
FastSOA

Frank Cohen

Publisher Diane Cerra
Publishing Services Manager George Morrison
Editorial Assistant Asma Palmeiro
Cover Design Frank Cohen
Composition Multiscience Press, Inc.
Copyeditor Andrew Therriault
Proofreader Katherine Antonsen
Indexer Steve Rath
Interior printer Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear
in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means-electronic, mechanical, photocopying, scanning, or otherwise-without prior written permission of the
publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:
phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage
(http://elsevier.com) by selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN 13: 978-0-12-369513-0
ISBN 10: 0-12-369513-9

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
06 07 08 09 10 5 4 3 2 1

ix

Contents

Where SOA Meets The Real World xv

Acknowledgments xvii

Chapter 1 The Problem with
Service-Oriented Architecture1

1.1 What Drives a Business to SOA? 3

1.1.1 Software Developers Like Mashups 6

1.1.2 Architects Need a Flexible and Fast Data Model 8

1.1.3 CIOs Need Control 9

1.2 SOA Benefits in an Enterprise 10

1.2.1 Make Existing Data More Useful 10

1.2.2 Software Maintenance Gets Easier 11

1.2.3 SOA Enables a Service Marketplace 12

1.2.4 SOA Building Blocks 12

1.2.5 Contrasting SOA with Web Services 13

1.2.6 Workflow and Documents for SOA Scalability 14

1.2.7 The Problem with Workflow Containers 18

1.3 SOA Service Mediation 20

1.3.1 Intermediaries and Transformation 20

1.3.2 Aggregators, Orchestration, and Federation 22

1.3.3 Security 22

1.4 Can I Build SOA with My Existing Tools? 23

x Contents

1.4.1 There Is No Gatekeeper for XML Schemas 25

1.4.2 Your Choice of XML Tools Impacts Performance 26

1.4.3 Criteria for Applying Database Technology for SOA 27

1.4.4 Flexibility or Performance 32

1.4.5 While You Can, You May Not Want To 33

1.5 Data in the Service-Oriented Architecture 34

1.6 The Dark Side of SOA 37

1.7 The SOA Checklist 39

1.8 Summary 39

Chapter 2 Managing the XML Explosion 41

2.1 A Love Affair with XML 41

2.2 XML Impact on Data 45

2.2.1 Master Data Management and XML 48

2.3 XML and the Nature of Software Developers 51

2.4 Why XML in SOA Makes Sense 55

2.5 What XML Is Not: A Language for Semantics 56

2.6 XML Benefits in a Service World 60

2.6.1 Mid-Tier Persistence 61

2.6.2 Multiple Schema Support 62

2.6.3 Federated Service Requests 63

2.7 Summary 63

Chapter 3 Understanding SOA Patterns 65

3.1 SOA Players 65

3.1.1 Actions: Publish, Discover, Bind, and Execute 66

3.1.2 Messaging and Message Exchange Patterns 67

3.1.3 Three Popular Message Exchange Patterns 72

3.2 Summary 74

Contents xi

Chapter 4 Identifying And Avoiding
SOA Performance Problems75

4.1 Patterns and Experiences That Led to FastSOA 75

4.1.1 Use SOAP Document-literal Encoding—Avoid SOAP RPC
Encoding 76

4.1.2 Use XML Tools to Build XML Services—Java App Server Tools
Handle XML Data Poorly 80

4.2 Mitigate Performance Problems with the FastSOA Architecture 84

4.2.1 Use Unencoded XML Elements with Strings—Avoid JAX-RPC
SOAPElement 86

4.2.2 Use the XML Parser That Is Appropriate to Your Data 91

4.2.3 Use a Database That Is Tuned to Your Data Definition—Native
XML Databases Help Relational Databases 92

4.2.4 Understanding the FastSOA Pattern 94

4.2.5 Mid-Tier Cache Pattern and Example 95

4.2.6 Patterns That Accelerate SOA Performance 97

4.3 Summary 100

Chapter 5 Solve Performance Problems
with FastSOA Patterns103

5.1 Three Use Cases and the FastSOA Pattern 103

5.2 Scenario 1: Accelerating Service Interface Performance
and Scalability 105

5.3 Scenario 2: Improving SOA Performance to Access Services 113

5.4 Scenario 3: Flexibility Needed for Semantic Web, Service Orchestra-
tion, and Services Dynamically Calling Other Services 116

5.5 Summary 118

Chapter 6 The PushToTest Method to Identify SOA Scalability and
Performance Metrics119

6.1 The Method to Identify SOA Performance Metrics 119

6.1.1 An SOA Industry Supporting the PushToTest
Methodology 120

xii Contents

6.1.2 User Goal Oriented Testing (UGOT) 122

6.1.3 The Method 127

6.1.4 Method for Black Box and White Box (Profiling) Tests 128

6.2 Applying the Method to SOA and Web Services 129

6.2.1 Planning: Background and Goals 130

6.2.2 Definitions: Use Cases and Test Scenario 132

6.2.3 Additional Use Cases Considered but Not Implemented 134

6.2.4 Defining the Test Scenario 135

6.2.5 Identify the Test Environment (Hardware and Software) 136

6.2.6 Using the XSTest Pattern for Performance Tests 137

6.2.7 Calibration Testing 137

6.2.8 Scalability Index 141

6.3 Understanding TPS 143

6.3.1 Calibration What-If Chart 148

6.4 Summary 149

Chapter 7 Learning XML-Centric Technology
for SOA151

7.1 XML-Centric Options 151

7.1.1 Reasons to Like XQuery and Native XML Databases 153

7.2 XQuery in the SOA Stack: The Cookie Factory 155

7.3 The Data Used in the Cookie Factory Example 157

7.4 A Tour of XQuery 160

7.4.1 Starting with the Basics 160

7.4.2 Structure of an XQuery 162

7.4.3 The Data Model: Nodes, Elements, and Sequences 163

7.4.4 From XPath to XQuery 168

7.4.5 Element Constructors 170

7.4.6 FLWOR Expressions 171

7.4.7 Functions 176

7.4.8 Type Specification 179

Contents xiii

7.4.9 Namespaces 179

7.4.10 Dates and Times 181

7.5 My First XQuery Blunders 181

7.5.1 Blunder 1: Declarative, Modal, Dynamic All at Once 182

7.5.2 Blunder 2: The Generic Error and Debugging 184

7.5.3 Blunder 3: Semicolons in the Query Prolog 185

7.5.4 Blunder 4: XML versus XML Documents 185

7.5.5 Blunder 5: Don’t Think Procedurally 187

7.5.6 Blunder 6: Sometimes You Need to Be Explicit 187

7.5.7 Blunder 7: Value versus General Comparisons 190

7.6 The Unfinished Parts of XQuery 192

7.6.1 Federated Queries: SOAP, JDBC, and Java Data Sources 192

7.7 Where to Find Answers to XQuery Questions 197

7.8 Summary 198

Chapter 8 Getting SOA-Ready 201

8.1 Composite Data Services 201

8.1.1 Class/Object Definition 205

8.1.2 Language and Platform 206

8.1.3 Workflow Container 208

8.1.4 Taxonomy and Registry 209

8.1.5 Data Access Services 211

8.2 Creating Business Value with Metadata 214

8.2.1 Microformats 216

8.2.2 Discovery Metadata 217

8.2.3 Business Object Documents 218

8.3 Enterprise Options to Build Business Logic 220

8.4 LazySOA and Being Ready for SOA 222

8.4.1 Service Registry 223

8.4.2 XML Accelerator 225

xiv Contents

8.4.3 Enterprise Service Bus (ESB) 227

8.4.4 Data Access Service and Components 231

8.4.5 Deployment and Monitoring 233

8.4.6 Composite Data Service Container 234

8.4.7 SOA-Ready 235

8.5 How to Evaluate SOA Tools 237

8.5.1 Delivering Business Value with SOA 238
Glossary 241

Resources 263

Index 267

Colophon 279

xv

Introduction

Where SOA Meets The Real World

For many enterprises, business, and institutions Service Oriented
Architecture (SOA) is an excellent technology choice to rapidly
deliver new business processes and improve IT efficiency. With the
right tools, methodology, and skills SOA delivers reusable composite
software applications to interact with your existing data sources.
Choosing the wrong tools, choosing methodology that leaves you not
being able to quantify success, and hiring people with missing skills
makes it much more likely that your SOA will never achieve success.

This book goes beyond what passes for SOA today – simple block
diagrams and vague exhortations – to get the architecture right by
showing guidelines, detailed solutions and instruction to get an IT
team to SOA success. This book teaches practical real-world experi-
ences, methods, and tools to help you deliver excellent SOA perfor-
mance, scalability, and reliability in a short period of time.

Software tools vendors often make a presumption that their tools
are appropriate for building SOA. Sometimes that turns out not to
be the case. For instance, many software developers ask me if their
existing Java development tools, relational database, and applica-
tion server can build well performing SOA? For very simple SOA
designs the answer is “yes.” In the real world where SOA environ-
ments use big, complex, and changing messages, protocols, and
designs the answer is “no.” This book shows how to detect scalabil-

xvi Introduction Where SOA Meets The Real World

ity and performance problems in SOA and gives you the FastSOA
architecture as a solution.

I coined the name FastSOA as an architectural design pattern to
achieve good scalability and performance in SOA and XML envi-
ronments. FastSOA uses new standards-based native XML database
and XML Query (XQuery) technology to provide scalability and
flexibility in SOA environments. Used in conjunction with the scal-
ability and performance testing tools and methodology I present in
this book you will be well equipped to achieve rapid development
of SOA software code that performs well, is scalable, and is inex-
pensive to maintain.

Frank Cohen

2006

xvii

Acknowledgments

I wrote this book from experiences at Raining Data, a software
publishing company of the TigerLogic XML data management
system (XDMS.) Raining Data reminds me of my time at Sun
Microsystems in that the engineers, salespeople, administrators, and
management are visionary, smart, energetic, and experienced
professionals. This book is the culmination of many ideas, projects,
and findings from Raining Data’s efforts.

This book would not have been possible without my lovely
wife, Lorette, who supported me on all those sleepless nights. My
children, Jack and Madeline, missed many nights and weekends
with me as I disappeared into the manuscript.

Many people provided their ideas, feedback, comments and
suggestions to better this book. In particular I would like to high-
light the following individuals for their contributions. Jeff Dexter
for showing me what XQuery was really all about. Eric Soirot for
helping me to understand the inside of a multi-dimensional, hier-
archical database. Danny Hyun and Kelli Rotstan for their ideas on
profiling performance problems. Robert Smik for being my first
XQuery teacher. Premal Parikh, Murty Gurajada, Ash Parikh, and
Ajay Ramachandran for their combined design effort on composite
data services. Ilesh Garish, Steve Graves, Toni Guttman for their
feedback. Carlton Baab, Robert Albo, John Bramley, Brian Cheek,
Varun Gupta, Abi Kariguddaiah, Scott Lesko for their ideas, sup-
port, and encouragement.

William Martinez Pomares and Simon Tuffs made instrumental
contributions in developing the test design and implementations

xviii Acknowledgements

covered in this book. They went down several rabbit holes trying
to find problems and uncover alternatives, including understand-
ing at the JAX-RPC level why encoded XML data was taking so
long to process.

Darin MacBeath of Elsevier found the problems with SOAP RPC
scalability that are highlighted in this book. To my knowledge
Darin’s designs for a next generation content publishing engine
that uses SOAP as a means to publish APIs was the first SOAP-
based Web Service in production.

For helping me deliver this book: Dianne Cerra (publisher), Asma
Palmeiro (assistant editor), Alan Rose (production), Tim Donar (page
composition.) The technical editors provided excellent feedback:
Doug Barry, Jim Melton, Greg Wdowiak, Ronald Bourret, Simon
Tuffs, William Martinez Pomarez, Sam Ramji, and Carl Ververs.

Thanks to Jason Hunter, Michael Kay, and Michael Dyck for
helping me to understand native XML tools. Thanks go to Tim
Bray, Jeff Barr, and Adam Bosworth for their efforts to evangelize
simple to the software developer community.

Finally, thank you to you for your interest in this book. Buying
this book helps put food on my families’ table and keeps me going
to improve my tools, techniques and methods. I appreciate your
interest and hope the experience is rewarding for you personally
and professionally.

You are about to hear from me, I would like to hear from you.
Please write or email me at fcohen@rainingdata.com and tell me
what you thought about this book, and about testing and building
scalable SOA applications in general. Let me know your contact
information (including email address) and I will keep you informed
about my current and future work, new products and services, and
new books and articles.

Also from Frank Cohen:

• Java Testing and Design: From Unit Tests To Automated
Web Tests, Prentice Hall, 2004

• Java Web Services Unleashed, SAMS Publishing, 2002, Con-
tributing Author

• Java P2P Unleashed, SAMS Publishing, 2002, Editor and
Contributing Author

For a full listing of publications, articles and various ramblings
point your browser to http://docs.pushtotest.com and http://
www.xquerynow.com.

1

Chapter

1
The Problem with

Service-Oriented Architecture

Enterprises, organizations, and institutions want their existing data-
centers, their existing software developers, and their existing infor-
mation systems operations managers to work cooperatively on
composite applications. A composite application is stitched together
by using many small and very well focused services to solve a busi-
ness problem. Imagine the efficiency, low costs, and fast time-to-mar-
ket speed if composite applications were a reality?

Business managers love the idea of Service-Oriented Architecture
(SOA). They widely believe SOA will get them to composite applica-
tions immediately. By 2006, many businesses quickly and widely
adopted SOA as their strategy for building new information systems.

Enterprises, organizations, and institutions adopted SOA even
though there is no standards body, such as the World Wide Web Con-
sortium (W3C), OASIS, or others, to formalize SOA into a recom-
mended specification. SOA has no core group of thought-leaders to
tell software architects, developers, and operations managers the
best practices to build functional, scalable, and maintainable SOA.

Instead, in the world of SOA, you find people like me. I am a
practitioner. Businesses and institutions hire me to apply my deep
technical knowledge and software testing experience to learn the
scalability and performance profile of their information systems. In
2001, I began to look deeply into the impact Extensible Markup

2 Chapter 1 The Problem with Service-Oriented Architecture

Language (XML) was having on scalability and performance. At
first I looked at distributed systems that used XML to make remote
procedure calls. Then I looked at SOAP-based Web Services. These
experiences led me to look at SOA scalability and performance
built using application server, enterprise service bus (ESB), and
business integration (BI) tools. Across all of these technologies I
found a consistent theme:

At the intersection of XML and SOA are significant scalability
and performance problems that are found using my test
methodology and solved by using native XML technology,
including XQuery and native XML databases.

The scalability and performance problems in XML-based SOA
designs are significant enough that I’ve seen entire projects canceled
because of them. For instance, when General Motors asked me to
write their Web Services Performance Benchmark, I found that a
modern and expensive multiprocessor server that could easily serve
80 Web pages per second could only serve 1.5 to 2 XML transactions
per second. Scalability and performance indexes like that shown in
Figure 1-1 can kill a project.

Figure 1-1 As the XML message size and complexity grow the
throughput, measured in transactions per second (TPS) at the
service consumer, reveals a scalability and performance problem.

1.1 What Drives a Business to SOA? 3

I followed a path most Java developers will take. I fell in love with
XML. I investigated the impact on performance and scalability that
my choice of XML parsers, SOAP binding proxy generators, XML
encoding styles, object-relational XML mapping techniques, data-
bases, and architectures had on the resulting services. I found a solu-
tion to the SOA problem through the use of native XML technology.

I coined the name FastSOA for an architectural design pattern cre-
ated to achieve the following goals:

1. Good scalability and performance in SOA and XML envi-
ronments

2. Rapid development of software code

3. Flexible and easy maintenance of software code as the envi-
ronments and needs change

The FastSOA architecture and software development patterns I
present in this book are a way to mitigate and solve XML scalability
and performance problems in your environment.

To understand FastSOA, I begin by explaining my view of the
driving forces behind the rapid adoption of SOA in the business,
software development, and software tools communities. I demon-
strate the benefits of adopting SOA. I show the building blocks of
SOA and the pitfalls of using existing tools and technology to
implement SOA applications. I end this chapter with an introduc-
tion to the FastSOA architecture and patterns you may use in your
own environment.

1.1 What Drives a Business to SOA?

In the late 1990s, Sun Microsystems was well along the way to adopt-
ing Web-based e-commerce technology for Sun’s internal and cus-
tomer-facing information systems. Sun wanted to get new
distributions of Java, Solaris, and other software titles to customers
quickly. Slow Internet connections were still prevalent and 100-
megabyte downloads were not practical to customers. Compact disc
(CD) distribution through the mail cost Sun a fortune in fulfillment
costs. Sun’s financial managers asked customers to pay $10 to $20 to
receive a CD in the mail. This required Sun to take orders through an
on-line store, process credit card payments, and integrate with man-
ufacturing systems to fulfill the CD orders.

4 Chapter 1 The Problem with Service-Oriented Architecture

One of the Information Technology (IT) engineers at Sun wrote a
credit card processing service for the CD fulfillment on-line store.
The service uses HTTP transport protocols and an XML encoded
form to process a credit card charge. The engineer later changed jobs
and began working in the Java group. He wrote an application that
let users order a subscription to a service to receive quarterly update
CDs in the mail. The subscription service took a credit card as pay-
ment. The engineer coded the new application to use the on-line
store credit card processing service from his old group.

A few years went by. The engineer moved on to another job with
another company. Internet connection speeds improved and Sun
decided to stop offering the CD fulfillment service. Sun took down the
fulfillment service and the credit card processing service. Conse-
quently, the Java subscription service stopped taking orders. From this
experience it was apparent to many people that Sun had problems:

• No manager could tell you which services depended on
other services. There was no map to show the choreography
and interdependencies of services.

• No manager, software developer, or operations executive
could forecast his or her computer hardware and network
bandwidth needs to serve a given population of users at a
defined quality of service.

• No software division could answer the question, “Who will
answer the phone when the service stops working?” There
was no governance plan for the services.

• No division’s financial manager could tell Sun’s executive
management how to forecast the costs of engineering a new
service.

• No engineering manager could determine the skills needed
by a software developer to maintain an existing service.
Each change to the system—no matter how minute—
required a developer to go back into the code.

• Sun could not determine if a newly planned service already
existed.

Sound familiar? IT managers contend with these problems every
day. In my experience helping software architects, developers, and
IT managers, I found that these issues are universally suffered at
General Motors, the U.S. Navy, Lockheed Martin, BEA Systems, the

1.1 What Drives a Business to SOA? 5

European Union, and others. These are the issues that SOA is
meant to solve.

Sun experienced these issues while deploying a customer-facing
e-commerce system. Indeed, most businesses, institution, and orga-
nizations face the same issues when delivering supply-side vendor
integration, customer service and support systems, financial analy-
sis services for management, manufacturing and operations con-
trols, market and customer trend analysis functions, and
communication (email newsletter, phone, email, and Web) services.
Take your pick. The issues are the same. The developers and archi-
tects who build these systems, the operations managers who run
them, and the CIOs who manage their maintenance over time of
these systems are looking for something in common. They all need
methodology, procedures, and software to accomplish enterprise
system integration projects.

By the early 2000s, IT groups tried to use Enterprise Application
Integration (EAI) and Extract, Transform, and Load (ETL) tools and
techniques to reduce integration and development costs and shorten
the time it takes to build applications. These tools provide data syn-
chronization between a system of record and a system to which you
are copying the data. Applications communicate through the system
of record whenever they need data.

EAI works well for very large enterprises, where economies of
scale come into play for thousands of applications. Many enterprises,
institutions, and organizations, however, find that EAI requires
cooperation among the departments and organizations within the
enterprise and that this cooperation is usually not present unless a
strong central leader emerges to mandate EAI use. The tightly con-
trolled, top-down approach works well in only a few organizations
in the world.

While many consider the EAI approach to be dead, it is still useful
in many environments. Managers propose systems integration
projects today instead of EAI projects, even though they may use EAI
tools in the project. With an open mind to EAI alternatives, many
managers began to consider SOA to be a good choice for system inte-
gration efforts.

SOA emerged as a popular architectural choice with CIOs, soft-
ware developers, and software architects because SOA works well in
environments lacking centralized control and planning. The general
feedback I get from the software development community is that
SOA is reminiscent of the early days of the Web. Enthusiasm

6 Chapter 1 The Problem with Service-Oriented Architecture

abounds and experimentation is frequent. Many developers are
learning what works in an SOA environment as they share their
knowledge in on-line communities, sharing example code, and par-
ticipating in open-source projects. Figure 1-2 shows the convergence
of excitement, experiments, and protocols around SOA.

CIOs, software architects, and developers have individual needs
and goals for building the next generation of software applications.
They also have a lot of excitement. Consider the following.

1.1.1 Software Developers Like Mashups

Mashups are integrations of data available on the Web. For instance,
I wrote an application that integrates a map-generating service with
a donut shop locator service. Never again will I be far from a donut
as I travel on business.

Mashups are possible because many services on the Web support
important connectivity and data encoding techniques. For instance,
the Representational State Transfer (REST) lets me use HTTP proto-
cols with XML data to make complex requests to Web services and
receive the response in XML format that is easily parsed by my appli-
cation. Additionally, a body of emerging standards known as

Figure 1-2 SOA allows software developers, architects, and IT
executives to come together to deliver the next generation of software
applications.

1.1 What Drives a Business to SOA? 7

microformats1 embed XML data tags into Web page content, making
the Web even more of a data source for my mashups. For instance, a
calendar microformat enables Web page authors to embed special
tags around dates that appear on a Web page for a conference sched-
ule that I may easily use from within an application. While my
mashup application delivers dubious business value, it taught me
the skills needed to build composite applications.

Composite applications are the end-products of SOA. They
deliver the business value a company derives from its SOA.
Whether the composite application is designed for internal teams,
customers, partners, or vendors, a composite application represents
how organizations map business needs and processes to underly-
ing information assets using SOA. Figure 1-3 illustrates a business
that uses composite applications in an SOA environment to deliver
business process automation.

Composite applications create value by delivering new views,
transformations, and persistent queriable stores of data connected
through a business process workflow to a presentation interface

1 http://www.microformats.org.

Figure 1-3 Composite applications deliver the business processes
users must follow while interoperating with the underlying data tier,
without requiring changes in data tier.

8 Chapter 1 The Problem with Service-Oriented Architecture

such as a Web browser or service interface. For instance, in Figure 1-
3, a business operates a customer service desk to implement a set of
business processes. When a customer calls the help desk, a represen-
tative manages the customer issues and updates the customer sta-
tus. If the customer issue requires a technician to visit the
customer’s premises, the representative schedules a service call.
Finally, the representative offers new products and services based
on the customer’s current subscriptions. The application to imple-
ment this business process must interoperate with several indepen-
dent systems and develop a common view of the customer’s data
for the representative. Composite application techniques are well
suited for this scenario for three reasons.

First, a composite application does not require any of the enter-
prise data tier providers to make changes to their databases. In an
EAI or ETL approach, the applications would copy and synchronize
data with the system of record. Composite applications get only the
data they need at the time the user operates the composite applica-
tion. The composite application uses the transaction capabilities of
the databases to commit or rollback changes.

Second, once a composite application exists, it may be treated as
a database itself. The component approach makes enterprises and
organizations more nimble and easier to build, orchestrate, and
assemble new business processes and their corresponding compos-
ite application.

Finally, as organizations respond to change, the composite appli-
cations deliver a way to store and reuse all data, including the meta-
data about the database and application itself. Composite
applications enforce a Web service reuse policy to facilitate rapid
response to change.

SOA answers software developer excitement over mashups and
consequently a business or organization’s need for agility through
composite applications. Next, I look at software architects and SOA.

1.1.2 Architects Need a Flexible and Fast Data Model

Software architects are in a difficult situation when building applica-
tions. They know they can greatly improve business productivity
and save their organization time and effort to build and maintain
systems by making good decisions on the tools, techniques, and
approaches they use to build the system. Yet innovation moves so
rapidly that they are seldom able to accurately predict the future to

1.1 What Drives a Business to SOA? 9

ensure that their decisions today will not prevent the business from
missing a business goal in the future because the IT architecture lacks
the needed flexibility.

In my experience working with software architects, their first
composite application experience leads them to a reevaluation of the
roll of data in their designs. Composite applications work with data
from multiple data sources and in multiple data formats and sche-
mas. Software architects need to find tools and technology that
makes working with data easy and fast. XML attracts them.

XML is more than a data markup language; XML is a data model.
Think of an XML document as a linear phrasing of a tree structure.
At every node in the tree there is a set of data. The tree structure and
the data sets together form the information content of an XML docu-
ment. Almost everything will follow naturally from that. For
instance, native XML databases add queriable collections of XML
documents and a database of collections to the data model using the
XML query language (XQuery.)

In my opinion, the XML data model makes it easier to represent
real-world things than the relational data model. Hierarchies of data
come in nature and in a business or organization’s need to model
data. Additionally, native XML databases store collections of XML
documents, where the schema of one stored document may be differ-
ent from the next stored document. In the real world, where software
architects work with multiple departments, customers, vendors, and
partners, the XML data model provides flexibility in the way you
store data that often protects you from going back into the software
code to make a change to a system.

1.1.3 CIOs Need Control

CIOs are in a difficult position too. CIOs are often unable to control
the software used in their data centers, yet they are judged by the
performance of this software. For instance, a survey of CIOs attend-
ing the Gartner Application Integration conference in 2006 revealed
that a third of the conference attendee survey respondents already
had AJAX in their production environments. New technology like
AJAX seeps into datacenters.

SOA benefits CIOs by enabling faster delivery of business
processes and reduced software maintenance costs over time. SOA
facilitates CIO measurement of SOA value to a business as a function
of up-time, cost to implement, cost to maintain, number of users,

10 Chapter 1 The Problem with Service-Oriented Architecture

user satisfaction, and the hardware and network connectivity costs to
operate. Taken together, these measurements of SOA value cause a
CIO to make a judgment on the real business need to create and
operate each service. For instance, in the light of SOA governance,
the CIO considers the following options:

• The proposed new service may be redundant with an exist-
ing service.

• It may be that the business can live without the service for
the time being.

• It may be better to buy an existing service than to build the
service.

• It may be better to outsource development of the service.

• It may be too difficult to operate the service to achieve a suf-
ficient level of user satisfaction.

• The service may not fit the business mission, or, worse, the
service may be a distraction from achieving the mission
goals.

Now that you understand the motivations and needs of software
developers, architects, and CIOs, we will look at SOA from the enter-
prise perspective.

1.2 SOA Benefits in an Enterprise

The reason we love SOA is the promise of less integration effort and
cost, greater efficiency of our development efforts, easier software
maintenance, and better performance. In this section, I describe the
topmost desired enterprise benefits of an SOA approach from my
experiences working with enterprises on the road to SOA.

1.2.1 Make Existing Data More Useful

SOA takes a new approach to the role of data within an organization.
SOA prefers data linking over data import. SOA assumes your
organization already has applications that present data in a transac-
tionally aware way. Many software architects and CIOs I work with
have an attitude against data silos. SOA is much more loose. SOA

1.2 SOA Benefits in an Enterprise 11

says, “What is wrong with silos if I can build a data service that can
get to the data in each of the silos?”

SOA uses data federation to create new business value from exist-
ing data. For instance, in Figure 1-4, a business implements a data
service to provide a single view of customer status by federating data
from an orders database and the warehouse. The federated view
becomes a single URL providing the new view of the data from two
existing databases.

1.2.2 Software Maintenance Gets Easier

As the business faces changes—for example, when new partners,
new customers, and new suppliers come on-board—then writing
new composite applications and data services becomes a way for the
business to respond quickly and with less effort. Figure 1-5 illustrates
a business or organization that employs a data service when a com-
posite application needs data that is not directly available from any
of the enterprise data sources.

Each data service is highly focused to solve a business need. This
makes it easier for the average software developer to understand the
context of the data service and composite application, to make
needed changes to the existing code, and to test the code for func-
tional completeness.

Figure 1-4 Rather than extract the data, the SOA approach creates
data services to link existing data in new and valuable composites.

12 Chapter 1 The Problem with Service-Oriented Architecture

1.2.3 SOA Enables a Service Marketplace

The speed at which an enterprise and organization may respond to
change is enhanced by the emergence of a service marketplace. Many
times it is more appropriate to find an existing service that may be
integrated into a composite application or data service from a service
provider. This has given rise to service marketplaces from businesses
such as Strike Iron, SalesForce.com, and others. These marketplaces
have an advantage in that they make administration of contracts to
service providers more streamlined and uniform, provide a registry
to locate needed services, and help users share problems and solu-
tions using the services.

Next, we will discuss the building blocks to create SOA.

1.2.4 SOA Building Blocks

Books on SOA appear to have slightly different definitions of SOA.
Carl Ververs of ThoughtWorks defines SOA as follows:

A service-oriented architecture (SOA) is the organizational
and technical framework that enables an enterprise to deliver
self-describing, platform-independent business functionality
and make it available as building blocks of current and future
applications.2

Figure 1-5 Composite applications use data services for a flexible
way to bridge an existing enterprise data store to what the business
process needs.

2 Read Carl Ververs’ blog at http://carlaugustsimon.blogspot.com.

1.2 SOA Benefits in an Enterprise 13

Experience with these systems makes Carl’s definition ring true to
me, because it does not include the words Java, .NET, Web Services,
integration, warehouse, and a hundred other technology-specific
words. Instead, Carl’s definition focuses on how SOA delivers value
to a business. SOA delivers value by making a business more rapid,
agile, and less expensive.

SOA may remind you of other distributed system architectures,
including Web Services. It took me a while to understand the differ-
ence between SOA and other architectures.

1.2.5 Contrasting SOA with Web Services

SOA is a component approach to building integrated systems. The
Web Services vision is an architecture of discoverable, loosely cou-
pled, finely grained software components that are accessible as
always-on services.3 SOA keeps the Web Service component idea,
focuses on a composite application approach to business workflows,
loses the discoverable service concept in exchange for more statically
defined brokered service endpoints, and relies on a governance
model that determines service choreography, business issues, trou-
bleshooting, and quality of service levels. Table 1-1 may help you
understand the differences between SOA and Web Services.

3 Read http://www.pushtotest.com/Library for an explanation of the Web Ser-
vice buzz-words.

Table 1-1 Contrasting Web Services with SOA

SOA Web Services

What is the
nature of the
architecture?

SOA automates business
processes by building com-
posite applications that use
a set of data services.

Web Services use finely
grained, loosely coupled,
automatically discoverable
services federated into a
composite application.

How do I find a
service?

Use a registry or repository,
but more commonly a ser-
vice consumer connects to a
known endpoint (URL).

Use a UDDI registry at run-
time.

What protocol do
I use to access the
service?

SOA gives a variety of
options, including SOAP,
Java Message Service (JMS),
AJAX, REST, SMTP, FTP,
CICS, and others.

SOAP

14 Chapter 1 The Problem with Service-Oriented Architecture

1.2.6 Workflow and Documents for SOA Scalability

SOA implements business processes in composite applications using
data it gets from one or more data sources. Understanding the best
practices to implement composite applications and data services is
key to building scalable and well-performing software.

Consider a business that runs a parts ordering center. Each new
order requires a purchase order (PO) that has a unique PO number,
the correct local tax code, and a manager’s approval. Figure 1-6
shows the typical remote procedure call (RPC) approach to building
the parts ordering application.

The RPC architecture in Figure 1-6 creates an application named
Parts Order Center (POC). Within the POC code is the business
process (“workflow”) code that every PO needs to contact the Allo-
cate New PO Number service to get a new and unique PO number,
then contact the Apply Local Tax Code service to look up the tax

How do I learn
the service inter-
face?

WSDL or anything else that
works, including in the case
of REST a Web page that
describes the interface in an
HTML/text Web page for-
matted document.

WSDL

Who manages
and maintains the
service?

Determined by a gover-
nance plan for the service.

If a service goes down, then
the service consumer’s
dynamic discovery finds
another service automati-
cally.

Which language
/platform must I
use to build the
service?

SOA uses service interfaces
that are platform and lan-
guage independent.

Web Services interfaces that
are platform and language
independent.

Who controls the
standard?

SOA is not a standard, it is
an IT industry theme.

The World Wide Web (W3C)
Consortium manages the
SOAP and WSDL standards.
OASIS manages UDDI.

Which format
must I use for
messages?

Whatever works best for
your application. However,
most SOA applications I
have seen use XML.

XML messages following
the SOAP standard.

Table 1-1 Contrasting Web Services with SOA (continued)

SOA Web Services

1.2 SOA Benefits in an Enterprise 15

code for the purchaser, and finally to contact the Get Manager
Approval service to receive approval on the PO.

The above architecture stuffs all of the business logic of the POC
into one big package and that package makes RPC requests to the
supporting services. For instance, the Allocate New PO number ser-
vice does not handle the actual PO. It simply receives a request and
returns a new and unique PO number. Only when the POC needs to
send the actual PO does it do so. For instance, the Get Manager
Approval service requires the POC to send the completed PO as input
to the service. Otherwise, the PO exists solely as an object in the POC.

This architecture requires the POC to know the sequence of events
in the workflow. For instance, the Get Manager Approval service
rejects any requests that do not have a valid PO number. Unfortu-
nately, this means the software developer coding the POC needs to
know how to implement workflow code to make requests to the ser-
vices in the correct order. The software developer also needs to han-
dle errors during the processing of the PO. For instance, what
happens to the PO number when the manager rejects the order?

Last, consider that software developers need to recreate all this
workflow and exception handling code each time the business needs
a new service like the POC. That’s a lot of work!

Now, let’s consider the same POC built using SOA. Figure 1-7
illustrates this new architecture.

Figure 1-6 A sequence diagram showing the Parts Order Center
service using a remote procedure call (RPC) architecture. The
service takes a request for a new order and returns a completed and
approved purchase order (PO).

16 Chapter 1 The Problem with Service-Oriented Architecture

The Purchase Order Center is a business process that creates a
purchase order (PO), assigns the local tax code to the PO, and gets a
manager’s approval of the PO. The SOA approach defines the work-
flow from process to process, the document format for the PO that is
exchanged, and the service interface for each process.

The following list shows today’s popular ways to implement the
SOA service:

• Objects—implement all of the services as objects in an
object-oriented programming platform. The workflow
starts with a call to the StartPO method of the AllocateNew-
PONumber class. This class initiates a new purchase order
(PO) object and makes a call to the process method of the
ApplyLocalTaxCode class. This calls modifies the PO object
and makes a call to the process method of the GetManager-
Approval class. Finally, this class calls the processComplete
method of the Parts Order Center class.

• Multiple Services + Remote Service Interfaces—define
the purchase order (PO) schema, define the service inter-
face for each service, and implement the services on multi-
ple systems. Each service calls the next service in the
workflow and exchanges the PO document. The services
move the PO document over a network through a set of
service interfaces. This allows the services to be created on
platforms and languages that are appropriate to each ser-
vice, including services provided by a partner company
and a service provider.

• Workflow Container + Service Description—define the
purchase order schema, define the workflow in the work-

Figure 1-7 The SOA approach to building the Parts Order Center
implements a business process workflow to move a Purchase Order
(PO) document through the correct order of services for completion
and approval.

1.2 SOA Benefits in an Enterprise 17

flow container’s description language, write the code to
implement each of the services, and let the container run the
workflow. This approach reduces the amount of code you
need to write since the container handles the choreography
of one service calling the next service, exceptions, and roll-
backs when the service needs to abort an operation. Work-
flow containers normally use XML too. The downside is
that you need to learn the business process workflow defi-
nition language (BPWD) of the container and how to config-
ure the workflow container environment.

The SOA approach has some interesting and beneficial aspects.
Consider the following:

• Each service only needs to know about its function on the
document it receives. The workflow container knows the
order in which to call the next service in the workflow
process. The workflow container coordinates the state and
transfer of the document between the services in a scalable
architecture. When put into a production environment,
workflow containers scale up to dynamically routing flows
between a group of servers—in a server, cluster of servers,
or group of datacenters—that are able to operate the
needed function.

• Like Web Services, the SOA architecture uses individual
services that are expert at their own area of function. For
instance, the Apply Local Tax Code service might come
from a tax accounting business that offers the service. Why
try to be a tax accounting business yourself? There is always
someone else with more expertise who will offer your busi-
ness his or her expertise through a service.

• The SOA approach makes it easy to create federations of ser-
vices among disparate and loosely connected organizations
while allowing each organization to maintain the autonomy
of how it builds and designs services and their ownership.

• Each service used is responsible for its own data. SOA
avoids the need to synchronize data between applications.
The document follows an accepted definition and carries
the needed data.

18 Chapter 1 The Problem with Service-Oriented Architecture

• Although there is no SOA standards body to develop and
maintain an SOA standard, most SOA applications I have
worked with use XML to exchange messages. XML is
widely understood and used in the software development
community that makes SOA a very interoperability-friendly
choice of architectures.

I am a fan of the SOA approach because it enables building scal-
able and well-performing document-oriented workflows and service
components under the management of a governance model that
determines service choreography, business issues, troubleshooting,
and quality of service levels. Before we go further into SOA, let’s take
a closer look at workflow containers.

1.2.7 The Problem with Workflow Containers

Workflow containers are analogous to application servers. Instead of
running servlets, a workflow container runs business processes. The
workflow container knows the order in which to call a set of services
and the document that needs to be passed from service to service
from a workflow description document.

While enterprises, institutions, and organizations were rallying
toward SOA through the standards bodies,4 the platform vendors
(Sun, Microsoft, BEA, Oracle, and IBM) were heading away from
each other on an agreement for a standard workflow container.
While these groups and platform providers could come to agreement
on SOAP and WSDL standards for message interfaces, they have not
come to agreement on a standard way to express workflows.

At the time I wrote this book, the workflow container universe
had fractured into these technologies and standards initiatives:

• Sun promotes its Java Business Integration (JBI) standard for
Java developers. JBI provides a workflow description lan-
guage, service components, and a Web Services-oriented con-
struction set. Details can be found at http://java.sun.com.

4 For example, Java Community Process (JCP, http://www.jcp.org), the World
Wide Web Consortium (W3C, http://www.w3c.org), the OASIS Group (OASIS,
http://www.oasis-open.org), and the Liberty Alliance (Liberty, http://
www.projectliberty.org).

1.2 SOA Benefits in an Enterprise 19

• JBoss developed the JBoss Process Management (jBPM) sys-
tem to deliver a Business Process Execution Language
(BPEL)–like solution that adds a graphical workflow editor,
Java programming interfaces, and a task manager to handle
process wait-states. Details can be found at http://jbpm.org.

• Web Service Business Process Execution Language
(WSBPEL, http://www.oasis-open.org) is a standard from
OASIS that benefits businesses needing to implement work-
flow solutions by defining the syntax, context, and steps
needed to build workflow solutions using Web Services.5

The above list is a very small taste of the many efforts to deliver a
workflow container to software architects and developers. I have no
good news to write about these efforts. For instance, while WSBPEL
appears to be a periodically well-supported standard, it does little to
address message mediation functionalities such as transformation,
validation, and reliability. Chapters 4 and 5 will show the advantages
of message mediation in the form of SOA service acceleration.

Eventually, one of the workflow container efforts will reach a
stage of maturity where a large number of software architects and
developers get behind it. The average developer needs a workflow
container technology that includes the following:

• A task manager for long-running flows

• Clean Java integration, including easy application program-
ming interfaces (APIs) with support for plain old Java
objects (pojos) and Enterprise Java Beans

• A timer service for periodic workflows

• A message service

• A service provider interface (SPI) to any database and
application server

• Easy deployment as a stand-alone application, Web applica-
tion (WAR), or Enterprise Application Resource (EAR) file
in an application server

5 A concise view of WSBPEL is found at http://www.javaworld.com/javaworld/
jw-10-2005/jw-1031-webservices.html.

20 Chapter 1 The Problem with Service-Oriented Architecture

Additionally, a visually oriented programming environment to
develop workflows helps developer productivity but is not required
functionality. Chapter 8 describes these facets of a workflow con-
tainer in much more depth and shows an XML approach to imple-
menting a workflow container.

1.3 SOA Service Mediation

A major theme throughout this book is the need for you to adopt ser-
vice mediation and aggregation patterns in your SOA designs. The
possibilities for performance and scalability are huge. Service media-
tion also provides tremendous flexibility advantages. Chapters 4 and
5 show the FastSOA data binding patterns for SOA service accelera-
tion and the mid-tier data transformation pattern. I will give a pre-
view of these now.

1.3.1 Intermediaries and Transformation

Service interfaces are well known and understood in SOA designs.
This makes it easier in SOA designs to write service intermediaries.
A service intermediary is a proxy that adds value through caching,
routing, transformation services in the context of the request, and
response messages exchanged between the service and consumer.

For instance, SOA designs often overlook the potential for mid-
tier service caching to accelerate SOA performance. Consider that
most XML schemas in SOA designs define a time-to-live value for a
response. Caching a service response and replaying the cached
response the next time the service receives the same request is a valid
and appropriate way to accelerate SOA service performance. Chap-
ter 4 shows how to accomplish service acceleration through mid-tier
caching. Figure 1-8 illustrates a service intermediary.

Service intermediation provides many benefits to an SOA design,
including:

• Service acceleration through caching. Document schemas
normally include a time-to-live value that can be used by a
service intermediary to provide SOA caching.

• Off-line browsing of service data. Consumers may browse
the most recent documents stored in the SOA mid-tier even
if the service is not available.

1.3 SOA Service Mediation 21

• Reduced network bandwidth. Mid-tier data caching
reduces the network bandwidth needed to service each and
every round-trip request between consumer and service.

• Intelligent service discovery and routing. A service interme-
diary that understands the context of a request or response
makes intelligent service routing decisions on the fly.

• Flexibility to handle multiple and often incompatible docu-
ment schema types. A service intermediary that under-
stands two incompatible document schema types
transforms a response to the needed schema that the con-
sumer understands in the mid-tier of a service request.

• Logging and analyzing message flows. Service intermedi-
aries track message flows between consumers and services
to understand and manage the service infrastructure.
Additionally, a service intermediary provides a map of
service and consumer interdependencies to help choreo-
graph new services.

• Value-added functions without waiting in the IT develop-
ment line. Service intermediaries understand the context of
a message and can add their own value-added function to
the request. This is useful when changes to a service will not
happen within your schedule because IT is otherwise occu-
pied with other projects.

• Security policy implementation. Service intermediaries
implement security policies based on message exchanges
between consumers and services. For instance, a service
intermediary unobtrusively warns a network manager

Figure 1-8 Example of an intermediary providing mid-tier service
acceleration through caching and data transformation to resolve
incompatible document schema type, and intelligent routing of
requests from a consumer to the appropriate service.

22 Chapter 1 The Problem with Service-Oriented Architecture

when a consumer requests secure administrative direc-
tory documents.

This book shows you the patterns, designs, and techniques to
implement service mediation in your SOA.

1.3.2 Aggregators, Orchestration, and Federation

Service aggregators provide federated service requests. The aggrega-
tor builds a composite document based on the responses from one or
more services. The aggregator has a full programming environment
available to build the composite response document, and several
operations are possible. For instance, an aggregator that periodically
makes the same request to a service provides a consumer with a his-
tory of the service’s responses and shows trends underway. In
another instance, an aggregator retrieves currency exchange
responses from three services and assembles a composite document
showing the differences in currency values. Figure 1-9 illustrates an
aggregator pattern.

Aggregators are useful in workflow designs because they make it
easy to deliver reusable workflow code that implements a business
process. The services remain more general and less application specific.

1.3.3 Security

SOA creates an entirely new set of security concerns, issues, and
problems. Security controls and protection in Web and Web Services
designs protects the resources of a defined endpoint from delivering
data to a person who lacks sufficient credentials. Typically, busi-
nesses and institutions setup firewalls and use perimeter security
protocols such as SSL to defend secure data.

Figure 1-9 Service aggregators combine documents received from
multiple services to the consumer.

1.4 Can I Build SOA with My Existing Tools? 23

Most SOA implementations I have seen are designed around an
assertive security policy. A business often provides access to its SOA
applications to business partners and other organizations. In an
assertive security policy a request includes the consumer’s security
credential in the header of the request. The service (or any intermedi-
ary along the way) needs to accept the assertion that the request is
from a valid consumer.

SOA security patterns and designs require resources managed in
the SOA to be controlled as services, records, documents, and ele-
ments. SOA security is really about managing identity so that a busi-
ness defines access control policies to manage the contents of the
business architecture. Most of the SOA designs I have seen spend an
inordinate amount of time getting SOA security policies coded, since
the service resources are always changing and the business security
policies change frequently too.

In this section, we covered service mediation and aggregation pat-
terns in SOA designs. Next, we will discuss the role of data in SOA.

1.4 Can I Build SOA with My Existing Tools?

In the rush to achieve the benefits of SOA, business and organiza-
tions began bumping into the limitations of today’s SOA develop-
ment tools. Simply put:

Add XML to SOA and you get terrible performance.

The problem with SOA scalability and performance originates in
XML’s flexibility and data model. Most modern object-oriented plat-
forms—for instance, Java and .NET—reached popular adoption in
the software development community prior to XML’s popular adop-
tion. For instance, only now are efforts underway in the Java and
.NET communities to incorporate XML as a native entity. At the 2006
JavaOne conference,6 Mark Reinhold, chief engineer for Java SE at
Sun Microsystems, presented his early thoughts on adding native
XML support to Java. Separately, but more or less at the same time,
Dr. Erik Meijer, architect in the SQL Server group at Microsoft, was
working on the XML Language Integrated Query (Xlinq)7 project to

6 Sun Microsystem’s once-a-year conference for Java developers, architects, and
tools vendors.

7 http://msdn.microsoft.com/VBasic/Future/XLinq%20Overview.doc.

24 Chapter 1 The Problem with Service-Oriented Architecture

add a common set of .NET definitions and methods for working with
XML data. As a software developer, architect, or CIO, you should
expect that XML is not yet well baked into these platforms.

The Domain Model8 is a popular pattern to build Web applica-
tions and is being used by many developers to build SOA composite
applications and data services. Figure 1-10 shows the Domain Model
pattern architecture.

In the Domain Model, a Web browser makes a request to an appli-
cation server hosting a set of objects that will query the database and
respond to the user. Users operate a browser to submit requests and
a servlet dispatches the request to an Enterprise Java Bean (EJB) or
plain old Java object (pojo). The Bean or object parses the HTML
form data or the content of the URL to understand the context of the
request. A Model/View/Controller framework such as Tapestry or
Struts helps the developer by separating business logic from presen-
tation objects. The MVC controller objects use an object-relational
mapping technology such as Hibernate or Spring to store and query
needed data in a relational database. This architecture works well to

8 Chris Richardson explains the Domain Model pattern in his book POJOs in Action.

Figure 1-10 The Domain Model pattern is a popular architecture in
the Java community. It uses an application server and relational
database.

1.4 Can I Build SOA with My Existing Tools? 25

serve Web page requests, because the pattern is stable, well known,
and scalable through a variety of techniques.

The Domain Model pattern is ready to implement SOA composite
applications and data sources too. Figure 1-10 also shows a compos-
ite application servicing the needs of a business process by making a
SOAP request to the middle-tier application server. The request con-
tains XML content conforming to a schema that the SOAP service is
willing to handle. The request goes through the same servlet-based
interface. The servlet transforms the XML into an object and calls the
EJB or object passing in the request data. The EJB or object uses an
XML parser to understand the context of the request. MVC controller
objects persist those request objects in a relational database through
the object-relational mapping library.

The performance and scalability tests I conducted over the past
five years show that the Web applications built with the Domain
Model pattern deliver equivalent performance and scalability to
XML-based applications when the following criteria are met:

• The XML content always uses the same message schema.

• The XML content follows a simple message schedule. Sim-
ple messages have five or less orders of hierarchy.

• The XML content is small. Small messages are less than 5
kilobytes long.

When the above criteria are met, you may expect your existing soft-
ware development tools and operating environment to deliver
performance and scalability commensurate with the message sizes
and concurrent requests served in a Web application. However, XML’s
nature brings three issues that have an impact on SOA scalability and
performance. In the following sections we will look at these issues.
Chapters 3 and 4 cover this in more detail and present solutions.

1.4.1 There Is No Gatekeeper for XML Schemas

IT organizations are facing an explosion of XML data and schemas
as a result of three trends. XML thought-leaders such as Tim Bray,
Adam Bosworth, and Jeff Barr encourage software developers to
create their own XML message schemas whenever existing message
schema are not a close match. Second, industry associations and
organizations are authoring, experimenting with, and investigating

26 Chapter 1 The Problem with Service-Oriented Architecture

XML schemas to embody business processes and workflow. For
instance, the automotive industry organized an XML standard for
common transactions between an auto dealership and a parts manu-
facturer. Finally, many of the existing schemas are upgraded and
changed over time. Datacenters need to handle the explosion of
XML data and schemas, the emergence of new schemas, and the
schema evolution.

Experience shows a significant difference in developer productiv-
ity when using existing object-oriented tools and relational database
technology over native XML technology. Application development
tools that specialize in the Domain Model pattern deliver code-gen-
erating and deployment utility software to make it easy to go from
an XML message schema or WSDL document to deployable code.
The problem with SOA and these utilities is the one-way nature of
the utilities. When a composite application or data service needs to
interoperate with a new or updated XML schema, the utilities require
a regeneration of the code. Regeneration often means that any cus-
tomization to the previous generated code is lost.

Even with these utilities I find myself back in the code enough
times to make me wonder if there is a more efficient alternative.
Native XML technology is worthy of your investigation. For instance,
I wrote a data service to handle incoming purchase orders expressed
in an XML message. I wrote 680 lines of Java code to implement the
service. I then wrote the same data service using native XML technol-
ogy—XQuery and native XML database—in only 45 lines of code.
(Chapter 7 teaches these native XML technologies.)

Additionally, as XML message schemas change over time, the
native XML tools require fewer changes as compared with changes
in the same services written in Java. There are less lines of code to
maintain. Of course, your mileage may vary and there are functional
differences, such as transactional capabilities, that are not as mature
as those found in the Java platform.

Native XML approaches to composite applications and data ser-
vices are appealing because of the greater developer productivity—
less lines of code to write and maintain—and the easier maintenance
for schema evolution and changes.

1.4.2 Your Choice of XML Tools Impacts Performance

XML comes in a variety of sizes and forms. A software developer’s
choice of XML tools and parsers impacts the scalability and

1.4 Can I Build SOA with My Existing Tools? 27

performance of the SOA application. The topmost popular XML
parsers in the Java space are XML binding compilers such as JAXB,
streaming XML parsers such as StAX, and DOM tree parsers such as
Xerces. Table 1-2 illustrates each parser’s strengths and weaknesses.

Native XML technology usually accounts for these XML sizes and
forms. For instance, many XQuery implementations are built on
streaming data processing engines. Many native XML databases pro-
vide indexes that are specially designed to handle the multidimen-
sional queries through XML document collections for fast query
speed. Chapter 4 describes XML parser performance and scalability
issues in more detail.

1.4.3 Criteria for Applying Database Technology for SOA

While there is no SOA standard to recommend using XML, most
SOA applications I see move XML documents from service to ser-
vice. XML is already widely used to express documents, document
formats, interoperability standards, and service orchestrations. There
are even arguments put forward in the software development com-
munity to represent service governance in XML form and operated
upon with XML query methods.9

Table 1-2 Contrasting XML Parsers

Technology Plus Minus

XML Binding Compiler
(JAXB)

Efficiently handles large
and complex XML data
by providing
namespace-aware
named elements so your
application can jump
right to the needed part
of an XML tree.

Requires recompile of
binding each time XML
schema changes. No sup-
port for multiple schemas
or schema evolution.

Streaming XML Parser
(StAX)

Excellent performance
for large XML docu-
ments by providing
ability to skip unwanted
elements.

Performance degrades
with complex XML docu-
ments and large (>5
megabytes) messages.

Document Object
Model (DOM, Xerces)

Acceptable performance
when application needs
to access/update most
elements in an XML
document.

Requires memory to load
entire XML document
into memory. Requires
the most amount of cod-
ing.

28 Chapter 1 The Problem with Service-Oriented Architecture

As the world moves to become an XML environment, I am often
asked to define criteria for when it makes sense to use native XML
tools. The following are common questions about using relational
databases in SOA environments.

• How difficult is it to get XML data into a relational data-
base?

• How difficult is it to get relational data to a service or object
that needs XML data?

• Can my database retrieve the XML data with lossless fidel-
ity to the original XML data?

• Will my database deliver acceptable performance and scal-
ability for operations on XML data stored in the database?

• Which database operations (queries, changes, complex
joins) are most costly in terms of performance and required
resources (CPUs, network, memory, storage)?

Here are criteria for applying relational and native XML database
technology for SOA and XML data needs.

Criterion 1: Relational data needs to be presented in XML form

Data is already stored in a relational database and needs to be pre-
sented in XML form. For instance, a SOAP-enabled inventory man-
agement system that is built on a relational database needs to
retrieve orders and present order information as an XML document.

Software developers and architects should investigate the follow-
ing approaches to presenting relational data in XML form.

• XML formatting operators. Most relational databases now
offer extensions to provide XML creation operators. For
instance, the FOR XML (explicit) SQL extension introduced
in Microsoft SQLServer 2000 allows the output of a SQL
select statement to output XML data. While the FOR XML
syntax is not the user-friendliest way to deal with the prob-
lem, it is a pragmatic one that works well for software
developers familiar with SQL. FOR XML is typical of the
XML output extensions for SQL in that it is expensive in

9 See http://radovanjanecek.net/blog/archives/000282.html.

1.4 Can I Build SOA with My Existing Tools? 29

terms of development time and during maintenance when
coping with changes. Michael Rys, Microsoft’s programmer
manager for this type of technology, refers to it as the query
from hell.10 The SQLServer 2005 extensions make develop-
ing these types of applications a lot simpler, and although I
can complain that these are proprietary and nonstandard,
Microsoft customers seem to appreciate this a lot.

• Mid-tier data mapping technology. A quick search on Goo-
gle for “mid-tier data mapping” shows products to create
transformation engines that query a relational database
through SQL and output XML data. These tools do not
require changes to your existing database and provide eas-
ier maintenance as your need for various XML schemas
change. Given that these mapping technologies know how
to access your relational data and the XML schema you
need in the output, I highly recommend you also consider
using the mapping technology as a mid-tier persistence
engine to cache views of the data and for service accelera-
tion. Chapter 5 discusses this in depth.

• n-Tier transformation. Write a Java application that uses a
JDBC driver to query relational data and an object-XML
mapping library such as JAXB or XMLBeans to output XML
data. The advantage to this approach is the huge number of
software developers available with skills and experience to
write and maintain this code. The downside comes from the
loss of flexibility. Each time your XML schema needs
change, your engineers will be back into the code.

• Native XML technology. Many XQuery engines now come
with extensions that allow them to query a relational data-
base through a JDBC or ODBC driver and output XML
data. This approach is fast, easy, and efficient for the soft-
ware developer. On the downside, introducing native
XML technology is one more thing to be maintained in
your datacenter.

The problem I have with SQL and XML is that all of the really
good and cool stuff is found in individual implementations. I would
love to have the XML creation functions in Microsoft SQLServer
2005 and the O/R XML field type in Oracle 10g. Unfortunately, nei-

10 http://sqljunkies.com/weblog/mrys/archive/2004/01/27/869.aspx.

30 Chapter 1 The Problem with Service-Oriented Architecture

ther product fully implements all of the other’s XML handling fea-
tures in its SQL database. I want pristine ANSI SQL code that does
not use proprietary procedures and XML-centric syntax. Native
XML technology seems to be a good place to continue hunting for a
good solution.

Criterion 2: XML data needs to be stored in a relational database

Much water has passed beneath the relational database XML capabil-
ities bridge. Here is a sampling of the XML datatypes available in
most common relational databases.

• CLOB. Store XML in character large object (CLOB) fields
(also in VARCHAR2 fields.) CLOB fields allow easy inserts
that perform fairly well depending on the size of the XML
data being inserted. CLOB query performance is problem-
atic, as the CLOB field types offer little help to the database
engine and optimizer to deliver acceptable query
performance for XML data.

• XML CLOB. Store XML in an XML CLOB datatype field.
This is a specialized form of CLOB in which the database
reads and stores as is the entire XML document in a CLOB
object in the database. The XML CLOB datatype stores
everything about the XML document verbatim, including
the white space, processing instructions, and prolog.
Depending on the implementation, the XML CLOB
datatype offers functions for XPath querying capability,
schema validation, XSL transformations, and often full text–
style searching capabilities. Writing SQL commands to
insert and query XML data requires specialized nonstand-
ard XML commands, but these are not overly difficult to
learn for the average software developer.

• Object-Relational XML Type. Store XML in an object-rela-
tional XML store. Unlike the verbatim storage technique of
the CLOB datatype, object-relational storage breaks the
XML document down into scalar values for storage in
object attributes in a set of object-relational tables. As XML
data is inserted into an object-relational datatype, the data-
base shreds elements—that is, breaks them down into
native object datatypes—in the XML data into objects and
stores them in the table. The database reconstitutes the
stored objects into XML data during query operations. The

1.4 Can I Build SOA with My Existing Tools? 31

object-relational XML datatype requires an XML schema to
create the tables. The database uses the schema to create
tables and master-detail relationship indexes to store the
scalar values in the XML data. Once created, only XML data
conforming to the schema may be stored.

Finally, consider a mid-tier data service built with native XML
technology as an alternative to using relational XML datatypes. In
the mid-tier a service receives the XML data, breaks it down into
relational datatypes, and stores the data in relational tables. The
XQuery needed to do this may then optimize the storage techniques,
index techniques, and data loading techniques specifically for your
data and database. This technique also takes into account differences
in XML support that vary by relational database vendor and version
of the database.

Criterion 3: XML data needs to be stored in a relational database with
lossless fidelity to the original XML data

Many mandates to use XML schemas include requirements to pro-
vide the original XML data at some future point. For instance,
energy companies use Energy Trading Standards Group (ETSG)
XML documents to trade energy between producers. Australia man-
dates the ETSG documents be available to auditors in the original
XML format.11

Relational database CLOB datatypes guarantee the order of char-
acters in an XML document. The downside of CLOB is in poor query
performance. Use caution with XML CLOB datatype, because certain
relational database implementations do not follow hierarchical prin-
ciples. Pay special attention to make certain the underlying persis-
tence engine will guarantee that the result will be hierarchically
accurate and canonically correct.

Native XML technology is a viable strategy to supplement rela-
tional database storage. The relational database holds the metadata
for queries and the native XML database holds the original XML data
for retrieval.

11 http://xml.coverpages.org/etsg.html.

32 Chapter 1 The Problem with Service-Oriented Architecture

Criterion 4: Need to do ad hoc queries and complex joins on relational and
XML data stored in a relational database

Relational databases have a rich history of tools to provide ad hoc
queries and complex joins. Many tools, both commercial and open-
source, exist to query databases and provide mapping to object and
XML datatypes. These are applicable to SOA environments for rela-
tional data. These tools typically do not allow the same rich features
when querying XML data stored in a relational database, because the
XML data model is too different for them.

The XQuery language supports iterators and other modern lan-
guage constructs as part of the XQuery language standard specifica-
tion. These constructs are necessary for complex joins, queries that go
beyond a few levels of hierarchy, and inserting records that conform
to multiple schemas. The same constructs are available in the SQL
procedural languages delivered by the database vendors, but they
are each different, not part of a standard, and offer a wide variation
of performance and scalability.

Criterion 5: Need to move XML documents between services, even if the
data eventually ends up in a relational database

Many SOA designs move relational data between services using
XML. Usually, the relational database is the final destination along
the stack of protocols and software components within an n-Tier
SOA design. Once relational data is in XML form, using native XML
technology is a scalable and maintainable way to move XML docu-
ments between services. There is no reason to think of native XML
technology as an either-or proposition. For instance, some relational
databases provide XQuery as an alternative to SQL. As you will learn
in this book, many times the results of combining native XML tech-
nology with relational technology leads to better developer produc-
tivity and scalability and performance.

1.4.4 Flexibility or Performance

In SOA, environment relational database tools often require develop-
ers to make a painful choice between flexibility and performance.
Some XML handling datatypes provide flexibility to support multi-
ple schemas with good insert performance, while others provide no
support for multiple schemas and provide good query performance.

For instance, tests I ran to compare insert speeds with a popular
commercial database show the CLOB insert is 22 times faster than

1.4 Can I Build SOA with My Existing Tools? 33

the XML CLOB. The difference in insert performance comes from
XML CLOB’s need to validate the XML data to be well formed.
Developers building SOA composite applications and data services
usually do not have the option of choosing the CLOB datatype
because they need the XML query functions (XPath, transformations,
searching) of XML CLOB to achieve satisfactory performance.

Insert operations using object-relational XML datatypes are slow
as well. For instance, insert performance on a commercial relational
database shows the CLOB datatype to be 11.7 times faster than the
object-relational XML datatype. The difference comes from the check
for well-formed XML data, parsing the document into local object
types, and loading the values into object-relational tables. Of course,
insert performance is not the entire story.

Object-relational XML datatype data access has an architectural
advantage over XML CLOB datatype for better query performance.
Query against an XML CLOB datatype and the database must read
entire documents into memory, render them in a document object
model (DOM), traverse the DOM to find the values, and build a
result set. Object-relational XML datatype queries are transformed
into path operations that access individual rows of the object tables
and read only the necessary field values.

Chapters 3 and 4 show how combining native XML technology,
XQuery, and native XML databases is an alternative that avoids the
above two problems by adhering to standards efforts and providing
scalable and well-performing solutions.

1.4.5 While You Can, You May Not Want To

The issues of managing through the XML schema explosion, the per-
formance impact of XML parsing tools, and choice of flexibility ver-
sus performance make it possible to build SOA composite
applications and data services using today’s popular tools. But you
might not want to! Our goal as software developers, architects, and
CIOs should be to choose a good set of SOA tools to deliver good
scalability and performance for a wide range of SOA applications
and data services. Chapters 4 and 5 expand on these problems and
propose the use of native XML technology as a solution.

Two problems emerge from using your existing relational data-
base to build SOA applications:

34 Chapter 1 The Problem with Service-Oriented Architecture

1. None of the relational choices offers good performance in
an SOA world filled with XML schemas that are constantly
changing. For instance, even as your application benefits
from good query performance in object-relational XML
datatypes, when your XML schema changes over time, you
will need to rework your application.

2. All of these choices require you to lock your application into
a set of nonstandard functions.

It may seem from the previous section that SOA focuses on ser-
vice interfaces and messaging. While it can be easy to focus on the
technology, the real business value that comes from adopting SOA is
in the information and knowledge the services deliver. We will dis-
cuss that next.

1.5 Data in the Service-Oriented Architecture

“Value is in the knowledge services convey, not in the method it
takes to convey the message,” Adam Bosworth of Google told a
group of software developers at the Software Development Forum.12

Chapter 2 shows what Bosworth and other software development
thought-leaders are telling the software development community
about SOA.

Bosworth’s issue is reflected in industry and institutional empha-
sis on document definitions (schema) and workflow message
exchange patterns. Many enterprises I have worked with began their
SOA efforts by forming industry associations to define the document
schemas they have in common.

For instance, the automotive industry used the Universal Business
Language (UBL) to define a standard document schema for transac-
tions between auto dealers and manufacturers called Business Object
Documents (BOD).13 UBL defines a common XML schema business
documents for things such as purchase orders and invoices that are
common to all businesses in an industry. General Motors (GM) uses
Electronic Business using Extensible Markup Language (ebXML) to
process BOD-formatted documents.14 A dealership’s parts depart-
ment sends a GetPurchaseOrder BOD-formatted document to the

12 http://www.sdforum.org.
13 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl.
14 http://www.ebxml.org.

1.5 Data in the Service-Oriented Architecture 35

GM parts distributor. The distributor sends an Acknowledgement
BOD-formatted document in response and the Acknowledgement
document contains the completed purchase order for the parts.

While the automotive industry has BODs and other document
schemas, other industries have formed standards bodies to work out
common document schemas for their industries. For instance, the
U.S. healthcare industry has the Health Level 7 (HL7) standard for
patient healthcare records,15 and the supply-chain industry has the
EPCGlobal standards group, which defined the Electronic Product
Code (EPC) to support use of the Radio Frequency Identification
(RFID) standard.16 Finally, the U.S. Defense Information Systems
Agency17 (DISA) created the Net-Centric Enterprise Services (NCES)
program to provide enterprise services in support of the Global
Information Grid (GIG), the U.S. military version of the Internet.18

NCES is a document-oriented SOA that uses XML schemas.

The great thing about these efforts to define document schemas is
the impact they are having on software architects and developers.
Enterprises and institutions are mandating document schemas and
SOA. For instance, Wal-Mart met with its top 100 vendors in 2003 to
tell them its plans to begin using RFID tags to track supplier ship-
ments. The plan called for all pallets from its vendors to be
equipped with RFID tags by 2005 and a year later to be able to track
even cases of products received on the pallets. Wal-Mart gave its
vendors a mandate to make it happen. Considering its size—Wal-
Mart controls 17 percent of the worldwide retail market and receives
more than 5 billion cases and pallets each year—the vendors took
the mandate seriously.

Consider what a SOA for Wal-Mart must do to deliver business
value. Each RFID tag emits an Electronic Product Code (EPC) con-
taining a long number. RFID is by design an XML-oriented technol-
ogy. Each EPC scan moving through the warehouse is an XML
document, which needs to be stored, managed, and queried. Storing
all that XML data using traditional relational data management solu-
tions will not provide the SOA flexibility that Wal-Mart needs to
understand its product trends and manage its supply chain. The
scale is just too big.

15 http://www.hl7.org.
16 http://www.epcglobalinc.org.
17 http://www.disa.mil.
18 http://www.disa.mil/main/prodsol/cs_nces.html.

36 Chapter 1 The Problem with Service-Oriented Architecture

The Wal-Mart mandate made many software architects and devel-
opers wonder, “What is the role of data in an information system?”

In the pre-SOA world data was something to be siloed away into
a database. It rarely moved, was often queried, and sometimes cop-
ied (or synchronized or replicated) to another silo. When new
applications of the siloed data were needed, entire subindustries
sprung up, such as data warehousing. Database architecture pat-
terns are good at storing data, but they miss the value of having
data available.

Many software architects and developers came to the conclusion
that these document definitions are where the rubber meets the road
in terms of SOA performance, scalability, reliability, and overall ben-
efit. For instance, the GM-created BODs can represent an order for a
windshield wiper that results in a BOD-formatted document that
takes approximately 8,000 bytes of data with 800 elements, or an
order for a GM Suburban truck that takes approximately 10,000,000
bytes of data with 9,000 elements. With this kind of variety in the size
and complexity of documents, a new approach to data persistence is
necessary to make data available within a SOA context.

As you will see in Chapters 3 and 4, the tools that previously cre-
ated Web Services and remote procedure call (RPC) services are ill
designed to work with document-oriented architectures such as
SOA. The result is systems that are hard to build, slow to perform
transactions, and offer performance that gets worse with increased
use.

At a minimum I recommend you consider the following design
guidelines that relate to data in SOA.

1. All data in SOA is a resource. Data is not tightly coupled to
any specific application in an SOA. Instead, composite
applications operate on data from one or more data services
to deliver knowledge to a consumer.

2. All resources need to have a unique address within the SOA.

3. Data should be locally available but stored in a way that is
globally accessible.

4. Data in an SOA is useful over the lifetime of the data, so the
data’s address needs to be consistent over time. In SOA
there should be no “Where’s my hat? Didn’t I just put it
down there?” scenarios.

1.6 The Dark Side of SOA 37

5. The data from a service should be self-describing. The ulti-
mate achievement would be a situation where a developer
from another team or business began using the data in his
or her application without having to go back to a manual or
the original software developers. It should be apparent
what the data is and how to use it.

6. Metadata (data about the data) should explain the structure
of the data. Metadata needs to be published in a machine-
readable form and be available through message exchange
protocols.

7. Metadata should be created in a machine-readable form to
facilitate automated transformation of data to resolve
incompatible datatypes in service interfaces. You should
expect that at some point an automated software “robot” or
search engine spider will try to understand the semantic
knowledge of your data.

8. Where industry standard document definitions (schemas)
exist, your data should be returned in a standard schema.
The whole goal here is to make it easier for the soft devel-
oper to rapidly develop interoperable systems.

9. Data definitions should support caching. For instance, a
schema for frequently retrieved data should include a time-
to-live value to assist mid-tier service caches in avoiding
unnecessary requests and network bandwidth usage.

Next, we will evaluate the downsides of using SOA, and then we
will end the chapter with a map of the rest of the book.

1.6 The Dark Side of SOA

SOA has significant advantages, but there are several problems that
you should consider as well. The following is a list of SOA issues that
keep me up at night.

1. Availability. (Note that I did not write High Availability,
which is something else.) A service earns its keep by deliv-
ering good service. Good service is rated by the consumer
and typically includes questions such as: Was the service
available when I made a request? Did the service answer

38 Chapter 1 The Problem with Service-Oriented Architecture

the request with a valid response? Was the data returned
from a service accurate? The right answers to these ques-
tions determine the service value to a business. Availability
means being reliable and trustworthy.

2. State. The method to persist data behind a service interface
may introduce sessions and transactions. Any time your
SOA application needs to maintain the state of a service,
you are guaranteed to face performance and scalability
problems in the future.

3. Versions. Service interfaces and document definitions
change over time. Each change should be controlled
through a change management system. For instance, a reg-
istry, repository, or concurrent versioning system (CVS)
keeps track of service versions and provides software archi-
tects and developers with programmatic interfaces for
access by other applications and services.

4. Performance Testing. Service interfaces are a great place to
incorporate performance instrumentation in an SOA appli-
cation. Most SOA applications I have worked with use a
stack of services that call each other in a serial fashion. This
is an ideal architecture for a service to be instrumented to
allow a service management tool to gather statistics on
requests and responses.

5. Graininess. Composite applications and data services need
to reach a careful balance between offering too many broad
functions and being too narrow. Services need to offer func-
tions somewhere in the middle.

6. Localization. Document definitions are often not precise.
For instance, the order that comes into a service using U.S.
dollars but thinks the order is in Australian dollars incurs a
huge liability.

7. Logging. Debugging multithreaded, highly concurrent net-
works of services is made possible with logging debuggers,
easily available transaction logs, and an easy method to
query logged data. Without these, the software developer’s
life is a nightmare.

8. Remote Management Interfaces. These allow services to be
queried remotely to determine their current operational
state and controlled remotely to change their operating
parameters.

1.8 Summary 39

1.7 The SOA Checklist

While the previous section may keep me up at night, the following
list may help you know where things stand. Here is a checklist to
understand the quality of a software architect’s SOA design.

1. Is there a document that I may read (or that a program I
write may find) to learn the location of a service, the types
of input the service will take, the type of data the service
will return, and the exceptions the service may throw in
case of problems?

2. Do you know the group, or even better, an individual per-
son who will respond to a phone call or email message
when the service fails?

3. Is the data I send to the service in a format that is easy for
me to write a program to manipulate?

4. Do I understand the semantic meaning of a service’s func-
tion? Understanding the service interface is a good thing,
and understanding the meaning of the service’s function is
much better.

5. Does the service use security and session data in a form that
I can create and manipulate with my programming lan-
guage?

6. Does the service require another service?

7. Is the service synchronous or asynchronous?

If I were ever to offer an SOA certification program, then you would
need to answer the above questions to pass. So how did you do?

1.8 Summary

This chapter defines the viewpoint I have on SOA: While SOA is a
wonderful design, SOA has issues. The wonderful part of SOA is its
ability to pull together adopted and well-understood protocols, soft-
ware development coding techniques, and a governance model.
These lead to common use of SOA message patterns to exchange
standards-based business documents in a business process. The
problematic issues in SOA are driven by the gap between manage-
ment’s buy-in to SOA and the ability of software architects and

40 Chapter 1 The Problem with Service-Oriented Architecture

developers to deliver production-worthy software code that achieves
user satisfaction.

This book introduces SOA from a performance and scalability
perspective, because that is my background. The next chapters take
on the reasons why today’s SOA tools fail to deliver production-
worthy code and what you can do about it.

• Chapter 2 looks at the explosion of XML schemas and their
impact on performance, compatibility, and flexibility.

• Chapter 3 shows the most common SOA messaging pat-
terns.

• Chapter 4 explains the problems I encountered that drove
me to need the FastSOA architecture.

• Chapter 5 explains the FastSOA architecture and the XML-
centric tools needed to build it.

• Chapter 6 shows my testing methodology (with real-world
examples fully implemented) to understand SOA scalability
and performance.

• Chapter 7 makes the case for using XML, XML Query
(XQuery,) and native XML database technology to build
well-performing and flexible SOA.

• Chapter 8 shows the tools and techniques your business
needs to evaluate to be ready for SOA.

41

Chapter

2
Managing the XML Explosion

Although there is no SOA standard to recommend using XML, most
software developers, architects, and CIOs I meet believe SOA means
XML. SOA applications I see and test use XML to define service
interfaces, messages, documents, and service management (often
also called governance). Software architects and developers of all
kinds are in love with XML. From a CIO’s perspective, the world is
experiencing an explosion of XML that needs to be governed. In this
chapter, I show what drives the software developer community’s
excitement behind XML, and I make the case that XML is a good
thing for SOA designs. I then demonstrate the problems XML intro-
duces for performance, scalability, and developer productivity. This
will prepare you for the SOA performance testing methodology I
present in Chapters 3 and 4.

2.1 A Love Affair with XML

Most software developers know what it is like to write a program
that reads unstructured and undocumented application data from a
file, not really knowing the file format, and finding mistakes in the
file contents. They also remember having to keep a bunch of relations
between several database tables in their head. Wherever a name/
value pair in a properties file seems too complicated and a relational

42 Chapter 2 Managing the XML Explosion

database seems to be overkill, there is XML. Wherever a data
description language is cumbersome to learn and use, there is XML.
Whenever applications, servers, and services need to provide easy
programmatic interfaces, there is XML. Ah, XML. How I love thee!

Software developers’ love affair with XML is only a few years old,
but it has already had a large impact on the software development
community. Developers rapidly embraced XML and found exciting
new applications for it, including XML file formats, XML-based mes-
sage-oriented middleware (MOM) for business process integration,
remote procedure calls (RPC), service asset management, Web site
content syndication (RSS), and even podcasts. XML is a language for
defining languages. Figure 2-1 gives a rough epidemiology of XML-
related technologies.

When XML appeared on the scene in the late 1990s, software
developers liked what they saw: a simple way to write self-describ-
ing structured data. They looked for a way to use it. The earliest use
was to describe the contents of a file. For instance, today XML is used
to store application configuration and preferences settings such as
the Apache Web server configuration files. At the time, the alterna-
tive was to use a flat file key/value database, such as the Microsoft
Windows Registry, to use a text-based properties file of name/value
pairs, or to use a proprietary directory service technology. XML is
easy, quick, and self-describing. XML is a winner.

A second early use for XML was to facilitate making remote pro-
cedure calls (RPC) between applications. Various attempts to make
this happen were put into use, including Dave Winer’s attempt to
build a standard for XML RPC. Developers gave widespread atten-
tion to XML RPC when IBM, Microsoft, Sun, BEA, and others came
together around the Simple Object Access Protocol (SOAP). Develop-
ers are still experimenting with the best way to use XML to make a
remote procedure call. Current experiments include the Representa-
tional State Transfer (REST)1 and Asynchronous Java and XML
(AJAX)2 efforts. REST is an XML-based messaging protocol for appli-
cation-to-application communication that uses short stateless RPC-
style messages to incrementally share knowledge between applica-
tions. AJAX is a technique to make browser-based user interfaces
much more interactive without requiring the typical submit/post/

1 See http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html for details.
2 See http://www.adaptivepath.com/publications/essays/archives/000385.php

for details.

2.1 A Love Affair with XML 43

redraw round-trip of an HTML interface. AJAX uses XML messages
over HTTP protocols.

Enterprise-level service interfaces require security, reliable mes-
saging, service descriptions, and data interoperability. Developers
solved these problems by delivering code implementations and
written specifications through the standards bodies (OASIS, W3C,
and others).

Eventually, developers began pushing back on these standards
because, taken together, they appear complex, even though the indi-
vidual parts, such as SOAP, are simple. Developers came to agree-
ment on a subset of all the RPC services under the Web Services
Interoperability (WS-I) standards body.3

Figure 2-1 In its first few years, XML excited software architects
and developers and rapidly delivered several successive XML-based
technologies.

3 See http://www.ws-i.org for details.

44 Chapter 2 Managing the XML Explosion

This subset consists of the WS-I profiles and the Universal Busi-
ness Language (UBL) standard,4 which allows any industry or group
to define the XML schema to be used in an RPC call.

Software architects and developers began to see the advantage of
taking a document-centric view of service development in the early
2000s. (I describe the scalability advantages of document-centric sys-
tems in Chapter 1.) The resulting architecture uses a set of commonly
understood services to exchange and operate on documents that
share a commonly agreed-to definition. Taken as a whole, these pat-
terns and techniques are the foundations of SOA.

A critical mass of services, with each delivering data through
XML-based service interfaces, enables software developers to build
composite applications to deliver business processes. At the object
level of a composite application an Enterprise Service Bus (ESB) facil-
itates orchestrations of services, communication between objects, and
service deployment functions.

Composite application development methods also identify the
state and transitions a document goes through as each supplemen-
tary service is called while processing an overall business process.
For instance, in a bank finance company, a loan processing applica-
tion requests a credit report for a loan applicant and then requests a
manager’s approval before approving the loan. The credit report and
manager approval is received by making service calls to the credit
reporting service and the manager’s approval service. All of this hap-
pens in a set of XML-based messages between a set of services.

XML is even used to model business workflows. The Business
Process Execution Language (BPEL)5 and many other competing for-
mats for gluing federated groups of Web Services together yield the
possibility of new economies, new markets, and greater efficiency.
Figure 2-2 illustrates the orchestration of the loan processing work-
flow and how BPEL notates the states of the workflow in XML form.

In this case BPEL uses XML as a procedural scripting language
notation. A BPEL rules engine uses the XML to step through a
workflow.

4 See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl for
details.

5 http://searchwebservices.techtarget.com/originalContent/
0,289142,sid26_gci880731,00.html.

2.2 XML Impact on Data 45

While the developer community has been energetically applying
XML to a variety of problems, XML’s impact on data itself is extraor-
dinary. We will look at this in the next section.

2.2 XML Impact on Data

XML makes a profound impact on data, data models, and data stor-
age. Much of the 1980s and 1990s were taken up by relational data-
base experts convincing the world that everything should be stored
in a table made up of a set number of fields and rows with the SQL
language relating the data into usable knowledge. Experts such as E.
F. Codd6 and C. J. Date7 proved to me and others that any relation-
ship could be written in a SQL statement. I wrote a relational data-
base back in 1988 with a SQL implementation.8 The experience
showed me SQL’s richness and power. Many times I would marvel at
the queries users would send me.

It did not take long to realize that while I was sufficient at imple-
menting a SQL engine, I was pretty bad at writing SQL queries. As

Figure 2-2 A business workflow for a loan approval service and the
simplified BPEL XML representation of the workflow.

6 http://www.informatik.uni-trier.de/~ley/db/about/codd.html.
7 http://portal.acm.org/citation.cfm?id=811532.
8 RegentBase was the first SQL database for 68000-based systems, including the

Atari ST and Macintosh.

46 Chapter 2 Managing the XML Explosion

a software developer, I yearned for flexibility, ease of use, power,
and performance.

Databases are a combination of a data model and an access lan-
guage. This holds true for relational and native XML databases. Rela-
tional databases are a combination of tables composed of rows made
up of fields and the SQL language. XML databases are a combination
of collections of XML documents and the XML Query (XQuery) lan-
guage. For instance, I model a database to describe my friends and
family in a relational database using a table to hold entries for my
family members and a table to hold entries for my friends. A SQL
query joins the tables to show me a complete view of my family and
friends. (See Figure 2.3.)

When I repeat the above example using an XML approach, I use
a single XML document with two nodes. One node stores my fam-
ily members and a second stores my friends. The following XML
document shows the relationship between my family, my friends,
and myself.

<father name="Frank">

 <family_members>

 <spouse>Lorette</spouse>

 <daughter>Madeline</daughter>

 <son>Jack</son>

 </family_members>

 <friends>

 <friend>Carol</friend>

 <friend>Sean</friend>

 <friend>Nichollaaa</friend>

 <friend>Sadie</friend>

 </friends>

</father>

Figure 2-3 A relational approach to the friends and family example.

2.2 XML Impact on Data 47

I prefer the XML data model approach for two reasons:

• I understand the data in the XML document without need-
ing to run a query. It is apparent to me from the document
that I am the father and have relationships with my family
members and friends.

• XML is ready for change. For instance, I hope that eventually
my son will find the same joy I found by getting married. If
that happens, then I can add a new category to the
<family_members> element for <son> to include his
<family_members> with little effort and almost no refactoring.

I also prefer the XQuery language to the SQL language. XQuery
supports iterators and other modern language constructs as part of
the XQuery language standard specification. These constructs are
necessary for complex joins, queries that go beyond a few levels of
hierarchy, and inserting records that conform to multiple schema. The
same constructs are available in the SQL procedural languages deliv-
ered by the database vendors, but they are each different, not part of a
standard, and offer a wide variation of performance and scalability.

To many software developers, the XML data model appears to be
a more common-sense way of storing the contents of documents,
forms, and data. Many new XML document-oriented architectures
are about to emerge. Consider the following scenarios, where the
XML data model may benefit your efforts.

• Complex Data-Interchange Schemas. Many industries have
formed alliances and standards bodies to create and adopt
XML document interchange between applications and ser-
vices using complex industry-specific schema. For instance,
in the automotive industry, the STAR BOD schema and in
the healthcare industry the HL7 schema are examples of
complex XML schema. I prefer using native XML tools to
work with complex schemas because the effort, measured in
lines of code, is less, and the resulting code performs faster
when compared with object and relational database
approaches. Chapter 4 shows the performance advantage,
and Chapter 7 shows the developer productivity advantage.

• New Kinds of Dynamic Documents. Microsoft Office is
one of the world’s greatest producers of documents. Post-

48 Chapter 2 Managing the XML Explosion

2006 versions of Office will use an XML file format.
Microsoft touts a glorious future in which Office documents
include XML references to dynamic data. For instance, a
market economics report includes a view of home interest
rates for the past two years. The XML document contents
tell the browsing application where to find the most recent
interest rates.

• Data Fidelity. Several government bodies in the United
States now mandate support for an ePedigree on medicines.
An ePedigree benefits businesses by providing important
data for customer knowledge and recall management. The
pedigree of a drug shows who has held a medicine as it
moves through the set of distributors from manufacturer to
customer. Maintaining the XML data in its original form as
the medicine moves from place to place through a variety of
supplier systems is often required. Native XML storage
delivers coding and flexibility advantages for storing the
pedigree in its native XML form.

These scenarios show ways the XML data model benefits enter-
prises, organizations, and institutions. Next, I show how the XML
data model benefits efforts to deliver Master Data Management.

2.2.1 Master Data Management and XML

From my experiences working with large enterprises and groups of
developers, I find that most large enterprises have silos of data. It is
pretty common to find different systems holding duplicate data with
different formats, owners, uses, and values. As a result, the enter-
prise operates as a group of discrete businesses. In these scenarios I
advocate for the customer. If an enterprise cannot view all of the data
for each customer in a single view, then customers may find the busi-
ness difficult to do business with. Even worse, the enterprise may
miss significant opportunities, such as taking advantage of global
supplier discounts, providing appropriate discounts to its largest
customers, maximizing profitability within a product group, or mak-
ing good management decisions with fresh and complete data. Mas-
ter Data Management (MDM) resolves these issues by leaving
existing applications, data stores, databases, and integration technol-
ogies (EII, EAI, and ESB) in place and superimposing an infrastruc-
ture for common enterprise data.

2.2 XML Impact on Data 49

MDM benefits an enterprise by governing core data, which is
used to update all other data stores in the enterprise. MDM may
have a centralized architecture where all master data is centrally
stored and all other data stores are updated from this central data
store. Alternatively, MDM may have a federated architecture, where
master data is stored and updated from different legacy systems but
managed and coordinated by MDM. In this case, master data could
reside in multiple instances of the ERP system and other master data
could reside in a central CRM system.

MDM handles data in “real time” and synchronizes changes
across data stores. MDM enables enterprise managers to make deci-
sions quickly, because all key data across the enterprise is viewed as
one database—either a virtual database through federation or a cen-
tral database through aggregation or some combination of the two.
Figure 2-4 illustrates XML data services in an MDM design.

MDM solutions benefit greatly from the XML data model’s flexi-
bility. For instance, many enterprise information managers and
architects I meet see defining the initial data interrelationships as the
most significant challenge to being successful with MDM solutions.
The very nature of data models in SOA tells me that the more signifi-

Figure 2-4 Master Data Management (MDM) manages core data
and updates enterprise data through ESB, EAI, and EII tools.

50 Chapter 2 Managing the XML Explosion

cant challenge to MDM success is in the effort to maintain the data
inter-relationships over time as the data values and relationships
change from new and changing business requirements. For example,
consider what happens when an enterprise data model needs to
change. Figure 2-5 illustrates changing an existing data model to add
a new address field for customer vacation home addresses.

In this example, the existing database has three tables: customer,
orders, and credit history. The customer table currently stores one
address. The company needs to store a second address for customers
and possibly more addresses: home address, ship-to address, bill-to
address, and summer vacation home address. To accomplish this
change the database administrator changes the schema by adding a
new table to hold addresses.

The database administrator uses an ETL transformation to add
the new table to an existing database. The ETL transformation
moves the database contents to the second staging database, creates
a new table to hold the new address fields, changes the SQL code to
establish the relationship between the existing schema and the new
table, and simulates and quality tests the impact to systems access-
ing the new schema. The final step is to move the database from the
second staging database system into the master database. I have
spent more than one sleepless night waiting for this ETL transfor-
mation to complete.

Figure 2-5 A complex multistep process to add new fields to an
existing relational database using ETL and MDM techniques.

2.3 XML and the Nature of Software Developers 51

Compare the above example to an MDM system that uses an XML
data model. Figure 2-6 illustrates the relative ease to add a new node
to an existing database.

Using an XML data model, the database administer adds the new
addresses by inserting new address nodes to the MDM database. The
existing query scripts, written in XQuery, need no major changes to
support storing the new addresses.

While developers love XML for its flexibility, you should be
aware of the explosion in XML schemas, the driving forces behind
the explosion, and what it means to your SOA efforts in terms of
performance and scalability.

2.3 XML and the Nature of Software Developers

While it may seem like XML is leading the IT industry toward stan-
dardization, uniformity, and predictability, XML is really more sub-
versive than that. XML encourages freedom. So while the IT industry
moved toward creating standard uses of XML in Web Services, most
software developers invented their own XML-based remote proce-
dure call mechanisms because doing so was easy and simple. There
is no gatekeeper to how XML may be used, only a convention on
how XML describes data.

Web Services were borne from the belief that developers would
use XML to build services that dynamically find other services to

Figure 2-6 XML data models are ready for change, including
changing the database schema without needing the downtime and
hardware.

52 Chapter 2 Managing the XML Explosion

provide fine-grained information needed to solve a problem .9 The
Universal Description, Discovery, and Integration (UDDI) protocol
from the OASIS standards body is an XML-based registry of avail-
able services categorized by taxonomies specific to an industry.
UDDI is combined with the Web Service Description Language
(WSDL) XML definition of how to interface with the service and the
Simple Object Access Protocol (SOAP) to send requests and receive
responses from dynamically bound services. Unfortunately, the Web
Services vision has not yet been realized.

At the end of the day, the taxonomy experts never showed up for
the party. Even a system like a public library’s use of the Dewey Dec-
imal system for categorizing books is not available through a UDDI
registry. Without the taxonomy to describe the semantic knowledge
available from a service, software developers need to figure out the
meaning of each service for themselves.

Web Services ran aground trying to live up to its original vision of
dynamic, self-discoverable, fine-grained services while still satisfy-
ing the nature of software development. Consider my theory of the
nature of software development in the following axioms.

1. There is no single best practice to software architecture and
development methods, tools, and techniques. Instead, there
is an ever-changing set of best practices.

2. Software architects and developers constantly crave some-
thing new, even if it duplicates existing technology.

3. New inventions never die. All existing software technology
will eventual ride again.

4. Simple wins over elegant.

While Web Services began as a noble use of XML, developers
noticed Web Services began to get bogged down in terms of change
and complexity. It was not long before enterprises and tools vendors
began to work on the Web Services Interoperability (WS-I) stan-
dards to identify an agreed-to set of Web Service protocols, encod-
ing styles, security standards, and process integration protocols. By

9 Fine-grained is a term used to describe small packets of data that answer part of
an overall problem. For instance, rather than send a medical patient’s entire
health record, a fine-grained service sends only the date of the patient’s last
health check with a doctor.

2.3 XML and the Nature of Software Developers 53

the time this happened, the thought leaders had had enough. They
argued for simplicity.

Tim Bray, co-inventor of XML; Adam Bosworth, architect at
Google; and Jeff Barr, manager of services at Amazon, spoke at the
Software Development Forum’s Web Services Conference in May
2005.10 SDForum is the Silicon Valley’s largest association of software
developers, entrepreneurs, and investors. Bray, Bosworth, and Barr
discussed the state of affairs in the Web Services world.

At the conference, Bosworth directed software architects and
developers to look at the value of services in the knowledge they
convey, not in the method it takes to convey the message. While there
is a lot of activity and excitement over the work at the standards bod-
ies (W3C, OASIS, and WS-I), these are efforts to work on how to con-
vey the message, not how to develop knowledge. Bosworth looks at
the overhead just to convey the message as a detractor from letting
developers apply their effort to building knowledge. His summary
observation is that HTTP and XML are good enough to convey the
message and that SOAP and WSDL are impediments because they
are too complex. (See Figure 2.7.)

Tim Bray began the next session by asking the audience, “Raise
your hand if you understand WSDL.” (See Figure 2.8.)

10 Browse http://www.sdforum.org for details.

Figure 2-7 Adam Bosworth urges developers and architects to
use XML technology for services without the complexity of SOAP
and WSDL.

54 Chapter 2 Managing the XML Explosion

This was the venerable Tim Bray asking the question, so I would
bet that some people were too intimidated to raise their hands. Still,
only two people in a room of hundreds raised their hand.

“Houston! I think we have a problem,” Bray said. “How can you
expect to do anything with the Web Services Interoperability stan-
dards when no one in the room understands one of the key underly-
ing basic protocols?!“

Some would argue that there are plenty of tools out there to help
you use WSDL. My survey of the tools available to developers
using Java, Perl, .NET, Python, Visual BASIC for Applications, C,
and procedural languages is that WSDL tools are not universally
available. The tools to facilitate WSDL are generally for Java and
.NET users. That leaves developers trying to decipher WSDL files
by hand. That is not fun.

Bray was not arguing against WS-I, but instead, for simplicity. At
the end of his talk, Bray said, “Simple wins.” Actual Web Services
deployment is a good indication that Bray is right.

Jeff Barr noted that Amazon provides service interfaces for its on-
line store. Amazon publishes WSDL definitions of SOAP-based ser-
vice interfaces. Amazon also publishes an HTML page that shows
how to use REST protocols to access the same services. REST uses
XML data in a simple HTTP POST protocol. REST has no description
language. In the Amazon case, a developer reads a Web page to learn
which values to include in the XML document sent in the payload of
a simple HTTP request.

Figure 2-8 Tim Bray speaking to a room full of Web Services
developers.

2.4 Why XML in SOA Makes Sense 55

Barr notes that 80% of the service calls to Amazon come in using
the REST protocol. (See Figure 2.9.) The developer community using
Amazon services voted and the answer is that the simpler alternative
won. This should tell all of us something about the nature of software
development: Simple wins.

Many software developers, architects, and CIOs today use Web
Services technologies to accomplish business process reengineering,
construction of business processes in composite applications, and
construction of composite data services. This can work well in envi-
ronments where concurrent transactions are low, message schema
are simple (not complex or very deeply nested), and message pay-
load sizes are small. Break past any of these constraints and slow per-
formance and big scalability problems come quickly.

2.4 Why XML in SOA Makes Sense

Some software architects and developers look at issues surrounding
XML and reject it for SOA. The following are some of the issues I
commonly hear.

1. XML is too verbose. Each element within an XML docu-
ment includes a text string to tag the element. When a doc-
ument contains 500 elements, then 500 fully named tags
come along with the data. This is wasteful and inefficient
to process.

Figure 2-9 Jeff Barr talks about adoption and use of the service
protocols Amazon exposes for external developers to use.

56 Chapter 2 Managing the XML Explosion

2. XML programmatic interfaces (APIs) are difficult to use.
Java developers have at least four choices in XML handling
APIs to choose from, and they each have a learning curve
and quirks.

3. There is no standard for XML compression to make data
interchange more efficient.

I expect that these are short-term technology problems that will be
solved with new approaches to XML. Here are my reasons why XML
in SOA makes sense.

1. Engineering software projects that use XML take less time
to build and cost less to maintain over time. This is a reflec-
tion of the software development community’s love affair
with XML. There is a huge pool of software engineers who
understand and can skillfully work with XML data.

2. Software developer XML literacy means reduced support
costs when a developer from another team (internal to your
company or at a supplier or customer location) writes inte-
gration code to use your service.

3. XML facilitates self-describing data. This makes software
developers more productive and reduces maintenance costs,
as the service code encapsulates a function that operates
with the knowledge of the semantics of the data. For
instance, an agent-based service that finds a movie you are
interested in that may be ordered through eBay is much eas-
ier to write and maintain when the eBay interface uses XML.

4. Document definitions and service interfaces evolve as
developers maintain services. XML is well suited for ver-
sioning, support for schemas, and namespaces. Your alter-
native to XML in SOA needs to deliver these features.

In the following sections, we will dig into XML to explain the ben-
efits and problems with XML’s flexibility.

2.5 What XML Is Not: A Language for Semantics

XML is a wonderful thing. However, XML can be messy and is no
panacea. XML is great at making data description easy, because it
expects the data to be messy, not normalized, and sometimes adhoc.

2.5 What XML Is Not: A Language for Semantics 57

Once you get past the schema for XML’s syntax—element naming,
closing element tags, attributes, and CDATA sections for binary
data—there are few or no best practices for designing a good XML
document. Table 2-1 shows three different techniques that are all per-
fectly valid XML.

In the “One Size Fits All” technique, a single XML document
expands in size for the number of <order> elements to be stored. The
more <order> elements the larger the document. This works fine for
a while, but imagine if the same technique applied to a server log file
several megabytes long! This poses a serious problem when a parser
needs to validate the document by finding the closing </orders> tag.

“Add One, Add Them All” is an additive approach. As new
<order> elements become known, they are appended to the
salesorders.xml document. This approach eases validation and scal-
ability, as parsing the document may be done in bite-sized chunks,
each <order> being one chunk. However, imagine an XML document
with millions of orders.

Table 2-1 Consider these XML techniques to express the same data.

One Size Fits All
Add One,

Add Them All Inclusion

salesorders.xml

<orders>

 <order
part="173"
loc="UAV"/>

 <order
part="221"
loc="UCC"/>

</orders>

salesorders.xml

<order>

 <part>173</
part>

 <loc>UAV</loc>

</order>

<order>

 <part>221</
part>

 <loc>UCC</loc>

</order>

salesorders.xml file:

<orders>

 <include
file="order1.xml/>

<include
file="order2.xml/>

</orders>

order1.xml file:

<order>

 <part>173</part>

 <loc>UAV</loc>

</order>

order2.xml file:

<order>

 <part>221</part>

 <loc>UCC</loc>

</order>

58 Chapter 2 Managing the XML Explosion

The “Inclusion” technique uses an XML schema include operation
to reference external files that will hold the data. The salesorders.xml
file references the order1.xml and order2.xml files. This approach is
flexible, but it also requires an understanding of the relationships
between the included files. If a developer ran across order1.xml and
not salesorders.xml, it may not be obvious at first what order1.xml is
all about.

Although there may never be a common and widely used pattern
for structuring XML data, the XML tag notation makes data more
semantically accessible than previous data notation attempts. The tag
notation makes it easier to write software code to understand the
semantic meaning of the data. And the XML data model makes it
easy to root around in XML data to find the data we need. Sometimes
our programs will need to jump right into the middle of an XML
structure and then search above, below, and in parallel to the data in
the document. In another instance, code may use the full-text query
capability of an XML parser or query language to find an element in
an XML document and understand its information by using a query
to find the parent of the element.

XML was the first of a new generation of data models to make it
easier to build semantically aware applications. For instance, the fol-
lowing XML document contains information about a friend.

<contact>

 <firstname>Kim</firstname>

 <lastname>Witthaus</lastname>

 <city>Campbell</city>

 <country>USA</country>

</contact>

Semantically aware applications know that my friend lives in a
city named Campbell just by looking at the document.

XML tag notation excited many software developers and archi-
tects past what XML is able to deliver. In reality, XML does not
deliver semantic information about the data it encodes. For that, we
need a combination of XML; a convention on the definition and use
of metadata (data about data); and a basis for encoding, exchanging,
and reusing structured data and metadata. One candidate for seman-
tically aware application development is the Resource Description
Format (RDF)11 and SPARQL12 query language. RDF is to semantic
applications what HTML is for the Web. SPARQL is a query lan-

2.5 What XML Is Not: A Language for Semantics 59

guage featuring semantic constructs to derive knowledge from RDF
data sources. RDF and SPARQL are currently only experiments. For
now, XML notations for <element> tags and other constructions do
not deliver semantic information about the data. That leaves it up to
software developers to build semantic applications with today’s
existing tools and XML.

In my experience, 8 out of every 10 developers I meet are proce-
dural programmers, scripters, and macro developers. They found lit-
tle excitement in the idea of discoverable, loosely coupled, finely
grained Web Services. Instead, for them the semantic knowledge that
links together services exists only in their head and is expressed in
procedural code that makes requests to statically identified services,
transforms the data in code, and exposes a result in a static interface.
(Maybe that is why Amazon gets 80 percent REST requests compared
with 20 percent SOAP-based Web Services requests.)

Let me give you an alternate view of the service-oriented uni-
verse. I imagine a world where services are discoverable; are docu-
ment oriented; and use SOAP, JDBC, Message Queue, and other data
protocols to communicate. In this world, many things are possible. If
your application needs to do a 20-gigabyte file download over a
SOAP call, then go for it. If you want to do it using ZIP as a file for-
mat, then go for it. I fully anticipate an explosion of document defini-
tions where anyone who wants to publish a schema will. Services
will even federate. And each service will answer a piece of a business
process. Figure 2-10 illustrates a use case.

11 See http://www.w3.org/RDF.
12 SPARQL is a strange acronym for SPARQL Protocol and RDF Query Language.

Details at http://www.w3.org/TR/rdf-sparql-protocol.

Figure 2-10 An alternative to the current Service-Oriented
Architecture proposals that uses RSS and document-oriented XML
protocols to enable the service-based IT bus.

60 Chapter 2 Managing the XML Explosion

In my alternative universe, services are discoverable through a
search engine. For example, Google provides access through a Real
Site Syndication (RSS) interface to its search functions.

The discovery and publication of services on the Web is some-
thing best left to Google, rather than trying to implement a UDDI
solution. Let Google deal with the complexity of all of the services
that are out there. They seem to do a good job of it today. I do not
want to wait around for UDDI and for the ontologists to figure out
what makes up all of the things that are categorized on the Internet.

With today’s Web, tools, and techniques, I write programs that
understand the schema of the domain of my interest. My program
uses Google to find data sources. When it needs additional informa-
tion such as data stored in a relational database or accessible from a
SOAP-based Web Service, then the program uses Web protocols to
retrieve the XML-formatted data. The program learns and persists
data through service calls to an object—for instance, a Java or .NET
object—or perhaps a message queue such as a Java Message Service
(JMS) message provider. All of this interaction with my program
happens over HTTP protocols.

This services vision has programs automatically finding services
that are fine grained and programs that are able to search out all
these services and deal with the semantic knowledge of mapping
them all together. What I would put to you is that you are still going
to use Java or .NET or C or any of the scripting languages to write
this middle tier. This middle tier is the glue between the discoverable
services and the data sources that are out there. This glue is what
gives you the answer to the question, “Where may I buy the least
expensive Toyota Camry within a 10-mile radius from where I live?”
It is those kind of services we will build. Unfortunately, XML does
not reduce the need for a live human brain to build this service. The
semantics between the discovery of the service and the data source
that tells you which sort of information is out there today only exists
within the developer’s brain. There is no part of the XML, SOA, or
other stacks that tell you how you map together the discovery of ser-
vices to the information that you try to find.

2.6 XML Benefits in a Service World

There are three reasons why XML benefits a service universe: mid-
tier persistence, multiple schema support, and service federation.

2.6 XML Benefits in a Service World 61

2.6.1 Mid-Tier Persistence

After the invention and adoption of client/server technology, many
software architects referred to the Web as n-Tier architecture. Figure
2-11 illustrates the differences.

While software architects and developers talk about the Web as n-
Tier architecture, they usually are talking about a monolithic data-
base that provides access to data through a strongly bound applica-
tion server and Web server to a browser. In n-Tier architecture, a
service consumer makes a request through several service tiers to
answer a request. Many times the services called will be different for
each type of request.

For instance, Figure 2-11 shows a service consumer making a
request to a service over HTTP protocols. The Web Server unpack-
ages the request and marshals a request over SOAP protocols to a
service. That service uses REST protocols to request a response from
another service. The REST service retrieves persisted data from a
database server. This is the nature of the Web today: services making
requests to a variety of services. In fact, the consumer may not be an
end user but instead a data aggregation service.

Figure 2-11 Software architects and developers often talk about the
Web as n-Tier architecture, when they are really only talking about a
structure with fixed servers rooted in a database back end.

62 Chapter 2 Managing the XML Explosion

In such a service environment the time it takes to perform each
request is the sum of the time each subsequent service request makes
up the chain of calls. Adding a mid-tier cache to the n-Tier design
enables two benefits: improved performance and off-line browsing.

1. Improved Performance. The n-Tier architecture in Figure 2-
11 requires that each request from the consumer be handled
through the chain of service requests each time. The total
time to process all of these requests is the sum of the time it
takes each tier to respond. If any of the service tiers were
intelligent enough to know that the response it recently
gave is still valid, then the service could respond with a
cached response. Responses from the cache are much faster
than going through the chain of service requests.

2. Off-line Browsing. One could make the case that the weak-
est link in n-Tier architecture is every tier. If any one of the
tiers loses connectivity or responds slowly, then the entire
response back to the consumer suffers. With a mid-tier
cache, a service accesses data from previous up-stream
responses and can later query against that cache instead of
going back to the original service. For instance, imagine a
field repair technician for a cable television service. The far-
ther away from his office, the worse the connectivity to the
service that provides him with answers to a repair. Instead
of running queries against the service in the office, the tech-
nician can query locally against the results already received
from prior queries.

Improved performance and off-line browsing are benefits for con-
sidering mid-tier XML persistence in your architecture.

2.6.2 Multiple Schema Support

In the wild XML world, anyone can write his or here own schema
that defines the format and rules for the XML data. There is no gate-
keeper to the schemas for the world’s XML data formats. The
thought-leaders I wrote about earlier in this chapter encourage
developers to write their own XML data formats. Additionally, sche-
mas change over time as developers maintain software. We need to
make an assumption for the systems we design and build that there
are going to be billions of schemas out there.

2.7 Summary 63

There is some proof that schemas are about to get out of control.
Post-2006 versions of Microsoft Office make XML the standard file
format. The Microsoft file format implements a schema identifying
paragraphs and other attributes of a document. However, the
schema will not tell you where the word you are looking for is within
the paragraph. So, literally, every time you save a file you create a
new schema. It will still be up to your program to understand how to
read into that XML data and extract the needed information.

2.6.3 Federated Service Requests

In my alternate XML world, the ability to connect to a number of dif-
ferent data sources—some XML and some not—is important. Most of
the models proposed in the Web Services world still come down to a
3-tier architecture, where a consumer makes a request to a middle
tier. And the middle tier makes a request to a single database. If that
is all your architecture needs, then great. There are many object-rela-
tional frameworks to choose from. When you need to query against
several data sources and present a single view of the composite data
back to a service consumer—for instance, a composite application in
SOA—then a federated service request approach is better. Federated
service requests provide flexibility, performance, and data mitigation
benefits to the enterprise. Chapters 3 and 4 show how.

2.7 Summary

This chapter showed the impact the software development commu-
nities’ love affair with XML is having on SOA development. While
there is no SOA standard to mandate using XML, most SOA applica-
tions I analyze use XML to define service interfaces, messages, and
documents. XML impacts software application and service architec-
ture and development. The Web made it fashionable to move XML
messages from application to application. Today, we easily access the
entire Internet in XML form using RSS, REST, and SOAP protocols,
including new use cases for SOA Federation, SOA Acceleration, and
Data Transformation, just to name a few.

65

Chapter

3
Understanding SOA Patterns

SOA applications typically use XML to encode data and a variety of
messaging patterns to deliver it. In this chapter, I explain the build-
ing blocks of SOA in more depth by covering the SOA players,
actions, message exchange patterns, intermediaries, and data and
schema. This chapter prepares you for Chapter 4, where I discuss the
findings from my SOA performance and scalability studies.

3.1 SOA Players

Components in SOA fall into one of three roles: consumer, service, or
service broker. This section describes these roles and the actions asso-
ciated with each.

• The Consumer Role. Consumers make requests to services.
A consumer is a software application or another service that
binds to the service using a predefined service interface and
document schema.

• The Service Role. Services provide functions to consumers.
Services accept consumer requests through their service
interface using a document schema and execute an opera-

66 Chapter 3 Understanding SOA Patterns

tion on the document. Services are available at known end-
points defined with a Universal Resource Locator (URL.)

• The Service Broker Role. Brokers bring consumers and ser-
vices together by providing a registry of known services.
The registry provides a search function for consumers to
discover services. The registry provides the consumer with
the URL to the service endpoint, the service interface defini-
tion, and document schema.

Consumers, services, and service brokers form the basic three roles
in SOA. Next, we will see how these roles interact with each other.

3.1.1 Actions: Publish, Discover, Bind, and Execute

Each role uses actions to interact with the other roles. For instance, a
consumer may use a broker directory service to discover a service
that offers a specific type of interface. Figure 3-1 shows consumers,
services, and service brokers interacting.

The software development community continually improves its
skills at designing and building SOA-based applications. When SOA
was young, most consumers bound to a service using hard-coded
endpoint URLs. This kind of static-to-static service design is appro-

Figure 3-1 Consumers, services, and brokers use actions to
interoperate.

3.1 SOA Players 67

priate when the consumer and service are well known, offer high
quality-of-service availability, and rarely change.

As developers mature in their understanding of SOA, they usu-
ally adopt service broker technology to dynamically learn the end-
point URL at run time. In this case, a consumer initiates a service
request by contacting a service broker. The consumer passes parame-
ters of the service being sought, including the service name, method
name, and document schema type. In this environment, services
make themselves known to consumers by registering their sup-
ported interfaces with the broker. The consumer binds to the inter-
face returned by the broker and a makes a service request using a
proxy pattern.

Next, I will present several patterns for exchanging messages
between consumer and service.

3.1.2 Messaging and Message Exchange Patterns

The SOA roles show consumers making requests to services and
receiving responses using messages. There is no SOA standard to
define a message pattern. Instead, several messaging patterns have
emerged.

Synchronous Pattern

The synchronous pattern is the most widely know mechanism for a
consumer to use a service. A consumer makes a synchronous request
and waits until it receives a response from the service. Figure 3-2
shows the sequence diagram of a synchronous message pattern.

Figure 3-2 A consumer making a synchronous request waits until it
receives a response from the service.

68 Chapter 3 Understanding SOA Patterns

Synchronous message exchange is easier to develop and debug
than the other message exchange patterns. Transaction processing and
rollbacks are easier to build with synchronous message exchange.

Synchronous message exchange is the most stateful pattern and
that presents a scalability and performance problem. Usually, con-
sumer requests are executed using a thread pattern. Since the con-
sumer blocks the thread until the service responds, the overall
system risks running out of threads and other resources (memory,
network sockets) if connectivity to the service runs slow or the ser-
vice goes down.

Asynchronous Pattern

The asynchronous pattern is popular with high-volume applications,
because systems that use the asynchronous pattern do not require
state; therefore, load-balancing patterns and message queues provide
good scalability. In an asynchronous message exchange a consumer
makes a request to a service. The request contains the message. The
service receives the request and ends the connection. Asynchronous
messages do not need to receive a response from the service. Figure
3-3 illustrates the asynchronous pattern.

Asynchronous message exchanges are popular because the con-
sumer can continue to work on other tasks once it sends the request
to the service. Also, the pattern reduces the need to keep network
sockets open as in the synchronous pattern.

If the consumer needs confirmation that the service received the
request, then the consumer must use a polling or callback pattern. In
these situations the synchronous request-acknowledge message
exchange pattern is a popular alternative pattern to asynchronous
messages. Figure 3-4 shows the synchronous nonblocking pattern.

Figure 3-3 Asynchronous message exchange is a one-way
operation.

3.1 SOA Players 69

In the synchronous request-acknowledge pattern the consumer
sends a request to the service and receives an immediate response.
The response is a simple acknowledgment message that the service
received the request. With this pattern the consumer blocks for the
short time it takes to receive the acknowledgment message. The con-
sumer then quickly gets back to work on other tasks.

An optional variation on this pattern implements a polling mech-
anism at the consumer. The consumer makes the request to the ser-
vice and receives the acknowledgment, which includes a session-
tracking number. The consumer uses the tracking number to poll the
service for completion of the requested function.

Reliable Message Patterns

A lot can and does happen when moving messages across networks
using Hypertext Transfer Protocol (HTTP) and synchronous message
patterns. For instance, it is possible that a consumer makes a request
to a service and receives a response to the previous request to the ser-
vice. HTTP does not guarantee the order of delivery, the path for the
message to take depending on the quality of service of the connec-
tion, or a guaranteed reply. HTTP does not guarantee reliability.

Reliable messaging patterns are important for many SOA applica-
tions, because they provide guaranteed delivery, only-once delivery,
delivery in correct order, and guaranteed replies.

Figure 3-4 The synchronous request-acknowledge pattern is often
confused for asynchronous message exchange.

70 Chapter 3 Understanding SOA Patterns

While there are many types of reliable message protocols avail-
able, I favor the OASIS Group specification for Web Services Reliable
Messaging (WS-RM).1 You will find open-source and commercial off-
the-shelf technology (COTS) implementations. The specification
defines patterns for reliable message exchanges and reliable reply
message exchanges. In the OASIS Reliable Messaging Model, the ser-
vice consumer (the sender) sends a message to the service (the
receiver node). Upon receipt of the message and at the appropriate
time, the receiver node sends back an acknowledgment message or
fault message to the sender node. WS-RM uses a proxy pattern to
layer the reliability protocols on the normal messaging patterns so
the consumer and service concentrate on their tasks and leave the
reliability to the Reliable Message Provider (RMP) proxy.2

The following describes the ways for the receiver to send back an
acknowledgment message or a fault message to the sender.

Response RM-Reply Pattern

In the Response RM-Reply pattern, the consumer sends a message and
expects a response that includes an Acknowledgment message or a
Fault message. The service responds with a service reply and the
Acknowledgment. Figure 3-5 shows the Response RM-Reply pattern.

1 See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-rx.
2 By proxy I mean a piece of software that acts as an intermediary between the

message transport layer and the application, as opposed to a proxy server, which
acts as a firewall on a corporate network.

Figure 3-5 The Response RM-Reply pattern uses a Reliable
Message Provider proxy to guarantee a reply to the message. This is
a synchronous pattern, which blocks until the reply is received.

3.1 SOA Players 71

The consumer’s Reliable Message Provider (RPM) sends a Request
to the service’s RPM. In the event of an error, the consumer RPM tries
to send the message again until it gets a response from the service’s
RPM. Of course, how many times and which action the RPM takes is
configurable by the Reliable Messaging implementation.

Callback RM-Reply Pattern

In the Callback RM-Reply pattern the consumer sends a message and
expects a response that includes an Acknowledgment message or a
Fault message. The service later contacts the Reliable Message Pro-
vider (RMP) proxy when the service has a response to the request.
Figure 3-6 shows the Callback RM-Reply pattern.

The consumer Reliable Message Provider (RPM) sends a Request
to the service’s RPM. In the event of an error, the consumer RPM tries
to send the message again until it gets an acknowledgment response
from the service’s RPM. The service RPM makes a callback to the
consumer RPM when a response is ready. This pattern is very useful
to reduce network connection usage, since the consumer RPM does
not hold open a socket connection to the service while the service
works on a response. I have also seen the callback pattern used for
one-way request message patterns and for batching Acknowledg-
ment and Fault messages.

Polling RM-Reply Pattern

While the Callback RM-Reply pattern may be attractive, there are
conditions where it may not be used. For instance, when the con-

Figure 3-6 The Callback RM-Reply pattern makes the request to
the service and then waits for the service to call back to the consumer
with a response.

72 Chapter 3 Understanding SOA Patterns

sumer runs behind a firewall that restricts callbacks from the service,
another approach needs to be taken. In the Polling RM-Reply pat-
tern, the consumer sends a message and expects a response that
includes an Acknowledgment message or a Fault message. The con-
sumer RMP polls the service Reliable Message Provider (RMP) proxy
until the service has a response to the request. Figure 3-7 shows the
Polling RM-Reply pattern.

The OASIS standard for Reliable Messaging also includes patterns
for polling that use synchronous and asynchronous messaging,
which you may find useful. See the specification for details.

The Reliable Messaging patterns give your SOA applications the
flexibility to send reliable request/response or one-way messages
using standard open protocols (SOAP and HTTP). Similar standards
exist for non-SOAP protocols.

3.1.3 Three Popular Message Exchange Patterns

Among messaging and message exchange patterns section, I will
cover three message exchange patterns that are popular in SOA
designs: request/response, publish and subscribe, and broadcast or
multicast.

Figure 3-7 The Polling RM-Reply pattern is useful when the
consumer and service are separated by a firewall.

3.1 SOA Players 73

Request/Response Pattern

The Request/Response pattern is the simplest and most widely used
messaging pattern, because it most resembles the way software
developers make method calls to an object. In this pattern, the con-
sumer and the service talk to each other directly as peers. Figure 3-8
illustrates the Request/Response pattern.

The Request/Response pattern has a downside too. Software
architects and developers often miss performance and scalability
advantages of using the next patterns because the Request/Response
pattern is so easy. The next two patterns usually require a little more
effort to implement and provide their own unique advantages.

Publish and Subscribe Pattern

In a Publish and Subscribe pattern, the service offers a set of func-
tions to which the consumer may register. When a function has data
to deliver, the service delivers the data to the consumer. Figure 3-9
illustrates the Publish and Subscribe pattern.

Publish and Subscribe may also be implemented using a polling,
where the consumer polls the service for changes. This is different
from the Request/Reply pattern in that the service prevalidates the
consumer and readies data specific to the consumer without requir-
ing a connection to be open between the consumer and service.

Broadcast or Multicast Pattern

The Broadcast pattern, sometimes called the Multicast pattern, sends
the same message to a group of consumers. The message is identical

Figure 3-8 The Request/Response pattern.

Figure 3-9 The Publish and Subscribe pattern.

74 Chapter 3 Understanding SOA Patterns

to all of the consumers and no response is expected. Figure 3-10 illus-
trates the Broadcast pattern.

The Broadcast pattern has the largest possibility of improving
scalability and performance of an information system. However, it
also has the most challenges. For instance, broadcast and multicast
pattern implementations often relies on the underlying network
technology to enable delivery of a single message to all the listening
consumers. Additionally, corporate firewalls often block true multi-
cast service as part of a commonly adopted security policy.

I often see a combination of the Publish and Subscribe pattern
with the Broadcast pattern in an information system that needs to
efficiently and rapidly deliver the same content to a group of con-
sumers. Consumers subscribe to a broadcast channel and poll the
service for new data.

3.2 Summary

This chapter showed the building blocks of SOA in more depth by
covering the SOA players, actions, message exchange patterns, inter-
mediaries, and data and schema. In the next chapter, we will discuss
the findings from my SOA performance and scalability studies.

Figure 3-10 The Broadcast pattern.

75

Chapter

4
Identifying And Avoiding

SOA Performance Problems

The previous chapters showed the key drivers for SOA and XML.
Business and information managers love SOA design patterns for
their promise of agility and speed to build composite applications
and integrate systems, and software developers love XML’s simplic-
ity and subversive nature. Unfortunately, the choice of both SOA
and XML often leads to scalability and performance problems.

This chapter presents the findings from my SOA performance
and scalability studies and introduces a new architecture—
FastSOA—to solve the problems. I discuss the experiences that led
me to develop FastSOA and the common traps that you can avoid
by following a set of software development patterns when building
SOA application. This chapter prepares you for Chapter 5, where I
discuss the FastSOA architecture and patterns.

4.1 Patterns and Experiences That Led to FastSOA

Many times the software development tools we use to build software
introduce scalability and performance problems of their own. It’s
easy! The lazy software developer in me finds it pretty easy to accept
an Integrated Development Environment (IDE) default setting to
write an object for me. My first reaction to SOAP and WSDL was ela-
tion. In a Web Services world I imagined letting my development

76 Chapter 4 Identifying And Avoiding SOA Performance Problems

tools generate code from WSDL interface definitions to build distrib-
uted applications. Looking at the results of my scalability studies
showed me that relying on development tools alone was a good way
to innocently introduce scalability and performance problems. I sat
in my cubicle satisfied in the knowledge that I delivered functional
code, while at the datacenter a truckload of servers arrives to run my
application. Sound familiar?

If so, let me introduce you to patterns that require little or no addi-
tional work and accelerate XML and SOA performance.

4.1.1 Use SOAP Document-literal Encoding—Avoid SOAP RPC Encoding

In 2002, Darin MacBeath of Elsevier commissioned my company,
PushToTest, to run a study of SOAP scalability and performance.1

Darin is Elsevier’s Chief Architect. To my knowledge, Elsevier oper-
ates the largest deployment of XML and Web Services technology in
the commercial sector. Darin found me by reading my early articles
on Web Services interoperability and scalability problems. He steered
Elsevier to adopt SOAP as a standard service interface years before
Web Services and SOA emerged as a popular architecture. Darin’s
thesis was that SOAP encoding styles greatly impact the scalability
and performance of Web Services. He was right.

SOAP uses XML encoding to marshal data that is transported to a
software application. The XML Protocol Working Group at the World
Wide Consortium (W3C) standards body split between two architec-
tural patterns when it developed the SOAP specification. One group
viewed SOAP as document-oriented architecture enabling technol-
ogy. Chapter 1 introduced the topic of document-oriented Web Ser-
vices, where services pass a document from service to service and
each service operates on its part of the document. I call this the docu-
ment model. The second group viewed SOAP as a mechanism to
make remote procedure calls (RPC) between objects running on a
distributed group of server applications. The W3C codified the split
between these two groups in the SOAP standard by defining two
encoding styles:2 SOAP Document-literal and SOAP RPC encoding.3

1 Full disclosure: Darin worked for a division of Elsevier that later acquired
Morgan Kaufmann, the publishers of this book.

2 The standard actually defines variations of document and RPC encoding styles. I
limit the discussion to these two in reflection of the real-world’s adoption of
these two encoding styles.

3 The SOAP standard defines RPC encoding in Section 5 of the standard document.

4.1 Patterns and Experiences That Led to FastSOA 77

The encoding styles tell a SOAP stack how to transform from
XML data into a serialized stream of characters that is sent over a
network transport protocol—for instance, HTTP—to a remote ser-
vice and application. The encoding style tells the receiving applica-
tion how to transform the stream of characters back into XML data.

Shortly after I concluded the SOAP study, IBM developerWorks
published my article describing the SOAP encoding scalability prob-
lem.4 Figure 4-1 shows the results and an indication of the size of the
problem.

The SOAP encoding study found that a developer’s choice of
encoding style determines to a large extent the scalability and perfor-
mance a Web Services. The problems are most pronounced when
using SOAP RPC encoding as payload size increases.

As Figure 4-1 shows, the test recorded 294 transactions per second
when making requests where the response SOAP envelope mea-
sured 600 bytes of SOAP RPC–encoded data. As the test increased
the response size, the transactions per second (TPS) ratio plum-
meted. When making requests of 96,000 bytes of SOAP RPC–
encoded data, the test measured only 9.5 TPS.

4 See http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc

Figure 4-1 SOAP encoding styles profoundly impact the scalability
and performance of Web Services.

78 Chapter 4 Identifying And Avoiding SOA Performance Problems

When the test used SOAP Document-literal encoding, the
performance fared much better. With 600 bytes of SOAP Document-
literal–encoded data, the test measured 446 TPS. Additionally, SOAP
Document-literal encoding did not show the plummeting TPS func-
tion of SOAP RPC–encoding performance. At 96,000 bytes of SOAP
Document-literal encoded data, the test measured 387 TPS.

To see the test run in your own environment, you can download
the test from the PushToTest Web site. Almost all of the scalability
and performance studies commissioned by Elsevier, BEA, Sun, IBM,
and others are available for download there. For instance, I built the
Elsevier test environment by customizing my free open-source
TestMaker tool to support SOAP RPC encoding and SOAP Docu-
ment-literal style requests, as well as by implementing a Test Web
Service (TWS) to respond to requests in these encoding styles.

Why would any software developer or architect purposely use
SOAP RPC Encoding if they know that doing so adds a huge scal-
ability and performance problem to the resulting service?

One reason is that SOAP RPC encoding is the style that offers the
most simplicity for developers. The developer makes a call to a
remote object, passing along any necessary parameters. The SOAP
stack serializes the parameters into XML, moves the data to the desti-
nation using transports such as HTTP and SMTP, receives the
response, deserializes the response back into objects, and returns the
results to the calling method. Whew! SOAP RPC encoding handles
all the encoding and decoding, even for very complex datatypes, and
binds to the remote object automatically.

Building a Web Service using SOAP RPC encoding is easier for
the developer too. For instance, Apache Axis, an open-source SOAP
library, introspects Java code in files ending with .jws and creates a
SOAP RPC–encoded service. When a consumer calls the service,
the SOAP stack unmarshals the request parameters into objects and
passes them to the method call of your object. The same service
built with Document-literal encoding requires the developer to
write code to parse through the XML tree to find the data elements
needed, instantiate input objects, find the target object, and call one
of its methods.

In the above example, the Apache Axis library is being helpful in
publishing a service by introspecting a .jws source code file. The
problem here is that the Axis tool chooses to use SOAP RPC encod-
ing without explicitly telling the software developer. If the devel-
oper knows enough to look at the Axis-generated WSDL document

4.1 Patterns and Experiences That Led to FastSOA 79

for the new service, the developer will see the encoding style. But, I
refer you back to Tim Bray’s ironic question from Chapter 2: “Who
knows WSDL?”

Another reason you may not want the tool to choose the encod-
ing style regards the interoperability of the finished service. Services
built with tools that default to SOAP RPC encoding are incompati-
ble with tools that only marshal a Document-literal–encoded
request. Many of the SOAP tools on the Java platform default to
SOAP RPC encoding styles. For example, when using IBM Web-
Sphere Application Developer, the default encoding style to publish
a Java object as a Web Service is set to SOAP RPC. On the other side
of the divide, Microsoft .NET development tools implement Docu-
ment-literal style SOAP calls by default. This makes the consumer’s
encoding incompatible with the service. Both can be made to inter-
operate, but developers need to be wise to the different encoding
styles to avoid problems.

At work in the above example is a fundamental difference in
approaches from the software development tools vendors. In their
attempt to make software developers’ lives easier, the tools may be
making decisions for you that affect scalability and performance of
the finished service. This was highlighted when Microsoft and Sun
debated the relative virtues of JEE and .NET at an event hosted in Sil-
icon Valley by the Software Development Forum.5 Microsoft made
the argument that it serves developers best by being the sole supplier
of a complete solution. At the other end of the spectrum, Sun posited
that developers should have a choice of tools that they can assemble
into a solution. This top-down versus bottom-up argument perme-
ates into both companies’ development tools. For example, represen-
tatives from Sun and Microsoft were asked to explain why
developers would choose SOAP RPC encoding over SOAP Docu-
ment-literal–style encoding. Microsoft’s reps gave a somewhat tech-
nical answer, but conceded that they thought the issue was moot,
since developers should rely on their development tools to make
decisions about encoding styles.

Software developers serve themselves best by making informed
decisions about how helpful their development tools and environ-
ments should be. Understanding each tool’s handling of SOAP
encoding styles is an important factor in delivering well-performing
and reliable software projects.

5 See http://www.sdforum.org.

80 Chapter 4 Identifying And Avoiding SOA Performance Problems

The test results from Figure 4-1 show the throughput when a
SOAP stack uses RPC encoding and Document-literal encoding on
the same data. The service composes a response by encoding all of
the elements in the response. The better pattern is to parse the XML
data yourself. Since you know the data in the XML tree best, your
code will parse that data more efficiently than a generalized SOAP
stack code using RPC encoding. Document-literal encoding with cus-
tom parsing logic yields even faster and more scalable results.

Next, I will describe a common problem when using HTML/HTTP
tools in an XML environment.

4.1.2 Use XML Tools to Build XML Services—Java App Server Tools
Handle XML Data Poorly6

Many information systems strategies (including the U.S. Department
of Defense Net-Centric Data Strategy, known as NCES7) aim for
rapid integration, flexible data management, systems interoperabil-
ity, and lower total cost of ownership (TCO) through the use of SOA
practices. Unfortunately, existing commercial off-the-shelf (COTS)
and open-source Java solutions do not perform well enough to
become viable platforms for SOA development.

For instance, General Motors is a proponent of ebXML in SOA,
and its early designs—using the Universal Business Language
(UBL)—created XML messages that are 150 kilobytes to 10 mega-
bytes or larger. In 2004, I determined that the Java application server
technology of the day did not deliver sufficient throughput and
exhibited scalability and performance problems in the GM Web Ser-
vices Performance Benchmark that I authored.

At the time, XML-based Web Services technology was still fairly
new and I expected the performance problems to be resolved with
new generations of the application server technology. Most of these
problems still exist.

In 2005, BEA commissioned a new SOA performance study that
shows how applications built with current Java application servers
deliver performance that is not production worthy when dealing

6 This may be better explained as “Object-Oriented Application Servers Handle
XML Data Poorly,” as all indicators point to the same scalability and
performance problems in .NET.

7 Details found http://www.disa.mil/nces/ne4.html.

4.1 Patterns and Experiences That Led to FastSOA 81

with complex XML messages.8 The problems are the same as those in
earlier studies:

1. Simple Object Access Protocol (SOAP) bindings are ineffi-
cient and slow.

2. Every request requires an entirely new set of resources
(objects, CPU, and network bandwidth) to process a
response. There is no caching pattern.

To understand these problems, consider how software developers
build and deploy an XML service using Java Enterprise Edition (JEE)
application server tools.9 These tools introduce a significant scalabil-
ity problem in the SOAP service interface bindings (essentially a
proxy) generated by tools found in Java application servers.

Since its introduction 10 years ago, Java has become the predomi-
nant server-side programming language to enable the Web. Most
organizations today deploy JEE architectures for Web browser-
based applications, including technology components of a relational
database management system (RDBMS) in combination with an
application server. Figure 4-2 illustrates the standard Web browser-
based 3-tier architecture. These are reliable and scalable systems that
deliver performance of 60 transactions per second (TPS) on an entry-
level server.

As organizations move to SOA, they want to extend existing tech-
nology investments. Most application server publishers promote the
use of JEE development tools to build SOA.

While there are a variety of techniques for building an XML-based
Web Service, many of the tools state a preference to begin from a Web
Services Description Language (WSDL) definition of the service. Java
application servers provide a utility that inputs a WSDL definition
and generates a binding class. The binding receives a SOAP request
and routes the request to a Java object or Enterprise Java Bean (EJB)
for processing. The SOAP binding is a Java class that is called
through a servlet interface. Figure 4-3 shows the process to create a
SOAP binding using one of these tools.

Figure 4-4 shows a JEE environment extended to support SOA
development with an auto-generated SOAP binding in place.

8 Details found at http://www.pushtotest.com.
9 In 2005 Sun renamed Java 2 Enterprise Edition (J2EE) to Java Enterprise Edition

(JEE) by dropping the version number from the title.

82 Chapter 4 Identifying And Avoiding SOA Performance Problems

The SOAP binding deserializes the XML content from the SOAP
message body. This is processor-intensive and complicated because
the message body often includes complex datatypes. For instance,
the consumer may send a hash map containing multiple values to
the service. The SOAP binding needs to decode the hash collection
and instantiate Java objects for each value contained. A collection
may contain other collections, so the process of decoding SOAP mes-

Figure 4-2 Traditional JEE application server technology responds
to Web browser requests across open protocols in a well-understood
architecture.

Figure 4-3 Software developers take advantage of easy tools in
JEE application servers to build SOAP bindings.

4.1 Patterns and Experiences That Led to FastSOA 83

sage contents is not easy. Don’t believe me? Take a look at the source
code to the Apache Axis deserializer. It is huge!

The SOAP binding instantiates a Java Request object that contains
the SOAP message body contents. The SOAP binding calls the target
method in the target class and passes the Request object as a parame-
ter. The target EJB or Java object provides all of the processing neces-
sary to create a response to the request. The SOAP binding serializes
the return value from the EJB or Java object into a SOAP response
message. The SOAP binding goes through the same complexity to
decode the values in the response object into values it can serialize
into a SOAP response message.

In a 2005 study of SOAP bindings created with utilities from the
popular Java application servers, I found these problems:

1. The SOAP bindings generated by the application server
utilities are inefficient. For instance, certain SOAP bindings
create multiple copies of the SOAP request, with each
request instantiated as a String object, for no apparent rea-

Figure 4-4 Performance decreases dramatically when using a Java
Web application server to handle XML and Web Services data.

84 Chapter 4 Identifying And Avoiding SOA Performance Problems

son. Some of the SOAP bindings instantiate up to 15,000
Java objects to deserialize the SOAP request that contain 500
elements in the SOAP message body.

2. A server equipped with dual CPU 3.0-GHz Intel Xeon pro-
cessors delivered throughput of 15 to 20 transactions per
second (TPS) when processing simple SOAP messages,
where the 10-kilobyte payload contained 50 elements. As
the complexity and size of the SOAP messages grew, I
observed significant scalability and performance problems.
Throughput fell to 1.5 TPS for SOAP messages with a 100-
kilobyte payload containing 750 elements. The larger the
number of elements and the depth of each element in the
SOAP message body, the worse is the problem.

The performance problem multiplies in SOA designs. SOA is a
technique for component software reuse. Often one service calls
another service in a chain to determine the response to a request
from a consumer, as shown in Figure 4-5. Not only will the
performance problem appear in a single service, but each service
adds the same overhead as it serializes and deserializes requests and
responses. The performance problem multiplies with the number of
layers of services called.

You may think I am headed toward a conclusion that includes
throwing out your JEE application server to handle XML data. Rest
assured I am not advocating the end of JEE application servers.

4.2 Mitigate Performance Problems with the FastSOA Architecture

I am advocating an XML data mitigation strategy, which adds an
XML-specific mid-tier to your SOA designs to deliver needed scal-
ability and performance. Figure 4-6 illustrates the FastSOA architec-
ture running alongside—not replacing—the JEE application server.

Figure 4-5 SOA design patterns emphasis service reuse, which in-
turn amplifies scalability and performance problems.

4.2 Mitigate Performance Problems with the FastSOA Architecture 85

The FastSOA architecture runs in tandem with existing Web-
based infrastructure. Chapter 5 explains the FastSOA architecture in
great detail. For the moment I will illustrate one advantage of using
the FastSOA architecture in your SOA designs.

The FastSOA architecture built with native XML tools is an ideal
way to expose SOAP service interfaces. In such a design, the con-
sumer makes a SOAP over HTTP request to a SOAP binding. The
SOAP binding calls an XQuery stored procedure to directly handle
the XML request document in the XQuery engine. The XQuery
processes the native XML request, including possibly making queries
to other services, to JEE objects, and data sources via JDBC, SOAP, and
JMS protocols. The XQuery generates an XML response document
and returns it to the SOAP binding as the response to the consumer.

I tested this design and found the FastSOA implementation deliv-
ered a minimum of four times the performance of the same service
built on JEE servers. Table 4-1 compares performance.

The FastSOA approach uses native XML technology. Avoiding a
transformation from XML-based SOAP messages into Java objects

Figure 4-6 The FastSOA pattern uses XQuery and native XML
database technology to deliver acceptable scalability and
performance.

86 Chapter 4 Identifying And Avoiding SOA Performance Problems

for the request, and the opposite for the response, solves a major bot-
tleneck to good performance. Additionally, the SOAP bindings pro-
vided by the JEE application server were highly inefficient and
introduced their own performance problems.

Later in this chapter, I show how even greater performance
increases are possible using the FastSOA pattern when you consider
the impact of mid-tier data caching. The FastSOA pattern includes a
native XML database to store requests for commonly requested data.
Most SOA and XML data include a time-to-live (TTL) element. This
determines the time when the data within a service expires.

When the service receives requests for the same document multi-
ple times, the FastSOA service returns a response that is cached in
the mid-tier native XML database. This delivers SOA acceleration
through caching for quick SOA performance.

4.2.1 Use Unencoded XML Elements with Strings—Avoid JAX-RPC
SOAPElement

Building SOA with Java technologies has three problems:

1. The Domain Model pattern and other patterns that use
object-oriented code to bind, parse, and build XML data
deliver poor performance and scalability.10

2. There are many competing technology choices for the soft-
ware developer to make, and each choice impacts scalability
and performance in different ways.

3. All the existing approaches may crumble when Sun Micro-
systems (Java’s benevolent dictator) finally picks an XML
approach that everyone will fall inline with.

None of these problems is insurmountable. Let me explain these
problems in detail and offer my approach to solve them.

Table 4-1 Comparing Java to FastSOA Performance

FastSOA Performance
JEE Application Server

Performance Analysis

6–9 TPS 1.5 – 2 TPS 4 to 4.5 times faster

10 Chris Richardson explains the Domain Model pattern in his book POJOs in Action.

4.2 Mitigate Performance Problems with the FastSOA Architecture 87

You may be wondering why I chose XQuery as part of the Fast-
SOA pattern. Many developers have asked me if they could imple-
ment FastSOA using Java. My original approach to solve SOA
scalability and performance problems used Java to implement a fast
and efficient SOAP binding and XML data handler. With each
attempt I bumped up against two problems: XML is not a native
type in Java, so each request uses additional resources and time
transforming the message into objects, and that reduces perfor-
mance. Second, every year the Java thought-leaders would get
behind a new technology for building XML-based applications and
services. Each technology was viable, had its own product road map,
release schedule, and scalability and performance profile. Keeping
track with the current XML handling flavor of the year was very dif-
ficult and time consuming.

If you are a .NET developer and shaking your head at the folly of
so many XML handling approaches in Java, don’t be so smug.
Microsoft is approaching XML from many different directions too.
For instance, Erik Meijer11 is leading the XLinq12 project to deliver an
XML programming interface for .NET developers. From my view,
Microsoft’s efforts to deliver XLinq as a standard way to work with
XML data using SQL-like operators looks analogous to the JDOM
project in the Java world.13 XLinq does not replace the existing meth-
ods to work with XML data in .NET. With both Java and .NET, it
seems likely to me that developers will have to choose an XML tech-
nology strategy and work to integrate the various offerings. For
instance, even though JDOM is part of the official Java Community
Process mechanism to become part of Java, developers still need to
write code to use JDOM when building service interfaces with JAX-
RPC and SAAJ (the service interface building components in the Java
Web Services Developer Pack – JWSDP).14 The JAX-RPC APIs do not
directly use JDOM object types to represent XML data.

For Java developers today, the JAX-RPC API has Sun’s official seal
of approval to build SOAP-based service interfaces. Sun is not iso-
lated from the reality that the development community cleaves into
two around the Remote Procedure Call (RPC) versus document-ori-
ented service interfaces (issues described in Chapter 1 and earlier in

11 See http://research.microsoft.com/%7Eemeijer.
12 See http://research.microsoft.com/~emeijer/Papers/

XLinq%20XML%20Programming%20Refactored%20%28The%20Return%20Of%
20The%20Monoids%29.htm.

13 See http://www.jdom.org and JSR 108 at http://www.jcp.org.
14 See http://java.sun.com/webservices/jwsdp/index.jsp.

88 Chapter 4 Identifying And Avoiding SOA Performance Problems

this chapter). Sun will rename JAX-RPC to JAX-WS in the next
release to reflect the merged support for both RPC and document-
oriented service architectures.

Some of the confusion over SOAP encoding styles goes back to
the days when the W3C standards body argued over the SOAP
design. SOAP was intended to be an RPC protocol and never had in
mind using SOAP with large documents. Instead, SOAP was sup-
posed to be used for simple method calls with a few parameters.
Document-style encoding made it into the SOAP specification as an
alternative to RPC. Consequently, many tools for building SOAP-
based services offer tricks to enable software developers to use docu-
ment-style encoding. Consider the following three tricks when using
JAX-RPC to send an XML document (parameters) to the service.

1. Using SOAPElement. The developer writes a WSDL defini-
tion of the service using xsd:anyType and JAX-RPC creates
a SOAPElement object representing the XML document.

2. Using String. The developer writes a WSDL definition of
the service using xsd:string and JAX-RPC creates a String
object representing the XML document.

3. Encoded Array of Bytes. Using the JAX-RPC Source type
delivers an interface that uses SOAP with Attachments
(SwA). SwA is a nonstarter in most cases, because few non-
Java SOAP stacks implement SwA encoders directly.

The above approaches deliver acceptable performance and scal-
ability when the XML data is cute and cuddly.15 For instance, an
XML document with 50 elements and less than 5 kilobytes of data
will deliver the same performance regardless of encoding style or
WSDL type definition. The problems surface when using JAX-RPC to
handle 100 kilobytes or more and complex multiple orders of hierar-
chy in an XML document.

When working with moderate and huge XML documents, as
described in Figure 4-7, most software developers I work with won-
der how it could be that JAX-RPC does not offer something better
than String, DOM, or SOAPElement to handle these large payloads.
Who in their right mind would be sending 10-megabyte Strings
through Java code and expect it to perform?

15 Inspired by the film Madagascar, “cute and cuddly” is part of my lexicon to
describe simple and small XML data.

4.2 Mitigate Performance Problems with the FastSOA Architecture 89

This is exactly where the rubber meets the road. I have found no
way to generate a SOAPElement (xsd:anyType) element efficiently
from the JAX-RPC specifications. When Simon Tuffs,16 a colleague,
compared the performance of SOAPElement, String, and SWA using
the JAX-RPC reference implementation in the JWSDP 1.5, he found
that SOAPElement performance was a nonstarter.

The results shown in Table 4-2 and Figure 4-8 are astonishing.
SOAPElement avoids XML entity encoding (all those < and > signs
transformed to < and >) but more than makes up for it with the
massive load of building a DOM document as part of its strategy to
transform XML data between the consumer and service.

Figure 4-7 JAX-RPC APIs work acceptably for the cute-and-cuddly
level of XML documents but run into significant problems dealing with
huge-and-hairy documents.

16 See http://www.simontuffs.com

90 Chapter 4 Identifying And Avoiding SOA Performance Problems

That leaves software developers who choose JAX-RPC to build
service interfaces with few choices to efficiently handle moderate to
huge payloads. Even if SOAPElement performance were good in the
JWSDP reference implementation, I still would not recommend its
DOM approach, which requires the entire document to be in memory
before the service starts transmitting it across the wire. For these
moderate to huge XML messages, a streaming solution appears the
most likely candidate for FastSOA.

A far superior choice in Java would be to stream an XML docu-
ment into a SOAPElement (xsd:anyType) element; however, that
could lead to badly formed SOAP documents and potential security
holes. For moderate and huge XML messages, String appears to be
the safe choice for security, interoperability, and performance.

Unfortunately, this means that all of the SOAP stacks that adopted
the JAX-RPC specification have the same problems handling moder-
ate to huge XML messages. The JAX-RPC specification is widely
implemented, both by open source projects—for example, Apache
Axis—and by commercial vendors such as Sun, IBM, and BEA.

Figure 4-8 SOAPElement is a poor choice for performance.

Table 4-2 Contrasting JAX-RPC Performance Using Various XML
Datatypes

8,585 bytes 334,933 bytes

String 50 milliseconds 773 milliseconds

SOAP Element 331 milliseconds 12,284 milliseconds

SOAP Attachment 39 milliseconds 243 milliseconds

4.2 Mitigate Performance Problems with the FastSOA Architecture 91

Finally, if the above discussion makes you think about writing
your own SOAP binding, then please stop. Consider these issues
before choosing to write your own SOAP binding.

1. It will be up to you to maintain your SOAP binding code
when the SOAP specification changes and/or software
developers begin to widely use different and incompatible
implementation styles.

2. You will need to publish and maintain a service interface
development kit (akin to a Software Development Kit—
SDK) for your service. Many software developers need
example code they have previous experience using to really
understand an SDK.

3. When tools emerge to rapidly build service interfaces, you
will missout on their advantages while you maintain your
custom code.

While this section discussed the JAX-RPC APIs and datatypes, the
next shows how choosing the best parser that is appropriate to your
data impacts performance and scalability.

4.2.2 Use the XML Parser That Is Appropriate to Your Data

Often SOA designs overlook the impact an XML parser has on the
performance and scalability of the finished system. Chapter 1 urged,
among other things, a document-centric approach to building SOA-
based information systems. Earlier in this chapter I showed the scal-
ability and performance problems of using remote procedure call
(RPC) patterns in SOA. Adopting these patterns does not automati-
cally deliver good performance and scalability.

Software developers have a variety of approaches to XML mes-
sage parsing, including the Streaming API for XML (StAX), XML
binding compiler, Java Architecture for XML Binding (JAXB and
JIBX), and Document Object Model (DOM) techniques. Some pro-
vided better performance than others. For instance, many StAX pars-
ers deliver 2 to 10 times faster performance than DOM parsers. Much
of the performance difference came from matching the right XML
parser to the type of data being parsed. For instance, parsing a com-
plex document that uses the automotive industry Business Object
Document (BOD) schema17 will highlight performance of some XML

92 Chapter 4 Identifying And Avoiding SOA Performance Problems

parser implementations, while working with simple RSS feeds will
show other parsers in a favorable light.

Testing XML parser implementations against three use cases
delivers useful performance and scalability knowledge:

• Parsing moderate to huge XML documents. The documents
are typically 10 kilobytes to 5 megabytes—for instance, an
HL7 document or BOD. In this case, I recommend using an
XML binding compiler such as JAXB, which addresses ele-
ments directly.

• Parsing XML documents that contain many elements that
are not nested deeper than two or three elements deep.
Think of a stream of data where skipping unwanted ele-
ments yields a performance advantage. In this case, a
Streaming XML (StAX) approach works best.

• Parsing medium-sized documents with a little bit of com-
plexity—for example, a purchase order from a manufac-
turer where you need to evaluate every element in the
order. In this case, an XML parser using DOM may be best.

4.2.3 Use a Database That Is Tuned to Your Data Definition—Native
XML Databases Help Relational Databases

While there is no SOA standards body to recommend XML, most of
the SOA applications I work with use XML to exchange messages
and provide service interfaces. The strong focus on XML in SOA
makes relational database technology look like a square peg in a field
of round holes.

Consider how foreign XML datatypes and operators look to a
relational database. For instance, writing SQL commands to insert
and query XML data require specialized nonstandard SQL com-
mands. Additionally, relational databases have a rich history of tools
to provide adhoc queries and complex joins. Unfortunately, these
tools typically do not allow the same rich features when querying

17 The Standards for Technology in Automotive Retail (STAR) organization, com-
prised of companies supporting retail automotive operations, contracted to the
Open Application Group (OAGi) to build an XML schema that describes the
operations between auto retailers and supplier.
Details are at http://www.starstandards.org.

4.2 Mitigate Performance Problems with the FastSOA Architecture 93

XML data stored in a relational database, because the XML data
model is too different for them.

While none of these issues is overly difficult to understand and
overcome for the average software developer native XML technology
offers better developer productivity and operating scalability and
performance to the software developer, architect, or CIO who
chooses SOA, even if his or her organization is standardized around
a relational database. Native XML technology mitigates and aggre-
gates data in a way that accelerates relational database performance,
scalability, and developer productivity.

For example, consider a mid-tier data service built with native
XML technology as an alternative to using relational XML datatypes.
In the mid-tier, a service receives the XML data, breaks it down into
relational datatypes, and stores the data in relational tables. The
XQuery needed to do this may then optimize the storage techniques,
index techniques, and data loading techniques specifically for your
data and database. This technique also takes into account differences
in XML support that vary by relational database vendor and version
of the database.

Native XML technology is a viable strategy to supplement rela-
tional database storage. For instance, the relational database holds
the metadata for queries and the native XML database holds the orig-
inal XML data for retrieval.

There is no reason to think of native XML technology as an either
or proposition. For instance, some relational databases provide
XQuery as an alternative to SQL. Many times the results of combin-
ing native XML technology with relational technology leads to better
developer productivity, scalability, and performance.

Mid-tier active SOA approaches to SOA may even be the way to
solve the supposed impedance mismatch between XML, object, and
relational data models. Thought-leaders such as Steve Loughran18

and Edmund Smith do not believe that Object/XML mapping is pos-
sible with Java and .NET. Loughran and Edmund describe many
incompatibilities that are native in the object world that are incom-
patible with XML, including the following: sometimes it is just
impossible to map XML constructs to Java objects, XML Schema
namespaces are incompatible with Java object names, performance
problems prevent deployment of services that use larger payloads

18 See http://www.hpl.hp.com/techreports/2005/HPL-2005-83.pdf.

94 Chapter 4 Identifying And Avoiding SOA Performance Problems

and when network latency increases, and WSDL descriptions of
these services are too complex for the average software developer.

The above issues led me to identify the need for FastSOA. Next, I
describe the FastSOA pattern itself.

4.2.4 Understanding the FastSOA Pattern

FastSOA is an architecture and software coding practice (pattern)
that addresses these problems:

1. FastSOA solves SOAP binding performance problems by
reducing the need for Java objects and increasing the use of
native XML environments to provide SOAP bindings.

2. FastSOA introduces a mid-tier service cache to provide
SOA service acceleration.

3. FastSOA uses native XML persistence to solve XML, object,
and relational incompatibility.

Figure 4-9 illustrates the FastSOA architecture.

FastSOA is an architecture that provides a mid-tier service bind-
ing, XQuery processor, and native XML database. The binding is a
native and streams-based XML data processor. The XQuery proces-
sor is the actual mid-tier that parses incoming documents, deter-
mines the transaction, communicates with the “local” service to
obtain the stored data, serializes the data to XML, and stores the data
into a cache while recording a time-to-live duration. While this is an
XML-oriented design, XQuery and native XML databases handle
non-XML data, including images, binary files, and attachments. An
equally important benefit to the XQuery processor is the ability to
define policies that operate on the data at run time in the mid-tier.

Figure 4-9 The FastSOA architecture.

4.2 Mitigate Performance Problems with the FastSOA Architecture 95

The FastSOA architecture runs in tandem with existing Web-
based infrastructure and deploys in the mid-tier of a set of services to
quickly handle service consumer requests. For instance, a consumer
makes a SOAP request to a service. The mid-tier FastSOA service
provides a SOAP binding. The binding calls an XQuery to handle the
XML request document in the XQuery engine. FastSOA enables you
to write business processing logic in the XQuery to form a response
to the request. Additionally, FastSOA enables the XQuery to check
the cache to see if the request was previously received; in this case,
the FastSOA service is able to return the response from the cache
without having to go upstream to make the request to the service.
This process delivers SOA acceleration through native XML SOAP
bindings and caching for quick SOA performance.

The advantages of the FastSOA approach are:

1. Your SOA environment runs faster and requires less
CPUs and network bandwidth. FastSOA is a native XML
environment.

2. Service end points are standards based. To the rest of your
applications, the FastSOA mid-tier system looks like a
SOAP service.

3. No need to replace your existing systems or code. The Fast-
SOA mid-tier cache fits into your existing datacenter as a
data aggregation and mitigation service.

4. In the event that the upstream service is temporarily
unavailable, the FastSOA approach provides an easy mech-
anism for browsing cached data while the service is off-line.

5. Requests that are served from the cache lower the amount
of bandwidth normally needed to support communication
between consumer and service.

To understand FastSOA from a practical standpoint consider the
following example application.

4.2.5 Mid-Tier Cache Pattern and Example

Earlier in this chapter, I described the performance advantage in
using native XML to provide SOAP bindings. The resulting service
enjoyed four times better performance. In the following example, I

96 Chapter 4 Identifying And Avoiding SOA Performance Problems

show how to provide even better service acceleration through mid-
tier caching.

General Motors (GM) created a service using SOA patterns to
enable automotive dealerships to order parts from a manufacturing
facility using ebXML-based patterns and protocols. The service
understands an XML schema from the Software Technology in Auto-
motive Retailing (STAR) organization.19 STAR is a combined effort of
the big automotive manufacturers, including GM. STAR created and
maintains the Business Object Document (BOD) schema and defines,
among many other things, a request for an inventory check.

The CheckInventory request validates the requester and checks
inventory levels and status. The service consumer creates an inven-
tory request document according to the BOD schema. The consumer
marshals the document in a request and sends it over a network to
the service. The service sends an inventory status response that
shows the parts that are in stock.

The parts ordering service benefits from the FastSOA patterns by
reducing network bandwidth needs and mitigating the service band-
width needed to respond to redundant requests.

For instance, the inventory response for the parts from an auto-
motive dealership includes a time-to-live (TTL) element. The TTL
element defines the number of seconds that the response is valid.
For example, GM may have set this value to 60 seconds. During
those 60 seconds the mid-tier server responds to inventory requests
from the stored cache of inventory responses from the mid-tier. The
service avoids unnecessary bandwidth use and improves the time
to respond to requests.

Table 4-3 shows how to calculate service acceleration metrics in a
network where the service resides on a server external to the local
network and a FastSOA data mitigation aggregation service resides
on the local network.

19 See http://www.starstandard.org.

Table 4-3 Metrics to Calculate Service Acceleration

Action No Caching Caching Enabled

Time to Process First
Request

1,765 2,218

Time to Store the
Request in Cache

n/a 453

4.2 Mitigate Performance Problems with the FastSOA Architecture 97

In a FastSOA implementation, an XQuery implements the parts
ordering service by making a request to an inventory service, reading
the content of the response, and determining at run time if a previ-
ously stored response may be played back instead of going to the
inventory service again.

As with all other software architecture and patterns, you should
determine if FastSOA will benefit your business or organization over
other approaches. For instance, the FastSOA pattern in the CheckIn-
ventory example requires additional policy code to be written and
maintained over time as the service and service interface schema
change. Implementing the CheckInventory logic in the mid-tier may
even duplicate code that exists elsewhere in your architecture.

The above example implements a FastSOA data mitigation aggre-
gation architecture in a service environment. The combination of
XQuery and a native XML database delivers a service that plays back
the previously cached response data provided the request matches
the previous request and the data is still fresh. The result is service
acceleration.

4.2.6 Patterns That Accelerate SOA Performance

In the GM example above, FastSOA delivered service acceleration
through mid-tier caching. Once you adopt a mid-tier service acceler-

Subsequent Identical
or Redundant
Requests

1,765 320

Internet Bandwidth
Used

30,400 Kbits 304 Kbits

Total Time Used 2,941 minutes 533 minutes

All times are in milliseconds unless noted.

Assumptions:

100-Mbit Ethernet connection from consumer to Cache Service and DSL con-
nection at 1.5 Mbits/second up and down.

Time to Live (TTL) of 60 seconds.

Request/Response is 38,000 bytes combined.

100,000 requests during the TTL period.

Table 4-3 Metrics to Calculate Service Acceleration (continued)

Action No Caching Caching Enabled

98 Chapter 4 Identifying And Avoiding SOA Performance Problems

ation and well-performing SOAP binding strategy, additional perfor-
mance acceleration and flexibility become possible.

Figure 4-10 shows the SOA design that I typically encounter.

The design shown in Figure 4-10 works well for simple SOA ser-
vices where connectivity is plentiful, you have what seems like an
unlimited number of CPUs to run the application, the XML messages
use simple schemas and have small message sizes (less than 5 kilo-
bytes), and the consumers and services support common message
data schemas. In general, this design works well when service per-
formance, management, and compatibility issues are under control.

Figure 4-11 introduces the FastSOA pattern by including a mid-
tier service for data acceleration, transformation, and mitigation.

Figure 4-10 Example of a typical SOA design using several tiers of
services, an XML firewall, and an Enterprise Service Bus (ESB) for
connectivity to multiple services.

Figure 4-11 FastSOA adds a mid-tier service for data and metadata
aggregation, transformation, and service acceleration.

4.2 Mitigate Performance Problems with the FastSOA Architecture 99

The design in Figure 4-11 adds a mid-tier service. The advantages
to this design are that FastSOA works with existing application
servers and enterprise service bus technologies. To these the Fast-
SOA tier looks like a service providing value-added functions. To
management services, which control the operation of a network and
group of service, the FastSOA tier looks like a service management
and security policy mechanism. Chapter 5 shows how to implement
this mid-tier service in detail using XQuery and native XML data-
base technology.

Your decision to incorporate a FastSOA mid-tier service enables
possibilities to solve service incompatibility, service federation, and
service discovery issues too. For instance, Figure 4-12 shows Fast-
SOA providing mid-tier transformation between a consumer that
requires one schema and a service that only provides responses
using a different and incompatible schema. The XQuery in the Fast-
SOA tier transforms the requests and responses between incompati-
ble schema types.

I have run into the example shown in Figure 4-12 many times. For
instance, a directory service used by two organizations within the
same company relies on a human resources service to provide
updates that appear in the directory. When the human resources
group updates its system to use a new schema—and does not pro-
vide backward compatibility to the original schema—it requires the
directory service group to update its code. FastSOA mitigates the
need to work on the code by doing schema transformation in the
mid-tier.

Another advantage to implementing FastSOA in the mid-tier is
flexibility and efficiency, as shown in Figure 4-13.

Figure 4-12 An example where FastSOA solves a data schema
incompatibility between a consumer and service.

100 Chapter 4 Identifying And Avoiding SOA Performance Problems

When a service commonly needs to aggregate the responses from
multiple services into one response, FastSOA provides service feder-
ation. For instance, many content publishers such as the New York
Times provide new articles using the Rich Site Syndication (RSS) pro-
tocol. FastSOA may federate news analysis articles published on a
Web site with late-breaking news stories from several RSS feeds. This
can be done in your application, but is better done in FastSOA
because the content (news stories and RSS feeds) usually include
time-to-live values that are ideal for FastSOA’s mid-tier caching.
Chapter 6 describes data aggregation and federation in detail.

SOA environments that use XML data the metadata for the mes-
sages exchanged between consumer and services can become a labo-
rious and error-prone effort. Figure 4-14 shows FastSOA applied to
solve storage and querying of metadata.

FastSOA is an appropriate pattern for service discovery, interrela-
tionships, and policies. Intelligent policies written in XQuery enable
services for devices requiring incompatible XML schema types.
Chapters 7 and 8 describe metadata transformation, querying, and
aggregation in detail.

4.3 Summary

This chapter showed software architects and developers patterns to
accelerate XML performance and reduce service maintenance, includ-
ing patterns that work at the SOAP binding layer, patterns that
deliver performance with complex XML schemas, and XML parsing
patterns. It also covered patterns to accelerate SOA performance and
mitigate SOA performance problems, mid-tier service caching, native

Figure 4-13 FastSOA federates data from multiple sources over
multiple protocols into one service.

4.3 Summary 101

XML persistence, and mid-tier data transformation, aggregation, and
federation. In the next chapter, we will compare performance of SOA
built with Java application servers against FastSOA built with native
XML technology.

Figure 4-14 Using FastSOA for storing metadata to provide fast
performance in discovering services, transforming schemas, and
implementing security policy.

103

Chapter

5
Solve Performance Problems

with FastSOA Patterns

The previous chapters described the FastSOA patterns at an archi-
tectural level. This chapter shows FastSOA mid-tier service and
data caching architecture applied in three real-world scenarios. The
scenarios show how to accelerate SOA performance and mitigate
performance problems through mid-tier service caching, native
XML persistence, and mid-tier data transformation, aggregation,
and federation.

5.1 Three Use Cases and the FastSOA Pattern

In this chapter, I describe three use cases where FastSOA is an appro-
priate solution for SOA performance and scalability challenges. Each
use case shows how pure XML technology used in the mid-tier miti-
gates and solves performance and scalability problems and delivers
flexibility unavailable with object and relational technology.

While there are many (sometimes contradictory) definitions for
SOA, the majority of software developers and architects I have got-
ten to know over the years recognize and support SOA as a pattern
built around consumers, services, and brokers. Figure 5-1 shows
this relationship.

104 Chapter 5 Solve Performance Problems with FastSOA Patterns

The basic SOA patterns make sense for developers building ser-
vices, Web services, and composite applications and data services.
The pattern allows a consumer that makes a request to learn the loca-
tion and interface message schema of a service. The consumer binds
to the service by sending a request message. The service returns a
response message to the consumer’s request. The service makes its
location known by publishing ontology of its functions and interface
message schema to the broker. SOA is an abstract architecture—for
instance, SOA does not define a specific protocol such as SOAP in the
Web Services standard—but most SOA designs I have seen use XML
as the message format between consumer, broker, and service.

To understand the SOA pattern in practice, we will look at three
scenarios and show how FastSOA solves scalability, performance,
and flexibility challenges in each.

• Accelerating service interface performance and scalability

• Improving SOA performance to access services

• Flexibility needed for semantic web, service orchestration,
and services dynamically calling other services

Figure 5-1 The basic SOA pattern.

5.2 Scenario 1: Accelerating Service Interface Performance and Scalability 105

5.2 Scenario 1: Accelerating Service Interface Performance
and Scalability

In this scenario, a business operates a parts ordering service for cus-
tomers. The service provides a Web browser user interface to enter a
new order and learn the status of an existing order. Behind the user
interface is a SOAP-based Web Service using ebXML message sche-
mas to track order status from a vendor’s legacy inventory system.
The service stores orders and customer information in a relational
database. Figure 5-2 illustrates a typical use case.

The use case begins with a customer placing an order. The service
validates the order against the current inventory to make sure the
part being ordered is in the parts catalog. The service stores the order
until the company places a consolidation of all the orders in a nightly
batch process with the parts vendor. The service ends the use case by
checking the status of the order.

Figure 5-3 illustrates an n-Tier architecture often recommended in the
Java development community to implement the parts ordering service.

The architecture divides into three portions: A presentation tier,
an application tier, and a data tier. The presentation tier uses a Web
browser with AJAX and RSS capabilities to create a rich user inter-
face. The browser makes a combination of HTML and XML
requests to the application tier. Also at the presentation tier is a
SOAP-based Web Services interface to allow a customer system to
access the parts ordering functions. At the application tier, an Enter-
prise Java Bean (EJB) or plain old Java object (pojo) implements the
business logic to respond to the request. The EJB uses a model,
view, and controller (MVC) framework—for instance, Struts or Tap-
estry—to respond to the request by generating a response Web
page. The MVC framework uses an object/relational (O/R) map-
ping framework—for instance, Hibernate or Spring—to store and
retrieve data in a relational database.

There are three problem areas that cause scalability and
performance problems when using Java objects and relational data-
bases in XML environments. Figure 5-4 illustrates these problems.

Figure 5-2 A typical use case for a parts ordering service.

106 Chapter 5 Solve Performance Problems with FastSOA Patterns

Using the Java/relational architecture leads to performance and
scalability problems as the XML messages grow in complexity and
size.

Figure 5-3 Building the parts ordering service using the Domain
pattern.

Figure 5-4 The source of scalability and performance problems…
all that mapping and transformation.

5.2 Scenario 1: Accelerating Service Interface Performance and Scalability 107

• XML/Java mapping requires increasingly more processor
time as XML message size and complexity grow.

• Each request operates the entire service. Many times the
user will check order status sooner than any status change
is realistic. If the system kept track of the most recent
response’s time-to-live duration, then it would not have to
operate all of the service to determine the most previously
cached response.

• The vendor application requires the request message to be
in XML form. The data the EJB previously processed from
XML into Java objects now needs to be transformed back
into XML elements as part of the request message. Many
Java to XML frameworks—for instance, JAXB, XMLBeans,
and Xerces—require processor-intensive transformations.
These frameworks challenge developers to write difficult
and complex code to perform the transformation.

• The service persists order information in a relational data-
base using an object/relational mapping framework. The
framework transforms Java objects into relational rowsets
and performs joins among multiple tables. As object com-
plexity and size grow, many developers need to debug the
O/R mapping to improve speed and performance.

Figure 5-5 Contrasting service interface performance between
techniques.

108 Chapter 5 Solve Performance Problems with FastSOA Patterns

To give you an idea of the extent of the problem, consider the per-
formance advantage of using native XML technology to respond to
service requests. Figure 5-5 contrasts the performance difference.

The results in Figure 5-5 contrast native XML technology and Java
technology to implement a service that receives SOAP requests. The
test varies the size of the request message among three levels: 68 kilo-
bytes, 202 kilobytes, and 403 kilobytes. The test measures the round-
trip time to respond to the request at the consumer. The test results
are from a server with dual CPU Intel Xeon 3.0-Ghz processors run-
ning on a gigabit-switched Ethernet network. I implemented the
code in two ways:

1. FastSOA technique. Uses native XML technology to provide
a SOAP service interface. I used Raining Data TigerLogic’s
XML query (XQuery) engine to expose a socket interface that
receives the SOAP message, parses its content, and assembles
a response SOAP message.

2. Java technique. Uses the SOAP binding proxy interface
generator from a popular commercial Java application
server. A simple Java object receives the SOAP request from
the binding, parses its content using JAXB-created bindings,
and assembles a response SOAP message using the binding.

The results show a 2 to 2.5 times performance improvement when
using the FastSOA technique to expose service interfaces. The Fast-
SOA method is faster because it avoids many of the mappings and
transformations that are performed in the Java binding approach to
work with XML data. The greater the complexity and size of the
XML data, the greater the performance improvement.

FastSOA is equally applicable to improve the performance of SOA
application requests that require access to data. FastSOA implements
a mid-tier cache to commonly accessed data.

Caching is a powerful and proven technique for database sys-
tems. For instance, RDBMS tools vendors perform caching strategies
at three points in an SOA environment, as illustrated in Figure 5-6.

RDBMS vendors recommend caching at three places. In the pre-
sentation tier, a Web cache provides cached data to Java Server
Faces (JSF) dynamic pages. At the application tier, it recommends
caching at the object/relational mapping (ORM) and in the connec-
tion layer to the relational database (RDBMS) using an in-memory

5.2 Scenario 1: Accelerating Service Interface Performance and Scalability 109

cache. Caching in this environment works well to mitigate rela-
tional performance problems.

These caching techniques should, but don’t, take advantage of the
unique features of XML data. Many SOA XML messages include a
time-to-live value in the message itself. This gives the cache intelli-
gence about the lifetime of data that is usually unavailable in generic
data caching approaches. To achieve this cache intelligence requires a
programming language and persistence engine of its own.

Figure 5-7 shows the FastSOA architecture that uses native XML
technology to provide a service interface, to accelerate service
performance by caching response data, and implements flexible
and rapidly changed policies to operate the cache engine.

The advantage to using the FastSOA architecture as a mid-tier ser-
vice cache is in its ability to store any general type of data, as well as
its strength in quickly matching services with sets of complex param-
eters to efficiently determine when a service request can be serviced
from the cache. The FastSOA mid-tier service cache architecture
accomplish this by maintaining two databases.

• The service database. Holds the cached message payloads.
For instance, the service database holds a SOAP message in
XML form, an HTML Web page, text from a short message,
and binary from a JPEG or GIF image.

• The policy database. Holds units of business logic that look
into the service database contents and make decisions on
servicing requests with data from the service database or
passing through the request to the application tier. For

Figure 5-6 Mitigating relational performance through caching.

110 Chapter 5 Solve Performance Problems with FastSOA Patterns

instance, a policy that receives a SOAP request validates
security information in the SOAP header to validate that a
user may receive previously cached response data. In
another instance, a policy checks the time-to-live value from
a stock market price quote to see if it can respond to a
request from the stock value stored in the service database.

FastSOA uses the XQuery data model to implement policies. The
XQuery data model supports any general type of document and any
general dynamic parameter used to fetch and construct the docu-
ment. Used to implement policies, the XQuery engine allows
FastSOA to efficiently assess common criteria of the data in the ser-
vice cache, and the flexibility of XQuery allows for user-driven fuzzy
pattern matches to efficiently represent the cache.

FastSOA uses native XML database technology for the service
and policy databases for performance and scalability reasons. Rela-
tional database technology delivers satisfactory performance to
persist policy and service data in a mid-tier cache provided the
XML message schemas being stored are consistent and the message
sizes are small. To understand this in more depth, consider the fol-
lowing results from a comparison of native XML database technol-
ogy to relational databases.

The test runs multiple test cases where each test case varies the
number of concurrent requests made to the database host and var-

Figure 5-7 Using XML technology to provide service acceleration
through caching.

5.2 Scenario 1: Accelerating Service Interface Performance and Scalability 111

ies the size of the XML message. The test environment makes
requests to a relational database and a native XML database. For
the relational database the test used an XML CLOB field type. The
use case is modeled around a mid-tier cache’s need to rapidly per-
sist and query an unknown quantity of data with multiple and
unknown schemas.

The test environment monitors the time it takes to receive a
response at the consumer. The test produces a report showing trans-
actions per second (TPS) at each level of concurrent requests and
message payload sizes. Figure 5-8 shows a scalability index report
for querying a database of stored XML documents.

In the query performance test, the native XML database starts at
45 TPS and goes up to 186 TPS while the relational database stays at
15 TPS or less. Figure 5-9 compares performance characteristics while
inserting XML documents into the database.

The insert document performance test shows that native XML
database and relational database performances are evenly matched
at 20 and 17 TPS at the lowest number of concurrent requests. At 32
concurrent requests, the native XML database performs 3.4 times (48
TPS/14 TPS) as many inserts than the relational database performs.

These results are not meant to knock relational database technol-
ogy out of the running for XML persistence, because there are

Figure 5-8 Comparing query performance between a native XML
database and a relational database management system.

112 Chapter 5 Solve Performance Problems with FastSOA Patterns

undoubtedly a large number of optimizations that could be
employed to improve performance. Instead, I show these numbers
to prepare you for the performance and scalability challenges in
SOA environments that use an unknown variety of XML message
sizes and schemas. There is no gatekeeper to the number and form
of XML message schemas in an SOA environment. Mid-tier caching
strategies need the best performing and most flexible database
available that can handle multiple and unknown message schemas
and data formats.

The benefits to a business running a FastSOA mid-tier service
cache include:

• Less CPU licenses for commercial application servers

• Less network overhead

• Improved performance as compared with other mid-tier
cache architectures

• Advanced SOAP in-line processing for a 2–3 times
performance improvement over binding proxies created
with Java application server utilities

• More efficient relational to XML transformation processing

The next scenario shows how FastSOA is used as a service data
cache to improve data retrieval performance.

Figure 5-9 Comparing insert performance.

5.3 Scenario 2: Improving SOA Performance to Access Services 113

5.3 Scenario 2: Improving SOA Performance to Access Services

In this scenario, a business operates a portal for employees to sign up
for a retirement plan, medical insurance plan, and other programs.
The portal application interfaces to an external database using a
JDBC driver to retrieve company news. It also interfaces using REST
protocols (XML over HTTP) for employee benefits data from the
human resources service. The portal allows single sign-in to these
services by interoperating with the corporate directory using LDAP
protocols. Figure 5-10 illustrates a typical use case.

The use case begins with an employee signing in. The portal
application validates the user credentials. Validated users sign up for
alerts to enable the system to send an email notification when new
healthcare plans become available. The employee uses the portal to
browse healthcare plans and choose a plan. The service ends the use
case by confirming the plan choice.

Figure 5-11 illustrates an architecture often recommended in the
Java development community to implement the employee portal.

The architecture divides into three portions: a presentation tier, an
application tier, and a data tier. The presentation tier uses a Web
browser with AJAX and RSS capabilities to create a rich user inter-
face. The portal application also presents data to systems in other
departments using SOAP and Java interfaces. At the application tier,
an Enterprise Java Bean (EJB) implements the business logic to
respond to the request. The EJB interoperates with a relational data-
base, security manager, and human resources service. Corporate
mandates require the system to store the plans offered to the employ-
ees in its original XML form.

This architecture puts a lot of emphasis on the EJB. The EJB must
produce aggregated views of the healthcare plans according to the
user’s position in the company. The views are assembled from XML
data sources (the human resources system) and LDAP security pro-
vider. There are three problem areas that cause scalability,
performance, and developer productivity problems when using
Java objects and relational databases in what is otherwise an XML
environment in this scenario:

Figure 5-10 The employee portal use case.

114 Chapter 5 Solve Performance Problems with FastSOA Patterns

• Slow object/relational mapping. The views from the aggre-
gated XML services need to be mapped into objects and
then mapped into relational rowsets. This requires much
coding and processing.

• Every request accesses the services and database slowly.
There are only so many types of employees. Yet, the EJB
assembles the views into the plan data each time a user
requests a page.

• Schema changes cause coding changes. Every change to
the human resources system message schema requires you
to be right back in the code for the EJB.

Figure 5-12 shows an architecture that uses XML-centric technol-
ogy to efficiently and rapidly create aggregate views of data from
multiple data sources, accelerate data source performance by caching
commonly used view data in the mid-tier, and implement flexible
and rapidly changed policies to operate the data cache.

The mid-tier data cache stores XML, non-XML (such as binary),
and other general types of data in two databases:

Figure 5-11 The employee portal built with Java and relational
technologies

5.3 Scenario 2: Improving SOA Performance to Access Services 115

1. Direct views database. Holds views of the data from the
upstream data source providers. For instance, when the
human resources health care plan services go off-line, the
mid-tier data cache still services the last available view of
the data. In another instance, the EJB may need a healthcare
plan using a more modern schema and the direct views
database holds a transformed healthcare plan from the
human resources service emitting plans in an older schema.
The direct views database may also hold an aggregated
view of two plans and an archive of how the plans have
changed over recent time.

2. Aggregate views database. Holds data views that are intel-
ligently composed as data is served to the EJB. For instance,
in the employee portal scenario the aggregate views data-
base stores the most recent plans viewed, keeps a list of
popular plans, and keeps a list of high-quality plans as
ranked by employee feedback.

The mid-tier data cache uses a set of policies to determine the con-
tents of the direct and aggregate views databases. Each policy holds

Figure 5-12 Implementing a data cache for aggregate views

116 Chapter 5 Solve Performance Problems with FastSOA Patterns

the business logic to look into upstream data sources and make deci-
sions on which data to update and how frequently. The policy system
is efficient at processing the business logic and storing the resulting
XML views of the data from its use of native XML technology.

Choosing the FastSOA architecture for a mid-tier data cache in
this scenario delivers a way to mitigate XML schema migration prob-
lems, reduce the amount of object-to-relational-to-XML mapping and
transformation, and provides off-line data browsing capability. All of
this comes without requiring you to be back in the EJB writing code.

The benefits to a business running a FastSOA mid-tier data cache
include:

• Direct and aggregated views of the data model

• Real-time and near-time access between data and applica-
tion tiers

• Two to 20 times performance advantage

In the next scenario, I will show how FastSOA is used as a plat-
form for building high-performance and scalable dynamic services.

5.4 Scenario 3: Flexibility Needed for Semantic Web, Service
Orchestration, and Services Dynamically Calling Other Services

Over the past two years, the software development community has
enjoyed a renaissance of creativity from new XML-based technology,
including mashups (for instance, combining Google maps with pho-
tos from Flikr), AJAX for better user interfaces, and REST for easy
application-to-application interoperability. Much of this creativity
pushes software development in the direction Tim Berners Lee
espoused in the semantic Web.

When services communicate with other services, XML is the
interoperability standard. FastSOA has much to offer a software
developer working in an XML environment. Figure 5-13 illustrates
an architecture that adds fast, efficient, and flexible XML capabilities
to an otherwise Java and relational database architecture.

The FastSOA architecture enables developers to write business
logic using pure XML technology. The FastSOA architecture provides
the XML interface to the existing Java and relational database sys-
tems. For instance, when a browser makes an XML request from an

5.4 Scenario 3: Flexibility Needed for Semantic Web, Service Orchestration, and Services Dynamically

AJAX component, FastSOA receives the request, sees if the response
is cached and still valid, and responds with the cached response. If
the request requires data provided by a Java object (in the EJB), then
FastSOA makes a direct Java call to the object and method.

FastSOA as a service interface and component development envi-
ronment for semantic Web applications brings the following business
benefits.

• One hundred percent native XML environment

• Avoiding object/relational/XML mapping reduces need for
expensive application servers and network bandwidth

• Reduced software maintenance over time as message sche-
mas change

The above three use cases show where FastSOA is an appropriate
solution for XML performance and scalability challenges. We saw
how native XML technology used at the mid-tier mitigates and
solves performance and scalability problems and delivers flexibility
unavailable with object and relational technology. The following are
the business benefits for FastSOA.

• Solves SOA scalability problems for fast throughput and
good scalability

Figure 5-13 FastSOA in a semantic Web environment.

118 Chapter 5 Solve Performance Problems with FastSOA Patterns

• Works within existing infrastructure to avoid replacement
costs

• Easy to customize with enterprise business processes using
XQuery-based components

• Improves business agility and flexibility by maintaining
interoperability and accelerating performance

5.5 Summary

This chapter showed three real-world scenarios where FastSOA
improves performance, mitigates service bottlenecks, and
improves developer productivity. In the next chapter, I show my
PushToTest methodology to test and quantify performance in an
SOA environment.

119

Chapter

6
The PushToTest Method to Identify SOA

Scalability and Performance Metrics

The previous chapter showed the FastSOA patterns for accelerating
SOA performance and mitigating performance problems in three use
cases. Each pattern has a performance, scalability, developer produc-
tivity, and flexibility benefit. This chapter shows the scalability and
performance test methodology I developed at PushToTest to identify
and quantify the FastSOA benefits.1 This is the same test method
used at General Motors, BEA, Lockheed Martin, Sun Microsystems,
and the European Union. The methodology makes apparent the
tradeoffs a software developer makes when choosing SOA coding
techniques, code libraries, and APIs.

6.1 The Method to Identify SOA Performance Metrics

It frequently surprises me how few enterprises, institutions, and
organizations have a method to test services for scalability and per-
formance. One Fortune 50 company asked a summer intern it wound
up hiring to run a few performance tests when he had time between
other assignments to check and identify scalability problems in its
SOA application. That was their entire approach to scalability and
performance testing.

1 See http://www.pushtotest.com.

120 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

The business value of running scalability and performance tests
comes once a business formalizes a test method that includes the fol-
lowing steps:

1. Choose the right set of test cases. For instance, the test of a
multiple-interface and high-volume service will be different
from a service that handles periodic requests with huge
message sizes. The test needs to be oriented to address the
end-user goals in using the service and deliver actionable
knowledge.

2. Accurate test runs. Understanding the scalability and per-
formance of a service requires dozens to hundreds of test
case runs. Adhoc recording of test results is unsatisfactory.
Test automation tools are plentiful and often free.

3. Make the right conclusions when analyzing the results.
Understanding the scalability and performance of a service
requires understanding how the throughput, measured as
transactions per second (TPS) at the service consumer,
changes with increased message size and complexity and
increased concurrent requests.

All of this requires much more than an adhoc approach to reach
useful and actionable knowledge.

This section teaches the PushToTest methodology for understand-
ing the scalability and performance of SOA in multiple environments
and configurations. You will learn how to identify the use cases, test
cases, and test scenarios to understand the scalability and performance
of your SOA. And you will learn how to analyze the results.

The PushToTest methodology is available to you in a set of devel-
oper scalability and performance kits. These kits are either available
for free download under an open-source license or available as a
commercially licensed product. Details on the available kits can be
found later in this chapter.

6.1.1 An SOA Industry Supporting the PushToTest Methodology

PushToTest is a software publishing and services company I
founded in 2001. Enterprise information technology managers were
in a bind. They already used up their capital budgets through the
1990s buying huge volumes of equipment and building huge data-

6.1 The Method to Identify SOA Performance Metrics 121

center capacity. Now they needed to increase productivity of their
existing information systems without engaging huge integration
projects such as those of the past. Against this backdrop I founded
PushToTest as a test automation solutions and enterprise services
business with three goals.

1. Use open-source distribution and development techniques
to build a test tool. I used on-line community development
techniques to build an audience to sell services and product
license up-sells.

2. Conduct scalability and performance studies of information
systems and development tools and libraries for software
tools vendors and enterprises that use the tools.

3. Convince the software development tools vendors and
enterprise users that it is in their best interest to release per-
formance and scalability testing results and the software
developed of the studies they commissioned to the software
development community as a “kit.”

PushToTest developed a community of approximately 110,000
software developers, quality assurance technicians, and IT manag-
ers who use the open-source TestMaker framework and utility to
build automated Web Service, and SOA tests. The scalability and
performance kits use TestMaker and garnered interest from the
software development community and CIOs. The kits deliver
immediately usable reference software code to developers and best
practices and a total cost of ownership (TCO) analysis to business
managers. PushToTest became the company that tools vendors such
as BEA, Sun, and IBM turned to for independent validation of their
competitive standing, and enterprises turn to PushToTest for inde-
pendent validation of the tools vendors claims.

Many of the tools vendors released the resulting software to the
software developer community. Use Google to search for “scalability
and performance kit” to find these. Here are URLs to the publicly
available kits:

• BEA SOA Performance and Developer Productivity Kit:

http://dev2dev.bea.com/soa/toolkit.html

122 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

• The SOAP Encoding Performance Kit featuring IBM Web-
Sphere:

http://www.pushtotest.com/Downloads/kits/
webspherekit.html

• Web Service Performance and Developer Knowledge Kit:

http://www.pushtotest.com/Downloads/kits/
origperfkit.html

• Additional kits are available at:

http://www.pushtotest.com/Downloads/kits

The most recent kit implements the FastSOA pattern using a vari-
ety of native XML and relational tools. This kit is available under a
commercial license from Raining Data.

• Raining Data FastSOA Performance Kit:

http://www.rainingdata.com/products/soa/soatestkit

The PushToTest methodology implemented in these kits follows a
user goal-oriented testing (UGOT) philosophy to determine the scal-
ability, performance, and reliability of a service and application soft-
ware. The following sections describe this in detail.

6.1.2 User Goal Oriented Testing (UGOT)

In my previous book, Java Testing and Design, I introduced the user
goal-oriented testing (UGOT) method.2 UGOT contrasts user goals
with what a service (or application) actually delivers. I developed
the idea for UGOT testing after hearing Alan Cooper describe his
techniques for user goal-oriented software interface design.3 Alan
argues that software developers should design user interfaces
against the needs of a single archetypal user. I enjoy watching Alan
spar with developers on this issue. Most developers argue with
Alan that they should be designing their interfaces for all possible
users. Alan counters by saying, “If you design for every possible

2 Prentice Hall Publishers, ISBN 0131421891, published in 2004.
3 See http://www.cooper.com.

6.1 The Method to Identify SOA Performance Metrics 123

user, no individual user will have his or her goals met when using
your software application!”

The same controversy exists when applying Alan’s techniques to
testing. Most software developers I have met are predisposed to want
maximum coverage of all features when testing new software. When
this happens, I point out that coverage tests are usually pointless.
Users always take a path through the functions in a service. They
never use every feature. They use a chain of features, one after another.

The agile development community approaches this problem by
recommending a “test first” strategy. Test first urges developers to
write a unit test of a class before writing the class itself. At build time,
the compiler environment compiles the object code for the class and
then runs the unit test against the compiled code. The unit test com-
pletes successfully by receiving example data and validates the
response. When the class returns an invalid response, the unit test
throws an exception that the build and deploy environment handles.

Unit testing and agile development methods help but are not a
complete solution to UGOT techniques. For instance, test first is usu-
ally only carried out at a unit level. SOA deploys applications as a
collection of services, so testing individual units misses most of the
big problems that occur during SOA integration and deployment.
UGOT-modeled tests check a service as an individual user would—
by picking one feature after the next in a chain of service requests.

UGOT is ideal to understand SOA performance and scalability
testing. UGOT treats ad-hoc testing of software as the slippery slope
to madness. In all that we do to understand performance and scal-
ability in SOA, every step must deliver real value to the decision
makers who build and operate services.

Convincing your organization to use UGOT requires a little per-
sistence and then a whole lot of explanation. Which software archi-
tect, developer, and IT executive will refuse the results of a test that
would immediately benefit the business or institution? First ask the
question, “What do I need to learn from a performance test and how
will it benefit my company, business, or institution?”

This question gets directly to the heart of the reason why we test
SOA at all. It may be more difficult to answer than it first appears. In
the test projects I have run, sometimes the answer took longer to find
than the time it took to run the actual test and understand the results.

The question challenges us to understand what we are actually
testing. For instance, Figure 6-1 shows many of the building blocks
found in Java development tool set for building SOA.

124 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

The components build on each other in three tiers: At the bottom
are the fundamental components for SOAP bindings, XML parsing,
Java inter-application messaging services (JMS), and clustering.
Building on these are service bus components for services to interop-
erate at a message level. The top tier provides interoperability at an
application level. Given these building blocks and tiers, where would
you start testing to understand the scalability and performance of an
SOA implementation?

For instance, would it make sense to test only the connectors and
caching objects at the service bus level exclusively? If you did so, you
may miss key performance bottlenecks in the SOAP Bindings and
JMS service. Each of the components in Figure 6-1 impacts the scal-
ability and performance of the resulting SOA implementation.

Another way to understand the goal of your test is to review the
definition of SOA I first presented in Chapter 1, now shown here in
Figure 6-2.

Figure 6-2 shows that SOA is a consumer, service, and broker
architecture. Performance tests normally check at least two. For
instance, one performance test may check a consumer and service,
and, in another example, you may test a consumer and a broker.
Table 6-1 lists options to understand which part of your system
would benefit most from a scalability and performance analysis.

Table 6-1 covers the SOA test goals I most often encounter. How-
ever, there are many more possibilities, and the pace of innovation
within SOA building tools is fast.

Figure 6-1 The possible architectural components of SOA designs
that could be tested for performance and scalability.

6.1 The Method to Identify SOA Performance Metrics 125

Figure 6-2 SOA is a consumer, service, and broker architecture. So
what do you test first? And when?

Table 6-1 Understanding Your Test

What you want
to test

Benefit of this kind
of test

Type of
test

Parameters to
understand the

scalability index

Service
Interface

Decrease response times
for each request to a ser-
vice to lower network
bandwidth and server
hardware costs.

State-
less

Message size and con-
current request levels

XML Parsing Decrease the time it takes
to route a message to a
service handling object to
lower network band-
width and server hard-
ware costs.

State-
less

Schema complexity
(depth and element
count), document size,
concurrent request level

Data
Persistence

Decrease the time it takes
to store and retrieve mes-
sages to lower network
bandwidth, server hard-
ware, and disk costs.

Stateful Schema complexity
(depth and element
count), document size,
concurrent request level

Data
Transforma-
tion

Decrease the time it takes
to transform a message
into a given XML schema
to lower network band-
width and server hard-
ware costs.

State-
less

Source and destination
schema complexity
(depth and element
count), request and out-
put document size, con-
current request level

126 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

The name of the test and its benefit shown in Table 6-1 should be
self-explanatory. The type of test and parameters to understand the
test merit some explanation.

• The type of test is either stateful or stateless. Each requires a
different testing strategy and has different test goals.

• Stateless testing checks the impact of concurrent
requests and message payload size on a service. The
service responds to each request independently from
all the other requests. It is therefore stateless.

• Stateful testing is similar to stateless testing; how-
ever, the service provides data persistence, workflow
transaction processing, message queuing, sessions, or
data indexing.

• The parameters to understand the scalability index define
the inputs to a test that will show us the scalability index—
the usage pattern that shows us what we can expect of our
service’s performance in production.

I show the scalability index, stateful and stateless testing, and
the impact of changes in the test parameters in more depth later in
this chapter. First, let me explain the steps to implement the
PushToTest method.

Data
Aggregation
and Federation

Decrease the time it takes
to respond to service
requests that require
inputs from several up-
stream data sources.
Reduces network band-
width and server hard-
ware costs.

Stateful Schema complexity
(depth and element
count), for each up-
stream service, data
persistence quantities,
time-to-live (TTL) val-
ues for each message

Data Mitiga-
tion

Improve service avail-
ability and user satisfac-
tion by reducing the
times when a service is
unavailable at times of
peak usage.

Stateful Schema complexity
(depth and element
count), for each request,
document size, concur-
rent request levels

Table 6-1 Understanding Your Test (continued)

What you want
to test

Benefit of this kind
of test

Type of
test

Parameters to
understand the

scalability index

6.1 The Method to Identify SOA Performance Metrics 127

6.1.3 The Method

The PushToTest method implements five sequential steps, each with
a checkpoint milestone. Table 6-2 describes the test phases and
checkpoints.

New terminology may have appeared to you in Table 6-2. Here is
a brief explanation of the terminology I use:

• Use case—describes the functionality of a test. For instance,
a test compares XML parsing techniques by including two

Table 6-2 The PushToTest Method

Phase Goal Checkpoint

Planning Answer the question,
How will this test ben-
efit my organization?

Write test plan docu-
ment.

Definition Identify the use cases,
test cases and scenario
and test environment
(hardware, software,
network).

Add the use cases, test
cases, and test scenario
to the test plan. Achieve
management sign-off.

Calibration Test Calibrate the test cases
to the test environ-
ment.

Identify the use cases
that drive the test envi-
ronment to its maxi-
mum throughput (as
measured in TPS from
the client).

Optimize Modify the service
and/or test environ-
ment to optimize for
best performance
based on what you
learned in the calibra-
tion test.

Amend the test plan to
add the optimizations
made.

Full Test Run the test scenario. Successful run of test
scenario.

Results Analysis Identify test result
metrics and trends
against test scenario
goals.

Present results and
achieve adoption by
management.

128 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

use cases: the first using the Xerxes DOM parser and the
second using the JAXB XML binding compiler.

• Test case—describes the inputs to an individual test. For
instance, a test compares service throughput at low and
high levels for message payloads by defining two test cases:
the first making requests to the service using XML docu-
ments of 500 bytes and the second test using documents of
10 kilobytes.

• Test scenario—the aggregate of all the test cases and use
cases run to complete the test.

With any test methodology, the devil is in the details. That is why
the next section provides a detailed look at the method in practice.
But before we dig into that, we will cover an important distinction
between this SOA test method and everyday software testing.

6.1.4 Method for Black Box and White Box (Profiling) Tests

Testing SOA for scalability and performance is different from testing
software applications and code. SOA testing is focused on under-
standing how a service responds to increasing levels of concurrent
requests, message sizes, and response handling techniques. The
nature of SOA testing is black box testing. It really does not matter
what happens inside of the box.

Too often, software developers are ready to break out a code pro-
filer to learn the location of a performance problem. Profilers have
their place in testing software. However, in my experience, black
box testing more often yields actionable knowledge. Here is what I
recommend:

1. Create a baseline performance metric. I call this a Scalability
Index, using black box performance tests that show TPS
results as measured at the service consumer in a variety of
message sizes, message schema complexities, and levels of
concurrent requests.

2. When comparing performance and scalability between
multiple servers, consumers, or brokers, it is important to
identify the scalability index of each server and then to nor-
malize the test parameters to avoid wrongly reporting slow

6.2 Applying the Method to SOA and Web Services 129

performance results. I call this step a calibration test, as you
are calibrating the test lab to properly run the tests.

3. Once you determine the scalability index of the service,
then use white box techniques to profile the largest time
expensive object operations to handle requests. Optimize
the software based on the profile.

4. Continue to optimize the service by repeating steps 2 and 3.

5. Run the Performance Index and analyze the results.

Profilers have a place in testing SOA. However, in my experience,
developers are usually better off conducting black box tests to under-
stand the Scalability Index of a service first and then use profilers to
solve the underlying problems.

The above sections lay the groundwork for understanding the
method I use to test services for scalability and performance. Next,
we will see the test method applied to a real-world SOA scenario.

6.2 Applying the Method to SOA and Web Services

While the previous sections cover the goals and means to test ser-
vices, there is nothing quite like a good example. This section shows
what went into the Raining Data FastSOA Performance Kit.4

The Raining Data FastSOA Performance Kit—for the remainder of
this chapter I will referred to as “the kit”—highlights the scalability,
performance, and developer productivity differences between SOA
services built with Java application servers and database tools and
the same services built with native XML technology. The kit looks at
SOA from two perspectives:

1. SOAP binding acceleration. Implements the FastSOA
architecture using Java objects and XQuery technology. The
use cases contrast performance and developer productivity
based on the typical developer choices of XML parsing tech-
niques (XML binding compiler, streaming XML parser, and
DOM approaches for Java and XQuery parsing).

2. Mid-tier caching for service acceleration. Implements a use
case with native XML databases (XML DB) and relational

4 http://www.rainingdata.com/products/soa/soatestkit.

130 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

databases (RDBMS) to contrast database performance
across a variety of XML message sizes and database opera-
tions (insert, update, delete, and query).

The following sections explain the background and goals of the
test to illustrate applying the PushToTest method in the kit.

6.2.1 Planning: Background and Goals

Software architects and developers make choices of XML parsing
techniques, service libraries, encoding techniques, and protocols
when building services using SOA techniques. Each choice has an
impact on the scalability and performance of the finished service.
The kit has the following three goals.

1. Explain the changing landscape of APIs, libraries, encoding
techniques, and protocols to software architects and develop-
ers. The current generation of technology choices changes
approximately every six to nine months. For instance, JAXB
1.0 is replaced by JAXB 2.0 and WebLogic Server 8.1 is
replaced by WebLogic Server 9.

2. Identify and use real-world use case scenarios that inform
software architects and developers of the most appropriate
technology choices based on the goals of the intended ser-
vice. The scenarios come from practical experience testing
Web Services for General Motors and seeing how develop-
ers at the Silicon Valley–based Software Development
Forum apply XML parsers and service interface toolkits.5

3. Deliver code that is compatible with software developers’
existing knowledge of building functional and scalability
tests, including black box, unit testing, and agile test-first
(unit) testing methods. I have seen many tutorials from ven-
dors that did not match what I used to build my own soft-
ware. They were useful but always seemed to require
adoption of some proprietary tool that I did not have or made
use of some secret magic that only the vendor had access to
internally. I resolved to use the same techniques to build the
kit that I used on my open-source project and only follow the
publicly available information as published on the Web.

5 See http://www.sdforum.org.

6.2 Applying the Method to SOA and Web Services 131

The kit delivers a reusable method for evaluating SOA perform-
ance and system scalability. And the results findings feed basic
business needs for cost/benefit and feature/function analysis,
including the following benefits:

• Reduce the extra cost of hardware and per-CPU licensed
software to run less efficient services built with less efficient
tools.

• Increase savings in efficiency from lowered network and
processor bandwidth.

Save the additional time needed to solve interoperability prob-
lems caused by less effective tools.

The kit arms business managers and software developers with the
evidence they need to recommend and adopt FastSOA solutions

Table 6-3 Contents of the SOA Scalability and Performance Kit

Content Description

Source code Complete source code for each use case and test
scenario; including Ant build scripts for you to
build the kit in your own environment.

Developer’s Journal A Developer’s Journal describing in detail:

� Detailed use cases and test scenarios

� Design decisions and tradeoffs

� XML and Java binding implementation sto-
ries

� Client-side software to call the implemented
services

� Server-side software that implements the
services

� Use case scenario specific findings

� Installation and performance tuning

Prebuilt JARs—Ready
for you to press a start
button and watch the
results.

Prebuilt JAR and WAR files to run immediately
in your own environment.

TestMaker and
XS test scripts

Scripts to stage a scalability and performance test
of each use case and the test scenario.

132 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

internally and get their projects funded. Table 6-3 summarizes the
contents of the published kit.

Next, I show the kit’s use cases and test scenario.

6.2.2 Definitions: Use Cases and Test Scenario

The kit measures SOAP binding performance and scalability of bind-
ings created and deployed using J2EE-based tools and XQuery and
native XML database. Performance testing compares several meth-
ods to receive a SOAP-based Web Service request and respond to it.
Scalability testing looks at the operation of a service as the number of
concurrent requests increases. Performance and scalability tests mea-
sure throughput as TPS at the service consumer.

The use cases and test scenarios contrast the TPS differences
between the most popular approaches to parse the XML in a request.
I chose these in recognition of the following personal experiences:

1. While Web Services standards are now more than five
years old, a standard way to test services has not yet
emerged. For instance, the SPECjAppServer test imple-
ments a 4-tier Web browser-based application, where a
browser connects to a Web server, application server, and
database server in series. SOA, on the other hand, is truly a
multitier architecture, where each tier may be making
multiple SOAP requests to multiple services and data
sources. SPECjAppServer and similar 4-tier tests do not
provide reliable information for capacity planners and
software architects in SOA applications.

2. Software architects and developers are specializing their tal-
ents by service type. For instance, one type of developer
works with complicated XML schemas in order processing
services, while another group concentrates on building con-
tent management and publication services in portals.

3. The tools, technologies, and libraries available for a soft-
ware architect are changing rapidly. For instance, a survey I
conducted in 2005 shows that all Java-based XML parsing
libraries will change significantly within the next year.

Responding to the above issues, the kit has use cases common to
many SOA environments. These use cases highlight different aspects

6.2 Applying the Method to SOA and Web Services 133

of SOA creation and present different challenges to the software
development tools examined.

1. Compiled XML binding using BOD schemas. (Code-
named the TV Dinner.) In the TV Dinner scenario, a devel-
oper needs to code a parts ordering service. The service uses
Software Technology in Automotive Retailing (STAR) Busi-
ness Object Document (BOD) schemas.

On the consumer side, the test code instantiates a previ-
ously serialized Get Purchase Order (GPO) request docu-
ment. The test code then adds a predetermined number of
part elements to the part to be ordered. On the service side,
the service examines only specific elements within the GPO,
instead of looking through the entire document.

The TV Dinner scenario is so-called because the entire
dinner comes all at once but the food is in compartments.
The developers are writing code that addresses elements
by their namespace, so they add/put only the parts of the
purchase order that need to change. The other compart-
ments—for instance, company name and shipping infor-
mation—don’t change from one GPO request to another.
The code for the TV Dinner uses JAXB-created bindings.
JAXB accesses the compartments individually. This kind of
XML to object binding framework is used only to instanti-
ate the required objects.

2. Streaming XML (StAX) parser. (Codenamed the Sushi
Boats.) In the Sushi Boats scenario, a developer builds a
portal that receives a “blog”-style news stream. Within
each received request is a set of elements containing blog
entries. The test code scenario parameters determine the
number of blog entries inserted into the request. The devel-
oper needs to skip the entries that the portal is not inter-
ested in and take action on the entries of interest. The test
code for the Sushi Boats will feature the JSR 173 Streaming
XML (StAX) parser.

The Sushi Boats scenario is so-called from our observa-
tions when one is at a Japanese Sushi Bar. The food comes in
a stream past the diner, and it is up to him or her to select
which boat to take food from.

3. DOM approach. (Codenamed the Buffet.) In the Buffet sce-
nario, a developer writes an order validation service that

134 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

receives an order request and needs to read every element
of the document to determine the response. The test code
scenario parameters determine how many elements it
inserts into the request. The test code for The Buffet scenario
uses Xerces DOM APIs.

The Buffet scenario is so-called from our experience eat-
ing at a buffet restaurant and feeling compelled to visit all
stations in the restaurant.

The kit implements the above use cases using both Java and
XQuery tools.

In addition to the use cases just mentioned, the kit contrasts data-
base performance differences between use of native XML databases
and relational databases when persisting XML data with complex
schemas and multiple message sizes in the mid-tier.

6.2.3 Additional Use Cases Considered but Not Implemented

During the planning phase of the test case, it is very easy to add use
cases and wind up with a test that takes months to run! Sizing the
number of use cases meant putting off some test cases until a future
date. The following use cases will appear in a future edition of the kit
but were temporarily put aside for the sake of time.

1. Creating XML structures from relational data. This is a very
common scenario because relational databases are so
widely deployed. Also, recombining data to create different
structures is often very important.

2. Additional ways to return XML data. For instance, return-
ing entire XML documents and extracting portions of a very
large XML document.

3. Joins between nodes of large XML documents.

4. Returning large or complex XML structures, either by direct
extraction or as the result of more complex operations.

5. Full-text queries for portions of XML structures.

The above tests will likely make it into the next performance test.

6.2 Applying the Method to SOA and Web Services 135

6.2.4 Defining the Test Scenario

The test scenario is the aggregate of all the use cases and test cases. For
instance, the kit implements several use cases that show different
approaches to XML parsing (DOM, XQuery, StAX, and Binding
Compiler). So if I wanted to run the four use cases with two message
sizes I would have eight test cases in my test scenario.

Figure 6-3 lists the four use cases, two technology choices, three
message payload sizes, and four concurrent request levels.

The test scenario is the aggregate of all the test cases. For instance,
in one test case the test uses the XML Binding Compiler running on
TigerLogic at 100 kilobytes and 100 concurrent requests is a single
test case. With so many parameters it is easy to see that this test sce-
nario requires 96 test cases to be run.

If each test case takes 5 minutes to run with a 5-minute warm-up
and 5-minute cool-down period, then the entire test scenario will
take 1,440 minutes (24 hours) to run. I advise caution when adding
use cases to a test scenario unless you are confident that the extra
time will deliver actionable knowledge.

Figure 6-3 The test scenario is the aggregate of all the use cases,
technology choices, request payload size, and concurrent requests.

136 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

6.2.5 Identify the Test Environment (Hardware and Software)

The last part of defining the test concerns the test environment itself.
One of the goals of the test is to follow commonly used best practices
that are well known and published. I chose the following for the test
environment specification:

• For service hardware, the fastest, least expensive server
hardware with the best performance. At the time, this was a
rack-mounted IBM 4-CPU Intel Xeon 2.8-GHz model 873
server with 4 gigabytes of memory, dual gigabit Ethernet
adapters, running Windows 2003 Server, Service Pack 2.

• For load-generating consumers of the service, a white-box
no-name rack-mounted 2-CPU Intel Xeon 2.1-GHz with 2
gigabytes of memory, dual gigabit Ethernet adapters, also
running Windows 2003 Server, Service Pack 2. I refer to
these as TestNodes.

• The choice for client-side load generating test automation
framework was simple. TestMaker—my baby—is free,
open-source, and supported by a large user community. The
kit code comes with a set of TestMaker files, but it should be
possible to implement the test scenario using any commer-
cial or open-source performance tools.

• I chose BEA JRockit JVM 1.5 as a Java Virtual Machine to
operate the server-side test software. Past performance test-
ing on JRockit makes me impressed with its speed and sta-
bility. Additionally, an informal poll of datacenters shows
many Java application servers being run on JRockit.

• For Java-specific optimizations I bumped the consumer and
server memory up to 4 gigabytes, the capacity of the under-
lying PC, using the –Xms and –Xmx memory settings. I set
these values to the same large number.

• Logging, debugging, and monitor components were dis-
abled to reduce overhead. All servers were restarted after
each scenario, to clean up resource allocations.

At this point, the test is defined to a point where coding of the use
cases should begin. This is a good point to end the definition phase,
build the test environment, install the test, and learn the actual levels
where the server has topped out.

6.2 Applying the Method to SOA and Web Services 137

6.2.6 Using the XSTest Pattern for Performance Tests

When testing SOA for scalability and performance, the sheer number
of test cases in the test scenario makes test automation a necessity.
One approach to test automation is a pattern I call XSTest and is
implemented as a feature in TestMaker. XSTest takes a test
sequence—such as the scenario in Figure 6-3—as input, stages each
test case in sequence, and records the transaction results to an XML-
based log file. The XSTest implementation in TestMaker then tallies
the results from the log file into a TPS report. Figure 6-4 illustrates
the XSTest pattern in a UML sequence diagram.

A key advantage to the XSTest pattern is its use of jUnit TestCase
objects. These are familiar to most developers and also easily
learned. The kit implements the tests into TestCase objects for use in
the load test and reuse as functional tests.

6.2.7 Calibration Testing

When defining the test scenario, a certain amount of speculation gets
baked into the test plan. For instance, Figure 6-3 speculates that a test

Figure 6-4 XSTest sequence diagram showing how it runs a test
scenario.

138 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

case can achieve satisfactory throughput (TPS) with a message pay-
load request size of 500 kilobytes and 200 concurrent requests.

A calibration test identifies the optimum throughput—measured
in TPS at the consumer—for a service against the test given test hard-
ware and software. For instance, consider the results presented in
Table 6-4.

Table 6-4 shows the two input values for the test: the size of each
message sent to the service and the number of concurrent test agents.
XSTest in TestMaker uses these values to operate a test case. XSTest
instantiates one thread for each concurrent request. Each thread
dynamically generates data of the defined payload size and sends
the data as a request to the service. The thread receives a response

Table 6-4 Calibration Results Analysis for a Stateless Service

Payload Size
(Bytes)

Concurrent
Agents

Transactions
Per Second

(TPS)

1,000 10 10.376

2,000 10 8.667

3,000 10 6.174

4,000 10 1.383

5,000 10 0.731

Figure 6-5 A bar chart view of the results data from Table 6-4
shows the maximum throughput value more clearly.

6.2 Applying the Method to SOA and Web Services 139

from the server, validates the response, handles any exceptions, and
logs the response as a completed transaction. The thread repeats
these steps until the test case period is finished.

Looking at Table 6-4 and Figure 6-5 tells a few things about the
service under test, including the following.

1. As the payload increases, the TPS reduces proportionately.
The test is not saturating or underutilizing the server, net-
work, or consumer. If TPS were increasing, then we were
testing at too low of a level; if it were flat or dropping
sharply, then we were testing at too high of a level. (I
explain this in detail later in this section.)

2. The reduction in TPS is not proportional to the increase in
request size. If the network and consumer are not highly
active, then this is an indication of a poorly performing
request processor at the service. It could be that the message
parsing system is not allocating resources (such as memory,
network socket connections, and message queues) correctly
sized to the demands of the test.

3. TPS takes a significantly larger reduction for the test cases
above 3,000 bytes of payload. This is a case where I nor-
mally break out a code profiler and see which buffer has
overflowed or which object list was not created to be large
enough for the test.

While Figure 6-5 tells me a few things about the service, there is
not enough information here to make a conclusion. I have more
questions than conclusions! The test needs to provide the values
listed in Table 6-5 to help determine what is going wrong.

Table 6-5 Observed Parameters Required to Calibrate the Test

Observation Description

Request Payload Size Size in bytes of the message body
sent in the request to the service

Response Payload Size Size in bytes of the response mes-
sage body sent from the service

Concurrent Requests Total number of concurrent requests
in this test case

140 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

In a stateless system, each request to the service allocates its own
memory, CPU bandwidth, network bandwidth, and other resources
necessary to make a response. In a stateless calibration test, I am
looking for resource bottlenecks. Table 6-6 shows the results of the
test scenario with the network utilization and server and consumer
CPU utilization.

Transactions per Second (TPS) Total number of completed
responses divided by the number of
seconds for the test case

Network Utilization % network bandwidth utilized as
measured from the server

Server CPU Utilization % server processor bandwidth uti-
lized

Consumer CPU Utilization % consumer (client) processor band-
width utilized

Average Transaction Time Average time each response took
from the service as measured by the
consumer/client

Minimum Transaction Time Minimum time each response took
from the service as measured by the
consumer/client

Maximum Transaction Time Maximum time each response took
from the service as measured by the
consumer/client

Table 6-6 Running the Test While Logging Network and CPU Utilization.

Payload
Size (Bytes)

Concurrent
Requests

Transactions
per Second

(TPS)
Network

Utilization
Server CPU
Utilization

Consumer
CPU

Utilization

1,000 10 10.376 1.24% 55% 34%

2,000 10 8.667 1.14% 78% 37%

3,000 10 6.174 1.32% 89% 31%

4,000 10 1.383 0.45% 95% 21%

5,000 10 0.731 0.28% 96% 18%

Table 6-5 Observed Parameters Required to Calibrate the Test

Observation Description

6.2 Applying the Method to SOA and Web Services 141

Aha! Looking at the results in Table 6-6 gives some idea of what is
going on during the test scenario.

1. The test is server bound from achieving greater throughput
(TPS). When payload sizes are less than 4,000 bytes, the
server CPU utilization is high but not saturated. At 4,000
bytes and over, the CPU is pegged.

Stateless tests require resources to handle the load of con-
current requests. Take away one of those resources—CPU
bandwidth or possibly free memory to operate on the larger
payloads—and each response takes longer and lowers over-
all TPS.

2. The scale of the problem tells me that there is a significant
problem in the server. The payload size between 1,000 and
5,000 increases 5 times but the TPS value decreases from
10.376 to 0.731, or 14 times. In a stateless test, the TPS value
should be relative to the inputs.

By the way, this is a stateless test, so each request should be
served from an independent group of resources (threads, memory,
etc.) Watching CPU and memory utilization levels is an appropriate
way to identify scalability and performance thresholds. This is not
the case for stateful services, including databases and workflow
applications. Stateful services use data caches, server queues, and
typically have the overhead of a session manager. Each of these
impacts CPU and memory utilization levels in the service indepen-
dently of the current request load from consumers.

The calibration test illustrated above helps us to determine which
levels of concurrent requests and message payload sizes are appro-
priate for a scalability and performance test of a given service run-
ning on a defined software and hardware environment. The results
we are looking for show a Scalability Index for the service.

6.2.8 Scalability Index

Calibration testing matches the number of concurrent requests and
payload sizes in a test scenario to the underlying service software
and hardware. A Scalability Index is a function of the TPS a service
delivers as the concurrent requests and payload sizes change in a test
scenario. Figure 6-6 illustrates a Scalability Index for a service.

142 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

The Scalability Index in Figure 6-6 shows how the service
responds to increasing levels of concurrent requests. There are three
distinct parts to this Scalability Index, as follows:

• When testing the service at 10, 20, and 30 concurrent request
(CR) levels, we see that TPS rises for each CR level. Figure
6-6 identifies this as View A. Imagine your conclusion if all
you tested were the CR levels in View A. The TPS results
would mislead you to believe that the service would scale
up to handle additional CRs. In fact, when you get to 40
CRs, the TPS values begin to decrease.

• When testing the service at the other end of the spectrum—
70, 80, and 90 CR levels—the TPS values do not change
noticeably as the CR levels increase. Imagine your conclu-
sion if all you tested were the CR levels in View C. I have
seen information systems managers buy overly equipped
server hardware to contend with situations where the
server received too many responses to efficiently handle
them all. The manager could save a lot of money if he or she
bought many smaller machines to load balance the total CR
levels into smaller CR levels sent to multiple servers.

• Calibration tests seek the TPS values in the 40, 50, and 60
CR levels shown in View B. In this range, the service
responds to a moderate number of CRs at a TPS rate that is
acceptable to the organization hosting the service.

Figure 6-6 The Scalability Index shows the TPS at a set of given
concurrent request sizes. Calibration testing shows us the most value
range of payload sizes to test the service.

6.3 Understanding TPS 143

The calibration test of the service illustrated in Figure 6-6 shows
us that we should compare the TPS levels from View B to the other
scenarios, including alternative APIs and products. The View B CR
levels of 40, 50, and 60 do not underdrive the service with too few
requests and do not swamp the service with too many requests. We
can now take the View B CR levels as the results of the calibration
tests into the full test of the test scenario.

In the above example, we found the CPU, network, and memory
utilization values during the test to be helpful in determining the
location of a performance and scalability bottleneck. CPU and mem-
ory bandwidth are helpful in stateless tests. In the next section, I will
show that CPU and memory bandwidth are usually meaningless for
stateful tests.

6.3 Understanding TPS

Before we move on to running the full test and doing the results anal-
ysis, I want to make sure you have a thorough understanding of
transactions per second (TPS) measurement. I have seen TPS results
confuse and mislead software architects, developers, and CEOs.
Sometimes the results can be counterintuitive.

Figure 6-7 The Scalability Index shows the function of a service’s
ability to respond to increasing levels of concurrent requests.

144 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

Figure 6-7 shows the system’s scalability as measured by through-
put. In other words, how many transactions can the system handle as
it receives more and more requests. The test measured how many
TPS are being handled at four levels of concurrent requests.

A perfect information system is able to keep handling requests at
the same speed regardless of how many requests come in at the same
time. Charting a perfect system’s scalability shows TPS rates increas-
ing in equal proportion to the number of requests sent its way. For
example, in the perfect system if you made 100 concurrent requests
in a 10-second interval and the system responded to each of the
requests in 2 seconds, then the perfect system should let you make
200 concurrent requests in a 10-second interval with each request still
taking 2 seconds. The resulting chart of the perfect system would
look like Figure 6-8.

TPS keeps going up and to the right in equal proportion to the
number of requests made. At each measured level of concurrent
requests, the system is handling requests at a measured number of
transactions per second. When you increase the number of concur-
rent requests, the system handles more requests and so the overall

Figure 6-8 The Scalability Index for a service exhibiting linear
scalability.

6.3 Understanding TPS 145

average number of transactions completed increases in equal pro-
portion. For example, at 100 concurrent requests the system han-
dles 1,000 requests in a 10 second period (100 TPS), and at 200
concurrent requests the system handles 2,000 requests in the same
10 second period (200 TPS). That is perfect scalability—the Holy
Grail of performance testing. The additional requests you throw at
the system do not slow down the proportional speed at which the
system responds to the requests.

A typical system that hits a bottleneck would look like Figure 6-9.

As the system receives larger numbers of concurrent requests, it
slows down on responding to all requests. If you kept going past 400
concurrent requests in this system, eventually the system would
reach 0 transactions per second. Many systems I have checked for
scalability have this problem. The Scalability Index shows systems
managers how to plan the capacity of their systems against the
desired throughput to make users happy. The Scalability Index also
helps developers to understand the impact their design and coding
decisions have on performance.

In my experience, the more common situation is shown in Figure
6-10. In the first three columns of Figure 6-10, the system is able to

Figure 6-9 A service exhibiting a bottleneck in performance.

146 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

handle increasing levels of concurrent requests. In the fourth column,
the system hits an upper limit to handle transactions. Many times
this is caused by a database indexing problem, a data cache that is
now full, or a network connection that is saturated.

This TPS method may seem straightforward enough to you. I will
cover an example of the questions I received during a scalability and
performance study from an engineer, an engineering manager, and
an executive. I conducted a scalability test and determined the
results presented in Table 6-7.

From the results in Table 6-7 you may wonder why the TPS
increases only slightly with more concurrent requests considering

Figure 6-10 A service exhibiting a scalability problem.

Table 6-7 The Scalability Index for a Given Service

Concurrent
Requests

Transactions per
Second (TPS)

Count of
Completed

Transactions
Average Response

Time (Milliseconds)

25 .38 68 65,344

15 .33 61 33,828

10 .31 59 12,234

6.3 Understanding TPS 147

the test is making 2.5 times (25/10) more concurrent requests? Why
would the test not increase the TPS value by 2.5 times to 0.775 (0.31
TPS at 10 concurrent requests, times 2.5)?

Free-running threads generate the concurrent requests with no
sleep time between requests, as illustrated in Figure 6-11. Their job is
to keep making requests to the server during the test period. Yet, the
average response time at 25 users is 5.34 times longer (65,344 milli-
seconds at 25 users divided by 12,234 milliseconds at 10 users). Con-
sequently, there are fewer opportunities to log results and increase
the TPS value.

When the test has increased concurrent users, running one of two
things can happen:

1. The server responds to each request on average in a smaller
amount of time than it took at the lower level of CUs. In this
condition each CU finishes sooner, logs a response (a trans-
action), and can make its next request that much sooner.
TPS goes up from the lower level of CUs.

2. The server responds to each request on average in the same
time it took at the lower level of CUs. In this condition each
CU takes the same amount of time but there are more CUs
running concurrently. TPS goes up from the lower level of
CUs proportionately to the increase of CUs.

The server responds to each request with a longer response time
than it took at the lower level of CUs. In this condition each CU fin-
ishes later. There are fewer opportunities for the server to respond,

Figure 6-11 Throughput as measured in transactions per second
(TPS) from the consumer reduces as the service takes longer to
respond to each request.

148 Chapter 6 The PushToTest Method to Identify SOA Scalability and Performance Metrics

because the CUs are waiting for the server to respond. TPS drops
proportionately to the increase in each response time.

In the next section, I present a list of test issues and solutions
from which you may take action based on the Scalability Index to
your service.

6.3.1 Calibration What-If Chart

It is beyond the scope of this book for me to teach you everything
that might happen during a calibration test. However, Table 6-8 lists
a few good ones to know.

Table 6-8 Calibration What-If Chart

Test Experience Likely Problem What to Do Next

Increase CRs and see a
decrease in TPS

Check the average
response time.

Run a test case that
compares response
times as CRs increase.
Identify the least
acceptable response
time and work back-
ward from there.

Increase CRs and see
an increase in TPS

Your test is not cali-
brated to use high
enough CR and pay-
load sizes.

Run a calibration test to
determine the optimal
Scalability Index and
correctly set the CR and
payload size levels.

Increase CRs but see
little change in TPS

CRs are set too high
already. Check CPU if
doing stateless test.

Run another test with
half the CRs.

Server CPU at 95%
and increase in CRs
gives me increase in
TPS

Likely that you are
testing a stateful sys-
tem.

Run a test case to deter-
mine the Scalability
Index of the service
under test.

Consumer CPU at 95%
and increase in CRs
gives me a decrease in
TPS

CRs are set too high
already for the num-
ber of load-generating
consumers.

Add more load-generat-
ing consumer machines
to the list.

Consumer CPU at 15%
and server CPU at 30%
and increase CRs gives
me little change in TPS

Likely that your net-
work is saturated.

Check the network
bandwidth utilization.
Add network adapters
to server or consider a
faster network.

6.4 Summary 149

6.4 Summary

This chapter presented the PushToTest testing method to identify
and quantify the scalability, performance, and developer productiv-
ity benefits available behind choices of technology to implement
SOA applications. The methodology helps to make apparent the
tradeoffs a software developer makes when choosing SOA coding
techniques, code libraries, and APIs.

By now my hope is that you are so excited about the performance
findings from this chapter that you want to learn all you can about
XML, XML Query (XQuery), and native XML database technology.
The next two chapters show you these technologies and how to use
them in your SOA designs.

151

Chapter

7
Learning XML-Centric Technology

for SOA

The previous chapters show that where XML and SOA intersect, the
object-oriented approaches to software development have an impact
on scalability and performance. The FastSOA patterns use native XML
technology for SOA and deliver 3 to 22 times faster performance.

This chapter covers the basics of the XQuery language, the scal-
ability issues surrounding integration of XQuery into a Java applica-
tion, the blunders I made while learning XQuery and native XML
databases, and the safebets that will likely be in the XQuery specifi-
cation in the near future and already exist in many XQuery imple-
mentations. By the end of this chapter, you will be able to write an
XQuery yourself, or at least know where to look if you need addi-
tional help.

7.1 XML-Centric Options

After about the tenth time you write a program that takes in an XML
parameter and outputs an XML parameter, you may begin to wonder
if there is a better way. After all, every line of code you write will
eventually need to be maintained. So why not use a declarative lan-
guage to identify XML transformations and let the underlying
engine figure out how to implement a function that meets your
declared needs? This kind of thinking in the middleware space got

152 Chapter 7 Learning XML-Centric Technology for SOA

started in the mid-1990s. The result is a cornucopia of new technolo-
gies, including XPath, XQuery, XML Stylesheet Language Transfor-
mations (XSLT,) and many others. For instance, Figure 7-1 shows that
a combination of XQuery, XPath, and XSLT technology may be used
to solve an XML problem.

XPath 1.0 provided the basic syntax to parse through XML docu-
ments using path expressions, to provide simple comparison opera-
tors such as greater than and less than or equal, and to provide some
functions such as return the parent node of the current selection.
XPath 2.0 greatly expanded XPath capabilities by including a data
model and type system, conditional execution with a path expres-
sion, and new arithmetic functions and a greatly expanded set of
operators. Integration with XML schema also afforded it rich typing,
which was absent in XPath 1.0.

While XPath is great at working with a single XML document,
XQuery and XSLT are solutions made to work with multiple XML
documents. For instance, FLWOR (an acronym of for-let-where-
order by-return that is pronounced “flower”) is a commonly used
XQuery expression enabling you to locate nodes using XPath, con-
struct and restructure XML, and sort and filter data in one or more
XML documents.

Figure 7-1 From the developer’s perspective, XQuery, XPath, and
XSLT are XML-centric technologies that may be used in combination
or individually.

7.1 XML-Centric Options 153

Today, software architects and developers build transformational
middleware using a combination of XQuery, XPath, and XSLT tech-
nology. However, in my experience, developers tend to cleave into
two camps: XQuery fans and XSLT fans. I am an XQuery fan.

XQuery and XSLT have enough developer momentum behind
them that both will coexist. In fact, working groups at the World
Wide Web Consortium (W3C) are working on the most recent specifi-
cations for XQuery 1.0 and XSLT 2.0 in tandem.

Where XQuery and XSLT overlap is in the problems they solve:
transformation of XML data, federation of XML collections, and
advanced query of XML data. Developers will continue to see
debates about the capabilities and virtues of each, including much
myth and misunderstanding. For example, I often see the claim that
XQuery’s ability to query multiple, disparate sources in one pass
gives it a distinct advantage over XSLT. In fact, XSLT 2.0 processors
can have multiple nodes supplied as an input sequence. XSLT 1.0 has
the document() function for accessing multiple sources within a sin-
gle transformation, and XSLT 2.0 supports the new collection() func-
tion. I also often hear the claim that while XQuery syntax looks nicer,
it lacks XSLT’s template-style pattern matching. The vigorous debate
behind XQuery and XLST means developers should expect improve-
ments and challenges in both languages that would keep them close
to one another in terms of function and capability.

My interest in XSLT started in 1999. The Software Development
Forum, Java Special Interest Group (Java SIG) hosted a speaker on
XSLT.1 He brought 85 slides and had about 45 minutes to make a pre-
sentation. With all the questions he got from the attendees, he did not
make it past slide 18. That about sums up my experience trying to
learn XSLT. As a language, I am told by experts that XSLT is incredi-
bly powerful, elegant, and sophisticated. XSLT just never set in for
me. XQuery, on the other hand, was something that looks self-evi-
dent, packed with power, and offers lots of reasons to be liked.

7.1.1 Reasons to Like XQuery and Native XML Databases

Instead of going deep into XQuery and native XML database con-
cepts, here are some simple reasons to like XQuery.

1 Details at http://www.sdforum.org.

154 Chapter 7 Learning XML-Centric Technology for SOA

1. XQuery is a language. It has iterators, branching, module
libraries, variables, and many other things I would expect
to find in Java, C#, JSP, ASP, and other languages. So I can
write applications in XQuery, not just queries. SQL is ter-
rific at describing queries, but you really need to wrap it
with a programming language to make it useful on a day-
to-day basis.

2. The data model and type system are complete and make
portability easy. For instance, the XQuery data model spec-
ifies date types so you can be assured that any XQuery
engine will have date functions for immediate use.

3. XQuery is XPath integrated. XQuery gives XPath expres-
sions across collections of XML documents. XPath works
very well when working on an individual XML document.
With Xquery, applications use the same XPath syntax, but
the paths work across collections of XML documents.

4. XQuery naturally extends to map new data sources.
XQuery is easy to extend to map other data sources (other
than just XML). For instance, many XQuery engines extend
past the specification to allow calls to a Java method within
a class, and that class might return to me data within a col-
lection (such as a structured hashmap or a table). In these
extensions, the XQuery receives the response to a method
call as an XML document. The same situation is true for
making a call to a Rich Site Syndication (RSS) feed for syn-
dicated news, or making a call to a SOAP-based Web Ser-
vice, or even to a REST-based Web Service. XQuery is
naturally extended to support additional new data sources.

5. XQuery works well for XML Web Services, SOA, and ESB
applications. These are XML applications. Many XQuery
implementations already extend past the XQuery specifica-
tion to provide support for Web Services. This seems very
natural to me. For instance, MarkLogic lets me make SOAP
calls from my XQuery. TigerLogic does so too and lets me
query against JDBC sources using the same syntax as a
query against a Web Service result.

6. XQuery output can be XML, HTML, text, or anything else.
XQuery has no expectation for the output format of its
return values. XQuery can just as easily output XML as it
can output HTML.

7.2 XQuery in the SOA Stack: The Cookie Factory 155

7. XQuery and native XML database technology solve my
need for speed. If anything, Web Services and Service-Ori-
ented Architectures are turning out many new XML sche-
mas and lots of complex XML data. Often, the XML tells
my service details about time-to-live and replication infor-
mation. XQuery and a native XML database make it much
easier for me to implement data mitigation and aggrega-
tion services to facilitate performance improvements in the
mid-tier.

8. XQuery is a declarative rather than procedural program-
ming environment. In a declarative language you declare
your intention for the data you want to work with and you
let the language worry about the approach it needs to take
to get that data. This gives the XQuery and native XML
database an advantage in understanding and optimizing
your application without requiring any extra effort on your
part. If the XQuery implementer does a good job, then new
versions of the XQuery implementation will improve per-
formance of your application without requiring any
changes to your declarative code.

9. Nested “for” loops in XQuery are so easy! If I wanted to do
nested “for” loops in a SQL database, I would need to learn
the programming language that comes along with that
implementation.

7.2 XQuery in the SOA Stack: The Cookie Factory

The rest of this chapter will introduce you to XQuery, XPath, and
native XML database technology through a set of examples built
around a cookie factory. This cookie factory is like most manufactur-
ers today. It receives orders from customers and orders ingredients
for its products from suppliers. In the pre–Service-Oriented Architec-
ture (SOA) days, the cookie factory IT staff may have bought a com-
mercial software solution to run the business, hired engineers to
write code to expose a Web browser interface for customers to place
orders, and wrote code to work with the supplier’s order system.
These choices were slow and expensive; slow in that it took many
engineering hours to switch suppliers or offer new products, and
expensive from the cost of the commercial software licenses and
engineers’ salaries. In the days of SOA, hardly any business systems
analyst recommends buying proprietary and commercial software to

156 Chapter 7 Learning XML-Centric Technology for SOA

build business integration solutions. Figure 7-2 shows the cookie fac-
tory after it adopted SOA.

The cookie factory provides standard Web Services interfaces for
the following functions.

• Process_Purchase_Order (PPO). This is a service hosted by
the cookie factory. Input to this service defines the number
of dozen cookies wanted and the type of cookie. The service
returns a purchase order (PO) number.

• Check_Ready_Time (CRT). This is a service hosted by the
cookie factory. Input to this service is a PO number. The ser-
vice returns the number of minutes until the order is ready
for shipment or an out-of-stock notice that shows the reason
for the delay.

• Restock. This is a service hosted by the supplier. The cookie
factory makes a restock request when current inventory
falls below the quantity that is needed to make 10 dozen
cookies. Input to this service is the current inventory of one
or more ingredients. The output is the new inventory levels
at the cookie factory for the input ingredients.

• Notification. When a batch is finished, the cookie factory
sends an email message to notify the consumer that the
cookies are ready to ship.

Figure 7-2 The cookie factory provides services to receive orders
from consumers, order ingredients from a supplier, and notify the
consumers when their orders are ready to ship.

7.3 The Data Used in the Cookie Factory Example 157

The cookie factory service interface definitions give us a starting
point to consider how to write the working code. There are many
options to choose from, including programming language, XML
parsing library, and application development environment. In my
experience, these choices are driven by three factors:

1. The learning curve a software architect and developer takes
to become proficient with the new tool, technology, and
protocol.

2. The scalability and performance of the finished service.

3. The ease with which a new software developer maintains—
fixes, patches, and corrects—the already-written software.

Writing the XQuery to implement the cookie factory service is
easy once you have a working knowledge of XQuery itself. Next, I
present the example data used in the cookie factory and show how to
write the XQuery to implement the services.

7.3 The Data Used in the Cookie Factory Example

The cookie factory example requires two kinds of data persistence: a
list of ingredients and their quantity in inventory, and a set of recipes
to make cookies. The following shows the contents of ingredi-
ents.xml.

<?xml version="1.0" encoding="UTF-8"?>

<ingredients batchsize="12">

 <dry manager="gabriel">

 <flour amount="100" measure="lbs" stocketa="0"/>

 <salt amount="50" measure="lbs" stocketa="0"/>

 <bakingpowder amount="0" measure="lbs"
 stocketa="24"/>

 <sugar amount="250" measure="lbs" stocketa="0"/>

 </dry>

 <wet manager="emily">

 <water amount="100" measure="pints" stocketa="0"/>

 <vanilla amount="0" measure="pints" stocketa="48"/>

 <molasses amount="200" measure="pints"
 stocketa="0"/>

 </wet>

158 Chapter 7 Learning XML-Centric Technology for SOA

 <perishable manager="marlena">

 <egg amount="12" measure="dozen" stocketa="0"/>

 <milk amount="125" measure="pints" stocketa="0"/>

 <butter amount="55" measure="lbs" stocketa="0"/>

 <chocolatechips amount="220" measure="lbs"
 stocketa="0"/>

 </perishable>

</ingredients>

The following shows the contents of directions.xml.

<?xml version="1.0" encoding="UTF-8"?>

<recipe>

 <cookie name="chocolate_chip">

 <quantity measure="dozen">500</quantity>

 <steps>

 <add ingredient="flour" quantity="5"/>

 <add ingredient="butter" quantity="3"/>

 <mix time="5" measure="minutes"/>

 <wait time="1" measure="minutes"/>

 <add ingredient="salt" quantity="3"/>

 <add ingredient="egg" quantity="4"/>

 <add ingredient="sugar" quantity="8"/>

 <mix time="1" measure="minutes"/>

 <wait time="1" measure="minutes"/>

 <add ingredient="vanilla" quantity="1"/>

 <add ingredient="bakingpowder" quantity="2"/>

 <add ingredient="chocolatechips"

 quantity="6"/>

 <mix time="1" measure="minutes"/>

 <wait time="1" measure="minutes"/>

 <bake time="7" measure="minutes"/>

 <cool time="3" measure="minutes"/>

 </steps>

 </cookie>

 <cookie name="ranger_cookie">

 <quantity measure="dozen">25</quantity>

 <steps>

 <add ingredient="flour" quantity="2"/>

 <add ingredient="butter" quantity="4"/>

 <mix time="5" measure="minutes"/>

7.3 The Data Used in the Cookie Factory Example 159

 <wait time="1" measure="minutes"/>

 <add ingredient="salt" quantity="2"/>

 <add ingredient="egg" quantity="1"/>

 <add ingredient="sugar" quantity="4"/>

 <mix time="1" measure="minutes"/>

 <wait time="1" measure="minutes"/>

 <mix time="1" measure="minutes"/>

 <wait time="1" measure="minutes"/>

 <bake time="7" measure="minutes"/>

 <cool time="3" measure="minutes"/>

 </steps>

 </cookie>

</recipe>

The data model in the above XML documents enables us to write
XQuery code to answer the following questions.

• How many batches of cookies can I make with the current
ingredients on hand?

• Do I have enough ingredients to make 10 dozen cookies?

• What is the next ingredient that I will run out of?

• How long will it take to make 10 dozen cookies?

For instance, the following XQuery answers the question, “Which
of the wet ingredients is out of stock?”

(: Which of the wet ingredients is out of stock? :)

for $i in doc("ingredients.xml")/ingredients/wet/*

where $i/@amount=0

return $i

Execute this XQuery and receive the following results.

<vanilla amount="0" measure="pints" stocketa="48"/>

This is a FLWOR XQuery construct. It searches through the wet
ingredients document looking for ingredients that have an amount
attribute set to zero.

160 Chapter 7 Learning XML-Centric Technology for SOA

7.4 A Tour of XQuery

This section will teach you the basics of XQuery and native XML
databases by showing the cookie factory services. The section begins
by describing the naming and expression conventions. Then it shows
how to form expressions, write queries (known as FLWOR expres-
sions), and explain namespaces and the data model. You should end
this chapter with a working knowledge of Xquery, enough to write
the cookie factory. The resources section at the end of this chapter
will give you a pointer to the books and on-line resources available to
teach the finer points of XQuery and native XML databases.

7.4.1 Starting with the Basics

XQuery is a compact language that does not use XML itself to repre-
sent functions. Instead, XQuery looks like Java, C#, and other object-
oriented languages.

XQuery does not use an end-of-line character such as Java’s semi-
colons or Python’s spacing characters. White space (tabs, spaces,
returns) in an XQuery is not significant. White space is significant in
quoted strings. And pretty much everything is case-sensitive in
XQuery. This can make some XQuery look disturbingly complex.

let $x := 2 let $y := 3 return 10*$x+$y

The above example returns the value 23. This can introduce a
problem later on where a new developer needs to quickly under-
stand my code. Would you prefer to see the same code formatted as
follows?

let $x := 2

let $y := 3

return 10*$x+$y

XQuery keyword, function, and operator names are case-sensitive
and usually lowercase. All names in XQuery must be valid XML
names and may include a namespace. XQuery uses parentheses to
determine evaluation order, and many kinds of expressions have
their own precedence.

7.4 A Tour of XQuery 161

(true() and false()) or false() and true()

You express literal values in an XQuery directly by using single or
double quotes surrounding a string. For example, the XQuery below
is for a date type.

xs:date("2005-04-23")

XQuery defines variables in many places, including within a
FLWOR expression, within a Let expression, within the prolog, and
as the result of a function call.

Comments come with a smile. For instance, the following is a
comment.

(: Hi, I am XQuery and I am here to help. :)

XQuery allows comments wherever it allows white space.
XQuery allows XML comments, marked with <!-- and -->, in results
data.

Comparison operators may be a little tricky to understand
because of their support of sequences. XQuery provides comparison
operators—eq, ne, lt, gt, le, ge in addition to <, >, and =.

doc("ingredients.xml")//@amount>10

The above XQuery returns true if any elements with an amount
attribute have values greater than 10.

doc("ingredients.xml")//@amount gt 10

The same XQuery using gt returns true if there is only one amount
attribute returned by the expression and the attribute value is greater
than 10. If the XQuery returns more than one amount, XQuery raises
an error.

XQuery provides conditional execution in if..then..else and
typeswitch functions. If..then..else is a little different from most
other programming languages in that the else clause is required.
For instance, XQuery raises an error when parsing the following
expression.

162 Chapter 7 Learning XML-Centric Technology for SOA

if (doc("ingredients.xml")//@amount>10)

then return "yes"

The correct expression includes an empty else clause as shown
below.

if (doc("ingredients.xml")//@amount>10)

then "yes"

else ()

7.4.2 Structure of an XQuery

An XQuery has two parts: prolog and body. The prolog declares vari-
ables, identifies user-defined functions, and identifies namespaces.
The prolog may also import schemas and functional modules. The
body does the work of understanding the data and returns a value.
For instance, the XQuery in Figure 7-3 returns an HTML-formatted
list of ingredients and amounts. The list is alphabetically sorted by
ingredient name and the value is half of what is actually in stock.

There are a number of XQuery concepts presented in Figure 7-3
that are worth commenting on now. The prolog declares a user-
defined namespace and function, imports of external modules and
schemas, default collation, and other default parameters. XQuery
separates expressions in the prolog with a semicolon character. The
body section, on the other hand, is a literal representation of the

Figure 7-3 An XQuery cleaves into two parts: The prolog defines
namespaces and user-defined functions. The body defines the
processing code.

7.4 A Tour of XQuery 163

response plus any expressions needing to be computed, in which
case curly brace ({ and }) characters appear to escape the response.
There is no formal declaration syntax for the prolog and body.
XQuery magically deduces the difference from the lack of semicolon
characters and the presence of curly braces. (To see the downside of
this ambiguity, see Section 7.5.)

Don’t worry for now about the syntax of the example given in
Figure 7-3. We will cover that in detail in the coming sections of this
chapter. The above XQuery emits the following results. (I added
some spacing to the output to make it more readable.)

<html>

 <body>List of items:

 <ul type="square">

 bakingpower, 0

 flour, 100

 salt, 50

 sugar, 250

 </body>

</html>

Now let us dig into the basics of XQuery.

7.4.3 The Data Model: Nodes, Elements, and Sequences

XQuery started life as an XML query language, so it is reasonable to
find the XQuery data model devoted to working with XML data. I
will generalize the XQuery data into three categories, although there
are more: nodes, atomic elements, and sequences.

Nodes

Nodes are XML elements. For instance, the following is a node from
the directions.xml document described earlier in this chapter.

<quantity measure="dozen">500</quantity>

The node has a name—quantity—with a value of 500. The node
has as attribute-named measure with a string value of ”dozen.” This
is typical of a node minus other complexities such as custom

164 Chapter 7 Learning XML-Centric Technology for SOA

datatypes defined with a DTD or XML Schema and namespace dec-
larations. XQuery uses expressions to navigate nodes and identify
attributes and names. The next section presents many examples of
XPath functions to operate on these nodes.

Another typical node stores multiple values in a set of attributes
but has no value itself.

<add ingredient="flour" quantity="5"/>

Before I move on to atomic elements I want to point out a key
strength of XQuery and native XML databases over all other
approaches to building XML and Service-Oriented Architecture
(SOA) applications. A node may have child nodes, as follows.

<steps>

 <add ingredient="flour" quantity="5"/>

</steps>

I call the topmost node the document node, although technically
it is an element node with no value itself but having child attribute
nodes. XQuery and native XML database tools each have their own
lingo to follow, since the XQuery Data Model does not define the
database itself. For instance, Figure 7-4 shows the way Raining Data
TigerLogic implements the inheritance model from a simple node all
the way up to a database.

The node model lets you use the same XQuery and path expres-
sions to work with local node values and collection and database
data sets. So you need to learn fewer expressions to do more, and the
resulting code is easily maintained.

Figure 7-5 shows a more detailed view of the node definition in
the context of the overall data model.

Figure 7-4 XQuery nodes are especially powerful, since the parent
of a node goes up and into collections and databases using a native
XML database.

7.4 A Tour of XQuery 165

As you can see, XQuery is defined in terms of an object oriented
style data model, not in terms of XML text. Data going into an
XQuery is an instance of the data model, and the same is true of the
output from an XQuery. Every document is a tree of nodes, and the
nodes themselves are document, element, attribute, text, processing
instruction, and comment node types. (In my experience, I have
rarely seen processing instruction and comment node types widely
used.) Last, although nodes may contain the same name and values,
each node is unique. (Of course, each node has a unique identity that
it returns regardless of changes to its value or the values of its child
nodes, if any.) So unless an implementation of the XQuery data
model implements a node-level inheritance model, none is expected
or implied.

Atomic Elements

In addition to nodes, the XQuery data model provides for atomic
items. These are individual data values with no association to a node.
Atomic items use the XML Schema datatype definitions.2 For
instance, strings, Booleans, decimals, integers, floats, doubles, and

Figure 7-5 A UML diagram of the XQUery data model

2 See http://www.w3.org/XML/Schema for details on XML Schema.

166 Chapter 7 Learning XML-Centric Technology for SOA

date values come from XML Schema and are supported as first-class
atomic items. The following shows some instances of atomic types.

xs:string

xs:integer

xs:double

When declaring variables, functions, and results data, an optional
type phrase enables you to define the datatype. For instance, the fol-
lowing declares a user-defined function that only accepts decimal
values and returns a double value.

declare function xqn:half($val as xs:double)

as xs:double

Atomic elements are simple types that you may write into an
XQuery to represent simple types directly. You can even write several
simple types directly as literals in the XQuery language, including
strings, integers, doubles, and decimals. For instance, the following
may appear in an XQuery and represent atomic elements.

"This is a string"

315

1.382873

These values are immutable. For instance, the above string decla-
ration will not let you change the value of a character within the
string.

Many built-in XQuery functions return atomic values. For
instance, the following automatically extracts the value of a node
(sometimes called atomization).

substring(<amount>101</amount>, 1, 2)

Sequences

The data model diagram in Figure 7-5 shows that an item is a single
node or an atomic value. A series of items is known as a sequence. In
XQuery, every value is a sequence, and there is no distinction between
a single item and a sequence of items. Sequences may not contain
other sequences; they may only contain nodes or atomic values.

7.4 A Tour of XQuery 167

XQuery expression returns a sequence of zero or more items. For
instance, ingredients//dry returns a sequence of dry ingredients. Of
course, ingredients//amount returns an empty sequence. There are
ways to construct sequences manually, as shown in the following
code segment.

(1, 2, 3)

(1 to 4)

()

XQuery expressions evaluate to sequences. The comma operator
concatenates two values or sequences. For instance, the following is a
sequence of three integer values.

1,2,3

A sequence containing a single value is the same as that value by
itself. XQuery does not allow nesting sequences. For instance, the fol-
lowing XQuery returns the number of values in a sequence.

let $a := (1,2)

let $b := ($a, $b)

let $c := 5

let $d := ()

return (count($a), count($b), count($c), count($d))

The above XQuery returns a sequence of (2,4,1,0) because $b is the
same as (3,4,3,4).

I hope this makes sense to you, since the standard functions for
working with nodes return sequences.

Some popular scripting languages—for instance, JSP, ASP, and
PHP—enable you to embed expressions in scripts to generate HTML
content directly. XQuery enables that too, plus XQuery lets you cre-
ate XML and HTML forms inside of XQuery expressions.

let $xdoc := <flour amount="50"/>

The above code creates a new XML node. Node identifiers are
immutable and XQuery defines no functions to alter the values of a
node once created. Of course, you could replace a node with a new one.

168 Chapter 7 Learning XML-Centric Technology for SOA

Next, we will look at XQuery from an XPath perspective.

7.4.4 From XPath to XQuery

The XPath language is a non-XML syntax for addressing portions of
an XML document. Developers saw XPath’s advantages early on and
treat it today like a small query language.

An XPath queries through a single document. As we see in Figure
7-6, XQuery and native XML databases extend the original idea to
handle queries through multiple documents, with the documents
residing in databases and collections. This section looks at XPath
operations in a single document. The next section shows XPath
applied to a collection of XML documents.

Developers use path expressions to traverse an input XML docu-
ment and select elements, nodes, and attributes of interest. For
instance, the following is a path expression to find the wet ingredi-
ents in the cookie factory example that are on order.

doc("ingredients.xml")/ingredients/wet/*[@stocketa>0]

A path expression is a series of location steps separated by slashes
(/). A step is analogous to a SQL cursor. The step selects a set of
nodes in relation to the current node. The selected nodes are used for
the next step until you reach the end of the expression and the result
is the remaining node. Figure 7-6 shows you how the previous exam-
ple breaks down.

In the example, the expression begins with a function call (doc)
that returns the ingredients.xml document. /ingredients consists of a
single step that returns the <ingredients> node. The steps select the
set of all ingredients elements that are children of the current node
(the root of the document.)

Figure 7-6 XPath expressions in XQuery provide easy access to
function calls, path definitions, and predicate queries.

7.4 A Tour of XQuery 169

The expression /ingredients/wet has two steps. The first step
selects all children of the <ingredients> node and the second step
selects all the <wet> elements of the ingredients node. The expres-
sion identifies all <wet> children of the parent of the current node,
including the current node.

The example shows that path expressions may have up to three
parts: an axis, a node test, and a predicate. The axis defines the direc-
tion to move in the document tree. In XQuery, the document tree has
many similarities to a DOM document tree model. For instance, the
child axis says to look at all child nodes. The parent axis looks at the
parent node and the self axis says to look at the current node.
XQuery gives you functions to use all the axes in a path expression.

A node test is an evaluation to determine which nodes along the
axis are selected for the next step. For instance, in child::wet, child is
the axis and wet is the node test. A child node satisfies the node test if
it is an element with the name of wet. XQuery provides node tests
that check the element, attribute, namespace name, and type (text,
comment, processing instruction) of a node.

Finally, a predicate is an expression to filter nodes selected by the
node test. Predicates are Boolean expressions. In the above example,
the predicate [@stocketa>0] evaluates to true for all nodes that have
an attribute named stocketa with a value greater than zero. A node
for which the expression evaluates to true is included in the result set
of the path expression.

Overall XQuery provides everything XPath supports. For
instance, XQuery support of XPath includes the double slash (//)
operator as a convenience to select all descendants of the current
node as well as the current node itself.

XPath provides expressions to navigate relative to the current
context. These are called axes. For example, the following path
returns the child element of the in Web element.

doc("ingredients.xml")/ingredients/wet/child::item

XQuery provides many additional axis functions, including par-
ent:: and descendant::.

170 Chapter 7 Learning XML-Centric Technology for SOA

7.4.5 Element Constructors

Every XQuery returns a sequence that may be an XML value, or an
XML-like value. For instance, the following code shows various
XQuery XML element constructors.

let $a := xs:integer(10)

return <xml><value>{$a}</value></xml>

The above XQuery returns an XML value.

<xml>

 <value>10</value>

</xml>

A similar XQuery constructs HTML code.

let $a := ("frank", "jack", "lorette", "madeline")

return

 <html>

 <body>

 <h1>My family:</h1>

 { for $i in $a

 return <p>{$i}</p>

 }

 </body>

</html>

The above XQuery returns HTML code.

<html>

 <body>

 <h1>My family:</h1>

 <p>frank</p>

 <p>jack</p>

 <p>lorette</p>

 <p>madeline</p>

 </body>

</html>

7.4 A Tour of XQuery 171

XQuery pretty much allows you to construct any structured out-
put. The only problem you may encounter when constructing output
is that XQuery applies strong typing and expects to output elements
that have opening and closing tags.

XQuery is meant to be extensible. In the near future, expect to see
alternative constructors.

7.4.6 FLWOR Expressions

FLWOR expressions provide a sophisticated and easy way to iterate
over sequences in XQuery. In many ways, FLWOR looks like the SQL
SELECT expression. So why didn’t they call it select-let-order-where-
return? Jason Hunter explained to me that the XQuery team did not
like the idea of calling it the “slower” expression.

A FLWOR expression lets you loop over the elements of a
sequence. For instance, the following XQuery finds the wet ingredi-
ents that are in stock.

(: Which wet ingredients are in stock? :)

for $i in doc("ingredients.xml")/ingredients/wet/*

let $amount := $i/@amount

where $amount>0

return $i

In the above example, the for expression returns a sequence of all
the wet elements.

<water amount="100" measure="pints" stocketa="0"/>

<molasses amount="200" measure="pints" stocketa="0"/>

In a FLWOR, the for expression evaluates the expression following
the in clause. The for expression creates a sequence (referred to using
$i in the above example) with the evaluated values.

XQuery requires a FLWOR to have a for expression. Beyond that,
FLWOR gives you a lot of options. For instance, suppose we want to
create a list of all the ingredients that are out of stock.

172 Chapter 7 Learning XML-Centric Technology for SOA

(: Which ingredients are out-of-stock? :)

for $i in doc("ingredients.xml")/ingredients/*

 for $j in $i/*

 where $j/@amount=0

 return $j

The first for gets a sequence of all categories of ingredients—wet,
dry, and perishable—and refers to the sequence in the $i variable.
The second for iterates through all of the ingredients—flour, water,
sugar, and so on—and the where clause filters out all the ingredients
with amount attribute values that are not at zero.

Next, I will show you some FLWOR examples that answer the
questions I presented for the cookie factory.

Do we have enough ingredients to make chocolate chip cookies?

In this FLWOR expression, we must join ingredients.xml and
directions.xml together. We look at directions.xml to learn which
ingredients are needed to make chocolate chip cookies. We look at
ingredients.xml to learn if the ingredient is in stock, meaning if the
amount is greater than zero.

(: Which ingredients are out of stock to make chocolate chip
cookies? :)

for $i in doc("directions.xml")/recipe/cookie

 where $i/@name="chocolate_chip"

 return for $j in $i/steps/add

 return for $k in

 doc("ingredients.xml")/ingredients/*

 for $l in $k/*

 where (name($l) = string($j/@ingredient))

 and ($l/@amount=0)

 return $l

This FLWOR expression uses a nested FLOWR expression to
locate information in one document that is related to information in
another document. The expression breaks down into two parts. The
first part gets all of the ingredients needed to make a chocolate_chip
cookie from the directions.xml document. The second part gets a list

7.4 A Tour of XQuery 173

of all the ingredients that are in stock (in other words, the amount is
greater than zero).

If you would like to see this in action, XQuery makes it easy to
take this apart. For instance, we can process the following snippet of
the above XQuery.

for $i in doc("directions.xml")/recipe/cookie

 where $i/@name="chocolate_chip"

 return for $j in $i/steps/add

 return $j

Processing this returns the following sequence.

<add ingredient="flour" quantity="5"/>

<add ingredient="butter" quantity="3"/>

<add ingredient="salt" quantity="3"/>

<add ingredient="egg" quantity="4"/>

<add ingredient="sugar" quantity="8"/>

<add ingredient="vanilla" quantity="1"/>

<add ingredient="bakingpowder" quantity="2"/>

<add ingredient="chocolatechips" quantity="6"/>

The above FLWOR expression iterates through the recipes for a
recipe for chocolate_chip cookies. The second for clause returns a
sequence with all the steps needed to make the cookies.

for $l in $k/*

 where (name($l) = string($j/@ingredient))

 and ($l/@amount=0)

 return $l

The above code is where the real work happens. The code
matches the name of the ingredient (name($l)) to the ingredient
from the directions ($j/@ingredient). The code returns a sequence of
ingredients that are out of stock (amount = 0).

Don’t worry about going crazy with FLWOR expressions. XQuery
is declarative, so we can lean on the underlying XQuery implementa-
tion to optimize all these nested iterating loops to avoid performance
problems. XQuery also provides user-defined functions (we’ll get to

174 Chapter 7 Learning XML-Centric Technology for SOA

these later in this chapter) to make complicated-looking expressions
easier to understand.

How many ranger cookies can I make?

The strategy I use is to normalize all of the ingredient amount values
into the number of cookies I can make. Then I will find the ingredient
that I have the least of. That will tell me how many ranger cookies I
can make.

(: Calculate a sequence of all the ingredients for

 the given cookie of the number of batches possible

 to make given the existing inventory of each

 ingredient :)

let $a := for $i in doc("directions.xml")/recipe/cookie

 where $i/@name="ranger_cookie"

 return

 for $j in $i/steps/add

 let $amount :=

 for $k in doc("ingredients.xml")/ingredients/*

 for $l in $k/*

 where (name($l) = string($j/@ingredient))

 return xs:integer($l/@amount)

 let $batches := floor($amount div
 xs:integer($j/@quantity))

 return <quantity_on_hand

 name="{$j/@ingredient}">{$batches}

 </quantity_on_hand>

(: Pick the ingredient for which we have

 the least to make batches of cookies :)

let $b := for $m in $a

 where (xs:integer($m) = min($a))

 return $m

(: This is the maximum possible number of batches

 you can make given the existing inventory. :)

return $b

7.4 A Tour of XQuery 175

This XQuery divides into four parts. The first part looks through
the directions.xml document and finds the steps to make a
ranger_cookie.

let $a := for $i in doc("directions.xml")/recipe/cookie

 where $i/@name="ranger_cookie"

 return

 for $j in $i/steps/add

Then the XQuery looks at the ingredients.xml document for each
ingredient called for in the recipe. The XQuery finds the amount of
each ingredient that is in stock.

let $amount :=

 for $k in doc("ingredients.xml")/ingredients/*

 for $l in $k/*

 where (name($l) = string($j/@ingredient))

 return xs:integer($l/@amount)

The XQuery divides each ingredient by the amount needed for
each batch by the amount in stock. This tells you how many batches
you can produce with the current inventory of each ingredient.

 let $batches := floor($amount div
 xs:integer($j/@quantity))

The XQuery constructs a sequence of elements named
quantity_on_hand containing the number of batches you can pro-
duce.

 return <quantity_on_hand

 name="{$j/@ingredient}">{$batches}

 </quantity_on_hand>

Next, the XQuery chooses the quantity_on_hand element with the
smallest batch value.

let $b := for $m in $a

 where (xs:integer($m) = min($a))

 return $m

176 Chapter 7 Learning XML-Centric Technology for SOA

Finally, the XQuery returns the element with the smallest batch
value.

return $b

By the way, it turns out that another way of asking the same ques-
tion is, “What is the next ingredient that I will run out of?” And in
the case of the recipe for ranger cookies, the answer is “eggs,” after
you make the next 12 batches of cookies.

How long will it take to make chocolate chip cookies?

For this question, the directions.xml document has all the data we
need to find an answer.

let $a := for $i in doc("directions.xml")/recipe/cookie

 where $i/@name="chocolate_chip"

 return

 sum($i/steps/*/@time)

return <time_to_make>{$a}</time_to_make>

The XQuery finds the chocolate_chip recipe from the direc-
tions.xml document. It then iterates through all the steps. When a
step contains a time attribute, then its value is summed.

<time_to_make>20</time_to_make>

Pretty nifty, no?

7.4.7 Functions

XQuery provides two types of functions: built-in functions provided
by the XQuery implementation and user-defined functions. The pre-
vious section showed FLWOR expressions using built-in functions,
including sum(), min(), and the constructor function xs:integer().
Table 7-1 provides a handy list of functions inherited from XPath.

Each of the functions described in Table 7-1 takes in a value and
returns a value of a set value type. For instance, we previously used

7.4 A Tour of XQuery 177

Table 7-1 Nonexhaustive List of Handy XQuery and XPath Functions.

Function Description

boolean(item) Converts item into a Boolean

ceiling(number) Returns the closest integer above number

concat(s1, s2, ...) Concatenates strings

contains(string,
substring)

True if string contains substring

count(node-set) Returns the number of items in the item
sequence. The items may be nodes, but they
may also be atomic values.

false() Returns false

floor(number) Returns the closest integer below number

id(idref) Returns the node with the ‘ID’ attribute equal to
idref

lang(language) Returns true if the context node has an xml:lang
of language

last() Returns the number of nodes matching the axis

local-part(node) Returns the local part of the node’s name

name(node) Returns the node’s name

namespace(node) Returns the namespace URL of the node’s name

normalize-
space(string)

Normalizes whitespace

number(item) Converts item to a number

round(number) Rounds number to the nearest integer

starts-with(string,
head)

True if string starts with head

string(obj) Converts the object to a string

string-length(string) Returns the string length of string

substring-
after(string,
substring)

Returns the substring of string after the match-
ing substring

substring-
before(string,
substring)

Returns the substring of string before matching
substring

sum(node-set) Converts the node values of node-set to num-
bers and adds them

178 Chapter 7 Learning XML-Centric Technology for SOA

the sum() function to return the double value of the total of a
sequence of element attribute values.

The functions in Table 7-1 are built into XQuery in that they do
not require an explicit namespace. Some namespaces are assumed by
XQuery implementations. (See Section 7.4.9 for a list.) For instance,
we can use true() to return a value of true rather than xs:true().
XQuery knows that these are equivalent. This is not true for the
numeric constructors and other constructors. For instance, the fol-
lowing code shows a few of the constructors.

xs:decimal(string $srcval) => decimal

xs:integer(string $srcval) => integer

xs:Name(string $srcval) => Name

xs:QName(string $srcval) => QName

xs:boolean(string $srcval) => boolean

xs:duration(string $srcval) => duration

xs:dateTime(string $srcval) => dateTime

Each of these requires the xs namespace preamble to be recog-
nized correctly by XQuery. For instance, xs:decimal(“183.28”) takes
the string “183.28” as an input and returns an xs:decimal value.

User-defined Functions

XQuery could have been a quaint and ineffectual competitor to SQL
if the XQuery Working Group did not add user-defined functions to
the language specification. User-defined functions appear in the pro-
log section of an XQuery. The parameters and results may be primi-
tive values, nodes, and sequences.

For instance, the following code implements a simple function
that takes two values and returns the lesser of the two values.

translate(string,
from, to)

Converts characters in a string, such as the ‘tr’
command

true() Returns true

I maintain a list of XQuery and XPath functions at
http://www.xquerynow.com/howto/thebasics/functions.html/.

Table 7-1 Nonexhaustive List of Handy XQuery and XPath Functions.

Function Description

7.4 A Tour of XQuery 179

declare function local:lesser(
 $a as xs:decimal?, $b as xs:decimal?) as xs:decimal?

{

 if ($a < $b)

 then $a

 else $b

};

local:lesser(6,60)

This XQuery uses a user-defined function called local:lesser. The
namespace is local and the function name is lesser. The function
takes two decimal parameters and returns a decimal value.

All XQuery expressions are available within a function declara-
tion. I have seen user-defined functions that took 15 pages to print.
Just remember to include the semicolon (;) to end a function.

7.4.8 Type Specification

XQuery is a strongly typed programming language, but it might not
seem so from looking at the typical XQuery program. Similar to Java,
C#, and other languages, XQuery uses a mix of static typing and
dynamic typing. XQuery checks for static typing at compile time and
dynamic typing at run time.

The types in XQuery are different from what you are probably
familiar with in object-oriented programming. XQuery uses the
XQuery data model to define datatypes using XML Schema notation.

if ($myvalue instance of xs:integer)

then process-integer($myvalue)

else ()

The above code example evaluates the type of the $myvalue vari-
able. If the value is an integer value, then the process-integer func-
tion operations on the myvalue value.

7.4.9 Namespaces

XQuery fully supports namespaces in function definitions and
usage. Several namespaces are implicitly used by XQuery implemen-

180 Chapter 7 Learning XML-Centric Technology for SOA

tations. The following is a list of the namespaces that are by default
already known.

• xml = http://www.w3.org/XML/1998/namespace

• xs = http://www.w3.org/2001/XMLSchema

• xsi = http://www.w3.org/2001/XMLSchema-instance

• fn = http://www.w3.org/2006/11/xpath-functions

• local = http://www.w3.org/2005/11/
 xquery-local-functions

• err = http://www.w3.org/2005/xqt-errors

For instance, in Section 7.4.7, I used the following function decla-
ration.

declare function local:lesser(
 $a as xs:decimal?, $b as xs:decimal?) as xs:decimal?

Customary namespace declarations can be used in element con-
structors, much as you would in XSLT.

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:html="http://www.w3.org/1999/xhtml">

 <head>

 {

 let $title := "XQueryNow.com"

 return $title

 }

 </head>

</html>

XQuery supports another method that sets the namespace.

declare namespace html= "http://www.w3.org/1999/xhtml";

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 {

 let $title := "XQueryNow.com"

 return $title

 }

 </head>

</html>

7.5 My First XQuery Blunders 181

Usual rules about the nearest conflicting namespace declaration
taking precedence apply. The above XQuery produces the following
output.

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>XQueryNow.com</title>

 </head>

</html>

7.4.10 Dates and Times

XQuery has dozens of functions to work with dates and times. For
instance, the following XQuery returns the current time.

fn:current-dateTime()

That is all. Unlike Java, there are no Gregorian chants involved.

7.5 My First XQuery Blunders

XQuery is not an elegant language. I am used to the precision of Java
and Python. Java makes you go through the effort of explicitly defin-
ing and typing all the objects used.

import com.pushtotest.tool.Lingo;

Lingo myobj = new Lingo();

There is nothing ambiguous about the above Java code. You know
which Lingo object you are using (if there is more than one) and
exactly when it is instantiated.

Python uses explicit spacing to denote functions, subfunctions,
and clauses of code.

myobj = Lingo()

if myobj.lastResult() == "good":

 print "The result was good"

 if myobj.getResultCode() == 27:

 print "Result code is 27"

182 Chapter 7 Learning XML-Centric Technology for SOA

else:

 print "The result was not good"

Python makes very clear—almost compulsively so—the flow of a
program. Compare that to XQuery.

for $i in doc("directions.xml")/recipe where $i/
@name="chocolate_chip" return for $j in $i/steps/add return
for $k in doc("ingredients.xml")/ingredients/* for $l in $k/*
where (name($l) = string($j/@ingredient)) and ($l/
@amount=0) return $l

So it should be of no great surprise to you when learning XQuery
that you are in for some pretty good blunders. Consider the follow-
ing blunders I made when learning XQuery.

7.5.1 Blunder 1: Declarative, Modal, Dynamic All at Once

If you come from a Java, C, C++, C# or other procedural program-
ming background, then XQuery is going to require some adjustment
in your thinking. XQuery is a declarative language. Sometimes you
just need to lose control, sit back in your comfy chair, and hope that
XQuery does the right thing. Doing so for me was not that easy and
led to some of my first XQuery blunders.

if ($a = 1) then return <value>$a</value>

When I ran this the first time, I expected to see the number 1 (in an
XML <value> tag) printed to the console of my XQuery engine.
Instead I got a syntax error. XQuery requires if functions to include
an else clause. So I tried again.

if ($a = 1) then return <value>$a</value> else return
<value>$b</value>

Running this if results in an error too. The else clause is there but
the nature of a function in XQuery is that it returns a result. So put-
ting the return function in an if function is invalid.

if ($a = 1) then <value>$a</value> else <value>$b</value>

7.5 My First XQuery Blunders 183

I thought, “I’m going to get it right this time! Right?” Well, yes
and no. The output I found was as follows:

<value>$a</value>

What I was looking for in the output was the value of the $a vari-
able, not a string literal of $a. Let’s try again.

if ($a = 1) then <value>{$a}</value> else <value>{$b}</
value>

In the above code I used the { and } characters to tell XQuery to
evaluate an expression. In this case the expression is to return the
value of the $a variable.

<value>1</value>

That’s it! That is the result I was looking for! The experience told
me three things to expect when learning XQuery:

1. XQuery is declarative as opposed to procedural. I can’t tell
XQuery how to process a program at the same level that I
can a Java and Python program. Sometimes I will be frus-
trated, and when that happens, I need to “take a chill pill.”3

2. XQuery is modal and dynamic even within a single expres-
sion. For instance, the if..then..else expression always
returns a result and the then and else clause values are
dynamically typed at run time. So <mynode/> returns an
XML element, 1 returns an integer, and mynode returns a
string. XQuery figures the type out for you dynamically at
run time unless you specify the type in a declaration.
XQuery 1.0 supports XML Schema4 simple types (such as
string, integer, dateTime, etc.), types from imported schemas
(such as USAddress), and XML document structure types
(such as document, element, attribute, node, processing
instruction, comment, etc.). Last, to insert an expression into
a then and else clause requires the use of { and } characters.

3 “You need to take a chill pill, Dad” is advice from my 11-year-old daughter,
Madeline.

4 See http://www.w3.org/TR/xmlschema-2.

184 Chapter 7 Learning XML-Centric Technology for SOA

3. XQuery does not support many of the debugging tricks and
techniques I have grown accustomed to using in Java and
Python. For instance, there is no print expression that I can
insert into an XQuery to identify state while an XQuery
runs. In Xquery, I am not writing procedural scripts—I am
declaring an XQuery. Some XQuery implementations
include fn:trace().

7.5.2 Blunder 2: The Generic Error and Debugging

Consider a second blunder in the following XQuery.

let $mydoc := <frank><birthdate>1961-04-23</birthdate></
frank>

let $birth := $mydoc/frank/birthdate

let $diff := fn:get-minutes-from-dayTimeDuration(

 xs:dateTime(fn:current-dateTime())

 - xs:dateTime($cachedurl/timein))

return $diff

The above XQuery is meant to return the number of minutes that I
have lived. It fails. Why? Because the path expression to find my
birthdate in the $mydoc document is incorrect. The $birth variable
contains an empty sequence. Unfortunately, the XQuery engine I
originally ran this on simply replied:

[0000] Unknown general error.

This shows me two additional things about XQuery:

1. XQuery is so new that when debugging an XQuery, I need to
include the possibility that the error I am seeing is actually a
bug in the XQuery implementation. As a result, I now keep 4
XQuery engines installed on my development machine to
run side-by-side comparisons when I bump into problems.

2. XQuery implementations do not by default show me their
intermediate code or optimizer’s execution plan for debug-

7.5 My First XQuery Blunders 185

ging. And very few XQuery implementations include a
debugger to do step-through and variable value inspection.

7.5.3 Blunder 3: Semicolons in the Query Prolog

Consider the following function definition in the query prolog.

define function greetings()

{

 <Hello/>

}

greetings()

Everywhere else in an XQuery expressions end themselves. In the
prolog all declarations end with a semicolon. The semicolon is miss-
ing from the above function definition. The correct form is as follows:

define function greetings()

{

 <Hello/>

};

greetings()

7.5.4 Blunder 4: XML versus XML Documents

XML parsers normally output an XML declaration when they save
XML content to a file. You’ve likely seen this file header.

<?xml version='1.0'?>

<billofsale>

<amount>500</amount>

</billofsale>

So imagine you are in the context of a Java application that
receives a String containing the contents of an XML file, including
the XML declaration.

String xmldoc = "<?xml version=/"1.0/"?>

<billofsale><amount>500</amount></billofsale>";

186 Chapter 7 Learning XML-Centric Technology for SOA

To insert this document into a database using an XQuery and an
XML database, you might write the following.

tig:insert-document("mydocument", "<?xml
version='1.0'?><billofsale>

<amount>500</amount></billofsale>")

The above example uses the TigerLogic5 syntax that is similar to
most other XQuery extensions to support native XML database.

This will throw an XQuery error, as the xmldoc includes the XML
declaration. The declaration works fine for an XML file, but it is not a
valid XML in an XQuery. Why?

The XQuery operates on and produces XDM instances, not serial-
ized XML documents. The XQuery/XSLT serializer might be imple-
mented and then be used to produce serialized XML documents, but
the XQuery/XPath Data Model (XDM) does not include the XML
prefix for the very obvious reason that it deals solely with serialized
XML and not with abstract (parsed) XML.

Think of the situation from the XQuery parser’s perspective. The
XML declaration looks syntactically on par with:

let $b := "<?xml version="1.0"?>" "<billofsale> ..."

That causes the error. Some of the XQuery engines provide a
workaround to this problem, including the following.

• Saxon provides an extension function, saxon:parse(), that
runs the XML file—including the XML declaration—
through its parser.6

• MarkLogic provides an extension function, xdmp:unquote(),
that parses an XML file and returns an XML document.7

• TigerLogic provides a Java API to evaluate XQuery expres-
sions that takes an optional stream and parses the stream
into an XML document. For example:8

5 See http://www.rainingdata.com/products/tl/index.html.
6 See http://www.saxonica.com.
7 See http://www.marklogic.com.
8 See http://www.rainingdata.com/products/tl/index.html.

7.5 My First XQuery Blunders 187

String myxml =

 '<?xml vesion=\'1.0\'?><test>MyString</test>';

InputStream stream =

 new ByteArrayInputStream(myxml.getBytes());

ResultSet rs = statement.execute(

' insert document $1 into 'tig:///Database/Collection/
1368134769D'', stream);

stream.close();

7.5.5 Blunder 5: Don’t Think Procedurally

At one point I wanted to see if I could calculate the time it takes to
make a cookie by totaling up the time for each step from the
directions.xml document. I used the following XQuery.

let $totaltime := 0

for $i in doc("directions.xml")

let $totaltime := $totaltime + $i/@time

return <total>{$totaltime}</total>

That won’t work! I got the following error message.

The attribute axis starting at a document-node() node will
never select anything.

 Instead, try this:

sum(doc("directions.xml")//@time)

The result will be as follows:

20.0

7.5.6 Blunder 6: Sometimes You Need to Be Explicit

I wanted to return a list of ingredients and their amounts presented
in HTML format and ordered alphabetically by ingredient name. I
tried this XQuery.

<html><body>List of items:
<ul type="square">

188 Chapter 7 Learning XML-Centric Technology for SOA

{for $ingredient in

 doc("ingredients.xml")/ingredients/dry/*

 order by name($ingredient)

 return

 {name($ingredient)}, {$ingredient/@amount}

}

</body></html>

This returns an error:

E Attribute nodes must be created before the children of an
element node

The $ingredient/@amount expression of the return value returns
the value of the attribute for the element. For instance, the XQuery
returns the <flour> element with an amount attribute equal to the
value of 100.

<flour amount="100" … />

XQuery interprets the return expression as: Find the name of the
first dry ingredient, append a comma to it, then find the amount
attribute, and append the whole mess to the element. That does
not make any sense and XQuery throws the error.

I tried a second approach to this problem as follows:

<html><body>List of items:
<ul type="square">

{ for $ingredient in doc("ingredients.xml")/ingredients/dry/*

 order by name($ingredient)

 return { $ingredient/@amount }

}

</body></html>

XQuery interpreted this return expression as: Find the amount
attribute and add it as an attribute to the element>. This is not
what I want but it is valid XQuery so I get the following result.

<html>

 <body>List of items:

7.5 My First XQuery Blunders 189

 <ul type="square">

 <li amount="0"/>

 <li amount="100"/>

 <li amount="50"/>

 <li amount="250"/>

 </body>

</html>

Pretty good! Huh! XQuery adds the amount attribute to the
tag. I tried a third approach to this XQuery as follows:

<html><body>List of items:
<ul type="square">

{ for $ingredient in doc("ingredients.xml")/ingredients/dry/*

 order by name($ingredient)

 return { name($ingredient) },

 { number($ingredient/@amount) }

}

</body></html>

This XQuery gives the following result.

<html>

 <body>List of items:

 <ul type="square">

 bakingpower, 0

 flour, 100

 salt, 50

 sugar, 250

 </body>

</html>

This is what I was after. The return result delivers an HTML list
with the name of the ingredient and the value of the amount
attribute.

190 Chapter 7 Learning XML-Centric Technology for SOA

7.5.7 Blunder 7: Value versus General Comparisons

XQuery 1.0 provides two mechanisms for comparing data: value
comparisons and general comparisons.9 The first thing I noticed
was the confusing naming conventions: both compare values.
Other than preferring to write “=” instead of “eq,” why would I use
one over the other?

General comparisons use the operators common to modern pro-
gramming languages (=, !=, <, >, <=, >=), but they are in reality dif-
ferent from the languages you already know. Value comparisons use
operators that are nearer and dearer to the hearts of the FORTRAN
programmers out there (eq, ne, lt, gt, le, ge) but work the same way
comparison operators work in more traditional languages.

XML is pretty flexible, and a lot of people take full advantage of
that flexibility. Elements can be optional, repeating, and recursive,
and often a query author may not be able to easily ensure they’re
only comparing something to a single node. Consider the following
query against the XMP sample data found in the W3C’s XML Query
Use Cases document.10

for $i in doc('bib.xml')/book

where $i/author/first = 'Norman Cohen'

 return $i

The document in question contains four books, some of which
contain a single author, but one contains multiple authors and
another has no author at all. As the query author, I don’t know this,
so I need the flexibility of a general comparison to accomplish the
task at hand. The general comparison works so that the comparison
is true if any of the authors found match 'Norman Cohen'. If a given
book has no authors, then the comparison is simply false. Con-
versely, if I had used the eq value comparison, I would have gotten
an error from my query, since value comparisons cannot compare
against multiple values.

Flexibility is nice, but it doesn’t come for free. Let’s consider the
literal interpretation of a general comparison in Java:

9 XQuery has three comparisons if you count node comparisons.
10 See http://www.w3.org/TR/xquery-use-cases/#xmp-data

7.5 My First XQuery Blunders 191

for(int i = 0 ; i < left.length ; ++i)

 {

 for(int j = 0 ; j < right.length ; ++j)

 {

 if(value_compare(left[i], right[j]))

 {

 return true;

 }

 }

 }

return false;

Now imagine that every single time you needed to compare two
values in your Java program you had to do that! Obviously, in gen-
eral (no pun intended), this is not the most efficient way to perform a
comparison.

This is a worst-case example of a general comparison. The reality
is that, XQuery being a declarative language, most XQuery proces-
sors will have internal optimizers that will mitigate a lot of the bloat
that can happen with a worst-case general comparison. For instance,
given our original query, since we know the right-hand side consists
of a single atomic value, 'Norman Cohen', it can easily get away with
removal of the inner loop.

Nonetheless, often the explicit code is better overall than implicit
optimization, and for this and a few other reasons to follow we have
value comparisons. Value comparisons compare just two atomic val-
ues, a single left- and right-hand side. They are much less flexible but
generally more efficient. The cost is in flexibility: If you happen to
point one at a sequence of more than one value, get ready for your
query to bomb, so use value comparisons wisely.

Value comparisons are one area where a little extra knowledge
about your XQuery processor may be helpful. For instance, SQL com-
parisons are more like value comparisons than general comparisons,
and therefore XQuery leveraged over a number of relational data-
bases can be seriously affected by your choice of processor. Database
query engines employ custom algorithms to perform joins, such as
hash-join, merge-sort join, and index-based joins, and the type of
comparison you employ has a direct impact. In some cases, the choice
of a value comparison over a general comparison can directly affect
the ability of the processor to perform a hash-join, or use an index,

192 Chapter 7 Learning XML-Centric Technology for SOA

which can have a huge impact on query performance. To illustrate,
consider the XMP sample data once more in the following query.11

 for $i in doc('bib.xml')//book

 for $j in doc('reviews.xml')//entry

 where $i/title eq $j/title

 return $i

In this query we are performing a join, and since I know that in
this particular data model both <book> and <entry> contain exactly
one title element, I’ve chosen to use a value comparison. On the one
hand, I know that it is at worst as efficient as a general comparison
and at best much better, and it will most likely lead to a much more
efficient query when the query processor optimizes my join query.

Aside from these examples involved in the implicit optimization
for a particular XQuery optimizer, generally it is good practice in
XQuery to be very explicit about what you do know about your data,
so use value comparisons wisely, but use them only when you’re
sure you can. No one wants an error instead of a query result, so the
less you know about your data the more you may want to gravitate
to general comparisons. Choose your tool wisely, and, remember, if
neither is precise enough for you, there are always quantified expres-
sions.12 But those are another story altogether.

7.6 The Unfinished Parts of XQuery

XQuery 1.0 is a remarkable accomplishment. The specification deliv-
ers a functional language that is a whole lot more useful than many
other 1.0 specifications. However, there are missing parts of the spec-
ification that many XQuery implementations are delivering in
advance of the specification. You should expect the following addi-
tions to the XQuery standard.

7.6.1 Federated Queries: SOAP, JDBC, and Java Data Sources

The XQuery 1.0 specification does not include a mechanism to
extend XQuery to new data sources. The doc() function lets you iden-
tify the file name path to an XML document. Many XQuery imple-

11 See http://www.w3.org/TR/xquery-use-cases/#xmp-data.
12 See http://www.w3.org/TR/xquery/#id-quantified-expressions.

7.6 The Unfinished Parts of XQuery 193

mentations have extended the doc() function to accept a path to data
stored in a database. The terminology for the database diverges from
XQuery implementation to implementation. However, they all so far
provide for a database to contain a group of XML documents known
as a collection; and, each collection has a root node. This is illustrated in
Figure 7-7.

The following shows several native XML data persistence func-
tions that come with the TigerLogic XQuery engine. TigerLogic
delivers an XQuery implementation and a native XML database. This
illustrates what many other XQuery engines implement too.

tig:create-database('automobiles', ())

let $config := ()

return

 tig:create-collection('automobiles', 'foreign-auto',

 'Automobile-stuff', (), $config)

insert document

 for $i in doc("file:///c:/auto/cars.xml")

 where $i/model = 'BMW' or
 substring($i/model, 0, 8) = 'Mercedes'

 return

 <german-car>{ $i }</german-car>

into "tig:///mydatabase/foreign-auto"

let $a := collection('tig://mydatabase/foreign-auto')

The above code creates a new database named automobiles and a
collection named foreign-auto. The insert document expression finds
BMW or Mercedes autos from the cars.xml document and inserts
these entries into the foreign-auto collection.

Figure 7-7 XQuery nodes are especially powerful, since the parent
of a node goes up and into collections and databases using a native
XML database.

194 Chapter 7 Learning XML-Centric Technology for SOA

Raining Data, the publisher of TigerLogic, implemented its own
create/update/delete extensions (commonly referred to as CRUD
functions) to the XQuery 1.0 specification. Most of the XQuery imple-
mentations (MarkLogic, Oracle, Ipedo, etc.) today have their own
nonstandard commands while they wait for the W3C XQuery Work-
ing Group to finish the Update specification. Adopting a current
CRUD extension to XQuery is a “safe bet” to make today, because it
is likely that the software publisher putting forward an XQuery
implementation with its extensions will also offer a migration path to
the XQuery Update specification when it is ready.

SOAP Web Services Data Source

SOAP-based Web Services interfaces to a service are XML-based
message protocols. Many XQuery engines have extended the doc()
function to enable an XQuery to make a call to a Web Service. The
XQuery works with the service response in native XML form. For
instance, the following XQuery makes a SOAP call to a service using
TigerLogic.

import service namespace sw=

'http://www.WeatherReport.com/WebServices/
WeatherReport.asmx?WSDL'

operation GetWeatherReport

port WeatherReportHttpGet;

sw:GetWeatherReport('Cleveland')

In the above Xquery, the prolog section declares a SOAP service
that is described using the Web Service Definition Language (WSDL)
The sw:GetWeatherReport then sends a request to the service to
retrieve the weather report for Cleveland. The weather report returns
an XML response document that is easily searched using XPath
expressions.

Most XQuery implementations today are already extending their
implementation to support Web Services requests. I fully expect we
will all get together and twist Jim Melton’s arm long enough for him
to agree that this function will become part of XQuery in some form
sometime in the near future. If it does not become part of the specifi-
cation itself, it will be reasonable for users to expect it as part of any
XQuery implementation.

7.6 The Unfinished Parts of XQuery 195

JDBC Relational Data Source

Most of the world’s data is stored in relational database tables that
are accessible through SQL expressions. SQL queries return a rowset,
which may be transformed into XML data and operated upon from
an XQuery. Several XQuery implementations have adapters that
allow an XQuery to issue a SQL expression. For instance, the follow-
ing shows TigerLogic executing a SQL expression.

declare namespace cfn='SQLServerDataSource';

cfn:execute-select((),

 'the-bobs',

 'SELECT * FROM EMPLOYEES WHERE FIRSTNAME = Bob')

The example above executes a query to select employee informa-
tion for employees with first name of Bob. No schema URI is given,
so the results use default mapping (are flat). The root-node name is
used to generate the root node of the flat XML.

Java Data Source

So far we have seen XQuery extended to support native XML data-
base persistence, Web Services, and relational databases. It’s like eat-
ing potato chips! It’s hard to stop after just a few. One more extension
to XQuery we will cover shows how Java functions may become
XQuery data sources. I would bet that XQuery in some way will
eventually support the Java data source too.

The following is specific to TigerLogic and possible in the code
base of Java-based XQuery implementations. (It just takes a little cre-
ativity.) For instance, using TigerLogic follow these steps.

1. Write a Java class. The class must be static and be part of a
package of your choosing. Compile the class and put it into
a JAR package.

2. Write a function descriptor XML file to identify the class
and method.

3. Register the Java functions you want to use with TigerLogic
using the tig:register-java-functions function.

4. Verify that the Java functions are registered correctly by list-
ing them using the tig:list-java-functions function.

5. To unregister (drop) the registered Java functions, use the
tig:drop-java-functions function.

196 Chapter 7 Learning XML-Centric Technology for SOA

The following instance shows this in practical terms. I begin by
creating a Java program.

package test.rdta.java;

public class TestPrimitive {

 // zero argument methods

 public static float zeroArgFloat()

 {

 return (float)3.4028235123456789012345678901234567890E33 ;

 }

 ...

 // one argument methods

 public static float oneArgFloat(float f)

 {

 return f ;

 }

 public static void main (String args[])

 {

 System.out.println(TestPrimitive.zeroArgFloat());

 }

}

Compile this program and package it into a JAR file. In this exam-
ple the JAR file is testprimitive.jar. Create a function descriptor XML
file. In this example, we use myFunctionDescriptor.xml.

<function-descriptor id="jf_primitive"
targetNamespace="http://www.rainingdata.com/TigerLogic/
namespaces/javafunc" author="Bob Smith">

<classpath url="file:///C:/javafunc/javaPrograms/classes/
testprimitive.jar"/>

 <function package='test.rdta.java' class='TestPrimitive'
name='oneArgFloat'

bound-name='JavaFunc_TestOneArgFloat'>

 <java return='float' mode='primitive'>

 <arg type="float" mode="primitive"/>

 </java>

 </function>"

</function-descriptor>

7.7 Where to Find Answers to XQuery Questions 197

Next, I register the Java function in an XQuery:

tig:register-java-functions("jf_primitive",

doc(file:///C:/javafunc/myFunctionDescritor.xml))

With the function registered, my XQuery is ready to use the Java
function.

declare namespace jf ="http://www.rainingdata.com/TigerLogic/
namespaces/javafunc";

jf:JavaFunc_TestOneArgFloat(xs:float("3.4028E20"))

Here we call a Java function using the defined alias name with the
XML Schema float datatype (which is mapped to Java float datatype)
that the called Java function required. The result of this XQuery is a
Java float value returned as an XML Schema float value.

7.7 Where to Find Answers to XQuery Questions

Many of my blunders were solved by one of the sources of XQuery
information listed in Table 7.20.

Table 7-2 Sources of XQuery Information, Help, and Assistance

Source Description

www.xquerynow.com A free on-line community site providing
free tips, techniques, how-to articles, and
tools to rapidly learn how to be proficient
with XQuery and native XML database
technology.

www.xquery.com Jason Hunter’s site for XQuery fans to
share ideas and ask each other questions
on an email list hosted by the service.
talk@xquery.com is an email list where
many XQuery engine implementers
answer technical questions about XQuery.

www.w3c.com The official source of the XQuery, XPath,
XSLT, and other specifications. (The same
people that brought you the Web.)

198 Chapter 7 Learning XML-Centric Technology for SOA

7.8 Summary

This chapter covered the basics of the XQuery language, the scalabil-
ity issues surrounding integration of XQuery into a Java application,
the blunders I made while learning XQuery and native XML data-
bases, and the safe bets of new features that will likely be in the
XQuery specification in the near future and already exist in many
XQuery implementations.

www.w3.org/TR/xquery-
requirements

The XQuery specification document
defines the goals and requirements for
the XQuery data model and query lan-
guage.

www.w3.org/TR/xquery The XQuery 1.0 specification document
defines the language grammar. Pretty
geeky stuff here.

www.w3.org/TR/xquery-use-
cases

A document showing several dozen
XQuery scripts. Good stuff if you are a
learn-by-example kind of person.

www.w3.org/TR/xpath-data-
model

Defines the XQuery 1.0 data model.

www.w3.org/TR/xquery-
semantics

Defines the XPath 2.0 and XQuery 1.0 lan-
guage.

www.w3.org/TR/xmlquery-
full-text-use-cases

Examples to show full-text search can be
performed using XQuery and XPath.

www.w3.org/TR/xpath-func-
tions

A list of functions and operators required
by XPath 2.0, XQuery 1.0, and XSLT 2.0.

www.w3.org/TR/xquery-full-
text-requirements

An extension to XPath/XQuery lan-
guages, full-text search facilitates search-
ing tokenized text. This document defines
this extension to XPath and XQuery lan-
guages.

www.w3.org/TR/xpath20 The XPath 2.0 specification document.

www.gnu.org/software/qexo/
XQ-Gen-XML.html

Quexo is an XQuery implementation that
compiles XQuery programs on the fly
directly to Java bytecodes. Distributed
under a free open-source license. Bundled
into TestMaker. A terrific tool to experi-
ment with and learn XQuery.

Table 7-2 Sources of XQuery Information, Help, and Assistance

Source Description

7.8 Summary 199

The next chapter moves the discussion of XML technology into
the future of SOA. XML is a great medium for describing service
interfaces, messages exchanged between services, and service
dependencies (sometimes called governance.) Chapter 8 discusses
these and the resulting impact on scalability and performance.

201

Chapter

8
Getting SOA-Ready

XML is very important to the information technology industry,
because it gives software developers, architects, and operations man-
agers an easy and efficient way to model data in a way that expresses
metadata—data about the data. Before XML, most distributed sys-
tems treated data and services separately. With XML, service inter-
faces become more easily understandable, since the interface
definition is self-describing XML. And the data in the message that
moves through the service interface expresses meaning semantically
in the message. Data and services merge with XML. Consequently,
the IT industry is using SOA techniques to turn the newly available
XML data into business value through reusable components that
implement business policies and use composite data service soft-
ware. This chapter shows how your business or organization benefits
from putting data, metadata, and policies to work, and gives you a
methodology and checklist to make certain your organization is
SOA-ready.

8.1 Composite Data Services

Composite applications are a key reason for enterprise interest and
support for SOA. Stitching together existing software components
into new applications rapidly means an enterprise or organization

202 Chapter 8 Getting SOA-Ready

can deliver business value quickly and inexpensively. Figure 8-1
illustrates a composite application I wrote that takes driving direc-
tions from a mapping service on the Web and combines it with
Krispy Kreme’s store locator service. This composite application
ensures I will never be far from a delicious and refreshing donut as I
travel to a business meeting.

While the above application is a good example of a mashup it
also shows how composite applications are powerful and deliver
business value, composite applications introduce two key problems
for every business and organization:

• Maintaining composite applications requires deliberate and
long-term effort. For instance, what happens nine months
from now when the donut locator service changes message

Figure 8-1 Integrating a map-rendering service with the donut shop
locating service into a composite application.

8.1 Composite Data Services 203

schemas? Additionally, my composite application uses Java
code to know the order in which to call the services, and
any new developer maintaining the code will need to learn
my code.

• Performance and scalability depend on the response times
of the underlying services. For instance, each use of my
composite application depends on responses from the map-
ping and donut locator services. The slower these services
respond, the slower my composite application performs.

Table 8-1 shows the choices a software developer needs to make to
be successful with composite applications.

Table 8-1 Developer Decision Task Areas to Build SOA Composite
Applications

Task Function

Class/object definition Classes encapsulate data and provide methods
to operate on the data. For instance, in the
donut-mapping example, I implement a class
for the driving directions and a class for the
donut shop locations with methods to glue the
two together into a map.

Language and platform A choice of programming language impacts
how rapidly a developer is able to build the
application. For instance, Java has no query lan-
guage and it has a collection architecture for
mapping data objects. XML, on the other hand,
is strong at defining data mapping and has a
relatively new query language (XQuery).

Workflow container A workflow container provides services for the
developer to search for the most appropriate
service and the container determines the order
in which to call the services. For instance, in
my composite application I need to call the
donut locator service first and then the map-
ping service.

204 Chapter 8 Getting SOA-Ready

Making these choices now means that my business will save
many hours of potentially difficult software maintenance over time,
that my composite application is reusable by other developers in the
organization, and that the composite application is much less suscep-
tible to service outages and downtime as the underlying services,
platforms, and datacenters change. And change is inevitable.

The reuse of composite applications is key to long-term SOA scal-
ability. For instance, a colleague at work took my donut-mapping
service and added it to her coffee shop locating service. Each time
she operates her service, a set of resources (servers, network band-
width, memory, and processors) executes the coffee shop location
service and that, in turn, operates my donut-mapping service. My
service uses additional resources and causes the servers hosting the
mapping and donut locator services to use their resources. In reality,
the locations of the donut shops rarely change and the maps of the
region rarely change.

Yet, each reuse of the composite application causes server
resources to be applied to answer essentially the same question:
Where are the donuts and coffee? In scalability terms this is an n + 1
data access scalability problem; each reuse of my service causes an
equal number more of resources to be used.

Composite Data Services (CDS) is a pattern for software compo-
nents that are callable through a standard service interface and

Taxonomy and registry A registry abstracts the service endpoints to
make it possible for the composite application
to choose the best available service at run time.
For instance, I should be able to use the same
donut-mapping application in Australia and
dynamically find a better mapping service for
the Australian road system without changing
the code by using a registry and taxonomy.

Data access services Data access services provide a standard inter-
face for the composite application to store,
retrieve, and update enterprise data, databases,
message queues, Web services, and data persis-
tence stores. The data access services also pro-
vide mid-tier policy and service data
persistence using the FastSOA mid-tier cache
architecture presented in Chapter 5.

Table 8-1 Developer Decision Task Areas to Build SOA Composite
Applications (continued)

Task Function

8.1 Composite Data Services 205

encapsulate the data, methods, workflow, taxonomy, and data access
for a composite application.

CDS is a pattern that may be implemented using any of today’s
available technology (Java, .NET, relational database, native XML
technology, and others). The key to a successful CDS approach is to
make certain your tools and technology choices are complete. CDS
development uses commercial or open-source tool sets in the follow-
ing categories:

• Class/object definition

• Language and platform

• Workflow

• Taxonomy and registry

• Data access and caching

In the next sections, we’ll examine the CDS architecture and the
tool sets to build them.

8.1.1 Class/Object Definition

Object-oriented design patterns encapsulate data and provide meth-
ods to operate on the data. For instance, in the donut-mapping exam-
ple I define an object for the driving directions and an object for the
donut shop locations with methods to glue the two objects together
into a map. Objects make code reuse easy and reduce bugs.

In an SOA environment, objects are the only place to implement
the business logic of a service. Developers are often tempted to put
business logic into the other parts of CDS architecture—for instance,
in the workflow or registry functions. Processors are inexpensive,
and subsequently it may seem that every device running in a data-
center has a scripting, macro, or other programming capability. I
strongly caution you against implementing business logic anywhere
but in an object. By doing so, you prevent developers from having
the benefits of an integrated development environment, including
source code control, debugger, versioning, test frameworks, and code
module reuse among team members.

An object and its methods are the entry point to a CDS compo-
nent. Figure 8-2 illustrates a user operating a CDS by requesting the
validateAddress method through a REST request. (REST uses HTTP

206 Chapter 8 Getting SOA-Ready

protocols and XML payloads to access objects and methods.) In addi-
tion to a user, CDS requests come from services, composite applica-
tions, and processes.

The operating environment that runs a CDS component takes care
of the object life cycle for the CDS object, including instantiating CDS
objects, receiving the request to the method through a communica-
tion protocol (SOAP, REST, AJAX, JMS message), operating the object
during its life cycle, and cleaning up after it is no longer needed.

Next, we will see how the choice of language and platform makes
a difference to CDS performance and scalability and to the devel-
oper’s productivity.

8.1.2 Language and Platform

When working in SOA projects that primarily use XML data, the per-
formance and developer productivity gains presented in Chapter 4
move many developers to choose native XML technology
approaches. For instance, consider that Java has no query language.
Java was never meant to do what XML does well—model data in
parent-child structures and provide a query language.

Java did not have a standard way to model collections of data for
the first five years of its life. Java objects were supposed to hold their
data, and some objects might hold other objects. Until the Java collec-
tions architecture emerged, there was no official way to map the rela-
tionship between collections of objects.

XML, on the other hand, began by defining a data model and the
way to express relationships between the entities. XML does well at

Figure 8-2 A software object encapsulates the address information
and exposes methods to operate on the data, including the
validateAddress method.

8.1 Composite Data Services 207

modeling parent-child structures and recent extensions (XML
Schema, XSD include files, and namespaces) make XML a good
choice for collections of data in document-oriented formats. Ironi-
cally, until the XML Query language (XQuery) there was no native
XML programming language to do anything with the data expressed
in XML formats. Consider the differences in data models presented
in Figure 8-3.

The average software developer is left with a big question: Since
Java does not support XML natively, the XQuery programming lan-
guage is so new, this book says developers get a 22 times perfor-
mance and scalability improvement when using native XML
technology, developers are building composite applications and
composite views of data from data sources that change, and develop-
ers want to let other developers reuse their work, then what is the
safest and most efficient choice to make?

In reality, there is a compromise technology architecture that
fuses data and services into reusable CDS components. For
instance, Java supports a proposed programming interface that lets
Java objects work with XML data natively through the XQuery API
for Java (XQJ).1

Figure 8-2 illustrates the data and methods available in the
AddressValidationService object. There is no reason to write an entire
address verification capability into the validateAddress function if
some other service already provides address validation.

Figure 8-3 The same address is represented in XML (on the left)
and a Java object (on the right.) When looking at the <street> value
you know this is a street. When looking at the Java street object you
only know that this is a string. Since all the other fields are strings in
the Java example, a street may as well be a city.

1 For details, see http://www.jcp.org/en/jsr/detail?id=225.

208 Chapter 8 Getting SOA-Ready

Next, we look at how the validateAddress function operates a
workflow process to validate the address.

8.1.3 Workflow Container

Any time a method operates a complex, multistep process, it is better
to use a process workflow engine over hard-coding the flow in an
object. Workflow engines are very good at maintaining state, espe-
cially for long-lived transactions; they are scalable since they process
tasks in an asynchronous pattern; and they handle transactions well
in that they can back out of a change in the event of an exception.

For instance, the CDS AddressValidateService object needs to
validate addresses for people living close by and people who live
within the rest of the country. The business saves expenses and
increases profit if it uses a less expensive address validation service
for people living close by. The workflow for this example imple-
ments three services:

• Service 1 checks a back-end database system to see if the
address is for a customer who lives within 50 miles of the
business.

• Service 2 validates local addresses using a local directory
from a local communications provider.

• Service 3 validates distant addresses by using a more
expensive national directory service.

Figure 8-4 illustrates a call to the validateAddress method initiat-
ing a workflow.

When the user of the AddressValidationService object invokes the
validateAddress method, the workflow uses Service 1 to determine if

Figure 8-4 Accessing the validateAddress method initiates a
workflow.

8.1 Composite Data Services 209

the address is within 50 miles of the business. If it is, then the work-
flow branches to Service 2 to use the less expensive local directory
service; otherwise, the workflow uses Service 3 from a national direc-
tory service. The end of the flow answers the validateAddress()
method with a true/false answer. True if the address is valid and
false otherwise.

Once a software developer writes the object and workflow, these
are now available for reuse. For instance, if the object and workflow
were created in the United States, ideally the same object and work-
flow would be reusable in Switzerland. To work with the Swiss
address system, Service 1 needs to be changed slightly to work with
Swiss address paths to the XML data, and Services 2 and 3 need new
service endpoints for the Swiss directory services.

Combining objects and workflow engines in a CDS delivers easier
software maintenance and reusable software components. Next, we
will add the ability to enable Services 2 and 3 to find the directory
services automatically.

8.1.4 Taxonomy and Registry

Java is a tower of abstraction. The average software developer’s code
goes through 10 or more layers of abstraction before commanding
the hardware of the underlying computer. Abstraction has its bene-
fits, including greater flexibility as the underlying systems change. In
a CDS environment, a service registry implements an abstraction of
service endpoints. Taxonomy gives a CDS an abstract and flexible
way to identify the most appropriate registered service.

A registry is a database of service endpoints organized by taxon-
omy. The service endpoints identify XML messages as input in a
request and provide an expected response in an XML message. Often
these input and output messages are defined in a Web Services
Description Language (WSDL) document, but not always. Many
developers believe that the SOAP protocols for exchanging docu-
ments or making remote procedure calls between systems is the
wrong design and, further, that WSDL will never be good enough to
truly describe the exchange. These “restifarians” are also lovers of
XML and interoperability, but they believe Representational State
Transfer (REST) is a better way of building distributed systems. REST
asychronously transfers state from one object to another. In one
application, REST uses a Web page to describe a service interface
with the expectation that a developer will read the Web page and

210 Chapter 8 Getting SOA-Ready

write code to make meaningful requests and analyze the responses.
CDS bridges this gap.

Figure 8-5 shows a service in a CDS component workflow per-
forming a taxonomical search to find the appropriate service end-
point to call to resolve an address validation request.

The business logic created for the AddressValidationService CDS
is smart enough to search the taxonomy to find the correct external
address validation service. In the example illustrated in Figure 8-5,
the CDS performs a taxonomical search of address validation ser-
vices by choosing between USA and European address validation
services. Since this CDS operates on U.S. addresses, it then chooses
between using the U.S. Post Office directory service and an Enter-
prise Database (Ent DB) service.

A UDDI registry may service the CDS taxonomy searching capa-
bility; however, this is not very likely. UDDI protocol adoption is a
failure by contrast to the relative success of SOAP and WSDL. The
ontologists of the world—taxonomy builders—never adopted UDDI.
More importantly, the idea of UDDI is backward from how taxon-
omy is created in the real world. UDDI expects a set of centralized
registries to be used by the data-categorizing experts of the world.
Experts at categorizing services are at the edge of the network and

Figure 8-5 Service 2 in the workflow uses a service to validate an
address. Service 2 searches the taxonomy to determine the
appropriate service.

8.1 Composite Data Services 211

not in the center. An informal poll of UDDI registry products I con-
ducted in 2006 shows that the average number of service end points
for each organizing a UDDI registry is 15. CDS reflects this reality by
building taxonomy into the CDS itself.

CDS expects taxonomy to be represented in XML and stored in a
database within the CDS itself. The objects and services in the CDS
know how to search taxonomy within the CDS to determine the loca-
tion of service end points. As the number of CDS components within
an organization grows, a centralized registry may be beneficial.
When that happens, the centralized registry uses publish and sub-
scribe techniques for the CDS components to share their taxonomies
with the registry.

Next let’s look at how the CDS accesses data and provides mid-
tier service and data caching for CDS acceleration.

8.1.5 Data Access Services

A CDS component accesses and persists data for services through a
data access tier.

In the example from the above sections, the data access tier pro-
vides the directory data the CDS needs for the validateAddress()
method to return a response. For instance, once the workflow uses

Figure 8-6 The data access layer enables the process to send the
address to the service over a SOAP request and cache the results in
a mid-tier service data cache.

212 Chapter 8 Getting SOA-Ready

the taxonomy to find the correct service, a data access layer enables
the process to send the address to the service over a SOAP request.
At this stage, mid-tier caching accelerates data access by caching
response data and policy data, such as the results of the search
through the taxonomy. (See Figure 8.6.)

The data access tier provides a common interface for databases
and services holding data needed for the CDS to provide a
response to requests. A CDS component needs three types of data
access providers:

• Federated Data sources. The data access tier provides a ser-
vice interface for databases (both relational and native
XML,) SOAP-based Web Services, REST and XML-RPC ser-
vices, message queues, service buses, business integration
services, and direct access to other CDS components and
objects.

• Service cache. The service cache is to persist the cached
message payloads. For instance, the service database holds
a SOAP message in XML form, an HTML Web page, text
from a short message, and binary from a JPEG or GIF
image. Identical requests are then served from the cache as
long as the cached data is still valid.

• Policy cache. The policy cache holds units of business logic
that look into the service database contents and make deci-
sions on servicing requests with data from the service data-
base or passing through the request to the application tier.
For instance, a policy that receives a SOAP request validates
security information in the SOAP header to validate that a
user may receive previously cached response data. In
another instance a policy checks the time-to-live value from
a stock market price quote to see if it can respond to a
request from the stock value stored in the service database.

The advantage to using the FastSOA mid-tier service cache pat-
tern in a CDS is in its ability to store any general type of data, and
its strength in quickly matching services with sets of complex
parameters to efficiently determine when a service request can be
serviced from the cache. Responses from the cache accelerate the
CDS response.

8.1 Composite Data Services 213

Chapter 4 presented a variety of ways to leverage data access ser-
vices to provide a standard interface to store, retrieve, and update
enterprise data, databases, Web services, and data persistence stores.

In the above sections, I showed an example business project
where the CDS delivered a compact, concise, and efficient architec-
ture to answer address validation service requests. The CDS com-
ponent building architecture used objects, workflow, taxonomy,
and data access technology. The CDS component is self-contained,
accessible through standard protocols, easily maintained, and com-
pletely reusable.

Commercial and open-source tools, libraries, and frameworks are
available to build CDS components. (Later in this chapter, we’ll look
at a method for evaluating these tools.) While you could adopt parts
of the CDS architecture presented in the above sections and discard
others, I recommend you formalize your service building around the
CDS architecture. Figure 8-7 shows the entire CDS architecture as a
container to bring these concepts together.

Enterprise information system executives are in love with SOA
for its promise to provide inexpensive and rapid development of
composite applications. A composite application reduces the overall
cost of information system development and operations by provid-

Figure 8-7 The Composite Data Service (CDS) component
architecture.

214 Chapter 8 Getting SOA-Ready

ing an easy and efficient way to reuse data and services. The CDS
component architecture puts all of policy objects, workflow, taxon-
omy, and data access objects for a single CDS component into a sin-
gle container. Adopting the CDS architecture provides a service
interface means for an enterprise to stitch together CDS components
as needed—reusing them over and over again. Figure 8-8 shows a
CDS component providing a browser interface with two main user
interface elements served from a single CDS.

The CDS component architecture would not be possible without
data and metadata being available through standard service inter-
faces and in a common data model. Prior to XML adoption, how
would we represent taxonomy in a way that a CDS component
could use? The next section shows how XML makes a huge differ-
ence in creating metadata and its benefit to an enterprise, organiza-
tion, or institution.

8.2 Creating Business Value with Metadata

XML is very important to information technology, because it gives
the world a way to model data in a way that expresses data about the
data. XML helped the world achieve a critical mass of data and meta-
data to help businesses realize value from their information systems.
Before we achieved this critical mass, corporate information systems
were purely a cost of doing business—an expense. We built these
systems for mundane things such as sending invoices to customers.
After reaching a critical mass of data and metadata, the company
information system became a profit center, where the flow of infor-
mation delivers business value. For instance, a customer portal for

Figure 8-8 A Web interface for two services (test scores and
students) served by a single Composite Data Service.

8.2 Creating Business Value with Metadata 215

customers of a business providing financial and investment informa-
tion increases the number of customer stock purchases for the invest-
ment firm hosting the portal. Component Data Services (CDS) was
not possible until we could combined policies, data, and metadata.

Policies are components of business logic automated by metadata
that can take action on data. The action may be a transformation,
notification, persistence for later use, or federation with other data to
create new views of data. Business logic is a process that furthers the
missions of a business or organization.

In the 1980s and 1990s, businesses hired software developers to
implement metadata-driven policies within their organization
(behind their firewall), but these systems could only operate on what
the organization knew internally—inventory levels, buying habits,
payment records—and the resulting code could not be reused, even
among departments within the same organization, because the code
was hard-coded for one set of data. The widespread availability of
data and metadata makes policies, written as CDS components, pos-
sible. What are policies? Let me try a metaphor.

Policies are verbs, data is the noun, and metadata is an adjective.2

Until the widespread availability of data and metadata, busi-
nesses and organizations could not write an entire sentence! (See Fig-
ure 8.9).

Several organizations already understand the power of metadata-
driven policies and have created their own. Consider these examples:
Microformats, United States Department of Defense Discovery Meta-
data Standard (DDMS), and Electronic Business XML (ebXML) Busi-
ness Object Documents (BODs).

Figure 8-9 Defining policies, data, and metadata through a
linguistic metaphor

2 I use this metaphor in honor of my late aunt, Betsy Hilbert, a long-time member
of the Modern Linguistic Association and Chair of the English Department of
Miami Dade University.

216 Chapter 8 Getting SOA-Ready

8.2.1 Microformats

Microformats provide data about the data in a Web page.3 Currently
a research project among a group of Web thought leaders, much
excitement is driving microformats activity at the World Wide Web
Consortium.4 It is a safe bet that we will see microformats and a
query language such as XQuery emerge as a leading way to turn the
content of the Web into a queriable database.

For instance, my biography page on the XQueryNow.com site
lists my next birthday encoded in the Microformat iCalendar for-
mat.5 Figure 8-10 contrasts a VCalendar format to iCalendar. The
iCalendar format is valid Web page content that is decorated with
metadata giving a program (such as a CDS) the information it needs
to operate on a birthdate. Microformats turn Web content into the
world’s largest queriable database.

The microformat hCalendar is a simple, open, distributed calen-
daring and event format, based on the iCalendar standard (RFC
2445), suitable for embedding in HTML (and XHTML), Atom, RSS,
and arbitrary XML. However, hCalendar is one of several open
microformat standards. Many of the microformats are seen as
enablers for collaborative commerce. For instance, microformats
deliver metadata and queriable formats for the following.

• Companies—contact information, organization, reputation,
relationships, products, services

3 See http://microformats.org/about
4 See http://www.w3c.org.
5 See http://www.xquerynow.com/AboutUs/bio.html.

Figure 8-10 Announcing Frank Cohen’s birthday on the left in
VCalendar format and on the right using a Microformat iCalendar
format.

8.2 Creating Business Value with Metadata 217

• People—relationships, product recommendations, contact
information

• Products—information, specials, inventories, contents,
manuals

• Dates—events, conferences, tradeshows, meetings

• News—articles, product reviews, sales specials

Each of the microformats provides metadata for data delivered
through Web content. The metadata is in XML form and ideal for
consumption and transformation in a set of CDS components.

Next, we’ll see how the U.S. Depart of Defense (DoD) plans to
deliver value through the use of metadata.

8.2.2 Discovery Metadata

The U.S. Department of Defense (DoD) is building its own Internet—
called the Global Information Grid (GIG)—to provide information
sharing and to make its operations more efficient and support joint
missions. One of the GIG-related efforts delivers a set of standards
and services to support Network-centric Computing Environments
(NCES).6 NCES provides a standard way to publish and discover
content on the GIG.

The DoD faces the huge challenge of changing attitudes among
many data owners to make the GIG work. The U.S. Congress’s inves-
tigation into the failure to defend the country from the terrorist acts
of September 11, 2001, found that a key factor was the lack of infor-
mation sharing among U.S. federal departments and organizations.
The often Byzantine-like and convoluted world of departmental and
organizational charters, missions, and management seems to enforce
a “my data is mine” attitude. The DoD NCES effort seeks to allow
communities of interest (COI) to form, where participants can pub-
lish their data using a metadata registry and discover data from
other groups of information through metadata queries. Figure 8-11
illustrates the design.

The Department of Defense Discovery Metadata Standard
(DDMS) defines discovery metadata elements for resources posted to
community and organizational shared spaces.7 Discovery is the abil-

6 See http://www.disa.mil/nces/ne3.html.
7 See http://www.afei.org/news/ddms.pdf.

218 Chapter 8 Getting SOA-Ready

ity to locate data assets through a consistent and flexible search. The
DDMS specifies a set of information fields that are to be used to
describe any data or service asset that is made known to the enter-
prise. DDMS establishes a standard for defining and publishing
metadata across DoD disciplines, domains, and data formats.

To a CDS component, the DDMS looks like wonderful taxonomy
to discover and aggregate data. Any department that wants to
make known data and functions it maintains has taxonomy to add
its metadata to the overall discovery mechanism. DDMS becomes a
giant repository of metadata in the same way that Google is a
searchable metadata repository of the Web. CDS components are
important to DDMS by making data, metadata, and functions man-
ageable and reusable.

Next, I discuss the third example of a business and organization
using metadata to deliver value.

8.2.3 Business Object Documents

The Open Applications Group Integration Specification (OAGIS) is an
effort to provide a canonical business language for information inte-

Figure 8-11 Metadata enables data creators to publish their data to
known and unanticipated data consumers and for consumers to
discover data that interests them.

8.2 Creating Business Value with Metadata 219

gration.8 It delivers the metadata definitions for messages commonly
exchanged between a business or organization and customers, ven-
dors, and partners, as well as for identifying business processes (sce-
narios) that allow businesses and applications to communicate.

OAGIS defines approximately 150 common business messages
and is built on the Universal Business Language (UBL)9 specification
in the electronic business using XML (ebXML)10 schemas. UBL 1.0
defines eight standard documents anyone would recognize: order,
order response, order response simple, order change, order cancella-
tion, dispatch advice, receipt advice, and invoice. UBL maps to com-
monly used paper documents and to the Electronic Data Interchange
(EDI) standard formats.11

Businesses and organizations are making their own vertical appli-
cations of the OAGIS metadata. For instance, General Motors and
other automotive industry enterprises support the Software Technol-
ogy in Automotive Retailing (STAR) effort to standardize messages
between automotive parts dealerships and parts manufacturers in
the STAR Business Object Document (BOD) standard.12 STAR BODs
are a vertical industry application of OAGIS and UBL.

Chapters 4 and 5 showed the performance impact of choosing a
metadata format such as the STAR BODs in an enterprise informa-
tion system. For instance, a Get Purchase Order (GPO) BOD to order
a windshield wiper is a 7,500-byte XML request message. The same
GPO BOD to order an entire GM Suburban truck is a 10-megabyte
XML request message.

BODs are an ideal medium for CDS components. They are XML
and easily managed, transformed, and processed using CDS compo-
nents. Plus, the CDS policy and service cache provides an easy
means to accelerate BOD processing performance and scalability.

The above examples (microformats, Discovery Metadata, and
Business Object Documents) are indications that a huge amount of
metadata is already available to your business and organization. The
widespread adoption of XML for data and metadata drives the value
available to businesses and organizations through the adoption of
CDS components. With a CDS component, the business logic auto-

8 See http://www-128.ibm.com/developerworks/xml/library/x-oagis/.
9 See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl.
10 See http://www.ebxml.org/geninfo.htm.
11 See http://www.anu.edu.au/people/Roger.Clarke/EC/EDIIntro.html.
12 See http://xml.coverpages.org/star.html.

220 Chapter 8 Getting SOA-Ready

mated by metadata takes action on data without software developer
intervention or an administrator’s intervention.

With the widespread adoption of XML data and metadata, it
should be no surprise to you that SOA developers, architects, and
IT managers are challenged to select appropriate tools and technol-
ogy to adopt XML and avoid a huge performance, scalability, and
developer productivity impact on their datacenter. The next two
sections of this chapter present a way of looking at SOA tools and
technologies to determine which are appropriate for your business
and organization.

8.3 Enterprise Options to Build Business Logic

A survey of CIOs, architects, and developers attending the 2006
Gartner conference on application integration and Web Services
showed widespread agreement that there will never be a time when
a composite application will be entirely built using drag-and-drop
graphical design tools.13 Put another way, survey respondents
believe there will always be code to write in SOA applications.

If our future does not include building composite applications in
some graphic tool, where should we put the code? Here are some
popular choices.

• Enterprise data tier. This is the land of large-scale back-end
database systems and the heart of any data silo. While the
relational database vendor community supports the SQL
query language, few have a reason to provide SQL interop-
erability, and most provide their own procedural language.
Additionally, these database programming languages make
it possible to expose procedural interfaces to operate func-
tions that deliver data and services. Plus, many of these pro-
gramming languages have the ability to make service
requests to other systems to retrieve data and operate func-
tions not implemented solely in the database. Anyone with
a strong data management background will likely think that
running code in the database is a good thing. Keep in mind
that running SOA code in a database may be a very expen-
sive proposition, as the commercial database vendors
charge software license fees based on the number of CPUs.

13 See http://www.gartner.com/events.

8.3 Enterprise Options to Build Business Logic 221

Also, the available pool of software developers with skills to
build and maintain SOA code that runs in the database tier
may be small.

• Middle tier using an application server. An application
server operates a Web application, enterprise application,
and service in a threaded, clustered, and manageable con-
tainer in the middle tier of an SOA environment. The appli-
cation server provides value-added services, including
session management, failover among a cluster of applica-
tion servers, logging, debugging, and management services.
Included tools take SOA definition files (WSDL, XML, and
others) and creates proxy programs to receive and respond
to service requests. On the plus side for application servers
is the wide availability of software developers with applica-
tion server experience—literally millions of developers in
locations all around the globe. The downside is similar to
databases in that commercial application servers are sold on
a per-CPU software license and object-oriented (Java and
.NET) application servers are typically inefficient at han-
dling XML-oriented applications.

• Middle tier with CDS components. This is an application
server of a different sort. This application server is specific
to SOA, XML, and CDS components. It sits in the middle
tier, provides responses to service requests, and operates
entirely in the native data format of the request (XML,
images, binary files, Web content). The CDS components
deliver data transformation, service acceleration through
data and service caching, and federation of data across mul-
tiple data sources. CDS components provide business logic
in objects, a workflow automation container, queriable tax-
onomy, and data access objects, including a policy cache
and service cache. Due to the excellent performance and
scalability of XML persistence engines, the total cost of
ownership (TCO) to operate a CDS application server is less
than operating SOA code in the database and application
server tiers.

• Presentation tier. Building SOA code in the presentation
tier makes the service consumer really, really fat. At some
point you may ask why the consumer needs to talk to an
application server and not to the enterprise data tier itself?
For instance, DreamFactory sells a fat-client creation utility

222 Chapter 8 Getting SOA-Ready

based on the original Apple HyperCard idea that fully sup-
ports Web Service and several SOA protocols.14

• Software as a service tier. The software industry continues
to experiment in various means to shift from traditional
boxed solutions to solutions delivered on demand and
hosted on a service provider’s datacenter. SOA applications
are often good candidates for deployment through Software
As Service (SAS) techniques. In the SAS environment, you
implement SOA services using macro and scripting lan-
guages built in to the SAS applications, and the service pro-
vider manages the operating environment.

• XML accelerator. XML accelerators are appliances that pro-
vide SOA and Web Services processing capabilities that off-
load common tasks (security encryption, message schema
validation, message transformation) from application and
database servers. Simple SOA features are possibly imple-
mented in XML accelerators. However, the relatively few
developers with such experience and the lack of data persis-
tence in XML accelerators seem to make this a long shot.

• Web tier. Web servers universally ship with a selection of
scripting languages with support for SOA and Web Services
protocols. For instance, the Apache Web server comes with
a JavaScript interpreter that is easily configurable to
respond to REST-style requests such as AJAX and RSS.

Each of these is a viable place to write and operate SOA code.
However, the common thread to all of them is the need to provide a
full programming environment with protocol support and a persis-
tence engine to be successful in SOA environments.

The above list is not exhaustive of all the choices available. Every
week developers argue for their new and interesting ideas and dis-
cussion on the most appropriate place for an enterprise or organiza-
tion to build SOA business logic. Unfortunately, this discussion is
also driving a CIO fatigue disorder I call LazySOA.

8.4 LazySOA and Being Ready for SOA

Sometimes SOA may look like a moving target. Each week I read
about new SOA inventions, new opinions of governance and imple-
mentation techniques, and announcements of new SOA tools. I have

14 See http://www.dreamfactory.com.

8.4 LazySOA and Being Ready for SOA 223

to be honest in saying that SOA sometimes looks more like a nervous
disorder than a technology or governance for information systems.
While speaking with an information systems executive for a large
manufacturing institution, I saw the LazySOA effect:

"I get the Composite Data Services idea but don't I just
really need a registry, an XML accelerator, a service bus, and
a federated data integrator? And then I'm done with SOA?
Right?"

The question is an indicator to me that CIOs are searching for a
list of tools, appliances, and skills that make their business ready for
SOA. This bears investigation. In the sections that follow I present a
list of tools that should be on your list with an explanation of each for
your datacenter to be SOA-ready.

• Service Registry

• XML Accelerator

• Enterprise Service Bus

• Data Access Service and Components

• Deployment and Monitoring

• Composite Data Service Container

8.4.1 Service Registry

A registry is a database of services with a query mechanism for con-
sumers to discover services and retrieve a service endpoint to which
the consumer can bind to make a request of the service. A service dis-
covery registry mechanism is important, because it is a dynamic
mechanism that enables the discovery and utilization of services dur-
ing execution time. This enables savings in operational dollars by
reducing integration costs and enabling composite applications. Reg-
istry products offer the following basic features.

1. Publishing and discovering services and the metadata for
services

2. Creating and enforcing policies

3. Facilitating consumer/provider contracts and consump-
tion agreements

224 Chapter 8 Getting SOA-Ready

4. Dynamically make changes to business services without
disrupting consuming applications

5. Manage service life cycles as service interface schemas
change and evolve over time

Sometimes you may hear the term registry/repository. Registries are
designed for service publishing and discovery. The early registries
deliver a registry database schema and package of software objects
for publishing services in the database and running queries for dis-
covery. The schema in these registry products runs on a relational
database that you provide. The second generation of registry prod-
ucts bundles its own database to store registry information. Registry
products that have their own data persistence engine offer users the
ability to store additional SOA artifacts and metadata in the registry
persistence engine. The registry becomes an Information Object
Repository (IOR) for SOA artifacts, such as WSDL documents; WS-
Policy documents; Business Process Workflow documents; and other
endpoint descriptors, such as JMS, Java endpoints, JCA interfaces,
and JMS queues.

Of course, you would do well to ask yourself which data and
metadata are appropriately stored in a registry? Perhaps usage statis-
tics or simple registry entry transformations make sense. Another
possibility is a publish/subscribe mechanism to enable users to sub-
scribe to receive notifications when a user adds a new service to the
registry. Another possibility is user and group permissions for the
registry. For instance, the registry could persist information on which
group of users may publish services to the registry. However, this
begs the question of whether a registry should also be an LDAP-style
directory of users, groups, and privileges. These issues put me
squarely on the fence when it comes to determining an appropriate
SOA artifact to store in a registry persistence engine.

Registry/repository products are continuing down their product
road maps and shortly will provide interfaces for UDDI and ebXML
registries (with transformation and cross registration possible
between the two), service policy validation, and taxonomy/catalog
builder capabilities.

Last, you might ask yourself why your company needs a registry
if you only have 25 or fewer services? Perhaps a Web page listing the
available services with the Web page content marked up in a registry
microformat would be better. Additionally, I recommend you ques-
tion the registry provider for the performance and scalability charac-

8.4 LazySOA and Being Ready for SOA 225

teristics of its bundled persistence engine. This will make a difference
when your business starts storing thousands of service descriptions.
Chapters 4 and 5 gave my methodology for testing persistence
engines for scalability and performance.

A good second step to become ready for SOA is to evaluate an
XML accelerator.

8.4.2 XML Accelerator

Network acceleration has been around for a while. The theory goes
that moving often requested data closer to the consumer accelerates
performance. That works satisfactorily when the data is easy to iden-
tify—such as static Web pages—but tends not to work for XML-
based messages.

XML accelerators understand the context of the XML messages
moving through their routers, which makes them different from net-
work accelerators. XML acceleration appliances improve performance
from three perspectives:

1. XML accelerators offload the effort to decode security pro-
tocols from an application server. For instance, an incoming
SOAP request over HTTPS protocols using WS-Security
protocols requires two steps of decoding before the business
logic of an application server can make sense of the request:
decrypting the SSL package that encodes the SOAP request
and decoding the portions of the SOAP payload according
to the WS-Security–defined headers in the SOAP request
message. Of course, the response SOAP message will have
to go through the same security encoding before it returns
to the consumer.

2. Validate the request. Using XML Schema or DTDs, the XML
accelerator appliance checks that the XML message con-
forms to a message format supported by the service that
handles the incoming request. Validation may also be
linked to routing functions, where the XML accelerator
routes an incoming XML request using an older XML mes-
sage schema to a legacy service dedicated to supporting the
older schema.

3. Transform the message to a different schema. This is handy
for information systems that have progressed their request
message schema but still want to support consumers using

226 Chapter 8 Getting SOA-Ready

the older schema. The transformation is limited in that the
accelerator appliance has no database and no way to com-
municate with datasource providers to do more than simple
transformations.

4. Change the routing of the request. By looking at the headers
of a message, the accelerator changes the destination URL
for the message.

XML accelerator appliances benefit a business by moving the cost
of operating a service from a Java application server to the appliance
box. XML accelerator appliances provide acceleration by applying
dedicated hardware resources to the appliance’s tasks. Commercial
Java application servers are commanding fees from $25,000 to
$50,000 per CPU. Moving security protocol decoding, message vali-
dation, transformation, and simple routing into a $10,000 XML accel-
erator appliance saves an enterprise from buying Java application
server licenses. Plus, the XML accelerator is concise and limited in its
scope of operations and does not require any programming and little
administrative overhead.

Calling these appliances “accelerators” is somewhat rhetorical. It is
akin to calling something FastSOA—faster than what? XML accelera-
tors add their own overhead. Inside the accelerator, a processor parses
the XML message to decode the contents from a security protocol, val-
idate the message, or do a transformation into a new message schema.
The accelerator then repackages the XML message as an XML request
and forwards it on to the application server for processing. That pars-
ing and repackaging does not help the code in the application server
to get a jump on the contents of the message—the application server
has to go through its own second parsing of the message.

Additionally, the majority of Web Services and SOA applications I
have seen use synchronous—blocking—requests. The consumer
keeps the socket open until it receives a response. This puts the XML
accelerator in the middle, acting as a network router at the socket
and packet level of the exchange. This adds more overhead to the
exchange and makes the accelerator appliance another potential
point of failure in your network. A rhetoric-free name for these appli-
ances is XML security gateway appliances, but that is not as sexy and
compelling as XML accelerator.

XML accelerators deliver valuable benefits to make an enterprise
and organization ready for SOA. The next section shows the benefits
of an Enterprise Service Bus (ESB).

8.4 LazySOA and Being Ready for SOA 227

8.4.3 Enterprise Service Bus (ESB)

Enterprise Service Bus (ESB) tools become important as enterprises
begin to realize the benefits of composite applications in SOA. Enter-
prises build Web and XML applications that rapidly bind to one or
more services in a Web infrastructure using open standard protocols
over routed networks to transmit data defined in industry-accepted
schemas. Usually, an enterprise or organization’s initial SOA applica-
tions access data and functions from a defined set of servers at stati-
cally defined addresses, and over time the applications access data
and functions dynamically from the most appropriate service pro-
vider available.

From a system administrator, executive information systems tech-
nology management, software development and quality assurance
perspective, SOA requires a new set of skills and expertise to deliver
service excellence. The old methodology depends heavily on hand-
coded installation scripts, manually applied operating system
patches, and procedural component tests. This methodology is not
flexible, reliable, and agile enough for enterprises to succeed in an
SOA environment.

An ESB tool automates SOA application provisioning through
automated installation, configuration, and updating of servers in
your datacenter. An ESB also provides service-to-service communi-
cation and service lifecycle management.

ESB is different from a CDS container in that that CDS is a
runtime environment that provides objects, taxonomy, data persis-
tence, and data access in reusable software components. The ESB at
runtime connects and mediates sending messages between ser-
vices—including CDS components—within the ESB architecture and
connects and mediates all communications and interactions between
services. These services are natively hosted services—executed
entirely within the ESB environment—and connected business ser-
vices, such as Web services and enterprise data services hosted by
application servers, wrappers, or adapters. (See Figure 8-12.

An ESB provides service life-cycle management functions to tran-
sition from development configuration to deployment and produc-
tion environments. The ESB normally provides modeling and
configuration tools to support each phase of the ESB life-cycle across
a distributed environment. For instance, an ESB allows for service,
process, and resource file migration between development, test, and
production systems. Administrators use the ESB to identify deploy-

228 Chapter 8 Getting SOA-Ready

ment policies, and the ESB works with a monitoring service to con-
firm successful deployments against a set of unit/functional tests.
ESB tools normally also include a visual tool to map processes, data
mapping, and relationships between applications.

ESB tools needs to be evaluated in two areas: provisioning and
deployment automation and service-to-service communication.

Evaluating Provisioning and Deployment Automation

The enterprises and organizations I have helped with ESB evalua-
tions tend to be driven by the following forces.

1. New services change frequently to address changing cus-
tomer, supplier, and partner needs.

2. Capacity planning decisions change frequently to ensure
optimal infrastructure utilization rates and to eliminate per-
formance bottlenecks.

3. Systems and applications change frequently as a business
adds new system components to the datacenter.

4. Personnel changes require system provisioning changes,
including operating system and directory account provi-
sioning and password changes.

In response to these forces, many enterprises and organizations
use a set of configuration utilities to manage change. These configu-
ration utilities include management consoles, installer utilities,
scripting utilities, software updating services, application optimiza-
tion, and load-balancing solutions. The problems using configuration
utilities include the following.

Figure 8-12 ESB tools manage communication within a service and
also provide automation to transition from development to test to
production environments.

8.4 LazySOA and Being Ready for SOA 229

• System administrators and engineers require proprietary or
custom scripting language knowledge. Companies some-
times change engineers and system administrators like
toner cartridges, and this personnel turnover means lost
knowledge and problems managing change over time.

• Configuration utilities are often error prone to use and may
introduce security issues. For example, some configuration
utilities require granting administrator (root) access to a
system technician.

• Configuration utilities normally have no business intelli-
gence to know how to change datacenter configuration to
optimize underutilized equipment.

• Configuration utilities are not normally compatible with
other configuration utilities. In SOA environments, enter-
prise application functions are provisioned as orchestra-
tions of a series of individual services within one
datacenter. For instance, the configuration utility that estab-
lishes a database service must be compatible with the con-
figuration utility that installs a JDBC connector to access the
database and the utility that establishes the EJB that holds
the business logic to access the database.

• Using disparate and multiple configuration utilities in a
datacenter does not provide an overall view of changes in a
datacenter to management.

• A configuration utility provides no mechanism to check a
change and deployment plan prior to actually making the
change to the datacenter.

• Configuration utilities are themselves software. Changes to
their functionality or the scripts that drive them need to be
captured for use by team members who will join your
project later, and versions of their functionality or scripts
must be archived to explain changes to the subsequent engi-
neer who provides on-going maintenance support.

All of the above issues drive enterprise operations and system
administrators to consider ESB tools as a deployment solution. I rec-
ommend you evaluate an ESB against the above list of forces and
issues. Then consider if the ESB tool is appropriate to your situa-
tion. Consider if the ESB tools you are considering will meet these
types of deployments.

230 Chapter 8 Getting SOA-Ready

• One-to-many situations, where a single change must be fre-
quently and rapidly made to a large number of systems. For
instance, consider the scenario where a system administra-
tor needs to update a file on a group of servers in a data-
center.

• One-to-one situations, where a single change must be
repeatedly made to one target environment. For instance,
consider a scenario where the system administrator needs
to install a CDS component onto a group of servers in a
datacenter.

• Orchestration situations, where multiple steps must be
accomplished for each change in a multitier and multiple-
system environment. For instance, consider a scenario
wherein a systems administrator needs to provision a ser-
vice at several levels of service integration, including a Web
server, application server, and a Web application to a group
of servers in a datacenter.

Evaluating Service-to-Service Communication Capabilities

ESB tools provide service-to-service communication capabilities
that need to be evaluated like any other software component: per-
formance, scalability, function, and developer productivity. Chap-
ters 3, 4, and 5 provided a framework and test methodology for
performance and scalability. Beyond that, your evaluation of com-
munication capabilities needs to cover the function of the connector
and how easy the components are to use. ESB applications nor-
mally are object-oriented, XML-based, distributed environments to
deliver composite applications, and your organization will need
people with these skills. The communication components need to
provide an extensible framework and environment that at a mini-
mum delivers the following features.

• Common framework to add communication components to
services using the native protocols of the target services

• Maintains an audit log of components in use and deploy-
ments over time

• Compares the current state of target services with their
expected state

8.4 LazySOA and Being Ready for SOA 231

• Simulates a change—for instance, adoption of a new mes-
sage schema or service interface—to identify configuration
problems

• Notifies system administrators of problems and actions

The next step to become ready for SOA is to evaluate data access
services, including data integration services and components for
data access.

8.4.4 Data Access Service and Components

Data access services provide a common interface and software com-
ponents to create data and service interoperability between sys-
tems. With data persistence features close at hand, data access
products may also provide data mitigation and aggregation. Data
access cleaves into two parts: federated data integrators and data
access connectors.

Federated Data Integrators

A federated data integrator queries multiple data sources and pre-
sents the data to its consumer in a single combined view. The integra-
tor requires the following components to be successful for an
enterprise:

• Support multiple protocols (for instance, SOAP, REST)

• High-speed persistence engine to maintain the view

• Transformation or scripting language to implement pattern
matching and schema transformations

A subset of data federation is Master Data Management (MDM).
Businesses use MDM to provide and maintain a federated view and
synchronization of an organization’s core business entities. For
instance, a business with operations in several locations or across
several products usually has data scattered across a range of applica-
tion systems in a variety of different formats. The types of master
data vary by industry and organization, but examples include cus-
tomers, suppliers, products, employees, and finances.

MDM data federation is important to a business because it does
not require owners of data silos to comply with your requests to

232 Chapter 8 Getting SOA-Ready

modify the silos or move the data from the silo into a data ware-
house. Instead, MDM provides an easier way to create composite
views of data from each silo system. More importantly, MDM
allows data updates across silos. For instance, customers participat-
ing in multiple business units update their address information in
one business unit and the MDM federated data integrator updates
all of the silos.

An evaluation method for federated data integrator tools includes
a feature/function checklist, scalability and performance testing, and
the ultimate question, “Do I trust the technology and vendor to hold
my data?” Additionally, I recommend you meet the consulting and
system integrator businesses that use and recommend the federated
data integrator tools. These will be the people you will turn to when
things go wrong over time.

Many federated integrator tools comes with specialized connec-
tors to a variety of datasources. The next section shows how to evalu-
ate data access connectors from companies that specialize in data
access connectors.

Data Access Connectors

The typical business or organization has a datacenter supporting
multiple generations of applications. Instead of redeveloping these
applications, it usually makes more economic and strategic sense to
reuse the existing assets. Providing XML-based interfaces to these
assets is often achievable using a data access connector. With the con-
nector in place, the existing asset may be used from a composite
application and CDS.

Evaluating data access connectors for your business or organiza-
tion comes down to two issues: Does the connector support the spe-
cific protocol and dialect of my existing application, and does the
connector provide the performance and scalability to a level that
meets my service-level agreements?

Many data access connector vendors also include service life-cycle
management and assurance functions. Some vendors even provide
data persistence in support of their connector management. In these
instances, keep in mind the bigger picture and ask if these value-
added services really add value.

The next step to become ready for SOA is to evaluate business
process management and monitoring tools.

8.4 LazySOA and Being Ready for SOA 233

8.4.5 Deployment and Monitoring

Service monitoring and quality assurance tools come under the gen-
eral topic Business Activity Monitoring (BAM). BAM applies opera-
tional business intelligence and application integration technologies
to automated processes to continually refine them based on feedback
that comes directly from knowledge of operational events. At least,
that’s the theory.

The problem with managing SOA quality is that you need to
operate the service to know that it is functional and meets your ser-
vice-level agreements (SLAs). I am reminded of sitting next to a tele-
phone waiting for a girlfriend to call. Uncertain if the phone is
working, checking the phone for a dial tone will give her a busy sig-
nal. Monitoring and assuring quality in SOA environments is like
that; until you use a service, you just don’t know if it works!

In addition to auditing business processes (and business process
management systems) and sending event-driven alerts that trigger
process adjustments, BAM solutions also can be used to alert indi-
viduals to changes in the business that may require action. Execu-
tives often use BAM to provide data points against which to measure
operation manager performance and for strategic planning.

BAM solutions deliver the following benefits to a business or
organization:

• Reduce the risk of service outages

• Improve the speed and confidence of service delivery to
users

• Provide a quality of service–level guarantee to partners and
users

• Plan accurately for service capacity needs

• Outline a schedule and estimated costs to successfully
deliver against service-level agreements

While there are many off-the-shelf service monitor tools available,
the big downside is that they usually do not deliver the exact knowl-
edge you need. The problem comes from a gap between the moni-
tor’s ability to test a service and building the business logic so the
monitor understands the context of the service. The PushToTest test
methodology I presented in Chapter 6 is built around intelligent test

234 Chapter 8 Getting SOA-Ready

agents that implement the behavior of archetypal users. The service
monitor periodically operates the service using a test agent in the
same way a real user would. The monitor then sounds alarms, sum-
marizes reports, and presents a live dashboard.

Evaluate service monitor and quality assurance tools against the
following criteria to ensure the tool will meet your business or
organization’s needs.

• Operates in a distributed architecture, where a central con-
sole coordinates multiple tests from multiple locations on
your network.

• Periodic functional (unit) health check.

• Development environment to build and maintain intelli-
gent test agents using click-and-drag or scripting program-
ming techniques.

• User-selectable criteria for alerts, including issues such as
long service response, number of servers down, number of
failed requests in the last minute, and more.

• Status definition based on ranges of values for each monitor.

• Define a set of actions to trigger depending on the state of a
server. For instance, if a service responds too slowly, the
monitor waits 10 minutes before sending a service problem
notification.

• Monitor system is enabled to receive external events to trig-
ger an alert and notification.

• Provide multiple states for each service under observation.
For instance, allow a service to go into “maintenance mode”
without having to manually turn off the monitor.

The final step to become ready for SOA is to evaluate develop-
ment and operating environments for CDS components.

8.4.6 Composite Data Service Container

Building, operating, and maintaining CDS components requires a
platform that includes object development functions, workflow
operations, taxonomy building, data persistence, and data access
functions. Evaluating and selecting a CDS container requires inves-
tigation of scalability and performance characteristics, developer

8.4 LazySOA and Being Ready for SOA 235

productivity (to demonstrate the container’s ease of use), and
maintainability (effort to upgrade and patch the system for bugs
and performance improvements).

Evaluate CDS containers against the following:

• Business service interaction—determines the set of prod-
ucts, protocols, and service protocols the CDS container
supports. For instance, if your container needs to provide
data access to IBM CICS legacy systems, make certain a
CICS data access component is available and compatible
with the CDS container.

• Object development environment—enables software
developers to build software objects that encapsulate CDS
data and provides methods to operate on the data. Software
developers will expect an integrated development environ-
ment and debugging tools to facilitate building CDS com-
ponent objects and life-cycle management.

• Registry and taxonomy construction—enables CDS regis-
tration and discovery through standard service interfaces.
Check for support of UDDI version 3 registry and ebXML
registry/repository features.

• Data access—provides efficient and effective access to data
across the enterprise. Check for performance and scalability
using the PushToTest method presented in Chapter 6.

• Security management services—provide user and group
provisioning and roles-based access management. Check
for compatibility with your corporate security service.

Is that all there is to be ready for SOA?

8.4.7 SOA-Ready

This section began with a CIO asking what he needs to do to ready
his enterprise for SOA. The previous sections deliver tools, compo-
nents, and technology for an enterprise data center to be ready to
robustly support SOA composite applications, mid-tier service
acceleration through caching, and application/component reuse.
Figure 8-13 brings these components together into a concise, ready
for SOA architecture.

236 Chapter 8 Getting SOA-Ready

Figure 8-13 shows one way these middle-tier SOA tools function
together. In other instances, the tiers work together differently. For
instance, there is no reason why an XML accelerator could not do
security decryption work for a CDS component. Also, adding these
devices to a datacenter may help SOA deployments but it does not
guarantee SOA governance, as the data services are normally open
protocol and service enabled, so applications may find multiple
paths to work around your mid-tier appliances and access the data
service directly.

The ready for SOA architecture presented in Figure 8-13 reduces
the amount of processing that happens in expensive Java application
server licenses, mitigates single points of contention problems, and
delivers a flexibility not achievable with traditional software devel-
opment patterns and methods. Being ready for SOA delivers SOA
acceleration (intelligent, policy-driven caching using native XML
data persistence and policies written in XQuery), data federation (a
single URL to receive composite application data from a variety of
data sources), and security policy operations (routing, tracking, and
auditing systems by keeping track of messages).

Figure 8-13 Middle tier SOA components—service registry,
accelerator, Enterprise Service Bus (ESB,) and data integrator—help
an enterprise and organization achieve SOA agility, but they are not
the only components needed to be successful.

8.5 How to Evaluate SOA Tools 237

Next, I describe my method for evaluating SOA tools for scalabil-
ity, performance, and developer productivity.

8.5 How to Evaluate SOA Tools

The PushToTest methodology I presented in Chapter 6 tests a service
for scalability and performance. In my work with large and small
companies that need to understand the scalability and performance
of services in their own environment, experience shows me the need
for a second methodology to truly understand SOA tools, technol-
ogy, and techniques. I call this second methodology the “Kit.”

My company—PushToTest—provides performance and devel-
oper productivity “kits” to BEA, Raining Data, Sun, GM, IBM, and
others. The kits implement a set of real-world use cases using a vari-
ety of commonly used techniques and software libraries (both com-
mercial and open-source.) We measure the resulting software
implementations for scalability, performance, and developer produc-
tivity. The kit delivers to software developers immediately usable
reference software code and best practices and a total cost of owner-
ship (TCO) analysis to business managers. Companies engaging

PushToTest to build a kit have the option to use the performance and
scalability knowledge internally or to bundle it with the release of
the kit. Either way, software developers on their internal engineering
team benefit from having an independent group use their product in
ways the everyday developer would, and the wider software devel-

Table 8-2 Publicly Available SOA Performance Kits

Kit Name Location

Raining Data FastSOA
Performance Kit

http://www.rainingdata.com/products/soa/
soatestkit/index2.html

BEA SOA Performance
and Developer Produc-
tivity Kit

http://www.bea.com/frame-
work.jsp?CNT=fea00025.htm&FP=/content/
news_events/features_news/features

The SOAP Encoding Per-
formance Kit featuring
IBM WebSphere

http://www.pushtotest.com/Downloads/
kits/webspherekit.html

Web Services Perfor-
mance and Developer
Knowledge Kit

http://www.pushtotest.com/Downloads/
kits/origperfkit.html

238 Chapter 8 Getting SOA-Ready

oper community benefits from having an immediate view into work-
ing code and best practices to provide the tool’s benefits.

Most of the time, it is in the best interest of the software vendor to
release the kit under an open-source license. Table 8-2 gives a list of
publicly available kits that are available to you.

In summary, the evaluation method to understand scalability, per-
formance, and developer productivity in SOA environments
depends on the following criteria.

1. Governance—architecture, tools and platform choices,
deployment (registry), cvs/subversion control, reports on
usage and quality of service delivered

2. Performance—tools, libraries, hardware, network routing

3. Scalability—datacenters, grids, blades, network load bal-
ancing

4. Developer productivity—learning curve, comparative lines
of code, ease of maintenance

Armed with the methodology, tools, and techniques, your busi-
ness or organization will evaluate SOA tools to be ready for SOA.

8.5.1 Delivering Business Value with SOA

In the world today, the Web is making a change from a set of static
Web pages to a rich database of data encoded in a set of microfor-
mats. A 2006 survey of attendees to Gartner’s Application Integra-
tion and Web Services conference showed that a third of the survey
respondents already have AJAX in their datacenter. The XML future
is already here. If the Web was disruptive like a bomb blast, then
XML is a nuclear explosion!

How will we handle this rich new world of data? Will the world’s
software developers, architects, and operations managers realize the
potential business value of harnessing this data into actionable
knowledge? Or will XML become some giant noise producer?

The scalability, performance, and developer productivity made
possible with CDS components makes a huge impact on the world.
Figure 8-14 illustrates a world whose information services needs are
served by a grid of CDS components.

This journey into the future has already taught us many impor-
tant qualities that are needed to be successful in an SOA world.

8.5 How to Evaluate SOA Tools 239

1. Accept that there is no gatekeeper on XML schemas. Every
atom may have its own XML schema. Any data persistence
engine needs to support native XML persistence with the
full flexibility of the XML data model.

2. Build data and service objects in one. Object-oriented
design patterns applied using native XML technology
deliver the scalability, performance, and flexibility needed
for SOA success.

3. Given the choice of objects, relational data models, and
XML tools, choose XML when the SOA application prima-
rily uses XML.

4. Evaluate SOA tools (ESB, XML accelerator, persistence, etc.)
on their ability to handle your data and be flexible to
change.

XML has changed our world. The systems we build enable better
communication than ever before. Will we use this new technology to
usher in a new era of communication and understanding? To create a
better world, we now have the capability, and the responsibility to
work together and solve the world’s problems as we voyage on
spaceship Earth.

Figure 8-14 Microformats and CDS turn the Web into the world’s
largest scalable database. The knowledge contained in this database
delivers business value through policies.

241

Glossary

A key to understanding the concepts presented in this book is my
belief that good, robust, successful, and scalable software comes from
many practices and backgrounds. This glossary is composed of terms
from the World Wide Web consortium glossary1 and terms I fre-
quently use. I maintain and publish a glossary of terms. Please send
your contributions to fcohen@rainingdata.com.

access

To interact with a system entity in order to manipulate, use, gain
knowledge of, and/or obtain a representation of some or all of a sys-
tem entity’s resources.

access control

Protection of resources against unauthorized access; a process by
which use of resources is regulated according to a security policy
and is permitted by only authorized system entities according to
that policy.

1 http://www.w3.org/TR/ws-gloss/

242 Glossary

access control information

Any information used for access control purposes, including contex-
tual information.

Contextual information might include source IP address, encryp-
tion strength, the type of operation being requested, time of day, etc.
Portions of access control information may be specific to the request
itself, some may be associated with the connection via which the
request is transmitted, and others (for example, time of day) may be
“environmental.”

access rights (privileges)

A description of the type of authorized interactions a subject can
have with a resource. Examples include read, write, execute, add,
modify, and delete.

actor

A person or organization that may be the owner of agents that either
seek to use Web services or provide Web services.

A physical or conceptual entity that can perform actions. For
instance, people; companies; machines; running software. An actor
can take on (or implement) one or more roles. An actor at one level of
abstraction may be viewed as a role at a lower level of abstraction.

agent

An agent is a program acting on behalf of a person or organization.
As a piece of software, an agent may implement the methods of a
JUnit TestCase class to operate a system and test its ability to func-
tion.

anonymity

The quality or state of being anonymous, which is the condition of
having a name or identity that is unknown or concealed.

Glossary 243

architecture

The software architecture of a program or computing system is the
structure or structures of the system. This structure includes software
components, the externally visible properties of those components,
the relationships among them and the constraints on their use.

A software architecture is an abstraction of the run-time elements
of a software system during some phase of its operation. A system
may be composed of many levels of abstraction and many phases of
operation, each with its own software architecture.

artifact

A piece of digital information. An artifact may be any size, and may
be composed of other artifacts. Examples of artifacts: a message; a
URI; an XML document; a PNG image; a bit stream.

asynchronous

An interaction is said to be asynchronous when the associated mes-
sages are chronologically and procedurally decoupled. For example,
in a request-response interaction, the client agent can process the
response at some indeterminate point in the future when its exist-
ence is discovered. Mechanisms to do this include polling, notifica-
tion by receipt of another message, etc.

attribute

A distinct characteristic of an object. An object’s attributes are said to
describe the object. Objects’ attributes are often specified in terms of
their physical traits, such as size, shape, weight, and color, etc., for
real-world objects. Objects in cyberspace might have attributes
describing size, type of encoding, network address, etc.

audit guard

An audit guard is a mechanism used on behalf of an owner that mon-
itors actions and agents to verify the satisfaction of obligations.

244 Glossary

authentication

Authentication is the process of verifying that a potential partner in a
conversation is capable of representing a person or organization.

authorization

The process of determining, by evaluating applicable access control
information, whether a subject is allowed to have the specified types
of access to a particular resource. Usually, authorization is in the con-
text of authentication. Once a subject is authenticated, it may be
authorized to perform different types of access.

binding

An association between an interface, a concrete protocol and a data
format. A binding specifies the protocol and data format to be used
in transmitting messages defined by the associated interface.

The mapping of an interface and its associated operations to a
particular concrete message format and transmission protocol.

capability

A capability is a named piece of functionality (or feature) that is
declared as supported or requested by an agent.

choreography

A choreography defines the sequence and conditions under which
multiple cooperating independent agents exchange messages in
order to perform a task to achieve a goal state.

Web Services Choreography concerns the interactions of services
with their users. Any user of a Web service, automated or otherwise,
is a client of that service. These users may, in turn, be other Web Ser-
vices, applications or human beings. Transactions among Web Ser-
vices and their clients must clearly be well defined at the time of their
execution, and may consist of multiple separate interactions whose
composition constitutes a complete transaction. This composition, its
message protocols, interfaces, sequencing, and associated logic, is
considered to be a choreography.

Glossary 245

component

A component is a software object, meant to interact with other com-
ponents, encapsulating certain functionality or a set of functionalities.
A component has a clearly defined interface and conforms to a pre-
scribed behavior common to all components within an architecture.

A component is an abstract unit of software instructions and
internal state that provides a transformation of data via its interface.

A component is a unit of architecture with defined boundaries.

confidentiality

Assuring information will be kept secret, with access limited to
appropriate persons.

Composable

Applications in SOAs are created by composing pre-existing, well-
tested services from multiple providers.

configuration

A collection of properties that may be changed. A property may
influence the behavior of an entity.

connection

A transport layer virtual circuit established between two programs
for the purpose of communication.

control

To cause a desired change in state. Management systems may control
the life cycle of manageable Web services or information flow such as
messages.

conversation

A Web service conversation involves maintaining some state during
an interaction that involves multiple messages and/or participants.

246 Glossary

credentials

Data that is transferred to establish a claimed principal identity.

delivery policy

A delivery policy is a policy that constrains the methods by which
messages are delivered by the message transport.

digital signature

A value computed with a cryptographic algorithm and appended to
a data object in such a way that any recipient of the data can use the
signature to verify the data’s origin and integrity.

discovery

The act of locating a machine-processable description of a Web ser-
vice-related resource that may have been previously unknown and
that meets certain functional criteria. It involves matching a set of
functional and other criteria with a set of resource descriptions. The
goal is to find an appropriate Web service-related resource.

discovery service

A discovery service is a service that enables agents to retrieve Web
services-related resource description.

Discoverable and Dynamic Services

Adjectives to describe the design-time techniques to identify the
location and function of a service. For instance, services are bound at
runtime, rather than compile time.

diversely owned

SOA applications may be composed of services which are owned
and operated by outside organizations. Diverse ownership implies
that the published service interface will be treated as a blackbox from
the standpoint of the programmers since they cannot penetrate the
interface and modify code and behavior behind it.

Glossary 247

document

Any data that can be represented in a digital form.

Electronic Data Interchange (EDI)

The automated exchange of any predefined and structured data for
business among information systems of two or more organizations.

domain

A domain is an identified set of agents and/or resources that is sub-
ject to the constraints of one of more policies.

Enterprise Application Integration (EAI)

Centralized approach to application development that requires a
central database of record.

encryption

Cryptographic transformation of data (called “plaintext”) into a form
(called “ciphertext”) that conceals the data’s original meaning to pre-
vent it from being known or used. If the transformation is reversible,
the corresponding reversal process is called “decryption,” which is a
transformation that restores encrypted data to its original state.

end point

An association between a binding and a network address, specified
by a URI, that may be used to communicate with an instance of a ser-
vice. An end point indicates a specific location for accessing a service
using a specific protocol and data format.

gateway

An agent that terminates a message on an inbound interface with the
intent of presenting it through an outbound interface as a new mes-
sage. Unlike a proxy, a gateway receives messages as if it were the
final receiver for the message. Due to possible mismatches between
the inbound and outbound interfaces, a message may be modified

248 Glossary

and may have some or all of its meaning lost during the conversion
process. For example, an HTTP PUT has no equivalent in SMTP.

Note: a gateway may or may not be a SOAP node; however a
gateway is never a SOAP intermediary, since gateways terminate
messages and SOAP intermediaries relay them instead. Being a gate-
way is typically a permanent role, whilst being a SOAP intermediary
is message specific.

identifier

An identifier is an unambiguous name for a resource.

initial SOAP sender

The SOAP sender that originates a SOAP message at the starting
point of a SOAP message path.

integrity

Assuring information will not be accidentally or maliciously altered
or destroyed.

Interoperable

Standards ensure that services from differing organizations can use
each other’s services.

locationally transparent

SOA applications are constructed in such a way that the overall sys-
tem is unaware of, or at least ambivalent to the location of various
services.

loosely coupled

SOAs are composed of multiple services connected in such a way as
to be resilient in the face of network failures and latency. This loose
coupling gives SOA applications a distinctly different architecture
than programs that are distributed, but still connected synchro-
nously and in ways that make the overall system brittle.

Glossary 249

manageable service

A Web service becomes a manageable service with additional seman-
tics, policy statements, and monitoring and control (or management)
capabilities (exposed via a management interface) all for the purpose
of managing the service.

management

The utilization of the management capabilities by the management
system in order to perform monitoring of values, tracking of states
and control of entities in order to produce and maintain a stable
operational environment.

management capability

Capabilities that a Web service has for the purposes of controlling or
monitoring the service, and that can be exposed to a management
system for the sole purpose of managing the service.

management interface

Interface through which the management capabilities of a service are
exposed.

management policy

Policy associated with a Web service solely for the purpose of describ-
ing the management obligations and permissions for the service.

management semantics

The management semantics of a service augment the semantics of a
service with management-specific semantics. These management
semantics form the contract between the provider entity and the
requester entity that expresses the effects and requirements pertain-
ing to the management and management policies for a service.

250 Glossary

message

A message is the basic unit of data sent from one Web services agent
to another in the context of Web services.

The basic unit of communication between a Web service and a
requester: data to be communicated to or from a Web service as a sin-
gle logical transmission.

message correlation

Message correlation is the association of a message with a context.
Message correlation ensures that the requester agent can match the
reply with the request, especially when multiple replies may be
possible.

message exchange pattern (MEP)

A Message Exchanage Pattern (MEP) is a template, devoid of appli-
cation semantics, that describes a generic pattern for the exchange of
messages between agents. It describes the relationships (e.g., tempo-
ral, causal, sequential, etc.) of multiple messages exchanged in con-
formance with the pattern, as well as the normal and abnormal
termination of any message exchange conforming to the pattern.

message receiver

A message receiver is an agent that receives a message.

message reliability

Message reliability is the degree of certainty that a message will be
delivered and that sender and receiver will both have the same
understanding of the delivery status.

message sender

A message sender is the agent that transmits a message.

Glossary 251

message transport

A message transport is a mechanism that may be used by agents to
deliver messages.

network-addressable

Networks are central to the idea of services that are discoverable and
interoperable. This allows applications to be composed that run on
different machines.

non-repudiation

Method by which the sender of data is provided with proof of deliv-
ery and the recipient is assured of the sender’s identity, so that nei-
ther can later deny having processed the data.

obligation

An obligation is a kind of policy that prescribes actions and/or states
of an agent and/or resource.

operation

A set of messages related to a single Web service action.

orchestration

An orchestration defines the sequence and conditions in which one
Web service invokes other Web services in order to realize some use-
ful function. I.e., an orchestration is the pattern of interactions that a
Web service agent must follow in order to achieve its goal.

permission

A permission is a kind of policy that prescribes the allowed actions
and states of an agent and/or resource.

252 Glossary

permission guard

A permission guard is a mechanism deployed on behalf of an owner
to enforce permission policies.

person or organization

A person or organization may be the owner of agents that provide or
request Web services.

policy

A policy is a constraint on the behavior of agents or person or organi-
zation.

policy guard

A policy guard is a mechanism that enforces one or more policies. It
is deployed on behalf of an owner.

principal

A system entity whose identity can be authenticated.

privacy policy

A set of rules and practices that specify or regulate how a person or
organization collects, processes (uses) and discloses another party’s
personal data as a result of an interaction.

provider agent

An agent that is capable of and empowered to perform the actions
associated with a service on behalf of its owner — the provider
entity.

provider entity

The person or organization that is providing a Web service.

Glossary 253

protocol

A set of formal rules describing how to transmit data, especially
across a network. Low level protocols define the electrical and physi-
cal standards to be observed, bit- and byte-ordering and the trans-
mission and error detection and correction of the bit stream. High
level protocols deal with the data formatting, including the syntax of
messages, the terminal to computer dialogue, character sets,
sequencing of messages etc.

proxy

An agent that relays a message between a requester agent and a pro-
vider agent, appearing to the Web service to be the requester.

quality of service

Quality of Service is an obligation accepted and advertised by a pro-
vider entity to service consumers.

reference architecture

A reference architecture is the generalized architecture of several end
systems that share one or more common domains. The reference
architecture defines the infrastructure common to the end systems
and the interfaces of components that will be included in the end sys-
tems. The reference architecture is then instantiated to create a soft-
ware architecture of a specific system. The definition of the reference
architecture facilitates deriving and extending new software architec-
tures for classes of systems. A reference architecture, therefore, plays
a dual role with regard to specific target software architectures. First,
it generalizes and extracts common functions and configurations.
Second, it provides a base for instantiating target systems that use
that common base more reliably and cost effectively.

registry

Authoritative, centrally controlled store of information.

254 Glossary

requester agent

A software agent that wishes to interact with a provider agent in
order to request that a task be performed on behalf of its owner —
the requester entity.

requester entity

The person or organization that wishes to use a provider entity’s
Web service.

safe

Property of an interaction which does not have any significance of
taking an action other than retrieval of information.

security administration

Configuring, securing and/or deploying of systems or applications
enabling a security domain.

security architecture

A plan and set of principles for an administrative domain and its
security domains that describe the security services that a system is
required to provide to meet the needs of its users, the system ele-
ments required to implement the services, and the performance lev-
els required in the elements to deal with the threat environment. A
complete security architecture for a system addresses administrative
security, communication security, computer security, emanations
security, personnel security, and physical security, and prescribes
security policies for each. A complete security architecture needs to
deal with both intentional, intelligent threats and accidental threats.
A security architecture should explicitly evolve over time as an inte-
gral part of its administrative domain’s evolution.

security auditing

A service that reliably and securely records security-related events
producing an audit trail enabling the reconstruction and examination

Glossary 255

of a sequence of events. Security events could include authentication
events, policy enforcement decisions, and others. The resulting audit
trail may be used to detect attacks, confirm compliance with policy,
deter abuse, or other purposes.

security domain

An environment or context that is defined by security models and a
security architecture, including a set of resources and set of system
entities that are authorized to access the resources. One or more secu-
rity domains may reside in a single administrative domain. The traits
defining a given security domain typically evolve over time.

security mechanism

A process (or a device incorporating such a process) that can be used
in a system to implement a security service that is provided by or
within the system.

security model

A schematic description of a set of entities and relationships by
which a specified set of security services are provided by or within a
system.

security policy

A set of rules and practices that specify or regulate how a system or
organization provides security services to protect resources. Security
policies are components of security architectures. Significant por-
tions of security policies are implemented via security services, using
security policy expressions.

security policy expression

A mapping of principal identities and/or attributes thereof with
allowable actions. Security policy expressions are often essentially
access control lists.

256 Glossary

security service

A processing or communication service that is provided by a system
to give a specific kind of protection to resources, where said
resources may reside with said system or reside with other systems,
for example, an authentication service or a PKI-based document
attribution and authentication service. A security service is a super-
set of AAA services. Security services typically implement portions
of security policies and are implemented via security mechanisms.

self-healing

When applications are created by composing dynamically discov-
ered components that are owned by multiple organizations, the abil-
ity of the system to rediscover and bind to working services when
services fail is critical.

service

A service is an abstract resource that represents a capability of per-
forming tasks that form a coherent functionality from the point of
view of providers entities and requesters entities. To be used, a ser-
vice must be realized by a concrete provider agent.

service description

A service description is a set of documents that describe the interface
to and semantics of a service.

service interface

A service interface is the abstract boundary that a service exposes. It
defines the types of messages and the message exchange patterns
that are involved in interacting with the service, together with any
conditions implied by those messages.

service intermediary

A service intermediary is a Web service whose main role is to trans-
form messages in a value-added way. (From a messaging point of

Glossary 257

view, an intermediary processes messages en route from one agent to
another.) Specifically, we say that a service intermediary is a service
whose outgoing messages are equivalent to its incoming messages in
some application-defined sense.

service role

An abstract set of tasks that is identified to be relevant by a person or
organization offering a service. Service roles are also associated with
particular aspects of messages exchanged with a service.

service semantics

The semantics of a service is the behavior expected when interacting
with the service. The semantics expresses a contract (not necessarily
a legal contract) between the provider entity and the requester entity.
It expresses the effect of invoking the service. A service semantics
may be formally described in a machine readable form, identified
but not formally defined, or informally defined via an out of band
agreement between the provider and the requester entity.

service-oriented architecture

A set of components which can be invoked, and whose interface
descriptions can be published and discovered.

session

A lasting interaction between system entities, often involving a user,
typified by the maintenance of some state of the interaction for the
duration of the interaction.

Such an interaction may not be limited to a single connection
between the system entities.

SOAP (Simple Object Access Protocol)

The formal set of conventions governing the format and processing
rules of a SOAP message. These conventions include the interactions
among SOAP nodes generating and accepting SOAP messages for
the purpose of exchanging information along a SOAP message path.

258 Glossary

SOAP application

A software entity that produces, consumes or otherwise acts upon
SOAP messages in a manner conforming to the SOAP processing
model.

SOAP binding

The formal set of rules for carrying a SOAP message within or on top
of another protocol (underlying protocol) for the purpose of
exchange. Examples of SOAP bindings include carrying a SOAP
message within an HTTP entity-body, or over a TCP stream.

SOAP body

A collection of zero or more element information items targeted at an
ultimate SOAP receiver in the SOAP message path.

SOAP envelope

The outermost element information item of a SOAP message.

SOAP fault

A SOAP element information item which contains fault information
generated by a SOAP node.

SOAP feature

An extension of the SOAP messaging framework typically associated
with the exchange of messages between communicating SOAP
nodes. Examples of features include “reliability,” “security,” “correla-
tion,” “routing,” and the concept of message exchange patterns.

SOAP header

A collection of zero or more SOAP header blocks each of which
might be targeted at any SOAP receiver within the SOAP message
path.

Glossary 259

SOAP header block

An element information item used to delimit data that logically con-
stitutes a single computational unit within the SOAP header. The
type of a SOAP header block is identified by the fully qualified name
of the header block element information item.

SOAP intermediary

A SOAP intermediary is both a SOAP receiver and a SOAP sender
and is targetable from within a SOAP message. It processes the
SOAP header blocks targeted at it and acts to forward a SOAP mes-
sage towards an ultimate SOAP receiver.

SOAP message

The basic unit of communication between SOAP nodes.

SOAP message exchange pattern (MEP)

A template for the exchange of SOAP messages between SOAP
nodes enabled by one or more underlying SOAP protocol bindings.
A SOAP MEP is an example of a SOAP feature.

SOAP message path

The set of SOAP nodes through which a single SOAP message
passes. This includes the initial SOAP sender, zero or more SOAP
intermediaries, and an ultimate SOAP receiver.

SOAP node

The embodiment of the processing logic necessary to transmit,
receive, process and/or relay a SOAP message, according to the set
of conventions defined by this recommendation. A SOAP node is
responsible for enforcing the rules that govern the exchange of SOAP
messages. It accesses the services provided by the underlying proto-
cols through one or more SOAP bindings.

260 Glossary

SOAP receiver

A SOAP node that accepts a SOAP message.

SOAP role

A SOAP node’s expected function in processing a message. A SOAP
node can act in multiple roles.

SOAP sender

A SOAP node that transmits a SOAP message.

state

A set of attributes representing the properties of a component at
some point in time.

synchronous

An interaction is said to be synchronous when the participating
agents must be available to receive and process the associated mes-
sages from the time the interaction is initiated until all messages are
actually received or some failure condition is determined. The exact
meaning of “available to receive the message” depends on the char-
acteristics of the participating agents (including the transfer protocol
it uses); it may, but does not necessarily, imply tight time synchroni-
zation, blocking a thread, etc.

system entity

An active element of a computer/network system. For example, an
automated process or set of processes, a subsystem, a person or
group of persons that incorporates a distinct set of functionality.

transaction

Transaction is a feature of the architecture that supports the coordi-
nation of results or operations on state in a multi-step interaction.
The fundamental characteristic of a transaction is the ability to join

Glossary 261

multiple actions into the same unit of work, such that the actions
either succeed or fail as a unit.

ultimate SOAP receiver

The SOAP receiver that is a final destination of a SOAP message. It
is responsible for processing the contents of the SOAP body and
any SOAP header blocks targeted at it. In some circumstances, a
SOAP message might not reach an ultimate SOAP receiver, for
example because of a problem at a SOAP intermediary. An ultimate
SOAP receiver cannot also be a SOAP intermediary for the same
SOAP message.

usage auditing

Service that reliably and securely records usage-related events pro-
ducing an audit trail enabling the reconstruction and examination of
a sequence of events. Usage events could include resource allocation
events and resource freeing events.

Web service

There are many things that might be called “Web services” in the
world at large. However, for the purpose of this Working Group and
this architecture, and without prejudice toward other definitions, we
will use the following definition:

A Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed
by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-
related standards.

263

Resources

Here are resources, services, documentation, and other sources of
knowledge available to you.

The XQuery specification
http://www.w3.org/XML/Query

An introduction to XQuery
http://www-106.ibm.com/developerworks/xml/library/x-
xquery.html

The XPath 2.0 specification separately from XQuery
http://www.w3.org/TR/xpath20/

A community of software architects and developers that share
XQuery tips, techniques, and news
http://www.xquerynow.com

264 Resources

Groups working to extend the SQL standard for XML operations:
The SQLX Group (http://www.swlx.org),
INCITS H2 group (http://www.incits.org/tc_home/h2.htm),
ISO/IEC JTC1/SC32/WG3’s (http://metadata-standards.org)

XQEngine is an open-source Java component for querying XML doc-
uments
http://www.fatdog.com/

XQuery Normalizer and Static Analyzer (XQNSTA) is a Java API and
GUI for normalizing and computing the static type of XQuery
expressions
http://www.alphaworks.ibm.com/tech/xqnsta

Free open-source test tool, TestMaker, now includes an XQuery
engine for parsing Web Service responses
http://www.pushtotest.com

TigerLogic is a commercial XML database and XQuery engine
http://www.tigerlogic.com

MarkLogic is a commercial content management system using
XQuery
http://xqzone.marklogic.com/

Xperanto searches XML documents, flat files, and spreadsheets
http://www.almaden.ibm.com/software/dm/Xperanto/
index.shtml

JSR 225- The XQuery API for Java
http://www.jcp.org/en/jsr/detail?id=225

Resources 265

XQuery Test Suite is a proposed test suite for XQuery from IBM and
Microsoft.
http://xw2k.sdct.itl.nist.gov/BRADY/xmlquery/testSuite/NIST/
files/readme.html

The XSLT specification is a standard for transforming data.
http://www.w3.org/Style/XSL

Free open-source test tool, TestMaker, now includes an XQuery
engine for parsing Web Service responses
http://www.pushtotest.com

TigerLogic is a commercial XML database and XQuery engine
http://www.rainingdata.com/products/tl

Articles on SOA performance and scalability testing.
The “FastSOA Performance Kit,” http://www.xquerynow.com/
library/fastsoa provides a methodology, test platform, and results
analysis technique to evaluate SOA performance and scalability.

Web Services Performance Benchmark study is available from the
PushToTest Web site for free.
http://www.pushtotest.com/Downloads/kits/soakit.html

Java Testing and Design: From Unit Tests to Automated Web Tests
http://thebook.pushtotest.com

Performance Testing SOAP Applications article at
http://www-128.ibm.com/developerworks/webservices/library/
ws-testsoap/

Discover SOAP encoding’s impact on Web service performance article at
http://www-128.ibm.com/developerworks/webservices/library/
ws-soapenc/

266 Resources

Articles on XQuery.
Debunking XQuery Myths and Misunderstandings article at
http://www-128.ibm.com/developerworks/xml/library/x-
xqmyth.html

Introduction to XQuery
http://www-106.ibm.com/developerworks/xml/library/x-
xquery.html

Articles on native XML databases
Ronald Bourret’s XML Database Guide is at
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

Simple Object Access Protocol specification at
http://www.w3.org/TR/2003/REC-soap12-part0-20030624

Web Services Description Language specification at
http://www.w3.org/TR/wsdl

Apache Axis project for an open-source SOAP stack at
http://ws.apache.org/axis

Streaming XML Parsers (StAX) at
http://dev2dev.bea.com/xml/stax.html (StAX)

XML Binding Compiler at
http://java.sun.com/developer/technicalArticles/WebServices/
jaxb

Document Object Model (DOM) description at
http://www.webopedia.com/TERM/D/DOM.html

Kawa/Qexo is an open-source XQuery engine
http://www.gnu.org/software/kawa/

267

Index

A
Actions, 66–67
Ad hoc queries, 32
Aggregate views

database, 115
data cache implementation, 115
EJB, 113

Aggregators, 22
Application programming interfaces

(APIs), 19
Asynchronous Java and XML (AJAX), 42–

43
defined, 42–43
for user interfaces, 116

Asynchronous pattern, 68–69
Atomic elements, 165–66
Availability, 37–38
Average transaction time, 140

B
Barr, Jeff, 55

Blunders, XQuery, 181–92
declarative, modal, dynamic at once,

182–84
generic error and debugging, 184–85
procedural thinking, 187
semicolons in query prolog, 185
value versus general comparisons,

190–92
XML versus XML documents, 185–87

Bosworth, Adam, 53
Bray, Tim, 54
Broadcast pattern, 73–74
Brokers role, 66
Buffet scenario, 134
Built-in functions, 176, 177–78
Business Activity Monitoring (BAM), 233
Business integration (BI) tools, 2
Business Object Documents (BODs), 34,

36, 215, 218–20
for CDS components, 219
GPO, 219

268 Index

schema, 91
STAR, 219

Business Process Execution Language
(BPEL), 44

rules engine, 44
XML representation, 45

Business process workflow definition
(BPWD) language, 17

Business value
delivery with SOA, 238–39
with metadata, 214–20
tests, 120

C
Caching

power, 108
relational performance mitigation

through, 109
Calibration tests, 127, 137–41

benefits, 141
defined, 138
parameter requirement, 139–40
results analysis, 138
TPS values, 142
See also Tests

Calibration what-if chart, 148
Callback RM-reply pattern, 71
CIOs

control need, 9–10
options, 9

Class/object definition, 205–6
function, 203
See also Composite applications

CLOB, 30, 31
Composite applications, 7–8

building, 33
class/object definition, 203, 205–6

data access services, 204
database treatment, 8
data services, 12
defined, 7
developer decision task areas, 203–4
language and platform, 203, 206–8
maintaining, 202–3
reuse, 204
support, 235
taxonomy and registry, 204, 209–11
workflow container, 203, 208–9

Composite data services (CDS), 201–14,
239

acceleration, 211
AddressValidateService object, 208–9
component architecture, 213, 214
component workflow, 210
containers, 234–35
containers, evaluating, 235
data access providers, 212
defined, 204–5
implementation, 205
object life cycle, 206
requests, 206
reusable components, 207
taxonomy searching capability, 210
Web interface, 214

Configuration utilities, 228–29
compatibility, 229
error prone, 229
as software, 229

Consumers
CPU utilization, 140
role, 65

Cookie factory, 155–57
data use, 157–59
defined, 155

Index 269

service illustration, 156
Web service interface functions, 156

Cooper, Alan, 122–23

D
Data

aggregation, 126
fidelity, 48
mitigation, 126
persistence, 125
relational, 28–30
in SOA, 34–37
transformation, 125
XML, 30–31
XML impact on, 45–51

Data access connectors, 232
Data access services, 211–14

components, 231–32
function, 204
layer, 211
providers, 212
See also Composite applications

Databases
aggregate views, 115
composite applications and, 8
direct views, 115
policy, 109–10
service, 109
XML, 9, 46

Data federation, 11
FastSOA, 100
MDM, 231–32
sources, 212
testing, 126

Defense Discovery Metadata Standard
(DDMS), 215, 217, 218

Direct views database, 115

Discovery metadata, 217–18
Document object model (DOM), 33, 91
Domain Model, 24

defined, 24
SOA composite implementation, 25

E
Electronic Business XML (ebXML), 34, 215
Elements

atomic, 165–66
constructors, 170–71
See also XQuery

Energy Trading Standards Group (ETSG),
31

Enterprise Application Integration (EAI),
5

Enterprise Application Resource (EAR),
19

Enterprise Java Bean (EJB), 24, 81
aggregated views, 113
business logic implementation, 113
interoperation, 113
MVC framework, 105

Enterprises
business logic build options, 220–22
data tier, 220–21
SOA benefits in, 10–20

Enterprise Service Bus (ESB), 2, 44, 227–31
CDS container versus, 227
communication management, 228
deployment types, 229–30
evaluating provisioning/deployment

automation, 228–30
evaluating service-to-service commu-

nication capabilities, 230–31
service life-cycle management func-

tions, 227
tools, 227

270 Index

Extensible Markup Language. See XML
Extract, Transform, and Load (ETL), 5, 50

F
FastSOA

advantages, 95
architecture, 85
architecture development, 3
architecture illustration, 94–95
benefit determination, 97
business benefits, 117–18
as component development environ-

ment, 117
data federation, 100
defined, 3
example, 99
implementation, 97
mitigation performance problems, 84–

100
native XML database technology, 110
in semantic Web environment, 117
as service interface, 117
SOA performance improvement, 108
for storing metadata, 101
technique, 108
XQuery data model, 110

FastSOA mid-tier service, 94, 99
cache, 112, 116
implementation advantage, 99–100
for SOA service acceleration, 94

FastSOA patterns, 85, 94–95
leading to, 75–84
performance problem solutions with,

103–18
use cases, 103–4

Federated data integrators, 231–32
Federated data sources, 212

Federated service requests, 63
FLWOR expressions, 152, 159, 171–76

example, 172, 173
for, 171–72
nested, 172
See also XQuery

Free-running threads, 147
Functions

built-in, 176, 177–78
for dates and times, 181
list, 177–78
user-defined, 178–79
See also XQuery

G
General comparisons, 190–92

flexibility, 190
operators, 190

Graininess, 38

H
Hypertext Transfer Protocol (HTTP), 69

I
Information Object Repository (IOR), 224
Insert performance, 112
Integrated Development Environment

(IDE), 75

J
Java

data source, 195–97
functions, 195, 197
XQuery implementations, 195–97

Java Business Integration (JBI), 18
Java inter-application messaging services

(JMS), 124

Index 271

Java Message Service (JMS), 60
Java Server Faces (JSF), 108
Java Virtual Machine, 136
JAX-RPC, 86–91

APIs, 87, 89
reference implementation, 89
specifications, 89, 90

JBoss Process Management (jBPM), 19
JDBC relational data source, 195
JDOM, 87

L
Language and platform, 206–7

function, 203
See also Composite applications

Localization, 38
Logging, 38

M
Map-rendering service, 202
Master Data Management (MDM), 231

benefits, 49
data federation, 231–32
data updates, 232
defined, 48
solutions, 49–50
XML and, 48–51

Maximum transaction time, 140
Message exchange patterns, 67–74

asynchronous, 68–69
Broadcast, 73–74
callback RM-reply, 71
Multicast, 73–74
polling RM-reply, 71–72
popular, 72–74
Publish and Subscribe, 73
reliable message, 69–70

Request/Response, 73
response RM-reply, 70–71
synchronous, 67–68

Message-oriented middleware (MOM), 42
Metadata

business value with, 214–20
discovery, 217–18
machine-readable format, 37
microformats, 216–17
storing with FastSOA, 101

Microformats, 216–17, 239
defined, 216
hCalendar, 216
uses, 216–17

Middle tier
with application server, 221
with CDS components, 221
SOA components, 236

Mid-tier cache
data storage, 114
FastSOA architecture, 116
pattern, 95–97
policies, 115–16
service, 212
for service acceleration, 129–30

Mid-tier data mapping technology, 29
Mid-tier persistence, 61–62
Minimum transaction time, 140
Monitoring, 233–34
Multicast pattern, 73–74

N
Namespaces, 179–81

conflicting declaration, 181
default, 180
setting, 180
XQuery support, 179

272 Index

Net-Centric Enterprise Services (NCES),
35

Network-centric Computing Environ-
ments (NCES), 217

Network utilization, 140
Nodes, 163–65

defined, 163
examples, 163, 164
filtering, 169
identifiers, 167
power, 164, 193
tests, 169
uniqueness, 165

N-tier architecture, 61, 62
N-tier transformation, 29

O
OASIS standard, 72
Object/relational mapping (ORM), 105,

108
Object-relational XML type, 30–31
Off-line browsing, 62
Open Applications Group Integration

Specification (OAGIS), 218, 219

P
Parts Order Center (POC), 14–16
Patterns

accelerating SOA performance, 97–100
asynchronous, 68–69
Broadcast, 74
callback RM-reply, 71
FastSOA, 94–95, 103–18
message exchange, 67–74
mid-tier cache, 95–97
Multicast, 74
polling RM-reply, 71–72
popular, 72–74

Publish and Subscribe, 73
reliable message, 69–70
Request/Response, 73
response RM-reply, 70–71
SOA, 65–74, 104
synchronous, 67–68
XSTest, 137

Performance
bottleneck, 145
components for testing, 124
FastSOA, 86
improving, to access services, 113–16
insert, 112
metrics, identifying, 119–29
problems, identifying/avoiding, 75–

101
query, 111
relational, mitigating through caching,

109
service interface, 105–12
SOA, 2, 32, 33
SOA, patterns accelerating, 97–100
SOAP, 76
testing, 38, 132
tests, business value, 120
underlying service response time and,

203
Policies

defined, 215
mid-tier cache, 115–16

Policy cache, 212
Policy database, 109–10
Polling RM-reply pattern, 71–72
Presentation tier, 221–22
Profilers, 129
Prolog, 162

illustrated, 162

Index 273

semicolons in, 185
See also XQuery

Publish and Subscribe pattern, 73
Purchase Order Center, 16
PushToTest methodology, 127–28, 237

availability, 120
for black box tests, 128–29
calibration test, 127, 137–41
community, 121
defined, 119, 120
definition, 127, 132–34
full test, 127
goals, 121
optimize phase, 127
planning, 127, 130–32
publicly available kits, 121–22
results analysis, 127
SOA application, 129–43
SOA performance metrics identifica-

tion, 119–29
UGOT philosophy, 122–26
Web services application, 129–43
for white box tests, 128–29

Python, 181, 182

Q
Queries

ad hoc, 32
federated, 192–97
performance comparison, 111
XML database, 33
XPath, 168

R
Radio Frequency Identification (RFID), 35
Raining Data FastSOA Performance Kit,

129, 194

Real Site Syndication (RSS), 60
Relational data

in SOA applications, 33–34
in XML form, 28–30

Relational database management system
(RDBMS), 81

Reliable Message Provider (RMP), 70, 71,
72

Remote management interfaces, 38
Remote procedure calls (RPCs), 42, 76
Representational State Transfer (REST), 6,

42, 54
for application-to-application interop-

erability, 116
asynchronous transfer, 209
service use, 61
using, 54, 55

Request/Response pattern, 73
Resource Description Format (RDF), 58
Response RM-reply pattern, 70–71
Roles

actions, 66–67
consumer, 65
service, 65–66
service broker, 66

S
Scalability

components for testing, 124
documents for, 14–18
problems, 2, 146
problem source, 106
tests, 25, 132
tests, business value, 120
underlying service response time and,

203
workflow for, 14–18

Scalability Index, 126, 141–43

274 Index

bottleneck in performance, 145
defined, 128
determining, 129
for given service, 146
illustrated, 142
for linear scalability, 144
parts, 142
scalability problem, 146
SOAP, 2

Security, SOA, 22–23
Semantic Web, 117
Sequences, 166–68

defined, 166
diagram, 15
expression evaluation to, 167
items, 167

Server CPU utilization, 140
Service cache, 212
Service database, 109
Service interface

performance acceleration, 105–12
performance contrast, 107
scalability index, 107

Service-oriented architecture. See SOA
Service provider interface (SPI), 19
Service registry, 223–25

defined, 223
IOR, 224
product features, 223–24

Services
acceleration, 20
access, performance improvement,

113–16
aggregators, 22
bottleneck in performance, 145
composite data, 201–14
data, off-line browsing, 20

data access, 211–14
discovery and routing, 21
interfaces, 20
intermediation, 20–22
map-rendering, 202
mediation, 20–23
monitoring, 233–34
role, 65–66
Scalability Index, 146
scalability problem, 146
tier, 222
transformation, 20–22

Service-to-service communication, 230–31
Simple Object Access Protocol. See SOAP
SOA

adoption, 1
approach, 10
benefits, 17–18
benefits in enterprises, 10–20
building blocks, 12–13
business drivers, 3–10
business value delivery with, 238–39
checklist, 39
choice, 5–6
contrasting with Web services, 13–14
dark side, 37–40
database technology application crite-

ria, 27–32
data design guidelines, 36–37
data federation, 11
defined, 12
enabling service marketplace, 12
end-products, 7
flexibility or performance, 32–33
implementation, 16–17
with Java technologies, 86
performance metrics, 119–29

Index 275

performance problems, 2
performance problems, identifying/

avoiding, 75–101
players, 65–74
problem with, 1–40
PushToTest methodology, 129–43
ready for, 222–37
security, 22–23
standards body, 18
summary, 39–40
test goals, 124, 125–26
XML-centric technology, 151–99
See also scalability; services; SOA pat-

terns
SOAP, 42

with Attachments (SwA), 88
document-literal encoding, 76–80, 78
multiple requests, 132
performance, 76
RPC encoding, 76, 76–80
scalability, 76
Scalability Index, 2
specification, 91
Web services data source, 194
XML encoding, 76

SOA patterns, 65–74
basic, 104
illustrated, 104
understanding, 104

SOAP binding, 81, 82, 83, 91
acceleration, 128
performance measurement, 132
proxy generators, 3

SOAPElement, 88, 89, 90
SOA-ready, 235–37
SOA scalability and performance kit con-

tents, 131

SOA tools
announcements, 222
evaluating, 237–39
publicly available, 237

Software maintenance, 11
Software Technology in Automotive

Retailing (STAR), 96, 219
SPARQL, 58–59
SPECjAppServer, 132
SQL procedural languages, 47
State, 38
Stateful testing, 126
Stateless testing, 126, 141
Streaming XML (StAX), 92, 133
Synchronous pattern, 67–68

T
Taxonomy and registry function, 204
Test cases, 132–34

aggregate, 135
defined, 127

TestMaker, 137
Tests

black box, 128–29
business value, 120
calibration, 127, 137–41
components, 124
data aggregation, 126
data persistence, 125
data transformation, 125
environment, identifying, 136
full, 127
goals, 124, 125–26
mitigation, 126
node, 169
performance, 38, 132, 137

276 Index

running while logging network and
CPU utilization, 140

scalability, 25, 132
server bound, 141
service interface, 125
stateful, 126
stateless, 126, 141
white box, 128–29
XML parsing, 125

Test scenarios
as aggregate of test cases, 135
defined, 128, 135
testing, 135

Throughput, 138, 147
TigerLogic XQuery engine, 193
Time-to-live (TTL) element, 96
Total cost of ownership (TCO), 80, 237
Transactions per second (TPS), 111

defined, 140
levels comparison, 143
rate, 142
reduction in, 139
throughput measurement, 147
understanding, 143–48

U
Universal Business Language (UBL), 34,

44, 80, 219
Universal Description, Discovery, and

Integration (UDDI) protocol, 52, 60
registry, 210, 211
with WSDL, 52

Universal Resource Locators (URLs), 66
Use cases, 132–34

considered but not implemented, 134
defined, 127–28
number of, 134

with XML DB and RDBMS, 129–30
User-defined functions, 178–79
User goal-oriented testing (UGOT), 122–

26
ad hoc testing and, 123
defined, 122
techniques, 123
See also PushToTest methodology

V
Value comparisons, 190, 191
Versions, 38

W
Web Application Resource (WAR), 19
Web Service Business Process Execution

Language (WSBPEL), 19
Web Service Description Language

(WSDL), 52
interface definitions, 76
of SOAP-based service interfaces, 54
understanding, 53–54

Web services
contrasting with SOA, 13–14
PushToTest methodology, 129–43
SOAP, data source, 194
XML in, 51

Web Services Interoperability (WS-1), 43
profiles, 44
work on, 52–53

Web Services Reliable Messaging (WS-
RM), 70

Web tier, 222
Workflow containers, 208–9

defined, 18
elements, 19
function, 203
problem, 18–20

Index 277

technologies/standards initiatives,
18–19

World Wide Web Consortium (W3C), 1

X
XML, 1–2

benefits in service world, 60–63
CLOB, 30, 33
data, 30–31
databases, 9, 46
data expression techniques, 57
data formats, 62
as data model, 9
datatype queries, 33
datatypes, 93
flexibility, 23, 51
formatting operators, 28–29
impact on data, 45–51
love affair with, 41–45
managing, 41–63
Master Data Management and, 48–51
message-oriented middleware

(MOM), 42
native technology, 93
nature of software developers and,

51–55
parsing libraries, 132
in SOA, 55–56
tag notation, 58
tags, 7
tool selection, 26–27
in Web services, 51

XML accelerators, 222, 225–26
benefits, 226
defined, 225
perspectives, 225–26

XML binding

compiled, 133
compilers, 27

XML-centric technology
learning, 151–99
options, 151–55
types, 152
XML Stylesheet Language Transfor-

mations (XSLT), 152
XML documents

moving between services, 32
in XML databases, 46

XML Language Integrated Query (Xlinq),
23–24

XML parsers, 3
contrasting, 27
implementations, testing, 92
streaming, 133
using, 91–92
using DOM, 92

XML schemas, 25–26
data interchange, 47
inclusion technique, 58
multiple, support, 62–63

XML Stylesheet Language Transforma-
tion. See XSLT

XPath
defined, 152
expressions, 168–69
function list, 177–78
queries, 168
uses, 152

XPath Data Model (XDM), 186
XQuery, 152

benefits, 153–55
blunders, 181–92
body, 162
conditional execution, 161

278 Index

data model, 163–68
data model diagram, 165
dates and times, 181
as declarative language, 155, 182
defined, 160
developer momentum, 153
elements, 165–66
engines, 29–30
FastSOA pattern using, 85, 110
FLWOR expressions, 171–76
functions, 176–79
implementations, 184–85, 192
iterators support, 47
as language, 154
literal values, 161
names, 160
namespaces, 179–81
nodes, 163–65
optimizer, 192
output, 154
performance comparison, 86

processor, 94
prolog, 162, 185
resources, 197–98
return expression interpretation, 188
sequences, 166–68
in SOA stack, 155–57
structure, 162–63
summary, 198
TigerLogic engine, 193
tour, 160–81
type specification, 179
unfinished parts, 192–97
white space, 160
as XPath integrated, 154

XQuery API for Java (XQJ), 207
XQueryNow.com, 216
XSLT, 152

developer momentum, 153
technology use, 152

XSTest pattern, 137, 138

279

Colophon

I wrote the manuscript to this book on an Apple PowerBook G4
using Microsoft Word for Mac 11.2.

OmniGraffle Professional and Photoshop Elements 2.0 for illus-
trations.

While writing most of the manuscript I listened to the Disney
radio stations on Live365.com.

I edited XML documents using Oxygen for Mac OS X.

All XQuery examples were developed using Raining Data Tiger-
Logic 2.6.

Mashup examples use Krispy Kreme store locator service and
Microsoft Mappoint mapping service.

The page layout and compostion was done on an Apple Power-
Book G4 and PowerMac G4 using Adobe Framemaker 7.0 and Adobe
Acrobat.

	Contents
	Where SOA Meets The Real World
	Acknowledgments

	Chapter 1. The Problem with Service-Oriented Architecture
	1.1 What Drives a Business to SOA?
	1.2 SOA Benefits in an Enterprise
	1.3 SOA Service Mediation
	1.4 Can I Build SOA with My Existing Tools?
	1.5 Data in the Service-Oriented Architecture
	1.6 The Dark Side of SOA
	1.7 The SOA Checklist
	1.8 Summary

	Chapter 2. Managing the XML Explosion
	2.1 A Love Affair with XML
	2.2 XML Impact on Data
	2.3 XML and the Nature of Software Developers
	2.4 Why XML in SOA Makes Sense
	2.5 What XML Is Not: A Language for Semantics
	2.6 XML Benefits in a Service World
	2.7 Summary

	Chapter 3. Understanding SOA Patterns
	3.1 SOA Players
	3.2 Summary

	Chapter 4. Identifying And Avoiding SOA Performance Problems
	4.1 Patterns and Experiences That Led to FastSOA
	4.2 Mitigate Performance Problems with the FastSOA Architecture
	4.3 Summary

	Chapter 5. Solve Performance Problems with FastSOA Patterns
	5.1 Three Use Cases and the FastSOA Pattern
	5.2 Scenario 1: Accelerating Service Interface Performance and Scalability
	5.3 Scenario 2: Improving SOA Performance to Access Services
	5.4 Scenario 3: Flexibility Needed for Semantic Web, Service Orchestration, and Services Dynamically Calling Other Services
	5.5 Summary

	Chapter 6. The PushToTest Method to Identify SOA Scalability and Performance Metrics
	6.1 The Method to Identify SOA Performance Metrics
	6.2 Applying the Method to SOA and Web Services
	6.3 Understanding TPS
	6.4 Summary

	Chapter 7. Learning XML-Centric Technology for SOA
	7.1 XML-Centric Options
	7.2 XQuery in the SOA Stack: The Cookie Factory
	7.3 The Data Used in the Cookie Factory Example
	7.4 A Tour of XQuery
	7.5 My First XQuery Blunders
	7.6 The Unfinished Parts of XQuery
	7.7 Where to Find Answers to XQuery Questions
	7.8 Summary

	Chapter 8. Getting SOA-Ready
	8.1 Composite Data Services
	8.2 Creating Business Value with Metadata
	8.3 Enterprise Options to Build Business Logic
	8.4 LazySOA and Being Ready for SOA
	8.5 How to Evaluate SOA Tools

	Glossary
	Resources
	Index
	Colophon

