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Preface

Welcome to Free Convection Film Flows and Heat Transfer ! Free convection
film flows occur in many industrial processes. However, engineers still have to
deal with many unresolved problems. This book systematically summarizes
my recent research results that have been referred to and cited by many other
researchers in this field. The purpose of this book is to provide a practical guide
to university students, graduate students, design engineers, researchers, and
scientists who wish to further understand the characteristics of free convection
film flows and heat transfer. I hope this book will serve as a useful tool for
them, as well as a guide to future research.

This book includes three related parts (1) accelerating convective bound-
ary layers of Newtonian fluids, (2) accelerating film boiling and condensation
of Newtonian fluids, and (3) accelerating film flows of non-Newtonian power-
law fluids. These phenomena are all caused by buoyancy or gravity, and can
be summed up in terms of the free convection film flows. In addition, the free
convection film flows of Newtonian fluids can be taken as a special case of
non-Newtonian power-law fluids.

In this book, I present my recent studies of free convection film flows and
heat transfer on both vertical and inclined plates. Because of a lack of related
books presenting the effects of variable thermophysical properties on heat and
mass transfer, these effects are especially emphasized in this book with respect
to free convection, film boiling, and film condensation of Newtonian fluids. A
system of models for the treatment of variable thermophysical properties is in-
troduced in this book, with an innovative temperature parameter method for
gases and temperature-dependent models for liquids. A novel system of analy-
sis and transformation models with an innovative velocity component method
is applied throughout the book. This is a better alternative to the traditional
Falkner-Skan type transformation. The new analytical system and models led
to simplification for treatment of variable thermophysical properties of flu-
ids, as well as hydrodynamics and heat transfer analysis. A system of reliable
and rigorous computations solving the problems for two-point or three-point
boundary values is provided in this book. In the analyses and calculations of
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the first two parts of this book, I focus on clarifying the effects of variable
thermophysical properties on heat and mass transfer. A system of numerical
solutions is formulated to predict heat and mass transfer simply and reliably.
In the last part of this book, heat and mass transfer of the accelerating film
flows of Newtonian fluids are extended to that of non-Newtonian power-law
fluids. So far, there has been a lack of such information and analysis for ad-
vanced heat and mass transfer of accelerating film flows of non-Newtonian
power-law fluids.

In addition, a collection of novel terminologies has arisen in this book,
e.g., velocity component method, temperature parameter method, thermal con-
ductivity parameter, viscosity parameter, specific heat parameter, overall tem-
perature parameters, thermal physical property factors, boundary temperature
ratio, buoyancy factor, wall superheated grade, wall subcooled grade, vapor
bulk superheated grade, liquid bulk subcooled grade, computation for three-point
boundary value problem, temperature gradient on the wall, velocity components
at the interface, vapor film thickness, liquid film thickness, mass flow rate
through the interface, mass flow rate parameter, Non-Newtonian power-law
fluids, length of boundary layer region, boundary layer thickness, local Prandtl
number, critical local Prandtl number, critical boundary layer thickness, and
so on. These terminologies reflect the recent developments on my study of
free convection film flows and heat transfer. Therefore, I strongly urge readers
to pay particular attention to the special physical significance of these ter-
minologies. Readers will find them beneficial to understanding the essence of
this book.

I am greatly indebted to Professor B.X. Wang, Academician of Chinese
Academy of Science, and member of the Executive Committee of the Interna-
tional Center for Heat and Mass Transfer. He was my supervisor in the period
of my Ph.D studies of Tsinghua University, China. The recent developments
devoted to Part 1 and Part 2 of this book relied on our long-term research
cooperation. Besides suggesting the title of this book, he carefully proofread
the second chapter of this book and provided many valuable suggestions to
the whole book.

I am very grateful to Professor H.I. Andersson, Department for Energy
and Process Engineering, Norwegian University of Science and Technology,
Norway, for his highly effective cooperation related to the research develop-
ments shown in Part 3 of this book. As my host professor and a distinguished
researcher in the field of accelerating film flows of non-Newtonian fluids, his
erudite and honorable character deeply impressed me. At the same time, I
gratefully acknowledge the Norwegian Research Council for awarding me the
very prestigious title of intenational scientist and providing financial support
for my extensive research there in cooperation with Professor Andersson.

In addition, many friends and colleagues have contributed to this book.
Here, I would particularly like to thank Professor Liangcai Zhong, Northeast-
ern University, China, as well as some of my previous students, notably Yu
Quan, Yang Wang, Yue Yuan, Hongyi Wang, and Li Ren. Their contributions
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are presented in the book. Without their collaborative research efforts this
book would not have been possible.

I would like to offer my sincere gratitude to Professor Hongtan Liu, Depart-
ment of Mechanical and Aerospace Engineering, University of Miami, USA,
and Professor Ben Q. Li, School of Mechanical and Materials Engineering,
Washington State University, USA. As good friends in my academic circles
in North America, their warm encouragement gave me the full confidence to
complete this book.

I would like to thank my respectable friend, Professor Pran Manga, School
of Management, Department of Economy, University of Ottawa, who spent
time going through parts of the manuscript. Owing to his generous help, this
book could be completed in time. Meanwhile, my sincere thanks should be
given to Professor H. S. Takhar, University of Manchester also, who took his
valuable time for going through several chapters at the beginning of my book
writing.

Last and most of all, I offer a special word of thanks to my wife, Shihua
Sun. During most of the past one and half years when I devoted to writing
this book, she provided the loving family environment that offered me the
tranquility and peace of mind that made writing it possible. The book is ded-
icated to her.

Ottawa, ON Deyi Shang
Canada
January, 2006
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1

Introduction

1.1 Scope

This book systematically presents recent developments in hydrodynamics and
heat and mass transfer in accelerative boundary layers and film flow. The
range of research in this book involves three related parts. The first part is
devoted to the presentation of the studies related to accelerating boundary
layers. It involves free convection of Newtonian gases and liquids. Also, all
temperature-dependent physical properties of fluids are considered for phe-
nomena with large temperature differences. The second part is devoted to the
presentation of studies related to accelerating film boiling and condensation
of Newtonian fluids. The temperature-dependent physical properties of flu-
ids are considered for phenomena with large temperature differences. In the
third part, the development of studies for hydrodynamics and heat transfer
for falling film flow of non-Newtonian power-law fluids (FFNF) is presented.
The boundary layers and film flows we deal with are all caused by buoyancy
or gravity, both of which lead to acceleration of the fluid in boundary layers
and film flows. Because of the similar flow situation, the studies in these three
parts can be summed up in terms of the laminar free convection film flows
caused by acceleration. In addition, even the studies related to the free con-
vection film flows for Newtonian fluids can be taken as a special case of those
related to non-Newtonian power-law fluids.

1.2 Application Backgrounds

Heat transfer in boundary layers and film flows caused by acceleration often
involves large temperature differences. Its practical applications exist widely
in various branches of industry, such as the metallurgical, chemical, mechan-
ical, and food industries. The heat transfer on surfaces of various industrial
furnaces (such as boilers, heating, and smelting furnaces) is caused by vari-
ous forms of free convection under large temperature differences, except for
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the radiation heat transfer. The heat transfer rate affects the heating process
and heat efficiency of the furnaces. On the surface of an ingot mold in metal
casting there exists free convection heat transfer, and this transfer affects the
solidification and crystalline process and therefore the quality of the product.
In the process of the surface hardening of metal, in the initial stage, the film
boiling free convection is produced on the surface and in the final stage on the
surface there exists liquid free convection. These processes will improve the
mechanical function of the metal surface. In the electronic industry, cooling
process occurs with free convection on the surface integrated circuits. This
cooling process tends to restrict the surface temperature to below the allow-
able temperature. In addition, it is widely known that film condensation free
convection has significant applications in various condensators. The suitable
design of the corresponding heating equipment and the optimal control of the
corresponding heat transfer depends on correct prediction of these processes
related to heat transfer mentioned earlier.

Non-Newtonian power-law fluid behavior is encountered in a great variety
of everyday life as well as in industrial operations. By far the largest effort has
been devoted to Newtonian fluid mechanics. Recently, modest attention has
been devoted to gravity-driven thin film flow of the non-Newtonian power-law
fluids, as compared with its Newtonian counterpart. Yet, the free surface flow
of the non-Newtonian power-law fluids is a widely occurring phenomenon in
various industrial applications, for instance in polymer and plastics fabrica-
tion, food processing, and in coating equipment. The heat transfer from the
solid surface to a liquid film is of practical importance in various types of
heat and mass transfer equipment such as coolers, evaporators, and trickling
filters. The obvious advantage with the falling film principle is that the short
residence time for heat transfer can be realized, which is most desirable for
heat-sensitive materials.

1.3 Previous Developments

1.3.1 For Accelerating Boundary Layers and Film Flow
of Newtonian Fluids

The basic ideas underlying the approximation that yield the boundary layer
equations were developed by Prandtl [1]. The essential idea is to divide a
flow into two major parts. The larger part concerns a free stream of fluid
far from any solid surface. The smaller part constitutes a thin layer next to
a solid surface in which the effects of molecular transport properties (vis-
cosity and thermal conductivity) are considered using some approximation.
Prandtl initiated the study of free convection by means of boundary layer the-
ory. For a long time, the study was based on the Boussinesq approximation
[2, 3]. In this approximation, the temperature-dependent properties of fluids
are neglected in the governing partial equations of the boundary layer, except
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for density in the buoyancy term of the momentum equation. Pohlhausen [4]
solved partly the governing equations of boundary layer. Ostrach [5] supplied
a more detailed numerical solution for free convection. Ede [6] also provided
a numerical solution for the dimensionless temperature gradient for various
values of Prandtl number. LeFevre [7] proposed an approximation for the
prediction of the Nusselt number. However, since these research results are
based on the Boussinesq approximation, they are only suitable for the case of
small temperature difference between the body surface and the ambient fluid.
However, for the case of large temperature differences, these results are not
appropriate.

Therefore, it is important to study free convection with larger tempera-
ture differences, and should include free convection with and without phase
change, such as free convection of fluids, film boiling free convection, and film
condensation free convection. Free convection with a small temperature dif-
ference dealt with by the Boussinesq approximation is only a special case of
free convection with larger temperature differences.

Due to the universality of free convection with large temperature, the con-
sideration of variable temperature-dependent properties is very important in
the corresponding studies. The earliest theoretical consideration of variable
thermophysical properties for free convection is the perturbation analysis of
Hara [8] for air. The solution is applicable for small values of the perturbation
parameter, εH = (Tw − T∞)/T∞. Tataev [9] also investigated the free con-
vection of a gas with variable viscosity. A well-known analysis of the variable
fluid property problem for laminar free convection on an isothermal vertical
flat plate has been presented by Sparrow and Gregg [10]. They considered
five different gases and provided the corresponding solutions of the boundary
layer equations. They proposed a reference temperature and suggested that
the problem of variable thermophysical properties can be treated as a constant
property problem, i.e., Boussinesq approximation. Gray and Giogini [11] dis-
cussed the validity of the Boussinesq approximation and proposed a method
for analyzing natural convection flow with fluid properties assumed to be a
linear function of the temperature and pressure. Clausing and Kempka [12]
reported their experimental study of the influence of property variations on
natural convection and calculated it for the laminar region. The Nusselt num-
ber Nuf will be a function of Rayleigh number Raf(= GrfPrf) only with the
reference temperature, Tf , taken as the average temperature in the boundary
layer.

In [13–22], studies of the effects of variable thermophysical properties of
liquid on the laminar free convection with larger temperature difference were
carried out. Fujii et al. [13] examined two methods of correlating the effects of
variable thermophysical properties on heat transfer for free convection from
vertical surfaces in liquids. The first method of correlating the data consisted
of using the constant property correlations for the Nusselt number and evalu-
ating all physical properties at a reference temperature, Tr = Tw−(Tw−T∞)/4.
They noted that the choice of the reference temperature corresponds with the
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solution provided by two previous studies [14, 15]. The second method that
they used to correlate their data for oils was first proposed by Akagi [15]
and applies only to liquids for which the viscosity variation is dominant. The
similarity analysis of Piau [16] also treated variable property effects in free
convection from vertical surfaces with high Prandtl number liquids. It was in-
dicated that the main property variations in water at moderate temperature
levels are in the viscosity, µ, and the volumetric coefficient of thermal expan-
sion, β, and that for higher Prandtl number liquids, the variation of β is often
negligible. Piau [17] also included the effect of thermal stratification of the
ambient fluid in an analysis which also includes variable µ and β for water.
Brown [18] used an integral method and studied the effect of the coefficient
of volumetric expansion on laminar free convection heat transfer. Carey and
Mollendorf [19] have shown the mathematical forms of viscosity variation with
temperature and gave similarity solutions for laminar free convection from a
vertical isothermal surface in liquids with temperature-dependent viscosity.
Sabhapathy and Cheng [20] studied the effects of temperature-dependent vis-
cosity and coefficient of thermal expansion on the stability of laminar free
convection boundary-layer flow of a liquid along an isothermal, vertical sur-
face, employing linear stability theory for Prandtl numbers between 7 and 10.
Qureshi and Gebhart [21] studied the stability of vertical thermal buoyancy-
induced flow in cold and saline water. They showed that the anomalous density
behavior of cold water (for example, a density extremum at about 4◦C in pure
water at atmospheric pressure) has very large effects on flow and transport.
Meanwhile, Herwig and Wickern [22] studied the effect of variable thermo-
physical properties on laminar boundary layer flows.

Different gases and liquids have different thermophysical properties. The
effects of the different thermophysical properties on the laminar free convec-
tion and heat transfer are complicated. The results reported so far are not
convenient for the prediction of free convection heat transfer due to the dif-
ficulty of treating the variable thermophysical properties in the governing
equations. Consequently, it is necessary to do more research related to rigor-
ous and reliable prediction of heat transfer coefficient of free convection with
large temperature differences.

Bromley [23] first treated laminar film boiling heat transfer of saturated
liquid around a horizontal cylinder in a pool. Some other researchers [24–30]
have analyzed pool film boiling on a vertical plate. However, only a few analy-
ses took into account the temperature dependence of the fluid’s thermophys-
ical properties. McFadden and Grash [27] developed the analysis of saturated
film boiling in a pool where the temperature dependence of density and spe-
cific heat were considered. Nishikawa et al. [28, 29] made an analysis of pool
film boiling as a variable property problem on the basis of the two-phase
boundary layer theory, considering only the effect of variation of the vapor’s
thermophysical properties with temperature in the lower range of subcooling,
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i.e., (Ts − T∞ = 0, 20, 40◦C). Herwig [30] provided an asymptotic analysis
of laminar film boiling on vertical plate including variable property effect. In
fact, the temperature difference between heating surface and bulk liquid may
be very large, and the thermophysical property variations of the medium in
the condensate and vapor films with temperature can have great influences
on the pool film boiling free convection.

For film condensation free convection, Nusselt [31] first treated the con-
densation of saturated steam on a vertical isothermal flat plate. In his theory
the inertia and thermal convection of condensate film, the dependence of the
thermophysical properties of the condensate medium on temperature, and the
effect of surface tension were all neglected. Bromley [32] and Rohsenow [33]
first investigated the effect of thermal convection. Later on, the study of Spar-
row and Gregg [34] included the effects of thermal convection and inertia forces
in the liquid film by using the boundary layer analysis. Koh et al. [35] further
solved numerically a boundary-layer model for both the condensate and vapor
films. Chen [36] has considered analytically the effect of thermal convection,
inertia, and the interface shear force. On the basis of foregoing studies of
the independent-temperature physical properties Drew (see [37]), Voskresen-
skiy [38], and Labuntsov [39] made relatively simple modifications for variable
thermophysical properties. Subsequently, Poots and Miles [40] studied the ef-
fects of variable thermophysical properties on laminar film condensation of
a saturated steam along a vertical flat plate. They simplified the governing
equations of the liquid and vapor phases by neglecting the effects of surface
tension at the liquid–vapor interface, and obtained solutions of the resulting
ordinary differential equations. Late Stinnesbeck and Herwig [41] provided
an asymptotic analysis of laminar film condensation on a vertical flat plate
including variable property effect. Based on the research results thus far, it is
necessary to provide corresponding correlations for the prediction of heat and
mass transfer of the film condensation with the large temperature differences.

Generally, there are two problems that hindered the development of stud-
ies of the laminar free convection with single and two-phase boundary lay-
ers under large temperature differences. The first difficulty is the traditional
Falkner–Skan transformation [42]. With this transformation one encounters a
large difficulty in the treatment of variable thermophysical properties. So it
is necessary to carry out the study of an improved transformation method in
order to suit the development of the free convection with a large temperature
differences. The second difficulty is the traditional treatment of the variable
thermophysical properties. Since Sparrow and Gregg [10] proposed the treat-
ment model of the variable thermophysical properties with the five different
gases in 1958, the treatment method of the variable thermophysical properties
has not been improved much. Thus, for a long time, there has been an absence
of studies of the free convection with large temperature difference by means
of model involving the variable thermophysical properties.
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1.3.2 For Gravity-Driven Film Flow of Non-Newtonian
Power-Law Fluids

Non-Newtonian power-law fluid behavior has been the subject of many recent
books [43–47] and useful numerical calculation techniques for non-Newtonian
fluid flow have been reviewed by Crochet and Walters [48] and Crochet
et al. [49].

The study of the hydrodynamics of falling film flow of power-law fluids
was reviewed by Andersson and Irgens [50]. However, the initial studies were
carried out experimentally. The experiments of Astarita et al. [51], Therien et
al. [52] and Sylvester et al. [53] all include measurements of film thickness as a
function of the volumetric rate. The hydrodynamics of gravity-driven power-
law films has been studied theoretically by means of the integral method ap-
proach [54–57] and similarity analysis [58,59]. Yang and Yarbrough [54,55] and
Narayana Murthy and Sarma [56] extended the conventional integral analysis
for Newtonian films to cover power-law fluids. Later, Narayana Murthy and
Sarma [57] included the effect of interfacial drag at the liquid–vapor interface
in a similar analysis, while Tekic et al. [58] presented results which accounted
for the streamwise pressure gradient and surface tension. More recently, An-
dersson and Irgens [59] explored the influence of the rheology of the film on
the hydrodynamic entrance length.

A different approach was adopted by Andersson and Irgens [59,60], namely
to divide the accelerating film flow into three regions, the boundary layer
region, the fully viscous region and the developed flow region. While the
boundary layer region is divided into a developing viscous boundary layer
and an external inviscid freestream. They further demonstrated that a similar-
ity transformation exists, such that the boundary layer momentum equation
for power-law fluids is exactly transformed into a Falkner–Skan type ordi-
nary differential equation. The resulting two-point boundary-value problem
was solved numerically with a standard shooting technique based on classical
fourth-order Runge–Kutta integration in combination with a Newton itera-
tion procedure. Numerical results were obtained for values of the power-law
index n in the range 0.5 ≤ n ≤ 2.0. It was conjectured that converged results
could have been obtained also for highly pseudo-plastic fluids, i.e., for n < 0.5,
by using a different integration technique, for instance a finite-difference
scheme.

So far, there has been a lack of research work on heat and mass transfer
in falling film flow of power-law fluids in comparison with that on the hydro-
dynamics. The dissolution of a soluble wall and the subsequent penetration of
the solute into the non-Newtonian liquid film were considered by Astarita [61],
who provided the mass transfer rate between the wall and the hydrodynami-
cally fully developed film, with an assumption of velocity near the wall to vary
linearly with the distance from the wall. Mashelkar and Chavan [62] provided
a more general solution of this problem. Van der Mast et al. [63] indicated
that for accelerating film flow the heat transfer coefficient for the inlet section
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considerably higher than further downstream. In this connection, Yih and Lee
[64] used an integral method and provided a corresponding solution of the heat
transfer in the thermal entrance region of a non-Newtonian, laminar, falling
liquid film, without consideration of properties of the non-Newtonian fluids.
Narayana Murthy and Sarma [56] provided an integral approach for investiga-
tion of the problem of heat transfer for the transition and developed regions of
the thin, non-Newtonian falling liquid films. Unfortunately, it is readily ver-
ified that their solutions based on the integral methods do not induce to the
exact analytic solution. As for the effect of injection/suction on the heat trans-
fer, so far there has been only one study of Pop, Watanabe and Komishi [65]
on the steady of laminar gravity-driven film flow along a vertical wall for
Newtonian fluids, which is based on Falkner–Skan type transformation.

However, it is seen that even the Falkner–Skan type transformation has
its limitations. As we know, it is necessary to introduce a stream function for
using the Falkner–Skan type transformation. As a consequence, the variables
in the resulting dimensionless governing equations are so abstract that their
relationships with the flow variables are complicated. Therefore, it is diffi-
cult for the Falkner–Skan type transformation to find solutions to some key
problems related to hydrodynamics and heat and mass which are rigorous and
convenient for predicting the mass flow rate entrained into the boundary layer
at any position of the hydrodynamic entrance region, the critical thickness of
the film flow, and the resultant heat and mass transfer. On the other hand,
it is very difficult to treat variable thermophysical properties in the models
based on the Falkner–Skan type transformation.

1.4 Recent Development

1.4.1 A Novel System of Analysis Models

There is a long history of using Falkner–Skan type transformation for treat-
ment of governing differential equations of the boundary layers and film
flows of Newtonian and power-law fluids caused by acceleration. In view of
some difficulties produced in using the Falkner–Skan type transformation,
a new transformation method, velocity component method, is presented in
this book, in which the velocity components are directly transformed instead
of inducing the flow function ψ. With this method our new system of the-
oretical and mathematical models are provided for the laminar free bound-
ary layer of Newtonian fluids, gases by Shang and Wang [66–68] and liquids
by Shang, Wang, Wang, and Quan [69], for film boiling by Shang, Wang,
and Zhong [70] and condensation by Shang and Adamek [71] and Sang and
Wang [72] of Newtonian fluids, and for gravity-driven FFNF by Andersson
and Shang [73], Shang and Andersson [74], and Shang and Gu [75], and the
earlier difficult situations are avoided. In these models, it is noted that the new
variables in the new transformations have obvious physical meanings. Then,
by means of the velocity component method, it is convenient to treat the
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problems of the hydrodynamics and heat and mass transfer, even those with
variable thermophysical properties and complicated physical factors. In this
book, it can be found that all the theoretical models both for Newtonian and
non-Newtonian fluid are based on the same similarity transformation, using
the dimensionless velocity component method.

1.4.2 A New Approach for the Treatment
of Variable Thermophysical Properties

The effect of large temperature differences on heat transfer of the free con-
vection and accelerating film boiling and condensation reflects the influence
of the variable thermophysical properties. The thermophysical properties of
most fluids vary with temperature. For gases, although the specific heat varies
only slightly with temperature, the variation of other thermophysical prop-
erties cannot be neglected. The density varies inversely with the first power
of the absolute temperature, and absolute viscosity µ and thermal conduc-
tivity λ increase with different powers of the absolute temperature. Gener-
ally, for a gas with an increase of the atomic number, the exponent of the
power increases. According to the recent study of Shang and Wang [66,67], a
temperature parameter method for the treatment of variable thermophysical
properties of gas was presented. For example, if we express the variations of µ
and λ with µ ∝ Tnµ and µ ∝ Tnλ , respectively, nµ and nλ are 0.649 and 0.71
for a monatomic gas Ne, 0.694 and 0.86 for diatomic gas O2 and, and 0.88
and 1.3 for polyatomic gas CO2, respectively. In addition, this temperature-
dependent thermophysical property is especially pronounced for liquids, even
for viscous oils and pseudo plastic-liquids. The µ and λ values of these liquids
are highly temperature-dependent, and the Prandtl number thus varies with
temperature in the same manner as µ and λ.

With the temperature parameter method the variations of gas thermo-
physical properties can be described in the form of powers of absolute tem-
perature. Consequently each temperature parameter, i.e., the temperature
exponent, represents the variation of the corresponding thermophysical prop-
erty of gas with temperature. Also, the temperature parameters of thermal
conductivity and viscosity for a series of monatomic and diatomic gases, air
and water vapor are proposed based on the typical experimental data. In ad-
dition, it has been found that the variation of specific heat with temperature
of a polyatomic gas is so important that it cannot be neglected in the study
of the effect of variable thermophysical properties on the gas free convection.
In this context, the temperature parameter of the specific heat was proposed
and the effect of variable thermophysical properties on the free convection of
polyatomic gas was further studied [67]. All the temperature parameters were
obtained rigorously on the basis of the typical experimental data. In addition,
Shang and Wang [69] recommended a polynomial method to obtain simple and
exact polynomial equations of density and thermal conductivity for treatment
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of variable thermophysical properties of liquids. In this book it is shown that
with the advanced treatment method of variable thermophysical properties
combined with the velocity component transformation, the fluid properties
of the governing equations can be always transformed into the corresponding
physical property factors. Such advanced method for the treatment of vari-
able thermophysical properties has become an important part of the related
theoretical models.

1.4.3 Hydrodynamics and Heat and Mass Transfer

Heat and Mass Transfer of Free Convection
and Film Flows of Newtonian Fluids

Based on the new theoretical and mathematical models in this book, the
studies are devoted to hydrodynamics and heat and mass transfer of fluid
free convection, accelerating film boiling and condensation, as well as driven
film flow of non-Newtonian power-law fluids. First, a series of developments
are shown in the heat and mass transfer of gas free convection, liquid free
convection, film boiling, and condensation, which belong to boundary layer
and film flows of Newtonian fluids. The related developments on heat and
mass transfer shown in this book can be briefly introduced as follows.

The first study is for the heat transfer of free convection of gases [66–68]
with consideration of variable thermophysical properties. A serious effort is
devoted to the study of effect of variable thermophysical properties on the
heat transfer. According to different variations of gaseous specific heat with
temperature, heat transfer problems for two kinds of gases are studies sep-
arately. The first kind of gases is monatomic and diatomic gases, air and
water vapor whose specific heat variation with temperature may be taken as
constant, while the second kind of gases is polyatomic gases with variable
specific heat. Obviously, the first kind of gases is a special case of the sec-
ond one. The temperature parameter method is used for simulation of the
variations of gaseous thermophysical properties, such as thermal conductiv-
ity, viscosity, density, and specific heat with temperature. The temperature
parameter methods are so simple that each gas corresponds to its special tem-
perature parameters, such as the thermal conductivity parameter, viscosity
parameter, and specific heat parameter. The simulation expressions of the
variable thermophysical properties with the temperature parameter method
have been conveniently coupled with the dimensionless governing equations of
the boundary layers. The effects of the main physical factors including vari-
able thermophysical properties on heat transfer of laminar free convection of
gases are clarified by considering large temperature differences. On this basis,
the corresponding shortcut formulae are developed for simple and practical
prediction of the heat transfer coefficients of laminar free convection of gases.



10 1 Introduction

The second study relates to the free convection of liquids with variable
thermophysical properties [69]. A theoretically rigorous approach of the study
on heat transfer of free convection of liquids is proposed with the combination
of the dimensionless governing equations with the simulation expressions of
the variable thermophysical properties. An essential effort is devoted to study
free convection of water with large temperature difference. It is concluded that
the Prandtl number Pr∞ at the temperature of the bulk fluid dominates the
heat transfer coefficient of the laminar free convection of water. This conclu-
sion is not only simple, but also in close agreement with the rigorous numerical
solutions. On this basis, the corresponding shortcut formula is developed for
simple and practical prediction of the heat transfer coefficient of water free
convection with large temperature differences.

The third study is for film boiling [70] and film condensation [71,72]. These
studies are extensive and contain the situations of film boiling of subcooled
liquid and film condensation of superheated vapor. A theoretically rigorous
approach of studies on heat and mass transfer for the two-phase boundary
layers problem is proposed by considering variable thermophysical properties
and complicated physical factors on the interface between the liquid and vapor
films. An extensive effort is devoted to the study of heat and mass transfer for
film boiling of subcooled water and film condensation of superheated water
vapor both with large temperature differences. For this purpose, the corre-
sponding mathematical models are systematically developed with the combi-
nation of the dimensionless governing equations of the two-phase boundary
layers and the simulation expressions of the variable thermophysical properties
of gases and liquids. The numerical procedures of the three-point boundary
value problem are provided for the film boiling and condensation, respectively,
in which the complicated boundary conditions at the interface of the films are
rigorously considered. Rigorous numerical results are obtained for large tem-
perature differences. The dimensionless physical property factors and their
effects on heat transfer coefficient and mass flow rate are demonstrated. For
application purposes, shortcut formulae are developed for the simple and reli-
able prediction of heat and mass transfer of the film boiling and condensation.

All the earlier-mentioned studies are not only devoted to the heat transfer
for vertical plate case, but also for the inclined case [76]. The dimensionless
governing equations of the new mathematical models can be used directly
to express the inclined plate/surface case, although these do not involve any
angle explicitly. In addition, all the transformation relationships for the heat,
mass, and momentum transfer from the vertical plate/surface case to the
corresponding inclined plate/surface case are derived.

Hydrodynamics and Heat Transfer of Boundary Layer
and Film Flows of Non-Newtonian Power-Law Fluids

More recently, Rao [77] measured experimentally the heat transfer in a de-
veloped non-Newtonian fluid films falling down a vertical tube. Andersson
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and Shang [73], Shang and Andersson [74], and Shang and Gu [75] continu-
ously provided extended analysis and numerical calculation for hydrodynam-
ics, heat transfer, and the thermal boundary layer of the boundary layer region
of FFNF system on isothermal flat plate. Massoudi and Phuoc [78] supposed
a fully developed flow for the FFNF system and on this basis to calculate
velocity and temperature fields. Ouldhadda et al. [79,80] investigated numer-
ically the laminar flow of heat transfer of FFNF on horizontal cylinder with
supposition of a simple developed flow region for the FFNF system. However,
except a few works, such as of Andersson and Irgens [59, 60], Andersson and
Shang [73], Shang and Andersson [74], and Shang and Gu [75], in the most
of current studies, the hydraulic entrance region (i.e. the boundary layer re-
gion) was ignored in their analysis of modeling and simulation for the FFNF
system. Without considering the existing boundary layer region of the FFNF
system, it is never possible to capture the adaptive remodeling process of hy-
drodynamics and heat transfer, and obtain correct calculation for velocity and
temperature fields, film thickness, and heat transfer coefficient of the FFNF
system.

On the other hand, although a large number of industrial processes involve
heat transfer of FFNF system, the related heat transfer information that can
be found in the open literature is relatively scarce. The reason is that the
study on a system of heat transfer is a difficult point for FFNF due to its
complexity, especially its different characteristics in different regions. Addi-
tionally, overcoming the difficult point for hydrodynamics and heat transfer
study in hydraulic entrance region is the essential prerequisite of the study
for the following hydraulic region.

However, studies [74,75] dealt with the heat transfer of the boundary layer
region, the first part of the hydraulic entrance region. With the local Prandtl
number Prx proposed by Shang and Andersson [74], the following dependence
of the thermal boundary layer thickness was found: (1) except for the case
when the local Prandtl number Prx equals the related critical local Prandtl
number Pr∗x, the thicknesses of velocity and temperature boundary layers are
different; (2) if Prx < Pr∗x the velocity boundary layer thickness is less than
the temperature boundary layer thickness; and (3) on the contrary, the veloc-
ity boundary layer thickness is larger than the temperature boundary layer
thickness. Furthermore, they made a series of contributions to the boundary
layer region: (1) a novel approach for prediction of length of boundary layer
region; (2) rigorous and practical approach for prediction of mass flow rate
entrained into the boundary layer; (3) novel prediction approach of friction
coefficient Cf on surface; (4) correctly calculated the thicknesses of thermal
and momentum boundary layers, and on this basis correctly calculated the
velocity and temperature fields and heat transfer coefficients; (5) found the
dependent factors on velocity and temperature boundary layer thicknesses
and heat transfer coefficients; and (6) innovation of a curve-fitted correlation
for rigorous and practical calculation of heat transfer coefficient with quite
different thicknesses of temperature and velocity boundary layers.
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However, the earlier achievements on heat transfer research for the bound-
ary layer region should be extended to the entire hydrodynamic entrance re-
gion, and even further to the entire FFNF system. The study should also be
extended to include the effects of various boundary conditions, e.g., porous
medium, permeable, and soluble wall conditions, and inclined isothermal and
constant heat flux surfaces on heat transfer. The studies should also consider
the transition regulation from the laminar flow to turbulent flow of the FFNF
system, and the effects of temperature-dependent properties on the system of
heat transfer coefficients.

1.4.4 Recent Experimental Measurements
of Velocity Field in Boundary Layer

Besides the advanced theoretical studies, in this book, we also show recently
obtained experimental measurements of velocity field on the boundary layer
of the laminar free convection, both of air and water. Very important is that
the measurement of velocity field of the boundary layer of the laminar free
convection requires a high degree of precision. The difficulty in accurate quan-
tification is very great. In 1930, Schmidt and Beckman measured the velocity
field of the laminar free convection of air [81], and hitherto this measurement
is taken as classical. Their experimental results were well identical to the
corresponding theoretical solutions based on the Boussinesq approximation
obtained by Pohlhausen. However, for a long time, there has been a shortage
of the experimental results of the velocity field of the boundary layer for the
gas laminar free convection with the large temperature difference. Meanwhile,
for the velocity field in the boundary layer for the liquid laminar free convec-
tion, even in the case of the small temperature differences, there has been a
shortage of experimental results. Therefore, our experimental results for the
velocity field on the boundary layer of laminar free convection with the large
temperature differences for air [82] and water [69,83] are reported in the book.
These experimental measurements have been very difficult to obtain. The ve-
locity fields of the laminar free convection of air and water in the case of
different temperature differences obtained by the experiments have not only
verified the corresponding theoretical results of the free convection for gas and
liquid with the large temperature difference mentioned earlier, but also filled
in the gaps in the study of the measurement of velocity field of laminar free
convection for gases and liquids with the large temperature differences.

These new theoretical and experimental studies introduce a new develop-
ment for the study of laminar free convection in single and two-phase boundary
layers and films under large temperature differences. These are all described
in the following chapters of this book. The purpose of this book is to system-
atically express these results, to promote further development of the study of
free convection film flows with large temperature differences, and to satisfy
the increasing demands of industry.
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Part I

Laminar Free Convection



2

Basic Conservation Equations
for Laminar Free Convection

Nomenclature

A area, m2

E internal energy, J
e internal energy per unit mass, J kg−1

•
E internal energy per unit time in system,

∆
•
E =

•
Q+

•
Wout, W

∆E increment of internal energy in a system, J

∆
•
E increment of internal energy per unit time in

system, W
F force, N
→
F is mass force per unit mass, kg/s2

Fm mass force acting on the control, N
Fs surface force acting on the control, N
•
G momentum increment per unit time in system, N
g gravity acceleration, m s−2

H enthalpy, E + pV , J
h specific enthalpy (enthalpy per unit mass),

e + pv, cpt, J kg−1

•
m mass increment per unit time, kg s−1

p pressure, N m−2

Q heat, J
•
Q heat entering the system per unit time, W
Qin heat transferred into the system from its

surroundings, J
t temperature, ◦C
T absolute temperature, K
V volume, m3

v specific volume, m3 kg−1
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wx, wy, wz velocity components in x, y, z direction, respectively,
m s−1

→
W velocity, wxi + wyj + wzk
•

W work done per unit time, W

Greek symbols
ρ mass density, kg m−3

λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

τ time, s , or shear force, N m−2

→
τ surface force acting on unit area
Φ viscous dissipation function
ε deformation rate
[ ] symbol of tensor
{ } symbol of quantity grade

Subscripts
m mass force
s surface force
∞ infinity

In this chapter the basic conservation equations related to fluid convection
heat transfer are introduced, and on this basis, the corresponding conservation
equations of mass, momentum, and energy for steady laminar free convection
in a boundary layer are obtained.

2.1 Continuity Equation

The conceptual basis for the derivation of the continuity equation of fluid flow
is the mass conservation law. The control volume for the derivation of conti-
nuity equation is shown in Fig. 2.1 in which the mass conservation principle
is stated as

•
mincrement =

•
min − •

mout, (2.1)

where
•
mincrement expresses the mass increment per unit time in the control

volume,
•
min represents the mass flowing into the control volume per unit time,

and
•
mout is the mass flowing out of the control volume per unit time. The dot

notation signifies a unit time.
In the control volume, the mass of fluid flow is given by ρ dx dy dz, and

the mass increment per unit time in the control volume can be expressed as

•
mincrement =

∂ρ

∂τ
dx dy dz. (2.2)
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dz

dy
dx

m in

m out

Fig. 2.1. Control volume for the derivation of the continuity equations

The mass flowing into the control volume per unit time in the x direction is
given by ρwx dx dz. The mass flowing out of the control volume in a unit time
in the x direction is given by [ρwx + ∂(ρwx)/∂x · dx]dy dz. Thus, the mass
increment per unit time in the x direction in the control volume is given by

∂(ρwx)
∂x

dx dy dz.

Similarly, the mass increments in the control volume in the y and z directions
per unit time are given by

∂(ρwy)
∂y

dy dx dz

and
∂(ρwz)

∂z
dz dx dy,

respectively. We thus obtain

•
mout −

•
min =

(
∂(ρwx)

∂x
+

∂(ρwy)
∂y

+
∂(ρwz)

∂z

)
dx dy dz. (2.3)

Combining (2.1) with (2.2) and (2.3) we obtain the following continuity equa-
tion in Cartesian coordinates:

∂ρ

∂τ
+

∂(ρwx)
∂x

+
∂(ρwy)

∂y
+

∂(ρwz)
∂z

= 0. (2.4)

or in the vector notation

∂ρ

∂τ
+ ∇ · (ρ

→
W ) = 0, (2.5)

or
Dρ

Dτ
+ ρ∇ · (

→
W ) = 0, (2.6)

where
→
W = iwx + jwy + kwz is the fluid velocity.
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For steady state, the vector and Cartesian forms of the continuity equation
are given by

∂

∂x
(ρwx) +

∂

∂y
(ρwy) +

∂

∂z
(ρwz) = 0, (2.7)

or
∇ · (ρ

→
W ) = 0. (2.8)

2.2 Momentum Equation (Navier–Stokes Equations)

The control volume for the derivation of the momentum equation of fluid flow
is shown in Fig. 2.2. Meanwhile, take an enclosed surface A that includes the
control volume. According to momentum law, the momentum increment of
the fluid flow per unit time equals the sum of the mass force and surface force
acting on the fluid. The relationship is shown as below:

•
Gincrement =

→
Fm +

→
F s, (2.9)

where
→
Fm and

→
F s denote mass force and surface force, respectively.

In the system the momentum increment
•
Gincrement of the fluid flow per

unit time can be described as
•
Gincrement =

D
Dτ

∫
V

ρ
→
W dV . (2.10)

In the system the sum of mass force Fm and surface force Fs acting on the
fluid is expressed as

Fm + Fs =
∫

V

ρ
→
F dV +

∫
A

→
τ n dA, (2.11)

where V and A are volume and surface area of the system, respectively,
→
F is

mass force per unit mass,
→
τ n is surface force acting on unit area.

Combining (2.9) with (2.10) and (2.11), we have the following equation:

D
Dτ

∫
V

ρ
→
W dV =

∫
V

ρ
→
F dV +

∫
A

→
τ n dA. (2.12)

Gx , in                                

dx
dy

dz

Gx , out

Fx

Fig. 2.2. Control volume for the derivation of momentum equations
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According to tensor calculation, the right side of (2.12) is changed into the
following form:∫

V

ρ
→
F dV +

∫
A

→
τ n dA =

∫
V

ρ
→
F dV +

∫
V

∇ · [τ ]dV, (2.13)

where ∇ · [τ ] is divergence of the shear force tensor.
The left side of (2.12) can be rewritten as

D
Dτ

∫
V

ρ
→
W dV =

∫
V

D(ρ
→
W )

Dτ
dV. (2.14)

With (2.13) and (2.14), (2.12) can be simplified as

∫
V

{
D(ρ

→
W )

Dτ
− ρ

→
F −∇ · [τ ]

}
dV = 0. (2.15)

Therefore,
D(ρ

→
W )

Dτ
= ρ

→
F +∇ · [τ ]. (2.16)

This is the Navier–Stokes equations of fluid flow. For Cartesian Coordi-
nates, (2.16) can be expressed as

ρ

(
∂wx

∂τ
+ wx

∂wx

∂x
+ wy

∂wx

∂y
+ wz

∂wx

∂z

)
=

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂y
+ ρgx, (2.17)

ρ

(
∂wy

∂τ
+ wx

∂wy

∂x
+ wy

∂wy

∂y
+ wz

∂wy

∂z

)
=

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρgy, (2.18)

ρ

(
∂wz

∂τ
+ wx

∂wz

∂x
+ wy

∂wz

∂y
+ wz

∂wz

∂z

)
=

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρgz, (2.19)

where gx, gy, and gz are gravity accelerations in x, y, and z directions, respec-
tively, while, the related shear forces are given later:

τxx =
[
p +

2
3

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ 2µ

∂wx

∂x
,

τyy =
[
p +

2
3

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ 2µ

∂wy

∂y
,

τzz =
[
p +

2
3

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ 2µ

∂wz

∂z
,

τxy = τyx = µ

(
∂wy

∂x
+

∂wx

∂y

)
,

τyz = τzy = µ

(
∂wz

∂y
+

∂wy

∂z

)
,

τzx = τxz = µ

(
∂wx

∂z
+

∂wz

∂x

)
.
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Then, (2.17)–(2.19) are rewritten as follows, respectively:

ρ
Dwx

Dτ
= −∂p

∂x
+ 2

∂

∂x

(
µ

∂wx

∂x

)
+

∂

∂y

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]

+
∂

∂z

[
µ

(
∂wx

∂z
+

∂wz

∂x

)]
− ∂

∂x

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ ρgx.

(2.20)

Similarly, the momentum equations in the y and z directions are given by

ρ
Dwy

Dτ
= −∂p

∂y
+

∂

∂x

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]
+ 2

∂

∂y

(
µ

∂wy

∂y

)

+
∂

∂z

[
µ

(
∂wy

∂z
+

∂wz

∂y

)]
− ∂

∂y

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ ρgy,

(2.21)

ρ
Dwy

Dτ
= −∂p

∂z
+

∂

∂x

[
µ

(
∂wx

∂z
+

∂wz

∂x

)]
+

∂

∂y

[
µ

(
∂wy

∂z
+

∂wz

∂y

)]

+2
∂

∂z

(
µ

∂wz

∂z

)
− ∂

∂z

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ ρgz.

(2.22)

For steady state, the momentum equations (2.20)–(2.22) are given as fol-
lows, respectively:

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y
+ wz

∂wx

∂z

)

= −∂p

∂x
+ 2

∂

∂x

(
µ

∂wx

∂x

)
+

∂

∂y

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]
+

∂

∂z

[
µ

(
∂wx

∂z
+

∂wz

∂x

)]

− ∂

∂x

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ ρgx, (2.23)

ρ

(
wx

∂wy

∂x
+ wy

∂wy

∂y
+ wz

∂wy

∂z

)

= −∂p

∂y
+

∂

∂x

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]
+ 2

∂

∂y

(
µ

∂wy

∂y

)
+

∂

∂z

[
µ

(
∂wy

∂z
+

∂wz

∂y

)]

− ∂

∂y

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ ρgy, (2.24)
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ρ

(
wx

∂wz

∂x
+ wy

∂wz

∂y
+ wz

∂wz

∂z

)

= −∂p

∂z
+

∂

∂x

[
µ

(
∂wx

∂z
+

∂wz

∂x

)]
+

∂

∂y

[
µ

(
∂wy

∂z
+

∂wz

∂y

)]
+ 2

∂

∂z

(
µ

∂wz

∂z

)

− ∂

∂z

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂z

)]
+ ρgz. (2.25)

2.3 Energy Equation

The control volume for derivation of the energy equation of fluid flow is shown
in Fig. 2.3. Meanwhile, take an enclosed surface A that includes the control
volume. According to the first law of thermodynamics, we have the following
equation:

∆
•
E =

•
Q +

•
Wout, (2.26)

where ∆
•
E is energy increment in the system per unit time,

•
Q is heat increment

in the system per unit time, and
•

Wout denotes work done by the mass force
and surface force on the system per unit time.

The energy increment per unit time in the system is described as

∆
•
E =

D
Dτ

∫
V

ρ(e +
W 2

2
)dV , (2.27)

where τ denotes time, W 2/2 is the fluid kinetic energy, W is fluid velocity,
and the symbol e represents the internal energy per unit mass.

The work done by the mass force and surface force on the system per unit
time is expressed as

•
Wout =

∫
V

ρ
→
F ·

→
W dV +

∫
A

→
τn ·

→
W dA, (2.28)

where
→
F is the mass force per unit mass, and

→
τn is surface force acting on unit

area.

Wout 

dz

dy

Q in dx

DE 

Fig. 2.3. Control volume for derivation of the energy equations of fluid flow
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The heat increment entering into the system per unit time through thermal
conduction is described by using Fourier’s law as follows:

•
Q =

∫
A

λ
∂t

∂n
dA, (2.29)

where n is normal line of the surface, and here only the heat conduction is
considered. With (2.27)–(2.29), (2.26) is rewritten as

D
Dτ

∫
V

ρ

(
e +

W 2

2

)
dV =

∫
V

ρ
→
F ·

→
W dV +

∫
A

→
τn ·

→
W dA +

∫
A

λ
∂t

∂n
dA,

(2.30)
where

D
Dτ

∫
V

ρ

(
e +

W 2

2

)
dV =

∫
V

ρ
D
Dτ

(
e +

W 2

2

)
dV , (2.31)

∫
A

→
τn ·

→
W dA =

∫
A

→
→
n [τ ] ·

→
W dA =

∫
A

→
→
n([τ ] ·

→
W ) dA =

∫
A

∇ · ([τ ] ·
→
W )dV,

(2.32)
∫

A

λ
∂t

∂n
dA =

∫
V

∇ · (λ∇t)dV. (2.33)

With (2.31)–(2.33), (2.30) is rewritten as
∫

V

ρ
D
Dτ

(
e +

W 2

2

)
dV =

∫
V

ρ
→
F ·

→
W dV +

∫
A

∇·([τ ]·
→
W )dV +

∫
V

∇ · (λ∇t)dV.

(2.34)
Then,

ρ
D
Dτ

(
e +

W 2

2

)
= ρ

→
F ·

→
W +∇ · ([τ ] ·

→
W ) + ∇ · (λ∇t), (2.35)

where [τ ] denotes tensor of shear force.
Equation (2.35) is the energy equation.
Through tensor and vector analysis, (2.35) can be further derived into the

following form:

ρ
De

Dτ
= [τ ] · [ε] + ∇ · (λ∇t). (2.36)

Equation(2.32) is an another form of the energy equation. Here, [τ ] · [ε] is the
scalar quantity product of force tensor [τ ] and deformation rate tensor [ε],
and represents the work done by fluid deformation surface force. The physical
significance of (2.36) is that the internal energy increment of fluid with unit
volume during the unit time equals the sum of the work done by deformation
surface force of fluid with unit volume, [τ ] · [ε], and the heat entering the
system.
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The general Newtonian law is expressed as

[τ ] = 2µ[ε] −
(

p +
2
3
µ∇ ·

→
W

)
[I], (2.37)

where [I] is unit tensor.
According to (2.37) the following equation can be obtained:

[τ ] · [ε] = −p∇ ·
→
W −2

3
µ(∇ ·

→
W )2 + 2µ[ε]2. (2.38)

Then, (2.36) can be rewritten as

ρ
De

Dτ
= −p∇ ·

→
W +Φ + ∇ · (λ∇t), (2.39)

where Φ = −2/3(µ(∇ ·
→
W )2) + 2µ[ε]2 is viscous dissipation function, which is

further described as

Φ = µ

[
2
(

∂wx

∂x

)2

+ 2
(

∂wy

∂y

)2

+ 2
(

∂wz

∂z

)2

+
(

∂wx

∂y
+

∂wy

∂x

)2

+
(

∂wy

∂z
+

∂wz

∂y

)2

+
(

∂wz

∂x
+

∂wx

∂z

)2
]
− 2

3

[
div(

→
W )

]2
. (2.40)

Equation (2.6) can be rewritten as

∇ ·
→
W = −1

ρ

Dρ

Dτ
= ρ

D
Dτ

(
1
ρ

)
.

With the earlier equation, (2.39) is changed into the following form:

ρ

[
De

Dτ
+ p

D
Dτ

(
1
ρ

)]
= Φ + ∇ · (λ∇t). (2.41)

According to thermodynamics equation of fluid

Dh

Dτ
=

De

Dτ
+ p

D
Dτ

(
1
ρ

)
+

1
ρ

Dp

Dτ
. (2.42)

Equation(2.41) can be expressed as the following enthalpy form:

ρ
Dh

Dτ
=

Dp

Dτ
+ Φ + ∇ · (λ∇t), (2.43)

or

ρ
D(cpt)

Dτ
=

Dp

Dτ
+ Φ + ∇ · (λ∇t), (2.44)

where h = cpt, while cp is specific heat.
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In Cartesian form, the energy (2.44) can be rewritten as

ρ

[
∂(cpt)

∂τ
+ wx

∂(cpt)
∂x

+ wy
∂(cpt)

∂y
+ wz

∂(cpt)
∂z

]

=
Dp

Dτ
+

∂

∂x

(
λ

∂t

∂x

)
+

∂

∂y

(
λ

∂t

∂y

)
+

∂

∂z

(
λ

∂t

∂z

)
+ Φ. (2.45)

For steady state and nearly constant pressure processes, the viscous dissipa-
tion can be ignored, and then the Cartesian form of the energy equation (2.45)
is changed into

ρ

[
wx

∂(cpt)
∂x

+wy
∂(cpt)

∂y
+ wz

∂(cpt)
∂z

]
=

∂

∂x

(
λ

∂t

∂x

)
+

∂

∂y

(
λ

∂t

∂y

)
+

∂

∂z

(
λ

∂t

∂z

)
.

(2.46)

2.4 Basic Equations of Free Convection Boundary Layer

In Fig. 2.4 the physical model and coordinate system of boundary layer with
two-dimensional laminar free convection are shown schematically. An inclined
flat plate is suspended in liquid. The surface temperature is Tw and the fluid
bulk temperature is T∞. If Tw is not equal to T∞, the laminar free convec-
tion can be produced on the inclined surface in both the cases as shown in
Fig. 2.4(a) and (b), respectively.

In the following sections we will make quantitative grade analysis succes-
sively to investigate the governing equations of mass, momentum, and energy
conservation for steady laminar free convection in the two-dimensional bound-
ary layer.

2.4.1 Continuity Equation

Based on (2.7), the steady state three-dimensional continuity equation is
given by

∂

∂x
(ρwx) +

∂

∂y
(ρwy) +

∂

∂z
(ρwz) = 0. (2.47)

Y

T
�

T�

Boundary
layerBoundary

layer

(b)(a)

a
W

1

W
x

W
1

W
x

X

T
w,x

T
w,x

Wall

a d
x

d
x

x

Y

Fig. 2.4. Physical model and coordinate system. (a) Ascending flow on the inclined
surface (tw > t∞). (b) Falling flow on the inclined surface (tw > t∞)
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While, the steady state two-dimensional continuity equation is given by

∂

∂x
(ρwx) +

∂

∂y
(ρwy) = 0. (2.48)

In (2.47) and (2.48) variable fluid density with temperature is considered.
Before the quantitative grade analysis, it is necessary to define its ana-

lytical standard. A normal quantitative grade is regarded as {1}, i.e., unit
quantity grade, a very small quantitative grade is regarded as {δ}, even very
small quantitative grade is regarded as {δ2}, and so on. The ration of the
quantities is easily defined, and some examples of ratios are introduced as
follows:

{1}
{1} = {1}, {δ}

{δ} = {1}, {1}
{δ} = {δ−1}, {1}

{δ2} = {δ−2}.

According to the theory of laminar free boundary layer, the quantities of
the velocity component wx and the coordinate x can be regarded as unity,
i.e., {wx} = {1} and {x} = {1}. However, the quantities of the velocity
component wy and the coordinate y should be regarded as δ, i.e., {wy} = {δ}
and {y} = {δ}.

For the terms of (2.48) the following ratios of quantity grade are obtained:

{ρwx}
{x} =

{1}
{1} = {1} and

{ρwy}
{y} =

{δ}
{δ} = {1}.

Therefore both the terms of (2.48) should be kept, and (2.48) can be re-
garded as the continuity equation of the steady state laminar two-dimensional
boundary layers. Of course, (2.48) is also suitable for the steady state two-
dimensional boundary layers with laminar free convection.

2.4.2 Momentum Equations (Navier–Stokes Equations)

According to (2.23) and (2.24), the momentum equations for steady two-
dimensional convection are

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ 2

∂

∂x

(
µ

∂wx

∂x

)
+

∂

∂y

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]

− ∂

∂x

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y

)]
+ ρgx. (2.49)

ρ

(
wx

∂wy

∂x
+ wy

∂wy

∂y

)
= −∂p

∂y
+

∂

∂x

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]
+ 2

∂

∂y

(
µ

∂wy

∂y

)

− ∂

∂y

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y

)]
+ ρgy. (2.50)
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According to the theory of boundary layer, the quantity grade of the pres-
sure gradient ∂p/∂x can be regarded as unity, i.e., {∂p/∂x} = {1}, but the
quantity grade of the pressure gradient ∂p/∂y is only regarded as very small
quantity grade, i.e., {∂p/∂y} = {δ}.

The quantity grades of the terms of (2.49) and (2.50) are expressed as
follows, respectively:

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ 2

∂

∂x

(
µ

∂wx

∂x

)
+

∂

∂y

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]

− ∂

∂x

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y

)]
+ ρgx

{1}
(
{1}{1}{1} + {δ}{1}{δ}

)
= {1} +

{1}
{1}{δ

2}{1}{1} +
{1}
{δ}{δ

2}
(
{1}
{δ} +

{δ}
{1}

)

−{1}
{1}δ2

(
{1}
{1} +

{δ}
{δ}

)
+ {1}{1}, (2.49a)

ρ

(
wx

∂wy

∂x
+ wy

∂wy

∂y

)
= −∂ρ

∂y
+

∂

∂x

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]
+ 2

∂

∂y

(
µ

∂wy

∂y

)

− ∂

∂y

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y

)]
+ ρgy

{1}
(
{1}{δ}{1} + {δ}{δ}{δ}

)
= {δ} +

{1}
{1}{δ

2}
(
{1}
{δ} +

{δ}
{1}

)
+

{1}
{δ}{δ

2}{δ}{δ}

−{1}
{δ}{δ

2}
(
{1}
{1} +

{δ}
{δ}

)
+ {1}{δ}. (2.50a)

The quantity grades of (2.49a) and (2.50a) are simplified as follows, re-
spectively:

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+ 2

∂

∂x

(
µ

∂wx

∂x

)
+

∂

∂y

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]

− ∂

∂x

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y

)]
+ ρgx

{1}({1} + {1}) = {1} + {δ2} + {1} + {δ2} − ({δ2} + {δ2}) + {1},
(2.49b)

ρ

(
wx

∂wy

∂x
+ wy

∂wy

∂y

)
= −∂p

∂y
+

∂

∂x

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]
+ 2

∂

∂y

(
µ

∂wy

∂y

)

− ∂

∂y

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y

)]
+ ρgy

{1}({δ} + {δ}) = {δ} + ({δ} + {δ3}) + {δ} − ({δ}({1} + {1})) + {δ}.
(2.50b)
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Observing the quantity grades in (2.49b) it is found that the terms

2
∂

∂x
(µ

∂wx

∂x
),

∂wy

∂x

in term
∂

∂y

[
µ

(
∂wx

∂y
+

∂wy

∂x

)]
,

and
∂

∂x

[
2
3
µ

(
∂wx

∂x
+

∂wy

∂y

)]

are very small and can be ignored from (2.49). Then, (2.49) is simplified as
follows:

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+

∂

∂y

(
µ

(
∂wx

∂y

))
+ ρgx. (2.51)

Comparing the quantity grades of (2.49b) with that of Eq.(2.50b), it is found
that the quantity grades of (2.50b) are very small. Then, (2.50) can be ignored,
and only (2.51) is taken as the momentum equation of steady state laminar
two-dimensional boundary layer.

From Fig. 2.4 it is found that for free convection on inclined plate the
gravity acceleration component gx is expressed as

gx = g · cos α, (2.52)

where g is gravity acceleration and α is the inclined angle of the plate.
With (2.52), (2.51) is rewritten as

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+

∂

∂y

(
µ

(
∂wx

∂y

))
+ ρg · cos α. (2.53)

Suppose the direction of g · cos α is reverse to that opposite to that of the
velocity component wx, (2.53) can be rewritten as

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= −∂p

∂x
+

∂

∂y

(
µ

(
∂wx

∂y

))
− ρg · cos α. (2.54)

Ignoring the effects of viscosity beyond the boundary layer, the momentum
equation (2.54) is simplified into the following equation:

−dp

dx
= ρ∞g · cos α + ρ∞wx,∞

dwx,∞
dx

, (2.55)

where ρ∞ and wx,∞ are fluid density and velocity component beyond the
boundary layer.
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With (2.55), (2.54) becomes

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ g(ρ∞ − ρ) cos α + ρ∞w∞

dw∞
dx

.

(2.56)

For constant w∞ the equation (2.56) transforms to

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ g(ρ∞ − ρ) cos α. (2.57)

This is the momentum equation of two-dimensional boundary layer on an
inclined plate with laminar free convection.

For the free convection of a perfect gas (ideal gas) the following simple
power law can be used:

ρ∞
ρ

=
T

T∞
,

where T denotes absolute temperature. Therefore,

ρ∞ − ρ = ρ

(
T

T∞
− 1

)
. (2.58)

Thus, for steady two-dimensional laminar free convection of a perfect gas,
(2.57) can be changed into

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ gρ

(
T

T∞
− 1

)
cos α. (2.59)

2.4.3 Energy Equations

According to (2.46), the energy equation for steady state laminar two-
dimensional convection is shown as follows:

ρ

[
wx

∂(cpt)
∂x

+ wy
∂(cpt)

∂y

]
=

∂

∂x

(
λ

∂t

∂x

)
+

∂

∂y

(
λ

∂t

∂y

)
. (2.60)

With the quantity grade analysis similar to that mentioned earlier, (2.60)
can be changed into the following form for energy equation of steady state
laminar two-dimensional boundary layer. Of course, it is suitable for that with
laminar free convection.

ρ

[
wx

∂(cpt)
∂x

+ wy
∂(cpt)

∂y

]
=

∂

∂x

(
λ

∂t

∂x

)
. (2.61)

Up to now it is the time to summarize the basic governing equations for
description of mass, momentum, and energy conservation of two-dimensional
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boundary layers with laminar steady state free convection as follows:

∂

∂x
(ρwx) +

∂

∂y
(ρwy) = 0, (2.48)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ g(ρ∞ − ρ) cos α, (2.57)

ρ

[
wx

∂(cpt)
∂x

+ wy
∂(cpt)

∂y

]
=

∂

∂x

(
λ

∂t

∂x

)
. (2.61)

For rigorous solutions of the governing equations, the fluid temperature-
dependent properties, such as density ρ, absolute viscosity µ, specific heat cp,
and thermal conductivityλ will be considered in the successive chapters of this
book.

The laminar free convection with two-dimensional boundary layer belongs
to two-point boundary value problem, which is the basis of three-point bound-
ary value problem, such as for film boiling and film condensation. For isother-
mal plate for example, the boundary conditions for the two-point boundary
problem can be expressed as follows:

y = 0 : wx = 0, wy = 0, t = tw, (2.62)
y → ∞ : wx = wx,∞, t = t∞, (2.63)

where tw is plate temperature, t∞ is the fluid temperature beyond the bound-
ary layer, and wx,∞ denotes the fluid velocity component in x-direction beyond
the boundary layer.

The tern g(ρ∞ − ρ) cos α in (2.57) is regarded as buoyancy factor. For
perfect gas, the buoyancy factor can be expressed as

g(ρ∞ − ρ) = ρg

(
T

T∞
− 1

)
. (2.58)

In addition, although (2.58) is originally for perfect gas, it is well known
that it can be very accurately applied to free convection and film flows of
general gases.

It is indicated that for the governing equations and boundary conditions
of general gas free convection, it is better to express the temperature by
using absolute temperature T . This way is very beneficial for treatment of
gas temperature-dependent properties.
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for Analysis of Laminar Free Convection

Nomenclature

cp specific heat at constant pressure, J (kg k)−1

g gravitation acceleration, m s−2

Gr Grashof number
P pressure, N m−2

Pr Prandtl number
T absolute temperature, K
Tr reference temperature, K
Tw absolute temperature on the wall, K
T∞ absolute temperature beyond the boundary layer, K
Tw/T∞ Boundary temperature ratio
wx, wy velocity component in the x- and y- directions,

respectively, m s−1

Wx,Wy dimensional velocity component in the x- and
y- directions, respectively

x, y dimensional coordinate variables

Greek symbols
η dimensionless coordinate variable for boundary layer
θ(η) dimensionless temperature
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3

ψ flow function

Subscripts
w at wall
∝ far from the wall surface
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3.1 Falkner–Skan Transformation for Fluid Laminar
Forced Convection

In solving the laminar boundary problem, a similarity transformation method
is usually used. So far the widely applied similarity transformation for the
laminar film free convection problem is the Falkner–Skan transformation [1–3].
We shall first apply the Falkner–Skan transformations to the forced convection
on a horizontal plate, for constant physical properties.

Let us consider the governing equations of laminar boundary layer with
forced convection on a horizontal plate. By ignoring variable thermophysi-
cal properties the governing partial differential equations for laminar forced
convection are given by:

∂

∂x
(wx) +

∂

∂y
(wy) = 0, (3.1)

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ν

∂2wx

∂y2
− 1

ρ

dp

dx
, (3.2)

(
wx

∂t

∂x
+ wy

∂t

∂y

)
=

ν

Pr

∂2t

∂y2
. (3.3)

With the boundary conditions

y = 0 : wx = 0, wy = 0, t = tw, (3.4)
y → ∞ : wx → wx,∞, t = t∞, (3.5)

where wx and wy are velocity components of the fluids in x and y directions,
respectively, ρ is the density, ν is kinetic viscosity, Pr is Prandtl number,
and t is temperature. For the external flow we can replace (−1/ρ)dp/dx by
(wx,∞)dwx,∞/dx in (3.2). For given ν, Pr, wx,∞, t∞ and tw(x), the solution of
the earlier equations can be written in the following form:

wx

wx,∞
= φ1(x, y), (3.6)

t − t∞
tw − t∞

= φ2(x, y). (3.7)

In some special cases (3.6) and (3.7) can be rewritten as:

wx

wx,∞
= φ1(η), (3.8)

t − t∞
tw − t∞

= φ2(η). (3.9)

where η is dimensionless similarity variable. It is a function of x and y. Later
it will be shown that η is proportional to y/(δ(x)) where δ(x) is function of x.
Then, the number of independent variables can be reduced from two to one.
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A prerequisite of the Falkner–Skan transformation is the derivation of the
similarity variables. The typical method for this procedure is group theory,
which was discussed at length by Hansen [4] and Na [5]. For the application
of this method, a stream function ψ(x, y) is assumed to satisfy (3.1).

wx =
∂ψ

∂y
, wy = −∂ψ

∂x
. (3.10)

Using (3.10), (3.2) is transformed into

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= wx,∞

dwx,∞
dx

+ ν
∂3ψ

∂y3
. (3.11)

Subsequently, (3.11) is solved by using the group theory. It is important to
introduce the following linear transformation:

x = Aa1x, y = Aa2y, ψ = Aa3ψ, wx,∞ = Aa4wx,∞, (3.12)

where a1 , a2 , a3, and a4 are constant, and A is the transformation parameter.
With (3.12), (3.11) can be rewritten as

A2a3−a1−2a2

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂x2

)
= A2a4−a1wx,∞

dwx,∞
dx

+ νAa3−3a2
∂3ψ

∂y3 .

(3.13)

From (3.13) and (3.11), due to the constancy of the variables, we compare the
exponents of A in each of the terms and obtained;

2a3 − a1 − 2a2 = 2a4 − a1 = a3 − 3a2. (3.14)

The incomplete solution of (3.14) is

a3 = a1 − a2, a4 = a3 − a2. (3.15)

Defining a new variable a = a2/a1, then (3.15) can be rewritten as

a3

a1
= 1 − a,

a4

a1
= 2

a3

a1
− 1 = 1 − 2a. (3.16)

From (3.12) we get

A =
(x

x

)1/a1

=
(

y

y

)1/a2

=
(

ψ

ψ

)1/a3

=
(

wx,∞
wx,∞

)1/a4

. (3.17)

Using (3.16), (3.17) can be transformed as

y

xa
=

y

xa ,
ψ

x1−a
=

ψ

(x)1−a
,

wx,∞
x1−2a

=
wx,∞

(x)1−2a
. (3.18)
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The combined variables in (3.18) are called absolute variables in the case
of (3.12). According to Hansen [4], if the boundary conditions of the velocity
field of (3.4) and (3.5) can also be transformed and do not depend on x, these
absolute variables are similarity variables. We set

η =
y

xa
, f(η) =

ψ

x1−a
, (3.19)

h(η) =
wx,∞
x1−2a

= constant = C. (3.20)

The second part of (3.19) can be rewritten as

ψ = x1−af(η)
xa

xa
= x1−2axaf(η).

With (3.20) this equation can be transformed into

ψ =
wx,∞

C
xaf(η). (3.21)

By using the first equation of (3.10), (3.21), and the first equation of (3.19),
wx,∞ is rewritten as

wx =
∂ψ

∂y
=

∂ψ

∂η

∂η

∂y
=

wx,∞
C

∂f(η)
∂η

,

or
w

wx,∞
=

f ′(η)
C

. (3.22)

Now, we set m = 1 − 2a. From (3.20) we obtain

wx,∞ = Cxm. (3.23)

Using (3.23) the first equation of (3.19) will be transformed to

η =
y

x(1−m)/2
=
(wx,∞

Cx

)1/2

y. (3.24)

With (3.23), (3.21) will be

ψ =
wx,∞x(1−m)/2

C
f(η) =

(wx,∞x

C

)1/2

f(η), (3.25)

where Ψ has the unit m2 s−1, η and f(η) should be dimensionless. Replacing
C with ν, the correct dimension of Ψ and η can be obtained:

ψ = (wx,∞νx)1/2f(η), (3.26)

η =
(wx,∞

νx

)1/2

y. (3.27)
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Equations (3.26) and (3.27) are defined as the Falkner–Skan transformations
for laminar forced convection.

On this basis, similarity transformation of (3.1)–(3.3) is undertaken as
follows:

Using (3.26) the velocity component wx can be derived from (3.10) as
follows:

wx = (wx,∞νx)1/2f ′(η)
∂η

∂y
= (wx,∞νx)1/2f ′(η)

(wx,∞
νx

)1/2

.

or
wx=wx,∞f ′(η). (3.28)

Employing (3.26) the velocity component wy can be derived from (3.10) as
follows:

wy = −(wx,∞νx)1/2f ′(η)
∂η

∂x
− 1

2

(wx,∞ν

x

)1/2

f(η)

= (wx,∞νx)1/2f ′(η)
1
2

(wx,∞
νx3

)1/2

y − 1
2

(wx,∞ν

x

)1/2

f(η)

=
1
2

(wx,∞ν

x

)1/2

f ′(η)η − 1
2

(wx,∞ν

x

)1/2

f(η)

=
1
2

(wx,∞ν

x

)1/2

[ηf ′(η) − f(η)]. (3.29)

Equation (3.9) can be rewritten as

t − t∞
tw − t∞

= θ(η). (3.30)

The similarity transformation of the governing (3.2) and (3.3), can now be
made. From (3.27), we have

∂η

∂x
= −1

2

(wx,∞
νx3

)1/2

y = −1
2
x−1η.

From (3.28), we have

∂wx

∂x
= wx,∞f ′′(η)

∂η

∂x
= −1

2
x−1ηwx,∞f ′′(η).

∂wx

∂y
= wx,∞f ′′(η)

∂η

∂y
= wx,∞f ′′(η)

(wx,∞
νx

)1/2

,

∂2wx

∂y2
= wx,∞f ′′′(η)

(wx,∞
νx

)
.
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On these bases, if we set dwx,∞/dx = 0, (3.2) is transformed into

−wx,∞f ′(η)
1
2
x−1ηwx,∞f ′′(η) +

1
2

(wx,∞ν

x

)1/2

×[ηf ′(η) − f(η)]wx,∞f ′′(η)
(wx,∞

νx

)1/2

= νwx,∞f ′′′(η)
(wx,∞

νx

)
.

Simplifying this equation, we obtain

−f ′(η)ηf ′′(η) + [ηf ′(η) − f(η)]f ′′(η) = 2f ′′(η),

i.e.,
2f ′′′(η) + f(η)f ′′(η) = 0. (3.31)

This is well known Blasius’s equation.
Using (3.27)–(3.29), (3.3) is transformed into

−wx,∞f ′(η)θ′(η)
1
2
ηx−1 +

1
2

(wx,∞ν

x

)1/2

(ηf ′(η) − f(η))θ′(η)
(wx,∞

νx

)1/2

=
ν

Pr
θ′′(η)

(wx,∞
νx

)
.

Simplifying this equation, we obtain

−f ′(η)θ′(η)η + (ηf ′(η) − f(η))θ′(η) =
2

Pr
θ′′(η),

or
2

Pr
θ′′(η) + f(η)θ′(η) = 0. (3.32)

The boundary conditions for (3.4) and (3.5) are now transformed into

η = 0 : f(η) = f ′(η) = 0 θ(η) = 1, (3.33)

η = ∞ : f ′(η) = 1, θ(η) = 0, (3.34)

3.2 Falkner–Skan Transformation
for Fluid Laminar Free Convection

3.2.1 For Boussinesq Approximation

Let us consider the governing equations of the boundary layer of steady state
fluid laminar free convection. Based on (2.48), (2.57), and (2.61) of Chap. 2,
the governing equations of the boundary layer of steady state fluid laminar
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free convection are as follows for Boussinesq approximation:

∂

∂x
(wx)+

∂

∂y
(wy) = 0, (3.35)

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ν

∂2wx

∂y2
+ g(ρ∞ − ρ), (3.36)

(
wx

∂t

∂x
+ wy

∂t

∂y

)
=

ν

Pr

∂2t

∂y2
, (3.37)

with the boundary conditions

y = 0 : wx = 0, wy = 0, t = tw, (3.38)

y → ∞ : wx → 0, t = t∞. (3.39)

Similar to the analysis in Sect. 3.1, for Falkner–Skan transformation for fluid
laminar free convection, we get the following variables for describing expres-
sions for the stream function ψ and dimensionless coordinate variable η:

η =
(

1
4
Gr

)1/4
y

x
; ψ = 4ν

(
1
4
Gr

)1/4

f(η), (3.40)

where

Gr =
g(ρ∞/ρw − 1)x3

ν2
. (3.41)

Combined with (3.10), the dimensionless expressions of wx and wy are derived
from (3.40), respectively, as follows:

wx =
4ν

x

(
1
4
Gr

)1/2

f ′(η), (3.42)

wy =
ν

x

(
1
4
Gr

)1/4

[ηf ′(η) − 3f(η)]. (3.43)

Dimensionless temperature θ(η) is also given by

θ(η) =
t − t∞
tw − t∞

. (3.44)

With (3.42)–(3.43), (3.35)–(3.37) lead to the following differential equations

f ′′′(η) + 3f(η)f ′′(η) − 2(f ′(η))2 + θ(η) = 0, (3.45)
θ′′(η) + 3Prf(η)θ′(η) = 0, (3.46)

with the boundary conditions

η = 0 : f(η) = f ′(η) = 0, θ(η) = 1, (3.47)
η → ∞ : f ′(η) = 0, θ(η) = 0. (3.48)
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3.2.2 Consideration of Variable Thermophysical Properties

Consider the boundary layer of the fluid laminar free convection from a vertical
plate. According to (2.48), (2.57), and (2.61) of Chap. 2, the basic equations
of laminar gas free convection with consideration of variable thermophysical
properties are given by

∂

∂x
(ρwx) +

∂

∂y
(ρwy) = 0, (3.49)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ g(ρ∞ − ρ), (3.50)

ρcp

(
wx

∂t

∂x
+ wy

∂t

∂y

)
=

∂

∂y

(
λ

∂t

∂y

)
, (3.51)

with the boundary conditions

y = 0 : wx = 0, wy = 0, t = tw, (3.52)

y → ∞ : wx → 0, t = t∞, (3.53)

where µ is the absolute viscosity, ρ is the density, λ is the thermal conductivity,
g is the gravity acceleration, and t is temperature.

For variable thermophysical properties we set up following definition of
the stream function ψ:

ρ

ρw
wx =

∂ψ

∂y
,

ρ

ρw
wy = −∂ψ

∂x
. (3.54)

For variable thermophysical properties we can give expressions for stream
function ψ and dimensionless coordinate variable η as defined by:

η = cx−1/4

∫ y

0

ρ

ρw
dy, ψ = 4νw

(
1
4
Grx,w

)1/4

f(η),

where

Gx,w =
g(ρ∞/ρw − 1)x3

ν2
w

. (3.55)

Dimensionless temperature θ(η) is defined by

θ(η) =
t − t∞
tw − t∞

. (3.56)

The function θ is a dimensionless temperature and f is related to the velocities
in the following way

wx = 4νwc2x1/2f ′
(η), wy =

(
ρw

ρ

)( νwc

x1/4

)
(ηf ′(η) − 3f(η)) , (3.57)
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where
C = Grx,wx−3/4. (3.58)

With the variables used in (3.54)–(3.58), (3.49)–(3.51) are now transformed
into the following equations:

d
dη

[
ρµ

ρwµw
f ′′(η)

]
+ 3f(η)f ′′(η) − 2[f ′(η)]2 + θ(η) = 0, (3.59)

d
dη

[
ρλ

ρwλw
θ′(η)

]
+ 3Prw

(
cp

cpw

)
f(η)θ′(η) = 0, (3.60)

where λ, ρ, cp and Pr are thermal conductivity, density, specific heat, and
Prandtl number, respectively, while subscript w denotes the temperature on
the wall.

The boundary conditions, (3.52) and (3.53) are transformed into

η = 0 : f(η) = f ′(η) = 0, θ(η) = 1, (3.61)
η → ∞ : f ′(η) = 0, θ(η) = 0. (3.62)

It should be mentioned that there are some difficulties produced by the
Falkner–Skan transformations. It is difficult to transform (3.49)–(3.51) to
(3.59) and (3.60), since the velocity components cannot easily be replaced by
the stream function ψ . In addition, great difficulty is encountered in the treat-
ment of the variable thermophysical properties in (3.59) and (3.60), because
the physical property factors ρµ/ρwµw, ρλ/ρwλw and cp/cpw are functions of
temperature, and therefore are functions of η. Finally, it is also difficult to
transform the variables f(η) and f ′(η) to the corresponding velocity compo-
nents wx and wy. In this case, in the following chapters, a novel system of
transformation models for free convection and film flows will be presented
instead of the traditional Falkner–Skan type transformation.

3.3 Some Previous Methods for Treatment of Variable
Thermophysical Properties

A well-known treatment of the variable fluid property problem for laminar free
convection on an isothermal vertical flat plate has been presented by Sparrow
and Gregg [6] with solutions of the boundary layer equations for some special
cases. Gray and Giogini [7] discussed the validity of the Boussinesq’s approx-
imation and proposed a method for analyzing natural convection flows with
fluid properties assumed to be linear functions of temperature and pressure.
Clausing and Kempka [8] reported their experimental study of the influence
of property variations on the natural convection and concluded that, for the
laminar region, Nuf will be a function of Raf(= GrfPrf) only with reference
temperature, Tf , taken as the average temperature in the boundary layer.



46 3 Brief Review of Previous Method for Analysisof Laminar Free Convection

The instability of laminar free convection flow and transition to a turbulent
state has been studied by Gebhart [9] and summarized in a textbook by Eckert
and Drake [10]. For variable thermophysical properties the treatment method
developed by Sparrow and Gregg is representative, hence we introduce mainly
their method.

Sparrow and Gregg [6] have studied the description of gas physical proper-
ties and proposed a model used to describe five kinds of assumptions as given
in Table 3.1.

Numerical solutions of (3.59) and (3.60) for gas A were carried out by
Sparrow and Gregg [6] for a wide range of values of Tw/T∞ for Pr = 0.7
and for selected values of Tw/T∞ for Pr = 1.0. The heat transfer results
corresponding to these solutions are listed in Table 3.2.

For gas C the heat transfer (for Pr = 0.7) is given by

Nuw/(Grw)1/4 = 0.353. (3.63)

Sparrow and Gregg [6] have further suggested a reference temperature ap-
proach, in which the free convection heat transfer under variable property
conditions can be calculated by using the constant properties results in con-
junction with the following reference temperature relation

Tr = Tw − 0.38(Tw − T∞). (3.64)

Table 3.1. Description of gases A, B, C, D, and E proposed by Sparrow and
Gregg [6]

gas A gas B gas C gas D gas E

P = ρRT P = ρRT P = ρRT P = ρRT P = ρRT

λ ∝ T 3/4 λ ∝ T 2/3 ρλ = const. λ ∝ T3/2

T+A1
λ ∝ T3/2

T+A1

µ ∝ T 3/4 µ ∝ T 2/3 ρµ = const. µ ∝ T3/2

T+A2
µ ∝ T3/2

T+A2

cp = const. cp = const. cp = const. cp = const. cpb0 + b1T

Pr = const. P r = const. P r = const. P r = const. P r = const.
A1 and A2 are the dimensionless constants in the Sutherland’s formulae

Table 3.2. Heat transfer results, Nuw/(Grw)1/4 for gas A proposed by Sparrow
and Gregg [6]

Tw/T∞ Pr = 0.7 Pr = 1.0

5/2 0.366
3 0.368 0.418
2 0.363
3/4 0.348
1/2 0.339
1/3 0.330 0.375

Nuw = αxx/λ and Grx = gx3(|ρ∞−ρw|/ρw
ν2
m
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where Tr is reference temperature. Sparrow and Gregg [6] supplied a good
approach for prediction of the heat transfer for laminar free convection of
gas with property variations. However, this approach has not expressed accu-
rately the thermophysical property variations with temperature for different
gases, and therefore the free convection heat transfer could not be predicted
rigorously.

Actually, different gases have different thermophysical properties. The ef-
fects of the different thermophysical properties on free convection film flows
and heat transfer are complicated. In order to predict free convection film
flows and heat transfer more accurately and conveniently, the following very
important investigations must be done (a) to provide reasonable method for
reliable and simple simulation of the variable thermophysical properties, and
(b) to provide a system of theoretical and mathematical models for rigorous
and convenient treatment of the variable thermophysical properties. In the
successive chapters of this book, these investigations will be dealt with and
completed.
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4

Laminar Free Convection of Monatomic
and Diatomic Gases, Air, and Water Vapor

Nomenclature

b width of plate, m
cp specific heat at constant pressure, J (kg K)−1

Grx,∞ local Grashof number for gas free convection,
g |Tw/T∞ − 1|x3/ν2

∞
Nux,w local Nusselt number, αxx/λw

Nux,w average Nusselt number defined, αxx/λw

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
nµλ overall temperature parameter of gas
Pr Prandtl number
qx local heat transfer rate at position x per unit area on

the plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate, W

t temperature, ◦C
T absolute temperature, K
Tw/T∞ boundary temperature ratio
wx, wy velocity component in the x- and y- directions,

respectively, m s−1

Wx,Wy dimensionless velocity component in the x- and
y- directions, respectively

Greek symbols
αx local heat transfer coefficient, W

(
m2K

)−1

αx vaverage heat transfer coefficient, W
(
m2K

)−1

δ boundary layer thickness, m
η dimensionless coordinate variable
θ dimensionless temperature, θ = (T − T∞)/(Tw − T∞)
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1
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ν kinetic viscosity, m2 s−1

ρ density, kg m−3(
dθ
dη

)
η = 0

dimensionless temperature gradient on the plate

1
ρ

dp

dx
density factor

1
µ

dµ

dη
viscosity factor

1
λ

dλ

dη
thermal conductivity factor

ψ (Pr) Boussinesq approximation solution

Subscripts
w at wall
δ thickness of boundary layer
∞ far from the wall surface
sub subcooling state

4.1 Introduction

The study of laminar free convection of gases with variable thermophysical
properties can be traced back to the perturbation analysis of Hara [1] for
air free convection. The solution is applicable for small values of the pertur-
bation parameter, εH = (Tw − T∞) /T∞. Later, Tataev [2] investigated the
free convection of a gas with variable viscosity. A well known analysis of the
variable fluid property problem for laminar free convection on an isothermal
vertical flat plate has been presented by Sparrow and Gregg [3], giving solu-
tions of the boundary layer equations for five assumed gases. They proposed
a reference temperature and suggested that with it the problem of variable
thermophysical properties can be treated as a constant property problem, i.e.,
using the Boussinesq approximation. Gray and Giogini [4] discussed the va-
lidity of the Boussinesq approximation and proposed a method for analyzing
natural convection flow with fluid properties assumed to be a linear function
of temperature and pressure. Clausing and Kempka [5] reported their experi-
mental study of the influence of property variations on natural convection and
showed that, for the laminar region, Nuf is a function of Raf (= Grf Prf )
only, with the reference temperature Tf taken as the average temperature in
the boundary layer.

In Chaps. 4 and 5 I will present, respectively, our recent studies described
in [6, 7], for effect of variable thermophysical properties on laminar free con-
vection of different kind of gases. In this chapter, the gases involved are
monatomic and diatomic gases as well as air and water vapor. The variation
of specific heat of these gases is very small, and so can be neglected when con-
sidering variable thermophysical properties. In Chap. 5, the gases involved are
polyatomic gases in which the variation of specific heat cannot be neglected.
In these studies a recently developed velocity component method is provided
for the similarity transformation of the governing partial differential equa-
tions of the laminar boundary layer, instead of the traditional Falkner–Skan
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transformations. Additionally, a temperature parameter method for the treat-
ment of a gas with variable thermophysical properties is proposed. With
this method, the thermal conductivity, dynamic viscosity, and specific heat
of gases are assumed to vary with absolute temperature according to a simple
power law. The parameters of thermal conductivity, absolute viscosity, and
specific heat are proposed and the corresponding values are provided from
the typical experimental data of the thermophysical properties. The density
is taken to be inversely proportional to the absolute temperature at constant
pressure, while the Prandtl number is assumed to be constant. The govern-
ing equations for the laminar free convection of gas are transformed into the
dimensionless ordinary equations by using the velocity component method,
and meanwhile the variable thermophysical properties are treated by employ-
ing the temperature parameter method. The governing ordinary differential
equations with the boundary conditions are solved for various boundary tem-
perature ratios for the various gases mentioned earlier, and the rigorous nu-
merical results are provided. These numerical results have shown that there
are different velocity and temperature distributions for different boundary
temperature ratios, as well as for different gases. Curve-fit formulas for the
temperature gradient at the wall with very good agreement to the numerical
solutions are provided, which facilitate rapid and yet accurate estimates of
the heat transfer coefficient and the Nusselt number together with various
boundary temperature ratios Tw/T∞ and different gases.

4.2 Governing Partial Differential Equations

The physical analytical model and coordinate system used for laminar free
convection of gas on an isothermal vertical flat plate is shown in Fig. 4.1. The
boundary layer is laminar when Raleigh number, Ra (= Gr Pr) is less than
109 [8].

According to the presentation in Chap. 2 the conservation equations for
mass, momentum, and energy for a steady laminar flow in the boundary layer
for vertical free convection of a gas are given by

∂

∂x
(ρwx) +

∂

∂y
(ρwy) = 0, (4.1)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ gρ|T/T∞ − 1|, (4.2)

ρcp

(
wx

∂T

∂x
+ wy

∂T

∂y

)
=

∂

∂y

(
λ

∂T

∂y

)
, (4.3)

The absolute value of buoyancy term ρg|T/T∞ − 1| shows that it has always
positive sign no matter which one is larger between T and T∞. In this case,
the buoyancy term ρg|T/T∞ − 1| and the velocity component wx have the
same sign. The boundary conditions are

y = 0 : wx = 0, wy = 0, T = Tw, (4.4)
y → ∞ : wx → 0, T = T∞. (4.5)
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x

y

ttw

d

t�

wx,�

wx

Fig. 4.1. Physical model and coordinate system of boundary layer for laminar free
convection

4.3 Similarity Transformation
of the Governing Equations

4.3.1 Assumed Dimensionless Variables
with Velocity Component Method

From Chap. 3, it is found that with the traditional Falkner–Skan transforma-
tion there are some difficulties encountered with the similarity transformation
of the governing partial differential equations for the boundary layer problem
and with treatment of variable thermophysical properties. It is the reason
why for a long time there has been lack of rigorous theoretical studies and
numerical solutions for the laminar free convection with rigorous considera-
tion of variable thermophysical properties. In [6] Shang and Wang proposed
a velocity component method for the similarity transformation of the lam-
inar boundary layer problem. With this method, a key work is to assume
suitable forms of dimensionless velocity components. The typical method for
this procedure is group theory, which was discussed at length by Hansen [9]
and Na [10]. For the similarity transformation of (4.1)–(4.3) the dimensionless
variables are assumed as follows:

A dimensionless similarity coordinate variable is assumed as given by

η =
y

x

(
1
4

Grx,∞

)1/4

, (4.6)
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where the local Grashof number Grx,∞ is defined as

Grx,∞ =
g |Tw/T∞ − 1|x3

ν2
∞

. (4.7)

A dimensionless temperature variable is defined as

θ =
T − T∞
Tw − T∞

. (4.8)

Dimensionless velocity components are assumed to be:

Wx =
[
2
√

gx |Tw/T∞ − 1|1/2
]−1

wx, (4.9)

Wy =

[
2
√

gx |Tw/T∞ − 1|1/2

(
1
4

Grx,∞

)−1/4
]−1

wy. (4.10)

4.3.2 The Similarity Transformation

With the earlier assumed dimensionless variables the governing partial differ-
ential equations can be transformed similarly as follows:

For (4.1)
Equation (4.1) is initially changed into

ρ

(
∂wx

∂x
+

∂wy

∂y

)
+ wx

∂ρ

∂x
+ wy

∂ρ

∂y
= 0. (4.11)

With the dimensionless variables assumed in (4.6), (4.7), (4.9), and (4.10)
we obtain the following relations:

∂wx

∂x
=
[
2
√

gx |Tw/T∞ − 1|1/2
] dWx

dη

∂η

∂x
+

1
2
x−1/2

[
2
√

g |Tw/T∞ − 1|1/2
]
Wx,

where

∂η

∂x
=

∂

∂x

[
y

x

(
1
4
Grx,∞

)1/4
]

=
∂

∂x

[
y

(
1
4

g |Tw/T∞ − 1|x−1

ν2
∞

)1/4
]

= −1
4

[
y

(
1
4

g |Tw/T∞ − 1|
ν2
∞

)1/4
]

x−5/4

= −1
4

[
y

(
1
4

g |Tw/T∞ − 1|x3

ν2
∞

)1/4
]

x−2

= −1
4
x−1η.
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Then,

∂wx

∂x
=
[
2
√

gx |Tw/T∞ − 1|1/2
] dWx

dη

(
−1

4
x−1η

)

+
1
2
x−1/2

[
2
√

g |Tw/T∞ − 1|1/2
]
Wx

= −1
2

[√
g

x
|Tw/T∞ − 1|1/2

]
η
dWx

dη
+
[√

g

x
|Tw/T∞ − 1|1/2

]
Wx

=
√

g

x
|Tw/T∞ − 1|1/2

(
Wx − 1

2
η
dWx

dη

)
, (4.12)

∂wy

∂y
=

[
2
√

gx |Tw/T∞ − 1|1/2

(
1
4
Grx,∞

)−1/4
]

dWy

dη

∂η

∂y

=

[
2
√

gx |Tw/T∞ − 1|1/2

(
1
4
Grx,∞

)−1/4
]

dWy

dη

1
x

(
1
4
Grx,∞

)1/4

= 2
√

g

x
|Tw/T∞ − 1|1/2 dWy

dη
, (4.13)

∂ρ

∂x
=

dρ

dη

∂η

∂x
= −1

4
x−1η

dρ

dη
, (4.14)

∂ρ

∂y
=

dρ

dη

∂η

∂y
=

1
x

(
1
4

Grx,∞

)1/4 dρ

dη
. (4.15)

By using (4.12)–(4.15),(4.11) can be changed to

ρ

[√
g

x
|Tw/T∞ − 1|1/2

(
Wx − 1

2
η
dWy

dη

)
+ 2

√
g

x
|Tw/T∞ − 1|1/2 dWy

dη

]

+2
√

gx |Tw/T∞ − 1|1/2
Wx

(
−1

4
ηx−1 dρ

dη

)
+ 2

√
gx |Tw/T∞ − 1|1/2

×
(

1
4
Grx,∞

)−1/4

Wy
dρ

dη

(
1
4
Grx,∞

)−1/4

x−1 = 0. (4.16)

Equation (4.16) is divided by |Tw/T∞ − 1|1/2

√
g

x
and is transformed into

ρ

[(
Wx − 1

2
η
dWy

dη

)
+ 2

dWy

dη

]
+ 2Wx

(
−1

4
η
dρ

dη

)
+ 2Wy

dρ

dη
= 0, (4.17)

or
2Wx − η

dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0. (4.18)
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For (4.2):
Equation (4.2) can be rewritten as

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= µ

∂2wx

∂y2
+

∂wx

∂y

∂µ

∂y
+ ρg |T/T∞ − 1| . (4.19)

With the dimensionless variables assumed in (4.6), (4.7), (4.9) and (4.10)
we obtain the following equations:

∂wx

∂y
= 2

√
gx |Tw/T∞ − 1|1/2 dWx

dη

∂η

∂y
,

where
∂η

∂y
= x−1

(
1
4
Grx,∞

)1/4

.

Then,

∂wx

∂y
= 2

√
gx |Tw/T∞ − 1|1/2 dWx

dη
x−1

(
1
4
Grx,∞

)1/4

, (4.20)

∂2wx

∂y2
= 2

√
gx |Tw/T∞ − 1|1/2 d2Wx

dη2
x−1

(
1
4
Grx,∞

)1/4
∂η

∂y

= 2
√

gx |Tw/T∞ − 1|1/2 d2Wx

dη2
x−1

(
1
4
Grx,∞

)1/4

x−1

(
1
4
Grx,∞

)1/4

= 2
√

gx |Tw/T∞ − 1|1/2 d2Wx

dη2

(
1
4
Grx,∞

)1/2

x−2, (4.21)

∂µ

∂y
=

dµ

dη

∂η

∂y
=

dµ

dη

(
1
4
Grx,∞

)1/4

x−1. (4.22)

Using (4.9), (4.10), (4.12), (4.20)–(4.22), (4.19) becomes

ρ

[
2
√

gx |Tw/T∞ − 1|1/2 Wx

√
g

x
|Tw/T∞ − 1|1/2

(
Wx − 1

2
η

dWx

dη

)

+2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4

Wy

(
2
√

gx |Tw/T∞ − 1|1/2

× d2Wx

dη2
x−1

(
1

4
Grx,∞

)1/4
)]

=2µ
√

gx |Tw/T∞ − 1|1/2 d2Wx

dη2

(
1

4
Grx,∞

)1/2

x−2

+2
√

gx |Tw/T∞−1|1/2 dWx

dη
x−1

(
1

4
Grx,∞

)1/4 dµ

dη

(
1

4
Grx,∞

)1/4

x−1 + ρg
∣∣T/T∞ − 1

∣∣ .
(4.23)
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Equation (4.23) is divided byρg(Tw/T∞ − 1), meanwhile, the definition of
local Grashof number Grx,∞ is considered, and then, (4.23) is simplified to

2Wx

(
Wx − 1

2
η
dWx

dη

)
+ 2Wy

(
2
d2Wx

dη2

)
= 2ν

d2Wx

dη2

(
1
4

1
ν2
∞

)1/2

+2
1
ρ

dWx

dη

dµ

dη

(
1
4

1
ν2
∞

)1/2

+ θ,

or

2Wx

(
Wx − 1

2
η
dWx

dη

)
+ 2Wy

(
2
dWx

dη

)
=

ν

ν∞

d2Wx

dη2
+

1
ρ

dWx

dη

dµ

dη

1
ν∞

+ θ.

(4.24)
Equation (4.24) is multiplied by ν∞/ν and is simplified to

ν∞
ν

[
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

]
=

d2Wx

dη2
+

1
µ

dµ

dη

dWx

dη
+

ν∞
ν

θ. (4.25)

For (4.3):
Finally, (4.3) can be rewritten as:

ρcp

(
wx

∂T

∂x
+ wy

∂T

∂y

)
= λ

∂2T

∂y2
+

∂λ

∂y

∂T

∂y
, (4.26)

where

T = (Tw − T∞)θ + T∞,

∂T

∂x
= − (Tw − T∞)

dθ

dη

∂η

∂x
= − (Tw/T∞)

dθ

dη

(
1
4

)
ηx−1, (4.27)

∂T

∂y
= (Tw − T∞)

dθ

dη

∂η

∂y
= (Tw − T∞)

dθ

dη

(
1
4
Grx,∞

)1/4

x−1, (4.28)

∂2T

∂y2
= (Tw − T∞)

(
1
4
Grx,∞

)1/4

x−1 d2θ

dη2

∂η

∂y

= (Tw − T∞)
d2θ

dη2

(
1
4
Grx,∞

)1/2

x−2, (4.29)

∂λ

∂y
=

dλ

dη

∂η

∂y
=

dλ

dη

(
1
4
Grx,∞

)1/4

x−1. (4.30)
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Then, (4.26) will now transform into

ρcp

(
2
√

gx |Tw/T∞ − 1|1/2 Wx(−1)(Tw − T∞)
dθ

dη

(
1

4

)
ηx−1

+ 2
√

gx |Tw/T∞ − 1|1/2
(

1

4
Grx,∞

)−1/4

Wy(Tw − T∞)
dθ

dη

(
1

4
Grx,∞

)1/4

x−1

)

= λ(Tw − T∞)
d2θ

dη2

(
1

4
Grx,∞

)1/2

x−2 +
dλ

dη

(
1

4
Grx,∞

)1/4

×x−1(Tw − T∞)
dθ

dη

(
1

4
Grx,∞

)1/4

x−1. (4.31)

Equation (4.31) is divided by (Tw−T∞) |Tw/T∞ − 1|1/2
√

g/x, meanwhile,
the definition of local Grashof number Grx,∞ is considered, and then, (4.31)
is simplified to

ρcp

(
2Wx(−1)

dθ

dη

(
1
4

)
η + 2Wy

dθ

dη

)
= λ

d2θ

dη2

(
1
4

1
ν2
∞

)1/2

+
dλ

dη

dθ

dη

(
1
4

1
ν2
∞

)1/2

,

or

ρcp

(
−2Wx

dθ

dη

(
1
4

)
η + 2Wy

dθ

dη

)
=

1
2ν∞

λ
d2θ

dη2
+

1
2ν∞

dλ

dη

dθ

dη
. (4.32)

Equation is multiplied by 2ν∞/λ and simplified into

Pr
ν∞
ν

(−ηWx + 4Wy)
dθ

dη
=

d2θ

dη2
+

1
λ

dλ

dη

dθ

dη
. (4.33)

The governing ordinary differential equations can be summarized as follows:
(

2Wx − η
dWx

dη
+ 4

dWy

dη

)
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0, (4.18)

ν∞
ν

[
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

]
=

d2Wx

dη2
+

1
µ

dµ

dη

dWx

dη
+

ν∞
ν

θ, (4.25)

Pr
ν∞
ν

(−ηWx + 4Wy)
dθ

dη
=

d2θ

dη2
+

1
λ

dλ

dη

dθ

dη
. (4.33)

With the assumed dimensionless variables the following dimensionless
boundary conditions are easily obtained from (4.4) and (4.5):

η = 0 : Wx = 0, Wy = 0, θ = 1 (4.34)
η → ∞ : Wx → 0, θ → 1. (4.35)
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4.4 Treatment of Variable Thermophysical Properties

4.4.1 Temperature Parameters

For treatment of variable thermophysical properties of a gas, a treatment
method on variable thermophysical properties developed in [6] is presented
here. With this method the viscosity and thermal conductivity are expressed
as µ ≈ Tnµ and λ ≈ Tnλ , respectively. The thermodynamic temperature of
the gas far away from the wall, T∞, can be taken as the reference temperature
for free convection analysis. So we assume

µ

µ∞
=
(

T

T∞

)nµ

, (4.36)

λ

λ∞
=
(

T

T∞

)nλ

. (4.37)

While the change of density with thermodynamic temperature at constant
pressure can be expressed as

ρ

ρ∞
=
(

T

T∞

)−1

. (4.38)

Combining (4.36) with (4.38) we have

ν

ν∞
=
(

T

T∞

)nµ+1

, (4.39)

where the exponents nµ and nλ are named viscosity parameter, and thermal
conductivity parameter, respectively.

According to the experimental values of µ and λ for several monatomic
and diatomic gases, and also for air and water vapor, reported by Hisenrath
et al. [11], nµ and nλ values are given in Table 4.1 [6]. If we take reference
temperature T0 to replace T∞, the percentage deviations for predicted values
of µ/µ∞ and λ/λ∞ predicted from (4.36) and (4.37) are shown in Figs. 4.2–4.6.

The Prandtl number is defined as Pr =µcp/λ. Strictly speaking, Pr should
also depend on temperature. However, it is well known that Pr ≈ 0.72 for a
diatomic gas, Pr ≈ 0.7 for air, and Pr ≈ 1 for water vapor. Hence, Pr can be
taken as a constant for monatomic and diatomic gases, and for air and water
vapor in the temperature range from T to T∞. Therefore, if we assume

cp/cp∞ = (T/T∞)ncp , (4.40)

then
ncp

= nλ − nµ, (4.41)

where ncp
is named specific heat parameter.
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Fig. 4.2. Deviation of predicted values of µ and λ for air (1) for evaluation of µ
with nµ, (2) for evaluation of λ with nλ, (3) for evaluation of µ with nµλ, and (4)
for evaluation of λ with nµλ, cited from Shang and Wang [6]
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Fig. 4.3. Deviation of predicted values of µ and λ for water vapor (1) for evaluation
of µ with nµ, (2) for evaluation of λ with nλ, (3) for evaluation of µ with nµλ, and
(4) for evaluation of λ with nµλ, cited from Shang and Wang [6]
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Fig. 4.4. Deviation of predicted values of µ and λ for oxygen O2 (1) for evaluation
of µ with nµ, (2) for evaluation of λ with nλ, (3) for evaluation of µ with nµλ, and
(4) for evaluation of λ with nµλ, cited from Shang and Wang [6]
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Fig. 4.5. Deviation of predicted values of µ and λ for hydrogen H2 (1) for evaluation
of µ with nµ, (2) for evaluation of λ with nλ, (3) for evaluation of µ with nµλ, and
(4) for evaluation of λ with nµλ, cited from Shang and Wang [6]
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Fig. 4.6. Deviation of predicted values of µ and λ for helium He (1) for evaluation
of µ with nµ, and (2) for evaluation of λ with nλ , cited from Shang and Wang [6]

It can be found from Table 4.1 that the values of ncp
are much lower than

0.1 for monatomic gases, and around 0.1–0.16 for diatomic gases, air, and
water vapor. For the case 1/2 ≤ (T/T∞) ≤ 2, thus it is possible to treat cp

as a constant value for these gases, so as to simplify the analysis but still suit
the needs of engineering application.

With Pr and cp both assumed constant, µ/λ = const., and therefore it is
logical, for monatomic and diatomic gases, air, and water vapor, to take some
mean value of nµ and nλ as nµλ, such that nµ ≈ nµλ ≈ nλ. We try to express
the overall temperature parameter nµλ by a weighted sum of nµ and nλ, as
given by

nµλ = 0.45nµ + 0.55nλ. (4.42)

The deviations for evaluation of µ and λ with nµλ for monatomic gases,
diatomic gases, air, and water vapor are listed in Table 4.1 and also plotted
in Figs. 4.2–4.6.

So far, four parameters, such as viscosity parameter nµ, thermal conduc-
tivity parameter nλ, and specific heat parameter nλ, and overall temperature
parameter nµλ have been presented for expression of variation of thermophysi-
cal properties of gases with temperature. In short, they can generally be called
temperature parameters nµ, nλ, nλ, or nµλ.

4.4.2 Temperature Parameter Method

In the transformed governing (4.18), (4.25), and (4.33) there are four ther-
mophysical property factors (1/ρ)(dρ/dη), (1/µ)(dµ/dη), (1/λ)(dλ/dη), and
(ν∞/ν) dominating the effects of variable thermophysical properties on free
convection of gases. These factors tend to greatly increase the difficulty of
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getting a solution of the governing equations. However, with the provided gas
temperature parameters, the thermophysical property factors can be trans-
formed into the functions of temperature θ . Then, the governing dimensionless
equations can be solved. The transformation of these thermophysical factors
is expressed as follows:

Transformation of the density factor (1/ρ)(dρ/dη):

With (4.38) we obtain

1
ρ

dρ

dη
=

1
ρ

d
dη

(
ρ∞

T∞
T

)
.

By using (4.8) we have

T = (Tw − T∞)θ + T∞.

Then,

1
ρ

dρ

dη
=

ρ∞
ρ

d
dη

[
T∞

(Tw − T∞)θ + T∞

]

=
T

T∞

d
dη

[
1

(Tw/T∞ − 1)θ + 1

]

= −[(Tw/T∞ − 1)θ + 1]
(Tw/T∞ − 1) dθ

dη

[(Tw/T∞ − 1)θ + 1]2

= −
(Tw/T∞ − 1) dθ

dη

(Tw/T∞ − 1)θ + 1
. (4.43)

Transformation of the viscosity factor (1/µ)(dµ/dη):

For (4.36) we get

1
µ

dµ

dη
=

µ∞
µ

d
dη

(
T

T∞

)nµ

=
(

T

T∞

)−nµ d
dη

[
(Tw − T∞)θ + T∞

T∞

]nµ

= ((Tw/T∞ − 1)θ + 1)−nµ
d
dη

((Tw/T∞ − 1)θ + 1)nµ

= ((Tw/T∞ − 1)θ + 1)−nµnµ((Tw/T∞ − 1)θ + 1)nµ−1(Tw/T∞ − 1)
dθ

dη
.

This leads to
1
µ

dµ

dη
=

nµ(Tw/T∞ − 1)dθ/dη

(Tw/T∞ − 1)θ + 1
. (4.44)
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Transformation of the thermal conductivity factor (1/λ)(dλ/dη)

With a derivation similar to that for the factor (1/µ)(dµ/dη) we can obtain

1
λ

dλ

dη
=

nλ(Tw/T∞ − 1)dθ/dη

(Tw/T∞ − 1)θ + 1
. (4.45)

Transformation of factor (ν∞/ν)

By using (4.8), (4.39) can be transformed to

ν∞
ν

[(Tw/T∞ − 1)θ + 1]−(nµ+1)
. (4.46)

It is found that the method for treatment of variable thermophysical prop-
erties of gases closely depends on the temperature parameters. Therefore, such
method for treatment of variable thermophysical properties of gases can be
called “temperature parameter method.”

4.5 Heat Transfer Analysis

The local heat transfer rate qx at position x per unit area from the surface of
the plate to the gas can be calculated by Fourier’s law as

qx = −λw

(
∂T

∂y

)
y = 0

.

With (4.28) we have

(
∂T

∂y

)
y = 0

= (Tw − T∞)
(

dθ

dη

)
η = 0

(
1
4
Grx,∞

)1/4

x−1.

Then,

qx = −λw(Tw − T∞)
(

1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η = 0

. (4.47)

Total heat transfer rate for position x = 0 to x with width of b on the
plate is a integration Qx =

∫∫
A

qx dA =
∫ x

0
qxb dx, and hence

Qx = −λwb(Tw − T∞)
(

dθ

dη

)
η = 0

∫ x

0

(
1
4
Grx,∞

)1/4

x−1 dx.

With (4.7) for definition of local Grashof number Grx,∞ we obtain

Qx = −4
3
bλw(Tw − T∞)

(
1
4
Grx,∞

)1/4(dθ

dη

)
η = 0

. (4.48)
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The local heat transfer coefficient αx, defined as qx = αx(Tw − T∞), will
be given by

αx = −λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η = 0

. (4.49)

The average heat transfer coefficient αx defined as Qx = αx(Tw−T∞)×b×x
is expressed as

αx = −4
3
λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η = 0

. (4.50)

The local Nusselt number defined by Nux,w = αxx/λw will be

Nux,w = −λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η = 0

x

λw

= −
(

1
4
Grx,∞

)1/4(dθ

dη

)
η = 0

, (4.51)

or expresses as
Nux,w(

1
4Grx,∞

)1/4
= −

(
dθ

dη

)
η = 0

. (4.52)

The average Nusselt number is defined as Nux,w = αxx/λw, and hence

Nux,w = −4
3
λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η = 0

x

λw

= −4
3

(
1
4
Grx,∞

)1/4(dθ

dη

)
η = 0

,

or expressed as

Nux,w(
1
4Grx,∞

)1/4
= −4

3

(
dθ

dη

)
η = 0

. (4.53)

It is seen that, for practical calculation of heat transfer, only (dθ/dη)η = 0

dependent on numerical solution is no-given variable.

4.6 Numerical Results

It is obvious that the velocity and temperature fields can be obtained from
the solution of the governing ordinary differential equations (4.18), (4.25),
and (4.33) with boundary conditions, (4.34) and (4.35), combined with the
property factor (4.43)–(4.46). It is expected that, for the case of constant
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properties, the dimensionless velocity field wx and dimensionless temperature
field θ will be functions of Pr only. But for the case of variable properties,
both the dimensionless velocity field and the dimensionless temperature field
will depend not only on Pr but also on the temperature parameters nµ and
nλ, and the boundary temperature ratio Tw/T∞.

The nonlinear two-point boundary value problem defined by equations
(4.18), (4.25), and (4.33) were solved, and calculations were carried out nu-
merically by using a shooting method. First, (4.18), (4.25), and (4.33) were
written as a system of five first-order differential equations, which were solved
by means of fifth-order Runge–Kutta iteration.

The Runge–Kutta integration scheme, along with Newton–Raphson shoot-
ing method is one of the most commonly used techniques for the solution of
such two-point boundary value problem. Even though this method provides
satisfactory result for such type of problems, it may fail when applied to prob-
lems in which the differential equations are very sensitive to the choice of the
missing initial conditions.

Moreover, another serious difficulty which may be encountered in the
boundary-value problems is in-linear instability. Difficulty also arises in the
case in which one end of the range of integration is at infinity. The end-point
of integration is usually approximated by assigning a finite value to this point,
and by estimating a value at this point the solution will reach its asymptotic
state. The computing time for integrating differential equations sometimes de-
pends critically on the quality of the initial guesses of the unknown boundary
conditions and the initial end-point.

Then, a Newton iteration procedure was employed to satisfy the outer
boundary equations, (4.35). The present fifth-order scheme utilizes variable
grid spacing. The typical results for the velocity and temperature field together
with different boundary temperature ratios Tw/T∞ are plotted in Figs. 4.7–
4.10 for comparison of velocity and temperature profiles with different gases
and different boundary temperature ratios Tw/T∞, respectively.

It is found that both the velocity and temperature fields of argon laminar
free convection are higher than those of oxygen laminar free convection, while,
both the velocity fields of oxygen free convection are higher than those of water
vapor laminar free convection. It follows that with increasing the temperature
parameters nµ and nλ, the level both of the velocity and temperature fields
of free convection will decrease.

Additionally, it is seen that with increasing the boundary temperature
ratio Tw/T∞, the temperature field will raise and the maximum of velocity
field will increase and shift far from the plate.

Furthermore, from the numerical calculations it is found that, even for
the diatomic gases, air, and water vapor, the modifications using nµ and nλ

replaced by nµλ are unnecessary, because the numerical results obtained either
with the actual nµ and nλ values or with the modified nµλ values are almost
the same.



4.6 Numerical Results 67

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2

Tw/T� = ½

Tw/T� = 2

4

Wx
*

h
6 8

Fig. 4.7. Comparison of velocity profiles for free convection of different gases, cited
from Shang and Wang [6] • − •, � − �, Ar (Pr = 0.622, nλ ≈ nµ ≈ nµλ),
+ − + −×, O2 (Pr = 0.733, nµλ = 0.79); ∗ − ∗, ♦ − ♦, water vapor (Pr = 1,
nµλ = 1.12)
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Fig. 4.8. Comparison of temperature profiles for free convection of different gases,
cited from Shang and Wang [6] • − •, � − �, Ar (Pr = 0.622, nλ ≈ nµ ≈ nµλ),
+ − +,× − ×, O2 (Pr = 0.733, nµλ = 0.79); ∗ − ∗, ♦ − ♦, water vapor (Pr = 1,
nµλ = 1.12)
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Fig. 4.9. Comparison of velocity profiles for free convection of air (Pr = 0.7,
nµλ = 0.79) with different Tw/T∞, cited from Shang and Wang [6]
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Fig. 4.10. Comparison of temperature profiles for free convection of air (Pr =
0.7, nµλ = 0.79) with different temperature ratio Tw/T∞, cited from Shang and
Wang [6]

4.7 Effect of Variable Thermophysical Properties
on Heat Transfer

From the heat transfer analysis we find that the dimensionless temperature
gradient (dθ/dη)η = 0 is only one ungiven variable which depends on numerical
solution for prediction of heat transfer coefficient.

The numerical solutions (dθ/dη)η = 0 of the governing equations (4.18),
(4.25), and (4.33) for some monatomic and diatomic gases, air, and water
vapor are obtained. Some solutions (dθ/dη)η = 0 are listed in Table 4.2 and
plotted in Fig. 4.11 for laminar free convection of different gases. By using
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Table 4.2. Calculated results of (−dθ/dη)η = 0 obtained from A, numerical solution,
B, (4.54) with (4.55) and (4.56), and C (4.54) with (4.55) and (4.57), cited from
Shang and Wang [6]

Tw/T∞ Ar H2 Air N2 CO O2 water
vapor

Pr
=0.622
nµ

=0.72
nλ

=0.73
nµλ =
0.7255

Pr
=0.68
nµ

=0.68
nλ

=0.8
nµλ =
0.746

Pr
=0.7
nµ

=0.68
nλ

=0.81
nµλ =
0.7515

Pr
=0.71
nµ

=0.67
nλ

=0.76
nµλ =
0.72

Pr
=0.72
nµ

=0.71
nλ

=0.83
nµλ =
0.776

Pr
=0.733
nµ

=0.694
nλ

=0.86
nµλ =
0.785

Pr
=1
nµ

=1.04
nλ

=1.185
nµλ =
1.12

3 A 0.1940 0.1974 0.1987 0.2043 0.1973 0.1973 0.1738
B 0.1935 0.1975 0.1988 0.2044 0.1975 0.1975 0.1738

5/2 A 0.2256 0.2300 0.2316 0.2374 0.2306 0.2307 0.2110
B 0.2249 0.2300 0.2318 0.2374 0.2308 0.2311 0.2115

2 A 0.2714 0.2772 0.2794 0.2852 0.2792 0.2796 0.2679
B 0.2703 0.2772 0.2796 0.2850 0.2794 0.2801 0.2689

3/2 A 0.3438 0.3526 0.3557 0.3609 0.3570 0.3582 0.3651
B 0.3427 0.3527 0.3561 0.3609 0.3575 0.3590 0.3665

5/4 A 0.3990 0.4105 0.4144 0.4188 0.4172 0.4193 0.4448
B 0.3983 0.4109 0.4151 0.4191 0.4179 0.4201 0.4459

→ 1 A 0.4784 0.4943 0.4995 0.5021 0.5046 0.5079 0.5671
B 0.4787 0.4953 0.5007 0.5033 0.5059 0.5092 0.5670

3/4 A 0.6035 0.6276 0.6351 0.6336 0.6446 0.6507 0.7775
C 0.6011 0.6247 0.6333 0.6312 0.6423 0.6479 0.7761

1/2 A 0.8344 0.8774 0.8898 0.8776 0.9093 0.9225 1.2181
C 0.8285 0.8666 0.8786 0.8684 0.8993 0.9098 1.2081

1/3 A 1.1492 1.2247 1.2448 1.2124 1.2812 1.3075 1.9198
C 1.1419 1.2022 1.2209 1.1949 1.2591 1.2774 1.8805

curve-fitting method, Shang and Wang [6] obtained the following formulated
equations for simple and reliable prediction of the values (dθ/dη)η = 0 for lam-
inar free convection of monatomic and diatomic gases, air, and water vapor:

−
(

dθ

dη

)
η = 0

= ψ(Pr)
(

Tw

T∞

)−m

, (4.54)

where

ψ(Pr) = 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1), (4.55)
m = 0.64nµλ + 0.36 = 0.35nλ + 0.29nµ + 0.36 (Tw/T∞ > 1), (4.56)
m = 0.76nµλ + 0.24 = 0.42nλ + 0.34nµ + 0.24 (Tw/T∞ < 1). (4.57)

The predicted results, (−dθ/dη)η = 0, of (4.54) are compared with those of
the numerical results from (4.18), (4.25), and (4.33), as shown in Table 4.2.
The agreement is quite good.
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In addition, (4.54) with (4.55)–(4.57) shows clearly the following effects
of variable thermophysical properties on heat transfer of gas laminar free
convection: For same boundary temperature ratio Tw/T∞, the temperature
gradient (−dθ/dη)η = 0 will increase with increasing Pr. For Tw/T∞ < 1 the
temperature gradient (−dθ/dη)η = 0 will increase with increasing the value
nµ or nλ. While, for Tw/T∞ > 1 the temperature gradient (dθ/dη)η = 0 will
decrease with increasing the value nµ or nλ. With increasing the temperature
boundary ratio Tw/T∞, the temperature gradient (−dθ/dη)η = 0 will decrease.

The effect of Pr, nµ, nλ, and Tw/T∞ on temperature gradient −
(

dθ
dη

)
η=0

can

be briefly summarized in Table 4.3 for laminar free convection of monatomic
and diatomic gases, air, and water vapor.

Only when boundary temperature ratio Tw/T∞ is very close to unity, the
free convection is corresponding to Boussinesq approximation, and then the
temperature gradient

(
− dθ

dη

)
η=0

only depends on Pr, i.e.,

−
(

dθ

dη

)
η=0

= ψ(Pr), (4.58)

where ψ(Pr) expresses the well-known Boussinesq solution.

4.8 Summary

So far, the governing equations for laminar free convection of monatomic and
diatomic gases, air, and water vapor and expressions related to heat transfer
can be summarized in Table 4.4 with consideration of variable thermophysical
properties.
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Table 4.3. Effects of Pr, nµ, nλ, and Tw/T∞ on temperature gradient −
(

dθ
dη

)
η=0

for laminar free convection of monatomic and diatomic gases, air, and water vapor

term −
(

dθ
dη

)
η=0

for Tw − T∞ > 1 for Tw/T∞ < 1

for effect of Pr −
(

dθ
dη

)
η=0

increases with

increase of Pr

−
(

dθ
dη

)
η=0

increases with

increase of Pr

for effect of nλ −
(

dθ
dη

)
η=0

decreases with

increasing nλ

(
dθ
dη

)
η=0

increases with

increasing nλ

for effect of nµ −
(

dθ
dη

)
η=0

decreases with

increasing nµ

−
(

dθ
dη

)
η=0

increases with

increasing nµ

for effect of Tw/T∞ −
(

dθ
dη

)
η=0

decrease with

increasing Tw/T∞

−
(

dθ
dη

)
η=0

decrease with

increasing Tw/T∞

4.9 Remarks

The following points can be concluded from the earlier presentation:
In this chapter a novel system of analysis and transformation models is in-

troduced for transformation of governing equations of laminar free convection,
instead of traditional Falkner–Skan type transformation. Meanwhile, veloc-
ity component method is induced to directly transform velocity components
wx and wy into the corresponding dimensionless velocity components Wx and
Wy. However, for Falkner–Skan transformations, the flow function ψ has to be
induced, and at last, the transformed governing ordinary equations are dom-
inated by the f function. Compared with the f function, the dimensionless
velocity components Wx and Wy have definite physical meanings. In the later
chapters you can find that the dimensionless velocity components Wx and Wy

also provide a convenience for investigation of mass transfer at the interface
for film boiling or condensation. In addition, the novel analysis and transfor-
mation models also provide a convenience to treat the variable thermophysical
property problem for free convection and film flows.

An advanced method, viz. the temperature parameter method is intro-
duced for treatment of variable thermophysical properties of gases. With this
method a simple power law is applied to treat the variations of density, vis-
cosity, and thermal conductivity of gases with temperature. The temperature
parameters are used to express the extent of the property variations with
temperature. A series of values of the temperature parameters nµ and nλ are
obtained from the typical experimental results. For monatomic and diatomic
gases, air, and water vapor the value of nµ varies from 0.64 to 1.04, while the
value of nλ varies from 0.71 to 1.185. It follows that with the temperature
parameter method the variations of µ and λ of gases with temperature can be
described more accurately than that with the traditional point of view sum-
marized in [12] in which the variations of µ and λ values of gases with temper-
ature are usually described by about 0.8 power of the absolute temperature.
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Table 4.4. Governing equations for laminar free convection of monatomic and
diatomic gases, air, and water vapor and expressions related to heat transfer

term expression

governing partial differential equations

mass equation ∂
∂x

(ρwx) + ∂
∂y

(ρwy) = 0

momentum equation ρ(wx
∂wx
∂x

+ wy
∂wx
∂y

) = ∂
∂y

(µ ∂wx
∂y

) + ρg
∣∣T−T∞

T∞

∣∣
energy equation ρcp(wx

∂T
∂x

+ wy
∂T
∂y

) = ∂
∂y

(λ ∂T
∂y

)

boundary conditions
y = 0: wx = 0, wy = 0, T = Tw

y → ∞: wx → 0, T = T∞

assumed similarity variables

η y
x
( 1
4
Grx,∞)1/4

Grx,∞ (Grx,∞)v = g|Tw/T∞−1|x3

ν2
∞

θ θ = T−T∞
Tw−T∞

Wx (2
√

gx |Tw/T∞ − 1|1/2)−1wx

Wy (2
√

gxTw/T∞ − 11/2( 1
4
Grx,∞)−1/4)−1wy

governing ordinary differential equations

mass equations 2Wx − η dWx
dη

+ 4
dWy

dη
− 1

ρ
dρ
dη

(ηWx − 4Wy) = 0

momentum equation ν∞
ν

(Wx(2Wx − η dWx
dη

) + 4Wy
dWx
dη

) =
d2Wx
dη2 + 1

µ
dµ
dη

dWx
dη

+ ν∞
ν

θ

energy equation Pr ν∞
ν

(−ηWx + 4Wy) dθ
dη

= 1
λ

dλ
dη

dθ
dη

+ d2θ
dη2

boundary
conditions

η = 0 : Wx = 0, Wy = 0, θ = 0; η → 0 :
Wx = 0, θ = 0

equations related to heat transfer

qx (defined as −λw( ∂T
∂y

)y=0) −λw(Tw − T∞)( 1
4
Grx,∞)1/4x−1( dθ

dη
)η=0

αx (defined as qx
(Tw−T∞)

) −λw( 1
4
Grx,∞)1/4x−1( dθ

dη
)η=0

Qx (defined as
∫ x

0
qxbdx) − 4

3
bλw(Tw − T∞)( 1

4
Grx,∞)1/4( dθ

dη
)η=0

αx (defined as Qx
(Tw−T∞)bx

− 4
3
λw( 1

4
Grx,∞)1/4x−1( dθ

dη
)η=0

Nux,w (defined as αxx
λw

)
Nux,w

( 1
4 Grx,∞)1/4 = −( dθ

dη
)η=0

Nux,w (defined as αxx
λw

)
Nux,w

( 1
4 Grx,∞)1/4 = − 4

3

(
dθ
dη

)
η=0

−( dθ
dη

)η=0 ψ(Pr)( Tw
T∞

)−m

ψ(Pr) is Boussinesq solution
ψ(Pr) 0.567 + 0.186 × ln(Pr) (0.6 ≤ Pr ≤ 1)

m
0.35nλ + 0.29nµ + 0.36 for Tw/T∞ >1
0.42nλ + 0.34nµ + 0.24 for Tw/T∞ < 1
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Furthermore, with the temperature parameter method the treatment of vari-
able thermophysical properties becomes very simple and convenient.

The method proposed in this chapter for analyzing the laminar free con-
vection of monatomic and diatomic gases, air, and water vapor along vertical
isothermal flat plates with considerations of variable thermophysical proper-
ties can yield reliable results.

The analysis presented here extends the former ones reported in literatures
such as in [3], [4], and [13] for gas laminar free convection.

The well-known relation, (4.58), holds true only for the case Tw/T∞ → 1
such that the Boussinesq approximation applies.

4.10 Calculation Example

Question: A flat plate with b = 2 m in width and x = 0.25 m in length is
suspended vertically in air. The ambient temperature is t∞ = 20◦C. Calculate
the free convection heat transfer of the plate for boundary temperature ratio
Tw/T∞ = 1.1, 1.2, 1.4, 1.7, and 2.1.

Solution. From t∞ = 20◦C and Tw/T∞ = 1.1, 1.2, 1.4, 1.7, 2.1, we obtain
Tw =322.3, 351.6, 410.2, 498.1, 615.3 K or Tw =49.3, 78.6, 137.2, 225.1, 342.3◦C.
The air physical properties are as follows: ν∞ = 15.06 × 10−6 m2 s−1 for air
t∞ = 20◦C;λw = 2.825 × 10−2, 3.037 × 10−2, 3.649 × 10−2, 4.86 × 10−2, and
4.8622×10−2 W (m◦C)−1 for air at tw = 49.3, 78.6, 137.2, 225.1, and 342.3◦C,
respectively. From Tables 4.1 and 4.3, we obtain nµ = 0.68, nλ = 0.81 and
Pr = 0.7 for air.

Then,
ψ(Pr) = 0.567 + 0.186 × ln 0.7 = 0.50066,

m is evaluated as later with Tw/T∞ > 1

m = 0.35nλ + 0.29nµ + 0.36
= 0.35 × 0.81 + 0.29 × 0.68 + 0.36 = 0.8407.

In this case, the dimensionless temperature gradient
(

dθ
dη

)
η=0

can be eval-

uated as

−
(

dθ

dη

)
η=0

= ψ(Pr)
(

Tw

T∞

)−m

= 0.50066 ×
(

Tw

T∞

)−0.8407

.

The evaluated values of −
(

dθ
dη

)
η=0

are plotted in Table 4.5 for different

temperature rations.
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Table 4.5. Calculated results

(Tw/T∞) 1.1 1.2 1.4 1.7 2.1

tw(◦C) 49.3 78.6 137.2 225.1 342.3

t∞(◦C) 20 20 20 20 20

λw(W (m ◦C)−1) 2.825 × 10−2 3.037 × 10−2 3.4675 × 10−2 4.1007 × 10−2 4.8622 × 10−2

−
(

dθ
dη

)
η=0

0.4621 0.4295 0.3773 0.3205 0.2683

Grx,∞ 6.75 × 107 1.35 × 108 2.7 × 108 4.73 × 108 7.43 × 108

Nux,w 39.4927 43.652 45.602 44.550 41.761

αx (W (m2 K)−1) 4.46237 5.3026 6.3247 7.3074 8.1218

Q (W) 65.3782 154.37 370.63 749.38 1308.83

Also

Grx,∞ =
g |Tw/T∞ − 1|x3

ν2
∞

=
9.8 × |Tw/T∞ − 1| × 0.253

(15.06 × 10−6)2
.

The calculated values of Grx,∞ are plotted in Table 4.5.
With (4.53) the average Nusselt number can be expressed as

Nux,w = −4
3

(
1
4
Grx,∞

)1/4(dθ

dη

)
η=0

.

Then, the average Nusselt number Nux,w are evaluated with the calculated
values of Grx,∞ and −(dθ/dη)η=0 , and then, plotted in Table 4.5.

From the definition of the average Nusselt number Nux,w = αxx/λw, the
average heat transfer coefficient can be calculated as

αx =
λw

x
Nux,w =

λw

0.25
Nux,w

The average heat transfer coefficients αx are calculated with the related
Nux,w and λw, and plotted in Table 4.5 also.

Finally, heat transfer Qx is calculated as

Qx = αx(Tw − T∞)x × b = αx(Tw − T∞) × 0.25 × 2.

The values of Qx is calculated with the related values of αx and tw − t∞, and
plotted in Table 4.5.
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5

Laminar Free Convection of Polyatomic Gas

Nomenclature

b width of plate, m
cp specific heat at constant pressure, J (kg K)−1

Grx,∞ local Grashof number for the free convection of gas on
isothermal vertical flat plate,
Grx,∞ = g |Tw/T∞ − 1|x3/ν2

∞
Nux,w local Nusselt number, αxx/λw

Nux,w average Nusselt number, αxx/λw

ncp
specific heat parameter of gas

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
nµλ overall temperature parameter of gas
Pr Prandtl number
qx local heat transfer rate at position x per unit area on

plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on plate, W

t temperature, ◦C
T absolute temperature, K
Tw/T∞ boundary temperature ratio
wx, wy velocity components in the x- and y-directions,

respectively, m s−1

Wx,Wy dimensionless velocity components in the x- and
y-directions, respectively

Greek symbols
αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)−1
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δ boundary layer thickness, m
η dimensionless coordinate variable for boundary layer
θ dimensionless temperature, θ = (t − t∞)/(tw − t∞)
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3(
dθ
dη

)
η=0

dimensionless temperature gradient on the plate

ψ(Pr) Boussinesq solution
1
ρ

dp

dx
density factor

1
µ

dµ

dη
viscosity factor

1
λ

dλ

dη
thermal conductivity factor

Subscripts
w at wall
δ boundary layer
∞ far from the wall surface
sub subcooling state

5.1 Introduction

In Chap. 4 the velocity component method and temperature parameter method
were presented for the similarity transformation of the governing partial differ-
ential equations of laminar free convection of monatomic and diatomic gases,
air and water vapour with consideration of variable thermophysical properties.
Meanwhile, density, thermal conductivity and absolute viscosity of the gases
are assumed to vary with absolute temperature according to a simple power
law. The temperature parameters of thermal conductivity and the absolute
viscosity are proposed and the corresponding values are provided according
to the typical experimental data of the corresponding thermophysical proper-
ties. The density is taken as inversely proportional to absolute temperature at
constant pressure, while the Prandtl number is assumed constant. Since the
variation of specific heat for these gases with temperature is very small, it is
taken as constant for the treatment of variable thermophysical properties.

However, for polyatomic gases, the variation of specific heat is not so small,
and then it cannot be taken as constant. In this chapter, I focus on the pre-
sentation of free convection of polyatomic gases along an isothermal vertical
flat plate with large temperature difference [1]. For this purpose the governing
equations for laminar free convection of a gas are also transformed to dimen-
sionless ordinary equations by the velocity component method. For treatment
of variable thermophysical properties the temperature parameter method is
used to further treat variation of specific heat with temperature. Not only the
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density, thermal conductivity, and dynamic viscosity but also specific heat is
assumed to vary with absolute temperature according to the simple power
law. The temperature parameters nλ, nµ and ncp

are further introduced and
the corresponding values are proposed according to the typical experimental
results for polyatomic gases. The density is taken as inversely proportional
to absolute temperature at constant pressure, while the Prandtl number is
assumed constant. The numerical calculation results for the free convection
of a series of polyatomic gases with various values of boundary temperature
ratio Tw/T∞ are presented, and the formulated correlations for heat transfer
are derived which agree closely with the numerical solutions.

5.2 Variable Thermophysical Properties

The effect of the variable thermophysical properties on laminar free convection
and heat transfer of monatomic and diatomic gases, air and water vapour
along an isothermal vertical flat plate has been reported in Chap 4. However,
for the polyatomic gases the variation of specific heat with temperature is
more obvious. Hence, it is necessary to consider the effect of the variable
specific heat of polyatomic gases on the laminar free convection. Employing
the temperature parameter method proposed in Chap. 4, the specific heat
parameter is taken as ncp

for the polyatomic gas. Thus, for polyatomic gas,
the equations of viscosity, thermal conductivity, density and specific heat with
temperature are described as follows:

µ/µ∞ = (T/T∞)nµ , (5.1)
λ/λ∞ = (T/T∞)nλ , (5.2)
ρ/ρ∞ = (T/T∞)−1, (5.3)
ν/ν∞ = (T/T∞)nµ+1, (5.4)

cp/cp∞ = (T/T∞)ncp . (5.5)

According to the summarized experimental values of µ, λ and cp for several
polyatomic gases reported in [2–5], the temperature parameters nλ, nµ and
ncp

and the deviation of µ, λ and cp arising from the corresponding experi-
mental data are listed in Table 5.1.

5.3 Governing Partial Differential Equations
and their Similarity Transformations

The physical analytical model and coordinate system used for laminar free
convection of polyatomic gas on an isothermal vertical flat plate is shown in
Fig. 4.1 also. Consulting the governing equations in Chap. 4 we can express
the following governing partial differential equations for continuity, momen-
tum and energy conservations and their boundary conditions for laminar free
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convection of polyatomic gases along an isothermal vertical plate:

∂

∂x
(ρwx) +

∂

∂y
(ρwy) = 0, (5.6)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ gρ

∣∣∣∣ T

T∞
− 1

∣∣∣∣ (5.7)

ρ

(
wx

∂(cpT )
∂x

+ wy
∂(cpT )

∂y

)
=

∂

∂y

(
λ

∂T

∂y

)
, (5.8)

y = 0 : wx = 0, wy = 0, T = Tw, (5.9)
y → ∞ : wx → 0, T = T∞, (5.10)

where the temperature-dependent specific heat of polyatomic gas is considered
in the energy equation.

For similarity transformation of the governing equations (5.6)–(5.8) we use
the velocity component method and assume the following dimensionless vari-
ables, which are same as those for laminar free convection of monatomic and
diatomic gases, air and water vapour in Chap. 4

η =
x

y

(
1
4
Grx,∞

)1/4

, (5.11)

Grx,∞ =
g |Tw/T∞ − 1|x3

ν2
∞

, (5.12)

θ =
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, (5.13)
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[
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wx, (5.14)

Wy =

[
2
√

gx |Tw/T∞ − 1|1/2

(
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wy. (5.15)

According to the derivation same as that in Chap. 4 the corresponding
governing dimensionless equations of (5.6)–(5.7) should be

2Wx − η
dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0, (5.16)
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(5.17)

However, because the variation of specific heat of the polyatomic gases
with temperature must be considered, the similarity transformation for (5.8)
should be separately done.

At first, (5.8) can be further expressed as
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or
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According to Chap. 4, we have
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Similar to (4.14) we have
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∂x
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. (5.23)

Similar to (5.22) we have
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where
T = (Tw − T∞)θ + T∞. (5.25)

Then, (5.18) is changed to
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With the definition of Local Grashof number, the earlier equation is
simplified to
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The earlier equation is divided by
√

g
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and this leads to

1

2
ρWx

[
T

Tw − T∞

(
−1

4
η
dcp

dη

)
− cp

(
dθ

dη

(
1

4

)
η

)]
+ 2ρWy

[
T

Tw − T∞

dcp

dη
+ cp

dθ

dη

]

=
dλ

dη

dθ

dη

(
1

4ν2∞

)1/2

+ λ
d2θ

dη2

(
1

4ν2∞

)1/2

. (5.28)

The earlier equation is multiplied by 2ν∞/λ and is simplified, then
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Since (ν∞/λ)cpρ = Pr(ν∞/ν), The earlier equation can be simplified to
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Now we simplify
T
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1
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dcp

dη
.
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From (5.5) and (5.25) we obtain the following equation:
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Consequently (5.29) is changed as
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Now we summarize the transformed dimensionless equations for the lami-
nar free convection of polyatomic gases as follows:
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+ 4
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dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0, (5.16)
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(1 + ncp
)Pr
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ν

(−ηWx + 4Wy)
dθ

dη
=

1
λ

dλ

dη

dθ

dη
+

d2θ

dη2
, (5.30)

with boundary conditions

η = 0, Wx = 0, Wy = 0, θ = 1, (5.31)
η → ∞, Wx → 0, θ → 1. (5.32)

It is obvious that when ncp
= 0, (5.30) will turn back to that for laminar

free convection of monatomic and diatomic gases, air and water vapour pre-
sented in Chap. 4. Therefore, the energy equation of laminar free convection
of monatomic and diatomic gases, air and water vapour is a special case of
that of the polyatomic gas laminar free convection when ncp

= 0.
Similar to the derivation in Chap. 4, the corresponding expressions for

the thermophysical property factors in the governing equations (5.16), (5.17)
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and (5.31) become forms for treatment of variable thermophysical properties
of gases.

1
ρ

dρ

dη
= −

(
Tw
T∞

− 1
)

dθ
dη(

Tw
T∞

− 1
)

θ + 1
, (5.33)

1
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=
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Tw
T∞
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)
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dη(

Tw
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− 1
)

θ + 1
, (5.34)

1
λ

dλ

dη
=

nλ

(
Tw
T∞

− 1
)

dθ
dη(

Tw
T∞

− 1
)

θ + 1
, (5.35)

ν∞
ν

=
((

Tw

T∞
− 1

)
θ + 1

)−(nµ+1)

. (5.36)

The velocity and temperature fields can be solved from (5.16), (5.17)
and (5.30) with boundary conditions, (5.31) and (5.32), combined with
(5.33)–(5.36). It will be expected that, for the case of variable properties,
the dimensionless velocity field and the dimensionless temperature field de-
pends, not only on Tw/T∞, P r, nλ, nµ and cp∞ but also on ncp

for the laminar
free convection of polyatomic gases.

5.4 Heat Transfer Analysis

Same as the heat transfer analysis in Chap. 4 the analytical expressions on
heat transfer for laminar free convection of polyatomic gases are as follows.

The local heat transfer rate qx at position x per unit area on the plate, the
corresponding local heat transfer coefficient αx, and the local Nusselt number
Nux,w are expressed as follows:

qx = −λw(Tw − T∞)
(

1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η=0

, (5.37)

αx = −λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η=0

, (5.38)

Nux,w(
1
4Grx,∞

)1/4
=
(

dθ

dη

)
η=0

, (5.39)

where qx, αx and Nux,w are defined as qx = −λw(∂T/∂y)y=0, qx = αx(Tw −
T∞) and Nux,w = αxx/λw, respectively. Also, total heat transfer rate Qx for
position x = 0 to x with width of b on the plate, defined as Qx =

∫ x

0
bqx dx, is

Qx = −4
3
bλw(Tw − T∞)

(
1
4
Grx,∞

)1/4(dθ

dη

)
η=0

. (5.40)
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The corresponding average heat transfer coefficient αx defined as Qx =
αx(Tw − T∞) × b × x is expressed as

αx = −4
3
λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η=0

. (5.41)

The mean Nusselt number defined as Nux,w = αxx/λw is expressed as

Nux,w(
1
4Grx,∞

)1/4
=

4
3

(
dθ

dη

)
η=0

. (5.42)

Same as that reported in Chap. 4, it is seen that, for practical calculation of
heat transfer, only (dθ/dη)η=0 dependent on numerical solution is no-given
variable.

5.5 Numerical Solutions

The governing dimensionless equations (5.16), (5.17) and (5.30) were calcu-
lated numerically with the boundary condition equations (5.31) and (5.32)
as well as (5.33)–(5.36) for the thermophysical property factors. The calcu-
lations were carried out by the shooting method presented in Chap. 4. The
typical results for the velocity and temperature field were obtained with dif-
ferent Pr, nλ, nµ and ncp

at different boundary temperature ratios Tw/T∞.
Some of the solutions were plotted in Figs. 5.1–5.4. Meanwhile, the solutions of
temperature gradient on the wall, −(dθ/dη)η=0, for several polyatomic gases
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(2) SO2; (3) NH3
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(3) Tw/T∞ = 2; (4) Tw/T∞ = 3/2; (5) Tw/T∞ = 3/4; (6) Tw/T∞ = 1/2; (7)
Tw/T∞ = 1/3

with the related Pr, nλ, nµ and ncp
at various boundary temperature ratios

Tw/T∞ are shown in Table 5.2 and plotted in Fig. 5.5. These solutions shown in
Figs. 5.1–5.4 and Table 5.2 describe the effects of Pr, nλ, nµ and ncp

on velocity
and temperature Fields as well as heat transfer of polyatomic gas laminar free
convection. It is found that the effects of Pr, nλ and nµ with the boundary
temperature ratios Tw/T∞ on the velocity and temperature fields of poly-
atomic laminar free convection are same as those on the velocity and temper-
ature fields of laminar free convection of monatomic and diatomic gases, air
and water vapour.
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Fig. 5.4. Temperature profiles for free convection of CO2 with different boundary
temperature rations, cited from Shang and Wang [1]. (1) Tw/T∞ = 3; (2) Tw/T∞ =
5/2; (3) Tw/T∞ = 2; (4) Tw/T∞ = 3/2; (5) Tw/T∞ = 3/4; (6) Tw/T∞ = 1/2; (7)
Tw/T∞ = 1/3

For consideration of variation of specific heat of the monatomic and
diatomic gases, air and water vapour with temperature, the corresponding
numerical solutions are calculated by (5.16), (5.17) and (5.30) with the bound-
ary condition equations (5.31) and (5.32) as well as (5.33)–(5.36) for the ther-
mophysical property factors, and listed in Table 5.3. It is found that these
numerical solutions are very identical to the related numerical solutions pre-
sented in Chap. 4 without consideration of variation of specific heat. Then it
follows that it is acceptable to neglect the effect of the specific heat for cal-
culation of the free convection heat transfer coefficient of the monatomic and
diatomic gases, air and water vapour.

5.6 Curve-Fit Formulas for Heat Transfer

According to the numerical solutions shown in Table 5.2 for temperature gra-
dient −(dθ/dη)η=0, a curve-fit formula of −(dθ/dη)η=0 was obtained by Shang
and Wang [1] as follows for laminar free convection of polyatomic gases with
consideration of variable thermophysical properties:

−
(

dθ

dη

)
η=0

= (1 + 0.3ncp
)ψ(Pr)

(
Tw

T∞

)−m

, (5.43)

where ψ(Pr) is Boussinesq solution in the range of gas Prandtl number, and
is expressed as follows according to Chap. 4:

ψ(Pr) = 0.567 + 0.186 × ln Pr. (0.6 ≤ Pr ≤ 1) (5.44)



5.6 Curve-Fit Formulas for Heat Transfer 89

T
a
b
le

5
.2

.
C

a
lc

u
la

te
d

re
su

lt
s
o
f
(−

d
θ
/
d
η
) η

=
0

fo
r
co

n
si

d
er

a
ti

o
n

o
f
te

m
p
er

a
tu

re
-d

ep
en

d
en

t
sp

ec
ifi

c
h
ea

t,
ci

te
d

fr
o
m

S
h
a
n
g

a
n
d

W
a
n
g

[1
]

T
w
/
T
∞

g
a
s

m
ix

tu
re

P
r

=
0
.6

3
n

µ
=

0
.7

5
n

λ
=

1
.0

2
n

c
p

=
0
.1

3
4

C
O

2

P
r

=
0
.7

3
n

µ
=

0
.8

8
n

λ
=

1
.3

n
c

p
=

0
.3

4

C
H

4

P
r

=
0
.7

4
n

µ
=

0
.7

8
n

λ
=

1
.2

9
n

c
p

=
0
.5

3
4

C
C

l 4
P

r
=

0
.8

n
µ

=
0
.9

1
2

n
λ

=
1
.2

9
n

c
p

=
0
.2

8

S
O

2

P
r

=
0
.8

1
n

µ
=

0
.9

1
n

λ
=

1
.3

2
3

n
c

p
=

0
.2

5
7

H
2
S

P
r

=
0
.8

5
n

µ
=

1
n

λ
=

1
.2

9
n

c
p

=
0
.1

8

N
H

3

P
r

=
0
.8

7
n

µ
=

1
.0

4
n

λ
=

1
.3

7
5

n
c

p
=

0
.3

4

3
A

0
.1

8
0
5

0
.1

7
4
4

0
.1

9
0
8

0
.1

7
6
0

0
.1

7
3
6

0
.1

6
9
6

0
.1

7
0
9

B
0
.1

7
9
2

0
.1

7
2
9

0
.1

8
9
6

0
.1

7
4
7

0
.1

7
2
2

0
.1

6
8
7

0
.1

6
9
9

5
/
2

A
0
.2

1
3
6

0
.2

1
0
7

0
.2

2
8
9

0
.2

1
3
0

0
.2

1
0
4

0
.2

0
6
4

0
.2

0
9
3

B
0
.2

1
2
5

0
.2

1
0
2

0
.2

2
9
1

0
.2

1
2
5

0
.2

1
0
0

0
.2

0
6
2

0
.2

0
9
3

2
A

0
.2

6
2
6

0
.2

6
6
4

0
.2

8
7
0

0
.2

6
9
6

0
.2

6
6
9

0
.2

6
3
0

0
.2

6
9
0

B
0
.2

6
1
8

0
.2

6
6
9

0
.2

8
8
0

0
.2

7
0
2

0
.2

6
7
6

0
.2

6
3
7

0
.2

7
0
0

3
/
2

A
0
.3

4
3
5

0
.3

6
1
9

0
.3

8
6
0

0
.3

6
7
0

0
.3

6
4
4

0
.3

6
0
9

0
.3

7
3
3

B
0
.3

4
2
6

0
.3

6
3
1

0
.3

8
9
2

0
.3

6
8
2

0
.3

6
5
9

0
.3

6
2
0

0
.3

7
5
2

5
/
4

A
0
.4

0
7
6

0
.4

4
0
8

0
.4

6
7
4

0
.4

4
7
5

0
.4

4
5
2

0
.4

4
1
9

0
.4

6
0
8

B
0
.4

0
6
2

0
.4

4
1
3

0
.4

7
0
3

0
.4

4
8
0

0
.4

4
6
1

0
.4

4
2
5

0
.4

6
2
1

3
/
4

A
0
.6

6
1
3

0
.7

7
5
1

0
.8

0
9
5

0
.7

7
8
3

0
.7

9
0
2

0
.7

8
7
3

0
.8

4
1
5

C
0
.6

6
0
2

0
.7

7
4
5

0
.8

1
0
5

0
.7

8
8
9

0
.7

9
0
3

0
.7

9
0
3

0
.8

4
4
8

1
/
2

A
0
.9

7
5
2

1
.2

2
9
1

1
.2

7
0
0

1
.2

5
0
4

1
.2

6
2
5

1
.2

5
8
2

1
.3

7
5
1

C
0
.9

7
5
7

1
.2

2
2
3

1
.2

5
9
4

1
.2

4
8
3

1
.2

5
7
3

1
.2

6
5
8

1
.3

8
0
5

1
/
3

A
1
.4

4
3
4

1
.9

7
2
2

2
.0

1
8
5

2
.0

2
7
4

2
.0

4
2
9

2
.0

3
0
8

2
.2

8
0
2

C
1
.4

4
2
0

1
.9

2
8
9

1
.9

5
6
9

1
.9

7
5
3

2
.0

0
0
1

2
.0

2
7
4

2
.2

5
5
8

N
o
te

:
co

m
p
o
n
en

t
o
f
th

e
g
a
s

m
ix

tu
re

:
C

O
2

=
0
.1

3
,
w

a
te

r
va

p
o
u
r

=
0
.1

1
a
n
d

N
2

=
0
.7

6
.

A
.

T
h
e

n
u
m

er
ic

a
l

so
lu

ti
o
n

o
f

g
ov

er
n
in

g
eq

u
a
ti

o
n
s

(5
.1

6
),

(5
.1

7
)

a
n
d

(5
.3

0
)

w
it

h
b
o
u
n
d
a
ry

co
n
d
it

io
n

eq
u
a
ti

o
n
s
(5

.3
1
)

a
n
d

(5
.3

2
)

co
u
p
le

d
w

it
h

(5
.3

3
)–

(5
.3

6
);

B
.
fr

o
m

(5
.4

3
)

w
it

h
(5

.4
4
)

a
n
d

(5
.4

6
);

C
.
fr

o
m

(5
.4

3
)

w
it

h
(5

.4
4
)

a
n
d

(5
.4

6
)



90 5 Laminar Free Convection of Polyatomic Gas

Gas mixture

Carbon dioxide

Carbon chloride

Ammonia(-dq /dh)h=0

0
0

0.5

1

1.5

2.5

2

0.5 1 1.5
Tw/T�

2 2.5 3

Fig. 5.5. Numerical solutions −(dθ/dη)η=0 for the free convection of gas mixture,
CO2, CCl4 and NH3

While,

m = 0.35nλ + 0.29nµ + 0.36, (Tw/T∞ > 1) (5.45)
m = 0.42nλ + 0.34nµ + 0.28. (Tw/T∞ < 1) (5.46)

Some results of temperature gradient −(dθ/dη)η=0 for laminar free convec-
tion of different polyatomic gases predicted by using (5.43)–(5.46) are listed
in Table 5.2 also. From Table 5.2 it is found that these predicted results are
very well identical to the related numerical solutions.

On the other hand, it is clear from the curve-fitting formulae that the
temperature gradient −(dθ/dη)η=0 will increase with increasing the specific
heat parameter ncp

. Then, it is clearly known that heat transfer will increase
with increasing specific heat parameter ncp

for gas laminar free convection. If
ncp

is very small and regarded as zero, (5.43) becomes

−
(

dθ

dη

)
η=0

= ψ(Pr)
(

Tw

T∞

)−m

, (5.47)

which is identical to equation for laminar free convection of monatomic gases,
diatomic gases, air and water vapour.

If boundary temperature ratio Tw/T∞ tends to unity, the specific heat
parameter ncp

is regarded as zero, (5.43) is transformed to

−
(

dθ

dη

)
η=0

= ψ(Pr), (5.48)

where is identical to Boussinesq approximation, while ψ(Pr) expresses well-
known Boussinesq solution.
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Table 5.4. Effects of Pr, nµ, nλ, ncp and Tw/T∞ on temperature gradient
−(dθ/dη)η=0 for laminar free convection of polyatomic gases

term −
(

dθ
dη

)
η=0

Tw/T∞ > 1 Tw/T∞ < 1

effect of Pr −
(

dθ
dη

)
η=0

increases with the

increase of Pr

−
(

dθ
dη

)
η=0

increases with the

increase of Pr

effect of nλ −
(

dθ
dη

)
η=0

decreases with the

increase of nλ

−
(

dθ
dη

)
η=0

increases with the

increase of nλ

effect of nµ −
(

dθ
dη

)
η=0

decreases with the

increase of nµ

−
(

dθ
dη

)
η=0

increases with the

increase of nµ

effect of ncp −
(

dθ
dη

)
η=0

increases with the

increase of ncp

−
(

dθ
dη

)
η=0

increases with the

increase ncp

So far, the effect of Pr, nµ, nλ, ncp and Tw/T∞ on temperature gradient
−(dθ/dη)η=0 can be briefly summarized in Table 5.4 for laminar free convec-
tion of polyatomic gases.

5.7 Summary

Comparing the analyses and results in Chap. 4 with that in this chapter,
it is obvious to find that laminar free convection and heat transfer of the
monatomic and diatomic gases, air and water vapour can be regarded as a
special case of that of polyatomic gases. In fact, the results of free convec-
tion heat transfer of polyatomic gases are very well identical to those of the
monatomic and diatomic gases, air and water vapour. So far, the governing
equations of laminar free convection for general gases and expressions related
to heat transfer can be summarized in Table 5.5.

5.8 Remarks

From the earlier presentations in this chapter the following remarks can be
concluded: The method proposed in this chapter, for analysing the laminar
free convection of polyatomic gases along a vertical isothermal flat plate can
be taken as a general one for all gases, and it could yield reliable results.

For the monatomic, diatomic gases, air and water vapour, specific heat
parameter ncp

is generally below 0.1, especially for monatomic gases with the
value of ncp

tending to zero, ncp
could be taken as zero when the variable

fluid properties are considered.
In considering the variable fluid properties, as Tw/T∞ → 1 the classi-

cal Bousinesq approximation holds true for monoatomic gases, and nearly
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Table 5.5. Summary of the governing equations of laminar free convection for
general gases and the expressions related to heat transfer

term expression

governing partial differential equations
mass equation ∂

∂x
(ρwx) + ∂

∂y
(ρwy) = 0

momentum
equation

ρ
(
wx

∂wx
∂x

+ wy
∂wx
∂y

)
= ∂

∂y

(
µ ∂wx

∂y

)
+ ρg

∣∣T−T∞
T∞

∣∣
energy
equation

ρcp

(
wx

∂(cpT )

∂x
+ wy

∂(cpT )

∂y

)
= ∂

∂y

(
λ ∂T

∂y

)

boundary
conditions

y = 0 : wx = 0, wy = 0, T = Tw

y → ∞ : wx → 0, T = T∞

assumed similarity variables

η y
x

(
1
4
Grx,∞

)1/4

Grx,∞
g|Tw/T∞−1|x3

ν2
∞

θ T−T∞
Tw−T∞

Wx (2
√

gx |Tw/T∞ − 1|1/2)−1wx

Wy (2
√

gxTw/T∞ − 11/2
(

1
4
Grx,∞

)−1/4
)−1wy

governing ordinary differential equations

mass equations 2Wx − η dWx
dη

+ 4
dWy

dη
− 1

ρ
dρ
dη

(ηWx − 4Wy) = 0

momentum
equation

ν∞
ν

(
Wx

(
2Wx − η dWx

dη

)
+ 4Wy

dWx
dη

)
= d2Wx

dη2 + 1
µ

dµ
dη

dWx
dη

+ ν∞
ν

θ

energy
equation

(1 + ncp)Pr ν∞
ν

(−ηWx + 4Wy) dθ
dη

= 1
λ

dλ
dη

dθ
dη

+ d2θ
dη2

boundary
condition

η = 0 : Wx = 0, Wy = 0, θ = 0
η → 0 : Wx = 0, θ = 0

equations related to heat transfer

qx

(
defined as − λw

(
∂T
∂y

)
y=0

)
−λw(Tw − T∞)

(
1
4
Grx,∞

)1/4
x−1

(
dθ
dη

)
η=0

αx

(
defined as qx

(Tw−T∞)

)
−λw

(
1
4
Grx,∞

)1/4
x−1

(
dθ
dη

)
η=0

Qx

(
defined as

∫ x

0
qxb dx

)
− 4

3
bλw(Tw − T∞)

(
1
4
Grx,∞

)1/4 ( dθ
dη

)
η=0

αx

(
defined as Qx

(Tw−T∞)bx

)
− 4

3
λw

(
1
4
Grx,∞

)1/4
x−1

(
dθ
dη

)
η=0

Nux,w

(
defined asαxx

λw

)
Nux,w

( 1
4 Grx,∞)1/4 = −

(
dθ
dη

)
η=0

Nux,w

(
defined asαxx

λw

)
Nux,w

( 1
4 Grx,∞)1/4 = − 4

3

(
dθ
dη

)
η=0

−
(

dθ
dη

)
η=0

(1 + 0.3ncp)ψ(Pr)
(

Tw
T∞

)−m

ψ(Pr) 0.567 + 0.186 × ln Pr (0.6 ≤ Pr ≤ 1)
0.35nλ + 0.29nµ + 0.36 for Tw/T∞ > 1

m 0.42nλ + 0.34nµ + 0.28 for Tw/T∞ < 1
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true for the biatomic gases, air and water vapour, but the classic Boussinesq
approximation does not hold true for polyatomic gases, except ncp

is taken
as zero.

The analysis, presented in this chapter extends the one reported in Chap. 4.

5.9 Calculation Example

Question: An plate with uniform temperature tw = 0◦C, width b = 2 m
and height x = 0.9 m is suspended in a gas mixture with temperature t∞ =
500◦C. The kinetic viscosity of the gas mixture is ν∞ = 7.63 × 10−5m2 s−1

at t∞ = 500◦C, and the thermal conductivity of the gas mixture is λw =
0.0228 W (m◦C)−1 at tw = 0◦C. The temperature parameters of the gas
mixture are nµ = 0.75, nλ = 1.02, and ncp

= 0.134, respectively. The gas
mixture Prandtl number is Pr = 0.63. Suppose the free convection is laminar.
Please calculate the average heat transfer coefficients and free convection heat
transfer on the plate.

Solution. The temperature ratio Tw/T∞ of the gas laminar free convection is

Tw/T∞ = 273/(500 + 273) = 0.35317.

Since Tw/T∞ < 1, from (5.46) we have

m = 0.42nλ + 0.34nµ + 0.28
= 0.42 × 1.02 + 0.34 × 0.75 + 0.28
= 0.9634.

Also

ψ(Pr) = 0.567 + 0.186 × ln Pr

= 0.567 + 0.186 × ln(0.63).
= 0.48106

Then, temperature gradient −(dθ/dη)η=0 is evaluated as

−
(

dθ

dη

)
η=0

= (1 + 0.3ncp
)ψ(Pr)

(
Tw

T∞

)−m

= (1 + 0.3 × 0.134) × 0.48106 × 0.35317−0.9634

= 1.3639.

Then, local Grashof number is calculated as

Grx,∞ =
g |Tw/T∞ − 1|x3

ν2
∞

=
9.8 × |0.35317 − 1| × 0.93

(7.63 × 10−5)2

= 793770003
= 0.79377 × 109.
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In this case, average Nusselt numberNux,w can be calculated as follows by
using (5.42):

Nux,w = −4
3

(
dθ

dη

)
η=0

(
1
4
Grx,∞

)1/4

=
4
3
× 1.3639 ×

(
1
4
× 79377003

)1/4

= 215.84.

With the definition of Nux,w, Nux,w = αxx/λw, the average heat transfer
coefficient αx is expressed as

αx =
Nux,w · λw

x
=

215.84 × 0.0228
0.9

= 5.468 W (m2 ◦C)−1.

Then, total heat transfer rate on the plate is

Qx = αx(Tw − T∞)x × b

= 5.468 × (0 − 500) × 0.9 × 2
= −4921.2 W,

where the negative sign implies that the total heat transfer rate Qx is from
gas mixture to the plate.
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6

Laminar Free Convection of Liquid

Nomenclature

b width of plate, m
cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m (s2)−1

Grx,∞ local Grashof number for liquid laminar free convection
on isothermal vertical flat plate, g|ρ∞/ρw−1|x3

ν
2
∞

Nux,w local Nusselt number, αxx/λw

Nux,w average Nusselt number defined as αxx/λw

Pr Prandtl number
qx local heat transfer rate at position x per unit area on

the plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate, W

t temperature, ◦C
T absolute temperature, K
Tr a reference temperature, Tw − (Tw − T∞)/4
wx, wy velocity components in the x- and y- directions,

respectively, m s−1

Wx,Wy dimensionless velocity components in the x- and
y- directions, respectively

Greek symbols
αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)−1

δ boundary layer thickness, m
η dimensionless coordinate variable for boundary layer
θ dimensionless temperature
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3
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ρ∞
ρ − 1

ρ∞
ρw

− 1
buoyancy factor

(
dθ

dη

)
η=0

dimensionless temperature gradient on the plate

1
ρ

dp
dx

density factor

1
µ

dµ

dη
viscosity factor

1
λ

dλ

dη
thermal conductivity factor

Subscripts
w at wall
δ boundary layer
∞ far from the wall surface

6.1 Introduction

The theoretical analysis of laminar free convection of liquid along an isother-
mal vertical flat plate was also started by means of Boussinesq approximation.
For the case of larger temperature difference, the effects of variable thermo-
physical properties should be taken into consideration, as those in [1–9]. In [1]
Fujii, et al. used two methods of correlating to examine the effects of variable
thermophysical properties on heat transfer for free convection from vertical
surfaces in liquids. The first method of correlating the data consisted of us-
ing the constant property correlations for Nusselt number and evaluating all
properties at a reference temperature, T r = Tw − (Tw − T∞)/4. They noted
that the choice of the reference temperature agrees with the solution pro-
vided by two previous studies of Fujii [2] and Akagi [3]. The second method
that they used to correlate their data in oils was first proposed by Akagi [3]
and applies only to liquids for which viscosity variation is dominant. Piau [4]
treated the similarity analysis of variable property effects in free convection
from vertical surfaces in high Prandtl number liquids. It was indicated that
the main property variations in water at moderate temperature levels are in
the viscosity, µ, and the volumetric coefficient of thermal expansion, β, and
that for higher Prandtl number liquids, the variation of β is often negligible.
In [5] Piau included the effect of thermal stratification of the ambient fluid
in an analysis, which also includes variables, µ and β for water. Brown [6]
used an integral method and studied the effect of the coefficient of volumetric
expansion on laminar free convection heat transfer. Carey and Mollendorf [7]
have shown the mathematical forms of viscosity variation with temperature,
which results in similarity solutions for laminar free convection from a vertical
isothermal surface in liquids with temperature-dependent viscosity. Sabhapa-
thy and Cheng [8] studied the effects of temperature-dependent viscosity and
coefficient of thermal expansion on the stability of laminar free convection
boundary-layer flow of a liquid along an isothermal, vertical surface, employ-
ing linear stability theory for Prandtl numbers between 7 and 10. Qureshi and
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Gebhart [9] studied the stability of vertical thermal buoyancy-induced flow in
cold and saline water. They indicated that the anomalous density behaviour
of cold water, for example, a density extremum at about 4◦C in pure water
at atmospheric pressure, commonly has very large effects on flow and trans-
port. However, the results reported so far are not convenient for heat transfer
prediction due to difficulty of treating the variable thermophysical properties
in governing equations.

In this chapter an advanced development [10] of laminar free convection
of liquid with large temperature difference is introduced. Velocity component
method for similarity transformation presented in Chaps. 4 and 5 is used here
for similarity transformation of the governing partial differential equations
of liquid free convection. Meanwhile, the polynomial equations are suggested
to express the variable thermophysical properties of a liquid. For example,
polynomial equations of the density and thermal conductivity of water are pro-
posed, and expression of absolute viscosity of water is also based on a polyno-
mial. A typical example of the laminar free convection of water was provided.
It is concluded that the Nusselt number could be predicted by local Grashof
number and the dimensionless temperature gradient on the wall. Furthermore,
a reliable curve-fit formula of the dimensionless temperature gradient is pre-
sented for simple and accurate prediction of water free convection with large
temperature difference.

6.2 Governing Partial Deferential Equations
and their Similarity Transformation

6.2.1 Governing Partial Differential Equations

The physical analytical model and coordinate system used for laminar free
convection of liquid on an isothermal vertical flat plate is shown in Fig. 4.1
also. According to the presentation in Chap.2, the conservation equation for
mass, momentum and energy of steady laminar free convection of liquid in
the boundary layer are

∂

∂x
(ρwx) +

∂

∂y
(ρwy) = 0, (6.1)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
=

∂

∂y

(
µ

∂wx

∂y

)
+ g |ρ∞ − ρ| , (6.2)

ρcp

(
wx

∂t

∂x
+ wy

∂t

∂y

)
=

∂

∂y

(
λ

∂t

∂y

)
. (6.3)

The absolute value of buoyancy term g|ρ∞ − ρ| shows that it has always
positive sign no matter which one is larger between ρ and ρ∞. In this case,
the buoyancy term g|ρ∞ − ρ| and the velocity component wx have same sign.
The boundary conditions are

y = 0 : Wx = 0, Wy = 0, t = tw, (6.4)
y → ∞ : Wx → 0, t = t∞, (6.5)
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where the variable thermophysical properties are considered except the specific
heat. In fact, such treatment for physical properties is suitable for a lot of
liquids.

6.2.2 Dimensionless Transformation Variables

For similarity transformation of the governing partial deferential equations
for the laminar free convection of liquid, the velocity component method is
also used. Consulting the assumed dimensionless variables in Chap. 4 for the
similarity transformation of the governing partial differential equations of gas
laminar free convection, the following dimensionless transformation variables
can be assumed for the transformation of governing equations of liquid laminar
free convection:

η =
y

x

(
1
4
Grx,∞

)1/4

, (6.6)

θ =
t − t∞
tw − t∞

, (6.7)

Wx =

[
2
√

gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2
]−1

wx, (6.8)

Wy =

[
2
√

gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2(1

4
Grx,∞

)−1/4
]−1

wy, (6.9)

Grx,∞ =
g|ρ∞/ρw − 1|x3

ν∞2
. (6.10)

6.2.3 Similarity Transformation

For convenience of similarity transformation it is necessary to rewrite the
governing equations (6.1)–(6.3) into the following form, respectively:

ρ

(
∂wx

∂x
+

∂wy

∂y

)
+ wx

∂ρ

∂x
+ wy

∂ρ

∂y
= 0, (6.11)

ρ

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= µ

∂2wx

∂y2
+

∂wx

∂y

∂µ

∂y
+ g |ρ∞ − ρ| , (6.12)

ρcp

(
wx

∂t

∂x
+ wy

∂t

∂y

)
= λ

∂2t

∂y2
+

∂λ

∂y

∂t

∂y
. (6.13)

Similar to the derivation of the partial differential equations in Chap.4, the
related partial differential equations (6.11)–(6.13) are obtained and expressed
as follows:

∂wx

∂x
=
√

g

x

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2(

Wx − 1
2
η
dWx

dη

)
, (6.14)
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∂wy

∂y
= 2

√
g

x

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2 dWy

dη
, (6.15)

∂ρ

∂x
= −1

4
ηx−1 dρ

dη
, (6.16)

∂ρ

∂y
=

dρ

dη

(
1
4
Grx,∞

)1/4

x−1, (6.17)

∂wx

∂y
= 2

√
gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2 dWx

dη
x−1

(
1
4
Grx,∞

)1/4

, (6.18)

∂2wx

∂y2
= 2

√
gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2 d2Wx

dη2
x−2

(
1
4
Grx,∞

)1/2

, (6.19)

∂µ

∂y
=

dµ

dη
x−1

(
1
4
Grx,∞

)1/4

, (6.20)

∂t

∂x
= −(tw − t∞)

dθ

dη

(
1
4

)
ηx−1, (6.21)

∂t

∂y
= (tw − t∞)

dθ

dη

(
1
4
Grx,∞

)1/4

x−1, (6.22)

∂2T

∂y2
= (tw − t∞)

d2θ

dη2

(
1
4
Grx,∞

)1/2

x−2, (6.23)

∂λ

∂y
=

dλ

dη

(
1
4
Grx,∞

)1/4

x−1, (6.24)

where

t = (tw − t∞)θ + t∞. (6.25)

Similar to the derivations in Chap. 4, by using (6.14)–(6.25), the following
governing ordinary differential equations can be obtained from (6.11)–(6.13):

2Wx − η
dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0, (6.26)

ν∞
ν

(
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

)
=

d2Wx

dη2
+

1
µ

dµ

dη

dWx

dη
+

ν∞
ν

ρ∞
ρ − 1

ρ∞
ρw

− 1
,

(6.27)

Pr
ν∞
ν

(−ηWx + 4Wy)
dθ

dη
=

1
λ

dλ

dη

dθ

dη
+

d2θ

dη2
, (6.28)

with boundary conditions

η = 0, Wx = 0, Wy = 0, θ = 0, (6.29)
η → 0, Wx → 0, θ → 0. (6.30)

Equations (6.26)–(6.30) are dimensionless governing equations and the bound-
ary conditions of laminar free convection of liquid.
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6.2.4 Identical Buoyancy Factor

In fact, the buoyancy factor
ρ∞
ρ − 1

ρ∞
ρw

− 1

in (6.27) is suitable for all fluids, i.e. both liquid and gas. For gas the buoyancy
factor can be rewritten as follows by using the simple power law of gas:

ρ∞
ρ − 1

ρ∞
ρw

− 1
=

T
T∞

− 1
Tw
T∞

− 1
=

T − T∞
Tw − T∞

= θ. (6.31)

By using (6.31), (6.26)–(6.28) are completely identical to the dimensionless
governing equations (4.18), (4.23) and (4.25) for laminar free convection of gas
presented in Chap. 4. Therefore, (4.18), (4.23), and (4.25) can be regarded as
the special case of (6.26)–(6.28).

6.3 Treatment of Variable Thermophysical Properties

We take water as an example to introduce the treatment of variable thermo-
physical properties of liquid. In fact, the variation of the physical properties
of water can represent that of most of liquids.

The specific heat cp of water and a lot of liquids changes little with tem-
perature, and so, it is possible to regard the specific heat cp as the value cp∞

in a special temperature range for engineering applications. This implies

Pr
ν∞
ν

=
µcp

λ

ν∞
ν

= Pr∞
λ∞

µ∞cp∞

µcp

λ

ν∞
ν

= Pr∞

µ
ν

µ∞
ν∞

λ∞
λ

= Pr∞
ρ

ρ∞

λ∞
λ

. (6.32)

With (6.32), (6.31) can be rewritten as follows for water and many other
liquids in laminar free convection:

Pr∞
ρ

ρ∞

λ∞
λ

(−ηWx + 4Wy)
dθ

dη
=

1
λ

dλ

dη

dθ

dη
+

d2θ

dη2
. (6.33)

The dimensionless thermophysical property factors

ρ

ρ∞
,
λ∞
λ

,
µ∞
µ

,
ν∞
ν

,
1
ρ

dρ

dη
,
1
µ

dµ

dη
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and

1
λ

dλ

dη

with the variable thermophysical properties in the transformed dimensionless
governing (6.26)–(6.28) have to be dealt with for obtaining their numerical
solutions.

From [10], the temperature-dependent expressions of density and thermal
conductivity of water with the temperature range between 0 and 100◦C are
respectively expressed by Shang et al. with polynomials as

ρ = −4.48 × 10−3 t2 + 999.9, (6.34)
λ = −8.01 × 10−6 t2 + 1.94 × 10−3t + 0.563. (6.35)

The deviation predicted is less than 0.35% by (6.34), and less than 0.18%
by (6.35), compared with the experimental data [11]. For the absolute viscosity
of water, the following expression described in [12] is applied:

µ = exp

[
−1.6 − 1, 150

T
+
(

690
T

)2
]
× 10−3. (6.36)

The deviation predicted by (6.36) is less than 1.8%, as compared with the
experimental data [11]. With the earlier expressions of ρ, λ and µ as well as
(6.25), the earlier thermophysical property factors can be described as follows:

1
ρ

dρ

dη
=

−2 × 4.48 × 10−3 t(tw − t∞) dθ
dη

−4.48 × 10−3 t2 + 999.9
, (6.37)

1
µ

dµ

dη
=
(

1, 150
T 2

− 2 × 6902

T 3

)
(tw − t∞)

dθ

dη
, (6.38)

1
λ

dλ

dη
=

(−2 × 8.01 × 10−6 t + 1.94 × 10−3)(tw − t∞) dθ
dη

−8.01 × 10−6 t2 + 1.94 × 10−3t + 0.563
. (6.39)

In addition,

ρ

ρ∞
=

−4.48 × 10−3 t2 + 999.9
−4.48 × 10−3 t2∞ + 999.9

, (6.40)

λ∞
λ

=
−8.01 × 10−6 t2∞ + 1.94 × 10−3 t∞ + 0.563
−8.01 × 10−6 t2 + 1.94 × 10−3 t + 0.563

, (6.41)

µ∞
µ

=
exp

[
−1.6 − 1,150

T∞
+
(

690
T∞

)2
]

exp
[
−1.6 − 1,150

T +
(

690
T

)2] , (6.42)

While,
ν∞
ν

=
µ∞
µ

ρ

ρ∞
. (6.43)
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6.4 Heat Transfer Analysis

Consulting the heat transfer analysis in Chap. 4 for gas laminar film free
convection, the analytic expressions related to heat transfer of liquid laminar
free convection are obtained as follows:

qx = −λw(tw − t∞)
(

1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η=0

, (6.44)

αx = −λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η=0

, (6.45)

Nux,w = −
(

1
4
Grx,∞

)1/4(dθ

dη

)
η=0

, (6.46)

Qx = −4
3
bλw (tw − t∞)

(
1
4
Grx,∞

)1/4(dθ

dη

)
η=0

, (6.47)

αx = −4
3
λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η=0

, (6.48)

Nux = −4
3

(
1
4
Grx,∞

)1/4(dθ

dη

)
η=0

. (6.49)

Here, qx is local heat transfer rate at position x per unit area on the plate,
defined as qx = −λw (∂T/∂y)y=0 , αx is local heat transfer coefficient, defined
as qx = αx (tw − t∞), Nux,w is local Nusselt number, defined as Nux,w =
αxx/λw, Qx is total heat transfer rate for position x = 0 to x with width
of b on the plate, defined as Qx =

∫ x

0
qxb dx, αx is average heat transfer

coefficient, defined as Qx = αx(Tw −T∞)× b×x, and Nux is average Nusselt
number, defined as Nux,w = αxx/λw.

Same as that reported in Chap. 4, it is seen that, for practical calculation
of heat transfer, only (dθ/dη)η=0 dependent on numerical solution is no-given
variable.

6.5 Numerical Solutions

As a typical liquid laminar free convection, the water laminar free convection
can be taken as an example for presentation of the numerical calculation. The
shooting method described in Chap. 4 has been adopted to solve numerically
the nonlinear governing equations (6.26)–(6.28) with the boundary conditions
(6.29) and (6.30) at different temperature conditions tw and t∞. The water
thermophysical property values of ρ∞, ρw, ν∞, λ∞ and Pr∞ at different
temperature are taken directly from [11], as quoted in Table 6.1. The typical
results for velocity and temperature fields of the boundary layer are plotted as
Figs. 6.1–6.4, respectively. The corresponding solutions for the dimensionless
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Table 6.1. The values of thermophysical properties of water

t

(◦C)

0 10 20 30 40 50 60 70 80 90 100

ρ

(kg m−3)

999.8 999.8 998.3 995.8 992.3 988.1 983.2 977.7 971.4 965.1 958.4

ν

×10−6

m2 s−1

1.792 1.308 1.004 0.798 0.658 0.554 0.457 0.414 0.365 0.326 0.296

λ

(W (K m)−1)

0.562 0.582 0.5996 0.6151 0.6287 0.6405 0.6507 0.6595 0.6668 0.6728 0.6773

Pr 13.44 9.42 6.99 5.42 4.34 3.57 3.00 2.57 2.23 1.97 1.76
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Fig. 6.1. The velocity profiles at tw = 40◦C with different t∞ (1 → 5 : t∞ =
20, 39.99, 60, 80, 100◦C), cited from Shang, Wang and Quan [10]
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Fig. 6.2. The velocity profiles at t∞ = 40◦C and different surface temperatures
tw (1 → 5 : tw = 20, 39.99, 60, 80, 100◦C), cited from Shang, Wang and Quan [10]
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Fig. 6.3. The temperature profiles at tw = 40◦C and different t∞ (1 → 5 : t∞ =
20, 39.99, 60, 80, 100◦C), cited from Shang, Wang and Quan [10]
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Fig. 6.4. The temperature profiles at t∞ = 40◦C and different surface temperatures
tw (1 → 5 : tw = 20, 39.99, 60, 80, 100◦C), cited from Shang, Wang and Quan [10]

temperature gradient (−dθ/dη)η=0 are described in Table 6.2 and plotted in
Fig. 6.5. The velocity and temperature profiles show clearly the effects of the
variable thermophysical properties on velocity and temperature distributions
as well as heat transfer of the water free convection. The related influences
are presented as follows:

Effects of t∞. The bulk temperature t∞ causes a great effect on the veloc-
ity and temperature profiles. With increase of t∞, the velocity Wx and the
temperature θ obviously increase, meanwhile, the maximum of wx shifts fur-
ther from the plate. While, with increase of t∞ the temperature gradient
−(dθ/dη)η=0 decreases obviously.

Effects of tw. The effects of tw on the velocity Wx and temperature θ are
much less than those of t∞. With the increase of tw, the maximum velocity
of Wx increases and shifts slightly close to the plate. Generally, the effects of
tw on the temperature θ and temperature gradient −(dθ/dη)η=0 are slightly.
Together with increasing t∞, the effects of tw on the temperature field θ and
temperature gradient become even smaller and smaller.
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Table 6.2. The typical numerical solutions of dimensionless temperature gradient
−(dθ/dη)η=0 for water laminar free convection along a vertical plate, cited from
Shang, Wang, and Quan [10]

tw t∞ Pr∞ −
(

dθ
dη

)
η=0

tw t∞ Pr∞ −
(

dθ
dη

)
η=0

4.99 5 11.16 1.21 5 10 9.42 1.153
10 5 11.16 1.169 9.99 10 9.42 1.137
15 5 11.16 1.158 15 10 9.42 1.133
20 5 11.16 1.156 20 10 9.42 1.13
30 5 11.16 1.164 30 10 9.42 1.231
40 5 11.16 1.179 40 10 9.42 1.139
50 5 11.16 1.196 50 10 9.42 1.15
60 5 11.16 1.212 60 10 9.42 1.162
70 5 11.16 1.229 70 10 9.42 1.175
80 5 11.16 1.245 80 10 9.42 1.187
90 5 11.16 1.26 90 10 9.42 1.199
100 5 11.16 1.275 100 10 9.42 1.211

5 20 6.99 1.076 5 30 5.42 0.989
10 20 6.99 1.063 10 30 5.42 0.983
15 20 6.99 1.056 15 30 5.42 0.979
19.99 20 6.99 1.05 20 30 5.42 0.977
30 20 6.99 1.051 29.99 30 5.42 0.971
40 20 6.99 1.054 40 30 5.42 0.977
50 20 6.99 1.06 50 30 5.42 0.983
60 20 6.99 1.068 60 30 5.42 0.988
70 20 6.99 1.075 70 30 5.42 0.994
80 20 6.99 1.083 80 30 5.42 0.999
90 20 6.99 1.092 90 30 5.42 1.005
100 20 6.99 1.1 100 30 5.42 1.012

5 40 4.34 0.917 5 50 3.57 0.858
10 40 4.34 0.913 10 50 3.57 0.856
15 40 4.34 0.911 15 50 3.57 0.855
20 40 4.34 0.91 20 50 3.57 0.855
30 40 4.34 0.91 30 50 3.57 0.856
39.99 40 4.34 0.914 40 50 3.57 0.858
50 40 4.34 0.916 49.99 50 3.57 0.861
60 40 4.34 0.92 60 50 3.57 0.864
70 40 4.34 0.924 70 50 3.57 0.867
80 40 4.34 0.929 80 50 3.57 0.87
90 40 4.34 0.933 90 50 3.57 0.874
100 40 4.34 0.938 100 50 3.57 0.878

5 60 3 0.809 5 70 2.57 0.768
10 60 3 0.808 10 70 2.57 0.767
15 60 3 0.807 15 70 2.57 0.767
20 60 3 0.807 20 70 2.57 0.767
30 60 3 0.809 30 70 2.57 0.769
40 60 3 0.81 40 70 2.57 0.77
50 60 3 0.813 50 70 2.57 0.772



108 6 Laminar Free Convection of Liquid

Table 6.2. Continued

tw t∞ Pr∞ −
(

dθ
dη

)
η=0

tw t∞ Pr∞ −
(

dθ
dη

)
η=0

59.99 60 3 0.814 60 70 2.57 0.774
70 60 3 0.818 69.99 70 2.57 0.779
80 60 3 0.821 80 70 2.57 0.779
90 60 3 0.824 90 70 2.57 0.781
100 60 3 0.827 100 70 2.57 0.783

5 80 2.23 0.733 5 90 1.97 0.704
10 80 2.23 0.732 10 90 1.97 0.704
15 80 2.23 0.733 15 90 1.97 0.704
20 80 2.23 0.733 20 90 1.97 0.704
30 80 2.23 0.734 30 90 1.97 0.705
40 80 2.23 0.735 40 90 1.97 0.706
50 80 2.23 0.737 50 90 1.97 0.707
60 80 2.23 0.739 60 90 1.97 0.709
70 80 2.23 0.74 70 90 1.97 0.71
79.99 80 2.23 0.74 80 90 1.97 0.711
90 80 2.23 0.744 89.99 90 1.97 0.714
100 80 2.23 0.746 100 90 1.97 0.714

5 100 1.76 0.679
10 100 1.76 0.679
15 100 1.76 0.679
20 100 1.76 0.679
30 100 1.76 0.680
40 100 1.76 0.681
50 100 1.76 0.682
60 100 1.76 0.683
70 100 1.76 0.684
80 100 1.76 0.685
90 100 1.76 0.686
99.99 100 1.76 0.686

The velocity and temperature profiles show the large differences between
the momentum and temperature boundary layer thicknesses for laminar free
convection of liquid due to Pr � 1. Therefore, it is very difficult to make
a solution of the governing equations for liquid free convection, especially
for consideration of variable thermophysical properties. An accurate solution
could be converged only when a special boundary layer thicknesses η is taken
for a special t∞, or special Pr∞. Such special boundary layer thicknesses η
for obtaining convergence solution only depends on t∞ or Pr∞. Actually, the
range of such special boundary layer thicknesses η, which can be taken, is very
narrow for the convergence of solution. It is found that the solution is only
converged in the very narrow range of the special boundary layer thicknesses
η for laminar free convection of liquid. Otherwise the convergence solution
will never be obtained.
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Fig. 6.5. Dimensionless temperature gradient for water laminar free convection
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related solution under Boussinesq approximation

6.6 A Curve-Fit Formula for Heat Transfer

Accurate solutions −(dθ/dη)η=0∗ for Boussinesq approximation could be ob-
tained from Table 6.2 in which the plate temperature tw is very close to the
bulk temperature t∞. These Boussinesq solutions are listed in Table 6.3 for
laminar free convection at the water Prandtl number range.

Based on the Boussinesq solutions listed in Table 6.3, a curve-fit formula
(6.50) is obtained by Shang et al. [10] for prediction of the solutions of liquid
laminar free convection under the Boussinesq approximation.

−
(

dθ

dη

)∗

η=0

= 0.5764+0.1797×Ln(Pr)+0.0331×Ln2(Pr) (1.7 < Pr∞ < 13.5).

(6.50)

The values predicted by using (6.50) are obtained and listed in Table 6.3.
It is seen from Table 6.3 that by using (6.50) the predicted deviation of Boussi-
nesq solutions −(dθ/dη)η=0∗ is less than 0.618%.

From the typical solutions for temperature gradient −(dθ/dη)η=0 in
Table 6.2 it is found that the effect of tw on temperature gradient −(dθ/dη)η=0

is not obvious generally, but the temperature t∞ dominates the effect on the
temperature gradient −(dθ/dη)η=0. On this basis, Shang et al. [10] found if
the Prandtl number Pr in (6.50) is replaced by a reference Prandtl number
Pr∞ as (6.51), the maximal deviation for prediction of the temperature gra-
dient −(dθ/dη)η=0 of water laminar free convection is less than 6% for t∞
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Fig. 6.6. Maximum calculated deviation of −(dθ/dη)η=0 by (6.51), cited from
Shang, Wang and Quan [10]

range from 5 to 100◦C with consideration of variable thermophysical proper-
ties. However, the maximal predicted deviation will be less than 2% for t∞
range from 50 to 100◦C, as shown in Fig. 6.6.

−
(

dθ

dη

)
η=0

= 0.5764 + 0.1797 × Ln(Pr∞) + 0.0331 × Ln2(Pr∞), (6.51)

where Pr∞ is reference Prandtl number at bulk temperature t∞.
Therefore, combining (6.51) with (6.44)–(6.49) we can predict heat trans-

fer of water laminar free convection conveniently for meeting engineering
requirements.

6.7 Summary

So far, the governing equations of liquid laminar free convection and the equa-
tions related to heat transfer can be summarized in Table 6.4.

6.8 Remarks

From the contents introduced in this chapter the following remarks are per-
tinent: The analyses focus on liquid laminar free convection along an isother-
mal vertical flat plate with consideration of variable fluid thermophysical
properties. The velocity component method can be used conveniently to trans-
form the governing partial differential equations of laminar free convection of
liquid into the corresponding dimensionless system.

Taking water as an example, the temperature-dependent expressions of
the density, thermal conductivity and viscous are introduced, while the spe-
cific heat at constant pressure is taken as constant with maximum possible
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Table 6.4. Summary of the governing equations of liquid laminar free convection
and the equations related to heat transfer

term expression

governing partial deferential equations

mass equation ∂
∂x

(ρwx) + ∂
∂y

(ρwy) = 0

momentum
equation

ρ
(
wx

∂wx
∂x

+ wy
∂wx
∂y

)
= ∂

∂y

(
µ ∂wx

∂y

)
+ g |ρ∞ − ρ|

energy
equation

ρcp

(
wx

∂T
∂x

+ wy
∂T
∂y

)
= ∂

∂y

(
λ ∂T

∂y

)
boundary
conditions

y = 0 : wx = 0, wy = 0, T = Tw

y → ∞ : wx → 0, T = T∞

assumed similarity variables

η y
x

(
1
4
Grx,∞

)1/4

Grx,∞
g|ρ∞/ρw−1|x3

ν2
∞

θ T−T∞
Tw−T∞

Wx

[
2
√

gx
∣∣ ρ∞

ρ
− 1

∣∣1/2
]−1

wx

Wy

[
2
√

gx
∣∣ ρ∞

ρ
− 1

∣∣1/2 ( 1
4
Grx,∞

)−1/4
]−1

wy

governing ordinary differential equations

mass equations 2Wx − η dWx
dη

+ 4
dWy

dη
− 1

ρ
dρ
dη

(ηWx − 4Wy) = 0

momentum
equation

ν∞
ν

(
Wx

(
2Wx − η dWx

dη

)
+ 4Wy

dWx
dη

)
= d2Wx

dη2 + 1
µ

dµ
dη

dWx
dη

+ ν∞
ν

ρ∞
ρ

−1
ρ∞
ρw

−1

energy equation Pr ν∞
ν

(−ηWx + 4Wy) dθ
dη

= 1
λ

dλ
dη

dθ
dη

+ d2θ
dη2

boundary
condition

η = 0 : wx = 0, wy = 0, θ = 1
η → ∞ : wx = 0, θ = 0

equations related to heat transfer

qx

(
defined as − λw

(
∂T
∂y

)
y=0

)
−λw(Tw − T∞)

(
1
4
Grx,∞

)1/4
x−1

(
dθ
dη

)
η=0

αx

(
defined as qx

(Tw−T∞)

)
−λw

(
1
4
Grx,∞

)1/4
x−1

(
dθ
dη

)
η=0

Qx

(
defined as

∫ x

0
qxb dx

)
− 4

3
bλw(Tw − T∞)

(
1
4
Grx,∞

)1/4 ( dθ
dη

)
η=0

αx

(
defined as Qx

(Tw−T∞)bx

)
− 4

3
λw

(
1
4
Grx,∞

)1/4
x−1

(
dθ
dη

)
η=0

Nux,w

(
defined asαxx

λw

)
Nux,w

( 1
4 Grx,∞)1/4 = −

(
dθ
dη

)
η=0

Nux,w

(
defined asαxx

λw

)
Nux,w

( 1
4 Grx,∞)1/4 = − 4

3

(
dθ
dη

)
η=0

−
(

dθ
dη

)
η=0

0.5764 + 0.1797 × Ln(Pr∞) + 0.0331 × Ln2(Pr∞)

(1.7 < Pr < 13.5) for laminar free convection of
water
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deviation of 0.45% only. The polynomial is suggested as the appropriate form
for expressions of the variations of ρ and λ with temperature. While, absolute
viscosity µ is expressed as a power function, and a polynomial is taken as its
exponent. These expressions are reliable according to the typical experimental
results.

The non-linear governing equations with corresponding boundary condi-
tions are solved numerically by the shooting method. The expressions related
to heat transfer dependent on the temperature gradient −(dθ/dη)η=0 are pre-
sented. The effect of variable thermophysical properties on water laminar free
convection along an isothermal vertical plate was investigated. The method
proposed to predict heat transfer for liquid laminar free convection in coordi-
nation of variable thermophysical properties is reliable.

The reported expression, (6.50), for prediction of Boussinesq solution could
be used to conveniently predict heat transfer of water laminar free convection,
if the Prandtl number Pr is replaced by a reference Prandtl number Pr∞.
The precision of such prediction can meet engineering application.

6.9 Calculation Examples

Question 1: A flat plate with b = 1m in width and x = 0.25m in length
is suspended vertically in the space of water. The ambient temperature is
t∞ = 5◦C, and the plate temperature is tw = 60◦C. The water properties are
as follows:

ν∞ = 1.5475 × 10−6 m2 s−1, P r∞ = 11.16 and ρ∞ = 999.8 kg m−3 at
t∞ = 5◦C; λw0.659W (m◦ C)−1 and ρw = 983.8 kg m−3 at tw = 60◦C.

Suppose the free convection is laminar, please calculate the free convection
heat transfer on the plate.

Solution. With the definition of local Grashof number shown in (6.10) we
have

Grx,∞ =
g |ρ∞/ρw − 1|x3

ν2
∞

=
9.8 × |999.8/983.8 − 1| × 0.253

(1.5475 × 10−6)2

= 1.04 × 109.

The flow of free convection can be regarded as laminar flow. With (6.51)
the dimensionless temperature gradient −(dθ/dη)η=0 for water laminar free
convection can be calculated by the following equation:

−
(

dθ

dη

)
η=0

= 0.5764 + 0.1797 × Ln(Pr∞) + 0.0331 × Ln2(Pr∞)

= 0.5764 + 0.1797 × Ln(11.16) + 0.0331 × Ln2(11.16)
= 1.2025.

(The evaluated value −(dθ/dη)η=0 is very close to the related typical value
1.212 got from Table 6.2). On this basis, with (6.49) the following average
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Nusselt number Nux,w can be obtained as

Nux,w = −4
3

(
1
4
Grx,∞

)1/4(dθ

dη

)
η=0

= (4/3) × (0.25 × 1.04 × 109)1/4 × 1.2025
= 203.6.

With the definition of average Nusselt number, Nux,w = αxx/λw, the
following average heat transfer coefficient can be calculated as

αx = Nux,w
λw

x
= 203.6 × 0.659

0.25
= 536.7W (m2 ◦C)−1.

With the definition of the average heat transfer coefficient, Qx = αx(tw −
t∞)× x× b we obtain the following total free convection heat transfer on the
plate

Qx = αx(tw − t∞) × x × b

= 536.7 × (60 − 5) × 0.25 × 1
= 7379.6W
= 7.3796 kW.

Question 2: For the flat plate of question 1, if the plate height is changed to
0.11 m, and temperatures are changed into t∞ = 60◦C and tw = 5◦C, please
calculate the corresponding heat transfer.

The water physical properties are as follows: kinematic viscosity ν∞ =
0.478 × 10−6 m2 s−1 , Prandtl number Pr∞ = 3 and the density ρ∞ =
983.1 kg m−3 at t∞ = 60◦C; thermal conductivity λw = 0.5625 and density
ρw = 999.8 kg m−3 at tw = 5◦C.

Solution. With the definition of local Grashof number shown in (6.10)
we get

Grx,∞ =
g |ρ∞/ρw − 1|x3

ν2
∞

=
9.8 × |983.1/999.8 − 1| × 0.113

(0.478 × 10−6)2

= 0.95357 × 109.

The free convection can be regarded as laminar flow.
With (6.52) the dimensionless temperature gradient −(dθ/dη)η=0 will be

−
(

dθ

dη

)
η=0

= 0.5764 + 0.1797 × Ln(Pr∞) + 0.0331 × Ln2(Pr∞)

= 0.5764 + 0.1797 × Ln(3) + 0.0331 × Ln2(3)
= 0.5764 + 0.1797 Ln(3) + 0.0331 (Ln(3))2

= 0.81387.
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On this basis, with (6.49) the following average Nusselt number Nux,w can
be obtained as

Nux,w = −4
3

(
1
4
Grx,∞

)1/4(dθ

dη

)
η=0

= (4/3) × (0.25 × 0.95357 × 109)1/4 × 0.81387
= 134.84.

With the definition of average Nusselt number, Nux,w = αxx/λw, the follow-
ing mean heat transfer coefficient can be calculated as

αx = Nux,w
λw

x
= 134.84 × 0.5625

0.11
= 689.5 W (m2 ◦C)−1

With the definition of the average heat transfer coefficient αx, Qx = αx(tw −
t∞) × x × b we have the following free convection heat transfer on the plate

Qx = αx(tw − t∞) × x × b

= 689.5 × (5 − 60) × 0.11 × 1
= −4171.5W
= −4.1715 kW.

The negative sign denotes the heat flux is to the plate from the liquid.
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7

Heat Transfer Deviation of Laminar Free
Convection Caused by Boussinesq
Approximation

Nomenclature

cp specific heat at constant pressure, J (kg K)−1

E∗
αx

relative predicted deviation of heat transfer coefficient
caused by Boussinesq approximation, 1 − (α∗

x/αx)
g gravitation acceleration, m s−2

Grx,f Grashof number related to average temperature
Tf ,

g|ρ∞/ρw−1|x3

νf
2

Grx,∞ local Grashof number for the free convection of gas on
isothermal vertical flat plate, g|Tw/T∞−1|x3

ν2
∞

local Grashof number for the free convection of liquid
on isothermal vertical flat plate, g|ρ∞/ρw−1|x3

ν2
∞

Nux,w local Nusselt number, αxx/λw

Nux,w average Nusselt number, αxx/λw

ncp
specific heat parameter of gas

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
nµλ overall temperature parameter
P pressure, N m−2

Pr Prandtl number
∆Pr relative difference of Prandtl number,

∆Pr, Prw−Pr∞
Prmax−Prmin

qx local heat transfer rate at position x per unit area on
the plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate, W

t temperature, ◦C
tf average temperature, (tw + t∞)/2, ◦C
T absolute temperature, K
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wx, wy velocity components in the x- and y- directions,
respectively, m s−1

Wx,Wy dimensionless velocity components in the x- and
y- directions, respectively

Greek symbols

αx local heat transfer coefficient, W (m K)−1

αx average heat transfer coefficient, W (m2 K)−1

δ boundary layer thickness, m
η dimensionless coordinate variable for boundary layer
θ dimensionless temperature
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3

ρ∞
ρ

− 1

ρ∞
ρw

− 1
buoyancy term

(dθ/dη)η=0 dimensionless temperature gradient on the plate
1
ρ

dp

dx
density factor

1
µ

dµ

dη
viscosity factor

1
λ

dλ

dη
thermal conductivity factor

Superscripts
∗ denotes the case under Boussinesq approximation

Subscripts
max maximum
min minimum
w at wall
δ thickness of boundary layer
∝ far from the wall surface

7.1 Introduction

In Chaps. 4 and 5 we have presented effects of variable thermophysical proper-
ties on laminar free convection of monatomic and diatomic gases, air and water
vapour as well as polyatomic gases along isothermal flat plate. In Chap.6 the
effects of variable thermophysical properties on laminar free convection of liq-
uids were presented. For liquid, the density, thermal conductivity and dynamic
viscosity are assumed to vary with temperature according to polynomial or
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power with the exponent of polynomial. While specific heat is regarded as
constant. For gases the thermal conductivity, dynamic viscosity and specific
heat are assumed to vary with absolute temperature according to a simple
power law, i.e. λ ∝ Tnλ , µ ∝ Tnµ and Cp ∝ Tncp . While, the density is taken
as inversely proportional to absolute temperature at constant pressure, i.e.
ρ ∝ 1/T , and Prandtl number is assumed being constant. Since the variation
of cp for monatomic and diatomic gases, air and water vapour is very small,
it is taken as constant. Consequently, the rigorous numerical solutions are
obtained and, on this basis, the curve-fitting formulations for prediction of
temperature gradient (dθ/dη)η=0 are derived, which is the key work for sim-
ple and reliable calculation of heat transfer of fluid laminar free convection.
These analyses originally presented in [1–4] extend the former ones reported
in the literatures [5–7].

In this chapter we will further present the validity of conventional heat
transfer prediction under Boussinesq approximation for fluid laminar free con-
vection.

7.2 Governing Equations of Fluid Laminar Free
Convection under Boussinesq Approximation

7.2.1 For Fluid Laminar Free Convection

Fluid thermophysical properties, such as thermal conductivity, dynamic vis-
cosity and density vary obviously with its temperature. Strictly speaking, the
Boussinesq approximation for fluid laminar free convection is valid only in a
special case that the wall temperature is very close to that of fluid bulk, i.e.
Tw → T∞. As we know, with Boussinesq approximation the fluid thermophys-
ical properties are regarded as constant, except for density in the buoyancy
term of momentum equation. With Boussinesq approximation the basis gov-
erning partial differential equations of the laminar free convection of fluid
along a vertical plate will be

∂

∂x
(wx) +

∂

∂y
(wy) = 0, (7.1)

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ν

∂2wx

∂y2
+ g

∣∣∣∣ρ∞ − ρ

ρ

∣∣∣∣ , (7.2)

wx
∂t

∂x
+ wy

∂t

∂y
= a

∂2t

∂y2
, (7.3)

with boundary conditions

y = 0 : wx = 0, wy = 0, t = tw, (7.4)
y → ∞ : wx → 0, t = t∞. (7.5)
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Applying the velocity component method, the following transformation
variables can be applied for similarity transformation of the governing partial
differential (7.1)–(7.3) with the boundary conditions (7.4) and (7.5):

η =
x

y

(
1
4
Grx,f

)1/4

, (7.6)

Grxf =
g|ρ∞/ρw − 1|x3

vf
2

, (7.7)

θ =
t − t∞
tw − t∞

, (7.8)

Wx =
[
2
√

gx|ρ∞/ρw − 1|1/2
]−1

wx, (7.9)

Wy =

[
2
√

gx|ρ∞/ρw − 1|1/2

(
1
4
Grx,f

)−1/4
]−1

wy, (7.10)

where subscript f denotes a case for average temperature, i.e.

tf = (tw + t∞)/2. (7.11)

Here, Grx,f denotes the Grashof number at the average temperature tf ,
while, η, θ, Wx and Wy are dimensionless coordinate variable, dimensionless
temperature and dimensionless velocities components, respectively, related to
Boussinesq approximation.

With the earlier assumed transformation variables from (7.6) to (7.11), the
governing partial (7.1)–(7.3) with the boundary conditions (7.4) and (7.5) of
the fluid laminar free convection are changed into the following dimensionless
ones:

(2Wx − η
dWx

dη
+ 4

dWy

dη
= 0, (7.12)

Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη
=

d2Wx

dη2
+

ρ∞
ρ − 1

ρ∞
ρw

− 1
, (7.13)

(−ηWx + 4Wy)
dθ

dη
=

1
Pr

d2θ

dη2
, (7.14)

with boundary conditions

η = 0, Wx = 0, Wy = 0, θ = 0, (7.15)
η → 0, Wx → 0, θ → 0. (7.16)

Equations (7.12)–(7.14) with the boundary condition equations (7.15) and
(7.16) can be regarded as typical dimensionless governing equations of fluid
laminar free convection for Boussinesq approximation.
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7.2.2 For Gas Laminar Free Convection

In principle, the governing equations (7.1)–(7.3) with their boundary condition
equations (7.4) and (7.5) are valid both for Newtonian liquid and gas laminar
free convections under Boussinesq approximation. However, for gas laminar
free convection, the following further simplifications are necessary. For simpli-
fication of the gas laminar free convection for Boussinesq approximation, it is
convenient to express the temperature by absolute temperature T , and then,
the temperature t in (7.3)–(7.5), (7.8) and (7.11) is replaced by the absolute
temperature T to still keep the identification of these equations. By using the
simple power law ρ∞/ρ = T/T∞ of gas shown in Chap. 4, theoretical mod-
els in Sect. 7.2.1 can be rewritten as follows for gas laminar free convection.
With Boussinesq approximation the basic fluid governing partial differential
equations of the laminar free convection of gas along a vertical plate will be

∂

∂x
(wx) +

∂

∂y
(wy) = 0, (7.1)

(
wx

∂wx

∂x
+ wy

∂wx

∂y

)
= ν

∂2wx

∂y2
+ g

∣∣∣∣T − T∞
T∞

∣∣∣∣ , (7.2a)

wx
∂T

∂x
+ wy

∂T

∂y
= a

∂2T

∂y2
, (7.3a)

with boundary conditions

y = 0 : wx = 0. wy = 0, T = Tw, (7.4a)
y → ∞ : wx → 0, T = T∞. (7.5a)

It is obvious that the earlier expressions for transformation variables,
(7.6)–(7.10), and the transformed ordinary equations (7.12)–(7.14) with the
bounadary conditions, (7.15) and (7.16) for fluid laminar free convection un-
der Boussinesq approximation still keep for the gas laminar free convection,
only the related density ratios are changed to the absolute temperature ratios
by means of the simple power law. Obviously, the theoretical models in this
section for gas laminar free convection under Boussinesq approximation is only
special case of those presented in Sect. 7.2.1 for fluid laminar free convection
under Boussinesq approximation.

7.3 Heat Transfer Deviation of Liquid Laminar Free
Convection Caused by Boussinesq Approximation

7.3.1 Boussinesq Solutions for Laminar Free Convection

It can be seen from (7.12)–(7.14) that the Boussinesq approximation solu-
tions of the liquid free convection depend on Pr in the case of ρ∞ → ρw,
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Table 7.1. Boussinesq solutions (dθ/dη)∗η=0 related to Pr range for water

Pr 1.76 1.97 2.23 2.57 3 3.57 4.34 5.42 6.99 9.42 11.16

−
(

dθ
dη

)∗
η=0

(1)

0.686 0.714 0.740 0.779 0.814 0.861 0.914 0.971 1.050 1.137 1.210

−
(

dθ
dη

)∗
η=0

(2)

0.6886 0.7135 0.7418 0.7756 0.8138 0.8587 0.9115 0.9747 1.0510 1.1459 1.2025

−
(

dθ
dη

)∗
η=0

(1): Numerical solutions

−
(

dθ
dη

)∗
η=0

(2): Evaluated results by (7.17)

0

0.5

1

1.5

0 5 10 15
Pr

h= 0-(dq / dh)*

Fig. 7.1. The Boussinesq solutions −(dθ/dη)∗η=0 of laminar free convection in range
of water Prandtl number

i.e. t∞ → tw. Let us take water free convection as an example. Based on Ta-
ble 6.3 the Boussinesq solutions (dθ/dη)∗η=0 are shown in Table 7.1 and plotted
here in Fig. 7.1.

According to the curve-fit equation (6.50) the Boussinesq solution for lam-
inar free convection can be expressed as follows for the range of water Prandtl
number:

−
(

dθ

dη

)∗

η=0

= 0.5764 + 0.1797 ln(Pr) + 0.0331 ln2(Pr). (7.17)

The results of Boussinesq solutions predicted by using (7.17) are also listed
in Table 7.1 for the range of water Prandtl number. It is seen that the predicted
results are very identical to the numerical results.

7.3.2 Models for Predicted Deviation on Heat Transfer Caused
by Boussinesq Approximation

Consulting the heat transfer analysis described in Chap. 6, the following
equations can be obtained for heat transfer coefficient of liquid laminar free
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convection, respectively, with considerations of Boussinesq approximation and
variable thermophysical properties:

α∗
x = −λw

(
1
4
Grx,f

)1/4

x−1

(
dθ

dη

)∗

η=0

, (7.18)

αx = −λw

(
1
4
Grx,∞

)1/4

x−1

(
dθ

dη

)
η=0

. (7.19)

Here, the superscript asterisk * denotes the case for consideration of
Boussinesq approximation in order to distinguish it from the case for con-
sideration of variable thermophysical properties. λw is defined as the fluid
thermal conductivity at the wall temperature tw. While, Grx,f and Grx,∞
denote average Grashof number, and local Grashof number, respectively.

If Eαx
∗ is taken as relative predicted deviation of heat transfer coefficient

due to the Boussinesq approximation, it can be expressed as

Eαx
∗ = 1 − αx∗

αx
. (7.20)

With (7.18) and (7.19), (7.20) is changed into

Eαx
∗ = 1 −

(
Grx,f

Grx,∞

)1/4

(
dθ
dη

)
η=0

∗(
dθ
dη

)
η=0

. (7.21)

With (7.7) and (6.10), (7.21) becomes

Eαx
∗ = 1 −

(
ν∞
νf

)1/2

(
dθ
dη

)
η=0

∗(
dθ
dη

)
η=0

, (7.22)

which can be used for prediction of the relative deviation of heat transfer coef-
ficient for fluid laminar free convection caused by Boussinesq approaximation.
It is seen here that the multiplication of the ratios (ν∞/νf)1/2 and(

dθ
dη

)∗
η=0(

dθ
dη

)
η=0

dominate the deviation.
For prediction of heat transfer deviation E∗

αx of liquid laminar free convec-
tion, here we induce relative difference of Prandtl number, ∆Pr, defined as

∆Pr =
Prw − Pr∞

Prmax − Prmin
, (7.23)

where Prw and Pr∞ denote the liquid Prandtl numbers at wall and bulk
temperatures, respectively, while, Prmax and Prmin denote the liquid maxi-
mum and minimum Prandtl numbers, respectively. The relative difference of
Prandtl number ∆Pr will be used to investigate Eαx

∗ variation late.
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7.3.3 Prediction of Heat Transfer Deviation E∗
αx

for Water Laminar Free Convection

Now, water laminar free convection is taken here as an example for prediction
of deviation of heat transfer of fluid laminar free convection caused by Boussi-
nesq approximation. A system of values of ratios (ν∞/νf)

1/2 for water laminar
free convection are evaluated here at the given Tw and T∞, and the results
are listed in Table 7.2 and plotted in Fig. 7.2, respectively, varying with the
relative difference of Prandtl number, ∆Pr. While, according to Chap. 6, the
related temperature gradients (dθ/dη)η=0 and (dθ/dη)∗η=0 are obtained and
listed in Table 7.2 where the reference temperature of (dθ/dη)∗η=0 is taken as
tf = (tw + t∞)/2. On this basis, the predicted values of

(
dθ
dη

)
η=0

∗(
dθ
dη

)
η=0

are evaluated, listed in Table 7.2, and plotted in Fig. 7.3 varying with the rel-
ative difference of Prandtl number, ∆Pr. Here Prmax and Prmin are taken as
13.44 at 0◦C and 1.76 at 100◦C, respectively. It is seen in Fig. 7.2 that with
increase of ∆Pr, the value of (ν∞/νf)1/2 decreases. If relative difference of
Prandtl number, ∆Pr, tends to zero, the value (ν∞/νf)1/2 will tend to unity.

It is seen in Fig. 7.3 that with increase of ∆Pr, the ratio (dθ/dη)η=0 ∗
/(dθ/dη)η=0 will increase. On the other hand, if ∆Pr tends to zero, the ratio
(dθ/dη)η=0 ∗ /(dθ/dη)η=0 will tend to unity.

Finally, for water laminar free convection the relative deviations of heat
transfer coefficient, Eαx

∗, are predicted by using (7.22) and the results are
listed in Table 7.2 and plotted in Fig 7.4 with relative Prandtl number ∆Pr.
It is founds that with increase of relative Prandtl number ∆Pr, the value
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(n� � nf)
1/2
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Fig. 7.2. The ratio (ν∞/νf)
1/2 varies with ∆Pr for water laminar free convection
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Table 7.2 (1). Predicted heat transfer deviation Eαx∗ with ratio (ν∞/νf)
1/2 and

(dθ/dη)η=0 ∗ /(dθ/dη)η=0 for water laminar free convection

tw
(◦C)

Prw t∞
(◦C)

Pr∞ ∆Pr tf
(◦C)

ν∞
×106

(m2 s−1)

νf

×106

(m2 s−1)

(ν∞/νf)
1/2 Prf

90 1.97 10 9.42 −0.638 50 1.306 0.556 1.5326 3.57
70 2.57 10 9.42 −0.586 40 1.306 0.659 1.4078 4.34
50 3.57 10 9.42 −0.501 30 1.306 0.805 1.2737 5.42
30 5.42 10 9.42 −0.342 20 1.306 1.006 1.1394 6.99

100 1.76 20 6.99 −0.448 60 1.006 0.478 1.4507 3
80 2.23 20 6.99 −0.408 50 1.006 0.556 1.3451 3.57
60 3 20 6.99 −0.342 40 1.006 0.659 1.2355 4.34
40 4.34 20 6.99 −0.227 30 1.006 0.805 1.1179 5.42
70 2.57 30 5.42 −0.244 50 0.805 0.556 1.2033 3.57
50 3.57 30 5.42 −0.158 40 0.805 0.659 1.1052 4.34
10 9.42 30 5.42 0.342 20 0.805 1.006 0.8945 6.99

100 1.76 40 4.34 −0.221 70 0.659 0.415 1.2601 2.57
80 2.23 40 4.34 −0.181 60 0.659 0.478 1.1742 3
60 3 40 4.34 −0.115 50 0.659 0.556 1.0887 3.57
20 6.99 40 4.34 0.227 30 0.659 0.805 0.9048 5.42
90 1.97 50 3.57 −0.137 70 0.556 0.415 1.1575 2.57
70 2.57 50 3.57 −0.086 60 0.556 0.478 1.0785 3
30 5.42 50 3.57 0.158 40 0.556 0.659 0.9185 4.34
10 9.42 50 3.57 0.501 30 0.556 0.805 0.8311 5.42

100 1.76 60 3 −0.106 80 0.478 0.365 1.1444 2.23
80 2.23 60 3 −0.066 70 0.478 0.415 1.0732 2.57
40 4.34 60 3 0.115 50 0.478 0.556 0.9272 3.57
20 6.99 60 3 0.342 40 0.478 0.659 0.8517 4.34
90 1.97 70 2.57 −0.051 80 0.415 0.365 1.0663 2.23
50 3.57 70 2.57 0.0856 60 0.415 0.478 0.9318 3
30 5.42 70 2.57 0.2440 50 0.415 0.556 0.8640 3.57

100 1.76 80 2.23 −0.040 90 0.365 0.326 1.0581 1.97
40 4.34 80 2.23 0.1807 60 0.365 0.478 0.8738 3
70 2.57 90 1.97 0.0514 80 0.326 0.365 0.9451 2.23
50 3.57 90 1.97 0.137 70 0.326 0.415 0.8863 2.57
30 5.42 90 1.97 0.295 60 0.326 0.478 0.8258 3
10 9.42 90 1.97 0.638 50 0.326 0.556 0.7657 3.57
80 2.23 100 1.76 0.040 90 0.295 0.326 0.9513 1.97
60 3 100 1.76 0.106 80 0.295 0.365 0.8990 2.23
40 4.34 100 1.76 0.221 70 0.295 0.415 0.8431 2.57
20 6.99 100 1.76 0.448 60 0.295 0.478 0.7856 3
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Table 7.2 (2). Predicted heat transfer deviation Eax with ratio (ν∞/νf)
1/2 and

(dθ/dη)η=0 ∗ /(dθ/dη)η=0 for water laminar free convection

tw
(◦C)

Prw t∞
(◦C)

Pr∞ ∆Pr
(

dθ
dη

)∗
η=0

(
dθ
dη

)
η=0

( dθ
dη

)η=0∗
( dθ
dη

)η=0
E∗

αx

(%)

90 1.97 10 9.42 −0.638 0.861 1.199 0.7182 −10.06
70 2.57 10 9.42 −0.586 0.914 1.175 0.7779 −9.51
50 3.57 10 9.42 −0.501 0.971 1.150 0.8443 −7.55
30 5.42 10 9.42 −0.342 1.050 1.131 0.9284 −5.78

100 1.76 20 6.99 −0.448 0.814 1.100 0.74 −7.35
80 2.23 20 6.99 −0.408 0.861 1.083 0.7950 −6.94
60 3 20 6.99 −0.342 0.914 1.068 0.8558 −5.74
40 4.34 20 6.99 −0.227 0.971 1.054 0.9213 −2.99
70 2.57 30 5.42 −0.244 0.861 0.994 0.8662 −4.23
50 3.57 30 5.42 −0.158 0.914 0.983 0.9298 −2.77
10 9.42 30 5.42 0.342 1.050 0.983 1.0682 4.45

100 1.76 40 4.34 −0.221 0.779 0.938 0.8305 −4.65
80 2.23 40 4.34 −0.181 0.814 0.929 0.8762 −2.88
60 3 40 4.34 −0.115 0.861 0.920 0.9359 −1.89
20 6.99 40 4.34 0.227 0.971 0.911 1.0659 3.56
90 1.97 50 3.57 −0.137 0.779 0.874 0.8913 −3.17
70 2.57 50 3.57 −0.086 0.814 0.867 0.9389 −1.26
30 5.42 50 3.57 0.158 0.914 0.856 1.0678 1.92
10 9.42 50 3.57 0.501 0.971 0.856 1.1343 5.73

100 1.76 60 3 −0.106 0.740 0.827 0.8948 −2.40
80 2.23 60 3 −0.066 0.779 0.821 0.9488 −1.83
40 4.34 60 3 0.115 0.861 0.810 1.0630 1.44
20 6.99 60 3 0.342 0.914 0.807 1.1326 3.54
90 1.97 70 2.57 −0.051 0.740 0.781 0.9475 −1.03
50 3.57 70 2.57 0.0856 0.814 0.772 1.0544 1.75
30 5.42 70 2.57 0.2440 0.861 0.769 1.1196 3.27

100 1.76 80 2.23 −0.040 0.714 0.746 0.9571 −1.27
40 4.34 80 2.23 0.1807 0.814 0.735 1.1075 3.22
70 2.57 90 1.97 0.0514 0.740 0.710 1.0423 1.50
50 3.57 90 1.97 0.137 0.779 0.707 1.1018 2.34
30 5.42 90 1.97 0.295 0.814 0.705 1.1546 4.65
10 9.42 90 1.97 0.638 0.861 0.704 1.2230 6.35
80 2.23 100 1.76 0.040 0.714 0.685 1.0423 0.85
60 3 100 1.76 0.106 0.740 0.683 1.0835 2.60
40 4.34 100 1.76 0.221 0.779 0.681 1.1439 3.56
20 6.99 100 1.76 0.448 0.814 0.679 1.1988 5.82
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Fig. 7.3. The ratio
(dθ/dη)η=0∗
(dθ/dη)η=0

varies with ∆Pr for water laminar free convection
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Fig. 7.4. The predicted ratio Eαx∗ varies with ∆Pr for water laminar free convec-
tion

of Eαx
∗ increases. On the other hand, with increasing the absolute value

|∆Pr|, the absolute value |Eαx
∗| will increase. If the value of ∆Pr de-

creases from 0, −0.2, −0.3, −0.5 to −0.6, the value of Eαx
∗ will vary from

0, −3.5%, −6%, −8.5% to −10.5%. While, if the value of ∆Pr increases
from 0, 0.2, 0.3, 0.5 to 0.6, the value of Eαx

∗ will vary from 0, 3, 5, 7 to 8%,
respectively.

It follows that the predicted heat transfer deviation Eαx
∗ for liquid lami-

nar free convection caused by Boussinesq approximation are obvious, due to
ignoring variable thermophysical properties.
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7.4 Heat Transfer Deviation of Gas Laminar Free
Convection Caused by Boussinesq Approximation

7.4.1 Boussinesq Solutions for Gas Laminar Free Convection

Equations (7.12), (7.13) and (7.14) with the boundary condition equations
(7.15) and (7.16) are solved for gas laminar free convection in the range of
gas Prandtl number, from 0.61 to 1 under Boussinesq approximation. The
numerical solutions for the Boussinesq approximation are listed and plotted
in Table 7.3 and Fig. 7.5, respectively.

By using a curve matching method, an equation for prediction of Boussi-
nesq solutions (dθ/dη)η=0∗ of gas laminar free convection in the range of gas
Prandtl number is obtained as follows:

Table 7.3. Boussinesq solutions related to gas laminar free convection

Pr
(

dθ
dη

)
η=0

∗ (1)
(

dθ
dη

)
η=0

∗ (2) Pr
(

dθ
dη

)
η=0

∗ (1) ( dθ
dη

)η=0∗ (2)

0.61 0.475 0.47511 0.74 0.50964 0.51099
0.622 0.47841 0.47868 0.75 0.51211 0.51349
0.63 0.48066 0.48106 0.8 0.52411 0.52549
0.65 0.48619 0.48687 0.81 0.52644 0.52781
0.68 0.49426 0.49527 0.83 0.53105 0.53234
0.7 0.49949 0.50066 0.85 0.53557 0.53677
0.71 0.50207 0.50330 0.87 0.54001 0.54110
0.715 0.50334 0.50460 0.88 0.54220 0.54322
0.72 0.50461 0.50590 0.9 0.54653 0.54740
0.73 0.50714 0.50846 0.95 0.55704 0.55746
0.733 0.50789 0.50923 1 0.56714 0.567

(dθ/dη)η=0∗ (1): numerical solution
(dθ/dη)η=0∗ (2): predicted value by using (7.24)
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Fig. 7.5. Boussinesq solutions related to gas laminar free convection
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−
(

dθ

dη

)∗

η=0

= ψ(Pr) = 0.567 + 0.186 × ln Pr (0.6 ≤ Pr ≤ 1). (7.24)

The Boussinesq approximation solutions −(dθ/dη)η=0∗ related to gas lam-
inar free convection are listed in Table 7.3 also. It is seen from Table 7.3 that
the evaluated Boussinesq solutions agree very well with the related numerical
solutions.

7.4.2 Models on Predicted Deviation of Heat Transfer
of Gas Laminar Free Convection Caused
by Boussinesq Approximation

For gas laminar free convection, according to simple power law provided in
(4.39), the ratio (ν∞/νf)1/2 can be expressed as

(
ν∞
νf

)1/2

=
(

T∞
Tf

)nµ+1
2

. (7.25)

With (7.11) for the average temperature Tf , the ratio (ν∞/νf)1/2 can be
further expressed as:

(
ν∞
νf

)1/2

=

(
T∞

Tw+T∞
2

)(nµ+1)/2

=

(
2

Tw
T∞

+ 1

)(nµ+1)/2

. (7.26)

According to Chap. 4, the temperature gradient (dθ/dη)η=0 for gas laminar
free convection with consideration of variable thermophysical properties can
be described by the following very accurate curve-fitting equations

−
(

dθ

dη

)
η=0

= ψ(Pr)
(

Tw

T∞

)−m

, (7.27)

where

ψ(Pr) = 0.567 + 0.186 × ln Pr(0.6 � Pr � 1), (7.28)
m = 0.35nλ + 0.29nµ + 0.36 (Tw/T∞ > 1), (7.29)
m = 0.42nλ + 0.34nµ + 0.24 (Tw/T∞ < 1). (7.30)

With (7.24) and (7.27), the ratio
(

dθ
dη

)
η=0

∗(
dθ
dη

)
η=0
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is expressed as (
dθ
dη

)
η=0

∗(
dθ
dη

)
η=0

=
(

Tw

T∞

)m

. (7.31)

With (7.26) and (7.31), (7.22) is changed into the following equation for
gas laminar free convection:

Eαx
∗ = 1 −

(
2

Tw
T∞

+ 1

)nµ+1
2

·
(

Tw

T∞

)m

. (7.32)

It is clear that (7.32) is suitable for gas laminar free convection. Equa-
tion (7.32), (7.29) and (7.30) are exact equations for prediction of the rela-
tive deviation Eαx

∗ of heat transfer coefficient for gas laminar free convection
caused by Boussinesq approximation. It is clear that Eαx

∗ is dominated by
nµ, nλ and boundary temperature ratio (Tw/T∞).

7.4.3 Prediction Results of Deviation E∗
αx

for Gas Laminar Free Convection

Some gases such as air, CO and water vapour are taken as examples for
prediction of the deviation Eαx

∗ for gas laminar free convection. According
to [1] and [2], the Prandtl numbers Pr are taken as 0.7, 0.72 and 1, viscous
parameters nµ are taken as 0.68, 0.71 and 1.04, and the thermal conductivity
parameters nλ are taken as 0.81, 0.83 and 1.185 for air, CO and water vapour,
respectively. According to (7.29), (7.30) and (7.32), the values

(
2

Tw
T∞

+ 1

)nµ+1
2

,

(Tw/T∞)m and Eαx
∗ are calculated for the range of temperature ratio Tw/T∞

from 0.7 to 1.9, listed in Table 7.4 in detail and plotted in Figs. 7.6–7.8, re-
spectively. It is seen from Table 7.4 and Fig. 7.6 that the value

(
2

Tw
T∞

+ 1

)nµ+1
2

depends on nµ. With increasing the temperature ratio Tw/T∞, the value

(
2

Tw
T∞

+ 1

)nµ+1
2

will decrease. If the temperature ratio Tw/T∞ tends to unity, the value
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(
2

Tw
T∞

+ 1

)nµ+1
2

will tend to unity also.
It is seen from Table 7.4 and Fig. 7.7 that the value (Tw/T∞)m depends

on nµ and nλ. With increasing the temperature ratio Tw/T∞, the value

Table 7.4. Predicted deviation Eαx∗ with factor
(

2
(Tw/T∞)+1

)(nµ+1)/2

and

(Tw/T∞)m for air laminar free convection

air nµ = 0.68, nλ = 0.81, P r = 0.7

Tw/T∞ m

(
2

Tw
T∞ +1

)(nµ+1)/2 (
Tw
T∞

)m
Eαx∗

1.9 0.8329 0.73189854 1.706766 −0.24918
1.8 0.8329 0.75379361 1.63161 −0.2299
1.7 0.8329 0.77717645 1.555754 −0.2091
1.5 0.8329 0.82907838 1.401737 −0.16215
1.4 0.8329 0.85800092 1.323458 −0.13553
1.3 0.8329 0.8892294 1.244238 −0.10641
1.2 0.8329 0.92306045 1.163992 −0.07444
1.1 0.8329 0.95984474 1.08262 −0.03915
1 0.8329 1 1 0
0.9 0.801 1.04402806 0.919069 0.040466
0.8 0.801 1.09253735 0.836325 0.086284
0.7 0.801 1.1462731 0.751491 0.138587
0.6 0.801 1.20615858 0.6642 0.198869
0.5 0.801 1.27335219 0.573951 0.269158

CO nµ = 0.71 nλ = 0.83, P r = 0.72

Tw/T∞ m

(
2

Tw
T∞ +1

)(nµ+1)/2 (
Tw
T∞

)m
Eαx∗

1.9 0.8492 0.72783068 1.72471586 −0.25530112
1.8 0.8492 0.749998733 1.64731788 −0.23548632
1.7 0.8492 0.773685803 1.56926838 −0.21412067
1.5 0.8492 0.826307965 1.41103146 −0.16594653
1.4 0.8492 0.855657644 1.33073607 −0.13865449
1.3 0.8492 0.887367148 1.2495703 −0.10882764
1.2 0.8492 0.921741739 1.16745652 −0.0760934
1.1 0.8492 0.959142531 1.08430302 −0.04000115
1 0.8492 1 1 0
0.9 0.8204 1.044831645 0.91719263 0.04168812
0.8 0.8204 1.094265368 0.83271239 0.088791673
0.7 0.8204 1.149070879 0.74630858 0.142438549
0.6 0.8204 1.210202543 0.6576507 0.204109452
0.5 0.8204 1.278858869 0.56628491 0.275801516
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Table 7.4. Continued

water vapour nµ = 1.04 nλ = 1.185, P r = 1

Tw/T∞ m

(
2

Tw
T∞ +1

)(nµ+1)/2 (
Tw
T∞

)m
Eαx∗

1.9 1.07635 0.68454915 1.99543 −0.3660
1.8 1.07635 0.70949511 1.88262 −0.3357
1.7 1.07635 0.73630806 1.770287 −0.3035
1.5 1.07635 0.79643766 1.547162 −0.2322
1.4 1.07635 0.83030017 1.436431 −0.1927
1.3 1.07635 0.86713797 1.326304 −0.1501
1.2 1.07635 0.90735965 1.216821 −0.1041
1.1 1.07635 0.95145207 1.108034 −0.0542
1 1.07635 1 1 0
0.9 1.0913 1.05371199 0.891384 0.0607
0.8 1.0913 1.11345492 0.783866 0.1272
0.7 1.0913 1.18030078 0.677572 0.2003
0.6 1.0913 1.25559106 0.572659 0.28010
0.5 1.0913 1.34102697 0.469338 0.3706

0.6

0.8

1

1.2

1.4

0.5 1 1.5 2

1

2

3

Tw/T`

)
2

(
(nm+ 1)/2

Tw / T� + 1

Fig. 7.6. The value
(

2
Tw/T∞+1

)(nµ+1)/2

(i.e. ratio (ν∞/νf)
1/2) varies with Tw/T∞

for laminar free convection of some gases. (1) Air, (2) CO, and (3) water vapour

(Tw/T∞)m will increase. If the temperature ratio Tw/T∞ tends to unity, the
value (Tw/T∞)m will tend to unity also.

It is seen from Table 7.4 and Fig. 7.8 that the predicted deviation Eαx
∗ is

very sensitive due to Boussinesq approximation. With increasing the absolute
∣∣∣∣1 − Tw

T∞

∣∣∣∣ ,
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Fig. 7.7. The value (Tw/T∞)m

(
i.e. ratio

(
dθ
dη

)
η=0

∗(
dθ
dη

)
η=0

)
varies with Tw/T∞ for laminar

free convection of some gases. (1) Air, (2) CO, and (3) water vapour

-0.4

-0.2

0

0.2

0.4

0.5 1 1.5 2

1

2

3

Tw /T`

*xaE

Fig. 7.8. Predicted relative deviation Eαx∗ varying with the temperature ratio
Tw/T∞ for laminar free convection of some gases. (1) Air, (2) CO, and (3) water
vapour. (1) for air, (2) for water vapour and (3) for NH3
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the value of E∗
αx

will increase rapidly. If the temperature ratio Tw/T∞ tends
to unity, the value of E∗

αx
will tend to zero.

It is seen that the absolute value of deviation Eαx
∗ of water vapour laminar

free convection is larger than that for CO free convection, while, the absolute
value of deviation E∗

αx
of the free convection with CO is little bit larger than

that with air. Observing the viscosity parameter nµ or the thermal conduc-
tivity parameter nλ, it is found that water vapour has much larger nµ and
nλ than those CO has, while, CO has little bit larger nµ and nλ than those
air has. The value of nµ or nλ reflects the degree of variation of gas absolute
viscosity or thermal conductivity with temperature. Therefore, with increase
in the value nµ or nλ, the absolute value of deviation E∗

αx
increases.

From the E∗
αx

prediction, it is possible to investigate the validity of gas
laminar free convection under Boussinesq approximation. For example, with
temperature ratio Tw/T∞ between 0.9 and 1.1, a small range of the value
Tw/T∞, the predicted deviations E∗

αx
are between 4 and −3.9% for air laminar

free convection, between 4.17 and −4% , for CO laminar free convection, and
between 6.1 and −5.4% for water vapour laminar free convection. It can be
seen that the valid range of temperature ratio Tw/T∞ is very limited for
Boussinesq approximation of gas laminar free convection,

In principle, only when Tw/T∞ → 1, the deviation E∗
αx

tents to zero,
which means that only the situation for Tw/T∞ → 1 is strictly suitable for
Boussinesq approximation.

7.5 Summary

For prediction of heat transfer deviation for fluid laminar free convection
caused by Boussinesq approximation, the related models can be summarized
in Table 7.5.

7.6 Remarks

From the analysis and prediction of heat transfer coefficient deviation for fluid
laminar free convection caused by Boussinesq approximation, the following
remarks are obtained:

It is clear that the predicted deviation E∗
αx

of heat transfer coefficient for
fluid laminar free convection is dominated by the square root of a kinetic ratio,
(v∞/vf)

1/2, and a temperature gradient ratio, (dθ/dη)∗η=0 / (dθ/dη)η=0.
For liquid laminar free convection it is significant to transform the temper-

ature diference into a relative difference of Prandtl number in order to investi-
gate E∗

αx
variation. It is found that with increasing the absolute value |∆ Pr|

the absolute value
∣∣E∗

αx

∣∣ will increase. For water laminar free convection, for
example, if the value ∆ Pr varies from 0 to −0.2,−0.3,−0.5 and −0.6, the pre-
dicted deviation of heat transfer coefficient will vary from 0 to −3.5,−6,−8.5
to –10.5%. While, if the value of ∆ Pr varies from 0 to 0.2, 0.3, 0.5 and 0.6,
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the value of E∗
αx

will vary from 0, 3, 5, 7 to 8%, respectively. If Boussinesq
approximation is applied to predict water laminar free convection, the relative
Prandtl number ∆ Pr is suggested to be limited between – 0.3 and 0.3. Only
with such condition, it could be sure that the predicted relative deviation E∗

αx

of heat transfer coefficient is between −6 and 5%.
By means of the theoretical models for treatment of variable thermophys-

ical properties provided in [1], for gas laminar free convection, the kinematic
ratio (v∞/vf)

1/2 and temperature gradient ratio (dθ/dη)∗η=0 / (dθ/dη)η=0 are

transformed into the factors
(

2
(Tw/T∞)+1

)(nµ+1)/2

and (Tw/T∞)m, respec-
tively. Then, it is found that E∗

αx
depends on nµ, nλ and Tw/T∞ for laminar

free convection of monatomic and diatomic gases, air and water vapour.
The predicted deviation E∗

αx
is great also for gas laminar free convection

under Boussinesq approximation. For temperature ratios Tw/T∞ between 0.9
and 1.1, the predicted deviations E∗

αx
is between 4 and −3.9% for air laminar

free convection, between 4.17 and −4% for CO laminar free convection, and
between 6.1 and −5.4% for water vapour laminar free convection. It follows
that the validity of the Boussinesq approximation is also very limited for gas
laminar free convection.

7.7 Calculation example

Example 1: A flat plate with b = 1m in width and x = 0.175m in length
is suspended vertically in the space of water. The ambient temperature is at
t∞ = 10◦ C, and the plate temperature is tw = 50◦ C. The water physical
properties are as follows: water kinetic viscosity ν∞ = 1.306 × 10−6 m2 s−1

, density ρ∞ = 999.7 kg m−3 and Pr∞ = 9.52 at the temperature t∞ =
10◦ C; ρw = 988.1 kg m−3 at wall temperature and tw = 50◦ C. Suppose the
free convection is laminar, please calculate the heat transfer deviation E∗

αx
.

Solution:

tf = (tw + t∞) /2 = (50 + 10)/2 = 30◦ C

Then, Prf = 5.42 and νf = 0.805 × 10−6 m2 s−1 at tf = 30◦ C for water.
According to (7.7), the local Grashof number is evaluated as

Grx,f =
g |ρ∞/ρw − 1|x3

ν2
f

=
9.8 × |999.7/988.1 − 1| × 0.1753

(0.805 × 10−6)2

= 951492898

= 0.951492898 × 109.



7.7 Calculation example 137

According to (7.17), the Boussinesq approximation for (dθ/dη)∗η=0 can be
predicted as

−
(

dθ

dη

)∗

η=0

= 0.5764 + 0.1797 ln (Prf) + 0.0331 ln2 (Prf)

= 0.5764 + 0.1797 ln(5.42) + 0.0331 ln2(5.42)
= 0.9746.

While, the temperature gradient − (dθ/dη)η=0 at the reference temperature
t∞ = 10◦ C(Pr∞ = 9.42) for water laminar free convection can be pre-
dicted as

−
(

dθ

dη

)
η=0

= 0.5764 + 0.1797 ln (Pr∞) + 0.0331 ln2 (Pr∞)

= 0.5764 + 0.1797 ln(9.42) + 0.0331 ln2(9.42)
= 1.1459.

According to (7.22) the predicted deviation of heat transfer for the
water laminar free convection under Boussinesq approximation could be
evaluated as

E∗
αx

= 1 −
(

ν∞
νf

)1/2

(
dθ
dη

)∗
η=0(

dθ
dη

)
η=0

= 1 −
(

1.306
0.805

)1/2 0.9746
1.1459

= −0.08331
= −8.33%. (7.33)

Example 2: A flat plate with b = 2m in width and x = 0.25m in length is
suspended vertically in air. The ambient temperature is t∞ = 20◦ C. Suppose
the free convection is laminar, calculate the heat transfer deviation E∗

αx
for

laminar free convection at the temperature ratio Tw/T∞ = 1.1, 1.2, 1.4, 1.7
and 2.1.

Solution:According to (7.32) the predicted deviation of heat transfer for gas
free convection under Boussinesq approximation could be evaluated as

E∗
αx

= 1 −
(

2
Tw

T∞+1

)(nµ+1)/2(
Tw

T∞

)m

, (7.34)

where
m = 0.35nλ + 0.29nµ + 0.36 (Tw/T∞ > 1) (7.35)



138 7 Heat Transfer Deviation of Laminar Free Convection

Table 7.6. Calculated results for question 2

Tw/T∞ m

(
2

Tw
T∞ +1

)(nµ+1)/2 (
Tw
T∞

)m
E∗

αx

(%)

1.1 0.8407 0.959845 1.083425 −3.99
1.2 0.8407 0.92306 1.165649 −7.596
1.4 0.8407 0.858001 1.326936 −13.85
1.7 0.8407 0.777176 1.562206 −21.41
2.1 0.8407 0.692024 1.865906 −29.125

According to Table 4.1, it is found that nµ = 0.68 and nλ = 0.81 for air. Then,
m = 0.35nλ + 0.29nµ + 0.36 = 0.35 + 0.81 + 0.29 × 0.68 + 0.36 = 0.8407. On
this basis, the heat transfer deviations E∗

αx
for laminar free convection at the

temperature ratio Tw/T∞ = 1.1, 1.2, 1.4, 1.7 and 2.1 are predicted and listed
in Table 7.6.
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8

Experimental Measurements of Free
Convection with Large Temperature Difference

Nomenclature

cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s−2

Grx,∞ local Grashof number for laminar free convection of
gas on isothermal vertical flat plate, g|Tw/T∞−1|x3

ν2
∞

local Grashof number for laminar free convection of
liquid on isothermal vertical flat plate, g|ρ∞/ρw−1|x3

ν2
∞

LDV Laser Doppler Velocimeter
nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
Pr Prandtl number
t temperature, ◦C
T absolute temperature, K
wx, wy velocity components in the x- and y-directions,

respectively, m s−1

Wx,Wy dimensionless velocity components in the x- and
y-directions, respectively

Greek symbols
δ boundary layer thickness, m
η dimensionless coordinate variable for boundary layer
θ dimensionless temperature
λ thermal conductivity, W (mK)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3(
dθ

dη

)
η=0

dimensionless temperature gradient on the plate
ρ∞
ρ − 1

ρ∞
ρw

− 1
buoyancy factor
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1
ρ

dp

dx
density factor

1
µ

dµ

dη
viscosity factor

1
λ

dλ

dη
thermal conductivity factor

Subscripts
w at wall
δ boundary layer
∝ far from the wall surface

8.1 Introduction

The classical measurement of the velocity field for free convection of air along
an isothermal vertical plate was originally made by Schmidt and Beckman [1].
Their results showed excellent agreement with the corresponding numerical
results for the Boussinesq approximation calculated by Pohlhausen [2] shown
in Fig. 8.1. It is further seen that the velocity and thermal boundary-layer
thicknesses are proportional to x1/4.

However, in their experimental measurements only small differences be-
tween the surface and the ambient temperatures were considered. Since then,

+
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P = 0.73
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h = ( )
1
4
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Fig. 8.1. Velocity distribution in the laminar boundary layer on a hot vertical flat
plate in natural convection of air, as measured by Schmidt and Beckman [1] (From
H. Schlichting, Boundary-Layer Theory, 6th ed., McGraw-Hill, New York, 1968.)
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there has been a shortage of accurate measuremental results for considera-
tion of the larger temperature differences. The reasons of this shortage are
twofold: (1) the lower velocity of free convection and (2) the restriction of the
measuring devices. First of all, the fluid velocity in free convection is typically
much slower. In consequence of this, the experimental measurements become
more difficult and less reliable due to the increasing influence of various in-
terferences. In addition, due to the weak flow of free convection, the pressure
gradients are also quite small and the measuremental techniques based on
pressure differences, such as the Pitot tube, cannot be used very accurately.
The hot-wire anemometer has been used in velocity measurements, but its
basic principle is heat transfer from a heated wire. The heat transfer from
the wire is dependent on the flow velocity. However, the major problem that
easily produces deviation for the measurement in free convection is the small
magnitude of the velocity. Additionally, since the velocity boundary layer for
the free convection is very thin, with the above instrument, the interference,
which cannot be negligible, will be manifest in the measurement.

Fortunately, the laser doppler velocimeter (LDV) has been developed in
recent years. The LDV demonstrates higher accuracy for the measurement
of fluid velocity. An instrument, which does not contact the flow field, will
not produce any interference in the velocity field. It can measure very low
velocity flow. All these features give LDV great advantage over hot-wire
anemometers. With consideration of variable thermophysical properties, two
experimental results of the laminar free convection for air and water for
larger temperature differences, which were provided by Shang, et al. [3–5],
are introduced in this chapter. The experimental results were verified by the
calculation methods with consideration of variable thermophysical proper-
ties introduced in Chaps. 4 and 6 [4, 6], respectively. In this chapter we dis-
cuss the measurements of the velocity fields in the laminar boundary layer
for free convection of air and water studied with the LDV. Large temper-
ature differences were considered in the experimental measurements for the
free convection. The experimental results were verified by the correspond-
ing numerical solutions, and it is shown that the experimental results agreed
well with the corresponding numerical solutions for variable thermophysical
properties.

8.2 Experimental Measurements of Velocity Field
for Air Laminar Free Convection

8.2.1 Experimental Devices and Instruments

The experimental device established is shown schematically in Fig. 8.2. It con-
sists essentially of three parts: an isothermal vertical testing plate, a LDV and
a particulate generator.
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Fig. 8.2. Schematic diagram of experimental device, cited from Shang and Wang [3]
(1) Particulate generator, (2) Chamber of mosquito-repellent incense, (3) Spacer,
(4) Storage smoke chamber, (5) Wire net of copper, (6) Isothermal flat plate,
(7) Thermocouples, (8) Focus of lasers. Note: A dotted oblique line at the left end
of the Storage smoke chamber, should be real line

Isothermal testing plate. This is a flat copper plate with a polished surface,
300 mm in height, 195 mm in width and 7 mm in thickness. A sharp angle is
made at the bottom of the plate to minimize the possible distortion of the
measured velocity field for air free convection. A thin film heater is embedded
in the testing plate, the electric power supplied to the heater being adjusted by
a current transformer. φ 0.1 mm Cu–Constantan thermocouples are installed
in the plate to monitor and measure the temperature.

Laser doppler velocimeter (LDV). The short wavelength LDV at Northeastern
University, China was used to measure the velocity field of air free convection.
The velocity measured with this LDV is so small that it is suitable for detecting
the air velocity field being studied.

Particulate generator. The experimental measurement of the velocity field
by the LDV requires a particulate generator with an ability to track the
air convection. The particulate generator, as shown in Fig. 8.2, consists of a
chamber for burning mosquito-repellent incense, a storage chamber of smoke,
and a net made of copper wire. The mosquito-repellent incense is burnt in the
burning chamber and the smoke produced enters into the storage chamber
through the upper gap of the spacer. The smoke cools down in a storage
chamber, and then, diffuses through a copper-wire net into the air stream.
The velocity of the smoke through the net is very small, and consequently it
will disturb the velocity field only to a very small extent.
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8.2.2 Measurement Results

Experiments were conducted at three temperature conditions: Tw/T∞ = 1.1
and T∞ = 291 K; Tw/T∞ = 1.5 and T∞ = 293 K; and Tw/T∞ = 1.8 and T∞ =
287 K. For each case, the measurements were made at four heights counted
from the bottom edge of the testing plate, i.e., x = 25 mm, x = 50 mm,
x = 100 mm, and x = 150 mm. The measurement conditions with the related
thermophysical properties for air are listed in Table 8.1. Measured velocities
wx are plotted in Figs. 8.3–8.5. It is clear from each of the figures that, wx

would increase along x, and simultaneously, the position for maximum wx

shifts far away from the surface. Comparing the results shown in Figs. 8.3–8.5,
it is also seen that, for the same height, x, the larger the boundary temperature
ratio Tw/T∞, the thinner the thickness of boundary layer would be, and so, the
position of maximum wx will be closer to the plate surface with an increased
value of maximum wx. Additionally, the dimensionless velocity component wx

transformed by using (8.1) and (8.2) are plotted in Figs. 8.6–8.8, respectively.

8.2.3 Governing Equations

The governing partial differential equations of gas laminar free convection and
their boundary conditions are shown as (4.1)–(4.5) in Chap. 4. According to
Chap. 4, the related defined similarity variables are shown as

η =
x

y

(
1
4
Grx,∞

)1/4

Grx,∞ =
g |Tw/T∞ − 1|x3

ν2
∞

, (8.1)

Table 8.1. The measurement conditions with the related thermophysical properties
for air free convection

heights temperature conditions ν∞ × 106

(m2 s−1)

x = 0.025 m Tw/T∞ = 1.1 and T∞ = 291 K 14.88
Tw/T∞ = 1.5 and T∞ = 293 K 15.06
Tw/T∞ = 1.8 and T∞ = 287 K 14.52

x = 0.05 m Tw/T∞ = 1.1 and T∞ = 291 K 14.88
Tw/T∞ = 1.5 and T∞ = 293 K 15.06
Tw/T∞ = 1.8 and T∞ = 287 K 14.52

x = 0.1 m Tw/T∞ = 1.1 and T∞ = 291 K 14.88
Tw/T∞ = 1.5 and T∞ = 293 K 15.06
Tw/T∞ = 1.8 and T∞ = 287 K 14.52

x = 0.15 m Tw/T∞ = 1.1 and T∞ = 291 K 14.88
Tw/T∞ = 1.5 and T∞ = 293 K 15.06
Tw/T∞ = 1.8 and T∞ = 287 K 14.52
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Fig. 8.3. Measured and calculated values for the dimensional velocity of air free
convection for conditions Tw/T∞ = 1.1 and T∞ = 291 K, cited from Shang and
Wang [3] +, x = 0025m; �, x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; —
numerical prediction
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Fig. 8.4. Measured and calculated values for dimensional velocity of air free convec-
tion for conditions Tw/T∞ = 1.5 and T∞ = 293 K, cited from Shang and Wang [3]
+, x = 0025 m; �, x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical
prediction

Wx =
[
2
√

gx(Tw/T∞ − 1)1/2
]−1

wx, (8.2)

Wy =
[
2
√

gx |Tw/T∞ − 1|1/2 (
1
4
Grx,∞)−1/4

]−1

wy, (8.3)

and the transformed dimensionless governing equations and boundary condi-
tions are(

2Wx − η
dWx

dη
+ 4

dWy

dη

)
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0, (8.4)

ν∞
ν

[
Wx

(
2Wx − η

dWx

dη

)
+ 4Wy

dWx

dη

]
=

d2Wx

dη2
+

1
µ

dµ

dη

dWx

dη
+

ν∞
ν

θ,

(8.5)
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Fig. 8.5. Measured and calculated values for dimensional velocity of air free con-
vection for condition Tw/T∞ = 1.8 and T∞ = 287 K, cited from Shang and Wang [3]
+, x = 0025 m; �, x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical
prediction
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Fig. 8.6. Measured and calculated values for dimensionless velocity of air free con-
vection for condition Tw/T∞ = 1.1 and T∞ = 291 K, cited from Shang and Wang [3]
+, x = 0 025m; �, x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical
prediction

Pr
ν∞
ν

(
− ηWx + 4Wy)

dθ

dη

)
=

d2θ

dη2
+

1
λ

dλ

dη

dθ

dη
, (8.6)

η = 0, Wx = 0, Wy = 0, θ = 0, (8.7)

η → 0, Wx → 0, θ → 0, (8.8)

for gas laminar free convection.
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Fig. 8.7. Measured and calculated values for dimensionless velocity of air free con-
vection for condition Tw/T∞ = 1.5 and T∞ = 293 K, cited from Shang and Wang [3]
+, x = 0025 m; �, x = 0.050 m; �, x = 0.100 m; ×, x = 0.150 m; — numerical
prediction
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Fig. 8.8. Measured and calculated values for dimensionless velocity of air free con-
vection for condition Tw/T∞ = 1.8 and T∞ = 287 K, cited from Shang and Wang [3]
+, x = 0025m; �, x = 0.050 m; �, x = 0.100m; ×, x = 0.150 m; — numerical pre-
diction

8.2.4 The Numerical Solutions

By using the shooting method, the governing dimensionless differential equa-
tions (8.4)–(8.6) with their boundary conditions are solved for Tw/T∞ = 1.1
and T∞ = 291 K; Tw/T∞ = 1.5 and T∞ = 293 K; and Tw/T∞ = 1.8 and
T∞ = 287 K, respectively, for the air free convection (nµ = 0.68, nλ = 0.81).
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The numerical solutions for dimensionless velocity components Wx are plotted
also in Figs. 8.3–8.5. While, the dimensionless numerical solutions transformed
by using (8.2) and (8.3) are plotted in Figs. 8.6–8.8, respectively. It can be seen
that the measured results agree very well with the predicted results.

8.3 Experimental Measurements of Velocity Field
for Water Laminar Free Convection

8.3.1 Main Experimental Apparatus

An isothermal vertical flat plate, a LDV and a water tank (see Fig. 8.9) con-
stitute the main experimental apparatus.

Isothermal vertical flat plate. The isothermal vertical flat plate (called here
the plate) made of copper, is 250 mm in length, 140 mm in width, and 7 mm
in thickness. The surface of the plate is well polished. In the plate, a nickel–
chromium wire of 0.5 mm in diameter and 389 m in length is uniformly in-
serted. The nickel–chromium wire serves as an electrical heat source, and it
is insulated. A sharp angle is made in the bottom of the plate so that the ve-
locity field would not be influenced by the free convection near to the bottom
surface. Thermocouples are installed in the plate and are very close to the sur-
face. By controlling the electric current passing through the nickel–chromium
wire, the temperature at the surface of the plate will be maintained at a cer-
tain level. On the top of the plate, two metal plates with 150 mm in length
and 3 mm in thickness are welded. The upper part of both metal plates is
drilled so that the plate can be suspended on the frame.
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Fig. 8.9. Schematic diagram of the device used in the experiment of water free con-
vection, cited from Shang, Wang, Wang, and Quan [4]: (1) water tank; (2) isothermal
vertical flat plate; (3) thermocouples; (4) metal plate; (5) focus of laser; (6) laser
paths; (7) drilled hole for laser path
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LDV. The equipment used to measure the velocity field of the water free
convection on the plate is the LDV of the 606 Institute in Shenyang. In order
to measure very small velocities such as that of water free convection, the
technique of frequency-deviation-shift is applied to the LDV.

Water tank. The water tank is rectangular in shape. It is made of organic
glass plate with 8 mm thickness. The top of the water tank is open. The tank
is 1.1 m in length, 0.7 m in width, and 0.35 m in height. With such a large
space the water tank can efficiently keep away the free convection near to the
surface of the plate face from any disturbing influences. In the side of the tank
are drilled four drill ways of 20 mm diameter each. The drilled ways serve as
paths of laser light. Through the drill ways the laser will reach the surface
of the plate to measure the velocity field of the water free convection. The
distance between each two centers of the drilled ways is 50 mm, which just
matches the measured heights. The locations of the drilled ways are covered
with the thin organic glass, 1 mm in thickness, so that the laser power wasted
though the organic glass can be minimized.

8.3.2 The Results of Experiment

At the start of this experiment the surface of the plate should be heated
slowly so that the temperature of the plate rises slowly. For this purpose the
voltage and electricity current through the nickel–chromium wire is increased
slowly by means of a voltage regulator. After the temperature of the measured
surface is raised to given level, the temperature is stabilized for 3 min, and
then the measurements commenced.

In this experiment, the measurements are carried out under three temper-
ature conditions: tw = 40◦C and t∞ = 20◦C, tw = 50◦C and t∞ = 20◦C, tw =
60◦C and t∞ = 20◦C, respectively. For each condition the measurements
are made at four heights from the bottom of the plate, i.e., x = 0.05m,
x = 0.10m, x = 0.15m and x = 0.20m. The measurement conditions are
listed in Table 8.2 in detail. The measured values of the velocity compo-
nents wx are described in Tables 8.4–8.6 and plotted in Figs. 8.10–8.12 respec-
tively. The measured values wx and the corresponding coordinate variable x
are further transformed to the dimensionless values by using the expressions
(8.9)–(8.11), described in Tables 8.4–8.6 and Figs. 8.13–8.15, respectively.

8.3.3 Governing Equations

The governing partial differential equations of liquid laminar free convection
and their boundary conditions are shown as (6.1)–(6.5) in Chap. 6. Accord-
ing to Chap. 6, the related defined similarity variables for liquid laminar free
convection are shown as

η =
(

1
4
Grx,∞

)1/4
y

x
, Grx,∞ =

g |ρ∞/ρw − 1|x3

ν2
∞

, (8.9)
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Table 8.2. The measurement conditions

heights temperature

x = 0.05 m tw = 40◦C and t∞ = 20◦C
tw = 50◦C and t∞ = 20◦C
tw = 60◦C and t∞ = 20◦C

x = 0.10 m tw = 40◦C and t∞ = 20◦C
tw = 50◦C and t∞ = 20◦C
tw = 60◦C and t∞ = 20◦C

x = 0.15 m tw = 40◦C and t∞ = 20◦C
tw = 50◦C and t∞ = 20◦C
tw = 60◦C and t∞ = 20◦C

x = 0.20 m tw = 40◦C and t∞ = 20◦C
tw = 50◦C and t∞ = 20◦C
tw = 60◦C and t∞ = 20◦C
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Fig. 8.10. Measured and numerical values of velocity wx of water laminar free
convection for tw = 40◦C and t∞ = 20◦C [4], cited from Shang, Wang, and Takhar
[5]. Full line: numerical solution, symbol: corresponding measured value. (1) ×, x =
0.05 m; (2) �, x = 0.10 m; (3) ∆, x = 0.15 m, and (4) ♦, x = 0.20 m

Wx = (2
√

gx |ρ∞/ρw − 1|1/2)−1wx, (8.10)

Wy =

[
2
√

gx

∣∣∣∣ρ∞ρ − 1
∣∣∣∣
−1/2(1

4
Grx,∞

)−1/4
]−1

wy. (8.11)

The transformed dimensionless governing equations and boundary condi-
tions for liquid laminar free convection are

2Wx − η
dWx

dη
+ 4

dWy

dη
− 1

ρ

dρ

dη
(ηWx − 4Wy) = 0, (8.12)
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Fig. 8.11. Measured and numerical values of velocity wx of water laminar free
convection for tw = 50◦C and t∞ = 20◦C, cited from Shang, Wang, and Takhar [5].
Full line: numerical solution, symbol: corresponding measured value. (1) ×, x =
0.05 m; (2) �, x = 0.10 m; (3) ∆, x = 0.15 m, and (4) ♦, x = 0.20 m
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Fig. 8.12. Measured and numerical values for velocity wx of water laminar free
convection for tw = 60◦C and t∞ = 20◦C, cited from Shang, Wang, and Takhar [5].
Full line: numerical solution, symbol: corresponding measured value. (1) ×, x =
0.05 m; (2) �, x = 0.10 m; (3) ∆, x = 0.15 m, and (4) ♦, x = 0.20 m
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Fig. 8.13. Measured and calculated values of the dimensional velocity Wx of water
laminar free Convection, for tw = 40◦C and t∞ = 20◦C, cited from Shang, Wang,
and Takhar [5]. Full line: numerical solution, symbol: corresponding measured value.
(1) ×, x = 0.05 m; (2) �, x = 0.10 m; (3) ∆, x = 0.15 m, and (4) ♦, x = 0.20 m
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Fig. 8.14. Measured and calculated values for dimensional velocity Wx of water
laminar free convection, for tw = 50◦C and t∞ = 20◦C, cited from Shang, Wang,
and Takhar [5]. Full line: numerical solution, symbol: corresponding measured value.
(1) ×, x = 0.05 m; (2) �, x = 0.10 m; (3) ∆, x = 0.15 m, and (4) ♦, x = 0.20 m
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Fig. 8.15. Measured and calculated values for dimensional velocity Wx of water
laminar free convection, for condition tw = 60◦C and t∞ = 20◦C, cited from Shang,
Wang, and Takhar [5]. Full line: numerical solution, symbol: corresponding measured
value. (1) ×, x = 0.05 m; (2) �, x = 0.10 m; (3) ∆, x = 0.15 m, and (4) ♦, x = 0.20 m
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(8.13)

Pr
ν∞
ν

(−ηWx + 4Wy)
dθ

dη
=

1
λ

dλ

dη

dθ

dη
+

d2θ

dη2
, (8.14)

with boundary conditions

η = 0, Wx = 0,Wy = 0, θ = 0, (8.15)
η → 0, Wx → 0, θ → 0. (8.16)

8.3.4 Numerical Solutions

As the analysis in Chap. 6, if the specific heat cp of water is substituted by
cp∞ , i.e., its value at the temperature at infinity, the maximum predicted
deviation will be less than 0.455 % for the temperature range from 0 to 100◦C
according to typical experiment values [7]. Such small deviation is allowed for
the treatment of variable thermophysical properties. Consequently, property
factor Pr(ν∞/ν) of (8.14) can be changed to the following form for water
laminar free convection:

Pr
ν∞
ν

= Pr∞
λ∞
λ

ρ

ρ
. (8.17)

The water thermophysical property values of ρ, µ, ν, λ and Pr are taken
from Chap. 6. For convenience some specimen values of the water thermophys-
ical properties for the experiment are listed in Table 8.3.
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Table 8.3. Water property values

t
(◦C)

20 40 50 60

ρ
(kg m−3)

998.3 992.3 988.1 983.2

λ
(W (m K)−1)

0.5996

ν × 10−6

(kg (m s)−1)
1.004

Pr 6.99

According to the approach of the numerical calculation of Chap. 6, the
solutions for water laminar free convection are obtained from the governing
ordinary differential equation (8.12)–(8.14) with (8.17) and the boundary con-
ditions (8.15) and (8.16) by shooting method, respectively, for tw = 40◦C and
t∞ = 20◦C, tw = 50◦C and t∞ = 20◦C, tw = 60◦C, and t∞ = 20◦C. While,
the water thermophysical properties such as ρ, λ and ν are described respec-
tively, by (8.18)–(8.20). Meanwhile (6.37)–(6.43) are applied for describing the
related physical property factors of the governing equations. The numerical
solutions for velocity component wx obtained for the water laminar free con-
vection are listed in Tables 8.4–8.6 and plotted in Figs. 8.10–8.12, respectively.
In addition, these numerical solutions wx are transformed into the correspond-
ing dimensional ones Wx by means of the (8.10). The transformed dimension-
less solutions are described in Tables 8.4–8.6 and plotted in Figs. 8.13–8.15,
respectively. It can be seen that the measured results agree very well with the
predicted results Tables 8.7–8.9.

ρ = −4.48 × 10−3t2 + 999.9, (8.18)
λ = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563, (8.19)

µ = exp

[
−1.6 − 1150

T
+
(

690
T

)2
]
× 10−3. (8.20)

8.4 Remarks

Experimental investigations were carried out to study effects of variable ther-
mophysical properties on laminar free convection of air and water and to fur-
ther verify the results of the previous chapters, Chaps. 4 and 6. The following
points are made:

By increasing the temperature tw for the liquid laminar free convection or
with increasing the boundary temperature ratio Tw/T∞ for gas laminar free
convection of gas, the velocity component wx of the free convection increases,
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Table 8.4. The measurement results for velocities wx and the transformed values
of Wx for water laminar free convection at tw = 40◦C and t∞ = 20◦C, cited from
Shang, Wang, and Takhar [5]

x = 0.05m x = 010m

y(mm) η wx(m s−1) Wx y(mm) η wx(m s−1) Wx

0.2 0.147 0.007 0.0707 0.2 0.124 0.007 0.0500
0.3 0.221 0.0093 0.0854 0.3 0.186 0.0119 0.0773
0.4 0.294 0.0115 0.1056 0.4 0.248 0.0135 0.0877
0.5 0.368 0.0129 0.1185 0.5 0.309 0.0156 0.1013
0.6 0.441 0.0136 0.1249 0.6 0.371 0.0182 0.1182
0.7 0.515 0.0143 0.1313 0.7 0.433 0.0190 0.1234
0.8 0.589 0.0150 0.1377 0.8 0.495 0.0193 0.1253
0.9 0.662 0.0142 0.1304 0.9 0.557 0.0195 0.1266
1.0 0.736 0.0139 0.1276 1.0 0.619 0.0209 0.1357
1.2 0.883 0.0129 0.1185 1.3 0.804 0.0185 0.1201
1.4 1.030 0.0126 0.1157 1.5 0.928 0.0182 0.1182
1.5 1.104 0.0118 0.1084 1.7 1.052 0.0161 0.1104
1.7 1.251 0.0111 0.1019 1.9 1.176 0.0160 0.1039
1.9 1.398 0.0096 0.0882 2.1 1.299 0.0141 0.0916
2.1 1.545 0.0089 0.0817 2.4 1.485 0.0142 0.0922
2.4 1.766 0.0078 0.0716 2.7 1.671 0.0107 0.0695
2.6 1.913 0.0061 0.0560 3.0 1.856 0.0105 0.0682
2.8 2.060 0.0056 0.0514 3.3 2.042 0.0085 0.0552

x = 0.15m x = 0.20 m

y(mm) η wx(m s−1) Wx y(mm) η wx (m s−1) Wx

0.2 0.112 0.0109 0.0578 0.2 0.104 0.0120 0.0551
0.3 0.168 0.0136 0.0721 0.3 0.156 0.0168 0.0771
0.4 0.224 0.0168 0.0890 0.4 0.208 0.0190 0.0872
0.5 0.280 0.0201 0.1065 0.5 0.260 0.0206 0.0946
0.7 0.391 0.0226 0.1198 0.7 0.364 0.0247 0.1134
0.9 0.503 0.0239 0.1267 0.9 0.468 0.0270 0.1240
1.1 0.615 0.0249 0.1320 1.1 0.572 0.0278 0.1276
1.3 0.727 0.0252 0.1335 1.2 0.624 0.0294 0.1350
1.4 0.783 0.0237 0.1229 1.3 0.676 0.0297 0.1364
1.6 0.894 0.0229 0.1214 1.4 0.728 0.0278 0.1276
1.8 1.056 0.0217 0.1130 1.6 0.832 0.0270 0.1240
2.0 1.118 0.0216 0.1145 1.8 0.937 0.0260 0.1194
2.2 1.230 0.0197 0.1044 2.0 1.041 0.0250 0.1148
2.4 1.342 0.0185 0.0980 2.3 1.197 0.0229 0.1051
2.6 1.453 0.0182 0.0964 2.6 1.353 0.0206 0.0946
2.8 1.565 0.0163 0.0864 2.9 1.509 0.0180 0.0826
3.1 1.733 0.0123 0.0650 3.1 1.613 0.0167 0.0767
3.4 1.901 0.0116 0.0615 3.4 1.719 0.0146 0.0670
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Table 8.5. The measurement results for velocities wx and the transformed value
Wx for water laminar free convection at tw = 50◦C and t∞ = 20◦C, cited from
Shang, Wang, and Takhar [5]

x = 0.05m x = 0.10 m

y(mm) η wx(m s−1) Wx y(mm) η wx(m s−1) Wx

0.2 0.168 0.0116 0.0819 0.2 0.141 0.0146 0.0729
0.3 0.252 0.0148 0.1045 0.3 0.212 0.0184 0.0919
0.4 0.336 0.0162 0.1144 0.4 0.282 0.0221 0.1103
0.5 0.419 0.0174 0.1229 0.5 0.353 0.0249 0.1243
0.6 0.503 0.0184 0.1299 0.6 0.423 0.0259 0.1293
0.7 0.587 0.0188 0.1328 0.8 0.565 0.0266 0.1328
0.8 0.671 0.0187 0.1321 1.0 0.706 0.0263 0.1313
1.0 0.839 0.0172 0.1215 1.1 0.776 0.0256 0.1278
1.1 0.923 0.0168 0.1186 1.4 0.988 0.0234 0.1168
1.3 1.091 0.0155 0.1095 1.6 1.129 0.0206 0.1028
1.4 1.174 0.0148 0.1045 1.7 1.200 0.0209 0.1043
1.5 1.258 0.0141 0.0996 1.8 1.270 0.0196 0.0979
1.7 1.426 0.0122 0.0862 2.0 1.411 0.0180 0.0899
1.8 1.510 0.0118 0.0833 2.1 1.482 0.0167 0.0834
2.0 1.678 0.0107 0.0756 2.3 1.623 0.0151 0.0754
2.2 1.846 0.0086 0.0607 2.5 1.764 0.0133 0.0664
2.4 2.013 0.0081 0.0572 2.6 1.835 0.0126 0.0629
2.6 2.181 0.0064 0.0452 2.9 2.047 0.0102 0.0509

x = 0.15m x = 0.20 m

y(mm) η wx(m s−1) Wx y(mm) η wx(m s−1) Wx

0.2 0.127 0.0167 0.0681 0.2 0.119 0.0194 0.0685
0.3 0.191 0.0219 0.0893 0.3 0.178 0.0264 0.0932
0.4 0.255 0.0242 0.0987 0.4 0.237 0.0294 0.1028
0.5 0.319 0.0277 0.1129 0.5 0.297 0.0321 0.1133
0.6 0.382 0.0309 0.1260 0.6 0.356 0.0340 0.1201
0.7 0.446 0.0310 0.1264 0.7 0.415 0.0360 0.1271
0.9 0.574 0.0334 0.1362 0.9 0.534 0.0384 0.1356
1.0 0.637 0.0332 0.1353 1.0 0.593 0.0389 0.1374
1.2 0.765 0.0315 0.1284 1.1 0.652 0.0372 0.1314
1.3 0.828 0.0312 0.1272 1.3 0.771 0.0365 0.1289
1.4 0.892 0.0301 0.1227 1.5 0.890 0.0342 0.1208
1.5 0.956 0.0293 0.1194 1.7 1.008 0.0317 0.1119
1.6 1.020 0.0281 0.1151 2.9 1.127 0.0304 0.1073
1.8 1.147 0.0255 0.1040 2.2 1.305 0.0272 0.0960
2.0 1.275 0.0233 0.0950 2.5 1.483 0.0239 0.0844
2.3 1.466 0.0208 0.0848 2.9 1.720 0.0193 0.0682
2.8 1.784 0.0168 0.0685 3.2 1.898 0.0174 0.0614
3.3 2.103 0.0125 0.0510 3.4 2.017 0.0161 0.0569
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Table 8.6. The measurement results for velocities wx and the transformed values
Wx for water laminar free convection at tw = 60◦C and t∞ = 20◦C, cited from
Shang, Wang, and Takhar [5]

x = 0.05m x = 0.10 m

y(mm) η wx(m s−1) Wx y(mm) η wx(m s−1) Wx

0.2 0.186 0.0149 0.0858 0.2 0.156 0.0208 0.0847
0.3 0.279 0.0200 0.1152 0.3 0.234 0.0258 0.1051
0.4 0.371 0.0220 0.1267 0.4 0.313 0.0299 0.1218
0.5 0.464 0.0234 0.1348 0.5 0.391 0.0315 0.1283
0.6 0.557 0.0236 0.1359 0.6 0.469 0.0321 0.1308
0.7 0.650 0.0235 0.1354 0.7 0.547 0.0340 0.1385
0.9 0.836 0.0206 0.1187 0.8 0.625 0.0328 0.1336
1.0 0.929 0.0200 0.1152 0.9 0.703 0.0317 0.1291
1.1 1.021 0.0197 0.1135 1.1 0.859 0.0298 0.1214
1.2 1.114 0.0196 0.1129 1.2 0.938 0.0289 0.1177
1.3 1.207 0.0178 0.1025 1.3 1.016 0.0279 0.1136
1.4 1.300 0.0161 0.0927 1.4 1.094 0.0267 0.1088
1.5 1.393 0.0151 0.0870 1.5 1.172 0.0254 0.1035
1.6 1.486 0.0145 0.0835 1.7 1.328 0.0230 0.0937
1.8 1.671 0.0121 0.0697 1.8 1.406 0.0213 0.0868
2.0 1.857 0.0104 0.0599 2.0 1.563 0.0183 0.0745
2.1 1.950 0.0105 0.0605 2.4 1.875 0.0145 0.0591
2.3 2.136 0.0095 0.0547 2.9 2.266 0.0112 0.0456

x = 0.15m x = 0.20m

y(mm) η wx(m s−1) Wx y(mm) η wx(m s−1) Wx

0.2 0.141 0.0230 0.0765 0.2 0.131 0.0243 0.0700
0.3 0.212 0.0299 0.0994 0.3 0.197 0.0336 0.0968
0.4 0.282 0.0353 0.1174 0.4 0.263 0.0379 0.1092
0.5 0.353 0.0384 0.1277 0.5 0.329 0.0420 0.1210
0.7 0.494 0.0408 0.1357 0.7 0.460 0.0460 0.1325
0.9 0.635 0.0405 0.1347 0.9 0.591 0.0470 0.1354
1.1 0.776 0.0393 0.1307 1.1 0.723 0.0455 0.1310
1.3 0.917 0.0355 0.1181 1.2 0.788 0.0449 0.1293
1.4 0.988 0.0342 0.1137 1.3 0.854 0.0425 0.1224
1.6 1.129 0.0314 0.1044 1.7 1.117 0.0364 0.1048
1.8 1.270 0.0290 0.0964 2.0 1.314 0.0319 0.0919
2.0 1.411 0.0264 0.0878 2.2 1.445 0.0294 0.0847
2.1 1.482 0.0249 0.0828 2.4 1.577 0.0258 0.0743
2.3 1.623 0.0220 0.0732 2.6 1.708 0.0243 0.0700
2.5 1.764 0.0196 0.0652 2.8 1.840 0.0219 0.0631
2.7 1.905 0.0175 0.0582 2.9 1.905 0.0201 0.0579
3.0 2.117 0.0152 0.0505 3.1 2.037 0.0188 0.0541
3.3 2.329 0.0126 0.0419 3.4 2.234 0.0157 0.0452
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Table 8.7. The numerical solutions of velocity components wx and Wx at tw = 40◦C
and t∞ = 20◦C, cited from Shang, Wang, and Takhar [5]

x = 0.05m x = 0.10 m

η y (mm) Wx wx (m s−1) η y (mm) Wx wx (m s−1)

0 0 0 0 0 0 0 0
0.075 0.102 0.0378 0.0041 0.075 0.121 0.0378 0.0058
0.150 0.204 0.0674 0.0073 0.150 0.242 0.0674 0.0104
0.225 0.306 0.0898 0.0098 0.225 0.364 0.0898 0.0138
0.300 0.408 0.1063 0.0116 0.300 0.485 0.1063 0.0164
0.375 0.510 0.1178 0.0128 0.375 0.606 0.1178 0.0181
0.450 0.612 0.1253 0.0136 0.450 0.727 0.1253 0.0193
0.525 0.713 0.1297 0.0141 0.525 0.848 0.1297 0.0200
0.600 0.815 0.1314 0.0143 0.600 0.970 0.1314 0.0202
0.700 0.951 0.1308 0.0142 0.700 1.131 0.1308 0.0201
0.800 1.087 0.1277 0.0139 0.800 1.293 0.1277 0.0197
0.900 1.223 0.1231 0.0134 0.900 1.454 0.1231 0.0190
1.050 1.427 0.1143 0.0124 1.050 1.700 0.1143 0.0176
1.200 1.631 0.1046 0.0114 1.200 1.939 0.1046 0.0161
1.350 1.835 0.0948 0.0103 1.350 2.182 0.0948 0.0146
1.500 2.039 0.0853 0.0093 1.500 2.424 0.0853 0.0131
1.800 2.446 0.0681 0.0074 1.800 2.909 0.0681 0.0105
2.100 2.854 0.0536 0.0058 2.100 3.394 0.0536 0.0083

x = 0.15m x = 0.20 m

η y (mm) Wx wx (m s−1) η y (mm) Wx wx (m s−1)

0 0 0 0 0 0 0 0
0.075 0.134 0.0378 0.0071 0.075 0.144 0.0378 0.0082
0.150 0.268 0.0674 0.0127 0.150 0.288 0.0674 0.0147
0.225 0.403 0.0898 0.0169 0.225 0.432 0.0898 0.0196
0.300 0.537 0.1063 0.0201 0.300 0.577 0.1063 0.0232
0.375 0.671 0.1178 0.0222 0.375 0.721 0.1178 0.0257
0.450 0.805 0.1253 0.0236 0.450 0.865 0.1253 0.0273
0.525 0.939 0.1297 0.0245 0.525 1.009 0.1297 0.0282
0.600 1.073 0.1314 0.0248 0.600 1.153 0.1314 0.0286
0.700 1.252 0.1308 0.0247 0.700 1.345 0.1308 0.0285
0.800 1.431 0.1277 0.0241 0.800 1.538 0.1277 0.0278
0.900 1.610 0.1231 0.0232 0.900 1.730 0.1231 0.0268
1.050 1.878 0.1143 0.0216 1.050 2.018 0.1143 0.0249
1.200 2.147 0.1046 0.0197 1.200 2.306 0.1046 0.0228
1.350 2.415 0.0948 0.0179 1.350 2.595 0.0948 0.0206
1.500 2.684 0.0853 0.0161 1.500 2.883 0.0853 0.0186
1.800 3.220 0.0681 0.0129 1.800 2.460 0.0681 0.0148
2.100 3.757 0.0536 0.0101 2.100 4.036 0.0536 0.0117
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Table 8.8. The numerical solutions of velocity components wx and Wx at tw = 50◦C
and t∞ = 20◦C, cited from Shang, Wang, and Takhar [5]

x = 0.05m x = 0.10 m

η y (mm) Wx wx (m s−1) η y (mm) Wx wx (m s−1)

0 0 0 0 0 0 0 0
0.075 0.089 0.0416 0.0059 0.075 0.106 0.0416 0.0083
0.150 0.179 0.0732 0.0104 0.150 0.213 0.0732 0.0147
0.225 0.268 0.0964 0.0137 0.225 0.319 0.0964 0.0193
0.300 0.358 0.1127 0.0160 0.300 0.425 0.1127 0.0226
0.375 0.447 0.1235 0.0175 0.375 0.531 0.1235 0.0247
0.450 0.536 0.1300 0.0184 0.450 0.638 0.1300 0.0260
0.525 0.626 0.1331 0.0188 0.525 0.744 0.1331 0.0267
0.600 0.715 0.1337 0.0189 0.600 0.850 0.1337 0.0268
0.700 0.834 0.1317 0.0186 0.700 0.992 0.1317 0.0264
0.800 0.954 0.1274 0.0180 0.800 1.134 0.1274 0.0255
0.900 1.073 0.1219 0.0173 0.900 1.275 0.1219 0.0244
1.050 1.252 0.1123 0.0159 1.050 1.488 0.1123 0.0225
1.200 1.430 0.1022 0.0145 1.200 1.700 0.1022 0.0205
1.350 1.609 0.0922 0.0131 1.350 1.913 0.0922 0.0185
1.650 1.967 0.0740 0.0105 1.650 2.338 0.0740 0.0148
1.950 2.324 0.0586 0.0083 1.950 2.763 0.0586 0.0117
2.250 2.682 0.0459 0.0065 2.250 3.188 0.0459 0.0092

x = 0.15m x = 0.20 m

η y (mm) Wx wx (m s−1) η y (mm) Wx wx (m s−1)

0 0 0 0 0 0 0 0
0.075 0.118 0.0416 0.0102 0.075 0.126 0.0416 0.0118
0.150 0.235 0.0732 0.0180 0.150 0.253 0.0732 0.0207
0.225 0.353 0.0964 0.0236 0.225 0.379 0.0964 0.0273
0.300 0.471 0.1127 0.0276 0.300 0.506 0.1127 0.0319
0.375 0.588 0.1235 0.0303 0.375 0.632 0.1235 0.0350
0.450 0.706 0.1300 0.0319 0.450 0.759 0.1300 0.0368
0.525 0.824 0.1331 0.0326 0.525 0.885 0.1331 0.0377
0.600 0.941 0.1337 0.0328 0.600 1.012 0.1337 0.0379
0.700 1.098 0.1317 0.0323 0.700 1.180 0.1317 0.0373
0.800 1.255 0.1274 0.0313 0.800 1.349 0.1274 0.0361
0.900 1.412 0.1219 0.0299 0.900 1.517 0.1219 0.0345
1.050 1.647 0.1123 0.0275 1.050 1.770 0.1123 0.0318
1.200 1.883 0.1022 0.0251 1.200 2.023 0.1022 0.0289
1.350 2.118 0.0922 0.0226 1.350 2.276 0.0922 0.0261
1.650 2.589 0.0740 0.0182 1.650 2.782 0.0740 0.0210
1.950 3.064 0.0586 0.0144 1.950 3.288 0.0586 0.0166
2.250 3.530 0.0459 0.0113 2.250 3.794 0.0459 0.0130
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Table 8.9. The numerical solutions of velocities components wx and Wx at tw =
60◦C and t∞ = 20◦C, cited from Shang, Wang, and Takhar [5]

x = 0.05m x = 0.10 m

η y (mm) Wx wx (m s−1) η y (mm) Wx wx (m s−1)

0 0 0 0 0 0 0 0
0.075 0.081 0.0454 0.0079 0.075 0.096 0.0454 0.0111
0.150 0.162 0.0789 0.0137 0.150 0.192 0.0789 0.0194
0.225 0.242 0.1028 0.0178 0.225 0.288 0.1028 0.0252
0.300 0.323 0.1189 0.0206 0.300 0.384 0.1189 0.0292
0.375 0.404 0.1290 0.0224 0.375 0.480 0.1290 0.0317
0.450 0.485 0.1345 0.0233 0.450 0.576 0.1345 0.0330
0.525 0.565 0.1365 0.0237 0.525 0.672 0.1365 0.0335
0.600 0.646 0.1360 0.0236 0.600 0.768 0.1360 0.0334
0.700 0.754 0.1326 0.0230 0.700 0.896 0.1326 0.0326
0.800 0.862 0.1273 0.0221 0.800 1.024 0.1273 0.0313
0.900 0.969 0.1209 0.0210 0.900 1.152 0.1209 0.0297
1.050 1.131 0.1106 0.0192 1.050 1.344 0.1106 0.0272
1.200 1.292 0.1001 0.0174 1.200 1.536 0.1001 0.0246
1.350 1.454 0.0901 0.0156 1.350 1.728 0.0901 0.0221
1.650 1.777 0.0721 0.0125 1.650 2.112 0.0721 0.0177
1.950 2.100 0.0570 0.0099 1.950 2.496 0.0570 0.0140
2.250 2.423 0.0446 0.0077 2.250 2.880 0.0446 0.0109

x = 0.15m x = 0.20 m

η y (mm) Wx wx (m s−1) η y (mm) Wx wx (m s−1)

0 0 0 0 0 0 0 0
0.075 0.106 0.0454 0.0137 0.075 0.114 0.0454 0.0158
0.150 0.213 0.0789 0.0237 0.150 0.228 0.0789 0.0274
0.225 0.319 0.1028 0.0309 0.225 0.342 0.1028 0.0357
0.300 0.425 0.1189 0.0358 0.300 0.457 0.1189 0.0413
0.375 0.531 0.1290 0.0388 0.375 0.571 0.1290 0.0448
0.450 0.638 0.1345 0.0404 0.450 0.685 0.1345 0.0467
0.525 0.744 0.1365 0.0410 0.525 0.799 0.1365 0.0474
0.600 0.850 0.1360 0.0409 0.600 0.913 0.1360 0.0472
0.700 0.992 0.1326 0.0399 0.700 1.065 0.1326 0.0464
0.800 1.134 0.1273 0.0383 0.800 1.218 0.1273 0.0442
0.900 1.275 0.1209 0.0364 0.900 1.370 0.1209 0.0420
1.050 1.488 0.1106 0.0333 1.050 1.598 0.1106 0.0384
1.200 1.700 0.1001 0.0301 1.200 1.827 0.1001 0.0348
1.350 1.913 0.0901 0.0271 1.350 2.055 0.0901 0.0313
1.650 2.338 0.0721 0.0217 1.650 2.511 0.0721 0.0250
1.950 2.763 0.0570 0.0171 1.950 2.968 0.0570 0.0198
2.250 3.188 0.0446 0.0134 2.250 3.425 0.0446 0.0155
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and the velocity profile moves to the direction of the flat plate. Consequently,
the thickness of the velocity boundary layer decreases.

With an increase of the height x, the velocity component wx of water or
air free convection increases, and the maximum velocity of the velocity profile
moves towards the fluid bulk. As a result the thickness of velocity boundary
layer increases.

It is found that the agreement between the measured and calculated veloc-
ity fields is good, thus confirming that the results in Chaps. 4–6 are reliable.

With regard to the study on the condition of stability for the laminar film
free convection of fluid, I emphasize the need for this kind of measurement in
an extended experiment.

References

1. E. Schmidt and W. Beckman, Ads Temperature- und Geschwindigkeitsfeld
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9

Relationship on Laminar Free Convection
and Heat Transfer Between Inclined
and Vertical Cases

Nomenclature

a thermal diffusive coefficient, m2 s−1

b width of plate, m
cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s−2

(Grx,∞)i local Grashof number for fluid laminar free convection
on isothermal
inclined flat plate, Grx,∞ = g cos γ|ρ∞/ρw−1|x3

ν∞2

local Grashof number for gas laminar free convection on
isothermal
inclined flat plate, g cos γ|Tw/T∞−1|x3

ν2
∞

(Grx,∞)v local Grashof number for fluid laminar free convection
on isothermal
vertical flat plate, g|ρ∞/ρw−1|x3

ν∞2

local Grashof number for gas laminar free convection on
isothermal
vertical flat plate, g|Tw/T∞−1|x3

ν2
∞

(gx)i local mass flow rate entering the boundary layer for
inclined case at position x per unit area of the plate,
kg (m2 s)−1

(gx)v local mass flow rate entering the boundary layer for
vertical case at position x per unit area of the plate,
kg (m2 s)−1

(Gx)i total mass flow rate entering the boundary layer for
inclined case for position x = 0 to x with width of b of
the plate, kg s−1

(Gx)v total mass flow rate entering the boundary layer for
vertical case for position x = 0 to x with width of b of
the plate, kg s−1
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(Nux,w)i local Nusselt number for inclined case, αxx/λw

(Nux,w)v local Nusselt number for vertical case, αxx/λw

(Nux,w)i average Nusselt number for inclined case, αxx/λw

(Nux,w)v average Nusselt number for vertical case, αxx/λw

ncp
specific heat parameter of gas

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
Pr Prandtl number
(qx)i local heat transfer rate for inclined case at position

x per unit area on the plate, W m−2

(Qx)i total heat transfer rate for inclined case for position
x = 0 to x with width of b on the plate, W

(qx)v local heat transfer rate for vertical case at position
x per unit area on the plate, W m−2

(Qx)v total heat transfer rate for vertical case for position
x = 0 to x with width of b on the plate, W

t temperature, ◦C
T absolute temperature, K
(wx)i, (wy)i velocity components for inclined case in the x- and

y-directions, respectively, m s−1

(Wx)i, (Wy)i dimensionless velocity components for inclined case in
the x- and y-directions, respectively

(wx)v, (wy)v velocity components for vertical case in the x- and
y-directions, respectively, m s−1

(Wx)v, (wy)v dimensionless velocity components for vertical case in
the x- and y-directions, respectively

Greek symbols
αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)−1

δ boundary layer thickness, m
ηi dimensionless coordinate variable for boundary layer

for inclined case
ηv dimensionless coordinate variable for boundary layer

for vertical case
γ inclined angle of surface
θ dimensionless temperature,
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

ν kinematic viscosity, m2 s−1

ρ density, kg m−3[(
dθ
dη

)
η=0

]
i

dimensionless temperature gradient on plate for
inclined case
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[(
dθ
dη

)
η=0

]
v

dimensionless temperature gradient on plate for
vertical case

(ηδ)i(Wx,δ)i −
4(Wy,δ)i

mass flow rate parameter entering in the boundary
layer for inclined case

(ηδ)v(Wx,δ)v −
4(Wy,δ)v

mass flow rate parameter entering in the boundary
layer for vertical case

ρ∞
ρ − 1

ρ∞
ρw

− 1
buoyancy factor

Subscripts
i inclined case
v vertical case
w at wall
∝ far from the wall surface

9.1 Introduction

It was Rich [1] who first suggested theoretically the procedure for obtaining
the heat transfer rate from an inclined surface. According to his procedure,
the problem of free convection on an inclined surface is identical to that of
flow over a vertical surface except that g is replaced by g cos γ, and therefore,
a replacement of g by g cos γ in all the relationships derived earlier. This
implies using Grx cos γ for Grx. As a result, his experimental data are in
general agreement with the anticipated values. The data obtained by Vliet [2]
for a uniform-flux, heated surface in air and in water indicate the validity
of the procedure mentioned earlier up to inclination angles as large as 60◦C.
Detailed experimental results on this were obtained by Fujii and Imura [3].
They also discuss the separation of the boundary layer for the inclined surface
facing upward.

However, so far, there has been a shortage of a theoretically rigorous
derivations to support the earlier conclusions by means of a replacement of g
with g cos γ for all the relationships, and there is a shortage of the clear corre-
lations in describing the transformations of heat transfer, momentum transfer,
and mass flow rate drawn from the vertical case to the inclined case for the
free convection. As we know, the traditional method for the treatment of sim-
ilarity transformation of the governing equations for laminar free convection
is the Falkner–Skan transformation [4–6]. It is difficult with the traditional
Falkner–Skan transformation to realize such a derivation.

Fortunately, the velocity component method presented in Chap. 4–6 [7–9]
for similarity transformation of the governing partial deferential equations
of fluid laminar boundary layer has provided the possibility to realize such
derivation. It is shown that in these studies the velocity component method
has its advantages over the Falkner–Skan transformation for the treatment of
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variable thermophysical properties and other various physical factors. On this
basis, Shang and Takhar [10] clarified the relationships of heat, momentum,
and mass transfer of laminar fluid free convection between inclined and vertical
cases for consideration of variable thermophysical properties.

In this present chapter, I will introduce the exact relationships of heat, mo-
mentum, and mass transfer between inclined and vertical cases with consider-
ation of variable thermophysical properties in order to satisfy the requirement
in industrial applications. To this end, the governing equations of laminar free
convection of fluid in the inclined case are transformed by means of a devel-
oped similarity transformation approach, viz, the velocity component method,
instead of traditional Falkner–Skan type of transformation. Meanwhile, the
suitable forms of some dimensionless variables such as an appropriate suitable
local Grashof number Grx,∞ and suitable dimensionless velocity components
for the free convection are proposed. It will be found that the formation of the
transformed dimensionless governing equations for the inclined case is fully
same as those for the corresponding vertical cases. Then, it is obvious that,
except the different assumption of local Grashof number and dimensionless
velocity components, the prediction correlations of heat transfer, momentum
transfer, and mass flow rate for fluid laminar free convection for the vertical
case presented in the previous chapters can be completely taken as those for
the related inclined case.

9.2 Fluid Free Convection on inclined plate

9.2.1 Physical Model and Basic Equations

The physical model and coordinate system of fluid free convection on inclined
plate are shown schematically in Fig. 9.1. An isothermal inclined flat plate is
suspended in a quiescent fluid. The surface temperature is tw and the fluid
bulk temperature is t∞. It is assumed that tw is not equal to t∞, so that
laminar free convection can be produced easily on the inclined surface in both
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Fig. 9.1. Physical model and coordinate system. (a) Ascending flow on the inclined
surface (tw > t∞), (b) falling flow on the inclined surface (tw < t∞)
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the cases as shown in Fig. 9.1(a) and (b), respectively. The governing partial
differential equations for mass, momentum, and energy for consideration of
variable thermophysical properties applied to the fluid laminar free convection
on the inclined surface, are

∂
∂x [ρ(wx)i] + ∂

∂y [ρ(wy)i] = 0, (9.1)

ρ
[
(wx)i

∂(wx)i
∂x + (wy)i

∂(wx)i
∂y

]
= ∂

∂y

[
µ ∂(wx)i

∂y

]
+ g |ρ∞ − ρ| cos γ, (9.2)

ρcp

[
(wx)i ∂t

∂x + (wy)i ∂t
∂y

]
= ∂

∂y

(
λ ∂t

∂y

)
, (9.3)

where γ expresses the inclined angle of the plate. Here, the buoyancy fact
|ρ∞ − ρ| is taken as the absolute value because its direction is same as that of
the velocity component (wx)i. Obviously, the governing equations (9.1)–(9.3)
are suitable for laminar free convection both of liquid and gas.

The boundary conditions are

y = 0 : (wx)i = 0, (wy)i = 0, t = tw, (9.4)
y → ∞ (wx)i = 0, t = t∞, (9.5)

9.2.2 Similarity Transformation of the Basic Equations

For similarity transformation of the basic equations we use the velocity com-
ponent method which was developed in [7–9] and presented in Chaps. 4–6.
Taking subscript i to express the case on the inclined surfaces, we assume the
following dimensionless coordinate variables for similarity transformation of
the earlier governing partial differential equations of fluid laminar free con-
vection on inclined plate:

ηi =
y

x

[
1
4
(Grx,∞)i

]1/4

, (9.6)

where ηi is dimensionless coordinate variable for boundary layer. The local
Grashof number (Grx,∞)i can be assumed to be

(Grx,∞)i =
g (cos γ) |ρ∞/ρw − 1|x3

ν∞2
. (9.7)

The dimensionless temperature is given by

θ =
t − t∞
tw − t∞

. (9.8)

The dimensionless velocity components are assumed to be

(Wx)i = (2
√

g (cos γ)x |ρ∞/ρw − 1|1/2)−1(wx)i, (9.9)

(Wy)i = {2
√

g (cos γ)x |ρ∞/ρw − 1|1/2

[
1
4
(Grx,∞)i

]−1/4

}−1(wy)i.

(9.10)
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With the earlier similarity variables defined in (9.6)–(9.10), (9.1)–(9.3)
with the boundary conditions (9.4) and (9.5) can be transformed to the fol-
lowing governing ordinary differential equations:

2(Wx)i − η
d(Wx)i

dηi
+ 4

d(Wy)i
dηi

− 1
ρ

dρ

dηi
[ηi(Wx)i − 4(Wy)i] = 0, (9.11)

ν∞
ν

[
(Wx)i

(
2(Wx)i − ηi

d(Wx)i
dηi

)
+ 4(Wy)i

d(Wx)i
dηi

]

=
d2(Wx)i

dη2
i

+
1
µ

dµ

dηi

d(Wx)i
dηi

+
ν∞
ν

ρ∞
ρ − 1

ρ∞
ρw

− 1
, (9.12)

Pr
ν∞
ν

[−ηi(Wx)i + 4(Wy)i]
dθ

dηi
=

d2θ

dη2
i

+
1
λ

dλ

dηi

dθ

dηi
, (9.13)

ηi = 0 : (Wx)i = 0, (Wy)i = 0, θ = 0, (9.14)
ηi → 0 : (Wx)i = 0, θ = 0. (9.15)

The derivation processes for (9.11)–(9.13) are described in Appendix A
in detail.

9.2.3 Relationships of Momentum, Heat, and Mass Transfer
between Inclined and Vertical Cases

For heat transfer. (9.11)–(9.13) and their boundary conditions (9.14) and
(9.15) are dimensionless forms of the equations of fluid laminar free convec-
tion in the inclined case. They are completely identical to those in the vertical
case derived in Chap. 6. Therefore, for same liquid laminar free convection
with same boundary temperature conditions tw and t∞, we have

−
[(

dθ

dη

)
η=0

]

i

= −
[(

dθ

dη

)
η=0

]

v

. (9.16)

where the subscripts i and v denotes the related inclined and vertical cases,
respectively. With the same derivation as that in Chap. 6 the correlation for[(

dθ
dη

)
η=0

]
i

in the following form for water laminar free convection can be

taken for consideration of variable thermophysical properties:

−

[(
dθ

dη

)
η=0

]

i

=−

[(
dθ

dη

)
η=0

]

v

=0.5764+0.1797 ·Ln(Pr∞)+0.0331 ·Ln2(Pr∞),

(9.17)

where the water bulk temperature t∞ is defined as that of reference Prandtl
number Pr∞.
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From definitions of local Grashof number for the inclined and vertical cases
defined in (9.7) and (6.10), respectively, we obtain the following equation:

(Grx,∞)i
(Grx,∞)v

= cos γ. (9.18)

From the related definitions of local Nusselt number of laminar free convection
for vertical and inclined cases we have

(Nux,w)i
(Nux,w)v

=
−
(

1
4Grx,∞

)1/4

i

[(
dθ
dη

)
η=0

]
i

−
(

1
4Grx,∞

)1/4

v

[(
dθ
dη

)
η=0

]
v

= cos1/4 γ. (9.19)

For momentum transfer. Since the dimensionless governing equations (9.11)–
(9.13) are completely identical to (6.26)–(6.28), the solutions for dimensionless
velocity components both for inclined and vertical cases for fluid laminar free
convection are identical, i.e.,

(Wx)i = (Wx)v, (9.20)
(Wy)i = (Wy)v. (9.21)

Combining (9.20) with (9.9) and (6.8) we have

(2
√

g cos γx |ρ∞/ρw − 1|1/2)−1(wx)i =

[
2
√

gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2
]−1

(wx)v,

i.e.,
(wx)i
(wx)v

= cos1/2 γ. (9.22)

Combining (9.21) with (9.10) and (6.9) we have

{2√g cos γx |ρ∞/ρw − 1|1/2

[
1
4
(Grx,∞)i

]−1/4

}−1(wy)i

=

[
2
√

gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
−1/2(1

4
(Grx,∞)v

)−1/4
]−1

(wy)v

i.e.,
(wy)i
(wy)v

= cos1/4 γ. (9.23)

For mass transfer. Let us set (gx)i to be a local mass flow rate entering the
boundary layer at position x per unit area of the inclined plate. According to
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the boundary layer theory of fluid mechanics, (gx)i is expressed as

(gx)i = ρ∞

[
(wx,δ)i

dδi

dx
− (wy,δ)i

]
,

where δi is the boundary layer thickness, and (wx,δ)i and (wy,δ)i are velocity
components at y = δi. With (9.9) and (9.10) the earlier equation is changed
into the following one:

(gx)i = ρ∞[2
√

g cos γx |ρ∞/ρw − 1|1/2 (Wx,δ)i
dδi

dx

−2
√

g cos γx |ρ∞/ρw − 1|1/2

(
1
4
Grx,∞

)−1/4

i

(Wy,δ)i]

= 2
√

g cos γx |ρ∞/ρw − 1|1/2
ρ∞[(Wx,δ)i

dδi

dx
−
(

1
4
Grx,∞

)−1/4

i

(Wy,δ)i],

(9.24)

where

δi = (ηδ)i

(
1
4
Grx,∞

)−1/4

i

x, (9.25)

according to (9.6).
Then,

dδi

dx
=

1
4
(ηδ)i

(
1
4

g cos γ |ρ∞/ρw − 1|
ν∞2

)−1/4

i

x−3/4 =
1
4
(ηδ)i

(
1
4
Grx,∞

)−1/4

i

.

(9.26)

Hence (9.24) can be simplified as

(gx)i = 2
√

g cos γx |ρ∞/ρw − 1|1/2
ρ∞

×
[

1
4
(Wx,δ)i(ηδ)i

(
1
4
Grx,∞

)−1/4

i

−
(

1
4
Grx,∞

)−1/4

i

(Wy,δ)i

]

= 4ν∞ρ∞

(
1
4
Grx,∞

)1/2

i

x−1

×
[

1
4
(Wx,δ)i(ηδ)i

(
1
4
Grx,∞

)−1/4

i

−
(

1
4
Grx,∞

)−1/4

i

(Wy,δ)i

]

= 4µ∞

(
1
4
Grx,∞

)1/4

i

x−1

[
1
4
(Wx,δ)i(ηδ)i − (Wy,δ)i

]

= µ∞

(
1
4
Grx,∞

)1/4

i

[(ηδ)i(Wx,δ)i − 4(Wy,δ)i]x−1. (9.27)
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If (Gx)i is taken to express total mass flow rate entering the boundary
layer for position x = 0 to x with width of b on the inclined plate, it should
be the following integration:

(Gx)i =
∫∫
A

(gx)i dA

= b

∫ x

0

(gx)idx. (9.28)

With (9.27), (9.28) becomes

(Gx)i = b

∫ x

0

[
µ∞

(
1
4
Grx,∞

)1/4

i

[(ηδ)i(Wx,δ)i − 4(Wy,δ)i] x−1

]
dx

=
4
3
b · µ∞

(
1
4
Grx,∞

)1/4

i

[(ηδ)i(Wx,δ)i − 4(Wy,δ)i] . (9.29)

Set (Gx)v is total mass flow rate entering the boundary layer for position x = 0
to x with width of b on the vertical plate. Obviously, (Gx)v is the special case
of (Gx)i when the inclined angle γ equals zero. The (Gx)v is expressed as

(Gx)v =
4
3
b · µ∞

(
1
4
Grx,∞

)1/4

v

[(ηδ)v(Wx,δ)v − 4(Wy,δ)v]. (9.30)

Then, at the same temperature boundary condition the ratio of the mass flow
rate drawn into the boundary layer will be

(Gx)i
(Gx)v

=
4
3b · µ∞

(
1
4Grx,∞

)1/4

i
[(ηδ)i(Wx,δ)i − 4(Wy,δ)i]

4
3b · µ∞

(
1
4Grx,∞

)1/4

v
[(ηδ)v(Wx,δ)v − 4(Wy,δ)v]

. (9.31)

Since the dimensionless governing equations of fluid laminar free convection
for the inclined case are completely identical to those for vertical case, we
have

(ηδ)i = (ηδ)v,
[(ηδ)i(Wx,δ)i − 4(Wy,δ)i] = [(ηδ)v(Wx,δ)v − 4(Wy,δ)v].

Then,
(Gx)i
(Gx)v

=
[

(Grx,∞)i
(Grx,∞)v

]1/4

= cos1/4 γ. (9.32)

The governing basic equations and relationships of mass, momentum, and
heat transfer between the inclined and vertical cases for fluid laminar free
convection are summarized in Table 9.1.
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9.3 Gas Free Convection on Inclined Plate

In principle, the governing equations of laminar free convection of fluid are
completely suitable to those of gas. Then, all the relationship equations be-
tween the inclined and vertical for fluid laminar free convection derived in
Sect. 9.2 are completely suitable to those of gas laminar free convection.

However, for convenience it is necessary to use the temperature parameter
method introduced in Chap. 4 for expression of gas density variation with
absolute temperature, i.e.,

ρ

ρ∞
=

T∞
T

(9.33)

to rewrite the equations in Sect. 9.2 for buoyancy factor, local Grashof number,
and velocity components as follows for gas laminar free convection.

For inclined case:

g(ρ∞ − ρ) cos γ = ρg
T − T∞

T∞
cos γ, (9.34)

(Grx,∞)i =
g cos γ |Tw/T∞ − 1|x3

ν∞2
, (9.35)

(Wx)i = (2
√

g cos γx |Tw/T∞ − 1|1/2)−1(wx)i (9.36)

(Wy)i = {2√g cos γx |Tw/T∞ − 1|1/2

[
1
4
(Grx,∞)i

]−1/4

}−1(wy)i. (9.37)

For vertical case:
g(ρ∞ − ρ) = ρg

T − T∞
T∞

, (9.38)

(Grx,∞)v =
g |Tw/T∞ − 1|x3

ν∞2
, (9.39)

(Wx)i = (2
√

gx |Tw/T∞ − 1|1/2)−1(wx)v, (9.40)

(Wy)i = {2√gx |Tw/T∞ − 1|1/2

[
1
4
(Grx,∞)v

]−1/4

}−1(wy)v. (9.41)

Furthermore, with the simple power law of gas, the buoyancy factor
ρ∞/ρw −1 in (9.7)–(9.10) for definition of local Grashof number (Grx,∞)i and
dimensionless velocity components Wx and Wy can be rewritten as follows:

ρ∞/ρw − 1 = Tw/T∞ − 1. (9.42)

In addition, the buoyancy factor
ρ∞
ρ − 1

ρ∞
ρw

− 1

in the transformed momentum equation (9.12) can be rewritten as dimension-
less temperature θ.
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Since the dimensionless governing equations (9.11)–(9.13) for fluid laminar
free convection for inclined case are completely identical to those for the ver-
tical case, the following curve-fitting formulae of dimensionless temperature
gradient are suitable both to inclined and vertical cases for laminar free con-
vection of monatomic and diatomic gases, air, and water vapor:

[(
dθ

dη

)
η=0

]

i

=

[(
dθ

dη

)
η=0

]

v

= ψ(Pr)
(

Tw

T∞

)−m

, (9.43)

where

ψ(Pr) = (0.567 + 0.186 · Ln(Pr)), (9.44)
m = 0.35nλ + 0.29nµ + 0.36 for Tw/T∞ > 1, (9.45)
m = 0.42nλ + 0.34nµ + 0.24 for Tw/T∞ < 1. (9.46)

9.4 Summary

So far, the governing equations of fluid laminar free convection both with
the vertical and inclined cases, and the relationships for heat, momentum,
and mass transfer between the vertical and inclined cases are summarized in
Table9.1.

9.5 Remarks

In this chapter an advanced similarity method, the velocity component
method, is applied to the similarity transformation of the governing equations
of fluid laminar free convection on inclined plate, instead of the traditional
Falkner–Skan transformation. This leads to the governing ordinary differential
equations which are the same as those of the corresponding equations on the
vertical plate. Finally, the following simple and direct correlations for describ-
ing the transformations of the velocity components, heat transfer, and mass
flow rate from the vertical case to the inclined case for the free convection are
derived:

(wx)i
(wx)v

= cos1/2 γ,
(wy)i
(wy)v

= cos1/4 γ,
(Nux,w)i
(Nux,w)v

= cos1/4 γ and
(Gx)i
(Gx)v

= cos1/4 γ.

In addition, ηδWx,δ−4Wy,δ in (9.27) and (9.29) can be defined as mass flow
rate parameter. Obviously, Wx,δ = 0 corresponds to the case of free convec-
tion. The successful derivation for the relationships of heat, momentum, and
mass transfer for laminar free convection between the inclined and vertical
plates, in this paper, reveals once again the advantage of the velocity compo-
nent method over the traditional Falkner–Skan transformation, for studying
laminar boundary layer problems.
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9.6 Calculation Example

Question: A flat plate with b = 1 m in width and x = 0.3 m in length is
suspended vertically in air. The ambient temperature is t∞ = 20◦C. Calcu-
late the free convection heat transfer of the plate for the temperature ratio
Tw/T∞ = 1.7. What is its heat transfer rate, if the plate inclined angle is
45◦C.

Solution: From t∞ = 20◦C and Tw/T∞ = 1.7, we have Tw = 498.1 K or
tw = 225.1◦C. The air physical properties are as follows: kinetic viscosity is
ν∞ = 15.06 × 10−6 m2 s−1 at t∞ = 20◦C, λw = 4.07 × 10−2 W (m◦C)−1

at tw = 225.1◦C. From Tables 4.1 and 4.3, we get nµ = 0.68, nλ = 0.81 and
Pr = 0.7 for air.

1. For vertical case. From (4.51) the local Nusselt number is expressed as

(Nux,w)v = −
(

1
4
Grx,∞

)1/4

v

(
dθ

dη

)
η=0

,

where (Nux,w)v is defined as

(Nux,w)v =
(αx)vx

λw
.

The local Grashof number is evaluated as

(Grx,∞)v =
g |Tw/T∞ − 1|x3

ν2
∞

=
9.8 × |(498.1/293 − 1| × 0.33

(15.06 × 10−6)2

= 0.81665 × 109 < 109

Then, the flow is laminar free convection.
According to (4.54) and (4.55) the temperature gradient is expressed as

−
(

dθ

dη

)
η=0

= (0.567 + 0.186 × ln Pr) ·
(

Tw

T∞

)−m

,

where parameter m is expressed as

m = 0.35nλ + 0.29nµ + 0.36
= 0.35 × 0.81 + 0.29 × 0.68 + 0.36 = 0.8407

for Tw/T∞ > 1. Then,

−
(

dθ

dη

)
η=0

= (0.567 + 0.186 × ln 0.7) ·
(

498.1
293

)−0.8407

= 0.32048.
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On these bases, (Nux,w)v can be evaluated as follows:

(Nux,w)v = −
(

1
4
Grx,∞

)1/4

v

(
dθ

dη

)
η=0

=
(

1
4
× (0.81665 × 109)

)1/4

× 0.32048

= 38.3085.

With the definition of local Nussetl number for vertical case, (Nux,w)v =
(αx)vx/λw, the local heat transfer coefficient for vertical case can be calcu-
lated as

(αx)v = (Nux,w)v
λw

x

= 38.3085 × 0.0407
0.3

= 5.197 W (m2 K)−1.

The average heat transfer coefficient can be calculated as

(αx)v =
4
3
(αx)v

=
4
3
× 5.197

= 6.9296 W (m2 K)−1.

The heat transfer rate of the free convection on the vertical plate is

(Qx)v = (αx)v · (Tw − T∞) · bx
= 6.9296 × (498.1 − 293) × 1 × 0.3
= 426.38W.

2. For inclined case. From Table 9.1 the local Nusselt number for inclined case
can be expressed as

(Nux,w)i = (Nux,w)v · cos1/4 γ

= 38.3085 × · cos1/4(45◦)
= 35.129.

With the definition of local Nusselt number for inclined case, (Nux,w)i =
(αx)ix/λw, the local heat transfer coefficient for inclined case can be calcu-
lated as

(αx)i = (Nux,w)i
λw

x

= 35.129 × 4.07 × 10−2

0.3
= 4.7658 W (m2 K)

−1
.
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The average heat transfer coefficient can be calculated as

(αx)i =
4
3
(αx)i

=
4
3
× 4.7658

= 6.3544 W (m2 K)
−1

.

The heat transfer rate of the free convection on the inclined plate is

(Qx)i = (αx)i · (Tw − T∞) · bx
= 6.3544 × (498.1 − 293) × 1 × 0.3
= 391W.

Appendix A. Derivation of Equations (9.1)–(9.3)

1 Derivation of equation (9.1)

Equation (9.1) can be changed to

ρ

[
∂(wx)i

∂x
+

∂(wy)i
∂x

]
+ (wx)i

∂ρ

∂x
+ (wy)i

∂ρ

∂y
= 0. (9.1a)

With the dimensionless variables assumed in (9.6), (9.7), (9.9), and (9.10) the
following correlations are obtained:

∂(wx)i
∂x

=

[
2
√

gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2
]

d(Wx)i
dηi

∂ηi

∂x
cos γ

+
1
2
x−1/2

[
2
√

g

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2
]

(Wx)i cos γ,

where

∂ηi

∂x
=

∂

∂x

[
y

x

(
1
4
Grx,∞

)1/4

i

]

=
∂

∂x

⎡
⎢⎣y

⎛
⎝1

4

g
∣∣∣ρ∞

ρw
− 1

∣∣∣x−1

ν2
∞

⎞
⎠

1/4
⎤
⎥⎦

= −1
4

⎡
⎢⎣y

⎛
⎝1

4

g
∣∣∣ρ∞

ρw
− 1

∣∣∣
ν2
∞

⎞
⎠

1/4
⎤
⎥⎦x− 5

4

= −1
4

⎡
⎢⎣y

⎛
⎝1

4

g
∣∣∣ρ∞

ρw
− 1

∣∣∣x3

ν2
∞

⎞
⎠

1/4
⎤
⎥⎦x−2

= −1
4
x−1ηi.
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Then,

∂(wx)i
∂x

=
[
2
√

gx
ρ∞
ρw

− 11/2

]
d(Wx)i

dηi

(
−1

4
x−1ηi

)
cos1/2 γ

+
1
2
x−1/2

[
2
√

g

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2
]

(Wx)i cos1/2 γ

= −1
2

[√
g

x

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2
]

η
d(Wx)i

dηi
cos1/2 γ

+

[√
g

x

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2
]

(Wx)i cos1/2 γ

=
√

g

x

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2

cos1/2 γ

(
(Wx)i −

1
2
ηi

d(Wx)i
dηi

)
, (9.47)

∂(wy)i
∂y

= 2
√

g

x

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2

cos1/2 γ
d(Wy)i

dη
, (9.48)

∂ρ

∂x
=

dρ

dηi

∂ηi

∂x
= −1

4
ηix

−1 dρ

dηi
, (9.49)

∂ρ

∂y
=

dρ

dηi

∂ηi

∂y
=

dρ

dηi

[
1
4
(Grx,∞)i

]1/4

i

x−1 (9.50)

With (9.47)–(9.50), (9.1a) can be transformed into

ρ

[√
g

x

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

cos1/2 γ((Wx)i −
1

2
ηi

d(Wx)i
dηi

)

+ 2

√
g

x

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

cos1/2 γ
d(Wy)i

dηi

]
+ 2

√
gx cos γ |ρ∞/ρw − 1|1/2 (Wx)i

×
(
−1

4
ηix

−1 dρ

dη

)
+ 2

√
gx cos γ |ρ∞/ρw − 1|1/2

[
1

4
(Grx,∞)i

]−1/4

(Wy)i

× dρ

dηi

(
1

4
Grx,∞

)1/4

i
x−1

= 0. (9.51)

Equation (9.51) is divided by
√

g cos γ

x

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2

then is simplified to

2(Wx)i − η
d(Wx)i

dηi
+ 4

d(Wy)i
dηi

− 1
ρ

dρ

dηi
[ηi(Wx)i − 4(Wy)i] = 0. (9.11)

This is the dimensionless continuity differential equation of fluid laminar
free convection for inclined case.
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2 Derivation of equation (9.2)

Equation (9.2) is rewritten as

ρ

[
(wx)i

∂(wx)i
∂x

+ (wy)i
∂(wx)i

∂y

]
= µ

∂(2wx)i
∂x2

+
∂(wx)i

∂y

∂µ

∂y
+ g |ρ∞ − ρ| cos γ,

(9.2a)
where

∂(wx)i
∂y

=
d(wx)i

dηi

∂ηi

∂y
= 2

√
gx

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣
1/2 d(Wx)i

dηi

∂ηi

∂y
cos1/2 γ

∂ηi

∂y
= x−1

[
1
4
(Grx,∞)i

]1/4

i

.

Then,

∂(wx)i
∂y

= 2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d(Wx)i
dηi

x−1
[
1

4
(Grx,∞)i

]1/4

i
cos1/2 γ, (9.52)

∂2(wx)i
∂y2

= 2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d2(Wx)i
dη2

i

x−1
[
1

4
(Grx,∞)i

]1/4

i

∂ηi

∂y
cos1/2 γ

= 2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d2(Wx)i
dη2

i

[
1

4
(Grx,∞)i

]1/4

x−1
[
1

4
(Grx,∞)i

]1/4

cos1/2 γ

= 2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d2(Wx)i
dη2

i

(
1

4
Grx,∞

)1/2

i
x−2 cos1/2 γ. (9.53)

∂µ

∂y
=

dµ

dηi

∂ηi

∂y

=
dµ

dηi

(
1
4
Grx,∞

)1/4

x−1. (9.54)

With (9.52)–(9.54), (9.2a) is changed into

ρ[2
√

gx cos γ |ρ∞/ρw − 1|1/2 (Wx)i

√
g

x

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

cos1/2 γ((Wx)i −
1

2
η
d(Wx)i

dηi
)

+2
√

gx cos γ |ρ∞/ρw − 1|1/2
[
1

4
(Grx,∞)i

]−1/4

×(Wy)i2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d(Wx)i
dηi

x−1
[
1

4
(Grx,∞)i

]1/4

i
cos1/2 γ]

= 2µ
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d2(Wx)i
dη2

[
1

4
Grx,∞)i

]1/2

x−2 cos1/2 γ

+2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d(Wx)i
dηi

x−1
[
1

4
(Grx,∞)i

]1/4

i
cos1/2 γ

× dµ

dηi

[
1

4
(Grx,∞)i

]1/4

i
x−1 + g |ρ∞ − ρ| cos γ (9.55)
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With definition of (Grx,∞)i, (9.55) is rewritten as

ρ[2
√

gx cos γ |ρ∞/ρw − 1|1/2 (Wx)i

√
g

x

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

cos1/2 γ((Wx)i −
1

2
η
d(Wx)i

dη
)

+2
√

gx cos γ |ρ∞/ρw − 1|1/2 (Wy)i2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d(Wx)i
dηi

x−1 cos1/2 γ]

= 2µ
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d2Wx

dη2
i

[
1

4

g cos γ |ρ∞/ρw − 1|x3

ν∞2

]1/2

x−2 cos1/2 γ

+2
√

gx

∣∣∣∣ρ∞
ρw

− 1

∣∣∣∣
1/2

d(Wx)i
dηi

x−1

[
1

4
(
g cos γ |ρ∞/ρw − 1|x3

ν∞2

]1/2

i

cos1/2 γ

× dµ

dηi
x−1 + g |ρ∞ − ρ| cos γ. (9.56)

Equation (9.56) is divided by

ρg

∣∣∣∣ρ∞ρw
− 1

∣∣∣∣ cos γ,

and simplified to
[
2
√

x(Wx)i

√
1
x

(
(Wx)i −

1
2
η
d(Wx)i

dηi

)
+ 2

√
x(Wy)i2

√
x

d(Wx)i
dηi

x−1

]

= 2ν
√

x
d2(Wx)i

dη2
i

[
1
4

x3

ν∞2

]1/2

x−2 +
2
ρ

√
x

d(Wx)i
dηi

x−1

×
[
1
4

(
x3

ν∞2

)]1/2

i

dµ

dηi
x−1 +

ρw

ρ

∣∣∣∣ ρ∞ − ρ

ρ∞ − ρw

∣∣∣∣
The earlier equation is divided by ν/ν∞, and simplified to

ν∞
ν

[
2(Wx)i

(
(Wx)i −

1
2
ηi

d(Wx)i
dηi

)
+ 2(Wy)i2

d(Wx)i
dηi

]

=
d2(Wx)i

dη2
i

+
2
ρ

ν∞
ν

d(Wx)i
dηi

[
1
4

(
1

ν∞2

]1/2

i

dµ

dηi
+

ν∞
ν

ρw

ρ

∣∣∣∣ ρ∞ − ρ

ρ∞ − ρw

∣∣∣∣
i.e.,

ν∞
ν

[
(Wx)i

(
2(Wx)i − ηi

d(Wx)i
dηi

)
+ 4(Wy)i

d(Wx)i
dηi

]

=
d2(Wx)i

dη2
i

+
1
µ

d(Wx)i
dηi

dµ

dηi
+

ν∞
ν

ρw

ρ

∣∣∣∣ ρ∞ − ρ

ρ∞ − ρw

∣∣∣∣ . (9.57)
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Because (ρ∞−ρ)/(ρ∞−ρw) is always positive, the earlier equation is rewritten
as

ν∞
ν

[
(Wx)i

(
2(Wx)i − ηi

d(Wx)i
dηi

)
+ 4(Wy)i

d(Wx)i
dηi

]

=
d2(Wx)i

dη2
i

+
1
µ

dµ

dηi

d(Wx)i
dηi

+
ν∞
ν

ρ∞
ρ − 1

ρ∞
ρw

− 1
. (9.12)

This is the dimensionless momentum differential equation of fluid laminar free
convection for inclined case.

3 Derivation of equation (9.3)

Equation (9.3) is rewritten as

ρcp

[
(wx)i

∂t

∂x
+ (wy)i

∂t

∂y

]
= λ

∂2t

∂y2
+

∂λ

∂y

∂t

∂y
, (9.58)

where

t = (tw − t∞)θ + t∞, (9.59)
∂t

∂x
= −(tw − t∞)

dθ

dηi

(
1
4

)
ηx−1, (9.60)

∂t

∂y
= (tw − t∞)

dθ

dηi

(
1
4
Grx,∞

)1/4

i

x−1, (9.61)

∂2t

∂y2
= (tw − t∞)

d2θ

dη2
i

(
1
4
Grx,∞

)1/2

i

x−2, (9.62)

∂λ

∂y
=

dλ

dηi

(
1
4
Grx,∞

)1/4

i

x−1. (9.63)

With (9.59)–(9.63), (9.58) becomes:

ρcp[−2
√

g cos γx |ρ∞/ρw − 1|1/2 (Wx)i(tw − t∞)
dθ

dηi

(
1
4

)
ηix

−1

+2
√

g cos γx |ρ∞/ρw − 1|1/2

(
1
4
Grx,∞

)−1/4

i

(Wy)i(tw − t∞)

× dθ

dηi

(
1
4
Grx,∞

)1/4

i

x−1]

= λ(tw − t∞)
d2θ

dη2
i

(
1
4
Grx,∞

)1/2

i

x−2 +
dλ

dηi

(
1
4
Grx,∞

)1/4

i

×x−1(tw − t∞)
dθ

dηi

(
1
4
Grx,∞

)1/4

i

x−1.. (9.64)
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Equation (9.64) is divided by (tw − t∞), simplified to the follow form by
Consideration of definition of Grashof number, Grx,∞:

ρcp[−2
√

g cos γx |ρ∞/ρw − 1|1/2 (Wx)i
dθ

dηi

(
1
4

)
ηix

−1

+2
√

g cos γx |ρ∞/ρw − 1|1/2 (Wy)i
dθ

dηi
x−1]

= λ
d2θ

dη2
i

(
1
4

g cos γ |ρ∞/ρw − 1|x3

ν∞2

)1/2

i

x−2

+
dλ

dηi

(
1
4

g cos γ |ρ∞/ρw − 1|x3

ν∞2

)1/2

i

x−1 dθ

dηi
x−1.

The earlier equation is divided by
∣∣∣∣ρ∞ρw

− 1
∣∣∣∣
1/2√

g cos γ

x
,

then, we get

ρcp

[
−2(Wx)i

dθ

dηi

(
1

4

)
ηi + 2(Wy)i

dθ

dηi

]
=λ

d2θ

dη2
i

(
1

4

1

ν∞2

)1/2

i

+
dλ

dηi

(
1

4

1

ν∞2

)1/2

i

dθ

dηi

(9.65)

This equation is multiplied by 2ν∞/λ and on simplification, finally becomes:

ν∞
λ

ρcp

[
−(Wx)i

dθ

dηi
ηi + 4(Wy)i

dθ

dηi

]
=

d2θ

dη2
i

+
1
λ

dλ

dηi

dθ

dηi
,

i.e.,

Pr
ν∞
ν

[−ηi(Wx)i + 4(Wy)i]
dθ

dηi
=

d2θ

dη2
i

+
1
λ

dλ

dηi

dθ

dηi
. (9.13)

This is the dimensionless energy differential equation of fluid laminar free
convection for inclined case.
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Part II

Film Boiling and Condensation



10

Laminar Film Boiling of Saturated Liquid

Nomenclature

a thermal diffusive coefficient, m2 s−1

b width of plate, m
cp specific heat at constant pressure, J (kg K)−1

DTv

(
dθv

dηv

)
s

DTl −hfgµv,s(Wxv,sηvδ−4Wyv,s)
λv,s(tw−ts)

DWxv (dWxv/dηv)s

DWxl
µv,s
µv,s

(
ρl,s−ρv,w

ρs,w

)3/4

( νl,s
νv,s

)1/2(dWxv
dηv

)ηv=ηvδ

g gravitation acceleration, m s2

Grxl,s local Grashof number of liquid film for film boiling of
saturated liquid gx3/ν2

l,s

Grxv,s local Grashof number of vapor film for film boiling of
saturated liquid, g(ρl,s/ρv,w−1)x3

ν2
v,s

gx local mass flow rate entering the vapor film at position x
per unit area of the plate, kg (m2 s)−1

Gx total mass flow rate entering the vapor film for position
x = 0 to x with width of b of the plate, kg s−1

hfg latent heat of vaporization, J kg−1

Nux,w local Nusselt number for film boiling when wall temperature
tw is taken as reference temperature, αxx/λw

Nuxv,w average Nusselt number for film boiling, αxx/λw

ncp
specific heat parameter of gas

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
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Pr Prandtl number
qx local heat transfer rate at position x per unit area

on the plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate, W

t temperature, ◦ C
T absolute temperature, ◦ K
wx,wy velocity components in the x- and y-directions,

respectively, m s−1

Wx,Wy dimensionless velocity components in the x- and
y-directions, respectively

Wxv,s, Wyv,s interfacial dimensionless velocity components for
vapor film in the x- and y-directions, respectively

Greek symbols
αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)−1

δ boundary layer thickness, m
δl thickness of liquid film, m
δv thickness of vapor film, m
η dimensionless co-ordinate variable for boundary

layer
θv dimensionless temperature for vapor film, T−Ts

Tw−Ts

λ thermal conductivity, W (mK)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3

∆tw wall superheated temperature, tw − ts, ◦ C
∆tw
ts

wall superheated grade, tw−ts
ts(

−
(

dθv

dηv

)
ηv=0

)

∆t∞=0

dimensionless temperature gradient on the plate for
film boiling of saturated liquid

ηvδ dimensionless thickness of vapor film

(ηvδWxv,s −
4Wyv,s)∆t∞=0

mass flow rate parameter for film boiling of
saturated liquid

ρv,w

ρv

ρl,s − ρv

ρl,s − ρv,w
buoyancy factor of film boiling

1
ρv

dpv

dηv
density factor

1
µv

dµv

dηv
viscosity factor
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1
λv

dλv

dηv
thermal conductivity factor

νv,s

νv
kinetic viscosity factor

Subscripts
i liquid film
s saturated state, or at the vapor–liquid interface
v vapor film
w at wall
∞ far from the wall surface

10.1 Introduction

Bromley [1] first treated the laminar film-boiling heat transfer of saturated liq-
uid from a horizontal cylinder, using a simple theoretical model. Later analyt-
ical investigations [2–7] were made to analyze pool film boiling from a vertical
plate, in which only a few researches [5] and [7] took into account temperature-
dependence of fluid thermophysical properties. McFadden and Grosh [5] devel-
oped the analysis of saturated film boiling where the temperature-dependence
of density and specific heat was taken into account. Nishikawa, Ito and Mat-
sumoto [7] made an analysis of pool film boiling as a variable property problem
on the basis of the two-phase boundary layer theory, but only the effect of vari-
ation of vapor’s thermophysical properties with temperature was examined in
the range of lower degree of subcooling (Ts − T∞ = 0, 20, and 40◦ C).

However, in general film boiling, the temperature difference between the
heating surface and bulk liquid is very large, where large superheated degrees
on the surface and large subcooled degrees of liquid are included. In Chaps. 4–7
it is shown that the thermophysical property variations of gas and liquid with
temperature have great influences on their free convection. Of course, they
have definitely great effect on the film boiling of liquid. Therefore, from now
on, two chapters will be devoted in this book to introducing the recent stud-
ies of Shang, Wang and Zhong [8–10] on the film boiling of saturated and
subcooled liquid, respectively. In this chapter, the rigorous theoretical mod-
els for film boiling of saturated liquid along an isothermal vertical plate are
established by means of the velocity component method. The temperature
parameter method introduced in Chap. 4 is used for treatment of the variable
thermophysical properties on the vapor film. The governing ordinary differ-
ential equations with the boundary conditions are solved by a successively
iterative procedure at different wall superheated degrees for saturated water.
The distributions of velocity and temperature fields of the boiling are rigor-
ously determined. The theoretical correlations of heat transfer coefficient and
mass flow rate are derived, and then the corresponding curve-fit predictive
equations for the heat transfer coefficient and mass flow rate parameter are
developed based on the rigorous numerical solutions.
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10.2 Governing Partial Differential Equations

The analytical model and coordinating system used in this problem are shown
in Fig. 10.1. The heated plate with uniform temperature Tw is submerged ver-
tically in stagnant liquid whose temperature is higher than the liquid saturated
temperature Ts. We assume that the heating surface of the plate is covered
with continuous laminar vapor film, which moves upwards with the vapor.
Thus a two-phase boundary layer is formed. Heat flux produced from the
heating surface of the plate transfers through the two-phase boundary layer
to the bulk liquid. Meanwhile, mass transfer is produced at the vapor–liquid
interface due to the film boiling of liquid.

The governing conservation equations of mass, momentum, and energy
conservation for steady laminar free convection of the film boiling of saturated
liquid can be written as

(a.) for vapor film with consideration of variable thermophysical properties:

∂

∂x
(ρvwxv) +

∂

∂y
(ρvwyv) = 0, (10.1)

ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
=

∂

∂y

(
µv

∂wxv

∂y

)
+ g(ρl,s − ρv),(10.2)

ρvcpv

(
wxv

∂tv
∂x

+ wyv
∂tv
∂y

)
=

∂

∂y

(
λv

∂tv
∂y

)
, (10.3)

(b.) for liquid film with the constant physical properties:

∂

∂x
(wxl) +

∂

∂y
(wyl) = 0, (10.4)

y 

x

tw

dv d l

wx,v wx,l
wx,�

t

t�

Fig. 10.1. Physical model and coordinate system of film boiling of saturated liquid
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wxl
∂wxl

∂x
+ wyl

∂wxl

∂y
= νl

∂2wxl

∂y2
, (10.5)

with boundary conditions

y = 0 : wxv = 0, wyv = 0, Tv = Tw, (10.6)

y = δv : wxv,s = wxl,s, (10.7)

ρv,s

(
wxv

∂δv

∂x
− wyv

)
s

= ρl,s

(
wxl

∂δl

∂x
− wyl

)
s

, (10.8)

µv,s

(
∂wxv

∂y

)
s

= µl,s

(
∂wxl

∂y

)
s

, (10.9)

−λv,s(
∂tv
∂y

)y=δv = hfgρv,s(wxv
∂δxv

∂x
− wyv)s, (10.10)

Tv = Ts, (10.11)

y → ∞ : wxl → 0, (10.12)

Here, (10.7)–(10.11) express physical matching conditions of the continu-
ities of velocity, mass flow rate, shear force, heat flux, and temperature at
the vapor–liquid interface.

10.3 Similarity Transformation

In order to solve the governing equations in a suitable dimensionless form, it
is necessary to transform similarly the governing partial differential equations
and the boundary conditions. We still use the velocity component method to
carry out this transformation. At first, we introduce the similarity variables
as follows:

10.3.1 Similarity Transformation Variables

Due to the two-phase boundary layer there are two sets of the transformation
variables: the transformation variables for vapor and liquid films.

For vapor film. For vapor film the dimensionless coordinate variable ηv is set
up at first as follows:

ηv = (
1
4
Grxv,s)1/4 y

x
, (10.13)

where the local Grashof number Grxv,s is assumed as

Grxv,s =
g(ρl,s/ρv,w − 1)x3

ν2
v,s

. (10.14)
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The dimensionless temperature is given as

θv =
Tv − Ts

Tw − Ts
. (10.15)

The dimensionless velocity components are assumed as

Wxv = (2
√

gx(ρl,s/ρv,w − 1)1/2)−1wxv, (10.16)

Wxv =

(
2
√

gx(ρl,s/ρv,w − 1)−2

(
1
4
Grxv,s

)−1/4
)−1

wyv. (10.17)

For liquid film. For liquid film the dimensionless coordinate variable ηl is set
up as

ηl =
(

1
4
Grxl,s

)1/4
y

x
, (10.18)

where the local Grashof number Grxl,s is assumed as

Grxl,s =
gx3

ν2
l,s

. (10.19)

The dimensionless velocity components are assumed as

Wxl = (2
√

gx)−1wxl, (10.20)

Wyl =

(
2
√

gx

(
1
4
Grxl,s

)−1/4
)−1

wyl. (10.21)

10.3.2 Similarity Transformation

The similarity transformation of the governing partial differential equations
is divided into three parts: the transformations of the governing equations for
the vapor film, liquid film, and the boundary conditions, respectively.

For vapor film:

Transformation of (10.1). At first, (10.1) is rewritten as

ρv

(
∂wxv

∂x
+

∂wyv

∂y

)
+ wxv

∂ρv

∂x
+ wyv

∂ρv

∂y
= 0. (10.22)

With (10.13), (10.14), (10.16), and (10.17) we can obtain the following corre-
lations:
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∂wxv

∂x
=
√

g

x
(ρl,s/ρv,w − 1)1/2

(
Wxv − 1

2
ηv

dWxv

dη

)
, (10.23)

∂wyv

∂y
= 2

√
g

x
(ρl,s/ρv,w − 1)1/2 dWyv

dηv
, (10.24)

∂ρv

∂x
= −1

4
ηvx

−1 dρv

dηv
, (10.25)

∂ρv

∂y
=

dρv

dηv

(
1
4
Gr′xv,s

)1/4

x−1. (10.26)

With (10.16), (10.17), (10.23)–(10.26), (10.22) can be changed into

ρv

[√
g

x
(ρl,s/ρv,w − 1)1/2

(
Wxv − 1

2
ηv

dWxv

dη

)
+ 2

√
g

x
(ρl,s/ρv,w − 1)1/2 dWyv

dηv

]

+2
√

gx(ρl,s/ρv,w − 1)1/2Wxv

(
−1

4
ηvx−1 dρv

dηv

)

+2
√

gx(ρl,s/ρv,w − 1)1/2
(

1

4
Grxv,s

)−1/4

Wyv
dρv

dηv

(
1

4
Grxv,s

)1/4

x−1 = 0.

This earlier equation is divided by (ρl,s/ρv,w − 1)1/2
√

g
x and is simplified to

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
− 1

ρv

dρv

dηv
(ηvWxv − 4Wyv) = 0. (10.27)

Transformation of (10.2). The equation (10.2) is rewritten as

ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
= µv

∂2wxv

∂y2
+

∂wxv

∂y

∂µv

∂y
+ g(ρl,s − ρv) (10.28)

With the dimensionless transformation variables assumed in (10.13),
(10.14), (10.16), and (10.17) we get

∂wxv

∂y
= 2

√
gx(ρl,s/ρv,w − 1)1/2 dWxv

dηv
x−1

(
1
4Grxv,s

)1/4
, (10.29)

∂2wxv

∂y2
= 2

√
gx(ρl,s/ρv,w − 1)1/2 d2Wxv

dη2
v

x−1
(

1
4Grxv,s

)1/4 ( 1
4Grxv,s

)1/4
x−1

= 2
√

gx(ρl,s/ρv,w − 1)1/2 d2Wxv

dη2
v

(
1
4Grxv,s

)1/2
x−2, (10.30)

∂µv

∂y
=

dµv

dηv

(
1
4Grxv,s

)1/4
x−1. (10.31)
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With (10.16), (10.17), and (10.29)–(10.31), (10.28) will be changed into

ρv

[
2
√

gx(ρl,s/ρv,w − 1)1/2Wxv

√
g

x
(ρl,s/ρv,w−1)1/2

(
Wxv − 1

2
ηv

dWxv

dη

)

+2
√

gx(ρl,s/ρv,w − 1)1/2

(
1
4
Grxv,s

)−1/4

Wyv2
√

gx(ρl,s/ρv,w − 1)1/2

× dWxv

dηv
x−1

(
1
4Grxv,s

)1/4
]

= µv2
√

gx(ρl,s/ρv,w − 1)1/2 d2Wxv

dη2
v

(
1
4Grxv,s

)1/2
x−2

+2
√

gx(ρl,s/ρv,w − 1)1/2 dWxv

dη
x−1

(
1
4Grxv,s

)1/4

×dµv

dηv

(
1
4Grxv,s

)1/4
x−1 + g(ρl,s − ρv).

The earlier equation is divided by g(ρl,s/ρv,w − 1) and with the definition
of Grxv,s the equation is further simplified to

ρv

[
2Wxv

(
Wxv − 1

2
ηv

dWxv

dη

)
+ 4Wyv

dWxv

dηv

]

= µv
d2Wxv

dη2
v

1
νv,s

+
dWxv

dηv

dµv

dηv

1
νv,s

+
(ρl,s − ρv)

(ρl,s/ρv,w − 1)
.

The earlier equation is multiplied by (1/ρv)(νv,s/νv) and further simplified
to

νv,s

νv

(
Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

dWxv

dηv

)
=

d2Wxv

dη2
v

+
1
µv

dµv

dηv

dWxv

dηv

+
νv,s

νv

ρv,w

ρv

ρl,s − ρv

ρl,s − ρv,w
.

(10.32)

Transformation of (10.3). Equation (10.3) is firstly rewritten as

ρvcpv

(
wxv

∂Tv

∂x
+ wyv

∂Tv

∂y

)
= λv

∂2Tv

∂y2
+

∂λv

∂y

∂Tv

∂y
, (10.33)

where

Tv = (Tw − Ts)θv + Ts, (10.34)
∂Tv

∂x
= −(Tw − ts)

dθv

dηv

(
1
4

)
ηvx

−1, (10.35)
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∂Tv

∂y
= (Tw − Ts)

dθv

dηv

(
1
4
Grxv,s

)1/4

x−1, (10.36)

∂2Tv

∂y2
= (Tw − Ts)

d2θv

dηv

(
1
4
Grxv,s

)1/2

x−2, (10.37)

∂λv

∂y
=

dλv

dηv

(
1
4
Grxv,s

)1/4

x−1. (10.38)

With (10.16), (10.17), (10.34)–(10.38), (10.33) will become

ρvcpv

[
2
√

gx(ρl,s/ρv,w − 1)1/2Wxv

(
−(Tw − Ts)

dθv

dηv

(
1
4

)
ηvx

−1

)

+2
√

gx(ρl,s/ρv,w)1/2

(
1
4
Grxv,s

)−1/4

Wyv(Tw − Ts)
dθv

dηv

(
1
4
Grxv,s

)1/4

x−1

]

= λv(Tw − Ts)
d2θv

dηv

(
1
4
Grxv,s

)1/2

x−2

+
dλv

dηv

(
1
4
Grxv,s

)1/4

x−1(Tw − Ts)
dθv

dνv

(
1
4
Grxv,s

)1/4

x−1.

This earlier equation is divided by (Tw − Ts) and is further simplified to

ρvcpv

[
−2

√
gx(ρl,s/ρv,w − 1)1/2Wxv

dθv

dηv

(
1
4

)
ηvx

−1

)

+2
√

gx(ρl,s/ρv,w)1/2Wyv
dθv

dηv
X−1

]

= +λv
d2θv

dηv

(
1
4
Grxv,s

)1/2

x−2 +
dλv

dηv

dθv

dηv

(
1
4
Grxv,s

)1/2

x−2.

The earlier equation is divided by√
g

x
(ρl,s/ρv,w − 1)1/2,

and then is simplified to the following form with consideration of the definition
of Grxv,s:

ρvcpv

[
−Wxv

dθv

dηv
ηv + 4Wyv

dθv

dηv

]
= λv

d2θv

dηv

1
Vv,s

+
dλv

dηv

dθv

dηv

1
Vv,s

.

The earlier equation is multiplied by νv,s/λv and simplified into

P rv
νv,s

νv
(−ηvWxv + 4Wyv)

dθv

dηv
=

d2θv

dηv
+

1
λv

dλv

dηv

dθv

dηv
, (10.39)

where Prv is vapor Prandtl number defined as Prv = µvcpv/λv.
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For liquid film. Transformation of (10.4). With the (10.18)–(10.21) we get

∂wxl

∂x
=
√

g

x

(
Wlv − 1

2
ηl

dWxl

dηl

)
, (10.40)

∂wyv

∂y
= 2

√
g

x

dWyv

dηv

)
(10.41)

With (10.40)–(10.41), (10.4) is changed into

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
= 0 (10.42)

Transformation of (10.5). With (10.18)–(10.21) we obtain

∂wxl

∂y
= 2

√
gx

dWxl

dηl
x−1

(
1
4Grxl,s

)1/4 (10.43)

∂2wxl

∂y2
= 2

√
gx

d2Wxl

dη2
l

x−1
(

1
4Grxl,s

)1/4 ( 1
4Grxl,s

)1/4
x−1

= 2
√

gx
d2Wxl

dη2
l

(
1
4Grxl,s

)1/2
x−2. (10.44)

With (10.20), (10.21), (10.40), and (10.43)–(10.44), (10.5) will be simplified
to (

2
√

gxWxl

√
g

x

(
Wlv − 1

2
ηl

dWxl

dηl

)
+ 4

√
gxWyl

√
gx

dWxl

dηl
x−1 =

2νl
√

gx
d2Wxl

dη2
l

(
1
4Grxl,s

)1/2
x−2.

The earlier equation is divided by g, and then is simplified to the following
form with consideration of the definition of Grxl,s,

Wxl

(
2Wlv − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl
=

νl

νl,s

d2Wxl

dη2
l

.

Since νl = νl,s for saturated liquid film, the earlier equation is simplified
to

Wxl

(
2Wlv − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl
=

d2Wxl

dη2
l

. (10.45)

Then, the governing ordinary partial differential equations for vapor and
liquid film obtained by the similarity transformation are rewritten as follows:

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
− 1

ρv

dρv

dηv
(ηvWxv − 4Wyv) = 0, (10.27)
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νv,s

νv

(
Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

dWxv

dηv

)

=
d2Wxv

dη2
v

+
1
µv

dµv

dηv

dWxv

dηv
+

νv,s

νv

ρv,w

ρv

ρl,s − ρv

ρl,s − ρv,w
, (10.32)

Prv
νv,s

νv
(−ηvWxv + 4Wyv)

dθv

dηv
=

d2θv

dηv
+

1
λv

dλv

dηv

dθv

dηv
, (10.39)

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
= 0, (10.42)

Wxl

(
2Wlv − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl
=

d2Wxl

dη2
l

. (10.45)

For Boundary conditions. With the assumed transformation variables the
physical boundary conditions (10.6)–(10.12) are transformed equivalently to
the following ones, respectively:

ηv = 0 : Wxv = 0, Wyv = 0, θv = 1, (10.46)
ηv = ηvδ or ηl = 0 :

Wxl,s = (ρl,s/ρv,w − 1)1/2Wxv,s, (10.47)

Wyl,s = −0.25
µv,s

µ1,s

(
νl,s

νv,s

)1/2

(ρl,s/ρv,w − 1)1/4(Wxv,sηvδ − 4Wyv,s),

(10.48)(
dWxl

dηl

)
ηl=0

=
µv,s

µl,s
(ρl,s/ρv,w − 1)3/4

(
νl,s

νv,s

)1/2(dWxv

dηv

)
ηv=ηvδ

,

(10.49)

hfgµv,s(Wxv,sηvδ − 4Wyv,s) + λv,s(Tw − Ts)
(

dθv

dηv

)
ηv=ηvδ

= 0, (10.50)

θv = 0. (10.51)
ηl → ∞ : Wxl → 0. (10.52)

10.4 Numerical Calculation

10.4.1 Treatment of Variable Thermophysical Properties

Due to the larger superheated temperature of the surface, the treatment of
variable thermophysical properties for vapor film must be performed. To this
end, the temperature parameter method introduced in Chap. 4 [11] will be
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used for the treatment of variable thermophysical properties of the vapor
medium. If the saturated temperature Ts is taken as reference temperature,
the expressions of the thermophysical properties by means of the temperature
parameter method can be taken as follows:

µv

µv,s
=
(

T

Ts

)nµ

, (10.53)

λv

λv,s
=
(

T

Ts

)nλ

, (10.54)

ρv

ρv,s
=
(

T

Ts

)−1

, (10.55)

νv

νv,s
=
(

T

Tv,s

)nµ+1

, (10.56)

cpv/cpv,s = (T/Ts)ncp . (10.57)

In the governing ordinary differential equations (10.27), (10.32), and (10.39)
for vapor film the physical property factors

1
ρv

dρv

dηv
,

1
µv

dµv

dηv
,

1
λv

dλv

dηv
and

νv,s

νv

are involved. In order to solve these equations, these physical property factors
must be transformed in the form of temperature and temperature gradient.
From the assumed transformation variables defined in (10.13) and (10.15), as
well as the expressions (10.53–10.57) for the temperature parameter method
for vapor film medium, consulting the derivation in Chap. 4, we obtain the
following equations for these physical property factors:

1
ρv

dρv

dηv
= − (Tw/Ts − 1)dθv/dηv

(Tw/Ts − 1)θv + 1
, (10.58)

1
µv

dµv

dηv
=

nµ(Tw/Ts − 1)dθv/dηv

(Tw/Ts − 1)θv + 1
(10.59)

1
λv

dλv

dηv
=

nλ(Tw/Ts − 1)dθv/dηv

(Tw/Ts − 1)θv + 1
(10.60)

νv,s

νv
= [(Tw/Ts − 1)θv + 1]−(nµ+1). (10.61)

10.4.2 Numerical Calculation

The procedure chart of the calculation is shown in Fig. 10.2. The general
procedure of the calculation with the theoretical model for the film boiling
free convection of saturated vapor is described as follows: first the values of ηvδ

and Wxv,s of the vapor film at the vapor–liquid interface are guessed. These
two values combined with (10.46) and (10.51) allow us to solve the governing
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Set initial values hvd and Wxv,s

Start

Solve equations (10.27), (10.32) and (10.39) with
(10.46), (10.51), and estimated values hvd and Wxv,s

equations (10.47) and (10.48)

Solve equations (10.42) and (10.45) with (10.51),
(10.52), and calculated values Wxl,s and Wyl,s

hvd = hvd − ∆hvd Wxv,s = Wxv,s − ∆Wxv,s

Both  (DWxl – DWxv) / DWxl  < e  and

< e?(DTv – DTl ) / DTv

Both DWxl < DWxv
and DTv > DTl ?

Print results

End

Both DWxl < DWxv
and DTv > DTl ?

hvd  = hvd + ∆hvd Wxv,s = Wxv,s + ∆Wxv,s

Calculate values Wxl,s and Wyl,s with

N N

N N

Y Y Y

Fig. 10.2. The procedure chart of calculation, cited from Shang, Wang, and
Zhong [10]

equations (10.27), (10.32), and (10.39) for vapor film by using the shooting
method presented in Chap. 4. From the solutions we can gain two values: Wyv,s

and (dWxv/dηv)s at the vapor–liquid interface. With the values ηvδ,Wxv,s, and
Wyv,s, the values of Wxl,s and Wyl,s can be calculated from the corresponding
boundary condition equations, (10.47) and (10.48). Then, the values Wxl,s and
Wyl,s together with the boundary conditions (10.51) and (10.52) are used to
solve the governing equations for liquid film (10.42) and (10.45) by using the
shooting method. The solutions will yield the values of (dWxl/dηl)s. Equations
(10.49) and (10.50) are taken to adjust the convergence of the solutions for the
two-phase boundary governing equations. Thus, the calculation is successively
iterated by changing the values of ηvδ and Wxv,s.
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Table 10.1. Density of water vapor of different temperature at atmospheric pressure

t 377 477 577 677 827 927
(◦C)

ρ 0.338 0.2931 0.2579 0.2312 0.1996 0.1830
(kg m−3)

Table 10.2. Physical values of saturated water and water vapor at ts = 100◦C

phase t ρ ν λ Pr
(◦C) (kg m−3) (m2 s−1) (W (K m)−1)

water 100 958.4 0.296 × 10−6 0.6773 1.76
vapor 100 0.5974 20.55 × 10−6 0.02478 1

0
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Fig. 10.3. Velocity profiles for laminar film boiling of saturated water, cited from
Shang, Wang, and Zhong [10] 1–5: ∆tw = 277, 377, 577, 727, and 827◦C, respectively

10.4.3 Numerical Results

As an example of application for solving the theoretical model, the numerical
calculation of laminar film boiling of saturated water on an isothermal vertical
plate was carried out. From Chap. 4 we know that the temperature parameters
nµ and nλ of water vapor are 1.04 and 1.185. By using the earlier procedure,
the numerical calculations have been done at wall superheated temperatures
∆tw = 277, 377, 477, 577, 727, and 827◦C. The densities of water vapor at the
earlier specified temperatures and the thermophysical properties of saturated
water at ts = 100◦C needed in the calculations, are taken from [12] and
given in Tables 10.1 and 10.2, respectively. Some numerical results of velocity
and temperature profiles for the film boiling of saturated water are shown in
Figs. 10.3 and 10.4, respectively.
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Fig. 10.4. Temperature profiles for laminar film boiling of saturated water, cited
from Shang, Wang, and Zhong [10] 1–5: ∆tw = 277, 377, 577, 727, and 827◦C,
respectively

It is obviously known from Figs. 10.3 and 10.4 that the vapor film thickness
will increase with increasing wall superheated temperature ∆tw(= tw − ts).
With increase of the wall superheated temperature ∆tw, the velocity profile
of the vapor film will increase, the maximum velocity will shift to far from the

wall, meanwhile, the temperature gradient on the wall,
(
−
(

dθv
dηv

)
ηv=0

)
∆t∞=0

,

will decrease. The effect of the wall superheated degree on the velocity and
temperature fields of the vapor film reflects the influences of variable thermo-
physical properties of the vapor medium.

10.5 Heat Transfer

10.5.1 Heat Transfer Analysis

The local heat transfer rate at position x per unit area from the plate to
the vapor film for the pool laminar film boiling of saturated liquid can be
expressed by Fourier’s law, i.e.,

qx = −λv,w

(
∂t

∂y

)
y=0

.

Combining (10.13)–(10.15), qx is rewritten as

qx = −λv,w

(
∂((Tw − Ts)θv + Ts)

∂y

)
y=0

= −λv,w(Tw − Ts)(
∂θv)
∂y

)y=0

= λv,w(Tw − Ts)

((
−∂θv)

∂ηv

)
η=0

)

∆t∞=0

(
∂ηv

∂y

)
y=0

,
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where (
∂ηv

∂y

)
y=0

=
(

1
4
Grxv,s

)1/4

x−1.

Then,

qx = λv,w(Tw − Ts)
(

1
4
Grxv,s

)1/4

x−1

((
−dθv

dηv

)
η=0

)

∆t∞=0

. (10.62)

With the Newtonian cooling law defined as qx = αx(Tw − Ts), the local heat
transfer coefficient on the surface will be

αx = λv,w

(
1
4
Grxv,s

)1/4

x−1

((
−dθv

dηv

)
ηv=0

)

∆t∞=0

, (10.63)

where the subscript ∆t∞(= ts − t∞) = 0 expresses the saturated state of bulk
liquid.

Total heat transfer rate for position x = 0 to x with width of b on the
plate is a integration, Qx =

∫∫
A

qx dA =
∫ x

0
qxb dx, and hence

Qx = λv,wb(Tw − T∞)

((
−dθv

dηv

)
ηv=0

)

∆t∞=0

∫ x

0

(
1
4
Grxv,s

)1/4

x−1 dx.

With the definition of local Grashof number Grxv,s we obtain

Qx =
4
3
bλv,w(Tw − T∞)

(
1
4
Grx,v,s

)1/4
(
−
(

dθv

dηv

)
ηv=0

)

∆t∞=0

. (10.64)

The average heat transfer coefficient αx defined as Qx = αx(Tw −T∞)× b×x
is expressed as

αx =
4
3
λv,w

(
1
4
Grxv,s

)1/4

x−1

((
−dθv

dηv

)
ηv=0

)

∆t∞=0

. (10.65)

The local Nusselt number, defined as Nuxv,w = αxx/λv,w, is expressed by

Nuxv,w =
(

1
4
Grxv,s

)1/4
(
−
(

dθv

dηv

)
ηv=0

)

∆t∞=0.

(10.66)

The average Nusselt number is defined as Nuxv,w = αxx/λv,w and hence

Nuxv,w =
4
3

(
1
4
Grxv,s

)1/4
((

−dθv

dηv

)
ηv=0

)

∆t∞=0

.
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It is seen that, for practical calculation of heat transfer, only((
− dθv

dηv

)
ηv=0

)
∆t∞=0

dependent on numerical solution is no-given variable.

Comparing the relationships between αx and αx and between Nuxv,w and
Nuxv,w, we have

αx =
4
3
αx

Nuxv,w =
4
3
Nuxv,w

10.5.2 Curve-fit Equation for Heat Transfer

Equations (10.63)–(10.66) show that the heat transfer is in direct propor-

tion to the dimensionless temperature gradient
(
−
(

dθv
dηv

)
ηv=0

)
∆t∞=0

and

the fourth power of the defined local Grashof number Grxv,s.
The solutions for the dimensionless temperature gradient(

−
(

dθv
dηv

)
ηv=0

)
∆t∞=0

for the film boiling of saturated water on the verti-

cal surface are obtained by calculating equations (10.27), (10.32), (10.39),
(10.42), and (10.45) and their boundary conditions equations (10.46)–(10.52)
and are shown in Table 10.3 and plotted in Fig. 10.5. On this basis, heat trans-
fer for the film boiling of saturated water can be evaluated rigorously by using
(10.62).

Furthermore, according to the rigorous numerical solutions of(
−
(

dθv
dηv

)
ηv=0

)
∆t∞=0

in Table 10.3 the following curve-fit equation was

obtained by Shang, Wang, and Zhong [10]:

(
−
(

dθv

dηv

)
ηv=0

)

∆t∞=0

=
exp

(
4.7356 + 0.1228∆tw

ts
− 0.0086(∆tw

ts
)2
)

∆tw
ts

×10−2.

(10.67)

The results of
(
−
(

dθv
dηv

)
ηv=0

)
∆t∞=0

calculated by (10.67) are also descri-

bed in Table 10.3 and plotted in Fig. 10.5, and agree very well with the corre-
sponding rigorous numerical solutions. It follows that the curve-fit equation
(10.67) is reliable for prediction of heat transfer of the film boiling of saturated
water.
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Fig. 10.5. The dimensionless temperature gradients
(
−
(

dθv
dηv

)
ηv=0

)
∆t∞=0

obtained

from numerical solutions and results predicted by using (10.67), respectively, for the
film condensation of saturated water on the isothermal plate

10.6 Mass Transfer

10.6.1 Mass Transfer Analysis

Let us set gx to be a local mass flow rate entering the vapor film at position
x per unit area of the plate. According to the boundary layer theory of fluid
mechanics, gx is expressed as

gx = ρv,s

(
wxv,s

dδv

dx
− wyv,s

)
s

.

With the corresponding dimensionless variables in (10.16) and (10.17), the
earlier is changed into the following one:

gx = ρv,s

[
2
√

gx

(
ρl,s

ρv,w
− 1

)1/2

Wxv,s

(
dδv

dx

)
s

−2
√

gx

(
ρl,s

ρv,w
− 1

)1/2(1
4
Grxv,s

)−1/4

Wyv,s

]
, (10.68)

where the boiled vapor film thickness is expressed as follows according to
(10.13):

δv = ηvδ

(
1
4
Grxv,s

)−1/4

x. (10.69)
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With the definition of the local Grashof number Grxv,s, (10.69) is changed
into

δv = ηvδ

(
1
4

g(ρl,s/ρv,w − 1)x3

ν2
v,s

)−1/4

x,

or (
dδv

dx

)
s

=
1
4
ηvδ

(
1
4
Grxv,s

)−1/4

. (10.70)

With (10.70), equation (10.68) will be simplified to

gx = ρv,s

[
2
√

gx

(
ρl,s

ρv,w
− 1

)1/2

Wxv,s
1
4
ηvδ

(
1
4
Grxv,s

)−1/4

−2
√

gx

(
ρl,s

ρv,w
− 1

)1/2(1
4
Grxv,s

)−1/4

Wyv,s

]

s

= ρv,s

[
2
√

gx

(
ρl,s

ρv,w
− 1

)1/2

Wxv,s

(
dδv

dx

)
s

−2
√

gx

(
ρl,s

ρv,w
− 1

)1/2(1
4
Grxv,s

)−1/4

Wyv,s

]

= 4µv,sx
−1

(
1
4
Grxv,s

)1/2(1
4
Grxv,s

)−1/4 [1
4
ηv,δWxv,s − Wxv,s

]
s

= µv,sx
−1

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s)∆t∞=0 . (10.71)

If Gx is taken to express total mass flow rate entering the boundary layer
for position x = 0 to x with width of b of the plate, it should be the following
integration:

Gx =
∫ ∫

A

(gx)i dA

= b

∫ x

0

(gx)i dx, (10.72)

where A = b · x is area of the plate.
With (10.71), Gx is expressed as

Gx = b

∫ x

0

[µv,sx
−1

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s)∆t∞=0]dx.

With the definition of the local Grashof number Grxv,s, Gx should be

Gx =
4
3
b · µv,s

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s)∆t∞=0, (10.73)
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or in dimensionless form can be rewritten as

Gx

b · µv,s
=

4
3

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s), (10.74)

where (ηvδWxv,s − 4Wyv,s)∆t∞=0 is mass flow rate parameter of film boiling
of saturated liquid.

10.6.2 Curve-Fit Formulae for Mass Transfer

It is found from (10.73) that mass flow rate Gx is direct proportional to
mass flow rate parameter (ηvδWxv,s − 4Wyv,s)∆t∞=0. The rigorous numer-
ical solutions of ηvδ,Wxv,s,−Wyv,s, and (ηvδWxv,s − 4Wyv,s)∆t∞=0 for film
boiling free convection of saturated water on isothermal surface are listed in
Table 10.3 and plotted in Figs. 10.6–10.9, respectively. It is seen that with
increase of the wall superheated grade ∆tw/ts, the values of ηvδ,Wyv,s and
(ηvδWxv,s − 4Wyv,s)∆t∞=0 increase, but the value of Wxv,s decreases. Based
on the rigorous numerical solutions, the following curve-fit equations are
obtained for water vapor film thickness ηvδ and mass flow rate parameter
(ηvδWxv,s − 4Wyv,s)∆t∞=0, respectively:

ηvδ = 0.291
∆tw
ts

+ 0.631, (10.75)

(ηvδWxv,s − 4Wyv,s)∆t∞=0 = −0.002
(

∆tw
ts

)2

+ 0.0635
∆tw
ts

+ 0.0705

(10.76)

It is obvious that (10.75) can be used to simply and reliably predict the vapor
film thickness for film boiling of saturated water. While, (10.76) with (10.73)
can be used to predict the mass flow rate for film boiling of saturated water
very accurately.

10.7 Remarks

From the analysis and calculated results, the following points can be con-
cluded:

– The dimensionless velocity components Wx and Wy have been put forward
further in this chapter. As Wx and Wy have definite physical meanings, the
corresponding solutions of the models can be understood easily. Therefore,
velocity component method has its special advantage over the traditional
Falkner–Skan transformation for the theoretical and calculative models of
the film boiling of saturated liquids.

– The numerical procedure shown in Fig. 10.2 is convenient and reliable for
rigorous solutions of the theoretical models of the film boiling of saturated
liquids with consideration of a system of physical conditions including
variable thermophysical properties.



208 10 Laminar Film Boiling of Saturated Liquid

0

0.5

1

1.5

2

2.5

3

3.5

2 6 10

hvd

84 Dtw/ts

Fig. 10.6. Numerical solutions for ηvδ with ∆tw/ts for film boiling of saturated
water on isothermal surface
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Fig. 10.8. Numerical solutions for −Wyv,s with ∆tw
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for film boiling of saturated
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Fig. 10.9. Numerical solutions for (ηvδWxv,s − 4Wyv,s)∆t∞=0 with with ∆tw
ts

for
film boiling saturated water on isothermal surface

– For the pool laminar film boiling of saturated water, the vapor film thick-
ness ηvδ, velocity component at the interface, Wyv,s, and mass flow rate
parameter (ηvδWxv,s − 4Wyv,s)∆t∞=0 increase with increasing increasing
wall superheated degree ∆tw(= tw − ts). Meanwhile, the temperature gra-

dient
(
−
(

dθv
dηv

)
ηv=0

)
∆t∞=0

on the wall at the will decrease with increas-

ing the wall superheated degree, ∆tw(= tw − ts). Meanwhile, Wxv,s will
decrease very slightly with increasing ∆tw(= tw − ts).

– The equations obtained by heat and mass transfer analysis are universally
suitable to the film boiling of saturated liquids. The curve-fit equations
(10.67), (10.75), and (10.76) are reliable for simple and reliable prediction
of temperature gradient, vapor film thickness, and mass flow rate para-
meter, respectively, for laminar film boiling of saturated water. Of course,
such prediction does not include radiative heat transfer across the vapor
film, which needs to be further investigated.

10.8 Calculation Example

Example. A flat plate with 0.3 m in width and 0.3 m in length is suspended
vertically in water. The plate temperature tw = 577◦C, and the water temper-
ature is t∞ = ts = 100◦C. Assume that the boiling is the laminar film boiling,
please calculate:

1. Boiling heat and mass transfer of the plate,
2. Vapor film thicknesses at x = 0, 0.01, 0.05, 0.1, 0.15, 0.2, and 0.3 m
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Solution. The wall superheated grade is

∆tw/ts = (tw − ts)/ts = (577 − 100)/100 = 4.77,

and the water bulk subcooled grade is

∆t∞/ts = (ts − t∞)/ts = 100 − 100/100 = 0,

which shows that it is the film boilng of saturated water. For water saturated
physical properties at ts = 100◦C we obtain ρl,s = 958.4 kg m−3, and for satu-
rated water vapor at 100◦C, we obtain νv,s = 20.55 × 10−6 m2 s−1, ρv,s =
0.5974 kg m−3, µv,s = 12.28 × 10−6. In addition, for water vapor at the
wall temperature tw = 577◦C we obtain ρv,w = 0.2579 kg m−3 and λv,w =
0.00637 kg m−3.

(i) Calculate the condensate heat and mass transfer

For heat transfer. With (10.14) the local Grashof number is evaluated as

Grxv,s =
g(ρl,s/ρv,w − 1)x3

ν2
v,s

=
9.8 × (958.4/0.2579 − 1) × 0.33

(20.55 × 10−6)2

= 2.3278 × 1012.

With (10.67), the dimensionless temperature gradient of the film boiling
of saturated liquid is evaluated as
(
−
(

dθv

dηv

)
ηv=0

)

∆t∞=0

=
exp

(
4.7356 + 0.1228∆tw

ts
− 0.0086(∆tw

ts
)2
)

∆tw
ts

× 10−2

= 10−2 × exp(4.7356 + 0.1228 × 4.77

−0.0086 × 4.772)/4.77

= 0.352807.

With (10.64), the local Nusselt number is evaluated as

Nuxv,w = −
(

1
4
Grxv,s

)1/4
((

dθ

dη

)
η=0

)

∆t∞=0

=
(

1
4
× 2.3278 × 1012

)1/4

× 0.352807

= 305.02.
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With (10.66), the mean Nusselt number is evaluated as

Nuxv,w =
4
3
Nuxv,w =

4
3
× 305.02 = 406.69.

With definition of the mean Nusselt number, the mean heat transfer
coefficient is evaluated as

αx = Nuxv,w
λv,w

x
= 406.69 × 0.0637/0.3 = 86.35 W (mK)−1

.

With Newtonian cooling law, the total heat transfer rate of plate at
the plate temperature tw = 577◦C is calculated as follows:

Qx = αx(tw − ts)A
= αx(tw − ts) × b × x

= 86.35 × (577 − 100) × 0.3 × 0.3
= 3707 W.

For mass flow rate of the boiling. With (10.76), the mass flow rate pa-
rameter (ηvδWxv,s − 4Wyv,s)∆t∞=0 of film boiling of saturated water at
100◦C can be evaluated as

(ηvδWxv,s − 4Wyv,s)∆t∞=0 = −0.002
(

∆tw
ts

)2

+ 0.0635
∆tw
ts

+ 0.0705

= −0.002 × 4.772 + 0.0635 × 4.77 + 0.0705
= 0.327889.

Then, the total mass flow rate entering the boiled vapor film through the
area with width of b and with length from x = 0 to x for the film boiling is

Gx =
4
3
b · µv,s

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s)∆t∞=0

=
4
3
× 0.3 × 12.28 × 10−6 ×

(
1
4
× 2.3278 × 1012

)1/4

× 0.327889

= 0.001407 kg s−1

= 5.0652 kg h−1.

(ii) Calculate the vapor film thicknesses

Equation (10.75) is taken to evaluated ηlδ as

ηvδ = 0.291
∆tw
ts

+ 0.631

= 0.291 × 4.77 + 0.631
= 2.01907.
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Table 10.4. The variation of condensate film thickness y with the position x

x (m) 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3

δv (m) 0 0.000296 0.000443 0.0005268 0.000583 0.000627 0.000663 0.000694

0
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0.0002

0.0003

0.0004

0.0005
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0.0007

0 0.05 0.1 0.15 0.2 0.25 0.3
x (m)

dv (m)

Fig. 10.10. The variation of condensate film thickness δv with the position x

From (12.13), the condensate film thickness δv is expressed as

δV = ηδVx

(
1
4
Grxv,s

)−1/4

= ηδvx

(
1
4

g(ρl,s/ρv,w − 1)x3

ν2
v,s

)−1/4

= ηδv

(
1
4

g(ρl,s/ρv,w − 1)
ν2
v,s

)−1/4

x1/4

= 2.01907 ×
(

1
4
× 9.81 × (958.4/0.2579 − 1)

(20.55 × 10−6)2

)−1/4

× x1/4

= 0.00093707 × x1/4.

For x = 0, δv = 0m

For x = 0.01m, δv = 0.00093707 × 0.051/4 = 0.000296m

For x = 0.05m, δv = 0.00093707 × 0.011/4 = 0.000443m
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For x = 0.1m, δv = 0.00093707 × 0.11/4 = 0.0005268m

For x = 0.15m, δv = 0.00093707 × 0.151/4 = 0.000583m

For x = 0.2m, δv = 0.00093707 × 0.21/4 = 0.000627m

For x = 0.25m, δv = 0.00093707 × 0.251/4 = 0.000663m

For x = 0.3m, δv = 0.00093707 × 0.31/4 = 0.000694m

For clear expression, the variation of condensate film thickness y with the
position x is listed in Table 10.4 and plotted in Fig. 10.10.
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Laminar Film Boiling of Subcooled Liquid

a thermal diffusive coefficient, m2 s−1

b width of plate, m
cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s−2

Grxl,∞ local Grashof number of liquid film for film boiling of
subcooled liquid, g(ρl,∞/ρl,s−1)x3

ν2
l,∞

Grxv,s local Grashof number of vapor film for film boiling of
subcooled liquid, g(ρl,∞/ρv,w−1)x3

ν2
v,s

gx local mass flow rate entering the vapor film at position
x per unit area of the plate, kg (m2 s)−1

Gx total mass flow rate entering the vapor film for
position x = 0 to x with width b of the plate, kg s−1

Nuxv,w local Nusselt number for film boiling when wall
temperature tw is taken as reference temperature,
αxx/λw

Nuxv,w average Nusselt number, αxx/λw

ncp
specific heat parameter of gas

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
Pr Prandtl number
qx local heat transfer rate at position x per unit area on

the plate, W m−2

Q total heat transfer rate for position x = 0 to x with
width b on the plate, W

t temperature, ◦C
T absolute temperature, K
wx, wy velocity components in the x- and y-directions,

respectively, m s−1

Wx,Wy dimensionless velocity components in the x- and
y-directions, respectively
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Greek symbols
αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)−1

δ boundary layer thickness, m
δl thickness of liquid film, m
δv thickness of vapor film, m
η dimensionless coordinate variable for boundary layer
θv dimensionless temperature of vapor film, Tv−Ts

Tw−Ts

θl dimensionless temperature of liquid film, tl−t∞
ts−t∞

λ thermal conductivity, W (mK)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3

∆tw wall superheated temperature, tw − ts,
◦C

∆tw
ts

wall superheated grade
∆t∞ subcooled temperature of liquid bulk, ts − t∞, ◦C
∆t∞

ts
subcooled grade of liquid bulk

−
(

dθv
dηv

)
ηv=0

dimensionless temperature gradient on the plate for film
boiling of subcooled liquid

ηvδ dimensionless thickness of vapor film
ηvδWxv,s −
4Wyv,s

mass flow rate parameter for film boiling

ρv,w

ρv

ρl,∞ − ρv

ρl,∞ − ρv,w
buoyancy factor of film boiling

1
ρv

dpv

dηv
density factor

1
µv

dµv

dηv
viscosity factor

1
λv

dλv

dηv
thermal conductivity factor

νv,s

νv
kinetic viscosity factor

Subscripts
i liquid film
s saturated state, or at the vapor–liquid interface
v vapor film
w at wall
∞ far from the wall surface

11.1 Introduction

In this chapter the studies of film boiling free convection of subcooled liquid
provided by Shang, Wang and Zhong [1–3] are further presented. Rigorous
theoretical models for film boiling of subcooled liquid along an isothermal
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vertical plate are further presented. Meanwhile, all matching conditions in-
cluding the variable thermophysical properties of vapor and liquid films are
taken into account. The method for the numerical calculations of the two-
phase boundary-layer problem is further developed. The theoretical models
have been rigorously solved by the successive iterative procedure at differ-
ent wall superheated degree with different liquid subcooled degree for the
film boiling of subcooled water. The distributions of velocity and tempera-
ture fields of the film boiling of subcooled water are rigorously evaluated at
different conditions. The theoretical equations of heat transfer coefficient and
mass flow rate are derived, including the curve-fit equations for prediction of
the temperature gradient on the wall.

11.2 Governing Partial Differential Equations

In Chap. 10 we have given the theoretical model and the similarity transfor-
mation for film boiling of saturated liquid. In this chapter we further introduce
the theoretical model and the similarity transformation for the film boiling of
subcooled liquid. The analytical model and coordinating system used in this
problem are shown in Fig. 11.1. The heated plate with uniform temperature
Tw is submerged vertically in stagnant liquid whose temperature is higher
than the saturated temperature Ts, while the bulk temperature T∞ is less
than the saturated temperature Ts. We assume that the heating surface of
the plate is covered with continuous laminar vapor film, which moves upward
together with the vapor. Thus a two-phase boundary layer is formed. Heat
flux produced from the heating surface of the plate transfers through the two-
phase boundary layer to the bulk liquid. Meanwhile, mass transfer is produced
at the vapor–liquid interface due to the film boiling of the liquid.

y 

x

wt

dv
d l

xw ,v lxw , wx,∞

t

t ∞

Fig. 11.1. Physical model and coordinate system of film boiling of subcooled liquid
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For vapor film. The governing partial differential equations for the vapor film
of the film boiling of subcooled liquid are as follows:

∂

∂x
(ρvwxv) +

∂

∂y
(ρvwyv) = 0, (11.1)

ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
=

∂

∂y

(
µv

∂wxv

∂y

)
+ g(ρl,∞ − ρv), (11.2)

ρvcpv

(
wxv

∂Tv

∂x
+ wyv

∂Tv

∂y

)
=

∂

∂y

(
λv

∂Tv

∂y

)
. (11.3)

On comparing (11.1)–(11.3) with (10.1) and (10.2) it is found that their dif-
ference is that liquid density ρl,∞ at the liquid bulk temperature is used in
the buoyancy term g(ρl,∞ − ρv) of (11.2), instead of liquid density ρl,s at the
saturated temperature.

For liquid film. For liquid film, because the temperature of the bulk liquid is
lower than its saturated one, the thermal boundary layer of liquid appears to-
gether besides the velocity boundary layer. Also, the variable thermophysical
properties must be considered in the following governing partial differential
equations for the liquid film:

∂

∂x
(ρlwxl) +

∂

∂y
(ρlwyl) = 0, (11.4)

ρl

(
wxl

∂wxl

∂x
+ wyl

∂wxl

∂y

)
=

∂

∂y

(
µl

∂wxl

∂y

)
+ g(ρl,∞ − ρl), (11.5)

ρlcpl

(
wxl

∂tl
∂x

+ wyl
∂tl
∂y

)
=

∂

∂y

(
λl

∂tl
∂y

)
. (11.6)

For boundary conditions. For the boundary conditions, the variable thermo-
physical properties of both liquid and vapor films will be considered:

y = 0 : (11.7)

wxv = 0, wyv = 0, T = Tw;

y = δv :

wxv,s = wxl,s, (11.8)

ρv,s

(
wxv

∂δv

∂x
− wyv

)
s

= ρl,s

(
wxl

∂δl

∂x
− wyl

)
s

, (11.9)

µv,s

(
∂wxv

∂y

)
s

= µl,s

(
∂wxl

∂y

)
s

, (11.10)

− λv,s

(
∂tv
∂y

)
y=δv

= hfgρv,s

(
wxv

∂δxv

∂x
− wyv

)
s

− λl,s

(
∂tl
∂y

)
y=δv

,

(11.11)
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Tv = Ts, tl = ts; (11.12)

y → ∞ :

wxl → 0, tl → t∞; (11.13)

where (11.8)–(11.12) express the physical matching conditions such as velocity,
local mass flux, shear force, heat flux, and temperature at the vapor–liquid
interface, respectively. It is seen that in the energy balance equation (11.11),
the heat conduction on the liquid film is further considered.

11.3 Similarity Transformation

For the similarity transformation of the partial differential equations of the
film boiling of subcooled liquid, the velocity component method will be fur-
ther used on the basis of that for the film boiling of saturated liquid intro-
duced in Chap. 10. The similarity transformation is introduced, respectively,
as follows:

11.3.1 Transformation Variables

For vapor film. For vapor film of the film boiling of subcooled liquid, the
similarity transformation variables are assumed as follows:

ηv is set up at first as the dimensionless coordinate variable

ηv =
(

1
4
Grxv,s

)1/4
y

x
, (11.14)

where the local Grashof number Grxv,s is assumed as

Grxv,s =
g(ρl,∞/ρv,w − 1)x3

ν2
v,s

. (11.15)

The dimensionless temperature is given as

θv =
Tv − Ts

Tw − Ts
. (11.16)

The dimensionless velocity components are assumed as

Wxv = (2
√

gx(ρl,∞/ρv,w − 1)1/2)−1wxv, (11.17)

Wyv =

(
2
√

gx(ρl,∞/ρv,w − 1)1/2

(
1
4
Grxv,s

)−1/4
)−1

wyv. (11.18)

It is found that the similarity transformation variables in (11.14)–(11.18)
for vapor film of the film boiling of subcooled liquid are almost same as
those for that of the film boiling of saturated liquid shown in Chap. 10. How-
ever the liquid density here in the buoyancy factor ρl,∞/ρv,w − 1 is ρl,∞
instead of ρl,s.
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For liquid film. For similarity transformation of the governing equation for
subcooled liquid film the following transformation variables are set up:

For liquid film the dimensionless coordinate variable ηl is set up at first as
follows:

ηl =
(

1
4
Grxl,∞

)1/4
y

x
, (11.19)

where the local Grashof number Grxl,∞ is assumed as

Grxl,∞ =
g(ρl,∞/ρl,s − 1)x3

ν2
l,∞

(11.20)

The dimensionless temperature is given as

θl =
tl − t∞
ts − t∞

. (11.21)

The dimensionless velocity components are assumed as

Wxl = (2
√

gx(ρl,∞/ρl,s − 1)1/2)−1wxl, (11.22)

Wyl =

(
2
√

gx(ρl,∞/ρl,s − 1)1/2

(
1
4
Grxl,∞

)−1/4
)−1

wyl. (11.23)

11.3.2 Similarity Transformation

After the assumptions of the dimensionless variables, the similarity transfor-
mations of the governing partial differential equations for vapor and liquid
films and the equations for their boundary conditions will be done as follows:

For vapor film. The similarity transformation of (11.1)–(11.3) for vapor film of
film boiling of subcooled liquid is similar to that shown in Chap. 10 for vapor
film of film boiling of saturated liquid. Similar to the derivation of Chap. 10,
(11.1)–(11.3) are, respectively, transformed to following dimensionless ones by
using the variables assumed in (11.14)–(11.18),

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
− 1

ρv

dρv

dηv
(ηvWxv − 4Wyv) = 0, (11.24)

νv,s

νv

(
Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

dWxv

dηv

)

=
d2Wxv

dη2
v

+
1
µv

dµv

dηv

dWxv

dηv
+

νv,s

νv

ρv,w

ρv

ρl,∞ − ρv

ρl,∞ − ρv,w
, (11.25)

Prv
νv,s

νv
(−ηvWxv + 4Wyv)

dθv

dηv
=

d2θv

dη2
v

+
1
λv

dλv

dηv

dθv

dηv
. (11.26)
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For liquid film. For transformation of (11.4):
The similarity transformation of (11.4) is done, initially yielding

ρv

(
∂wxl

∂x
+

∂wyl

∂y

)
+ wxl

∂ρl

∂x
+ wyl

∂ρl

∂y
= 0. (11.27)

With the similarity variables assumed in (11.19), (11.20), (11.22) and (11.23)
we can obtain the following correlations:

∂wxl

∂x
=
√

g

x
(ρl,∞/ρl,s − 1)1/2

(
Wxl −

1
2
ηl

dWxl

dηl

)
, (11.28)

∂wyl

∂y
= 2

√
g

x
(ρl,∞/ρl,s − 1)1/2 dWyl

dηl
, (11.29)

∂ρl

∂x
= −1

4
ηlx

−1 dρl

dηl
, (11.30)

∂ρl

∂y
=

dρl

dηl

(
1
4
Grxl,∞

)1/4

x−1. (11.31)

With the earlier equations (11.28)–(11.31), (11.27) can be changed into

ρl

(√
g

x
(ρl,∞/ρl,s − 1

)1/2
(

Wxl −
1

2
ηl

dWxl

dηl

)
+ 2

√
g

x

(
ρl,∞/ρl,s − 1)1/2 dWyl

dηl

)

+2
√

gx(ρl,∞/ρl,s − 1)1/2Wxl

(
−1

4
ηlx

−1 dρl

dηl

)

+2
√

gx(ρl,∞/ρl,s − 1)1/2
(

1

4
Grxl,∞

)−1/4

Wyl
dρl

dηl

(
1

4
Grxl,∞

)1/4

x−1 = 0.

The earlier equation is divided by
√

g

x
(ρl,∞/ρl,s − 1)1/2

and is further simplified to

2Wxl − ηl
dWx

dη
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(ηlWxl − 4Wyl) = 0. (11.32)

For transformation of (11.5). Equation (11.5) is firstly rewritten as

ρl

(
wxl

∂wxl

∂x
+ wyl

∂wxl

∂y

)
= µl

∂2wxl

∂y2
+

∂wxl

∂y

∂µl

∂y
+ g (ρl,∞ − ρl) . (11.33)
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With the similarity variables assumed in (11.19), (11.20), (11.22) and (11.23)
we can obtain the following correlations:

∂wxl

∂y
= 2

√
gx (ρl,∞/ρl,s − 1)1/2 dWxl

dηl
x−1

(
1
4
Grxl,∞

)1/4

, (11.34)

∂2wxl

∂y2
= 2

√
gx (ρl,∞/ρl,s − 1)1/2 d2Wxl

dη2
l

x−1

(
1
4
Grxl,∞

)1/4(1
4
Grxl,∞

)1/4

x−1

= 2
√

gx (ρl,∞/ρl,s − 1)1/2 d2Wxl

dη2
l

(
1
4
Grxl,∞

)1/2

x−2, (11.35)

∂µl

∂y
=

dµl

dηl

(
1
4
Grxl,∞

)1/4

x−1. (11.36)

With (11.22), (11.23), (11.28), (11.34), (11.35), and (11.36), (11.33) becomes

ρl

[
2
√

gx (ρl,∞/ρl,s − 1)1/2
Wxl

√
g

x
(ρl,∞/ρl,s − 1)1/2

(
Wxl −

1
2
ηl

dWxl

dηl

)

+ 2
√

gx (ρl,∞/ρl,s − 1)1/2

(
1
4
Grxl,∞

)−1/4

× Wyl2
√

gx (ρl,∞/ρl,s − 1)1/2 dWxl

dηl
x−1

(
1
4
Grxl,∞

)1/4
]

= µl2
√

gx (ρl,∞/ρl,s − 1)1/2 d2Wxl

dη2
l

(
1
4
Grxl,∞

)1/2

x−2

+ 2
√

gx (ρl,∞/ρl,s − 1)1/2 dWxl

dηl
x−1

(
1
4
Grxl,∞

)1/4

× dµl

dηl

(
1
4
Grxl,∞

)1/4

x−1 + g (ρl,∞ − ρl) .

With the definition of Grxl,∞, the earlier equation is simplified to

ρl

[
2
√

gx
(
ρl,∞/ρl,s − 1

)1/2
Wxl

√
g

x

(
ρl,∞/ρl,s − 1

)1/2
(

Wxl −
1

2
ηl

dWxl

dηl

)

+2
√

gx
(
ρl,∞/ρl,s − 1

)1/2
Wyl2

√
gx
(
ρl,∞/ρl,s − 1

)1/2 dWxl

dηl
x−1

]

= µl2
√

gx
(
ρl,∞/ρl,s − 1

)1/2 d2Wxl

dη2
l

(
1

4

g
(
ρl,∞/ρl,s − 1

)
x3

v2
l,∞

)1/2

x−2

+ 2
√

gx
(
ρl,∞/ρl,s − 1

)1/2 dWxl

dηl
x−1 dµl

dηl

(
1

4

g
(
ρl,∞/ρl,s − 1

)
x3

v2
l,∞

)1/2

x−1+g
(
ρl,∞ − ρl

)
.
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The earlier equation is divided by g (ρl,∞/ρl,s − 1) and simplified to

ρl

[
2Wxl

(
Wxl −

1
2
ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

]

= µl
d2Wxl

dη2
l

1
νl,∞

+
dWxl

dηl

dµl

dηl

(
1

νl,∞

)
+ ρl,s

(ρl,∞ − ρl)
(ρl,∞ − ρl,s)

.

The earlier equation is multipled by νl,∞/µl and simplified to

νl,∞
νl

[
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

]

=
d2Wxl

dη2
l

+
1
µl

dWxl

dηl

dµl

dηl
+

νl,∞
νl

(
ρl,∞
ρl

− 1
)

(
ρl,∞
ρl,s

− 1
) . (11.37)

For transformation of (11.6). Equation (11.6) is firstly rewritten as

ρlcpl

(
wxl

∂tl
∂x

+ wyl
∂tl
∂y

)
= λl

∂2tl
∂y2

+
∂λl

∂y

∂tl
∂y

(11.38)

With the similarity variables assumed in (11.19)–(11.23) the following corre-
lations are produced:

tl = (ts − t∞) θl + t∞, (11.39)
∂tl
∂x

= − (ts − t∞)
dθl

dηl

(
1
4

)
ηlx

−1, (11.40)

∂tl
∂y

= (ts − t∞)
dθl

dηl

(
1
4
Grxl,∞

)1/4

x−1, (11.41)

∂2tl
∂y2

= (ts − t∞)
d2θl

dη2
l

(
1
4
Grxl,∞

)1/2

x−2, (11.42)

∂λl

∂y
=

dλl

dη

(
1
4
Grxl,∞

)1/4

x−1. (11.43)

With (11.22), (11.23), and (11.39)–(11.43), (11.38) is transformed to

ρlcpl

[
2
√

gx
(
pl,∞/ρl,s − 1

)1/2
Wxl

(
− (ts − t∞)

dθl

dηl

(
1

4

)
ηlx

−1
)

+2
√

gx
(
ρl,∞/ρl,s − 1

)1/2
(

1

4
Grxl,∞

)−1/4

Wyl (ts − t∞)
dθl

dηl

(
1

4
Grxl,∞

)1/4

x−1

]

= λl (ts − t∞)
d2θl

dη2
l

(
1

4
Grxl,∞

)1/2

x−2

+
dλl

dη

(
1

4
Grxl,∞

)1/4

x−1 (ts − t∞)
dθl

dηl

(
1

4
Grxl,∞

)1/4

x−1.
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With the definition of Grxl,∞, the earlier equation is simplified to

ρlcpl

[
2
√

gx (pl,∞/ρl,s − 1)1/2
Wxl

(
− (ts − t∞)

dθl

dηl

(
1
4

)
ηlx

−1

)

+2
√

gx (ρl,∞/ρl,s − 1)1/2
Wyl(ts − t∞)

dθl

dηl
x−1

]

= λl (ts − t∞)
d2θl

dη2
l

(
1
4

g (ρl,∞/ρl,s − 1) x3

v2
l,∞

)1/2

x−2

+
dλl

dη
x−1 (ts − t∞)

dθl

dηl

(
1
4

g (ρl,∞/ρl,s − 1) x3

v2
l,∞

)1/2

x−1.

The earlier equation is divided by
√

g

x
(ρl,∞/ρl,s − 1)1/2 (ts − t∞) ,

and simplified to

ρlcpl

[
−Wxl

dθl

dηl
ηl + 4Wyl

dθl

dηl

]
= λl

d2θl

dη2
l

1
vl,∞

+
dλl

dη

dθl

dηl

1
vl,∞

.

This equation is multiplied by νl,∞/λl and simplified to

Prl
vl,∞
vl

(−ηWxl + 4Wyl)
dθl

dηl
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
. (11.44)

Equations (11.32), (11.37), and (11.44) are rewritten as follows:

2Wxl − ηl
dWx

dη
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(ηlWxl − 4Wyl) = 0 (11.32)

νl,∞
ν

[
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

]

=
d2Wxl

dη2
l

+
1
µl

dWxl

dηl

dµl

dηl
+

νl,∞
νl

(
ρl,∞
ρl

− 1
)

(
ρl,∞
ρl,s

− 1
) , (11.37)

Prl
vl,∞
vl

(−ηWxl + 4Wyl)
dθl

dηl
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
. (11.44)

For boundary conditions. With the corresponding assumed variable equations
mentioned earlier the physical boundary conditions (11.7)–(11.13) for the film
boiling of subcooled liquid are transformed equivalently to the following ones,
respectively:
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ηv = 0 :
Wxv = 0,Wyv = 0, θv = 1, (11.45)

ηv = ηvδ(ηl = 0) :

Wxl,s =
(

ρl,∞
ρv,w

− 1
)1/2(

ρl,∞
ρl,s

− 1
)−1/2

Wxv,s, (11.46)

Wyl,s = −0.25
µv,s

µ1,s

(
νl,∞
νv,s

)1/2(
ρl,∞
ρv,w

− 1
)1/4

×
(

ρl,∞
ρl,s

− 1
)−1/4

(Wxv,sηvδ
− 4Wyv,s) , (11.47)

(
dWxl

dηl

)
ηl=0

=
µv,s

µl,s

(
ρl,∞
ρv,w

− 1
)3/4(

ρl,∞
ρl,s

− 1
)−3/4

×
(

νl,∞
νv,s

)1/2(dWxv

dηv

)
ηv=ηvδ

, (11.48)

(
dθl

dηl

)
ηl=0

=
(

ρl,∞
ρv,w

− 1
)1/4(

ρl,∞
ρl,s

− 1
)−1/4(

νl,∞
νv,s

)1/2

×

⎛
⎜⎝

hfgµv,s (Wxv,sηvδ − 4Wyv,s) + λv,s (tw − ts)
(

dθv
dηv

)
ηv=ηvδ

λl,s (ts − t∞)

⎞
⎟⎠ ,

(11.49)

θv = 0, (11.50)
θl = 1, (11.51)

ηl → ∞ :
Wxl → 0, θl → 0. (11.52)

11.4 Numerical Calculation

11.4.1 Treatment of Variable Thermophysical Properties

The treatment of variable thermophysical properties can be carried out for
the equations of both liquid and gas films for the film boiling of subcooled
liquid. Equations (10.53)–(10.61) can also be applied to treatment of variable
thermophysical properties for the vapor film of film boiling of subcooled liquid.

Here we further introduce the treatment of variable thermophysical prop-
erties of the medium of the liquid film. For this purpose the treatment method
for variable thermophysical properties of liquid presented in Chap. 6 is used.
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For example, for water the temperature-dependent expressions of density,
thermal conductivity, and absolute viscosity can be expressed as follows:

ρ = −4.48 × 10−3t2 + 999.9, (11.53)

λ = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563, (11.54)

µ = exp

[
−1.6 − 1150

T
+
(

690
T

)2
]
× 10−3. (11.55)

Then the thermophysical property factors

1
ρl

dρl

dηl
,

1
µl

dµl

dηl
, and

1
λl

dλl

dηl

in the governing ordinary differential equations of liquid film, (12.32), (11.37),
and (12.44), can be transformed, respectively, as later:

At first, the physical factor
1
ρl

dρl

dηl

is expressed as
1
ρl

dρl

dηl
=

1
ρl

dρl

dt

dt

dηl
,

where
dρl

dt
= −2 × 4.48 × 10−3 t.

With (11.21) we obtain
dt

dηl
= (ts − t∞)

dθl

dηl
.

Therefore,
1
ρl

dρl

dηl
=

−2 × 4.48 × 10−3 t(ts − t∞) dθl
dηl

−4.48 × 10−3 t2 + 999.9
. (11.56)

Similarly, with (11.54) and (11.55) we obtain

1
λl

dλl

dηl
=

1
λl

dλl

dT

dt

dηl
,

=
[−2 × 8.01 × 10−6 t + 1.94 × 10−3](ts − t∞) dθl

dηl

−8.01 × 10−6 t2 + 1.94 × 10−3 t + 0.5623
, (11.57)

and
1
µl

dµl

dηl
=

1
µl

dµl

dT

dT

dηl

=
10−3 × exp

[
−1.6 − 1150

T +
(

690
T

)2] [ 1150
(T )2 − 2 × 6902

(T )3

]
(Ts − T∞) dθl

dηl

10−3 × exp
[
−1.6 − 1150

T +
(

690
T

)2]

=
[
1150
T 2

− 2 × 6902

T 3

]
(ts − t∞)

dθl

dηl
, (11.58)

where t = (ts − t∞)θl + t∞.
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In addition, from the analysis of Chap. 6, it is known that the physical
factor Prl (νl,∞/νl) in (11.44) can be expressed as

Prl
νl,∞
νl

= Prl,∞
ρl

ρl,∞

λl,∞
λl

for water and a lot of liquids in the special temperature range for engineering
application.

11.4.2 Numerical Calculation

Calculation Procedures. The general procedure of the calculation with the
theoretical model for the film boiling of the subcooled liquid is similar to that
of the saturated liquids, and is described as follows: First the values of ηvδ and
Wxv,s of the vapor film at the vapor–liquid interface are guessed. These two
values combined with (11.45) and (11.50) allow us to solve the governing equa-
tions (11.24)–(11.26) for vapor film, so as to obtain Wxv,s, Wyv,s, (dWxv/dηv)s
and (dθv/dηv)s at the interface. With Wxv,s and Wyv,s, values, the values of
Wxl,s and Wyl,s can be calculated from (11.46) and (11.47). Then, the values
Wxl,s and Wyl,s together with the boundary conditions (11.51) and (11.52) are
used to solve the liquid film governing (11.32), (11.37), and (11.44), and will
yield the values of (dWxl/dηl)s and (dθl/dηl)s. Equations (11.48) and (11.49)
are taken to adjudge convergence of the solutions for the two-phase boundary
layer governing equations, and by using shooting method, the calculation is
successively iterated by changing the values of ηvδ and Wxv,s.

As an example of application for the theoretical model, the solutions of
laminar film boiling of subcooled water on an isothermal vertical plate is
presented here [1–3].

Velocity and temperature profiles. Let us take the film boiling of subcooled
water as an example for the solutions. From Chap. 5, the water vapor tem-
perature parameters nµ, nλ, and ncp

are 1.04, 1.185, and 0.003, respectively.
Such low value of ncp

makes it possible to actually treat ncp
of water vapor

as zero, i.e., cp is taken as constant.
The numerical method mentioned earlier is applied to obtaining the

solutions of (11.24)–(11.26), (11.32), (11.37), and (11.44) with their bound-
ary conditions (11.45)–(11.52) and equations (11.53)–(11.58) for the variable
thermophysical property factors both of water vapor and water films. The
numerical calculations have been carried out at wall superheated grades of
∆tw/ts (= (tw − ts)/ts) = 2.77, 3.77, 4.77, 5.77, 7.27, and 8.27, and water bulk
subcooled grades of ∆t∞/ts(= (ts − t∞)/ts) = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and
1.0, respectively [3]. The thermophysical properties of subcooled water de-
scribed in Chap. 6 are shown, respectively, in Table 11.1. Based on the earlier
procedures, the numerical calculations were carried out by using the shoot-
ing method. Some numerical results of the velocity and temperature profiles
for the film boiling of subcooled water are listed in Table 11.2 and shown in
Figs. 11.2 and 11.3, respectively.

Figure 11.2 shows the velocity profiles of vapor film with wall superheated
grades of ∆tw/ts(= (tw − ts)/ts) = 2.77, 3.77, 4.77, 5.77, and 7.27 and water
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Table 11.1. Physical values of water [4]

t(◦ C) 0 10 20 30 40 50 60 70 80 90 100

ρ 999.8 999.8 998.3 995.8 992.3 988.1 983.2 977.7 971.4 965.1 958.4

(kg m−3)

ν × 10−6 1.792 1.308 1.004 0.798 0.658 0.554 0.457 0.414 0.365 0.326 0.296

(m2 s−1)

λ 0.562 0.582 0.5996 0.6151 0.6287 0.6405 0.6507 0.6595 0.666 0.6728 0.6773

(W (Km)−1) 8

Pr 13.44 9.42 6.99 5.42 4.34 3.57 3.00 2.57 2.23 1.97 1.76

0.12

0.11
0.10

0.09

0.08

0.07
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0.05
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0.01

0
0 0.5 1.0 1.5 2.0 2.5

0 0.5 1.0
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hv h1

III

III II I

5

1

5

5

II

I

Fig. 11.2. Velocity profiles for laminar film boiling of subcooled water, cited from
Shang, Wang, and Zhong [3] I–III: ∆t∞/ts(= (ts − t∞)/ts) = 1, 0.3 and 0.1; 1–5:
∆tw/ts(= (tw − ts)/ts) = 2.77, 3.77, 4.77, 5.77, and 7.27

bulk subcooled grades of ∆t∞/ts (= (ts − t∞)/ts) = 1, 0.3, 0.1, respectively. It
is clear that, velocity components of vapor film increase with increasing wall
superheated grade, ∆tw/ts(= (tw−ts)/ts), or with decreasing water subcooled
grade, ∆t∞w/ts = (ts − t∞/ts).

Figure 11.3 shows the temperature profiles of vapor film with wall su-
perheated grades of ∆tw/ts(= (tw − ts)/ts) = 2.77, 3.77, 4.77, 5.77, and 7.27
and water bulk subcooled grades of ∆t∞/ts(= (ts − t∞)/ts) = 1, 0.3, 0.1,
respectively.

It is clear that, temperature profiles of vapor film increase with increasing
wall superheated grade,

∆tw/ts = (tw − ts)/ts,
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Fig. 11.3. Temperature profiles for laminar film boiling of subcooled water, cited
from Shang, Wang, and Zhong [3] I–III: ∆t∞/ts(= (ts − t∞)/ts) = 1, 0.3 and 0.1;
1–5: ∆tw/ts(= (tw − ts)/ts) = 2.77, 3.77, 4.77, 5.77, and 7.27

or with decreasing water subcooled grade,

∆t∞/ts = (ts − t∞)/ts.

The effects of the wall superheated grade ∆tw/ts and liquid bulk subcooled
grade ∆t∞/ts on the velocity and temperature fields show effects of variable
thermophysical properties of both vapor and liquid films on the film boiling
of subcooled liquid.

Vapor film thickness. The numerical results for vapor film thickness ηvδ of the
film boiling of subcooled water are listed in Table 11.2 and plotted in Fig. 11.4
together with wall superheated grade ∆tw/ts and water bulk subcooled grade
∆t∞/ts. It is seen that ηvδ will increase with increasing wall superheated
grade ∆tw/ts. The reason is easy to be understood that with increasing the
wall superheated grade ∆tw/ts, the vaporization rate will increase, thus, the
vapor film thickness ηvδ will increase.

Meanwhile from Fig. 11.3 it is seen that with increasing the water bulk sub-
cooled grade ∆t∞/ts, the vapor film thickness ηvδ will decrease. The reason is
that with increasing the water bulk subcooled grade ∆t∞/ts, the vaporization
of the bulk liquid will become more difficult at the liquid–vapor interface.

It should be indicated that in the iterative calculation of the film boiling
problem it is a key work to correctly determine suitable value ηvδ, The so-
lutions of the models are converged in very rigorous values of ηvδ as shown
in Table 11.2 and Fig. 11.4, otherwise the convergence solutions will not be
obtained.
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11.5 Heat and Mass transfer

11.5.1 Heat Transfer Analysis

Same as the heat transfer analysis in Chap. 10 for film boiling of saturated
vapor, the corresponding equations for the heat transfer analysis of the film
boiling of subcooled liquid are as follows:

The local heat transfer rate at position x per unit area from the plate to
the vapor film for the pool laminar film boiling of subcooled liquid can be
expressed by Fourier’s law, i.e., qx = −λv,w

(
∂t
∂y

)
y=0

, and with (11.14) and

(11.16) further described as

qx = −λv,w(Tw − Ts)
(

1
4
Grxv,s

)1/4

x−1

(
dθv

dηv

)
ηv=0

. (11.59)

With the Newtonian cooling law defined as qx = αx(tw − ts) the related local
heat transfer coefficient αx on the surface will be

αx = −λv,w

(
1
4
Grxv,s

)1/4

x−1

(
dθv

dηv

)
ηv=0

. (11.60)

The local Nusselt number, defined as Nuxv,w = αxx/λv,w is expressed by

Nuxv,w(
1
4Grxv,s

)1/4
= −

(
dθv

dηv

)
ηv=0

. (11.61)

It is seen that, for practical calculation of heat transfer, only (dθv/dηv)ηv=0

dependent on numerical solution is no-given variable.



11.5 Heat and Mass transfer 233

The average heat transfer coefficient αx defined as Qx = αx(tw − t∞)A is
expressed as

αx =
4
3
αx. (11.62)

Here, Qx is total heat transfer rate for position x = 0 to x with width of b on
the plate.

The average Nusselt number Nuxv,w defined as Nuxv,w = αxx/λv,w is
expressed as

Nuxv,w =
4
3
Nux,w. (11.63)

11.5.2 Curve-Fit Equations for Heat Transfer

It is seen from (11.59)–(11.61) that the heat transfer for the film boiling of
subcooled water is also in direct proportion to dimensionless temperature gra-
dient (dθv/dηv)ηv=0 and to the fourth power of local Grashof number Grxv,s.

The rigorous solutions on the dimensionless temperature gradients
(dθv/dηv)ηv=0 for the film boiling of subcooled water are computed and the
results are tabulated and plotted respectively in Table 11.2 and Fig. 11.5,
respectively.

It is obviously seen from Fig.11.5 that the temperature gradient
(dθv/dηv)ηv=0 will decrease with increasing the wall superheated grade,

∆tw/ts(= (tw − ts)/ts),

and will increase with increasing the bulk subcooled grade ∆t∞/ts. On
the other hand, the temperature profile of the vapor film has the results
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Fig. 11.5. Temperature gradient (dθv/dηv)ηv=0 with ∆tw/ts and ∆t∞/ts for film
boiling of subcooled water 1–7: ∆t∞/ts = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1
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d2θv/dη2
v < 0, which are quite different from those of other solutions with

constant thermophysical properties where the temperature profile in the va-
por film has the results d2θv/dη2

v > 0 [5, 6].
Based on the rigorous numerical solutions of (dθv/dηv)ηv=0 in Table 11.2,

the following correlations were obtained by Shang, Wang, and Zhong [3] by
means of a curve-fit method for laminar film boiling of subcooled water:

−
(

dθv

dηv

)
ηv=0

=
exp

(
A + B ∆tw

ts
+ C

(
∆tw
ts

)2
)

∆tw
ts

× 10−2, (11.64)

where for 0 ≤ ∆t∞/ts ≤ 0.3

A = 4.7356 + 7.407
∆t∞
ts

− 7.4
(

∆t∞
ts

)2

B = 0.1228 − 1.633
∆t∞
ts

+ 2.71
(

∆t∞
ts

)2

C = −0.0086 + 1.092 × 10−1 ∆t∞
ts

− 2.132 × 10−1

(
∆t∞
ts

)2

,

for 0.3 < ∆t∞/ts ≤ 1

A = 5.515 + 3.01
∆t∞
ts

− 1.4
(

∆t∞
ts

)2

B = −0.1073 − 6.6 × 10−2 ∆t∞
ts

+ 4.437 × 10−2

(
∆t∞
ts

)2

C = 0.0069 − 7.812 × 10−3 ∆t∞
ts

+ 4.82 × 10−3

(
∆t∞
ts

)2

.

The results of −(dθv/dηv)ηv=0 calculated by (11.64) are also listed in
Table 11.2. It is shown that the calculated results by the correlation (11.64) co-
incide very well with the corresponding rigorous numerical solutions
−(dθv/dηv)ηv=0.

11.5.3 Mass Transfer Analysis

Consulting the related derivation in Chap. 10 for mass transfer entering the
vapor film for film boiling of saturated liquid, the mass transfer entering the
vapor film for film boiling of subcooled liquid can be easily derived as follows:

Set gx to be a local mass flow rate entering the vapor film at position x
per unit area of the plate. According to the boundary layer theory of fluid
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mechanics, gx is expressed as

gx = ρv,s

(
wxv,s

dδv

dx
− wyv,s

)
s

.

With the corresponding dimensionless variables in (10.17) and (10.18), the
earlier equation is changed into the following one:

gx = ρv,s

[
2
√

gx

(
ρl,∞
ρv,w

− 1
)1/2

Wxv,s

(
dδv

dx

)
s

−2
√

gx

(
ρl,∞
ρv,w

− 1
)1/2(1

4
Grxv,s

)−1/4

Wyv,s

]
, (11.65)

where the boiled vapour film thickness is expressed as

δv = ηvδ

(
1
4
Grxv,s

)1/4

x. (11.66)

With the definition of the local Grashof number Grxv,s, (11.66) is changed into

δv = ηvδ

(
1
4

g(ρl,∞/ρv,w − 1)x3

ν2
v,s

)1/4

x.

Hence, (
dδv

dx

)
s

=
1
4
ηvδ

(
1
4
Grxv,s

)−1/4

. (11.67)

Then, (10.65) will be simplified to

gx = µv,sx
−1

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s), (11.68)

where the dimensionless expression (ηvδWxv,s − 4Wyv,s) is regarded as mass
flow rate parameter of the film boiling of subcooled vapor, and depends on
the solutions ηvδ, Wxv,s, and Wyv,s. If Gx is taken to express total mass flow
rate entering the boundary layer for position x = 0 to x with width of b of
the plate, it should be the following integration:

Gx =
∫∫
A

(gx)idA

= b

∫ x

0

(gx)idx.

where A = b · x is area of the plate.
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Then, Gx is expressed as

Gx = b

∫ x

0

[
µv,sx

−1

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s)∆t∞=0

]
dx

=
4
3
b · µv,s

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s). (11.69)

or in dimensionless form can be rewritten as

Gx

b · µv,s
=

4
3

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s). (11.70)

Actually, the film boiling of saturated liquid can be regarded as a special
case of the film boiling of subcooled liquid when the liquid subcooled grade
∆t∞/ts tends to zero, then, (10.68)–(10.70) are suitable for the film boiling
of subcooled or saturated liquid.

The rigorous numerical solutions of interfacial velocity components Wxv,s

and Wyv,s and mass flow rate parameter ηvδWxv,s−4Wyv,s for the film boiling
of subcooled water are described in Table 11.2, and plotted in Figs. 11.6–11.8,
respectively, with variations of wall superheated grade ∆tw/ts and the water
bulk subcooled grade ∆t∞/ts. It is found that the variations of interfacial
velocity components Wxv,s and Wyv,s and mass flow rate parameter ηvδWxv,s−
Wyv,s are as follows with wall superheated grade ∆tw/ts and the water bulk
subcooled degree ∆t∞/ts:

The interfacial velocity component Wxv,s will increase with increasing the
wall superheated grade ∆tw/ts except for very low water bulk subcooled grade
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Fig. 11.6. Variation of Wxv,s with ∆tw/ts and ∆t∞/ts for film boiling of subcooled
water 1–7: ∆t∞/ts = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1
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∆t∞/ts. Meanwhile, the interfacial velocity component Wxv,s will decrease
with increasing the water bulk subcooled grade ∆t∞/ts.

The interfacial velocity component −Wyv,s and mass flow rate parame-
ter (ηvδWxv,s − 4Wyv,s) will increase with increasing the wall superheated
grade ∆tw/ts especially in the range of lower water subcooled grade ∆t∞/ts.
Meanwhile, they will decrease with increasing the water bulk subcooled grade
∆t∞/ts. It is seen that the value of the interfacial velocity component −Wyv,s

is much more than that of the interfacial velocity component Wxv,s usually.
Then, it follows that the interfacial velocity component −Wyv,s will dominate
the interfacial mass flow rate in general. However, the effect of the interfa-
cial velocity component Wxv,s on the interfacial mass flow rate can never be
ignored.

11.6 Summary

So far, governing equations, and the equations for heat and mass transfer of
the film boiling of subcooled liquid can be summarized in Tables 11.3 and
11.4. Meanwhile, the film boiling of saturated liquid can be regarded as a
special case of the film boiling of subcooled liquid with zero for the liquid
bulk subcooled grade ∆t∞/ts.

11.7 Remarks

The film boiling of saturated liquid is a special case of the film boiling of
subcooled liquid only with ∆t∞/ts = 0. The velocity component method is
successfully applied to in the theoretical model of the film boiling. The di-
mensionless velocity components Wx and Wy of vapor and liquid films have
definite physical meanings, and then the solutions of the models can be under-
stood easily. It follows that the velocity component method is appropriate for
the treatment of the two-phase boundary layer problems with the three-point
value problem.

In the theoretical models of the film boiling of subcooled liquids, the vari-
ous physical matching conditions including variable thermophysical properties
are taken into account. On this basis, the numerical solutions for film boiling of
subcooled water at different wall superheated grades ∆tw/ts and liquid bulk
subcooled grades ∆t∞/ts are theoretically reliable. On this basis, a system
of rigorous solutions for momentum, heat, and mass transfer are calculated
for taking the film boiling of subcooled water as the example. From these
numerical results, the following points can be concluded:

Generally, the vapor film thickness ηvδ and the velocity components of
vapor film will increase with increasing wall superheated grade ∆tw/ts or
with decreasing the water bulk subcooled grade ∆t∞/ts.

The temperature gradients −(dθv/dηv)ηv=0 on the plate will decrease with
increasing the wall superheated grade ∆tw/ts, and increase with increasing the
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bulk subcooled grade ∆t∞/ts. In fact, the temperature gradient (dθv/dηv)ηv=0

on the plates is steeper with higher liquid bulk subcooled grade ∆t∞/ts and
with lower wall superheated grade ∆tw/ts.

The interfacial velocity component Wxv,s will increase with increasing the
wall superheated grade ∆tw/ts except the case for very low water bulk sub-
cooled grade ∆t∞/ts. Meanwhile, the interfacial velocity component Wxv,s

will decrease with increasing the liquid bulk subcooled grade ∆t∞/ts.
The interfacial velocity component −Wyv,s and mass flow rate parameter

(ηvδWxv,s − 4Wyv,s) will increase with increasing the wall superheated grade
∆tw/ts, and will increase obviously with decreasing the liquid subcooled grade
∆t∞/ts. The value of the interfacial velocity component −Wyv,s is much larger
than that of the interfacial velocity component Wxv,s usually. Then, it follows
that −Wyv,s will dominate the interfacial mass flow rate in general. However,
the effect of the interfacial velocity component Wxv,s on the interfacial mass
flow rate can never be ignored.

The effects of the wall superheated grade ∆tw/ts and liquid bulk subcooled
grade ∆t∞/ts on the momentum, heat, and mass transfer presented here also
reveal effects of variable thermophysical properties of both vapor and liquid
film on the film boiling of subcooled liquid.

The curve-fit equations introduced in this chapter agree very well with
the related rigorous numerical solutions, and useful for a simple and accurate
prediction of heat and mass transfer of the laminar film boiling of subcooled
water.

11.8 Calculation Example

Example: A flat plate with 0.3 m width and 0.3 m length is suspended verti-
cally in water. The plate temperature is kept at tw = 577◦C . The water bulk
temperature is t∞ = 90◦C. Assume the steady laminar film boiling occurs on
the plates. Calculate the heat transfer and mass flow rate of the film boiling.

Solution. The wall superheated grade is ∆tw/ts = (tw − ts)/ts = (577 −
100)/100 = 4.77, and the water bulk subcooled grade is ∆t∞/ts = (ts −
t∞)/ts = (100 − 90)/100 = 0.1.

The related physical properties are water saturated density ρl,s =
958.4 kg m−3 at ts = 100◦C, saturated water vapor kinetic viscosity νv,s =
20.55 × 10−6 m2 s−1, density ρv,s = 0.5974 kg m−3, and absolute viscosity
µv,s = 12.28 × 10−6 at ts = 100◦C, water vapor density ρv,w = 0.2579 kg m−3

and thermal conductivity λv,w = 0.0637W (mK)−1 at tw = 577◦C, and sub-
cooled water density ρl,∞ = 965.3 kg m−3 at t∞ = 90◦C.

1. For heat transfer. With (11.64) the temperature gradient of the film boiling
of subcooled water vapor is evaluated as

−
(

dθv

dηv

)
ηv=0

=
exp(A + B ∆tw

ts
+ C(∆tw

ts
)2)

∆tw
ts

× 10−2.
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Since ∆t∞/ts = 0.1.
The following formulae and calculations for the coefficients A, B, and C

are available:

A = 4.7356 + 7.407
∆t∞
ts

− 7.4 ×
(

∆t∞
ts

)2

= 4.7356 + 7.407 × 0.1 − 7.4 × 0.12

= 5.4023,

B = 0.1228 − 1.633
∆t∞
ts

+ 2.71
(

∆t∞
ts

)2

= 0.1228 − 1.633 × 0.1 + 2.71 × (0.1)2

= −0.0134,

C = −0.0086 + 1.092 × 10−1 ∆t∞
ts

− 2.132 × 10−1

(
∆t∞
ts

)2

= 0.0086 + 1.092 × 10−1 × 0.1 − 2.131 × 10−1(0.1)2

= 0.000188

−
(

dθv

dηv

)
ηv=0

=
exp

(
A + B ∆tw

ts
+ C

(
∆tw
ts

)2
)

∆tw
ts

× 10−2

=
exp(5.4023 − 0.0134 × 4.77 + 0.000188 × (4.772)

4.77
× 10−2

= 0.438298.

With (11.15) local Grashof number Grxv,s is evaluated as

Grxv,s =
g(ρl,∞/ρv,w − 1)x3

ν2
v,s

=
9.8(965.3/0.2579 − 1) × 0.33

(20.55 × 10−6)2

= 2.34456 × 1012.

With (11.61) the local Nusselt number is evaluated as

Nuxv,w = −
(

1
4
Grxv,s

)1/4(dθv

dηv

)
ηv=0

=
(

1
4
× 2.34456 × 1012

)1/4

× 0.438298

= 383.50.

According to the definition of the local Nusselt number, Nuxv,w =
αxx/λv,w, then
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αx =
Nuxv,wλv,w

x

=
383.50 × 0.0637

0.3
= 81.43W (m2 ◦C)−1.

At last, average heat transfer coefficient αx and total heat transfer rate
Qx of the film boiling of the plate are calculated

αx =
4
3
αx

=
4
3
× 81.43

= 108.57W (m2 ◦C)−1,

Qx = αx(tw − ts)A
= 108.57 × (577 − 100) × 0.3 × 0.3
= 4660.91W.

2. For mass flow rate of the boiling. The total mass flow rate of the film
boiling of subcooled water is expressed as

Gx =
4
3
b · µv,s

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s).

From Table 11.2, the related mass flow rate parameter (ηvδWxv,s−4Wyv,s)
is obtained as 0.16399 for ∆tw/ts = 4.77 and ∆t∞/ts = 0.1.

Then,

Gx =
4
3
b · µv,s

(
1
4
Grxv,s

)1/4

(ηvδWxv,s − 4Wyv,s)

=
4
3
× 0.3 × 12.28 × 10−6 ×

(
1
4
× 2.34456 × 1012

)1/4

× 0.16399

= 0.000705 kg s−1

= 2.537 kg h−1.
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12

Laminar Film Condensation
of Saturated Vapor

Nomenclature

a thermal diffusive coefficient, m2 s−1

b plate width, m
cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s−2

(gx)i local mass flow rate entering the liquid film at position
x per unit area of the plate, kg (m2 s)−1

Gx total mass flow rate entering the liquid film for
position x = 0 to x with width of b of the plate, kg s−1

Grxl,s local Grashof number of liquid film for film
condensation of saturated vapor, g(ρl,w−ρv)x3

ν2
l,sρl,s

Grxv local Grashof number of vapor film for film
condensation of saturated vapor, gx3/ν2

v

Nux,w average Nusselt number, αxx/λw

Nuxv,w local Nusselt number, axx/λw

ncp
specific heat parameter of gas

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
Pr Prandtl number
qx local heat transfer rate at position x per unit area on

the plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate, W

t temperature, ◦C
T absolute temperature, K
wx, wy velocity components in the x- and

y- directions, respectively
Wx,Wy dimensionless velocity components in the x- and

y- directions, respectively
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Wxl,s,Wyl,s dimensionless velocity components of liquid film at
liquid–vapor interface

x, y dimensional coordinate variables

Greek symbols

αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)−1

δ boundary layer thickness, m
δl thickness of liquid film, m
δv thickness of vapor film, m
η dimensionless coordinate variable for boundary layer
θ dimensionless temperature
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m−2 s−1

ρ density, kg m−3

∆tw wall subcooled temperature, ts − tw,◦ C
∆tw
ts

wall subcooled grade, (ts − tw)/ts
∆t∞ superheated temperature of vapor, t∞ − ts,

◦ C

−
((

dθl
dηl

)
η=0

)
∆t∞=0

dimensionless temperature gradient on the plate for
film condensation of saturated vapor

ηlδ dimensionless thickness of liquid film
ηlδWxl,s − 4Wyl,s mass flow rate parameter for film condensation
ρl − ρv

ρl,w − ρv
buoyancy factor

1
ρ

dp

dx
density factor

1
µ

dµ

dη
viscosity factor

1
λ

dλ

dη
thermal conductivity factor

Subscripts
i liquid
s saturate state, or at the liquid-vapor interface
v vapor
w at wall
∞ far from the wall surface

12.1 Introduction

It was Nusselt [1] who first treated the laminar film condensation of satu-
rated steam on a vertical isothermal flat plate. His theory was based on the
assumption that the inertia and thermal convection of condensate film, the
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vapor drag due to the shear force at the liquid–vapor interface, the dependence
of the thermophysical properties of the condensate medium on temperature,
and the effect of the liquid–vapor interfacial wave are neglected. Bromley [2]
and Rohsenow [3] first investigated the effects of thermal convection. Later
on, the study of Sparrow and Gregg [4] included also the effects of ther-
mal convection and inertia forces in the liquid film by using the boundary
layer analysis, and Koh et al. [5] further solved numerically a boundary-layer
model for both the condensate and vapor films. Chen [6] has considered ana-
lytically the effect of thermal convection, the inertia, and the interfacial shear
force.

On the basis of foregoing studies of the independent-temperature physical
properties Mc Adams [7], Voskresenskiy [8], and Labuntsov [9] made relatively
simple modifications for variable thermophysical properties. Then, Poots and
Miles [10] studied the effects of variable thermophysical properties on laminar
film condensation of saturated steam on a vertical flat plate. They have sim-
plified the governing equations of the liquid and vapor phases by neglecting
the effects of surface tension at the liquid–vapor interface, and have got solu-
tions of the ordinary differential equations. Nevertheless the results obtained
do not allow heat and mass transfer prediction, probably due to the difficulty
of getting a solution.

In this book, I will use three chapters (Chaps. 12–14) to introduce an ex-
tended study development of Shang, Wang and Adamek [11–13] for analyzing
and calculating the film condensation of vapor and to further clarify the char-
acter of its heat and mass transfer.

In this chapter, the extended theory of steady state laminar film condensa-
tion process of pure saturated vapor at atmospheric pressure on an isothermal
vertical flat plate is established. Its equations provide a complete account of
the physical process for consideration of various physical factors including
variable thermophysical properties, except for surface tension at the liquid–
vapor film interface.

First, similarity considerations are proposed to transform the governing
system of partial differential equations and its boundary conditions into the
corresponding dimensionless system.

Then, the dimensionless new system is computed numerically in two steps:
First, neglecting shear force at the interface, so that the initial values of the
boundary conditions Wxl,s and Wyl,s are obtained. Then, the calculations of
a problem of the three-point boundary values for coupling the equations of
liquid film with those of vapor film are carried out.

Furthermore, the correlations for the heat transfer coefficient and mass
flow rate are proposed by analysis of heat and mass transfer and it is found
that the heat transfer coefficient is function of dimensionless temperature
gradient (dθl/dηl)ηl=0, and condensate mass flow rate is a function of the mass
flow rate parameter (ηlδWxl,s −Wyl,s). In addition, the curve-fitting formulae
corresponding to heat and mass transfer correlations are developed based on
the rigorous numerical solutions.
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x

y

t

d v

t� =ts

wxv,�

dl

Fig. 12.1. Physical model and coordinate system of film condensation of saturate
vapor

12.2 Governing Partial Differential Equations

The analytical model and coordinate system used for the laminar film con-
densation of saturated vapor on an isothermal vertical flat plate is shown
in Fig. 12.1. An isothermal vertical flat plate is suspended in a large volume
of quiescent pure saturated vapor at atmospheric pressure. The plate tem-
perature is tw and the saturation temperature of the fluid is ts. If provided
condition for the model is tw < ts, a steady film condensation will occur on
the plate. We assume that laminar flow within the liquid and vapor phases is
induced by gravity, and take into account the shear force at the liquid–vapor
interface, the inertia force and thermal convection of the condensate film,
and the variable thermophysical properties. Then the conservation governing
equations of mass, momentum, and energy for steady laminar condensation
in two-phase boundary layer are as follows:

With consideration of variable thermophysical properties, the governing
partial differential equations for condensate liquid film are

∂

∂x
(ρlwxl) +

∂

∂y
(ρlwyl) = 0, (12.1)

ρl

(
wxl

∂wxl

∂x
+ wyl

∂wxl

∂y

)
=

∂

∂y

(
µl

∂wxl

∂y

)
+ g(ρl − ρv), (12.2)

ρlcpl

(
wxl

∂tl
∂x

+ wyl
∂tl
∂y

)
=

∂

∂y

(
λl

∂tl
∂y

)
. (12.3)

For vapor film the condition of saturation implies that the vapor tem-
perature t∞ is essentially constant, and equals ts. Consequently, the variable
thermophysical properties and the energy equation need not be considered,
and only the continuity and momentum equations remain:
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∂

∂y
(wyv) +

∂

∂y
(wyv) = 0, (12.4)

wxv
∂wxv

∂x
+ wyv

∂wxv

∂y
= νv

∂2wxv

∂y2
. (12.5)

The boundary conditions are

y = 0 : wxl = 0, wyl = 0, tl = tw, (12.6)
y = δl

wxl,s = wxv,s, (12.7)

ρl,s

(
wxl

∂δl

∂x
− wyl

)
s

= ρv

(
wxv

∂δv

∂x
− wyv

)
s

, (12.8)

µl,s

(
∂wxl

∂y

)
s

= µv

(
∂wxv

∂y

)
s

, (12.9)

λl,s

(
∂tl
∂y

)
y=δl

= hfgρl,s

(
wxl

∂δl

∂x
− wyl

)
s

, (12.10)

tl = ts, (12.11)

y → ∞ :
wxv → 0, (12.12)

where (12.7) expresses a continuity of the interfacial velocity components of
liquid and vapor phases, (12.8) expresses that the local mass flux crossing the
liquid–vapour interface is continuous, (12.9) shows the balance condition for
shear force at the liquid–vapor interface which also implies a consideration of
the drag of the vapor film, (12.10) describes that the latent heat of conden-
sation is in balance with the heat conduction of liquid at the interface, and
(12.11) expresses the temperature continuity at the liquid–vapor interface.
Obviously, the subscript v related to the vapor film in the above equations
refers to the case of saturated vapor.

12.3 Similarity Variables

Using the velocity component method we assume the following dimensionless
variables for the similarity transformation of the governing partial differential
equations of the film condensation of saturated vapor. This assumption is
subdivided into the following phases:
For liquid film. For liquid film the similarity transformation variables are as-
sumed as follows:

The dimensionless coordinate variable ηl of liquid film is set up as

ηl =
(

1
4
Grxl,s

)1/4
y

x
, (12.13)
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where the local Grashof number Grxl,s is assumed as

Grxl,s =
g(ρl,w − ρv,s)x3

ν2
l,sρl,s

. (12.14)

The dimensionless temperature is given as

θl =
t − ts
tw − ts

. (12.15)

The dimensionless velocity components are assumed as

Wxl =

(
2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2
)−1

wxl, (12.16)

Wyl =

(
2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2(1
4
Grxl,s

)−1/4
)−1

wyl. (12.17)

For vapor film. For the similarity transformations for vapor film of the govern-
ing partial differential equations of the film condensation of saturated vapor
we introduce the following similarity variables:

The dimensionless coordinate variable ηv of vapor film and the local
Grashof number Grxv,s are assumed as, respectively,

ηv =
(

1
4
Grxv

)1/4
y

x
, Grxv =

gx3

ν2
v

. (12.18)

The dimensionless velocity components are assumed as

Wxv = (2
√

gx)−1wxv, (12.19)

Wyv = (2
√

gx

(
1
4
Grxv

)−1/4

)−1wyv. (12.20)

12.4 Similarity Transformation of Governing Equations

The similarity transformations of the governing partial differential equations
and the boundary conditions for the film condensation of saturated vapor are
done in Appendix 1, and the transformed results are shown as follows:

For liquid film. From (12.59), (12.64), and (12.71) of Appendix A, the trans-
formed governing equations for the liquid film are shown as follows, respec-
tively:

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
+

1
ρl

dρl

dηl
(−ηlWxl + 4Wyl) = 0, (12.21)
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νl,s

νl

(
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

)

=
d2Wxl

dη2
l

+
1
µl

dµl

dηl

dWxl

dηl
+

µl,s

µl

ρl − ρv

ρl,w − ρv
, (12.22)

Prl
νl,s

νl

[
−Wxl

dθl

dηl
ηl + 4Wyl

dθl

dηl

]
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
. (12.23)

For vapor film. From Appendix A, the transformed governing equations for
the vapor film are shown as follows, respectively:

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
= 0, (12.24)

Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

dWxv

dηv
=

d2Wxv

dη2
v

. (12.25)

For boundary conditions. From (12.26)–(12.33) of Appendix A, the trans-
formed boundary conditions are shown as follows, respectively:
ηl = 0 :

Wxl = 0, Wyl = 0, θl = 1, (12.26)

ηv = ηlδ(ηv = 0) :

Wxv,s =
(

ρl,w − ρv

ρl,s

)1/2

Wxl,s, (12.27)

Wyv,s = −0.25
µl,s

µv

(
νv,s

νl,s

)1/2(
ρl,w − ρv

ρl,s

)1/4

(Wxl,sηlδ − 4Wyl,s), (12.28)

(
dWxv

dηv

)
ηv=0

=
µl,s

µv

(
ρl,w − ρv

ρl,s

)3/4(
νv

νl,s

)1/2(dWxl

dηl

)
ηl=ηlδ

, (12.29)

hfgµl,s(Wxl,sηlδ − 4Wyl,s) − λpl,stw − ts)
(

dθl

dηl

)
ηl=ηlδ

= 0, (12.30)

θl = 0, (12.31)

ηv → ∞ :

Wxv → 0. (12.32)

12.5 Numerical Solutions

12.5.1 Treatment of Variable Thermophysical Properties

The variable thermophysical properties of the governing ordinary differen-
tial equations (12.21)–(12.23) and the boundary conditions must be treated.
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For example, the corresponding predictive expressions for density ρl, thermal
conductivity λl, and absolute viscosity µl, for water are

ρl = −4.48 × 10−3t2 + 999.9, (12.33)
λl = −8.01 × 10−6t2 + 1.94 × 10−3t + 0.563, (12.34)

µl = exp

[
−1.6 − 1150

T
+
(

690
T

)2
]
× 10−3. (12.35)

Similar to the related derivations in Chap. 11, the thermophysical property
factors (1/ρl)(dρl/dηl), (1/µl)(dµl/dηl), (1/λl)(dλl/dηl), µl,s/µl, νl,s/νl, and
Prl(µl,s/µl)(ρl/ρl,s)Prl,s(ρl/ρl,s)(λl,s/λl) in the governing ordinary differen-
tial equations of liquid film, (12.21)–(12.23) are shown as later:

1
ρl

dρl

dηl
=

[−2 × 4.48 × 10−3t](tw − t∞) dθl
dηl

−4.48 × 10−3t2 + 999.9
, (12.36)

1
λl

dλl

dηl
=

[−2 × 8.01 × 10−6t + 1.94 × 10−3](tw − t∞) dθl
dηl

−8.01 × 10−6t2 + 1.94 × 10−3t + 0.563
, (12.37)

1
µl

dµl

dηl
=
[
1150
T 2

− 2 × 6902

T 3

]
(tw − t∞)

dθl

dηl
. (12.38)

Additionally, with (12.33) and (12.35) we obtain

µl,s

µl
= exp

[
−1150

(
1

Tl,s
− 1

Tl

)
+ 6902

(
1

Tl,s
− 1

Tl

)]
(12.39)

and
νl,s

νl
=

µl,s

µl

ρl

ρl,s

= exp
[
−1150

(
1

Tl,s
− 1

Tl

)
+ 6902

(
1

Tl,s
− 1

Tl

)]
4.48 × 10−3t2l + 999.9
4.48 × 10−3t2l,s + 999.9

.

(12.40)

In addition, from the analysis of Chap. 6, it is known that the physical factor
Prl(νl,∞/νl) in (12.23) can be expressed as

Prl
νl,s

νl
= Prl,s

ρl

ρl,s

λl,s

λl

for water and a lot of liquids in a special temperature range for engineering
application.
where

Prl,s
ρl

ρl,s

λl,s

λl
= Prl,s

−4.48 × 10−3t2l + 999.9
−4.48 × 10−3t2l,s + 999.9

×
−8.01 × 10−6t2l,s + 1.94 × 10−3tl,s + 0.563
−8.01 × 10−6t2l + 1.94 × 10−3tl + 0.563

(12.41)
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for water. Here, t = (tw−ts)θl+ts and T = t+273, while, the Prandtl number
at the saturated temperature, Prl,s, can be taken from the experimental data.

12.5.2 Calculation Procedure

It is a three-point boundary value problem for solving (12.21)–(12.25) with
the boundary condition equations (12.26)–(12.32). The calculations are carried
out numerically by two processes, and in each process, the shooting method is
applied for the solutions. In the first process the solutions of (12.21)–(12.23)
are assumed to be without shear force of vapor at the liquid–vapor interface,
and in this case the boundary condition (12.29) must be changed to

(
dWxl

dη

)
ηl=ηlδ

= 0. (12.42)

In this case, (12.26) and (12.31), are regarded as the boundary condi-
tions for getting the solutions of (12.21)–(12.23). Then, (12.30) is taken to
adjudge convergence of the solution, and in virtue of changing the value ηlδ

the successively iterative calculation is continued. After this convergence, the
second process for carrying out calculation of three-point boundary problem
for coupling equations of liquid film with equations of vapor film is started.
In this process, first the boundary values Wxv,s and Wyv,s are found out by
(12.27) and (12.28), respectively. Then (12.24) and (12.25) of vapor film are
calculated with the boundary condition (12.32) and the earlier values of Wxv,s

and Wyv,s. Equations (12.29) and (12.30) are used to adjudge convergence of
the solutions. By means of the adjudgement equations the calculation is iter-
ated by changing the values Wxl,s and ηlδ. In each iteration, calculations of
(12.21)–(12.23) for liquid film and (12.24) and (12.25) for vapor film are made
successively by the shooting method.

12.5.3 Solution

It will be expected from (12.21)–(12.23) that for consideration of variable
thermophysical properties the dimensionless velocity and temperature fields
in the condensate film will depend on the temperature-dependent properties
ρl, νl, λl, and Prl and hence will depend on temperature t, and furthermore,
depend on θ, tw and ts.

For convenience some special values of the thermophysical properties of
water [14] used in the calculation are listed in Table 12.1, and water densities
at different temperatures are listed in Table 12.2.

For laminar film condensation of saturated water vapor the numerical cal-
culations have been carried out for wall temperatures tw = 0, 20, 40, 60, 80, 90,
95, 97.5, and 99.9◦C (i.e., wall subcooled grade ∆tw/ts = (ts − tw)/ts = 1,
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Table 12.1. Thermophysical property values for water and water vapor at saturated
temperature

term value
for water for water vapor

ts(
◦C) 100 100

cp (J (kg K)−1) 4,216
hfg (kJ kg−1) 2,257.3
Pr 1.76 1
ρ (kg m−3) 958.1 0.5974

µ (kg (m s)−1) 282.2 × 10−6 12.28 × 10−6

ν (m2 s−1) 0.294 × 10−6 20.55 × 10−6

λ (W (m K)−1) 0.677 0.02478

Table 12.2. Water densities at different temperatures

t(◦C) 0 20 40 60 80 90 95 97.5 99.9
ρ (kg m−3) 999.8 998.3 992.3 983.2 971.4 965.1 961.7 960.05 958.1

0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.025, and 0.001), respectively. The calculated results
of velocity and temperature fields are plotted in Figs. 12.2 and 12.3, respec-
tively.

It is seen from Figs. 12.2 and 12.3 that with increasing wall subcooled
grade ∆tw/ts = (ts− tw)/ts, the thickness of condensate film will increase, the
velocity component wxl,s at the liquid–vapor interface will increase, but the
temperature gradient will decrease.

12.6 Heat and Mass Transfer

12.6.1 Analysis for Heat and Mass Transfer

Heat transfer analysis. The local heat transfer rate qx of the film condensation
at position x per unit area from the surface of the plate to the gas can be
calculated by Pourier’s law as

qx = −λl,w

(
∂t

∂y

)
y=0

.

With (12.13) and (12.15) we have
(

∂t

∂y

)
y=0

=
(

dt

dη

)
η=0

∂η

∂y

= (tw − t∞)

((
dθl

dηl

)
ηl=0

)

∆t∞=0

(
1
4
Grxl,s

)1/4

x−1.
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Fig. 12.2. Velocity profiles of liquid and vapor films for laminar film condensation
of saturated water vapor, cited from Shang and Adamek [12]
Lines 1–9: ∆tw/ts = (ts − tw)/ts = 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.025, and 0.001
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Fig. 12.3. Temperature profiles of liquid and vapor films for laminar film conden-
sation of saturated water vapor, cited from Shang and Adamek [12]
Lines 1–9: ∆tw/ts(= (ts − tw)/ts) = 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.025, and 0.001

Then,

qx = −λl,w(Tw − Ts)
(

1
4
Grxl,s

)1/4

x−1

((
dθl

dηl

)
ηl=0

)

∆t∞=0

, (12.43)

where ((−dθl/dηl)ηl=0)∆t∞=0 is defined as dimensionless temperature gradi-
ent on the wall for film condensation of saturated vapor, while the subscript
∆t∞ = 0 denotes the case with saturated bulk vapor.
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Total heat transfer rate for position x = 0 to x with width of b on the
plate is a integration Qx =

∫∫
A

qx dA =
∫ x

0
qxb dx, and hence

Qx = −λl,wb(tw − t∞)

((
dθl

dηl

)
ηl=0

)

∆t∞=0

∫ x

0

(
1
4
Grxl,s

)1/4

x−1 dx.

With definition of local Grashof number Grxl,s we obtain

Qx = −4
3
bλl,w(tw − t∞)

(
1
4
Grx,∞

)1/4
((

dθl

dηl

)
η=0

)

∆t∞=0

. (12.44)

The local heat transfer coefficient αx, defined as qx = αx(tw − t∞), will be
given by

αx = −λl,w

(
1
4
Grxl,s

)1/4

x−1

((
dθl

dηl

)
ηl=0

)

∆t∞=0

. (12.45)

The average heat transfer coefficient αx defined as Qx = αx(tw − t∞)× b× x
is expressed as

αx = −4
3
λl,w

(
1
4
Grxl,s

)1/4

x−1

((
dθl

dηl

)
ηl=0

)

∆t∞=0

. (12.46)

The local Nusselt number defined as Nuxl,w = αxx/λl,w is expressed by

Nuxl,w = −
(

1
4
Grxl,s

)1/4
((

dθl

dηl

)
ηl=0

)

∆t∞=0

. (12.47)

The average Nusselt number is defined as Nuxl,w = αxx/λl,w, and hence

Nux,w = −4
3

(
1
4
Grxl,s

)1/4
((

dθl

dηl

)
ηl=0

)

∆t∞=0

. (12.48)

It is seen that, for practical calculation of heat transfer, only((
dθl
dηl

)
ηl=0

)
∆t∞=0

dependent on numerical solution is no-given variable.

The average heat transfer coefficient αx defined as Qx = αx(tw − t∞)A
and average Nusselt number Nuxl,w defined as Nuxl,w = αxx/λl,w will be,
respectively,

αx =
4
3
αx Nuxl,w =

4
3
Nuxl,w.
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Mass transfer analysis. Consulting the mass transfer analysis in Chap. 10 for
film boiling of saturated liquid, the related analytic expressions of mass trans-
fer for film condensation of saturated vapor are obtained later:

Set gx to be a local mass flow rate entering the liquid film at position x
per unit area of the plate. According to the boundary layer theory of fluid
mechanics, gx is expressed as

gx = ρl,s

(
wxl,s

dδl

dx
− wyl,s

)
s

.

With the corresponding dimensionless variables in (12.16) and (12.17), the
earlier equation is changed into the following one:

gx = ρl,s

[
2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2

Wxl,s
dδl

dx
− 2

√
gx

(
ρl,w − ρv,s

ρl,s

)1/2

×
(

1
4
Grxl,s

)−1/4

Wyl,s

]

s

,

where the condensate liquid film thickness is expressed as follows according
to (12.13):

δl = ηlδ

(
1
4
Grxl,s

)−1/4

x.

With the definition of the local Grashof number Grxl,s, the earlier equation
is changed into

δl = ηlδ

(
1
4

g(ρl,w − ρv,s)x3

ν2
l,sρl,s

)−1/4

x,

or
dδl

dx
=

1
4
ηlδ

(
1
4
Grxl,s

)−1/4

.

Therefore

gx = ρl,s

{
2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2

Wxl,s

[
1
4
ηlδ

(
1
4
Grxl,s

)−1/4
]

− 2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2 (
1
4Grxl,s

)−1/4
Wyl,s

}

s

= 2ρl,s
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2(1
4
Grxl,s

)−1/4{1
4
ηlδWxl,s − Wyl,s

}
−∆t∞=0

= 4µl,sx
−1

(
1
4
Grxl,s

)1/2(1
4
Grxl,s

)−1/4{1
4
ηlδWxl,s − Wyl,s

}
∆t∞=0

= µl,sx
−1

(
1
4
Grxl,s

)1/4

{ηlδWxl,s − 4Wyl,s}∆t∞=0 .
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If Gx is taken to express total mass flow rate entering the boundary layer
for position x = 0 to x with width of b of the plate, it should be the following
integration:

Gx =
∫∫
A

gx dA

= b

∫ x

0

gx dx,

where A = b · x is area of the plate.
Then, we obtain

Gx =
4
3
b · µl,s

(
1
4
Grxl,s

)1/4

(ηlδWxl,s − 4Wyl,s)∆t∞=0 (12.49)

or as dimensionless form it can be rewritten as

Gx

b · µl,s
=

4
3

(
1
4
Grxl,s

)1/4

(ηlδWxl,s − 4Wyl,s)∆t∞=0,

where (ηlδWxl,s −Wyl,s)∆t∞=0 is defined as mass flow rate parameter through
the liquid–vapor interface for the film condensation of saturated vapor, while
the subscript ∆t∞ = 0 denotes the case with saturated vapor.

12.6.2 Curve-Fit Equations for Heat and Mass Transfer

The corresponding numerical solutions of condensate liquid film thickness
ηlδ, dimensionless temperature gradient ((dθl/dηl)ηl=0)∆tw=0, velocity com-
ponents at liquid–vapor interface, Wxl,s and Wyl,s and mass flow rate para-
meter (ηlδWxl,s − 4Wyl,s)∆t∞=0 of the film condensation of saturated water
vapor are listed in Tables 12.3 with the corresponding wall subcooled grade
∆tw/ts = (ts − tw)/ts, and are plotted in Figs. 12.4–12.8, respectively.

It is seen from Fig. 12.4 that the condensate liquid film thickness ηlδwill
increase with increasing the wall subcooled grade ∆tw/ts. In the range with
smaller wall subcooled grade ∆tw/ts, the liquid film thickness will increase
rapidly, and then will increase slowly with increasing the wall subcooled grade
∆tw/ts. The maximum value of liquid film thickness is 0.73561 at the maxi-
mum wall subcooled grade of ∆tw/ts = 1, for the film condensation of satu-
rated water vapor. The rigorous numerical solutions of the condensate liquid
film thickness ηlδ of the film condensation of saturated water vapor are for-
mulated as following by using a curve-fitting method:

ηlδ = 0.5934
(

∆tw
ts

)0.2562

(0.001 ≤ ∆tw/ts < 0.2), (12.50)

ηlδ = 0.417∆tw
ts

+ 0.3223 (0.2 ≤ ∆tw/ts ≤ 1). (12.51)
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Fig. 12.4. The distribution of ηlδ with ∆tw/ts for film condensed of saturated water
vapor.
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Fig. 12.5. The distribution of ((−dθl/dηl)ηl=0)∆t∞=0 with ∆tw/ts for film conden-
sation of saturated water vapor

The predicted results by using (12.50) and (12.51) are listed in Table 12.3
with the wall subcooled grade ∆tw/ts, and it is found that they agree very
well with the numerical solutions.

It is found from Fig. 12.5 that the temperature gradient
((−dθl/dηl)ηl=0)∆t∞=0 of film condensation of saturated vapor will decrease
with increasing the wall subcooled grade ∆tw/ts. In the range with smaller
value of ∆tw/ts, the temperature gradient will decrease rapidly, and then de-
crease slower with increasing the wall subcooled temperature. The minimum
value of the temperature gradient ((−dθl/dηl)ηl=0)∆t∞=0 is 1.5511, which oc-
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Fig. 12.6. The distribution of Wxl,s with ∆tw/ts for film condensation of saturated
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Fig. 12.7. The distribution of −Wyl,s with ∆tw/ts for film condensation of saturated
water vapor

curs at the maximum wall subcooled grade ∆tw/ts = 1, for the film conden-
sation of saturated water vapor.

Based on the earlier related numerical solutions, the formula for
((−dθl/dηl)ηl=0)∆t∞=0 is obtained as follows by using a curve-matching
method for film condensation of saturated water vapor:

((
−dθl

dηl

)
ηl=0

)

∆t∞=0

=
1.74 − 0.19∆tw

ts(
∆tw
ts

)1/4
. (12.52)
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sation of saturated vapor

The values ((−dθl/dηl)ηl=0)∆t∞=0 predicted by (12.52) are listed in Table 12.3
for the film condensation of saturated water vapor, and it is found that they
agree very well with the numerical solutions.

It is found from Figs. 12.6 and 12.7 that the liquid–vapor interfacial ve-
locity components Wxl,s and −Wyl,s will increase with increasing the wall
subcooled grade ∆tw/ts.

It is found from Fig. 12.8 that the mass flow rate parameter (ηlδWxl,s −
4Wyl,s)∆t∞=0 will increase monotonously with increasing the subcooled grade
∆tw/ts. The maximum value of the mass flow rate parameter is 0.12922,
which occurs at the maximum wall subcooled grade of ∆tw/ts = 1, for the
film condensation of saturated water vapor.

Based on the numerical solutions, the formula for condensate mass flow
rate parameter (ηlδWxl,s − 4Wyl,s)∆t∞=0 of film condensation of saturated
water vapor is obtained as follows by using a curve-matching method:

(ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 =
(

0.186 − 0.057
∆tw
ts

)(
∆tw
ts

)3/4

. (12.53)

The values (ηlδWxl,s − 4Wyl,s)∆t∞=0 predicted by (12.53) are listed in Ta-
ble 12.3 for mass flow rate parameter (ηlδWxl,s−4Wyl,s)∆t∞=0 of film conden-
sation of saturated water vapor. The comparison shows that the good agree-
ments have been obtained between the numerical solutions and the results
evaluated by the corresponding curve-fit equation (12.53).
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12.7 Remarks

This chapter deals with the theory of laminar film condensation of saturated
vapor on a vertical flat plate, with consideration of the various factors includ-
ing the variable thermophysical properties. Meanwhile, the corresponding ex-
pressions for prediction of heat and mass transfer characteristics are obtained.
The analysis presented here is an extension of former studies.

In the first part a similarity transformation with the velocity component
method is used to transform the system of partial differential equations asso-
ciated with the two-phase boundary problem into a system of dimensionless
ordinary differential equations.

In the second part the system of ordinary differential equations and its
related boundary conditions is computed by a successively iterative procedure
with the shooting method adopted for the numerical solution of the three-
point boundary value problem.

On the basis of rigorous numerical solutions the following important con-
clusions are remarked for the film condensation of saturated water vapor. The
condensate liquid film thickness ηlδ will increase with increasing the wall sub-
cooled grade ∆tw/ts. In the range with smaller wall subcooled grade ∆tw/ts,
the liquid film thickness will increase rapidly, and increase slower with increas-
ing the wall subcooled grade ∆tw/ts.

The temperature gradient ((dθl/dηl)ηl=0)∆t∞=0 will decrease with increas-
ing the wall subcooled grade ∆tw/ts. In the range with smaller value of ∆tw/ts,
the temperature gradient will decrease rapidly, and decrease slower with in-
creasing the wall subcooled grade ∆tw/ts.

The liquid–vapor interfacial velocity components Wxl,s, −Wyl,s, and the
mass flow rate parameter (ηlδWxl,s − 4Wyl,s) will increasing with the wall
subcooled grade ∆tw/ts.

The curve-fitting formulae of the condensate liquid film thickness ηlδ,
temperature gradient ((dθl/dηl)ηl=0)∆t∞=0 and mass flow rate parameter
(ηlδWxl,s − 4Wyl,s) are developed based on the related rigorous numerical
solutions and simple and available for their predictions.

12.8 Calculation Example

Example 1: A flat plate, 0.3 m in width and 0.3 m in length, is suspended
vertically in the superheated water vapor. The wall temperature of the plate is
tw = 98◦C, and the vapor bulk temperature is t∞ = ts = 100◦C. Suppose the
condensate film is laminar, please calculate the free convection condensation
heat and mass transfer on the plate.
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Calculation. The vapor superheated grade is ∆t∞/ts = (t∞−ts)/ts = 0, then,
the water vapor bulk is at the saturated state with ρv,s = 0.5974 kg m−3.

The wall subcooled grade is ∆tw/ts = (ts−tw)/ts = (100−98)/100 = 0.02,
and ρl,w = 961.6 kg m−3, and λl,w = 0.6824W (m◦C)−1 at tw = 98◦C.

Additionally, for saturated condition of water at 100◦C, there should be the
following property data, i.e., ρl,s = 958.1 kg m−3, νl,s = 0.294 × 10−6 m2 s−1,
µl,s = 281.7 × 10−6 kg (ms)−1.

1. For heat transfer. From (12.44) and (12.46) the average heat transfer co-
efficient of film condensation of saturated vapor is evaluated as

αx = −4
3
λl,w

(
1
4
Grxl,s

)1/4

x−1

(
−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

.

From (12.14), the local Grashof number of the film condensation is evalu-
ated as

Grxl,s =
g(ρl,w − ρv,s)x3

ν2
l,sρl,s

=
9.8 × (961.6 − 0.5974) × 0.33

(0.294 × 10−6)2 × 958.1
= 3.0705 × 1012.

From (12.52), the temperature gradient ((dθl/dηl)ηl=0)∆t∞=0 for the film
condensation of saturated water vapor is calculated as

(
−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

=
1.74 − 0.19∆tw

ts(
∆tw
ts

)1/4

=
1.74 − 0.19 × 0.02

0.021/4

= 4.6168.

Then, the local heat transfer coefficient is evaluated as

αx =
4
3
λl,w

(
1
4
Grxl,s

)1/4

x−1

(
−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

=
4
3
× 0.6824 ×

(
1
4
× 3.0705 × 1012

)1/4

× 0.3−1 × 4.6168

= 13106.44W (m−2◦C)−1.

The total heat transfer of laminar film condensation of the superheated water
vapor on the vertical plate is calculated
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Qx = αx(tw − ts)A
= 13106.44 × (98 − 100) × 0.3 × 0.3
= −2359.16W.

The negative means that the heat transfer direction is to the plate from the
condensate film.

2. For Mass Flow Rate of the Condensation. From (12.48), the total mass
flow rate Gx of the laminar film condensate of saturated vapour for position
x = 0 to x with width of b of the plate is evaluated as

Gx =
4
3
b · µl,s

(
1
4
Grxl,s

)1/4

(ηlδWxl,δ − 4Wyl,δ)∆t∞=0.

The mass flow rate parameter (ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 is calculated as

(ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 =
(

0.186 − 0.057
∆tw
ts

)(
∆tw
ts

)3/4

= (0.186 − 0.057 × 0.02)(0.02)3/4

= 0.0098314.

Then, the total mass flow rate Gx of the laminar film condensation of super-
heated water vapor is calculated as

Gx =
4
3
b · µl, s

(
1
4
Grxl,s

)1/4

(ηlδWxl,δ − 4Wyl,δ)∆t∞=0

=
4
3
× 0.3 × 281.7 × 10−6 ×

(
1
4
× 3.0705 × 1012

)1/4

× 0.0098314

= 0.001037 kg s−1

= 3.7329 kg h−1.

Example 2: A flat plate with 0.3 m in width and 0.3 m in height is suspended
vertically in the saturated water vapor, i.e., ∆t∞ = t∞ − ts = 0◦C. The wall
temperature is tw = 90◦C and then the wall subcooled grade is ∆tw/ts =
(ts − tw)/ts = 100 − 90/100 = 0.1. Assume laminar film condensation occurs
on the plate, please calculate

(i) heat transfer and mass flow rate of the film boiling of saturated water
vapor on the plate

(ii) condensate film thickness at x = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, and
0.3 m from the top (x = 0) of the plate
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Calculation: At first, the related physical properties are given as fol-
lows: ρv,s = 0.5974 g m−3 for saturated water vapor at ts = 100◦C, ρl,s =
958.1 kg m−3, νl,s = 0.294 × 10−6m2 s−1, and µl,s = 281.7 × 10−6 kg (m s)−1

for saturated water at ts = 100◦C, and ρl,w = 965.3 kg m−3 and λl,w = 0.68
for water at tw = 90◦C .

(i) Heat transfer and mass flow rate of the film boiling of saturated water
steam on two sides of the plate:

For heat transfer. With (12.13), the local Grashof number Grxl,s is eval-
uated as

Grxl,s =
g(ρl,w − ρv,s)x3

ν2
l,sρl,s

=
9.8 × (965.3 − 0.5974) × 0.33

(0.294 × 10−6)2 × 958.1
= 3.08232 × 1012.

Additionally, with (12.52) the temperature gradient of the laminar film
condensation of the saturated water vapor is calculated as(

−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

=
1.74 − 0.19∆tw

ts(
∆tw
ts

)1/4

=
1.74 − 0.19 × 10

100(
10
100

)1/4

= 3.060.

With (12.44) and (12.46) the average heat transfer coefficient is evaluated as

αx =
4
3
λl,w

(
1
4
Grxl,s

)1/4

x−1

((
−dθl

dηl

)
ηl=0

)

∆t∞=0

=
4
3
× 0.68 ×

(
1
4
× 3.08232 × 1012

)1/4

× (0.3)−1 × 3.060

= 8664.67W (m2◦C)−1.

The heat transfer of laminar film condensation of the saturated water
vapor on the vertical plate is calculated

Qx = αx(tw − ts)A
= 8664.67 × (90 − 100) × 0.3 × 0.3
= −7798.2W.

The negative sign means that the heat flux is to the plate from the con-
densate film.
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For mass flow rate of the condensation. The mass flow rate parameter is
evaluated as

(ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 =
(

0.186 − 0.057
∆tw
ts

)(
∆tw
ts

)3/4

=
(

0.186 − 0.057 × 10
100

)(
10
100

)3/4

= 0.032062.

The total mass flow rate of the film condensation of saturated water va-
por is

Gx =
4
3
b · µl,s

(
1
4
Grxl,s

)1/4

(ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0

=
4
3
× 0.3 × 281.7 × 10−6 ×

(
1
4
× 3.08232 × 1012

)1/4

× 0.032062

= 0.0033849 kg s−1

= 12.186 kg h−1

(ii) Condensate film thickness:
The wall subcooled grade is 0.1, then, (12.51) is taken to evaluate ηlδ as

ηlδ = 0.5934
(

∆tw
ts

)0.2562

= 0.5934 × (0.1)0.2562

= 0.32896.

From (12.13), the condensate film thickness δl is expressed as

δl = ηlx

(
1
4
Grxl,s

)−1/4

= ηlx

(
1
4

g(ρl,w − ρv,s)x3

ν2
l,sρl,s

)−1/4

= ηl

(
1
4

g(ρl,w − ρv,s)
ν2
l,sρl,s

)−1/4

x1/4

= 0.32896 ×
(

1
4
× 9.8 × (965.3 − 0.5974)

(0.294 × 10−6)2 × 958.1

)−1/4

× x1/4

= 0.000142324 × x1/4.
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Table 12.4. The condensate film thickness y with the position x

x

(m)

0 0.01 0.05 0.1 0.15 0.2 0.25 0.3

δl
(m)

0 4.5 × 10−5 6.73 × 10−5 8 × 10−5 8.86 × 10−5 9.52 × 10−5 0.000101 0.000105

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0 0.05 0.1 0.15 0.2 0.25 0.3
x (m)

y (m)

Fig. 12.9. The condensate film thickness δl with the position x

For x = 0, δl = 0
For x = 0.01m, δl = 0.000142324 × 0.011/4 = 4.5 × 10−5 m
For x = 0.05m, δl = 0.000142324 × 0.051/4 = 6.73 × 10−5 m
For x = 0.1m, δl = 0.000142324 × 0.11/4 = 8 × 10−5 m
For x = 0.15m, δl = 0.000142324 × 0.151/4 = 8.86 × 10−5 m
For x = 0.2m, δl = 0.000142324 × 0.21/4 = 9.52 × 10−m
For x = 0.25m, δl = 0.000142324 × 0.251/4 = 0.000101m
For x = 0.3m, δl = 0.000142324 × 0.31/4 = 0.000105m,

For clear expression, the condensate film thickness δl with the position x
is listed and plotted as Table 12.4 and Fig. 12.9

Appendix A. Derivation of Similarity Transformation
of Governing Equations (12.1)–(12.5)

The derivation of similarity transformation of governing equations for film
condensation of saturated vapor is similar to that for film boiling of saturated
liquid. So the derivation can be presented briefly.

1. Transformation of (12.1). Equation (12.1) is rewritten as

ρl

(
∂wxl

∂x
+

∂wyl

∂y

)
+ wxl

∂ρl

∂x
+ wyl

∂ρl

∂y
= 0. (12.54)
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With (10.13)–(10.16) we can obtain the following correlations:

∂wxl

∂x
=
√

g

x

(
ρl,w − ρv

ρl,s

)1/2(
Wxl −

1
2
ηl

dWxl

dηl

)
, (12.55)

∂wyl

∂y
= 2

√
g

x

(
ρl,w − ρv

ρl,s

)1/2 dWyl

dηl
, (12.56)

∂ρl

∂x
= −1

4
ηlx

−1 dρl

dηl
, (12.57)

∂ρl

∂y
=

dρl

dηl

(
1
4
Grxl,s

)1/4

x−1. (12.58)

With (12.15), (12.16), and (12.55)–(12.58), (12.54) can be changed into

ρl

[√
g

x

(
ρl,w − ρv

ρl,s

)1/2(
Wxl −

1

2
ηl

dWxl

dηl

)
+ 2

√
g

x

(
ρl,w − ρv

ρl,s

)1/2
dWyl

dηl

]

+2
√

gx

(
ρl,w − ρv

ρl,s

)1/2

Wxl

(
−1

4
ηlx

−1 dρl

dηl

)

+2
√

gx

(
ρl,w − ρv

ρl,s

)1/2 (
1
4Grxl,s

)−1/4
Wyl

dρl

dηl

(
1

4
Gr′xl,s

)1/4

x−1 = 0.

The earlier equation is divided by
√

g

x

(
ρl,w − ρv

ρl,s

)1/2

and simplified to

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(ηlWxl − 4Wyl) = 0. (12.59)

2. Transformation of (12.2). Equation (12.2) is rewritten as

ρl

(
wxl

∂wxl

∂x
+ wyl

∂wxl

∂y

)
=

∂µl

∂y

∂wxl

∂y
+ µl

∂2wxl

∂y2
) + g(ρl − ρv). (12.60)

With the dimensionless transformation variables assumed in (10.13), (10.15),
(10.16) we get

∂wxl

∂y
= 2

√
gx(

ρl,w − ρv

ρl,s
)1/2 dWxl

dηl
x−1

(
1
4Grxl,s

)1/4
, (12.61)
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∂2wxl

∂y2
= 2

√
gx

(
ρl,w − ρv

ρl,s

)1/2 d2Wxl

dη2
l

x−1
(

1
4Grxl,s

)1/4 ( 1
4Grxl,s

)1/4
x−1,

= 2
√

gx

(
ρl,w − ρv

ρl,s

)1/2 d2Wxl

dη2
l

(
1
4Grxl,s

)1/2
x−2, (12.62)

∂µv

∂y
=

dµv

dηv

(
1
4Grxv,s

)1/4
x−1. (12.63)

With (12.15), (12.16), (12.55), and (12.61)–(12.63), (12.60) is changed into

ρl

[
2
√

gx

(
ρl,w − ρv

ρl,s

)1/2

Wxl

√
g

x

(
ρl,w − ρv

ρl,s

)1/2(
Wxl −

1
2
ηl

dWxl

dηl

)

+2
√

gx

(
ρl,w − ρv

ρl,s

)1/2 (
1
4Grxl,s

)−1/4
Wyl2

√
gx

(
ρl,w − ρv

ρl,s

)1/2

× dWxl

dηl
x−1

(
1
4Grxl,s

)1/4
]

= 2
dµv

dηv
( 1
4Grxv,s)1/4x−1√gx

(
ρl,w−ρv

ρl,s

)1/2
dWxl
dηl

x−1
(

1
4Grxl,s

)1/4

+2µl
√

gx

(
ρl,w − ρv

ρl,s

)1/2 d2Wxl

dη2
l

(
1
4Grxl,s

)1/2

x−2
)

+ g(ρl − ρv).

The earlier equation is divided by g((ρl,w − ρv)/ρl,s), and simplified to the
following equation with consideration of Grxl,s definition:

ρl

[
2Wxl

(
Wxl −

1
2
ηl

dWxl

dηl

)
+ 2Wyl2

dWxl

dηl

]

= 2
dµv

dηv

dWxl

dηl

(
1
4

g
ν2
l,s

)1/2

+ 2µl
d2Wxl

dη2
l

(
1
4

1
ν2
l,s

)
1/2

)
+ ρl,s

ρl − ρv

ρl,w − ρv
.

The earlier equation is multiplied by

1
ρl

νl,s

νl

and further simplified to

νl,s

νl

[
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

]
=

1
µ

dµv

dηv

dWxl

dηl
+

d2Wxl

dη2
l

+
µl,s

µl

ρl − ρv

ρl,w − ρv
. (12.64)
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3. Transformation of (12.3). Equation (12.3) is rewritten as

ρlcpl

(
wxl

∂tl
∂x

+ wyl
∂tl
∂y

)
=

∂

∂y

(
λl

∂tl
∂y

)
, (12.65)

where

tl = (tw − ts)θl + ts, (12.66)
∂tl
∂x

= −(tw − ts)
dθl

dηl

(
1
4

)
ηlx

−1, (12.67)

∂tl
∂y

= (tw − ts)
dθl

dηl

(
1
4
Grxl,s

)1/4

x−1, (12.68)

∂2tl
∂y2

= (tw − ts)
d2θl

dη2
l

(
1
4
Grxl,s

)1/2

x−2, (12.69)

∂λl

∂y
=

dλl

dηl

(
1
4
Grxl,s

)1/4

x−1. (12.70)

With (12.15), (12.16), and (12.66)–(12.69), (12.65) will become

−ρlcpl [2
√

gx

(
ρl,w−ρv

ρl,s

)1/2

Wxl(tw − ts)
dθl

dηl

(
1
4

)
ηlx

−1

2
√

gx

(
ρl,w−ρv

ρl,s

)1/2(1
4
Grxl,s

)−1/4

Wyl(tW − ts)
dθl

dηl

(
1
4
Grxl,s

)1/4

x−1]

= λl(tW − ts)
d2θl

dη2
l

(
1
4
Grxl,s

)1/2

x−2

dλl

dηl

(
1
4
Grxl,s

)1/4

x−1(tw − ts)
dθl

dηl

(
1
4
Grxl,s

)1/4

x−1.

The earlier equation is divided by

(tw − ts)
√

g

x
(ρl,w − ρv/ρl,s)1/2

and simplified to the following equation with consideration of Grashof num-
ber Grxl,s:

ρlcpl

[
Wxl

dθl

dηl
ηl + 4Wyl

dθl

dηl

]
= λl

d2θl

dη2
l

1
νl,s

+
dλl

dηl

dθl

dηl

1
νl,s

.

The earlier equation is multiplied by νl,s/λl and simplified into

ρlcpl

νl,s

λl

[
−Wxl

dθl

dηl
ηl + 4Wyl

dθl

dηl

]
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
.
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The earlier equation is simplified to

Prl
νl,s

νl
(−Wxlηl + 4Wyl)

dθl

dηl
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
. (12.71)

4. Transformation of (12.4). With (12.17)–(12.19) we get

∂wxv

∂x
=
√

g

x

(
Wxv − 1

2
ηl

dWxv

dηv

)
, (12.72)

∂wyv

∂y
= 2

√
g

x

dWyv

dηv
. (12.73)

With (12.72) and (12.73), (12.4) is changed into the following one:
√

g

x

(
Wxv − 1

2
ηv

dWxv

dηv

)
+ 2

√
g

x

dWyv

dηv
= 0.

The earlier equation is simplified to

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
= 0. (12.74)

5. Transformation of (12.5). With (10.18)–(10.21) we obtain

∂wxv

∂y
= 2

√
gx

dWxv

dηv
x−1

(
1
4Grxv,s

)1/4
, (12.75)

∂2wxv

∂y2
= 2

√
gx

d2Wxv

dη2
v

x−1
(

1
4Grxv,s

)1/4 ( 1
4Grxv,s

)1/4
x−1,

= 2
√

gx
d2Wxv

dη2
v

(
1
4Grxv,s

)1/2
x−2. (12.76)

With (12.18), (12.19), (12.72), (12.74), and (12.76), the earlier equation
becomes

2
√

gxWxv

√
g

x

(
Wxv − 1

2
ηl

dWxv

dηv

)
+ 2

√
gx

(
1
4
Grxv

)−1/4

×Wyv2
√

gx
dWxv

dηv
x−1

(
1
4
Grxv,s

)1/4

= 2νv
√

gx
d2Wxv

dη2
v

(
1
4Grxv,s

)1/2
x−2.

The earlier equation is divided by g and simplified to the following one
according to the definition of Grashof number Grxv,s
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Wxv

(
2Wxv − ηl

dWxv

dηv

)
+ 4Wyv

dWxv

dηv
=

d2Wxv

dη2
v

. (12.77)

Summarize the earlier derivation results for the similarity transformation,
the dimensionless equations for the two-film saturated condensation are as
follows:

For liquid film. The dimensionless equations are (12.59), (12.64), and (12.71)
for mass, momentum, and energy conservations:

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(−ηlWxl + 4Wyl) = 0, (12.59)

νl,s

νl

(
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

)
=

d2Wxl

dη2
l

+
1
µl

dµl

dηl

dWxl

dηl

+
µl,s

µl

ρl − ρv

ρl,w − ρv
, (12.64)

Prl
νl,s

νl
[−ηlWxl + 4Wyl]

dθl

dηl
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
. (12.71)

For vapor film. The dimensionless equations are (12.74) and (12.77) for mass
and momentum conservations:

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
= 0, (12.74)

Wxv

(
2Wxv − ηl

dWxv

dηv

)
+ 4Wyv

dWxv

dηv
=

d2Wxv

dη2
v

. (12.77)

For boundary conditions. With the variables assumed in equations (12.3)–
(12.19) for liquid and vapor films, the following boundary conditions can be
transformed, respectively:

ηl = 0 : Wxl = 0, Wyl = 0, θl = 1, (12.78)

ηv = ηlδ(ηv = 0) :

Wxv,s =
(

ρl,w − ρv

ρl,s

)1/2

Wxl,s, (12.79)

Wyv,s = −0.25
µl,s

µv

(
νv,s

νl,s

)1/2(
ρl,w − ρv

ρl,s

)1/4

(Wxl,sηlδ − 4Wyl,s), (12.80)

(
dWxv

dηv

)
ηv=0

=
µl,s

µv

(
ρl,w − ρv

ρl,s

)3/4(
νv

νl,s

)1/2(dWxl

dηl

)
ηl=ηlδ

, (12.81)
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hfgµl,s(Wxl,sηlδ − 4Wyl,s) − λl,s(tw − ts)
(

dθl

dηl

)
ηl=ηlδ

= 0, (12.82)

θl = 0. (12.83)
ηv → ∞ : Wxv → 0. (12.84)
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pp. 89–100, 1994

13. D.Y. Shang and B.X. Wang, An extended study on steady-state laminar film
condensation of a superheated vapor on an isothermal vertical plate, Int. J. Heat
Mass Transfer 40, No. 4, pp. 931–941, 1997
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13

Effects of Various Physical Conditions
on Film Condensations

Nomenclature

a thermal diffusive coefficient, m2 s−1; assumption for
ignoring the variable thermophysical properties (or for
Boussinesq approximation)

b assumption for ignoring the shear force at the
liquid–vapor interface; plate width, m

c assumption for ignoring inertia force of condensate film
d assumption for ignoring the thermal convection of

condensate film
m more complete condition
cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s2

Grxl,s local Grashof number of liquid film for film
condensation of saturated vapor, g(ρl,w−ρv,s)x

3

ν2
l,sρl,s

Gx total mass flow rate entering the liquid film for
position x = 0 to x with width of b of the plate, kg s−1

Nux,w local Nusselt number defined as αxx/λw

Nux,w average Nusselt number, αxx/λw

ncp
thermal conductivity parameter of gas

nµ viscosity parameter of gas
Pr Prandtl number
qx local heat transfer rate per unit area on the plate, W

m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate, W

t temperature, ◦C
T absolute temperature, K
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wx, wy velocity components in the x- and y- directions,
respectively

Wx,Wy dimensionless velocity component in the x- and
y- directions, respectively

Wxl,s,Wyl,s dimensionless velocity component at interface for film
condensation

x, y dimensional coordinate variables

Greek symbols
αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)1

δ boundary layer thickness, m
η dimensionless coordinate variable for boundary layer
θ dimensionless temperature
λ thermal conductivity, W (m K)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3

∆tw wall subcooled temperature (for film condensation),
ts − tw, ◦C

∆tw
ts

wall subcooled grade, (ts − tw)/ts((
dθl

dηl

)
ηl=0

)
∆t∞=0

dimensionless temperature gradient on the plate for
film condensation of saturated vapor

ηlδ dimensionless liquid film thickness
Φs mass flow rate parameter for film condensation,

ηlδWxl,s − 4Wyl,s
ρl−ρv

ρl,w−ρv
buoyancy factor

1
ρ

dp

dx
density factor

1
µ

dµ

dη
viscosity factor

1
λ

dλ

dη
thermal conductivity factor

Subscripts
a assumption a
b assumption b
c assumption c
d assumption d
f film
i liquid
m more complete condition
s saturate state
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v vertical case or vapor
w at wall
∞ far from the wall surface

13.1 Introduction

In Chap. 12, the extended theory of steady state laminar film condensation
process of pure saturated vapor at atmospheric pressure on an isothermal
vertical flat plate is established. Its equations provide a complete account of
the analyses and calculation of its physical process for consideration of various
physical factors including variable thermophysical properties.

In this chapter, effects of various physical conditions on heat and mass
transfer of the film condensation of saturated vapor will be further pre-
sented [1, 2]. To this end, the film condensation of saturated water vapor
is taken as an example, and, four different assumptions, such as Boussinesq
approximation of condensate film, ignoring shear force at the liquid–vapor
interface, ignoring condensate film inertia force, and ignoring condensate film
thermal convection are considered for investigation of their effects on the con-
densate heat transfer coefficient, condensate film thickness, and mass flow rate
of the film condensation. Quantitative comparisons from these results indicate
the following points:

Effect of the physical conditions on heat transfer coefficient. The Boussinesq
approximation of the condensate film will greatly decrease the heat transfer
coefficient of the condensation and cause the largest effect on the heat transfer
coefficient compared with those caused by other physical conditions. The ther-
mal convection of condensate film will increase the heat transfer coefficient of
the condensation, and its effect on the heat transfer coefficient is larger than
those caused by the liquid–vapor interfacial shear force and the inertia force of
condensate film. The liquid–vapor interfacial shear force and the inertia force
of the condensate film will decrease the heat transfer coefficient very slightly.

Effect of the physical conditions on condensate film thickness. The Boussinesq
approximation of the condensate film will greatly decrease the condensate film
thickness and cause the largest effect on the condensate film thickness com-
pared with those caused by other physical conditions. The thermal convection
of condensate film will decrease the condensate film thickness, and its effect on
the condensate film thickness is larger than those caused by the liquid–vapor
interfacial shear force and the inertia force of condensate film. The liquid–
vapor interfacial shear force and the inertia force of the condensate film will
increase the condensate film thickness very slightly.

Effect of the physical conditions on condensate mass flow rate. The conden-
sate film thermal convection will greatly decrease the mass flow rate of the film
condensation, and will cause the largest effect on the condensate mass flow
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rate compared with those caused by other physical conditions. The Boussi-
nesq approximation will increase the condensate mass flow rate very slightly,
and the liquid–vapor interfacial shear force, and the condensate film inertia
force will decrease the condensate mass flow rate also slightly.

13.2 Review of Governing Equations
for Film Condensation of Saturated Vapor

In Chap. 12, the governing equations for film condensation of saturated vapor
were presented. In this chapter, it is necessary to have a brief review of those
equations for a further analysis.

13.2.1 Partial Differential Equations

The analytical model and coordinate system used for the laminar film conden-
sation of the saturated vapor on an isothermal vertical flat plate is shown in
Fig. 12.1. The conservation partial differential equations of mass, momentum,
and energy for steady laminar saturated condensation in two-phase boundary
layer are as follows:

For condensate liquid film:

∂

∂x
(ρlwxl) +

∂

∂y
(ρlwyl) = 0, (13.1)

ρl

(
wxl

∂wxl

∂x
+ wyl

∂wxl

∂y

)
=

∂

∂y

(
µl

∂wxl

∂y

)
+ g(ρl − ρv), (13.2)

ρlcpl

(
wxl

∂t

∂x
+ wyl

∂t

∂y

)
=

∂

∂y

(
λl

∂t

∂y

)
. (13.3)

For vapor film:
∂

∂x
(wxv) +

∂

∂y
(wyv) = 0, (13.4)

wxv
∂wxv

∂x
+ wyv

∂wxv

∂y
= νv

∂2wxv

∂y2
. (13.5)

For boundary conditions:

y = 0 : wxl = 0, wyl = 0, tl = tw, (13.6)

y = δv

wxl,s = wxv,s, (13.7)
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ρl,s

(
wxl

∂δl

∂x
− wyl

)
s

= ρv

(
wxv

∂δv

∂x
− wyv

)
s

, (13.8)

µl,s

(
∂wxl

∂y

)
s

= µv

(
∂wxv

∂y

)
s

, (13.9)

λl,s

(
∂tl
∂y

)
y=δl

= hfgρl,s

(
wxl

∂δl

∂x
− wyl

)
s

, (13.10)

tl = ts, (13.11)

y → ∞ : wxv → 0, (13.12)

13.2.2 Similarity Variables

Same as those in Chap. 12, the following dimensionless variables are assumed
for the similarity transformation of the governing partial differential equations
of the film condensation of saturated vapor:

For liquid film. For liquid film the similarity transformation variables are as-
sumed as follows:

For liquid film the dimensionless coordinate variable ηl is set up at first as
follows:

ηl =
(

1
4
Grxl,s

)1/4
y

x
, (13.13)

where the local Grashof number Grxl,s is assumed as

Grxl,s =
g(ρl,w − ρv)x3

ν2
l,sρl,s

. (13.14)

The dimensionless temperature is given as

θl =
tl − ts
tw − ts

. (13.15)

The dimensionless velocity components are assumed as

Wxl =

(
2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2
)−1

wxl, (13.16)

Wyl =

(
2
√

gx

(
ρl,w − ρv,s

ρl,s

)1/2(1
4
Grxl,s

)−1/4
)−1

wyl. (13.17)



282 13 Effects of Various Physical Conditions on Film Condensations

For vapor film. The vapor film dimensionless coordinate variable ηv and the
local Grashof number Grxv,s are assumed as, respectively,

ηv =
(

1
4
Grxv

)1/4
y

x
, Grxv =

gx3

νv,s2
. (13.18)

The dimensionless velocity components are assumed as

Wxv = (2
√

gx)−1wxv, (13.19)

Wyv =

(
2
√

gx

(
1
4
Grxv

)−1/4
)−1

wyv. (13.20)

13.2.3 Transformed Dimensionless Differential Equations

The governing partial differential equations and the boundary conditions for
the film condensation of saturated vapor are transformed to the following
forms:

For liquid film:

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
− 1

ρl

dρl

dηl
(ηlWxl − 4Wyl) = 0, (13.21)

νl,s

νl

(
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

)
=

d2Wxl

dη2
l

+
1
µl

dµl

dηl

dWxl

dηl

+
µl,s

µl

ρl − ρv,s

ρl,w − ρv,s
, (13.22)

Prl
νl,s

νl
[−ηlWxl + 4Wyl]

dθl

dηl
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
. (13.23)

For vapor film:

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
= 0, (13.24)

(
Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

dWxv

dηv

)
=

d2Wxv

dη2
v

. (13.25)

For boundary conditions

ηl = 0 : Wxl = 0, Wyl = 0, θl = 1, (13.26)

ηv = ηlδ(ηv = 0) :

Wxv,s =
(

ρl,w − ρv,s

ρl,s

)1/2

Wxl,s, (13.27)
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Wyv,s = −0.25
µl,s

µv

(
νv,s

νv

)1/2 (
ρl,w − ρv,s

ρl,s

)1/4

(Wxl,sηlδ − 4Wyl,s),

(13.28)

(
dWxv

dηv

)
ηv=0

=
µl,s

µv

(
ρl,w − ρv,s

ρl,s

)3/4(
νv,s

νl,s

)1/2(dWxl

dηl

)
ηl=ηlδ

, (13.29)

hfgµl,s(Wxl,sηlδ − 4Wyl,s) − cpl,s(tw − ts)
(

dθl

dηl

)
ηl=ηlδ

= 0, (13.30)

θl = 0, (13.31)

ηv → ∞ : Wxv → 0. (13.32)

In the governing equations here various physical conditions, such vari-
able thermophysical properties, shear force at liquid–vapor interface, conden-
sate film inertia force, and condensate film thermal convection are considered.
These physical conditions are overall named more complete condition for fur-
ther investigations.

13.3 Different Physical Assumptions

13.3.1 Assumption a (with Boussinesq Approximation
of Condensate Film)

The assumption a is defined that on the basis of the more complete condition
the Boussinesq approximation is further considered in the governing differen-
tial equations of the condensate film. With assumption a, associated partial
differential equations of the condensate film become

∂wxl

∂x
+

∂wyl

∂y
= 0, (13.33)

wxl
∂wxl

∂x
+ wyl

∂wxl

∂y
= ν∗

l

∂2wxl

∂y2
l

+
g(ρl − ρv)

ρ∗l
, (13.34)

ρ∗l c
∗
pl

λ∗
l

(
wxl

∂t

∂x
+ wyl

∂t

∂y

)
=

∂2t

∂y2
, (13.35)

where the superscript ∗ implies the value at reference temperature t∗ that is
described by mean temperature (tw + ts)/2 .

Of course, the governing partial differential equations for vapor film are
also (13.4) and (13.5). Strictly speaking, for the boundary conditions under
the Boussinesq approximation, the variable thermophysical properties need
not be considered. However, for examining the effect of the variable ther-
mophysical properties we still take the boundary conditions (13.6)–(13.12)
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with the temperature-dependent thermophysical properties as the associated
boundary conditions.

With the expressions (13.13)–(13.17) for the defined variables of the con-
densate film, the following governing ordinary differential equations can be
derived from (13.33)–(13.35) as:

2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
= 0, (13.36)

νl,s

ν∗
l

(
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

)
=

d2Wxl

dη2
l

+
µl,s

µl

ρl − ρv

ρl,w − ρv
,

(13.37)

Pr∗l
ρ∗l
ρl,s

µl,s

µ∗
l

(−ηlWlv + 4Wyl)
dθl

dηl
=

d2θl

dη2
l

. (13.38)

From the analysis of Chap. 6, it is possible to regard the specific heat
c∗pl in Pr∗l as constant for water and a lot of liquids in the special tem-
perature range for engineering application. In this case, the property factors
(Pr∗l ρ∗l /ρl,s)(µl,s/µ∗

l ) in (13.38) can be substituted by Prl,s(ρ∗l /ρl,s)(λl,s/λ∗
l ).

The governing ordinary differential equations of the vapor film are also
(13.24) and (13.25). Of course, the transformed dimensionless boundary con-
ditions are also (13.26)–(13.32).

13.3.2 Assumption b (Ignoring Shear Force
at Liquid–Vapor Interface)

In assumption b, the shear force at the liquid–vapor interface is neglected
on the basis of the more complete conditions. The governing partial differen-
tial equations for this assumption are only (13.1)–(13.3), since the governing
equations of vapor film should be omitted. Consequently, the boundary condi-
tions (13.7), (13.8), and (13.12) are omitted, and (13.6), (13.10), and (13.11)
remain. Since the shear force at the liquid–vapor interface is neglected, the
boundary condition (13.9) is simplified to

y = δl :
(

∂wxl

∂y

)
s

= 0. (13.39)

With (13.13) and (13.16) for the defined similarity variables, (13.39) is
changed into

ηl = ηlδ :
(

dWxl

dηl

)
ηl=ηlδ

= 0. (13.40)

Thus, with the similarity transformation the governing partial equa-
tions (13.1)–(13.3) are transformed to (13.21)–(13.23), respectively, and their
boundary conditions are (13.26), (13.30), (13.31), and (13.40).
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13.3.3 Assumption c (Ignoring Inertia Force
of the Condensate Film)

The assumption c is defined that the inertia force of the condensate film
is further omitted on the basis of the assumption b. The governing partial
differential equations in this assumption are (13.1) and (13.3), as well as the
following momentum equation:

∂

∂y

(
µl

∂wxl

∂y

)
+ g(ρl − ρv,s) = 0. (13.41)

Then, by virtue of the expressions for defined similarity variables, (13.13)–
(13.17), the associated governing ordinary differential equations will be (13.21)
and (13.23), as well as the following equation:

d2Wxl

dη2
l

+
1
µl

dµl

dηl

dWxl

dηl
+

µl,s

µl

ρl − ρv,s

ρl,w − ρv,s
= 0. (13.42)

The boundary conditions for the assumption c are same as those for as-
sumption b.

13.3.4 Assumption d (Ignoring Thermal Convection
of the Condensate Film)

Assumption d is that the thermal convection of the condensate film is further
omitted on the basis of the assumption c. For this further assumption the
energy (13.3) is simplified to

∂

∂y

(
λl

∂t

∂y

)
= 0. (13.43)

Therefore, the governing partial differential equations of this assumption
should then be (13.1), (13.41), (13.43) and the associated ordinary differential
equations are (13.21) and (13.42), as well as the following energy equation:

d2θl

dη2
l

= − 1
λl

dλl

dηl

dθl

dηl
. (13.44)

The associated boundary conditions for the assumption d are also the same
as those for the assumption b.

13.4 Effects of Various Physical Conditions on Velocity
and Temperature Fields

The numerical calculations in each assumed physical condition are carried
out for different wall subcooled grade, such as ∆tw/ts(= (ts − tw)/ts) =
0.001, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1 for film condensation of saturated
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Fig. 13.2. Temperature profiles of film condensation of saturated water vapor
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II. ∆tw/ts = 0.4, III. ∆tw/ts = 1. Line m: for more complete condition. Lines
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water vapor. Some calculated results of the dimensionless velocity component
Wxl and temperature fields are plotted in Figs. 13.1 and 13.2, respectively. It
is seen that the physical conditions have corresponding influences both on the
condensate film velocity and temperature fields. Additionally, the effects of
Boussinesq approximation on the condensate film velocity and temperature
fields are much larger than those of other physical conditions. While, the ef-
fects of the condensate film thermal convection on the condensate film velocity
and temperature fields are larger than those of liquid–vapor interfacial shear
force and the condensate film inertia force.
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13.5 Effects of Various Physical Conditions
on Heat Transfer

According to (12.44), the local heat transfer coefficient on the surface for the
film condensation of saturated vapor is

αx = −λl,w

(
1
4
Grxl,s

)1/4

x−1

((
dθl

dηl

)
ηl=0

)

∆t∞=0

. (13.45)

If we define the same Grashof number Grxl,s as (13.14) for that with the
different assumed conditions, the deviations of the heat transfer coefficient
caused by the related assumed conditions can be expressed as follows, respec-
tively.

Effect of Boussinesq approximation for the condensate film of saturated
vapor on heat transfer coefficient can be expressed as

∆(αx)a =
(αx)a − (αx)m

(αx)m
=

((
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

)

a

−

((
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

)

m(((
−dθl

dηl

)
ηl=0

)
∆t∞=0

)

m

.

(13.46)

Effect of ignoring shear force at the liquid–vapor interface on heat transfer
coefficient can be expressed as

∆(αx)b =
(αx)b − (αx)m

(αx)m
=

((
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

)

b

−

(((
− dθl

dηl

)
ηl=0

)
∆t∞=0

)

m(((
− dθl

dηl

)
ηl=0

)
∆t∞=0

)

m

.

(13.47)

Effect of ignoring inertia force of the condensate film on heat transfer
coefficient can be expressed as

∆(αx)c =
(αx)c − (αx)b

(αx)b
=

((
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

)

c

−

(((
− dθl

dηl

)
ηl=0

)
∆t∞=0

)

b(((
− dθl

dηl

)
ηl=0

)
∆t∞=0

)

b

.

(13.48)
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Effect of ignoring thermal convection of the condensate film on heat trans-
fer coefficient can be expressed as

∆(αx)d =
(αx)d−(αx)c

(αx)c
=

((
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

)

d

−

(((
−dθl

dηl

)
ηl=0

)
∆t∞=0

)

c(((
− dθl

dηl

)
ηl=0

)
∆t∞=0

)

c

.

(13.49)

The numerical solutions of temperature gradient((
−dθl

dηl

)
ηl=0

)

∆t∞=0

in the various assumptions are obtained numerically for the film boiling of
saturated water vapor, and shown in Table 13.1, and Fig. 13.3 respectively.
According to (13.46)–(13.49), the deviation of the heat transfer coefficient
related to different assumed conditions are evaluated, shown in Table 13.1,
and plotted in Fig. 13.4, respectively.

It is found that condensate film Boussinesq approximation will decrease
the condensate heat transfer coefficient, and will cause a largest deviation of
heat transfer coefficient compared with those caused by other conditions. The
condensate heat transfer coefficient caused by the condensate film Boussi-
nesq approximation will decrease with increasing the wall subcooled grade
∆tw/ts(= ts − tw/ts), and will decrease 6.8% at ∆tw/ts = 1 for the film con-
densation of saturated water vapor.

The condensate film thermal convection will increase the condensate
heat transfer coefficient with increasing the wall subcooled grade ∆tw/ts(=
ts − tw/ts) for the film condensation of saturated water vapor. The effect of
the condensate film thermal convection on the condensate heat transfer co-
efficient is much smaller than that caused by the condensate film Boussinesq
approximation generally, but much larger than those caused by the liquid–
vapor interfacial shear force and the condensate film inertial force.

The liquid–vapor interfacial shear force and the condensate film inertia
force will very slightly decrease the condensate heat transfer coefficient. Ig-
noring the liquid–vapor interfacial shear force will cause the deviation of the
condensate heat transfer coefficient below 0.826% for the film condensation
of saturated water vapor. However, ignoring the condensate film inertia force
will cause the deviation of the condensate heat transfer coefficient even below
0.18% for the film condensation of saturated water vapor.

13.6 Effects of Various Physical Conditions
on Condensate Film Thickness

The following deviations are defined for expression of the effect of the related
physical factors on the condensate film thickness ηlδ.
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Effect of the condensate film Boussinesq approximation on the condensate
film thickness ηlδ can be expressed as

∆(ηlδ)a =
(ηlδ)a − (ηlδ)m

(ηlδ)m
. (13.50)

Effect of ignoring shear force at the liquid–vapor interface on the conden-
sate film thickness ηlδ can be expressed as

∆(ηlδ)b =
(ηlδ)b − (ηlδ)m

(ηlδ)m
. (13.51)

Effect of ignoring inertia force of the condensate film on the condensate
film thickness ηlδ can be expressed as

∆(ηlδ)c =
(ηlδ)c − (ηlδ)b

(ηlδ)b
. (13.52)

Effect of ignoring thermal convection of the condensate film on the con-
densate film thickness ηlδ can be expressed as

∆(ηlδ)d =
(ηlδ)d − (ηlδ)c

(ηlδ)c
. (13.53)

The numerical solutions ηlδ in the various conditions are shown in Table
13.2 and plotted in Fig. 13.5 for the film condensation of saturated water va-
por. Then, with (13.50)–(13.53), the related deviations of liquid film thickness
ηlδ are evaluated and listed in Table 13.2 and plotted in Fig. 13.6, respectively.

It is found that Boussinesq approximation of condensate film will decrease
the predicted condensate film thickness ηlδ, and will cause the largest devia-
tion of the predicted condensate film thickness ηlδ compared with those caused
by other conditions. With increasing the wall subcooled grade ∆tw/ts(=
ts − tw/ts), the predicted deviation of the condensate film thickness ηlδ will
come to −6% at ∆twts = 1 for the film condensation of saturated water
steam.

The condensate film thermal convection will also decrease the condensate
film thickness ηlδ, and its effect is obviously smaller than that of the Boussi-
nesq approximation of condensate film, but obviously larger than those of the
liquid–vapor interfacial shear force and the condensate film inertial force.

The liquid–vapor interfacial shear force and the condensate film inertia
force will very slightly increase the condensate film thickness ηlδ. Ignoring the
liquid–vapor interfacial shear force will cause the deviation of the condensate
film thickness ηlδ below 0.83% for the film condensation of saturated water
vapor. However, ignoring the condensate film inertia force will cause the de-
viation of the condensate film thickness ηlδ even below 0.18% for the film
condensation of saturated water vapor.
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13.7 Effect of Various Physical Conditions
on Mass Flow Rate of the Condensation

According to (12.48), total mass flow rate Gx entering the liquid film for
position x = 0 to x with width of b of the plate is described as

Gx =
4
3
b · µl,s

(
1
4
Grxl,s

)1/4

Φs (13.54)

for film boiling of saturated vapor.
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Here,
Φs = (ηlδWxl,s − 4Wyl,s)∆t∞=0 (13.55)

is mass flow rate parameter through the liquid–vapor interface for film boiling
of saturated vapor.

It is seen from (13.54) that mass flow rate parameter depends on the
condensate film thickness ηlδ as well as the liquid–vapor interfacial velocity
components Wxl,s and Wyl,s.

The numerical solutions for liquid–vapor interfacial velocity component
Wxl,s with the various physical conditions are obtained, and listed in Table
13.3 and plotted in Fig. 13.7, respectively, for the film condensation of satu-
rated water steam. Meanwhile, the numerical solutions for liquid–vapor inter-
facial velocity component Wyl,s with the various physical conditions are shown
in Table 13.3, and plotted in Fig. 13.8, respectively, for the film condensation
of saturated water vapor. It is found that the Boussinesq approximation will
increase the liquid–vapor interfacial velocity components Wxl,s and −Wyl,s.
Other conditions will decrease the values of Wxl,s and −Wyl,s.

If the Grashof number Grxl,s in (13.13) is defined as that of the film con-
densation for these assumed different physical conditions, the deviations of
the mass flow rate of the film condensation caused by the related assumed
conditions can be expressed as follows, respectively, by using (13.54) with
(13.55).

Effect of the condensate film Boussinesq approximation on mass flow rate
Gx of the film condensation can be expressed as

∆(Gx)a =
(Gx)a − (Gx)m

(Gx)m
=

(Φs)a − (Φs)m
(Φs)m

. (13.56)

Effect of ignoring shear force at the liquid–vapor interface on mass flow
rate Gx of the film condensation can be expressed as

∆(Gx)b =
(Gx)b − (Gx)m

(Gx)m
=

(Φs)b − (Φs)m
(Φs)m

. (13.57)

Effect of ignoring inertia force of the condensate film on mass flow rate Gx

of the film condensation can be expressed as

∆(Gx)c =
(Gx)c − (Gx)b

(Gx)b
=

(Φs)c − (Φs)b
(Φs)b

. (13.58)

Effect of ignoring thermal convection of the condensate film on mass flow
rate Gx of the film condensation can be expressed as

∆(Gx)d =
(Gx)d − (Gx)c

(Gx)c
=

(Φs)d − (Φs)c
(Φs)c

. (13.59)

According to (13.55) with the numerical solutions in Tables 13.2 for ηlδ and
Table 13.3 for Wxl,s and Wyl,s, the mass flow rates parameters Φs are evaluated
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for the related physical conditions, listed in Table 13.3 and plotted in Fig. 13.9.
Furthermore, the deviations of Gx are evaluated by using the (13.56)–(13.59),
and listed and plotted in Table 13.3 and in Fig. 13.10, respectively, for the
film condensation of saturated water vapor.

It is found that the condensate film Boussinesq approximation will increase
the condensate mass flow rate Gx, but the shear force at the liquid–vapor in-
terface, condensate film inertial force, and condensate film thermal convection
will decrease the condensate mass flow rate Gx.
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The thermal convection of the condensate film will cause the largest devia-
tion on the predicted mass flow rates Gx compared with those caused by other
physical conditions. With increasing the wall subcooled grade ∆tw/ts, the de-
viation of the mass flow rate caused by ignoring the condensate film thermal
convection will increase up to 3.06% at the wall subcooled grade ∆tw/ts = 1
for the film condensation of saturated water vapor.
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While, the inertia force of the condensate film will cause the smallest
deviation on the mass flow rates Gx compared with those caused by other
assumed conditions. Ignoring the inertia force of the condensate film will only
cause the predicted deviation of the condensate mass flow rate up to 0.22%
at the wall subcooled grade ∆tw/ts = 1 for the film condensation of saturated
water vapor.

13.8 Remarks

In this chapter, the film condensation of saturated water vapor is taken as an
example for analyzing the effects of various physical conditions on the heat
transfer coefficient, condensate film thickness, and mass flow rate of the film
condensation. In these analyses, the effects of four physical conditions are con-
sidered including Boussinesq approximation, shear force at the liquid–vapor
interface, inertia force of the condensate film, and the thermal convection of
the condensate film. It is found that the effects of these physical conditions
on these physical phenomena will increase with the increasing the wall sub-
cooled grade ∆tw/ts generally. From these analyses, the following points can
be concluded:

13.8.1 Effects of Boussinesq Approximation

The Boussinesq approximation will decrease predicted heat transfer coeffi-
cient and condensate film thickness of the film condensation. The Boussinesq
approximation will cause the maximum deviations on heat transfer coeffi-
cient and condensate film thickness of the film condensate compared with
those caused by other physical conditions. The Boussinesq approximation will
cause the predicted deviation of the heat transfer coefficient up to −6.8% and
cause the predicted deviation of the condensate film thickness up to −6%
with increasing the wall subcooled grade ∆tw/ts for the film condensation of
saturated water vapor.

13.8.2 Effects of Shear Force at the Liquid–Vapor Interface

The shear force of the condensate film will decrease the heat transfer coefficient
of the film condensation very slightly. Ignoring the shear force of the conden-
sate film will only cause a maximum deviation of the 0.826% at ∆tw/ts = 1
on the heat transfer coefficient for the film condensation of saturated water
vapor. The effect of the shear force of the condensate film on the heat trans-
fer coefficient of the film condensation is far smaller than those caused by
Boussinesq approximation and the condensate thermal convection.
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The shear force of the condensate film will increase very slight condensate
film thickness, and is far smaller than those caused by Boussinesq approx-
imation. Ignoring the condensate shear force will only cause the predicted
deviation of −0.83% at ∆tw/ts = 1 on the condensate film thickness for the
film condensation of saturated water vapor.

The effect of the shear force of the condensate film on mass flow rate of the
film condensation is much smaller than that caused by the thermal convection
of the condensate film, but larger than that caused by the inertia force of the
condensate film. Ignoring the shear force of the condensate film will cause a
maximum deviation with 0.84% at ∆tw/ts = 1 on the mass flow rate for the
film condensation of saturated water vapor.

13.8.3 Effect of Inertial Force of the Condensate Film

The inertial force of the condensate film will cause the smallest deviation on
heat transfer coefficient, condensate film thickness, and mass flow rate of the
film condensation compared with those of other conditions. Ignoring the iner-
tial force of the condensate film will cause the maximum predicted deviations
of only 0.177% on heat transfer coefficient, −0.178% on the condensate film
thickness, and 0.22% on mass flow rate at ∆tw/ts = 1 for the film condensation
of saturated water vapor.

13.8.4 Effects of Thermal Convection of the Condensate Film

The condensate thermal convection will increase heat transfer coefficient and
decrease the condensate film thickness of the film condensation. Ignoring the
thermal convection of the condensate film will cause the predicted deviations
of the heat transfer coefficient up to −2.6%, and up to 1.25% of the condensate
film thickness for the film condensation of saturated water vapor. The effects of
condensate thermal convection on heat transfer coefficient and the condensate
film thickness are much smaller than those of Boussinasq approximation.

The thermal convection of the condensate film will cause the largest effects
on mass flow rate of the condensation compared with those that caused by
other conditions. Ignoring the condensate thermal convection will cause the
predicted deviation of mass flow rate up to 3.06% for the film condensation
of saturated water vapor.

The maximum predicted deviations of heat transfer coefficient of the film
condensation, condensate film thickness, and mass flow rate of the film con-
densation caused by the different assumed physical conditions for the film
condensation of saturated water vapor are summarized in Table 13.4.
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Table 13.4. Summary for the maximum predicted deviations of the condensate
heat transfer coefficient, condensate film thickness, and condensate mass flow rate
caused by the different assumed physical conditions for the film condensation of
saturated water vapor

assumed physical maximum deviations caused
conditions on heat transfer on condensate film on mass flow

coefficient (%) thickness (%) rate (%)

boussinesq
approximation

−6.8 −6 1.12

ignoring
liquid–vapor
interfacial force

0.826 −0.83 0.85

ignoring condensate
film inertia force

0.177 −0.18 0.22

ignoring condensate
film thermal
convection

−2.62 1.25 3.06
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Laminar Film Condensation
of Superheated Vapor

Nomenclature

a thermal diffusive coefficient, m2 s−1

b plate width, m
cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s−2

gx local mass flow rate entering the liquid film at position
x per unit area of the plate, kg (m2 s)−1

Gx total mass flow rate entering the liquid film for
position x = 0 to x with width of b of the plate, kg s−1

Grxl,s local Grashof number of condensate film ,
g(ρl,w − ρv,∞)x3

ν2
l,s ρl,s

Grxv,∞ local Grashof number of vapor film,
g(ρv,s/ρv,∞ − 1)x3

ν2
v,∞

Nux,w local Nusselt number, αxx/λw

Nux,w average Nusselt number, αxx/λw

ncp
specific heat parameter of gas

nλ thermal conductivity parameter of gas
nµ viscosity parameter of gas
Pr Prandtl number
qx local heat transfer rate at position x per unit area on

the plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate, W

t temperature, ◦C
T absolute temperature, K
wx, wy dimensional velocity components in the x- and

y-directions, respectively
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Wx,Wy dimensionless velocity components in the x- and
y- directions, respectively

Wxl,s,Wyl,s dimensionless velocity components of liquid film at
liquid–vapor interface

Wxv,s,Wyv,s dimensionless velocity components of vapor film at
liquid–vapor interface

Greek symbols
αx local heat transfer coefficient, W (m2 K)−1

αx average heat transfer coefficient, W (m2 K)−1

δ boundary layer thickness, m
δl thickness of liquid film, m
δv thickness of vapor film, m
η dimensionless coordinate variable for boundary layer

θl dimensionless temperature for liquid film,
tl − ts
tw − ts

θv dimensionless temperature for vapor film,
Tv − T∞

Ts − T∞
λ thermal conductivity, W (mK)−1

µ absolute viscosity, kg (m s)−1

ν kinetic viscosity, m2 s−1

ρ density, kg m−3

∆tw wall subcooled temperature (for film condensation),
ts − tw,◦C

∆tw
ts

wall subcooled grade
∆t∞ superheated temperature of vapor, t∞ − ts,

◦C
∆t∞

ts
superheated grade of vapor((

dθ
dη

)
η=0

)
∆t∞=0

dimensionless temperature gradient on the plate for
film condensation of saturated vapor

ηlδ dimensionless thickness of liquid film
ηlδWxl,s − 4Wyl,s mass flow rate parameter for film condensation
ρl − ρv

ρl,w − ρv

buoyancy factor

1
ρ

dp

dx
density factor

1
µ

dµ

dη
absolute viscosity factor

1
λ

dλ

dη
thermal conductivity factor

Subscripts
i liquid
v vapor
s saturate state, or at liquid–vapor interface
w at wall
∞ far from the wall surface
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14.1 Introduction

Since the pioneering work of Nusselt [1] in 1916 in treating laminar film con-
densation of saturated vapor on a vertical isothermal flat plate, a number of
studies have been done for successive investigations ignoring variable thermo-
physical properties [2–6] and with consideration of variable thermophysical
properties [7–11]. On these bases, in Chaps. 12 and 13 our recent develop-
ments of study on film condensation of saturated vapor were introduced in
which a novel approach, the velocity component method, was applied for sim-
ilarity transformation of the governing partial differential equations for the
two-phase boundary layer. Meanwhile, effects of a series of physical factors
including variable thermophysical properties on heat transfer and mass flow
rate of the film condensation were presented [12,13].

Actually, a lot of related phenomena are film condensation of superheated
vapor. Then, the study on heat and mass transfer of this problem has a strong
practical background.

Minkowcs and Sparrow reported their study results for film condensation
heat transfer with consideration of superheated vapor [14]. Their work showed
that superheated temperature brings about only a slight increase in the heat
transfer during the condensation of a pure vapor. They also indicated that for
a given degree of superheating, q/qNu is almost independent on ∆tw. Any-
way, study of the condensation of superheated vapor is scarcely found in the
literature. Then, there is lack of a theoretical development for prediction of
heat transfer of the film condensation, and especially, the theoretical study
of the effect of the vapor superheated temperature on the condensate mass
transfer did not appear in common literature. The reason is that it is diffi-
cult to study the two-phase boundary layer problem, because the traditional
theoretical methods, such as Falkner–Skan transformation for the similarity
transformation of the governing partial differential equations and for treat-
ment of variable thermophysical properties are not suitable for the successive
studies.

In this chapter, the extensive study results of Shang and Wang [15] are
presented for film condensation free convection of superheated vapor with
consideration of various physical factors including variable thermophysical
properties. Meanwhile, following the previous chapters, the velocity compo-
nent method is further applied for a novel similarity transformation of the
governing partial equations of the two-phase boundary layers, and the ad-
vanced approach for treatment of variable thermophysical properties of the
medium in condensate and vapor films is used. Consequently, the effect of
superheated temperature on heat and mass transfer of laminar film conden-
sation of superheated vapor is further clarified. On this basis, theoretically
rigorous and practically simple formulae are obtained for prediction of heat
transfer and mass flow rate of the film condensation of superheated vapor.
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14.2 Governing Partial Differential Equations
with Two-Phase Film

The analytical model and coordinating system used for the laminar film con-
densation of superheated vapor on a vertical flat plate is shown in Fig. 14.1.
An isothermal vertical flat plate is suspended in a large volume of quiescent
pure superheated vapor at atmospheric pressure. The plate temperature is tw,
the saturation temperature of the vapor is ts, and the ambient temperature
is t∞. If provided condition for the model is tw < ts and ts < t∞, a steady
twodimensional film condensation will occur on the plate. We assume that
laminar flow within the liquid and vapor phases is induced by gravity, and
take into account the various physical factors including variable thermophys-
ical properties of the medium in the condensate and vapor films. Then the
conservation governing partial differential equations of mass, momentum, and
energy for steady laminar condensation in two-phase boundary layer are as
follows:

For liquid film:

∂

∂x
(ρlwxl) +

∂

∂y
(ρlwyl) = 0, (14.1)

ρl

(
wxl

∂wxl

∂x
+ wyl

∂wxl

∂y

)
=

∂

∂y

(
µl

∂wxv

∂y

)
+ g(ρl − ρv,∞), (14.2)

ρlcpl

(
wxl

∂tl
∂x

+ wyl
∂tl
∂y

)
=

∂

∂y

(
λl

∂tl
∂y

)
. (14.3)

wxv,�

t�

t

x

y

dvd l

Fig. 14.1. Physical model and coordinate system of film condensation of super-
heated vapor
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For vapor film:

∂

∂x
(ρvwxv) +

∂

∂y
(ρvwyv) = 0, (14.4)

ρv

(
wxv

∂wxv

∂x
+ wyv

∂wxv

∂y

)
=

∂

∂y

(
µv

∂wxv

∂y

)
+ g(ρv − ρv,∞), (14.5)

ρvcpv

(
wxv

∂Tv

∂x
+ wyv

∂Tv

∂y

)
=

∂

∂y

(
λv

∂Tv

∂y

)
. (14.6)

For boundary conditions:

y = 0 : wxl = 0, wyl = 0, tl = tw, (14.7)
y = δl :

wxl,s = wxv,s, (14.8)

ρl,s

(
wxl

∂δxl

∂x
− wyl

)
s

= ρv,s

(
wxv

∂δxv

∂x
− wyv

)
s

, (14.9)

µl,s

(
∂wxl

∂y

)
s

= µv,s

(
∂wxv

∂y

)
s

, (14.10)

λl,s

(
∂tl
∂y

)
y=δl

= hfgρl,s

(
wxl

∂δl

∂x
− wyl

)
s

+ λv,s

(
∂tv
∂y

)
y=δl

, (14.11)

T = Ts, (14.12)

y → ∞ : wxv = 0, Tv → T∞, (14.13)

where equations (14.8)–(14.12) express the physical matching conditions such
as velocity, local mass flux, shear force, heat flux, and temperature balances
at the vapor–liquid interface, respectively.

14.3 Similarity Transformation

14.3.1 Transformation Variables

Consulting the velocity component method presented in Chap. 12, we assume
the following dimensionless variables for the similarity transformation of the
governing partial differential equations of the film condensation of superheated
vapor:

For liquid film: For liquid film the dimensionless coordinate variable ηl and
the local Grashof number Grxl,s are set up at first as follows:

ηl =
(

1
4
Grxl,s

)1/4
y

x
,Grxl,s =

g(ρl,w − ρv,∞)x3

ν2
l,sρl,s

. (14.14)
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Dimensionless temperature is assumed as

θl =
tl − ts
tw − ts

. (14.15)

The dimensionless velocity components are given as

Wxl =

(
2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2
)−1

wxl, (14.16)

Wyl =

(
2
√

gx

(
ρl,w − ρv,∞

ρl,s

)1/2 (
1
4Grxl,s

)−4

)−1

wyl. (14.17)

For vapor film: For vapor film, the dimensionless coordinate variable ηv and
the local Grashof number Grxv,∞ are assumed as, respectively,

ηv =
(

1
4
Grxv,∞

)1/4
y

x
,Grxv,∞ =

g(ρv,s/ρv,∞ − 1)x3

ν2
v,∞

. (14.18)

The dimensionless temperature is defined as

θv =
Tv − T∞
Ts − T∞

. (14.19)

The dimensionless velocity components are assumed as

Wxv = (2
√

gx(ρv,s/ρv,∞ − 1)1/2)−1wxv, (14.20)

Wyv =

(
2
√

gx(ρv,s/ρv,∞ − 1)1/2

(
1
4
Grxv,∞

)−1/4
)−1

wyv. (14.21)

14.3.2 Ordinary Differential Equations

Consulting the derivations in Chap. 11 for laminar film boiling of subcooled
liquid and by means of the earlier corresponding assumed variables, the fol-
lowing dimensionless equations are obtained from (14.1)–(14.6) for two-phase
boundary layer and their boundary conditions of laminar film condensation
of superheated vapor:

For liquid film: With the assumed dimensionless similarity transformation
variables for the liquid film shown in (14.14)–(14.17), (14.1)–(14.3) are trans-
formed to dimensionless ordinary ones as follows, respectively:
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2Wxl − ηl
dWxl

dηl
+ 4

dWyl

dηl
+

1
ρl

dρl

dηl
(−ηlWxl + 4Wyl) = 0, (14.22)

νl,s

νl

(
Wxl

(
2Wxl − ηl

dWxl

dηl

)
+ 4Wyl

dWxl

dηl

)
=

d2Wxl

dη2
l

+
1
µl

dµl

dηl

dWxl

dηl
+

µl,s

µl

ρl − ρv,∞
ρl,w − ρv,∞

, (14.23)

Prl
νl,s

νl
[−Wxlηl + 4Wyl]

dθl

dηl
=

d2θl

dη2
l

+
1
λl

dλl

dηl

dθl

dηl
. (14.24)

In addition, from the analysis of Chap. 6, it is known that the physical
factor Prl(νl,∞/νl) in (14.24) can be expressed as

Prl
νl,∞
νl

= Prl,∞
ρl

ρl,∞

λl,∞
λl

for water and a lot of liquids in the special temperature range for engineering
application.

For vapor film: With the assumed similarity transformation variables for va-
por film, as shown in (14.18)–(14.21), the governing equations (14.4)–(14.6)
for vapor film are transformed into the following dimensionless ordinary ones,
respectively:

2Wxv − ηv
dWxv

dηv
+ 4

dWyv

dηv
+

1
ρv

dρv

dηv
(−ηvWxv + 4Wyv) = 0, (14.25)

νv,∞
νv

(
Wxv

(
2Wxv − ηv

dWxv

dηv

)
+ 4Wyv

(
dWxv

dηv

))

=
d2Wxv

dη2
v

+
1
µv

dµv

dηv

dWxv

dηv
+

µv,∞
µv

ρv − ρv,∞
ρv,s − ρv,∞

, (14.26)

Prv
νv,∞
νv

(−ηvWxv + 4Wyv)
dθv

dηv
=

d2θv

dη2
v

+
1
λv

dλv

dηv

dθv

dηv
. (14.27)

For boundary conditions: With the corresponding transformation variables
the physical boundary conditions (14.7)–(14.13) are transformed equivalently
to the following ones, respectively:

ηl = 0 : Wxl = 0, Wyl = 0, θl = 1, (14.28)
ηl = ηlδ(ηv = 0) :
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Wxv,s =
(

ρl,w − ρv,∞
ρl,s

)1/2(ρv,s − ρv,∞
ρv,∞

)−1/2

Wxl,s, (14.29)

Wyv,s = −0.25
µl,s

µv,s

(
νl,s

νv,∞

)−1/2(ρl,w − ρv,∞
ρl,s

)1/4(ρv,s − ρv,∞
ρv∞

)−1/4

× (ηlδWxl,s − 4Wyl,s) , (14.30)

(
dWxv

dηv

)
ηv=0

=
µl,s

µv,s

(
νv,s

νl,s

)1/2(ρl,w − ρv,∞
ρl,s

)3/4( ρv,s

ρv,∞
− 1

)−3/4

(
dWxl

dηl

)
ηl=ηl,δ

,

(14.31)(
dθv

dηv

)
ηv=0

=

(
ρl,w−ρv,∞

ρl,s

)1/4

(
−hfgµl,s(ηvδWxv,s − 4Wyv,s) + λl,s(tw − ts)

(
dθl

dηl

)
ηl=ηlδ

)

(
ρv,s

ρv,∞
− 1

)1/4 (
νl,s

νv,∞

)1/2

λv,s(Ts − T∞)

,

(14.32)

θl = 0, (14.33)
θv = 1, (14.34)

ηv → ∞ : Wxv → 0, θv → 0. (14.35)

14.4 Treatment of Variable Thermophysical Properties

The treatment of variable thermophysical properties for the medium of the liq-
uid and vapor films must be done for solving the ordinary differential equations
with the boundary condition equations. The approaches for the treatment of
variable thermophysical properties are presented as follows:

For liquid film: For treatment of the variable thermophysical properties of the
liquid film medium, a polynomial method presented Chap. 6 will be used. This
method was applied successfully in the corresponding treatment for film con-
densation of saturated vapor in Chap. 12. With this method the corresponding
predictive expressions for density ρl, thermal conductivity λl of water are, re-
spectively,

ρl = −4.48 × 10−3t2l + 999.9, (14.36)
λl = −8.01 × 10−6t2l + 1.94 × 10−3tl + 0.563. (14.37)
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According to the study in [16], the corresponding predictive expression for
absolute viscosity µl of water is

µl = exp

[
−1.6 − 1150

Tl
+
(

690
Tl

)2
]
× 10−3. (14.38)

With(13.36)–(13.38)andthesimilarityvariablesassumedin(14.14)–(14.17),
the thermophysical property factors

(
1
ρl

)
/
(

dρl
dηl

)
,
(

1
µl

)
/
(

dµl
dηl

)
,
(

1
λl

)
/
(

dλl
dηl

)
,(

µl,s
µl

)
,
(

νl,s
νl

)
andPrl,s

ρl
ρl,s

λl,s
λl

inthegoverningordinarydifferentialequations for
condensate water film can be transformed into the following ones, respectively:

1
ρl

dρl

dηl
=

[
−2 × 4.48 × 10−3 tl(tw − ts) dθl

dηl

]
(−4.48 × 10−3t2l + 999.9)

, (14.39)

1
µl

dµl

dηl
=
(

1150
T 2

l

− 2 × 6902

T 3
l

)
(tw − t)s

dθl

dηl
, (14.40)

1
λl

dλl

dηl
=

[
−2 × 8.01 × 10−6tl + 1.94 × 10−3(tw − ts) dθl

dηl

]
−8.01 × 10−6t2l + 1.94 × 10−3tl + 0.563

, (14.41)

µl,s

µl
= exp

(
1150

(
1
Tl

− 1
Ts

)
+ 6902

(
1
Ts

− 1
Tl

))
, (14.42)

νl,s

νl
=

µl,s

µl

ρl

ρl,s
= exp

(
1150

(
1
Tl

− 1
Ts

)

+ 6902

(
1
Ts

− 1
Tl

))
−4.48 × 10−3t2l + 999.9
−4.48 × 10−3t2s + 999.9

,

(14.43)

Prl,s
ρl

ρl,s

λl,s

λl
= Prl,s

(
−4.48 × 10−3t2l + 999.9
−4.48 × 10−3t2s + 999.9

)

(
−8.01 × 10−6t2s + 1.94 × 10−3ts + 0.563
−8.01 × 10−6t2l + 1.94 × 10−3tl + 0.563

)
, (14.44)

where

tl = (tw − ts)θl + ts, Tv = (Ts − T∞)θv + T∞ and T = t + 273. (14.45)

For vapor film: For treatment of the variable thermophysical properties of the
vapor film, the temperature parameter method presented in Chaps. 4 and 5
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will be used. If the temperature of the bulk vapor T∞ is taken as the reference
temperature, the earlier thermophysical properties of vapor film will be ex-
pressed as

µv

µv,∞
=
(

Tv

T∞

)nµ

, (14.46)

λv

λv,∞
=
(

Tv

T∞

)nλ

, (14.47)

ρv

ρv,∞
=
(

Tv

T∞

)−1

, (14.48)

while the change of kinematic viscosity at the constant pressure can be ex-
pressed as

νv

νv,∞
=
(

Tv

T∞

)nµ+1

. (14.49)

Then, the thermophysical property factors (1/ρv)/(dρv/dηv),
(1/µv)/(dµv/dηv), (1/λv)/(dλv/dηv), (µv,∞/µv) and (νv,∞/νv) in the govern-
ingordinarydifferential equations of vaporfilmcanbe transformed, respectively,
as later:

1
ρv

dρv

dηv
=

(Ts/T∞ − 1)dθv/dηv

(Ts/T∞ − 1)θv + 1
, (14.50)

1
µv

dµv

dηv
=

nµ(Ts/T∞ − 1)dθv/dηv

(Ts/T∞ − 1)θv + 1
, (14.51)

1
λv

dλv

dηv
=

nλ(Ts/T∞ − 1)dθv/dηv

(Ts/T∞ − 1)θv + 1
, (14.52)

µv,∞
µv

= [(Ts/T∞ − 1)θv + 1]−nµ , (14.53)

νv,∞
νv

= [(Ts/T∞ − 1)θv + 1]−(nµ+1)
. (14.54)

14.5 Numerical Solutions

14.5.1 Calculation Procedure

The calculation procedure of the equations of the two-phase boundary layer of
the film condensation of superheated vapor belongs to three-point boundary
value problem, and is carried out numerically by two processes on the basis of
the corresponding approach presented in Chap. 12 for the film condensation
of saturated vapor. In the first step, the solutions of (14.22)–(14.24) for the
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liquid film are assumed to be without shear force of vapor at the liquid–vapor
interface. For this case, the boundary condition (14.31) must be changed into

(
dWxl

dηl

)
ηl=ηl,δ

= 0. (14.55)

In this case, (14.28), (14.33), and (14.55) are taken as the boundary con-
ditions of the two-point boundary value problem of (14.22)–(14.24) for liquid
film, and are solved by the shooting method. Furthermore, the second step
for carrying out calculation of three-point boundary value problem for cou-
pling equations of liquid film with equations for vapor films is started. In
this step, first the boundary values Wxv,s and Wyv,s are found out by (14.29)
and (14.30), respectively. Then (14.25)–(14.27) for the vapor film are calcu-
lated with the boundary conditions (14.34) and (14.35) and the earlier values
of Wxv,s and Wyv,s. On this basis, adjudgement (14.31) and (14.32) are used
for checking convergence of the solutions. By means of the adjudgement equa-
tions the calculation is iterated with appropriate change of the values Wxl,s

and ηlδ. In each iteration the calculations of (14.22)–(14.24) for liquid film and
(14.25)–(14.27) for vapor film are made successively by the shooting method.

14.5.2 Numerical Solution

From the governing ordinary equations (14.22)–(14.27) and their bound-
ary conditions, (14.28)–(14.35), it will be expected that for consideration
of variable thermophysical properties of the liquid and vapor medium, the
dimensionless velocity and temperature fields for the film condensation of
superheated vapor will depend on the temperature-dependent properties
of the liquid and vapor medium, finally on the temperature conditions
tw, ts, and t∞.

All thermophysical properties for water and water vapor at saturated tem-
perature used in the calculation come from [17]. For convenience some special
values of the thermophysical properties are listed in Tables 14.1 and 14.2.

Table 14.1. The thermophysical property values for water and water vapor at
saturated temperature

term value
for water for water vapor

ts(
◦C) 100 100

cp(J (kg K)−1) 4,216
hfg(kJ kg−1) 2,257.3
Pr 1.76 1
ρ(kg m−3) 958.1 0.5974
µ(kg (m s)−1) 282.2 × 10−6 12.28 × 10−6

ν(m2 s−1) 0.294 × 10−6 20.55 × 10−6

λ(W (m K)−1) 0.677 0.02478
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Table 14.2. The values of water density at different temperatures

t (◦C) 0 20 40 60 80 95 99.9

ρ (kg m−3) 999.8 998.3 992.3 983.2 971.4 961.7 958.1

0 0.20
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Fig. 14.2. Velocity profiles for film condensation of superheated water vapor, cited
from Shang and Wang. [15]. 1. ∆tw

ts
(= ts−tw

ts
) = 0.05, 2. ∆tw

ts
(= ts−tw

ts
) = 0.40, and

3. ∆tw
ts

(= ts−tw
ts

) = 1 a → b : ∆t∞
ts

(= t∞−ts
ts

) = 0.27, 1.27, 2.27, 3.27, 4.27

For the laminar film condensation of water vapor, the numerical calcula-
tions have been carried out for wall subcooled temperatures ∆tw(= ts− tw) =
0.1, 5, 20, 40, 60, 80, 100◦C or wall subcooled grades of ∆tw/ts

(
= ts−tw

ts

)
=

0.001, 0.05, 0.2, 0.4, 0.6, 0.8, 1 and for vapor superheated temperatures of
∆t∞(= t∞ − ts) = 0, 27, 127, 227, 327, 427◦C or vapor superheated grades of
∆t∞

ts
(= t∞−ts

ts
) = 0, 0.27, 1.27, 2.27, 3.27, 4.27. Some of the calculated results

for the velocity and temperature fields on the medium in the liquid and vapor
films are plotted in Figs. 14.2 and 14.3, respectively.

It is seen that with increasing the wall subcooled grade

∆tw
ts

(
=

ts − tw
ts

)
,

the maximum velocity Wxl will increase obviously, which is coincident with the
case of the film condensation of saturated vapor. Meanwhile, with increasing
the vapor superheated grade

∆t∞
ts

(
=

t∞ − ts
ts

)
,

the maximum velocity Wxl will decrease slightly.
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Fig. 14.3. Temperature profiles for film condensation of superheated water steam,
cited from Shang and Wang [15]. 1. ∆tw
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ts
) = 0.40,

and 3. ∆tw
ts

(= ts−tw
ts

) = 1 a → b : ∆t∞
ts

(= t∞−ts
ts

) = 0.27, 1.27, 2.27, 3.27, 4.27

Additionally, with increasing the wall subcooled grade

∆tw
ts

(
=

ts − tw
ts

)
,

the dimensionless temperature gradient will decrease, while, with increasing
the vapor superheated grade

∆t∞
ts

(
=

t∞ − ts
ts

)
,

the dimensionless temperature gradient will increase slightly.

14.6 Heat Transfer

14.6.1 Heat Transfer

Consulting the analysis in Chap. 12 for film condensation of saturated vapor,
the heat transfer expressions for film condensation of superheated vapor can
be given later:

Local heat transfer rate at position x per unit area on the plate, defined
as qx = −λl,w

(
∂t
∂y

)
y=0

, is described as

qx = −λl,w(Tw − Ts)
(

1
4
Grxl,s

)1/4

x−1

(
dθl

dηl

)
ηl=0

. (14.56)
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Then, the local heat transfer coefficient, defined as qx = αx(tw−ts), will be

αx = −λl,w

(
1
4
Grxl,s

)1/4

x−1

(
dθl

dηl

)
ηl=0

. (14.57)

The local Nusselt number, defined as Nuxl,w = αxx
λl,w

, is expressed by

Nuxl,w(
1
4Grxl,s

)1/4
= −

(
dθl

dηl

)
ηl=0

. (14.58)

The average heat transfer coefficient αx defined as Qx = αx(tw = ts)A and
average Nusselt number defined as Nuxl,w = αxx

λl,w
will be, respectively,

αx =
4
3
αx, (14.59)

Nuxl,w =
4
3
Nuxl,w (14.60)

Here, Qx is total heat transfer rate for position x = 0 to x with width of
b on the plate. It is seen that, for practical calculation of heat transfer, only
(dθl/dηl)ηl=0 dependent on numerical solutions is no-given variable.

The numerical solutions for temperature gradient (dθl/dηl)ηl=0 for the film
condensation of superheated water vapor at the corresponding temperature
conditions, ∆tw/ts = (ts − tw)/ts and ∆t∞/ts(= (t∞ − ts)/ts), are described
in Table 14.3, and plotted in Fig. 14.4.

It is seen thatwith increasing thewall subcooled grade∆tw/ts= (ts − tw)/ts,
the temperature gradient (dθl/dηl)ηl=0 will decrease rapidly,while,with increas-
ing the vapor bulk superheated grade ∆t∞/ts (= (t∞ − ts)/ts), the temperature
gradient (dθl/dηl)ηl=0 will increase slowly.

Based on these numerical solutions the following formulae are obtained by
using a curve matching method for simple and reliable prediction of temper-
ature gradient (dθl/dηl)ηl=0 for the laminar film condensation of superheated
water vapor:

For 0.05 ≤ ∆tw
ts

≤ 1:

−
(

dθl

dηl

)
ηl=0

=

(
−
(

dθl

dηl

)
ηl=0

)
∆t∞ = 0∆t∞=0 + a · ∆t∞

ts
, (14.61)

where (−dθl/dηl)ηl=0 is the dimensionless temperature gradient on the wall

for film condensation of superheated water vapor, and
(
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

is the dimensionless temperature gradient of the film condensation of satu-

rated water vapor. The correlation of
(
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

was proposed in
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Table 14.3. Numerical solutions −(dθl/dηl)ηl=0 for film condensation of super-
heated water vapor, cited from Shang and Wang [15]

∆t∞
ts

=
(

t∞−ts
ts

)
∆tw

ts
= ts−tw

ts

0.05 0.20 0.40 0.60 0.80 1.00

0 (1) 3.6707 2.5397 2.0789 1.8324 1.6679 1.5511
(2) 3.6596 2.5451 2.0924 1.8475 1.6791 1.55

0.27 (1) 3.6913 2.5532 2.0891 1.8411 1.6759 1.5581
(2) 3.6770 2.5592 2.1032 1.8561 1.6774 1.5576

1.27 (1) 3.7712 2.6054 2.1299 1.8758 1.7066 1.5861
(2) 3.7416 2.6117 2.1431 1.8878 1.7145 1.5858

2.27 (1) 3.8478 2.6551 2.1688 1.9091 1.7362 1.6131
(2) 3.8062 2.6641 2.1831 1.9196 1.7423 1.6140

3.27 (1) 3.9245 2.7046 2.2079 1.9425 1.7659 1.6402
(2) 3.8708 2.7166 2.22303 1.9513 1.7701 1.6422

4.27 (1) 3.9555 2.7512 2.2449 1.9738 1.7938 1.6656
(2) 3.9354 2.7690 2.2630 2.1086 1.7980 1.6704

(1) Numerical solution and (2) predicted by (14.61)–(14.63)
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Fig. 14.4. Numerical solutions of −
(

dθl
dηl

)
ηl=0

with ∆tw
ts

= ts−tw
ts

and

∆t∞
ts

(
= t∞−ts

ts

)
for laminar film condensation of superheated water vapor.

1. ∆t∞
ts

(
= t∞−ts

ts

)
= 0, 2. ∆t∞

ts

(
= t∞−ts

ts

)
= 0.27, 3. ∆t∞

ts

(
= t∞−ts

ts

)
= 1.27,

4. ∆t∞
ts

(
= t∞−ts

ts

)
= 2.27, 5. ∆t∞

ts

(
= t∞−ts

ts

)
= 3.27, 6. ∆t∞

ts

(
= t∞−ts

ts

)
= 4.27
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Chap. 12 and is rewritten here as
(
−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

=
1.74 − 0.19∆tw

ts(
∆tw
ts

)1/4
. (14.62)

Additionally, coefficient a is expressed as follows for the film condensation of
superheated water vapor:

a = 10−2 ×
(

6.92 − 9.45
∆tw
ts

+ 5.35
(

∆tw
ts

)2
)

. (14.63)

The results −(dθl/dηl)ηl=0, predicted by means of (14.61)–(14.63) for the
laminar film condensation of superheated water vapor are also described in
Table 14.3. Through the comparison of the predicted values of temperature
gradient −(dθl/dηl)ηl=0 with the corresponding numerical results, it is seen
that the agreements are very good.

14.7 Condensate Mass Flow Rate

Consulting the analysis in Chap. 12 for film condensation of saturated vapor,
the condensate mass transfer expressions for film condensation of superheated
vapor can be given later:

Set gx to be a local mass flow rate entering the liquid film at position x
per unit area of the plate. According to the boundary layer theory of fluid
mechanics, gx is expressed as

gx = ρl,s

(
wxl,s

dδl

dx
− wyl,s

)
s

.

With (14.14), (14.16), and (14.17), the earlier equation is finally changed as

gx = µl,sx
−1

(
1
4
Grxl,s

)1/4

{ηlδWxl,s − 4Wyl,s}s.

Set Gx is taken to express total mass flow rate entering the boundary layer
for position x = 0 to x with width of b of the plate, it should be the following
integration:

Gx =
∫ ∫

A

gx dA

= b

∫ x

0

gx dx,

where A = b · x is area of the plate.
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Then, we obtain

Gx

b · µl,s
=

4
3

(
1
4
Grxl,s

)1/4

(ηlδWxl,s − 4Wyl,s). (14.64)

From (14.64) it follows that the mass flow rate of the condensate, Gx,
depends on the defined local Grashof number Grxl,s, absolute viscosity µl,s,
and mass flow rate parameter (ηlδWxl,s − 4Wyl,s) of the film condensation of
superheated vapor. The numerical solutions for the film condensation of su-
perheated water vapor, such as ηlδ, Wxl,s, Wyl,s and (ηlδWxl,s − 4Wyl,s) with
the wall subcooled grade ∆tw/ts = (ts − tw)/ts and vapor bulk superheated
grade ∆t∞/ts(= (t∞ − ts)/ts) are listed in Tables 14.4–14.7, and plotted in
Figs. 14.5–14.8, respectively. From these figures, it is seen the effects of wall
subcooled grade ∆tw/ts = (ts − tw)/ts and vapor bulk superheated tempera-
ture ∆t∞

ts
(= (t∞ − ts)/ts) on ηlδ, Wxl,s, Wyl,s, and (ηlδWxl,s − 4Wyl,s).

From Fig. 14.5 it is seen that with increasing the wall subcooled grade
∆tw/ts = (ts − tw)/ts, the condensate film thickness ηδl will increase rapidly,
while with increasing vapor bulk superheated grade ∆t∞/ts(= (t∞ − ts)/ts),
the condensate film thickness ηδl will decrease slowly.

Table 14.4. Numerical solution of condensate film thickness ηδl with ∆tw/ts =
(ts − tw)/ts and ∆t∞/ts = (ts − t∞)/ts for laminar film condensation of superheated
water vapor, cited from Shang and Wang [15]

∆t∞
ts

∆tw
ts

= ts−tw
ts

(= t∞−ts
ts

) 0 0.001 0.05 0.20 0.40 0.60 0.80 1.00

0 0 0.1017 0.27307 0.39844 0.4958 0.577 0.65545 0.73561
0.27 0 0.10032 0.27155 0.39631 0.49331 0.57416 0.65217 0.73207
1.27 0 0.09368 0.26577 0.38826 0.4836 0.5631 0.63981 0.71838
2.27 0 0.08623 0.26047 0.3809 0.4747 0.55291 0.6284 0.70572
3.27 0 0.07848 0.25536 0.37384 0.46611 0.5431 0.61739 0.6935
4.27 0 0.07078 0.25335 0.36745 0.45825 0.5342 0.6074 0.68243

Table 14.5. Numerical solutions of Wxl,δ with ∆tw/ts = (ts−tw)
ts

and ∆t∞/ts =
(t∞−ts)

ts
for laminar film condensation of superheated water vapor, cited from Shang

and Wang [15]

∆t∞
ts

∆tw
ts

= ts−tw
ts

(= t∞−ts
ts

) 0 0.001 0.05 0.20 0.40 0.60 0.80 1.00

0 0 0.00513 0.03546 0.06619 0.0851 0.09463 0.09925 0.10111
0.27 0 0.00504 0.03509 0.06544 0.08413 0.09353 0.09805 0.0999
1.27 0 0.00450 0.03369 0.06270 0.08053 0.08945 0.09373 0.09547
2.27 0 0.00391 0.03245 0.06027 0.07733 0.08585 0.08992 0.09156
3.27 0 0.00333 0.03130 0.05801 0.07435 0.0825 0.08637 0.08794
4.27 0 0.00280 0.03095 0.05603 0.07171 0.07957 0.08328 0.08478
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Table 14.6. Numerical solutions of −Wyl,δ with ∆tw/ts = (ts−tw)
ts

and ∆t∞/ts =
(t∞−ts)

ts
for laminar film condensation of superheated water vapor, cited from Shang

and Wang [15]

∆t∞
ts

∆tw
ts

= ts−tw
ts(

= t∞−ts
ts

)
0 0.001 0.05 0.20 0.40 0.60 0.80 1.00

0 0 0.00013 0.002416 0.0065 0.010085 0.01237 0.01355 0.01371
0.27 0 0.000126 0.002377 0.006398 0.009928 0.012176 0.01334 0.013509
1.27 0 0.000104 0.002231 0.006012 0.00934 0.011466 0.01257 0.012747
2.27 0 0.000082 0.002103 0.005674 0.008823 0.01084 0.0119 0.01207
3.27 0 0.000063 0.001985 0.005363 0.008344 0.01026 0.011268 0.011443
4.27 0 0.000047 0.001943 0.005092 0.007923 0.009754 0.01072 0.0109

Table 14.7. Numerical solutions of ηlδ · Wxl,δ − 4Wyl,δ with ∆tw/ts = (ts−tw)
ts

and
∆t∞/ts = ((t∞ − ts)/ts) for laminar film condensation of superheated water vapor,
cited from Shang and Wang [15]

∆t∞
ts

∆tw
ts

= ts−tw
ts(

= t∞−ts
ts

)
0 0.05 0.20 0.40 0.60 0.80 1.00

0 (1) 0 0.019347 0.052373 0.082533 0.104082 0.119253 0.129218
(2) 0.019367 0.0522186 0.082085 0.103487 0.118764 0.129

0.27 (1) 0 0.019037 0.051526 0.081214 0.102402 0.117305 0.127170
(2) 0.019132 0.051552 0.080959 0.102029 0.117104 0.12726

1.27 (1) 0 0.017878 0.048391 0.076302 0.096233 0.110249 0.119572
(2) 0.018264 0.049089 0.076787 0.096629 0.110957 0.12085

2.27 (1) 0 0.016865 0.045654 0.072001 0.090827 0.104103 0.112896
(2) 0.017396 0.046625 0.072616 0.0912308 0.104809 0.10802

3.27 (1) 0 0.015932 0.043139 0.068030 0.085846 0.098396 0.106758
(2) 0.016529 0.044162 0.068444 0.085830 0.098661 0.10802

4.27 (1) 0 0.015612 0.040956 0.064551 0.081520 0.093464 0.101456
(2) 0.015661 0.041698 0.064273 0.080431 0.092514 0.101605

(1) Numerical solution and (2) predicted by (14.64)–(14.66)

It is seen from Figs. 14.6 and 14.7 that with increasing the wall subcooled
grade ∆tw/ts = (ts − tw)/ts, the velocity components Wxl,s and −Wyl,s will in-
crease rapidly, especially for smallerwall subcooledgrade∆tw/ts = (ts − tw/ts).
Whilewith increasing the vapor bulk superheated grade∆t∞/ts = (t∞ − ts)/ts,
the velocity components Wxl,s and −Wyl,s will decrease.

It is seen from Fig. 14.8 that with increasing the wall subcooled grade
∆tw/ts = (ts − tw)/ts, the mass flow rate parameter (ηlδWxl,s − 4Wyl,s) will
increase rapidly, especially for the smaller wall subcooled grade ∆tw/ts =
(ts − tw)/ts. While with increasing the vapor bulk superheated grade ∆t∞/ts =
(t∞ − ts)/ts, the mass flow rate parameter (ηlδWxl,s − 4Wyl,s) will decrease.
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According to the corresponding numerical solutions and by curve-matching
method, the expressions for the mass flow rate parameter (ηlδWxl,s − 4Wyl,s)
of the film condensation of superheated water vapor is obtained as follows:

For 0.05 ≤ ∆tw/ts ≤ 1:

ηlδ · Wxl,δ − 4Wyl,δ = (ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 − b
∆t∞
ts

, (14.65)

where (ηlδ ·Wxl,δ − 4Wyl,δ)∆t∞=0 is the mass flow rate parameter for the film
condensation of saturated water vapor. Here (ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 and
b are expressed by

(ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 =
(
0.186 − 0.057∆tw

ts

)(
∆tw
ts

)3/4

, (14.66)

b = 10−4 ×
[
2.756 + 121.4∆tw

ts
− 60

(
∆tw
ts

)2
]

. (14.67)

The results of (ηlδWxl,s − 4Wyl,s) predicted by means of (14.65)–(14.67)
for the laminar film condensation of superheated water vapor are also des-
cribed in Table 14.7. Through the comparison of the predicted values of
(ηlδWxl,s − 4Wyl,s) with the corresponding numerical results, it is seen that
the agreements are very good.

14.8 Summary

So far, we have presented our recent developments on film condensation of
saturated superheated and superheated vapors. In principle, the film conden-
sation of saturated vapor is a special case of that of the superheated vapor,
when the vapor superheated grade ∆t∞

ts
= ( t∞−ts

ts
) equals zero. On this ba-

sis, governing equations, heat and mass transfer with the related equations
of the laminar film condensation of superheated vapor can be summarized in
Tables 14.8 and 14.9, respectively.

14.9 Remarks

In this chapter we deal with the theory of film condensation of superheated
vapour on a vertical flat plate at atmospheric pressure with consideration of
various factors including variable thermophysical properties. The film conden-
sation of saturated vapor presented in Chap. 12 is only a special case of the
film condensation of superheated vapor. The present presentation here is an
extension of former studies and the following points are concluded:
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An advanced similarity transformation approach, velocity component
method, is used to transform the system of partial differential equations asso-
ciated with the two-phase boundary problem into a system of dimensionless
ordinary equations. This method has an obvious advantages over the corre-
sponding Falkner–Skan transformation [8] for treatment of various physical
factors including variable thermophysical properties.

The system of ordinary differential equations and its related boundary
conditions is computed by a successively iterative procedure and an iterative
method is adopted for the numerical solutions of the three-point boundary
value problem. Meanwhile, with heat and mass transfer analysis, the theo-
retical equations for Nusselt number and mass flow rate are derived for the
laminar film condensation of superheated vapor.

Both the Nusselt number and mass flow rate of the film condensation of
superheated vapor are proportional to the local Grashof number. In addition,
Nusselt number is also proportional to the temperature gradient on the wall
and mass flow rate is proportional to the mass flow rate parameter.

Furthermore, on the basis of the rigorous numerical solutions, the temper-
ature gradient (dθl/dηl)ηl=0 and then mass flow rate parameter (ηlδWxl,s −
4Wyl,s) are formulated by using a curve-fitting method for simple and reliable
predictions of heat and mass transfer of the film condensation of superheated
water vapor.

With increasing the wall subcooled grade ∆tw/ts = (ts − tw)/ts, the tem-
perature gradient (dθl/dηl)ηl=0 will decrease rapidly especially for lower wall
subcooled grade ∆tw/ts = (ts − tw)/ts. While, with increasing the vapor
bulk superheated grade ∆t∞/ts = (t∞ − ts)/ts, the temperature gradient
(dθl/dηl)ηl=0 will increase slowly.

With increasing the wall subcooled grade ∆tw/ts = (ts − tw)/ts, the con-
densate film thickness ηδl will increase rapidly especially for lower wall sub-
cooled grade ∆tw/ts = (ts − tw)/ts, while with increasing the vapor bulk
superheated grade ∆t∞/ts = (t∞ − ts)/ts, the condensate film thickness ηδl

will decrease slowly.
With increasing the wall subcooled grade ∆tw/ts = (ts − tw)/ts, the veloc-

ity components Wxl,s and −Wyl,s will increase rapidly, except for a larger value
of ∆tw/ts = (ts − tw)/ts. While with increasing the vapor bulk superheated
grade ∆t∞/ts = (t∞ − ts)/ts, the velocity components Wxl,s and −Wyl,s will
decrease slowly.

As the results, with increasing the wall subcooled grade ∆tw/ts =
(ts − tw)/ts, the mass flow rate parameter (ηlδWxl,s − 4Wyl,s) will increase
rapidly, while with increasing the vapor bulk superheated grade ∆t∞/ts =
(t∞ − ts)/ts, the mass flow rate parameter (ηlδWxl,s − 4Wyl,s) will decrease
slowly.

14.10 Calculation Example

Example. A flat plate with 0.3 m width and 0.3 m length is suspended verti-
cally in the superheated water vapor with t∞ = 227◦C. The wall temperature
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is tw = 90◦C. Suppose the film condensation is laminar, please calculate the
condensate heat and mass transfer on the plate.

Solution. The wall subcooled temperatures of the plate is ∆tw = ts − tw =
100−90 = 10◦C, and then, the wall subcooled grade is ∆tw/ts = 10/100 = 0.1.
We have ρl,w = 965.32 kg m−3, and λl,w = 0.68W (m◦C−1) for water at
tw = 90◦C.

The vapor superheated temperature is ∆t∞ = t∞−ts = 227−100 = 127◦C,
then, the vapor superheated grade is ∆t∞/ts = t∞ − ts/ts = 127/100 = 1.27.
We have ρv = 0.4405 kg m−3 for water vapor at t∞ = 227◦C.

Additionally, we have ρl,s = 958.1 kg m−3, νl,s = 0.294×10−6m2 s−1, µl,s =
281.7 × 10−6 kg (m s−1) for saturated water at 100◦C.
1. For heat transfer . From (14.57) and (14.59), the average heat transfer
coefficient is evaluated as

αx = −4
3
λl,w

(
1
4
Grxl,s

)1/4

x−1

(
dθl

dηl

)
ηl=0

.

From (14.14) the local Grashof number Grxl,s of the film condensation should
be evaluated as

Grxl,s =
g(ρl,w − ρv,∞)x3

ν2
l,sρl,s

=
9.8 × (965.32 − 0.4405) × 0.33

(0.294 × 10−6)2 × 958.1

= 3.08289 × 1012.

From (14.61) the temperature gradient of the laminar film condensation
of the superheated water vapor is calculated as

−
(

dθl

dηl

)
ηl=0

=

(
−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

+ a · ∆t∞
ts

.

From (14.62), the dimensionless temperature gradient
(
−
(

dθl
dηl

)
ηl=0

)
∆t∞=0

for the film condensation of saturated water vapor is evaluated as(
−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

=
1.74 − 0.19∆tw

ts(
∆tw
ts

)1/4

=
1.74 − 0.19 × 0.1

0.11/4

= 3.060419.
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From (14.63) the coefficient a is calculated as

a = 10−2 ×
(

6.92 − 9.45
∆tw
ts

+ 5.35
(

∆tw
ts

)2
)

= 10−2 × (6.92 − 9.45 × 0.1 + 5.35 × 0.12)
= 0.060285.

Then, the temperature gradient of the laminar film condensation of the
superheated water vapor is calculated as

−
(

dθl

dηl

)
ηl=0

=

(
−
(

dθl

dηl

)
ηl=0

)

∆t∞=0

+ a · ∆t∞
ts

= 3.060419 + 0.060285 × 1.27
= 3.136981.

Then, the average heat transfer coefficient is evaluated as

αx = −4
3
λl,w

(
1
4
Grxl,s

)1/4

x−1

(
dθl

dηl

)
ηl=0

=
4
3
× 0.68 ×

(
1
4
× 3.08289 × 1012

)1/4

× (0.3)−1 × 3.136981

= 8883.064W (m2K)−1.

The total heat transfer rate of laminar film condensation of the super-
heated water vapor on the vertical plate is calculated

Qx = αx(tw − ts)A
= 8883.064 × (90 − 100) × 0.3 × 0.3
= −7994.76W.

The negative means that the heat transfer direction is to the plate from
the condensate film.

2. For mass flow rate of the condensation . From (14.64), the total mass flow
rate entering the liquid film for position x = 0 to x with width of b of the
plate is evaluated as

Gx =
4
3
b · µl,s

(
1
4
Grxl,s

)1/4

(ηlδWxl,s − 4Wyl,s).

Here, from (14.65) the mass flow rate parameter film condensation of su-
perheated vapor is evaluated as

ηlδ · Wxl,δ − 4Wyl,δ = (ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 − b
∆t∞
ts

,
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where the mass flow rate parameter of the laminar film condensation of sat-
urated water vapor is calculated as

(ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 =
(

0.186 − 0.057
∆tw
ts

)(
∆tw
ts

)3/4

= (0.186 − 0.057 × 0.1) (0.1)3/4

= 0.032062378.

Additionally, the coefficient b is evaluated as

b = 10−4 ×
[
2.756 + 121.4

∆tw
ts

− 60
(

∆tw
ts

)2
]

= 10−4 × [2.756 + 121.4 × 0.1 − 60 × (0.1)2]
= 0.00143.

The mass flow rate parameter of the laminar film condensation of super-
heated water steam is calculated as

(ηlδ · Wxl,δ − 4Wyl,δ) = (ηlδ · Wxl,δ − 4Wyl,δ)∆t∞=0 − b
∆t∞
ts

= 0.032062378 − 0.00143 × 1.27
= 0.030246.

The mass flow rate Gx of the laminar film condensation of superheated
water vapor is calculated as

Gx =
4
3
b · µl,s

(
1
4
Grxl,s

)1/4

(ηlδWxl,s − 4Wyl,s)

=
4
3
× 0.3 × 281.7 × 10−6 × (

1
4
× 3.08289 × 1012)1/4 × 0.030246

= 0.0031933 kg s−1

= 11.496 kg h−1
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Part III

Falling Film Flow of Non-Newtonian Fluids



15

Hydrodynamics of Falling Film Flow
of Non-Newtonian Power-Law Fluids

Nomenclature

a thermal diffusive coefficient, m2 s−1

b width of plate, m
Cf local skin-friction coefficient,

2Re
−1/(n+1)
x

[(
dWx

dη

)
η=0

]n

cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s−2

gx local mass flow rate entering into the boundary layer
of unit area at a certain position x, kg (m2s)−1

Gx total mass flow rate entering into the boundary layer
from the inlet x = 0 to a stream downstream position
x and with the width of b of the plate, kg s−1

K coefficient of consistency, kg sn−2 m−1

n power law index
V volume flow rate of the falling film flow, Gx(x0)

ρ , m3 s−1

Rex local Reynolds number, xn(wx,∞)2−nρ
K

wx,wy velocity components in the x- and y- directions,
respectively, m s−1

Wx(η), Wy(η) dimensionless velocity components in the x- and y-
directions, respectively

wx,∞ velocity of the fluid outside the boundary layer,√
2gx cos α, m s−1

−dwx/dy shear rate, 1s−1

x, y streamwise and cross-stream coordinates, m
x0 length of the boundary layer region, m
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Greek symbols

δl(x) boundary layer thickness at the x position, m
δl(x0) critical film thickness related to x0, m
η dimensionless coordinate variable for boundary layer,

y
xRe

1/(n+1)
x

Φ mass flow rate parameter,
2(n+1)
2n+1

(
nηδl

2(n+1)Wx,δl − Wy,δl

)
ρ density, kg m−3

µ absolute viscosity, kg (m s)−1

µa the apparent viscosity, kg (m s)−1

τ shear stress, N m−2

Subscripts

i inclined case
l momentum boundary layer
v vertical case or vapor
x local value
w at wall
α (or y) angle of inclination
∞ far from the wall surface

15.1 Principal Types of Power-Law Fluids

15.1.1 Newtonian Fluids

In the previous chapters, we have presented the free convection, film boiling,
and film condensation, where all the fluids dealt with are Newtonian fluids.
Newtonian fluids are those which follow Newton’s law, i.e.,

τ = µ
dwx

dy
(15.1)

for special coordinate. Here, µ is the absolute viscosity and is a constant
independent of shear rate. If a fluid does not follow (15.1), it is a non-
Newtonian fluid. Figure 15.1 shows shear stress τ is proportional to the shear
rate −dwx/dy. The line for a Newtonian fluid is straight, the slope being µ.
However, a non-Newtonian fluid is a fluid in which the viscosity changes with
the applied shear force. As a result, non-Newtonian fluids may not have a
well-defined viscosity.

15.1.2 Power-Law Fluids

Power-law fluids can be subdivided into the following types according to the
range of their power-law index:
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dwx /dy

t
1

2

3

0

Fig. 15.1. Diagram for power-law fluids. (1) Pseudoplastic fluid; (2) Dilatant fluid;
(3) Newtonian fluid

(i) Non-newtonian pseudoplastic fluids. For such fluids, the apparent viscosity
will be reduced with rate of shear. The shape of the flow curve is shown
in Fig. 15.1, and it generally can be represented by a power-law equation
(sometimes called the Ostwald-de Waele equation).

τ = K

(
dwx

dy

)n

(n < 1), (15.2)

where K is coefficient of consistency, and n is the power-law index. The ap-
parent viscosity µa in (15.3) is obtained from (15.1) and (15.2) and decreases
with increasing shear rate:

µa = K

(
dwx

dy

)n−1

. (15.3)

A common household example of a strongly shear-thinning fluid is styling
gel, which primarily composed of water and a fixative such as a vinyl ac-
etate/vinyl pyrrolidone copolymer (PVP/PA). The majority of non-Newtonian
fluids is in this category and includes polymer solutions or melts, greases,
starch suspensions, mayonnaise, biological fluids, detergent slurries, dispersion
media in certain pharmaceuticals, and paints. Additionally, some colloids, clay,
milk, gelatine, blood, and liquid cement also belong to pseudoplastic fluids.

(ii) Non-newtonian dilatant fluids. For dilatant fluids the power-law equation
is often applicable, but with n > 1 as shown in (15.4), which means that their
apparent viscosity will increase with rate of shear, i.e.,

τ = K

(
dwx

dy

)n

(n > 1), (15.4)
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Table 15.1. Types of power-law fluids

name of the
power-law fluid

range of power-
law index n

example included

pseudoplastic fluid
(majority of
non-Newtonian
fluids)

n < 1 polymer solutions or melts, greases, starch
suspensions, mayonnaise, biological fluids,
detergent slurries, dispersion media in cer-
tain pharmaceuticals, paints, styling gel,
some colloids, clay, milk, gelatine, blood,
and liquid cement

newtonian fluid
(many of the most
common fluids)

n = 1 such as water, most aqueous solutions,
oils, corn syrup, glycerine, air, and other
gases.

dilatant fluid
(far less common
than pseudoplastic
fluid)

n > 1 some corn flour-sugar solutions, wet beach
sand, starch in water, potassium silicate
in water, some solutions containing high
concentrations of powder in water, an un-
cooked paste of cornstarch and water, con-
centrated solution of sugar in water, and
suspensions of rice starch or corn starch

These fluids, or shear-thickening fluids are far less common than pseudoplas-
tic fluids, and their flow behavior (Fig. 15.1) shows an increase in apparent
viscosity with increasing shear rate.

From (15.1) it is found that Newtonian fluid is the power-law fluid with
a unit power-law index, where the shear stress is directly proportional to
the shear rate. Therefore, Newtonian fluids can be regarded as special non-
Newtonian power-law fluids. In addition, Newtonian fluids include many of
the most common fluids, such as water, most aqueous solutions, oils, corn
syrup, glycerine, air, and other gases. So far, the principal types of power-law
fluids can be summarized as Table 15.1.

15.2 Introduction of Studies on Hydrodynamics
of Gravity-Driven Film Flow of Non-Newtonian
Power-Law Fluids (FFNF)

For heat-sensitive materials, short residence time, and close temperature con-
trols during heat transfer process are essential, which can be achieved by
allowing a liquid to flow in a thin falling film along a solid surface. Such cool-
ing techniques have been widely used in many industrial applications, which
are especially the chemical engineering operations, food and polymer process-
ing industries, cooling systems, distillation, evaporators, ocean thermal energy
conversion systems, molten plastics, pulps, coating equipment, etc. Such heat
exchangers are characterized by high heat transfer coefficients at low mass
flow rates and small temperatures differences, and invite a lot of work for the
extensive studies.
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Fully developed laminar film flow of non-Newtonian power-law fluids along
a plane surface was conducted by Astarita et al. [1], who measured the film
thickness for various inclinations and flow rates. Later, Therien et al. [2] con-
ducted a similar study, in which experimental data for the film thickness were
compared with an analytical expression for the thickness of fully developed
films of power-law fluids. Sylvester et al. [3] also measured the film thickness
as a function of the volumetric flow rate, but they primarily focused on the
onset of rippling on the film surface and the characteristics of wavy film.

Yang and Yarbrough [4, 5], Murthy and Sarma [6, 7], Tekic et al. [8], An-
dersson and Irgens [9] among others have used the integral method approach
to study the hydrodynamics of gravity-driven power law films. Theoretical
analyses of hydrodynamics of gravity-driven power-law fluid films have been
studied by means of similarity analysis by Andersson and Irgens [10,11], Yang
and Yarbrough [4, 5]. Murthy and Sarma [6] extended the conventional inte-
gral analysis for Newtonian films to cover power-law fluids. Later, Murthy and
Sarma [7] included the effect of interfacial drag at the liquid–vapor interface
in a similar analysis, while Tekic et al. [8] presented results accounted for the
streamwise pressure gradient and surface tension. Andersson and Irgens [9] ex-
plored the influence of the rheology of the film on the hydrodynamic entrance
length.

A different approach was adopted by Andersson and Irgens [10,11], namely
to divide the accelerating film flow into three regions shown schematically in
Fig. 15.1, the boundary layer region, the fully viscous region and the devel-
oped flow region. While the boundary layer region is divided into a develop-
ing viscous boundary layer and an external inviscid freestream. They further
demonstrated that a similarity transformation exists, such that the boundary
layer momentum equation for power-law fluids is exactly transformed into
a Falkner–Skan type ordinary differential equation. The resulting two-point
boundary-value problem was solved numerically with a standard shooting
technique based on classical 4th-order Runge–Kutta integration in combina-
tion with a Newton iteration procedure. Numerical results were obtained for
values of the power-law index n in the range 0.5 ≤ n ≤ 2.0. Andersson and
Irgens [11] provided a relative extensive review on the study of hydrodynamics
of a falling film flow of power law fluids.

The dissolution of a soluble wall and the subsequent penetration of the
solute into the non-Newtonian liquid film were considered by Astarita [12]. He
provided the mass transfer rate between the wall and the hydrodynamically
fully developed film, with an assumption of velocity near the wall to vary
linearly with the distance from the wall. Mashelkher and Chavan [13] provided
a more general solution of this problem.

More recently, Andersson and Shang [14] provided a development on for-
mulation of a new similarity transformation for extensive studies of accelerat-
ing non-Newtonian film flow. The partial differential equations governing the
hydrodynamics of the flow of a power-law fluid on an inclined plane surface
are transformed into a set of two ordinary differential equations by means of
the velocity component approach. Although the analysis is applicable for any
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angle of inclination α(0 ≤ α ≤ π/2), the resulting one-parameter problem
involves only the power-law index n. Nevertheless, physically essential quanti-
ties, like the velocity components and the skin-friction coefficient, do depend
on α and the relevant relationships are deduced between the vertical and in-
clined cases. Accurate numerical similarity solutions are provided for n in the
range from 0.1 to 2.0. The present method enables solutions to be obtained
also for highly pseudoplastic films, i.e., for n below 0.5. The mass flow rate
entrained into the momentum boundary layer from the inviscid freestream is
expressed in term of a dimensionless mass flux parameter φ, which depends
on the dimensionless boundary layer thickness and the velocity components
at the edge of the viscous boundary layer, which is thus an integral part of
the similarity solution, turns out to decrease monotonically with n. Using
this new model, they were able to determine some difficult issues, such as the
mass flow rate entrained into the boundary layer from the free stream and the
length of boundary layer region, etc. In this chapter we focus on our recent
developments on hydrodynamics analysis for the boundary layer region.

15.3 Physical Model and Governing Partial
Differential Equations

Consider the accelerating laminar flow in the boundary layer region of a non-
Newtonian power law liquid film down along an inclined plane surface, as
shown schematically in Fig. 15.2. The incompressible and inelastic fluid is
assumed to obey the Ostwald-de-Waele power-law model and the action of
viscous stresses is confined to the developing momentum boundary layer ad-
jacent to the solid surface. The basic conservation equations for mass and
momentum within the viscous boundary layer are:

∂wx

∂x
+

∂wy

∂y
= 0, (15.5)

wx
∂wx

∂x
+ wy

∂wx

∂y
= g cos α + n

K

ρ

(
∂wx

∂y

)n−1
∂2wx

∂y2
(15.6)

with boundary conditions

y = 0 : wx = 0, wy = 0, (15.7)
y = δl : wx = wx,∞, (15.8)

where wx and wy are velocity exponents in x and y directions, respectively,
while g and α denote the gravitational acceleration and the angle of inclination
of the plane wall. Here it has been anticipated that ∂wx/∂y ≥ 0 throughout
the entire the film. The fluid physical properties ρ, cp, K, and n assumed
to be constant in the present analysis are density, specific heat, coefficient of
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Fig. 15.2. Schematic representation of accelerating film flow, cited from Shang and
Gu [15]

consistency, and power-law index, respectively. The two-dimensional rheologi-
cal model represents pseudoplastic or shear-thing fluids if the power-law index
n smaller than unity and dilatant or shear-thickening fluids for n > 1. The
deviation of n from unity indicates the degree of deviation from Newtonian
rheology and the particular case n = 1 represents a Newtonian fluid with
dynamic coefficient of viscosity K.

No-slip and impermeability at the inclined wall y = 0 are expressed by
the boundary conditions given by (15.7), while the outer condition, (15.8),
assures that the velocity component wx within the boundary layer approaches
the external velocity

wx,∞ =
√

2gx cos α (15.9)

at the edge y = δl of the boundary layer. Since the friction flow between
the viscous boundary layer and the free streamline bordering the constant-
pressure atmosphere is quasi-one-dimensional, the simple solution given by
(15.9) is readily derived from (15.6) by assuming wx,∞ = 0 (and infinite film
thickness) at the inlet x = 0.

It may be worthwhile to recall that the boundary layer theory conven-
tionally adopted in the analysis of thin-film flow may be inadequate if the
Reynolds number is too low. Wu and Thompson [16] compared boundary
layer theory predictions with solutions of the full Cauchy equation for flow
of a shear-thinning power-law fluid past a flat plate of length L. They found
that the Reynolds number Rex (with x = L), below which the boundary layer
approximations become inaccurate, decreased from 120 for a Newtonian fluid
(n = 1) to 4.5 for a highly pseudoplastic fluid (n = 0.1).
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15.4 A New Similarity Transformation

Incidentally, as pointed out by Andersson and Irgens [10], the external veloc-
ity, (15.9), belong to the Falkner–Skan class of freestreams wx,∞∞xm which
permits a similarity transformation of the momentum boundary layer equation
even for power-law fluids. A generalized Falkner–Skan type of transformation
was therefore introduced by Andersson and Irgens [10, 11]. However, in the
recent study, a new transformation is proposed by Andersson and Shang [14],
which unlike the Falkner–Skan type of approach does not involve the stream
function. Let us first introduce the related dimensionless similarity variables
defined for similarity transformation of the governing partial equations.
Dimensionless similarity variables. According to the study in [14], a dimen-
sionless similarity variable is defined as

η =
y

x
Re1/(n+1)

x (15.10)

where

Rex =
xn(wx,∞)2−nρ

K
(15.11)

is a generalized local Reynolds number. The dimensionless velocity compo-
nents are defined as

Wx(η) =
wx√

2gx cos α
, (15.12)

Wy(η) =
wy√

2gx cos α
Re1/(n+1)

x (15.13)

for the x and y directions, respectively. These dimensionless variables analo-
gous to the similarity transformation used in the parts 1 and 2 of this book
for free convection and film flows for the particular parameter value n = 1.
Then, the partial differential equations given by (15.5) and (15.6) and their
boundary equations given by (15.7) and (15.8) are now transformed as follows:
Derivation of (15.5). From (14.10) and (14.11), we have

∂η

∂x
=

∂

∂x

[
y

x
Re

1/(n+1)
x

]

=
∂

∂x

[
y

(
(2g cos α)(2−n)/2ρ

K

)1/(n+1)

x−n/(2(n+1))

]

= − n

2(n + 1)

[
y

(
(2g cos α)(2−n)/2ρ

K

)1/(n+1)

x−n/(2(n+1))−1

]

= − n

2(n + 1)

y

x

(
xn(2gx cos α)(2−n)/2ρ

K

)1/(n+1)

x−(n+2)/(2(n+1))x−n/(2(n+1))

= − n

2(n + 1)
ηx−1

∂η

∂y
=

1

x
(Rex)1/(n+1)
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Then,

∂wx

∂x
=
√

2gx cos α
dWx

dη

∂η

∂x
+
√

g cos α

2x
Wx

=
√

2gx cos α
dWx

dη

(
− n

2(n + 1)
ηx−1

)
+
√

g cos α

2x
Wx

= −
√

g cos α

2x

dWx

dη

n

(n + 1)
η +

√
g cos α

2x
Wx.

∂wy

∂y
=
√

2gx cos α(Rex)−1/(n+1) dWy

dη

∂η

∂y

=
√

2gx cos α(Rex)−1/(n+1) dWy

dη

1
x

(Rex)1/(n+1)

=

√
2g cos α

x

dWy

dη
.

Therefore, (15.5) is changed into

=
√

g cos α

2x

dWx

dη

n

(n + 1)
η +

√
g cos α

2x
Wx +

√
2g cos α

x

dWy

dη
= 0.

Simplify the earlier equation we have

Wx − n

n + 1
η
dWx

dη
+ 2

dWy

dη
= 0. (15.14)

Derivation of (15.6). With (15.12) and (15.13) we have

∂wx

∂y
=
√

2gx cos α
dWx

dη

1
x

(Rex)1/(n+1) =

√
2g cos α

x

dWx

dη
(Rex)1/(n+1)

∂2wx

∂y2
=

√
2g cos α

x

d2Wx

dη2

1
x

(Rex)2/(n+1).

Then, (15.6) is changed into

√
2gx cos αWx

(
−
√

g cos α

2x

dWx

dη

n

(n + 1)
η +

√
g cos α

2x
Wx

)
+

(
√

2gx cos αWy)(Rex)−1/(n+1)

√
2g cos α

x

dWx

dη
(Rex)1/(n+1)

g cos α+n
K

ρl

(√
2g cos α

x

dWx

dη
(Rex)1/(n+1)

)(n−1)√
2g cos α

x

d2Wx

dη2

1

x
(Rex)2/(n+1)

or

Wx

(
−g cos α

dWx

dη

n

(n + 1)
η + g cos αWx

)
+ (Wy)2g cos α

dWx

dη

= g cos α + n
K

ρl

(
dWx

dη

)(n−1)(2g cos α

x

)n/2 d2Wx

dη2

1
x

Rex.
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The earlier equation is simplified to

Wx

(
−dWx

dη

n

(n + 1)
η + Wx

)
+ (Wy)2

dWx

dη

= 1 + n
K

ρl

(
dWx

dη

)(n−1) 2
2gx cos α

(
2gx cos α

x2

)n/2 d2Wx

dη2
Rex.

With (15.9) the earlier equation is changed into

Wx

(
−dWx

dη

n

(n + 1)
η + Wx

)
+ (Wy)2

dWx

dη

= 1 + n

(
dWx

dη

)(n−1)
K

ρ

2
xnw2−n

x,∞

d2Wx

dη2
Rex.

With the definition of local Reynolds number shown in (15.11), the earlier
equation can be expressed as

Wx

(
−dWx

dη

n

(n + 1)
η + Wx

)
+(Wy)2

dWx

dη
= 1+n

(
dWx

dη

)(n−1)

2Re−1
x

d2Wx

dη2
Rex.

Finally, (15.6) is transformed as

Wx

(
− n

(n + 1)
η
dWx

dη
+ Wx

)
+ 2Wy

dWx

dη
= 1 + 2n

(
dWx

dη

)(n−1) d2Wx

dη2
.

(15.15)

Thus, the governing partial differential equations (15.5) and (15.6) are
transformed to the dimensionless equations (15.14) and (15.15), respectively,
with the related dimensionless boundary conditions

η = 0 : Wx(η) = 0, Wy(η) = 0, (15.16)
η = ηδl : Wx(η) = 1. (15.17)

Evidently, the power-law index n is the only explicit parameter in the
transformed problem.

15.5 Numerical Solutions

The nonlinear two-point boundary value problem defined by (15.14)–(15.17)
was solved numerically for several values of the power-law index in the range
0.1 ≤ n ≤ 2.0. Here, the shooting method was adopted. First, (15.14)
and (15.15) were written as a system of three first-order differential equa-
tions, which was solved by means of fifth-order Runge–Kutta integration.
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Fig. 15.3. Numerical solutions for the streamwise velocity component Wx(η), cited
from Andersson and Shang [14] (curves 1–9: n = 2.0, 1.5, 1.2, 1.0, 0.7, 0.5, 0.3, 0.2,
and 0.1)

Then, a Newton iteration procedure was employed to satisfy the outer bound-
ary condition, (15.17). Concerning the numerical procedure, the present fifth-
order scheme utilizes variable grid spacing.

Some of the velocity profiles Wx(η) computed by Andersson and Shang [14]
are shown in Fig. 15.3. The power-law index appears to have a substantial
effect on the velocity distribution within the boundary layer and, as observed
already by Andersson and Irgens [10], the most striking feature being the
monotonic thinning of the boundary layer with increasing n-values. This is
fully consistent with the findings for other two-dimensional plane flows, for
instance the non-Newtonian analogue of the classical Blasius problem, i.e.,
flow past a semi-infinite that plate, which was first solved by Acrivos et al. [17]
and more recently by Andersson and Toften [18].

The non-linearity of the highest-order derivative in (15.15) increases with
increasing deviation of the power-law index n from unity. The thickening of
the boundary layer with increasing pseudoplasticity 1 − n, in combination
with the steeper slope of the dimensionless velocity profile Wx(η), makes the
mathematical problem defined by (15.14)–(15.17) increasingly stiff. In fact,
the shooting method becomes gradually less attractive as the distance (in
boundary layer coordinates η) from the wall to the outer edge of the calcu-
lation domain, at which the condition Wx(η) = 1 should be satisfied. This is
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most likely the reason why Andersson and Irgens [10] failed to obtain con-
verged solutions for highly pseudoplastic fluid with n < 0.5. In the present
study, however, this difficulty was remedied by using variable grid spacing.

15.6 Local Skin-Friction Coefficient

The gradient of the dimensionless velocity Wx(η) at the wall η = 0 is single
most important characteristic of the solution. This is because the local skin-
friction coefficient Cf is a dimensionless measure of the shear stress τ =
K(∂wx/∂y)n at the wall, i.e.,

Cf ≡ τw
1
2ρw2

x,∞
=

K

[(
∂wx

∂y

)
η=0

]n

1
2ρw2

x,∞

With the dimensionless variables in (15.10)–(15.13), the earlier equation is
changed into

Cf =
K

[√
2g cos α

x

(
dWx

dη

)
η=0

(Rex)1/(n+1)

]n

1
2ρw2

x,∞

= 2
K

[√
2g cos α

x (Rex)1/(n+1)

]n

ρw2
x,∞

[(
dWx

dη

)
η=0

]n

,

where

K

[√
2g cos α

x (Rex)1/(n+1)

]n

ρw2
x,∞

=
K

[√
2gx cos α

x

]n

ρw2
x,∞

(Rex)n/(n+1)

=
K

xn(wx,∞)2−nρ
(Rex)n/(n+1)

= (Rex)−1(Rex)n/(n+1)

= (Rex)−1/(n+1).

Then, with the present new dimensionless variables, the local skin-friction
coefficient Cf is expressed as

Cf ≡ τw
1
2ρw2

x,∞
= 2Re−1/(n+1)

x

[(
dWx

dη

)
η=0

]n

. (15.18)

The numerical results of the dimensionless velocity gradient at the wall
(dWx/dη)η=0 are given in Table 15.2 [14] and shown in Fig. 15.4 from which
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it is observed that the wall gradient gradually decreases with increasing n.
It is noteworthy, however, that since the local Reynolds number Rex, as de-
fined in (15.11), varies as ∝ x(n+2)/2, the streamwise variation of Cf becomes
Cf∞x−(n+2)/(2(n+1)), i.e., the skin-friction coefficient decreases in the stream-
wise direction, irrespective of the value of the power-law index.

In order to assess the accuracy of the present numerical results, compar-
isons are made with the calculations by Andersson and Irgens [10] according
to the relationship

(
dWx

dη

)
η=0

=
(

3
4

)1/(n+1)

f ′′(0), (15.19)

Table 15.2. Computed variation of (dWx/dη)η=0 with power-law index n, cited
from Andersson and Shang [14]

n reference [14] equation (14.19) equation (14.20)

0.1 3.57308 – 3.6382
0.15 2.48411 – –
0.2 1.96020 – 2.0010
0.25 1.65736 – –
0.3 1.46275 – 1.4892
0.4 1.23218 – –
0.5 1.10437 1.1047 1.1234
0.6 1.02613 –
0.7 0.97519 0.9753 –
1.0 0.89972 0.8997 0.9122
1.2 0.87902 0.8790 –
1.5 0.86592 0.8659 0.8749
2.0 0.86360 0.8636 0.8705

0

1

2

3

4

0 0.5 1 1.5 2

)(
dh

dWx

n

h=0

Fig. 15.4. Numerical solutions of the dimensionless velocity gradient (dWx/dη)η=0

for different values of the power-law index n
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where f denotes the Falkner–Skan type function and the primes signify dif-
ferentiation with respect to the similarity variable adopted in their analysis.
Data obtained from the approximate interpolation formula

(
dWx

dη

)
η=0

=
n + 1/2
n + 1

[
(f ′′

0 )n+1 +
(n + 1)2

3n(n + 1/2)

]1/(n+1)

, (15.20)

derived by Acrivos et al. [18] are also included in Table 15.2. Here, f ′′
0 denotes

the dimensionless wall shear stress for power-law boundary layer flow past a
flat plate, for which data are tabulated by Acrivos et al. [18].

The comparison in Table 15.2 shows that the present numerical solutions
are practically indistinguishable from the similarity solutions of Andersson
and Irgens [10]. The data derived from the approximate formula given by
(15.20) compares surprisingly well with the present similarity solutions and the
velocity gradient at the wall is overpredicted by not more than 2% throughout
the entire range of n-values considered. Here, it should be recalled that the
similarity solutions could be considered as exact in the sense that they do not
involve other approximations as those inherent in the boundary layer theory
and the adoption of the power-law model.

15.7 Mass Flow Rate

Although the total mass flow rate within the film is constant, the partition of
the mass flow rate between the viscous boundary layer and the external in-
viscid flow varies in the streamwise direction. As the boundary layer thickens,
fluid is continuously being entrained from the freestream. Let set gx denote
the local mass flow rate entering into an element of the boundary layer of
unit streamwise extent (and unit width) of a certain position x, it can be
expressed as

gx = ρ

(
wx,δl

dδl

dx
− wy,δl

)
, (15.21)

where δl is the boundary layer thickness at the position x, and wx,δl and wy,δl

are dimensionless velocity components in x and y directions at the edge of the
boundary layer and at the position x.

Since the boundary layer thickness is given as δl = ηδl(Rex)−1/(n+1)x,
then,

dδl

dx
= ηδl

n

2(n + 1)
(Rex)

−1
(n+1) .

With (15.12) and (15.13) and the earlier equation, (15.21) can be expressed
as in terms of dimensionless variables

gx = ρ

[√
2gx cos αWx,δlηδl

n

2(n + 1)
(Rex)

− 1
(n+1) −

√
2gx cos αRe−1/(n+1)

x Wy,δl

]

= ρ
√

2gx cos α(Rex)−1/(n+1)

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)
. (15.22)
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Let Gx denote the total mass flow rate entering into the boundary layer
for the area from the inlet x = 0 to a stream downstream position x and with
the width of b of the plate, then, it should be the following integration:

Gx =
∫∫
A

gx dA

= b

∫ x

0

gx dx, (15.23)

where A = b · x is integrated area.
With (15.22), the earlier equation can be expressed in dimensionless form

as

Gx = b

∫ x

0

[
ρ
√

2gx cos α(Rex)−1/(n+1)

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)]
dx

=
2(n + 1)
2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)
ρwx,∞b · xRe−1/(n+1)

x .

The earlier equation can be further expressed as

GxRe
1/(n+1)
x

ρwx,∞b · x = Φ ≡ 2(n + 1)
2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)
. (15.24)

Here, on the right-hand side, Φ defines the mass flow rate parameter, ηδl is the
dimensionless boundary layer thickness, and Wx,δl and Wy,δl are dimension-
less velocity components in x and y directions at the edge of the boundary
layer. Since the dimensionless boundary layer thickness ηδl and the velocity
components Wx,δl and Wy,δl may depend on the power-law index n, Φ turns
out to be a function of n alone. The most frequently used definition of ηδl is the
value of ηδl for which the dimensionless velocity component Wx,δl in Fig. 15.3
becomes equal to 0.99. Data for ηδl ,Wx,δl and Wy,δl obtained from the nu-
merical similarity solutions presented are shown in Fig. 15.5. The resulting
variation of the mass flow rate parameter Φ is also included and it is observed
that Φ is a monotonically decreasing function of the power-law index n.

To facilitate rapid estimate of the mass flow rate parameter Φ for any value
of the power-law index in the interval 0.2 ≤ n ≤ 2, accurate curve-fit formulas
for ηδl and Wy,δl

ηδl = 4.9505 − 7.617(n − 0.54) + 11.214(n − 0.54)2 + 8.703(n − 0.54)3

−0.37(n − 0.54)4 (0.2 ≤ n ≤ 1),
(15.25)

ηδl = 2.3201 − 1.0623(n − 1.425) + 0.9962(n − 1.425)2 − 0.7533(n − 1.425)3

(1 ≤ n ≤ 2),
(15.26)

Wy,δl = −1.8675 + 3.9616(n − 0.54) − 6.022(n − 0.54)2 − 3.22(n − 0.54)3

+16.946(n − 0.54)4 (0.2 ≤ n ≤ 1),
(15.27)
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Fig. 15.5. Predicted results for mass flow rate parameter Φ and the related dimen-
sionless variables ηδl , Wx,δl , and Wy,δl (1. ηδl , 2. Φ, 3. −Wy,δl and 4. Wx,δl), cited
from Andersson and Shang [14]

Wy,δl = −0.53954 + 0.5002(n − 1.425) − 0.5078(n − 1.425)2

+0.3946(n − 1.425)3 (1 ≤ n ≤ 2), (15.28)

are shown in (15.25) - (15.28) [14] and can be used with Wx,δl = 1 in (15.24).
This curve-fit method turns out to be accurate to within 0.01%.

15.8 Length of Boundary Layer Region

Let us now denote the total flow rate within the film, ρV , where V is the
volumetric flow rate of the falling film flow. Since the viscous boundary layer
develops from x = 0, i.e., δl(0) = 0, the entire mass flow is initially carried by
the freestream. At a certain streamwise position x = x0, on the other hand,
the boundary layer extends all the way to the free surface of the film and the
total mass flux is within the boundary layer, i.e.,

Gx0 ≡ Gx(x0) = ρV. (15.29)

This criterion, in combination with (15.24), can be rearranged to give the
explicit relation as follows:

Gx0Re
1/(n+1)
x0

ρwx0,∞b · x0
= Φ,
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or
V Re

1/(n+1)
x0

wx0,∞b · x0
= Φ,

i.e.,

V
[

xn(
√

2gx0 cos α)2−nρ
K

]1/(n+1)

bx0

√
2gx0 cos α

= Φ,

or

V
[

(
√

2g cos α)2−nρ
K

]1/(n+1)

b
√

2g cos α0

x
−(2n+1)/(2(n+1))
0 = Φ.

The earlier equation is transformed to

x0 =

⎧⎪⎨
⎪⎩

V

Φb

[
(
√

2g cos α)2−n

K ρ
]1/(n+1)

√
2g cos α0

⎫⎪⎬
⎪⎭

(2(n+1))/(2n+1)

i.e.,

x0 =

{(
V

Φb

)n+1 (
√

2g cos α)2−nρ
K

(
√

2g cos α)n+1

}2/(2n+1)

,

or

x0 =

[(
V

Φb

)n+1 (2g cos α)(1−2n)/2ρ

K

]2/(2n+1)

, (15.30)

for the particular streamwise position x0. Since the film inlet is at x = 0, cf.
Fig. 15.1, the characteristic coordinate value x0 defines the streamwise length
of the boundary layer region.

15.9 Critical Film Thickness

When the boundary layer extends all the way to the free surface and the
freestream disappears at x = x0, the film thickness equals the boundary
thickness δl(x0). The latter can be obtained from the definition, (15.10), of
the similarity variable at the outer edge of the viscous boundary layer, i.e.,
y = δl(x0) for η = ηδl and x = x0, and expressed as

δl(x0) = ηδlx0Re−1/(n+1)
x0

.

With the definition of local Reynolds number in (15.11), the earlier equa-
tion is changed into

δl(x0) = ηδlx
n/(2(n+1))
0

[
(2g cos α)(2−n)/2

K/ρ

]−1/(n+1)

. (15.31)
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It can therefore be concluded that both x0 and δl(x0) are completely de-
termined as long as the problem characteristics n, K/ρ, Q, and g cos α are
known, along with the solution of the transformed problem, (15.14)–(15.17)
or (15.24)–(15.28), which determines Φ.

The film thickness at the particular position x = x0 is a critical quantity
in film flow analysis since the boundary layer concept is applicable only for
range x ≤ x0, and in this range the local film thickness δl(x0) at x = x0 is
largest. Following (15.31) the boundary layer thickness δl(x) at any position
of x in this range can be evaluated by the following equation:

δl(x) = ηδlx
n/(2(n+1))

[
(2g cos α)(2−n)/2

K/ρ

]−1/(n+1)

. (15.32)

15.10 Effect of Wall Inclination

It is noteworthy that the angle of inclination α does not appear in the
transformed problem defined by (15.14)–(15.17). Any solution Wx and Wy

is accordingly independent of α but, nevertheless, valid for all inclinations
0 ≤ α ≤ π/2. Physically relevant quantities, on the other hand, do depend on
α due to the similarity transformation, (15.10)–(15.13). For a given quantity,
say p, the relationship

Pi

Pv
=
(

cos αi

cos αv

)γ

= cosγ αi, (15.33)

between the inclined and vertical cases, identified by subscripts i and v, re-
spectively, holds. Here, αv, denotes the angle of inclination in the vertical
case, i.e., αv = 0 and cos αv = 1, and the exponent γ is derived as after:

For wx

From (15.12) we can get the following equation

(wx)i
(wx)v

=
(

cos αi

cos αv

)1/2

= cos1/2 αi.

Then, γ = 1/2
For wy

From (15.13) we can obtain the following equation:

(wy)i
(wy)v

=
(

cos αi

cos αv

)1/2( (Rex)i
(Rex)v

)−1/(n+1)

,

where with (15.9), we have

(
(Rex)i
(Rex)v

)−1/(n+1)

=
(

(wx,∞)i
(wx,∞)v

)−(2−n)/(n+1)

=
(

cos αi

cos αv

)−(2−n)/(2(n+1))

.
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Table 15.3. Relationship between inclined and vertical film flow

P wx wy Cf x0 δl(x0)

γ 1
2

2n−1
2(n+1)

n−2
2(n+1)

1−2n
2n+1

− 1
2n+1

Hence,

(wy)i
(wy)v

=
(

cos αi

cos αv

)1/2( cos αi

cos αv

)−(2−n)/(2(n+1))

=
(

cos αi

cos αv

)(2n−1)/(2(n+1))

.

Then, γ = 2n−1
2(n+1) .

For Cf

From (15.18) we can do the following derivation:

(Cf )i
(Cf )v

=
(

(Rex)i
(Rex)v

)−1/(n+1)

=
(

cos αi

cos αv

)−(2−n)/(2(n+1))

.

Then, γ = (n − 2)/(2(n + 1)).
For x0

From (15.30) we can do the following derivation:

(x0)i
(x0)v

==
(

cos αi

cos αv

)(1−2n)/(2n+1).

Then, γ = (1 − 2n)/(2n + 1)
For δl(x0)
From (15.31) we can do the following derivation:

(δl(x0))i
(δl(x0))v

=
(

(x0)i
(x0)v

)n/(2(n+1))( cos αi

cos αv

)−(2−n)/(2(n+1))

=
(

cos αi

cos αv

)(n(1−2n))/(2(n+1)(2n+1))( cos αi

cos αv

)−(2−n)/(2(n+1))

=
(

cos αi

cos αv

)−1/(2n+1)

.

Then, γ = −1/(2n + 1).
For summary, exponent γ is provided in Table 15.3 for some quantities of

particular interest.
The exponent γ in (15.32) depends on the physical quantity P under con-

sideration

15.11 Summary

So far, we have presented our recent developments on hydrodynamics of falling
film flow of non-Newtonian fluids. The related equations of hydrodynamics can
be summarized in Table 15.4.
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15.12 Remarks

In this chapter a new similarity transformation [14] has been used to study the
gravity-driven flow of a non-Newtonian liquid film along inclined surface. The
partial differential equations governing the hydrodynamics of the power-law
fluid transform exactly into a set of two ordinary differential equations, which
can be calculated numerically to an arbitrary degree of accuracy. The results
are practically indistinguishable from those of Andersson and Irgens [10] in
the parameter range 0.5 ≤ n ≤ 2. With the present approach, however, cal-
culations could be accomplished also for highly pseudoplastic liquids and the
numerical results compared accurately with results deduced from an approx-
imate interpolation formula due to Acrivos et al. [18] throughout the entire
parameter range 0.1 ≤ n ≤ 2. The nonlinearity of the momentum boundary
layer problem for power-law fluid increases with increasing pseudoplasticity
1 − n and the variable grid spacing is therefore increasingly important for
small n-values.

It is noteworthy that the resulting system of dimensionless ordinary dif-
ferential equations provided in [14] depends only on the single parameter n.
Furthermore, all other parameters, like the streamwise location x, the fluid
properties K/ρ, and the component of the gravitational acceleration along the
surface g cos α have been combined into a generalized local Reynolds number
Rex and dimensionless velocity Wx and Wy. Various flow characteristics can
thus be expressed only in term of n and Rex, except the particular position x0

at which the entire freestream has been entrained into the momentum bound-
ary layer. In order to determine x0 and the associated critical film thickness
δl(x0), knowledge about the total mass flow rate ρQ within the film is also
required, together with the new dimensionless mass flux parameter Φ. The
latter quantity, which depends on the dimensionless boundary layer thickness
ηδl and the velocity components Wx,δl and Wy,δl at the edge of the boundary
layer, is generally obtained as a part of the numerical solution of the trans-
formed problem and turned out to be function only of the power-law index n.
However, to facilitate rapid and accurate estimate of Φ, polynomial curve-fit
formulas have been developed on the basis of the rigorous similarity solutions.

It should be indicated that, except a few works, such as of Andersson
and Irgens [10, 11], Andersson and Shang [14], and Shang and Gu [15], in
the most of current studies on hydrodynamics of FFNF system the hydraulic
entrance region (i.e. the boundary layer region) was ignored in their analysis
of modeling and simulation. With ignoring the existing boundary layer region
of the FFNF system, it would be never possible to capture its adaptive re-
modeling process of hydrodynamics for conducting correct calculation on the
hydrodynamic characteristics of FFNF system.

15.13 Calculation Example

Example A non-Newtonian power-law fluid having a density of 1, 041 kg m−3

is flowing with volumetric flow rate of 0.02m3 s−1 along an inclined flat plate
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with angle of α = 30◦ and width of b = 1 m. The properties of the fluid are
K = 2.744 kg (sn−2m−1) and n = 0.50. Please calculate the followings:

(a) Length x0 of the boundary layer region
(b) Critical film thickness δl(x0)
(c) Local skin-friction coefficient Cf at x0

(d) wx0,δl and wyo,δl corresponding to position xo

(e) If the plate inclined angle is 0◦ (for vertical plate), calculate x0, δl(x0), Cf ,
wx0,δl , and wy0,δl

Solution. The given data are as follows: volumetric flow rate V = 0.02m3 s−1,
density ρ = 1041 kg m−3, plate angle α = 30◦ and width b = 1 m, coefficient
of consistency K = 2.744 kg (sn−2m−1) and n = 0.50.

(a) calculation of x0 for α = 30◦. With (15.30), x0 is evaluated as

x0 =

[(
V

bΦ

)n+1 (2g cos α)(1−2n)/2

K/ρ

]2/(2n+1)

.

While, from (15.24) the mass flow rate parameter Φ can be evaluated as

Φ =
2(n + 1)
2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)
.

For n = 0.5, the boundary layer thickness ηδl and the velocity component
Wy,δl at the edge of the boundary layer can be evaluated as:

ηδl = 4.9505 − 7.617(n − 0.54) + 11.214(n − 0.54)2

+8.703(n − 0.54)3 − 0.37(n − 0.54)4

= 4.9505 − 7.617(0.5 − 0.54) + 11.214(0.5 − 0.54)2

+8.703(0.5 − 0.54)3 − 0.37(0.5 − 0.54)4

= 5.27256.

Wy,δl = −1.8675 + 3.9616(n − 0.54) − 6.022(n − 0.54)2

−3.22(n − 0.54)3 + 16.946(n − 0.54)4

= −1.8675 + 3.9616(0.5 − 0.54) − 6.022(0.5 − 0.54)2

−3.22(0.5 − 0.54)3 + 16.946(0.5 − 0.54)4

= −2.03535.

Φ =
2(n + 1)
2n + 1

(
nηδl

2(n + 1)
Wx,δl − Wy,δl

)

=
2 × (0.5 + 1)
2 × 0.5 + 1

(
0.5 × 5.27256
2 × (0.5 + 1)

× 0.99 + 2.03535
)

= 4.358.

(Note: Wx,δl is defined to be 0.99 in the earlier equation of φ)
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Then,

x0 =

[(
V

bΦ

)n+1 (2g cos α)(1−2n)/2

K/ρ

]2/(2n+1)

=

[(
0.02
4.358

)0.5+1 (2 × 9.8 × cos 30o)(1−2×0.5)/2

(2.744/1041)

]2/(2×0.5+1)

= 0.118m.

(b) For calculation of δl(x0) for α = 30o. With (15.31), δl(x0) can be calcu-
lated as

δl(x0) = ηδlx
n/(2(n+1))
0

[
(2g cos α)(2−n)/2

K/ρ

]−1/(n+1)

= 5.2726 × 0.1180.5/(2×(0.5+1))

[
(2 × 9.8 × cos 30o)(2−0.5)/2

2.744/1041

]−1/(0.5+1)

= 0.0171m.

(c) For calculation of Cf related to x0 and for α = 30o. From (15.18),
Cf related to x0 and for α = 30o can be expressed as

Cf = 2Re−1/(n+1)
x0

[(
dWx

dη

)
η=0

]n

.

From Table 15.4, the local Reynolds number at x0 can be evaluated as

Rex0 =
xn

0 (wx0,∞)2−nρ

K

=
xn

0 (2gx0 cos α)(2−n)/2ρ

K

=
0.1180.5 × (2 × 9.8 × 0.118 × cos 30o)(2−n)/2 × 1041

2.744
= 219.4.

From Table 15.2 we get(
dWx

dη

)
η=0

= 1.10437 at n = 0.5

Then,

Cf = 2Re−1/(n+1)
x0

[(
dWx

dη

)
η=0

]n

= 2 × 219.4−1/(0.5+1)[1.10437]0.5

= 0.0578.
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(d) For calculation of wx0,δl and wyo,δl for α = 30o. From (15.12) we have

Wx0,δl =
wx0,δl√
2gx cos α

i.e.,

wx0,δl =
√

2gx0 cos αWx,δl

=
√

2 × 9.8 × 0.118 × cos 30o

= 1.415m s−1(Wx,δl = 1).

From (15.13) we have

Wy,δl =
wyo,δl√

2gxo cos α
Re1/(n+1)

xo

i.e.,

wyo,δl =
√

2gx0 cos αRe−1/(n+1)
x0

Wy,δl

=
√

2 × 9.8 × 0.118 × cos 30o×219.4−1/(0.5+1) × (−2.0354)

= −0.079m s−1.

(e) For calculation of x0,δl(x0), Cf,wx0,δl for vertical plate case. According to
(15.33) and Table 15.3, we have the following expression

(x0)v = (x0)i/cosγα,

where
For x0,γ = (1 − 2n)/(2n + 1) = (1 − 2 × 0.5)/(2 × 0.5 + 1) = 0, then,

(x0)v = 0.118/ cos◦ 30o

= 0.118m.

For δl(x0), γ = −1/(2n + 1) = −1/(2 × 0.5 + 1) = −0.5, then,

(δl(x0))v = (δl(x0))i/ cosγ α

= 0.0171/ cos−0.5(30o)

= 0.0159m.

For Cf , γ = (n − 2)/(2(n + 1)) = (0.5 − 2)/(2 × (0.5 + 1)) = −0.5, then

(Cf )v = (Cf )i/ cosγ α

= 0.0578/ cos−0.5(30o)

= 0.05379.
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For wx0,δl , γ = 1/2, then

(wx0,δl)v = (wx0,δl)i/ cosγ α

= 1.415/ cos0.5(30o)

= 1.5205m s−1

For wy0,δl , γ = (2n − 1)/(2(n + 1)) = (2 × 0.5 − 1)/(2 × (0.5 + 1)) = 0, then

(wy0,δl)v = (wy0,δl)i/ cosγ α

= −0.079/ cos◦ α

= −0.079.
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16

Pseudosimilarity and Boundary Layer
Thickness for Non-Newtonian
Falling Film Flow

Nomenclature

a thermal diffusive coefficient, λ
ρcp

, m2 s−1

cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m (s2)−1

g(η, ζ) defined temperature gradient,
∂θ(η, ζ)

∂ζ
K coefficient of consistency, kg sn−2 m−1

n power law index
Prx local Prandtl number,

xwx,∞
a

Re−2/(n+1)
x

Pr∗x critical Prandtl number

Rex local Reynolds number,
xn(wx,∞)2−nρ

K
t temperature, ◦C
wx, wy velocity components in the x- and y- directions,

respectively, m s−1

Wx(η),Wy(η) dimensionless velocity components in the x- and
y-directions, respectively

wx,∞ velocity of the fluid outside the boundary layer, m s−1

x, y streamwise and cross-stream coordinates, m
x0 length of the boundary layer region, m

Greek symbols

η dimensionless coordinate variable for boundary layer,
(y/x)Re

1/(n+1)
x

ηδl dimensionless momentum boundary layer thickness
ηδt dimensionless thermal boundary layer thickness
ηδl∗ dimensionless critical boundary layer thickness
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ζ
x

x0
θ(η, ζ) dimensionless temperature, (t − t∞)/(tw − t∞)
ρ density, kg m−3

Subscripts
i inclined case
l momentum boundary layer
v vertical case or vapor
x local value
w at wall
α (or y) angle of inclination
∞ far from the wall surface

16.1 Introduction

Efficient heating or cooling of liquids can be achieved by allowing the fluid to
flow in a thin film along a solid surface kept at a constant temperature. While
the hydrodynamics of thin film flow of Newtonian liquids has been extensively
studied for several decades, only modest attention has been devoted to gravity-
driven films of non-Newtonian liquids.

Heat transfer from a constant temperature wall to hydrodynamically fully
developed power-law films was probably first considered by Yih and Lee [1],
while the corresponding mass transfer problem (i.e., solid dissolution from the
wall and diffusion into the film) has been studied by Astarita [2] and Mashelker
and Chavan [3]. For the effect of injection/suction on the heat transfer, so
far there has been study by Pop et al. [4] on the steady laminar gravity-
driven film flow along a vertical wall for Newtonian fluids, which is based on
Falkner–Skan type transformation. A mathematical model for heat transfer of
non-Newtonian falling film flow was dealt with by Ouldhadda and Idrissi [5]
on a horizontal circular cylinder. Meanwhile, Rao [6] measured experimentally
the heat transfer in a fully developed non-Newtonian film flow falling down a
vertical tube.

However, most of the previous theoretical models only solved the similar-
ity momentum problem for the boundary layer region. The solution for the
similarity thermal boundary layer encounters formidable difficulties when the
boundary layer thickness of momentum and temperature differ significantly,
which is a characteristic of non-Newtonian power-law fluids. The solution
of similarity momentum boundary layer cannot be successfully applied for
solution of the heat transfer in boundary layer region, since there is no sim-
ilarity solution for the energy equation related to non-Newtonian power-law
fluids. The determination of exact thermal boundary layer thickness is very
important, otherwise, the hydrodynamics and heat transfer analyses for the
boundary layer region, fully viscous region and the developed flow region will
not produce reliable results.
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Therefore, a reliable and convenient treatment approach of local non-
similarity of thermal boundary layer is very important for solution for falling-
film flow of non-Newtonian power-law fluids (FFNF). For this purpose, on
the basis of [7], Shang and Andersson [8] and Shang and Gu [9] focused on
an extensive study for a systematic solution on local nonsimilarity of thermal
boundary layer for falling-film flow of non-Newtonian power-law fluids using
a pseudosimilarity approach. They provided the similarity approach for the
rigorous solution of heat transfer coefficient related to the nonsimilarity ther-
mal boundary layer of the non-Newtonian power-law fluids for the boundary
layer region.

In this chapter, the focus is on presentation of our recent developments on
analyses of pseudosimilarity, and boundary layer thickness for non-Newtonian
falling film flow. To this end, a mathematical model for thermal boundary layer
in an accelerating liquid film of non-Newtonian power-law fluids is presented.
A pseudosimilarity transformation method is induced for the thermal bound-
ary layer equation. On this basis, the heat transfer problem can be solved by
means of a local nonsimilarity approach with n and the induced local Prandtl
number Prx being the only parameters. Based on the newly defined “local
Prandtl number,” proposed by Shang and Andersson [8], the dependence of
the thickness both of the momentum boundary layer and thermal boundary
layer is discussed. It is found that the momentum boundary layer thickness
decreases monotonically with increasing power-law index; while the thermal
boundary layer thickness keeps almost the same with variation of power-law
index but decreases significantly with the increase of the “local Prandtl num-
ber.” It shows that the adopted pseudosimilarity approach is capable of solving
the problem of nonsimilarity thermal boundary layer in the falling film of a
non-Newtonian power-law fluid. Meanwhile, a critical local Prandtl number
Pr∗x is introduced, which is a monotonically increasing function of n.

16.2 Physical Model and Governing
Partial Differential Equations

Consider the accelerating laminar flow in the boundary layer region of a non-
Newtonian liquid film down along an inclined plane surface, as shown schemat-
ically in Fig. 16.1. The incompressible and inelastic fluid is assumed to obey
the Ostwald-de-Waele power-law model and the action of viscous stresses is
confined to the solid surface. The basis boundary layer equation for mass,
momentum, and thermal energy are:

∂wx

∂x
+

∂wy

∂y
= 0, (16.1)

wx
∂wx

∂x
+ wy

∂wx

∂y
= g cos α + n

K

ρ

(
∂wx

∂y

)n−1
∂2wx

∂y2
, (16.2)
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Fig. 16.1. Schematic representation of accelerating film flow, cited from Shang and
Gu [9]

wx
∂t

∂x
+ wy

∂t

∂y
=

λ

ρcp

∂2t

∂y2
, (16.3)

and the boundary conditions are

y = 0 : wx = 0, wy = 0, t= tw, (16.4)
y = δl, wx = wx,∞, (16.5)
y = δt, t = t∞, (16.6)

where wx and wy are velocity exponents in x and y directions, respectively,
while g and α denote the gravitation acceleration and the angle of incli-
nation of the plane wall. Here it has been anticipated that ∂wx/∂y ≥ 0
throughout the entire of the film. δl and δt denote the thicknesses of the mo-
mentum and thermal boundary layers, respectively, while wx,∞ and t∞ are
velocity and temperature of the fluid outside the respective boundary layers.
It is noteworthy that wx,∞ varies with x, and the wall temperature tw and
the external temperature t∞ are constants as one kind of temperature con-
ditions. The fluid physical properties λ, ρ, cp,K, and n, which are assumed
to be constant, are the thermal conductivity, density, specific heat, coefficient
of consistency, and power-law index, respectively. The deviation of n from
unity indicates the degree of deviation from Newtonian rheology and the par-
ticular case n = 1 represents a Newtonian fluid with dynamic coefficient of
viscosity K.
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No-slip and impermeability conditions at the inclined surface y = 0 are
expressed by the boundary conditions (16.4), while the outer condition (16.5)
assures that the velocity component wx within the boundary layer approaches
the external velocity

wx,∞ =
√

2gx cos α (16.7)

at the edge y = δl of the momentum boundary layer.

16.3 Similarity Transformation

Incidently, as pointed out by Andersson and Irgens [10], the external velocity
(16.7) belongs to the Falkner–Skan class of freestreams wx,∞∞xm, which per-
mits a similarity transformation of the momentum boundary layer equation
even for power-law fluids. A generalized Falkner–Skan type of transformation
was therefore introduced in [11, 12], while Andersson and Shang [7] devised
an alternative similarity transformation. However, as we shall see, exact sim-
ilarity solutions of the thermal energy equation exist only in the particular
case when the power-law index n is equal to unity. In this case, Shang and
Andersson derived a pseudosimilarity transformation for solution of thermal
boundary layer problem in falling film flow with non-Newtonian power-law
fluids [8].

According to [8], the new independent and dimensionless variables are
introduced as follows:

η =
y

x
Re1/(n+1)

x , (16.8)

ζ =
x

x0
, (16.9)

where x0 is the length of the boundary layer region and

Rex =
xn(wx,∞)2−nρ

K
, (16.10)

where Rex is a generalized local Reynolds number.
The dimensionless velocity components are defined as

Wx(η) =
wx√

2gx cos α
, (16.11)

Wy(η) =
wy√

2gx cos α
Re1/(n+1)

x , (16.12)

which are independent of ζ.
The dimensionless temperature is defined as

θ(η, ζ) =
t − t∞
tw − t∞

, (16.13)

which will depend both on η and ζ.
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According to the derivations presented in Chap. 15, the partial differential
equations (16.1) and (16.2) are transformed into the following dimensionless
equations, respectively:

Wx(η) − n

(1 + n)
η
dWx(η)

dη
+ 2

dWy(η)
dη

= 0, (16.14)

Wx(η)
[
− n

(1 + n)
η
dWx(η)

dη
+ Wx(η)

]

+2Wy(η)
dWx(η)

dη
= 1 + 2n

(
dWx(η)

dη

)n−1 d2Wx(η)
dη2

. (16.15)

Additionally, the similarity transformation of (16.3) is done as follows:
At first, the derivative ∂t/∂x is expressed as

∂t

∂x
=

∂t

∂η

∂η

∂x
+

∂t

∂ξ

∂ξ

∂x
,

where

∂t

∂η
= (tw − t∞)

∂θ(η, ξ)
dη

,

∂η

∂x
=

∂

∂x

[y

x
Re1/(n+1)

x

]

=
∂

∂x

[
y

(
(2g cos α)(2−n)/2ρ

K

)1/(n+1)

x−n/(2(n+1))

]

= − n

2(n + 1)
ηx−1,

∂t

∂ξ
= (tw − t∞)

∂θ(η, ξ)
∂ξ

,

∂ξ

∂x
=

1
x0

.

Therefore,

∂t

∂x
= −(tw − t∞)

∂θ(η, ξ)
dη

n

2(n + 1)
ηx−1 +

1
x0

(tw − t∞)
∂θ(η, ξ)

∂ξ
.

The derivative ∂t/∂y is expressed as

∂t

∂y
=

∂t

∂η

∂η

∂y
+

∂t

∂ξ

∂ξ

∂y
,
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where
∂η

∂y
=

1
x

(Rex)1/(n+1)

∂ξ

∂y
= 0.

Therefore
∂t

∂y
= (tw − t∞)

∂θ(η, ξ)
∂η

1
x

(Rex)1/(n+1).

Additionally,

∂2t

∂y2
=

1
x

(tw − t∞)(Rex)1/(n+1) ∂

∂η

(
∂θ(η, ξ)

∂η

)
1
x

(Rex)1/(n+1)

=
1
x2

(tw − t∞)(Rex)2/(n+1) ∂

∂η

(
∂θ(η, ξ)

∂η

)
.

On these bases, (16.3) is changed into

√
2gx cos αWx(η)

[
−(tw − t∞)

∂θ(η, ξ)

dη

n

2(n + 1)
ηx−1 +

1

x0
(tw − t∞)

∂θ(η, ξ)

∂ξ

]

+
√

2gx cos αRe−1/(n+1)
x Wy(η)(tw − t∞)

∂θ(η, ξ)

∂η

1

x
(Rex)1/(n+1)

=
λ

ρcp

1

x2
(tw − t∞)(Rex)2/(n+1) ∂

∂η

(
∂θ(η, ξ)

∂η

)
.

The earlier equation is simplified to

√
2gx cos αWx(η)

[
−∂θ(η, ξ)

dη

n

2(n + 1)
ηx−1 +

1
x0

∂θ(η, ξ)
∂ξ

]

+
√

2gx cos αWy(η)
∂θ(η, ξ)

∂η

1
x

=
λ

ρcp

1
x2

(Rex)2/(n+1) ∂

∂η

(
∂θ(η, ξ)

∂η

)
,

or
√

2gx cos αWx(η)
[
−∂θ(η, ξ)

dη

n

2(n + 1)
η +

x

x0

∂θ(η, ξ)
∂ξ

]

+
√

2gx cos αWy(η)
∂θ(η, ξ)

∂η
=

λ

ρcp

1
x

(Rex)2/(n+1) ∂

∂η

(
∂θ(η, ξ)

∂η

)
.

With (16.10), the earlier equation can be simplified into the following form[
− n

2(n + 1)
ηWx(η) + wy(η)

]
∂θ(η, ξ)

∂η
+ ξWx(η)

∂θ(η, ξ)
∂ξ

=
1

xwx,∞
a (Rex)−2/(n+1)

∂2θ(η, ξ)
∂η2

, (16.16)
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subject to the boundary conditions

η = 0 : Wx(η) = 0, Wy(η) = 0, θ(η, ζ) = 1, (16.17)
η = ηδl : Wx(η) = 1, (16.18)
η = ηδt , θ(η, ζ) = 0. (16.19)

16.4 Local Prandtl Number

The denominator (xwx,∞/a)(Rex)−2/(n+1) in the diffusion coefficient in (16.16)
can be defined as the local Prandtl number Prx, i.e.,

Prx =
xwx,∞

a
Re−2/(n+1)

x , (16.20)

where a =
(

λ
ρcp

)
denotes the thermal diffusivity.

With (16.7) and (16.10), the earlier equation can be expressed as

Prx =
xwx,∞

a
Re−2/(n+1)

x

=
x
√

2gx cos α

a

[
xn(

√
2gx cos α)2−nρ

K

]−2/(n+1)

=
√

2g cos α

a

[
(
√

2g cos α)2−nρ

K

]−2/(n+1)

x3/2[x(n+2)2]−2/(n+1)

=
√

2g cos α

a

[
(
√

2g cos α)2−nρ

K

]−2/(n+1)

x(n−1)/(2(n+1)).

Now it is readily seen that Prx → 0 as x → 0 if n > 1 and that Prx → ∞ as
x → 0 if n < 1.

In the special case when the power-law index n is equal to unity, i.e., for
a Newtonian liquid film, (16.20) can be simplified as

Prx =
xwx,∞

λ
ρcp

[
x(wx,∞)2−1ρ

K

]−2/(1+1)

.

For Newtonian fluids, the coefficient of consistency K is replaced by the
absolute viscosity µ, and then the earlier equation is further simplified to

Prx =
xwx,∞

λ
ρcp

[
x(wx,∞)ρ

µ

]−1

=
(ρcp

λ

)(µ

ρ

)

=
µcp

λ
,

where µ, λ, and cp are absolute viscosity, thermal conductivity, and specific
heat of the Newtonian liquid, respectively. In this case, the local Prandtl
number for non-Newtonian power law fluids is simplified to Prandtl number
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for Newtonian fluids, the diffusion coefficient in equation (16.16) becomes
independent of x, i.e., ∂θ/∂ξ = 0 and similarity can be achieved also for the
temperature field. This particular case has been explored by Andersson [13].

16.5 Pseudosimilarity for Energy Equation

Although the hydrodynamic problem admits similarity solutions, the accom-
panying thermal problem does not since the governing equation (16.16) for
the temperature field exhibits explicit dependencies on both ζ and η. An ac-
curate method for obtaining locally nonsimilar boundary layer solutions was
suggested by Sparrow et al [14], and applied by Shang and Andersson [8] to
solutions for thermal boundary layer of non-Newtonian power-law liquids. Ac-
cording to [8] local pseudosimilarity transformation for the thermal boundary
layer is achieved by first introducing the new variable

g(η, ζ) =
∂θ(η, ζ)

∂ζ
(16.21)

in the actual differential equation so that the energy equation (16.16) becomes[
− n

2(1 + n)
ηWx(η) + Wy(η)

]
∂θ(η, ζ)

∂η
+ ζWx(η)g(η, ζ) =

1
Prx

∂2θ(η, ζ)
∂η2

.

(16.22)
Differentiating (16.22) with respect to ζ, we have

[
− n

2(n + 1)
ηWx(η) + Wy(η)

]
∂g(η, ζ)

∂η
+ Wx(η)g(η, ζ) + ζWx(η)

∂g(η, ζ)
∂η

=
∂
(

1
Prx

)
∂ξ

(
∂2θ(η, ζ)

∂η2

)
+

1
Prx

∂

∂ξ

(
∂2θ(η, ζ)

∂η2

)
, (16.23)

where

∂

∂ξ

(
∂2θ(η, ζ)

∂η2

)
=

∂2g(η, ζ)
∂η2

.

With (16.7), (16.10), and (16.20), we have

Prx =
x
√

2gx cos α

a

[
xn(

√
2gx cos α)2−nρ

K

]−2/(n+1)

=
x3/2

√
2g cos α

a

[
xnx(2−n)/2(

√
2g cos α)2−nρ

K

]−2/(n+1)

=
x3/2

√
2g cos α

a

[
x(n+2)/2(

√
2g cos α)2−nρ

K

]−2/(n+1)

= x(n−1)/(2(n+1))

√
2g cos α

a

[
(
√

2g cos α)2−nρ

K

]−2/(n+1)

.
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Then
∂
(

1
Prx

)
∂ξ

=
∂

∂ξ

{
x(1−n)/(2(n+1))

(√
2g cos α

a

)−1 [ (
√

2g cos α)2−nρ

K

]2/(n+1)
}

=
1 − n

2(n + 1)

{
x0x

(−1−3n)/(2(n+1))

(√
2g cos α

a

)−1 [ (
√

2g cos α)2−nρ

K

]2/(n+1)
}

=
1 − n

2(n + 1)

{
ξ−1x · x(−1−3n)/(2(n+1))x3/2x−(n+2)/(n+1)

(
x
√

2gx cos α

a

)−1 [ (xn
√

2gx cos α)2−nρ

K

]2/(n+1)
}

=
1 − n

2(n + 1)
ξ−1Pr−1

x .

Thus, (16.23) is changed into the following:
[
− n

2(n + 1)
ηWx(η) + Wy(η)

]
∂g(η, ζ)

∂η
+ Wx(η)g(η, ζ)

=
1 − n

2(n + 1)
ξ−1Pr−1

x

(
∂2θ(η, ζ)

∂η2

)
+

1
Prx

∂

∂ξ

(
∂2θ(η, ζ)

∂η2

)
,

or [
− n

2(n + 1)
ηWx(η) + Wy(η)

]
∂g(η, ζ)

∂η
+ Wx(η)g(η, ζ) + ξWx(η)

∂g(η, ζ)
∂ξ

=
1

Prx

[
∂2g(η, ζ)

∂η2
− n − 1

2(n + 1)
ξ−1 ∂2θ(η, ζ)

∂η2

]
, (16.24)

where the primes have been introduced to denote differentiation with respect
to η. The final step is to neglect terms involving (∂/∂ξ) in the subsidiary
equation (16.24), whereas the primary equation (16.22) remains intact.

We introduce the new variable

h(η, ξ) = ξ · g(η, ξ) = ξ
∂θ(η, ξ)

∂ξ
. (16.25)

Multiply (16.24) by ξ, and then (16.24) is simplified to
[
− n

2(n + 1)
ηWx(η) + Wy(η)

]
∂h(η, ζ)

∂η
+ Wx(η)h(η, ζ)

=
1

Prx

[
∂2h(η, ζ)

∂η2
− n − 1

2(n + 1)

(
∂2θ(η, ζ)

∂η2

)]
. (16.26)
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Likewise, ξg(η, ξ) in (15.25) is replaced by h. Equation (16.26) is different from
the general similarity equation, and named pseudosimilarity equation.

Thus, the two-equation local pseudosimilarity model consists of the cou-
pled second-order differential equations (16.22) and (16.26) for the two
unknowns θ(η, ξ) and h(η, ξ). These equations can be treated as ordinary dif-
ferential equations solved as a two-point boundary value problem in the single
variables η with n and Prx being the only parameters. Boundary conditions
for the subsidiary unknown h become

η = 0 : h(η, ζ) = 0, (16.27)
η = ηδt , h(η, ζ) = 0, (16.28)

after differentiation of the boundary conditions (16.17) and (16.19) for θ and
respect ζ.

16.6 Critical Local Prandtl Number

The momentum boundary layer thickness ηδl and the thermal boundary layer
thickness ηδt are different in most of the cases for falling-film flow of power-
law fluids. From (16.14) and (16.15) it is found that the momentum boundary
layer thickness ηδl only depends on the power-law index n, and it was observed
in Chap. 15 that ηδl is a monotonically decreasing function of n throughout the
parameter range 0.1 ≤ n ≤ 2. In that study the momentum boundary layer
thickness ηδl was defined in accordance with common practice in aerodynamic
boundary layer theory, namely as the value of η for which the dimensionless
velocity component Wx(η) becomes equal to 0.99. For convenience, however,
in the present investigation, the momentum boundary layer thickness ηδl is
defined as the value of η for which Wx(η) is practically equal to one (i.e., to
within 10−4%).

From (16.16) it is found that the thermal boundary thickness ηδt is ob-
served as a part of the solution of a two-parameter problem, and it does
not only depend on the power-law index n but varies also with the local
Prandtl number Prx. In the study in [8,9], Shang, Andersson, and Gu found
that thermal boundary thickness ηδt will increase with decreasing the local
Prandtl number Prx, but almost keeps the same with variation of the power-
law index n. For a given value of n, there should be a critical value of the
local Prandtl number Prx, with which the thermal boundary layer thickness
ηδt equals the momentum boundary layer thickness ηδl . This critical value of
the local Prandtl number Prx is defined as the critical local Prandtl number,
which is denoted by Pr∗x. In this case, the completely indentical momentum
boundary layer thickness ηδl and thermal boundary layer thickness ηδt are
denoted by critical boundary layer thickness η∗

δl
.

The variation of the critical momentum boundary layer thickness η∗
δl

and
the critical value of the local Prandtl number Pr∗x with n are displayed in
Fig. 16.2. and 16.3 [8], respectively.



372 16 Pseudosimilarity and Boundary Layer Thickness

0.00
0.00

10.00

20.00

h∗

30.00

0.40 0.80 1.20
n

1.60 2.00
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Fig. 16.3. Variation of critical Prandtl number Pr∗x with power-law index n, cited
from Shang and Andersson [8]

16.7 Analysis of Boundary Layer Thickness

16.7.1 Precautions for Prx > Pr∗
x

According to the study of Shang and Gu [9], the thickness of the thermal
boundary layer ηδt

, which is defined by ∂θ(η, ζ)/∂η = 0.00001, has been
determined for various local Prandtl numbers and power-law index. Fig-
ure 16.4 [9] shows a series of the related results, together with the variation of
the thickness ηδl∗ with n. From Fig. 16.4, it is seen that, for a special power-
law index n, the thermal boundary layer thickness ηδt

is thinner than the
critical momentum boundary layer thickness η∗

δt
for Prx > Pr∗x. The differ-

ence between the thickness increases significantly with the increase of Prx, so
that the temperature gradients are only confined to the innermost part of the
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velocity boundary layer for Prx � Pr∗x. The numerical accuracy will accord-
ingly deteriorate if the two boundary layer problems are solved simultaneously
all the way from the wall (η = 0) to the edge of the momentum boundary layer
(η = ηδl), cf. Table 16.1. The remedy is to carry out the numerical calculation
only sufficiently far so that the temperature gradient vanishes. To accomplish
this, the external boundary condition for the velocity field in (16.18) is re-
placed with the accurately computed value of Wx at the particular position,
which corresponds to the edge of the calculation domain for the temperature
field. As for the specific example n = 0.5 and Prx = 10 in the Table 16.2,
the numerical solution was obtained with Wx(2.5) = 0.931076 taken from Ta-
ble 16.1 as outer condition for Wx, in spite of the fact that the momentum
boundary layer extends all the way η = 15.

16.7.2 Precautions for Prx < Pr∗
x

For a special power-law index n, the thermal boundary layer becomes thicker
than the viscous boundary layer if Prx < Pr∗x and in this case the ratio of
the thermal boundary layer thichness ηδt to the momentum boundary layer
thichness ηδl , i.e., ηδt/ηδl , increases with decreasing Prx. Temperature gra-
dients thus extend far into the frictionless flow. To facilitate the numerical
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Table 16.1. Similarity solution for the velocity field for power-law index n = 0.5,
cited from Shang and Andersson [8]

η Wy Wx
dWx
dη

0 0 0 1.104406
0.1 −0.001811 0.105273 1.000948
0.2 −0.007129 0.200581 0.905206
0.3 −0.015776 0.286522 0.8914695
0.4 −0.027575 0.363738 0.730722
0.5 −0.042347 0.432889 0.653416
0.6 −0.059914 0.494642 0.582748
0.7 −0.080097 0.549655 0.518561
0.8 −0.102721 0.598562 0.460595
0.9 −0.127614 0.64197 0.408512
1 −0.154608 0.680448 0.361926
1.2 −0.214262 0.744686 0.28355
1.4 −0.280483 0.794992 0.222044
1.6 −0.352205 0.83441 0.17416
1.8 −0.428503 0.865373 0.137048
2 −0.508594 0.889788 0.108331
2.2 −0.591817 0.909136 0.086094
2.5 −0.721362 0.931076 0.061694
3 −0.946498 0.955015 0.036572
3.5 −1.179419 0.969477 0.022584
4 −1.417354 0.978569 0.014495
4.5 −1.658602 0.984503 0.009636
5 −1.9021 0.988507 0.006611
6 −2.393348 0.99328 0.003375
8 −3.384437 0.99729 0.001132
10 −4.380367 0.998791 0.000484
12 −5.37828 0.999488 0.000248
15 −6.876808 1 0.000118

calculation of the thermal boundary layer problem and assure the numerical
accuracy, the momentum boundary layer (16.14) and (16.15) are calculated
only up to ηδl . Thereafter, the velocity field is taken as

Wx(η) = 1, (16.29)

throughout the remaining η-range from ηδl to ηδt . Meanwhile, with (16.29) and
by using the relationship dWx(η)/dη = 0, the continuity (16.14) is changed
into the following one:

dWy(η)
dη

= −1
2
.

Integrating the earlier equation, we obtain the following relationship about
Wy(η):

Wy(η) = −1
2
η + const. (16.30)
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Table 16.2. Local no-similarity (pseudosimilarity) solution of the heat transfer
problem for n = 0.5 and Prx = 10, cited from Shang and Andersson [8]

η Wy Wx
dWx
dη

θ(η, ζ) dθ(η,ζ)
dη

0 0 0 1.104406 1.000000 −1.139345
0.1 −0.001811 0.105273 1.000948 0.886103 −1.137857
0.2 −0.007129 0.200581 0.905206 0.772716 −1.127787
0.3 −0.015776 0.286522 0.8914695 0.661083 −1.101675
0.4 −0.027575 0.363738 0.730722 0.553101 −1.054052
0.5 −0.042347 0.432889 0.653416 0.451082 −0.982272
0.6 −0.059914 0.494642 0.582748 0.357429 −0.887155
0.7 −0.080097 0.549655 0.518561 0.274286 −0.773095
0.8 −0.102721 0.598562 0.460595 0.203198 −0.647450
0.9 −0.127614 0.64197 0.408512 0.144881 −0.519255
1 −0.154608 0.680448 0.361926 0.099129 −0.397539
1.2 −0.214262 0.744686 0.28355 0.040563 −0.200474
1.4 −0.280483 0.794992 0.222044 0.013642 −0.081438
1.6 −0.352205 0.83441 0.17416 0.003704 −0.026229
1.8 −0.428503 0.865373 0.137048 0.000799 −0.006607
2 −0.508594 0.889788 0.108331 0.000135 −0.001286
2.2 −0.591817 0.909136 0.086094 0.000017 −0.000192
2.4 −0.677629 0.924559 0.068834 0.000001 −0.000022
2.5 −0.721362 0.931076 0.061694 0.000000 −0.000007

By using (16.29) and (16.30) the governing equations (16.14)–(16.16), and
(16.26) are further calculated. A specific example n = 1.5 and Prx = 1 is
given in Table 16.3 and shown graphically in Fig. 16.5. Here, the analytical
continuation in the range 2.7 ≤ η ≤ 5.6 is represented.

16.8 Remarks

The pseudosimilarity solutions of the thermal boundary layer of a falling film
flow of power-law fluids are extensively developed and presented in this chap-
ter. Based on a proposed “local Prandtl number,” the dependence of the
thickness of the momentum boundary layer and thermal boundary layer on
the power-law index and local Prandtl number are discussed. Their changes
with power-law index and local Prandtl number are also presented. The mo-
mentum layer thickness ηδl depends only on the power-law index n, while the
thermal boundary layer thickness ηδt depends on the local Prandtl number
Prx. The momentum boundary layer thickness ηδl decreases significantly with
the increase of the parameter n. The thermal boundary layer thickness ηδt al-
most keeps the same with variation of the parameter n but decreases rapidly
with increasing the parameter Prx, especially when Prx < 1. This analysis
provides a clear identification for both ηδt > η∗

δl
and ηδt < η∗

δl
.
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Table 16.3. Local pseudosimilarity solution of the heat transfer problem for n = 1.5
and Prx = 1.0, cited from Shang and Andersson [8]

η Wy Wx
dWx
dη

θ(η, ζ) dθ(η,ζ)
dη

0 0 0 0.865908 1.000000 −0.485194
0.1 −0.000872 0.084788 0.829724 0.951482 −0.485141
0.2 −0.003513 0.165922 0.792848 0.902982 −0.484778
0.3 −0.007964 0.243336 0.755334 0.854547 −0.483804
0.4 −0.014265 0.316969 0.717243 0.806251 −0.481941
0.5 −0.022462 0.386768 0.678643 0.758197 −0.478929
0.6 −0.032598 0.452683 0.649610 0.710511 −0.474537
0.7 −0.044719 0.514678 0.600232 0.663342 −0.468567
0.8 −0.058871 0.572721 0.560604 0.616856 −0.460861
0.9 −0.075097 0.626794 0.520837 0.571231 −0.451305
1 −0.093438 0.676888 0.481052 0.526658 −0.439837
1.2 −0.136618 0.765174 0.401986 0.441431 −0.411192
1.4 −0.188649 0.827799 0.324677 0.362651 −0.375526
1.6 −0.249641 0.895264 0.250661 0.291595 −0.334268
1.8 −0.319506 0.938405 0.181772 0.229180 −0.289483
2 −0.397884 0.968456 0.120153 0.175877 −0.243570
2.2 −0.484046 0.987115 0.068278 0.131667 −0.198916
2.4 −0.566790 0.996604 0.028956 0.096088 −0.157574
2.6 −0.674316 0.999743 0.005337 0.068316 −0.121037
2.7 −0.724114 1 0.000493 0.057033 −0.104856
2.8 −0.774108 1 0 0.047296 −0.090137
3 −0.874108 1 0 0.031870 −0.065079
3.4 −1.074108 1 0 0.013323 −0.030914
3.8 −1.274108 1 0 0.004974 −0.012972
4 −1.374108 1 0 0.002909 −0.008021
4.4 −1.574108 1 0 0.000906 −0.002794
4.8 −1.774108 1 0 0.000243 −0.000858
5 −1.874108 1 0 0.000116 −0.000454
5.4 −2.074108 1 0 0.000016 −0.000114
5.6 −2.174108 1 0 0 −0.000054
Note: the velocity field beyond η = 2.7 is obtained from the analytical continuation
in (16.29) and (16.30)

With the introduction of the “local Prandtl number,” it is found that the
heat transfer problem turned out to involve only two independent parameters,
the power-law index and the local Prandtl number. In addition, the depen-
dence of the power-law index and the local Prandtl number on the thermal
boundary layer has been clarified.

The pseudosimilarity solution and the assumed true-similarity solution are
presented for the investigation of nonsimilarity thermal boundary layer. The
degree of nonsimilarity of thermal boundary layer has been determined for
various values of power-law indices and local Prandtl numbers.
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17

Heat Transfer of the Falling Film Flow

Nomenclature

a thermal diffusive coefficient, m2 s−1

cp specific heat at constant pressure, J (kg K)−1

g gravitation acceleration, m s−2

g(η, ζ) defined temperature gradient, ∂θ(η,ζ)
∂ζ

K coefficient of consistency, kg sn−2 m−1

n power law index
Prx local Prandtl number, xwx,∞

a Re
−2/(n+1)
x

Pr∗x critical local Prandtl number
qx local heat transfer rate at position x per unit area on

the plate, W m−2

Qx total heat transfer rate for position x = 0 to x with
width of b on the plate

Rex local Reynolds number, xn(wx,∞)2−nρ
K

t temperature, ◦C
V volume flow rate of the falling film flow, m3 s−1

wx, wy velocity components in the x- and y-directions,
respectively, m s−1

Wx(η),Wy(η) dimensionless velocity components in the x- and
y-directions, respectively

wx,∞ velocity of the fluid outside the boundary layer, m s−1

x, y streamwise and cross-stream coordinates, m
x0 length of the boundary layer region, m

Greek symbols
η dimensionless coordinate variable for boundary layer,

y
xRe

1/(n+1)
x

ηδl dimensionless momentum boundary layer thickness
ηδt dimensionless thermal boundary layer thickness
η∗

δl
dimensionless critical boundary layer thickness

ζ x
x0
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θ(η, ζ) pseudo similarity solution of dimensionless
temperature, T−T∞

Tw−T∞

−
[

dθ(η,ζ)
dη

]
η=0

pseudo similarity solution of dimensionless
temperature gradient

−
[

dθ(η,ζ)
dη

]
η=0

(1) local pseudo similarity solution

−
[

dθ(η,ζ)
dη

]
η=0

(2) results evaluated by curve-fit formula equation (17.25)

−
[

dθ(η,ζ)
dη

]
η=0

(3) local similarity solution

αx local heat transfer coefficient, W (m2K)−1

ε1 relative deviation evaluated by (17.26),(
−dθ(η,ζ)

dη

)
η=0

(1) −
(
−dθ(η,ζ)

dη

)
η=0

(2)(
−dθ(η,ζ)

dη

)
η=0

(1)

ε2 relative deviation evaluated by (17.28),(
−dθ(η,ζ)

dη

)
η=0

(1) −
(
−dθ(η,ζ)

dη

)
η=0

(3)(
−dθ(η, ζ)

dη

)
η=0

(1)

ρ density, kg m−3

Subscripts
i inclined case
v vertical case or vapor
x local value
w at wall
α (or y) angle of inclination
∞ far from the wall surface

17.1 Introduction

There have been a number of studies on heat transfer from a constant tem-
perature wall to hydrodynamically fully developed power-law films, such
as those by Yih and Lee [1], Astarita [2], Mashelker and Chavan [3], Pop
et al. [4], Ouldhadda and Idrissi [5], Rao [6], etc. However, except a few works,
such as of Shang and Andersson [7], and Shang and Gu [8], in the most of cur-
rent studies of FFNF system, the hydraulic entrance region (i.e. the boundary
layer region) was ignored in their heat transfer analysis of modeling and simu-
lation. With ignoring the existing boundary layer region for the FFNF system,
it is never possible to capture its adaptive remodeling process for conducting
correct calculation for velocity and temperature fields and heat transfer co-
efficient. Meanwhile, only a few of recent studies of Shang, Andersson, and
Gu, [7,8] focused on a system of solutions of thermal boundary layer by using
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a pseudosimilarity approach, including the rigorous solutions about the heat
transfer coefficient of the falling-film flow of non-Newtonian power-law fluids.

Based on the presentation in Chap. 16 for pseudosimilarity analyses of
the boundary layer thickness for the non-Newtonian falling film flow, in this
present chapter, a mathematical model for the flow and heat transfer in accel-
erating liquid film of a non-Newtonian falling film flow is further presented. For
the case that the local Prandtl number Prx is larger than the critical Prandtl
number Pr∗x, the predicted temperature field in the boundary layer region is
controlled by the velocity field of the momentum boundary layer calculated
by using the governing mass and momentum equations. For the case that the
local Prandtl number Prx is smaller than the critical Prandtl number Pr∗x, it
is difficult to directly obtain the simultaneous solutions from the equations of
the momentum and thermal boundary layers, and it is necessary to apply the
perfect approach presented in Chap. 16 for overcoming such difficulty.

Since the thermal boundary layer permits exact similarity solution only in
the particular case when the power-law index is equal to unity, i.e., for New-
tonian films, the heat transfer problem is solved by means of a pseudosimi-
larity approach with power-law index n and local Prandtl number Prx being
the only parameters. The pseudosimilarity heat transfer problem is calculated
numerically in the ranges 0.2 ≤ n ≤ 2 and 0.001 ≤ Prx ≤ 1000, in which
the calculations for n = 1 are compared favorably with earlier results for
Newtonian fluid films. From the numerical solutions of the pseudosimilarity
energy equation of the thermal boundary layer, it is found that the effect of
the power-law index n on the wall gradient of the temperature field is slight
except for the range both with smaller power-law index n and larger local
Prandtl number Prx. However, the wall gradient of the temperature field will
increase with increasing the local Prandtl number Prx. Curve-fit formulas for
the temperature gradient at the wall are provided in order to facilitate rapid
and yet accurate estimates for the heat transfer coefficient and the Nusselt
number.

17.2 Governing Equations

Consider the accelerating laminar flow in the boundary layer region of a non-
Newtonian power-law liquid film down along an inclined plane surface, as
shown schematically in Fig. 15.1. According to Chaps. 15 and 16, the gov-
erning dimensionless differential equations for mass, momentum, and energy
conservations are summarized as follows for the pseudosimilarity solutions:

Wx(η) − n

(1 + n)
η
dWx(η)

dη
+ 2

dWy(η)
dη

= 0, (17.1)

Wx(η)
[
− n

(1 + n)
η
dWx(η)

dη
+ Wx(η)

]
+ 2Wy(η)

dWx(η)
dη

= 1 + 2n(
dWx(η)

dη
)n−1 d2Wx(η)

dη2
, (17.2)
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[
− n

2(1 + n)
ηWx(η) + Wy(η)

]
∂θ(η, ζ)

∂η
+ ζWx(η)g(η, ζ)

=
1

Prx

∂2θ(η, ζ)
∂η2

, (17.3)

[
− n

2(n + 1)
ηWx(η) + Wy(η)

]
∂h(η, ζ)

∂η
+ Wx(η)h(η, ζ)

=
1

Prx

[
∂2h(η, ζ)

∂η2
− n − 1

2(n + 1)
(
∂2θ(η, ζ)

∂η2
)
]

, (17.4)

subject to the boundary conditions

η = 0 : Wx(η) = 0, Wy(η) = 0, θ(η, ζ) = 1, h(η, ζ) = 0, (17.5)

η = ηδl : Wx(η) = 1, (17.6)

η = ηδt , θ(η, ζ) = 0, h(η, ζ) = 0. (17.7)

Here, the dimensionless coordinate variables are

η =
y

x
Re1/(n+1)

x , (17.8)

ζ =
x

x0
, (17.9)

where x0 is a characteristic length scale in the streamwise direction (i.e.
the length of the boundary layer region) and the generalized local Reynolds
number is

Rex =
xn(wx,∞)2−nρ

K
. (17.10)

While the velocity component wx within the boundary layer approaches the
external velocity

wx,∞ =
√

2gx cos α. (17.11)

The dimensionless velocity components are defined as

Wx(η) =
wx√

2gx cos α
, (17.12)

Wy(η) =
wy√

2gx cos α
Re1/n+1

x , (17.13)

which are independent of ζ. The dimensionless temperature and the related
new variables are defined as

θ(η, ζ) =
t − t∞
tw − t∞

, (17.14)

g(η, ζ) =
∂θ(η, ζ)

∂ζ
, (17.15)
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h(η, ξ) = ξ · g(η, ξ) = ξ
∂θ(η, ξ)

∂ξ
, (17.16)

which depend both on η and ζ. The local Prandtl number Prx is defined by
a dimensionless diffusion coefficient, i.e.,

Prx =
xwx,∞

a
(Rex)−2/(n+1). (17.17)

Since the thickness ηδt of the thermal boundary layer is observed as a part
of the solution of a two-parameter problem, ηδt does not only depend on n but
varies also with Prx. However, from the solutions it is found that the thermal
boundary layer thickness almost keep the same with the variation of the power
law index, but decrease obviously with increasing the local Prandtl number.
For a given value of n, a critical local Prandtl number Pr∗x is defined as the
particular parameter value for which the thermal boundary layer thickness
ηδt equals the momentum boundary layer thickness ηδl . This critical value
is denoted by Pr∗x and shown in Fig. 16.3, from which Pr∗x can be seen to
increase monotonically with n.

17.3 Heat Transfer Analysis

The heat transfer rate between the solid wall, which is maintained at tem-
perature tw, and the liquid film is of particular significance in industrial ap-
plications. The local heat transfer rate qx, which is defined as follows by
Fourie’s law:

qx = −λ(
∂t

∂y
)y=0, (17.18)

where λ is the thermal conductivity of the non-Newtonian liquid. With the
earlier defined dimensionless coordinate variable η, (17.18) can be transformed
to the following

qx = −λ

(
∂t

∂η

)
η=0

(
∂η

∂y

)
y=0

.

With (16.8) and (16.14), the local heat transfer rate is described as

qx = −λx−1(tw − t∞)
[
∂θ(η, ζ)

∂η

]
η=0

(Rex)1/(n+1), (17.19)

where [
∂θ(η, ζ)

∂η

]
η=0

is the dimensionless local temperature gradient on the wall. Then, with
Newtonian-Cooling law qx = αx(tw − t∞), the local heat transfer coefficient
αx is expressed as follows:

αx = −λx−1

[
∂θ(η, ζ)

∂η

]
η=0

(Rex)1/(n+1), (17.20)
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or, alternately, as local Nusselt number

Nux =
αxx

λ
= −(Rex)1/(n+1)

[
∂θ(η, ζ)

∂η

]
η=0

. (17.21)

If Qx is total heat transfer rate from the position 0 to x with the width of b
on the plate, Qx is the following integration:

Qx =
∫∫

A

qx dA,

where A = b · x. Then,

Qx = b

∫ x

0

qx dx

= −b

∫ x

0

λx−1(tw − t∞)
[
∂θ(η, ζ)

∂η

]
η=0

(Rex)1/(n+1)dx

= −b

∫ x

0

λx−1(tw − t∞)
[
∂θ(η, ζ)

∂η

]
η=0

(
xn(wx,∞)2−nρ

K

)1/(n+1)

dx

= −b

∫ x

0

λ(tw − t∞)
[
∂θ(η, ζ)

∂η

]
η=0

(
(2g cos α)

2−n
2 ρ

K

)1/(n+1)

x−n/(2(n+1))dx

= −b
2(n+1)
n+2

λ(tw−t∞)
[
∂θ(η, ζ)

∂η

]
η=0

(
(2g cos α)2−n/2ρ

K

)1/(n+1)

x(n+2)/(2(n+1))

= −b
2(n + 1)
n + 2

λ(tw − t∞)
[
∂θ(η, ζ)

∂η

]
η=0

(
xn(

√
2gx cos α)2−nρ

K

)1/(n+1)

.

Then,

Qx = −b
2(n + 1)
n + 2

λ(tw − t∞)
[
∂θ(η, ζ)

∂η

]
η=0

(Rex)1/(n+1). (17.22)

The average heat transfer coefficient αx, defined as Qx = αx(tw − t∞)A,
is expressed as

αx = −2(n + 1)
n + 2

λx−1

[
∂θ(η, ζ)

∂η

]
η=0

(Rex)1/(n+1). (17.23)

The average Nusselt number, defined as Nux = αxx/λ, is expressed as

Nux = −2(n + 1)
n + 2

[
∂θ(η, ζ)

∂η

]
η=0

(Rex)1/(n+1). (17.24)
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From (17.19) to (17.24) it is found that the local temperature gradient
[∂θ(η, ζ)/∂η]η=0 is very important for evaluation of the heat transfer. From
governing (17.3) and (17.4) it is follows that [∂θ(η, ζ)/∂η]η=0 only depends on
power-law index n and local Prandtl number Prx, i.e.,

[
∂θ(η, ζ)

∂η

]
η=0

= f(n, Prx). (17.25)

17.4 Numerical Solution for Heat Transfer

The solutions for the pseudosimilarity equations of thermal boundary layer
are obtained from (17.1)–(17.4) with the boundary condition equations
(17.5)–(17.7). Fig. 17.1 shows a number of computed temperature profiles
θ(η)with the variations of power-law index n from 0.2 to 2 and local Prandtl
number Prx from 0.001 to 1,000. While the wall temperature gradient
[(∂θ(η, ζ))/∂η]η=0, which is the most important heat transfer characteristic, is
listed in Table 17.1 [7] and plotted in Fig. 17.2. It is shown that the wall tem-
perature gradient increases significantly with increasing local Prandtl number
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Fig. 17.1. Dimensionless temperature profile θ(η, ζ)for different values of Prx and n,
cited from Shang and Andersson [7]. (a) Prx = 0.001; curves 1–8: n=0.2, 0.3, 0.5,
0.7, 1.0, 1.2, 1.5, and 2.0, (b) Prx = 0.01; curves 1–8: n=0.2, 0.3, 0.5, 0.7, 1.0,
1.2, 1.5, and 2.0, (c) Prx = 0.1; curves 1–8: n=0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5,
and 2.0, (d) Prx = 1.0; curves 1–8: n=2.0, 1.5, 1.2, 1.0, 0.2, 0.7, 0.3, and 0.5, and
(e) Prx = 1, 000; curves 1–8: n=0.2,0.3, 2.0, 0.5, 1.5, 0.7,1.2,1.2, and 1.0
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Fig. 17.2. Variation of dimensionless temperature gradient − [(∂θ(η, ζ))/∂η]η=0 at
the wall η = 0 with power-law index n for different values of the local Prandtl
number Prx. Lines 1–8 note: Prx = 0.001, 0.01, 0.1, 1, 10, 100, and 1,000

Prx from 0.001 to 1,000. However, effect of the power-law index n on the wall
gradient of the temperature field is slight except for smaller power-law index n
together with larger local Prandtl number Prx. For the particular parameter
value n = 1 the wall temperature gradient data in Table 17.1 agreed with
the calculation for a Newtonian film by Andersson [9] throughout the entire
Prandtl number range.

The most striking feature of Fig. 17.1 is that the local Prandtl number
effect is more prominent than the influence of the rheological parameter n,
except for larger local Prandtl number with smaller power-law index n. If
the value of the power-law index n equals unity, the thickness of the thermal
boundary layer is roughly the same as the thickness of the momentum bound-
ary layer for Prx = 1. Moreover, for high local Prandtl number the thermal
boundary layer is significantly thinner than the viscous boundary layer, while
for Prx � 1 the thermal boundary layer extends far into the external free
stream. Consequently, the thinning of the thermal boundary layer with in-
creasing values of Prx makes the magnitude of the temperature gradient at
the wall. The thick thermal boundary layer in the low local Prandtl number
cases suggests that the temperature adjusts from Tw to T∞ mainly in fluid
with free stream velocity wx,∞. Thus, as a first approximation, the viscous
boundary layer does not contribute to the heat flux and the temperature gra-
dient at the wall should therefore be independent of n when n < 1. However,
the data for Prx = 0.001 in Table 17.1 show that the wall temperature gradi-
ent increases slowly with n as n is varied from 0.2–2, the total increase being
less than 8%. For Prx � 1 the principal effect of the viscous boundary layer
on the temperature gradient at the wall stems from the displacement of the
external inviscid flow away from the wall.

A qualitatively different situation occurs for high local Prandtl num-
bers. Due to the substantial thinning of the thermal boundary layer with
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Table 17.1. Computed values of −
[

∂θ(η,ζ)
∂η

]
η=0

for different values of Prx and n,

cited from Shang and Andersson [7]

n Prx

0.001 0.01 0.1 1 10 100 1,000

0.2 (1) 0.02053 0.06315 0.1863 0.5111 1.27986 2.98885 6.7598
(2) 0.02078 0.06427 0.1838 0.5122 1.28135 2.98621 6.75929
ε1 −1.218% −1.77% 1.34% −0.215% 1.27% 0.088% 0.0075%
(3) 0.01897 0.05837 0.1724 0.4742 1.19263 2.78664 6.23798
ε2 7.60% 7.57% 7.46% 7.226% 6.82% 6.77% 7.72%

0.5 (1) 0.020969 0.06391 0.1836 0.4793 1.13934 2.56412 5.62871
(2) 0.020792 0.06494 0.1797 0.4782 1.13641 2.45958 5.63969
ε1 0.844% −1.61% 2.12% 0.23% 0.257% 4.077% −0.195%
(3) 0.020222 0.06162 0.1773 0.4638 1.10503 2.49064 5.47372
ε2 3.56% 3.58% 3.43% 3.23% 3.01% 2.87% 2.75%

0.7 (1) 0.021202 0.06458 0.1847 0.4758 1.11569 2.49172 5.4554
(2) 0.021161 0.06595 0.1812 0.4777 1.11644 2.49387 5.46885
ε1 0.193% −2.12% 1.89% −0.399% −0.067% −0.086% −0.247%
(3) 0.02081 0.06336 0.1814 0.468 1.09865 2.4545 5.37162
ε2 1.85% 1.89% 1.79% 1.64% 1.53% 1.49% 1.54%

1 (1) 0.021457 0.06536 0.186817 0.4776 1.10671 2.45403 5.35184
(2) 0.021458 0.06673 0.182300 0.4773 1.10248 2.44926 5.351
ε1 −0.0047% −2.096% 2.418% 0.063% 0.382% 0.194% 0.0157%
(3) 0.021455 0.06536 0.186817 0.4776 1.10671 2.45403 5.35184
ε2 0% 0% 0% 0% 0% 0% 0%

1.2 (1) 0.021595 0.06583 0.1883 0.4804 1.10769 2.44844 5.33014
(2) 0.021601 0.06715 0.1834 0.4803 1.10527 2.44816 5.33643
ε1 −0.0278% −2% 2.6% 0.02% 0.2187% 0.0114% −0.118%
(3) 0.021786 0.06641 0.1899 0.4842 1.11582 2.46617 5.37031
(5) −0.88% −0.88% −0.85% −0.79% −0.73% −0.72% −0.75%

1.5 (1) 0.021763 0.06641 0.1903 0.4853 1.11297 2.45196 5.32975
(2) 0.021788 0.06776 0.1851 0.4847 1.10965 2.45074 5.33106
ε1 −0.115% −2.03% 2.73% 0.124% 0.298% 0.05% −0.0246%
(3) 0.022179 0.06767 0.1939 0.4934 1.13046 2.4897 5.41286
ε2 −1.91% −1.90% −1.89% −1.67% −1.57% −1.54% −1.56%

2 (1) 0.022111 0.06717 0.193 0.4928 1.1246 2.46821 5.35668
(2) 0.022099 0.06877 0.1879 0.492 1.12048 2.46717 5.35603
ε1 0.0543% −2.38% 2.64% 0.162% 0.367% 0.042% 0.012%
(3) 0.022654 0.06922 0.1989 0.5064 1.15317 2.5297 5.49016
ε2 −2.46% −3.05% −3.06% −2.76% −2.54% −2.49% −2.49%

Note: (i) −
[

∂θ(η,ζ)
∂η

]
η=0

(1)(for short as (1)) local pseudosimilarity solution

(ii) −
[

∂θ(η,ζ)
∂η

]
η=0

(2) (for short as (2)), result evaluated by curve-fit formula (17.26)

(iii) Deviation ε1 defined as (17.27)

(iv) −
[

∂θ(η)
∂η

]
η=0

(3) (for short (3)), local similarity solution

(v) Deviation ε2 defined as (17.29)
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increasing Prx, the temperature gradients are contained within the inner-
most part of the momentum boundary layer. Thus, the wall gradient of the
temperature field is controlled by the velocity gradient dWx/dη at the wall.
The accurate numerical solution of the hydrodynamic problem in [10] showed
that dWx/dη is practically independent of n for dilatant film but increases
significantly with increasing pseudoplasticity 1–n for n < 1. It is therefore
interesting to observe that exactly the same n-dependency is carried over to
the wall gradients of the temperature field in Table 17.1.

To facilitate rapid estimates of the local heat transfer coefficient αx or the
local Nusselt number Nux, accurate curve-fit formulas for the wall gradient
of the temperature field are provided. The optimized expressions for the coef-
ficients a, b, and c, as obtained by Shang and Andersson [7] for matching the
formula (17.26) to the data in Table 17.1, are given in Table 17.2. Predictions
by means of this short-cut method are also included in Table 17.1.

−
[
∂θ(η, ζ)

∂η

]
η=0

= a + bPrc
x. (17.26)

If we take the corresponding pseudosimilarity solution of temperature gra-
dient from (17.3) and (17.4) as −

[
dθ(η,ζ)

dη

]
η=0

(1), the result evaluated by using

(17.26) as −
[

dθ(η,ζ)
dη

]
η=0

(2), the result of deviations ε1 of −
[

dθ(η,ζ)
dη

]
η=0

(2)

from −
[

dθ(η,ζ)
dη

]
η=0

(1) can be expressed as

ε1 =
−
[

dθ(η,ζ)
dη

]
η=0

(1) −
{
−
[

dθ(η,ζ)
dη

]
η=0

(2)
}

−
[

dθ(η,ζ)
dη

]
η=0

(1)
. (17.27)

The evaluated results− [dθ(η, ζ)/dη]η=0 (2) and their deviations ε1 are listed
in Table 17.1. It is found that the evaluated values of − [dθ(η, ζ)/dη]η=0 (2) are
very well agreement with the pseudosimilarity solutions − [dθ(η, ζ)/dη]η=0 (1)
over the entire parameter ranges 0.2 ≤ n ≤ 2 and 0.001 ≤ Prx ≤ 1, 000.

In addition, the thickness of temperature boundary layer increases with
the decrease of local Prandtl numberPrx. The related numerical solutions
h(η) are plotted in Figs. 17.3 (a) and (b), which correspond to Prx= 1 and
100, respectively. In each figure the five curves correspond to n = 0.2, 0.5,
1, 1.5, and 2, respectively. The solutions h(η) reflect the nonsimilarity of the
thermal boundary layer. It is shown in Fig. 17.3 that with variation of local
Prandtl number Prx, the nonsimilarity of the thermal boundary layer will
be different slightly [8]. However with the increase of the value |n − 1|, non
similarity of the thermal boundary layer increases obviously. Only when the
power-law index n equals unity, true similarity solution exists. The variable
h(η) is positive for n < 1 and negative for n > 1.
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Table 17.2. Coefficients a, b, and c in the curve-fit formula (17.26), cited from
Shang and Andersson [7]

Prx n a b c

0.001 ≤ Prx ≤ 1 0.2 ≤ n ≤ 1 −0.0086 +
0.0009

n
0.485 + 0.00001 0.399 +

0.008

n

×
(

1
n

) 1
n

1 ≤ n ≤ 2 −0.0074−0.00028n 0.47+0.015n 0.407

1 ≤ Prx ≤ 1, 000 0.2 ≤ n ≤ 1 0.0205 − 0.0845 0.518 + 0.0234
n

0.3324 + 0.00096

×
(

1
n

) 1
3 ×

(
1
n

)1.6

1 ≤ n ≤ 2 −0.12 + 0.079 0.541 + 0.0009n3 0.3306 + 0.0027

×
(

n
n+1

) 1
2 ×

(
1
n

)1.65
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Fig. 17.3. Numerical solutions h(η)(curves 1–5: for n = 0.2, 0.5, 1, 1.5, and 2),
cited from Shang and Gu [8]. (a) for Prx= 1 and (b) for Prx = 100

17.5 Local Similarity vs. Local Pseudosimilarity

If a true-similarity solution were assumed to exist for the thermal boundary
layer, the dimensionless energy equations (17.3) and (17.4) would be simpli-
fied to [

− n

2(1 + n)
ηWx(η) + Wy(η)

]
dθ(η)
dη

=
1

Prx

d2θ(η)
dη2

. (17.28)

A simple approach to the nonsimilar heat transfer problem associated with
the gravity-driven power-law film would be the local similarity scheme. In
that approach ξ is regarded as a known constant at any streamwise position
and the dimensionless energy equations (17.3) and (17.4) would be turned to
(16.28). The numerical solution of the simplified version of (17.28) can then
be obtained locally with Prx and n as parameters by means of the same
calculation technique as for the local nonsimilar problem defined in Chap. 16.
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The two-parameter local similarity problem was solved numerically for
various combinations of n and Prx in the intervals 0.2 ≤ n ≤ 2 and
0.001 ≤ Prx ≤ 1, 000. Results for the magnitude of the wall gradient of the
dimensionless temperature field i.e., − [∂θ(η, ζ)/∂η]η=0 are reported in Ta-
ble 17.1. To facilitate the comparison between the local pseudosimilarity and
the local similarity approach the deviation between the two sets of data, nor-
malized with the latter, has been defined as ε2 and included in the Table 17.1.

If we take the assumed true-similarity solution of the temperature gradi-
ent from (17.28) as − [dθ(η)dη]η=0 (3), the deviations ε2 of − [dθ(η)dη]η=0 (3)
from pseudosimilarity solution, − [∂θ(η, ζ)/∂η]η=0(1) can be expressed as in
(17.29). The value of ε2 for each n and Prx is shown in Table 17.1 and Fig. 17.4.

ε2 =

−
[
∂θ(η, ζ)

∂η

]
η=0

(1) −
[
−
[
dθ(η)
dη

]
η=0

(3)

]

−
[
∂θ(η, ζ)

∂η

]
η=0

(1)
(17.29)

Let us emphasize that the two approaches become identical for n = 1
since the thermal boundary layer problem admits exact similarity solutions
for Newtonian fluids. It is therefore not surprising that the relative devia-
tion ε2 in the local similarity and local pseudosimilarity solutions increases
with deviation of the power-law index n from unity, i.e., with increasing non-
Newtonian rheology. The deviation is moreover more significant for the most
pseudoplastic liquids (n = 0.2) than for the highly dilatant film (n = 2),
whereas the local Prandtl number Prx turned out to have only a minor effect
on ε2. It is concluded that the results obtained with the local pseudosimilarity
approach are of good accuracy.
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Fig. 17.4. The relative deviation ε2 between local pseudosimilarity and local sim-
ilarity solutions in the wall temperature gradient − [∂θ(η, ζ)/∂η]η=0 variation with
power-law index n and local Prandtl number Prx (curves 1–7: n = 0.2, 0.5, 0.7, 1,
1.2, 1.5, and 2)
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It is noteworthy to emphasize that the absolute value of deviation rate
ε2 equals zero for n = 1, increases with the increase of the absolute value
|n − 1|. The value of ε2 is a measure of the degree of nonsimilarity of the
thermal boundary layer, and it is seen from Fig. 17.4 that such nonsimilarity
for pseudoplastic fluid (with n < 1) is more obvious than that of dilatant fluid
(with n > 1).

17.6 Summary

So far, we have presented our recent developments on heat transfer of falling
film flow of non-Newtonian power-law fluids. The related governing equa-
tions and heat transfer expressions are summarized in Tables 17.3 and 17.4,
respectively.

17.7 Remarks

This chapter has focused on the heat transfer from an inclined plane surface
to an accelerating liquid film of a non-Newtonian power-law fluid. Although
the thermal boundary layer equation of the non-Newtonian fluid flows gen-
erally fails to permit similarity solutions, a novel similarity transformation
devised by Shang and Andersson [7] for the accompanying hydrodynamical
problem was adopted in combination with a local pseudosimilarity method
due to Sparrow et al. [11]. The resulting transformed problem turned out to
involve only two independent parameters, namely the power-law index n and
the local Prandtl number Prx. It is noteworthy that all other parameters, like
the streamwise location x, the fluid properties ρ,K, n, λ and the component
of the gravitational acceleration along the wall g cos α, have been combined
into the induced Prx, the local Reynolds number, and the velocity compo-
nents Wx(η) and Wy(η). Accurate numerical results were obtained for various
combinations of Prx and n covering the range of the local Prandtl numbers
Prx from 0.001–1,000 and for the power-law index n in the range 0.2 ≤ n ≤ 2.
Special treatment for the low and high Prandtl number cases was essential
in order to maintain the numerical accuracy. The calculated results obtained
both by using local similarity and local pseudosimilarity methods were practi-
cally indistinguishable for n = 1 over the entire Prx range. The main findings
can be summarized as follows:

The thickness of the thermal boundary layer decreases monotonically with
increasing Prx. The thermal boundary layer extends far out in the free stream
for Prx � 1 and is on the other hand confined to the innermost part of the
momentum boundary layer for Prx � 1. The local heat transfer coefficient
and the local Nusselt number depend on the local Reynolds number Rex and
the wall gradient of the dimensionless temperature.

The critical local Prandtl number Pr∗x is a very important concept for
solution of thermal boundary layer, which is closely related to the solution
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convergence of the thermal boundary layer equation. With increasing the
power-law index n, the momentum boundary layer thichness ηδl will decrease.
With increasing the local Prandtl number Prx, the thermal boundary layer
thickness ηδT will decrease too. But, with variation of the power-law index n,
the thermal boundary layer thickness ηδt will almost keep the same. With in-
creasing the power-law index n, the critical boundary layer thickness ηδl∗ with
decrease, meanwhile, the critical local Prandtl number Prx∗ will increase. It
is also seen that if the power-law index n tends to unity, the critical Prandtl
number Prx∗ tends to unity too with the critical boundary layer thickness
ηδl∗ → 5. It means, when n = 1 and Prx = 1, the thermal boundary layer
thickness ηδt is identical to the momentum boundary layer thickness ηδl , and
ηδt = ηδl → 5.

For Prx � 1 the wall temperature gradient is controlled by the velocity
gradient at the wall, which was practically independent of n for dilatant fluids
(n > 1) but increased with increasing pseudoplasticity for pseudoplastic fluids
(n < 1). For Prx � 1 the temperature gradient increased slightly with in-
creasing n and this modest variation was ascribed to the displacing influence
of the momentum boundary layer on the external frictionless flow.

A set of accurate curve-fit formulas for the wall temperature gradient is
provided in order to enable rapid estimates of the heat transfer rate for any
combination of n and Prx within the parameter ranges considered.

A special case of the transformation method, velocity component method,
used herein has been applied in the previous analysis in Parts 1 and 2 of
this book for the heat transfer in Newtonian liquid films with variable fluid
properties. The successful generalization on non- Newtonian fluids makes us
believe that the present approach should be applicable also to the analysis of
heat transfer in power-law films with variable thermophysical properties.

17.8 Calculation Example

Example. Continue the example of Chap. 15, a non-Newtonian power-law
fluid having a density of 1, 041 kg m−3 is flowing with volumetric flow rate of
0.02m3 s−1 along an inclined flat plate with angle of α = 30◦ and width of b =
1m. The properties of the fluid are thermal diffusivity a = 13.6×10−8 m2 s−1,
thermal conductivity λ = 0.41W (m ◦C−1), coefficient of consistency K =
2.744 kg (sn−2 m−1) and power-law index n = 0.50. The plate temperature is
kept for tw = 60◦C, and the fluid bulk temperature t∞ is 20◦C. Calculate the
total heat transfer rate Qx in the boundary layer region. Consider the cases
for α = 30◦ and 0◦.

Solution. Given conditions: volumetric flow rate V = 0.02m3 s−1, fluid
thermal diffusivity a = 13.6 × 10−8 m2 s−1, fluid thermal conductivity λ =
0.41W (m ◦C)−1, fluid density ρ = 1,041 kg m−3, plate inclined angle α = 30◦,
fluid coefficient of consistency K = 2.744 kg (sn−2 m−1), power-law index
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n = 0.50, wall temperature tw = 60◦C, fluid bulk temperature t∞ = 20◦C,
and plate with b = 0.3m. The necessary values calculated from the example
in Chap. 15: the boundary layer region length x0 = 0.118m both for α = 30◦

and 0◦.

1. In the case for α = 30◦. The total heat transfer rate Qx from wall to fluid
in the boundary layer region is calculated as

Q = αx0(tw − t∞) × b × x0,

where αx0 is average heat transfer coefficient for the boundary layer region, b
is width of the plate, and x0 is the length of the boundary layer region.

With (17.23) the average heat transfer coefficient in the boundary layer
region is expressed as

αx0 = −2(n + 1)
n + 2

λx−1
0

[
∂θ(η, ζ)

∂η

]
η=0

(Rex0)
1/(n+1).

According to the previous calculated result in Chap. 15, the local Reynolds
number is Rex0 = 219.4.

With (17.17) the local Prandtl number at x0 is calculated as

Prx0 =
x0wx0,∞

a
(Rex0)

−2/(n+1)

=
x0

√
2gx0 cos α

a
(Rex0)

−2/(n+1)

=
0.118 ×

√
2 × 9.8 × 0.118 × cos 30o

13.6 × 10−8
× (219.4)−2/(0.5+1)

= 927.96.

According to (17.26), the temperature gradient on the plate is expressed
as follows

−
[
∂θ(η, ζ)

∂η

]
η=0

= a + bPrc
x0

.

According to Table 17.2, the coefficients a and b and exponent c can be
evaluated as later with Prx0 = 927.96 and n = 0.5

a = 0.0205 − 0.0845 ×
(

1
n

)1/3

= 0.0205 − 0.0845 ×
(

1
0.5

)1/3

= −0.08596

b = 0.518 +
0.0234

n

= 0.518 +
0.0234

0.5
= 0.5648.
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c = 0.3324 + 0.00096 ×
(

1
n

)1.6

= 0.3324 + 0.00096 ×
(

1
0.5

)1.6

= 0.33531.

Then,

−
[
∂θ(η, ζ)

∂η

]
η=0

= a + bPrc
x0

= −0.08596 + 0.5648 × 927.960.33531

= 5.4979.

Therefore, average heat transfer coefficient from x = 0 to x0 is evaluated as

αx0 = −2(n + 1)
n + 2

λx−1
0

[
∂θ(η, ζ)

∂η

]
η=0

(Rex0)
1/(n+1)

=
3

2.5
× 0.41 × 0.118−1 × 5.4979 × (219.4)1/(0.5+1)

= 833.88 W(m2 K)−1.

The total heat transfer rate Qx at x = 0 to x0 for the boundary layer region
is calculated as

Qx = αx0(tw − t∞) × b × x0

= 833.88 × (60 − 20) × 1 × 0.118
= 3935.9 W.

2. In the case for α = 0◦. Local Reynolds number Rex0 related to x0 is
evaluated as

Rex0 =
xn

0 (wx0,∞)2−nρ

K

=
xn

0 (2gx0 cos α)2−n/2ρ

K
.

According to the previous calculated results in Chapt. 15, x0 = 0.118, then,

Rex0 =
0.1180.5(2 × 9.8 × 0.118 cos 0◦)2−0.5/2 × 1041

2.744
= 245.11.

Also

−
[
∂θ(η, ζ)

∂η

]
η=0

= a + bPrc
x0
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While,

Prx0 =
x0wx0,∞

a
(Rex0)

−2/n+1

=
x0

√
2gx0 cos α

a
(Rex0)

−2/n+1

=
0.118 ×

√
2 × 9.8 × 0.118 × cos 0◦

13.6 × 10−8 × (245.11)−2/0.5+1

= 860.2.

According to the earlier calculations, coefficients a and b and exponent c are
a = −0.08596, b = 0.5648, and c = 0.33531

Then,

−
[
∂θ(η, ζ)

∂η

]
η=0

= a + bPrc
x0

= −0.08596 + 0.5648 × 860.20.33531

= 5.3578.

The average local heat transfer coefficient αx0 from x = 0 to x0 is evaluated as

αx0 = −2(n + 1)
n + 2

λx−1
0

[
∂θ(η, ζ)

∂η

]
η=0

(Rex0)
1/(n+1)

=
3

2.5
× 0.41 × 0.118−1 × 5.3578 × 245.111/(0.5+1)

= 874.94 W (m2 ◦C)−1.

The total heat transfer rate Qx is calculated as

Qx = αx0(tw − t∞) × b × x0

= 874.94 × (60 − 20) × 1 × 0.118
= 4129.72 W.
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A

Tables with Thermophysical Properties

Appendix A.1 Thermophysical Properties
of Gases at Atmospheric Pressure

air [1]

T ρ cp µ × 107 λ a × 106 Pr
[K] [Kg m−3] [kJ (kg◦C)−1] [m2 s−1] [W (m◦C)−1] [m2 s−1]

100 3.5562 1.032 71.1 0.00934 2.54 0.786
150 2.3364 1.012 103.4 0.0138 5.84 0.758
200 1.7458 1.007 132.5 0.0181 10.3 0.737
250 1.3947 1.006 159.6 0.0223 15.9 0.720
300 1.1614 1.007 184.6 0.0263 22.5 0.707
350 0.9950 1.009 208.2 0.0300 29.9 0.7
400 0.8711 1.014 230.1 0.0338 38.3 0.69
450 0.7740 1.021 250.7 0.0373 47.2 0.686
500 0.6964 1.030 270.1 0.0407 56.7 0.684
550 0.6329 1.040 288.4 0.0439 66.7 0.683
600 0.5804 1.051 305.8 0.0469 76.9 0.685
650 0.5356 1.063 322.5 0.0497 87.3 0.69
700 0.4975 1.075 338.8 0.05240 98 0.695
750 0.4643 1.087 354.6 0.0549 109 0.702
800 0.4354 1.099 369.8 0.0573 120 0.709
850 0.4097 1.11 384.3 0.0596 131 0.716
900 0.3868 1.121 398.1 0.0620 143 0.720
950 0.3666 1.131 411.3 0.0643 155 0.723

1, 000 0.3482 1.141 424.4 0.0667 168 0.726
1, 100 0.3166 1.159 449.0 0.0715 195 0.728
1, 200 0.2920 1.175 473.0 0.0763 224 0.728
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monoxide, CO [1]

T ρ cp µ × 107 λ x a × 106 Pr
[K] [Kg m−3] [kJ (kg◦C)−1] [m2 s−1] [W (m ◦C)−1] [m2 s−1]

200 1.6888 1.045 127 0.017 9.63 0.781
220 1.5341 1.044 137 0.0190 11.9 0.753
240 1.4055 1.043 147 0.0206 14.1 0.744
260 1.2967 1.043 157 0.0221 16.3 0.741
280 1.2038 1.042 166 0.0236 18.8 0.733
300 1.1233 1.043 175 0.025 21.3 0.730
320 1.0529 1.043 184 0.0263 23.9 0.730
340 0.9909 1.044 193 0.0278 26.9 0.725
360 0.9357 1.045 202 0.0291 29.8 0.729

380 0.8864 1.047 210 0.0305 32.9 0.719
400 0.8421 1.049 218 0.0318 36.0 0.719
450 0.7483 1.055 237 0.0350 44.3 0.714
500 0.67352 1.065 254 0.0381 53.1 0.710
550 0.61226 1.076 271 0.0411 62.4 0.710
600 0.56126 1.088 286 0.0440 72.1 0.707
650 0.51806 1.101 301 0.0470 82.4 0.705
700 0.48102 1.114 315 0.0500 93.3 0.702
750 0.44899 1.127 329 0.0528 104 0.702
800 0.42095 1.140 343 0.0555 116 0.705

helium, He [1]

T

[K]

ρ

[Kg m−3]

cp

[kJ (kg ◦C)−1]

µ × 107

[m2 s−1]

λ

[W (m◦C)−1]

a × 106

[m2 s−1]

Pr

100 0.4871 5.193 96.3 0.073 28.9 0.686
120 0.4060 5.193 107 0.0819 38.8 0.679
140 0.3481 5.193 1‘18 0.0907 50.2 0.676
160 5.193 129 0.0992
180 0.2708 5.193 139 0.1072 76.2 0.673
200 5.193 150 0.1151
220 0.2216 5.193 160 0.1231 107 0.675
240 5.193 170 0.130
260 0.1875 5.193 180 0.137 141 0.682
280 5.193 190 0.145
300 0.1625 5.193 199 0.152 180 0.680
350 5.193 221 0.170
400 0.1219 5.193 243 0.187 295 0.675
450 5.193 263 0.204
500 0.09754 5.193 283 0.220 434 0.668
600 5.193 320 0.252
700 0.06969 5.193 350 0.278 768 0.654
800 5.193 382 0.304 0
900 5.193 414 0.330

1,000 0.04879 5.193 446 0.354 1, 400 0.654
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hydrogen, H2 [1]

T
[K]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
µ × 107

[m2 s−1]
λ

[W (m ◦C)]
a × 106

[m2 s−1]
Pr

100 0.24255 11.23 42.1 0.067 24.6 0.707
200 0.12115 13.54 68.1 0.131 79.9 0.704
300 0.08078 14.31 89.6 0.183 158 0.701
400 0.06059 14.48 108.2 0.226 258 0.695
500 0.04848 14.52 126.4 0.266 378 0.691
600 0.04040 14.55 142.4 0.305 519 0.678
700 0.03463 14.61 157.8 0.342 676 0.675
800 0.03030 14.70 172.4 0.378 849 0.670
900 0.02694 14.83 186.5 0.412 1, 030 0.671

1,000 0.02424 14.99 201.3 0.448 1, 230 0.673
1,100 0.02204 15.17 213.0 0.488 1, 460 0.662
1,200 0.02020 15.37 226.2 0.528 1, 700 0.659
1,300 0.01865 15.59 238.5 0.569 1, 955 0.655
1,400 0.01732 15.81 250.7 0.610 2, 230 0.650
1,500 0.01616 16.02 262.7 0.655 2, 530 0.643

1,600 0.01520 16.28 273.7 0.697 2, 815 0.639

nitrogen, N2 [1]

T
[K]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
µ × 107

[m2 s−1]
λ

[W (m◦C)−1]
a × 106

[m2 s−1]
Pr

100 3.4388 1.070 68.8 0.00958 26 0.768
150 2.2594 1.050 100.6 0.0139 586 0.759
200 1.6883 1.043 120.2 0.0183 104 0.736
250 1.3488 1.042 154.9 0.0222 158 0.727
300 1.1233 1.041 178.2 0.0259 221 0.716
350 0.9625 1.042 200.0 0.0293 292 0.711
400 0.8425 1.045 220.4 0.0327 371 0.704
450 0.7485 1.050 239.6 0.0358 456 0.703
500 0.6739 1.056 257.7 0.0389 547 0.700
550 0.6124 1.065 274.7 0.0417 639 0.702
600 0.5615 1.075 290.8 0.0416 739 0.701
700 0.4812 1.098 321.0 0.0499 944 0.706
800 0.4211 1.122 349.1 0.0548 116 0.715
900 0.3743 1.146 375.3 0.0597 139 0.721

1,000 0.3368 1.167 399.9 0.0647 165 0.721
1,100 0.3062 1.187 423.2 0.0700 193 0.718
1,200 0.2807 1.204 445.3 0.0758 224 0.707
1,300 0.2591 1.219 466.2 0.0810 256 0.701

Continued
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oxygen, O2 [1]

T
[K]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
µ × 107

[m2 s−1]
λ

[W (m ◦C)−1]
a × 106

[m2 s−1]
Pr

100 3.945 0.962 76.4 0.00925 2.44 0.796
150 2.585 0.921 114.8 0.0138 5.80 0.766
200 1.930 0.915 147.5 0.0183 10.4 0.737
250 1.542 0.915 178.6 0.0226 16.0 0.723
300 1.284 0.920 207.2 0.0268 22.7 0.711
350 1.100 0.929 233.5 0.0296 29.0 0.733
400 0.962 0.942 258.2 0.0330 36.4 0.737
450 0.8554 0.956 281.4 0.0363 44.4 0.741
500 0.7698 0.972 303.3 0.0412 55.1 0.716
550 0.6998 0.988 324.0 0.0441 63.8 0.726
600 0.6414 1.003 343.7 0.0473 73.5 0.729
700 0.5498 1.031 380.8 0.0523 93.1 0.744
800 0.4810 1.054 415.2 0.0589 116 0.743
900 0.4275 1.074 447.2 0.0649 141 0.740

1,000 0.3848 1.090 477.0 0.0710 169 0.733
1,100 0.3498 1.103 505.5 0.0758 196 0.736
1,200 0.3206 1.115 532.5 0.0819 229 0.725
1,300 0.2060 1.125 588.4 0.0871 262 0.721

carbon dioxide, CO2 [1]

T
[K]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
µ × 107

[m2 s−1]
λ

[W (m ◦C)−1]
a × 106

[m2 s−1]
Pr

220 2.4733 0.783 111.05 0.010805 5.92 0.818
250 2.1675 0.804 125.9 0.012884 7.401 0.793
300 1.7973 0.871 149.58 0.016572 10.588 0.77
350 1.5362 0.900 172.05 0.02047 14.808 0.755
400 1.3424 0.942 193.2 0.02461 19.463 0.738
450 1.1918 0.980 213.4 0.02897 24.813 0.721
500 1.0732 1.013 232.6 0.03352 30.84 0.702
550 0.9739 1.047 250.8 0.03821 37.50 0.695
600 0.8938 1.076 268.3 0.04311 44.83 0.668

ammonia, NH3 [2]

T
[K]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
µ × 107

[m2 s−1]
λ

[W (m ◦C)−1]
a × 106

[m2 s−1]
Pr

220 0.9828 2.198 72.55 0.0171 20.54 0.93
273 0.7929 2.177 93.53 0.0220 13.08 0.9
323 0.6487 2.177 110.35 0.0270 19.20 0.88
373 0.5590 2.236 128.86 0.0327 26.19 0.87
423 0.4934 2.315 146.72 0.0391 34.32 0.87
473 0.4405 2.395 164.9 0.0476 44.21 0.84
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water vapor [2]

T
[K]

ρ
[Kg m−3]

cp

[kJ (kg◦C)−1]
µ × 107

[m2 s−1]
λ

[W (m ◦C)−1]
a × 106

[m2 s−1]
Pr

380 0.5863 2.060 127.1 0.0246 20.36 1.060
400 0.5542 2.014 134.4 0.0261 23.38 1.040
450 0.4902 1.980 152.5 0.0299 30.7 1.010
500 0.4405 1.985 170.4 0.0339 38.7 0.996
550 0.4005 1.997 188.4 0.0379 47.5 0.991
600 0.3652 2.026 206.7 0.0422 57.3 0.986
650 0.3380 2.056 224.7 0.0464 66.6 0.995
700 0.3140 2.085 242.6 0.0505 77.2 1.000
750 0.2931 2.119 260.4 0.0549 88.3 1.05
800 0.2739 2.152 278.6 0.0592 100.1 1.010
850 0.2579 2.186 296.9 0.0637 113.0 1.019

gas mixture(CO2 = 0.13, H2O = 0.11, N2 = 0.76) [3]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
µ × 107

[m2 s−1]
λ

[W (m ◦C)−1]
a × 106

[m2 s−1]
Pr

0 1.295 1.042 158 0.0228 12.2 0.72
100 0.950 1.068 204 0.0313 21.54 0.69
200 0.748 1.097 245 0.0401 32.8 0.67
300 0.617 1.122 282 0.0484 45.81 0.65
400 0.525 1.151 317 0.057 60.38 0.64
500 0.457 1.185 348 0.0656 76.3 0.63
600 0.405 1.214 379 0.0742 93.61 0.62
700 0.363 1.239 407 0.0827 112.1 0.61
800 0.330 1.264 434 0.0915 131.8 0.6
900 0.301 1.290 459 0.1 152.5 0.59

1,000 0.275 1.306 484 0.109 174.3 0.58
1,100 0.257 1.323 507 0.1175 197.1 0.57
1,200 0.240 1.340 530 0.1262 221.0 0.56

Appendix A.2 Physical Properties of Some Saturated
Liquids

ammonia, NH3 [4]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
ν × 106

[m2 s−1]
λ

[W (m ◦C)−1]
a × 107

[m2 s−1]
Pr

−50 703.69 4.463 0.435 0.547 1.742 2.60
−40 691.68 4.467 0.406 0.547 1.775 2.28
−30 679.34 4.467 0.387 0.549 1.801 2.15
−20 666.69 4.509 0.381 0.547 1.819 2.09
−10 653.55 4.564 0.378 0.543 1.825 2.07
0 640.10 4.635 0.373 0.540 1.819 2.05
10 626.16 4.714 0.368 0.531 1.801 2.04

20 611.75 4.798 0.359 0.521 1.775 2.02

30 596.37 4.890 0.349 0.507 1.742 2.01

40 580.99 4.999 0.340 0.493 1.701 2.00

50 564.33 5.116 0.330 0.476 1.654 1.99

Continued
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carbon dioxide, CO2 [4]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
ν × 106

[m2 s−1]
λ

[W (m ◦C)−1]
a × 107

[m2 s−1]
Pr

−50 1,156.34 1.84 0.119 0.085 0.4021 2.96
−40 1,117.77 1.88 0.118 0.1011 0.4810 2.45
−30 1,076.76 1.97 0.117 0.1116 0.5272 2.22
−20 1,032.39 2.05 0.115 0.1151 0.5445 2.12
−10 983.38 2.18 0.113 0.1099 0.5133 2.20
0 926.99 2.47 0.108 0.1045 0.4578 2.38
10 860.03 3.14 0.101 0.0971 0.3608 2.80
20 772.57 5.0 0.091 0.0872 0.2219 4.10
30 597.81 36.4 0.080 0.0703 0.0279 28.7

sulphur dioxide, SO2 [4]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
ν × 106

[m2 s−1]
λ

[W (m ◦C)−1]
a × 107

[m2 s−1]
Pr

−50 1,560.84 1.3595 0.484 0.242 1.141 4.24
−40 1,536.81 1.3607 0.424 0.235 1.130 3.74
−30 1,520.64 1.3616 0.371 0.230 1.117 3.31
−20 1,488.60 1.3624 0.324 0.225 1.107 2.93
−10 1,463.61 1.3628 0.288 0.218 1.097 2.62
0 1,438.46 1.3636 0.257 0.211 1.081 2.38
10 1,412.51 1.3645 0.232 0.204 1.066 2.18
20 1,386.40 1.3653 0.210 0.199 1.050 2.00
30 1,359.33 1.3662 0.190 0.192 1.035 1.83
40 1,329.22 1.3674 0.173 0.185 1.019 1.70
50 1,299.10 1.3683 0.162 0.177 0.999 1.61

freon 12, CCl2F2 [4]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
ν × 106

[m2 s−1]
λ

[W (m ◦C)−1]
a × 107

[m2 s−1]
Pr

−50 1,546.75 0.8750 0.310 0.067 0.501 6.2
−40 1,518.71 0.8847 0.279 0.069 0.514 5.4
−30 1,489.56 0.8956 0.253 0.069 0.526 4.8
−20 1,460.57 0.9073 0.235 0.071 0.539 4.4
−10 1,429.49 0.9203 0.221 0.073 0.550 4.0
0 1,397.45 0.9345 0.214 0.073 0.557 3.8
10 1,364.30 0.9496 0.203 0.073 0.560 3.6
20 1,330.18 0.9659 0.198 0.073 0.560 3.5
30 1,295.10 0.9835 0.194 0.071 0.560 3.5
40 1,257.13 1.019 0.191 0.069 0.555 3.5
50 1,215.96 1.0216 0.190 0.067 0.545 3.5



References 405

C2H4(OH)2 [4]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
ν × 106

[m2 s−1]
λ

[W (m ◦C)−1]
a × 107

[m2 s−1]
Pr

0 1,130.75 2.294 57.53 0.242 0.934 615
20 1,116.65 2.382 19.18 0.249 0.939 204
40 1,101.43 2.474 8.69 0.256 0.939 93
60 1,087.66 2.562 4.75 0.260 0.932 51
80 1,077.56 2.650 2.98 0.261 0.921 32.4
100 1,058.50 2.742 2.03 0.263 0.908 22.4

mercury, Hg [4]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
ν × 106

[m2 s−1]
λ

[W (m ◦C)−1]
a × 107

[m2 s−1]
Pr

0 1,3628.22 0.1403 0.124 8.2 42.99 0.0288
20 1,3579.04 0.1394 0.114 8.69 46.04 0.0249
50 1,3505.84 0.1386 0.104 9.40 50.22 0.0207
100 1,3384.58 0.1373 0.0928 10.51 57.16 0.0162
150 1,3264.28 0.1365 0.0853 11.49 63.54 0.0134
200 1,3144.94 0.1570 0.0802 12.34 69.08 0.0116
250 1,3025.60 0.1357 0.0765 13.07 74.06 0.0103

315.5 1,2847.00 0.134 0.0673 14.02 81.50 0.0083

water, H2O [2]

t
[◦C]

ρ
[Kg m−3]

cp

[kJ (kg ◦C)−1]
ν × 106

[m2 s−1]
λ

[W (m ◦C)−1]
a × 106

[m2 s−1]
Pr

0 1,002.28 4.2178 1.788 0.552 0.1308 13.6
20 1,000.52 4.1818 1.006 0.597 0.143 7.02
40 994.59 4.1784 0.658 0.628 0.1512 4.34
60 985.46 4.1843 0.478 0.651 0.1554 3.02
80 974.08 4.1964 0.364 0.668 0.1636 2.22
100 960.63 4.2161 0.294 0.680 0.168 1.74
120 945.25 4.25 0.247 0.685 0.1708 1.446
140 928.27 4.283 0.214 0.684 0.1724 1.241
160 909.69 4.342 0.190 0.680 0.1729 1.099
180 889.03 4.417 0.173 0.675 0.1724 1.004
200 866.76 4.505 0.160 0.665 0.1706 0.937
220 842.41 4.610 0.150 0.652 0.168 0.891
240 815.66 4.756 0.143 0.635 0.1639 0.871
260 785.87 4.949 0.137 0.611 0.1577 0.874
280 752.55 5.208 0.135 0.580 0.1481 0.910
300 714.26 5.728 0.135 0.540 0.1324 1.019
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Index

average heat transfer coefficient, 65,
104, 202, 233, 258, 314

average Nusselt number, 65, 104, 202,
233, 258, 384

boundary layer, 51

boundary layer region, 362, 363, 381

boundary layer thickness, 350

boundary temperature ratio, 66

boundary-value problem, 66

Boussinesq approximation, 43, 109

Boussinesq solution, 70, 90, 109, 122

bulk subcooled grade, 227, 231

buoyancy factor, 102, 173

buoyancy term, 51, 99

coefficient of consistency, 368

condensate liquid film thickness, 260

conductivity parameter, 58

critical boundary layer thickness, 371

critical film thickness, 349

critical local Prandtl number, 371

curve-fit equation, 203, 233

curve-fit formula, 88

curve-fitting method, 69

density factor, 63

dilatant fluid, 335

dimensionless temperature, 165, 192,
219, 220, 252, 281, 306

dimensionless temperature gradient, 68

dimensionless temperature variable, 53

dimensionless velocity component, 53,
165, 192, 219, 220, 252, 281, 282,
306

Falkner–Skan transformation, 38, 43
FFNF system, 380
film boiling of saturated liquid, 190
film boiling of subcooled liquid, 217,

306
film condensation of saturated vapor,

250
film condensation of superheated vapor,

313
fluid free convection on inclined plate,

164

group theory, 39

hydraulic entrance region, 380

LDV, 141
length of boundary layer region, 348
liquid film, 192, 220, 251, 281, 304–306
local Grashof number, 165, 191, 192,

202, 219, 220, 252, 281, 305, 306
local heat transfer coefficient, 65, 104,

202, 232, 258, 314, 383
local heat transfer rate, 64, 104, 232,

256, 313, 383
local mass flow rate, 167, 205, 234, 259,

316, 346
local Nusselt number, 65, 104, 202, 232,

258, 314, 384
local Prandtl number, 368
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local Reynolds number, 340
local skin-friction coefficient, 344

mass flow rate parameter, 207, 236, 238,
260, 264, 317, 321, 347

mass transfer analysis, 205

Newton iteration procedure, 66
Newton–Raphson shooting method, 66
Newtonian fluid, 334
non-Newtonian fluid, 334

overall temperature parameter, 62

power-law fluid, 334, 336
power-law index n, 338
pseudoplastic fluid, 335
pseudosimilarity transformation, 369

relative difference of Prandtl number,
123

relative predicted deviation of heat
transfer coefficient, 123

Runge–Kutta integration, 66

shear-thickening fluid, 336
shear-thinning fluid, 335
shooting method, 86, 199, 227, 255, 311
similarity transformation, 52, 192, 252
specific heat parameter, 58
stream function, 39

temperature gradient, 109, 314
temperature parameter method, 64

the boundary layer region, 380
the local Grashof number, 282
thermal conductivity factor, 64
thermophysical property factor, 62, 254,

309
three-point boundary value problem,

255, 310
total heat transfer rate, 64, 104, 202,

233, 258, 314, 384
total mass flow rate, 169, 206, 235, 260,

316, 347
treatment of variable thermophysical

properties, 58, 85, 102, 197, 225,
308

two-phase boundary layer, 304, 310
two-point boundary value problem, 342

vapor film, 191, 219, 252, 253, 305–307
vapor film thickness, 205, 207
vapor superheated grades, 312
variable thermophysical property, 79,

253
velocity component method, 52, 100,

191, 219, 305, 326
viscosity factor, 63
viscosity parameter, 58
volumetric flow rate, 348

wall subcooled, 255
wall subcooled grade, 312
wall superheated grade, 210, 227, 231




