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Series Preface 

industrial revolution, is once again asked to do its substantial share in the call for 
industrial renewal. The general call is urgent as we face profound issues of produc-
tivity and competitiveness that require engineering solutions, among others. The 
Mechanical Engineering Series is a series featuring graduate texts and research 
monographs intended to address the need for information in contemporary areas of 
mechanical engineering. 

The series is conceived as a comprehensive one that covers a broad range of 
concentrations important to mechanical engineering graduate education and  
research. We are fortunate to have a distinguished roster of consulting editors, 
each an expert in one of the areas of concentration. The names of the consulting 
editors are listed on page vi of this volume. The areas of concentration are applied 
mechanics, biomechanics, computational mechanics, dynamic systems and control, 
energetics, mechanics of materials, processing, thermal science, and tribology. 

Mechanical engineering, an engineering discipline born of the needs of the  



Preface

This book has evolved from lectures on fracture mechanics and micromechanics
which we held for students of engineering and natural sciences over the years.
It is primarily meant as an aid for students learning the foundations of these
subjects. At the same time this book may also serve as an introduction into these
fields for researchers and practitioners in industry and to provide the theoretical
background for solving respective problems.

The book covers the most important areas of fracture mechanics and gives
an introduction into micromechanics. Our major concern was the presentation
of principal concepts and methods in a clear and sound manner as a basis for a
deeper entry into the matter. The presentation mainly focuses on the mechanical
description of fracture processes; yet, material specific aspects are also discussed.
To keep the text self-contained, continuum mechanical and phenomenological
foundations are recapitulated first. They are followed by a brief survey of classical
fracture and failure hypotheses. A major part of the book is devoted to linear
fracture mechanics and elastic-plastic fracture mechanics. Further chapters deal
with creep fracture and dynamic fracture mechanics. An extensive chapter treats
foundations of micromechanics and homogenization. Finally, elements of damage
mechanics and probabilistic fracture mechanics are presented. Suggestions for
further reading are listed at the end of each chapter.

Throughout the previous three editions, all published in German, the contents
of the book has successively been extended. It originated from a textbook solely
on fracture mechanics by the first author alone. In the third edition, it was in
collaboration with the second author supplemented with a chapter on microme-
chanics to account for the increasing utilization of micromechanical modeling in
the treatment of fracture problems. Further extensions were sections on fracture
of thin films and piezoelectric materials. In the present edition, the first one in
English, again several extensions and corrections have been incorporated.

The authors are indebted to all who have contributed to this book. This
particularly includes those from whom we have learned or, as Roda Roda has put
it ironically: “Copying from four books yields a fifth profound book”. Special
thanks go to Ms. Dipl.-Ing. H. Herbst who has thoroughly prepared the figures.
Finally, the pleasant cooperation with the publisher is gratefully acknowledged.

Darmstadt, 2006 Dietmar Gross and Thomas Seelig
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Introduction

Fracture in science and technology is understood as the total or partial separation
of an originally intact body or structure. The characterization of corresponding
mechanical phenomena is the subject of fracture mechanics. From an engineering
point of view, in many cases a macroscopic approach is sufficient. But also
microscopic aspects became of increasing interest during the past years. For both,
the macroscopic and microscopic approach, continuum mechanics has proven to
be an effective tool. Using this well-developed instrument, fracture criteria and
concepts may be established, which allow a prediction of the fracture behavior.

In general, separation of a body occurs by propagation of one or several cracks
through the material. Therefore, fracture mechanics deals to a large extent with
the behavior of cracks. In a real structure or material, cracks or other defects of
different size which possibly evolve to cracks, are virtually always present. One
of the main questions which fracture mechanics shall answer is as follows: under
what circumstances does a crack in a body start to propagate and subsequently
lead to fracture? Other topics are the conditions for crack nucleation, crack path
prediction, or the velocity of a propagating crack.

In continuum mechanics, usually stresses and strains are used to describe the
mechanical behavior of a solid. These quantities, likewise very important in frac-
ture mechanics, can not always be directly applied for the characterization of
fracture processes. One reason for this is that stresses or strains might become
infinitely large at a crack tip. Another one follows from the simple fact that two
cracks of different lengths behave differently when loaded by the same external
stress. Under increasing load the longer crack will start to propagate at a lower
stress than the shorter one. For these reasons additional quantities like stress
intensity factors or the energy release rate have been introduced in fracture me-
chanics. They are able to characterize the local state at a crack tip and the global
behavior of the crack during propagation, respectively.

For the understanding of fracture processes, at least a partial insight into the
underlying micromechanisms is useful. For example, from observing the changes
in the microstructure it becomes understandable how a material defect may in-
crease until it can be regarded as a microscopic or a macroscopic crack. The
relevance of micromechanisms also explains the important role that material sci-
ence has played in the past and still plays in the evolution of fracture mechanics.
Increasingly, microscopic processes are mechanically modeled nowadays and in-
corporated into continuum theories. Special fields like damage mechanics or mi-
cromechanics have been developed from these efforts and have become important



2 Introduction

tools in fracture mechanics. In particular, micromechanics offers a theoretical
framework for a systematic treatment of defects and their influence on different
length scales.

Fracture mechanics may be classified from different points of view. Usually it
is divided into linear elastic fracture mechanics and nonlinear fracture mechan-
ics. The first describes fracture processes by using linear elasticity. Since this
is appropriate particularly for brittle fracture, linear fracture mechanics also is
understood as brittle fracture mechanics. In contrast, nonlinear fracture mechan-
ics characterizes fracture processes which are dominated by inelastic material
behavior. Depending on whether the material is elastic-plastic or considerable
viscous effects are present, a further partition into elastic-plastic fracture me-
chanics and creep fracture mechanics is common practice. Another classification
is rather material oriented. Accordingly, fracture mechanics sometimes is divided
into fracture mechanics of metals, of polymers, or of composites. If, in contrast to
a deterministic approach, probabilistic methods are used to characterize fracture
processes, we call this probabilistic fracture mechanics.

The roots of fracture mechanics reach back to the beginnings of modern me-
chanics. Already Galileo Galilei (1564-1642) in 1638 reflected about the fracture of
beams, which led him to the conclusion that the bending moment is the crucial
loading measure. In parallel with the evolution of continuum mechanics in the
19th century, a number of different strength hypotheses had been proposed which
partly are still in use as fracture or failure criteria. They directly employ stresses
or strains to characterize the loading of the material. Corresponding efforts took
place at the beginning of the last century in conjunction with the development
of plasticity theory. But only in 1920 the first cornerstone of a fracture theory
of cracks was set through A.A. Griffith (1893–1963) by introducing the necessary
energy for crack growth in the energy balance and by formulating an energetic
fracture concept. A further milestone was the statistical theory of fracture for-
mulated in 1939 by W. Weibull (1887-1979). But the actual breakthrough was
achieved in 1951 by G.R. Irwin (1907-1998) who was the first to characterize the
state at a crack tip by stress intensity factors. The so-called K–concept of lin-
ear fracture mechanics rapidly found entrance into practical applications and is
meanwhile firmly established. In the early 60s the first concepts for an elastic-
plastic fracture mechanics were proposed and a rapid development set in. First
steps towards an integration of damage mechanics and micromechanics into frac-
ture mechanics have been attempted in the 80s. Despite substantial progress,
fracture mechanics is by no means an already completed field but still a subject
of intensive research.

The development of fracture mechanics is driven to a large extent by the am-
bition to prevent failure of technical constructions and components. Therefore,
fracture mechanics is used as a design tool in all fields where fracture and an
accompanying failure of a component with serious, or in the worst case, catas-
trophic consequences must be prevented. Typical fields of application can be
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found in aerospace engineering, microsystems technology, nuclear power tech-
niques, pressure vessel construction, automotive engineering, or in steel and solid
construction. Moreover, fracture mechanics is used in many other fields for the
solution of problems where separation processes play a dominant role. Some
examples are crushing technology, earthquake research, and materials science.



1 Elements of solid mechanics

This chapter summarizes basic concepts and equations of solid mechanics. It is
self-evident that this outline cannot be complete but is limited to a necessary
minimum. For more detailed descriptions the reader is referred to the literature,
and selected textbooks are listed at the end of the chapter (Sect. 1.6). The
reader with some knowledge of elasticity and plasticity may skip this part and
jump directly to the next chapter.

As the term already suggests, it is the aim of solid mechanics to make the
behavior of solids accessible to a mechanical analysis. Solid mechanics is based on
the idealization of the real discontinuous material by a continuum. Doing so, the
material properties and the appearing mechanical quantities in general may be
represented by continuous functions. It is understood that a theory on this basis
has its limits when the real material’s discontinuous character plays an important
role. Concepts like macroscopic stresses or strains are physically meaningful only
when applied to sufficiently large regions compared with existing inhomogeneities.
For example, in case of structural components made of polycrystalline materials,
the region under consideration has to be large compared with the grain size. This
always should be considered when applying conventional continuum mechanics
to microscopic domains.

The representation in this chapter primarily uses cartesian coordinates and the
index notation. In parallel also the symbolic notation is applied which often makes
the interrelation of quantities easier to read and to understand. Accordingly,
vectors and tensors are represented either through their components or by their
symbols. Finally, this outline is restricted mostly to isotropic materials and small
(infinitesimal) deformations.

1.1 Stress

1.1.1 Stress vector

If a body is loaded by external forces (volume forces f , surface forces t), dis-
tributed internal forces - the stresses - will be caused. For their definition we
intersect the body in its actual deformed state by a fictitious cut (Fig. 1.1a).
Both parts then interact through area forces of equal magnitude and opposite
direction. Let ∆F be the total force acting on an area element ∆A of the cross
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section, then ∆F /∆A is the average surface traction on this element. The limit

t = lim
∆A→0

∆F

∆A
=

dF

dA
(1.1)

is called the stress vector in a point of the cross section. Its component σ = t · n

in the direction of the unit normal vector n, i.e., perpendicular to the area element
dA, is the normal stress; the component τ =

√
t2 − σ2 acting perpendicular to

n and tangential to the element dA is called shear stress (Fig. 1.1b).
The stress vector t at a point depends on the orientation of the cross section,

i.e., on the unit normal vector: t = t(n). We now consider the three stress vectors
t1, t2, t3, which are assigned to the three specific sections perpendicular to the
coordinate axes x1, x2, x3 (Fig. 1.1c). Their cartesian components are denoted
by σij where the indices i, j attain the values 1, 2, 3. The first subscript indicates
the orientation of the section, i.e., the direction of its normal n, while the second
subscript expresses the direction of the stress component itself. Accordingly, σ11,
σ22, σ33 are normal stresses and σ12, σ23 etc. are shear stresses. It should be
mentioned that sometimes another notation will be preferred. With reference to
the coordinates x,y,z the normal stresses often are denoted by σx, σy, σz, while
the shear stresses are designated by τxy, τyz etc.

a) b)

dA

t

σ

τ

t

ndA

c)

t2

n

σ13

σ33

σ22

σ32

σ21

σ23

σ11
σ12

σ31

x2

x1

x3

Figure 1.1: Stress vector

The sign of the stresses is given by the following sign convention: components
at an area element whose normal vector points into the positive (negative) co-
ordinate direction are defined as positive if they act in the positive (negative)
direction.

For example, the stress vector t2 may be expressed by the components as
t2 = σ21e1+σ22e2+σ23e3 = σ2iei . Analogous, t1 = σ1iei holds and consequently
in general

tj = σji ei . (1.2)

Here e1, e2, e3 are the unit vectors in coordinate directions x1, x2, x3. In addition,
the summation convention has been adopted. According to this rule a repeated
subscript indicates a summation where this subscript in turn attains the values
1, 2, 3.



Stress 7

1.1.2 Stress tensor

The nine scalar quantities σij form the cartesian components of Cauchy’s stress
tensor σ (A.L. Cauchy, 1789-1857). It can be represented by the matrix

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 . (1.3)

The stress tensor characterizes the stress state at a point of the body, i.e., it
uniquely determines the stress vector for an arbitrary section through the mate-
rial. This can be shown by considering the infinitesimal tetrahedron in Fig. 1.2a.
The orientation of the area dA is given by its normal n or by its components ni,
respectively. Taking into account that possible body forces are of higher order
small, equilibrium requires t dA = t1dA1 + t2dA2 + t3dA3. Introducing t = ti ei,
dAj = dAnj and (1.2) yields in index notation and in symbolic notation, respec-
tively

ti = σijnj or t = σ · n (1.4)

where the dot in the symbolic notation indicates a summation over one subscript
(in this case the subscript j). Thus, the stress tensor σ determines the stress
vector t for each direction n. It should be mentioned that (1.4) represents a linear
mapping of two vectors by which σ is characterized as a second rank tensor.

On account of the equilibrium condition of moments (which we will not dis-
cuss here), the stress tensor is symmetric:

σij = σji . (1.5)

As a consequence, the shear stresses in two perpendicular cuts are pairwise equal
to each other.

t1

t2

dA2

dA1

dA
dA3

t
n

t3

a)

x1

x2

x3

x3

x1

x2

x′2
x′3

b)

x′1

Figure 1.2: Stress state
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Sometimes it is necessary or useful to represent the components of the stress
tensor in a coordinate system x′1, x

′
2, x

′
3 which is rotated with respect to the orig-

inal system x1, x2, x3 (Fig. 1.2b). The relationship between the components with
respect to the first and the second system is given by the transformation relation

σ′
kl = akialj σij . (1.6)

Herein aki denotes the cosine of the angle between the x′k- and the xi-axis:
aki = cos(x′k, xi) = e′

k·ei.
A particular coordinate system is given by the principal axes. They are char-

acterized by the special feature that solely normal stresses and no shear stresses
appear in sections perpendicular to these axes. In this case, the stress vector ti and
the accompanying normal vector ni have the same direction: ti = σni = σδijnj.
Here σ is the normal stress in the section and δij the so-called Kronecker-symbol
which is defined as δij = 1 for i = j and δij = 0 for i 6= j. Introducing this into
(1.4) we get the homogeneous linear system of equations

(σij − σ δij)nj = 0 or (σ − σ I) · n = 0 (1.7)

where I is the unit tensor with the components δij . The system of equations (1.7)
has a nontrivial solution for the unknown nj only if its determinant vanishes:
det(σij − σ δij) = 0. This leads to the cubic equation

σ3 − Iσ σ
2 − IIσ σ − IIIσ = 0 (1.8)

where the quantites Iσ, IIσ, IIIσ are independent of the chosen coordinate system.
They are the invariants of the stress tensor and given by

Iσ = σii = σ11 + σ22 + σ33 ,

IIσ = (σijσij − σiiσjj)/2

= −(σ11σ22 + σ22σ33 + σ33σ11) + σ2
12 + σ2

23 + σ2
31 , (1.9)

IIIσ = det(σij) =

∣∣∣∣∣∣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

∣∣∣∣∣∣
.

The three solutions σ1, σ2, σ3 of (1.8) are all real and called the principal stresses.
Each principal stress corresponds to a principal direction (normal vector nj di-
rected along the principal axis) which may be determined from (1.7). It can be
shown that the principal directions are perpendicular to each other and that the
principal stresses are stationary (extreme) values of normal stresses at a point of
the body. With respect to the principal axes the stress tensor can be represented
by

σ =




σ1 0 0
0 σ2 0
0 0 σ3


 . (1.10)
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In sections whose normal is perpendicular to one principal axis and forms
angles of 45◦ with the remaining two axes, extreme shear stresses appear. For
example, in such a section with the normal perpendicular to the σ3-direction a
shear stress τ3 = ±(σ1 − σ2)/2 acts. In general, the three extreme shear stresses
are given by

Thus, if σ1 is the maximum and σ3 the minimum principal stress, the maximum
shear stress results as

Of practical relevance are also the octahedron stresses. They are defined as
normal and shear stress in cross sections whose normal forms the same angle with
all three principal axes:

The stress component σoct can be interpreted as the average normal stress:
σm = σkk/3 = σoct.

In many cases it is useful to decompose the stress tensor additively:

Therein 1
3
σkkδij characterizes a loading by an all-side equal stress σm. Because

of the analogy with a static stress state in a fluid, this part is referred to as a
hydrostatic stress state. The tensor s is called deviatoric stress state. By this
part and its invariants

the deviation of the stress state from a hydrostatic state is characterized. Com-
parison with (1.13) yields: IIs = 3

2
τ 2
oct.
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A graphical visualization of the stress state is possible by the so-called Mohr’s
circles (O. Mohr, 1835-1918). This is a representation of normal stresses σ and
corresponding shear stresses τ as points in a σ-τ -diagram for all possible cross
sections and directions, respectively. With respect to principal axes, we get from
(1.4)

σ2 + τ 2 = titi = σ2
1n

2
1 + σ2

2n
2
2 + σ2

3n
2
3 ,

σ = tini = σ1n
2
1 + σ2n

2
2 + σ3n

2
3 .

Inserting this into the identity

and taking into account nini = 1, it may be written as

This equation formally may be interpreted as the equation of a ”circle” with
its center at σ = (σ2 + σ3)/2, τ = 0 and a radius depending on n1. Because
of 0 ≤ n2

1 ≤ 1 the minimum stress distance from the center is (σ2 − σ3)/2 =
τ1 (for n1 = 0), while the maximum distance is σ1 + (σ2 − σ3)/2 (for n1 =
±1). Analogous considerations can be performed for two further equations which
follow from (1.16) by a cyclic permutation of subscripts. Arranging the principal
stresses according to their magnitude (σ1 ≥ σ2 ≥ σ3), we finally get the condensed
representation of Fig. 1.3. Accordingly, stress points (σ, τ) are possible only in
the shaded region and on the circles of radii τi. The circles themselves correspond
to cross sections with a normal perpendicular to one of the three principal axes.

τmax

τ

σ

τ1

τ3

σ, τ

σ1σ2σ3

Figure 1.3: Mohr’s circles
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1.1.3 Equilibrium conditions

An arbitrary material region is in general loaded by body forces fi which are
distributed over the volume V and surface forces (stress vector) ti acting along
the surface ∂V . Force equilibrium is ensured if the resultant of these forces
vanishes: ∫

∂V

ti dA+

∫

V

fi dV = 0 . (1.17)

Using ti = σijnj , see (1.7), and applying the divergence theorem
∫
∂V
σijnj dA =∫

V
σij,j dV this equation can be rewritten as

∫

V

(σij,j + fi) dV = 0 . (1.18)

Here we have assumed that the stresses and their derivatives are continuous. The
latter are indicated by a subscript after a comma: σij,j = ∂σij/∂xj . Since the
volume V is arbitrary, it follows from (1.18) that for each point of the body the
local equilibrium conditions

σij,j + fi = 0 or ∇ · σ + f = 0 (1.19)

must be fulfilled. Within the symbolic notation, we have used the vector operator
∇ = (∂/∂xj) ej.

From (1.19) the equations of motion directly can be derived if the motion-
induced inertia forces −ρüi are considered as additional volume forces:

σij,j + fi = ρ üi . (1.20)

Here ρ is the mass density and dots above a quantity denote derivatives with
respect to time.

We will not discuss the equilibrium of moments. It only should be noted that
this condition leads to the already mentioned symmetry of the stress tensor (1.5).

1.2 Deformation and strain

1.2.1 Strain tensor

The kinematics of a deformable body usually is described in terms of the dis-
placement vector and a strain tensor. These quantities can be introduced by
considering an arbitrary material point P whose position in the undeformed state
(e.g., at time t = 0) is given by the coordinates (position vector) Xi, see Fig. 1.4.
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Figure 1.4: Deformation

x1

x3

x2

Q
Q′

P ′
P

xi

dXi

dxi
Xi

ui

A point Q at a distance dS adjacent to P has the coordinates Xi + dXi. On
account of a load-induced deformation, P is displaced to P ′ and Q to Q′, respec-
tively. Their current position (at time t) is given by the space coordinates xi
and xi + dxi, respectively. The displacement from P to P ′ is expressed by the
displacement vector

ui = xi −Xi . (1.21)

Assuming a uniquely invertible mapping between xi and Xi, the displacement
vector ui and the position vector xi can be regarded as functions of the material
coordinates Xi:

ui = ui(Xj , t) , xi = xi(Xj , t) . (1.22)

In order to derive a suitable deformation measure we compare the distances
of adjacent points in the deformed and undeformed state. It is convenient to
consider for this purpose the squared distances

Using (1.21) and (1.22) one obtains

where

is a symmetric second rank tensor which is called Green’s strain tensor (G. Green,
1793-1841).

It can be shown that for sufficiently small (infinitesimal) displacement gradi-
ents (∂ui/∂Xj ≪ 1) the derivatives with respect to material coordinates Xj can
be replaced by derivatives with respect to space coordinates xj , i.e., ∂ui/∂Xj →
∂ui/∂xj = ui,j. Taking into account that in this case the product of the displace-
ment gradients in Eij vanishes (being small of higher order), we get from (1.24)



Deformation and strain 13

the infinitesimal strain tensor

εij =
1

2
(ui,j + uj,i) . (1.25)

It may be represented as the matrix

ε =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


 (1.26)

which is symmetric because of εij = εji, see (1.25).
Geometrically, the normal strains ε11, ε22, ε33 can be interpreted as relative

length changes and the shear strains ε12, ε23, ε31 as angle changes. In this context
also the engineering notation should be mentioned. With reference to x, y, z-
coordinates often the notation εx, εy, εz for normal strains and γxy/2, γyz/2,
γzx/2 for shear strains is used.

The properties of the strain tensor can be transferred from the stress tensor.
There exists a system of principal axes where shear strains vanish and solely
principal strains ε1, ε2, ε3 appear. Furthermore, the strain tensor has the three
invariants Iε, IIε, IIIε. The first invariant characterizes the volumetric strain, i.e.,
the relative volume change:

Iε = εV = εkk = ε1 + ε2 + ε3 . (1.27)

If the strain tensor is decomposed according to

then the first part describes the volume change while the second part, the strain
deviator e, expresses a distorsion, i.e., a deformation at constant volume. Of
particular importance is the second invariant of the deviator which in analogy to
(1.15) reads

For given strain components (1.25) forms a system of six equations for the
three displacement components. Thus, the strain components cannot be indepen-
dent of each other if the displacement field in a simply connected domain shall be
unique (apart from a rigid body motion). They have to satisfy the compatibility
conditions which can be derived from (1.25) by eliminating the displacements:

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 . (1.30)
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1.2.2 Strain rate

The strain tensor is not always suitable to describe the deformation and motion
of a deformable body. In some cases, as for example in plasticity, it is more
appropriate to use strain changes and strain rates, respectively. To introduce
these quantities we start from the velocity field vi(xj , t) (Fig. 1.5). The relative
velocity of two particles, located at time t at adjacent points P ′ und Q′ in space
is expressed by

Through this equation, the velocity gradient vi,j is defined as a second rank tensor
which can be decomposed as follows:

vi,j =
1

2
(vi,j + vj,i) +

1

2
(vi,j − vj,i) = Dij +Wij . (1.32)

x1

x3

x2

dxi

vi+dvi

vi

Q′

P ′
xi

Figure 1.5: Strain rate

The symmetric part

Dij =
1

2
(vi,j + vj,i) (1.33)

is known as the strain rate tensor . It characterizes the temporal strain change
of the current configuration. Multiplying it with the time increment yields the
so-called natural strain increment :

dǫij = Dij dt . (1.34)

If the strains remain small during the whole deformation history, then Dij and
dǫij can be replaced by the time derivative of the strain tensor ε̇ij and by the
strain increment dεij, respectively. In the following, we will mostly employ this
assumption. It also should be mentioned that all properties of the stress tensor
analogously can be transferred to Dij and dǫij . In addition, the compatibility
conditions (1.30) can be applied by replacing εij by Dij and dǫij , respectively.

The skew-symmetric part Wij in (1.32) characterizes the current rotation
(spin) which will not be further discussed here.
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1.3 Constitutive laws

In the following we will assume small (infinitesimal) strains which is appropriate
for a wide range of problems. This assumption also considerably simplifies the
formulation of constitutive laws by which the deformation behavior of the material
is characterized.

1.3.1 Elasticity

1.3.1.1 Linear elastic behavior

Generalizing the uniaxial Hooke’s law σ = E ε (R. Hooke, 1635-1703) for a linear
elastic material, stresses and strains in the three-dimensional case are related as

σ = C : ε or σij = Cijkl εkl . (1.35a)

Here the two dots in the symbolic notation indicate a summation over two index
pairs (in this case k, l). The elasticity tensor C is a fourth rank tensor which
characterizes through its components Cijkl, i.e., through the elasticity constants,
the elastic properties of the material. It can be shown that C in the most general
anisotropic case consists of 21 independent constants and that the symmetries
Cijkl = Cjikl = Cijlk = Cklij hold. Inverting (1.35a), the elasticity law alterna-
tively can be written as

ε = M : σ or εij = Mijkl σkl (1.35b)

where M = C−1 is the compliance tensor . Its components Mijkl have identical
symmetry properties as Cijkl.

An isotropic material shows the same behavior in all directions. In this case,
C is an isotropic tensor which is determined by solely two independent constants:

Cijkl = λ δijδkl + µ (δikδjl + δilδjk) . (1.36)

Inserting this representation into (1.35a) the elasticity law reads

σij = λ εkk δij + 2µ εij (1.37)

where λ and µ are the so-called Lamé constants (G. Lamé, 1795-1870). Their rela-
tion with Young’s modulus E (T. Young, 1773-1829), shear modulus G, Poisson’s
ratio ν (S.D. Poisson, 1781-1840) and the bulk modulus K is given in Table 1.1.

Inverting (1.37) according to (1.35b) and using the relations in Table 1.2, the
elasticity law can be rewritten as
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Table 1.1: Relations between elastic constants

Another possibility of representation is the decomposition of the isotropic elastic-
ity law into its hydrostatic (volumetric) and deviatoric part. Using (1.14), (1.28)
and the relations of Table 1.1 yields

σkk = 3K εkk , sij = 2µ eij . (1.39)

An anisotropic material is characterized by its different behavior in different
directions. In the following we restrict our attention to two specific cases. An
orthotropic material has three principal material directions which are perpendic-
ular to each other. If they coincide with the chosen coordinate axes, the elasticity
law can be expressed in matrix notation as




ε11

ε22

ε33

2 ε23

2 ε31

2 ε12




=




h11 h12 h13 0 0 0
h12 h22 h23 0 0 0
h13 h23 h33 0 0 0
0 0 0 h44 0 0
0 0 0 0 h55 0
0 0 0 0 0 h66







σ11

σ22

σ33

σ23

σ31

σ12



. (1.40)

The nine independent compliances hij are related to the tensor components Mijkl

and the engineering elasticity constants Ei (Young’s moduli), νij (Poisson’s ra-
tios), µij (shear moduli) as follows:

h11 =M1111 =
1

E1
, h12 =M1122 =−ν12

E1
=−ν21

E2
, h44 =M2323 =

1

µ23
,

h22 =M2222 =
1

E2

, h23 =M2233 =−ν23

E2

=−ν32

E3

, h55 =M3131 =
1

µ31

,

h33 =M3333 =
1

E3
, h13 =M1133 =−ν13

E1
=−ν31

E3
, h66 =M1212 =

1

µ12
.

(1.41)
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If the material constants of an orthotropic material are not changed when
the material is rotated with respect to one of its principal directions (e.g., the
x3-axis), it is called transversely isotropic. Since the compliances in this case are
interrelated by

h11 = h22 , h13 = h23 , h44 = h55 , h66 = 2(h11 − h12) , (1.42)

such a material is characterized by only five independent elasticity constants.
When a stress-free material is heated, thermal strains εth appear. They are,

at a good approximation, proportional to the temperature change ∆T :

εth = k∆T or εthij = kij ∆T . (1.43)

Here k denotes a tensor given by thermal expansion coefficients. For a ther-
mally isotropic material it is determined by only a single parameter: kij = k δij.
Defining total strains ε as the sum of elastic and thermal strains, the elastic-
ity law attains the form of the so-called Duhamel-Neumann law (J.M. Duhamel,
1797-1872, F. Neumann, 1798-1895)

σ = C : (ε − εth) . (1.44)

1.3.1.2 Strain energy density

The work per unit volume, done during deformation of an elastic material

U =

εkl∫

0

σij dεij (1.45)

is independent of the deformation path. In this case the integrand dU = σijdεij
is a total differential, i.e., dU = ∂U

∂εij
dεij , and

σij =
∂U

∂εij
(1.46)

holds. The function U = U(εij) is called strain energy density .

In addition to U(εij), the complementary energy density Ũ(σij) may be intro-
duced. It is defined as

Ũ = σijεij − U =

σkl∫

0

εij dσij . (1.47)

Analogous to (1.46), the relation

εij =
∂Ũ

∂σij
(1.48)
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is valid.

Specifically for a linear elastic material, by introducing (1.35a) and (1.35b)
into (1.45) and (1.47), the strain energy density and complementary energy den-
sity can be determined as

Using (1.14), (1.28), and (1.39) the strain energy density can be decomposed into
two parts:

Here UV = 1
2
Kε2

kk = 1
2
KI2

ε is the pure volumetric strain energy density ( =
portion of energy on account of a volumetric strain) while UD = µ eijeij = 2µ IIe
is the distortional energy density ( = portion of energy on account of purely
deviatoric strains).

1.3.1.3 Nonlinear elastic material behavior

The strain energy density U of an isotropic material depends solely on the in-
variants Iε, IIε, IIIε of the strain tensor. Since IIε and IIIε can be expressed by
the invariants IIe, IIIe of the deviator and by Iε, the functional dependence can
be written as U = U(Iε, IIe, IIIe). Consequently, using (1.46) and Iε = εij δij,
IIe = 1

2
eijeij , IIIe = 1

3
eijejkeki, a general nonlinear elasticity law may be repre-

sented as

σij =
∂U

∂Iε
δij +

∂U

∂IIe
eij +

∂U

∂IIIe
eikekj . (1.51)

For many materials it may be assumed that the strain energy density, analo-
gous to the linear elastic case, is additively composed of a volumetric part and a
distortional part: U = U1(Iε) + U2(IIe). In this case (1.51) reduces to

σij =
dU1

dIε
δij +

dU2

dIIe
eij . (1.52)

Splitting the stresses into the hydrostatic and deviatoric parts we obtain the
relations

σkk = 3
dU1

dIε
= f(εkk) , sij =

dU2

dIIe
eij = g(IIe) eij . (1.53)

If the material additionally can be regarded as incompressible, i.e., εkk = 0, the
first equation in (1.53) can be omitted. In this case the function g(IIe) can be sim-
ply expressed by the material’s uniaxial stress-strain curve σ(ε). For this purpose
we first define a uniaxial equivalent stress or effective stress σe as follows: with
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respect to the material response, a three-dimensional stress state σ (respectively
s) is equivalent to a uniaxial stress state σe, if the second invariants IIs of the
deviator are equal in both stress states. This leads with (1.15) and σ1 = σe,
σ2 = σ3 = 0 to

σ2
e =

3

2
sijsij =

3

2
s : s . (1.54a)

In case of an incompressible material, analogously, a three-dimensional strain
state ε (respectively e) is considered equivalent to a uniaxial strain state εe if the
second invariants IIe are equal in both strain states. Inserting this in conjunction
with ε1= εe, ε2= ε3= −ε1/2 into (1.29) results in the following definition of a
uniaxial equivalent strain or effective strain

ε2
e =

2

3
eijeij =

2

3
e : e . (1.54b)

If we now consider the product sijsij and introduce (1.53), (1.54a), (1.54b) we
obtain g = 2

3
σe/εe and the material law reads

sij =
2

3

σe

εe
eij . (1.55)

As an example we consider a uniaxial stress-strain curve, represented by the
power law

ε = B σn or σ = b εN (1.56)

where n = 1/N andB = 1/bn are material constants. Assuming incompressibility,
its three-dimensional generalization is given by

eij =
3

2
B σn−1

e sij or sij =
2

3
b εN−1

e eij . (1.57)

The strain energy density and complementary energy density in this case are

U =
n

n + 1
sijeij , Ũ =

1

n+ 1
sijeij . (1.58)

1.3.2 Viscoelasticity

Viscoelastic materials combine elastic and viscous behavior. They are character-
ized by a time-dependent response and by a dependence of stresses and strains
on the load or deformation history, respectively. Typical viscoelastic effects are
creep and relaxation phenomena as they appear for example in polymers. But
creep effects are also relevant in metals such as steel in the high temperature
regime.
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1.3.2.1 Linear viscoelastic material behavior

The uniaxial linear viscoelastic material behavior can be described by the consti-
tutive law

ε(t) =

t∫

−∞

J(t− τ)
dσ

dτ
dτ or σ(t) =

t∫

−∞

E(t− τ)
dε

dτ
dτ . (1.59)

Here J(t) and E(t) are material functions, representing the response to an in-
stantaneously applied constant stress σ0 or constant strain ε0, respectively. The
function J(t) = ε(t)/σ0 is called creep function or creep compliance while E(t) =
σ(t)/ε0 is referred to as relaxation function (Fig. 1.6). They are interrelated
through

d

dt

t∫

0

J(t− τ)E(τ) dτ = 1 . (1.60)

The lower limit of the integrals in (1.59) indicates that the material behavior at
time t depends on the entire preceding stress and strain history, respectively.

t

E

b)
t

J

a)

Jg

Je

Eg

Ee

Figure 1.6: a) Creep function, b) relaxation function

In case of an isotropic material, a three-dimensional generalization of (1.59)
can be obtained by separating the hydrostatic (volumetric) and deviatoric (dis-
tortional) parts. In addition, for many viscoelastic materials it may be assumed
that the response to volumetric strains is purely elastic: σkk = 3Kεkk. In this
case, the constitutive law for the remaining deviatoric part is given by

e′ij =
1

2

t∫

−∞

Jd(t− τ)
dsij
dτ

dτ , sij = 2

t∫

−∞

G(t− τ)
deij
dτ

dτ . (1.61)
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The creep function Jd(t) and relaxation function G(t) again are related as in the
uniaxial case, see (1.60).

Integrals of the type (1.59), (1.61) are known as convolution integrals. They
are treated conveniently by Laplace transform. The Laplace transformed function
f̄(p) of a function f(t) is defined as

f̄(p) =

∞∫

0

f(t) e−pt dt . (1.62)

For instance, applying this transformation to the second equation of (1.61) and
assuming that the strain history starts at time τ = 0 we obtain

s̄ij = 2 p Ḡ(p) ēij . (1.63)

Comparing this result with (1.39) we observe that, apart from the material con-
stant, the transformed viscoelastic law and the elastic law are of the same form.
This is valid also for all further relevant equations such as equilibrium conditions
and kinematic relations. This property is known as elastic–viscoelastic analogy
which is the basis of the so-called correspondence principle. According to this
principle the Laplace-transformed solution of a viscoelastic problem can be ob-
tained from the corresponding elastic solution by replacing the elastic constants
appropriately by the Laplace-transformed creep and relaxation functions, respec-
tively (e.g., G → p Ḡ(p)). The final solution of the viscoelastic problem then
follows by the inverse transformation.

1.3.2.2 Nonlinear viscoelastic material response, creep

Nonlinear viscoelastic behavior is often described by pragmatic approaches which
are applicable only to specific materials or in a restricted loading regime. One of
these is Leaderman’s approach for polymers (H. Leaderman, 1943)

ε(t) =

t∫

−∞

J(t− τ)
d(σf)

dτ
dτ (1.64)

where f(σ) is an additional material function. It characterizes the dependence
of creep strains on an applied constant stress σ0 in the form ε(t) = σ0f(σ0)J(t).
A generalization of (1.64) to the three-dimensional case may be accomplished
analogously to the linear case.

Because of its practical relevance, creep of metallic materials under constant
stress shall briefly be discussed. Usually the three stages of primary, secondary,
and tertiary creep are distinguished, where secondary creep often is the dominant
stage. This stage is characterized by an approximately constant strain rate (creep
rate) ε̇ under a fixed uniaxial stress σ. The strain rate only depends on the stress
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level: ε̇ = ε̇(σ). For the characterization of such a stationary creep deformation
different approaches are in use such as, for example, Norton-Bailey’s creep law
(F.H. Norton, R.W. Bailey, 1929)

ε̇ = B σn , (1.65)

Prandtl’s approach (L. Prandtl, 1875-1953)

ε̇

ε̇⋆
= [sinh(

σ

σ⋆
)]n (1.66)

or modified approaches of the type

ε̇

ε̇⋆
= C

d

dt
(
σ

σ⋆
)m + (

σ

σ⋆
)n (1.67)

where B, C, n, m, σ⋆, and ε̇⋆ are material parameters.
The constitutive laws for viscous flow and elastic response often have a similar

structure. For instance, (1.65) can formally be obtained from (1.56) by simply
replacing strains by strain rates. If one assumes that the quantities (work rates)

D̃ =

σkl∫

0

ε̇ij dσij , D =

ε̇kl∫

0

σij dε̇ij = σij ε̇ij − D̃ (1.68)

are independent of the integration path, then the relations

ε̇ij =
∂D̃

∂σij
, σij =

∂D

∂ε̇ij
(1.69)

hold which are analogous to (1.48) and (1.46). The function D̃(σij) is known
as flow potential , D(ε̇ij) is the strain energy rate density and σij ε̇ij is called
dissipation rate.

Assuming an incompressible material (ε̇kk = 0) and a dependence of the flow
potential solely on IIs, equation (1.69) yields

ėij =
dD̃

dIIs
sij =

3

2

ε̇e
σe
sij (1.70)

where σe = (3
2
sijsij)

1/2 and ε̇e = (2
3
ėij ėij)

1/2. For example, Norton’s creep law
for the three-dimensional case then attains the form

ėij =
3

2
B σn−1

e sij . (1.71)

The corresponding strain energy rate density and the flow potential read

D =
n

n + 1
sij ėij , D̃ =

1

n+ 1
sij ėij . (1.72)
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These equations are fully analogous to equations (1.57), (1.58) for a nonlinear
elastic power law. Both sets of equations can be transformed into each other by
replacing strains by strain rates and vice versa. Consequently, also the solutions of
corresponding boundary value problems are analogous. According to this analogy,
the solution of a nonlinear elastic problem can be transferred to the corresponding
creep problem by replacing strains by strain rates.

1.3.3 Plasticity

If stresses or strains exceed a certain limit, plastic yielding may be observed
especially in metallic materials. In this case, in contrast to viscoelasticity, a load
change mostly leads to an immediate (time independent) deformation change.
One effect of plastic yielding are remaining plastic deformations after unloading.

For the characterization of an elastic-plastic material in conventional plasticity
theory one usually assumes that the strains and strain increments are additively
composed of an elastic and a plastic part:

ε = εe + εp , dε = dεe + dεp . (1.73a)

By relating the strain increments to a corresponding time increment dt the addi-
tive split also can be expressed as

ε̇ = ε̇e + ε̇p . (1.73b)

For the elastic part a linear stress-strain relationship, as given e.g. by (1.35a),
may be assumed. In conjunction with (1.73a) the elasticity law then attains the
form

σ = C : εe = C : (ε − εp) . (1.74)

As a constitutive law for the plastic part, formulations in terms of plastic strain
increments as well as in terms of total plastic strains are in use. The correspond-
ing representations are known as incremental plasticity and deformation plasticity
(total strain theory), respectively. Both approaches usually assume plastic incom-
pressibility, i.e., vanishing plastic volumetric strains: εpkk = 0. As a consequence
εp = ep holds.

1.3.3.1 Yield criterion

It is feasible to assume that yielding occurs only if a certain state prevails which
is determined by the stresses σij . Such a yield criterion can be expressed by

F (σ) = 0 (1.75a)

which may be interpreted as a surface ( = yield surface) in the nine-dimensional
space of stresses σij . A stress state on the yield surface (F = 0) then characterizes
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yielding while stress states within the yield surface (F < 0) correspond to an
elastic response. Accordingly, the extended yield criterion

F (σ) ≤ 0 (1.75b)

defines the set of all possible (admissible) stress states.

The yield surface may change its location and its shape during plastic de-
formation. Special cases are the self similar growth of the yield surface, known
as isotropic hardening , and a pure translation, known as kinematic hardening .
If the yield surface remains unchanged, the material response is called perfectly
plastic. As we will discuss later in conjunction with the principle of maximum
plastic work, the yield surface is convex.

For an isotropic material, the yield criterion can only depend on the invariants
Iσ, IIσ, IIIσ which is equivalent to a dependence only on Iσ, IIs, IIIs. When
loaded by a hydrostatic stress state many materials, especially metals, show a
purely elastic response by volumetric strains, i.e., Iσ does not influence yielding.
Thus, the yield criterion (1.75a) reduces to

F (IIs, IIIs) = 0 . (1.76)

Equation (1.76) offers a multitude of possible criteria from which only two
well-established and widely-used yield criteria shall be mentioned here. The von

Mises yield criterion (R. von Mises, 1883–1953) is given by

F = IIs − k2 = 0 or F =
1

2
sijsij − k2 = 0 . (1.77a)

In conjunction with (1.15) it can also be written as

F =
1

6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] − k2 = 0 . (1.77b)

Accordingly, the material yields if IIs attains the critical value k2. Equivalent
are the statements that yielding requires a certain octahedral shear stress τoct or
that the linear elastic response is limited by a critical distortional strain energy
density UG. Equation (1.77b) defines a cylindrical surface of radius

√
2k around

the ”hydrostatic” axis σ1 = σ2 = σ3 in the three-dimensional space of principal
stresses (Fig. 1.7a). For a perfectly plastic material k is constant. Introducing
the yield stress σY for uniaxial tension (σ1 = σY , σ2 = σ3 = 0) and τY for pure
shear (σ1 = −σ3 = τY , σ2 = 0), the relation k = σY /

√
3 = τY holds. In case of

isotropic hardening, k depends on the plastic deformation. The constant σY then
has to be replaced by the actual yield stress: k = σ/

√
3. By comparison with

(1.77a) we obtain the already known uniaxial equivalent stress σe = (3
2
sijsij)

1/2,
see (1.54a), which is also known as the von Mises stress.
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Figure 1.7: Yield criteria according to von Mises and Tresca

For the special case of plane stress (σ3 = 0) we obtain from (1.77b) the yield
condition

σ2
1 + σ2

2 − σ1σ2 = σ2
Y . (1.78)

The associated yield curve is an ellipse, see Fig. 1.7b.

The yield condition according to H.E. Tresca (1868) is based on the assumption
that plastic flow occurs if the maximum shear stress reaches a certain critical
value: F = τmax − k = 0. Introducing the extreme shear stresses according to
(1.11), one of the conditions

σ1 − σ3 ± 2k = 0 , σ2 − σ1 ± 2k = 0 , σ3 − σ2 ± 2k = 0 (1.79)

must be fulfilled. The associated yield surface in principal stress space is a hexag-
onal prism whose middle axis coincides with the hydrostatic axis (Fig. 1.7). For
a perfectly plastic material, the relation between k and the flow stresses σY (uni-
axial tension) and τY (pure shear) is given by k = σY /2 = τY .

1.3.3.2 Incremental theory

In the following we assume that the material satisfies the principle of maximum
plastic work:

(σij − σ0
ij) dεpij ≥ 0 . (1.80)

Here, σij is the actual stress state on the yield surface, while σ0
ij represents an

initial state within or on the yield surface. This principle can be interpreted such
that among all stress states σ̃ij which fulfill the yield condition, the actual stresses
σij render the plastic work σ̃ijdε

p
ij an extremum. This extremum statement
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can be formulated as

∂

∂σ̃ij
[σ̃ijdε

p
ij − dλF (σ̃ij)] = 0 for σ̃ij = σij (1.81)

where dλ ≥ 0 is a free Lagrange multiplier. From this follows the flow rule

dεpij = dλ
∂F

∂σij
(1.82a)

which alternatively can be written as

ε̇pij = λ̇
∂F

∂σij
or ε̇p = λ̇

∂F

∂σ
. (1.82b)

Without going into details it should be mentioned that from the principle
of maximum plastic work some consequences arise. One of them is the already
mentioned convexity of the yield surface. Another consequence is the normality
rule which states that the plastic strain increment points outward of the yield
surface in normal direction, cf. (1.82a,b).

If we take von Mises yield condition (1.77a,b) as the basis, then (1.82a,b)
yields dεp = dλ s. In this case, the principal axes of dεp coincide with those
of the stress deviator s and consequently also with those of σ. The multiplier
dλ can be determined by introducing the equivalent stress σe = (3

2
sijsij)

1/2 and
– taking into account plastic incompressibility – the equivalent strain increment
dεpe = (2

3
dεpijdε

p
ij)

1/2. From dεpijdε
p
ij = (dλ)2sijsij we then get dλ = 3

2
dεpe/σe and

finally

dεpij =
3

2

dεpe
σe

sij or ε̇p =
3

2

ε̇pe
σe

s . (1.83a)

For a perfectly plastic material, the equivalent stress is constant: σe = σY . This is
not the case for strain hardening materials and it is then appropriate to introduce
into (1.83a) the plastic tangent modulus g = dσe/dε

p
e = σ̇e/ε̇

p
e and to write the

flow rule as follows

dεpij =
3

2

sij
g σe

dσe or ε̇p =
3

2

σ̇e

g σe
s . (1.83b)

Combining the elastic and plastic strain increments according to (1.73a,b) we
obtain as the constitutive law during yielding (F = 0, dσe > 0) the so-called
Prandtl-Reuss law

ε̇kk =
1

3K
σ̇kk , ė =

1

2µ
ṡ +

3

2

σ̇e

g σe
s . (1.83c)

In contrast, if Tresca’s yield condition in the form F = σ1 − σ3 − k = 0 with
σ1 ≥ σ2 ≥ σ3 is employed the plastic increments in principal directions follow
from flow rule (1.82a) as

dεp1 = dλ , dεp2 = 0 , dεp3 = −dλ . (1.84)

As before, they satisfy the condition of plastic incompressibility.
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1.3.3.3 Deformation theory

In deformation theory (also referred to as total strain theory) it is assumed that
between plastic strains and deviatoric stresses the relation

εp = λ s (1.85)

holds where the multiplier λ depends on the stress state and plastic deformation.
On the basis of von Mises’ yield condition in conjunction with the equivalent
stress σe = (3

2
sijsij)

1/2 and the equivalent plastic strain εpe = (2
3
εpijε

p
ij)

1/2 it is
determined as λ = 3εpe/2σe. Combining elastic and plastic strains according to
(1.73a) we obtain the finite Hencky-Ilyushin law

εkk =
1

3K
σkk , e =

[
1

2µ
+

3

2

εpe
σe

]
s . (1.86)

Comparing (1.86) with (1.55) it can be recognized that deformation theory
describes the plastic material behavior like a nonlinear elastic behavior. Conse-
quently, deformation theory is not able to adequately model unloading processes.
Therefore, to be physically meaningful, it is only applicable in a monotonic load-
ing regime. Under such circumstances this theory is especially appropriate if
proportional loading is present, i.e., if the condition

s = P s0 (1.87)

is fulfilled. Here, s0 is a reference stress state (e.g., for the final load) and P is a
scalar load parameter. It can be shown that in this case deformation theory and
incremental theory are equivalent.

As a sufficiently good approximation of the real material behavior, the general
relation (1.85) often is specified by the power laws (1.56) and (1.57), respectively.
This leads always to proportional loading according to (1.87) as long as the ex-
ternal load of the body or a sub-body is prescribed by solely one load parameter
P (e.g., by a single force). In this case, the strains and displacements are given
by

εp = P n εp 0 , u = P n u0 . (1.88)

Here εp 0 and u0 are the plastic strains and displacements associated with the
reference stress state s0. As a consequence, if the stresses and strains are known
for a certain load, they are known for all other loading stages.

It should be mentioned that these properties arising from the power law can
analogously be transferred from deformation theory of plasticity to creep pro-
cesses. Due to the analogy of constitutive laws for nonlinear elastic behavior and
for creep (see Sect. 1.3.2.2), only strains must be replaced by strain rates and
displacements by velocities. Then the following relations apply:

s = P s0 , ε̇p = P n ε̇p 0 , u̇ = P n u̇0 . (1.89)
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1.4 Energy principles

In the following some classical energy principles for deformable bodies are shortly
discussed. Here we assume that during state changes the material surface of a
body remains unchanged. This means that any crack growth is precluded. For
brevity we further assume that the body is externally loaded solely by surface
tractions and no volume forces are present. The latter can easily be taken into
account if necessary.

1.4.1 Energy balance

The energy balance or first law of thermodynamics, applied to continuum me-
chanics, states that the change of total energy (internal energy + kinetic energy)
of a body is equal to the energy flux into the body. This can be expressed through
the equations

Ė + K̇ = P +Q , (E +K)2 − (E +K)1 =

t2∫

t1

(P +Q) dt . (1.90)

Here E, K, and P are the internal energy, the kinetic energy, and the power of
external forces, respectively. They are given by

E =

∫

V

ρ e dV , K =
1

2

∫

V

ρ u̇ · u̇ dV , P =

∫

∂V

t · u̇ dA (1.91)

where e is the specific internal energy. The quantity Q describes an energy
transport into the body which is not covered by P, as e.g., heat flux. We will not
further specify this term.

For an elastic material ρ e can be identified as the strain energy density U . In
the special case of quasi-static loading (K = 0) and for Q = 0 the energy balance
reads

Π int
2 −Π int

1 = W ext
12 . (1.92)

Here the terms

Π int =

∫

V

U dV , W ext
12 =

∫

∂V

[

u2∫

u1

t · du] dA (1.93)

for the body’s strain energy and for the work done by external forces between
the states 1 and 2 have been introduced. The term Π int is also called elastic
potential .
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1.4.2 Principle of virtual work

We consider a body in equilibrium with prescribed tractions t̂ and displacements
û on the partial surfaces ∂Vt and ∂Vu. The static and kinematic basic equations
for this case read

σij,j = 0 in V , σijnj = t̂i on ∂Vt ,

εij = 1
2
(ui,j + uj,i) in V , ui = ûi on ∂Vu .

(1.94)

A statically admissible stress field σ(1) satisfies the equilibrium conditions and
boundary conditions on ∂Vt. Analogously, a kinematically admissible displace-
ment field u(2) and strain field ε(2) satisfy the kinematic relations and boundary
conditions on ∂Vu. By multiplying the equilibrium conditions for σ(1) by the
displacements u(2) and subsequent integration over the volume V in conjunction
with the divergence theorem, from (1.94) the general work theorem

∫

V

σ(1) : ε(2) dV =

∫

∂Vt

t̂
(1) · u(2) dA +

∫

∂Vu

t(1) · û(2) dA (1.95)

is obtained.
From (1.95) various specific theorems can be derived. If we use as force quan-

tities (e.g., stresses) the actual quantities associated with an equilibrium state
and as kinematic quantities the so-called virtual displacements δu and virtual
strains δε relative to the equilibrium configuration, we obtain the principle of
virtual work (principle of virtual displacements)

δW int = δW ext (1.96)

where

δW int =

∫

V

σ : δε dV , δW ext =

∫

∂Vt

t̂ · δu dA . (1.97)

Here, the virtual displacements are understood as infinitesimal and kinematically
admissible. According to this principle the work δW int done by internal forces
and δW ext done by external forces during a virtual displacement must be equal
for a body in equilibrium.

For an elastic material the work of internal forces is equivalent to the change
of the elastic potential. This is valid since according to (1.45) σ : δε = δU from
which in conjunction with (1.97) and (1.93) the relation δW int = δΠ int follows.
If additionally the external forces can be derived from a potential, the relation
δW ext = −δΠext holds and we obtain from (1.96)

δΠ = δ(Π int +Πext) = 0 . (1.98)

Thus, in an equilibrium state the total potential Π is stationary. It can be shown
that the corresponding value is a minimum if the potential is convex:

Π = Π int +Πext = minimum . (1.99)
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This is the principle of minimum potential energy . It can be phrased as fol-
lows: among all admissible deformations (compatible with kinematic boundary
conditions) the actual deformations render the total potential Π stationary (min-
imum). It should be mentioned that the potential for a linear elastic material
and fixed traction or displacement boundary conditions is in fact convex, i.e., it
attains an absolute minimum in an equilibrium state.

From (1.95) also the principle of virtual complementary work (principle of
virtual forces) can be obtained. In this case, the kinematic quantities are chosen to
be the actual displacements and strains while virtual changes from the equilibrium
state are taken as statically admissible force quantities. This yields

δW̃ int = δW̃ ext (1.100)

where

δW̃ int =

∫

V

ε : δσ dV , δW̃ ext =

∫

∂Vu

û · δt dA (1.101)

are the complementary work of internal and external forces, respectively. Analo-
gous to the previous principle the internal complementary potential

Π̃ int =

∫

V

Ũ dV (1.102)

can be introduced for elastic materials. In addition, if an external complementary
potential exists where Π̃ext = −W̃ ext we obtain from (1.100)

δΠ̃ = δ(Π̃ int + Π̃ext) = 0 . (1.103)

Hence, in an equilibrium state also the complementary potential attains a sta-
tionary value. It is a minimum if Π̃ is convex, which in fact holds for linear elastic
systems:

Π̃ = Π̃ int + Π̃ext = minimum . (1.104)

This is the principle of stationary (minimum) complementary potential . Accord-
ingly, among all admissible stress fields (compatible with the static boundary

conditions) the actual stresses render the complementary potential Π̃ stationary
(minimum).

1.4.3 Theorems of Clapeyron and Betti

As the static and kinematic quantities in (1.95) we now introduce the actual
(true) quantities. Provided that the external forces are dead loads (t = t(x)),
the right-hand side of (1.95) represents the work W ext of those forces done from
the undeformed to the current deformed state. Since dead loads have a potential,
W ext = −Πext holds. Furthermore, for a linear elastic material, the left-hand
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side of (1.95) in conjunction with σ : ε = 2U and (1.93) becomes 2Π int. As a
consequence we obtain Clapeyron’s theorem (B.P.E. Clapeyron, 1799-1864)

2Π int +Πext = 0 . (1.105)

In contrast, for the special case of an incompressible nonlinear elastic material
which is described by the power law (1.56), (1.57) we first obtain for the left-hand
side of (1.95) n+1

n
Π int and finally

n+ 1

n
Π int +Πext = 0 . (1.106)

We now consider again the case of a linear elastic material which is described
by the elasticity law σij = Cijklεkl, see (1.35a). On account of the symmetry of

the elasticity tensor (Cijkl = Cjikl = Cijlk = Cklij) the general relation σ
(1)
ij ε

(2)
ij =

σ
(2)
ij ε

(1)
ij holds. Integration over the volume in conjunction with the general work

theorem (1.95) yields Betti’s theorem (E. Betti, 1823-1892)
∫

∂V

t(1) · u(2) dA =

∫

∂V

t(2) · u(1) dA (1.107)

which is also called reciprocity relation. Accordingly, for two different load con-
figurations (1), (2) of the same body, the work done by the first force system on
the displacements of the second system is equal to the work done by the second
force system on the displacements of the first system.

1.5 Plane problems

1.5.1 Plane stress, plane strain, longitudinal shear

Problems of solid mechanics may often be approximated as plane (two-dimensional)
problems. Particularly important for applications are the plane strain and the
plane stress state. Besides, the longitudinal (anti-plane) stress state has a some-
what minor importance. For their representation we use in the following the engi-
neering notation with coordinates x, y, z, displacements u, v, w, strains εx, γxy, . . .
and stresses σx, τxy, . . . .

A plane strain state is characterized by constrained strains and displacements
in one direction (e.g., in z-direction). In this case w, εz, γxz, γyz, τxz, τyz are zero
and all other quantities depend solely on x and y. The equilibrium conditions
(without volume forces), kinematic relations and compatibility conditions then
reduce to

∂σx
∂x

+
∂τxy
∂y

= 0 ,
∂τxy
∂x

+
∂σy
∂y

= 0 , (1.108)

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
, (1.109)
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∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x∂y

. (1.110)

Also the constitutive law becomes more simple. For example, from (1.38) we
obtain for an isotropic linear elastic material

εx =
1−ν2

E
(σx −

ν

1−ν σy) , εy =
1−ν2

E
(σy −

ν

1−ν σx) , γxy =
τxy
G

(1.111)

and σz = ν(σx + σy).

In a plane stress situation it is assumed that σz, τxz, τyz , γxz, γyz vanish and
that the remaining stresses and strains are independent of z. A corresponding
state appears approximately (not exact) in plates whose thickness is small com-
pared with their in-plane dimensions and which are loaded solely by forces parallel
to the plate. The equilibrium conditions, kinematic relations, and compatibility
conditions are identical with equations (1.108 – 1.110) for plane strain. In con-
trast to the latter state, the displacements u, v, w now may be dependent on z in
general. The constitutive law for a linear elastic isotropic material reduce to

εx =
1

E
(σx − νσy) , εy =

1

E
(σy − νσx) , γxy =

τxy
G

(1.112)

and Eεz = −ν(σx + σy). Equations (1.112) differ from (1.111) only through
somewhat different elastic constants. Therefore, solutions of plane strain bound-
ary value problems can simply be transferred to plane stress by changing the
elastic constants, and vice versa.

Often it is necessary to describe the stresses in a coordinate system ξ, η which
is rotated with respect to the x, y-system by an angle ϕ, see Fig. 1.8. The respec-
tive transformation relations can be obtained from (1.6) as

σξ =
1

2
(σx + σy) +

1

2
(σx − σy) cos 2ϕ+ τxy sin 2ϕ ,

ση =
1

2
(σx + σy) −

1

2
(σx − σy) cos 2ϕ− τxy sin 2ϕ , (1.113)

τξη = −1

2
(σx − σy) sin 2ϕ+ τxy cos 2ϕ .

They can be visualized by Mohr’s circle in Fig. 1.8.

One principal direction in plane strain as well as in plane stress is given by
the z-direction. The other two are in the x, y-plane. The associated principal
stresses and principal directions are given by

σ1,2 =
σx + σy

2
±
√

(
σx − σy

2
)2 + τ 2

xy , tan 2ϕ∗ =
2τxy

σx − σy
. (1.114)
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Figure 1.8: Mohr’s circle

In sections under ϕ∗∗ = ϕ∗ ± π/4 the principal shear stress

τ3 =
σ1 − σ2

2
=

√
(
σx − σy

2
)2 + τ 2

xy (1.115)

appears. For σ1 ≥ σz ≥ σ2 it is the maximum shear stress τmax.
The here specified formulas for the stresses can analogously be transferred to

the strains, the strain increments, and the strain rates.
In anti-plane strain or longitudinal shear, the only non-vanishing field quan-

tities are w, γxz, γyz, τxz, τyz, which are again independent of z. In this case, the
equilibrium condition, kinematic relations, and compatibility condition reduce to

∂τxz
∂x

+
∂τyz
∂y

= 0 , γxz =
∂w

∂x
, γyz =

∂w

∂y
,

∂γxz
∂y

=
∂γyz
∂x

. (1.116)

For a linear elastic behavior, the constitutive law is given by

γxz = τxz/G , γyz = τyz/G . (1.117)

Because of its simplicity, longitudinal shear is often used as a model case.
In plasticity and viscoelasticity, deformations usually are not directly de-

scribed through total displacements and strains but through their increments
and velocities, respectively. In this case the kinematic quantities in the forgoing
equations must be replaced adequately.

1.5.2 Linear elasticity, complex method

For the analytical solution of plane problems of linear elasticity a number of meth-
ods are available. The probably most powerful and elegant tool is the complex
variable method which shortly shall be introduced.
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In this method, the stresses and displacements are considered as functions
of the complex variable z = x + iy = reiϕ and the conjugate complex variable
z = x− iy = re−iϕ, respectively. It can then be shown that solutions of the basic
equations of plane strain and plane stress can be constructed from solely two
complex functions Φ(z) and Ψ (z). Their relation with the cartesian components
of stresses and displacements is given by Kolosov’s formulas (J.V. Kolosov, 1867-
1936)

σx + σy = 2[Φ′(z) + Φ′(z)] ,

σy − σx + 2iτxy = 2[zΦ′′(z) + Ψ ′(z)] ,

2µ (u+ iv) = κΦ(z) − zΦ′(z) − Ψ (z) ,

(1.118a)

where

κ =

{
3 − 4ν plane strain ,

(3 − ν)/(1 + ν) plane stress .
(1.118b)

Frequently it is appropriate to use polar coordinates r, ϕ instead of cartesian
coordinates (Fig. 1.9). Then Kolosov’s formulas attain the form

σr + σϕ = 2[Φ′(z) + Φ′(z)] ,

σϕ − σr + 2iτrϕ = 2[zΦ′′(z) + Ψ ′(z)z/z] ,

2µ (ur + iuϕ) = [κΦ(z) − zΦ′(z) − Ψ (z)]e−iϕ .

(1.119)

In order to formulate the boundary conditions, often the relations between
Φ, Ψ and the resultant force components X, Y along the curve AB and their

ϕ
x

y r

z

A

ds

s

tx

ttyB

Figure 1.9: Body in complex plane
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moment M with respect to the origin are needed (Fig. 1.9):

X + iY =

B∫

A

(tx + ity)ds = −i
[
Φ(z) + Ψ (z) + zΦ′(z)

]B
A
,

M =

B∫

A

(x ty − y tx)ds = −Re [zzΦ′(z) + zΨ (z) −
∫
Ψ (z)dz]BA .

(1.120)

In particular, solutions for longitudinal shear can easily be represented. The
stresses and the displacement in this case can be derived from solely one complex
function Ω(z):

τxz − iτyz = (τrz − iτϕz)e
−iϕ = Ω′(z) ,

µ w = Re Ω(z) .
(1.121)

1.5.3 Perfectly plastic material, slip line fields

In plasticity the solution of boundary value problems is in most cases only possible
by using numerical methods such as the finite element method. One of the few
methods allowing for an analytical treatment of such problems is the slip line
theory . It enables the investigation of stresses and deformations in case of plane
strain, presuming a rigid perfectly plastic material for which we will employ the
von Mises yield condition.

From the condition dεpz = 0 in conjunction with dεpij = dεij and (1.83a) we
first obtain for the stress sz = 0 and σz = σ3 = (σx + σy)/2 = σm, respectively.
The yield condition (1.77b) then reduces to

(σx − σy)
2 + 4τ 2

xy = 4k2 . (1.122)

From this we obtain for the principal stresses σ1 = σm + k, σ2 = σm − k and
for the maximum shear stress τmax = k. The yield condition in combination with
the equilibrium conditions (1.108) form a hyperbolic system of three equations
for the three unknowns σx, σy, and τxy.

It is now appropriate to introduce an orthogonal mesh of α- and β-lines,
whose directions in each point coincide with the direction of maximum shear
stress (Fig. 1.10). Since the latter coincides with the direction of maximum shear
strain increment or rate, i.e., maximum slip (see e.g., (1.83a)) they are called
slip lines . It should be mentioned that these lines are the characteristics of the
hyperbolic system of equations. Denoting the angle between the x-axis and the
tangent of the α-line (= direction of maximum shear stress) as φ, from (1.114)
the relations

σx = σm − k sin 2φ , σy = σm + k sin 2φ , τxy = k cos 2φ (1.123)
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Figure 1.10: Slip lines

are obtained. They identically fulfill the yield condition. Inserting them into the
equilibrium conditions (1.108) yields

∂σm
∂x

− 2 k cos 2φ
∂φ

∂x
− 2 k sin 2φ

∂φ

∂y
= 0 ,

∂σm
∂y

− 2 k sin 2φ
∂φ

∂x
+ 2 k cos 2φ

∂φ

∂y
= 0 .

Since the choice of the coordinate system x, y is arbitrary, we can also use the
local system xα, yβ whose axes coincide with the tangents of the α- and β-line
(Fig. 1.10). Setting φ = 0 in the equations above reduces them to ordinary
differential equations along the slip lines:

d

dxα
(σm − 2 k φ) = 0 ,

d

dyβ
(σm + 2 k φ) = 0 .

Integration yields Hencky’s equations (H. Hencky, 1885-1952)

σm − 2 k φ = Cα = const along α-lines ,

σm + 2 k φ = Cβ = const elong β-lines .
(1.124)

They allow to determine Cα, Cβ for prescribed traction boundary conditions and
subsequently the entire slip line field and stress field. For kinematic boundary
conditions, equations (1.124) are not sufficient. In this case the kinematic rela-
tions have to be taken into account which is not further discussed here.

Without derivation two geometric properties of the slip line field shall be
mentioned. According to Hencky’s first theorem the angle between two slip lines
of one family (e.g. α-lines) is constant in the region of intersection with slip lines
of the other family (β). That means that if one family contains a straight line
then the whole family consists of straight lines (e.g., parallel lines, fan). Hencky’s
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second theorem states the following: if one moves along a slip line of one family
the curvature radius of the other family changes proportional to the covered arc
length. It also should be mentioned that a slip line can be a discontinuity line
for the normal stress component in tangential direction and for the tangential
velocity.

The anti-plane shear stress state can be treated analogous to plane strain. In
this case the yield criterion and the equilibrium condition are given by

τ 2
xz + τ 2

yz = k2 = τ 2
Y ,

∂τxz
∂x

+
∂τyz
∂y

= 0 . (1.125)

Again we introduce α-lines whose direction φ is given by the direction in which
the yield stress τY occurs. β-lines are not needed in this case. The equilibrium
condition in conjunction with

τxz = −τY sin φ , τyz = τY cosφ (1.126)

attains the form
dφ

dxα
= 0 . (1.127)

Thus, the α-lines are straight.
The flow rule dεij = dεpij = dλ sij (see Sect. 1.3.3.2), taking into account

2 ε13 = γxz =
∂w

∂x
, 2 ε23 = γyz =

∂w

∂y
, (1.128)

in this case can be written as

d

(
∂w

∂x

)
=
∂(dw)

∂x
= 2 dλ τxz , d

(
∂w

∂y

)
=
∂(dw)

∂y
= 2 dλ τyz . (1.129)

Replacing the x, y-coordinates by the more appropriate xα, yβ-system, and sub-
sequently introducing (1.126) and φ = 0, it attains the form

∂(dw)

∂xα
= 0 ,

∂(dw)

∂yβ
= 2 dλ τY . (1.130)

Accordingly, along the α-line the displacement increments dw are constant. As a
consequence, if the initial state is undeformed, all material points along an α-line
experience the same displacement w.
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2 Classical fracture and failure hypotheses

In this chapter, a brief outline on classical fracture and failure hypotheses for
materials under static loading will be given. The word classical this context means
in that most of these so-called strength hypotheses are already quite old. Partially
they date back to considerations made at the end of the 19th or the beginning
of the 20th century and they are inseparably associated with the development of
solid mechanics at that time. Through modern fracture mechanics they have been
pushed into the background, as far as research is regarded. However, because of
their wide spreading which, last but not least, is due to their simplicity, they are
still of remarkable importance.

2.1 Basic concepts

Strength hypotheses are intended to make a statement about the circumstances
under which a material fails. Their basis are experiments conducted under spe-
cific, mostly simple, loading conditions. As an example, two typical stress-strain
curves for materials under uniaxial tension are schematically shown in Fig. 2.1.
Up to a certain limit the response of many materials is essentially elastic. Duc-
tile behavior is characterized through plastic deformations which occur when the
stress exceeds the yield strength σY . In this case, the ultimate stress at fracture
will be attained only after sufficiently large inelastic deformations. In contrast,
brittle material behavior is characterized by the fact that no significant inelastic
deformations occur prior to fracture.

a)

σ

Yielding

Fracture

b)

σ

σF

ε ε

σF

σY

Fracture

Figure 2.1: Material behavior: a) ductile, b) brittle
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Depending on the problem at hand, the strength of a material is often charac-
terized by either the yield stress or the ultimate stress at fracture. The associated
material parameters are the yield strength and the ultimate tensile strength. A
common feature of both is that the material behavior changes drastically at these
limits. In this context it should be emphasized that ductile or brittle behavior
is not a pure material property. The stress state also has an essential influence
onto the material behavior. To illustrate this fact it should be mentioned that in
general, a hydrostatic stress state does not lead to inelastic deformations of most
materials which usually are considered as plastically deformable. Thus, under
certain loading conditions, such a material can behave as absolutely brittle.

We now assume that for uniaxial loading as well as for any complex loading
the actual state of the material which determines its behavior inclusive its failure
limit can be characterized simply by the current stress or strain state. Then the
failure condition can be expressed as

F (σij) = 0 or G(εij) = 0 . (2.1)

Just like the yield condition which is described by an analogous equation, the
failure condition F (σij) = 0 can be interpreted as a failure surface in the six-
dimensional stress space or alternatively in the three-dimensional space of prin-
cipal stresses. Accordingly, a stress state σij on the surface F = 0 characterizes
failure as a result of yielding or fracture.

A failure condition of the type (2.1) implies that the material state at failure
is independent of the deformation history. With sufficient accuracy this applies
to the onset of plastic yielding in ductile materials or to the fracture of brittle
materials. Furthermore, such a failure condition is acceptable only if until failure
the material can be considered as a continuum without macroscopic defects. This
means in particular that macroscopic cracks must not appear and influence the
behavior of the material through their presence.

The deformation process of plastically deformable materials such as met-
als (also concrete or geological materials often are considered as plastically de-
formable) after reaching the yield strength can be described by a flow rule. Such
a flow rule however, by no means characterizes the kinematics of brittle fracture.
In general, simple kinematic statements for fracture processes are possible only
for specific stress states.

2.2 Failure hypotheses

Formally it is possible to establish infinitely many failure hypotheses of the type
(2.1). In what follows, some common hypotheses are presented, part of which can
be applied with sufficient accuracy (from an engineer’s point of view) to certain
classes of materials. Some of them, however, are only of historical relevance. In
this context we will not again discuss the von Mises and Tresca yield condition
since this has already been done in Sect. 1.3.3.1.
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2.2.1 Principal stress hypothesis

This hypothesis dates back to W.J.M. Rankine (1820–1872), G. Lamé (1795–1870),
and C.L. Navier (1785–1836). According to this hypothesis, the material behav-
ior is characterized by two characteristic values, the tensile strength σt and the
compressive strength σp. Failure is expected to take place when the maximum
principal stress reaches σt or when the minimum principal stress reaches −σp,
i.e., when one of the following conditions is fulfilled:

σ1 =

{
σt

−σp σ2 =

{
σt

−σp σ3 =

{
σt

−σp . (2.2)

The associated failure surface in principal stress space is represented by a cube
(Fig. 2.2a). The corresponding failure curve for a plane stress state (σ3 = 0) is a
square (Fig. 2.2b).

a) b)
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σt
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σt

σ3 = 0

Figure 2.2: Principal stress hypothesis

The principal stress hypothesis predominantly serves to describe brittle failure
of materials. For tensile loading we generally associate with it the process of
decohesion along cross sections perpendicular to the largest principal stress. The
hypothesis neglects the influence of the two other principal stresses onto failure,
its applicability hence is quite limited.

2.2.2 Principal strain hypothesis

According to the hypothesis suggested by de Saint-Venant (1797–1886) and C.

Bach (1889), failure occurs when the maximum principle strain reaches the critical
value εt. If we assume linear elastic behavior until failure and introduce the critical
tensile stress σt = Eεt, we get the following failure conditions:

σ1 − ν(σ2 + σ3) = σt , σ2 − ν(σ3 + σ1) = σt , σ3 − ν(σ1 + σ2) = σt . (2.3)
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In this case, the failure surface is represented by a pyramid with three planes
centered around the hydrostatic axis with its apex at σ1 = σ2 = σ3 = σt/(1− 2ν)
(Fig. 2.3a). The failure curve for plane stress is shown in Fig. 2.3b.

b)a)
−σp
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−σp
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σt
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σ2 −σp

σ2

−σp

Figure 2.3: Principal strain hypothesis

According to this hypothesis, failure under uniaxial compression should occur
at σp = σt/ν. This contradicts experimental experiences for most materials.

2.2.3 Strain energy hypothesis

The hypothesis by E. Beltrami (1835-1900) postulates failure when the strain
energy density U reaches a material-specific critical value Uc, i.e., at U = Uc.
Usually this assumption implies that the material behaves linearly elastic until
failure. If we introduce with Uc = σ2

c/2E a uniaxial failure stress σc and express
U = UV + UG through the principal stresses by using (1.50), we obtain the
following representation of the hypothesis:

(1+ν)[(σ1−σ2)
2 +(σ2−σ3)

2 +(σ3−σ1)
2]+(1−2ν)(σ1 +σ2 +σ3)

2 = 3σ2
c . (2.4)

The corresponding failure surface is an ellipsoid around the hydrostatic axis with
the apex at σ1 = σ2 = σ3 = ±σc/

√
3(1 − 2ν).

According to this hypothesis, a sufficiently high hydrostatic pressure always
leads to failure; this is in contradiction with experimental results. If the volu-
metric part UV of the strain energy density U is omitted, Beltrami’s hypothesis
reduces to the von Mises yield condition.

In conjunction with modern fracture mechanics, the strain energy hypothe-
sis in a somewhat modified form has been suggested for application as a crack
initiation and propagation criterion, see S-criterion in Sect. 4.9.
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2.2.4 Coulomb-Mohr hypothesis

This hypothesis predominantly serves to describe failure due to slip of geological
and granular materials, such as sand, rock, or soils. These materials can carry
only relatively small or, in the limit, no tensile stresses.

For a physical explanation we consider an arbitrary cross section which is
loaded by the normal stress −σ (pressure) and the shear stress τ . Coulomb’s
friction law , applied to the stresses, postulates sliding when τ attains a critical
value proportional to the pressure −σ: | τ |= −σ tan ρ. Here ρ is the material-
dependent friction angle. For −σ → 0 it follows that | τ |→ 0; tensile stresses are
not possible in this case. In many cases however, even for σ = 0, onset of sliding
requires a nonzero, finite shear stress. In addition, materials frequently are able
to carry tensile stresses to a certain extent. Therefore it is reasonable to modify
the sliding condition as follows:

| τ |= −σ tan ρ+ c . (2.5)

This relation is known as the Coulomb-Mohr hypothesis (C.A. Coulomb (1736–
1806); O. Mohr (1835–1918)). The parameter c is called cohesion.
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Figure 2.4: Coulomb-Mohr hypothesis

In the σ-τ diagram, equation (2.5) is represented by two straight lines which
form the envelop of admissible Mohr’s circles (Fig. 2.4a). Sliding occurs for those
stress states for which the largest of the three Mohr’s circles just touches the
envelope. In terms of principal stresses this leads to the condition

| σ1 − σ3 |
2

=

[
c

tan ρ
− σ1 + σ3

2

]
sin ρ . (2.6)

If we introduce into this equation for instance σ1 = σt and σ3 = 0, we obtain for
the uniaxial tensile strength σt = 2c cos ρ/(1 + sin ρ). Analogously, with σ1 = 0
and σ3 = −σp the compressive strength follows to σp = 2c cos ρ/(1 − sin ρ). It
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should also be mentioned that (2.6) includes as a special case for ρ→ 0 Tresca’s
yield condition (cf. Sect. 1.3.3.1).

Sometimes it is appropriate to use the characteristic material parameters σp
and κ = σp/σt instead of the parameters ρ and c. In this case it follows from (2.6)
that for the onset of sliding, one of the following conditions must be fulfilled:

κσ1 − σ3

−σ1 + κσ3

}
= σp ,

κσ2 − σ1

−σ2 + κσ1

}
= σp ,

κσ3 − σ2

−σ3 + κσ1

}
= σp . (2.7)

Here, the principal stresses are not a priori ordered according to their magnitude.
The associated failure surface is a pyramid formed by six planes around the
hydrostatic axis (Fig. 2.4b). Its apex is located at σ1 = σ2 = σ3 = σp/(κ − 1).
The failure curve for a plane stress state is shown as the hexagon in Fig. 2.4c.

As already mentioned, sliding is supposed to take place in cross sections where
relation (2.5) is fulfilled. They are characterized by the corresponding points A
and A′ in Fig. 2.4a. Accordingly, the normal of the slip plane lies in the plane
given by the maximum principal stress σ1 and the minimum principal stress σ3.
The unit normal vector and the direction of σ1 form an angle of

Θ1,2 = ±(45◦ − ρ/2) . (2.8)

According to this hypothesis, the intermediate principle stress σ2 has no effect
on the onset of failure and the failure angle. It finally should be noted that
failure along the cross section determined by relation (2.8) occurs only when it is
kinematically possible.

c)b)a)

θ

σ3 σ1σ1

θ

σ3 σ1 σ2

σ3

θ

Figure 2.5: Faults

The result (2.8) for the orientation of the failure cross section is used among
others in geology to explain different types of faults of the earth’s crust. Here
it is assumed that all principal stresses are compressive stresses (|σ3| ≥ |σ2| ≥
|σ1|) and act in vertical (perpendicular to the earth’ surface) and in horizontal
direction, respectively. A normal fault then is explained with a situation where
the vertical principal stress if larger than the principal stresses acting in horizontal
direction (Fig. 2.5a). In contrast, for a reverse fault it is supposed that the value
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of the vertical pressure is the smallest one (Fig. 2.5b). Finally, a strike-slip fault is
associated with a vertical pressure σ2 whose magnitude lies between the maximum
and the minimum values of the principal stresses (Fig. 2.5c).
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Figure 2.6: Tension cut-off

Experiments show that the Coulomb-Mohr hypothesis describes the behavior
of different materials sufficiently well in the compression regime but worse in
the tension regime. Responsible for this is in most cases a change of the failure
mechanism. This holds particularly when failure in the tension regime occurs
not due to the sliding but is rather associated with a decohesion of the cross
sections perpendicular to the maximum principal stress. A possibility to improve
the failure condition consists, for instance, in a modification of the failure surface
through so-called tension cut-offs (Fig. 2.6).

The hypothesis (2.5) assumes a linear relation between τ and σ. A general-
ization of the form

| τ |= h(σ) (2.9)

τ=h(σ)

σ3 σ1σ2

τ

σ

Figure 2.7: Mohr’s failure hypothesis
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where the function h(σ) must be determined experimentally was proposed by O.

Mohr (1900). In the σ-τ diagram it represents the envelope of admissible Mohr’s
circles (Fig. 2.7). As in hypothesis (2.5), the intermediate principal stress σ2 has
no effect on failure. In this respect, both hypotheses may be considered as special
(not general) cases of a failure condition F (σ1, σ3) = 0.

2.2.5 Drucker-Prager hypothesis

According to the hypothesis by D.C. Drucker (1918-2001) and W. Prager (1903-
1980), a material fails when the condition

F (Iσ, IIs) = α Iσ +
√
IIs − k = 0 (2.10a)

is fulfilled. Here, Iσ, IIs are the invariants of the stress tensor and of its deviator,
respectively, and α and k are material parameters. If we introduce σm = σoct =
Iσ/3 and τoct =

√
2 IIs/3 the condition (2.10a) can be interpreted similar to the

Mohr-Coulomb hypothesis. Accordingly, failure occurs when the octahedral shear
stress τoct reaches a value which is linearly dependent on the normal stress σm
(cf. (2.5)):

τoct = −
√

6 α σm +
√

2/3 k . (2.10b)
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Figure 2.8: Drucker-Prager hypothesis

The failure surface defined by (2.10a,b) in principal stress space forms a cone
around the hydrostatic axis with the apex at σ1 = σ2 = σ3 = k/3α (Fig. 2.8a).
The associated failure curve for plane stress (σ3 = 0) is an ellipse (Fig. 2.8b). As
the Coulomb-Mohr hypothesis, the Drucker-Prager criterion is used as a yield or
as a fracture condition, predominantly for granular and geological materials. For
α = 0 it reduces to the von Mises yield condition.
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Experiments show that in some cases a description of the failure condition by
means of only two material parameters is not sufficient. It then must be suitably
modified. A frequently used extension of the Drucker-Prager hypothesis is given
by

F (Iσ, IIs) = α Iσ +
√
IIs + β I2

σ − k = 0 . (2.11)

Here, β is an additional material parameter.

2.3 Deformation behavior during failure

On the basis of the failure criterion alone no direct conclusion can be drawn for
the deformation behavior or the kinematics during failure. Respective statements
are only possible when a specified kinematic idea is a priori associated with the
failure hypothesis or when a physically meaningful assumption is introduced.

During failure due to fracture, a body is separated into two or more parts.
This process is accompanied with the creation of new surfaces, i.e., with the for-
mation of fracture surfaces. The associated kinematics can not be described in a
simple manner. Only for sufficiently uniform stress states statements are possi-
ble which are guided by experimental results. They show two basic patterns for
the formation of fracture surfaces. For a normal stress dominated fracture, the
fracture plane coincides with the cross section normal to the maximum princi-
pal stress which necessarily must be tension (Fig. 2.9a). If the fracture surface
is formed by cross sections in which a certain shear stress (e.g., τmax, τoct, etc.)
reaches a critical value, this is called shear dominated fracture (Fig. 2.9b). De-
pendent on the stress state and the material behavior, both types occur also in
various mixed forms.

σ1

σ1

τ

σ1

σ

b)a)

Figure 2.9: Fracture surfaces

If “failure” denotes the onset of yielding, the failure criterion is equivalent
to a yield criterion. Within the framework of incremental plasticity, deforma-
tions appearing during yielding can be described by means of the flow rule
dεpij = dλ ∂F/∂σij (cf. Sect. 1.3.3.2). The respective equations for the von Mises
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and Tresca yield conditions are assembled in (1.83a) and (1.84). As a further ex-
ample, the incremental stress-strain relations for the Drucker-Prager model shall
be specified here. We assume that the yield surface is independent of the deforma-
tion history (perfectly plastic material). In this case, the flow rule in conjunction
with (2.10a,b) and Iσ = σkk = σijδij and IIs = 1

2
sijsij yields

dεpij = dλ

(
α δij +

sij

2
√
IIs

)
. (2.12)

The determination of dλ is not further discussed here. It should be noted that
according to (2.12) volume changes generally occur; the corresponding increment
is given by dεpkk = 3α dλ. However, experiments suggest that the associated
flow rule is not valid for granular materials. Thus, yielding then takes place not
perpendicular to the yield surface. Therefore, equation (2.12) should not be used
for such materials.

2.4 Further reading

Gould, P.L. (1994). Introduction to Linear Elasticity. Springer, New York

Paul, B. (1968). Macroscopic Criteria for Plastic Flow and Brittle Fracture.
In Fracture – A Treatise, Vol. 2, ed. H. Liebowitz, pp. 315-496, Academic
Press, London

Nadai, A. (1950). Theory of Flow and Fracture of Solids, Vol. 1. McGraw-Hill,
New York



3 Micro and macro phenomena of fracture

Origins and phenomena of fracture are manifold. The reason for this can be
found in the fact that the phenomena are predominantly determined by the mi-
croscopic properties of a material which in turn vary extensively from material
to material. In this book, emphasis is placed on a continuum-mechanical de-
scription of macroscopic fracture behavior. Nevertheless, it is beneficial to have
a certain understanding of microscopic events. Therefore, both microscopic and
macroscopic aspects are briefly discussed in this chapter. The former have only
exemplary character and focus on phenomena in crystalline or polycrystalline
materials which includes the large class of metals.

3.1 Microscopic aspects

3.1.1 Surface energy, theoretical strength

Fracture is the separation of a body into two or more parts. During this process
the bonds between the components of the material are broken. At the microscopic
level, these are for instance bonds between atoms, ions, molecules, etc. The
bonding force between two of those elements can be expressed by means of the
relation

F = − a

rm
+

b

rn
(3.1)

(Fig. 3.1a). Here, the first term represents attractive forces, while the second
term describes repulsive ones. The parameters a, b, m, and n (m < n) are
constants which depend on the bond type. For small displacements from the
equilibrium configuration d0, the bonding force F (r) can be approximated by a
linear function. This is equivalent to a material behavior which macroscopically
is described by Hooke’s law.

During the release of bonds, i.e., the separation of elements, a negative material-
specific work WB is done by the bonding force. As a consequence of separation,
for instance in a perfect crystal, the lattice geometry changes in the immediate
neighborhood of the newly created surface. This change is confined to a few lat-
tice spacings into the bulk. If dissipative processes are neglected and the material
is, from the macroscopic point of view, considered as a continuum, the work of
bonding forces is transferred into surface energy of the body (i.e., the energy
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Figure 3.1: Theoretical strength

stored at the body’s surface). It is defined as

Γ 0 = γ0A (3.2)

where A is the newly created surface and γ0 is the surface energy density .
In what follows, we consider in a somewhat simplified manner the separation

process of two atomic lattice planes of a crystal. For the separation stress σ(x)
we assume a dependence on the separation displacement x similar to the bonding
force (Fig. 3.1b). In the tensile regime it can be approximated by the relation
σc sin (πx/a). For small displacements x this leads to σ ≈ σcπx/a. Equating
the latter with Hooke’s law σ = Eε = Ex/d0 yields for the so-called theoretical
strength, i.e., the cohesive stress that has to be overcome during separation

σc ≈ E
a

πd0
. (3.3)

If we further assume that the bonds are completely broken for a ≈ d0 we obtain
the rough estimate

σc ≈
E

π
. (3.4)

From the work of stresses in conjunction with the foregoing assumptions the
surface energy γ0 can be determined. Taking into account that two new surfaces
are created during separation we get

2γ0 =

∞∫

0

σ(x)dx ≈
a∫

0

σc sin
πx

a
dx = σc

2a

π
. (3.5)

With a ≈ d0 and (3.4) it follows herefrom that

γ0 ≈ Ed0

π2
. (3.6)
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If the relations (3.4) and (3.6) are applied to iron or steel, using the
data E = 2.1 · 105 MPa and d0 = 2.5 · 10−10 m, we obtain σc ≈ 0.7 · 105 MPa
and γ0 ≈ 5 J/m2. However, corresponding values can only be reached for defect-
free single crystals (whiskers). For real polycrystalline materials, the fracture
strength is 2-3 orders of magnitude less. In parallel, the energy necessary for the
creation of new fracture surfaces exceeds the value in (3.6) by several orders of
magnitude. The reasons for this can be found in the inhomogeneous structure of
the material and, first of all, in its defect structure.

As a side note it should be mentioned that the bonding force (3.1) can be
derived from an interaction potential Φ(r) as F = −∂Φ/∂r. A typical standard
potential for interatomic interaction is the Lennard-Jones potential

ΦLJ(r) = −A

r6
+

B

r12
. (3.7)

Its first term describes the attractive van der Waal’s forces while the second
term is responsible for the short-range repulsive forces. This potential is widely
used for fundamental investigations and molecular dynamic simulations including
separation processes on the micro scale.

3.1.2 Microstructure and defects

A polycrystalline material consists of crystals (grains) which are joined with one
another along grain boundaries. The individual grains have anisotropic properties
and the orientation of their crystallographic planes and axes differ from grain to
grain. Furthermore, e.g., due to segregation, the properties of grain boundaries
differ substantially from those of the grains.

In addition to these irregularities of the material’s structure, a real material
contains from the beginning on a number of defects of different size. Defects with
the characteristic length of one or several grains, e.g., induced by the manufactur-
ing process, are for instance inclusions with strongly different material properties,
cavities, or microcracks. From the physical point of view, they are mostly viewed
as defects on the mesoscale. In addition, there are faults on the microscale which
are understood as defects in the crystal lattice. Usually they are classified ac-
cording to their dimension as point imperfections (e.g., vacancies, interstitials,
impurity atoms), line imperfections (dislocations), and area imperfections (e.g.,
stacking faults, phase boundaries, twin boundaries).

A particular role regarding the mechanical behavior is played by dislocations .
The geometry of these lattice imperfections is shown in Fig. 3.2a for an edge
dislocation and in Fig. 3.2b for a screw dislocation. A dislocation can be char-
acterized by the Burgers vector b (J.M. Burgers (1895-1981)) as follows: b is
perpendicular to the dislocation line for an edge dislocation while b is parallel to
the dislocation line for the screw dislocation (Fig. 3.2a, b). It should be noted
that a dislocation induces an eigenstress field which is accompanied by an elastic
energy (cf. Sect. 8.2.1).
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Figure 3.2: Dislocations

Under the action of sufficiently high shear stresses the atoms in the vicinity
of the dislocation line rearrange their bonds which leads to a displacement of the
dislocation (Fig. 3.2c). The work done during this process is mainly dissipated as
heat (= lattice vibration). The dislocation movement results in a relative “slip” of
the lattice planes and may lead to the formation of a new surface (Fig. 3.2d). This
microscopic mechanism is the origin of macroscopic plastic material behavior.
The dislocation movement within a crystal is often not uniformly distributed but
rather localized in slip bands. In general, dislocations can not move unlimited. At
obstacles such as grain boundaries or inclusions they may stop and accumulate.
Macroscopically such a dislocation pile-up is observed as strain hardening.

3.1.3 Crack formation

In initially crack-free polycrystalline materials there are different mechanisms of
microcrack formation. A separation of atomic planes without any accompanying
dislocation movement hardly occurs. The formation of microcracks and their sub-
sequent propagation practically always is combined with more or less pronounced
microplastic processes.
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a) b)

Figure 3.3: a) Transcrystalline crack, b) intercrystalline crack

A rather important mechanism of microcrack formation is the dislocation
pile-up at obstacles. It causes high stress concentrations which can lead to bond
breaking along preferred lattice planes and as a consequence to cleavage. If such
a crack runs through several grains, the orientation of the separation surface
changes according to the local lattice planes and axes (Fig. 3.3a). Such a type of
fracture is called transcrystalline cleavage.

If the grain boundaries are sufficiently weak, the separation on account of
dislocation pile-up and (or) grain boundary sliding will take place along these
boundaries. This is called intercrystalline fracture (Fig. 3.3b). Both fracture
processes are macroscopically brittle. They are accompanied by none or very
small macroscopically inelastic deformations and they need very low energy.

A dislocation pile-up causes not only stress concentrations. It also can be
the responsible source for the formation of microscopic voids and cavities. This
mechanism is schematically shown in Fig. 3.4: the coalescence (concentration) of
dislocations leads to the formation and growth of microcavities.

Figure 3.4: Formation and growth of voids

Crystalline materials often contain a large number of second phase particles
embedded at the grain boundaries or in the crystals. In their vicinity, presum-
ing a sufficiently high mobility of dislocations, micro-plastic deformations occur
prior to the formation of microcracks. The accompanying dislocation pile-up
subsequently leads to the formation and growth of cavities around the particles
and as a consequence to a loss of their bonds with the matrix. With increasing
macroscopic deformation the voids grow due to micro-plastic yielding, they coa-
lesce, and finally lead to separation (Fig. 3.5). Corresponding fracture surfaces
show a typical structure of honeycombs or dimples which are separated by micro-
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Figure 3.5: Fracture due to formation and coalescence of voids

plastically highly deformed zones. The energy needed for such a type of fracture
is a multiple higher than that for cleavage.

Localization of slip processes in slip bands can also be the origin of crack
formation. For instance, a sufficiently high cyclic load can lead to extrusions and
intrusions at the body’s free surface or at inhomogeneities (Fig. 3.6). A result of
the increasing “surface roughness” is the formation of a fatigue crack .

Figure 3.6: Formation of a fatigue crack

3.2 Macroscopic aspects

3.2.1 Crack growth

In what follows the material is macroscopically considered as a continuum which
a priori contains cracks. This can be either an actually existing macroscopic crack
of a given geometric configuration or a supposed, hypothetical crack of eventu-
ally very small size. The latter serves as a model for macroscopically invisible
but always existing defects and microcracks in a real material. The question
of crack formation in an initially undamaged material is not considered in this
approach. It cannot be answered in the framework of classical continuum me-
chanics. A description of crack formation is possible only by means of continuum
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damage mechanics which takes into account the microscopic defect structure and
its evolution (cf. Chap. 9).

A fracture process is always connected with crack growth. Both, fracture and
crack growth, can be classified from different phenomenological viewpoints. The
typical stages in the behavior of a loaded crack are characterized as follows. As
long as the crack does not change its length, the crack is called stationary . At
a specific critical load or deformation, respectively, crack initiation takes place,
i.e., the crack starts to propagate and becomes non-stationary.

One can distinguish different types of crack propagation. Crack growth is
called stable if an increase of crack length requires an increase of external load.
In contrast, crack growth is unstable if the crack, starting from a specific con-
figuration, advances spontaneously without any increase of the external load. It
should be noted here that stable or unstable crack growth is governed not solely
by material properties. In fact, the geometry and the type of loading have a
significant influence on the crack behavior.

Very slow crack propagation under constant loading in a creeping manner
(e.g., at a velocity of 1 mm/s or less) is called subcritical . Under cyclic loading
the crack can propagate in small “steps” (e.g., of about 10−6 mm per cycle). This
type of crack propagation is called fatigue crack growth. If the crack propagates
with a velocity which approaches the order of the speed of sound in the solid
material (e.g., 600 m/s or more), the crack is called fast . If such a fast crack
comes to rest, we call this crack arrest . As a further classification, we distinguish
between quasistatic and dynamic crack propagation. While inertia forces play no
role in the former they cannot be neglected in the latter.

3.2.2 Types of fracture

The fracture process is finished when crack growth comes to an end or, what
occurs more often, a complete break-through of the body into two or more parts
has taken place. According to typical phenomena, the entire event of fracture
is classified by different types. Ductile fracture is characterized by large plastic
deformations which occur before and (or) during the fracture process. Here,
the inelastic deformations of uncracked metal specimen under uniaxial tension
may reach more than 10%. In cracked bodies, these strains often are not only
concentrated in the immediate vicinity of the crack tip or the fracture surface.
The related microscopic failure mechanism in metals is plastic flow accompanied
by void nucleation and coalescence.

A fracture event is called brittle if macroscopically only a small amount of
inelastic deformations occur or if they vanish at all. In this case, plastic strains
in uncracked specimen under tension immediately prior to fracture are less than
2...10%. Inelastic strains in cracked components are confined to the immediate
vicinity of the crack tip or the fracture surface. Here, the microscopic failure
mechanism in metals is either confined plastic flow combined with void growth
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or cleavage.
Fracture resulting from crack growth due to cyclic loading is called fatigue

fracture. Fracture due to creep crack growth is known as creep fracture.
An additional distinguishing feature is the orientation of the fracture surface

(cf. Sect. 2.3). Fracture is called normal stress dominated if the fracture surface is
oriented perpendicular to the largest principal stress (tension). In contrast, frac-
ture is shear dominated if the fracture surface coincides with a cross section of high
shear stress. Both types can also occur in a mixed form. A typical example is the
normal stress dominated fracture with shear lips at the specimen edges (Fig. 3.7).

Figure 3.7: Fracture with shear lips

The actual fracture behavior is highly dependent on various factors such as
temperature, stress state, or loading rate. For instance, the behavior of many
materials is brittle at sufficiently low temperatures and ductile above a transition
temperature. Furthermore, depending on the stress state, plastic flow can be more
or less constrained. Accordingly, fracture will tend more to a brittle or more
to a ductile behavior. This also affects the orientation of the fracture surface.
For instance, the occurrence of the above-mentioned shear lips is a result of the
stress state in the boundary area (close to plane stress) where plastic flow is less
constrained.

A characteristic fracture quantity is the work done by the bonding forces
during creation of a fracture surface. This applies especially when all processes of
bond release related to fracture (e.g., void nucleation and growth with large micro-
plastic deformations) are confined to the immediate vicinity of the macroscopic
fracture surface. Due to microscopic irregularities, this macroscopic surface is
smaller than the true fracture surface. Analogous to the surface energy, it is then
reasonable to introduce an effective fracture surface energy Γ :

Γ = γA . (3.8)

Here, γ is the fracture surface energy density and A is the macroscopic fracture
surface.
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4 Linear fracture mechanics

4.1 General remarks

We now turn to the description of the crack behavior. From a macroscopic,
continuum mechanical viewpoint, we consider a crack as a cut in a body. Its
opposite boundaries are the crack surfaces which are also called crack faces or
crack flanks (Fig. 4.1). In general they are traction-free. The crack ends at the
crack front or crack tip.

Concerning the deformation of a crack, there are three types of crack opening
which are shown in Fig. 4.2. Mode I denotes a symmetric crack opening with re-
spect to the x, z-plane. Mode II is characterized by an antisymmetric separation
of the crack surfaces due to relative displacements in x-direction (normal to the
crack front). Finally, mode III describes a separation due to relative displace-
ments in z-direction (tangential to the crack front). The symmetries associated
with the different types of crack opening are only locally defined, i.e., for the
region close to the crack tip. In special cases, however, they may hold for the
entire body.

Crack front
Crack faces

Figure 4.1: Cracked body

An important role for the continuum mechanical description is played by the
size of the process zone. The latter denotes the region close to a crack front (crack
tip) in which microscopically quite complex processes of bond breaking occur
that generally cannot be described in terms of classical continuum mechanics.
If continuum mechanics shall be applicable to the whole cracked body, it must
be assumed that the extension of the process zone is negligibly small compared
to all characteristic macroscopic dimensions of the body. Such a localization of
the fracture process exists in many cases. For instance, this feature is typical for
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Mode I Mode II Mode III

y y y

z zz

x x x

Figure 4.2: Crack opening modes

metals and for the majority of brittle materials. However, the process zone in
concrete or in granular materials may have a considerable size and under some
circumstances include the entire body.

In linear fracture mechanics, a cracked body is regarded as linear elastic in
the whole region. Possible inelastic processes within or outside the process zone
around the crack tip must be restricted to a small region which can be neglected
from a macroscopic point of view. Accordingly, linear fracture mechanics is pre-
dominantly applicable for the description of brittle fracture (cf. Sect. 3.2.2).

Of fundamental importance is the crack-tip field , i.e., the stresses and strains
close to a crack tip. Although this field, as already mentioned, does not directly
describe the state within the process zone, it indirectly controls the processes
taking place there. In what follows, the crack-tip field for the case of an isotropic,
linearly elastic material under static loading will be investigated.

4.2 Crack-tip field

4.2.1 Two-dimensional crack-tip fields

We consider the two-dimensional problem of a body which contains a straight
crack. Here, we focus only on the field within a small region of radius R around
one of the crack tips (Fig. 4.3). For this purpose it is appropriate to introduce
the depicted coordinate system with its origin at the crack tip.

Longitudinal shear, mode III

The simplest two-dimensional problem is the longitudinal shear stress state (anti-
plane shear). In this case, the only non-vanishing displacement component w is
perpendicular to the x, y-plane which leads to a mode-III crack opening. The
corresponding crack-tip field can be determined using a complex function Ω(z)
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Figure 4.3: Vicinity of the crack tip

(cf. Sect. 1.5.2). As an appropriate function for the solution we choose

Ω(z) = Azλ (4.1)

where A is a free, in general complex constant. The likewise unknown exponent
λ is assumed to be real. In order to render the displacements at the crack tip
nonsingular, λ > 0 is assumed. As a consequence, the strain energy will also
be finite. The special case λ = 0 will be excluded at this stage. According to
(1.121), it corresponds to a stress-free rigid body displacement.

From (4.1), using (1.121) and z = reiϕ, we get

2iτyz = Ω′(z) −Ω′(z) = Aλrλ−1e−i(λ−1)ϕ − Aλrλ−1ei(λ−1)ϕ .

The boundary conditions require that the crack faces (ϕ = ±π) are traction-free,
i.e., τyz(±π) = 0. This leads to the homogeneous system of equations

Ae−iλπ −Aeiλπ = 0 ,

Aeiλπ −Ae−iλπ = 0 .
(4.2)

A non-trivial solution exists if the determinant of the system vanishes. Hence,
the “eigenvalues” λ are determined as follows:

sin 2λπ = 0 → λ = n/2 n = 1, 2, 3, . . . . (4.3)

Substitution of this result into one of the equations (4.2) finally yields: A =
(−1)nA.

To each λ of the infinite set of eigenvalues corresponds an eigenfunction of
the type (4.1) which fulfills the boundary conditions. The eigenfunctions can be
arbitrarily superimposed:

Ω = A1z
1/2 + A2z + A3z

3/2 + . . . . (4.4)
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Accordingly, the stresses ταz, α = x, y and the displacement w can be represented
in the following form:

ταz = r−1/2τ̂
(1)
αz (ϕ) + τ̂

(2)
αz (ϕ) + r1/2τ̂

(3)
αz (ϕ) + . . . ,

w − w0 = r1/2ŵ(1)(ϕ) + rŵ(2)(ϕ) + r3/2ŵ(3)(ϕ) + . . . .
(4.5)

Here, τ̂
(1)
αz (ϕ), ŵ(1)(ϕ), . . . are functions of the angle ϕ which are each determined

up to a factor. A possible rigid body displacement is described by w0.
If the crack tip is approached (i.e., r → 0), the field can solely be described

by the dominant first term in (4.4) or (4.5), respectively. It corresponds to the
smallest eigenvalue λ = 1/2. The associated stresses and displacements are given
by the expressions

{
τxz

τyz

}
=

KIII√
2πr

{
− sin (ϕ/2)

cos (ϕ/2)

}
, w =

2KIII

G

√
r

2π
sin (ϕ/2) . (4.6)

Thus, the stresses at the crack tip have a singularity of the type r−1/2.
The singular crack-tip field is determined by means of (4.6) up to a factor

KIII . This factor is called stress intensity factor or, shorter, K-factor where the
subscript indicates the mode III crack opening. The stress intensity factor KIII

can be regarded as a measure for the “strength” of the crack-tip field. The latter
is fully characterized once the stress intensity factor is known. Vice versa, KIII

can be determined from (4.6) if the stresses or displacements close to the crack
tip are known. For example, it follows from (4.6) that

KIII = lim
r→0

√
2πr τyz(ϕ = 0) . (4.7)

Like the stresses and displacements, the magnitude of the K-factor depends on
the geometry of the body and its loading.

The second term in (4.5) corresponds to the eigenvalue λ = 1. It leads to the
nonsingular stresses and displacements

{
τxz

τyz

}(2)

=
{
τT
}
, w(2) =

τT
G
r cosϕ =

τT
G
x (4.8)

where τT is a yet undetermined constant shear stress. This contribution to the
complete field is of minor importance immediately at the crack tip but it becomes
relevant at some distance from the tip.

Plane strain and plane stress, mode I and mode II

For plane strain and plane stress, the crack-tip field can be determined by using
two complex functions Φ(z) and Ψ (z) (cf. Sect. 1.5.2). The approach is analogous
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to that in the foregoing section for longitudinal shear. For the solution we use
the functions

Φ(z) = Azλ , Ψ (z) = Bzλ (4.9)

where the exponent λ again is assumed to be real and positive. From (4.9) and
according to (1.119) we obtain in a first step

σϕ + iτrϕ = Φ′(z) + Φ′(z) + zΦ′′(z) + Ψ ′(z)z/z

= Aλrλ−1ei(λ−1)ϕ + Aλrλ−1e−i(λ−1)ϕ (4.10)

+Aλ(λ− 1)rλ−1ei(λ−1)ϕ +Bλrλ−1ei(λ+1)ϕ .

Along the crack faces ϕ = ±π, the boundary conditions σϕ + iτrϕ = 0 must
be fulfilled. From them, taking into account e−iπ = eiπ = −1, the following
homogeneous system of equations is obtained:

Aλe−iλπ +Aeiλπ +Beiλπ = 0 ,

Aλeiλπ +Ae−iλπ +Be−iλπ = 0 ,

Ae−iλπ +Aλeiλπ +Be−iλπ = 0 ,

Aeiλπ +Aλe−iλπ +Beiλπ = 0 .

(4.11)

Here, the last two equations are the complex conjugate of the first two equations.
The condition that the system’s determinant must be zero, leads to the same
eigenvalues as for longitudinal shear:

cos 4λπ = 1 → λ = n/2 n = 1, 2, 3, . . . . (4.12)

Substitution into one of the equations (4.11) yields B = −(−1)nnA/2 −A.

The stresses σij and displacements ui, where i, j = x, y, can be represented as
the sum of the eigenfunctions which correspond to the above eigenvalues:

σij = r−1/2σ̂
(1)
ij (ϕ) + σ̂

(2)
ij (ϕ) + r1/2σ̂

(3)
ij (ϕ) + . . . ,

ui − ui0 = r1/2û
(1)
i (ϕ) + rû

(2)
i (ϕ) + r3/2û

(3)
i (ϕ) + . . . .

(4.13)

Here, ui0 describes a possible rigid body displacement. For r → 0, the first
term dominates which is singular in the stresses. It is appropriate to split the
associated field into a symmetric and an antisymmetric part with respect to the
x-axis. The symmetric singular field corresponds to a mode-I crack opening while
the antisymmetric field leads to a mode-II crack opening. Accordingly, the crack-
tip field (near field) can be written as follows:
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Mode I:





σx

σy

τxy





=
KI√
2πr

cos (ϕ/2)





1 − sin (ϕ/2) sin (3ϕ/2)

1 + sin (ϕ/2) sin (3ϕ/2)

sin (ϕ/2) cos (3ϕ/2)




,

{
u

v

}
=

KI

2G

√
r

2π
(κ− cosϕ)

{
cos (ϕ/2)

sin (ϕ/2)

}
,

(4.14)

Mode II:





σx

σy

τxy





=
KII√
2πr





− sin (ϕ/2)[2 + cos (ϕ/2) cos (3ϕ/2)]

sin (ϕ/2) cos (ϕ/2) cos (3ϕ/2)

cos (ϕ/2)[1 − sin (ϕ/2) sin (3ϕ/2)]




,

{
u

v

}
=

KII

2G

√
r

2π

{
sin (ϕ/2)[κ + 2 + cosϕ]

cos (ϕ/2)[κ− 2 + cosϕ]

}
,

(4.15)

where

plane strain: κ = 3 − 4ν , σz = ν(σx + σy) ,

plane stress: κ = (3 − ν)/(1 + ν) , σz = 0 .
(4.16)

According to these representations, the distribution of stresses and deformations
close to the crack tip is uniquely determined. It will be exemplarily discussed
in Sect. 4.2.2 for mode I. The “strength” (amplitude) of the crack-tip field is
characterized by the stress-intensity factors KI and KII . They depend on the
geometry of the body (including the crack) and its loading. The K-factors can
be determined from the stresses and deformations provided these are known. For
example, the following relations result from (4.14) and (4.15):

KI = lim
r→0

√
2πr σy(ϕ = 0) , KII = lim

r→0

√
2πr τxy(ϕ = 0) . (4.17)

For larger distances r from the crack tip the second term in (4.13) has to be
taken into account which belongs to the eigenvalue λ = 1. The corresponding
nonsingular stresses and displacements are given by





σx

σy

τxy





(2)

=





σT

0

0




,

{
u

v

}(2)

=
σT

8G

{
(κ+ 1) x

(κ− 3) y

}
, (4.18)

where σT is a constant stress which commonly is called T-stress (transversal
stress). It can be seen that this part of the field is symmetric with respect to the
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x-axis and contributes solely to the mode-I crack opening. The T-stress becomes
important especially when KI is zero or sufficiently small. It then represents the
dominant part of the mode-I field.

The field in the vicinity of the tip of a straight crack with traction-free crack
faces is, according to (4.5) and (4.13), composed as a sum of the eigenfunctions.
Among them, the first term (i.e., the crack-tip field) dominates if the crack tip is
approached (r → 0). But it should be emphasized that for larger distances r, the
higher-order terms can not be neglected. Furthermore, it can be shown that the
crack-tip field has exactly the same form as (4.6) or (4.14) and (4.15), respectively,
if the crack faces are loaded (Fig. 4.4a) or if volume forces are present. This also
applies to a crack which is curved in the region close to the crack tip (Fig. 4.4b).

b)a)

y

ϕ

x

r

Figure 4.4: a) Loaded crack faces, b) curved crack

The singularity of the order r−1/2 is typical for a crack tip. Singular stresses of
eventually a different type of singularity can also appear in many other problems
of linear elasticity. As an example, a “crack-similar” V-notch is considered whose
edges form an angle 2α (Fig. 4.5a). The functions (4.9) in conjunction with (4.10)
and the boundary conditions (σϕ + iτrϕ)ϕ=±α = 0 again lead to a homogeneous
system of equations. It differs from (4.11) only in that now the angle α appears
instead of π. Setting the determinant of the system to zero, we obtain the equation

a) b)

1/2

1
y r

ϕ
α

α

x

ππ/2 α

λ0

Figure 4.5: a) V-notch, b) smallest eigenvalue
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for the eigenvalues
sin 2λα = ±λ sin 2α . (4.19)

The smallest eigenvalue λ0 resulting from (4.19) is shown in Fig. 4.5b. For 2α ≤ π
we get λ0 = 1. In this case no stress singularity follows from (4.9). For notch
angles π < 2α < 2π, the eigenvalue λ0 lies in the range 1/2 < λ < 1. The already
known result λ0 = 1/2 is obtained in the limit case 2α = 2π, i.e., for a crack. The
corresponding stress singularities are of the type σij ∼ rλ−1 which can be seen,
e.g., from (4.9). The specification of higher-order eigenvalues and eigenfunctions
is left aside here.

4.2.2 Mode-I crack-tip field

The mode-I crack-tip field can be described by the relations (4.14). Thus, the
stresses σij and, according to Hooke’s law, the strains εij have singularities of the
type r−1/2, i.e., they increase infinitely as r → 0. As an example, the distribution
of σy ahead of the crack tip (ϕ = 0) is schematically depicted in Fig. 4.6a. In
contrast, the displacements show a behavior of the type r1/2. For a positive KI

this leads to a parabola-shaped crack opening along the crack faces ϕ = ±π
(Fig. 4.6a):

v± = v(±π) = ±KI

2G

√
r

2π
(κ+ 1) . (4.20)

If KI is negative, the crack faces formally “overlap” or penetrate each other, re-
spectively, which is physically impossible. Actually, the crack faces are in contact
during crack closure and contact forces act along the contact zone.

1

1/2

r

π/2 π

σij
σϕ(0)

ϕ

b)

x, r

σy

σr
τrϕσϕ

ϕ
σr

τrϕ

σϕ

v+

v−

a)

Figure 4.6: Mode-I crack-tip field

It is sometimes appropriate to describe the crack-tip field not by its carte-
sian components (4.14) but by equivalent quantities. For example, the stress
components in polar coordinates can be found by applying the transformation
(1.113):
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σr

σϕ

τrϕ





=
KI

4
√

2πr





5 cos (ϕ/2) − cos (3ϕ/2)

3 cos (ϕ/2) + cos (3ϕ/2)

sin (ϕ/2) + sin (3ϕ/2)




. (4.21)

Their dependence on the angle ϕ is shown in Fig. 4.6b.

The principal stresses in the x, y-plane and the principal directions, here char-
acterized by the angle α, can be determined from (1.114) as follows

{
σ1

σ2

}
=

KI√
2πr

cos (ϕ/2)

{
1 + sin (ϕ/2)

1 − sin (ϕ/2)

}
, α = ±π

4
+

3

4
ϕ . (4.22)

The third principal stress is given by σz. According to (4.16), it is different for
plane strain and plane stress:

σ3 = 2ν
KI√
2πr

cos (ϕ/2) (plane strain) , σ3 = 0 (plane stress) . (4.23)

Thus, σ1 is the largest principal stress, the smallest one can be σ3 or σ2, depending
on the stress state and the angle ϕ.

From the principal stresses the maximum shear stress can directly be deter-
mined. Using τmax = (σmax − σmin)/2 we obtain

plane stress: τmax = σ1/2

plane strain: τmax =

{
(σ1 − σ2)/2 for sin (ϕ/2) ≥ 1 − 2ν ,

(σ1 − σ3)/2 for sin (ϕ/2) ≤ 1 − 2ν .

(4.24)

4.2.3 Three-dimensional crack-tip field

In various cases the three-dimensional character of a crack problem must be taken
into account. This is generally the case if the crack front is curved. Examples
of such problems are the penny-shaped internal crack or a half-elliptical surface
crack (Fig. 4.7a). But also the problem of a crack with the straight crack front in
a flat plate of finite thickness is, strictly speaking, a three-dimensional problem.
Here, the stress state varies near the crack front along the thickness of the plate.

It can be shown that the crack-tip field in a three-dimensional case locally is
of the same type as in a two-dimensional problem. In general, it is composed
of the fields corresponding to the three crack opening modes. Regarding the
mode-I and mode-II deformations, the plane strain case has to be considered. If
an arbitrary point P on the crack front is chosen as origin of a local coordinate
system (Fig. 4.7b), the stresses for r → 0 are given by
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σij =
1√
2πr

[KI σ̃
I
ij(ϕ) +KII σ̃

II
ij (ϕ) +KIII σ̃

III
ij (ϕ)] (4.25)

where σ̃Iij(ϕ), . . . are known functions of the angle ϕ which are determined by
(4.14), (4.15), and (4.6). Thus, the field close to the crack front is fully charac-
terized by the stress-intensity factors KI , KII , and KIII . The latter can vary with
the arc length s along the crack front, i.e., KI = KI(s), . . ..

a)

P

b)

y

ϕ
x

z

Crack front

A

s r

Figure 4.7: Three-dimensional crack field

The representation (4.25) is valid along the crack front except some special
(singular) points. Such a singular point is, for example, a kink of the crack front
or a point where the crack front intersects a free surface (point A in Fig. 4.7a).
In these points stress singularities occur which are not of the type r−1/2.

4.3 K-concept

In the following we restrict our attention to the case of a pure mode-I crack
opening which is the most important case for practical applications. As already
mentioned, the corresponding crack-tip field is fully characterized by the stress
intensity factor KI . This KI-determined field dominates in an outwards limited
region around the crack tip. It is schematically characterized in Fig. 4.8 by a
circle of radius R. Outside R the higher-order terms can not be neglected.

rp

R

r
plastic zone

KI–determined field

ρ

Figure 4.8: K-concept

The validity of the KI-determined field is limited also inwards because linear
elasticity does not provide a realistic description of the actual stress and deforma-
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tion state below a certain limit of r. One reason for this is that no real material
can sustain infinite stresses. In addition, the infinitely high strains appearing
there contradict the assumptions of linear elasticity (small deformations). For
most real materials, plastic flow or, more generally, inelastic deformations appear
at the crack tip on account of the strongly increasing stresses. In addition, there
is always a small but finite process zone at the crack tip where debonding takes
place. Its characteristic dimension is denoted by ρ in Fig. 4.8, that of the plastic
zone is described by rp.

We now suppose that the KI-dominated region is large compared to the en-
closed domain which is not described by the crack-tip field (ρ, rp ≪ R) and
thus may be regarded as a ’black box’. Under these circumstances it can be
assumed that the processes in this ’black box’ are controlled by the surrounding
KI-determined field. This hypothesis is the basis of the K-concept : the state
within the process zone or at the crack tip, respectively, can indirectly be char-
acterized by KI . The stress-intensity factor, similar to the stresses themselves, is
considered as a state variable or a ’loading parameter’ of the region close to the
crack tip.

By introducing the stress intensity factor we now are able to formulate a frac-
ture criterion. Accordingly, crack propagation (fracture) starts when the stress
intensity factor KI reaches a material-specific critical value KIc:

KI = KIc . (4.26)

Under these circumstances, a critical state exists in the process zone which leads
to material separation. We have tacitly assumed here that the state in the process
zone is determined by the actual value of KI and does not depend on the loading
history of the crack tip.

The quantity KIc on the right-hand side of (4.26) is called fracture tough-
ness . It is a material parameter which is determined by appropriate experiments
(cf. Sect. 4.5). From (4.21) it can be seen that the K-factor has the dimen-
sion [stress]·[length]1/2. It is specified as a multiple of the unit Nmm−3/2 or
MPamm1/2, respectively. The use of stress-intensity factors in a fracture crite-
rion dates back to G.R. Irwin (1951).

In the fracture criterion (4.26) for pure mode I, the crack-tip loading is char-
acterized by the single parameter KI . Corresponding one-parameter fracture
criteria can also be formulated for pure mode II or pure mode III, respectively:

KII = KIIc (mode II) , KIII = KIIIc (mode III) . (4.27)

The case of a mixed crack-tip loading by KI , KII , and KIII is more involved.
Then a generalized fracture criterion

f(KI , KII , KIII) = 0 (4.28)

must be formulated (see Sect. 4.9).



70 Linear fracture mechanics

4.4 K-factors

There exist many methods to determine K-factors. Since these are directly tied
to the field quantities, generally all techniques of linear elasticity applicable for
the determination of stresses and deformations can be utilized. But sometimes
it is necessary to tailor them according to the specific characteristics of crack
problems (stress singularities).

Analytical methods are mainly used when closed form solutions are of inter-
est or needed. They can be obtained only for relatively simple boundary value
problems. The analysis of more complex problems usually relies on numerical
methods. Here, in most cases the finite element method or the boundary element
method are applied, but also finite difference method or other schemes are in
use. Moreover, also experimental methods such as strain measurements in the
crack-tip region or photoelasticity can be applied.

A discussion of all methods would go beyond the scope of this book. In this
respect, the reader is referred to the special literature. In what follows, only a
few analytical solutions for selected crack configurations and loadings are dis-
cussed. Subsequently, we will shortly introduce an integral equation formulation
of crack problems, the method of weight functions, and finally a procedure for
the investigation of interacting cracks.

4.4.1 Examples

As the simplest example, we first consider a straight crack Γ of length 2a in
an infinite plate under uniaxial remote stress σ (Fig. 4.9a). It is convenient for
this and many other problems to represent the solution as a superposition of two
partial solutions. Partial problem (1) considers the elastic plate without a crack

under the prescribed load σ. Here, along the line Γ the stress σ
(1)
y |Γ = σ appears.

Partial problem (2) is concerned with the elastic plate, now containing a crack
which is loaded along the crack faces by exactly the same stress but with the
opposite sign: σ

(2)
y |Γ = −σ. The boundary condition of the original problem (i.e.,

traction-free crack faces) is fulfilled by superposition of the two partial solutions:

σy|Γ = σ
(1)
y |Γ + σ

(2)
y |Γ = 0. In partial problem (1) there is no crack and since no

stress singularity appears, no stress intensity factor is present. As a consequence,
the K-factor of the original problem is given by that of the partial problem (2).

Using the complex method, the solutions of the partial problems and the
original problem can be represented as follows:

Φ = Φ(1) + Φ(2) , Φ(1)(z) = 1
4
σz , Φ(2)(z) = 1

2
σ[
√
z2 − a2 − z] ,

Ψ = Ψ (1) + Ψ (2) , Ψ (1)(z) = 1
2
σz , Ψ (2)(z) = −1

2
σa2/

√
z2 − a2 .

(4.29)
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Figure 4.9: Single crack under remote stress σ

For the partial problem (2) we get for the stresses along the x-axis (Fig. 4.9b)

τ (2)
xy = 0 , σ(2)

y = σ(2)
x = σ





−1 |x| < a

x√
x2 − a2

− 1 |x| > a .
(4.30)

The displacements of the upper (+) and the lower (−) crack surfaces (|x| ≤ a)
are given by (Fig. 4.9c)

4Gu± = −(1 + κ)σx , 4Gv± = ±(1 + κ)σ
√
a2 − x2 . (4.31)

The stress-intensity factor may be determined directly from the complex po-
tential Φ. To show this we consider a crack tip which is located at an arbitrary
point z0. From Kolosov’s formulas in conjunction with (4.14), (4.15) we get for
r → 0 or z → z0, respectively,

2Φ′(z) + 2Φ′(z) = σx + σy

= 2(2πr)−1/2[KI cos (ϕ/2) −KII sin (ϕ/2)]

= (2πr)−1/2[(KI − iKII)e
−iϕ/2 + (KI − iKII)e−iϕ/2] .

This leads with reiϕ = z − z0 to the representation

2Φ′(z) = (KI − iKII)[2π(z − z0)]
−1/2 (z → z0)
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and finally to
KI − iKII = 2

√
2π lim

z→z0

√
z − z0 Φ

′(z) . (4.32)

For our specific example, due to the symmetry, only a mode-I loading appears
(KII = 0) which is equal at both crack tips. Inserting (4.29) into (4.32) we get
the stress intensity factor

KI = σ
√
πa . (4.33)

In the next example, the same crack now will be loaded by a pair of opposite
single forces at the crack faces as shown in Fig. 4.10a. If only P (Q = 0) acts,
the complex potentials are

Φ′(z) =
P

2π(z − b)

√
a2 − b2

z2 − a2
, Ψ ′(z) = −zΦ′′(z) . (4.34)

They fulfill all boundary conditions. The corresponding KI-factors (KII is zero on
account of the symmetry) at the right (+) and the left (−) crack tip are obtained
from (4.32) as

K±
I =

P√
πa

√
a± b

a∓ b
. (4.35)

Analogous, for a crack face loading solely by Q (pure mode II), we obtain

K±
I = 0 , K±

II =
Q√
πa

√
a± b

a∓ b
. (4.36)
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Figure 4.10: Crack under different types of loading
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The solutions (4.35) and (4.36) can be used as fundamental solutions from
which further solutions can be constructed. For instance, for a crack loading as
depicted in Fig. 4.10b it follows by superposition

KI =
P√
πa

[√
a+ b

a− b
+

√
a− b

a+ b

]
=

P√
πa

2a√
a2 − b2

. (4.37)

Using this result, we get for the loading according to Fig. 4.10c

KI = 2σ

√
a

π

a∫

c

dx√
a2 − x2

= 2σ

√
a

π

[π
2
− arcsin

c

a

]
. (4.38)

For the special case c = 0 this leads to the already known result (4.33). In a
similar way, using (4.35), the solution for a crack under an arbitrary load p(x),
see Fig. 4.10d, is obtained:

K±
I =

1√
πa

+a∫

−a

p(x)

√
a± x

a∓ x
dx . (4.39)

In the same manner, shear loaded cracks can be treated. For example, using
(4.36) we obtain for a crack under a pure shear load (mode II) as depicted in
Fig. 4.10e

KII = τ
√
πa . (4.40)

The KII-factors here and for the case in Fig. 4.10f are the same.

Figure 4.11a shows a periodic configuration of collinear cracks of equal length
2a in an infinite domain under remote tension σ. The solution for this case in

σ

σ

σ

σ

a) b)

y

2a

2b

2a
x

2b

Figure 4.11: a) Collinear cracks, b) interior crack in a strip
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terms of complex potential is given by

Φ′(z) =
σ

2

1√
1 −

[
sin (πa/2b)
sin (πz/2b)

]2
, Ψ ′(z) = −zΦ′′(z) . (4.41)

From Φ′ in conjunction with (4.32) the stress intensity factor KI is determined
as

KI = σ
√
πa

√
2b

πa
tan

πa

2b
. (4.42)

Accordingly, KI strongly increases if the crack tips approach each other. The
reason for this behavior is the interaction of the cracks (cf. Sect. 4.4.4). If the
distance between the crack tips gets very small (a→ b), equation (4.42) with the
notation c = b− a leads to

KI = σ

√
4b

π

√
b

c
for c≪ b . (4.43)

The result (4.42) can also be used as an approximation for the configuration in
Fig. 4.11b as long as the boundaries are sufficiently far away from the crack tips.

In Table 4.1, the stress intensity factors for various configurations are col-
lectively shown. Solutions for many other cases can be found in the relevant
handbooks of stress-intensity factors listed at the end of this chapter.
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Table 4.1 K-factors

σσ

2a

Q
P

Q
P

b

a

σ

σ

2b 2a

P

b P

τ

τ

2a

2b

σ

τ

σ

τ 2a

σ

Q

Q

σ

1

{
KI

KII

}
=

{
σ
τ

}√
πa

2

{
K±
I

K±
II

}
=

{
P
Q

}
1√
πa

√
a± b

a∓ b

3

{
KI

KII

}
=

{
σ
τ

}√
2b tan

πa

2b

4

{
KI

KII

}
=

{
P
Q

}
2√
2πb

5 KI = 1.1215 σ
√
πa

6

KI = σ
√
πa FI(a/b)

FI =
1 − 0.025(a/b)2 + 0.06(a/b)4

√
cos (πa/2b)
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Tabelle 4.1 K-factors (continued)
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σ
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σσ
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σ
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b
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2a2b

a

P

MT

P
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b

σ

b a

7

KI = σ
√
πa
√

2b
πa tanπa

2b
GI(a/b)

GI =
0.752+2.02a

b
+0.37(1−sinπa

2b
)3

cosπa
2b

8

KI = σ
√
πa
√

2b
πa tanπa

2b
GI(a/b)

GI =
0.923 + 0.199(1 − sinπa

2b
)4

cosπa
2b

9 KI =
2

π
σ
√
πa

10 KI =
2

π
σ
√
πa
[
1 −

√
1 − (b/a)2

]

11

KI = P
πa2

√
πa
√

1 − a/b GI(a/b)

KIII = 2MT

πa3

√
πa
√

1 − a/b GIII(a/b)

GI =
1
2(1+ ε

2+3
8ε

2− 0.363ε3+0.731ε4)

GIII = 3
8(1+ ε

2+3
8ε

2+ 5
16ε

3+ 35
128ε

4

+0.208ε5) , ε = a/b

12

KI(θ) = σ
√
πa FI(θ)

FI = 2
π (1.211 − 0.186

√
sin θ )

10◦ < θ < 170◦
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4.4.2 Integral equation formulation

A possible starting point for the solution of crack problems is their formulation
through integral equations. Of the various existing and different formulations
only one shall be discussed here. Its basic idea is the representation of a crack by
a continuous distribution of dislocations.

ϕ

y

x

r
by

Figure 4.12: Displacement jump due to an edge dislocation

As a preparation of the formulation, we first consider the displacements and
stresses obtained from the complex potentials

where A here is specifically replaced by the real parameter A = −Gby/π(κ+1):

While the displacement u does not experience any change along a full circle enclos-
ing the origin from ϕ = 0 to ϕ = 2π, the displacement v exhibits a displacement
jump (discontinuity) of the magnitude v(0) − v(2π) = v+ − v− = by. Thus,
the potentials (4.44) describe an edge dislocation with a displacement jump in y-
direction (Fig. 4.12, cf. Sect. 3.1.2). This dislocation is accompanied with stresses
σy = σx = −2Gby/π(κ + 1)x and τxy = 0 acting along the x-axis. If a general
displacement jump by in y-direction and bx in x-direction shall be described, the
constant A in (4.44) must be replaced by A = G(by − ibx)/π(κ+ 1).

As a specific problem, we again consider in the following the already inves-
tigated crack under constant crack-face loading σ (pressure) (Fig. 4.13a). The
crack now is represented as a continuous distribution of dislocations which are
located in the interval −a ≤ t ≤ +a on the x-axis (Fig. 4.13b). After renaming
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by → dby = µdt, x → x− t, z → z − t, we obtain from (4.44) and (4.45) for the
stress σy along the x-axis and for the potential Φ′ the representations

Figure 4.13: Crack represented as distribution of dislocations

In our case, the left-hand side of (4.46), i.e., the stress σy along the crack,
is known: σy = −σ. Accordingly, (4.46) is a singular integral equation for the
unknown distribution µ. Its solution is given by

Knowing µ(x) the problem is practically solved because the potentials Φ and Ψ
can be found from µ(x) by integration. For example, from (4.47) we obtain

from which the stress intensity factor can be determined.
If only the stress intensity factor is of interest, this quantity can directly be

determined from µ. Along the crack, µ = dby/dx = d(v+ − v−)/dx is valid.
Combining this with the crack-tip field formulas (4.14), the following relation for
the right crack tip yields:

When introducing the distribution (4.48), we get the already known result KI =
σ
√
πa.
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The integral equation formulation is applicable not only for straight cracks. It
can easily be extended to curved cracks, bounded domains, and arbitrary loadings.
In addition, it can be used as a starting point for numerical methods, tailored
specifically for the solution of crack problems.

4.4.3 Method of weight functions

For many geometrical configurations, theK-factors are known for particular load-
ings, for example, from handbooks. How they can be used to obtain K-factors
for the same geometry but for other loadings will be shown in the following. For
simplicity we restrict the discussion to plane mode-I problems.

a ε

(1)

a)

σ
(1)
y

ξ
ε

(2)
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σ
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ξ

x x

Figure 4.14: Application of Betti’s theorem

Starting point is Betti’s theorem (cf. Sect. 1.4.3)
∫

A

t
(1)
i u

(2)
i dA =

∫

A

t
(2)
i u

(1)
i dA (4.51)

with ti = σijnj which we apply to the two configurations in Fig. 4.14. Except for
the loading, they differ from each other only by slightly different crack lengths: the
crack in configuration (2) is by a small amount ε longer than that in configuration
(1). Since relation (4.51) can be applied only to configurations with identical
geometry, we assume that in configuration (1) a cut of the length ε is made in
front of the crack along the x-axis. The stresses acting there are given by the
crack-tip field formulas (4.14): σ

(1)
y (ξ) = K

(1)
I (a)/

√
2πξ. Analogous, the crack

face displacement v in the traction-free region 0 ≤ ξ ≤ ε of configuration (2) is

v(2)(ξ) = κ+ 1
2G K

(2)
I (a+ε)

√
(ε− ξ)/2π. Adopting the notation from Fig. 4.14 and

taking into account the symmetry, it follows from (4.51) that
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With the expansions

and under consideration of

we get, after taking the limit ε→ 0, the result

We now consider configuration (2) as the known reference configuration while the
stress intensity factor for configuration (1) is unknown. Renaming the known and
unknown quantities as

equation (4.52) yields

Here, the term [8G/(κ + 1)Kr
I ]∂v

r/∂a is called weight function. It “weights”
the prescribed crack load σy during integration to determine the related stress
intensity factor. Formula (4.53) here is valid for a crack with one crack tip. When
applied to a crack with two crack tips the integration has to be performed along
the whole crack length and the derivative ∂vr/∂a has to be taken with respect
to the crack tip where the stress intensity factor shall be determined (i.e., the
other crack tip then has to be held fixed). For a symmetrically loaded crack with
K+
I = K−

I , formula (4.53) reduces to an integration along the half-length of the
crack.

As an example, we will determine KI for the crack in Fig. 4.15a with a crack-
face loading σy = −σ0

√
1 − x2/a2. As the reference case, we use the crack with

a constant traction σry = −σ (cf. Sect. 4.4.1). For the latter the expressions

Kr
I = σ

√
πa and 4Gvr = (1 + κ)σ

√
a2 − x2 apply. Substitution into (4.53), with

the symmetry taken into account, leads to
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Figure 4.15: Weight function method: examples

Often the situation is met that the stress intensity factor Kr
I for a reference

load σry is known but the reference displacement vr is unknown. In such cases
it is possible to obtain an approximate solution for KI by using a displacement
approach. In order to show this we assume for simplicity that the reference load
is constant along the crack: σry = −σ = const. For the reference displacement we
employ the two-terms approach (Petroski & Achenbach, 1995)

with

which is motivated by the crack-tip field solution. The function h(a) is determined
from the condition of self-consistency which requires KI = Kr

I for σy = σry. Thus,
from (4.53) it follows that

and finally

0

As an example, we consider an edge crack with a linear crack face loading (see
Fig. 4.15b). For the reference case under constant load distribution, the stress
intensity factor is Kr

I = 1.1215 σ
√
πa , i.e., f = 1.1215 = const (cf. Table 4.1,

No. 5). Introducing (4.55) and the crack loading σy = −p(1 − x/a) into (4.53)
finally gives as an approximation for the K-factor

The exact value is Kex
I = 0.439 p

√
πa . If only the first term of (4.55) is taken

into account (h = 0), the coarser approximation KI ≃ 0.480 p
√
πa is obtained.
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4.4.4 Crack interaction

Often one has to deal not only with a single crack but with a certain number of
cracks, e.g., two or three, or even with a system consisting of many cracks. If
the distances between the cracks are large compared to their length, they affect
each other only a little. In a first approximation each crack then can be treated
as if the others were absent. But if the cracks are close the interaction between
them can lead, depending on the geometrical configuration, to an increase or to
a reduction of the crack-tip loading, i.e., of the K-factors. This is known as an
amplification or shielding effect. Exact solutions for such problems are possible
only in specific cases. But also numerical methods are in some sort limited. Gen-
erally, they are practicable only if the number of the cracks is sufficiently small.
One example, for which an exact solution exists, is the row of collinear cracks in
Fig. 4.11a or in Table 4.1, No 3, respectively. If the adjacent crack tips in this
case approach each other (a→ b), the K-factors grow infinitely (amplification).

In what follows, we will discuss the principle of a method which goes back to
M. Kachanov (1983) and which allows the construction of rather good approximate
solutions for complex crack systems. As a preparation, we consider a crack 1
(see Fig. 4.16) the crack faces of which are loaded by a constant unit traction.
The solution of this problem is known (cf. Sect. 4.4.1) and we can determine the
stresses in each point or along an arbitrary line. For example, according to (4.30),
along the line 2 (x-axis) the normal stress is given by (the shear stress is zero)

We denote its mean value in the interval (b, c) as the transmission factor :

It describes the average loading of line 2 due to a unit load of crack 1 and it is
determined solely by the geometrical configuration.

“1”

−a +a b c

x
©2

©1

y

Figure 4.16: Definition of the transmission factor
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p2(x)=p∞2 + p̃2(x)

p1(x)

p1(x)=p∞1 + p̃1(x)

〈p1〉

σ1(x) ≈ 〈p2〉f21(x)σ2(x) ≈ 〈p1〉f12(x)

Figure 4.17: Kachanov’s method

The explanation of Kachanov’s method is restricted here, for simplicity, to
two collinear cracks under a pure mode-I loading due to the remote tension σ0

(Fig. 4.17). Because we are interested only in the stress intensity factors, it is
sufficient to investigate the system with the crack face loadings p∞1 = p∞2 = σ0.
The solution of this problem can formally be obtained from the superposition
of two partial problems. The first one refers to a situation where only crack 1
is loaded by an unknown crack face traction p1(x) = p∞1 + p̃1(x). Here, p̃1(x)
describes the deviation of the crack 1 loading due to existence of crack 2. Along
its line, the stress σ2(x) appears on account of the loading p1(x). We now replace
σ2 approximately by the stress 〈p1〉f12(x) which appears as a result of a constant
crack loading by the mean value 〈p1〉. Thus, regarding the effect onto crack 2,
we take into account only the mean (average) loading of crack 1. The second
partial problem is treated in the same manner. After superposition, the boundary
conditions for both cracks

p1(x) − 〈p2〉 f21(x) = p∞1 , p2(x) − 〈p1〉 f12(x) = p∞2

lead to the representations

p1(x) = p∞1 + 〈p2〉 f21(x) , p2(x) = p∞2 + 〈p1〉 f12(x) . (4.61)
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The unknown mean values 〈p1〉 and 〈p2〉 are determined from the condition that
equations (4.61) must be self-consistent , i.e., they must be applicable also for the
determination of the mean values:

〈p1〉 = p∞1 + 〈p2〉 〈f21〉 , 〈p2〉 = p∞2 + 〈p1〉 〈f12〉 .
These self-consistency equations represent a linear system of equations for 〈p1〉,
〈p2〉 which, using the transmission factors according to (4.60), can be written as

〈p1〉 − Λ21 〈p2〉 = p∞1 ,

−Λ12 〈p1〉 + 〈p2〉 = p∞2 .
(4.62)

After its solution, the crack loadings p1(x) and p2(x) according to (4.61) are
known and the stress intensity factors K±

I for each crack can be determined by
means of (4.39).

If the system consists not only of two but of n cracks under a mode-I loading,
generalizing equations (4.62), the following system of equations is obtained

(δji − Λji) 〈pj〉 = p∞i , i = 1, . . . , n (4.63)

where Λij = 0 for i = j. If the cracks experience also a mode-II loading, this must
be taken into account for the transmission factors and boundary conditions. In
this case, a configuration of n cracks leads to a system of 2n equations for n
mean values of the normal tractions and n mean values for the shear tractions,
respectively.

a) b)

σ

σ

2a

2l

2a

2a

2a

yp∞=σ0

x

p∞=σ0

κl

ϕ
d

Figure 4.18: Two interacting cracks of equal length

As an example, we consider two collinear cracks of the same length as shown
in Fig. 4.18a. For this case, taking into account that Λ12 = Λ21 = Λ, 〈p1〉 =
〈p2〉 = 〈p〉 (symmetry!), we obtain from (4.62)
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where

According to (4.61) and (4.59), the crack loading, e.g. of the right crack, is
determined as

Substitution into (4.39) finally yields the approximate solution for the K-factors

Here, K0
I = σ0

√
πa is the K-factor for a single (undisturbed) crack and K(α)

and E(α) are the complete elliptic integrals of the first and the second kind,
respectively, with the argument α =

√
1 − κ2. Table 4.2 shows a comparison of

some results of the approximate solution with the exact values. As can be seen,
the error is very small even for the case when the distances between the cracks
are quite small.

Table 4.2: Comparison of approximate solutions with exact values

κ K+
I /K

0
I (K+

I /K
0
I )exact K−

I /K
0
I (K−

I /K
0
I )exact

0.2 1.052 1.052 1.112 1.112
0.05 1.118 1.120 1.452 1.473
0.01 1.175 1.184 2.134 2.372

For this specific example, we now will consider the case when the distance
d = 2(κl+ a) between the midpoints of the cracks is large compared to the crack
lengths: d ≫ a. Then, from (4.59) by series expansion for x ≫ a we obtain
along the x-axis the stress f12 = σy ≈ 1

2
(a/x)2. With x ≈ d, this stress can be

considered as constant in the region of the crack line 2: f12 = Λ12 = σy ≈ 1
2
(a/d)2.

Herewith, it follows p ≈ p∞[1 + 1
2
(a/d)2], and we obtain for the K-factors

In this first approximation, they are equal at the left and at the right crack tip.
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In the same manner we can determine the K-factors for the generalized crack
configuration depicted in Fig. 4.18b:

It can be recognized that the interaction of the cracks decreases rapidly with
increasing distance d. For collinear cracks (ϕ = 0) with a distance d = 10a only
a small increase of KI of 1/200 can be observed. For stacked cracks (ϕ = π/2),
a small KI-decrease of 3/200 occurs. The reason for this phenomenon lies in
the decay behavior of the stresses around a crack which is loaded according to
Fig. 4.16. For r ≫ a, this decay is in the plane (2D) case of the type (a/r)2. In
contrast, in the equivalent three-dimensional case of a circular crack, the stress
decay for larger distances (r ≫ a) is of the type (a/r)3, i.e., disturbances decay
faster than in the 2D case. Accordingly, for the same distances between the
cracks, the interaction in the three-dimensional case is weaker than in the plane
problem.

When interacting cracks propagate, interesting and partly unexpected phe-
nomena may occur. One of them shall briefly be discussed. For this purpose we
consider a plate under uniaxial tension containing two nearly collinear straight
cracks (Fig. 4.19). Experiments show that these cracks, when propagating, in
a first phase approach each other, as expected. But as the distance becomes
shorter, the crack tips in a second phase deviate slightly and do not coalesce
along the shortest path. Due to their interaction, both crack tips run around
each other in a certain distance until, at some later instant, each of them merges
with the other crack. Figure 4.19 shows the results of a numerical simulation
which provides a realistic impression of this process.

Figure 4.19: Interaction between two cracks propagating towards each other

Even though such curved crack paths can be determined only numerically, the
observed phenomenon can qualitatively be explained from the results (4.66) for
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the crack configuration in Fig. 4.18b. As will be discussed in Sect. 4.9, the angle at
which a propagating crack is deviated from a straight path, is mainly controlled
by the KII-factor. The latter changes, according to (4.66), with the angle ϕ,
i.e., with the relative position of the crack tips and experiences a sign change.
For small angles ϕ, the KII-factor is positive which causes initially a downward
deviation of the left crack in Fig. 4.19 and an upward deviation of the right crack,
i.e., the crack tips repel each other. For larger angles ϕ, the KII-factor becomes
negative and both cracks are directed towards each other.

4.5 Fracture toughness KIc

The determination of the fracture toughnessKIc of a material usually is performed
in standardized tests (e.g., ASTM–Standard E399-90) the details of which will
not be discussed here. In such tests different specimen types are in use. Two of
them are shown in Fig. 4.20. The test specimen must have a starter crack which
is produced in metals by loading the initially notched specimen by a suitable os-
cillating load. From the measured loading at which the crack starts to propagate,
the fracture toughness can be determined by means of the relation between the
stress intensity factor, the loading and the crack length.

a) b)

F

F/2
F/2

W

a

F
B B

F

a W

Figure 4.20: Test specimens: a) compact tension (CT), b) 3-point bending (3PB)

In order to extract from measurements fracture toughness values that can in
fact be regarded as geometry-independent material parameters, the samples must
satisfy the requirements of linear fracture mechanics. Accordingly, the plastic
zone must be small compared to all relevant length parameters including the size
of the KI-determined region (cf. Sects. 4.3 and 4.7). This is provided by the size
condition

a, W − a, B ≥ 2.5

(
KIc

σY

)2

(4.67)

where σY is the yield strength. Under these circumstances, it is ensured that pre-
dominantly a plane strain state prevails in the region close to the crack front. How
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Figure 4.21: a) Influence of sample thickness, b) influence of temperature

a) b)

Kc

B

KIc

T

KIc

a decrease of the sample thickness affects the critical stress intensity factor is
shown in Fig. 4.21a. The essential reason for the increase of Kc is the de-
crease of yield constraint which is associated with the change of the stress state
(cf. Sect. 4.7.2).

The fracture toughness of a material strongly depends on a number of in-
fluence parameters. Among them are the characteristics of the microstructure
(e.g., the grain size), the loading history, the heat treatment, or the environment
(e.g., air or water). Figure 4.21b schematically shows the significant influence
of the temperature observed for many materials. In Table 4.3 reference data for
the fracture toughness of some materials are given. However, reliable data for
structural applications in any case have to be measured directly at the particular
material that is used.

Table 4.3: Fracture toughness of some materials

material KIc [MPa
√

mm] Rp0,2 [MPa]

high-strength steel 800. . . 3000 1600. . . 2000
30CrNiMo8 (20o) 3650 1100
30CrNiMo8 (−20o) 2000
construction steel 1000. . . 4000 <500
Ti alloys 1200. . . 3000 800. . . 1200
Ti6Al4V 2750 900
Al alloys 600. . . 2000 200. . . 600
AlCuMg 900 450
AlZnMgCu1,5 950 500
Al2O3 ceramics 120. . . 300
marble 40. . . 70
glass 20. . . 40
concrete 5. . . 30
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4.6 Energy balance

4.6.1 Energy release during crack propagation

We consider an elastic body containing a crack with the boundary ∂Vt subjected
to external tractions and where along the boundary ∂Vu displacements are pre-
scribed (Fig. 4.22). The external tractions are assumed to have a potential Πext

which applies, for example, to dead loading or spring forces.

Figure 4.22: Crack growth and energy release

Let us suppose that due to crack advance by an area ∆A (or the length
∆a in the two-dimensional case, respectively), the system passes from the initial
equilibrium state 1 in a new equilibrium state 2. This transition is imagined to
be realized as follows: we assume that the body in state 1 is cut along ∆A and
the stresses acting there are understood as external forces. They subsequently
are released quasi-statically to zero such that state 2 is reached at the end. The
work ∆Wσ done by these forces during this process is negative (or utmost zero)
since forces and displacements are opposite directed. Simultaneously, the external
forces along ∂Vt accomplish the work W ext

12 during the transition from state 1 to
state 2. It can be expressed by the difference of the potential: W ext

12 = −∆Πext =
−(Πext

2 −Πext
1 ). Thus, the energy balance (cf. Sect. 1.4.1) yields

∆Π int = Π int
2 −Π int

1 = W ext
12 +∆Wσ = −Πext

2 +Πext
1 +∆Wσ ,

and with Π = Π int +Πext we get

∆Π = ∆Wσ ≤ 0 . (4.68)

Therefore, the system’s mechanical energy Π decreases during crack advance.
The released energy is available for the fracture process. It should be emphasized
that ∆Wσ must not be confused with the work ∆WB of the bonding forces during
crack propagation. The latter is done during the separation process between the
components (atoms, molecules, etc.) of the material, i.e., ∆WB is a material-
specific quantity (cf. Sects. 3.1.1 and 3.2.2).



90 Linear fracture mechanics

We will briefly consider two special cases. If the displacements along the
whole boundary ∂V are kept constant, then ∆Πext = 0 and ∆Π int = ∆Wσ. In
contrast, if the external load is a dead loading and the material is linear elastic,
from Clapeyron’s theorem (2Π int+Πext = 0) the result −∆Π i = ∆Πa/2 = ∆Wσ

follows.

σσ

σ σ

2a

y
x

Figure 4.23: Energy release during crack formation

As an example, we want to compute the systems’s energy change when a crack
of the length 2a is created in an initially crack-free infinite plate under remote
tension σ (Fig. 4.23). Using the displacement v = (1 + κ)σ

√
a2 − x2/4G of the

upper crack face, first the work ∆Wσ during crack formation is calculated as (the
same work is done at the upper and lower crack faces):

From this, in case of constant loading at infinity (dead loading), we obtain

If, in contrast, the displacements at infinity are kept constant, we get

Indeed, ∆Π in both cases is the same. However, ∆Π int differs by the sign. It
should be noted here that without any restriction, the system’s potential for the
initial state (plate without a crack) can be chosen to be zero. Then, (4.70) or
(4.71), respectively, describes the potential Π of the plate with a crack. It also
should be mentioned that (4.69)–(4.71) describe the work and energy changes per
unit thickness (plane problem).
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4.6.2 Energy release rate

The released energy −dΠ during an infinitesimally small crack advance dA,
related to dA, is called energy release rate:

For a plane problem, dΠ is related to the unit thickness and thus we define

where da is an infinitesimally small crack extension. The energy release rate has
the dimension of a force (per unit thickness). Therefore it is also denoted as the
crack extension force.

a

F

y

a

F

y
KI(a)

∆a ∆a

x x

KI(a+∆a)

Figure 4.24: Energy release rate for mode I

In the linear elastic case, the energy release rate can be expressed in terms of
stress intensity factors. We show this for the situation of pure mode I. Again, a
crack extension of the small length ∆a is thought to be generated by the quasi-
static reduction of stresses acting along the cut ∆a (Fig. 4.24). Before crack
extension, there acts, according to (4.14), the normal stress σy(x) = KI(a)/

√
2πx

(higher order terms can be omitted because subsequently we will let ∆a → 0).
According to (4.20), the displacement of the upper and lower crack face along

∆a after crack extension is v±(x) = ±κ + 1
2G KI(a+∆a)

√
(∆a− x)/2π. Thus, the

energy release results as
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Taking the limit ∆a→ 0, we obtain

In the same manner, the energy release rates for pure mode-II and pure
mode-III loading can be determined:

G =
κ + 1

8G
K2
II (mode II) , G =

1

2G
K2
III (mode III) . (4.75)

In case of a general crack loading, when all three modes are present, we obtain
for the energy release rate per unit length of the crack front

Here, E ′ = E/(1 − ν2) for plane strain and for the three-dimensional case while
E ′ = E for plane stress.

In the pure mode-I case, according to (4.74), there is a unique relation between
KI and G. This applies also for the pure mode-II and the pure mode-III case.
Thus, within the framework of linear fracture mechanics, the K-concept and the
criterion

are equivalent for pure modes. Here, Gc is a material parameter which is called
crack resistance or crack resistance force. Because of the direct relation Gc =
K2
Ic/E

′ it is, like KIc, frequently also called fracture toughness. The condition
(4.77) can be interpreted as follows: fracture is initiated if the energy release
during crack growth is equal to the required energy. This energy criterion was
proposed by A.A. Griffith (1921) in a slightly different form. We will come back
to it again in Sect. 4.6.4. In another perspective of (4.77) the interpretation of G
as a (generalized) force is emphasized. Accordingly, at crack initiation the crack
extension force must be equal to the crack resistance force.

As examples we will determine the energy release rates for two crack configu-
rations which are of relevance for different applications. The configuration shown
in Fig. 4.25a can be regarded as a model of two adhesively bonded or welded thin
layers (strips) under tension F . At sufficiently large distances from the crack
tips, for h ≪ 2b, the stress states outside and within the bonded region do not
vary with x. A crack advance da of the left or the right crack tip leads to a
length decrease of the bonded region of exactly the same amount as the length
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increase of the outside region. Presuming the load F as a dead load and applying
the relations of beam theory (which are exact in this case), with the bending
moment M = Fh/2 and the moment of inertia I = Bh3/12, we obtain in a first
step

dΠ int =

[(
F 2

2E ′(B h)
+

M2

2E ′I

)
− F 2

2E ′(2B h)

]
da =

7F 2

4E ′B h
da .

Here, B is the width of the layer in the third direction. Because of dΠ = −dΠ i =
dΠa/2 and dA = B da, equation (4.72a) yields for plane strain

G =
7 (1 − ν2)F 2

4EB2 h
or G =

7 (1 − ν2) σ2 h

4E
(4.78)

where σ = F/Bh is the mean stress in a layer. It should be mentioned that in
this case, contrary to a first impression, no pure mode-II loading occurs. Thus,
the stress intensity factors cannot be determined from G. Without going into the
details of the calculation, the K-factors are KI ≈ −KII ≈

√
7/9 σ

√
h.

FF

b)a)

h

x

2b

h

h da

x
ε0

(1)

(2)

Figure 4.25: Energy release rate: two examples

Figure 4.25b shows a crack in the interface (bonding plane) between a thin
layer (1) and a base material or substrate (2). We suppose that the substrate (2)
experiences a constant strain εx = ε0 which is imposed to the layer (1). This leads
for |x| ≫ h, plane strain presumed, far ahead of the crack tip to the constant
stress σ = Eε0/(1 − ν2) while the left-hand side of the layer is stress-free. If
the crack advances by da, the layer region with the constant stress decreases
by the same amount and the state in the substrate remains unchanged. As a
consequence,

dΠ int = −1

2
σ ε0B h da = −σ

2(1 − ν2)B h

2E
da .

Since no external forces are present, dΠ = dΠ int holds and (4.72a) in conjunction
with dA = Bda yields

G =
(1 − ν2) σ2 h

2E
. (4.79)
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As in the forgoing example, no pure mode-II is present. Thus, the stress intensity
factors cannot be determined from G. It also should be noted that this config-
uration frequently is used to model the delamination of a thin layer (film) from
a substrate. Cracks in the interface between two different materials will more
thoroughly be considered in Sect. 4.11.

4.6.3 Compliance, energy release rate, and K-factors

In the linear elastic case, the energy release rate is related to the compliance of
a body or its overall stiffness, respectively. We will show this for the example of
a plane mode-I problem of a body which is loaded by a prescribed force F (dead
load) (Fig. 4.26a). With Πext = −FuF and Π int = FuF/2, the total potential in
this case is

Π = Π int +Πext = −1

2
F uF .

Between the displacement uF and the load F , the linear relationship

uF = C F

holds where C is the compliance (i.e., the inverse stiffness) of the body. If the
crack advances, C and uF change (Fig. 4.26b): C = C(a), uF = uF (a). Therefore,
the potential can be written as Π = −F 2C(a)/2 and the energy release rate takes
the form

G = − dΠ

B da
=
F 2

2B

dC

da
(4.80)

where B is the thickness of the body. It can be shown that this result is inde-
pendent of the loading type. For instance, it applies also if the force acts to the
body via a spring or if instead of the force the displacement uF is held constant.

F

uF

a

F
uF

b)

a+daa

-dΠ

a)

Figure 4.26: Change of compliance on account of crack advance

In pure mode-I, from (4.80) in conjunction with (4.74) we obtain for the stress
intensity factor

K2
I =

F 2E ′

2B

dC

da
(4.81)
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where E ′ = E in plane stress and E ′ = E/(1− ν2) in plane strain. This relation,
for example, can be used to determine stress intensity factors experimentally. For
this purpose, the compliances of a body are determined for crack lengths which
differ by a small amount ∆a.

F

h

a

uF

B

Figure 4.27: DCB specimen

The relation (4.80) can also be used for the derivation of approximate an-
alytical solutions for K-factors in certain cases. As an example of such a for-
mula we consider a DCB specimen (double cantilever beam specimen) which
is used in fracture experiments (Fig. 4.27). If both arms are considered as
cantilever beams of length a, from beam theory (without taking shear into ac-
count) we get uF = 2Fa3/3EI. With I = Bh3/12 this leads to the compliance
C = uF/F = 8a3/EBh3. Inserting this into (4.81) and assuming plane stress
yields

KI = 2
√

3
F a

B h3/2
. (4.82)

4.6.4 Energy balance, Griffith’s fracture criterion

A fracture event in a body is accompanied by irreversible processes of bond-
breaking. It is appropriate to represent all energies which are exclusively associ-
ated with the fracture process by a separate term in the energy balance (1.90).
Among these are the surface energy, the energy needed for the large microplas-
tic deformations in the process zone, and possible chemical and electromagnetic
energies (cf. Chap. 3). Without specifying them in detail, they are summarized
as the fracture energy Γ . The energy balance then can be written in the general
form

Ė + K̇ + Γ̇ = P +Q . (4.83)

It must be satisfied at initiation and during the fracture process. Due to the
irreversibility of the process, Γ̇ ≥ 0 holds.

The fracture process takes place in the process zone whose volume in many
cases can be considered as negligibly small compared to the volume of the
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Figure 4.28: Fracture process and energy balance

dA

tidA+

dA−
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body (Fig. 4.28). It is then obvious to split the energy balance (4.83) into one
part for the process zone and another part for the rest of the body:

process zone: Γ̇ = −P ∗ ,

body: Ė + K̇ = P +Q+ P ∗ .
(4.84)

Here, −P ∗ describes the energy transport into the process zone. If we restrict
ourselves to solely mechanical energy terms, it is given by

P ∗ =

∫

AP

ti u̇i dA . (4.85)

A fracture process is associated with the creation of a new surface. Between
two adjacent states 1 and 2 at times t and t + dt, the material is separated
along the fracture surface dA. During this time, the process zone moves and all
material points of dA pass through an “unloading history” from state 1 to the
state 2 where the bonding forces are fully released (ti=0). The work done by the
bonding forces (i.e., the energy flow into the process zone) can be expressed by

dWσ = P ∗dt =

∫

dA±

[

(2)∫

(1)

ti dui] dA . (4.86)

Here, dA± indicates that the work of the bonding forces on both opposite surfaces
has to be taken into account. Simultaneously, during creation of dA, the fracture
energy is changed by an amount dΓ which is proportional to dA: dΓ ∝ dA. If dΓ
is thought to be distributed in state 2 (after full separation) as fracture surface
energy along the surface dA±, it can be written as (cf. Sect. 3.2.2)

dΓ = Γ̇ dt = 2 γ dA . (4.87)

The specific fracture surface energy γ is often considered to be constant. But
in general, it can also be a function of the fracture history, i.e., for example, a
function of the crack extension ∆a: γ = γ(∆a).



Energy balance 97

Again, the different physical meaning of Γ̇ and P ∗ shall be emphasized. Dur-
ing the motion of the process zone by dA (i.e., crack extension), the energy dΓ
on account of the creation of new fracture surfaces is transformed into energy
terms like heat and surface energy. This takes place within the process zone. In
contrast, P ∗ describes the energy flux into the process zone or, in other words,
the effect of the surrounding continuum onto the process zone.

We now come back to the special case of an elastic body where a “slow”,
quasi-static fracture process is taking place. Here, we identify the process zone
with the plastic zone, i.e., with the entire small area around the crack tip where
inelastic processes occur. Accordingly, Γ now contains the energy needed both
for the separation process and for the inelastic deformation process in the plastic
zone. The kinetic energy K and the non-mechanical energy transport Q do not
play a role. The internal energy E can be replaced by the strain energy Π int.
Additionally, it is presumed that the external forces have a potential Πext. With
Π̇ intdt = dΠ int, Γ̇dt = dΓ and Pdt = −dΠext, the energy balance (4.83) reads

Thus, during the fracture process, the change of the sum of the potential Π of
external and internal forces and of the fracture energy Γ is zero. If, according to
(4.72a), the energy release rate is introduced, equation (4.88) with (4.87) and the
notation Gc = 2γ attains the form of (4.77), i.e.

In other words, at initiation and during the subsequent progression of quasi-static
crack advance, the released energy must be equal to the energy needed for the frac-
ture process. The energy relation (4.88) was first applied as a fracture condition
by A.A. Griffith, why it is called Griffith’s fracture criterion. However, Griffith
regarded Γ not as the fracture surface energy (incorporating all inelastic terms
associated with fracture) but as the pure surface energy. Formally, he treated the
fracture process as reversible. Furthermore, he applied the energy balance (4.88)
only to initiation of crack growth and not to its subsequent evolution.

In Sect. 4.6.2 it has been already mentioned that the K-concept and the
energy criterion are fully equivalent in linear fracture mechanics. However, in
most applications, the K-concept is preferred. An essential reason for that is
its simpler applicability. For instance, K-factors are available in handbooks
for many geometrical configurations and loading cases. Another reason is the
transferability of the fundamental idea of dominant, singular crack-tip fields to
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nonlinear fracture mechanics, i.e., to inelastic, nonlinear material behavior. Nev-
ertheless, there are a number of cases in linear fracture mechanics in which the
energy criterion is preferred. One example are interface cracks as they appear
frequently in composite materials or laminates (cf. Sect. 4.11).

a)

Γ

a

Π

Π + Γ

b)

σ

σ

Γ
Π

ac2a

Figure 4.29: Griffith’s fracture criterion

For an illustration of Griffith’s fracture criterion (4.88), again a straight crack
in an infinite plate under remote uniaxial tension σ is considered, see Fig. 4.29a.
According to (4.70) and (4.87) the energy terms per unit thickness are

Π = −σ2a2π
1 + κ

8G
, Γ = 4aγ

where γ is assumed to be constant (Fig. 4.29b). Introducing them into (4.88)
yields the fracture condition

d(Π + Γ )

da
= 0 ; 4γ = 2σ2πa

1 + κ

8G
. (4.90)

If the actual crack length is prescribed, it determines the critical stress needed
for the fracture process:

σc =

√
16Gγ

π(1 + κ)a
. (4.91a)

Contrary, if the stress σ is given, from (4.90) the critical crack length ac at which
the crack starts to grow can be obtained (Fig. 4.29b):

ac =
16Gγ

π(1 + κ)σ2
. (4.91b)

It is self-evident that identical results are obtained by using the K-concept.
In another example, we will address the question under which circumstances

a so-called channel crack is formed in a thin layer (film) (1) of thickness h which
is bonded on a substrate (2), see Fig. 4.30. We suppose that before failure, the
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Figure 4.30: Channeling in a thin layer

σ σ σ σ
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x(2)

h (1)

(2)

uncracked layer is loaded by a constant tension σ and that the bond between layer
and substrate remains intact during crack formation. In a good approximation,
the layer then can be treated as a shear-compliant beam in plane strain whose
axis remains straight. Without going into details of the derivation, the change of
strain energy or total potential, respectively, as well as the fracture energy during
complete formation of the channel crack are determined as

Π ≈
√

2

16

σ2 h2 (1 − ν2)

E
, Γ = 2 γ h = Gc h . (4.92)

Then, if stress and fracture toughness are known, Griffith’s energy criterion (4.88)
leads to the critical layer thickness

hc ≈ 4
√

2
GcE

σ2(1 − ν2)
. (4.93)

Thus, if channeling of a thin layer under tension shall be prevented (i.e., dΠ +
dΓ < 0), its thickness h must be below the critical value hc: h < hc. In this
context it should be noted that tensile stresses due to the fabrication process or
as a result of thermal effects in many cases cannot be avoided.

There exists a different interpretation of the energy criterion which is based
upon the generalized force concept. Here, G is understood as a force which tries
to drive the crack (= crack extension force). A crack propagation is counteracted
by the material resistance Gc (= crack resistance force). A quasi-static crack
growth only can take place if the “equilibrium condition” (4.89) is fulfilled. The
latter can also be formulated in terms of the (generalized) principle of the virtual
displacements. For this purpose, a virtual (i.e., a only thought and infinitesimal)
crack advance δA is carried out. Then the crack extension force does the virtual
work G δA = −δΠ and the crack resistance force the work GcδA = 2γδA = δΓ .
Thus equation (4.88) leads to

δ(Π + Γ ) = 0 . (4.94)
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Finally, a simple model (analogy) of crack propagation shall be discussed. It
consists of Coulomb’s dry friction of a body on a rough support (Fig. 4.31) where
movement of the body is identified with crack propagation. The body remains at
rest as long as the acting driving force is less than the limiting adhesive force (=̂ no
crack propagation for G < Gc). If the driving force is equal to the limiting adhesive
or frictional force, respectively, movement is initiated and further movement un-
der equilibrium conditions takes place (=̂ crack initiation and propagation for G =
Gc).

Figure 4.31: Coulomb’s friction as a model of crack propagation

The energy balance (4.83) is also valid when large inelastic regions are present.
In this case, however, the entire plastic region cannot be regarded as the process
zone. It is then necessary to separate clearly the energy needed for the fracture
process (Γ̇ ) and that consumed by inelastic deformations outside the process
zone. This can be done, for example, within the framework of a cohesive model .
In such a model, the volume of the process zone is neglected and the latter is
regarded as a ’process surface’ AP . Outside of the process zone AP , the ma-
terial behaves inelastic (e.g., elastic-plastic). The fracture process (separation)
takes place along the surface AP where a material-specific separation law gov-
erns the cohesive stresses. According to this separation law, the cohesive stresses
accomplish a certain fracture work.

4.6.5 J−integral

With the K-factors and the energy release rate G, we have already introduced
parameters which can be used to describe the fracture behavior. Another very
useful quantity is the J-integral. Although this parameter in linear fracture
mechanics is equivalent to K or G, respectively, it is of outstanding importance.
One reason for this is that J in contrast to K and G, can be applied also to
inelastic materials (cf. Chap. 5, elastic-plastic fracture mechanics).

4.6.5.1 Conservation integrals of J type

We consider a homogeneous, elastic body with strain energy density U(εij) and
suppose that no volume forces act onto the body (fi = 0). The material can
be arbitrarily nonlinear and anisotropic. For simplicity, we further assume small
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deformations (infinitesimal strains). Then, the J-integral vector is defined as

Jk =

∫

∂V

bkj nj dA =

∫

∂V

(U δjk − σij ui,k)nj dA (4.95)

where ∂V is a closed surface with the outward unit normal vector nj (Fig. 4.32a).
The quantity

bkj = U δjk − σij ui,k (4.96)

is called configurational stress tensor or Eshelby’s stress tensor , sometimes also
energy-momentum tensor of elastostatics. It has the remarkable property that
its divergence vanishes under the presumed circumstances. This can be shown
by differentiating it with respect to xj and incorporating (1.46), (1.19), (1.25):

bkj,j =
∂U

∂εmn

∂εmn
∂xj

δjk − σij,j ui,k − σij ui,kj

= σmn um,nk − σij ui,kj = 0 .

(4.97)

Hence, according to the divergence theorem

Jk = 0 (4.98)

for an arbitrary closed surface ∂V containing a defect-free material without singu-
larities or discontinuities of bkj. If the material is inhomogeneous or if V contains
discontinuities or singularities as, for example, a crack or point defect, then Jk
in general is not zero. Equation (4.98) can be regarded as a special conservation
law of elastostatics which advantageously can be applied in various situations.

x3

x1
x2

x2

x1

b)

C

dc

a)

nj

∂V

nβ

Figure 4.32: J-Integral

If we apply (4.98), as an example of elementary strength of materials, to a
beam which is solely loaded at its supports A and B by bending moments M and
shear forces V , we obtain

−M2
A

2EI
+
M2

B

2EI
+ VAw

′
A + VBw

′
B = 0 .
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Here, EI is the bending stiffness and w′ is the derivative of the beam deflection.
There exist two further surface integrals with similar properties as Jk:

Here, Lk is a vector and M is a scalar quantity, ǫklm is the permutation tensor and
α = 3 in the three-dimensional and α = 2 in the two-dimensional case. Analogous
to (4.98), the divergence theorem yields

Lk = 0 (4.100)

for an arbitrary closed surface ∂V including a defect-free, isotropic, homogeneous
material. It can be shown that Jk = 0 and Lk = 0 apply also for finite deforma-
tions. Contrary, the conservation law

M = 0 (4.101)

is valid only in the special case of a linear elastic material and infinitesimal strains.
For plane problems, the field quantities depend only on x1 and x2. In this

case, the surface integrals degenerate to contour integrals along a closed curve C
(Fig. 4.32b). The J-integral vector is then given by

Jα =

∫

C

(U δαβ − σiβ ui,α)nβ dc (4.102)

where Greek subscripts attain the values 1, 2.

4.6.5.2 Generalized forces

We will now discuss the mechanical meaning of the J-integral (4.95) when a
discontinuity surface AD is embedded within V (Fig. 4.33a). Such a discontinuity
is present if bkj or one of the terms U , σij , or ui,k, respectively, experiences a jump
across the surface AD. That is the case when, for instance, AD is the boundary of
an elastic body which is loaded by the boundary tractions ti = σijnj , i.e., there
is no material on the left-hand side of AD in Fig. 4.33a. We now assume that the
boundary AD is shifted by a constant increment dsk (translation of AD) while
the external load ti remains unchanged. Such a displacement can be visualized
by material being “taken away” or “added”. On account of dsk, the total energy
of the system changes by dΠ . The latter consists of the strain energy

dΠ int =

∫

AD

U dsk nk dA
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Figure 4.33: Generalized forces
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stored in the layer of thickness dsknk and of the difference of the potentials of
external forces

dΠext = −
∫

AD

ti ui(xk + dsk) dA+

∫

AD

ti ui(xk) dA = −
∫

AD

σij ui,k dsk nj dA

where ui(xk + dsk) = ui(xk) + ui,k dsk (Fig. 4.33b). Thus, we obtain

dΠ = dΠ int + dΠext = dsk

∫

AD

(U δjk − σij ui,k)nj dA .

According to (4.98), the corresponding integral over the closed surface A1 + AD
is equal to zero:

∫
A1
. . . +

∫
AD

. . . = 0. Consequently, since ∂V = A1 + A2 with∫
A2
. . . = 0, the energy change can be written as

dΠ = −dsk

∫

A1

(Uδjk − σijui,k)njdA = −dsk

∫

∂V

(Uδjk − σijui,k)njdA (4.103)

or

dΠ = −Jkdsk . (4.104)

The result (4.104) applies not only for this specific example but it can be
generalized to arbitrary discontinuity surfaces (surface defects) and singularities
such as dislocations (line defects) and point defects (Fig. 4.32c). In other words,
the energy change of an elastic system due to a translation of a discontinuity
or singularity (surface, line, or point defect) can be described by means of the
“path-independent” integral Jk where the integration domain (surface ∂V ) must
contain the defect but otherwise is arbitrary. In this energetic sense, Jk can be
interpreted as a force acting on the defect. It is referred to as a generalized force,
material force, or as configurational force.
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Analogous to Jk, the path-independent integral Lk can be interpreted as a
generalized moment or configurational moment acting on the defect. It leads to
the energy change of the system when the defect experiences a rotation. Finally,
the M-integral characterizes the system’s energy change due to a self-similar
growth of the defect (e.g., the radial increase of a spherical cavity).

σ σ

ds©1 ©2

AD

x1

J1 E2E1
x2

Figure 4.34: Bi-material bar under tension

As a simple example, we consider a bi-material bar of constant cross section
A under tension (see Fig. 4.34) with Young’s modulus undergoing a jump at the
interface AD. The configurational force acting at AD can be determined by using
the dashed integration contour. With the strain energy density U = σ2/2E, the
force N = σA and Hooke’s law u1,1 = σ/E we obtain

J1 =

(
N2

2EA
− σAu1,1

)

©2
−
(
N2

2EA
− σAu1,1

)

©1

=
N2

2A

[
1

E1
− 1

E2

]
,

J2 = J3 = 0

(4.105)

where only surfaces perpendicular to x1 provide a nonzero contribution. Thus,
when the interface AD is shifted by ds, the system undergoes the energy change

dΠ = −J1ds =
N2

2A

[
1

E2
− 1

E1

]
ds . (4.106)

This example can be regarded as a simplified model of a phase transformation in
a single crystal. In this case, the interface between two phases (phase boundary)
with different elastic properties is displaced.

4.6.5.3 J–integral as a crack-tip loading parameter

In what follows, we apply the J-integral vector to the plane problem of a crack
with traction-free crack faces (Fig. 4.35a). For this purpose we choose an ar-
bitrary open contour C which starts and ends at the opposite crack faces and
encloses the crack tip. Then, according to (4.103) and (4.104), J1 and J2, re-
spectively, characterize the energy change (energy release) of the system when
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the crack faces (= discontinuity line) enclosed by the contour together with the
crack tip (= singularity) are shifted in x1- and x2-direction, respectively. While a
displacement in x2-direction is only virtually realizable, a displacement da in x1-
direction corresponds to a kinematically possible crack advance. The respective
contour integral

J = J1 =

∫

C

(U δ1β − σiβ ui,1)nβ dc =

∫

C

(U dy − ti ui,x dc) (4.107)

is denoted as J-integral where the subscript 1 usually is omitted.

a) b) c)
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x2

da
C C1
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C−

C

y

xρ

Figure 4.35: J-integral

In its energetic interpretation, J corresponds the energy release rate during
crack growth in an elastic body:

J = G = −dΠ

da
. (4.108)

Due to this relation, J can be applied as a fracture parameter. A fracture criterion

J = Jc (4.109)

is fully equivalent to the energy criterion (4.89). In case of a linear elastic material,
(4.108) with (4.76) yields

J =
1

E ′ (K
2
I +K2

II) +
1

2G
K2
III (4.110)

where E ′ = E/(1 − ν2) for plane strain and E ′ = E for plane stress. Hence,
(4.109) is equivalent also to the K-concept provided that a pure mode-I or a pure
mode-II or a pure mode-III prevails.

The relevance of J as a fracture parameter can be substantiated without
utilizing the energy interpretation. For this purpose, we choose two different
contours C1 and C2 for the determination of J , see Fig. 4.35b. Then, accord-
ing to (4.98), for the closed contour C1 + C+ + C2 + C−, taking the contour
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directions into account,
∫
C1
. . .+

∫
C+ . . .−

∫
C2
. . .+

∫
C− . . . =0 holds. The integrals∫

C+ . . . and
∫
C− . . . vanish under the made assumptions (straight traction-free

crack faces) since
∫
Udy = 0 and ti = 0. It finally remains

∫
C1
. . . =

∫
C2
. . ..

Thus, the J-integral is path independent . It is a characteristic parameter for the
state in the vicinity of the crack tip, no matter whether the contour runs through
this area or not. It applies in the linear as well as in the nonlinear elastic case.

The path independence of J can advantageously be utilized for the calculation
of the crack-tip loading for specific configurations. For instance, it is advisable to
choose for numerical calculations with finite elements or boundary elements inte-
gration paths sufficiently far away from the crack tip. A cumbersome and precise
computation of the field in the crack-tip region then is not necessary. In this
manner, the numerical determination of K-factors in many cases is accomplished
by use of the relation

via the calculation of the J-integral.

The path independence of the J-integral is ensured only under the mentioned
circumstances. If the crack faces are loaded or the crack is curved, J is in gen-
eral path dependent . Incidentally, this applies to J2 already for the traction-free
straight crack. A “path independent” crack-tip parameter, which characterizes
the crack-tip state, is obtained under such circumstances only when the contour
is shrunk directly to the crack tip (Fig. 4.35c):

Then, equation (4.110) in the linear elastic case still is valid as before. This
can be proofed by choosing a circle as the contour in (4.112) and introducing
the crack-tip field solution according to Sect. 4.2.1. In the same manner, the
y-component of the generalized force at the crack tip can be determined:

The J-integral can also be applied to three-dimensional problems where the
crack loading varies along the crack front. As an example, we consider the case of
a plane crack with a straight crack front as shown in Fig. 4.36. The generalized
force component in x1-direction, acting on an element ∆l of the crack front, is
determined appropriately by integrating (4.95) over the whole surface (including
the lateral surfaces) of the disc-shaped body, generated by the contour C in
the x1, x2-plane. In the limit case ∆l → 0, the integrals over the opposite lateral
surfaces cancel each other and only the contour integral (4.107) remains. However,
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Figure 4.36: J for three-dimensional crack problem
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it is now dependent on the position along the crack front: J = J(x3). With the
same arguments as in the plane case, the path independence of J also can be
shown here.

A necessary prerequisite for the applicability of the J-integral as a crack-tip
parameter is an open contour which encloses solely the corresponding crack tip.
Contrary, if a closed contour around the whole crack is chosen, then Jk, according
to Sect. 4.6.5.2, describes the energy change of the system on account of a transla-
tion of the entire crack. Analogous statements apply to Lk and M for a rotation
and a self-similar crack growth, respectively. Such crack “movements”, apart
from some exceptions, are kinematically impossible. Therefore these integrals are
of minor importance in fracture mechanics.

4.7 Small-scale yielding

4.7.1 Plastic zone size, Irwin’s crack length correction

In linear elastic fracture mechanics it is assumed that the plastic zone is small
compared to the K-dominated region (see Sect. 4.3). This condition is known
as small-scale yielding . Here, the plastic zone covers the whole region where the
material response deviates from a linear elastic behavior. The determination of
the size and shape of this zone in case of a “nonlinear” material is, in general, not
an easy task. Therefore, in a first step, we will provide only an estimate on the
basis of the elastic crack-tip field solution for mode-I with the material behavior
in the plastic zone assumed to be perfectly plastic.

A simple approximation for the extension of the plastic zone ahead of a crack
tip goes back to G. Irwin. It can be obtained by replacing the elastic stress dis-
tribution ahead of the crack by the elastic-plastic stress distribution, as depicted
in Fig. 4.37a. The latter is assumed to be constant within the plastic zone. In
the elastic domain, the stress is represented by the elastic crack-tip field solution
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Figure 4.37: Estimation of plastic zone size
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which is shifted to the right. We now require that Tresca’s yield condition σ1 −
σ3 = σF is fulfilled at the boundary between the elastic and plastic domain. With
σ1 = σy = KI/

√
2πx and σ3 = 2 ν σ1 for plane strain and σ3 = 0 for plane stress,

respectively, this conditions yields

σy = ασF , 1/α =

{
1 − 2ν (plane strain)

1 (plane stress)

and after substitution

x1 =
1

2π

(
KI

ασF

)2

.

The distance x2 can be found from the condition that the forces resulting from the
purely elastic stress distribution and from the elastic-plastic stress distribution
must be equal:

∞∫

0

KI√
2πx

dx = ασF (x1 + x2) +

∞∫

x1+x2

KI√
2π(x− x2)

dx .

From this condition it follows that x2 = x1. Thus, the length 2rp = x1 + x2 of
the plastic zone is given by

2rp =





1

3π

(
KI

σF

)2

(plane strain) ,

1

π

(
KI

σF

)2

(plane stress)

(4.114)

Here, for plane strain the value α =
√

3, i.e., ν = 0.21 has been chosen. Ac-
cording to (4.114), for the same crack loading (i.e., same KI) the plastic zone in
plane strain is significantly smaller than in plane stress. This is confirmed also
experimentally.
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Equation (4.114) provides the opportunity to rewrite the size condition (4.67),
which must be fulfilled for the determination of a valid fracture toughness KIc,
in a different form. Assuming a plane strain state, we obtain for the critical case
at crack initiation (KI = KIc) by substituting (4.114):

This relation provides an impression of the admissible size of the plastic zone
within the framework of linear fracture mechanics. Thereby, the right-hand side
can be extended by possibly appearing further geometric parameters.

The length x2 = rp characterizes the translation of the elastic crack-tip field
due to plastic deformation. Exactly the same crack-tip field occurs in the purely
elastic case if the crack is fictitiously extended by rp. Having this in mind, G. Irwin

suggested to account for yielding in the fracture criterion by using an effective
crack length which is corrected by rp:

This approach is called Irwin’s crack length correction. For example, when (4.116)
is applied to the crack shown in Fig. 4.37b, we obtain withKI = σ

√
πa and (4.114)

for a plane stress state

Introducing this result into the K-criterion, the critical stress follows as

4.7.2 Qualitative remarks on the plastic zone

Precise statements on the shape of the plastic zone as well as on the stresses
and deformations appearing in it can be made only after the solution of the
corresponding elastic-plastic boundary value problem. Such a solution, even for
simple material models (e.g., elastic - perfectly plastic) and plane strain (or plane
stress) problems, is possible only by using numerical methods.

A rough impression of the shape of the plastic zone can be obtained when the
boundary of this zone is identified with the contour along which the stresses of
the elastic crack-tip field just fulfill the yield condition. In this manner, taking
for instance the von Mises yield condition (1.77b)

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 6k2 = 2σ2

F ,

and the principal stresses (4.22), (4.23) for mode I, the contour is determined as
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rp(ϕ) =
K2
I

2πσ2
F

cos2 ϕ

2





[3 sin2 ϕ
2 + (1 − 2ν)2] plane strain

[3 sin2 ϕ
2 + 1] plane stress .

(4.119)

For comparison, the contours resulting from von Mises’ and from Tresca’s yield
condition are displayed in Fig. 4.38a where Poisson’s ratio ν = 1/4 has been
chosen for plane strain. Both hypotheses show a distinct difference in size between
plane strain and plane stress.

a)

ϕ

plane strain

plane stress

Tresca
v.Mises

rp

x3

b)

B

Figure 4.38: Plastic zone

The result (4.119) forms the basis of the dog bone model for the shape of the
plastic zone in “thick” plates (B ≫ rp) which is depicted in Fig. 4.38b. Here,
it is assumed that in the surrounding of the crack front, approximately a plane
strain state dominates in the interior (ε33 ≈ 0), whereas the state at the surface
approaches the plane stress state (σ3i ≈ 0). But three-dimensional numerical
investigations show that the size of the plastic zone at the surface generally is
overestimated by this model.

In plane strain, according to (4.24), the maximum shear stresses occur pre-
dominantly in cross sections with the normal vector perpendicular to x3. This
suggests a slip mechanism for plastic deformation as shown in Fig. 4.39a. Cor-
responding slip processes lead to a blunting of an originally sharp crack tip and
as a consequence to a “crack opening”. Contrary to plane strain, τmax in plane
stress occurs in cross sections under 45◦ to the x1, x2-plane. Accordingly, the
slip mechanism as shown in Fig. 4.39b will take place in “thin” plates (rp ≫ B).
This mechanism restricts the extension of the plastic zone in x2-direction to the
size of the plate thickness and promotes its strip-like evolution in x1-direction
(Fig. 4.39c). This mechanism is also responsible for the necking ahead of the
crack tip which can be observed in this case.
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Figure 4.39: Slip mechanism: a) plane strain, b) and c) plane stress

2rp

a)

x1

x2

b) c)

≈B

B

As has been discussed in Sect. 4.6, the fracture toughness KIc is directly
connected with the energy needed for the fracture process: K2

Ic ∼ Gc. The latter
includes the entire energy needed for the deformation process within the plastic
zone. Herewith, the dependency of the fracture toughness on the thickness B, as
shown in Fig. 4.21a, qualitatively can be explained. For B ≫ rp (thick samples),
approximately plane strain dominates along the crack front which allows only a
constrained plastic deformation. This corresponds to a low energy dissipation
and consequently to a low KIc. In contrast, for B ≪ rp (thin samples), plane
stress dominates with a larger plastic zone and lower deformation constraint. As
a consequence, a higher plastic energy dissipation and therefore also a higher
KIc-value occurs.

4.8 Stable crack growth

We consider a straight crack under pure mode-I conditions. At crack initiation
and subsequent crack growth the fracture criterion must be fulfilled which, ac-
cording to (4.89), may be expressed as G = Gc. The crack resistance Gc is rarely
constant, but in most cases, as shown in Fig. 4.40a, a monotonously increasing
function of the crack advance ∆a = a− a0:

Gc = R(∆a) . (4.120)

The function R(∆a) is known as the crack-resistance curve or the so-called R-
curve. For instance, the crack resistance of a metal, starting from the initiation
value Gci at initial crack length a0, may increase up to a multiple of Gci during
crack growth of one or two millimeters. One of the reasons for this is the “motion”
of the plastic zone in the course of crack advance. During this process, the
material particles experience quite complex stress histories (loading, unloading)
and the size and shape of the plastic zone change. A detailed description of this
process can be omitted when determining the R(∆a)-curve from experiments.
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The R-curve then is regarded as a material-specific function which uniquely char-
acterizes quasi-static crack growth.

a) b)
∆a

∆a a∗a0

R(∆a)

Gc R,G

G∗

Gci Gci

a

G(F, a)

R(∆a)
Fc

F1

F2

Figure 4.40: Stable crack growth

Due to the rise of R, it is possible to increase the crack load beyond its
initiation value. As a consequence, the crack growth is determined through the
equilibrium condition

G(F, a) = R(∆a) (4.121)

between crack extension force and crack resistance force (Fig. 4.40b). Here, the
parameter F denotes the dependence of the crack extension force on the external
load. The equilibrium state is stable under fixed loading condition, provided that
the crack resistance increases more rapidly with increasing crack length than the
crack extension force:

∂G
∂a

∣∣∣∣
F=const

<
dR

da
. (4.122)

Under these circumstances, the external load must be increased to drive the crack
forward. This is indicated in Fig. 4.40b by the famility of G-curves for different
external loads (F1 < F2 < . . .). The limit of stable crack growth is reached when
the critical condition

∂G
∂a

∣∣∣∣
F=const

=
dR

da
(4.123)

is met. When the load is further increased, the equilibrium condition (4.121) is
no longer fulfilled and the crack starts to propagate dynamically. The critical
load Fc and the corresponding value G∗ depend on the crack geometry and the
loading type as well as on the R-curve.

The statements made above, can also be derived in a more formal manner.
For this purpose we assume that the system’s “total energy” Π∗ consist of the
total potential Π and the fracture surface energy Γ , i.e., Π∗(a) = Π(a) + Γ (a)
(cf. Sect. 4.6.4). The equilibrium state of the system is characterized by the
condition dΠ∗/da = 0. With G = −dΠ/da and R = dΓ/da this corresponds
to equation (4.121). Information about the stability is provided by the second
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derivative. The equilibrium state of the system is stable for d2Π∗/da2 > 0 while
at d2Π∗/da2 = 0 the transition to instability occurs. These are exactly the
statements (4.122) and (4.123).

Stable crack growth can not only be investigated on the basis of the energy
concept. Because of the equivalence of K, G, and J in linear fracture mechanics,
it can be done on the basis of any of these parameters.

uP

F

CF

P

uF

a
C(a)

Figure 4.41: Stability of crack growth

In what follows, we will determine dG/da for the body depicted in Fig. 4.41
which contains a crack and is loaded via a spring by a given displacement uF .
With the compliances C(a) and CF of the body and spring, the following relations
between the acting force and the displacements hold:

F =
uF

C(a) + CF
, uP = CF =

C

C + CF
uF . (4.124)

Therefore, the potential is

Π =
1

2
FuP +

1

2
F (uF − uP ) =

1

2

u2
F

C(a) + CF
,

and by differentiation we obtain

G = −dΠ

da
=
u2
F

2

C ′

(C + CF )2
,

dG
da

= −d2Π

da2
=
u2
F

2

C ′′(C + CF ) − 2C ′2

(C + CF )3
=
F 2

2

[
C ′′ − 2C ′2

C + CF

]
,

(4.125)

where C ′ = dC/da. Thus, not solely the properties of the body but also the type
of the loading (CF ) enter the quantity dG/da which essentially determines the
stability of crack growth.
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From (4.125), we can derive results for the special cases CF = 0 and CF → ∞.
According to (4.124), the former corresponds to a loading by a displacement uF
prescribed in point P while the latter is related to a load which is independent
of C(a) (i.e., dead loading). We obtain

Thus, for an increasing dead load of the body in point P (i.e., CF → ∞), the
instability point is always reached earlier than for a loading by a prescribed
displacement (i.e., CF = 0).

As an example, the DCB specimen shown in Fig. 4.27 shall be considered.
Introducing the compliance C(a) = 8a3/EBh3 (cf. Sect. 4.6.3), from (4.126) we
obtain

Hence, for loading by prescribed displacements (CF = 0), crack growth is always
stable.

4.9 Mixed-mode loading

Until now, essentially fracture criteria and crack problems for pure mode-I loading
have been considered. In such a case, we could assume that crack advance occurs
in tangential direction at the crack tip, i.e., a straight crack propagates in its
longitudinal direction. Now we want to discuss fracture criteria for mixed-mode
loading where mode-I and mode-II are superimposed while mode III should not be
present. Under such circumstances the critical state (onset of crack growth) is
determined by the influence of both modes and crack propagation starts under a
certain angle to the tangent at the crack tip (Fig. 4.42). For brittle materials, in
most cases a propagation direction is observed where the new crack faces open
as under pure mode-I loading.

If mode-I and mode-II prevail, the state at the crack tip can, within the scope
of linear fracture mechanics, be characterized by the stress intensity factors KI

and KII . A mixed-mode fracture criterion then can generally be expressed as (cf.
(4.28)):

f(KI , KII) = 0 . (4.128)
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Figure 4.42: Crack growth under mixed-mode loading

−ϕ0

Similar to the failure hypotheses in Chap. 2, it is possible to formulate arbitrar-
ily many fracture criteria of the type (4.128). In fact, there exist a number of
hypotheses which, depending on the material class and the dominating micro-
mechanism, respectively, are more or less in good agreement with experimental
results. In what follows, some frequently used fracture criteria are discussed which
also make statements about the crack growth direction.

Energy criterion

According to (4.77) or (4.89), crack growth is initiated at

G = Gc (4.129)

where G = (K2
I +K2

II)/E
′. If we introduce the fracture toughness for mode I by

means of Gc = K2
Ic/E

′, equation (4.129) can be written as

K2
I +K2

II = K2
Ic . (4.130)

This criterion is based on the assumption that crack propagation in any case
occurs in tangential direction, independently of the magnitude of mode-II. For an
isotropic material this is acceptable with sufficient accuracy only for KII ≪ KI or
if the crack growth direction is prescribed by a “weakened zone” as for instance
an interface. Thus, the criterion (4.130) is restricted to very special applications.

Criterion of maximum circumferential stress

This criterion dates back to F. Erdogan and G.C. Sih (1963) and is based on
two assumptions: (a) the crack propagates in radial direction ϕ0, perpendicular
to the maximum circumferential stress σϕmax and (b) crack advance is initiated
when the near field stress σϕmax = σϕ(ϕ0) at a distance rc in front of the crack
tip reaches the same critical value as in pure mode I. As a consequence, for the
circumferential stress (see Sects. 4.2.1 and 4.2.2)

σϕ =
1

4
√

2πrc

[
KI

(
3 cos

ϕ

2
+ cos

3ϕ

2

)
−KII

(
3 sin

ϕ

2
+ 3 sin

3ϕ

2

)]
,
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Figure 4.43: Mixed-mode loading: a) fracture criteria, b) crack deflexion angle
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the following conditions apply:

∂σϕ
∂ϕ

∣∣∣∣
ϕ0

= 0 , σϕ(ϕ0) =
KIc√
2πrc

.

They lead to the equations

KI sinϕ0 +KII (3 cosϕ0 − 1) = 0 ,

KI

(
3 cos

ϕ0

2
+ cos

3ϕ0

2

)
−KII

(
3 sin

ϕ0

2
+ 3 sin

3ϕ0

2

)
= 4KIc .

(4.131)

From the first one the deflexion angle ϕ0 is obtained. Introducing this, the second
equation determines when failure occurs. The corresponding results for KI , KII ≥
0 are shown in Fig. 4.43a,b. For example, the deflexion angle for pure mode II
(KI = 0) results as cosϕ0 = 1/3 , i.e., ϕ0 = −70.6◦ and the critical load is given
by KII =

√
3/4 KIc = 0.866 KIc.

S–criterion

The strain energy density in the vicinity of the crack tip for plane strain can be
expressed with the crack-tip field solution (4.14) and (4.15) as

U =
1

4G

[
(1 − ν)(σ2

x + σ2
y) − 2νσxσy + 2τ 2

xy

]

=
1

r

(
a11K

2
I + 2a12KIKII + a22K

2
II

)
=
S

r

(4.132)



Mixed-mode loading 117

where

16πGa11 = (3 − 4ν − cosϕ)(1 + cosϕ) ,

16πGa12 = 2 sinϕ (cosϕ− 1 + 2ν) ,

16πGa22 = 4(1 − ν)(1 − cosϕ) + (1 + cosϕ)(3 cosϕ− 1) .

(4.133)

G.C. Sih (1973) assumed that (a) the crack grows into that radial direction ϕ0

where the strength S of the singular strain energy density has a minimum and (b)
the crack starts growing when S(ϕ0) reaches a material specific critical value Sc.
The latter can be replaced by the fracture toughness KIc of pure mode I (then
ϕ0 = 0): Sc = a11(ϕ0 =0)K2

Ic. Hence, the directional criterion and the fracture
criterion read

The deflexion angle and the failure curve are depicted in Fig. 4.43. If we choose
ν = 1/3, from this hypothesis for pure mode II the deflexion angle cosϕ0 = 1/9 ,
i.e., ϕ0 = −83.62◦ results, and the critical loading is KII =

√
9/11 KIc =

0.905 KIc.

The S-criterion can be modified in various ways. For instance, it might be
appropriate to start not from the strain energy density U but from the volumetric
strain energy density UV or from the distortional energy density UG. But we will
not go into this in more detail.

Kink model

This model starts from the assumption that the crack tip under mixed mode
loading in the initial phase forms a small kink within the KI , KII-dominated
region (Fig. 4.44). In the second phase, when the kink becomes critical under a
certain load, crack propagation starts in tangential direction from the kink tip.
Physically, the kink can be regarded as a simplified model for possible radial
micro cracks in the vicinity of the macroscopic crack tip. At the tip of the kink
the field is again singular and it can be characterized by the stress intensity
factors kI , kII . M.A. Hussain, S.L. Pu, and I. Underwood (1972) assumed that (a)
the kink is formed at an angle ϕ0 for which the respective energy release rate
G = (k2

I + k2
II)/E

′ is maximum and (b) the crack starts to grow when this energy
release rate reaches a critical value Gc. Thus, the directional condition and the
failure condition read
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KI , KII− field

ϕ

kI , kII

Figure 4.44: Kink model

dG
dϕ

∣∣∣∣
ϕ0

= 0 , G(ϕ0) = Gc (4.135)

where Gc = K2
Ic/E

′. The solution of these equations requires the determination
of kI(ϕ), kII(ϕ) from the solution of the corresponding boundary value problem.
This is possible only with numerical methods. Figure 4.43 shows the results for
the deflexion angle and the failure curve. An approximate solution for kI(ϕ),
kII(ϕ) can be written as

kI ≃ C11KI+C12KII+D1σT
√
πε , kII ≃ C21KI+C22KII+D2σT

√
πε (4.136a)

where ε denotes the length of the kink and

C11 =
1

4
(3 cos

ϕ

2
+ cos

3ϕ

2
) , C12 = −3 cos2 ϕ

2
sin

ϕ

2
,

C22 =
1

4
(cos

ϕ

2
+ 3 cos

3ϕ

2
) , C21 = sin

ϕ

2
cos2 ϕ

2
,

D1 = sin2 ϕ , D2 = − sinϕ cosϕ .

(4.136b)

The terms in (4.136a) which represent the contribution of the T-stress σT in many
cases can be neglected. But they play a role in situations where the terms related
to KI , KII more or less cancel each other.

The fracture criteria discussed above do not account for the microscopic failure
mechanisms. These microscopic mechanisms can be quite different, depending on
whether mode I or mode II dominates, which in turm may significantly affect the
macroscopic fracture behavior. Therefore, the applicability of these criteria is re-
stricted and they may not be overstrained regarding their physical interpretation.
For instance, the mentioned criteria often fail for a pure mode-II loading. Due
to the missing crack opening, the microscopic asperities of the opposite crack
surfaces get in contact, which changes the state at the crack-tip. The actual
crack-tip loading is then smaller than that expressed by KII which is determined
under the assumption of traction-free crack faces. In order to ensure traction-
free crack surfaces, a certain minimum crack opening hence should always exist
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(KI > 0). That means that all mentioned fracture criteria basically are physically
meaningful only for KI ≥ 0. If crack closure occurs, a mode-I crack-tip field no
longer exists and a pure mode-II crack-tip loading (KI = 0) then is present. A
typical example for this are cracks under a combined pressure and shear loading
(i.e., shear cracks). Due to the mentioned friction effects, the fracture criteria are
hardly applicable but the directional criteria for the crack deflexion angle under
pure mode-II still remain valid.

Because the agreement of the various hypotheses with experimental results
may be quite different for different materials, it has been proposed not to insist
on a physically motivated fracture hypothesis, but to simply adopt a formal
approach. One possibility for this is the following representation of the fracture
criterion: (

KI

KIc

)µ
+

(
KII

KIIc

)ν
= 1 (4.137)

where the four parameters KIc, KIIc, µ, and ν must be determined from experi-
ments.

It should be noted that the different hypotheses differ only slightly from one
another as long as the mode-II part is small (KII ≪ KI). This applies especially
for the deflexion angle ϕ0. The criteria (4.131), (4.134), and (4.135) then all lead
to the same result:

ϕ0 ≈ −2
KII

KI

. (4.138)

As a simple example of a mixed mode loading, we consider an inclined crack
under uniaxial tension (Fig. 4.45a). In this case the stress intensity factors are

KI = σ
√
πa cos2 γ , KII = σ

√
πa sin γ cos γ . (4.139)

If the criterion of maximum circumferential stress according to (4.131) is applied
one obtains for the deflexion angle ϕ0 and the critical stress σc the results shown
in Fig. 4.45b,c. It is remarkable that the latter varies only a little for sufficiently
small γ.
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σ

σ

π/2 γπ/2 γ

π/2

−ϕ0
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√
πa

KIc

2a
−ϕ0

γ

Figure 4.45: Inclined crack under uniaxial tension
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4.10 Fatigue crack growth

When a component containing a crack is loaded statically, no crack growth occurs
as long as the crack length or the loading, respectively, remains below a critical
value. In contrast, if the loading is oscillating, crack growth in “small steps”
can be observed already for loading amplitudes far below the critical static load
(cf. Sect. 3.2.1). Such a crack growth is called fatigue crack growth. Usually,
fatigue crack growth is characterized by the crack growth rate da/dN where N is
the number of load cycles. The physical reasons for fatigue crack growth are the
complex inelastic processes occurring during periodic loading inside the process
zone (plastic zone). In metals, a material particle in this zone experiences cyclic
plastic deformation under tension and compression (plastic hysteresis). With
the deformation also the eigenstress fields vary and the damage of the material
increases, e.g., by void formation and growth, until total separation takes place.

Kmax

Kmin

K

t
a) b)

10−2

10−4

10−6

∆K

∆K

da

dN

∆K0 KIc ∆K

(4.140)

[
mm

cycle

]

Figure 4.46: Fatigue crack growth

In what follows, we restrict the attention to a cyclic mode-I loading. If the
conditions of linear fracture mechanics are fulfilled (small-scale yielding), fatigue
crack growth can be described by use of the K-concept. A periodic loading
then is characterized by a periodically varying stress intensity factor with the
difference ∆K between maximum and minimum K-factor (Fig. 4.46a) denoted
as the cyclic stress intensity factor . Measurements of the crack growth rate for a
material in dependence of ∆K lead to results as qualitatively shown in Fig. 4.46b.
Below a threshold value ∆K0, the crack does not propagate. This value usually
is smaller than KIc/10. The middle part of the curve between ∆K0 and KIc,
in a logarithmic representation, can be approximated by a straight line with
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slope m. Accordingly, crack growth is empirically described by the equation

which after P.C. Paris (1963) is called Paris’ law . The constants C and m depend
on the material and various influence factors such as temperature, environmental
medium, or the mean stress intensity factor. For metals, exponents within the
range m ≈ 2 . . . 4 are typical.

There are many different approaches which allow to fit experimental data
better than (4.140). Among others, R.G. Foreman’s representation (1967)

da

dN
=

C (∆K)m

(1 −R)KIc −∆K
(4.141)

sometimes is applied where R = Kmin/Kmax. Furthermore, there exist a series of
models for a simplified description of the fatigue crack propagation process which
is very complex in detail. One of these models, for example, starts from the
assumption that the crack advance during each cycle is proportional to the size
of the plastic zone. Since rp ∝ K2

I (see (4.114)), this leads to da/dN ∝ (∆K)2,
i.e., to an exponent of m = 2.

The knowledge of the crack growth rate da/dN allows to predict the life time
of a component containing a crack. For this purpose, the number Nc of cycles is
determined until the crack reaches its critical length ac. As an example of the
procedure, we consider a component which is periodically loaded by a constant
cyclic stress ∆σ. This leads to a cyclic stress intensity factor ∆K = ∆σ

√
πaF (a)

where F (a) depends on the geometry of the component including the actual crack
configuration (cf. Sect. 4.4.1, Table 4.1). If Paris’ law (4.140) is used, we obtain
by integration the number of cycles necessary for a crack growth from the initial
length ai to the length a:

N(a) =
1

C (∆σ)m

a∫

ai

da[√
πa F (a)

]m . (4.142)

The critical number of cycles Nc finally follows by introducing the critical crack
length ac.

4.11 Interface cracks

Up to now, we have considered only cracks in homogeneous materials. But also
cracks in the interface between two materials with different elastic constants are
of considerable practical interest. They are called interface cracks or bimate-
rial cracks. Typical examples are cracks in material compounds, in adhesive
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Figure 4.47: Tip of a bimaterial crack
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joints or cracks in the interfaces of composite materials (laminates, fiber-matrix
materials, etc.). The K-concept cannot be directly applied to such cracks because
the crack-tip field in this case has not the same form as for a homogeneous
material. Furthermore, it is not a priori clear to what extent parameters such as
G or J can be used in fracture criteria for such cracks.

To begin with, we consider the field at the tip of a bimaterial crack which
lies in the interface between two materials with the elastic constants E1, ν1 and
E2, ν2 (Fig. 4.47). Here, we can restrict our attention to plane strain since a
plane stress state can hardly be realized in the vicinity of the tip of an interface
crack. In order to determine the crack-tip field, we use again the complex method
(cf. Sect. 4.2.1) which now must be applied separately for the upper (1) and the
lower (2) half planes. For the solution we use the functions

Φ1(z) = A1z
λ, Ψ1(z) = B1z

λ, Φ2(z) = A2z
λ, Ψ2(z) = B2z

λ (4.143)

where in contrast to the homogeneous material (see Sect. 4.2.1) the exponent
λ can now be complex. Since the displacements at the crack tip must be non-
singular and the strain energy shall be limited, we consider Reλ > 0. The
boundary and transition conditions

(σϕ + i τrϕ)
(1)
ϕ=π = 0 , (σϕ + i τrϕ)

(1)
ϕ=0 = (σϕ + i τrϕ)

(2)
ϕ=0 ,

(σϕ + i τrϕ)
(2)
ϕ=−π = 0 , (u+ i v)

(1)
ϕ=0 = (u+ i v)

(2)
ϕ=0

lead to a homogeneous system of equations for the four complex constants A1 . . . B2

(four real and four imaginary parts). From the condition that the 8× 8 determi-
nant of the coefficients must be zero, one obtains the equation for the eigenvalues
which has the solution

λ =

{
1/2 + n + i ε

n
n = 0, 1, 2, . . . (4.144)
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where

with µi = Ei/2(1 + νi) and κi = 3 − 4νi. The constant ε is known as the so-
called bimaterial constant . At the crack tip r → 0, the field dominates which
corresponds to the eigenvalue with the lowest real part, i.e.

λ = 1/2 + i ε . (4.146)

Hence, according to Kolosov’s formulae (1.118a) or (1.119) and taking into ac-
count ri ε = ei ε ln r, the stresses and the displacements show a behavior of the
type

σij ∼ r−1/2 cos(ε ln r) , ui ∼ r1/2 cos(ε ln r) (4.147)

where the cosine may be also replaced by the sine. Thus, the typical 1/
√
r-

type singular behavior of the stresses and the
√
r-behavior of the displacements

is present also at the bimaterial crack tip. But now these quantities oscillate
increasingly when approaching the crack tip (oscillating singularity).

We will not derive the complete crack-tip field but restrict the analysis to the
stresses in the interface and to the crack opening:

Here, 2a is an arbitrary reference length (e.g., the crack length),

K = K1 + iK2 (4.148b)

is the complex stress intensity factor and

c1 = (1 + κ1)/µ1 , c2 = (1 + κ2)/µ2 . (4.148c)

Accordingly, the crack-tip field is uniquely characterized by the modified complex
stress intensity factor K = K (2a)−i ε. If we introduce through

its absolute value |K| and phase angle ψ, it can also be written as

In addition to the stress intensity factors K1 and K2, also the reference length
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2a occurs which is weighted by the bimaterial constant ε. For this reason, a
decomposition into pure mode I and mode II is impossible. Consequently, the
stress intensity factors K1 and K2 also cannot simply be related to these modes.
This can clearly be recognized when representing the stresses in the interface
according to (4.148a) in real form:

The stress intensity factor K1 is not only associated with the normal stresses in
the interface but also with the shear stresses. In the same manner, both the shear
and normal stresses are associated with K2. Thus, at a bimaterial crack tip, both
modes are (strictly speaking) inseparably connected to each other. Only in the
limit case of the homogeneous material (c1 = c2, ε = 0), K1 and K2 reduce to KI

and KII and both modes then are separable.
From (4.148a) it can be seen that the crack opening oscillates increasingly

when approaching the crack tip. Since a penetration of the crack faces is phys-
ically impossible, they must get into contact behind the crack tip. As a conse-
quence, the presented solution is meaningful to describe the crack-tip field only
outside the contact region.

We now will determine the energy release rate G = −dΠ/da during crack
growth in the interface (see also Sect. 4.6.2, equation (4.74)). It can be obtained
from

in conjunction with (4.148a) and (4.148c). We get

Thus, G is uniquely determined by both stress intensity factors. Hence, only the
“absolute value” (K2

1 +K2
2 )1/2 and not the separate components K1 and K2 can

be determined from G.
It can be show that the energy release rate of a bimaterial crack can be

determined from the J-integral

as it is valid for a crack in a homogeneous material. The integral is path indepen-
dent as long as the crack is straight, has traction-free crack faces, and the elastic
constants do not vary in x-direction.
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Figure 4.48: Interface cracks
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As a simple example of an interface crack for which a closed form solution
can be found, we consider a crack in an infinite domain under internal pres-
sure, see Fig. 4.48a. Since the complex potentials are rather involved, only Φ′

1 is
exemplarily given here:

Φ′
1 =

σ

1 + e2πε

[(
z + a

z − a

)i ε
z − 2 i ε a√
z2 − a2

− 1

]
.

The stress intensity factors at the right crack tip are

K = (1 + 2 i ε) σ
√
πa or

{
K1 = σ

√
π a ,

K2 = 2 ε σ
√
π a .

(4.154)

If homogeneous fields in both materials are superimposed, with tension σ in
y-direction and appropriate constant stresses σ1, σ2 in x-direction, the loading
case shown in Fig. 4.48b is obtained. Here, the same stress intensity factors
(4.154) apply as for internal pressure. If the shear stress τ acts at infinity instead
of tension (Fig. 4.48c), one obtains

K1 = −2 ε τ
√
πa , K2 = τ

√
π a . (4.155)

It should be noted that in this case, because of K1 < 0 and K2 > 0 and according
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to (4.151), pressure prevails in the interface. Therefore the crack tip will be
closed. Finally, for the configuration shown in Fig. 4.48d, the stress intensity
factors are (see also Table 4.1, No. 4)

By means of the examples in Fig. 4.48a,b, we can estimate the length of
the contact zone at the crack tip. For this purpose, we identify the contact
length with the maximum distance rc where the crack opening δ = v+ − v−

due to the oscillation becomes zero for the first time. This leads, according to
(4.148a), to the condition Re [K (rc/2a)

i ε/(1 + 2i ε)] = 0. Introducing (4.154)
gives Re [rc/2a]

i ε = cos[ε ln(rc/2a)] = 0 and from that we obtain

An extreme value which ε attains for µ2 → ∞ and ν1 = 0, is εmax = 0.175. But
in most cases of practical interest, the bimaterial constant is far lower: ε ≪ 1.
For example, ε = 0.039 for the material combination Ti/Al2O3, ε = 0.028 for the
combination Cu/Al2O3 and ε = 0.004 for Au/MgO. If we introduce ε = 0.05 into
(4.157), we obtain rc/2a ≈ 2 · 10−14, i.e., the contact zone is negligibly small. As
already mentioned, this is not the case for a pure shear loading. But if a small
amount of tension is superimposed which leads to crack opening, the contact zone
becomes small again.

The crack-tip field of a bimaterial crack is uniquely determined by the mod-
ified complex K-factor (4.150) or by its real and imaginary parts, respectively.
Therefore it seems obvious to formulate a fracture criterion formally as: K = Kc.
However, in doing so some difficulties arise. For instance, the transfer ofK-factors
is not an easy task. This can be recognized when two cracks with different lengths
2a∗ and 2a but with the same ε are considered. The crack-tip fields, and by this
the crack-tip loadings, of both cracks are equal only if the conditions

|K∗| eiψ∗

(2a∗)−i ε = |K| eiψ (2a)−i ε (4.158a)

or
|K|∗ = |K| , ψ∗ = ψ − ε ln a/a∗ (4.158b)

are fulfilled. Consequently, the phase angles (i.e., K2/K1) for both configurations
must be different. Further difficulties consist in the transferability of experimen-
tally determined Kc-values to situations which differ from the experimental one
as well as in their ε-dependent dimension.

On account of the mentioned reasons, frequently a pragmatic approach is
adopted. In many cases of practical relevance, because of ε≪ 1, it is admissible to
assume K ≈ K or K1 ≈ KI and K2 ≈ KII , respectively. The crack-tip state, in a
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good approximation, is described by the usual mode-I and mode-II stress intensity
factors as for a homogeneous material. Equivalent to this is a characterization of
the crack tip loading by K2

I + K2
II and KII/KI or by the energy release rate G

and the phase angle ψ, respectively. The fracture criterion then can be expressed
as

G(ψ) = G(i)
c (ψ) with tanψ =

KII

KI
. (4.159)

Here, the interface fracture toughness G(i)
c generally shows a strong dependence

on ψ. If we apply this fracture criterion to the examples in Fig. 4.48a,b, it leads
in conjunction with (4.152) and (4.154) for a given loading σ to the critical crack
length

ac =
18 cosh2(πε)G(i)

c (0)

π(1 + 4ε2)(c1 + c2) σ2
. (4.160)

With ε ≪ 1, it can be simplified to ac ≈ 18G(i)
c (0)/π(c1 + c2) σ

2.

As a typical example, relevant in applications, we consider the delamination
of two layers (1) and (2) which is accompanied by the propagation of an interface
crack (Fig. 4.49a). A similar problem has already been considered in Sect. 4.6.2.
As a generalization, now a finite thickness h2 of layer (2) is assumed which, as
h1, shall be small compared with all other length parameters: h1, h2 ≪ a. Due
to an eigenstrain ε0 of layer (2), e.g., on account of heating, eigenstresses occur
in the system. They can be characterized by the forces N and moments M1 and
M2 = M1 + (h1 + h2)N/2 resulting in both layers. Here, the eigenstrain ε0

describes the strain difference of both layers if each of them can deform freely
and unconstrained. The energy release rate G can be determined exactly by using
elementary beam theory. From this, the following expressions are obtained for
x≫ h1, h2 in a first step
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Figure 4.49: Delamination
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where B is the width of the layers and the abbreviations e = E1/E2 and
H = h1/h2 have been used. With

and the reference stress σ = E ′
1 ε0, one finally obtains

In the limit case h1/h2 → 0 this result reflects with f → 1 just the result of
Sect. 4.6.2 while the limit case of two equal layers (e = 1, H = 1) leads to
f = 0.2.

The stress intensity factors cannot be determined in such a simple manner.
For this purpose, in fact the solution of the elastic boundary value problem in
the surrounding of the crack tip is necessary. In general, the solution can be
represented as

where FI and FII are dependent on H = h1/h2 and the elastic constants. For
the special case of a thin layer on a thick substrate (h1/h2 → 0) and ν1 = ν2, the
functions FI and FII are shown in Fig. 4.49b.

Due to the different material properties, a mixed-mode loading through KI

and KII is present at a bimaterial crack even if the geometric configuration and
external loading is symmetric. This might lead to the effect that a possible crack
growth does not take place in the interface but that instead the crack deflects into
one of the two materials. The particular behavior of the crack depends on the
phase angle ψ as well as on the different fracture toughnesses of the interface and
the individual materials. By means of the example in Fig. 4.50a, this briefly shall
be discussed using qualitative considerations. For this purpose we assume µ1 < µ2

and ν1 = ν2, i.e., that material (1) is “softer” than material (2). Under these
circumstances, external tension causes shear stresses in the interface which lead
to a negative KII and consequently to a negative phase angle ψ at the right crack
tip (Fig. 4.50b). If we now assume that as a result of a disturbance, the crack has
slightly grown into material (1), we can apply the crack deflection hypotheses from
Sect. 4.9. All of them predict a positive deflexion angle ϕ0 for the corresponding
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situation, i.e., a crack propagation away from the interface into the softer material
(1) (cf. (4.138)). If we apply the same consideration to a hypothetic small crack
advance into material (2), we again obtain a positive deflection angle ϕ0 which
drives the crack back to the interface. All in all, the crack tends to deflect out
of the interface and to propagate into the softer material (Fig. 4.50c). However,
this occurs only if the fracture toughness of the soft material is not higher than
that of the interface: G(1)

c ≤ G(i)
c .
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Figure 4.50: Crack deflection

A different behavior can be observed for the bimaterial crack shown in
Fig. 4.50d where the same material properties are assumed as before. In this
case the external tension causes a shear stress distribution in the interface which
leads to a positive KII (Fig. 4.50e). Accordingly, the crack will tend to propagate
into the “stiffer” material as long as the fracture toughness there is not higher
than in the interface (Fig. 4.50f).
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4.12 Piezoelectric materials

4.12.1 Basic principles

Piezoelectric materials are characterized by the property that deformations occur
not only as a result of mechanical forces but also due to applied electric fields. This
phenomenon is called electrostriction. Conversely, deformations induce electric
fields in such materials which is denoted the piezoelectric effect . Due to their
wide application as actuating elements or sensors, especially ferroelectric ceramics
are of significant technical importance. In ferroelectric materials a macroscopic
piezoelectric effect occurs only after a polarization through a sufficiently high
electric field. Therefore, they then behave transversely isotropic, i.e., there exists
a principal direction which coincides with the direction of polarization. Without
going into details, the fundamental equations shall briefly be discussed which
are necessary for the solution of fracture mechanics problems. We will restrict
our attention to the small signal range which in good approximation can be
characterized by a linear material behavior with a constant polarization. In this
case, all relevant relations are fully analogous to those we have already discussed
for usual, purely elastic materials. However, auxiliary terms now appear due
to the coupling of the mechanical and the electrical problem. Moreover, the
anisotropic material behavior leads to a certain inflation of the equations.

The linear coupled electromechanical behavior of the piezoelectric materials
can be described by the constitutive equations (cf. (1.35a))

σij = Cijkl εkl − ekij Ek , Di = eikl εkl + ǫik Ek . (4.164)

Here, Di is the dielectric displacement, Ek is the electrical field strength, and ekij
and ǫij are the tensors of the piezoelectric and dielectric material constants (one
should not mix up the strains εij with the material constants ǫik and eijk with
the permutation symbol!). In case of transversely isotropic ferroelectrics whose
polarization direction coincides with the x3-direction, the material law can also
be written in the matrix form




σ11

σ22

σ33

σ23

σ31

σ12



=




c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66







ε11

ε22

ε33

2 ε23

2 ε31

2 ε12



−




0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0






E1

E2

E3


 (4.165a)
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D1

D2

D3


=




0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0







ε11

ε22

ε33

2 ε23

2 ε31

2 ε12




+



ǫ11 0 0
0 ǫ11 0
0 0 ǫ33





E1

E2

E3


 (4.165b)

where c66 = (c11 − c12)/2.

According to (1.25) the strains εij are related to the mechanical displacements.
Furthermore, the electrical field strength can be derived from the electric potential
φ. The respective equations are

In addition, the field equations

σij,j = 0 , Di,i = 0 (4.167)

hold where we have assumed that no volume forces and distributed charges are
present. Finally, the mechanical and electrical boundary conditions complete the
description of a boundary value problem. The electrical boundary conditions in-
volve a statement on the potential φ or the normal component Dn of the dielectric
displacement at the boundary.

As a generalization of the strain energy density (cf. Sect. 1.3.1.2), the specific
electro-mechanical potential (electric enthalpy density)

can be introduced. Then there exists the surface integral

Jk =

∫

∂V

(Wδjk − σijui,k +DjEk)njdA (4.169)

with basically the same properties as the J-integral vector (4.95). If ∂V contains
a defect, Jk characterizes the configurational force acting on the defect. It causes
a change of the total energy Π of the piezoelectric system when the defect is
displaced by dsk: dΠ = −Jk dsk.

The basic equations of transversely isotropic piezoelectricity can be simplified
in various cases. A plane strain state is present for a polarization in x3-direction
when the mechanical and electrical fields are independent, e.g., of x2. With
u2 = 0, ε22 = ε32 = ε12 = 0, E2 = 0, the constitutive law (4.165a,b) then reduces
to
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σ11

σ33

σ31

D1

D3




=




c11 c13 0 0 −e31
c13 c33 0 0 −e33
0 0 c44 −e15 0
0 0 e15 ǫ11 0
e31 e33 0 0 ǫ33







ε11

ε33

2 ε31

E1

E3




(4.170)

and the field equations can be summarized as follows:

c11u1,11 + (c13 + c44)u3,13 + c44u1,33 + (e31 + e15)φ,13 = 0 ,

c44u3,11 + (c13 + c44)u1,31 + c33u3,33 + e15φ,11 + e33φ,33 = 0 ,

e15u3,11 + (e15 + e31)u1,13 + e33u3,33 − ǫ11φ,11 − ǫ33φ,33 = 0 .

(4.171)

In particular, the longitudinal (out of plane) shear stress state, where u1 =
u3 = 0, E3 = 0 applies, proves to be relatively simple. Assuming again a polar-
ization in x3-direction, the constitutive law simplifies to




σ23

σ12

D1

D2


 =




c44 0 0 −e15
0 c44 −e15 0
0 e15 ǫ11 0
e15 0 0 ǫ11







2ε23

2 ε12

E1

E2


 (4.172)

and the field equations reduce to

c44∆u3 + e15∆φ = 0 , e15∆u3 − ǫ11∆φ = 0 (4.173)

where ∆(.) = ∂2(.)/∂x2
1 + ∂2(.)/∂x2

3

4.12.2 The crack in a ferroelectric material

In the following we consider a crack in a ferroelectric material, initially with an
arbitrary polarization direction (Fig. 4.51). Without going into the analysis, un-
der the assumption that the dielectric displacement along the crack faces vanishes
(impermeable boundaries: D−

2 = D+
2 = 0), the crack-tip field (r → 0) displays a

behavior of the same type as for the purely elastic material:

σij ∼ r−1/2 , ui ∼ r1/2 , Di ∼ r−1/2 , φ ∼ r1/2 . (4.174)

Accordingly, at the crack front (crack tip), the dielectric displacement, exactly as
the stresses, has a singularity of the type r−1/2. The field can be fully described
by means of the henceforth four “stress intensity factors” KI , KII , KIII , and KD.
For simplicity, only field quantities in front of the crack tip (ϕ = 0) are given
here, where reference is made to the coordinate system shown in Fig. 4.51:
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Figure 4.51: Crack in a ferroelectric material

It can be recognized that KD describes the strength of the singular dielectric
displacement. With the K-factors, the energy release rate (crack extension force)
for straight crack propagation, can be represented as

G = J = −dΠ

da
= CMNKMKN (M,N = I, II, III,D) (4.176)

where the summation has to be taken over M and N . Here, J = J1 is the
x1-component of the configurational force Jk according to (4.169) and CMN are
material constants which depend on the polarization.

A technically important special case is a polarization perpendicular to the
crack faces as shown in Fig. 4.52a. It should be noted that contrary to the previous
sections, the x3-axis now is perpendicular to the crack face. In case of plane
strain, when the fields are independent on x2 and, moreover, the configuration is
symmetric with respect to the x1-axis, KII and KIII vanish. Then a mode-I crack
opening is present and the following quantities behind the crack tip (ϕ = ±π)
can be obtained for r → 0:

u±3 = ±4

√
r

2π

(
KI

cT
+
KD

e

)
, φ± = ±4

√
r

2π

(
−KD

ǫ
+
KI

e

)
. (4.177)

Here, cT , ǫ, and e denote combined elastic, dielectric, and piezoelectric material
properties which can be expressed by means of the material constants (4.170).
The energy release rate herewith results as

G = Gm + Ge =

[
KI

(
KI

cT
+
KD

e

)]
+

[
KD

(
−KD

ǫ
+
KI

e

)]

=
K2
I

cT
− K2

D

ǫ
+ 2

KIKD

e
.

(4.178)

The two parts Gm and Ge can be interpreted as mechanical and electrical parts
of the energy release rate.

Due to the electromechanical coupling, in general both stress intensity factors
KI and KD occur under a purely mechanical or purely electrical loading. Specific
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Figure 4.52: Electromechanical crack loading

loading conditions in a few special cases can involve only one K-factor. One
example is an impermeable finite crack in an infinite domain (see Fig. 4.52b).
Due to a loading solely by σ0 or solely by D0, the following stress intensity factors
are obtained:

KI = σ0

√
πa , KIV = D0

√
πa . (4.179)

The state at the crack tip which is loaded symmetrically, is uniquely charac-
terized by KI and KD. Therefore, a fracture criterion for this case can formally
be written as

f(KI , KIV ) = 0. (4.180)

Among others, the following criteria have been proposed:

(A) G = Gc ,

(B) Gm = Gmc ,

(C) KI = KIc

(4.181)

where criterion (A) often is preferred. But independently of the chosen criterion,
the determination of both sides of (4.181), i.e., the acting crack-tip load and the
critical values are afflicted with uncertainties. One reason for this is the electric
boundary condition which often is not known sufficiently accurate along crack
faces in real materials.
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5 Elastic-plastic fracture mechanics

5.1 Introduction

When a test specimen or a structural component consisting of a ductile material
and containing a crack is loaded, plastic flow starts in the vicinity of the crack tip.
As a consequence, the crack tip becomes increasingly blunted with increasing load
and the crack opens. At the same time the plastic zone grows and may, depending
on the material and geometry, extend over large regions or the entire specimen
until at some critical load crack initiation takes place. In such a situation of
large-scale yielding linear elastic fracture mechanics can no longer be applied and
parameters and fracture concepts such as the K–concept based on linear elastic
material behavior become meaningless. Fracture parameters and concepts then
are needed which account for plastic flow of the material in larger regions outside
the process zone.

Two alternative parameters characterizing the state at a crack tip are well
established in elastic-plastic fracture mechanics. The first one is the J–integral
proposed by J.R. Rice (1968) which in the present context represents the intensity
of stress or strain rather than the energy release rate. The second one is the crack-
tip opening displacement (CTOD) δt as a measure of the state of deformation at
a crack tip, which dates back to A.H. Cottrell and A.A. Wells (1963). While J
is essentially based on the deformation theory of plasticity (total strain theory,
Sect. 1.3.3.3), the use of δt is experimentally motivated. It will, however, be
shown that both quantities are directly related to each other.

In order to investigate problems of elastic-plastic fracture mechanics we will
consider simple material models of rate-independent plasticity such as perfect
plasticity or total strain theory. Furthermore, monotonic loading is assumed
which means that global unloading or cyclic loading is precluded. Only under
these restrictions do a few special cases of simple geometry allow for analytical
solutions which form the basis for the above-mentioned fracture concepts. More
involved material models or the analysis of real structures instead require the
application of numerical methods. Analogous to linear elastic fracture mechanics
we will focus here mainly on plane problems with straight cracks subjected to
mode-I loading.
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5.2 Dugdale model

Plastic zones ahead of a crack tip in thin plates of a ductile material typically
display an elongated shape (Fig. 5.1a). Such a plastic zone results from through-
the-thickness slip in planes inclined at 45◦ to the plane of the plate which leads
to an extension of the zone in y-direction of the order of the plate thickness (see
Sect. 4.7.2).

δ

a

y

x

y

x

plastic zone

a)

δt
σ

Y

d

C

b)

Figure 5.1: Dugdale model

A simple model for the respective mode-I problem has been proposed by
D.S. Dugdale (1960). It is based on the assumptions that the material behavior
inside the plastic zone is perfectly plastic and that the extension of the plastic
zone in y-direction is small compared to its length d. The plastic zone then
may be idealized as a line (strip) along which under plane stress conditions and
according to the Tresca yield criterion the yield stress σ

Y
prevails. The problem

thus is reduced to that of an elastic medium containing a crack with its length
fictitiously increased by the distance d along which the crack faces are subjected to
the stress σ

Y
(Fig. 5.1b). The unknown length d is determined from the condition

that the stress must not exceed the yield stress σ
Y
. Hence the stress singularity

(K–factor) at the tip of the fictitious crack, i.e., at the tip of the plastic zone,
must vanish. It has to be emphasized that the length of the plastic zone in this
model is not restricted; it may be of the order of the crack length or any other
characteristic length of the problem.

The relative displacement of the crack faces (i.e., the crack opening displace-
ment) along the fictitious extension of the crack is denoted δ = v+−v−. It attains
a value δt at the physical crack tip and vanishes at the tip of the plastic zone. If
δ is interpreted to result from plastic deformations, δt may be taken as a measure
of the state of deformation at the crack tip. An elastic-plastic criterion for the
onset of crack growth then can be postulated in the form

δt = δtc (5.1)
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where the critical crack opening displacement δtc is a material parameter.
To determine the value of the J–integral a contour C along the lower and

upper faces of the yield strip is considered (Fig. 5.1b). Employing (4.107) with
dy = 0 and τxy = 0 we get

J = −σ
Y

a+d∫

a

∂

∂x

[
v+ − v−

]
dx = −σ

Y
[ δ ]a+da

from which, using δ(a+d) = 0 and δ(a) = δt, the simple expression

J = σ
Y
δt (5.2)

is obtained. Within the framework of the Dugdale model therefore a fracture
criterion

J = Jc (5.3)

is equivalent to the δt–criterion (5.1). Here, Jc = σ
Y
δtc is a material parameter

characterizing the onset of crack growth.
Figure 5.2 illustrates the application of the Dugdale model to the situation

of a crack of length 2a in an infinite domain subjected to uniaxial tension. The
solution can be constructed by superposition of the two loading cases (1) “uniaxial
tension” and (2) “crack face loading”. According to the notation in Fig. 5.2 the

σ

σ

σ

σ

(2)
σ

Y

(1)

2a
d d

y σ
Y

x = +
2b=2(a + d)

Figure 5.2: Dugdale model of a crack subjected to uniaxial tension

respective stress intensity factors are (see Sect. 4.4.1)

K
(1)
I = σ

√
πb , K

(2)
I = −2

π
σ

Y

√
πb arccos

a

b

and the displacements in y-direction at the physical crack tip (x = a) can be
written as

v(1)(a) =
2σ

E ′

√
b2 − a2 ,

v(2)(a) =
4σ

Y

πE ′

[
−
√
b2 − a2 arccos

a

b
+ a ln

b

a

]
.
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From the condition K
(1)
I +K

(2)
I = 0 the length of the plastic zone is determined

as

d = b− a = a

[(
cos

πσ

2σ
Y

)−1

− 1

]
. (5.4)

Using this result one obtains the following expression for the crack-tip opening
displacement (note that v− = −v+ due to symmetry):

δt = 2
[
v(1)(a) + v(2)(a)

]
=

8 σF
πE ′ a ln

(
cos

πσ

2 σ
Y

)−1

. (5.5)

Correspondingly, the J–integral reads

J = σ
Y
δt =

8 σ2
Y

πE ′ a ln

(
cos

πσ

2 σ
Y

)−1

. (5.6)

The size of the plastic zone according to (5.4) which is in good agreement with
experimental findings for σ<̃0.9 σ

Y
is depicted in Fig. 5.3a. The limit σ → σ

Y

corresponds to d → ∞ which means a plastification of the entire ligament. At
this limit load failure takes place by plastic collapse.
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Figure 5.3: a) plastic zone size, b) failure load, c) failure assessment curve

For sufficiently low loading (σ ≪ σ
Y
) the plastic zone remains small. Then

small-scale yielding conditions prevail and linear elastic fracture mechanics is
valid. In this case

(
cos

πσ

2σ
Y

)−1

≈ 1 +
1

2

(
πσ

2 σ
Y

)2

with σ
√
πa = KI

and from (5.4) the size of the plastic zone follows as

d = 2rDp =
a

2

(
πσ

2σ
Y

)2

=
π

8

(
KI

σ
Y

)2

. (5.7)
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The letter D here indicates its derivation from the Dugdale model. Analogously,
δt and J reduce to

That means that in case of small-scale yielding the fracture criteria (5.1) and
(5.3) of elastic-plastic fracture mechanics reduce to the fracture criteria of linear
elastic fracture mechanics (K-concept). The size of the plastic zone according to
(5.7) then is of the same order of magnitude as Irwin’s approximation (4.114) for
plane stress.

In the general case of arbitrarily large plastic zones insertion of (5.6) into the
fracture criterion (5.3) yields

For the special case of linear elastic fracture mechanics (σ ≪ σ
Y
) this reduces to

For given material parameters Jc, E, σY
these relations describe the dependence

of the failure load σ on the crack length a in the general elastic-plastic case and
the linear elastic case, respectively. Figure 5.3b shows that for small a ductile
failure prevails; the failure load is close to the plastic limit load. In case of large
a, on the other hand, failure takes place in a brittle manner according to linear
elastic fracture mechanics.

A representation of the failure condition which is independent of the crack
length is obtained by inserting (5.9) into (5.10). Using the notation σ/σlin =
KI/KIc = KR and σ/σ

Y
= SR the failure assessment curve (Fig 5.3c) is given by

It may be interpreted as a failure criterion in the elastic-plastic range between
the two limit cases of brittle fracture (KR = 1) and plastic collapse (SR = 1).
By virtue of the proportionality of KI and σ a loading process corresponds to
the radial outward motion of a point in the diagram of Fig. 5.3c. The distance
between the point and the limit curve then is a measure of the safety against
failure.

Although, strictly speaking, being valid only for the example of Fig. 5.2, the
relation (5.11), because of its simplicity, is frequently applied also to other crack
configurations and technical components. Thereby σ and σ

Y
are replaced by some

load P and the plastic limit load PG, respectively, and (5.11) is assumed to be
universally valid.
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Despite its simplicity the Dugdale model is capable of describing the essential
phenomena of elastic-plastic fracture. Although originally developed for the sit-
uation of thin plates in plane stress, it is frequently applied also to plane strain
or, in modified form, to three-dimensional problems (e.g., penny-shaped cracks)
where it yields practically reasonable results. The basic idea of modeling a plastic
zone by a yield strip is suitable for various modifications. One may, for instance,
consider multiple yield strips inclined against each other or take into account a
hardening material behavior by a nonuniform stress distribution along the yield
strip.

5.3 Crack-tip field

Similar to linear elastic fracture mechanics, the field in the vicinity of a crack
tip plays a key role also in elastic-plastic fracture mechanics. Crack-tip fields
for different material models are investigated in the following. For simplicity we
partly restrict our attention to the simplest case of mode III.

5.3.1 Perfectly plastic material

5.3.1.1 Antiplane shear, mode III

A state of antiplane shear is characterized by the displacement w and stresses
τxz, τyz being the only nonvanishing components. For a perfectly plastic material
the stresses have to fulfill the yield condition

τ 2
xz + τ 2

yz = τ 2
Y

with τ
Y

= const. (5.12)

According to Sect. 1.5.3 the curves along which τ
Y

is attained (= α-lines) are
always straight lines while in sections normal to these curves the shear stress
vanishes. Therefore, a slip-line field as shown in Fig. 5.4 in the vicinity of a
crack tip satisfies the boundary conditions of traction-free crack faces. In polar
coordinates r, ϕ (ϕ coincides with the angle φ in Sect. 1.5.2) the stresses inside

R boundary of plastic zoner
ϕ

Figure 5.4: α-lines in mode III
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the fan (|ϕ| ≤ π/2) are

τϕz = τ
Y
, τrz = 0 . (5.13)

Along an α-line the displacement increment dw is constant which means that
inside the fan dw = dw(ϕ) holds and hence dγrz = ∂(dw)/∂r = 0. The strain
increment dγϕz = ∂(dw)/r∂ϕ can be determined if we consider dγϕz(R) to be
known along the boundary R(ϕ) of the plastic zone:

dγϕz(r, ϕ) =
R(ϕ)

r
dγϕz(R) . (5.14)

Assuming an undeformed initial state and setting w(ϕ= 0) = 0 one obtains by
integration

γϕz =
1

r

∂w

∂ϕ
=
R(ϕ)

r
γϕz(R) , w =

ϕ∫

0

R(ϕ)γϕz[R(ϕ)]dϕ . (5.15)

The relations (5.12) through (5.15) are generally valid inside the fan, i.e., they
apply also for arbitrarily large plastic zones. They indicate that the stresses are
bounded by the yield stress whereas the strains display an 1/r– singularity at the
crack tip.

The stresses (5.13) may also be represented in a somewhat different way. In
cartesian coordinates they are τxz = −τ

Y
sinϕ and τyz = τ

Y
cosϕ, and along a

circle with its center M located at a distance r∗ ahead of the crack tip (Fig 5.5)
the following representation in terms of the angle ϕ∗ holds

τxz = −τ
Y

sin
ϕ∗

2
, τyz = τ

Y
cos

ϕ∗

2
. (5.16)

Up to a factor these are exactly the stresses which according to the elastic crack-
tip solution (4.6) prevail along a circle around a crack tip at M if in (4.6) the

R
r∗=rp

plastic elastic
KIII–dominated field

ϕ

M
ϕ∗=2ϕ

Figure 5.5: Plastic zone inside elastic near tip field
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distance r and the angle ϕ are replaced by the quantities r∗ and ϕ∗. This corre-
lation can be employed to construct an exact solution for the case of small-scale
yielding. The plastic zone then is embedded in an elastic domain inside which the
elastic near-field solution holds. Along the boundary between the two domains
the stresses from the elastic and plastic solution must coincide. This can be ac-
complished by setting (5.16) equal to (4.6) and taking into account the different
notations: τ

Y
= KIII/

√
2πr∗. Hence the plastic zone is a circular domain ahead

of the crack tip with the radius

Note that the same result for rp is obtained by estimating the size of the plastic
zone from the elastic near-field solution according to Irwin (see Sect. 4.7.1).

Using (5.17) the boundary R(ϕ) of the plastic zone and the strain γϕz(R)
prevailing along it are

From (5.14) and (5.15) it thus follows that

holds inside the plastic zone. The crack-tip opening displacement δt is given by
the relative displacement of the two crack faces at the crack tip:

5.3.1.2 Plane strain, mode I

The plastic crack-tip field under plane strain conditions can likewise be obtained
from slip line theory according to Sect. 1.5.3. Due to symmetry only the upper
half plane (y ≥ 0) needs to be considered (Fig. 5.6a). Along the traction-free
crack faces as well as along the x-axis ahead of the crack tip (mode-I symmetry)
the boundary condition τxy = 0 holds. Hence the slip lines there terminate at an
angle of 45◦. The connection between the resulting regions A and C is established
by the fan B (quarter circle). After L. Prandtl (1875-1953), who presented this
solution for the first time, the corresponding slip line field is called a Prandtl–
field . Using (1.123) and the notation given in Fig. 5.6a the “starting” (boundary)
value σm = k is obtained at the crack face (φ = 3π/4 , σy = 0 , τxy = 0 ). Along
a β-line passing through A, B, and C (φA = 3π/4, φB =ϕ, φC = π/4) Hencky’s
equations (1.124) yield

σAm = k , σBm = k(1 + 3π/2 − 2ϕ) , σCm = k(1 + π) . (5.21)

From (1.123) therefore the stresses in the various regions are
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where k = σ
Y
/
√

3 has been inserted. The angular variations of the components
in polar coordinates are depicted in Fig. 5.6b.

Figure 5.6: Crack tip field in perfectly plastic material

Because of σz = σm the crack-tip stress field is completely determined by
(5.22) and (5.21). Mohr’s circles corresponding to the three regions are shown in
Fig. 5.6c. Obviously, a high hydrostatic stress component prevails in the region
C ahead of the crack tip. This can be taken as an indication that microscopic
void growth is promoted there.

Along slip lines the variations of shear strain are maximum while length
changes of material elements in the direction of the slip lines vanish. It can
be shown that this behavior gives rise to a representation of the strain field inside
the fan B of the form

εij =
1

r
ε̃ij(ϕ) . (5.23)
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Like in the corresponding mode-III case it contains an 1/r–singularity. The com-
plete determination of εij in the entire plastic zone and of the crack-opening
displacement requires the knowledge of εij along one boundary (for instance,
along the boundary between the elastic and plastic region). This has not yet
been found by analytical methods.

The crack tip field (5.22) shall primarily describe the situation at a crack tip
under mode-I tensile loading. But the solution remains unaltered if in addition
a possible T-stress is taken into account. In such a case only the dimension of
the region where this solution dominates may change. This can qualitatively be
understood when for a fixed mode-I tensile load the stress state at a material
point in the elastic region at some distance ahead of the crack tip is considered
along with the plastic zone directly surrounding the crack tip. If now an increasing
negative T-stress (pressure) is superposed, the maximum shear stress at this point
increases until plastic flow sets in. This means that the size of the plastic zone
increases when a negative T-stress is present while a positive T-stress leads to a
smaller plastic zone size.

The solution (5.22) allows to directly compute the plastic limit load PL for
the crack configuration depicted in Fig. 5.7. Corresponding to the shown slip line
field which is valid for b≫ a the stress σy = σ

Y
(2 + π)/

√
3 prevails between the

two crack tips. Therefore the limit load is

PL = σy2aB =
2(2 + π)√

3
aBσ

Y
. (5.24)

2b

2a

B

PL

PL

Figure 5.7: Plastic limit load

The approximation of the material behavior as a perfectly plastic one is not
fully satisfactory. Though the analysis yields some information about the singular
character of the strain field at the crack tip it does not provide a parameter to be
used in a fracture criterion. Furthermore, a hardening behavior as observed for
many materials can not be described. A material model which overcomes these
deficiencies is discussed in Sect. 5.3.2.
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Figure 5.8: Blunted crack tip in perfectly plastic material

It appears pertinent here to briefly discuss another important solution for a
crack-tip field in perfectly plastic material. The effect mentioned before that the
high hydrostatic stresses ahead of a crack tip cause void growth in a ductile mate-
rial becomes even more pronounced when the somewhat more realistic situation
of a blunted crack tip is considered (Fig. 5.8). The stress distribution in this case
can likewise be computed from slip-line theory and is in cartesian coordinates for
y = 0 given by

σy =
2σ

Y√
3

[
1 + ln

(
1 +

x

r

)]
, σx =

2σ
Y√
3

ln
(
1 +

x

r

)
. (5.25)

The slip-lines now are logarithmic spirals which terminate from the traction-free
boundary at angles of 45◦. In contrast to the corresponding purely elastic solu-
tion, the vertical stress σy increases with increasing distance from the crack tip
and the maximum hydrostatic stress in the plastic region (bounded from outside
by the elastic field) is attained at some distance ahead of the crack tip. That
means that void growth can be expected to occur inside the material somewhere
ahead of the crack tip. The extension of the plastic region and the precise loca-
tion of the peak hydrostatic stress can not be determined from slip-line theory
(rigid-plastic material) alone; therefore an elastic-plastic analysis is required.

5.3.2 Total strain theory, HRR−field

In the framework of total strain theory (see Sect. 1.3.3.3) we consider a hardening
material with the uniaxial stress-strain behavior approximated by the Ramberg–
Osgood law (Fig. 5.9a)

ε

ε0
=

σ

σ0
+ α

(
σ

σ0

)n
. (5.26)

For sufficiently small α the parameters ε0 and σ0 can be understood as the strain
and stress at the onset of yield while n is the hardening exponent. The limit
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case n = 1 corresponds to a fully linear behavior, whereas an elastic perfectly
plastic material is obtained for n → ∞. The two terms of the right-hand side
can be interpreted as the elastic and plastic parts of strain: εe/ε0 = σ/σ0 ,
εp/ε0 = α(σ/σ0)

n.

1

7 9
13

1 5

25
1

2 3

5

1 5

13

a) b)

n=1 n=1
σ/σ0

α = 0.01

ε/ε0

σ/σ
Y

n→ ∞

ε/ε
Y

Figure 5.9: Power law

In the vicinity of a crack tip the material is in the plastic range (ε/ε0 ≫ 1).
Because of the strain singularity expected to prevail at the crack tip, the elastic
strains there can be neglected compared to the plastic strains, i.e., εij = εpij .
Hence (5.26) reduces to

ε

ε0
= α

(
σ

σ0

)n
(5.27)

and the general constitutive law of total strain theory (1.86) can be written as

εkk = 0 , eij =
3

2

εe
σe

sij . (5.28)

Using (5.27) as the relation between εe and σe in (5.28) yields

εij = eij =
3

2
αε0

(
σe

σ0

)n
sij
σe

(5.29)

where the uniaxial equivalent strain and stress are defined as εe = (2
3
εijεij)

1/2

and σe = (3
2
sijsij)

1/2, respectively.
The constitutive law (5.29) may also be obtained from the stress-strain rela-

tion (see Fig. 5.9b)

ε

ε
Y

=

{
σ/σ

Y
for σ ≤ σ

Y

(σ/σ
Y
)n for σ ≥ σ

Y

(5.30)

where the power law ε/ε
Y

= (σ/σ
Y
)n holds in the plastic range. For the three-

dimensional generalization (5.29) one has to assume incompressible material be-
havior and set ε

Y
/σn

Y
= αε0/σ

n
0 .
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In the framework of total strain theory a plastic material behavior is de-
scribed like a nonlinear elastic material which in the present case is in addition
incompressible. This can be verified by comparing (5.26–5.29) with (1.55 ff).
Correspondingly, all relations from nonlinear elasticity are also valid for total
strain theory. For instance, from (1.58) the strain energy density in the vicinity
of a crack tip is

An important consequence of the equivalence of total strain theory and elas-
ticity theory is the path-independence of the J–integral (4.107) evaluated for
a crack tip with straight and traction-free crack faces (see Sect. 4.6.5.3). This
property allows to determine in a simple manner the asymptotic behavior of field
quantities when approaching the crack tip. Therefore we consider a circular in-
tegration contour C close to the crack tip (r → 0) as depicted in Fig. 5.10. With
dc = rdϕ the J–integral can be written as

Path-independence, i.e., independence from r requires that the term in brackets
behaves like 1/r for r → 0. Since both terms in brackets are of the type σijεij
the following relations must hold:

From (5.29) and (5.31) one obtains for the stresses

Figure 5.10: Integration contour for J–integral
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where C is some constant. It is practical to replace C by a new dimensionless
constant I chosen in such a way that σ̃ij(ϕ) as well as the J/r term become
dimensionless: C = σ0/(Iαε0σ0)

1/(n+1). For r → 0 the field quantities then may
be represented as

where ui0 is some rigid body motion. Using σ̃ = (3
2
σ̃ij σ̃ij)

1/2 and inserting into
(5.32) yields the relation

The primes here denote derivatives with respect to ϕ.
The dominating field at a crack tip (5.34) displays stress and strain singular-

ities which depend on the hardening exponent n. For n = 1 the already known
1/
√
r–singularity of linear elastic fracture mechanics occurs while n → ∞ leads

to nonsingular stresses and a strain singularity of the type 1/r. The angular
variations σ̃ij , ε̃ij , ũi in (5.34) can not be determined from these simple consid-
erations. Similar to linear elastic fracture mechanics they have to be computed
from a boundary value problem. In the present nonlinear case, however, this
requires a numerical solution (see below). The dominating crack-tip field then is
fixed up to the parameter J which characterizes the magnitude or “intensity” of
the field. Using the initials of J.W. Hutchinson, J.R. Rice, and G.F. Rosengren who
investigated this field for the first time it is called the HRR–field.

It has to be emphasized that although the derivation of the HRR-field (5.34)
is based on total strain theory it is also valid in the framework of the incremental
theory of plasticity. This follows from the fact that the crack-tip field is solely
determined by the single parameter J so that the power law (5.27) leads to
proportional loading. In this case the total strain theory and the incremental
theory are equivalent (Sect. 1.3.3.3).

Figure 5.11a shows the r–dependence of the stresses for various values of n. It
can be seen that the domain of high stress, i.e., the domain inside which the HRR-
field actually dominates, becomes smaller with increasing n. The deformation of
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the crack tip is likewise dependent on the hardening parameter (Fig. 5.11b); with
increasing n the crack-opening profile becomes more and more blunted.
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Figure 5.11: HRR–field: a) stress distribution, b) crack-opening profile

In the following it is briefly outlined for the case of plane strain how the
complete near tip solution can be obtained. For this purpose the problem is
formulated in terms of the stresses by elimination of the strains. Inserting the
constitutive law (5.29) into the compatibility condition

1

r

∂2

∂r2
(rεϕ) +

1

r2

∂2εr
∂ϕ2

− 1

r

∂εr
∂r

− 2

r2

∂

∂r

(
r
∂εrϕ
∂ϕ

)
= 0 (5.36)

yields

−1

r

∂2

∂r2

[
rσn−1(σr − σϕ)

]
+

1

r2

∂2

∂ϕ2

[
σn−1(σr − σϕ)

]

−1

r

∂

∂r

[
σn−1(σr − σϕ)

]
− 4

r2

∂

∂r

[
r
∂

∂ϕ
(σn−1τrϕ)

]
= 0

(5.37)

where

σ =

[
3

4
(σr − σϕ)

2 + 3τ 2
rϕ

]1/2

. (5.38)

It is appropriate to introduce the Airy stress function φ(r, ϕ) from which the
stresses are derived according to

σr =
1

r

∂φ

∂r
+

1

r2

∂2φ

∂ϕ2
, σϕ =

∂2φ

∂r2
, τrϕ = − ∂

∂r

(
1

r

∂φ

∂ϕ

)
. (5.39)

Equations (5.39) identically satisfy the equilibrium conditions. Now a separation
ansatz is chosen for φ of the type

φ = Arsφ̃(ϕ) where s =
2n+ 1

n+ 1
(5.40)
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such that the asymptotic character of the crack-tip field (5.34) is accounted for.
Then (5.37) leads to the following nonlinear ordinary differential equation for the
function φ̃

n(n + 2)

(n + 1)2
σ̃n−1

[
2n+ 1

(n + 1)2
φ̃+ φ̃′′

]
+

{
σ̃n−1

[
2n+ 1

(n + 1)2
φ̃+ φ̃′′

]}′′

+
4n

(n+ 1)2

[
σ̃n−1φ̃′

]′
= 0

(5.41)

where

σ̃ =

{
3

4

[
2n+ 1

(n+ 1)2
φ̃+ φ̃′′

]2

+ 3

[
n

n + 1
φ̃′
]2
}1/2

. (5.42)

The mode-I crack-tip field is symmetric with respect to ϕ = 0, i.e.: τrϕ(0) = 0,
∂σϕ/∂ϕ|ϕ=0 = 0, ∂σr/∂ϕ|ϕ=0 = 0. Furthermore, the crack faces are assumed
to be traction-free: σϕ(π) = 0, τrϕ(π) = 0. For φ̃ this leads to the boundary
conditions

φ̃′(0) = 0 , φ̃′′′(0) = 0 , φ̃(π) = 0 , φ̃′(π) = 0 . (5.43)

A solution of (5.41)–(5.43) in closed form is not known, yet it may be obtained
with high accuracy by numerical integration. In Fig. 5.12 the angular variation of
the stresses is depicted for two different values of n. Comparison with Fig. 4.6b
and Fig. 5.6b shows that for n = 2 it is still close to that of a linear elastic material
while for n = 10 a strong similarity to that of a perfectly material can be seen.
From the now known functions σ̃ij , ũi the factor I finally can be computed from
(5.35); some values are given in Table 5.1. It has to be mentioned that analogous
analyses can be performed for mode-II loading as well as for plane stress.
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Figure 5.12: HRR–field: angular variation of stresses
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Table 5.1: Values of I(n) and D(n) for plane strain

n 2 3 5 10 ∞
I 5.94 5.51 5.02 4.54 3.72
D 1.72 1.33 1.08 0.93 0.79

5.4 Fracture criterion

In order to formulate a fracture criterion of elastic-plastic fracture mechanics the
same fundamental ideas can be adopted as in case of the K–concept (Sect. 4.3).
According to (5.34) the parameter J describes the intensity of the otherwise com-
pletely determined crack-tip field. The latter dominates inside a domain with an
outer boundary schematically by denoted R in Fig. 5.13a. From inside the crack-
tip region the validity of the field (5.34) is limited by a domain of radius rN which
can not be described by total strain theory. For instance, large deformations and
local unloading may occur inside this region. It furthermore contains the process
zone (radius ρ) where the fracture process with its material specific micromech-
anisms (e.g., void growth) takes place. Figure 5.13b schematically shows the
correspondence of the different regions with respective ranges of the σ-ε-diagram.
Now, if the J–determined domain II is large compared to the enclosed region III

b)

R

r

ρ

J–controlled field

II

a)

ε

rN

I σ

σ0

ε0

III

II IIII

Figure 5.13: Different crack-tip regions and deformation regimes

(R ≫ rN , ρ) then the state inside the process zone is controlled by the surround-
ing field, i.e., by J . Therefore J can be regarded as a measure of the “loading”
of the crack-tip region. Crack propagation initiates once this loading attains a
material-dependent critical value Jc:

J = Jc . (5.44)
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Basis of the fracture criterion (5.44) are the total strain theory of plasticity as
well as the assumption of existence of a dominating crack-tip field. This has im-
portant consequences to be emphasized here. The total strain theory is equivalent
to the incremental theory of plasticity only in case of monotonically increasing
loading (Sect. 1.3.3.3); it can not properly describe unloading processes. Numer-
ical simulations have confirmed that the respective situation is in fact found with
good approximation in the vicinity of a stationary crack tip. Crack propagation,
in contrast, always gives rise to unloading processes. Therefore, the condition
(5.44) is first of all valid only for crack initiation. Circumstances under which it
may also be applied to crack propagation are discussed in Sect. 5.7.

The dominance of the crack-tip field (5.34) is guaranteed only if the material
displays sufficient hardening (see Fig. 5.11a). With decreasing hardening the
domain of dominance becomes smaller and it vanishes for a perfectly plastic
material. Then J can no longer be regarded as a parameter which controls the
crack-tip state.

The use of J as a fracture parameter is not directly tied to the HRR–field since
elastic-plastic material behavior in the framework of total strain theory may also
be approximated by a bilinear stress-strain dependence instead of a power law.
This results in a dominating singular crack-tip field which is different from the
HRR–field, yet with an intensity again determined by J .

As already mentioned the crack-opening displacement δt is, besides J , occa-
sionally used as a fracture parameter. This approach is based on the idea that
δt is a measure of plastic strain at the crack tip which in turn controls the frac-
ture process. Accordingly, crack propagation initiates once the crack-opening
displacement attains a critical value δtc:

If one assumes that the state of deformation at the crack tip may be sufficiently
well described by the HRR–field then δt and J are equivalent parameters and can
transformed into each other. This can be seen from equations (5.34) where the
strains and displacements are directly connected to J . Ignoring the rigid body
motion, the displacement of some point P on the upper crack face is (Fig. 5.14)

If one defines δt by the intersection of two straight lines inclined by 45◦ to the
x–axis with the crack-opening profile it follows that

From these three equations one obtains by elimination of rP the relation
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Figure 5.14: Crack-opening displacement δt

where

D =
2

I
[ṽ(π) + ũ(π)]1/n ṽ(π) . (5.47)

Some values of D are given in Table 5.1. For a perfectly plastic material (n→ ∞)
this yields δt = 0.79 J/σ0 which is quite close to equation (5.2) based on the
Dugdale model. One has, however, to note that this equation has been derived
for plane stress. Furthermore, in this case (5.46) is strictly speaking no longer
valid since it assumes the dominance of the HRR–field at least for r < rP or
r <̃ δt. For a perfectly plastic material this dominance is not given.

Though J and δt are equivalent parameters the use of J and hence the fracture
criterion (5.44) offer several advantages. Firstly, the crack-tip loading J is easier
to compute than δt. Secondly, the experimental determination of the material
parameter δtc is, in contrast to Jc, connected with difficulties. Another disadvan-
tage of the crack-tip opening displacement is that its definition suffers from some
arbitrariness. In the following we will therefore focus only on J .

5.5 Determination of J

The computation of J for a technical component that contains a crack and large
plastic zones generally requires numerical methods. Especially the Finite Ele-
ment Method (FEM) and to some extend also the Boundary Element Method
(BEM) are employed for the solution of respective elastic-plastic boundary value
problems. In doing so several properties of J are exploited (see Sect. 4.6.5.3). For
instance, J can be computed from a path-independent integral if the integration
contour lies inside a region where the material behaves either purely elastic or
according to the total strain theory of plasticity (i.e., no local unloding). Then
it is often advantageous to choose a contour far away from the crack tip, possi-
bly in a purely elastic region. This circumvents the costly determination of field
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quantities in the vicinity of the crack tip with high accuracy which would require
a rather fine discretization.

Another possibility is based on the meaning of J as an energy release rate.
The latter can be determined from simulating crack advance by the release of a
finite element node and computing the work done by the nodal force. Of course,
the material then has to be described as nonlinear elastic. For further details the
reader is referred to the extensive literature.

Besides the purely numerical calculation of J it is in some cases possible
to derive approximate analytical solutions or to determine J by experimental
methods. The latter approach is discussed in the following section. Approximate
solutions may be found especially in the Ductile Fracture Handbook (see literature
list, Sect. 5.9).

5.6 Determination of Jc

The determination of Jc is performed in standardized experiments. For this
purpose specimens containing a crack of definite length a (e.g., CT-specimens,
Fig. 4.20) are loaded until crack initiation (or often beyond) and the
load-displacement curve is measured (Fig. 5.15a). The area below the curve
F (uF , a) then is the work W a done by the force F where the parameter a indi-
cates that F depends on the chosen crack length a. The work W a is equal to
the strain energy Π i if one assumes that under monotonic loading (i.e., no local
unloading) the elastic-plastic material can be described as a nonlinear elastic one:

Then J can be defined as J = −dΠ/da where Π = Π i + Πa. If the crack
length is changed by da for fixed displacement uF = const. one has dΠa = 0 and
dΠ = dΠ i such that

The subscript here emphasizes which quantity is kept constant during differen-
tiation. As illustrated in Fig. 5.15b J can formally be determined according to
(5.49) from the load-displacement curves for two specimens differing by the crack
lengths a and a + da.

A method for the determination of Jc which is based on the above result has
been proposed by J.A. Begley and J.D. Landes (1972). Thereby, load-displacement
curves F (uF , ai) are measured for a series of specimens with different crack lengths
a1, a2, a3, . . . (Fig. 5.16a). From these curves stepwise approximations for
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Figure 5.15: Definition and determination of J

Π i(a, uF ) and for J(uF , aj) ≈ −∆Π i/∆a can be obtained (Fig. 5.16b,c). From
the known crack initiation value uFc for a particular crack length (e.g., for a2)
then Jc is found. The disadvantage of this so-called multispecimen technique is
its large experimental expense and the lack of accuracy.
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∆Π i

Figure 5.16: Determination of Jc from the multispecimen technique

An alternative method which requires testing only of a single specimen dates
back to J.R. Rice. For its derivation we start from the complementary energy (see
Sect. 1.4 and Fig. 5.15a)

Differentiating
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such that from (5.49) the representation

is obtained. This relation can be illustrated also from the area increment in
Fig. 5.15b. It is, of course, not only valid for loading of a specimen or component
by a single force but holds in corresponding form also for loading by some bending
moment.

a a

l/2l/2

F

M
W

b

W

a) b)

M

Figure 5.17: Determination of Jc with a single specimen

In the following we consider a specimen as depicted in Fig. 5.17a with its ends
subjected to a bending moment and experiencing a relative rotation by an angle
θ. In this case (5.52) reads

The rotation angle θ generally depends on the loading M , the geometric param-
eters a, b, l and the material behavior. If, by neglecting the linear elastic range,
the latter is characterized solely by σ

Y
and a hardening parameter n (see Fig. 5.9)

normalization of all quantities yields

Here, the reference moment M0 is the limit moment for a perfectly plastic mate-
rial. For a≫ b and l ≫ b and if by n≫ 1 the hardening is not very pronounced,
θ is within a first approximation independent of the latter three parameters:
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With a = W − b and da = −db one obtains

and after elimination of dθ/d( M
M0

)

Insertion into (5.53) finally yields

That means that up to a factor of 2/b the current loading J of the crack is given
by the work W a done by the moment. If bending of a specimen of thickness B
is instead of a moment M produced by some force F (see Fig. 5.17b) it follows
from (5.56) that

where it has to be noted that in (5.56) J was given per unit specimen thickness.
From the known initiation value uFc, therefore Jc can easily be determined from
the area below the load-displacement curve.

As already mentioned, the approximation (5.57) is only valid for deeply cracked
specimens (a ≫ b) subjected to bending loading. The negligence of the elastic
range of the material behavior furthermore requires that over the major part of
the remaining specimen cross section the plastic strains are large compared to the
elastic strains. Hence the remaining cross section has to be sufficiently plastified
prior to the onset of crack growth.

In order to obtain geometry-independent Jc-values from measurements certain
size requirements have to be fulfilled, similar to linear elastic fracture mechanics.
For CT-specimens and 3-point-bending specimens the following conditions have
to be satisfied:

Because of the direct proportionality of Jc/σY
and δtc (see (5.2), (5.46)) that

means that all relevant dimensions need to be large compared to the crack-tip
opening displacement at the instant of crack initiation. In addition to (5.58)
the material must display a sufficient hardening to assure the dominance of a
J-controlled crack-tip field (see Sect. 5.4).
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5.7 Crack propagation

5.7.1 J–controlled crack growth

The loading of a crack in ductile metals under large-scale yielding conditions can
be increased to a multitude of the initiation value and this increase is accompanied
by a crack advance of a few millimeters (see also Sect. 4.8). Due to this crack
advance unloading processes take place, especially in parts of the plastic zone
behind the crack tip, which can not be properly described by the deformation
theory of plasticity. Hence also the requirements for the application of J are
not fulfilled. For small amounts of crack advance, however, J can, under certain
conditions, nevertheless represent a meaningful measure of the crack-tip loading
state. In such a case the fracture criterion

J = JR(∆a) (5.59)

holds also in the course of crack growth. Here, JR is the crack resistance (subscript
R) which depends on the amount of crack advance ∆a. JR(∆a) is called the J–
resistance curve of a material and its typical shape is schematically depicted in
Fig. 5.18a. The steep initial increase for J < Jc is solely due to blunting of the
crack tip by plastic deformations; it is called the blunting line. If we assume
that the crack extension caused by blunting is approximately half the crack-tip
opening displacement (∆a ≈ δt/2), the use of J = σ

Y
δt (see (5.2) and (5.46))

yields the coarse estimate for the blunting line

J ≈ 2σ
Y
∆a . (5.60)

For J ≥ Jc the blunting line is followed by the actual JR–curve where crack
extension takes place by material separation.

Figure 5.18b illustrates the situation at the crack tip for a crack extension
by ∆a. A J–controlled state can obviously prevail if the essential character
of the crack-tip field found at a stationary crack is only slightly disturbed by
the crack advance. For this to hold it is necessary that the characteristic size
of the unloading zone, i.e., the crack extension itself, is small compared to the
dimension of the J–controlled region: ∆a≪ R. More specific results concerning
the requirement of nearly proportional loading can be obtained if the change of
the crack-tip field is estimated from the HRR–field. Therefore we assume that
the stress field (5.33)

moves with the propagating crack tip (Fig. 5.18c). Due to an increase of the
loading by dJ and a crack-tip translation by da a material point experiences the
stress change
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Figure 5.18: J–controlled crack growth

Using
∂

∂x
= cosϕ

∂

∂r
− sinϕ

∂

r∂ϕ

this can be written in the from

dσij = C

(
J

r

) 1

n+1
{

dJ

J

[
σ̃ij(ϕ)

n+ 1

]
+

da

r

[
σ̃ij(ϕ)

n+ 1
cosϕ+

∂σ̃ij
∂ϕ

sinϕ

]}
. (5.61)

The first term in the braces characterizes a stress increase proportional to the
load increment dJ , i.e., proportional loading. This does not apply for the second
term which is caused by crack growth. If we note that the two terms are of the
same order of magnitude the second term can be neglected for those values of r
for which the condition

da

r
≪ dJ

J
(5.62)

holds. Then (5.61) describes nearly proportion loading. By J/l = dJ/da we
introduce a loading-dependent length l which for sufficiently steep increase dJ/da
is of the same order of magnitude as the crack advance (Fig. 5.18a). Therefore,
J–dominance and proportional loading hold inside the annular region given by
(see Fig. 5.18b)

l ≪ r < R . (5.63)
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Hence J–controlled crack growth can be expected as long as l ≪ R. Since the
spatial extension R of the dominant crack-tip field has to be small compared
to any relevant geometric dimension b of a specimen (e.g., the remaining cross
section in Fig. 5.17) and (5.59) must hold during crack propagation the above
condition may also be expressed by

5.7.2 Stable crack growth

Considerations concerning the stability of J–controlled crack growth are analo-
gous to those in Sect. 4.8. According to (5.59) the amount of crack advance is
determined from the “equilibrium condition”

J(F, a) = JR(∆a) .

The equilibrium state is stable if the condition

holds. Then the increase of crack resistance with increasing crack length exceeds
the change of the crack driving force caused by crack propagation. To maintain
crack growth in such a case it is necessary to increase J (Fig. 5.19a). Typically
this requires an increase of the external load F . With prescribed load the limit
for stable crack growth is reached at

If the dimensionless tearing modulus

according to P.C. Paris is introduced, the stability condition (5.65) can be written
in the form

T < TR . (5.68)

Now we want to derive dJ/da for the configuration given in Fig. 5.19b where
loading of the cracked body takes place via a linear spring with prescribed end
displacement uF . In contrast to the respective example in Sect. 4.8 here the body
can not be assumed to be linear elastic. It is appropriate to start from (5.52) and
with
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Figure 5.19: Stable crack growth

we get

J(F, a) =

F∫

0

∂uP
∂a

∣∣∣∣
F̄

dF̄ . (5.69)

Differentiation yields
dJ

da
=
∂J

∂F

dF

da
+
∂J

∂a
. (5.70)

If the condition (fixed displacement uF )

duF
da

=
∂uF
∂F

dF

da
+
∂uF
∂a

= 0 ;

dF

da
= − ∂uF/∂a

∂uF /∂F
= − ∂uP/∂a

CF + ∂uP/∂F

and the relation following from (5.69)

∂J

∂F
=
∂uP
∂a

are inserted into (5.70) this finally leads to

dJ

da

∣∣∣∣
uF

=
∂J

∂a

∣∣∣∣
F

−

(
∂uP
∂a

)2

CF + ∂uP
∂F

. (5.71)

For the special cases of a prescribed displacement uF in P (CF = 0) or dead
loading (CF → ∞) one obtains

dJ

da
=





∂J
∂a

∣∣∣
F
− ∂uP/∂a
∂uP/∂F

for CF = 0 ,

∂J
∂a

∣∣∣
F

for CF → ∞ .

(5.72)
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The actual determination of dJ/da for particular geometries is in general pos-
sible only with numerical methods. In case of the deeply cracked 3-point-bending
specimen from Fig. 5.17b subjected to prescribed displacement uF , however, a
simple relation can be found. Starting point is the approximation (5.57)

where J is taken per unit specimen thickness. Using (5.49) it follows that

Because of dJ/da < 0 crack growth under these circumstances is always stable.

5.7.3 Steady-state crack growth

5.7.3.1 Crack opening angle

The extension of a crack with large plastic zones is often possible far beyond
the limits of J-controlled growth. Even steady-state conditions may develop in
the vicinity of the crack tip after a sufficient amount of crack advance. Neither
during the transition between J-controlled and steady-state crack growth nor in
the steady-state regime can the crack-tip loading be characterized by J . Other
control parameters of the crack-tip state then have to be used which are sup-
posed to remain constant for steady-state crack growth. Based on experimental
results it has been proposed to employ the crack opening angle. This measure of
deformation can be introduced in two different ways:

1) The crack-tip opening angle CTOA is the current opening angle between
the crack faces in the vicinity of the crack tip (Fig. 5.20a). This definition bears
the advantage that CTOA and J are equivalent as long as a J–controlled state
prevails because then the displacement and correspondingly the angle are uniquely
determined by J . A disadvantage of CTOA, however, is that this quantity is
difficult to measure.

CTOA δ

δ+∆δ

∆a
a) b)

Figure 5.20: Crack opening angle
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2) The crack opening angle COA according to Fig. 5.20b is the change ∆δ
of the crack opening displacement at the original crack tip related to the crack
advance ∆a:

This parameter is easy to measure but its physical significance is questionable.

5.7.3.2 Crack-tip field

So far it has not been accomplished to a satisfactory extent to describe the entire
evolution of the elastic-plastic crack-tip field, starting from the situation at a
stationary crack tip via the transition regime until steady-state crack propagation.
For the steady-state case, however, solutions can be found which are based on
simple material models.

As an example we consider a crack which propagates at constant speed ȧ
in a perfectly plastic material. For simplicity we restrict the analysis to the
mode III case. Furthermore, we assume that the crack-tip motion is slow enough
(quasistatic) for inertia forces to be neglected. The basic equations with respect
to a fixed x, y–coordinate system are given in Sect. 1.5.3. It is appropriate to
transform these equations to a x′, y′–coordinate system which moves together
with the crack tip (Fig. 5.21).

a(t)

ϕ

ry

x

y′

x′

Figure 5.21: Crack growth: moving coordinate system

The relation between moving and fixed coordinates is given by

x′ = x− a(t) , y′ = y (5.75)

where a(t) is the crack length which depends on time t. For some arbitrary field
quantity F (x, y, t) = F (x′[x, a(t)], y′[y], t) it follows that

If we assume steady-state conditions the time derivative in the moving system
vanishes and
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Since from (5.76) the spatial derivatives are equal in both systems the yield
condition and the equilibrium condition (1.125) maintain their form in the moving
system. Only x and y have to be replaced by x′ and y′, respectively. As a
consequence, the slip lines and the stress distribution can be adopted unaltered
from the respective boundary value problem for a stationary crack in Sect. 5.3.1.1.
Therefore, also for the moving crack

hold inside the fan (see Fig. 5.4). The corresponding strain increments (see (5.14))
can also be adopted; here they are related to the time increment dt:

Therein γ̇ϕz(R) is regarded to be known along R(ϕ), e.g., from the outer elastic
field. For the integration of (5.79) use is made of (5.77). To simplify the analysis
we assume R(ϕ) = R0 and γ̇ϕz(R0) = Cȧ/R0. The cartesian components of the
strain rate then are

With
sinϕ = y′/r , cosϕ = x′/r , r2 = x′2 + y′2

and (5.77) it follows that

and after integration

where f1, f2, r0 remain undetermined. If we consider only the logarithmic term
in γyz which dominates for r → 0 the near tip strains can be represented as

γrz = −C ln r sinϕ , γϕz = −C ln r cosϕ . (5.81)

At a moving crack tip they display a logarithmic singularity which is weaker than
the 1/r–singularity at a stationary crack.

The respective analysis for a moving mode I crack is much more compli-
cated. Analogous to mode III it yields a logarithmic strain singularity and bounded
stresses. It turns out, however, that the Prandtl–field according to Sect. 5.3.1.2 is
not valid in the entire crack-tip region. In contrast to the stationary crack here a
wedge–shaped unloading region occurs in which the material behaves elastically
(Fig. 5.22). Similar unloading regions are obtained if the material is described
by a modified Ramberg-Osgood law with elastic unloading. Then not only the
strains but also the stresses display a logarithmic crack-tip singularity which de-
pends on the hardening exponent.
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Figure 5.22: Mode-I crack propagation in perfectly plastic material

5.7.3.3 Energy flux and J–integral

If inertia forces are neglected and only mechanical energy terms are considered,
then from (4.84)–(4.86) the energy flux −P ∗ across the boundary AP into the
process zone is

−P ∗ = −dWσ

dt
= P − Ė where P =

∫

∂V

ti u̇i dA , E =

∫

V

U∗dV . (5.82)

Here, ∂V denotes the total surface of the material volume V except the surface
AP which is the boundary of the process zone. The specific work of deformation
is described by

U∗ =

εkl∫

0

σij dεij =

t∫

0

σij
∂εij
∂τ

dτ =

t∫

0

σij u̇i,j dτ . (5.83)

Only for an elastic material it is independent of the deformation path and equal
to the strain energy density U (see Sect. 1.3.1.2).

In the following we consider the plane mode-I problem of a propagating
straight crack with traction-free crack faces and a process zone represented by
a point at the crack tip (Fig. 5.23). If the energy flux rate G∗ is introduced via

a(t)

x2

x1 x′1
CP

C

dc

nβ

x′2
C+

C−

A

Figure 5.23: Integration contours for energy flux into crack tip
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dWσ/dt = ȧ dWσ/da = −ȧ G∗ and if notation is changed according to AP → CP ,
A → C + C+ + C−, V → A then one obtains from (5.82) for the energy flux
across the boundary CP

ȧG∗ =

∫

C

ti u̇i dc−
d

dt

∫

A

U∗dA . (5.84)

Here it has already been taken into account that the crack faces C± are traction-
free. The contour CP with radius ρ is in the limit taken to be vanishingly small
(ρ → 0). The star at the energy flux rate G∗ indicates that in contrast to the
energy release rate G the energy flux is not necessarily connected with a change
of the potential energy of an elastic system because here the material behavior is
arbitrary, e.g., inelastic.

Since the contour CP moves with the crack tip (whereas C is fixed) the area A
changes with time. In the temporal derivative of the work of deformation therefore
the flux across CP has to be accounted for (Reynold’s transport theorem):

d

dt

∫

A

U∗dA =

∫

A

dU∗

dt
dA+ ȧ

∫

CP

U∗n1 dc . (5.85)

Using dU∗/dt = σij u̇i,j = (σij u̇i),j − σij,j u̇i, the equilibrium condition σij,j = 0
and the divergence theorem (where the crack faces C± yield no contribution since
ti = 0) this can be written as follows:

d

dt

∫

A

U∗dA =

∫

A

(σij u̇i),j dA + ȧ

∫

CP

U∗n1 dc

=

∫

C

σij u̇i nj dc +

∫

CP

σij u̇i nj dc+ ȧ

∫

CP

U∗n1 dc .

Insertion into (5.84) yields

ȧG∗ = −
∫

CP

(ȧ U∗n1 + ti u̇i) dc . (5.86)

In order to obtain a more appropriate representation we employ a transfor-
mation to the moving x′1, x

′
2–coordinate system and consider from now on the

contour C and the area A likewise to move with the crack tip. The velocity u̇i
in (5.86) then has to be computed according to (5.76). Thereby we may assume
that the displacement ui(r, ϕ, t) is regular (bounded) at the crack tip (r → 0)
while its spatial derivatives (strains) are singular. Hence the second “convective”
term (see right-hand side of (5.76)) locally always dominates and u̇i = −ȧ ui,1
like in the stationary case (“local stationarity”). The energy flux rate thus reads

G∗ = −
∫

CP

(U∗n1 − ti ui,1) dc . (5.87)
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If we now apply the divergence theorem to the area A with boundary C + CP +
C+ + C− (C± again yields no contribution) and if we introduce by

J∗ =

∫

C

(U∗n1 − ti ui,1) dc =

∫

C

(U∗δ1β − σiβ ui,1)nβ dc (5.88)

the modified J–integral, it follows that

G∗ = J∗ −
∫

A

(U∗
,1 − σij ui,j1) dA . (5.89)

According to (5.89) the energy flux rate can in general not be represented by a
path-independent contour integral J∗; an additional area integral rather has to
be considered. If, however, the contour C is shrunk to the crack tip the area
integral vanishes and

G∗ = lim
ρ→0

∫

C

(U∗n1 − ti ui,1) dc . (5.90)

This coincides with (5.87); the difference in sign is due to the different orientation
of the integration paths.

In the special case of stationary conditions the area integral in (5.89) always
vanishes. This is so because from (5.77) and (5.83) it follows that U∗

,1 = −U̇∗/ȧ =
−σij u̇i,j/ȧ = σij ui,j1 and hence we get

G∗ = J∗ . (5.91)

Irrespective of the material behavior the energy flux rate can then be expressed
by the J∗–integral (5.88) where the contour C is arbitrary (path-independence).
This integral differs from the J–integral (4.107) in that J∗ contains the specific
work of deformation U∗ instead of the strain energy density U .

y′

C

−ε +ε x′

Figure 5.24: Determination of G∗

As an example we consider crack propagation in a perfectly plastic material.
In this case the stresses in the vicinity of the crack tip (r → 0) are bounded
while the strains display a logarithmic singularity: σiβ ∼ σ

Y
, ui,1 ∼ ln r (see
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Sect. 5.7.3.2). If the contour C is chosen according to Fig. 5.24 one obtains the
following result from (5.90)

G∗ ∼ lim
ε→0

2σ
Y

+ε∫

−ε

ln |x′|dx′ = lim
ε→0

2σ
Y

[x′(ln x′ − 1)]
+ε
−ε = 0 . (5.92)

That means that in a perfectly plastic material no energy flux takes place into the
crack tip. Hence no energy is available for some dissipative process of material
separation in the process zone. The source of this “paradox” obviously is the too
strong simplification of the process zone being only a point in conjunction with
a perfectly plastic material behavior.

5.8 Essential work of fracture

Under large scale yielding conditions, size requirements such as (5.58) for the
characterization of a material’s fracture resistance in terms of Jc are often difficult
to fulfill. This is especially so if tests (for practical reasons) are performed on
thin sheets and if the material is very ductile and displays not much hardening.
The definition and measurement of the crack tip opening displacement (Sect. 5.4)
or the crack (tip) opening angle (Sect. 5.7.3.1), on the other hand, suffer from
some arbitrariness. In contrast to these local quantities, the essential work of
fracture (EWF) concept is based on global energetic considerations and tackles
the problem of fracture toughness characterization not from initiation (and some
period beyond) but from the other extreme of a completely fractured specimen.
It has been developed by K.B. Broberg, B. Cotterell, J.K. Reddell and Y.-W. Mai

and is mainly used as a pragmatic approach of obtaining fracture toughness data
for thin ductile metal sheets or ductile polymers.

The work expended during complete fracture of a specimen, i.e., the total
fracture work Wf , is given by the area under the recorded load displacement
curves in Fig. 5.25a. It depends on the specimen geometry (e.g., the ligament
length l) and hence cannot be taken as a measure of the material’s fracture
toughness. The key assumption underlying the essential work of fracture concept
is that Wf can be partitioned into two parts which scale differently with the
ligament length l. A prerequisite for this is that prior to fracture the whole
ligament has yielded and that the plastic zone (bright grey in Fig. 5.25b) fully
comprises the fracture process zone (dark grey in Fig. 5.25b). The total work of
fracture for a specimen of thickness B then can be written as

Wf = weB l + β wpB l2 (5.93)

where the first term on the right hand side is the work dissipated in the fracture
process zone (Bl = area of fracture surface) and the second term is the work not
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Figure 5.25: a) Self-similar load displacement curves for ductile fracture,
b) plastic zone and fracture ligament in double-edge notch tension (DENT)
specimen

directly associated with fracture but dissipated in the surrounding plastic zone.
The size of the latter in the specimen plane is proportional to l2, and β is a shape
factor. In (5.93) wp is the specific (per volume) plastic work while we is called the
specific (per area) essential work of fracture since it is consumed per unit fracture
area in the immediate fracture process (Fig. 5.25b).

In thin specimens of ductile materials yielding and fracture take place approx-
imately under plane stress conditions and the situation sketched in Fig. 5.25b is
typically met. The in-plane width of the fracture process zone then is of the
order of the specimen thickness B since the fracture process involves through-
thickness-slip and necking down of the ligament (see also Fig. 4.39). That means
that we depends on the specimen thickness. For a given thickness, however, it
is approximately constant and independent of the specimen geometry. In or-
der to determine we a series of geometrically similar specimens of different size,
i.e. different ligament lengths, but fixed thickness have to be tested which leads
to self-similar load displacement curves as sketched in Fig. 5.25a. If the resulting
values of the total fracture work Wf are devided by the fracture area Bl and
are plotted against the ligament length l (see Fig. 5.26) an approximately linear
relation is obtained according to

Wf

B l
= we + β wp l . (5.94)

The specific essential work of fracture we hence is found as the ordinate intercept
for l → 0.
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data (◦)
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6 Creep fracture

6.1 Introduction

Various materials display a time-dependent behavior which is the source of phe-
nomena such as creep or relaxation. These processes typically take place qua-
sistatically, i.e., so slow that inertia forces do not play any role. If a component
made of such a material contains a crack and is loaded, time-dependent defor-
mations occur especially in the vicinity of the crack tip due to the locally high
stresses. This may cause a delay of crack initiation until some critical crack-tip
deformation is attained. Creep of the material at the crack tip, however, may
also lead directly to creep crack growth.

Typical examples for materials showing such a behavior are polymers at room
temperature or steels above approximately 30% of their melting temperature. De-
spite similar macroscopic phenomena the micromechanisms underlying fracture
of these materials are distinctly different. Thermally induced creep of metals is
connected with void growth at grain boundaries. In the vicinity of a macroscopic
crack tip this leads to the formation of microcracks and ultimate fracture takes
plays by their coalescence. Fracture of glassy polymers (e.g., PMMA) in contrast,
is preceded by the formation of an elongated craze zone ahead of the crack tip.
This thin and porous layer of about a micron thickness and up to several millime-
ters length consist of fibrils of highly stretched macromolecules in the direction of
maximum principal stress (perpendicular to the craze zone). Fracture then takes
place by scission of the macromolecules or their pull-out from the bulk material.
While the macroscopic behavior of polymers outside the process zone can usually
be described as linear viscoelastic the adequate modeling of the creep of metals
generally requires nonlinear constitutive laws. As in case of plasticity, we will
keep the description as simple as possible (see Sect. 1.3.2.1).

As already mentioned, creep is especially pronounced at a crack tip. In certain
cases the time-dependent inelastic behavior is restricted even to the immediate
vicinity of the crack tip, whereas the material can otherwise be regarded as lin-
ear elastic. Small-scale creep conditions prevail if the creep zone is sufficiently
small; the crack-tip state then can be characterized by parameters of linear elastic
fracture mechanics such as KI . These parameters, however, may now be time-
dependent. Parameters of linear elastic fracture mechanics can also be employed
in case of creep in larger regions (e.g., creep of a whole component) provided that
the material can be described as linear viscoelastic. In case of nonlinear mate-
rial behavior parameters based on integral quantities are useful and frequently
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applied, for instance the C– or C∗–integral, which are closely related to the J–
integral of elastic-plastic fracture mechanics.

6.2 Fracture of linear viscoelastic materials

6.2.1 Crack-tip field, elastic-viscoelastic analogy

To begin with, in the present section we focus our attention on stationary cracks
in linear viscoelastic media. Solutions of respective boundary value problems
can often be directly derived from the solution of the corresponding elastic prob-
lem. The Laplace-transformed solution of a viscoelastic boundary value prob-
lems is obtained when in the elastic solution the elastic constants are replaced
by Laplace-transformed creep or relaxation functions (see Sect. 1.3.2.1). If the
solution of the elastic problem does not contain any elastic constants then the
viscoelastic solution likewise does not depend on creep or relaxation functions,
hence it entirely coincides with the elastic solution.

This holds, for instance, for the stress field at the tip of a statioary crack.
The respective equations in (4.6), (4.14), and (4.15) from linear elastic fracture
mechanics are also valid in the viscolelastic case where the stress intensity factors
may now depend on time according to the external loading. The displacements at
the crack tip, however, which in the elastic solution depend on elastic constants
can not be directly transferred to the viscoelastic case. Another example are
bodies subjected to prescribed tractions along their entire boundary. Also in
this case the viscoelastic and elastic stress distributions are equal. For multiply
connected domains (e.g., containing internal cracks) one has to ensure in addition
that the loading on interior boundaries is in equilibrium. K–factors for cracked
viscoelastic bodies under prescribed loading hence can be directly adopted from
the elastic case.

The determination of viscoelastic stresses and deformations is strongly facil-
itated if one assumes that Poisson’s ratio ν is constant (like in elasticity) which
approximately applies to many polymers. Two important situations then are
distinguished:

1.) If a body is subjected to prescribed forces of the type Fi = F̂i f(t) where
the temporal variation is the same for all forces, then the viscoelastic and elastic
stresses are equal: σij = σ̂ij f(t). This also holds for the stress intensity factors.
The viscoelastic deformations are obtained from the elastic ones by replacing the
shear modulus according to:

(Note, that in this section Jd(t) and J(t) denote creep functions and are not to
be confused with the J-integral!)
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2.) If a body is subjected to prescribed displacements of the type uRi = ûRi u(t)
along part of its boundary while the remaining part of the boundary is traction-
free then the viscoelastic and elastic deformations are equal: ui = ûi u(t). The
viscoelastic stresses and stress intensity factors follow from the respective elastic
quantities by replacing the shear modulus according to:

If (6.1) is applied to the crack-tip field (see (4.6), (4.14), (4.15)) it turns
out that the viscoelastic and elastic displacements differ only by their temporal
variation; the spatial distribution remains the same.

In the special case where the loading (forces or displacements) is applied at
time t = 0 and kept constant afterwards it follows from (6.1) or (6.2), respectively,
that

1/G→ Jd(t) , G→ G(t) . (6.3)

The relaxation function G(t) then varies between the instantaneous modulus
G(0) = Gg and the equilibrium modulus G(∞) = Ge (see Fig. 1.6). The same
holds for the creep function Jd(t). Hence the upper and lower limits of the stresses
and deformations are readily obtained.

As an example, we consider the configuration depicted in Fig. 6.1a (see also
DCB–specimen, Sect. 4.6.3) with the viscoelastic behavior approximated by the
linear standard material. The latter can be illustrated by the rheological (“spring-
dashpot“) model in Fig. 6.1b. If we assume Je = 3Jg and Ge = Gg/3 with
Jg = 1/Gg the creep and relaxation functions are

Here, τG and τJ = τGGg/Ge = 3τG denote the relaxation time and the retardation
time of the material. The elastic solution of the problem in plane stress yields
for the stress intensity factor K and the crack opening displacement (CTOD)
δ = v+ − v− the results

If the viscoelastic body is loaded by a constant force F at time t = 0 the K–factor
is constant as well. The temporal variation of the CTOD is obtained from (6.5)
by replacing 1/G by J(t):
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Figure 6.1: a) DCB-specimen, b) standard material, c) F = const, d) uF= const

Accordingly, δ increases with time and tends for t→ ∞ to three times its instan-
taneous value (Fig. 6.1c).

In contrast, if loading takes place by a constant displacement uF at t = 0 the
CTOD remains constant and changes with time. Its variation follows from (6.5)
after replacing G by G(t):

δ = 2
√

3
uFh

3/2

a2

√
r

2π
,

K(t)

K(0)
=
G(t)

G(0)
= 1 + 2e−t/τG . (6.7)

In this case the K–factor decreases and tends for t → ∞ to one third of its
instantaneous value (Fig. 6.1d).

6.2.2 Fracture concept

The spatial structure of the stress and displacement field at a crack tip in a
viscoelastic material is the same as in the elastic case but their temporal variation
is generally different. While the stresses are determined byK(t) the displacements
are controlled by δ(t). In the example of the preceding section the displacements
and thus δ(t) were increasing at constant stress (K =const). Conversely, the
stresses and K(t) decreased with time at fixed displacements (δ =const). Hence
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the crack tip and the actual loading of the crack tip are not solely governed by
the stress intensity factor but by the current values of K and δ.

Moreover, because of the time-dependent material behavior it can not be ex-
pected that the state in the process zone is determined only by the current crack-
tip field. It rather depends on the history of the crack-tip loading as confirmed
by experimental investigations. The latter show, for instance, a clear dependence
of the fracture load on the loading rate for many viscoelastic materials. The
loading rate is regarded to be high if the time T of load increase until failure is
small compared to the characteristic relaxation time: T ≪ τG. In that case creep
and relaxation effects do not play any role and the material behaves according to
instantaneous elasticity. Damage mechanisms such as void growth at the crack
tip hardly occur and fracture takes place in a brittle manner. If, however, the
loading rate is low (T ≫ τG) the material in the process zone relaxes or creeps
and the damage process at the crack tip can take place as if it were temporally
unrestricted.

Whether and when a critical state in the process zone is reached thus depends
on the temporal variation of the crack-tip loading. The fracture criterion then
may formally be written as

where the symbol F denotes the dependence on the loading history. Because
of the lack of experimental data this dependence is often ignored. It is then
replaced by the simplifying assumption that the state in the process zone is solely
characterized by the current crack tip deformation, i.e., by δ. This hypothesis is
supported by the observation that deformation is often also a suitable measure
of the damage state in a viscoelastic material. Instead of δ which depends on
the distance r from the crack tip (see (6.5)) it is more appropriate to use a well-
defined crack-tip opening displacement δt (e.g., by 45◦ intersections with the crack
opening profile, see Fig. 5.14). The simplified fracture criterion then reads

It states that crack initiation takes place when δt(t) attains a material-dependent
critical value δtc.

From the fracture criterion (6.9) the initiation time ti (time of failure) can
be determined at which crack propagation starts after the instant of loading. As
an example, we consider again the DCB–specimen subjected to constant load
and with the constitutive law of a linear standard material (Fig. 6.1a,c). The
temporal variation of δt is given by (6.6). Insertion into (6.9) yields the initiation
time

The use of the parameters δt(t) or K(t) in the fracture concept requires that
the size condition holds. That means that the region where the crack-tip field
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determined by these parameters dominates must be large compared to the pro-
cess zone (see Sect. 4.3). Frequently the process zone is simply regarded as a
plastic zone where yielding takes place and the stresses are bounded. The term
small-scale yielding from linear elastic fracture mechanics then is also used in the
viscoelastic case.

6.2.3 Crack propagation

Crack initiation in viscoelastic materials need not directly lead to failure of a
component. The reason is that the crack initially grows very slowly, i.e., creeping.
In a component under fixed loading the crack growth rate then increases and
only at some critical crack length the crack becomes “unstable” (unlimited crack
speed).

This is investigated here for a crack in plane stress where similar to the Dug-
dale model the process zone is modelled by a strip with yield stress σ0 (Fig. 6.2).
Under the assumption of small-scale yielding the strip length d has to be small
compared to all other dimensions, i.e., the crack length can be regarded to be in-
finitely large compared to d. In case of an elastic material the following relations
hold for the strip length d, the crack opening δ inside the strip, and the crack-tip
opening displacement δt (see (5.7), (5.8))

With the crack-tip loading prescibed by KI these quantities are uniquely deter-
mined.

δ

y

x δt
σ0

d

r

Figure 6.2: Crack tip under small-scale yielding

The corresponding viscoelastic solution for a stationary (i.e., noncreeping)
crack subjected at time t = 0 to some load KI which is afterwards kept constant



Fracture of linear viscoelastic materials 179

can directly be derived from (6.11) through (6.13). According to (6.3) therefore
only 1/G has to be replaced by the creep function Jd(t). This does not affect the
strip length d, whereas the crack opening displacement inside the strip and at the
crack tip now is time-dependent:

Crack initiation takes place when δt attains the critical value δtc after the initiation
time ti.

In the following we consider the quasistatically growing crack according to
Fig. 6.3 where during the time t1 the whole yield strip moves through some
point x. Since small-scale yielding is assumed the strip length d and the crack
growth rate ȧ can be taken constant during this time interval such that d = ȧ t1.

d

y

y

x

y

x

x

x

ȧt

δt=δ(x, t1)

δ(x, t)

σ0

t= t1

t

t = 0

d= ȧt1

Figure 6.3: Crack propagation

The crack opening displacement δ(x, t) inside the strip is computed using (6.14)
and by modelling the motion of the strip in the time interval 0 ≤ τ ≤ t by a
succession of infinitesimally neighboring configurations:
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With δt = δ(x, t1) and the new variable ξ = 1 − ȧ τ/d the crack-tip opening
displacement is given by the representation

From this relation in conjunction with the fracture criterion (6.9) which must
hold during crack propagation the crack growth rate ȧ can be calculated. In
many cases it is sufficient to approximate the creep function by the power law

where Jg is the instantaneous compliance and Jn and n are constants. Insertion
into (6.17) together with (6.9) yields

where

is a constant. By solving (6.19) for ȧ with (6.11) and

one finally obtains

For some given loading KI of the crack and known material parameters thereby
the crack growth rate ȧ is determined. According to (6.22) it increases without
limit (ȧ → ∞) when KI tends to KIg. The limit value KIg may be interpreted
as the “instantaneous fracture toughness”; according to (6.21) it depends only
on the instantaneous compliance Jg and not on the whole creep function (6.18).
Figure 6.4 shows ȧ as a function of KI for n = 1/2.

Equation (6.22) allows to compute the creep time tc needed by a crack to grow
from its initial length a0 to the critical length ag at which ȧ tends to infinity.
This is illustrated from the simple example of an infinite plate with a crack under
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Figure 6.4: Crack growth rate (n = 1/2)

tensile loading σ depicted in Fig. 6.5. In this case KI = σ
√
πa and KIg = σ

√
πag.

Hence the critical crack length is

ag =
K2
Ig

πσ2
(6.23)

and (6.22) yields

ȧ =
π

8

(
JnPn
Jg

)1/n K2
Ig

σ2
0

[a/ag]
(n+1)/n

[1 − a/ag]
1/n

. (6.24)

Separation of variables and integration from the initial crack length a0 to the
critical crack length ag leads to

tc =
8

π2

(
Jg
JnPn

)1/n (σ0

σ

)2
1∫

a0/ag

[1 − a/ag]
1/n

[a/ag]
(n+1)/n

d(a/ag) . (6.25)

Figure 6.5: Creep time (n=1/2)
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According to (6.25) the creep time tc decreases with increasing loading σ and
initial crack length a0; the result is shown in Fig. 6.5 for n = 1/2.

It has to be noted that creep crack growth here has been regarded to take
place quasistatically because of the low crack speed. However, for ȧ → ∞ the
assumption of creep crack growth and the above results are no longer valid. One
then has to consider fast crack growth where inertia forces can not be neglected
(see Chap. 7).

6.3 Creep fracture of nonlinear materials

6.3.1 Secondary creep, constitutive law

Creep of metals under constant load is divided into three stages (see Sect. 1.3.2.2).
Immediately upon loading primary creep sets in which is characterized by a de-
creasing strain rate. This regime is followed by secondary creep where steady-
state conditions prevail and the creep rate is constant. During tertiary creep the
creep rate then increases due to progressive damage of the material until ultimate
failure.

Investigations in the present section focus on the initiation and growth of
cracks in bodies undergoing secondary creep. Depending on the situation the
creep region can be restricted to the vicinity of the crack tip (= small-scale creep)
or it may encompass the entire body.

b)a)

σ σ

B, nE εv=Bσnt

εe=σ/E

ε

t

Figure 6.6: Material behavior at secondary creep

The material behavior is approximated by a nonlinear Maxwell model with
the uniaxial constitutive law given by

ε̇ =
σ̇

E
+Bσn . (6.26)

According to the spring-dashpot model shown in Fig. 6.6a the strain rate is
additively composed by the elastic part ε̇e = σ̇/E and the nonlinear viscous part
(creep rate) ε̇v = Bσn where B and n > 1 are constant material parameters. The
creep curve corresponding to a constant stress σ applied at time t = 0 is depicted
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in Fig. 6.6b. In this case stationary conditions prevail with σ̇ = 0 and ε̇e = 0 and
(6.26) reduces to Norton’s creep law

ε̇ = ε̇v = Bσn (6.27)

(see (1.65)). The instantaneous behavior (t → 0) is purely elastic. Subsequently
the creep strain increases linearly with t and at time t = 1/(EBσn−1) the creep
strain equals the elastic strain (εv = εe). After a sufficient amount of time we
have εv ≫ εe and the elastic strain can be neglected; for larger stress σ this state
is reached earlier. The constitutive law (6.26) reduces to (6.27) even in case of a
temporally varying stress provided that Bσn ≫ σ̇/E. This holds when σ is very
large (e.g., at a crack tip) and does not change too fast.

Using (1.39) and (1.71) the three-dimensional generalization of (6.26) reads

ε̇ij = ε̇eij + ε̇vij = − ν

E
σ̇kkδij +

1 + ν

E
σ̇ij +

3

2
B σn−1

e sij (6.28)

where sij = σij − 1
3
δijσkk and σe = (3

2
sijsij)

1/2. Here it has been assumed that
the creep strain can be derived from a flow potential and that creep takes place
incompressibly (ε̇vkk = 0). If the elastic strains are negligible (6.28) reduces to

ε̇ij =
3

2
B σn−1

e sij . (6.29)

In this case the analogy between nonlinear elastic behavior and creep according
to Sect. 1.3.2.2 holds. That means that all relations and solutions obtained for
a nonlinear elastic material with (1.57) or (5.29), respectively, can be transferred
to creep processes with the constitutive law (6.29) simply by replacing the strains
by strain rates.

It should be mentioned here that a nonlinear material behavior of the type
(6.26) or (6.28) is in the literature often referred to as a viscoplastic behavior.

6.3.2 Stationary crack, crack-tip field, loading parameters

We consider a stationary crack in a component with the material behavior ac-
cording to (6.28). The loading is arbitrary, i.e., it may be time-dependent or
constant. The stress field at the crack tip (r → 0) is expected to be singular
of the type σij(r, ϕ, t) = rλσ̃ij(ϕ, t) where the exponent λ < 0 is unknown. By
insertion into (6.28) one realizes that the elastic strain is negligible compared to
the creep strain. Hence the material behavior in the vicinity of the crack tip can
be described by (6.29) and the solution for the crack-tip field is analogous to the
corresponding elastic solution. The latter is given by the HRR-field discussed in
Sect. 5.3.2. By changing the notation αε0σ

n
0 → B, εij → ε̇ij, ui → u̇i, J → C(t)
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one thus obtains from (5.34):

The parameter I(n) and the angular functions σ̃ij(ϕ) are given by the respective
quantities in Sect. 5.3.2 and the structure of the field (6.30) corresponds exactly
to the HRR-field. Here, the time-dependent loading parameter is C(t); in analogy
to (5.32) it can be expressed by the contour integral

C(t) = lim
r→0

+π∫

−π

[Dn1 − σiβ u̇i,1 nβ] rdϕ (6.31)

(see Fig. 5.10) where the specific strain energy rate D is given by (1.72). The
integration contour has to lie entirely inside the crack-tip field since only there
the constitutive law (6.29) is valid. Hence the C(t)-integral is in general not path-
independent. The determination of C(t) for a particular crack configuration and
given loading requires the solution of the time-dependent boundary value problem
for the complete component with the constitutive law (6.28). Generally, this is
possible only by numerical methods. The field quantities in the vicinity of the
crack tip then allow the computation of the crack-tip loading parameter from
(6.31).

In the following we assume that the loading of the component is constant in
time. As a consequence, a state of stationary creep develops in the component
after sufficiently long time (σ̇ij = 0 for t → ∞) and the elastic strains can be
neglected. Then (6.29) and the analogy with the elastic case hold not only at the
crack tip but throughout the entire body. Hence the crack-tip field is again given
by (6.30) where the loading parameter is now time-dependent:

C∗ = C(t→ ∞) . (6.32)

It can be computed from the contour integral

C∗ =

∫

C

[Dn1 − σiβ u̇i,1 nβ] dc (6.33)

which in contrast to (6.31) is path-independent (like the J-integral). Some further
relation can be transferred from the elastic problem. For instance, from the
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representation (5.49) for J the analogous representation for C∗

C∗ = −dΠ̇ i

da

∣∣∣∣∣
u̇F

(6.34)

is obtained where

Π̇ i =

u̇F∫

0

Fdu̇F . (6.35)

Moreover, all solutions for specific crack problems can of course be adopted (see
Sects. 5.5 and 5.6).

Now the evolution of the crack-tip field in a component subjected to some
constant load at time t = 0 is investigated. The instantaneous behavior is purely
elastic and at the crack tip hence a K-controlled field initially prevails with a
region of dominance characterized by RK in Fig.6.7a. Inside this elastic crack-
tip field a creep zone develops for t > 0 with a characteristic radius ρ and a

t < t ≤ t1t = 0

r r

K–controlled fieldK–controlled field

t→∞t > t1

rr

C∗–controlled fieldC(t)–controlled field

RK

RC

RK

ρ
RC

RC∗

d)

b)

c)

a)

creep zone

C(t)–controlled field

Figure 6.7: Temporal evolution of the crack-tip field
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C(t)-controlled field with a radius of donimance RC (Fig. 6.7b). Both ρ and RC

increase with time. Outside the creep zone the creep strains are so small that
they can be neglected compared to the elastic strains. Small-scale creep conditions
prevail as long as ρ ≪ RK , for instance, up to some time t1. During this short
period the crack-tip loading can be characterized by the constant K-factor. For
t > t1 and an increasing creep zone the situation turns into large-scale creep and
the crack-tip state is controlled by the field governed by C(t); see Fig. 6.7c. For
t→ ∞ a state of stationary creep develops throughout the whole component and
the crack-tip loading is given by C∗ (Fig. 6.7d).

The evolution of the creep zone during the short period of small-scale creep
can easily be estimated. Therefore, we assume that the boundary ρ of the creep
zone is approximately determined from the condition εve = εee for the equivalent
strain on the ligament and that outside the creep zone the temporally constant
stress distribution of the K-controlled field prevails. From the constitutive law
(see Sect. 6.3.1) then the characteristic time

follows. At this time the creep zone reaches some point where the so far constant
equivalent stress σe is given by the K-field. In the following we neglect the
transition region in Fig. 6.7b between the K-controlled and the C-controlled field
by setting RC = ρ. The stresses then are given by (4.21) outside the creep zone
and by (6.30) inside the creep zone:

At the boundary r = ρ between the two regions they must be of the same order
of magnitute:

Using (6.36) and (6.37) this leads to the following time dependencies of the size
ρ(t) of the creep zone and of C(t)

where αi are dimensionless constants of order unity. A rough estimate of the time
t1 until which small-scale creep prevails may be obtained by setting C(t1) ≈ C∗:



Creep fracture of nonlinear materials 187

Finally, we briefly investigate the onset of crack growth. Therefore, we make
use of the simple fracture criterion (6.9) δt = δtc where δt denotes the crack
opening displacement at some distance rc from the crack tip. For sufficiently
high loading crack initiation takes place already in the initial stage of small-scale
creep. From (6.30) and (6.39) then

Time integration and insertion into the fracture criterion yields the initiation time

which is inversely proportional to K2n. For sufficiently low loading, in contrast,
crack initiation takes place when a state of stationary creep has developed in the
component and the crack-tip loading parameter is C∗. (6.30) then yields

and time integration in conjunction with the fracture criterion leads to the initi-
ation time

In this case it is inversely proportional to C
∗ n
n+1 .

6.3.3 Creep crack growth

6.3.3.1 Hui-Riedel field

After initiation crack propagation proceeds by creep. In order to describe this
process we first analyze the crack-tip field. Steady-state conditions and a plane
stress state are assumed. For the derivation which is similar to that of the HRR-
field (see Sect. 5.3.2) it is appropriate to employ a coordinate system moving with
the crack as depicted in Fig. 5.21. If the constitutive law (6.28) is inserted into
the compatibility condition (5.36) and use is made of (5.76) one obtains
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where
σ =

(
σ2
r + σ2

ϕ − σrσϕ + τ 2
rϕ

)1/2
(6.46)

and

∂

∂x′1
= cosϕ

∂

∂r
− sinϕ

∂

r∂ϕ
, ∆ =

∂2

∂r2
+

1

r2

∂2

∂ϕ2
+

1

r

∂

∂r
. (6.47)

The Airy stress function φ(r, ϕ) with the definitions (5.39) is introduced which
identically satisfies the equilibrium conditions. With the representation

φ = Ars φ̃(ϕ) (6.48)

for the crack-tip field it then follows from (6.45) that

ȧ

E
rs−3D1(φ̃) +BAn−1rn(s−2)D2(φ̃) = 0 (6.49)

where

The first term on the left-hand side of (6.49) describes the elastic part and the
second one represents the creep part of the crack-tip field. In order to determine
the unknown exponent s we proceed from the hypothesis that the first term, i.e.,
the elastic strain, is negligible. This leads to exactly the same relations as in case
of a stationary (non-propagating) crack. According to (6.30) the corresponding
crack-tip field then is of the HRR-type with σij ∼ r−1/(n+1) and φ ∼ r(2n+1)/(n+1);
the exponent s in this case is s = 2n+1

n+1
. This is inserted into (6.49) in order to

verify the above hypothesis. The first term then is of the type r−(n+2)/(n+1) and
the second one is of the type r−n/(n+1). For r → 0 the first term dominates which
contradicts the assumption. In contrast to the situation of a stationary crack
hence the elastic strains can not be neglected in case of a propagating crack.

Conversely, we now assume that the creep part in (6.49) can be neglected
compared to the elastic part. This leads to an elastic crack-tip field with σij ∼
r−1/2, φ ∼ r3/2 and s = 3/2. If this again is inserted into (6.49) to check the
hypothesis it turns out that the first term is of the type r−3/2 while the second one
is of the type r−n/2. For n < 3 the first term indeed dominates at the crack tip
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(r → 0) in agreement with the assumption. In this case hence the elastic crack-
tip field prevails which is given by (4.14) for mode I (see Sect. 4.2.2). However,
n ≥ 3 leads to a contradiction to the assumption since then both terms are of
the same order of magnitude (n = 3) or, respectively, the second term dominates
(n > 3).

From the preceding considerations it can be concluded that for n > 3 both
terms in (6.49) must have the same asymptotic behavior for r → 0. Therefore,
it follows that s− 3 = n(s− 2) or s = 2n−3

n−1
. The amplitude A may now without

loss of generality be fixed by A = (ȧ/EB)1/(n−1). Thereby (6.49) reduces to the
fifth order ordinary differential equation

D1(φ̃) +D2(φ̃) = 0 (6.51)

for the unknown function φ̃(ϕ). Four boundary conditions are for mode I given by
(5.43); a further condition is the regularity of the solution at ϕ = 0. The solution
of (6.51) subject to these boundary conditions can be obtained by numerical
integration. Then the stress function and hence the stresses and strains in the
crack-tip region (r → 0) are uniquely determined. They are of the general form

σij =

(
ȧ

EB r

) 1
n−1

σ̃ij(ϕ) ,

εij =
1

E

(
ȧ

EB r

) 1
n−1

ε̃ij(ϕ) .

(6.52)

Named after C.Y. Hui and H. Riedel who intensively studied creep crack growth
this field is called Hui-Riedel field. In contrast to the situation of a stationary
crack (HRR-field) the stresses and strains of the Hui-Riedel field display the same
asymptotic behavior.
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σϕτrϕ
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ε̃r

ε̃rϕε̃ϕ

σ̃

Figure 6.8: Hui-Riedel field, angular distribution of field quantities (plane stress,
n = 5)
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In Fig. 6.8 the angular distribution of the stresses and strains is depicted for
the case n = 5. It should be noted that the quantities σ̃, ε̃, ε̃ϕ are unbounded
when approaching the crack faces (ϕ→ ±π). This has to be understood to result
from the strain history a material point close to the x-axis experiences during the
passage of the crack tip. Another important feature of the field (6.52) is that its
amplitude is determined solely by the crack-tip speed ȧ and the material param-
eter EB. In contrast to the HRR-field here the amplitude does not explicitely
depend on the external loading or the geometry of the body.

In deriving the crack-tip field we have assumed steady-state conditions, i.e.,
ȧ = const. This is not strictly necessary; rather the results are valid also in
the transient case (ȧ 6= const). This can be seen from the time derivative of
(6.48) which is according to (5.76) in the general (transient) case given by φ̇ =
(∂φ/∂t)−ȧ(∂φ/∂x′1). Using (6.47) the first term is of the type rs while the second
one is of the type rs−1. Correspondingly, the asymptotic behavior of φ̇ for r → 0
is in the transient case as well as under steady-state conditions solely governed
by the second term, i.e., by the relation (5.76) used above.

Analogous considerations can of course be performed for plane strain and for
mode II. The structure of the crack-tip field (6.52) then remains the same.

6.3.3.2 Small-scale creep

In the following we consider crack propagation under the condition of small-scale
creep. Furthermore, we assume n > 3 and, as in the preceding section, a plane
stress state. The situation which then prevails in the vicinity of a crack tip is
schematically sketched in Fig. 6.9. The creep zone with a characteristic radius ρ
is embedded in the K-controlled field with a radius of dominance RK ≫ ρ. Inside
the creep zone, close to the crack tip, the Hui-Riedel field is found with a radius
of dominance RHR.

r

Hui-Riedel field

creep zone

RHR

ρ

ȧ

K-controlled field

RK

Figure 6.9: Crack propagation in case of small-scale creep, n > 3
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The exact determination of the field in the transition region between the K-
controlled field and the Hui-Riedel field is only possible by numerical methods.
Here we are satisfied with an approximate solution which nevertheless allows to
study all essential features. We proceed in a similar way as in case of small-scale
creep at a stationary crack (see Sect. 6.3.2). In order to compute the size ρ of
the creep region we first assume that this boundary is approximately determined
from the condition εve = εee for the equivalent strain on the ligament and that
outside this boundary the stress distribution of the K-controlled field is valid.

From the latter the equivalent stress on the ligament is in plane stress given by
σe = K/

√
2πr. Using (6.26) and noting that (.)· = −ȧ ∂(.)/∂r (on the ligament

x1 = r) then leads to

εee =
σe

E
=

K

E
√

2πr
,

−ȧ ∂εe
v

∂r
= B σne =

BKn

(2πr)n/2
→ εve =

2BKn

(2π)n/2(n− 2)ȧr(n−2)/2
.

(6.53)

The integration of εve here is performed in the limits from RK → ∞ to r. Equating
the two equivalent strains at r = ρ yields

ρ =

[
2

(2π)(n−1)/2(n− 2)

EBKn−1

ȧ

] 2
n−3

(6.54)

and

εve(ρ) = εee(ρ) =
1

E

[
π(n− 2)

ȧ

EBK2

] 1
n−3

. (6.55)

In the following we again neglect the transition region between the K-controlled
field and the Hui-Riedel field by setting ρ = RHR. From (6.53) and (6.52) the
creep strain then is given by

εve(r) = εve(ρ)





(ρ
r

)n−2
2

r ≥ ρ

(ρ
r

) 1
n−1

r ≤ ρ .

(6.56)

In order to describe crack propagation a fracture criterion has to be employed.
Therefore, we assume that crack advance proceeds in such a way that the creep
strain εve at some distance rc ahead of the crack tip attains a critical value:
εve(rc) = εc. It should be noted that in this criterion only the creep strain appears
and not the total strain. Physically this can be motivated from the creep strain
being a measure of the accumulated void volume which in turn characterizes the
state of damage of the material. By inserting (6.56) together with (6.54), (6.55)
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in this fracture criterion one obtains

1

K̄
=





(
ρ

rc

)n−3
2

rc ≥ ρ

(
ρ

rc

)− n−3
2(n−1)

rc ≤ ρ

(6.57)

or

˙̄a =

{
K̄n rc ≥ ρ

1 rc ≤ ρ ,
(6.58)

where

˙̄a =
n− 2

2

ȧ

EnB rc εn−1
c

, K̄ =
K

Eεc
√

2πrc
(6.59)

denote the dimensionless crack-tip speed and stress intensity factor, respectively.
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Figure 6.10: Crack-tip speed

Two solutions for the crack-tip speed are given by (6.58); they are depicted
by the solid and dashed lines in Fig. 6.10. In addition it can be seen from (6.57)
that the conditions rc ≥ ρ or rc ≤ ρ in any case yield K̄ ≥ 1. The minimum
K-factor for which crack propagation is possible hence is K̄ = 1 or

Kmin = Eεc
√

2πrc; . (6.60)

It corresponds to a minimum crack-tip speed ˙̄a = 1 or

ȧmin =
2

n− 2
EnB rc ε

n−1
c . (6.61)

We now consider the solution ˙̄a = 1 and assume that at constant K the crack-tip
speed ȧ is slightly increased by some perturbation. According to (6.54) the creep
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zone becomes smaller which may lead to rc > ρ. But then the second solution
for ˙̄a is valid and the crack-tip speed “jumps” to the corresponding higher value.
In this sense the lower branch ( ˙̄a = 1) of the solution is unstable. The physically
relevant solution hence is given by the upper branch ˙̄a = K̄n, i.e., by the relation

ȧ =
2

n− 2

B rc
εc

(
K√
2πrc

)n
. (6.62)

Thus, the crack-tip speed increases according to Kn.
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7 Dynamic fracture mechanics

7.1 Introduction

So far, our investigations of crack initiation and propagation have always been
based on the assumption of quasistatic conditions. This is no longer justified
when inertia forces or high strain rates significantly affect the fracture behavior.
It is, for instance, well known that a material is more likely to fail under impulsive
dynamic loading than in case of a slowly applied load. One reason for this is the
different material behavior: plastic or viscous flow is increasingly suppressed at
higher loading rates and a material often behaves more brittle in the dynamic
case than in the static case. This and possibly different failure mechanisms in the
process zone may lead to a change of the fracture toughness. Another reason is
due to the fact that the inertia forces in case of dynamic loading can cause higher
stresses in the vicinity of a crack tip than in the corresponding quasistatic case.

If a crack propagates through a material it often reaches a very high speed
(e.g. more than 1000m/s) after a short acceleration phase. In case of such a
fast crack advance the inertia forces and high strain rates play an important role
and strongly influence the fracture behavior. Various aspects of this behavior are
well known from the failure of technical components as well as from laboratory
experiments. For instance, a fast running crack typically does not exceed a certain
limit speed. Depending on the actual conditions it may branch, once or several
times, or it may become unstable with respect to the propagation direction. The
latter means that even under fully symmetric conditions the crack tends to deviate
from a straight path. Another (often desired) dynamic effect is the crack arrest,
i.e., the crack may slow down until it finally stops growing.

The understanding of the above-mentioned phenomena and their appropriate
quantitative description is only possible in the framework of a dynamic fracture
theory. Some foundations are presented in the following sections. In the spirit of
linear elastic fracture mechanics we thereby restrict the considerations to fracture
of brittle materials which can be described by linear elasticity theory. The inves-
tigations focus on two typical problems: a) the stationary (i.e., nonpropagating)
crack under dynamic loading and b) the fast running crack. With regard to the
fracture concept (criterion) we will employ already established quantities such as
the K-factors or the energy release rate.



196 Dynamic fracture mechanics

7.2 Some foundations of elastodynamics

The basic equations of linear elastodynamics are given by the balance of momen-
tum (1.20), the kinematic relations (1.25), and the elasticity law (1.37). Inserting
these into each other yields in case of vanishing body forces (fi = 0) the Navier-
Lamé equations

(λ+ µ)uj,ji + µui,jj = ρüi . (7.1)

The introduction of a scalar potential φ and a vector potential ψk with

u1 = φ,1 + ψ3,2 − ψ2,3 , u2 = φ,2 + ψ1,3 − ψ3,1 , u3 = φ,3 + ψ2,1 − ψ1,2 , (7.2)

leads to the Helmholtz wave equations

c21 φ,ii = φ̈ , c22 ψk,ii = ψ̈k (7.3)

where

c21 =
λ+ 2µ

ρ
, c22 =

µ

ρ
. (7.4)

The scalar potential φ describes the volume change (dilatation) and the vector po-
tential ψk characterizes pure distortions at constant volume. Correspondingly, c1
is the speed of dilatational (longitudinal) waves and c2 that of distortional (shear,
transversal) waves. Typical values for some materials are given in Table 7.1. By
these wave speeds signals (dilatations or distortions) propagate through a solid
body unless they impinge on some boundary.

Table 7.1: Typical wave speeds

Material c1 [m/s] c2 [m/s] cR [m/s]
steel 6000 3200 2940
aluminum 6300 3100 2850
glass 5800 3300 3033
PMMA 2400 1000 920

The representation simplifies in case of plane problems. For plane strain with
u3 = 0 and ψ1 = ψ2 = 0 and the notation ψ = ψ3 equation (7.3) reduces to the
two wave equations

c21 φ,ii = φ̈ , c22 ψ,ii = ψ̈ . (7.5)

The case of plane stress is governed by the same relations; only the elastic con-
stants in the wave speeds need to be changed (see Sect. 1.5.1).

Besides the transversal and longitudinal waves so-called Rayleigh waves or
surface waves play an important role in dynamic fracture. These are waves which
propagate along a free surface of a body and rapidly (exponentially) decay towards
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its interior. In a body in plane strain that occupies the upper half plane with the
boundary x2 = 0 they can be represented by

φ = A exp−αx2 cos k(x1 − cRt) , ψ = B exp−βx2 cos k(x1 − cRt) . (7.6)

Here, cR denotes the unknown speed of the Rayleigh waves and k is the wave
number. Inserting (7.6) into (7.5) yields the values of α and β. From the boundary
conditions σ22(x1, 0) = 0, σ12(x1, 0) = 0 then the ratio A/B of the amplitudes is
obtained as well as the governing relation for cR:

R(cR) = 4

√

1 −
(
cR
c1

)2
√

1 −
(
cR
c2

)2

−
[
2 −

(
cR
c2

)2
]2

= 0 . (7.7)

R(cR) is called the Rayleigh function. Equation (7.7) may also be written in the
form (

cR
c2

)6

− 8

(
cR
c2

)4

+
8(2 − ν)

1 − ν

(
cR
c2

)2

− 8

1 − ν
= 0 . (7.8)

Like c1 and c2 the Rayleigh wave speed cR depends only on material constants
and not on the wave number or wave length. For Poisson’s ratio in the range
0 ≤ ν ≤ 1/2 it follows that 0.864 ≤ cR/c2 ≤ 0.955. The data given in Table 7.1
are based on the value ν = 1/4 for which cR = 0.919 c2.

Particularly simple is the situation of antiplane shear where one may start
directly from (7.1). With u1 = u2 = 0 and setting w = u3 one obtains

c22w,ii = ẅ . (7.9)

Hence the motion of the continuum is described by a single equation with the
characteristic wave speed c2; Rayleigh waves do not occur in this case.

7.3 Dynamic loading of a stationary crack

7.3.1 Crack-tip field, K-concept

The crack-tip field of a dynamically loaded stationary crack does not differ from
that in case of static loading. This can be shown directly from the field equations
(7.1). For this purpose we assume that the stresses are singular at the crack
tip (r → 0) while the displacements are nonsingular and can be represented by
ui = rλũi(ϕ, t) where 0 < λ < 1. Because of the second spatial derivatives the
terms on the left hand side of (7.1) then are of the type rλ−2 whereas the right-
hand side is of the type rλ. Hence the inertia forces can be neglected for r → 0
and the crack-tip field is in the dynamic case governed by the same equations as
in the static case. It therefore coincides with the static crack-tip field discussed
in Sect. 4.2. As the only difference the stress intensity factors now depend on
time: KI = KI(t) etc. In general, they cannot be adopted from the static case
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but have to be computed from the solution of the dynamic (initial) boundary
value problem where inertia forces are taken into account.

Since the crack-tip field is uniquely determined by the K-factors it is ap-
propriate to employ the K-concept also in case of dynamic loading of a crack.
Accordingly, mode-I crack initiation takes place when the condition

KI(t) = KIc (7.10)

is met. The application of this criterion, however, is complicated by two facts. As
already mentioned the fracture toughness KIc depends on the loading rate K̇I or,
respectively, on some characteristic loading time τ : KIc = KIc(τ). Its determina-
tion, especially in case of impulsive loading, requires an enormous experimental
effort which is possible only in a few well-equipped laboratories. Hence only a
rather limited amount of reliable material data is available up to now. On the
other hand, (7.10) is only valid if the dominance region of the K-field is suffi-
ciently large compared to all other characteristic dimensions. In the dynamic case
this region of dominance depends on time and it can be smaller than in the static
case. Due to the finite wave speed it takes some time after an impulsive loading
of a crack until a sufficiently large dominating crack-tip field has built up.

7.3.2 Energy release rate, energetic fracture criterion

The energy release rate is defined as the decrease of the total energy of a body
due to crack advance. Since in the dynamic case the kinetic energy K has to be
taken into account it reads

G = −d(Π +K)

da
. (7.11)

In the present situation of a stationary crack (ȧ = 0) the crack advance is con-
sidered to take place “quasistatically” (i.e., virtually).

b)a)

C

ρ→ 0

x2

x1x1

x2

C

A

Figure 7.1: Contours around stationary crack tip related to the energy release
rate

Because of the kinetic energy which additionally appears in (7.11) the re-
lations for G cannot be adopted from the static case (Sects. 4.6.2–4.6.5) in a
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straightforward manner. Instead of giving a detailed derivation here, we make
use of the result for the more general situation of a running crack presented in
Sect. 7.4.3. According to this, the relation (7.34) for the energy release rate in
the plane problem of a straight stationary crack (ȧ = 0) with traction-free crack
faces reduces to

G =

∫

C

(Uδ1β − σiβ ui,1)nβ dc+

∫

A

σij,j ui,1 dA . (7.12)

Here, A is the area enclosed by some arbitrary contour C which encompasses the
crack tip from one crack face to the other (Fig. 7.1a). In contrast to the static case
the energy release rate (7.12) is no longer given solely by the path-independent
J-integral but also contains an additional integral over the enclosed area A (see
also Sect. 4.6.5.3). The latter vanishes only if the contour is shrunk to the crack
tip (Fig. 7.1b):

G = lim
C→0

∫

C

(Uδ1β − σiβ ui,1)nβ dc . (7.13)

The above relations are also valid in the general nonlinear elastic case since
no particular elasticity law is employed. If linear elastic material behavior is
assumed the crack-tip fields for a stationary crack are equal in the static and the
dynamic case, as discussed above. From (7.13) it then follows immediately that
the relation known from statics

G =
1

E ′ (K2
I +K2

II) +
1

2G
K2
III (7.14)

is valid also in the dynamic case. Correspondingly, for pure mode I with G =
K2
I /E

′ the K-concept and the energetic criterion

G = Gc (7.15)

are equivalent, like in statics. Here, Gc(τ) is the energy required for crack prop-
agation; it can depend on the loading rate or on the characteristic loading time
τ , respectively. It should be mentioned that (7.12) in conjunction with (7.14) are
well suited for the determination of dynamic K-factors by means of experimental
methods.

7.3.3 Examples

Various methods can be utilized for the determination of dynamic stress intensity
factors. Experimental and numerical techniques are of primary importance while
analytical methods are applicable only in a few special cases. Experimental meth-
ods allow for the determination of the temporal variation KI(t) of the crack-tip
loading as well as the initiation value KIc(τ), and the so-called method of caustics
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has proven to be particularly useful for this. The crack-tip loading KI(t) can be
computed with numerical methods where the boundary element method (BEM),
the finite element method (FEM), and the finite difference method (FDM) are
successfully employed. Results for three examples are discussed in the following
which have been obtained with these methods.

As a first example we consider the rotational-symmetric problem of a circular
(penny-shaped) crack in an unbounded domain which is loaded by a stress wave.
The latter impinges perpendicularly on the crack and is characterized by the
loading time τ and the amplitude σ0 (Fig. 7.2). After arrival of the wave at time
t = 0 the stress intensity factor KI(t) first increases monotonically until it attains
a maximum and then tends to the corresponding static value Kstat

I = 2σ0

√
πa/π

in an oscillating manner. The decay can be explained from the fact that due to the
reflection and scattering of waves energy is radiated into the unbounded domain
(i.e., towards infinity). These waves do no longer contribute to the loading of the
crack. For τ = 0 the peak value of KI(t) is about 25% higher than Kstat

I . It is
attained approximately at time tR = 2a/cR which is needed by Rayleigh waves
to travel across the diameter 2a of the crack. With increasing loading time τ
the maximum KI value becomes smaller. A noticable “dynamic overshoot” only
occurs for loading times in the range τc2/a <̃ 1. For instance, in a steel plate
which contains a crack of length 2a = 20mm this takes place for τ ≈ 6 · 10−6 s.
Such a short loading time is observed only in rare situations.

c1

wave front

a

2 4 6

KI(t)
Kstat
I

1

3.4
1.7

c2t/a
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c2τ/a=0

t

σ(t)

τ

Figure 7.2: Impulsive loading of a circular (penny-shaped) crack in an infinite
domain

In the second example (Fig. 7.3) a straight crack is located in a rectangular
plate which is subjected to an ideal impact σ0H(t) on the two opposite boundaries
parallel to the crack. Here, H(t) denotes the Heaviside function. In the present
case the profile of the wave impinging on the crack is influenced also by the
boundaries of the plate. Furthermore, in contrast to the preceding example energy
radiation towards infinity here does not take place by virtue of the bounded
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Figure 7.3: Impact loading of a crack in a rectangular plate (plane stress, ν = 0.25;
a : b : c = 9.5 : 100 : 60)

domain. The KI(t) variation is qualitatively an oscillation with a period which
is essentially determined by the travel time of a wave over the distance 2c. Local
peaks superimposed on this oscillation can also be expained from travel times of
waves propagating at different speeds (c1, c2, cR). Since there is no damping (e.g.,
due to energy radiation) the oscillation of KI(t) does not decay.

As a final example we consider an impact-loaded 3-point-bending specimen
as it is used for the determination of KIc values (Fig. 7.4). For a prescribed
value of the impact velocity the variation F (t) of the loading has been measured;
the latter gives rise to the depicted KI(t) variation (Fig. 7.4). It can be seen
that the temporal variations F (t) and KI(t) are completely different, especially

Figure 7.4: Impact loading of 3-point-bending specimen
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in the initial phase. Hence the current value of KI cannot be determined from
the current value of F . Also, it should be noted that for such a type of loading a
repeated loss of contact between the specimen and the impactor as well as between
the specimen and the support takes place due to the motion of the specimen.

7.4 Crack propagation

7.4.1 Crack-tip field

Now we consider a crack which propagates at some speed ȧ and acceleration ä
(Fig. 7.5). The dynamic crack-tip field is investigated first for pure mode III
(antiplane shear) as the simplest case. The respective problem is described by
the equation of motion (7.9) which for the present purpose is transformed to
the coordinate system x′, y′ that moves with the crack tip (cf. Sect. 5.7.3.2).
Using x′ = x − a(t), y′ = y one obtains for an arbitrary field quantity (here the
displacement w)

∂2w

∂x2
=
∂2w

∂x′2
,

∂2w

∂y2
=
∂2w

∂y′2
, ẅ =

∂2w

∂t2
− 2ȧ

∂2w

∂x′∂t
− ä

∂w

∂x′
+ ȧ2 ∂

2w

∂x′2
. (7.16)

At the crack tip (r → 0) a nonsingular displacement field of the type w(r, ϕ, t) =
rλw̃(ϕ, t) with 0 ≤ λ < 1 and a singular stress field is expected. Because of

∂

∂x′
= cosϕ

∂

∂r
− sinϕ

∂

r∂ϕ
,

∂

∂y′
= sinϕ

∂

∂r
+ cosϕ

∂

r∂ϕ

the last term in ẅ dominates for r → 0 compared to the first three terms and we
get ẅ = ȧ2∂2w/∂x′2. Thus the equation of motion governing the crack-tip field
reads

∂2w

∂x′2
+

1

α2
2

∂2w

∂y′2
= 0 where α2

2 = 1 − ȧ2

c22
. (7.17)

By introducing of the new coordinates (contraction of the y-coordinate)

x2 = r2 cosϕ2 = x′ = r cosϕ , y2 = r2 sinϕ2 = α2 y
′ = α2 r sinϕ (7.18)

a(t)

ϕ

ry

x

y′

x′

ȧ, ä

Figure 7.5: Running crack
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equation (7.17) can be transformed into Laplace’s equation

∂2w

∂x2
2

+
∂2w

∂y2
2

= 0 . (7.19)

The easiest way for its solution is the use of complex variables (see Sects. 1.5.2
and 4.2.1) which leads to

Gw = Re Ω(z2) ,

τxz − i
τyz
α2

= Ω′(z2)
(7.20)

where z2 = x2 + i y2 = r2e
iϕ2 . The subsequent steps are analogous to the static

case. The dominating part of the solution which satisfies the boundary conditions
is described by Ω = Az

1/2
2 . If the stress intensity factor is defined (as in statics)

by
KIII = lim

r→0

√
2πr τyz(ϕ = 0) (7.21)

one finally obtains the crack-tip field




τxz

τyz



 =

KIII√
2πr2





− 1
α2

sin
ϕ2
2

cos
ϕ2
2



 , w =

2KIII

Gα2

√
r2
2π

sin
ϕ2

2
. (7.22)

Its general structure is similar to the static case with a stress singularity of the
type r−1/2. The angular distribution of the field quantities, however, depends on
α2, i.e., on the crack-tip speed ȧ. In the limit case of a stationary crack (ȧ = 0)
with α2 = 1 and r2 = r, ϕ2 = ϕ the static crack-tip field (cf. eqn. (4.6)) is
recovered.

For mode I the procedure is fully analogous to the just described mode III
case. The transformation of (7.5) to the moving coordinate system yields for
r → 0

∂2φ

∂x′2
+

1

α2
1

∂2φ

∂y′2
= 0 ,

∂2ψ

∂x′2
+

1

α2
2

∂2ψ

∂y′2
= 0 where α2

i = 1− ȧ2

c2i
. (7.23)

If in the first equation the coordinates

x1 = r1 cosϕ1 = x′ = r cosϕ , y1 = r1 sinϕ1 = α1y
′ = α1r sinϕ (7.24)

are introduced and in the second one the coordinates (7.18) the two Laplace
equations

∂2φ

∂x2
1

+
∂2φ

∂y2
1

= 0 ,
∂2ψ

∂x2
2

+
∂2ψ

∂y2
2

= 0 (7.25)

are obtained. Their solution for the symmetric (mode I) crack-tip field can be

written in the form φ = A Re z
3/2
1 , ψ = B Im z

3/2
2 where z1 = x1 + iy1 = r1e

iϕ1,



204 Dynamic fracture mechanics

z2 = x2 + iy2 = r2e
iϕ2 and the real constants A,B are determined from the

boundary conditions (traction-free crack faces). Introducing the definition of the
stress intensity factor

KI = lim
r→0

√
2πr σy(ϕ = 0) (7.26)

leads to
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(7.27a)
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(7.27b)

where

f =
1 + α2

2

R(ȧ)
=

1 + α2
2

4α1α2 − (1 + α2
2)

2
. (7.28)

Here, R(ȧ) denotes the Rayleigh function defined in (7.7). The stresses and
displacements display the same dependence on r as in the static case. Their mag-
nitude and angular distribution, however, depend on the crack-tip speed ȧ; the
acceleration ä has no influence. Hence the crack-tip field is uniquely determined
once the K-factor and the crack-tip speed are known. This can also be seen from
the results for the stress σy ahead of the crack tip (ϕ = 0) and the crack opening
displacement δ = v(π) − v(−π):

σy =
KI√
2πr

, δ =
KI

G

√
r

2π

4α1(1 − α2
2)

R(ȧ)
. (7.29)

While σy is solely determined by KI , the crack opening displacement δ at fixed
K increases with increasing crack speed and tends to infinity for ȧ→ cR.

From the crack-tip field several conclusions can be drawn with regard to the
behavior of a fast running crack. Figure 7.6a indicates that the stress ratio
σy/σx ahead of the crack tip (ϕ = 0) decreases with increasing crack speed.
Correspondingly, the propensity for material separation in planes perpendicular
to the crack propagation direction increases. When the crack speed approaches
the Rayleigh wave speed the stress ratio tends to zero and crack propagation in
the direction ϕ = 0 becomes impossible. Therefore, the Rayleigh wave speed can
be considered as an upper bound for the crack-tip speed.
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Figure 7.6: Influence of the crack speed on the crack-tip stress field (ν = 1/4)

For various values of the crack-tip speed the angular distribution of the cir-
cumferential stress σϕ at the crack tip is depicted in Fig. 7.6b. While for a
sufficiently low crack speed the maximum stress prevails at ϕ = 0 this maximum
shifts to ϕ>̃π/3 for ȧ>̃0.6 c2. If one assumes that crack advance proceeds in the
direction of maximum circumferential stress this can be taken as an indication
that for ȧ>̃0.6 c2 the crack becomes unstable with regard to its original propa-
gation direction. This stability threshold, first emphasized by E.H. Yoffe (1951),
can be regarded as another upper bound for the crack-tip speed.

Finally, in the same manner as for mode I, the mode II crack-tip field can be
determined. It reads
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7.4.2 Energy release rate

The energy release rate G for the problem of a straight running crack with
traction-free crack faces shall be investigated now. We proceed exactly as in
Sect. 5.7.3.3 except that here the kinetic energy has to be accounted for and the
material is assumed elastic. The energy flux −P ∗ into the process zone at the
crack tip then is generally given by

−P ∗ = P − Ė − K̇ (7.31)

where E is the strain energy and K the kinetic energy. When applied to the
situation sketched in Fig. 7.7 the energy flux −P ∗ = ȧG across the contour CP
reads (cf. (5.84))

ȧG =

∫

C

tiu̇idc−
d

dt

∫

A

UdA− d

dt

∫

A

1

2
ρu̇iu̇idA . (7.32)

Here, U is the strain energy density and ρu̇iu̇i/2 is the specific kinetic energy;
the contour CP is taken to be vanishingly small (CP → 0). Analogous to the
procedure in Sect. 5.7.3.3, applying Reynold’s transport theorem, the relation
dU/dt = σij u̇i,j = (σij u̇i),j − σij,ju̇i, the equation of motion σij,j = ρüi and the
divergence theorem after some steps leads to

ȧG = −
∫

CP

[
ȧ
(
U +

1

2
ρu̇iu̇i

)
n1 + tiu̇i

]
dc . (7.33)

Now we perform the transition to the moving coordinate system x′1, x
′
2 and

consider A and C to be as well moving with the crack tip. Since it can be assumed
that ui is regular at the crack tip while ui,1 is singular (cf. (7.27)) it follows from
(5.76) that at the crack tip u̇i = −ȧui,1. Inserting this into (7.32) leads to

G = −
∫

CP

[(
U +

1

2
ȧ2ρ ui,1ui,1

)
n1 − tiui,1

]
dc . (7.34)
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Figure 7.7: Moving crack tip and contours considered in energy release rate cal-
culation
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By applying the divergence theorem to the area A with boundary C+CP +C+ +
C− (C+, C− yield no contribution) together with ti = σijnj one finally obtains
for the energy release rate

G =

∫

C

[
(U +

1

2
ȧ2ρui,1ui,1)n1 − tiui,1

]
dc +

∫

A

(σij,jui,1 − ȧ2ρui,11ui,1)dA . (7.35)

The relation (7.35) simplifies in various special cases. For a crack which
propagates at constant speed ȧ under steady-state conditions the area integral
vanishes because of σij,j = ρüi and üi = ȧ2ui,11 (see also (7.16)) and we get

G =

∫

C

[(
U +

1

2
ȧ2ρui,1ui,1

)
n1 − tiui,1

]
dc . (7.36)

In the special case ȧ = 0 (7.35) reduces to (7.12). If, in addition, static conditions
prevail (σij,j = 0) the J-integral (4.107) is recovered from G.

The contour C in (7.35) can be chosen arbitrarily. If it is contracted to the
crack tip the area integral vanishes and we obtain

G = lim
C→0

∫

C

[(
U +

1

2
ȧ2ρui,1ui,1

)
n1 − tiui,1

]
dc . (7.37)

From this the interrelation between G and KI for mode I can be established by
inserting (7.27):

G =
α1(1 − α2

2)

2GR(ȧ)
K2
I =

α1(1 − α2
2)

4α1α2 − (1 + α2
2)

2

K2
I

2G
. (7.38)

Hence the energy release rate is uniquely determined by the stress intensity factor
and the crack-tip speed. According to (7.7) the function R(ȧ) vanishes for the
Rayleigh wave speed. That means that for KI 6= 0 the energy release rate G tends
to infinity when the crack speed approaches the Rayleigh wave speed. Conversely,
at finite G the stress intensity factor tends to zero for ȧ→ cR.

In case of a running crack under mixed mode loading by KI , KII , and KIII

the general relation

G =
1

2G

[
(1 − α2

2)(α1K
2
I + α2K

2
II)

4α1α2 − (1 + α2
2)

2
+
K2
III

α2

]
. (7.39)

holds which for ȧ = 0 reduces to (7.14).

7.4.3 Fracture concept, crack-tip speed, crack branching, crack arrest

In the framework of linear fracture mechanics the K-concept can be applied also
to fast crack propagation. Accordingly, at any instant of crack advance under
mode-I conditions the fracture criterion
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KI(t) = KId (7.40)

must be fulfilled. Here, KId denotes the dynamic fracture toughness which is
assumed to be a material parameter that, in a first approximation, depends only
on the crack-tip speed: KId = KId(ȧ). This dependence is qualitatively depicted
in Fig. 7.8. Starting from the initiation value KIc the fracture toughness in most
cases first shows only a weak dependence on the crack-tip speed while it rapidly
increases at higher values of ȧ. One possible explanation for this behavior could
be a change in the micromechanisms of material separation in the process zone.
This is supported by the well-known observation that the roughness of the fracture
surface strongly increases with increasing crack speed. Another reason lies in the
fact that (different from the static case) the crack-tip field or the state in the
process zone, respectively, is not uniquely characterized by the stress intensity
factor; according to Sect. 7.4.1 the stresses and deformations depend also on the
crack-tip speed. During crack advance also the energetic fracture condition

G(t) = Gd(ȧ) (7.41)

must be satisfied where Gd(ȧ) is the material specific fracture resistance which
depends on the crack-tip speed. Due to the relation (7.38) between G and KI the
fracture conditions (7.40) and (7.41) are equivalent.

From measurements it is known that the crack-tip speed under mode I con-
ditions even in very brittle materials does not exceed a maximum value of about
ȧmax ≈ 0.5 c2. An exception are fracture experiments where via special devices
such as a laser beam, energy is directly supplied to the crack tip. Despite var-
ious possible explanations the issue of this limit crack-tip speed is not yet fully
understood. One reason, for instance, could be the instability of the straight
crack advance at crack speeds above ȧ >̃ 0.6c2 (see Sect. 7.4.1). This is supported

1 2 3 KId/KIc

ȧ/c2

0,1

0,2

ȧmax

Figure 7.8: Typical dependence of fracture toughness on crack-tip speed
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by the increasing roughness (or waviness) of the fracture surface with increasing
crack-tip speed as well as by an enhanced tendency for the formation of secondary
cracks. The latter are microcracks which form in the neighborhood of the main
crack or depart (branch off) from it. The increasing roughness of the fracture
surface and the formation of secondary cracks also provide an explanation for
the enhanced dynamic fracture toughness since especially the formation of mi-
crocracks is a mechanism which may strongly contribute to energy dissipation.
An objection to the “instability hypothesis”, however, arises from the fact that
the measured maximum crack speeds are significantly lower than the theoretical
instability threshold. Another, more qualitative attempt of explanation is based
on the discrete nature of bond breaking. According to this, a crack advances by
“jumps” along discrete material elements of a characteristic length lM . In order
to transfer the entire information about the preceding jump to the next element
(maximum distance 2lM) a characteristic time τ ≈ 2lM/c2 of wave propagation
is required (one may also insert cR instead of c2). If one assumes that after this
time the next jump takes place one obtains, irrespective of the precise value of the
microstructural length lM , an average (approximate) speed of crack propagation
of ȧ ≈ lM/τ ≈ c2/2.

A phenomenon frequently observed in conjunction with dynamic fracture is
crack branching (Fig. 7.9a). It is most likely to occur at a crack-tip speed close
to the limit speed ȧmax, but it may (depending on the material) take place also
at lower values of ȧ. Crack branching is typically preceded by an increasing
roughness of the fracture surface and by the formation of secondary cracks which
may be interpreted as “braching attempts”. Likewise the issue of a limiting
crack speed, a generally accepted explanation for crack branching and a reliable
branching criterion are still lacking. Theoretical reasoning is mostly based on
the analysis of the crack-tip field of a single fast running crack or of a crack that
has just branched. Crack branching has, for instance, also been related to the
directional instability which occurs at ȧ ≈ 0.6 c2. Yet, this is not suitable to

a)

ȧ1

ȧ2

a1(t)

ȧ3

≈28◦

b)

3

2
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Gstat
Gc

ac a2.bran.1.bran.

Figure 7.9: Crack branching
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explain branching at lower crack speeds and the observed significantly smaller
branching angle of about α ≈ 28◦. The latter, however, can be explained from
the plausible hypothesis that upon branching both crack tips propagate under
pure mode-I conditions. Even for a quasistatic analysis this hypothesis yields
results which agree well with experimental observations.

A prerequisite for crack branching is a sufficient energy flux into the process
zone, i.e., a sufficiently large energy release rate G, which enables the forma-
tion and subsequent propagation of two cracks. The determination of G typi-
cally is cumbersome since this quantity generally depends on the geometry of
the specimen, on time, on the current crack length, and the crack speed. A
simple and coarse approximation for G can be obtained from the correspond-
ing static problem by neglecting the inertia forces. For instance, in case of
an edge-crack subjected to uniaxial loading (see Table 4.1, No. 5) this leads to
G ≈ Gstat = (Kstat

I )2/E ′ = 1.26 πσ2a. If, in addition, one assumes that branch-
ing of the crack takes place when G attains integer multiples of the value Gc
required for crack initiation the result depicted in Fig. 7.9b is obtained. This
result, however, is only of qualitative nature.

Of great practical importance – since desired in technical components – is the
crack arrest . This takes place when in the course of crack propagation the stress
intensity factor decreases to such an extent that the fracture condition (7.40) is
no longer fulfilled; the crack then stops growing. The condition for arrest can be
written in the form

KI(t) = KIa (7.42)

where KIa = min[KId(ȧ)] is called the crack arrest toughness. Since crack arrest
in a component is a dynamic process its treatment generally requires the complete
dynamic analysis of the structure (including inertia forces and wave phenomena).
It has, however, turned out that in many practical cases a quasistatic analysis
yields sufficiently accurate results.

From the theoretical point of view cracks under mode I conditions cannot
exceed the Rayleigh wave velocity since the energy release rate becomes zero at
cR and remains zero for ȧ > cR. This is not the case for shear cracks under
mode II. Here the energy release rate also becomes zero at cR, but it is positive
again in the velocity range cR < ȧ ≤

√
2 c2. However, the crack tip singularity

then is no longer of the type σij ∼ r−1/2 except at ȧ =
√

2 c2. As a consequence,
shear cracks may propagate with a so-called intersonic speed, i.e., above cR, c2
and below c1. Recent experimental results and observations from shallow crustal
earthquakes provide evidence of intersonic crack propagation.

7.4.4 Examples

The investigation of fast crack propagation is generally quite laborious, irrespec-
tive of whether experimental, numerical, or analytical methods are utilized. A
significant simplification, however, results when it can be assumed that the crack
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advance takes place at constant speed ȧ and under steady-state conditions. The
transformation of the wave equations (7.5) for plane strain to the coordinate sys-
tem x′, y′ that moves at the speed ȧ = const then leads with ∂(·)/∂t = 0 and
ä = 0 to exactly the Laplace equations (7.25) discussed in Sect. 7.4.1. Their
solution can generally be written in the form φ = Re Φ(z1), ψ = Re Ψ (z2).

As an example the classical Yoffe problem (E.H. Yoffe, 1951) is considered
first. It consists of a straight crack of constant length which moves at constant
speed in an unbounded domain subjected to uniaxial tension σ (Fig. 7.10a). The

σ
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Figure 7.10: Yoffe’s problem

crack hence opens at the leading tip and (physical unrealistically) closes again at
its end. The corresponding static problem has been studied in Sect. 4.4.1. For Φ
and Ψ the representations

Φ′(z1) = A1

√
z2
1 − a2 + A2z1 , Ψ ′(z2) = iB1

√
z2
2 − a2 + iB2z2 , (7.43)

are chosen from which the displacements and stresses can be computed using
(7.2) and the elasticity law. The boundary conditions σy = 0, τxy = 0 for |x′| < a
(traction-free crack faces) and σy = σ, σx = 0 for zi → ∞ yield the constants

A1 =
σ

G

1 + α2
2

R(ȧ)
, A2 =

σ

G

[
2(α2

1 − α2
2)

R(ȧ)
− 1

1 + α2
2

]
,

B1 =
σ

2

2α1

R(ȧ)
, B2 =

σ

2

[
(α2

1 − α2
2)(1 + α2

2)

α2R(ȧ)
− 1

2α2

]
.

(7.44)

The symmetry conditions v = 0, τxy = 0 for |x′| > a are automatically fulfilled.
Thus the stresses and displacements in the entire domain are uniquely determined.
In particular, the stress σy ahead of the crack tip and the displacements v of the
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upper and lower crack faces are obtained as

σy = σ
x′√

x′2 − a2
, v± = ± σ

G

α1(1 − α2
2)

R(ȧ)

√
a2 − x′2 . (7.45)

While σy is independent of ȧ (i.e., it shows the same behavior as in the static case)
the crack opening increases with increasing crack speed and tends to infinity for
ȧ → cR. Correspondingly, the K-factor is given by the static value KI = σ

√
πa

whereas the energy release rate according to (7.38) shows an unlimited growth
with the crack speed (Fig. 7.10b).

As a second example the steady-state propagation of a semi-infinite crack in an
infinitely long strip as sketched in Fig. 7.11a is investigated. Loading is specified
by a prescribed constant relative displacement 2δ of the horizontal boundaries of
the strip. In this case the energy release rate can easily be computed from (7.36).

Figure 7.11: Steady-state crack propagation in an infinite strip

For this purpose a contour C is chosen with its vertical parts located far away
from the crack tip in the undisturbed regions to the right and left, respectively
(Fig. 7.11a). There the stress and deformation states in plane strain are given by

x′1 ≫ h : ε22 =
δ

h
, σ22 =

2Gδ(1 − ν)

h(1 − 2ν)
, ui,1 = 0

x′1 ≪ −h : ε22 = σ22 = ui,1 = 0 .

With U = 1
2
σ22 ε22 only the vertical part of C ahead of the crack tip yields a

contribution to G (the contributions from the horizontal parts of C cancel each
other) and one obtains

G = 2hU |x′
1
≫h =

2(1 − ν)

1 − 2ν

Gδ2

h
. (7.46)
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Accordingly, the energy release rate is independent of the crack speed and the
result (7.46) hence is also valid for the stationary crack (ȧ = 0). The stress
intensity factor follows from (7.38) and reads

KI(ȧ) = 2Gδ

√
(1 − ν)R(ȧ)

h(1 − 2ν)(1 − α2
2)α1

. (7.47)

It decreases with increasing crack speed and tends to zero for ȧ→ cR (Fig. 7.11b).
It should be noted that from similar considerations the energy release rate for fast
running cracks in long pipes can be computed which is an application of great
practical importance.

The following example is concerned with the nonstationary growth of an edge-
crack in a rectangular plate loaded by an idealized impact σH(t). Figure 7.12
shows results from numerical analyses in plane stress for three different fracture
criteria. In case (a) the K-criterion (7.40) has been employed where KId(ȧ) is
given by the relation

K
(a)
Id = KIc[1 + 2, 5(ȧ/c2)

2 + 3, 9 · 104(ȧ/c2)
10] (7.48)

with KIc = 0.69 MPa
√

m. This relation is an approximation to experimental
data for Araldite (a brittle amorphous material). Case (b) is also based on the
K-criterion where now, for simplicity, the fracture toughness is taken independent
of the crack speed: K

(b)
Id = KIc. Finally, in case (c) the energetic fracture criterion

(7.41) has been used where Gd is assumed to be independent of the crack speed:

G(c)
d = Gc = K2

Ic/E. Using (7.38) the energetic criterion can be transformed into
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Figure 7.12: Dynamic propagation of an edge-crack; a(0)=29.5 mm
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the K-criterion; the fracture toughness is in this case given by

K
(c)
Id = KIc

√
R(ȧ)

(1 − ν)α1(1 − α2
2)
. (7.49)

Hence the three cases differ only by theKId(ȧ)-dependence and in the entire range

of the crack speed we have K
(c)
Id ≤ K

(b)
Id ≤ K

(a)
Id . Accordingly, crack propagation

through the plate is fastest for (c) and slowest for (a). The attained maximum
crack speeds are ȧ(c) ≈ ȧ(b) = 0.74 c2 and ȧ(a) = 0.37 c2. The first two are
unrealistically high while the last one is in the range of experimental observations.
It should be noted that the crack speed in the most realistic case (a) is almost
constant despite the strongly varying stress field.

It has already been mentioned that upon impact loading of a component
which contains a crack, stress waves may repeatedly interact with the crack tip
due to their multiple reflections. This leads to complex temporal variations of the
stress intensity factors (cf. Fig. 7.3) and a mixed-mode loading state according to
Sect. 4.9 generally prevails at the crack tip. The crack path then typically displays
a curvilinear trajectory which is determined by the characteristic details of the
dynamic loading which affect the crack-tip loading state at each current position
of the crack tip. This is illustrated here by means of a numerical example where
crack advance (including the direction) proceeds “freely”, i.e., only controlled
by a fracture criterion according to Sect. 4.9. We consider a rectangular plate
(Fig. 7.13) with the symmetry slightly disturbed by the location of the initial
(edge-) crack. Loading is specified by an ideal impact σH(t) on the vertical
boundaries and by different temporal variations σa(t) or σb(t), respectively, on
the horizontal boundaries. Figure 7.13 shows the crack trajectories determined
from numerical simulations for two different loading rates ( σ̇a(t) ≪ σ̇b(t) ). The
incremental computation of the crack path is based on the fracture criterion of

b)a)

σb(t)

σb(t)

σH(t)σH(t)σH(t)σH(t)

σa(t)

σa(t)

Figure 7.13: Crack paths resulting from repeated stress wave loading; σ̇a ≪ σ̇b
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maximum circumferential stress (Sect. 4.9) and the relation (7.48) for the fracture
toughness. Instead of the relations (4.131) which are valid only in the static case,
the evaluation of the fracture criterion in the present situation of a fast running
crack has to account for the dynamic crack-tip field σϕ(KI , KII , ȧ, ϕ) according
to (7.27).

The two entirely different crack paths in Fig. 7.13 can be explained from the
superposition of stress waves emanating from the boundaries of the plate. These
superpositions cause sudden changes of the crack-tip stress field at distinct times.
Which stress state exactly results and to which crack propagation direction this
leads hence depends in a complicated manner on the type of the boundary load-
ing (σa(t) or σb(t)) that determines the wave profile.
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8 Micromechanics and homogenization

8.1 Introduction

On close inspection, e.g., through a microscope, all real materials show a multi-
tude of heterogeneities even if they macroscopically appear to be homogeneous.
These deviations from homogeneity may exist in form of cracks, voids, particles,
or regions of a foreign material, layers or fibers in a laminate, grain boundaries,
or irregularities in a crystal lattice. Here they shall be referred to as defects in
a generalized sense. Subject of micromechanical investigations is the behavior of
these heterogeneities or defects as well as their effect on the overall properties and
performance of a material. For instance, heterogeneities of any kind can locally
act as stress concentrators and thereby lead to the formation and coalescence of
microcracks or voids as a source of progressive material damage (see Sect. 3.1.2
and Chap. 9).

Defects occur on different length scales which are characteristic for a certain
material and for the respective type of defect (Fig. 8.1). An important task of
micromechanics hence is to link mechanical relations on different length scales.
Starting from a macroscopic level, defects and their spatial distribution prevailing
on a smaller length scale – the microscale – are regarded as the microstructure of
a material. What is meant by the macroscopic level and the microscopic level in a
certain case depends on the problem at hand and is an issue of modelling. As illus-
trated in Fig. 8.1, a microstructure in form of many cracks on the millimeter scale
may, for instance, be identified in a technical component. The apparently homo-
geneous material between the individual cracks, however, can itself be regarded
as the macroscopic level with respect to an even finer polycrystalline microstruc-
ture with a characteristic length scale (grain size) in the range of microns. And a
single grain, on the other hand, can represent the macroscopic level when focusing
on the microstructure of the crystal lattice with numerous discrete dislocations.
Such an approach bears the advantage that a complex material behavior which
is difficult to describe in a purely phenomenological manner is traced back to el-
ementary processes on the microscale. Micromechanical problems can be treated
in the framework of continuum mechanics. Via the additional consideration of
a finer length scale (the microscopic level) a spatial distribution of defects (the
microstructure) then is related to a material point on the macroscopic level.

The investigation of defects may be subdivided according to two essential
problems. Point of interest can be the behavior of a defect on its own length scale
which also comprises the interaction with further defects (see, e.g., Sect. 4.4.4).
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Figure 8.1: Macroscopic and microscopic levels, characteristic length scales

On the other hand, one may examine the influence of many defects on the macro-
scopic material behavior on a larger length scale. In this latter case the entire
behavior of the microstructure is interpreted as the mechanical state of a mate-
rial point on the macroscopic level which thereby is ascribed effective material
properties. Such a micro-to-macro transition formally proceeds by appropriate
averaging processes and is called homogenization. Microstructural changes then
lead to changes of the overall (effective) properties of the material. A microstruc-
tural evolution such as the growth of microcracks or microvoids which gives rise
to a reduction of macroscopic stiffness or strength is referred to as damage and is,
because of its importance for fracture mechanics and failure, separately treated
in Chap. 9.

The present chapter serves to introduce fundamental concepts and methods
of micromechanics. Besides the characterization of typical defects and their local
action the issue of the transition from the microscopic to the macroscopic level
and the derivation of effective material properties from a given microstructure is
investigated. We will mainly focus on linear elastic material behavior, yet a brief
introduction into the treatment of elastic-plastic and thermoelastic materials is
also given.

Early theoretical studies of the performance of materials with microstructure
date back to J.C. Maxwell (1831-1879), Lord Rayleigh, (1842-1919) and A. Einstein

(1879-1955). While the former two were concerned with the determination of the
overall electric conductivity of a heterogeneous material the latter investigated
the effective viscosity of a fluid which contains a suspension of solid spherical
particles. In solid mechanics emphasis was orginally placed on the determination
of the elastic constants of a polycrystal from those of a single crystal with first
theoretical considerations by W. Voigt (1850-1919) and A. Reuss (1900-1968).
Important contributions were supplied, among others, by E. Kröner (1919-2000)
and R. Hill in the second half of the last century. Their theoretical concepts and
analytical approximations, which also apply to modern composite materials, were
later on extended and generalized to inelastic material behavior. Moreover, they
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serve as foundations for the treatment of the “inverse problem”, i.e., the design
of new composite materials having an optimized microstructure with regard to
the overall performance.

8.2 Selected defects and fundamental solutions

Defects in an elastic material inevitably give rise to inhomogeneous stress and
strain fields by which the defects can be characterized. One may distinguish
between defects which are themselves the source of a so-called eigenstrain or
eigenstress field (e.g., dislocations, inclusions) and those which only under the
action of some external load induce a perturbation of the uniform (i.e., spatially
constant) field such as particles of a foreign material, voids, or cracks. In the latter
case of material inhomogeneities it is possible and practical to decompose the total
strain and stress field into two parts: (1) a uniform field as it would prevail in a
defect-free material, and (2) the deviation induced by the defects. The second part
then is referred to as the equivalent eigenstrain or eigenstress, respectively. This
decomposition allows to establish a formal equivalence between an inhomogeneous
material and some homogeneous material with a certain eigenstrain or eigenstress
distribution, irrespective of its physical origin.

In the following we will discuss some typical defects by means of fundamental
solutions in an unbounded linear elastic medium and start by analysing the effect
of eigenstrains in a homogeneous material.

8.2.1 Eigenstrain

8.2.1.1 Center of dilatation

A center of dilatation is the idealization of an “infinitely” small (point-like) region
which undergoes an “infinitely” strong radial expansion (eigenstrain). It gives rise
to a singular strain and stress field which in an isotropic medium is spherically
symmetric with tension in circumferential and pressure in radial direction. A
center of dilatation may also be interpreted as a spherical region of radius a
inside which a pressure p prevails (Fig. 8.2). The displacement and stress field in
the surrounding material can be represented in spherical coordinates (r, ϕ, ϑ) as

ur = p
a3

4µr2
, uϕ = uϑ = 0 ,

(8.1)

σrr = −p a
3

r3
, σϕϕ = σϑϑ = p

a3

2r3
, σrϕ = σrϑ = σϕϑ = 0 .

A center of dilatation may, for instance, be taken as a simple model for the
effect of an interstitial atom (point defect) on the surrounding elastic crystal
lattice.
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x1

x2

x3

a

r

p

Figure 8.2: Center of dilatation

8.2.1.2 Straight edge and screw dislocation

Dislocations are line defects in crystalline solids (see Sect. 3.1.2). In continuum
mechanics they can be characterized by a constant jump b, referred to as the
Burgers vector, which the displacement field undergoes along some contour en-
circling the dislocation line (x3-axis in Fig. 8.3; see also Fig. 3.2).

r

x3

a)

x1

b)

b x1

ϕ
r

x3

b

ϕ

x2 x2

Figure 8.3: a) Straight edge dislocation, b) straight screw dislocation

In case of a straight edge dislocation according to Fig. 8.3a with a Burgers
vector of magnitude b the displacement and stress field in an isotropic, linear
elastic medium can be written as

u1 =
D

2µ

(
2(1 − ν)ϕ+

x1x2

r2

)
, u2 =

D

2µ

(
−(1 − 2ν) ln r +

x2
2

r2

)
, (8.2a)
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σ11 = −Dx2
3x2

1 + x2
2

r4
, σ12 = Dx1

x2
1 − x2

2

r4
, σ22 = Dx2

x2
1 − x2

2

r4

where D = bµ/2π(1 − ν) and r2 = x2
1 + x2

2 . The respective fields induced by a
straight screw dislocation (Fig. 8.3b) are given by the simpler representation

u3 =
b

2π
ϕ , σ13 = − bµ

2π

x2

r2
, σ23 =

bµ

2π

x1

r2
. (8.3)

8.2.1.3 Inclusion

In contrast to the foregoing examples of point or line defects now we consider
the situation of a spatial distribution of eigenstrain εtij(x). Those strains may,
for instance, result from phase transformations in solids where atomic rearrange-
ments change the geometry of the lattice. Since they are not caused by stress,
eigenstrains are also referred to as stress-free transformation strains (superscript
t). Formally, all kinds of strain which may prevail in a material in the absence of
stress can be interpreted as eigenstrains; typical examples are thermal or plastic
strains (see (1.44) and Sect. 1.3.3). In the framework of infinitesimal deforma-
tions the total strains εij are the sum of elastic strains εeij = C−1

ijkl σkl and the
eigenstrains: εij = εeij + εtij. Then the stresses are given by

σij = Cijkl (εkl − εtkl) . (8.4)

If nonvanishing eigenstrains prevail only in some bounded subregion Ω of
the homogeneous material this region is called an inclusion and the surrounding
material the matrix (Fig. 8.4). It has to be emphasized that the elastic properties
of an inclusion and the matrix are the same; otherwise the region Ω is called an
inhomogeneity (Sect. 8.2.2).

inclusion

matrix

Ω

εtkl=0

εtkl 6= 0

Figure 8.4: Inclusion in matrix
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In the general case of an arbitrary inclusion geometry Ω and an arbitrary
eigenstrain field εtkl(x) it is not possible to represent the stress distribution and
the total strain and displacement field in closed form. Some special cases are
discussed in the following section.

8.2.1.4 Eshelby’s result

The probably most important analytical solution of micromechanics has been
found by J.D. Eshelby (1916-1981). It is valid for an unbounded domain which
contains an ellipsoidal inclusion Ω with principal axes ai (Fig. 8.5):

(x1/a1)
2 + (x2/a2)

2 + (x3/a3)
2 ≤ 1 .

Ω
x1

a2

a1

x3

a3

x2

Figure 8.5: Ellipsoidal inclusion Ω in unbounded domain

If the eigenstrains in the inclusion are constant, εtkl = const, then the remarkable
result holds that the total strains εkl inside the inclusion Ω are constant as well.
Via the fourth-order Eshelby tensor Sijkl they depend linearly on the eigenstrains:

εij = Sijkl ε
t
kl = const in Ω . (8.5)

Using (8.4) the stresses inside Ω which then are likewise constant can be repre-
sented as

σij = Cijmn (Smnkl − Imnkl) ε
t
kl = const in Ω (8.6)

where

Imnkl =
1

2
(δmkδnl + δmlδnk) (8.7)
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is the symmetric fourth-order unit tensor. The Eshelby tensor is symmetric in
the first and second pair of indices, but in general it is not symmetric with regard
to an exchange of these pairs:

Sijkl = Sjikl = Sijlk , Sijkl 6= Sklij . (8.8)

In case of an isotropic material its components depend only on Poisson’s ratio
ν, the ratios of the principal axes ai, and their orientation with respect to some
cartesian coordinate system. Because of the length of the respective expressions
they are not given here and the reader is referred to the literature (e.g., Mura,
1982; Kachanov et al., 2003) for their representation.

Outside the inclusion Ω the stresses and strains are not constant; with in-
creasing distance r from the inclusion they asymptotically decay according to
εij , σij ∼ r−3 for r → ∞ , as in case of a center of dilatation. The result
(8.5) by Eshelby (1957) holds for an arbitrary anisotropic material. Yet, only in
case of an isotropic material is a closed-form representation of the tensor Sijkl
and the fields outside Ω possible. The Eshelby solution for ellipsoidal inclusions
is of fundamental importance for analytical homogenization techniques; it will by
intensively employed in later sections.

Starting from the general ellipsoid various special cases can be derived. For
instance, the two-dimensional solution for an infinitely long cylinder of elliptic
cross section in plane strain is obtained from the limit process a3 → ∞ (Fig. 8.6).
The exterior strain and stress fields in the x1, x2-plane then display an asymptotic
behavior of εij , σij ∼ r−2 for r → ∞ . The nonvanishing components of the
Eshelby tensor in case of an isotropic material are for the orientation of the

a2

x3

Ω x1

a3 =∞
x2

a1

Figure 8.6: Elliptic cylinder
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principal axes of Ω according to Fig. 8.6 given by

S1111 =
1

2(1 − ν)

{
a2

2 + 2a1a2

(a1 + a2)2
+ (1 − 2ν)

a2

a1 + a2

}
,

S2222 =
1

2(1 − ν)

{
a2

1 + 2a1a2

(a1 + a2)2
+ (1 − 2ν)

a1

a1 + a2

}
,

S1122 =
1

2(1 − ν)

{
a2

2

(a1 + a2)2
− (1 − 2ν)

a2

a1 + a2

}
,

S2211 =
1

2(1 − ν)

{
a2

1

(a1 + a2)2
− (1 − 2ν)

a1

a1 + a2

}
, (8.9)

S1212 =
1

2(1 − ν)

{
a2

1 + a2
2

2(a1 + a2)2
+

1 − 2ν

2

}
,

S1133 =
ν

2(1 − ν)

2a2

a1 + a2
, S2233 =

ν

2(1 − ν)

2a1

a1 + a2
,

S1313 =
a2

2(a1 + a2)
, S2323 =

a1

2(a1 + a2)
.

For a spherical inclusion (ai = a) in an isotropic material the dependence
on the principal axes and their orientation vanishes (geometric isotropy) and the
Eshelby tensor reduces to

Sijkl = α
1

3
δijδkl + β ( Iijkl −

1

3
δijδkl ) (8.10)

where

α =
1 + ν

3(1 − ν)
=

3K

3K + 4µ
, β =

2(4 − 5ν)

15(1 − ν)
=

6(K + 2µ)

5(3K + 4µ)
(8.11)

are scalar parameters. The entire (i.e., elastic and geometric) isotropy of the
problem then allows the decomposition into volumetric and deviatoric strains
which highlights the meaning of the parameters α and β:

εkk = α εtkk , eij = β etij in Ω . (8.12)

As a simple example we consider the thermal expansion due to a constant tem-
perture increase ∆T in some spherical region of radius a. This can be described
by the eigenstrains

εtij =

{
k∆T δij , r ≤ a

0 , r > a
(8.13)
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where k is the coefficient of thermal expansion. According to (8.12) the strains
inside the inclusion (r ≤ a) are εkk = 3αk∆T , eij = 0 or in spherical coordinates
(r, ϕ, ϑ)

εr = εϕ = εϑ =
1 + ν

3(1 − ν)
k∆T . (8.14)

Outside the inclusion (r > a) the solution is

εr = −2
1 + ν

3(1 − ν)

(a
r

)3

k∆T , εϕ = εϑ =
1 + ν

3(1 − ν)

(a
r

)3

k ∆T . (8.15)

8.2.1.5 Defect energies

Due to the stress and strain fields caused by defects on the microscopic level of
a material the overall energy content of the material is affected. The evolution
of defects (e.g., translation or growth) hence gives rise to energy changes which
in turn can be related to the action of so-called generalized (material) forces (see
Sect. 4.6.5.2). Of special importance in this context are those parts of the energy
which express the interaction of external (imposed) fields with the fields induced
by the defects.

εtkl=0

εtkl 6= 0

t0i

Ω
V

∂V

Figure 8.7: Inclusion Ω in bounded domain under external load

In the following we consider an arbitrary inclusion Ω in some finite volume V
with boundary ∂V on which the load t0i is prescribed (Fig. 8.7); volume forces are
neclected here. Because of the linearity of the problem all fields can additively be
decomposed into a part due to the external load (indicated by the superscript 0)
and a part (without superscript) caused by the eigenstrain εtij(x) of the inclusion.
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The total potential hence reads

Π =
1

2

∫

V

(σ0
ij + σij)(ε

0
ij + εij − εtij︸ ︷︷ ︸

εeij

) dV −
∫

∂V

t0i (u
0
i + ui) dA

=
1

2

∫

V

σ0
ijε

0
ij dV −

∫

∂V

t0iu
0
i dA

︸ ︷︷ ︸
Π0

+
1

2

∫

V

σij(εij − εtij) dV

︸ ︷︷ ︸
Π t

(8.16)

+
1

2

∫

V

(σ0
ij(εij − εtij) + σijε

0
ij) dV

︸ ︷︷ ︸
= 0 (∗)

−
∫

∂V

t0iui dA

︸ ︷︷ ︸
Π i

.

That the term (∗) vanishes can be shown as follows. First, by inserting the
elasticity law, the terms below the integral can be combined. Application of
the divergence theorem then yields a surface integral and a volume integral, the
integrands of which both vanish since eigenstrains alone do not cause tractions
on ∂V (i.e., ti|∂V

= 0) and because of the equilibrium condition σij,j = 0:

(∗) =
1

2

∫

V

[ε0
kl Cijkl(εij − εtij)︸ ︷︷ ︸

σkl

+ σijε
0
ij] dV =

∫

V

σijε
0
ij dV

=

∫

∂V

tiu
0
i dA−

∫

V

σij,ju
0
i dV = 0 .

The term Π0 in the total potential (8.16) denotes the energy solely due to
the external load and is irrelevant in the present context. The energy Π t which
results solely from the eigenstrain is called the self energy of the defect; it can be
further transformed according to

Π t =
1

2

∫

V

σij(εij − εtij) dV =
1

2

∫

V

σijεij dV

︸ ︷︷ ︸
= 0, cf. (∗)

−1

2

∫

V

σijε
t
ij dV = −1

2

∫

Ω

σijε
t
ij dV .

(8.17)
In the special case of an ellipsoidal inclusion in an unbounded domain and a
constant eigenstrain the stress σij inside Ω is also constant. Using (8.6) the term
Π t then reduces to

Π t = −1

2
σijε

t
ijVΩ = −1

2
Cijmn(Smnkl − Imnkl)ε

t
ijε

t
klVΩ (8.18)

where VΩ denotes the volume of the inclusion.
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The interaction energy Π i of the inclusion is defined as Π i = Π −Π0 −Π t

and hence is equal to the remaining term in (8.16). It expresses the work done
by the displacements induced by the eigenstrain on the external load and can be
written as follows

Π i = −
∫

∂V

t0iui dA = −
∫

V

σ0
ijεij dV = −

∫

V

ε0
ijCijkl (ε

e
kl + εtkl)︸ ︷︷ ︸
εkl

dV

= −
∫

V

ε0
ijσij dV

︸ ︷︷ ︸
= 0, cf. (∗)

−
∫

V

σ0
ijε

t
ij dV = −

∫

Ω

σ0
ijε

t
ij dV . (8.19)

using similar steps as above. In case of a constant eigenstrain and a uniform
external load (σ0

ij = const) it simplifies to

Π i = −σ0
ijε

t
ijVΩ . (8.20)

The relation between the energy due to the presence of a defect and the
generalized force acting on the defect is exemplified here by means of a center of
dilatation (Sect. 8.2.1.1) in an unbounded domain subjected to a constant far-
field loading σ0

ij . When located at point x = ξ the eigenstrain of a center of
dilatation can be written using Dirac’s delta function δ(.) as

εtij(x) = q δ(x − ξ) δij (8.21)

where q denotes its intensity. Insertion into (8.19) yields the dependence of the
interaction energy on the location of the defect:

Π i(ξ) = −
∫

V

σ0
ij(x)εtij(x) dV = −q

∫

V

σ0
jj(x)δ(x − ξ) dV = −q σ0

jj(ξ) . (8.22)

In case of a center of dilatation it depends only on the hydrostatic part σ0
jj of

the stress field induced by the external load. Analogous to Sect. 4.6.5.2 the
generalized force F acting on the center of dilatation is determined from the
energy dΠ = −Fkdξk released by a translation dξ of the defect. In the present
case only the interaction energy changes with a translation of the defect and we
get

Fk = − ∂Π i

∂ξk
= q

∂σ0
jj(ξ)

∂ξk
. (8.23)

The generalized force on the center of dilatation hence is proportional to the
gradient of the hydrostatic part of the external stress field (Fig. 8.8).

The above example can be taken as a simple model for the stress-assisted
diffusion of an interstitial atom in a crystal lattice. According to this, the gener-
alized force causes a preferential migration of the interstitial atom towards regions
subjected to a higher hydrostatic stress, i.e., with larger distances between the
lattice atoms.
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F

σ0
jj

Figure 8.8: Generalized force on a center of dilatation

8.2.2 Inhomogeneities

8.2.2.1 Concept of equivalent eigenstrain

Now we focus on the second class of defects which instead of eigenstrains in a
homogeneous material are characterized by inhomogeneous, i.e., spatially vary-
ing, material properties. We proceed in that we first describe these defects by an
equivalent eigenstrain in some homogeneous comparison material in order to then
apply again Eshelby’s result. Therefore, we consider a domain V with the inhomo-
geneous material behavior described by the spatially dependent elasticity tensor
Cijkl(x) and with displacements ûi prescribed on the boundary ∂V (Fig. 8.9a).
If volume forces are neglected this boundary value problem is governed by the
equations

σij,j = 0 , σij = Cijkl(x) εkl , ui|∂V
= ûi . (8.24)

In addition we consider the geometrically identical domain V subjected to the
same boundary conditions, yet consisting of a homogeneous comparison material
with the constant material properties C0

ijkl (Fig. 8.9b). The fields in this problem
are indicated by the superscript 0:

σ0
ij,j = 0 , σ0

ij = C0
ijkl ε

0
kl , u0

i |∂V
= ûi . (8.25)

If the difference fields

ũi = ui − u0
i , ε̃ij = εij − ε0

ij , (8.26)

are formed, it follows for the stress difference that

σ̃ij = σij − σ0
ij = Cijkl(x) εkl − C0

ijkl

(
εkl − ε̃kl︸ ︷︷ ︸
ε0
ij

)

= C0
ijkl

[
ε̃kl + C0−1

klmn[Cmnpq(x) − C0
mnpq ] εpq︸ ︷︷ ︸

−ε∗kl

]
. (8.27)
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+ 

b)a)

∂V
ε∗ij

V

c)

V

d)

V
ûi

V

ε∗ij

= =C0
ijkl=const C0

ijkl=constC0
ijkl=const

ûi ûi

Cijkl(x)

Figure 8.9: a) Heterogeneous material, b) homogeneous comparison material,
c) equivalent eigenstrain, d) homogenized original problem

The difference fields hence are governed by the equations

σ̃ij,j = 0 , σ̃ij = C0
ijkl

(
ε̃kl − ε∗kl

)
, ũi|∂V

= 0 (8.28)

which describe a boundary value problem in a homogeneous material C0
ijkl with

eigenstrain ε∗kl(x) and vanishing displacements on the boundary ∂V (Fig. 8.9c).
Here,

ε∗ij = −C0−1
ijkl

[
Cklmn(x) − C0

klmn

]
εmn (8.29)

denotes the equivalent eigenstrain, i.e., equivalent to the heterogeneity of the
material. Using an arbitrary homogeneous comparison material, the originally
complex problem of Fig. 8.9a thus has been transformed into the simpler problem
of Fig. 8.9d with a homogeneous material and distributed eigenstrains. The latter
still depend on the strain field of the original problem, but this dependence is only
via the deviation Cijkl(x)−C0

ijkl in the elastic properties. Such an approach which
may also be understood as a kind of filtering is advantageous in several regards.
For instance, we already know fundamental solutions for eigenstrain problems
in a homogeneous material such as Eshelby’s result which now can be formally
applied to material inhomogeneities. Also, the difference Cijkl(x)−C0

ijkl in (8.29)
means that with an appropriately chosen C0

ijkl an error in the approximation of
εij(x) in the solution of the boundary value problem (8.28) may have a smaller
effect than in the original problem (8.24). The quantity

τij(x) =
[
Cijkl(x) − C0

ijkl

]
εkl(x) (8.30)

in (8.29) which is called stress polarization emphasizes this connection. It de-
scribes the deviation of the “true” stress σij = Cijkl εkl from the stress which
would result from the “true” strain εkl in the homogeneous comparison mate-
rial. The stress polarization τij plays an important role in the framework of a
variational formulation in Sect. 8.3.3.2.
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The method of subtraction of a boundary value problem for a homogeneous
(i.e., defect-free) material was basically already applied in Sect. 4.4.1 in the de-
composition into two subproblems (Fig. 4.9). The fictitious crack loading intro-
duced there in the subproblem (2) may also be interpreted as an eigenstress and
the displacement jump, as will become more clear later on, as an eigenstrain.

If in addition to the material inhomogeneity Cijkl(x) a “true” eigenstrain
εtij(x) according to Sect. 8.2.1.3 prevails, the above procedure leads to an equiv-
alent eigenstrain in the homogeneous comparison material of

ε∗ij = −C0−1
ijkl

[ (
Cklmn(x) − C0

klmn

)
εmn − Cklmn(x) εtmn

]
. (8.31a)

In view of the frequently occurring tensorial expressions we will in the follow-
ing besides the index notation for clarity also make use of the symbolic notation:
σij , εij, Cijkl → σ, ε, C (see Chap. 1). In this notation, for instance equation
(8.31a) attains the form:

ε∗ = −C0−1 :
[(

C(x) − C0
)

: ε − C(x) : εt
]
. (8.31b)

To distinguish it from the second-order unit tensor I the fourth-order unit tensor
(8.7) is represented by the symbol 1. The interchange of the first and second pair
of indices of a fourth-order tensor is indicated by a superscript T (transposition):
Amnij Bmnkl = (AT : B)ijkl .

8.2.2.2 Ellipsoidal inhomogeneities

As an important special case which allows to apply Eshelby’s result we consider an
ellipsoidal material inhomogeneity Ω in an unbounded matrix (Fig. 8.10a). Now
the elastic properties are piecewise constant and given by the elasticity tensors
C

I
inside Ω (inhomogeneity) and C

M
in the surrounding matrix. At infinity the

homogeneous strain field ε0 = const is prescribed and the matrix material is
chosen as the homogeneous comparison material: C0 = C

M
. Using (8.26) and

(8.29) the equivalent eigenstrain in Ω then is

ε∗(x) = −C−1
M

:
(

C
I
− C

M

)
:
(

ε̃(x) + ε0
)
. (8.32)

Since outside Ω we have ε∗ = 0 the difference strain ε̃(x) in (8.28) can be
determined from Eshelby’s result

ε̃ = S : ε∗ = const . (8.33)

That the prerequisite for its application of a constant eigenstrain indeed holds is
confirmed by insertion of (8.33) into (8.32). Solving for ε∗ then yields the equiv-
alent eigenstrain due to a constant strain ε0 imposed at infinity at (Fig. 8.10b):

ε∗ = −
[
S + ( C

I
− C

M
)−1 : C

M

]−1
: ε0 in Ω . (8.34)
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Figure 8.10: a) Ellipsoidal inhomogeneity, b) homogeneous material with eigen-
strain

Using (8.33) and (8.34) the total strain ε = ε0 + ε̃ inside the inhomogeneity Ω
as a function of the external load ε0 reads

ε =
[
1 + S : C−1

M
: ( C

I
− C

M
)
]−1

︸ ︷︷ ︸
A

∞

I

: ε0 = const . (8.35a)

The fourth-order tensor A
∞

I
which describes the relation between the strain

ε inside the inhomogenity and the external load ε0 is called influence tensor.
Using (8.35a) the stress σ = C

I
: ε inside Ω which is also constant can now

be expressed, for instance, as a function of the stress σ0 = C
M

: ε0 applied at
infinity:

σ = C
I
: A

∞

I
: C−1

M
: σ0 . (8.35b)

As an example we compute σ for a spherical isotropic inhomogeneity embed-
ded in an isotropic matrix and, for simplicity, consider only the hydrostatic part.
Using (8.35b) we need only replace S in A

∞

I
by α(ν

M
) from (8.11) and C

I
and

C
M

by the bulk moduli 3K
I
and 3K

M
, respectively:

σii = 3K
I

[
1 + α

3K
I
− 3K

M

3K
M

]−1
σ0
ii

3K
M

in Ω . (8.36)

According to (8.11) the parameter representing the Eshelby tensor attains a value
of α = 2/3 for ν

M
= 1/3. For a “stiff” inhomogeneity with K

I
≫ K

M
it then

follows from (8.36) that the hydrostatic stress inside Ω is σii ≈ 1.5 σ0
ii. In case of

a “soft” inhomogeneity (K
I
≪ K

M
), in contrast, we get σii ≪ σ0

ii.
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Outside the ellipsoidal inhomogeneity the stresses and strains are not constant
and the difference fields σ̃, ε̃, ũ in the equivalent eigenstrain problem (8.28) dis-
play the same asymptotic behavior as the solution of the inclusion problem dis-
cussed in Sect. 8.2.1.4.

8.2.2.3 Cavities and cracks

A special case of material inhomogeneities are cavities (voids) and cracks in an
otherwise homogeneous medium. Formally, one may consider these defects to
consist of a material of vanishing stiffness and set C

I
= 0 in the relations ob-

tained above for general inhomogeneities in order to derive respective results for
ellipsoidal cavities and (in the limit of one vanishing principal axis) for cracks.
Only the strains inside the defects have to be interpreted in a proper way (see
Sect. 8.3.1.2). It seems, however, more illustrative to directly treat the boundary
value problem for these defects in a homogeneous material subjected to a con-
stant far field loading. One then has to consider boundary conditions on the void
surface or crack and in the following we assume these boundaries to be traction-
free. With regard to quantities needed later on, it suffices here to know only the
displacements on the respective defect surfaces. In the sequel they are given for
three important cases. If required, the complete stress and strain fields may be
found in the literature (e.g., Mura, 1982; Kachanov et al., 2003).

a) Circular hole (2D)
In case of an unbounded isotropic plate in plane stress with a circular hole of
radius a subjected to uniform far field loading σ0

ij (Fig. 8.11a) the displacements
along the hole (r = a) are in polar coordinates given by

ur(a, ϕ) =
a

E

[
σ0

11 (3 cos2 ϕ− sin2 ϕ) + σ0
22 (3 sin2 ϕ− cos2 ϕ) + 8σ0

12 sinϕ cosϕ
]

(8.37)

uϕ(a, ϕ) = 4
a

E

[
− σ0

11 sinϕ cosϕ+ σ0
22 sinϕ cosϕ+ σ0

12 ( cos2 ϕ− sin2 ϕ )
]
.

b) Straight crack (2D)
Along a straight crack of length 2a in an unbounded isotropic plate in plane
stress subjected to a constant load σ0

ij at infinity (Fig. 8.11b) the displacement
field undergoes a jump ∆u. In a cartesian x1, x2-coordinate system it can be
represented as follows (see Sect. 4.4.1)

∆ui(x1) =
4 σ0

i2

E

√
a2 − x2

1 (i, j = 1, 2) . (8.38)
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c) Circular (‘penny-shaped’) crack (3D)
The displacement jump across a penny-shaped crack of radius a oriented perpen-
dicular to the local x3-axis (Fig. 8.11c) reads

∆ui(r) =
16(1 − ν2)

πE(2 − ν)
σ0
i3

√
a2 − r2 (i = 1, 2) ,

(8.39)

∆u3(r) =
8(1 − ν2)

πE
σ0

33

√
a2 − r2

where r =
√
x2

1 + x2
2 .

a) b) c)
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Figure 8.11: a) Circular hole, b) straight crack, c) penny-shaped crack (3D)

8.3 Effective elastic properties

As already mentioned a macroscopically homogeneous material may have a het-
erogeneous microstructure on the microscopic level. Now we want to investigate
how this microstructure affects the material behavior on the macroscopic level,
i.e., on a larger length scale. For an explicit description of the material’s hetero-
geneity we will employ the idealized defects or inhomogeneities discussed above.
Under certain conditions which will be made more precise in the sequel it is pos-
sible to “smear out” the fine-scale heterogeneous microstructure and describe the
material on the macroscale as homogeneous with spatially constant effective prop-
erties. The latter then account for the microstructure in an averaged sense. This
micro-to-macro transition is called homogenization. Effective properties in this
sense are, for instance, Young’s modulus and Poisson’s ratio of steel as experimen-
tally determined with standard testing specimens. In many technical applications
these properties are well suited to describe the behavior of a material which mi-
croscopically has a very complex composition (e.g., anisotropic crystallites, grain
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boundaries, dislocations, etc.). Measuring material properties, of course, makes
only sense if the result does not depend on the chosen testing specimen; the
later has to be representative of the material. Analogous requirements hold when
macroscopic effective material properties are theoretically derived from a given
microstructure as will be discussed in the following.

8.3.1 Foundations

8.3.1.1 Representative volume element (RVE)

In the framework of a deterministic and continuum mechanical approach the pro-
cess of homogenization and the role of the macroscopic and microscopic level with
their characteristic length scales can be illustrated by Fig. 8.12. At some arbi-
trary point xmacro on the macroscopic level (e.g., a technical component) where
the material shall be described as homogeneous with constant effective properties,
a sufficient magnification (“microscope”) reveals the spatially extended fine-scale
microstructure.

(RVE)

xmacro
3

V

xmacro
2

xmacro
1

x1

x2

C∗
ijkl

Cijkl(x)
∂V

xmacro

(homogenization)

L
l (microstructure)

L

x3
d

Figure 8.12: Homogenization and characteristic length scales

We assume that the material behavior on the microscale is known and linear
elastic. If an additional coordinate system is introduced there, the microstructure
can be described by the dependence of the elasticity tensor Cijkl(x) on the mi-
croscale coordinates xi. Analogous to the measurement of macroscopic material
properties from a representative testing specimen we now consider a volume V on
the microscopic level which has to be representative of the entire material. This
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volume is employed in the homogenization process to ascribe macroscopic prop-
erties to the material in terms of a spatially constant effective elasticity tensor
C∗ijkl. To assure that this result is independent of the point xmacro the entirety
of the microstructural details which are described by Cijkl(x) and contribute to
C∗ijkl has to be independent of the location on the macroscale. This prerequisite
to a homogenization is also referred to as a statistically homogeneous distribu-
tion of the defects (heterogeneities) throughout the material. Furthermore, C∗ijkl
must not depend on the size or shape of the chosen volume V . That means that
in case of an irregular microstructure (defect distribution) the volume V has to
contain a sufficiently large number of defects and its dimension d hence has to
be much larger than the characteristic length scale l of the microstructure. The
latter is given, for instance, by the typical size or distance of individual defects
(Fig. 8.12). With this “wave length” l of varying elastic properties Cijkl(x) also
the stress and strain fields fluctuate on the microscale. On the other hand, the
volume V has to be small enough that it can approximately be regarded as a
point on the macroscopic level (Fig. 8.12). A characteristic length L on this level
is given by the geometry, by the spatial variation of the loading, or by the stress
and strain fields (“macro fields”) resulting in the macroscopically homogeneous
material. In order to allow in a certain situation the selection of some volume V
which is suitable for the homogenization of the material the characteristic length
scales have to satisfy the size condition

l ≪ d≪ L . (8.40)

Then the volume V is called a representative volume element (RVE).
Obviously the restriction of d from two sides according to (8.40) can preclude

the existence of an RVE and thereby a meaningful homogenization. Such a sit-
uation, for instance, prevails at a macroscopic crack tip where the strains in a
homogeneous material are singular and hence strongly vary over an arbitrarily
small distance L. The size d of an RVE according to (8.40) then would have to
be infinitely small and would necessarily violate the distance to the microstruc-
tural length scale (l) of any real material. One usually assumes that this takes
place only in the process zone (see Sect. 4.1). Similar arguments hold in case of
micro-electro-mechanical systems (MEMs) where components are often so small
that “classical” material properties measured from standard (i.e., large) testing
specimens are not suitable for their mechanical description. These examples both
refer to the right-hand side of the inequality (8.40) which will, as the condition of
statistical homogeneity of the material, in the following be assumed to be fulfilled.
The left-hand side of the inequality, i.e., the requirement for a minimum size d of
an RVE, will be discussed in Sect. 8.3.1.3 in conjunction with the specific homog-
enization process which also allows for a quantitative assessment. For practical
applications, typical values of d ≈ 0.1mm in case of ceramics and polycrystalline
metals or d ≈ 100mm in case of concrete may be considered (see also Fig. 8.1).

Caution is also required in the description of so-called functionally gradient
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materials (FGMs) with spatially varying macroscopic properties. In this case the
distribution of microstructural details displays a spatial variation such that the
condition of a statistically homogeneous microstructure which is necessary for
the definition of effective properties strictly speaking does not hold. The use of
effective properties then has to be seen as a pragmatic approximation.

The prerequisite of statistical homogeneity of a locally irregular microstruc-
ture is no longer necessary in the special case of a strictly periodic defect arrange-
ment. Then a unit cell of this arrangement is already representative of the entire
heterogeneous material.

8.3.1.2 Averaging

Via the two-scale consideration according to Fig. 8.12 a material point on the
macroscopic level is related to a volume V on the microscopic level where stresses
and strains prevail as fluctuating micro-fields. The macro-stresses and macro-
strains which characterize the mechanical state of the macroscopic material point
are defined as the volumetric averages of the microscopic fields

〈σij〉 =
1

V

∫

V

σij(x) dV , 〈εij〉 =
1

V

∫

V

εij(x) dV (8.41)

where the symbol 〈·〉 is used as an abbreviation. Employing the divergence theo-
rem the macroscopic quantities (8.41) can also be expressed by integrals over the
boundary ∂V of the averaging domain V . If vanishing volume forces are assumed
the equilibrium condition σik,k = 0 and xj,k = δjk yield the following identity for
the stresses:

(xj σik),k = xj,k σik + xj σik,k = σij .

Insertion into (8.41) leads to the representation of the macro-stresses

〈σij〉 =
1

V

∫

V

(xj σik),k dV =
1

V

∫

∂V

xj σik nk dA =
1

V

∫

∂V

ti xj dA . (8.42)

The macro-strains can also be written as

〈εij〉 =
1

2V

∫

V

( ui,j + uj,i ) dV =
1

2V

∫

∂V

( ui nj + uj ni ) dA . (8.43)

In the derivation of (8.42) and (8.43) the differentiability of the microscopic
fields in the entire domain V , which is necessary for the applicability of the di-
vergence theorem, was tacitely assumed. Although this condition is not fulfilled
in case of heterogeneous materials with discontinuously varying properties the
representations (8.42) and (8.43) of the macroscopic quantities by boundary in-
tegrals are generally valid. They hold independent of the material behavior and
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Figure 8.13: Volume V with a) internal interface S, b) cavity, c) crack Γ =Γ++Γ−

also in case of microstructures which contain cavities or cracks. In order to show
that this is true we consider an internal interface S inside a volume V according
to Fig. 8.13a which separates two subdomains V1 and V2 with different properties;
across the interface S the stresses and displacements are generally not differen-
tiable. Therefore, the divergence theorem has to be applied separately to the two
subdomains where S appears once as the boundary of V2 (with outer unit normal
nj) and also as the inner boundary of V1 (with outer unit normal −nj). For the
stresses this leads to
∫

V

σij dV =

∫

V1

σij dV +

∫

V2

σij dV =

∫

∂V

ti xj dA +

∫

S

( t
(2)
i − t

(1)
i ) xj dA (8.44)

and for the displacement gradient it follows that
∫

V

ui,j dV =

∫

V1

ui,j dV +

∫

V2

ui,j dV =

∫

∂V

ui nj dA+

∫

S

( u
(2)
i − u

(1)
i )nj dA . (8.45)

Here, t
(1,2)
i and u

(1,2)
i denote the traction and the displacement vectors of V1 and

V2 along the interface S. Because of t
(1)
i = t

(2)
i (equilibrium) and u

(1)
i = u

(2)
i

(continuity) at the interface, the integrals over S in (8.44) and (8.45) vanish. The
representations

〈σij〉 =
1

V

∫

∂V

ti xj dA , 〈εij〉 =
1

2V

∫

∂V

( ui nj + uj ni ) dA (8.46)

of the macroscopic quantities hence are valid even in case of discontinuous mate-
rial properties. Since this holds true independent of the actual material behavior
and geometry of the subdomain V2 this result also comprises the special case of
cavities which is obtained in the limit of a vanishing stiffness of the material in-
side V2 (Fig. 8.13b). By a further limit process S → Γ towards an infinitely thin
domain V2 (Fig. 8.13c) also the situation of cracks is included.

Often a volume V of a heterogeneous material consists of n subdomains

Vα (α = 1, ..., n) with volume fractions cα = Vα/V and
n∑

α=1

cα = 1 where the
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elastic properties Cα are piecewise constant. In case of such a microstructure
consisting of discrete phases we have

〈σ〉 =

n∑

α=1

cα 〈σ〉α , 〈ε〉 =

n∑

α=1

cα 〈ε〉α (8.47)

where

〈σ〉α =
1

Vα

∫

Vα

σ dV , 〈ε〉α =
1

Vα

∫

Vα

ε dV (8.48)

are the phase averages of the stresses and strains. They are related to each other
by

〈σ〉α = Cα : 〈ε〉α inside Vα . (8.49)

In case of microstructures which contain only cavities or cracks it is practi-
cal to represent the macroscopic quantities (8.46) in a somewhat different form.
Therefore, we first consider the situation of cavities and transform the average
strain 〈εij〉M

in the surrounding matrix material of volume V
M

= c
M
V using the

divergence theorem (see Fig. 8.13b). We get

〈εij〉M
=

1

2V
M

∫

V
M

(ui,j + uj,i) dV

=
1

2V
M

∫

∂V

(uinj + ujni) dA − 1

2V
M

∫

∂Vc

(uinj + ujni) dA

where ∂Vc denotes the cavity surface. If the first integral on the right-hand side
is replaced by (8.43) the macro-strains can be written as

〈εij〉 = c
M
〈εij〉M

+
1

2V

∫

∂Vc

(uinj + ujni) dA

︸ ︷︷ ︸
〈εij〉c

. (8.50a)

In case of cracks the limit process ∂Vc → Γ = Γ+ + Γ− (see Fig. 8.13c) and the
abbreviation ∆ui = u+

i − u−i lead to

〈εij〉 = c
M
〈εij〉M

+
1

2V

∫

Γ

(∆uinj +∆ujni) dA

︸ ︷︷ ︸
〈εij〉c

. (8.50b)
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The macro-strains in case of cavities or cracks hence consist of the average matrix
strain and the quantity 〈ε〉c which represents the average strain of the defect phase
(c for cavity or crack):

〈ε〉 = c
M
〈ε〉

M
+ 〈ε〉c . (8.51)

In contrast, the macro-stress is in case of traction-free cavities or cracks solely
given by the average matrix stress:

〈σ〉 = c
M
〈σ〉

M
. (8.52)

In a material which contains only cracks the volume fraction of the matrix phase
is c

M
= 1.

If the matrix material is homogeneous with C
M

= const and 〈σ〉
M

= C
M

:
〈ε〉

M
elimination of the average matrix stress and strain using (8.47) and (8.50a)

leads to

〈σ〉 = C
M

:
(
〈ε〉 − 〈ε〉c

)
or 〈ε〉 = C−1

M
: 〈σ〉 + 〈ε〉c , (8.53)

respectively. According to this representation 〈ε〉c appears in the relation between
macro-stresses and macro-strains (established here by the elastic properties of the
matrix !) in the same way as the eigenstrain in (8.4).

8.3.1.3 Effective elastic constants

Analogous to the elasticity law on the microscopic level

σij(x) = Cijkl(x) εkl(x) (8.54)

the effective elasticity tensor C∗ijkl is defined by the linear relation between the
macro-stresses and macro-strains (8.41):

〈σij〉 = C∗ijkl 〈εkl〉 . (8.55)

The interpretation of C∗ijkl as a material property is subjected to several condi-
tions. It is, for instance, appropriate to require the equality of the average strain
energy density 〈U〉 in the volume V when expressed by means of the microscopic
or macroscopic quantities:

〈U〉 = 〈1
2
εij Cijkl εkl〉 =

1

2
〈εij〉C∗ijkl〈εkl〉 . (8.56)

Using (8.54) and (8.55) this requirement, known as the Hill-condition (Hill, 1963),
can also be written in the form

〈σij εij〉 = 〈σij〉〈εij〉 . (8.57)
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For the fluctuations σ̃ij(x) = σij(x)− 〈σij〉 and ε̃ij(x) = εij(x)− 〈εij〉 of the
microscopic fields around their averages it then follows that

〈σ̃ij ε̃ij〉 = 0 . (8.58)

That means that on average the stress fluctuations must not do any work on the
strain fluctuations. Using the divergence theorem and the equilibrium condition
σik,k = 0 this can be expressed in terms of quantities on the boundary of the
averaging domain:

1

V

∫

∂V

(
ui − 〈εij〉xj

)(
σik − 〈σik〉

)
nk dA = 0 . (8.59)

Written in this form, the Hill-condition can be interpreted to state that the
micro-fields fluctuating along the boundary of an RVE have to be energetically
equivalent to their averages (Fig. 8.14). As already discussed in Sect. 8.3.1.1 this
can only be expected to hold if the averaging domain V is sufficiently large with
respect to the heterogeneities.

σ, ε 〈σ〉, 〈ε〉

Figure 8.14: RVE with fluctuating microscopic fields and averages

In order to compute the fields σij(x) and εij(x) in some volume V on the
microscopic level, the equilibrium condition σij,j = 0 and the elasticity law (8.54)
have to be complemented by boundary conditions on ∂V , i.e., a boundary value
problem has to be formulated. The domain V of the heterogeneous material
is regarded to be equivalent to the same domain of a homogeneous (effective)
medium and at the same time represents a macroscopic material point which
experiences only homogeneous stress and strain states. It is therefore appropriate
to prescribe those homogeneous states as boundary conditions on ∂V ; this can
be done in two ways:

a) Linear displacements: ui = ε0
ij xj on ∂V where ε0

ij = const .
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In this case it follows from (8.43) with
∫
∂V

xi nj dA = V δij that

〈εij〉 = ε0
ij . (8.60a)

b) Uniform tractions: ti = σ0
ij nj on ∂V where σ0

ij = const .

Equation (8.42) then yields

〈σij〉 = σ0
ij . (8.60b)

Homogeneous strains ε0
ij prescribed on the boundary of an arbitrary domain of

a heterogeneous material hence are equal to the volume average of the strains
throughout this domain. Analogously, if a homogeneous stress state σ0

ij is pre-
scribed on the boundary ∂V it is equal to the average stress in the domain V
provided that volume forces are not present. In case of a homogeneous mate-
rial both types of boundary conditions are equivalent and induce homogeneous
(i.e., spatially constant) fields throughout the volume. The relations (8.60a) and
(8.60b) are often referred to as the ‘average strain theorem’ and the ‘average
stress theorem’.

Using (8.59) one can verify that both types of boundary conditions satisfy
the Hill-condition identically, i.e., irrespective of the domain V . This is not
surprising since the consequence of the Hill-condition that the fluctuating fields
on the boundary of an RVE can be replaced by homogeneous fields is anticipated
in the above boundary conditions (a) or (b). Moreover, when the boundary
conditions (a) or (b) are imposed the Hill-condition in the form (8.57) or (8.59)
is satisfied independent of any relation between the fields σij and εij. Hence it

can be generalized and applied to arbitrary statically admissible stress fields σ
(1)
ij

and kinematically admissible strain fields ε
(2)
ij :

〈σ(1)
ij ε

(2)
ij 〉 = 〈σ(1)

ij 〉 〈ε(2)
ij 〉 . (8.61)

This relation which will be repeatedly used later on follows directly from the
general work theorem (1.95) when boundary conditions of the type (a) or (b) are
prescribed.

Because of the uniqueness of the solution of linear elastic boundary value
problems the fields inside the domain V depend linearly on the “loading” param-
eters ε0

ij or σ0
ij in the boundary conditions (a) or (b). The fields therefore can be

represented in the following form:

a) εij(x) = Aijkl(x) ε0
kl for ui = ε0

ij xj on ∂V , (8.62a)

b) σij(x) = Bijkl(x) σ0
kl for ti = σ0

ij nj on ∂V . (8.62b)
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Here, Aijkl(x) and Bijkl(x) denote the components of the so-called influence ten-
sors A(x) und B(x). The fourth-order influence tensors represent the complete
solution of the respective boundary value problems and depend on the microstruc-
ture in the entire domain V . With respect to its first two indices Aijkl(x) satisfies
the compatibility conditions (1.30), exactly as εij does. Correspondingly, Bijkl(x)
satisfies the equilibrium condition Bijkl,j(x) = 0. Averaging (8.62a) and (8.62b)
over V using (8.60a) and (8.60b) in addition reveals that the average value of
these functions is the fourth-order unit tensor (8.7):

〈A〉 = 1 , 〈B〉 = 1 . (8.63)

According to (8.54) and (8.55) the following relations in symbolic notation
hold for the effective elasticity tensor C∗ and the effective compliance tensor
C∗−1, respectively:

C∗ : 〈ε〉 = 〈σ〉 = 〈C : ε〉 , C∗−1 : 〈σ〉 = 〈ε〉 = 〈C−1 : σ〉 . (8.64)

In case of the boundary condition (a) insertion of (8.62a) leads to the represen-
tation

C∗ (a) = 〈C : A〉 (8.65a)

and insertion of (8.62b) in case (b) yields

C∗ (b) = 〈C−1 : B〉−1 . (8.65b)

From inserting (8.62a) and (8.62b) in the energy relation (8.56) one obtains the
alternative representations

C∗ (a) = 〈AT : C : A〉 and C∗ (b) = 〈BT : C−1 : B〉−1 (8.66)

from which the symmetry of the effective elasticity tensor with respect to the first
and second pair of indices becomes obvious.

By the superscripts (a) and (b) it shall be empasized that these averages
which are computed for an arbitrary volume V in general depend on the type
of boundary condition prescribed on ∂V . Therefore, C∗ (a) or C∗ (b) can strictly
speaking not be regarded as effective material properties because the volume V
need not automatically satisfy the requirements of an RVE. The distance between
C∗ (a) and C∗ (b) (in the sense of an appropriate norm) can be taken as a measure
for the quality of the averaging domain. Only if the domain V guarantees that
C∗ (a) = C∗ (b) = C∗ can C∗ be interpreted as a unique macroscopic material
property. Clearly, this must also hold for any larger domain which comprises V .

An important problem of micromechanics is the derivation of explicit repre-
sentations for the influence tensors A(x) or B(x), and hence for the micro-fields,
as well as for the effective elastic constants. By employing the fundamental solu-
tions presented in Sect. 8.2 along with suitable approximations various different
methods will be discussed in the following.
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8.3.2 Analytical approximations

8.3.2.1 General relations

According to (8.65a) or (8.65b) the effective elastic constants C∗ can be repre-
sented as the weighted averages of the microscopic elastic properties C(x) where
the influence tensor, e.g., A(x), serves as a weighting function. In case of a real
microstrucure, however, neither the exact function C(x) is known nor can the
corresponding influence tensor in general be written in closed form. Thus appro-
priate approximations have to be made with regard to the available information
in modeling the microstructure as well as in the representation of the influence
tensors.

It is therefore practical to restrict the considerations first to microstructures
consisting of discrete phases with piecewise constant elastic properties according
to (8.49) which for many materials actually applies (e.g., polycrystals, compos-
ites). Using (8.60a), (8.60b) with prescribed macro-strains 〈ε〉 = ε0 or prescribed
macro-stresses 〈σ〉 = σ0 it then follows from (8.62a), (8.62b) for the phase aver-
ages that

〈ε〉α = Aα : 〈ε〉 or 〈σ〉α = Bα : 〈σ〉 , (8.67)

respectively, where

Aα = 〈A〉α and Bα = 〈B〉α . (8.68)

The constant influence tensors Aα and Bα express the dependence of the average
(over the volume of phase α) of some field on the prescribed macroscopic quantity.
Equations (8.65a) and (8.65b) then reduce to

C∗ (a) =
n∑

α=1

cα Cα : Aα and C∗ (b) =

(
n∑

α=1

cα C−1
α : Bα

)−1

(8.69)

where only the influence tensors Aα or Bα of n − 1 phases are needed for the
representation of the effective elastic constants C∗ because

n∑

α=1

cαAα = 1 and
n∑

α=1

cαBα = 1 . (8.70)

For simplicity, we consider in the following a material which consists of two
phases only; the methods discussed, however, apply also to the general case. If
one phase is referred to as the matrix (M) and the other as the inhomogeneity
(I) it follows from (8.69) and (8.70) that

C∗ (a) = C
M

+ c
I
( C

I
− C

M
) : A

I
(8.71a)

or

C∗ (b) =
(
C−1

M
+ c

I
( C−1

I
− C−1

M
) : B

I

)−1
, (8.71b)
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respectively. These relations are not directly applicable to the special case of a
homogeneous matrix which as the second “phase” contains cavities or cracks. In
this case the linear dependence of the average defect strain 〈ε〉c defined in (8.50a),
(8.50b) on the prescribed macro-quantities ε0 or σ0 is expressed by influence
tensors D and H :

〈ε〉c = D : 〈ε〉 for 〈ε〉 = ε0 , 〈ε〉c = H : 〈σ〉 for 〈σ〉 = σ0 . (8.72)

Using (8.53) and (8.64) the effective elasticity tensors then are given by

C∗ (a) = C
M

: (1 − D) or C∗ (b) =
[
C−1

M
+ H

]−1
. (8.73)

By virtue of the fact that cavities or cracks cause a reduction of the effective
stiffness of a material the influence tensor D may be interpreted as a measure of
damage (see Chap. 9) while H describes an additional compliance.

In the following some approximations, models, and methods are discussed
which allow for an approximate computation of effective elastic constants.

8.3.2.2 Voigt and Reuss approximation

In a homogeneous material the boundary conditions (8.60a) or (8.60b) lead to ho-
mogeneous (spatially constant) stress and strain fields. In case of a heterogeneous
material the simplest approximation hence is to assume one of the micro-fields to
be constant, in accordance with the boundary conditions (a) or (b).

If according to Voigt (1889) the strains inside V are taken to be constant
(ε = 〈ε〉 = const) it follows from (8.62a) that the influence tensor is A = 1.
From (8.65a) or (8.69) the effective elasticity tensor then is approximated by the
average stiffness:

C∗
(Voigt) = 〈C〉 =

n∑

α=1

cαCα . (8.74a)

Analogously, in the approximation due to Reuss (1929) a constant stress field is
assumed (σ = 〈σ〉 = const) which corresponds to B = 1 in (8.62b). With (8.65b)
or (8.69) this leads to the approximation of the effective compliance tensor by
the average compliance

C∗−1
(Reuss) = 〈C−1〉 =

n∑

α=1

cαC
−1
α . (8.74b)

In the special case of discrete phases of an isotropic material the above approxi-
mations lead to the effective bulk and shear moduli

K∗
(Voigt) =

n∑

α=1

cαKα , µ∗(Voigt) =

n∑

α=1

cαµα (8.75a)
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or

K∗−1
(Reuss) =

n∑

α=1

cα
Kα

, µ∗−1
(Reuss) =

n∑

α=1

cα
µα

. (8.75b)

One should note that according to these models the macroscopic behavior of
the material is approximated to be isotropic although in reality an anisotropy
may result from the geometric arrangement of the phases (e.g., fiber-reinforced
materials).

In case of a matrix containing cavities or cracks the vanishing stiffness or
infinite compliance, respectively, of the defect phase leads to the Voigt and Reuss
approximations

C∗
(Voigt) = c

M
C

M
and C∗

(Reuss) = 0 . (8.76)

If, in contrast, one of the phases is rigid (e.g., C
I
→ ∞) one obtains

C∗
(Voigt) → ∞ and C∗

(Reuss) =
1

c
M

C
M
. (8.77)

The approximations of effective elastic properties by the average stiffness or
the average compliance are often referred to as rules of mixtures. They are exact
only in one-dimensional special cases of different materials arranged “in parallel”
(Voigt) or “in series” (Reuss). In general the assumption of constant strains leads
to a violation of local equilibrium (e.g., at phase boundaries) and the assumption
of constant stress precludes the compatibility of deformation. Despite these obvi-
ous deficiencies the simple approximations by Voigt and Reuss bear the advantage
that they yield exact bounds for the true effective elastic constants of a hetero-
geneous material. In Sect. 8.3.3.1 it will be shown that K∗

(Reuss) ≤ K∗ ≤ K∗
(Voigt)

and µ∗(Reuss) ≤ µ∗ ≤ µ∗(Voigt) . Since the Voigt and Reuss approximations are often
far apart from each other a pragmatic approach to improve the approximation of
effective constants is to take their mean values

K∗ ≈ 1

2

(
K∗

(Reuss) +K∗
(Voigt)

)
, µ∗ ≈ 1

2

(
µ∗(Reuss) + µ∗(Voigt)

)
. (8.78)

8.3.2.3 Non-interacting (dilute) defect distribution

Using the exact fundamental solutions presented in Sect. 8.2.2 it is possible to
develop micromechanical models which satisfy the local equilibrium and guar-
antee the compatibility of deformation. In doing so we consider a two-phase
material which consists of a homogeneous matrix with C

M
= const and one kind

of equal defects (second phase). With regard to the available fundamental solu-
tions the latter will be approximated by ellipsoidal elastic inhomogeneities with
C

I
= const, by circular holes (2D) or by straight (2D) or penny-shaped (3D)

cracks.
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The simplest situation prevails when the inhomogeneities or defects are so
dilutely distributed in the homogeneous matrix that their interaction among each
other and with the boundary of the RVE can be neglected (“dilute distribution”).
As illustrated in Fig. 8.15 each defect then can be considered in an unbounded
domain subjected to a uniform far-field loading ε0 = 〈ε〉 or σ0 = 〈σ〉. The
characteristic dimension of the defects therefore has to be small compared to their
distance or to the distance from the boundary of the RVE. Although the solutions
obtained under these idealizations are themselves only valid for very small volume
fractions (c

I
≪ 1) they form the basis for important generalizations.

ε0 or σ0

∂V

ε0 or σ0

Figure 8.15: Model of dilute defect distribution

a) Ellipsoidal inhomogeneities
In case of an ellipsoidal inhomogeneity Ω (Sect. 8.2.2.2) the strain inside the
inhomogeneity is constant (ε = 〈ǫ〉

I
in Ω) and given by the influence tensor A

∞

I

introduced in (8.35a). According to (8.71a) hence the effective elasticity tensor
of a material which contains a dilute distribution of ellipsoidal inhomogeneities
with equal orientation and aspect ratio reads

C
∗ (a)
(DD) = C

M
+ c

I
( C

I
− C

M
) : A

∞

I
(8.79a)

where c
I
≪ 1 is the volume fraction of inhomogeneities and (DD) stands for

“dilute distribution”. Insertion of (8.35a) yields the representation

C
∗ (a)
(DD) = C

M
+ c

I
( C

I
− C

M
) :
[
1 + S

M
: C−1

M
: (C

I
− C

M
)
]−1

(8.79b)

where the Eshelby tensor S
M

depends on the matrix material. In case of different
kinds of ellipsoidal inhomogeneities, e.g., of different orientations, one has to start
from (8.69) where the individual influence tensors A

∞

α represent the different
orientations via the respective Eshelby tensors.

The superscript (a) in (8.79a,b) indicates that this result is valid only for the
case (a) of prescribed macro-strains. If the model of a dilute defect distribution
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is evaluated for prescribed macro-stresses (b) an effective elasticity tensor C
∗ (b)
(DD)

is obtained which differs from (8.79b) for finite values of c
I
.

In contrast to the Voigt or Reuss approximations the overall behavior de-
scribed by (8.79a,b) may even in case of an isotropic material of both phases be
anisotropic due to a preferred orientation of the ellipsoids which is accounted for
by the Eshelby tensor. Only in case of spherical isotropic inhomogeneities in an
isotropic matrix is the macroscopic (effective) behavior isotropic and (8.79b) can
be split into the volumetric and deviatoric parts using (8.10) and (8.12):

K∗
(DD) = K

M
+ c

I

(K
I
−K

M
)K

M

K
M

+ α (K
I
−K

M
)
,

(8.80)

µ∗(DD) = µ
M

+ c
I

(µ
I
− µ

M
)µ

M

µ
M

+ β (µ
I
− µ

M
)
.

Corresponding to the model of a matrix which contains a small volume fraction
(dilute distribution) of defects the effective elastic constants are given by those
of the matrix plus an additional term which is linear in c

I
. According to (8.11)

the parameters α and β in the Eshelby tensor depend via Poisson’s ratio ν
M

=
(3K

M
− 2µ

M
)/(6K

M
+ 2µ

M
) of the matrix material on both moduli K

M
and µ

M

and hence describe a coupling of the volumetric and shear stiffness. The effective
Young’s modulus can be computed from E∗ = 9K∗µ∗/(3K∗ + µ∗).

Finally, we consider the special case of rigid spherical inhomogeneities
(K

I
, µ

I
→ ∞) in an incompressible matrix (K

M
→ ∞). With β = 2/5 from

(8.11) a macroscopically incompressible material (K∗
(DD) → ∞) is obtained from

(8.80) with

µ∗(DD) = µ
M

(
1 +

5

2
c

I

)
. (8.81)

In view of the analogy between linear elasticity and a Newtonian (linearly viscous)
fluid this result corresponds exactly to the relation for the effective viscosity of a
suspension of a viscous fluid with rigid particles derived by A. Einstein (1906).

b) Circular holes (2D)
As a second application of the model of a dilute defect distribution we now con-
sider an infinitely extended plate in plane stress which contains circular holes
of equal radius a (Fig. 8.16). Because of the neglected interaction the average
strain 〈εij〉c of each individual hole due to a uniform external loading σ0

ij can be
obtained from (8.50a) by integration of the fundamental solution (8.37) along the
boundary of the hole

〈εij〉c =
1

2A

2π∫

0

( uinj + ujni ) a dϕ (8.82)
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σ0
12

σ0
11

σ0
12

σ0
22

σ0
22

aσ0
11

x2

x1

Figure 8.16: Plate with circular holes

where u1 = ur cosϕ−uϕ sinϕ , u2 = ur sinϕ+uϕ cosϕ , n1 = cosϕ , n2 = sinϕ.
In this two-dimensional problem averaging is performed with respect to the area
A of the plate, hence instead of the surface integral in (8.50a) a contour integral
has to be evaluated. From the relation (8.72) between the average defect strain
and external loading σ0 the additional compliance tensor H

∞

is obtained. The
latter is employed in (8.73) to represent the effective elasticity tensor in case of a
dilute distribution of holes:

C
∗ (b)
(DD) =

[
C−1

M
+ H

∞]−1
. (8.83)

The nonvanishing components of H
∞

read

H
∞

1111 = H
∞

2222 =
3c

E
, H

∞

1122 = H
∞

2211 = − c

E
,

(8.84)

H
∞

1212 = H
∞

2121 = H
∞

1221 = H
∞

2112 =
4c

E

where c = πa2/A denotes the area fraction of holes and E is Young’s modulus
of the matrix material. From C−1

1111 = 1/E and C−1
1212 = 1/2µ the effective Young’s

modulus and the effective shear modulus are obtained:

E∗(DD) =
E

1 + 3c
≈ E (1− 3c) , µ∗(DD) =

E

2(1 + ν + 4c)
≈ µ (1− 4c

1 + ν
) . (8.85)

As expected, both effective stiffnesses decrease with increasing area fraction of
holes.

c) Straight cracks (2D)
Exactly as in case of a circular hole the average strain of a straight crack of
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length 2a subjected to a uniform external loading (Fig. 8.11b) can be obtained
from (8.50b) using the fundamental solution (8.38):

〈ε11〉c = 0

〈ε12〉c =
1

2A

a∫

−a

∆u1(x1) dx1 =
a2

A

π

E
σ0

12 = f
π

E
σ0

12 (8.86)

〈ε22〉c =
1

A

a∫

−a

∆u2(x1) dx1 = f
2π

E
σ0

22 .

In analogy to the volume fraction or area fraction of a defect the crack density
parameter f = a2/A has been introduced here; in view of the assumed dilute
distribution its value has to be small: f ≪ 1. The nonvanishing components of
the additional compliance tensor H

∞

read

H
∞

1212 = H
∞

2121 = H
∞

1221 = H
∞

2112 = f
π

E
, H

∞

2222 = f
2π

E
. (8.87)

In case of a plate which consists of a homogeneous isotropic matrix material
with parallel cracks of equal length 2a (Fig. 8.17a) the effective elastic constants
according to (8.83) are

E∗1 (DD) = E , E∗2 (DD) =
E

1 + 2πf
≈ E (1 − 2πf) ,

(8.88)

µ∗12 (DD) =
E

2(1 + ν + πf)
≈ µ (1 − πf

1 + ν
) .

a) b)
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Figure 8.17: a) Parallel and b) statistically equal distributed crack orientation
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Due to the uniform crack orientation the overall material behavior here is anisotropic
with a reduced stiffness normal to the cracks.

If, in contrast, the crack orientations are statistically equal distributed (Fig. 8.17b)
the additional compliance tensor (8.87) can, within the model of a dilute defect
distribution, be averaged over all orientations:

H
∞

ijkl =
1

2π

2π∫

0

H
∞

i′j′k′l′(ϕ) dϕ ; H
∞

1111 = H
∞

1212 = H
∞

2121 = H
∞

2222 = f
π

E
. (8.89)

Since macroscopically there is no preferred direction the effective material behav-
ior is isotropic with

E∗(DD) =
E

1+πf
≈ E (1 − πf) , µ∗(DD) =

E

2(1+ν+πf)
≈ µ (1 − πf

1+ν
) . (8.90)

d) Penny-shaped cracks (3D)
Starting from the fundamental solution (8.39) for a penny-shaped crack of radius
a in an unbounded domain and following the same procedure as before the addi-
tional compliance tensor in case of a uniform loading σ0

ij is obtained from (8.50b)
and (8.72). In a local coordinate system with the x3-axis normal to the crack its
nonvanishing components read

H
∞

3333 = f
16(1 − ν2)

3E
, H

∞

1313 = H
∞

2323 = f
32(1 − ν2)

3E(2 − ν)
(8.91)

where now (3D) the crack density parameter is given by f = a3/V . The effective
elastic constants of a material which consists of an isotropic matrix with a dilute
distribution of parallel and equally sized penny-shaped cracks can be written as

E∗1 (DD) = E∗2 (DD) = E , ν∗12 (DD) = ν , µ∗12 (DD) = µ =
E

2(1 + ν)
,

E∗3 (DD) =
3E

3 + f16(1 − ν2)
,

(8.92)

µ∗13 (DD) = µ∗23 (DD) = µ

[
1 + f

16(1 − ν)

3(2 − ν)

]−1

,

ν∗13 (DD) = ν∗23 (DD) = ν

[
1 + f

16(1 − 2ν)(ν2 − 1)

3ν(2 − ν)

] [
1 + f

16(1 − ν2)

3

]−1

.

It should be noted that the parameters E∗1 (DD) , ν
∗
12 (DD), and µ∗12 (DD) are not

independent but are solely determined by two elastic constants. Hence the over-
all material behavior is characterized by five independent elastic constants and
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is isotropic in the x1, x2-plane; this kind of anisotropy is termed transversely
isotropic (see (1.41), (1.42)).

If all crack orientations occur equally often the macroscopic behavior is isotropic.
Averaging of (8.91) over all orientations

H
∞

ijkl =
1

4π

2π∫

0

π∫

0

H
∞

i′j′k′l′(ϕ, ϑ) cos ϑ dϑ dϕ

then yields

H
∞

1111 = H
∞

2222 = H
∞

3333 =
f

E

16(1 − ν2)(10 − 3ν)

45(2 − ν)

H
∞

1122 = H
∞

2233 = H
∞

3311 = − f

E

16ν(1 − ν2)

45(2 − ν)
(8.93)

H
∞

1212 = H
∞

2323 = H
∞

3131 =
f

E

32(1 − ν2)(5 − ν)

45(2 − ν)

from which the effective elastic constants

E∗(DD) = E

[
1 + f

16(1 − ν2)(10 − 3ν)

45(2 − ν)

]−1

≈ E

[
1 − f

16(1 − ν2)(10 − 3ν)

45(2 − ν)

]
,

(8.94)

µ∗(DD) = µ

[
1 + f

32(1 − ν)(5 − ν)

45(2 − ν)

]−1

≈ µ

[
1 − f

32(1 − ν)(5 − ν)

45(2 − ν)

]

are obtained.

8.3.2.4 Mori-Tanaka model

The approximation of a dilute distribution of non-interacting defects is equivalent
to the assumption that in a sufficient distance from each defect the constant
strain field ε0 or stress field σ0 of the external loading prevails. This assumption
is the starting point for a refinement of the model to account for an interaction
and hence a finite volume fraction of defects. In the Mori-Tanaka model (1973)
therefore the strain or stress field in the matrix is, in a sufficient distance from a
defect, approximated by the constant field 〈ε〉

M
or 〈σ〉

M
(Fig. 8.18). The loading

of each defect then depends on the existence of further defects via the average
matrix strain 〈ε〉

M
or the average matrix stress 〈σ〉

M
. Fluctuations of the local

fields, however, are neglected in this approximation of defect interaction.
In view of the idealized consideration of a single defect in an unbounded

matrix, yet subjected to some effective loading 〈ε〉
M

or 〈σ〉
M
, the Mori-Tanaka

model formally equals that of a dilute distribution (see Fig. 8.15) and allows for
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∂V

〈ε〉
M

or 〈σ〉
M

ε0 or σ0

Figure 8.18: Defect interaction in the Mori-Tanaka model

the application of the already known influence tensors A
∞

I
and H

∞

to represent
the average defect strain:

〈ε〉
I
= A

∞

I
: 〈ε〉

M
or 〈ε〉c = H

∞

: 〈σ〉
M
. (8.95)

In order to determine the effective material properties the average defect strain
needs to be represented as a function of the macroscopic quantities 〈ε〉 = ε0 or
〈σ〉 = σ0, respectively (see (8.67)). Therefore, the matrix quantities 〈ε〉

M
and

〈σ〉
M

are eliminated. Using 〈ε〉 = c
M
〈ε〉

M
+ c

I
〈ε〉

I
and (8.95) in case of ellipsoidal

inhomogeneities leads to 〈ε〉
I
= A

I (MT) : 〈ε〉 where

A
I (MT) =

[
c

I
1 + c

M
A

∞−1
I

]−1
=
[
1 + c

M
S

M
: C−1

M
: (C

I
− C

M
)
]−1

(8.96a)

is the influence tensor of the Mori-Tanaka model. In case of cavities or cracks
(8.95) and 〈σ〉 = c

M
〈σ〉

M
lead to 〈ε〉c = H(MT) : 〈σ〉 with the additional compli-

ance tensor

H(MT) =
1

c
M

H
∞

. (8.96b)

According to (8.71a) and (8.73) hence the effective elastic constants for the two
kinds of defects are given by

C∗
(MT) =





C
M

+ c
I
( C

I
− C

M
) : A

I (MT) (ellipsoids)

[
C−1

M
+ H(MT)

]−1
(cavities, cracks)

. (8.97)

From (8.96a) and (8.97) it can be seen that the Mori-Tanaka model, in contrast
to the model of a dilute distribution, correctly covers the extreme cases of c

I
= 0

and c
I

= 1 (homogeneous material) and therefore can formally be applied for
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arbitrary volume fractions c
I
. Yet, the fundamental assumption of a distinct

matrix phase and a defect subjected to a homogeneous far-field loading can only
be realized for small or large values of c

I
; in the latter case the inhomogeneity

attains the role of the matrix phase. In case of cavities (8.96b) and (8.97) yield
a loss of the macroscopic stress-carrying capacity (C∗

(MT) → 0) only in the limit
c

M
→ 0 which is not realistic (see Sect. 8.3.2.5).
It can be shown that the approximations for the effective material properties

obtained from the Mori-Tanaka model are independent of the type of prescribed
macroscopic quantities ε0 or σ0. For small values of the defect volume fraction
(c

I
≪ 1) they asymptotically approach the results for a dilute distribution.
In the special case of an isotropic matrix which contains isotropic spherical

inhomogeneities the Mori-Tanaka model yields irrespective of the spatial arrange-
ment of the defects an isotropic overall behavior with effective elastic constants
(see (8.80))

K∗
(MT) = K

M
+ c

I

(K
I
−K

M
)K

M

K
M

+ α (1 − c
I
) (K

I
−K

M
)
,

(8.98)

µ∗(MT) = µ
M

+ c
I

(µ
I
− µ

M
)µ

M

µ
M

+ β (1 − c
I
) (µ

I
− µ

M
)
.

A macroscopic anisotropy which might result from the geometric arrangement
of the inhomogeneities hence can not be described by this model (like in case
of the dilute distribution). It should further be noted that in contrast to (8.80)
now the effective constants (8.98) depend nonlinearly on the volume fraction
c

I
of inhomogeneities. In the limit case of rigid spheres (K

I
, µ

I
→ ∞) in an

incompressible matrix (K
M
→ ∞, β = 2/5) they reduce to (see (8.81))

µ∗(MT) = µ
M

(
1 +

5

2

c
I

(1 − c
I
)

)
. (8.99)

In the 2D-example of a plate in plane stress with circular holes of an area
fraction c according to Fig. 8.16 the Mori-Tanaka model yields by insertion of
(8.84) into (8.96b), (8.97)

E∗(MT) = E
1 − c

1 + 2c
, µ∗(MT) = µ

(1 − c)(1 + ν)

1 + ν + c (3 − ν)
. (8.100)

Cracks, because of their vanishing volume (c
M

= 1), have no effect on the
average stress: 〈σ〉

M
= 〈σ〉. For a material with straight (2D) or penny-shaped

cracks the Mori-Tanaka model thus leads to the same effective elastic constants
as the model of a dilute defect distribution in case of prescribed macro-stress
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(see (8.88), (8.90), (8.92), or (8.94)). Accordingly, the Mori-Tanaka model when
applied to cracks does not predict a total loss of the macroscopic stress-carrying
capacity, even in case of an arbitrary high value of the crack density.

8.3.2.5 Self-consistent method

Analytical methods for the approximation of effective material properties are
typically based on the consideration of a single defect in an unbounded domain
because of the limited availability of closed-form solutions. In doing so, the
interaction of defects has in the previous section been accounted for by an ap-
propriate approximation of the loading of individual defects; a sufficient distance
among these defects in a homogeneous matrix therefore was required. This lat-
ter assumption, however, does often not hold. For instance, in a polycrystal
the inhomogeneities prevail in form of single crystal grains which are in direct
contact with each other without any distinct matrix phase. With focus on this
particular situation the self-consistent method has been developed. It is based
on the approximation (“smearing”) of the entire surrounding of each individual
defect by an infinite matrix with elastic properties given by the unknown effective
properties which are to be determined (Fig. 8.19). Inside the defect the solution

ε0 or σ0

C
M

C∗

∂V

ε0 or σ0

Figure 8.19: Model of the self-consistent method

of the respective boundary value problem (single defect subjected to some load-
ing ε0 = 〈ε〉 or σ0 = 〈σ〉) is formally obtained from the solution for a dilute
defect distribution by replacing the matrix properties by the effective properties
(see also Fig. 8.15). Correspondingly, the average defect strain and the influence
tensors are for ellipsoidal inhomogeneities given by
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〈ε〉
I
= A

I (SK) : 〈ε〉 ,
(8.101a)

A
I (SK) = A

∞

I
(C

M
= C∗) =

[
1 + S∗ : C∗−1 : ( C

I
− C∗ )

]−1

and in case of cavities and cracks by

〈ε〉c = H(SK) : 〈σ〉 , H(SK) = H
∞

(C
M

= C∗) . (8.101b)

The effective elastic properties then follow by insertion into (8.71a) or (8.73).
They are subject to the requirement to coincide with the effective matrix prop-
erties C∗ used in the representation of the influence tensors (8.101a), (8.101b)
which explains the notion self-consistence. Thus the self-consistent method yields
an implicit representation of the effective elasticity tensor in form of nonlinear
algebraic equations. Using (8.71a) and (8.73) the latter read

C∗
(SK) =





C
M

+ c
I
( C

I
− C

M
) : A

∞

I
(C∗

(SK)) (ellipsoids)

[
C−1

M
+ H

∞

(C∗
(SK))

]−1
(cavities, cracks)

. (8.102)

Like the Mori-Tanaka model, the self-consistent method also yields a unique re-
sult which is independent of the prescribed macroscopic quantities and correctly
covers the limit cases of a homogeneous material. Moreover, it should be noted
that in the self-consistent method a macroscopic anisotropy which may result
from the relative defect orientation or arrangement has to be accounted for al-
ready in the effective behavior adopted in the fundamental solution A

∞

I
(C∗

(SK))

or H
∞

(C∗
(SK)). A typical example are parallel cracks where already an individual

defect has a distinguished orientation; but also preferred orientations in the spa-
tial arrangement of isotropic defects give rise to a macroscopic anisotropy. Only
in case of a complete (i.e., material and geometric) isotropy of the microstructure
is the overall behavior isotropic. This holds, for instance, for an isotropic distri-
bution of spherical inhomogeneities in an isotropic matrix. In this special case
insertion of the parameters α∗(ν∗), β∗(ν∗) of the isotropic Eshelby tensor (8.11)
leads to the following equations for the effective bulk and shear moduli:

0 =
c

M

K∗
(SK) −K

I

+
c

I

K∗
(SK) −K

M

− 3

3K∗
(SK) + 4µ∗(SK)

,

(8.103)

0 =
c

M

µ∗(SK) − µ
I

+
c

I

µ∗(SK) − µ
M

−
6
(
K∗

(SK) + 2µ∗(SK)

)

5µ∗(SK)

(
3K∗

(SK) + 4µ∗(SK)

) .
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From this representation it is obvious that in the self-consistent method none of
the involved phases plays the role of a surrounding matrix; this corresponds to
the situation of a polycrystalline or interpenetrating microstructure.

In the special case of rigid spherical particles (K
I
→ ∞ , µ

I
→ ∞) in an

incompressible matrix (K
M

→ ∞) the self-consistent method yields in contrast
to (8.81) and (8.99)

µ∗(SK) =
2µ

M

2 − 5 c
I

. (8.104)

Hence a macroscopically rigid material (µ∗(SK) → ∞) is predicted already at a

volume fraction of spherical particles of c
I
= 2/5. Also the case of spherical voids

(K
I
→ 0 , µ

I
→ 0) in an incompressible matrix (K

M
→ ∞) can be directly derived

from (8.103) which leads to

K∗
(SK) =

4µ
M
(1 − 2 c

I
)(1 − c

I
)

c
I
(3 − c

I
)

, µ∗(SK) =
3µ

M
(1 − 2 c

I
)

3 − c
I

. (8.105)

From this result it can be seen that the self-consistent method applied to a
porous material predicts the entire loss of macroscopic stress carrying capac-
ity (K∗

(SK) → 0 , µ∗(SK) → 0) at a void volume fraction of 50%, i.e., c
I
= 1/2. The

limit behavior described by (8.104) and (8.105) is qualitatively correct since sta-
tistically already at a volume fraction well below 1 “bridges” of rigid particles or
voids prevail in a real material which extend throughout the whole microstructure
and determine the overall performance. This statistical effect is called percolation
and is subject of the percolation theory to be found in the special literature. The
apparent strength of the self-consistent method to account for this effect, however,
is weakend by the fact that the prerequisite for a homogenization of statistical ho-
mogeneity of an RVE is violated by the existence of the above-mentioned bridges
(percolation).

Another drawback of the self-consistent method lies in its mixing of the micro-
scopic and macroscopic level which strictly should be separated. A single defect,
“visible” only on the microscale, is embedded into an effective medium which is
defined only on the macroscopic level. In order to reduce this inconsistency the
so-called generalized self-consistent method considers the defect and the infinitely
extended effective medium to be separated by a layer of the true matrix material.
Yet, this rather complicated method is not further treated here.

The result (8.102) of the self-consistent method shall now be evaluated for
the situation of circular holes and cracks. In case of a plate containing isotropi-
cally distributed circular holes (macroscopic isotropy) therefore only the Young’s
modulus E of the matrix material in (8.84) needs to be replaced by E∗(SK) which
leads to

E∗(SK) = E (1 − 3 c) , µ∗(SK) =
E (1 − 3 c)

2 [1 + c+ ν(1 − 3 c)]
. (8.106)
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The total loss of effective stiffness of the plate hence is predicted already at an
area fraction of holes of c = 1/3. Experimental data or those based on percolation
theory, however, are approximately twice that value (see Fig. 8.21).

As already mentioned, the application of the self-consistent method to ma-
terials with parallel cracks requires the somewhat cumbersome determination of
the fundamental solution for a single crack in an anisotropic medium because of
the resulting overall anisotropy. Referring for this case to the special literature
we restrict ourselves here to the situation of statistically equal distributed crack
orientations where the overall material behavior is isotropic. In case of straight
cracks of length 2a in a plate under plane stress only E in (8.89) has to replaced
by E∗(SK). The effective Young’s modulus and shear modulus then are given by

E∗(SK) = E (1 − πf) , µ∗(SK) =
E (1 − πf)

2 [1 + ν(1 − πf)]
. (8.107)

Accordingly, a total loss of macroscopic stiffness is predicted at f = 1/π. At this
value the area πa2 covered by a crack by varying its orientation is equal to the ref-
erence area A of the material. For the three-dimensional problem of penny-shaped
cracks with randomly distributed orientation the isotropic additional compliance
tensor H(SK) = H

∞

(C∗
(SK)) is obtained from (8.93) by substituting E and ν by

E∗(SK) and ν∗(SK) which, using (8.102), leads to coupled nonlinear equations for the
effective elastic constants:

ν∗(SK)

E∗(SK)

=
ν

E
+ f

16ν∗(SK)(1 − ν∗2
(SK))

45(2 − ν∗(SK))E
∗
(SK)

,

(8.108)

1 + ν∗(SK)

E∗(SK)

=
1 + ν

E
+ f

32(1 − ν∗2
(SK))(5 − ν∗(SK))

45(2 − ν∗(SK))E
∗
(SK)

.

8.3.2.6 Differential scheme

In contrast to the self-consistent method where the entire volume fraction of each
phase is embedded in the effective matrix in a single step, the differential scheme
is based on a succession of this embedding by infinitesimal steps. This can be
associated with the actual manufacturing of a heterogeneous material by the step-
wise incorporation of one phase (inhomogeneity) into an originally homogeneous
material (matrix) where it is irrelevant which of the phases attains the role of
the originally homogeneous material. Since in each step only an infinitesimal
volume dV of the defect phase with elasticity tensor C

I
is embedded into the

infinitely extended homogeneous matrix, the model of a dilute distribution and
the respective relations for the effective properties are exact. In an arbitrary step
the matrix is characterized by the effective properties C∗(c

I
) which correspond
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dV

C∗(c
I
)

C∗(c
I
+ dc

I
)

dV, C
I

dV
I
= c

I
dV

Figure 8.20: Differential scheme

to the up to then embedded volume fraction c
I
= V

I
/V . This procedure is illus-

trated in Fig. 8.20 for an ellipsoidal inhomogeneity. By conservation of the total
volume V , an infinitesimal volume dV of the defect phase is incorporated while
the same volume of effective matrix material has to be removed. Thereby the
volume fraction of the inhomogeneity changes to c

I
+ dc

I
and its volume balance

during this step can be written as

(c
I
+ dc

I
)V = c

I
V − c

I
dV + dV ;

dV

V
=

dc
I

1 − c
I

. (8.109)

Since only an infinitesimal volume dV (volume fraction dV/V ) is embedded, the
relation (8.79a) of the model of a dilute distribution is exact and, applied to the
current situation, reads

C∗(c
I
+ dc

I
) = C∗(c

I
)︸ ︷︷ ︸

Matrix

+
dV

V

(
C

I
− C∗(c

I
)︸ ︷︷ ︸

Matrix

)
: A

∞

I
. (8.110)

Here, the influence tensor depends on the effective matrix material: A
∞

I
(C∗(c

I
)).

Using C∗(c
I
+ dc

I
) = C∗(c

I
) + dC∗(c

I
) and (8.109) one obtains

dC∗(c
I
)

dc
I

=
1

1 − c
I

(
C

I
− C∗(c

I
)
)

: A
∞

I
. (8.111)

The differential scheme hence leads to a nonlinear ordinary differential equation
for the effective elasticity tensor as a function of the volume fraction c

I
of the
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embedded phase. The original material (second phase) appears only in the initial
condition: C∗(c

I
= 0) = C

M
. In case of total (i.e., material and geometric)

isotropy one obtains from (8.111) the following system of coupled differential
equations for the effective bulk and shear modulus

dK∗
(DS)

dc
I

=
1

1 − c
I

(
K

I
−K∗

(DS)

) 3K∗
(DS) + 4µ∗(DS)

3K
I
+ 4µ∗(DS)

,

(8.112)

dµ∗(DS)

dc
I

=
1

1 − c
I

(
µ

I
− µ∗(DS)

) 5µ∗(DS)

(
3K∗

(DS) + 4µ∗(DS)

)

µ∗(DS)

(
9K∗

(DS) + 8µ∗(DS)

)
+ 6µ

I

(
K∗

(DS) + 2µ∗(DS)

)

with initial conditions K∗
(DS)(cI

= 0) = K
M
, µ∗(DS)(cI

= 0) = µ
M
.

For the example of rigid spheres (I) in an incompressible matrix (M) (8.112)
reduces to

dµ∗(DS)

dc
I

=
1

1 − c
I

5µ∗(DS)

2
(8.113)

with the solution
µ∗(DS)(cI

) =
µ

M

(1 − c
I
)5/2

. (8.114)

Contrary to the self-consistent method (see (8.104)) the differential scheme yields
the overall rigidity of the material only for c

I
→ 1.

When the differential scheme is applied to materials with cracks or holes the
latter have to be treated as the embedded phase. In case of circular holes in a
plate according to Fig. 8.16 we start directly from the relations (8.85) for a dilute
distribution written in the form

1

E∗(DD)

=
1

E
+ c

3

E
,

1

2µ∗(DD)

=
1

2µ
+ c

4

E
. (8.115)

Following the same procedure as above the incremental increase dc of the area
fraction c of holes then leads to the differential equations

dE∗−1
(DS)

dc
=

1

1 − c

3

E∗(DS)

,
dµ∗−1

(DS)

dc
=

1

1 − c

8

E∗(DS)

(8.116)

with initial conditions E∗(DS)(c = 0) = E , µ∗(DS)(c = 0) = µ . The first differential

equation can be solved directly and the second one after insertion of E∗(DS)(c).
They lead to the solutions

E∗(DS)(c) = E (1 − c)3 , µ∗(DS)(c) = µ
3(1 + ν)(1 − c)3

4 + (3ν − 1)(1 − c)3
. (8.117)
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Similar to the foregoing example the differential scheme yields the total loss of
macroscopic stiffness only for c→ 1.

Like the situation of holes, the differential scheme can be applied to homog-
enize materials with cracks. Without going into the details of the derivation we
present here only the results for the 2D case of isotropically distributed cracks of
equal length in a plate under plane stress where f denotes the crack density:

E∗(DS)(f) = E(1 − f)π , µ∗(DS)(f) = µ
(1 + ν)(1 − f)π

1 + ν(1 − f)π
. (8.118)

Again the total loss of macroscopic stiffness of the material is reached only in
the limit f → 1. For small values of f (8.118) tends asymptotically to the result
(8.90) of the dilute distribution.

In order to provide some comparison of the different homogenization methods
discussed so far, their results are collectively presented in Fig. 8.21 in terms of
the effective Young’s modulus of a plate with circular holes. Also shown are
experimental data and the percolation threshold which both indicate a total loss
of macroscopic stiffness (E∗ → 0) at an area fraction of holes well below 1. Only
the self-consistent method (SC) is able to predict this behavior. In accordance
with the underlying assumptions the model of a dilute defect distribution (DD)
is valid only at very small values of c.

DD :  dilute distribution

SC :  self-consistent method
DS :  differential scheme

MT :  Mori-Tanaka method

1

MT

DD

DS

c

:  experiment

SC

"percolation threshold" (~0.6)

0.33

E∗/E

1

0.5

0.5

Figure 8.21: Effective Young’s modulus of a plate containing isotropically dis-
tributed circular holes

For various cases of isotropic or transversely isotropic microstructures effective
elastic constants are listed in Table 8.1 where the presentation has been kept as
simple as possible. Again, it has to be emphasized that these relations for effective
properties are only approximations the quality of which decreases with increasing
defect concentration (c

I
, c, f).
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KI, µI

KM, µM

K, µ

3

2

1
EI, νI

EM, νM

2

13
E, ν

EI, νI

EM, νM

Table 8.1 Effective elastic constants

1

spherical inhomogeneities

K∗ = K
M

+ c
I

(K
I
−K

M
)K

M

K
M

+ α (1 − c
I
) (K

I
−K

M
)

µ∗ = µ
M

+ c
I

(µ
I
− µ

M
)µ

M

µ
M

+ β (1 − c
I
) (µ

I
− µ

M
)

2

spherical voids

K∗ = K
(
1 − c

1 − α(1 − c)

)

µ∗ = µ
(
1 − c

1 − β(1 − c)

)

3

unidirectional fibers (inhomogeneities)

E∗3 = c
I
E

I
+ (1 − c

I
)E

M
, µ∗12 =

2 + c
I

5(1 − c
I
)
E

M
,

µ∗13 = µ∗23 =
2(1 + c

I
)

5(1 − c
I
)
E

M
, ν∗31 = ν∗32 = 1/4 ,

1

E∗1,2
=

1

4

( 1

µ∗12
+

5(1 − c
I
)

2E
M
(2 + c

I
)

+
1

4E∗3

)

for ν
I
= ν

M
= 1/4 , E

I
≫ E

M
, c

I
< 1

4

unidirectional hollow cylinders (plane strain)

E∗1,2 =
(1 − c)E

1 + c(2 − 3ν2)
, µ∗12 =

(1 − c)µ

1 + 3c− 4νc

5

isotropically oriented fibers

E∗ =
c

I

6
E

I
+

1 + c
I
/4 + c2

I
/6

1 − c
I

E
M
, ν∗ =

1

4

for ν
I
= ν

M
= 1/4 , E

I
≫ E

M
, c

I
< 1



262 Micromechanics

3

KM, µM

KM, µM

E, ν

1

2

E, ν

E, ν

Table 8.1 Effective elastic constants (cont.)

6

parallel penny-shaped cracks (3D)

E∗1,2 = E , E∗3 =
3E

3 + f16(1 − ν2)
, ν∗12 = ν ,

ν∗13 = ν∗23 = ν

[
1 + f

16(1 − 2ν)(ν2 − 1)

3ν(2 − ν)

]
E∗3
E

,

µ∗12 =
E

2(1 + ν)
, µ∗13 = µ∗23 = µ

[
1 + f

16(1 − ν)

3(2 − ν)

]−1

7

isotropically oriented penny-shaped cracks (3D)

E∗ = E

[
1 + f

16(1 − ν2)(10 − 3ν)

45(2 − ν)

]−1

,

µ∗ = µ

[
1 + f

32(1 − ν)(5 − ν)

45(2 − ν)

]−1

8

circular holes (2D, plane stress)

E∗ = E
1 − c

1 + 2c
, µ∗ = E

1 − c

2(1 + ν + c (3 − ν))

9

parallel cracks (2D, plane stress)

E∗1 = E , E∗2 =
E

1 + 2πf
, µ∗12 =

E

2(1 + ν + πf)

10

isotropically oriented cracks (2D, plane stress)

E∗ =
E

1 + πf
, µ∗ =

E

2(1 + ν + πf)
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8.3.3 Energy methods and bounds

In the previous sections effective elastic properties of a heterogeneous medium
have been determined by solving a boundary value problem for an RVE. Vari-
ous simplifying assumptions therefore had to be made. For instance, the RVE
has been taken infinitely large and the effect of distributed inhomogeneities has
always been described using the fundamental solution for a single defect. Dif-
ferent assumptions within the micromechanical models lead to different approx-
imative solutions for the effective properties which may strongly deviate from
each other and in some cases display an even qualitatively differing behavior (see,
e.g., Fig. 8.21). Moreover, no information is provided by the micromechanical
models with regard to the accuracy of their results. This lack of accuracy re-
sults also from the fact that only a rather limited amount of information about
the microstructure (e.g., only the volume fraction of defects) is accounted for
in the simple micromechanical models. It is therefore desirable to determine an
exact range within which the effective properties of a hetereogeneous material
are definitely located. This is accomplished by means of extremum principles
of elasticity theory which allow to derive strict upper and lower bounds for the
effective properties from energetic expressions.

8.3.3.1 Voigt and Reuss bounds

Besides their simplicity the Voigt and Reuss approximations introduced in
Sect. 8.3.2.2 bear the advantage that they are upper and lower bounds for the
effective elastic properties of a heterogeneous material. This can be shown from
the principle of minimum potential energy (1.99) which states that among all
kinematically admissible strain fields the true strains render the total potential
energy a minimum. If displacements are prescribed along the entire boundary
∂V of some volume the potential of the boundary loads vanishes and the total
potential energy in case of a kinematically admissible (i.e., not necessarily true!)
strain field ε̂ reads Π̂(ε̂) = Π̂ i(ε̂) = 1

2

∫
V

ε̂ : C : ε̂ dV = V
2
〈ε̂ : C : ε̂〉. In case

of the special boundary condition of linear displacements u|
∂V

= ε0 · x where
ε0 = const = 〈ε〉 the (true) strain energy according to the Hill-condition (8.56)
is Π = V

2
〈ε〉 : C∗ : 〈ε〉. From the extremum principle Π̂(ε̂) ≥ Π it then follows

that

〈ε̂ : C : ε̂〉 ≥ 〈ε〉 : C∗ : 〈ε〉 (8.119)

for all strain fields ε̂ which satify the above boundary condition. Such a strain
field is, for instance, given by the Voigt approximation ε̂ = const = 〈ε〉. Insertion
into (8.119) yields

〈ε〉 : 〈C〉 : 〈ε〉 ≥ 〈ε〉 : C∗ : 〈ε〉

or

〈ε〉 :
(
〈C〉 − C∗) : 〈ε〉 ≥ 0 . (8.120)
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In the sense of a quadratic form in 〈ε〉 hence the average elasticity tensor 〈C〉 is
larger than C∗ and therefore represents an upper bound for the effective elasticity
tensor.

Analogously, one may start from the principle of minimum complementary en-
ergy (1.104) where stress fields σ̂ in order to be admissible have to satisfy equilib-
rium and prescribed traction boundary conditions. In case of pure traction bound-

ary conditions the complementary energy is given by
ˆ̃
Π(σ̂) = V

2
〈σ̂ : C−1 : σ̂〉.

If, moreover, the boundary tractions are uniform t|
∂V

= σ0 · n where σ0 =
const = 〈σ〉 the (true) complementary energy according to the Hill-condition is

Π̃ = V
2
〈σ〉 : C∗−1 : 〈σ〉. From

ˆ̃
Π(σ̂) ≥ Π̃ it follows that

〈σ̂ : C−1 : σ̂〉 ≥ 〈σ〉 : C∗−1 : 〈σ〉 (8.121)

for all admissible fields σ̂. One such field is the Reuss approximation σ̂ = const =
〈σ〉 which yields

〈σ〉 :
(
〈C−1〉 − C∗−1

)
: 〈σ〉 ≥ 0 . (8.122)

In the sense of a quadratic form in 〈σ〉 the Reuss approximation (8.74b) hence
represents a lower bound for C∗.

When combined the two results state that the effective elasticity tensor always
lies in between the Voigt and Reuss bounds:

C∗
(Voigt) = 〈C〉 ≥ C∗ ≥ 〈C−1〉−1 = C∗

(Reuss) . (8.123)

In case of materials with discrete isotropic phases which are isotropically dis-
tributed the effective behavior is likewise isotropic and (8.123) can be written in
terms of the effective bulk and shear moduli. For a two-phase material we get

K∗
(Voigt) = c

I
K

I
+ c

M
K

M
≥ K∗ ≥ K

I
K

M

c
I
K

M
+ c

M
K

I

= K∗
(Reuss)

(8.124)

µ∗(Voigt) = c
I
µ

I
+ c

M
µ

M
≥ µ∗ ≥ µ

I
µ

M

c
I
µ

M
+ c

M
µ

I

= µ∗(Reuss) .

The Voigt and Reuss bounds are valid irrespective of the actual microstruc-
ture. The underlying approximations of a constant stress or strain field in general
violate the compatibility of deformation or the local equilibrium, respectively (see
Sect. 8.3.2.2). In a real microstructure, however, the compatibility of deformation
and the local equilibrium are always satisfied, hence the extreme values of the
bounds can not be attained. As a consequence, the effective properties of all real
microstructures are located truely inside these bounds.

8.3.3.2 Hashin-Shtrikman variational principle and bounds

The Voigt and Reuss bounds which are derived from classical extremum principles
of elasticity theory are typically rather far apart from each other which can limit
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their value considerably. Closer bounds are obtained from a variational principle
that has been established by Hashin and Shtrikman (1962) particularly for hetero-
geneous materials. In contrast to the total stress and strain fields employed in the
above approach now appropriate auxiliary fields are considered which represent
only the deviation from some reference solution. In that way the error made in
an approximation has a smaller effect on the final result. One such auxiliary field
is, for instance, the stress polarization τ (x) introduced in Sect. 8.2.2.1.

In the following we consider a volume V of the heterogeneous material sub-
jected to the boundary condition u|

∂V
= ε0 ·x such that ε0 = const = 〈ε〉. The

stress polarization (8.30) describes the deviation of the true stress from the stress
which would be induced by the true strain ε(x) in some homogeneous comparison
material with elasticity tensor C0. Using the strain fluctuation ε̃(x) = ε(x)− ε0

it can be written as

τ (x) =
[
C(x) − C0

]
:
[
ε0 + ε̃(x)

]
. (8.125)

From the governing equations (8.28) for the fluctuations

∇ · σ̃ = 0 , σ̃ = C0 :
(
ε̃ − ε∗

)
, ũ|

∂V
= 0 (8.126)

one can compute ε̃(x) which depends upon the equivalent eigenstrain ε∗(x).
According to (8.29),(8.30) the latter is linearly related to the stress polarization
by τ (x) = −C0 : ε∗(x), hence the solution of (8.126) may formally be written as
ε̃[τ (x)]. Insertion into (8.125) yields an equation for τ (x) which thus depends
on the macrostrain ε0:

−
[
C(x) − C0

]−1

: τ (x) + ε̃[τ (x)] + ε0 = 0 . (8.127)

From the calculus of variations it can be shown that (8.127) is equivalent to the
Hashin-Shtrikman variational principle

F (τ̂ ) =
1

V

∫

V

{
−τ̂ : (C − C0)−1 : τ̂ + τ̂ : ε̃[τ̂ ] + 2τ̂ : ε0

}
dV

(8.128)
= stationary

where F (τ̂ ) has to be varied with respect to τ̂ . Accordingly, among all possible
functions τ̂ the true stress polarization τ renders the expression (functional) F (τ̂ )
stationary.

In order to gain information about the effective properties C∗ we first compute
the stationary value of F (τ̂ ). This is done by inserting the true τ according to
(8.125) and (8.127) into (8.128). Using the Hill-condition the stationary value
is found to be F (τ ) = ε0 : (C∗ − C0) : ε0. It can be shown that this value is

a maximum if for arbitrary τ the relation τ (x) :
[
C(x) − C0

]
: τ (x) ≥ 0 holds,
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i.e., if the difference C(x) − C0 is positive definite. Conversely, F (τ̂ ) attains a
minimum at τ̂ = τ if C(x) − C0 is negative definite. It is useful to modify
the integral expression (8.128) somewhat. Because of the boundary condition
ũ|

∂V
= 0 in (8.126) the average value of the strain fluctuation must vanish for

arbitrary τ̂ : 1
V

∫
V

ε̃ dV = 0. Then also 1
V

∫
V
〈τ̂ 〉 : ε̃ dV = 0 holds and the second

term below the integral in (8.128) can be extended to (τ̂ −〈τ̂ 〉) : ε̃. Hence (8.128)
can be written as

F (τ̂ )

{
≤
≥

}
ε0 : (C∗ − C0) : ε0 for C − C0

{
pos. def.

neg. def.

}
(8.129a)

where

F (τ̂ ) =
1

V

∫

V

{
−τ̂ : (C − C0)−1 : τ̂ + (τ̂ − 〈τ̂ 〉) : ε̃[τ̂ ] + 2τ̂ :ε0

}
dV . (8.129b)

For an appropriate choice of the comparison material C0 and some approximation
of τ̂ thus F (τ̂ ) according to (8.129b) yields an upper or lower bound for the
expression ε0 : (C∗−C0) : ε0. The evaluation of these bounds, however, requires
the determination of ε̃ depending on τ̂ ; this is possible only in special cases.

A special case of great practical importance is a material which consists of n
discrete phases with partial volumina Vα = cαV and piecewise constant elastic
properties Cα. In this case it seems appropriate to choose a piecewise constant
approximation for the stress polarization: τ̂ (x) = τ α = const in Vα. With the

average value of the latter 〈τ̂ 〉 =
n∑
α=1

cατα and the phase averages of the strain

fluctuations ε̃α = 〈ε̃〉α the expression F (τ̂ ) reduces to

F (τα) = −
n∑

α=1

cατα : (Cα − C0)−1 : τα

(8.130)

+

n∑

α=1

cα(τα − 〈τ̂ 〉) : ε̃α + 2〈τ̂ 〉 : ε0 .

In the eigenstrain problem (8.126) for the determination of the strain fluctuation
ε̃ the individual phases appear only as regions Vα of constant eigenstrain ε∗α =
−C0−1 : τα in the homogeneous comparison material (inclusions). It can be
shown that in case of isotropy of all phases and their isotropic distribution in an
infinitely extended domain the average strain ε̃α of each phase in (8.126) is equal
to the (constant) strain inside a spherical inclusion of eigenstrain ε∗α = −C0−1 :
τ α. Using the isotropic Eshelby-tensor S according to (8.10) hence the following
relation holds

ε̃α = S : ε∗α = −S : C0−1 : τα (8.131)
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which represents the required solution ε̃[τ ] of (8.126). Insertion into (8.130)
renders F (τα) an explicit function of the n parameters τ α. In order to obtain
bounds from (8.129a) which are as close as possible the parameters τα have to
be chosen in such a way that F (τα) becomes extremal. The necessary conditions

∂F

∂τ α

= 0 (8.132)

yield the n equations

τα : (Cα − C0)−1 + (τα − 〈τ̂ 〉) : S : C0−1 = ε0 (8.133)

for the determination of the “optimal” parameters τα(ε
0). The latter depend

linearly on ε0 and after insertion into F (τα) the left-hand side of the inequality
in (8.129a) is a quadratic expression in ε0. In the sense of a quadratic form in ε0

(8.129a) thus leads to upper and lower bounds for C∗; these bounds are referred
to as the Hashin-Shtrikman bounds.

As an important special case we consider a heterogeneous material which
consists of two isotropic phases with elastic constants C

M
and C

I
or K

M
, µ

M
and

K
I
, µ

I
, respectively. If we assume K

M
< K

I
and µ

M
< µ

I
it is possible to choose

the elastic properties of one of the phases as those of the homogeneous comparison
material which guarantees the positive definiteness of C−C0. Another advantage
of this choice is that the stress polarization of one of the phases according to
(8.133) vanishes. First we consider the case C0 = C

M
such that τ

M
= 0 and

〈τ 〉 = c
I
τ

I
. Using (8.130) then (8.129b) reduces to

F (τ
I
) = −c

I
τ

I
:
[
(C

I
− C

M
)−1 :τ

I
+ c

M
S

M
:C−1

M
:τ

I
− 2ε0

]

(8.134)
≤ ε0 : (C∗ − C

M
) :ε0 .

Exploiting the symmetry of the elasticity tensors and of the Eshelby-tensor and
using (8.96a) the extremal condition ∂F/∂τ

I
= 0 yields

τ
I
=
[
(C

I
− C

M
)−1 + c

M
S

M
: C−1

M

]−1
: ε0 = A

I (MT) : (C
I
− C

M
) : ε0 . (8.135)

The fact that the right-hand side can be written in terms of the influence tensor
(8.96a) indicates a remarkable interrelation between the Mori-Tanaka model and
the Hashin-Shtrikman variational principle in the special case of isotropy. Inser-
tion of (8.135) into (8.134) leads to F (τ

I
) = c

I
τ

I
: ε0 = 〈τ 〉 : ε0 where the latter

expression is valid also for an n-phase material. The inequality (8.134) can be
transformed into

ε0 :
(
C

M
+ c

I

[
(C

I
− C

M
)−1 + c

M
S

M
: C−1

M

]−1
)

: ε0 ≤ ε0 : C∗ : ε0 (8.136)

and yields the lower Hashin-Shtrikman bound

C∗
(HS−) = C

M
+ c

I

[
(C

I
− C

M
)−1 + c

M
S

M
: C−1

M

]−1
(8.137a)
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for the effective elasticity tensor. It coincides with the result (8.96a), (8.97) of
the Mori-Tanaka model.

If the stiffer material is chosen as the comparison material (C0 = C
I
) the

analogous procedure leads to the upper Hashin-Shtrikman bound

C∗
(HS+) = C

I
+ c

M

[
(C

M
− C

I
)−1 + c

I
S

I
: C−1

I

]−1
. (8.137b)

It corresponds to the Mori-Tanaka result if the properties of the matrix material
and the inhomogeneity are exchanged. The effective elasticity tensor hence is
subject to the restriction (in the sense of a quadratic form)

C∗
(HS+) ≥ C∗ ≥ C∗

(HS−) . (8.138)

Because of the isotropy assumed for the phase properties and the macroscopic
distribution it follows that

K∗
(HS+) ≥ K∗ ≥ K∗

(HS−) and µ∗(HS+) ≥ µ∗ ≥ µ∗(HS−) (8.139)

where

K∗
(HS−) = K

M
+ c

I

(
1

K
I
−K

M

+
3 c

M

3K
M

+ 4µ
M

)−1

K∗
(HS+) = K

I
+ c

M

(
1

K
M
−K

I

+
3 c

I

3K
I
+ 4µ

I

)−1

(8.140)

µ∗(HS−) = µ
M

+ c
I

(
1

µ
I
− µ

M

+
6 c

M
(K

M
+ 2µ

M
)

5µ
M
(3K

M
+ 4µ

M
)

)−1

µ∗(HS+) = µ
I
+ c

M

(
1

µ
M
− µ

I

+
6 c

I
(K

I
+ 2µ

I
)

5µ
I
(3K

I
+ 4µ

I
)

)−1

.

The range described by the Hashin-Shtrikman bounds (8.139), (8.140) inside
which the effective elastic properties of a heterogeneous material can be found
is much more narrow than that given by the Voigt and Reuss bounds (8.124).
For special microstructures it can furthermore by shown that the effective bulk
modulus can indeed attain the value of the upper or (by exchange of the properties
of matrix and inhomogeneity) the lower Hashin-Shtrikman bound. This is the
case, for instance, in the so-called composite spheres model where the entire space
is filled with spherical inhomogeneities of different size, each surrounded by a
matrix shell the radius of which is chosen in a fixed ratio to the radius of the
enclosed sphere (see e.g., R.M. Christensen, 1979). Since they can actually be
attained, the bounds K∗

(HS+) and K∗
(HS−) are the best possible, i.e. closest, bounds

that can be found solely in terms of phase properties and volume fractions.
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For the special case of a two-phase material with K
I

= 10K
M

and µ
I

=
10µ

M
the Hashin-Shtrikman and Voigt-Reuss bounds are shown in Fig. 8.22 in

terms of the effective bulk modulus as a function of the volume fraction c
I
along

with approximations according to the self-consistent method and the differential
scheme. Respective results for the effective shear modulus display a qualitatively
similar behavior. As expected, the range of possible effective material properties
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Figure 8.22: Effective bulk modulus for K
I
= 10K

M
, µ

I
= 10µ

M

described by the Hashin-Shtrikman bounds is significantly closer than that given
by the Voigt-Reuss bounds. The Hashin-Shtrikman bounds are equal the two
results of the Mori-Tanaka model obtained when the properties of matrix and
inhomogeneity are exchanged. These two solutions are for small or large volume
fractions asymptotically approached by the result of the self-consistent method
which does not consider a distinguished matrix phase. For small values of c

I
this

asymptotic behavior corresponds to the solution (not shown here) in case of a
dilute distribution of inhomogeneities.

In the limit case of one rigid phase (K
I
→ ∞ , µ

I
→ ∞) an infinitely high

upper Hashin-Shtrikman bound results from (8.140), exactly as the Voigt bound
(8.77). Correspondingly, the lower Hashin-Shtrikman bound as well as the Reuss
bound (8.76) is zero in case of a material with voids.

The evaluation of the Hashin-Shtrikman variational principle in case of an n-
phase material can be performed analogous to the above procedure. It is, however,
much more laborious since it requires the determination of n− 1 parameters τα.
Various generalizations of this method with regard to anisotropic, periodic, or
stochastic microstructures as well as to nonlinear material behavior can be found
in the special literature.
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8.4 Homogenization of elastic-plastic materials

Real materials often show an inelastic behavior and have to be described by non-
linear stress-strain relations. The micromechanical models and homogenization
techniques discussed so far then are no longer applicable since they are based on
the assumption of a linear elastic material behavior and the availability of respec-
tive fundamental solutions. More far-reaching considerations hence are necessary
for the investigation of microheterogeneous inelastic materials. In the following
we focus on the case of rate-independent plasticity (see Sect. 1.3.3).

Micromechanics allows to grasp the notion of plasticity in a rather general
context and consider a variety of different microscopic processes which all are the
source of the macroscopic phenomenon of permanent plastic deformations. Exam-
ples are the various multiscale mechanisms of metal plasticity such as dislocation
glide and grain boundary sliding but also frictional sliding along distributed mi-
crocracks in brittle rock. Within this introductory treatment, however, we will
restrict to a material description in the framework of phenomenological elasto-
plasticity according to Sect. 1.3.3. This still allows to investigate important
classes of materials such as metal matrix composites or metal-infiltrated ceramics
as well as the role of porosity in the course of damage of ductile materials (see
Chap. 9).

8.4.1 Foundations

We consider a volume V on the microscopic level of a heterogeneous material
(Fig. 8.23a) where the constitutive equations according to Sect. 1.3.3 hold. The
elastic-plastic material behavior (microstructure) then is characterized in terms
of the spatially varying elasticity tensor C(x) and the likewise spatially varying
yield condition

F
(
σ(x), x

)
≤ 0 . (8.141)

The latter describes the set of all admissible stress states which in addition must
satisfy the equilibrium condition ∇·σ(x) = 0. Via the elasticity law they are
related to the elastic strains εe(x) which according to (1.73) are additively com-
posed with the plastic strains εp(x) to the total strains:

σ = C(x) : εe = C(x) :
(

ε − εp
)
. (8.142)

These equations are supplemented by the flow rule (1.82) for the plastic strain
increments ε̇p in the framework of the incremental theory or by (1.86) in the
framework of deformation theory.

In order to describe the macroscopic effective behavior of the material, in the
following we are looking for relations between the macroscopic stresses 〈σ〉 and
strains 〈ε〉 (or their increments, respectively) defined as volume averages over the
domain V according to (8.41). Analogous to the situation of elastic materials
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a) b)

V V
ε0,σ0 〈ε〉, 〈σ〉

C(x) C∗

F ∗
(
〈σ〉
)
≤ 0F

(
σ(x), x

)
≤ 0

Figure 8.23: a) Microheterogeneous elastic-plastic material, b) homogenized ma-
terial

homogeneous boundary conditions ε0 or σ0 are therefore prescribed (Fig. 8.23a).
One of the macroscopic quantities then is in either case already known from the
relations (8.60a) or (8.60b) which are independent of the material behavior.

8.4.1.1 Plastic and elastic macrostrains

As already mentioned, the macroscopic strains 〈ε〉 are defined as volume averages
of the microscopic strains ε(x). Such a simple relation, however, does not hold for
the plastic and elastic parts of the macroscopic strains. We want to investigate
how the spatially distributed plastic and elastic strains εp(x) and εe(x) on the
microscopic level are transferred to the macroscale. In addition to the original
problem we therefore consider a purely elastic comparison problem for the hetero-
geneous volume subjected to the same boundary conditions, yet with vanishing
plastic strains. The corresponding fields are indicated with a tilde. They are
statically and kinematically admissible and can for both types of homogeneous
boundary conditions be represented in terms of the influence tensors introduced
in (8.62a) and (8.62b):

a) u|
∂V

= ε0 · x : ε̃(a)(x) = A(x) : ε0 , 〈ε̃(a)〉 = 〈ε〉 = ε0 ,

(8.143)

b) t|
∂V

= σ0 · n : σ̃(b)(x) = B(x) : σ0 , 〈σ̃(b)〉 = 〈σ〉 = σ0 .

The stresses are given by σ̃(a) = C : ε̃(a) or σ̃(b) = C : ε̃(b), respectively. If
in case of the boundary condition (a) the elasticity law (8.142) is multiplied by
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ε̃(a)(x) and the volume average over V is taken one obtains

〈σ : ε̃(a)〉 = 〈ε :

σ̃(a)

︷ ︸︸ ︷
C : A : ε0︸ ︷︷ ︸

ε̃(a)

〉 − 〈εp : C : A : ε0〉 .

Since the fields ε̃(a) and σ̃(a) as well as ε and σ are kinematically and stati-
cally admissible the above relation, using (8.61) and (8.65a), can be transformed
according to

〈σ〉 :ε0 = 〈ε〉 :〈C :A〉 : ε0 − 〈εp : C :A〉 :ε0 = 〈ε〉 :C∗:ε0 − 〈εp :C :A〉 :ε0 .

Since this holds for arbitrary ε0 one obtains the macroscopic stress-strain relation

〈σ〉 = C∗ :
(
〈ε〉 − E

p
)

(8.144)

with the representation

E
p = C∗−1 : 〈εp : C : A〉 (8.145a)

for the macroscopic plastic strain. Correspondingly, the macroscopic elastic strain
is given by

E
e = 〈ε〉 − E

p = C∗−1 : 〈εe : C : A〉 . (8.145b)

Thus the macroscopic elastic and plastic strains are indeed not the ordinary
volume averages but the weighted averages of the respective microfields where
the elastic heterogeneity in terms of the tensors C and A serves as the weighting
factor. Only in case of an elastically homogeneous material (C = const, A = 1)
or for homogeneous elastic and plastic strains is E

p = 〈εp〉 and E
e = 〈εe〉.

In case of the boundary condition (b) the analogous procedure utilizing the
elastic comparison field σ̃(b) leads to the somewhat shorter representation

E
p,e = 〈εp,e : B〉 (8.146)

where the effective elasticity tensor is given by (8.65b). For a representative
volume element (RVE) both representations must coincide.

8.4.1.2 Elastic energy and dissipation

When after some amount of plastic flow a microheterogeneous elastic-plastic
material is macroscopically unloaded (〈σ〉 → 0), a complete local unloading
(σ(x) → 0) generally does not take place in all points x of the microscopic level.
Elastic energy remains stored in an inhomogeneous residual stress field (eigen-
stress field). For a closer inspection of this effect we consider a material which
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behaves elastic-perfectly plastic on the microscopic level. Energy storage then is
possible only by elastic strains and the strain energy density reads

U(x) =
1

2
εe : C(x) : εe . (8.147)

Considering the boundary condition (b) of prescribed macrostress 〈σ〉 = σ0 we
introduce an auxiliary field σr(x) which describes the deviation of the true stress
σ(x) of the elastic-plastic problem from the stress σ̃(b)(x) in a purely elastic
comparison problem:

σr(x) = σ(x) − σ̃(b)(x) = σ(x) − B(x) : σ0 . (8.148)

In case of macroscopic unloading (σ0 = 0) this auxiliary field is equal to the
residual stress prevailing in the volume V . Obviously this field has the properties

∇ · σr = 0 in V , σr · n = 0 on ∂V , 〈σr〉 = 0 (8.149)

and vanishes only for vanishing plastic strains εp throughout the volume V . Using
(8.148) the elastic strain field in (8.147) can be replaced by

εe = C−1(x) : σ = C−1(x) :
(
B(x) : σ0 + σr

)
. (8.150)

Volume averaging over V then leads to

〈U〉 =
1

2
〈
(
C−1 : B : σ0 + C−1 : σr

)
: C :

(
C−1 : B : σ0 + C−1 : σr

)
〉

=
1

2
σ0 : 〈BT : C−1 : B〉︸ ︷︷ ︸

C∗−1, see (8.66)

: σ0 +
1

2
〈σr : C−1 : σr〉 + 〈σr : C−1 : B : σ0

︸ ︷︷ ︸
σ̃(b)

︸ ︷︷ ︸
ε̃(b)

〉 .

The last expression in brackets vanishes because of (8.149) and (8.61) and the
average strain energy density in V reads

〈U〉 =
1

2
σ0 : C∗−1 : σ0
︸ ︷︷ ︸
E
e : C∗ : E

e

+
1

2
〈σr : C−1 : σr〉 . (8.151)

The first term describes the energy due to the macroscopic elastic strains while
the second term represents the effect of the heterogeneous residual stress field.

If the material behavior on the microscopic level is perfectly plastic the work
done by the stresses on the plastic strains is entirely dissipated and the average
dissipation (power) in some volume V reads

D = 〈σ : ε̇p〉 . (8.152)
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Using the incremental forms of (8.61) and (8.149) and the auxiliary field

σ̇r(x) = σ̇(x) − B(x) : σ̇0 = C(x) :
(
ε̇(x) − ε̇p(x)

)

︸ ︷︷ ︸
σ̇(x)

−B(x) : C∗:
(
〈ε̇〉 − Ė

p
)

︸ ︷︷ ︸
σ̇0

the following relation can be derived

D = 〈σ〉 : Ė
p − 1

2
〈σr : C−1 : σr〉. . (8.153)

It states that the power of the macroscopic stresses done on the macroscopic
plastic strains is only partly dissipated; the remaining part is stored as the elastic
energy of the residual stress field.

The results (8.151) and (8.153) obtained here for the boundary condition (b)
of prescribed macrostress σ0 can also be derived in case of prescribed macrostrain
ε0. Instead of (8.148) one then has to make use of the auxiliary strain field

εr(x) = εe(x) − A(x) : E
e (8.154)

and its incremental form. If the volume V considered for averaging is statistically
representative (RVE) both approaches are equivalent and the auxiliary fields are
related to each other by σr(x) = C(x) : εr(x).

8.4.1.3 Macroscopic yield condition

If at some point on the microscopic level plastic flow takes place with ε̇p 6= 0 the
stress state σ at this point is according to (8.141) located on the yield surface
F = 0. For stress states inside the yield surface (F < 0) the material behaves
elastically. Again we consider a microscopically elastic-perfecty plastic material
where the yield surface is not altered by plastic flow (i.e., no hardening on the
microscopic level). However, the size and shape of the yield surface may spatially
vary on the microscale due to the heterogeneous material properties. In order to
investigate which consequences this has for the macroscopic stress 〈σ〉 we consider
some volume V subjected to the boundary condition 〈σ〉 = σ0 (Fig. 8.23).

First, we proceed from a situation where nowhere in V plastic flow has taken
place: εp(x) = 0. The stress field throughout V then is purely elastic and
can according to (8.62b) be written as σ(x) = B(x) : 〈σ〉. Insertion into the
yield condition (8.141) for every point x yields the following (infinitely many)
conditions for the macroscopic stress state 〈σ〉

F
(
B(x) : 〈σ〉, x

)
≡ F∗x

(
〈σ〉
)
≤ 0 for every x in V (8.155)

which may formally be combined to the macroscopic yield condition

F∗
(
〈σ〉
)
≤ 0 . (8.156)
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The set of all admissible macroscopic stress states satisfying (8.156) is the inter-
section of all 〈σ〉 for which (8.155) holds in every point x of V . For an illustration
we consider two such points xa and xb and represent the corresponding yield sur-
faces by contours in the 1,2-plane of the principal stress space (Fig. 8.24). The

Figure 8.24: Elastic domains and yield surfaces on the microscopic (left) and
macroscopic (right) level

shaded region characterizes the set of all macroscopic stress states 〈σ〉 for which
the resulting microstress fields σ(x) satisfy the condition (8.141) at both points
xa and xb. The influence tensor B transforms, as a linear mapping, the convex
microscopic yield surfaces Fa,b = 0 into the likewise convex surfaces F∗a,b = 0;
being the intersection of the latter the shaded region of admissible macroscopic
stress states is convex as well. Since macroscopic stress states which cause plastic
flow are necessarily located on the boundary of the shaded region this boundary
can be interpreted as the macroscopic yield surface F∗(〈σ〉) = 0.

Moreover, from (8.145a) or (8.146) it is obvious that plastic flow is macroscop-
ically not noticable if it takes place only in a single point on the microscopic level
(say xa or xb in Fig. 8.24). Because of this it can be shown that the macroscopic
yield surface initially must have a vertex at a stress state that causes macroscopic
plastic flow (such as one of the intersection points of the surfaces F∗a = 0 and
F∗b = 0 in Fig. 8.24). Despite this theoretical argument, however, it has to be
mentioned that such a vertex is in practice hardly measurable.

In order to investigate the effect of preceding plastic flow on the macroscopic
yield surface, now we consider a point x on the microscopic level at which some
amount of plastic flow εp 6= 0 has already taken place and where the local stress
state σ is located on the yield surface (Fig. 8.25). The corresponding macro-
scopic stress state 〈σ〉 is located on the macroscopic yield surface. Due to the
plastic deformation the auxiliary field (8.148) then is no longer zero: σr(x) 6= 0.
Unloading at point x leads to a microscopic stress state σ∗ inside the elastic
range (Fig. 8.25). If unloading takes place at all points on the microscopic level
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σ2

σ1

σ

σ∗

σ−σ∗

F
(
σ(x), x

)
≤ 0

Figure 8.25: Elastic unloading on the microscopic level

the macroscopic stress state attains a value 〈σ〉∗ inside the macroscopic elastic
range. The relation between the change of the microstress field and the macro-
scopic stress state then can be expressed in terms of the influence tensor (8.62b):

σ(x) − σ∗(x) = B(x) :
(
〈σ〉 − 〈σ〉∗

)
. (8.157)

Using the residual stress field (8.148) this can be written as

B(x) : 〈σ〉∗ = σ∗(x) − σr(x) . (8.158)

This representation is valid for all stress states 〈σ〉∗ inside the macroscopic yield
surface, i.e., for those macrostresses which cause in every point x on the micro-
scopic level a stress state σ∗ located inside the local microscopic yield surface.
Accordingly, the macroscopic yield surface (or the set of all stress states 〈σ〉∗
in its interior, respectively) is determined from the admissible microstress states
σ∗(x) through the translation by σr(x), the linear transformation by B(x), and
the intersection with respect to all x in V . The translation by σr(x) means that
the location of the macroscopic yield surface in stress space changes in response
to the microscopic plastic deformation. Hence the macroscopic behavior of a mi-
croscopically heterogeneous elastic-perfectly plastic material displays kinematic
hardening (see Sect. 1.3.3.1).

This phenomenon can be illustrated by means of the one-dimensional example
of a purely elastic and an elastic-perfectly plastic bar in parallel (Fig. 8.26).
For simplicity the elastic stiffnesses of both bars are taken equal. The yield
stress of bar (2) is denoted by k. The loading and unloading cycle depicted in
Fig. 8.26 (solid line) shows the translation of the macroscopic elastic range as
a consequence of plastic flow in bar (2). After macroscopic unloading 〈σ〉 = 0,
the inhomogeneous residual stress in the elastic bar (1) is σ1 = k whereas it is
σ2 = −k in bar (2).
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Figure 8.26: Illustration of kinematic hardening

In the special case that the yield condition is in every point on the microscopic
level given by the von Mises yield condition (1.77) with the spatially varying yield
stress k(x) a coarse upper bound for the macroscopic yield stress can be derived.
From

1

2
s(x) : s(x) ≤ k2(x) at every x in V (8.159)

it follows by averaging that

1

2
〈s〉 : 〈s〉 ≤ 1

2
〈s : s〉 ≤ 〈k2〉 . (8.160)

The range of admissible macroscopic stress states hence is located inside the von

Mises cylinder of radius
√

2〈k2〉 (see also Fig. 1.7). This bound, however, is no
longer meaningful if in some part of the microstructure the material is purely
elastic (k = ∞). On the other hand, for a porous medium with porosity f and
matrix yield stress k = const it follows that the macroscopic stress states are
bounded according to (cf. 8.52))

1

2
〈s〉 : 〈s〉 ≤ (1 − f)2k2 . (8.161)

In contrast to the overall deviatoric stress for which only bounds can be strictly
derived (see above), the special case of overall hydrostatic loading of a porous per-
fectly plastic medium allows for an exact solution. The latter can be obtained
from the simple micromechanical model of a spherically symmetric thick-walled
shell (hollow sphere) with inner and outer radii r=a and r=b, respectively, sub-
jected to purely radial loading σr(r=b) = Σm on the outer boundary (Fig. 8.27).



278 Micromechanics

m

a

b r

Figure 8.27: Hollow sphere subjected to overall hydrostatic loading

The inner boundary (void surface) is taken traction-free σr(r = a) = 0, and
f = (a/b)3 is the porosity in this cell model. If the matrix material is rigid

perfectly plastic and obeys the von Mises yield criterion
√

3
2
s : s = σe ≤ k with

deviatoric stress s deformation of the shell can take place only if every point
of it is in a state of plastic flow. From the equilibrium condition and the yield
condition

dσr
dr

− 2

r
(σϕ − σr) = 0 , σϕ − σr ≡ σe = k = const (8.162)

it then follows that

σr(r) = 2k ln
(r
a

)
, σϕ(r) = σr(r) + k . (8.163)

The above boundary conditions yield

Σm =
2k

3
ln

(
1

f

)
or 2f cosh

(
3Σm

2k

)
− (1 + f 2) = 0 (8.164)

where for the second equation in (8.164) the identity ln(x) = Arcosh
(
x2+1
2x

)
has

been used. The problem that (8.164) is only exact for a spherical shell which is
not space-filling can be overcome by considering an assemblage of shells of any
size, all having the same porosity f , similar to the Composite Spheres Model (see
Sect. 8.3.3.2). Space then can be entirely filled and all the shells exert the purely
radial stress Σm on each other; hence (8.164) is an exact result for a space-filling
porous medium (with rigid perfectly plastic matrix) under purely hydrostatic
loading. In real porous media, however, the void size usually is not randomly
distributed. The solution (8.164) plays an important role in the so-called Gurson

model presented in Sect. 9.4.2.

∑
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8.4.2 Approximations

The general results about the effective behavior of microheterogeneous elastic-
plastic materials derived in the preceding section are based on the mere existence
of the influence tensors A(x) or B(x) and the elastic auxiliary fields they are
used to describe. Their explicit representations in terms of the Eshelby tensor
are available only for the interior of ellipsoidal inhomogeneities in an otherwise
homogeneous matrix. While this information was sufficient for the homogeniza-
tion of purely elastic materials this is no longer the case if in addition spatially
varying plastic strains have to be taken into account – even if those may for-
mally be regarded as eigenstrains. The application of analytical homogenization
methods to elastic-plastic materials hence requires further approximations. From
the variety of different approaches which are discussed in the literature and are
a subject of ongoing research only a few fundamental concepts can be presented
here.

We therefore consider ellipsoidal inhomogeneities (I) in an infinitely extended
matrix (M) where each phase has constant material properties characterized by
elasticity laws

σ = Cα : (ε − εp) (8.165)

with α = I,M and flow rules (see also (1.82))

ε̇p = λ̇α
∂Fα(σ)

∂σ
. (8.166)

Prior to the onset of plastic flow the stresses and strains inside the individual
inhomogeneities are constant according to Eshelby’s result. If only the inhomo-
geneities deform plastically the plastic strains evolving inside are likewise con-
stant. Since they can be regarded as eigenstrains they occur analogous to εt in
the relation (8.31a) for the equivalent eigenstrain and allow for a direct applica-
tion of the Eshelby result. In the framework of the model of a dilute distribution
or the Mori-Tanaka model no approximations then are necessary which go be-
yond those for a purely elastic material. The self-consistent method, however,
which considers the inhomogeneity to be embedded in the effective, now elastic-
plastic medium, requires modifications even in this simplest case; these shall not
be further discussed here.

In the following we consider the situation, more important for practical appli-
cations, of inhomogeneities prevailing in a ductile matrix where inhomogeneous
plastic deformations take place. The discussion of some typical approximations
and their differences is restricted here to spherical inhomogeneities, isotropic elas-
tic behavior of both phases, and the von Mises yield condition (1.77).
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8.4.2.1 Piecewise constant plastic strains

The simplest approach consists in assuming the plastic strain in each phase to be
constant and hence equal to its average value:

εp(x) =

{
〈εp〉

I
in V

I

〈εp〉
M

in V
M

. (8.167)

In addition we consider only the phase average of the stress in the local yield
conditions (8.166):

〈ε̇p〉
I
= λ̇

I

∂F
I
(〈σ〉

I
)

∂〈σ〉
I

, 〈ε̇p〉
M

= λ̇
M

∂F
M
(〈σ〉

M
)

∂〈σ〉
M

. (8.168)

Due to these approximations the formal construction of the macroscopic yield
condition F∗(〈σ〉) ≤ 0 as discussed in Sect. 8.4.1.3 is not necessary and only
the local conditions Fα(〈σ〉α) ≤ 0 need to be evaluated. Since therefore the
phase averages of the stress fields are required the effective material behavior is
implicitely described by a system of equations which involves macroscopic quanti-
ties and phase averages. In view of the approximation of constant plastic strains
in each phase, the macroscopic plastic strains (8.145a) can be written as

E
p = C∗−1 :

(
c

I
〈εp〉

I
: C

I
: A

I
+ c

M
〈εp〉

M
: C

M
: A

M

)
(8.169)

where c
I

and c
M

are the volume fractions and the relation c
M
A

M
= 1 − c

I
A

I

holds (see (8.70)). For the influence tensor A
I

of the inhomogeneity which ac-
cording to (8.71a) determines also the effective elasticity tensor C∗ any of the
representations derived from different models in Sect. 8.3.2 may now be inserted.
For completeness also the additional equations are given here from which, for
instance, under prescribed macrostrains 〈ε〉 = ε0 all phase averages and the
macrostresses can be computed:

〈σ〉α = Cα :
(
〈ε〉α − 〈εp〉α

)
, 〈σ〉 = C∗ :

(
〈ε〉 − E

p
)
,

(8.170)

〈σ〉 = c
I
〈σ〉

I
+ c

M
〈σ〉

M
, 〈ε〉 = c

I
〈ε〉

I
+ c

M
〈ε〉

M
.

The essential step in this simple approach which allows for the use of elastic
fundamental solutions such as the Eshelby tensor is the assumption of piecewise
constant plastic strains in the individual phases. Yet, the evaluation in case
of stiff elastic particles (I) embedded in a soft ductile matrix (M) reveals the
deficiency of this approach. It yields an effective behavior which in comparison
to detailed finite element calculations or alternative homogenization techniques
(Sect. 8.4.2.3, see Fig. 8.28) is far too stiff. The reason for this is the neglected
concentration of plastic matrix flow in the immediate vicinity of the particles
(stress concentrators). In the present model the particles are located in a less
compliant surrounding than they are in reality, with the consequence that their
stiffening effect on the overall behavior is overestimated.
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8.4.2.2 Incremental theory

Now the assumption of piecewise constant plastic strains is given up and an
incremental constitutive law, valid is the state of plastic flow, is chosen as the
starting point. The Prandtl-Reuss law (1.83c)

ė =

[
1

2µα
1 +

3

2gα

s ⊗ s

s : s

]
: ṡ (8.171)

is therefore employed for both phases where the deviator ė(x) and the purely
elastic volumetric part add up to the total strain rate ε̇(x). The symbol ⊗
denotes the dyadic product of two tensors: (σ ⊗ σ)ijkl = σijσkl. In terms of

the elastic-plastic tangent tensors C̃α the relations between the stress and strain
increments can be written as:

σ̇ = C̃α : ε̇ (α = I,M) . (8.172)

It should be noted that the tangent tensors vary is space via the actual stress
distribution: C̃α = C̃α(s(x)). The relation (8.172) between the stress and strain
increments is formally analogous to the elasticity law (8.54). However, the tangent
tensors are even in case of an elastically isotropic material anisotropic since they
depend on the direction of plastic flow via the second part of (8.171).

In the following the stress dependence of the tangent tensors is approximated
by a dependence only on the average stress in the respective phase. This leads
to an incrementally linear material behavior with a spatially constant tangent
stiffness in each phase:

σ̇ = C̃α

(
〈s〉α

)
: ε̇ . (8.173)

Now the Eshelby result can again be applied, yet requiring the Eshelby tensor
for an anisotropic matrix material C̃

M
(〈s〉

M
). The homogenization techniques

presented in Sect. 8.3.2 finally lead to an effective tangent tensor C̃
∗
(〈s〉α) for

the incremental description of the macroscopic material behavior:

〈σ̇〉 = C̃
∗(〈s〉α

)
: 〈ε̇〉 . (8.174)

In the course of an incremental evaluation the current values of the average devi-
atoric stress states 〈s〉

I
and 〈s〉

M
in both phases have to be determined which are

needed to update the tangent tensors. Because of the anisotropy of the tangent
tensors and the Eshelby tensor, changing in the course of loading, this method is
rather costly. Yet, it leads to more realistic results since the plastic strain rates
in the matrix phase

ε̇p(x) =
3

2g
M

[〈s〉
M
⊗ 〈s〉

M

〈s〉
M

: 〈s〉
M

]
: ṡ(x) (8.175)

are not taken to be constant.
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8.4.2.3 Total strain theory

Significant simplifications result when only monotonous and proportional loading
is considered (see Sect. 1.3.3.3). Because of the coaxiality of σ, s, and σ̇ then
the relations s(s : ṡ) = (s : s)ṡ = 2

3
σ2

e ṡ hold and integration of (8.171) leads
to the Hencky-Ilyushin law (see also (1.86))

s = 2µsα e . (8.176)

It has the structure of a nonlinear elastic constitutive law with the secant modulus
µs(σe(x)). The latter depends on the stress state only via the one-dimensional

equivalent stress σe =
√

3
2
s : s. In case of isotropic hardening with a yield stress

k(p) = k0 +Ap1/n which depends only on the one-dimensional equivalent plastic

strain p ≡ εpe =
√

2
3
εp : εp the secant modulus reads

µs(σe) =
µ σeA

n

σeAn + 3µ(σe√
3
− k0)n

(8.177)

for σe ≥
√

3 k0 where k0 denotes the initial yield stress.
In order to eliminate the spatial dependence of the secant moduli in both

phases the inhomogeneous stress fields are approximated by their phase averages.

The equivalent stresses in both phases then can be written asΣα =
√

3
2
〈s〉α : 〈s〉α.

As a consequence, (8.176) reduces to an elasticity law with a constant secant
modulus in each phase

s = 2µsα(Σα) e . (8.178)

Since the stiffness of the matrix material now is spatially constant the Eshelby
result for an ellipsoidal inhomogeneity can also be applied to this nonlinear prob-
lem. Via the secant shear modulus µs

M
(Σ

M
) the Eshelby tensor depends on the

current average matrix stress state or the equivalent stress Σ
M

computed from
it, respectively. In case of spherical inhomogeneities the parameters (8.11) of the
isotropic Eshelby tensor (8.10) hence read

αs (Σ
M
) =

3K
M

3K
M

+ 4µs
M

, βs (Σ
M
) =

6(K
M

+ 2µs
M
)

5(3K
M

+ 4µs
M
)
. (8.179)

The homogenization can now be performed with any of the methods discussed in
Sect. 8.3.2; in the representations for the effective stiffness only the shear moduli
µ

I
and µ

M
have to be replaced by µs

I
(Σ

I
) and µs

M
(Σ

M
). This leads to a macroscopic

constitutive law written in terms of the effective secant moduli K∗
s and µ∗s :

〈σkk〉 = 3K∗
s 〈ǫkk〉 , 〈s〉 = 2µ∗s 〈e〉 . (8.180)

The determination of K∗
s and µ∗s requires the solution of a nonlinear system of

equations since the current phase averages 〈s〉α have to be computed as functions
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of some prescribed macroscopic quantity. Therefore, it is practical to eliminate
the phase averages of the strains from the general relations for the macroscopic
quantities:

c
I
〈s〉

I
+ c

M
〈s〉

M
= 〈s〉 , c

I
〈s〉

I

2µs
I
(Σ

I
)

+
c

M
〈s〉

M

2µs
M
(Σ

M
)

= 〈e〉 . (8.181)

As an example we consider an elastic-plastic composite material which consists
of a ductile aluminum matrix and purely elastic spherical alumina particles with
a volume fraction of c

I
= 0.3. The behavior of the matrix can be characterized

by the typical material data E
M

= 75 GPa, ν
M

= 0.3, k0 = 75 MPa, A= 400 MPa,
and n = 3 while that of the particles is given by E

I
= 400 GPa and ν

I
= 0.2.

Figure 8.28 shows the stress-strain behavior of both phases as well as the overall
behavior under uniaxial tension. From the values of the material parameters
and the morphology of the composite (stiff particles in a soft matrix) it can be
expected that the overall behavior is mainly determined by the matrix. The
concentration of plastic matrix flow in the vicinity of the particles reduces their
stiffening effect in comparison to a purely elastic composite. Besides the overall
behavior of the composite based on the total strain theory, Fig. 8.28 also shows
the 〈σ〉, 〈ε〉-curve obtained under the assumption of piecewise constant plastic
strains (Sect. 8.4.2.1).

composite
(const. plast. strains)

composite
(total strain theory)

matrix

   particles (elastic)

0

200

300

400

0.004 0.006 0.008 0.010 0.002

100

σ, 〈σ〉

ε, 〈ε〉

Figure 8.28: Elastic-plastic composite, comparison of approximate methods

The homogenization has in both cases been performed using the Mori-Tanaka
model. Obviously the assumption of piecewise constant plastic strains leads to
an unrealistically weak influence of matrix plasticity on the overall behavior; this
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has already been mentioned in Sect. 8.4.2.1. The result based on total strain
theory which allows for inhomogeneous plastic strains, in contrast, captures the
dominance of the ductile matrix in the overall behavior much better.

8.5 Thermoelastic material

Spatial fluctuations on the microscale of heterogeneous media are generally dis-
played not only by the elastic or plastic properties but also by other physical
parameters. One of the most important ones is the thermal expansion coefficient
k which according to (1.43) appears in the Duhamel-Neumann law

σ(x) = C(x) :
(
ε(x) − εth(x)

)
= C(x) :

(
ε(x) − k(x)∆T (x)

)
(8.182)

of a micro-heterogeneous thermoelastic material. For the majority of practical
applications it is justified to consider the temperature change ∆T to be constant
throughout the microscale. The material behavior on the macroscopic level then
can be characterized by the effective elasticity tensor C∗ according to Sect. 8.3
and the effective coefficient of thermal expansion k∗:

〈σ〉 = C∗ :
(
〈ε〉 − E

th
)

where E
th = k∗∆T . (8.183)

Comparison of (8.182) and (8.183) with (8.4) or (8.142) and (8.144) reveals that
thermal strains εth = k∆T are equivalent to stress-free transformation strains εt

or plastic strains εp. This already repeatedly mentioned analogy can be exploited
to determine k∗. Accordingly, (8.145a) yields the macroscopic thermal strain

E
th = C∗−1 : 〈εth : C : A〉 (8.184a)

and after insertion of E
th and εth it follows that

k∗ = C∗−1 : 〈k : C : A〉 . (8.184b)

Hence the effective coefficient of thermal expansion is the weighted average of
its microscopic counterpart (weighted by the elastic heterogeneity in terms of
C(x) and the influence tensor A(x)). Only in case of an elastically homogeneous
material (C = const, A = 1) is k∗ = 〈k〉.

As a special case of practical importance we again consider a composite ma-
terial which consists of two piecewise homogeneous phases with C

M
, C

I
, k

M
, k

I

and volume fractions c
M
, c

I
. Using c

I
A

I
+ c

M
A

M
= 1 one obtains from (8.184b)

k∗ = C∗−1 :
(
k

M
: C

M
+ c

I
(k

I
: C

I
− k

M
: C

M
) : A

I

)
. (8.185a)

If the influence tensor A
I

of the inhomogeneity is replaced by (8.71a) it follows
that

k∗= C∗−1 :
(
k

M
:C

M
+(k

I
:C

I
−k

M
:C

M
) : (C

I
−C

M
)−1 : (C∗−C

M
)
)
. (8.185b)
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In this representation any of the approximations of the effective elasticity tensor
C∗ derived from the micromechanical models in Sect. 8.3.2 can now be inserted.

A problem that often occurs in practical applications is that of thermally
induced eigenstresses in the course of heating up or cooling down a heterogeneous
microstructure or composite. If the material is considered to be macroscopically
unloaded 〈σ〉 = 0 it follows from (8.47) for the average stresses in both phases
that c

I
〈σ〉

I
= −c

M
〈σ〉

M
and the average strain is 〈ε〉 = c

I
〈ε〉

I
+ c

M
〈ε〉

M
= k∗∆T .

By inserting the constitutive laws for both phases 〈σ〉α = Cα : (〈ε〉α − kα∆T )
one obtains for the average stresses

c
I
〈σ〉

I
= −c

M
〈σ〉

M
=
(
C−1

M
− C−1

I

)−1
:
(
c

I
k

I
+ c

M
k

M
− k∗

)
∆T . (8.186)

Now we consider a material with both phases being elastically (Kα, µα) and
thermally isotropic. The local thermal strains then are purely volumetric: εth =
kα∆T I. If the material is elastically isotropic also on the macroscale then the
effective coefficient of thermal expansion according to (8.185b) is likewise isotropic
k∗ = k∗I and depends only on the effective bulk modulus:

k∗ =
k

M
K

M
(K

I
−K

M
) + (k

I
K

I
− k

M
K

M
)(K∗ −K

M
)

K∗(K
I
−K

M
)

. (8.187)

If in case of a microstructure with spherical inhomogeneities the Mori-Tanaka
model (Sect. 8.3.2.4) is employed for the homogenization then (8.98) and the
volumetric part α = (1+ν)/3(1−ν) of the isotropic Eshelby tensor (8.10), (8.11)
lead to

k∗(MT) = k
M

+ c
I

K
I
(k

I
− k

M
)

K
M

+ (α + c
I
(1 − α))(K

I
−K

M
)
. (8.188)

Insertion into (8.186) yields the average values of the thermally induced stresses
in both phases which are purely hydrostatic:

〈σ〉
I
= − c

M

c
I

〈σ〉
M

=
−3K

I
K

M
c

M
(1 − α)(k

I
− k

M
)

K
M

+ (α + c
I
(1 − α))(K

I
−K

M
)
∆T I . (8.189)

In the special case of a very stiff matrix (K
M
≫ K

I
) one obtains

〈σ〉
I
= −3K

I
(k

I
− k

M
)∆T I . (8.190)

In case of an elastically homogeneous material (K
M

= K
I

= K), in contrast, it
follows that

〈σ〉
I
= −3Kc

M
(1 − α)(k

I
− k

M
)∆T I (8.191)

which comprises the result (8.14) when the thermal expansion is restricted to the
inhomogeneity (k

M
= 0) with a very small volume fraction (c

I
≪ 1 , c

M
≈ 1):

〈ε〉
I
=

〈σ〉
I

3K
+ k

I
∆T I = α k

I
∆T I . (8.192)
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As an example of practical relevance we consider a microstructure which
results from the infiltration of aluminum into a porous ceramic matrix of alu-
mina (Al2O3). Since the manufacturing proceeds at high temperatures cool-
ing down the material to room temperature leads to thermally induced eigen-
stresses in both phases. Typical material data for the ceramic matrix (M) and
the aluminum phase approximated here as spherical inhomogenieties (I) are:
K

M
= 220 GPa, ν

M
= 0.2, k

M
= 8 · 10−6K−1, K

I
= 60 GPa, ν

I
= 0.3, k

I
=

2.4 · 10−5K−1. This leads to α(ν
M
) = 0.5 and for a volume fraction of alu-

minum of c
I

= 0.25 one obtains from (8.188) an effective coefficient of thermal
expansion of k∗ ≈ 10−5K−1. A temperature change in the course of cooling of
∆T = −400K leads according to (8.189) to an average pressure of σ

M
≈ −250

MPa in the ceramic matrix (M) and to a hydrostatic tensile stress of σ
I
≈ 750

MPa in the infiltrated aluminum (I). Despite the strongly simplified approxima-
tion of the morphology by spherical aluminum particles these values correspond
quite well to experimental findings. One should note that the average stress in
the aluminum phase is much higher than the yield stress of aluminum. However,
since the stress state is purely hydrostatic yielding does not occur in the course
of cooling, instead cavities are formed in the aluminum phase.
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9 Damage mechanics

9.1 Introduction

Real materials often contain already in the initial state a multitude of defects
such as microcracks or voids. In the course of a deformation process these in-
ternal cavities may grow and coalesce while at the same time further material
separation takes place by the creation of new microdefects at stress concentrators
(e.g. inclusions, grain boundaries, inhomogeneities). This causes a change of the
macroscopic properties of the material and its strength decreases. Such a process
of structural deterioration of a material which results from the creation, growth
and coalescence of microdefects is called damage. In its final stage it leads to a
complete loss of the material’s integrity and to the formation of a macroscopic
crack.

Material damage is classified according to the dominant macroscopic phe-
nomenon as brittle damage, ductile damage, creep damage, and fatigue damage.
The prevailing mechanism of brittle damage is the formation and growth of mi-
crocracks as it takes place for instance in ceramics, geomaterials, or concrete. In
contrast, ductile damage and creep damage in metals is essentially due to the
nucleation, growth, and coalescence of microvoids. The source of fatigue dam-
age are microcracks which are formed at stress concentrators in the course of
microplastic cyclic loading and which more and more grow and coalesce.

The description of the macroscopic behavior of a damaged material may still
proceed in the framework of continuum mechanics. Macroscopic stresses and
strains then have to be understood as volumetric averages over a representative
volume element (RVE) inside which the damage process takes place (see also
Sect. 8.3.1.1). The relevant characteristic length scales depend on the material
at hand as well as on the damage mechanism. The state (extent) of damage
is represented by a so-called damage variable (internal variable). The latter is
governed by an evolution law which has to be formulated in a way to describe
the evolution of damage in a physically adequate manner. For its derivation it is
practical to employ micromechanical models which capture the essential features
of the defects and allow for a detailed investigation of their growth. A respective
damage theory can be considered as a link between classical continuum mechanics
and fracture mechanics. It is in principle capable of describing the formation of
a macroscopic crack in an initially crack-free material body.

The present chapter serves to present elementary concepts of damage mechan-
ics. Thereby we focus only on the simplest cases of brittle and ductile damage in
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the course of monotonic loading.

9.2 Foundations

Damage variables can be introduced in various ways. A simple means of describ-
ing the state of damage consists in its geometric quantification and dates back to
L.M. Kachanov (1914-1993). In a cross section of the damaged body we therefore
consider an area element dA with unit normal vector n (Fig. 9.1a). The area of
the defects in this element is denoted by dAD and the amount of damage then
can be characterized by the area fraction

ω(n) =
dAD
dA

with 0 ≤ ω ≤ 1 (9.1)

where ω = 0 corresponds to the undamaged material and ω = 1 formally describes
the totally damaged material with a complete loss of stress carrying capacity (i.e.,
fracture). In real materials, however, already at values of ω ≈ 0.2 . . . 0.5 processes
take place which lead to total failure. If the damage is constant across a finite
area, for instance, under uniaxial tension as in Fig. 9.1b, the relation (9.1) reduces
to ω = AD/A. Obviously this simplest definition of damage is only suitable for
void-like defects which have a spatial extension and hence a defect area dAD in
arbitrary cross sections. The influence of microcracks which are inclined to the
cross section can not be properly described in this way.

ADA

F

Fb)a)

dF

ndA

n

dAD

dA

Figure 9.1: Definition of damage

In the course of a deformation process the defects may grow in preferred
directions which are determined by the stress state. In this case ω depends
on n and the damage is anisotropic. If, however, the defects and their spatial
distribution do not display preferred orientations isotropic damage prevails and
the state of damage can be characterized by a scalar. A sufficiently small amount
of damage may often be considered isotropic as a first approximation.
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If the force dF acting on some cross section is devided by the area dA, one
obtains the common stress vector t according to (1.1). The effective stress vector
t̃ is defined as the force per unit effective (stress carrying) area dÃ = dA−dAD =
(1 − ω)dA:

t̃ = t
dA

dÃ
=

t

1 − ω
. (9.2)

Correspondingly, in case of isotropic damage (ω independent of n) the effective
stresses are given by

σ̃ij =
σij

1 − ω
. (9.3)

The effective stresses σ̃ij are the average stresses in the undamaged matrix ma-
terial.

In order to formulate constitutive laws one often assumes that the effective
stresses σ̃ij lead to the same strains in the damaged material as are induced by
the classical stresses σij in the undamaged material (equivalent strain principle).
The stress-strain behavior of the damaged material can then be described by the
constitutive law of the undamaged material if the stresses are replaced by the
effective stresses. In the uniaxial case of a damaged linear elastic material, for
instance, one obtains

ε =
σ̃

E
=

σ

(1 − ω)E
(9.4)

where E is the Young’s modulus of the undamaged material. The respective
approach also applies to inelastic material behavior and the elastic strains in the
framework of plasticity are obtained according to

dεe =
dσ̃

E
=

dσ

(1 − ω)E
or εe =

σ̃

E
=

σ

(1 − ω)E
. (9.5)

Hence the amount of damage can be determined by measuring the effective
Young’s modulus

E∗ = (1 − ω)E (9.6a)

of the damaged material (Fig. 9.2):

ω = 1 − E∗
E

. (9.6b)

Comparison of the representation (9.6a) with the result (8.73)

C∗ = C : (1 − D) (9.7)

from the micromechanical investigation of materials with cavities and cracks re-
veals that the damage variable ω is the uniaxial special case of the influence
tensor D where the latter comprises also the situation of anisotropic damage due
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σ σ

Figure 9.2: Damage evolution: a) elastic, b) elastic-plastic

to preferred defect orientations. The boundary condition (on an RVE) of pre-
scribed macrostrains (see (8.72), (8.73)) assumed in Sect. 8.3 for the derivation
of (9.7) corresponds to the equivalent strain principle employed here.

Besides ω according to (9.1) or D according to (9.7) further quantities are
utilized for the characterization of damage. Irrespective of the material behav-
ior the generally anisotropic damage due to the presence of microcracks can be
described by the damage tensor

ωij =
1

2V

∫

AR

(ni∆uj + nj∆ui) dA . (9.8)

Here, V denotes a representative volume element, ∆ui is the displacement jump,
ni is the unit normal vector, and the integration has to be performed over the
entire crack surface AR, i.e., over all cracks within the volume V . The quantity
(9.8) may also be interpreted as an ‘eigenstrain’ induced by the damage (see
(8.50b),(8.53)). If the microcracks do not close completely upon unloading, (9.8)
describes the residual (inelastic) strains.

Damage due to voids in ductile materials is often represented by the void
volume fraction or porosity

f =
Vp
V

(9.9)

where Vp is the total volume of voids within the volume V of some RVE. Anal-
ogously, the crack density parameter introduced in Sect. 8.3 may be used as a
damage variable to describe damage due to microcracks.

9.3 Brittle damage

The dominant mechanism of brittle damage is the nucleation and growth of mi-
crocracks. These cracks usually have a preferred orientation given by the principal
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axes of the stress tensor. Under tensile loading cracks are observed to grow pref-
erentially normal to the maximum tensile stress (Fig. 9.3). Their characteristic
length in the initial state, however, is typically determined by the microstruc-
ture of the material (e.g., grain size). In the course of loading and beyond some
critical load the cracks start to grow and multiply which leads to a decreasing
stiffness (e.g., Young’s modulus) in the direction of loading. Although the un-
damaged matrix material behaves linear elastic the macroscopic behavior of the
damaged material is nonlinear because of the increasing damage (Fig. 9.3). The
deformation process proceeds in this way until the material becomes macroscopi-
cally unstable and a localization of damage takes place. Damage then is no longer
uniformly distributed throughout the material; instead a single crack which dom-
inates over the others continues to grow alone.

Damage

Localization
σ2 σ2

σ1

σ1>σ2

ε

σ

Figure 9.3: Brittle damage under tensile loading

In case of compressive loading, cracks are often observed to grow into the
direction of maximum compressive stress (Fig. 9.4a). They may originate from
various mechanisms which give rise to local tensile stress fields. A typical exam-
ple is a spherical cavity or inhomogeneity at the poles of which a local tensile

a) b)

σ3

σ1

|σ3| ≫ |σ1|

Figure 9.4: Brittle damage under compressive loading
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stress is induced under global compressive load. Another mechanism involves
shear cracks under mode-II loading which kink and afterwards grow under lo-
cal mode-I conditions into the direction of overall compression (Fig. 9.4b). The
macroscopic material behavior again is nonlinear due to the increasing damage
and in the course of deformation displays a material instability which leads to
the localization of damage. This localization often takes place in form of shear
bands which originate from the growth and coalescence of shear cracks and which
are inclined at a certain angle to the overall compressive load.

In the following we consider a simple example of damage under uniaxial ten-
sion (Fig. 9.5). The RVE is modeled as a plane region of area ∆A which in the
initial state contains only a single mode-I crack. Its length is sufficiently small
compared to the distance to other cracks so that the interaction of the cracks
need not be accounted for (see Sect. 8.3.2.3). The macroscopic material behavior

is described using the complementary energy Ũ (see Sect. 1.3.1):

Ũ = Ũe(σij) +∆Ũ(σij , a) . (9.10)

The first term denotes the energy of the undamaged material which according to
(1.49) is in the present case given by Ũe = σ2/2E ′. The second term describes
the energy change - related to the size of the RVE - caused by the presence of
the microcracks and is computed from the energy release rate G = K2

I /E
′ with

KI = σ
√
πa :

∆Ũ =
2

∆A

a∫

0

Gda =
π

E ′∆A
σ2a2 . (9.11)

This leads to the complementary energy

Ũ(σ, a) =
σ2

2E ′

(
1 +

2π

∆A
a2

)
(9.12)

∆A

σ σ

2a

Figure 9.5: 2D model for damage under tensile loading
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and according to (1.48) one obtains by differentiation

ε(σ, a) =
∂Ũ

∂σ
=

σ

E ′

(
1 +

2π

∆A
a2

)
. (9.13)

The crack length a here has the meaning of an internal variable.

For a fixed crack length (a = const) the relation (9.13) describes a linear elastic
material represented by the effective Young’s modulus E∗ = E ′/(1 + 2πa2/∆A)
(see Fig. 9.2a). The damage ω then is determined from (9.6b). In the following
it is assumed that the cracks have an initial length 2a0 and beyond a certain
loading σ0 or strain ε0 grow according to the fracture criterion G(σ, a) = R(∆a)
(see Sect. 4.8). The latter may equivalently be written as

KI(σ, a) = KR(∆a) or σ
√
πa = KR(∆a) (9.14)

where KR describes the crack resistance curve for a microcrack. This is the evolu-
tion law for the internal variable which together with (9.13) uniquely determines
the material behavior:

ε(σ, a) =
σ

E ′

(
1 +

2π

∆A
a2

) {
a = const for σ

√
πa < KR(∆a)

ȧ > 0 for σ
√
πa = KR(∆a)

(9.15)

For an illustration the crack resistance curve is represented by KR = K∞[1−
(1 −K0/K∞)e−η∆a/a0 ] where K0 = σ0

√
πa0 is the initiation value and K∞ is the

plateau value of KR; the latter is faster or slower attained depending on η. Figure
9.6 shows some macroscopic stress-strain curves obtained from this model.

1

21

K∞

K0

KR

∆a

η=1, γ=2

ε/ε0

η=1, γ=2.5

σ/σ0
K η=2, γ=2.5

Figure 9.6: Crack resistance curve and corresponding σ-ε behavior;
2πa2

0/∆A = 0.05, γ = K∞/K0
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9.4 Ductile damage

9.4.1 Void growth

Ductile damage in crystalline solids originates from the nucleation, growth, and
coalescence of microvoids. These form preferentially at second-phase particles,
grain boundaries, and other obstacles to the motion of dislocations. They may
also initiate from the cracking of brittle inclusions.

σ∞
a r

ϕ
2a

z

Figure 9.7: McClintock model

Various models exist for the description of void growth alone. Here we consider
the model by McClintock (1968) which approximates a single void by a cylindrical
hole in an unbounded domain subjected to a radial tensile stress σ∞ (Fig. 9.7).
The surrounding material is taken to be rigid perfectly plastic and a state of plane
strain is assumed with a prescribed strain rate ε̇z = ε̇0. In cylindrical coordinates
and accounting for the rotational symmetry the equilibrium condition reads

dσr
dr

− 1

r
(σϕ − σr) = 0 (9.16)

while the kinematic relations are given by

ε̇r =
du̇r
dr

, ε̇ϕ =
u̇r
r

→ ε̇r =
d(rε̇ϕ)

dr
(9.17)

and the constitutive law follows from Sect. 1.3.3 to be

ε̇r = λ̇ sr , ε̇ϕ = λ̇ sϕ , ε̇z = λ̇ sz

where λ̇ =
1

τF

√
1

2
(ε̇2
r + ε̇2

ϕ + ε̇2
z) , ε̇r + ε̇ϕ + ε̇z = 0

(9.18)

and τF = σF/
√

3. By using (9.18) and integrating (9.17) the incompressibility
condition leads to

ε̇ϕ + r
dε̇ϕ
dr

+ ε̇ϕ + ε̇0 = 0 → ε̇ϕ =
C1

r2
− ε̇0

2
.
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If the void growth rate is introduced by ε̇a = ȧ/a = u̇r(a)/a = ε̇ϕ(a) it follows
that

ε̇ϕ =
a2

r2
(ε̇a + ε̇0/2) − ε̇0/2 , ε̇r = −a

2

r2
(ε̇a + ε̇0/2) − ε̇0/2 . (9.19)

With the abbreviation

ξ =
2a2

√
3 r2

ε̇a + ε̇0/2

ε̇0

(9.19) yields

σϕ − σr = sϕ − sr =
τF (ε̇ϕ − ε̇r)√
1
2
(ε̇2
r + ε̇2

ϕ + ε̇2
z)

= τF
2ξ√
1 + ξ2

.

Using this the equilibrium condition can be written in the following form and can
be solved by integration:

dσr
dξ

= − τF√
1 + ξ2

→ σr = −τF arsinh ξ + C2 .

From the boundary conditions σr(r → ∞) = σ∞ and σr(r = a) = 0 one finally
obtains

ε̇a =
ε̇0

2

(√
3 sinh

σ∞
τF

− 1

)
. (9.20)

Using (9.19) one may replace ε̇0 by the equivalent plastic strain rate at infinity:
ε̇pe = [3

2
(ε̇2
z + ε̇2

ϕ + ε̇2
r)]

1/2 = ε̇0. With the hydrostatic stress at infinity σm =

σkk/3 = σr − sr = σ∞ + τF/
√

3 and by introducing the growth rate of the void
volume by V̇P/VP = 2ε̇a + ε̇0 the above result can be written in the form

V̇P
VP

=
√

3 ε̇pe sinh
σm − τF/

√
3

τF
. (9.21)

It states that void growth (V̇P > 0) requires a sufficiently high hydrostatic stress
σm and that the growth rate increases with σm.

A similar result follows from the model by Rice and Tracey (1969) for the
growth rate of a single spherical void in an unbounded domain of a perfectly
plastic material:

V̇P
VP

= 0.85 ε̇pe exp
3σm
2σF

. (9.22)

As in the previous model it is assumed that at infinity the strain rate ε̇z =
−2ε̇x = −2ε̇y = ε̇0 prevails which corresponds to a state of uniaxial tension in an
incompressible material: ε̇pe = ε̇0.

These results can be employed in the framework of damage mechanics if one
assumes that the voids are sufficiently far away from each other so that their
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interaction may be neglected. They can, however, be also directly applied to
elastic-plastic fracture mechanics. Ahead of a crack tip typically a high hydro-
static stress prevails. If it is approximated by (5.22) one obtains σm ≈ τF (1 + π)
and it follows from (9.20) or (9.21) (which yield practically equal results) that
V̇P/VP ≈ 31 ε̇pe. This indicates pronounced void growth ahead of a crack tip in
ductile materials.

9.4.2 Damage models

In order to investigate the damage behavior of a ductile material we now assume
isotropic damage by distributed voids which can be characterized by the porosity
f . The description of the elastic-plastic material behavior proceeds analogous to
that of undamaged materials (see Sect. 1.3.3). According to (1.73) the strain rate
is split into an elastic and a plastic part where the elastic part is governed by the
elasticity law (1.39). The plastic part is determined from a yield condition and a
flow rule. In contrast to an undamaged material now the yield condition depends
not only on the stress state σij but also on the damage variable f : F (σij , f) = 0.
Moreover, it can no longer be assumed that the hydrostatic stress σm or the
invariant Iσ, respectively, has no influence on plastic flow; it rather controls void
growth and the volumetric plastic strain (see Sect. 9.4.1). Correspondingly, the
yield condition can be expressed as

F (Iσ, IIs, f) = 0 (9.23)

where it has been assumed that F does not depend on IIIs. The volumetric
plastic strain caused by void growth is given by the volume change of the RVE:
V̇ /V = ε̇pV = ε̇pkk. Noting that the matrix material is plastically incompressible
this together with (9.9) yields the evolution law for the damage variable

ḟ = (1 − f) ε̇pkk . (9.24)

Among the various existing models which differ by the specific forms of the
yield condition and details of the further evaluation only the model by Gurson

(1977) is considered in the following. It is based on the yield condition

F (Iσ, IIs, f) =
σ2
e

σ2
M

+ 2f cosh
3σm
2σ

M

−
(
1 + f 2

)
= 0 (9.25)

where σe = (3
2
sijsij)

1/2 is the macroscopic equivalent stress and σ
M

denotes the
yield stress of the matrix material. It should be noted that σ

M
is an effective

(spatially constant) yield stress which appropriately represents the in reality in-
homogeneous state of plastic flow and hardening in the entire matrix material
surrounding the voids. The Gurson yield condition (9.25) covers some impor-
tant special cases. For purely hydrostatic loading (σe = 0) (9.25) reduces to the
exact analytical solution (8.164). On the other hand, under deviatoric loading
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(σm = 0) it coincides with the upper bound (8.161) by virtue of cosh(0) = 1. And
obviously (9.25) reduces to the von Mises yield condition (1.77) for f = 0 where
the influence of hydrostatic stress vanishes. The macroscopic plastic strain rate
is obtained from the flow rule

ε̇pij = λ̇
∂F

∂σij
. (9.26)

It is furthermore assumed that the plastic work rate of the matrix stress – ex-
pressed in terms of the yield stress σ

M
and the corresponding equivalent plastic

strain rate ε̇p
M

– is equal to the respective work rate of the macroscopic stress:

σij ε̇
p
ij = (1 − f)σ

M
ε̇p

M
. (9.27)

From the knowledge of the uniaxial stress-strain curve of the undamaged material,
i.e., from the relation ε̇p

M
(σ̇

M
), thus the macroscopic material behavior is known.

It has been found that the behavior of a ductile damaged material can not
be satisfactorily represented by the equations (9.24) to (9.27). For instance, they
predict the loss of stress-carrying capacity at an unrealistically high value of the
damage variable. One reason for this lies in the fact that in the above model the
nucleation of voids as well as the increasing interaction of voids in the course of
their growth and their final coalescence are not accounted for. Better results are
obtained from the modified yield condition according to Tvergaard and Needleman

(1984)

F (Iσ, IIs, f) =
σ2
e

σ2
M

+ 2q1f
∗ cosh

3q1σm
2σ

M

−
(
1 + (q1f

∗)2
)

= 0 (9.28)

where q1 and q2 are material parameters. The function f ∗(f) is chosen in such a
way that total material failure occurs at a realistic amount of damage (f ≈ 0.25).
In addition, the contribution of void nucleation (from second-phase particles) to
the change of the porosity is taken into account. Strain-controlled nucleation of
voids is described by

ḟnucl = D(εp
M

) fN ε̇
p
M
, D(εp

M
) =

1

σ
√

2π
exp

[
−(εp

M
− εN)2

2σ2

]
(9.29)

where fN is the volume fraction of particles at which voids nucleate. The function
D is a normal distribution with the average value εN and the standard deviation
σ (see also Sect. 10.2). The total change of porosity thus consists of the growth
term (9.24) plus the nucleation term (9.29). It should be mentioned that a rep-
resentation similar to (9.29) may be adopted for stress-controlled void nucleation
(i.e., by fracture of particles).

Figure 9.8 shows the material behavior under uniaxial tension for a particular
choice of material parameters. For the matrix material a power law behavior has
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Figure 9.8: Gurson model: uniaxial tension, (a) without,
(b) with suppression of lateral strain

been assumed. Depicted are the variations of tensile stress σ, hydrostatic stress
σkk, and damage f as functions of the plastic strain εp (the small elastic strains εe

are neglected). It can be seen that with increasing plastic strain also the damage
increases which gives rise first to a softening behavior and later to the total loss
of stress-carrying capacity. A remarkable effect arises from the suppression of
lateral strain (contraction of the specimen). This constraint promotes a stronger
evolution of damage with the result that failure takes place at smaller macroscopic
plastic strains.

9.4.3 Fracture concept

Damage models describe the material behavior until the total loss of the stress-
carrying capacity. Local failure, i.e., fracture, takes place when the damage f
attains a critical value fc:

f = fc (9.30)

Such a local failure criterion can be employed in the treatment of various problems
of fracture mechanics. For instance, it may be used to describe the formation
of a crack after preceding damage. Furthermore, (9.30) can be employed as a
fracture criterion which has to be satisfied at crack initiation and in the course
of subsequent crack growth. This approach bears the advantage that fracture
parameters such as J , δt, or JR-curves are not needed.

Finally, a drawback of (continuum) damage mechanics should be emphasized:
as repeatedly mentioned the increase of damage leads to an instability in the
macroscopic material behavior (softening) which gives rise to the localization
of deformation and damage (e.g., growth of only a single crack or void growth
within a narrow band). Such a localization violates the requirements of an RVE
discussed in Sect. 8.3.1 and micromechanically motivated damage models loose
their validity. Damage variables then no longer have their originally ascribed
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physical meaning, they are only formal parameters. Another disadvantage of
continuum damage mechanics consists in the dependence of numerical solutions
of boundary value problems on the underlying discretization (finite element mesh)
which often occurs also as a consequence of localization.
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10 Probabilistic fracture mechanics

10.1 Introduction

The failure analysis of a structure proceeds on the basis of a fracture or failure
criterion. A typical example is the criterion of brittle fracture KI = KIc which
states that failure does not take place for KI < KIc. Application of such a
criterion in the deterministic sense requires all involved quantities to be exactly
known. This, however, is not always the case. For instance, the in-service loading
conditions of a technical component as well as the material’s fracture toughness
KIc may scatter. Also the location, size, and orientation of cracks is sometimes
not precisely known. If these details are neglected and only ‘averaged’ quantities
are employed the deterministic analysis may lead to rather vague results. If,
on the other hand, the fluctuations are accounted for by considering an upper
bound for KI and a lower bound for KIc one obtains results which might be safe
but probably are too conservative. It also has to be noted that these bounds
likewise may not be exactly known. In any way, the risk of fracture remains
unknown in the framework of a deterministic analysis. The same holds for all
other failure criteria such as the classical failure hypotheses discussed in Chap. 2
or the life-time hypothesis according to the Paris law (Sect. 4.10).

In contrast to the deterministic analysis, the probabilistic approach takes into
account the scatter and uncertainties of material properties, loading conditions,
and defect distribution in an appropriate manner. Thereby it is assumed that
the quantities entering a failure criterion are given in terms of probability distri-
butions. This leads to statements with respect to the failure probability which
determines the risk of fracture.

Statistical aspects also come into play when microstructural features of a ma-
terial, which are relevant for its fracture behavior, are to be accounted for. In real
materials usually a multitude of ‘defects’ such as microvoids, microcracks, inclu-
sions, or inhomogeneities of different size, shape, and orientation are found which
have a strong influence on the fracture process. Because of their large number
the effect of these defects on the macroscopic behavior is suitably described by
means of statistical methods.

The present chapter deals only with the basic concepts of probabilistic fracture
mechanics. It is restricted to brittle materials the strength properties of which
may display especially strong scatter. Brittle materials often also show a pro-
nounced decrease in strength with increasing volume of a testing specimen. The
reason for this is the distribution of defects: the probability for the occurrence
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of a critical defect increases with the volume under consideration. This is the
foundation of the statistical theory of brittle fracture developed by W. Weibull.
In many situations it is employed for the assessment of the behavior of ceramics,
fiber-reinforced materials, geological materials, concrete, or brittle metals.

10.2 Foundations

The frequency by which some quantity x occurs, for instance, the measured KIc

value of a material or a crack length, is described by the probability density
f(x) (Fig. 10.1). If we assume that x attains only positive values the probability
distribution is given by

F (x) =

x∫

0

f(x̄)dx̄ . (10.1)

It determines the probability P that a random variable X lies in the interval
0 ≤ X ≤ x:

P (X ≤ x) = F (x) . (10.2)

Since P can attain values between 0 and 1 the following relations hold:

P (X <∞) =

∞∫

0

f(x)dx = 1 ,

P (X ≥ x) = 1 − F (x) ,

P (a ≤ X ≤ b) =

b∫

a

f(x)dx = F (b) − F (a) .

(10.3)

The mean (or expectation) value 〈X〉 of a random variable and the variance varX
are defined as

〈X〉 =

∞∫

0

xf(x)dx =

∞∫

0

[1 − F (x)]dx ,

varX =

∞∫

0

[x− 〈X〉]2f(x)dx .

(10.4)

The latter can also be described as the average square deviation from the mean
value 〈X〉. The square root of the variance is called the standard deviation:
σ =

√
varX.
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f

f(x)

F (b)−F (a)

x

P (X ≥ b)

a b

1−F (a)
P (a≤X≤b)

Figure 10.1: Probability density and distribution

Among the various functions used to describe probability densities and dis-
tributions only a few a presented here. The normal distribution (Gaussian dis-
tribution) is given by (see Fig. 10.2a)

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(10.5)

where µ denotes the mean value and σ the standard deviation. KIc and Jc values
or other material parameters as well as their scatter are often described by normal
distributions.

The logarithmic normal distribution or lognormal distribution (Fig. 10.2b) is
defined by

f(x) =
1

σ
√

2πx
exp

(
−(ln x− µ)2

2σ2

)
(10.6)

with the mean value 〈X〉 = eµ+σ2/2 and the variance varX = e2µ+σ2

(eσ
2−1). It is

in many cases employed to describe loading conditions and distributions of crack
lengths and defects.

Of special importance is the Weibull distribution. Its density and probability
distribution are given by (see Fig. 10.2c)

f(x) = λαxα−1e−λx
α

, F (x) = 1 − e−λx
α

. (10.7)

This yields the mean value and variance

〈X〉 =
Γ (1 + 1

α
)

λ1/α
, varX =

Γ (1 + 2
α
) − [Γ (1 + 1

α
)]2

λ2/α
(10.8)

where Γ denotes the Gamma function. The Weibull distribution is very often
applied to fatigue processes and for the characterization of the distribution of
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Figure 10.2: Probability density: a) normal distribution, b) lognormal distribu-
tion, c) Weibull distribution, d) Gamma distribution

crack lengths and defects in brittle materials. In the special case α = 1 it is also
called exponential distribution.

Finally, the Gamma distribution should be mentioned which is given by

f(x) = λ
(λx)α−1

Γ (α)
e−λx (10.9)

with 〈X〉 = α/λ and varX = α/λ2 (Fig. 10.2d). It is likewise used to approximate
the distribution of defect sizes. For α = 1 it also reduces to the exponential dis-
tribution. The lognormal distribution, the Weibull distribution, and the Gamma
distribution are nonsymmetric and therefore better suited for the characteriza-
tion of failure-relevant properties than the symmetric normal distribution. An
explanation for this is given in case of the Weibull distribution in the following
section.
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10.3 Statistical fracture concept of Weibull

10.3.1 Fracture probability

We consider an isotropic brittle material which is subjected to a uniform uniaxial
stress σ and which contains internal defects (e.g., microcracks) but no macroscopic
crack. The defects are assumed to be distributed in a statistically homogeneous
manner, i.e., the probability of the occurrence of a defect of a particular kind,
size, orientation, etc. is everywhere the same. In addition it is assumed that total
failure of the material (= fracture) takes place if a single defect becomes critical
and starts to grow. This be possible only under tensile loading; defect growth
under compressive loading is precluded for simplicity.

The probability that at a tensile stress σ a certain volume V does not contain
a critical defect is denoted by F ∗(V ). The respective probability for some other
arbitrary volume V1 (which does not contain V ) is F ∗(V1). If events in V and V1

are independent of each other the probability that no critical defect is found in
V + V1 is given by

F ∗(V + V1) = F ∗(V )F ∗(V1) . (10.10)

Differentiation at fixed V1 and subsequent division by (10.10) yields

dF ∗(V + V1)

dV
=

dF ∗(V )

dV
F ∗(V1) ,

[
dF ∗(V + V1)

dV

]

F ∗(V + V1)
=

[
dF ∗(V )

dV

]

F ∗(V )

or
d

dV
ln[F ∗(V + V1)] =

d

dV
ln[F ∗(V )] = −c .

Here, c is a constant which depends only on stress: c = c(σ). Integration and
noting that F ∗(0) = 1 finally leads to the probability that no critical defect is
contained in the volume V :

F ∗(V ) = e−cV . (10.11)

Conversely, the probability that V contains a critical defect is F (V ) = 1 −
F ∗(V ) = 1 − e−c(σ)V . By virtue of the assumption that a single critical defect
leads to failure, this is the fracture probability Pf :

Pf = 1 − e−c(σ)V . (10.12)

Accordingly, the fracture probability at constant c (i.e., constant σ) increases
with increasing volume. The ‘survival probability’ (no failure) is given by Ps =
1 − Pf = e−cV and decreases with increasing volume.

Equation (10.12) is rather general since it does not contain any assumption
with regard to the physical nature of the defects. Whether they are microcracks or
other stress concentrators is irrelevant. In case of surface-like or bar-shaped bodies
the volume has to be replaced by the area or length, respectively. Comparison
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with (10.7) shows that at fixed c (10.12) represents an exponential distribution.
Thereby c = 1/V̄ can be interpreted as the average concentration of defects. The
smaller the average volume V̄ per defect is, the faster the increase of Pf with V
takes place. The assumptions underlying (10.12) are also referred to as weakest
link theory . It corresponds to a chain which fails at the location of the weakest
link when the tensile strength of the latter is exceeded.

The relation c(σ) in (10.12) is an unknown function for which often the em-
pirical representation according to Weibull

c(σ) =





1

V0

(
σ − σu
σ0

)m
for σ > σu

0 for σ ≤ σu

(10.13)

is chosen. Here, V0 and σ0 are normalization parameters and σu is the threshold
stress below which the fracture probability is zero. For simplicity the latter
is frequently set to zero. The material-specific exponent m is called Weibull
modulus; some values are given in Table 10.1. Insertion of (10.13) into (10.12)
yields the Weibull distribution (see (10.7)) for the fracture probability

Pf = F (σ) = 1 − exp

[
− V

V0

(
σ − σu
σ0

)m]
(10.14)

where V now is taken to be fixed.

Table 10.1: Weibull modulus

material m
glass 2.3
SiC 4...10
Al2O3 8...20
graphite 12
cast iron 38

The relation (10.14) holds only for a homogeneous uniaxial stress state. It
can, however, easily be generalized to an inhomogeneous uniaxial stress state as
it prevails, for instance, in a beam subjected to bending. For this purpose we
apply (10.11) to a volume element ∆Vi in which the constant stress σi prevails:
ci = c(σi). Then

F ∗(Σ∆Vi) = e−c1∆V1e−c2∆V2e−c3∆V3 . . . = e−Σci∆Vi

describes the probability that in a sum of volume elements with different stresses
no critical defect is found. Performing the limit process yields F ∗(V ) = exp[−

∫
cdV ]
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and using (10.13) one obtains for the fracture probability

Pf = F (σ) = 1 − F ∗ = 1 − exp


− 1

V0

∫

V

(
σ − σu
σ0

)m
dV


 . (10.15)

10.3.2 Fracture stress

The fracture probability F (σ) of a body subjected to uniform tension is given by
(10.14). Setting σu = 0 one obtains from (10.7), (10.8) the mean fracture stress
(= tensile strength) and variance

σ̄ = 〈σ〉 = σ0

(
V0

V

) 1
m
Γ (1 + 1/m) ,

var σ = σ2
0

(
V0

V

) 2
m {

Γ (1 + 2/m) − [Γ (1 + 1/m)]2
}
.

(10.16)

Accordingly, both quantities depend on the volume of the body. For one and the
same material and two different volumes V1 and V2 one obtains

σ̄1

σ̄2
=

(
V2

V1

)1/m

,
(var σ)1

(var σ)2
=

(
V2

V1

)2/m

. (10.17)

For instance, V2/V1 = 5 and m = 2 leads to the values σ̄1/σ̄2 = 2.24 and
(var σ)1/(var σ)2 = 5. Hence the mean fracture stress for the smaller volume
V1 is more than twice that of V2; the variance, however, is also larger. It should
be mentioned that the first equation in (10.17) allows for the determination of m
by measuring the mean fracture stress for different volumes.

In order to investigate the influence of a nonuniform stress state we consider
a beam of length l with a rectangular cross section (width b, height h) subjected
to a constant bending moment. The stress distribution across the height of the
beam is in this case given by σ(z) = σ

B
2z/h where σ

B
is the maximum stress at

the boundary. Insertion into (10.15) with V = lbh yields for this case

Pf = F (σ
B
) = 1 − exp

[
− V

V0

(
σ

B

σ0

)m
1

2(m+ 1)

]
(10.18)

where it has to be noted that the integration is performed only over the tensile
region (defects in the compressive part of the beam are considered to have no
effect!). The mean fracture stress in case of bending (= bending strength) and
the variance are obtained from (10.7) as

σ̄
B

= 〈σ
B
〉 = σ0

(
V0

V

) 1
m

Γ (1 + 1/m)[2(m+ 1)]1/m ,

var σ
B

= σ2
0

(
V0

V

) 2
m {

Γ (1 + 2/m) − [Γ (1 + 1/m)]2
}

[2(m+ 1)]2/m.

(10.19)
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Comparison with (10.16) shows that the dependence on the volume is still the
same. However, the mean strength and the variance are larger in case of bending
than under uniform tension. If the quantities according to (10.16) are indicated
by the subscript ‘Z’ one may write

σ̄
B

σ̄
Z

= [2(m+ 1)]1/m ,
var σ

B

var σ
Z

= [2(m+ 1)]2/m (10.20)

from which, e.g., for m = 5 it follows that σ̄
B
/σ̄

Z
= 1.64.

10.3.3 Generalizations

The fracture concept according to Weibull can be generalized in various aspects.
For instance, it may be extended to compressive stresses and multiaxial stress
states. It is also possible to describe the actual defect structure by appropriate
micromechanical models and thereby support the statistical concept. Further-
more, the Weibull concept can be applied to time-dependent fracture processes
as they may occur in fiber-reinforced materials. In this case, c is represented in-
stead of (10.13) by an approximation of the type c = α tβ where α and β depend
on the stress σ and t denotes the time.

Here only one extension of the concept shall be discussed. It is based on the
assumption that not already a single critical defect leads to failure but that a
certain number n > 1 of critical defects is required. Thereby the observation is
accounted for that often many defects (e.g., microcracks) grow before ultimate
failure takes place. Starting point is the probability

P ∗
X=k =

1

k!
(cV )k e−cV (10.21)

for the occurrence of exactly k independent critical defects in the volume V . It is
called Poisson distribution and contains as a special case for k = 0 the probability
(10.11) for the non-existence of a critical defect in V . The probability for the
existence of less than n defects in V is obtained as the sum of the probabilities
for the occurrence of 0 to (n− 1) defects:

P ∗
X<n−1 = e−cV

n−1∑

k=0

1

k!
(cV )k .

Therefore, the probability for the existence of n or more critical defects in V is

Pf = PX>n−1 = 1 − P ∗
X<n−1 = 1 − e−cV

n−1∑

k=0

1

k!
(cV )k (10.22)

which hence is also the fracture probability. From the corresponding density
pf = dPf/dV = [c/(n− 1)!](cV )n−1e−cV one can recognize that this is a Gamma
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distribution (10.9). From (10.22) and by comparison with (10.12) one can fur-
thermore see that the increase of the fracture probability with the volume is
smaller that in case of the Weibull model and is slower for larger n. For instance,
for n = 3 and n = 10 one obtains at cV = 3 the values Pf,3(3) = 0.577 and
Pf,10(3) = 0.001, respectively, and at cV = 10 the values Pf,3(10) = 0.997 and
Pf,10(10) = 0.542, respectively.

The dependence of the mean fracture stress on the volume and on the other
parameters may be obtained using the approximation cV0 = (σ/σ0)

n (see (10.13))
from (10.4) and (10.22):

σ̄ = 〈σ〉 = σ0

(
V0

V

) 1
m Γ (n+ 1/m)

Γ (n)
. (10.23)

The dependence on the volume is the same as in (10.16) or (10.19).

10.4 Probabilistic fracture mechanical analysis

The present section serves to explain in principle the procedure of a probabilistic
fracture mechanical analysis. As an example we consider a plane component in
which cracks of different size can be expected to occur in the course of loading.
The component is subjected to uniaxial tension σ and the K-concept KI = KIc

with KI = σ
√
πa G(a) is taken as the failure criterion where G(a) is a geometry

factor. We assume that at a certain instant the probability density f
a
(a) for

the occurrence of different crack lengths is known from inspection. From this in
conjunction with the above relations the probability density f

KI
(K) for the stress

intensity factors at a given loading σ can be determined. It is further assumed
that the density distribution f

KIc
(K) for the fracture toughness of the material

is also known from measurements. Both distributions are schematically depicted
in Fig. 10.3.

f, F

K

1

Pf

fKI

FKIc

fKIc

Figure 10.3: Distributions of KI and KIc
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The probability that the fracture toughness is smaller than a certain value K
is given by

P (KIc ≤ K) = F
KIc

(K) =

K∫

0

f
KIc

(K̄) dK̄ . (10.24)

Correspondingly, f
KI

(K) dK is the probability for a crack-tip loading in the in-
terval K ≤ KI ≤ K + dK. The product

dPf = F
KIc

(K) f
KI

(K) dK

then describes the probability that both applies, i.e., that the component fails.
Integration over all possible levels of crack-tip loading finally yields the total
failure probability:

Pf =

∞∫

0

F
KIc

(K) f
KI

(K) dK =

∞∫

0

K∫

0

f
KIc

(K̄) dK̄ f
KI

(K) dK (10.25)

It is represented by the shaded area in Fig. 10.3. When the distribution densities
for the crack-tip loading and the fracture toughness change with time then Pf
also changes. This may, for instance, take place when cracks grow in the course
of cyclic loading or when the material undergoes aging.

The determination of the failure probability needs not be performed on the
basis of stress intensity factors. Alternatively, one may directly start from the
distribution density f

a
(a) of the crack lengths. Then the KIc distribution density

has to be transformed into a density f
ac

(a) of critical crack lengths. Another
alternative approach consists in the direct determination of the failure probability

Pf = P (KI ≥ K and KIc ≤ K) with 0 ≤ K <∞ (10.26)

from Monte-Carlo simulations . Thereby randomly generated values for KI and
KIc are compared to each other and the number of events with KI ≥ KIc divided
by the total number of attempts yields Pf .

Finally, it should be mentioned that the probabilistic fracture mechanical
analysis in real situations is often connected with difficulties. The main reason is
the lack of data with regard to the exact distribution densities of crack lengths,
loading or material parameters (e.g., KIc), as well as to their temporal evolution.
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– probability 312
– surface 41 ff.
fatigue crack 54
– crack growth 55, 120
– fracture 56, 305
fault 44
ferroelectric 130, 132
fiber 122, 217, 261
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flow potential 22, 183
– rule 26, 48, 279, 299
fluctuation 240, 251, 265, 303
Foreman 121
fracture criterion 69, 97, 105, 111, 114–119,
126, 134, 139, 153–155, 160, 177, 198, 207, 295,
300
– energy 95–99
– probability 307–311
– surface 47, 53, 55–56, 96–97, 170
– surface energy 56, 96–97, 112
– surface roughness 208–209
– toughness 69, 87, 92, 127, 170, 180, 208,
303, 311
– work 100, 170
functionally gradient material 235
fundamental solution 73, 219, 242, 270

Gamma distribution 306
general work theorem 29, 241
Griffith 2, 92
Griffith criterion 95–99
Gurson model 298

Hashin-Strikman bounds 267–269
– variational principle 264
Hencky-Ilyushin law 27, 282
Hencky’s equations 36
Hill condition 239, 263
hollow cylinder 261
– sphere 277
homogenization 218, 233, 270, 279, 285
HRR field 147, 150, 160, 183
Hui-Riedel field 187, 190
hydrostatic stress state 9, 231

impact loading 200, 213
inclusion 51, 219, 221, 290
incompressible material 19, 22, 247, 297
incremental theory 25, 150, 281
inertia forces 11, 195
influence tensor 231, 242, 271, 284
inhomogeneity 219, 228, 245, 261, 285, 289,
303
initiation time 177, 187
instantaneous compliance 180
interaction energy 227
intercrystalline fracture 53
interface crack 121
internal energy 28, 97
intersonic crack propagation 210
interstitial 51, 219, 227

invariants of strain tensor 13
– of stress tensor 8
– of stress deviator 9
Irwin 2, 69
Irwin’s crack length correction 107
isotropic hardening 24, 282

J-controlled crack growth 160
J-integral 100, 124, 131, 137, 139, 149, 167
–, path independence of 106, 149

Kachanov 82, 290
K-concept 2, 68, 120, 197, 207
K-factor 62, 69, 70, 75, 94, 132, 138, 174,
198 (see also stress intensity factor)
kinematic hardening 24, 276
kinetic energy 28, 198, 206
kink model 117
Kolosov’s formulas 34, 71

Lame’s constants 15
Laplace transform 21, 174
large scale creep 186
– yielding 138, 160, 170
length scale 2, 217, 234, 289
Lennard-Jones potential 51
limit load 141, 146
linear standard material 175
localization 54, 59, 293, 300
longitudinal shear 33, 60

(see also antiplane shear)

macroscopic level 217, 233, 283
– plastic strain 271
– strain 236, 271
– stress 236, 270, 274, 289, 299
– yield condition 274
– yield surface 275
material force 103, 225
matrix 221, 230, 243, 279, 285, 291, 298
maximum shear stress 9, 25, 35, 67, 110, 146
Maxwell model 182
McClintock model 296
method of weight functions 79
microcrack 51, 173, 209, 217, 292–295, 307
microscopic fields 236, 272
– level 49, 217, 233, 239, 270 ff.
microstructure 1, 51, 217, 233, 243, 256, 270,
285, 293
Mises yield criterion 24, 26, 35, 109, 277
– equivalent stress 24, 27, 282, 298
mixed-mode loading 114–119, 128, 207, 214
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Mohr’s failure hypothesis 45
– stress circles 10, 33, 43, 45
Monte-Carlo simulation 312
Mori-Tanaka model 251, 260, 267, 283, 285
multispecimen technique 157

natural strain increment 14
near field 63, 115
necking 110, 171
nonlinear elastic material 18
normal distribution 299, 305
– fault 44
normality rule 26
normal stress dominated fracture 47, 56
Norton’s creep law 22, 183

octahedron stress 9
opening mode 60
orthotropy 16

Paris law 121
penny-shaped crack 200, 233, 250, 257, 262
percolation 256
– threshold 260
perfectly plastic 24, 35, 138, 142, 148, 165,
273, 296
Petroski-Achenbach representation 81
phase angle 123 ff.
– average 238, 243, 266, 280
piezoelectric effect 130
– material 130 ff.
– material constants 130
plane strain 31, 35, 62, 87, 109, 144, 223
plane stress 25, 31, 41, 56, 62, 109, 138, 171,
232
plasticity 23, 47, 137, 270
plastic collaps 140
– strain increment 23, 270
– tangent modulus 26
– zone 69, 107, 110, 178
Poisson distribution 310
Poisson’s ratio 15, 174
polarization 130
porosity 256, 277, 292, 298
potential energy 30, 263
power law 19, 27, 148
Prandtl field 144
Prandtl-Reuss law 26, 281
Prandtl’s creep law 22
principal strain hypothesis 41
– stress hypothesis 41
principle of maximum plastic work 25

– minimum complementary energy 30, 264
– minimum potential energy 30, 263
– virtual complementary work 30
– virtual displacements 29, 99
– virtual forces 30
– virtual work 29
probability 303 ff.
process zone 59, 69, 95, 153, 167, 170, 177,
195, 206, 235
proportional loading 27, 150, 161, 282

Ramberg-Osgood law 147
Rayleigh function 197
– wave 196, 200, 210
R-curve 112, 160
reciprocity relation 31
reference displacement 81
– load 81
relaxation function 20, 174
representative volume element 234, 289
residual stress 272
Reuss approximation 244, 263
– bound 263, 269
reverse fault 44
Rice 138, 150, 157, 297
rule of mixture 245

screw dislocation 51, 220
S-criterion 116
secant modulus 282
self-consistent 84
– method 254 ff., 260, 269, 279
self energy 226
separation 49 ff., 89, 96, 100, 208, 289
–, work of 89, 96
shear band 284
– lips 56
shear dominated fracture 47, 56
shear modulus 15, 174
–, effective 244, 248, 255, 259, 264, 268
–, secant 282
singularity 62, 65, 103, 123, 132, 138, 143,
150, 166, 203, 210
–, logarithmic 166
size condition 87, 109, 177, 235
slip band 52, 54
– line theory 35, 142–147, 166
small scale creep 173, 182, 190
– yielding 107, 140, 178
spherical inclusion 224, 266
– inhomogeneity 247, 253, 255, 261, 279, 285
stable crack growth 55, 111 ff., 162 ff.
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stationary crack 55, 183, 197
statistically homogeneous 235, 307
steady-state 164, 187, 207, 211
strain 11
–, creep 21, 183, 191
–, elastic 23, 148, 183, 188, 270
–, equivalent 19, 282
–, macroscopic 236, 271
–, plastic 23, 27, 55, 148, 221, 270, 283, 297
strain energy 61, 97, 102, 156, 206, 263
– density 17, 28, 42, 100, 116, 149, 239, 273
– hypothesis 42
– rate 22, 184
strength hypotheses 39
stress 5
–, effective 18, 291
–, equivalent 18, 24, 27, 282, 298
–, macroscopic 236, 270, 274, 289, 299
stress intensity factor 62, 69, 70, 75, 94, 132,
138, 174, 198 (see also K-factor)
–, cyclic 120
–, dynamic 198 ff.
stress polarization 229, 265
– tensor 7
– vector 5
– wave 200, 214
strike-slip fault 44
subcritical crack growth 55
substrate 93, 98, 128
superposition 70, 83, 139
surface energy 49, 56, 95

tearing modulus 160
tension-cutoff 45
theoretical strength 50
thermal expansion coefficient 17, 224, 284
thermally induced eigenstress 285
thin layer 92, 98, 128
total potential 29, 94, 99, 226, 263
total strain theory 27, 137, 147, 282

(see also deformation theory)
Tracey 297
transcrystalline fracture 53
transformation strain 221, 284
transmission factor 82
transversely isotropic 17, 130, 251
Tresca yield criterion 25, 108, 110, 138
T-stress 62, 64, 118, 146

unit cell 236
unstable crack growth 55, 178

virtual crack advance 99, 198
– complementary work 30
– displacement 29
– force 30
– work 29, 99
viscoelasticity 19, 174
V-notch 65
void 53, 217, 261, 285, 289
– coalescence 54, 55, 289, 296, 299
– growth 145, 147, 174, 296
– volume fraction 292
Voigt approximation 244
– bound 263, 269
volume fraction 237, 269, 299
volumetric average 236
– strain energy density 18

wave equation 196
– speed 196
Weibull 2, 304, 307
– distribution 305, 308
– modulus 308
weighted average 243, 272, 284
weight function 79

yield condition 25, 35, 109, 142, 270, 274,
280, 298
– criterion 23, 278
– strength 39, 87
– surface 23, 48, 274-276
Yoffe 205, 211
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