superheated grade

�t∞
ts

(
= t∞−ts

ts

)
are listed in Table 16.2, and plotted in Fig. 16.2, respectively. Then ,

we can understand the following effects of wall subcooled Grade �tw
ts

= ts−tw
ts

and

vapor bulk superheated temperature �t∞
ts

(
= t∞−ts

ts

)
on ηlδ .

From Fig. 16.2, it is seen that with increasing the wall subcooled grade �tw
ts

=
ts−tw

ts
, the condensate film thickness ηδl will increase, while with increasing

vapor bulk superheated grade �t∞
ts

(= t∞−ts
ts

), the condensate film thickness ηδl will
decrease.

Furthermore, the effect of the wall subcooled grade �tw
ts

= ts−tw
ts

on the conden-
sate film thickness ηδl is more obvious than that of vapor bulk superheated grade
�t∞

ts

(
= t∞−ts

ts

)
.

Meanwhile, the rigorous numerical solutions of the condensate liquid film thick-
ness (ηlδ)�t∞=0 for the film condensation of saturated water vapor on a flat plate are
formulated as follows by using a curve-fitting method:

(ηlδ)�t∞=0 = 0.5934

(
�tw

ts

)0.2562 (
0.001 ≤ �tw

ts
≤ 0.2

)
(16.16)
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Fig. 16.2 Numerical solution of ηδl with �tw
ts

= ts−tw
ts

and �t∞
ts

(= t∞−ts
ts

) for laminar film

condensation of water vapor (saturated and superheated) lines 1–6: �t∞
ts

(
= t∞−ts

ts

)
= 0, 0.27,

1.27, 2.27, 3.27, and 4.27, respectively

(ηlδ)�t∞=0 = 0.417
�tw

ts
+ 0.3223

(
0.2 <

�tw
ts

≤ 1

)
(16.17)

The results of the condensate liquid film thickness (ηlδ)�t∞=0 of the film conden-
sation of saturated water vapor on a flat plate predicted by Eqs. (16.16) and (16.17)
are listed in Table 16.2 compared with the related numerical solutions. It is seen that
Eqs. (16.16) and (16.17) are coincident very well to the numerical solutions.

The rigorous numerical solutions of the condensate liquid film thickness ηlδ of
the film condensation of water vapor (saturated and superheated) on a flat plate are
formulated as following by using the curve-fitting method:

ηlδ = (ηlδ)�t∞=0 + a
�t∞

ts

(
0 ≤ �t∞

ts
≤ 4.27

)
(16.18)

where

a = 0.0045

(
�tw

ts

)2

− 0.0132

(
�tw

ts

)
− 0.005

(
0.05 ≤ �tw

ts
≤ 1

)
(16.19)

The results on the condensate liquid film thickness ηlδ of the film condensation of
superheated water vapor on a flat plate predicted by using Eqs. (16.18) and (16.19)
are listed in Table 16.2 with the variation of wall subcooled grade �tw

ts
and vapor

superheated grade �t∞
ts

, and compared with the related numerical results. It is found
that such predicted results are very well coincident to the numerical solutions.
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Table 16.3 Numerical solutions of Wxl,δ with �tw
ts

= ts−tw
ts

and �t∞
ts

(
= t∞−ts

ts

)
for laminar free

convection film condensation of water vapor (saturated and superheated)

�t∞
ts

(
= t∞−ts

ts

)
tw ◦C

99.9 95 90 80 60 40 20 0
�tw

ts
= ts−tw

ts

0.001 0.05 0.10 0.20 0.40 0.60 0.80 1.00

Wxl,δ

0 0.005124 0.03542 0.04895 0.06609 0.08501 0.09455 0.09920 0.10100
0.27 0.005025 0.035019 0.04840 0.06534 0.08407 0.09353 0.09811 0.10003
1.27 0.00446 0.03360 0.04644 0.06272 0.08079 0.08995 0.09435 0.09657
2.27 0.003844 0.03230 0.04466 0.06032 0.07779 0.08667 0.09100 0.09308
3.27 0.00323 0.03112 0.04295 0.05814 0.07496 0.08360 0.08780 0.08987
4.37 0.00267 0.03000 0.04152 0.05611 0.07240 0.08078 0.08495 0.08692

Table 16.4 Numerical solutions of −Wyl,δ with �tw
ts

= ts−tw
ts

and �t∞
ts

(
= t∞−ts

ts

)
for laminar film

condensation of water vapor (saturated and superheated)
�t∞

ts(
= t∞−ts

ts

) tw
99.9 95 90 80 60 40 20 1
�tw

ts
= ts−tw

ts

0.001 0.05 0.10 0.20 0.40 0.60 0.80 1.00
−Wyl,δ

0 0.00013 0.00241 0.00399 0.00648 0.01004 0.01230 0.01346 0.01362
0.27 0.000125 0.002367 0.003918 0.00636 0.0099 0.01209 0.01324 0.01339
1.27 0.000103 0.002219 0.003675 0.00597 0.00934 0.01135 0.01241 0.0121263
2.27 0.000082 0.002087 0.00346 0.00562 0.00873 0.01070 0.01171 0.01189
3.27 0.000062 0.001969 0.003258 0.00531 0.00823 0.01010 0.01106 0.01124
4.27 0.000046 0.001861 0.003093 0.00503 0.00780 0.0096 0.01048 0.01064

16.6.2 Interfacial Velocity Components

Furthermore, the numerical solutions on the dimensionless condensate velocity com-
ponents at the liquid–vapor interface, Wxl,s and Wyl,s , for the film condensation
of water vapor (saturated and superheated) with variation of the wall subcooled

grade �tw
ts

= ts−tw
ts

and vapor bulk superheated grade �t∞
ts

(
= t∞−ts

ts

)
are listed in

Tables 16.3 and 16.4, and plotted in Figs. 16.3 and 16.4 respectively. Then, we can
understand the effects of wall subcooled Grade �tw

ts
= ts−tw

ts
and vapor bulk super-

heated temperature �t∞
ts

(= t∞−ts
ts

) on Wxl,s and Wyl,s .
It is seen from Figs. 16.3 and 16.4 that with increasing the wall subcooled grade

�tw
ts

= ts−tw
ts

, the velocity components Wxl,s and −Wyl,s will increase, especially
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Fig. 16.3 Numerical solution of Wxl,δ with �tw
ts

= ts−tw
ts

and �t∞
ts

(= t∞−ts
ts

) for laminar

film condensation of water vapor (saturated and superheated) lines 1–6: δt∞
ts

(= t∞−ts
ts

) =
0, 0.27, 1.27, 2.27, 3.27, and 4.27, respectively
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Fig. 16.4 Numerical solution of −Wyl,δ with �tw
ts

= ts−tw
ts

and �t∞
ts

(= t∞−ts
ts

) for laminar free

convection film condensation of water vapor (saturated and superheated) lines 1–6: �t∞
ts

(= t∞−ts
ts

) =
0, 0.27, 1.27, 2.27, 3.27, and 4.27, respectively

for smaller wall subcooled grade �tw
ts

= ts−tw
ts

. While with increasing the bulk

superheated grade �t∞
ts

(
= t∞−ts

ts

)
, the velocity components Wxl,s and −Wyl,s will

decrease.
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16.6.3 Condensate Mass Flow Rate Parameter

Based on the numerical solutions listed in Table 16.2 to Fig. 16.4 on the dimen-
sionless condensate film thickness ηlδ , and dimensionless condensate film velocity
components at the liquid–vapor interface, Wxl,s and −Wyl,s , the numerical solutions
on 
s for the film condensation of water vapor (saturated and superheated) on a
flat plate, with variation of the wall subcooled grade �tw

ts
= ts−tw

ts
and vapor vapor

bulk superheated grade �t∞
ts

(
= t∞−ts

ts

)
are evaluated by using Eq. (16.14), listed in

Table 16.5, and plotted in Fig. 16.5.
It is seen from Fig. 16.5 that with increase of the wall subcooled grade �tw

ts
= ts−tw

ts
,

the mass flow rate parameter 
s will increase, especially for the smaller wall sub-
cooled grade �tw

ts
= ts−tw

ts
. While with increase of the vapor bulk superheated

grade �t∞
ts

(
= t∞−ts

ts

)
, the mass flow rate parameter 
s will decrease. On the

other hand, effect of the wall subcooled grade �tw
ts

= ts−tw
ts

on the mass flow
rate parameter 
s is more obvious than that of the vapor bulk superheated grade
�t∞

ts

(
= t∞−ts

ts

)
.

According to the corresponding numerical solutions, the expressions for the con-
densate mass flow rate parameter (
s)�t∞=0 of the film condensation of saturated
water vapor are obtained as follows by means of a curve-matching method:

(
s)�t∞=0 =
(

0.186 − 0.057
�tw

ts

)(
�tw

ts

)3/4 (
0.001 ≤ �tw

ts
≤ 1

)
(16.20)

The predicted values on (
s)�t∞=0 by using Eq. (16.20) are listed in Table 16.5
compared with the related numerical solutions, and it is seen that the agreement is
pretty good.

According to the corresponding numerical solutions, the expressions for the con-
densate mass flow rate parameter 
sof the film condensation of water vapor (both
of saturated vapor and superheated vapor) are obtained as follows by means of a
curve-matching method:

For 0 ≤ �t∞
ts

≤ 4.27


s = (
s)�t∞=0 − B
�t∞

ts

(
0.05 ≤ �tw

ts
≤ 1

)
(16.21)

where

B = 10−4 ×
[

2.756 + 121.4
�tw

ts
− 60

(
�tw

ts

)2
] (

0.05 ≤ �tw
ts

≤ 1

)
(16.22)



16.6 Mass Flow Rate Parameter 327

Ta
bl

e
16

.5
N

um
er

ic
al

so
lu

tio
ns

an
d

pr
ed

ic
te

d
re

su
lts

on



s
w

ith
�

t w t s
=

t s
−t

w
t s

an
d

�
t ∞ t s

( =
t ∞

−t
s

t s

) fo
rl

am
in

ar
fr

ee
co

nv
ec

tio
n

fil
m

co
nd

en
sa

tio
n

of
w

at
er

va
po

r

(s
at

ur
at

ed
an

d
su

pe
rh

ea
te

d)

�
t ∞ t s

( =
t ∞

−t
s

t s

)
t w

◦ C
99

.9
95

90
80

60
40

20
0

�
t w t s

=
t s
−t

w
t s

0.
00

1
0.

05
0.

1−
0.

20
0.

40
0.

60
0.

80
1.

00



s

0
(1

)
0.

00
10

41
0.

01
93

04
0.

03
20

07
0.

05
22

42
0.

08
23

05
0.

10
37

58
0.

11
88

5
0.

12
87

75
(2

)
0.

01
93

65
7

0.
03

20
62

3
0.

05
22

17
5

0.
08

20
85

2
0.

10
34

86
8

0.
11

87
63

9
0.

12
9

0.
27

(1
)

0.
00

10
03

0.
01

89
65

0.
03

14
43

0.
05

13
06

0.
08

10
3

0.
10

20
04

0.
11

68
88

0.
12

66
92

(2
)

0.
01

91
31

5
0.

03
16

76
3

0.
05

15
52

4
0.

08
09

58
9

0.
10

20
28

9
0.

11
71

04
0

0.
12

72
67

7
1.

27
(1

)
0.

00
08

3
0.

01
77

88
0.

02
95

07
0.

04
81

78
0.

07
63

25
0.

09
58

89
0.

10
97

88
0.

11
97

46
(2

)
0.

01
82

63
9

0.
03

02
46

7
0.

04
90

88
8

0.
07

67
87

3
0.

09
66

29
3

0.
11

09
56

4
0.

12
08

52
1

2.
27

(1
)

0.
00

06
6

0.
01

67
39

0.
02

77
92

0.
04

53
73

0.
07

16
84

0.
09

04
77

0.
10

37
15

0.
11

29
46

(2
)

0.
01

73
96

3
0.

02
88

17
1

0.
04

66
25

2
0.

07
26

15
7

0.
09

12
29

7
0.

10
48

08
8

0.
11

44
36

5
3.

27
(1

)
0.

00
05

03
0.

01
58

04
0.

02
61

81
0.

04
28

84
0.

06
76

49
0.

08
54

94
0.

09
80

61
0.

10
68

93
(2

)
0.

01
65

28
7

0.
02

73
87

5
0.

04
41

61
6

0.
06

84
44

1
0.

08
58

30
1

0.
09

86
61

2
0.

10
80

20
9

4.
27

(1
)

0.
00

03
74

2
0.

01
49

41
3

0.
02

48
61

2
0.

04
06

22
5

0.
06

41
27

5
0.

08
11

73
0

0.
09

30
59

9
0.

10
13

83
1

(2
)

0.
01

56
61

1
0.

02
59

57
9

0.
04

16
98

0
0.

06
42

72
5

0.
08

04
30

5
0.

09
25

13
6

0.
10

16
05

3

(1
)

N
um

er
ic

al
so

lu
tio

ns
an

d
(2

)
pr

ed
ic

te
d

re
su

lts



328 16 Heat and Mass Transfer of Laminar Free Convection Film

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

sw tt /Δ

η δ δ δl xl ylW. W−, ,4

Fig. 16.5 Numerical results of 
s = ηlδWxl,s − 4Wyl,s with �tw
ts

(
= ts−tw

ts

)
and �t∞

ts

(
= t∞−ts

ts

)
for laminar free convection film condensation of water vapor (saturated and superheated) Lines 1

to 6: �t∞
ts

(
= t∞−ts

ts

)
= 0, 0. 27, 1.27, 2.27, 3.27 and 4.27, respectively

The results on the condensate mass flow rate parameter 
s evaluated by using
Eqs. (16.20)–(16.22) are listed in Table 16.5 compared with the related numerical
solutions. It is seen that their agreement is pretty good.

16.7 Practical Prediction Equations on Condensation
Mass Transfer

With Eqs. (16.20) to (16.22), Eq. (16.15) becomes

for (0 ≤ �t∞
ts

≤ 4.27 and 0.05 ≤ �tw
ts

≤ 1)

Gx = 4

3
b · μl,s

(
1

4
Grxl,s

)1/4
[(

0.186 − 0.057
�tw

ts

) (
�tw

ts

)3/4

− B
�t∞

ts

]

(16.15*)
where

B = 10−4 ×
[

2.756 + 121.4
�tw

ts
− 60

(
�tw

ts

)2
]

(16.22)

Equation (16.15*) with Eq. (16.23). This equation can be used to practically pre-
dict mass transfer of laminar free convection film condensation of water vapor on a
vertical flat plate.
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Fig. 16.6 Diagram of equiva-
lent heat and transfer with the
two-phase free convection film
condensation

hxq )(

vxq )(−wxq ,−

lxq ,

interfacevapour-liquid

filmliquid

y

x

0

filmvapour

16.8 Condensate Mass–Energy Transformation Equation

16.8.1 Theoretical Analysis on Condensate Mass–Energy
Transformation

The diagram of heat transfer balance with the two-phase flow free convection film
condensation is expressed in Fig. 16.6. At the liquid–vapor interface, the liquid heat
conduction (qx )l is balanced by the latent heat of vapor condensation, (qh)h = hfggx ,
and the vapor heat conduction (qx )v, i.e.,

(qx )l = hfggx − (qx )v (16.23)

It is indicated that the negative signs of the heat transfer rate express that the
direction of the related heat fluxes are negative to the coordinative direction.

Additionally, the interfacial liquid heat conductivity rate (qx )l is divided to two
parts, and shown as below:

(qx )l = −qx,w + qx,l (16.24)

where qx,w is the defined condensation heat transfer rate on the wall, and qx,l is the
heat transfer rate brought out by the liquid film flow.

With Eq. (16.24), Eq. (16.23) becomes

hfggx − (qx )v ≡ −qx,w + qx,l (16.25)

If we focus on the film condensation of saturated vapor, the vapor heat conduction
can be regarded as (qx )v = 0. Then, Eq. (16.25) is described as

hfggx = −qx,w + qx,l (16.26)

By ignoring qx,l on the defined condensation heat transfer rate on the wall,
Eq. (16.26) becomes

hfggx = −qx,w (16.27)



330 16 Heat and Mass Transfer of Laminar Free Convection Film

With Eqs. (16.1) and (16.15), Eq. (16.27) becomes

hfgμl,s x−1
(

1

4
Grxl,s

)1/4


s = −λl,w(tw − ts)

(
1

4
Grxl,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

With definitions of Grxv,∞ and Grxl,s , the above equation becomes

(
− dθl

dηl

)
ηl=0

= Cmh
s (16.28)

where

Cmh = μl,shfg

λl,w(ts − tw)
(16.29)

Here, Eq. (16.28) with Eq. (16.29) is regarded as the condensate mass–energy
transformation equation for laminar free convection film condensation of saturated
vapor. Cmh is the related condensate mass–energy transformation coefficients depen-
dent on the wall subcooled temperature and the some special physical properties. It is
interesting that Eqs. (16.28) and (16.29) for laminar free convection film condensa-
tion are identical to those in [4] (see its Chap. 11) for laminar forced convection film
condensation. Obviously, the condensate mass–energy transformation Eq. (16.28)
with Eq. (16.29) is universally suitable for laminar free or forced film condensation.

16.8.2 Condensate Mass–Energy Transformation Coefficient

From Eqs. (16.28) and (16.29) it is found that there are two approaches for determina-
tion of the condensate mass–energy transformation coefficients. They are numerical
solution and prediction value.
Numerical solution

From Eq. (16.28) we can obtain the numerical solution on the condensate mass–
energy transformation coefficient of the laminar free convection film condensation
of vapor as follows:

Cmh =

(
− dθl (ηl )

dηl

)
ηl=0


s
(16.30)

By using Eq. (16.30) and numerical solutions of the wall dimensionless tem-

perature gradient
(
− dθl (ηl )

dηl

)
ηl=0

and condensate mass flow rate parameter 
s , the

numerical solutions of densate mass–energy transformation coefficient on the lam-
inar free convection film condensation of saturated water vapor are obtained, listed
in Table 16.6, and plotted in Fig. 16.7.

http://dx.doi.org/10.1007/978-3-642-28983-5_11


16.8 Condensate Mass–Energy Transformation Equation 331

Ta
bl

e
16

.6
E

va
lu

at
ed

re
su

lts
on

C
m

h
ba

se
d

on
E

q.
(1

6.
26

),
an

d
E

q.
(1

6.
27

)
w

ith
nu

m
er

ic
al

so
lu

tio
ns



s

an
d

( −dθ
l(

η
l)

dη
l

) η
l=

0
fo

r
la

m
in

ar
fr

ee
co

nv
ec

tio
n

fil
m

co
nd

en
sa

tio
n

of
w

at
er

va
po

r
on

a
ho

ri
zo

nt
al

fla
tp

la
te

�
t w t s

0.
05

0.
1

0.
2

0.
4

0.
6

0.
8

1

t s
−

t w
◦ C

5
10

20
40

60
80

10
0

t w
◦ C

95
90

80
60

40
20

0
λ

l,
w

W
/
(m

K
)

0.
67

50
0.

67
27

0.
66

69
0.

65
06

0.
62

78
0.

59
86

0.
56

3
( −dθ

l(
η

l)
dη

l

) η
l=

0
(n

um
er

ic
al

so
lu

tio
ns

)
3.

67
4

3.
06

6
2.

54
08

2.
07

9
1.

83
22

1.
66

81
1.

55
04



s(

nu
m

er
ic

al
so

lu
tio

ns
)

0.
01

93
04

0.
03

20
07

0.
05

22
42

0.
08

23
05

0.
10

37
58

0.
11

88
5

0.
12

87
75

C
∗ m

h
=

( −
dθ

l(
η
l)

dη
l

) η
l=

0



s

(n
um

er
ic

al
so

lu
tio

n)
19

0.
32

68
12

95
.7

90
71

21
48

.6
35

51
03

25
.2

59
57

96
17

.6
58

36
57

14
.0

35
37

08
12

.0
39

64
23

C
∗∗ m

h
=

μ
l,

s
h

fg
λ

l,
w
(t

s−
t w

)
(p

re
di

ct
io

n)
18

8.
92

76
3

94
.7

86
79

2
47

.8
05

57
43

24
.5

01
64

27
16

.9
27

65
08

13
.3

15
04

24
11

.3
25

59
06

C
∗∗ m

h
−C

∗ m
h

C
∗ m

h
−0

.0
07

40
6

−0
.0

10
59

1
−0

.0
17

36
1

−0
.0

30
93

4
−0

.0
43

16
7

−0
.0

54
09

9
−0

.0
63

04
8

N
ot

e
th

e
pr

es
en

tv
al

ue
s

of
ph

ys
ic

al
pr

op
er

tie
s
λ

l,
w

,μ
l,

s
an

d
h

fg
ar

e
co

rr
es

po
nd

in
g

to
th

e
nu

m
er

ic
al

pr
og

ra
m

.(
μ

l,
s

=
28

2.
5
×1

0−
6

K
g/

(m
s)

,h
fg

=
22

57
.1

kJ
/k

g)



332 16 Heat and Mass Transfer of Laminar Free Convection Film

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

1  (numerical solution)

2 (prediction value)

mhC

sw tt /Δ

Fig. 16.7 Numerical solutions and prediction values Cmh for laminar free convection film conden-
sation of saturated water vapor

Prediction value
Equation (16.29) expresses the prediction value on the condensate mass–energy

transformation coefficient for the laminar free convection film condensation of vapor.
With Eq. (16.29), the value on the condensate mass–energy transformation coeffi-
cient of laminar free convection film condensation of vapor only depend on physical
conditions. Now, the prediction value on the condensate mass–energy transformation
coefficient of laminar free film condensation of saturated water vapor are evaluated
by using Eq. (16.29), listed in Table 16.6, and plotted in Fig. 16.7.

It is seen that the values of mass–energy transformation coefficient Cmh obtained
by the different approaches are well coincident. However, their deviation is caused by
omitting the film condensation of saturated vapor, the vapor heat conduction (qx )v.

It should be indicated that, according to the derivation, the condensate mass-energy
transformation Eq. (16.28) with (16.29) is universally suitable for any laminar forced
film condensation.

16.9 Summary

So far, we have presented the recent developments on laminar free convection film
condensation of vapor (both saturated and superheated vapor). On this basis, gov-
erning equations, heat and mass transfer with the related equations of the laminar
free convection film condensation of vapor (saturated and superheated) can be sum-
marized in Tables 16.7 and 16.8, respectively.
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16.10 Remarks

In this chapter, we deal with heat and mass transfer of laminar free convection
film condensation of vapor with consideration of various physical factors including
variable physical properties. The film condensation of saturated vapor is taken as
its special case only with the vapor bulk superheated grade �t∞

ts
= t∞−ts

ts
= 0. The

present presentation here on heat and mass transfer is an extension of former studies
and the following points are concluded:

With heat and mass transfer analysis, the theoretical equations for Nusselt num-
ber and mass flow rate are derived for the laminar free convection film condensation
of vapor. For practical prediction of heat transfer, only the temperature gradient(

dθl
dηl

)
ηl=0

dependent on the numerical solutions of the governing equations is un-

known variable. While, for practical prediction of condensate mass flow rate, only
the condensate mass flow rate parameter 
s dependent on the numerical solutions
of the governing equations is unknown variable.

With increase of the wall subcooled grade �tw
ts

= ts−tw
ts

, the temperature gradient(
− dθl

dηl

)
ηl=0

will decrease, especially for lower wall subcooled grade �tw
ts

= ts−tw
ts

.

While, with increasing the vapor bulk superheated grade �t∞
ts

= t∞−ts
ts

, the temper-

ature gradient
(
− dθl

dηl

)
ηl=0

will increase. However, the effect of the wall subcooled

grade �tw
ts

= ts−tw
ts

on the temperature gradient
(
− dθl

dηl

)
ηl=0

is more obvious than

that of the vapor bulk superheated grade �t∞
ts

= t∞−ts
ts

= 0.

With increasing the wall subcooled grade �tw
ts

= ts−tw
ts

, the condensate film thick-

ness ηδl will increase, especially for lower wall subcooled grade �tw
ts

= ts−tw
ts

, while

with increasing the superheated grade �t∞
ts

= t∞−ts
ts

, the condensate film thickness

ηδl will decrease. However, the effect of the wall subcooled grade �tw
ts

= ts−tw
ts

on the
condensate film thickness ηδl is more obvious than that of the vapor bulk superheated
grade �t∞

ts
= t∞−ts

ts
.

With increase of the wall subcooled grade �tw
ts

= ts−tw
ts

, the velocity components

and −Wyl,s will increase, especially for the small value of �tw
ts

= ts−tw
ts

. While with

increasing the superheated grade �t∞
ts

= t∞−ts
ts

= 0, the velocity components Wxl,s

and −Wyl,s will decrease.
As per the results, with increase of the wall subcooled grade �tw

ts
= ts−tw

ts
, the

condensate mass flow rate parameter 
s = ηlδWxl,s −Wyl,s will increase, especially
due to the function of condensate film thickness ηδl . While with increasing the super-
heated grade �t∞

ts
= t∞−ts

ts
, the mass flow rate parameter 
swill decrease. However,

the effect of the wall subcooled grade �tw
ts

= ts−tw
ts

on the condensate mass flow rate

parameter is more obvious than that of the superheated grade �t∞
ts

= t∞−ts
ts

.
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On the basis of the rigorous numerical solutions, the temperature gradient(
dθl
dηl

)
ηl=0

and then mass flow rate parameter 
s are formulated, and then, the equa-

tions for reliable predictions of heat and mass transfer are created for the laminar
free convection film condensation of water vapor.

16.11 Calculation Example

Example 1 A flat plate with 0.3 m in width and 0.3 m in length is suspended vertically
in the superheated water vapor. The wall temperature of the plate is tw = 98 ◦C, and
the vapor bulk temperature is t∞ = ts = 100 ◦C. Suppose the condensate film is
laminar, please calculate the free convection condensation heat and mass transfer on
the plate.

Calculation:
The vapor superheated grade is �t∞

ts
= t∞−ts

ts
= 0, then, the water vapor bulk is

at the saturated state with ρv = 0.5974 kg/m3.
The wall subcooled grade is �tw

ts
= ts−tw

ts
= 100−98

100 = 0.02, and ρl,w =
961.6 kg/m3, and λl = 0.6824 W/(m◦C) at tw = 98 ◦C.

Additionally, for saturated condition of water at 100 ◦C, there should be the
following property data, i.e., ρl,s = 958.1 kg/m3, νl,s = 0.294 × 10−6 m2/s,
μl,s = 281.7 × 10−6 kg/(m s).

1. For heat transfer

From section 16.2 the average heat transfer coefficient of the laminar free con-
vection film condensation of saturated vapor is evaluated as

αx = −4

3
λl,w

(
1

4
Grxl,s

)1/4

x−1

(
−

(
dθl

dηl

)
ηl=0

)
�t∞=0

From Eq. (14.14) the local Grashof number of the film condensation is
evaluated as

Grxl,s = g(ρl,w − ρv,s)x3

ν2
l,sρl,s

= 9.8 × (961.6 − 0.5974) × 0.33

(0.294 × 10−6)2 × 958.1

= 3.0705 × 1012

http://dx.doi.org/10.1007/978-3-642-28983-5_14
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From Eq. (16.8), the temperature gradient

((
dθl
dηl

)
ηl=0

)
�t∞=0

for the laminar free

convection film condensation of saturated water vapor is calculated as

(
−

(
dθl

dηl

)
ηl=0

)
�t∞=0

= 1.74 − 0.19�tw
ts(

�tw
ts

)1/4

= 1.74 − 0.19 × 0.02

0.021/4

= 4.6168

Then, the local heat transfer coefficient is evaluated as

αx = 4

3
λl,w

(
1

4
Grxl,s

)1/4

x−1

(
−

(
dθl

dηl

)
ηl=0

)
�t∞=0

= 4

3
× 0.6824 ×

(
1

4
× 3.0705 × 1012

)1/4

× 0.3−1 × 4.6168

= 13106.44 W/(m2◦C)

The total heat transfer of laminar free convection film condensation of the super-
heated water vapor on the vertical plate is calculated

Qx = αx (tw − ts)A

= 13106.44 × (98 − 100) × 0.3 × 0.3

= −2359.16 W

The negative means that the heat transfer direction is to the plate from the con-
densate film.

2. For mass flow rate of the condensation

From Eqs. (16.15) the total mass flow rate Gx of the laminar film condensate of
saturated vapor for position x = 0 to x with width of b of the plate is evaluated as

Gx = 4

3
b · μl,s

(
1

4
Grxl,s

)1/4

(
s)�t∞=0

From Eq. (16.20), the mass flow rate parameter (
s)�t∞=0 is calculated as

(
s)�t∞=0 =
(

0.186 − 0.057
�tw

ts

) (
�tw

ts

)3/4

= (0.186 − 0.057 × 0.02)(0.02)3/4

= 0.0098314
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Then, the total mass flow rate Gx of the laminar free convection film condensation
of saturated water vapor is calculated as

Gx = 4

3
b.μl,s

(
1

4
Grxl,s

)1/4

(
s)�t∞=0

= 4

3
× 0.3 × 281.7 × 10−6 ×

(
1

4
× 3.0705 × 1012

)1/4

× 0.0098314

= 0.001037 kg/s

= 3.7329 kg/h

Example 2 A flat plate with 0.3 m in width and 0.3 m in height is suspended vertically
in the saturated water vapor, i.e.,�t∞ = t∞−tS = 0 ◦C. The wall temperature is tw =
90 ◦C and then the wall subcooled grade is �tw

ts
= ts−tw

ts
= 100−90

100 = 0.1. Assume
laminar free convection film condensation occurs on the plate, please calculate:

(i) heat transfer and mass flow rate of the film boiling of saturated water vapor on
the plate

(ii) condensate film thickness at x = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 m
from the top (x = 0) of the plate

Calculation:
At first, the related physical properties are given as follows: ρv,s = 0.5974 g/m3

for saturated water vapor at tS = 100 ◦C, ρl,s = 958.1 kg/m3, νl,s = 0.294 ×
10−6 m2/s, and μl,s = 281.7 × 10−6 kg/(m s) for saturated water at tS = 100 ◦C,
and ρl,w = 965.3 kg/m3 and λl = 0.68 for water at tw = 90 ◦C.

(i) heat transfer and mass flow rate of the laminar free convection film condensation
of saturated water steam on two sides of the plate

For heat transfer
With Eq. (14.14), the local Grashof number Grxl,s is evaluated as

Grxl,s = g(ρl,w − ρv)x3

ν2
l,sρl,s

= 9.8 × (965.3 − 0.5974) × 0.33

(0.294 × 10−6)2 × 958.1

= 3.08232 × 1012

Additionally with Eq. (16.8) the temperature gradient of the laminar free convec-
tion film condensation of the saturated water vapor is calculated as

(
−

(
dθl

dηl

)
ηl=0

)
�t∞=0

= 1.74 − 0.19�tw
ts(

�tw
ts

)

http://dx.doi.org/10.1007/978-3-642-28983-5_14
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= 1.74 − 0.19 × 10
100( 10

100

)1/4

= 3.060

Then from Eqs. (16.6) the average heat transfer coefficient is evaluated as

αx = 4

3
λl,w

(
1

4
Grxl,s

)1/4

x−1

((
− dθl

dηl

)
ηl=0

)
�t∞=0

= 4

3
× 0.68 ×

(
1

4
× 3.08232 × 1012

)1/4

× (0.3)−1 × 3.060

= 8664.67 W/(m2◦C)

The heat transfer of laminar free convection film condensation of the saturated
water vapor on the vertical plate is calculated

Qx = αx (tw − ts)A

= 8664.67 × (90 − 100) × 0.3 × 0.3

= −7798.2 W

The negative sign means that the heat flux is to the plate from the condensate film.

For mass flow rate of the condensation
The mass flow rate parameter of the laminar free convection film condensation of

saturated water vapor is evaluated as

(
s)�t∞=0 = (
ηlδ · Wxl,δ − 4Wyl,δ

)
�t∞=0

=
(

0.186 − 0.057
�tw

ts

) (
�tw

ts

)3/4

=
(

0.186 − 0.057 × 10

100

) (
10

100

)3/4

= 0.032062

The total mass flow rate of the film condensation of saturated water vapor is

Gx = 4

3
b · μl,s

(
1

4
Grxl,s

)1/4

(
s)�t∞=0

= 4

3
× 0.3 × 281.7 × 10−6 ×

(
1

4
× 3.08232 × 1012

)1/4

× 0.032062

= 0.0033849 kg/s

= 12.186 kg/h
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(ii) condensate film thickness

The wall subcooled grade is 0.1, then, Eq. (16.16) is taken to evaluate ηlδ as

ηlδ = 0.5934

(
�tw

ts

)0.2562

= 0.5934 × (0.1)0.2562

= 0.32896

From the definition of local Grashof number Grxl,s , the condensate film thickness
δl is expressed as

δl = ηl x

(
1

4
Grxl,s

)−1/4

= ηl x

(
1

4

g(ρl,w − ρv,s)x3

ν2
l,sρl,s

)−1/4

= ηl

(
1

4

g(ρl,w − ρv,s)

ν2
l,sρl,s

)−1/4

x1/4

= 0.32896 ×
(

1

4
× 9.8 × (965.3 − 0.5974)

(0.294 × 10−6)2 × 958.1

)−1/4

× x1/4

= 0.000142324 × x1/4

For x = 0, δl = 0

For x = 0.01 m, δl = 0.000142324 × 0.011/4 = 4.5 × 10−5 m

For x = 0.05 m, δl = 0.000142324 × 0.051/4 = 6.73 × 10−5 m

For x = 0.1 m, δl = 0.000142324 × 0.11/4 = 8 × 10−5 m

For x = 0.15 m, δl = 0.000142324 × 0.151/4 = 8.86 × 10−5 m

For x = 0.2 m, δl = 0.000142324 × 0.21/4 = 9.52 × 10− m

For x = 0.25 m, δl = 0.000142324 × 0.251/4 = 0.000101 m

For x = 0.3 m, δl = 0.000142324 × 0.31/4 = 0.000105 m

For clear expression, the condensate film thickness δl with the position x is listed
and plotted as Table 16.10 and Fig. 16.8 respectively.

Example 3 A flat plate with 0.3 m width and 0.3 m length is suspended vertically in
the superheated water vapor with t∞ = 227 ◦C. The wall temperature is tw = 90 ◦C.
Suppose the film condensation is laminar, please calculate the condensate heat and
mass transfer on the plate.
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Table 16.10 The condensate film thickness y with the position x

x m 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3

δl m 0 4.5 × 10−5 6.73 × 10−5 8 × 10−5 8.86 × 10−5 9.52 × 10−5 0.000101 0.000105

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0 0.05 0.1 0.15 0.2 0.25 0.3
x,m

y,m

Fig. 16.8 The condensate film thickness δl with the position x

Solution:
The wall subcooled temperatures of the plate is �tw = ts − tw = 100 − 90 =

10 ◦C, and then, the wall subcooled grade is �tw
ts

= 10
100 = 0.1. We have ρl,w =

965.32 kg/m3, and λl = 0.68 W/(m◦C) for water at tw = 90 ◦C.
The vapor superheated temperature is �t∞ = t∞ − tS = 0227 − 100 = 127 ◦C,

then, the vapor superheated grade is �t∞
ts

= t∞−tS
ts

= 127
100 = 1.27. We have ρv,∞ =

0.4405 kg/m3 for water vapor at t∞ = 227 ◦C.
Additionally, we have ρl,s = 958.1 kg/m3, νl,s = 0.294 × 10−6 m2/s, μl,s =

281.7 × 10−6 kg/(m s) for saturated water at 100 ◦C.

1. For heat transfer

From Eqs. (16.6) the average heat transfer coefficient is evaluated as

αx = 4

3
λl,w

(
1

4
Grxl,s

)1/4

x−1
(

dθl

dηl

)
ηl=0

From Eq. (14.14) the local Grashof number Grxl,s of the film condensation should
be evaluated as

http://dx.doi.org/10.1007/978-3-642-28983-5_14
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Grxl,s = g(ρl,w − ρv,∞)x3

ν2
l,sρl,s

= 9.8 × (965.32 − 0.4405) × 0.33

(0.294 × 10−6)2 × 958.1

= 3.08289 × 1012

From Eq. (16.9) the temperature gradient of the laminar free convection film con-
densation of the superheated water vapor is calculated as

−
(

dθl

dηl

)
ηl=0

=
(

−
(

dθl

dηl

)
ηl=0

)
�t∞=0

+ a · �t∞
ts

From Eq. (16.8) the dimensionless temperature gradient

(
−

(
dθl
dηl

)
ηl=0

)
�t∞=0

for the film condensation of saturated water vapor is evaluated as

(
−

(
dθl

dηl

)
ηl=0

)
�t∞=0

= 1.74 − 0.19�tw
ts(

�tw
ts

)1/4

= 1.74 − 0.19 × 0.1

0.11/4

= 3.060419

From Eq. (16.10), the coefficient a is calculated as

a = 0.0315 ×
(

�tw
ts

)−0.3119

= 0.0315 × (0.1)−0.3119

= 0.064597

Then, the temperature gradient of the laminar free convection film condensation
of the superheated water vapor is calculated as

−
(

dθ

dηl

)
ηl=0

=
(

−
(

dθl

dηl

)
ηl=0

)
�t∞=0

+ a · �t∞
ts

= 3.060419 + 0.064597 × 1.27

= 3.142457

Then, the average heat transfer coefficient is evaluated as
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αx = −4

3
λl,w

(
1

4
Grxl,s

)1/4

x−1
(

dθl

dηl

)
ηl=0

= 4

3
× 0.68 ×

(
1

4
× 3.08289 × 1012

)1/4

× (0.3)−1 × 3.142457

= 8898.57 W/(m2◦C)

The total heat transfer rate of laminar free convection film condensation of the
superheated water vapor on the vertical plate is calculated

Qx = αx (tw − ts)A

= 8898.57 × (90 − 100) × 0.3 × 0.3

= −8008.72 W

The negative means that the heat transfer direction is to the plate from the con-
densate film.

2. For mass flow rate of the condensation

From Eq. (16.15), the total mass flow rate entering the liquid film for position x = 0
to x with width of b of the plate is evaluated as

Gx = 4

3
b · μl,s

(
1

4
Grxl,s

)1/4

(
s)

Here from Eq. (16.21), the mass flow rate parameter film condensation of super-
heated vapor is evaluated as

(
s) = (
s)�t∞=0 − b
�t∞

ts

where the mass flow rate parameter of the laminar free convection film condensation
of saturated water vapor is calculated as

(
s)�t∞=0 =
(

0.186 − 0.057
�tw

ts

) (
�tw

ts

)3/4

= (0.186 − 0.057 × 0.1)(0.1)3/4

= 0.032062378

Additionally, the coefficient b is evaluated as

b = 10−4 ×
[

2.756 + 121.4
�tw

ts
− 60

(
�tw

ts

)2
]

= 10−4 × [2.756 + 121.4 × 0.1 − 60 × (0.1)2]
= 0.00143
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The mass flow rate parameter of the laminar free convection film condensation of
superheated water steam is calculated as


s = (
s)�t∞=0 − b
�t∞

ts
= 0.032062378 − 0.00143 × 1.27

= 0.030246

The mass flow rate Gx of the laminar free convection film condensation of super-
heated water vapor is calculated as

Gx = 4

3
b · μl,s

(
1

4
Grxl,s

)1/4

(
s)

= 4

3
× 0.3 × 281.7 × 10−6 ×

(
1

4
× 3.08289 × 1012

)1/4

× 0.030246

= 0.0031933 kg/s

= 11.496 kg/h

16.12 Exercises

1. Please describe the effect of wall subcooled grade and bulk superheated grade on
heat and mass transfer of laminar free convection film condensation of vapour,
respectively.

2. Please give a detailed derivation for the theoretical Eqs. (13.1)–(13.7) on heat
transfer analysis of laminar free convection film condensation of vapour.

3. Can you point out the difference of variations of velocity and temperature fields on
laminar free convection film condensation from those on laminar free convection
film boiling?

4. Please explain why Eqs. (16.1*)–(16.7*) can be recommended for practical pre-
diction of heat transfer of laminar free convection film condensation of water
vapor on a vertical flat plate?

5. Please explain why Eq. (16.15*) can be recommended for practical prediction of
condensate mass transfer of laminar free convection film condensation of vapor
on a vertical flat plate?

6. Compare the variation regulation of the heat and mass transfer on the laminar
free convection film condensation of vapor to that on laminar free convection
film boiling of liquid.

7. Please find out the difference of the variation regulation of the heat and mass
transfer on the laminar free convection film condensation of vapor from that on
laminar free convection film boiling of liquid, and explain their differences.

http://dx.doi.org/10.1007/978-3-642-28983-5_13
http://dx.doi.org/10.1007/978-3-642-28983-5_13
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8. Please tell me which applications the condensate mass–energy transformation
equation has?

9. Which significance that the equation of the condensate mass-energy transforma-
tion has for laminar free convection film condensation?
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Chapter 17
Effects of Various Physical Conditions on Heat
Transfer of the Free Convection Film
Condensation

Abstract In this chapter, the film condensation of saturated water vapor is taken as
an example for analyzing the effects of various physical conditions on heat trans-
fer. The effects of four physical conditions including Boussinesq approximation (i.e.
ignoring variable physical properties), shear force at the liquid–vapor interface, iner-
tia force of the condensate film, and the thermal convection of the condensate film
on the heat transfer coefficient of the film condensation are deeply investigated. It
is found that the variable physical properties and thermal convection cause larger
effect on heat transfer of laminar free convection film condensation, meanwhile, the
effect of the variable physical properties is even larger than that of the thermal con-
vection. It follows that it is necessary to consider variable physical properties for
investigation on heat transfer of free film condensation. Compared with the variable
physical properties and thermal convection, the effect of the Interfacial shear force
and inertia force will be much smaller on heat transfer of laminar free convection
film condensation, meanwhile, the effect of the inertia force is little bit smaller than
that of the interfacial shear force.

17.1 Introduction

In Chap. 14, the extended theory of steady state laminar free convection film con-
densation process of pure vapor at atmospheric pressure on an isothermal vertical
flat plate is established. Its equations provide a complete account of the analyses
and calculation of its physical process for consideration of various physical factors
including variable thermophysical properties.

In this chapter, effects of various physical conditions on heat and mass transfer
of the film condensation of saturated vapor will be further presented [1, 2]. To this
end, the film condensation of saturated water vapor is taken as an example, and, four
different assumptions, such as Boussinesq approximation of condensate film, ignor-
ing shear force at the liquid–vapor interface, ignoring condensate film inertia force,

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 351
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_17,
© Springer-Verlag Berlin Heidelberg 2012
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and ignoring condensate film thermal convection are considered for investigation of
their effects on the condensate heat transfer coefficient, condensate film thickness,
and mass flow rate of the film condensation. Quantitative comparisons from these
results indicate the following points:

Effect of the Physical Conditions on Heat Transfer Coefficient
The Boussinesq approximation of the condensate film will greatly decrease the

heat transfer coefficient of the condensation and cause the largest effect on the heat
transfer coefficient compared with those caused by other physical conditions. The
thermal convection of condensate film will increase the heat transfer coefficient of
the condensation, and its effect on the heat transfer coefficient is larger than those
caused by the liquid–vapor interfacial shear force and the inertia force of condensate
film. The liquid–vapor interfacial shear force and the inertia force of the condensate
film will decrease the heat transfer coefficient very slightly.

Effect of the Physical Conditions on Condensate Film Thickness
The Boussinesq approximation of the condensate film will greatly decrease the

condensate film thickness and cause the largest effect on the condensate film thickness
compared to those caused by other physical conditions. The thermal convection of
condensate film will decrease the condensate film thickness, and its effect on the
condensate film thickness is larger than those caused by the liquid–vapor interfacial
shear force and the inertia force of condensate film. The liquid–vapor interfacial
shear force and the inertia force of the condensate film will increase the condensate
film thickness very slightly.

Effect of the Physical Conditions on Condensate Mass Flow Rate
The condensate film thermal convection will greatly decrease the mass flow rate of

the film condensation, and will cause the largest effect on the condensate mass flow
rate compared with those caused by other physical conditions. The other physical
conditions, such as Boussinesq approximation, the liquid–vapor interfacial shear
force, and the condensate film inertia force will decrease the condensate mass flow
rate very slightly. While, the condensate film inertia force has the smallest effect on
the condensate mass flow rate compared with the other physical conditions.

17.2 Review of Governing Equations for Film Condensation
of Saturated Vapor

In Chap. 14, the governing equations for laminar free convection film condensation
of saturated vapor were presented. In this chapter, it is necessary to have a brief
review of those equations for a further analysis.

http://dx.doi.org/10.1007/978-3-642-28983-5_14
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17.2.1 Partial Differential Equations

The analytical model and coordinate system used for the laminar free convection
film condensation of the saturated vapor on an isothermal vertical flat plate is shown
in Fig.14.1, which is a special case of that of the general vapor with the zero super-
heated grade. The conservation partial differential equations of mass, momentum,
and energy for steady laminar saturated condensation in two-phase boundary layer
are as follows:

For Condensate Liquid Film

∂

∂x
(ρlwxl) + ∂

∂y
(ρlwyl) = 0 (17.1)

ρl

(
wxl

∂wxl

∂x
+ wyl

∂wxl

∂y

)
= ∂

∂y

(
μl

∂wxl

∂y

)
+ g(ρl − ρv) (17.2)

ρl cpl

(
wxl

∂t

∂x
+ wyl

∂t

∂y

)
= ∂

∂y

(
λl

∂t

∂y

)
(17.3)

For Vapor Film
∂

∂x
(wxv) + ∂

∂y
(wyv) = 0 (17.4)

wxv
∂wxv

∂x
+ wyv

∂wxv

∂y
= νv

∂2wxv

∂y2 (17.5)

For Boundary Conditions
y = 0:

wxl = 0, wyl = 0, tl = tw (17.6)

y = δv

wxl,s = wxv,s (17.7)

ρl,s

(
wxl

∂δl

∂x
− wyl

)
s

= ρv

(
wxv

∂δv

∂x
− wyv

)
s

(17.8)

μl,s

(
∂wxl

∂y

)
s

= μv

(
∂wxv

∂y

)
s

(17.9)
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λl,s

(
∂tl
∂y

)
y=δl

= h f gρl,s

(
wxl

∂δl

∂x
− wyl

)
s

(17.10)

tl = ts (17.11)

y → ∞:

wxv → 0, (17.12)

17.2.2 Similarity Variables

Same as those in Chap. 14, the following dimensionless variables are assumed for
the similarity transformation of the governing partial differential equations of the
film condensation of saturated vapor:

For Liquid Film
For liquid film the similarity transformation variables are assumed as follows:
At first, the dimensionless coordinate variable ηl is set up as

ηl =
(

1

4
Grxl,s

)1/4 y

x
(17.13)

where the local Grashof number Grxl,s is assumed as

Grxl,s = g(ρl,w − ρv,s)x3

νl,s
2ρl,s

(17.14)

The dimensionless temperature is given as

θl = tl − ts
tw − ts

(17.15)

The dimensionless velocity components are assumed as

Wxl =
(

2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2
)−1

wxl (17.16)

Wyl =
(

2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2 (
1

4
Grxl,s

)−1/4
)−1

wyl (17.17)

For Vapor Film

http://dx.doi.org/10.1007/978-3-642-28983-5_14
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The vapor film dimensionless coordinate variable ηv and the local Grashof number
Grxv,s are assumed as respectively

ηv =
(

1

4
Grxv

)1/4 y

x
, Grxv = gx3

νv,s
2 (17.18)

The dimensionless velocity components are assumed as

Wxv = (2
√

gx)−1Wxv (17.19)

Wyv =
(

2
√

gx

(
1

4
Grxv

)−1/4
)−1

wyv (17.20)

17.2.3 Transformed Dimensionless Differential Equations

The governing partial differential equations and the boundary conditions for the free
film convection film condensation of saturated vapor are transformed to the following
forms:

For Liquid Film

2W x1 − η1
dWx1

dη1
+ 4

dWy1

dη1
− 1

ρl

dρ1

dη1
(−η1Wx1 + 4Wy1) = 0 (17.21)

νl,s

νl

(
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

)
= d2Wxl

dη2
l

+ 1

μl

dμl

dηl

dWxl

dηl
+μl,s

μl

ρl − ρv,s

ρl,w − ρv,s

(17.22)

Prl
μl,s

μl

ρl

ρl,s
[−ηl Wxl + 4Wyl ] dθl

dηl
= d2θl

dη2
l

+ 1

λl

dλl

dηl

dθl

dηl
(17.23)

For Vapor Film

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
= 0 (17.24)

Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

dWxv

dηv
= d2Wxv

dη2
v

(17.25)

For Boundary Conditions
ηl = 0:

Wxl = 0, Wyl = 0, θl = 1 (17.26)
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ηv = ηlδ(ηv = 0):

Wxv,s =
(

ρl,w − ρv,s

ρl,s

)1/2

Wxl,s (17.27)

ρl,s

(
wxl

∂δl

∂x
− wyl

)
s

= ρv

(
wxv

∂δv

∂x
− wyv

)
s

Wyv,s = −0.25
ρl,s

ρv

(
νv,s

νv

)1/2 (
ρl,w − ρv,s

ρl,s

)1/4

(Wxl,sηlδ − 4Wyl,s) (17.28)

(
dWxv

dηv

)
ηv=0

= μl,s

μv

(
ρl,w − ρv,s

ρl,s

)3/4 (
νv,s

νl,s

)1/2 (
dWxl

dηl

)
ηl=ηlδ

(17.29)

h f gPrl,s(Wxl,sηlδ − 4Wyl,s) + λl,s(tw − ts)

(
dθl

dηl

)
ηl=ηlδ

= 0 (17.30)

θl = 0 (17.31)

ηv → ∞:

Wxv → 0, (17.32)

In the governing equations here various physical conditions, such as all variable ther-
mophysical properties (except for that of specific heat), shear force at liquid–vapor
interface, and condensate film inertia force and condensate film thermal convection
are considered. The above physical conditions are overall named more complete
condition for further investigations.

17.3 Different Physical Assumptions

17.3.1 Assumption a (with Boussinesq Approximation
of Condensate Film)

The assumption a is defined that on the basis of the more complete condition the
Boussinesq approximation is further considered in the governing differential equa-
tions of the condensate film. With assumption a, associated partial differential equa-
tions of the condensate film become
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∂wxl

∂x
+ ∂wyl

∂y
= 0 (17.33)

wxl
∂wxl

∂x
+ wyl

∂wxl

∂y
= ν∗

l
∂2wxl

∂y2
l

+ g(ρl − ρv,s)

ρ∗
l

(17.34)

ρ∗
l c∗

pl

λ∗
l

(
wxl

∂t

∂x
+ wyl

∂t

∂y

)
= ∂2t

∂y2 (17.35)

where the superscript ∗ implies the value at reference temperature t∗ that is described
by mean temperature (tw + ts)/2.

Strictly speaking, for the boundary conditions under the Boussinesq approxima-
tion, the variable physical properties need not be considered. However, for examining
the effect of the variable physical properties we still take the boundary conditions
(17.6–17.12) with the temperature-dependent physical properties as the associated
boundary conditions.

With the expressions (17.13–17.17) for the defined variables of the condensate
film, the following governing ordinary differential equations can be derived from
Eqs. (17.33–17.35) as:

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
= 0 (17.36)

νl,s

ν∗
l

(
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

)
= d2Wxl

dη2
l

+ μl,s

μl

ρl − ρv

ρl,w − ρv
(17.37)

Pr∗l
ρ∗

l

ρl,s

μl,s

μ∗
l

(−ηl Wlv + 4Wyl)
dθl

dηl
= d2θl

dη22

l

(17.38)

From the analysis of Chap. 7, it is possible to regard the specific heat cpl , s
∗

in Pr∗l as constant for water for a lot of liquids in the special temperature range for

engineering application. In this case, the property factors Pr∗l
ρ∗

l
ρl,s

μl,s
μ∗

l
in Eq. (17.38)can

be substituted by Prl,s
ρ∗

l
ρl,s

λl,s
λ∗

l
.

The governing ordinary differential equations of the vapor film are also Eqs. (17.24)
and (17.25). Of course, the transformed dimensionless boundary conditions are also
Eqs. (17.26–17.32).

http://dx.doi.org/10.1007/978-3-642-28983-5_7
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17.3.2 Assumption b (Ignoring Shear Force at Liquid–Vapor
Interface)

In assumption b, the shear force at the liquid–vapor interface is neglected on the
basis of the more complete conditions. The governing partial differential equations
for this assumption are only Eqs. (17.1–17.3), and the governing equations of vapor
film should be omitted. Consequently, the boundary conditions Eqs. (17.7), (17.8)
and (17.12) are omitted, and Eqs. (17.6), (17.10), and (17.11) remain. Since the shear
force at the liquid–vapor interface is neglected, the boundary condition Eqs. (17.9)
is simplified to

y = δl :
(

∂wxl

∂y

)
s

= 0 (17.39)

With Eqs. (17.13) and (17.16) for the defined similarity variables, Eq. (17.39) is
changed into

ηl = ηlδ :
(

dWxl

dηl

)
ηl=ηlδ

= 0 (17.40)

Thus, with the similarity transformation the governing partial equations (17.1–
17.3) are transformed to Eqs. (17.21– 17.23) respectively, and their boundary condi-
tions are (17.26), (17.30), (17.31) and (17.40).

17.3.3 Assumption c (Ignoring Inertia Force
of the Condensate Film)

The assumption c is defined that the inertia force of the condensate film is further
omitted on the basis of the assumption b. The governing partial differential equations
in this assumption are Eqs. (17.1) and (17.3), as well as the following momentum
equation

∂

∂y

(
μl

∂wxl

∂y

)
+ g(ρl − ρv,s) = 0 (17.41)

Then, by virtue of the expressions for defined similarity variables, Eqs. (17.13–
17.17), the associated governing ordinary differential equations will be Eqs. (17.21)
and (17.23), as well as the following equation

d2Wxl

dη2
l

+ 1

μl

dμl

dηl

dWxl

dηl
+ μl,s

μl

ρl − ρv,s

ρl,w − ρv,s
= 0 (17.42)

The boundary conditions for the assumption c are same as those for assumption b.
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17.3.4 Assumption d (Ignoring Thermal Convection
of the Condensate Film)

Assumption d is that the thermal convection of the condensate film is further omitted
on the basis of the assumption c. For this further assumption, the energy Eq. (17.3)
is simplified to

∂

∂y

(
λl

∂t

∂y

)
= 0 (17.43)

Therefore, the governing partial differential equations of this assumption should
then be Eqs. (17.1), (17.41), (17.43) and the associated ordinary differential equations
are Eqs. (17.21) and (17.42), as well as the following energy equation:

d2θl

dη22

l

= − 1

λl

dλl

dηl

dθl

dηl
(17.44)

The associated boundary conditions for the assumption d are also the same as
those for the assumption b.

17.4 Effects of Various Physical Conditions on Velocity
and Temperature Fields

The numerical calculations in each assumed physical condition are carried out for
different wall subcooled grade, such as 	tw

ts
(= ts−tw

ts
) = 0.001, 0.025, 0.05, 0.1, 0.2,

0.4, 0.6, 0.8, 1 for film condensation of saturated water vapor. Some calculated results
of the dimensionless velocity component Wxl and temperature fields are plotted in
Figs. 17.1 and 17.2, respectively. It is seen that the physical conditions have corre-
sponding influences both on the condensate film velocity and temperature fields, and
with increasing the wall subcooled grade 	tw

ts
, these influences will increase. Addi-

tionally, the effects of Boussinesq approximation on the condensate film velocity and
temperature fields are much larger than those of other physical conditions. While,
the effects of the condensate film thermal convection on the condensate film velocity
and temperature fields are larger than those of liquid–vapor interfacial shear force
and the condensate film inertia force.
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Fig. 17.1 Velocity profiles of film condensation of saturated water vapor in different Conditions,
cited from Shang and Adamek [1] I 	tw

ts
= 0.1, II 	tw

ts
= 0.4, III 	tw

ts
= 1 Line m for more

complete condition Lines a to d for assumptions a to d respectively

Fig. 17.2 Temperature profiles of film condensation of saturated water steam in different Condi-
tions, cited from Shang and Adamek [1] I 	tw

ts
= 0.1, II 	tw

ts
= 0.4, III 	tw

ts
= 1 Line m for more

complete condition Lines a to d for assumptions a to d respectively

17.5 Effects of Various Physical Conditions
on Heat Transfer

According to Eq. (16.2), the local heat transfer coefficient on the surface for the film
condensation of saturated vapor is

αx= −λl,w

(
1

4
Grxl,s

)1/4

x−1

((
dθl

dηl

)
ηl=0

)
	t∞=0

(17.45)

http://dx.doi.org/10.1007/978-3-642-28983-5_16
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If we define the same Grashof number Grxl,s for that with the different assumed con-
ditions, the deviations of the heat transfer coefficient caused by the related assumed
conditions can be expressed as follows respectively:

Effect of Boussinesq approximation for the condensate film of saturated vapor on
heat transfer coefficient can be expressed as

	(αx )a = (αx )a − (αx )m

(αx )m
=

(((
− dθl

dηl

)
ηl=0

)
	t∞=0

)
a

−
(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
m(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
m

(17.46)

Effect of ignoring shear force at the liquid–vapor interface on heat transfer coef-
ficient can be expressed as

	(αx )b = (αx )b − (αx )m

(αx )m
=

(((
− dθl

dηl

)
ηl=0

)
	t∞=0

)
b

−
(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
m(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
m

(17.47)

Effect of ignoring inertia force of the condensate film on heat transfer coefficient
can be expressed as

	(αx )c = (αx )c − (αx )b

(αx )b
=

(((
− dθl

dηl

)
ηl=0

)
	t∞=0

)
c

−
(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
b(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
b

(17.48)

Effect of ignoring thermal convection of the condensate film on heat transfer
coefficient can be expressed as

	(αx )d = (αx )d − (αx )c

(αx )c
=

(((
− dθl

dηl

)
ηl=0

)
	t∞=0

)
d

−
(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
c(((

− dθl
dηl

)
ηl=0

)
	t∞=0

)
c

(17.49)
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Briefly, the effect of the variable physical properties, interfacial shear force, iner-
tia force, and thermal convection are expressed by 	(αx )a , 	(αx )b, 	(αx )c, and
	(αx )d .

The numerical solutions of temperature gradient

((
− dθl

dηl

)
ηl=0

)
	t∞=0

in the var-

ious assumptions are obtained numerically for the film boiling of saturated water
vapor, and shown in Table 17.1 and Fig. 17.3, respectively. According to Eqs. (17.46–
17.49), the deviation of the heat transfer coefficient related to different assumed con-
ditions are evaluated, shown in Table 17.1, and plotted in Fig. 17.4, respectively.

It is seen that, with increasing the wall suncooled grade 	tw
ts

,
ignoring both of the

variable physical properties and thermal convection of condensate liquid film will
decrease the heat transfer coefficient at an accelerative pace, meanwhile, will cause
increase heat transfer coefficient slowly on laminar free film condensation.

It is also seen that, among these assumptions, ignoring the variable physical prop-
erties (i.e. Boussinesq approximation) will cause a largest deviation of heat transfer
for the film condensation. Ignoring the thermal convection of condensate liquid film
will cause a large deviation of heat transfer, only less than the deviation caused by
ignoring the variable physical properties. Ignoring the inertia force of the conden-
sate liquid film will cause minimum deviation of heat transfer. While, ignoring the
interfacial shear forced will cause a deviation of heat transfer, only little bit larger
than that caused by the inertia force of the condensate liquid film.

Briefly, the variable physical properties and thermal convection cause larger effect
on heat transfer of laminar free film condensation, meanwhile, the effect of the vari-
able physical properties is even larger than that of the thermal convection. Compared
with the variable physical properties and thermal convection, the effect of the Inter-
facial shear force and inertia force will be much smaller on heat transfer of laminar
free film condensation, meanwhile, the effect of the inertia force is little bit smaller
than that of the interfacial shear force.

17.6 Remarks

In this chapter, the film condensation of saturated water vapor is taken as an example
for analyzing the effects of various physical conditions on the heat transfer coeffi-
cient. The effects of the four physical conditions are considered including Boussinesq
approximation (i.e. ignoring variable physical properties), shear force at the liquid–
vapor interface, and inertia force and the thermal convection of the condensate film.
It is found that the variable physical properties and thermal convection cause larger
effect on heat transfer of laminar free film condensation, meanwhile, the effect of
the variable physical properties is even larger than that of the thermal convection.
It follows that it is necessary to consider variable physical properties for investiga-
tion on heat transfer of free film condensation. Compared with the variable physical
properties and thermal convection, the effect of the Interfacial shear force and inertia
force will be much smaller on heat transfer of laminar free film condensation, mean-
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Fig. 17.3 The distributions of
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− dθ
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of film condensation of saturated water vapor

with different assumptions Line m for more complete condition Lines a to d for assumptions a to
d respectively
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Fig. 17.4 The deviation of αx for film condensation of saturated water vapor for different assumed
conditions Lines a–d for 	(αx )a , 	(αx )b, 	(αx )c and 	(αx )d , respectively

while, the effect of the inertia force is little bit smaller than that of the interfacial
shear force.
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17.7 Exercises

1. Compare the four physical conditions, i.e., variable physical properties, interfacial
shear force, inertia force, and thermal convection, and find out

(i) which two conditions have larger effect, and which two conditions have
smaller effect on heat transfer of free film condensation?

(ii) Which condition has the largest effect on heat transfer of free film conden-
sation?

(iii) which condition has the smallest effect on heat transfer of free film conden-
sation?

2. According to the analysis results in this chapter, please explain the importance
for consideration of variable physical properties.
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Chapter 18
Complete Similarity Mathematical Models
on Laminar Free Convection Film Condensation
from Vapor–Gas Mixture

Abstract By means of the new similarity analysis method, the governing partial
differential equations of laminar free convection film condensation of vapor–gas
mixture are transformed into the complete dimensionless mathematical models. The
transformed complete governing mathematical models are equivalent to the system
of dimensionless governing equations, which involve (1) the continuity, momen-
tum, and energy equations for both liquid and vapor–gas mixture films, as well as
species conservation equation with mass diffusion in the vapor–gas mixture film, (2)
a set of interfacial physical matching conditions, such as those for two-dimensional
velocity component balances, shear force balance, mass flow rate balance, temper-
ature balance, heat transfer balance, concentration condition, as well as the balance
between the condensate mass flow and vapor mass diffusion. On the other hand, the
transformed complete similarity mathematical models of the film condensation of
vapor–gas mixture are very well coupled with a series of physical property factors,
such as the density factor, absolute viscosity factor, thermal conductivity factor, of
the medium of liquid film and the vapor–gas mixture film. Thus, the transformed
complete similarity mathematical models are advanced ones for consideration of
variable physical properties.

18.1 Introduction

Since the important role played by film condensation in many industrial applications,
numerous efforts have been made for investigation of its physical phenomena. For
laminar free convection film condensation of pure vapor, some detailed reviews
can be found in Refs. [1–5], and meanwhile, our detailed theoretical analysis and
mathematical models on laminar free convection film condensation from pure vapor
[6, 7] were reported, where calculations of condensate heat and mass transfer were
presented with comprehensive consideration and treatment on interfacial physical
matching conditions and temperature-dependent physical properties of the two-phase
film flows.

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 367
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For laminar free convection film condensation from vapor in presence of non-
condensable gas, Minkowycz and Sparrow [8] presented their earlier investigation.
Then, numerous theoretical and experimental studies have been conducted for its
successive investigations, such as those in Refs. [9–19]. Their studies demonstrated
that the bulk concentration of the non-condensable gas could cause great reductions
in its condensation heat transfer. This is because of the fact that the presence of
non-condensable gas lowers the partial pressure of the vapor, and then reduces the
vapor condensate saturation temperature at liquid–vapor interface.

In fact, the work is still a challenge for theoretical study of film condensation from
vapor–gas mixture, due to its additional concentration boundary layer, temperature-
and concentration-dependent physical properties, interfacial mass diffusion balance
conditions, and the dropped condensate saturated temperature together with increas-
ing the mass fraction of non-condensable gas. For resolving these issues, Ref. [20]
presented a challenging work on a theoretical study of laminar free convection film
condensation from vapor–gas mixture. Here, I will first present the theoretical and
mathematical models for the laminar free convection film consideration of vapor–
gas mixture. Meanwhile, the new similarity analysis method is used for equivalent
transformation of the system of governing partial differential equations. Particu-
larly, the following efforts will be emphasized: (1) comprehensive consideration and
treatment of temperature-dependent physical properties of the condensate liquid film;
(2) comprehensive consideration and treatment of the temperature and concentration-
dependent physical properties of the vapor–gas mixture film; (3) seriously satisfying
whole sets of the interfacial matching conditions in calculation; and (4) rigorous eval-
uation of the interfacial vapor condensate saturated temperature, the key prerequisite
of correct calculation of the film condensation from vapor–gas mixture. On these
bases, the reliable analysis, calculation, and clarification of temperature, velocity,
and concentration fields, as well as condensate heat and mass transfer are further
presented on the laminar free convection film condensation of vapor–gas mixture.

18.2 Governing Partial Differential Equations

The analytical model and coordinate system used for laminar free film condensa-
tion of vapor–gas mixture on an isothermal vertical flat plate is shown in Fig. 18.1.
An isothermal vertical flat plate is suspended in a large volume of quiescent vapor–
gas mixture at atmospheric pressure. The plate temperature is Tw, the temperature
of the vapor–gas mixture bulk is T∞, and the saturation temperature of pure vapor
at atmospheric pressure is Ts, while the interfacial vapor saturated temperature is
Ts,int. If the given condition for the model is Tw < Ts,int, a steady film conden-
sation will occur on the plate. We assume that the laminar flow within the liquid
film is induced by gravity, and the vapor–gas mixture film flow is caused by the
shear force at the liquid–vapor interface. We further assume that the mass flow
rate of vapor is balanced to the vapor mass diffusion at the liquid–vapor interface
in the steady state of the laminar free film condensation. Then, there is never an
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Fig. 18.1 Physical model
and coordinate system of the
laminar free convection film
condensation from vapor–gas
mixture. Note δl: condensate
liquid film thickness; δm:
thicknesses of momentum or
temperature boundary layer
of vapor–gas mixture; δc:
concentration boundary layer
of vapor–gas mixture

∞t
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additional gas boundary layer near the interface except the induced concentration
boundary layer of the vapor–gas mixture. In addition, we take into account the
temperature-dependent physical properties of the condensate liquid film and the
temperature- and concentration-dependent physical properties of the induced vapor–
gas mixture film. Then, the steady laminar governing equations for mass, momentum,
energy, and concentration conservations in the two-phase boundary layer are as
follows:

The governing partial differential equations for condensate liquid film are

∂

∂x
(ρlwx l) + ∂

∂y
(ρlwyl) = 0 (18.1)

ρl

(
wx l

∂wx l

∂x
+ wyl

∂wx l

∂y

)
= ∂

∂y

(
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∂wx l

∂y

)
+ g(ρl − ρm,∞) (18.2)
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∂(cpl t)

∂y

]
= ∂

∂y

(
λl

∂t

∂y

)
(18.3)

where Eqs. (18.1)–(18.3) are continuity, momentum, and energy conservation equa-
tions respectively.

The governing partial differential equations for vapor–gas mixture film are

∂

∂x
(ρmwxm) + ∂

∂y
(ρmwym) = 0 (18.4)
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(18.5)
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370 18 Complete Similarity Mathematical Models

∂(wxmρmCmv)

∂x
+ ∂(wymρmCmv)

∂y
= ∂

∂y

(
Dvρm

∂Cmv

∂y

)
(18.7)

where Eqs. (18.4)–(18.6) are continuity, momentum, and energy conservation equa-
tions, while Eq. (18.7) is the species conservation equation with mass diffusion. Here,
Cmv is vapor mass fraction in vapor–gas mixture, ρm, μm, λm, and Cpm are density,
absolute viscosity, thermal conductivity, and specific heat of the vapor–gas mixture,
respectively, and Dv denotes vapor mass diffusion coefficient in the non-condensable
gas.

The boundary conditions are

y = 0: wx l = 0, wyl = 0, tl = tw (18.8)

y = δl: wx l,s = wxv,s (18.9)
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s
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s
= gx (18.10)
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(18.11)
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+ hfgρm,sCmv,s
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(18.12)

t = ts,int (18.13)

Cmv = Cmv,s (18.14)

ρm,sCm,s

(
wx

∂δ

∂x
− wy

)
m,s

= Dvρm,s

(
∂Cmv

∂y

)
m,s

(18.15)

y → ∞: wxm = 0, tm = t∞, Cmv = Cmv,∞ (18.16)

where Eq. (18.8) expresses the physical conditions on the plate. Equations (18.9)–
(18.15) express the physical matching conditions at the liquid–vapor interface, in
which Eq. (18.9) expresses the velocity component continuity, Eq. (18.10) expresses
the mass flow rate continuity, Eq. (18.11) expresses the balance of the shear force,
Eq. (18.12) expresses the energy balance, Eq. (18.13) expresses the temperature,
Eq. (18.14) expresses the concentration, and Eq. (18.15) expresses the vapor mass
flow rate is balanced to the mass flow rate caused by the vapor mass diffusion. Addi-
tionally, Eq. (18.16) expresses the physical conditions in the vapor–gas mixture bulk.
In addition, ρl,s and ρm,s are liquid and vapor–gas mixture densities at the liquid–
vapor interface, respectively, ts,int denotes the interfacial temperature dependent on
interfacial vapor mass fraction, i.e., vapor partial pressure, t∞ denotes the temper-
ature in the vapor–gas mixture bulk, and Cmv,s and Cmv,∞ denote the vapor mass
fraction at the liquid–vapor interface and in the vapor–gas mixture bulk respectively.

It is necessary to explain Eq. (18.15) for the condition of interfacial mass diffusion
balance. Originally, it should be
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[
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18.3 Similarity Variables

With the present new similarity analysis method, the following dimensionless vari-
ables are assumed for similarity transformation of the governing partial differential
equations of the laminar free convection film condensation of vapor in presence of
non-condensable gas:

18.3.1 For Liquid Film

For liquid film the dimensionless coordinate variables ηl and the local Grashof
number Grx l,s are set up as follows respectively:

ηl =
(

1

4
Grx l,s

)1/4 y

x
(18.17)

Grx l,s = g(ρl,w − ρm,∞)x3

νl,s
2 ρl,s

(18.18)

Dimensionless temperature is assumed as

θl = tl − ts,int

tw − ts,int
(18.19)

The dimensionless velocity components are given as respectively in x- and y-
directions

Wx l =
(

2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2
)−1

Wx l (18.20)

Wyl =
(

2
√
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(
ρl,w − ρm,∞

ρl,s

)1/2 (
1

4
Grx l,s

)−4
)−1

Wyl (18.21)

Here, ρl,w is condensate liquid density on the wall, νl,s is condensate liquid kinetic
viscosity at the liquid–vapor interface, while, ρm,∞ is density of vapor–gas mixture
in the bulk.
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18.3.2 For Vapor–Gas Mixture Film

For vapor–gas mixture film, the dimensionless coordinate variables ηm and the local
Grashof number Grxm,∞ are assumed as respectively

ηm =
(

1

4
Grxm,∞

)1/4 y

x
(18.22)

Grxm,∞ = g(ρm,s/ρm,∞ − 1)x3

νm,∞2 (18.23)

The dimensionless temperature is defined as

θm = tm − t∞
ts,int − t∞

(18.24)

The dimensionless velocity components are assumed as respectively in x- and
y-directions

Wxm = (2
√

gx(ρm,s/ρm,∞ − 1)1/2)−1wxm (18.25)
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4
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)−1/4
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wym (18.26)

The vapor relative mass fraction is defined as

	mv = Cmv − Cmv,∞
Cmv,s − Cmv,∞

(18.27)

18.4 Governing Ordinary Differential Equations

With Eqs. (18.17)–(18.27), the governing partial differential equations are trans-
formed equivalently into the following dimensionless governing equations
respectively:

18.4.1 For Liquid Film Flow

2Wx l − ηl
dWx l

dηl
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(ηlWx l − 4Wyl) = 0 (18.28)
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where Eqs. (18.28)–(18.30) are continuity, momentum, and energy conservation
equations respectively.

18.4.2 For Vapor–Gas Mixture Film Flow
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where Eqs. (18.31)–(18.33) are continuity, momentum, and energy conservation
equations, while Eq. (18.34) is the species conservation equation with mass dif-
fusion. Here, Scm,∞ = νm,∞

Dv
is defined as local Schmidt number, and μm, λm, and

Cpm are absolute viscosity, thermal conductivity, and specific heat of the vapor–gas
mixture, respectively.
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18.4.3 For Boundary Conditions

The boundary equations (18.8)–(18.16) are respectively transformed equivalently to

ηl = 0: Wx l = 0, Wyl = 0, θ1 = 1 (18.35)

ηl = ηlδ(ηm = 0):
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θm = 1 (18.40)

	mv = 1 (18.41)(
d	mv

dηm

)
s
= −4Scm,∞

Cmv,s

(Cmv,s − Cmv,∞)
Wym,s (18.42)

ηm → ∞: Wxm,∞ = 0, θm = 0, 	mv,∞ = 0 (18.43)

where Eq. (18.35) expresses the physical conditions on the plate. Equations (18.36)–
(18.42) express the physical matching conditions at the liquid–vapor interface, in
which Eq. (18.36) expresses the velocity component continuity, Eq. (18.37) is based
on the mass flow rate continuity, Eq. (18.38) is based on the balance of the shear force,
Eq. (18.39) is based on the energy balance, Eq. (18.40) expresses the temperature
continuity, Eq. (18.41) expresses the concentration condition, and Eq. (18.42) is based
on the balance between the vapor mass flow rate and the mass flow rate caused by
the vapor mass diffusion. Additionally, Eq. (18.43) expresses the physical conditions
in the vapor–gas mixture bulk.
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18.5 Remarks

The theoretical models of laminar free convection film condensation from vapor–gas
mixture involves (1) the continuity, momentum, and energy equations for both liquid
and vapor–gas mixture films, as well as species conservation equation with mass
diffusion in the vapor–gas mixture film, (2) a set of interfacial physical matching
conditions, such as those for two-dimensional velocity component balances, shear
force balance, mass flow rate balance, temperature balance, heat transfer balance,
concentration condition, as well as the balance between the condensate mass flow
and vapor mass diffusion, and (3) transformed equivalent system of dimensionless
governing equations based on the new similarity analysis method. With the new
similarity analysis method, the similarity analysis and transformation of the govern-
ing partial differential equations with the two-phase boundary layer issues become
more convenient than that by using the traditional Falkner–Skan type transformation,
particularly for consideration of variable physical properties. On the other hand, by
means of the new similarity analysis method, the transformed complete similarity
mathematical models of the film condensation of vapor–gas mixture are well coupled
with a series of physical property factors. Thus, the transformed complete similar-
ity mathematical models are advanced ones for consideration of variable physical
properties.

18.6 Exercises

1. Compare the dimensionless similarity variables between the similarity mathe-
matical models of laminar free convection film condensation of pure vapor, and
laminar free convection film condensation of vapor–gas mixture, and find out
their differences.

2. Compare the similarity mathematical models of laminar free convection film
condensation of pure vapor with those of the laminar free convection film con-
densation of vapor–gas mixture, and find out their differences.

3. According to the present complete mathematical models on laminar free con-
vection film condensation of vapor–gas mixture, describe the advantages of the
present new similarity analysis method for consideration of variable physical
properties.

4. In the present complete mathematical models on laminar free convection film
condensation of vapor–gas mixture, point out the physical property factors, and
explain their physical significance, respectively.

5. Point out the definition of the local Schmidt number Scm,∞, as well as the differ-
ence from the common Schmidt number in their physical significance.

6. Which boundary conditions are considered at the vapor–liquid interface of laminar
free convection film condensation of vapor–gas mixture?
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7. Further, compare the dimensionless similarity variables among the similarity
mathematical models of laminar free convection, laminar free convection film
boiling, laminar free convection film condensation of pure vapor, and laminar
free convection film condensation of vapor–gas mixture, and find out their com-
mon grounds and differences.

8. Further, compare the similarity mathematical models of laminar free grounds
and differences, convection, laminar free convection film boiling, laminar free
convection film condensation of pure vapor, and laminar free convection film
condensation of vapor–gas mixture, and find out their common grounds and dif-
ferences.

Appendix A: Similarity Transformation of the Governing Partial
Differential Equations (18.1)–(18.7) and Their Boundary
Condition Equations (18.8)–(18.16)

A.1 For Liquid Film

With the assumed transformation variables for the liquid film shown in Eqs. (18.17)–
(18.21), the governing partial differential equations (18.1)–(18.3) of the liquid film
are transformed into dimensionless ordinary ones as follows, respectively:

A.1.1 Similarity Transformation of Eq. (18.1)

Equation (18.1) is changed to
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With Eq. (18.20) we have
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Then,
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With Eqs. (18.17) and (18.21) we have
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With Eq. (18.17) we have
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In addition, with Eq. (18.17), we have
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With Eqs. (A3)–(A6), Eq. (A1) is changed to
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The above equation is simplified to
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The above equation is divided by
√
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x , and simplified to
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A.1.2 Similarity Transformation of Eq. (18.2)

Equation (18.2) can be rewritten as

ρl

(
wx l

∂wx l

∂x
+ wyl

∂wx l

∂y

)
= μl

∂2wx l

∂y2 + ∂μl

∂y

∂wx l

∂y
+ g(ρl − ρm,∞) (A7)

With Eqs. (18.17), (18.18), and (18.21) we have

∂wx l

∂y
= 2

√
gx

(
ρl,w − ρm,∞

ρl,s

)1/2 dWx l

dη

∂η

∂y
(A8)

= 2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2 dWyl

dη
x−1

(
1

4
Grx l,s

)1/4

Then,

∂2wx l

∂y2 = 2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2 d2Wx l

dη2 x−2
(

1

4
Grx l,s

)1/2

(A9)

In addition,

∂μl

∂y
= dμl

ηl

(
1

4
Grx l,s

)1/4

x−1 (A10)

With (A3), (A8), (A9), (18.36), and (A10), Eq. (A7) is changed to

ρl

[
2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2

Wx l

√
g

x

(
ρl,w − ρm,∞

ρl,s

)1/2 (
Wx l − 1

2
ηl

dWx l

dηl

)

+ 2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2 (
1

4
Grx l,s

)−1/4

Wyl2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2
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× dWx l

dηl
x−1

(
1

4
Gr′x l,s

)−1/4
]

= μl2
√

gx

(
ρl,w − ρv,m∞

ρl,s

)1/2 d2Wx l

dηl2

(
1

4
Gr′x l,s

)1/2

x−2

+ dμl

dηl

(
1

4
Grxv, ms

)1/4

x−12
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2 dWx l

dηl
x−1

(
1

4
Gr′x l,s

)−1/4

+ g
(
ρl − ρm,∞

)

The above equation is divided by g ρl,w−ρm,∞
ρl,s

, and simplified to

ρl

[
2Wx l

(
Wx l − 1

2
ηl

dWx l

dηl

)
+ 2Wyl2

dWx l

dηl

]

= μl2
d2Wx l

dη2
l

(
1

4

1

ν2
l,s

)1/2

+ dμv,w

dηm
2

dWx l

dηl

(
1

4

1

νl,s
2

)1/2

+
(
ρl − ρm,∞

)
ρl,w−ρm,∞

ρl,s

The above equation is divided by νl,s
μl

, and further simplified to

νl,s

νl

[
Wx l

(
2Wx l − ηl

dWx l

dηl

)
+ 4Wyl

dWx l

dηl

]

= d2Wx l

dη2
l

+ 1

μl

dμl

dηl

dWx l

dηl
+ μl,s

μl

(
ρl − ρm,∞

)
ρl,w − ρm,∞

(18.29)

A.1.3 Similarity Transformation of Eq. (18.3)

Equation (18.3) can be rewritten as

ρlcpl

(
wx l

∂tl
∂x

+ wyl
∂tl
∂x

)
= λl

∂2tl
∂y2 + ∂λl

∂y

∂tl
∂y

(A11)

where

∂tl
∂x

= (tw − ts,int)
dθl

dηl

∂ηl

∂x

With Eq. (A2) the above equation becomes

∂tl
∂x

= −1

4
ηlx

−1(tw − ts,int)
dθl

dηl
(A12)

In addition
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∂tl
∂y

= −(tw − ts,int)
dθl

dηl

(
1

4
Gr′x l,s

)1/4

x−2 (A13)

∂2tl
∂y2 = (tw − ts,int)

d2θl

dη2
l

(
1

4
Gr′x l,s

)1/2

x−2 (A14)

∂λl

∂y
= −dλl

dηl

(
1

4
Gr′x l,s

)1/4

x−1 (A15)

With (A12)–(A15), and (18.20) and (18.21), Eq. (A11) is changed to

ρlcpl

[
−2

√
gx

(
ρl,w − ρv,m∞

ρl,s

)1/2

Wx l(tw − ts,int)
dθl

dηl

(
1

4

)
ηlx

−1

+2
√

gx

(
ρl,w − ρv,m∞

ρl,s

)1/2 (
1

4
Grx l,m∞

)−1/4

Wy,l(tw − ts,int)
dθl

dηl(
1

4
Grx l,s

)1/4

x−1

]

= λl(tw − ts,int)
d2θl

dη2
l

(
1

4
Grx l,s

)1/2

x−2 + dλl

dηl

(
1

4
Grx l,s

)1/4

x−1(tw − ts,int)

× dθl

dηl

(
1

4
Grx l,s

)1/4

x−1

The above equation is divided by (Tw − Ts), and simplified to

ρlcpl

[
−2

√
gx

(
ρl,w − ρm,∞

ρl,s

)1/2

Wx l
dθl

dηl

(
1

4

)
ηlx

−1

+2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2

Wy,l
dθl

dηl
x−1

]

= λl
d2θl

dη2
l

(
1

4
Grx l,s

)1/2

x−2 + dλl

dηl

(
1

4
Grx l,s

)1/4

x−1 dθl

dηl

(
1

4
Grx l,s

)1/4

x−1

With definition of Grx l,s, the above equation is further simplified to

ρlcpl

[
−2

√
gx

(
ρl,w − ρm,∞

ρl,s

)1/2

Wx l
dθl

dηl

(
1

4

)
ηlx

−1

+2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2

Wy,l
dθl

dηl
x−1

]
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= λl
d2θl

dη2
l

(
1

4

g
(
ρl,w − ρm,∞

)
x3

νl,s
2ρl,s

)1/2

x−2

+ dλl

dηl
x−1 dθl

dηl

(
1

4

g
(
ρl,w − ρm,∞

)
x3

νl,s
2ρl,s

)1/2

x−1

The above equation is divided by [ g(ρl,w−ρm,∞)

xρl,s
]1/2, and is further simplified to

ρlcpl

[
−2Wx l

dθl

dηl

(
1

4

)
ηl + 2Wy,l

dθl

dηl

]
= λl

d2θl

dη2
l

(
1

4

1

νl,s
2

)1/2

+ dλl

dηl

dθl

dηl

(
1

4

1

νl,s
2

)1/2

The above equation is divided by 2 νl,s
λl

, and is further simplified to

ρlcplνl,s

λl

[
−Wx l

dθl

dηl
ηl + 4Wyl

dθl

dηl

]
= d2θl

dη2
l

+ 1

λl

dλl

dηl

dθl

dηl

i.e.,

Prl
νl,s

νl
(−ηlWx l + 4Wyl)

dθl

dηl
= d2θl

dη2
l

+ 1

λl

dλl

dηl

dθl

dηl
(18.30)

A.2 For Vapor–Gas Mixture Film

With the assumed similarity transformation variables for vapor–gas mixture film
shown in Eqs. (18.22)–(18.27), the governing partial differential equations (18.4)–
(18.7) for vapor–gas mixture film are transformed equivalently into the following
ones, respectively:

A.2.1 Similarity Transformation of Eq. (18.4)

Equation (18.4) is rewritten as

Wxm
∂ρm

∂x
+ Wym

∂ρm

∂y
+ ρm

[
∂Wxm

∂x
+ ∂Wym

∂y

]
= 0 (A16)

With Eq. (18.25) we have

∂Wxm

∂x
=

√
g

x
(ρm,s/ρm,∞ − 1)1/2Wxm + 2

√
gx(ρm,s/ρm,∞ − 1)1/2 dWxm

dηm

∂ηm

∂x
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Similar to the derivation for Eq. (A2), we have

∂ηm

∂x
== −1

4
x−1ηm (A17)

Then,

∂wxm

∂x
=

√
g

x

(
ρm,s/ρm,∞ − 1

)1/2
(

Wxm − 1

2
ηm

dWxm

dηm

)
(A18)

With Eq. (18.26) we have

∂wym

∂y
= 2

√
gx(ρm,s/ρm,∞ − 1)1/2

(
1

4
Grxm,∞

)−1/4 dWym

dηm

∂ηm

∂y

= 2
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4
Grxm,∞

)−1/4 dWym

dηm
x−1

(
1

4
Grxm,∞

)1/4

= 2

√
g

x
(ρm,s/ρm,∞ − 1)1/2 dWym

dηm
(A19)

In addition

∂ρm

∂x
= dρm

dηm

∂ηm

∂x

With Eq. (A17), the above equation becomes

∂ρm

∂x
= −1

4
x−1ηm

dρm

dηm
(A20)

While,

∂ρm

∂y
= dρm

dηm

∂ηm

∂y
(A21)

= dρm

dηm

(
1

4
Grxm,∞

)1/4

x−1

With Eqs. (A18)–(A21), and (18.25) and (18.26), Eq. (A16) is changed to

− 2
√

gx(ρm,s/ρm,∞ − 1)1/2Wxm
1

4
x−1ηm

dρm

dηm

+ 2
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4
Grxm,∞

)−1/4

Wym
dρv,m

dηm

(
1

4
Grxm,s

)1/4

x−1

+ ρm

[√
g

x
(ρm,s/ρm,∞−1)1/2

(
Wxm−1

2
ηm

dWx,m

dηm

)
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+ 2

√
g

x
(ρm,s/ρm,∞−1)1/2 dWym

dηm

]
= 0

The above equation is divided by ρm

√
g
x (ρm,s/ρm,∞ − 1)1/2, and simplified to

Wxm − 1

2
ηm

dWxm

dηm
+ dWym

dηm
− 1

ρm

dρm

dηm

(
1

2
ηmWxm − 2Wym

)
= 0

i.e.,

2Wxm − ηm
dWxm

dηm
+ 4

dWym

dηm
− 1

ρm

dρm

dηm
(ηmWxm − 4Wym) = 0 (18.31)

A.2.2 Similarity Transformation of Eq. (18.5)

Equation (18.5) is changed to

ρm

(
wxm

∂wxm

∂x
+ wym

∂wxm

∂y

)
= μm

∂2wxm

∂y2 + ∂μm

∂y

∂wxm

∂y
+ g(ρm − ρm,∞)

(A22)

With Eqs. (18.22) and (18.25), we have

∂wxm

∂y
= 2

√
gx(ρm,s/ρm,∞ − 1)1/2 dWxm

dηm

(
1

4
Grxm,∞

)1/4

x−1 (A23)

∂2wxm

∂y2 = 2
√

gx(ρm,s/ρm,∞ − 1)1/2 d2Wxm

dη2
m

(
1

4
Grxm,∞

)1/2

x−2 (A24)

Additionally,

∂μm

∂y
= dμm

dηm

(
1

4
Grxm,∞

)1/4

x−1 (A25)

With Eqs. (A18), (A23)–(A25), and (18.25) and (18.26), Eq. (A22) is changed to

ρm

[
2
√

gx(ρm,s/ρm,∞ − 1)1/2Wxm

√
g

x

(
ρm,s/ρm,∞ − 1

)1/2

×
(

Wxm − 1

2
ηm

dWxm

dη

)
+ 2

√
gx(ρm,s/ρm,∞ − 1)1/2

(
1

4
Grxm,∞

)−1/4
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× Wym2
√

gx(ρm,s/ρm,∞ − 1)1/2 dWxm

dηm
x−1

(
1

4
Grxm,∞

)1/4
]

= μm2
√

gx(ρm,s/ρm,∞ − 1)1/2 d2Wxm

dηm
2

(
1

4
Gr′xm,∞

)1/2

x−2

+ dμm

dηm

(
1

4
Grxm,∞

)1/4

x−12
√

gx(ρm,s/ρm,∞ − 1)1/2

× dWxm

dηm
x−1

(
1

4
Grxm,∞

)1/4

+ g(ρm − ρm,∞)

With the definition of Grxm,∞, the above equation is changed to

ρm

[
2
√

gx(ρm,s/ρm,∞ − 1)Wxm

√
g

x

(
Wxm − 1

2
ηm

dWxm

dη

)

+2
√

gx
(
ρm,s/ρm,∞ − 1

)
Wym2

√
gx

dWxm

dηm
x−1

]

= μm2
√

gx
(
ρm,s/ρm,∞ − 1

)1/2 d2Wxm

dηm
2

(
1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)1/2

x−2

+ dμm

dηm

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−12
√

gx
(
ρm,s/ρm,∞ − 1

)1/2

× dWxm

dηm
x−1 + g

(
ρm − ρm,∞

)

The above equation is divided by μm
νm,∞ (ρm,s/ρm,∞ − 1), and simplified to

νm,∞ρm

μm

[
Wxm

(
2Wxm − ηm

dWxm

dη

)
+ 4Wym

dWxm

dηv

]

= d2Wxm

dηm
2 + 1

μm

dμm

dηm

dWxm

dηm
+ νm,∞ρm,∞

μm

ρm − ρm,∞
ρm,s − ρm,∞

i.e.,

νm,∞
νm

[
Wxm

(
2Wxm − ηm

dWxm

dηm

)
+ 4Wym

dWxm

dηm

]

= d2Wxm

dη2
m

+ 1

μm

dμm

dηm

dWxm

dηm
+ μm,∞

μm
· ρm − ρm,∞
ρm,s − ρm,∞

(18.32)



Appendix A: Similarity Transformation 385

A.2.3 Similarity Transformation of Eq. (18.6)

Equation (18.6) is changed to

ρmCpm

(
wxm

∂t

∂x
+ wym

∂t

∂y

)
= λm

∂2t

∂y2 + ∂λm

∂y
· ∂t

∂y
− Dv(cpv − cpg) (A26)

×
[
ρm

∂Cmv

∂y

∂t

∂y
+ tρm

∂2Cmv

∂y2 + t
∂Cmv

∂y

∂ρm

∂y

]

With Eq. (18.24) we have

∂t

∂x
= (ts,int − t∞)

dθm

dηm

∂ηm

∂x

With Eq. (A17), the above equation becomes

∂t

∂x
== −1

4
ηmx−1(ts,int − t∞)

dθm

dηl
(A27)

With Eqs. (18.22) and (18.24) we have

∂t

∂y
= (ts,int − t∞)

dθm

dηm

(
1

4
Grxm,∞

)1/4

x−1 (A28)

∂2t

∂y2 = (ts,int − t∞)
d2θm

dηm
2

(
1

4
Grxm,∞

)1/2

x−2 (A29)

With Eqs. (18.22) and (18.24) we have

∂λm

∂y
= dλm

dηm

(
1

4
Grxm,∞

)1/4

x−1 (A30)

∂ρm

∂y
= dρm

dηm

(
1

4
Grxm,∞

)1/4

x−1 (A31)

∂Cmv

∂y
= dCmv

dηm

(
1

4
Grxm,∞

)1/4

x−1 (A32)

∂2Cmv

∂y2 = d2Cmv

dηm
2

(
1

4
Grxm,∞

)1/2

x−2 (A33)

With Eqs. (A27)–(A31), Eq. (A26) is changed to
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ρmcpm

[
−2

√
gx(ρm,s/ρm,∞ − 1)1/2Wxm(ts,int − t∞)

dθm

dηm

(
1

4

)
ηmx−1

+ 2
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4
Gr′xm,∞

)−1/4

×Wym(ts,int − t∞)
dθm

dηm

(
1

4
Grxm,∞

)1/4

x−1

]

= λm(ts,int − t∞)
d2θm

dηm
2

(
1

4
Grxm,∞

)1/2

x−2 + dλm

dηm

(
1

4
Grxm,∞

)1/4

x−1

· (ts,int − t∞)
dθm

dηm

(
1

4
Grxm,∞

)1/4

x−1 − Dv(cpv − cpg)

×
[
ρm

dCmv

dηm

(
1

4
Grxm,∞

)1/4

x−1(ts,int − t∞)
dθm

dηm

(
1

4
Grxm,∞

)1/4

x−1

+ tρm
d2Cmv

dηm
2

(
1

4
Grxm,∞

)1/2

x−2 + t
dCm,v

dηm

(
1

4
Grxm,∞

)1/4

x−1

×dρm

dηm

(
1

4
Grxm,∞

)1/4

x−1

]

With definition of Grxm,∞, the above equation is changed to

ρmcpm

[
−2

√
gx(ρm,s/ρm,∞ − 1)1/2Wxm(ts,int − T∞)

dθm

dηm

(
1

4

)
ηmx−1

+ 2
√

gx(ρm,s/ρm,∞ − 1)1/2Wym(ts,int − t∞)
dθm

dηm
x−1

]

= λm(ts,int − t∞)
d2θm

dηm
2

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−2

+ dλm

dηv

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−1

· (ts,int − t∞)
dθm

dηm
x−1 − Dv(cpv − cpg)

×
⎡
⎣ρv,m

dCmv

dηv

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−1(ts,int − t∞)
dθm

dηm
x−1

+ tρm
d2Cmv

dηm
2

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−2
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+t
dCmv

dηv

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−1 dρm

dηm
x−1

⎤
⎦

The above equation is divided by
√

g
x (ρm,s/ρm,∞ − 1)1/2, and simplified to

ρmcpm

[
−2Wxv(ts,int − t∞)

dθm

dηm

(
1

4

)
ηm + 2Wym(ts,int − t∞)

dθm

dηm

]

= λm(ts,int − t∞)
d2θm

dηm
2

(
1

4

1

νm,∞2

)1/2

+ dλm

dηm

(
1

4

1

νm,∞2

)1/2

· (ts,int − t∞)
dθm

dηm
− Dv(cpv − cpg)

×
[
ρm

dCmv

dηm

(
1

4

1

νm,∞2

)1/2

(ts,int − t∞)
dθm

dηm
+ tρm

d2Cmv

dηm
2

(
1

4

1

νm,∞2

)1/2

+t
dCv,w

dηm

(
1

4

1

νm,∞2

)1/2 dρm

dηm

]

The above equation is multiplied by 2 νm,∞
λm(ts,int−t∞)

, and simplified to

νm,∞ρmvμmCpm

λmμm

[−ηmWxm + 4Wym
] dθm

dηm

= d2θm

dηm
2 + 1

λm

dλm

dηm

dθm

dηm
− Dvρm

λm
(cpv − cpg)

×
[

dCmv

dηm

dθm

dηm
+ t

ts,int − t∞
d2Cmv

dηm
2 + 1

ρm

dρm

dηm

t

ts,int − t∞
dCmv

dηm

]

The above equation is changed to

νm,∞ρmμmcpm

λmμm
[−ηvWxm + 4Wym] dθm

dηm
(A34)

= d2θm

dηm
2 + 1

λm

dλm

dηm

dθm

dηm
− Dvρm

λm
(cpv−cpg

)

×
[

dCmv

dηm

dθm

dηm
+

(
θm + t∞

ts,int − t∞

)
d2Cmv

dη2∞

+ 1

ρm

dρm

dηm

(
θv + t∞

ts,int − t∞

)
dCmv

dηm

]

With (18.27) we have
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dCmv

dηv
= (Cmv,s − Cmv,∞)

d	mv

dηv
(A35)

d2Cmv

dη2
v

= (Cmv,s − Cmv,∞)
d2	mv

dη2
v

(A36)

Then, Eq. (A34) becomes

νm,∞ Prm

νm
[−ηmWxm + 4Wym] dθm

dηm

= d2θm

dηm
2 + 1

λm

dλm

dηm

dθm

dηm
− Dvρm

λm
(Cmv,s − Cmv,∞)(cpv − cpg)

×
[

d	mv

dηm

dθm

dηm
+

(
θm + t∞

ts,int − t∞

)
d2	mv

dηm
2

+ 1

ρm

dρm

dηm

(
θm + t∞

ts,int − t∞

)
d	mv

dηm

]
(18.33)

A.2.4 Similarity Transformation of Eq. (18.7)

The left-hand side of Eq. (18.7) is

∂(wxmρmCmv)

∂x
+ ∂(wymρmCmv)

∂y

= wxm

[
∂(ρmCmv)

∂x

]
+ ρmCmv

∂wxm

∂x
+ wym

[
∂(ρmCmv)

∂y

]
+ ρmCmv

∂wym

∂y

= wxmρm
∂(Cmv)

∂x
+ wxmCmv

∂ρm

∂x
+ ρmCmv

∂wxm

∂x

+wymρm
∂(Cmv)

∂y
+ wymCmv

∂ρm

∂y
+ ρmCmv

∂wym

∂y

= wxmρm
∂(Cmv)

∂x
+ wymρm

∂(Cmv)

∂y

+Cm,v

(
wxm

∂ρm

∂x
+ ρm

∂wxm

∂x
+ wym

∂ρm

∂y
+ ρm

∂wym

∂y

)

With Eq. (18.4) (the continuity equation of vapor–gas mixture film), the above equa-
tion is changed to

∂(wxmρmCmv)

∂x
+ ∂(wymρmCmv)

∂y
= wxmρm

∂(Cmv)

∂x
+ wymρm

∂(Cmv)

∂y
(A37)

Then, Eq. (18.7) becomes
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wxm
∂Cmv

∂x
+ wym

∂Cmv

∂y
= Dv

(
∂2Cmv

∂y2 + 1

ρm

∂ρm

∂y

∂Cmv

∂y

)
(A38)

where Dv is regarded as constant variable.
With Eq. (18.22) we have

∂Cmv

∂x
= dCmv

dηm

∂ηm

∂x
= −1

4
ηmx−1 dCmv

dηm
(A39)

∂Cmv

∂x
= dCmv

dηm

∂ηm

∂x
= dCmv

dηm

(
1

4
Grxm,∞

)1/4

x−1 (A40)

∂2Cmv

∂y2 = ∂

∂y

(
∂Cmv

∂y

)

= d2Cmv

dηm
2

(
1

4
Grxm,∞

)1/2

x−2 (A41)

With Eqs. (A31), (A39)–(A41), Eq. (A38) is changed to

− 2
√

gx(ρm,s/ρm,∞ − 1)1/2Wxm
1

4
ηmx−1 dCmv

dηm
+ 2

√
gx(ρm,s/ρm,∞ − 1)1/2

×
(

1

4
Grxm,∞

)−1/4

Wym
dCmv

dηm

(
1

4
Grxm,∞

)1/4

x−1

= Dv,w

[
d2Cmv

dηm
2

(
1

4
Grxm,∞

)1/2

x−2 + 1

ρm

dρm

dηm

(
1

4
Grxm,∞

)1/4

x−1

× dCmv

dηm

(
1

4
Grxm,∞

)1/4

x−1

]

With the definition of Grxm,∞, the above equation is further changed to

− 2
√

gx(ρm,s/ρm,∞ − 1)1/2Wxm
1

4
ηmx−1 dCmv

dηm

+ 2
√

gx(ρm,s/ρm,∞ − 1)1/2Wym
dCmv

dηm
x−1

= Dv

⎡
⎣d2Cmv

dηm
2

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−2

+ 1

ρm

dρm

dηm
x−1 dCmv

dηm

(
1

4

g
(
ρm,s/ρm,∞ − 1

)
x3

νm,∞2

)1/2

x−1

⎤
⎦
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The above equation is divided by
√

g
x (ρm,s/ρm,∞ − 1)1/2, and simplified to

− 2Wxm
1

4
ηm

dCmv

dηm
+ 2Wym

dCmv

dηm

= Dv

[
d2Cmv

dηm
2

(
1

4

1

νm,∞2

)1/2

+ 1

ρm

dρm

dηm

(
1

4

1

νm,∞2

)1/2 dCmv

dηm

]

The above equation is multiplied by 2νm,∞
Dv

, and further simplified to

νm,∞
Dv

(−Wxmηm + 4Wym)
dCmv

dηm
= d2Cmv

dηm
2 + 1

ρm

dρm

dηm

dCmv

dηm
(A42)

With Eqs. (A35) and (A36), Eq. (A42) becomes

(−ηmWxm + 4Wym)
d	mv

dηm
= 1

Scm,∞

(
d2	mv

dηm
2 + 1

ρm

dρm

dηm

d	mv

dηm

)
(18.34)

where the local Schmidt number Scm,∞ is defined as

Scm,∞ = νm,∞
Dv

(A43)

A.3 For Boundary Condition Equations

A.3.1 Similarity Transformation of Eq. (18.8)

With Eqs. (18.20) and (18.21), Eq. (18.8) can be easily transformed into the following
dimensionless form:

ηl = 0: Wx l = 0, Wyl = 0, θ1 = 1 (18.35)

A.3.2 Similarity Transformation of Eq. (18.9)

With Eqs. (8.20) and (18.25), Eq. (18.9) is easily transformed as

Wxm,s =
(

ρl,w − ρm,∞
ρl,s

)1/2

(ρm,s/ρm,∞ − 1)−1/2Wx l,s (18.36)

http://dx.doi.org/10.1007/978-3-642-28983-5_8
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A.3.3 Similarity Transformation of Eq. (18.10)

With Eqs. (18.17) and (18.18) we have

δl = ηlδ

(
1

4

g
(
ρl,w − ρm,∞

)
x3

νl,s
2ρl,s

)1/4

x

Then,

(
∂δl

∂x

)
= 1

4
ηlδ

(
1

4
Grx l,s

)−1/4

(A44)

Similarly,

(
∂δm

∂x

)
= 1

4
ηmδ

(
1

4
Grxm,∞

)−1/4

(A45)

With Eqs. (18.20), (18.21), (18.25), (18.26), (A44), and (A45), Eq. (18.10) is
changed to

ρl,s

[
2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/2

Wx l,s
1

4
ηlδ

(
1

4
Grx l,s

)−1/4

−2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/2 (
1

4
Grx l,s

)−1/4

Wyl, s

]

= ρm,sCmv,s

[
2
√

gx(ρm,s/ρm,∞ − 1)1/2Wxm,s
1

4
ηmδ

(
1

4
Grxm,∞

)−1/4

−2
√

gx
(
ρm,s/ρm,∞ − 1

)1/2
(

1

4
Grxm,∞

)−1/4

Wym,s

]

Since ηmδ = 0 at the liquid–vapor mixture interface, the above equation becomes

ρl,s

[
2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/2

Wx l,s
1

4
ηlδ

(
1

4
Grx l,s

)−1/4

−2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/2 (
1

4
Grx l,s

)−1/4

Wyl, s

]

= −2ρm,sCm,vs
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4
Grxm,∞

)−1/4

Wym,s

With definitions of Grx l,s and Grxm,∞, the above equation is changed to
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ρl,s

[
2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/2

Wx l,s
1

4
ηlδ

(
1

4

g(ρl,w − ρm,∞)x3

νl,s
2ρl,s

)−1/4

−2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/2 (
1

4

g(ρl,w − ρm,∞)x3

νl,s
2ρl,s

)−1/4

Wyl, s

]

= −2ρm,sCm,vs
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)−1/4

Wym,s

The above equation is further simplified to

ρl,s

[
2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/4

Wx l,s
1

4
ηlδ

(
1

4

gx3

νl,s
2

)−1/4

−2
√

gx

(
ρl,m − ρm,∞

ρl,s

)1/4 (
1

4

gx3

νl,s
2

)−1/4

Wyl, s

]

= −2ρm,sCm,vs
√

gx
(
ρm,s/ρm,∞ − 1

)1/4
(

1

4

gx3

νm,∞2

)−1/4

Wym,s

The above equation is multiplied by x1/4g−1/4, and simplified to

ρl,s

[
2

(
ρl,m − ρm,∞

ρl,s

)1/4

Wx l,s
1

4
ηlδ

(
1

4

1

νl,s
2

)−1/4

−2

(
ρl,m − ρm,∞

ρl,s

)1/4 (
1

4

1

νl,s
2

)−1/4

Wyl, s

]

= −2ρm,sCmv,s(ρm,s/ρm,∞ − 1)1/4
(

1

4

1

νm,∞2

)−1/4

Wym,s

i.e.,

ρl,s

[
1

4

(
ρl,m − ρm,∞

ρl,s

)1/4

Wx l,sηlδνl,s
1/2 −

(
ρl,m − ρm,∞

ρl,s

)1/4

νl,s
1/2Wyl, s

]

= −ρm,sCmv,s
(
ρm,s/ρm,∞ − 1

)1/4
νm,∞1/2Wym,s

Then,

Wym,s = − 1

Cmv,s

ρl,s

ρm,s

(
νl,s

νm,∞

)1/2 (
ρl,m − ρm,∞

ρl,s

)1/4

× (ρm,s/ρm,∞ − 1)−1/4
(

1

4
ηlδWx l,s − Wyl, s

)
(18.37)
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A.3.4 Similarity Transformation of Eq. (18.11)

With Eqs. (A8) and (A19), Eq. (18.11) is changed to

μl,s2
√

gx

(
ρl,w − ρm,∞

ρl,s

)1/2 (
dWx l

dηl

)
s

x−1
(

1

4
Grx l,s

)1/4

= μm,s2
√

gx(ρm,s/ρm,∞ − 1)1/2
(

dWxm

dην

)
s

x−1
(

1

4
Grxm,∞

)1/4

With the definitions of Grx l,s and Grxm,∞, the above equation becomes

μl,s

(
ρl,w − ρm,∞

ρl,s

)1/2 (
dWx l

dηl

)
s

x−1
(

1

4

g(ρl,w − ρm,∞)x3

νl,s
2ρl,s

)1/4

= μm,s(ρm,s/ρm,∞ − 1)1/2
(

dWxm

dηm

)
s

x−1
(

1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)1/4

Therefore,(
dWxm

dηm

)
s
= μl,s

μm,s

(
νm,∞
νl,s

)1/2 (
ρl,w − ρm,∞

ρl,s

)3/4

× (ρm,s/ρm,∞ − 1)−3/4
(

dWx l

dηl

)
s

(18.38)

A.3.5 Similarity Transformation of Eq. (18.12)

With Eqs. (A13), (A25), (A28), (A45), and (18.26), Eq. (18.12) is changed to

λl,s(tw − ts,int)

(
dθl

dηl

)
s

(
1

4
Grx l,s

)1/4

x−1

= λm,s(ts,int − t∞)

(
dθ∞
dη∞

)
s

(
1

4
Grxm,∞

)1/4

x−1 + hfgρm,sCmv,s

[
2
√

gx(ρm,s/ρm,∞ − 1)1/2Wxm
1

4
ηmδ

(
1

4
Grxm,s

)−1/4

−2
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4
Grxm,∞

)−1/4

Wym,s

]
s

With the definitions of Grx l,s and Grxm,∞, the above equation is changed to

λl,s(tw − ts,int)

(
dθl

dηl

)
s

(
1

4

g(ρl,w − ρm,∞)x3

νl,s
2ρl,s

)1/4

x−1
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= λv, ms(ts,int − t∞)

(
dθm

dηm

)
s

(
1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)1/4

x−1 + hfgρm,sCmv,s

×
[

2
√

gx(ρm,s/ρm,∞ − 1)1/2Wxm
1

4
ηmδ

(
1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)1/4

−2
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)−1/4

Wym

]
s

Since ηmδ = 0 at the liquid–vapor mixture interface, the above equations becomes

λl,s(tw − ts,int)

(
dθl

dηl

)
s

(
1

4

g(ρl,w − ρm,∞)x3

νl,s
2ρl,s

)1/4

x−1

= λm,s(ts,int − t∞)

(
dθm

dηm

)
s

(
1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)1/4

x−1

− 2hfgρm,sCm,vs
√

gx(ρm,s/ρm,∞ − 1)1/2
(

1

4

g(ρm,s/ρm,∞ − 1)x3

νm,∞2

)1/4

Wym,s

The above equation is divided by
( g

4x

)1/4, and simplified to

λl,s(tw − ts,int)

(
dθl

dηl

)
s

(
ρl,w − ρm,∞

νl,s
2ρl,s

)1/4

= λm,s(ts,int − t∞)

(
dθm

dηm

)
s

(
ρm,s/ρm,∞ − 1

νm,∞2

)1/4

− 4hfgρm,sCmv,s(ρm,s/ρm,∞ − 1)1/4
(

1

νm,∞2

)−1/4

Wym,s

i.e.,

λvm, s(ts,int − t∞)

(
dθm

dηm

)
s

(
ρm,s/ρm,∞ − 1

νm,∞2

)1/4

= λl,s(tw − ts,int)

(
dθl

dηl

)
s

(
ρl,w − ρm,∞

νl,s
2ρl,s

)1/4

+ 4hfgρm,sCvw,s(ρm,s/ρm,∞ − 1)1/4
(

1

νm,∞2

)−1/4

Wym,s
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Therefore,

(
dθm

dηm

)
s

=
λl,s(tw − ts,int)

(
νm,∞
νl,s

)1/2 (
ρl,w−ρm,∞

ρl,s

)1/4
(ρm,s/ρm,∞ − 1)−1/4

(
dθl
dηl

)
s
+ 4hfgρm,sCmv,sνm,∞Wym,s

λm,s(ts,int − t∞)

(18.39)

A.3.6 Similarity Transformation of Eq. (18.13)

With Eqs. (18.19) and (18.24), Eq. (18.13) can easily be changed to

θl = 0, θv = 1 (18.40)

A.3.7 Similarity Transformation of Eq. (18.14)

With Eq. (18.27), Eq. (18.14) is easily transformed into

	mv = 1 (18.41)

A.3.8 Similarity Transformation of Eq. (18.15)

With Eqs. (18.20), (18.21), (A40), and (A44), Eq. (18.15) is changed to

ρm,sCmv,s

(
1

4
Grxm,∞

)1/2

· 2 · x−1νm,∞2

(
1

4
Grxm,∞

)−1/4 (
1

4
ηmδWxm,s − Wym,s

)

= Dvρm,s

(
dCmv

dηm

)
s

(
1

4
Grxm,∞

)1/4

x−1

i.e.,

ρm,sCmv,sνm,∞(ηmδWxm,s − 4Wym,s) = Dvρm,s

(
dCmv

dηm

)
s

Since ηmδ = 0 at the liquid–vapor mixture interface, we have

(
dCmv

dηm

)
s
= −4

Cmv,sνm,∞
Dv

Wym,s

With Eq. (18.27), the above equation becomes
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(
d	mv

dηm

)
s
= −4

Cmv,s

(Cmv,s − Cmν,∞)

νm,∞
Dv

Wym,s (18.42)

A.3.9 Similarity Transformation of Eq. (18.16)

At y → ∞, with Eqs. (18.24), (18.25), and (18.27), Eq. (18.16) is easily transformed
into

ηm → ∞ : Wxm = 0, θm = 0, 	mv,∞ = 0 (18.43)
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Chapter 19
Velocity, Temperature, and Concentration Fields
on Laminar Free Convection Film Condensation
of Vapor–Gas Mixture

Abstract A set of physical matching conditions at the liquid–vapor interface are
considered and rigorously satisfied for getting reliable solutions related to the three-
point boundary value problem on the laminar free convection film condensation of
vapor–gas mixture. With the example on the laminar free convection film condensa-
tion of water vapor–air mixture, a system of the interfacial vapor saturation temper-
ature Ts,int is found out, which only depends on the bulk vapor mass fraction for a
special bulk temperature. The numerical solutions of the interfacial vapor saturation
temperature Ts,int are further formulated into an equation for its reliable prediction.
A system of rigorous numerical results is successfully obtained, including velocity
and temperature fields of the condensate liquid film, as well as the velocity, temper-
ature, and concentration fields of the vapor–gas mixture film. With increasing the
vapor mass fraction (or decreasing the gas mass fraction) in the bulk, the condensate
liquid film thickness, the condensate liquid velocity, and vapor–gas mixture velocity
at the liquid–vapor interface will increase at an accelerative pace. It proved that the
noncondensable gas in the vapor–gas mixture has a decisive effect on the laminar
free convection film condensation from vapor–gas mixture. The wall temperature has
also a decisive effect on the laminar free convection film condensation from vapor–
gas mixture. With increasing wall temperature, the condensate liquid film thickness,
the condensate liquid velocity, as well as velocity of the vapor–gas mixture at the
liquid–vapor interface will decrease. However, with increasing the wall temperature,
the thicknesses of the momentum, temperature, and concentration boundary layers
of the vapor–gas mixture will increase.

19.1 Introduction

In this chapter, I will use the complete mathematical model presented in Chap. 18 to
obtain the velocity and temperature fields of laminar free convection film conden-
sation from vapor–gas mixture, through a system of rigorous numerical calculation.
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First of all, an available approach will be proposed for determination of condensate
saturated temperature of vapor at liquid–vapor interface, and an effective iterative
method will be provided for a rigorous satisfaction of the set of three-point boundary
physical matching conditions.

Laminar free convection film condensation of water vapor in the presence of
air will be taken as an example for the numerical calculation. On these bases, the
numerical calculations will be successfully completed, and a system of rigorous
numerical solutions of momentum, temperature, and concentration fields of the two-
phase model will be satisfyingly obtained.

From the numerical results, it will be found that the presence of noncondensable
gas in the vapor–gas mixture bulk is a decisive reason for great decrease of the film
condensation. With increasing gas mass fraction (or decreasing vapor mass fraction)
in the vapor–gas mixture bulk, the condensate liquid film thickness, the condensate
liquid velocity, and the interfacial velocity will decrease obviously. With increasing
wall temperature, the condensate liquid film thickness, and the condensate liquid
velocity will decrease obviously too, but the thicknesses of velocity, temperature and,
concentration boundary layers of vapor–gas mixture will increase. Furthermore, with
increasing the wall temperature, the effect of gas or vapor mass fraction in the vapor–
gas mixture bulk on the velocity, temperature, and concentration fields of vapor–gas
mixture will decrease. The shear force at the liquid–vapor interface is very small,
and so if it is omitted in analysis and calculation of the laminar free convection film
condensation both of pure vapor and vapor in the presence of noncondensable gas,
it will never cause obvious deviation, especially for a higher wall temperature.

The investigated results of this work will lay a satisfying foundation for a suc-
cessive study on heat and mass transfer of the film condensation from vapor–gas
mixture.

19.2 Treatments of Variable Physical Properties

19.2.1 Treatment Methods

As presented in former chapters of this book, fluid variable physical properties
have great effects on free convection film flows and heat transfer, so should be
appropriately treated for solution of the governing equations with the boundary
condition equations. For film condensation of vapour–gas mixture, two types of
variable physical properties exist, the temperature-dependent physical properties
and concentration-dependent physical properties. The former physical properties
exist both in the condensate liquid film and vapor–gas mixture films, and the latter
physical properties exist in vapor–gas mixture film. For treatment of temperature-
dependent physical properties of liquid medium, a polynomial approach is used [1].
For treatment of the temperature-dependent physical properties of gaseous medium,
the temperature parameter method will be applied [2, 3]. While, for treatment of
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concentration-dependent physical properties, the analytical method in [4] will be
used.

On the other hand, it is seen that all physical properties are coupled with the dimen-
sionless governing differential equations as the forms of the related dimensionless
physical property factors finally. Then, the treatment of variable physical proper-
ties for laminar free convection film condensation of vapor–gas mixture becomes
treatment of these physical property factors, respectively. Based on the presenta-
tions in Chap. 5, the treatment of variable physical properties related to laminar free
convection film condensation of vapor–gas mixture are given below.

19.2.2 Treatment of Temperature-Dependent Physical
Properties of Liquid Film

Let me take water as example for presentation of temperature-dependent physical
properties of liquid film. According to [1], the water variable density, thermal con-
ductivity, absolute viscosity, and specific heat are expressed as follows for condensate
water film flow:

ρl = −4.48 × 10−3t2 + 999.9 (19.1)

λl = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563 (19.2)

μl = exp

(
−1.6 − 1150

T
+

(
690

T

)2
)

× 10−3 (19.3)

While, the water specific heat can be taken as a constant cpl = 4, 200J/(kg K)

with temperature variation at atmospheric pressure, and then specific heat factor
will be

1

cpl

dcpl

dηl
= 0 (19.4)

The physical property factors of water in the governing ordinary differential equa-
tions are expressed as, respectively

Prl = μl · cpl

λl
=

[
exp

(
−1.6 − 1150

T + ( 690
T

)2
)

× 10−3
]

× 4200

−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563
(19.5)

1

ρl

dρl

dηl
=

[
−2 × 4.48 × 10−3t

(
tw − ts,int

) dθl (ηl )
dηl

]
(−4.48 × 10−3t2 + 999.9

) (19.6)
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1

λl

dλl

dηl
=

[
(−2 × 8.01 × 10−6 + 1.94 × 10−3)(tw − ts,int)

dθl (ηl )
dηl

]
−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563

(19.7)

1

μl

dμl

dηl
=

(
1150

T 2 − 2 × 6902

T 3

) (
tw − ts,int

) dθl(ηl)

dηl
(19.8)

νl,s

νl
=

(
μl,s

ρl,s

) /(
μl

ρl

)
=

(
μl,s

μl

) (
ρl

ρl,s

)

=
exp

[ − 1.6 − 1150
Ts,int

+
(

690
Ts,int

)2 ]
exp

[ − 1.6 − 1150
T + ( 690

T

)2 ] × −4.48 × 10−3t2 + 999.9

−4.48 × 10−3t2
s,int + 999.9

(19.9)

where
t = (tw − ts,int)θ(η) + ts,int and T = t + 273

Thus, the dependent physical property factors of the governing dimensionless
mathematical models become the function of dimensionless temperature under the
new similarity analysis system.

19.2.3 Treatment of Concentration-Dependent Densities of
Vapor–Gas Mixture

Consulting the derivation in Chap. 5 we take ρm as density of vapor–gas mixture,
ρmv and ρmg as local densities of vapor and gas in the vapor–gas mixture, and ρv

and ρg as densities of vapor and gas, respectively, then, we will have the following
equations for their relations:

ρm = ρmv + ρmg (19.10)

Cmvρm = ρmv (19.11)
ρmv

ρv
+ ρmg

ρg
= 1 (19.12)

The solutions of Eqs. (19.10)–(19.12) are

ρmv = Cmvρvρg

(1 − Cmv)ρv + Cmvρg
(19.13)

ρmg = (1 − Cmv)ρvρg

(1 − Cmv)ρv + Cmvρg
(19.14)

ρm = ρvρg

(1 − Cmv)ρv + Cmvρg
(19.15)
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With Eq. (19.15), the density factor of the vapor–gas mixture in the governing
dimensional differential equations will be derived as

1

ρm

dρm

dηm
= 1

ρm

d

dηm

(
ρvρg

(1 − Cmv)ρv + Cm,vρg

)

= 1

ρm

ρv
dρg
dηm

+ ρg
dρv
dηm

(1 − Cmv)ρv + Cmvρg
− 1

ρm

ρvρg(
(1 − Cmv)ρv + Cmvρg

)2

×
[
(1 − Cmv)

dρv

dηm
− ρv

dCmv

dηm
+ Cmv

dρg

dηm
+ ρg

dCmv

dηm

]

i.e.

1

ρm

dρm

dηm
= 1

ρg

dρg

dηm
+ 1

ρv

dρv

dηm
− 1

(1 − Cmv)ρv + Cmvρg

×
[
(1 − Cmv)

dρv

dηm
− ρv

dCmv

dηm
+ Cmv

dρg

dηm
+ ρg

dCmv

dηm

]

Then,

1

ρm

dρm

dηm
= 1

ρg
· dρg

dηm
+ 1

ρv
· dρv

dηm
− Cmv(ρv − ρg)

(1 − Cmv)ρv + Cmvρg

·
[

1 − Cmv

Cmv
· ρv

ρv − ρg
· 1

ρv
· dρv

dηm
+ ρg

ρv − ρg
· 1

ρg
· dρg

dηm

− Cmv,s − Cmv,∞
Cmv

· d�mv

dηm

]
(19.16)

where
Cmv = (Cmv,s − Cmv,∞)�mv + Cmv,∞.

Thus, the density factor 1
ρm

dρm
dηv

of the vapor–gas mixture is expressed by the gas

density factor 1
ρg

dρg
dηm

and vapor density factor 1
ρv

dρv
dηm

. Because 1
ρg

dρg
dηm

and 1
ρv

dρv
dηm

are

temperature dependent, 1
ρm

dρm
dηv

is concentration and temperature dependent.

19.2.4 Treatment of Other Concentration-Dependent Physical
Properties of Vapor–Gas Mixture

Other concentration-dependent physical properties of vapor–gas mixture are assumed
as following weighted sum formulae:
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μm = Cmvμv + (1 − Cmv)μg (19.17)

λm = Cmvλv + (1 − Cmv)λg (19.18)

cpm = Cmvcpv + (1 − Cmv)cpg (19.19)

Prm = CmvPrv + (1 − Cmv)Prg (19.20)

Then,

1

μm
· dμm

dηm
= 1

μm
· d

dηv

[
Cmvμv + (1 − Cmv)μg

]
= 1

μm

[
Cmv

dμv

dηm
+ μv

dCmv

dηm
+ (1 − Cmv)

dμg

dηm
− μg

dCmv

dηm

]

Consulting Chap. 5 the above equation is further changed to

1

μm
· dμm

dηm
= 1

μm

[
Cmvμv

1

μv

dμv

dηm
+ (1 − Cmv)μg

1

μg

dμg

dηm

+ (μv − μg)(Cmv,s − Cmv,∞)
d�mv

dηm

]
1

μm

dμm

dηm
= Cmv

μv

μm

1

μv

dμv

dηm
+ (1 − Cmv)

μg

μm

1

μg

dμg

dηm

+ μv − μg

μm
(Cmv,s − Cmv,∞)

d�mv

dηm
(19.21)

where
Cmv = (Cmv,s − Cmv,∞)�mv + Cmv,∞.

Thus, the absolute viscosity factor 1
μm

dμm
dηm

for the vapor–gas mixture is expressed by

the gas absolute viscosity factor 1
μg

dμg
dηm

and vapor absolute viscosity factor 1
μv

dμv
dηm

.

While, 1
μg

dμg
dηm

and 1
μv

dμv
dηm

are temperature dependent, then, the viscosity factor of
vapor–gas mixture is concentration and temperature dependent.

Similar to derivation for Eq. (19.21), the thermal conductivity factor of the vapor–
gas mixture in the governing dimensionless differential equations can be expressed
as by using Eq. (19.18)

1

λm

dλm

dηm
= Cmv

λv

λm

1

λv

dλv

dηm
+(1−Cmv)

λg

λm

1

λg

dλg

dηm
+λv − λg

λm
(Cmv,s−Cmv,∞)

d�mv

dηm
(19.22)

Thus, the thermal conductivity factor 1
λm

dλm
dηm

of the vapor–gas mixture is expressed

by the gas thermal conductivity factor 1
λg

dλg
dηm

and vapor thermal conductivity factor

http://dx.doi.org/10.1007/978-3-642-28983-5_5
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1
λv

dλv
dηm

. While, the physical factors 1
λg

dλg
dηm

and 1
λv

dλv
dηm

are temperature dependent,
then, the thermal conductivity factor of vapour–gas mixture is concentration and
temperature dependent.

19.2.5 Treatment of Temperature-Dependent Physical
Properties of Vapor–Gas Mixture

For treatment of the above related temperature-dependent physical properties, the
temperature parameter method reported in Chap. 5 will be applied, and the related
vapor and gas physical property factors are expressed as follows:

For density factors we have

1

ρv

dρv

dηm
= − (Ts,int/T∞ − 1)dθm/dηm

(Ts,int/T∞ − 1)θm + 1
(19.23)

1

ρg

dρg

dηm
= − (Ts,int/T∞ − 1)dθm/dηm

(Ts,int/T∞ − 1)θm + 1
(19.24)

For absolute viscosity factors we have

1

μv

dμv

dηm
= nμv(Ts,int/T∞ − 1)dθm/dηm

(Ts,int/T∞ − 1)θm + 1
(19.25)

1

μg

dμg

dηm
= nμg(Ts,int/T∞ − 1)dθm/dηm

(Ts,int/T∞ − 1)θm + 1
(19.26)

For thermal conductivity factors we have

1

λv

dλv

dηm
= nλv(Ts,int/T∞ − 1)dθm/dηm

(Ts,int/T∞ − 1)θm + 1
(19.27)

1

λg

dλg

dηm
= nλg(Ts,int/T∞ − 1)dθm/dηm

(Ts,int/T∞ − 1)θm + 1
(19.28)

where nμv and nμg denote viscosity parameters of vapor and gas, respectively, and
λμv and λμg denote thermal conductivity parameters of vapor and gas, respectively.

19.3 Necessity for Satisfying Whole Interfacial Balance
Conditions on Reliable Solution

The interfacial matching conditions for the laminar free convection film condensation
of vapor in the presence of noncondensable gas are respectively (i) velocity compo-

http://dx.doi.org/10.1007/978-3-642-28983-5_5
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nent continuity, (ii) mass flow rate continuity, (iii) balance of the shear force, (iv)
energy balance, (v) temperature continuity, (vi) concentration condition, and (vii)
balance between the condensate mass flow rate and vapor diffusion mass transfer at
the liquid–vapor interface. Compared with the laminar free convection film condensa-
tion of pure vapour, there are two additional interfacial boundary conditions (vi) and
(vii) for the condensation of vapour–gas mixture. In solving the governing equations
in this present work, whole above balance conditions at the liquid–vapor interface
should seriously be satisfied for obtaining the reliable solutions for the velocity, tem-
perature, and concentration fields, as well as heat and mass transfer. Otherwise, it is
never possible to obtain the reliable numerical solutions of the two-phase boundary
layer model, as well as reliable results of heat and mass transfer.

19.4 Numerical Calculation Approach

The numerical calculation of the two-phase boundary layer equations for free film
condensation of vapor in the presence of noncondensable gas belongs to three-point
boundary value problem, and is carried out numerically by two steps. In the first step,
the governing ordinary differential equations for liquid film are solved with ignoring
shear force at the liquid–vapor interface. The numerical calculation is done by an
advanced shooting method procedure with fifth-order Runge–Kutta integration. At
the beginning of the calculation, the initial values of the condensate liquid film thick-
ness ηl δ and condensate liquid velocity component Wxl,s should be assumed. In the
second step, the governing ordinary differential equations for vapour–gas mixture
film are solved by using the advanced shooting method with seventh-order Runge–
Kutta integration. In this step of numerical calculation, the interfacial boundary
conditions are divided into two groups. The first group of the interfacial boundary
condition equations is the initial boundary conditions of the ordinary differential
equations for the vapour–gas mixture film, and the second group is the judgment
equations for convergence of the whole calculation. By means of the judgment equa-
tions, the calculation is iterated with appropriate change of the values Wxl,s and
ηl δ. In each iteration, the numerical calculations of ordinary deferential equations
for liquid film and vapour–gas mixture film are done successively. For solving such
very strong nonlinear problem, a variable mesh approach is applied to the numerical
calculation programs.

The laminar free convection film condensation of water vapor in the presence of
air on a vertical flat plate is taken as an example for the practical solution. The given
conditions for solution are different wall temperatures Tw and the bulk vapor mass
fraction Cmv,∞ with the bulk temperature T∞ = 373 K and at atmosphere as the
system pressure.
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Table 19.1 Physical property values for water, water vapor and air at atmosphere pressure

Term Value
Water Water vapor Air

Ts , K 373 373 373
cp, J/(kg K) 4,216 2,060 1,009
hfg, kJ/kg 2257.3
Pr 1.76 1 0.7
ρ, kg/m3 958.1 0.5974 0.946
μ, kg/(m s) 282.2 × 10−6 12.28 × 10−6 21.9 × 10−6

ν, m2/s 0.294 × 10−6 20.55 × 10−6 23.13 × 10−6

λ, W/(m K) 0.677 0.02478 0.0321
Dv, m2/s 0.256 × 10−4

nμ 1.04 (nμ,v) 0.68 (nμ,g)

nλ 1.185 (nλ,v) 0.81 (nλ,g)

19.5 Physical Property Data Applied for Numerical Calculation

For convenience, some related values of the physical properties for water, water vapor,
and air used in the calculation are listed in Table 19.1. Additionally, the absolute
viscosity parameters nμ,v and nμ,g and thermal conductivity parameters nλ,v and
nλ,g of water vapor and air, respectively, obtained from Appendix A of this book are
listed in Table 19.1.

19.6 Interfacial Vapor Saturation Temperature

The theoretical calculation of heat transfer of the film condensation of vapor–gas mix-
ture depends on the calculation result of the interfacial vapor saturation temperature
Ts,int of the vapor–gas mixture. While, the interfacial vapor saturation temperature
Ts,int depends on the interfacial vapor mass fraction Cmv,s . While, the interfacial
vapor mass fraction Cmv,s depends on the reference vapor saturation temperature
Ts,re f and bulk vapor mass fraction Cmv,∞. Here, the reference vapor saturation
temperature refers to the saturation temperature with unity bulk vapor mass fraction
(i.e. Cmv,∞ = 1) and at atmospheric pressure as the system pressure for laminar
free convection film condensation of vapor–gas mixture. According to our investi-
gation, the relationship among the above physical variables can be described by the
following equation:

Ts,int = Ts,ref · Ca
mv,s (19.29)

While, the exponent “a” depends on the related vapor and gas in the mixture.
However, for laminar free convection film condensation of water vapor–air mix-

ture, the exponent “a” equals 0.063 [4], and obviously the reference interfacial satu-
ration temperature Ts,ref = 373 K, then the interfacial saturation temperature can be
described as
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Ts,int = 373 · C0.063
mv,s (19.30)

Take the laminar free convection film condensation of water vapor–air mixture as an
example, we have obtained a system of numerical solutions on the interfacial vapor
saturation temperature Ts,int, and show them in Fig. 19.1 and list some of them in
Table 19.2 with variation of the reference wall subcooled grade

ts,re f −tw
ts,ref

and the bulk
vapor mass fraction Cmv,∞ at the bulk temperature T∞ = 373 K and at atmospheric
pressure as the system pressure.

It is seen from Fig. 19.1 and Table 19.2 that the interfacial vapor saturation temper-
ature Ts,int only depends on the bulk vapor mass fraction Cmv,∞, but does not depend
on the reference wall subcooled grade

ts,re f −tw
ts,ref

. Then, the solutions on the interfacial
vapor saturation temperature Ts,int with the bulk vapor mass fraction Cmv,∞ at the
bulk temperature T∞ = 373 K and at atmospheric pressure are formulated to the
following equation for laminar free convection film condensation of water vapor–air
mixture:

Ts,int = 357.06 C0.063
mv,∞ (19.31)

Then, it is seen that the interfacial vapor saturation temperature Ts,int depends
only on the bulk vapor mass fraction Cmv,∞ at the special bulk temperature.

19.7 Critical Bulk Vapor Mass Fraction with the Film
Condensation

From the calculation results, it is found that there is a lowest value of the bulk vapor
mass fraction C∗

m,v∞ for satisfying condition Ts,int > Tw, so that it is possible to
have the film condensation. Then, if the bulk vapor mass fraction Cm,v∞ is higher
than it, i.e. Cm,v∞ > C∗

m,v∞, it is possible to obtain the film condensation, since the
interfacial vapor saturation temperature will be higher than the wall temperature,
i.e. Ts,int > Tw in this case. Otherwise, If the bulk vapor mass fraction Cm,v∞ is
lower than it, i.e. Cm,v∞ < C∗

m,v∞, the film condensation will never happen, since
the interfacial vapor saturation temperature will be lower than the wall temperature,
i.e. Ts,int < Tw in this case. This special bulk vapor mass fraction C∗

m,v∞ is defined
as the critical bulk vapor mass fraction. Obviously, special bulk vapor mass fraction
C∗

m,v∞ varies with the wall temperature Tw.
According to our numerical results on laminar free convection film condensation

of water vapor–air mixture, we show the numerical results on the critical bulk vapor
mass fraction C∗

m,v∞ in Fig. 19.2 as well as Table 19.3 with the selected data for film
condensation of water vapor–air mixture at t∞ = 100 ◦C and atmospheric pressure
as the system pressure.

It is seen that with increasing the wall reference subcooled grade
ts,re f −tw

ts,re f
(i.e

decreasing the wall temperature), the critical bulk vapor mass fraction C∗
m,v∞



19.7 Critical Bulk Vapor Mass Fraction with the Film Condensation 409

Ta
bl

e
19

.2
Se

le
ct

ed
nu

m
er

ic
al

so
lu

tio
ns

on
th

e
in

te
rf

ac
ia

lv
ap

or
sa

tu
ra

tio
n

te
m

pe
ra

tu
re

T s
,i

nt
fo

r
la

m
in

ar
fr

ee
fil

m
co

nd
en

sa
tio

n
of

w
at

er
va

po
r–

ai
r

m
ix

tu
re

at
t ∞

=
10

0
◦ C

an
d

at
m

os
ph

er
ic

pr
es

su
re

as
th

e
sy

st
em

pr
es

su
re

le
ve

l

T w
,

K
t s

,r
e

f
−t

w

t s
,r

ef
C

m
v,

∞
0.

01
45

0.
04

4
0.

12
5

0.
20

6
0.

33
5

0.
54

0.
8

0.
86

0.
95

0.
99

0.
99

9
T s

,i
nt

27
3

1
27

3.
47

03
29

3.
27

93
31

3.
21

98
32

3.
23

44
33

3.
28

96
34

3.
46

68
35

2.
07

78
35

3.
68

56
35

5.
91

03
35

6.
83

6
35

7.
03

97
29

3
0.

8
–

29
3.

27
93

31
3.

21
98

32
3.

23
44

33
3.

28
96

34
3.

46
68

52
.0

77
8

35
3.

68
56

35
5.

91
03

35
6.

83
62

35
7.

03
97

31
3

0.
6

–
–

31
3.

26
4

32
3.

23
44

33
3.

28
96

34
3.

46
68

35
2.

07
78

35
3.

68
56

35
5.

91
03

35
6.

83
62

35
7.

03
97

32
3

0.
5

–
–

–
32

3.
33

3
33

3.
28

96
34

3.
46

68
35

2.
07

78
35

3.
68

56
35

5.
91

03
35

6.
83

62
35

7.
03

97
33

3
0.

4
–

–
–

–
33

3.
45

07
34

3.
46

68
35

2.
07

78
35

3.
68

56
35

5.
91

03
35

6.
83

62
35

7.
03

97
34

3
0.

3
–

–
–

–
–

34
3.

62
65

35
2.

07
78

35
3.

68
56

35
5.

91
03

35
6.

83
62

35
7.

03
97

34
8

0.
25

–
–

–
–

–
–

35
2.

10
55

35
3.

69
85

35
5.

91
03

35
6.

83
62

35
7.

03
97

35
3

0.
2

–
–

–
–

–
-

–
35

3.
96

89
35

5.
94

80
35

6.
86

35
35

7.
06

23
Pr

ed
ic

te
d

va
lu

e
w

ith
E

q.
(1

9.
31

)
27

3.
46

85
29

3.
27

74
31

3.
21

8
32

3.
23

23
33

3.
28

7
34

3.
46

5
35

2.
07

6
35

3.
68

3
35

5.
90

8
35

6.
83

4
35

7.
03

7

N
ot

e
Si

ng
“–

”
de

no
te

s
th

e
no

n-
co

nd
en

sa
bl

e
re

gi
on



410 19 Velocity, Temperature, and Concentration Fields

250

300

350

400

0 0.2 0.4 0.6 0.8 1

, tnisT

K

∞,mvC

Fig. 19.1 Numerical solutions on the interfacial vapor saturation temperature Ts,int for laminar
free film condensation of water vapor–air mixture at t∞ = 100 ◦C and atmospheric pressure as the
system pressure level

Fig. 19.2 Critical bulk vapor
mass fraction C∗

mv,∞ with
variation of reference wall
subcooled grade

ts,re f −tw
ts,re f

for
laminar free film condensation
from water vapor–air mixture
on a vertical flat plate at
t∞ = 100 ◦C and atmospheric
pressure as the system pres-
sure level
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decreases, and the condensable region will increase. Otherwise the condensable
region will decrease.

These numerical results on the critical bulk vapor mass fraction C∗
m,v∞ are for-

mulated to Eqs. (19.32) and (19.33) by using a curve-fitting method, and the results
predicted by using Eqs. (19.32) and (19.33) are listed in Table 19.3 too. Comparing
the numerical and predicted results on the critical bulk vapor mass fraction C∗

m,v∞, it
is found that Eqs. (19.32) and (19.33) are pretty accurate for evaluation of the critical
bulk vapor mass fraction C∗

m,v∞ for film condensation of water vapor–air mixture at
t∞ = 100 ◦C and atmospheric pressure as the system pressure.
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Table 19.3 Selected numerical data on critical bulk vapor mass fraction C∗
mv,∞ with variation of

reference wall subcooled grade
ts,re f −tw

ts,re f
for laminar free convection film condensation from water

vapor–air mixture on a vertical flat plate at t∞ = 100 ◦C and atmospheric pressure as the system
pressure level
ts,re f −tw

ts,re f
1 0.8 0.6 0.5 0.4 0.3 0.25 0.2

C∗
mv,∞a 0.014109 0.043339 0.123615 0.203642 0.330409 0.528468 0.66494 0.833918

C∗
mv,∞b 0.0141 0.043324 0.123596 0.202104 0.325617 0.524613 0.665895 0.845224

aDenotes numerical results
bDenotes predicted result by using Eqs. (19.32) and (19.33) respectively

C∗
m,v∞ = 0.6381

(
ts,re f − tw

ts,re f

)2

− 1.2947

(
ts,re f − tw

ts,re f

)

+ 0.6707

(
0.6 ≤ ts,re f − tw

ts,re f
≤ 1

)
(19.32)

C∗
m,v∞ = 2.194Exp

[
−4.7694

(
ts,re f − tw

ts,re f

)]
(

0.2 ≤ ts,re f − tw
ts,re f

≤ 0.6

)
(19.33)

19.8 Velocity, Concentration, and Temperature Fields of the
Two-Phase Film Flows

From the governing ordinary equations and their boundary conditions presented in
Chap. 18, it will be expected that for the consideration of variable physical properties
of the medium for liquid and vapor–gas mixture films, the velocity, temperature, and
concentration fields for the two-phase film flows will depend on the temperature and
concentration-dependent properties, the given wall boundary temperatures Tw, bulk
temperature T∞, and the bulk vapor mass fraction Cmv,∞.

With the provided numerical procedure and the related physical property factors
reported, the governing ordinary Eqs. (18.28)–(18.34) with their boundary condi-
tions, Eqs. (18.35)–(18.43) are rigorously calculated, and a system of solutions for
together velocity, concentration, and temperature fields is obtained, and plotted in
Figs. 19.3, 19.4, 19.5 and 19.6 with variation of the wall temperatures Tw and bulk
vapor mass fraction Cmv,∞, respectively, for the bulk temperature T∞ = 373 K and
at atmospheric pressure as the system pressure of the two-phase free convection film
condensation of water vapour–air mixture.

http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_18
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Fig. 19.3 Numerical results of a velocity Wxl , b temperature θl profiles of vapor film, c velocity
component Wxv, d temperature θv, and e relative concentration �m,v profiles of vapor film for laminar
free convection film condensation of water vapor–air mixture at Tw = 273 K, t∞ = 100 ◦C, and
atmospheric pressure as the system pressure level (Lines 1–8 for Cm,v∞ = 0.05, 0.1, 0.2, 0.4, 0.6,
0.8, 0.9 and 0.99 respectively)

19.9 Variations of Velocity and Temperature Fields

From the numerical results the following variations of velocity and temperature fields
of laminar free convection film condensation of vapour–gas mixture are found:
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Fig. 19.4 Numerical results of a velocity Wxl , b temperature θl profiles of liquid film, c velocity
component Wxv, d temperature θv, and e relative concentration �m,v profiles of vapor film for laminar
free convection film condensation of water vapour–air mixture at Tw = 293 K, t∞ = 100 ◦C, and
atmospheric pressure as the system pressure level (Lines 1–7 for Cm,v∞= 0.1, 0.2, 0.4, 0.6, 0.8, 0.9
and 0.99, respectively)

19.9.1 Variation of Film Thicknesses

From Figs. 19.3, 19.4, 19.5 and 19.6, it is seen that the condensate film liquid thick-
ness will decrease at an accelerative pace with increasing wall temperature Tw. This
phenomenon is because increasing wall temperature Tw will decrease the wall sub-
cooled temperature �Tw = Ts,int − Tw, and then causes decrease of the condensate
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Fig. 19.5 Numerical results of a velocity Wxl , b temperature θl profiles of liquid film, c velocity
component Wxv, d temperature θv, and e relative oncentration �m,v profiles of vapor film for laminar
free convection film condensation of water vapor–air mixture at Tw = 313 K, t∞ = 100◦ C, and
atmospheric pressure as the system pressure level (Lines 1–6 for Cm,v∞ = 0.2, 0.4, 0.6, 0.8, 0.9
and 0.99, respectively)

liquid mass flow rate. However, the vapor–gas film thickness increases with increas-
ing wall temperature Tw.

The condensate liquid film thickness will increase with increasing the bulk vapor
mass fraction Cm,v∞. The reason is that with increasing the bulk vapor mass fraction
Cm,v∞, the condensate rate will speed up, which will lead to increasing the condensate
liquid film thickness. Furthermore, the vapor–gas mixture film thickness will increase
with increasing the bulk vapor mass fraction Cm,v∞.
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Fig. 19.6 Numerical results of a velocity Wxl , b temperature θl profiles of liquid film, c velocity
component Wxv, d temperature θv, and e relative concentration �mv profiles of vapor film for laminar
free convection film condensation of water vapor–air mixture at Tw = 333 K, t∞ = 100 ◦C and
atmospheric pressure as the system pressure level (Lines 1–4 for Cm,v∞ = 0.6, 0.8, 0.9 and 0.99,
respectively)

19.9.2 Variation of Velocity Fields of Condensate Liquid Film

From Figs. 19.3, 19.4, 19.5 and 19.6, it is seen that the condensate velocity compo-
nents decrease with increasing the wall temperature Tw. These dependent relation-
ships are coincident with those for the related laminar free film condensation of pure
vapor reported in [6, 7].

It is seen that the condensate velocity components will increase with increasing
the bulk vapor mass fraction Cvw,∞. It will lead to increasing the interfacial velocity
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components. It is because the condensate process will speed up with increasing the
bulk vapor mass fraction Cvw,∞.

19.9.3 Variation of Velocity Fields of Vapour–Gas Mixture Film

It is seen that the velocity fields of vapor–gas mixture film will decrease with
increasing the wall temperature Tw, and increase with he bulk vapor mass fraction
Cvw,∞.

19.10 Remarks

A set of physical matching conditions at the liquid–vapor interface are considered and
rigorously satisfied in the numerical calculation, such as those for two-dimensional
velocity component balances, shear force balance, mass flow rate balance, temper-
ature balance, heat transfer balance, concentration condition, as well as the balance
between the condensate mass flow, and vapor mass diffusion. For getting reliable
solutions of the three-point boundary value problem with the two-phase boundary
layer model, it is necessary to consider and rigorously satisfy the physical matching
conditions at the liquid–vapor interface.

By means of the example on the laminar free convection film condensation of
water vapor–air mixture, a system of the interfacial vapor saturation temperature
Ts,int is found out during the numerical calculation. It is found that the interfacial
vapor saturation temperature Ts,int only depends on the bulk vapor mass fraction for
a special bulk temperature. Furthermore, the numerical solutions of the interfacial
vapor saturation temperature Ts,int are formulated into a prediction equation for its
practical prediction.

The laminar free convection film condensation of water vapor in the presence of air
is taken as example for the numerical calculation. A system of rigorous numerical
results is successfully obtained, including velocity and temperature fields of the
condensate liquid film, as well as the velocity, temperature, and concentration fields
of the vapor–gas mixture film. From these numerical results, it is found that with a
given temperature in the vapor–gas mixture bulk, the wall temperature and the vapor
(or gas) mass fraction in the bulk have decisive effects on the laminar free convection
film condensation of vapor–gas mixture.

With increasing the vapor mass fraction (or decreasing the gas mass fraction)
in the bulk, the condensate liquid film thickness, the condensate liquid velocity, and
vapor–gas mixture velocity at the liquid–vapor interface will increase very obviously.
It proved that the noncondensable gas in the vapor–gas mixture has a decisive effect
on the laminar free film condensation from vapor–gas mixture.
The wall temperature has also a decisive effect on the laminar free film condensation
from vapor–gas mixture. With increasing wall temperature, the condensate liquid
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film thickness, the condensate liquid velocity, as well as velocity of the vapor–gas
mixture at the liquid–vapor interface will decrease. However, with increasing the
wall temperature, the thicknesses of the momentum, temperature, and concentration
boundary layers of the vapor–gas mixture will increase.

19.11 Exercises

1. Explain the meanings of followings:

(i) Interfacial vapor saturation temperature;
(ii) Interfacial vapor mass fraction;

(iii) Critical vapor mass fraction;
(iv) Reference wall subcooled grade.

2. Please give out a detailed derivation for obtaining Eqs. (19.13)–(19.15) on
description of concentration-dependent densities of vapor, gas, and vapor–gas
mixture in the vapor–gas mixture.

3. Please give out a detailed derivation for obtaining Eqs. (19.16),(19.21), and
(19.22) respectively on describing density factor, viscosity factor, and thermal
conductivity factor of vapor–gas mixture. Which kinds of dependent physical
properties do Eqs. (19.16), (19.21), and (19.22) describe?

4. Please give out a detailed derivation for obtaining Eqs. (19.23)–(19.28) respec-
tively on related physical property factors of vapor and gas in vapor–gas mixture.
Which kinds of dependent physical properties do Eqs. (19.23)–(19.28) describe?

5. Please give out a detailed derivation for obtaining Eqs. (19.6)–(19.8) respec-
tively on describing density factor, viscosity factor, and thermal conductivity
factor of condensate water film. Which kinds of dependent physical properties
do Eqs. (19.6)–(19.8) describe?

6. What is the relation between the concentration-dependent and temperature-
dependent physical properties of vapor–gas mixture?

7. What is the reference saturation temperature of vapor–gas mixture? What does
it depend on?

8. Which kind of dependent physical properties exist in vapor–gas mixture?
9. What is the definition of critical bulk vapor mass fraction with the free film

condensation of vapor–gas mixture?
10. What is the interfacial vapour saturation temperature? What does it depend on?
11. Please describe the variations of velocity, temperature, and concentration fields

on laminar free convection film condensation from vapor–gas mixture.
12. Please explain why the condensate film thickness will decrease at an accelerative

pace with increasing wall temperature Tw.
13. Please explain why the condensate liquid film thickness will increase with

increasing the bulk vapor mass fraction Cm,v∞.
14. Please explain why the condensate velocity components decrease with increasing

the wall temperature Tw.
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15. Please explain why the condensate velocity components will increase with
increasing the bulk vapor mass fraction Cvw,∞.

16. Compare the models on treatments of variable physical properties between the
similarity mathematical models of laminar free convection film condensation
of pure vapor, and that of vapor–gas mixture, and find out the their common
grounds and differences.

17. What reason causes more difficult and complicated for treatment of variable
physical properties of the laminar free convection film condensation of vapour–
gas mixture than that of pure vapour?

18. Further, compare the models on treatment of variable physical properties among
similarity mathematical models of laminar free convection, laminar free convec-
tion film boiling, laminar free convection film condensation of pure vapor, and
laminar free film condensation of vapor–gas mixture, and find out their common
grounds and differences.

19. Please explain the importance for reliable determination of the interfacial vapor
saturation temperature for laminar free convection film condensation of vapor–
gas mixture.

20. According to Eqs. (19.30) and (19.31), please find out the relation between the
interfacial vapor mass fraction and the bulk vapor mass fraction in the related
conditions for laminar free convection film condensation of vapor–gas mixture.
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Chapter 20
Heat and Mass Transfer of Laminar Free
Convection Film Condensation of Vapor–Gas
Mixture

Abstract The theoretical equations on heat and mass transfer are set up for laminar
free Convection film condensation of vapor–gas mixture. In the theoretical equations
only dimensionless wall temperature gradient and condensate mass flow rate parame-
ter are no-given variables respectively for prediction of heat and mass transfer rates.
The laminar free Convection film condensation of water vapor in presence of air on
a vertical flat plate is taken as example for the numerical solutions on condensate
heat and mass transfer, including those on the dimensionless temperature gradient
and mass flow rate parameter. Both by decreasing the bulk vapor mass fraction and
the reference wall subcooled grade, the wall dimensionless temperature gradient will
increase at accelerative pace. Both decreasing the bulk vapor mass fraction and the
reference wall subcooled grade will cause decreasing the condensate mass flow rate
parameter at accelerative pace. These phenomena demonstrate the decisive effect of
the non-condensable gas on condensate heat and mass transfer of the laminar forced
film condensation of vapor–gas mixture. The system of the rigorous key solutions
on the wall dimensionless temperature gradient and the condensate mass flow rate
parameter is formulated to the simple and reliable equations for the laminar free
Convection film condensation of water vapor–air mixture. Coupled with these for-
mulated equations, the theoretical equations on the condensate heat and mass transfer
can be respectively used for reliable and simple prediction of heat and mass transfer
rate on laminar free Convection film condensation of water vapor–air mixture. Addi-
tionally, it is found that the condensate heat transfer rate is dominated by the wall
subcooled temperature tw − ts,int and the wall temperature gradient, the condensate
mass flow rate is dominated by the condensate mass flow rate parameter, and the
condensate heat transfer rate is identical to the condensate mass flow rate. Due to
the quite different condensate mechanisms, the condensate heat and mass transfer
rate of the laminar free Convection film condensation from vapor in presence of
non-condensable gas is quite different from that of pure vapor, even for Cmv,∞ → 0.

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 419
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_20,
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20.1 Introduction

In Chaps. 18 and 19, I presented the complete similarity mathematical model and the
numerical results of velocity temperature, and concentration fields on laminar free
convection film condensation from vapor–gas mixture, respectively. In this chapter,
further investigation will be done for heat and mass transfer on laminar free con-
vection film condensation from vapor–gas mixture. For this purpose, the appropriate
heat and mass transfer analysis will be done for providing the appropriate theoretical
equations on the condensate heat and mass transfer. With these theoretical equations,
the key solutions, i.e., the wall dimensionless temperature gradient and the induced
condensate mass flow rate parameter become respectively the unknown variables on
evaluation of condensate heat and mass transfer. While, by means of the mass trans-
fer analysis, the condensate mass flow rate parameter consists of the dimensionless
liquid film thickness, as well as the condensate interfacial velocity components. Fur-
thermore, the key solutions on the wall dimensionless temperature gradient and the
condensate mass flow rate parameter of the governing similarity mathematical model
will be formulated based on the rigorous numerical results, so that the theoretical
equations on condensate heat and mass transfer can be conveniently used for simple
and reliable prediction.

20.2 Heat Transfer Analysis

Consulting the heat transfer analysis in Chapter 16, the local heat transfer rate qx

of the free convection film condensation of vapour-gas mixture at position x per unit
area on the plate can be calculated by Pourier’s law as

qx = −λl,w

(
∂tl
∂yl

)
yl=0

With Eqs. (18.17)–(18.19) the local heat transfer rate is expressed as

qx = λl,w(tw − ts,int)

(
1

4
Grx l,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

(20.1)

where
(

dθl
dηl

)
ηl=0

is dimensionless temperature gradient on the plate for the film

condensation. In short, it is called wall temperature gradient.
It should be indicated in Eq. (20.1) that the value of temperature gradient(

− dθl
dηl

)
ηl=0

is positive, the value of the temperature tw − ts,int is negative, and then,

the value of the local heat transfer rate is negative, which means that the direction of
the heat transfer rate is from the bulk vapor–gas mixture to the wall surface.

http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_19
http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_18
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The local heat transfer coefficient on the plate, αx,w defined as qx = αx (tw−ts,int),
will be given as

αx = λl,w

(
1

4
Grx l,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

(20.2)

The local Nusselt number defined as Nux l,w = αx x
λl,w

is expressed as

Nux l,w =
(

1

4
Grx l,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

(20.3)

The total heat transfer rate from position x = 0 to x with width of b on the plate is
an integration

Qx =
∫∫
A

qx,wdA =
x∫

0

qx,wbdx

where the plate area related to condensate heat transfer is described as A = b × x ,
where b is the plate width related to heat transfer.

With Eq. (20.1), the above equation is following integration

Qx =
x∫

0

bλl,w(tw − ts,int)

(
1

4
Grx l,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

dx

i.e.

Qx = 4

3
bλl,w(tw − ts,int)

(
1

4
Grx l,s

)1/4 (
− dθl

dηl

)
ηl=0

(20.4)

The average heat transfer rate , defined as Qx = Qx/(b × x) is given as

Qx = 4

3
x−1λw(tw − ts,int)

(
1

4
Grx l,s

)1/4 (
−dθ

dη

)
ηv=0

(20.5)

The average heat transfer coefficient αx defined as Qx = αx (tw − ts,int) · b · x is
expressed as

αx = 4

3
λl,w

(
1

4
Grx l,s

)1/4

x−1
(

− dθl

dηl

)
ηl=0

(20.6)

The average Nusselt number defined as Nux,w = αx x
λl,w

is

Nux,w = 4

3

(
1

4
Grx l,s

)1/4 (
− dθl

dηl

)
ηl=0

(20.7)
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Fig. 20.1 Numerical solutions of temperature gradient
(
− dθl

dηl

)
ηl=0

with variation of reference

wall subcooled grade ts,ref−tw
ts,ref

and bulk vapor mass fraction Cmv,∞ for laminar free convection film
condensation of water vapor–air mixture at t∞ = 100 ◦C and atmospheric pressure as the system
pressure. (Note Lines 1–8 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, 0.25, and 0.2)

20.3 Wall Temperature Gradient

From the above heat transfer equations, it is found that the heat transfer rate is

directly proportional to the wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

.

Obviously, the wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

is only one

non-given variable in these heat transfer equations.
For the laminar free convection film condensation of water vapor–air mixture at

t∞ = 100 ◦C and atmospheric pressure as the system pressure, a system of the numer-

ical solutions of the wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

obtained

by the numerical calculation are plotted and listed in Fig. 20.1 and Table 20.1, respec-
tively, with the reference wall subcooled grade ts,ref−tw

ts,ref
and the bulk vapor mass frac-

tion Cmv,∞. Here, the reference temperature ts,ref denotes the saturation temperature
of pure vapor with Cmv,∞ = 1.

From the numerical results it is easy to find that by decreasing the reference wall

subcooled grade ts,ref−tw
ts,ref

, the wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

will increase more and more quickly. The reason is that with decreasing the refer-
ence wall subcooled grade, the wall temperature will increase, which will lead to
decrease of the wall subcooled temperature ts,int − tw. In this case, it will cause a
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decrease in the condensate liquid film thickness and then an increase in the wall

dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

. Meanwhile, by decreasing the bulk

vapor mass fraction Cmv,∞, the wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

will increase more and more quickly. This is because with decrease in the bulk vapor
mass fraction Cmv,∞, the condensate liquid film thickness will decrease, which leads

to an increase in the wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

.

According to the rigorous numerical solutions, the formulated equations on the

wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

are created as follows for the

most significant range of bulk vapor mass fraction Cmv,∞ and all available reference
wall subcooled grade ts,ref−tw

ts,ref
for the laminar free convection film condensation of

water vapor–air mixture:

(
− dθl

dηl

)
ηl=0

= aCb
mv,∞ (0.8 ≤ Cmv,∞ ≤ 0.999) (20.8)

where

a = 1.5152

(
ts,ref − tw

ts,ref

)−0.5553 (
0.25 ≤ ts,ref − tw

ts,ref
≤ 0.4

)
(20.9)

a = 1.6976

(
ts,ref − tw

ts,ref

)−0.4302 (
0.4 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.10)

b = −
[

0.3081

(
ts,ref − tw

ts

)−0.8478
](

ts,ref−tw
ts,ref

)−1 (
0.25 ≤ ts,ref − tw

ts
≤ 0.4

)

(20.11)

b = −1.94

(
ts,ref − tw

ts,ref

)2
+ 2.623

(
ts,ref − tw

ts,ref

)
− 1.1057

(
0.4 ≤ ts,ref − tw

ts,ref
≤ 0.6

)

(20.12)

b = 0.1667 ln

(
ts,ref − tw

ts,ref

)
− 0.1439

(
0.6 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.13)

Comparison of the selected numerical solutions of wall dimensionless temperature

gradient
(
− dθl

dηl

)
ηl=0

with the results predicted by Eqs. (20.8)–(20.13) are listed in

Table 20.2 for laminar free convection film condensation of water vapor–air mixture
at t∞ = 100 ◦C and atmospheric pressure as the system pressure, and it is found that
their agreements are pretty good.
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Table 20.2 Comparison of the selected numerical solutions with the predicted results of tempera-

ture gradient
(
− dθl

dηl

)
ηl=0

for laminar free convection film condensation of water vapor–air mixture

at t∞ = 100 ◦C and atmospheric pressure as the system pressure

Tw (K) ts,ref−tw
ts,ref

Cmv,∞
0.8 0.86 0.9 0.95 0.99 0.999(
− dθl

dηl

)
ηl=0

0 1 (1) 1.759115 1.7403 1.728656 1.7153 1.7053 1.7031
(2) 1.752995 1.73485 1.72353 1.71018 1.70006 1.69784

20 0.8 (1) 1.942474 1.9171 1.901526 1.8834 1.8699 1.867
(2) 1.945701 1.92038 1.90464 1.88608 1.87205 1.86898

40 0.6 (1) 2.2194 2.1814 2.159133 2.1319 2.1128 2.1086
(2) 2.22573 2.18916 2.16648 2.13982 2.1197 2.11531

50 0.5 (1) 2.429476 2.379 2348701 2.3141 2.2886 2.283126
(2) 2.43442 2.38576 2.35567 2.32037 2.29381 2.28802

60 0.4 (1) 2.745558 2.6693 2.624618 2.5743 2.5379 2.5301
(2) 2.732659 2.6611 2.61708 2.56568 2.52715 2.51877

70 0.3 (1) 3.3650 3.2036 3.1156 3.0215 2.9561 2.9424
(2) 3.375389421 3.23362 3.14756 3.04819 2.9745 2.95857

75 0.25 (1) 4.1412 3.7825 3.6112 3.4447 3.3349 3.3126
(2) 4.082441471 3.79984 3.6323 3.44263 3.30463 3.2751

Note (1) Numerical solutions, and (2) results evaluated by Eqs. (20.8)–(20.13)

20.4 Variation of Condensate Heat Transfer

From heat transfer analysis, it is found that heat transfer of laminar free convection
film condensation of vapor–gas mixture depends on the wall subcooled tempera-
ture ts,int − tw, local Grashof number, and wall dimensionless temperature gradient(

dθl
dηl

)
ηl=0

. On this basis, the physical factors for effect on heat transfer of laminar

free convection film condensation of vapor–gas mixture can be investigated.
Set (qx,w)Cmv,∞=1 to be the local heat transfer rater with Cmv,∞ = 1, i.e., the case

for the laminar free convection film condensation of pure vapor.
Then, qx

(qx )Cmv,∞=1
is the heat transfer ratio of film condensation of vapor–gas

mixture to that of the related pure vapor. From Eq. (20.1), the heat transfer ratio is
expressed as

qx

(qx )Cmv,∞=1
= tw − ts,int

tw − ts
·
[

Grx l,s

(Grx l,s)Cmv,∞=1

]1/4

(
dθl
dηl

)
ηl=0[(

dθl
dηl

)
ηl=0

]
Cmv,∞=1

(20.14)

where tw−ts,int
tw−ts

is wall subcooled temperature ratio, i.e., the ratio of the wall subcooled
temperature with any vapor mass fraction Cmv,∞ (for the laminar free convection
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Fig. 20.2 Wall subcooled temperature ratio tw−ts,int
tw−ts

with variation of the reference wall subcooled

grade ts,ref−tw
ts,ref

and the bulk water vapor fraction Cmv,∞ for laminar free convection film condensation
of water vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the
system pressure. (Note Lines 1–7 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, and 0.2)

film condensation of vapor–gas mixture) to that with Cmv,∞ = 1 (for the laminar

free convection film condensation of pure vapor). Similarly,
[

Grx l,s
(Grx l,s)Cmv,∞=1

]1/4
and(

dθl
dηl

)
ηl=0[(

dθl
dηl

)
ηl=0

]
Cmv,∞=1

are local Grashof number ratio and temperature gradient ratio,

respectively.
With the numerical results on the interfacial vapor saturation temperature ts,int,

shown in chapter 19, the wall subcooled temperature ratio tw−ts,int
tw−ts

are evaluated, and

plotted in Fig. 20.2 [1] with variation of reference wall subcooled grade ts,ref−tw
ts,ref

and
bulk vapor mass fraction Cmv,∞ at the bulk temperature T∞ = 373 K and atmospheric
pressure as the system pressure for laminar free convection film condensation of water
vapor–air mixture.

Similarly the local Grashof number ratio can be expressed as

[
Grx l,s

(Grx l,s)Cmv,∞=1

]1/4

=
[

ρl,w − ρm,∞
ρl,w − (ρm,∞)Cmv,∞=1

]1/4

×
[
(ρl,s)Cm,v∞=1

ρl,s

]1/4 [
(νl,s)Cm,v∞=1

νl,s

]1/2

(20.15)

On this basis, the local Grashof number ratios
[

Grx l,s
(Grx l,s)Cmv,∞=1

]1/4
are evaluated with

the study of Ref. [1], and plotted in Fig. 20.3 with variation of reference wall sub-

http://dx.doi.org/10.1007/978-3-642-28983-5_20
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Fig. 20.3 Local Grashof number ratio
[

Grx l,s
(Grx l,s)Cm,v∞=1

]1/4
with variation of the bulk water vapor

fraction Cmv,∞ for laminar free convection film condensation of water vapor–air mixture at the bulk
temperature T∞ = 373 K and atmospheric pressure as the system pressure [1]

cooled grade ts,ref−tw
ts,ref

and bulk vapor mass fraction Cmv,∞ at the bulk temperature
T∞ = 373 K and atmospheric pressure as the system pressure for laminar free con-
vection film condensation of water vapor–air mixture.

With the above calculation results on the wall subcooled temperature ratio tw−ts,int
tw−ts

,

local Grashof number ratios
[

Grx l,s
(Grx l,s)Cmv,∞=1

]1/4
, and wall temperature gradient

ratio

(
dθl
dηl

)
ηl=0[(

dθl
dηl

)
ηl=0

]
Cm,v∞=1

, the system of values on heat transfer ratio qx
(qx )Cm,v∞=1

are

evaluated, and plotted in Fig. 20.4.
It is seen that the condensate heat transfer will increase more and more quickly

by decreasing the bulk vapor mass fraction Cm,v∞, or decreasing in the reference
wall subcooled grade ts,ref−tw

ts,ref
.

From the values shown in Figs. 20.2–20.5, it is seen that the heat transfer ratios
qx

(qx )Cm,v∞=1
are very well identical to the wall subcooled temperature ratios tw−ts,int

tw−ts
.

Then, it follows that the wall subcooled temperature tw − ts,int dominates the
condensate heat transfer, to a great extent. While, the wall subcooled temperature is
dependent on the wall temperature tw and bulk vapor mass fraction Cmv,∞.
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Fig. 20.4 Temperature gradient ratios

(
dθl
dηl

)
ηl=0[(

dθl
dηl

)
ηl=0

]
Cm,v∞=1

with variation of the reference wall sub-

cooled grade ts,ref−tw
ts,ref

and the bulk water vapor fraction Cmv,∞ for laminar free convection film con-
densation of water vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure
as the system pressure [1]. (Note Lines 1–7 for reference wall subcooled grade ts,ref−tw

ts,ref
= 1, 0.8, 0.6,

0.5, 0.4, 0.3, and 0.2; Line 8 is critical condensation line with subcooled temperature ts,int −tw → 0)

20.5 Condensate Mass Transfer Analysis

Set gx to be a local condensate mass flow rate entering the liquid film at position x
related to per unit area of the plate. According to the boundary layer theory of fluid
mechanics, gx is expressed as

gx = ρl,s

(
wx l,s

dδl

dx
− wyl,s

)
s

(20.16)

With the corresponding dimensionless variables in Eqs. (18.17)–(18.21), the above
equation is changed into the following one:

gx = ρl,s

[
2
√

gx

(
ρl,w − ρmv

ρl,s

)1/2

Wx l,s
dδl

dx

−2
√

gx

(
ρl,w − ρmv

ρl,s

)1/2 (
1

4
Grx l,s

)−1/4

Wyl,s

]
s

http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_18
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Fig. 20.5 Heat transfer ratio qx
(qx )Cmv,∞=1

with variation of the reference wall subcooled grade
ts,ref−tw

ts,ref
and the bulk water vapor fraction Cmv,∞ for laminar free convection film condensation

of water vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the
system pressure [1]. (Note Lines 1–7 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, and 0.2; Line 8 is

critical condensation line with ts,int − tw → 0)

With the definition of local Grashof number Grx l,s, the condensate liquid film thick-
ness δl is expressed as

δl = ηlδ

(
1

4

g(ρl,w − ρmv,s)x3

ν2
l,s · ρl,s

)−1/4

x

or,
dδl

dx
= 1

4
ηlδ

(
1

4
Grx l,s

)−1/4

Then, we have

gx =
(

1

4

g(ρl,w − ρmv)x3

ν2
l,sρl,s

)1/2

x−1
(

1

4
Grx l,s

)−1/4

νl,sρl,s[ηlδWx l,s − 4Wyl,s]s

or

gx = μl,sx−1
(

1

4
Grx l,s

)1/4


s (20.17)

where

s = ηlδWx l,s − 4Wyl,s (20.18)
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is a determinative value for local mass flow rate gx , and defined as condensate
mass flow rate parameter. Obviously, the mass flow rate parameter 
s depends on
the dimensionless condensate film thickness ηlδ as well as interfacial dimensionless
condensate liquid velocity components Wx l,s, and Wyl,s.

If Gx is taken to express total mass flow rate entering the liquid film for position
x = 0 to x with width b of the plate, it should be the following integration:

Gx =
∫∫
A

gx dA = b

x∫
0

gx dx

where A = b · x is the special area of the plate related to condensate mass transfer.
Then, we obtain

Gx = 4

3
b · μl,s

(
1

4
Grx l,s

)1/4


s (20.19)

20.6 Condensate Mass Flow Rate Parameter

From Eqs. (20.17) and (20.19) it is found that the condensate mass flow rate para-
meter 
s, dependent on the dimension condensate film thickness ηlδ , as well as
the interfacial condensate film velocity components Wx l,s, and Wyl,s, is the only one
no-given variable for evaluation of the condensate mass flow rate. A system of numer-
ical solutions of ηlδ , Wx l,s, and −Wyl,s are found out with variation of the reference
wall subcooled grade ts,ref−tw

ts,ref
and the bulk water vapor fraction Cmv,∞ for laminar

free convection film condensation of water vapor–air mixture at the bulk temperature
T∞ = 373 K and atmospheric pressure as the system pressure. Then, a series of val-
ues of the condensate mass flow rate parameter 
s are obtained. The numerical values
of ηlδ , Wx l,s, −Wyl,s, and 
s are plotted in Figs. 20.6, 20.7, 20.8 and 20.9 respec-
tively. It is seen from Figs. 20.6–20.9 that by decreasing the reference wall subcooled
grade ts,ref−tw

ts,ref
and the bulk water vapor fraction Cmv,∞, the dimension condensate

film thickness ηlδ , interfacial condensate film velocity components Wx l,s, and Wyl,s,
and condensate mass flow rate parameter will decrease at an accelerative pace.

Meanwhile, the rigorous numerical results on the dimensionless condensate film
thickness ηlδ are formulated to Eqs. (20.20)–(20.23) for the most significant ranges of
the reference wall subcooled grade ts,ref−tw

ts,ref
and the bulk water vapor fraction Cmv,∞

for laminar free convection film condensation of water vapor–air mixture at the
bulk temperature T∞ = 373 K and atmospheric pressure as the system pressure. The
results on the dimensionless condensate film thickness ηlδ predicted by Eqs. (20.20)–
(20.23) are compared in Table 20.3 with the related rigorous numerical solutions. It
is seen that their agreements are pretty good.

ηlδ = aCb
mv,∞ (0.8 ≤ Cmv,∞ ≤ 0.999) (20.20)
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Fig. 20.6 Condensate film thickness ηlδ with variation of the reference wall subcooled grade ts,ref−tw
ts,ref

and the bulk water vapor fraction Cmv,∞ for laminar free convection film condensation of water
vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the system
pressure. (Note Lines 1–8 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, 0.25, and 0.2)
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Fig. 20.7 Interfacial velocity component −Wx l,s with variation of reference wall subcooled grade
ts,ref−tw

ts,ref
and bulk water vapor fraction Cmv,∞ for laminar free convection film condensation of water

vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the system
pressure. (Note Lines 1–7 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, 0.25, and 0.2)

where

a = 0.6917

(
ts,ref − tw

ts,ref

)0.585 (
0.25 ≤ ts,ref − tw

ts,ref
≤ 0.4

)
(20.21)

a = 0.4248

(
ts,ref − tw

ts,ref

)
+ 0.2377

(
0.4 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.22)
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Fig. 20.8 Interfacial velocity component Wyl,s with variation of reference wall subcooled grade
ts,ref−tw

ts,ref
and bulk water vapor fraction Cmv,∞ for laminar free convection film condensation of water

vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the system
pressure. (Note Lines 1–7 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, 0.25, and 0.2)
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Fig. 20.9 Condensate mass flow rate parameter 
s with variation of the reference wall subcooled
grade ts,ref−tw

ts,ref
and the bulk water vapor fraction Cmv,∞ for laminar free convection film condensation

of water vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the
system pressure. (Note Lines 1–7 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, 0.25, and 0.2)

b =
[

0.3222

(
ts,ref − tw

ts,ref

)−0.818
](

ts,ref−tw
ts,ref

)−1 (
0.25 ≤ ts,ref − tw

ts,ref
≤ 0.4

)

(20.23)

b = 0.1631

(
ts,ref − tw

ts,ref

)−0.8919 (
0.4 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.24)
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Furthermore, the rigorous numerical results on the condensate mass flow rate
parameter 
s are formulated to Eqs. (20.25)–(20.30) for the most significant ranges
of the reference wall subcooled grade ts,ref−tw

ts,ref
and the bulk water vapor fraction

Cmv,∞ for laminar free film condensation of water vapor–air mixture at the bulk
temperature T∞ = 373 K and atmospheric pressure as the system pressure. The
results on the condensate mass flow rate parameter 
s predicted by Eqs. (20.25)–
(20.30) are compared in Table 20.7 with the related rigorous numerical solutions. It
is seen that their agreements are pretty good.


s = aCb
mv,∞ (0.8 ≤ Cmv,∞ ≤ 0.999) (20.25)

where

a = 0.0518Ln

(
ts,ref − tw

ts,ref

)
+ 0.0977

(
0.25 ≤ ts,ref − tw

ts,ref
≤ 0.4

)
(20.26)

a = 0.0535Ln

(
ts,ref − tw

ts,ref

)
+ 0.0999

(
0.4 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.27)

b =
[

0.5724

(
ts,ref − tw

ts,ref

)−0.5855
](

ts,ref−tw
ts,ref

)−1 (
0.25 ≤ ts,ref − tw

ts,ref
≤ 0.4

)

(20.28)

b = 5.975

(
ts,ref − tw

ts,ref

)2

− 7.7835

(
ts,ref − tw

ts,ref

)

+ 3.1067

(
0.4 ≤ ts,ref − tw

ts,ref
≤ 0.6

)
(20.29)

b = 0.8287

(
ts,ref − tw

ts,ref

)2

− 1.7672

(
ts,ref − tw

ts,ref

)

+ 1.3496

(
0.6 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.30)

It is seen that decreasing the bulk vapor mass fraction Cmv,∞ and reference wall sub-
cooled grade ts,ref−tw

ts,ref
will cause decrease the condensate film thickness ηlδ , interfacial

velocity components Wx l,s and −Wyl,s, and condensate mass flow rate parameter 
s
more and more quickly.
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Table 20.4 Comparison of selected numerical solutions on Condensate film thickness ηlδ with
the results evaluated by Eqs. (20.20)–(20.24) for laminar free film condensation of water vapor–air
mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the system pressure

Tw (K) ts,ref−tw
ts,ref

Cmv,∞
0.8 0.86 0.9 0.95 0.99 0.999
ηlδ

0 1 (1) 0.636341 0.6442487 0.6492453 0.65507 0.6595225 0.660499
(2) 0.638821993 0.6464 0.65121 0.65698 0.66141 0.66239

20 0.8 (1) 0.5531 0.5612592 0.5663613 0.5724277 0.577030 0.5780500
(2) 0.552453113 0.56046 0.56556 0.57167 0.57639 0.57743

40 0.6 (1) 0.4689501 0.4777554 0.4830902 0.4897469 0.494531 0.4956
(2 ) 0.46510248 0.47384 0.47941 0.48612 0.49131 0.49245

50 0.5 (1) 0.4229322 0.4324611 0.4383852 0.4453527 0.4506342 0.4517883
(2) 0.42070635 0.43002 0.43597 0.44317 0.44873 0.44996

60 0.4 (1) 0.3701521 0.3811902 0.3879718 0.3959070 0.4018544 0.4031519
(2) 0.375376288 0.38554 0.39206 0.39997 0.40611 0.40747

70 0.3 (1) 0.299236 0.314672 0.323792 0.334162 0.341775 0.343415
(2) 0.298406976 0.31189 0.32068 0.33145 0.33991 0.3418

75 0.25 (1) 0.242007 0.265449 0.278231 0.291917 0.301713 0.303786
(2) 0.245615697 0.26414 0.2765 0.29195 0.30431 0.3071

Note (1) denotes numerical solutions, and (2) denotes the results predicted by Eqs. (20.20)–(20.24)

20.7 Variation of Condensate Mass Flow Rate

Set (gx )Cm,v∞=1 to be the condensate mass transfer rate related to Cmv,∞ = 1, which
is actually corresponding to the film condensation of pure vapor. Then, gx

(gx )Cm,v∞=1
is

defined as ratio of condensate mass transfer from the vapor–gas mixture to that from
pure vapor, and called condensate mass transfer ratio, for short. From Eq. (20.17),
the mass transfer ratio can be expressed as

gx

(gx )Cm,v∞=1
= μl,s

(μl,s)Cm,v∞=1

[
Grx l,s

(Grx l,s)Cm,v∞=1

]1/4

s

(
s)Cm,v∞=1
(20.31)

According to the calculation results in research of [1], the absolute viscosity ratios
are evaluated, and plotted in Fig. 20.10 with variation of the bulk vapor mass fraction
Cm,v∞. It is seen that the absolute viscosity ratios increase more and more quickly
by decreasing the bulk vapor mass fraction Cm,v∞.

With the evaluated values of the mass flow rate parameters 
s shown in Fig. 20.9,
the evaluated values of mass flow rate parameter ratio 
s

(
s)Cm,v∞=1
are plotted in

Fig. 20.11 with variation of reference wall subcooled grade ts−tw
ts

and the bulk water
vapor fraction Cmv,∞ for laminar free film condensation of water vapor–air mixture at
the bulk temperature T∞ = 373 K and atmospheric pressure as the system pressure.
It is seen that by decreasing the bulk vapor mass fraction Cmv,∞ and reference wall
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Table 20.8 Comparison of selected numerical solutions on Condensate mass flow rate parameter
s

with variation of the reference wall subcooled grade ts,ref−tw
ts,ref

and the bulk water vapor fraction Cmv,∞
for laminar free convection film condensation of water vapor–air mixture at the bulk temperature
T∞ = 373 K and atmospheric pressure as the system pressure

Tw, K
ts,ref−tw

ts,ref
Cmv,∞
0.8 0.86 0.9 0.95 0.99 0.999

s

0 1 (1) 0.090289 0.0930502 0.09480458 0.096932 0.0985688 0.0989301
(2) 0.0911435 0.0938939 0.09566533 0.0978154 0.0994880 0.0998589

20 0.8 (1) 0.079940 0.0827328 0.08451450 0.086655 0.0883094 0.0886712
(2) 0.07927093 0.0819892 0.08374554 0.08588331 0.08755063 0.08792080

40 0.6 (1) 0.064072 0.0669306 0.06877525 0.070943 0.0726525 0.0730237
(2) 0.06365283 0.06641610 0.06821423 0.07041618 0.07214351 0.07252817

50 0.5 (1) 0.053526 0.0564622 0.05832845 0.060570 0.0622983 0.0626773
(2) 0.05362835 0.05644866 0.05829700 0.06057414 0.06237079 0.06277210

60 0.4 (1) 0.040601 0.0436889 0.04564467 0.047984 0.0497802 0.0501802
(2) 0.04116585 0.04409133 0.04603585 0.04846038 0.05039533 0.05083014

70 0.3 (1) 0.024163 0.0276412 0.029812256 0.032386 0.0343476 0.0347777
(2) 0.024547254 0.027623136 0.029751062 0.03249617 0.034759252 0.035276549

75 0.25 (1) 0.013573 0.0175685 0.020014707 0.022832 0.0249761 0.0254435
(2) 0.013986615 0.017075869 0.019358228 0.022472976 0.0251818 0.025818573
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Fig. 20.10 Absolute viscosity ratio μl,s
(μl,s)Cm,v∞=1

with variation of bulk vapor mass fraction Cm,v∞
for laminar free convection film condensation of water vapor–air mixture at the bulk temperature
T∞ = 373 K and atmospheric pressure as the system pressure [1]
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Fig. 20.11 Mass flow rate parameter ratio 
s
(
s)Cm,v∞=1

with variation of the reference wall subcooled

grade and the bulk water vapor fraction for laminar free convection film condensation from water
vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric pressure as the system
pressure [1]. (Lines 1–7 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, and 0.2)

subcooled grade ts,ref−tw
ts,ref

, the mass flow rate parameter ratios will decrease more and
more quickly.

According to the above calculation results the condensate mass flow rate ratios
gx

(gx )Cm,v∞=1
are found out, and plotted in Fig. 20.12 with the variation of the bulk

vapor mass fraction Cm,v∞ and the reference wall subcooled grade ts,ref−tw
ts,ref

. It is seen

that the condensate mass transfer ratios gx
(gx )Cm,v∞=1

decrease more and more quickly

by decreasing the bulk vapor mass fraction Cm,v∞ and the reference wall subcooled
grade ts,ref−tw

ts,ref
.

Comparing the data of Fig. 20.5 with those of Fig. 20.12, it is seen that, like
the condensate heat transfer ratio qx

(qx )Cm,v∞=1
, the condensate mass transfer ratio

gx
(gx )Cm,v∞=1

is also coincident to the wall subcooled temperature ratio tw−ts,int
tw−ts

, then, it

follows that, like the condensate heat transfer, the condensate mass flow rate is also
dominated by the wall subcooled temperature tw − ts,int. However, the condensate
heat transfer rate qx is defined on the plate, and the condensate mass transfer rate
gx is defined at the liquid–vapor interface. Such deference in definition causes only
very slight difference between the condensate heat transfer ratio and condensate mass
transfer ratio.
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Fig. 20.12 Condensate mass flow rate ratio gx
(gx )Cm,v∞=1

with variation of the reference wall sub-

cooled grade ts,ref−tw
ts,ref

and the bulk water vapor fraction Cmv,∞ for laminar free convection film
condensation from water vapor–air mixture at the bulk temperature T∞ = 373 K and atmospheric
pressure as the system pressure [1]. (Lines 1–7 for ts,ref−tw

ts,ref
= 1, 0.8, 0.6, 0.5, 0.4, 0.3, and 0.2)

20.8 Quite Different Film Condensations

The present work for the laminar free convection film convection of vapor in presence
of non-condensable gas is based on our previous studies for laminar free convection
film condensation of pure vapor presented in Chaps. 14–17. However, condensate
heat and mass transfer rate of the laminar free convection film condensation from
vapor in presence of non-condensable gas even for Cmv,∞ → 1 is quite different
from that of pure vapor, which can be known from the great variations of the wall
dimensionless temperature gradient and the condensate mass flow rate parameter
for Cmv,∞ = 0.999 and 1 shown in Tables 20.1 and 20.7 respectively. Such a big
difference is caused by condensation mechanism. For the laminar free convection
film convection of vapor in presence of non-condensable gas, the film condensation
at the liquid–vapor interface is always accompanied by vapor diffusion even for
Cmv,∞ → 1. For the laminar free convection film condensation of pure vapor, the
vapor is directly condensed at the liquid–vapor interface without any mass diffusion.
According to the present calculated results for Tw = 273 and Tw = 353 K, the heat
transfer rates of the laminar free convection film condensation with Cm,v∞ = 0.999
will reduce 15.3 and 70.1 % respectively, compared with the related film condensation
of the pure water vapor. Meanwhile, the related condensate mass transfer rates will
decrease 16.1 and 70.2 % respectively.

In order to express the difference mentioned above, the results of the heat transfer

ratio
(qx )Cm,v∞=0.999

(qx )Cm,v∞=1
and mass transfer ratio

(gx )Cm,v∞=0.999

(gx )Cm,v∞=1
are evaluated numerically,

http://dx.doi.org/10.1007/978-3-642-28983-5_14
http://dx.doi.org/10.1007/978-3-642-28983-5_17
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Fig. 20.13 Heat and mass transfer deviations of the case with Cm,v∞ = 0.999 to that
with Cm,v∞ = 1 for laminar free film condensation from water vapor–air mixture at
the bulk temperature T∞ = 373 K and atmospheric pressure as the system pressure.(

Line 1 for
(qx )Cm,v∞=0.999

(qx )Cm,v∞=1
and line 2 for

(gx )Cm,v∞=0.999

(gx )Cm,v∞=1

)

and plotted in Fig. 20.13 with variation of wall temperature Tw for laminar free film
condensation from water vapor–air mixture at the bulk temperature T∞ = 373 K
and atmospheric pressure as the system pressure. It is seen that even a very small
mass fraction of non-condensable gas in the vapor–gas mixture, for example for
Cm,g∞ = 1−Cm,v∞ = 0.001, the condensate heat and mass transfer will be reduced
very greatly compared with that for the condensation of pure vapor. Furthermore,

by increasing the wall temperature Tw, such heat and mass transfer,
(qx )Cmv,∞�=1

(qx )Cmv,∞=1
and

(gx )Cmv,∞�=1

(gx )Cmv,∞=1
, will decrease more and more quickly. From the present analysis and

calculated results, it is found that even a very small amount of non-condensable gas
in the vapor–gas mixture, will change very greatly the wall subcooled temperature,
temperature gradient, condensate liquid film thickness, and the condensate liquid
velocity components, and then, will greatly decrease the heat and mass transfer of the
film condensation. If we take the wall subcooled temperature, temperature gradient,
condensate liquid film thickness, condensate liquid velocity components, and heat
and mass transfer rates as function of Cmv,∞, i.e., function f (Cmr,v∞), such function
can be mathematically described by a mathematical expression f (Cmv,∞ → 0) �=
f (Cmv,∞ = 0). It means that the function f (Cmv,∞) is discontinuous at the point
Cmv,∞ = 0. Therefore, in order to have the highest condensate heat and mass transfer
rates of the film condensation, it is best to provide the pure vapor.
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20.9 Summary

At present, it is the time to summarize the complete mathematical models and heat
and mass equations on laminar free convection film condensation of vapor–gas mix-
ture in Tables 20.9 and 20.10, including the two-phase film flows governing partial
differential equations, similarity variables, dimensionless similarity governing equa-
tions, the physical property factor equations, and heat and mass transfer equations.

20.10 Remarks

The theoretical equations on heat and mass transfer are set up through the heat and
mass transfer analysis for laminar free convection film condensation of vapor–gas
mixture. In the theoretical equations only dimensionless wall temperature gradient
and condensate mass flow rate parameter are no-given variables respectively for
prediction of heat and mass transfer rates respectively.

The laminar free convection film condensation of water vapor in presence of air
on a vertical flat plate is taken as example for the numerical solutions on condensate
heat and mass transfer, including those on the dimensionless temperature gradient
and mass flow rate parameter. By decreasing the bulk vapor mass fraction and refer-
ence wall subcooled grade, the wall dimensionless temperature gradient will increase
at accelerative pace. Decreasing the bulk vapor mass fraction and reference wall sub-
cooled grade will cause decrease in the condensate mass flow rate parameter quicker
and quicker. These phenomena demonstrate decisive effect of the non-condensable
gas on condensate heat and mass transfer of the laminar free film condensation of
vapor–gas mixture.

The system of the rigorous key solutions on the wall dimensionless temperature
gradient and the condensate mass flow rate parameter is formulated to the simple
and reliable equations for the laminar free convection film condensation of water
vapor–air mixture. With the formulated equations on wall dimensionless temperature
gradient and the condensate mass flow rate parameter, the theoretical equations on
the condensate heat and mass transfer can be used for reliable and simple prediction
of heat and mass transfer on laminar free convection film condensation of water
vapor–air mixture.

The condensate heat transfer rate is dominated by the wall subcooled temperature
tw − ts,int. The condensate mass flow rate is dominated by the condensate mass
flow rate parameter. The condensate heat transfer rate is identical to the condensate
mass flow rate. Due to the different condensate mechanisms, the condensate heat
and mass transfer rate of the laminar free convection film condensation from vapor
in presence of non-condensable gas is quite different from that of pure vapor, even
for Cmv,∞ → 0.
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20.11 Calculation Examples

Example 1 A flat plate, 0.1 m in width and 0.05 m in length, is located vertically in
the bulk water vapor–air mixture. The wall temperature is tw = 55 ◦C, the saturation
temperature of water at atmospheric pressure is ts = 100◦C, the vapor bulk temper-
atures are t∞ = 100 ◦C, and the bulk vapor mass fraction is Cm,v∞ = 0.95. Please
solve the following questions:

(1) Calculate the condensate heat transfer rate on the plate;
(2) Calculate the condensate mass flow rate on the plate.

Solution (1): Calculate the condensate heat transfer rate on the plate

(a) The related main equations on heat transfer
With tw = 55, the reference wall subcooled grade ts,ref−tw

ts,ref
= 100−55

100 = 0.45.
Then, for evaluation of the heat transfer rate on the plate, the following equations
will be used:

Qx,w = 4

3
bλl,w(tw − ts,int)

(
1

4
Grx l,s

)1/4 (
− dθl

dηl

)
ηl=0

(20.4)

(
− dθl

dηl

)
ηl=0

= aCb
mv,∞ (0.8 ≤ Cmv,∞ ≤ 0.999) (20.8)

a = 1.6976

(
ts,ref − tw

ts,ref

)−0.4302 (
0.4 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.10)

b = −1.94

(
ts,ref − tw

ts,ref

)2

+ 2.623

(
ts,ref − tw

ts,ref

)
(20.12)

− 1.1057

(
0.4 ≤ ts,ref − tw

ts,ref
≤ 0.6

)

(b) Evaluation of the interfacial vapor saturation temperature
First of all, it is very important to predict the interfacial vapor saturation temper-
ature for prediction of heat transfer of laminar free film condensation of water
vapor–air mixture. With Eq. (19.31), we have

Ts,int = 357.06C0.063
mv,∞ = 357.06 × 0.950.063 = 355.9 K

Then,
ts,int = 82.9 ◦C

(c) Prediction of the wall dimensionless temperature gradient
(
− dθl

dηl

)
ηl=0

= aCb
mv,∞

http://dx.doi.org/10.1007/978-3-642-28983-5_19


20.11 Calculation Examples 453

a = 1.6976

(
ts,ref − tw

ts,ref

)−0.4302

= 1.6976 × 0.45−0.4302 = 2.393444

b = −1.94

(
ts,ref − tw

ts,ref

)2

+ 2.623

(
ts,ref − tw

ts,ref

)
− 1.1057

= −1.94 × 0.452 + 2.623 × 0.45 − 1.1057
= −0.3182

Then, (
− dθl

dηl

)
ηl=0

= 2.393444 × 0.95−0.3182 = 2.432829

(d) Determination of the physical property λl,w
With tw = 55, we have
λl,w = 0.648 W/(m ◦C)

(e) Calculation of the local Grashof number Grx l,s With Eq. (18.18), we have

Grx l,s = g(ρl,w − ρm,∞)x3

ν2
l,sρl,s

where

ρl,w = −4.48 × 10−3t2
w + 999.9 = −4.48 × 10−3 × 552 + 999.9 = 986.3.1kg/m3

ρl,s = −4.48 × 10−3t2
s,int + 999.9 = −4.48 × 10−3 × 82.92 + 999.9 = 970.41 kg/m3

μl,s = exp

(
−1.6 − 1150

ts,int + 273
+

(
690

ts,int + 273

)2
)

× 10−3

= exp

(
−1.6 − 1150

82.9 + 273
+

(
690

82.9 + 273

)2
)

× 10−3

= 342 × 10−6 kg/(m s)

νl,s = μl,s/ρl,s = 342 × 10−6/970.41 = 0.3526 × 10−6 m2/s

With Eq. (19.15)

ρm,∞ = ρv,∞ρg,∞
(1 − Cmv,∞)ρv,∞ + Cmv,∞ρg,∞

where ρv,∞ = 0.5977 kg/m3, and ρg,∞ = 0.9336 kg/m3 at t∞ = 100 ◦C
Then,

http://dx.doi.org/10.1007/978-3-642-28983-5_18
http://dx.doi.org/10.1007/978-3-642-28983-5_19
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ρm,∞ = ρv,∞ρg,∞
(1 − Cmv,∞)ρv,∞ + Cmv,∞ρg,∞

= 0.5977 × 0.9336

(1 − 0.95) × 0.5977 + 0.95 × 0.9336
= 0.60865 kg/m3

Grx l,s = g(ρl,w − ρm,∞)x3

ν2
l,sρl,s

= 9.8 × (986.3 − 0.60865) × 0.053

(0.3526 × 10−6)2 × 970.4
= 1.0×1010

(f) Summary of the necessary physical properties in the calculation
The necessary physical properties in the calculation are summarized in
Table 20.11.

(g) Calculation of the condensate heat transfer rate on the plate
The condensate heat transfer rate on the plate is

Qx = 4

3
bλl,w(tw − ts,int)

(
1

4
Grx l,s

)1/4 (
− dθl

dηl

)
ηl=0

=
(

4

3
× 0.1 × 0.648

)
× (55 − 82.9) ×

(
1

4
× 1.0 × 1010

)1/4

× 2.432829

= −1311.3 W

The negative sigh notes that the heat flux is to the wall surface from the fluids.

Solution (2): Calculate the condensate mass flow rate on the plate
With Eq. (20.17), the condensate mass flow rate on the plate is evaluated by

Gx = 4

3
b · μl,s

(
1

4
Grx l,s

)1/4


s

where the condensate mass flow rate on the plate for the reference wall subcooled
grade (�tw)s

ts
= 0.45 and the bulk vapor mass fraction Cmv,∞ = 0.95 is calculated by


s = aCb
mv,∞ (0.8 ≤ Cmv,∞ ≤ 0.999) (20.25)

a = 0.0535Ln

(
ts,ref − tw

ts,ref

)
+0.0999

(
0.4 ≤ ts,ref − tw

ts,ref
≤ 1

)
(20.27)

b=5.975

(
ts,ref − tw

ts,ref

)2

− 7.7835

(
ts,ref − tw

ts,ref

)
+ 3.1067

(
0.4 ≤ ts,ref − tw

ts,ref
≤ 0.6

)

(20.29)
Then,
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a = 0.0535Ln

(
ts,ref − tw

ts,ref

)
+ 0.0999 = 0.0535Ln(0.45) + 0.0999 = 0.05718

b = 5.975

(
ts,ref − tw

ts,ref

)2

− 7.7835

(
ts,ref − tw

ts,ref

)
+ 3.1067

= 5.975(0.45)2 − 7.7835(0.45) + 3.1067 = 0.814063

s = aCb

mv,∞ = 0.05718 × 0.950.814063 = 0.05484

The condensate mass flow rate on the plate is

Gx = 4

3
b · μl,s

(
1

4
Grx l,s

)1/4


s

= 4

3
× 0.1 × 0.000342 ×

(
1

4
× 1.0 × 1010

)1/4

× 0.05484 = 0.000559 kg/s

= 0.000559 kg/s
= 2.01 kg/h

20.12 Exercises

1. Follow Example 1, in which only the wall temperature is changed to 75 ◦C, and
all other conditions are kept. Please solve the following questions:

(a) calculate the condensate heat transfer rate on the plate;
(b) calculate the condensate mass flow rate on the plate;
(c) calculate the condensate film thickness for x = 0.01, 0.02, 0.03, 0.04, and

0.05 m respectively.

2. Which variable dominates the condensate heat transfer on laminar free convec-
tion film condensation of vapor–gas mixture? What does this variable depend
on?

3. Which variable dominates the condensate mass transfer on laminar free film
condensation of vapor–gas mixture? Which conditions does this variable depend
on?

4. In the theoretical analysis equation on condensate heat transfer of the laminar film
convection condensation of vapor–gas mixture, which variable is the only one
no-given condition for prediction of condensate heat transfer? Which conditions
does this variable depend on?

5. In the theoretical analysis equation on condensate mass transfer of the laminar
film condensation of vapor–gas mixture, which variable is the only one no-given
condition for prediction of condensate mass transfer? Which conditions does
this variable depend on?

6. Which physical variable dominates condensate heat transfer for the laminar free
convection film condensation of vapor–gas mixture, why?
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7 . Which physical variable dominates condensate mass transfer for the laminar
free convection film condensation of vapor–gas mixture, why?

8. Please describe simply the effects of non-condensable gas, and wall subcooled
grade on condensate heat and mass transfer of the laminar free convection film
condensation of vapor–gas mixture.

9. Please explain why heat and mass transfer of the laminar free convection film
condensation of vapor–gas mixture is so different from that of pure vapor?

10. What is the definition of the reference wall subcooled grade?

Reference

1. D.Y. Shang, L.C. Zhong, Extensive study on laminar free film condensation from vapor-gas
mixture. Int. J. Heat Mass Trans. 51, 4300–4314 (2008)



Part IV
Gravity-Driven Film Flow

of Non-Newtonian Fluids



Chapter 21
Hydrodynamics of Falling Film Flow
of Non-Newtonian Power-Law Fluids

Abstract The new similarity analysis method has been applied to extensively study
the gravity-driven flow of a non-Newtonian liquid film along inclined surface. The
partial differential equations governing the hydrodynamics of the power-law fluid
are transformed exactly into a set of two ordinary differential equations, which can
be calculated numerically to an arbitrary degree of accuracy. The non-linearity of
the momentum boundary layer problem for power-law fluid increases with increas-
ing pseudo-plasticity |1 − n| and the variable grid spacing is therefore increasingly
important. The solutions of the system of dimensionless ordinary differential equa-
tions depends only on the single parameter n, and all other parameters, like the
streamwise location x , the fluid properties K/ρ, and the component of the gravita-
tional acceleration along the surface g · cosα have been combined into a generalized
local Reynolds number Rex and dimensionless velocity Wx and Wy . Various flow
characteristics can thus be expressed only in term of n and Rex . In order to determine
x0 the particular position x0, at which the entire freestream has been entrained into the
momentum boundary layer, and the associated critical film thickness δl(x0), knowl-
edge about the total mass flow rate ρQ within the film is also required, together with
the new dimensionless mass flux parameter φ. The latter quantity, which depends on
the dimensionless boundary layer thickness ηδl and the velocity components Wx,δl

and Wy,δl at the edge of the boundary layer, is generally obtained as the numerical
solution of the transformed problem and turned out to be function only of the power-
law index n. However, to facilitate rapid and accurate estimate of φ, polynomial
curve-fit formulas have been developed on the basis of the new similarity analysis
model.

21.1 Introduction

For heat-sensitive materials, short residence time and close temperature controls
during heat transfer process are essential, which can be achieved by allowing a liq-
uid to flow in a thin falling film along a solid surface. Such cooling techniques have

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 461
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_21,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 21.1 Diagram for power-
law fluids. 1 Pseudo-plastic
fluid. 2 Dilatant fluid. 3 New-
tonian fluid

-dwx/dy 

τ

been widely used in many industrial applications, which are especially the chemical
engineering operations, food and polymer processing industries, cooling systems,
distillation, evaporators, ocean thermal energy conversion systems (OTEC), molten
plastics, pulps, coating equipment, etc. Such heat exchangers are characterized by
high heat transfer coefficients at low mass flow rates and small temperature differ-
ences, and invite a lot of work for the extensive studies.

Fully developed laminar film flow of non-Newtonian power-law fluids along a
plane surface was conducted by Astarita et al. [1], who measured the film thickness
for various inclinations and flow rates. Later, Therien et al. [2] conducted a similar
study, in which experimental data for the film thickness were compared with an
analytical expression for the thickness of fully developed films of power-law fluids.
Sylvester et al. [3] also measured the film thickness as a function of the volumetric
flow rate, but they primarily focused on the onset of rippling on the film surface and
the characteristics of wavy film.

Yang and Yarbrough [4, 5], Murthy and Sarma [6, 7], Tekic et al. [8], Andersson
and Irgens [9] among others have used the integral method approach to study the
hydrodynamics of gravity-driven power law films. Theoretical analyses of hydro-
dynamics of gravity-driven power-law fluid films have been studied by means of
similarity analysis by Andersson and Irgens [10, 11], Yang and Yarbrough [4, 5].
Murthy and Sarma [6] extended the conventional integral analysis for Newtonian
films to cover power-law fluids. Later, Murthy and Sarma [7] included the effect of
interfacial drag at the liquid–vapor interface in a similar analysis, while Tekic et al.
[8] presented results accounted for the streamwise pressure gradient and surface ten-
sion. Andersson and Irgens [9] explored the influence of the rheology of the film on
the hydrodynamic entrance length.

A different approach was adopted by Andersson and Irgens [10, 11], namely to
divide the accelerating film flow into three regions shown schematically in Fig. 21.1,
the boundary layer region, the fully viscous region, and the developed flow region.
While the boundary layer region is divided into a developing viscous boundary layer
and an external inviscid freestream. They further demonstrated that a similarity trans-
formation exists, such that the boundary layer momentum equation for power-law
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fluids is exactly transformed into a Falkner-Skan type ordinary differential equa-
tion. The resulting two-point boundary-value problem was solved numerically with
a standard shooting technique based on classical 4th-order Runge–Kutta integration
in combination with a Newton iteration procedure. Numerical results were obtained
for values of the power-law index n in the range 0.5 ≤ n ≤ 2.0. Andersson and
Irgens [11] provided a relative extensive review on the study of hydrodynamics of a
falling film flow of power law fluids.

The dissolution of a soluble wall and the subsequent penetration of the solute
into the non-Newtonian liquid film were considered by Astarita [12]. He provided
the mass transfer rate between the wall and the hydrodynamically fully developed
film, with an assumption of velocity near the wall to vary linearly with the distance
from the wall. Mashelkar and Chavan [13] provided a more general solution of this
problem.

More recently, Andersson and Shang [14] provided a development on formu-
lation of a new similarity transformation for extensive studies of accelerating non-
Newtonian film flow. The partial differential equations governing the hydrodynamics
of the flow of a power-law fluid on an inclined plane surface are transformed into a set
of two ordinary differential equations by means of the velocity component approach.
Although the analysis is applicable for any angle of inclination α(0 ≤ α ≤ π/2), the
resulting one-parameter problem involves only the power-law index n. Nevertheless,
physically essential quantities, like the velocity components and the skin-friction
coefficient, do depend on α and the relevant relationships are deduced between the
vertical and inclined cases. Accurate numerical similarity solutions are provided
for n in the range from 0.1 to 2.0. The present method enables solutions to be
obtained also for highly pseudo-plastic films, i.e. for n below 0.5. The mass flow rate
entrained into the momentum boundary layer from the inviscid freestream is expressed
in term of a dimensionless mass flux parameter φ, which depends on the dimension-
less boundary layer thickness and the velocity components at the edge of the viscous
boundary layer, which is thus an integral part of the similarity solution, turns out to
decrease monotonically with n. Using this new model, they were able to determine
some difficult issues, such as the mass flow rate entrained into the boundary from
the free stream and the length of boundary layer region, etc.

In this chapter, before we focus on recent developments on hydrodynamics analy-
sis for the boundary layer region, we introduce briefly the principal types of power-
law fluids.

21.2 Principal Types of Power-Law Fluids

21.2.1 Newtonian Fluids

In the previous chapters, we have presented the free convection, film boiling, and
film condensation, where all the fluids dealt with are Newtonian fluids. Newtonian
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fluids are those which follow Newton’s law, i.e.

τ = −μ
dwx

dy
(21.1)

for special coordinate. Here, τ is shear force, and μ is the absolute viscosity, a
constant independent of shear rate. If a fluid does not follow Eq. (21.1), it is a non-
Newtonian fluid. Figure 21.1 shows shear stress τ is proportional to the shear rate
− dwx

dy . The line for a Newtonian fluid is straight, the slope being μ.
However, a non-Newtonian fluid is a fluid in which the viscosity changes with the

applied shear force. As a result, Non-Newtonian fluids may not have a well-defined
viscosity.

21.2.2 Power-Law Fluids

Power-law fluids can be subdivided into the following types according to the range
of their power-law index:

(i) Non-Newtonian pseudo-plastic fluids
For such fluids, the apparent viscosity will be reduced with rate of shear. The

shape of the flow curve is shown in Fig. 21.1, and it generally can be represented by
a power-law equation (sometimes called the Ostwald-de Waele equation).

τ = K

(
−dwx

dy

)n

(n < 1) (21.2)

where K is coefficient of consistency, and n is the power-law index. The apparent
viscosity μa in Eq. (21.3) is obtained from Eqs. (21.1) and (21.2) and decreases with
increasing shear rate:

μa = K

(
−dwx

dy

)n−1

(21.3)

A common household example of a strongly shear-thinning fluid is styling gel, which
primarily composed of water and a fixative such as a vinyl acetate/vinyl pyrrolidone
copolymer (PVP/PA). The majority of non-Newtonian fluids is in this category and
includes polymer solutions or melts, greases, starch suspensions, mayonnaise, bio-
logical fluids, detergent slurries, dispersion media in certain pharmaceuticals, and
paints. Additionally, some colloids, clay, milk, gelatine, blood, and liquid cement
also belong to pseudo-plastic fluids.

(ii) Non-Newtonian dilatant fluids
For dilatant fluids the power-law equation is often applicable, but with n > 1 as

shown in Fig. 21.2, which means that their apparent viscosity will increase with rate
of shear, i.e.
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Fig. 21.2 Schematic representation of accelerating film flow

τ = K

(
−dwx

dy

)n

(n > 1) (21.4)

These fluids, or shear-thickening fluids are far less common than pseudo-plastic
fluids, and their flow behavior (Fig. 21.1) shows an increase in apparent viscosity
with increasing shear rate.

From Eq. (21.1) it is found that Newtonian fluid is the power-law fluid with a unit
power-law index, where the shear stress is directly proportional to the shear rate.
Therefore, Newtonian fluids can be regarded as special non-Newtonian power-law
fluids. In addition, Newtonian fluids include many of the most common fluids, such
as water, most aqueous solutions, oils, corn syrup, glycerine, air, and other gases.

So far, the principal types of power-law fluids can be summarized as Table 21.1.

21.3 Physical Model and Governing Partial Differential
Equations

Consider the accelerating laminar flow of a non-Newtonian power-law liquid film
down along an inclined plane surface, as shown schematically in Fig. 21.3. The
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Table 21.1 Types of power-law fluids

Name of the Range of power-law Example
power-law fluid index n included

Pseudo-plastic fluid (majority
of non-Newtonian fluids)

n < 1 Polymer solutions or melts, greases, starch
suspensions, mayonnaise, biological
fluids, detergent slurries, dispersion media
in certain pharmaceuticals, paints, styling
gel, some colloids, clay, milk, gelatine,
blood, and liquid cement

Newtonian fluid (many of the
most common fluids)

n = 1 Such as water, most aqueous solutions, oils,
corn syrup, glycerine, air, and other gases

Dilatant fluid (far less common
than pseudo-plastic fluid)

n > 1 Some corn flour-sugar solutions, wet beach
sand, starch in water, potassium silicate in
water, some solutions containing high
concentrations of powder in water, an
uncooked paste of cornstarch and water,
concentrated solution of sugar in water,
and suspensions of rice starch or corn
starch

incompressible and inelastic fluid is assumed to obey the Ostwald-de-Waele power-
law model and the action of viscous stresses is confined to the developing momentum
boundary layer adjacent to the solid surface. The basic conservation equations for
mass and momentum within the viscous boundary layer are:

∂wx

∂x
+ ∂wy

∂y
= 0 (21.5)

wx
∂wx

∂x
+ wy

∂wx

∂y
= g cos α + n

K

ρ

(
∂wx

∂y

)n−1
∂2wx

∂y2 (21.6)

with boundary conditions

y = 0 : wx = 0, wy = 0 (21.7)

y = δl : wx = wx,∞ (21.8)

where wx and wy are velocity exponents in x and y directions respectively, while g and
α denote the gravitational acceleration and the angle of inclination of the plane wall.
Here it has been anticipated that ∂wx

∂y ≥ 0 throughout the entire the film. The fluid
physical properties ρ, cp, K and n assumed to be constant in the present analysis are
density, specific heat, coefficient of consistency, and power-law index, respectively.
The two-parameter rheological model represents pseudo-plastic or shear-thing fluids
if the power-law index n smaller than unity and dilatant or shear-thickening fluids for
n >1. The deviation of n from unity indicates the degree of deviation from Newtonian
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Fig. 21.3 Numerical solutions for the streamwise velocity component Wx , cited from Andersson
and Shang [14] (Curves 1–9: n = 2.0, 1.5, 1.2, 1.0, 0.7, 0.5, 0.3, 0.2, 0.1)

rheology and the particular case n = 1 represents a Newtonian fluid with dynamic
coefficient of viscosity K.

No-slip and impermeability at the inclined wall y = 0 are expressed by the
boundary conditions given by Eq. (21.7), while the outer condition, Eq. (21.8), assures
that the velocity component wx within the boundary layer approaches the external
velocity

wx,∞ = √
2gx cos α (21.9)

at the edge y = δl of the boundary layer. Since the friction flow between the viscous
boundary layer and the free streamline bordering the constant-pressure atmosphere
is quasi-one-dimensional, the simple solution given by Eq. (21.9) is readily derived
from Eq. (21.6) by assuming wx,∞ = 0 (and infinite film thickness) at the inlet x = 0.

It may be worthwhile to recall that the boundary layer theory conventionally
adopted in the analysis of thin-film flow may be inadequate if the Reynolds number
is too low. Wu and Thompson [15] compared boundary layer theory predictions with
solutions of the full Cauchy equation for flow of a shear-thinning power-law fluid
past a flat plate of length L. They found that the Reynolds number Rex (with x = L),
below which the boundary layer approximations become inaccurate, decreased from
120 for a Newtonian fluid (n = 1) to 4.5 for a highly pseodo-plastic fluid (n = 0.1).
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21.4 A New Similarity Transformation

Incidentally, as pointed out by Andersson and Iirgens [10], the external velocity,
Eq. (21.9), belong to the Falkon-Skan class of freestreams wx,∞∞xm which per-
mits a similarity transformation of the momentum boundary layer equation even for
power-law fluids. A generalized Falkner-Skan type of transformation was therefore
introduced by Andersson and Irgens [10, 11]. However, in the recent study, a new sim-
ilarity analysis method is applied for transformation of governing partial differential
equations of non-Newtonian power-law fluids [14], which unlike the Falkner-Skan
type of approach does not involve the stream function.

Let us first introduce the related dimensionless similarity variables defined for
similarity transformation of the governing partial equations.

Dimensionless similarity variables
According to the study in Ref. [14], a dimensionless similarity variable is

defined as
η = y

x
Re1/(n+1)

x (21.10)

where

Rex = xn(wx,∞)2−nρ

K
(21.11)

is a generalized local Reynolds number. The dimensionless velocity components are
defined as

Wx (η) = wx√
2gx cos α

(21.12)

Wy(η) = wy√
2gx cos α

Re
1

n+1
x (21.13)

for the x and y directions, respectively. These dimensionless variables analogous to
the similarity transformation used in the parts 1 and 2 of this book for free convection
and film flows for the particular parameter value n = 1.

Then, the partial differential equations given by Eqs. (21.5) and (21.6) and their
boundary equations given by Eqs. (21.7) and (21.8) are now transformed as follows:

Derivation of Eq. (21.5):
From Eqs. (21.10)–(21.11), we have

∂η

∂x
= ∂

∂x

[ y

x
Re1/(n+1)

x

]

= ∂

∂x

⎡
⎣y

(
(2g cos α)

2−n
2 ρ

K

) 1
n+1

x− n
2(n+1)

⎤
⎦
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= − n

2(n + 1)

⎡
⎣y

(
(2g cos α)

2−n
2 ρ

K

) 1
n+1

x− n
2(n+1)

−1

⎤
⎦

= − n

2(n + 1)

y

x

(
xn(2gx cos α)

2−n
2 ρ

K

) 1
n+1

x− n+2
2(n+1) x− n

2(n+1)

= − n

2(n + 1)
ηx−1

∂η

∂y
= 1

x
(Rex )

1
n+1

Then,

∂wx

∂x
= √

2gx cos α
dWx

dη

∂η

∂x
+

√
g cos α

2x
Wx

= √
2gx cos α

dWx

dη

(
− n

2(n + 1)
ηx−1

)
+

√
g cos α

2x
Wx

= −
√

g cos α

2x

dWx

dη

n

(n + 1)
η +

√
g cos α

2x
Wx

∂wy

∂y
= √

2gx cos α(Rex )
−1/(n+1) dWy

dη

∂η

∂y

= √
2gx cos α(Rex )

−1/(n+1) dWy

dη

1

x
(Rex )

1
n+1

=
√

2g cos α

x

dWy

dη

Therefore, Eq. (19.5) is changed into

−
√

g cos α

2x

dWx

dη

n

(n + 1)
η +

√
g cos α

2x
Wx +

√
2g cos α

x

dWy

dη
= 0

Simplify the above equation we have

Wx − n

n + 1
η

dWx

dη
+ 2

dWy

dη
= 0 (21.14)

Derivation of Eq. (21.6):
With Eqs. (21.12) and (21.13) we have

http://dx.doi.org/10.1007/978-3-642-28983-5_19
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∂wx

∂y
= √

2gx cos α
dWx

dη

1

x
(Rex )

1
n+1 =

√
2g cos α

x

dWx

dη
(Rex )

1
n+1

∂2wx

∂y2 =
√

2g cos α

x

d2Wx

dη2

1

x
(Rex )

2
n+1

Then, Eq. (21.6) is changed into

√
2gx cos αWx

(
−

√
g cos α

2x

dWx

dη

n

(n + 1)
η +

√
g cos α

2x
Wx

)

+ (
√

2gx cos αWy)(Rex )
−1/(n+1)

√
2g cos α

x

dWx

dη
(Rex )

1
n+1

= g cos α + n
K

ρl

(√
2g cos α

x

dWx

dη
(Rex )

1
n+1

)(n−1)

×
√

2g cos α

x

d2Wx

dη2

1

x
(Rex )

2
n+1

or

Wx

(
−g cos α

dWx

dη

n

(n + 1)
η + g cos αWx

)
+ (Wy)2g cos α

dWx

dη

= g cos α + n
K

ρ

(
dWx

dη

)(n−1) (
2g cos α

x

) n
2 d2Wx

dη2

1

x
Rex

The above equation is simplified to

Wx

(
−dWx

dη

n

(n + 1)
η + Wx

)
+ (Wy)2

dWx

dη

= 1 + n
K

ρ

(
dWx

dη

)(n−1) 2

2gx cos α

(
2gx cos α

x2

) n
2 d2Wx

dη2 Rex

With Eq. (21.9) the above equation is changed into

Wx

(
−dWx

dη

n

(n + 1)
η + Wx

)
+ (Wy)2

dWx

dη

= 1 + n

(
dWx

dη

)(n−1) K

ρ

2

xnwx,∞2−n

d2Wx

dη2 Rex

With the definition of local Reynolds number shown in Eq. (21.11), the above
equation can be expressed as
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Wx

(
−dWx

dη

n

(n + 1)
η + Wx

)
+(Wy)2

dWx

dη
= 1+n

(
dWx

dη

)(n−1)

2Re−1
x

d2Wx

dη2 Rex

Finally, Eq. (21.6) is transformed as

Wx

(
− n

(n + 1)
η

dWx

dη
+ Wx

)
+ 2Wy

dWx

dη
= 1 + 2n

(
dWx

dη

)(n−1) d2Wx

dη2 (21.15)

Thus, the governing partial differential Eqs. (21.5) and (21.6) are transformed
to the dimensionless equations (21.14) and (21.15), respectively with the related
dimensionless boundary conditions

η = 0 : Wx (η) = 0, Wy(η) = 0, (21.16)

η = ηδl : Wx (η) = 1 (21.17)

Evidently, the power-law index n is the only explicit parameter in the transformed
problem.

21.5 Numerical Solutions

The nonlinear two-point boundary value problem defined by Eqs. (21.14–21.17) was
solved numerically for several values of the power-law index in the range 0.1 ≤ n ≤
2.0. Here, the shooting method was adopted. First, Eqs. (21.14) and (21.15) were
written as a system of three first-order differential equations, which was solved by
means of fifth-order Runge–Kutta integration. Then, a Newton iteration procedure
was employed to satisfy the outer boundary condition, Eq. (21.17). Concerning the
numerical procedure, the present fifth-order scheme utilizes variable grid spacing.

Some of the velocity profiles Wx (η) computed by Andersson and Shang [14]
are shown in Fig. 21.4. The power-law index appears to have a substantial effect
on the velocity distribution within the boundary layer and, as observed already by
Andersson and Irgens [10], the most striking feature being the monotonic thinning of
the boundary layer with increasing n-values. This is fully consistent with the findings
for other 2D plane flows, for instance the non-Newtonian analogue of the classical
Blasius problem, i.e. flow past a semi-infinite that plate, which was first solved by
Acrivos et al. [16] and more recently by Andersson and Toften [17].

The nonlinearity of the highest-order derivative in Eq. (21.15) increases with
increasing deviation of the power-law index n from unity. The thickening of the
boundary layer with increasing pseudo-plasticity 1 − n, in combination with the
steeper slope of the dimensionless velocity profile Wx (η), makes the mathematical
problem defined by Eqs. (21.14–21.17) increasingly stiff. In fact, the shooting method
becomes gradually less attractive as the distance (in boundary layer coordinates η)
from the wall to the outer edge of the calculation domain, at which the condition
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Fig. 21.4 Numerical solutions of the dimensionless velocity gradient for different values of the
power-law index n

Wx (η) = 1 should be satisfied, increases. This is most likely the reason why Ander-
sson and Irgens [10] failed to obtain converged solutions for highly pseudo-plastic
fluid with n < 0.5. In the present study, however, this difficulty was remedied by
using variable grid spacing.

21.6 Local Skin-Friction Coefficient

The gradient of the dimensionless velocity Wx (η) at the wall η = 0 is single
most important characteristic of the solution. This is because the local skin-friction

coefficient Cx, f is a dimensionless measure of the shear stress τ = K
(

∂wx
∂y

)n
at the

wall, i.e.

Cx,f ≡ τw
1
2ρwx,∞2

=
K

[(
∂wx
∂y

)
η=0

]n

1
2ρwx,∞2

With the dimensionless variables in Eqs. (21.10–21.13), the above equation is
changed into
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Cx,f =
K

[√
2g cos α

x

(
dWx
dη

)
η=0

(Rex )
1

n+1

]n

1
2ρwx,∞2

= 2
K

[√
2g cos α

x (Rex )
1

n+1

]n

ρwx,∞2

[(
dWx

dη

)
η=0

]n

where

K

[√
2g cos α

x (Rex )
1

n+1

]n

ρwx,∞2 =
K

[√
2gx cos α

x

]n

ρwx,∞2 (Rex )
n

n+1

= K

xn(wx,∞)2−nρ
(Rex )

n
n+1

= (Rex )
−1(Rex )

n
n+1

= (Rex )
− 1

n+1

Then, with the present new dimensionless variables, the local skin-friction coef-
ficient Cx,f is expressed as

Cx,f ≡ τw
1
2ρwx,∞2

= 2Re−1/(n+1)
x

[(
dWx

dη

)
η=0

]n

(21.18)

The numerical results of the dimensionless velocity gradient at the wall
(

dWx
dη

)
η=0

are given in Table 21.2 [14] and shown in Fig. 21.4 from which it is observed that
the wall gradient gradually decreases with increasing n. It is noteworthy, how-
ever, that since the local Reynolds number Rex , as defined in Eq. (21.11), varies as

∝ x (n+2)/2, the streamwise variation of Cf becomes Cf ∞ x− n+2
2(n+1) , i.e. the skin-

friction coefficient decreases in the streamwise direction, irrespective of the value of
the power-law index.

In order to assess the accuracy of the present numerical results, comparisons are
made with the calculations by Andersson and Irgens [10] according to the relationship

(
dWx

dη

)
η=0

=
(

3

4

) 1
n+1

f ′′(0) (21.19)

where f denotes the Falkner-Skan type stream function and the primes signify dif-
ferentiation with respect to the similarity variable adopted in their analysis. Data
obtained from the approximate interpolation formula
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Table 21.2 Computed variation of
(

dWx
dη

)
η=0

with power-law index n, cited from Andersson

and Shang [14]

n Ref. [14] Eq. (21.19) Eq. (21.20)

0.1 3.57308 – 3.6382
0.15 2.48411 – –
0.2 1.96020 – 2.0010
0.25 1.65736 – –
0.3 1.46275 – 1.4892
0.4 1.23218 – –
0.5 1.10437 1.1047 1.1234
0.6 1.02613 –
0.7 0.97519 0.9753 –
1.0 0.89972 0.8997 0.9122
1.2 0.87902 0.8790 –
1.5 0.86592 0.8659 0.8749
2.0 0.86360 0.8636 0.8705

(
dWx

dη

)
η=0

= n + 1/2

n + 1

[
( f ′′

0 )n+1 + (n + 1)2

3n(n + 1/2)

] 1
n+1

(21.20)

derived by Acrivos et al. [18] are also included in Table 21.2 here, f ′′
0 denotes the

dimensionless wall shear stress for power-law boundary layer flow past a flat plate,
for which data are tabulated by Acrivos et al. [18].

The comparison in Table 21.2 shows that the present numerical solutions are
practically indistinguishable from the similarity solutions of Adersson and Irgens
[10]. The data derived from the approximate formula given by Eq. (21.20) com-
pares surprisingly well with the present similarity solutions and the velocity gradient
at the wall is overpredicted by not more than 2 % throughout the entire range of
n-values considered. Here, it should be recalled that the similarity solutions could
be considered as exact in the sense that they do not involve other approximations
as those inherent in the boundary layer theory and the adoption of the power-law
model.

21.7 Mass Flow Rate

Although the total mass flow rate within the film is constant, the partition of the mass
flow rate between the viscous boundary layer and the external inviscid flow varies in
the streamwise direction. As the boundary layer thickens, fluid is continuously being
entrained from the freestream. Let set gx denotes the local mass flow rate entering
into an element of the boundary layer of unit streamwise extent (and unit width) of
a certain position x, it can be expressed as
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gx = ρ

(
wx,δl

dδl

dx
− wy,δl

)
(21.21)

where δl is the boundary layer thickness at the position x, and wx,δl and wy,δl are
dimensionless velocity components in x and y directions at the edge of the boundary
layer and at the position x.

Since the boundary layer thickness is given as δl = ηδl(Rex )
− 1

n+1 x , then,

dδl

dx
= ηδl

n

2(n + 1)
(Rex )

− 1
n+1

With Eqs. (21.12) and (21.13) and the above equation, Eq. (21.21) can be expressed
as in terms of dimensionless variables

gx = ρ

[√
2gx cos αWx,δlηδl

n

2(n + 1)
(Rex )

− 1
n+1 − √

2gx cos αRe
− 1

n+1
x Wy,δl

]

= ρ
√

2gx cos α(Rex )
− 1

n+1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)
(21.22)

Let Gx denotes the total mass flow rate entering into the boundary layer for the
area from the inlet x = 0 to a stream downstream position x and with the width of b
of the plate, then, it should be the following integration:

Gx =
∫∫

A

gx dA

= b

x∫
0

gx dx (21.23)

where A = b · x is integrated area.
With Eq. (21.22), the above equation can be expressed in dimensionless form as

Gx = b

x∫
0

[
ρ
√

2gx cos α(Rex )
− 1

n+1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)]
dx

= 2(n + 1)

2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)
ρwx,∞b · xRe−1/(n+1)

x

The above equation can be further expressed as

Gx Re1/(n+1)
x

ρwx,∞b · x
= 
 ≡ 2(n + 1)

2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)
(21.24)
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Fig. 21.5 Predicted results for mass flow rate parameter φ and the related dimensionless variables
ηδl , Wx,δl , and Wy,δl (1 ηδl , 2 
, 3 −Wy,δl and 4 Wx,δl ), cited from Andersson and Shang [14]

Here, on the right-hand side, 
 defines the mass flow rate, ηδl is the dimensionless
boundary layer thickness, and Wx,δl and Wy,δl are dimensionless velocity components
in x and y directions at the edge of the boundary layer. Since the dimensionless
boundary layer thickness ηδl and the dimensionless velocity components Wx,δl and
Wy,δl may depend on the power-law index n, 
 turns out to be a function of n
alone. The most frequently used definition of ηδl is the value of ηδl for which the
dimensionless velocity component Wx,δl in Fig. 21.4 becomes equal to 0.99. Data
for ηδl , Wx,δl , and Wy,δl obtained from the numerical similarity solutions presented
are shown in Fig. 21.5. The resulting variation of the mass flow rate parameter 
 is
also included and it is observed that 
 is a monotonically decreasing function of the
power-law index n.

To facilitate rapid estimate of the mass flow rate parameter 
 for any value of
the power-law index in the interval 0.2 ≤ n ≤ 2, accurate curve-fit formulas for ηδl

and Wy,δl

ηδl = 4.9505 − 7.617(n − 0.54) + 11.214(n − 0.54)2

+ 8.703(n − 0.54)3 − 0.37(n − 0.54)4 (0.2 ≤ n ≤ 1) (21.25)

ηδl = 2.3201 − 1.0623(n − 1.425) + 0.9962 (n − 1.425)2

− 0.7533(n − 1.425)3 (1 ≤ n ≤ 2) (21.26)

Wy,δl = −1.8675 + 3.9616(n − 0.54) − 6.022(n − 0.54)2

− 3.22(n − 0.54)3 +− 16.946(n − 0.54)4 (0.2 ≤ n ≤ 1) (21.27)

Wy,δl = −0.53954 + 0.5002(n − 1.425) − 0.5078(n − 1.425)2



21.7 Mass Flow Rate 477

+ 0.3946(n − 1.425)3 (1 ≤ n ≤ 2) (21.28)

are shown in Eqs. (21.25–21.28) [14] and can be used with Wx,δl = 0.99 in
Eq. (21.24). This curve-fit method turns out to be accurate to within 0.01 %.

21.8 Length of Boundary Layer Region

Let us now denote the total flow rate within the film, ρV , where V is the volumetric
flow rate of the falling film flow. Since the viscous boundary layer develops from
x = 0, i.e. δl(0) = 0, the entire mass flow is initially carried by the freestream. At a
certain streamwise position x = x0, on the other hand, the boundary layer extends all
the way to the free surface of the film and the total mass flux is within the boundary
layer, i.e.

Gx0 ≡ Gx (x0) = ρV (21.29)

This criterion, in combination with Eq. (21.21), can be rearranged to give the
explicit relation as follows:

Gx0 Re1/(n+1)
x0

ρwx0,∞b · x0
= 


or
V Re1/(n+1)

x0

wx0,∞b · x0
= 


i.e.

V
[

xn(
√

2gx0 cos α)2−nρ
K

]1/(n+1)

bx0
√

2gx0 cos α
= 


or

V
[

(
√

2g cos α)2−nρ
K

]1/(n+1)

b
√

2g cos α0
x

− 2n+1
2(n+1)

0 = 


The above equation is transformed to

x0 =

⎧⎪⎨
⎪⎩

V


b

[
(
√

2g cos α)2−n

K ρ
]1/(n+1)

√
2g cos α0

⎫⎪⎬
⎪⎭

2(n+1)
2n+1

i.e.
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x0 =
⎧⎨
⎩

(
V


b

)n+1 (
√

2g cos α)2−nρ
K

(
√

2g cos α)n+1

⎫⎬
⎭

2
2n+1

or

x0 =
[(

V


b

)n+1
(2g cos α)(1−2n)/2ρ

K

]2/(2n+1)

(21.30)

for the particular streamwise position x0. Since the film inlet is at x = 0, cf. Fig. 21.2,
the characteristic coordinate value x0 defines the streamwise length of the boundary
layer region.

21.9 Critical Film Thickness

When the boundary layer extends all the way to the free surface and the freestream
disappears at x = x0, the film thickness equals the boundary thickness δl(x0). The
latter can be obtained from the definition, Eq. (21.10), of the similarity variable at
the outer edge of the viscous boundary layer, i.e. y = δl(x0) for η = ηδl and x = x0,
and expressed as

δl(x0) = ηδl x0Re−1/(n+1)
x0

With the definition of local Reynolds number in Eq. (21.11), the above equation
is changed into

δl(x0) = ηδl x
n/(2(n+1))
0

[
(2g cos α)(2−n)/2

K/ρ

]−1/(n+1)

(21.31)

It can therefore be concluded that both x0 and δl(x0) are completely determined as
long as the problem characteristics n, K /ρ, Q, and g cos α are known, along with the
solution of the transformed problem, Eqs. (21.14–21.17), which determines 
.

The film thickness at the particular position x = x0 is a critical quantity in film
flow analysis since the boundary layer concept is applicable only for range x ≤ x0,
and in this range the local film thickness δl(x0) at x = x0 is largest, and named
critical film thickness. Following Eq. (21.31) the boundary layer thickness δl(x) at
any position of x in this range can be evaluated by the following equation:

δl(x) = ηδl x
n/(2(n+1))

[
(2g cos α)(2−n)/2

K/ρ

]−1/(n+1)

(21.32)
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21.10 Effect of Wall Inclination

It is noteworthy that the angle of inclination α does not appear in the transformed
problem defined by Eqs. (21.14–21.17). Any solution Wx and Wy is accordingly
independent of α but, nevertheless, valid for all inclinations 0 ≤ α ≤ π/2. Phys-
ically relevant quantities, on the other hand, do depend on α due to the similarity
transformation, Eqs. (21.10–21.13). For a given quantity, say p, the relationship

Pi

Pv
=

(
cos αi

cos αv

)γ

= cosγ αi (21.33)

between the inclined and vertical cases, identified by subscripts i and v, respectively,
holds. Here, αv, denotes the angle of inclination in the vertical case, i.e. αv = 0 and
cos αv = 1, and the exponent γ is derived as below:

For wx

From Eq. (21.12) we can get the following equation

(wx )i

(wx )v
=

(
cos αi

cos αv

)1/2

= cos1/2 αi

Then, γ = 1/2
For wy

From Eq. (21.13) we can obtain the following equation:

(wy)i

(wy)v
=

(
cos αi

cos αv

)1/2 (
(Rex )i

(Rex )v

)− 1
n+1

where with Eq. (21.12), we have

(
(Rex )i

(Rex )v

)− 1
n+1 =

(
(wx,∞)i

(wx,∞)v

)− 2−n
n+1 =

(
cos αi

cos αv

)− 2−n
2(n+1)

Hence,
(wy)i

(wy)v
=

(
cos αi

cos αv

)1/2 (
cos αi

cos αv

)− 2−n
2(n+1) =

(
cos αi

cos αv

) 2n−1
2(n+1)

Then, γ = 2n−1
2(n+1)

For Cf
From Eq. (21.18) we can do the following derivation:

(Cf)i

(Cf)v
=

(
(Rex )i

(Rex )v

)− 1
n+1 =

(
cos αi

cos αv

)− 2−n
2(n+1)
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Table 21.3 Relationship between inclined and vertical film flow

P wx wy Cx,f X0 δl(x0)

γ 1
2

2n−1
2(n+1)

n−2
2(n+1)

1−2n
2n+1 − 1

2n+1

Then, γ = n−2
2(n+1)

For x0
From Eq. (21.30) we can do the following derivation:

(x0)i

(x0)v
=

(
cos αi

cos αv

) 1−2n
2n+1

Then, γ = 1−2n
2n+1

For δl(x0)

From Eq. (21.31) we can do the following derivation:

(δl(x0))i

(δl(x0))v
=

(
(x0)i

(x0)v

) n
2(n+1)

(
cos αi

cos αv

)− 2−n
2(n+1)

=
(

cos αi

cos αv

) n(1−2n)
2(n+1)(2n+1)

(
cos αi

cos αv

)− 2−n
2(n+1)

=
(

cos αi

cos αv

)− 1
2n+1

Then, γ = − 1
2n+1

For summary, exponent γ is provided in Table 21.3 for some quantities of partic-
ular interest.

21.11 Summary

So far, we have presented the recent developments on hydrodynamics of falling
film flow of non-Newtonian fluids. The related equations of hydrodynamics can be
summarized in Table 21.4.

21.12 Remarks

In this chapter, the new similarity analysis method has been applied to extensively
study the gravity-driven flow of a non-Newtonian liquid film along inclined surface.
The partial differential equations governing the hydrodynamics of the power-law fluid



21.12 Remarks 481

Table 21.4 Summary of the related equations of hydrodynamics of falling film flow of non-
Newtonian fluids

Term Equations

Governing partial differential equations

Mass equation ∂wx
∂x + ∂wy

∂y = 0

Momentum equation wx
∂wx
∂x + wy

∂wx
∂y = g cos α + n K

ρ

(
∂wx
∂y

)n−1
∂2wx
∂y2

Boundary conditions y = 0 : wx = 0, wy = 0
y = δl : wx = wx,∞

Defined transformation variables

η
y

x
Rex

1/(n+1)

Rex
xn(wx,∞)2−nρ

K
Wx (η)

wx√
2gx cos α

Wy(η)
wy√

2gx cos α
Rex

1

n + 1

Governing ordinary differential equations

Dimensionless mass equation Wx − n
n+1 η dWx

dη
+ 2 dWy

dη
= 0

Dimensionless momentum
equation

Wx

(
− n

n+1 η dWx
dη

+ Wx

)
+ 2Wy

dWx
dη

= 1 + 2n
(

dWx
dη

)(n−1) d2Wx
dη2

Boundary conditions η = 0: Wx (η) = 0, Wy(η) = 0,

η = ηδl : Wx (η) = 1
wx,∞

√
2gx cos α

x0

[(
V

b


)n+1
(2g cos α)(1−2n)/2

K/ρ

]2/(2n+1)

ηδl 4.9505 − 7.617(n − 0.54)

+ 11.214(n − 0.54)2 + 8.703
× (n − 0.54)3−0.37(n − 0.54)4(0.2 ≤ n ≤ 1)

2.3201 − 1.0623(n − 0.54) + 0.9962
× (n − 0.54)2−0.7533(n − 0.54)3 (1 ≤ n ≤ 2)

Wy,δl −1.8675 + 3.9616(n − 0.54) − 6.022(n − 0.54)2

−3.22(n − 0.54)3 +− 16.946(n − 0.54)4

× (0.2 ≤ n ≤ 1)

−0.53954 + 0.5002(n − 0.54) − 0.5078
× (n − 0.54)2 + 0.3946(n − 0.54)3 (0.2 ≤ n ≤ 1)

Wx,δl 1

Cf 2Re−1/(n+1)
x

[(
dWx

dη

)
η=0

]n




(
defined as

Gx Re1/(n+1)
x

ρwx,∞b · x

)
2(n + 1)

2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)

δl(x0) ηδl x0
n/(2(n+1))

[
(2g cos α)(2−n)/2

K/ρ

]−1/(n+1)
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are transformed exactly into a set of two ordinary differential equations, which can be
calculated numerically to an arbitrary degree of accuracy. With the present approach,
however, calculations could be accomplished also for highly pseudo-plastic liquids
and the numerical results. The nonlinearity of the momentum boundary layer prob-
lem for power-law fluid increases with increasing pseudo-plasticity |1 − n| and the
variable grid spacing is therefore increasingly important.

It is noteworthy that the resulting system of dimensionless ordinary differential
equations depends only on the single parameter n. Furthermore, all other parameters,
like the streamwise location x, the fluid properties K/ρ, and the component of the
gravitational acceleration along the surface g · cosα have been combined into a
generalized local Reynolds number Rex and dimensionless velocity Wx and Wy .
Various flow characteristics can thus be expressed only in term of n and Rex , except
the particular position x0 at which the entire freestream has been entrained into the
momentum boundary layer. In order to determine x0 and the associated critical film
thickness δl(x0), knowledge about the total mass flow rate ρQ within the film is also
required, together with the new dimensionless mass flux parameter 
. The latter
quantity, which depends on the dimensionless boundary layer thickness ηδl and the
velocity components Wx,δl and Wy,δl at the edge of the boundary layer, is generally
obtained as a part of the numerical solution of the transformed problem and turned
out to be function only of the power-law index n. However, to facilitate rapid and
accurate estimate of 
, polynomial curve-fit formulas have been developed on the
basis of the rigorous similarity solutions.

21.13 Calculation Examples

Example: A non-Newtonian power-law fluid having a density of 1,041 kg/m3 is flow-
ing with volumetric flow rate of 0.02 m3/s along an inclined flat plate with angle of
α = 30◦ and width of b = 1 m. The properties of the fluid are K = 2.744 kg sn−2 m−1

and n = 0.50. Please calculate the followings:

a. length x0 of the boundary layer region
b. critical film thickness δl(x0)

c. local skin-friction coefficient Cf at x0
d. wx0,δl and wy0,δl corresponding to position x0
e. If the plate inclined angle is 0◦ (for vertical plate), calculate x0, δl(x0), Cf , wx0,δl

and wy0,δl

Solution: The given data are as follows: volumetric flow rate V = 0.02 m3/s,
density ρ = 1,041 kg/m3, plate angle α = 30◦ and width b = 1 m, coefficient of
consistency K = 2.744 kg/(sn−2 m−1) and n = 0.50.

a. calculation of x0 for α = 30◦
With Eq. (21.30), x0 is evaluated as
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x0 =
[(

V

b


)n+1
(2g cos α)(1−2n)/2

K/ρ

]2/(2n+1)

While, from Eq. (21.24) the mass flow rate parameter 
 can be evaluated as


 = 2(n + 1)

2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)

For n = 0.5, the boundary layer thickness ηδl and the velocity component Wy,δl

at the edge of the boundary layer can be evaluated as:

ηδl = 4.9505 − 7.617(n − 0.54) + 11.214(n − 0.54)2

+ 8.703(n − 0.54)3−0.37(n − 0.54)4

= 4.9505 − 7.617(0.5 − 0.54) + 11.214(0.5 − 0.54)2

+ 8.703(0.5 − 0.54)3−0.37(0.5 − 0.54)4

= 5.27256

Wy,δl = −1.8675 + 3.9616(n − 0.54) − 6.022(n − 0.54)2

− 3.22(n − 0.54)3 + 16.946(n − 0.54)4

= −1.8675 + 3.9616(0.5 − 0.54) − 6.022(0.5 − 0.54)2

− 3.22(0.5 − 0.54)3 + 16.946(0.5 − 0.54)4

= −2.03535


 = 2(n + 1)

2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)

= 2 × (0.5 + 1)

2 × 0.5 + 1

(
0.5 × 5.27256

2 × (0.5 + 1)
× 0.99 + 2.03535

)

= 4.358

(Note: Wx,δl is defined to be 0.99 in the above equation of 
)
Then,

x0 =
[(

V

b


)n+1
(2g cos α)(1−2n)/2

K/ρ

]2/(2n+1)

=
[(

0.02

4.358

)0.5+1
(2 × 9.8 × cos 30◦)(1−2×0.5)/2

(2.744/1041)

]2/(2×0.5+1)

= 0.118 m

b. For calculation of δl(x0) for α = 30◦
With Eq. (21.31), δl(x0) can be calculated as
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δl(x0) = ηδl x
n/(2(n+1))
0

[
(2g cos α)(2−n)/2

K/ρ

]−1/(n+1)

= 5.2726 × 0.1180.5/(2×(0.5+1))

[
(2 × 9.8 × cos 30◦)(2−0.5)/2

2.744/1041

]−1/(0.5+1)

= 0.0171 m

c. For calculation of Cf related to x0 and for α = 30◦
From Eq. (21.18), Cf related to x0 and for α = 30◦ can be expressed as

Cf = 2Re−1/(n+1)
x0

[(
dWx

dη

)
η=0

]n

From Table 21.4, the local Reynolds number at x0 can be evaluated as

Rex0 = xn
0 (wx0,∞)2−nρ

K

= xn
0 (2gx0 cos α)(2−n)/2ρ

K

= 0.1180.5 × (2 × 9.8 × 0.118 × cos 30◦)(2−n)/2 × 1041

2.744
= 219.4

From Table 21.2 we get

(
dWx

dη

)
η=0

= 1.10437 at n = 0.5

Then,

Cf = 2Re−1/(n+1)
x0

[(
dWx

dη

)
η=0

]n

= 2 × 219.4−1/(0.5+1)[1.10437]0.5

= 0.0578

d. For calculation of wx0,δl and wy0,δl for α = 30◦
From Eq. (21.12) we have

Wx0,δl = wx0,δl√
2gx cos α

i.e.
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wx0,δl = √
2gx0 cos αWx,δl

= √
2 × 9.8 × 0.118 × cos 30◦ × 1

= 1.415 m/s

From Eq. (21.13) we have

Wy,δl = wy0,δl√
2gx0 cos α

Rex0

1
n+1

i.e.

wy0,δl = √
2gx0 cos αRe

− 1
n+1

x0 Wy,δl

= √
2 × 9.8 × 0.118 × cos 30◦ × 219.4− 1

0.5+1 × (−2.0354)

= −0.079 m/s

e. For calculation of x0 δl(x0), Cf , wx0,δl for vertical plate case
According to Eq. (21.33) and Table 21.3, we have the following expression

(x0)v = (x0)i/cosγ α

where
For x0,γ = 1−2n

2n+1 = 1−2×0.5
2×0.5+1 = 0, then,

(x0)v = 0.118/cos0 30◦

= 0.118 m

For δl(x0), γ = − 1
2n+1 = − 1

2×0.5+1 = −0.5, then,

(δl(x0))v = (δl(x0))i/cosγ α

= 0.0171/ cos−0.5(30◦)
= 0.0159 m

For Cf , γ = n−2
2(n+1)

= 0.5−2
2×(0.5+1)

= −0.5, then

(Cf)v = (Cf)i/cosγ α

= 0.0578/cos−0.5(30◦)
= 0.05379

For wx0,δl , γ = 1/2 then
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(wx0,δl)v = (wx0,δl)i/cosγ α

= 1.415/cos0.5(30◦)
= 1.5205 m/s

For wy0,δl , γ = 2n−1
2(n+1)

= 2×0.5−1
2×(0.5+1)

= 0, then

(wy0,δl)v = (wy0,δl)i/cosγ α

= −0.079/ cos0 α

= −0.079
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Chapter 22
Pseudo-Similarity and Boundary Layer
Thickness for Non-Newtonian
Falling Film Flow

Abstract The pseudo-similarity solutions of the thermal boundary layer of a falling
film flow of power-law fluids are presented. Based on a proposed “local Prandtl
number”, the dependence of the thickness of the momentum boundary layer and
thermal boundary layer on the power-law index and local Prandtl number are dis-
cussed. Their variations with power-law index and local Prandtl number are also
presented. The momentum layer thickness depends only on the power-law index,
while the thermal boundary layer thickness depends both on the power-law index
and the local Prandtl number. The momentum boundary layer thickness decreases
significantly with the increase of the power-law index. While the thermal boundary
layer thickness decreases slightly with increasing the power-law index and decreases
with increasing the parameter local Prandtl number. With the introduction of the
“local Prandtl number”, it is found that the heat transfer problem turned out to
involve only two independent parameters, the power-law index and the local Prandtl
number. The pseudo-similarity solution and the assumed true-similarity solution are
presented for the investigation of non-similarity thermal boundary layer. The degree
of non-similarity of thermal boundary layer has been determined for various values
of power-law indices and local Prandtl numbers.

22.1 Introduction

Efficient heating or cooling of liquids can be achieved by allowing the fluid to
flow in a thin film along a solid surface kept at a constant temperature. While the
hydrodynamics of thin film flow of Newtonian liquids has been extensively studied
for several decades, only modest attention has been devoted to gravity-driven films
of non-Newtonian liquids.

Heat transfer from a constant temperature wall to hydrodynamically fully devel-
oped power-law films was probably first considered by Yih and Lee [1], while
the corresponding mass transfer problem (i.e. solid dissolution from the wall and

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 487
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_22,
© Springer-Verlag Berlin Heidelberg 2012



488 22 Pseudo-Similarity and Boundary Layer Thickness

diffusion into the film) has been studied by Astarita [2] and Mashelkar and Chavan
[3]. For the effect of injection/suction on the heat transfer, so far there has been
study by Pop et al. [4] on the steady laminar gravity-driven film flow along a vertical
wall for Newtonian fluids, which is based on Falkner-Skan type transformation. A
mathematical model for heat transfer of non-Newtonian falling film flow was dealt
with by Ouldhadda et al. [5] on a horizontal circular cylinder. Meanwhile, Rao [6]
measured experimentally the heat transfer in a fully developed non-Newtonian film
flow falling down a vertical tube.

However, most of the previous theoretical models only solved the similarity
momentum problem for the boundary layer region. The solution for the similarity
thermal boundary layer encounters formidable difficulties when the boundary layer
thickness of momentum and temperature differ significantly, which is a characteristic
of non-Newtonian power-law fluids.

The solution of similarity momentum boundary layer cannot be successfully
applied for solution of the heat transfer in boundary layer region, since there is
no similarity solution for the energy equation related to non-Newtonian power-law
fluids. The determination of exact thermal boundary layer thickness is very impor-
tant, otherwise, the hydrodynamics and heat transfer analyses for the boundary layer
region, fully viscous region, and the developed flow region will not produce reliable
results.

Therefore, a reliable and convenient treatment approach of local non-similarity
of thermal boundary layer is very important for solution for falling film flow of
non-Newtonian power-law fluids. For this purpose, on the basis of Ref. [7], Shang
and Andersson [8] focused on an extensive study for a systematic solution on local
non-similarity of thermal boundary layer for falling-film flow of non-Newtonian
power-law fluids using a pseudo-similarity approach. They provided the similarity
approach for the rigorous solution of heat transfer coefficient related to the non-
similarity thermal boundary layer of the non-Newtonian power-law fluids for the
boundary layer region.

Furthermore, Shang and Gu [9] provided an extensive study on pseudo-similarity
solutions of thermal boundary layer in falling film flow with non-Newtonian power-
law fluids. Based on the newly defined “local Prandtl number” proposed by Shang and
Andersson [8], it is found that the momentum boundary layer thickness decreases
monotonically with power-law index, while the thermal boundary layer thickness
increases slightly with power-law index and decreases significantly with the increase
of the “local Prandtl number”.

In this chapter, the focus is on presentation of the recent developments on analyses
of pseudo-similarity, and boundary layer thickness for non-Newtonian falling film
flow. To this end, a mathematical model for thermal boundary layer in an accelerating
liquid film of non-Newtonian power-law fluids is presented. A pseudo-similarity
transformation method is induced for the thermal boundary layer equation. On this
basis, the heat transfer problem can be solved by means of a local non-similarity
approach with n and the induced local Prandtl number Prx being the only parameter.
Based on a newly defined “local Prandtl number”, the dependence of the thickness of
the momentum boundary layer and thermal boundary layer on the power-law index
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Fig. 22.1 Schematic representation of accelerating film flow

is discussed. It is found that the momentum boundary layer thickness decreases
monotonically with power-law index, while the thermal boundary layer thickness
increases slowly with power-law index and decreases significantly with the increase
of the “local Prandtl number”. It shows that the adopted pseudo-similarity approach
is capable of solving the problem of non-similarity thermal boundary layer in the
falling film of a non-Newtonian power-law fluid. Meanwhile, a critical local Prandtl
number Prx * is introduced, which is a monotonically increasing function of n.

22.2 Physical Model and Governing Partial Differential
Equations

Consider the accelerating laminar flow in the boundary layer region of a non-
Newtonian liquid film flow down along an inclined plane surface, as shown schemat-
ically in Fig. 22.1. The incompressible and inelastic fluid is assumed to obey the
Ostwald-de-Waele power-law model and the action of viscous stresses is confined
to the solid surface. The basis boundary layer equations for mass, momentum, and
thermal energy are:



490 22 Pseudo-Similarity and Boundary Layer Thickness

∂wx

∂x
+ ∂wy

∂y
= 0 (22.1)

wx
∂wx

∂x
+ wy

∂wx

∂y
= g cos α + n

K

ρ

(
∂wx

∂y

)n−1
∂2wx

∂y2 (22.2)

wx
∂t

∂x
+ wy

∂t

∂y
= λ

ρcp

∂2t

∂y2 (22.3)

and the boundary conditions are

y = 0 : wx = 0, wy = 0, t = tw (22.4)

y = δl, wx = wx,∞ (22.5)

y = δt , t = t∞ (22.6)

where wx and wy are velocity exponents in x and y directions, respectively, while g
and α denote the gravitation acceleration and the angle of inclination of the plane wall.
Here, it has been anticipated that ∂wx

∂y ≥ 0 throughout the entire of the film. δl and δt

denote the thicknesses of the momentum and thermal boundary layers, respectively,
while wx,∞ and t∞ are velocity and temperature of the fluid outside the respective
boundary layers. It is noteworthy that wx,∞ varies with x , and the wall temperature tw
and the external temperature t∞ are constants as one kind of temperature conditions.
The fluid physical properties λ, ρ, cp, K , and n, which are assumed to be constant,
are the thermal conductivity, density, specific heat, coefficient of consistency, and
power-law index, respectively. The deviation of n from unity indicates the degree
of deviation from Newtonian rheology and the particular case n = 1 represents a
Newtonian fluid with dynamic coefficient of viscosity K .

No-slip and impermeability conditions at the inclined surface y = 0 are expressed
by the boundary conditions (22.4), while the outer condition (22.5) assures that the
velocity component wx within the boundary layer approaches the external velocity

wx,∞ = √
2gx cos α (22.7)

at the edge y = δl of the momentum boundary layer.

22.3 Similarity Transformation

Incidently, as pointed out by Andersson and Irgens [10], the external velocity (22.7)
belongs to the Falkner-Skan class of freestreams wx,∞∞xm, which permits a simi-
larity transformation of the momentum boundary layer equation even for power-law
fluids. A generalized Falkner-Skan type of transformation was therefore introduced
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in Refs. [11, 12], while Andersson and Shang [7] devised an alternative similarity
transformation. However, as we shall see, exact similarity solutions of the thermal
energy equation exist only in the particular case when the power-law index n is
equal to unity. In this case, Shang and Andersson derived a pseudo-similarity trans-
formation for solution of thermal boundary layer problem in falling film flow with
non-Newtonian power-law fluids [8].

According to Ref. [8], the new independent and dimensionless variables are intro-
duced as follows:

η = y

x
Re1/(n+1)

x (22.8)

ζ = x

x0
(22.9)

where x0 is the length of the boundary layer region and

Rex = xn(wx,∞)2−nρ

K
(22.10)

where Rex is a generalized local Reynolds number.
The dimensionless velocity components are defined as

Wx (η) = wx√
2gx cos α

(22.11)

Wy(η) = wy√
2gx cos α

Re
1

n+1
x (22.12)

which are independent of ζ except for the particular value n = 1.
The dimensionless temperature is defined as

θ(η, ζ ) = t − t∞
tw − t∞

(22.13)

which depend both on η and ζ .

According to the derivations presented in Chap. 21, the partial differential
Eqs. (22.1) and (22.2) are transformed into the following dimensionless equations,
respectively:

Wx (η) − n

(1 + n)
η

dWx (η)

dη
+ 2

dWy(η)

dη
= 0 (22.14)

Wx (η)

[
− n

(1 + n)
η

dWx (η)

dη
+ Wx (η)

]
+ 2Wy(η)

dWx (η)

dη

= 1 + 2n

(
dWx (η)

dη

)n−1 d2Wx (η)

dη2 (22.15)

http://dx.doi.org/10.1007/978-3-642-28983-5_21
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Additionally, the similarity transformation of (22.3) is done as follows:

At first, the derivative ∂t
∂x is expressed as

∂t

∂x
= ∂t

∂η

∂η

∂x
+ ∂t

∂ξ

∂ξ

∂x

where

∂t

∂η
= (tw − t∞)

∂θ(η, ξ)

dη

∂η

∂x
= ∂

∂x

[ y

x
Re1/(n+1)

x

]

= ∂

∂x

⎡
⎣y

(
(2g cos α)

2−n
2 ρ

K

) 1
n+1

x− n
2(n+1)

⎤
⎦

= − n

2(n + 1)
ηx−1

∂T

∂ξ
= (tw − t∞)

∂θ(η, ξ)

∂ξ
∂ξ

∂x
= 1

x0

Therefore,

∂t

∂x
= −(tw − t∞)

∂θ(η, ξ)

dη

n

2(n + 1)
ηx−1 + 1

x0
(tw − t∞)

∂θ(η, ξ)

∂ξ

Then, the derivative ∂t
∂y is expressed as

∂t

∂y
= ∂t

∂η

∂η

∂y
+ ∂t

∂ξ

∂ξ

∂y

where

∂η

∂y
= 1

x
(Rex )

1
n+1

∂ξ

∂y
= 0

Therefore,
∂t

∂y
= (tw − t∞)

∂θ(η, ξ)

∂η

1

x
(Rex )

1
n+1

Additionally,
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∂2t

∂y2 = 1

x
(tw − t∞)(Rex )

1
n+1

∂

∂η

(
∂θ(η, ξ)

∂η

)
1

x
(Rex )

1
n+1

= 1

x2 (tw − t∞)(Rex )
2

n+1
∂

∂η

(
∂θ(η, ξ)

∂η

)

On these bases, Eq. (22.3) is changed into

√
2gx cos αWx (η)

[
−(tw − t∞)

∂θ(η, ξ)

dη

n

2(n + 1)
ηx−1 + 1

x0
(tw − t∞)

∂θ(η, ξ)

∂ξ

]

+ √
2gx cos αRe

− 1
n+1

x Wy(η)(tw − t∞)
∂θ(η, ξ)

∂η

1

x
(Rex )

1
n+1

= λ

ρcp

1

x2 (tw − t∞)(Rex )
2

n+1
∂

∂η

(
∂θ(η, ξ)

∂η

)

The above equation is simplified to

√
2gx cos αWx (η)

[
−∂θ(η, ξ)

dη

n

2(n + 1)
ηx−1 + 1

x0

∂θ(η, ξ)

∂ξ

]

+ √
2gx cos αWy(η)

∂θ(η, ξ)

∂η

1

x
= λ

ρcp

1

x2 (Rex )
2

n+1
∂

∂η

(
∂θ(η, ξ)

∂η

)

or
√

2gx cos αWx (η)

[
−∂θ(η, ξ)

dη

n

2(n + 1)
η + x

x0

∂θ(η, ξ)

∂ξ

]

+ √
2gx cos αWy(η)

∂θ(η, ξ)

∂η
= λ

ρcp

1

x
(Rex )

2
n+1

∂

∂η

(
∂θ(η, ξ)

∂η

)

With Eq. (22.7), the above equation can be simplified into the following form

[
− n

2(n + 1)
ηWx (η) + Wy(η)

]
∂θ(η, ξ)

∂η
+ ξWx (η)

∂θ(η, ξ)

∂ξ

= 1
xwx,∞

a (Rex )
− 2

n+1

∂2θ(η, ξ)

∂η2 (22.16)

subject to the boundary conditions

η = 0 : Wx (η) = 0, Wy(η) = 0, θ(η, ζ ) = 1 (22.17)

η = ηδl : Wx (η) = 1 (22.18)
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η = ηδt , θ(η, ζ ) = 0 (22.19)

22.4 Local Prandtl Number

The denominator xwx,∞
a (Rex )

− 2
n+1 in the diffusion coefficient in Eq. (22.16) can be

defined as the local Prandtl number Prx , i.e.,

Prx = xwx,∞
a

Re−2/(n+1)
x (22.20)

where a
(
= λ

ρcp

)
denotes the thermal diffusivity.

With Eqs. (22.7) and (22.10), the above equation can be expressed as

Prx = xwx,∞
a

Re−2/(n+1)
x

= x
√

2gx cos α

a

[
xn(

√
2gx cos α)2−nρ

K

]−2/(n+1)

=
√

2g cos α

a

[
(
√

2g cos α)2−nρ

K

]−2/(n+1)

x3/2[x (n+2)/2]−2/(n+1)

=
√

2g cos α

a

[
(
√

2g cos α)2−nρ

K

]−2/(n+1)

x (n−1)/(2(n+1))

Now it is readily seen that Prx → 0 as x → 0 if n > 1 and that Prx → ∞ as
x → 0 if n < 1.

In the special case when the power-law index n is equal to unity, i.e., for a New-
tonian liquid film, Eq. (22.20) can be simplified as

Prx = xwx,∞
λ

ρcp

[
x(wx,∞)2−1ρ

K

]−2/(1+1)

For Newtonian fluids, the coefficient of consistency K is replaced by the absolute
viscosity μ, and then the above equation is further simplified to

Prx = xwx,∞
λ

ρcp

[
x(wx,∞)ρ

μ

]−1

=
(ρcp

λ

) (
μ

ρ

)

= μcp

λ
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where μ, λ, and cp are absolute viscosity, thermal conductivity, and specific heat
of the Newtonian liquid. In this case, the local Prandtl number for non-Newtonian
power law fluids is simplified to Prandtl number for Newtonian fluids, the diffusion
coefficient in Eq. (22.16) becomes independent of x , i.e., ∂θ

∂ξ
= 0 and similarity can

also be achieved for the temperature field. This particular case has been explored by
Andersson [13].

22.5 Pseudo-Similarity for Energy Equation

Although the hydrodynamic problem admits similarity solutions, the accompanying
thermal problem does not since the governing Eq. (22.16) for the temperature field
exhibits explicit dependencies on both ζ and η. An accurate method for obtaining
locally non-similar boundary layer solutions was suggested by Sparrow et al. [14],
and applied by Shang and Andersson [8] to solutions for thermal boundary layer
of non-Newtonian power-law liquids. According to Ref. [8] local pseudo-similarity
transformation for the thermal boundary layer is achieved by first introducing the
new variable

g(η, ζ ) = ∂θ(η, ζ )

∂ζ
(22.21)

in the actual differential equation so that the energy Eq. (22.16) becomes

[
− n

2(1 + n)
ηWx (η) + Wy(η)

]
∂θ(η, ζ )

∂η
+ ζ Wx (η)g(η, ζ ) = 1

Prx

∂2θ(η, ζ )

∂η2

(22.22)
Differentiating Eq. (22.22) with respect to ζ , we have

[
− n

2(n + 1)
ηWx (η) + Wy(η)

]
∂g(η, ζ )

∂η
+ Wx (η)g(η, ζ ) + ζ Wx (η)

∂g(η, ζ )

∂η

=
∂

(
1

Prx

)
∂ξ

(
∂2θ(η, ζ )

∂η2

)
+ 1

Prx

∂

∂ξ

(
∂2θ(η, ζ )

∂η2

)
(22.23)

where
∂

∂ξ

(
∂2θ(η, ζ )

∂η2

)
= ∂2g(η, ζ )

∂η2

With Eqs. (22.7), (22.10), and (22.20), we have
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Prx = x
√

2gx cos α

a

[
xn(

√
2gx cos α)2−nρ

K

]−2/(n+1)

= x3/2√2g cos α

a

[
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√
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a

[
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√
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K
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√
2g cos α

a

[
(
√

2g cos α)2−nρ

K

]−2/(n+1)

Then

∂
(

1
Prx

)
∂ξ

= ∂

∂ξ

{
x

1−n
2(n+1)

(√
2g cos α

a

)−1 [
(
√

2g cos α)2−nρ

K

]2/(n+1)
}

= 1 − n

2(n + 1)

{
x0x

−1−3n
2(n+1)

(√
2g cos α

a

)−1 [
(
√

2g cos α)2−nρ

K

]2/(n+1)
}

= 1 − n

2(n + 1)

{
ξ−1x · x

−1−3n
2(n+1) x3/2x−(n+2)/(n+1)

(
x
√

2gx cos α

a

)−1

×
[
(xn√

2gx cos α)2−nρ

K

]2/(n+1)
}

= 1 − n

2(n + 1)
ξ−1Pr−1

x

Thus, Eq. (22.23) is changed into the following:

[
− n

2(n + 1)
ηWx (η) + Wy(η)

]
∂g(η, ζ )

∂η
+ Wx (η)g(η, ζ )

= 1 − n

2(n + 1)
ξ−1Pr−1

x

(
∂2θ(η, ζ )

∂η2

)
+ 1

Prx

∂

∂ξ

(
∂2θ(η, ζ )

∂η2

)

or
[
− n

2(n + 1)
ηWx (η) + Wy(η)

]
∂g(η, ζ )

∂η
+ Wx (η)g(η, ζ ) + ξWx (η)

∂g(η, ζ )

∂ξ

= 1

Prx

[
∂2g(η, ζ )

∂η2 − n − 1

2(n + 1)
ξ−1 ∂2θ(η, ζ )

∂η2

]
(22.24)
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where the primes have been introduced to denote differentiation with respect to η. The

final step is to neglect terms involving
(

∂
∂ξ

)
in the subsidiary Eq. (22.24), whereas

the primary Eq. (22.22) remains intact.
We introduce the new variable

h(η, ξ) = ξ · g(η, ξ) = ξ
∂θ(η, ξ)

∂ξ
(22.25)

Multiply Eq. (22.24) by ξ , and then Eq. (22.24) is simplified to

[
− n

2(n + 1)
ηWx (η) + Wy(η)

]
∂h(η, ζ )

∂η
+ Wx (η)h(η, ζ )

= 1

Prx

[
∂2h(η, ζ )

∂η2 − n − 1

2(n + 1)

(
∂2θ(η, ζ )

∂η2

)]
(22.26)

Likewise, ξ · g(η, ξ) in Eq. (22.25) is replaced by h. Equation (20.26) is different
from the general similarity equation, and named pseudo-similarity equation.

Thus, the two-equation local pseudo-similarity model consists of the coupled
second-order differential Eqs. (22.22) and (22.26) for the two unknowns θ(η, ξ) and
h(η, ξ). These equations can be treated as ordinary differential equations solved as
a two-point boundary value problem in the single variables η with n and Prx being
the only parameters. Boundary conditions for the subsidiary unknown h become

η = 0 : h(η, ζ ) = 0 (22.27)

η = ηδt , h(η, ζ ) = 0 (22.28)

after differentiation of the boundary conditions (22.17) and (22.19) for θ and
respect ζ .

22.6 Critical Local Prandtl Number

The momentum boundary layer thickness ηδl and the thermal boundary layer thick-
ness ηδt are different in most of the cases for falling film flow of power-law fluids.
From Eqs. (22.14) and (22.15) it is found that the momentum boundary layer thick-
ness ηδl only depends on the power-law index n, and it was observed in Chap. 21
that ηδl is a monotonically decreasing function of n throughout the parameter range
0.1 ≤ n ≤ 2. In that study the momentum boundary layer thickness ηδl was defined
in accordance with common practice in aerodynamic boundary layer theory, namely
as the value of η for which the dimensionless velocity component Wx (η) becomes
equal to 0.99. For convenience, however, in the present investigation, the momen-
tum boundary layer thickness ηδl is defined as the value of η for which Wx (η) is
practically equal to one (i.e., to within 10−4%).

http://dx.doi.org/10.1007/978-3-642-28983-5_26
http://dx.doi.org/10.1007/978-3-642-28983-5_21


498 22 Pseudo-Similarity and Boundary Layer Thickness

Fig. 22.2 Variation of critical momentum boundary layer thickness η∗
δl

with power-law index n,
cited from Shang and Andersson [8]

Fig. 22.3 Variation of critical Prandtl number Pr∗x with power-law index n, cited from Shang and
Andersson [8]

From Eq. (22.16) it is found that the thermal boundary thickness ηδt is observed
as a part of the solution of a two-parameter problem, and it does not only depend
on the power-law index n but varies also with the local Prandtl number Prx . In the
study in [8, 9], Shang, Andersson, and Gu found that thermal boundary thickness
ηδt will increase with decreasing the local Prandtl number Prx , and with increasing
then power-law index n. For a given value of n, there should be a critical value of
the local Prandtl number Prx , with which the thermal boundary layer thickness ηδt

equals the momentum boundary layer thickness ηδl . This critical value of the local
Prandtl number Prx is defined as the critical local Prandtl number, which is denoted
by Pr∗x . In this case, the completely indentical momentum boundary layer thickness
ηδl and thermal boundary layer are denoted by critical boundary layer thickness η∗

δl
.

The variations of the critical momentum boundary layer thickness η∗
δl

and the
critical value of the local Prandtl number Pr∗x with n are displayed in Figs. 22.2 and
22.3 [8] respectively.
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Fig. 22.4 Comparison of the thickness ηδT and η∗
δl

together with n and Prx (1–5: ηδT with Prx =
0.01, 0.1, 1, 10, 100 respectively; 6: η∗

δl
), cited from Shang and Gu [9]

22.7 Analysis of Boundary Layer Thickness

22.7.1 Precautions for Prx > Pr∗
x

According to the study of Shang and Gu [9], the thickness of the thermal boundary
layer ηδt , which is defined by ∂θ(η, ζ )/∂η = 0.00001, has been determined for
various local Prandtl numbers and power-law index. Figure 22.4 [9] shows a series
of the related results, together with the variation of the thickness ηδl∗ with n. From
Fig. 22.4, it is seen that, for a special power-law index n, the thermal boundary layer
thickness ηδt is thinner than the critical momentum boundary layer thickness η∗

δt
for

Prx > Pr∗x . The difference between the thickness increases significantly with the
increase of Prx , so that the temperature gradients are only confined to the innermost
part of the velocity boundary layer for Prx � Pr∗x . The numerical accuracy will
accordingly deteriorate if the two boundary layer problems are solved simultaneously
all the way from the wall (η = 0) to the edge of the momentum boundary layer
(η = ηδl), cf. Table 22.1. The remedy is to carry out the numerical calculation only
sufficiently far so that the temperature gradient vanishes. To accomplish this, the
external boundary condition for the velocity field in Eq. (22.18) is replaced with the
accurately computed value of Wx at the particular position, which corresponds to the
edge of the calculation domain for the temperature field. As for the specific example
n = 0.5 and Prx = 10 in the Table 22.2, the numerical solution was obtained with
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Table 22.1 Similarity solution for the velocity field for power-law index n = 0.5, cited from Shang
and Andersson [8]

η Wy Wx
dWx
dη

0 0 0 1.104406
0.1 −0.001811 0.105273 1.000948
0.2 −0.007129 0.200581 0.905206
0.3 −0.015776 0.286522 0.8914695
0.4 −0.027575 0.363738 0.730722
0.5 −0.042347 0.432889 0.653416
0.6 −0.059914 0.494642 0.582748
0.7 −0.080097 0.549655 0.518561
0.8 −0.102721 0.598562 0.460595
0.9 −0.127614 0.64197 0.408512
1 −0.154608 0.680448 0.361926
1.2 −0.214262 0.744686 0.28355
1.4 −0.280483 0.794992 0.222044
1.6 −0.352205 0.83441 0.17416
1.8 −0.428503 0.865373 0.137048
2 −0.508594 0.889788 0.108331
2.2 −0.591817 0.909136 0.086094
2.5 −0.721362 0.931076 0.061694
3 −0.946498 0.955015 0.036572
5 −1.179419 0.969477 0.022584
4 −1.417354 0.978569 0.014495
4.5 −1.658602 0.984503 0.009636
5 −1.9021 0.988507 0.006611
6 −2.393348 0.99328 0.003375
8 −3.384437 0.99729 0.001132
10 −4.380367 0.998791 0.000484
12 −5.37828 0.999488 0.000248
15 −6.876808 1 0.000118

Wx (2.5) = 0.931076 taken from Table 22.1 as outer condition for Wx , in spite of the
fact that the momentum boundary layer extends all the way η = 15.

22.7.2 Precautions for Prx < Pr∗
x

For a special power-law index n, the thermal boundary layer becomes thicker than
the viscous boundary layer if Prx < Pr∗x and in this case the ratio of the thermal
boundary layer thickness ηδT to the momentum boundary layer thickness ηδl , i.e.
ηδt /ηδl increases with decreasing Prx . Temperature gradients thus extend far into
the frictionless flow. To facilitate the numerical calculation of the thermal boundary
layer problem and assure the numerical accuracy, the momentum boundary layer
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Table 22.2 Local no-similarity (pseudo-similarity) solution of the heat transfer problem for n = 0.5
and Prx = 10, cited from Shang and Andersson [8]

η Wy Wx
dWx
dη

θ(η, ζ )
dθ(η,ζ )

dη

0 0 0 1.104406 1.000000 −1.139345
0.1 −0.001811 0.105273 1.000948 0.886103 −1.137857
0.2 −0.007129 0.200581 0.905206 0.772716 −1.127787
0.3 −0.015776 0.286522 0.8914695 0.661083 −1.101675
0.4 −0.027575 0.363738 0.730722 0.553101 −1.054052
0.5 −0.042347 0.432889 0.653416 0.451082 −0.982272
0.6 −0.059914 0.494642 0.582748 0.357429 −0.887155
0.7 −0.080097 0.549655 0.518561 0.274286 −0.773095
0.8 −0.102721 0.598562 0.460595 0.203198 −0.647450
0.9 −0.127614 0.64197 0.408512 0.144881 −0.519255
1 −0.154608 0.680448 0.361926 0.099129 −0.397539
1.2 −0.214262 0.744686 0.28355 0.040563 −0.200474
1.4 −0.280483 0.794992 0.222044 0.013642 −0.081438
1.6 −0.352205 0.83441 0.17416 0.003704 −0.026229
1.8 −0.428503 0.865373 0.137048 0.000799 −0.006607
2 −0.508594 0.889788 0.108331 0.000135 −0.001286
2.2 −0.591817 0.909136 0.086094 0.000017 −0.000192
2.4 −0.677629 0.924559 0.068834 0.000001 −0.000022
2.5 −0.721362 0.931076 0.061694 0.000000 −0.000007

Eqs. (22.14) and (22.15) are calculated only up to ηδl . Thereafter, the velocity field
is taken as

Wx (η) = 1, (22.29)

throughout the remaining η-range from ηδl to ηδT . Meanwhile, with Eq. (22.29) and
by using the relationship dWx (η)

dη
= 0, the continuity Eq. (22.14) is changed into the

following one:
dWy(η)

dη
= −1

2

Integrating the above equation, we obtain the following relationship about Wy(η):

Wy(η) = −1

2
η + constant (22.30)

By using Eqs. (22.29) and (22.30) the governing Eqs. (22.14), (22.15), (22.16),
and (22.24) are further calculated. A specific example n = 1.5 and Prx = 1 is given
in Table 22.3 and shown graphically in Fig. 22.5. Here, the analytical continuation in
the range 2.7 ≤ η ≤ 5.6.
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Table 22.3 Local pseudo-similarity solution of the heat transfer problem for n = 1.5 and Prx = 1.0,
cited from Shang and Andersson [8]

η Wy Wx
dWx
dη

θ(η, ζ )
dθ(η,ζ )

dη

0 0 0 0.865908 1.000000 −0.485194
0.1 −0.000872 0.084788 0.829724 0.951482 −0.485141
0.2 −0.003513 0.165922 0.792848 0.902982 −0.484778
0.3 −0.007964 0.243336 0.755334 0.854547 −0.483804
0.4 −0.014265 0.316969 0.717243 0.806251 −0.481941
0.5 −0.022462 0.386768 0.678643 0.758197 −0.478929
0.6 −0.032598 0.452683 0.649610 0.710511 −0.474537
0.7 −0.044719 0.514678 0.600232 0.663342 −0.468567
0.8 −0.058871 0.572721 0.560604 0.616856 −0.460861
0.9 −0.075097 0.626794 0.520837 0.571231 −0.451305
1 −0.093438 0.676888 0.481052 0.526658 −0.439837
1.2 −0.136618 0.765174 0.401986 0.441431 −0.411192
1.4 −0.188649 0.827799 0.324677 0.362651 −0.375526
1.6 −0.249641 0.895264 0.250661 0.291595 −0.334268
1.8 −0.319506 0.938405 0.181772 0.229180 −0.289483
2 −0.397884 0.968456 0.120153 0.175877 −0.243570
2.2 −0.484046 0.987115 0.068278 0.131667 −0.198916
2.4 −0.566790 0.996604 0.028956 0.096088 −0.157574
2.6 −0.674316 0.999743 0.005337 0.068316 −0.121037
2.7 −0.724114 1 0.000493 0.057033 −0.104856
2.8 −0.774108 1 0 0.047296 −0.090137
3 −0.874108 1 0 0.031870 −0.065079
3.4 −1.074108 1 0 0.013323 −0.030914
3.8 −1.274108 1 0 0.004974 −0.012972
4 −1.374108 1 0 0.002909 −0.008021
4.4 −1.574108 1 0 0.000906 −0.002794
4.8 −1.774108 1 0 0.000243 −0.000858
5 −1.874108 1 0 0.000116 −0.000454
5.4 −2.074108 1 0 0.000016 −0.000114
5.6 −2.174108 1 0 0 −0.000054

Note The velocity field beyond η = 2.7 is obtained from the analytical continuation in Eqs. (22.29)
and (22.30)

22.8 Remarks

The pseudo-similarity solutions of the thermal boundary layer of a falling film flow
of power-law fluids are presented in this present work. Based on a proposed “local
Prandtl number”, the dependence of the thickness of the momentum boundary layer
and thermal boundary layer on the power-law index and local Prandtl number are
discussed. Their changes with power-law index and local Prandtl number are also
presented. The momentum layer thickness ηδl depends only on the power-law index
n, while the thermal boundary layer thickness ηδT depends both on the power-law
index n and the local Prandtl number Prx . The momentum boundary layer thickness
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Fig. 22.5 Profiles of Wx (η), Wy(η) and θ(η, ζ ) for Prx = 1 and n = 1.5 Lines 1–3: for Wy(η),
Wx (η) and θ(η, ζ )

ηδl decreases significantly with the increase of the parameter n, while the thermal
boundary layer thickness ηδt decreases slightly with the increase of n. The ther-
mal boundary layer thickness ηδT increases with increasing the parameter n and
decreases with the increasing the parameter Prx , especially when Prx <1. This
analysis provides a clear identification of different regions for both ηδT > η∗

δl
and

ηδT < η∗
δl

.
With the introduction of the “local Prandtl number”, it is found that the heat

transfer problem turned out to involve only two independent parameters, the power-
law index and the local Prandtl number. In addition, the dependence of the power-law
index and the local Prandtl number on the thermal boundary layer has been clarified.

The pseudo-similarity solution and the assumed true-similarity solution are pre-
sented for the investigation of non-similarity thermal boundary layer. The degree of
non-similarity of thermal boundary layer has been determined for various values of
power-law indices and local Prandtl numbers.
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Chapter 23
Heat Transfer of the Falling Film Flow
of Non-Newtonian Power-Law Fluids

Abstract A deep study is done on heat transfer from an inclined plane surface to
an accelerating liquid film of a non-Newtonian power-law fluid. The new similar-
ity analysis method for the accompanying hydrodynamic problem was adopted in
combination with a local pseudo-similarity method. The resulting transformed prob-
lem turned out to involve only two independent parameters, namely the power-law
index and the local Prandtl number. All other related physical properties and para-
meters are combined into the induced local Reynolds number, and the dimensionless
velocity components. Accurate numerical results are obtained for combinations of
local Prandtl number from 0.001 to 1000 and the power-law index n in the range
0.2 ≤ n ≤ 2. Special treatment for the low and high local Prandtl number cases is
essential in order to maintain the numerical accuracy. The calculated results obtained
both by using local similarity and local pseudo-similarity methods are practically
indistinguishable for n = 1 over the entire local Prandtl number range. Furthermore,
it is found that the wall temperature gradient which depends on local Prandtl number
and power-law index is the only one no-given condition for evaluation of heat trans-
fer. With increasing the local Prandtl number, the heat transfer coefficient increases,
but with increasing the power-law increase, the heat transfer coefficient decreases.
A set of accurate curve-fit formulas for the wall temperature gradient is provided,
so that the rapid estimates of the heat transfer rate for any combination of the local
Prandtl number and power-law index within the parameter ranges considered are
realized.

23.1 Introduction

There have been a number of studies on heat transfer from a constant temperature
wall to hydrodynamically fully developed power-law films, such as those by Yih
and Lee [1], Astarita [2], Mashelkar and Chavan [3], Pop et al. [4], Ouldhadda et al.
[5], Rao [6], etc. However, only a few of recent studies of Shang, Andersson, and

D.-Y. Shang, Free Convection Film Flows and Heat Transfer, 505
Heat and Mass Transfer, DOI: 10.1007/978-3-642-28983-5_23,
© Springer-Verlag Berlin Heidelberg 2012
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Gu [7, 8] focused on a system of solutions of thermal boundary layer by using a
pseudo-similarity approach, including the rigorous solutions about the heat transfer
coefficient of the falling-film flow of non-Newtonian power-law fluids.

Based on the presentation in Chap. 22 for pseudo-similarity analyses of the
boundary layer thickness for the non-Newtonian falling film flow, in this present
chapter, a mathematical model for the flow and heat transfer in accelerating liquid
film of a non-Newtonian falling film flow is further presented. For the case that the
local Prandtl number Prx is larger than the critical Prandtl number Prx *, the predicted
temperature field in the boundary layer region is controlled by the velocity field of the
momentum boundary layer calculated by using the governing mass and momentum
equations. For the case that the local Prandtl number Prx is smaller than the critical
Prandtl number Prx *, it is difficult to directly obtain the simultaneous solutions from
the equations of the momentum and thermal boundary layers, and it is necessary to
apply the perfect approach presented in Chap. 22 for overcoming such difficulty.

Since the thermal boundary layer permits exact similarity solution only in the
particular case when the power-law index is equal to unity, i.e. for Newtonian films,
the heat transfer problem is solved by means of a pseudo-similarity approach with
power-law index n and local Prandtl number Prx being the only parameters. The
pseudo-similarity heat transfer problem is calculated numerically in the ranges 0.2 ≤
n ≤ 2 and 0.001 ≤ Prx ≤ 1000, in which the calculations for n = 1 are compared
favorably with earlier results for Newtonian fluid films. From the numerical solutions
of the pseudo-similarity energy equation of the thermal boundary layer, it is found
that the effect of the power-law index n on the wall gradient of the temperature field
is slight except for smaller power-law index n with larger local Prandtl number Prx .
However, the wall gradient of the temperature field will increase with increasing the
local Prandtl number Prx . Curve-fit formulas for the temperature gradient at the wall
are provided in order to facilitate rapid and yet accurate estimates for the heat transfer
coefficient and the Nusselt number.

23.2 Governing Equations

Consider the accelerating laminar flow in the boundary layer region of a non-
Newtonian power-law liquid film down along an inclined plane surface, as shown
schematically in Fig. 21.1. According to Chaps. 21 and 22, the governing dimen-
sionless differential equations for mass, momentum, and energy conservations are
summarized as follows for the pseudo-similarity solutions:

Wx (η) − n

(1 + n)
η

dWx (η)

dη
+ 2

dWy(η)

dη
= 0 (23.1)

http://dx.doi.org/10.1007/978-3-642-28983-5_22
http://dx.doi.org/10.1007/978-3-642-28983-5_22
http://dx.doi.org/10.1007/978-3-642-28983-5_21
http://dx.doi.org/10.1007/978-3-642-28983-5_21
http://dx.doi.org/10.1007/978-3-642-28983-5_22
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Wx (η)

[
− n

(1 + n)
η

dWx (η)

dη
+ Wx (η)

]
+ 2Wy(η)

dWx (η)

dη

= 1 + 2n

(
dWx (η)

dη

)n−1 d2Wx (η)

dη2 (23.2)

[
− n

2(1 + n)
ηWx (η) + Wy(η)

]
∂θ(η, ζ )

∂η
+ ζ Wx (η)g(η, ζ ) = 1

Prx

∂2θ(η, ζ )

∂η2

(23.3)

[
− n

2(n + 1)
ηWx (η) + Wy(η)

]
∂h(η, ζ )

∂η
+ Wx (η)h(η, ζ )

= 1

Prx

[
∂2h(η, ζ )

∂η2 − n − 1

2(n + 1)

(
∂2θ(η, ζ )

∂η2

)]
(23.4)

subject to the boundary conditions

η = 0: Wx (η) = 0, Wy(η) = 0, θ(η, ζ ) = 1, h(η, ζ ) = 0 (23.5)

η = ηδl : Wx (η) = 1 (23.6)

η = ηδT , θ(η, ζ ) = 0, h(η, ζ ) = 0 (23.7)

Here, the dimensionless coordinate variables are

η = y

x
Rex

1/(n+1) (23.8)

ζ = x

x0
(23.9)

where x0 is a characteristic length scale in the streamwise direction and the
generalized local Reynolds number is

Rex = xn(wx,∞)2−nρ

K
(23.10)

While the velocity component wx within the boundary layer approaches the
external velocity

wx,∞ = √
2gx cos α (23.11)

The dimensionless velocity components are defined as

Wx (η) = wx√
2gx cos α

(23.12)

Wy(η) = wy√
2gx cos α

Rex
1

n+1 (23.13)
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which are independent of ζ except for the particular value n = 1. The dimensionless
temperature and the related new variables are defined as

θ(η, ζ ) = t − t∞
tw − t∞

(23.14)

g(η, ζ ) = ∂θ(η, ζ )

∂ζ
(23.15)

h(η, ξ) = ξ · g(η, ξ) = ξ
∂θ(η, ξ)

∂ξ
(23.16)

which depend both on η and ζ . The local Prandtl number Prx is defined by a dimen-
sionless diffusion coefficient, i.e.

Prx = xwx,∞
a

(Rex )
− 2

n+1 (23.17)

Since the thickness ηδT of the thermal boundary layer is observed as a part of the
solution of a two-parameter problem, ηδT does not only depend on n but varies also
with Prx . For a given value of n, a critical local Prandtl number Prx * is defined as
the particular parameter value for which the thermal boundary layer thickness ηδT

equals the momentum boundary layer thickness ηδl . This critical value is denoted by
Prx * and shown in Fig. 20.3, from which Prx * can be seen to increase monotonically
with n.

23.3 Heat Transfer Analysis

The heat transfer rate between the solid wall, which is maintained at temperature tw,
and the liquid film is of particular significance in industrial applications. The local
heat transfer rate qx , which is defined as follows by Fourie’s law:

qx = −λ

(
∂t

∂y

)
y=0

(23.18)

where λ is the thermal conductivity of the non-Newtonian liquid. With the above
defined dimensionless coordinate variable η, Eq. (23.18) can be transformed to the
followings

qx = −λ

(
∂t

∂η

)
η=0

(
∂η

∂y

)
y=0

With Eqs. (22.8) and (22.14), the local heat transfer rate is described as

qx = −λx−1(tw − t∞)

[
∂θ(η, ζ )

∂η

]
η=0

(Rex )
1/(n+1) (23.19)

http://dx.doi.org/10.1007/978-3-642-28983-5_20
http://dx.doi.org/10.1007/978-3-642-28983-5_22
http://dx.doi.org/10.1007/978-3-642-28983-5_22
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where
[

∂θ(η,ζ )
∂η

]
η=0

is the dimensionless local temperature gradient on the wall. Then,

with Newtonian-Cooling law qx = αx (tw − t∞), the local transfer coefficient αx is
expressed as follows:

αx = −λx−1
[
∂θ(η, ζ )

∂η

]
η=0

(Rex )
1/(n+1) (23.20)

or, alternately, as local Nusselt number

Nux = αx x

λ
= −(Rex )

1/(n+1)

[
∂θ(η, ζ )

∂η

]
η=0

(23.21)

If Qx is total heat transfer rate from the position 0 to x with the width of b on the
plate, Qx is the following integration:

Qx =
∫∫

A

qx dA

where A = b · x . Then,

Qx = b

x∫
0

qx dx

= −b

x∫
0

λx−1(tw − t∞)

[
∂θ(η, ζ )

∂η

]
η=0

(Rex )
1/(n+1)dx

= −b

x∫
0

λx−1(tw − t∞)

[
∂θ(η, ζ )

∂η

]
η=0

(
xn(wx,∞)2−nρ

K

)1/(n+1)

dx

= −b

x∫
0

λ(tw − t∞)

[
∂θ(η, ζ )

∂η

]
η=0

(
(2g cos α)

2−n
2 ρ

K

)1/(n+1)

x−n/(2(n+1))dx

= −b
2(n + 1)

n + 2
λ(tw − t∞)

[
∂θ(η, ζ )

∂η

]
η=0

×
(

(2g cos α)
2−n

2 ρ

K

)1/(n+1)

x (n+2)/(2(n+1))

= −b
2(n + 1)

n + 2
λ(tw − t∞)

[
∂θ(η, ζ )

∂η

]
η=0

(
xn(

√
2gx cos α)2−nρ

K

)1/(n+1)

Then,
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Qx = −b
2(n + 1)

n + 2
λ(tw − t∞)

[
∂θ(η, ζ )

∂η

]
η=0

(Rex )
1/(n+1) (23.22)

The average transfer coefficientαx , defined as Qx = αx (tw−t∞)A, is expressed as

αx = −2(n + 1)

n + 2
λx−1

[
∂θ(η, ζ )

∂η

]
η=0

(Rex )
1/(n+1) (23.23)

The average Nusselt number, defined as Nux = αx x
λ

, is expressed as

Nux = −2(n + 1)

n + 2

[
∂θ(η, ζ )

∂η

]
η=0

(Rex )
1/(n+1) (23.24)

From Eqs. (23.19) to (23.24) it is found that the local temperature gradient[
∂θ(η,ζ )

∂η

]
η=0

is very important for evaluation of the local heat transfer. From govern-

ing Eqs. (23.2) and (23.4) it is follows that
[

∂θ(η,ζ )
∂η

]
η=0

only depends on power-law

index n and local Prandtl number Prx , i.e.

[
∂θ(η, ζ )

∂η

]
η=0

= f (n, Prx ) (23.25)

23.4 Numerical Solution for Heat Transfer

The solutions for the pseudo-similarity equations of thermal boundary layer are
obtained from the Eqs. (23.1)–(23.4) with the boundary condition Eqs. (23.5)–(23.7).
Figure 23.1 shows a number of computed temperature profiles θ(η) with the varia-
tions of power-law index n from 0.2 to 2 and local Prandtl number Prx from 0.001 to

1000. While the wall temperature gradient
[

∂θ(η,ζ )
∂η

]
η=0

, which is the most important

heat transfer characteristic, is listed in Table 23.1 [7] and plotted in Fig. 23.2. It is
shown that the distribution of temperature θ(η) increases significantly with increas-
ing local Prandtl number Prx from 0.001 to 1000. However, effect of the power-law
index n on the wall gradient of the temperature field is slight except for smaller
power-law index n together with larger local Prandtl number Prx . For the particular
parameter value n = 1 the wall temperature gradient data in Table 23.1 agreed with
the calculation for a Newtonian film by Andersson [9] throughout the entire Prandtl
number range.

The most striking feature of Fig. 23.1 is that the local Prandtl number effect is
more prominent than the influence of the rheological parameter n, except for larger
local Prandtl number with smaller power-law index n. If the value of the power-law
index n equals unity, the thickness of the thermal boundary layer is roughly the same
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Fig. 23.1 Dimensionless temperature profile θ(η, ζ ) for different values of Prx and n, cited from
Shang and Andersson [7]. a Prx = 0.001; curves 1–8: n = 0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5 and 2.0,
b Prx = 0.01; curves 1–8: n = 0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5 and 2.0, c Prx = 0.1; curves 1–8: n =
0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5 and 2.0, d Prx = 1.0; curves 1–8: n = 2.0, 1.5, 1.2, 1.0, 0.2, 0.7, 0.3
and 0.5, e Prx = 1000; curves 1–8: n = 0.2, 0.3, 2.0, 0.5, 1.5, 0.7, 1.2, 1.2 and 1.0

as the thickness of the momentum boundary layer for Prx = 1. Moreover, for high
local Prandtl number the thermal boundary layer is significantly thinner than the
viscous boundary layer, while for Prx � 1 the thermal boundary layer extends far
into the external free stream. Consequently, the thinning of the thermal boundary
layer with increasing values of Prx makes the magnitude of the temperature gradient
at the wall. The thick thermal boundary layer in the low local Prandtl number cases
suggests that the temperature adjusts from Tw to T∞ mainly in fluid with free stream
velocity wx,∞. Thus, as a first approximation, the viscous boundary layer does not
contribute to the heat flux and the temperature gradient at the wall should therefore
be independent of n. However, the data for Prx = 0.001 in Table 23.1 shows that the
wall temperature gradient increases slowly with n as n is varied from 0.2 to 2, the
total increase being less than 8 %. For Prx � 1 the principal effect of the viscous
boundary layer on the temperature gradient at the wall stems from the displacement
of the external inviscid flow away from the wall.

A qualitatively different situation occurs for high local Prandtl numbers. Due
to the substantial thinning of the thermal boundary layer with increasing Prx , the
temperature gradients are contained within the innermost part of the momentum
boundary layer. Thus, the wall gradient of the temperature field is controlled by
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Table 23.1 Computed values of −
[

∂θ(η,ζ )
∂η

]
η=0

for different values of Prx and n, cited from Shang

and Andersson [7]

n PrX x

0.001 0.01 0.1 1 10 100 1000

0.2 (1) 0.02053 0.06315 0.1863 0.5111 1.27986 2.98885 6.7598
(2) 0.02078 0.06427 0.1838 0.5122 1.28135 2.98621 6.75929

ε1(%) −1.218 −1.77 1.34 −0.215 1.27 0.088 0.0075
(3) 0.01897 0.05837 0.1724 0.4742 1.19263 2.78664 6.23798

ε2(%) 7.60 7.57 7.46 7.226 6.82 6.77 7.72
0.5 (1) 0.020969 0.06391 0.1836 0.4793 1.13934 2.56412 5.62871

(2) 0.020792 0.06494 0.1797 0.4782 1.13641 2.45958 5.63969
ε1(%) 0.844 −1.61 2.12 0.23 0.257 4.077 −0.195

(3) 0.020222 0.06162 0.1773 0.4638 1.10503 2.49064 5.47372
ε2(%) 3.56 3.58 3.43 3.23 3.01 2.87 2.75

0.7 (1) 0.021202 0.06458 0.1847 0.4758 1.11569 2.49172 5.4554
(2) 0.021161 0.06595 0.1812 0.4777 1.11644 2.49387 5.46885

ε1(%) 0.193 −2.12 1.89 −0.399 −0.067 −0.086 −0.247
(3) 0.02081 0.06336 0.1814 0.468 1.09865 2.4545 5.37162

ε2(%) 1.85 1.89 1.79 1.64 1.53 1.49 1.54
1 (1) 0.021457 0.06536 0.1868 17 0.4776 1.10671 2.45403 5.35184

(2) 0.021458 0.06673 0.182300 0.4773 1.10248 2.44926 5.351
ε1(%) −0.0047 −2.096 2.418 0.063 0.382 0.194 0.0157

(3) 0.021455 0.06536 0.186817 0.4776 1.10671 2.45403 5.35184
ε2(%) 0 0 0 0 0 0 0

1.2 (1) 0.021595 0.06583 0.1883 0.4804 1.10769 2.44844 5.33014
(2) 0.021601 0.06715 0.1834 0.4803 1.10527 2.44816 5.33643

ε1(%) −0.0278 −2 2.6 0.02 0.2187 0.0114 −0.118
(3) 0.021786 0.06641 0.1899 0.4842 1.11582 2.46617 5.37031

(5) (%) −0.88 −0.88 −0.85 −0.79 −0.73 −0.72 −0.75
1.5 (1) 0.021763 0.06641 0.1903 0.4853 1.11297 2.45196 5.32975

(2) 0.021788 0.06776 0.1851 0.4847 1.10965 2.45074 5.33106
ε1(%) −0.115 −2.03 2.73 0.124 0.298 0.05 −0.0246

(3) 0.022179 0.06767 0.1939 0.4934 1.13046 2.4897 5.41286
ε2(%) −1.91 −1.90 −1.89 −1.67 −1.57 −1.54 −1.56

2 (1) 0.022111 0.06717 0.193 0.4928 1.1246 2.46821 5.35668
(2) 0.022099 0.06877 0.1879 0.492 1.12048 2.46717 5.35603

ε1(%) 0.0543 −2.38 2.64 0.162 0.367 0.042 0.012
(3) 0.022654 0.06922 0.1989 0.5064 1.15317 2.5297 5.49016

ε2(%) −2.46 −3.05 −3.06 −2.76 −2.54 −2.49 −2.49

Note
(i) −

[
∂θ(η,ζ )

∂η

]
η=0

(1) (for short as (1)) local pseudo-similarity solution

(ii) −
[

∂θ(η,ζ )
∂η

]
η=0

(2) (for short as (2)), result evaluated by curve-fit formula (23.26)

(iii) Deviation ε1 defined as Eq. (23.27)

(iv) −
[

∂θ(η)
∂η

]
η=0

(3) (for short (3)), local similarity solution

(v) Deviation ε2 defined as Eq. (23.29)
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Fig. 23.2 Variation of dimensionless temperature gradient −
[

∂θ(η,ζ )
∂η

]
η=0

at the wall η = 0 with

power-law index n for different values of the local Prandtl number Prx . Lines 1–8 note: Prx =
0.001, 0.01, 0.1, 1, 10, 100 and 1000

the velocity gradient dWx/dη at the wall. The accurate numerical solution of the
hydrodynamic problem in [10] showed that dWx/dη is practically independent of n
for dilatant film but increases significantly with increasing pseudo-plasticity 1 − n
for n < 1. It is therefore interesting to observe that exactly the same n-dependency
is carried over to the wall gradients of the temperature field in Table 23.1.

To facilitate rapid estimates of the local heat transfer coefficient αx or the local
Nusselt number Nux , accurate curve-fit formulas for the wall gradient of the temper-
ature field are provided. The optimized expressions for the coefficients a, b, and c, as
obtained by Shang and Andersson [7] for matching the formula (23.26) to the data
in Table 23.1, are given in Table 23.2. Predictions by means of this shot-cut method
are also included in Table 23.1.

−
[
∂θ(η, ζ )

∂η

]
η=0

= a + b Prx
c (23.26)

If we take the corresponding pseudo-similarity solution of temperature gradi-

ent from Eqs. (23.3) and (23.4) as −
[

dθ(η,ζ )
dη

]
η=0

(1), the result evaluated by using

Eq. (23.26) as −
[

dθ(η,ζ )
dη

]
η=0

(2), the result of deviations ε1 of −
[

dθ(η,ζ )
dη

]
η=0

(2)

from −
[

dθ(η,ζ )
dη

]
η=0

(1) can be expressed as
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Table 23.2 Coefficients a, b and c in the curve-fit formula (21.26), cited from Shang and
Andersson [7]

Prx n a b c

0.001
≤ Prx ≤ 1

0.2 ≤ n ≤ 1 −0.0086 + 0.0009

n
0.485 + 0.00001

× ( 1
n

) 1
n

0.399 + 0.008

n

1 ≤ n ≤ 2 −0.0074 − 0.00028n 0.47 + 0.015n 0.407
1 ≤ Prx

≤ 1000
0.2 ≤ n ≤ 1 0.0205 − 0.0845

× ( 1
n

) 1
3

0.518 + 0.0234
n 0.3324 + 0.00096

× ( 1
n

)1.6

1 ≤ n ≤ 2 −0.12 + 0.079

×
(

n
n+1

) 1
2

0.541+0.0009n3 0.3306 + 0.0027
× ( 1

n

)1.65

ε1 =
−

[
dθ(η,ζ )

dη

]
η=0

(1) −
{
−

[
dθ(η,ζ )

dη

]
η=0

(2)

}

−
[

dθ(η,ζ )
dη

]
η=0

(1)
(23.27)

The evaluated results −
[

dθ(η,ζ )
dη

]
η=0

(2) and their deviations ε1 are listed in

Table 23.1. It is found that the evaluated values of −
[

dθ(η,ζ )
dη

]
η=0

(2) are very well

agreement with the pseudo-similarity solutions −
[

dθ(η,ζ )
dη

]
η=0

(1) over the entire

parameter ranges 0.2 ≤ n ≤ 2 and 0.001 ≤ Prx ≤ 1000.
In addition, the thickness of temperature boundary layer increases with the

decrease of local Prandtl number Prx . The related numerical solutions h(η) are plot-
ted in Fig. 23.3a, b, which correspond to Prx = 1 and 100 respectively. In each

Fig. 23.3 Numerical solutions h(η) (Curves 1–5: for n = 0.2, 0.5, 1, 1.5 and 2), cited from Shang
and Gu [8] a for Prx = 1 and b for Prx = 100

http://dx.doi.org/10.1007/978-3-642-28983-5_21
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figure the five curves correspond to n = 0.2, 0.5, 1, 1.5, and 2, respectively. The
solutions h(η) reflect the non-similarity of the thermal boundary layer. It is shown
in Fig. 23.3 that with variation of local Prandtl number Prx , the non-similarity of
the thermal boundary layer be different slightly [8]. However, with the increase of
the value |n − 1|, non-similarity of the thermal boundary layer increases obviously.
Only when the power-law index n equals unity, true similarity solution exists. The
variable h(η) is positive for n < 1 and negative for n > 1.

23.5 Local Similarity Versus Local Pseudo-Similarity

If a true-similarity solution were assumed to exist for the thermal boundary layer,
the dimensionless energy Eqs. (23.3) and (23.4) would be simplified to

[
− n

2(1 + n)
ηWx (η) + Wy(η)

]
dθ(η)

dη
= 1

Prx

d2θ(η)

dη2 (23.28)

A simple approach to the non-similar heat transfer problem associated with the
gravity-driven power-law film would be the local similarity scheme. In that approach
ξ is regarded as a known constant at any streamwise position and the dimensionless
energy Eqs. (23.3) and (23.4) would be turned to Eq. (23.28). The numerical solution
of the simplified version of Eq. (23.28) can then be obtained locally with Prx and n as
parameters by means of the same calculation technique as for the local non-similar
problem defined in Chap. 22.

The two-parameter local similarity problem was solved numerically for various
combinations of n and Prx in the intervals 0.2 ≤ n ≤ 2 and 0.001 ≤ Prx ≤ 1000.
Results for the magnitude of the wall gradient of the dimensionless temperature field

i.e. −
[

∂θ(η,ζ )
∂η

]
η=0

are reported in Table 23.1. To facilitate the comparison between

the local pseudo-similarity and the local similarity approach the deviation between
the two sets of data, normalized with the latter, has been defined as ε2 and included
in the Table 23.1.

If we take the assumed true-similarity solution of the temperature gradient from

Eq. (23.28) as −
[

dθ(η)
dη

]
η=0

(3), the deviations ε2 of −
[

dθ(η)
dη

]
η=0

(3) from pseudo-

similarity solution, −
[

∂θ(η,ζ )
∂η

]
η=0

(1) can be expressed as in Eq. (23.29). The value

of ε2 for each n and Prx is shown in Table 23.1 and Fig. 23.4.

ε2 =
−

[
∂θ(η,ζ )

∂η

]
η=0

(1) −
[
−

[
dθ(η)

dη

]
η=0

(3)

]

−
[

∂θ(η,ζ )
∂η

]
η=0

(1)
(23.29)

http://dx.doi.org/10.1007/978-3-642-28983-5_22
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Fig. 23.4 The relative deviation ε2 between local pseudo-similarity and local similarity solutions

in the wall temperature gradient −
[

∂θ(η,ζ )
∂η

]
η=0

variation with power-law index n and local Prandtl

number Prx (Curves 1–7: n = 0.2, 0.5, 0.7, 1, 1.2, 1.5, and 2)

Let us emphasize that the two approaches become identical for n = 1 since
the thermal boundary layer problem admits exact similarity solutions for Newtonian
fluids. It is therefore not surprising that the relative deviation ε2 in the local similarity
and local pseudo-similarity solutions increases with deviation of the power-law index
n from unity, i.e. with increasing non-Newtonian rheology. The deviation is moreover
more significant for the most pseudo-plastic liquids (n = 0.2) than for the highly
dilatant film (n = 2), whereas the local Prandtl number Prx turned out to have
only a minor effect on ε2. It is concluded that the results obtained with the local
pseudo-similarity approach are of good accuracy.

It is noteworthy to emphasize that the absolute value of deviation rate ε2 equals
zero for n = 1, increases with the increase of the absolute value |n − 1|. The value
of ε2 is a measure of the degree of non-similarity of the thermal boundary layer, and
it is seen from Fig. 23.4 that such non-similarity for pseudo-plastic fluid (with n < 1)
is more obvious than that of Dilatant fluid (with n > 1).

23.6 Summary

So far, we have presented the recent developments on heat transfer of falling film
flow of non-Newtonian power-law fluids. The related governing equations and heat
transfer expressions are summarized in Tables 23.3 and 23.4 respectively.
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Table 23.3 Summary of governing equations of falling film flow of non-Newtonian power-law
fluids

Term Equations

Governing partial differential equations

Mass equation ∂wx
∂x + ∂wy

∂y = 0

Momentum equation wx
∂wx
∂x + wy

∂wx
∂y = g cos α + n K

ρ

(
∂wx
∂y

)n−1
∂2wx
∂y2

Energy equation wx
∂t
∂x + wy

∂t
∂y = λ

ρcp

∂2t
∂y2

Boundary conditions y = 0 : wx = 0, wy = 0, t = tw
y = δl , wx = wx,∞
y = δt , t = t∞

Similarity variables
η

y
x Rex

1/(n+1)

Rex
xn (wx,∞)2−nρ

K

Prx
xwx,∞

a (Rex )−
2

n+1

Wx (η) wx√
2gx cos α

Wy(η)
wy√

2gx cos α
Rex

1
n+1

Governing ordinary differential equations

Mass equation Wx − n
n+1 η + dWx

dη
+ 2 dWy

dη
= 0

Momentum equation Wx

(
− n

n+1 η + dWx
dη

+ Wx

)
+ 2Wy

dWx
dη

= 1 + 2n
(

dWs
dη

)(n−1) d2Wx
dη2

Pseudo-similarity energy
equation

[
− n

2(1+n)
ηWx (η) + Wy(η)

]
∂θ(η,ζ )

∂η

+ ζ Wx (η)g(η, ζ ) = 1
Prx

∂2θ(η,ζ )

∂η2

Pseudo-similarity energy
equation

[
− n

2(n+1)
ηWx (η) + Wy(η)

]
∂h(η,ζ )

∂η

+ Wx (η)h(η, ζ )

= 1
Prx

[
∂2h(η,ζ )

∂η2 − n−1
2(n+1)

(
∂2θ(η,ζ )

∂η2

)]
Boundary conditions η = 0: Wx (η) = 0, Wy(η) = 0, θ(η, ζ ) = 1,

h(η, ζ ) = 1
η = ηδl : Wx (η) = 1, θ(η, ζ ) = 0, h(η, ζ ) = 0

23.7 Remarks

This chapter has focused on the heat transfer from an inclined plane surface to
an accelerating liquid film of a non-Newtonian power-law fluid. The new similar-
ity analysis method for the accompanying hydrodynamic problem was adopted in
combination with a local pseudo-similarity method. The resulting transformed prob-
lem turned out to involve only two independent parameters, namely the power-law
index n and the local Prandtl number Prx . All other parameters, like the streamwise
location x, the fluid properties ρ, K, n, λ, and the component of the gravitational
acceleration along the wall g cosα, have been combined into the induced Prx , the
local Reynolds number, and the velocity components Wx,Wy , and Wy(η). Accurate
numerical results were obtained for various combinations of local Prandtl number
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Table 23.4 Summary of the relate expressions on heat transfer of the falling film flow of non-
Newtonian power-law fluids

αx , defined as αx = qx
(tw−t∞)

−λx−1(Rex )1/(n+1)
[

∂θ(η,ζ )
∂η

]
η=0

αx ,defined as Qx
(tw−t∞)A

2(n+1)
n+2 αx

Nux , defined as αx x
λ

−(Rex )1/(n+1)
[

∂θ(η,ζ )
∂η

]
η=0

Nux , defined as αx x
λ

2(n+1)
n+2 Nux

−
[

∂θ(η,ζ )
∂η

]
η=0

a + b Prx
c

a −0.0086 + 0.0009
n (0.2 ≤ n ≤ 1, 0.001 ≤ Prx ≤ 1)

−0.0074 − 0.00028n (1 ≤ n ≤ 2, 0.001 ≤ Prx ≤ 1)

0.0205 − 0.0845 × ( 1
n

) 1
3 (0.2 ≤ n ≤ 1, 1 ≤ Prx ≤ 1000)

−0.12 + 0.079 ×
(

n
n+1

) 1
2

(1 ≤ n ≤ 2, 1 ≤ Prx ≤ 1000)

b 0.485 + 0.00001 × ( 1
n

) 1
n (0.2 ≤ n ≤ 1, 0.001 ≤ Prx ≤ 1)

0.47 + 0.015n (1 ≤ n ≤ 2, 0.001 ≤ Prx ≤ 1)

0.518 + 0.0234
n (0.2 ≤ n ≤ 1, 1 ≤ Prx ≤ 1000)

0.541 + 0.0009n3 (1 ≤ n ≤ 2, 1 ≤ Prx ≤ 1000)

c 0.399 + 0.008
n (0.2 ≤ n ≤ 1, 0.001 ≤ Prx ≤ 1)

0.407 (1 ≤ n ≤ 2, 0.001 ≤ Prx ≤ 1)

0.3324 + 0.00096 × ( 1
n

)1.6
(0.2 ≤ n ≤ 1, 1 ≤ Prx ≤ 1000)

0.3306 + 0.0027 × ( 1
n

)1.65
(1 ≤ n ≤ 2 1 ≤ Prx ≤ 1000)

Prx and the power-law index n covering the range of the local Prandtl numbers Prx

from 0.001 to 1000 and for the power-law index n in the range 0.2 ≤ n ≤ 2. Special
treatment for the low and high local Prandtl number cases was essential in order to
maintain the numerical accuracy. The calculated results obtained both by using local
similarity and local pseudo-similarity methods were practically indistinguishable for
n = 1 over the entire Prx range. The main findings can be summarized as follows:

The thickness of the thermal boundary layer decreases monotonically with
increasing Prx . The thermal boundary layer extends far out in the free stream for
Prx � 1 and is on the other hand confined to the innermost part of the momentum
boundary layer for Prx � 1.

The local heat transfer coefficient and the local Nusselt number depend on the
local Reynolds number Rex and the wall gradient of the dimensionless temperature.

The critical local Prandtl number Prx * is a very important concept for solution
of thermal boundary layer, which is closely related to the solution convergence of
the thermal boundary layer equation. With increasing the power-law index n, the
momentum boundary layer thichness ηδl will decrease. With increasing the local
Prandtl number Prx , the thermal boundary layer thickness ηδT will decrease too. But,
with increasing the power-law index n, the thermal boundary layer ηδT will decrease.
With increasing the power-law index n, the critical boundary layer thickness ηδl

∗ will
decrease, meanwhile, the critical local Prandtl number Prx * will increase. It is also
seen that if the power-law index n tends to unity, the critical Prandtl number Prx *
also tends to unity with the critical boundary layer thickness ηδl

∗ → 5. It means,
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when n = 1 and Prx = 1, the thermal boundary layer thickness ηδt is identical to
the momentum boundary layer thickness ηδl , and ηδt = ηδl → 5.

For Prx � 1 the wall temperature gradient is controlled by the velocity gradient
at the wall, which was practically independent of n for dilatant fluids (n > 1) but
increased with increasing pseudo-plasticity (1 − n).

For Prx � 1 the temperature gradient increased slightly with n and this modest
variation was ascribed to the displacing influence of the momentum boundary layer
on the external frictionless flow.

A set of accurate curve-fit formulas for the wall temperature gradient is provided
in order to enable rapid estimates of the heat transfer rate for any combination of n
and Prx within the parameter ranges considered.

A special case of the transformation method, velocity component method, used
herein has been applied in the previous analysis in part 1 and part 2 of this book
for the heat transfer in Newtonian liquid films with consideration of variable fluid
properties. The successful generalization on non-Newtonian fluids makes us believe
that the present approach should be applicable also to the analysis of heat transfer in
power-law films with variable thermophysical properties.

23.8 Calculation Examples

Example:
Continue the example of Chap. 21, a non-Newtonian power-law fluid having a

density of 1041 kg/m3 is flowing with volumetric flow rate of 0.02 m3/s along an
inclined flat plate with angle of α = 30◦ and width of b = 1 m. The properties
of the fluid are thermal diffusivity a = 13.6 × 10−8 m2/s, thermal conductivity
λ = 0.41 W/(m ◦C), coefficient of consistency K = 2.744 kg sn−2 m−1, and power-
law index n = 0.50. The plate temperature is kept for tw = 60 ◦C, and the fluid bulk
temperature t∞ is 20 ◦C.

Calculate the total heat transfer rate Qx in the boundary layer region. Consider
the cases for α = 30◦ and 0◦.
Solution:

Given conditions: volumetric flow rate V = 0.02 m3/s , fluid thermal diffusivity
a = 13.6×10−8 m2/s, fluid thermal conductivity λ = 0.41 W/(m ◦C), fluid density
ρ = 1041 kg/m3, plate inclined angle α = 30◦, fluid coefficient of consistency
K = 2.744 kg/(sn−2 m−1), power-law index n = 0.50, wall temperature tw = 60 ◦C,
fluid bulk temperature t∞ = 20 ◦C, and plate with b = 0.3 m.

The necessary values calculated from the example in Chap. 15: the boundary layer
region length x0 = 0.118 m both for α = 30◦ and 0◦.
1. In the case for α = 30◦

The total heat transfer rate Qx from wall to fluid in the boundary layer region is
calculated as

Q = αx0(tw − t∞) × b × x0

where αx0 is average heat transfer coefficient for the boundary layer region, b is
width of the plate, and x0 is the length of the boundary layer region.

http://dx.doi.org/10.1007/978-3-642-28983-5_21
http://dx.doi.org/10.1007/978-3-642-28983-5_15
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With Eq. (23.23) the average heat transfer coefficient in the boundary layer region
is expressed as

αx0 = −2(n + 1)

n + 2
λx−1

0

[
∂θ(η, ζ )

∂η

]
η=0

(Rex0)
1/(n+1)

According to the previous calculated result in Chap. 21, the local Reynolds number
is Rex0 = 219.4.

With Eq. (23.17) the local Prandtl number at x0 is calculated as

Prx0 = x0wx0,∞
a

(Rex0)
− 2

n+1

= x0
√

2gx0 cos α

a
(Rex0)

− 2
n+1

= 0.118 × √
2 × 9.8 × 0.118 × cos 30o

13.6 × 10−8 × (219.4)−
2

0.5+1

= 927.96

According to the Eq. (23.26), the temperature gradient on the plate is expressed
as follows

−
[
∂θ(η, ζ )

∂η

]
η=0

= a + b Prx0
c

According to Table 23.2, the coefficients a and b and exponent c can be evaluated
as below with Prx0 = 927.96 and n = 0.5

a = 0.0205 − 0.0845 ×
(

1

n

)1/3

= 0.0205 − 0.0845 ×
(

1

0.5

)1/3

= −0.08596

b = 0.518 + 0.0234

n

= 0.518 + 0.0234

0.5
= 0.5648

c = 0.3324 + 0.00096 ×
(

1

n

)1.6

= 0.3324 + 0.00096 ×
(

1

0.5

)1.6

= 0.33531

http://dx.doi.org/10.1007/978-3-642-28983-5_21
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Then,

−
[
∂θ(η, ζ )

∂η

]
η=0

= a + b Prx0
c

= −0.08596 + 0.5648 × 927.960.33531

= 5.4979

Therefore, average heat transfer coefficient from x = 0 to x0 is evaluated as

αx0 = −2(n + 1)

n + 2
λx−1

0

[
∂θ(η, ζ )

∂η

]
η=0

(Rex0)
1/(n+1)

= 3

2.5
× 0.41 × 0.118−1 × 5.4979 × (219.4)1/(0.5+1)

= 833.88 W/(m2K)

The total heat transfer rate Qx at x = 0 to x0 for the boundary layer region is
calculated as

Qx = αx0(tw − t∞) × b × x0

= 833.88 × (60 − 20) × 1 × 0.118

= 3935.9W

2. In the case for α = 0◦
local Reynolds number Rex0 related to x0 is evaluated as

Rex0 = xn
0 (wx0,∞)2−nρ

K

= xn
0 (2gx0 cos α)

2−n
2 ρ

K

According to the previous calculated results in Chap. 21, x0 = 0.118, then,

Rex0 = 0.1180.5(2 × 9.8 × 0.118 cos 0◦) 2−0.5
2 × 1041

2.744
= 245.11

Also

−
[
∂θ(η, ζ )

∂η

]
η=0

= a + b Pr0
c

While,

http://dx.doi.org/10.1007/978-3-642-28983-5_21
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Prx0 = x0wx0,∞
a

(Rex0)
− 2

n+1

= x0
√

2gx0 cos α

a
(Rex0)

− 2
n+1

= 0.118 × √
2 × 9.8 × 0.118 × cos 0◦

13.6
× 10−8 × (245.11)−

2
0.5+1

= 860.2

According to the above calculations, coefficients a and b, and exponent c are

a = −0.08596, b = 0.5648, and c = 0.33531

Then,

−
[
∂θ(η, ζ )

∂η

]
η=0

= a + b Prx0
c

= −0.08596 + 0.5648 × 860.20.33531

= 5.3578

The average local heat transfer coefficient αx0 from x = 0 to x0 is evaluated as

αx0 = −2(n + 1)

n + 2
λx−1

0

[
∂θ(η, ζ )

∂η

]
η=0

(Rex0)
1/(n+1)

= 3

2.5
× 0.41 × 0.118−1 × 5.3578 × 245.111/(0.5+1)

= 874.94W/(m2 ◦C)

The total heat transfer rate Qx is calculated as

Qx = αx0(tw − t∞) × b × x0

= 874.94 × (60 − 20) × 1 × 0.118

= 4129.72 W
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Appendix A
Tables with Physical Properties

Appendix A.1 Physical Properties of Gases at Atmospheric
Pressure

T (K) q (Kg/m3) cp [kJ/(kg �C)] l 9 106

[Kg/(m s)]
m 9 106 (m2/s) k [W/(m �C)] a 3 106 (m2/s) Pr

Air [1]
100 3.5562 1.032 7.11 1.999 0.00934 2.54 0.786
150 2.3364 1.012 10.34 4.426 0.0138 5.84 0.758
200 1.7458 1.007 13.25 7.59 0.0181 10.3 0.737
250 1.3947 1.006 15.96 11.443 0.0223 15.9 0.720
300 1.1614 1.007 18.46 15.895 0.0263 22.5 0.707
350 0.9950 1.009 20.82 20.925 0.0300 29.9 0.7
400 0.8711 1.014 23.01 26.415 0.0338 38.3 0.69
450 0.7740 1.021 25.07 32.39 0.0373 47.2 0.686
500 0.6964 1.030 27.01 38.785 0.0407 56.7 0.684
550 0.6329 1.040 28.84 45.568 0.0439 66.7 0.683
600 0.5804 1.051 30.58 52.688 0.0469 76.9 0.685
650 0.5356 1.063 32.25 60.213 0.0497 87.3 0.69
700 0.4975 1.075 33.88 68.101 0.05240 98 0.695
750 0.4643 1.087 35.46 76.373 0.0549 109 0.702
800 0.4354 1.099 36.98 84.933 0.0573 120 0.709
850 0.4097 1.11 38.43 93.8 0.0596 131 0.716
900 0.3868 1.121 39.81 102.921 0.0620 143 0.720
950 0.3666 1.131 41.13 112.193 0.0643 155 0.723
1,000 0.3482 1.141 42.44 121.884 0.0667 168 0.726
1,100 0.3166 1.159 44.9 141.819 0.0715 195 0.728
1,200 0.2920 1.175 47.3 161.986 0.0763 224 0.728

(continued)
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T (K) q (Kg/m3) cp [kJ/(kg �C)] l 9 106

[Kg/(m s)]
m 9 106 (m2/s) k [W/(m �C)] a 3 106 (m2/s) Pr

Monoxide, CO [1]
200 1.6888 1.045 12.7 7.5201 0.017 9.63 0.781
220 1.5341 1.044 13.7 8.9303 0.0190 11.9 0.753
240 1.4055 1.043 14.7 10.4589 0.0206 14.1 0.744
260 1.2967 1.043 15.7 12.1077 0.0221 16.3 0.741
280 1.2038 1.042 16.6 13.7897 0.0236 18.8 0.733
300 1.1233 1.043 17.5 15.5791 0.025 21.3 0.730
320 1.0529 1.043 18.4 17.4755 0.0263 23.9 0.730
340 0.9909 1.044 19.3 19.4772 0.0278 26.9 0.725
360 0.9357 1.045 20.2 21.5881 0.0291 29.8 0.729
380 0.8864 1.047 21 23.6913 0.0305 32.9 0.719
400 0.8421 1.049 21.8 25.8877 0.0318 36.0 0.719
450 0.7483 1.055 23.7 31.6718 0.0350 44.3 0.714
500 0.67352 1.065 25.4 37.7123 0.0381 53.1 0.710
550 0.61226 1.076 27.1 44.2622 0.0411 62.4 0.710
600 0.56126 1.088 28.6 50.9568 0.0440 72.1 0.707
650 0.51806 1.101 30.1 58.1014 0.0470 82.4 0.705
700 0.48102 1.114 31.5 65.4858 0.0500 93.3 0.702
750 0.44899 1.127 32.9 73.2756 0.0528 104 0.702
800 0.42095 1.140 34.3 81.4824 0.0555 116 0.705
Helium, He [1]
100 0.4871 5.193 9.63 19.77 0.073 28.9 0.686
120 0.406 5.193 10.7 26.36 0.0819 38.8 0.679
140 0.3481 5.193 11.8 33.90 0.0907 50.2 0.676
160 0.30945 5.193 12.9 41.69 0.0992 63.2 0.6745
180 0.2708 5.193 13.9 51.33 0.1072 76.2 0.673
200 0.2462 5.193 15 60.93 0.1151 91.6 0.674
220 0.2216 5.193 16 72.20 0.1231 107 0.675
240 0.20455 5.193 17 83.11 0.13 124 0.6785
260 0.1875 5.193 18 96 0.137 141 0.682
280 0.175 5.193 19 108.57 0.145 160.5 0.681
300 0.1625 5.193 19.9 122.46 0.152 180 0.68
350 0.1422 5.193 22.1 155.42 0.17 237.5 0.6775
400 0.1219 5.193 24.3 199.34 0.187 295 0.675
450 0.10972 5.193 26.3 239.70 0.204 364.5 0.6715
500 0.09754 5.193 28.3 290.14 0.22 434 0.668
600 0.083615 5.193 32 382.71 0.252 601 0.661
700 0.06969 5.193 35 502.22 0.278 768 0.654
800 5.193 38.2 0.304
900 5.193 41.4 0.33
1,000 0.04879 5.193 44.6 914.12 0.354 1,400 0.654
Hydrogen, H2 [1]
100 0.24255 11.23 4.21 19.77 0.067 24.6 0.707
200 0.12115 13.54 6.81 26.35 0.131 79.9 0.704
300 0.08078 14.31 8.96 33.90 0.183 158 0.701
400 0.06059 14.48 10.82 41.69 0.226 258 0.695
500 0.04848 14.52 12.64 51.33 0.266 378 0.691
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T (K) q (Kg/m3) cp [kJ/(kg �C)] l 9 106

[Kg/(m s)]
m 9 106 (m2/s) k [W/(m �C)] a 3 106 (m2/s) Pr

600 0.0404 14.55 14.24 60.93 0.305 519 0.678
700 0.03463 14.61 15.78 72.20 0.342 676 0.675
800 0.0303 14.7 17.24 83.11 0.378 849 0.67
900 0.02694 14.83 18.65 96 0.412 1,030 0.671
1,000 0.02424 14.99 20.13 108.57 0.448 1,230 0.673
1,100 0.02204 15.17 21.3 122.46 0.488 1,460 0.662
1,200 0.0202 15.37 22.62 155.41 0.528 1,700 0.659
1,300 0.01865 15.59 23.85 199.34 0.569 1,955 0.655
1,400 0.01732 15.81 25.07 239.70 0.61 2,230 0.65
1,500 0.01616 16.02 26.27 290.14 0.655 2,530 0.643
1,600 0.0152 16.28 27.37 382.70 0.697 2,815 0.639
Nitrogen, N2 [1]
100 3.4388 1.07 6.88 2.000 0.0958 2.6 0.768
150 2.2594 1.05 10.06 4.45 0.0139 5.86 0.759
200 1.6883 1.043 12.02 7.126 0.0183 10.4 0.736
250 1.3488 1.042 15.49 11.48 0.0222 15.8 0.727
300 1.1233 1.041 17.82 15.86 0.0259 22.1 0.716
350 0.9625 1.042 20 20.78 0.0293 29.2 0.711
400 0.8425 1.045 22.04 26.16 0.0327 37.1 0.704
450 0.7485 1.05 23.96 32.01 0.0358 45.6 0.703
500 0.6739 1.056 25.77 38.24 0.0389 54.7 0.7
550 0.6124 1.065 27.47 44.86 0.0417 63.9 0.702
600 0.5615 1.075 29.08 51.79 0.0416 73.9 0.701
700 0.4812 1.098 32.1 66.71 0.0499 94.4 0.706
800 0.4211 1.122 34.91 82.91 0.0548 116 0.715
900 0.3743 1.146 37.53 100.27 0.0597 139 0.721
1,000 0.3368 1.167 39.99 118.74 0.0647 165 0.721
1,100 0.3062 1.187 42.32 138.21 0.07 193 0.718
1,200 0.2807 1.204 44.53 158.64 0.0758 224 0.707
1,300 0.2591 1.219 46.62 179.93 0.081 256 0.701
Oxygen, O2 [1]
100 3.945 0.962 7.64 1.936629 0.00925 2.44 0.796
150 2.585 0.921 11.48 4.441006 0.0138 5.8 0.766
200 1.93 0.915 14.75 7.642487 0.0183 10.4 0.737
250 1.542 0.915 17.86 11.58236 0.0226 16 0.723
300 1.284 0.92 20.72 16.13707 0.0268 22.7 0.711
350 1.1 0.929 23.35 21.22727 0.0296 29 0.733
400 0.962 0.942 25.82 26.83992 0.033 36.4 0.737
450 0.8554 0.956 28.14 32.89689 0.0363 44.4 0.741
500 0.7698 0.972 30.33 39.39984 0.0412 55.1 0.716
550 0.6998 0.988 32.4 46.29894 0.0441 63.8 0.726
600 0.6414 1.003 34.37 53.58591 0.0473 73.5 0.729
700 0.5498 1.031 38.08 69.26155 0.0523 93.1 0.744
800 0.481 1.054 41.52 86.32017 0.0589 116 0.743
900 0.4275 1.074 44.72 104.6082 0.0649 141 0.74
1,000 0.3848 1.09 47.7 123.9605 0.071 169 0.733
1,100 0.3498 1.103 50.55 144.5111 0.0758 196 0.736
1,200 0.3206 1.115 53.25 166.0948 0.0819 229 0.725
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T (K) q (Kg/m3) cp [kJ/(kg �C)] l 9 106

[Kg/(m s)]
m 9 106 (m2/s) k [W/(m �C)] a 3 106 (m2/s) Pr

1,300 0.206 1.125 58.84 285.6311 0.0871 262 0.721
Carbon dioxide, CO2 [1]
220 2.4733 0.783 11.105 4.490 0.010805 5.92 0.818
250 2.1675 0.804 12.59 5.809 0.012884 7.401 0.793
300 1.7973 0.871 14.958 8.322 0.016572 10.588 0.77
350 1.5362 0.9 17.205 11.200 0.02047 14.808 0.755
400 1.3424 0.942 19.32 14.392 0.02461 19.463 0.738
450 1.1918 0.98 21.34 17.906 0.02897 24.813 0.721
500 1.0732 1.013 23.26 21.67 0.03352 30.84 0.702
550 0.9739 1.047 25.08 25.752 0.03821 37.5 0.695
600 0.8938 1.076 26.83 30.018 0.04311 44.83 0.668
Ammonia, NH3 [2]
220 0.3828 2.198 7.255 18.952 0.0171 20.54 0.93
273 0.7929 2.177 9.353 11.796 0.022 13.08 0.9
323 0.6487 2.177 11.035 17.011 0.027 19.2 0.88
373 0.559 2.236 12.886 23.052 0.0327 26.19 0.87
423 0.4934 2.315 14.672 29.736 0.0391 34.32 0.87
473 0.4405 2.395 16.49 37.435 0.0476 44.21 0.84
Water vapor [2]
380 0.5863 2.06 1.271 2.168 0.0246 20.36 1.06
400 0.5542 2.014 1.344 2.425 0.0261 23.38 1.04
450 0.4902 1.98 1.525 3.111 0.0299 30.7 1.01
500 0.4405 1.985 1.704 3.868 0.0339 38.7 0.996
550 0.4005 1.997 1.884 4.704 0.0379 47.5 0.991
600 0.3652 2.026 2.067 5.660 0.0422 57.3 0.986
650 0.338 2.056 2.247 6.648 0.0464 66.6 0.995
700 0.314 2.085 2.426 7.726 0.0505 77.2 1
750 0.2931 2.119 2.604 8.884 0.0549 88.3 1.05
800 0.2739 2.152 2.786 10.172 0.0592 100.1 1.01
850 0.2579 2.186 2.969 11.51221 0.0637 113 1.019
Gas mixture [3]
t
(oC)

q
(Kg/m3)

cp

[kJ/(kg �C)]
l 9 106

(Kg/(m s))
m 9 106

(m2/s)
k [W/(m �C)] a 3 106

(m2/s)
Pr

0 1.295 1.042 15.8 12.2 0.0228 12.2 0.72
100 0.95 1.068 20.4 21.47 0.0313 21.54 0.69
200 0.748 1.097 24.5 32.75 0.0401 32.8 0.67
300 0.617 1.122 28.2 45.71 0.0484 45.81 0.65
400 0.525 1.151 31.7 60.38 0.057 60.38 0.64
500 0.457 1.185 34.8 76.15 0.0656 76.3 0.63
600 0.405 1.214 37.9 93.58 0.0742 93.61 0.62
700 0.363 1.239 40.7 112.12 0.0827 112.1 0.61
800 0.33 1.264 43.4 131.52 0.0915 131.8 0.6
900 0.301 1.29 45.9 152.49 0.1 152.5 0.59
1,000 0.275 1.306 48.4 176 0.109 174.3 0.58
1,100 0.257 1.323 50.7 197.28 0.1175 197.1 0.57
1,200 0.24 1.34 53 220.83 0.1262 221 0.56
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Appendix A.2 Physical Properties of Some Saturated Liquid

T (K) q (Kg/m3) cp [kJ/(kg �C)] l 9 106

[Kg/(m s)]
m 9 106 (m2/s) k [W/(m �C)] a 3 106 (m2/s) Pr

Water vapor [2]
380 0.5863 2.06 12.71 21.68 0.0246 20.36 1.06
400 0.5542 2.014 13.44 24.25 0.0261 23.38 1.04
450 0.4902 1.98 15.25 31.11 0.0299 30.7 1.01
500 0.4405 1.985 17.04 38.68 0.0339 38.7 0.996
550 0.4005 1.997 18.84 47.04 0.0379 47.5 0.991
600 0.3652 2.026 20.67 56.6 0.0422 57.3 0.986
650 0.338 2.056 22.47 66.48 0.0464 66.6 0.995
700 0.314 2.085 24.26 77.26 0.0505 77.2 1
750 0.2931 2.119 26.04 88.84 0.0549 88.3 1.05
800 0.2739 2.152 27.86 101.72 0.0592 100.1 1.01
850 0.2579 2.186 29.69 115.12 0.0637 113 1.019
380 0.5863 2.06 12.71 21.68 0.0246 20.36 1.06
400 0.5542 2.014 13.44 24.25 0.0261 23.38 1.04
450 0.4902 1.98 15.25 31.11 0.0299 30.7 1.01
500 0.4405 1.985 17.04 38.68 0.0339 38.7 0.996
550 0.4005 1.997 18.84 47.04 0.0379 47.5 0.991
600 0.3652 2.026 20.67 56.6 0.0422 57.3 0.986
650 0.338 2.056 22.47 66.48 0.0464 66.6 0.995
700 0.314 2.085 24.26 77.26 0.0505 77.2 1
750 0.2931 2.119 26.04 88.84 0.0549 88.3 1.05
800 0.2739 2.152 27.86 101.72 0.0592 100.1 1.01
850 0.2579 2.186 29.69 115.12 0.0637 113 1.019

t
(oC)

q
(Kg/m3)

cp

[kJ/(kg �C)]
l 9 106

[Kg/(m s)]
m 9 106

(m2/s)
k
[W/(m �C)]

a 3 107

(m2/s)
Pr

Ammonia, NH3 [4]
-50 703.69 4.463 306.11 0.435 0.547 1.742 2.6
-40 691.68 4.467 280.82 0.406 0.547 1.775 2.28
-30 679.34 4.467 262.9 0.387 0.549 1.801 2.15
-20 666.69 4.509 254.01 0.381 0.547 1.819 2.09
-10 653.55 4.564 247.04 0.378 0.543 1.825 2.07
0 640.1 4.635 238.76 0.373 0.54 1.819 2.05
10 626.16 4.714 230.43 0.368 0.531 1.801 2.04
20 611.75 4.798 219.62 0.359 0.521 1.775 2.02
30 596.37 4.89 208.13 0.349 0.507 1.742 2.01
40 580.99 4.999 197.54 0.34 0.493 1.701 2
50 564.33 5.116 186.23 0.33 0.476 1.654 1.99
Carbon dioxide, CO2 [4]
-50 1156.34 1.84 137.61 0.119 0.085 0.4021 2.96
-40 1117.77 1.88 131.9 0.118 0.1011 0.481 2.45
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(continued)

t
(oC)

q
(Kg/m3)

cp

[kJ/(kg �C)]
l 9 106

[Kg/(m s)]
m 9 106

(m2/s)
k
[W/(m �C)]

a 3 107

(m2/s)
Pr

-30 1076.76 1.97 125.98 0.117 0.1116 0.5272 2.22
-20 1032.39 2.05 118.72 0.115 0.1151 0.5445 2.12
-10 983.38 2.18 111.12 0.113 0.1099 0.5133 2.2
0 926.99 2.47 100.11 0.108 0.1045 0.4578 2.38
10 860.03 3.14 86.86 0.101 0.0971 0.3608 2.8
20 772.57 5 70.3 0.091 0.0872 0.2219 4.1
30 597.81 36.4 47.82 0.08 0.0703 0.0279 28.7
Sulphur dioxide, SO2 [4]
-50 1560.84 1.3595 755.45 0.484 0.242 1.141 4.24
-40 1536.81 1.3607 651.61 0.424 0.235 1.130 3.74
-30 1520.64 1.3616 564.16 0.371 0.230 1.117 3.31
-20 1488.60 1.3624 482.31 0.324 0.225 1.107 2.93
-10 1463.61 1.3628 421.52 0.288 0.218 1.097 2.62
0 1438.46 1.3636 369.68 0.257 0.211 1.081 2.38
10 1412.51 1.3645 327.7 0.232 0.204 1.066 2.18
20 1386.40 1.3653 291.14 0.210 0.199 1.050 2.00
30 1359.33 1.3662 258.27 0.190 0.192 1.035 1.83
40 1329.22 1.3674 229.96 0.173 0.185 1.019 1.70
50 1299.10 1.3683 210.45 0.162 0.177 0.999 1.61
Freon 12, CCl2F2 [4]
-50 1546.75 0.8750 479.49 0.310 0.067 0.501 6.2
-40 1518.71 0.8847 423.72 0.279 0.069 0.514 5.4
-30 1489.56 0.8956 376.86 0.253 0.069 0.526 4.8
-20 1460.57 0.9073 343.23 0.235 0.071 0.539 4.4
-10 1429.49 0.9203 315.92 0.221 0.073 0.550 4.0
0 1397.45 0.9345 299.05 0.214 0.073 0.557 3.8
10 1364.30 0.9496 276.95 0.203 0.073 0.560 3.6
20 1330.18 0.9659 263.38 0.198 0.073 0.560 3.5
30 1295.10 0.9835 251.25 0.194 0.071 0.560 3.5
40 1257.13 1.019 240.11 0.191 0.069 0.555 3.5
50 1215.96 1.0216 231.03 0.190 0.067 0.545 3.5
C2H4(OH)2 [4]
0 1130.75 2.294 65052.05 57.53 0.242 0.934 615
20 1116.65 2.382 21417.35 19.18 0.249 0.939 204
40 1101.43 2.474 9571.427 8.69 0.256 0.939 93
60 1087.66 2.562 5166.385 4.75 0.260 0.932 51
80 1077.56 2.650 3211.129 2.98 0.261 0.921 32.4
100 1058.50 2.742 2148.755 2.03 0.263 0.908 22.4
Mercury, Hg [4]
0 13628.22 0.1403 1689.9 0.124 8.2 42.99 0.0288
20 13579.04 0.1394 1548.01 0.114 8.69 46.04 0.0249
50 13505.84 0.1386 1404.61 0.104 9.40 50.22 0.0207
100 13384.58 0.1373 1242.09 0.0928 10.51 57.16 0.0162
150 13264.28 0.1365 1131.44 0.0853 11.49 63.54 0.0134
200 13144.94 0.1570 1054.22 0.0802 12.34 69.08 0.0116
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(continued)

t
(oC)

q
(Kg/m3)

cp

[kJ/(kg �C)]
l 9 106

[Kg/(m s)]
m 9 106

(m2/s)
k
[W/(m �C)]

a 3 107

(m2/s)
Pr

250 13025.60 0.1357 996.46 0.0765 13.07 74.06 0.0103
315.5 12847.00 0.134 864.6 0.0673 14.02 81.50 0.0083
Water, H2O [2]
0 999.9 4.217 1752.5 1.7527 0.569 0.13494 12.99
10 999.7 4.193 1299.2 1.2996 0.586 0.13980 9.30
20 998.2 4.182 1001.5 1.0033 0.602 0.1442 6.96
30 995.7 4.179 797 0.8004 0.617 0.14828 5.4
40 992.2 4.179 651.3 0.6564 0.630 0.14953 4.32
50 988.1 4.181 544 0.5450 0.643 0.15408 3.54
60 983.2 4.185 460 0.4679 0.653 0.15870 2.97
70 977.8 4.190 400.5 0.4014 0.662 0.15834 2.54
80 971.8 4.197 351 0.3612 0.669 0.16403 2.20
90 965.3 4.205 311.3 0.3225 0.675 0.16629 1.94
100 958.4 4.216 279 0.2911 0.680 0.16829 1.73
110 951.0 4.229 252.2 0.2652 0.683 0.16983 1.56
120 943.1 4.245 230 0.2439 0.685 0.17110 1.43
130 934.8 4.263 211 0.2257 0.687 0.17239 1.31
140 926.1 4.285 195 0.2106 0.687 0.17312 1.22
150 917.0 4.310 181 0.1974 0.686 0.17357 1.14
160 907.4 4.339 169 0.1862 0.684 0.17373 1.07
170 897.3 4.371 158.5 0.1766 0.681 0.17363 1.02
180 886.9 4.408 149.3 0.1683 0.676 0.17291 0.97
190 876.0 4.449 141.2 0.1612 0.671 0.17217 0.94
200 863.0 4.497 133.8 0.1550 0.664 0.17109 0.91
210 852.3 4.551 127.3 0.1494 0.657 0.16938 0.88
220 840.3 4.614 121.5 0.1446 0.648 0.16713 0.86
230 827.3 4.686 119.7 0.145 0.639 0.16483 1.185
240 813.6 4.770 111.4 0.1369 0.629 0.16208 0.85
250 799.0 4.869 107 0.1339 0.617 0.15860 0.84
260 784.0 4.985 103 0.1314 0.604 0.15455 0.85
270 767.9 5.13 99.4 0.1294 0.589 0.14952 0.86
280 750.7 5.3 96.1 0.1280 0.573 0.14402 0.89
290 732.3 5.51 93 0.1270 0.558 0.14300 0.92
300 712.5 5.77 90.1 0.1265 0.540 0.13136 0.96
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Appendix A.3 Temperature Parameters of Gases [5–7]

References
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(Springer, New York, 1984)
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convection of polyatomic gas. Int. J. Heat Mass Transf. 34(3), 749–755 (1991)
7. D.Y. Shang, Free Convection Film Flows and Heat Transfer (Springer, Berlin, 2006)

Gas nl nk nlk ncp Temperature
Range, (k)

Recommended
Pr

Ar 0.72 0.73 0.7255 0.01 220–1,500 0.622
He 0.66 0.725 0.69575 0.01 273–873 0.675
H2 0.68 0.8 0.746 0.042 220–700 0.68
Air 0.68 0.81 0.7515 0.078 230–1,000 0.7
CO 0.71 0.83 0.776 0.068 220–600 0.72
N2 0.67 0.76 0.7195 0.07 220–1,200 0.71
O2 0.694 0.86 0.7853 0.108 230–600 0.733
Water vapor 1.04 1.185 1.11975 0.003 380–800 1
Gas mixture 0.75 1.02 0.8985 0.134 273–1,173 0.63
CO2 0.88 1.3 1.111 0.34 220–700 0.73
CH4 0.78 1.29 1.0605 0.534 273–1,000 0.74
CCl4 0.912 1.29 1.1199 0.28 260–400 0.8
SO2 0.91 1.323 1.13715 0.257 250–900 0.81
H2S 1 1.29 1.1595 0.18 270–400 0.85
NH3 1.04 1.375 1.22425 0.34 250–900 0.87

Note
1. Component of the gas mixture: CO2 = 0.13, N2 = 0.76, and water vapour = 0.11
2. The temperature parameters nl; nk, and ncp are defined by simple power-law of gases as
follows:
l

l1
¼ T

T1

� �nl

, k
k1
¼ T

T1

� �nk

and cp

cp1
¼ T

T1

� �ncp

where T? is a related reference temperature
3. The overall temperature nlk is defined as nlk ¼ 0:45nl þ 0:55nk
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Index

p-theorem, 56

A
Absolute temperatures, 75
Absolute viscosity, 48
Absolute viscosity factors, 405
Absolute viscosity of vapor–gas mixture, 370
Absolute viscosity of water, 79
Absolute viscosity ratio, 435
Accelerating laminar flow, 465
Apparent viscosity, 464
Average heat transfer coefficient, 105, 116,

129, 151, 192, 315, 321
Average heat transfer rate, 116, 129, 136, 151,

253, 315
Average Nusselt number, 112, 129, 136, 152,

192, 253, 315, 421

B
Basic dimensions, 56
Basic equations of similarity transformation

for inclined case, 188, 189
Basic governing equations, 41
Boundary condition equations, 285
Boundary conditions, 47, 55, 95, 217,

221, 282
Boundary layer thickness, 473
Boundary temperature ratio, 113, 137
Boundary thickness, 478
Boussinesq approximation, 3, 46, 55, 155, 351
Boussinesq approximation solution, 133
Boussinesq solution, 113

Buckingham’s p-theorem, 53
Bulk temperature, 152
Bulk vapour mass fraction, 422
Bulk water subcooled grade, 254
Bulk water vapour fraction, 427
Buoyancy factor, 100, 149
Buoyancy term, 40, 97

C
Calculation procedure, 242, 304
Coefficient of consistency, 464
Concentration-dependent densities, 78
Concentration-dependent density factor, 88
Concentration-dependent physical properties

of vapor–gas mixture, 2
Concentration-dependent thermal

conductivity factor, 85
Concentration-dependent viscosity factor, 89
Condensate film velocity components, 430
Condensate heat and mass transfer, 16
Condensate liquid film thickness, 429
Condensate mass-energy transformation

coefficient, 330
Condensate mass-energy transformation

equation, 330
Condensate mass flow rate parameter, 326,

430
Condensate mass flow rate parameter ratios,

440
Condensate mass flow rate ratios, 423
Condensate mass transfer analysis, 419
Condensate mass transfer ratios, 440
Condensate water film flow, 401
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Consideration of temperature-dependent
properties, 11

Consideration of variable physical properties,
9, 10, 13

Continuity equation, 27
Control volume, 27, 29, 33
Coupled effects of the variable physical

properties, 12
Critical boundary layer, 498
Critical bulk vapor mass fraction, 408
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Vapor thermal conductivity factor, 404
Vapor viscosity factor, 404
Vapor–gas mixture, 370, 390, 402
Vapor–gas mixture film, 372
Vapor–gas mixture film flows, 15, 373
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Variable physical properties, 1, 12, 54, 241,
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Variable temperature-dependent properties, 10
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