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Chapter 1

Introduction

1.1. Conventional failure criteria

The mechanical design of engineering structures usually involves an analysis of the
stress and displacement fields in conjunction with a postulate predicting the event of
failure itself. Sophisticated methods for determining stress distributions in loaded
structures are available today. Detailed theoretical analyses based on simplifying
assumptions regarding material behavior and structural geometry are undertaken to
obtain an accurate knowledge of the stress state. For complicated structure or loading
situations, experimental or numerical methods are preferable. Having performed the
stress analysis, we select a suitable failure criterion for an assessment of the strength
and integrity of the structural component.

Conventional failure criteria have been developed to explain strength failures of
load-bearing structures which can be classified roughly as ductile at one extreme
and brittle at another. In the first case, breakage of a structure is preceded by large
deformation which occurs over a relatively long time period and may be associated
with yielding or plastic flow. The brittle failure, on the other hand, is preceded by
small deformation, and is usually sudden. Defects play a major role in the mechanism
of both these types of failure; those associated with ductile failure differ significantly
from those influencing brittle fracture. For ductile failures, which are dominated
by yielding before breakage, the important defects (dislocations, grain boundary
spacings, interstitial and out-of-size substitutional atoms, precipitates) tend to distort
and warp the crystal lattice planes. Brittle fracture, however, which takes place before
any appreciable plastic flow occurs, initiates at larger defects such as inclusions, sharp
notches, surface scratches or cracks.

For a uniaxial test specimen failure by yielding or fracture takes place when

a = σy or σ = σu (1.1)

where σ is the applied stress and σy or σu is the yield or breakage stress of the
material in tension.

Materials that fail in a ductile manner undergo yielding before they ultimately
fracture. Postulates for determining those macroscopic stress combinations that

1



2 Chapter 1 

result in initial yielding of ductile materials have been developed and are known as 
yield criteria. At this point we should make it clear that a material may behave in 
a ductile or brittle manner, depending on the temperature, rate of loading and other 
variables present. Thus, when we speak about ductile or brittle materials we actually 
mean the ductile or brittle states of materials. Although the onset of yielding is 
influenced by factors such as temperature, time and size effects, there is a wide range 
of circumstances where yielding is mainly determined by the stress state itself. Under 
such conditions, for isotropic materials, there is extensive evidence that yielding is 
a result of distortion and is mainly influenced by shear stresses. Hydrostatic stress 
states, however, play a minor role in the initial yielding of metals. Following these 
reasonings Tresca and von Mises developed their yield criteria. 

The Tresca criterion states that a material element under a multiaxial stress state 
enters a state of yielding when the maximum shear stress becomes equal to the 
critical shear stress in a pure shear test at the point of yielding. The latter is a material 
parameter. Mathematically speaking, this criterion is expressed by [l .l] 

where al, a2, a3 are the principal stresses and k is the yield stress in a pure shear 
test. 

The von Mises criterion is based on the distortional energy, and states that a 
material element initially yields when it absorbs a critical amount of distortional 
strain energy which is equal to the distortional energy in uniaxial tension at the point 
of yield. The yield condition is written in the form [l.lJ 

where a, is the yield stress in uniaxial tension. 
However, for porous or granular materials, as well as for some polymers, it has 

been established that the yield condition is sensitive to hydrostatic stress states. For 
such materials, the yield stress in simple tension is not equal in general to the yield 
stress in simple compression. A number of pressure-dependent yield criteria have 
been proposed in the literature. 

On the other hand, brittle materials - or, more strictly, materials in the brittle 
state - experience fracture without appreciable plastic deformation. For such cases 
the maximum tensile stress and the Coulomb-Mohr [1.1] criterion are popular. The 
maximum tensile stress criterion assumes that rupture of a material occurs when the 
maximum tensile stress exceeds a specific stress which is a material parameter. The 
Coulomb-Mohr criterion, which is used mainly in rock and soil mechanics states that 
fracture occurs when the shear stress T on a given plane becomes equal to a critical 
value which depends on the normal stress a on that plane. The fracture condition 
can be written as 
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where the curve T = F ( a )  on the u - T plane is determined experimentally and is 
considered as a material parameter. 

The simplest form of the curve T = F ( a )  is the straight line, which is expressed 
by 

Under such conditions the Coulomb-Mohr fracture criterion is expressed by 

l + s i n w  1 - sin w 
(2c  cos w )  - (2C Cos W )  u3 = 

where tan w = p and a1 > a2 > u3. 

Equation (1.6) suggests that fracture is independent of the intermediate princi- 
pal stress a2. Modifications to the Coulomb-Mohr criterion have been introduced 
to account for the influence of the intermediate principal stress on the fracture of 
pressure-dependent materials. 

These macroscopic failure criteria describe the onset of yield in materials with 
ductile behavior, or fracture in materials with brittle behavior; they have been used 
extensively in the design of engineering structures. In order to take into account 
uncertainties in the analysis of service loads, material or fabrication defects and high 
local or residual stresses, a safety factor is employed to limit the calculated critical 
equivalent yield or fracture stress to a portion of the nominal yield or fracture stress 
of the material. The latter quantities are determined experimentally. This design 
procedure has been successful for the majority of structures for many years. 

However, it was early realized that there is a broad class of structures, espe- 
cially those made of high-strength materials, whose failure could not be adequately 
explained by the conventional design criteria. Griffith [1.2,1.3], from a series of ex- 
periments run on glass fibers, came to the conclusion that the strength of real materials 
is much smaller, typically by two orders of magnitude, than their theoretical strength. 
The theoretical strength is determined by the properties of the internal structure of 
the material, and is defined as the highest stress level that the material can sustain. 
In the following two sections we shall give a brief account of some characteristic 
failures which could not be explained by the traditional failure criteria, and describe 
some of Griffith's experiments. These were the major events that gave impetus to the 
development of a new philosophy in structural design based on fracture mechanics. 

1.2. Characteristic brittle failures 

The phenomenon of brittle fracture is frequently encountered in many aspects of 
everyday life. It is involved, for example, in splitting logs with wedges, in the art of 
sculpture, in cleaving layers in mica, in machining materials, and in many manufac- 
turing and constructional processes. On the other hand, many catastrophic structural 
failures involving loss of life have occurred as a result of sudden, unexpected brittle 
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fracture. The history of technology is full of such incidents. We do not intend to 
overwhelm the reader with the vast number of disasters involving failures of bridges, 
tanks, pipes, weapons, ships, railways and aerospace structures, but rather to present 
a few characteristic cases which substantially influenced the development of fracture 
mechanics. 

Although brittle fractures have occurred in many structures over the centuries, 
the problem arose in acute form with the introduction of all-welded designs. In 
riveted structures, for example, fracture usually stopped at the riveted joints and did 
not propagate into adjoining plates. A welded structure, however, appears to be 
continuous, and a crack growth may propagate from one plate to the next through the 
welds, resulting in global structural failure. Furthermore, welds may have defects of 
various kinds, including cracks, and usually introduce high-tensile residual stresses. 

The most extensive and widely known massive failures are those that occurred in 
tankers and cargo ships that were built, mainly in the U.S.A., under the emergency 
shipbuilding programs of the Second World War [1.4-1.81. Shortly after these ships 
were commissioned, several serious fractures appeared in some of them. The frac- 
tures were usually sudden and were accompanied by a loud noise. Of approximately 
5000 merchant ships built in U.S.A., more than one-fifth developed cracks before 
April 1946. Most of the ships were less than three years old. In the period between 
November 1942 and December 1952 more than 200 ships experienced serious fail- 
ures. Ten tankers and three Liberty ships broke completely in two, while about 25 
ships suffered complete fractures of the deck and bottom plating. The ships experi- 
enced more failures in heavy seas than in calm seas and a number of failures took 
place at stresses that were well below the yield stress of the material. A characteristic 
brittle fracture concerns the tanker Schenectady, which suddenly broke in two while 
in the harbor in cool weather after she had completed successful sea trials. The 
fracture occurred without warning, extended across the deck just aft of the bridge 
about midship, down both sides and around the bilges. It did not cross the bottom 
plating [ 1.91. 

Extensive brittle fractures have also occurred in a variety of large steel structures. 
Shank [I. 101, in a report published in 1954, covers over 60 major structural failures 
including bridges, pressure vessels, tanks and pipelines. According to Shank, the 
earliest structural brittle failure on record is a riveted standpipe 250 ft high in Long 
Island that failed in 1886 during a hydrostatic acceptance test. After water had been 
pumped to a height of 227 ft, a 20 ft long vertical crack appeared in the bottom, 
accompanied by a sharp rending sound, and the tower collapsed. In 1938 a welded 
bridge of the Vierendeel truss type built across the Albert Canal in Belgium with a 
span of 245 ft collapsed into the canal in quite cold weather. Failure was accompanied 
by a sound like a shot, and a crack appeared in the lower cord. The bridge was only 
one year old. In 1940 two similar bridges over the Albert Canal suffered major 
structural failures. In 1962 the one-year-old King's Bridge in Melbourne, Australia, 
fractured after a span collapsed as a result of cracks that developed in a welded girder 
[I. 111. A spherical hydrogen welded tank of 38.5 ft diameter and 0.66 in thickness in 
Schenectady, New York, failed in 1943 under an internal pressure of about 50 lb/in2 
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and at ambient temperature of 10°F [1.10]. The tank burst catastrophically into 20 
fragments with a total of 650 ft of hemngboned brittle tears. In one of the early 
aircraft failures, two British de Havilland jet-propelled airliners known as Comets 
(the first jet airplane designed for commercial service) crashed near Elba and Naples 
in the Mediterranean in 1954 [1.12]. After these accidents, the entire fleet of these 
passenger aircraft was grounded. In order to shed light into the cause of the accident a 
water tank was built at Farnborough into which was placed a complete Comet aircraft. 
The fuselage was subjected to a cyclic pressurization, and the wings to air loads that 
simulated the corresponding loads during flight. The plane tested had already flown 
for 3500 hours. After tests with a total lifetime equivalent to about 2.25 times the 
former flying time, the fuselage burst in a catastrophic manner after a fatigue crack 
appeared at a rivet hole attaching reinforcement around the forward escape hatch. 
For a survey and analysis of extensive brittle failures the interested reader is referred 
to reference [1.13] for large rotating machinery, to [l .I41 for pressure vessels and 
piping, to [1.15] for ordnance structures and to [1.16] for airflight vehicles. 

From a comprehensive investigation and analysis of the above structural failures, 
we can draw the following general conclusions. 

Most fractures were mainly brittle in the sense that they were accompanied by 
very little plastic deformation, although the structures were made of materials 
with ductile behavior at ambient temperatures. 
Most brittle failures occurred in low temperatures. 
Usually, the nominal stress in the structure was well below the yield stress of 
the material at the moment of failure. 
Most failures originated from structural discontinuities including holes, notches, 
re-entrant corners, etc. 
The origin of most failures, excluding those due to poor design, was pre-existing 
defects and flaws, such as cracks accidentally introduced into the structure. In 
many cases the flaws that triggered fracture were clearly identified. 
The structures that were susceptible to brittle fracture were mostly made of 
high-strength materials which have low notch or crack toughness (ability of the 
material to resist loads in the presence of notches or cracks). 
Fracture usually propagated at high speeds which, for steel structures, were 
in the order of 1000 mls. The observed crack speeds were a fraction of the 
longitudinal sound waves in the medium. 

These findings were essential for the development of a new philosophy in structural 
design based on fracture mechanics. 

1.3. Griffith's work 

Long before 1921, when Griffith published his monumental theory on the rupture 
of solids, a number of pioneering results had appeared which gave evidence of the 
existence of a size effect on the strength of solids. These findings, which could 
be considered as a prelude to the Griffith theory, will now be briefly described. 
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Leonardo da Vinci (1452-1519) ran tests to determine the strength of iron wires 
[1.17]. He found an inverse relationship between the strength and the length, for 
wires of constant diameter. We quote from an authoritative translation of da Vinci's 
sketch book [1.18]: 

Observe what the weight was that broke the wire, and in what part the wire 
broke . . . Then shorten this wire, at first by half, and see how much more weight 
it supports; and then make it one quarter of its original length, and so on, making 
various lengths and noting the weight that breaks each one and the place in which 
it breaks. 

Todhunter and Pearson [ I .  191 refer to two experimental results analogous to those 
of da Vinci. According to [1.19], Lloyd (about 1830) found that the average strength 
of short iron bars is higher than that of long iron bars and Le Blanc (1839) established 
long iron wires to be weaker than short wires of the same diameter. Stanton and 
Batson [1.20] reported the results of tests conducted on notched-bar specimens at 
the National Physical Laboratory, Teddington, after the First World War. From a 
series of tests it was obtained that the work of fracture per unit volume was decreased 
as the specimen dimensions were increased. Analogous results were obtained by 
Docherty [I .21,1.22] who found that the increase of the plastic work at fracture with 
the specimen size was smaller than that obtained from geometrical similarity of the 
strain patterns. This means that the specimens behaved in a more brittle fracture as 
their size was increased. 

All these early results gave indication of the so-called size effect of the strength of 
solids, which is expressed by an increase in strength as the dimensions of the testpiece 
decrease. Results at the U.S. Naval Research Laboratory on the strength of glass 
fibers [1.23] corroborated the early findings of Leonardo da Vinci. Figure 1.1, taken 
from reference [1.23], shows a decrease of the logarithm of the average strength of 
glass as a function of the logarithm of the specimen length. The upper line refers 
to fibers for which precautions have been taken to prevent damage in handling; the 
lower line was obtained for fibers that came in a loose skein and had a number of 
flaws. 

A plausible explanation of these results is that all structural materials contain 
flaws which have a deteriorating effect on the strength of the material. The larger 
the volume of the material tested, the higher the possibility that large cracks exist 
which, as will be seen, reduce the material strength in a square root relation to their 
dimensions. However, the first systematic study of the size effect was made by 
Griffith [1.2, 1.31 who, with his key ideas about the strength of solids, laid down the 
foundation of the present theory of fracture. 

Griffith was motivated in his work by the study of the effect of surface treatment 
on the strength of metallic machine parts. Early results by Kommers [1.24] indicated 
that the strength of polished specimens was about 45-50 percent higher than the 
strength of turned specimens. Other results indicated an increase of the order of 
20 percent. Furthermore, the strength was increased by decreasing the size of the 
scratches. Following the Inglis solution [1.25] of the stress field in an infinite plate 
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of Length (cm) 

Fig. 1.1. Logarithm of average tensile strength versus logarithm of specimen length for carefully protected 
glass fibers (x) and fibers damaged by rough handling (*) [1.23]. 

weakened by an elliptic hole, Griffith observed that tensile stresses - higher than the 
applied stress by almost an order of magnitude - appeared near the holes according to 
their shape. Furthermore, he noticed that these maximum stresses were independent 
of the absolute size of the hole and depended only on the ratio of the axes of the 
elliptic hole. Indeed, according to [1.25] the maximum stress in the plate, urn,, 
occurs at the end point of the major axis of the ellipse and is given by 

where u is the applied stress at infinity in a direction normal to the major axis of the 
hole, 2a and 2b are the lengths of the major and minor axes of the ellipse and p is the 
radius of curvature at the ends of the major axis of the ellipse. 

These results were in conflict with experiments. Indeed, first, the strength of 
scratched plates depends on the size and not only on the shape of the scratch; 
second, higher stresses could be sustained by a scratched plate than those observed 
in an ordinary tensile test. In experiments performed on cracked circular tubes 
made of glass, Griffith observed that the maximum tensile stress in the tube was of 
the magnitude of 344 kip*/in2 (2372 m a ) ,  while the tensile strength of glass was 
24.9 kip/ii2 (172 m a ) .  These results led him to raise the following questions (we 
quote from reference [1.2]): 

If the strength of this glass, as ordinarily interpreted, is not constant, on what does 
it depend? What is the greatest possible strength, and can this strength be made for 

* kip = 1000 Ib. 



8 Chapter I 

technical purposes by appropriate treatment of the material? 
In order to explain these discrepancies, Griffith attacked the problem of rupture 

of elastic solids from a different standpoint. He extended the theorem of minimum 
potential energy to enable it to be applied to the critical moment at which rupture 
of the solid occurs. Thus, he considered the rupture position of the solid to be an 
equilibrium position. In applying the theorem he took into account the increase of 
potential energy due to the formation of new material surfaces in the interior of solids. 
Using the Inglis solution, Griffith obtained the critical breaking stress of a cracked 
plate, and found it to be inversely proportional to the square root of the length of 
the crack. Thus he resolved the paradox arising from the Inglis solution, that the 
strength of the plate is independent of the size of the crack. Griffith corroborated 
his theoretical predictions by experiments performed on cracked spherical bulbs and 
circular glass tubes. The Griffith theory, and his accompanying experiments on 
cracked specimens, will be presented in detail in chapter four. Here, we describe 
some further experiments performed by Griffith on the strength of thin glass; these 
relate to the size effects mentioned at the beginning of the section. 

Glass fibers of various diameters were prepared and tested in tension until they 
broke. The fibers were drawn by hand as quickly as possible from glass bead heated 
to about 1400-1500°C. For a few seconds after preparation, the strength of the fibers 
was found to be very high. Values of tensile strength in the range 220-900 kip/in2 
(15004200 MPa) for fibers of about 0.02 in diameter were observed. These values 
were obtained by bending the fibers to fracture and measuring the critical radius 
of curvature. It was found that the fibers remained almost perfectly elastic until 
breakage. The strength of the fibers decreased for a few hours until a steady state 
was reached in which the strength depended upon the diameter only. These fibers 
were then tested in order to obtain a relation between the strength and the diameter. 
The fiber diameter ranged from 0.13 x to 4.2 x lod3 in and the fibers were 
left for about 40 hours before being tested. The specimens had a constant length of 
about 0.05 in and were obtained after breaking the long fibers several times. Thus, 
the probability of material defects along the entire specimen length was low, and 
this was the same for all specimens. The results of the tests are shown in Table 1.1, 
taken from reference [1.2]. Note that the strength increases as the fiber diameter 
decreases. The strength tends to that of bulk glass for large thicknesses. The limit 
as the diameter decreases was obtained by Griffith by plotting the reciprocals of the 
strength and extrapolating to zero diameter. The maximum strength of glass was 
found to be 1600 kip/in2 (1 1000 MPa), and this value agreed with that obtained from 
experiments on cracked plates in conjunction with the Griffith theory. 

Analogous results on the maximum strength of other materials had been obtained 
long before Griffith's results. Based on the molecular theory of matter, it had been 
established that the tensile strength of an isotropic solid or liquid is of the same order 
as, and always less than, its intrinsic pressure. The latter quantity can be determined 
using the Van der Wads equation or by measuring the heat that is required to vaporize 
the substance. According to Griffith [1.2], Traube [1.26] gives values of the intrinsic 
pressure of various metals including nickel, iron, copper, silver, antimony, zinc, tin 
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TABLE 1 . l .  Strength of glass fibers according to Grif6th's experiments. 

Diameter Breaking stress Diameter Breaking stress 
in) (lb/i2) (low3 in) @/in2) 

40.00 24 900 0.95 117 000 

and lead which are from 20 to 100 times the tensile strength of the metals. Based on 
these results, Griffith concluded that the actual strength is always a small fraction of 
that estimated by molecular theory. 

Long before Griffith established the dependence of the strength of glass fibers on 
the fiber diameter, Karmarsch [1.27] in 1858 gave the following expression for the 
tensile strength of metal wires, 

where d is the diameter of the wire and A and B are constants. Griffith's results of 
Table 1.1 can be represented by the expression 

4.4 + d 
a,, = 22 400 - 

0.06 + d ' 

where a,,,,, is in lb/in2 and d in thousandths of an inch. For the range of diameters 
available to Karmarsch, Equation (1.9) differs little from 

which is of the same form as Equation (1.8). 
Griffith's experiments on glass fibers established the 'size effect' in solids and gave 

an explanation of his observations that 'the maximum tensile stress in the comers of 
the crack is more than ten times as great as the tensile strength of the material, as 
measured in an ordinary test' [1.2]. The maximum tensile stress in a cracked plate 
was estimated from the Inglis solution by measuring the radius of curvature p at the 
ends of the crack. The latter quantity was measured by Griffith by inspection of the 
interference colors there. He inferred that the width of the crack at its end is about 
one-quarter of the shortest wavelength of visible light. He found that p = 2 x in, 
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so that Equation (1.7) gives c,,, = 350 kiP/in2 (2 400 MPa), which is almost one- 
fifth of the theoretical strength of glass. Thus, near the crack ends, the stresses could 
approach the theoretical strength of the material. For such small distances, however, 
Griffith raised the question of appropriateness of the continuum theory. We quote 
from reference [1.2]: 'The theory of isotropic homogeneous solids may break down 
if applied to metals in cases where the smallest linear dimension involved is not many 
times the length of a crystal'. The consequences of this observation will be discussed 
later. 

1.4. Fracture mechanics 

Griffith attributed the observed low strength of glass tension test specimens, of the 
order of 24.9 kip/in2 (172 MPa), as compared to the maximum stress observed in 
cracked bodies of the order of 344 kip/in2 (2372 MPa) and to the theoretical strength 
of glass of the order of 1600 kip/in2 (1 1 000 m a ) ,  to the presence of discontinuities 
or flaws. For the tension specimen he calculated that flaws of length 2 x in 
should exist. 

By his flaw hypothesis Griffith gave a solid explanation of the size effect and laid 
down the foundations of a new theory of fracture of solids. This theory received 
no further consideration until almost after the Second World War, when the massive 
failures of tankers and cargo ships and other catastrophic fractures occurred, as 
reported in Section 1.2. These failures could not be explained by the conventional 
design criteria of that time. Attempts were made to use Griffith's ideas in the 
formulation of a new philosophy for structural design. These efforts led to the 
development of a new discipline, which is known as fracture mechanics. 

Before discussing the basic concepts of the discipline of fracture mechanics further, 
it is appropriate for us to pay attention to the phenomenon of the fracture of solids. 
During the fracture process in solids, new material surfaces are formed in the medium 
in a thermodynamically irreversible manner. The fracture may roughly be classified 
from the macroscopic point of view as brittle and ductile. Brittle fracture is associated 
with low energy, and for unstable loading conditions it usually takes place under 
high fracture velocities. Ductile fracture is associated with large deformations, 
high energy dissipation rates and slow fracture velocities. The phenomenon of the 
fracture of solids is complicated and depends on a wide variety of factors, including 
the macroscopic effects, the microscopic phenomena which occur at the locations 
where the fracture nucleates or grows, and the composition of the material. The 
study of the fracture process depends on the scale level at which it is considered. 
At one extreme there is a rupture of cohesive bonds in the solid, and the associated 
phenomena take place within distances of the order of cm. For such studies the 
principles of quantum mechanics should be used. At the other extreme the material 
is considered as a homogeneous continuum, and the phenomenon of fracture is 
studied within the framework of continuum mechanics and classical thermodynamics. 
Fracture studies which take place at scale levels between these two extremes concern 
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Fig. 1.2. Fracture mechanisms at different scale levels. (After McClintock and Irwin, in Fracture 
Toughness Testing and its Applications, ASTM STP 381, p. 84, 1962, with permission.) 

movement of dislocations, formation of subgrain boundary precipitates and slip 
bands, grain inclusions and voids. The size range of significant events involved 
in the process of crack extension is shown in Figure 1.2. An understanding of the 
phenomenon of fracture depends to a large extent on the successful integration of 
continuum mechanics with materials science, metallurgy, physics and chemistry. Due 
to the insurmountable difficulties encountered in an interdisciplinary approach, the 
phenomenon of fracture is usually studied within one of the three scale levels: the 
atomic, the microscopic or the continuum. Attempts have been made to bridge the 
gap between these three approaches. 

Two key factors gave impetus to the development of fracture mechanics: the size 
effect, and the inadequacy of traditional failure criteria. The first was demonstrated 
by Griffith and later by other investigators. It is that the strength of a material 
measured from a laboratory specimen is many times lower than that predicted from 
calculations. The traditional failure criteria were inadequate because they could not 
explain failures which occur at a nominal stress level considerably lower than the 
ultimate strength of the material. Fracture mechanics is based on the principle that 
all materials contain initial defects in the form of cracks, voids or inclusions which 
can affect the load carrying capacity of engineering structures. This is revealed 
experimentally. Near the defects, high stresses prevail that are often responsible for 
lowering the strength of the material. One of the objectives of fracture mechanics, as 
applied to engineering design, is the determination of the critical load of a structure 
by accounting for the size and location of initial defects. Thus, the problems of 
initiation, growth and arrest of cracks play a major role in the understanding of the 
mechanism of failure of structural components. 

There are at least three ways in which defects can appear in a structure: kst ,  they 
can exist in a material due to its composition, as second-phase particles, debonds in 
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composities, etc.; second, they can be introduced in a structure during fabrication, as 
in welds; and third, they can be created during the service life of a component, like 
fatigue cracks, environment assisted or creep cracks. Fracture mechanics studies the 
load-bearing capacity of structures in the presence of initial defects. For engineering 
applications the nature of the initial defects is of no major significance. Thus, defects, 
basically in the form of cracks, are hypothesized to exist in structures and fracture 
mechanics studies the conditions of initiation, growth and arrest of cracks. Usually 
one dominant crack is assumed to exist in the structural component under study. 

A new design philosophy is therefore introduced by fracture mechanics as opposed 
to the use of the conventional failure criteria. Catastrophic fracture is due to the 
unstable propagation of a crack from a pre-existing defect. We are thus faced with 
the question: 'Can fracture be prevented by constructing structures that have no 
defects?' The practical answer is 'no'. Then, the safe design of structures should 
proceed along two lines: either the safe operating load should be determined for a 
crack of a prescribed size, assumed to exist in the structure; or, given the operating 
load, the size of the crack that is created in the structure should be determined. In 
this case the structure should be inspected periodically to ensure that the actual crack 
size is smaller than the crack size the material can sustain safely. Then the following 
questions arise: 
(a) What is the maximum crack sue that a material can sustain safely? 
(b) What is the strength of a structure as a function of crack size? 
(c) How does the crack size relate to the applied loads? 
(d) What is the critical load required to extend a crack of known sue, and is the 

crack extension stable or unstable? 
(e) How does the crack size increase as a function of time? 

In answering these questions fracture mechanics is searching for parameters which 
characterize the propensity of a crack to extend. Such a parameter should be able 
to relate laboratory test results to structural performance, so that the response of a 
structure with cracks can be predicted from laboratory test data. If we call such a 
parameter the crack driving force we should be able to determine that force as a 
function of material behavior, crack sue, structural geometry and loading conditions. 
On the other hand, the critical value of this parameter, which is taken as a property 
of the material, should be determined from laboratory tests. The critical value of 
the crack driving force, known as the fracture toughness, expresses the ability of the 
material to resist fracture in the presence of cracks. By equating the crack driving 
force to the fracture toughness, we obtain a relation between applied load, crack size 
and structure geometry which gives the necessary information for structural design. 

An additional material parameter, the fracture toughness, is therefore introduced 
into structural design by the methodology of fracture mechanics. This parameter is 
used to rank the ability of material to resist fracture within the framework of fracture 
mechanics, in the same way that yield or ultimate strength ranks the resistance of a 
material to yield or fracture in the conventional design criteria. In selecting materials 
for structural applications we must choose between materials with a high yield 
strength, but comparatively low fracture toughness, on the one hand, or with lower 
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Fig. 1.3. Failure strength versus crack size for two different materials A and B. 

yield strength, but higher fracture toughness on the other. As Griffith discovered, 
the fracture strength is inversely proportional to the square root of the crack size for 
brittle fracture behavior. Failure by general yield, however, intervenes at some point. 
Figure 1.3 presents the variation of the strength of a structure versus crack sue for 
two materials A and B different in yield strength and fracture toughness. Material 
A has higher yield strength, but lower fracture toughness, than material B. The two 
horizontal lines in the figure represent the failure strength governed by the general 
yield, while the two downward sloping curves depict the failure strength according 
to linear elastic fracture mechanics. It is observed that for crack sues smaller than 
the crack size corresponding to the intersection of the curves, the strength of the 
structure is higher for the lower toughness material. Thus, for a structural design 
in situations where small cracks are anticipated to exist, a material with a higher 
yield strength should be used, whereas for larger crack sizes a material with a higher 
fracture toughness would be preferable. 
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Chapter 2 

Linear Elastic Stress Field in Cracked Bodies 

2.1. Introduction 

Fracture mechanics is based on the assumption that all engineering materials contain 
cracks from which failure starts. The estimation of the remaining life of machine 
or structural components requires knowledge of the redistribution of stresses caused 
by the introduction of cracks in conjunction with a crack growth condition. Cracks 
lead to high stresses near the crack tip; this point should receive particular attention 
since it is here that further crack growth takes place. Loading of a cracked body is 
usually accompanied by inelastic deformation and other nonlinear effects near the 
crack tip, except for ideally brittle materials. There are, however, situations where 
the extent of inelastic deformation and the nonlinear effects are very small compared 
to the crack size and any other characteristic length of the body. In such cases the 
linear theory is adequate to address the problem of stress distribution in the cracked 
body. Situations where the extent of inelastic deformation is pronounced necessitate 
the use of nonlinear theories and will be dealt with in the next chapter. 

It is the objective of this chapter to study the linear elastic stress field in cracked 
bodies, with emphasis on the problem of a single crack in an infinite plate. The 
Westergaard semi-inverse method is used for this purpose. Particular attention is 
given on the stress intensity factor which governs the linear elastic stress field near 
the crack tip. 

2.2. Crack deformation modes and basic concepts 

Consider a plane crack extending through the thickness of a flat plate. Let the crack 
plane occupy the plane xz and the crack front be parallel to the z-axis. Place the origin 
of the system Oxyz at the midpoint of the crack front. There are three independent 
kinematic movements of the upper and lower crack surfaces with respect to each 
other. These three basic modes of deformation are illustrated in Figure 2.1, which 
presents the displacements of the crack surfaces of a local element containing the 
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Fig. 2.1. The three basic modes of crack extension. (a) Opening mode, I, (b) Sliding mode, 11, and (c) 
Tearing (or antiplane) mode, 111. 

crack front. Any deformation of the crack surfaces can be viewed as a superposition 
of these basic deformation modes, which are defined as follows: 
(a) Opening mode, I. The crack surfaces separate symmetrically with respect to the 

planes xy and xz. 
(b) Sliding mode, 11. The crack surfaces slide relative to each other symmetrically 

with respect to the plane xy and skew-symmetrically with respect to the plane 
XZ. 

(c) Tearing mode, 111. The crack surfaces slide relative to each other skew-sym- 
metrically with respect to both planes xy and xz. 

The stress and deformation fields associated with each of these three deformation 
modes will be determined in the sequel for the cases of plane strain and generalized 
plane stress. A body is said to be in a state of plane strain parallel to the plane xy if 

where u, v and w denote the displacement components along the axes x, y and z. 
Thus, the strains and stresses depend only on the variables x and y. Plane strain 
conditions are realized in long cylindrical bodies which are subjected to loads normal 
to the cylinder axis and uniform in the z-direction. In crack problems, plane strain 
conditions are approximated in plates with large thickness relative to the crack length. 

A generalized plane stress state parallel to the xy plane is defined by 

where a,, a,, a, and T,~,  rZ,, rZy denote the normal and shear stresses associated 
with the system xyz. Generalized plane stress conditions are realized in thin flat 
plates with traction-free surfaces. In crack problems, the generalized plane stress 
conditions are approximated in plates with crack lengths that are large in relation 
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to the plate thickness. We recall from the theory of elasticity that a plane strain 
problem may be solved as a generalized plane stress problem by replacing the value 
of Poisson's ratio v by the value v/(l + v). 

2.3. Westergaard method 

(a )  Description of the method 

The Westergaard semi-inverse method [2.1, 2.21 constitutes a simple and versatile 
tool for solving a certain class of plane elasticity problems. It uses the Airy stress 
function representation, in which the solution of a plane elasticity problem is reduced 
to finding a function U which satisfies the biharmonic equation 

and the appropriate boundary conditions. 
The stress components are given by 

If we choose the function U in the form 

where the functions $i (i = 1,2,3) are harmonic, that is, 

U will automatically satisfy Equation (2.3). 
Following the Cauchy-Riemann conditions for an analytic function of the form 

we have 

and, therefore, 
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Thus, the functions $ ~ i  (i = 1,2,3) in Equation (2.5) can be considered as the real 
or imaginary part of an analytic function of the complex variable z. 

Introducing the notation 

Westergaard defined an Airy function UI for symmetric problems by 
- 

UI = Re 31 + y Im . (2.11) 

UI automatically satisfies Equation (2.3). Using Equations (2.4) we find the 
stresses from UI to be 

8, = Re Zr - y Im Zf 

Using Hooke's law and the strain-displacement equations we obtain the displace- 
ment components 

where K = 3 - 4v for plane strain and n = (3 - v)/(l + v) for generalized plane 
stress. 

For skew-symmetric problems with respect to the x-axis the Airy function Un is 
defined by 

and the stresses and displacements by 

rSY = - Im Zn - y Re 2; 

and 
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Fig. 2.2. A crack of length 2a in an infinite plate subjected to a uniform stress a at infinity. 

(b) Crack problems 

Consider a crack of length 2a which occupies the segment -a 5 x 5 a along the 
x-axis in an infinite plate subjected to uniform equal stresses u along the y and x 
directions at infinity (Figure 2.2). The boundary conditions of the problem may be 
stated as follows: 

U ,  + i ~ , ,  = 0 for y = 0 ,  -a < x < a (2.17) 

and 

ux = 0 ,  uy = u ,  T~~ = 0 for (x2 + y2)1 /2  -+ 0 0 .  (2.18) 

The function defined by 

satisfies the boundary conditions (2.17) and (2.18) and therefore is the Westergaard 
function for the problem shown in Figure 2.2. 

For the problem of a crack of length 2a which occupies the segment -a 5 x 5 a 
along the x-axis in an infinite plate subjected to uniform in-plane shear stresses T at 
infinity (Figure 2.3), the boundary conditions of the problem may be stated as 

a, + Z T ~ ,  = 0 for y = 0 ,  -a < x < a 
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r- 
Fig. 2.3. A crack of length 2a in an infinite plate subjected to uniform in-plane shear stresses T at infinity. 

g, = ny = 0 ,  T , ~  = T for (z2 + y2)1 /2  + 00 . (2.20) 

and the Westergaard function of the problem is 

2.4. Singular stress and displacement fields 

The study of stress and displacement fields near the crack tip is very important, 
because these fields govern the fracture process that takes place at the crack tip. In 
this section we shall make a thorough study of the stresses and displacements near 
the crack tip for the three deformation modes. 

(a)  Opening mode 

The Westergaard function for an infinite plate with a crack of length 2a subjected to 
equal stresses a at infinity (Figure 2.2) is given by Equation (2.19). If we place the 
origin of the coordinate system at the crack tip z = a through the transformation 

Equation (2.19) takes the form 
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Expanding Equation (2.23) we obtain 

1 . 3 - 5  5 
ZI = a + a )  (2aC) I2 [ +  2 2 a  2 . 4  2a ( L )  2 . 4 . 6  ( 1  2a ( 2 . 3 )  

For small I SI, ( 1  (1 t 0). that is near the crack tip at x = a, Equation (2.24) may be 
written 

where 

Using polar coordinates, T ,  8 we have 

and the stresses near the crack tip are 

KI a, = - 
e 8 

cos - (1 - sin sin 2) a 2 2 

KI a, = - 
e e 

cos - (I + sin I sin :) a 2 

KI 
T,, = - 

8 8 38 
cos - sin - cos - . 

J Z n r 2 2  2 

Now suppose that the cracked plate is subjected to uniform stresses a and ka along 
the y and x directions, respectively, at infinity. The stress field may be obtained by 
superimposing the stress field in Equation (2.28) and the uniform field a, = (k- 1) a. 
Thus 

KI az = - 
8 8 

cos - (I-sin I sin 38) - ( l - k ) a  
2 2 

while the stresses a, and T,, are the same as in Equation (2.28). 
The quantity KI is the opening-mode stress intensity factor and expresses the 

strength of the singular elastic stress field. As was shown by Irwin [2.3], Equa- 
tion (2.28) applies to all crack-tip stress fields independently of crack/body geometry 
and the loading conditions. The constant term entering a, in Equation (2.29) takes 
different values depending on the appliedloads and the geometry of the cracked plate. 
The stress intensity factor depends linearly on the applied load and is a function of 
the crack length and the geometrical configuration of the cracked body. Results for 
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stress intensity factors for some crack problems of practical importance are presented 
in Appendix 2.1. 

Introducing the value of the Westergaard function 21 from Equation (2.25) into 
Equations (2.13) we obtain the displacements 

8 
u = 5 6 cos (s - cos 8) 

~ C L  

8 
u = 5 6 sin - ( r  - cos 8) . 

2~ 2 
Equations (2.28) and (2.30) express the stress and displacement fields for plane 

strain and plane stress conditions near the crack tip. It is observed that the stresses 
and strains always have an inverse square root singularity at the crack tip. For plane 
strain conditions the stress u, (= v(u, +cry)) normal to the plane of the plate is given 
by 

211 KI 8 
u, = - cos - . fi 2 

When the Westergaard function 21 of a crack problem is known it can always, as 
in the previous case, be put in the form 

where the function f (5) is well behaved for small 151. Thus, for 151 + 0 Equa- 
tion (2.32) takes the form 

If we compare the stress uy along the x-axis computed from Equation (2.33) with 
that given by Equations (2.28), we obtain 

Equation (2.34) can be used to determine the KI stress intensity factor when the 
function 21 is known. 

From Equations (2.28) we obtain the following expressions for the singular polar 
components of stress and displacement 

KI 5 6 1  
u = (, cos 5 - 4 COS - 
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Fig. 2.4. Crack deformation shape for mode-I loading. 

and 

0 
U ,  = ' 6 [(2K - 1) COS - - COS - 

4~ 2 

us = 5 6 [-(2a+ 1) sin -+sin - 
4p 2 301 2 

and for the principal singular stresses 

KI 
a1 = - cos !! (1 + sin ;) 

& 2 

KI 
a2 = - cos !! (1 - sin ;) G 2 

It is important to determine the displacement v (Figure 2.4) of the crack faces. 
From Equation (2.13), this is obtained as 

For a crack of length 2a in an infinite plate subjected to equal stresses u at infinity 
the function 21 is given by Equation (2.19). We obtain 

Equation (2.39) can be put in the form 
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Fig. 2.5. Rectangular and polar displacement components around the tip of a mode-I crack. 

which shows the shape of the crack, after deformation, to be elliptic. 
The vertical displacement v becomes maximum at the center of the crack. This is 

obtained from Equation (2.39): 

From Equations (2.30) and (2.36) which express the polar and rectangular com- 
ponents of the displacement in the vicinity of the crack tip we obtain 

This property of the displacement components is shown in Figure 2.5. 

(b) Sliding mode 

The Westergaard function Zn for a crack of length 2a in an infinite plate subjected to 
uniform in-plane shear stress ra t  infinity Figure 2.3) is given by Equation (2.21). The 
stresses and displacements are obtained from Equations (2.15) and (2.16). Following 
the same procedure as in the previous case, and recognizing the general applicability 
of the singular solution for all sliding-mode crack problems, we obtain the following 
equations for the stresses and displacements 

ITy = - 8 8 38 
sin - cos - cos - 

G 2 2  2 

Kn rzy = - 
8 8 

cos - ( I  - sin sin :) G 2 
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and 

8 
u = 5 6 sin (2 + r + cos 8) 

2~ 

8 
v = 6 cos - (2 - r - cos 8) . 

2~ 2 

The quantity Kn is the sliding-mode stress intensity factor and, as for the opening 
mode, it expresses the strength of the singular elastic stress field. When the West- 
ergaard function Zn is known, Kn is determined, following the same procedure as 
previously, by 

For a crack of length 2a in an infinite plate subjected to in-plane shear stress 7 at 
infinity, we obtain from Equations (2.45) and (2.21) 

(c) Tearing mode 

For the tearing (or antiplane) mode of crack deformation the in-plane displacements 
u and v are zero, while the displacement w is a function of the in-plane coordinates 
x and y, that is 

Equation (2.47) suggests that the movement of the crack surfaces can be related 
to the warping action of noncircular cylinders subjected to torsion. Equation (2.47) 
renders 

and from Hooke's law we have 

Substituting Equation (2.49) into the non-self-satisfied equilibrium equation 
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Fig. 2.6. A crack of length 2a in an infinite plate subjected to uniform out-of-plane shear stress T at 
infinity. 

we obtain for w  

v 2 w = 0 .  

Since w  satisfies the Laplace equation it can be put in the form 

where Zm is an analytic function. From Equations (2.49) we obtain 

T,, = Im Zfrr , ryt = Re Zf,. (2.53) 

Consider a crack of length 2a which occupies the segment -a 5 x 5 a along the 
x-axis in an infinite plate subjected to uniform out-of-plane shear stress T at infinity 
(Figure 2.6). The boundary conditions of the problem may be stated as 

r,,=O for y = O ,  - a < x < a  

T,, = 0  , rY, = T for (x2 + Y 2 ) 1 / 2  -+ co . (2.54) 

Following the same procedure as in the case of the opening mode we introduce 
the function Zfrr, defined by 
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This satisfies the boundary conditions (2.54). 
Near the crack tip, we obtain for the stresses T,,, ryZ and the displacement w 

Km 0 
T,, = -- Km sin - ,  Ty, = - 0 
6 2 Jz;;;: COS 2 ' 

where 

Equation (2.56) applies to all tearing-mode crack problems near the crack tip. The 
quantity Km is the tearing-mode stress intensity factor and expresses the strength of 
the singular elastic stress field. When the function Zf, is given, Km is determined 
by 

K~ = lim ~ f ,  . (2.58) 
ICI-0 

In cases where two or all three deformation modes exist in a crack problem, 
the singular elastic stress field in the neighborhood of the crack tip is obtained by 
superimposing the solutions corresponding to each of the three deformation modes 
and it is characterized by the respective stress intensity factors. 

2.5. Stress intensity factor solutions 

The stress intensity factor is a fundamental quantity that governs the stress field 
near the crack tip. As will be seen in chapter five, it can be used to predict the 
failure of a cracked plate. The stress intensity factor depends on both the geometrical 
configuration and the loading conditions of the body. A number of methods have 
been used for the determination of stress intensity factors. They may be classified as 
1. Theoretical (Westergaard semi-inverse method and method of complex poten- 

tials). 
2. Numerical (Green's function, weight functions, boundary collocation, alternat- 

ing method, integral transforms, continuous dislocations and finite elements 
methods). 

3. Experimental (photoelasticity, moire, holography, caustics, and combinations 
of these methods). 

Theoretical methods are generally restricted to plates of infinite extent with simple 
geometrical configurations of cracks and boundary conditions. For more complicated 
situations one must resort to numerical or experimental methods. Description of these 
methods is outside the scope of the present book. For a brief outline of these methods 
the reader is referred to r2.41. To obtain an idea of stress intensity factor solutions 
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Fig. 2.7. Elliptical crack with axes 2a and 26. 

we present results for some cases of practical importance in Appendix 2.1. For 
a compilation of stress intensity factor solutions for crack problems the reader is 
referred to the handbooks of references [2.5,2.6]. 

2.6. Three-dimensional cracks 

So far, attention has been paid only to the problem of a plane crack extending 
through the thickness of a flat plate. However, many embedded cracks or flaws in 
engineering structures have irregular shapes. These flaws are three-dimensional and, 
for purposes of analysis, are usually idealized as planes of discontinuities bounded by 
smooth curves. The basic shapes that are most suitable for analysis are the circular 
or penny-shaped and the elliptical embedded cracks. In the elliptical crack, various 
degrees of crack-border curvedness may be obtained by varying the ellipticity. 

Three-dimensional surface and embedded cracks are frequently encountered in 
engineering structures. Thus, surface cracks are usually initiated from the interior 
of pressure vessels and pipelines used in the nuclear industry. Because of their 
importance in the design of a variety of structures, three-dimensional cracks have 
attracted the interest of engineers and researchers. A great amount of effort has been 
spent on the determination of the stress distribution in bodies with three-dimensional 
cracks. The stress field in the neighborhood of a point of the border of an elliptical 
crack is a combination of the opening-mode, sliding-mode and tearing-mode, as for a 
through crack in a plate, and it is governed by the values of the corresponding stress 
intensity factors, KI, Kn and Km. As in the two-dimensional case, these factors are 
independent of the coordinate variables T ,  9 and depend only on the position of the 
point P at the crack front, the nature of loading and the crack geometry. 

Consider an elliptical crack with semi-axes a and b embedded in an infinite body 
which is subjected to a uniform uniaxial stress o normal to the crack plane (Figure 2.7). 
The opening-mode stress intensity factor for this problem is 
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where the angle a: is defined in Figure 2.7 and E ( k )  is the complete elliptic integral 
of second kind. It is defined as 

a12 

E(k) = / (1 - k2 sin2 p)1/2dp.  (2.60) 

0 

with 

Equation (2.59) gives the variation of the opening-mode stress intensity factor KI 
along the border of the elliptical crack. We find that KI takes its maximum value at 
point B ( a  = 90") of the minor crack axis and its minimum value at point A(a = 0) 
of the major crack axis (Figure 2.7). These values are given by 

u r n  b a* 
KIA= - &, K1e = - - 

E(k) E(k) 

For a circular crack of radius a in an infinite solid, Equation (2.59) gives 

In the limit as bla -+ 0, k -t 1 and E(k) -t 1, Equation (2.59) for a = 90" gives 

which is the stress intensity factor at the tip of a through-the-thickness crack of length 
2b. 

These formulas for the stress intensity factor refer to an embedded elliptical crack 
in an infinite solid. Results for semi-elliptical and quarter-elliptical cracks in plates 
of finite width have been obtained using numerical methods and can be found in 
references [2.5,2.6]. 

Examples 

Example 2.1 

For a semi-infinite crack subjected to tearing (antiplane) mode of deformation assume 
that the displacement w has the form 
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Based on this expression for w determine the singular stress and displacement 
components. 

Solution: Substituting Equation (1) into Equation (2.5 1) we obtain 

which has the solution 

f (8) = A sin A8 + B cos A8 . (3) 

The term B cos A8 should be excluded from the solution due to the antisymmetry 
of the problem with regard to 6' = 0. Then Equation (3) becomes 

f (8) = A sin A8 . (4) 

The boundary condition along the crack faces is 

and implies, with Hooke's law 

that 

cos X7T = 0 .  (7) 

Equation (7) gives the eigenvalues 

Negative values of n are ignored because they produce infinite displacements w 
at the crack tip (T = 0). For n = 1 the singular stress and displacement components 
are obtained. We obtain for w 

8 
w =  AT'/^ sin - 

2 

The non-zero stresses, T,, and TO, are calculated by 

and take the form 

Putting 



Linear Elastic Stress Field in Cracked Bodies 

Fig. 2.8. An infinite plate with a crack of length 2a (a) opened by a pair of splitting forces P and (b) 
stress distribution along the x-axis of the half-plane y > 0. 

we obtain 

and 

Km 0 
TTZ = - 

Km sin - ,  r e z = -  
0 

COS - . 6 2 6 2 

Equations (13) and (14) express the displacement and the singular stress compo- 
nents, and coincide with the earlier results in Equation (2.56) (Problem 2.17). 

Example 2.2. 

Verify that the Westergaard function 

Pa z1 = 
r.z(z2 - a2)1/2 
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corresponds to the case of a crack of length 2a along the x-axis in an infinite plate 
opened by apair of splitting forces P acting at x = 0, y = 0 (Figure2.8a). Determine 
the stress intensity factor KI. 

Solution: The boundary conditions of the problem at infinity may be stated as follows: 

u, = 0 ,  uy = 0 ,  rXy = 0 for (zl -+ 0; ) .  (2) 

Substituting Equation (1) into Equation (2.12), we obtain that all stresses at infinity 
are zero. 

The function 21 along the x-axis becomes 

From Equation (2.12) we obtain that, for y = 0, 1x1 < a, the uy-stress is zero 
(the quantity (x2 - a2)'/2 is purely imaginary), that is, we have a traction-free crack 
surface. However, at x = 0 the a,-stress becomes infinite, indicating the existence 
of a concentrated force at that point. 

For y = 0, x > a, the quantity (x2 - u ~ ) ' / ~  is real andaccording to Equation (2.12) 
the u,-stress is given by Equation (3). The magnitude of the concentrated force at 
x = 0, y = 0 is obtained by taking the equilibrium equation along the x-axis of the 
half-plane y > 0 (Figure 2.8b). We have 

Equation (5) shows that a concentrated force of magnitude P along the +y direc- 
tion acts at x = 0, y = 0. From symmetry, we find that a similar force acts at x = 0, 
y = 0 along the - y direction. 

The stress intensity factor KI is calculated from Equation (2.34) as 

where 
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(4 (b) 
Fig. 2.9. An inclined crack (a) in a biaxial stress field and (b) stress transformation along and perpendicular 
to the crack plane. 

We have 

implying that 

Example 2.3. 

Consider a crack of length 2a that makes an angle ,6 with the y direction in an 
infinite plate subjected to stresses a and ka along they and x direction, respectively, 
at infinity (Figure 2.9a). Derive the expressions of the singular stress components 
a,, a, and T,,. For the stress a, obtain also the constant term. 

Solution: By stress transformation we obtain the following stresses a;, a;, T:, in 
the system xtyt (Figure 2.9b) 

k + l  k - 1  = - 
2 

a - -  
2 

a cos 2p 

k+1  k - 1  a' = - 
2 

a + -  
2 

a cos 2p 
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k - 1  
TLy = -- 

2 
a sin 2 p .  

Thus the crack is subjected at infinity: (a) to a biaxial stress a:, (b) to a normal 
stress (a: - ub) along the x-axis and (c) to a shear stress T,,,, . Thus, the stress field 
at the crack tip is obtained by superposing an opening-mode loading caused by the 
stress a; and a sliding-mode loading caused by the stress T:,. The stress (a; - a;) 
does not create singular stresses but should be subtracted from the u; stress along the 
XI-axis. From Equations (I), (2.28) and (2.43) we obtain the stresses a,, , a,!, r,,~. 

Kn 
- (k  - 1) a cos 2p 

KI a,, = - 
0 Kn JT;;r cos (I + sin 5 sin 7 )  + 0 6 38 

sin - cos - cos - (2) 2 2 2 

KI T,,y' = - 0 0 30 Kn 
cos - sin - cos - + - 0 0 

cos - (I - sin sin y )  
2 2  2 J T ; ; r Z  

where 

Example 2.4. 

Consider a short crack of length a emanating from a circular hole along the x-axis 
in a plate subjected to uniaxial tension a along the y-axis (Figure 2.10). Determine 
the stress intensity factor. Then consider another crack of length a emanating from 
the circular hole along the y-axis and determine the stress intensity factor. Finally, 
determine the stress intensity factor for the above two cracks when the plate is 
subjected to an additional stress ku along the x-axis. 

Note that when a plate with a circular hole is subjected to stress a normal to the 
x-axis the hoop stresses along the x- and y-axes are 3a and -a respectively. 

Solution: Consider a material element at the rim of the hole along the x-axis, when 
there is no crack. Due to stress concentration the element is subjected to a tensile 
stress 3a along the y-axis, while the other two stresses are zero. By the superposition 
shown in Figure 2.1 1 and for a small crack of length a (see case 2 of Appendix 2.1) 
we have 
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Fig. 2.10. A short crack emanating from a circular hole in an infinite plate subjected to a biaxial stress 
field. 

Fig. 2.11. Superposition of stresses. 

For a small crack of length a along the y-axis emanating from the hole we have in 
a similar manner 

When the plate is subjected to an additional stress ko along the x-axis we can 
superpose the previous results and obtain 
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(a) (b) 
Fig. 2.12. (a) A cylindrical pressure vessel with an inclined through the thickness crack and (b) stresses 
acting in a local element containing the crack. 

I(I = 3 . 3 6 ~ 6 -  1 . 1 2 a k 6  = 1.12(3 - k ) o &  (3) 

for the crack along the x-axis, and 

KI = 3.36ko 6 - 1 . 1 2 ~  6 = 1.12(3k - 1 )  a 6 (4) 

for the crack along the y-axis. 

Example 2.5 

A cylindrical pressure vessel of radius R and thickness t contains a through crack 
of length 2a oriented at an angle j3 with the circumferential direction (Figure 2.12). 
When the vessel is subjected to an internal pressure p, determine the stress intensity 
factors at the crack tip. 

Solution: The hoop and longitudinal a ,  stresses in the vessel are obtained by 
equilibrium. Equilibrium along the longitudinal axis of the vessel (Figure 2.13a) 
gives 

(27~R)  ta ,  = ~ T R ~ P  
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Fig. 2.13. Stress equilibrium along (a) the longitudinal and (b) hoop directions of the cylindrical vessel 
of Figure 2.12. 

Equilibrium along the hoop direction (Figure 2.13b) gives 

From Equation (3) of Example 2.3 and the same reasoning as in Example 2.4 we 
obtain 

PR PR KI = - 6 (1 + sin2 p) , Kn = - 6 sin ,6 cos P . 
2t 2t 

Problems 

2.1. In William's eigenfunction expansion method the Airy stress function for a 
semi-infinite crack in an infinite plate subjected to general loading is assumed in the 
form 

where r ,  8 are polar coordinates centered at the crack tip and X is real. 
Using the boundary conditions along the crack faces, determine the function U 

and find the expressions for the singular stress and displacement components for 
opening mode and sliding mode loading. 
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Fig. 2.14. An infinite periodic array of equally spaced cracks in an infinite plate subjected to equal uniform 
stresses a at infinity. 

Observe that negative values of X are ignored since they produce infinite dis- 
placements at the crack tip. Furthermore, use the result that the total strain energy 
contained in any circular region surrounding the crack tip is bounded to show that 
the value X = 0 should also be excluded from the solution. 

2.2. Show that the Airy stress function 

U = cr3I2 cos - + - cos - ( 30) 2 

corresponds to a semi-infinite mode I crack with the crack faces at 0 = f .lr being 
unloaded. 

2.3. Consider an infinite periodic array of equally spaced cracks along the z-axis 
in an infinite plate subjected to equal uniform stresses a along the z- and y-axes at 
infinity (Figure 2.14). Verify that the Westergaard function is 

X Z  
u sin (,) 

ZI = 
[sin2 (g ) - sin2 (E)] 'I2 ' 

Then show that the stress intensity factor is given by 

2.4. Consider an infinite periodic array of equally spaced cracks along the x-axis 
with each crack subjected to a pair of concentrated forces at the center of the crack 
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Fig. 2.15. An infinite. periodic array of equally spaced cracks s u b j d  to a pair of concentrated forces P 
at their center in an infinite plate. 

(Figure 2.15). Verify that the Westergaard function is 

2 1  = P sin (na/w)  - (sin (na /w))'] ' I 2  
W (sin (nz/W))' sin (nz/W) 

Then show that the stress intensity factor is given by 

D 
KI = 112 ' (T sin F) 

2.5. The Westergaard function Z for the concentrated forces P and Q applied at the 
point x = b (b < a)  of a crack A B  of length 2a in an infinite plate (Figure 2.16a) is 

Show that the complex stress intensity factor K = Kr - iKn at the tip B of the 
crack is 

Then show that for equal and opposite distributed forces uy(x, 0) and rZy (2, 0) 
on the upper and lower crack faces (Figure 2.16b) KI and KII are given by 

a - x  

1 a + x  
IGI = J rZy(x, 0) /- a - x  dx . 
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Fig. 2.16. A crack of length 2a subjected (a) to concentrated forces P and Q and (b) to distributed forces 
uy (x, 0) and rZy (x, 0) along the crack faces. 

t - - - -2a  +--- 2a ----+ 2a * 
(a) (b) (c) 

Fig. 2.17. A crack of length 2a in an infinite plate subjected to (a) a uniform and @,c) triangular opposite 
forces on the upper and lower crack faces. 

2.6. Using Problem 2.5 determine the values of KI for uniform (Figure 2.17a) and 
triangular (Figure 2.17b,c) equal and opposite distributed forces on the upper and 
lower faces of a crack of length 2a in an infinite plate. 

2.7. Verify that the Westergaard function for an infinite plate with a crack of length 
2a subjected to a pair of forces at x = b (Figure 2.18a) is 

Then show that the stress intensity factor of the tip x = a is given by 

Use these results to show that for an additional pair of forces at x = -b (2.18b) 
the Westergaard function is 
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(b) 
Fig. 2.1 8. An infinite plate with a crack of length 2a subjected (a) to a pair of forces P at x = b and @) 
to two pair of forces at x = f b. 

and the stress intensity factor is 

2.8. Use Problem 2.7 to show that the Westergaard function for the configuration of 
Figure 2.19 is 

and the stress intensity factor is 

2.9. Consider a crack of length 2a in an infinite plate subjected to the concentrated 
forces P at a distance yo from the crack (Figure 2.20). Verify that the Westergaard 
function is 



Chapter 2 

Fig. 2.19. A crack of length 2a in an infinite plate subjected to a uniform stress distribution a along the 
interval b 5 1x1 5 a. 

Fig. 2.20. A crack of length 2a in an infinite plate subjected to concentrated forces P. 

where 

Determine the stress intensity factor KI. 

2.10. Verify that the Westergaard function for the plate of Figure 2.14 subjected to a 
uniform in-plane shear stress T at infinity is 

and the stress intensity factor is 

(e ~ ) l / ~ .  Kn = r ( ~ a ) ' / ~  - tan - 
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Fig. 2.21. An infinite plate with a crack of length 2a subjected to a pair of shear forces S at x = b. 

2.11. Consider the Westergaard stress function 

and find the loading that represents in an infinite plate with a crack of length 2a along 
the x-axis. Determine the stress intensity factor. 

2.12. Verify that the function Zf, for an infinite plate with a crack of length 2a 
subjected to a pair of shear forces S at x = b (Figure 2.21) is 

Determine the stress intensity factor. 

2.13. The Westergaard function for the stress field near the tip of an opening-mode 
crack is put in the form 

where the parameter p models the effect of near field boundaries and boundary 
loading. 

Determine the singular stresses a,, uy and T,, from 21. According to photoelastic 
law, the isochromatic fringe order N is related to the maximum shear stress T, by 

where f is the stress-optical constant and t is the plate thickness. 
Show that this equation can be used to determine KI from the isochromatic fringe 

pattern in the neighborhood of the crack tip. 

2.14. Use Equation (2.24) to find Taylor series for the stresses u,, uy, T,, for a crack 
of length 2a in an infinite plate subjected to stresses u and ku along the y and x-axis, 
respectively, at infinity (Figure 2.2). 
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2.15. Show that the singular polar components of stress and displacement for sliding- 
mode crack problems are given by 

( T o =  -- sin - - - sin 2) 
&GG I(* ( 4 2 4  2 

= - cos - + - cos - G 4  K n ( l  2 4  O 3  38) 2 

and 

8 
.e = 3 & [-(21C+ 1) COS - + 3  cos - . 

41.1. 2 381 2 

2.16. Derive the expressions for the singular principal stresses for sliding-mode 
loading. 

2.17. Use Equation (2.56) to show that the singular polar components of stress for 
tearing mode crack problems are given by 

I h  8 
TT, = - Icm sin - ,  rez= - 

8 
cos - . &F 2 &F 2 

2.18. Consider a crack in a mixed-mode stress field governed by the values of the 
opening-mode KI and sliding-mode KII stress intensity factors. Obtain the singular 
stress components and subtract the constant term q,, from the stress u, to account 
for distant field stresses. Determine the isochromatic fringe order N from equation 

where r, is the maximum in-plane shear stress, f is the stress-optical constant and 
t is the plate thickness. Obtain an expression for N. Consider the opening-mode. If 
r, and 8, are the polar coordinates of the point on an isochromatic loop, furthest 
from the crack tip (Figure 2.22), show that 

KI = f t sin 8, [ +  3 tan 2 8, )2]1'2 ( 3tan8, 
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Fig. 2.22. A crack-tip isochromatic fringe loop. 

N f COS 0, 
gom = -- 

t cos(36,/2) (cos2 0, + $ sin2 0,)lf2 ' 

2.19. Consider a crack in a mixed-mode stress field governed by the values of the 
opening-mode KI and sliding-mode I(n stress intensity factors. If only the singular 
stresses are considered, show that the maximum in-plane shear stress T, is given by 

Then show that the polar angle 0, of the point furthest from the crack tip on the 
curve rm,, = constant (Figure 2.22) satisfies the following equation 

1 (2) - 3 (") KI cot 20, - - 3 = 0 .  

2.20. Show that the strain energy contained in a small circle of radius ro surrounding 
the crack tip is given by 
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Fig. 2.23. An inclined crack in an infinite plate. 

for the deformation modes I, 11, I11 respectively. 

2.21. Use Problem 2.3 to show that the stress intensity factor for a strip of width 2b 
containing a central crack of length 2a can be approximated by 

Compare the values of I 6  with those of case 1 of Appendix 2.1. 

2.22. Consider a crack of length 2a in an infinite plate subjected to a uniform stress 
a  at infinity that makes an angle /? with the crack axis (Figure 2.23). Show that the 
stress intensity factors KI and Kn are given by 

16 = a  6 sin2 /? 

Kn = a &  sin/? cos /?. 

2.23. Consider a crack A B  of length 2a in an infinite plate subjected to a linear stress 
distribution at infinity (Figure 2.24). Using the principle of superposition and the 
results of Problem 2.5, show that the stress intensity factor is given by 
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Fig. 2.24. A crack of length 2a in an infinite plate subjected to a linear stress distribution at infinity. 

Fig. 2.25. A crack of length 2a in an infinite plate subjected to a uniform normal stress a and shear stress 
~ f r o m z = f b t o x =  fa. 

2.24. Use Problem 2.5 to determine the stress intensity factor for a crack of length 2a 
in an infinite plate subjected to uniform normal stress a and shear stress T along the 
upper crack surface from x = b to x = c. Then determine the stress intensity factor 
when the same stresses apply to the lower crack surface. Finally use Problem 2.7 
to determine the stress intensity factor when additional normal and shear stresses 
a and T apply along the upper and lower crack surface from x = -c to x = -b 
(Figure 2.25). 
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(b) 

Fig. 2.26. A penny-shaped crack of radius a subjected to (a) a load stress P acting along the circumference 
of a circle of radius c and @) a uniform stress of magnitude a distributed over a concentric circular area 
of radius b. 

2.25. Use Problem 2.7 to find the stress intensity factor for a crack of length 2a in an 
infinite plate subjected to self-balanced normal stresses acting along the crack faces. 

2.26. The stress intensity factor for a penny-shaped crack of radius a subjected to a 
load P acting along the circumference of a circle of radius c (Figure 2.26a) is given 
by 

Determine the stress intensity factor for this crack when it is subjected to a uniform 
stress of magnitude CT distributed over a concentric circular area of radius b(b < a)  
(Figure 2.26b). 
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Fig. 2.27. An edge crack in an infinite plate subjected to (a) a pair of concentrated forces at a distance b 
from the plate edge and (b) a self-balanced linear tensile stress distribution acting along the crack faces. 

2.27. Show that the stress intensity factor for an edge crack of length a in a semi- 
infinite solid subjected to a uniform out-of-plane shear stress T at infinity is the same 
as for a crack of length 2a in a full solid. 

2.28. The stress intensity factor for an edge crack of length a in a semi-infinite plate 
subjected to a pair of equal and opposite concentrated forces at a distance b from the 
plate edge (Figure 2.27a) is given by 

where 

F(b/a) = [ l  - [0.2945 - 0.3912(b/a)~ + 0.7685(b/a)~- 

Using this result show that the stress intensity factor for this crack subjected to 
a self-balanced linear tensile stress distribution acting along the crack faces (Fig- 
ure 2.27b) is 

2.29. Determine the stress intensity factor for a strip with an edge crack loaded as in 
Figure 2.28 for a/b = 0.4. Consult Appendix 2.1. 

2.30. A cylindrical pressure vessel with internal radius R = 600 mm and thickness 
B = 20 mm contains a longitudinal crack of length L = 100 mm and depth a = 2 mm 
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Fig. 2.28. A strip with an edge crack subjected to a triangular stress distribution perpendicular to the 
crack along its upper and lower boundaries. 

Fig. 2.29. A cylindrical pressure vessel with a longitudinal crack of length L and depth a subjected to 
internal pressure p. 

(Figure 2.29). When the vessel is subjected to internal pressure p = 1 MPa determine 
the stress intensity factor at the crack tip. 

2.3 1. A three-point bend specimen of thickness 1 mm (Figure 2.30) contains a crack 
of length a = 2 mm. Determine the stress intensity factor KI without resorting to 
case 4 of Appendix 2.1. Then determine I(I from Appendix 2.1 and compare the 
results. 
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Fig. 2.30. A cracked three-point bend specimen. 

Fig. 2.31. A short crack emanating from an elliptical hole in an infinite plate subjected to a stress o 
perpendicular to the major axis of the hole. 

2.32. Consider a short crack of length a0 emanating from an elliptical hole with axes 
2n and 2b in an infinite plate subjected to a stress u perpendicular to the major axis 
of the hole (Figure 2.3 1).  Determine the stress intensity factor. Note that the hoop 
stress at the end point of the major axis of the ellipse is given by Equation (1.7). 

2.33. Consider a center crack of length 2a in a plane specimen titled at an angle w 
with the specimen surface and subjected to a uniaxial stress u (Figure 2.32). Ignoring 
the influence of the plate surface, determine the stress intensity factors at the crack 
front. 
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Fig. 2.32. A slanted crack in the thickness direction. 

Fig. 2.33. A shaft of radius b press fitted into a wheel of outside radius c containing a small crack of 
length a. 

2.34. A spherical vessel of radius R and thickness t contains a crack of length 2a 
oriented at an angle w with the meridional direction. When the vessel is subjected to 
an internal pressure p determine the stress intensity factors at the crack tip. 

2.35. A shaft of radius b is press fitted into a wheel of outside radius c with a radial 
interference 6 (Figure 2.33). A small crack of length a emanates from the inner 
boundary of the wheel. Determine the stress intensity factor at the crack tip. 
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Fig. 2.1% A center-cracked plate. under uniform tension. 

2.36. A cylindrical pipe with inner radius b and outer radius c is subjected to a 
temperature difference AT across the wall. Assume a radial crack of length a 
emanating from the inner bore. Determine the stress intensity factor at the crack tip. 

Appendix 2.1. 

1. Center-Cracked Plate Under Uniform Tension (Figure 2. la) 

2. Single-Edge-Cracked Plate Under Uniform Tension (Figure 2. lb) 
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Fig. 2. lb. A single-edge-cracked plate under uniform tension. 

3. Double-Edge-Cracked Plate Under Uniform Tension (Figure 2. lc) 

4. Single-Edge-Cracked Three-Point Bend Specimen (Figure 2. ld) 

5. Finite Width Strip with Edge Crack Under Bending (Figure 2. le) 
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u 

Fig. 2.1~. A double-edge-cracked plate under uniform tension. 

Fig. 2.ld. A single-edge-cracked three-point bend specimen. 
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Chapter 3 

Elastic-Plastic Stress Field in Cracked Bodies 

3.1. Introduction 

The linear elastic analysis of the stress field in cracked bodies, dealt with in the 
preceding chapter, applies, strictly speaking, only to ideal brittle materials for which 
the amount of inelastic deformation near the crack tip is negligible. In most cases, 
however, there is some inelasticity, in the form of plasticity, creep or phase change 
in the neighborhood of the crack tip. A study of the local stress fields for the three 
modes of loading showed that they have general applicability and are govemed by 
the values of three stress intensity factors. In other words, the applied loading, the 
crack length and the geometrical configuration of the cracked bodies influence the 
strength of these fields only through the stress intensity factors. We can have two 
cracked bodies with different geometries, crack lengths and applied loads with the 
same mode. The stress and deformation fields near the crack tip will be the same if 
the stress intensity factors are equal. 

The singular stress fields represent the asymptotic fields as the distance from the 
crack tip tends to zero, and their realm of applicability is confined to a very small 
region around the crack tip. Let the singular solution dominate inside a circle of radius 
D surrounding the crack tip (Figure 3.1). Consider also that the region of inelastic 
deformation attending the crack tip is represented by R. When R is sufficiently 
small compared to D and any other characteristic geometric dimension such as notch 
radius, plate thickness, crack ligament, etc., the singular stress field govemed by the 
stress intensity factors forms a useful approximation to the elastic field in the ring 
enclosed by radii R and D. This situation has been termed "small-scale yielding". 

In the present chapter we present an elementary analysis of the elastic-plastic 
stress field in cracked bodies. The chapter includes an approximate calculation of 
the plastic zone for "small" applied loads; a description of the actual plastic enclaves 
revealed by experiments in plates of finite thickness; and the models of Irwin and 
Dugdale for the determination of the extent of plastic zone directly ahead of the crack. 
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Fig. 3.1. Inelastic and K-dominant regions around a crack tip. 

3.2. Approximate determination of the crack-tip plastic zone 

A first estimate of the extent of the plastic zone attending the crack tip can be 
obtained by determining the locus of points where the elastic stress field satisfies the 
yield criterion. This calculation is very approximate, since yielding leads to stress 
redistribution and modifies the size and shape of the plastic zone. Strictly speaking, 
the plastic zone should be determined from an elastic-plastic analysis of the stress 
field around the crack tip. However, we can obtain some useful results regarding the 
shape of the plastic zone from the approximate calculation. 

First consider opening-mode loading. Introducing the expressions for the singular 
principal stresses given by Equation (2.37) into the von Mises yield criterion ex- 
pressed by Equation (1.3), we obtain the following expression for the radius of the 
plastic zone 

for plane stress, and 

(i sin2 o + I + cos 0 1 
[?- sin2 O + (1 - 2v)' (1 + cos O)] 
2 

for plane strain, where u, is the yield stress. 
The extent of the plastic zone along the crack axis (0 = 0) is given by 
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Fig. 3.2. Approximate estimation of the crack-tip plastic zones for mode-I loading under plane stress and 
plane strain. v = 113. 

for plane stress, and 

for plane strain, with v = 113. 
Figure 3.2 shows the shapes of the plastic zones for plane stress and plane strain 

with v = 113. Observe that the plane stress zone is much larger than the plane strain 
zone because of the higher constraint for plane strain. Equations (3.3) and (3.4) show 
that the extent of the plastic zone along the crack axis for plane strain is 119 that of 
plane stress. We now present a few remarks concerning the qualitative nature of the 
plastic zones in plates of finite thickness. 

Consider first a material element in front of the crack (6 = 0) and assume con- 
ditions of plane stress or plane strain. The in-plane principal stresses a1 and a2 are 
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Fig. 3.3. Planes of maximum shear stress in front of a mode-I crack for (a) plane stress and (b) plane 
strain. 

equal (al = a 2  = a )  (Equation (2.37)), while the transverse stress a, is a principal 
stress and is equal to zero or 2va for plane stress or plane strain, respectively. For 
a Tresca yield criterion, the maximum shear stress for plane stress is equal to 012 
and occurs in planes making 45" with the plane of the plate (Figure 3.3(a)). On 
the other hand, the maximum shear stress for plane strain is equal to a /6  (assuming 
v = 113) and occurs in planes normal to the plane of the plate and making 45" with 
the directions of a1 and a 2  (Figure 3.3(b)). Thus, for plane strain, not only is much 
more stress required to yield a material element than in plane stress, but also the 
planes of yielding are different. Analogous conditions hold for different 8 angles. 

Conditions of plane stress dominate in very thin plates where it can be assumed 
that the transverse stress a, is zero through the plate thickness. On the other hand, 
for thick plates, the state of stress is primarily one of plane strain. The type of plastic 
deformation associated with these two cases is shown in Figure 3.4. Under plane 
stress, slip takes place on planes at 45" to the plate surface, producing a rather large 
strain through the thickness (Figure 3.4(a)), while, in plane strain, slip occurs on 
planes perpendicular to the plate surface, giving a hinge-type deformation pattern 
(Figure 3.4(b)). 

In cracked plates, conditions of plane stress dominate at the traction-free surfaces, 
while plane strain prevails in the interior. This results in a variation of the plastic 
zone through the plate thickness, which decreases from the surface to the interior 
of the plate (Figure 3.5). Although the state of stress is always a combination of 
plane stress and plane strain, some guidelines for determining the predominant type 
can be established. This is achieved by comparing the size of the plastic zone to the 
thickness, B, of the plate. When the length of the plastic zone c in front of the crack 
is of the order of B, then plane stress dominates. On the other hand, if c is much 
less than B the greatest part of the thickness is under plane strain. According to the 
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Fig. 3.4. Slip-planes around a mode-I crack for (a) plane stress and (b) plane strain. 

Fig. 3.5. Schematic representation of the three-dimensional nature of the crack-tip zone around a crack 
tip in a finite thickness plate. 
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Fig. 3.6. Plastic zones, appearing as dark regions, in a cracked plate at (a) the surface of the specimen, 
(b) the section halfway between the surface and the midsection and (c) the midsection. (Photograph by 
P.N. Mincer, Battelle Memorial Institute.) 

Fig. 3.7. Plastic zones, appearing as light regions, in a cracked plate at (a) the front and (c) the back 
surfaces of the plate and (b) a section normal to the crack plane. (Photograph by P.N. Mincer, Battelle 
Memorial Institute.) 

American Society for Testing and Materials, Standard E399-81 [3.1], plane strain 
dominates when c < B/25, where c is the length of the plane strain plastic zone 
along the crack axis. 

These qualitative predictions on the characteristics of the crack tip plastic zones 
were experimentally verified by Hahn et al. [3.2,3.3]. They performed experiments 
on steel cracked specimens, and by etching their polished surfaces, revealed the three- 
dimensional character of the plastic zone in front of the crack. The plastic zones in 
the interior were obtained by sectioning, repolishing and etching. Figure 3.6 shows 
the plastic zones (appearing as dark regions) on (a) the surface of the specimen, (b) 
a section halfway between the surface and the midsection and (c) the midsection. 
The applied load produced a net section stress equal to 0.9 of the yield stress. The 
specimen has a thickness of 0.232 in and plane stress dominates. Observe that the 
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Fig. 3.8. Biasticity uy stress distribution ahead of a crack. 

two yielded regions on the surface of the specimen merge into a single region on the 
midsection. Figure 3.7 shows the plastic zones (appearing as light regions) on (a) 
the front surface, (b) a section normal to the crack plane and (c) the back surface, 
of a 0.197 in thickness specimen at the same stress level as in Figure 3.6. The 
figure shows the slip bands on planes subtending 45" with the crack plane, which 
is indicative of pl,me stress. For lower stress levels, for which the plastic zones are 
much smaller than the plate thickness, it was found that the yield regions through the 
thickness remain almost the same; this is consistent with plane strain deformation. 

3.3. Irwin's model 

Irwin [3.4] presented a simplified model for the determination of the plastic zone 
attending the crack tip under small-scale yielding. He focused attention only on 
the extent along the crack axis and not on the shape of the plastic zone, for an 
elastic-perfectly plastic material. 

To begin with, let us consider the elastic distribution of the a,(= a,) stress along 
the crack axis in Figure 3.8 and assume that the plate is under plane stress. To estimate 
the extent of the plastic zone in front of the crack we use the approximate solution of 
Section 3.2 and find the distance rl from the crack tip to the point at which the yield 
stress a ,  is exceeded. The value of rl ,  determined from the condition a, = a,, is 
given by Equation (3.3). The ay stress distribution along the x-axis is represented by 
the horizontal line a, = a ,  up to the point x = rl followed by the elastic singular 
ay -curve. 

It is apparent in this determination that the equilibrium condition along the y- 
direction is violated, since the actual elastic stress distribution inside the plastic zone 
is replaced by a constant stress equal to a,. The stresses in the shaded area in 
Figure 3.8 should produce a stress redistribution along the x-axis and the actual 
plastic zone length must be larger than rl . Thus, as a result of the crack-tip plasticity, 
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Fig. 3.9. Elastoplastic uy stress distribution ahead of a crack according to the Irwin model. 

the displacements are larger and the stiffness of the plate is lower than in the elastic 
case. 

These observations led Irwin to propose that the effect of plasticity makes the 
plate behave as if it had a crack longer than the actual crack size. The fictitious crack 
length is determined as follows: The area underneath the uy-curve up to the point 
x = rl is given by 

where the value of rl was introduced from Equation (3.3). Therefore, the shaded area 
in Figure 3.8 is a,rl. This result suggests that in order to satisfy equilibrium along 
the y-direction the original crack should be extended by a length rl ,  as in Figure 3.9. 
In this case the u, stress distribution is represented by the curve ABCD, so that the 
area underneath this curve is equal to the area underneath the uy-curve in Figure 3.8 
and equilibrium is maintained. Thus, the length of the plastic zone c in front of the 
crack is equal to 27-1, and is given by 

for plane stress. Equation (3.6) shows that the length of the plastic zone c, accord- 
ing to the Invin model, is twice that determined from the approximate solution of 
Section 3.2. For plane strain, Irwin [3.5] suggested that due to existing constraint 
the stress required to produce yielding increases by a factor of d. This results in a 
plastic zone length c in front of the crack, given by 
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The length of the plastic zone in front of the crack according to the Irwin model 
has been used to characterize the state of stress in a cracked plate as being either 
plane stress or plane strain. According to the ASTM Standard E399 [3.1] referred 
to in Section 3.2, the stress condition is characterized as plane stress when c = B 
and as plane strain when c < B/25, where B is the thickness of the plate. Using 
Equation (3.7), we obtain for plane strain that 

The distance S of the faces of the fictitious crack at the tip of the initial crack of 
length a is given by the use of Equation (2.39) 

which gives 

for plane stress, and 

for plane strain. 
The quantity S given by Equation (3.1 1) has played an important role in char- 

acterizing the propensity of a crack to extend, and will be described in detail in 
Chapter 6. 

3.4. Dugdale's model 

A simplified model for plane stress yielding which avoids the complexities of a 
true elastic-plastic solution was introduced by Dugdale [3.6]. The model applies 
to very thin plates in which plane stress conditions dominate, and to materials with 
elastic-perfectly plastic behavior which obey the Tresca yield criterion. To analyze 
the model, we consider a crack of length 2a in an infinite plate subjected to uniaxial 
uniform stress o at infinity perpendicular to the crack plane (Figure 3.10). We make 
the following hypotheses: 
(i) All plastic deformation concentrates in a line in front of the crack. 
(ii) The crack has an effective length which exceeds that of the physical crack by 

the length of the plastic zone. 
The first hypothesis is justified from the fact that for plane stress, following the 

considerations of Section 3.2, yielding takes place on planes that subtend 45" with 
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Fig. 3.10. Dugdale's model for a mode-I crack of length 2a. 

the plate surface and the height of the plastic zone is equal to the plate thickness. 
Thus, for very thin plates, the plastic zones approach line segments. With the Tresca 
yield criterion, there should be stresses equal to the yield stress a,  along the plastic 
zone. The length of the plastic zone c is determined from the condition that the a, 
stress at the tip of the effective crack should remain bounded and equal to the yield 
stress a ,. 

Based on the above arguments, the solution of the elastic-plastic problem of 
Figure 3.10 is, according to the Dugdale model, reduced to an elastic problem. The 
Westergaard function Z of the problem is obtained by adding these functions for the 
following two problems: 

(i) A crack of length 2(a + c) in an infinite plate subjected to a uniform stress a at 
infinity. The Westergaard function is given by (Equation (2.19)) 

(ii) A crack of length 2(a + c) in an infinite plate subjected to a uniform stress 
distribution equal to a ,  along the plastic zone (a < 1x1 < a + c). The 
Westergaard function for this problem is given by (Problem 2.8) 

Z 
Z2 = : arccos (5) - 

r [ Jz2 - ( a  + c)2 a + c  

arccot (; {=)I 
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The Westergaard function of the problem of Figure 3.10 is 

by zeroing the singular term of Z. For the length of the plastic zone, this condition 
gives 

a IT (T 
- = cos ( I  --) 
a + c  

Equation (3.15) for small values of c/a, gives 

By comparing Equations (3.16) and (3.6) we can deduce that the Irwin model 
underestimates the length of plastic zone by about 20%, compared to the Dugdale 
model. 

The displacement of the crack faces, obtained by introducing the value of Z from 
Equation (3.14) into Equation (2.38), is given by 

(sin & + sin 6)2] 
v = + cos 62 In (3.17) 

7rE a + c  sin2(&+0) (sin 02 - sin 1 9 ) ~  

where we put 

x IT u 
8 = arccos - 62 = - - . 

a + c '  

The opening of the effective crack at the tip of the physical crack is given by 

8aya 
6 = 2  lim v=- In (sec d 2 )  . 

x-+ a T E  

By expanding Equation (3.19) and retaining the first term for small values of a/a , 
we obtain 

By comparing Equations (3.20) and (3.10) we can deduce that the Irwin model 
overestimates 6 by 27 per cent compared to the Dugdale model. The variation 
of the dimensionless quantities cla and (1~ES)l(8a,a) versus u/a, is shown in 
Figure 3.11. 
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Fig. 3.11. Normalized plastic zone length and crack-tip opening displacement versus normalized applied 
stress for the Dugdale model. 

Examples 

Example 3.1. 

Determine the radius of the plastic zone accompanying the crack tip for mixed-mode 
(opening-mode and sliding-mode) loading under plane strain conditions. Plot the re- 
sulting elastic-plastic boundary for a crack of length 2a in an infinite plate subtending 
an angle P = 30" with the direction of applied uniaxial stress at infinity. v = 0.3. 

Solution: By superimposing the stresses for opening-mode and sliding-mode loading 
and omitting the constant term we obtain, after some algebra, for plane strain condi- 
tions (u, = u(u, + cy), see Equations (2) of Example 2.3) for the radius r of the 
plastic zone 

1 
r = - [K: cos2 (1 - 2 ~ ) ~  + 3 sin2 - + KIKn sin 0[3 cos 0- 

2 4 ,  2 2 O I 
(1) 

( 1 - 2 ~ ) ~ ] + ~ ;  ( 1 - 2 ~ ) ~ - 9 c o s ~  
2 .  

Equation (1) for opening-mode (I& = 0) coincides with Equation (3.2). 
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Fig. 3.12. Elastic-plastic boundary surrounding the tip of an inclined crack in an infinite plate. 

For a crack of length 2a in an infinite plate subtending an angle P = 30" with the 
direction of applied uniaxial stress at infinity the stress intensity factors KI, KII are 
given by (Problem 2.22) 

KI = a f i  sin2 ,d , Kn = o sin p cos P . (2) 

Introducing these values into Equation (1) we obtain the radius of the plastic zone. 
For ,O = 30" and v = 0.3 it is shown in Figure 3.12. 

Example 3.2 

Consider a central crack of length 2a in an infinite plate subjected to uniaxial stress 
o at infinity perpendicular to the crack plane. According to the Irwin model, the 
effective crack is larger than the actual crack by the length of plastic zone. Show that 
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the stress intensity factor corresponding to the effective crack, called effective stress 
intensity factor Keff ,  for conditions of plane stress, is given by 

Solution: The effective crack has a length 2(a + 4 2 )  where c/2 is (Equation (3.6)) 

The stress intensity factor ILff for a crack of length 2(a + c /2 )  in an infinite plate 
subjected to the stress a is 

This Equation leads to Equation (1). 

Example 3.3. 

A large plate of steel contains a crack of length 20 mm and is subjected to a stress 
a = 500 MPa normal to the crack plane. Plot the a, stress distribution directly 
ahead of the crack according to the Irwin model. The yield stress of the material is 
2000 MPa. 

Solution: Since the plate is large the effective stress intensity factor Keff is computed 
from Equation (1) of Example 3.2. We have 

The length of the plastic zone c is 

The a, stress is constant along the length of plastic zone, while in the elastic 
region it varies according to 
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fictitious crack 

a=20 mm ;uyi <Kaff 
( ~ K x ) ' ' ~  

2000 MPa 

t - - x  - 
Fig. 3.13. Original and fictitious crack and a, stress distribution according to the Irwin model. 

where x is measured from the tip of the effective crack (x > 0.32 mm). 
The a, stress distribution is shown in Figure 3.13. 

Example 3.4. 

The stress intensity factor for an infinite plate with a semi-infinite crack subjected to 
concentrated loads P at distance L from the crack tip (Figure 3.14a) is given by 

For this situation determine the length of the plastic zone according to the Dugdale 
model. 

Solution: According to the Dugdale model there is a fictitious crack equal to the 
real crack plus the length of plastic zone (Figure 3.14b). This crack is loaded by 
the applied loads P and an additional uniform compressive stress equal to the yield 
stress a,, along the plastic zone. 

The length of plastic zone c is determined from the condition that the stresses 
should remain bounded at the tip of the fictitious crack. This condition is expressed 
by zeroing the stress intensity factor. 

The stress intensity factor K , ( ~ )  due to applied loads P is 
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Fig. 3.14. (a) A semi-mfinite crack subjected to concentrated loads P and (b) calculation of the length of 
plastic zone according to the Dugdale model. 

The stress intensity factor K : ~ Y )  due to the uniform stress o, along the length of 
plastic zone is determined as 

The condition that the stress intensity factor be zero at the tip of the fictitious crack 
is expressed as 

which leads to 
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Problems 

3.1. Show that the radius of the plastic zone surrounding the tip of a mode-I1 crack 
is given by 

2 
1 

~ ~ ( 0 )  = - ( )  ( 1 . 2  cos 0 - 9  sin2 0 )  
87r 

for plane stress, and by 

for plane strain. Plot the resulting curves for v = 113. 

3.2. Show that the radius of the plastic zone surrounding the tip of a mode-I11 crack 
is a circle centered at the crack tip with radius 

3.3. Find the equation of the plastic zone ahead of a crack for opening-modeloading 
under conditions of plane stress and plane strain for a material obeying the Tresca 
yield criterion expressed by Equation (1.2). Compare the resulting equation with 
Equations (3.1) and (3.2). 

3.4. As in Problem 3.3 for sliding-mode loading. 

3.5. Determine the crack tip plastic zone for opening-mode loading for a pressure 
modified von Mises yield criterion expressed by 

where R = o,/o, and o, and a, are the yield stress of the material in tension 
and compression, respectively. Plot the resulting elastic-plastic boundaries for plane 
stress and plane strain conditions when R = 1.2 and 1.5. Compare the results with 
those obtained by the von Mises criterion. 

3.6. As in Problem 3.5 for a pressure modified von Mises yield criterion expressed 
by 
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3.7. Determine the minimum plate thickness required for plane strain conditions to 
prevail at the crack tip according to the ASTM specifications for the following steels: 
a. 4340, with KIC = 100 MPa fi and a, = 860 MPa. 
b. A533, with Krc = 180 MPa fi and a, = 350 MPa. 
Discuss the results. 

3.8. Consider a crack in a finite width plate subjected to opening-mode loading. 
Establish an iterative process for determining the effective stress intensity factor K,ff 
according to the Irwin model. 

3.9. A thin steel plate of width 2b = 40 mm contains a central crack of length 
2a = 20 mm and is subjected to a stress a = 500 MPa normal to the crack plane. 
Plot the IT, stress distribution directly ahead of the crack according to the Irwin 
model. The yield stress of the material is 2000 MPa. Consult Appendix 2.1. 

3.10. A thin steel plate of width b = 100 mm contains an edge crack of length 
a = 20 mm and is subjected to a stress a = 400 MPa normal to the crack plane. 
Compute the length of the plastic zone and plot the a, stress distribution directly 
'ahead of the crack according to the Irwin model. The yield stress of the material is 
2000 MPa. Consult Appendix 2.1. 

3.1 1. Show that the length of plastic zone c according to Dugdale model for a crack 
of length 2a in an infinite plate subjected to uniform stress a at infinity normal to the 
crack for small applied stresses a is given by 

3.12. Use Equation (3.14) to show that, at the tip of the fictitious crack of theDugdale 
model, the stresses a, and a, are equal to the yield stress a,. 

3.13. Establish Equation (3.17) for the displacement of the crack faces according to 
the Dugdale model. 

3.14. Show that according to the Dugdale model the stress a, outside the plastic 
zone along the crack axis is given by 

a, =ay 1 - - arctan [ 2 (cos sin 22& 2e2 - e2@ 11 
where 

x 
, e = arccos - . 

a + c  

Plot the a, distribution for a/a, = 0.5. 
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Fig. 3.15. A penny-shaped crack in an infinite plate subjected to a uniform stress u over a concentric 
circular area of radius b. 

3.15. For Example 3.3 plot the a, stress distribution directly ahead of the crack 
according to the Dugdale model. Compare the results with those obtained by the 
Irwin model. 

3.16. Show that according to the Dugdalemodel thecurve v = v(z) (Equation (3.17)) 
which gives the vertical displacements of the crack faces has a vertical slope at the 
tips of the actual crack. Draw a sketch of this curve. 

3.17. The stress intensity factor for a penny-shaped crack of radius a in an infinite 
solid subjected to a uniform stress a over a concentric circular areaof radius b (b < a )  
(Figure 3.15) is given by 

Determine the length of the plastic zone according to the Dugdale model. 

3.18. The stress intensity factor for an edge crack of length a  in a semi-infinite solid 
subjected to a pair of concentrated shear forces S applied to the crack at a distance b 
from the solid edge (Figure 3.16) is 

Determine the length of plastic zone according to the Dugdale model, and plot 
the variation of cla versus S lur ,  for different values of bla, where r ,  is the yield 
stress in shear. 
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Fig. 3.16. A crack of length a in a semi-infinite solid subjected to a pair of shear forces S. 

Fig. 3.17. A stepwise stress distribution inside the plastic zone for a crack in an infinite plate for the 
determination of fracture quantities according to the Dugdale model. 

3.19. The Dugdale model was modified by taking a variable stress distribution inside 
the plastic zone to take into account the strain-hardening of the material. Consider a 
stepwise stress distribution inside the plastic zone (Figure 3.17) for a crack of length 
2a in an infinite plate loaded by uniform stress a at infinity perpendicular to the crack 
plane. Determine: 
1. The Westergaard function. 
2. The length of the plastic zone. 
3. The crack shape. 
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Chapter 4 

Crack Growth Based on Energy Balance 

4.1. Introduction 

When a solid is fractured new surfaces are created in the medium in a thermodynam- 
ically irreversible manner. Material separation is caused by the rupture of atomic 
bonds due to high local stresses. The phenomenon of fracture may be approached 
from different points of view, depending on the scale of observation. At one extreme 
is the atomic approach where the phenomena of interest take place in the material 
within distances of the order of cm. At the other extreme is the continuum 
approach, which considers material behavior at distances greater than cm. In 
the atomic approach, the problem is studied using the concepts of quantum mechan- 
ics; the continuum approach uses the theories of continuum mechanics and classical 
thermodynamics. The complex nature of fracture prohibits a unified treatment of the 
problem, and the existing theories deal with the subject either from the microscopic 
or from the macroscopic point of view. A major objective of fracture mechanics is 
to bridge the gap between these two approaches. 

The continuum mechanics approach to fracture assumes the existence of defects 
large compared to the characteristic dimensions of the microstructure and considers 
the material as a homogeneous continuum. To study the problem of growth of an 
existing crack, void or other defect we need stress analysis coupled with a postulate 
predicting when fracture will occur. A number of such failure criteria have been 
advanced over the years. Each criterion involves a quantity that has to be related to 
the loss of continuity, and has a critical value that serves as a measure of the resistance 
of the material to separation. 

In the present chapter we will develop the theory of crack growth based on the 
global energy balance of the entire system. This approach was proposed by Griffith 
[1.2, 1.31 more than six decades ago, and is the earliest attempt to formulate a 
linear elastic theory of crack propagation. The chapter starts with the global energy 
balance in a continuum during crack growth, from which the Griffith criterion is 
deduced. In an attempt to extend the principles of linear elastic analysis to situations 
of highly localized yielding at the crack front, the various irreversibilities associated 
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with fracture are lumped together to define the fracture toughness of the material. 
This approach allows Griffith's theory to be applied to metals and other engineering 
materials. We present a graphical representation of the various terms appearing in 
the energy balance equation, and establish the equivalence of the energy approach 
and that based on the intensity of the local stress field. The chapter concludes with a 
study of crack stability. 

4.2. Energy balance during crack growth 

Consider a crack with area A in a deformable continuum subjected to arbitrary 
loading. According to the law of conservation of energy we have 

where w is the work performed per unit time by the applied loads, E and I? are the 
rates of change of the internal energy and kinetic energy of the body, and I? is the 
energy per unit time spent in increasing the crack area. A dot over a letter denotes 
differentiation with respect to time. 

The internal energy E can be put in the form 

where U e  represents the elastic strain energy and U P  the plastic work. 
If the applied loads are time independent and the crack grows slowly the kinetic 

term K is negligible and can be omitted from the energy balance Equation (4.1). 
Since all changes with respect to time are caused by changes in crack size, we can 
state 

and Equation (4.1) becomes 

Equation (4.4) represents the energy balance during crack growth. It indicates that 
the work rate supplied to the continuum by the applied loads is equal to the rate of 
the elastic strain energy and plastic strain work plus the energy dissipated in crack 
propagation. Equation (4.4) may be put in the form 

where 
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is the potential energy of the system. Equation (4.5) shows that the rate of potential 
energy decrease during crack growth is equal to the rate of energy dissipated in plastic 
deformation and crack growth. Both energy balance Equations (4.4) and (4.5) will 
be used in the sequel. 

4.3. Griflith theory 

For an ideally brittle material, the energy dissipated in plastic deformation is negli- 
gible and can be omitted from Equation (4.4). If y represents the energy required to 
form a unit of new material surface, then Equation (4.4) takes the form 

where the factor 2 appearing on the right-hand side of the equation refers to the two 
new material surfaces formed during crack growth. 

The left hand side of the equation represents the energy available for crack growth, 
and is given the symbol G in honor of Griffith. Because G is derived from a potential 
function, just like a conservative force, it is often referred to as the crack driving 
force. The right-hand side of Equation (4.7) represents the resistance of the material 
that must be overcome for crack growth, and is a material constant. 

Equation (4.7) represents the fracture criterion for crack growth. TWO limiting 
cases, the "fixed-grips" and "dead-load loading, are usually encountered in practice. 
In the fixed-grips loading the surface of the continuum on which the loads are applied 
is assumed to remain stationary during crack growth. If the work of the body forces is 
ignored, the work performed by the applied loads vanishes and Equation (4.7) takes 
the form 

Equation (4.8) indicates that the energy rate for crack growth is supplied by the 
existing elastic strain energy of the solid. Because of this property, the symbol G is 
usually referred to as the "elastic strain energy release rate". 

In the dead-load situation the applied loads on the surface of the solid are kept 
constant during crack growth. Clapeyron's theorem of linear elastostatics states that 
the work performed by the constant applied loads is twice the increase of elastic 
strain energy (dW/dA = 2dUe/dA). Thus Equation (4.7) takes the form 

Contrary to the previous case of "fixed-grips" the energy required for crack growth 
is not supplied by the existing elastic strain energy of the solid, but by the work per- 
formed by the external loads; the elastic strain energy of the solid is increased. Thus, 
the term "strain energy release rate" for G in this case is physically inappropriate. 
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Equations (4.8) and (4.9) show that the magnitude of the elastic strain energy 
release rate necessary for crack growth is the same for either "fixed-grips" or "dead- 
load loading. However, the elastic strain energy of the system decreases for "fixed- 
grips" and increases for "dead-load conditions. Equations (4.8) and (4.9) can be put 
in the form 

where the potential energy II  is defined from Equation (4.6). Equation (4.10) may 
be written as 

which, in Griffith's terminology, states that the "total potential energy" of the system 
( I I  + I?) is stationary. 

Consider a line crack of length 2a in an infinite plate subjected to a uniform stress 
a perpendicular to the crack. The change in elastic strain energy due to the presence 
of a crack, is given by [1.2, 1.31 

xa2a2 #ye = - (ti + 1 )  . 
8~ 

where ti = 3 - 4 v  for plane strain and ti = (3 - v ) / ( l  + v )  for generalized plane 
stress. 

For A = 2a x 1 ,  Equation (4.9) gives the critical stress required for unstable crack 
growth as 

for plane strain, and 

for generalized plane stress. 
Observe that the stress a, is inversely proportional to the square root of the half 

crack length. This result was verified experimentally by Griffith on glass for a wide 
range of crack lengths. 

4.4. Graphical representation of the energy balance equation 

The graphical representation of the various terms appearing in the energy balance 
equation is useful as it provides a better insight into the variation of the relevant 
quantities during crack growth, and helps the interpretation of experimental results. 
The load-displacement response of the body during crack growth, as obtained from 
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Fig. 4.1. Load-displacement response of a cracked plate for propagation of a crack from length a) to a2 
under "fixed grips" conditions along AB. 

a testing machine, is examined separately for the cases of "fixed-grips", "dead- 
load" and the general case of changing both the load and displacement during crack 
propagation. Finally, the graphical representation in G - a coordinates is introduced. 
In the analysis it is assumed that the load-displacement response of the body is linear 
elastic. 

(a )  "Fixed-grips" loading 

The load-displacement response of a body of unit thickness with an initial crack of 
length a1 is represented in Figure 4.1 by the straight line OA. During loading up to 
the point A elastic strain energy represented by the area (OAC) is stored in the body. 
This energy is released when the body is unloaded. Let us assume that at point A the 
crack starts to propagate under constant displacement to a new length a2 = a1 + Aa. 
The straight line OB represents the load-displacement response of the body with a 
longer crack of length a2. During crack propagation the load drops from point A to 
point B. Line OB should lie below line OA since the stiffness of the body decreases 
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0 C 0 

U 
Fig. 4.2. Load-displacement response of a cracked plate for propagation of a crack from length a, to q 
under constant load along A B. 

with increase of the crack length. The elastic strain energy stored in the body at 
point B is represented by the area (OBC).  If the applied load is removed at point 
B the unloading path will follow the line BO. Since the point of application of the 
load remains fixed during crack growth, no extra work is supplied to the body. The 
reduction in strain energy during crack growth is represented by the area (OAB).  It 
is that obtained for the elastic energy release rate from Equation (4.8), and is balanced 
by the material resistance to crack growth 27 

(b) "Dead-load" loading 

The graphical representation of the load-displacement response of a cracked body 
during crack growth under constant loading is represented in Figure 4.2. The displace- 
ment increases from A to B as the crack length increases from a1 to a2 = a1 + Aa. 
The energy at the beginning of crack growth is represented by the area (OAC) and 
at the end by the area (OBD).  During crack growth the load P performs work 
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Fig. 4.3. Load-displacement response of a cracked plate for propagation of a crack from an initial length 
a, to a final length as under general load-displacement conditions along A1A2A3A4A5. 

represented by the area (ABDC). The energy supplied to the body for fracture is 
equal to (OAC) + (ABDC) - (OBD) = (OAB).  Equation (4.9) takes the form 

Note that the work supplied for crack growth under "dead-load" loading differs 
from that necessary for crack growth under "fixed-grips" loading by the amount 
( A B E )  which disappears as the crack growth increment Aa tends to zero. 

(c)  General load-displacement relation 

Usually, both load and displacement change during crack growth. The load-displace- 
ment response depends mainly on the form of the specimen and the type of testing 
machine. In this case there is no mathematical relation between the crack driving 
force and the change in elastic strain energy. The load-displacement response during 
quasi-static growth of acrack of initial length a1 to afinal length as is presented by the 
curve A1 A2A3A4A5 in Figure 4.3. The equation which expresses the crack driving 
force in terms of segmental areas of the load-displacement curve is Equation (4.15) or 
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(4.16). This still holds for the case of a general relation between load and displacement 
during crack growth. This equation can be used for the experimental determination of 
the resistance of the material to crack growth. During stable crack growth, the load, 
the displacement and the crack length are recorded simultaneously. This allows us to 
construct the P - u curve and draw the radial lines OAi which correspond to different 
crack lengths. A check of the overall elastic behavior of the specimen is made by 
removing the applied load and verifying that the displacement follows unloading lines 
AiO which should revert to the origin. When the specimen is reloaded the reloading 
lines should coincide with the unloading lines. G is determined as (Figure 4.3) 

withi, j = 1,2,3,4,5. 

( d )  G - a representation 

In the previous graphical interpretation, load-displacement coordinates were used, 
while the crack length and the material resistance to crack growth appeared as 
parameters. It is sometimes advantageous to use crack driving forcefcrack growth 
resistance-crack length coordinates, with the load appearing as a parameter. This is 
shown in Figure 4.4 for a crack of length 2a in an infinite plate subjected to a uniform 
stress u perpendicular to the crack axis. The crack driving force G obtained from 
Equation (4.12) is 

The G - a relation is represented in Figure 4.4 by straight lines for the three 
different values of the applied stress a. The intersection of these lines with the 
constant line G = 27 gives the critical crack length for crack growth. Or, inversely, 
for a given crack length a3 the applied stress should be increased to a3 for crack 
growth. For a larger crack length a2 a lower stress a2 is required for crack growth. 

4.5. Equivalence between strain energy release rate and stress intensity factor 

The connection between the strain energy release rate, which is a global quantity, 
and the stress intensity factor, which expresses the strength of the local elastic stress 
field in the neighborhood of the crack tip, is very important. Consider the case of 
an opening-mode where the crack extends along its own direction in a self-similar 
manner. Due to symmetry, only normal stresses will be present in elements along 
the crack direction (Figure 4.5). Assume the crack extends by a length 6; the energy 
released during crack extension is the work performed by the stresses u,(6 - P* , 0 )  
acting through the displacements u,(P, n). For 6 -, 0 the conditions u, + u; and 
,8 + P* are satisfied, and the work performed is 
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0 a3 a2 a1 

a 
Fig. 4.4. Crack driving force G versus crack length a curves for a crack of length 2a in an infinite plate 
subjected to a uniform stress a perpendicular to the crack axis. 

Fig. 4.5. Self-similar crack growth. 

where the subscript I was inserted to denote mode-I loading. 
Introducing the expressions of a, and u, from Equations (2.28) and (2.30), we 

obtain for GI 
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Equation (4.21) expresses the elastic strain energy release rate in terms of the 
stress intensity factor for opening-modeloading. Observe in Equation (4.19) that the 
nonsingular stress terms do not contribute to GI. From Equation (4.21) we get 

for generalized plane stress, and 

for plane strain. 
Equation (4.21) allows us to find GI when the stress intensity factor KI is known. 

Thus, for a crack in an infinite plate subjected to a uniform uniaxial stress a per- 
pendicular to the crack, KI = a d n a  (Equation (2.26)), and Equation (4.12) is 
recovered. 

The calculation of the strain energy release rate Gn for sliding-mode loading is not 
easy, since the crack does not propagate in its own plane, but follows a curved path 
which is not known in advance. This prohibits the analytical computation of Gn. 
Only for the special case when the crack is forced to propagate along its own plane 
can Gn be determined in terms of the stress intensity factor. For this hypothetical 
situation the shear stresses T,, have to be released along the segment 6 of crack 
growth, and Gn takes the form 

1 
Gn = 2  lim 1 - r X y ( 6  - P,O) ur(/3,n)d/3. 

6-0 6 2 
0 

Introducing Equations (2.43) and (2.44) into Equation (4.24) we find 

For out-of-plane shear the direction of crack growth is predetermined and Gm is 
computed as previously by 
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Fig. 4.6. Load-displacement response of a cracked plate. 

which, together with Equation (2.56), gives 

Equations (4.21), (4.25) and (4.27) establish the equivalence of the strain energy 
release rate and the stress intensity factor approach in fracture mechanics and form 
the basis for the critical stress intensity factor fracture criterion. 

4.6. Compliance 

Let us now consider the load-displacement response of a cracked plate of thickness 
B subjected to a concentrated force P (Figure 4.6 (a)). As long as there is no crack 
growth, and the elastic behavior is linear, the load-displacement relation is 

where C is the compliance (reciprocal of stiffness) of the plate. In Figure 4.6(b) the 
compliance is represented by the tangent of the angle between the load-displacement 
curve and the P-axis. We will seek analytical expressions for the strain energy 
release rate on the left-hand side of Equation (4.7) in terms of the compliance. The 
case of "fixed-grips" and "dead-load" conditions during crack growth are considered 
separately. 
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(a) "Fixed-grips" loading 

For a constant displacement u during crack growth the applied load does not perform 
work, and the elastic strain energy stored in the plate is 

Equation (4.7) takes the form 

where a is the crack length. 

(h)  "Dead-load" loading 

For a constant load P ,  the work performed by the load during an infinitesimal crack 
growth is 

dW = P d u  (4.3 1) 

while the change in elastic strain energy is 

P d u  + u d P  
d e = d ( )  = 

Equation (4.7) becomes 

Equations (4.30) and (4.33) express the strain energy release rate in terms of the 
derivative of the compliance of the cracked plate with respect to the crack length 
for "fixed-grips" or "dead-load" loading. By combining Equations (4.30) and (4.33) 
with Equations (4.22) and (4.23) we obtain an opening-mode stress intensity factor 

for generalized plane stress, and 

for plane strain. 
Equations (4.34) and (4.35) can be used for the analytical or experimental deter- 

mination of the I(I stress intensity factor. 
For the experimental determination of the stress intensity factor from Equa- 

tion (4.34) or (4.33, a series of specimens with different crack lengths are used 
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Fig. 4.7. (a) Load-displacement response for different crack lengths and @) compliance versus crack 
length. 

to calculate the derivative of the compliance with respect to the crack length. This is 
shown in Figure 4.7. 

The accuracy of the experimental determination of I 6  depends on the changes 
in the displacement between loading points remote from the crack as crack extends. 
This experimental technique provides a quick way of determining KI when the crack 
geometry is complicated and the mathematical solution is difficult. 

4.7. Crack stability 

In the Griffith energy balance approach to crack growth the critical load is deter- 
mined from Equation (4.7); this arose from the conservation of energy in the entire 
body. Crack growth is considered unstable when the system energy at equilibrium is 
maximum and stable when it is minimum. A sufficient condition for crack stability 
is 

< 0 : unstable fracture 
> 0 : stlbe fracture 

dA2 = 0 : neutral equilibrium 

where the potential energy II of the system is defined by Equation (4.6). 
Two example problems will now be considered with respect to crack stability. 

The lirst concerns a line crack in an infinite plate subjected to a uniform stress 
perpendicular to the crack axis. The potential energy of the system II = -Ue, where 
U e  is given by Equation (4.12) and I' = 4ya. The terms ll, I' and (II + I') are 
plotted in Figure 4.8 against half crack length a. Observe that the total potential 
energy of the system (II + I?) at the critical crack length presents a maximum, which 
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Fig. 4.8. Potential energy, Il, surface energy, l?, and the sum of potential and surface energy, (Il + r), 
versus crack length a for a line crack in an infinite medium subjected to a uniform stress perpendicular to 
the crack axis. 

A P 

Fig. 4.9. Wedge inserted to peel off mica, according to Obreimoff's experiment. 

corresponds to unstable equilibrium. This result is also verified by Equation (4.36). 
The second problem concerns the experiment carried out by Obreimoff [4.1] on 

the cleavage of mica (Figure 4.9). A wedge of thickness h is inserted underneath a 
flake of mica which is detached from a mica block along a length a. The energy of the 
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Fig. 4.10. Potential energy, Il (= U e ) ,  surface energy, r, and the sum of potential and surface energy, 
(We + r), versus crack length a for Obreimoff's experiment. 

system is calculated by considering the mica flake as a cantilever beam with height d 
built-in at distance a from the point of application of the wedge. During propagation 
of the crack the force P does not perform work. According to the elementary theory 
of beam bending, the elastic energy stored in the cantilever beam is 

The surface energy l? is given by 

and from Equation (4.7) the equilibrium crack length a, is obtained as 

The quantities II = U e ,  I' and (Ue + I') are plotted in Figure 4.10 versus the crack 
length a. The total potential energy of the system (Ue + I') at critical crack length a, 
is a minimum, which corresponds to stable equilibrium. This result is also verified 
by Equation (4.36). 

The stability condition (4.36) can be expressed in terms of the crack driving force 
G, given by Equation (4.10) 
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d(G - R) > 0 : unstable fracture 

d A 
< 0 : stable fracture 
= 0 : neutral equilibrium 

where R = dI'/dA. For an ideally brittle material R = 27 = const and the R-term 
disappears from Equation (4.40). Refemng to Equation (4.21), we may express the 
stability condition of crack growth in terms of the stress intensity factor as follows: 

> 0 : unstable fracture 

d A 
< 0 : stable fracture 
= 0 : neutral equilibrium. 

Examples 

Example 4.1. 

The following data were obtained from a series of tests conducted on precracked 
specimens of thickness 1 mm. 

Crack length Critical load Critical displacement 

where P and u are the critical load and displacement at crack growth. The load- 
displacement record for all crack lengths is linearly elastic up to the critical point. 

Determine the critical value of the strain energy release rate G, = R from: (a) the 
load-displacement records, and (b) the compliance-crack length curve. 

Solution: The load-displacement ( P  - u)  records up to the point of crack growth 
for the crack lengths of the problem are shown in Figure 4.1 1. Note that the P - u 
curves are linear and revert to the origin when the load is removed. The critical value 
of the strain energy release rate G, = R is calculated from Equation (4.17) for the 
various segmental areas. When the points (Pi, ui) and (Pj ,  u j )  are joined by straight 
lines we have (Figure 4.12) 

(0A;Aj)  = (OAi A:) + (AiA:Ai Aj ) - (OAj A; ) 

1 1 1 
(OAiAj) = - Piui + - (Pi + Pi) (uj  - ui) - - Pjuj 

2 2 2 
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u (m m) 
Fig. 4.11. Load-displacement (P - u) records up to the point of crack growth for different crack lengths. 

I ai 

U 
Fig. 4.12. Calculation of the critical strain energy release rate G, = Rfrom the segmental area OAiAj. 
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Equation (4.17) thus becomes 

By applying Equation (2) we obtain the following values of G, = R from the 
corresponding segmental areas of Figure 4.11 

Area OAiAz OAzA3 OA3A OAAs 0A5A6 

Observe that the values of G, = R obtained from the various segmental areas are 
close to each other. 

For the determination of G, = R from the compliance-crack length curve we first 
determine the following values of compliance C = u / P  for the various crack lengths 

The variation of C versus a is shown in Figure 4.13. G, = R is then determined 
by application of Equation 4.33. We have for the crack of length a1 = 30 mm 

and 

For the crack lengths a2, as, a4 and as, dC/da can be determined as the mean 
value of the left and right derivatives of C. For example, for the crack length 
a = 50.5 mm, we have 
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Fig. 4.13. Variation of the compliance C versus crack length a. 

and 

Using this procedure we obtain the following values of G, = R at various crack 
lengths 
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Fig. 4.14. A double cantilever beam subjected to a load P or displacement u at the end point. 

Example 4.2. 

For a double cantilever beam (DCB) (Figure 4.14) with a >> 2h and b >> 2h, 
determine the strain energy release rate G and the stress intensity factor KI using 
elementary beam theory for applied load P or applied displacement u. Determine 
the critical load or displacement for crack growth and the stability of cracking for 
both cases of loading. 

Solution: The two arms of the DCB may be considered to a first approximation as 
cantilevers with zero rotation at their ends. According to elementary beam theory 
the deflection of each cantilever at its end is 

where 7 = 1 or 7 = 1 - 9 for generalized plane stress or plane strain, respectively. 
The relative displacement u of the points of application of the loads P is 

The compliance of the DCB is 

For applied displacement u, G is determined from Equation (4.30) as 

and for applied load P, G is determined from Equation (4.33) as 
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KI is determined from Equation (4.22) or (4.23) for generalized plane stress or 
plane strain, respectively. For applied displacement u we obtain 

and for constant load P we obtain 

The critical displacement or load for crack growth is determined from Equa- 
tion (4.9). The critical applied displacement u, is determined as 

and the critical applied load PC as 

From Equations (4) and (5) or (6) and (7) we obtain that for applied displacement 
or applied load we have dG/dA < 0, dK11dA < 0 or dG/dA > 0, dK11dA > 0, 
respectively. According to Equation (4.40) and (4.41) this implies that crack growth 
is stable for controlled displacement and unstable for controlled load. 

Example 4.3. 

Design a contoured double cantilever beam (CDCB) so that KI is independent of 
crack length (the crack grows under neutral equilibrium). 

Solution: Putting 

where h is the height of the CDCB at position x = a (Figure 4.19, the compliance of 
the CDCB for conditions of generalized plane stress according to elementary beam 
theory is 

From Equation (4.34) it is deduced that KI is constant (independent of crack length) 
if dC/da is constant. We have 
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Fig. 4.15. A contoured double cantilever beam designed in such a way that Kr is independent of crack 
length. 

implying that dC/da is constant for n = 213. 
Thus, KI for a CDCB is independent of crack length when 

A CDCB designed according to Equation (5) is shown in Figure 4.15. 

Example 4.4. 

Consider a long strip of height 2h and thickness B with a crack of length 2a subjected 
to a uniform stress CT along its upper and lower faces (Figure 4.16a). For a >> h use 
elementary analysis to determine the stress intensity factor at the crack tip. 

Solution: Since a >> h, the parts of the strip above and below the crack may be 
considered as two beams A B  of length 2a built-in at their ends (Figure 4.16b). 
According to elementary beam theory the bending moment at the built-in end of the 
beam is 

qBa2 M A = - -  
3 (1) 

and the bending moment M for half length of the beam is 
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Fig. 4.16. (a) A long strip with a crack and (b) its idealization as two beams A B built-in at their ends. 

The elastic strain energy U contained in the two beams is 

with 

Substituting the value of M from Equation (2) into Equation (3) and performing 
the integration we obtain 

GI is computed from Equation (4.9) as 
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Fig. 4.17. A long block with a crack of length a split by a force P. 

For a thin plate (conditions of generalized plane stress) KI is computed from 
Equation 4.22 as 

Example 4.5. 

Determine the force P required for growth of the crack of Figure 4.17. 

Solution: Each part of the body to the left and to the right of the crack may be 
considered as a cantilever beam of length a and cross-sectional area Bd/2 built-in at 
its end. The bending moment M applied to each cantilever beam is 

In calculating the elastic strain energy contained in each beam we ignore the energy 
due to axial forces and take only the energy due to bending moments. For the total 
strain energy contained in both beams we have 
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+2W+ , 

Fig. 4.18. A double torsion specimen. 

The strain energy release rate G is computed from Equation (4.9) as 

Note that G is independent of crack length, that is, crack grows under neutral 
equilibrium. 

The crack growth condition is 

where R is a material parameter. 
From Equations (3) and (4) we obtain the critical load PC required for crack growth 

to be 

Example 4.6. 

Determine the stress intensity factor for the double torsion specimen shown in Fig- 
ure 4.18 using strength of materials analysis. 

Solution: Each arm of the specimen may be considered as a bar built-in at its end of 
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length a, and rectangular cross-section of dimensions W and B. It is subjected to a 
torsion moment Mi of magnitude 

The elastic strain energy U contained in both m s  of the specimen is 

where Ot is the angle of rotation of each arm due to the torsion moment. 
From strength of materials we have 

where k depends on the ratio W/B and p is the shear modulus. Values of k for 
different ratios W/B are given below. 

Introducing Equation (3) into Equation (2) we obtain 

It is evident that the crack is under tearing mode of deformation. Gm is computed 
from Equation (4.9) as 

Km is computed from Equation (4.27) as 

For W >> B k = 113 and Equation (6) becomes 

Note that Km is independent of crack length, indicating that crack grows under 
neutral equilibrium. 

Example 4.7 

For nonlinear elastic behavior the load-displacement response of a cracked plate 
subjected to a concentrated load P or to a load-point displacement u is 
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Determine the strain energy release rate GI for "fixed-grips" and "dead-load 
loadings. 

Solution: The strain energy release rate GI is equal to the work performed by the 
applied loads minus the elastic strain energy stored in the system during crack growth. 
It is computed as 

du dU G I = P - - -  
dA dA ' 

U is given by 

0 

From Equations (1) to (3) we obtain 

For "fixed-grips" loading (constant displacement) Equation (4) becomes 

while for "dead-load loading (constant load) Equation (4) becomes 

Equations (5) and (6) for linear behavior (n = 1) coincide with Equations (4.30) 
and (4.33). 

Example 4.8. 

Determine the compliance of a thin plate of thickness B, height 2h, width 2b with a 
center crack of length 2a subjected to uniform tension u normal to the crack (Case 1 
of Appendix 2.1). Take the approximate expression for the stress intensity factor KI 
as (Problem 2.21) 

KI = a ( ~ a ) l / ~  (z tan f 2  . 

Solution: For generalized plane stress (thin plate) we obtain from Equation (4.34) 
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(2) 

with 

Equation (2) becomes 

dC 2 - 
da EBb tan (g) 

and integrating with respect to a we have 

where CO is the compliance of the plate without a crack. Co is given by 

h 
Co = - 

EBb ' 

Equation (5) gives for the compliance of the plate 

4 c=-- log cos (z) + h - 
.rrEB 

Problems 

4.1. A plate of thickness 50 mm with a crack of length 100 mm is subjected to 
a progressively increasing load. The crack starts to grow at a load of 1 kN and 
continues to propagate under constant load, until the crack length becomes 150 mm, 
when it stops. At the beginning of crack growth the displacement of the load was 
measured to be 5 mm, and at crack arrest, 10 mm. Calculate the work done during 
crack growth, and find the critical value of the strain energy release rate for crack 
growth. 

4.2. A plate of thickness 20 mm with a crack of length 50 mm is subjected to 
displacement controlled loading. The crack starts to grow at a displacement u = 
10 mm and continues to propagate under constant displacement until the crack length 
is 100 mm, when it stops. At the beginning of crack growth the load was measured 
to be 2 kN and at crack arrest 1.5 kN. Calculate the elastic strain energy released 
during crack growth. 

4.3. A series of identical specimens of thickness 10 mm with different crack lengths 
were used to determine the compliance versus crack length curve. It was found that 
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the slope of this curve at a crack length of 5 mm was m ~ - ' .  The specimen 
with this crack length was then loaded up to crack growth. The critical load for crack 
growth was measured to be 2 kN. Determine the critical value of strain energy release 
rate for crack growth. 

4.4. The following data were obtained from a series of tests conducted on precracked 
specimens of thickness 10 mm. 

Crack length Compliance Critical load 

a(mm) C x 10-~(m/N) P(kN) 
50.0 1 .UO 10.00 
66.7 1.43 8.75 
84.2 2.02 7.80 
102.7 2.79 7.00 

where P is the critical load at crack growth. The load-displacement record for all 
crack lengths is linearly elastic up to the critical point. 

Determine the critical value of the strain energy release rate for crack growth. 

4.5. The following data were obtained from a series of tests conducted on precracked 
specimens of thickness 20 mm. 

Crack length Critical load Critical displacement 

a(mm> P ( W  u(mm) 
15 8.0 1 .OO 
20 7.0 1.25 
40 5 .O 6.28 

where P and u are the critical load and displacement at crack growth. The load- 
displacement record for all three cracks is linearly elastic up to the critical point. 

Determine the critical value of the strain energy release rate for crack growth. 

4.6. For the double cantilever beam (DCB) shown in Figure 4.19 with thickness 
B and a >> 2h and b >> 2h determine the strain energy release rate and the stress 
intensity factor at the crack tip using elementary beam theory; comment on the 
stability of cracking. Consider plane strain and generalized plane stress. 

4.7. As in Problem 4.6 for the DCB of Figure 4.20. 

4.8. As in Problem 4.6 for theDCB of Figure4.21 subjected to uniform displacement 
u along its upper side. 
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Fig. 4.19. A double cantilever beam subjected to a uniform stress distribution along its upper and lower 
faces. 

F - - - - - a - I - b - - - - - - - - - I  

Fig. 4.20. A double cantilever beam with arms of different heights subjected to end moments. 

4.9. As in Problem 4.6 for the DCB of Figure 4.22. 

4.10. As in Problem 4.6 for the strip of Figure 4.23. 

? a -I- b ----------I 
Fig. 4.21. A double cantilever beam subjected to uniform displacement u along its upper side. 
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Fig. 4.22. A double cantilever beam subjected to uniform splitting stresses a along its left side. 

Fig. 4.23. A long strip with a crack subjected to the forces P. 

4.11. As in Problem 4.6 for the DCB of Figure 4.24. 

4.12. As in Problem 4.6 for the configuration of Figure 4.25. 

4.13. Consider the double cantilever beam of Figure 4.14. Show that when the effect 
of shear force is taken into consideration the stress intensity factor is given by 

4.14. In an improved model for studying the double cantilever beam (DCB) (Fig- 
ure 4.26a) we suppose that the crack ligament is a beam on an elastic foundation 
(Figure 4.26b). Using such conditions, show that the compliance of the DCB is 

2 
2X3a3 + 6X2a2 ( sinh Xb cosh Xb + sinh Xc cosh Xc c=- [ 

EBX3h3 sinh2 Xc - sin2 Xc 
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Fig. 4.24. A long block with a crack of length a subjected to the forces P. 

Fig. 4.25. A half-plane with a crack of length a at a small distance h from its boundary subjected to the 
force P. 

+6Xa  ( sinh2 Xb + sin2 Xb sinh Xb cosh Xb - sin Xb cos Xb 

sinh2 Xb - sin2 Xb sinh2 Xb - sin2 Xb > 1 
where 
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(b) 
Fig. 4.26. (a) A double cantilever beam and (b) modelling the crack ligament as a beam on elastic 
foundation. 

k is the constant of the spring (a  = ky, a is the stress and y is the deflection). 

4.15. Consider a double cantilever beam (Figure 4.14) made of a nonlinear elastic 
material obeying the equation 

Show that the strain energy release rate GI for constant applied load P or constant 
applied displacement u is given by 

4.16. Consider a circle of radius r centered at the tip of a mode-I or mode-I1 crack 
and show that the strain energy release rate is given by 
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Based on this result derive Equation (4.21) for mode-I and Equation (4.25) for 
mode-11. 

4.17. For a mode-I11 crack derive Equation (4.27). Follow the procedure of Prob- 
lem 4.16. 

4.18. The change in elastic strain energy stored in a cracked plate may be obtained by 
considering an uncracked plate and relaxing the stresses on the crack plane to zero. 
Use this observation to derive Equation (4.12) for the change in elastic strain energy 
stored in an infinite plate due to the introduction of a crack of length 2a. 

4.19. Show that the strain energy release rate for the deformation modes I, I1 and I11 
is given by 

Here Wr, Wn, Wm are the strain energies contained in a small circle of radius TO 

surrounding the crack tip. 

4.20. For a certain experiment, Gurney and Ngan (Proc. Roy Soc. Lond., A325, 
207, 1971) expressed the load-displacement-crack area relation in the form 

where Cm (m = 1,2,3, . . .) are constants. 
Use this expression to calculate U and then G. Show that 

4.21. For a specific test the load-displacement-crack area relation of the previous 
problem takes the form 

where P is in Kgf (1 Kgf = 9.807 N), u is in cm and A in cm2. In the test a crack 
of area A = 50 cm2 starts to grow when u = 0.5 cm. Determine R = G, without 
resorting to the previous problem. Then compare the value of R with that obtained 
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by the previous problem. 

4.22. The stress intensity factor for a center cracked specimen of width 2b and crack 
length 2a is given by 

Determine the compliance of the specimen. Compare results with Example 4.8. 

4.23. According to the British Standard BS 5447:1977 the stress intensity factor of 
a compact tension specimen of width W ,  thickness B and crack length a is given by 

Determine the compliance of the specimen. 

4.24. According to the British Standard BS 5447:1977 the stress intensity factor 
for a single-edge-cracked three-point bend specimen of width W ,  span L = 2W,  
thickness B and crack length a is given by 

Determine the compliance of the specimen. 

4.25. The stress intensity factor for the tapered semi-infinite double cantilever beam 
of Figure 4.27 is given by 

where B is the thickness of the beam and ,6 is a parameter depending on the angle a. 

Determine the compliance of the beam. 

4.26. An elastic rod of diameter d and large length is embedded in a semi-infinite 
elastic medium (Figure 4.28). The rod separates from the medium over a length L. 
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Fig. 4.27. A tapered semi-infinite double cantilever beam. 

Fig. 4.28. A long rod anbedded in a semi-infunits elaatic medium except from the length L. 
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Fig. 4.29. A crack parallel to the edge of a semi-infinite plate subjected to a concentrated load P. 

Fig. 4.30. Configuration of the "blister test" specimen. 

Show that the load P required for increasing the length L of separation between the 
rod and the medium is 

4.27. A crack of length 2a is parallel to the edge of a thin semi-infinite plate subjected 
to a concentrated load P (Figure 4.29). Use elementary beam theory to determine the 
stress intensity factor at the crack tip and comment on the stability of crack growth. 

4.28. The configuration of the so-called "blister test" used in adhesion testing is 
shown in Figure 4.30. The adhered layer of thickness h may be considered as a 
circular plate of radius a built-in at its periphery. Use elementary plate theory to 
show that the strain energy release rate G for a constant pressure p or a central load 
P is given by 
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Fig. 4.3 1. Configuration of the "short rod" specimen. 

4.29. The configuration of the "short r o d  specimen for determining fracture tough- 
ness is shown in Figure 4.3 1. Use elementary beam theory to determine the strain 
energy release rate G .  

Reference 

1.1. Obreimoff, J.W. (1930) 'The splitting strength of mica', Proceedings of the Royal Society of London 
A127,290-297. 
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Critical Stress Intensity Factor Fracture Criterion 

5.1. Introduction 

When a solid is fractured, work is performed to create new material surfaces in a 
thermodynamically irreversible manner. In Griffith's theory of ideally brittle mate- 
rials, the work of fracture is spent in the rupture of cohesive bonds. The fracture 
surface energy y, which represents the energy required to form a unit of new material 
surface, corresponds to a normal separation of atomic planes. For the fracture of 
polycrystals, however, the work required for the creation of new surfaces should 
also include: dissipation associated with nonhomogeneous slip within and between 
the grains; plastic and viscous deformation; and possible phase changes at the crack 
surfaces. The energy required for the rupture of atomic bonds is only a small portion 
of the dissipated energy in the fracture process. There are situations where the irre- 
versible work associated with fracture is confined to a small process zone adjacent 
to the crack surfaces, while the remaining material is deformed elastically. In such 
a case the various work terms associated with fracture may be lumped together in a 
macroscopic term R (resistance to fracture) which represents the work required for 
the creation of a unit of new material surface. R may be considered as a material 
parameter. The plastic zone accompanying the crack tip is very small and the state 
of affairs around the crack tip can be described by the stress intensity factor. 

The present chapter presents a fracture criterion based on the critical value of 
the strain energy release rate. Due to the equivalence between the strain energy 
release rate and the stress intensity factor, this criterion is referred to as the critical 
stress intensity factor fracture criterion. We discuss the variation of the critical stress 
intensity factor with the specimen thickness for unstable crack growth and present 
the experimental procedure for determining the plane strain critical stress intensity 
factor. The chapter concludes with a description of the crack growth resistance curve 
method for the study of fracture in situations where small, slow, stable crack growth, 
usually accompanied by inelastic deformation, is observed before global instability. 
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5.2. Fracture criterion 

When the zones of plastic deformation around the crack tip are very small, the 
plastic strain term appearing in the energy balance equation (Equation (4.4)) can 
be omitted, and the work rate supplied to the body for crack growth is represented 
by Equation (4.7). In such circumstances, fracture is assumed to occur when the 
strain energy release rate G, which represents the energy pumped into the fracture 
zone from the elastic bulk of the solid, becomes equal to the energy required for the 
creation of a unit area of new material R. The fracture condition is 

Equation (5.1) is usually expressed in terms of the opening-mode stress intensity 
factor KI. By introducing a new material parameter Kc from the equation 

where /? = 1 for plane stress and /? = 1 - v2 for plane strain, and by substituting GI 
in terms of KI from Equation (4.22) or (4.23), we can write Equation (5.2) as 

Equation (5.3) expresses the critical stress intensity factor fracture criterion. The 
left-hand side of the equation depends on the applied load, the crack length and the 
geometrical configuration of the cracked plate. The right-hand side is a material 
parameter and can be determined experimentally. Note that Equation (5.3) was 
derived from the global energy balance of the continuum; it expresses the law of 
conservation of energy. 

5.3. Variation of Kc with thickness 

Laboratory experiments indicate that Kc varies with the thickness B of the specimen 
tested. The form of variation of Kc with B is shown in Figure 5.1. Three distinct re- 
gions, corresponding to "very thin", "very thick and "intermediate range thickness" 
specimens can be distinguished. Study of the load-displacement response and the 
appearance of the fracture surfaces of the specimen are helpful in understanding the 
mechanisms of fracture in each of these three regions. The fractures are classified as 
square or slant according to whether the fracture surface is normal to, or forms a 45" 
inclination angle with, the direction of the applied tensile load. We now analyze the 
state of affairs in the three regions of Figure 5.1. 

In region I, corresponding to thin specimens, the critical fracture toughness G, 
(which is proportional to K:) increases almost linearly with B up to a maximum 
value at a critical thickness B,. The load-displacement response is linear and the 
fracture surface is completely slant (Figure 5.2(a)). In this case, as explained in 
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I- plane stress -+- transitional behavior plane strain - 

Bn Bc 

B 
Fig. 5.1. Critical fracture toughness G, (or K:) versus plate thickness B. 

Section 3.2, plane stress predominates in the specimen and yielding occurs on planes 
through thickness at 45' to the specimen flat surfaces. In such circumstances the 
crack extends in an antiplane shear mode. 

For very thick specimens (region 111) the load-displacementresponse is linear, and 
the state of stress is predominantly plane strain, except for a thin layer at the free 
surfaces where plane stress dominates (see Figure 5.2(c)). The fracture surface is 
almost completely square with very small slant parts at the free surfaces. A triaxial 
state of stress is produced in most parts of the specimen, which reduces the ductility 
of the material, and fracture takes place at the lowest value of the critical strain 
energy release rate G,. For increasing thickness beyond a critical minimum value, 
B,, plane strain conditions dominate and the fracture toughness remains the same. 
The critical value of stress intensity factor in region I11 for plane strain conditions is 
denoted by KIc in Figure 5.1 and is independent of the specimen thickness. KIc is , 
the so-called fracture toughness and represents an important material property. The 
larger the value of KI,, the larger the resistance of the material to crack propagation./ 
Experimental determination of KI, takes place according to the ASTM specification6 
described in the next section. 

For intermediate values of specimen thickness (region 11) the fracture behavior is 
neither predominantly plane stress nor predominantly plane s t r k .  The thickness is 
such that the central and edge region, under plane strain and plane stress conditions 
respectively, are of comparable size. The fracture toughness in this region changes 
between the minimum plane strain toughness and the maximum plane stress tough- 
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U 
( a )  I : Plane stress 

( b )  11 : Transitional behavior 

t 

U 
( C  1 IJI : Plane strain 

Fig. 5.2. Load-displacement response for (a) plane stress, (b) transitional behavior and (c) plane strain. 

ness. In the load-displacement curve (Figure 5.2(b)) at some value of the applied 
load the crack extends mainly from the center of the thickness of the specimen, 
while the edge regions are plastically deformed. The crack grows in a "thumbnail" 
shape (Figure 5.3) under constant or decreasing load while the overall displacement 
is increased. This behavior is known as "pop-in" (Figure 5.2). After crack growth at 
pop-in, the stiffness of the load-displacement curve decreases, since it corresponds 
to a longer crack. 

A simplified model was proposed by Krafft et al. [5.1] to explain the decrease of 
fracture toughness with increase of depth of square fracture. Figure 5.4 shows that 
the square fracture occupies the part (1 - S) B of the specimen thickness and that 
the slant fracture surface is at 45". The work for plastic deformation (dW,/dV) is 
assumed constant. If dWf/dA is the work consumed to produce a unit area of flat 
fracture, the work done for an advance of crack length by da is 
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Fig. 5.3. Thumbnail crack growth with square and slant fracture. 

r 

- ~ 

Fig. 5.4. Calculation of crack growth resistance according to the model of Krafft et al. [5.1]. 

From this equation the strain energy release rate is 

By fitting the experimental data to this equation and assuming that the slant fracture 
has a thickness of 2 mm, Krafft et al. obtained the expression 

G, = 20(1- S)  + 20052 . (5.6) 
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, x experiments 

B (mm) 
Fig. 5.5. Crack growth resistance G, and percentage square fracture 100(1 - S) versus plate thickness 
B according to experiments by Krafft et al. [5.1]. 

Equation (5.6) establishes the dependence of Gc on S. The variation of G, and 
100(1 - S) versus the thickness B for the experiments of Krafft et al. is shown in 
Figure 5.5. 

Irwin suggested the following semi-empirical equation which relates Kc with the 
plane strain fracture toughness KI,: 

where a, is the yield stress. 

5.4. Experimental determination of KIc 

For the experimental determination of the plane strain fracture toughness special 
requirements must be fulfilled to obtain reproducible values of KI, under conditions 
of maximum constraint around the crack tip. Furthermore, the size of the plastic zone 
accompanying the crack tip must be very small relative to the specimen thickness and 
the KI-dominant region. The procedure for measuring KI, has been standardized 
by the American Society for Testing and Materials (ASTM) [3.1] to meet these 
requirements in small specimens that can easily be tested in the laboratory. In this 
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Fig. 5.6. Three-point bend specimen according to ASTM standards. 

section we present the salient points of the ASTM standard test method so that the 
reader may understand the meaning of KI, and become familiar with the experimental 
procedure. 

(a) Test specimens 

The specimens used to measure KI, must be designed to ensure that the size of 
the plastic zone accompanying the crack tip be very small relative to the specimen 
thickness, and plane strain conditions dominate around the crack tip. According to 
the ASTM standard, the minimum characteristic specimen dimensions, including the 
specimen thickness B, the crack length a and the specimen width W, must be fifty 
times greater than the radius of the plane strain plastic zone at fracture. When the 
plastic zone size is determined according to the Irwin model this condition implies 
(see Equation (3.8)) that 

Many precracked test specimens are described in the ASTM Specification E399- 
81. These include the three-point bend specimen; the compact tension specimen; 
the arc-shaped specimen; and the disk-shaped compact specimen. The geometrical 
configurations of the most widely used three-point bend specimen and compact 
tension specimen are shown in Figures 5.6 and 5.7. Several formulas have been 
proposed for the calculation of stress intensity factor for the standard specimens. 
According to ASTM standards the following expressions for the computation of KI 
are used: 
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Fig. 5.7. Compact tension specimen according to ASTM standards. 

for the bend specimen, and 

for the compact tension specimen. The quantities a, W and B are shown in Fig- 
ures 5.6 and 5.7, and S is the distance between the points of support of the beam in 
Figure 5.6. 

Equation (5.9) is accurate to within 0.5 per cent, over the entire range of 
a/W (a/W < I), while Equation (5.10) is accurate to within 0.5 per cent for 
0.2 < a/W < 1. 
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Fig. 5.8. Effect of notch radius p on the critical stress intensity factor IC, [1.23]. 

(b)  Precrack 

The precrack introduced in the specimen must simulate the ideal plane crack with 
zero root radius, as was assumed in the stress intensity factor analysis. The effect 
of the notch radius p on the critical value of the stress intensity factor Kc is shown 
in Figure 5.8. Kc decreases with decreasing p until a limiting radius pc is obtained. 
Below pc, Kc is approximatelyconstant, which shows that a notch with radius smaller 
than pc can simulate the theoretical crack. The crack front must be normal to the 
specimen free surfaces, and the material around the crack should experience little 
damage. To meet these requirements, a special technique is used for the construction 
of the precrack in the specimen. 

A chevron starter notch (Figure 5.9) of length 0.45W is first machined in the 
specimen. The notch is then extended by fatigue at a length 0.05 W beyond the notch 
root. The advantage of the chevron notch is that it forces crack initiation in the center, 
so that a straight machined crack front is obtained. If the initial machined notch front 
were straight, it would be difficult to produce a final straight crack front. The crack 
length a used in the calculations is the average of the crack lengths measured at the 
center of the crack front, and midway between the center and the end of the crack 
front, on each surface (a  = (al + a2 + a3) /3 ) .  The surface crack length should not 
differ from the average length by more than 10 per cent. 

In order to ensure that the material around the crack front does not experience 
large plastic deformation or damage, and that the fatigue crack is sharp, the fatigue 
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Fig. 5.9. Chevron notch. 

loading should satisfy some requirements. The maximum stress intensity factor to 
which the specimen is subjected during fatigue must not exceed 60 per cent of KI, 
and the last 2.5 per cent of the crack length should be loaded at a maximum KI such 
that KI /E  < 0.002.$1n(0.32 x 1od3,/m). 

(c)  Experimental procedure 

The precracked standard specimen is loaded by special fixtures recommended by 
ASTM. The load, and the relative displacement of two points located symmetrically 
on opposite sides of the crack plane, are recorded simultaneously during the ex- 
periment. The specimen is loaded at a rate such that the rate of increase of stress 
intensity, KI, is within the range 0.55 - 2.75 MPa m1I2/s. A test record consisting 
of an autographic plot of the output of the load-sensing transducers versus the output 
of the displacement gage is obtained. A combination of load-sensing transducer and 
autographic recorder is selected so that the maximum load can be determined from 
the test record with an accuracy of 1 per cent. The specimen is tested until it can 
sustain no further increase of load. 

(d) Interpretation of rest record and calculation of KI, 

For perfectly elastic behavior until fracture, the load-displacement curve should be 
a straight line. Most structural materials, however, present elastoplastic behavior 
which, combined with some stable crack growth before catastrophic fracture, leads 
to nonlinear load-displacement diagrams. The principal types of load-displacement 
curve observed in experiments are shown in Figure 5.10. Type I corresponds to 
nonlinear behavior, type I11 to purely linear response and type I1 reflects the phe- 
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I 

Fig. 5.10. Determination of PQ for three types of load-displacement response according to ASTM 
standards. 

nomenon of pop-in. For the determination of a valid KIc, a conditional value KQ is 
obtained kst. This involves a geometrical construction on the test record, consisting 
of drawing a secant line OP through the origin with slope equal to 0.95 of the slope 
of the tangent to the initial linear part of the record. The load Ps corresponds to the 
intersection of the secant with the test record. The load PQ is then determined as 
follows: if the load at every point on the record which precedes Ps is lower than PQ 
then PQ = Ps (type I); if, however, there is a maximum load preceding Ps which is 
larger than Ps then PQ is equal to this load (types I1 and 111). The test is not valid 
if Pmax/PQ is greater than 1.10, where P,, is the maximum load the specimen was 
able to sustain. In the geometrical construction, the 5 per cent secant offset line 
represents the change in compliance due to crack growth equal to 2 per cent of the 
initial length (Problems 5.7 and 5.8). 

After determining PQ, we calculate KQ using Equation (5.9) or (5.10) for the 
bend specimen or the compact tension specimen. When KQ satisfies the inequalities 
(5.8), then KQ is equal to KIc and the test is a valid Ifi,  test. When these inequalities 
are not satisfied, it is necessary to use a larger specimen to determine KI,. The 
dimensions of the larger specimen can be estimated on the basis of KQ. 

Values of the critical stress intensity factor KIc together with the ultimate stress 
a, for some common metals and alloys are given in Appendix 5.1. 
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Fig. 5.1 1. Typical load-crack size curves for (a) plane strain and (b) plane stress. 

5.5. Crack growth resistance curve (R-curve) method 

The crack growth resistance curve, or R-curve, method is a one-parameter method 
for the study of fracture in situations where small, slow, stable crack growth - 
usually accompanied by inelastic deformation -is observed before global instability. 
Under such circumstances, fracture resistance of thin specimens is represented by a 
resistance curve, rather than a single resistance parameter. A brief description of the 
method follows. 

(a )  General remarks 

As noted in Section 5.3, the fracture resistance of a material under plane strain 
conditions with small-scale crack-tip plasticity is described by the critical stress 
intensity factor KI,. Under such conditions, fracture of the material is sudden, and 
there is either no, or very little, crack growth before final instability. On the other 
hand, in thin specimens, insufficient material exists to support a triaxial constraint 
near the crack tip, and plane stress dominates. The crack tip plastic enclaves are 
no longer negligible, and final instability is preceded by some slow stable crack 
growth. As shown in Section 5.3, the fracture resistance depends upon thickness. In 
such circumstances, it has been observed experimentally that the fracture resistance 
increases with increasing crack growth. Typical curves representing the variation 
of crack size with load, under plane strain and plane stress conditions, are shown in 
Figure 5.11. 
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(b) R-curve 

The theoretical basis for the R-curve can be provided by the energy balance equation 
(Equation (4.4)) which applies during stable crack growth. For situations in which 
the energy dissipated to plastic deformation UP is not negligible, Equation (4.4) takes 
the form 

G = R  (5.1 la) 

with 

and 

R represents the rate of energy dissipation during stable crack growth. It is com- 
posed of two parts: the lirst corresponds to the energy consumed in the creation of 
new material surfaces; the second refers to the energy dissipated in plastic deforma- 
tion. In situations where the crack-tip zones of plastic irreversibility are relatively 
small, the two dissipation terms in Equation (5.1 1c) may be lumped together to form 
a new material parameter associated with the resistance of the material to fracture. 
Following crack initiation, the plastic zone around the crack tip increases nonlin- 
early with crack sue. Thus, the rate of the energy dissipated to plastic deformation, 
which constitutes the major part of the dissipation term in Equation (5.1 lc), increases 
nonlinearly with crack size. The graphical representation of the variation of R, or 
the critical stress intensity factor KR plotted against crack extension, is called the 
crack growth resistance curve (R-curve). A typical form of the R-curve is shown in 
Figure 5.12. The R-curve is considered to be a characteristic of the material for a 
given thickness, temperature and strain rate, independent of the initial crack sue and 
the geometry of the specimen. 

(c) Determination of the critical load 

During stable crack growth,Equation (5.1 la) and inequality (4.40) should be satisfied. 
The strain energy release rate G, according to the R-curve method, is calculated from 
Equation (4.21) for "fixed-grips" or "dead-load" loading conditions. For example, G 
is given by Equation (4.18) for alinecrack of length 2a in an infinite plate subjected to 
a stress cr perpendicular to the crack. For a crack of length 2a in a finite plate of width 
W, G is calculated from Equation (4.22) under plane stress as (see Problem (2.21)) 

a2w 
G(a, a )  = - 

E 
tan (F) . 

In graphical form both parts of Equation (5.11a) are represented in Figure 5.13 
in G - a coordinates. The R-curve is displayed at the initial crack length a0 while 
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Fig. 5.12. R-curve. 
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Fig. 5.13. R-curve and a family of rising G-curves. 

the G(a, ui)-curves correspond to different values of the applied stress u. The 
points of intersection of the G- and R-curves refer to stable crack growth, since 
Equation (5.1 la) and inequality (4.40) are satisfied. Stable crack growth continues 
up to the point P at which the G(a, a,)-curve, that corresponds to the value a, of 
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Fig. 5.14. R-curve and a family of decreasing G-curves. 

the applied stress, is tangent to the R-curve. Beyond point P, crack propagation is 
unstable, according to inequality (4.40). Point P defines the critical stress a,, and the 
critical crack length a, at instability. a, and a, are determined from Equation (5.1 la) 
and the third Equation (4.40). 

For specimen configurations for which K, and therefore G, decrease with increas- 
ing crack length, the graphical representation of the quantities G(a, u), where u is 
the applied displacement, and R is shown in Figure 5.14. Observe that if R increases 
monotonically, then crack growth is stable for all crack lengths up to a plateau level. 

(d) Experimental determination of the R-curve 

ASTM [5.2] issued a standard for the experimental determination of the R-curve of 
a material for given thickness, temperature and strain rate. The R-curve is assumed 
to be independent of the starting crack length and the specimen configuration. It 
is a function of crack extension only. Three types of fatigue precracked standard 
specimens are recommended by ASTM: the center cracked tension specimen, the 
compact specimen; the crack line wedge-loadedspecimen. The specimen dimensions 
are chosen so that the ligament in the plane of the crack is predominantly elastic at 
all values of the applied load. The first two types of specimen are tested under 
load control, while the third is displacement controlled. The specimens are loaded 
incrementally to specially designed fixtures, which are described in detail in [5.21. 
During the test, the load and the crack length are recorded simultaneously. The 
physical crack length is measured using optical microscopy or the electrical potential 
method. The effective crack length is obtained by adding the physical crack length 
and the Irwin plastic zone radius r, (= 4 2 )  given by Equation (3.6). Calibration 



132 Chapter 5 

formulas are used to obtain the stress intensity factor during stable crack growth. The 
K-Aa or G-Aa relationship thus obtained constitutes the R-curve. 

( e )  Irwin-Orowan theory 

In an effort to extend the Griffith theory to situations of semi-brittle fracture, Ir- 
win [5.3] and Orowan [5.4] introduced independently a modification to the Griffith 
formula (4.13) or (4.14). The Irwin-Orowan theory can easily be described by the 
energy balance analysis of the R-curve method. 

For a crack of length 2a in an infinite plate subjected to a stress u perpendicular 
to the crack axis, G in Equation (5.1 la) is given by Equation (4.18). Putting 

we find the crack growth resistance R as 

Equation (5.1 la) gives the critical stress 

for plane stress, and 

for plane strain. 
In Equations (5.15) and (5.16) y is much smaller (usually three orders of magni- 

tude) than yp and can be omitted. 

If) Crack stability 

Study of crack stability usually takes place when the specimen is loaded in hard 
(displacement-controlled) or soft (load-controlled) testing machines. From Equa- 
tions (4.30) or (4.33) and (5.1) we derive 

p2 = 2R 
(5.17) 

For stability in soft testing machines (dP/P > 0) Equation (5.17) gives, 
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while for stability in hard testing machines (dulu > 0) Equation (5.17) gives 

Equations (5.18) and (5.19) define the stability conditions in soft and hard test- 
ing machines. The right-hand side of Equations (5.18) and (5.19) depends on the 
geometry of the specimen and is called the geometry stability factor of the specimen. 

5.6. Fracture mechanics design methodology 

The objective of engineering design is the determination of the geometry and di- 
mensions of the machine or structural elements, and the selection of the material, in 
such a way that the elements perform their operating function in an efficient, safe 
and economic manner. To achieve these objectives, we use an appropriate failure 
criterion which consists of comparing a critical quantity, depending on the geometry 
of the element, the loading and environmental conditions, with a material character- 
istic parameter. To select the appropriate failure criterion the designer should know 
the most probable mode of failure. Possible failure modes consist of (i) yielding or 
excessive plastic deformations; (ii) general instability (e.g. buckling); and (iii) frac- 
ture. In engineering design, however, all possible failure modes should be taken into 
consideration. For example, it was found that structures designed according to the 
first two failure modes failed in a sudden catastrophic manner, due to unstable crack 
propagation. This, as was explained in Chapter 1, gave impetus to the development 
of fracture mechanics. 

Conventional design analysis of engineering components assumes a defect-free 
structural geometry and determines a relationship between the applied loading and 
the maximum stress that is developed in the component. For this reason a stress 
analysis is performed, based on the theory of elasticity and strength of materials. 
Safe design is achieved by making sure that the maximum stress is less than the 
ultimate stress of the material (divided by a factor of safety). 

Fracture mechanics design methodology is based on the realistic assumption that 
all materials contain initial defects that can affect the load-carrying capacity of engi- 
neering structures. Defects are initiated in the material by manufacturing procedures 
or can be created during the service life, by fatigue, environment effects or creep. We 
analyze the component with a crack placed in the most probable, or dangerous, site 
and determine a characteristic quantity defining the propensity of the crack to extend. 
Usually we assume there is one dominant crack. The characteristic quantity depends 
on the particular failure criterion used, and in our case, it is the stress intensity factor, 
I f i .  The failure criterion is expressed by Equation (5.3). Methods for determining 
KI, the left-hand part of Equation (5.3), were developed in Chapter 2. The right-hand 
part of Equations (5.3), Kc,  is a material parameter and is determined experimentally. 
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By this procedure we determine the maximum allowable applied loads for a specified 
crack size, or the maximum permissible crack size for specified applied loads. 

Other fracture criteria based on quantities as, the J-integral, the crack opening 
displacement or the strain energy density factor will be developed in Chapters 6 and 
7 of the book. 

Examples 

Example 5.1. 

A three-point bend specimen was tested according to the ASTM E399 procedure. The 
0.2 per cent offset yield stress of the material is a, = 1200 MPa and the modulus of 
elasticity is E = 210 GPa. The specimen was tested at a loading rate of 100 kN/min 
and a type-I load-displacement record was obtained. A chevron starter notch was 
machined and the specimen was subjected to 30,000 cycles at Pmx = 45 kN and 
Ph,, = 0. The final stage of fatigue crack growth was conducted for 50,000 cycles 
at Pmx = 30 kN and Pmi, = 0. The specimen dimensions were measured as 

S = 3 0 c m , W  = 8 c m , B = 4 c m  
a1 = 3.996 cm 
a2 = 4.007 cm 
a3 = 3.997 cm 
a (surface) = 3.9 15 cm 
a (surface) = 3.952 cm. 

The maximum load and the secant load of the test record were measured as 
P,, = 86 kN and PQ = 80 kN. 

Determine IG,. 

Solution: We first determine a conditional K1,(KQ). We have: 

a - a (surface) - 4.0 - 3.952 
- = 0.012 < 0.1 

a 4 .O 

KQ is determined from Equation (5.9). This equation can be put in the form 
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To facilitate calculation of KQ, values of f (a/ W )  are tabulated for specilk values 
of a/W, according to ASTM 

For our case (a/ W )  = 0.5. Thus, f ( a /  W )  = 2.66. The specimen is loaded at a 
KI rate, A K I / A ~ , ' ~ ~  

We have 

KQ is determined as 

We have 
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The maximum stress intensity factor during the first stage of fatigue growth of 
precrack is 

so that 

Kf(max) < 0.6 KQ . 

During the final stage of fatigue growth of precrack KI is 

KI = 
(30 kN) x (0.3 m) 

(0.04 m) x (0.08 m)3/2 
x 2.66 = 26.4 MPa fi 

'and 

KI - 26.4 MPa ,/iii - - - = 0.13 x fi < 0.32 x lov3 fi. 
E 210 GPa 

The above results indicate that all requirements of a valid KI, test according to 
ASTM E399 standard are satisfied and the conditional value KQ is equal to KI,, that 
is 

Example 5.2.  

Figures 5.15 shows the load-displacement record of a compact tension specimen 
tested according to ASTM E399 procedure to determine KIc. The 0.2 per cent offset 
yield stress of the material is 800 MPa. The specimen dimensions were measured as: 
W = 12 cm, B = 5 cm, a = 6 cm. Determine KI,. 

Solution: A conditional K1,(KQ) is first determined from Equation (5.10). This 
equation can be put in the form 

To facilitate calculation of KQ, values of f (a /  W) are tabulated for specific values 
of a/W,  according to ASTM 
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Fig. 5.15. Determination of PQ on the load-displacement record of the compact tension specimen of 
Example 5.2. 
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We have a / W  = 0.5. Thus, f ( a / W )  = 9.66. Todetermine PQ inEquation (1) we 
draw a secant line through the origin of the load-displacement record of Figure 5.15 
with slope equal to 0.95 of the initial slope of the record. We obtain 

and 

KQ is determined as 

We have 

2 

B,  a,  W  > 2.5 (:) = 2.1 (87 fi) = 2.96 x lo-' m 
800 MPa 

and therefore 

Example 5.3. 

The stress intensity factor of a crack of length 2a in a plate subjected to a tension 
field is given by 

The crack growth resistance curve of the plate is expressed by 

where a0 is the initial crack length and m is a constant. 
Determine the critical stress o, and the critical length 2a, at the point of instability. 

Solution: At the point of unstable crack growth we have from Equation (5.1 la) and 
the third Equation (4.40) 

We have from Equations (1) and (2) 
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Equation (4) renders 

Equation (3) becomes 

Equations (7) and (8) give the critical stress uc and the critical crack length 2ac at 
instability. 

Example 5.4. 

Determine the stability condition for a double cantilever beam (DCB) (Figure 4.14) 
subjected to an end load in a soft (load-controlled) or a hard (displacement-controlled) 
testing machine. 

Solution: The compliance of the DCB is (Example 4.2) 

2qa3 c = - = -  ~h~ I = - - .  
P 3EI  ' 12 

From Equation (1) we obtain 

For stability in a soft (load-controlled) testing machine Equation (5.18) becomes 

From Equation (1) we obtain 

For stability in a hard (displacement-controlled) testing machine Equation (5.19) 
becomes 
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Equations (3) and (5) express the stability conditions in a soft or a hard testing 
machine. Note that Equation (5) is always satisfied for constant R. Equations (3) 
and (5) show that stability is achieved more easily with a hard than with a soft testing 
machine. 

Exumple 5.5. 

A cylindrical pressure vessel with closed ends has a radius R = 1 m and thickness 
t = 40 mm and is subjected to internal pressurep. The vessel must be designed safely 
against failure by yielding (according to the von Mises yield criterion) and fracture. 
Three steels with the following values of yield stress a, and fracture toughness KI, 
are available for constructing the vessel. 

steel a,(MPa) KI,(MP~ fi) 
A: 4340 860 100 
B: 4335 1300 70 

C: 350 Maraging 1550 55 

Fracture of the vessel is caused by a long axial surface crack of depth a. The 
vessel should be designed with a factor of safety S = 2 against yielding and fracture. 
For each steel: 

(a) Plot the maximum permissible pressure p, versus crack depth a,; 

(b) Calculate the maximum permissible crack depth a, for an operating pressure 
p = 12 MPa; 

(c) Calculate the failure pressure p, for a minimum detectable crack depth a = 
1 mm. 

Solution: Just as in Example 2.5, a material element of the vessel is subjected to a 
hoop u,g and a longitudinal u, stress given by 

The von Mises yield criterion expressed by Equation (1.3) takes the form 

From Equations (1) and (2) we obtain 
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Fig. 5.16. A material element for the determination of stress intensity factor for a long axial surface crack 
of depth a. 

Equation (3) gives the maximum pressure the vessel can withstand without failure 
by yielding. For the three steels available we obtain 

For a long axial surface crack of depth a the stress intensity factor is (Figure 5.16, 
Case 2 of Appendix 2.1). 

The fracture condition is expressed by 

From Equations (1) to (3) we obtain 



a (m m> 
Fig. 5.17. Maximum pressure versus crack depth a for the three steels of Example 5.5. 

(a) Based on the results of the previous table and Equation (8) the maximum 
pressure versus crack depth curves for the three steels are shown in Figure 5.17. 

(b) For p = 12 MPa the maximum permisible crack depths are calculated by 
Equation (8) for the three steels as 

A B C  

7.04 3.64 2.12 

Note that at p = 12 MPa material A failed by yielding. 
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(c) The failure pressure for a minimum detectable crack depth of a = 1 mm is 
calculated from Equation (8) for the three steels as 

Note that material A although withstands a pressure p,, = 3 1.90 MPa for a = 
1 mm, it fails at p, = 19.90 MPa by yielding. 

Example 5.6. 

A cylindrical pipe with inner radius b = 10 cm and outer radius c = 20 cm is 
thermally stressed due to a temperature difference AT across the wall. Positive AT 
indicates that theoutside wall temperature is higher than the inside. The pipe contains 
an initial crack of length a = 1 mm emanating from its inner radius. The material 
of the pipe has yield stress ay = 1000 MPa, Poisson's ratio u = 0.3, modulus 
of elasticity E = 210 GPa, coefficient of thermal expansion a = 6.6 x O F  

and fracture toughness KI, = 100 MPa fi. Determine the maximum temperature 
difference (AT). the pipe can withstand without failure, with a factor of safety S = 2 
against yielding and S = 3 against fracture. 

Solution: The maximum stress at the rim of the inner radius of the pipe is given by 
(Theory and Elasticity, by S.P. Timoshenko and J.N. Goodier, Third Edition, p. 449) 

The condition of failure by yielding is expressed by 

From Equations (1) and (2) we obtain 

Thus, 

(AT) ,  = 413 OF . (4)  

Equation (4) gives the maximum temperature the pipe can withstand without 
failure by yielding. 

The stress intensity factor 16 at the crack tip is (Case 2 of Appendix 2.1) 
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The condition of failure by fracture is expressed by 

From Equations (6) and (7) we obtain 

(AT), = 438 OF . (8) 

Equation (8) gives the maximum temperature the pipe can withstand without 
failure by fracture. 

Comparing the values of (AT), from Equations (4) and (8) we see that there is 
little difference between the prediction based on the maximum stress criterion and 
that obtained by fracture mechanics. 

Example 5.7 

A center cracked large plate of steel with thickness 10 mm is subjected to a uniform 
tension a = 300 MPa perpendicular to the crack plane. Calculate the maximum crack 
length the plate can withstand without failure. ay = 860 MPa, KIC = 100 MPa fi. 

Solution: The applied stress a = 300 MPa is smaller than the yield stress a, = 
860 MPa of the material. Thus, the plate does not fail by yielding. 

The plate thickness B = 10 mm is smaller than the minimum thickness required 
for plane strain B, = 2.5 ( ~ < ~ , / a ~ ) ~  = 34 mm. Thus, the critical stress intensity 
factor Kc of the plate is not the plane strain stress intensity factor KIc. It is calculated 
from Equation (5.7) as 

The stress intensity factor of a crack of length 2a in the plate is calculated as 

The fracture condition is expressed by 

Equations (1) to (3) show that the maximum crack length the plate can withstand 
is 
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2a = 25.2 cm . 

Problems 

5.1. A three-point bend specimen was tested according to the ASTM E399 procedure. 
The 0.2 percent offset yield stress of the material is a ,  = 1 GPa and the modulus of 
elasticity is E = 210 GPa. The specimen was tested at a loading rate of 60 kN1min. 
A chevron starter notch was machined and the specimen was subjected to 20,000 
cycles at P-, = 20 kN and P- = 0. The final stage of fatigue crack growth 
was conducted for 40,000 cycles at P,,, = 15 kN and P- = 0. The specimen 
dimensions were measured as 

S = 4 0 c m , W = 1 0 c m , B = 5 c m  
a1 = 4.993 cm 
a2 = 5.008 cm 
a3 = 5.999 cm 
 surface) = 4.925 cm 
 surface) = 4.916 cm. 

The maximum load and the secant load of the test record were measured as 
Pm, = 108 kN, PQ = 100 kN. Calculate KQ and comment on the validity of the 
test. 

5.2. A compact tension specimen was tested according to the ASTM E399 proce- 
dure. The 0.2 per cent offset yield stress of the material is uY = 900 MPa and the 
modulus of elasticity is E = 210 GPa. The specimen dimensions were measured as 
W = 10 cm, B = 5 cm, while the crack lengths at equal locations across the crack 
front were measured as 4.90,4.93,5.05,4.95,4.85 cm. The maximum load and the 
secant load of the test record were measured as P,,, = 70 kN and PQ = 65 kN. 
Calculate KQ and comment on the validity of the test. 

5.3. The load-displacement test record of the compact tension specimen of Prob- 
lem 5.2 is shown in Figure 5.18. Calculate KQ and comment on the validity of the 
test. 

5.4. A three-point bend specimen with S = 40 cm, W = 10 cm, a = 5 cm and 
B = 5 cm was tested according to the ASTM E399 procedure. The 0.2 offset yield 
stress of the material is 400 MPa. The secant load is PQ = 60 kN and the maximum 
load is Pmx = 65 kN. Calculate KI, and comment on its validity. 

5.5. A compact tension specimen of a steel with W = 20 cm, a = 9 cm and 
B = 8 cm was tested according to the ASTM E399 procedure. The 0.2 offset yield 
stress of the material is uy = 900 MPa and the secant load PQ was measured to be 
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u(mxl0-') 
Fig. 5.18. Load-displacement (P - u) record of the compact tension specimen of Problem 5.3. 

300 kN. Calculate KI, and comment on its validity. 

5.6. Determine the maximum KI, value that may be determined according to ASTM 
standards on a 30 mm thick plate with 0.2 offset yield stress (a) 400 MPa, (b) 
2000 MPa. 

5.7. Assume that the extension Aa of a crack of initial length ao is equal to the plane 
strain plastic zone radius calculated according to the Irwin model. For plane strain 
show that 

5.8. Use the result of the previous problem to justify the determination of PQ using a 
5 percent secant offset line on the load-displacement record according to ASTM E399 
procedure. For this reason use the result that when the load-displacement (P - u) 
record takes the form 

where Band W are the specimen thickness and width, and E the modulus of elasticity, 
the quantity 
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takes an average value of 2.5 for the recommended range of values ao/W lying 
between 0.45 and 0.55. 

5.9. The crack growth resistance curve of a certain material at a thickness 2 mm is 
expressed by 

KI2, 1 R = - + - ( ~ a ) ' . ~  W/m2 , KI, = 95 MPa fi , E = 210 x lo3 MPa . 
E 2  

Consider a center cracked plate of width 10 cm and thickness 2 mm with a crack 
of length 1 cm. Calculate the length of stable crack growth, the critical crack length, 
and the critical stress at instability. 

5.10. As in Problem 5.9 for a center cracked plate of width 5 cm. 

5.11. Consider a double cantilever beam (DCB, Figure 4.14) with dimensions: 
B = 2 cm, a = 50 mm, h = 10 mm. For the material of Problem 5.9 calculate the 
length of stable crack growth, the critical length, and the critical load at instability. 

5.12. Determine the stability condition for the double cantilever beam (DCB) of 
Problem 4.7 tested in a soft (load-controlled) or a hard (displacement-controlled) 
testing machine. 

5.13. As in Problem 5.12 for the strip of Problem 4.10. 

5.14. As in Problem 5.12 for the DCB of Problem 4.24. 

5.15. As in Problem 5.12 for a center cracked plate. 

5.16. Calculate the load required for crack growth of a double cantilever beam (Fig- 
ure4.14) with a = 20cm, h = 4 cm, B = 1 cm, E = 210GPaand G, = 200kJ/m2. 

5.17. Calculate the critical stress for growth of a crack of length 2 mm in a large 
thin plate of steel, loaded by a uniform stress perpendicular to the crack plane. Take 
E = 210 GPa, y = 2 ~m-', y, = 2 x lo4 ~m-'. 

5.18. A sheet of glass with width 50 cm and thickness 1 mm is subjected to a tensile 
stress of 10 MPa. Determine the minimum crack length that would lead to fracture. 
Take the following properties of glass: E = 60 GPa, v = 0.25, y = 0.5 ~/m', 
af = 150 MPa. 

5.19. A center cracked plate of steel with width 10 cm is subjected to a uniform 
tension 200 MPa perpendicular to the crack plane. Calculate the maximum crack 
length the plate can withstand without failure. IG, = 55 MPa fi. 
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5.20. Consider an edge cracked plate of steel with width 5 cm subjected to a uniform 
tension 200 MPa perpendicular to the crack plane. Calculate the maximum crack 
length the plate can withstand without failure. KI, = 55 MPa fi. 

5.21. A crack of length 2 mm emanates from a circular hole of radius 50 mm in a 
large plate of steel subjected to a uniform stress perpendicular to the crack plane. Cal- 
culate the maximum stress the plate can withstand without failure. a, = 860 MPa, 
KIc = 100 MPa fi. 

5.22. A spherical vessel of steel with radius 1 m and thickness 40 mm contains a 
through crack of length 1 mm. Calculate the maximum internal pressure the vessel 
can withstand without failure. a, = 860 MPa, KIc = 100 MPa fi. 

5.23. A crack of length 2 mm emanates from an elliptical hole with axes 100 mm 
and 50 mm in a large plate of steel subjected to a uniform stress perpendicular to the 
crack plane. Calculate the maximum stress the plate can withstand without failure. 
o, = 860 MPa, KI, = 100 MPa 6. 

5.24. A center cracked plate of width 10 cm contains a crack of length 4 cm. The 
plate is subjected to a uniform stress perpendicular to the crack plane. Calculate 
the maximum stress the plate can withstand without failure. a ,  = 450 MPa and 
KI, = 25 MPa fi. 

5.25. Calculate the maximum load the three-point bend specimen of Problem 2.32 
(Figure 2.30) can withstand. a,  = 1500 MPa, KI, = 60 MPa fi. The factor of 
safety for failure by yielding is 3 and by fracture is 2. 

5.26. Calculate the maximum radial interference the shaft of Problem 2.36 (Fig- 
ure 2.33) can withstand. c = 5 cm, b = 2 cm, a = 1 mm; E = 210 GPa, v = 0.3, 
a ,  = 900 MPa, KI, = 100 MPa fi. The factor of safety for failure by yielding 
and fracture is 2. 

5.27. Calculate the maximum crack length the cylindrical pipe of Problem 2.37 can 
withstand when it is subjected to a temperature difference AT = 200 O F ,  across 
the wall. c = 15 cm, b = 10cm; E = 210GPa, v = 0.3, a = 6.6 x O F ,  

a ,  = 900 MPa, KIc = 100 MPa 6. The factor of safety for failure by yielding 
and fracture is 2. 

5.28. Plot the allowable stress versus crack length curves for a large plate with a 
through crack subjected to a uniform stress perpendicular to the crack plane for the 
three steels of Example 5.5. 

5.29. Consider a circular disk of radius c = 20 cm with a hole of radius b = 10 cm 
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rotating at an angular velocity w = 2 ~ N / 6 0 ,  where N is the number of revolu- 
tions per minute. The disk contains an initial crack of length a = 1 cm emanat- 
ing from its hole. The material of the disk has mass density p = 7800 kg/m3, 
yield stress ay = 1000 MPa, Poisson's ratio v = 0.3, and fracture toughness 
KIC = 100 MPa ,h. Determine the maximum number of revolutions per minute 
Nmx that the disk can rotate without failure, when the factor of safety is S = 2 and 
S = 3 against failure by yielding and fracture, respectively. 

5.30. The circular disk of Problem 5.29 may be constructed from the three steels of 
Example 5.5. For each steel: 

(a) Plot the maximum permissible number of revolutions per minute Nmx versus 
crack length; 

(b) Calculate the maximum permissible crack length for N = 5,000 rpm; 

(c) Calculate Nma, for a minimum detectable crack a = 0.05 mm. 

5.3 1 .  The spherical vessel of Problem 5.22 may be constructed from the three steels 
of Example 5.5. The factor of safety against failure by yielding is 3 and by fracture 
is 2. For each steel: 

(a) Plot the maximum permissible pressure ha, versus crack length a; 

(b) Calculate the maximum permissible crack length a,, for an operating pressure 
pc = 10 MPa; 

(c) Calculate hax for a minimum detectable crack a = 0.05 mm. 

5.32. The cylindrical pipe of Example 5.6 may be constructed from the three steels 
of Example 5 .5 .  For each steel: 

(a) Plot the maximum permissible temperature Tc, versus crack length; 

(b) Calculate the maximum permissible crack length a,, for an operating temper- 
ature difference AT = 200 OF; 

(c) Calculate the critical temperature difference (AT), ,  for a minimum detectable 
crack length a = 0.05 mm. 

5.33. A rectangular panel of width 1 m is subjected to a tensile load of 100 MN 
perpendicular to the width. The smallest crack size that can be detected is 1 mm. 
Two steels with the following values of yield stress and fracture toughness are 
available for constructing the panel: A. a ,  = 860 MPa, KI, = 100 MPa fi and 



150 Chapter 5 

B. a,  = 1550 MPa, KIc = 55 MPa 6. Find which material gives the smallest 
thickness of the panel. 

5.34. Calculate the maximum stress the plate of Problem 5.19 can withstand without 
failure when it has a thickness of 5 mm. 

5.35. Calculate the maximum stress the plate of Problem 5.24 can withstand without 
failure when it has a thickness of 20 mm. 

5.36. A long steel plate of width 20 cm and thickness 2 cm is subjected to a load 
1.2 MN. Calculate the maximum crack length of a central or edge crack the plate can 
withstand without failure. a ,  = 860 MPa, KI, = 100 MPa 6. 

Appendix 5.1 

Values of critical stress intensity factor KIc and 0.2 per cent offset yield stress a,, at 
room temperature for various alloys. 

Material u KI, 
MPa ksi MPa fi ksi f i  

300 Maraging Steel 1669 242 93.4 85 
350 Maraging Steel 2241 325 38.5 35 
D6AC Steel 1496 217 66.0 60 
AISI 4340 Steel 1827 265 47.3 43 
A533B Reactor Steel 345 50 197.8 180 
Carbon Steel 241 35 219.8 200 
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J-Integral and Crack Opening Displacement 
Fracture Criteria 

6.1. Introduction 

A number of investigators have proposed the mathematical formulation of elastostatic 
conservation laws as path independent integrals of some functionals of the elastic 
field over the bounding surface of a closed region. For notch problems, Rice [6.1] 
introduced the two-dimensional version of the conservation law, a path independent 
line integral, known as the J-integral. The present chapter is devoted to the theoretical 
foundation of the path independent J-integral and its use as a fracture criterion. The 
critical value of the opening of the crack faces near the crack tip is also introduced 
as a fracture criterion. 

First we present the definition of the J-integral in two-dimensional crack problems, 
and its physical interpretation in terms of the rate of change of potential energy with 
respect to an incremental extension of the crack. The path independent nature of the 
integral allows the integration path to be taken close or far away from the crack tip. 
Although the J-integral is based on purely elastic (linear or nonlinear) analysis, its 
use for plasticity-type materials has been supported by experimentation or numerical 
analysis. We present experimental methods for the evaluation of the integral. We 
introduce a failure criterion based on the J-integral and describe the standard ASTM 
method for the experimental determination of the critical value 4, of the J-integral. 
The chapter concludes with a brief presentation of the crack opening displacement 
fracture criterion. 

6.2. Path-independent integrals 

First we introduce some path-independent surface integrals in three-dimensional 
space. We assume that the solid body is linearly or nonlinearly elastic, homogeneous, 
ranisotropic and in a state of static equilibrium under the action of a system of traction 
Tk. Denote by C the bounding surface of the region R occupied by the body and 
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refer all quantities to a fixed Cartesian coordinate system 0 x 1 ~ 2 ~ 3 .  TO simplify the 
analysis we assume that the deformation is small. The stress tensor uij is obtained 
from the elastic strain energy w by 

where ~ i j  denotes the strain tensor. The strain energy density w is considered to be 
continuously differentiable with respect to strain. For elastic behavior Equation (6.1) 

where the integral is path independent in the strain space. 
In the absence of body forces the equations of equilibrium take the form 

and the traction vector Tj on surface S is given by 

where ni denotes the normal vector. 
For small deformation the strain tensor is derived from the displacement field by 

1 
E . .  - & . .  - - v - ,z - (."j + Uj,i) . 

Consider the integrals 

where C is a closed surface bounding a region R which is assumed to be free of 
singularities. 

Equation (6.6) can be put in the form 

and Gauss's divergence theorem gives 

The integrand takes the form 
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= - u k l T k l , j  = 0 .  

In these derivations we used Equations (6.1) to (6.2). T ~ L  denotes the nonsymmet- 
rical rotation tensor for small deformation given by 

Thus, we have 

We can prove in a similar manner that Equation (6.10) holds when the elastic 
strain energy density w in Equation (6.6) is replaced by the complementary elastic 
strain energy density R given by 

The integral in Equation (6.1 1) is path independent in the stress space. The strain 
is obtained from R by 

in the same way that the stress is obtained from R by Equation (6.1). 

(a)  Dejinition 

For the particular case of the two-dimensional plane elastic problem, consider the 
integral 
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Fig. 6.1. A closed contour r and paths rl and r2 between two points 0, and O2 in a continuum. 

where r is a closed contour bounding a region R (Figure 6.1). With 

Equation (6.14) becomes 

and defines the J-integral along a closed contour in the two-dimensional space. From 
Equation (6.10) it follows that J = 0. Since J is zero for any closed paths, the J-  
integrals along any two paths I'l, F2 connecting any two points 0 1  and 02, are equal 
(Figure 6.1). We have 

(b) Application to notches and cracks 

Consider a notch or a crack, with flat surfaces parallel to the x-axis, which may have 
an arbitrary root radius (Figure 6.2). The J-integral defined from Equation (6.16) 
is calculated along a path I' in a counterclockwise sense starting from an arbitrary 
point on the flat part of the lower notch surface and ending at an arbitrary point on 
the flat part of the upper surface of the notch. The region R bounded by the closed 
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Fig. 6.2. (a) Path r starting from the lower and ending up to the upper face of anotch in a two-dimensional 
body. The flat notch surfaces are parallel to the x-axis. (b) Paths r1 and r2 around a notch tip. 

contour A B r l C D r 2 A  is free of singularities and the J-integral calculated along 
ABrl CDr2A is zero. We have 

When parts AB and C D  of the notch surfaces that are parallel to the x-axis are 
traction free, dy = 0 and Tk = 0, and Equation (6.16) implies that 

Equation (6.18) takes the form 
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when the contour Ar2D is described in a counterclockwise sense. Equation (6.19) 
establishes the path independence of the J-integral defined by Equation (6.16) for 
notch problems. 

Note that path independence of the J-integral defined by Equation (6.16) for an 
arbitrary path I? (Figure 6.2a) is based on the assumption that the notch surfaces are 
traction free and parallel to the x-axis. The integration path may be taken close or far 
away from the crack tip, and can be selected to make the calculation of the J-integral 
easy. 

As an example problem, let us study the case of a crack in a mixed-mode stress 
field governed by the values of the three stress intensity factors KI,  Kn, I(m. For a 
circular path of radius r encompassing the crack tip, J from Equation (6.16) becomes 

J = r / [w(r,B) cos B - Tx(r,B) 
dx 

-7r 

Letting r -+ 0 we see from Equation (6.20) that only the singular terms of the 
stress field around the crack tip contribute to J. Using the equations of the singular 
stresses and displacement for the three modes of deformation given in Section 2.4, 
we obtain the following equation for the J-integral after lengthy algebra. 

where 77 = 1 for plane stress and 77 = 1 - u2 for plane strain. 

6.4. Relationship between the J-integral and potential energy 

We look for a physical interpretation of the J-integral in terms of the rate of change 
of potential energy with respect to incremental change of crack size. The derivation 
concerns a linear or nonlinear elastic plane body, with a crack of length a subjected 
to prescribed tractions and displacements along parts of its boundary. Tractions and 
displacements are assumed to be independent of crack length. The body is referred 
to a fixed system of Cartesian coordinates XI xz with the XI -axis parallel to the crack 
faces (Figure 6.3). It is also assumed that the crack extends in a self-similar manner. 

The potential energy n ( a )  of the body is given by 

where A is the area of the body and r its boundary. 
Under the previous assumptions differentiation of Equation (6.22) with respect to 

crack length a yields 
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Fig. 6.3. A two-dimensional cracked body. 

A new coordinate system XlX2 attached to the crack tip is introduced: 

XI = XI - a ; X2 = 22 (6.24a) 

'and 

Thus, Equation (6.23) takes the form 

We have 

and by applying the principle of virtual work we obtain 

Furthermore, the divergence theorem yields 



Introducing Equations (6.26) and (6.27) into Equation (6.25) we get 
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(6.28) 

(6.29) 

for any path of integration surrounding the crack tip. 
Equation (6.29) expresses the J-integral as the rate of decrease of potential energy 

with respect to the crack length, and holds only for self-similar crack growth. From 
Equations (6.29) and (4.10) we obtain 

for "fixed-grips" or "dead-load loading during crack growth. 
For a crack in a mixed-mode stress field, the value of the J-integral given by 

Equation (6.30) represents the elastic strain energy release rate only for self-similar 
crack growth. However, a crack under mixed-mode loading does not extend along its 
own plane and therefore the value of energy releaserate G given from Equation (6.30) 
is physically unrealistic. 

6.5. J-integral fracture criterion 

The J-integral can be viewed as a parameter which characterizes the state of affairs 
in the region around the crack tip. This argument is supported by the following 
fundamental properties of J: 

(i) J is path independent for linear or nonlinear elastic material response; 

(ii) J is equal to -dH/da for linear or nonlinear elastic material response; 

(iii) J is equal to G; 

(iv) J can easily be determined experimentally; 

(v) J can be related to the crack-tip opening displacement 6 by a simple relation of 
the form J = MuyS (for the Dugdale model M = 1 (Example 6.2)). 

Because of these characteristic properties Jhas been proposed [6.2] as an attractive 
candidate for a fracture criterion. Under opening-mode loading, the criterion for crack 
initiation takes the form 
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where Jc is a material property for a given thickness under specified environmental 
conditions. Under plane strain conditions, the critical value of J ,  A,, is related to 
the plane strain fracture toughness 16, by (Equation (6.21)) 

The above properties of the J-integral, which support its use as a fracture criterion, 
were derived under elastic material response. Attempts have been made to extend 
the realm of applicability of the J-integral fracture criterion to ductile fracture where 
extensive plastic deformation and possibly stable crack growth precede fracture 
instability. 

Strictly speaking, the presence of plastic enclaves nullifies the path independence 
property of the J-integral. For any closed path surrounding the crack tip and taken 
entirely within the plastic zone or within the elastic zone, the necessary requirements 
for path independence (Equations (6.1) and (6.2)) are not satisfied. The stress is 
not uniquely determined by the strain, and the stress-strain constitutive equations 
relate strain increments to stresses and stress increments. In an effort to establish 
path independence for the J-integral the deformation theory of plasticity has been 
invoked. This theory is a nonlinear elasticity theory, and no unloading is permitted. 
Any solution based on the deformation theory of plasticity coincides exactly with 
a solution based on the flow (incremental) theory of plasticity under proportional 
loading (the stress components change in fixed proportion to one another). No 
unloading is permitted at any point of the plastic zone. Although, strictly speaking, 
the condition of proportional loading is not satisfied in practice it is argued that in 
a number of stationary problems, under a single monotonically applied load, the 
loading condition is close to proportionality. A number of finite element solutions 
have supported this proposition [6.3,6.4]. 

J is used today as a fracture criterion in situations of appreciable plastic defor- 
mation. J-dominance conditions were formulated for such circumstances. For the 
special cases of the bend and center cracked specimen they take the form [6.5-6.7] 

for the bend specimen, and 

for the center cracked specimen, where b is the uncracked ligament. 

6.6. Experimental determination of the J-integral 

This section deals with the experimental determination of the J-integral and its critical 
value 4,. We present the multiple-specimen method, the one-specimen method and 
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Fig. 6.4. Potential energy shown as shaded area for (a) "fixed-grips" and (b) "dead-load" conditions. 

the standard test method according to the ASTM specifications. Before proceeding 
to the details of these methods we derive some general equations inherent in the test 
methods. 

(a )  General equations 

The experimental determination of J follows from Equation (6.29). This states that 
J is equal to the rate of decrease of potential energy (defined from Equation (6.22)) 
with respect to the crack length. Experiments are usually performed under either 
"fixed-grips" (prescribed displacement) or "dead-load (prescribed load) conditions. 
In the load-displacement diagram the potential energy is equal to the area included 
between the load-displacement curve and the displacement axis or the load axis, for 
fixed-grips or dead-load conditions, respectively (shaded areas of Figure 6.4(a) and 
6.4(b)). Observe that the potential energy is positive for fixed-grips, and negative for 
dead-load conditions. 

Consider the load-displacement curves corresponding to the crack lengths a and 
a + Aa for "fixed-grips" or "dead-load conditions in Figures 6.5(a) and 6.5(b). The 
area included between the two curves represents the value of J Aa. Equation (6.29) 
and Figures 6.5(a) and 6.5(b) show that for crack growth under fixed grips 

and under dead-load 

p, 
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Fig. 6.5. Load-displacement curves for crack lengths a and a + Aa under (a) "fixed-grips" and @) 
"dead-load" conditions. 

Equations (6.29), (6.35) and (6.36) form the basis for the experimental determi- 
nation of J. 

(b)  Multiple-specimen method 

This method is based on Equation (6.29) and was first introduced by Begley and 
Landes [6.2]. A number of identically loaded specimens with neighboring crack 
lengths is used (Figure 6.6(a)). The procedure is as follows: 

(i) Load-displacement (P - u) records, under fixed-grips, are obtained for sev- 
eral precracked specimens, with different crack lengths (Figure 6.6(b)). For 
given values of displacement u, we calculate the area underneath the load- 
displacement record, which is equal to the potential energy Il of the body at 
that displacement. 

(ii) lI is plotted versus crack length for the previously selected displacements 
(Figure 6.6(c)). 

(iii) The negative slopes of the II - a curves are determined and plotted versus 
displacement for different crack lengths (Figure 6.6(d)). Thus the J - u curves 
are obtained for different crack lengths. 

The critical value 4, of J is determined from the displacement at the onset of 
crack extension. Since 4, is a material constant, the values of 4, obtained from 
different crack lengths should be the same. 

The multiple-specimen method presents the disadvantage that several specimens 
are required to obtain the J versus displacement relation. Furthermore, accuracy 
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Fig. 6.6. Multiple-specimen method for calculating the J-integral. 

problems enter in the numerical differentiation of the II - a curves. A technique for 
determining J from a single test becomes very attractive and is described next. 

(c) Single-specimen method 

This method was first proposed by Rice et al. [6.8] and is based on Equation (6.35) 
or (6.36). We consider a deeply cracked bend specimen, a compact specimen and a 
three-point bend specimen. 

For the cracked bend specimen shown in Figure 6.7(a), Equation (6.36) becomes 

Here M is the applied moment per unit thickness and 8 is the angle of relative rotation 
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( b )  
Fig. 6.7. (a) A deeply cracked bend specimen and (b) bending moment M versus angle 0 of relative 
rotation of the specimen end sections. 

of the end sections of the specimen. The angle 0 can be put in the form 

where On, represents the relative rotation of the uncracked specimen and 0, is the 
additional rotation caused by the presence of the crack. It is now assumed that 
the ligament b is small compared to W, so that the rotation 0, is mainly due to 
deformation of the ligament. Equation (6.37) takes the form 

since On, is independent of a. When L is large compared to W we can assume that 
0, depends only on M / M o ,  where Mo is the plastic limit moment. We have 

where 
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(6.41) 

Equation (6.40) gives 

From Equations (6.42) and (6.43) we obtain 

Substituting Equation (6.44) into Equation (6.39) we obtain 

Equation (6.41) becomes 

From Equations (6.45) and (6.46) we obtain 

where the integral in Equation (6.47) is the area underneath the M = M(4,) curve 
and the 4,-axis (Figure 6.7(b)). 

It is not possible to apply Equation (6.47) directly to determine the J-integral 
because that is the total angle 4 which is measured in an experiment. The critical 
value of J, .IIc, can be obtained by determining the area under the M versus angle 
4 curve up to the point of crack extension, and subtracting the area of a similar, but 
uncracked, specimen. The second area is usually very small compared to the first 
and Equation (6.47) can be approximated as 

Equation (6.48) allows J to be determined from a single experiment. 
For a compact specimen (Figure 6.8) we find [6.9] 
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Fig. 6.8. A deeply cracked compact specimen at plastic collapse. 

where 6, is the plastic contribution to the load-point displacement and P is given by 

For a/W > 0.5 it has been found that one can use the total displacement 6 instead 
of 6, in Equation (6.49). Furthermore, p = 0 for deeply cracked specimens and 
Equation (6.49) becomes 

which is similar to Equation (6.48). 
For the deeply cracked three-point bend specimen J is again given by Equa- 

tion (6.51). 

(d )  Standard test method 

ASTM [6.10] issued a standard test method for determining A,, the plane strain 
value of J at initiation of crack growth for metallic materials. The recommended 
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Fig. 6.9. Determination of Jr, according to ASTM standards (6.101. 

specimens are the three-point bend specimen and the compact specimen that contain 
deep initial cracks. The specimens are loaded to special fixtures, and applied loads 
and load-point displacements are simultaneously recorded during the test. For a valid 
JI, value, the crack ligament b and the specimen thickness B must be greater than 
25JIc/o,. The initial crack length for the three-point bend specimen must be at least 
0.5W, but not greater than 0.75W, where W is the specimen width. The overall 
specimen length is 4.5 W ,  and the specimen thickness is 0.5W. The geometry of the 
compact specimen is shown in Figure 6.8, where the initial crack length a is taken to 
satisfy 0.5 W < a < 0.75W, and the specimen thickness is 0.5W. 

To determine the value of JIc that corresponds to the onset of slow stable crack 
propagation we use the following procedure. We determine the J-integral for the bend 
specimen from Equation (6.48) and for the compact specimen from Equation (6.49). 
The latter can be approximated by 

where p is given from Equation (6.50). J is plotted against physical crack growth 
length, using at least four data points within specified limits of crack growth (Fig- 
ure 6.9). We fit a power law expression of the form 
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a 
Fig. 6.10. Stable crack growth by J-resistance curve analysis. 

to the experimental points and find the point at which it intersects the line originating 
at Aa = 0.2 mm with slope 2uy (parallel to the blunting line J = 2uyAa). The 
value of J which corresponds to the point of intersection is A,. 

The blunting line approximates the apparent crack advance due to crack tip blunting 
when there is no slow stable crack tearing. We choose this line because we assume 
that, before tearing, the crack advance is equal to one half of the crack-tip opening 
displacement (Aa  = 0.56). 

We draw two additional offset lines parallel to the blunting line and starting from 
the points Aa = 0.15 and 1.5 mm. For a valid test all data should be placed inside 
the area enclosed by the two parallel offset lines and the line J = Jm, = bouY/15. 
Data outside these limits are not valid. The valid data points are used to determine 
the final regression curve of Equation (6.53). 

The value of 4, can also be used to obtain an estimate of KI, from Equation (6.21) 
which, for opening-mode, takes the form 

Equation (6.54) is used in situations where large specimen dimensions are required 
for a valid KI, test according to the ASTM specifications (Section 5.4). 

6.7. Stable crack growth studied by the J-integral 

The crack growth resistance curve method for the study of crack growth under small- 
scale yielding developed in Section 5.5 has been extended to large-scale yielding, 
using J instead of G or K (Figure 6.10). The JR-resistance curve is assumed to 
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be a geometry-independent material property for given thickness and environmental 
conditions. During crack growth the J-integral, which is interpreted as the crack 
driving force, must be equal to the material resistance to crack growth. Stability of 
crack growth requires 

where P represents the applied loading. Crack growth becomes unstable when the 
inequality (6.55b) is reversed. The methodology developed in Section 5.5 for the 
study of slow crack propagation can equally be applied to the J-resistance curve 
method. 

Paris et ul. [6.11] introduced the nondimensional tearing moduli 

where a0 is an appropriate yield stress in tension when the material has strain hard- 
ening. ao is usually taken equal to (a, + 0,)/2, with a, being the ultimate stress 
of the material in tension. The tearing modulus TR is a material parameter that we 
can reasonably assume to be temperature independent. Using the tearing moduli we 
may write the stability condition as 

We can question the validity of this analysis which uses the J-integral for the 
study of slow stable crack growth. Crack growth involves some elastic unloading 
and, therefore, nonproportional plastic deformation near the crack tip. However, the 
J-integral is based on deformation plasticity theory which is incapable of adequately 
modeling both of these aspects of plastic crack propagation. The conditions for 
J-controlled crack growth were first studied by Hutchinson and Paris [6.121. 

The argument for J-controlled crack growth requires that the region of elas- 
tic unloading and nonproportional plastic loading be well contained within the J- 
dominance zone (Figure 6.1 1). The condition for J-controlled crack growth may be 
expressed as 

where according to [6.12], w should be of the order of 40. 

6.8. Crack opening displacement (COD) fracture criterion 

(u) Outline of the method 

Wells [6.13] and Cottrell [6.14] independently introduced the concept of a critical 
crack opening displacement as a fracture criterion for the study of crack initiation 
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Elastic 
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Fig. 6.11. Elastic unloading, nonproportional plastic loading and J-dominant region around the tip of a 
growing crack. 

in situations where significant plastic deformation precedes fracture. Under such 
conditions they argued that the stresses around the crack tip reach the critical value 
and therefore fracture is controlled by the amount of plastic strain. Crack extension 
takes place by void growth and coalescence with the original crack tip, a mechanism 
for which the crack-tip strain is responsible. A measure of the amount of crack- 
tip plastic strain is the separation of the crack faces or crack opening displacement 
(COD), especially very close to the crack tip. It is thus expected that crack extension 
will begin when the crack opening displacement reaches some critical value which is 
characteristic of the material at a given temperature, plate thickness, strain rate and 
environmental conditions. The criterion takes the form 

where 6 is the crack opening displacement and 6, is its critical value. It is assumed 
that 6, is a material constant independent of specimen configuration and crack length. 
This assumption has been confirmed by experiments which indicate that 6 has the 
same value at fracture. 

We use the Irwin or Dugdale models to obtain an analytical expression for Equa- 
tion (6.59) in terms of applied load, crack length, specimen geometry and other 
fracture parameters. In both models 6 is taken as the separation of the faces of the 
effective crack at the tip of the physical crack. According to the Irwin model, 6 is 
given by Equation (3.10) for plane stress. 6, is expressed by 
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For the Dugdale model 6 is given by Equation (3.19) which, for small values of 
c /oy,  reduces to Equation (3.20). Under such conditions 6, is given by 

Equations (3.10) and (3.19) combined with Equations (4.22) yield, respectively, 

Equations (6.62) express the strain energy release rate in terms of the crack opening 
displacement. Equations (6.60) to (6.62) show that under conditions of small-scale 
yielding, the fracture criteria based on the stress intensity factor, the strain energy 
release rate and the crack opening displacement are equivalent. 

(b) COD design curve 

The objective of the COD design curve is to establish arelationship between the crack 
opening displacement and the applied load and crack length. Knowing the critical 
crack opening displacement we can determine the maximum permissible stress, or the 
maximum allowable crack length, in a structure. For determining the COD design 
curve we should select an analytical model. Burdekin and Stone [6.15] used the 
Dugdale model (Section 3.4) to obtain the following equation which expresses the 
overall strain E(E = u/2y) of two equidistant points P from the crack (Figure 6.12) 

+(1 - u) cot-' / z + u  - cm-I q 
with 

In this equation a is half the crack length, y is the distance of point P from the 
crack, oy is the yield stress of the material in tension and o is the applied stress. 

Define the dimensionless crack opening displacement 4 by 
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Fig. 6.12. Points P a t  equal distances y from a crack of length 2a. 

~x~e\rirnental 
results ~ = 1 / 4 0 - l / i  

Fig. 6.13. Design curves according to crack opening displacement criterion [6.17]. 

where S is given by Equation (3.19) for the Dugdale model. Eliminating stress a from 
Equations (6.63) and (6.64), we obtain the design curves shown in Figure 6.13. This 
figure enables us to determine the maximum allowable overall strain in a cracked 
structure at position sly, when we know the critical crack opening displacement 5, 
and the crack length a. 

Experimental data relating 6, and the maximum strain at fracture, fall into a single 
scatter band of Figure 6.13 for a wide range of a / y  values. It is thus shown that the 



design curve based on the Dugdale model is far from reality. An empirical equation 
was obtained [6.16] to describe the experimental data of Figure 6.13. This equation 
has the form 

Dawes [6.17] argued that for small cracks ( a / W  < 0.1, W being the plate width) 
and applied stresses below the yield value, 

Equations (6.65) and (6.66) show that the maximum allowable crack length 
is 

(d)  Standard COD test 

Determination of the critical crack opening displacement is the subject of the British 
Standard BS 5762 [6.18]. We use the edge-notched three-point bend specimen which 
has been described in Section 5.4 to determine the fracture toughness KI,. The 
specimen thickness B is taken about equal to the application thickness, and the beam 
width W is twice the thickness ( W  = 2B). The specimen is fatigue precrackedas in 
the KIc standard test, with the exception that a straight starter notch is recommended 
rather than a chevron notch. 

The load versus crack mouth displacement is recorded from the experiment. Clip 
gages are usually installed at a distance z from the specimen surface. The load- 
displacement records fall into the five cases shown in Figure 6.14. Four categories of 
crack-tip opening displacement are defined in relation to Figure 6.14: 6, at the onset 
of unstable crack growth (case I) or pop-in (case 11), when no stable crack growth is 
observed; 6, at the onset of unstable crack growth (case 111) or pop-in (case IV) when 
stable crack growth takes place before instability; Si at the commencement of stable 
crack growth (cases 111, IV and V); 6, at the maximum load P, (case V) when it is 
preceded by stable crack growth. 

The critical crack-tip opening displacement 6(&, 6,, 6 ,  or 6,) is determined from 
the test record by 
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Fig. 6.15. Definition of 6t and its relation to V. 

v 
Fig. 6.14. Different types of load-clip gauge displacement records according to British standards [6.18]. 

I ------_ _ 6 t 
v _---- --- 
I + = = L b d  I 

where 

LZ-- 

Here Vp is the plastic component of the measured displacement V (Figure 6.14) and 
the quantities r,  b, a and z are shown in Figure 6.15. 

In Equation (6.68a) the crack opening displacement 6 is equal to elastic 6, plus 
the plastic 6, contribution. The elastic part 6, is calculated from Equation (3.20) 
of the Dugdale model which is modified for plane strain and by a plastic constraint 

a--I--b- 
.. w D 
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Fig. 6.16. An infinite strip with a semi-infinite crack clamped along its upper and lower faces. The 
J-integral is calculated along the dashed-line path shown. 

factor equal to 2. The plastic part 6, is obtained by assuming that the crack ligament 
b = W - a acts as a plastic hinge, with a rotation point at a distance r b  from the 
crack tip. Experiments show that the value of the rotation factor r lies between 
0.33 and 0.48. A nominal value of 0.4 is used for the standard test. Thus, 6, from 
Equation (6.78b) with z = 0 becomes 

Examples 

Example 6.1. 

An infinite strip of height 2h with a semi-infinite crack is rigidly clamped along its 
upper and lower faces at y = f h (Figure 6.16). The upper and lower faces are moved 
in the positive and negative y-direction over distances IQ, respectively. Determine 
the value of the J-integral and the stress intensity factor. 

Solution: To determine the value of the J-integral we consider the path A'ABCDD' 
extended along the upper and lower surfaces of the strip up to infinity and traversing 
the strip perpendicularly to the crack. J  is calculated from 

We have: for path A B ,  C D  : dy = 0, d ~ ~ , ~ / d x  = 0, implying that 

for path DD', A'A : the stresses vanish, d ~ ~ , ~ / d x  = 0, implying that 

. J D ~ l  = J A ~  A = 0 

and for path B C  : du~,~/dx = 0, implying that 
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For linear elastic material 

Putting 

where 

1 p=- 
1 - u2 

for plane stress, and 

for plane strain, we obtain 

PEui J = -  
h 

KI is computed from Equation (6.21) as 

where 7 = 1 for plane stress and 7 = 1 - v2 for plane strain. 

Example 6.2. 

Determine the value of J-integral for the Dugdale model. 

Solution: Referring to Figure 3.10 we take the integration path along the line ABC, 
around the yield strip boundary from the lower side at x = a, through the tip of the 
effective crack. Along ABC, dy = 0, and J  is computed as 
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Fig. 6.17. A narrow notch and coordinates used to describe its surface. 

where 6 is the opening of the effective crack at the tip of the physical crack. 
Substituting the value of 6 from Equation (3.19) into Equation (2) we obtain 

By expanding Equation (3) into a series and retaining the lint term for small values 
of a / u  , (small scale yielding) we obtain 

which is the value of J for plane stress (Equation (6.21)). 
From Equations (3) and (4) with K1 = we obtain 

For a / a ,  << 1, .J/lJ,,, approaches unity, while for a -t a,  it becomes un- 
bounded. 

Example 6.3. 

Consider a narrow notch whose lower and upper surfaces are flat and parallel up to the 
points A and A', so that the arc A'A forms the curved tip of the notch (Figure 6.17). 
The opening 2h of the notch is small compared to its length. Assume that the surface 
stress may be approximated as 
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where 0  is the tangent angle and a,,, is the maximum stress. For a semicircular tip, 
show that 

where p is the radius of curvature at the semicircular notch tip and I(I is the stress 
intensity factor for a similarly loaded body with a crack of the same length as the 
notch. 

Solution: Consider the J-integral and compute it for the path M A B A ' M '  that 
coincides with the notch surface. We have 

The notch is traction-free. Since dy = 0 along the flat surfaces M A  and A'M' of 
the notch, we have 

so that 

For conditions of plane strain we have 

and Equation (5) becomes 

For a semicircular notch tip p(0) = p, and Equation (1) gives 

On the other hand, if the path of integration of J is selected far from the notch we 
have (Equation (6.21)) 
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Fig. 6.18. Load-displacement (P - u) records of a three-point bend specimen with three different crack 
lengths. 

where Ifi  is the stress intensity factor for a similarly loaded body with a crack of the 
same length as the notch. 

From Equations (9) and (10) we obtain Equation (2). 

Example 6.4. 

The load-displacement records of a three-point bend specimen of width W = 100 mm 
and thickness B = 50 mm containing three cracks of length a = 49,50 and 5 1 mm 
are shown in Figure 6.18. The specimen with a = 50 mm fails at a displacement 
u = 4 mm. Determine the value of J using Equation (6.51) and Equation (6.36). 

Solution: Equation (6.51) becomes 
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where U is the area of the load-displacementrecord of the specimen with a = 50 mm 
up to displacement u = 4 mm. We have 

and Equation (1) becomes 

Equation (6.36) becomes 

1 AU 
J = - - -  

B Aa ' 

We have: 

'and Equation (4) gives 

Example 6.5. 

Determine the minimum thickness B- and/or crack ligament hi,, of a three-point 
bend specimen required for a valid 4, test according to the ASTM standards for a 
material with 16, = 100 MPa 6, a, = 400 MPa, E = 210 GPa and v = 0.3. 
Compare the results with those for a valid KI, test. 

Solution: 4, is calculated according to Equation (6.32) as 

The minimum thickness Bmh and/or crack ligament b- required for a valid 4, 
test according to ASTM standards for the three-point bend specimen is calculated 
according to Equation (6.33) as 

254, - 25 x (0.0433 MPa m) B .  b .  -- mm, mm - - = 2.7 mm . 
Y 400 MPa 

The minimum thickness B,;, required for a valid KI, test is calculated according 
to Equation (5.8a) as 

100 MPa fi 2 

B i n  = 2.5 (2) = 2.5 ( ) = 156.2 mm . 
400 MPa 
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Observe that the minimum thickness required for a valid JIc test is nearly two 
orders of magnitude smaller than that required for a valid KIc  test. This indicates that 
Jr, testing may be used to estimate KIc in situations where large specimen dimensions 
are required for a valid KI, test. 

Example 6.6. 

A steel structural member with a stress-concentration factor of 3 is subjected to a 
nominal design stress uY /2 ,  where u y  is the yield stress of the material in tension. 
Using the crack opening displacement design method determine the maximum crack 
length the member can withstand without failure. The modulus of elasticity of steel 
is E = 210 GPa, the yield stress is u, = 1 GPa and the critical crack opening 
displacement is 6, = 0.5 mm. 

Solution: For a stress concentration factor of 3 and an applied stress of a ,/2 we have 

For this case we obtain from the second Equation (6.65) 

4 = 1.5 - 0.25 = 1.25. 

The yield strain E, is 

- - 
1 GPa 

uy - - = 0.0048. E y  - - 
E 210GPa 

The critical half crack length a ,  is calculatd from Equation (6.64) as 

The critical crack length is 

Example 6.7. 

A three-point bend specimen with S = 25 cm, W = 6 cm, a = 3 cm, and B = 3 cm 
is used to determine the critical crack opening displacement 6, of a steel plate ac- 
cording to the British Standard BS 5762. The load versus crack mouth displacement 
(P - V) record of the test is shown in Figure 6.19. Determine 6, when E = 210 GPa, 
11 = 0.3 and o, = 800 MPa for steel. 

Solution: The critical crack opening displacement 6, is calculated from Equa- 
tions (6.68) and (6.69) (for z = 0 and r = 0.4). We have 
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v(mm) 
Fig. 6.19. Load-crack mouth displacement (P - V) record of a three-point bend specimen. 

where 

For the three-point bend specimen, KI is calculated from Equations (1) and (2) of 
Example 5.1. Table of Example 5.1 gives for a/W = 0.5, f (a/W) = 2.66. KI is 
computed as 

KI = 
(31.6 kN) x (0.25 m) 

x 2.66 = 47.7 MPa fi . 
(0.03 m) x (0.06 m)3/2 

We have 

6 - 
(47.7 MPa x (1 - 0.3~)  

= 0.006 mm . " - 2 x (800 MPa) x (210 x lo3 MPa) 

The plastic component of the crack mouth displacement Vp is determined from the 
test record P - V (Figure 6.19) by drawing a line from the maximum load parallel 
to the linear portion of the curve. We have Vp = 1 mm. 6, is determined as 
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Fig. 6.20. A semi-infinite crack along the interface of two infinite layers of different heights. 

0.4(0.06 - 0.03) (m) x 1 mm 
6 - = 0.286 mm . " - (0.4 x 0.06 + 0.6 x 0.03) mm 

The critical crack opening displacement 6, is 

6, = 0.006 + 0.286 = 0.292 mm . 

Problems 

6.1. An infinite strip of height 2h with a semi-infinite crack is rigidly clamped along 
its upper and lower faces at y = f h (Figure 6.16). The upper and lower faces 
are moved in the positive and negative x-direction over distances uo, respectively. 
Determine the value of J-integral and stress intensity factor. 

6.2. An infinite strip of height 2h with a semi-infinite crack is rigidly clamped along 
its upper and lower faces at y = f h (Figure 6.16). The upper and lower faces 
are moved in the positive and negative z-direction over distances wo, respectively. 
Determine the value of J-integral and stress intensity factor. 

6.3. Two infinite layers of heights hl and h2 and large thicknesses are made of 
different materials with moduli of elasticity and Poisson's ratios El, iq and a, 1 4  
respectively (Figure 6.20). The layers are joined across their interface forming a semi- 
infinite crack, and are subjected to bending moments m at x -+ -m. Determine the 
value of J-integral. 

6.4. Two infinite layers of heights hl and h2 and large thicknesses are made of 
different materials with moduli of elasticity and Poisson's ratios El, vl , and &, 1~ 
respectively (Figure 6.21). Thelayers are joinedacross their interface forming asemi- 
infinite crack, and are rigidly clamped along their bases at y = hl and y = -h2. 
The upper and lower bases are moved in the positive and negative x-direction over 
distances uo respectively. Determine the value of J-integral. 

6.5. Show that for acrack in amixed-mode stress field governed by the values of stress 
intensity factors KI, Kn and Km, the value of J-integral is given by Equation (6.21). 
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Fig. 6.21. A semi-infinite crack along the interface of two infinite layers of different heights with rigidly 
clamped bases. 

Fig. 6.22. A thin cracked layer perfectly bonded to two large layers of a different material. 

6.6. A thin layer containing a crack, is made of a material with modulus of elasticity 
El and Poisson's ratio y. It is perfectly bonded to two large layers of the same 
material with modulus of elasticity lib and Poisson's ratio 14 (Figure 6.22). If h is 
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Fig. 6.23. A beam with an end force bonded to a half-plane and integration path for the determination of 
J-integral. 

the stress intensity factor at the crack tip of the thin layer and Ifi  is the stress intensity 
factor for the same loading of a plate made only of the large layers show that 

6.7. An elastic beam of length ( 1  + L), height h, and large thickness has modulus 
of elasticity El and Poisson's ratio vl. It is bonded along the length L to an elastic 
half-plane with modulus of elasticity E2 and Poisson's ratio v2 (Figure 6.23). The 
beam is subjected at its left end to a rigid stamp that exerts a force P. Take the 
integration path r shown in Figure 6.23, where the circle in the half-plane has a large 
radius. Show that J-integral is given by 

6.8. According to the atomic or molecular cohesive force theory introduced by 
Barenblatt (Advances in Applied Mechanics, Academic Press, Vol. 7, pp. 55-129, 
1962) large forces of atomic or molecular attraction act in small zones at the ends of 
the crack (Figure 6.24a). These forces pull the crack faces together and induce stress 
singularities at the crack ends which cancel out the stress singularities introduced by 
the applied loads. Consequently, the stresses are bounded, and the faces of the crack 
join smoothly in cusp form at the ends. If b is the separation distance between the 
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(b) 
Fig. 6.24. (a) Cohesive forces at the end of a brittle crack and @) cohesive stress versus separation 
relationship. 

upper and lower crack faces and a ( 6 )  is the cohesive stress, show that 

where dt is the separation distance at the crack tip. 
Suppose that 6, is the separation distance when the atoms are pulled so that there 

is no attraction among them (Figure 6.24b). The critical value of J at crack growth 
is obtained from the above equation when bt = 6,. Note that the area under the 
a ( 6 )  - 6 curve (Figure 6.24b) is twice the surface energy y. Use this observation 
to establish that the Barenblatt theory and the Griffith theory are identical for crack 
growth with small cohesive zones. 

6.9. The Barenblatt cohesive force theory is, in many ways, similar to the Dugdale 
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model (Section 3.4) for the study of the plastic zones at the crack tip, although it 
has a completely different physical meaning. The equation in the previous problem 
applies to a modified Dugdale model in which the stress distribution ~ ( b )  inside the 
plastic zone is variable. Consider a linear strain-hardening behavior 

in which the plastic strain is approximated by 6 /  h, where a, is the yield stress, E, 
the tangent modulus and h the plate thickness. Show that 

6.10. For the Dugdale model show that 

where Js,, is the value of J for small-scale yielding. 

6.11. Apply Equation (2)  of Example 6.3 to a narrow flat-surfaced notch of length 
2a, with semicircular tip of radius p, in an infinite plate subjected to a stress a at 
infinity normal to the notch. Show that the maximum stress a,,, along the notch 
surface is given by 

6.12. Use Example 6.3 to show that, for a narrow flat-surfaced notch of thickness 
2h,  the maximum stress u,,, along the notch surface satisfies the inequality 

Here KI is the stress intensity factor for a similarly loaded body with a crack of the 
same length as the notch. 

6.13. Figure 6.25 shows the load-displacement records of a three-point bend specimen 
of width W = 50 mm and thickness B = 20 mm containing three cracks of length 
a = 24, 25 and 26 mm. The specimen with a = 25 mm fails at a displacement 
1~ = 2 mm. Determine the value of J using Equation (6.51) and Equation (6.36). 

6.14. A number of compact tension specimens of thickness B = 2 mm with different 
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Fig. 6.25. Load-displacement (P - u) records of a three-point bend specimen with three different crack 
lengths. 

50 

crack lengths were tested, and the load-displacement records were obtained. From 
these records the absorbed potential energy II at different selected displacements was 
calculated and is plotted in Figure 6.26 versus crack length. Plot the variation of 
.I-integral versus displacement. 

I 
25 rnrn I 

I 

6.15. The load-displacement (P - 6) diagram of a compact tension specimen of 
dimensions W = 40 mm, a = 25 mm, B = 20 mm can be approximated as 

where 6 is measured in meters and P in Newtons. Initiation of crack growth occurred 
at 6 = 10 mm. Estimate J. 

6.16. What is the maximum & value that may be determined on a 20 mm thick plate 
with: a,  = 500 MPa, E = 210 GPa and v = 0.3 (a) according to ASTM standard 
E399 for estimating KI, directly and (b) according to ASTM standard E813-87 for 
estimating JI, and then calculating 16,. 
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Fig. 6.26. Potential energy versus crack length at different displacements of a number of compact tension 
specimens. 

6.17. The following data were obtained from a series of tests on three-point bend 
specimens with thickness B = 30 mm and crack ligament b = 30 mm made of a 
steel with 0.2 offset yield stress a, = 450 MPa and ultimate stress a, = 550 MPa. 

Estimate the provisional value JQ according to ASTM standard E813-87 and 
check whether JI, = JQ . 
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6.18. Consider a crack in a mixed-mode stress field governed by the values of stress 
intensity factors KI and Kn. Show that the path-independent line integral 

defined from Equation (6.6) with j = 2 is given by 

6.19. Consider a crack in a mixed-mode stress field governed by the values of stress 
intensity factors KI and Kn. Consider the vector 

where J1 = J and J2 as was defined in Problem 6.18. Take the projection of this 
vector along the crack growth direction given by 

J(0) = .JI cos 0 + JZ sin 0 . 

Crack growth is governed by the following hypotheses 

(i) The crack extends along the radial direction 0 = 0, on which J(0) becomes 
maximum. 

(ii) Fracture starts when that maximum of J(0) reaches the value 27, where y is the 
energy required to form a unit of new surface in the Griffith theory. 

Under these assumptions determine the angle 0, and the critical load for initiation of 
crack growth. 

6.20. Use Problem 6.19 to determine the crack extension angle 0, and the critical 
stress o, for initiation of growth of a crack of length 2a in an infinite plate. Suppose 
that the crack subtends an angle /? with the direction of applied uniform stress a. Plot 
the curves 0, = 8,(/3) and o, = a@). 

6.21. A welded tension member of width 20 mm contains an edge crack at the weld 
toe and is subjected to a tensile stress o = 200 MPa perpendicular to the crack axis. 
There is a residual stress 400 MPa at the weld. Using the crack opening displacement 
design method, determine the maximum length of crack the member can withstand 
without failure. The yield stress of the weld is 500 MPa, the modulus of elasticity is 
E = 210 GPa and the critical crack opening displacement is 6, = 0.2 mm. 

6.22. A cylindrical pressure vessel of diameter 2 m and wall-thickness 20 mm 
is subjected to a pressure of 1 MPa. The material of the vessel is a low carbon 
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steel with modulus of elasticity 210 GPa and yield stress 400 MPa. The critical crack 
opening displacement of a specimen taken from the vessel is 5, = 0.1 mm. Determine 
the maximum crack length the vessel can withstand without failure using the crack 
opening displacement design method. Assume that there are residual stresses of 
magnitude equal to the yield stress of the material of the vessel. 

6.23. A compact tension specimen (Figure 5.7) with W = 14 cm, B = 7 cm and 
a = 7 cm is used to determine the critical crack opening displacement 5, of a 
steel plate according to the British Standard BS 5762. From the load versus crack 
mouth displacement (P - V) record of the test it is obtained that the maximum 
load is P, = 50 kN and the plastic component of the crack mouth displacement is 
V, = 1.5 mm. Determine 5, when E = 210 GPa, v = 0.3 and u, = 500 MPa. 
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Chapter 7 

Strain Energy Density Failure Criterion: 

Mixed-Mode Crack Growth 

7.1. Introduction 

So far, we have studied growth of a crack only for the case when the load is applied 
normal to the crack and such that the crack propagates in a self-similar manner. 
However, often the loads are not aligned to the orientation of the crack. In such 
cases, the crack-tip stress field is no longer governed by a single opening-mode stress 
intensity factor KI but by a combination of the three stress intensity factors KI, I&, 
and Km. Moreover, the direction of crack initiation is not known a priori but depends 
on a failure criterion involving some combination of KI, I h ,  and I(m. As a rule the 
crack follows a curved path. 

The need of a criterion that can predict crack growth under mixed-mode loading 
in a simple and uni6ed manner, led to the development by Sih [7.1-7.31 of the strain 
energy density (SED) criterion. The fundamental quantity in the SED criterion is the 
strain energy d W/dV contained in a unit volume of material at a given instant of time. 
The quantity dW/dV serves as a useful failure criterion and has successfully been 
applied in the solution of a host of engineering problems of major interest. These 
include: two- and three-dimensional crack problems; cracked nonhomogeneous and 
composite materials; plates and shells with cracks; dynamic crack problems; failure 
initiating from notches; ductile fracture involving the prediction of crack initiation; 
slow stable crack growth and final separation; fatigue crack growth, etc. Many of the 
results have been published in the introductory chapters of the seven volumes of the 
series "Mechanics of Fracture" edited by Sih [7.4-7.101. The author has demonstrated 
the usefulness and versatility of the SED criterion for determining the allowable load 
and crack growth direction corresponding to a variety of engineering problems of 
practical interest in the book Problems of Mixed Mode Crack Propagation [7.111. 

In this chapter we review the SED theory and apply it to problems of fundamen- 
tal importance. Following the definition of volume strain energy density and the 
basic hypotheses of the theory, we use the SED criterion to solve the general two- 
dimensional linear elastic crack problem, placing emphasis on the uniaxial extension 
of an inclined crack. Furthermore, we use the SED criterion to study ductile fracture. 
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The chapter concludes with a brief presentation of the maximum stress criterion for 
non-self-similar crack growth. 

7.2. Volume strain energy density 

SED theory is based on the idea that a continuum may be viewed as an assembly 
of small building blocks, each of which contains a unit volume of material and can 
store a finite amount of energy at a given instant of time. The energy per unit volume 
will be referred to as the (volume) strain energy density function, dW/dV, and is 
expected to vary from one location to another. 

The strain energy density function can be computed from 

= / u, daij + f (AT, AC) 
dV 

0 

where u;j and ~ ; j  are the stress and strain components and AT and AC are the 
changes in temperature and moisture concentration, respectively. Equation (7.1) 
shows that a material element can contain energy even when the stresses are zero. 

Historically, the energy quantity has been used for the description of failure of a 
material element by yielding. There are two separate theories: the total energy or 
Beltrami-Haigh theory; the distortional energy or Hubert-von Mises-Hencky theory. 
According to these theories, failure in a material by yielding occurs when the total, 
or the distortional, strain energy per unit volume absorbed by the material equals 
the energy per unit volume stored in the material loaded in uniaxial tension at yield. 
This quantity corresponds to the limiting strain energy and is regarded as a material 
constant. Extensive experimental evidence is available on the use of the strain energy 
quantity to describe failure by yielding. 

For linear elastic material behavior, the strain energy density function dW/dV can 
be written as 

where u,, u,, u,, T,,, ryz and T,, are the stress components, E the Young modulus, 
I /  the Poisson ratio and p the shear modulus of elasticity such that E = 2p(1 + 11). 

For the plane elasticity problems the quantity dW/dV takes the form 

g=& - - (ax + - 2(u,uY - ey)] 
where rc. = 3 - 4v for plane strain and rc. = (3 - v) / (1 + v) for generalized plane 
stress. 
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The strain energy per unit volume, dW/dV, can be further decomposed into two 
parts: 

in which 

represents the distortional strain energy per unit volume, corresponding to the de- 
viatoric stress tensor that is associated with distortion of an element undergoing no 
volume change. 

The quantity 

represents the part of the strain energy per unit volume associated with volumechange 
and no shape change, i.e. with dilatation. 

By means of the plane strain condition 

where a l ,  u2, a 3  are the principal stresses, we find that the ratio 
(dW/dV), / (dW/dV)d obtained from Equations (7.5) and (7.6) takes the form 

in terms of the principal stresses. 
Figure 7.1 gives the variations of the ratio (dW/dV), / (dW/dV)d with the ratio 

of the principal stresses al/a2 for v = 0, 0.1, 0.2, 0.3, and 0.4. This plot shows 
that the greatest volume change takes place for a1 = a2, corresponding to a two- 
dimensional hydrostatic stress state. For most metals, with v ranging from 0.2 to 
0.3, (dW/dV), / (dW/dV)d varies from 4 to 6.5. From the relative magnitudes of 
(dW/dV), and (dW/dV)d, we see that both quantities should be taken into account 
when considering the failure of material elements either by yielding and/or fracture. 

Failure of material elements in a solid is caused by permanent deformation or 
fracture which can be related to shape change (distortion) and volume change (dilata- 
tion). In general, a material element is subjected to both distortion and dilatation and 
the corresponding energies for linear elastic material response can be computed from 
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Fig. 7.1. Variation of the ratio of the dilatational and distoltional strain energy density 
(dW/dV), / (dW/dV)d versus the ratio a l / q  of the principal stresses for a state of plane strain. 
The Poisson ratio v takes the values O,0.1,0.2,0.3 and 0.4. 

Equations (7.5) and (7.6). Realistic modeling of material failure requires knowledge 
of damage at both the microscopic and macroscopic levels. X-ray examination of 
the problem of brittle fracture of a tensile crack in a low carbon steel reveals a thin 
layer of highly distorted material along the fracture surface. Consider a macrocrack 
in a tensile stress field (Figure 7.2). The elastic zone ahead of the crack contains 
shear planes, and the plastic zone out of the plane of the macrocrack contains cleav- 
age planes. The continuum mechanics solution of the stress problem shows that the 
principal stresses a, and a2 are equal in the macroelement ahead of the crack. Equa- 
tion (7.8) shows that for a Poisson's ratio I/ = 0.3, (dW/dV),, is 6.5 times larger 
than (dW/dV)d. Even though the macroelement ahead of the crack fractures due to 
the dilatational component of the strain energy density, the distortional component is 
not negligible and is responsible for the creation of slip planes or microcracks. Sim- 
ilarly, maximum distortion of the macroelement off the axis of the macrocrack takes 
place while micro cleavage planes appear perpendicular to the direction of tension. 
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Microcracks I n  Region 
Of Macroyielding 

I 

Microdilatation 
In  Element With 
Macrodistortion 

Macrodilatation 

Fig. 7.2. Schematic of macro- and micro-damage in the region ahead of the crack tip. 

Stress analysis shows that the distortional component of the strain energy density 
becomes maximum in this element. The dilatation component is not negligible and 
is responsible for the creation of the cleavage planes. 

These arguments suggest that we must consider both components, the dilatational 
'and the distortional, of strain energy density for a complete description of material 
damage. They both play a role in the material damage process. Microyielding may 
lead to macrofracture and microfracture to macroyielding. Thus, the two processes 
of yielding and fracture are inseparable; they are unique features of material damage 
and should be treated simultaneously by a single failure criterion. 

For the macrocrack under tension, the model of Figure 7.2 suggests that macrofrac- 
ture coincides with the direction in which (dW/dV), > (dW/dV)d and macroyield- 
ing with the direction in which (dW/dV)d > (dWldV),. These directions are 
determined by appealing to physical hypotheses. 

7.3. Basic hypotheses 

The strain energy density (SED) criterion provides a complete description of mate- 
rial damage by including both the distortional and dilatational effects. The previous 
arguments show that both components of strain energy density should be included. 
Distortion and dilatation vary in proportion, depending on the load history, location, 
and nonuniformity in stress or energy fields. Their contributions to distortion or di- 
latation of a macroelement are weighted automatically by taking the stationary values 
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of the total strain energy density with respect to appropriate space variables referred 
to the site of failure initiation. The relative local minimum of dW/dV corresponds 
to large volume change and is identified with the region dominated by macrodilata- 
tion leading to fracture; the relative local maximum of dW/dV corresponds to large 
shape change and is identified with the region dominated by macrodistortion leading 
to yielding. 

The strain energy density criterion may be stated in terms of three basic hypotheses, 
and applied to all materials (reversible or irreversible), loading types (monotonic, 
cyclic or fatigue) and structure geometries, with or without initial defects. The 
hypotheses are independent of material type or restrictions introduced by constitutive 
equations. The strain energy density function dW/dV decays with distance T from 
the crack tip, or any other possible failure site such as a re-entrant comer, inclusion, 
void, etc. The strain energy density function dW/dV will be assumed to have the 
form 

where S is the strain energy density factor and T the radial distance measured from 
the site of possible failure initiation. The singular dependency I/T is a fundamental 
character of the Newtonian potential and is independent of the constitutive relation. 
The three hypotheses of the strain energy density criterion are: 

Hypothesis ( I )  

The location of fracture coincides with the location of relative minimum strain energy 
density, (dW/dV),h, and yielding with relative maximum strain energy density, 
(dW/dV)max. 

Hypothesis (2 )  

Failure by fracture or yielding occurs when (dW/dV),h or (dW/dV),,, reach their 
respective critical values. 

Hypothesis (3)  

The crack growth increments TI ,  rz, . . . , r j ,  . . . , r ,  during stable crack growth satisfy 
the equation 

There is unstable fracture or yielding when the critical ligament size r, is reached. 
These hypotheses of the SED criterion will be used later for the solution of many 

problems of fundamental importance. 
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7.4. Two-dimensional linear elastic crack problems 

This section deals with the general problem of crack extension in a mixed-mode 
stress field governed by the values of the stress intensity factors KI and I(n. 

The fundamental quantity is the strain energy density factor S, the amplitude of 
the energy field that possesses an r-'-type of singularity. We consider the situation 
of brittle crack growth where crack initiation coincides with final instability. The 
strain energy density factor S is direction sensitive, unlike the stress intensity factor 
K ,  which is a measure of the local stress amplitude. I( is scalar, while S is somewhat 
like a vector. The factor S, defined as r(dW/dV) in Equation (7.9), represents the 
local energy release for a segment of crack growth r. There is unstable crack growth 
when the critical ligament size r c  is reached. 

For crack growth in a two-dimensional stress field the first hypothesis of the SED 
criterion can be expressed mathematically by the relations 

where 8 is the polar angle. Crack initiation occurs when 

Here 8 is defined by (7.11) and S, is the critical value of the strain energy density factor 
which is a material constant. S, represents the fracture toughness of the material. 

Consider a crack in a mixed-mode stress field governed by the values of the 
opening-mode KI and sliding-mode Kn stress intensity factors. The singular stress 
field near the crack tip is expressed by (see Equations (2.28) and (2.43)) 

I(I 
(T, = - 

8 KII 
cos (1 - sin - sin ;) - & 2 2 

KI 
Tzy = - 

8 8 38 I(n 
cos - sin - cos - + - 8 0 

f i 2 2  
cos - (I - sin sin :) . 

2 & 2  

Introducing these equations into Equation (7.3), we obtain the following quadratic 
form for the strain energy density factor S: 

where the coefficients aij (i, j = 1,2) are given by 

l6pa12 = sin 8 [2 cos 8 - (K - I)] 

16paz2 = (K + 1) (1 - cos 8) + (1 + cos 8) (3 cos 8 - 1) . 
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Fig. 7.3. Mixed-mode fracture criterion for cracks under tension. 

In these equations kj = Kj/J?F ( j  = I, 11). 
Substituting S from Equation (7.14) into relations (7.11) we obtain 

[2 cos 8 - (n - I)] sin 8,4$! + 2[2 cos 28 - (n - 1) cos 81 h h +  

+[(n - 1 - 6 cos 8) sin 01 ki = 0 (7.16a) 

[2 cos 28 - (n - I )  cos 81 k$ + 2[(n - I )  sin 8 - 4 sin 281 h h +  

Relations (7.16a) and (7.16b) represent the general formulas of the strain energy 
density criterion for a crack in a two-dimensional stress field under mixed-mode 
loading conditions. Suppose h ,  Icn stress intensity factors are known for a particular 
problem. Introducing these values into equation (7.16a) we obtain the values of the 
crack extension angle 8, as the roots of the equation which satisfy the inequality 
(7.16b). Substituting these roots, 8,, into Equation (7.14) we obtain the minimum 
values S- of the strain energy density factor. Then, we obtain the critical values of 
the applied loads corresponding to the onset of rapid crack propagation by equating 
S ~ ,  to the material constant critical strain energy density factor S,. 
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Fig. 7.4. &xed-mode fracture criterion for cracks under compression. 

The crack growth condition expressed by Equations (7.12), (7.14), (7.15) and 
(7.16a) defines the fracture locus in the /q - JQ plane. It is shown in Figure 7.3 for 
two aluminum alloys with 4.8(C1~c)1/2 = 28.2 kip/in5/2 and 29.2 kip/in5/2, and for 
tensile applied loads. The third curve represents the prediction based on the maximum 
stress criterion (Section 7.7). The experimental results relate to the uniaxial tension 
plate with an inclined crack. Observe that prediction based on the SED criterion is 
closer to the experimental results. Figure 7.4 shows the /q - JQ locus for compressive 
applied stresses for glass, together with experimental results. The /q - curve for 
compression is basically different from that in tension. The curve does not intersect 
the /q-axis because a crack under mode-I does not extend in compression. 

7.5. Uniaxial extension of an inclined crack 

Consider a central crack of length 2a in an infinite plate subjected to a uniform 
uniaxial stress a at infinity; suppose the axis of the crack makes an angle p with the 
direction of stress a. Mixed-mode conditions predominate near the crack tip, and the 
values of the /q, stress intensity factors are given by (Problem 2.22): 
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Fig. 7.5. (a) Opening-mode and (b) sliding-mode crack extension. 

Substituting these values into Equation (7.14) we obtain the following equation for 
the strain energy density factor S: 

S = u2a(all sin2 ,8 + 2a12 sin ,l3 cos ,I3 + a22 cos2 @) sin2 p (7.18) 

where the coefficients a+ are given by Equations (7.15). 
Equation (7.16a) for the calculation of the angle 8, of initial crack extension takes 

the form: 

(Y; - 1) sin (8, - 2P) - 2 sin [2(8, - P)] - sin 28, = 0 , ,6 # 0 . (7.19) 

Before proceeding to the general case of a crack of any inclination with respect to 
the loading direction, we will consider separately the two common cases of opening- 
mode and sliding-mode crack extension. 

(a) Opening-mode crack extension 

This case corresponds to the trivial Griffith crack configuration consisting of an 
infinite body with a central crack of length 2a subjected to a uniform uniaxial stress 
u at infinity (Figure 7.5(a)). Because of load symmetry the crack propagates in its 
own plane. Let us suppose that this is an unsolved problem and analyze it using the 
strain energy density theory. Inserting the values of the stress intensity factors lq, h: 

lq = ual/' , h = 0 (7.20) 

into Equation (7.14) we obtain the equation 

Furthermore, Equation (7.16a), which gives the stationary values of S, takes the 
form 
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[2 cos 0 - (K - I ) ]  sin 0 = 0 (7.22) 

while inequality (7.16b) becomes 

Equation (7.22) is satisfied when 0, = 0 or 0, = arccos [(K - 1)/2]. The second root 
0, does not satisfy inequality (7.22) because for the elastic constant K is 1 5 K 5 3, 
and thus is ignored. Hence, the minimum value of S corresponds to an initial crack 
extension angle 0, = 0, which means that the crack extends in its own plane. The 
plane (0, = 0) corresponds to the direction of maximum potential energy, a position 
of unstable equilibrium. For 0, = 0, Equation (7.21) gives the minimum value S,;, 
of S 

Equating Smi, with the material constant S,, we obtain the following expression for 
the critical stress a, corresponding to the onset of crack extension: 

The value of the stress intensity factor given by Equation (7.20) corresponds to an 
infinite plate. For the general case of a mode-I crack with stress intensity factor KI, 
Equation (7.24) becomes 

when it refers to the critical state of unstable crack extension under plane strain 
conditions. 

Equation (7.26) relates the critical strain energy density factor, S,, to the critical 
stress intensity factor, KI,, which can be determined by the methods described in 
Section 5.4. S, is a material constant and characterizes the fracture toughness of the 
material. 

(b) Sliding-mode crack extension 

This case corresponds to an infinite body containing a central crack of length 2a 
and subjected to a uniform shear stress r at infinity (Figure 7.5b). The lq, Icn stress 
intensity factors are given by: 

and Equation (7.14) gives 

rLa 
S = - [ (  K + 1) (1 - cos 8) + (1 + cos 0) (3 cos 0 - I ) ]  . (7.28) 

16P 
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TABLE 7.1. Fracture angle -go under pure shear and plane strain conditions 

Working as in the previous case, we find that the angle of crack extension 8, is 
given by 

rc-1 
8, = arccos (?) 

Note that 8, is a function of Poisson's ratio v. Table 7.1 shows the values of the 
predicted fracture angle 8, for u ranging from 0 to 0.5 in plane strain conditions 
(K = 3 -411). 

Introducing the value of the angle of initial crack extension 8, into Equation (7.28) 
and equating the resulting value of Smi, to S, we derive the following expression for 
the critical shear stress T,: 

( c )  Inclined crack; tensile loads 

From the resulting values of the angle 8, those which satisfy inequality (7.16b) 
provide the angles of initial crack extension 8,. Figure 7.6 displays the variation of 
-0, versus the crack angle P for v = 0,0.1,0.2,0.3,0.4 and 0.5 under plane strain 
conditions. Results for plane stress can be obtained by replacing 11 with v/(l + v). 
In the same figure the dashed curve represents the results obtained by the maximum 
stress criterion (Section 7.7). We see that these results agree with those based on 
Equation (7.19) for large values of P, and represent a lower bound for small values 
of p. In general it can be taken as an average curve. It is worth noting that the 
crack extension angle 8, is always negative for uniaxial tensile loads. The results of 
Figure 7.6 are in good agreement with experimental results obtained from plexiglas 
plates with a central crack. 

Figure 7.6 gives the minimum values of the strain energy density factor S. By 
equating these values of S with the critical strain energy density factor S,, we find 
the critical values of the tensile stress u, for crack propagation. Figure 7.7 shows the 
variation of the quantity 16pSc/u2a versus the crack inclination angle P for u = 0, 
0.1, 0.2, 0.3, 0.333 and 0.4, and plane strain conditions. We see that the quantity 
16pSc/u~a increases with the crack angle P, reaching a maximum for opening-mode 
crack extension. Furthermore, 16p~,/a:a increases as the Poisson's ratio 11 of the 
plate decreases. Since S, is a material constant, this means that the quantity u:a 
decreases as the crack angle /3 increases, and increases as Poisson's ratio increases. 
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P 
Fig. 7.6. Variation of the crack extension angle -8, versus the crack inclination angle P under plane 
strain conditions for tensile applied loads. 

Thus, the lowest value of the applied stress a, that will initiate crack propagation 
occurs at ,8 = 7r/2. 

(d )  Inclined crack; compressive loads 

Equation (7.19) has negative roots and positive roots. The negative ones correspond 
to uniaxial tensile loads; the positive ones to uniaxial compression. Since S depends 
on a', Equations (7.18) and (7.19) contain the solutions for uniaxial tension +a and 
compression -a. We assume that there is no overlapping of crack surfaces if there 
is compression. 

Figure 7.8 presents the variation of the positive crack extension angle 8, versus 
the crack inclination angle ,B for compressive applied loads and various values of 
Poisson's ratio I/. We see that under uniaxial compression the crack path extends 
towards the direction of loading. This phenomenon was observed by Hoek and 
Bieniawski [7.12] who made tests on a number of glass plates with inclined cracks 
under uniaxial compression. Unfortunately, they did not report the angle of initial 
crack extension and therefore it is not possible to compare their experimental results 
with the theoretical results of Figure 7.8. 

The stationary values of the strain energy density factor are obtained following 
the procedure used for tensile loading. Figure 7.9 presents the variation of the 
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Fig. 7.7. Variation of the quantity 16pSc/aza versus the crack angle P under plane strain conditions for 
tensile applied loads. 

quantity 16pSc/o~a versus the crack inclination angle ,O for plane strain conditions. 
Figure 7.9 shows that the quantity 16pSc/a~a reaches a maximum in the interval 
0 < ,8 < 90° depending on the value of Poisson's ratio v. We see also that the 
critical stress o, increases and tends to infinity as the crack becomes parallel (P = 0) 
or perpendicular (P = 90") to the direction of loading. This result corresponds to 
the physical observation that a crack parallel or perpendicular to the direction of a 
compressive applied stress has no influence on the fracture behavior of the plate. 
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Fig. 7.8. Variation of the crack extension angle 0, versus the crack inclination angle P under plane strain 
conditions for compressive applied loads. 

7.6. Ductile fracture 

(u) Introductory remarks 

The term ductile fracture is generally used to indicate failure where unstable crack 
propagation is preceded by plastic deformation. (Ductile indicates the presence of 
stable deformation, while fracture designates load instability associated with the sud- 
den creation of a macrocrack surface.) A characteristic feature of ductile fracture is 
that the crack grows slowly at first before the onset of unstable crack propagation. 
The crack growth process can be separated into the phases of crack initiation, and 
stable and unstable crack growth. Generally speaking, all fracture processes may be 
regarded as transitions from stable to unstable crack propagation. When the amount 
of stable crack growth is small, it is usually assumed that onset of crack initiation 
coincides with crack instability. The phenomenon of ductile fracture is associated 
with a nonlinear load versus deformation relation which is attributed to plastic defor- 
mation and slow stable crack growth. These two effects take place simultaneously 
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Fig. 7.9. Variation of the quantity 16pSc/2a  versus the crack angle P under plane strain conditions for 
compressive applied loads. 

by known experimental methods. 
Ductile fracture is controlled by the rate and history of loading, specimen size 

and geometry, material properties and environmental conditions. Thus, small metal 
specimens may exhibit high ductility, while large structures of the same material can 
behave in a brittle fashion. Furthermore, a substantial amount of subcritical crack 
growth may occur in a specimen made of a brittle material when it is slowly loaded. 
On the contrary, brittle fractures may occur in structures made of a ductile material 
when the load is applied suddenly or when they are subjected to low temperatures. 
The development of plastic zones during crack growth in ductile fracture, which 
corresponds to material damage at a microscopic scale, reduces the amount of energy 
available for macrocrack instability. 

The strain energy density theory will be used in the following to address the entire 
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history of crack growth, including the phases of initiation, stable and unstable crack 
growth. The theory has been applied successfully to the solution of a number of 
problems related to ductile fracture. 

(b )  Energy dissipation 

During the process of crack growth not all the energy is consumed by the creation of 
new macroscopic surfaces. Dissipation of energy also takes place at the microscopic 
level; this is called yielding in continuum mechanics. Even though yielding occurs in 
a direction at some angle to the crack propagation (Figure 7.2) the amount of energy 
consumed at the microscopic level along the path of crack growth is not negligible 
'and should be taken into account. 

Consider the true stress-true strain diagram of the material in tension (Figure 7. lo), 
'and suppose that the stress exceeds the yield stress a,; the unloading path will follow 
the line P M  which is almost parallel to the direction O A  of the elastic portion of 
the diagram. If the specimen is reloaded the new stress-strain curve will be the 
line M P F .  During the unloading and reloading procedure the amount of energy 
dissipated is represented by the area O A P M  = (dW/dV),. Thus, for a stress level 
a the available strain energy (dW/dV)Z for crack growth is represented by the area 
M P F F ' ,  or 

This equation gives the total energy per unit volume required for failure of a material 
element. 

Thus, Equation (7.10), which expresses the third hypothesis of the strain energy 
density theory, should be modified to read 

The material damage process increases monotonically up to global instability 
when S or r increase during stable crack growth, that is, 

and comes to rest when S or r decrease during stable crack growth, that is, 

where ro is the radius of the fracture core region. 
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Fig. 7.11. Development of crack growth profile. 

( d )  Development of crack profile 

Equation (7.10), expressing the third hypothesis of the strain energy density theory, 
can be used to determine crack profiles in three dimensions during slow stable crack 
growth. The procedure is illustrated in Figure 7.11, which refers to a crack in a 
tensile plate specimen. Since the configuration is symmetric we take six points 
along one-half of the plate thickness. Figure 7.1 1b shows the variation of the strain 
energy density function dW/dV versus distance r ahead of the crack front. The 
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intersection of the line (dW/dV), = const with curves dW/dV - T for the six points 
determines the values of r j  ( j  = 1,2,3,4,5,6) which define the crack profile. The 
same procedure can be repeated to describe the crack growth profile during slow 
stzible crack growth. 

This procedure for constructing crack profiles has been applied to a straight crack 
in a tensile plate specimen [7.13,7.14]. Larger intervals of crack growth have been 
obtained for material elements near the plate midsection than for those near the plate 
boundaries. The diagram illustrates the influence of plate thickness, material type, 
'and loading step, on the shape and size of crack growth front during stable crack 
growth. These results explain the well-known crack tunneling effect and verify 
experimental observation. 

7.7. The stress criterion 

This chapter deals with mixed-mode crack growth; it is therefore appropriate to 
present the maximum circumferential stress criterion proposed by Erdogan and Sih 
[7.15]. Consider a crack in a mixed-mode stress field governed by the values of 
the opening-mode KI and sliding-mode Kn stress intensity factors. The singular 
polar stress components near the crack tip are expressed by (see Equations (2.35) and 
Problem 2.15) 

5 8 3  
sin - + - sin E) 

2 4  2 

3 8 1  3 . 8  3 .  
ug = - sin - - - sin - 

2 4  2 

The assumptions made in the criterion for crack extension in brittle materials may 
be stated as 

(i) The crack extension starts from its tip along the radial direction 6 = 8, on 
which a g  becomes maximum. 

(ii) Fracture srarts when that maximum of reaches a critical stress uc equal to 
the fracture stress in uniaxial tension. 
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Fig. 7.12. Equivalent opening-mode crack model according to the maximum circumferential stress 
criterion. 

The hypotheses can be expressed mathematically by the relations 

Observe that the circumferential stress us in the direction of crack extension is 
a principal stress, and the shear stress 7,s for that direction vanishes. The crack 
extension angle 8, is calculated (see Equation (7.3%)) by 

KI (sin + sin - + Kn cos - + 3 cos - = 
2 36') ( ; 3e) 2 

KI sin 6' + KII (3 cos 8 - 1) = 0 . (7.38) 

For the calculation of the stress us from Equation (7.35b) we must introduce a 
critical distance TO measured from the crack tip. To circumvent the determination of 
the core region radius TO,  the second hypothesis of the stress criterion is often referred 
to as follows: 

Fracture starts when re has the same value as in an equivalent opening-mode 
(Figure 7.12), that is 

The fracture condition following from Equations (7.39) and (7.35b) takes the form 

6'c KI ((3 cos + cos + sin = 4 4 ,  . (7.40) 
2 2 
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Fig. 7.13. Fracture locus for mixed-mode conditions according to the maximum circumferential stress 
criterion. 

For opening-mode loading (KI # 0, Kn = 0), Equations (7.38) and (7.40) yield 
8, = 0, Ifi = KI,, while for sliding-mode loading they give 

1 
6, = - arccos - = -70.6" , Kn = Knc = 8 KIc . 

3 

Eliminating 8, in Equations (7.38) and (7.40) gives the fracture locus in I 6  - I(n 
coordinates shown in Figure 7.13. Figure 7.6 shows the variation of the crack 
extension angle -6, versus the crack inclination angle for an inclined crack in a plate 
subjected to a uniaxial stress field. The figure also shows results based on the SED 
criterion. Note that the results of both criteria agree for large values of ,l3, while for 
small values of ,l3 the stress criterion predicts smaller angles than the SED criterion. 

Examples 

Example 7.1. 

According to the maximum dilatational strain energy density criterion, the crack 
extends along the direction of maximum dilatational strain energy density which is 
calculated around the circumference of a circular core area surrounding the crack 
tip. Derive an equation to determine the crack extension angle in a two-dimensional 
mixed-mode stress field governed by the KI and Kn stress intensity factors under 
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conditions of plane strain. Apply this equation to an inclined crack in an infinite 
plate subjected to a uniform uniaxial stress at infinity, and compare the crack growth 
angles with those obtained by the swain energy density and the stress criteria. 

Solution: For linear elastic deformation, the strain energy density, (dW/dV), can be 
decomposed into its dilatational, (dWldV),, and distortional, (dW/dV)d, compo- 
nents as a sum 

The strain energy density (dW/dV) is given by Equations (7.9), (7.14) and (7.15), 
while the dilatational and distortional strain energy density components are computed 
from Equations (7.9, (7.6) and (7.13). Under conditions of plane strain we obtain 
the dilatational part 

such that 

12pb12 = -(1 - 2 ~ )  (1 + V) sin 8 

and for the distortional part 

such that 

16pc12 = 2 sin 0 (5) 

2 
16pcZ2 = - (1 - 2 ~ ) '  (1 - cos 8) + 4 - 3 sin2 8 

3 

where p is the shear modulus and r the radial distance from the crack tip. 
According to the maximum dilatational strain energy density assumption, the angle 

8, of initial crack extension can be obtained as 
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Equation (6) gives 

sin 0 k; + 2 cos 0 Icrh - sin 0 ki = 0 .  (7) 

Equation (7) determines the angle 0, when the values of stress intensity factors Icr 
and Icn are known. 

For an inclined crack in an infinite plate the values of KI and Kn are given 
by Equation (7.17). Substituting these values into Equation (7), we find the crack 
extension angle 0,  to be 

Equation (8) for 0 < P < 7r/2 predicts angles 0, in the range -.rr < 0, < 0, 
while according to the strain energy density and stress criteria which are verified by 
experimental results the angle 0, varies in the interval -7r/2 < 0, < 0. Thus the 
maximum dilatational strain energy density criterion leads to predictions which are 
unrealistic and far beyond any experimental observation. 

Example 7.2. 

An infinite plate contains a circular crack of radius R and angle 2P and is subjected to 
a uniform uniaxial tensile stress a at infinity perpendicular to the chord of the crack. 
The stress intensity factors h and h at the crack tip are given by 

Plot the variation of the angle of crack extension O,,  and the critical stress a, for 
crack growth, versus the angle of the crack 2P, for various values of K(K = 3 - 4v 
for plane strain and K = (3 - v) / (1 + v) for plane stress). 

Solution: Substituting the values of stress intensity factors hand h from Equation (1) 
into Equation (7.16a) of the strain energy density criterion we obtain an equation 
containing the quantities p, K and 0. The roots of this equation which satisfy 
inequality (7.16b) give the values of the crack extension angle 0,. The critical stress 
a, for initiation of crack extension is then determined from equations (7.12), (7.14) 
and (7.15), where S, is a material parameter. 

Figure 7.14 presents the variation of -0, versus the half angle of the circular 
crack ,6 for the extreme values of K equal to 1.0 and 3.0. The figure also shows the 
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Fig. 7.14. Crack extension angle (-6, )versus half angle P of acircularcrack whose chord is perpendicular 
to the applied tensile stress for K = 1.0 and 3.0. The straight dotted line corresponds to the extension of 
the crack at right angle to the direction of the applied load. 

straight line -el = p corresponding to extension of the crack at a right angle to the 
direction of the applied load. We see that the angle -el increases monotonically 
with p, and that, in the interval 0" < p < 137.5", the angles -81 for K = 1.0 
are always greater than those for K = 3.0. This rule is reversed in the interval 
137.5" < p < 180". Furthermore, Figure 7.14 illustrates that initial crack extension 
takes place in a direction almost normal to the applied load for all values of ,f3 in the 
interval 0 < p < 120". When the angle ,B is greater than 120" the direction of crack 
extension deviates from that normal to the load, becoming parallel to the applied 
load for P = 180". The values of the quantity u , ( R / ~ ~ ~ L s , ) ' / ~  for K = 1.0,1.4 and 
3.0 are presented in Figure 7.15. It can be seen that all curves for the values of the 
angle ,B equal to /3 = 0°, 180" and 137.5" tend to infinity. We conclude that a plate 
weakened by a circular crack requires an infinitely large stress for crack extension, 
not only for the trivial case of zero angle circular crack, but also for the values of 
2P = 275" and 360". The infinite value of stress for crack extension is given by 
the linear theory of fracture. Its physical meaning is that failure of the cracked plate 
takes place at the same critical load as failure of the uncracked plate. We further 
observe that the critical stress for crack extension decreases as K increases, or as the 
Poisson's ratio I /  decreases. We also see that, for each value of K, there is a specific 
value of the angle of crack 2/3 at which the required stress for crack extension reaches 
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Fig. 7.15. Normalized critical stress for crack extension versus half angle P of a circular crack whose 
chord is perpendicular to the applied tensile stress for K = 1 .O, 1.4 and 3.0. 

a minimum. This critical value of the angle 2@ is equal to 85", 115" and 140" for 
K = 3 .O, 1.4 and 1.0 respectively. 

Example 7.3. 

For the cylindrical pressure vessel of Example 2.5 determine the angle of initial crack 
extension 6 ,  and the critical internal pressure p,  for initiation of crack growth for 
various values of the crack angle P. Take v = 0.25. 

Solution: Substituting the values of stress intensity factors KI and KU obtained in 
Example 2.5 into Equation (7.14) we obtain the strain energy density factor 

where 

F(P, 8) = a1 1 (1 + sin2 P)2 + a12 (1 + sin2 p) sin 2P + a22 sin2 p cos2 p . (2) 

The coefficients aij are given by Equation (7.15). 
According to the SED criterion, the angle of initial crack extension 8, is determined 

from Equation (7.11). Values of -8, for various crack inclination angles ,13 are shown 
in Table 1. 



Chapter 7 

TABLE 1. Angles of crack extension 

p 0" lo0 30' 50' 70' 90' 

-8, 0' 17.20' 29.36' 27.38' 17.60' 0' 

TABLE 2. Critical pressures 

P 0' 10' 30' 50' 70° 90' 
p,Rfi/2t 22.50 21.60 16.95 13.54 11.80 11.30 

Substituting the values of 8, into Equation (1) and equating the resulting value of 
S to S, we obtain the critical internal pressure p, as 

Values of the dimensionless quantity p,R &/2t for different angles ,B are shown 
in Table 2. 

Observe from this table that a longitudinal crack (P = 90") is more dangerous 
than a circumferential crack ( p  = 0) of the same length. 

Example 7.4. 

A cylindrical bar of radius b contains a circular crack of radius a and is subjected to 
a force P along the axis of the bar and a torque T (Figure 7.16). The opening-mode 
and tearing-mode stress intensity factors k~ and ~CJII along the crack front created by 
the force P and torque T, respectively, are given by 

where 
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P .  

Fig. 7.16. Fracture loci of a cylindrical bar with an internal crack subjected to tension and torsion. 

For a bar with a0 = 0.016 cm, b = 2.0 cm and v = 113 subjected to the force P 
only the critical stress for fracture is u,. Determine the fracture loci when the bar is 
subjected to both force P and torque T for alb = 0.008,0.012 and 0.018. 

Solution: The strain energy density function dW/dV for tearing-mode deformation 
is obtained by substituting the values of stresses rZ, and T,, from Equation (2.56) 
into Equation (7.2). We obtain 

The strain energy density factor S is computed from Equations (3) and (7.9) as 

The strain energy density factor S for a combination of opening-modeand tearing- 
mode is therefore given by 

where the coefficient all is given by Equation (7.15) with rc = 3 - 4v. 
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The angle of crack growth 8, is determined from Equation (7.11) as 8, = 0, that 
is the crack grows in its own plane. 

Equation (7.12) of the strain energy density criterion gives 

KI, is calculated from the fracture stress a, of a bar of radius b = 2.0 cm with a 
crack of radius ao = 0.016 cm as 

and S, is computed from Equation (7.26) as 

When the value of S, is introduced into Equation (6) we obtain 

Equation (9) presents the required relation between a and r for fracture of the 
bar (fracture locus). Figure 7.16 shows the fracture loci for a l b  = 0.008, 0.012 
and 0.018 when a0 = 0.016 cm, b = 2.0 cm, u = 1/3. For all combinations of a 
and T that lie outside the curves, fracture of the bar takes place by unstable growth 
of the circular crack, while for the remaining values of a and T the crack does not 
propagate. 

Example 7.5 

An infinite elastic plate is perforated by a circular hole of radius R and a system of 
n symmetrically located small radial cracks of length 1 (Figure 7.17). The plate is 
subjected to a uniform uniaxial tensile stress a at infinity forming an angle a with the 
z-axis. The stress intensity factors and @) at the tip of the j crack are given by 

+ ~ E c ?  sin (Oj - 2a) + (A, - E$) sin 2a] 
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/777777772 CT 
Fig. 7.17. An infinite plate perforated by a circular hole with an array of n small radial cracks subjected 
to an inclined tension u. 

where 

Determine the critical fracture stress a, of the plate that triggers unstable growth 
of one of the radial cracks. 

Solution: The critical value up) of the applied stress a for extension of the j-crack 
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Fig. 7.18. Normalized critical stress for crack extension versus angle a of inclination of the applied stress 
with respect to the x-axis of Figure 7.17 with n = 5 and (a) 6 = 0.01 and (b) 6 = 0.1, for K = 1.4, 1.8, 
2.2 and 3.0. 

is obtained by using Equations (7.16) and (7.12) of the strain energy density criterion 
for the j-crack, with the values of the stress intensity factors ki(3) and @) given by 
Equations ( 1 )  and (2). It is evident that brittle failure of the plate will take place from 
the extension of the crack which requires the lowest critical stress uii). Therefore, 
the critical value a, of the applied stress for failure of the plate is given by 

(n-1)) uc = min (a:, a:'), . . . ,ac 

Figure 7.18 presents the variation of the dimensionless critical stress 
U , ( R / ~ ~ ~ S , ) - ' / ~  versus the angle a of inclination of the applied stress with respect 
to the Ox-axis for a plate containing five (n = 5) radial cracks. The ratio 6 of crack 
length I to hole radius R takes the values S = 0.01 and 0.1. The material constant K is 
equal to K = 1.4, 1.8,2.2 and 3.0. The dashed lines in the figure separate the regions 
in which fracture of the plate starts from unstable growth of the more vulnerable crack 
j = 0,  2 and 4. Values of the quantity U ~ ( R / ~ ~ ~ S , ) - ' / ~  for a: = 60°, S = 0.01, 
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TABLE 7.1. Values of U,(R/~~~S,)-'/~ for a = 60°. 

Fig. 7.19. Cracked specimens for (a) unstable crack growth and @) stable crack growth. 

0.04 and 0.1, K. = 1.4,2.2 and 3.0 and various radial cracks (n = 1,2, . . . ,20) are 
presented in Table 1. 

Example 7.6. 

(a) A crack of length 2a in a large plate grows in a stable manner under a constant 
uniform uniaxial stress uo normal to the crack plane (Figure 7.19a). Determine 
the crack growth increment r j  ( j  = 1,2, . . . , n) during stable crack growth. 
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(b) As in the previous case for a crack of length 2a in an infinite plate subjected to 
wedge forces P at the middle of the crack (Figure 2.19b). 

Solution: (a) Stable crack growth is dictated by Equation (7.10) of the SED criterion. 
In our case S is calculated from Equation (7.24) as 

Equation (7.10) becomes 

If crack initiation starts when 7-1 = 7-0 the following recursion relation for incre- 
mental crack growth is obtained 

Equation (4) indicates that each consecutive step of crack growth increases. Un- 
stable crack growth occurs when 7-j reaches the critical ligament length rC. 

(b) For this case the stress intensity factor KI is given by (Example 2.2) 

and the strain energy density factor S is computed from Equation (7.14) with 0 = 0, 
as 

When stable growth of the crack occurs under constant force P, Equation (7.10) 
becomes 

which for 7-1 = 7-0 gives 



Strain Energy Density Failure Criterion 

Fig. 7.20. A crack in an infinite plate subjected to a uniform load on part of the upper crack surface. 

Equation (8) indicates that each consecutive step of crack growth decreases. Crack 
arrest occurs when r j  reaches the critical ligament length r,. 

Example 7.7. 

The stress intensity factors 16 and Kn at the right tip of the crack of Figure 7.20 are 
given by 

Calculate the angle 6,  of extension of the crack from its right tip according to 
the maximum stress criterion. Take bla = 0.5, cla = 0.8, v = 0.3 and assume 
conditions of plane strain. 

Solution: The angle 6,  is calculated from Equation (7.38) of the maximum stress 
criterion. This equation for 6,  # n, Kn = 0 becomes 

We have 
0.670 

K~ = f [sin-l 0.8 - sin-l 0.5 - - J F K F ]  = - f (3) 
n 2 ~r 



where for plane strain K = 3 - 4v = 1.8. 
Introducing the values of KI and I(n from Equation (3) into Equation (2) we 

obdn  the crack angle 

Calculating ue for the two angles 8, from Equation (7.35b) we find that it becomes 
maximum for 8, = -14.14" and therefore this is the angle of extension of the crack 
from its right tip. 

Problems 

7.1. The stress field in the neighborhood of a sharp elliptical notch in a mixed-mode 
stress field under conditions of plane strain is given by 

1 8 38 
kl cos - 1 - sin - sin - 

3 8 
U Z = Z [  ( 2 ) - k l ( & ) ~ ~ ~ -  2 

cos 2) 2 +k2(&)  sin F] 
1 8 38 38 

u, = b1 cos (I +sin sin Z-) + (&) cos 

2 2 

1 6 8 38 38 
kl sin - cos - cos - - kl Txy=Z[  2 2 2 (5) sin - 2 

8 8 
+k2 cos - 2 (1 - sin sin T) - k2 (&) cos g] 

where p is the notch radius. The radial distance T is measured from the focal point 
of the notch and the angle 8 is measured from a line extended from the major axis of 
the notch. 

Show that the strain energy density factor S is given by 

where 
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The coefficients a, are given by Equation (7.15), while bij and cij are given by 

P P 
~ I I  = 0 ,  b12 = -- sin 8 ,  62.2 = -- cos 6 

8P 4P 

7.2. Show that the critical in-plane shear stress T, and the critical tensile stress a, 
to fracture an infinite plate with a crack of length 2a are related under conditions of 
plane strain by 

7.3. Show that the critical in-plane shear stress T, and the critical out-of-plane shear 
stress s, to fracture an infinite plate with a crack of length 2a are related under 
conditions of plane strain by 

7.4. Consider a crack of length 2a that makes an angle ,6 with the y direction in an 
infinite plate subjected to stresses a and ko along the y and x directions, respectively, 
at infinity (Figure 2.9a). Plot the variation of crack extension angle 8, and the critical 
stress o, for crack growth versus the crack inclination angle ,6 for tc = 0.2,0.6, -0.2 
and -1.0 and rc = 1.0, 1.4,1.8,2.2,2.6 and 3.0 when the stress o is tensile. 

7.5. As in Problem 7.4 when the stress a is compressive. 

7.6. An infinite plate contains a circular crack of radius R and angle 2,6 and is 
subjected to a uniform uniaxial tensile stress o at infinity parallel to the chord of the 
crack (Figure 7.21). The stress intensity factors Jq and Icn at the crack tip are given 
by 
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Fig. 7.21. An infinite plate containing a circular crack with its chord parallel to the direction of applied 
uniaxial stress. 

I( 1 + sin2 - cos2 - sin - 
a 

/Q = - ((R sin ,6)'12 
2 2 

2 
,) : 

P 1 + sin2 - 
2 

Plot the variation of the angle of crack extension 13, and the critical stress a, for 
crack growth versus the angle of the crack 2P for various values of rc (rc = 3 - 41) 

for plane strain and rc = (3 - v )  / (1 + v )  for plane stress). 

7.7. As in Problem 7.6 for compressive applied stress a. 

7.8. As in Example 7.2 for compressive applied stress a. 

7.9. A crack of length 2a in an infinite plate is subjected to a concentrated force P 
applied at the point x = b (Figure 2.16a). The stress intensity factors at the crack tip 
B are given in Problem 2.5, while the stress intensity factors at the other crack tip A 



Sfrain Energy Densify Failure Criterion 

can be obtained from symmetry considerations as 

Show that the crack grows from its tip B, and plot the variation of crack extension 
'angle 8, and critical stress of fracture a, versus bla (0 < bla < 1 )  for K = 1.4,1.8, 
2.2 and 3.0, when the load P is tensile or compressive. 

7.10. A crack of length 2a in an infinite plate is subjected to a concentrated force Q 
applied at the point x = b (Figure 2.16a). The stress intensity factors at the crack tip 
B are given in Problem 2.5, while the stress intensity factors at the other crack tip A 
can be obtained from symmetry considerations as 

Plot the variation of the crack extension angle 8, and the critical stress of fracture 
a, versus bla (0 < bla < 1 )  for K = 1.4, 1.8, 2.2 and 3.0. Indicate the regions 
where extension of the crack starts from its tip A or B. 

7.1 1 .  Show that the crack of Problem 2.34 propagates along its own plane which is 
titled at an angle w to the plane of loading. Show that the critical stress a, for crack 
growth is given by 

a, = 2 a  
fi sin w d l  - 2v sin2 w 

Plot the variation of a, &/2 a versus w for v = 0,  0.1, 0.25,0.33 and 0.5 
and find the angle w, at which a, becomes minimum for each value of v .  

7.12. A cylindrical vessel of radius R and thickness t contains a through crack of 
length 2a parallel to its axis (Figure 7.22). The edges of the crack are inclined at 
an angle y with the surfaces of the vessel wall. The vessel is subjected to a torque 
T. Determine the crack growth direction and the critical moment T, for initiation of 
crack growth. Plot the variation of T, versus angle y for various values of Poisson's 
ratio 1). 

7.13. A cylindrical bar of radius b contains a ring-shaped edge crack of depth a in 
a plane normal to its axis (Figure 7.23). The bar is subjected to a force P along its 
axis and to a torque T. The opening-mode and tearing-mode stress intensity factors 
kq and Icm along the crack front created by the force P and torque T, respectively, 
are given by 
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Fig. 7.22. A cylindrical vessel with a through crack parallel to its axis whose edges are inclined with 
resped to the surface of the vessel wall. 

Fig. 7.23. A cylindrical bar with an external crack subjected to tension and torsion. 
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where 

For a bar with a0 = 0.0052 cm, b = 2.0 cm and v = 113 subjected to the force P 
only, the critical stress for fracture is a,. Determine the fracture loci when the bar is 
subjected to both force P and torque T for alb = 0.003,0.005 and 0.011. 

7.14. A large thick plate of steel contains a crack of length 5 mm oriented at an 
angle /? = 30" with respect to the direction of applied uniaxial tensile stress a. 
Calculate the value of the critical stress a, for crack growth. KIc = 60 MPa fi, 
E = 210 GPa, v = 0.3. 

7.15. As in Problem 7.14 for compressive applied stress a. 

7.16. A cylindrical pressure vessel with closed ends has a radius R = 1 m and 
thickness t = 40 mm and it is subjected to internal pressure p. The vessel contains a 
through crack of length 4 mm oriented at an angle 40" with respect to the circumfer- 
ential direction. Calculate the maximum pressure pc the vessel can withstand without 
failure. KIC = 60 MPa fi, E = 210 GPa, v = 0.3. 

7.17. A large thick plate containing a crack of length 4 mm oriented at an angle 
b = 60" with respect to the direction of applied uniaxial tensile stress a fractures at 
a value a, = 1000 MPa. Calculate KIc when E = 210 GPa, 11 = 0.3. 

7.18. A large thick plate of steel is subjected to a tensile stress a = 800 MPa 
oriented at an angle 50" with respect to the direction of a through crack. Calcu- 
late the maximum permissible crack length the plate can withstand without fracture. 
S, = 1500N/m, E = 210 GPa, v = 0.3. 

7.19. As in Problem 7.18 when the applied stress a is compressive. 

7.20. A large thick plate contains a crack of length 2a oriented at an angle ,O with 
respect to the direction of applied uniaxial tensile stress a. Plot the variation of the 
quantity a, Ja, versus /? for S, = 1500 N/m, where a, and a, are the critical values 
of a and a at crack growth. E = 210 GPa, v = 0.3. 

7.21. As in Problem 7.20 when the applied stress is compressive. 
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Fig. 7.24. A rigid inclusion with a cuspidal point embedded in a matrix. 

7.22. A rigid inclusion with a cuspidal comer 0 is perfectly bonded to an infinite 
plate which is subjected to general in-plane loading at infinity (Figure 7.24). The 
stress field near the point 0 is given by 

where the coefficients /q and ICJI are independent of the coordinates r ,  8 and depend 
on loading conditions, the plate material and the geometrical shape of the inclusion 
at the cuspidal point. 

Show that the strain energy density factor S is given by 
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where 

16/mll = 2(ti - 1 )  c0S2 + ti2 + (2K + 1) c0S2 6 
2 

16pa12 = -[(ti - 1 )  + 26 cos 61 sin 6 

7.23. Use Problem 7.22 to show that the angle formed by the fracture path with the 
tangent of the inclusion at the cuspidal point is given by 

[(ti - 1 )  + 2(2ti + 1 )  cos 01 sin 0k: + 2[(ti - 1 )  cos 6 + 2ti cos 261 kl k2+ 

+[-(ti - 1 )  - 2(2n - 1 )  cos 61 sin 6% = 0 

[-(ti - 1 )  cos 6 - 2(2ti + 1 )  cos 261 k: + 2[(ti - 1 )  + 8ti cos 61 sin Okl k2+ 

+[(ti - 1 )  cos 6 + 2(2ti - 1 )  cos 261 > 0 . 

7.24. Use Problem 7.23 to show that the angle formed by the fracture path with the 
tangent of the inclusion at the cuspidal point is calculated according to the maximum 
stress criterion by 

3 0  6 6 ( 1 + t i ) k 1  tan p + ( 3 t i - l ) k n  tan2 - - ( 1 + 3 t i ) k 1  tan - - ( t i - l ) k = O  
2 2 

subject to the condition that d 2 ~ ~ / d O ~  < 0 and oe > 0. 

7.25. A rigid hypocycloidal inclusion is embedded in an infinite plate which is 
subjected to a uniaxial uniform stress a at infinity (Figure 7.25). The equation of the 
inclusion with respect to the frame Oxy is of the form 

with 

and the stress a subtends an angle ,8 with the x-axis. For this problem the coefficients 
and Icn of Problem 7.22 are given by 
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Fig. 7.25. A rigid hypocycloidal inclusion embedded in an infinite plate. 

with j = 0,1,2 for the three cuspidal points of the inclusion. 
Plot the variation of the dimensionless quantities 1 2 ( ~ / a ) ' / ~  (usla) and 

(72p~/u2a) versus angle 8 for j = 0 and = 25", rc = 1.8. Find the angle 
(O, ) ,  for which the former quantity becomes maximum, and the angle (8,)2 for 
which the latter has a local minimum. These angles are the fracture angles according 
to the maximum stress and the SED criteria. 

7.26. For Problem 7.25, plot the variation of the critical stress and the fracture angle 
of the composite plate for a tensile applied stress u according to the maximum stress 
criterion. Indicate the regions in which fracture starts from the more vulnerable 
comers of the inclusion. 

7.27. As in Problem 7.26 according to the SED criterion. 

7.28. The stress field at the end points of a rigid rectilinear inclusion embedded in 
an infinite plate is given by equations of Problem 7.22. For an inclusion of length 21 
that subtends an angle P with the direction of applied uniaxial stress u at infinity the 
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Fig. 7.26. An inclined crack in a pure shear stress field. 

coefficients /q and Icn are given by 

Plot the variation of fracture angle and critical stress for fracture of the composite 
plate versus angle P, for various values of n (1 5 n 5 3)  when the applied stress o 
is tensile. 

7.29. As in Problem 7.28 when the applied stress u is compressive. 

7.30. For a mode-I1 crack, plot the variation of the circumferential stress and the 
strain energy density factor S versus polar angle 8 for n = 2.0. Indicate the values of 
the angle 8 for which the former has a local maximum and the latter a local minimum. 
These values give the crack growth directions according to the maximum stress and 
the SED criteria. 

7.31. A large plate subjected to pure shear stress T contains a crack of length 2a 
(Figure 7.26). Calculate the angle of crack extension 8, and the critical shear stress 
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7, for crack growth according to the maximum stress criterion for ,L? = 45", 60°, 75" 
and 90". 
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Dynamic Fracture 

8.1. Introduction 

The analysis of crack systems considered so far concerned only quasi-static situations 
in which the kinetic energy is relatively insignificant compared with the other energy 
terms and can be omitted. The crack was assumed either to be stationary or to grow 
in a controlled stable manner, and the applied loads varied quite slowly. The present 
chapter is devoted entirely to dynamically loaded stationary or growing cracks. In 
such cases rapid motions are generated in the medium and inertia effects become 
important. 

Elastodynamic analysis of crack problems indicates that stresses and displace- 
ments caused by dynamic loading can differ greatly from those associated with the 
corresponding static loading. At some locations in the body the dynamic stresses are 
higher than the corresponding static stresses. This result may be explained by the 
intersection of the elastic waves with the crack faces and other characteristic bound- 
aries of the body. Furthermore, the mechanical properties of the material depend 
markedly on the time for which the applied loading is maintained in the solid. For 
example, in most metals, both the yield and ultimate strength increase with the rate 
of loading. Dynamic loads give rise to high stress levels near cracks and fracture 
takes place so rapidly that there is insufficient time for yielding to develop. Energy 
is therefore released within a short time, leading to rapid crack propagation; this 
explains the experimental observation that dynamic loads generally promote brittle 
fractures. 

Broadly speaking, problems of dynamic fracture mechanics fall into two main 
categories. The first concerns the situation where a crack reaches a point of instability 
and moves rapidly under slowly varying applied loading. Motion of the crack leads to 
a sudden unloading along the crack path. The second category of dynamic problems 
arises when a body with a stationary crack is subjected to a rapidly varying load - 
for example, an impact or impulsive load. Problems of interest concern initiation of 
rapid crack growth, crack speed, crack branching and crack arrest. 

A dynamic crack problem may be stated in its most general form as follows: 
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A solid body with an initial crack is subjected to a time-dependent loading. We 
are seeking the conditions of crack initiation, growth and arrest. Even in its most 
general form, the formulation of the problem is not an easy task. Study is usually 
restricted to plane symmetric or axisymmea-ic problems in which the crack area can 
be characterized by a length parameter a, and the crack path is known beforehand. 
Solution of the problem requires determination of the three displacement components 
and the crack length, as a function of time. The three equations of motion, coupled 
with a fracture criterion, provide four equations for the determination of these four 
unknown quantities. 

The present chapter presents the basic concepts and the salient points of dynamic 
fracture mechanics. We first describe the theory advanced by Mott for the prediction 
of the speed of a moving crack. The theory, in spite of its limitations, constitutes 
the 6rst attempt to include the kinetic energy term into the Griffith energy balance 
equation. We then outline further extensions and improvements of Mott's results, 
and describe the stress field around a crack moving at constant velocity. We focus 
attention on the stress field near the crack tip; this has an inverse square root singularity 
and is expressed in terms of the dynamic stress intensity factor, just as in the static 
case. We then introduce the concept of the strain energy release rate and relate it to 
the stress intensity factor. We treat the problems of crack branching and crack arrest. 
The chapter concludes with a description of the main methods for the experimental 
study of dynamic crack problems. 

8.2. Mott's model 

The theory proposed by Mott [8.1] constitutes the lirst attempt for a quantitative 
prediction of the speed of a rapidly moving crack. Mott extended Griffith's theory 
by adding a kinetic energy term to the expression of the total energy of the system 
and sought the configuration which keeps this total energy constant. The problem 
considered by Mott was the propagation of a central crack in an infinite plate subjected 
to a uniform time-independent uniaxial stress a perpendicular to the plane of the 
crack. He made the following key assumptions: 
(i) The stress and displacement fields for the dynamic problem are the same as 

those for the static problem, with the same crack length. 
(ii) The crack is travelling at a constant speed. 
(iii) The crack speed is small compared to the shear wave speed in the body. 

The kinetic energy term I( entering into the energy balance equation (4.1) is given 
by 

where p denotes the mass density, ur, the displacement component and V the body 
volume. A dot over a letter denotes ordinary differentiation with respect to time. 
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To obtain an expression for the kinetic energy term K we must know the dis- 
placement field in the solid. Mott derived an expression for K on dimensional 
grounds. The components of the velocity at a given point in the body due to a rapidly 
propagating crack may be written as 

where V = daldt is the crack speed. 
The kinetic energy takes the form 

The displacement components u and v behind the crack tip given from Equa- 
tions (2.30) can be put in the form 

For a fixed element, the distance T from the moving crack tip is proportional to 
the crack length, and the displacements u and v can be put in the form 

Thus, Equation (8.3) becomes 

R 

For an infinite plate the crack length 2a is the only characteristic length. 
area integral in Equation (8.6) must be proportional to a, and K becomes 

where k is a constant. 
Integrating the energy balance equation (Equation (4.1)) with respect to time and 

omitting the strain energy dissipated to plastic deformation we obtain 

where c is a constant. 
For a crack propagating under either fixed-grips or constant stress conditions we 

introduce the value of W - U e  from Equation (4.12) and obtain, for conditions of 
generalized plane stress, 
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Differentiating Equation (8.9) with respect to a  and making use of the second 
assumption above ( d a l d a  = 0 )  we find the crack speed 

where from Griffith's equation (Equation (4.14)) 

with no being the half crack length at t = 0. 
For a  >> a0 Equation (8.10) predicts a limiting crack speed 

where a, is the speed of longitudinal waves in the material which is equal to the 
speed of sound. 

Roberts and Wells [8.2] found that J27r/k2 = 0.38 for a Poisson's ratio v = 0.25. 
Thus Equation (8.10) becomes 

Berry [8.3] and Dulaney and Brace [8.4] re-examined Mott's theory by relieving 
the assumption d V / d a  = 0. If the applied stress a  is greater than the critical stress 
uo for the initiation of crack extension, Equation (8.9) gives 

Putting V  = 0 and a  = a0 at t = 0 ,  we find that Equation (8.14) takes the form 

By eliminating the constant c from Equations (8.14) and (8.15) we obtain 

where 

For n = 1 Equation (8.16) gives 
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using the result obtained by Roberts and Wells to determine k. 
Experimentally obtained crack speeds are below the theoretical values given by 

Equation (8.18). Roberts and Wells [8.2] reported values of alv, in the range 0.20- 
0.37 for various materials. Kanninen [8.5], based on the Dugdale model, predicted a 
crack speed a = O.lv, in a steel plate. Duffy et al. r8.63 measured cleavage fracture 
speeds in steel pipes of the order of 700 m/s and shear fracture speeds of the order of 
200 mls. 

8.3. Stress field around a rapidly propagating crack 

The singular stress field around a crack propagating with speed V = a is given by 
18.71 

K(t)  B 
Ull = - 

&G 
'l 4" 6 cos $1 (8.19a) [(I + 24: - a) fi COS y - 

'712 = sin - - 

where 

CI and C2 are the dilatational and shear wave speeds given by 

The stress intensity factor K(t) is defined as in the static case by 

Equations (8.19) for V -+ 0 coincide with Equations (2.28) of the stress field 
around a static crack. 

The particle velocity field in the vicinity of the crack tip is given by 
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U ,  = - K(t) BV [K - cos - $1 - - 2P1h - cos - :] 
G /L 2 1+p;  

Relations for the dynamic stress intensity factor have been developed by various 
investigators. Broberg [8.8] and Baker [8.9] gave the following equation 

where K(0) is the static stress intensity factor and k(V) is a geometry independent 
function of crack speed. K(0) can be approximated as the value of stress intensity 
factor for a static crack of length equal to the length of the moving crack. The quantity 
k(V) decreases monotonically with crack speed and can be approximated by 

where CR denotes the Rayleigh wave speed. Observe that the dynamic stress intensity 
factor becomes equal to zero when the crack speed V becomes equal to CR. 

Rose [8.10] gave the following approximation for k(V): 

where 

'and CI and C2 are given by Equation (8.23). 
It is of fundamental importance to refer two basic properties of the singular 

elastodynamic stress field resulting from Equations (8.19). The 6rst is related to 
the angular variation of the circumferential stress as and the second to the stress 
triaxiality ahead of the crack tip. 

Figure 8.1 presents the angular variation of the stress as normalized to its value 
for 0 = 0, for different values of crack speed, to the Rayleigh wave speed ratio 
aleR.  Note that CR is somewhat smaller than the shear wave speed and observe 
that us presents a maximum for an angle 0 different from zero when the crack speed 
becomes large. This result explains the experimentally observed phenomenon of 
crack branching at large crack speeds. 

The ratio of the principal stresses a22 and all ahead of the crack (9  = 0) is 
expressed by 
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Fig. 8.1. Normalized circumferential stress u s e ( a ,  0 ) / u e e  ( a ,  0) versus polar angle 0 for different values 
of a / c R .  

Fig. 8.2. Variation of u z z / u l l  versus a / c R .  

Figure 8.2 shows the variation of uZ2/all with a/CR. Observe that a22/ull 

decreases continuously form 1, at zero crack speed, to 0 at the Rayleigh speed. 



x2 k v =  crack velocity 
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I- vt- 
Fig. 8.3. A fixed and a moving coordinate system attached to the crack tip. 

Thus, the stress triaxiality ahead of a rapidly moving crack decreases as the crack 
speed increases. This leads to higher plastic deformation, and explains the observed 
phenomenon of increasing crack growth resistance at high crack speeds. 

8.4. Strain energy release rate 

Consider a crack in a two-dimensional elastic body moving with constant velocity V 
in the X I  direction (Fiigure 8.3). The body is referred to the fixed coordinate system 
XI XZ, while a set of moving rectangular coordinates XI, x2 are attached to the crack 
tip. We have 

Let us now consider an arbitrary contour C which encompasses the crack tip and 
travels at the same speed as the crack. The balance of energy flow across the moving 
region bounded by C may be written as [8.11]: 

The left-hand side of this equation represents the work of tractions across C; the 
first and second terms on the right-hand side are the rate of increase of internal and 
kinetic energies stored inside the region R enclosed by the curve C; the third term 
is the rate at which energy is dissipated by the moving crack. Ti = ri j l l j  denotes 
the traction components acting across C, and ~j the components of the unit normal 
vector n of curve C. When Equation (8.32) is referred to the moving coordinates 
21, 2 2  defined from Equation (8.3 1) it takes the form 
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Using Green's convergence theorem, we find that Equation (8.33) takes the form 

Conservation of the mechanical energy of the system leads to 

Introducing the strain energy density function w = w(sij) from 

'and applying Green's theorem, we obtain 

Using Equation (8.37), we find that Equation (8.34) becomes 

For a static crack (V = 0), Equation (8.38) reduces to the J-integral (Equa- 
tion (6.16)) which is equal to the strain energy release rate G for elastic behavior 
(Equation (6.30)). Using derivations similar to those in the J-integral (Section 6.2) 
we can easily prove that G is path independent - that is, it retains its value for an 
arbitrary choice of the integration path C surrounding the crack tip. 

As for the J-integral (Section 6.3), we can easily calculate G by choosing C as a 
circle of radius R centered at the crack tip, and using the asymptotic expressions of 
stresses and displacements given from Equation (8.19) and (8.25) 

dui 
- (all cos 8 + a12 sin 8) - + (u12 cos 8 + a22 sin d) - d8 

8x1 8x1 1 
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Equation (8.40) establishes a relation between the strain energy release rate or 
crack driving force G and the dynamic stress intensity factor K(t)  under plane 
strain conditions. For the static crack problem (V = 0) Equation (8.40) reduces to 
Equation (4.21). 

A fracture criterion for dynamic crack propagation based on Equation (8.40) can 
be established as in the static case. It is assumed that dynamic crack propagation 
occurs when the strain energy release rate G becomes equal to a critical value; 
this is equivalent to a critical stress intensity factor fracture criterion. For small- 
scale yielding the concept of K-dominance for stationary cracks can be extended to 
dynamic cracks. In these circumstances the fracture criterion for a propagating crack 
takes the form 

where I(ID(V, t)  represents the resistance of the material to dynamic crack propaga- 
tion and is assumed to be a material property. The dynamic stress intensity factor 
K(t)  is determined from the solution of the corresponding elastodynamic problem 
and is a function of loading, crack length and geometricalconfiguration of the cracked 
body. The material parameter KID can be determined experimentally and depends 
on crack speed and environmental conditions. A brief description of the available 
experimental methods used for the determination of K and KID will be presented in 
Section 8.6. 

8.5. Crack branching 

When a crack propagates at a high speed it may divide into two branches. In many 
cases these divide further until a multiple crack branching pattern is obtained. 

Sih [8.12] used the model of a finite crack spreading at both ends at constant speed 
in conjunction with the strain energy density criterion, to predict the crack bifurcation 
angle. For this case the strain energy density factor is given by 
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Fig. 8.4. Strain energy density factor versus crack speed [8.12]. 

and 

Here K and E are complete elliptic integrals of the lirst and second kind, respectively. 
According to the strain energy density failure criterion, the crack extends in the 

direction which makes S a minimum. The critical value Smh is then computed from 
Equation (8.42) as a function of crack speed. Figure 8.4 shows the variation of 
Smin/ (Smh)~ with V/h. Here (S-)o = (1 - 2v) aJa/4p and V represents the 
crack speed. Observe that S- decreases smoothly from its largest value at V = 0 
as the crack speed increases. Table 8.1 shows values of the half branch angle 80 with 
the corresponding values of S-/(S-)o, for different values of crack speed, and 
Poisson's ratio. Note that as v is varied from 0.21 to 0.24 80 changes from f 18.84" 
to f 15.52" which is very close to experimental observation. 



TABLE 8.1. Angles of crack bifurcation. 
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8.6. Crack arrest 

The problem of arrest of arapidly propagating crackis of major theoretical and practi- 
cal importance. The load transmission characteristics of the system play a signscant 
role in the arrest of a crack. When energy is constantly supplied to the crack-tip re- 
gion, the crack continues to move. This is the situation of a crack in a uniform tensile 
stress field. On the other hand, crack growth under constant displacement conditions 
eventually leads to crack arrest, since the energy supplied to the crack-tip region 
progressively decreases with time. When the distance between the energy source and 
crack tip increases with time, the capability of a system to arrest a crack increases. 
This occurs, for example, in the splitting of a long cantilever beam specimen. 

A crack arrest criterion based on the stress intensity factor can be put in the form 

K ( t )  = I(IA = min [IGD (V)]  (8.45) 

where K ( t )  is the dynamic stress intensity factor and KID the material fracture 
toughness for dynamic crack propagation. Experimental studies indicate that KID 
depends on crack speed a [8.13-8.151. Figure 8.5 shows a typical form of the curve 
I(ID = K I D ( V )  for many metals and polymers. Observe that KID is nearly speed 
independent at low crack speeds, and increases as the crack speed increases. 

The capability of a multi-member structural system to arrest a crack increases 
when the load is taken up and transmitted to other structural elements. Usually arrest 
strips are used, a method that finds application in aircraft structures. For further 
information on crack arrest procedures used in structural design refer to [8.161. 

8.7. Experimental determination of crack velocity and dynamic stress 
intensity factor 

Experimental studies play a key role in improving our understanding of dynamic 
fracture behavior of materials and structures, and in the measurement of the relevant 
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Start 'of  branching 
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attempt 

Fig. 8.5. Dynamic fracture toughness versus crack speed for Homalite 100 [8.13]. 

dynamic fracture material properties. In this section we present the most widely 
used experimental methods for measuring the crack velocity and the dynamic stress 
intensity factor. 

(a)  Crack velocity 

Initial measurements of crack velocity were conducted using a series of conducting 
wires placed at certain intervals along the crack path and perpendicular to the direction 
of the crack propagation. The wires form one leg of a bridge which is connected to an 
oscilloscope. As the crack propagates the wires break and the corresponding times 
are obtained from the trace on the oscilloscope. This technique allows measurement 
of the average speed over the gage length between the wires. 

High-speed photography is perhaps the most widely used method of recording 
rapid crack propagation. The multiple-spark Cranz-Schardin camera, which is ca- 
pable of operating at rates of up to lo6 frames per second, is widely employed. 
Although best results are obtained for transparent materials, the method can also be 
used for nontransparent materials by polishing the surface of the specimens. 
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(b)  Dynamic stress intensity factor 

The method of dynamic photoelasticity was first used by Wells and Post [8.17] to 
determine the state of stress and the speed of a rapidly propagating crack. The stress 
intensity factor was obtained from the analysis of the isochromatic pattern around 
the crack tip. Further studies of this problem have been performed by Kobayashi 
and coworkers [8.18, 8.191. These investigations were based on the static solution 
of the stress field near the crack tip. Kobayashi and Mall [8.20] estimated that the 
error introduced when the static stress field was used, is small for crack propagating 
speeds less than 0.15C1. Extensive studies on the dynamic photoelastic investigation 
of crack problems have been performed at the Photomechanics Laboratory of the 
University of Maryland [8.13,8.14,8.21,8.22] using the dynamic stress field around 
a moving crack. A I< versus V relationship was established and for Homalite 100 
it was found to be independent of the specimen geometry, for crack speeds below 
300 mls. 

The optical method of caustics has also been used extensively for the experimental 
study of crack initiation, rapid crack growth, crack arrest and crack branching [8.23- 
8.281. A dynamic correction for the determination of the stress intensity factor from 
the obtained optical pattern was used. This method has proved to be very efficient 
and powerful for the study of dynamic crack problems. 

For the determination of dynamic fracture toughness, IGD, several types of spec- 
imens - including the double cantilever beam specimen, the single edge-notched 
specimen and the wedge-loaded specimen - have been proposed. The last type of 
specimen presents a number of advantages over the others and is mainly used in 
dynamic fracture testing. Duplex specimens, with crack initiation taking place in 
a hardened starter section welded into the test material, are sometimes preferred 
in situations where large monolithic specimens are needed. The dynamic fracture 
toughness KID is determined as a function of crack speed by measuring the critical 
stress intensity factor for crack initiation and the crack length at arrest, and using 
appropriate dynamic analysis for the specilic type of specimen. The critical value 
KIA of the stress intensity factor at crack arrest is determined as the minimum value 
of KID taken from a number of measurements at various crack speeds. 

Besides the dynamic fracture toughness KID,  which depends on crack speed, the 
critical value KId of the stress intensity factor for crack initiation under a rapidly 
applied load is of interest in practical applications. KId depends on the loading rate 
and temperature and is considered to be a material parameter. K I ~  is determined 
experimentally by using the three-point bend specimen. The specimen is loaded 
by a falling weight and K I ~  is determined by static analysis. K I ~  decreases with 
increasing loading rate, below the transition temperature, and increases with load 
rate above the transition temperature. 
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Examples 

Example 8.1. 

The singular elastodynamic stress and displacement fields of a crack subjected to 
tearing-mode of deformation are expressed by 

where the functions g(/h) and h ( h )  are given by Equation (8.43). 
For an infinite plate with a central crack extending on both ends at constant speed 

the function F ( & )  is given by 

where I< denotes the complete elliptic integral of the first kind with argument V/C2. 
Calculate the strain energy release rate Gm and plot its variation with V/C2. 

Solution: The strain energy release rate Gm is calculated from Equation (8.38) by 
choosing the integration path C as a circle of radius R centered at the crack tip, as 

The strain energy density function w is given by 

Substituting the values of stresses a13 and and displacement u3 from Equa- 
tion (1) into Equations (3) and (4) and performing the integration in Equation (3) we 
obtain 

where G& is the static value of G and can be obtained by putting V = 0 as 
(Equation (4.27)) 
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Fig. 8.6. Normalized strain energy release rate versus crack speed of an expanding crack under anti-plane 
shear. 

The variation of Gm/G& versus V/C2 is shown in Figure 8.6. Note that the 
influence of crack speed on Gm is negligible for small values of V/C2, while at very 
high values of V/C2, Gm diminishes rapidly and becomes zero at V = Cz. 

Example 8.2. 

A double cantilever beam (DCB) of height 2h with a crack of length a (Figure 4.14) 
is made of a nonlinear material whose stress-strain relation is described by 

where (I: measures the stiffness of the material and is equal to the modulus of elasticity 
E for p = 1 (linear material). Equation (1) is shown in Figure 8.7. The DCB is 
subjected to an end load P that remains constant during rapid crack propagation. Let 
ao denote the initial crack length and PC the load at crack propagation. 

Calculate the speed V and acceleration a, of the crack and plot their variation 
versus aola for various values of p [S.ll]. 

Solution: The energy balance equation during crack growth (Equation (4.1)) takes 
the form 
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E 
Fig. 8.7. Nonlinear stress-strain curves. 

Pc(u - u,) = U ( a )  - U ( @ )  + K + y(a - ao) . (2) 

The left-hand side of Equation (2) represents the work supplied to the system 
during growth of the crack from its initial length CLO to the length a. u ,  and u 
represent the load-point displacements at crack lengths a0 and a, respectively. The 
right-hand side of Equation (2) is composed of the term U ( a )  - U(a0) that represents 
the change of strain energy, the term K that represents the kinetic energy and the 
term y ( a  - ao) that represents the change of the surface energy. 

From beam theory we have for the stress a and strain E at position x of the DCB 

where 
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The deflection y(x) of each beam of the DCB at position x during crack growth 
is calculated from beam theory as 

and the deflection of each beam at the point of application of the load is 

The strain energy of each beam is 

Substituting the values of u and E from Equations (3) an' d (4) we obtain 

Equation (9) can be put in the form 

The kinetic energy I( due to the motion of the beams along the y-direction is 

Substituting the value of y = y(x) from Equation (6) into Equation (1 1) we obtain 

where V = daldt is the crack velocity. 
Substituting the values of u, uc = u(a = ao), U(a), U(ao) and K from Equa- 

tions (7), (9) and (12) into the energy balance Equation (2) we obtain for the crack 
speed during crack growth 

a0 (2P+l)/P 
[I-(;) - n  

Here 
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a ,/a 
Fig. 8.8. Normalized crack velocity versus crack length at constant force. 

By differentiation from Equation (13) with respect to time we obtain the crack 
acceleration a, = dV/dt 

As the initial acceleration of the crack a, = a,(a = ao) must be positive we 
obtain from Equation (15) 

so that 

Numerical results were obtained for n = 0.99[(28 + 1) /P]  and various values 
of p. Figure 8.8 presents the variation of normalized crack speed V versus @ / a  
for ,O = 0.2, 0.4, 0.6, 0.8 and 1.0. The value P = 1.0 corresponds to a linear 
material. Note that crack speed increases during crack growth, from zero value at 
ao/a = 1 reaches a maximum, and then decreases and becomes zero at ao/a + 0. 
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Q ,/a 

Fig. 8.9. Normalized crack acceleration versus crack length at constant force. 

Figure 8.9 shows the variation of normalized crack acceleration a, versus aola for 
various values of p. The crack fist accelerates, and then decelerates before coming 
to a complete stop at aola -+ 0. From Figures 8.8 and 8.9 we observe that the crack 
travels more slowly as ,8 decreases. This should be expected as the material becomes 
stiffer with decreasing P. 

Example 8.3. 

An infinite strip of height 2h with a semi-infinite crack is rigidly clamped along its 
upper and lower faces at y = f h (Figure 6.16). The upper and lower faces are moved 
in the positive and negative y-direction over distances UQ, respectively. Determine 
the dynamic stress intensity factor K( t )  during steady state crack propagation. 

Solution: The dynamic stress intensity factor K ( t )  is computed from Equation (8.40) 
as 
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The strain energy release rate G is computed from Equation (8.38) by taking the 
same integration path as in Example 6.1. Observing that duildx = 0 along the 
line BC we find that G for the dynamic problem is equal to its value for the static 
problem. Substituting the value of G = J from Equation (9) of Example 6.1 into 
Equation (1) we obtain for K ( t )  

under conditions of plane strain, and 

under conditions of generalized plane stress. 

Example 8.4. 

A crack of length 20 mm propagates in a large steel plate under a constant stress 
of 400 MPa. The dynamic toughness of the material KID can be expressed by the 
following empirical equation 

where KIA is the arrest toughness of the material, K is the limiting crack speed 
and m is an empirical parameter. Using Rose's approximation for the dynamic 
stress intensity factor determine the speed of crack during propagation. Take: Cl = 
5940 mlsec, C2 = 3220 mlsec, CR = 2980 mlsec; KIA = 100 MPa 6, m = 2, 
K = 1600m/sec. 

Solution: Crack propagation is governed by the following equation (Equation (8.41)) 

of the material. 
Using Rose's approximation for K1(t) we have (Equation (8.26)) 
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K(V)  is computed from Equation (8.28), where h is given by Equation (8.29). 
We have 

and 

I(ID is computed as 

Substituting the values of K*(t) and KID from Equations (3) and (7) into Equa- 
tion (2) we obtain an equation involving the unknown crack speed. From a numerical 
solution of this equation we obtain 

Problems 

8.1. Show that the strain energy release rate G defined by Equation (8.38) is path 
independent. 

8.2. The double cantilever beam of Example 8.2 is subjected to an end displacement 
u,  which remains constant during rapid crack propagation. Calculate the speed and 
acceleration of the crack and plot their variation versus ao/a for various values of P. 
Take n = 0.6(2,0 + l)/P. 

8.3. The double cantilever beam of Example 8.2 is made of a linear material. 
Calculate the speed of the crack and plot its variation versus a/ao when the applied 
load P is kept constant during crack propagation. Take various values of the ratio 
n = PIPo, where Po is the load at crack initiation. 

8.4. The double cantilever beam of Example 8.2 is made of a linear material. 
Calculate the speed of the crack and plot its variation versus a/ao when the applied 
displacement u is kept constant during crack propagation. Take various values of the 
ratio n = u/uo, where uo is the displacement at crack initiation. 

8.5. The Yoffe crack model considers a crack of fixed length propagating with 
constant speed in an infinite plate under a uniform tensile stress normal to the crack 
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line. It is assumed that the crack retains its original length during propagation by 
resealing itself at the trailing end. For this problem the strain energy release rate G 
is given by 

where G* is the strain energy release rate at zero crack speed. G* and F are given 
by 

Plot the variation of GIG* versus crack speed V/C2 under conditions of plane 
strain for various values of Poisson's ratio v. 

8.6. For Problem 8.5 show that G becomes infinite at a crack speed V computed 
from the following equation 

This equation gives the Rayleigh wave speed CR(CR < C2 < CI). 

8.7. Plot the variation of normalized Rayleigh wave speed CR/C2 versus Poisson's 
ratio I /  under conditions of plane stress and plane strain according to Equation of 
Problem 8.6. Also plot the variation of C1 /C2 versus v. 

8.8. Calculate the dilatational, Cl, the shear, C2, and the Rayleigh, CR, wave speeds 
for (a) steel with E = 210 GPa, p = 7800 kg/m3, v = 0.3 and (b) copper with 
E = 130 GPa, p = 8900 kg/m3, v = 0.34. 

8.9. Broberg considered a crack in an infinite plate extending on both ends with 
constant speed. For this case the strain energy release rate G is computed from 
Equation of Problem 8.5 where the function F(P1, is given by 

and I< and E are complete elliptic integrals of the &st and second kind respectively. 
They are given by 
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Plot the variation of GIG* versus crack speed V/C2 under conditions of plane 
strain for various values of Poisson's ratio v. Note that G becomes zero as v tends to 
the Rayleigh wave speed CR. 

8.10. An infinite strip of height 2h with a semi-infinite crack is rigidly clamped 
along its upper and lower faces at y = f h (Figure 6.16). The upper and lower 
faces are moved in the positive and negative z-direction over distances WO, respec- 
tively. Determine the dynamic stress intensity factor Km(t) during steady state crack 
propagation. Note that Km(t) is related to the strain energy release rate Gm by 

8.11. Show that the strain energy release rate Gm for mode-I dynamic crack propa- 
gation can be determined by the following equation 

GI = lim 1 / o22(x1,0) ~ ( 6  - x l , n ) d x ~  
S+O 6 

0 

where S  is a segment of crack extension along the xl-axis. Note that this expression 
of GI is analogous to Equation (4.19) of the static crack. 

8.12. Establish a relationship between the dynamic, G, and static, G(O), energy 
release rates using Rose's approximation to k(V). Plot the variation of G/G(O) 
versus V/CR for a thick steel plate with: C1 = 5940 mlsec, C.  = 3220 mlsec and 
CR = 2980 mlsec. 

8.13. A crack of length 2a propagates in a large steel plate under a constant stress 
of 300 MPa. The dynamic toughness of the material KID can be expressed by the 
following empirical equation 

where J(IA  is the arrest toughness of the material, is the limiting crack speed and 
m is an empirical parameter. Plot the variation of crack speed V versus initial crack 
length for 10 mm < 2a < 100 mm, using Rose's approximation for the dynamic 
stress intensity factor. Take Cl = 5940 mlsec, C2 = 3220 mlsec, CR = 2980 mlsec; 
KIA = 100 MPa ,/hi, m = 2,K = 1600 mlsec. 
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Fatigue and Environment-Assisted Fracture 

9.1. Introduction 

It was first realized in the middle of the nineteenth century that engineering compo- 
nents and structures often fail when subjected to repeated fluctuating loads whose 
magnitude is well below the critical load under monotonic loading. Early investiga- 
tions were primarily concerned with axle and bridge failures which occurred at cyclic 
load levels less than half their corresponding monotonic load magnitudes. Failure 
due to repeated loading was called "fatigue failure". 

Early studies in fatigue did not account for the details of the failure mode nor for the 
existence and growth of initial imperfections in the material, but tried to determine 
the fatigue life in terms of global measurable quantities, like stress, strain, mean 
stress, etc. The results of tests performed on small laboratory specimens subjected to 
repeated sinusoidally fluctuating loads were interpreted in diagrams expressing the 
stress amplitude versus the number of cycles to failure, known as S - N curves. The 
fatigue life was found to increase with decreasing stress level, and below a certain 
stress level, known as the fatigue limit, failure did not occur for any number of 
loading cycles. The mean stress level, defined as the average of the maximum and 
minimum stress on the cyclic loading, plays an important role on fatigue life. It was 
found that the cyclic life decreased with increasing mean stress for a given maximum 
applied stress level. A number of empirical relationships for fatigue life, derived 
from the curve fitting of test data, have been proposed in the literature. The S - N 
curve method and other available procedures based on gross specimen quantities lead 
to an inaccurate prediction of the fatigue life of engineering components due to the 
large scatter of experimental results as influenced by specimen size and geometry, 
material and the nature of the fluctuating load. Furthermore, the physical phenomena 
and mechanisms governing the fatigue process are completely ignored. 

A better understanding of the fatigue phenomenon can be obtained by modelling 
the fatigue crack initiation and propagation processes. Crack initiation is analyzed 
at the microscopic level, while the continuum mechanics approach is used for crack 
propagation. The necessity for addressing these two processes separately arises 
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from the inability of the current theory to bridge the gap between material damage 
that occurs at microscopic and macroscopic levels. It is generally accepted that, 
when a structure is subjected to repeated external load, energy is accumulated in the 
neighborhood of voids and microscopic defects which grow and coalesce, forming 
microscopic cracks. Eventually larger macroscopic cracks are formed. A macrocrack 
may be defined as one that is large enough to permit the application of the principles 
of homogeneous continuum mechanics. A macrocrack is usually referred to as a 
fatigue crack. The number of cycles required to initiate a fatigue crack is the fatigue 
crack initiation life Ni. 

Following the initiation of a fatigue crack, slow stable crack propagation begins, 
until the crack reaches a critical size corresponding with the onset of global instability 
leading to catastrophic failure. Thus, the fatigue life of an engineering component 
may be considered to be composed of three stages: the initiation or stage I; the 
propagation or stage 11; and the fracture or stage 111, in which the crack growth rate 
increases rapidly as global instability is approached. The number of cycles required 
to propagate a fatigue crack until it reaches its critical size is the fatigue crack 
propagation life N,. Depending on the material, the amplitude of the fluctuating load 
and environmental conditions, the fatigue crack initiation life may be a small or a 
substantial part of the total fatigue life. 

It has long been recognized that the strength of solids depends greatly on the en- 
vironment in which they are located. Under the influence of the environment, a body 
may behave in a brittle or a ductile manner, and its strength may increase or decrease. 
The failure of engineering components subjected to an aggressive environment may 
occur under applied stresses well below the strength of the material. Environmental 
conditions greatly influence the processes of local failure at the tip of a crack and 
cause subcritical crack growth and gradual failure of structural components. Failure 
under such conditions involves an interaction of complex chemical, mechanical and 
metallurgical processes. The basic subcritical crack growth mechanisms include 
stress corrosion cracking, hydrogen embrittlement and liquid embrittlement. An ag- 
gressive environment has a deleterious effect on the fatigue life of an engineering 
component. The corrosion-fatigue behavior of a structural system subjected to a 
fluctuating load in the presence of an environment is extremely complicated. 

Because of their practical importance, the problems of fatigue and environment- 
assisted crack growth have been given much attention in the literature. A vast number 
of data are available, and a number of different theories have been proposed, based 
mainly on experimental data correlations. It is the purpose of the present chapter to 
present the phenomena of fatigue and environment-assisted crack growth within the 
framework of the macroscopic scale. The basic fatigue crack growth laws based on 
the stress intensity factor are described. A phenomenological analysis of the problem 
of stress corrosion cracking is also presented. 
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Fig. 9.1. Typical fonn of crack size versus number of cycles curve for constant amplitude loading. 

9.2. Fatigue crack propagation laws 

(a )  General considerations 

Fatigue crack propagation, referred to as stage 11, represents a large portion of the 
fatigue life of many materials and engineering structures. Accurate prediction of the 
fatigue crack propagation stage is of utmost importance for determining the fatigue 
life. The main question of fatigue crack propagation may be stated in this form: 
Determine the number of cycles N, required for a crack to grow from a certain 
initial crack size a0 to the maximum permissible crack size a,, and the form of this 
increase a = a(N),  where the crack length a corresponds to N loading cycles. 
Figure 9.1 presents a plot of a versus N which is required for predicting, say, the 
life of a particular engineering component. ai represents the crack length that is big 
enough for fracture mechanics to apply, but too small for detection, while a1 is the 
non-destructive inspection detection limit. The crack first grows slowly until the 
useful life of the component is reached. The crack then begins to propagate very 
rapidly, reaching a length af at which catastrophic failure begins. 

Fatigue crack propagation data are obtained from precracked specimens subjected 
to fluctuating loads, and the change in crack length is recorded as a function of loading 
cycles. The crack length is plotted against the number of loading cycles for different 
load amplitudes. The stress intensity factor is used as a correlation parameter in 
analyzing the fatigue crack propagation results. The experimental results are usually 
plotted in a log (AK) versus log (da/dN) diagram, where AK is the amplitude 
of the stress intensity factor and da/dN is the crack propagation rate. The load is 
usually sinusoidal with constant amplitude and frequency (Figure 9.2). Two of the 
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Fig. 9.2. A sinusoidal load with constant amplitude and frequency. 

four parameters I(,,,, K-, AK = Km, - K,;, or R = Km;,/Kmx are needed to 
define the stress intensity factor variation during a loading cycle. 

A typical plot of the characteristic sigmoidal shape of a log(AK) - log(da/dN) 
fatigue crack growth rate curve is shown in Figure 9.3. Three regions can be 
distinguished. In region I, da/dN diminishes rapidly to a vanishingly small level, 
and for some materials there is a threshold value of the stress intensity factor amplitude 
AKth meaning that for AK < AKth no crack propagation takes place. In region 
I1 there is a linear log(AK) - log(da/dN) relation. Finally, in region I11 the crack 
growth rate curve rises and the maximum stress intensity factor Kma, in the fatigue 
cycle becomes equal to the critical stress intensity factor Kc, leading to catastrophic 
failure. Experimental results indicate that the fatigue crack growth rate curve depends 
on the ratio R, and is shifted toward higher da/dN values as R increases. 

(b) Crack propagation laws 

A number of different quantitative continuum mechanics models of fatigue crack 
propagation have been proposed in the literature. All these models lead to relations 
based mainly on experimental data correlations. They relate da/dN to such variables 
as the external load, the crack length, the geometry and the material properties. 
Representative examples of such relations will be analyzed in this section. 

One of the earlier mathematical models of fatigue crack propagation was proposed 
by Head r9.11. He considered an infinite plate with a central crack of length 2a 
subjected to a sinusoidally applied stress fa.  Modelling the material elements 
ahead of the crack tip as rigid-plastic work-hardening tensile bars and the remaining 
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Fig. 9.3. Typical form of the fatigue crack growth rate curve. 

elements as elastic bars, he arrived at the relation 

where C1 is a constant which depends on the mechanical properties of the material 
and has to be determined experimentally. Equation (9.1) can be written in terms of 
the stress intensity factor as 

One of the most widely used fatigue crack propagation laws is that proposed by 
Paris and Erdogan [9.2] and is usually referred to in the literature as the "Paris law". 
It has the form 

where AK = I(,,, - Kmh, with Kmax and I<- referring to the maximum and 
minimum values of the stress intensity factor in the load cycle. The constants C 
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and m are determined empirically from a log(AK) - log(da/dN) plot. The value 
of m is usually put equal to 4, resulting in the so-called "4th power law" while 
the coefficient C is assumed to be a material constant. Equation (9.3) represents 
a linear relationship between log(AK) and log(da/dN) and is used to describe 
the fatigue crack propagation behavior in region I1 of the diagram of Figure 9.3. 
Fatigue crack propagation data are well predicted from Equation (9.3) for specific 
geometrical configurations and loading conditions. The effect of mean stress, loading 
and specimen geometry is included in the constant C. Despite these drawbacks, 
Equation (9.3) has been widely used to predict the fatigue crack propagation life of 
engineering components. 

Equation (9.3) does not, however, account for the crack growth characteristics at 
low and high levels of AK. At high AK values, as I(,, approaches the critical 
level Kc, an increase in crack growth rate is observed. For this case (region I11 of 
Figure 9.3) Forman et al. [9.3] proposed the relation 

where R = K-/Km, and C and n are material constants. Equation (9.4) arose 
from the modification of Equation (9.3) by the term (1 - R) Kc - A K; this decreases 
with increasing load ratio Rand decreasing fracture toughness Kc, both of which give 
rise to increasing crack growth rates at a given AK level. Note that for Km, = Kc, 
corresponding to instability, Equation (9.4) predicts an unbounded value of da/dN. 

For low values of AK (region I of Figure 8.3) Donahue et al. [9.4] have suggested 
the relation 

where AKth denotes the threshold value of AK. According to Klesnil and Lucas 
[9.5], AKth is given by 

where AKth(0) is the threshold value at R = 0 and y is a material parameter. 
A generalized fatigue crack propagation law which can describe the sigmoidal 

response exhibited by the data of Figure 9.3 has been suggested by Erdogan and 
Ratwani [9.6], and has the form 

where C, m ,  n are empirical material constants, and 

The factor (1 +P)" has been introduced to account for the effect of the mean stress 
level on fatigue crack propagation, while the factor [Kc - (1 + P) AK] takes care of 
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the experimental dataat high stress levels. Finally, the factor ( A K  - A Kth)n accounts 
for the experimental data at low stress levels and the existence of a threshold value 
AKth of A K  at which no crack propagation occurs. By proper choice of constants, 
Equation (9.8) can be made to fit the experimental data over a range from lo-* to 
lo-' inlcycle. 

Attempts have been made to apply the J-integral concept to elastic-plastic fatigue 
crack propagation. A relation of the form 

in complete analogy to the Paris law has been suggested [9.7,9.8]. 

9.3. Fatigue life calculations 

When a structural component is subjected to fatigue loading, a dominant crack reaches 
a critical size under the peak load during the last cycle leading to catastrophic failure. 
The basic objective of the fatigue crack propagation analysis is the determination 
of the crack size, a, as a function of the number of cycles, N (Figure 9.1). Thus, 
the fatigue crack propagation life N, is obtained. When the type of applied load 
and the expression of the stress intensity factor are known, application of one of the 
foregoing fatigue laws enables a realistic calculation of the fatigue crack propagation 
life of the component. 

As an example, consider a plane fatigue crack of length 2m in a plate subjected to 
a uniform stress a perpendicular to the plane of the crack. The stress intensity factor 
K is given by 

K = f ( a )  u fi (9.10) 

where f ( a )  is a geometry dependent function. 
Integrating the fatigue crack propagation law expressed by Equation (9.3), gives 

a 

where NO is the number of load cycles corresponding to the half crack length m. Intro- 
ducing the stress intensity factor range AK, where I( is given from Equation (9.10), 
into Equation (9.11) we obtain 

Assuming that the function f (a )  is equal to its initial value f (ao) so that 
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Equation (9.12) gives 

N - N o =  2ao [I - (: ) m'2-1] for m 5 2 . (9.14) 
(m - 2) C(AKo)" 

Unstable crack propagation occurs when 

Kmax = f (a)  amax 6 (9.15) 

from which the critical crack length a, is obtained. Then Equation (9.14) for a = a, 
gives the fatigue crack propagation life N, = N, - NO. 

Usually, however, f (a)  varies with the crack length a and the integration of 
Equation (9.12) cannot be performed directly, but only through the use of numerical 
methods. 

9.4. Variable amplitude loading 

The fatigue crack propagation results discussed so far have been concerned with 
constant amplitude load fluctuation. Although this type of loading occurs frequently 
in practice, the majority of engineering structures are subjected to complex fluctuating 
loading. Unlike the case of constant cyclic load where AK increases gradually with 
increasing crack length, abrupt changes take place in AK due to changes in applied 
load. Thus, there occur load interaction effects which greatly influence the fatigue 
crack propagation behavior. 

It was iirst recognized empirically in the early 1960s that theapplication of a tensile 
overload in a constant amplitude cyclic load leads to crack retardation following the 
overload; that is, the crack growth rate is smaller than it would have been under 
constant amplitude loading. This effect is shown schematically in Figure 9.4. The 
amount of crack retardation is dramatically decreased when a tensile-compressive 
overload follows a constant amplitude cyclic load. 

An explanation of the crack retardation phenomenon may be obtained by exam- 
ining the behavior of the plastic zone ahead of the crack tip. The overload has left 
a large plastic zone behind. The elastic material surrounding this plastic zone after 
unloading acts like a clamp on this zone causing compressive residual stresses. As 
the crack propagates into the plastic zone, the residual compressive stresses tend to 
close the crack. Hence the crack will propagate at a decreasing rate into the zone of 
residual stresses. When these stresses are overcome and the crack is opened again, 
subsequent fluctuating loading causes crack growth. 

Due to the crack retardation phenomenon, the determination of the fatigue life 
under a variable amplitude loading by simply summing the fatigue lives of the various 
constant amplitude loads in the loading history leads to conservative predictions. Of 
the various methods proposed for this reason, we will briefly present the root-mean- 
square model and the models based on crack retardation and crack closure. 

The root-mean-square model proposed by Barsom [9.9] applies to variable am- 
plitude narrow-band random loading spectra. It is assumed that the average fatigue 
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Fig. 9.4. Typical form of crack length versus number of cycles culve for constant amplitude loading and 
constant amplitude plus overloading. 

crack growth rate under a variable amplitude random loading fluctuation is approxi- 
mately equal to the rate of fatigue crack growth under constant amplitude cyclic load; 
this is equal to the root-mean-square of the variable amplitude loading. Thus, the 
fatigue crack propagation laws presented in Section 9.2 can be equally applied for a 
variable amplitude random loading when AK is replaced by the root-mean-square 
value of the stress intensity factor A I L ,  given by 

where ni is the number of loading amplitudes with a stress intensity factor range of 
Arc,. 

The model based on crack retardation proposed by Wheeler [9.10] assumes that, 
after a peak load, there is a load interaction effect when the crack-tip plastic zones for 
the subsequent loads are smaller than the plastic zone due to the peak load. Consider 
that at a crack length U,J an overload stress a0 creates a crack-tip plastic zone of length 
c,, which according to Equation (3.6) or (3.7) is given by 
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Fig. 9.5. Crack retardation model proposed by Wheeler [9.10]. 

where A = 1 or 3 for plane strain or generalized plane stress conditions, respectively 
(Figure 9.5). When the crack has propagated to a length a; a stress ui will produce a 
plastic zone of length I+; given by 

The plastic zone due to the stress ui is included inside the plastic zone due to the 
overload. Then a retardation factor $ is introduced given by 

for ai + cpi < a. + c,, (9.19) 

where X = a0 + c,, - a; and m is an empirical parameter. Then, the crack growth 
increment for ai f I+; < a0 + c,, is given by 

where da/dN is the constant amplitude crack growth rate corresponding to the stress 
intensity factor range A K i  of load cycle i. When a; + c,; > a0 + c,, the crack has 
propagated through the overload plastic zone and the retardation factor is 4 = 1. 

Elber [9.11,9.12] introduced a model based on crack closure. It is based on the 
observation that the faces of fatigue cracks subjected to zero-tension loading close 
during unloading, and compressive residual stresses act on the crack faces at zero 
load. Thus, the crack closes at a tensile rather than zero or compressive load. An 
effective stress intensity factor range is defined by 
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where I&, corresponds to the point at which the crack is fully open. Then, one of 
the crack propagation laws of Section 9.2 can be employed. Using, for example, the 
Paris law (Equation (9.3)) we can state this in the form 

where 

A number of empirical relations have been proposed for the determination of U. 
Elber suggested that U can be given in the form 

where 

I<,. R = -  for - 0.1 5 R  5 0.7 
&ax 

Schijve [9.13] proposed the relation 

which extends the previous equation to negative R  ratios in the range - 1.0 < R  < 
0.54. Relations (9.25) and (9.26) were obtained for a 2024-T3 aluminum. De Koning 
[9.14] suggested a method of determining KO,. 

9.5. Environment-assisted fracture 

It has long been recognized that failure of engineering components subjected to an 
aggressive environment may occur under applied stresses well below the strength 
of the material. Failure under such conditions involves an interaction of complex 
chemical, mechanical and metallurgicalprocesses. The basic subcritical crack growth 
mechanisms include stress corrosion cracking, hydrogen embrittlement and liquid 
metal embrittlement. Although a vast number of experiments have been performed 
and a number of theories have been proposed, a general mechanism for environment- 
assisted cracking is still lacking. It is not the intent of this section to cover the material 
in depth, but rather to present a brief account of the phenomenological aspect of the 
problem of stress corrosion cracking. 

The experimental methods for the evaluation of the stress corrosion susceptibility 
of a material under given environmental conditions fall into two categories: the time- 
to-failure tests and the growth rate tests. Both kinds of tests are performed on fatigue 
precracked specimens. The most widely used specimens are the cantilever beam 
specimen subjected to constant load, and the wedge-loaded specimen subjected to 
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Fig. 9.6. Initial stress intensity factor, EG;, versus time to failure, t ,  under environment assisted fracture. 

constant displacement. The stress intensity factors for the specimens are calculated 
by appropriate calibration formulas. 

In the time-to-failure tests the specimens are loaded to various initial stress inten- 
sity factor levels KI, and the time required to failure is recorded. The test results 
are represented in a KIi, versus time t diagram, a representative form of which is 
shown in Figure 9.6. Observe that, as I(Ii decreases, the time to failure increases. 
The maximum value of KIi is equal to 16, or Kc, where KIc is the plane strain 
fracture toughness and Kc is the fracture toughness at thicknesses smaller than the 
critical thickness for which plane strain conditions apply. A threshold stress intensity 
factor KIscc is obtained, below which there is no crack growth. It is generally 
accepted that Krscc is a unique property of the material-environment system. The 
time required for failure can be divided into the incubation time (the time interval 
during which the initial crack does not grow) and the time of subcritical crack growth. 
The incubation time depends on the material, environment and KI~ ,  while the time 
of subcritical crack growth depends on the type of load, the specimen geometry and 
the kinetics of crack growth caused by the interaction of material and environment. 

In the crack growth rate method for the study of stress corrosion cracking, the rate of 
crack growth per unit time, daldt, is measured as afunction of the instantaneous stress 
intensity factor, KI. Figure 9.7 shows a typical form of the curve log(da/dt) - KI. 
This can be divided into three regions. In regions I and I11 the rate of crack growth, 
daldt, depends strongly on the stress intensity factor, KI, while in region I1 daldt 
is almost independent of KI. This behavior in region I1 indicates that crack growth 
is not of a mechanical nature, but it is caused by chemical, metallurgical and other 
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Fig. 9.7. Logarithm of subcritical crack growth rate, log(da/dt), versus stress intensity factor, Kl, under 
environment assisted cracking. 

processes occurring at the crack tip. Note that in region I the threshold stress intensity 
factor corresponds to ICIscc. 

Examples 

Example 9.1 

A large plate contains a crack of length 2ao and is subjected to a constant-amplitude 
tensile cyclic stress normal to the crack which varies between 100 MPa and 200 MPa. 
The following data were obtained: for 2ao = 2 mm it was found that N = 20,000 
cycles were required to grow the crack to 2af = 2.2 mm, while for 2a = 20 mm it 
was found that N = 1000 cycles were required to grow the crack to 2af = 22 mm. 
The critical stress intensity factor is Kc = 60 MPa fi. Determine the constants in 
the Paris (Equation (9.3)) and Formam (Equation (9.4)) equations. 

Solution: The stress intensity factor range AK is calculated as 
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(1) 

For the crack of initial length 2ao = 2 mm we have 

AK = 100 d.rr x (1 x = 5.60 MPa fi 

and for the crack of initial length 2ao = 20 mm we have 

A K  = 100 d.rr x (10 x 10-3) = 17.72 MPa fi . 

The crack growth rate da/dN is calculated for the crack of initial length 2~ = 
2 mm as 

da (1.1 - 1.0) x m - - 
dN - 

= 5 x mlcycle 
20000 cycle 

and for the crack of initial length 2ao = 20 mm as 

da (1 1 - 10) x m - - 
dN - 

= m/cycle . 
1000 cycle 

(a) Paris equation (Equation (9.3)). Taking the logarithm of both sides of Equation 
(9.3) we obtain 

da 
log - = log C + m log AK . 

dN 

Introducing into Equation (6) the data of our problem we obtain the following two 
equations for the determination of the two unknowns C and m 

log(5 x = log C + m log 5.6 

10~(10-~) = log C + m log 17.72 

-8.30 = log C + 0.748 m 

-6.00 = log C + 1.248 m . (8) 

From Equation (7) and (8) we obtain 

C = 1.82 x 10-l2 MN-4.6 m7.9/cycle , m = 4.6 . 

(b) Forman equation (Equation (9.4)). Taking the logarithm of both sides of 
Equation (9.4) we obtain 

[(I - R) Kc - A K ]  =log C + n  log A K .  
dN 
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Introducing into Equation (10) the data of our problem with R = I&i,/Ii&, = 
a-/a,, = 100/200 = 0.5 we obtain the following two equations for the determi- 
nation of the two unknowns C and n 

log[(0.5 x 60 - 5.6) x 5 x = log C + n log 5.6 

log[(0.5 x 60 - 17.72) x = log C + n log 17.72 

-6.914 = log C + 0.748 n 

From Equation (12) we obtain 

Example 9.2. 

A large thick plate contains a crack of length 2~ = 10 mm and is subjected 
to a constant-amplitude tensile cyclic stress normal to the crack which varies be- 
tween a- = 100 MPa and am, = 200 MPa. The critical stress intensity factor is 
Ifi, = 60 MPa 6 and fatigue crack growth is governed by the equation 

where da/dN is expressed in mlcycle and AK in MPa fi. Plot a curve of crack 
growth, a, versus number of cycles, N, up to the point of crack instability. 

If a lifetime of lo6 cycles is required for the plate, discuss the options the designer 
has for an improved lifetime, 

Solution: The critical crack length a, at instability is calculated from equation 

which becomes 

200 = 60 

and gives 
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The curve of crack growth, a, versus number of cycles N, up to the crack length 
a, is calculated by Equation (9.3) with m = 3, C = 0.42 x lo-" MN-3 m5.s/cycle 
and AKo = 100 Jn x (5 x = 12.53 MPa 6. Thus, for the crack to grow 
from its initial length Q = 5 mm to a length a = 7 mm the number of cycles N 
required is given by 

In a similar manner the number of cycles required for a crack of length a0 = 7 mm 
to grow to a length a = 9 mm is given by 

2 x (7 x 10-3) 
N =  [1 - (3 "'1 = 120,696 cycles 

1 x (0.42 x 10-11) [lo0 dn x (7 x 10-3)]3 

The above procedure is repeated for crack growth of steps 2 mm. Results are 
shown in Table 1 and are plotted in Figure 9.8. 

The total number of cycles required to propagate a crack from 5 mm to 28.65 mm 
is calculated as 

2 (5 10-3) 
N -  " - 1 x (0.42 x lo-") x (12.53)3 

[I - (l) '''1 = 704,697 cycles 
28.65 

which is close to the value 704,308 obtained previously (Table 1). 
If a lifetime of lo6 cycles is required for the plate the designer may make the 

following changes: 

(a) Employ a different metal with higher KI,, so as to increase the critical crack 
length a, at instability. 
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Fig. 9.8. Crack length versus number of cycles. 

(b) Reduce the maximum value of the applied stress a,,,. 

(c) Reduce the stress range Au. 

(d) Improve the inspection so as to reduce the assumed initial crack length. If for 
example the initial crack length was reduced from 2m = 10 mm to 2ao = 6 mm, 
the lifetime of the plate would be increased to 1,056,097 cycles, which is more 
than the required number of lo6 cycles. 

Example 9.3. 

A plate of width 2b = 50 mm contains a central crack of length 2m = 10 mm, and 
is subjected to a constant-amplitude tensile cyclic stress normal to the crack which 
varies between a;, = 100 MPa and u,,, = 200 MPa. The crack growth is dictated 
by Equation ( 1 )  of Example 9.2. Calculate the number of cycles required for the 
crack to propagate to a length 2a = 20 mm. The stress intensity factor KI of the 
plate is given by 

KI = u ( ~ a ) ~ / ~  [Z - tan (3]1'2* - 
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Solution: In this case the function f (a )  = [(2b/7ra) tan (7ra/2b)11/' of Equa- 
tion (9.10) is not equal to its initial value f (ao), but depends on the crack length. 
Thus, Equation (9.14) cannot be applied for the calculation of the lifetime N of the 
plate. A step-by-step procedure is adapted where the number of cycles for the crack 
to grow at intervals of 2 mm is calculated. We have for the stress intensity factor 
fluctuations AKlo and AK12 for cracks of length 10 mm and 12 mm under stress 
Au = om,, - a,;, = 100 MPa: 

[ 50 tan (%)I ' I 2  = 12.75 MPa 6 AKlo = 100(7r x 5 x 1 0 - ~ ) ' / ~  - 
7r x 5 

da/dN for a crack of length 2a = 10 mm and 2a = 12 mm is calculated from 
Equation (1) of Example 9.2 as 

The mean value of da/dN is then calculated as 

and the number of cycles dN to propagate a crack from length 2ao = 10 mm to 
2n = 12 mm is calculated as 

dN = 
1 x 10-3 

10.2 x 10-9 
= 98,039 cycles . 

Crack growth calculations are arranged in Table 1. 
Thus, the number of cycles required to propagate the crack of initial length 2m = 

10 mm to a length of 2ac = 20 mm is Nc = 315,351 cycles. 
If the variation of f ( a )  during crack growth were ignored, Nc would be calculated 

from Equation (9.14) as 

2 x (5 x 10-3) 
N ,  = 

1 x (0.42 x lo-") x (12.75)3 [ I -  (A) '''1 = 336.457 cycles . 

Example 9.4. 

A double cantilever beam (DCB) (Figure 4.14) with height 2h = 60 mm, thickness 
B = 20 mm and an initial crack of length a0 = 200 mm is subjected to a tensile load 
which varies between P- = 5 kN and P,,, = 10 kN. The critical stress intensity 
factor of the beam is hic = 100 MPa fi and crack growth is dictated by equation 
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TABLE 1. Fatigue crack growth calculations. 

a(mm) da(mm) A K ( M P a 6 )  da/dN da/dN(mlcycle) d N  
(mlcycle) (mean value) cycles 

5 12.75 8.7 x 
1 10.2 x 98,039 

6 14.07 11.70 x 
1 13.43 x 74,460 

7 15.34 15.16 x 
1 17.15 x 58,309 

8 16.58 19.14 x 
1 21.43 x 46,664 

9 17.81 23.73 x 
1 26.40 x 37,879 

10 19.06 29.08 x 
315,351 

where da/dN is expressed in mlcycle and A K  in MPa fi. Calculate the critical 
crack length a, for instability and the fatigue lifetime of the beam. 

Solution: The critical crack length a, at instability is calculated from equation 

where the stress intensity factor KI for the DCB is given by Equation (7) of Exam- 
ple 4.2. 

We have for P,,, = 10 kN 

KI = /-- (10 x M N )  a, = 333ac MPalJm. 
(30 x m)3 20 x m (3) 

From Equations (2)  and (3) with KIc = 100 MPa fi we obtain 

a, = 300 mm. (4) 

The fatigue life N, of the beam is calculated from Equation (9.3) where 

12 (AP) a ah.=&& 

We have for A P  = 5 kN 



Equation (9.3) with C = 5 x lo-'' and m = 4 becomes 

Equation (8) gives 

Nc = 
2.59 x 1 6  

3 
(& - A) = 76 x lo6 cycles . 
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(7) 

Example 9.5. 

A large plate with an initial crack of length 2ao is subjected to a series of cyclic stress 
amplitudes Aai (i = 1,2, . . . , n) normal to the crack. Assume that the final crack 
length at instability 2af is the same for all stress amplitudes Aai. If fatigue crack 
growth is governed by equation 

show that 

where Ni is the number of cycles required to grow the crack from 2ai-1 to 2a; and 
(Ni) is the total number of cycles required to grow the crack from its initial length 
2ao to its final length 2af at instability. 

Equation (2) is known as the Miner rule of fatigue crack growth under variable 
load amplitudes. 

Solution: From Equation (1) we obtain for the number of cycles Nl required to grow 
the crack from its initial length 2~ to a length 2al 

and by integration we have 
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In a similar manner we obtain for the number of cycles ( N I  ) required to grow 
the crack from its initial length 2ao to the final length 2af at instability 

From Equations (4) and (5) we obtain 

In a similar manner we obtain 

and 

and so on. 
From Equations (6) to (8) we obtain 

NI Nz +- Ni +...+- Nn - 
(N1)f W 2 ) f  

+...- - 
( N i ) f  (Nn)  f 

(9) 

[In (z) +ln (2)  + . . . + ~ n  (5) a;-I +. . .+ In  (")I an-I / h  (2) 

or for an = a f  

which is Equation (2). 

Example 9.6. 

A large thick plate contains a crack of length 2 a  = 20 mm and is subjected to a 
series of triangular stress sequences normal to the crack as shown in Figure 9.9. The 
stress varies between a,;, = 0 and a,,,,, = 200 h4Pa and it takes 1000 cycles in the 
triangle to reach a,,. The critical stress intensity factor is KI, = 100 h4Pa f i  and 
fatigue crack growth is governed by equation 
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Np= lOOO I- N -I 

N ( cycles ) 
Fig. 9.9. Triangular cyclic stress profile. 

where dn/dN is expressed in rnlcycle and AK in MPa 6. 
Calculate the number of triangular stress sequences (Nc)l required to grow the 

crack to instability. Compare (Nc)l to the number of cycles (Nc)2 required to grow 
the crack to instability when the plate is subjected to a constant amplitude stress cycle 
between the stresses umh = 0 and urn,, = 200 MPa. 

Solution: The root-mean-square value of the stress intensity factor range AK,, is 
calculated from Equation (9.16). We have for the stress a at N cycles in the triangular 
stress sequence 

so that 

Since we have a large number of cycles ( N p  = 1000) in each triangular stress 
sequence AKrm, can be calculated by integration as 

'and substituting the value of AK from Equation (3) we obtain 
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The critical crack length a,  at instability is calculated from equation 

KI = Klc (7) 

which becomes 

200 = 100 

'and gives 

Equation ( 1 )  with AK = AK,, gives 
0.0796 

(Nc ) l  = 116,645 x 2 ( 0 . 0 1 - ~ . ~  - 0 . 0 7 9 6 - ~ . ~ )  = 1.5 x lo6 cycles . ( 1  1 )  

The number of cycles (Nc)2 required to grow the crack to instability when the 
plate is subjected to a constant amplitude stress cycle between the stress umi, = 0  
and urn,, = 200 MPa is calculated from Equation ( 1 )  as 

or 

(Nc)2 = 0.29 x lo6 cycles 

which is equal to (Nc)l divided by 3l.'. 

Problems 

9.1. A large thick plate contains a crack of length 2ao and is subjected to a constant- 
'amplitude cyclic stress normal to the crack which varies between am,, and a-. 
Fatigue crack growth is governed by the equation 
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where C is a material parameter and AK* is the threshold value of AK. 
Show that the number of cycles Nc required to grow the crack to instability is 

given by 

where KI, is the critical stress intensity factor and Aa = amax - amh. 

9.2. Show that, if m = 4 in Equation (9.3), the time it takes for a crack in a large 
plate to quadruple its length is equal to 1.5 times the time it takes to double its length. 

9.3. A crack grows at a rate (da/dN)~ = 8.84 x mlcycle when the stress 
intensity factor amplitude is (A101 = 50 MPa fi and at a rate (da/dN)z = 
4.13 x when (AK)2 = 150 MPa fi. Determine the parameters C and m in 
Paris equation (Equation (9.3)). 

9.4. A plate of width 2b = 40 mm contains a center crack of length 2ao and is 
subjected to a constant-amplitude tensile cyclic stress which varies between 100 MPa 
and 200 MPa. The following data were obtained: For 2ao = 2 mm N = 20,000 
cycles were required to grow the crack to 2a = 2.2 mm, while for 2ao = 20 mm 
N = 1000 cycles were needed to grow the crack to 2af = 22 mm. The critical 
stress intensity factor is KIc = 60 MPa fi. Determine the constants in the Paris 
(Equation (9.3)) and Forman (Equation (9.4)) equations. 

9.5. A large thick plate contains a crack and is subjected to a cyclic stress normal to 
the crack which varies between 0 and 400 MPa. Determine the maximum allowable 
crack length the plate can withstand when KI, = 90 MPa 6. If the initial crack 
had a length 6 mm calculate the number of loading cycles the plate can withstand, 
when C = M N - ~  m5.5/cycle, m = 3. 

9.6. A large thick plate contains a crack of length 8 mm and is subjected to a constant- 
amplitude tensile cyclic stress normal to the crack which varies between 200 MPa 
and 400 MPa. Plot a curve of crack growth versus number of cycles up to the point 
of crack instability. The material parameters are as follows: 16, = 90 MPa fi, 
C = 10-l2 M N - ~  m7/cycle, m = 4. 

9.7. A large thick plate contains an edge crack of length 1 mm and is subjected to 
a constant-amplitude tensile cyclic stress normal to the crack which varies between 
100 MPa and 300 MPa. Which of the following three materials gives the longest 
lifetime for the plate. 
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Material K1,(MPa fi) C m 
A 55 5 x 10-l4 MN-4 m7/cycle 4.0 

B 70 2 x 10-l2 M N - ~ . ~  m6.25/~y~1e 3.5 

C 90 3 x lo-" m5.'/cycle 3.0 

9.8. A large thick plate contains a crack of length 2ao and is subjected to a constant- 
amplitude tensile cyclic stress normal to the crack with maximum stress a,,, = 
200 MPa and stress range Aa  = amax - a,h. The fatigue crack growth is governed 
by equation 

where da/dN is expressed in mlcycle and A K  in MPa fi. Determine the fatigue 
lifetime of the plate for the following conditions: 

(a) 2ao = 2 mm, 16, = 24 MPa fi, A a  = 50 MPa 

(b) 2ao = 2 mm, KIC = 24 MPa fi, Aa = 100 MPa 

(c) 2ao = 2 mm, KIc = 44 MPa fi, Aa = 50 MPa 

(d) 2ao = 1 mm, KIc = 24 MPa fi, Aa = 50 MPa 

(e) 2ao = 1 mm, fi ,  = 44 MPa fi, A a  = 100 MPa. 

Discuss the influence on fatigue lifetime of the initial crack length 2ao, the fracture 
toughness KI, and the stress range Aa. 

9.9. A large thick plate contains a crack of length 2~ = 2 mm and is subjected to 
a constant-amplitude tensile cyclic stress normal to the crack which varies between 
0 and 100 MPa. The fatigue crack growth is governed by equation of Problem 9.6. 
The material of the plate has been heat treated to the following conditions with the 
corresponding values of KI,. 

Condition A B C  

KIc(MPa fi) 24 30 44 

For each of the three material conditions, determine the fatigue lifetime N f  of 
the plate for crack lengths varying between 2ao and 2a f ,  where the latter length 
corresponds to crack instability. Plot the variation of Nc versus a(ao < a < a f )  for 
the three material conditions. 

9.10. A large thick plate has two equal cracks of length a = 1 mm emanating from 
both sides of a hole with radius R = 10 mm. The plate is subjected to a constant- 
amplitude tensile cyclic stress normal to the crack which varies between 100 MPa and 
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200 MPa and the cracks grow at equal rates. Calculate the number of loading cycles 
the plate can withstand when KIc = 90 MPa 6, and crack growth is governed by 
equation 

where da/dN is expressed in mlcycle and AK in MPa fi. The stress intensity 
factor at the crack tip is given by 

KI = k g 6  

where k depends on the a/R according to the following table. 

9.1 1. A thick plate of width b = 50 mm contains an edge crack of length 10 mm and 
is subjected to a constant-amplitude tensile cyclic stress normal to the crack which 
varies between 100 MPa and 200 MPa. Fatigue crack growth is dictated by equation 
of Problem 9.10 and KIc = 55 MPa fi. Calculate the number of cycles the plate 
can withstand. 

9.12. A cylindrical pressure vessel has a radius R = 1 m and thickness t = 40 mm 
and contains a long axial surface crack of depth a = 2 mm. The vessel is subjected 
to internal pressure p which varies between 0 and 200 MPa. Calculate the number 
of loading cycles the vessel can withstand. KI, = 55 MPa fi and fatigue crack 
growth is dictated by equation of Problem 9.10. 

9.13. An ASTM three-point bend specimen of span S = 30 cm, width W = 8 cm, 
thickness B = 4 cm with a crack of length a0 = 3.5 cm is subjected to a constant- 
amplitude cyclic load which varies between 30 kN and 50 kN. Calculate the number 
of cycles required to grow the crack to a length of af = 4.0 cm and plot a curve of 
crack length versus number of cycles. 

9.14. An ASTM compact tension specimen of width W = 12 cm, thickness B = 
6 cm with a crack of length a0 = 5 cm is subjected to a constant-amplitude cyclic 
load which varies between 20 kN and 40 kN. Calculate the number of cycles required 
to grow the crack to a length af = 5 cm and plot a curve of crack length versus 
number of cycles. 

9.15. A thick plate contains a semicircular surface crack and is subjected to aconstant- 
amplitude tensile cyclic stress normal to the crack which varies between 200 MPa and 
400 MPa. The fatigue crack growth is governed by Equation of Problem 9.8. Assume 
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that during fatigue the crack grows in a self-similar manner. Calculate the number 
of cycles required to grow the crack from an initial radius a0 to a final radius af for 
the following cases (a) a0 = 2 mm, af = 20 mm, (b) ao = 2 mm, af = 60 mm, (c) 
a0 = 4 mm, af = 20 mm and (d) ao = 4 mm, af = 60 mm. The stress intensity 
factor along the crack is given by 

9.16. A large thick plate contains a crack of length 2 mm and is subjected to a cyclic 
stress normal to the crack which varies between 0 and a. Crack growth is governed 
by Paris' equation with C = 5 x 10-l4 M N - ~  m7/cycle and m = 4. The critical 
stress intensity factor is fi, = 100 MPa fi. Calculate the value of a if it is required 
that the plate withstand lo8 cycles. 

9.17. A large plate contains a central crack of length 2 mm and is subjected to a 
cyclic stress normal to the crack which varies between 100 MPa and 300 MPa. Crack 
growth is governed by Paris' equation with C = 5 x lo-'' MN-4 m7/cycle and 
m = 4. Calculate the crack length after lo6 cycles. 

9.18. A large plate contains a central crack of length 2 mm and is subjected to a 
cyclic wedge load which varies between 1 MN and 3 M N  (Figure2.8, Example 2.2). 
Crack growth is governed by Paris' equation with C = 5 x 10-l5 M N - ~  m7/cycle 
and m = 4. Calculate the crack length after lo3 cycles. 

9.19. A double cantilever beam (Figure 4.14) with height 2h = 40 mm, thickness 
B = 20 mm and a crack of length a = 100 mm is subjected to a tensile cyclic load 
which varies between 0 and 8 kN. Crack growth is governed by Paris' equation with 
C = 5 x 10-l5 M N - ~  m7/cycle and m = 4. Calculate the crack length after lo6 
cycles. 

9.20. A large plate contains an edge crack of length 1 mm and is subjected to a 
tensile cyclic stress which varies between 0 and a. Determine the value of a so that 
the crack does not grow in fatigue. A& = 7 MPa fi. 

9.21. In Problem 9.18 the threshold value AK* = 5 MPa fi. Calculate the number 
of cycles to crack arrest. 

9.22. A large plate with a crack of length 10 mm was tested to stress corrosion in 
salt water. The time to failure for an applied stress normal to the crack a = 100,200 
and 300 MPa was 2000,50 and 2 hours. Estimate Krssc and calculate the amount 
of crack growth for each applied stress. 16, = 55 MPa fi. 
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Chapter 10 

Micromechanics of Fracture 

10.1. Introduction 

The phenomenon of fracture of solids may be approached from different viewpoints 
depending on the scale of observation. At one extreme is the atomic approach where 
the phenomena take place in the material within distances of the order of loT7 cm; 
at the other extreme is the continuum approach which models material behavior at 
distances greater than cm. In the atomic approach, the problem is studied using 
the concepts of quantum mechanics; the continuum approach uses the theories of 
continuum mechanics and classical thermodynamics. A different approach should 
be used to explain the phenomena that take place in the material between these 
two extreme scales: movement of dislocations; formation of subgrain boundary 
precipitates, slip bands, grain inclusions and voids. The complex nature of the 
phenomenon of fracture prohibits a unified treatment of the problem, and the existing 
theories deal with the subject either from the microscopic or the macroscopic point 
of view. Attempts have been made to bridge the gap between these two approaches. 

In the previous chapters the phenomenon of fracture was studied within the context 
of continuum mechanics and most attention was paid to the problem of separation 
of a structural member due to the propagation of a dominant macrocrack. It is the 
objective of this final chapter to outline the basic mechanisms of fracture which take 
place in metals at the microscopic level and at distances which vary from atomic 
spacing up to grain size. Study of the phenomenon of fracture at the microscopic 
scale is greatly facilitated by examining the surfaces of the fragments. The discipline 
that is concerned with this study is called fractography and its basic tool is the 
electron microscope. Since the penetrating power of an electron beam is limited, 
a replica of the fracture surface is made which allows transmission of the electron 
beam. Substantial progress was made by the introduction of the scanning electron 
microscope; the main advantage of this is that examination of the fracture surface 
is made directly, without the need of the replica. Understanding the mechanism of 
fracture at the microscopic level is of importance, not only because it provides a 
basis for predetermining fundamental fracture parameters, but because it provides a 



Fig. 10.1. Simplified force or stress versus interatomic distance relationship. 

means of specifying the quantities which control the toughness of many materials by 
changing their microstructure. 

This chapter starts with a simplified model for the estimation of the maximum 
theoretical cohesive strength of solids. The basic characteristic features of cleavage 
and fibrous fractures are presented, and some models for nucleation and growth of 
voids are reviewed. The chapter concludes with a brief description of the most widely 
used nondestructive testing methods for defect defection. 

10.2. Cohesive strength of solids 

An atomic approach to crack propagation in terms of intrinsic bond ruptures is 
important for understanding the crack nucleation process in perfectly brittle solids. 
In this respect a simplified model for the estimation of the maximum cohesive strength 
of solids is presented. 

To begin, consider the force reactions between two free atoms as the interatomic 
distance changes. In all cases repulsive and attractive effects occur and their combi- 
nation gives the form of curve shown in Figure 10.1. At equilibrium in the absence 
of applied forces let bo be the spacing between the atoms. Figure 10.1 shows that to 
decrease the distance bo by applying compression, a signilkant repulsive force must 
be overcome. To increase bo by applying tension requires force F; F can be increased 



Micromechanics of Fracture 295 

until it reaches Fc and the bonds are broken. Further increase of the distance between 
the atoms requires a decreasing force. 

The force-separation curve in the aaractive region can be approximated by a sine 
curve having wavelength 2X, namely 

where u = x - bo represents the displacement of an atom from its equilibrium position 
and X is a range parameter of the bond. 

If we define the stress as 

where N is the number of atomic bonds intersecting a unit area, we can put Equa- 
tion (10.1) in the form 

where uc represents the cohesive strength of the solid. 
At small displacements u, the sine function can be approximated by argument 

(sin x N x) SO that 

We assume now that displacements u obey Hooke's law, so that 

where E is the modulus of elasticity. Then Equation (10.4) becomes 

The surface energy 27 (the factor 2 refers to the two surfaces which are created 
by material separation) which is the work required for a total separation of the lattice 
planes, is equal to the area under the force-extension curve. We have 

and on account of Equation (10.3) we obtain 
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From Equations (10.6) and (10.8) we obtain the cohesive strength 

This equation indicates that high values of uc correspond to large values of modulus 
of elasticity E and surface energy y and small distances bo of atomic planes. 

For many materials y is of the order of magnitude Eh/100. Then Equation (10.9) 
gives 

Other calculations of cohesive strength based on more precise force-separation 
laws give values of uc in the range (114 - 1/3)E. Such values of strength in solids 
can be achieved only when the material is tested in very thin fibers or whiskers. 
However, theactual strength of solids is much lower than u,, typically by three to four 
orders of magnitude. This is generally attributed to the existence of microstructural 
and other defects in the solid. 

To obtain arough estimate of the actual strength uu of the solid, let us assume that a 
microstructural defect exists in the solid in the form of an elliptic hole with major axis 
2a and radius of curvature p. The maximum stress that can be developed at the end 
of the hole cannot exceed the cohesive strength u,. We obtain from Equation (1.7) 
with umax = u, and u = uu 

which on account of Equation (10.9) gives 

For p = 8boln Equation (10.11) becomes identical to Griffith's Equation (4.14). 
This model has been oversimplified. Some more sophisticated atomic theories 

have been proposed for the estimation of the cohesive strength of solids. Although 
atomic theories provide physical insight into the explanation of the fracture process, 
they involve great complication in analysis and fail to provide a satisfactory working 
tool for engineering applications. 

10.3. Cleavage fracture 

The term "cleavage fracture" means material separation that takes place by breaking 
atomic bonds along certain crystallographic planes. The fracture is transgranular and 



Micromechanics of Fracture 

Fig. 10.2. Transgranular fracture. 

the cleavage planes are those with the fewer bonds and the greater distances between 
the planes. This type of fracture is possible in body centered cubic crystals, like iron 
or low-carbon steel, that cleavage along the planes (1 0 O), and in hexagonal crystals 
like magnesium. Fracture takes place with the lowest expenditure of energy and the 
overall deformation is small. 

In polycrystalline materials the grains are crystallographically disoriented with 
respect to each other, and a cleavage fracture changes its orientation each time 
it meets a grain boundary (Figure 10.2). The fracture planes in each grain are 
highly reflective, given a shiny appearance on the overall cleavage fracture surfaces. 
Cleavage fracture is promoted by low temperatures and high strain rates. 

A number of micromechanical models have been developed for nucleation of 
cleavage fracture. For an analysis of these models the reader is referred to the book 
by Knott [10.1]. The model advanced by Smith [10.2] is of particular significance as 
it incorporates the important microstructural features of grain boundary carbides. The 
model considers stress concentration due to a dislocation pile-up at a grain boundary 
carbide. The fracture criterion takes the form 

where d is the grain diameter, Q the carbide thickness, y, the surface energy of the 
carbide, 7; the friction stress, ref€ the maximum stress that can be attained before 
yielding occurs and af is the remote stress for fracture. Note that when the second 



Chapter 10 

Fig. 10.3. Intelgranular fracture. 

term on the left-hand of Equation (10.13) is removed this equation reduces to Griffith's 
equation for a grain boundary microcrack. This term represents the contribution of 
dislocation to cleavage initiation. Equation (10.13) shows that larger carbides lower 
the fracture stress. 

10.4. Intergranular fracture 

Fracture along grain boundaries, so-called intergranular or intercrystalline fracture 
(Figure 10.3), is the exception rather than the rule in most metals under monotonic 
loading. 7Lpically metals fail by transgranular fracture, since the fracture resistance 
along characteristic crystallographic planes in the grain is lower than along the grain 
boundaries. Intergranular fractures are the result of weak bonding between the grains, 
due to the segregation of embrittling particles and precipitates (for instance carbides, 
sulfides and oxides) to the grain boundaries. Cracks grow along grain boundaries 
leaving the grains intact. Little energy is consumed, and the fracture is brittle, as in 
the case of transgranular fracture. Intergranular fracture is usually promoted by ag- 
gressive environment and high temperatures. Hydrogen embrittlement, environment 
assisted cracking, intergranular corrosion and cracking at high temperatures lead to 
intergranular fractures. 
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Upper 
face 

Lower 
face 

Fig. 10.4. Dimple patterns for macrocrack growth under uniaxial tensile and combined loading. 

10.5. Ductile fracture 

Crystalline materials always contain second phase particles or inclusions within the 
grains or at the grain boundaries. The size of the particles varies in the range from 
lo-' m to lo-' m and they may be added purposely to improve certain properties of 
the material. Under the influence of an applied load the particles or inclusions may 
fracture or debond, producing pores or voids. Under such circumstances a fracture 
surface is formed with a characteristic fibrous or dimpled appearance. Fracture of 
the material is a consequence of three distinct processes: void nucleation, growth 
and coalescence. The shape of voids is closely associated with the existing state of 
stress. Under uniaxial tensile load, the voids grow in a plane normal to the loading 
axis; when the fracture surfaces are observed in the electron microscope they consist 
of equiaxed dimples (Figure 10.4a). When the deformation process continues, the 
dimples become elongated and point in the same direction on the upper and lower 
faces of the fractured surface (Figure 10.4b). Under shear loading the dimples are 
elongated and point in opposite directions (Figure 10.4~). Fibrous fractures consume 
more energy than cleavage fractures and give rise to macroscopic ductile fractures. 

A number of void nucleation models have appeared in the literature. Argon et al. 
r10.31 in their model, suggest that the decohesion stress a, is 

where a, is the effective stress given by 



300 Chapter I0 

'and urn is the hydrostatic stress given by 

For other void nucleation models refer to U0.4, 10.51. Under the influence of 
increasing loading void nucleation is followed by void growth and coalescence. 
McClintock [10.6] developed a simplified void growth model. He assumed that the 
void has the form of a cylindrical hole in an infinite plate subjected to an axial strain 
rate 2,, and to equal stresses d ,  perpendicular to the axis of the cylinder. If a0 and a 
are the radii of the hole before and after void growth we have the following equation 

a & 8, 1 =In - = - I E , ~  sinh - - - E ,  
a0 2 Y 

2 

where r y  is the shear yield stress. Values of a/ao for E, = 1 are given as 

High values of u,/rY are possible only if o, is also high. The increased values 
of n/no as U , / T ~  increases demonstrate the strong effect of hydrostatic tension on 
void growth. 

Rice and Tracey [10.7] studied a single void in an infinite plate subjected to 
principal stress ui, (i = 1,2,3). They obtained the following equation for the void 
extension rate dia = ai /a  in the direction of principal stress aim: 

where 3, is the mean stress, E,, is the effective strain rate and dim the strain rate 
in the direction of the principal stress ui. The effective strain rate is given by 

These models refer to a single void in an infinite plate and do not take into account 
void interaction. Gurson [10.8] advanced a model that studies plastic flow in aporous 
medium. In his model the yield condition is 

where s~ is the deviatoric stress defined by 
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and f is the void volume fraction. Note that Equation (10.20) for f = 0 reduces to 
the von Mises yield criterion. 

Tvergaard [10.9] modiied Gurson's equation by introducing two parameters ql 
and q2;  his equation is 

Using experimental results he concluded that good predictions are obtained when 
ql = 2 and q2 = 1. 

10.6. Crack detection methods 

(a)  Introductory remarks 

The fracture of machine or structural parts involves crack initiation, subcritical growth 
and final termination. Fracture mechanics is based on the realistic assumption that 
all materials contain initial defects which constitute the nuclei of fracture initiation. 
Design for the prevention of crack initiation is physically unrealistic. Initial defects 
appear in a material due to its composition, or they can be introduced in a structure 
during fabrication or service life. The detection of defects in structures plays an 
essential role in design using fracture mechanics. A number of nondestructive testing 
(NDT) methods for the detection, location and sizing of defects have been developed. 
Our ability to use fracture mechanics in design is largely due to the reliability of the 
NDT methods. At the production or service inspection stage, parts containing flaws 
larger than those determined according to fracture mechanics design must be rejected 
or replaced. 

Six NDT methods that are widely used for defect detection will be briefly described 
below. These are dye penetration, magnetic particles, eddy currents, radiography, 
ultrasonics and acoustic emission. Each of these methods possesses advantages and 
disadvantages depending on the application. For further details on these methods the 
reader should consult references [10.10-10.151. 

(h)  Dye penetration 

This technique is commonly used for detecting surface flaws. It involves application 
of a colored or fluorescent dye onto a cleaned surface of the component. After 
allowing sufficient time for penetration, the excess penetrant is washed off and the 
surface is dusted with a post-penetrant material (developer) such as chalk. The 
developer acts as a blotter and the defects show up as colored lines. The reliability 
of the method depends on the surface preparation of the component. The method is 
widely used, and can detect small cracks. It has the advantage of fast inspection at 
low cost. It applies, however, only to surface flaws. 
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(c )  Magnetic particles 

This method is based on the principle that flaws in a magnetic material produce a dis- 
tortion to an induced magnetic field. Measuring this distortion provides information 
on the existing defects. The magnetic field is induced by passing a current through 
the component or using permanent or electromagnets. For detecting the distortion of 
the magnetic field the surface under inspection is coated with a fluorescent liquid that 
contains magnetic particles in suspension. The method is easy to apply, is speedy 
'and economical. As in the dye penetration method, it can be used only for detecting 
cracks on or near the surface. 

( d )  Eddy currents 

A coil carrying alternating current placed near a conducting surface induces eddy 
currents in the surface. The eddy currents create a magnetic field that affects the 
coil; its impedance changes when a defect is present. By measuring this change 
we can find information about the defect. The induced eddy currents concentrate 
near the surface of the conductor; this is the so-called "skin effect". The penetration 
depth is influenced by the frequency of the current, the magnetic permeability and 
electrical conductivity of the conductor, and the coil and conductor geometry. In a 
ferritic conductor, the penetration depth is smaller than 1 mm at most frequencies, 
while in nonmagnetic conductors it may be several millimetres. The sensitivity 
of the method is high for defects near the surface but decreases with increasing 
depth. Problems in the method arise from the difficulty of relating the defect size 
to the change in impedance, and the influence of a number of other factors on the 
impedance. These include: the relative position of the coil and the conductor; the 
presence of structural variations; material inhomogeneities. Measurement of defect 
size is made by comparing its effect to that 0bse~ed  from a standard defect. 

(e) Radiography 

Radiography is one of the oldest NDT methods for detecting subsurface defects. A 
source of X- or y-rays is transmitted through the specimen. If the specimen has 
variations in thickness or density due - for example, to the presence of defects - the 
emerging radiation will not be of uniform intensity. Since defects absorb less X-rays 
than the surrounding material they can be detected by using a sensitive photographic 
film, on which they appear as dark lines. The method is particularly suitable for 
finding volumetric defects. The method may be used to detect cracks, but in order 
to obtain substantial differential absorption between rays passing through the crack 
and those passing through the surrounding material they should be oriented parallel 
to the plane of the incident radiation. Thus, the method is insensitive to cracks unless 
their orientations are known beforehand. This may involve a number of exposures at 
different positions of the X-rays. 
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(f) Ultrasonics  

This method is based on the transmission of ultrasonic waves into the material by 
a transducer containing a piezoelectric crystal. Metallurgical defects and/or surface 
boundaries reflect the incident pulse which is monitored on an oscilloscope. The 
distance between the first pulse and the reflection gives the position of the crack. 
The size of the crack can also be estimated. The method is characterized by: high 
sensitivity for detection of cracks, at all positions; ability to measure crack position 
'and size; fast response for rapid inspection; economy; applicability to thick material 
sections; portability of equipment for in-situ inspection. The application of the 
method is, however, limited by unfavorabk specimen geometry and the difficulty of 
distinguishing between cracks and other types of defects, such as inclusions. The 
method is also characterized by the subjective interpretation of echoes by the operator. 

( g )  Acous t ic  emiss ion  

The method involves the use of a sensing transducer and sophisticated electronic 
equipment to detect sounds and stress waves emitted inside the material during the 
process of cracking. The detected emissions are amplilied, filtered and interpreted. 
The method is capable of locating flaws without resorting to a point-by-point search 
over the entire surface of interest. It can be used to detect crack initiation and growth. 
A disadvantage of the method lies in the difficulty of interpreting the signals which 
are obtained. 
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Chapter 11

Composite Materials

11.1. Introduction

Fiber reinforced composite materials have gained popularity in engineering applica-
tions during the past decadesdue to theirflexibility in obtaining the desiredmechanical
and physical properties in combination with lightweight components. For this rea-
son they are now being widely used for aerospace and other applications where high
strength and high stiffness-to-weight ratios are required. These materials are usually
made of glass, graphite, boron, or other fibers embedded in a matrix. Modeling the
mechanical and failure behavior offiber composites is not a simple task. Thematerials
are heterogeneous and have several types of inherentflaws. Failure offiber composites
is generally precededby an accumulation of different types of internal damage. Failure
mechanisms on the micromechanical scale include fiber breaking, matrix cracking,
and interface debonding. They vary with type of loading and are intimately related
to the properties of the constituents, i.e., fiber, matrix and interface/interphace.While
the above failure mechanisms are common in most composites, their sequence and
interaction depend on the type of the loading and the properties of the constituents.
The damage is generally well distributed throughout the composite and progresses
with an increasingly applied load. It coalesces to form a macroscopic fracture shortly
before catastrophic failure. Study of the progressive degradation of the material as a
consequence of growth and coalescence of internal damage is of utmost importance
for the understanding of failure.
The present chapter presents an analysis of the effects of cracks and delamina-

tions on the strength of laminated fiber composites using the principles of fracture
mechanics. Study of the various failure mechanisms (fiber breaks, matrix cracks and
interface debonds) during a progressively increasing load is not considered in this
chapter. First, the strength of composites with through-thickness cracks is studied
by fracture mechanics approach. Using effective modulus theory the heterogeneous,
anisotropic fiber composite material is replaced by a homogeneous anisotropic elastic
material. The equations for the stress components for an anisotropic elastic material
are presented and the strain energy release rate is determined. Next, the problem
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of interlaminar cracking or delamination of laminated composites is studied. If the
laminated structure carries bending loads delamination may cause severe loss of its
bending strength and stiffness. The same happens in compression since the composite
may buckle due to reduction of its bending stiffness. Delamination can occur under all
three basicmodes of crack growth as in the case of through cracks studied in chapter 2,
that is, under mode-I, mode-II and mode-III or under combinations thereof. In this
chapter delamination is studied under mode-I, mode-II, mode-III and mixed-mode I
and II loading.

11.2. Through-thickness cracks

(a) Introduction

Through-thickness cracks reduce the load carrying capacity of composite structures.
In this section, an analysis of the effect of cracks in composites will take place by the
homogeneous anisotropic model and damage models. In the first case, the composite
is modeled as a homogeneous anisotropic medium using an effective modulus theory,
while in the second, the damage introduced at the crack tip is taken into consideration.

(b) Homogeneous anisotropic model

A fiber composite can be modeled as a homogeneous anisotropic material using
micromechanical theories. The elastic constants of the composite along the fiber and
perpendicular directions are given by [11.1]

E1 = Vf E1f + VmEm (11.1a)

ν12 = Vf ν12f + Vmνm (11.1b)

E2 = E2f Em

Vf Em + VmE2f
(11.1c)

µ12 = µ12f µm

Vf µm + Vmµ12f
(11.1d)

where: E1 =Young’s modulus in the fiber direction
E2 =Young’s modulus in the transverse direction
ν12 = Major (longitudinal) Poisson’s ratio (loading in the fiber

direction and strain in the transverse direction)
µ12 = In-plane shear modulus
Vf = Fiber volume ratio
Vm = Matrix volume ratio

E1f =Young’s modulus of fiber along the fiber direction
Em =Young’s modulus of matrix

ν12f = longitudinal Poisson’s ratio of the fiber
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νm = Poisson’s ratio of the matrix
µ12f = shear modulus of the fiber
µm = shear modulus of the matrix.

For a thin lamina under a state of plane stress the in-plane stress components are
relatedwith the in-plane strain components along the principal material axes by [11.1]⎡

⎢⎣
ε1

ε2

γ6

⎤
⎥⎦ =

⎡
⎢⎣

1
E1

−ν21
E2

0
−ν12
E1

1
E2

0
0 0 1

µ12

⎤
⎥⎦

⎡
⎢⎣

σ1

σ2

τ6

⎤
⎥⎦ (11.2a)

with
ν21

E2
= ν12

E1
. (11.2b)

Equation (11.2b) can be derived from Betti’s reciprocal law according to which
transverse deformation due to a stress applied in the longitudinal direction is equal to
the longitudinal deformation due to an equal stress applied in the transverse direction.
For a state of generalized plane stress the stress-strain relations referred to a general

system of axes are given by⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ =

⎡
⎢⎣

α11 α12 α16

α12 α22 α26

α16 α26 α66

⎤
⎥⎦

⎡
⎣ σx

σy

τxy

⎤
⎦ . (11.3)

The constants αij can be expressed in terms of the engineering constants E1, E2,
ν12 and µ12 and the angle of inclination of the general system of axes with respect
to the principal material axes [11.1]. The constants αij are referred to as compliance
coefficients.
For plane strain conditions the stress-strain relations are expressed by⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ =

⎡
⎢⎣

b11 b12 b16

b12 b22 b26

b16 b26 b66

⎤
⎥⎦

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦ (11.4a)

with

σz = −(α33)
−1(α13σ1 + α23σ2 + α26τ6) (11.4b)

where the constants bij are given by

bij = αij −
(

αi3αj3

α33

)
(i, j = 1, 2, 6) . (11.4c)

The general solution of the stress and displacement fields in the vicinity of the
crack tip in rectilinearly anisotropic bodies was first derived by Sih et al. [11.2]. The
most general situation was reduced to a sum of plane and antiplane problems, as in
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the case of isotropic bodies. The plane problem was further reduced to two loading
modes characterized by their corresponding stress intensity factors. The basic modes
are defined from the orientation of the applied loads with respect to the crack plane.
The first mode corresponds to symmetric loads, the second mode to skew-symmetric
plane loads and the third mode to antiplane shear loads relative to the crack plane.
The stresses for the three modes are given by [11.2]:
Mode I

σx = KI√
2πr

Re
[

s1s2

s1 − s2

(
s2

(cos θ + s2 sin θ)1/2
− s1

(cos θ + s1 sin θ)1/2

)]
(11.5a)

σy = KI√
2πr

Re
[

1
s1 − s2

(
s1

(cos θ + s2 sin θ)1/2
− s2

(cos θ + s1 sin θ)1/2

)]
(11.5b)

τxy = KI√
2πr

Re
[

s1s2

s1 − s2

(
1

(cos θ + s1 sin θ)1/2
− 1

(cos θ + s2 sin θ)1/2

)]
(11.5c)

Mode II

σx = KII√
2πr

Re
[

1
s1 − s2

(
s22

(cos θ + s2 sin θ)1/2
− s21

(cos θ + s1 sin θ)1/2

)]
(11.6a)

σy = KII√
2πr

Re
[

1
s1 − s2

(
1

(cos θ + s2 sin θ)1/2
− 1

(cos θ + s1 sin θ)1/2

)]
(11.6b)

τxy = KII√
2πr

Re
[

1
s1 − s2

(
s1

(cos θ + s1 sin θ)1/2
− s2

(cos θ + s2 sin θ)1/2

)]
(11.6c)

Mode III

τxz = − KIII√
2πr

Re
[

s3

(cos θ + s3 sin θ)1/2

]
(11.7a)

τyz = KIII√
2πr

Re
[

1
(cos θ + s3 sin θ)1/2

]
. (11.7b)

In these equations s3 depends on material constants, and s1 and s2 are the roots of
the characteristic equation

α11µ
4 − 2α16µ3 + (2α12 + α66)µ

2 − 2α26µ + α22 = 0 . (11.8)

It was shown by Lekhnitskii [11.3] that s1 and s2 are either complex or purely
imaginary and cannot be real. Putting

s1 = µ1 = γ1 + iδ1, s2 = µ2 = γ2 + iδ2, µ3 = µ̄1, µ4 = µ̄2 (11.9)
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where γj , δj (j = 1, 2) are real constants, it is always possible, without loss of
generality to have δ1 > 0, δ2 > 0, δ1 �= δ2.
The stress intensity factors associated with each mode have the same values as in

the corresponding isotropic problem when the applied loads on the crack surfaces are
self-equilibrating. However, when the resultant force on the crack surface does not
vanish the stress intensity factors depend on the anisotropic material properties.
When it is assumed that the crack propagates in a self-similar manner, knowl-

edge of the stress and displacement fields in the vicinity of the crack tip allows
determination of the energy release rates, as in the case of isotropic materials. For
mode I we obtain

GI = 1
2


a∫
−
a

σy(x, 0)(u+
y − u−

y ) dx . (11.10)

Equation (11.10) by introducing the values of stress and displacements gives

GI = K2
I

2
α22 Re

[
i

(
s1 + s2

s1s2

)]
. (11.11)

For orthotropic materials, and when the crack is placed along the direction of
minimum resistance to crack propagation (α16 = α26 = 0), GI can be simplified to

GI = K2
I

(α11α22

2

)1/2 [(
α22

α11

)1/2
+ 2α12 + α66

2α12

]1/2
. (11.12)

For mode II we obtain in a similar manner

GII = K2
II
α11√
2

[(
α22

α11

)1/2
+ 2α12 + α66

2α12

]1/2
. (11.13)

Self similar crack growth in anisotropic materials is the exception rather than
the rule. Realistic description of material failure by crack propagation necessitates a
fracture criterion that can cope with mixed-mode crack growth. As such, the strain
energy density theory introduced by Sih [11.4] will be used. The strain energy density
factor for crack growth under mode I and mode II takes the form [11.4]

S = A11k
2
I + 2A12kIkII + A22k

2
II (11.14)

where

A11 = 1
4 [α11A2 + α22C

2 + α66E
2 + 2α12AC + 2α16AE + 2α26CE] (11.15a)

A12 = 1
4 [α11AB + α22CD + α66EF + α12(AD + BC)

+ α16(AF + BE) + α26(CF + DE)] (11.15b)

A22 = 1
4 [α11B2 + α22D

2 + α66F
2 + 2α12BD + 2α16BF + 2α26DF ] (11.15c)
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with

A = Re
[

s1s2

s1 − s2

(
s2

z2
− s1

z1

)]
, B = Re

[
1

s1 − s2

(
s22

z2
− s21

z1

)]
(11.16a)

C = Re
[

1
s1 − s2

(
s1

z2
− s2

z1

)]
, D = Re

[
1

s1 − s2

(
1
z2

− 1
z1

)]
(11.16b)

E = Re
[

s1s2

s1 − s2

(
1
z1

− 1
z2

)]
, F = Re

[
1

s1 − s2

(
s1

z1
− s2

z2

)]
(11.16c)

and

ki = Ki√
π

(i = I, II), zi = (cos θ + si sin θ)1/2 (i = 1, 2) . (11.17)

In deriving these equations it is assumed that the crack line is parallel to the
x-principal orthotropic directionwhich coincides with the fiber orientation. Equations
(11.14) – (11.16), in conjunction with the strain energy density theory, were used by
Sih [11.4] to obtain the crack growth angle and the critical fracture load for fiber-
reinforced composites. Results can be found in [11.4 –11.6].
The validity of the homogeneous anisotropic elasticity theory for modeling the

failure of fiber composites depends on the degree to which the discrete nature of
the composite affects the failure modes. There is no general answer. Each particular
situation must be analyzed separately and the results obtained should be compared
with predictions by other models or experiments.

(c) Damage models

A number of continuum models based on linear elastic fracture mechanics have been
proposed for the study of fiber composites. Among them, the theory proposed by
Waddoups et al. [11.7] is based on the generalized concept of the process zone. The
actual crack length is extended by the length of the process zone which is taken equal
to a damage zone at the crack tip. For a crack of length 2a the critical stress σc,
according to the stress intensity factor criterion, is expressed by

σc = KIc√
π(a + �)

(11.18)

where � is the length of the damage zone at each crack tip. � can be determined by
experiment.
Failure of carbon/epoxy plates with cracks of different lengths has been studied

experimentally [11.8 –11.10]. A damage zone is formed at the crack tip consisting
of ply subcracking along fiber directions, local delaminations, and fiber breakage in
adjacent plies along the initial cracks. The size of the damage zone increases for a
progressively increasing applied load up to some critical value at which catastrophic
failure occurs. The critical stress of failure can be predicted from Equation (11.18)
where � is the length of the damage zone near failure along the crack ligament.
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11.3. Interlaminar fracture

(a) General considerations

Fiber composites consist of layers called laminae or plies that are bonded together
during the curing process. A lamina or ply is a plane (or curved) layer of unidirec-
tional fibers or woven fabric in a matrix. Laminae are stacked together at various
orientations to form a laminate. A common form of failure of laminated composites
is the separation of laminae called delamination or interlaminar fracture. A delami-
nation is a crack separating adjacent plies. The plane of the crack coincides with the
plane of the interface between adjacent plies. A delamination more often extends in
a self-similar manner. The growth of delamination can be studied by using fracture
mechanics principles. A delamination can grow under three basic modes, opening
mode (mode-I), sliding-mode (mode-II) or tearing-mode (mode-III), or under a com-
bination of these modes. The resistance to delamination growth for each of the three
basic modes is expressed by the corresponding interlaminar fracture toughness. In
the following the three delamination modes and mixed-mode I and II delaminations
will be studied separately.

(b) Mode-I delamination

The delamination grows under mode-I loading, that is, the delamination surfaces
separate perpendicularly to the plane of delamination. The double cantilever beam
is the most commonly used specimen for characterization of mode-I delamination.
The specimen was analyzed in Example 4.2. The strain energy release rate GI
for conditions of generalized plane stress (η = 1) is given from Equation (5) of
Example 4.2 by

GI = 12P 2a2

E1b2h3
(11.19)

where
P =Applied load
a = Crack length
b = Specimen width
h = Specimen height

E1 = Longitudinal modulus (along beam length).
The critical energy release rate GIc is obtained at maximum applied load at crack

extension.
When the effect of shear force is taken into consideration GI is given by

(Problem 4.13)

GI = 12P 2

E1b2h

[(a

h

)2 + E1

10µ31

]
(11.20)

where µ31 is the transverse shear modulus.
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For applied total displacement u, GI is given by (Equation (4) of Example 4.2)

GI = 3u2E1h3

16a4
. (11.21)

From Equation (11.19) we obtain that

dGI

da
= 24P 2a

E1b2h3
> 0 (11.22)

and, therefore, crack growth under fixed load conditions is unstable.
For fixed grip conditions we obtain from Equation (11.21)

dGI

da
= −3u

2E1h
3

4a3
< 0 (11.23)

and, therefore, crack growth is stable.
For the experimental determination of the critical strain energy release rate GIc

most tests are performed under fixed grip conditions (displacement controlled) which
render to stable crack growth. For the preparation of the specimen a preexisting end
delamination is produced by inserting a Teflon film at the midplane of the laminate.
For the unrestrained rotation at the end of the specimen the load is applied through
metallic piano hinges that are bonded to the delaminated end of the specimen [11.1].
The specimen is loaded at a low crosshead rate in order to produce stable crack growth.
The applied displacement is measured from the crosshead displacement of the testing
machine or by means of a linear variable differential transformer (LVDT) exten-
someter. The load-deflection curve is obtained in which incremental crack lengths
are marked during stable crack growth. The area method illustrated in Example 4.1
can be used for the determination ofGI during stable crack growth. The strain energy
release rate GI is calculated by (Equation (2) of Example 4.1)

GI = Piuj − Pjui

2b(aj − ai)
(11.24)

where the indices i and j refer to two consecutive crack growth increments.
Monitoring the crack length during stable crack growth becomes difficult at high

rates of loading. This problem is alleviated by using the width-tapered double can-
tilever beam (WTDCB) specimen in which the width varies linearly along the length
of the beam (Figure 11.1). In the WTDCB specimen the rate of change of compli-
ance with respect to crack length is constant. The strain energy release rate is given
by [11.9]

GI = 12P 2k2

E1h3
(11.25)

where

k = a

b
b = Beam width at crack length a.
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Teflon tape a

b

Fig. 11.1. Width-tapered double cantilever beam (WTDCB) specimen.

TABLE 11.1. Mode I critical strain energy release rates for
various carbon fiber composite materials (reference 11.1)

Material Type of test Strain energy release
rate GIc (J m−2)

T300/5208 DCB 88–103
AS4/3501-6 DCB 190–198
AS4/3502 DCB 160
T300/F-185 WTDCB 1880
AS4/PEEK DCB 1460–1750

Typical results of mode-I critical strain energy release rates for various types of
carbon/epoxy composites are shown in Table 11.1 [11.1].

(c) Mode-II delamination

For mode-II delamination toughness measurements the same double cantilever beam
specimen with an edge delamination as for mode-I is used. The specimen is tested in
three-point bending and is called end-notched flexure (ENF) specimen (Figure 11.2).
At the tip of the crack shear stresses are produced since the delamination lies along the
neutral axis of the uncracked specimen. It has been found that no excessive friction
between the crack surfaces is introduced.
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P

b
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2h

LL

P/2
P/2

Fig. 11.2. End-notched flexure (ENF) specimen.

The strain energy release rate can be determined from the compliance of the
specimen using strength-of-materials analysis. The strain energy stored in the ENF
specimen of length 2L is given by

U =
2L∫
0

M2

2E1I
dx (11.26)

whereM is the bending moment, E1 is the modulus of elasticity in the fiber direction
and I the moment of inertia.
For a beam of width b and height 2h, I is given by

I = 2bh3

3
. (11.27)

To determine U we divide the ENF specimen into three regions. We have for the
bending moment (x is measured from the left support of Figure 11.2)

M = Px

2
, 0 < x < L

M = P(L − x)

2
, 0 < x < L − a (11.28)

M = P(L − x)

4
, L − a < x < L .

As in the case of the double cantilever beam specimen it was assumed that the
delaminated section of the beam acts as two independent beams with each carrying
half of the load at the right support of the beam, that is, one fourth of the applied load
P at the mid of the beam.
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From Equations (11.26) and (11.28) we obtain

U =
L∫
0

1
2E1I

(
Px

2

)2
dx +

L−a∫
0

1
2E1I

(
P (L − x)

2

)2
dx

+ 2
L∫

L−a

1
2E1(I/8)

[(
P (L − x)

4

)]2
dx .

(11.29)

In the last term the factor 2 outside the integral refers to the two cantilever beams
of the delaminated section of the beam. Each cantilever beam has a moment of
inertia I/8.
Applying Castiglano’s second theorem we obtain for the displacement, u, of the

ENF specimen under the load

u = ∂U

∂P
=

L∫
0

Px2

4E1I
dx +

L−a∫
0

P (L − x)2dx
4E1I

+
L∫

L−a

P (L − x)2

E1I
dx . (11.30)

After integrating we obtain for the compliance, C, of the ENF specimen

C = u

P
= 2L3 + 3a3

8E1bh3
. (11.31)

The strain energy release rate GII is obtained from Equation (4.33) as

GII = P 2

2B

(
∂C

∂a

)
P

= 9P 2a2

16E1b2h3
. (11.32)

When the effect of the interlaminar shear deformation is included,GII is given by
[11.1]

GII = 9P 2a2

16E1b2h3

[
1+ 0.2 E1

µ31

(
h

a

)2]
. (11.33)

For fixed load conditions we obtain from Eq. (11.32)

∂GII

∂a
= 9
8

P 2a

E1b2h3
> 0 (11.34)

indicating that crack growth is unstable.
For fixed grip conditions we obtain form Equations (11.31) and (11.32) with

u = CP

GII = 36u2E1h3a2

(2L3 + 3a3)2 . (11.35)
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TABLE 11.2. Mode II critical strain energy release rates for
various carbon fiber composite materials (reference 11.1)

Material Type of test Strain energy release
rate GIIc (J m−2)

T300/914 ENF 518
AS1/3501-6 ENF 458
AS4/PEEK ENF 1109–1765
AS4/3502 ENF 587

Differentiating Eq. (11.35) with respect to a we obtain

∂GII

∂a
= 72u2E1h3a[(2L3 + 3a3) − 9a3]

(2L3 + 3a3)3 . (11.36)

For stable crack growth we obtain

a ≥ L/
3√3 ≈ 0.7L . (11.37)

For the experimental determination of the critical strain energy release rate, GIIc,
the critical load, Pc, for delamination growth is obtained from the deviation from
linearity of the load-deflection curve of the ENF specimen when tested in a stiff
testing machine. GIIc is determined from Equation (11.32) with P = Pc.
Typical results of mode-II critical strain energy release rates for various types of

carbon/epoxy composites are shown in Table 11.2 [11.2].

(d) Mixed-Mode I/II delamination

Delamination growth under mixed mode-I and mode-II conditions is studied by the
cracked-lap shear (CLS) specimen, the mixed mode bending (MMB) specimen and
the Arcan fixture. The delamination grows along its own plane and does not extend
into adjacent plies. These three specimens are analyzed below.
The CLS specimen was originally used for shear dominated evaluation of adhesive

joints. The specimen consists of a split unidirectional laminate loaded by a uniaxial
load to one arm (strap) (Figure 11.3). The load transfer to the other arm (flap) produces
both peel (mode-I) and shear (mode-II) stresses along the interface between the strap
and the flap arms.
The strain energy release rate can be determined from the compliance of the spec-

imen using a simplified strength-of-materials analysis. The strain energy stored in the
specimen is given by

U =
L∫
0

P 2

2E1A
dx (11.38)

where

P = Applied load
A = Cross-sectional area.
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flap ply

strap ply

w

P

h1

h2

L

a

P

Fig. 11.3. Cracked-lap shear (CLS) specimen.

We have

U = P 2(L − a)

2E1wh1
+ P 2a

2E1wh2
(11.39)

where

h1 = Thickness of specimen
h2 = Thickness of strap arm
w =Width of specimen.

Applying Castigliano’s second theorem we obtain for the displacement u of the
load

u = ∂U

∂P
= P (L − a)

E1wh1
+ Pa

E1wh2
. (11.40)
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The compliance of the specimen is

C = u

P
= L

E1wh1
+ a(h1 − h2)

E1wh1h2
. (11.41)

The strain energy release rate is obtained from Equation (4.33) as

G = P 2

2B

(
∂C

∂a

)
P

= P 2(h1 − h2)

2E1w2h1h2
. (11.42)

For fixed load conditions we obtain from Equation (11.42)

∂G

∂a
= 0 (11.43)

which indicates that crack growth is neutral.
For fixed grip conditions we obtain from Equations (4.30) and (11.41)

G = 1
2B

u2

C2

(
dC
da

)
u

= (h1 − h2)u
2

2E1w2h1h2C2 . (11.44)

Differentiating with respect to a we obtain

∂G

∂a
= − (h1 − h2)

2u2

E2
1w

3h21h
2
2C

3 < 0 . (11.45)

Thus, under fixed grip conditions crack growth is stable.
For the experimental determination of the critical energy release rate the specimen

is loaded until visible delamination growth occurs detected on either side of the
specimen.
Another test method for the characterization of mixed mode delamination is the

mixed mode bending (MMB) test. The MMB specimen is shown in Figure 11.4.

P Loading lever

a
Hinge

Apparatus base

Specimen
LL

c

Fig. 11.4. Mixed mode bending (MMB) specimen.
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Fig. 11.5. Free-body diagram of the MMB specimen.

A free-body diagram of the loading is given in Figure 11.5. The applied load produces
mode-I and mode-II loads, PI and PII given by

PI = 3c − L

4L
P (11.46a)

PII = c + L

L
P . (11.46b)

The values of mode-I and mode-II strain energy release rates GI and GII are
obtained fromEquations (11.19) and (11.32) of the double cantilever and end-notched
flexure specimens as

GI = 3P 2a2

4b2h3L2E1
(3c − L)2 (11.47a)

and

GII = 9P 2a2

16b2h3L2E1
(c + L)2 . (11.47b)

Their ratio is

GI

GII
= 4
3

(
3c − L

c + L

)2
, c ≥ L

3
(11.48)

and depends only on the ratio c/L of the length of the loading arm to the beam
half span.
The total energy release rate for the MMB specimen is

G = GI + GII . (11.49)
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The critical value Gc of G is determined from the critical load at initiation of
delamination growth.
The Arcan fixture (Figure 11.6) can be used to impose mode-I, mode-II and any

combination of mode-I and mode-II loading to an edge-notched specimen. The spec-
imen is attached in the specimen holder and the combination of modes can be applied
by arranging the angle of the load with respect to the axis of the specimen.

(e) Mode-III delamination

Delamination growth under mode-III loading can be imposed by bonding a split
double cantilever beam specimen between two aluminum bars (Figure 11.7). These
bars are loaded parallel to the crack plane and normal to the beam axis. The critical
load for delamination growth is determined from the load drop in the load versus
displacement diagram. The edge crack torsion specimen (Figure 11.8) has also been
introduced for mode-III delamination fracture toughness measurements.

Specimen holder

Specimen

 o

α

P

Initial crack

Adhesive

P

α = 90

Fig. 11.6. Specimen holder and Arcan loading fixture for pure mode-I or mode-II and mixed-mode
interlaminar fracture testing.
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P

P

initial crack

adhesive bond

aluminum bar

Composite
specimen

Fig. 11.7. Mode-III split double cantilever beam specimen between two aluminum bars.

P P

P P

B

a

Fig. 11.8. Edge crack torsion specimen.
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Thin Films

12.1. Introduction

Thin layers of dissimilar materials are used in many modern technologies in order to
achievespecializedfunctional requirements.Problemareas includeprotectivecoatings
used for thermal protection, or for abrasion, oxidation and corrosion resistance, elec-
tronic packaging,magnetic recordingmedia,multiplayer capacitors, layered structural
compositesandadhesive joints.Forexample structuralceramics foruseatelevatedtem-
peratures greater than 1200◦C in aerospace propulsion systems are protected by coat-
ings to enhance chemical resistance in aggressive environments,wear resistance and to
provide thermal barriers in locationswhich exceed the use temperature of the ceramic.
Thinfilms are used in telescopemirrors to provide anti-corrosion coatings. Conductor,
insulator and semiconductor films are used in the manufacture of integrated circuits.
Thin films are important in small volume systems used in micro and nanoelectrome-
chanical systems (MEMSandNEMS). In these applications the thickness of thefilm is
measured in nanometers or micrometers, while the thickness of the substrate typically
is in the order of millimeters or centimeters.
Structural reliability, performance and durability of layered materials are inher-

ently connected to interface structure and composition. These interfaces have a special
significance because they are numerous and susceptible to decohesion and sliding.
Layered materials are characterized by mismatch in mechanical properties, and ther-
mal coefficients. This mismatch creates high residual stresses which can damage the
films or the interfaces.
In this chapter the principles of fracture mechanics will be applied to layered

materials and especially to thin film/substrate systems. Emphasis is given to inter-
facial fracture. The problem of an interfacial crack between two dissimilar isotropic,
elastic materials is studied first. A number of elasticity solutions for film/substrate
systems are given. The chapter concludes with test methods for measuring thin film
adhesion. Measurement of film adhesion using indentation methods will be given in
the next chapter.

323
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12.2. Interfacial failure of a bimaterial system

(a) Introduction

The problem of fracture of a bimaterial plate with a crack along the interface is
central to the characterization of interface toughness. Due to the asymmetry in the
elastic properties with respect to the interface and the possible asymmetry of loads
and geometry the crack propagates under mixed-mode conditions. Only the case of
weak interfaces, where the crack propagates along the interface and does not kink
in the adjacent materials will be considered. This section covers the crack tip stress
field of a bimaterial plate with a crack along the interface and a phenomenological
characterization of interface toughness.

(b) Crack tip stress field

Consider two isotropic elastic half-planes joined along the x1-axis with an interfacial
crack and subjected to in-plane loading (Figure 12.1). Material 1 lies above the inter-
face and material 2 below. TheYoung’s modulus, shear modulus and Poisson’s ratio
of the respective materials are Ei , µi and νi (i = 1, 2). The stress and displacement
fields for a wide class of plane elastic problems of bimaterials depends on only two
(rather than three) nondimensional combinations of the elastic constants α and β

given by [12.1]

α = µ1(κ2 + 1) − µ2(κ1 + 1)
µ1(κ2 + 1) + µ2(κ1 + 1) (12.1a)

X2

X1

E1, v1, µ1

E2, v2, µ2  

r

Material 1

Material 2

0

Fig. 12.1. Two half-planes joined along the x1-axis with an interfacial crack.
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β = µ1(κ2 − 1) − µ2(κ1 − 1)
µ1(κ2 + 1) + µ2(κ1 + 1) (12.1b)

where κi = 3− 4νi for plane strain and κi = (3− νi)/(1+ νi) for plane stress.
Constant α can also be expressed as

α = Ē1 − Ē2

Ē1 + Ē2
(12.1c)

where Ēi = Ei/(1− ν2i ) for plane strain and Ēi = Ei for plane stress.
The singular stress field in the vicinity of the tip of the interfacial crack is given

by [12.2, 12.3]

σij = 1√
2πr

[Re(Kriε)σ Iij (θ, ε) + Im(Kriε)σ IIij (θ, ε)] (i, j = x, y) (12.2)

where i = √−1, and

ε = 1
2π

�n

(
1− β

1+ β

)
. (12.3)

K = KI+ iKII is the complex interface stress intensity factor. The real and imaginary
parts KI and KII have similar roles as the stress intensity factors for mode-I and
mode-II. The quantities σ Iij (θ, ε) and σ IIij (θ, ε) are angular functions. For material 1
in polar coordinates they are given by [12.3]

σ Irr = − sinh ε(π − θ)

cosh πε
cos

3θ
2

+ e−ε(π−θ)

cosh πε
cos

θ

2

(
1+ sin2 θ

2
+ ε sin θ

)

σ Iθθ = sinh ε(π − θ)

cosh πε
cos

3θ
2

+ e−ε(π−θ)

cosh πε
cos

θ

2

(
cos2

θ

2
− ε sin θ

)

σ Irθ = sinh ε(π − θ)

cosh πε
sin
3θ
2

+ e−ε(π−θ)

cosh πε
sin

θ

2

(
cos2

θ

2
− ε sin θ

)
(12.4)

σ IIrr = cosh ε(π − θ)

cosh πε
sin
3θ
2

− e−ε(π−θ)

cosh πε
sin

θ

2

(
1+ cos2 θ

2
− ε sin θ

)

σ IIθθ = −cosh ε(π − θ)

cosh πε
sin
3θ
2

− e−ε(π−θ)

cosh πε
sin

θ

2

(
sin2

θ

2
+ ε sin θ

)

σ IIrθ = cosh ε(π − θ)

cosh πε
cos

3θ
2

+ e−ε(π−θ)

cosh πε
cos

θ

2

(
sin2

θ

2
+ ε sin θ

)
.

For stresses in material 2 in the above equations π should be changed to –π . For
similar materials (β = 0, ε = 0) Equations (12.4) reduce to Equations (2.35) for
mode-I and to Equations of Problem 2.15 for mode-II.
The singular stresses on the interface along the crack ligament are given by

σ22 = Re(Kriε)√
2πr

, σ12 = Im(Kriε)√
2πr

(12.5)
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where riε = cos(ε ln r) + i sin(ε ln r). The stresses present an oscillatory singularity,
which causes some complications for cracks along bimaterial interfaces.
The displacements of the crack surfaces at a distance r behind the crack tip δi =

ui(r, θ = π) − ui(r, θ = −π) are given by

δ2 + iδ1 = 8
(1+ 2iε) cosh(πε)

KI + iKII

E∗

√
r

2π
riε (12.6)

where
1
E∗

= 1
2

(
1
Ē1

+ 1
Ē2

)
. (12.7)

The strain energy release rate for crack growth along the interface is obtained from
Equations (12.5), (12.6) and (4.19) as

G = (1− β2)

E∗
(K2

I + K2
II) (12.8)

which reduces to Equations (4.23) and (4.25) for mode-I and mode-II for similar
materials (ε = 0).
For an interface crack of length 2a between two half planes of dissimilar materials

subjected to a stress state σ∞
yy , σ∞

yx at infinity the complex stress intensity factor at the
right-hand crack tip is [12.2]

K = (1+ 2iε)(σ∞
yy + iσ∞

yx )
√

πa(2a)−iε (12.9)

which reduces to Equations (2.20) and (2.46) for mode-I and mode-II in the absence
of the elastic mismatch.
As another example the problem of an infinite double cantilever beamwith arms of

equal height but of different materials loaded by equal and opposite momentsM per
unit thickness is considered (Figure 4.20). The stress intensity factor is given by [12.4]

K = KI + iKII = 2√3Mh−3/2−iε(1− β2)−1/2ειω∗(α,β) (12.10)

where ω∗(α, β) is a function of the elastic constants α and β.

(c) Interface toughness for β = 0

The interface toughness will be studied for β = 0 (and, therefore, ε = 0 from
Equation (12.3)). From Equation (12.1b) it can be shown that in plane strain β = 0
when both materials are incompressible (ν1 = ν2 = 0.5). The effect of β �= 0 on the
fracture toughness is often of secondary consequence.
For ε = 0 Equations (12.5) and (12.6) render

σ22 = KI√
2πr

, σ12 = KII√
2πr

(12.11)

and

δ2 = 8KI

E∗

√
r

2π
, δ1 = 8KII

E∗

√
r

2π
. (12.12)
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From these equations we observe thatKI andKII play the same role as in the case
of a crack in a homogeneous isotropic solid.
A relative measure of the amount of shear and normal stress intensity factors at

the crack tip can be obtained by the mode mixity angle ψ defined by

ψ = tan−1(KII/KI) . (12.13)

For the case of a crack in an infinite plate Equation (12.9) gives

ψ = tan−1(σ∞
12 /σ

∞
22 ) . (12.14)

For the double cantilever beam loaded by equal and opposite moments
Equation (12.10) gives

ψ = ω∗(α, 0) . (12.15)

Experiments performed by various researchers [12.5–12.7] have shown that the
interface toughness does not depend only on the adjoining materials, but also on the
mode mixity angle, that is,

G = �(ψ) . (12.16)

Therefore, it is not a single material parameter, but a function of ψ . The variation
of �(ψ) versus ψ for a plexiglas/epoxy interface is shown in Figure 12.2. The results
were obtained from a layer of epoxy sandwiched between two halves of a Brazil
plexiglas specimen by varying the angle θ .
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Fig. 12.2. Interface fracture toughness versusmodemixity angleψ for a plexiglas (material 1)/epoxy
(material 2) interface (reference [12.7]).
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A phenomenological description of the dependence of the interface toughness on
angle ψ may be expressed by [12.8]

�(ψ) = �0[1+ tan2[(1− λ)ψ]] (12.17a)

and

�(ψ) = �0[1+ (1− λ) tan2 ψ] (12.17b)

where�0 is the mode-I interfacial toughness forψ = 0 and λ is an adjustable material
parameter. The value λ = 1 corresponds to the “ideally brittle” interface. In this case
crack initiation occurs atG = �0 for all mode combinations.

12.3. Steady-state solutions for cracks in bilayers

(a) Introduction

In many crack problems in bilayers it is found that the strain energy release rate
is independent of the crack length. This takes place for crack lengths greater than
characteristic dimensions of the bilayers. These solutions are called steady-state. They
will be used in the next sections to calibrate fracture specimens for the experimental
determination of interface toughness.

(b) An interfacial crack in a bilayer

Consider two infinite homogeneous, isotropic and linearly, elastic layers perfectly
bonded with a semi-infinite crack along the interface (Figure 12.3). The bilayer is
loaded uniformly along the three edges with forces P1, P2 and P3 and moments M1,
M2 andM3 per unit length.

M1

M2

M3

P

P
P

Material 1

Material 2 H

h

Neutral axis

�h

1

2

3

Fig. 12.3. Two infinite layers perfectly bonded with a semi-infinite crack along the interface.
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The strain energy release rate is given by [12.8]

G = 1
2Ē1

(
P 2
1

h
+ 12M2

1

h3

)
+ 1
2Ē2

(
P 2
2

H
+ 12M2

2

H 3 − P 2
3

Ah
− M2

3

Ih3

)
(12.18)

and the complex stress intensity factor K = KI + iKII by [12.8]

K = h−iε

√
1− α

1− β2

(
P√
2hU

− ieiγ M√
2h3V

)
eiω (12.19)

where

P = P1 − C1P3 − C2M3/h, M = M1 − C3M3 (12.20a)

C1 = �

A
, C2 = �

I

(
1
η

+ 1
2

− 


)
, C3 = �

12I
(12.20b)

� = Ē1

Ē2
= 1+ α

1− α
, η = h

H
(12.20c)


 = 1+ 2�η + �η2

2η(1+ �η)
. (12.20d)

The strain energy release rate G gives the magnitude of the stress intensity at the
crack tip, while the stress intensity factor K gives also the mode mixity.

(c) A bilayer between rigid grips (Figure 12.4)

Consider a bilayer with homogeneous, isotropic and linearly elastic layers with thick-
ness h and H constrained between two grips. The two layers are perfectly bonded
and have an interface crack. The two layers are subjected to relative displacementsU
and V along the x and y axes.

Material 1

Material 2 H

h

V

U

Rigid grips

Fig. 12.4. A bilayer between two rigid grips.
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The strain energy release rate is given by [12.8]

G = V 2

2

(
h1

Ẽ1
+ H

Ẽ2

)−1
+ U 2

2

(
h

µ1
+ H

µ2

)−1
(12.21)

where Ẽ = 2µ(1−ν)/(1−2ν) for plane strain, and Ẽ = 2µ/(1−ν) for plane stress.
The stress intensity factor K = KI + iKII is given by

K = h−iεeiω

√
E∗

1− β2

[
V√
2

(
h

Ẽ1
+ H

Ẽ2

)−1/2
+ iU√

2

(
h

µ1
+ H

µ2

)−1/2]
.

(12.22)

The quantity ω depends on α and β (ω = ω(α, β)).

(d) An interface crack in a sandwich (Figure 12.5)

Consider a layer of material 2 of thickness h sandwiched in a homogeneous body
of material 1 with a crack lying along the upper interface. Both materials are homo-
geneous, isotropic and linearly elastic. This configuration is fundamental to measure
interface toughness by sandwiching a thin layer of a secondmaterial to a homogeneous
fracture specimen.
The problem can be viewed at two scales. At a macroscopic scale, the thin layer

can be treated as a small scale feature and the problem is described by the far field
stress intensity factors KI∞ andKII∞ induced by the applied loads. At a microscopic
level a crack is introduced between one of the substrates and the thin film and is
characterized by the interface stress intensity factor K . A relation between the two

Material 1

Material 1

Material 2

h

Fig. 12.5. An interface crack in a sandwich.
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sets of stress intensity factors is developed by equating the global and local energy
release rates. We obtain

G = 1
Ē1

(K2
I∞ + K2

II∞) = 1− β2

E∗
|K|2 . (12.23)

The interface stress intensity factorK = KI + iKII is given by [12.8]

K = h−iε

√
1− α

1− β2
(KI + iKII)e

iω . (12.24)

The angle ω is a function of α and β and varies between 5◦ to –15◦.

12.4. Thin films under tension

(a) Thermal stresses

Consider a thin film on a substrate (Figure 12.6). Both materials are isotropic and
linearly elastic with Young’s moduli, Poisson’s ratios and coefficients of thermal
expansion Ef , νf , αf for the film and Es , νs , αs for the substrate. The film and
the substrate are stress-free at a high temperature T0. Upon cooling to the room
temperature T1 the difference of strains in the film and substrate is

ε = (αf − αs)(T0 − T1) . (12.25)
When the film and the substrate are bonded the thermal strain in the film must be

equal to the thermal strain in the substrate. The mismatch strain, Equation (12.25),
must be accommodated by a mismatch stress in the film. Thus a biaxial stress is
induced in the plane of the film given by

σ = (αf − αs)(T0 − T1)Ef

1− νf

. (12.26)

When αf > αs , σ is tensile (σ > 0). Formost material systems withE(αf −αs) =
1MPa/K and for T0 − T1 = 1000K (common in ceramic systems) the mismatch
tensile stress in the film is of the order of 1GPa. These residual stresses cause cracking
in the films.

Film

Substrate

Interface

h

Fig. 12.6. A thin film on a substrate.
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(b) Cracking patterns

Due to the residual stresses cracking of the films takes place. Different cracking
patterns depending on the values of fracture resistance when the crack propagates
in the film, substrate or along the interface may be created. For steady-state crack
growth the value of the strain energy release rate for a crack is [12.8]

G = Z
σ 2h

Ēf

(12.27)

where h is the thickness of the film. The dimensionless number Z depends on the
cracking pattern. Common cracking patterns are shown in Figure 12.7 together with
their Z-values. They are:
Surface cracks: A surface crack is nucleated in the layer, but does not channel

through the film.
Channelling: The crack propagates through the film thickness and arrests at the

interface. A connected channel network is created.

Cracking Patterns G=Z�2h/ Ef

Surface Crack

Channelling

Z = 1.976

Z = 3.951

Z = 3.951

Z = 0.343

Substrate Damage

Spalling

Debond

Z =

1.028 (initiation)

0.5 (steady-state)

Fig. 12.7. Common cracking patterns of a thin film on a substrate (reference [12.8]).
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Channel crack

Substrate

Filmh

Fig. 12.8. A thin film with a channel crack on a substrate.

Cracks in the substrate: The crack propagates into the substrate.
Substrate spalling: The crack propagates into the substrate along a path parallel

to the interface.
Debonding: The crack propagates along the interface

(c) Debonding of a film

Consider a film that debonds from the root of a channel crack or from the edge of the
film (Figure 12.8). For a steady-state debonding (the debond length exceeds several
times the film thickness) the strain energy release rate under plane strain conditions
is given by [12.8]

G = (1− ν2f )σ 2h

2Ef

. (12.28)

12.5. Measurement of interfacial fracture toughness

(a) Introduction

There are many test methods for measuring the interfacial fracture toughness of thin
films that employ different specimen geometries. In this section we will present the
sandwich specimen tests, the blister test and the superlayer test.

(b) Sandwich specimen tests

(b1) Introduction

The sandwich specimen tests are based on the following principle: To measure the
interface fracture toughness of a thin film of material 1, and a substrate of material 2
the thin film is sandwiched between two substrates of material 2 (Figure 12.5). One
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substrate is covered with the film by gluing it with an adhesive. On the interface
between the film and the other substrate a crack is formed.
The substrates are much thicker than the film and the adhesive. Any fracture spec-

imen can be used to measure the interface toughness of a thin film. These tests are
modifications of the basic fracture mechanics tests. The crack grows along the inter-
face and the interface toughness is determined as function of the mode mixity. We
will present the compact, the Brazil disk, the double cantilever and the four-point
bend test specimens.

(b2) Compact specimen (Figure 12.9a)

Thefilm is bonded between the two pieces of a compact tension specimen (Figure 5.7).
Thecritical stress intensity factor is calculated fromEquation (5.10) at the critical value
of the applied load corresponding to crack growth.

(b3) Brazil disk specimen (Figure 12.9b)

A thin layer is bonded between two pieces of a disk of radius R. A crack of length 2a
exists in the interface.The disk is loaded in compression at an angle θ to the crack axis.

2H

2h

Thin film

Thin film

Thin film

B

B

W

(a)

�0

P

P
P/ 2 P/ 2

P

P

Crack

Crack 2�

y

R

x

2�

-

(b)

h
h

L

(c) (d)

b

Fig. 12.9. Sandwich specimen tests: (a) compact specimen, (b) Brazil disk specimen, (c) cantilever
specimen and (d) four-point bend specimen.
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Themodemixity is varied by changing θ . The stress intensity factor is given by [12.10]

K = YP

2R
√
2a(2a)−iεeiψ (12.29)

where P is the load, and Y is a dimensionless geometric factor. Both Y andψ depend
on the angle θ .
The advantage of the test is that we can obtain values of fracture toughness at

various mode mixity angles by changing angle θ .

(b4) Cantilever specimen (Figure 12.9c)

The film is bonded between two rigid plates of a double cantilever beam specimen
(Figure 4.14). The stress intensity factor is calculated from Equation (6) or (7) of
Example 4.2.
In both the compact and the cantilever specimens the mode mixity is almost zero

as long as the middle layer is thin compared to the specimen thickness. Thus, both
specimens provide the interface toughness at zero mixity angle.

(b5) Four-point bend specimen (Figure 12.9d)

Two elastic substrates with a thin film on one of them are bonded together. The upper
substrate has a notch in it reaching the interface. Upon loading, the notch kinks into
the interface.When the interface cracks are long compared to the substrate thickness a
steady-state is reached and the energy release rate is independent of the crack length.
At this point the load-displacement curve reaches a load plateau. The energy release
rate is [12.9]

G = 21(1− ν2)P 2L2

4b2h3
(12.30)

where P is the load per unit width, h is the thickness of each substrate b is the width
and L the distance between two point loads.
The mode mixity angle for the four-point bend specimen is approximately 41◦.

(b6) Discussion

A common feature of all sandwich specimen tests is that the residual stress in the film
does not drive the crack. Indeed, the strain energy stored in the film is not released
during crack growth. Thus, the interface fracture toughness is determined without
prior measurement of the residual stress.

(c) Blister tests

In the blister test (Figure 4.30) a freestanding thin film is loaded on one side causing
it to deflect. By measuring the load and the film deflection the stress-strain behavior
of the film is determined. This test is used for measuring the mechanical properties
of thin films in tension.



336 Chapter 12

Consider a circular blister loaded by a pressure p. The strain energy release rate
is given by (Problem 4.28)

G = 3
32

(1− ν2)p2a2

Eh3
(12.31)

where a is the radius of the blister and h the thickness of the film.
The critical value of G is determined at initiation of crack growth.
For a circular blister loaded by a concentrated loadP,G is given by (Problem 4.28)

G = 3
8π 2

(1− ν2)P 2

Eh3
. (12.32)

(d) Superlayer test

In the superlayer test [12.11] the film in the substrate is subjected to internally
developed stresses by depositing on to the film a second superlayer of material having
large intrinsic stresses. These stresses when released drive the debond crack between
the film and the substrate. The strain energy available to drive the crack is modulated
by varying the thickness of the superlayer.
Figure 12.10 illustrates the test for measuring the interfacial strain energy release

rate between a ceramic substrate and a film of metal. The procedure follows the steps:
i. A delamination is created between the film and the substrate with length 2a0
greater than the film thickness. For this reason a thin film of carbon release layer
is deposited. This layer acts as the interface precrack.

ii. Themetallic film of interest (Cu) is then deposited.Then the superlayer (Cr) with
the requisite thickness is deposited onto the film. The film and the superlayer
form strips perpendicular to the carbon lines. The thickness of the superlayer
is varied in order to produce a range of strain energy release rates to drive the
crack.

iii. The superlayer and the film are cut above the carbon layer. The created edge
induces the release of strain energy.

When the strain energy release rate exceeds the adhesion energy, the strip deco-
heres. When the films stay attached the decohesion energy is not exceeded and a
thicker superlayer should be used.
The strain energy release rate is determined by [12.11]

G =
∑

i

σ 2i hi

E′
i

−
∑

i

1
E′

i

(
P 2

hi

+ 12M2
i

h3i

)
(12.33)

where

P =
(

E ′
1h
3
1 + E′

2h
3
2

6(h1 + h2)

)
κ

κ = 6(h1 + h2)(ε1 − ε2)

h21 + E′
2h
3
2/E

′
1h
3
1 + E′

1h
3
1/E

′
2h
3
2 + h22 + 3(h1 + h2)2

Mi = E′
iκ
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Fig. 12.10. Procedure for measuring the interfacial strain energy by the superlayer test (refer-
ence [12.11]).

where i = 1, 2 refer to the two materials of the bilayer with thickness h1 and h2,
E′

i = E/(1− νι), the load P (P1 = P2 = P) is associated with the residual tension
stress, σi , in each layer, κ is the curvature of the decohered bilayer, εi are misfit strains
εi = σi/E

′
i , Mi are the bending moments along the centerline of each layer due to

the load P0 (Figure 12.10).
Equation (12.33) suggests that for the determination of G we need the residual

stresses σi (i = 1, 2) and the curvature of film/substrate system. The residual stress
is determined from the curvature of the film/substrate system by [12.11]

σ = 4Esh
2
s δ

3(1− νs)L2hf

(12.34)

where Es and νs are the substrate Young’s modulus and Poisson’s ratio, L is the
measuring length of thefilm/substrate system, δ is the deflection andhs is the thickness
of the substrate.
The deflection of the film/substrate system is measured by a profilometer. Two

measurements are made with (δ1) and without (δ2) the film attached in order to offset
for the initial curvature of the substrate. The residual stress in the film is

σR = 4Es(δ1 − δ2)h
2
s

3(1− νs)L2hf

. (12.35)
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This procedure is used to evaluate the residual stress in thefilm and then the residual
stress in the superlayer deposited onto the film. The total stress σtot associated with
both is

σtot = σf Hf + σslHsl = σf + (σsl − σf )Hsl (12.36)

where H is the relative layer thickness

H = h

hf + hsl

(12.37)

and the index sl refers to the superlayer.
The superlayer method is used for ductile films deposited onto substrates at low

T /Tm, where T and Tm denote the processing temperature and the metal film melting
point. It has a mode mixity typical of that associated with thin film decohesion (ψ ≈
0 – 50◦).
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Nanoindentation

13.1. Introduction

Nanoindentation constitutes a powerful method for measuring the mechanical prop-
erties and the interface fracture toughness of thin films on substrates. In the case of a
brittle film weakly bonded to the substrate nanoindentation can be used to delaminate
the film from the substrate. The interface toughness is obtained from measurements
of the applied load, delamination length, film thickness and film/substrate material
properties. In some cases the indenter introduces high deformation in the film, while
in others it produces plastic deformation in the substrate. Thefirst cases refer to ductile
films on brittle substrates. The stresses introduced into the film cause it to delami-
nate from the substrate during unloading of the indenter. The second cases refer to
situations where delamination is not achieved without high applied indentation loads
that cause failure of the film and damage the substrate. This, for example, is the case
of brittle films on ductile substrates. The indenter is forced through the film into the
substrate which is deformed plastically. For the analysis of test data the mechanical
properties of the film are determined using nanoindentation.
In this chapter we will present first the basic principles of nanoindentation for mea-

suring themechanical properties of thinfilms. Thenwewill use indentation tomeasure
fracture toughness of brittle materials from the radial cracks extending from the inden-
tation.The chapterwill concludewith themeasurement of interface fracture toughness
by delaminating the film from the substrate using both conical and wedge indenters.

13.2. Nanoindentation for measuring Young’s modulus and hardness

(a) Introduction

Indentationhasbeenusedextensivelytomeasure themechanicalpropertiesofmaterials
since the beginning of the 20th century with the pioneering tests of Brinell. He used
spherical indenters to measure the plastic properties of materials. The elastic contact
problemwhichplaysakey role in the interpretationof theexperimental results hadbeen

339
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considered by Boussinesq and Hertz in the late 19th century. Sneddon made a major
contribution in thefield of contactmechanics by deriving a general relationship among
the load, displacement and contact area for any axi-symmetric indenter. In the last two
decades the scope of indentation was directed down to the nanometer range. Ultra-
low load indentation employs instruments (sensors and actuators) of high resolution
capable of continuously monitoring the loads and displacements on an indenter as it is
driven and withdrawn from a material. In recent systems loads of the order of a nano-
Newton (10−9 N) and displacements of the order of an Angstrom (10−10 m) can be
accuratelymeasured.Nanoindentation is the combination of high resolution recording
indentation and the accompanying data analyses for the determination of mechanical
properties directly from the load-displacement data without imaging the indentation.
Study of themechanical properties ofmaterials on the nanoscale range has received

much attention in recent years due to the development of nanostructuredmaterials and
the application of nanometer thick films in engineering and electronic components.
Mechanical properties of materials in small dimensions can be very different from
those of bulkmaterials having the same composition. From the load-displacement data
of a nanoindentation test, mechanical properties such as elastic modulus and hardness
can be determined. Indentation can also be used to measure fracture toughness. These
mechanical properties characterize the three fundamental modes of deformation of
solids, elasticity, plasticity and fracture. A great advantage of nanoindentation in thin
film/substrate systems is that measurements can be made without having to remove
the film from the substrate which simplifies specimen preparation. Also, the same
technique can be used for measuring interface fracture toughness.
In the following we will present a data analysis method for measuring Young’s

modulus and hardness based on the elastic contact model.

(b) The elastic contact method

A schematic representation of a typical load versus indenter displacement data for
an indentation experiment is shown in Figure 13.1. For the analysis of the load-
displacement curve we make the following assumptions [13.1]:
i. Deformation upon unloading is purely elastic.
ii. The compliances of the specimen and the indenter tip can be combined as springs

in series.
iii. The contact can be modeled using the analytical model developed by Sneddon

for the indentation of an elastic half space by a punch that can be described by
an axisymmetric solid of revolution.

According to assumption (ii) the effect of a non-rigid indenter on the load-
displacement curve can be accounted for by defining a reduced modulus, Er , by

1
Er

= 1− ν2

E
+ 1− ν2i

Ei

(13.1)

where E and ν areYoung’s modulus and Poisson’s ratio for the specimen andEi and
νi are the same quantities for the indenter.
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Fig. 13.1. Schematic representation of a typical load versus indenter displacement data for an inden-
tation experiment.

A cross section of an indentation is shown in Figure 13.2. During loading the total
displacement h is written as

h = hc + hs (13.2)

where h is the vertical distance along which contact is made (called contact depth),
hs is the vertical displacement of the surface at the perimeter of the contact and hc is
the penetration depth of the indenter under load. When the indenter is withdrawn the
final depth of the residual hardness impression under load is hf .
The determination of Young’s modulus is based on Hertz contact equation accord-

ing to which

Er =
√

π

2
S√
A

(13.3)

whereA is the contact area and S is the stiffness of the unloading curve (S = dP/dh).
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Fig. 13.2. Cross section of an indentation.

According to Oliver and Pharr [13.1] the unloading data for stiffness measurement
are fitted into equation

P = B(h − hf )m (13.4)

where P is the load, (h − hf ) is the elastic displacement and B and m are mate-
rial constants. The quantities B, m and hf are determined by a least squares fitting
procedure of the unloading curve.
For the analysis it is assumed that the geometry of the indenter is described by an

area function A = A(h) which relates the cross-sectional area of the indenter to the
distance from its tip. The contact area at maximum load is given by

A = A(hc) . (13.5)

The contact depth at maximum load, hc, that is, the depth along the indenter axis
to which the indenter is in contact with the specimen, is determined by

hc = hmax − ε(hmax − hi) (13.6)

where hmax is the maximum depth and hi is the intercept depth, that is, the intercept
of the tangent to the unloading load-displacement curve at maximum load with the
depth axis. The constant ε is a function of the shape of the indenter tip. It takes the
value 1 for a flat punch, the value of 0.7268 for a cone indenter and the value of 0.75
for a spherical or paraboloidal indenter. The quantities hmax and hi are determined
from the experimental data (Figure 13.1).
The area function A(hc) depends on the shape of the indenter. For a Berkovich

indenter (a three-sided pyramid with angles between the axis of symmetry and a face
of 35.3◦) it takes the form

A(hc) = 24.5h2c . (13.7)
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The hardness Hc is defined by

Hc = Pmax

Ac

(13.8)

where Pmax is the peak indentation load and Ac is the contact area under maximum
load.
This definition of hardness is different from that used in an imaging indentation test.

In the latter case the area is the residual area measured after the indenter is removed,
while in the nanoindentation test the area is the contact area undermaximum load.This
distinction is important for materials with large elastic recovery, for example rubber.
A conventional hardness test with zero residual area would give infinite hardness,
while a nanoindentation test would give a finite hardness.
Equation (13.7) gives the area function A(hc) for an ideal Berkovich indenter.

However, real tips are never ideally sharp and generally, are characterized by a radius
of curvature at the tip. In such cases the functionA(hc)must be determined. Methods
for determining A(hc) include the TEM (transmission electron microscope) replica
method in which replicas of indentation are made and their areas are measured in
TEM, the SFM (scanning force microscope) method in which the indenter tip is
measured with a sharper SFM tip of known shape and a method based on Equation
(13.3) applied to a number of materials with knownYoung’s modulus.
The above analysis suggests the following procedure for the determination of

Young’s modulus and hardness in nanoindentation from Equations (13.3) and (13.8):
i. Use Equation (13.4) to fit the unloading data.
ii. Find hc from Equation (13.6) using the value of depth at maximum load, hmax,

the slope of the fit at Pmax to obtain hi and the appropriate value of ε.
iii. Use the area functionA(hc) of the indenter to find the contact area at maximum

load from the contact depth hc.
From the value of Er determined from Equation (13.3) the elastic modulus, E, of

the material is determined from Equation (13.1) when the elastic modulus Ei of the
indenter is known.

13.3. Nanoindentation for measuring fracture toughness

Nanoindentation testing may be applied to evaluate the fracture toughness of
brittle materials at small volumes. The method was developed by Lawn, Evans
and Marshall [13.2].
During elastic/plastic contact two types of cracks may form: those cracks which

form on symmetry median planes containing the load axis and those which form on
planes parallel to the specimen surface. The pertinent cracks used to determine frac-
ture toughness are the first of these, the median/radial system. These cracks emanate
from the edge of the contact impression, are oriented normal to the specimen surface
onmedian planes coincidentwith the impression diagonals and have a half-penny con-
figuration (Figure 13.3). It was observed thatmost of the crack development occurs not
on loading, but on unloading the indenter. Thus, the main driving force for the forma-
tion of these cracks is the irreversible component of the contact stress.After unloading
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Fig. 13.3. Median/radial cracks emanating from the edge of the contact impression oriented normal
to the specimen surface.

Ia
Radial cracks

Vickers indentation
C

Fig. 13.4. Characteristic radial traces of the median/radial cracks left on the specimen surface after
unloading.

the indenter, characteristic radial traces are left on the specimen surface (Figure 13.4).
They provide the necessary information for the evaluation of fracture toughness.
The critical stress intensity factor, Kc, is given by [13.2]

Kc = α

(
E

H

)1/2
P

c3/2
(13.9)
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where:
E = Young’s modulus
H = Hardness
P = Peak indentation load
c = characteristic crack length (crack length plus half

diagonal impression length)
α = Empirical constant which depends on the geometry of the indenter

(α = 0.016 for a Vickers pyramidal indenter, α = 0.040
for a cube-corner indenter).

Note that for the determination of KIc both E and H are needed. They can be
determined from the analysis of the nanoindentation data. Thus, from one test all
three quantities E, H and KIc can be determined in a straightforward way. For an
accurate determination of the crack length the test surface must be prepared to an
optical finish. The method applies to those materials which produce a well-defined
radial/median crack system.
In the application of the method it should be mentioned that there are well-defined

loads called cracking thresholds, which depend on the material and the type of
indenter below which cracks do not develop. For most ceramic materials the crack-
ing thresholds for Vickers and Berkovich indenters are about 250 mN or more. The
crack lengths produced at these loads are relatively large which places limitations
on the spatial resolution of the method. The cracking thresholds can be reduced by
using indenters with smaller tip angles, for example, the cube-corner indenter has an
angle of 35.3◦ between the axis of symmetry and a face, as compared to 65.3◦ for the
Berkovich indenter. Using cube-corner indenters thresholds less than 10 mN can be
achieved, while for Vickers indenters threshold are of 1 N or greater.
Table 13.1 [13.3] shows values ofYoung’s modulus, E, hardness,H , and fracture

toughness, KIc, for various materials.
TABLE 13.1 Properties of materials used in indentation cracking measurement

of fracture toughness (reference 13.3)

Material Cube-corner Vickers Ea H a Kc

threshold (mN) threshold (mN) (GPa) (GPa) (MPa
√
m)

Soda-lime glass 0.5–1.5 250–500 76.1 6.1 0.70b
Fused quartz 0.5–1.5 1000–1500 69.3 8.3 0.58b
Pyrex glass 1.5–4.4 500–1000 60.5 6.3 0.63b
Silicon (100) 0.5–1.5 20–50 185.6 11.5 0.7c
Silicon (111) 0.5–1.5 50–100 205.8 11.2 0.7c
Germanium (111) 0.5–1.5 <10 133.6 10.1 0.5c
Sapphire (111) 4.4–13.3 50–100 433.1 25.9 2.2c
Spinel (100) 4.4–13.3 100–150 286.2 18.4 1.2c
Silicon Nitride (NC 132) 40–120 1000 319.9 21.6 4.7c
Silicon Carbide (SA) 4.4–13.3 100–150 454.7 30.8 2.9c
Silicon Carbide (ST) Grain pushout 500–1000 427 21.8 4.1c

a Nanoidentation measurements with Berkovich indenter.
b 3-pt bend chevron notch method.
c From material data sheet or literature.
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13.4. Nanoindentation for measuring interfacial fracture
toughness – Conical indenters

(a) Introduction

Nanoindentation is used for measuring interfacial fracture toughness of thin coatings
on substrates. The method consists of loading a coated surface with an indenter until
a critical load is reached to initiate an interface crack. The load is then increased
causing the interface crack to propagate in a stable fashion. The fracture toughness is
calculated from the indenter load and the length of the debond crack. In this section
the calculation of the interfacial fracture toughness will be performed using a conical
indenter (plane stress). In the next section the calculation will be based on a wedge
indenter (plane strain).

(b) Compressed films

Consider a circular delamination of radius a at the interface between a uniformly
prestressed thinfilm and a substrate (Figure 13.5). The interface crack does not disturb
the stress field in the film. However at a critical applied compressive stress the film
buckles.At this point large tensile stresses are induced at the perimeter of the interface
crack and may cause crack growth. The strain energy release rate,G, associated with
the propagation of the crack across a buckled delaminated area was calculated by
Evans and Hutchinson [13.4]. They obtained

G = (1− ν) (1− α) t (σ 20 − σ 2c )

E
(13.10)

where
σ0 = Biaxial compression applied to the film

E, ν =Young’s modulus and Poisson’s ratio of film material
σc = Critical buckling stress for a clamped circular plate
t = Film thickness

and

α = 1
1+ 1.207(1+ ν)

(13.11)

(α = 0.8383 for ν = 1/3). The stress σc is given by

σc = k E

12 (1− ν2)

t2

a2
(13.12)

where k = 14.68.

(c) Indented films

Consider a circular delamination of radius a at the interface between a thin film and a
substrate. When the film is indented at the center of the delamination, in the absence
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Fig. 13.5. Circular delamination at the interface between a uniformly prestressed thin film and
a substrate: (a) unconstrained film, (b) constrained film prior to buckling, and (c) buckled film.

of plastic pile-up and when the plastic deformation due to indentation is confined
to the film, the film is subjected to dilatation governed by the indentation volume,
V0 (Figure 13.6). When the film is considered as a clamped plate of radius a the
displacement 
 imposed at the plate edge to offset the dilatation, is given by [13.5]


 ≈ V0

2πat
(13.13)

where t is the film thickness. The biaxial compressive stress induced in the film is
then

σ0 = E


(1− ν)a
= EV0

2π(1− ν)ta2
. (13.14)

The strain energy release rate for crack growth is given by [13.4]

G = (1− ν2)tσ 20

2E
(13.15)
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Fig. 13.6. Indentation plastic zone of volume V0 used to calculate the residual strain energy and the
expansion
0.

Note that contrary to the previous case of the uniformly compressed film, a strain
energy release rate exists in an unbuckled film.
When the indentation induced stress σ0 becomes equal to the critical stress given

by Equation (13.12) the film buckles. From Equations (13.12) and (13.14) the critical
indentation volume for buckling of the film is

V c
0 = πkt3

6(1+ ν)
. (13.16)

The strain energy release rate for crack growth is given by [13.5]

G = (1− ν)t[σ 20 (1+ ν) − 2(1− α)(σ0 − σc)
2]

2E
(13.17)

where the buckling stress σc (σ0 ≥ σc) is given by Equation (13.12).

(d) Prestressed indented films

Consider a thin film subjected to a prestress σ0 and indented by a sharp diamond tip
(Figure 13.7a). The material deforms to an indentation volume V0. Due to indentation
an interfacial crack nucleates and propagates. If the indenter is driven deep enough,
so that the crack reaches its critical buckling length on each side of the indenter, the
film double buckles (Figure 13.7b). Otherwise, single buckling might occur when the
indenter is removed (Figure 13.7c).
The strain energy release rate is given by [13.5]

G = (1− ν)t[σ 2I (1+ ν) + 2(1− α)σ 20 − 2(1− α)(σI − σc)
2]

2E
(13.18)

where:
σI = Indentation stress calculated from Equation (13.14)
σ0 = Prestress in the film
σc = Buckling stress calculated from Equation (13.12).
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Fig. 13.7. Thin film on a substrate indented by a sharp diamond indenter: (a) no buckling, (b) double-
buckling and (c) single buckling after removal of indenter tip. Figure refers to both conical andwedge
indenters.

Note from Equation (13.18) that when the film does not buckle (α = 1) the energy
release rate depends only on the indentation stress dictated by the indented volume
and not on the prestress.
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13.5. Nanoindentation for measuring interfacial fracture
toughness – Wedge indenter

A microwedge indentation test was proposed by De Boer and Gerberich [13.6] for
the evaluation of interfacial fracture toughness of thin films on substrates. In the test
a symmetric diamond wedge is indented uniformly on a thin film line of finite width
to cause an interfacial crack to nucleate and propagate (Figure 13.7). The indenter
plastically deforms an indentation volume in the film. Conditions of plane strain
dominate during indentation.
Three different film configurations may occur. If the indentation depth is small a

short interfacial crack forms and the film does not buckle (Figure 13.7a). When the
film is purely adhered a large interfacial crack forms, so that the film may buckle
when the indenter is removed (Figure 13.7c). This configuration is referred to as
single buckling. When the indentation depth is deep, symmetric buckling may occur
on each side of the indenter tip during indentation (Figure 13.7b). This configuration
is referred to as double buckling. Following removal of the indenter single buckling
may occur. Otherwise the film remains double-buckled.
The strain energy release rate, G, for the above three film configurations was

calculated by De Boer and Gerberich [13.6] as:
i. No buckling during indentation:

G = E′V 2
0

2b2ha2
(13.19)

where
E′ = E/(1− ν2)

V0 = Half of the indentation volume
b =Width of thin film
h = Thickness of thin film
a = Half length of interfacial crack

ii. Double buckling during indentation:

G = σ 20 h

2E′

[
4

(
σdb

c

σ0

)
− 3

(
σdb

c

σ0

)2]
(13.20)

where

σ0 = E′V0
abh

, σ db
c = π 2E′

3

(
h

a

)2
(13.21)

σ db
c = Critical stress for double buckling .

From Equation (13.20) we obtain that the threshold volume for double buckling is

V db
th = π2

3
b

a
h3 . (13.22)
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iii. Single buckling after indentation:

G = −σ 20 h

2E′

(
1− 3σ sb,i

c

σ0

) (
1− σ sb,i

c

σ0

)
(13.23)

where

σ
sb,i
0 = π 2E′

12

(
h

a

)2 (
1− d2

h2

)
(13.24)

σ sb,i
c = Critical stress for single buckling

d = Depth of penetration into the film

and σ0 > σsb,i
c . If σ/σ sb,i

c > 3 then G < 0, that is buckling can take place, but crack
extension does not occur.
A similar wedge indentation test has been developed by Vlassak et al [13.7] to

measure the interfacial fracture toughness of strongly adhering brittle films on ductile
substrates. In this test the indenter penetrates into the substrate. Delamination of the
film from the substrate is caused by the plastic deformation of the substrate. The strain
energy release rate is given by

G = (1− ν2)σ 2xxh

2E
(13.25)

where σxx is the stress in the film perpendicular to the wedge line. It is given by

σxx = σr − ν
E

1− ν2

W 2 tan β

πa2
(13.26)

where

σr =Residual stress in the film
W =Half width of the wedge indentation
β = Inclination of the face of the wedge to the surface of the film
a = Interfacial crack length.

The wedge delamination test has the advantage over the axisymmetric indentation
test that due to prevailing plane strain conditions no tensile hoop stresses develop in
thefilm and, therefore, no radial cracks. From the equations of the strain energy release
rate we obtain that there is a 1/a2 dependence for the wedge test compared to 1/a4
for the axisymmetric test, which leads to less experimental scatter. An experimental
advantage of the wedge test is that the plane surface of the wedge may be used as
a mirror allowing in situ optical measurements of crack growth. A problem with the
wedge test is the alignment. It is difficult to align the wedge perpendicular to the
plane of the film and wedges may not be perfectly symmetric. Misalignment causes
asymmetric crack growth on both sides of the wedge.
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Chapter 14

Cementitious Materials

14.1. Introduction

Linear elastic fracture mechanics (LEFM) has been successfully used since 1950s
for the safe design of engineering materials and structures. Brittle ceramics and
polymers and high strength metals have been successfully characterized by a sin-
gle parameter such as the critical strain energy release rate, GIc, or the critical
stress intensity factor KIc. The question of applicability of LEFM to cementi-
tious materials was explored in the 1950s but with unfavorable conclusions. The
values of GIc obtained from notched concrete specimens were specimen size
dependent and, therefore, they could not be used as a characteristic material
property. The fundamental research in fracture mechanics of concrete has been
performed in the 1980s. It was realized that cementitious materials like pastes,
mortars and concretes as well as many other materials (rock, particulate compos-
ites, grouted soils, bone, paper, wood, etc.) require a different kind of fracture
mechanics than metals. In both metal and concrete structures nonlinear zones of
small (small scale yielding approximation treated by LEFM) or normal sizes (ductile
fracture) develop at the crack tip. However, in ductile/brittle metals the material in
the nonlinear zones undergoes hardening or perfect plasticity, whereas in concrete
the material undergoes softening damage. Such materials are called quasi brittle,
because even though no appreciable plastic deformation takes place, the size of the
nonlinear region is large enough and needs to be taken into account, whereas in
brittle materials the size of the nonlinear region is negligible and LEFM applies. The
foundations of the application of fracture mechanics to concrete were laid down by
the pioneering work of Hillerborg [14.1–14.3] who introduced the fictitious crack
model of concrete, in an analogous way to the Dugdale-Barenblatt model of metals.
After that the development of the field was explosive and the theory appears to be
matured for applicability to design.
In this chapter the basic principles of fracture mechanics of cementitious

materials with emphasis to concrete will be presented. For more information refer to
[14.4–14.21].

353
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14.2. Why fracture mechanics of concrete?

Concrete is a quasi brittle material that develops cracks under service loads and
exposure to regular environmental conditions. Concrete structures are full of cracks.
Failure of concrete structures involves the initiation andgrowth of large cracking zones
up to a critical point of instability at the maximum load. Even though cracks play an
important role, concrete structures have been successfully designed and built without
any use of fracture mechanics. This may be attributed to the difficulties involved
in the application of fracture mechanics to concrete. However, intensive research
efforts during the last twenty years have progressed to the point that the theory is
ripe to be used for the design of both reinforced and unreinforced concrete structures.
A few reasons for the application of fracture mechanics to concrete structures and the
resulting benefits are:
i. The fracture process involves creation of new surfaces in the material. It is gen-
erally accepted that material separation is better described by energy principles
than by stress or strain. The energy necessary to create new material surfaces is
a fundamental quantity characteristic of the material. Fracture mechanics uses
mostly energy concepts than stress or strain. Therefore, use of fracture mechan-
ics will give a fundamental basis for the understanding of fracture phenomena
in all materials, including concrete.

ii. High strength concretes with compressive strength in excess of 100 N/mm2
present extremely brittle behavior. The use of such concretes in structures needs
new design principles to accommodate crack growth relevant to brittle materials.
Also, we need to improve material composition to increase the toughness of
high strength concretes. Thus, to design concrete with improved ductility it
is necessary to develop test methods to quantify the degree of brittleness (or
fracture toughness) of concrete. The area under the complete tensile stress-
strain curve of the material cannot be used to quantity fracture toughness, since
specimen gage length, specimen size and geometry dependence are observed.
Brittleness or fracture toughness is commonly quantified by using principles of
fracture mechanics.

iii. Design of concrete structures will benefit significantly from fracture mechan-
ics. It will make it possible to achieve more uniform safety factors which will
improve economy and reliability. This is apparent in structures like dams,
nuclear reactor vessels or containments which due to their large size behave in a
rather brittle manner and the consequences of a potential failure are enormous.

iv. The experimentally observed size effect of structures can be adequately
explained by fracture mechanics. According to the size effect the ultimate
stress for geometrically similar structures of different sizes depends on the size
of the structure. Classical theories such as elastic analysis with allowable stress,
plastic limit analysis and other theories (viscoelasticity, viscoplasticity, etc.)
cannot explain the size effect. The size effect which is ignored in current codes
is significant in design.
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14.3. Tensile behavior of concrete

In plain or reinforced concrete design little attention is paid to the tensile behavior of
concrete. Its tensile strength is small and it is usually ignored, even though its tensile
ductility is large. This prevented the efficient use of concrete for many years. The
behavior of concrete under tensile loads plays a key role in the analysis of fracture
since the material in the nonlinear zone ahead of the crack is under tension. This
section presents the salient points of the tensile stress-strain behavior of concrete.
Consider a concrete specimen of uniform cross section subjected to tension. It has

been observed experimentally that when the maximum load is reached the weakest
cross section of the specimen cannot carrymore load, and damage is concentrated on a
small volume ofmaterial adjacent to the weakest cross section. This is a microcracked
material zone or fracture zone. Thus after the maximum load is reached additional
deformation takes place in the fracture zone, while the material outside the fracture
zone unloads elastically. As the fracture zone increases the load decreases.
A concrete tension specimen of initial length L is shown in Figure 14.1. The

elongation of the specimen, 
L, after the maximum load is


L = ε0L + w (14.1)

where ε0 is the strain (uniform) in the material outside the fracture zone and w is the
width of the fracture zone.

w

w

Damage zone

L

L

�L
0�

�L = �0 L + w

Fig. 14.1. Strain localization in a tension specimen.
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The average strain εm is

εm = 
L

L
= ε0 + w

L
. (14.2)

Equation (14.2) suggests that after the maximum stress the average strain depends
on the specimen length. Thus, the stress-strain curve is not a material property. This
behavior is known as the strain localization effect. Therefore, the behavior of con-
crete in tension should be described by two curves: the stress-strain curve up to the
maximum stress and the stress-displacement (width of fracture zone) curve after the
maximum stress. It has been shown experimentally that the stress-displacement curve
after the maximum stress does not depend on the size of the specimen and is charac-
teristic of the material.
Figure 14.2 shows a schematic stress-displacement curve of concrete. It con-

sists of three regions: In region I which extends up to about 60% of the maximum
stress the curve is linear elastic. In region II which extends up to the maximum stress
the deformation becomes nonlinear because of development of cracks. Up to the
maximum load, as the load increases the strain remains uniformly distributed along
the specimen. At the maximum stress the damage becomes localized and a fracture
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Fig. 14.2. An idealized stress-displacement curve of concrete.
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Fig. 14.3. (a) Linear stress-strain relation of the material outside the damage zone and (b) linear
stress-displacement relation of the material in the damage zone.

zone starts to form. From this point the displacement increases under a decreasing
stress. The displacement measured from the elastic unloading line passing from the
point of maximum load becomes independent of the gage length. The material outside
the fracture zone recovers elastically, while the deformation is concentrated in the
fracture zone up to a critical value. The stress-displacement relation for the fracture
zone is obtained by subtracting the elastic displacement from the total displacement.
The obtained stress-displacement curve up to the critical displacement is characteristic
of the material.
In conclusion, the tensile behavior of cementitious materials is characterized by

two relations: the stress-strain relation for the undamagedmaterial outside the fracture
zone and the stress-displacement relation for the damaged material in the fracture
zone. These two curves for a linear stress-strain and stress-displacement relation are
shown in Figure 14.3.
The softening stress-displacement curve is difficult to be obtained experimentally

due to unstable fracture, secondary bending and cracking. A thorough experimental
study of the tensile behavior of concrete was performed by Peterson [14.22].

14.4. The fracture process zone

Cementitious materials like pastes, mortars, concretes, etc. are heterogeneous
materials with complex microstructures. They can be modeled at various scale
levels including the nano, micro, meso and macro levels. A simple way of modeling
cementitious materials is to consider them as a two-phase particulate composite.
Thus, in cement pastes the matrix is the hydrated cement gels and the reinforcement
is the unhydrated cement particles. In mortar the matrix is the cement paste and the
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reinforcement is the fine aggregates. In concrete, the matrix is the mortar and the
reinforcement is the coarse aggregates.
Defects play a vital role on the mechanical behavior of cementitious materials. For

example, in concrete microcracks are usually present, even before loading, at regions
of high material porosity near the interfaces between the coarse aggregates and the
mortar. They are caused by shrinking of the mortar during drying out of the concrete.
Cracks are also present in the mortar matrix. Under an applied load both types of
cracks start to increase and new cracks are formed. The interface cracks extend inside
the mortar and are connected with the mortar cracks. When a sufficient number of
microcracks coalesce a macrocrack is formed.
Figure 14.4a shows a macrocrack (continuous traction-free crack) with its sur-

rounding zone in a cementitious material. The damage zone ahead of the traction-free
crack is referred to as the fracture process zone (FPZ) and plays a vital role in
the analysis of growth of the crack. Within the FPZ many micro-failure mechanisms
including matrix microcracking, debonding of cement-matrix interface, crack devi-
ation and branching take place. All these mechanisms contribute to the energy of
fracture. In the FPZ, the Young’s modulus is smaller than that of the undamaged
material and stress relaxation takes place. The closure stress in the FPZ associated
with localized damage takes a maximum value at the tip of the FPZ and decreases to
a zero value at the tip of the macrocrack (Figure 14.4b).
Experimental methods including optical scanning electron microscopy, moiré

interferometry, dye penetrants, acoustic emission, among others, and methodologies
using compliance measurements and multi-cutting techniques have been applied to

Macrocrack FPZ

(a)

(b)

Fig. 14.4. (a) Fracture process zone (FPZ) ahead of a macrocrack in concrete and (b) closure stresses
in the FPZ.



Cementitious Materials 359

detect the shape and size of the FPZ. The FPZ depends on the geometry and size of
the structure and the type of material. For cement paste the FPZ length is of the order
of a millimeter, for mortar is about 30 mm, for normal concrete or coarse–grained
rock is up to 500 mm, for dam concrete with extra large aggregates is around 3m,
for a grouted soil mass is around 10 m and in a mountain with jointed rock values
of 50 m may be typical. In concrete the length of a fully developed FPZ is about
1.8�ch, where �ch is the characteristic length. Typical values of �ch for concrete with
aggregate sizes of 8 to 32 mm are 250 to 800 mm. On the other hand, the length of
the FPZ in a fine-grained silicon oxide ceramic is of the order of 0.1 mm and in a
silicon wafer of the order of 10–100 nm.

14.5. Fracture mechanics

The proper fracture mechanics theory to be applied for a crack growth problem
depends on the relative size of the FPZ, �, with respect to the smallest critical
dimension, D, of the structure, under consideration. Approximately, we may
define that linear elastic fracture mechanics applies for D/� > 100, while non-
linear quasi brittle fracture mechanics for 5 < D/� < 100. For D/� < 5 nonlo-
cal damage models, particle models or lattice models are applied. This indicates
the importance of the size of the FPZ in the applicability of the proper fracture
mechanics theory. However, there is another factor that differentiates the applica-
tion of fracture to cementitious materials from metals. In ductile or brittle metals the
deformation in the FPZ is dictated by hardening plasticity or perfect yielding, whereas
in cementitious materials the material undergoes softening damage.
In the following section the state of affairs within the FPZ will be modeled so that

fracture mechanics can be applied to cementitious materials.

14.6. Modelling the fracture process zone

The nonlinear and dissipative phenomena that take place in the fracture process zone
can be described by two simplified approaches: (a) The cohesive or fictitious crack
model in which we consider a fictitious crack equal to the original stress-free crack
plus the length of the fracture process zone (FPZ) with cohesive forces in the FPZ,
and (b) the smeared model in which the inelastic deformation is smeared (distributed
continuously) over a band of a certain width. The cohesive model was introduced by
Hillerborg [14.1–14.3] and the smeared model by Bazant [14.20]. In the following
we will present the cohesive crack model.
The cohesive crack model for concrete is similar to the Dugdale model presented

for metals in Section 3.4. It is developed under the following assumptions:
i. The FPZ localizes into a very narrow (line) band ahead of the crack tip.
ii. The effect of the inelastic deformation in the FPZ is modeled by introducing a

fictitious (equivalent) crack of length equal to the length of the true crack and
the length of the FPZ.
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iii. The constitutive modeling in the FPZ is the stress-displacement relation of the
material in tension.

iv. The material outside the fictitious crack is elastic.
Figure 14.5 shows a true crack, the FPZ, the fictitious crack and the stress distri-

bution in the FPZ and in the elastic material ahead of the fictitious crack tip. Note that
the stress at the critical displacement δc is zero, while the stress at the fictitious crack
tip is equal to the tensile strength ft of the material (this stress is not exactly equal to
the tensile strength as it is influenced by the stress normal to the crack front).
A simple estimate of the lengthdc of the FPZ can be obtained using the Irwinmodel,

as it was developed in Section 3.5. For example, for a parabolic stress distribution of
degree n along the FPZ Equation (3.5) gives:

r1∫
0

KIdx√
2πx

=
rI∫
0

ft

(
x

r1

)n

dx = 1
n + 1ft rI (14.3)

from which we obtain

dc = 2rI = n + 1
π

(
KI

ft

)2
. (14.4)

Equation (14.4) for n = 0 (constant stresswithin the FPZ) coincides with Equation
(3.6) of the Irwin model. Note that n for concrete takes values between 7 and 14 and,
therefore, the length of the FPZ in concrete is many times the length of the plastic
zone in metals. This differentiates the fracture behavior between ductile and quasi

Stress free
Inelastic
stress distribution

Elastic stress
distribution

Visible crack

Macro crack Process zone

Fictitious crack

Fig. 14.5. Stress distribution ahead of the crack tip according to the cohesive crack model.
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brittle materials. The size of the FPZ in quasi brittle materials can be one order of
magnitude larger than that of ductile materials of the same strength and toughness.
Equation (14.4) suggests that dc can be put in the form

dc = η
EG

f 2t
= η�ch (14.5)

since K2
I = EG (Equation (4.22)), where η is dimensionless constant and �ch is the

so-called characteristic length, given by

�ch = EG

f 2t
. (14.6)

Reported values of �ch fall in the range 0.15–0.40 m and, therefore, the length of
a fully developed fracture process zone takes values in the range 0.3–2 m.
The cohesive crack has been modeled by many investigators by finite elements,

boundary elements and by the stress intensity factor superposition method.

14.7. Experimental determination of GIc

(a) Introduction

The fracture energy,GIc, which is the specific work of fracture necessary for develop-
ing and fracturing the FPZ, can be obtained from the area of the stress-displacement
curve of a uniaxial tension test (Figure 14.3b).Although this is the most direct way of
determining GIc the tensile test is not easy to perform because of stability problems.
For this reason many test methods using precracked specimens have been developed
for the experimental determination of GIc.
In the following we will present briefly the (early) LEFM method, the compliance

methods, the Jenq-Shah method and the RILEM method.

(b) LEFM method

Early researchers in the 1960s concerned with fracture mechanics of cementitious
materials used a methodology similar to the experimental determination of critical
stress intensity factor, KIc, in metals described in Section 5.4. Three-point beam
specimens with notches have been most popular. The specimens were subjected to
a progressively increasing load and the load versus deflection or load versus crack
mouth opening displacement response was recorded. The value of KIc is determined
from the peak load or the load at the intersection with a secant of slope 95% of the
initial slope and the initial notch length.
The values ofKIc obtained by the previous procedure were not constant with beam

size or notch depth. This was attributed to the arrest of the growing crack by the
aggregate particles and the fact that an initial notch, not a true crack, was used. Thus,
the method based on LEFM cannot be used for the determination of KIc.



362 Chapter 14

(c) Compliance methods

The idea behind the compliance methods is to introduce an effective, not the initial,
crack length. The effective crack takes into consideration the inelastic phenomena
that take place in the FPZ ahead of the crack.
First, the relationship between crack length and compliance (defined as the value

of crack mouth opening displacement per unit load) for the specimen type used (for
example three-point-notched specimen) is established. The unloading compliance of
the specimen is determined by unloading the specimen after reaching the peak load.
From the unloading compliance and the crack length versus compliance relationship
the effective crack length is calculated. The value of KIc is then calculated from
the peak load and the effective crack length using LEFM formulas. When KIc is
calculated using an effective crack length, instead of the initial crack length, a valid
size independent value forKIc is obtained. Note that for the determination ofKIc two
parameters, the effective crack length and the peak load, are required.

(d) The Jenq-Shah method

From the previous discussion, it is clear that for cementitious materials a single frac-
ture parameter cannot provide a valid material property. Along these lines Jenq and
Shah [14.23] proposed a crack model in which the actual crack is replaced by an
equivalent fictitious crack. The model involves two fracture parameters: the critical
stress intensity factor KIc at the tip of the equivalent crack of length ac at peak load
Pu, and the critical value δc of the opening displacement of the equivalent crack at the
tip of the pre-existing crack or notch. The length ac is determined from the condition
that at peak load the crack opening displacement of the equivalent crack at the tip
of the pre-existing crack is δc. Once the effective crack length is determined we can
calculate the value ofKIc using LEFM. This value ofKIc was found to be independent
of the specimen size.
For the determination of δc due to the applied load and the closing pressure within

the FPZ, LEFM and superposition are applied. Since the closing pressure is dependent
on the crack opening displacement an iterative solution is necessary. A simplification
can bemade if it is assumed that closing pressure is zero and the length of the effective
crack is adjusted to yield the value of δc at peak load. For detailed information on the
Jenq-Shah method the reader is referred to [14.23, 14.24].

(e) The work to fracture (RILEM) method

The method is based on the experimental determination of the work of fracture in
a precracked specimen. It was developed by Hillerborg [14.3] and was proposed
by RILEM [14.25] as the first method of testing for fracture properties of concrete.
Conceptually, the method can be applied to various specimen geometries but the
proposed RILEM standard uses a beam with a central edge notch loaded in three-
point bending.
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The specimen is a rectangular bar notched to a depth equal half the beam height.
The dimensions of the beam are selected in relation to maximum aggregate. The
length to height ratio varies from 4 to 8. The smallest recommended beam height is
100 mm.
During the test the load-point deflection of the beam is measured and plotted along

with the applied load. The test is performed in a closed-loop system under strain
control conditions or in a stiff testing machine to produce a stable crack growth.
The critical fracture energyGIc is calculated as

GIc = W0 + mgδ0

b(d − a0)
(14.7)

where
W0 = Area under P -δ curve up to displacement δ0 where the load returns to zero
mg =Weight of beam and fixtures carried by the beam

d = Height of beam
a0 = Notch length
b = Beam thickness.

Note in Equation (14.7) that the denominator represents the area of the specimen
ligament.
The work-of-fracture method is a simple and practical method for the experimental

determination of fracture toughness, GIc. However, the method does not give size-
independent values ofGIc. Due to its simplicity the method has been widely used for
measuring fracture energy.

14.8. Size effect

In the previous section it was mentioned that the fracture toughness of concrete as
determined by the work-of-fracture method depends on the size of the specimen. This
is the so-called size effect. It appears in all structures, but it is more pronounced in
structures made of cementitious materials due to their large fracture process zone.
Therefore, it is fitting to briefly outline the size effect in this chapter which is devoted
to the fracture of cementitious (semi-brittle) materials.
The size effect is defined in terms of the nominal stress σN at maximum (ultimate)

load of geometrically similar structures of different sizes. The nominal stress in a
structure need not to represent an actual stress and is defined as σN = Pu/bd or
σN = Pu/d

2 for a two- or three-dimensional structure, respectively, where d is a
characteristic dimension of the structure (e.g. the depth or the span of a beam, the
length of the FPZ, etc.) and b is the thickness of the two-dimensional structure.
A dependence of σN on the size of the structure is called the size effect. If σN does
not depend on the size of the structure we say that there is no size effect.
The size effect in concrete structures can easily be established if we consider as

characteristic length the length of the FPZ. If we consider that this length is approxi-
matelyfive to six times the size of the aggregates, then the length of theFPZ is constant,
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whereas the size of the structure changes. Thus, for large structures the size of the FPZ
is negligible, while for small structures it is appreciable. This explains the rather brittle
behavior of large structures, as opposed to the ductile behavior of small structures.
Classical theories, such as elastic analysis with allowable stress or plastic limit

analysis cannot take into consideration the size effect. Contrary, linear elastic fracture
mechanics exhibits a strong size effect dependence described by the dependence of
stress intensity factor on the crack length.
An approximate formula for the prediction of the size effect was proposed by

Bazant [14.20]. The formula takes the from

(σN)u = Aft

(
1+ W

B

)−1/2
(14.8)

where
(σN)u = Nominal stress at failure of a structure of specific shape and

loading condition.
W = Characteristic length of the structure.

A,B = Positive constants that depend on the fracture properties of the material
and on the shape of the structure, but not on the size of the structure.

ft = Tensile strength of the material introduced for dimensional purposes.
Equation (14.8) combines limit analysis for small structures and linear elastic frac-

ture mechanics for large structures.A typical size effect curve is shown in Figure 14.6.
The horizontal dashed line represents the failure status according to the strength

or yield criterion. The inclined dashed line exhibits a strong size effect predicted by
linear elastic fracture mechanics. The solid curve between the two limiting curves
represents the real situation for most structures. From Figure 14.6 we can observe
that for very small structures the curve approaches the horizontal line and, therefore,
the failure of these structures can be predicted by a strength theory. On the other hand,
for large structures the curve approaches the inclined line and, therefore, the failure
of these structures can be predicted by linear elastic fracture mechanics.

lo
g
 (

st
re

n
g
th

)

log (size)

Strength criteria Linear elastic
Fracture mechanics

2

1

Real structures

Fig. 14.6. Size effect law on the strength in a bilogarithmic plot.
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14.9. Fiber reinforced cementitious materials (FRCMs)

Long (continuous) or short (discontinuous) fibers are usually added to cementitious
materials to improve the tensile strength and fracture toughness. Fiber materials are
steel, asbestos, glass, nylon, carbon, etc. In short FRCMs there is a fiber bridging zone
(FBZ) in addition to the fracture process zone (FPZ) ahead of the continuous crack.
The FBZ starts to grow at a critical load and when it is fully developed the bridging
fibers either pull-out or fracture. Thus, study of fracture of FRCMs has to include
both FBZ and FPZ. The size of the FBZ depends on the material and dimensions
of the fibers, the properties of the fiber-matrix interface, the geometry and size of
the specimen and the applied loads. For modeling the fracture behavior of FRCMs
the constitutive relationship in the FPZ is needed. This relationship can be directly
obtained from tension tests which are more stable than in unreinforced materials.
Thus, special methods for obtaining the fracture toughness of FRCMs are not needed.
For an in-depth study of fiber reinforced concrete refer to reference [14.26].
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Acoustic emission, 303
Antiplane (tearing) mode, 16, 25, 29
Arrest toughness, 250
ASTM Standard

E399-81, 60, 76, 123, 134, 136
E561-85, 131, 151
E813-87, 167, 193

Bend specimen, 55, 56, 123, 124, 134, 164, 180,
181, 182

Bilayers, 328–9, 337
Blister tests, 333, 335
Brazil disk specimen, 334
British Standard BS 5447, 1977, 113
British Standard BS 5762, 174, 182, 193
Brittle failures, 3

Cementitious materials, 353–66
Chevron notch, 125
Circular crack, 217
Compact tension specimen, 123, 136, 166
Compliance, 89
Composites, 305–322
Concrete
tensile behavior, 355–7

COD design curve, 172
Conventional failure criteria, 1
Coulomb-Mohr fracture criterion, 2
Crack
central, 19, 25, 26, 53
circular, 53
edge, 53
elliptical, 28
periodic array, 38
three-dimensional, 28
antiplane (tearing) mode, 16, 25, 29

opening-mode, 16, 20
penny-shaped, 220
sliding-mode, 16, 24

Crack arrest, 250
Crack detection methods, 301
acoustic emission, 303
dye penetrant, 301
eddy currents, 301
magnetic particles, 301
radiography, 302
ultrasonics, 302

Crack driving force, 81
Crack growth
stable, 91, 132, 211
environment assisted, 275

Crack growth resistance curve
method, 128

Crack opening displacement criterion
design curve, 172
Outline, 170
standard test, 174

Cracks in bilayers
Crack speed, 241
Crack stability, 91
Crack tip plastic zone, 58
Crack tip stress field
dynamic, 243
linear elastic, 15

Cylindrical shell, 36, 140

Da Vinci experiments, 5
“Dead-load” loading, 81, 84, 90
Debonding of a film, 333
Delamination
Mixed-mode I/II, 316–320
Mode-I, 311–313
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Delamination (Contd.)
Mode-II, 313–316
Mode-III, 320–1

Dilatational strain energy criterion, 215
Double cantilever beam specimen, 98, 107,

108, 109
contoured, 99

Double torsion specimen, 103
Dugdale’s model, 65
Dye penetrant method, 301
Dynamic crack propagation, 239
Dynamic fracture, 239
Dynamic fracture toughness, 248, 250

Eddy current method, 302
Effective crack length, 64, 65, 70, 71, 72
Elastic plastic crack problems, 57
Elliptical crack, 28
Energy balance, 77, 78
Energy release rate, 79
Environment-assisted fracture, 265, 275

Failure criteria, 1
Fatigue crack propagation laws, 267
Fatigue fracture, 265
Fatigue life, 271
Fiber reinforced cementitious materials, 365
“Fixed grips” loading, 81, 82
Fracture
slant, 120, 121
square, 119, 121

Fracture criterion
crack opening displacement, 170
stress intensity factor, 117
J-integral, 160
strain energy density, 195
strain energy release rate, 117

Fracture mechanics design methodology, 133
Fracture process zone, 357–9
Fracture toughness
definition, 12
dynamic, 248, 250
plane strain, 119
plane stress, 118
thickness dependence, 118

Griffith theory, 5, 79, 81

Indenters
Conical, 346
Wedge, 350

Irwin’s model, 63

Irwin-Orowan theory, 132
Interface toughness, 324, 326, 333–8
Interfacial failure, 324–328
Interfacial cracks, 324–31, 333–5, 348, 350
Interlaminar fracture, 311–21

Jenq-Shah method, 362
J-integral
definition, 155
experimental determination, 161
for notches and cracks, 156
fracture criterion, 160
multiple-specimen method, 163
relation between J and G, 158
single specimen method, 164

K, see stress intensity factor

Linear elastic stress field in cracked bodies, 15

Magnetic particles method, 301
Maximum stress criterion, 213
Mises yield criterion, 2
Mixed-mode crack growth, 195, 201, 213
Mott’s model, 240

Nanoindentation, 339–52
Nanoindentation for measuring fracture

toughness, 343–5
Nanoindentation for measuring interfacial

fracture toughness, 346–51
Nanoindentation for measuringYoung’modulus

and toughness, 339–43
Nondestructive evaluation, 301

Opening-mode, 16, 20

Paris law, 269
Path independent integrals, 153
Penny-shaped crack, 220
Plastic zones around cracks
Opening-mode, 58
Mixed-mode, 67
Propagating crack stress field, 243

Radiography, 302
Resistance curve, 128
RILEM method, 362

Sandwich specimen tests, 333–5
Shells with cracks, 36, 140
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Singular stress fields
antiplane (tearing) mode, 25
opening mode, 20
sliding mode, 24

Size effect, 363–4
Sliding mode, 16, 24
Small scale yielding approximation, 57
Strain energy density theory, 195
basic hypotheses, 199
development of crack profile, 211
ductile fracture, 210
energy dissipation, 210
inclined crack under compression, 207
inclined crack under tension, 206
opening-mode, 204
sliding-mode, 205
two-dimensional crack problems, 201
uniaxial intension of an inclined crack, 203

Standards
ASTM E399-81, 60, 76, 123, 134, 136
ASTM E561-81, 131, 151
ASTM E813-87, 167, 193
British BS 5447, 1977, 113
British BS 5762, 174, 182, 193

Stress corrosion cracking, 275

Stress intensity factor
antiplane (tearing) mode, 25
compact tension specimen, 124
critical value, 118, 122
definition, 21
double cantilever beam specimen, 98
dynamic, 243
fracture criterion, 117
opening mode, 21
sliding mode, 24
tearing mode, 25, 29
three-point bend specimen, 124

Superlayer test, 336–8

Tearing mode, 25, 29
Thin films, 323–38
Three-point bend specimen, 124, 134
Toughness, see fracture toughness
Tresca yield criterion, 2

Ultrasonics, 302

Velocity, crack propagation, 241
Volume strain energy density, 196

Westergaard method, 17




