MEMOIRS

American Mathematical Society

Number 508

An Index of a Graph with Applications to Knot Theory

Kunio Murasugi
Jozef H. Przytycki

Recent Titles in This Series

508 Kunio Murasugi and Jozef H. Przytycki, An index of a graph with applications to knot theory, 1993

507 Cristiano Husu, Extensions of the Jacobi identity for vertex operators, and standard $A_{1}^{(1)}$-modules, 1993
506 Marc A. Rieffel, Deformation quantization for actions of $R^{d}, 1993$
505 Stephen S.-T. Yau and Yung Yu, Gorenstein quotient singularities in dimension three, 1993
504 Anthony V. Phillips and David A. Stone, A topological Chern-Weil theory, 1993
503 Michael Makkai, Duality and definability in first order logic, 1993
502 Eriko Hironaka, Abelian coverings of the complex projective plane branched along configurations of real lines, 1993
501 E. N. Dancer, Weakly nonlinear Dirichlet problems on long or thin domains, 1993
500 David Soudry, Rankin-Selberg convolutions for $\mathrm{SO}_{2 \ell+1} \times \mathrm{GL}_{n}$: Local theory, 1993
499 Karl-Hermann Neeb, Invariant subsemigroups of Lie groups, 1993
498 J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn, Continuous images of arcs and inverse limit methods, 1993
497 John Roe, Coarse cohomology and index theory on complete Riemannian manifolds, 1993
496 Stanley O. Kochman, Symplectic cobordism and the computation of stable stems, 1993
495 Min Ji and Guang Yin Wang, Minimal surfaces in Riemannian manifolds, 1993
494 Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, 1993
493 Nigel J. Kalton, Lattice structures on Banach spaces, 1993
492 Theodore G. Faticoni, Categories of modules over endomorphism rings, 1993
491 Tom Farrell and Lowell Jones, Markov cell structures near a hyperbolic set, 1993
490 Melvin Hochster and Craig Huneke, Phantom homology, 1993
489 Jean-Pierre Gabardo, Extension of positive-definite distributions and maximum entropy, 1993
488 Chris Jantzen, Degenerate principal series for symplectic groups, 1993
487 Sagun Chanillo and Benjamin Muckenhoupt, Weak type estimates for Cesaro sums of Jacobi polynomial series, 1993
486 Brian D. Boe and David H. Collingwood, Enright-Shelton theory and Vogan's problem for generalized principal series, 1993
485 Paul Feit, Axiomization of passage from "local" structure to "global" object, 1993
484 Takehike Yamenouchi, Duality for actions and coactions of measured groupoids on von Neumann algebras, 1993
483 Patrick Fitzpatrick and Jacobo Pejsachowicz, Orientation and the Leray-Schauder theory for fully nonlinear elliptic boundary value problems, 1993
482 Robert Gordon, G-categories, 1993
481 Jorge Ize, Ivar Massabo, and Alfonso Vignoli, Degree theory for equivariant maps, the general S^{1}-action, 1992
480 L. Š. Grinblat, On sets not belonging to algebras of subsets, 1992
479 Percy Deift, Luen-Chau Li, and Carlos Tomei, Loop groups, discrete versions of some classical integrable systems, and rank 2 extensions, 1992
478 Henry C. Wente, Constant mean curvature immersions of Enneper type, 1992
477 George E. Andrews, Bruce C. Berndt, Lisa Jacobsen, and Robert L. Lamphere, The continued fractions found in the unorganized portions of Ramanujan's notebooks, 1992
Thomas C. Hales, The subregular germ of orbital integrals, 1992

This page intentionally left blank

MEMOIRS
 American Mathematical Society

Number 508

An Index of a Graph with Applications to Knot Theory

Kunio Murasugi
Jozef H. Przytycki

Library of Congress Cataloging-in-Publication Data

Murasugi, Kunio, 1929-
An index of a graph with applications to knot theory / Kunio Murasugi, Józef H. Przytycki.
p. cm. - (Memoirs of the American Mathematical Society, ISSN 0065-9266; no. 508)

ISBN 0-8218-2570-4

1. Topological graph theory. 2. Knot theory. 3. Link theory. I. Przytycki, Józef, 1953-. II. Title. III. Series.

QA166.195.M87 1993
511'.5-dc20
93-27284

Memoirs of the American Mathematical Society

This journal is devoted entirely to research in pure and applied mathematics.
Subscription information. The 1993 subscription begins with Number 482 and consists of six mailings, each containing one or more numbers. Subscription prices for 1993 are $\$ 336$ list, $\$ 269$ institutional member. A late charge of 10% of the subscription price will be imposed on orders received from nonmembers after January 1 of the subscription year. Subscribers outside the United States and India must pay a postage surcharge of $\$ 25$; subscribers in India must pay a postage surcharge of \$43. Expedited delivery to destinations in North America \$30; elsewhere \$92. Each number may be ordered separately; please specify number when ordering an individual number. For prices and titles of recently released numbers, see the New Publications sections of the Notices of the American Mathematical Society.

Back number information. For back issues see the AMS Catalog of Publications.
Subscriptions and orders should be addressed to the American Mathematical Society, P. O. Box 5904, Boston, MA 02206-5904. All orders must be accompanied by payment. Other correspondence should be addressed to Box 6248, Providence, RI 02940-6248.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P. O. Box 6248, Providence, RI 02940-6248. Requests can also be made by e-mail to reprint-permission@math. ams.org.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970. When paying this fee please use the code 0065-9266/93 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.

Memoirs of the American Mathematical Society is published bimonthly (each volume consisting usually of more than one number) by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213. Second-class postage paid at Providence, Rhode Island. Postmaster: Send address changes to Memoirs, American Mathematical Society, P. O. Box 6248, Providence, RI 02940-6248.
(c) Copyright 1993, American Mathematical Society. All rights reserved.

Printed in the United States of America.
This volume was printed directly from author-prepared copy.
©
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
$\$$ Printed on recycled paper.

TABLE OF CONTENTS

Abstract vi
Introduction vii
Chapter I Index of a graph 1
§1 Preliminaries and notations 1
§2 Index of a graph 4
§3 Cycle index of a graph 9
§4 Index and other invariants 11
§5 Graphs with small indices 16
§6 Index of a reducible graph 22
Chapter II Link Theory 26
§7 Preliminaries and the index of a link 26
§8 Improvement of Morton-Frank-Williams inequalities 30
§9 Extremal terms of $P_{L}(v, z)$ 36
$\S 10$ Braid index of special alternating links 46
§11 Braid index and other invariants 56
Chapter III Braid Index of alternating links 58
§12 Algebraic links 58
§13 Pretzel links 69
§14 Some other alternating links 84
§15 Concluding remarks and conjectures 92
Appendix 95
References 100

Abstract

For a signed graph G, we define an invariant, called the index, ind G and prove several relationships between ind G and other known invariants. Graphs with ind $G=0$ or 1 are characterized. If G is the Seifert graph of a diagram of a knot K, then ind G is closely related to the braid index of K. We show that if K is an alternating link and ind $G=0$ for the Seifert graph G associated with some alternating diagram of K, then the braid index of K is completely determined by its skein polynomial. Moreover, the braid index of certain types of alternating links including alternating pretzel links is determined.

Key words and phrases.

Signed graph, bipartite graph, index of a graph, cycle index, knot, link, knot diagram, alternating knot or link, Seifert circle, Alexander polynomial, skein polynomial, braid index of a link, pretzel link, algebraic (or arborescent) link.

Introduction

Every oriented link L in a 3 -sphere $S^{\mathbf{3}}$ is represented as a closed braid with a finite number of strings [A]. The braid index of L, denoted by $\mathbf{b}(L)$, is defined as the minimum number of strings needed for L to be represented as a closed braid. The braid index is a link type invariant, but generally it is extremely difficult to determine the braid index of a link.

However, the recent development on the polynomial invariants of links [J,FY, LM, $\mathrm{PT}]$, especially the invariant called the skein polynomial in this paper, has revealed a deep connection between these polynomials and the braid index of a link. On the other hand, Yamada [Y] proves that the number of Seifert circles, denoted by $s(D)$, of a link diagram D of an oriented link L is at least equal to the braid index of L. This remarkable theorem (combined with other results) makes it possible for us to determine the braid index of many links. In fact, the first author of the present paper, successfully determines, for the first time, the braid index of a certain type of alternating links [Mu 4]. However, in order to determine the braid index of more general links, we must determine the deficit $s(D)-\mathbf{b}(L)$ of the diagram D. Our study of the deficit leads to a new concept called the index of a graph G, which produces a direct correlate of the deficit for many (and probably all) alternating links. This relationship is the basis of our extensive investigation of the index of graphs. Using this concept, we can characterize the alternating links for which the deficit of an alternating diagram is equal to 0 . [Cf. Theorem 9.5.] Therefore, the braid index of these links is completely determined by counting Seifert circles in the diagram. An alternating fibred link is a typical example of the links with this property and therefore our theorem recovers one of the main theorems in [Mu4]. We have also almost complete characterization of alternating links for which the deficit of an alternating diagram is one or two. (See Theorems 10.9 and 10.13.) For may familiar alternating links, like 2-bridge links or pretzel links, the deficit of an alternating diagram will be evaluated precisely and

Received by the editor March 29, 1990.
the braid index is therefore, completely determined.
Now we will briefly explain the contents of the paper.
The paper is divided into three chapters. Chapter I deals with the index of a graph. Since we are mainly interested in applications of graph theory to link theory, we concentrate on bipartite (and planar) graphs. A graph G is called bipartite if every cycle in G has an even number of edges. One of the useful properties of a bipartite graph is that the index is additive with respect to the block sum. (This is not true for non-bipartite graphs). In fact, we will prove in $\S 2$ the following theorem

Theorem 1 (Cf. Theorem 2.4) If G_{i} is a bipartite graph, $i=1,2, \cdots, k$, then

$$
\operatorname{ind}\left(G_{1} * G_{2} * \cdots * G_{n}\right)=\sum_{i=1}^{k} \operatorname{ind}\left(G_{i}\right)
$$

where ind X denotes the index of X and $X * Y$ denotes the block sum (i.e. the one-point union) of X and Y.

The index of a graph G is also related to other invariants of G. For instance, the number of growing rooted spanning trees ${ }^{1} \lambda(G)$, in G is well studied in the literature. We will prove in $\S 4$ the following theorem.

Theorem 2 (Cf. Theorem 4.3 and Corollary 4.11) Let G be a plane bipartite connected graph without isthmuses. Let G^{*} be the dual graph of G (with a natural direction ${ }^{2}$). Then

$$
\text { ind } G \leq \lambda\left(G^{*}\right)-1
$$

If, moreover, G has no cut vertices, then

$$
|V(G)| \leq 2 \lambda\left(G^{*}\right)
$$

where $|V(G)|$ denotes the number of vertices in G.
In $\S 5$, Theorems 1 and 2 stated above will be used to characterize the planar bipartite graphs with $\lambda\left(G^{*}\right) \leq 3$. Since our graph G is finite, the index of G can be decided

[^0]algorithmically. In $\S 6$, we consider a special type of graph, called reducible, and express precisely the index of G in terms of other numerical invariants of G. (See Theorem 6.5.) The graphs considered there correspond to a special type of algebraic links (in the sense of Conway), and their braid indices will be completely determined in $\S 12$.

In Chapter II, we will present a general strategy for determining the braid index of a link. The main purpose of Chapter II is to improve an inequality proven in [FW, Mo 1] and to find a sufficient condition for the equality.

The theorems proven in $\S 8$ and $\S 9$ are of fundamental importance in this paper. They not only determine the braid index of many links, but they also have many applications.

Chapter III will be devoted to the determination of the braid index of many links, i.e. algebraic links (in the sense of Conway) and pretzel links. In particular, the braid index of an alternating pretzel link is completely determined in $\S 13$. In $\S 14$ we will show that the braid index of an alternating link L is determined by its skein polynomial if the leading coefficient c_{0} of the Alexander polynomial is small, i.e. $\left|c_{0}\right| \leq 3$. If $c_{0}= \pm 1, L$ is fibred and the braid index is already determined in [Mu 4]. (The same result also follows from Theorem 9.5.) Therefore, we only consider the links with $c_{0}= \pm 2$ or ± 3. Since links with this property are characterized by their Seifert graphs, the proof is not complicated. The original proof, however, has been simplified considerably by using the main result in [Mu 3]. In the last section, $\S 15$, we propose a few conjectures on the braid index.

There is one appendix in which we prove two technical lemmas needed in Chapter II.
Finally, we would like to express our deepest appreciation to J. Hoste who computed for us a part of the skein polynomials of two alternating links. Using his result, we were able to determine the braid index of these links which eventually disproved one of our original conjectures on the braid index. (See $\S 15$.) (A year after we submitted the paper, W. Menasco and M.B. Thistlethwaite announced a proof of the Tait flyping conjecture. (See [MT].) As a result, in this revised version of our paper, we have omitted some of the material relevant to this conjecture which was contained in the original version.)

This page intentionally left blank

Chapter I. Index of a graph.

§1 Preliminaries and notations

Let G be a graph. Let $V(G)$ and $E(G)$ be the sets of vertices and edges, respectively.
We restrict ourselves to finite graphs, that is, graphs for which $V(G)$ and $E(G)$ are both finite. In this paper, however, slightly more general graphs shall be considered.

A graph G is said to be signed if either +1 or -1 , called a sign, is assigned to each edge. More precisely, G (or $\left(G, f_{G}\right)$) is a signed graph if G is a graph equipped with a sign function $f_{G}: E(G) \rightarrow\{1,-1\}$. For convenience, we call an edge e positive if $f_{G}(e)=+1$ and negative otherwise. Since a positive graph may be considered as an unsigned (or an ordinary undirected) graph, our results can be applied to ordinary undirected graphs.

A subgraph H of G has induced sign function $f_{H}=f_{G} \mid E(H)$. A subgraph H is a spanning subgraph if $V(H)=V(G)$.

Throughout this paper, what is meant by a graph is frequently the geometric realization of a graph as a finite 1-dimensional CW-complex in \mathbb{R}^{3}. We are free to use many terminologies from algebraic topology.

For a set $X,|X|$ denotes the cardinality of $X . \beta_{i}(G)$ denotes the $i^{\text {th }}$ Betti number of a graph G as a 1-complex.

In graph theory, $p_{0}(G)$ and $p_{1}(G)$ have been used instead of $\beta_{0}(G)$ and $\beta_{1}(G) . p_{0}(G)$ denotes the number of connected components of G, and $p_{1}(G)$ is called the cyclomatic number of G.

Let H and K be two graphs, both of which have at least one edge. Then the one-point union of H and K will be denoted by $H * K$.

We also refer to $[B e]$ for many standard terminologies in graph theory.
For $V \subset V(G)$ and $E \subset E(G), G-(V, E)$ denotes the maximal subgraph of G which
does not contain vertices in V and edges in E. In particular, $G-e$ is the subgraph of G consisting of all vertices of G and all edges but e. Therefore $G-e$ is the subgraph obtained from G by deleting e. For a vertex $v, G-v$ is the subgraph consisting of all vertices but v and edges of G except those which are incident to v.

A graph G is said to be separable if there are two subgraphs H and K such that $G=H \cup K$ and $H \cap K=\left\{v_{0}\right\}$, where H and K both have at least one edge and v_{0} is a vertex. Otherwise, G is non-separable. The vertex v_{0} is called a cut vertex. If G has no loops, then G is separable when $\beta_{0}(G)<\beta_{0}(G-v)$ for some vertex v.

A block is a maximal non-separable connected subgraph of G. A connected graph is decomposed into finitely many blocks. Therefore, if $G_{1}, G_{2}, \ldots, G_{k}$ are blocks of G, we can write $G=G_{1} * G_{2} * \cdots * G_{k}$ and G is called the block sum of $G_{1}, G_{2}, \ldots, G_{k}$.
G is called reduced if G has neither loops nor isthmuses. An isthmus is an edge e such that $\beta_{0}(G)<\beta_{0}(G-e)$.

If two or more edges have the same ends, these edges are called multiple-edges. On the other hand, if two distinct vertices are joined by exactly one edge e, then e is called a singular edge of G. A loop is not a singular edge.

A two-vertex graph G is called a multiple-edge graph (or a single-edge graph) if all edges have the common (distinct) ends and $|E(G)| \geq 2$ (or $|E(G)|=1$).

Let G be a graph and v a vertex of G. star v is the smallest subgraph containing v and all edges of G which are incident to v. If X is a connected subset of G, then G / X is defined as the subgraph obtained from G by identifying all points in X to one point.

For convenience, for subgraphs H and K of a graph G, we define H / K as $H / H \cap K$. Therefore, if $H \cap K=\phi$, then H / K is H itself. For an edge $e, G /(e)$ constructed from $G-e$ by identifying the ends of e is said to be obtained by contracting e. If e is a loop, then $G-e=G /(e)$.

An alternate sequence of vertices v_{i} and edges $e_{i}: v_{0}, e_{1}, v_{1}, \ldots, u_{n-1}, e_{n}, v_{n}$ is called a chain (connecting v_{0} and v_{n}) of G if v_{i} and v_{i+1} are ends of the edge e_{i+1}, for $i=$
$0,1, \ldots, n-1$. The length of the chain is n.
A chain C is called a cycle if $v_{n}=v_{0}$. The length of C, denoted by $|C|$, is n. A chain or a cycle is called simple if $e_{\boldsymbol{i}} \neq e_{\boldsymbol{j}}$ and $v_{\boldsymbol{i}} \neq v_{\boldsymbol{j}}$ for any i and $j, i \neq j$, except possibly $v_{n}=v_{0}$. For simplicity, a cycle of length n will be called an n-cycle. A chain (or a cycle) in which all the edges are distinct is called a trail (or a closed trail).

A graph G is said to be bipartite if any cycle of G has an even length. Equivalently, G is bipartite if $V(G)$ can be decomposed into two disjoint (non-empty) sets V_{1} and V_{2} in such a way that each edge of G has two distinct ends one of which belongs to V_{1} and another to V_{2}. A bipartite graph cannot have a loop.

The valency of a vertex $v, \operatorname{val}(v)$, is the number of edges incident to v. If a loop is incident to v, it is counted twice. Therefore, if m loops and k non-loop edges are incident to v, then $\operatorname{val}(v)=2 m+k$. A graph is called an even graph if every vertex has an even valency.

A vertex of valency 1 is called a stump. A twig is a vertex of valency 2 .
A graph G is called planar if G can be embedded into a plane \mathbb{R}^{2} as a 1-complex. G is called a plane graph if G is a graph embedded in \mathbb{R}^{2}.

If G is a connected plane graph, we can define the dual graph G^{*}. (Strictly speaking, G^{*} is not unique as a plane graph, but if G is imbedded in S^{2}, then G^{*} is unique. However, non-uniqueness of G^{*} in \mathbb{R}^{2} does not cause any trouble in this paper.) $V\left(G^{*}\right)$ and the set $F(G)$ of domains in $\mathbf{R}^{2}-G$ are in one-to-one correspondence, and, $E\left(G^{*}\right)$ and $E(G)$ are in one-to-one correspondence in such a way that $e^{*} \in E\left(G^{*}\right)$ and its partner have exactly one point, not a vertex, in common. We define the sign of e^{*} as the opposite of its partner. If G is a plane disconnected graph, then G^{*} is a disjoint union of graphs dual to connected components of G.

Example 1.1

§2 Index of a graph

In this section, we introduce and analyze the concept of an index of a graph. The index will be further translated to an oriented link diagram and will provide an important tool to determine the braid index of a link.

Definition 2.1 Let G be a graph.
(1) A family $\mathcal{F}=\left\{e_{1}, \ldots, e_{\boldsymbol{k}}\right\}$ of edges of G is said to be independent if (i) all $e_{\boldsymbol{j}}$ ($j=$ $1,2, \ldots, k$) are singular and (ii) there is an edge e_{i} in \mathcal{F} and a vertex v, one of the ends of e_{i}, such that $\left\{\phi\left(e_{1}\right), \ldots, \phi\left(e_{i-1}\right), \phi\left(e_{i+1}\right), \ldots, \phi\left(e_{\boldsymbol{k}}\right)\right\}$ is an independent set of $k-1$ edges in the graph $G /$ star v, where $\phi: G \rightarrow G /$ star v is the collapsing map. (In the rest of the paper, we do not distinguish between $e_{\boldsymbol{i}}$ and $\phi\left(e_{\boldsymbol{i}}\right)$ unless confusion arises.) We define that the empty set of edges is independent.
(2) ind (G) is defined to be the maximal number of independent edges in G.
(3) If G is a signed graph, then $i n d_{+}(G)$ (respectively $i n d_{-}(G)$) is defined to be the maximal number of independent edges $\left\{e_{1}, \ldots, e_{k}\right\}$ in G, where all $e_{j}(j=1, \ldots, k)$ are positive (respectively negative) and singular in G.

It is obvious that ind $(G) \leq i n d_{+}(G)+i n d_{-}(G)$.

Example 2.2 For the graph G depicted in Fig. 2.1, we see that $\operatorname{ind}(G)=1, \operatorname{ind} d_{+}(G)=1$
and $i n d_{-}(G)=1$.

Fig. 2.1
From Definition 2.1, we have immediately the following

Proposition 2.3 If two graphs G_{1} and G_{2} are disjoint, then

$$
\begin{aligned}
& \text { ind }\left(G_{1} \cup G_{2}\right)=\text { ind } G_{1}+\text { ind } G_{2}, \\
& i n d_{+}\left(G_{1} \cup G_{2}\right)=\text { ind }_{+}\left(G_{1}\right)+i n d_{+}\left(G_{2}\right), \text { and } \\
& i n d_{-}\left(G_{1} \cup G_{2}\right)=i n d_{-}\left(G_{1}\right)+i n d_{-}\left(G_{2}\right) .
\end{aligned}
$$

One of the main theorems of this chapter is the following theorem.

Theorem 2.4 Let G be a connected bipartite graph. If G consists of blocks $G_{1}, G_{2}, \ldots, G_{\boldsymbol{k}}$ then
(1) ind $G=\operatorname{ind}\left(G_{1}\right)+\cdots+\operatorname{ind}\left(G_{k}\right)$.

Furthermore, if G is a signed graph, then
(2) $i n d_{+}(G)=\sum_{i=1}^{k} i n d_{+}\left(G_{i}\right)$ and ind $(G)=\sum_{i=1}^{k} i n d_{-}\left(G_{i}\right)$.

First we note that it suffices to show (1). Because if the graph G^{\prime} is obtained from G by replacing all singular negative (or positive) edges by multiple-edges, then we see that ind $+_{+} G=$ ind G^{\prime} (or ind_G $=$ ind G^{\prime}) and apply (1) on G^{\prime}.

Now Theorem 2.4 follows easily from the following

Lemma 2.5 Suppose that G is the one-point union of two graphs G_{1} and G_{2} i.e. $G=$ $G_{1} * G_{2}$. If at least one of G_{1} and G_{2} is bipartite, then ind $G=$ ind $G_{1}+$ ind G_{2}.

Example 2.6 below shows that Lemma 2.5 (and hence Theorem 2.4) does not hold if G_{1} and G_{2} are non-bipartite.

Example 2.6 Consider the graph H. (See Fig 2.2(a))
H

(a)

G

(b)

Fig. 2.2

(c)

Obviously ind $H=2$ and we can easily check that w is the only vertex of H such that $\operatorname{ind}(H / \operatorname{star} w)=1$. Now consider the graphs G and G^{\prime} obtained as the one-point unions of two copies of H along different vertices as depicted in Fig. 2.2(b) and (c). Then it is easy to see that ind $G=4$, while ind $G^{\prime}=3$.

Now, Lemma 2.5 follows from Lemma 2.7 below
Lemma 2.7 Let w be a vertex of a bipartite graph G with ind $G=n \geq 1$. Then there exists a vertex u that is an end of a singular edge of G such that $u \neq w$ and ind $(G /$ star $u)=n-1$.

The lemma also does not hold for non-bipartite graphs. For example, for any vertex u of H (in Fig 2.2(a)) different from w, ind $(G / \operatorname{star} v)=0$

Proof of Lemma $2.7 \Longrightarrow$ Lemma 2.5. Without loss of generality, we may assume that G_{1} is bipartite. Then for any vertex v of $G_{1}, G_{1} / \operatorname{star} v$ is also bipartite. Observe that always ind $\left(G_{1} * G_{2}\right) \leq$ ind $G_{1}+$ ind G_{2}. Now we proceed by induction on ind G_{1}. If ind $G_{1}=0$, then G_{1} has no singular edges and we can see easily that a family of edges in G_{2} is independent iff it is independent in $G_{1} * G_{2}$, and hence, ind $G=$ ind G_{2}.

Suppose now that ind $G_{1}=n \geq 1$ and that Lemma 2.5 holds for any graph G^{\prime} with ind $G^{\prime}<$ ind G_{1}. Let v be the vertex of G, along which G_{1} and G_{2} are joined. By Lemma 2.7, we can choose a vertex u of a singular edge of G_{1} such that $u \neq v$ and ind $\left(G_{1} /\right.$ star $\left.v\right)=n-1$. Then $\left(G_{1} * G_{2}\right) /$ star $u=\left(G_{1} /\right.$ star $\left.u\right) * G_{2}$ and the induction hypothesis yields ind $\left(G_{1} /\right.$ star $\left.u * G_{2}\right)=$ ind $\left(G_{1} /\right.$ star $\left.u\right)+$ ind $G_{2}=n-1+$ ind G_{2}. Therefore, by the definition of the index, we have

$$
\text { ind }\left(G_{1} * G_{2}\right) \geq n+\text { ind } G_{2}=\text { ind } G_{1}+\text { ind } G_{2}
$$

Since the reverse inequality always holds, we have the equality.
Now to prove Lemma 2.7 we need a few more definitions and a lemma.
Definition 2.8 A sequence of vertices $w_{1}, w_{2}, \ldots, w_{k}$ of G is called a special sequence if it satisfies the following conditions: For $i=1,2, \ldots, k$
(1) w_{i} is an end of a singular edge in G_{i-1} and $G_{i}=G_{i-1} /$ star w_{i} where, $G_{0}=G$.
(2) ind $G_{i}=$ ind $G-i$ for $i=1,2, \ldots, k$.
(3) For $i<k, \operatorname{dist}_{\boldsymbol{G}_{\boldsymbol{i - 1}}}\left(w_{i-\mathbf{1}}, w_{\boldsymbol{i}}\right)=1$, where $\operatorname{dist}_{\boldsymbol{H}}(x, y)$ is the minimum of the length of all chains connecting x and y in H.
(4) $\operatorname{dist}_{\boldsymbol{G}_{\boldsymbol{k}-1}}\left(w_{\boldsymbol{k}-\mathbf{1}}, w_{\boldsymbol{k}}\right) \geq 2$ in $G_{\boldsymbol{k}-1}$ or $w_{\boldsymbol{k}-\boldsymbol{1}}$ and $w_{\boldsymbol{k}}$ are joined by a singular edge in G_{k-1}.
If ind $G=1$, then an end of any singular edge of G forms a special sequence.
Lemma 2.9 Let w_{1}, \ldots, w_{k} be a special sequence in a graph G. Define a sequence of graphs $G_{1}^{\prime}, \ldots, G_{k}^{\prime}$ as follows: $G_{0}^{\prime}=G, G_{1}^{\prime}=G /$ star w_{k}, and inductively, $G_{i}^{\prime}=G_{i-1}^{\prime} /$ star w_{i-1} for $i=2, \ldots, k$. Then
(1) w_{i} is an end of a singular edge in G_{i}^{\prime} for $i<k$ and w_{k} is an end of a singular edge of $G_{0}^{\prime}(=G)$.
(2) ind $G_{i}^{\prime}=$ ind $G-i$, for $i=1,2, \ldots, k$. In particular, ind $\left(G /\right.$ star $\left.w_{k}\right)=$ ind $G-1$.

Proof We only give a proof of Lemma 2.9 for $k=2$, since the general case is completely analogous. First we show that w_{1} is an end of a singular edge of $G_{1}^{\prime}=G /$ star w_{2}.

Let e be a singular edge of G having w_{1} as an end. Definition 2.8 (4) now ensures that $\operatorname{dist}\left(w_{1}, w_{2}\right) \geq 2$ in G, and w_{1} and w_{2} cannot occur on a cycle in G of length ≤ 4. (Otherwise w_{1} and w_{2} would be joined by multiple edges in $G_{1}=G /$ star w_{1}.) Therefore, e is a singular edge in $G_{1}^{\prime}\left(=G /\right.$ star $\left.w_{2}\right)$ and w_{1} is an end of e in G_{1}^{\prime}. This argument also shows that w_{2} is an end of a singular edge in G, since w_{2} is an end of a singular edge in G_{1} by Definition 2.8 (1). On the other hand, since $\operatorname{dist}_{G_{1}}\left(w_{1}, w_{2}\right) \geq 2$ it follows that

$$
G_{2}^{\prime}=\left(G_{0} / \text { star } w_{2}\right) / \text { star } w_{1}=\left(G / \text { star } w_{1}\right) / \text { star } w_{2}=G_{2}
$$

and hence, ind $G_{2}^{\prime}=$ ind $G_{2}=$ ind $G-2$. Finally, since w_{1} is an end of a singular edge in $G_{1}^{\prime}=G /$ star w_{2}, we see that ind $G_{1}^{\prime}=$ ind $G-1$. This proves Lemma 2.9.

Proof of Lemma 2.7 If w is not an end of a singular edge of G or $\operatorname{ind}(G /$ star $w)<n-1$, then Lemma 2.6 trivially holds by the definition of the index. Therefore, we assume that w is an end of a singular edge e of G and $\operatorname{ind}(G /$ star $w)=n-1$. Now we proceed our proof by induction on n. For $n=1$, the lemma holds by taking as u the other end of e. Now suppose that ind $G=n \geq 2$ and Lemma 2.7 holds for any bipartite graph with a smaller index. Write $w_{1}=w$. By induction hypothesis, there is a vertex w_{2} in G such that (1) w_{2} is different from w_{1} in $G_{1}\left(=G /\right.$ star $\left.w_{1}\right)$, (2) w_{2} is an end of a singular edge of G_{1} and (3) ind $\left(G_{1} /\right.$ star $\left.w_{2}\right)=n-1$. If w_{1}, w_{2} is a special sequence, then we have from Lemma 2.9 that $\operatorname{ind}\left(G / \operatorname{star} w_{2}\right)=n-1$ and hence, w_{2} is what we want. If w_{1}, w_{2} is not a special sequence, apply the induction hypothesis on $G_{1}=G /$ star w_{1} to find the third vertex, say w_{3}, of G such that w_{3} is different from w_{2} in $G_{2}\left(=G_{1} /\right.$ star $\left.w_{2}\right)$ and ind $G_{3}\left(=\operatorname{ind}\left(G_{2} /\right.\right.$ star $\left.\left.w_{3}\right)\right)=\operatorname{ind} G_{2}-1=n-3$. Repeat the same argument as long as the sequence of vertices $w_{1}, w_{2}, \ldots, w_{m}$ thus obtained is not a special sequence.

If for some $k \leq n$ the sequence w_{1}, \ldots, w_{k} is a special sequence, then w_{k} is the vertex we sought. Suppose that w_{1}, \ldots, w_{n-1} is not a special sequence. This sequence satisfies the conditions (1) - (3) in Definition 2.8. In particular, from (3) we see that all w_{1}, \ldots, w_{n-1} collapse to the vertex w_{1} in G_{n-1}. Let e be a singular edge in G_{n-1}. Then choose w_{n} as follows:

If w_{1} is one of the ends of e, choose w_{n} to be another end. (w_{n} is also a vertex of G.)
If w_{1} is not an end of e, then one of the ends, say v_{0}, of e has $\operatorname{dist}\left(w_{1}, v_{0}\right) \geq 2$, since G_{n-1} is a bipartite graph and does not contain 3 -cycles. Choose v_{0} as w_{n}. Then w_{1}, \ldots, w_{n} is a special sequence in G, and w_{n} is what we want. It now completes the proof of Lemma
2.7.

$\S 3$ Cycle index of a graph.

As the first approximation of ind G, in this section we define a cycle index of a graph G. Usually, the determination of the cycle index is much easier than that of the index and therefore, it provides a quite effective method to determine the index of a graph. In fact, the cycle index will be used to determine ind G for a certain class of graphs. See Theorem 6.5 .

Definition 3.1 Let $\mathcal{S}=\left\{e_{1}, \ldots, e_{\boldsymbol{n}}\right\}$ be a set of n distinct edges in a graph G.
(1) \mathcal{S} is said to be cyclically independent if no k edges in $\mathcal{S}(1 \leq k \leq n)$ occur on a simple cycle of length at most $2 k$. Otherwise \mathcal{S} is called cyclically dependent.
(2) The cycle index of G, denoted by $\alpha(G)$, is defined as the maximal number of cyclically independent edges of G.

Remark 3.2 In the Definition 3.1 (1), a simple cycle can be replaced by a closed trail.

Example 3.3 For a graph G depicted in Fig. 3.1, $\alpha(G)=2$.

Fig. 3.1
Theorem 3.4 For a graph G, $\operatorname{ind}(G) \leq \alpha(G)$.
Proof We proceed by induction on $\alpha(G)$. If $\alpha(G)=0$, then G has no singular edges and hence, ind $G=0$.

Let $\alpha(G)=n \geq 1$ and assume that Theorem 3.4 holds for a graph H with $\alpha(H)<n$.
Let $v(e)$ be an end of a singular edge e in G. First we will show that $\alpha(G / \operatorname{star} v(e)) \leq n-1$.

Take a family $\mathcal{S}=\left\{e_{1}, \ldots, e_{\boldsymbol{n}}\right\}$ of n distinct edges in $G / \operatorname{star} v(e) . \mathcal{S}$ gives rise to a family \mathcal{S}^{\prime} of $n+1$ edges in G by adding e to \mathcal{S}. Since $\alpha(G)=n, \mathcal{S}^{\prime}$ is cyclically dependent in G. Therefore, there are, say k, edges $e_{i_{1}}, \ldots, e_{i_{k}}$ in \mathcal{S}^{\prime} such that these edges occur on a simple cycle C in G of length at most $2 k$. Let $U=\left\{e_{i_{1}}, \ldots, e_{i_{\boldsymbol{k}}}\right\}$. We consider two cases.
Case (1) $e \notin U$. Then U is also a family of k edges, all of which occur on the closed trail $C / \operatorname{star} v(e)$ in $G / \operatorname{star} v(e)$, where $|C / \operatorname{star} v(e)| \leq|C| \leq 2 k$.

Case (2) $e \in U$. Then $U-\{e\}$ is a family of $k-1$ edges, all of which occur on the closed trail $C / \operatorname{star} v(e)$ in $G / \operatorname{star} v(e)$, where $|C / \operatorname{star} v(e)| \leq|C|-2 \leq 2 k-2$.

In either case \mathcal{S} is cyclically dependent in $G / \operatorname{star} v(e)$, and therefore, $\alpha(G / \operatorname{star} v(e)) \leq n-1$. But the inductive assumption yields ind $(G / \operatorname{star} v(e)) \leq$ $\alpha(G / \operatorname{star} v(e)) \leq n-1$ and hence, ind $(G) \leq n$.

Corollary 3.5

(1) If ind $(G) \leq 1$, then ind $(G)=\alpha(G)$. In particular, ind $G=1$ iff G has singular edges and each pair of singular edges in G occurs on a simple 3-or 4-cycle in G.
(2) Suppose that there are no simple 3-cycles in G. Then ind $G=2$ iff $\alpha(G)=2$.

Remark 3.6 Corollary 3.5(2) is false if G has a 3 -cycle. The graph G in Fig. 3.2

Fig. 3.2
has ind $G=2$, but $\alpha(G)=3$. However, for a bipartite graph G, we conjecture that ind $G=\alpha(G)$.

The proof of Corollary 3.5 is elementary but tedious and hence, the details will be omitted.

Finally from the definition of $\alpha(G)$, the following proposition is immediate. (Cf. Theorem 2.3.)

Proposition 3.7

(1) If G consists of k blocks G_{1}, \ldots, G_{k}, then $\alpha(G)=\alpha\left(G_{1}\right)+\cdots+\alpha\left(G_{k}\right)$.
(2) If G_{1} and G_{2} are 2-isomorphic, then $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)$.

For the definition of 2 -isomorphism of graphs, see [Wh].

$\S 4$ Index and other invariants

Bipartite graphs play a very important role in link theory. Fortunately, they have many useful properties, as was shown in the previous sections. In this section, we will give the second approximation of the index for a planar bipartite graph using the familiar invariants in graph theory. The results in this section will be used in Chapter II.

Let G be a connected plane bipartite graph and G^{*} the dual of G. Since G is bipartite, G^{*} is an even graph. Therefore, we can define a direction (or put an arrow) to each edge of G^{*} in such a way that the boundary of each domain in $\mathbb{R}^{2}-G^{*}$ is an oriented cycle. Such a direction is called a natural direction of G^{*}. There are exactly two and only two natural directions. One is the complete reverse of the other. If an edge e is directed from an end v_{1} to another end v_{2}, then v_{1} is called the initial end and v_{2} the terminal end of e.

Now let K be a connected plane even graph with a natural direction. Take a vertex v_{0} from K and fix it. v_{0} will be called a root of K.

Definition 4.1 A (directed) spanning tree T in K is called a growing spanning tree rooted at v_{0} (or a growing rooted spanning tree) if every vertex except v_{0} is the terminal end of
exactly one edge of T and if v_{0} is never the terminal end of any edge in T.

Fig. 4.1
Now it is well known that the following proposition is true for directed even (not necessarily plane) graphs. For a proof, see [Be]

Proposition 4.2 Let K be a directed even connected graph such that each vertex has the same number of inputs and outputs. Let $\lambda\left(K, v_{0}\right)$ denote the number of growing spanning trees in K rooted at v_{0}. Then
(1) $\lambda\left(K, v_{\mathbf{0}}\right)>0$.
(2) $\lambda\left(K, v_{0}\right)$ does not depend on the root v_{0}. Therefore, we write $\lambda(K)$ without reference to v_{0}.
(3) If K_{1} and K_{2} are connected even graphs, then

$$
\lambda\left(K_{1} * K_{2}\right)=\lambda\left(K_{1}\right) \lambda\left(K_{2}\right) .
$$

(4) Let \bar{K} be the directed graph obtained from K by reversing the orientation of each edge. Then

$$
\lambda\left(K, v_{\mathbf{0}}\right)=\lambda\left(\bar{K}, v_{0}\right) .
$$

If K has n connected components, $K_{1}, K_{2}, \ldots, K_{n}$, then we define $\lambda(K)=\lambda\left(K_{1}\right) \lambda\left(K_{2}\right) \ldots \lambda\left(K_{n}\right)$. The purpose of this section is to prove the following theorem.

Theorem 4.3 Let G be a plane bipartite connected graph and G^{*} its dual graph with a natural direction. Suppose that G consists of n blocks, G_{1}, \ldots, G_{n}. Then

$$
\begin{equation*}
|V(G)|-1 \leq n\left\{2 \prod_{i=1}^{n} \lambda\left(G_{i}^{*}\right)-1\right\} \tag{4.4}
\end{equation*}
$$

where G_{i}^{*} denotes the dual of G_{i}.
We should note that $\lambda\left(G^{*}\right)$ does not depend on choice of natural directions of G^{*}. Cf. Proposition 4.2 (4).

To prove Theorem 4.3, we need the following lemma.
Lemma 4.5 Let C be the boundary cycle of a domain in $\mathbb{R}^{\mathbf{2}}-G^{*}$. Let n be the number of those vertices on C whose valencies ≥ 4. Then

$$
\begin{equation*}
\lambda\left(G^{*}\right) \geq \lambda\left(G^{*}-C\right)+n-1 . \tag{4.6}
\end{equation*}
$$

Proof If $n=0$, then, since G^{*} is connected, G^{*} is C itself, and hence $\lambda\left(G^{*}\right)=1$, while $\lambda\left(G^{*}-C\right)+n-1=-1$. If $n=1$, then we see that $G^{*}=\left(G^{*}-C\right) * C$ and hence $\lambda\left(G^{*}\right)=\lambda\left(G^{*}-C\right) \lambda(C)$. Choose as a root the vertex common to $G^{*}-C$ and C. Then, since $\lambda(C)=1$, (4.6) follows.

Now assume $n \geq 2$. Let v_{1}, \ldots, v_{n} be non-twigs on C. C is decomposed into n chains $P_{1}, P_{2}, \ldots, P_{n}$ by $v_{1}, v_{2}, \ldots, v_{n}$ where $P_{i}(1 \leq i \leq n-1)$ connects v_{i} and v_{i+1}. Choose v_{1} as a root of G^{*}. Let $G_{0}^{*}=G^{*}-\dot{C}$. We claim then

$$
\begin{equation*}
\lambda\left(G^{*}\right) \geq \lambda\left(G_{0}^{*}\right)+\lambda\left(G^{*} / P_{1}\right)+\lambda\left(G^{*} / P_{1} \cup P_{2}\right)+\cdots+\lambda\left(G^{*} / P_{1} \cup \cdots \cup P_{n-1}\right) . \tag{4.7}
\end{equation*}
$$

Since $\lambda\left(G^{*} / P_{1} \cup \cdots \cup P_{i}\right)>0$, (4.7) yields (4.6) immediately.
Now to prove (4.7) it is enough to show that (1) to each growing rooted spanning tree T in G_{0}^{*} or $G_{i}^{*}\left(=G^{*} / P_{1} \cup \cdots \cup P_{i}\right)$, there is a growing rooted spanning tree T^{*} in G^{*}, called an associate of T, and (2) two trees associated with two distinct trees T and T^{\prime} are distinct.

Now T^{*} will be defined as follows. Suppose that T is a tree in G_{i}^{*}. Let $\phi_{i}: G^{*} \longrightarrow$ $G_{i}^{*}\left(=G^{*} / P_{1} \cup \cdots \cup P_{i}\right)$ be the collapsing map. Since all v_{1}, \cdots, v_{i+1} are identified to v_{1} in G_{i}^{*}, two vertices v_{ℓ} and $v_{m}, 1 \leq \ell, m \leq i+1$ are not connected in $\phi_{i}^{-1}(T)$. Define $T^{*}=\phi^{-1}(T) \cup P_{1} \cup \cdots \cup P_{i}$. Then T^{*} is a growing rooted spanning tree in G^{*}. If T is
a tree in G_{0}^{*}, then T^{*} is the tree obtained from T by adding appropriate simple chains in $P_{1}, P_{2}, \ldots, P_{n}$ to T. From this construction, a proof of the other property (2) is obvious. It proves (4.7) and hence (4.6).

Now we return to the proof of Theorem 4.3.
Suppose first that (4.4) holds for each block G_{i}. Since $|V(G)|-1=\sum_{i=1}^{n}\left(\left|V\left(G_{i}\right)\right|-1\right)$, it follows from our assumption that

$$
|V(G)|-1 \leq \sum_{i=1}^{n}\left\{2 \lambda\left(G_{i}^{*}\right)-1\right\}=\sum_{i=1}^{n} 2 \lambda\left(G_{i}^{*}\right)-n \leq 2 n \lambda\left(G_{i}^{*}\right) \ldots \lambda\left(G_{n}^{*}\right)-n .
$$

The last inequality is implied from the following simple calculation:

$$
\begin{aligned}
2 n \lambda\left(G_{1}^{*}\right) \ldots \lambda\left(G_{n}^{*}\right)-\sum_{i=1}^{n} 2 \lambda\left(G_{i}^{*}\right) & =2 \sum_{i=1}^{n}\left\{\lambda\left(G_{1}^{*}\right) \ldots \lambda \widehat{\left(G_{i}^{*}\right)} \ldots \lambda\left(G_{n}^{*}\right)-1\right\} \lambda\left(G_{i}^{*}\right) \\
& \geq 0, \text { since } \lambda\left(G_{i}^{*}\right) \geq 1 .
\end{aligned}
$$

Therefore, it suffices to prove (4.4) for a non-separable graph G.
Consider $\mathbb{R}^{2}-G^{*}$. Domains in $\mathbb{R}^{2}-G^{*}$ are classified by black and white in such a way that no two domains of the same colour have edges in common. Let α and β, respectively, be the number of white and black domains in $\mathbb{R}^{2}-G^{*}$. Since G^{*} is connected, white domains $\left\{W_{i}\right\}$ can be numbers in such a way that for $i=1,2, \ldots, \alpha-1,\left(\partial W_{1} \cup \cdots \cup\right.$ $\left.\partial W_{i}\right) \cap \partial W_{i+1}$ has at least one vertex. Let q_{i+1} be the number of vertices that occur on $\left(\partial W_{1} \cup \cdots \cup \partial W_{i}\right) \cap \partial W_{i+1}$. Let $\Gamma_{i}=\partial W_{1} \cup \cdots \cup \partial W_{i}$. Then for $i=1,2, \cdots, \alpha-1,(4.6)$ implies that

$$
\lambda\left(\Gamma_{i+1}\right) \geq \lambda\left(\Gamma_{i}\right)+q_{i+1}-1 .
$$

Since $\lambda\left(\Gamma_{\mathbf{1}}\right)=1$ and $\lambda\left(\Gamma_{\boldsymbol{\alpha}}\right)=\lambda\left(G^{*}\right)$, it follows that

$$
\begin{equation*}
\lambda\left(G^{*}\right) \geq 1+\left(q_{2}-1\right)+\cdots+\left(q_{\alpha}-1\right)=\sum_{i=2}^{\alpha} q_{i}-(\alpha-2) \tag{4.8}
\end{equation*}
$$

Now $|V(G)|$ is exactly the number of domains in $\mathbb{R}^{2}-G^{*}$, and hence $|V(G)|=\alpha+\beta$. We may assume without loss of generality that $\alpha \leq \beta$. (Otherwise, exchange the colours of the domains.) Therefore $\alpha \leq \frac{|V(G)|}{2}$. Let $d_{i}, i=1,2, \cdots, \alpha$, be the number of domains
in which $\mathbb{R}^{\mathbf{2}}-\Gamma_{\boldsymbol{i}}$ is divided. Then $d_{\mathbf{1}}=2$ and an easy induction proves that for $i \geq 2$, $d_{i} \leq 2+q_{2}+\cdots+q_{i}$. Therefore, we have

$$
\begin{equation*}
|V(G)|=d_{\alpha} \leq 2+\sum_{i=2}^{\alpha} q_{i} . \tag{4.9}
\end{equation*}
$$

Combining (4.8) and (4.9), we see

$$
\begin{equation*}
|V(G)| \leq \lambda\left(G^{*}\right)+\alpha . \tag{4.10}
\end{equation*}
$$

Since $\alpha \leq \frac{|V(G)|}{2},(4.10)$ yields $|V(G)| \leq \lambda\left(G^{*}\right)+\frac{|V(G)|}{2}$ and hence $|V(G)| \leq 2 \lambda\left(G^{*}\right)$.
A proof of Theorem 4.3 is now complete.

As an easy consequence of Theorem 4.3, we obtain the following corollary.
Corollary 4.11 Let G be a plane bipartite connected graph without isthmuses and G^{*} the dual of G with a natural direction. Then

$$
\begin{equation*}
\text { ind } G \leq \lambda\left(G^{*}\right)-1 \tag{4.12}
\end{equation*}
$$

Proof Since G has no isthmuses, the dual G^{*} has no loops.
Suppose that G has k blocks H_{1}, \ldots, H_{k}. Then the dual G^{*} also has k blocks, $H_{1}^{*}, \ldots, H_{k}^{*}$ and H_{i}^{*} is the dual of H_{i}.

Assume first that the corollary holds for each block H_{i}. Using the fact that $\lambda\left(H_{i}^{*}\right) \geq$ 1 for any i and $\lambda\left(G^{*}\right)=\prod_{i=1}^{k} \lambda\left(H_{i}^{*}\right)$, an easy induction on k proves that $\lambda\left(G^{*}\right)-1 \geq$ $\sum_{i=1}^{k}\left\{\lambda\left(H_{i}^{*}\right)-1\right\} \geq \sum_{i=1}^{k}$ ind $\left(H_{i}\right)=$ ind G.

Now we may assume that G has not cut vertices. It suffices to show that if $|V(G)| \geq 2$, then

$$
\begin{equation*}
\text { ind } G \leq \frac{|V(G)|}{2}-1 \tag{4.13}
\end{equation*}
$$

Note that if $|V(G)|=1,(4.13)$ is immediate. Now since G is bipartite, the largest simple cycle in G has length at most $|V(G)|$ and hence the cycle index $\alpha(G)$ of G is at most $\frac{|V(G)|}{2}-1$. Since $\alpha(G) \geq$ ind G by Theorem 3.4, (4.13) follows

Proposition 4.14 Let K be an even non-separable connected plane graph with a natural direction. Then
(1) $\lambda(K)=1$ iff K is a cycle.
(2) $\lambda(K)=2$ iff all but two vertices of K are twigs and each of non-twig has valency 4 . (See Fig. a. 4.2(a))
(3) $\lambda(K)=3$ iff
(i) all but two vertices of K are twigs and each of non-twigs has valency 6, (see Fig. 4.2 (b)) or
(ii) all but three vertices of K are twigs and each of non-twigs has valency 4. (See Fig. 4.2. (c))

Fig. 4.2
Proposition 4.14 follows easily from Lemma 4.5 and hence a proof is omitted.
The index of the dual of the graph considered in Proposition 4.14 is at most two.

$\S 5$ Graphs with small indices

By definition, a graph G has index 0 iff G has no singular edges. The main purpose of this section is to characterize the graphs with index 1 or 2 . Since we are interested in the application to link theory, we are mainly concerned with plane bipartite graphs.

Now we begin with a definition.

Definition 5.1 A subgraph H of a graph G is said to be locally maximal if
(1) H contains all singular edges of G,
(2) H has no multiple edges, i.e. all edges of H are singular,
(3) H has no isolated vertices,
(4) ind $H=$ ind G and
(5) for any edge $e \in G-H$ which is singular in $H \cup\{e\}$, ind $(H \cup e)>$ ind H.

There is no guarantee that G has locally maximal subgraphs. In fact, some (plane bipartite) graph does not have a locally maximal subgraph. See Example 5.2 below.

Example 5.2 Consider two graphs G_{1} and G_{2} depicted in Fig. 5.1.

Fig. 5.1
G_{1} has three locally maximal subgraphs $H_{1,1} H_{1,2} H_{1,3}$, but G_{2} has no locally maximal ;ubgraphs.

Fig. 5.2
The only locally maximal subgraph of a graph of index 0 is an empty graph.
If G is a plane bipartite graph of index 1 , then a locally maximal subgraph of G (if it exists) is either the single-edge graph or a graph H_{1} depicted in Fig. 5.3. More precisely, H_{1} has $k+2$ vertices and $2 k$ edges for some k, and all but two vertices are twigs and each
of non-twigs has valency k. Such a graph H_{1} will be denoted by H_{1}^{k}

Fig. 5.3
A proof of the above statement is included in the following more general theorem.
Theorem 5.3 Let G be a plane bipartite graph. Then ind $G=1$ iff
(1) G has a singular edge, and
(2) G has a subgraph H such that
(i) H contains all singular edges of G, and
(ii) H is one of the following graphs,
(a) a single edge graph,
(b) a graph of type H_{1} (Fig. 5.3 (a)),
(c) a graph of type H_{2} (Fig. 5.3 (c)).

Remark 5.4 If G has a subgraph H of type H_{2}, but not a subgraph of type H_{1}, and if H contains all singular edges of G, then G has no locally maximal subgraphs and conversely.

Proof of Theorem 5.3

Since "if part" is obvious, we only prove "only if part". Suppose that ind $G=1$ and G has at least two singular edges, say e_{1} and e_{2}. We consider the following two cases:

Case $1 e_{1}$ and e_{2} have no ends in common.
Case $2 e_{1}$ and e_{2} have one end in common.
As a main tool of our proofs, we use Corollary 3.5 which shows that each pair of singular edges occurs on a simple 4 -cycle in G. (Note that G is bipartite.)

Consider Case 1. We claim that G has a subgraph H of type H_{1}. If G has only two singular edges, then we are done, since $H=H_{1}^{2}$.

Let e_{3} be another singular edges of G. Then e_{3} cannot be disjoint from e_{1} and e_{2}. Suppose the contrary. Since each pair $\left\{e_{1}, e_{3}\right\}$ and $\left\{e_{2}, e_{3}\right\}$ occurs on a simple 4 -cycle in G, it follows that G has a subgraph depicted in Fig. 5.4.

Fig. 5.4
Furthermore, e_{1} and e_{2} must occur on some simple 4 -cycle. If v_{1} has been connected to v_{3} by an edge, then we would have a 3 -cycle in G. This is impossible, because G is bipartite. If there are two edges in G, one of which connects v_{1} and v_{4} and another connects v_{2} and v_{3}, then G could not be planar, a contradiction. Therefore, e_{1} or e_{2}, say e_{2}, and e_{3} have a common end w. If e_{1} and e_{3} have also a common end, then e_{1}, e_{2} and e_{3} occur on a 4 -cycle (Fig. 5.5 (a))

Fig. 5.5
On the other hand, if e_{3} is disjoint from e_{1}, then we have the subgraph depicted in Fig 5.5 (b). Since e_{1} and e_{3} occur on a 4 -cycle in G, v_{3} and v_{2} are connected by an edge. In either case, e_{1}, e_{2} and e_{3} occur in a subgraph H of type H_{1}.

Next, consider another singular edge e_{4} in G. e_{4} must have a common end with either
e_{1} or e_{2}, as was proved before. If the common end is w or v_{2}, then it is easy to see that another end of e_{4} must be joined to v_{2} or w by an edge, and hence all four singular edges e_{1}, e_{2}, e_{3} and e_{4} occur on a subgraph of type H_{1}. Suppose that the common end of e_{4} and e_{1} or e_{2} is either v_{1} or v_{4}. If e_{1}, e_{2} and e_{3} occur on a 4 -cycle (Fig. 5.5 (a)), then four edges, e_{1}, e_{2}, e_{3} and e_{4} must occur on a subgraph of type H_{1}. On the other hand, suppose that e_{1}, e_{2} and e_{3} occur on a subgraph in Fig. 5.5 (b). Then v_{4} cannot be a common end of e_{4} and e_{2}. Otherwise e_{1}, e_{3} and e_{4} would be pairwise disjoint. Furthermore, v_{1} cannot be a common end of e_{4} and e_{1}. Otherwise, the other end of e_{4} should be connected to v_{3} and v_{4} by edges. It is impossible, however, since v_{2} and v_{3} have been connected by an edge and G is planar. The same argument eventually proves that all singular edges of G occur on the subgraph of type H_{1}.

Now consider Case 2, where no two singular edges are disjoint. If G has only two singular edges, then we are done. Suppose that G has at least three singular edges. They have a common end w, since G has no 3 -cycles. See Fig. 5.6 (a)

Fig. 5.6

Since each pair of edges occurs on a 4 -cycle, there are two possibilities.
(i) G has a subgraph depicted in Fig. 5.6 (b) or (c). Then any other singular edge e of G has also w as one end and the second end of e is connected to v by an edge. Otherwise G could not be planar. See Fig. 5.7 (c) and (d). The same argument eventually proves that all singular edges of G occur on the subgraph of type H_{1}. See Fig. 5.7
(a) and (b).

Fig. 5.7
(ii) If (i) did not occur, then there is a subgraph H in G depicted in Fig. 5.6 (d). Then G cannot have any other singular edges, as is seen in Fig. 5.7 (e).

This completes the proof of Theorem 5.3.
The following theorem characterizes a certain class of graphs with index 2.
Theorem 5.5 Let G be a connected plane bipartite graph. Suppose that G has no multiple edges and no isolated vertices. Furthermore, assume that G is non-separable. Then, if G has index 2, G is one of the following graphs: H_{3}, H_{4} or H_{5} (depicted in Fig. 5.8) or a
properly chosen subgraph of H_{4} or H_{5}.

Fig. 5.8
Since the full proof of Theorem 5.5 is easy but tedious, we omit the details.

$\S 6$ Index of a reducible graph

In the final section of Chapter I, we will determine the index of a particular type of graphs, called reducible. This is one of a few classes of graphs for which their indices are described in a precise formula.

Definition 6.1 A connected plane graph G is called reducible if G has the following property. Let $\left\{D_{0}, D_{1}, \ldots, D_{n}\right\}$ be the set of domains in which \mathbb{R}^{2} is divided by G, where D_{0} is the unbounded domain. Then D_{1}, \ldots, D_{n} can be renumbered, if necessary, in such a way that for $i=1,2, \ldots, n-1, \partial D_{1} \cup \cdots \cup \partial D_{i}$ and ∂D_{i+1} have at most one edge in common. ${ }^{3}$

Example 6.2

REDUCIBLE

NOT REDUCIBLE

Fig. 6.1
Using the dual graph we can easily state the reducibility of G as follows.

[^1]Proposition 6.3 A connected plane graph G is reducible iff there is a vertex v_{*} in the dual G^{*} of G such that $G^{*}-v_{*}$ is a tree. (In fact, v_{*} is the vertex corresponding to D_{0}.)

Now, let G be a reducible plane graph. In the rest of this section, we assume that G has no isthmuses.

Definition 6.4 An edge in ∂D_{0} is called free, where D_{0} is the unbounded domain.
G is called strongly excessive if for any bounded domain $D_{i}, i=1,2, \ldots, n$, the number of free edges on ∂D_{i} is at least $\frac{1}{2}\left|\partial D_{i}\right|-1$, where $\left|\partial D_{i}\right|$ denotes the length of a simple cycle ∂D_{i}.

The index of a reducible plane bipartite graph that is also strongly excessive is completely determined by the following theorem.

Theorem 6.5 Let G be reducible strongly excessive plane bipartite graph. Then

$$
\begin{equation*}
\text { ind } G=\sum_{i=1}^{n}\left\{\frac{1}{2}\left|\partial D_{i}\right|-1\right\} \tag{6.6}
\end{equation*}
$$

Proof By assumption, each cycle ∂D_{i} has at least $\frac{1}{2}\left|\partial D_{i}\right|-1$ free edges. Choose arbitrarily $\frac{1}{2}\left|\partial D_{i}\right|-1\left(=\lambda_{i}\right)$ free edges $e_{i, 1}, \ldots, e_{i, \lambda_{i}}$ from $\partial D_{i}, i=1,2, \ldots, n$. We claim that the collection of these edges $\mathcal{S}=\left\{e_{1,1} \ldots, e_{1, \lambda_{1}}, \ldots, e_{n, 1} \ldots, e_{n, \lambda_{n}}\right\}$ is a maximal set of independent singular edges in G.

However, first we claim that \mathcal{S} is cyclically independent.
Lemma $6.7 \quad \alpha(G)=\sum_{i=1}^{n}\left\{\frac{1}{2}\left|\partial D_{i}\right|-1\right\}$.
Proof Denote $\rho=\sum_{i=1}^{n}\left\{\frac{1}{2}\left|\partial D_{i}\right|-1\right\}$. First we show that $\alpha(G) \leq \rho$. Let $\mathcal{S}_{\mathbf{0}}$ be a maximal set of cyclically independent singular edges in G. Then $\left|\mathcal{S}_{0}\right|=\alpha(G)$. \mathcal{S}_{0} cannot contain more than $\frac{1}{2}\left|\partial D_{i}\right|-1$ singular edges on ∂D_{i} for each $i=1,2, \ldots, n$, and hence, a possible maximal number of singular edge in \mathcal{S}_{0} is ρ. Therefore $\alpha(G) \leq \rho$.

Now to prove the reverse inequality, take, say k, edges e_{1}, \ldots, e_{k} from \mathcal{S}. We need the following easy lemma.

Lemma 6.8 Let $D_{j_{1}}, \ldots, D_{j_{\ell}}$ be the bounded domains such that $\bigcup_{m=1}^{\ell} D_{j_{m}}$ is connected and has no cut-vertices. Then

$$
\begin{equation*}
\left|\partial\left(\bigcup_{m=1}^{\ell} D_{j_{m}}\right)\right|=\sum_{m=1}^{\ell}\left|\partial D_{j_{m}}\right|-2(\ell-1) \tag{6.9}
\end{equation*}
$$

Proof Since $D_{j_{p}}$ and $D_{j_{q}}\left(j_{p} \neq j_{q}\right)$ have at most one edge in common, and since $\bigcup_{m=1}^{k} D_{j_{m}}$ is connected, an easy induction on ℓ proves (6.9). Details will be omitted.

Now let C be a simple cycle of G of the smallest length on which all edges $e_{1}, \ldots, e_{\boldsymbol{k}}$ occur. Suppose that the interior of C consists of bounded domains, say $D_{\mu_{1}}, \ldots, D_{\mu_{\ell}}$, where $\mu_{i} \neq 0$ for $i=1,2, \ldots, \ell$. Then from Lemma 6.8, we see that

$$
|C|=\left|\partial\left(\bigcup_{m=1}^{\ell} D_{\mu_{m}}\right)\right|=\sum_{m=1}^{\ell}\left|\partial D_{\mu_{m}}\right|-2(\ell-1)
$$

Since $e_{j}, j=1,2, \ldots, k$, is a free edge on some $D_{\mu_{m}}$ and the number of free edges of $\partial D_{\mu_{m}}$ is at least $\frac{1}{2}\left|\partial D_{\mu_{m}}\right|-1$, it follows that

$$
2 k \leq \sum_{m=1}^{\ell} 2\left\{\frac{\left|\partial D_{\mu_{m}}\right|}{2}-1\right\}=\sum_{m=1}^{\ell}\left\{\left|\partial D_{\mu_{m}}\right|-2\right\}<|C|
$$

This proves that $e_{\mathbf{1}}, \ldots, e_{\boldsymbol{k}}$ are cyclically independent, and hence $\alpha(G)=\rho$. This proves Lemma 6.7.

The final step of the proof of Theorem 6.5 is to show that the set of edges in \mathcal{S} is independent in G. Now the smallest strongly excessive plane bipartite reducible graph is the multiple-edge graph \longrightarrow, for which Theorem 6.5 trivially holds. Furthermore, if G is a $2 k$-cycle, $k \geq 2$, then \mathcal{S} is obviously independent in G. Therefore, we will prove the independence of \mathcal{S} in G by induction on $|E(G)|$. Suppose that $|E(G)| \geq 3$. We note that it suffices to show that there is an edge e^{\prime} in \mathcal{S} such that at least one end of e^{\prime}, say v^{\prime}, is not an end of any (free) edge in \mathcal{S}. In fact, then, $G^{\prime}=G /$ star v^{\prime} is a strongly excessive plane bipartite reducible graph with $\left|E\left(G^{\prime}\right)\right|<|E(G)|$. Therefore, by induction on $|E(G)|, \mathcal{S}^{\prime}=\mathcal{S}-\left\{e^{\prime}\right\}$ is independent in G^{\prime} and hence \mathcal{S} is independent in G.

Now to show the existence of such a free edge e^{\prime} in \mathcal{S}, we consider the subgraph G_{0} of G obtained from G by removing all but one edge connecting two vertices. G_{0} is a spanning subgraph of G, and furthermore, G_{0} is strongly excessive. Consider the dual graph G_{0}^{*} of G_{0}. Since G is reducible, there is a vertex \hat{v} such that $G^{*}-\hat{v}$ is a tree. But from our construction of G_{0}, we see easily that $G_{0}^{*}-\hat{v}$ is also a tree, say T_{0}.

Fig. 6.2
Take a stump v^{*} in T_{0}. Let D_{i} be the domain corresponding to v^{*}. Then all but one edge of ∂D_{i} are free in G_{0} and hence $\frac{\left|\partial D_{i}\right|}{2}-1$ free edges of ∂D_{i} belong to \mathcal{S}. Note that any domain in $\mathbf{R}^{2}-G_{0}$ has more than 2 sides, and hence $\frac{\left|\partial D_{i}\right|}{2}-1 \neq 0$. Therefore there is a free edge e^{\prime} on ∂D_{i} which satisfies our requirements.

This proves Theorem 6.5.

Chapter II. Link Theory

§7 Preliminaries and the index of a link

This chapter will be devoted to the application of results obtained in Chapter I to knots or links in S^{3}. In particular, we will utilize these results to determine the braid index of many links.

We consider only oriented links in this chapter, and hence, a diagram D of a link L has always orientation which is induced from that of L. We assign +1 or -1 called the sign $w(c)$, to each crossing c as is depicted in Fig. 7.1. A crossing c is said to be positive (or negative) if $w(c)>0($ or $w(c)<0)$.

Fig. 7.1

$n_{+}(D)$ and $n_{-}(D)$ will denote, respectively, the number of positive crossings and negative crossings in D. Therefore $n(D)=n_{+}(D)+n_{-}(D)$ is the total number of crossings in D. On the other hand, the sum of all signs on $D, \tilde{n}(D)=\sum_{c \in D} w(c)$, is called the Tait number of D. Note that $\tilde{n}(D)=n_{+}(D)-n_{-}(D)$.

Now if we split D at each crossing of D according to the orientation of D, D is decomposed into finitely many simple closed curves, called Seifert circles of D. Using Seifert circles of D, we can associate with D a signed graph $\Gamma(D)$ as follows. Each vertex of $\Gamma(D)$ corresponds to each Seifert circle of D, and each edge of $\Gamma(D)$ corresponds to each crossing of D. The ends of an edge e of $\Gamma(D)$ correspond to Seifert circles connected
by the crossing corresponding to e. See Fig. 7.2.

Fig. 7.2
The sign of edge of $\Gamma(D)$ is the same as that of the corresponding crossing of D. A signed graph $\Gamma(D)$ is called a Seifert graph of D. It is easy to see that $\Gamma(D)$ is a planar bipartite graph.

We should note that two non-equivalent links can have link diagrams that associate with the same Seifert graph.

A link diagram D of a link L is called a positive (or negative) diagram if each crossing of D is positive (or negative). Therefore D is positive iff the signed graph $\Gamma(D)$ is a positive (or negative) graph.

A link L is called a positive (or negative) link if L admits a positive (or negative) diagram. A crossing c in D is said to be nugatory or removable if a smoothing at c makes D split, or equivalently, if the edge in $\Gamma(D)$ corresponding to c is an isthmus. A link diagram D is called reduced if D has no nugatory crossings.

Let D be a link diagram of L. Let $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ be the set of all Seifert circles of D. If for each $i=1,2, \ldots, m$, at least one of the connected components of $\mathbb{R}^{2}-S_{i}$ does not have Seifert circles, then D is called a special diagram. Any link has at least one special diagram $[B Z, M u 1]$. If D is a special alternating diagram, then the associated Seifert graph $\Gamma(D)$ is a plane and bipartite positive (or negative) graph, and conversely,
and furthermore $\Gamma(D)$ determines D.

Definition 7.1 For an oriented diagram D of an (oriented) link L, we define

$$
\text { ind } D=\text { ind } \Gamma(D)
$$

Similarly, we define $i n d_{+} D=i n d_{+} \Gamma(D)$ and ind $D=i n d_{-} \Gamma(D)$.
Suppose that $\Gamma(D)=\Gamma_{1} * \Gamma_{\mathbf{2}}$. Then $\Gamma_{i}(i=1,2)$ uniquely determines a link diagram, denoted by D_{i}, and we say that D is a planar star (or Murasugi) product of D_{1}. and D_{2}, denoted by $D=D_{1} * D_{2}$. In particular, D_{1} and D_{2} have one Seifert circle in common.

A link diagram D is written (not necessarily uniquely) as a $*$-product of finitely many special link diagrams D_{1}, \ldots, D_{m} [Mu 1]. Therefore, the Seifert graph $\Gamma(D)$ is written as $\Gamma(D)=\Gamma_{1} * \cdots * \Gamma_{m}$, where Γ_{i} is the Seifert graph of D_{i}. Since D_{i} is a link diagram, Γ_{i} is bipartite. If each D_{i} is either a positive or negative diagram, then D is called a homogeneous diagram [C]. If a link admits a homogeneous diagram, it is called a homogeneous link. An alternating diagram is homogeneous, but not conversely.

Now suppose $D=D_{1} * D_{2}$. Since the Seifert graph Γ_{i} of D_{i} is bipartite, Theorem 2.4 implies the following proposition.

Proposition 7.2 Let D be a link diagram and $D=D_{1} * D_{2}$. Then ind $\left(D_{1} * D_{2}\right)=$ ind $D_{1}+$ ind D_{2}. If D is a homogeneous diagram, then ind $D=i n d_{+} D+i n d_{-} D$.

Proof If D is a homogeneous diagram, then D is written as $D_{1} \cdots * D_{p} * D_{1}^{\prime} * \cdots *$ D_{n}^{\prime}, where $D_{i}(i=1,2, \ldots, p)$ is positive and $D_{j}^{\prime}(j=1,2, \ldots, n)$ is negative. Since $\sum_{i=1}^{p}$ ind $D_{i}=i n d_{+} D$ and $\sum_{j=1}^{n} i n d D_{j}^{\prime}=i n d_{-} D$, the second equality follows.

Now to each oriented link L the integer polynomial $P_{L}(v, z)$, called the skein (named also Homfly, Flypmoth, generalized Jones, 2-variable Jones, Jones-Conway, twisted Alexander, oriented) polynomial is defined recursively as follows [FY, LM, PT].

Let D_{+}, D_{-}, D_{0} be the diagrams of links which are identical except in the neighborhood of a crossing, where they look like

Fig. 7.3
then $P_{L}(v, z)$ satisfies the following formula
(1) $\frac{1}{v} P_{D_{+}}(v, z)-v P_{D_{-}}(v, z)=z P_{D_{0}}(v, z)$
(2) If L is a trivial knot then $P_{L}(v, z)=1$.

We denote $P_{D}(v, z)$ for $P_{L}(v, z)$, if necessary, to emphasize that a diagram D has been used to evaluate $P_{L}(v, z)$. We will call the equation (7.3)(1) the skein relation in this paper.
$P_{L}(v, z)$ is an integer Laurent polynomial on two variables v and z. Generally, let $f(v, z)$ be an integer Laurent polynomial on v, z, i.e. $f(v, z) \in \mathbb{Z}\left[v, v^{-1}, z, z^{-1}\right]$. We write $f(v, z)=\sum_{i=a}^{b} \phi_{i}(z) v^{i}$, where $\phi_{a}(z) \neq 0 \neq \phi_{b}(z), a \leq b$ and $\phi_{i}(z) \in \mathbb{Z}\left[z, z^{-1}\right]$. We denote

$$
\begin{align*}
b & =\max ^{\operatorname{deg}_{v} f(v, z)} \tag{7.4}\\
a & =\min _{\operatorname{deg}}^{v} f(v, z) \\
b-a & =v-\operatorname{span} f(v, z)
\end{align*}
$$

Similarly, we can define $\max _{\operatorname{deg}}^{z} \boldsymbol{f}(v, z), \min \operatorname{deg}_{z} f(v, z)$ and $z-\operatorname{span} f(v, z)$. Furthermore, let $A_{\alpha} z^{\alpha}$ and $B_{\beta} z^{\beta}$ be, respectively, the highest terms in $\phi_{a}(z)$ and $\phi_{b}(z)$. Then, we define

$$
\begin{equation*}
B_{\boldsymbol{\beta}} v^{\boldsymbol{b}} z^{\boldsymbol{\beta}}=\max -\max f(v, z) \text { and } A_{\boldsymbol{\alpha}} v^{\boldsymbol{a}} z^{\boldsymbol{\alpha}}=\min -\max f(v, z) . \tag{7.5}
\end{equation*}
$$

These terms are called the extremal terms of $f(v, z)$.
Example 7.6 Let $f(v, z)=\left(z^{\mathbf{3}}-2 z^{5}+3 z^{7}\right) v-z^{\mathbf{1}} v^{\mathbf{3}}+\left(z+2 z^{\mathbf{3}}\right) v^{\mathbf{5}}$. Then max $\max f(v, z)=2 z^{3} v^{5}$, while $\min -\max f(v, z)=3 z^{7} v$ 。

§8 Improvement of Morton-Frank-Williams inequalities

Let D be an oriented link diagram of L. Let $s(D)$ be the number of Seifert circles in D. We begin with the following well-known theorem.

Theorem 8.1 [FW, Mo 2] For any link diagram D of a link L,
(8.2) $\tilde{n}(D)-s(D)+1 \leq \operatorname{mindeg}{ }_{v} P_{L}(v, z) \leq m a x d e g_{v} P_{L}(v, z) \leq \tilde{n}(D)+s(D)-1$.

Equalities in either side hold for some links, but for many links, inequalities are sharp.
In this section we will prove a considerable improvement of these inequalities which, combined with Yamada's Theorem [Y], enables us to determine the braid index of many links. In fact, we prove

Theorem 8.3 For any link diagram D and the associated Seifert graph $\Gamma(D)$, we have

$$
\begin{align*}
& \max \operatorname{deg}_{v} P_{L}(v, z) \leq \tilde{n}(D)+s(D)-1-2 \operatorname{ind}_{+} \Gamma(D), \quad \text { and } \tag{8.4}\\
& \min \operatorname{deg}_{v} P_{L}(v, z) \geq \tilde{n}(D)-s(D)+1+2 \operatorname{ind}_{-} \Gamma(D)
\end{align*}
$$

and hence

$$
\begin{equation*}
v-\operatorname{span} P_{L}(v, z) \leq 2\left\{s(D)-1-i n d_{+} \Gamma(D)-i n d_{-} \Gamma(D)\right\} . \tag{8.5}
\end{equation*}
$$

Now, to prove Theorem 8.3, the following lemma is crucial.
Lemma 8.6 Given an oriented link diagram D of a link L, there are new link diagrams $D^{\prime}, D^{\prime \prime}$ and $D^{\prime \prime \prime}$ of L such that
(1) $\quad \tilde{n}\left(D^{\prime}\right)=\tilde{n}(D)-i n d_{+}(D) \quad$ and $\quad s\left(D^{\prime}\right)=s(D)-i n d_{+}(D)$,
(2) $\quad \tilde{n}\left(D^{\prime \prime}\right)=\tilde{n}(D)+i n d_{-}(D) \quad$ and $\quad s\left(D^{\prime \prime}\right)=s(D)-i n d_{-}(D)$
(3) $s\left(D^{\prime \prime \prime}\right)=s(D)-i n d(D)$
and hence

$$
\begin{equation*}
\mathbf{b}(L) \leq s(D)-\operatorname{ind}(D) \tag{8.8}
\end{equation*}
$$

Remark 8.9 (1) It may not exist a diagram D^{\prime} such that $s\left(D^{\prime}\right)=s(D)-\left(i n d_{+}(D)+\right.$ $i n d_{-}(D)$). (2) If D is an alternating diagram, then ind $D=i n d_{+} D+i n d_{-} D$ and we can choose $D^{\prime \prime \prime}$ so that $\tilde{n}\left(D^{\prime \prime \prime}\right)=\tilde{n}(D)-i n d_{+} \Gamma(D)+i n d_{-} \Gamma(D)$.

Proof of Lemma 8.6 First we note that it suffices to prove (8.7) (1).
Write $D=D_{1} * D_{2} * \cdots * D_{m}$ as a $*$-product of D_{i}. Then $\Gamma(D)=\Gamma\left(D_{1}\right) * \cdots * \Gamma\left(D_{m}\right)$. Since $\Gamma\left(D_{i}\right)$ is a plane bipartite graph, we have $\operatorname{ind} d_{+}(D)=\sum_{i=1}^{m} \operatorname{ind} d_{+}\left(D_{i}\right)$.

Now consider $\Gamma\left(D_{1}\right)$. If $\operatorname{ind}_{+}\left(D_{1}\right)=0$, we have nothing to do on D_{1}. Suppose $i n d_{+} D_{1}=k>0$. Then there exists a singular positive edge e and a vertex v, one of two ends of e, such that ind $\left(\Gamma\left(D_{1}\right) /\right.$ star $\left.v\right)=k-1$. e corresponds to a crossing c of D_{1}.

Fig. 8.1
Let u be a small part of D_{1} that crosses under the other part of D_{1} at c. Let P_{1} and P_{2} be the end points of u. See Fig. 8.1. We will deform isotopically the short path u to a long under-crossing path ℓ.

Fig. 8.2
ℓ is depicted by a dotted line in Fig. 8.2. ℓ crosses under those "bands" which are not connected to v. To be more precise, let $v_{\mathbf{0}}, v_{\mathbf{1}}, \ldots, v_{\mathbf{r}}$ be vertices in $\Gamma(D)$, each of which is connected to v, where $v_{0}(\neq v)$ is another end of e. Then ℓ is a path which does not intersect any "bands" in D corresponding to edges connecting v and $v_{\boldsymbol{j}}, j=0,1, \ldots, m$, except P_{1} and P_{2}, but ℓ crosses under all "bands" that connect $v_{j}(j \neq 0)$ and other vertices $(\neq v)$ at the place close to the Seifert circle represented by v_{j}. Since D_{1} is bipartite, v_{i} and $v_{j}(0 \neq i \neq j \neq 0)$ are not connected by any "bands".

In this new diagram D_{1}^{\prime}, two Seifert circles represented by v and v_{0} are amalgamated to one circle and hence $s\left(D_{1}^{\prime}\right)=s\left(D_{1}\right)-1$.

Now we see that $\Gamma\left(D_{1}^{\prime}\right)$ is the one-point union of $\Gamma\left(D_{1}\right) /$ star v and some multiple-
edge graph K, where K contains star $v-e$ as a subgraph and $\operatorname{ind} d_{+} \Gamma\left(D_{1}^{\prime}\right)=k-1$. We can repeat the same argument k times so that finally $\Gamma\left(D_{1}\right)$ is reduced to the block sum of $\Gamma\left(D_{1}^{(k)}\right)$ and k multiple-edge graphs $K, K^{\prime}, \ldots, K^{(k-1)}$, where $\operatorname{ind} d_{+} \Gamma\left(D_{1}^{(k)}\right)=$ 0 . Apply the same argument on each $\Gamma\left(D_{i}\right)$ and eventually $\Gamma(D)$ is reduced to the block sum of $\Gamma\left(D_{i}^{\left(\boldsymbol{k}_{\boldsymbol{i}}\right)}\right), i=1, \ldots, m$, where ind $\Gamma\left(D_{i}^{\left(\boldsymbol{k}_{\boldsymbol{i}}\right)}\right)=0$ and multiple-edge graphs $K_{i}, K_{i}^{\prime}, \ldots, K_{i}^{\left(\boldsymbol{k}_{\boldsymbol{i}}-1\right)}, i=1,2, \ldots, m$.

The final link diagram \hat{D} corresponding to this graph has $s(\hat{D})=s(D)-$ $\sum_{i=1}^{m} i n d_{+}\left(D_{i}\right)$ and $\tilde{n}(\hat{D})=\tilde{n}(D)-\sum_{i=1}^{m} i n d_{+}\left(D_{i}\right)$. Since $\sum_{i=1}^{n} i n d_{+}\left(D_{i}\right)=i n d_{+}(D), \hat{D}$ is what we sought. Since $\mathbf{b}(L) \leq s\left(D^{\prime \prime \prime}\right)$, (8.8) follows from (8.7) (3). It completes a proof of Lemma 8.6.

Example 8.10 The series of diagrams (a)-(d) in Fig. 8.3 illustrates our proof of Lemma 8.6 for some link. A diagram D has index 2 and $s(D)=6$, but $s(\hat{D})=s\left(D^{\prime \prime}\right)=4$. Note that D^{\prime} and \tilde{D}^{\prime} are the same diagram.

(a)

Fig. 8.3

We are now in position to prove Theorem 8.3. Using the diagrams D^{\prime} and $D^{\prime \prime}$ in Lemma 8.6, we have from Theorem 8.1

$$
\begin{aligned}
& \max \operatorname{deg}_{v} P_{L}(v, z) \leq \tilde{n}\left(D^{\prime}\right)+s\left(D^{\prime}\right)-1=\tilde{n}(D)+s(D)-1-2 i n d_{+} \Gamma(D), \quad \text { and } \\
& \min \operatorname{deg}_{v} P_{L}(v, z) \geq \tilde{n}\left(D^{\prime \prime}\right)-s\left(D^{\prime \prime}\right)+1=\tilde{n}(D)-s(D)+1+2 i n d_{-} \Gamma(D) .
\end{aligned}
$$

It proves Theorem 8.3.
As a consequence of Theorem 8.3, we have
Corollary 8.11 Suppose that the equalities hold in (8.4). Then if ind $D=\operatorname{ind}_{+} D+$ ind_D, we have

$$
\mathbf{b}(L)=s(D)-i n d D .
$$

Proof It follows from Theorem 8.1 and the theorem in [Y]

$$
v-\operatorname{span} P_{L}(v, z) \leq 2\{\mathbf{b}(L)-1\},
$$

and hence $s(D)-1$ - ind $D \leq \mathbf{b}(L)-1$, i.e. $s(D)-$ ind $D \leq \mathbf{b}(L)$. However, Lemma 8.6 shows that there is a diagram $D^{\prime \prime \prime}$ of L such that $s\left(D^{\prime \prime \prime}\right)=s(D)-$ ind D, and hence, $s\left(D^{\prime \prime \prime}\right) \leq \mathbf{b}(L)$. Since $\mathbf{b}(L) \leq s(\tilde{D})$ for any diagram \tilde{D} of L, it follows that $\mathbf{b}(L)=s\left(D^{\prime \prime \prime}\right)=s(D)-i n d D$.

Proposition 7.2 now implies the following theorem.
Theorem 8.12 Let L be a homogeneous (or, in particular, an alternating) link. If the equalities hold in (8.4), then we have

$$
\mathbf{b}(L)=s(D)-i n d D
$$

Remark 8.13 The converse of Theorem 8.12 need not be true even for alternating links. See $\S 15$ for an example.

$\S 9$ Extremal terms of $P_{L}(v, z)$

The second, but important step to determine the braid index is careful evaluations of z-degrees of some terms in $P_{L}(v, z)$. It is already known [LM, Mo 1] that $\operatorname{mindeg} P_{z}(v, z)=-(\mu-1)$ for any μ component link L and $\max \operatorname{deg}_{z} P_{L}(v, z) \leq$ $n(D)-s(D)+1$ for any diagram D of L. However, we need the maximal z-degree among the terms in $P_{L}(v, z)$ with the maximal v-degree or the minimal v-degree. After we have determined the z-degrees of these terms, we are able to prove that the equality holds in (8.4) for an alternating link with ind $D=0$, and hence, the braid index has been completely determined for these links. See Theorem 9.5.

We now begin with a few definitions.
Let D be an oriented link diagram of L.
Definition 9.1 $J(D)$ denotes the number of pairs of Seifert circles of D which are connected by a crossing. In other words, $J(D)$ is the number of those pairs of vertices in the Seifert graph $\Gamma(D)$ which are connected by at least one edge. Similarly $J_{+}(D)$ (or $J_{-}(D)$) denote the number of those pairs of Seifert circles of D which are connected by at least one positive (or negative) crossings.

We use the following notation in the rest of the paper.
For a link diagram D,

$$
\begin{align*}
& \begin{cases}\phi_{+}(D) & =\tilde{n}(D)+s(D)-1, \text { and } \\
\phi_{-}(D) & =\tilde{n}(D)-s(D)+1,\end{cases} \tag{9.2}\\
& \begin{cases}\psi_{+}(D) & =n(D)-s(D)+1-2 J_{+}(D) \text { and } \\
\psi_{-}(D) & =n(D)-s(D)+1-2 J_{-}(D)\end{cases}
\end{align*}
$$

Now we write

$$
P_{L}(v, z)=\sum_{i, j} c_{i j} v^{i} z^{j}=\sum_{i} a_{i}(z) v^{i}
$$

where $a_{i}(z)$ is a Laurent polynomial in z and $c_{i j}$ is an integer. Sometimes we write $c_{i j}(D)$ (or $\left.c_{i j}(L)\right)$ for $c_{i j}$ to emphasize the diagram D (or a link L).

The main purpose of this section is to prove the following theorems.

Theorem 9.3 For any oriented link diagram D of a link L,
(i) $\quad \max \operatorname{deg}_{z} a_{\phi_{+}(D)}(z) \leq \psi_{+}(D)$
(ii) $\max \operatorname{deg}_{z} a_{\phi_{-}(D)}(z) \leq \psi_{-}(D)$.

Note that $\operatorname{maxdeg}_{v} P_{L}(v, z) \leq \phi_{+}(D)$ and $\operatorname{mindeg}_{v} P_{L}(v, z) \geq \phi_{-}(D)$.
The next theorem shows that the equalities hold in (9.4) for alternating links with index 0 .

Theorem 9.5 Suppose that D is an alternating link diagram. Then

$$
\begin{align*}
& \text { (i) } \quad c_{\phi_{+}(D), \psi_{+}(D)}= \begin{cases}(-1)^{n_{-}(D)+s(D)-1} & \text { if ind } d_{+}(D)=0 \\
0, & \text { otherwise }\end{cases} \\
& \text { (ii) } \tag{9.6}\\
& c_{\phi_{-}(D), \psi_{-}(D)}= \begin{cases}(-1)^{n_{-}(D)} & \text { if ind_ }(D)=0 \\
0, & \text { otherwise }\end{cases} \\
& \text { (iii) } \quad \mathbf{b}(L)=s(D) \quad \text { iff ind } D=0 .
\end{align*}
$$

Remark 9.7 (1) If ind $D \neq 0$, then it follows from Theorem 8.3 that $a_{\phi_{+}(D)}(z)=0$ and hence (9.4) (i) holds trivially. Similarly, if ind $_{-} D \neq 0$, then (ii) holds trivially, since $a_{\phi_{-}(D)}(z)=0$. Therefore, we may assume henceforth that $i n d_{+} D=0$ in a proof of (i). This assumption makes our proof considerably simpler. (2) If D is an alternating diagram, then whenever two Seifert circles are connected by crossings, these crossings are either all positive or all negative. (3) Theorem 9.5 will be extended to some non-alternating links. See Theorem 10.8.

Now, to prove Theorems 9.3 and 9.5 , we need the following crucial lemma (which is a special case of Theorem 9.3).

Lemma 9.8 Let D be a positive diagram of an oriented link. Then

$$
\max \operatorname{deg}_{z} a_{\boldsymbol{\phi}_{+}(D)}(z) \leq \psi_{+}(D)
$$

Before we proceed to prove Lemma 9.8, we give a few remarks. Firstly, (9.6) (iii) follows from (9.6) (i) and (ii) by Corollary 8.11. Secondly, it suffices to prove (9.4) (i) and
(9.6) (i). In fact, (9.4) (ii) follows from (9.4) (i) by considering the mirror image \bar{D} of D and by applying (9.4) (i) on \bar{D}. Similarly, (9.6)(ii) follows from (9.6) (i). Therefore we only need to prove (9.4) (i) and (9.6) (i), which, in fact, follows from Lemma 9.8.

Proof. Lemma $9.8 \Longrightarrow(\mathbf{9 . 4})(\mathbf{i})$ We proceed by induction on $n_{-}(D)$. If $n_{-}(D)=0$, then (9.4) (i) is Lemma 9.8 itself. Now let c be a negative crossing in D. Denote by D_{+}^{c} the diagrams obtained from D by changing the crossing at c, and D_{0}^{c} the diagram obtained from D by smoothing the crossing c. Then the skein equation (7.3) (1) yields

$$
\begin{equation*}
a_{\boldsymbol{\phi}_{+}\left(D_{+}^{c}\right)}(z)-a_{\phi_{+}(D)}(z)=z a_{\phi_{+}\left(D_{0}^{\varepsilon}\right)}(z) . \tag{9.9}
\end{equation*}
$$

On the other hand, since $n\left(D_{+}^{c}\right)=n(D)=n\left(D_{0}^{c}\right)+1$ and $s\left(D_{+}^{c}\right)=s(D)=s\left(D_{0}^{c}\right)$ and $J_{+}\left(D_{+}^{c}\right) \geq J_{+}(D)=J_{+}\left(D_{0}^{c}\right)$, we see that $\psi_{+}\left(D_{+}^{c}\right) \leq \psi_{+}(D)$ and $\psi_{+}\left(D_{0}^{c}\right)+1=\psi_{+}(D)$. Therefore (9.9) and the induction hypothesis for D_{+}^{c} and D_{0}^{c} yield $\max \operatorname{deg}_{z} a_{\phi_{+}(D)}(z) \leq$ $\psi_{+}(D)$.

Proof. Lemma 9.8 $\Longrightarrow \mathbf{(9 . 6) (\mathbf { i })}$ If $n_{-}(D)=0$, then D is a collection of disjoint special alternating diagrams. Then (9.6) (i) follows from Theorem 8.1 in [Mu 4]. (Another proof can be found in Theorem 10.8.) We now proceed by induction on $n_{-}(D)$. Suppose $n^{\prime}=n_{-}(D) \neq 0$. Let $c_{1}, c_{2}, \ldots, c_{n^{\prime}}$ be all negative crossings of D. Consider the binary resolving tree of D using $c_{1}, \ldots, c_{n^{\prime}}$. See Fig. 9.1

Fig. 9.1
where, for example, $D_{0++}^{c_{1} c_{2} c_{3}}$ denotes the diagram obtained from D by smoothing c_{1} and changing crossings at c_{2}, and c_{3}. Thus $D^{0}=D_{0 \ldots 0}^{c_{1} \ldots c_{n^{\prime}}}$ is the leaf (i.e. diagram) obtained from D by smoothing only. Let D^{ℓ} denote any leaf different from D^{0}. Note that D^{0} and D^{ℓ} are positive. Now since D^{0} is positive and alternating, the induction hypothesis yields

$$
\max \operatorname{deg}_{z} a_{\phi_{+}\left(D^{0}\right)}(z)=\psi_{+}\left(D^{0}\right)
$$

Since $J_{+}\left(D^{0}\right)=J_{+}(D)$ and $i n d_{+}\left(D^{0}\right)=i n d_{+}(D)=0$ by Remark $9.7(1)$, we see that

$$
\psi_{+}\left(D^{0}\right)+n_{-}(D)=\psi_{+}\left(D^{0}\right)+n(D)-n_{+}(D)=\psi_{+}(D)
$$

Since $\phi_{+}\left(D^{0}\right)-n_{-}(D)=\phi_{+}(D), \quad D^{0}$ contributes a maximal term $z^{\psi_{+}(D)}$ in $a_{\phi_{+}(D)}(z)$. On the other hand, the maximal term in $a_{\phi_{+}(D)}(z) \quad D^{\ell}$ can contribute is
$z^{\psi+}\left(D^{\ell}\right)+n(D)-n\left(D^{\ell}\right)$. However, since $J_{+}\left(D^{\ell}\right)>J_{+}(D)$, we see that $\psi_{+}\left(D^{\ell}\right)+n(D)-$ $n\left(D^{\ell}\right)<\psi_{+}(D)$. Therefore, only D^{0} can contribute the maximal term $z^{\psi_{+}(D)}$ in $a_{\phi_{+}(D)}(z)$. Finally, using the induction hypothesis, we can see that

$$
c_{\phi_{+}(D), \psi_{+}(D)}(D)=(-1)^{n_{-}(D)} c_{\phi_{+}(D) \cdot \psi_{+}(D)}\left(D^{0}\right)=(-1)^{n_{-}(D)+s(D)-1} .
$$

It proves (9.6) (i)
Now to prove Lemma 9.8 by induction, we need a slightly more general formulation of the lemma.

A (connected) arc γ (with a base point if γ is closed) in an oriented link diagram D is called a descending part of D if γ satisfies the following property: If one travels along γ (according to the orientation of D) starting from the beginning of γ (or the base point), then each crossing which is met for the first time is crossed by an overcrossing. An oriented link diagram D is called quasi-positive if there is a descending part of D on which all negative crossings occur. A positive link diagram is quasi-positive.

Example 9.10 A knot diagram K_{1} and a 2-component link diagram $K_{1} \cup K_{2}$ are quasi-positive, but a 3 -component link diagram $K_{1} \cup K_{2} \cup K_{3}$ is not quasi-positive.

Fig. 9.2
Now Lemma 9.8 is replaced by the lemma below
Lemma 9.11 Let D be a quasi-positive diagram of an oriented link. Then

$$
\max \operatorname{deg}_{z} a_{\phi_{+}(D)}(z) \leq \psi_{+}(D)
$$

To prove Lemma 9.11, we need two technical lemmas whose proofs will be postponed to the appendix.

Lemma 9.12 Let D be an oriented link diagram, \hat{D} a simple closed curve that is a part of D, and $E=D-\hat{D}$. Then
(1) $s(D) \geq s(E)+1$ (Cf. [Mo 1]).
(2) If $s(D)=s(E)+1$, then $J_{+}(D) \leq J_{+}(E)+\frac{1}{2} c r(\hat{D}, E)$, where $\operatorname{cr}(\hat{D}, E)$ is the number of crossings between \hat{D} and E.
(3) If \hat{D} cuts each Seifert circle in E and $s(D)=s(E)+1$, then the reduced Seifert graph of $D, \hat{\Gamma}(D)$, is a tree. Here $\hat{\Gamma}(D)$ is the graph obtained from the Seifert graph $\Gamma(D)$ by removing all but one edge connecting two vertices. In particular, if traveling along D one leaves a Seifert circle S for S^{\prime} then one goes again to S through S^{\prime}.

A simple arc γ in D is called a bridge of D if γ never crosses under other parts of D.

Lemma 9.13 Let D be an oriented link diagram. Suppose that there are three Seifert circles S_{0}, S_{1} and S_{2}, and a (oriented) bridge γ in D such that
(1) there are crossings p_{1} between S_{0} and S_{1} and p_{2} between S_{0} and S_{2},
(2) γ connects two points q_{1} (close to p_{1}) and q_{2} (close to p_{2}), but γ never crosses p_{1} and p_{2}, and
(3) γ is disjoint from S_{0}. (See Fig. 9.3) Then

$$
\max \operatorname{deg}_{v} P_{D}(v, z)<\phi_{+}(D)
$$

Fig. 9.3
Now we will prove Lemma 9.11 using Lemmas 9.12 and 9.13 .
Since D is quasi-positive, D has at least one descending part on which all negative crossing occur. Let $b_{\gamma}(D)$ denote the number of crossings of D which are not on a descending part γ. Define $b(D)=\min b_{\gamma}(D)$, where the minimum is taken over all descending parts γ of D which contain all negative crossings. Now the proof of Lemma 9.11 will be given by induction on a pair $(n(D), b(D))$, ordered lexicographically.

If $n(D)=0$, then $P_{D}(v, z)=\left(\frac{v^{-1}-v}{z}\right)^{s-1}$ and hence $a_{\phi_{+}(D)}(z)=(-z)^{-s+1}$. Therefore Lemma 9.11 holds for this case.

Suppose inductively that Lemma 9.11 holds for any link diagram D^{\prime} with

$$
\left(n\left(D^{\prime}\right), b\left(D^{\prime}\right)\right)<(n(D), b(D))
$$

Let γ be a descending part of D on which all negative crossings occur and γ is maximal in the sense that the number of crossings which do not occur on γ is minimal (i.e. equal to $b(D))$.

There are three cases to be considered.
Case 1γ contains self-crossings.

Let p be the first self-crossing of γ.

Fig. 9.4
Let δ be a simple closed curve containing p. Obviously, δ is eliminated by an isotopy to obtain a new quasi-positive diagram E. Now (an obvious modification of) Lemma 9.12
(1) yields $s(E) \leq s(D)-1$.

We now need to consider three cases:
(a) p is positive. Then $\tilde{n}(E)=\tilde{n}(D)-1$ and hence $\phi_{+}(E) \leq \phi_{+}(D)-2$. Therefore $a_{\phi_{+}(D)}(z)=0$.
(b) p is negative, and $s(E)<s(D)-1$. Then $\tilde{n}(E)=\tilde{n}(D)+1$ and hence $\phi_{+}(E)<$ $\phi_{+}(D)$. Therefore again $a_{\phi_{+}(D)}(z)=0$.
(c) p is negative and $s(E)=s(D)-1$. Then $\phi_{+}(E)=\phi_{+}(D)$. Since E is quasipositive, it follows from induction hypothesis that $\max \operatorname{deg}_{z} a_{\phi_{+}(E)}(z) \leq n(E)-$ $s(E)+1-2 J_{+}(E)$. On the other hand, by Lemma 9.12 (2), we have

$$
\begin{aligned}
J_{+}\left(D_{0}^{p}\right) & \leq J_{+}(E)+\frac{1}{2} c r\left(D_{\mathbf{0}}^{p}-E, E\right) \\
& =J_{+}(E)+\frac{1}{2}(n(D)-n(E)-1) .
\end{aligned}
$$

However, since $J_{+}(D)=J_{+}\left(D_{0}^{p}\right), p$ being a negative crossing, it follows that

$$
\begin{aligned}
\max \operatorname{deg}_{z} a_{\phi_{+}(E)}(z) & \leq n(E)-s(E)+1-2 J_{+}(D)+n(D)-n(E)-1 \\
& =n(D)-s(D)+1-2 J_{+}(D)=\psi_{+}(D)
\end{aligned}
$$

This proves Lemma 9.11 for Case 1.
Case 2γ is a simple closed curve.

We can use a similar argument employed in the first case. Since $\tilde{n}(D-\gamma)=\tilde{n}(D)$, a direct application of Lemma 9.12 proves the lemma. The details will be omitted.

Case 3γ is a bridge on D.
Let q be the last crossing over which γ cannot be extended. (See Fig. 9.5)

Fig. 9.5
Then q is a positive crossing. Therefore we have an equation

$$
v^{-1} P_{D}(v, z)-v P_{D_{-}^{q}}(v, z)=z P_{D_{0}^{q}}(v, z) .
$$

Since q becomes a negative crossing in D_{-}^{q} we can extend γ a bit to γ^{\prime} contains the newly created negative crossing. Then, $b\left(D_{-}^{q}\right)<b(D)$ and hence $\left(n\left(D_{-}^{q}\right), b\left(D_{-}^{q}\right)\right)<$ $(n(D), b(D))$. The induction hypothesis now yields

$$
\begin{aligned}
\max \operatorname{deg}_{z} a_{\phi_{+}\left(D_{-}^{q}\right)}(z) & \leq \psi\left(D_{-}^{q}\right) \\
& =n\left(D_{-}^{q}\right)-s\left(D_{-}^{q}\right)+1-2 J_{+}\left(D_{-}^{q}\right) \\
& =n(D)-s(D)+1-2 J_{+}\left(D_{-}^{q}\right)
\end{aligned}
$$

Therefore, if $J_{+}(D)=J_{+}\left(D_{-}^{q}\right)$, then

$$
\begin{equation*}
\max \operatorname{deg}_{z} a_{\phi_{+}\left(D_{-}^{q}\right)}(z) \leq \psi_{+}(D) \tag{9.14}
\end{equation*}
$$

On the other hand, since $n\left(D_{0}^{q}\right)<n(D)$, it follows from the induction assumption that

$$
\begin{aligned}
\max \operatorname{deg}_{z} a_{\phi_{+}\left(D_{0}^{q}\right)}(z) & \leq \psi_{+}\left(D_{0}^{q}\right) \\
& =n\left(D_{0}^{q}\right)-s\left(D_{0}^{q}\right)+1-2 J_{+}\left(D_{0}^{q}\right) \\
& =n(D)-1-s(D)+1-2 J_{+}\left(D_{0}^{q}\right)
\end{aligned}
$$

Therefore, if $J_{+}\left(D_{0}^{q}\right)=J_{+}(D)$, then we see that

$$
\begin{equation*}
\max \operatorname{deg}_{z} a_{\phi_{+}\left(D_{0}^{q}\right)} \leq \psi_{+}(D)-1 \tag{9.15}
\end{equation*}
$$

Suppose now that $J_{+}\left(D_{-}^{q}\right)=J_{+}\left(D_{0}^{\boldsymbol{q}}\right)=J_{+}(D)$. Then $\psi_{+}(D)=\psi_{+}\left(D_{-}^{q}\right)=\psi_{+}\left(D_{0}^{q}\right)+1$, but the skein relation yields

$$
a_{\phi_{+}(D)}(z)-a_{\phi_{+}\left(D_{-}^{q}\right)}(z)=z a_{\phi_{+}\left(D_{0}^{q}\right)}(z)
$$

and hence we have from (9.14) and (9.15)

$$
\max \operatorname{deg}_{z} a_{\phi_{+}(D)}(z) \leq \psi_{+}(D)
$$

If $J_{+}\left(D_{-}^{q}\right)=J_{+}\left(D_{0}^{q}\right)<J_{+}(D)$, then either q is the only crossing between S_{1} and S_{2}, and then by Theorem 8.3, $a_{\phi_{+}(D)}(z)=0$, or there are other negative crossings between S_{1} and S_{2} (and no positive crossings). Since γ must cross other negative crossing between S_{1} and S_{2}, γ eventually returns to S_{1}. Consider the largest part of γ, say γ_{0} which starts at p_{1} but does not cross any crossing connected to S_{1}. Let q^{\prime} be the first crossing that prevents the extension of γ_{0} any further. Then q^{\prime} must be a crossing connecting S_{1} and another Seifert circle, say S_{0}. Then $S_{0} \neq S_{2}$, otherwise γ would cross under a negative crossing, since S_{1} and S_{2} are connected by negative crossing except q. Let $p^{\prime \prime}$ be the terminal point of γ_{0}. See Fig. 9.6.

Fig. 9.6
Now S_{0}, S_{1}, S_{2} and γ_{0} satisfy all conditions in Lemma 9.13 , putting $p^{\prime}=q_{1}, p^{\prime \prime}=$
$q_{2}, q=p_{1}$ and $q^{\prime}=p_{2}$. Therefore, $a_{\boldsymbol{\phi}_{+(D)}}(z)=0$. A proof of Lemma 9.11 is now complete.

$\S 10$ Braid index of special alternating links

Since an alternating link is a $*$-product of special alternating links, it is natural to expect that the braid index of an alternating link is completely determined by those of its *-components. (See Conjecture 15.4.) Although this is not proved yet, the determination of the braid index of a special alternating link will be the first step toward the complete determination of the braid index of an alternating link. However, it is by no means easy to determine the braid index of a special alternating link.

In this section, we will determine the braid index of most of special alternating links whose alternating diagrams have index at most 2 . In the case that diagrams have index 1 , the only links that are left undecided are those whose diagrams have Seifert graphs without locally maximal subgraphs. In fact we prove the following theorem.

Theorem 10.1 Let D be a special alternating diagram of a (special alternating) oriented link L. Let $\Gamma(D)$ be the Seifert graph associated with D. Then $\mathbf{b}(L)=s(D)$-ind D if (1) ind $D \leq 1$ and $\Gamma(D)$ has locally maximal subgraphs, or
(2) ind $D=2$ and $\Gamma(D)$ has local maximal subgraphs, all of which have the same number of isthmuses (mod 2).

Unfortunately, Theorem 10.1 cannot be extended immediately to an alternating link L with ind $D \leq 2$. There are several difficulties which we must overcome in order to prove Theorem 10.1 for an alternating link. However, we have shown in Theorem 9.5. that if ind $D=0$ then Theorem 10.1 holds for any alternating link.

Now we need a few preparations before we begin to prove Theorem 10.1.
First we note that if D is a special diagram, then its Seifert graph $\Gamma(D)$ is a plane graph determined from D. In fact $\Gamma(D)$ coincides with the classical graph of a link [Ba, Mu1].

Now a (local) deformation of a link diagram D as shown in Fig. 10.1 (i.e. 180° rotation keeping end points $a, a^{\prime}, b, b^{\prime}$ fixed) will be called the Tait flype.

Fig. 10.1
The Tait flype preserves the isotopy class of a link, the property "being alternating", the Tait number $w(D)$ of D and the number of Seifert circles of D.

By applying Tait flypes if necessary, we can transform a special link diagram D into a nice special link diagram D^{\prime}. A special diagram is said to be nice if a disk in \mathbb{R}^{2} bounded by a 2 -cycle $c=\left\{v_{0}, e_{1}, v_{1}, e_{2}, v_{0}\right\}$ in $\Gamma(D)$ has only edges (of the same sign) connecting two vertices v_{0} and v_{1}.

Lemma 10.2 Any special diagram can be transformed into a nice special diagram by Tait flypes and obvious isotopy.

Proof A proof is seen from Fig. 10.2 below.

TAIT FLYPE

Fig. 10.2.
We may assume therefore that any special diagram is always nice.
Let x and y be two vertices of a signed graph G. Denote by $n_{+}(x, y)$ and $n_{-}(x, y)$, respectively, the number of positive and negative edges connecting x and y. Let $n(x, y)=$ $n_{+}(x, y)+n_{-}(x, y)$ and $\tilde{n}(x, y)=n_{+}(x, y)-n_{-}(x, y)$. Sometimes we write $\tilde{n}_{G}(x, y)$ for $\tilde{n}(x, y)$ to emphasize the graph G.

Now we define, for an integer k, a polynomial $w^{(k)}(z)$ as follows:

$$
\begin{equation*}
w^{(-1)}(z)=1 \quad \text { and } \quad w^{(0)}(z)=0 . \tag{10.3}
\end{equation*}
$$

For an integer $n \geq 1$, we define inductively

$$
w^{(n)}(z)=z w^{(n-1)}(z)+w^{(n-2)}(z), \quad \text { and }
$$

finally, we set, for $n \geq 0$,

$$
w^{(-n)}(z)=w^{(n)}(-z) .
$$

If $n \neq 0$, then $w^{(n)}(z)$ is a polynomial of degree $|n|-1$. In particular, it is shown $[\mathrm{P}]$ that

$$
\begin{equation*}
\text { if } z=\sqrt{-1}\left(r+r^{-1}\right) \text {, then } w^{(n)}(z)=(\sqrt{-1})^{n-1}\left(r^{n}-r^{-n}\right) /\left(r-r^{-1}\right) \tag{10.4}
\end{equation*}
$$

Next, we need the following technical lemma.
Lemma 10.5 Let D be a special diagram of a link L and Γ be a Seifert graph of D. Let x and y be two vertices of Γ such that $\tilde{n}(x, y) \neq 1$. Define Γ^{\prime} as the graph obtained from Γ by replacing all edges connecting x and y by a single positive edge. Let $\Gamma^{\prime \prime}$ be the graph obtained from Γ by removing all edges connecting x and y. Let D^{\prime} and $D^{\prime \prime}$ be the link diagrams associated with Γ^{\prime} and $\Gamma^{\prime \prime}$, respectively. For a diagram D, let $E(D)=\phi_{+}(D)-2$ ind $_{+} D$. Suppose that ind $\boldsymbol{H}_{+} \Gamma^{\prime}>$ ind $d_{+} \Gamma$. Then

$$
a_{E(D)}(z)= \begin{cases}w^{(\tilde{n}(x, y)-1)}(z) a_{E\left(D^{\prime \prime}\right)}(z) & \text { if } \text { ind } d_{+} D=i n d_{+} D^{\prime \prime} \tag{10.6}\\ 0 & \text { if ind } D<i n d_{+} D^{\prime \prime}\end{cases}
$$

Note that $i n d_{+} D \leq i n d_{+} D^{\prime \prime}$.
Proof By Lemma 10.2, we may assume that $n(x, y)=|\tilde{n}(x, y)|$. Applications of skein relations on the crossings corresponding to the edges connecting x and y yield the following formula. (Use an induction on $\tilde{n}(x, y)$.)

$$
\begin{equation*}
P_{D}(v, z)=v^{\tilde{n}(x, y)-1} w^{(\tilde{n}(x, y))}(z) P_{D^{\prime}}(v, z)+v^{\tilde{n}(x, y)} w^{(\tilde{n}(x, y)-1)}(z) P_{D^{\prime \prime}}(v, z) . \tag{10.7}
\end{equation*}
$$

(Cf. [P, Theorem 1.1].)
Suppose that $i n d_{+} D<i n d_{+} D^{\prime \prime}$. Then

$$
\begin{aligned}
\phi_{+}(D)-2 i n d_{+} D & =\phi_{+}\left(D^{\prime \prime}\right)+\tilde{n}(x, y)-2 i n d_{+} D \\
& >\phi_{+}\left(D^{\prime \prime}\right)-2 i n d_{+} D^{\prime \prime}+\tilde{n}(x, y) .
\end{aligned}
$$

Since ind $d_{+} \Gamma<$ ind $d_{+} \Gamma^{\prime}$ by assumption, it follows that

$$
\begin{aligned}
\phi_{+}(D)-2 i n d_{+} D & =\phi_{+}\left(D^{\prime}\right)+\tilde{n}(x, y)-1-2 i n d_{+} D \\
& >\phi_{+}\left(D^{\prime}\right)-2 i n d_{+} \Gamma^{\prime}+\tilde{n}(x, y)-1 .
\end{aligned}
$$

Therefore, we have from (10.7)

$$
\max \operatorname{deg} g_{v} P_{D}(v, z)<\phi_{+}(D)-2 \operatorname{ind}_{+}(D)
$$

and hence $a_{E(D)}(z)=0$. On the other hand, if ind $D=$ ind $d_{+} D^{\prime \prime}$, then

$$
\phi_{+}\left(D^{\prime \prime}\right)-2 i n d_{+} D^{\prime \prime}+\tilde{n}(x, y)>\phi_{+}\left(D^{\prime}\right)-2 i n d_{+} D^{\prime}+\tilde{n}(x, y)-1
$$

and hence (10.7) yields

$$
a_{E(D)}(z)=w^{(\tilde{n}(x, y)-1)}(z) a_{E\left(D^{\prime \prime}\right)}(z)
$$

This proves Lemma 10.5.
The following theorem, a generalization of Theorem 9.3 to a special (not necessarily alternating) link, is an easy consequence of Lemma 10.5. Therefore, a proof will be omitted.

Theorem 10.8 Let D be a special diagram of an oriented link L. Then

$$
\begin{equation*}
a_{\phi_{+}(D)}(z)=(-z)^{-s(D)+1} \prod_{(x, y)} w^{(\tilde{n}(x, y)-1)}(z) \tag{1}
\end{equation*}
$$

where the product is taken over all pairs of vertices in $\Gamma(D)$. In particular, max deg ${ }_{v} P_{D}(v, z)=\phi_{+}(D)$ if and only if $\tilde{n}(x, y) \neq 1$ for every pair of vertices x and y in $\Gamma(D)$. Furthermore, if max $\operatorname{deg}_{v} P_{D}(v, z)=\phi_{+}(D)$, then

$$
\begin{align*}
& \max \operatorname{deg}_{z} a_{\phi_{+}(D)}(z)=\psi_{+}(D) \text { and } \tag{2}\\
& c_{\phi_{+}(D), \psi_{+}(D)}=(-1)^{n_{-}(D)-s(D)+1}
\end{align*}
$$

$$
\begin{equation*}
a_{\phi_{-}(D)}(z)=z^{-s(D)+1} \prod_{(x, y)} w^{(-\tilde{n}(x, y)-1)}(z) \tag{3}
\end{equation*}
$$

where (x, y) runs over all pairs of vertices in $\Gamma(D)$. In particular min $\operatorname{deg}_{v} P_{D}(v, z)=$ $\phi_{-}(D)$ iff $\tilde{n}(x, y) \neq-1$ for every pair of vertices x and y in $\Gamma(D)$. Furthermore, if $\max \operatorname{deg}_{v} P_{D}(v, z)=\phi_{-}(D)$, then
(4) $\quad \operatorname{maxde} g_{z} a_{\phi_{-}(D)}(z)=\psi_{-}(D)$ and $c_{\phi_{-}(D), \psi_{-}(D)}=(-1)^{n_{-}(D)}$
(5) $s(D)=\frac{1}{2} v-\operatorname{span} P_{D}(v, z)+1$ iff $|\tilde{n}(x, y)| \neq 1$ for every pair of vertices any x and y in $\Gamma(D)$.
(6) $\mathbf{b}(L)=s(D)$ iff $|\tilde{n}(x, y)| \neq 1$ for every pair of vertices x and y in $\Gamma(D)$.

Now the rest of this section will be devoted to prove Theorem 10.1 for the case where ind $D=1$ or 2 .

If the Seifert graph of a special alternating diagram D has a locally maximal subgraph, we will obtain a lot of information about its skein polynomial. In fact we can prove the following

Theorem $\mathbf{1 0 . 9}$ Let D be a special alternating (positive) diagram of an oriented link. Then
(1) max deg ${ }_{v} P_{D}(v, z)=\phi_{+}(D)-2$ iff ind $D=1$ and $\Gamma(D)$ has locally maximal subgraphs. Therefore, if ind $D=1$ and $\Gamma(D)$ has locally maximal subgraphs, then $\mathbf{b}(L)=s(D)-1$.
(2) Suppose that a locally maximal subgraph of $\Gamma(D)$ is a single-edge graph. Then
(i) $\max \operatorname{deg}_{z} a_{\phi_{+}(D)-\mathbf{2}}(z)=\psi_{+}(D)+2$
(ii) $c_{\phi_{+}(D)-2, \psi_{+}(D)+2}=(-1)^{s(D)}$
(iii) All the roots of $a_{\phi_{+}(D)-2}\left(\sqrt{-1}\left(r+r^{-1}\right)\right)$ are roots of unity.
(3) If a locally maximal subgraph of $\Gamma(D)$ is of type H_{1}, then
(i) $\max \operatorname{deg}_{z} a_{\phi_{+}(D)-2}(z)=\psi_{+}(D)+E_{\max }(D)+2$, where $E_{\max }(D)$ is the maximal number of edges any locally maximal subgraph (or $\Gamma(D)$) of type H_{1} can have.
(ii) Let $\alpha_{+}(D)=\operatorname{maxdeg} g_{z} a_{\phi_{+}(D)-2}(z)$. Then

$$
c_{\phi_{+}(D)-2, \alpha_{+}(D)}=(-1)^{s(D)-1} \beta_{\max }(D)
$$

where $\beta_{\max }(D)$ is the number of locally maximal subgraphs (of $\Gamma(D)$) of type H_{1} with $E_{\max }(D)$ edges.

Proof First we prove (2). Without loss of generality, we may assume that D is a nice diagram. $\Gamma(D)$ has only one singular edge say e_{0}. If another edge e and e_{0} occur on a simple 4-cycle, then $\Gamma(D)$ would have a locally maximal subgraph of type H_{1}. Therefore, e_{0} never lie on a simple 4-cycle. Then it follows from Lemma 10.5 that for adjacent vertices x and y (not connected by e_{0}) of $\Gamma(D)$ the following formula holds

$$
\begin{equation*}
a_{\phi_{+}(D)-2}(z)=w^{(k-1)}(z) a_{\phi_{+}\left(D^{\prime \prime}\right)-2}(z) \tag{10.10}
\end{equation*}
$$

where $k=\tilde{n}(x, y)$. Using induction on $J_{+}(D)$, we have

$$
\begin{aligned}
\max d e g_{z} a_{\phi_{+}(D)-2}(z) & =k-2+\max d e g_{z} a_{\phi_{+}\left(D^{\prime \prime}\right)-2}(z) \\
& =k-2+\psi_{+}\left(D^{\prime \prime}\right)+2 \\
& =k+n\left(D^{\prime \prime}\right)-s\left(D^{\prime \prime}\right)+1-2 J_{+}\left(D^{\prime \prime}\right) \\
& =n(D)-s(D)+1-2\left(J_{+}(D)-1\right) \\
& =\psi_{+}(D)+2
\end{aligned}
$$

Since the other parts of (2) also follow immediately from (10.10), we omit details.
Proof of (3) First suppose that $\Gamma(D)$ is $H_{1}^{k}, k \geq 1$. Then the skein relation gives the following formula:

$$
\begin{equation*}
P_{D}(v, z)=v^{2} P_{D^{\prime \prime}}(v, z)+v z P_{D^{\prime}}(v, z) \tag{10.11}
\end{equation*}
$$

where $\Gamma\left(D^{\prime}\right)$ and $\Gamma\left(D^{\prime \prime}\right)$ are depicted in Fig. 10.3.

Fig. 10.3

Since ind $\Gamma\left(D^{\prime}\right)=2$ and ind $\Gamma\left(D^{\prime \prime}\right)=0$, we see from (10.11) that

$$
\begin{aligned}
\max \operatorname{deg}_{v} P_{D^{\prime}}(v, z) \leq n\left(D^{\prime}\right)+s\left(D^{\prime}\right)-1-2 \text { ind } D^{\prime} & =2(k-1)+1+k+2-1-4 \\
& =3 k-4
\end{aligned}
$$

while

$$
\begin{aligned}
\max \operatorname{deg}_{v} P_{D^{\prime \prime}}(v, z) & =n\left(D^{\prime \prime}\right)+s\left(D^{\prime \prime}\right)-1 \\
& =2(k-1)+k-1=3 k-3
\end{aligned}
$$

and hence

$$
\max \operatorname{deg}_{v} P_{D}(v, z)=3 k-1=\phi_{+}(D)-2
$$

Furthermore, a simple computation shows that

$$
\begin{equation*}
a_{\phi_{+}(D)-2}(z)=a_{\phi_{+}\left(D^{\prime \prime}\right)}(z)=(-1)^{k-1} z^{-(k-1)} . \tag{10.12}
\end{equation*}
$$

Now, since $E_{\max }(D)=2 k$, it follows that

$$
\begin{aligned}
\alpha_{+}(D) & =\psi_{+}(D)+E_{\max }(D)+2 \\
& =2 k-(k+2)+1-2 J_{+}(D)+2 k+2 \\
& =k-1-2 \cdot 2 k+2 k+2=-k+1
\end{aligned}
$$

Also, since $\beta_{\max }(D)=1$ and $s(D)=k+2$, we see that $c_{\phi_{+}(D)-2, \alpha_{+}}=(-1)^{k+1}$. This proves (3) for the special case where $\Gamma(D)=H_{1}^{k}$.

Now consider the general case. We may assume that D is a nice special alternating diagram.

First we build a (partial) resolving binary tree for D (to evaluate $P_{D}(v, z)$) in such a way that only crossing changes and smoothings are applied at crossings on multiple edges. After we change a crossing, we eliminate simultaneously both a new negative crossing and one positive crossing by an obvious isotopy so that we keep the diagram nice and alternating. Now the resulting leaves of the tree have only singular crossings. Since we are interested in $a_{\phi_{+}(D)-2}(z)$, we ignor all leaves with index ≥ 2 and we are left with diagrams $D_{1}^{\ell}, D_{2}^{\ell}, \ldots, D_{t}^{\ell}$, whose graphs $\Gamma\left(D_{j}^{\ell}\right)$ are of type H_{1} or (possibly) single-edge
graphs with isolated vertices. From the previous computation, we know that each of these graphs contributes some term to $a_{\phi_{+}(D)-2}(z)$. In fact, a single-edge graph contributes $(-1)^{s(D)} z^{\psi_{+}(D)+2-2 m}$ and graph H_{1}^{k} does $(-1)^{s(D)-1} z^{\psi_{+}(D)+2 k+2-2 m}$, where m is the number of crossing changes performed on the way from D to D_{j}^{ℓ}. Observe that there are no cancellations between two different terms contributed by H_{1}^{k}. The highest exponent of z is achieved if a leaf is of type H_{1}^{k} for maximal k and only smoothing were performed on the way from D to H_{1}^{k}, i.e. $m=0$. This completes the proof of (3).

Proof of (1) If ind $D=1$, it follows from Theorem 8.3 that $\max \operatorname{deg}_{v} P_{D}(v, z) \leq$ $\phi_{+}(D)-2$. Furthermore, if $\Gamma(D)$ has locally maximal subgraphs, then we see from Theorem 5.3 that a locally maximal subgraph of $\Gamma(D)$ is either a single-edge graph or it is of type H_{1}. Therefore, Theorem 10.9 (2) and (3), just proven above, show that $\max \operatorname{deg}_{v} P_{D}(v, z)=\phi_{+}(D)-2$. Conversely, suppose that max $\operatorname{deg}_{v} P_{D}(v, z)=\phi_{+}(D)-2$. If $\operatorname{ind}_{+} D(=$ ind $D)=0$, then it follows from Theorem 9.5 that $\max d e g_{v} P_{L}(v, z)=$ $\phi_{+}(D)$. If $\operatorname{ind}_{+} D \geq 2$, then Theorem 8.3 implies that max $\operatorname{deg} g_{v} P_{D}(v, z) \leq \phi_{+}(D)-4$. Therefore, we have ind $D=1$. Suppose now that $\Gamma(D)$ has no locally maximal subgraphs. Since ind $D=1$, it follows from Theorem 5.3 that $\Gamma(D)$ has a subgraph of type H_{2}. Then the argument used in the proof of (3) shows that none of the leaves in the resolving binary tree contributes the term $a_{\phi_{+}(D)-2}(z)$, since the graphs associated with these leaves are neither of type H_{1} nor single-edge graphs. Therefore $\max \operatorname{deg} g_{L}(v, z)<\phi_{+}(D)-2$.

Theorem 10.13 Let D be a special alternating (positive) diagram of an oriented link L. Suppose ind $\Gamma(D)=2$.
(1) If max $\operatorname{deg}_{v} P_{D}(v, z)=\phi_{+}(D)-4$, then $\Gamma(D)$ has a locally maximal subgraph.
(2) If $\Gamma(D)$ has a local maximal subgraph and all locally maximal subgraphs have the same number of isthmuses, $(\bmod 2)$, then

$$
\max \operatorname{deg}_{v} P_{D}(v, z)=\phi_{+}(D)-4
$$

Therefore, under the assumption, $\mathbf{b}(L)=s(D)-2$.
(3) Under the assumptions of (2), the sign of the coefficient of the highest term in z in $a_{\boldsymbol{\phi}_{+}(D)-\mathbf{4}}(z)$ is $(-1)^{s(D)-1+i s t(D)}$ where ist $(D)=0$ or 1 according as a local maximal subgraph of $\Gamma(D)$ has an even or odd number of isthmuses.

Since a proof of Theorem 10.13 is elementary but tedious, we will omit the details.
Proof of Theorem 10.1 Since L is a special alternating (positive) link, we have ind_ $D=0$ and hence $\min \operatorname{deg}_{v} P_{L}(v, z)=\phi_{-}(D)$ by (9.6) (ii). Theorem 10.1 now follows from Theorems 10.9 (1), 10.13 (2) and Theorem 8.12.

Example 10.14 Consider the following special alternating positive diagram D of an oriented link L. See Fig. 10.4. Note that ind $D=2$.

Fig. 10.4
We can prove that $\max \operatorname{deg}_{v} P_{D}(v, z)=\phi_{+}(D)-4=24$. In fact, L consists of 7 trivial knots and since the total linking number $L k(L)=9, P_{D}(v, z)=z^{-6}\left(v^{-1}-\right.$ $v)^{6} v^{18}+z^{-4}(\ldots) \ldots[\mathrm{LM}]$. The example is interesting, because D does not satisfy the assumptions in Theorem 10.13. There are 6 locally maximal subgraphs of $\Gamma(D)$ each of
which has index 2 and has only singular edges. See Fig. 10.5.

Fig. 10.5.
Each subgraph contributes some term to $a_{\phi_{+}(D)-4}(z)$. Now a simple computation shows that to $a_{\phi_{+}(D)-4}(z), \Gamma_{\mathbf{1}}$ contributes $-z^{0}, \Gamma_{\mathbf{2}}$ does $z^{0}, \Gamma_{\mathbf{3}}$ does z^{-6} and each of Γ_{4}, Γ_{5} and Γ_{6} contributes $-z^{-2}$. Therefore the potentially highest terms in z contributed by Γ_{1} and Γ_{2} have been cancelled, and finally we have $a_{\phi_{+}(D)-4}(z)=z^{-6}-3 z^{-2}$.

$\S 11$ Braid index and other invariants

In $\S 4$ we proved a relationship between the index of a plane bipartite graph G and the number $\lambda\left(G^{*}\right)$ of the directed growing spanning tree in the dual G^{*} of G. For an alternating link L, the absolute value of the leading coefficient of the (reduced) Alexander polynomial of L is exactly $\lambda\left(G^{*}\right)$. Therefore, many theorems proved in $\S 4$ can be restated in term of these link invariants. In particular, Theorem 4.3 will give an upper bound of the braid index of an alternating link. In fact, we have

Theorem 11.1 Let $c_{0}(L)$ be the leading coefficient of the (reduced) Alexander polynomial
of a non-split link L. If L is a special alternating link, then

$$
\mathbf{b}(L) \leq 2\left|c_{0}(L)\right| .
$$

In general, if an alternating link L is a*-product of special alternating links L_{1}, \ldots, L_{m}, then

$$
\begin{equation*}
\mathbf{b}(L)-1 \leq m\left(2\left|c_{0}(L)\right|-1\right) \tag{11.2}
\end{equation*}
$$

Proof Let D and D_{i} be alternating diagrams of L and L_{i}, respectively. Then $\mathbf{b}(L) \leq$ $s(D)$. Let G and G_{i} denote the graphs associated with D and $D_{i}, i=1,2, \ldots, m$. Since $|V(G)|=s(D)$ and $\prod_{i=1}^{m} \lambda\left(G_{i}^{*}\right)=\prod_{i=1}^{m}\left|c_{0}\left(L_{i}\right)\right|=\left|c_{0}(L)\right|[\mathrm{Mu} 1]$, (4.4) yields (11.2)

The following theorem is an immediate consequence of Corollary 4.11.
Theorem 11.3 Let L be an alternating link. Let D be a reduced alternating diagram of L. Then

$$
\begin{equation*}
\text { ind } D \leq\left|c_{0}(L)\right|-1 \tag{11.4}
\end{equation*}
$$

Remark 11.5 (11.4) is the best possible.
These theorems can be used to determine the braid index of an alternating link L for which $\left|c_{0}(L)\right|$ is small. In fact, in $\S 14$, we will determine the braid index of an alternating link L with $\left|c_{0}(L)\right| \leq 3$.

Chapter III. Braid index of alternating links

§12 Algebraic links

Three sections of this chapter will be devoted to the determination of the braid index of some familiar links, including some alternating algebraic (or arborescent) links and most of the pretzel links.

First, as a straightforward generalization of 2-bridge links, we will consider alternating algebraic links and determine the braid index for a certain type of alternating algebraic links. The family of these links include 2 -bridge links and alternating Montesinos links.

Now, as is well known, an algebraic link L is associated with a weighted tree T. A tree is called a weighted tree if for each pair of adjacent edges e and e^{\prime} emanating from a vertex v, there is an integer $w\left(e, e^{\prime} ; v\right)$, called a weight. If v adjoins k edges $e_{1}, e_{2}, \ldots, e_{k}$, in counter-clockwise, there are k weights $w\left(e_{1}, e_{2} ; v\right), w\left(e_{2}, e_{3} ; v\right), \ldots, w\left(e_{k}, e_{1} ; v\right)$ assigned to v. The sum of these weights $\sum_{i=1}^{k} w\left(e_{i}, e_{i+1} ; v\right), e_{k+1}=e_{1}$, will be called the weight of v, denoted by $w(v)$. A vertex v of T is called positive (or negative) if $w(v)>0$ (or $w(v)<0$). T is called positive (or negative) if all the vertices are positive (or negative). T is called even if $w(v)$ is even for all vertices. Now the algebrac link L associated with a weighted tree T is the boundary of a (not necessarily orientable) surface constructed by plumbing as specified by T. L will be denoted by $L(T)$.

Example 12.1 T is a weighted tree and $L(T)$ is the link associated with T.

T

Fig. 12.1

Now, L is not oriented and there is no natural way to define an orientation to L. Since the braid index of L depends on the orientation, we must find a natural way to define an orientation of the algebraic link. This problem can be avoided if the surface F constructed from T is orientable. In fact, F is orientable iff $w\left(v_{\boldsymbol{i}}\right)$ is even for each vertex of T, i.e., T is an even tree. Therefore, we assume hereafter that T is an even tree. Furthermore, since our links are alternating, we may need another restriction on T. A sufficient (but not necessary) condition for an algebraic link to be alternating is that T is positive (or negative) and excessive, i.e. $\left|w\left(v_{i}\right)\right| \geq \operatorname{val}\left(v_{i}\right)$ for all vertices v_{i}.

In fact, it is easy to find alternating diagrams of this type of algebraic links. Given a positive excessive even tree T, there is another positive excessive even tree T^{\prime} such that
(12.2) (1) T is isomorphic to T^{\prime} (as weighted graphs, but not necessarily weighted plane graphs),
(2) every weight $w\left(e, e^{\prime} ; v^{\prime}\right)$ is positive for $v^{\prime} \in V\left(T^{\prime}\right)$,
(3) $L\left(T^{\prime}\right)$ is ambient isotopic to $L(T)$.

Therefore we may assume without loss of generality that every weight of a positive excessive tree is positive.

Example 12.3 $\quad T$ and T^{\prime} in Fig. 12.2(a) are isomorphic.

(a)

(b)

Fig. 12.2

Now we construct a plane graph K from T by adding a finite number of edges to T as follows.

Take a point v_{0}, not on T, from the plane. If $w\left(e, e^{\prime} ; v_{\boldsymbol{i}}\right)=k>1$, then join v_{0} and v_{i} by $k-1$ disjoint simple arcs in such a way that these arcs divide the angle, where the weight is assigned, into k parts. (See Fig. 12.2 (b).) Thus we obtain a plane graph K, called a completion of T. By assigning a negative sign to every edge, K becomes a negative plane graph. Since T is excessive and even, every vertex of K has even valencies, and, moreover, K is reduced, i.e. K has no loops and no isthmuses.

Next, consider the signed dual graph G of K. Proposition 6.3 then implies that G is reducible. G is a positive bipartite graph.

From this plane graph G, we can easily construct a link diagram D whose Seifert graph $\Gamma(D)$ is G (as a plane graph). Since G is bipartite, D is a special alternating diagram and the orientation of D is induced from that of the Seifert surface. G is called a graph associated with T, and is denoted by $G(T)$.

It is evident that D represents a link that is ambient isotopic to the algebraic link associated with T.

Analogously, we can construct a negative (bipartite) plane graph G associated with a negative excessive even tree, and a special (negative) alternating diagram D.

These constructions can be extended to a slightly more general weighted tree. Consider an arbitrary weighted tree T. Let $A(T)$ be the set of those edges in T which joint positive vertices and negative vertices. If all the edges in $A(T)$ are removed from T, T will split into finitely many subtrees $T_{1}, T_{2}, \ldots T_{k}$, each of which is either strictly positive or negative. A collection $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ will be called a uniform decomposition of T.

Proposition 12.4 Let $\left\{T_{1}, T_{2}, \ldots T_{k}\right\}$, be the uniform decomposition of a tree T. If each of T_{1}, \ldots, T_{k} is excessive, then the link $L(T)$ is alternating.
(For a proof, see [Mu 2, Proposition 4.2].)
It is easily seen that the link $L(T)$ is a $*$-product of k algebraic links $L\left(T_{1}\right), \ldots, L\left(T_{k}\right)$.

Since T_{j} is a positive (or negative) excessive even tree, then $L\left(T_{j}\right)$ is a special alternating link (and is the boundary of the Seifert surface F constructed before).

Unfortunately, we are unable to determine the braid index for all alternating algebraic link, but we can determine the braid index of those links, each of whose $*$-components is so-called strongly excessive.

Definition 12.5 Let T be a positive (or negative) tree. T is called strongly excessive if $\left|w\left(v_{i}\right)\right| \neq 0$ and $\left|w\left(v_{i}\right)\right| \geq 2\left[\operatorname{val}\left(v_{i}\right)-1\right]$ for any vertex v_{i}. If $\left\{T_{1}, \ldots, T_{k}\right\}$ is a uniform decomposition of T, then T is called strongly excessive if each tree T_{j} is strongly excessive.

We note that if a weighted positive (or negative) tree is strongly excessive, then the plane graph $G(T)$ is strongly excessive. (See Definition 6.4.)

An algebraic link L is called strongly excessive if L is associated with a strongly excessive weighted tree. For example, a 2 -bridge link is strongly excessive. Now the purpose of this section is to prove the following

Theorem 12.6 Let T be a strongly excessive even tree and L the link associated with T. The orientation of L is induced from the orientation of the (orientable) surface F constructed from T. Then

$$
\begin{equation*}
v-\operatorname{span} \quad P_{L}(v, z)=2(\mathbf{b}(L)-1) \tag{12.7}
\end{equation*}
$$

Therefore, the braid index is completely determined by the skein polynomial.
First we prove (12.7) for special alternating links.
Proposition 12.8 Let L be a strongly excessive positive algebraic link. Then (12.7) holds.

Proof Let G be the positive graph associated with T and D the special alternating diagram of L. When we need to emphasize the association of G or D with T, we will write $G(T)$ or $D(T)$.

Now, since L is special (positive) alternating, we see that $\min \operatorname{deg}_{v} P_{L}(v, z)=\phi_{-}(D)$ and hence if suffices to prove

$$
\begin{equation*}
\operatorname{maxdeg} g_{v}(v, z)=\phi_{+}(L)-2 \operatorname{ind} G(T)=n(D)+s(D)-1-2 \operatorname{ind} G(T) \tag{12.9}
\end{equation*}
$$

Since $n(D)=|E(G)|$ and $s(D)=|V(G)|,(12.9)$ is equivalent to

$$
\begin{equation*}
\max \operatorname{deg}_{v} P_{L}(v, z)=|E(G)|+|V(G)|-1-2 \operatorname{ind} G(T) \tag{12.10}
\end{equation*}
$$

To compute $|E(G)|$ and $|V(G)|$, consider the dual graph G^{*} of G. Denote by $w(T)$ the total weight of T, i.e., $w(T)=\sum_{v_{i} \in V(T)} w\left(v_{i}\right)$. Then it follows from Theorem 6.5 that

$$
2 \text { ind } G=2 \sum_{v_{i} \in V(T)}\left\{\frac{w\left(v_{i}\right)}{2}-1\right\}=w(T)-2|V(T)|
$$

Now it is easy to see that $|E(G)|=\left|E\left(G^{*}\right)\right|=\sum_{v_{i} \in V(T)} w\left(v_{i}\right)-|E(T)|=$ $w(T)-(|V(T)|-1)$ and $|V(G)|=|E(G)|-d(G)+2$, where $d(G)$ is the number of
connected components of $\mathbb{R}^{2}-G$. Note that $d(G)=\left|V\left(G^{*}\right)\right|=|V(T)|+1$, and hence $|V(G)|=|E(G)|-|V(T)|+1$. Using these formulae, a simple computation shows that

$$
\phi_{+}(D)-2 \operatorname{ind} G(T)=|E(G)|+|V(G)|-1-2 \operatorname{ind} G(T)=w(T)-|V(T)|+2 .
$$

Therefore, to prove (12.10) it suffices to show that

$$
\begin{equation*}
\max \operatorname{deg} g_{v}(v, z)=w(T)-|V(T)|+2 \tag{12.11}
\end{equation*}
$$

A similar computation will show that

$$
\begin{equation*}
\min \operatorname{deg}_{v} P_{L}(v, z)=|V(T)| \tag{12.12}
\end{equation*}
$$

We prove (12.11) by induction on $(|V(T)|, w(T))$ where the order is given lexicographically. We may assume without loss of generality that T is connected.

Now consider the initial case, $(1, w(T))$. Then G is a polygon with $w(T)$ sides and hence L is an (oriented) fibred torus link of type $(w(T), 2)$. It is known that $\max \operatorname{deg}_{v} P_{L}(v, z)=w(T)+1$ and hence (12.11) hold trivially. Suppose (12.11) holds for any (strongly excessive even positive) tree T^{\prime} such that $\left(\left|V\left(T^{\prime}\right)\right|, w\left(T^{\prime}\right)\right)<$ $(|V(T)|, w(T))$.

Lemma 12.13 If T has a stump v_{0} with $w\left(v_{0}\right)>2$. Then (12.11) holds by induction.
Proof Since $w\left(v_{0}\right)>2$, the boundary of the domain (in $\left.\mathbb{R}^{2}-G(T)\right)$ corresponding to v_{0} contains a free edge e_{0}. Apply the skein relation at the crossing corresponding to e_{0}, and we have

$$
P_{L}(v, z)=v^{2} P_{L_{-}}(v, z)+v z P_{L_{0}}(v, z) .
$$

For simplicity, we say that a crossing c in a diagram D occurs on an edge e in the graph $\Gamma(D)$ if e corresponds to c. Furthermore, we call the ordered pair $(|V(T)|, w(T))$ the type of T. Let T_{-}and T_{0} denote the weighted trees associated with L_{-}and L_{0}, respectively. For a subgraph T^{\prime} of a weighted tree T, the weight function is always defined
by restriction. Both L_{-}and L_{0} are algebraic links. T_{-}has the type $(|V(T)|, w(T)-2)$ while T_{0} has the type $\left(|V(T)|-1, w(T)-w\left(v_{0}\right)\right)$. Note that $w\left(v_{0}\right) \geq 3$. Using the induction hypothesis, we can prove that

$$
2+\max \operatorname{deg}_{v} P_{L_{-}}(v, z)>1+\max \operatorname{deg}_{v} P_{L_{0}}(v, z)
$$

and hence,

$$
\max \operatorname{deg}_{v} P_{L}(v, z)=w(T)-|V(T)|+2
$$

which proves Lemma 12.13.

Now we may assume henceforth that each stump of T has weight 2 . A chain C : $v_{0}, e_{\mathbf{1}}, v_{\mathbf{1}}, \ldots, v_{m-1}, e_{\boldsymbol{m}}, v_{\boldsymbol{m}}$ is called elementary if it is simple and val. $\left(v_{i}\right) \leq 2$ for $i=$ $0,1, \ldots, m-1$.

Lemma 12.14 If T has an elementary chain C (of length ≥ 2) connecting a stump v_{0} and another vertex, say v_{m} such that some (intermediate) verteces $v_{i}(0<i<m)$ have weight ≥ 4, then (12.11) holds by induction.

Proof Let v_{i} be the nearest vertex of C to v_{0} which has weight ≥ 4. In other words, $w\left(v_{\boldsymbol{j}}\right)=2$ for $j=0,1, \ldots, i-1$ but $w\left(v_{\boldsymbol{i}}\right) \geq 4$.

Let $T^{\prime}=T-\bigcup_{j=0}^{i-1}$ star v_{j} and $T^{0}=T^{\prime}-$ star v_{i}. Let L^{\prime} and L^{0}, respectively, denote the links associated to the weighted trees T^{\prime} and T^{0}. Then applications of the skein relation give us

$$
\begin{equation*}
P_{L}(v, z)=\alpha(v, z) P_{L^{\prime}}(v, z)+\beta(v, z) P_{L^{0}}(v, z) \tag{12.15}
\end{equation*}
$$

where $\alpha(v, z)$ and $\beta(v, z)$ are polynomials such that max $\operatorname{deg}_{v} \alpha(v, z)=i$ and $\max _{\operatorname{deg}} \beta(v, z)=i+1$.

Now by applying the induction assumption on L^{\prime} and L^{0}, we see that

$$
i+\max \operatorname{deg}_{v} P_{L^{\prime}}(v, z)=w(T)-|V(T)|+2,
$$

while

$$
i+1+\max \operatorname{deg}_{v} P_{L^{0}}(v, z)=w(T)-|V(T)|-w\left(v_{i}\right)+4
$$

Since $w\left(v_{i}\right) \geq 4$, Lemma 12.14 follows from (12.15).

By Lemma 12.14 , we may assume that any intermediate vertex and a stump on an elementary chain have always weight 2.

Lemma 12.16 Let $C_{\mathbf{1}}, \ldots, C_{\boldsymbol{k}}$ be k simple chains each of which connects a stump and the common vertex v_{*}. Let $v_{i, \ell}$ be vertices which occur on $C_{i}, i=1, \ldots, k$, $\ell=0,1, \ldots, \lambda_{i}+1$, where $v_{i, \lambda_{i}+1}=v_{*}$. Let $T_{*}=T-\bigcup_{i=1}^{k} \bigcup_{\ell=0}^{\lambda_{i}}$ star $u_{i, \ell}$. Suppose that val $\left(v_{*}\right)=k+1$. Let L_{*} be the alternating link associated with T_{*}. Then

$$
\max \operatorname{deg}_{v} P_{L}(v, z)=\max \operatorname{deg}_{v} P_{L_{*}}(v, z)+\sum_{i=1}^{k} \lambda_{i}
$$

We should note that v_{*} is a stump in T_{*}.
Proof We prove the lemma by induction on k. If $k=1$, Lemma 12.16 follows from Lemma 12.14. Now a repeated application of the skein relation gives

$$
P_{L}(v, z)=\alpha(v, z) P_{L_{k-1}}(v, z)+\beta(v, z) P_{L^{(0)}}(v, z) \prod_{i=1}^{k} P_{L^{(i)}}(v, z)
$$

where
(1) $\max _{\operatorname{deg}}^{v} \alpha(v, z)=\lambda_{1}$.
(2) $\max _{\operatorname{deg}}^{v} \beta(v, z)=\lambda_{1}+1$.
(3) L_{k-1} is the algebraic link associated with the weighted tree $T_{k-1}=T-\bigcup_{j=1}^{\lambda_{1}}$ star $v_{1 j}$
(4) $L^{(i)}(i=2, \ldots, k)$ is the algebraic link associated with the elementary chain $\quad \hat{C}_{i}=C_{i}-$ star v_{*}.

Note that $w\left(v_{i, j}\right)=2$, for any $j=1, \ldots, \lambda_{i} . L^{(0)}$ is the algebraic link associated with the (weighted) tree $T^{(0)}=T_{*}-$ star v_{*}.

Now by the induction assumption on L_{k-1}, we have

$$
\begin{equation*}
\max \operatorname{deg}_{v} \alpha(v, z) P_{L_{\boldsymbol{k}-1}}(v, z)=\sum_{i=1}^{k} \lambda_{i}+\max _{\operatorname{deg}}^{v}{ }^{P_{L *}}(v, z) . \tag{12.18}
\end{equation*}
$$

Furthermore, since $\left(\left|V\left(T^{0}\right)\right|, w\left(T^{0}\right)\right),\left(\left|V\left(T_{*}\right)\right|, w\left(T_{*}\right)\right)<(|V(T)|, w(T))$, it follows from the induction assumption that

$$
\begin{aligned}
& \max \operatorname{deg}_{v} P_{L^{(0)}}(v, z)=w\left(T^{(0)}\right)-\left|V\left(T^{(0)}\right)\right|+2 \\
& =w\left(T_{*}\right)-w\left(v_{*}\right)-\left(\left|V\left(T_{*}\right)\right|-1\right)+2 \\
& =\max \operatorname{deg}_{v} P_{L_{*}}(v, z)-\left(w\left(v_{*}\right)-1\right) .
\end{aligned}
$$

Since T_{*} is strongly excessive, we see that $w\left(v_{*}\right) \geq 2\left[\operatorname{val}\left(v_{*}\right)-1\right]$ and hence

$$
\max \operatorname{deg}_{v} P_{L^{(0)}}(v, z) \leq \max ^{\operatorname{deg}}{ }_{v} P_{L_{*}}-(2 k-1) .
$$

Since $\max \operatorname{deg}_{v} P_{L^{(i)}}(v, z)=\lambda_{i}+1$ and $k \geq 2$, we have finally

$$
\begin{aligned}
& \max ^{\operatorname{deg}} g_{v}\left[\beta(v, z) P_{L^{(0)}}(v, z) \prod_{i=2}^{k} P_{L^{(i)}}(v, z)\right] \\
= & \sum_{i=1}^{k} \lambda_{i}+k+\max ^{k} \operatorname{deg}_{v} P_{L^{(0)}}(v, z) \\
< & \sum_{i=1}^{k} \lambda_{i}+\operatorname{maxdeg}_{v} P_{L \cdot}(v, z) .
\end{aligned}
$$

Now Lemmas 12.13-12.16 complete a proof of Proposition 12.8.

We are now in a position to prove Theorem 12.6. Let T be a strongly excessive even tree. Let $\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ be the uniform decomposition of T. By the definition, $T_{i}(i=1, \ldots, m)$ is either a positive or negative strongly excessive tree. For simplicity, we assume that T_{1}, \ldots, T_{p} are positive and T_{p+1}, \ldots, T_{m} are negative.

We have proved in Proposition 12.8 that if T_{i} is positive, then

$$
\begin{align*}
& \max \operatorname{deg}_{v} P_{L\left(T_{\mathbf{i}}\right)}(v, z)=w\left(T_{i}\right)-\left|V\left(T_{i}\right)\right|+2 \tag{12.19}\\
& \min \operatorname{deg}_{v} P_{L\left(T_{\mathbf{i}}\right)}(v, z)=\left|V\left(T_{i}\right)\right|,
\end{align*}
$$

and if T_{j} is negative, then

$$
\begin{align*}
& \max \operatorname{deg}_{v} P_{L\left(T_{j}\right)}(v, z)=-\left|V\left(T_{j}\right)\right| \tag{12.20}\\
& \min \operatorname{deg}_{v} P_{L\left(T_{j}\right)}(v, z)=-\left\{\left|w\left(T_{j}\right)\right|-\left|V\left(T_{j}\right)\right|+2\right\}
\end{align*}
$$

Now it suffices to prove
(1) $\max d e g_{v} P_{L}(v, z)$

$$
\begin{equation*}
=\sum_{i=1}^{p}\left\{\left|w\left(T_{i}\right)\right|-\left|V\left(T_{i}\right)\right|+2\right\}-\sum_{j=p+1}^{m}\left|V\left(T_{j}\right)\right| \tag{12.21}
\end{equation*}
$$

(2) $\quad \min \operatorname{deg}_{v} P_{L}(v, z)$

$$
=-\sum_{j=p+1}^{m}\left\{\left|w\left(T_{j}\right)\right|-\left|V\left(T_{j}\right)\right|+2\right\}+\sum_{i=1}^{p}\left|V\left(T_{j}\right)\right|
$$

In fact, since $s(D)=\sum_{i=1}^{m}\left\{\left|w\left(T_{i}\right)\right|-2\left|V\left(T_{i}\right)\right|\right\}+m+1$ and ind $G=\sum_{i=1}^{m} \frac{\left|w\left(T_{i}\right)\right|}{2}-$ $\sum_{i=1}^{m}\left|V\left(T_{i}\right)\right|,(12.21)$ will yield

$$
v-\operatorname{span} P_{L}(v, z)=2\{s(D)-1-i n d G\}=2(\mathbf{b}(L)-1)
$$

which will prove Theorem 12.6.
Now it is enough to prove one of the formulas of (12.21), say (12.21) (1). Furthermore the induction argument on $|V(T)|$ easily shows that it only needs to prove (12.21) (1) for the case where one of the components, say T_{1} consists of an isolated vertex v_{1} and $w\left(v_{1}\right)=2$. (See Fig. 12.3.)

Fig. 12.3

Suppose that $v_{\boldsymbol{1}}$ is connected to $v_{\boldsymbol{j}, \boldsymbol{1}}$ in $T_{\boldsymbol{j}}$. Then $w\left(v_{\boldsymbol{j}, \mathbf{1}}\right)<0$. Apply the skein relation at the crossing c (Fig. 12.3) and we obtain

$$
P_{L}(v, z)=v^{2} P_{L_{-}}(v, z)+v z P_{L_{0}}(v, z)
$$

where L_{-}and L_{0} are the links associated with $T_{-}=T-\left(\right.$ star $\left.v_{1}\right)-\left(\operatorname{star} v_{\boldsymbol{j}, \mathbf{1}}\right)$ and $T_{0}=T-\left(\begin{array}{ll}\text { star } & v_{1}\end{array}\right)$, respectively.

Note that T_{-}is disconnected. Since $w\left(T_{1}\right)-\left|V\left(T_{1}\right)\right|+2=3$, using the induction hypothesis, we have

$$
\begin{aligned}
\operatorname{max~deg}_{v}\left\{v^{2} P_{L\left(T_{-}\right)}(v, z)\right\} & =\sum_{i=2}^{p}\left[w\left(T_{i}\right)-\left|V\left(T_{i}\right)\right|+2\right]-\left\{\sum_{j=p+1}^{m}\left|V\left(T_{j}\right)\right|-1\right\}+2 \\
& =\sum_{i=1}^{p}\left[w\left(T_{i}\right)-\left|V\left(T_{i}\right)\right|+2\right]-\sum_{j=p+1}^{m}\left|V\left(T_{j}\right)\right|
\end{aligned}
$$

On the other hand, we have by the induction hypothesis,

$$
\begin{aligned}
\max ^{\operatorname{deg}_{v}\left\{v z P_{L\left(T_{0}\right)}(v, z)\right\}} & =\sum_{i=2}^{p}\left[w\left(T_{i}\right)-\left|V\left(T_{i}\right)\right|+2\right]-\sum_{j=p+1}^{m}\left|V\left(T_{j}\right)\right|+1 \\
& =\max \operatorname{deg}_{v}\left\{v^{2} P_{L_{-}}(v, z)\right\}-2
\end{aligned}
$$

and hence,

$$
\operatorname{maxdeg}_{v} P_{L}(v, z)=\sum_{i=1}^{p}\left\{w\left(T_{i}\right)-\left|V\left(T_{i}\right)\right|+2\right\}-\sum_{j=p+1}^{m}\left|V\left(T_{j}\right)\right|
$$

Now the proof of Theorem 12.6 is complete.

The following corollaries are easy consequences of Theorem 12.6 and (12.21).
Corollary 12.22 Let L be a strongly excessive alternating algebraic link associated with a weighted tree T. Let $\left\{T_{1}, \ldots, T_{m}\right\}$ be the uniform decomposition of T. Then

$$
\mathbf{b}(L)=\sum_{i=1}^{m}\left\{\frac{\left|w\left(T_{i}\right)\right|}{2}-\left|V\left(T_{i}\right)\right|\right\}+m+1 .
$$

Corollary 12.23 (Cf. [Mu 7, Theorem B].) Let L be a 2-bridge link of type (α, β), where $0<\beta<\alpha$ and β is odd. Let
$\left[2 n_{11}, \ldots, 2 n_{1, k_{1}},-2 n_{21}, \ldots,-2 n_{2, k_{2}}, \ldots,(-1)^{t-1} 2 n_{t, 1}, \ldots,(-1)^{t-1} 2 n_{t, k_{t}}\right], n_{i j}>0$, be the continued faction form of $\frac{\alpha}{\alpha-\beta}$ if α is odd or $\frac{\alpha}{\beta}$ if α is even. Then

$$
\mathbf{b}(L)=\sum_{i=1}^{t} \sum_{j=1}^{k_{i}}\left(n_{i j}-1\right)+t+1 .
$$

§13 Pretzel links

In this section we will show that the braid index of alternating pretzel links is completely determined by their skein polynomials. Although the braid index of non-alternating pretzel links is not determined by their skein polynomials, it may be determined by evaluating the skein polynomials of appropriate cables of the links. However, we will not pursue these problems in this paper.

An (oriented) pretzel link with k vertical strips is denoted by $L\left[c_{1}^{\varepsilon(1)}, \ldots, c_{k}^{\varepsilon(k)}\right]$, where c_{i} denotes the number of half twists on the $i^{\text {th }}$ strip and c_{i} is positive (or negative) if the twists are in a right-hand (or a left-hand) sense. The superscript $\varepsilon(i)$ is +1 (or -1) if all the crossings on the $i^{\text {th }}$ strip are positive (or negative). See the example below.

Example 13.1 $L=L\left[4^{(-1)},-4^{(-1)}, 4^{(-1)}-3^{(+1)}-3^{(+1)}\right]$ has a diagram shown in Fig. 13.1.

Fig. 13.1

Since $P_{L\left[c_{\sigma(1)}^{c(\sigma(1))}, \ldots, c_{\sigma(h)}^{\varepsilon(\sigma(k))}\right]}(v, z)=P_{L\left[c_{1}^{\varepsilon(1)}, \ldots, c_{k}^{\varepsilon(k)}\right]}(v, z)$ for any permutation σ on $\{1,2, \ldots, k\}$, we may change the order of c_{1}, \ldots, c_{n} arbitrarily to evaluate the skein polynomial. Our theorem shows that the braid index of a pretzel link is independent of the order of c_{i}. However, we do not know whether or not the braid index of a link is invariant under mutation.

Now, if all c_{i} are odd or all $c_{i}(\neq 0)$ are even, then we can change an orientation, if necessary, of some components of L so that $\varepsilon(i)=\operatorname{sign} c_{i}\left(=\frac{c_{i}}{\left|c_{i}\right|}\right)$.

Fig. 13.2
And, as long as all c_{i} are odd or all are even, we consider only these pretzel links. Therefore, we may drop the superscripts $\varepsilon(i)$ from the notation. Note that the diagram thus obtained is special and has $\sum_{i=1}^{k}\left|c_{i}\right|-k+2$ Seifert circles.

There are a few more remarks. Since we are only interested in $P_{L}(v, z)$, we may assume without loss of generality that

$$
\begin{equation*}
\left[c_{1}, \ldots, c_{k}\right]=\left[a_{1}, \ldots, a_{p},-b_{1}, \ldots,-b_{n}\right] \tag{13.2}
\end{equation*}
$$

where $0<a_{1} \leq a_{2} \leq \cdots \leq a_{p}$, and $0<b_{1} \leq b_{2} \leq \cdots \leq b_{n}$.
If all c_{i} are odd, we may assume further that

$$
\begin{equation*}
\left[c_{1}, \ldots, c_{k}\right]=\overbrace{1, \ldots, 1}^{r}, a_{1}, \ldots, a_{p},-b_{1}, \ldots,-b_{n}] \tag{13.3}
\end{equation*}
$$

where $3 \leq a_{1} \leq \ldots \leq a_{p}$ and $3 \leq b_{1} \leq \ldots \leq b_{n}$.
The pretzel link of this form will be denoted by $L\left[r \mid a_{1}, \ldots, a_{p} ;-b_{1}, \ldots,-b_{n}\right]$. Now to describe the maximal or minimal v-degree of $P_{L}(v, z)$, we recall the extremal terms of $P_{L}(v, z)$, i.e., $\max -\max P_{L}(v, z)$ and $\min -\max P_{L}(v, z)$. See (7.5).

We prove first the following theorem.
Theorem 13.4 Let L be a pretzel link, $L=L\left[a_{1}, a_{2}, \ldots, a_{p},-b_{1}, \ldots,-b_{n}\right]$, where all a_{i} and b_{j} are positive and even. Let D be a special diagram of L. Denote $a=\sum_{i=1}^{p} a_{i}$ and $b=\sum_{j=1}^{n} b_{j}$.
(1) (i)(a) $\quad i n d_{+} D=\frac{a}{2}-p+1$
(b) \quad ind_ $D=\frac{b}{2}-n+1$
(c) ind $D=\frac{1}{2}(a+b)-p-n+1$.
(ii) $s(D)=a+b-p-n+2$
(2) If p and $n \geq 2$, then
(i) (a) $\max -\max P_{L}(v, z)=(-1)^{n+p+1} v^{a+p-n-1} z^{n-p+1}$
(b) $\quad \min -\max P_{L}(v, z)=v^{-b+p-n+1} \quad z^{p-n+1}$
(ii) v-span $P_{L}(v, z)=a+b-2$
and hence $\frac{1}{2}(a+b) \leq \mathbf{b}(L) \leq \frac{1}{2}(a+b)+1$.
(3) Suppose $n=0$ and $p \geq 1$, (and hence L is special alternating), then
(i) (a) $\quad \max -\max P_{L}(v, z)=(-1)^{p-1} v^{a+p-1} z^{-p-1}$
(b) $\min -\max P_{L}(v, z)=v^{p-1} z^{p-1}$
(ii) $\quad \mathbf{b}(L)=s(D)-\operatorname{ind}(D)$.
(4) If $p=1$ and $n \geq 2$, then
(i) $\min -\max P_{L}(v, z)=v^{-\boldsymbol{b - n + 2}} z^{-n+2}$
(ii) (A) If $2=b_{1}=\cdots=b_{m}<b_{m+1}$, then
(a) max-max $P_{L}(v, z)=(-1)^{n} m v^{a-n} z^{n-2}$, where $a=a_{1}$, and
(b) $\mathbf{b}(L) \leq s(D)-$ ind $D=\frac{1}{2}(a+b)+1$.
(B) Suppose $4 \leq b_{1}=\cdots=b_{m}<b_{m+1}$.
(a) If $a_{1}-b_{1}+2>0$, then

$$
\max -\max P_{L}(v, z)=(-1)^{n} m v^{a_{1}-b_{1}+2-n} \quad z^{n-2}
$$

(b) If $a_{1}-b_{1}+2 \leq 0$, then

$$
\max -\max P_{L}(v, z)=(-1)^{n} v^{-n} z^{n}
$$

(c) $\mathbf{b}(L) \leq s(D)-$ ind $D=\frac{1}{2}(a+b)+1$.

Remark 13.5.

(1) For a pretzel link considered in Theorem 13.4, $\max -\max P_{L}(v, z)$ and min $\max P_{L}(v, z)$ are completely determined by a_{i} and b_{j}.
(2) Theorem 13.4 (3) is not an immediate consequence of (2).

Proof Since the proof of Theorem 13.4 is a model of the proofs of other theorems discussed later in this section, we will give a detailed proof of this theorem. We only need to show (2)-(4).

We will use the idea employed in [LM 1] to evaluate the skein polynomial of a pretzel link. It should be noted, however, that there is a slight difference between our notation and their notation.

First we define, for any even integer c, a few particular polynomials

$$
\begin{align*}
& x_{c}^{1}=v^{c} \tag{13.6}\\
& x_{c}^{0}=\mu^{-1}\left(1-x_{c}^{1}\right), \quad \text { where } \quad \mu=\left(v^{-1}-v\right) z^{-1}
\end{align*}
$$

Proposition 13.7 Let $L=L\left[a_{1}, \ldots, a_{p},-b_{1}, \ldots,-b_{n}\right]$ be a pretzel link, where a_{i} and b_{j} are even positive integers. Let $\delta:\{1,2, \ldots, p+n\} \rightarrow\{0,1\}$ be 2^{p+n} functions. Then

$$
\begin{equation*}
P_{L}(v, z)=\sum_{\delta} x_{a_{1}}^{\delta(1)} \ldots x_{a_{p}}^{\delta(p)} x_{-b_{1}}^{\delta(p+1)} \ldots x_{-b_{n}}^{\delta(p+n)} \mu_{1}^{\sum_{1}^{p+n} \delta(i)-1} \tag{13.8}
\end{equation*}
$$

where the summation runs over the 2^{n+p} functions δ and define $\mu^{-1}=\mu$.
Since a proof is easy, we omit it.

Now, to avoid the occurrence of $\mu^{-\lambda}$ in the summation in (13.8) we will evaluate $P_{L}(v, z) \mu^{p+n}$ instead of $P_{L}(v, z)$. Using a new notation $y_{c}^{\delta}=x_{c}^{\delta} \mu$, we have from (13.8)

$$
\begin{align*}
\mu^{p+n} P_{L}(v, z)= & \sum_{\Sigma \delta \neq 0} y_{a_{1}}^{\delta(1)} \ldots y_{a_{\boldsymbol{p}}}^{\delta(p)} y_{-b_{1}}^{\delta(p+1)} y_{-b_{n}}^{\delta(p+n)} \mu^{\Sigma \delta(i)-1} \tag{13.9}\\
& +\left(y_{a_{1}}^{0} \ldots y_{\boldsymbol{a}_{\boldsymbol{p}}}^{0} y_{-b_{1}}^{0} \ldots y_{-b_{n}}^{0}\right) \mu .
\end{align*}
$$

Denote

$$
A=\sum_{\Sigma \delta \neq 0} y_{a_{1}}^{\delta(1)} \ldots y_{-b_{n}}^{\delta(p+n)} \mu^{\Sigma \delta(i)-1} \quad \text { and } \quad B=y_{a_{1}}^{0} \ldots y_{-b_{n}}^{0} \mu
$$

Note that $y_{c}^{1}=x_{c}^{1} \mu=v^{c}\left(v^{-1}-v\right) z^{-1}=\left(v^{c-1}-v^{c+1}\right) z^{-1}$ and $y_{c}^{0}=x_{c}^{0} \mu=1-v^{c}$.
Now we will compute extremal terms of A and B separately, and then compare these terms. Since a_{i} and $b_{j} \geq 2$, we see that $\max -\max A$ occurs in

$$
\begin{aligned}
&\left(y_{a_{1}}^{1} \ldots y_{a_{p}}^{1} y_{-b_{1}}^{0} \ldots y_{-b_{n}}^{0}\right) \mu^{p-1} \\
&=\prod_{i=1}^{p}\left\{\left(v^{a_{i}-1}-v^{a_{i}+1}\right) z^{-1}\right\}\left[\prod_{j=1}^{n}\left(1-v^{-b_{j}}\right)\right] \cdot\left(\frac{v^{-1}-v}{z}\right)^{p-1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\max -\max A & =(-1)^{p} v^{\sum^{p}\left(a_{i}+1\right)} z^{-p}(-1)^{p-1} v^{p-1} z^{-(p-1)} \\
& =(-1) v^{a+2 p-1} z^{-2 p+1}
\end{aligned}
$$

On the other hand, since

$$
B=\prod_{i=1}^{p}\left(1-v^{a_{i}} \prod_{j=1}^{n}\left(1-v^{-b_{j}}\right) \cdot\left(v^{-1}-v\right) z^{-1}\right.
$$

we see that

$$
\max -\max B=(-1)^{p} v^{a}(-1) v z^{-1}=(-1)^{p+1} v^{a+1} z^{-1}
$$

Therefore, if $p \geq 2$, then $\max -\max P_{L}(v, z) \mu^{n+p}=\max -\max A$ and hence

$$
\begin{aligned}
\max -\max P_{L(v, z)} & =(-1)^{1+n+p} v^{a+2 p-1-n-p} z^{-2 p+1+n+p} \\
& =(-1)^{n+p+1} v^{a+p-n-1} z^{n-p+1}
\end{aligned}
$$

This proves (2) (i) (a).
Next, we will compute $\min -\max P_{L}(v, z)$. For convenience, we denote $y_{a_{1}}^{\delta(1)} \ldots y_{a_{p}}^{\delta(p)}$ $y_{-b_{1}}^{\delta(p+1)}, \ldots, y_{-b_{n}}^{\delta(p+n)}$ by $(\delta(1), \ldots, \delta(p) \mid \delta(p+1), \ldots, \delta(p+n))$. Now min-max A occurs in

$$
\begin{aligned}
& (0, \ldots, 0 \mid 1, \ldots, 1) \mu^{n-1} \\
= & \prod_{i=1}^{p}\left(1-v^{a_{i}}\right) \prod_{j=1}^{n} \cdot\left[\left(v^{-b_{j}-1}-v^{-b_{j}+1}\right) z^{-1}\right] \cdot\left(\frac{v^{-1}-v}{z}\right)^{n-1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\min -\max A & =v^{-\sum_{1}^{n}\left(b_{j}+1\right)} z^{-n} \cdot v^{-(n-1)} z^{-(n-1)} \\
& =v^{-b-2 n+1} z^{-2 n+1}
\end{aligned}
$$

On the other hand, since $B=(0, \ldots, 0 \mid 0, \ldots, 0) \mu$, we see that

$$
\min -\max B=(-1)^{n} v^{-b} v^{-1} z^{-1}=(-1)^{n} v^{-b-1} z^{-1}
$$

Therefore, if $n \geq 2$, then $\min -\max P(v, z) \mu^{n+p}=\min -\max A$ and hence

$$
\min -\max P(v, z)=v^{-b-n+p+1} z^{-n+p+1}=v^{-b-2 n+1+n+p} z^{-2 n+1+n+p}
$$

which proves (2)(i)(b). The other propositions in (2) are obvious.

Proof of (3) Suppose $n=0$. Then, since $p \geq 2$, the previous argument shows easily (3)(i) (a) and (b). (ii) is immediate from (1).

Proof of (4) Suppose $p=1$, i.e., $L=L\left[a,-b_{1}, \ldots,-b_{n}\right]$. We assume $n \geq 2$. (If $n=1$, then L is an elementary torus link.)

Now, since $(0 \mid 0, \ldots, 0) \mu=(-\mid 0, \ldots, 0) \mu-(1 \mid 0, \ldots, 0)$, where $(-\mid 0, \ldots, 0)=$
$y_{-b_{n}}^{0} \ldots y_{-b_{n}}^{0}$, we can write

$$
\begin{aligned}
P(v, z) \mu^{n+1}= & \sum_{\Sigma \delta(i) \neq 0}(\delta(1) \mid \delta(2) \ldots \delta(n+1)) \mu^{\Sigma \delta(i)-1}+(0 \mid 0 \ldots 0) \mu \\
= & \sum_{\Sigma \delta(i) \neq 0}(\delta(1) \mid \delta(2) \ldots \delta(n+1)) \mu^{\Sigma \delta(i)-1}+(-\mid 0 \ldots 0) \mu-(1 \mid 0 \ldots 0) \\
= & \sum_{\Sigma \delta(i) \neq 0}(1 \mid \delta(2) \ldots \delta(n+1)) \mu^{\Sigma \delta(i)}+\sum_{\Sigma \delta(i) \neq 0}(0 \mid \delta(2) \ldots \delta(n+1)) \mu^{\Sigma \delta(i)-1} \\
& \quad+(-\mid 0, \ldots, 0) \mu .
\end{aligned}
$$

For various $\delta(2), \ldots, \delta(n+1)$, we will evaluate

$$
\begin{aligned}
A^{\prime} & =(1 \mid \delta(2) \ldots \delta(n+1)) \mu^{\Sigma \delta(i)} \\
A^{\prime \prime} & =(0 \mid \delta(2) \ldots \delta(n+1)) \mu^{\Sigma \delta(i)-1} \quad \text { and } \\
B^{\prime} & =(-\mid 0, \ldots, 0) \mu
\end{aligned}
$$

Since we may assume without loss of generality that $\delta(2)=\ldots=\delta(\lambda+1)=1$, $\delta(\lambda+2)=\ldots=\delta(n+1)=0$, where $\lambda \geq 1$, we will write

$$
\begin{aligned}
& A_{\lambda}^{\prime}=(1 \mid \underbrace{1, \ldots, 1}_{\lambda}, 0, \ldots, 0) \mu^{\boldsymbol{\lambda}} \quad \text { and } \\
& A_{\lambda}^{\prime \prime}=(0 \mid \underbrace{1, \ldots, 1}_{\lambda}, 0, \ldots, 0) \mu^{\lambda-1}
\end{aligned}
$$

Then we have

$$
A_{\lambda}^{\prime}=\left(v^{a-1}-v^{a+1}\right) z^{-1} \prod_{j \geq \lambda+1}\left(1-v^{-b_{j}}\right) \prod_{j=1}^{\lambda}\left[\left(v^{-b_{j}}-v^{-b_{j}+1}\right) z^{-1}\right]\left(v^{-1}-v\right)^{\lambda} z^{-\lambda}
$$

and hence

$$
\begin{aligned}
\max -\max A_{\lambda}^{\prime} & =(-1) v^{a+1} z^{-1} \cdot(-1)^{\lambda} v^{-\sum_{1}^{\lambda}\left(b_{j}-1\right)} z^{-\lambda}(-1)^{\lambda} v^{\lambda} z^{-\lambda} \\
& =(-1) v^{a-b+2 \lambda+1} z^{-1-2 \lambda}
\end{aligned}
$$

Similarly, since

$$
A_{\lambda}^{\prime}=\left(1-v^{a}\right) \prod_{j=1}^{\lambda}\left[\left(v^{-b_{j}-1}-v^{-b_{j}+1}\right) z^{-1}\right] \prod_{j \geq \lambda+1}\left(1-v^{-b_{j}}\right) \cdot\left(v^{-1}-v\right)^{\lambda-1} z^{-(\lambda-1)}
$$

we have

$$
\begin{aligned}
\max -\max A^{\prime \prime} & =(-1) v^{a}(-1)^{\lambda} v^{-\sum_{1}^{\lambda}\left(b_{j}-1\right)} z^{-\lambda}(-1)^{\lambda} v^{\lambda-1} z^{-\lambda+1} \\
& =(-1) v^{a-b+2 \lambda-1} z^{-2 \lambda+1}
\end{aligned}
$$

Finally, since

$$
B^{\prime}=(-\mid 0, \ldots, 0) \mu=\prod_{i=1}^{p}\left(1-v^{-b_{i}}\right)\left(v^{-1}-v\right) z^{-1}
$$

we see that $\max -\max B^{\prime}=-v z^{-1}$.
Since $\max \operatorname{deg}_{v} A_{\lambda}^{\prime}>\max \operatorname{deg}_{v} A_{\lambda}^{\prime \prime}$, we only need to compare $\max -\max A_{\lambda}^{\prime}$ and $\max -\max B^{\prime}$. And we conclude easily that if $a-\sum_{1}^{\lambda} b_{j}+2 \lambda>0$, then $\max d e g_{v} A_{\lambda}^{\prime}>$ $\max d e g_{v} B^{\prime}$, but if $a-\sum_{1}^{\lambda} b_{j}+2 \lambda \leq 0$, then $\max -\max P(v, z) \mu^{n+1}=\max -\max B^{\prime}$, because $\lambda \geq 1$.

Now suppose that $a-\sum_{j=1}^{\lambda} b_{j}+2 \lambda>0$, i.e., $a-\sum_{j=1}^{\lambda}\left(b_{j}-2\right)>0$. Since $b_{j} \geq 2$ for all $j \geq 1$, it follows that $\max \operatorname{deg}_{v} A_{1}^{\prime}>\max _{\operatorname{deg}}^{v} A_{\lambda}^{\prime}$ for any $\lambda \geq 2$. Therefore, if $2=b_{1},=\ldots=b_{m}<b_{m+1}$, then

$$
\max -\max P_{L}(v, z) \mu^{n+1}=\max -\max A_{1}^{\prime}=(-1) m v^{a+1} z^{-3}
$$

If $4 \leq b_{1}=\cdots=b_{m}<b_{m+1}$, then $\max -\max P_{L}(v, z) \mu^{n+1}=\max -\max A_{1}^{\prime}=$ $(-1) m v^{a-b_{1}+3} z^{-3}$. Therefore, we have

$$
\max -\max P_{L}(v, z)=(-1)^{n} m v^{a-n} z^{n-2}, \quad \text { if } \quad 2=b_{1}=\cdots=b_{m}<b_{m+1}
$$

and

$$
\max -\max P_{L}(v, z)=(-1)^{n} m v^{a-b_{1}-n+2} z^{n-2}
$$

if, $4 \leq b_{1}=\cdots=b_{m}<a_{m+1}$, and $a-b_{1}+2>0$.
Suppose $a-\sum b_{j}+2 \lambda \leq 0$. Then

$$
\max -\max P_{L}(v, z) \mu^{n+1}=\max -\max B^{\prime}=-v z^{-1}
$$

and hence $\max -\max P_{L}(v, z)=(-1)^{n} v^{-n} z^{n}$. It completes the evaluation of max $\max P_{L}(v, z)$.
$\min -\max P_{L}(v, z)$ follows from (2)(i), since $n \geq 2$. (4)(ii)(A)(b) and (B)(c) follow from (8.8).

Now we consider the case where all c_{i} are odd.
Theorem 13.10 Let $L=L\left[r \mid a_{1}, \ldots, a_{p},-b_{1}, \ldots,-b_{n}\right]$ be a pretzel link, where a_{i} and $b_{j} \geq 3$. Denote $a=\sum_{i=1}^{p} a_{i}$.
(1) If $r \geq 2$ or if $r=1$ and $p \geq 1$, then

$$
\max -\max P_{L}(v, z) \mu^{n+1}=(-1)^{n+1} v^{a+r-n+1} z^{r+p+n-3}
$$

(2) Suppose that $r=0$ and $p \geq 2$. Then

$$
\max -\max P_{L}(v, z)=(-1)^{n+1} v^{a-n+1} z^{p+n-3}
$$

(3) Suppose that $r=0$ and $p=1$. Suppose further that $b_{1}=\cdots=b_{m}<b_{m+1}$.
(i) If $a+2>b_{1}$, then

$$
\max -\max P(v, z)=(-1)^{n+1} m v^{a-b_{1}+2-n} z^{n-2}
$$

(ii) If $a+2 \leq b_{\mathbf{1}}$, then

$$
\max -\max P(v, z)=(-1)^{n} v^{-n} z^{n}
$$

(4) Suppose that $r=1$ and $p=0$. Then

$$
\max -\max P_{L}(v, z)=(-1)^{n} v^{-n} z^{n}
$$

Remark 13.11 If $n=0, L$ is special alternating and $\mathbf{b}(L)$ will be determined in Corollary 13.17. However, if $n>0$, then $\min -\max P_{L}(v, z)$ is generally quite complicated.

Proof Define the polynomials $x_{c}^{\boldsymbol{\delta}}, y_{c}^{\boldsymbol{\delta}}$ as follows

$$
\begin{align*}
& x_{c}^{1}=v^{c-1} \tag{13.12}\\
& x_{c}^{0}=\mu^{-1}\left(1-v^{c-1}\right) \\
& y_{c}^{1}=\mu x_{c}^{1}=\left(v^{c-2}-v^{c}\right) z^{-1} \\
& y_{c}^{0}=\mu x_{c}^{0}=1-v^{c-1}
\end{align*}
$$

where $\mu=\left(v^{-1}-v\right) z^{-1}$.
Define $P(\lambda)$ as the skein polynomial of an elementary torus link of type $(\lambda, 2)$. To be more precise, $P(\lambda)$ is defined inductively as follows.

$$
\begin{align*}
& P(0)=\mu \tag{13.13}\\
& P(1)=1 \\
& \text { For } \quad \lambda \geq 1, \quad P(\lambda)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
v z & v^{2} \\
1 & 0
\end{array}\right)^{\lambda-1}\binom{1}{\mu} .
\end{align*}
$$

For instance,

$$
\begin{aligned}
& P(0)=\left(v^{-1}-v\right) z^{-1} \\
& P(1)=1 \\
& P(\lambda)=v^{\lambda-1} z^{\lambda-1}+\cdots-v^{\lambda+1} z^{\lambda-3}, \quad \text { if } \quad \lambda \geq 2
\end{aligned}
$$

and hence

$$
\max -\max P(\lambda)=v^{\lambda+1} z^{\lambda-3}
$$

Now, it is proven in [LM] that

$$
\begin{equation*}
P_{L\left[r \mid a_{1} \ldots a_{p},-b_{1} \ldots-b_{n}\right]}=\sum_{\delta(i)} x_{1}^{(1)} \ldots x_{1}^{\delta(r)} x_{a_{1}}^{\delta(r+1)} \ldots x_{-b_{n}}^{\delta(r+p+n)} P\left(\sum_{i=1}^{r+p+n} \delta(i)\right) \tag{13.14}
\end{equation*}
$$

where the summation runs over the 2^{r+p+n} functions

$$
\delta:\{1,2, \ldots, r+p+n\} \rightarrow\{0,1\}
$$

Since $x_{1}^{0}=0$, we may assume that $\delta(1)=\cdots=\delta(r)=1$. Therefore (13.14) can be rewritten as

$$
\begin{equation*}
P_{L\left[r \mid a_{1} \ldots-b_{n}\right]}=\sum_{\delta(i)} x_{a_{1}}^{\delta(1)} \ldots x_{-b_{n}}^{\delta(p+n)} P(r+\Sigma \delta(i)) \tag{13.15}
\end{equation*}
$$

We consider $P_{L}(v, z) \mu^{p+n}$ instead of $P_{L}(v, z)$ as before. Then a simple computation shows that

$$
\begin{equation*}
P_{L}(v, z) \mu^{p+n}=\sum_{\delta} y_{a_{1}}^{\delta(1)} \ldots, y_{-b_{n}}^{\delta(p+n)} P(r+\Sigma \delta(i)) \tag{13.16}
\end{equation*}
$$

Now the rest of our proof is similar to that of Theorem 13.4, and hence, we will omit the details.

Corollary 13.17 Let $L=L\left[r \mid a_{1}, \ldots, a_{p}\right]$ be a special alternating pretzel link, where $r \geq 0$ and all a_{i} are positive odd integers and $r+p \geq 2$. Let D be a special alternating diagram L. Denote $a=\sum_{i=1}^{p} a_{i}$. Then
(1) $\max -\max P_{L}(v, z)=(-1) v^{a+r+1} z^{p+r-3}$ $\min -\max P_{L}(v, z)= \pm v^{r+p-1} z^{r+p-1}$
(2) $v-\operatorname{span} P_{L}(v, z)=a-p+2$
(3) $s(D)=a-p+2 \quad$ and ind $D=\frac{1}{2}(a-p)$,
(4) $v-\operatorname{span} P_{L}(v, z)=2\{s(D)-1-$ ind $D\}$, and hence $\mathbf{b}(L)=s(D)-$ ind D.

Proof (1) follows from Theorem 13.10 (1)(2). (2) and (3) are easy.

Now before we discuss the braid index of an arbitrary alternating pretzel link, we need to consider the other type of special alternating pretzel link.

Let $L\left(n_{1}, \ldots, n_{2 k}\right)$ be a pretzel link with even number of vertical strips, where n_{i}
are all positive.

Fig. 13.3
Then it is possible to give orientation to each component in such a way that the resulting oriented link diagram is special and the boundary of each vertical strip belongs to distinct Seifert circles. For simplicity, such a special alternating pretzel link will be called a special alternating pretzel link of even type. (See Fig. 13.3).

Theorem 13.18 Let $L=L\left(n_{1}, \ldots, n_{2 k}\right)$ be a special alternating pretzel link of even type, where $0<n_{1} \leq n_{2} \leq \cdots \leq n_{2 k}$. Denote $N=\sum_{i=1}^{2 k} n_{i}$.

Let D be a special alternating diagram of L. Then
(1) $\min -\max P_{L}(v, z)= \pm v^{N-2 k+1} z^{N-2 k+1}$
(2) (i) If $k=1$, then

$$
\max -\max P_{L}(v, z)=v^{n_{1}+n_{2}+1} z^{n_{1}+n_{2}-3} .
$$

(ii) Suppose that $k \geq 2$. Assume furthermore that $n_{1}=n_{2}=\cdots=n_{m}=1$,

$$
\text { but } n_{m+1} \geq 2
$$

(a) If $k-1 \leq m$, then

$$
\max -\max P_{L}(v, z)=(-1) v^{N+1} z^{N-2 k-1} .
$$

(b) If $m \leq k-2$, then

$$
\max -\max P_{L}(v, z)=(-1)^{m+1} v^{N+2 k-2 m-1} z^{N-6 k+2 m+1} .
$$

(3) (i) $s(D)=2 k$
(ii) If $k-1 \leq m$, then $\operatorname{ind}_{+}(D)=k-1$ and $v-\operatorname{span} P_{L}(v, z)=2 k$, and hence $\mathbf{b}(L)=k+1$.
(iii) If $m \leq k-2$, then ind $d_{+}(D)=m$ and $v-\operatorname{span} P_{L}(v, z)=2(2 k-m-1)$, and hence $\mathbf{b}(L)=2 k-m$

Proof Since D is a special alternating positive diagram, it follows from (9.6) (ii) that $\min -\max P_{L}(v, z)= \pm v^{\phi_{-}(D)} z^{\psi_{-}(D)}$. Since $J_{-}(D)=0$, we have $\phi_{-}(D)=\psi_{-}(D)=$ $n(D)-s(D)+1=N-2 k+1$. It proves (1). (2) will be proven by induction on m. If $m=2 k$, then L is a torus link of type $(2 k, 2)$ for which Theorem 13.18 is already known.

For the general case, apply the skein relation at the crossings on the $(m+1)^{\text {st }}$ vertical strip. A careful comparison of various terms, using the induction hypothesis, will prove Theorem 13.18 (2). Since the argument is similar to that used in the proofs of the previous theorems, we will omit the details.

Proof of (3) Since the reduced Seifert graph of D is a polygon with $2 k$ sides, ind D is easily evaluated from the definition. $\mathbf{b}(L)$ is determined by Theorem 8.12.

Now, finally, we will consider an arbitrary alternating pretzel link.
Proposition 13.19 Let L be an alternating pretzel link. Then L has an alternating diagram D such that
(1) D has an even number, say $p+1$, of major Seifert circles, $S_{0}, S_{1}, \ldots, S_{p}$.
(2) S_{0} contains other $S_{i}, \quad 1 \leq i \leq p$.
(3) each $S_{i}, 0 \leq i \leq p$, has finitely many vertical strips, $B_{i, 1}, \ldots, B_{i, k_{i}}$ where $B_{i, j}$ has an even number, say $n_{i j}$ of positive half twists, and
(4) S_{i} and $S_{i+1}, 0 \leq i \leq p \quad\left(S_{p+1}=S_{0}\right)$, are connected by finitely many, say r_{i+1}, horizontal strips, each of which has only negative twist. For convenience, D (or L) will be called a link diagram (or a link) of type $\left\{\left(n_{0,1}, \ldots, n_{0, k_{0}}\right),\left(n_{1,1}, \ldots, n_{1, k_{1}}\right), \ldots,\left(n_{p, 1}, \ldots, n_{p k_{p}}\right) ;\left(-r_{1}, \ldots,-r_{p+1}\right)\right\}$, where $n_{i j}$ and $r_{i}>0$. See Fig. 13.4.

A proof of Proposition 2.19 is easy and is omitted.
Example 13.20 Let L be a pretzel link L shown in Fig. 13.4(a). Then D has the type $\{(2),(2),(\phi),(2,2) ;(-1,-3,-3,-1)\}$. (Fig. 13.4(b).)

Fig. 13.4
Theorem 13.21 Let L be an alternating pretzel link. Suppose that a link diagram D of L has the type

$$
\left\{\left(n_{0,1}, \ldots, n_{0, k_{0}}\right),\left(n_{1,1}, \ldots, n_{1, k_{1}}\right), \ldots,\left(n_{p, 1}, \ldots, n_{p, k_{p}}\right) ;\left(-r_{1}, \ldots,-r_{p+1}\right)\right\}
$$

Denote $N=\sum_{i j} n_{i j}, K=\sum_{i=0}^{p} k_{i}$ and $R=\sum_{i=1}^{p+1} r_{i}$. Then
(1) $\max -\max P_{L}(v, z)=v^{N+K-R+p} z^{R-p-K}$
(2) $\min -\max P_{L}(v, z)$ is given by the following formulae.

Let m be the number of r_{i} such that $r_{i}=1$.
(i) If $p \leq 2 m+1$, then

$$
\min -\max P_{L}(v, z)=v^{K-R-1} z^{K+R-2(p+1)-1}
$$

(ii) If $p>2 m+1$, then

$$
\min -\max P_{L}(v, z)=v^{K-R-p+2 m} z^{K+R-p+2 m}
$$

(3) $v-\operatorname{span} P_{L}(v, z)=N+p+1$ if $p \leq 2 m+1$, and $v-\operatorname{span} P_{L}(v, z)=N+2 p-2 m$ if $p>2 m+1$
(4) $s(D)=N-K+p+1$,
$i n d_{+}(D)=\frac{N}{2}-K$, and
ind_ $(D)=\frac{p-1}{2}$ if $p \leq 2 m+1$

$$
=m \quad \text { if } \quad p>2 m+1
$$

Therefore $v-\operatorname{span} P_{L}(v, z)=2\{s(D)-1-$ ind $D\}$, and hence we have

$$
\mathbf{b}(L)=s(D)-\operatorname{ind}(D)
$$

A proof will be given by induction on N. Since the argument is standard, we will omit the details.

Example 13.22 Let L be a pretzel link L of type $\{(2),(2),(\phi),(2,2)$; $(-1,-3,-3,-1)\}$. Then we have
(1) $\max -\max P_{L}(v, z)=v^{7} z$

Since $m=2 \quad$ and $\quad p=3, \quad$ we see that $\quad p \leq 2 m+1$.
(2) $\min -\max P_{L}(v, z)=v^{-5} z^{3}$
(3) $v-\operatorname{span} P_{L}(v, z)=12$
(4) $\quad s(D)=8, \quad$ ind $d_{+}(D)=0, \quad$ ind_ $D=1 \quad$ and \quad ind $D=1$.
(5) $\mathbf{b}(L)=7$

We note that $\Gamma(D)$ is a *-product of four subgraphs, three of which are positive and one is negative.

Fig. 13.5

§14 Some other alternating links

In this section, we determine the braid index of an alternating link L whose reduced Alexander polynomial $\Delta_{L}(t)$ has the small leading coefficient. The main theorem of this section is the following theorem

Theorem 14.1 Let L be an alternating (non-split) link. Let $c_{0}(L)$ be the leading coefficient of the reduced Alexander polynomial $\Delta_{L}(t)$ of L. If $\left|c_{0}(L)\right| \leq 3$, then

$$
\begin{equation*}
v-\operatorname{span} P_{L}(v, z)=2(\mathbf{b}(L)-1) . \tag{14.2}
\end{equation*}
$$

If $c_{0}(L)= \pm 1$, then L is a fibred link for which (14.2) has already been proven [Mu 4]. Therefore we consider the case where $c_{0}(L)= \pm 2$ or ± 3, but we will prove (14.2) for a slightly wider family of alternating links. (Cf. Theorem 14.4.)

Although our proof depends on the evaluation of $P_{L}(v, z)$, the method used here is completely different from the standard method employed in the previous sections.

First we introduce a new type of links.
A link depicted in Fig. 14.1 is called a double pretzel link of type $\left(a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right)$, and denoted by $L\left(a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right)$, where a_{i} and b_{j}
are non-negative integers, and to each $i=1, \ldots, k$, at least one of a_{i} and b_{i} is not zero.

Fig. 14.1
If all $a_{i}=1$ and all $b_{j}=1$, or all $a_{i}=0$ (or all $b_{j}=0$), then it becomes an (ordinary) pretzel link.

Now if neither a_{i} nor b_{j} are zero, then we can give an orientation to each component of L, in such a way that the diagram of L is positive and special alternating, and it has exactly $k+2$ Seifert circles. The special alternating (positive) link thus obtained will be called a special alternating double pretzel link. The Seifert graph Γ, then, is of the form depicted in Fig. 14.2.

Fig. 14.2
Proposition 14.3 Let L be a special alternating double pretzel link of type $\left(a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right)$, where a_{i} and $b_{j} \geq 1$ for $i=1, \ldots, k$. Let D be a special alternating diagram of L.
(1) If all a_{i} and $b_{i} \geq 2, i=1, \ldots, k$, then ind $D=0$.
(2) If at least one of a_{i} or b_{i} is one, then ind $D=1$.

A proof follows from the definition of the index.

Now the following theorem will prove (14.2) for $c_{0}(L)= \pm 2$.
Theorem 14.4 Let L be an alternating link. Suppose that L is a *-product of two alternating links L_{0} and L_{1}, i.e. $L=L_{0} * L_{1}$, where L_{0} is an alternating fibred link and L_{1}, is either
(1) a special alternating (positive) pretzel link of even type $L_{1}=L\left(n_{1}, \ldots, n_{2 k}\right)$, where
(i) $n_{i} \geq 2$ for all $i=1, \ldots, 2 k$, or
(ii) at least $k-1 \quad n_{i}$'s are one, or
(2) a special alternating (positive) double pretzel link $L_{1}=L\left(a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right)$, where all $a_{i}, b_{i} \geq 1$.

Let D be the reduced alternating link diagram of L. Then

$$
\begin{align*}
& \text { (i) } \quad \max \operatorname{deg}_{v} P_{L}(v, z)=\phi_{+}(D)-2 \operatorname{ind} D \tag{14.5}\\
& \text { (ii) } \operatorname{mindeg}_{v} P_{L}(v, z)=\phi_{-}(D)
\end{align*}
$$

and hence

$$
v-\operatorname{span} P_{L}(v, z)=2(\mathbf{b}(L)-1) .
$$

Proof Let D_{0} and D_{1} be the link diagrams of L_{0} and L_{1} respectively. Then $D=$ $D_{0} * D_{1}$ and $\operatorname{ind} D=\operatorname{ind} D_{0}+\operatorname{ind} D_{1}$ (by Proposition 7.2). First, since ind_ $D_{0}=0$, it follows that ind_D $=0$ and hence, $\min \operatorname{deg}_{v} P_{L}(v, z)=\phi_{-}(D)$ by Theorem 9.5. Therefore, it remains to prove (14.5) (i).

Now if ind $D_{1}=0$, then ind $D=0$, and hence (14.5) (i) follows from Theorem 9.5. Therefore, we may assume henceforth that ind $D_{1} \geq 1$, and hence ind $D \geq 1$.

Now we need a few technical lemmas due.
Lemma 14.6 There exists a binary resolving tree for D such that
(1) on the root-leaf path, no crossings are changed twice,
(2) in the diagram D_{0}, for any pair of Seifert circles connecting by crossing there is an unchanged connecting crossing in every leaf diagram, and
(3) at least k crossings in D_{1} are unchanged.

Proof For a proof of (1), we refer to [C]. For (2), we refer to [Mu 7, Lemma 5.2].
Finally (3) follows from an easy geometric argument. We omit the detail.
Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a Laurent polynomial in $x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}$. Write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{-\infty<i_{1}, \ldots, i_{n}<\infty} a_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} .
$$

Define

$$
\max \operatorname{deg}_{x_{1}, \ldots, x_{n}} f\left(x_{1}, \ldots, x_{n}\right)=\max \left\{i_{1}+\cdots+i_{n} \mid a_{i_{1} \ldots i_{n}} \neq 0\right\}
$$

Now since L_{0} is an alternating fibred link, L_{0} is a $*$-product of, say p, positive elementary fibred torus links and, say n, negative elementary fibred torus links. We write

$$
L_{0}=L_{0,1} * \cdots * L_{0, p} * L_{0,1}^{\prime} * \cdots * L_{0, n}^{\prime}
$$

Lemma 14.7

$$
\max \operatorname{deg}_{v, z} P_{L}(v, z) \leq 2\left(n_{+}(D)-p-k\right),
$$

where $n_{+}(D)$ denotes the number of positive crossings in D.
Proof Consider the resolving tree for D found in Lemma 14.6. For each leaf $D^{(\ell)}$ of the tree, $\max \operatorname{deg} g_{v, z} P_{L}(v, z)=1$, since $P_{D^{(\ell)}}(v, z)=\left(\frac{v^{-1}-v}{z}\right)^{\lambda-1}$, where λ is the number of components of $D^{(\ell)}$. An application of a crossing change or smoothing at a positive crossing increases the degree by two, while the smoothing a negative crossing does not change the degree. On the other hand, a crossing change at a negative crossing decreases the degree by two. Therefore the maximal degree of the term associated to $\cdot D^{(\ell)}$ is $2\left(t_{+}-k_{-}\right)$, where t_{+}is the total number of crossing changes and smoothings at positive crossings and k_{-}the number of crossing changes at negative crossings. Then, a possible maximal degree will be $2 t_{+}=2\left(n_{+}(D)-p-k\right)\left(\right.$ with $\left.k_{-}=0\right)$.

Lemma 14.8 Let $\sigma(L)$ denote the signature of L.
(1) If $L_{1}=P\left(n_{1}, \ldots, n_{2 k}\right)$, then $-\sigma(L)=\tilde{n}(D)-p+n-2 k+1$
(2) If $L_{1}=P\left(a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right)$, then $-\sigma(L)=\tilde{n}(D)-p+n-k-1$.

Proof Let m_{i} (or m_{i}^{\prime}) be the number of crossings in a link diagram $D_{0 i}$ (or $D_{0 i}^{\prime}$) of $L_{0 i}$ (or $L_{0 i}^{\prime}$). Since L is alternating, it follows from [Mu2] that

$$
\begin{aligned}
\sigma(L) & =\sigma\left(L_{0}\right)+\sigma\left(L_{1}\right) \quad \text { and } \\
\sigma\left(L_{0}\right) & =\sum_{i=1}^{p} \sigma\left(L_{0 i}\right)+\sum_{j=1}^{n} \sigma\left(L_{0 j}^{\prime}\right)=-\sum_{i=1}^{p}\left(m_{i}-1\right)+\sum_{j=1}^{n}\left(m_{j}^{\prime}-1\right) \\
& =-\tilde{n}\left(D_{0}\right)+p-n .
\end{aligned}
$$

Now since L_{1} is a special alternating (positive) link, $-\sigma\left(L_{0}\right)$ is equal to the number of domains in $\mathbb{R}^{2}-\Gamma\left(D_{0}\right)$ minus one. Therefore, if $L_{1}=P\left(n_{1}, \ldots, n_{2 k}\right)$, then

$$
\begin{aligned}
-\sigma\left(L_{1}\right) & =\sum_{i=1}^{2 k}\left(n_{i}-1\right)+1=n_{+}\left(D_{1}\right)-2 k+1 \quad \text { and hence } \\
-\sigma(L) & =n_{+}\left(D_{1}\right)-2 k+1+\tilde{n}\left(D_{0}\right)-p+n=\tilde{n}(D)-p+n-2 k+1
\end{aligned}
$$

If $L_{1}=L\left(a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right)$, then

$$
-\sigma\left(L_{1}\right)=\sum_{i=1}^{k}\left(a_{i}-1\right)+\sum_{j=1}^{k}\left(b_{j}-1\right)+k-1=n_{+}\left(D_{1}\right)-k-1
$$

and hence

$$
-\sigma(L)=n_{+}\left(D_{1}\right)-k-1+\tilde{n}\left(D_{0}\right)-p+n=\tilde{n}(D)-p+n-k-1
$$

Now to prove (14.5), we need a few formulae involving the Jones polynomial. Let $V_{L}(t)$ be the Jones polynomial of a link L. It was proved in $[\mathrm{Mu} 6]$ that if L is an alternating link and D is an alternating diagram of L then

$$
\begin{equation*}
\max \operatorname{deg} V_{L}(t)=n_{+}(D)-\frac{1}{2} \sigma(L) \tag{14.9}
\end{equation*}
$$

Using (14.9) and Lemmas 14.7 and 14.8, we can prove (14.5)(i) as follows.

Let $L_{\mathbf{1}}$ be a pretzel link of even type. Then we see from (14.9) that

$$
\begin{equation*}
\max \operatorname{deg} V_{L}(t)=n_{+}(D)+\frac{1}{2}(\tilde{n}(D)-p+n-2 k+1) . \tag{14.10}
\end{equation*}
$$

Write

$$
P_{L}(v, z)=\sum_{-\infty<i<\infty} a_{i}(z) v^{i}
$$

Since $P_{L}\left(t, \sqrt{t}-\frac{1}{\sqrt{t}}\right)=V_{L}(t)$ we have

$$
\max _{i}\left\{\frac{1}{2} \max _{\operatorname{deg}}^{z} a_{i}(z)+i\right\} \geq \operatorname{maxdeg} V_{L}(t)
$$

Therefore, $P_{L}(v, z)$ contains some monomial $M(v, z)$ such that

$$
\begin{equation*}
\frac{1}{2} \max _{\operatorname{deg}}^{z} 10(v, z)+\max \operatorname{deg}_{v} M(v, z) \geq \operatorname{maxdeg} V_{L}(t) \tag{14.11}
\end{equation*}
$$

and hence

$$
\max \operatorname{deg}_{z} M(v, z)+2 \max \operatorname{deg}_{v} M(v, z) \geq 2 \operatorname{maxdeg} V_{L}(t) .
$$

However, Lemma 14.7 yields

$$
\begin{equation*}
\max \operatorname{deg}_{z} M(v, z)+\max \operatorname{deg}_{v} M(v, z) \leq 2\left(n_{+}(D)-p-k\right) . \tag{14.12}
\end{equation*}
$$

Combining (14.10), (14.11) and (14.12), we can show that

$$
\begin{equation*}
\max ^{\operatorname{deg}} g_{v} M(v, z) \geq n_{+}(D)-n_{-}(D)+p+n+1=\tilde{n}(D)+p+n+1 \tag{14.13}
\end{equation*}
$$

However, Theorem 8.3 shows that

$$
\max \operatorname{deg}_{v} P_{L}(v, z) \leq \tilde{n}(D)+s(D)-1-2 i n d_{+} D
$$

Since $s(D)=p+n+2 k$ and ind $d_{+} D=$ ind $D_{1}=k-1$, it follows from (14.13) that

$$
\begin{array}{r}
\tilde{n}(D)+p+n+1 \leq \operatorname{maxdeg}_{v} M(v, z) \leq \operatorname{maxdeg}_{v} P_{L}(v, z) \\
\leq \tilde{n}(D)+s(D)-1-2 \operatorname{ind}_{+} D=\tilde{n}(D)+p+n+1,
\end{array}
$$

and hence

$$
\begin{aligned}
\max \operatorname{deg}_{v} M(v, z) & =\operatorname{maxdeg} P_{L}(v, z) \\
& =\tilde{n}(D)+s(D)-1-2 i n d_{+} D \\
& =\phi_{+}(D)-2 i n d_{+} D
\end{aligned}
$$

A similar argument works for $L_{1}=L\left(a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right)$.
In fact, since

$$
\begin{aligned}
\max \operatorname{deg} V_{L}(t) & =n_{+}(D)-\frac{1}{2} \sigma(L) \\
& =n_{+}(D)+\frac{1}{2}(\tilde{n}(D)-p+n-k-1)
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{1}{2} \max _{\operatorname{deg}}^{v} \text { M(v,z)} & +\max \operatorname{deg}_{v} M_{L}(v, z) \\
& \geq n_{+}(D)+\frac{1}{2}(\tilde{n}(D)-p+n-k-1)
\end{aligned}
$$

while

$$
\max \operatorname{deg}_{v} M(v, z)+\max ^{\operatorname{deg}_{v} M(v, z) \leq 2\left(n_{+}(D)-p-k\right) .}
$$

Therefore we see

$$
\max \operatorname{deg}_{v} M(v, z) \geq \tilde{n}(D)+p+n+k-1 .
$$

Since $s(D)=p+n+k+2$ and $\operatorname{ind}_{+} D(=$ ind $D)=1$, it follows that

$$
\begin{aligned}
\tilde{n}(D)+p+n+k-1 & \leq \max \operatorname{deg}_{v} M(v, z) \\
& \leq \tilde{n}(D)+s(D)-1-2 \text { ind }_{+} D \\
& =\tilde{n}(D)+p+n+k-1 \\
& =\phi_{+}(D)-2 \text { ind }_{+} D .
\end{aligned}
$$

This proves (14.5)(i).
Proposition 14.14 Let L be a special alternating link and D a special diagram of L.
(1) If $c_{0}(L)= \pm 2$, then L is an alternating pretzel link $P\left(n_{1}, n_{2}, n_{\mathbf{3}}, n_{4}\right)$ of even type, where $n_{i}>0, i=1,2,3,4$.
(2) If $c_{0}(L)= \pm 3$, then L is either
(i) an alternating pretzel link $P\left(n_{\mathbf{1}}, n_{2}, n_{\mathbf{3}}, n_{6}\right)$ where $n_{i}>0, i=1,2, \ldots, 6$, or
(ii) a special alternating double pretzel link $L\left(a_{1}, a_{2}, a_{3} \mid b_{1}, b_{2}, b_{3}\right)$, where a_{i} and $b_{i}>0, i=1,2,3$.

Proof Since D is special alternating, the Seifert graph Γ of D is a plane and bipartite graph. Let Γ^{*} be the dual of Γ. Then Γ^{*} is a plane even graph. Therefore, we can define $\lambda\left(\Gamma^{*}\right)$. (See Definition 4.1.) Since D is a special alternating diagram, $\lambda\left(\Gamma^{*}\right)$ is equal to $\left|c_{0}(L)\right|$. (See §11.) Therefore the proposition is a consequence of Proposition 4.14.

Since $\left|c_{0}\left(L_{0} * L_{1}\right)\right|=\left|c_{0}\left(L_{0}\right)\right|\left|c_{0}\left(L_{1}\right)\right|$, it follows from Proposition 14.14 and Theorem 14.4 that (14.2) holds for an alternating link L with $c_{0}(L)= \pm 2$ and for all alternating links with $c_{0}(L)= \pm 3$ except for those whose second $*$-component L_{1} is an alternating pretzel link of even type $P\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$ such that only one n_{i} is 1 . For this exceptional case, we cannot apply Theorem 14.4 (1) directly. However, we can use almost the same argument employed to prove (1). In fact, we can improve Lemma $14.6(k=3)$ in such a way that Lemma 14.6 (3) is replaced by a new statement: (3) at least $4(=k+1)$ crossings in D_{1} are unchanged.

Then we can show that there is a monomial $M(v, z)$ in $P_{L}(v, z)$ such that

$$
\begin{aligned}
\tilde{n}(D)+p+n+1 & \leq \max \operatorname{deg}_{v} M(v, z) \leq \max ^{\operatorname{deg}} \mathrm{g}_{\mathrm{L}}(v, \tilde{z}) \\
& \leq \tilde{n}(D)+s(D)-1-2 \operatorname{ind}_{+} D
\end{aligned}
$$

Since $s(D)=p+n+6$ and $\operatorname{ind}_{+} D=1$, we see that

$$
\tilde{n}(D)+p+n+3=\tilde{n}(D)+s(D)-1-2=\phi_{+}(D)-2
$$

and hence,

$$
\max \operatorname{deg}_{v} P_{L}(v, z)=\phi_{+}(D)-2 i n d_{+} D
$$

Since $\min \operatorname{deg}_{v} P_{L}(v, z)=\phi_{-}(D),(14.2)$ follows. A proof of Theorem 14.1 is now complete.

§15 Concluding Remarks and Conjectures

In their paper [FW], Frank and Williams propose the following conjecture (that was disproved recently by Morton and Short [MS]):

Conjecture 15.1 [FW]. Let β be a positive n-braid and L the closure of β. Then

$$
\begin{equation*}
v-\operatorname{span} P_{L}(v, z)=2(\mathbf{b}(L)-1) \tag{15.2}
\end{equation*}
$$

Our research has begun by trying to prove this conjecture for alternating links. We succeeded to prove (15.2) for many alternating links in Chapter III. Unfortunately, however, (15.2) does not hold, in general, for alternating links. The simplest counter-example we found is the 4 -component link L_{1} depicted in Fig. 15.1 (a). L_{1} is the only link (up to mutation), for which (15.2) fails, among all links having special alternating positive diagrams with at most 15 crossings and index one. However, up to mutation, the simplest

Fig. 15.1
special alternating positive knot (whose diagram has the index one), for which (15.2) fails, is the knot L_{2} depicted in Fig. 15.1 (b). L_{2} has 18 crossings. The Seifert graphs of (the
diagrams of D_{1} and D_{2}) of L_{1} and L_{2} are shown in Fig. 15.2.

(a)

(b)

Fig. 15.2
(We should note that the Seifert graph of this link does not have locally maximal subgraphs.) Now a computation reveals that for $i=1$ or $2, v-\operatorname{span} P_{L_{i}}(v, z)=8$, and hence $\frac{1}{2}\left(v-\operatorname{span} P_{L_{i}}(v, z)\right)+1=5$. On the other hand, since $\operatorname{ind}_{+} D=1$, we see that $s\left(D_{i}\right)$-ind $D_{i}=6$ and hence $5 \leq \mathbf{b}\left(L_{i}\right) \leq 6$. However, we can see that $\mathbf{b}\left(L_{i}\right)=6$. To prove this, we compute the skein polynomial of the 2 -cables of a link, as was seen in [MS]. First consider the knot L_{2}. The simplest 2-cable L^{\prime} of L_{2} has 72 crossings. If $\mathbf{b}\left(L_{2}\right)=5$, then $\mathbf{b}\left(L^{\prime}\right)=10$ and hence $v-\operatorname{span} P_{L^{\prime}}(v, z) \leq 18$. Therefore, to prove $\mathbf{b}\left(L_{2}\right)=6$, it suffices to show that $v-\operatorname{span} P_{L^{\prime}}(v, z) \geq 20$. However, to show this, it will not need to compute the whole polynomial $P_{L^{\prime}}(v, z)$. In fact, write $P_{L^{\prime}}(v, z)=\sum_{i=r}^{s} \lambda_{i}(v) z^{i}$, $r<s$. Then as is observed in [PP], the computation of the first few terms $\lambda_{r}(v), \ldots$, is much faster than that of $P_{L^{\prime}}(v, z)$, (approximately in time) $n(D)^{\log n(D)}$, where D is the diagram of L^{\prime}. See [PP]. J. Hoste has computed the first five (non-zero) terms $\lambda_{-1}(v)$, $\lambda_{\mathbf{1}}(v), \ldots, \lambda_{\mathbf{7}}(v)$ and found that $v-\operatorname{span} P_{L^{\prime}}(v, z) \geq 20$.

On the other hand, to show that $\mathbf{b}\left(L_{1}\right)=6$, we consider the 5 -component link $L^{\prime \prime}$ obtained from L_{1} by taking the 2-cable of only one component K_{1} (in Fig. 15.1(a)) and leaving the other component untouched. $L^{\prime \prime}$ has 36 crossings. The first five (non-zero) terms $\lambda_{-4}(v), \ldots, \lambda_{4}(v)$ of $P_{L^{\prime \prime}}(v, z)$ are enough to show that $v-\operatorname{span} P_{L^{\prime \prime}}(v, z) \geq 14$, and hence $\mathbf{b}\left(L^{\prime \prime}\right) \geq 8$. Since L_{1} has four components, each component of L_{1} must be represented as a 1 - or 2-braid in the (minimal) braid representation of L_{1}. Therefore,
$\mathbf{b}\left(L_{1}\right)$ cannot be equal to 5 . (We are grateful to J. Hoste who wrote the computer program and carried out the computations of the major part of the proof.)

These examples, however, suggest the following
Conjecture 15.3 If L is an alternating link and D is an alternating diagram, then

$$
\mathbf{b}(L)=s(D)-i n d D .
$$

Finally many numerical link type invariants are additive with respect to the connected sum. According to $[\mathrm{BM}], \mathbf{b}(L)-1$ is additive with respect to the connected sum. If \mathcal{F} is a family of links for which (15.2) holds, then the additivity of $\mathbf{b}(L)-1$ is additive with respect to the connected sum of links in \mathcal{F} follows from the fact that v - $\operatorname{span} P_{L}(v, z)$ is additive with respect to the connected sum [LM]. If L is an alternating link, however, we would like to propose a much stronger conjecture

Conjecture 15.4 Let L be an alternating link and let $L_{1}, L_{2}, \cdots, L_{k}$ be $*$-components of the alternating diagram of L. Then

$$
\mathbf{b}(L)-1=\sum_{i=1}^{k}\left\{\mathbf{b}\left(L_{i}\right)-1\right\} .
$$

In other words, $\mathbf{b}(L)-1$ is additive with respect to *-product for an alternating link.
Conjecture 15.4 would follow from Conjecture 15.3 , since $s(D)-1=\sum_{i=1}^{k}\left\{s\left(D_{i}\right)-1\right\}$ and ind $D=\sum_{i=1}^{k}$ ind D_{i}, where D and D_{i} are link diagrams of L and $L_{i}, i=$ $1,2, \cdots, k$.

Remark 15.5 After distributing the preliminary version of our paper, P. Traczyk informed us that he proved our conjecture proposed in $\S 3$, i.e. for bipartite graphs, the index and the cycle index coincide. Furthermore, D. Welsh has proven that computing the cycle index of a graph is NP-hard. See [We].

Appendix

(I). Proof of Lemma 9.12

First we consider the case where all Seifert circles of E are cut by \hat{D}.

Fig. A.I. 1
Let E_{0} be the diagram consisting of $s(E)$ disjoint circles obtained from E by smoothing all crossings in E. Let $D_{0}=E_{0} \cup \hat{D}$. Note that $s\left(E_{0}\right)=s(E)$.

Now E_{0} divides \mathbb{R}^{2} into $s(E)+1$ domains $V_{1}, V_{2}, \cdots, V_{m+1}$, where $m=s(E)$. By the assumption, \hat{D} cuts each domain V_{i}. Furthermore, $\hat{D} \cap V_{i}$ and $\hat{D} \cap V_{j}(i \neq j)$ are parts of distinct Seifert circles in D_{0}. Therefore $s\left(D_{0}\right) \geq s\left(E_{0}\right)+1$. If k Seifert circles are not cut by \hat{D}, then these circles are not affected in the previous argument and hence we have an inequality $s(D) \geq s(E)+1$. This proves (1).

To prove (3), we again assume that all Seifert circles of E are cut by \hat{D}. We will use the same notation E_{0} and D_{0}. Now we associate a graph G with E_{0} as follows. Each vertex v_{i} of G corresponds to each domain $V_{i}, i=1,2, \cdots, m+1$, and each edge e_{i} of G corresponds to each Seifert circle S_{i} in E, and e_{i} connects two vertices v_{j} and $v_{\boldsymbol{k}}$ iff S_{i} is the common boundary of V_{j} and V_{k}. (Fig. A. I. 2)

Fig. A. I. 2
Obviously, G is a tree. Since $s\left(D_{0}\right)=s\left(E_{0}\right)+1$, for any i every arc in $\hat{D} \cap V_{i}$ must be a part of the same Seifert circle, say S_{i}^{\prime}, in D. Then S_{i}^{\prime} and S_{j}^{\prime} are joined by a crossing in D_{0} iff V_{i} and V_{j} have a common boundary. Therefore, G is exactly the reduced Seifert graph $\hat{\Gamma}\left(D_{0}\right)$ of D_{0}.

Now to show that $\hat{\Gamma}\left(D_{0}\right)=\hat{\Gamma}(D)$, it suffices to prove that whenever S_{i}^{\prime} and S_{j}^{\prime} are joined in D, V_{i} and V_{j} have a common boundary. Suppose the contrary, i.e. V_{i} and V_{j} have no boundaries in common. Then there is a domain $V_{k}(k \neq i, j)$ such that V_{k} has a common boundary to each V_{i} and V_{j}. Therefore, Seifert circles, $S_{i}^{\prime}, S_{j}^{\prime}$ and S_{k}^{\prime} in D are connected with each other by crossings in D. This is impossible, since $\hat{\Gamma}(D)$ is bipartite. This proves the first part of (3). The second part of (3) follows immediately from the fact that $\hat{\Gamma}(D)=G$ is a tree.

To prove (2), first assume that every Seifert circle in E is cut by \hat{D}. Then, we see that $J\left(D_{0}\right) \leq \frac{1}{2} \operatorname{cr}\left(\hat{D}, E_{0}\right)$ and $J(D)=J\left(D_{0}\right)$ and hence

$$
J(D) \leq \frac{1}{2} c r\left(\hat{D}, E_{0}\right)
$$

Since $\operatorname{cr}\left(\hat{D}, E_{0}\right)=\operatorname{cr}(\hat{D}, E)$ and $J_{+}(D) \leq J(D)$, it follows that $J_{+}(D) \leq \frac{1}{2} \operatorname{cr}(\hat{D}, E)$ and hence

$$
J_{+}(D) \leq J_{+}(E)+\frac{1}{2} c r(\hat{D}, E) .
$$

Now suppose that there are Seifert circles in E which are not cut by \hat{D}. To be more precise, let $S_{1}, S_{2}, \cdots, S_{k}$ be Seifert circles in E which are cut by \hat{D}. Let E^{\prime} be the part
of the diagram of D which consists of S_{1}, \cdots, S_{k} and crossings connecting these Seifert circles. Let $D^{\prime}=E^{\prime} \cup \hat{D}$. Then the previous argument shows that

$$
J_{+}\left(D^{\prime}\right) \leq J_{+}\left(E^{\prime}\right)+\frac{1}{2} c r\left(\hat{D}, E^{\prime}\right)
$$

Therefore, to prove (2), it suffices to show that

$$
\begin{equation*}
J_{+}(D)-J_{+}\left(D^{\prime}\right) \leq J_{+}(E)-J_{+}\left(E^{\prime}\right) \tag{A.1}
\end{equation*}
$$

In fact, since $J_{+}\left(D^{\prime}\right) \leq J_{+}\left(E^{\prime}\right)+\frac{1}{2} \operatorname{cr}(\hat{D}, E)$, we will have

$$
J_{+}(D) \leq J_{+}(E)+J_{+}\left(D^{\prime}\right)-J_{+}\left(E^{\prime}\right) \leq J_{+}(E)+\frac{1}{2} c r(\hat{D}, E)
$$

Now to prove (A.1) we must show that if two crossings of E outside E^{\prime} join a pair of Seifert circles in E, then they join a pair of the Seifert circles in D.

(a)

(b)

Fig. A.I. 3
Assume that p and q are cossings of E outside E^{\prime} joining Seifert circles S_{t} and S_{r} of E. Suppose that $S_{\boldsymbol{t}}$ and S_{r} are in $E-E^{\prime}$. (Fig. A.I. 3 (a)). Then obviously p and q connect between S_{t} and S_{r} in D. Suppose that S_{t} occurs in $E-E^{\prime}$ and S_{r} in E^{\prime} (Fig. A.I. 3 (b)). Then, since S_{t} is disjoint from \hat{D}, p and q occur on the same side of \hat{D}. Let S_{r}^{\prime} be the (not necessarily connected) part of S_{r} which is on the same side of \hat{D} as p and q. Since $s(D)=s(E)+1, S_{r}^{\prime}$ is a part of the unique Seifert circle in D
and this circle is connected to S_{t} by p and q. It proves (A.1). A proof of Lemma 9.12 is now complete.
(II) Proof of Lemma 9.13.

Fig. A.II. 1
Let U be a simple closed curve passing through two points q_{1} and q_{2} such that $U \cap \gamma=\left\{q_{1}, q_{2}\right\}$ and U is close to S_{0}. (Fig. A. II.1). We also assume that U lies above D. U is decomposed into two simple arcs β_{1} and β_{2} by two points q_{1} and q_{2}. (Fig. A.II.1). Then $s(D \cup U)=s(D)+1$. If we smooth $D \cup U$ at q_{1} and q_{2}, we have a new link diagram consisting of $D^{\prime}=(D-\gamma) \cup \beta_{1}$ and $\hat{D}=\gamma \cup \beta_{2}$. (Fig. A.II.2).

Fig. A.II. 2
Since D^{\prime} is regularly isotopic to D, we see that $\tilde{n}(D)=\tilde{n}\left(D^{\prime}\right)$. Note that \hat{D} is a simple closed curve lying above D^{\prime}. It is easy to see that $D \cup U$ and $D^{\prime} \cup \hat{D}$ have exactly the same set of Seifert circles and hence $s(D \cup U)=s\left(D^{\prime} \cup \hat{D}\right)$. Note that U "forms" a new Seifert circle in $D \cup U$, denoted by S_{u}. Let \bar{D} be the link diagram consisting of those Seifert circles in $D^{\prime} \cup \hat{D}$ which are not disjoint from \hat{D}, and crossings of $D^{\prime} \cup \hat{D}$ between these Seifert circles. Let $\bar{E}=\bar{D}-\hat{D}$. Then \hat{D} cuts each Seifert circle in \bar{E}. However, if we travel along \hat{D}, we leave (before q_{1}) the Seifert circle S_{u} for S_{1} and go back to S_{u} (after q_{2}) from S_{2}. Therefore, Lemma $9.12(3)$ implies that $s(\bar{D})>s(\bar{E})+1$ and hence $s\left(D^{\prime}\right)<s\left(D^{\prime} \cup \hat{D}\right)-1=s(D \cup U)-1=s(D)$. Therefore, we have

$$
\begin{aligned}
\max \operatorname{deg}_{v} P_{D}(v, z) & =\max \operatorname{deg}_{v} P_{D^{\prime}}(v, z) \leq \tilde{n}\left(D^{\prime}\right)+s\left(D^{\prime}\right)-1<\tilde{n}(D)+s(D)-1 \\
& =\phi_{+}(D)
\end{aligned}
$$

This proves Lemma 9.13.

References

[A] J.W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci., U.S.A., 9 (1923) 93-95.
[Ba] C. Bankwitz, Über die Torsionzahlen der altermierenden Knoten, Math. Ann. 103 (1930) 145-161.
[Be] C. Berge, Graphs and hypergraphs, North-Holland Pub. Comp. (1973).
[BM] J. Birman-W. Menasco, Studying links via closed braids IV: composite and split links, Invent. Math. 102 (1990 115-139.
[BZ] G. Burde-H. Zieschang, Knots, de Gruyter (1985).
[C] P.R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989) 535-552.
[FW] J. Frank-R.F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987) 97-108.
[FY] P. Freyd, et al., A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 103-111.
[J] V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987) 335-388.
[LM] W.B.R. Lickorish-K.C. Millett, A polynomial invariant of oriented links, Topology 26 (1987) 107-141.
[MT] W. Menasco-M.B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. 25 (1991) 403-412.
[Mo1] H.R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Phil. Soc. 99 (1986) 107-109.
[Mo2] - , Closed braid representations for a link, and its 2-variable polynomial.
[MS] H.R. Morton-H.B. Short, The 2-variable polynomial of cable knots, Math. Proc. Cambridge Phil. Soc. 101 (1987), 267-278.
[Mu1] K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965) 387-422.
[Mu2] - , On the Alexander polynomial of alternating algebraic links, J. Aust. Math. Soc. 39 (1985) 317-333.
[Mu3] - , On invariants of graphs with applications to knot theory, Trans. Amer. Math. Soc. 314 (1989) 1-49.
[Mu4] - , On the braid index of alternating links, Trans. Amer. Math. Soc. 326 (1991) 237-260.
[P] J.H. Przytycki, t_{k}-moves on links, Contemporary Math. Amer. Math. Soc. 78 (1988) 615-656.
[PP] T. Przytycka-J.H.Przytycki, Invariants of chromatic graphs, Department of Computer Science, U.B.C. Technical Report 88 (22) 1988.
[PT] J.H. Przytycki-P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987) 115-139.
[T] P. Traczyk, On the index of graphs: Index versus cycle index, (preprint).
[We] D.J.A. Welsh, Knots and braids: some algorithmic questions, (to appear in Contemporary Mathematics).
[Wh] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933) 236-244.
[Y] S. Yamada, The minimal number of Seifert circles equals the braid index of a link, Inv. math. 89 (1987) 347-356.

University of Toronto
Toronto, Canada, M5S 1A1
and
University of Warsaw
Warsaw, Poland

This page intentionally left blank

Editorial Information

To be published in the Memoirs, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Transactions Editors shall solicit and encourage publication of worthy papers. Papers appearing in Memoirs are generally longer than those appearing in Transactions with which it shares an editorial committee.

As of September 8, 1993, the backlog for this journal was approximately 8 volumes. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by the average number of monographs per volume over the previous twelve months, reduced by the number of issues published in four months (the time necessary for preparing an issue for the printer). (There are 6 volumes per year, each containing at least 4 numbers.)

A Copyright Transfer Agreement is required before a paper will be published in this journal. By submitting a paper to this journal, authors certify that the manuscript has not been submitted to nor is it under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors and Editors

Memoirs are printed by photo-offset from camera copy fully prepared by the author. This means that the finished book will look exactly like the copy submitted.

The paper must contain a descriptive title and an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as "some remarks about" or "concerning" should be avoided. The abstract should be at least one complete sentence, and at most 300 words. Included with the footnotes to the paper, there should be the 1991 Mathematics Subject Classification representing the primary and secondary subjects of the article. This may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. A list of the numbers may be found in the annual index of Mathematical Reviews, published with the December issue starting in 1990, as well as from the electronic service e-MATH [telnet e-MATH.ams.org (or telnet 130.44.1.100). Login and password are e-math]. For journal abbreviations used in bibliographies, see the list of serials in the latest Mathematical Reviews annual index. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Electronically prepared manuscripts. The AMS encourages submission of electronically prepared manuscripts in $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ or $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-IATEX because properly prepared electronic manuscripts save the author proofreading time and move more quickly through the production process. To this end, the Society has prepared "preprint" style files, specifically the amsppt style of $\mathcal{A}_{\mathcal{M}}{ }^{\mathcal{S}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and the amsart style of $\mathcal{A} \mathcal{M} \mathcal{S}$-IATEX, which will simplify the work of authors and of the
production staff. Those authors who make use of these style files from the beginning of the writing process will further reduce their own effort. Electronically submitted manuscripts prepared in plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ or $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ do not mesh properly with the AMS production systems and cannot, therefore, realize the same kind of expedited processing. Users of plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ should have little difficulty learning $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$, and $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ users will find that $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-IET $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ is the same as $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ with additional commands to simplify the typesetting of mathematics.

Guidelines for Preparing Electronic Manuscripts provides additional assistance and is available for use with either $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-TEX or $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-IAT EX . Authors with FTP access may obtain Guidelines from the Society's Internet node e-MATH.ams.org (130.44.1.100). For those without FTP access Guidelines can be obtained free of charge from the e-mail address guide-elec@ math.ams.org (Internet) or from the Customer Services Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting Guidelines, please specify which version you want.

At the time of submission, authors should indicate if the paper has been prepared using $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}}$ X or $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-IATEX. The Manual for Authors of Mathematical Papers should be consulted for symbols and style conventions. The Manual may be obtained free of charge from the e-mail address cust-serv@math.ams.org or from the Customer Services Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. The Providence office should be supplied with a manuscript that corresponds to the electronic file being submitted.

Electronic manuscripts should be sent to the Providence office immediately after the paper has been accepted for publication. They can be sent via e-mail to pub-submit@math.ams.org (Internet) or on diskettes to the Publications Department, American Mathematical Society, P. O. Box 6248, Providence, RI 02940-6248. When submitting electronic manuscripts please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Authors and editors are encouraged to make the necessary submissions of electronically prepared manuscripts and proof copies in a timely fashion.

Two copies of the paper should be sent directly to the appropriate Editor and the author should keep one copy. The Guide for Authors of Memoirs gives detailed information on preparing papers for Memoirs and may be obtained free of charge from the Editorial Department, American Mathematical Society, P. O. Box 6248, Providence, RI 02940-6248. For papers not prepared electronically, model paper may also be obtained free of charge from the Editorial Department.

Any inquiries concerning a paper that has been accepted for publication should be sent directly to the Editorial Department, American Mathematical Society, P. O. Box 6248, Providence, RI 02940-6248.

Editors

This journal is designed particularly for long research papers (and groups of cognate papers) in pure and applied mathematics. Papers intended for publication in the Memoirs should be addressed to one of the following editors:

Ordinary differential equations, partial differential equations, and applied mathematics to JOHN MALLET-PARET, Division of Applied Mathematics, Brown University, Providence, RI 02912-9000; e-mail: am438000@ brownvm.brown.edu.

Harmonic analysis, representation theory and Lie theory to AVNER D. ASH, Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, OH 43210; e-mail: ash@function.mps.ohio-state.edu.

Abstract analysis to MASAMICHI TAKESAKI, Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90024; e-mail: fatams@math.ucla.edu.

Real and harmonic analysis to DAVID JERISON, Department of Mathematics, MIT, Rm 2-180, Cambridge, MA 02139; e-mail: jerison@math.mit. edu.

Algebra and algebraic geometry to JUDITH D. SALLY, Department of Mathematics, Northwestern University, Evanston, IL 60208.

Geometric topology, hyperbolic geometry, infinite group theory, and general topology to PETER SHALEN, Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60680; e-mail: U10123@uicvm.uic.edu.

Algebraic topology and differential topology to MARK MAHOWALD, Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730; e-mail: mark@math.nwu.edu.

Global analysis and differential geometry to ROBERT L. BRYANT, Department of Mathematics, Duke University, Durham, NC 27706-7706; e-mail: bryant@math.duke.edu.

Probability and statistics to RICHARD DURRETT, Department of Mathematics, Cornell University, Ithaca, NY 14853-7901; e-mail: rtd@ cornella.cit.cornell.edu.

Combinatorics and Lie theory to PHILIP J. HANLON, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003; e-mail: phil.hanlon@math.lsa.umich.edu.

Logic and universal algebra to GREGORY L. CHERLIN, Department of Mathematics, Rutgers University, Hill Center, Busch Campus, New Brunswick, NJ 08903; e-mail: cherlin@math.rutgers.edu.

Algebraic number theory, analytic number theory, and automorphic forms to WEN-CHING WINNIE LI, Department of Mathematics, Pennsylvania State University, University Park, PA 16802-6401.

Complex analysis and nonlinear partial differential equations to SUN-YUNG A. CHANG, Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90024; e-mail: chang@math.ucla.edu.

All other communications to the editors should be addressed to the Managing Editor, JAMES E. BAUMGARTNER, Department of Mathematics, Dartmouth College, Hanover, NH 03755; e-mail: james.baumgartner@dartmouth.edu.

Recent Titles in This Series

475 Kazuaki Taira, On the existence of Feller semigroups with boundary conditions, 1992
474 Francisco González-Acuña and Wilbur C. Whitten, Imbeddings of three-manifold groups, 1992
473 Ian Anderson and Gerard Thompson, The inverse problem of the calculus of variations for ordinary differential equations, 1992
472 Stephen W. Semmes, A generalization of riemann mappings and geometric structures on a space of domains in $\mathbf{C}^{n}, 1992$
471 Michael L. Mihalik and Steven T. Tschantz, Semistability of amalgamated products and HNN-extensions, 1992
470 Daniel K. Nakano, Projective modules over Lie algebras of Cartan type, 1992
469 Dennis A. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, 1992
468 Roger Kraft, Intersections of thick Cantor sets, 1992
467 Randolph James Schilling, Neumann systems for the algebraic AKNS problem, 1992
466 Shari A. Prevost, Vertex algebras and integral bases for the enveloping algebras of affine Lie algebras, 1992
465 Steven Zelditch, Selberg trace formulae and equidistribution theorems for closed geodesics and Laplace eigenfunctions: finite area surfaces, 1992
464 John Fay, Kernel functions, analytic torsion, and moduli spaces, 1992
463 Bruce Reznick, Sums of even powers of real linear forms, 1992
462 Toshiyuki Kobayashi, Singular unitary representations and discrete series for indefinite Stiefel manifolds $U(p, q ; \mathbb{F}) / U(p-m, q ; \mathbb{F}), 1992$
461 Andrew Kustin and Bernd Ulrich, A family of complexes associated to an almost alternating map, with application to residual intersections, 1992
460 Victor Reiner, Quotients of coxeter complexes and P-partitions, 1992
459 Jonathan Arazy and Yaakov Friedman, Contractive projections in $C_{p}, 1992$
458 Charles A. Akemann and Joel Anderson, Lyapunov theorems for operator algebras, 1991
457 Norihiko Minami, Multiplicative homology operations and transfer, 1991
456 Michał Misiurewicz and Zbigniew Nitecki, Combinatorial patterns for maps of the interval, 1991
455 Mark G. Davidson, Thomas J. Enright and Ronald J. Stanke, Differential operators and highest weight representations, 1991
454 Donald A. Dawson and Edwin A. Perkins, Historical processes, 1991
453 Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, 1991
452 Brian S. Thomson, Derivates of interval functions, 1991
451 Rolf Schön, Effective algebraic topology, 1991
450 Ernst Dieterich, Solution of a non-domestic tame classification problem from integral representation theory of finite groups ($\Lambda=R C_{3}, v(3)=4$), 1991
449 Michael Slack, A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings, 1991
448 Norman Levenberg and Hiroshi Yamaguchi, The metric induced by the Robin function, 1991
447 Joseph Zaks, No nine neighborly tetrahedra exist, 1991
446 Gary R. Lawlor, A sufficient criterion for a cone to be area-minimizing, 1991
445 S. Argyros, M. Lambrou, and W. E. Longstaff, Atomic Boolean subspace lattices and applications to the theory of bases, 1991
444 Haruo Tsukada, String path integral realization of vertex operator algebras, 1991

An Index of a Graph with Applications to Knot Theory Kunio Murasugi and Jozef H. Przytycki

This book presents a remarkable application of graph theory to knot theory. In knot theory, there are a number of easily defined geometric invariants that are extremely difficult to compute; the braid index of a knot or link is one example. The authors evaluate the braid index for many knots and links using the generalized Jones polynomial and the index of a graph, a new invariant introduced here. This invariant, which is determined algorithmically, is likely to be of particular interest to computer scientists.

[^0]: ${ }^{1}$ For the definition, see $\S 4$
 ${ }^{2}$ For the definition, see $\S 4$.

[^1]: ${ }^{3}$ In [Mu 2] a reducible graph is called a collapsible graph.

