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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies…, new challenges. Much of this development work resides in 
industrial reports, feasibility study papers, and the reports of advanced 
collaborative projects. The series offers an opportunity for researchers to present an 
extended exposition of such new work in all aspects of industrial control for wider 
and rapid dissemination. 

One of the main objectives of the Advances in Industrial Control monograph 
series, as described above, is to allow authors to present a considered or reflective 
view of a body of work that they have recently developed. Fractional-order 
Systems and Controls: Fundamentals and Applications by Concepción A. Monje, 
YangQuan Chen, Blas M. Vinagre, Dingyü Xue, and Vicente Feliu perfectly 
exemplifies a monograph that fulfils this objective. A look at the 
Acknowledgements and References sections of the monograph shows that the 
authors have been contributing steadily to the growth of research in the systems 
and controls applications of fractional calculus since the late 1990s with regular 
contributions appearing in the journal and conference literature throughout the first 
decade of the millennium. From this wealth of experience and research, the authors 
have drawn together the various themes and research outcomes to produce  
a systematic presentation of their work. A recent search by the Series Editors 
showed that there are indeed few such monographs on fractional-order controllers 
designed to promote a clear understanding of the systems theory, the controller 
design procedures and, importantly for the Advances in Industrial Control series, 
present demonstrations of practical applications of the new fractional-order 
controller techniques. 

The monograph is divided into six parts. In Part I, the reader is guided through 
the mathematical concepts of fractional calculus and the system and control 
implications of these concepts. This part closes with a chapter on the fundamentals 
of fractional-order controllers that introduces the conceptual framework to support 
the next three parts of the monograph. An extended presentation of different  
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fractional controller design methods occupies Parts II, III, and IV of the book,  
covering some seven chapters in total.  The last two parts of the monograph cover 
implementation aspects of the new controllers (Part V) and finally, Part VI 
contains five chapters of demonstrations and applications of fractional-order 
control. 

This is a wide-ranging but top-down presentation of fractional-order systems, 
controllers and applications. The ordering and the partitioning of the material will 
assist the reader in easily finding particular topics to study. The chapters are very 
focussed, particularly in the fractional-order control design chapters of Parts II, III, 
and IV. This will aid the reader who is solely interested in a particular control 
design method, such as fractional-order lead–lag compensators. The range of 
applications in Part VI covers system identification, a flexible robot arm (flexible 
beam), a canal (hydraulic) control system, mechatronic controllers and finally, 
a power electronics application. In these chapters, experimental rigs and practical 
experience play an important role in demonstrating the veracity of the new 
controllers. There is a nice demonstration that it is not just the number of tunable 
parameters in a controller that is important, but that the design flexibility and 
performance benefits of fractional-order controllers flow from the inherent 
structure of the controller itself. 

Naturally, such an overarching presentation of fractional-order systems and 
controllers will appeal to a wide range of readers. The control academic will be 
intrigued to see how fractional-order systems and control enhance the prevailing 
linear systems paradigm. The graduate researcher will find many opportunities to 
develop new directions for research in fractional-order control from the results 
presented in this monograph. The control engineer and the industrial practitioner 
will be able to use the monograph to investigate the potential of the new controllers 
through study of the design and the applications chapters. All readers will find that 
the book chapters give good support by providing plenty of illustrative examples, 
and MATLAB® code and SIMULINK® block diagrams to assist them in 
replicating the results given.  

The Editors are very pleased to welcome this volume into the Advances in 
Industrial Control series of monographs, and expect the volume to become an 
essential entry to every academic and industrial control engineer’s library. 

Industrial Control Centre M.J. Grimble 
Glasgow M.A. Johnson 
Scotland, UK 
2010 
 
 
 
 



Preface

The aim of this work is to provide an introduction to the basic definitions
and tools for the application of fractional calculus in automatic control. It
is intended to serve the control community as a guide to understanding and
using fractional calculus in order to enlarge the application domains of its
disciplines, and to improve and generalize well established control methods
and strategies. A major goal of this book is to present a concise and insightful
view of the current knowledge on fractional-order control by emphasizing
fundamental concepts, giving the basic tools to understand why fractional
calculus is useful in control, to understand its terminology, and to illuminate
the key points of its applicability.

Fractional calculus can be defined as the generalization of classical calculus
to orders of integration and differentiation not necessarily integer. Though
the concepts of non-integer-order operators are by no means new, the first
meeting devoted to the topic took place in 1974, in New Haven, Connecticut,
USA. Even at such an event, fractional calculus was a matter of almost
exclusive interest for few mathematicians and theoretical physicists. However,
circumstances have changed considerably since then. On the one hand, in the
last 3 decades the general interest in such a tool has experienced a continuing
growth, and at present we can find many conferences, symposia, workshops,
or special sessions, as well as papers and special issues in recognized journals,
devoted to the theoretical and application aspects of fractional calculus.
On the other hand, as can be observed in such conferences and journals,
motivation for this growing interest has been the engineering applications,
especially the control engineering ones.

Control is an interdisciplinary branch of engineering and mathematics that
deals with the modification of dynamic systems to obtain a desired behavior
given in terms of a set of specifications or a reference model. To obtain the
desired behavior, a designed controller senses the operation of the system,

xi



xii Preface

compares it to the desired behavior, computes corrective actions based on
specifications or reference models, and actuates the system to obtain the
desired change. So, in order that the dynamics of a system or process might
be properly modified, we need a model of the system, tools for its analysis,
ways to specify the required behavior, methods to design the controller,
and techniques to implement them. Since the usual tools to model dynamic
systems at a macroscopic level are integrals and derivatives, at least in the
linear systems case, the algorithms that implement the controllers are mainly
composed of such tools. So, it is not hard to understand that a way to extend
the definitions of integrals and derivatives can provide a way to expand the
frontiers for their applicability.

Fractional-order control is the use of fractional calculus in the aforemen-
tioned topics, the system being modeled in a classical way or as a fractional
one. From a certain point of view, the applications of fractional calculus have
experienced an evolution analogous to that of control, following two parallel
paths depending on the starting point: the time domain or the frequency
domain. Whilst the applications in dynamic systems modeling have used,
except in some cases of electrochemistry, the time domain, the applications
in control have been developed, mainly and from the very beginning, in the
frequency domain.

It is our hope that this book will be read by, and of interest to, a
wide audience. For this reason, it is organized following the structure of a
traditional textbook in control. Therefore, in Part I, after the introduction
in Chapter 1, Chapter 2 gives the fundamental definitions of fractional
calculus, having in mind our goal of providing a stimulating introduction for
the control community. Therefore, the mathematical prerequisites have been
kept to a minimum (those used in a basic course of control: linear algebra,
including matrices, vectors, and eigenvalues; classical calculus, including
differential equations and concepts of homogeneous and particular solutions;
complex numbers, functions, and variables; and integral transforms of Laplace
and Fourier), avoiding unnecessary intricate mathematical considerations
but without an essential loss of rigor. Chapter 3 is devoted to state-space
representations and analysis of fractional-order systems, completing the
fundamental definitions given in Chapter 2. Chapter 4 is a detailed exposition
of the core concepts and tools for the useful application of fractional calculus
to control, based on the generalization of the basic control actions. In Part
II, there is a complete study of fractional-order PID controllers, dealing
with definitions, tuning methods, and real application examples given in
Chapters 5–7. Part III focuses on the generalization of the standard lead-
lag compensator. Chapter 8 presents an effective tuning method for the
fractional-order lead-lag compensator (FOLLC), and Chapter 9 proposes



Preface xiii

a simple and direct auto-tuning technique for this type of structure. Part
IV provides an overview of other fractional-order control strategies, showing
their achievements and analyzing the challenges for further work. Chapter
10 reviews some important fractional-order robust control techniques, such
as CRONE and QFT. Chapter 11 presents some nonlinear fractional-order
control strategies. Part V provides methods and tools for the implementa-
tion of fractional-order controllers. Chapter 12 deals with continuous- and
discrete-time implementations of these types of controllers and Chapter
13 with numerical issues and MATLAB implementations. Finally, Part VI
is devoted to real applications of fractional-order systems and controls.
The identification problem of an electrochemical process and a flexible
structure is presented in Chapter 14; the position control of a single-link
flexible robot in Chapter 15; the automatic control of a hydraulic canal in
Chapter 16; mechatronic applications in Chapter 17; and fractional-order
control strategies for power electronic buck converters in Chapter 18. In the
Appendix, additional useful information is given, such as Laplace transform
tables involving fractional-order operators.

We would like to thank Professor (Emeritus) Michael A. Johnson and
Professor Michael J. Grimble, Series Editors of Advances in Industrial Control
Monograph Series of Springer London. Without their invitation, encourage-
ment, and wise recommendations and comments, this book project would not
have been possible. Thanks are also due to Oliver Jackson and his Editorial
Assistants for Engineering, Ms. Aislinn Bunning and Ms. Charlotte Cross of
Springer London, who have helped us through the review, copy-editing, and
production process with care and professional support.

We would also like to acknowledge the collaborations of Prof. Igor Pod-
lubny, Prof. Ivo Petráš, Prof. Richard Magin, Prof. Hongsheng Li, Dr. Gary
Bohannan, Prof. Kevin L. Moore, Dr. Hyo-Sung Ahn, Dr. Jun-Guo Lu, Dr.
Larry Ying Luo, Prof. Yan Li, Dr. Chunna Zhao, Dr. Antonio J. Calderón,
Dr. Inés Tejado, Dr. Fernando J. Castillo, Dr. Francisco Ramos, Prof. Raúl
Rivas, and Prof. Luis Sánchez.

Last but not least, we wish to thank the small but growing community of
researchers on fractional calculus and its applications. We acknowledge the
benefits we have obtained from interacting with this open-minded community
in the past years.

University of Extremadura, Spain Concepción Alicia Monje Micharet
Utah State University, USA YangQuan Chen
University of Extremadura, Spain Blas Manuel Vinagre Jara
Northeastern University, China Dingyü Xue
University of Castilla-La Mancha, Spain Vicente Feliu Batlle
January 2010
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Zhao, and YangQuan Chen, “A Modified Approximation Method of Frac-
tional Order System.” Proceedings of the 2006 IEEE International Con-
ference on Mechatronics and Automation (ICMA06), 25–28 June 2006,
Luoyang, China, pp. 1043–1048, DOI: 10.1109/ICMA.2006.257769 (mate-
rial found in Chapter 12).

Acknowledgement is given to the American Society of Mechanical Engineers
(ASME) to reproduce material from the following paper:

YangQuan Chen, Tripti Bhaskaran, and Dingyü Xue, “Practical Tun-
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Fundamentals of Fractional-order
Systems and Controls



Chapter 1

Introduction

Students of mathematics, sciences, and engineering encounter the differential
operators d/dx, d2/dx2, etc., but probably few of them ponder over whether
it is necessary for the order of differentiation to be an integer. Why not be
a rational, fractional, irrational, or even a complex number? At the very
beginning of integral and differential calculus, in a letter to L’Hôpital in
1695, Leibniz himself raised the question: “Can the meaning of derivatives
with integer order be generalized to derivatives with non-integer orders?”
L’Hôpital was somewhat curious about that question and replied by another
question to Leibniz: “What if the order will be 1/2?” Leibniz in a letter
dated September 30, 1695 replied: “It will lead to a paradox, from which
one day useful consequences will be drawn.” The question raised by Leibniz
for a non-integer-order derivative was an ongoing topic for more than 300
years, and now it is known as fractional calculus, a generalization of ordinary
differentiation and integration to arbitrary (non-integer) order.

Before introducing fractional calculus and its applications to control in this
book, it is important to remark that “fractional,” or “fractional-order,” are
improperly used words. A more accurate term should be “non-integer-order,”
since the order itself can be irrational as well. However, a tremendous amount
of work in the literature use “fractional” more generally to refer to the same
concept. For this reason, we are using the term “fractional” in this book.

1.1 Why Fractional Order?

It is usual in undergraduate courses of feedback control to introduce the
basic control actions and their effects in the controlled system behavior,
in the frequency domain. So, we know that these actions are proportional,

3
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derivative, and integral, and their main effects over the controlled system
behavior are [1]:

• to increase the speed of the response, and to decrease the steady-state
error and relative stability, for proportional action;

• to increase the relative stability and the sensitivity to noise, for derivative
action;

• to eliminate the steady-state error and to decrease the relative stability,
for integral action.
The positive effects of the derivative action (increased relative stability)

can be observed in the frequency domain by the π/2 phase lead introduced,
and the negative ones (increased sensitivity to high-frequency noise) by the
increasing gain with slope of 20 dB/dec. For the integral action, the positive
effects (elimination of steady-state errors) can be deduced by the infinite gain
at zero frequency, and the negative ones (decreased relative stability) by the
π/2 phase lag introduced. Considering this, it is quite natural to conclude
that by introducing more general control actions of the form sn, 1/sn, n ∈
R+, we could achieve more satisfactory compromises between positive and
negative effects, and combining the actions we could develop more powerful
and flexible design methods to satisfy the controlled system specifications.

Let us turn now our attention from feedback control to systems mod-
eling. Researchers in electrochemistry, biological systems, material science,
viscoelasticity, and other fields in which electrochemical, mass transport, dif-
fusion, or other memory phenomena appear [2–4], usually perform frequency
domain experiments in order to obtain equivalent electrical circuits reflecting
the dynamic behavior of the systems under study. It is quite usual in these
fields to find behaviors that are far from the expected ones for common
lumped elements such as resistors, inductors, and capacitors, and to define
for operational purposes special impedances such as Warburg impedances,
constant phase elements (CPEs), and others. All these special impedances
have in common a frequency domain behavior of the form k/(jω)n, n ∈ R, and
so, in the Laplace domain these elements should be modeled by k/sn, n ∈ R.

These operators in the frequency and Laplace domains give rise to the
corresponding operators in the time domain. In what follows, by using
standard definitions of repeated integrals and derivatives, we will try to show
that these operators that arise in a quite natural way in the frequency domain,
lead us to the definition of differential and integral operators of arbitrary
order, the fundamental operators of the fractional calculus.

Let us assume for the time being zero initial conditions. If we define F (s) as
the Laplace transform of the function f(t), F (s) ≡ L [f(t)], in the equation

1
sn

F (s), (1.1)
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we can recognize the Laplace domain equivalent for the n-fold integral of the
function f(t). Consider an antiderivative or primitive of the function f(t),
D−1f(t), then

D−1f(t) =
∫ t

0

f(x)dx. (1.2)

Now let us perform the repeated applications of the operator. For example,

D−2f(t) =
∫ t

0

∫ x

0

f(y)dydx. (1.3)

Equation 1.3 can be considered as a double integral, and taking into
account the x-y plane over which it is integrated (see Figure 1.1), we can
reverse the sequence of integrations by doing the proper changes in their
limits. So, we obtain

D−2f(t) =
∫ t

0

∫ t

y

f(y)dxdy. (1.4)

�

�

�

x

t

y =
x

y

t

�(1.3)

(1
.4

)

�

�

(1.4)

(1
.3

)

Figure 1.1 x-y plane for integration

As f(y) is a constant with respect to x, we find that the inner integral is
simply (t − y)f(y), and we have

D−2f(t) =
∫ t

0

(t − y)f(y)dy. (1.5)

Similarly, we can obtain

D−3f(t) =
1
2

∫ t

0

(t − y)2f(y)dy, (1.6)

and so on, giving the formula

D−nf(t) =
∫

· · ·
∫ t

0︸ ︷︷ ︸
n

f(y) dy · · ·dy︸ ︷︷ ︸
n

=
∫ t

0

f(y)(t − y)n−1

(n − 1)!
dy. (1.7)
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The last equation, in which we can see that an iterated integral may be
expressed as a weighted single integral with a very simple weighting function,
is known as the Cauchy’s formula for iterated or repeated integral. If we
generalize (1.7) for the case of n ∈ R+, we obtain

D−nf(t) =
1

Γ(n)

∫ t

0

f(y)(t − y)n−1dy, (1.8)

which corresponds to the Riemann–Liouville’s definition for the fractional-
order integral of order n ∈ R+ [2, 3].

We can obtain the same result by following a different path. By taking the
inverse Laplace transform, the function corresponding to 1/sn, n ∈ R+ is

L −1

[
1
sn

]
=

tn−1

Γ(n)
. (1.9)

So, if we consider (1.1) as the product of functions 1/sn and F (s) in
the Laplace domain, it corresponds to the convolution product in the time
domain, that is,

D−nf(t) =
tn−1

Γ(n)
∗ f(t) =

1
Γ(n)

∫
f(y)(t − y)n−1dy. (1.10)

Turning our attention from integrals to derivatives, the operator sn, n ∈
R+ in the Laplace domain gives rise to an operator of the form dn/dtn in the
time domain. According to the well known definition, the first-order derivative
of the function f(t), denoted by D1f(t), is defined by

D1f(t) =
df(t)

dt
= lim

h→0

f(t) − f(t − h)
h

, (1.11)

that is, as the limit of a backward difference. Similarly,

D2f(t) =
d2f(t)

dt2
= lim

h→0

1
h2

[f(t) − 2f(t − h) + f(t − 2h)] (1.12)

and

D3f(t)=
d3f(t)

dt3
= lim

h→0

1
h3

[
f(t)−3f(t−h)+3f(t−2h)−f(t−3h)

]
. (1.13)

Iterating n-times, we can obtain

Dnf(t) =
dnf(t)

dtn
= lim

h→0

1
hn

n∑
k=0

(−1)n

(
n

k

)
f(t − kh), (1.14)

where (
n

k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

(1.15)
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is the usual notation for the binomial coefficients. Equation 1.14 for n ∈
R+ leads us to the Grünwald–Letnikov’s definition for the fractional-order
derivative of order n [2, 3].

We can wonder if (1.8) and (1.14) could be used for any n ∈ R, in order
to obtain unified definitions for generalized differential/integral operators. In
fact, it is so, but considering some mathematical subtleties concerning the
functions affected by the operators and the limits of the operation itself.
Though avoiding unnecessary mathematical complexity, we will try to cover
the essential of these aspects in Chapter 2, as well as the fundamental
properties of the fractional-order operators and fractional-order systems
(systems modeled by integro-differential equations involving fractional-order
integro-differential operators).

For the time being, in the next section we give a brief historical overview
of the development of the fractional calculus.

1.2 Brief Historical Overview

The earliest theoretical contributions to the field were made by Euler and
Lagrange in the eighteenth century, and the first systematic studies seem to
have been made at the beginning and middle of the nineteenth century by
Liouville, Riemann, and Holmgren. It was Liouville who expanded functions
in series of exponentials and defined the nth-order derivative of such a series
by operating term-by-term as though n were a positive integer. Riemann
proposed a different definition that involved a definite integral and was
applicable to power series with non-integer exponents. It was Grünwald and
Krug who first unified the results of Liouville and Riemann. Grünwald,
by returning to the original sources and adopting as starting point the
definition of a derivative as the limit of a difference quotient and arriving at
definite-integral formulas for the nth-order derivative. Krug, working through
Cauchy’s integral formula for ordinary derivatives, showed that Riemann’s
definite integral had to be interpreted as having a finite lower limit while
Liouville’s definition corresponded to a lower limit −∞.

The first application of the fractional calculus was made by Abel in 1823.
He discovered that the solution of the integral equation for the tautochrone
problem could be obtained via an integral in the form of derivative of order
one half. Later in the nineteenth century, important stimuli to the use of
fractional calculus were provided by the development by Boole of symbolic
methods for solving linear differential equations of constant coefficients, or
the operational calculus of Heaveside developed to solve certain problems
in electromagnetic theory such as transmission lines. In the twentieth cen-



8 1 Introduction

tury contributions have been made to both the theory and applications of
fractional calculus by very well known scientists such as Weyl and Hardy
(properties of differintegrals), Erdély (integral equations), Riesz (functions
of more than one variable), Scott Blair (rheology), or Oldham and Spanier
(electrochemistry and general transport problems).

In the last decades of the last century there was continuing growth of
the applications of fractional calculus mainly promoted by the engineering
applications in the fields of feedback control, systems theory, and signals
processing.

The interested reader can find good surveys of the history of fractional
calculus in [2,5, 6], and about particular applications related to the contents
of this work, in the different chapters of the book.

1.3 Summary

In order to stimulate the interest of the reader, in this chapter we have
tried to show how the necessity of defining and using the fractional-order
differential and integral operators arises from very common and practical
problems and applications (to extend the basic control actions or to model
processes with memory phenomena), and how we can obtain a first approach
to the definitions of these operators by using only mathematical tools well
known by undergraduate students in science and engineering. Finally, a brief
historical overview of the development of the fractional calculus has been
presented, as well as the necessary references to satisfy the curiosity of the
reader interested in this topic.



Chapter 2

Fundamentals of Fractional-order
Systems

2.1 Fractional-order Operators: Definitions and
Properties

2.1.1 Introduction

Essentially, the mathematical problem for defining fractional-order deriva-
tives and integrals consists of the following [2,7]: to establish, for each function
f(z), z = x + jy of a general enough class, and for each number α (rational,
irrational or complex), a correspondence with a function g(z) = Dα

c f(z)
fulfilling the following conditions:

• If f(z) is an analytic function of the variable z, the derivative g(z) =
Dα

c f(z) is an analytic function of z and α.
• The operation Dα

c and the usual derivative of order n ∈ Z+, α = n give
the same result.

• The operation Dα
c and the usual n-fold integral with n ∈ Z−, α = −n

give the same result.
• Dα

c f(z) and its first (n − 1)th-order derivatives must vanish to zero at
z = c.

• The operator of order α = 0 is the identity operator.
• The operator must be linear: Dα

c [af(z) + bh(z)] = aDα
c f(z) + bDα

c h(z).
• For the fractional-order integrals of arbitrary order, �(α) > 0,�(β) > 0,

it holds the additive law of exponents (semigroup property): Dα
c Dβ

c f(z) =
Dα+β

c f(z).

In the following sections the reader can find some of the more usual
definitions of the fractional-order operators, fulfilling the above conditions,
following mainly [3, 7].

9
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2.1.2 Fractional-order Integrals

In agreement with Riemann–Liouville’s conception, the notion of fractional-
order integral of order �(α) > 0 is a natural consequence of Cauchy’s
formula for repeated integrals, which reduces the computation of the primitive
corresponding to the n-fold integral of a function f(t) to a simple convolution.
This formula can be expressed as

I n
c f(t) � D−n

c f(t) =
1

(n − 1)!

∫ t

c

(t − τ)n−1f(τ)dτ, t > c, n ∈ Z+. (2.1)

In (2.1) we can see that I n
c f(t) and its derivatives of orders 1, 2, 3, · · · , n−1

become zero for t = c.
In a natural way, we can extend the validity of (2.1) to n ∈ R+. Taking

into account that (n − 1)! = Γ(n), and introducing the positive real number
α, the Riemann–Liouville fractional-order integral is defined as

I α
c f(t) � 1

Γ(α)

∫ t

c

(t − τ)α−1f(τ)dτ, t > c, α ∈ R+. (2.2)

It can be proved that this operator fulfils the aforementioned conditions.
When we deal with dynamic systems it is usual that f(t) be a causal

function of t, and so in what follows the definition for the fractional-order
integral to be used is

I αf(t) � 1
Γ(α)

∫ t

0

(t − τ)α−1f(τ)dτ , t > 0, α ∈ R+. (2.3)

In (2.3) we can see that the fractional-order integral can be expressed as
a causal convolution of the form

I αf(t) = Φα(t) ∗ f(t), α ∈ R+, (2.4)

with

Φα(t) =
tα−1
+

Γ(α)
, α ∈ R+ (2.5)

the causal kernel of the convolution and

tα−1
+ = 0, for t < 0; tα−1

+ = tα−1, for t � 0. (2.6)

2.1.3 Fractional-order Derivatives

The definition (2.3) cannot be used for the fractional-order derivative by
direct substitution of α by −α, because we have to proceed carefully in order
to guarantee the convergence of the integrals involved in the definition, and
to preserve the properties of the ordinary derivative of integer-order.
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Denoting the derivative operator of order n ∈ N by Dn, and the identity
operator by I, we can verify that

DnI n = I, I nDn �= I, n ∈ N. (2.7)

In other words, the operator Dn is only a left-inverse of the operator I n. In
fact, from (2.1) we can deduce that

I nDnf(t) = f(t) −
n−1∑
k=0

f (k)(0+)
tk

k!
, t > 0, (2.8)

where f (k)(·) is the kth-order derivative of the function f(·). Consequently, it
must be verified whether Dα is a left-inverse of I α or not. For this purpose,
introducing the positive integer m so that m − 1 < α < m, the Riemann–
Liouville definition for the fractional-order derivative of order α ∈ R+ has
the following form:

RDαf(t) � DmI m−αf(t) =
dm

dtm

[
1

Γ(m − α)

∫ t

0

f(τ)
(t − τ)α−m+1

dτ

]
, (2.9)

where m − 1 < α < m, m ∈ N.
An alternative definition for the fractional-order derivative was introduced

by Caputo as

CDαf(t) � I m−αDmf(t) =
1

Γ(m − α)

∫ t

0

f (m)(τ)
(t − τ)α−m+1

dτ, (2.10)

where m − 1 < α < m, m ∈ N.
This definition is more restrictive than the Riemann–Liouville one because

it requires the absolute integrability of the mth-order derivative of the
function f(t). It is clear that, in general,

RDαf(t) � DmI m−αf(t) �= I m−αDmf(t) �C Dαf(t), (2.11)

except in the case of being zero at t = 0+ for the function f(t) and its first
(m−1)th-order derivatives. In fact, between the two definitions there are the
following relations:

RDαf(t) =C Dαf(t) +
m−1∑
k=0

tk−α

Γ (k − α + 1)
f (k)
(
0+
)
, (2.12)

RDα

(
f(t) −

m−1∑
k=0

f (k)
(
0+
) tk

k!

)
=C Dαf(t). (2.13)

Due to its importance in applications, we will consider here the Grünwald–
Letnikov’s definition, based on the generalization of the backward difference.
This definition has the form

Dαf(t)|t=kh = lim
h→0

1
hα

k∑
j=0

(−1)j

(
α

j

)
f(kh − jh). (2.14)
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An alternative definition of the Grünwald–Letnikov’s derivative in integral
form is [3]

LDαf(t) =
m∑

k=0

f (k)(0+)tk−α

Γ(m + 1 − α)
+

1
Γ(m+1−α)

∫ t

0

(t − τ)m−αf (m+1)(τ)dτ ,

(2.15)
where m > α − 1.

2.1.4 Laplace and Fourier Transforms

Laplace and Fourier integral transforms are fundamental tools in systems and
control engineering. For this reason, we will give here the equation of these
transforms for the defined fractional-order operators. These equations are

L [I αf(t)] = s−αF (s), (2.16)

L [RDαf(t)] = sαF (s) −
m−1∑
k=0

sk
[
RDα−k−1f(t)

]
t=0

, (2.17)

L [CDαf(t)] = sαF (s) −
m−1∑
k=0

sα−k−1f (k) (0) , (2.18)

L [LDαf(t)] = sαF (s), (2.19)

F [I αf(t)] = F

[
tα−1
+

Γ (α)

]
F {f(t)} = (jω)−α

F (ω) , (2.20)

F [Dαf(t)] = F
{
DmI m−αf(t)

}
= (jω)αF (ω), (2.21)

where (m − 1 � α < m). More on Laplace transform can be found in the
Appendix.

2.2 Fractional-order Differential Equations

Once the basic definitions of the fractional calculus have been established, and
as a prelude for the study of fractional-order linear time invariant systems, we
will briefly review in this section the fundamentals of fractional-order ordinary
differential equations. We will start with the two-term equations (relaxation
and oscillation equations) and continue with the general equations for the
solutions of n-term equations. A detailed study of fractional-order differential
equations can be found in [3, 8].
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2.2.1 Relaxation and Oscillation Equations

It is known that the classical problems of relaxation and oscillation are
described by linear ordinary differential equations of orders 1 and 2, respec-
tively (for control community, normal relaxation is equivalent to first-order
dynamics). We can generalize the equations

Du(t) + u(t) = q(t) (2.22)

and
D2u(t) + u(t) = q(t) (2.23)

by simply substituting the integer-order derivatives by the fractional order
α. If we want to preserve the usual initial conditions, we will use Caputo’s
fractional-order derivatives for obtaining

CDαu(t)+u(t)=RDα

[
u(t) −

m−1∑
k=0

tk

k!
u(k)
(
0+
)]

+u(t)=q(t), t > 0, (2.24)

where m defined by m − 1 < α < m is a positive integer which determines
the number of initial conditions u(k)(0+) = bk, k = 0, 1, 2, · · · ,m − 1. It is
obvious that in the case of α = m, (2.24) becomes an ordinary differential
equation, whose solution can be expressed as

u(t) =
m−1∑
k=0

bkuk(t) +
∫ t

0

q(t − τ)uδ(τ)dτ , (2.25)

uk(t) = I ku0(t), u
(h)
k (0+) = δkh, uδ(t) = −Du0(t), (2.26)

for h, k = 0, 1, · · · ,m−1, the m functions uk(t) are the fundamental solutions
of the homogeneous differential equation, and the function uδ(t) is the impulse
response (the particular solution for q(t) = δ(t) under zero initial conditions).

It can be proved [3, 8] that the solution of (2.24) can be expressed in the
same form as

u(t) =
m−1∑
k=0

bkI kEα(−tα) −
∫ t

0

q(t − τ)E ′
α(−τα)dτ, (2.27)

where Eα(−tα) is the Mittag–Leffler function defined by [3, 9, 10]

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
. (2.28)

Comparing (2.25) and (2.27) we can see that:

• The Mittag–Leffler function in (2.27) has the role of the exponential
function in (2.25).
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• When α is non-integer, m − 1 < α < m, m − 1 is the integer part of α,(
m − 1 � [α]

)
and m the number of initial conditions for uniqueness of

the solution, u(t).
• The m functions I kEα(−tα), with k = 0, 1, · · · , m − 1 are the particular

solutions of the homogeneous equation which satisfy the initial conditions,
i.e., the fundamental solutions of the homogenous equation.

• The function E ′
α(−tα), the first-order derivative of the function Eα(−tα),

is the impulse response.

It is clear that the form of the solutions is given by the properties of the
Mittag–Leffler function. Figures 2.1 and 2.2 give the curves of the function for
different values of α. As we can see, the behavior corresponds to an anomalous
relaxation) (non-standard first-order decay) for α < 1, is exponential for
α = 1, becomes a damped oscillation for 1 < α < 2, and oscillates for α = 2.
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Figure 2.1 Mittag–Leffler functions Eα(−tα) for α = 0.2, 0.4, 0.6, 0.8, 1
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For the general two-term equation with zero initial conditions

aDαu(t) + bu(t) = q(t), (2.29)

we can obtain the solution by applying the Laplace transform method. So,
in the Laplace domain, the solution can be expressed as

U(s) = Q(s)
1/a

sα + b/a
, (2.30)

and in the time domain as

u(t) = q(t) ∗ 1
a

tα−1Eα,α

(
− b

a
tα
)

, (2.31)

where tα−1Eα,α (−btα/a) /a is the impulse response, and Eα,α (−btα/a) is the
so-called Mittag–Leffler function in two parameters defined as [3]

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, �(α) > 0, �(β) > 0. (2.32)

2.2.2 Numerical Solutions

In order to obtain a numerical solution for the fractional-order differential
equations, we can make use of the Grünwald–Letnikov’s definition, and
approximate

Dαf(t) ≈ Δα
hf(t), (2.33)

Δα
hf(t)

∣∣∣
t=kh

= h−α
k∑

j=0

(−1)j

(
α

j

)
f(kh − jh). (2.34)

So, for the two-term equation (2.29) with a = 1 and zero initial conditions,
this approximation leads to

h−α
k∑

j=0

w
(α)
j yk−j + byk = qk, (2.35)

where tk = kh, yk = y (tk) , y0 = 0, qk = q(tk), k = 0, 1, 2, · · · , and

w
(α)
j = (−1)j

(
α

j

)
, (2.36)

for j = 0, 1, 2, · · · , and the algorithm to obtain the numerical solution will be

yi = 0, i = 1, 2, · · · , n − 1, (2.37)

yk = −bhαyk−1 −
k∑

j=1

w
(α)
j yk−j + hαqk, k = n, n + 1, · · · . (2.38)
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As we can see in former equations, as t grows, we need more and more
terms to add for computing the solution, in other words, we need unlimited
memory. To solve this problem, the short memory principle was proposed [11].
This principle is based on the observation that for large t the coefficients of
the Grünwald–Letnikov’s definition corresponding to values of the function
near t = 0 (or any other point considered as initial) have little influence in the
solution. This fact allows us to approximate the numerical solution by using
the information of the “recent past,” in other words, the interval [t−L, t], L

being the length of memory, a moving low limit to compute the derivatives.
So, we will use

Dαf(t) ≈ t−LDαf(t), t > L, (2.39)

and the number of terms to add is limited by the value of L/h. The error of
the approximation when | f(t) |� M, (0 < t � t1) is bounded by

ε(t) = |Dαf(t) − t−LDαf(t)| � ML−α

|Γ (1 − α)| , L � t � t1, (2.40)

which can be used to determine the necessary memory length, L, to obtain
a certain error bound, as

ε(t) < ε, L � t � t1 ⇒ L �
(

M

ε |Γ (1 − α)|
)1/α

. (2.41)

For the computation of the coefficients to obtain the numerical solution,
several methods can be used. For the case of a fixed value of derivative order
α, we can use the following recursive formula:

w
(α)
0 = 1; w

(α)
k =

(
1 − α + 1

k

)
w

(α)
k−1, k = 1, 2, · · · . (2.42)

For a non-fixed α (for example, if we need to identify a system and α is
a parameter to be determined) it is more convenient to use the fast Fourier
transform (FFT). In such a case, it should be noted that the coefficients
can be considered as the coefficients of the series expansion for the function
(1 − z)α

(1 − z)α =
∞∑

k=0

(−1)k

(
α

k

)
zk =

∞∑
k=0

w
(α)
k zk, (2.43)

and with z = e−jω (
1 − e−jω

)α
=

∞∑
k=0

w
(α)
k e−jkω, (2.44)

we can express the coefficients in terms of the inverse Fourier transform

w
(α)
k =

1
2π

∫ 2π

0

(
1 − e−jω

)α
ejkωdω (2.45)

that can be computed by using FFT algorithms.
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2.3 Fractional-order Systems

After establishing the fundamental definitions of the fractional calculus in
the previous sections and determining the kind of solutions of the differential
equations of fractional order, this section will deal with the analysis of the
systems described by such equations. This analysis, as is usual for the systems
of integer-order in the classical control theory framework, will start with the
input-output models or representations of these systems in different domains
(e.g., time, Laplace, and Z) to study their performance, both transient
and steady state, discussing the conditions and criteria for stability, and
determining the steady-state error coefficients.

2.3.1 Models and Representations

The equations for a continuous-time dynamic system of fractional-order can
be written as follows:

H (Dα0α1α2···αm)(y1, y2, · · · , yl) = G
(
Dβ0β1β2···βn)(u1, u2, · · · , uk

)
, (2.46)

where yi, ui are functions of time and H(·),G(·) are the combination laws of
the fractional-order derivative operator. For the linear time-invariant single-
variable case, the following equation would be obtained:

H (Dα0α1α2···αn) y(t) = G
(
Dβ0β1β2···βm

)
u(t), (2.47)

with

H (Dα0α1α2···αn) =
n∑

k=0

akDαk ; G
(
Dβ0β1β2···βm

)
=

m∑
k=0

bkDβk , (2.48)

where ak, bk ∈ R. Or, explicitly,

anDαny(t) + an−1D
αn−1y(t) + · · · + a0D

α0y(t)

= bmDβmu(t) + bm−1D
βm−1u(t) + · · · + b0D

β0u(t).
(2.49)

If in the previous equation all the orders of derivation are integer multiples
of a base order, α, that is, αk, βk = kα, α ∈ R+, the system will be of
commensurate-order , and (2.49) becomes

n∑
k=0

akDkαy(t) =
m∑

k=0

bkDkαu(t). (2.50)

If in (2.50) α = 1/q, q ∈ Z+, the system will be of rational-order .
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This way, linear time-invariant systems can be classified as follows:

LTI Systems

⎧⎪⎪⎨⎪⎪⎩Non-integer

⎧⎨⎩Commensurate
{

Rational
Irrational

Non-commensurate
Integer

In the case of discrete-time systems (or discrete equivalents of continuous-
time systems) we can use (2.33) and (2.34) to obtain models of the form

anΔαn

h y(t) + an−1Δ
αn−1
h y(t) + · · · + a0Δ

α0
h y(t)

= bmΔβm

h u(t) + bm−1Δ
βm−1
h u(t) + · · · + b0Δ

β0
h u(t).

(2.51)

Applying the Laplace transform to (2.49) with zero initial conditions, or
the Z transform to (2.51), the input-output representations of fractional-
order systems can be obtained. In the case of continuous models, a fractional-
order system will be given by a transfer function of the form

G(s) =
Y (s)
U(s)

=
bmsβm + bm−1s

βm−1 + · · · + b0s
β0

ansαn + an−1sαn−1 + · · · + a0sα0
. (2.52)

In the case of discrete-time systems, the discrete-time transfer function
will be of the form

G(z) =
bm

(
ω
(
z−1
))βm + bm−1

(
ω
(
z−1
))βm−1 + · · · + b0

(
ω
(
z−1
))β0

an (ω (z−1))αn + an−1 (ω (z−1))αn−1 + · · · + a0 (ω (z−1))α0 ,

(2.53)

where
(
ω
(
z−1
))

is the Z transform of the operator Δ1
h, or, in other words,

the discrete equivalent of Laplace’s operator, s.
As can be seen in the previous equations, a fractional-order system has an

irrational-order transfer function in Laplace’s domain or a discrete transfer
function of unlimited order in the Z domain, since only in the case of αk ∈ Z

will there be a limited number of coefficients (−1)l (αk

l

)
different from zero.

Because of this, it can be said that a fractional-order system has an unlimited
memory or is infinite-dimensional, and obviously the systems of integer-order
are just particular cases.

In the case of a commensurate-order system, the continuous-time transfer
function is given by

G(s) =

m∑
k=0

bk(sα)k

n∑
k=0

ak(sα)k

, (2.54)

which can be considered as a pseudo-rational function, H(λ), of the variable
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H(λ) =

m∑
k=0

bkλk

n∑
k=0

akλk

. (2.55)

2.3.2 Stability

2.3.2.1 Previous Considerations

In a general way, the study of the stability of fractional-order systems can
be carried out by studying the solutions of the differential equations that
characterize them. An alternative way is the study of the transfer function of
the system (2.52). To carry out this study it is necessary to remember that
a function of the type

ansαn + an−1s
αn−1 + .... + a0s

α0 , (2.56)

with αi ∈ R+, is a multi-valued function of the complex variable s whose
domain can be seen as a Riemann surface [12, 13] of a number of sheets
which is finite only in the case of ∀i, αi ∈ Q+, being the principal sheet
defined by −π<arg(s)<π. In the case of αi∈Q+, that is, α=1/q, q being a
positive integer, the q sheets of the Riemann surface are determined by

s = |s| ejφ, (2k + 1)π < φ < (2k + 3)π, k = −1, 0, · · · , q − 2. (2.57)

Correspondingly, the case of k = −1 is the principal sheet. For the mapping
w = sα, these sheets become the regions of the plane w defined by

w = |w| ejθ, α(2k + 1)π < θ < α(2k + 3)π. (2.58)

This mapping is illustrated in Figures 2.3 and 2.4 for the case of w =
s1/3. Figure 2.3 represents the Riemann surface that corresponds to the
transformation introduced above, and Figure 2.4 represents the regions of
the complex plane w that correspond to each sheet of the Riemann surface.
These three sheets correspond to

k =

⎧⎪⎪⎨⎪⎪⎩
−1, −π < arg(s) < π, (the principal sheet)

0, π < arg(s) < 3π, (sheet 2)

1 (= 3 − 2), 3π < arg(s) < 5π, (sheet 3)

Thus, an equation of the type

ansαn + an−1s
αn−1 + · · · + a0s

α0 = 0, (2.59)

which in general is not a polynomial, will have an infinite number of roots,
among which only a finite number of roots will be on the principal sheet of

λ = sα,
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the Riemann surface. It can be said that the roots which are in the secondary
sheets of the Riemann surface are related to solutions that are always
monotonically decreasing functions (they go to zero without oscillations
when t → ∞) and only the roots that are in the principal sheet of the
Riemann surface are responsible for a different dynamics: damped oscillation,
oscillation of constant amplitude, oscillation of increasing amplitude with
monotonic growth.

For example, for equation

sα + b = 0, (2.60)

the solutions are given by

s = (−b)1/α = |b|1/α ∠arg(b) + 2lπ

α
, l = 0,±1,±2, · · · ,
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and only the roots satisfying the condition∣∣∣∣arg(b) + 2lπ

α

∣∣∣∣ < π

will be on the principal sheet.
This definition of the principal sheet, which assumes a cut along R−,

corresponds to the Cauchy principal value of the integral corresponding to
the inverse transformation of Laplace, that is, to that obtained by direct
application of the residue theorem. The roots which are in this sheet are
called structural roots [14] or relevant roots [8].

For example, for the function

f(s) =
1

sα + b
, α =

1
π

, b ∈ R+,

the roots of the denominator are given by the equation

sl = (−b)π|l = |b|π ∠π (π + 2lπ) , l = 0,±1,±2, · · · .

For the roots to be in the principal sheet, they must fulfil the following
condition:

|arg(sl)| < π =⇒ |π (π + 2lπ)| < π =⇒ |π (1 + 2l)| < 1.

As can be seen, there is no value of l to fulfil this condition, so there are
no structural roots of this function. This fact can be observed in Figure 2.5
for b = 1: the function is analytical for every s, |arg(s)| < π with a maximum
at s = 0 + j0, and the point sα = −1 is not a pole, but a branch point.

Studying the function for α = 4/π, the condition becomes

|(π + 2lπ)|
4

< 1,

and it is fulfilled for l = 0 and l = −1, being the corresponding arguments
∠s0 = π2/4, and ∠s−1 = −π2/4, respectively. In Figure 2.6 it can be observed
that the function has poles at s0 and s−1.

2.3.2.2 Stability Conditions

After the previous considerations, the stability conditions of the fractional-
order systems can be established.

In general, it can be said that a fractional-order system, with an irrational-
order transfer function G(s) = P (s)/Q(s), is bounded-input bounded-output
stable (BIBO stable) if and only if the following condition is fulfilled (see [14]
for more details):

∃M, |G(s)| � M, ∀s �(s) � 0. (2.61)
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Figure 2.6 Magnitude of the function f(s), α = 4/π, b = 1

The previous condition is satisfied if all the roots of Q(s) = 0 in the
principal Riemann sheet, not being roots of P (s)=0, have negative real parts.

For the case of commensurate-order systems, whose characteristic equation
is a polynomial of the complex variable λ = sα, the stability condition is
expressed as

|arg(λi)| > α
π

2
, (2.62)

where λi are the roots of the characteristic polynomial in λ. For the particular
case of α = 1 the well known stability condition for linear time-invariant
systems of integer-order is recovered:

|arg(λi)| >
π

2
, ∀λi�Q(λi) = 0. (2.63)

An equivalent result was previously obtained by Mittag–Leffler in [9].
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2.3.2.3 Stability Criteria

Nowadays there are no polynomial techniques, either Routh or Jury type,
to analyze the stability of fractional-order systems. Only the geometrical
techniques of complex analysis based on the Cauchy’s argument principle
can be applied, since they are techniques that inform about the number
of singularities of the function within a rectifiable curve by observing the
evolution of the function’s argument through this curve.

In this way, applying the argument principle to the curve generally known
as the Nyquist path (a curve that encloses the right half-plane of the Riemann
principal sheet), the stability of the system can be determined by determining
the number of revolutions of the resultant curve around the origin. To
determine the closed-loop stability, it will be enough to check whether the
evaluation curve encloses the critical point (−1, j0) or not.

For the case of rational-order systems, a similar procedure can be applied.
Given a system defined by the transfer function

G(s) =
1

ansnα + an−1s(n−1)α + · · · + a1sα + a0
, (2.64)

where α = 1/q, q, n ∈ Z+, ak ∈ R, we can introduce the mapping λ = sα to
obtain the function G(λ), and applying the condition (2.62) the stability of
the system can be studied by evaluating the function G(λ) along the curve
Γ defined in the λ-plane in Figure 2.7:

Γ = Γ1 ∪ Γ2 ∪ Γ3, (2.65)

with
Γ1 : λ� arg(λ) = −α

π

2
, |λ| ∈ [0,∞) ,

Γ2 : λ = lim
R→∞

Rjφ, φ ∈
(
−α

π

2
, α

π

2

)
,

Γ3 : λ� arg(λ) = α
π

2
, |λ| ∈ (∞, 0) .

If the transfer function has the form

H(s) =
1

anspn/qn + an−1spn−1/qn−1 + · · · + a1sp1/q1 + a0
, (2.66)

where pi, qi ∈ Z+, and pn/qn > pn−1/qn−1 > · · · > p1/q1, the same
procedure can be applied by using the function

H(λ), λ =
1
q
, q = lcm (qn, qn−1, · · · , q1) , (2.67)

where lcm(·) stands for the least common multiplier.
To illustrate the application of this procedure, two examples are given.
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Example 1 Given a system with transfer function

G(s) =
1

s2/3 − s1/2 + 1/2
,

in a unity negative feedback structure with gain K, its evaluation along the
Nyquist path defined in the Riemann principal sheet gives the result shown
in Figure 2.8. It can be observed that the evaluation curve does not enclose
the point (−1, j0). So, we can conclude that the closed-loop system is stable
for any K > 0.
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Figure 2.8 Evaluation result for Example 1

An equivalent result can be obtained by evaluating the function

G(λ) =
1

λ4 − λ3 + 1/2
, λ = s1/6,

along the curve Γ of the complex plane λ defined by

Γ = Γ1 ∪ Γ2 ∪ Γ3, (2.68)
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with
Γ1 : λ� arg(λ) − π

12
, |λ| ∈ [0,∞) ,

Γ2 : λ = lim
R→∞

Rjφ, φ ∈
(
− π

12
,

π

12

)
,

Γ3 : λ� arg(λ) =
π

12
, |λ| ∈ (∞, 0) .

Effectively, the roots of the characteristic equation can be obtained from
the roots of the polynomial

Q (λ) = λ4 − λ3 +
3
2
,

which are λ1,2 = 1.0891 ± j0.6923 = 1.2905∠ ± 0.5662, λ3,4 = −0.5891 ±
j0.7441 = 0.9491∠ ± 2.2404, being the roots of the denominator of G(s):

s1,2 = (λ1,2)
6 = 4.6183∠ ± 3.3975, |arg (s1,2)| > π,

s3,4 = (λ3,4)
6 = 0.7308∠ ± 13.4423, |arg (s3,4)| > π.

As can be observed, there are no structural roots (roots on the Riemann
principal sheet defined by |arg(s)| < π), which indicates the closed-loop
system stability. �

Example 2 If now we deal with the stability of the closed-loop system whose
transfer function is

G(s) =
1

s − 2s1/2 + 1.25
,

evaluating the function

G(λ) =
1

λ2 − 2λ + 1.25
, λ = s1/2,

along the curve defined by

Γ = Γ1 ∪ Γ2 ∪ Γ3, (2.69)

with
Γ1 : λ� arg(λ) = −π

4
, |λ| ∈ [0,∞) ,

Γ2 : λ = lim
R→∞

Rjφ, φ ∈
(
−π

4
,
π

4

)
2

Γ3 : λ� arg(λ) =
π

4
, |λ| ∈ (∞, 0) ,

the result shown in Figure 2.9 is obtained.
As can be observed, the resultant curve encloses twice the critical point

(−1, j0) in the negative direction for K > 0.75. Taking into account that G(λ)
has two unstable poles, λ1,2 = 1 ± j0.5, arg(λ1,2) < π/4, it can be concluded
that the system is stable for K > 0.75. For K < 0.75 the closed-loop system
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Figure 2.9 Evaluation result for Example 2

is unstable, with two structural roots in the right half-plane of the Riemann
principal sheet.

Effectively, the roots of the polynomial

Q (λ) = λ2 − 2λ + 1.25 + K

are, for K = 1,
λ1,2 = 1.0 ± j1.1180,

and the structural poles of G(s) are
s1,2 = (λ1,2)

2 = 2.25∠ ± 0.9273, |arg (s1,2)| <
π

2
= 1.5708. �

It is also important to note that the root locus technique can be applied
to a commensurate-order system as easily as it can be applied to an integer-
order one. Only the interpretation changes, that is, the relation of the complex
plane points λ = sα with the dynamic characteristics of the system.

2.3.3 Analysis of Time and Frequency Domain
Responses

2.3.3.1 Transient Response

The general equation for the response of a fractional-order system in the
time domain can be determined by using the analytical methods described
previously.

The response will depend on the roots of the characteristic equation,
having six different cases:
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• There are no roots in the Riemann principal sheet. In this case the response
will be a monotonically decreasing function.

• There are roots in the Riemann principal sheet, located in �(s)<0, �(s) =
0. In this case the response will be a monotonically decreasing function.

• There are roots in the Riemann principal sheet, located in �(s)<0, �(s) �=
0. In this case the response will be a function with damped oscillations.

• There are roots in the Riemann principal sheet, located in �(s)=0, �(s) �=
0. In this case the response will be a function with oscillations of constant
amplitude.

• There are roots in the Riemann principal sheet, located in �(s)>0, �(s) �=
0. In this case the response will be a function with oscillations of increasing
amplitude.

• There are roots in the Riemann principal sheet, located in �(s)>0, �(s) =
0. In this case the response will be a monotonically increasing function.

In the particular case of commensurate-order systems, the impulse re-
sponse can be written as follows:

L −1 {H(λ), λ = sα} = L −1

⎧⎪⎪⎨⎪⎪⎩
m∑

k=0

akλk

n∑
k=0

bkλk

⎫⎪⎪⎬⎪⎪⎭ = L −1

{
n∑

k=0

rk

λ − λk

}
.

Taking into account the general equation

L −1

{
sα−β

sα − λk

}
= tβ−1Eα,β (λktα) , (2.70)

the impulse response, g(t), can be obtained by setting α = β in the previous
equation as follows:

g(t) =
n∑

k=0

rktα−1Eα,α (λktα) . (2.71)

The step response, given by the equation

y(t) = L −1

{
n∑

k=0

rks−1

(sα − λk)

}
, (2.72)

can be obtained setting α = β − 1 in (2.71), in the following form:

y(t) =
n∑

k=0

rktαEα,α+1 (λktα) . (2.73)

The form of these responses will be:

• monotonically decreasing if |arg(λk)| � απ;
• oscillatory with decreasing amplitude if απ/2 < |arg(λk)| < απ;
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• oscillatory with constant amplitude if |arg(λk)| = απ/2;
• oscillatory with increasing amplitude if |arg(λk)| < απ/2, |arg(λk)| �= 0;
• monotonically increasing if |arg(λk)| = 0.

These responses are depicted in Figure 2.10.
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Figure 2.10 Root locations and the corresponding time responses

2.3.3.2 Frequency Domain Response

In general, the frequency response has to be obtained by the direct evaluation
of the irrational-order transfer function of the fractional-order system along
the imaginary axis for s = jω, ω ∈ (0,∞). However, for the commensurate-
order systems we can obtain Bode-like plots, in other words, the frequency
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response can be obtained by the addition of the individual contributions of
the terms of order α resulting from the factorization of the function

G(s) =
P (sα)
Q(sα)

=

m∏
k=0

(sα + zk)

n∏
k=0

(sα + λk)
, zk, P (zk) = 0, λk, Q(λk) = 0, zk �= λk.

For each of these terms, referred to as (sα + γ)±1
, the magnitude curve

will have a slope which starts at zero and tends to ±α20 dB/dec for higher
frequencies, and the phase plot will go from 0 to ±απ/2. Besides, there will
be resonances for α > 1. To illustrate this, Figure 2.11 shows the frequency
response of the system whose transfer function is

G(s) =
1

s3/2 + 1
, (2.74)

in which can be observed a slope which goes from 0 to −30 dB/dec, a phase
which starts at 0 and tends to −3π/4, and a resonant frequency of ω ≈
0.8 rad/sec.
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Figure 2.11 Bode plot of the system (2.74)

2.3.3.3 Steady-state Response

To finish this brief analysis of the response, the behavior of the fractional-
order systems in steady-state will be considered now, starting from the typical
system with unity negative feedback and using the usual definitions of steady-
state error coefficients. These definitions are:
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• Position error coefficient:

Kp = lim
s→0

G(s). (2.75)

• Velocity error coefficient:

Kv = lim
s→0

sG(s). (2.76)

• Acceleration error coefficient:

Ka = lim
s→0

s2G(s). (2.77)

For a fractional-order system whose transfer function can be expressed by

G(s) =
K
(
amsβm + am−1s

βm−1 + · · · + 1
)

sγ (bnsαn + bn−1sαn−1 + · · · + 1)
, (2.78)

the following relations are obtained:

Kp = lim
s→0

K

sγ
= lim

s→0
Ks−γ , ep =

1
1 + Kp

, (2.79)

Kv = lim
s→0

K
s

sγ
= lim

s→0
Ks1−γ , ev =

1
Kv

, (2.80)

Ka = lim
s→0

K
s2

sγ
= lim

s→0
Ks2−γ , ea =

1
Ka

. (2.81)

In Table 2.1, the steady-state errors and steady-state error coefficients
are summarized for different values of γ. As can be observed, the fractional-
order systems always have steady-state error coefficients 0 or ∞, and this
shows that their behavior, also in steady-state, has to do with the behavior of
the integer-order systems of higher or lower order than the fractional order.
These systems will have finite coefficients only for inputs whose temporal
dependence is of the form

r(t) = Atγ , (2.82)

or, in Laplace domain,

L {r(t)} = R(s) = A
Γ (γ + 1)

sγ+1
. (2.83)

Table 2.1 Steady-state error coefficients

Steady state Steady state

γ Kp, ep Kv, ev Ka, ea Type γ Kp, ep Kv, ev Ka, ea Type

0 K, 1/(1 + K) 0, ∞ 0, ∞ 0 ( 0,1) ∞, 0 0, ∞ 0, ∞ 0/1

1 ∞, 0 K, 1/K 0, ∞ 1 (1,2) ∞, 0 ∞, 0 0, ∞ 1/2

2 ∞, 0 ∞, 0 K, 1/K 2 (2,3) ∞, 0 ∞, 0 ∞, 0 2/3
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2.3.4 Bode’s Ideal Loop Transfer Function as
Reference System

2.3.4.1 Introduction

In the previous sections it has been shown that the system

G(s) =
A

sα + A
, 0 < α < 2, (2.84)

can exhibit behaviors that range from relaxation to oscillation, including
the behaviors corresponding to first- and second-order systems as particular
cases. For this reason, it is interesting to take this system as the reference
system. It was first proposed in [15] and is the starting point for the CRONE
control [16, 17]. This function can be considered as the result of the closed-
loop connection of a fractional-order integrator with gain A and order α (see
Figure 2.12), that is, a system whose open-loop transfer function is given by

F (s) =
A

sα
, 0 < α < 2. (2.85)

A

sα
� ��

�

+R(s) Y (s)

Figure 2.12 Reference system

Bode called this transfer function, F (s), the ideal open-loop transfer
function [3, 18].

2.3.4.2 General Characteristics

This ideal transfer function has the following characteristics:

1. Open-loop:

• The magnitude curve has a constant slope of −20α dB/dec.
• The gain crossover frequency depends on A.
• The phase plot is a horizontal line of value −απ/2.
• The Nyquist plot is a straight line which starts from the origin with

argument −απ/2.
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2. Closed-loop with unity negative feedback:

• The gain margin is infinite.
• The phase margin is constant with value ϕm = π (1 − α/2), only

depending on α.
• The step response is of the form

y(t) = AtαEα,α+1 (−Atα) . (2.86)

2.3.4.3 Step Response and Characteristic Parameters

In Figure 2.13 the step responses of the system F (s) for A = 1 and different
values of α are represented.
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Figure 2.13 Step response (2.86) with A = 1

These curves correspond to the damping ratios and the natural frequency
that can be obtained from the structural roots of the denominator of F (s).
These roots are

s1,2 = A1/αejπ/α = A1/α
(
cos

π

α
+ j sin

π

α

)
. (2.87)

By using the well known relations

ωn = |s1,2| , − δωn = � (s1,2) , ωp = ωn

√
1 − δ2, (2.88)

for the natural frequency ωn, the damping ratio δ, and the damped natural
frequency of the system ωp as functions of the position of the poles, these
characteristic parameters can be determined by

δ=− cos
π

α
, ωn =A1/α, ωp =A1/α

√
1−
(
− cos

π

α

)2
=A1/α sin

π

α
. (2.89)

Other alternative definitions can be found in [15,16].
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2.3.4.4 Frequency Response and Characteristic Parameters

To complete the characterization of the system as done for the integer-
order ones, the frequency and the resonant peak can be determined. For
this purpose, we will set s = jω to obtain

F (jω) =
A

(jω)α + A
=

A

(ωα cos απ/2 + A) + jωα sin απ/2
. (2.90)

The magnitude of this function is given by

|F (jω)| =
A√

ω2α + 2Aωα cos απ/2 + A2
, (2.91)

having the maximum at

ωα = −A cos α
π

2
=⇒ ωr =

(
−A cos α

π

2

)1/α

, α > 1. (2.92)

By substituting the equation obtained for the resonant frequency ωr in the
equation of the magnitude, the equation for the resonant peak is

Mr =
1

sinαπ/2
. (2.93)

As can be seen, the resonant peak, like the damping ratio, only depends
on α. Figure 2.14 shows the magnitude of the frequency responses for A =
1, α = 1, 1.2, 1.5, 1.8.
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Figure 2.14 Magnitude of the frequency responses of the system (2.84)
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2.4 Summary

The aim of this chapter has been to provide the reader with the essentials
of input-output models (external representations) for fractional-order linear
time invariant systems, as well as the dynamical properties (stability, time
transient and steady-state responses, and frequency response) usually consid-
ered in classical control theory. With this aim, we have introduced two prelim-
inary sections, the first devoted to the fundamental definitions of fractional-
order operators in both time and Laplace domain, and the second to the
analytical and numerical solutions of the fractional-order ordinary differential
equations. As an introduction to the fractional-order control, a brief study
of the so-called Bode’s ideal function has been included. The necessary tools
for using modern control theory (state-space or internal representations) will
be given in the following chapter. Numerical implementations of the content
of this chapter can be found in Chapter 13.



Chapter 3

State-space Representation and
Analysis

The principles presented in Chapter 2 for studying fractional-order dynamic
systems expressed in the input-output representation are extended in this
chapter to the state-space representation. This chapter considers only systems
that exhibit the following features, which are similar to those considered in the
previous chapter: (1) systems are linear, (2) systems are time invariant, and
(3) systems are of commensurate-order. We will show that this last property
enables models and properties that are a quite straightforward generalization
of well known results for integer-order LTI (linear time invariant) systems to
be obtained. This chapter is divided into two parts: the first is devoted to
the study of the representation and analysis of continuous systems, and the
second studies discrete systems. Similar results are obtained for both kinds
of systems in modeling, solution of the differential (or difference) equations,
stability analysis, controllability, and observability.

3.1 Continuous-time LTI State-space Models

Consider a multivariable LTI system, that is, a system with multiple inputs
and/or outputs. A state-space representation can be obtained for these
systems of the form

Dαx = Ax + Bu (3.1)

y = Cx + Du, (3.2)

where α = [α1, α2, · · · , αn], u ∈ Rl is the input column vector, x ∈ Rn is
the state column vector, y ∈ Rp is the output column vector, A ∈ Rn×n is
the state matrix, B ∈ Rn×l is the input matrix, C ∈ Rp×n is the output
matrix, and D ∈ Rp×l is the direct transmission matrix. The above notation
establishes that fractional-order differentiation Dαi is applied only to the

35
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element xi of state x in (3.1), where (3.1) is referred to as the fractional-
order state equation, and (3.2) the output equation.

The above fractional-order model can be simplified in the particular case
when αi ≡ α, 1 � i � n, and the state-space equation (3.1) becomes

Dαx = Ax + Bu, (3.3)

where now operator Dα means that all the states are α-differentiated.
Moreover, assume that 0 < α � 1.

Using Laplace transform in (3.3), taking into account the Caputo’s def-
inition for the fractional-order derivatives in (2.10), and applying property
(2.18) in the case that 0 < α � 1, yields

sαX(s) − sα−1x(0) = AX(s) + BU(s) =⇒
X(s) = (sαI − A)−1

BU(s) + (sαI − A)−1
sα−1x(0),

(3.4)

Y (s) = CX(s) + DU(s). (3.5)

Note that Caputo’s definition is needed if we want initial conditions to be
expressed directly as the values of the states at t = 0. In the case of null
initial conditions (x(0) = 0), (3.4) becomes

X(s) = (sαI − A)−1
BU(s), (3.6)

and combining this with (3.5) yields

Y (s) = G(s)U(s), G(s) = C(sαI − A)−1B + D, (3.7)

where I is the identity matrix of dimension n×n, and matrix G(s) has p rows
and l columns. G(s) represents a transfer function matrix whose numerator
and denominator polynomials are expressed in terms of integer powers of sα.
Then as a consequence of having imposed that αi = α, the dynamics has
become that of a commensurate-order system.

3.1.1 Stability Analysis

Elements of G(s) are transfer functions with a common polynomial denomi-
nator given by

φ(sα) = det (sαI − A) . (3.8)

Let us denote as pi the poles of system (3.7). They are defined as the solution
of the equation φ(sα) = 0. Then it is easily derived from (3.8) that system
poles can be obtained from

pi = λ
1/α
i , (3.9)

where λi, 1 � i � n are the eigenvalues of matrix A.
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The stability condition in the BIBO sense is attained if the poles of the
system lie in the negative half-plane of the s-complex plane (|arg(pi)| > π/2).
Then, taking into account (3.9), and the considerations given in Section 2.3.2,
the stability condition for commensurate-order systems is obtained [14]:

|arg(λi)| > α
π

2
, 1 � i � n. (3.10)

In the case of rational commensurate-order systems (α = 1/q) this condition
becomes

|arg(λi)| >
π

2q
, 1 � i � n, (3.11)

and the maximum number of poles pi is n.

3.1.2 State-space Realizations

The results presented from now on in this chapter are limited only to single-
input single-output (SISO) systems (l = p = 1).

Consider again the commensurate-order transfer function defined in (2.54).
For convenience, it is presented here:

G(s) =
Y (s)
U(s)

=

m∑
k=0

bk(sα)k

n∑
k=0

ak(sα)k

, an = 1, m � n, (3.12)

which can also be obtained from any state-space model of a SISO fractional-
order system by using (3.7).

Associated with this transfer function, three canonical state-space repre-
sentations can be proposed, which are similar to the classical ones developed
for integer-order differential equation systems.

3.1.2.1 Controllable Canonical Form

Defining the first state in terms of its Laplace transform as

X1(s) =
1

n∑
k=0

ak(sα)k

U(s), (3.13)

and the remaining elements of the state vector in a recursive way from this
one as xi+1 = Dαxi, i = 1, 2, · · · , n − 1, the state representation, expressed
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in the controllable canonical form, is given by the matrix equations⎡⎢⎢⎢⎢⎢⎢⎢⎣

Dαx1

Dαx2

...
Dαxn−2

Dαxn−1

Dαxn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...
xn−2

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u, (3.14)

y = [b0−bna0, b1−bna1, · · · , bn−1−bnan−1]

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦+ bnu, (3.15)

where bi = 0, for m < i � n.

3.1.2.2 Observable Canonical Form

From (3.12), collecting in the left hand side of the equation the terms that
contain the powers of s and in the right hand side the terms that do not, we
have

sα
[
((sα)n−1 + an−1(sα)n−2 + · · · + a1)Y (s) − (bn(sα)n−1 + · · · + b1)U(s)

]︸ ︷︷ ︸
X1(s)

= b0U(s) − a0Y (s),
(3.16)

and, from the definition of x1 given in the above expression, the first state
equation and the equation used to define the following states are obtained:

Dαx1 = b0u − a0y,

X1(s) = ((sα)n−1 + · · · + a1)Y (s) − (bn(sα)n−1 + · · · + b1)U(s).
(3.17)

Repeating in the second equation of (3.17) the rearrangement carried out in
(3.16) gives

sα
[
((sα)n−2 + an−1(sα)n−3 + · · · + a2)Y (s) − (bn(sα)n−2 + · · · + b2)U(s)

]︸ ︷︷ ︸
X2(s)

= X1(s) + b1U(s) − a1Y (s),
(3.18)

and, from the definition of x2 given in the above expression, the second state
equation, and the equation used to define the following states are obtained:

Dαx2 = x1 + b1u − a1y,

X2(s) = ((sα)n−2 + · · · + a2)Y (s) − (bn(sα)n−2 + · · · + b2)U(s).
(3.19)
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Repeating this procedure until xn is defined, we get finally that

Dαxn = xn−1 + bn−1u − an−1y,

Xn(s) = Y (s) − bnU(s).
(3.20)

Note that the last expression of (3.20) is the output equation.
Substituting y by the output equation in the first equations of (3.17),

(3.19), (3.20), and rearranging the above fractional-order state equations,
the observable canonical form follows in matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Dαx1

Dαx2

Dαx3

...
Dαxn

Dαxn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 −a0

1 0 · · · 0 0 −a1

0 1 · · · 0 0 −a2

...
...

. . .
...

...
...

0 0 · · · 1 0 −an−2

0 0 · · · 0 1 −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b0 − bna0

b1 − bna1

b2 − bna2

...
bn−2−bnan−2

bn−1−bnan−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u,

(3.21)

y = [0, · · · , 0, 1]

⎡⎢⎢⎢⎣
x1

...
xn−1

xn

⎤⎥⎥⎥⎦+ bnu, (3.22)

where bi = 0, for m < i � n.

3.1.2.3 Modal Canonical Form

Carrying out the partial fraction expansion of (3.12) in functions of sα, and
assuming that the first pole λ1 is of r multiplicity, and the remaining n − r

poles are of multiplicity 1, yields

Y (s) =
[
bn +

ρ1

(sα − λ1)r
+ · · · + ρr−1

(sα − λ1)2
+

ρr

sα − λ1

+
ρr+1

sα − λr+1
+ · · · ρn

sα − λn

]
U(s).

(3.23)
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The state variables are defined as

X1(s) =
1

(sα − λ1)r
U(s) =

1
sα − λ1

X2(s),

X2(s) =
1

(sα − λ1)r−1
U(s) =

1
sα − λ1

X3(s),

...

Xr−1(s) =
1

(sα − λ1)2
U(s) =

1
sα − λ1

Xr(s),

Xr(s) =
1

sα − λ1
U(s),

Xr+1(s) =
1

sα − λr+1
U(s),

...

Xn(s) =
1

sα − λn
U(s).

(3.24)

In the above set of equations, the equations of the first (r− 1) states yield
that Dαxi = λ1xi+xi+1, 1 � i < r, and the equations of the remaining states
yield that Dαxi = λixi +u, r � i � n, (where it is assumed λr = λ1). Taking
into account these relations and (3.23), the modal canonical form follows,
given by the matrix equations⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dαx1

Dαx2

...
Dαxr

Dαxr+1

...
Dαxn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 1 · · · 0 0 · · · 0
0 λ1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · λ1 0 · · · 0
0 0 · · · 0 λr+1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...
xr

xr+1

...
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u, (3.25)

y =
[
ρ1, ρ2, · · · , ρr, ρr+1, · · · , ρn

] ⎡⎢⎣ x1

...
xn

⎤⎥⎦+ bnu, (3.26)

where bn = 0 if m < n.

Example 1 We examine the dynamic model of an immersed plate.
Consider a thin rigid plate of mass M and area S immersed in a Newtonian
fluid of infinite extent and connected by a massless spring of stiffness K to
a fixed point as shown in Figure 3.1. A force f(t) is applied to the plate. It
is assumed that the spring does not disturb the fluid and that the area of



3.1 Continuous-time LTI State-space Models 41

the plate is sufficiently large to produce in the fluid adjacent to the plate the
velocity v(t, z) and stresses σ(t, z) described by [19], which are represented
by the time fractional-order derivative relation

σ(t, z) =
√

μρD0.5v(t, z), (3.27)

where z is the distance of a point in the fluid to the submerged plate.
Assuming that the plate-fluid system is initially in an equilibrium state, and
displacement and velocities are initially zero, the dynamics of the system of
Figure 3.1 is given by

MD2y(t) = f(t) − Ky(t) − 2Sσ(t, 0). (3.28)

�

�

�
Newtonian fluid

M, S

f(t)

y

z

K

Figure 3.1 Thin rigid plate immersed in a Newtonian fluid

Substituting (3.27) in (3.28) and taking into account that v(t, 0) = D1y(t),
it follows that [20]

ABD2y(t) + BBD1.5y(t) + CBy(t) = f(t), (3.29)

where AB = M , BB = 2S
√

μρ, CB = K, and the equilibrium initial state of
the system is

y(0) = 0, ẏ(0) = 0. (3.30)

In the proposed example the following values are given (parameter values
were taken from [3]):

AB = 1, BB = 0.5, CB = 0.5, f(t) =

{
1, 0 � t � 1,

0, t > 1.
(3.31)

This system is clearly of commensurate-order with α = 0.5. Moreover it is
of rational-order with q = 2. Taking into account that the maximum order of
this differential equation is nd = 2, then the number of states to be considered
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is n = ndq = 4, the Laplace transform of (3.29) is

G(s) =
1

(s0.5)4 + 0.5(s0.5)3 + 0.5
, (3.32)

and the fractional-order state-space models are as follows:
1. Controllable canonical form given by (3.14), (3.15):

D0.5x =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1

−0.5 0 0 −0.5

⎤⎥⎥⎦x +

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ f, (3.33)

y =
[
1 0 0 0

]
x. (3.34)

2. Observable canonical form given by (3.21), (3.22):

D0.5x =

⎡⎢⎢⎣
0 0 0 −0.5
1 0 0 0
0 1 0 0
0 0 1 −0.5

⎤⎥⎥⎦x +

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ f, (3.35)

y =
[
0 0 0 1

]
x. (3.36)

3. Modal canonical form given by (3.25), (3.26).
First the roots of the characteristic equation φ(λ) = 0, λ = s0.5 of (3.32)

are calculated: λ1,2 = −0.7388 ± j0.5688, λ3,4 = 0.4888 ± j0.5799, and their
respective residues: ρ1,2 = 0.2882 ∓ j0.3136, ρ3,4 = −0.2882 ∓ j0.3025. Then
the matrix equations are obtained:

D0.5x =

⎡⎢⎢⎣
λ1 0 0 0
0 λ∗

1 0 0
0 0 λ3 0
0 0 0 λ∗

3

⎤⎥⎥⎦x +

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ f, (3.37)

y =
[
ρ1 ρ∗1 ρ3 ρ∗3

]
x, (3.38)

where an upper (∗) denotes complex conjugate.
Finally, the stability of this system is studied. The phase of the roots λi

are: |arg(λ1,2)| = 2.4855 rad, |arg(λ3,4)| = 0.8704 rad. As all these values are
larger than απ/2 = 0.7854 rad, stability condition (3.10) is always satisfied
and the system of this example is stable. �
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3.2 Solution of the State Equation of Continuous LTI
Commensurate-order Systems

Given a SISO system of commensurate-order, its states can be obtained from
the inverse Laplace transform of (3.4):

x(t)=L −1 {X(s)}=L −1
{

(sαI−A)−1
BU(s)+(sαI − A)−1

sα−1x(0)
}

.
(3.39)

Define Φ̂(t) = L −1
{

(sαI−A)−1
}

and Φ(t) = L −1
{

(sαI−A)−1
sα−1
}

,

both for t � 0, so that Φ(t) = Φ̂(t) ∗ χα−1(t) being (see Table A.2)

χα−1(t) = L −1
(
sα−1
)

=

⎧⎨⎩
t−α

Γ(1 − α)
, α < 1,

δ(t), α = 1,
(3.40)

where δ(t) is the Dirac’s delta function. Applying the property of the Laplace
transform related to the convolution product, the following expression is
obtained:

x(t) = Φ(t)x(0) + Φ̂(t) ∗ [Bu(t)]

= Φ(t)x(0) +
∫ t

0

Φ̂(t − τ)Bu(τ)dτ, α � 1.
(3.41)

As can be seen in (3.41), Φ(t) is the matrix usually known as the state
transition matrix.

Using a procedure similar to that used for linear systems of integer-
order, or as proposed in [20], the form of the state transition matrix can
be determined. For that purpose the following expression will be used:

CDαx(t) = Ax(t), x(0) = x0, (3.42)

where we recall that the Caputo’s definition is being used, and it is being
made explicit in the notation of the differential operator. Then we assume
that the solution is of the form

x(t) = A0 + A1t
α + A2t

2α + · · · + Aktkα + · · · . (3.43)

At the initial instant t = 0, (3.43) yields

x(0) = A0.

Performing the Caputo’s α-fractional-order differentiation of (3.43), and
using the property [21]

CDαtγ =
Γ (γ + 1)

Γ (γ + 1 − α)
tγ−α, (3.44)
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it is found that

CDαx(t) = 0 + A1Γ (1 + α) +
A2Γ (1 + 2α)

Γ (1 + α)
tα + · · ·

+
AkΓ (1 + kα)

Γ (1 + (k − 1)α)
t(k−1)α + · · · = Ax(t).

(3.45)

Setting t = 0 in (3.45) it follows that

A1 =
Ax(0)

Γ (1 + α)
.

Applying successive derivatives of order α to (3.42), and carrying out the
following iterative procedure:

CDkαx(t) = AkΓ (1 + kα) =C Dα(CD(k−1)αx(t)) = A(Ak−1x(t)), (3.46)

matrixes of coefficients Ak can be obtained:

Ak =
Akx(0)

Γ (1 + kα)
,

and the solution (3.43) is given by

x(t)=x(0)+
Ax(0)

Γ (1+α)
tα+

A2x(0)
Γ (1+2α)

t2α+· · · + Akx(0)
Γ (1+kα)

tkα+· · ·

=

( ∞∑
k=0

Aktkα

Γ (1 + kα)

)
x(0) = Eα,1 (Atα)x(0) = Φ(t)x(0).

(3.47)

It is clear that the Mittag–Leffler function here performs the same role as
that performed by the exponential function for the integer-order systems. The
well known exponential matrix, eAt is just a particular case of the generalized
exponential matrix, Eα,1 (Atα), which can be called Mittag–Leffler matrix
function.

Moreover, two important remarks follow on the previous results.

Remark 3.1. As the fractional-order derivative of x depends on the “history”
of x from the lower limit of the integral that defines this operator (usually, we
made this limit equal to 0 in this chapter, only for simplification purposes)
until the present instant, the state defined in this chapter is not a state
in the classical sense of integer derivative models. In standard state models
the state at instant t includes all the information needed to calculate the
future behavior of the system provided that future inputs were known. In a
fractional-order model it is not true as the fractional-order derivative has
“memory” from t up to the lower limit that defines the fractional-order
operator. Then, in order to determine the future behavior of a fractional-
order system, not only is the value of the state at instant t needed but also
all the values of the state in the interval [0, t]. This condition is reduced to



3.2 Solution of the State Equation of Continuous LTI Commensurate-order Systems 45

the knowledge of only x(t) in the case of integer-order derivatives because
the fractional-order differentiation operator collapses into a local operator
that only depends on the value of the state in the immediate vecinity of t.
Then we should denote x(t) as a pseudo-state. However, we call this vector
a state throughout the remainder of this chapter only for lexical simplifying
purposes. �

Remark 3.2. Matrix Φ(t) in (3.41) is not a state transition matrix in the
usual sense. It really means Φ(t, 0), the second argument being the lower
limit of the integral that defines the fractional-order derivative used in the
state model. Then this argument is fixed and cannot be changed to any τ . For
the same reason, the semi-group property verified in standard state transition
matrices (Φ(t, t0) = Φ(t, τ)Φ(τ, t0), t0 < τ < t) is not satisfied here. We
denote Φ(t) as the state pseudo-transition matrix throughout the remainder
of this chapter. �

In the following, three methods are proposed to calculate the state pseudo-
transition matrix, which are the generalizations of the well known methods
used for integer-order LTI systems.

It will be assumed that matrix A has n distinct eigenvalues λi, 1 � i �
n. The case of multiple eigenvalues can also be considered using the same
modifications reported in the state methods literature for these three methods
in integer-order LTI systems.

3.2.1 Inverse Laplace Transform Method

This method is based on computing the expression

Φ(t) = L −1
{

(sαI − A)−1
sα−1
}

, t � 0. (3.48)

The procedure is as follows:

1. Operate (sαI − A)−1. This yields a matrix of transfer functions which
are rational functions in sα. Each element of this matrix is denoted as
φ̂i1,i2(s

α), 1 � i1, i2 � n.
2. Find the partial fraction expansion of each φ̂i1,i2(s

α) in terms of sα:

φ̂i1,i2(s) =
n∑

i3=1

r(i1, i2, i3)
sα − λi3

. (3.49)

3. Carry out the inverse Laplace transform of (3.49) multiplied by sα−1:

φi1,i2(t) = L −1

{
n∑

i3=1

r(i1, i2, i3)sα−1

sα − λi3

}
, (3.50)
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where the partial fraction expansion of the previous step has been used.
Note that inverse Laplace transforms of the terms of this expansion are
the Mittag–Leffler functions r(i1, i2, i3)Eα,1(λi3t

α), which can be obtained
using the numerical definition of these functions given in (2.28), (2.32).

Repeating the second and third steps of this procedure for all the elements
of matrix (3.48) yields the state pseudo-transition matrix Φ(t).

3.2.2 Jordan Matrix Decomposition Method

Performing the Jordan matrix decomposition A = V ΛV −1, where Λ =
diag (λ1, λ2, · · ·λn), and substituting this in (3.47), it follows that

Φ(t) = V

( ∞∑
k=0

Λktkα

Γ (1 + kα)

)
V −1, (3.51)

and using the definition of the scalar Mittag–Leffler function it is found that

Φ(t) = V diag (Eα,1(λ1t
α), Eα,1(λ2t

α), · · · ,Eα,1(λntα))V −1. (3.52)

In this expression, functions Eα,1(λit
α) have to be calculated numerically,

similar to the previous method.

3.2.3 Cayley–Hamilton Method

This method is based on the well known Cayley–Hamilton Theorem which
states that a matrix A satisfies its own characteristic equation (3.8):

φ(A) = 0. (3.53)

Given an arbitrary function f(A, t), that can be expanded in a Taylor’s
matrix series, and applying (3.53) reduces this infinite series to a polynomial
of order n − 1 of the matrix A with time varying coefficients.

Taking into account that φ(λi) = 0 is also verified (λi being the eigenvalues
of A), it follows that f(λi, t) can also be expressed as a polynomial of order
n − 1 of λi with the same time varying coefficients as before.
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All these results can be expressed in a compact form by the Sylvester’s
interpolation formula [22], which states that∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 λ2
1 · · λn−1

1 f (λ1, t)
1 λ2 λ2

2 · · λn−1
2 f (λ2, t)

·
·
1 λn λ2

n · · λn−1
n f (λn, t)

I A A2 An−1 f (A, t)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

in the case of distinct eigenvalues (a version of this formula also exists for the
multiple eigenvalue case). Solving the previous equation for f (A, t) yields

f (A, t) = a0 (t) I + a1 (t) A + · · · + an−1 (t) An−1, (3.54)

where coefficients ai are to be determined. Solving for the other n equations
associated with the eigenvalues of A, a system of equations is obtained that
allows for calculating these n functions ai (t) , (i = 0, 1, · · · , n − 1):⎡⎢⎢⎢⎣

f (λ1, t)
f (λ2, t)

...
f (λn, t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λn · · · λn−1
n

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

H

⎡⎢⎢⎢⎣
a0 (t)
a1 (t)

...
an−1 (t)

⎤⎥⎥⎥⎦ . (3.55)

Functions ai (t) could be calculated from this expression if matrix H were
invertible. As it is a Vandermonde matrix, it would be full-rank if all the
λi were distinct [23], which is the case, and, then, functions ai (t) can be
determined from ⎡⎢⎢⎢⎣

a0 (t)
a1 (t)

...
an−1 (t)

⎤⎥⎥⎥⎦ = H−1

⎡⎢⎢⎢⎣
f (λ1, t)
f (λ2, t)

...
f (λn, t)

⎤⎥⎥⎥⎦ . (3.56)

Defining f(A, t) = Φ (t) = Eα,1 (Atα) in (3.54), it is shown that

Eα,1 (Atα) =
n−1∑
i=0

ai (t)Ai, (3.57)

where functions ai (t) can be obtained from (3.56) making f (λi, t)=Eα,1(λit
α),

1 � i � n. And the state pseudo-transition matrix is then obtained.
Next some lemmas will be proposed about the expansion of Eα,1 shown in

(3.57), that will be used later to obtain the controllability and observability
conditions.
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Lemma 3.3. The set of fractional power functions {1, tα, t2α, · · · t(k−1)α},
where k ∈ N+, t � 0, and tα accounts for the real positive root of that
function, is linearly independent.
Proof. It is demonstrated by contradiction. Assume that these k functions
are linearly dependent. Then there should exist a set of real numbers
{v1, v2, · · · , vi, · · · , vk} not all trivially null such that

k∑
i=1

vit
(i−1)α = 0, (3.58)

where tα means the real positive root of this fractional power function.
Choosing a set of increasing time instants {t1, t2, t3, · · · , tk}, condition (3.58)
must be verified for all the elements of this set. This condition can be
expressed in matrix form as⎡⎢⎢⎢⎢⎢⎣

1 tα1 (tα1 )2 · · · (tα1 )k−1

1 tα2 (tα2 )2 · · · (tα2 )k−1

1 tα3 (tα3 )2 · · · (tα3 )k−1

...
...

...
. . .

...
1 tαk (tαk )2 · · · (tαk )k−1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

v1

v2

...
vk

⎤⎥⎥⎥⎦ = 0. (3.59)

The coefficient matrix of (3.59) is a Vandermonde matrix which is full-
rank if tαi1 �= tαi2 , 1 � i1, i2 � k. Taking into account that tα is an increasing
function if α > 0, this means that as all ti in the previous set are different,
then all the tαi will also be different, the Vandermonde matrix will be full-
rank and invertible, and this will imply that column vector containing the
scalars vi in (3.59) will be zero, in contradiction with the assumption. Then
the lemma is proven. �

Lemma 3.4. Given any arbitrary set {z1, z2, · · · zi, · · · zn} where zi (1� i�n)
are distinct complex numbers, and n is the order of matrix A, then the set
of functions {Eα,1(z1t

α), Eα,1(z2t
α), · · ·Eα,1(zit

α), · · · , Eα,1(zntα)} is linearly
independent.
Proof. It is demonstrated by contradiction. Assume that these functions
are linearly dependent. Then there should exist a set of complex numbers
{v1, v2, · · · , vi, · · · , vn} not all trivially null such that

n∑
i=1

viEα,1(zit
α) = 0. (3.60)

Taking into account the definition of the Mittag–Leffler function in (2.28),
(2.32), (3.60) becomes

∞∑
k=0

tαk

Γ (1 + kα)

n∑
i=1

viz
k
i = 0. (3.61)
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This expression is a summation of fractional powers in t; Lemma 3.3
states that these fractional power functions are linearly independent and,
then, the only possibility of this being zero for any t ∈ [0,∞) is that all the
coefficients that multiply the powers of t in that series are zero. This implies

that
n∑

i=1

viz
k
i = 0, ∀k. If we consider the first n terms of series (3.61), that

condition yields (k = 0, · · · , n − 1)⎡⎢⎢⎢⎣
1 1 · · · 1
z1 z2 · · · zn

...
...

. . .
...

zn−1
1 zn−1

2 · · · zn−1
n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

v1

v2

...
vn

⎤⎥⎥⎥⎦ = 0. (3.62)

The coefficient matrix in (3.62) is the transpose of a Vandermonde matrix.
Then if all the zi were distinct this matrix would be full-rank and the only
possibility that (3.62) be verified would be that all the vi = 0, in contradiction
with the initial assumption. �

Lemma 3.5. If all the eigenvalues of matrix A, λi, 1 � i � n are distinct,
then functions ai(t), 0 � i � n − 1 of (3.57) are linearly independent.
Proof. It is also demonstrated by contradiction. Assume that these functions
were linearly dependent. Then there should exist a vector of complex numbers
v = [v1, v2, · · · , vi, · · · , vn]T not all trivially null such that

vT

⎡⎢⎢⎢⎣
a0 (t)
a1 (t)

...
an−1 (t)

⎤⎥⎥⎥⎦ = 0. (3.63)

Equation 3.56 holds if all the eigenvalues λi were distinct, which is the
case. Then substituting this expression into (3.63), and taking into account
that f (λi, t) = Eα,1(λit

α), it is obtained that

vT H−1

⎡⎢⎢⎢⎣
Eα,1 (λ1, t)
Eα,1 (λ2, t)

...
Eα,1 (λn, t)

⎤⎥⎥⎥⎦ = 0. (3.64)

As the product of vT H−1 is a constant complex row vector, (3.64)
implies that the n functions Eα,1(λit

α) are linearly dependent which is in
contradiction with the statement of Lemma 3.4 (just make zi = λi in that
lemma). �

Next an example is developed which illustrates the general solution and
applies one of the proposed methods to calculate the state pseudo-transition
matrix.
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Example 2 Consider again the example of the previous section. It is desired
to study the response of the plate when the force given by (3.31) is applied
at the bottom of the plate. It is also assumed that initially the position is
0.1 m and the velocity −0.01 m/sec.

We are interested in monitoring the derivatives of the output (position).
Looking at the output equation of the controllable canonical form (3.34),
the output coincides with the first state x1 in this representation, the
other states being the successive fractional-order derivatives of the output.
Moreover the initial state in this representation is straightforward: xc(0) =
[0.1, 0,−0.01, 0]T, when the third state is the velocity and the initial states
of x2 and x4 are supposed to be zero. Therefore the controllable canonical
form is adequate for this problem, and the state vector is denoted xc(t) in
this representation.

However the calculation of the Mittag–Leffler matrix function (3.47) in this
representation is not easy. For the sake of simplicity, the modal canonical form
(3.37), (3.38) will be used, and then the obtained states will be transformed
to the controllable canonical form. It has the advantage of a diagonal matrix
A, which allows the use of (3.52) of the second method proposed to obtain
Φ(t), but has the drawback of having to handle complex numbers.

We need to determine the matrix transformation of states between the
controllable and modal canonical forms. Then the Jordan decomposition of
the matrix A, expressed in the controllable canonical form (see (3.33)), is
carried out first:⎡⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−0.5 0 0 −0.5

⎤⎥⎥⎦ = Vj

⎡⎢⎢⎣
λ1 0 0 0
0 λ∗

1 0 0
0 0 λ3 0
0 0 0 λ∗

3

⎤⎥⎥⎦V −1
j , (3.65)

where λ1 and λ3 are the values given in (3.37). The transformation vector V

is calculated combining the above diagonalization with the condition[
1, 1, 1, 1

]T = V −1
j

[
0, 0, 0, 1

]T , (3.66)

needed to guarantee the transformation between matrices B in these canon-
ical forms. Assume that a matrix Vj has been obtained that verifies (3.65),
e.g., using the eig() function of MATLABTM. Then any matrix V = VjΠ,
Π being an arbitrary diagonal matrix, would also verify (3.65). Therefore
(3.66) is the condition that allows for the evaluation of the particular matrix
that transforms the controllable into the modal canonical form. If the above
matrix V is used in (3.66) instead of Vj it yields

Π
[
1, 1, 1, 1

]T = V −1
j

[
0, 0, 0, 1

]T , (3.67)
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from which diagonal elements of matrix Π can easily be obtained:[
Π1,1, Π2,2, Π3,3, Π4,4

]T = V −1
j

[
0, 0, 0, 1

]T , (3.68)

and the transform matrix is calculated:

V = VjΠ

=

⎡⎢⎢⎣
0.288−j0.314 0.288+j0.314 −0.288−j0.303 −0.288+j0.303
−0.035+j0.396 −0.035−j0.396 0.0345−j0.315 0.0345+j0.315
−0.2−j0.312 −0.2+j0.312 0.2−j0.134 0.2+j0.134
0.325+j0.117 0.325−j0.117 0.175+j0.05 0.175−j0.05

⎤⎥⎥⎦ .

Then the transformation between states of the controllable and modal
canonical forms is given by [22]

xc(t) = V xj(t), (3.69)

being xj(t) the state in the modal canonical form.
Next we determine the initial state in the modal canonical form. Thus it

is found that

xj(0)=V −1xc(0)

=0.1×[0.45+j0.27, 0.45−j0.27,−0.524+j0.446,−0.524−j0.446]T .

Free state evolution, which is given by (3.47), can be more easily calculated
using the modal canonical form than using the other canonical forms. This is
because the evaluation of the Mittag–Leffler matrix function from the series
expansion given in that expression is transformed into the evaluation of two
Mittag–Leffler scalar functions, according to (3.51) and (3.52). This yields

Φj(t)=Eα,1 (Atα) =

⎡⎢⎢⎣
Eα,1 (λ1t

α) 0 0 0
0 E ∗

α,1 (λ1t
α) 0 0

0 0 Eα,1 (λ3t
α) 0

0 0 0 E ∗
α,1 (λ3t

α)

⎤⎥⎥⎦ , (3.70)

where Φj is the pseudo-state transition matrix given in the modal canonical
form. Note also that, from the series expansion definition of the Mittag–Leffler
function given in Chapter 2, it easily follows that Eα,1 (λ∗tα) = E ∗

α,1 (λtα), a
result that has also been used in the evaluation of (3.70).

In this example α = 0.5. This is a particular case of the Mittag–Leffler
function which involves the well known erfc function [3]:

E0.5,1 (z) = ez2
erfc(−z), erfc(z) =

2√
π

∫ ∞

z

e−t2dt. (3.71)

Function E0.5,1 (z) could easily be calculated if argument z were real
by using the erfc function. MATLAB includes erfc(z) as one of its basic
functions.
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But in our example the argument z is complex. In this case the Mittag–
Leffler function can be calculated for z values of moderate absolute value by

summing the series E0.5,1 (z) =
∞∑

k=0

zk

Γ (1 + 0.5k)
, which quickly converges. If

the modulus of z were large then summation of the previous series would
exhibit convergence problems. In this case the Mittag–Leffler function can be
approximated by using some rational formulas [24].

States are expressed in the controllable canonical form using (3.69). In
this representation, the state evolution in free motion from the initial state
is given by

xc(t) = V diag
(
E0.5,1 (λ1t

α) , E ∗
0.5,1 (λ1t

α) ,E0.5,1 (λ3t
α) , E ∗

0.5,1 (λ3t
α)
)
xj(0),
(3.72)

and is plotted in Figure 3.2.
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Figure 3.2 Free evolution of the controllable canonical form states of the immersed plate

Evolution of the system from a zero initial state as consequence of an
external input can be obtained from (3.39), taking into account the structure
of the modal canonical form matrices:

xc(t) = V L −1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sα − λ1

1
sα − λ∗

1
1

sα − λ3
1

sα − λ∗
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
U(s)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.73)

Moreover the form of the input is given by (3.31), which can be expressed
in terms of delayed step functions, u(t) = f(t) = uo(t) − uo(t − 1), uo(t)
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being the unit step function. Then the Laplace transform of the input is
U(s) = (1 − e−s)/s, and the inverse Laplace transform

L −1

{
1

s(sα − λ)

}
=

eλ2terfc(−λ
√

t) − 1
λ

=
E0.5,1

(
λ
√

t
)− 1

λ
, (3.74)

which was obtained from Table A.2, is needed in order to solve for (3.73).
Substituting (3.74) into (3.73) it follows that

xc(t) = V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0.5,1

(
λ1

√
t
)
uo(t) − E0.5,1

(
λ1

√
t − 1
)
uo(t − 1)

λ1

E0.5,1

(
λ∗

1

√
t
)
uo(t) − E0.5,1

(
λ∗

1

√
t − 1
)
uo(t − 1)

λ∗
1

E0.5,1

(
λ3

√
t
)
uo(t) − E0.5,1

(
λ3

√
t − 1
)
uo(t − 1)

λ3

E0.5,1

(
λ∗

3

√
t
)
uo(t) − E0.5,1

(
λ∗

3

√
t − 1
)
uo(t − 1)

λ∗
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.75)

where functions E0.5,1(·) are calculated as before.
State evolution under the combined effects of non-zero initial conditions

(3.72) and the external input (3.75) in the controllable canonical form is
obtained by summing these two expressions, being plotted in Figure 3.3.
In Figures 3.2 and 3.3 it can be observed that state x3 is the first-order
derivative of x1, while states x2 and x4 are respectively the 0.5th- and 1.5th-
order derivatives of x1. �
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Figure 3.3 Evolution of the controllable canonical form states of the immersed plate
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3.3 Controllability of Continuous LTI
Commensurate-order Systems

The controllability and observability conditions for commensurate-order sys-
tems can be seen in [25] without proof. Here the proofs are given following a
method similar to that used for integer-order systems [22,26].

To obtain the controllability conditions the following definition will be
taken into account.

Definition 3.6. A system is controllable if it is possible to establish a non-
restricted control vector which can lead the system from an initial state,
x(t0), to another final state, x(tf), in a finite time t0 � t � tf . �

For LTI systems, it can be supposed without loss of generality that the
desired final state is x(tf) = 0, i.e., the origin of the state-space, that x(t0) �=
0, and that t0 = 0. Moreover as we are considering only SISO systems, the
control vector reduces to the scalar input u(t).

The solution of the state equation given by (3.41) can be modified as
follows:

x(t) = Φ(t)x(0) +
∫ t

0

Φ(t − τ)Bû(τ)dτ, t � 0, (3.76)

where
û(t) = L −1

{
U(s)s1−α

}
(3.77)

is a fictitious input.
From (3.76) it is shown that

x(tf) = 0 = Φ(tf)x(0) +
∫ tf

0

Φ(tf − τ)Bû(τ)dτ ⇒

Φ(tf)x(0) = −
∫ tf

0

Φ(tf − τ)Bû(τ)dτ .
(3.78)

Recalling equation (3.57) for Φ(t), and substituting this into (3.78), gives

Φ(tf)x(0) = −
∫ tf

0

n−1∑
i=0

ai (tf − τ)AiBû(τ)dτ

= −
n−1∑
i=0

AiB

∫ tf

0

ai (tf − τ) û(τ)dτ ,

(3.79)

which can be written in a matrix form as follows:

Φ(tf)x(0) = − [B, AB,A2B, · · · ,An−1B
]
⎡⎢⎢⎢⎣

ψ0

ψ1

...
ψn−1

⎤⎥⎥⎥⎦ = −CΨ , (3.80)
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where Ψ = [ψ0, ψ1, · · · , ψn−1]
T,

ψi =
∫ tf

0

ai (tf − τ) û(τ)dτ, 0 � i � n − 1, (3.81)

and C =
[
B,AB, A2B, · · · , An−1B

]
. (3.82)

Equation 3.80 has a unique solution Ψ if and only if the rank of C is n,
i.e., its determinant is not zero. If this were true, then it would always be
possible to find at least one function û(t), defined in the interval [0, tf ], such
that all conditions (3.81) are fulfilled. This last assertion is proven next.

Lemma 3.7. A control input of the form

û(t) = ξ(tf − t)Ξ−1(tf)Ψ (3.83)

where

Ξ(tf) =
∫ tf

0

ξT(tf − τ1)ξ(tf − τ1)dτ1, (3.84)

and
ξ(t) =

[
a0 (t) , a1 (t) , · · · , an−1 (t)

]
, (3.85)

satisfies the set of conditions (3.81).
Proof. Conditions (3.81) can be expressed in a compact matrix form as

Ψ =
∫ tf

0

ξT (tf − τ) û(τ)dτ . (3.86)

Input û(t) given by (3.83) exists if and only if matrix Ξ(tf) can be inverted.
Then it is demonstrated that this matrix is full-rank, which is the condition
to be invertible. This is proven by contradiction. Assuming that this matrix
were not invertible, then it would have at least a zero eigenvalue. Denoting
by v the eigenvector corresponding to such eigenvalue, it is verified from the
eigenvalues definition that

Ξ(tf)v = 0, (3.87)

and left multiplying Ξ(tf)v by vT and rearranging terms it follows that∫ tf

0

(ξ (tf − τ1)v)T (ξ (tf − τ1)v) dτ1 = 0, (3.88)

which expresses the integral of the square of the scalar ξ (tf − τ1) v. This
integral is zero only if ξ (tf − τ1) v = 0, ∀τ1 ∈ [0, tf ], which means that the
n functions ai(tf − τ1) are linearly dependent in that time interval. As this
is in contradiction with the statement of Lemma 3.5, then matrix Ξ(tf) is
full-rank, it is invertible, and the û(t) given by (3.83) exists.

Finally, substituting the û(t) given by (3.83) in (3.86), the lemma easily
follows.
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Once a fictitious input signal û(t) has been obtained that verifies (3.79),
the real input u(t) can be determined from (3.77). This states that Û(s) =
U(s)s1−α from which it is shown that

u(t) = L −1

{
Û(s)

1
s1−α

}
= û(t) ∗ χα−1(t) =

∫ t

0

û(t− τ)χα−1(τ)dτ . (3.89)

Expression (3.83) shows that û(t) is bounded. Assume that |û(t)| � ûmax,
then from (3.89) it is shown (taking into account that χα−1(t) � 0, t � 0)
that

|u(t)| �
∫ t

0

|û(t − τ)|χα−1(τ) � ûmax

∫ t

0

χα−1(τ)dτ , (3.90)

which, considering the form of χα−1(t) given by (3.40), and integrating, yields

|u(t)| �

⎧⎨⎩ ûmax
t1−α

Γ(2 − α)
, α < 1

ûmax, α = 1
. (3.91)

Then it is concluded that if (3.82) is verified, a bounded control signal u(t)
exists that, according to Definition 3.6, leads the system to the zero state.
And the controllability condition has been established.

Matrix C of (3.82) is denoted the controllability matrix , and the following
criterion can be defined.

Controllability Criterion. The system given by (3.3) and (3.2) is control-
lable if and only if matrix C defined by (3.82) is full-rank. �

It is concluded that this controllability condition (3.82) for a commensurate-
order system is the same as for an integer-order system, constructing its state
description in relation to the operator Dα or its equivalence in the Laplace
domain, λ = sα.

Example 3 Consider the immersed plate studied previously. Its state equa-
tion is given by (3.33) in the controllable canonical form. Its controllability is
easily determined by calculating the rank of matrix C given by (3.82). Then
it is shown from (3.33) that

C =
[
B, AB, A2B, A3B

]
=

⎡⎢⎢⎣
0 0 0 1
0 0 1 −0.5
0 1 −0.5 0.25
1 −0.5 0.25 −0.125

⎤⎥⎥⎦ , (3.92)

whose determinant is 1. Therefore matrix C is full-rank and the system is
controllable. �
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3.4 Observability of Continuous LTI
Commensurate-order Systems

To obtain the observability conditions the following definition will be taken
into account.

Definition 3.8. A system is observable if any state, x(t0), can be determined
from the observation of y(t) and the knowledge of the input u(t) in a finite
interval of time t0 � t � tf . �

Remark 3.9. In this section this definition is interpreted in a special manner as
the fractional-order derivative according to Caputo’s definition is considered,
and the lower limit of this operator is made to coincide with t0. �

Taking into account the above remark, the solution of the state equation
(3.41) can be modified to consider an initial non-zero time t0. And combining
this with the output equation of the state description (3.2) it can be written
that

y(t) = CΦ(t − t0)x(t0) + C

∫ t

t0

Φ̂(t − τ)Bu(τ)dτ + Du(t), t � t0. (3.93)

The last two terms on the right hand side of the previous equation are known
since they are defined by C, B,D, Φ̂(t), and u(t). Then these terms can be
subtracted from the observed value y(t), and an equivalent observed output,

ŷ(t) = y(t) − C

∫ t

t0

Φ̂(t − τ)Bu(τ)dτ − Du(t), t � t0, (3.94)

is defined. Therefore the observability condition can be derived from

ŷ(t) = CΦ(t − t0)x(t0), (3.95)

which is obtained from (3.93), and allows for the estimation of x(t0).
Substituting again Φ (t) = Eα,1 (Atα) in (3.95) by its expansion (3.57), it

is shown that

ŷ(t) = C
n−1∑
i=0

ai (t − t0) Aix(t0) =
n−1∑
i=0

ai (t − t0) ψi, (3.96)

where now
ψi = CAix(t0), 0 � i � n − 1. (3.97)

Multiplying (3.96) by functions ai(t− t0), 0 � i � n− 1, integrating in the
interval [t0, tf ] where tf is any time value larger than t0, and expressing the
resulting set of n equations in a compact matrix form, it follows that∫ tf

t0

ξT (t − t0) ŷ(t)dt =
[∫ tf

t0

ξT (t − t0) ξ (t − t0) dt

]
Ψ , (3.98)
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where ξ(t) is given again by (3.85), and Ψ = [ψ0 ψ1 · · ·ψn−1]
T.

The column vector Ψ could be determined from ŷ(t) and (3.98), if the

square matrix
∫ tf

t0

ξT (t − t0) ξ (t − t0) dt were invertible, i.e., full-rank. This

fact has already been proven in Lemma 3.7 of the previous section. Therefore
Ψ can be determined from ŷ(t) and (3.98) if all the eigenvalues of A are
distinct.

Taking into account the form of ψi given in (3.97), the following matrix
equation follows:

Ψ = Ox(t0), (3.99)

where

O =

⎡⎢⎢⎢⎣
C

CA
...

CAn−1

⎤⎥⎥⎥⎦ . (3.100)

If matrix O is full-rank then it can be inverted, and x(t0) can be calculated
from (3.99). Then the observability property depends on the rank of matrix
O, which has to be n in order for the system be observable. This matrix is
called the observability matrix , and the next criterion can be defined.

Observability Criterion. The system given by (3.3) and (3.2) is observable
if and only if matrix O defined by (3.100) is full-rank. �

As can be seen, the observability condition for commensurate-order LTI
systems coincides with the well known one for integer-order LTI systems,
considering the state representation introduced previously in Section 3.1.

Example 4 Consider again the immersed plate system, and its state-space
model given by (3.33) and (3.34) in the controllable canonical form. Its
observability is easily determined by calculating the rank of matrix O given
by expression (3.100). Then it is shown from (3.33) and (3.34) that

O =

⎡⎢⎢⎣
C

CA
CA2

CA3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , (3.101)

whose determinant is 1. Therefore matrix O is full-rank and the system is
observable. �
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3.5 Discrete-time LTI State-space Models

In this section the state-space model defined in Section 3.1 for continuous-
time systems is extended to discrete-time systems, according to the definitions
given in books [3, 27] and journal papers [28–30].

3.5.1 Discrete-time State-space Equivalent Model of a
Continuous LTI System

Consider a fractional-order LTI continuous system given by the state equation
(3.3) and the output equation (3.2). In this section the discrete-time state-
space model equivalent to the series connection of a zero-order hold, system
(3.3)-(3.2), and a sampler, is studied. It is assumed that the zero-order hold
and the sampler work at the same frequency fs or, equivalently, with a
sampling period T = 1/fs. The discrete model to be obtained should behave
exactly as the before series connection set which is shown in Figure 3.4 at
sampling instants t = kT, k = 0, 1, 2, · · · .

ZOH
Dαx = Ax + Bu
y = Cx + Du

� � � �
T

u(kT ) u(t) y(t) y(kT )

Figure 3.4 Discrete-time state-space model equivalent to the series connection of a zero-
order hold, system (3.3)-(3.2), and a sampler

First recall how this equivalent discrete-time model is obtained in the
standard case of integer-order LTI continuous systems [31]:

ẋ = Ax + Bu. (3.102)

The solution of this state equation is

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ)Bu(τ)dτ, t � t0, (3.103)

which is based on the state transition matrix Φ. The equivalent discrete-time
model is obtained from this equation by making t0 = kT and t = (k + 1)T ,
and taking into account that in LTI systems Φ(t, τ) = Φ(t − τ).

Consider the solution of the fractional-order state equation given by (3.41).
The above procedure cannot be applied using this expression because of the
two remarks stated in Section 3.2:
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• As the fractional-order derivative of x depends on the “history” of x from
the lower limit of the integral that defines this operator until the present
instant, in order to determine the future behavior of a fractional-order
system from instant t not only is the value of the state at instant t needed
but also all the values of the state in the interval [0, t]. Consequently, it
does not make sense to obtain an expression of x((k + 1)T ) as function
only of x(kT ) and u(kT ) because previous state values also influence the
value of x((k + 1)T ).

• As was stated in Remark 3.2, matrix Φ(t) in (3.41) really means Φ(t, 0),
the second argument being the lower limit of the integral that defines
the fractional-order derivative used in the state-space model. Then this
argument is fixed and cannot be changed to kT as was done in the integer-
order derivative model discretization.

Therefore discrete-time space state models must include the history of the
state starting from the lower limit time value used in the definition of the
fractional-order operator. A model that takes this into account is proposed
in the next section.

3.5.2 Discrete-time State-space Model Based on Finite
Differences

A different approach is proposed in this section in order to develop a discrete-
time state-space model. It is based on the Grünwald–Letnikov’s definition of
fractional-order operators [3, 27, 28]. This operator was applied in [29] to
develop the discrete-time model studied here. Moreover, a MATLAB toolbox
has been built [32,33] to analyze and simulate these systems.

In order to introduce a discrete-time fractional-order state-space system,
let us assume that the standard integer-order model (3.102) is discretized
with sampling period T by a numerical method. The simplest way of
approximating the first-order derivative is calculating its first-order forward
difference:

ẋ(kT ) ≈ x((k + 1)T ) − x(kT )
T

. (3.104)

Substituting this in (3.102) gives

x((k + 1)T ) − x(kT )
T

≈ Ax(kT ) + Bu(kT ), (3.105)

which yields the approximate equivalent discrete state-space model

x((k + 1)T ) = (AT + I)x(kT ) + BTu(kT ), (3.106)

y(kT ) = Cx(kT ) + Du(kT ). (3.107)
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Note that the first-order backward difference could also have been used
to approximate the first-order derivative, but it would not yield a discrete-
time model like (3.106). This algorithm is not adequate to obtain discrete-
time models that relate x((k + 1)T ) with previous states and inputs. This
consideration will be taken into account in the next discretization method.

Let us generalize the previous discretization method to a fractional-order
differentiation operator by using the Grünwald–Letnikov definition, and
leading the operator one sample in order to get a model where x((k + 1)T )
appears, similar to the one sample forward difference used in the standard
case. Then it is shown that

Dαx(kT ) ≈ 1
Tα

k+1∑
i=0

(−1)i

(
α

i

)
x((k + 1 − i)T )

=
1

Tα

(
x((k+1)T )−

(
α

1

)
x(kT )+

k+1∑
i=2

(−1)i

(
α

i

)
x((k+1−i)T )

)
,

(3.108)

which, substituted in (3.3), yields for k � 1

x((k + 1)T ) = (ATα + αI)x(kT )

−
k+1∑
i=2

(−1)i

(
α

i

)
x((k + 1 − i)T ) + BTαu(kT ),

(3.109)

and for k = 0

x((k + 1)T ) = (ATα + αI)x(kT ) + BTαu(kT ). (3.110)

Equations (3.109), (3.110) combined with (3.107) constitute the discrete-
time LTI state-space model. In this model the state at instant (k + 1)T
depends on all the previous states until kT = 0 in a direct way (as could
be expected from the considerations of the previous subsection about the
“memory” of the fractional-order derivative operators). From now on, and
without loss of generality, the sampling period T is removed from the sampled
signal sequences, i.e., x(k) ≡ x(kT ) and u(k) ≡ u(kT ).

3.5.3 Discrete-time State-space Model Based on the
Expanded State

An alternative way of expressing the system given by (3.109), (3.110), and
(3.107) was proposed in [29, 34]. By using an expanded state formed by the
actual state and all the past states, i.e., the “history” of the system from the
initial instant, an infinite-dimensional system is constructed that takes the
form
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x((k + 1)T )

x(kT )
x((k − 1)T )

...

⎤⎥⎥⎥⎦ = Ã

⎡⎢⎢⎢⎣
x(kT )

x((k − 1)T )
x((k − 2)T )

...

⎤⎥⎥⎥⎦+ B̃u(kT ),

y(kT ) = C̃

⎡⎢⎢⎢⎣
x(kT )

x((k − 1)T )
x((k − 2)T )

...

⎤⎥⎥⎥⎦+ Du(kT ),

(3.111)

where

Ã=

⎡⎢⎢⎢⎣
(ATα + αI) −I(−1)2

(
α
2

) −I(−1)3
(
α
3

) · · ·
I 0 0 · · ·
0 I 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ , B̃=

⎡⎢⎢⎢⎣
BTα

0
0
...

⎤⎥⎥⎥⎦ , (3.112)

and
C̃ = [C, 0, 0, · · · ], (3.113)

where 0 is the null matrix of dimension n × n.

3.6 Solution of the Discrete-time LTI
Commensurate-order State Equation

In this section the solution of the state-space difference equation

x(k+1) = (ATα+αI)x(k) −
k+1∑
i=2

(−1)i

(
α

i

)
x(k+1−i) + BTαu(k), (3.114)

for k � 1, and
x(1) = (ATα + αI)x(0) + BTαu(0), (3.115)

y(k) = Cx(k) + Du(k), (3.116)

equivalent to (3.109), (3.110), and (3.107) (in accordance with the last
paragraph of Section 3.5.2), is obtained. Before presenting the solution, we
note that this equation has a varying number of terms depending on the value
of k. This makes it different from standard difference equations.

3.6.1 Solution of the Homogeneous Discrete-time State
Equation

Consider the homogeneous difference equation derived from (3.114), (3.115):
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x(k + 1) = (ATα + αI)x(k) −
k+1∑
i=2

(−1)i

(
α

i

)
x(k + 1 − i),

x(1) = (ATα + αI)x(0).

(3.117)

As this is an LTI system, it is expected that the solution of this equa-
tion will be of the form x(k) = Φ(k)x(0), where Φ(k) is a discrete-time
state pseudo-transition matrix. Applying the recursive equation (3.117) in a
sequential way, and starting from an initial state x(0) it follows that

x(0) = Ix(0) =⇒ Φ(0) = I, (3.118)

for k = 0, we have

x(1) = (ATα + αI)x(0) =⇒ Φ(1) = (ATα + αI), (3.119)

for k = 1, we have

x(2)=(ATα + αI)x(1)−
(

α

2

)
x(0) = (ATα + αI)Φ(1)x(0)−

(
α

2

)
x(0)

Φ(2) = (ATα + αI)2 − I

(
α

2

)
,

(3.120)
for k = 2, we have

x(3)=(ATα+αI)x(2)−
(

α

2

)
x(1)+

(
α

3

)
x(0)

= (ATα+αI)Φ(2)x(0)−
(

α

2

)
Φ(1)x(0)+

(
α

3

)
x(0),

Φ(3) = (ATα + αI)3 − (ATα + αI)2
(

α

2

)
+ I

(
α

3

) (3.121)

and so on. Substituting x(k) = Φ(k)x(0) in (3.117), and taking into account
that this expression must be verified for any initial state value x(0), it follows,
for k � 1, that

Φ(k + 1) = (ATα + αI)Φ(k) −
k+1∑
i=2

(−1)i

(
α

i

)
Φ(k + 1 − i),

Φ(1) = (ATα + αI)Φ(0), Φ(0) = I,

(3.122)

which allows the calculation of matrix function Φ(k) in a recursive way, and
then consequently the computation of x(k).

This state pseudo-transition matrix really means Φ(k, 0), i.e., has two
arguments, the second one being the lower limit of the Grünwald–Letnikov’s
operator. Then this argument is fixed and cannot be changed, similar to the
state pseudo-transition matrix of fractional-order continuous systems. For
this reason this matrix is expressed as Φ(k) with a single argument.
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Remark 3.10. The semi-group property is not satisfied in the discretized state
pseudo-transition matrix, in the same way as the continuous state pseudo-
state matrix (see Remark 3.2): Φ(k2, 0) �= Φ(k2, k1)Φ(k1, 0), 0 < k1 < k2.
A demonstration of this can be found in [30]. �

3.6.2 Solution of the Complete Discrete-time State
Equation

The solution of the complete difference equation (3.114), (3.115) is given by

x(k) = Φ(k)x(0) +
k−1∑
i=0

Φ(k − 1 − i)BTαu(i), k � 1. (3.123)

The demonstration of this is carried out by induction [30], and is developed
in the following.
Proof. Step 1: for k = 0, using (3.115) and taking into account (3.118) and
(3.119), the state is

x(1) = (ATα + αI)x(0) + BTαu(0) = Φ(1)x(0) + Φ(0)BTαu(0), (3.124)

which is according to (3.123).
Step 2: for k = 1, now using (3.114) and from (3.118) to (3.120), and

substituting x(1) by (3.124), the state is

x(2) = (ATα + αI)x(1) −
(

α

2

)
x(0) + BTαu(1)

= Φ(2)x(0) + BTα [Φ(1)u(0) + Φ(0)u(1)] ,
(3.125)

also in accordance with (3.123).
Assume that it is true in Step k, i.e., that (3.123) is satisfied. Then it has

to be proven that it is true in Step k + 1. From (3.114) it is shown that

x(k + 1) = (ATα + αI)x(k) −
k∑

i=2

(−1)i

(
α

i

)
x(k + 1 − i)

− (−1)k+1

(
α

k + 1

)
x(0) + BTαu(k),

(3.126)

and, since (3.123) is verified by all l � k, then states x(k + 1 − i) and x(k)
in (3.126) can be expressed in terms of the initial state x(0) yielding
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x(k + 1) = (ATα + αI)

[
Φ(k)x(0) +

k−1∑
l=0

Φ(k − 1 − l)BTαu(l)

]

−
k∑

i=2

(−1)i

(
α

i

)[
Φ(k+1−i)x(0)+

k−i∑
l=0

Φ(k−i−l)BTαu(l)

]

− (−1)k+1

(
α

k + 1

)
x(0) + BTαu(k).

(3.127)

This equation is rearranged as

x(k+1)=

[
(ATα+αI)Φ(k)−

k+1∑
i=2

(−1)i

(
α

i

)
Φ(k+1−i)

]
x(0)+BTαu(k)

+ BTα

[
(ATα+αI)

k−1∑
l=0

Φ(k−1−l)u(l)−
k∑

i=2

(−1)i

(
α

i

) k−i∑
l=0

Φ(k−i−l)u(l)

]
.

Then substituting (3.122) in the term inside the square bracket that
multiplies x(0), rearranging terms inside the second square bracket, and
permutating indexes i and l in the two sums, it is shown that

x(k + 1) = Φ(k + 1)x(0) + BTαu(k)

+BTα

[
k−1∑
l=0

(ATα+αI)Φ(k−1−l)u(l)−
k−2∑
l=0

k−l∑
i=2

(−1)i

(
α

i

)
Φ(k−i−l)u(l)

]
.

Decomposing the term k − 1 of the first sum inside the square bracket

x(k+1) = Φ(k+1)x(0)+BTα [u(k)+(ATα+αI)Φ(0)u(k−1)]

+ BTα
k−2∑
l=0

[
(ATα+αI)Φ(k−1−l)−

k−l∑
i=2

(−1)i

(
α

i

)
Φ(k−i−l)

]
u(l),

and again substituting (3.122) in the term inside the square bracket it follows
that

x(k +1)=Φ(k+1)x(0)+BTα [u(k)+(ATα+αI)Φ(0)u(k − 1)]

+ BTα
k−2∑
l=0

Φ(k − l)u(l).
(3.128)

Taking into account (3.118) and (3.119) we have that

BTα = BTαΦ(0), and BTα(ATα + αI)Φ(0) = BTαΦ(1). (3.129)

Substituting this in (3.128) and rearranging yields

x(k + 1) = Φ(k + 1)x(0) +
k∑

l=0

Φ(k − l)BTαu(l), (3.130)

which completes the proof. �



66 3 State-space Representation and Analysis

3.7 Stability of Discrete-time LTI Commensurate-order
Systems

Let us now turn our attention to the stability issues related to the state-space
models defined in Section 3.5. The approach presented here is based on the
stability analysis originally developed in [29].

First a stability definition is proposed which is adopted from the stability
definition of infinite dimensional systems presented in [35].

Definition 3.11. The linear, discrete-time, infinite-dimensional system given
by (3.114), (3.115), and (3.116), or alternatively by (3.111), (3.112), and
(3.113), is finite-time stable with respect to {α, β, N,M, || · ||}, α < β,
α, β∈�+, if and only if

||x(i)|| < α, i = 0,−1, · · · ,−N (3.131)

implies
||x(i)|| < β, i = 0, 1, 2, · · · ,M . (3.132)

This stability condition is similar to that for traditional, integer-order,
infinite-dimensional state-space systems. �

Stability Criterion 1. The system given by (3.114), (3.115), and (3.116),
or alternatively by (3.111), (3.112), and (3.113), is asymptotically stable if
and only if

||Ã|| < 1 (3.133)

where || · || denotes the matrix norm defined as max |λi| where λi is the ith
eigenvalue of the matrix Ã.

A drawback of this result is that it is exact for a matrix Ã of infinite
dimension. In practice the number of factors −I(−1)i

(
α
i

)
in this matrix has

to be limited. This reduction may cause a decrease in the accuracy of the
stability determination, however, especially when the system is close to the
stability margin.

Next a sufficient stability condition is presented, which was also developed
in [35], and can be applied more easily than the above.

Stability Criterion 2. The system given by (3.114), (3.115), and (3.116),
or alternatively by (3.111), (3.112), and (3.113), is asymptotically stable if

||ATα + αI|| +
k∑

i=2

∣∣∣∣∣∣∣∣−I(−1)i

(
α

i

)∣∣∣∣∣∣∣∣ < 1, ∀k > 1. (3.134)



3.7 Stability of Discrete-time LTI Commensurate-order Systems 67

This criterion implies that the state pseudo-transition matrix Φ satisfies
the condition

||Φ(k)|| <
k∑

i=1

||Φ(k − i)|| � ε. (3.135)

In order to make this criterion more useful, the next lemma is used.

Lemma 3.12. For i � 2, the factors (−1)i
(
α
i

)
are

(−1)i

(
α

i

)
=

⎧⎨⎩
< 0, for 0 < α < 1,
> 0, for 1 < α < 2,
= 0, for α = 1, 2.

(3.136)

Proof. With (1.15) for
(
α
i

)
, it is easy to see that, for i � 2 and 0 < α < 1,(

α

i

)
< 0, for i = 2, 4, 6, · · · ,

(
α

i

)
> 0, for i = 3, 5, 7, · · · . (3.137)

Moreover factors (−1)i are equal to 1 for even values of i, and equal to −1
for its odd values. Then the signs of the two factors

(
α
i

)
and (−1)i are thus

opposite ∀i � 2 which means that their product is always negative for i � 2
if 0 < α < 1.

For i � 2 and 1 < α < 2, the situation is the opposite:(
α

i

)
> 0, for i = 2, 4, 6, · · · ;

(
α

i

)
< 0, for i = 3, 5, 7, · · · (3.138)

In this case the signs of the two factors
(
α
i

)
and (−1)i are thus identical

∀i�2 which means that their product is always positive for i�2 if 1<α<2.

�
Using this lemma, the next relation is obtained:

k∑
i=2

∣∣∣∣∣∣∣∣−I(−1)i

(
α

i

)∣∣∣∣∣∣∣∣= k∑
i=2

∣∣∣∣(−1)i

(
α

i

)∣∣∣∣=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
k∑

i=2

(−1)i

(
α

i

)
, for 0<α<1

k∑
i=2

(−1)i

(
α

i

)
, for 1<α<2.

(3.139)And the property [36]

k∑
i=0

(−1)i

(
α

i

)
=

Γ(k + 1 − α)
Γ(1 − α)Γ(k + 1)

, (3.140)

leads to the relation
k∑

i=2

(−1)i

(
α

i

)
=

Γ(k + 1 − α)
Γ(1 − α)Γ(k + 1)

− 1 + α, (3.141)

which permits a rewrite of Stability Criterion 2 as follows.
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Stability Criterion 3. The system given by (3.114), (3.115), and (3.116),
or alternatively by (3.111), (3.112), and (3.113), is asymptotically stable if

||ATα + αI|| < r(k, α), (3.142)

where

r(k, α) =

⎧⎪⎪⎨⎪⎪⎩
α +

Γ(k + 1 − α)
Γ(1 − α)Γ(k + 1)

, for 0 � α < 1,

2 − α − Γ(k + 1 − α)
Γ(1 − α)Γ(k + 1)

, for 1 � α � 2.

(3.143)

Some comments are made to this result.

Remark 3.13.

• r(k, α) is the stability radius of the system, i.e., it is the radius of a circle
within which stable eigenvalues (in the sense of fulfilment of (3.135)) of
the system must be located.

• The exact stability radius will be given for the limit k −→ ∞.
• It is worth noting that the stability radius for α = 0 has the same value

as that for α = 1, because the system given by (3.114), (3.115) for α = 0
is in fact the first-order system. �

3.8 Controllability of Discrete-time LTI
Commensurate-order Systems

In this section the concept of controllability is extended to fractional-order
discrete-time LTI systems of the form given by (3.114), (3.115), and (3.116).
First some definitions are presented.

Definition 3.14. The linear, discrete-time, fractional-order system modeled
by (3.114), (3.115), and (3.116) is reachable if and only if for an arbitrary final
state xf there exists a number N and an input sequence {u(0), u(1), . . . , u(N−
1)} which carries the system from the initial state x0 = 0 to the desired final
state xf . �

Definition 3.15. The system modeled by (3.114), (3.115), and (3.116) is
controllable if and only if for any initial state x0 there exists a number N

and an input sequence {u(0), u(1), . . . , u(N − 1)} which carries the system
from the initial state x0 to zero final state xf = 0. �

These two definitions extend the concepts of state reachability (or con-
trollability from the origin) and controllability (or controllability to the
origin) to our discrete-time fractional-order systems. The next results and
criteria for reachability and controllability were originally developed in [37].
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We mention that an alternative approach to these problems based on a
generalized discrete-time controllability Gramian can be found in [30]. The
controllability condition obtained in [30] from this Gramian is more complex
than that presented in [37]. However, [30] provides, besides its condition, the
control sequence that allows one to reach the final state.

3.8.1 Reachability Conditions

Reachability Criterion 1. The system given by (3.114) and (3.115) is
reachable (in N steps) if and only if matrix C defined as

C = [Φ(0)B, Φ(1)B, Φ(2)B, · · · , Φ(N − 1)B] (3.144)

is full-rank.
Proof. The solution of the system (3.114) and (3.115) is given by (3.123),
which for zero initial condition x0 = x(0) = 0 and final state xf yields

xf =
N−1∑
i=0

Φ(N − 1 − i)BTαu(i)

= Tα [Φ(0)B, Φ(1)B, Φ(2)B, · · · ,Φ(N − 1)B]

⎡⎢⎢⎢⎣
u(N − 1)
u(N − 2)

...
u(0)

⎤⎥⎥⎥⎦ .
(3.145)

This forms a set of n equations with N unknowns, which are the compo-
nents of the input sequence. This set of equations has a solution if and only
if matrix (3.144) is full-rank (note that Tα �= 0), and the criterion is proven.

�

A first consequence of this criterion is that N � n must be verified.
Moreover the above criterion can be rewritten in an easier form as follows.

Reachability Criterion 2. The system given by (3.114) and (3.115) is
reachable (in N steps) if and only if matrix C1 defined as

C1 =
[
B, AB, A2B, · · · , AN−1B

]
(3.146)

is full-rank.
Proof. Right multiplying (3.122) by B, substituting k + 1 by k, splitting
the first term on the right hand side of this expression, and then rearranging
terms, it is shown that

Φ(k)B = TαAΦ(k − 1)B −
k∑

i=1

(−1)i

(
α

i

)
Φ(k − i)B, k � 1, (3.147)

which shows that Φ(k)B can be expressed as the sum of TαAΦ(k−1)B and
a linear combination of past terms Φ(k − i)B, 1 � i � k. Use (3.147) to
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define Φ(k − i)B on the left hand side of the equation. Then, substituting
this in the first term on the right hand side yields

Φ(k)B = (TαA)2Φ(k − 2)B +
k−1∑
i=0

ν̂iΦ(i)B, (3.148)

where ν̂i are scalars whose particular values are not of interest. And repeating
this process recursively until Φ(0) appears in the first term of the right hand
side of the expression, it is shown that

Φ(k)B = (TαA)kΦ(0)B +
k−1∑
i=0

νiΦ(i)B, (3.149)

which shows that Φ(k)B can be expressed as the sum of T kαAkB and a
linear combination of past terms Φ(i)B, 0 � i < k (again values of scalars
νi are not of interest), for k � 1.

Then column vector Φ(k)B of matrix C can be expressed as a linear
combination of AkB and previous column vectors Φ(i)B, 0 � i < k.

Matrix C would be full-rank if it had n column vectors linearly inde-
pendent. According to the previous result (3.149), Φ(k)B would be linearly
independent of the previous column vectors Φ(i)B, 0 � i < k (columns
located at its left in matrix C), if and only if AkB were linearly independent
of these previous column vectors (or equivalently, linearly independent of
previous AiB). Then, taking into account that Φ(0)B = B, matrix C1

defined in (3.146) has the same rank as C, and the criterion is proven. �

3.8.2 Controllability Conditions

Controllability Criterion 1. The system given by (3.114) and (3.115) is
controllable (in N steps) if and only if matrix C defined as

C = [Φ(0)B Φ(1)B Φ(2)B . . .Φ(N − 1)B] , (3.150)

is full-rank.
Proof. The solution of the system (3.114) and (3.115) is given by (3.123)
which, for an arbitrary initial condition x0 = x(0) and final state xf = 0,
yields

0 = Φ(N)x0 +
N−1∑
i=0

Φ(N − 1 − i)BTαu(i) =⇒

−Φ(N)x0 =Tα [Φ(0)B,Φ(1)B, · · · , Φ(N − 1)B]

⎡⎢⎢⎢⎣
u(N − 1)
u(N − 2)

...
u(0)

⎤⎥⎥⎥⎦ .

(3.151)
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This forms a set of n equations with N unknowns, which are the compo-
nents of the input sequence. This set of equations has a solution if and only
if matrix (3.150) is full-rank (note that Tα �=0), and the criterion is proven.

�

As before, a consequence of this criterion is that N � n must be verified.
The above criterion can also be expressed more easily, adopting the same

form of the second reachability criterion.

Controllability Criterion 2. The system given by (3.114) and (3.115) is
controllable (in N steps) if and only if matrix C1 defined as

C1 =
[
B, AB, A2B, · · · , AN−1B

]
, (3.152)

is full-rank.
Proof. In the demonstration of the second reachability condition it was
proved that rank(C1) = rank(C). This also applies here and the criterion
is proven. �

Matrices C and C1 are denoted discrete-time controllability matrices.
We note that this last criterion resembles the controllability criterion for
continuous systems based on the rank of (3.82). We recall that our discrete-
time models arise from discretizing continuous models using the Grünwald–
Letnikov operator, and there exists a direct link between both controllability
matrices.

3.9 Observability of Discrete-time LTI
Commensurate-order Systems

Finally, the concept of observability is extended here to fractional-order
discrete-time LTI systems of the form given by (3.114), (3.115) and (3.116).
First the observability definition for discrete-time systems is presented.

Definition 3.16. The linear, discrete-time, fractional-order system mod-
eled by (3.114), (3.115), and (3.116) is observable if and only if there
exists a number N such that from the knowledge of the input sequence
{u(0), u(1), . . . , u(N −1)} and the output sequence {y(0), y(1), . . . , y(N −1)}
the initial state x0 = x(0) can be determined. �

The next results were also originally developed in [37]. We also mention
that an alternative approach to the observability problem, based on a
generalized discrete-time observability Gramian, can be found in [30]. The
observability condition obtained in [30] from this Gramian is more complex
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than that presented in [37], similarly to the comment made in the previous
section about the controllability Gramian. However, [30] provides, besides its
condition, an estimation of the initial state.

Observability Criterion 1. The system given by (3.114), (3.115), and
(3.116) is observable (in N steps) if and only if matrix O, defined as

O =

⎡⎢⎢⎢⎢⎢⎣
CΦ(0)
CΦ(1)
CΦ(2)

...
CΦ(N − 1)

⎤⎥⎥⎥⎥⎥⎦ , (3.153)

is full-rank.
Proof. Substitute the solution of the system (3.114) and (3.115), given by
(3.123), in the output equation (3.116). Then it is found that

y(k) = CΦ(k)x(0) + C

k−1∑
i=0

Φ(k − 1 − i)BTαu(i) + Du(k), k � 1. (3.154)

By denoting

ŷ(k) = y(k) − Du(k) − C
k−1∑
i=0

Φ(k − 1 − i)BTαu(i) k � 1,

ŷ(0) = y(0) − Du(0),

(3.155)

(3.154) can be expressed as

ŷ(k) = CΦ(k)x(0), k � 0. (3.156)

It is noted that ŷ(k) can be easily calculated from (3.155) if u(i), 0 � i � k

and y(k) were known.
If input u(k) and output y(k) were known for 0 � k � N − 1, and hence

ŷ(k), N equations would be obtained from particularizing (3.156) for 0 � k �
N − 1. These equations can be expressed in a compact matrix form as⎡⎢⎢⎢⎢⎢⎣

ŷ(0)
ŷ(1)
ŷ(2)

...
ŷ(N − 1)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
CΦ(0)
CΦ(1)
CΦ(2)

...
CΦ(N − 1)

⎤⎥⎥⎥⎥⎥⎦x(0). (3.157)

This forms a set of N equations with n unknowns, which are the compo-
nents of the initial state x(0). This set of equations has a solution if and only
if matrix (3.153) is full-rank, and the criterion is proven. �

A first consequence of this criterion is that N � n must be verified.
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Moreover the before criterion can be rewritten in an easier form as follows.

Observability Criterion 2. The system given by (3.114), (3.115), and
(3.116) is observable (in N steps) if and only if matrix O1, defined as

O1 =

⎡⎢⎢⎢⎢⎢⎣
C

CA
CA2

...
CAN−1

⎤⎥⎥⎥⎥⎥⎦ , (3.158)

is full-rank.
Proof. Left multiplying (3.122) by C, substituting k + 1 by k, splitting the
first term on the right hand side of this expression, and then rearranging
terms, it is shown that

CΦ(k) = TαCAΦ(k − 1) −
k∑

i=1

(−1)i

(
α

i

)
CΦ(k − i), k � 1, (3.159)

which shows that CΦ(k) can be expressed as the sum of TαCAΦ(k−1) and
a linear combination of past terms CΦ(k − i), 1 � i � k. Use (3.159) to
define CΦ(k−i) on the left hand side of the equation. Then, substituting this
in the first term on the right hand side, and taking into account the property
(which is not proven here) that AΦ(i) = Φ(i)A, i � 0, yields

CΦ(k) = C(TαA)2Φ(k − 2) +
k−1∑
i=0

ν̂iCΦ(i), (3.160)

where ν̂i are scalars whose particular values are not of interest. And repeating
this process recursively until Φ(0) appears in the first term of the right hand
side of the expression, it is shown that

CΦ(k) = C(TαA)kΦ(0) +
k−1∑
i=0

νiCΦ(i), (3.161)

which shows that CΦ(k) can be expressed as the sum of T kαCAk and a
linear combination of past terms CΦ(i), 0 � i < k (again values of scalars
νi are not of interest), for k � 1.

Then row vector CΦ(k) of matrix O can be expressed as a linear
combination of CAk and previous row vectors CΦ(i), 0 � i < k.

Matrix O would be full-rank if it had n row vectors linearly independent.
According to the previous result (3.161), CΦ(k) would be linearly indepen-
dent of the previous row vectors CΦ(i), 0 � i < k (rows located over in
matrix O), if and only if CAk were linearly independent of these previous
row vectors (or equivalently, linearly independent of previous CAi). Then,
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taking into account that CΦ(0) = C, matrix O1 defined in (3.158) has the
same rank as O, and the criterion is proven. �

Matrices O and O1 are denoted discrete-time observability matrices. This
last criterion also resembles the observability criterion for continuous systems
based on (3.100).

3.10 Summary

This chapter has developed models of commensurate-order LTI systems, both
in the continuous-time and the discrete-time cases. The dynamic responses of
these fractional-order models have been presented. Analysis techniques have
also been presented for studying the stability, the controllability, and the
observability of these systems, again in both the continuous-time and discrete-
time cases. In this chapter the approach of studying discrete-time fractional-
order models derived as exhibiting dynamics equivalent to continuous-time
fractional-order models has been adopted.

Techniques shown in this chapter can be regarded as generalizations of
the well known techniques for state-space integer-order models. In this sense,
though the presented techniques have been developed for the case of SISO
systems, these can easily be extended to the case of multiple inputs-multiple
outputs systems. However the extension of these techniques to fractional-
order systems of non-commensurate order is not simple, and remains as an
open research area.

This chapter has focused only on modeling and analysis issues. The
fundamentals of fractional-order control will be presented in the next chapter.
The reader should note that control design techniques based on state-space
representations as well as the design of observers for fractional-order systems
are still areas of active research, and will not be developed in this book, nor
in its parts devoted to controllers design. However the interested reader may
find some results in the following citations.

For continuous-time fractional-order systems, we mention the design of
PDμ and PIλ controllers in the state-space developed in [38], and the design
of an observer and the observer-based controller presented in [39]. We also
mention some robustness results obtained using state-space techniques in
issues like stability [40] or controllability [41], and with sliding-mode control
techniques [42].

For discrete-time fractional-order systems, we mention the design of ob-
servers [34], fractional-order Kalman filters [43], the application of these
in control [44], and the adaptive control based on fractional-order systems
identification, Kalman filters, and state feedback [45].



Chapter 4

Fundamentals of Fractional-order
Control

This chapter gives a historical review of fractional-order control. The main
basis of the application of fractional calculus to control is given. In order
for the reader to understand the effects of the generalized control actions
(derivative and integral ones), a section is devoted to this topic.

4.1 Why Fractional-order Control: Historical Review

Maybe the first sign of the potential of FOC, though without using the term
“fractional,” emerged with Bode [46, 47]. A key problem in the design of a
feedback amplifier was to devise a feedback loop so that the performance of
the closed-loop is invariant to changes in the amplifier gain. Bode presented
an elegant solution to this robust design problem, which he called the ideal
cutoff characteristic, nowadays known as Bode’s ideal loop transfer function,
whose Nyquist plot is a straight line through the origin giving a phase margin
invariant to gain changes. Clearly, this ideal system is, from our point of view,
a fractional-order integrator with transfer function G(s) = (ωcg/s)α

, known
as Bode’s ideal transfer function, where ωcg is the gain crossover frequency
and the constant phase margin is ϕm = π − απ/2, as we illustrated in
Section 2.3.4. This frequency characteristic is very interesting in terms of
robustness of the system to parameter changes or uncertainties, and several
design methods have made use of it. In fact, the fractional-order integrator
can be used as an alternative reference system for control [48].

This first step towards the application of fractional calculus in control
led to the adaptation of the FC concepts to frequency-based methods.
The frequency response and the transient response of the non-integer-order
integral (in fact Bode’s loop ideal transfer function) and its application to
control systems was introduced by Manabe [15], and more recently in [49].

75
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In what concerns automatic control, Oustaloup [50] studied the fractional-
order algorithms for the control of dynamic systems and demonstrated the
superior performance of the CRONE (Commande Robuste d’Ordre Non
Entier, meaning Non-integer-order Robust Control) method over the PID
controller. There are three generations of CRONE controllers, and [51]
concentrates on the third generation that we will introduce in detail in
Chapter 9. Podlubny [52] proposed a generalization of the PID controller,
namely the PIλDμ controller, involving an integrator of order λ and a
differentiator of order μ. He also demonstrated the better response of this
type of controller, in comparison with the classical PID controller, when used
for the control of fractional-order systems. A frequency domain approach by
using fractional-order PID controllers was also studied in [53].

Further research activities to define new effective tuning techniques for
non-integer-order controllers used an extension of classical control theory.
In this respect, in [54, 55] the extension of derivative and integration orders
from integer to non-integer numbers provides a more flexible tuning strategy
and therefore an easier way of achieving control requirements with respect
to classical controllers. In [56] an optimal fractional-order PID controller
based on specified gain and phase margins with a minimum integral squared
error (ISE) criterion is designed. Other work [57, 58] takes advantage of the
fractional orders introduced in the control action in order to design a more
effective controller to be used in real-life models. The tuning of integer-order
PID controllers is addressed in [59–61] by minimizing an objective function
that reflects how far the behavior of the PID is from that of some desired
fractional-order transfer function (FOTF), and in [62] with a somewhat
similar strategy. The use of a new control strategy to control first-order
systems with long time delay is also pursued in [63, 64]. Another approach
is achieved in [65], where tuning and auto-tuning rules for fractional-order
PID controllers are given. An interesting robustness constraint is considered
in this work, forcing the phase of the open-loop system to be flat at the gain
crossover frequency.

Fractional calculus also extends to other kinds of control strategies differ-
ent from PID ones. For H2 and H∞ controllers, for instance, [66] discusses
the computation of the H2 norm of a fractional-order SISO system (without
applying the result to the synthesis of controllers), and [67] suggests the
tuning of H∞ controllers for fractional-order SISO systems by numerical
minimization.

Applications of fractional calculus in control are numerous. In [68] the
control of viscoelastic damped structures is presented. Control applications
to a flexible transmission [69,70], an active suspension [71], a buck converter
[72, 73], and a hydraulic actuator [74] are also found in the literature. The
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fractional-order control of a flexible manipulator is the objective in [75], rigid
robots are treated in [76, 77], and the fractional-order control of a thermal
system in [78–81].

Through this range of design techniques and applications, though quite far
from aiming at completeness, it is clear that FOC has become an important
research topic. The generalization to non-integer-orders of traditional con-
trollers or control schemes translates into more tuning parameters and more
adjustable time and frequency responses of the control system, allowing the
fulfilment of robust performance.

4.2 Generalized Fractional-order Control Actions

Starting from the block diagram of Figure 4.1, the effects of the basic control
actions of type Ksμ for μ ∈ [−1, 1] will be examined in this section. The
basic control actions traditionally considered will be particular cases of this
general case, in which:

• μ = 0 : proportional action,
• μ = −1 : integral action,
• μ = 1 : derivative action.

Ksμ G(s)� � ��

�−

R(s) E(s)
Y (s)

Figure 4.1 Block diagram of a closed-loop system with fractional-order control actions

4.2.1 Integral Action

As is known, the main effects of the integral actions are those that make the
system slower, decrease its relative stability, and eliminate the steady-state
error for inputs for which the system had a finite error.

These effects can be observed in the different domains. In the time domain,
the effects over the transient response consist of the decrease of the rise
time and the increase of the settling time and the overshoot. In the complex
plane, the effects of the integral action consist of a displacement of the root
locus of the system towards the right half-plane. Finally, in the frequency
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domain, these effects consist of an increment of −20 dB/dec in the slopes of
the magnitude curves and a decrement of π/2 rad in the phase plots.

In the case of a fractional-order integral, that is, μ ∈ (−1, 0), the selection
of the value of μ needs consideration of the effects mentioned above.

In the time domain, the effects of the control action can be studied
considering the effects of this action over a squared error signal.

If the error signal has the form

e(t) =
N∑

k=0

(−1)ku0(t − kT ), k = 0, 1, 2, · · · , N, (4.1)

where u0(t) is the unit step, its Laplace transform is

E(s) =
N∑

k=0

(−1)k e−kTs

s
. (4.2)

So, the control action, as shown in the block diagram of Figure 4.1, will
be given as

u(t) = L −1 {U(s)} = L −1

{
K

N∑
k=0

(−1)k e−kTs

s1−μ

}

= K
N∑

k=0

(−1)k

Γ (1 − μ)
(t − kT )−μ

u0(t − kT ).

(4.3)

Figure 4.2 shows the function u(t) for the values μ = 0,−0.2,−0.5,−1;
T = 30; N = 4. As can be observed, the effects of the control action over the
error signal vary between the effects of a proportional action (μ = 0, square
signal) and an integral action (μ = −1, straight lines curve). For intermediate
values of μ, the control action increases for a constant error, which results in
the elimination of the steady-state error (see Table 2.1), and decreases when
the error is zero, resulting in a more stable system.

In the complex plane, the root locus of the system with the control action
is governed by

1 + KsμG(s) = 0, (4.4)

or by the following equivalent conditions for the magnitude and phase:

|K| =
1

|sμ| |G(s)| , (4.5)

arg [sμG(s)] = (2n + 1) π, l = 0,±1,±2, · · · . (4.6)

Taking into account that

s = |s| ejφ =⇒ sμ = |s|μ ejμφ, (4.7)
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Figure 4.2 Integral control action for a square error signal and μ = 0,−0.2,−0.5,−1

the conditions of magnitude and phase can be expressed by

|K| =
1

|s|μ |G(s)| , (4.8)

arg [sμG(s)] = arg [G(s)] + μφ = (2n + 1)π, l = 0,±1,±2, · · · . (4.9)

The selection of the value of μ ∈ (−1, 0) affects the displacement of the
root locus towards the right half-plane and the values of K that make that
the magnitude condition is reached.

In the frequency domain, the magnitude curve is given by

20 log |sμG(s)|s=jω = 20 log |G(jω)| + 20μ log ω, (4.10)

and the phase plot by

arg [sμG(s)]s=jω = arg [G(s)] + μ
π

2
. (4.11)

By varying the value of μ between −1 and 0, it is possible:

• To introduce a constant increment in the slopes of the magnitude curve
that varies between −20 dB/dec and 0 dB/dec.

• To introduce a constant delay in the phase plot that varies between
−π/2 rad and 0 rad.

4.2.2 Derivative Action

It is known that the derivative action increases the stability of the system
and tends to emphasize the effects of noise at high frequencies. In the time
domain, a decrease in the overshoot and the settling time is observed. In
the complex plane, the derivative action produces a displacement of the root
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locus of the system towards the left half-plane. In the frequency domain, this
action produces a constant phase lead of π/2 rad and an increase of 20 dB/dec
in the slopes of the magnitude curves.

Following a procedure similar to that for the integral action, it is easy to
prove that all these effects can be weighted by the selection of the order of
the derivative action, that is, μ ∈ (0, 1).

In the time domain, the effects of the derivative control action can be
studied considering the effects of this action over a trapezoidal error signal
given by

e(t) = t u0(t)− t(t−T ) u0(t−T )− t(t−2T ) u0(t−2T )+ t(t−3T ) u0(t−3T ),

whose Laplace transfer function is

E(s) =
1
s2

− e−Ts

s2
− e−2Ts

s2
+

e−3Ts

s2
. (4.12)

Therefore, and according to Figure 4.1, the control action will be given by
the equation

u(t) = L −1 {U(s)}=L −1

{
K

(
1

s2−μ
− e−Ts

s2−μ
− e−2Ts

s2−μ
+

e−3Ts

s2−μ

)}
=

K

Γ(2 − μ)

{
t1−μu0(t) − (t − T )1−μ

u0(t − T )

− (t−2T )1−μ
u0(t−2T )+(t−T )1−μ

u0(t−3T )
}

.

(4.13)

The effects of the control action over the error signal are shown in Figure
4.3 and vary between the effects of a proportional action (μ = 0, trapezoidal
signal) and a derivative action (μ = 1, square signal). For intermediate values
of μ, the control action corresponds to intermediate curves. It must be noted
that the derivative action is not zero for a constant error and the growth of
the control signal is more damped when a variation in the error signal occurs,
which implies a better attenuation of high-frequency noise signals.

In the frequency domain, the magnitude curve is given by (4.10) and the
phase plot by (4.11). As can be observed, by varying the value of μ between
0 and 1, it is possible:

• to introduce a constant increment in the slopes of the magnitude curve
that varies between 0 dB/dec and 20 dB/dec,

• to introduce a constant delay in the phase plot that varies between 0 rad
and π/2 rad.
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Figure 4.3 Derivative control action for a trapezoidal error signal and μ = 0, 0.2, 0.5, 1

4.3 Generalized PID Controller

This section introduces a more generalized structure for the classical integer-
order PID controller, keeping the simplicity of its formulation and making
use of the generalized derivative and integral control actions described above.
In order to show the characteristics and possibilities of application of the so-
called fractional-order PID controller, a comparison with the standard PID
will be given in the frequency domain.

4.3.1 Classical PID Controller

The classical PID controller can be considered as a particular form of lead-lag
compensation in the frequency domain. Its transfer function can be expressed
as

C(s) =
U(s)
E(s)

= Kp +
Ki

s
+ Kds, (4.14)

or

C(s) = k
(s/ωc)2 + 2δcs/ωc + 1

s
, (4.15)

with ωc =
√

Ki/Kd, δ = Kp/(2
√

KiKp), k = Ki. Another form can be

C(s) = k
(s + a)(s + b)

s
. (4.16)

Therefore, the contributions of the controller depend on one of:

• gains Kp, Ki, Kd;
• gain k and parameters ωc, δc;
• gain k and location of zeros a and b.
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In the frequency response of the controller, the selection of these gains
or parameters is equivalent to the selection of the position, smoothness, and
minimum value of the magnitude curve, and the slope of the phase plot of
the controller at the frequency of this minimum. However, at high and low
frequencies the values of the slopes in the magnitude curve and the values
of the contributions in phase are fixed. This is illustrated in Figure 4.4 for
Kp = Ki = Kd = 1 and Figure 4.5 for Kp = 1, Ki = 0.5, Kd = 1. Comparing
these two figures, it is observed that both the value and position of the
magnitude minima and the inflection point of the phase plot are modified by
the value of Ki, whilst the slopes of the magnitude curves and the asymptotic
values of the phase plots remain the same.
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Figure 4.4 Frequency response of the classical PID controller with Kp = Ki = Kd = 1

4.3.2 Fractional-order PID Controller

The integro-differential equation defining the control action of a fractional-
order PID controller is given by

u(t) = Kpe(t) + KiD
−λe(t) + KdDμe(t). (4.17)

Applying Laplace transform to this equation with null initial conditions,
the transfer function of the controller can be expressed by

Cf(s) = Kp +
Ki

sλ
+ Kdsμ = k

(s/ωf)λ+μ + sδfs
λ/ωf + 1

sλ
. (4.18)

Figure 4.6 shows the frequency response of this controller for k = 1, ωf = 1,
δf = 1, and λ = μ = 0.5.
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Figure 4.5 Frequency response of the classical PID controller with Kp = 1, Ki = 0.5,
Kd =1
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Figure 4.6 Frequency response of the fractional-order PID controller with k = 1, ωf = 1,
δf = 1, and λ = μ = 0.5

As can be observed, this fractional-order controller allows us to select both
the slope of the magnitude curve and the phase contributions at both high
and low frequencies.

In a graphical way, the control possibilities using a fractional-order PID
controller are shown in Figure 4.7, extending the four control points of the
classical PID to the range of control points of the quarter-plane defined by
selecting the values of λ and μ.
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Figure 4.7 Fractional-order PID vs classical PID: from points to plane: (a) integer-order
and (b) fractional-order

4.4 Summary

In this chapter, the fundamentals of fractional-order control have been intro-
duced. After a review of the evolution of fractional-order control strategies
in control systems, a study of the effects of the fractional-order in the
basic control actions, derivative and integral, has been given. Finally, the
generalized PID controller is discussed in the frequency domain.

This chapter aims to be an introduction to fractional-order control, taking
the very well known PID controller as the starting point. In the following
chapters of the book, other control strategies apart from PID control will be
discussed in detail.



Part II

Fractional-order PID-Type Controllers



Chapter 5

Fractional-order Proportional Integral
Controller Tuning for First-order Plus
Delay Time Plants

PID (proportional integral derivative) controllers are the most popular con-
trollers used in industry because of their simplicity, performance robustness,
and the availability of many effective and simple tuning methods based on
minimum plant model knowledge [82]. A survey has shown that 90% of control
loops are of PI or PID structures [83, 84]. In control engineering, a dynamic
field of research and practice, better performance is constantly demanded;
therefore, developing better and simpler control algorithms is a continuing
objective.

In the past decade there has been an increase in research efforts related to
fractional calculus [3,85,86] and its applications to control theory [58,87–89].
Clearly, for closed-loop control systems, there are four situations: (1) integer-
order (IO) plant with IO controller; (2) IO plant with fractional-order (FO)
controller; (3) FO plant with IO controller, and (4) FO plant with FO
controller. In control practice, the fractional-order controller is more common,
because the plant model may have already been obtained as an integer-order
model in the classical sense. From an engineering point of view, improving
or optimizing performance is the major concern [89]. Hence, our objective
is to apply the fractional-order control (FOC) to enhance the (integer-
order) dynamic system control performance [58, 89]. Pioneering works in
applying fractional calculus in dynamic systems and controls and other recent
developments can be found in [15,58,90–95].

From Chapters 5 to 7 we will explain a clear and direct methodology for the
design of fractional-order PI, fractional-order PD, and fractional-order PID
controllers to be used in different types of dynamic systems, giving simulation
and experimental results to illustrate the application and effectiveness of
these tuning rules.

Let us begin with fractional-order control of first-order plus dead-time
(FOPDT) plants which are widely seen in some process industrial environ-

87
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ments. Specifically, we will focus on fractional-order proportional integral
controllers, PIλ . In this chapter, we will show how to develop a set of practical
tuning rules for PIλ control of FOPDT plants. The tuning is optimum in the
sense that the load disturbance rejection is optimized yet with a constraint
on the maximum or peak sensitivity. The so-called MIGO (Ms constrained
integral gain optimization) based controller tuning method is generalized to
handle the PIλ case, called F-MIGO, given the fractional order α. The F-
MIGO method is then used to develop tuning rules for the FOPDT class of
dynamic systems. The final tuning rules developed only apply the relative
dead time τ of the FOPDT model to determine the best fractional order
α and, at the same time, the best PIλ gains. Extensive simulation results
are included to illustrate the simple yet practical nature of these new tuning
rules, whose development procedure is not only valid for FOPDT but also
applicable for other general classes of plants, as illustrated at the end of this
chapter.

5.1 Introduction

Much research has been devoted to developing tuning methods for PIλ/PIλDμ

controllers [60,88,96–100]. The method applied in this chapter was motivated
from the MIGO design method developed in [101,102], in which the motiva-
tion was to improve upon the Ziegler–Nichols tuning rules to overcome two
major drawbacks: (1) very little process information was taken into account
as the rules were based on the two characterization parameters of the system
dynamics based on the step response data, and (2) the quarter amplitude
damping design method exhibited very poor robustness. To overcome these
drawbacks the authors of [101, 102] choose a new criterion for developing a
tuning method for the PI controllers based on robust loop shaping. Here, in
this chapter, we first create a generalized MIGO method. It aims to obtain the
gains of the PIλ controller for any given fractional order α. As in [101, 102],
the design focuses on the maximization of the integral gain with a constraint
on maximum sensitivity Ms. The method assumes that the model of the
system is available. To develop tuning rules, a test batch of FOPDT systems
is chosen and F-MIGO is applied to scan them for different values of fractional
order in the range [0.1 : 0.1 : 1.9]. The best fractional-order controller is then
selected for each system based on the ISE criterion. The new tuning rules are
then obtained by establishing relations between the process dynamics and
the controller parameters. The final tuning rules developed only apply the
relative dead time τ of the FOPDT model to determine the best fractional
order α and, at the same time, the best PIλ gains.
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The rest of the chapter is organized as follows. Section 5.2 describes the
F-MIGO method. Section 5.3 shows the development of the tuning rules.
Section 5.4 presents some simulation results to validate the design method,
concluding with an overview of the chapter in Section 5.5.

5.2 F-MIGO: Fractional Ms Constrained Integral Gain
Optimization Method

The most eminent and historically important work in the history of PID
controller tuning is by Ziegler and Nichols [82,103]. The rules given by Ziegler
and Nichols were simple, did not require the process transfer function, and
were based only on the S-shaped step response data. The rules were effective
and gave the designer a good start. A lot of research henceforth has gone
into obtaining tuning rules for PID controllers based on different criteria
like robust loop shaping, robustness to load disturbances, and robustness
to parameter variations [103, 104]. Among these, one of the tuning rules
worth mentioning is the MIGO design method developed by K. J. Åström,
H. Panagopoulos, and T. Hägglund [101, 102]. Their work was based on
improving the Ziegler–Nichols tuning method. The main idea was to come
up with simple rules satisfying a very important industry design requirement
which is robustness to load disturbance. These are optimization type rules
and attempt to find the controller parameters with the objective of optimizing
the load disturbance with a constraint on the maximum load disturbance-to-
output sensitivity Ms [101,102].

The most important assumption of this method is that the transfer
function of the system has already been given. The system should be linear,
and its transfer function must be analytical with finite poles and exhibit an
essential singularity at infinity [101].

The PIλ controller can be described in time domain as

u(t) = Kp(sp(t) − y(t)) + KiD
−α
t (sp(t) − y(t)), (5.1)

where u(t) is the control signal, sp(t) the set-point signal, and y(t) the process
output. The controller parameters are the proportional gain Kp, the integral
gain Ki, and the non-integer-order of the integrator α. The Dα

t x is the
fractional operator as defined in [27]. The frequency domain description of
the PIλ is given by

C(s) = Kp +
Ki

sα
. (5.2)

The primary design aim of this method is the load disturbance rejection.
Load disturbances are typically low frequency signals and their attenuation
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is a very important characteristic of a controller. It is shown [103] that by
maximizing the integral gain Ki the effect of load disturbance at output will
be minimum. Some of the frequently used criteria are

IAE =
∫ ∞

0

|e(t)|dt, IE =
∫ ∞

0

e(t)dt, ISE =
∫ ∞

0

e2(t)dt. (5.3)

The load disturbance is defined by the integrated absolute error (IAE) due
to a unit step load disturbance at the output. When the integral of the error
(IE) is used, it has been proved [103] that IE = 1/Ki. Thus, under special
circumstances when the system is well damped and the error is positive,
then IE = IAE. Hence, maximizing Ki will minimize the load disturbance.
A system can be well damped by constraints imposed on the sensitivity
functions. Here, we choose to use ISE. Of course, we can use IAE, but for
fair comparison reasons to previous published results where ISE is used, we
use it again for tuning rule development.

The loop transfer function is given by L(s) = C(s)G(s), where C(s) is the
controller transfer function and G(s) is the plant transfer function. We then
define

S(s) =
1

1 + C(s)G(s)
, T (s) =

C(s)G(s)
1 + C(s)G(s)

. (5.4)

T (s) is called the complementary sensitivity function and it determines the
suppression of load disturbances and good set-point tracking. S(s) is called
the sensitivity function and it determines the robustness to measurement
noise and unmodeled system dynamics. It can be easily observed that S(s)+
T (s) = 1, hence their sum is always one and both cannot be made zero at
the same time. It has been observed in the real world that load disturbance
signals and the reference signal are generally in the low frequency range
and the measurement noise generally occupies a higher frequency band. So,
to ensure good reference tracking and rejection of load disturbance at lower
frequencies, S(s) ≈ 0,, which implies T (s) ≈ 1. At higher frequencies we need
to ensure that the noise due to the measurement methods used is rejected,
hence T (s) ≈ 0, which implies S(s) ≈ 1. Clearly, there is a design trade off
between S(s) and T (s) in their frequency domain behaviors. The peak values
of the sensitivity functions are denoted by Ms and Mp, respectively, which
are given by

Ms = max
0<ω<∞

|S(jω) |, Mp = max
0<ω<∞

|T (jω) |. (5.5)

The quantity Ms is also the inverse of the shortest distance to the Nyquist
plot of the loop transfer function, L(s) = C(s)G(s), from the critical point
(−1, j0) in the complex plane. A circle drawn with center at −1 and radius
1/Ms is called the Ms circle. Therefore, by imposing a constraint on the value
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of Ms, we must ensure that the Nyquist plot of L(s) lies outside the Ms circle.
The typical values of Ms are in the range 1.3–2.0. The quantity Mp is the
value of the resonance peak of the closed-loop system, being typically in the
range 1.0–1.5. The Mp circles can also be drawn with center at −M2

p/(M2
p−1)

and radius Mp/(M2
p −1). Similarly, if we impose a constraint on Mp, we must

ensure that the Nyquist plot of L(s) lies outside the Mp circle.
It has been shown in [101,102] that choosing Ms as the design parameter

is useful, since decreasing or increasing its value causes significant changes
in the step response of the system. However, it is also important that the
value of Mp is not very high. Hence, this problem is overcome by choosing
the design parameter to be a circle such that it encloses both the Ms and Mp

circles. This circle has its center at C and radius R given by

C =
Ms − MsMp − 2MsM

2
p + M2

p − 1
2Ms

(
M2

p − 1
) , (5.6)

R =
Ms + Mp − 1
2Ms

(
M2

p − 1
) . (5.7)

The optimization problem can be stated as follows:
“Maximize Ki to obtain the controller parameters such that the closed-loop

system is stable and the Nyquist plot of the loop transfer function lies outside
the circle with center at s = −C and radius R” [101].

Let us now define a function f(Kp,Ki, ω, α) as

f(Kp, Ki, ω, α) = |1 + C(jω)G(jω)|2 . (5.8)

Then, the sensitivity constraint can be expressed mathematically as

f(Kp, Ki, ω, α) � R2. (5.9)

Therefore, the optimization problem is the maximization of Ki subjected
to the sensitivity constraint (5.9). Some important substitutions have to be
made in (5.9) before we go any further with the analysis of the optimization
problem:

• The PIα controller transfer function is defined as

C(jω) = Kp +
Ki

(jω)α
, (5.10)

where

(jω)α = ejπα/2ωα = ωα cos γ + jωα sin γ, γ =
πα

2
. (5.11)

• The system transfer function can be expressed as a complex number in
the frequency domain:

G(jω) = a(ω) + jb(ω) = r(ω)ejφ(ω), (5.12)
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where

a(ω)=r(ω) cos φ(ω), b(ω)=r(ω) sin φ(ω), r2(ω) = a2(ω)+b2(ω). (5.13)

We now substitute (5.10), (5.11), (5.12) in the sensitivity constraint (5.9)
to obtain a simplified optimization problem:

f =C2+r2K2
p+2CaKp+

K2
i r2

ω2α
+

2r2KpKi cos γ

ωα
+

2CKi (a cos γ+b sin γ)
ωα

�R2.

(5.14)

5.2.1 Geometric Interpretation of Optimization
Problems

From (5.14), we can see that it represents the general equation of an ellipse.
Hence, at a given value of ω the sensitivity constraint represents the exterior
of an ellipse. In [101], it has been assumed that positive values of Ki will
ensure a stable closed-loop system. However, the difference here is that
we have to plot the ellipses at varying values of α also. In Figure 5.1 we
observe how the axis of the ellipse rotates with different values of α. In [101]
it has been mentioned that the ellipses generate an envelope. Within the
solution range, the envelope spans the positive and negative Kp axis and
the positive Ki axis. The envelopes have two branches and only the lowest
branch corresponds to the stable solution [101]. Therefore, the maximum
value of Ki occurring at the lowest branch of the envelope will be the
point of optimization. This is indicated in the graphs of Figure 5.1 with
an arrow pointing at the position of the maximum value of Ki. Another
observation we can make from Figure 5.1 is that a solution cannot be found
at all fractional orders. We observe that in the other graphs it is not easy to
find such a region and hence we can conclude that a solution satisfying the
optimization constraint may not exist at these fractional-order controllers for
this particular system.

The geometric illustration of the optimization problem is easy to under-
stand. However, it is time consuming to find the envelopes at each order, since
different systems may show different characteristics. Therefore, a reliable
numerical approach is needed, which will be discussed in the next section.
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5.2.2 Numerical Solution of Optimization Problems

Figure 5.1 represents the solution field, and the optimization condition implies
that we find the maximum Ki on the envelope. However, it is not easy to
generate the envelopes for each system, and efficient numerical methods have
to be derived to give us a more effective solution. The envelopes tend to show
the following characteristics:

• Some envelopes will have a continuous derivative at the maximum, as seen
in Figure 5.1.

• Some maxima can occur at the corners.

Figure 5.1 Geometric illustration of the envelopes generated by the optimization problem
at different values of α for a typical system. The arrow mark indicates the frequency at
which the optimum is achieved

The systems to be considered are of the first type and the numerical method
will be developed based on that assumption. It is important to observe here
that we will consider the fractional order to be a constant in the subsequent
derivations, as we are trying to generalize the MIGO method.
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The envelope can be described mathematically by the following equations:

f(Kp,Ki, ω, α) = R2,
∂f

∂ω
(Kp,Ki, ω, α) = 0. (5.15)

The optimization condition, as explained before, implies finding the max-
imum Ki on the envelope defined by (5.15). Considering the case where the
maximum occurs at the point where the envelope has a continuous derivative,
we can observe that

df =
∂f

∂Kp
dKp +

∂f

∂Ki
dKi +

∂f

∂ω
dω = 0. (5.16)

Again, it is important to emphasize the fact that the fractional order α is
treated as a constant in the algorithm. In (5.16), we also observe the following:

1. From (5.15) we have ∂f/∂ω = 0.
2. For the local maximum condition dKi = 0.
3. We impose that, for random variations of dKp, ∂f/∂Kp = 0.

Hence, with the above-mentioned conditions, the mathematical definition
of the optimization problem for the simplest scenario of maximum Ki

occurring at the point of continuous derivative is given by

f(Kp, Ki, ω, α)=R2,
∂f

∂ω
(Kp,Ki, ω, α)=0,

∂f

∂Kp
(Kp,Ki, ω, α)=0. (5.17)

So, now we have reduced the optimization problem to solving a set of
algebraical equations. Some simplification methods will now be applied to
the above set of equations to obtain a simple algebraical equation which can
be solved using the Newton–Raphson technique [101]. The scenario for the
corner case has not been investigated here as the first scenario is the most
commonly encountered, but it can be assumed that it will follow the same
methodology adopted in [101,102].

Focusing on our problem, we have to solve a set of nonlinear equations of
three variables and with the assumption that α is a constant. Some simple
substitutions will give rise to a simple and efficient algorithm, as will be
shown next.

First of all, from (5.14) and (5.16), it is found that

f = C2 + r2K2
p + 2CaKp +

K2
i r2

ω2α
+

2r2KpKi cos γ

ωα

+
2CKi (a cos γ + b sin γ)

ωα
= R2,

(5.18)

∂f

∂ω
= 2K2

prr′ + 2CKpa′ + K2
i

(
r2

ω2α

)′
+ 2KpKi cos (γ)

(
r2

ωα

)′

+ 2CKi

( a

ωα

)′
cos γ + 2CKi

(
b

ωα

)′
sin γ = 0,

∂f

∂Kp
= 2Kpr2 + 2Ca +

2r2Ki cos γ

ωα
= 0. (5.19)
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In the above equations, the prime means differentiation with respect to ω.
Solving (5.18) and (5.19), we can derive equations for Kp and Ki:

Ki = − Rωα

r sin γ
− Cbωα

r2 sin γ
, (5.20)

Kp = R
cos γ

sin γ
+

Cb

r2

cos γ

sin γ
− Ca

r2
. (5.21)

Equations (5.20) and (5.21) represent the solution for finding the gains of the
controller. However, they are dependent on the value of ω. Hence, we need to
find a solution for ω. Substituting the equations for Kp and Ki into (5.19) for
the final simplification of the optimization problem, the following equation is
obtained:

∂f

∂ω
=

2R2

r
r′ +

4RCb

r2
r′ − 2αR2

ω
− 2αRCb

rω
− 2RC

r
b′.

This can be further simplified as in [101] to get a simple algebraic equation
as shown below:

h(ω) =
∂f

∂ω
= 2R

([
C

b

r
+ R

] [
r′

r
− α

ω

]
− C

(
b

r

)′)
. (5.22)

At this point, the optimization problem reduces to (5.22). Solving this
equation will give the frequency ωo at which Ki is maximized, and then we can
compute Kp and Ki given by (5.20) and (5.21). However, another condition
has to be validated to ensure that the solution is indeed the maximum, i.e.,

d2f

dω2
> 0. (5.23)

The Newton–Raphson technique is used to solve (5.22). To ensure that the
method converges quickly the initial conditions must be chosen suitably. This
algorithm has been designed to eliminate that problem. Instead of applying
the principle used in [101] for finding the initial solution, this algorithm allows
the user to choose a range of initial solutions and (5.22) is then computed at
each of these starting solutions. The final result is stored in an Excel file from
which the user can choose the appropriate solution. The idea here is that,
since the FOPDT system chosen for developing the tuning rules has one local
maximum, starting from any initial solution within the system bandwidth will
ensure that the optimal ω is reached.

Let us now summarize the F-MIGO algorithm:

1. Choose any stable system.
2. Choose a range of initial solutions to apply to (5.22). Example: Initial
ω = [0.1, 0.3, 0.5, 1, 3].
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3. Choose the fractional order α at which you want to find a controller for
the system. Example: α = 1.1.
4. Choose the values of the design parameters Ms and Mp. Example: Ms =
1.4 and Mp = 2.
5. Using Newton–Raphson technique, solve (5.22).
6. Evaluate the condition for maxima (5.23).
7. If Step (vi) is true, then check the values of Kp and Ki. Both should
be positive. Else, go back to Step (iii) and change the order. For some
fractional orders a stable solution does not exist.
8. If Step (vii) is true, then evaluate the values of Ms and Mp for the new
loop transfer function.
9. If the values of Ms and Mp are satisfactory, then check if the system is
stable.
10. If Step (ix) is true, then the solution is good and the Excel file will be
created. Else, go to Step (iv).
11. If all the steps are true, then the solution is good.
12. Repeat the procedure for the next fractional order.

5.3 Development of the Tuning Rules

5.3.1 Introduction to the Method Used

The motivation for setting the tuning rules comes from the method in [105,
106]. Tuning rules for PIλ must be able to provide the user with the value of
the fractional order and gains of the controller. The F-MIGO design algorithm
gives us the flexibility of finding the controller gains at arbitrary α. Hence,
the development of tuning rules follows a simple algorithm:

1. Choose a suitable test batch.
2. Using the F-MIGO algorithm, design fractional-order controllers for
each system in the range [0.1:0.1:1.9].
3. Among the controllers, choose the best based on the ISE criterion [106].
4. Correlate the best controller parameters (α∗,K∗,K∗

i ) with the relative
dead time τ .

5.3.2 Test Batch

The first obvious choice for the test batch was the set of systems chosen
in [105]. However, each of these systems can be approximated by an FOPDT
model, whose structure is given by

G(s) = k
e−Ls

Ts + 1
, (5.24)
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where k is the process gain, which is assumed to be unity since all the systems
are normalized; L and T are the delay and time constant of the system,
respectively. The FOPDT models are characterized by a very important
parameter called the relative dead time of the system, defined as

τ =
L

L + T
. (5.25)

Parameter τ ranges between 0 and 1. Systems in which L � T are called
“delay dominant” and systems in which T � L are called “lag dominant”.

In the test batch parameters L and τ are in the range L = (20, 10, 1) and
τ = (0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.009). The value of
the time constant T can be derived from (5.25). We will use the terminology
“Sys(xy)” to denote a system. Parameters x and y are the indexes pointing
at the values of L and τ , respectively. That is, parameter x can take the
values (1, 2, 3), since there are 3 values considered for parameter L; and y

can take the values (1, 2, · · · , 13), since there are 13 possible values for τ .
Besides, we will denote a system as Type1, Type2, or Type3 according to the
values L = 20, L = 10, and L = 1, respectively. For example, Sys15 refers to
the system with L=20 and τ =0.6, and it is a Type1 system (L=20).

5.3.3 F-MIGO Applied to the Test Batch

Figure 5.2 explains the steps followed in order to choose the best fractional
order (α∗) controller for Type1 systems. The first step is to find the controller
gains at all fractional orders in the range [0.1:0.1:1.9]. The orders which give
a feasible solution are stored in an Excel file. “Feasible” here implies that all
the conditions stated for the F-MIGO algorithm are satisfied. The first table
in Figure 5.2 shows the solutions obtained for each Type1 system. The second
one is the table of Type1 systems vs the fractional orders which give a good
solution. Note that the empty areas imply that a solution could not be found.
The closed-loop step response gives us the value of ISE for each controller.
PIλ controllers are simulated using Oustaloup’s recursive approximation [51].
Details of the approximation is given in Section 12.1.2. This is summarized
in the second table. The minimum value of ISE has been marked and it
corresponds to the best fractional-order controller for that particular system.
The third table summarizes the list of the best fractional order and gain
values for the Type1 systems. This procedure is repeated for Type2 and
Type3 systems to find the best PIλ for the test batch.
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Figure 5.2 Flow for the selection of the best fractional-order controller for a given system

5.3.4 Tuning Tables

Figure 5.3 illustrates the relations between the best PIλ controller parameters
and the process parameters.

Figure 5.3 (a) gives the relation between the best fractional order and
τ . As shown in [105], the controller parameters are first normalized. The
proportional gains K∗

p are multiplied by their respective process gain k, which
in this case are all unity, and the integral gains T ∗

i = K∗
p/K∗

i are divided by
their respective process time constant T , and plotted vs τ , as seen in Figure
5.3 (b,c), respectively.

5.3.4.1 Parameter α∗ vs τ

Figure 5.3 (a) reveals some interesting observations. The fractional order
depends on the value of τ and is almost invariant to the value of L. The
ambiguous region between [0.4 < τ < 0.6] implies that the best fractional
order is close to unity, indicating that a fractional-order controller may be
unnecessary for these systems. This region has been approximated by a
straight line. Delay dominant systems need an order higher than 1 and lag
dominant systems can be controlled efficiently with a lower order controller.
This relation can be approximated by

α =

⎧⎪⎪⎨⎪⎪⎩
1.1, if τ � 0.6
1.0, if 0.4 � τ < 0.6
0.9, if 0.1 � τ < 0.4
0.7, if τ < 0.1.

(5.26)



5.3 Development of the Tuning Rules 99

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
be

st
 f

ac
tio

na
l o

rd
er

solid for L = 10

dash for L = 20

* for L = 1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

no
rm

al
iz

ed
 in

te
gr

al
 g

ai
n

dash for L = 10

* for L = 20

for L = 1

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

relative dead time

no
rm

al
iz

ed
 p

ro
po

rt
io

na
l g

ai
n

dash for L = 10

* for L = 20

for L = 1

(c)

Figure 5.3 Normalized FOC parameters vs the relative dead time τ : (a) α∗ vs τ , (b)

kK∗
p vs τ , and (c) T ∗

i T vs τ

5.3.4.2 Normalized Controller Gains vs τ

The Curve Fitting Toolbox of MATLAB has been used to find the tuning
rules in Figure 5.3 (b,c). It was observed that the process of data fitting
may not reproduce the exact results of the analytical tuning and hence a
region of ±15% around the tuning rules should be considered. The interesting
observations from the graph again reveal the dependency on the value of τ .
For lag dominant systems the proportional gains are higher, whilst the value
drops considerably for delay dominant systems. A similar but opposite trend
is observed for the integral gain. These rules are summarized as follows:

K∗
p =

1
k

(
0.2978

τ + .000307

)
, T ∗

i = T

(
0.8578

τ2 − 3.402τ + 2.405

)
. (5.27)



100 5 Fractional-order PIλ Controller for FOPDT Plants

5.3.5 Summary of Tuning Rules

The tuning rules reveal a very good dependency of the controller parameters
on the relative dead time of the system. Thus, given a system transfer function
or its step response, the tuning rules can be summarized as follows:

1. Find the FOPDT model of the system and define the values k, L, T .
2. Find the relative dead time τ of the system.
3. From the value of τ , calculate the fractional order α from (5.26).
4. Find the controller gains from (5.27). Allow a 15% range around the
gain values.

5.4 Simulation Results

5.4.1 Validity of the F-MIGO Method

For the validation of the method we will consider the systems chosen in [101]
and will obtain the parameters of the PI controller when α = 1. Table 5.1
summarizes the same results as shown in Table 1 in [101]. Observe that for
α = 1 the results obtained match with those of the MIGO method. Hence,
this method can be used to design an Ms constrained PIλ controller at any
given value of α.

Table 5.1 Validation of the F-MIGO method for the systems G1(s)–G6(s) as in [101]

Process α Ms Kp Ki Mp ωo Process α Ms Kp Ki Mp ωo

G1(s) 1.0 1.4 0.633 1.945 1.00 0.737 G2(s) 1.0 1.4 1.930 0.744 1.10 3.378

1.6 0.861 1.868 1.04 0.787 1.6 2.741 0.671 1.27 3.820

1.8 1.053 1.816 1.24 0.827 1.8 3.469 0.622 1.46 4.180

2.0 1.218 1.779 1.45 0.860 2.0 4.112 0.587 1.66 4.470

G3(s) 1.0 1.4 0.156 5.862 1.00 0.096 G4(s) 1.0 1.4 0.167 13.64 1.40 0.293

1.6 0.201 5.667 1.00 0.098 1.6 0.231 10.43 1.50 0.343

1.8 0.233 5.480 1.02 0.100 1.8 0.285 8.967 1.62 0.377

2.0 0.258 5.352 1.17 0.102 2.0 0.332 7.960 1.77 0.407

G5(s) 1.0 1.4 0.177 1.758 1.00 0.385 G6(s) 1.0 1.4 0.313 0.373 1.04 1.985

1.6 0.223 1.685 1.00 0.397 1.6 0.386 0.343 1.15 2.038

1.8 0.264 1.627 1.04 0.407 1.8 0.440 0.325 1.26 2.078

2.0 0.292 1.583 1.20 0.415 2.0 0.482 0.312 1.37 2.108
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5.4.2 Three Types of FOPDT Systems

This section explores the advantages of applying the tuning rules given in
(5.26) and (5.27). The tuned PIλ is then compared with the Ziegler–Nichols
(ZN), modified ZN (MZN) and AMIGO [105] design methods. In this section,
six processes have been considered for comparison. The processes are listed
below and Table 5.2 lists the parameters obtained after approximating them
by an FOPDT model:

G1(s) =
1

0.05s + 1
e−s, G2(s) =

1
(s + 1)3

e−15s,

G3(s) =
1

(s + 1)4
, G4(s) =

9
(s + 1)(s2 + 2s + 9)

,

G5(s)=
1

(1 + s)(1 + 0.2s)(1 + 0.04s)(1 + 0.008s)
, G6(s)=

1
(s + 1)(0.2s + 1)

.

These six systems have been considered so that we have two delay
dominant systems (L � T ), two balanced lag and delay systems (L ≈ T ),
and two lag dominant systems (L � T ).

Table 5.2 FOPDT parameters for systems G1(s) – G6(s)

System k L T τ Type System k L T τ Type

G1(s) 1 1 0.09 0.92 Delay dominant G2(s) 1 16.23 1.76 0.9 Delay dominant

G3(s) 1 1.42 2.90 0.33 Balanced G4(s) 1 0.59 0.745 0.44 Balanced

G5(s) 1 0.1436 2.65 0.051 Lag dominant G6(s) 1 0.105 1.11 0.09 Lag dominant

5.4.2.1 Delay Dominated Systems

Table 5.3 summarizes the results obtained for delay dominant systems for the
different tuning strategies. Figure 5.4 (a,b) shows the step response and load
disturbance response for the two delay dominant systems. It is observed that
the F-MIGO controlled systems show a fairly better response in comparison
with the sluggish integer-order counterparts, implying that systems with large
dead time need a little more than just an integrator to improve their closed-
loop control performance.

5.4.2.2 Balanced Lag and Delay Systems

Table 5.3 summarizes the results obtained for the balanced systems for the
different tuning strategies. Figure 5.4 (c,d) shows the step response and load
disturbance response for these two systems. Systems whose relative dead time
is in the range 0.3 < τ < 0.6 can be considered as balanced systems. It has
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Table 5.3 Controller parameters for systems G1(s) – G6(s)

G1(s) G2(s)

Method α Kp Ki Ms ISE Kp Ki Ms ISE

F-MIGO 1.1 0.32 0.53 1.4 1.32 0.33 0.032 1.4 20.8

ZN 1.0 0.41 0.24 1.7 2.00 0.42 0.014 1.7 32.3

MZN 1.0 0.44 0.46 1.9 1.33 0.44 0.028 1.9 21.7

AMIGO 1.0 0.16 0.42 1.4 1.63 0.17 0.026 1.4 26.5

G3(s) G4(s)

Method α kp ki Ms ISE kp ki Ms ISE

F-MIGO 0.9 0.90 0.51 1.4 2.44 0.67 1.16 1.4 0.96

ZN 1.0 1.55 0.40 2.0 2.10 1.06 0.70 1.9 0.89

MZN 1.0 1.71 0.39 2.1 2.08 1.18 0.70 2.0 0.88

AMIGO 1.0 0.71 0.34 1.5 2.75 0.50 0.77 1.5 1.09

G5(s) G6(s)

Method α kp ki Ms ISE kp ki Ms ISE

F-MIGO 0.7 5.76 5.66 1.40 0.29 3.43 7.64 1.41 .20

ZN 1.0 11.85 26.3 2.41 0.31 6.90 21.3 2.32 .21

MZN 1.0 13.28 12.99 2.18 0.24 7.73 10.5 2.14 .17

AMIGO 1.0 5.31 7.80 1.42 0.35 3.1 7.72 1.43 .25

been observed that, for these systems, the fractional order tends to be close
to 1. Besides, from the responses, it can be observed that the best controller
cannot be decided for these systems. This leads us to believe that a fractional
order may be unnecessary in the case of balanced systems.

5.4.2.3 Lag Dominated Systems

Table 5.3 summarizes the results obtained for lag dominant systems for the
different tuning strategies. Figure 5.4 (e,f) shows the step response and load
disturbance response for the two lag dominant systems. From the responses,
it is very clear that the F-MIGO controlled system performance is very good
in comparison with the integer-order counterparts, which show overshoot
and oscillatory response. Even though the AMIGO method is comparable,
it shows a slightly larger overshoot compared with the F-MIGO controller.
This leads to the conclusion that systems with very small dead time may not
need a full integrator to give a good closed-loop response.
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Figure 5.4 Step response and load disturbance response for PIλ controllers designed
using the tuning rules for FOPDT systems (thick solid line), ZN (dashed line), modified
ZN (dotted line), AMIGO (dashed dotted line): (a) G1(s), (b) G2(s), (c) G3(s), (d) G4(s),
(e) G5(s), and (f) G6(s). The controller gains have been listed in Table 5.3

5.4.3 Special Systems

This section deals with those systems which show complex dynamics [101].
They cannot be typically approximated by a simple FOPDT model. The F-
MIGO algorithm is applied to them and the fractional order is scanned in
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the range 0.1 � α � 1.9. The best controller is then picked based on the ISE
criterion.

A pure time delay system is given by the transfer function

G(s) = e−s. (5.28)

This can be considered an extreme case of the systems with large values of
relative dead time, i.e., τ = 1. Table 5.4 shows the values obtained via the
F-MIGO method for the range of α considered. Systems with τ close to 1
seem to have a good solution only in the range 0.8 < α < 1.4, as shown
in the table. Choosing the lowest value of ISE corresponds to the fractional
order 1.1, which again reinforces what has already been discussed for delay
dominant systems. Figure 5.5 shows the response for the obtained solutions.
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Figure 5.5 Pure time delay controlled with PIλ controllers, best at α = 1.1, k = 0.292,
Ki = 0.73 (solid line). The one with integer-order controller is given in dashed lines. The
closed-loop shows oscillatory response for α � 1, in dotted lines, and high overshoot for
α > 1.1, in dashed dotted lines

Table 5.4 Scan of fractional order for pure delay system

α Kp Ki wo Ms Mp ISE α Kp Ki wo Ms Mp ISE

0.8 0.075 1.104 1.81 1.40 1.0 1.374 0.9 0.204 1.074 1.83 1.40 1.0 1.278

1.0 0.157 0.472 1.73 1.40 1.0 1.485 1.1 0.292 0.729 1.79 1.41 1.0 1.209

1.2 0.291 0.606 1.77 1.41 1.0 1.330 1.3 0.291 0.540 1.75 1.41 1.1 1.513

1.4 0.288 0.500 1.73 1.41 1.2 1.8143

A pure integrator with time delay is given by

G(s) =
e−s

s
. (5.29)
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This system can be considered as an extreme case of an FOPDT model with
a very small value of the relative dead time, i.e., τ = 0, which implies that
T ≈ ∞. Following a similar approach, we scan the system at different values
of α and pick the best fractional-order PI controller based on the least ISE
value. Figure 5.6 and Table 5.5 give the summary of the results. It has been
observed for lag dominating systems that solutions can be obtained in the
range 0.4 < α < 1.5. The best fractional order in this case is 0.7.
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Figure 5.6 Pure integrator with time delay controlled with a PIλ controller: closed-loop
response without controller (dashed line); best fractional order at α = 0.7 with Kp = 0.324
and Ki = 0.103 (solid line); integer-order controller with Kp = 0.365 and Ki = 0.042
(dotted dashed line)

Table 5.5 Scan of fractional order for pure integrator with time delay system

α Kp Ki wo Ms Mp ISE α Kp Ki wo Ms Mp ISE

0.4 0.141 0.173 0.564 1.40 1.2 2.448 0.5 0.209 0.147 0.587 1.40 1.2 2.379

0.6 0.262 0.123 0.599 1.40 1.2 2.359 0.7 0.324 0.103 0.606 1.41 1.1 2.348

0.8 0.351 0.087 0.606 1.40 1.1 2.375 0.9 0.282 0.078 0.612 1.40 1.1 2.407

1.0 0.365 0.042 0.544 1.40 1.1 2.793 1.1 0.368 0.057 0.599 1.40 1.1 2.645

1.2 0.375 0.051 0.593 1.40 1.2 2.874 1.3 0.373 0.048 0.588 1.40 1.2 3.245

1.4 0.377 0.044 0.578 1.40 1.2 4.027 1.5 0.157 0.043 0.567 1.40 1.3 5.863

5.5 Summary

The results presented in this chapter can be divided into two main parts.
In the first part, a generalized MIGO design method for obtaining the
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parameters of the PIλ controller has been derived based on the principles
presented in [101], and it has been validated for the integer case α = 1.
Hence, for any given system, at any given α for the PIλ controller, a solution
can be given if it satisfies the design constraints.

The second part uses this generalized method to scan a set of FOPDT
systems for the best fractional order based on the ISE constraint. From
the best fractional-order controller obtained, a relation has been established
between the controller parameters and the relative dead time τ of the FOPDT
systems. This relation has been found to be highly dependent on the value of
τ . Tuning rules have been then obtained from these relations for the FOPDT
systems. Hence, given the step response of a system, if its FOPDT model
can be found, then a fractional-order controller can be suggested for better
control.

A comparison has been carried out with the existing popular tuning meth-
ods for integer-order PI controllers. From these comparisons, the following
conclusions can be drawn. Given the FOPDT model of a system, if the
relative dead time is very small, then it has been observed that a fractional-
order PI controller of order α ≈ 0.7 is found to outperform the integer-order
counterparts. For systems with a balanced lag and delay values, an advantage
of using a fractional-order controller cannot be established. For systems with
relative dead time close to unity, it has been observed that the fractional
order α = 1.1 speeds up the response compared with the sluggish integer-
order counterparts, though with the disadvantage of having slightly higher
overshoot.

Therefore, in conclusion, a relation between the need for a fractional-order
controller and the relative dead time of the system has been established. The
need for a little more than an integrator, in some cases, and the lack of a
complete integer-order controller, in some others, has been justified.



Chapter 6

Fractional-order Proportional
Derivative Controller Tuning for
Motion Systems

In Chapter 5, we focused on fractional-order proportional integral controller
tuning. The plants to be controlled are assumed to be FOPDT plants. In
this chapter, we focus on fractional-order proportional derivative controllers,
PDμ, for another class of plants that are very common in motion control
applications. A new tuning method for PDμ controllers is proposed to ensure
that specifications of gain crossover frequency and phase margin are fulfilled.
Furthermore, the derivative of the phase in Bode plot of the open-loop system
with respect to the frequency is forced to be zero at the given gain crossover
frequency so that the closed-loop system is robust to gain variations. The
design method proposed is practical and simple to apply. Simulation and
experimental results show that the closed-loop system can achieve favorable
dynamic performance and robustness.

6.1 Introduction

As introduced in the previous chapter, the application of fractional-order
controllers is currently increasing [2, 52, 107–109]. A better control perfor-
mance can be achieved with this type of controller due to the introduction of
the fractional orders, as demonstrated in [52], where a PIλDμ controller was
proposed and compared with the classical PID controller. In general, there
is not a systematic way for setting the fractional-order parameters, specially
in complex cases [82, 89, 110, 111]. However, we may be able to get practical
and simple FOC parameter tuning methods for certain specific plants.

In this chapter, a design method for fractional-order PDμ controller for a
typical second-order plant is discussed. The PDμ controller has the following
form of transfer function:

C(s) = Kp(1 + Kdsμ), (6.1)

107
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where μ ∈ (0, 1]. Clearly, this is a specific form of the most common PIλDμ

controller which involves an integrator of order λ (λ = 0, in this chapter) and
a differentiator of order μ. The typical second-order plant discussed here is

G(s) =
1

s(τs + 1)
, (6.2)

which can approximately model a DC motor position servo system. Note
that the plant gain is normalized to 1 without loss of generality, since the
proportional factor in the transfer function (6.2) can be introduced through
the controller gain Kp.

The rest of the chapter is organized as follows. Sections 6.2 and 6.3 describe
the design method proposed for the PDμ controller. Section 6.4 shows
simulation examples of application, and Section 6.5 presents the experimental
results obtained when controlling a dynamometer platform. Finally, chapter
summary is given in Section 6.6.

6.2 Fractional-order PD Controller Design for a Class of
Second-order Plants

Let us restrict our attention to a class of second-order plants G(s) described
by (6.2). The transfer function of the fractional-order PDμ controller has the
form of (6.1). The phase and magnitude of the plant in the frequency domain
are given by

arg[G(jω)] = − tan−1(ωτ) − π

2
, (6.3)

|G(jω)| =
1

ω
√

1 + (ωτ)2
. (6.4)

The fractional-order PDμ controller described by (6.1) can be written as

C(jω) = Kp [1+Kd(jω)μ] = Kp

(
1+Kdωμ cos

μπ

2
+jKdωμ sin

μπ

2

)
. (6.5)

In the frequency domain,

arg[C(jω)] = tan−1
sin

(1 − μ)π
2

+ Kdωμ

cos
(1 − μ)π

2

− (1 − μ)π
2

, (6.6)

|C(jω)| = Kp

√(
1 + Kdωμ cos

μπ

2

)2
+
(
Kdωμ sin

μπ

2

)2
. (6.7)

The open-loop transfer function G(s) is

L(s) = C(s)G(s). (6.8)
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From (6.3) and (6.6), the phase of G(s) is

arg[G(jω)] = tan−1
sin

(1 − μ)π
2

+ Kdωμ

cos
(1 − μ)π

2

+
μπ

2
− π − tan−1(ωτ). (6.9)

Here, three interesting specifications to be met by the fractional-order PDμ

controller are proposed. From the basic definition of gain crossover frequency
and phase margin:

1. Phase margin specification

arg[G(jωcg)] = arg[C(jωcg)G(jωcg)] = −π + ϕm,

2. Robustness to variation in the gain of the plant

d(arg(C(jω)G(jω)))
dω

∣∣∣∣
ω=ωcg

= 0,

that is, the derivative of the phase of the open-loop system with respect to
the frequency is forced to be zero at the gain crossover frequency so that the
closed-loop system is robust to gain variations, and therefore the overshoots
of the response are almost invariant.

3. Gain crossover frequency specification

|G(jωcg)|dB = |C(jωcg)G(jωcg)|dB = 0.

6.2.1 Conventional PD Controllers (μ = 1)

From (6.9) and according to specification 2,

d(arg(G(jω)))
dω

∣∣∣∣
ω=ωcg

=
Kd

1 + (Kdωcg)2
− τ

1 + (τωcg)2
= 0,

we obtain that

Kd =
1

τω2
cg

, arg[G(jω)] = tan−1

(
1

τωcg

)
− π

2
− tan−1(ωcgτ).

That means that specifications 1 and 2 cannot be satisfied simultaneously
for traditional PD controllers.
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6.2.2 Fractional-order PDμ Controllers

According to specification 1, the phase of G(s) can be expressed as

arg[G(jω)]
∣∣∣
ω=ωcg

= tan−1
sin

(1−μ)π
2

+Kdωμ
cg

cos
(1 − μ)π

2

+
μπ

2
−π−tan−1(ωcgτ)

= −π + ϕm. (6.10)

From (6.10), the relation between Kd and μ can be established as follows:

Kd =
1

ωμ
cg

tan
[
ϕm+tan−1(ωcgτ)−μπ

2
+π
]
cos

(1−μ)π
2

− 1
ωμ

cg
sin

(1−μ)π
2

.

(6.11)
According to specification 2 about the robustness to gain variations in the

plant,

d(Arg(G(jω)))
dω

∣∣∣∣
ω=ωcg

=
μKdωμ−1

cg cos
(1 − μ)π

2

cos2
(1 − μ)π

2
+
(

sin
(1 − μ)π

2
+ Kdωμ

cg

)2 − τ

1 + (τωcg)2
= 0.

(6.12)
From (6.12), we can establish the following equation for Kd:

Aω2μ
cg K2

d + BKd + A = 0, (6.13)

that is

Kd =
−B ±

√
B2 − 4A2ω2μ

cg

2Aω2μ
cg

, (6.14)

where

A =
τ

1 + (ωcgτ)2
, B = 2Aωμ

cg sin
(1 − μ)π

2
− μωμ−1

cg cos
(1 − μ)π

2
.

According to specification 3, the equation established for Kp is

|G(jωcg)| = |C(jωcg)||G(jωcg)|

=
Kp

√(
1 + Kdωμ

cg cos
μπ

2

)2
+
(
Kdωμ

cg sin
μπ

2

)2
ωcg

√
1 + (ωcgτ)2

= 1.

(6.15)

Clearly, we can solve (6.11), (6.14), and (6.15) to get μ, Kd, and Kp.
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6.3 Design Procedure

It can be observed from (6.11) and (6.14) that μ and Kd can be obtained
jointly. Fortunately, a graphical method can be used as a practical and simple
way to get these parameters. The procedure to tune the fractional-order PDμ

controller is as follows:

• Given ωcg, the gain crossover frequency.
• Given ϕm, the desired phase margin.
• Plot curve 1 in Figure 6.1, corresponding to Kd with respect to μ, according

to (6.11).
• Plot curve 2 corresponding to Kd with respect to μ, according to (6.14).
• Obtain μ and Kd from the intersection point between Curves 1 and 2.
• Calculate Kp from (6.15).

Remark 6.1. Design specifications should not be chosen too aggressive be-
cause of the constraint in (6.14) and the intersection point between the two
curves. �
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Figure 6.1 Kd vs μ

6.4 Simulation Example

The fractional-order PDμ controller design method above is illustrated via
a numerical simulation. In the simulation, the plant parameter τ in (6.2) is
0.05 sec. The specifications of interest are set as ωcg = 60 rad/sec, ϕm = 70◦,
and the robustness to gain variations in the plant is required.
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Figure 6.2 Bode plot with fractional-order PDμ controller

According to (6.11) and (6.14), two curves are plotted easily in Figure 6.1.
From the intersection point of these curves, it is found that μ = 0.86 and
Kd =0.053. Then, Kp is calculated from (6.15) easily, resulting in Kp =84.89.

Actually, the PDμ fractional-order controller itself is an infinite-dimensional
linear filter due to the fractional-order differentiator μ. A band-limit im-
plementation is important in practice. Finite dimensional approximation of
the FOC should be utilized in a proper range of frequency of practical
interest. The approximation method used here is the Oustaloup recursive
algorithm [112]. Assuming that the frequency range selected is (ωb, ωh), the
approximate finite-dimensional transfer function of a continuous filter for
sγ with the Oustaloup algorithm can be obtained. Details on Oustaloup
approximation and implementation is given in Section 12.1.2.

In our simulation, for the approximation of fractional-order differentiator
sμ, the frequency range of practical interest is set from 0.0001Hz to 10,000Hz.
The Bode plots of the resulting open-loop system are shown in Figure 6.2.
As can be seen, the gain crossover frequency specification, ωcg = 60 rad/sec,
and phase margin specification, ϕm = 70◦, are satisfied. The phase is forced
to be flat at ωcg.

In order to compare the integer-order controller and our designed fractional-
order controller fairly, two simulation cases are presented.

6.4.1 Step Response Comparison with Varying Kp

It is well known that a proportional controller is adopted commonly for the
typical second-order plant discussed in this chapter, and that the Integral
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of Time and Absolute Error (ITAE) optimum proportional parameter is
K = 1/(2τ) [113]. Therefore, the proportional parameter is set to 10 in this
example if the commonly used proportional controller is used.

In Figure 6.3, applying the ITAE optimal proportional controller, the unit
step responses are plotted with the open-loop plant gain varying from 8 to
12 (±20% variations from the desired value 10). In Figure 6.4, applying the
fractional-order PDμ controller, the unit step responses are plotted with gains
varying from 67.9 to 101.8 (±20% variations from desired value 84.89).

It can be seen from Figure 6.3 and 6.4 that the fractional-order PDμ

controller designed by the proposed method in this chapter is effective. With
the fractional-order controller, faster responses are achieved and besides,
the overshoots of the step responses remain almost constant under gain
variations, i.e., an iso-damping property is exhibited. This means that the
system is more robust to gain changes.
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Figure 6.3 Step responses with the ITAE optimum proportional controller, with Kp =
8∼12

6.4.2 Ramp Response Comparison with Varying Kp

In this simulation case, we use the unit ramp input response to compare the
PI controller with the fractional-order PDμ controller. The ITAE optimum
parameters of the PI controller are designed as follows [113]:

CPI(s) = Kp(1 + Ki/s), (6.16)

where Kp = 21.2245 and Ki = 74.6356.
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Figure 6.4 Step responses with the PDμ controller, with Kp variation of 80 %∼120%

In Figure 6.5, the ITAE optimum PI controller is applied and the unit
ramp responses are plotted with open-loop gain varying from 16.9796 to
25.4694 (±20% variations from the desired value 21.2245). In Figure 6.6, the
fractional-order PDμ controller is applied and the unit ramp responses are
plotted with gains varying from 67.8 to 101.8 (±20% variations from the
desired value 84.89).

From Figures 6.5 and 6.6, it is obvious that, with the designed PDμ

controller using the proposed tuning rule, the overshoots are almost constant
under gain variations and are much lower than those with the ITAE optimal
PI controller.
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Figure 6.5 Ramp response with the ITAE optimum PI controller
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Figure 6.6 Ramp responses with PDμ controller

6.5 Experiments

6.5.1 Introduction to the Experimental Platform

A fractional horsepower dynamometer has been developed as a general
purpose experiment platform [114]. The architecture of the dynamometer
control system is shown in Figure 6.7. The dynamometer includes the DC
motor to be tested, a hysteresis brake for applying torque load to the
motor, a load cell to provide force feedback, an optical encoder for position
feedback, and a tachometer for velocity feedback. The dynamometer has
been modified to connect to a Quanser MultiQ4 terminal board in order to
control the system through MATLAB/Simulink Real-Time Workshop (RTW)
based software. This terminal board connects with the Quanser MultiQ4
data acquisition card. Then, we use the MATLAB/SimulinkTM environment,
which uses the WinCon application from Quanser, to communicate with the
data acquisition card. Thus complex nonlinear control schemes can be tested
since the programmable load can be used to emulate nonlinear relations.
This enables rapid prototyping and experiment capabilities to many nonlinear
models of arbitrary form.

Without loss of generality, consider the servo control system modeled by

ẋ(t) = v(t), (6.17)

v̇(t) = Kuu(t) − Kbv, (6.18)

where x is the position state, v is the velocity, and u is the control input; Ku

and Kb are positive coefficients.
Through a simple system identification process, the DC motor can be

approximately modeled by a transfer function 1.52/(0.4s + 1).
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Figure 6.7 The dynamometer setup

6.5.2 Experimental Model Simulation

Since we have already experimentally modeled the dynamometer with a
transfer function 1.52/(0.4s + 1), we can test the simulation effect first in
Simulink. Then, the simulation results can be compared with the real-time
experiments on the dynamometer. This way, the verification of our proposed
method is more effective.

For the fractional-order PDμ controller, the gain crossover frequency is set
as ωcg = 10 rad/sec. Correspondingly, for the approximation of the fractional-
order differentiator sμ, the frequency range of practical interest is set from
1Hz to 100Hz, and the desired phase margin is set as ϕm = 70◦. Moreover, the
robustness to gain variations is required. According to the numerical method
in Section 6.3, we can obtain that μ = 0.844, Kd = 0.368 and Kp = 13.860.

First, the unit step responses are tested to compare the ITAE optimum P
controller with the PDμ controller. The ITAE optimum P parameter is Kp =
1/(2τ) = 1.25 [113]. In Figure 6.8, applying the ITAE optimal P controller,
the unit step responses are plotted with the open-loop gain varying from 1
to 1.5 (±20% variations from the desired value 1.25). In Figure 6.9, applying
the fractional-order PDμ controller, the unit step responses are plotted with
gains varying from 11.088 to 16.632 (±20% variations from the desired value
13.86).

From Figures 6.8 and 6.9, it is obvious that, with the designed PDμ

controller, faster unit step responses are achieved, and the overshoots remain
almost constant under gain variations and are much lower than that with
the optimal P controller, demonstrating that the controlled system using the
PDμ controller is more robust to gain changes in the loop.
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Figure 6.8 Dynamometer simulation model. Step position responses with the ITAE
optimal proportional controller, with thick solid line for Kp = 1.25, thin solid line for
Kp = 1, and dashed, dotted, and dashed dotted lines for Kp = 1.125, 1.375 and 1.5,
respectively
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Figure 6.9 Dynamometer simulation model. Step position responses with the PDμ

controller

Next, the unit ramp responses are tested to compare the ITAE optimum
PI controller with the PDμ controller. The ITAE optimum PI parameters are
designed as Kp = 2.6531 and Ki = 1.1662 [113]. In Figure 6.10, applying
the ITAE optimal PI controller, the unit ramp responses are plotted with
the open-loop gain varying from 1.8531 to 3.1837 (±20% variations from
the desired value 2.6531). In Figure 6.9, applying the fractional-order PDμ

controller, the unit ramp responses are plotted with gains varying from 11.088
to 16.632 (±20% variations from the desired value 13.86).

It can be seen from Figures 6.10 and 6.11 that the fractional-order PDμ

controller designed by the proposed tuning method is more effective.
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Figure 6.10 Dynamometer simulation model. Ramp position responses with the ITAE
optimal PI controller
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Figure 6.11 Dynamometer simulation model. Ramp position responses with the PDμ

controller

6.5.3 Experiments on the Dynamometer

Substituting the DC motor simulation model for the real dynamometer
platform, the proposed PDμ controller is tested in a hardware-in-the-loop
manner.

Figures 6.12 and 6.13 show the unit step position responses for the ITAE
optimal P controller and the unit ramp position responses for the ITAE
optimal PI controller, respectively. Figures 6.14 and 6.15 present the unit step
and ramp position responses for the fractional-order PDμ controller designed
by the proposed tuning method in this chapter, respectively. It is obvious
that, with the designed PDμ controller, faster responses are achieved and the
overshoots remain almost constant under gain variations. The overshoots are
much lower than those with the ITAE optimal P or PI controllers.
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Figure 6.12 Dynamometer real-time experiment. Step position responses with the ITAE

optimal proportional controller
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Figure 6.13 Dynamometer real-time experiment. Ramp position responses with the ITAE
optimal PI controller

6.6 Summary

In this chapter, we have presented a new tuning method for fractional-
order proportional and derivative controllers PDμ for a class of second-order
plants. The PDμ controller is tuned to ensure that the given gain crossover
frequency and the phase margin are achieved, and also to guarantee the
robustness of the system to gain variations. The tuning method proposed,
aiming at typical second-order plants, is practical and simple. Simulation and
experimental results show that the closed-loop system can achieve favorable
dynamic performance and robustness.
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Chapter 7

Fractional-order Proportional Integral
Derivative Controllers

This chapter deals with the design of fractional-order PIλDμ controllers, in
which the orders of the integral and derivative parts, λ and μ respectively, are
fractional. The purpose is to take advantage of the introduction of these two
parameters and fulfil additional specifications of design, ensuring a robust
performance of the controlled system with respect to gain variations and
noise. A method for tuning the PIλDμ controller is proposed to fulfil five dif-
ferent design specifications. Experimental results show that the requirements
are fully met for the platform to be controlled.

7.1 Introduction

It is important to realize that there is a very wide range of control problems
and, consequently, also a need for a wide range of design techniques. There
are already many tuning methods available, but a replacement of the Ziegler–
Nichols method is long overdue. On the research side, it appears that the
development of design methods for integer-order PID control is approaching
the point of diminishing returns. There are few difficult problems that remain
to be solved.

Therefore, this chapter proposes the application of fractional-order PIλDμ

controllers as an alternative to solve some of the control problems that can
arise when dealing with industrial applications, as will be commented on
later. On the one hand, a new method for the design of fractional-order
controllers is proposed, and more concretely for the tuning of a generalized
PIλDμ controller of the form

C(s) = Kp +
Ki

sλ
+ Kdsμ, (7.1)

121



122 7 Fractional-order PIλDμ Controllers

where λ and μ are the fractional orders of the integral and derivative parts of
the controller, respectively. Since this kind of controller has five parameters
to tune (Kp,Kd,Ki, λ, μ), up to five design specifications for the controlled
system can be met, that is, two more than in the case of a conventional PID
controller, where λ = 1 and μ = 1. It is essential to study which specifications
are more interesting as far as performance and robustness are concerned, since
it is the aim to obtain a controlled system robust to uncertainties of the plant
model, load disturbances, and high-frequency noise. All these constraints will
be taken into account in the tuning technique in order to take advantage of
the introduction of the fractional orders.

The chapter is organized as follows. The tuning method proposed for
fractional-order PIλDμ controllers is described in Section 7.2. Section 7.3
shows the experimental results obtained when controlling an experimental
platform with the controller designed. Finally, some relevant concluding
remarks are presented in Section 7.4.

7.2 Design Specifications and Tuning Problem

As stated in the introduction, our objective is to design a fractional-order
controller so that the system fulfils different specifications regarding robust-
ness to plant uncertainties, load disturbances, and high-frequency noise. For
that reason, specifications related to phase margin, sensitivity functions, and
robustness constraints are going to be considered in this design method, due
to their important features regarding performance, stability, and robustness.
Of course, other kinds of specifications can be met, depending on the
particular requirements of the system. Therefore, the design problem is
formulated as follows:

• Phase margin ϕm and gain crossover frequency ωcg specifications.
Gain and phase margins have always served as important measures of
robustness. It is known that the phase margin is related to the damping
ratio of the system and therefore can also serve as a performance measure
[115]. As seen in the previous chapter, the equations that define the phase
margin and the gain crossover frequency are

|C(jωcg)G(jωcg)|dB = 0dB, arg(C(jωcg)G(jωcg)) = −π + ϕm. (7.2)

• Robustness to variations in the gain of the plant. The next
constraint can be considered in this case [116]:

d arg(F (s))
dω

∣∣∣∣
ω=ωcg

= 0. (7.3)
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This condition has already been considered in the previous chapter, and
forces the phase of the open-loop system F (s) = C(s)G(s) to be flat
at ωcg and so, to be almost constant within an interval around ωcg. It
means that the system is more robust to gain changes and the overshoot
of the response is almost constant within a gain range, also known as iso-
damping property of the time response. It must be noted that the interval
of gains for which the system is robust is not fixed with this condition.
That is, the user cannot force the system to be robust for a particular gain
range. This range depends on the frequency range around ωcg for which
the phase of the open-loop system keeps flat. This frequency range will be
longer or shorter, depending on the resulting controller and the frequency
characteristics of the plant.

• High-frequency noise rejection. A constraint on the complementary
sensitivity function T (jω) can be established:∣∣∣∣T (jω) =

C(jω)G(jω)
1 + C(jω)G(jω)

∣∣∣∣
dB

� A dB,

∀ω � ωt rad/sec ⇒ |T (jωt)|dB = A dB,

(7.4)

with A the desired noise attenuation for frequencies ω � ωt rad/sec.
• To ensure a good output disturbance rejection. A constraint on the

sensitivity function S(jω) can be defined:∣∣∣∣S(jω) =
1

1 + C(jω)G(jω)

∣∣∣∣
dB

� B dB,

∀ω � ωs rad/sec ⇒ |S(jωs)|dB = B dB,

(7.5)

with B the desired value of the sensitivity function for frequencies ω �
ωs rad/sec (desired frequency range).

• Steady-state error cancelation. Properly implemented, a fractional-
order integrator of order k + α, k ∈ N, 0 < α < 1, is, for steady-state error
cancelation, as efficient as an integer-order integrator of order k + 1 [92],
as demonstrated in Section 2.3.3.3, and the steady-state error is shown in
Table 2.1.
However, though the Final-Value Theorem states that the fractional-order
system exhibits null steady-state error if α > 0, the fact of being α < 1
makes the output converge to its final-value more slowly than in the case
of an integer-order controller. Furthermore, the fractional effect has to
be band-limited when it is implemented. Therefore, the fractional-order
integrator must be implemented as 1/sα = s1−α/s, ensuring this way the
effect of an integer-order integrator 1/s at very low frequencies.
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Similarly to the fractional-order integrator, the fractional-order differen-
tiator, sμ, also has to be band-limited when implemented, ensuring in this
way a finite control effort and noise rejection at high frequencies.

Using the fractional-order PIλDμ controller of (7.1), up to five of these
design specifications can be fulfilled, since it has five parameters to tune. For
fractional-order controllers such as a PIλ or a PDμ, three design specifications
could be met (one for each parameter). Therefore, for the general case of a
PIλDμ controller the design problem is based on solving the system of five
nonlinear equations (given by the corresponding design specifications) and
five unknown parameters Kp, Kd, Ki, λ, μ.

However, the complexity of this set of nonlinear equations is very signifi-
cant, specially when fractional orders of the Laplace variable s are introduced,
and finding out the solution is not trivial. In fact, a nonlinear optimization
problem must be solved, in which the best solution of a constrained nonlinear
equation has to be found.

Global optimization is the task of finding the absolutely best set of
admissible conditions to achieve an objective under given constraints, as-
suming that both are formulated in mathematical terms. Some large-scale
global optimization problems have been solved by current methods, and a
number of software packages are available that reliably solve most global
optimization problems in small (and sometimes larger) dimensions. However,
finding the global minimum, if one exists, can be a difficult problem (very
dependent on the initial conditions). Superficially, global optimization is a
stronger version of local optimization, whose great usefulness in practice
is undisputed. Instead of searching for a locally feasible point, one wants
the globally best point in the feasible region. However, in many practical
applications, finding the globally best point, though desirable, is not essential,
since any sufficiently good feasible point is useful and usually an improvement
over what is available without optimization (this particular case). Besides,
sometimes, depending on the optimization problem, there is no guarantee
that the optimization functions will return a global minimum, unless the
global minimum is the only minimum and the function to minimize is
continuous [117]. Taking all this into account, and considering that the set of
functions to minimize in this case are continuous and can only present one
minimum in the feasible region, any of the optimization methods available
could be effective, a priori. For this reason, and taking into account that
MATLAB is a very appropriate tool for the analysis and design of control
systems, MATLAB optimization toolbox has been used to reach out the best
solution with the minimum error. The function used for this purpose is called
fmincon(), which finds the constrained minimum of a function of several
variables. It solves problems of the form minx f(x) subject to C(x) � 0,
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Ceq(x) = 0, xm � x � xM, where f(x) is the function to minimize; C(x)
and Ceq(x) represent the nonlinear inequalities and equalities, respectively
(nonlinear constraints); x is the minimum looked for; xm and xM define a
set of lower and upper bounds on the design variables x.

In this particular case, the specification in (7.2) is taken as the main
function to minimize, and the rest of specifications (7.2) ∼ (7.5) are taken
as constraints for the minimization, all of them subjected to the optimiza-
tion parameters defined within the function fmincon. The success of this
design method depends mainly on the initial conditions considered for the
parameters of the controller.

The tuning method proposed here is illustrated next with the results
obtained from an experimental platform consisting of a liquid level system.

7.3 Experimental Results

The experimental platform “Basic Process Rig 38-100 Feedback Unit” has
been used to test the fractional-order controllers designed by the optimization
tuning method proposed. The platform consists of a low pressure flowing
water circuit which is bench mounted and completely self contained. The
water circuit is arranged in front of a vertical panel, as can be seen in
Figure 7.1.

Figure 7.1 Photo of the Basic Process Rig 38-100 Feedback Unit
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For the characterization of the plant and implementation of the controller,
a data acquisition board PCL-818H, by PC-LabCard, has been used, running
on MATLAB 5.3 and using its real time toolbox “Real-Time Windows
Target.” A computer Pentium II, 350MHz, 64M RAM, supports the data
acquisition board and the program in C programming language (from MAT-
LAB) corresponding to the controller.

After the characterization of the system, the resulting transfer function is

G(s) =
k

τs + 1
e−Ls =

3.13
433.33s + 1

e−50s, (7.6)

that is, the liquid level system is modeled by a first-order transfer function
with time delay L = 50 sec, gain k = 3.13 and time constant τ = 433.33 sec .

The design specifications required for the system are:

• gain crossover frequency, ωcg = 0.008 rad/sec;
• phase margin, ϕm = 60◦;
• robustness to variations in the gain of the plant must be fulfilled;
• sensitivity function: |S(jω)|dB � −20 dB, ∀ ω � ωs = 0.001 rad/sec;
• noise rejection: |T (jω)|dB � −20 dB, ∀ ω � ωt = 10 rad/sec.

Applying the optimization method described previously, the fractional-
order PIλDμ controller obtained to control the system is

C(s) = 0.6152 +
0.0100
s0.8968

+ 4.3867s0.4773. (7.7)

In this particular case the fractional-order integral and derivative parts
have been implemented by the Oustaloup continuous approximation of the
fractional-order integrator ( [16,51], Chapter 12), choosing a frequency band
from 0.001 rad/sec to 100 rad/sec and an order of the approximation equal
to 5 (number of poles and zeros). Once the continuous-time fractional-order
controller is obtained, it is discretized by using the Tustin rule with a sampling
period T = 1 sec and a prewarp frequency ωcg [118].

The Bode plots of the open-loop system F (s) = C(s)G(s) are shown in
Figure 7.2. As can be observed, the specifications of gain crossover frequency
and phase margin are met. Besides, the phase of the system is forced to be
flat at ωcg and so, to be almost constant within an interval around ωcg. It
means that the system is more robust to gain changes and the overshoot
of the response is almost constant within this interval, as can be seen in
Figure 7.3, where a step input of 0.47 has been applied to the closed-loop
system in simulation. Variations in the gain of the plant have been considered
from 2.75 to 3.75. The magnitudes of the functions S(s) and T (s) for the
nominal plant are shown in Figures 7.4 and 7.5, respectively, fulfilling the
specifications.
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Figure 7.2 Bode plots of the open-loop system F (s) = C(s)G(s)
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Figure 7.6 Comparison between simulated and experimental levels for k = 3.13 with
controller C(s)

The experimental results obtained when controlling the liquid level plant
in real time are shown next. Figure 7.6 shows the comparison between
simulated and experimental levels for the nominal gain k = 3.13. In Figure 7.7
the experimental responses for different gains (set via software) are scoped,
fulfilling the robustness constraint to gain changes (within the variation range
selected). Figure 7.8 shows the experimental control laws obtained for each
value of gain. As far as the control laws are concerned, only a slight variation
in the peak value of the signal is produced when the gain changes, which is
an important feature as far as the actuator saturation is concerned. In this
case, the peak value is very far from the saturation value of 10 V for the servo
valve.

From these results, the potential of the fractional-order PIλDμ controller in
practical industrial settings, regarding performance and robustness aspects, is
clear. However, the design method proposed here involves complex equations
relating the specifications of design and, sometimes, it may be difficult to find
a solution to the problem.
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Figure 7.8 Experimental control laws of the controlled system with controller C(s), very
similar for K = 3.13, K = 2.75, and K = 3.75

7.4 Summary

In this chapter, a synthesis method for fractional-order PIλDμ controllers has
been developed to fulfil five different design specifications for the closed-loop
system, that is, two more specifications than in the case of a conventional
PID controller. An optimization method to tune the controller has been used
for that purpose, based on a nonlinear function minimization subject to some
given nonlinear constraints. Experimental results show that the requirements
are totally satisfied for the platform to be controlled. Thus, advantage has
been taken of the fractional orders λ and μ to fulfil additional specifications
of design, ensuring a robust performance of the controlled system to gain
changes and noise.
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Part III of the book deals with tuning methods for fractional-order lead-
lag compensators. These methods will avoid the nonlinear minimization
problem presented here, giving very simple relations between the parameters
of the controller to fulfil the specifications and preserving the robustness
characteristics regarding performance, gain variations, and noise.



Part III

Fractional-order Lead-lag
Compensators



Chapter 8

Tuning of Fractional-order Lead-lag
Compensators

This part of the book will concentrate on the tuning and auto-tuning
of fractional-order lead-lag compensators, that is, a generalization of the
classical lead-lag compensator. The similarities between this structure and the
fractional-order PIλDμ controller in the frequency domain will be discussed.
The design method proposed here will avoid the nonlinear minimization and
initial conditions problems presented in Part II of the book.

In this chapter, a design method for fractional-order lead-lag compen-
sators (FOLLC) is presented. Simple relations among the parameters of
the fractional-order controller are obtained and specifications of steady-state
error constant Kss, phase margin ϕm, and gain crossover frequency ωcg are
fulfilled, following a robustness criterion based on the flatness of the phase
curve of the compensator. The tuning method proposed will be taken as
a first step for a later generalization of these lead-lag compensators to the
fractional-order PIλDμ controllers, as will be explained in Chapter 9.

8.1 Introduction

The transfer function of an FOLLC is given by

C(s) = Kc

(
s + 1/λ

s + 1/(xλ)

)α

= Kcx
α

(
λs + 1
xλs + 1

)α

, 0 < x < 1, (8.1)

where α is the fractional order of the controller, 1/λ = ωzero is the zero
frequency, and 1/(xλ) = ωpole is the pole frequency (when α > 0). As
can be observed, this compensator corresponds to a fractional-order lead
compensator when α > 0 and 0 < x < 1, and to a fractional-order lag
compensator when α < 0 and 0 < x < 1. The condition 0 < x < 1
is maintained in both cases. Assuming that the lead compensator behaves
similarly to a fractional-order PDμ controller and the lag compensator

133
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similarly to a fractional-order PIλ controller, the first step for a latter
generalization of these structures to the fractional-order PIλDμ controller
would be overcome.

This transmittance corresponds to a frequency-bounded fractional-order
differentiator/integrator which is at the very origin of the CRONE control
[16, 119]. An infinite-dimensional state-space representation for this kind of
controller has been studied in [120]. It has also been used on the modeling and
the feedback control laws for the stability of viscoelastic control systems [121].

The frequency characteristics of this fractional-order compensator when
α > 0 (lead compensator) are shown in Figure 8.1. For values of α < 0
(lag compensator) the slope of the magnitude curve is negative and the
compensator introduces a phase lag. As can be seen in the figure, the value
of x sets the distance between the fractional zero ωzero and pole ωpole and the
value of λ sets their position in the frequency axis. These two values depend
on the value of α. It is observed that, for a fixed pair (x, λ), the higher the
absolute value of α, the higher the slope of the magnitude of C(s) and the
higher the maximum phase φm that the compensator can give.
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Figure 8.1 Bode plots of C(s) when α > 0

As in the case of an integer-order lead-lag compensator, the frequency
ωm is the geometric mean of the corner frequencies ωzero and ωpole, and its
equation is given by ωm =

√
x/λ. At this frequency the characteristics of the

compensator C(s) are∣∣∣∣ C(s)
Kcxα

∣∣∣∣
ω=ωm

= |C ′(s)|ω=ωm
=

(√
(λωm)2 + 1
(xλωm)2 + 1

)α

=
(

1√
x

)α

, (8.2)

arg (C ′(s))ω=ωm
= φm = α sin−1

(
1 − x

1 + x

)
. (8.3)
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The contribution of parameter α is remarkable. The lower the value of α,

the longer the distance between the zero and pole and vice versa, so that the
contribution of phase at a certain frequency stands still. This fact makes the
controller more flexible and allows considerations of robustness in the design,
as will be explained next.

The rest of the chapter is organized as follows. Section 8.2 describes the
design method proposed for the FOLLC. Section 8.3 shows a simulation
example of application. Finally, some conclusions are drawn in Section 8.4.

8.2 The Design Method

In this section, an analytical design method is proposed for this type of
controller, based on the lead-lag regions defined for the compensator in the
complex plane, depending on the value of α. This method allows a flexible
and direct selection of the parameters of the fractional structure through the
knowledge of the plant and the specifications of error constant, Kss, gain
crossover frequency ωcg and phase margin ϕm, also following a robustness
criterion based on the flatness of the phase curve of the compensator.

First of all, the value of the compensator gain k′ = Kcx
α can be set in

order to fulfil an error constant specification for the controlled system. For a
general plant model of the form

G(s) =
k
∏
i

(τis + 1)

sn
∏
j

(τjs + 1)
, (8.4)

and an error constant Kss, the next equation is obtained:

Kss = lim
s→0

snC(s)G(s)

= lim
s→0

snk′
(

λs + 1
xλs+1

)α k
∏
i

(τis + 1)

sn
∏
j

(τjs + 1)
= lim

s→0

snk′k
sn

=k′k.
(8.5)

That is, k′ = Kcx
α = Kss/k.

For a specified phase margin ϕm and gain crossover frequency ωcg, the
next relation for the open-loop system is given in the complex plane:

G(jωcg)k′
(

jλωcg + 1
jxλωcg + 1

)α

= ej(π+ϕm)

⇒
(

jλωcg + 1
jxλωcg + 1

)α

=
ej(π+ϕm)

k′G(jωcg)
= a1 + jb1

⇒
(

jλωcg + 1
jxλωcg + 1

)
= (a1 + jb1)

1/α = a + jb,

(8.6)

where G(s) is the plant to control and (a1, b1) is called the “design point.”
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Doing some calculations, the equations for x and λ will by given by

x =
a − 1

a(a − 1) + b2
, λ =

a(a − 1) + b2

bωcg
. (8.7)

Studying the conditions for a and b to find a solution, it can be concluded
that a lead compensator is obtained when a > 1 and b > 0, and a lag

compensator when
1 −√

1 − 4b2

2
< a <

1 +
√

1 − 4b2

2
and −1/2 < b < 0.

Figure 8.2 shows these lead and lag regions in the complex plane for this
integer compensator.
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Figure 8.2 Lead and lag regions for the integer-order compensator (α = 1)

Let us focus first on the lead compensation. It is clear that for the
conventional lead compensator (α=1) the vector a+jb=a1+jb1 is perfectly
known through the knowledge of the plant and the specifications of phase
margin and gain crossover frequency required for the system, as can be seen
in (8.6). Knowing the pair (a, b), the values of x and λ are directly obtained
by (8.7), and the compensator is therefore designed.

As shown in Figure 8.2, the vector 1 + j tan θ defines the borderline of the
lead region. Using the polar form of this vector√

1 + tan2 θ ejθ =
1

cos θ
ejθ, (8.8)

and expressing the vector (a1 + jb1)1/α in its polar form(√
a2
1 + b2

1

)1/α

ej tan−1(b1/a1)/α = ρ1/αejδ/α, (8.9)

where ρ =
(√

a2
1 + b2

1

)
and δ = tan−1(b1/a1), the next relations are

established from (8.6):

δ = θα, ρ1/α =
1

cos θ
⇒ 1 = ρ

[
cos
(

δ

α

)]α
. (8.10)
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Then, solving numerically the function 1 = ρ [cos (δ/α)]α , the lead com-
pensation regions in the complex plane for different positive values of α are
obtained, as shown in Figure 8.3.
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Figure 8.3 Lead regions for the fractional-order compensator (0 � α � 2)

The zone to the right of each curve is the lead region, and any design
point in this zone can be fulfilled with a fractional-order compensator having
a value of α equal to or bigger than the one defining the curve which passes
through the design point αmin. For instance, for the design point in Figure 8.3
the value of αmin is 0.48.

By choosing the minimum value αmin, the distance between the zero and
the pole of the compensator will be the maximum possible (minimum value of
parameter x). In this case, the phase curve of the compensator is the flattest
possible and variations in a frequency range centered at ωcg will not produce
a significant phase change as in other cases, improving the robustness of the
system.

Figure 8.4 shows the pairs (x, λ) obtained for each value of α in the range
αmin � α � 2, with αmin = 0.48 (compensation of the design point in
Figure 8.3). It is observed that the minimum value of x is obtained for αmin

(maximum robustness).
Therefore, through the curves in Figures 8.3 and 8.4, the selection of the

parameters of the compensator is flexible and direct.
This method proposed for the fractional-order lead compensator [122,123]

can be used for the design of a fractional-order lag compensator with some
corrections that are explained next.

First of all, to determine whether a lead or lag compensator is required to
fulfil the specification of phase margin, a simple computation has to be done:

1. if π + arg(G(jωc)) < ϕm → Lead Compensator;

2. if π + arg(G(jωc)) > ϕm → Lag Compensator.
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Figure 8.4 Pairs (x, λ) for αmin � α � 2

In case a phase lag (ϕlag) is required for the system, the compensator will
be designed as a lead one giving a phase ϕlead = −ϕlag, and then the sign of
α is changed. Therefore, in order to keep the specification of phase margin,
the phase ϕlag of the compensator will now be given by

ϕlag = −π + 2[π + arg(G(jωc))] − ϕm − arg(G(jωc)). (8.11)

Let us remember that in the case of a lead compensation the phase of the
compensator is given by ϕlead = −π + ϕm − arg(G(jωc)).

Besides, it has to be taken into account that the fact of changing the sign
of α for the lag compensation also changes the magnitude of the compensator
designed (makes it the inverse). So, in order to keep the gain invariable
(fulfilling the specification of gain crossover frequency), the lag compensator
will be multiplied by a gain Klag = 1/(k′ |G(jωc)|)2. Therefore, the fractional-
order lag compensator will be given by

Clag(s) = Klagk
′
(

λs + 1
xλs + 1

)−α

, (8.12)

with α a positive real number.

8.3 Simulation Results

In this section, the tuning method proposed is illustrated by a simulation
example. The plant to control is given by

G(s) =
2

s(0.5s + 1)
.
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The gain crossover frequency will be ωcg = 10 rad/sec. At this frequency,
the plant has a magnitude of −28.1188 dB and a phase of −169.65◦. The
velocity error constant will be set to Kv = 20, and the phase margin to
ϕm = 50◦. As can be observed, a lead compensator is needed in this case.
Using the method proposed in Section 8.2, the resulting compensator is

C(s) = 10
(

0.6404s + 1
0.0032s + 1

)0.5

,

with k′ = 10, x = 0.0050, λ = 0.6404, and α = 0.5. The Bode plots of this
compensator are shown in Figure 8.5.
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Figure 8.5 Bode plots of controller C(s)

At the gain crossover frequency ωcg = 10 rad/sec, the compensator has
a magnitude of 28.1188 dB and a phase of 39.65◦. At that frequency the
magnitude of the open-loop system F (s) is 0 dB, and the phase margin
obtained is 50◦, as shown in Figure 8.6. Therefore, the specifications are
correctly fulfilled.

For the sake of implementation, this compensator has been approximated
by using a frequency identification method. This way, an integer-order
transfer function is obtained that fits the frequency response of the FOLLC in
a frequency range of interest. A detailed explanation for the implementation
of fractional-order controllers is given in Chapter 12. The resulting step
response of the closed-loop system using this controller approximation is
shown in Figure 8.7.
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8.4 Summary

In this chapter we have presented a tuning method for FOLLC. Simple
relations among the parameters of this fractional-order controller are ob-
tained and specifications of steady-state error constant Kss, phase margin
ϕm, and gain crossover frequency ωcg are fulfilled, following a robustness
criterion based on the flatness of the phase curve of the compensator.
Simulation results are given to show the goodness of the method. For a better
understanding of the potential of this tuning technique and its robustness
feature, please see Chapters 9 and 17 for a real mechatronic application case.



Chapter 9

Auto-tuning of Fractional-order
Lead-lag Compensators

In this chapter, an auto-tuning method for the FOLLC described in the
previous chapter will be discussed. We will study to what extent the auto-
tuning method proposed here can be used for the tuning of the PIλDμ con-
troller, avoiding in this way the nonlinear minimization and initial conditions
problems presented in Part II of the book.

9.1 Introduction

Many process control problems can be adequately and routinely solved by
conventional PID-control strategies. The reason why the PID controller is so
widely accepted is its simple structure, which has proven to be appropriate for
many commonly met control problems such as set-point regulation/tracking
and disturbance attenuation. However, although tuning guidelines are avail-
able, the tuning process can still be time consuming with the result that
many control loops are often poorly tuned and full potential of the control
system is not achieved. These methods require a fair amount of a priori
knowledge such as, for instance, sampling period, dead time, model order,
and desired time response. This knowledge may either be given by a skilled
engineer or may be acquired automatically by some kind of experimentation.
The second alternative, commonly known as auto-tuning, is preferable, not
only to simplify the task of the operator, but also for the sake of robustness.

There is a wide variety of auto-tuning methods for integer controllers.
Some of them aim in some way at tuning the robustness of the controlled
system [124], for example, forcing the phase of the open-loop system to be
flat around the gain crossover frequency so that the system is robust to
gain variations [62, 116]. However, the complexity of the equations relating
the parameters of the controller increases when some kinds of robustness

141
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constraints are required for the controlled system. The implementation of
these types of auto-tuning methods for industrial purposes will be really
complex since, in general, industrial devices, such as a PLC, cannot solve
sets of complex nonlinear equations.

For that reason, an auto-tuning method for fractional-order PIλDμ con-
trollers based on the relay test is proposed, that allows the fulfilment of
robustness constraints for the controlled system by simple relations among
the parameters of the controller, simplifying the later implementation process.

The final aim is to find out a method to auto-tune a fractional-order PIλDμ

controller formulated as

C(s) = Kcx
μ

(
λ1s + 1

s

)λ(
λ2s + 1
xλ2s + 1

)μ

. (9.1)

As can be observed, this controller has two different parts given by the
following equations:

PIλ(s) =
(

λ1s + 1
s

)λ

, (9.2)

PDμ(s) = Kcx
μ

(
λ2s + 1
xλ2s + 1

)μ

. (9.3)

Equation 9.2 corresponds to a fractional-order PIλ controller and (9.3) to a
fractional-order lead compensator that can be identified as a PDμ controller
plus a noise filter. In this method, the fractional-order PIλ controller will
be used to cancel the slope of the phase of the plant at the gain crossover
frequency ωcg. This way, a flat phase around the frequency of interest is
ensured. Once the slope is canceled, the PDμ controller will be designed
to fulfil the design specifications of gain crossover frequency ωcg and phase
margin ϕm, following a robustness criterion based on the flatness of the phase
curve of this compensator, as explained in Section 8.2 This way, the resulting
phase of the open-loop system will be the flattest possible, ensuring the
maximum robustness to plant gain variations.

From now on, we will refer to the lead part of the compensator as a PDμ

controller and to the lag part as a PIλ one.
Let us first give some ideas about the relay test used for the auto-tuning

problem.

9.2 Relay Test for Auto-tuning

The relay auto-tuning process has been widely used in industrial applications
[125]. The choice of relay feedback to solve the design problem is justified by



9.2 Relay Test for Auto-tuning 143

the possible integration of system identification and control into the same
design strategy, giving birth to relay auto-tuning. In this work, a variation
of the standard relay test is used, shown in Figure 9.1, where a delay θa is
introduced after the relay function.
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Figure 9.1 Relay auto-tuning scheme with delay

With this scheme, as explained in [116], the following relations are given:

arg (G(jωc)) = −π + ωcθa, (9.4)

|G(jωc)| =
πa

4d
=

1
N(a)

, (9.5)

where G(jωc) is the transfer function of the plant at the frequency ωc, which
is the frequency of the output signal y corresponding to the delay θa, d is the
relay output, a is the amplitude of the output signal y in Figure 9.1, and N(a)
is the equivalent relay gain. This way, for each value of θa a different point on
the Nyquist plot of the plant is obtained. Therefore, a point on the Nyquist
plot of the plant at a particular desired frequency ωc can be identified, e.g.,
at the gain crossover frequency required for the controlled system (ωc = ωcg).

The problem would be how to select the right value of θa which corresponds
to a specific frequency ωc. An iterative method can be used to solve this
problem, as presented in [116]. The artificial time delay parameter can be
updated using the simple interpolation/extrapolation scheme

θn =
ωc − ωn−1

ωn−1 − ωn−2
(θn−1 − θn−2) + θn−1, (9.6)

where n represents the current iteration number. With the new θn, after the
relay test, the corresponding frequency ωn can be recorded and compared
with the frequency ωc so that the iteration can continue or stop. Two initial
values of the delay (θ−1 and θ0) and their corresponding frequencies (ω−1

and ω0) are needed to start the iteration. Therefore, first of all, a value
for θ−1 is selected and the relay test is carried out, obtaining an output
signal with frequency ω−1. Then, in a second iteration, another value is given
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for θ0, obtaining an output signal with frequency ω0. With these two pairs,
(θ−1, ω−1) and (θ0, ω0), the next value of θn is automatically obtained by
using the interpolation/extrapolation scheme of (9.6).

Let us now concentrate on the design of the fractional-order PIλ controller.

9.3 Design of the Fractional-order Lag Part

The fractional-order PIλ controller of (9.2) will be used to cancel the slope
of the phase of the plant in order to obtain a flat phase around the frequency
point ωcg. The value of this slope is given by

υ =
φu − φn−1

ωu − ωn−1
sec, (9.7)

where ωn−1 is the frequency n−1 experimented with the relay test and φn−1

its corresponding plant phase, and φu the plant phase corresponding to the
frequency of interest ωu = ωcg.

The phase of the fractional-order PIλ controller is given by

ψ = arg
(
PIλ(s)

)
= λ
(
arctan(λ1ω) − π

2

)
. (9.8)

In order to cancel the slope of the phase curve of the plant, υ, the derivative
of the phase of PIλ(s) at the frequency point ωcg must be equal to −υ,

resulting in the equation

ψ′ =
dψ

dω

∣∣∣∣
ω=ωcg

= λ
λ1

1 + (λ1ωcg)2
= −υ. (9.9)

The parameters λ and λ1 must be selected so that this equation is fulfiled.
Studying the function (9.9) and differentiating with respect to parameter λ1

in (9.10), it is found that it has a maximum at λ1 = 1/ωcg in (9.11), as can
be observed in Figure 9.2:

dψ′

dλ1
=

λ
[
(λ1ωcg)2 − 1

]
(1 + (λ1ωcg)2)2

, (9.10)

dψ′

dλ1
= 0 ⇒ (λ1ωcg)2 − 1 = 0 ⇒ λ1 =

1
ωcg

. (9.11)

That is, choosing ωzero = 1/λ1 = ωcg the slope of the plant at the
frequency ωcg will be canceled with the maximum slope of the fractional-
order controller. Once λ1 is fixed, the value of λ is easily determined by

λ =
−υ
(
1 + (λ1ωcg)2

)
λ1

. (9.12)
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Figure 9.2 Derivative of the phase of the PIλ controller at ω = ωcg, for λ = 1 and ωcg = 1

It is observed that the value of λ will be minimum when λ1 = 1/ωcg.
Variations of the frequency ωzero up or down the frequency ωcg will produce
higher values of the parameter λ. Therefore, selecting ωzero = ωcg the phase
lag of the resulting PIλ(s) controller will be the minimum one with minimum
λ. This fact is very interesting from the robustness point of view. The less
the phase lag of the controller PIλ(s), the less the phase lead of the controller
PDμ(s) at the frequency ωcg, favoring the flatness of its phase curve.

Then, considering this robustness criterion, the value of λ1 will be fixed
to 1/ωcg and λ will be obtained by (9.12).

Remember that the real value of ωcg to be used in the design is ωu, which
is that obtained with the relay test and very close to ωcg.

9.4 Design of the Fractional-order Lead Part

Defining the system Gflat(s) = G(s)PIλ(s), now the controller PDμ(s) will
be designed so that the open-loop system F (s) = Gflat(s)PDμ(s) satisfies
the specifications of gain crossover frequency ωcg and phase margin ϕm

following a robustness criterion based on the flatness of the phase curve of
this compensator [122,123], as explained in Section 8.2.
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For a specified phase margin ϕm and gain crossover frequency ωcg, the fol-
lowing relations for the open-loop system can be given in the complex plane:

Gflat(jωcg)k′
(

jλ2ωcg + 1
jxλ2ωcg + 1

)μ

= ej(−π+ϕm)

⇒ C ′(jωcg) =
(

jλ2ωcg + 1
jxλ2ωcg + 1

)μ

=
ej(−π+ϕm)

Gflat(jωcg)k′ = a1 + jb1

⇒
(

jλ2ωcg + 1
jxλ2ωcg + 1

)
= (a1 + jb1)

1/μ = a + jb,

(9.13)

where k′ = Kcx
μ = 1 in this case, Gflat(s) is the plant to be controlled, and

(a1, b1) is the “design point.”
As can be seen, we are in the case of the design of the FOLLC described

in Section 8.2. Therefore, the parameters of the PDμ controller will be tuned
according to the explanations in that chapter. Please review it for a better
understanding of this auto-tuning method.

Let us then sum up how the PIλDμ controller is auto-tuned. The following
steps can be solved by a simple computer, using a data acquisition system
to control and monitor the real process (as explained in the section for
experimental results). A PLC could also be used for the determination of the
parameters of the controller, due to the simplicity of the equations involved
in the auto-tuning method:

1. Once the specifications of design are given (ωcg and ϕm), the relay test
is applied to the plant and the resulting pairs (θn,ωn) obtained from the
n iterations of the test are saved and used for the calculation of the
phase and magnitude of the plant at each frequency ωn (following (9.4)
and (9.5)). As explained previously, these values are used for obtaining
the slope of the plant phase υ (9.7). With the value of the slope, the
parameters λ and λ1 of the PIλ controller are directly obtained by (9.9)
and (9.11). Then the system Gflat(jωcg) is determined.

2. Once the system Gflat(jωcg) is defined, and according to (9.13), the
parameters of the fractional-order compensator in (9.3) are obtained by
simple calculations summarized next, following the robustness feature
explained in Section 8.2.

3. Select a very small initial value of μ, for example μ = 0.05. For this
initial value, calculate the value of x and λ2 using the relations in (9.13)
and (8.7).

4. If the value of x obtained is negative, then the value of μ is increased a
fixed step and Step 2 is repeated again. The smaller the fixed increase
of μ, the more accurate the selection of parameter μmin. Repeat Step 2
until the value of x obtained is positive.
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5. Once a positive value of x is obtained, the value of μ must be recorded as
μmin. This value of x will be close to zero and will ensure the maximum
flatness of the phase curve of the compensator (iso-damping constraint).
The value of λ2 corresponding to this value μmin is also recorded.

Therefore, all the parameters of the PIλDμ controller have been obtained
through this iterative process. Then the controller is implemented and starts
to control the process through the switch illustrated in Figure 9.1, concluding
the auto-tuning procedure.

9.5 Formulation of the Resulting Controller

Once the parameters of the fractional-order PIλDμ controller of (9.1) are
obtained by following the design method explained above, these parameters
can be related to those of the standard PIλDμ controller given by

Cstd(s) = Kp

(
1 +

1
Tis

)λ(
1 +

Tds

1 + Tds/N

)μ

. (9.14)

Carrying out some calculations in (9.14), the following transfer function is
obtained:

Cstd(s) =
Kp

(Ti)λ

(
Tis + 1

s

)λ(
Td(1 + 1/N)s + 1

1 + Tds/N

)μ

. (9.15)

Comparing (9.1) and (9.14), the relations obtained are Ti = λ1, Kp =
k′(λ1)−λ, N = (1 − x)/x and Td = λ2(1 − x).

9.6 Summary

In this chapter, an auto-tuning method for the fractional-order PIλDμ as
a generalization of the FOLLC using the relay test has been proposed.
This method allows a flexible and direct selection of the parameters of the
controller through the knowledge of the magnitude and phase of the plant
at the frequency of interest, obtained with the relay test. Specifications of
gain crossover frequency ωcg and phase margin ϕm can be fulfilled with a
robustness property based on the flatness of the phase curve of the open-loop
system, guaranteeing the iso-damping property of the time response of the
system to gain variations.

Chapter 17 shows a real mechatronic application case in which this auto-
tuning technique is implemented experimentally.
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Other Fractional-order Control
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Chapter 10

Other Robust Control Techniques

10.1 CRONE: Commande Robuste d’Ordre Non Entier

In Chapter 4 we introduced the idea of robust control and basic controllers
to fulfil this characteristic. In the frequency domain, we can say that Bode’s
ideal loop transfer function in Section 2.3.4 is the reference model to achieve
a robust performance. The purpose is to obtain an open-loop characteristic
similar to that of this reference model, ensuring in this way a constant phase
margin around a frequency of interest and, therefore, a constant overshoot of
the time responses to plant gain variations.

This idea was developed extensively by Oustaloup [50], who studied
the fractional-order algorithms for the control of dynamic systems and
demonstrated the superior performance of the CRONE (Commande Robuste
d’Ordre Non Entier, meaning Non-integer-order Robust Control) method
over the PID controller. There are three generations of CRONE controllers
[51], and we will briefly review all of them in this chapter.

Some of the characteristics of the CRONE techniques are:

• Frequency domain based methodology using fractional-order differentia-
tion as high-level design parameter (since 1975).

• Continuous-time or discrete-time control of disturbed SISO and MIMO
systems.

• Use of the common unity-feedback configuration.
• Robustness of the stability degree with respect to parametric plant distur-

bances (no over-estimation).
• Avoiding over-estimation of plant disturbance leads to non-conservative

robust control systems and to as good performance as possible.
• Control of minimum-phase or non-minimum-phase plants, unstable plants,

or plants with mechanical bending modes, time-varying plants, and non-
linear plants.

151
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From now on, we will consider the control system in Figure 10.1, with
controller C(s) and plant G(s).

C(s) G(s)

�

�� � � ��
� �

�

�

Nm(t)

u(t) y(t)

dy(t)du(t)

yref(t)

−

Figure 10.1 Control system

Let us concentrate on each of the CRONE generations.

10.1.1 First Generation CRONE Controller

The first generation CRONE controller is very suitable for gain-like plant
disturbance models and for constant plant phase around a frequency of
interest. Its transfer function is given by

C(s) = C0s
α, (10.1)

with α and C0 ∈ R.
The Bode plots of this controller are shown in Figure 10.2. The controller

is defined within a frequency range (ωb, ωh) around the desired open-loop
gain crossover frequency ωcg. The Oustaloup recursive approximation can be
used to implement this controller, as described in Section 12.1.2. However, any
approximating formula may be used as long as it allows us to obtain a rational
transfer function whose frequency response fits the frequency response of
the original irrational-order transfer function in a desired frequency range
(ωb, ωh).

This type of controller is useful when the plant to be controlled already
has a constant phase, at least in a frequency range around the gain crossover
frequency (asymptotic plant frequency response within this band). In that
case, the loop will be robust to plant gain variations, since even though the
gain crossover frequency may change, the plant phase margin will not, and
neither will the controller phase.

However, due to control effort limitations, it is sometimes impossible to
choose an open-loop gain crossover frequency within an asymptotic behavior
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frequency band of the plant. Therefore, when the desired ωcg is outside an
asymptotic behavior band, the first generation CRONE controller cannot
ensure the robustness of the closed-loop system stability margins.

Nevertheless, as Bode first stated, for the design of single-loop absolutely
stable amplifiers whose gains vary, the robust controller is the one which yields
an open-loop transfer function defined by a constant phase (and constant
dB/dec gain slope) in a useful band. This leads to the second generation
CRONE controller.

10.1.2 Second Generation CRONE Controller

As already stated, if a plant does not have a constant phase, first generation
CRONE controllers will not be robust to plant gain variations. However, it
is possible to devise a controller that ensure a constant open-loop phase [50].
When ωcg is within a frequency band where the plant uncertainties are gain-
like, the CRONE approach defines the open-loop transfer function, in the
frequency band (ωb, ωh), by that of a fractional-order integrator:

F (s) = C(s)G(s) =
(ωcg

s

)α

, (10.2)

with α ∈ R and α ∈ [1, 2]. It is in fact Bode’s ideal loop transfer function
defined in Section 2.3.4.

Figure 10.3 shows the open-loop Nichols chart for the second generation
CRONE approach. The vertical straight line, which is the desired shape of
the open-loop Nichols chart, is called the template.
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Figure 10.3 Open-loop Nichols chart for the second generation CRONE approach

At the time of plant disturbances, the vertical displacement of the vertical
template ensures the robustness of:

• the phase margin, ϕm = (2 − α)π/2;
• the gain margin, Mg = sin(απ/2);
• the resonant peak, Mr = 1/ sin(απ/2);
• the damping ratio, which is related to the closed-loop poles, ζ =−cos(π/α).

Once the optimal open-loop Nichols chart is obtained, the fractional-order
controller C(s) is obtained from (10.2) as

C(s) =
F (s)
G(s)

. (10.3)

There are two ways to synthesize the rational form of the controller.
In its original formulation, the Oustaloup recursive approximation for the
fractional-order integrator F (s) was to be used (Section 12.1.2 and [50]). To
manage the control effort level and the steady-state errors, the fractional-
order open-loop transfer function has to be band-limited and is more com-
plicated by including integral and low-pass effects:

FR(s) = k′
(ωb

s
+ 1
)nb
(

ωh + s

ωb + s

)n 1
(s + ωh)nF , (10.4)

with ωb, ωh, k′ ∈ R+, and nb, nF ∈ N+ [50]. Then, the controller will have
the form

C(s) =
FR(s)
G(s)

. (10.5)

Another way to implement C(s) consists of replacing it by a rational-order
transfer function which has the same frequency response as F (s)/G(s) in a
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frequency range of interest, using any frequency-based identification method
as shown in Section 12.3.

10.1.3 Third Generation CRONE Controller

Both first and second generation CRONE controllers aim at being robust to
plant gain variations. However, other types of model uncertainty, including
pole and zero misplacement, are not covered. Third generation CRONE
controllers [51] try to take these cases into account.

Before identifying the objective of this third generation, let us introduce
two important sets of curves in the Nichols chart [50, 51, 126]: curves of
constant closed-loop gain and curves of approximately constant damping
ratio.

Let us consider an open-loop system F (jω) whose frequency response is
given by

Θ = |F (jω)|, (10.6)

θ = arg[F (jω)]. (10.7)

The closed-loop will be given by

L(jω) =
F (jω)

1 + F (jω)
, (10.8)

and therefore, after simple calculations,

|L(jω)| =
∣∣∣∣ Θejθ

1 + Θejθ

∣∣∣∣ = Θ√
1 + Θ2 + 2Θ cos θ

. (10.9)

Figure 10.4 represents the curves of constant values of |L(jω)| in a Nichols
chart. They have a periodicity of 2π rad in the phase axis and are symmetric
with respect to all vertical straight lines given by x = kπ, k ∈ Z [50].

In [50], Oustaloup shows that the damping ratio is approximately given by

ζ = − cos
π2

2arccos
(

1 + Θ2 + 2Θ cos θ

2Θ
− 1
) , (10.10)

the exact relationship depending on the plant.
Figure 10.5 represents curves of constant values of ζ in a Nichols chart.

They have a periodicity of 2π rad in the phase axis and are symmetric with
respect to all vertical straight lines given by x = kπ, k ∈ Z [50].

Now that these two concepts are explained, we can discuss the objective
of a third generation CRONE controller [50, 51], which is to ensure that the
closed-loop gain will never get beyond a certain value, even if some parameters
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Figure 10.4 Nichols chart with curves of constant values of closed-loop gain

Figure 10.5 Nichols chart with curves of constant values of closed-loop damping
coefficient

of the plant vary within a known range. Or the objective may be to ensure
that the closed-loop damping ratio will never get below a certain value, also
for a known range of variation of some plant parameters. In other words,
the objective is to prevent the Nichols chart of the open-loop system from
approaching the zones where the closed-loop gain is high and the damping
ratio is low, that is, zones around points (0 dB, (2k+1)π rad), k ∈ Z.

Once the desired open-loop frequency behavior is known, the controller
behavior is obtained similarly to the case of the second generation CRONE
controller in (10.3). And the same considerations for the implementation of
the controller can be taken into account (see [50,51] and Chapter 12).
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An example of application is that presented in Figure 10.6, which is a
benchmark for digital robust control presented in [16, 127]. F1, F2, and F3

correspond to three different configurations of a discrete-time plant model in
the open-loop:

F1(z−1) =
0.50666z−4+0.28261z−3

0.88642z−4−1.31608z−3+1.58939z−2−1.41833z−1+1
, (10.11)

F2(z−1) =
0.18123z−4 + 0.10276z−3

0.89413z−4−1.84083z−3+2.20265z−2−1.99185z−1+1
, (10.12)

F3(z−1) =
0.10407z−4 + 0.06408z−3

0.87129z−4−1.93353z−3+2.31962z−2−2.09679z−1+1
, (10.13)

with sampling period T = 0.05 sec.
The Nichols charts of such models come dangerously close to points where

the closed-loop gain is rather high, as can be observed in Figure 10.6. A
controller is required for this plant that can deal with the three configurations
ensuring that the closed-loop gain is never higher than 1 dB, which is fulfilled
with a third generation CRONE controller as shown in Figure 10.7. The
transfer function of this controller is

C(z−1)=

−0.14614z−7+0.607639z−6−0.580113z−5−0.80347z−4

+1.60318z−3−0.2082z−2−0.87043z−1+0.41053
−0.05328z−7+0.10323z−6−0.54187z−5+0.58878z−4

+1.32411z−3 − 1.68605z−2 − 0.73491z−1 + 1

. (10.14)

Figure 10.6 Performance in open-loop without controller

The step responses of the three plants under the same controller can be
obtained as shown in Figure 10.8. It can be seen that the CRONE controller
is robust for the three plants.
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Figure 10.7 Performance in open-loop with a third generation CRONE controller
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Figure 10.8 Step responses of the closed-loop system, with solid lines, dashed lines, and
dashed dotted lines, respectively, for plants F1, F2, and F3

10.2 QFT: Quantitative Feedback Theory

As is known, a wide range of research activities deal with the application of
Quantitative Feedback Theory (QFT) for the design of different control struc-
tures. QFT consists of shaping the open-loop function to a set of restrictions
(or boundaries) given by the design specifications and the uncertain model
of the plant.

The optimal loop computation is a nonlinear and non-convex optimization
problem for which it is difficult to find a satisfactory solution, since there is
no optimization algorithm which guarantees a global optimum solution.
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A possible approach is to simplify the equations in order to obtain a
different optimization problem for which there exists a closed-form solution
or an optimization algorithm which does guarantee a global optimum. Thus,
there is a trade-off between the conservative simplification of the problem
and the computational solvability. This is the approach in [128, 129]. Some
authors have also researched the loop shaping problem in terms of particular
rational structures, with a certain degree of freedom, which can be shaped to
the particular problem to be solved [130, 131]. Another possibility is to use
evolutionary algorithms, able to solve nonlinear and non-convex optimization
problems [132,133]. All these approaches, which use rational controllers and
typically a low order controller, give a poor result, in general. Thus, very high
order rational controllers have to be used to obtain a close to optimal solution.
This is a main drawback of the above automatic loop shaping techniques,
since the resulting optimization problem is considerably more complex as the
number of parameters (directly related to the controller order) is increased.

A solution to this problem in the sense adopted in CRONE is the use
of fractional-order controllers for minimizing the search space by using a
minimum number of parameters, still having a good frequency performance.
This idea has been used in [134,135], where some fractional-order controllers,
including CRONE and second-order fractional structures, have been consid-
ered.

In this section, we will briefly describe how to use QFT for the robust
tuning of an FOLLC of the form in (8.1).

10.2.1 Some Preliminaries About QFT

The basic idea of QFT [136] is to define and take into account, along the
control design process, the quantitative relation between the amount of
uncertainty to deal with and the amount of control effort to use. Typically,
the QFT control system configuration in Figure 10.9 considers two degrees
of freedom: a controller C(s) in closed-loop, which cares for the satisfaction
of robustness specifications despite uncertainty; and a pre-controller P (s)
designed after C(s), which allows one to achieve the desired frequency
response once the uncertainty has been controlled.

For a given plant Gp(s), its template G is defined as the set of possible
plant frequency responses due to uncertainty. A nominal plant, Gp0 ∈ G, is
chosen.

The design of the controller C(s) is accomplished in the Nichols chart,
in terms of the nominal open-loop transfer function, F0(s) = C(s)Gp0(s). A
discrete set of design frequencies Ω is chosen. Given quantitative specifica-
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P (s) C(s)

−
Gp(s)� � � � �

�

Figure 10.9 Two degrees of freedom control system configuration

tions on robust stability and robust performance for the closed-loop system,
boundaries Bω, ω ∈ Ω, are computed. Bω defines the allowed regions for
F0(jω) in the Nichols chart, so that Bω not being violated by F0(jω) implies
specification satisfaction by F (jω) = C(jω)Gp(jω), ∀Gp(s) ∈ G. The basic
step in the design process, loop shaping , consists of the design of F0(jω) which
satisfies boundaries and is reasonably close to optimum. QFT optimization
criterion is the minimization of the high-frequency gain [137], i.e., Khf in

Khf = lim
s→∞ snpeF (s), (10.15)

where npe is the pole-zero excess.
This definition of Khf allows one to compare (only) transfer functions

with equal npe. The universal high-frequency boundary (UHFB) is a special
boundary. It is a robust stability boundary which should be satisfied by
F0(jω), ∀ω � ωU. It has been shown [47, 137, 138] that, to get close to the
optimum, F0(jω) should be as close as possible to the critical point (0 dB,
−180◦) in the vicinity of the gain crossover frequency, ωcg, and so should get
as close as possible to the lower right side of the UHFB. Frequency ωcg is
defined as the first frequency such that F (jωcg) = 0 dB.

Loop shaping is traditionally carried out manually with the help of tools,
such as MATLAB. This leads to a trial-error process, whose resulting quality
is strongly determined by the designer’s experience and intuition. There is no
commercial tool for this purpose yet. An automatic loop shaping procedure
is, therefore, a key issue which is still of great interest.

10.2.2 Case Study with a Fractional-order Lead-lag
Compensator

Let us consider the system in (7.6), that is, the experimentally identified
liquid level system in Chapter 7, with a nominal plant of

G(s) =
k

τs + 1
e−Ls =

3.13
433.33s + 1

e−5s. (10.16)
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In addition, parameters k and τ have an interval uncertainty given by
k ∈ [2, 9.8] and τ ∈ [380, 1200] sec. The value of the delay to be considered
for the loop shaping process is L = 5 sec.

The (nominal) design specifications are given basically in terms of a gain
crossover frequency ωcg, a phase margin ϕm, a noise rejection specification
given by |T (jω)|dB � A dB, ∀ω � ωt, and an output disturbance rejection
specification over a frequency interval given by |S(jω)|dB � B dB, ∀ω � ωs.

It should be pointed out that the above specifications are given for a
nominal closed-loop design (in particular for k = 3.13 and τ = 433.33 sec).
Since QFT can consider specifications for the whole set of plants G, these
specifications should be relaxed accordingly to make a fair comparison of
QFT with other techniques. In particular, for a given value of the delay L,
the design specifications are considered to be:

• (nominal) gain crossover frequency, ωcg;
• (worst case) phase margin, ϕm � ϕwcm, ∀k ∈ [2, 9.8] and ∀τ ∈ [380,

1200] sec;
• noise rejection, |T (jω)|dB � AdB, ∀ω � ωt, ∀k ∈ [2, 9.8] and ∀τ ∈

[380, 1200] sec;
• output disturbance rejection, |S(jω)|dB � B dB, ∀ω � ωs, ∀k ∈ [2, 9.8] and

∀τ ∈ [380, 1200] sec.

Since these design specifications are somehow stronger that those based
on nominal values, there is some degree of freedom in relaxing some of them
in terms of the parameters ϕwcm, ωs, and ωt.

The controller considered is the FOLLC in (8.1). For a better behavior
of the optimization algorithm used for loop shaping, the controller is finally
formulated as [139]:

C(s) = kcx
μ

(
s + 1/λ1

s

)λ(
λ2s + 1
xλ2s + 1

)μ

. (10.17)

In addition, it is convenient to have a fast roll-off at high frequencies. To
have an additional parameter that enables this behavior, some extra structure
is introduced in the controller. This is analogous to term C2 of the TID
controller in [107], and is given by

C2(s) =
1

(1 + s/ωh)nh . (10.18)

So, the final structure is

C(s)C2(s) = kcx
μ

(
s + 1/λ1

s

)λ(
λ2s + 1
xλ2s + 1

)μ 1
(1 + s/ωh)nh . (10.19)
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The controller will be implemented by identification of its global frequency
response, as described in Section 12.3.

As stated at the beginning of this section, CRONE controllers have also
been a case study for this QFT technique [134]. In that case, second and third
generation CRONE controllers have been considered, with additional terms to
shape low and high frequency responses. The consideration of these CRONE
controllers implies slight modifications in the QFT algorithm with respect to
that used for the controller in (10.19), due to the similarities between these
structures.

10.2.3 Simulation Results

The design process is performed by minimizing Khf , the high frequency gain
of the nominal loop, subject to the restrictions given by specifications. The
optimization problem is solved by means of an evolutionary algorithm, using
the tool described in [134].

The design specifications are:

• ωcg = 0.01 rad/sec;
• ϕm � ϕwcm = 50◦, ∀k ∈ [2, 9.8], and ∀τ ∈ [380, 1200] sec;
• |T (jω)dB| � −20 dB,∀ω � ωt = 10 rad/sec, ∀k ∈ [2, 9.8], and ∀τ ∈

[380, 1200] sec;
• |S(jω)dB| � −20 dB, ∀ω � ωs = 0.002 rad/sec, ∀k ∈ [2, 9.8], and ∀τ ∈

[380, 1200] sec.

The controller obtained is

C(s)C2(s)=1.8393
(

s+0.011
s

)0.96( 8.8×10−5s+1
8.096×10−5s+1

)1.76 1
(1+s/0.29)2

,

(10.20)
with Khf = −60.7 dB. Figures 10.10 and 10.11 show the frequency behavior of
the resulting open-loop system. The corresponding step responses are given in
Figures 10.12 and 10.13, for different gain values and different time constant
values, respectively.

As can be seen, the system performs in a robust way, taking into account
the large parametric uncertainties and the design specifications. From Figure
10.10 we can conclude that the fractional-order controller exhibits a rich
frequency behavior, making the open-loop gain fit closely to the stability
boundary. Note that the optimal design should fit this stability boundary
as close as possible, especially in the lower right corner. In contrast to other
tuning techniques that guarantee nominal closed-loop specifications, QFT
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Figure 10.10 Bode plots of the nominal open-loop for L = 5 sec
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Figure 10.11 Nichols chart of the nominal open-loop for L = 5 sec

guaranties the satisfaction of robust stability and performance specifications
for all the considered parametric uncertainties.

On the other hand, evolutionary algorithms have efficiently arrived at the
given solution with a reasonable number of iterations, mainly due to the
reduced number of parameters of the PIλDμ structure.

10.3 Summary

In this chapter, a brief description of other robust control techniques has
been given. The three generations of CRONE control have been introduced,
presenting their main design goals in the frequency domain. The QFT
technique applied to fractional-order controllers has also been described,
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Figure 10.12 Step responses of the controlled system for L = 5 sec and different values
of k
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Figure 10.13 Step responses of the controlled system for L = 5 sec and different values
of τ

including some simulation results. Since the structure of QFT controllers
may sometimes be rather complicated, the implementation of the controller
should also be taken into account. This matter is also presented in Chapter 12.



Chapter 11

Some Nonlinear Fractional-order
Control Strategies

11.1 Sliding Mode Control

The purpose of this section is to present the consequences of combining
fractional-order control (FOC) and sliding mode control (SMC) in two ways,
taking into account the two components of the sliding mode design approach.
So, FOC is introduced in SMC by using, on the one hand, fractional-order
sliding surfaces or switching functions, and, on the other hand, control laws
with fractional-order derivatives and integrals. For a clear illustration of the
proposed control strategies, the well known double integrator is considered
as the system to be controlled.

11.1.1 Introduction

Pioneering works in variable structure control systems (VSCS) were made in
Russia in the 1960s, and the fundamental ideas were published in English in
the mid-1970s. After that, VSCS concepts have been used in robust control,
adaptive, and model reference systems, tracking, state observes and fault
detection (see [140, 141] for additional information). Sliding mode control is
a particular type of VSCS designed to drive and then constrain the system
state to lie within a neighborhood of the decision rule or switching function,
and it is well known for its robustness to disturbances and parameters
variations. On the other hand, fractional-order control, that is, the use
of fractional-order derivatives and integrals in the control laws, has been
recognized as an alternative strategy for solving robust control problems
(see [58, 126] for a survey on the topic). The purpose of this work is to
study the consequences of introducing FOC in SMC in two ways, taking
into account the two components of the sliding mode design approach, the
first one involving the design of a switching function so that the sliding

165
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motion satisfies the design specifications, and the second one concerning
the selection of a control law which will enforce the sliding mode; therefore
existence and reachability conditions are satisfied. So, FOC is introduced
in SMC by using, on the one hand, fractional-order sliding surfaces or
switching functions, and, on the other hand, control laws with fractional-order
derivatives and integrals. The first approach was introduced in [142] applied
to a power electronic Buck converter with very interesting and successful
experimental results. In this work we study in a more extended way this first
approach and introduce the second one. Furthermore, considerations about
existence and reachability conditions are made. For a clear illustration of the
proposed control strategies, the well known double integrator is considered
as the system to be controlled. This system, representing a one degree-of-
freedom translational and rotational motion, can be considered as a linear
approximation of some interesting mechanical and electromechanical systems,
such as the low friction servo or the pendulum.

11.1.2 SMC of the Double Integrator

The main part of this section has been taken from [140]. Consider the double
integrator given by

ÿ(t) = u(t). (11.1)

Initially consider the feedback proportional control law

u(t) = −ky(t), k ∈ R+. (11.2)

So, substituting for the control action in (11.1), multiplying the resulting
equation throughout by ẏ, and integrating the resulting equations, the
following relationship between velocity and position is obtained:

ẏ2 + ky2 = c, (11.3)

where c represents a strictly positive constant of integration resulting from
the initial conditions. Equation 11.3 corresponds to an ellipse, and the plots
of ẏ against y (phase portrait) for different values of k would be ellipses with
different relations between axes; that is, this control law is not appropriate
since the variables do not move toward the origin.

Consider now the control law

u(t) =

{
−k1y(t), yẏ < 0,

−k2y(t), otherwise,
(11.4)

where 0 < k1 < 1 < k2, the controlled system can be considered as a
VSCS, and an asymptotically stable motion is obtained, as can be observed
in Figure 11.1.
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ẏ

Figure 11.1 Phase portrait of the system (11.1) under control (11.4), and k1 =0.5, k2 =1.5

In Figure 11.2, the output and the control signals for this system are
represented. In the latter, the discontinuous nature of the control signal can
be clearly observed.
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Figure 11.2 Output and control effort of the system (11.1) under the control (11.4),
k1 = 0.5, k2 = 1.5

By defining the switching function

S(y, ẏ) = my + ẏ, m ∈ R+, (11.5)

and using the variable structure control law given by

u(t) =

{
−1, S(y, ẏ) > 0,

1, S(y, ẏ) < 0,
(11.6)
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or, alternatively,
u(t) = −sgn (S(t)) , (11.7)

high-frequency switching between the two different control structures will
take place as the system trajectories repeatedly cross the line

Ls = {(y, ẏ) : S(y, ẏ) = 0} . (11.8)

The motion when confined to the line Ls satisfies the differential equation
obtained from rearranging S(y, ẏ) = 0, namely

ẏ(t) = −my(t). (11.9)

Such dynamic behavior is described as an ideal sliding mode or an ideal
sliding motion and the line Ls is termed the sliding surface. During the sliding
motion the system behaves as a reduced-order system which is apparently
independent of the control. The control action, rather than prescribing the
dynamic performance, ensures instead that the condition for sliding motion
is satisfied, that is, that the reachability condition SṠ < 0 is satisfied. So,
in terms of design, the choice of the switching function, represented in this
situation by the parameter m, governs the performance response; whilst the
control law itself is designed to guarantee that the reachability condition is
satisfied.

Suppose at time ts the switching surface is reached and an ideal sliding
motion takes place. It follows that the switching function satisfies S(t) = 0
for all t > ts, which in turns implies Ṡ = 0 for all t � ts. So, a control law
which maintains the motion on Ls is obtained as

Ṡ(t) = mẏ(t) + ÿ(t) = mẏ(t) + u(t) = 0

u(t) = −mẏ(t), (t � ts) .
(11.10)

This control law is referred as the equivalent control action, and may be
thought of as the control signal which is applied “in average.”

Figure 11.3 shows some significant results of applying (11.6) and (11.7)
to (11.1) for different values of parameter m, with y(0) = 3, ẏ(0) = 0. The
switched nature of the control signal can be observed. This high-frequency
switching will produce wear and tear on the actuators, and should be
minimized. So, different alternatives should be considered.

The two properties of an ideal sliding motion are disturbance rejection and
order reduction. These properties are only obtained once sliding is induced.
So, the time taken to induce sliding, ts, should be minimized, and the region
in which sliding takes place, Ω =

{
(y, ẏ) : SṠ < 0

}
, maximized.
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Figure 11.3 System (11.1) under control (11.7) and switching function (11.5) for different
values of the parameter m: (a) phase plane portraits, (b) outputs of the system, and (c)
switching functions
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2. Maximize Ω;
3. Ensure that once the trajectories reach the sliding surface they are forced

to remain there;
4. Reduce the amplitude of the high-frequency switching for limiting wear

and tear on the actuators.

A control law candidate for this is

u(t) = − (m + Φ) ẏ(t) − Φmy(t) − ρ sgn(S(t)), (11.11)

where m,Φ, ρ are positive scalars. The parameter Φ corresponds to the rate
at which the sliding surface is attained, the parameter m corresponds to the
dynamics of the sliding motion, and the parameter ρ allows reduction of the
amplitude of the high-frequency switching.

Figures 11.4 show the results for m = 1, Φ = 1, ρ = 0.3, y(0) = 3, ẏ(0) = 0.
It can be observed how the four objectives mentioned above are satisfied.

11.1.3 Fractional Sliding

11.1.3.1 Fractional Switching Function

There are several ways for introducing fractional orders in SMC. The first is
by using a fractional-order switching function. By introducing the notation
Dλy � y(λ), a generalization of (11.5) can be expressed of the form

S(y, y(α)) = my + y(1+α), 0 < α < 1. (11.12)

By doing so the motion when confined to the line Ls satisfies the differential
equation obtained from rearranging S(y, y(α)) = 0, namely

y(1+α) = −my. (11.13)

The characteristic equation is

s1+α + m = 0, (11.14)

corresponding to a fractional-order integrator in closed-loop. This dynamics
exhibit an overshoot governed by the parameter α and a rate governed by the
couple (m,α) , namely in the frequency domain, a gain crossover frequency
ωc = m1/(1+α).

The main objectives of the design will be then:

1. Minimize ts;
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Figure 11.4 System under control (11.11) and switching function (11.5): (a) phase
portrait, (b) output and switching surface, and (c) control signal
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So, following the reasoning of the previous section, for the control action
we propose to use

u(t) = −my(1−α) − ρI βsgn (S (t)) , 0 < α, β < 1, (11.16)

where the linear term is equal to the equivalent control, and I β (·) means
the fractional-order integral. This last term can be seen as a low-pass filter or
an attenuation selective in frequency, and allows reduction of the amplitude
of the high-frequency switching.

11.1.3.3 Reachability Condition

Taking into account (11.12) and (11.16), for obtaining the reachability
condition we have

Ṡ = mẏ + y(2+α) = mẏ + u(α)

= mẏ − mẏ − ρI β−αsgn (S (t)) = −ρI β−αsgn (S (t) .)
(11.17)

Taking into account that

I γsgn (x) =

{
I γ {1} , x � 0,

I γ {−1} , x < 0,
(11.18)

and using the Riemann–Liouville definition for the fractional-order derivative,
it can be concluded that

sgn [I γsgn (x)] = sgn(x), − 1 < γ < 1. (11.19)

So, for ρ > 0, and −1 < β−α < 1, S > 0 implies Ṡ < 0, and S < 0 implies
Ṡ > 0, and the reachability condition SṠ < 0 is always fulfilled.

11.1.3.4 Simulation Results

By choosing α = 0.2, β = 0.4, with m = 1, ρ = 1.8, y(0) = 3, ẏ(0) = 0, the
results obtained are presented in Figure 11.5. In this figure it can be observed
that both ts and the amplitude of the high-frequency switching are reduced.
So, similar results can be obtained by using the control actions (11.16). The
main difference can be observed on the output, with overshoot for the first one
due to the fact of having selected α > 0. For the simulations, the fractional-
order operators have been approximated by using the fifth-order Oustaloup’s
filter, with the frequency range of interest of

[
10−2, 102

]
rad/sec.

S = my + y(1+α) =⇒ Ṡ = mẏ + y(2+α) = mẏ + u(α) = 0
=⇒ u = −my(1−α).

(11.15)

11.1.3.2 Fractional-order Control Law

The equivalent control corresponding to (11.10) can be obtained as follows:
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Figure 11.5 System (11.1) under control (11.19) and switching function (11.15): (a) phase
portrait, (b) outputs and switching surfaces, and (c) control signals

11.2 Model Reference Adaptive Control

11.2.1 Introduction

This section investigates the use of fractional calculus in conventional model
reference adaptive control (MRAC) systems. Two modifications to the con-
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ventional MRAC are presented, i.e., the use of fractional-order parameter
adjustment rule and the employment of fractional-order reference model.
Through examples, benefits from the use of FOC are illustrated together
with some remarks for further research.

This section is organized as follows: in Section 11.2.2, the MRAC is
briefly reviewed . In Section 11.2.3 the use of fractional calculus into MRAC
via fractional-order adjustment rule and fractional-order reference model is
presented together with some illustrative simulation results. Section 11.2.4
presents the conclusions.

11.2.2 MRAC: A Brief Review

The model reference adaptive system is one of the main approaches to
adaptive control, in which the desired performance is expressed in terms of a
reference model (a model that describes the desired input-output properties
of the closed-loop system) and the parameters of the controller are adjusted
based on the error between the reference model output and the system output.
These basic principles are illustrated in Figure 11.6, with two loops: an inner-
loop which provides the ordinary control feedback, and an outer-loop which
adjusts the parameters in the inner-loop.

reference
model

adjustment
mechanism

controller plant� �
�

� �
�

�

�
�

uc

controller parameters

u y

Figure 11.6 Basic principles of model reference adaptive system

The gradient approach to MRAC is based on the assumption that the
parameters change more slowly than the other variables in the system. This
assumption, which admits a quasi-stationary treatment, is essential for the
computation of the sensitivity derivatives that are needed in the adaptation.

Let e denote the error between the system output, y, and the reference
output, ym. Let θ denote the parameters to be updated. By using the criterion

J(θ) =
1
2
e2, (11.20)
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the adjustment rule for changing the parameters in the direction of the
negative gradient of J is that

dθ

dt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
. (11.21)

If it is assumed that the parameters change much more slowly than
the other variables in the system, the derivative ∂e/∂θ, i.e., the sensitivity
derivative of the system, can be evaluated under the assumption that θ is
constant.

There are many variants about the MIT rules for the parameter adjust-
ment. For example, the sign-sign algorithm is widely used in communication
systems [143]; the PI-adjustment rule is used in [144]. Here, we will introduce
a new variant of the MIT rules for the parameter adjustment by using
fractional calculus. In addition, we shall extend the reference model to the
fractional-order.

11.2.3 Using Fractional Calculus in MRAC Scheme

In this section, fractional calculus is introduced into MRAC scheme in two
ways. One is the use of fractional-order derivatives for the MIT adjustment
rules and the other one is the use of fractional-order reference models. The
modified MRAC schemes are explained with some simulation illustrations.

11.2.3.1 Fractional-order Adjustment Rule

As can be observed in (11.21), the rate of change of the parameters depends
solely on the adaptation gain, γ. Taking into account the properties of the
fractional-order differential operator, it is possible to make the rate of change
depend on both the adaptation gain, γ, and the derivative order, α, by using
the adjustment rule

dαθ

dαt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
, (11.22)

where α is a real number. In other words, the above parameter updating rule
can be expressed as

θ = −γI α

[
∂J

∂θ

]
= −γI α

[
e
∂e

∂θ

]
; I α ≡ D−α. (11.23)

For example, consider the first-order SISO system to be controlled:

dy

dt
+ ay = bu, (11.24)

where y is the output, u is the input, and the system parameters a and b

are unknown constants or unknown slowly time-varying. Assume that the
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corresponding reference model is given by

dym

dt
+ amym = bmuc, (11.25)

where uc is the reference input signal for the reference model, ym is the
output of the reference model, and am and bm are known constants. Perfect
model-following can be achieved with the controller defined by

u(t) = θ1uc(t) − θ2y(t), (11.26)

where
θ1 =

bm

b
; θ2 =

am − a

b
, (11.27)

From (14) and (16), assuming that a+bθ1 ≈ am, and taking into account that
b can be absorbed in γ, the equations for updating the controller parameters
can be designed as [143]

dαθ1

dtα
= −γ

(
1

p + am

)
uce, (11.28)

dαθ2

dtα
= γ

(
1

p + am

)
ye, (11.29)

where p = d/dt, and γ is the adaptation gain, a small positive real number.
Equivalently, in frequency domain, (11.28) and (11.29) can be written as

θ1 = − γ

sα

(
1

s + am

)
uce, (11.30)

θ2 =
γ

sα

(
1

s + am

)
ye. (11.31)

Clearly, the conventional MRAC [143] is the case when α = 1.

A block diagram for the above MRAC scheme for adjusting the unknown
parameters θ1 and θ2 is shown in Figure 11.7.

In Figure 11.8, simulation results for a = 1, b = 0.5, am = bm = 2, γ = 3
are presented. Two cases are considered for α = 1 and α = 1.25. As can be
observed from Figure 11.8, under the same conditions, compared to the case
when α = 1, the updating of the unknown parameters is faster when α = 1.25.
The benefit due to the use of a slightly higher order of the derivatives is clearly
demonstrated in Figure 11.8.

11.2.3.2 Stability Considerations

Equation 11.21, usually known as the MIT rule, performs well if the adap-
tation gain is small. The allowable value depends on both the magnitude of
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Figure 11.7 Block diagram of a simple MRAC scheme
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Figure 11.8 Simulation results for fractional-order MRAC: (a) α = 1 and (b) α = 1.25

the reference signal, uc, and the process gain. So, if not properly handled,
the MIT rule may give an unstable closed-loop system.

As an example, consider the MRAS scheme in Figure 11.9 in which the
problem is to adjust a feedforward gain, θ, to the value θ0 [143]. Consider the
transfer function of the system

G(s) =
1

s2 + a1s + a2
. (11.32)
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Figure 11.9 A simple MRAC scheme for feedforward gain adjustment

The MIT rule gives
dθ

dt
= −γeym, (11.33)

where
e = G(s) (θ − θ0)uc. (11.34)

The governing differential equation for the overall adaptive system is

d3y

dt3
+ a1

d2y

dt2
+ a2

dy

dt
+ γucymy = θ

duc

dt
+ γucy

2
m. (11.35)

Some insight into the behavior of the system can be obtained by assuming
that the adaptation mechanism is connected when the equilibrium is reached.
That is, when uc = u0

c = ym = y0
m, the time-varying differential equation

(11.35) is transformed into a differential equation with constant coefficients
that describes an LTI system with its characteristic equation given by

s3 + a1s
2 + a2s + γu0

cy
0
m = 0. (11.36)

It is easy to test the stability condition by using the Routh test which yields

a1a2 > γ
(
u0

c

)2
. (11.37)

So, if the adaptation gain γ or the reference signal uc are sufficiently large,
the system may become unstable.

As an illustrative simulation example, let a1 = a2 = θ0 = 1 and γ = 0.1.
For reference signal amplitude uc = 0.1, 1, and 3.5, the results are shown in
Figure 11.10. As can be observed from Figure 11.10, when

(
u0

c

)2
> 0.1, the

system becomes unstable.
Here we adopt an alternative adjustment rule using the FOC as follows:

dαθ

dtα
= −γeym, 0 < α < 1. (11.38)

With the flexibility in selecting both the derivative order and the adaptation
gain, one can expect an enlarged range of reference signal magnitude with
which the system is stable.
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Figure 11.10 Unstable behavior in conventional MRAC with respect to the magnitude
of reference input signal

For example, with γ = 0.1 and α = 0.75 the simulation results shown in
Figure 11.11 demonstrate clearly that for uc = 0.1 and uc = 1, the behavior
of the adaptive system is similar to the conventional case when α = 1 shown
in Figure 11.10. However, with α = 0.75, the overall adaptive system is still
stable even when uc = 5.

To obtain some insight into the above beneficial fact, it is noted that for
different choices of the design parameter-pair (γ, α) in the operator γ/sα in
order to achieve similar transient performances on the adjustment rate, the
induced phase response depends only on α. This could be a desired behavior
that the conventional MRAC cannot have.

11.2.3.3 Fractional-order Reference Model

Now we will introduce another modification to MRAC problem by introduc-
ing fractional-order system as the reference model. In the simplest MRAC
problems, the usual reference models are first-order or the second-order
dynamic systems. Clearly, the set of candidates of the reference models can be
enlarged by using fractional-order systems. In addition, transient response of
MRAC systems can be improved. This is illustrated by a simulation example.

Consider a system described by the transfer function
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Figure 11.11 Improved stability behavior of MRAC with respect to the magnitude of
reference input signal using FOC

G(s) =
1

s + 1
. (11.39)

The adaptive scheme shown in Figure 11.9 is used to adjust the feedforward
gain in order to track the reference model output

ym =
1

s0.25 + 1
uc. (11.40)

With α = 1 in the parameter adjusting rule (11.38), it would be very dif-
ficult, if not impossible, to track the reference output even after a significant
time interval. However, when a fractional-order reference model is used, it is
an easy task if we choose α ∈ (0, 1).

Again, as an illustrative simulation example, in Figure 11.12 the results
using the pairs (γ1, α1) = (0.2, 1) and (γ2, α2) = (15, 0.25) are shown. We
can observe quite a large transient for (γ1, α1) = (0.2, 1) as shown in the
top subplot of Figure 11.12. However, when we choose (γ2, α2) = (15, 0.25),
i.e., a fractional-order reference model is used, the tracking performance is
almost perfect as shown in the bottom subplot of Figure 11.12. Note that in
the latter case, the adjustment gain γ can be chosen as large as 15.
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Figure 11.12 The effect of using fractional-order reference model in MRAC

11.2.4 Concluding Remarks

In this section, we have presented two ideas to extend the conventional MRAC
by using the fractional-order parameter adjustment rule and the employment
of fractional-order reference model. Through examples, benefits from the use
of FOC are illustrated.

11.3 Reset Control

11.3.1 Introduction

An integrator is an element found in every control toolbox helping to provide
zero steady-state errors to constant exogenous signals. However, this benefit
comes at the expense of 90◦ of phase lag at all frequencies, which means a
loss in relative stability (phase margin or overshoot).

The reset or Clegg integrator was introduced in [145] to reduce this phase
lag while retaining the integrators desirable magnitude slope frequency re-
sponse. The potential advantages of using Clegg integrators to meet stringent
design specifications, and some stability analysis have been presented in the
literature [146–150].

On the other hand, from the very beginnings of the use of fractional
calculus in control [15,16], the fractional-order integrator has been considered
as an alternative reference system for control purposes in order to obtain
closed-loop controlled systems robust to gain changes. From another point of
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view, the fractional-order integrator can be used in feedback control in order
to introduce both a constant phase lag and magnitude slope proportional to
the integration order. Thus, fractional-order integrators can be used with the
same purposes as the reset integrator.

The only purpose of this section is to present, compare, and combine both
integrators in an easy way in order to open new possibilities of use. The rest of
the section is organized as follows. Section 11.3.2 presents the fundamentals
of the two kinds of integrators. Section 11.3.3 proposes a fractional-order
reset integrator. In Section 11.3.4 the analyzed integrators are compared for
the control of two first-order plants. Section 11.3.5 concludes the section and
gives some insights into future work.

11.3.2 Reset Integrator

The reset or Clegg integrator represents an attempt to synthesize a non-
linear circuit possessing the magnitude-frequency characteristic of a linear
integrator while avoiding the 90◦ degrees phase lag associated with the
linear transfer function. A functional diagram of the Clegg integrator, which
switches on input zero crossings, is illustrated in Figure 11.13 [151, 152].
Basically, operation consists of the input being gated through one of two
integrators (the input of the other is simultaneously reset) in accordance
with zero-crossing detector (ZCD) commands. An analog implementation of
this integrator is given in [149], including four diodes, four R-C networks,
and two operational amplifiers.

input

gate
adder

1

s

1

s

� � �
�

� �

ZCD reset gate� �

�

�

x

y

Figure 11.13 Functional diagram of the Clegg integrator

In the interval 0<ϕ<π, ϕ=ωt, for the input x(t)=A sin ϕ, the output is

y(ϕ) =
∫ ϕ/ω

0

x(ϕ)d
(ϕ

ω

)
=

1
ω

∫ ϕ

0

A sin ϕdϕ =
A

ω
(1 − cos ϕ.) (11.41)
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The input and output waveforms are shown in Figure 11.14.
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Figure 11.14 Input and output of the Clegg integrator

The describing function (DF) is given by

N(A,ω) =
2j
πA

∫ π

0

A

ω
(1 − cos ϕ) e−jϕdϕ =

4
πω

(
1 − j

π

4

)
, (11.42)

|N(A,ω)| =
1
ω

√
1+
(

4
π

)2
, arg N(A,ω)=− arctan

π

4
≈−38.15◦. (11.43)

So, the DF is independent of the input amplitude, has a constant phase of
−38.15◦, and a magnitude slope of −20 dB/dec. A disadvantage of the Clegg
integrator is that it may induce oscillations [153].

11.3.3 Generalized Reset Integrator

If, for 0 < ϕ < π, the input and output of a generalized device are

x(t) = A sinϕ, y(t) =
A

ω
(1 − cos (ϕ + θ)) , ϕ = ωt, (11.44)

θ being a constant, then the DF will be given by

N(A,ω)=
2j
πA

∫ π

0

A

ω
(1−cos (ϕ + θ)) e−jϕdϕ=

4
πω

(
1 − j

π

4
ejθ
)

,

arg N(A, ω)=− arctan

π

4
sin
(
θ +

π

2

)
1 − π

4
cos(θ +

π

2
)
.

(11.45)

The input and output waveforms are represented in Figure 11.15. The
argument of the DF is represented in Figure 11.16 as a function of θ. As can
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be observed, such a device may introduce a tunable phase-lag ranging from
0◦ approximately, and could be denominated generalized reset integrator. On
the other hand, it could be a candidate for nonlinear implementation of an
approximated fractional-order integrator of order from 0 to 0.5.
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Figure 11.15 Output waveforms for values of θ = 0, π/16, π/8, π/4
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11.3.4 Fractional Reset Integrator

Assuming that all the functions are causal and β > −1, we have [3]

Dβ [sin (ωt)] = ωβ sin
(
ωt + β

π

2

)
, (11.46)
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Dβ being the Riemann–Liouville fractional-order derivative of order β. With
β = −α, we obtain the fractional-order integral of order α as

I α [sin (ωt)] = ω−α sin
(
ωt − α

π

2

)
(11.47)

So, if the input to a fractional-order reset integrator is x(t) = A sinωt, the
output can be obtained as

y(t)=I αx(t)
∣∣∣t
0
= ω−α sin

(
ωt−απ

2

)∣∣∣t
0
=Aω−α

[
sin
(
ωt−απ

2

)
+sin

(απ

2

)]
.

(11.48)
An implementation of the device in Simulink is given in Figure 11.17,

where the fractional-order differentiator block is defined in Section 13.3, with
the Oustaloup recursive filter.
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Figure 11.17 Fractional-order reset integrator implementation in Simulink

The output waveforms for different values of α are given in Figures 11.18
and 11.19.
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Figure 11.18 Output waveforms of the fractional-order reset integrator for different
values of α: (a) when α < 1 and (b) zoomed plots
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Figure 11.19 Output waveforms of the fractional-order reset integrator for different
values of α: Detail after transient: (a) when α > 1 and (b) zoomed plots

By following the methodology used in previous sections, the DF of the
system can be obtained as

N(A,ω) =
2j
πA

∫ π

0

[
Aω−α

[
sin
(
ϕ−α

π

2

)
+sin

(
α

π

2

)]]
e−jϕdϕ

=
4

πωα

[
sin α

π

2
+

π

4
e−jα π

2

]
,

(11.49)

its argument being given by

arg N(A,ω)=arctan

π

4
sin

απ

2
sin

απ

2
+

π

4
cos

απ

2

=arctan

π

4
1+

π

4
cot

απ

2

. (11.50)

This argument is represented in Figure 11.20 for α ∈ [0, 1.5]. As can be
observed, we can obtain a phase lag ranging from 0◦ to 75◦ for α ∈ [0, 1.5] ,
being the phase lag introduced by the reset integrator for a particular case,
α = 1. However, in this case the magnitude slope is linked to the phase lag,
with a value of −20α dB/dec.

11.3.5 Simulation Results

In this section the integrators are compared in the control of two first-order
plants. The first consists of an integrator, and for comparing the reset and
fractional-order integrators with the same phase lag, the fractional-order
integrator is of order α = 38.15/90 = 0.424, and has been approximated
by Oustaloup’s method. The Bode plots of the approximation is given in
Figure 11.21, and the step responses of the controlled plant in Figure 11.22.
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Figure 11.20 Phase lag (arg(N(A,ω)) introduced by the fractional-order reset integrator

As can be observed, the rise time is the same for both integrators, and the
fractional-order integrator has an overshoot in agreement with the integration
order [48].
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Figure 11.21 Bode plot of the approximated fractional-order integrator

The second plant considered has the transfer function

G(s) =
5

s + 1
.

The unit step responses are given in Figure 11.23. The fractional-order
integrators are of order α = 0.8. As can be observed, fractional-order
integrators, even the reset one, do not induce permanent oscillations.
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11.4 Summary

The only purpose of this chapter has been to give some insights over the
possibilities of applying the fractional-order operators in order to extend not
only linear control strategies based on the basic control actions, but also
more sophisticated nonlinear strategies such as sliding mode control, adaptive
control, and reset control. By means of simple examples easy to understand,
we have tried to show how, by using the fractional-order operators, the control
designer can obtain more powerful and flexible tools in order to enlarge the
dynamical richness of the controlled systems.
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Implementations of Fractional-order
Controllers: Methods and Tools



Chapter 12

Continuous-time and Discrete-time
Implementations of Fractional-order
Controllers

In the previous chapters, different types of fractional-order controllers are
addressed. The most difficult problem yet to be solved is how to implement
them. Although some work has been performed with hardware devices for
fractional-order integrator, such as fractances (e.g., RC transmission line
circuit and Domino ladder network) [154] and fractors [155], there are
restrictions, since these devices are difficult to tune. An alternative feasible
way to implement fractional-order operators and controllers is to use finite-
dimensional integer-order transfer functions.

Theoretically speaking, an integer-order transfer function representation
to a fractional-order operator sα is infinite-dimensional. However it should be
pointed out that a band-limit implementation of fractional-order controller
(FOC) is important in practice, i.e., the finite-dimensional approximation
of the FOC should be done in a proper range of frequencies of practical
interest [17, 51]. Moreover, the fractional-order can be a complex number as
discussed in [51]. In this book, we focus on the case where the fractional order
is a real number.

For a single term sα with α a real number, there are many approximation
schemes proposed. In general, we have analog realizations [156–159] and
digital realizations.

This chapter describes different approximations or implementations of
fractional-order operators and systems. When fractional-order controllers
have to be implemented or simulations have to be performed, FOTFs are
usually replaced by integer-order transfer functions with a behavior close
enough to that desired, but much easier to handle.

There are many different ways of finding such approximations but un-
fortunately it is not possible to say that one of them is the best, because
even though some of them are better than others in regard to certain
characteristics, the relative merits of each approximation depend on the

191
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differentiation order, on whether one is more interested in an accurate
frequency behavior or in accurate time responses, on how large admissible
transfer functions may be, and other factors like these. A good review of
these approximations can be found in [126,154,160].

This chapter is organized as follows. In Section 12.1, continuous-time
implementation to fractional-order operators are studied. Several continued
fraction expansion based approximation methods are presented first. Then
the well-established Oustaloup filter is given and generalized. A modified
Oustaloup filter is also demonstrated. Generally speaking, Oustaloup’s ap-
proximation to fractional-order operators are good enough in most cases. In
Section 12.2, discrete-time implementation schemes to fractional-order oper-
ators are presented. In particular, FIR filter design and Tustin discretization
methods are presented, and the step and impulse response invariants retaining
methods are demonstrated. Another practical category of implementation
methods, the frequency response identification based methods, for fractional-
order systems are presented in Section 12.3. With the use of these methods,
the linear fractional-order system of any complexity can be easily approxi-
mated, when a suitable frequency range of interest is selected. In Section 12.4,
a sub-optimal H2 pseudo-rational approximation algorithm [161] for FOTFs
is presented with a demonstration of its applications in PID controller design.

12.1 Continuous-time Implementations of
Fractional-order Operators

For the fractional-order operator, its Laplace representation is sγ , which
exhibits straight lines in both magnitude and phase Bode plots. Thus it
is not possible to find a finite-order filter to fit the straight lines for all
the frequencies. However, it is useful to fit the frequency responses over a
frequency range of interest (ωb, ωh).

Different continuous-time filters have been studied in [154,160], and some
of the approximations can be constructed by relevant MATLAB functions in
N-Integer Toolbox [162].

12.1.1 Continued Fraction Approximations

Continued fraction expansion (CFE) is often regarded as a useful type of
rational-function approximation to a given function f(s). It usually has better
convergence than the power series functions such as Taylor series expansions.
For the fractional-order operator G(s) = sα, the continued fraction expansion
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can be written as

G(s) =
b0(s)

a0(s) +
b1(s)

a1(s) +
b2(s)

a2(s) + · · ·

, (12.1)

where ai(s) and bi(s) can be expressed by rational functions of s. One should
first find the continued fraction expansion to the original fractional-order
operator, then get the integer-order transfer function, i.e., rational function,
representation.

There are several well-established continued fraction expansion based
approximation method to the fractional-order operator G(s) = sα. The N-
integer Toolbox provides a nid() function for finding the rational-function
approximation.

Example 1 Consider the fractional-order integrator with α = 0.5. The
rational function approximation using different continued fraction expansion
based methods can be found in [160] as

Low-frequency CFE: H1(s)=
0.351s4+1.405s3+0.843s2+0.157s+0.009
s4 + 1.333s3 + 0.478s2 + 0.064s + 0.002844

,

High-frequency CFE: H2(s) =
s4 + 4s3 + 2.4s2 + 0.448s + 0.0256

9s4 + 12s3 + 4.32s2 + 0.576s + 0.0256
,

Carlson’s method: H3(s) =
s4 + 36s3 + 126s2 + 84s + 9
9s4 + 84s3 + 126s2 + 36s + 1

,

Matsuda’s method: H4(s) =
0.08549s4 + 4.877s3 + 20.84s2 + 12.99s + 1

s4 + 13s3 + 20.84s2 + 4.876s + 0.08551
.

The Bode plots with different approximations can be obtained as shown
in Figure 12.1. It can be seen that the fitting ranges are rather small and the
quality of fit is not satisfactory. �

12.1.2 Oustaloup Recursive Approximations

Oustaloup filter approximation to a fractional-order differentiator is a widely
used one in fractional calculus [50,51]. A generalized Oustaloup filter can be
designed as

Gf(s) = K
N∏

k=1

s + ω′
k

s + ωk
, (12.2)

where the poles, zeros, and gain are evaluated from

ω′
k = ωbω(2k−1−γ)/N

u , ωk = ωbω(2k−1+γ)/N
u , K = ωγ

h , (12.3)
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Figure 12.1 Bode plots comparisons with different approximations, with solid lines for
H1(s), dashed lines for H2(s), dotted lines for H3(s), and dashed dotted lines for H4(s).
Also the straight lines are the theoretical results

where ωu =
√

ωh/ωb. We used the term “generalized” because N here can
be either odd or even integers.

Based on the above algorithm, the following function can be written:

function G=ousta_fod(gam,N,wb,wh)

k=1:N; wu=sqrt(wh/wb);

wkp=wb*wu.^((2*k-1-gam)/N); wk=wb*wu.^((2*k-1+gam)/N);

G=zpk(-wkp,-wk,wh^gam); G=tf(G);

and the Oustaloup filter can be designed with G=ousta fod(γ,N,ωb,ωh),
where γ is the order of derivative, and N is the order of the filter.

Example 2 To illustrate the method, the approximation of the fractional-
order integrator of order 0.45 can be obtained. In this particular case, the
orders of the approximation are selected as 4 and 5, respectively, with ωh =
1000 rad/sec and ωb = 0.01 rad/sec. The filters can be designed with the
following MATLAB commands:

>> G1=ousta_fod(-0.45,4,1e-2,1e3);

G2=ousta_fod(-0.45,5,1e-2,1e3);

bode(G1,’-’,G2,’--’,{1e-3,1e4})

and the two filters respectively obtained are

G1(s) =
0.04467s4 + 21.45s3 + 548.2s2 + 783.2s + 59.57

s4 + 131.5s3 + 920.3s2 + 360.1s + 7.499
,

and

G2(s) =
0.04467s5 + 26.35s4 + 1413s3 + 7500s2 + 3942s + 188.4

s5 + 209.3s4 + 3982s3 + 7500s2 + 1399s + 23.71
.
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The Bode plots are shown in Figure 12.2. It can be seen that the Bode plots
of the two filters are relatively close to that of the theoretical one over the
frequency range of interest. It can be seen that the fitting quality is much
superior to those obtained with continued fraction based approaches. �
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Figure 12.2 Bode plots of HOust(s), corresponding to the approximation of a fractional-
order integrator of order 0.45 with the Oustaloup method, with solid lines for G1(s), dashed
lines for G2(s), and dotted lines for the theoretical Bode plot

12.1.3 Modified Oustaloup Filter

In practical applications, it is frequently found that the filter from using
the ousta fod() function cannot exactly fit the whole expected frequency
range of interest. A new improved filter for a fractional-order derivative in
the frequency range of interest (ωb, ωh), which is shown to perform better, is
introduced in this section. The modified filter is [163]

sγ ≈
(

dωh

b

)γ (
ds2 + bωhs

d(1 − γ)s2 + bωhs + dγ

) N∏
k=−N

s + ω′
k

s + ωk
, (12.4)

and the filter is stable for γ ∈ (0, 1), and

ω′
k = ωbω(2k−1−γ)/N

u , ωk = ωbω(2k−1+γ)/N
u , (12.5)

with ωu =
√

ωh/ωb.
Through a number of experiment confirmations and theoretical analyses,

the modified filter achieves good approximation when b = 10 and d = 9. With
the above algorithm, a MATLAB function new fod() is written as
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function G=new_fod(r,N,wb,wh,b,d)

if nargin==4, b=10; d=9; end

k=1:N; wu=sqrt(wh/wb); K=(d*wh/b)^r;

wkp=wb*wu.^((2*k-1-r)/N); wk=wb*wu.^((2*k-1+r)/N);

G=zpk(-wkp’,-wk’,K)*tf([d,b*wh,0],[d*(1-r),b*wh,d*r]);

with the syntax Gf=new fod(γ,N,ωb,ωh,b,d). Again here, the modified
Oustaloup filter is also extended which can be used for handling odd and
even order.

Example 3 Consider an FOTF model G(s)=
s + 1

10s3.2 + 185s2.5 + 288s0.7 + 1
.

The approximations to the 0.2th-order derivative using Oustaloup’s filter
and the modified Oustaloup’s filter can be obtained as shown in Fig-
ure 12.3 (a). The frequency range of good fitting is larger with the improved
filter. The exact Bode plot can be obtained with the bode() function. Also
the two approximations to the G(s) model is shown in Figure 12.3 (b). In
the following commands, function fotf() is used to define an FOTF object,
and will be fully presented in the next chapter:

>> b=[1 1]; a=[10,185,288,1]; nb=[1 0]; na=[3.2,2.5,0.7,0];

w=logspace(-4,4,200); G0=fotf(a,na,b,nb); H=bode(G0,w);

s=zpk(’s’); N=4; w1=1e-3; w2=1e3; b=10; d=9;

g1=ousta_fod(0.2,N,w1,w2); g2=ousta_fod(0.5,N,w1,w2);

a1=g1; g3=ousta_fod(0.7,N,w1,w2);

G1=(s+1)/(10*s^3*g1+185*s^2*g2+288*g3+1);

g1=new_fod(0.2,N,w1,w2,b,d); g2=new_fod(0.5,N,w1,w2,b,d);

g3=new_fod(0.7,N,w1,w2,b,d); bode(g1,a1); figure

G2=(s+1)/(10*s^3*g1+185*s^2*g2+288*g3+1); bode(H,G1,G2)

It can be seen that the modified method provided a much better fit. Thus
for certain fractional-order differentiators, the modified filter may be more
appropriate. �

12.2 Discrete-time Implementation of Fractional-order
Operators

The key step in digital implementation of an FOC is the numerical evaluation
or discretization of the fractional-order differentiator sα. In general, there are
two classes of discretization methods: direct discretization and indirect dis-
cretization. In indirect discretization methods [51], two steps are required, i.e.,
frequency domain fitting in continuous time domain first and then discretizing
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Figure 12.3 Bode plot comparisons, straight lines for exact ones, dashed lines for

Oustaloup filters, and dotted lines for modified Oustaloup filters: (a) s0.2 fittings and

(b) Bode plot comparisons

the fit s-transfer function. Other frequency-domain fitting methods can also
be used but without guaranteeing the stable minimum-phase discretization.
Existing direct discretization methods include the application of the direct
power series expansion (PSE) of the Euler operator [78,93,160,164], continued
fraction expansion (CFE) of the Tustin operator [78, 148, 160, 164, 165],
and numerical integration based method [93, 148, 166]. However, as pointed
out in [167–169], the Tustin operator based discretization scheme exhibits
large errors in high frequency range. A new mixed scheme of Euler and
Tustin operators is proposed in [148] which yields the so-called Al-Alaoui
operator [167]. These discretization methods for sα are in infinite impulse
response (IIR) form. Recently, there have been some reported methods
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to obtain directly the digital fractional-order differentiators in FIR form
[170,171]. However, using an FIR filter to approximate sα may be less efficient
due to very high order of the FIR filter. So, discretizing fractional-order
differentiators in IIR forms is perferred [148,165,166,172].

In this section, FIR filter approximation and Tustin discretization method
are, in particular, presented. Then an introduction is made on finite-dimensio-
nal integer-order approximations retaining step and impulse response invari-
ants of the fractional-order operators.

12.2.1 FIR Filter Approximation

FIR filter is a class of widely used filters in signal processing [170]. Ivo
Petráš proposed a MATLAB function filt(), which can be used in FIR
filter approximation of fractional-order differentiators [173]. The kernel part
of the function is

function H=dfod2(n,T,r)

if r>0

bc=cumprod([1,1-((r+1)./[1:n])]); H=filt(bc,[T^r],T);

elseif r<0

bc=cumprod([1,1-((-r+1)./[1:n])]); H=filt([T^(-r)],bc,T);

end

where n is the expected order of the filter, T is the sampling period, and r is
the expected order of differentiation. With the use of the function, the FIR
filter can be designed. Normally to achieve good approximation results, the
order n must be assigned to a very high number, i.e., n = 50.

12.2.2 Discretization Using The Tustin Method with
Prewarping

As is known, the Tustin method [118] relates the s and z domains with the
following substitution formula:

s =
2
T

z − 1
z + 1

, (12.6)

where T is the sampling period. In signal processing literature the Tustin
method is frequently denoted the bilinear transformation method . The term
bilinear is related to the fact that the imaginary axis in the complex s-
plane for continuous-time systems is mapped or transformed onto the unity
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circle for the corresponding discrete-time system. In addition, the poles are
transformed so that the stability property is preserved.

With the substitution formula in (12.6) the discrete version Hd(z) of a
continuous transfer function Hc(s) is obtained. In general, the frequency
responses of Hc(s) and Hdisc(z) are not equal at the same frequencies. Tustin
method can be modified or enhanced so that a similar frequency response can
be obtained for both Hc(s) and Hd(z) at one or more user-defined critical
frequencies. This is done by modifying (prewarping) the critical frequencies of
Hc(s) so that the frequency responses are equal after the discretization [118].

In our case, MATLAB function c2d() [174] is used to obtain the discrete
transfer function of a continuous system, whose syntax is Hd=c2d(Hc,
T,METHOD), where Hd is the resulting discrete transfer function, Hc the
continuous transfer function to discretize, and T the sampling period. The
string METHOD selects the discretization method among the following:

• ’zoh’: Zero-order hold on the inputs.
• ’foh’: Linear interpolation of inputs.
• ’tustin’: Bilinear approximation.
• ’prewarp’: Tustin approximation with frequency prewarping. The critical

frequency ωc (in rad/sec) is specified as fourth input by Hd=c2d(Hc,
T,’prewarp’,ωc). In our case, the critical frequency will be the gain
crossover frequency, that is, ωc = ωcg.

• ’matched’: Matched pole-zero method (for SISO systems only).
• The default option is ’zoh’ when METHOD is omitted.

Example 4 To illustrate this method, the discrete-time transfer function
Hinvf(z) corresponding to the continuous approximation H1(s) from the
previous section is obtained with the following statements:

>> H1=ousta_fod(-0.5,4,1e-2,1e2);

H2=c2d(H1,0.1,’prewarp’,1), bode(H1,’-’,H2,’--’)

resulting in respectively

H1(s) =
0.1s4 + 6.248s3 + 35.45s2 + 19.76s + 1
s4 + 19.76s3 + 35.45s2 + 6.248s + 0.1

and

H2(z) =
0.2425z4 − 0.491z3 + 0.2033z2 + 0.106z − 0.06079

z4 − 2.875z3 + 2.802z2 − 0.974z + 0.0478
,

with ωc = 1 rad/sec and T = 0.001 sec. From the Bode plots of Figure 12.4,
the similarity between the frequency responses of H2(z) and H1(s) in Fig-
ure 12.6 can be observed. �
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Figure 12.4 Bode plots of the transfer functions H1(s) and H2(z), with solid lines for
H1(s) and dashed lines for H2(z). The straight lines are for the theoretical results

12.2.3 Discrete-time Implementation with Step or
Impulse Response Invariants

A set of MATLAB functions on discrete-time implementation of fractional-
order differentiator, integrator, as well as complicated transfer functions with
non-integer powers has been developed and given in Table 12.1, based on step
response invariants and impulse response invariants fitting. These functions
can be downloaded for free and used directly in establishing the discrete-
time implementations [175]. With the use of the functions, a discrete-time
implementation to the fractional-order terms can easily be constructed.

Table 12.1 MATLAB functions for discrete-time implementations

Function Syntax Descriptions

irid fod() G=irid fod(α,T,N) sα fitting with impulse response invariants

srid fod() G=srid fod(α,T,N) sα fitting with step response invariants

irid folpf() G=irid folpf(τ,α,T,N) (τs + 1)−α fitting with impulse response invariants

Example 5 Selecting a sampling period of T = 0.1 sec, and the order of
5, the 0.5th-order integrator can be implemented with the step response
invariants and impulse response invariants with the following statements:

>> G1=irid_fod(-0.5,0.1,5); G2=srid_fod(-0.5,0.1,5);

bode(G1,’--’,G2,’:’)
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with the results

G1(z)=
0.09354z5−0.2395z4+0.2094z3−0.06764z2+0.003523z+0.0008224

z5 − 3.163z4 + 3.72z3 − 1.966z2 + 0.4369z − 0.02738
,

G2(z)=
2.377×10−6z5+0.1128z4−0.367z3+0.4387z2−0.2269z+0.04241

z5 − 3.671z4 + 5.107z3 − 3.259z2 + 0.882z − 0.05885
,

and the Bode plot comparisons are given in Figure 12.5. It can be seen that
the fittings are satisfactory. �
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Figure 12.5 Bode plots comparisons with discrete-time implementations

12.3 Frequency Response Fitting of Fractional-order
Controllers

12.3.1 Continuous-time Approximation

In general, any available method for frequency domain identification can be
applied in order to obtain a rational function, whose frequency response
fits that corresponding to the original transfer function. For example, a
minimization of the cost function of the ISE form is generally aimed, i.e.,

J =
∫

W (ω)
∣∣∣G(ω) − Ĝ(ω)

∣∣∣2 dω, (12.7)

where W (ω) is a weighting function, G(ω) is the original frequency response,
and Ĝ(ω) is the frequency response of the approximated rational function.

MATLAB function invfreqs() [176] follows this criterion, with the next
syntax: [B,A]=invfreqs(H,w,nb,na). This function gives real numerator
and denominator coefficients B and A of orders nb and na, respectively. H
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is the desired complex frequency response of the system at frequency points
w, and w contains the frequency values in rad/sec. Function invfreqs()

yields a filter with real coefficients. This means that it is sufficient to specify
positive frequencies only.

The approximation of the fractional-order integrator of order 0.5 has been
obtained using this method. The order of the approximation is 4, that is
nb =na =4, and the frequency range w goes from 0.01 rad/sec to 100 rad/sec.
The identified model can be obtained with the following statements:

>> w=logspace(-2,2,100); H=1./(sqrt(-1)*w).^0.5;

[n,d]=invfreqs(H,w,4,4); G=tf(n,d), bode(G).

The resulting transfer function is

G(s) =
B(s)
A(s)

=
0.02889s4 + 17.08s3 + 1102s2 + 1.027e004s + 4567

s4 + 172.1s3 + 4378s2 + 1.148e004s + 459.8
,

and the Bode plots are shown in Figure 12.6.
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Figure 12.6 Bode plots of G(s), corresponding to the approximation of a fractional-order
integrator of order 0.5 with MATLAB function invfreqs()

12.3.2 Discrete-time Approximation

If the frequency response of a fractional-order operator is given, discrete-time
implementation can also be obtained. There are several way for finding the
discrete-time IO transfer function approximations to the fractional-order con-
trollers. One may use MATLAB function invfreqz() for a direct approxima-
tion to the given frequency response data. On the other hand, the continuous-
time approximation can be obtained first, then with the use of c2d()

function, the discrete-time implementation can be obtained. One may also
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use special algorithms for specific types of fractional-order controllers. For
instance, the impulse response invariant function G=irid folpf(τ,α,T,N)

given in Table 12.1 can be used for fitting controllers of (τs + 1)−α.

Example 6 Consider a fractional-order model given by G(s) = (3s+2)−0.4.
One may simple rewrite the model by G(s) = 2−0.4(1.5s + 1)−0.4. It can be
seen that τ = 1.5 and α = 0.4. Selecting sampling periods as T = 0.1 sec,
with order N = 4, the discrete-time implementation using impulse response
invariants can be obtained as

>> tau=1.5; a=0.4; T=0.1; N=4;

G1=2^(-0.4)*irid_folpf(tau,a,T,N);

The approximation model is

G1(z) =
0.2377z4 − 0.4202z3 + 0.2216z2 − 0.02977z − 0.00138

z4 − 2.222z3 + 1.663z2 − 0.4636z + 0.03388
.

The Bode plot comparisons of the fitting model and the original model can
be shown in Figure 12.7. It can be seen that the fitting results are good for
this example. �
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Figure 12.7 Bode plots comparisons, with solid lines for exact controller and dashed
lines for the discrete-time implementation model

12.3.3 Transfer Function Approximations to
Complicated Fractional-order Controllers

In control applications, sometimes the fractional-order controller designed
may be rather complicated. For instance, the QFT controller designed in
Section 10.2 may consist of several series connected terms such as [(as+b)/(cs+
d)]α. To implement the controllers in continuous-time form, the following
steos should be taken:
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1. Get the exact frequency response of the fractional-order controller.
2. Select appropriate orders for the numerator and denominator of the

integer-order filters.
3. Identify the continuous-time integer-order controllers with the use of

invfreqs() function.
4. Verify frequency response fitting. If the fitting is not satisfactory, go back

to Step 2 to select another set of orders, or another frequency range of
interest, until satisfactory approximations can be obtained.

Example 7 Consider again the QFT controller presented in (10.20). For
ease of presentation, the controller is given again here as

Gc(s)=1.8393
(

s+0.011
s

)0.96( 8.8×10−5s+1
8.096×10−5s+1

)1.76 1
(1+s/0.29)2

.

It should be noted that the filter is too complicated to implement with
impulse response invariant fitting method given earlier. With the use of
MATLAB, the function frd() can be used to get the frequency response
of an integer-order block, and the RespnseData membership of the frequency
response object can be used to extract the frequency response data. Then
dot multiplications and dot powers in MATLAB can be used to evaluate
the exact frequency response data. Selecting the orders of numerator and
denominator as 4 for continuous-time fitting, and the fitting frequency range
of ω ∈ (10−4, 100) rad/sec, the following commands can be used:

>> w=logspace(-4,0); G1=tf([1 0.011],[1 0]); F1=frd(G1,w);

G2=tf([8.8e-5 1],[8.096e-5 1]); F2=frd(G2,w);

s=tf(’s’); G3=1/(1+s/0.29)^2; F3=frd(G3,w); F=F1;

h1=F1.ResponseData; h2=F2.ResponseData; h3=F3.ResponseData;

h=1.8393*h1.^0.96.*h2.^1.76.*h3; F.ResponseData=h; %exact

[n,d]=invfreqs(h(:),w,4,4); G=tf(n,d);

The continuous-time approximate integer-order controller can be obtained as

G(s) =
2.213×10−7s4+1.732×10−6s3+0.1547s2+0.001903s+2.548×10−6

s4+0.5817s3+0.08511s2+0.000147s+1.075×10−9
.

To verify the controller from the point of view of frequency response fitting,
we should compare the original and fitted controller over a larger frequency
interval. The following commands can be used to compare the two controller
in the frequency range of (10−6, 102) rad/sec.

>> w=logspace(-6,2,200); F1=frd(G1,w); F2=frd(G2,w); F=F1;

F3=frd(G3,w); h1=F1.ResponseData; h2=F2.ResponseData;

h3=F3.ResponseData; h=1.8393*h1.^0.96.*h2.^1.76.*h3;



12.4 Sub-optimal Approximation of FOTFs 205

F.ResponseData=h; bode(F,’-’,G,’--’,w)

The Bode plots of both controllers over the new frequency range are shown
in Figure 12.8. It can be seen that the frequency response of the controller is
satisfactory, albeit there is small discrepancy at very-low frequency range. If
such an extremely low-frequency range is to be fitted, we should go to Step
2 to generate more frequency response points in the range. �
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Figure 12.8 Bode plot comparisons for fractional-order QFT controller

12.4 Sub-optimal Approximation of FOTFs

In this section, we consider the general fractional-order FO-LTI systems with
non-commensurate fractional orders as follows:

G(s) =
bmsγm + bm−1s

γm−1 + · · · + b1s
γ1 + b0

ansηn + an−1sηn−1 + · · · + a1sη1 + a0
. (12.8)

Using the aforementioned approximation schemes for a single sr and then
for the general FO-LTI system (12.8) could be very tedious, leading to a very
high order model. In this section, we propose to use a numerical algorithm
to achieve a good approximation of the overall transfer function (12.8) using
finite-dimensional integer-order rational transfer function with a possible time
delay term and illustrate how to use the approximated integer-order model
for integer-order controller design.

Our target now is to find an approximate integer-order model with a
relative low order, possibly with a time delay in the following form:

Gr/m,τ (s) =
β1s

r + · · · + βrs + βr+1

sm + α1sm−1 + · · · + αm−1s + αm
e−τs. (12.9)

An objective function for minimizing the H2-norm of the reduction error
signal e(t) can be defined as
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J = min
θ

||Ĝ(s) − Gr/m,τ (s)||2, (12.10)

where θ is the set of parameters to be optimized such that

θ = [β1, . . . , βr, α1, · · · , αm, τ ]. (12.11)

For an easy evaluation of the criterion J , the delayed term in the reduced
order model Gr/m,τ (s) can be further approximated by a rational function
Ĝr/m(s) using the Padé approximation technique [177]. Thus, the revised
criterion can then be defined by

J = min
θ

||Ĝ(s) − Ĝr/m(s)||2, (12.12)

and the H2 norm computation can be evaluated recursively using the algo-
rithm in [178].

Suppose that for a stable transfer function type E(s) = Ĝ(s)− Ĝr/m(s) =
B(s)/A(s), the polynomials Ak(s) and Bk(s) can be defined such that

Ak(s) = ak
0 + ak

1s + · · · + ak
ksk, Bk(s) = bk

0 + bk
1s + · · · + bk

k−1s
k−1 (12.13)

The values of ak−1
i and bk−1

i can be evaluated recursively from

ak−1
i =

{
ak

i+1, i even

ak
i+1 − αkak

i+2, i odd
i = 0, · · · , k − 1 (12.14)

and

bk−1
i =

{
bk
i+1, i even

bk
i+1 − βkak

i+2, i odd
i = 1, · · · , k − 1, (12.15)

where αk = ak
0/ak

1 and βk = bk
1/ak

1 .
The H2-norm of the approximate reduction error signal ê(t) can be

evaluated from

J =
n∑

k=1

β2
k

2αk
=

n∑
k=1

(bk
1)2

2ak
0ak

1

. (12.16)

The sub-optimal H2-norm reduced order model for the original high-order
fractional-order model can be obtained using the following procedure [177]:

1. Select an initial reduced model Ĝ0
r/m(s).

2. Evaluate an error ||Ĝ(s) − Ĝ0
r/m(s)||2 from (12.16).

3. Use an optimization algorithm (for instance, Powell’s algorithm [179]) to
iterate one step for a better estimated model Ĝ1

r/m(s).

4. Set Ĝ0
r/m(s) ← Ĝ1

r/m(s), go to Step 2 until an optimal reduced model

Ĝ∗
r/m(s) is obtained.

5. Extract the delay from Ĝ∗
r/m(s), if any.
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Based on the above approach, a MATLAB function opt app() can be
designed, with the syntax Gr=opt app(G,r,d,key,G0), where key is the
indicator whether delay is required in the reduced order model. G0 is the
initial reduced order model, optional. The listings of the function is

function G_r=opt_app(G_Sys,r,k,key,G0)

GS=tf(G_Sys); num=GS.num{1}; den=GS.den{1};

Td=totaldelay(GS); GS.ioDelay=0;

GS.InputDelay=0;GS.OutputDelay=0;

if nargin<5,

n0=[1,1]; for i=1:k-2, n0=conv(n0,[1,1]); end

G0=tf(n0,conv([1,1],n0));

end

beta=G0.num{1}(k+1-r:k+1); alph=G0.den{1}; Tau=1.5*Td;

x=[beta(1:r),alph(2:k+1)]; if abs(Tau)<1e-5, Tau=0.5; end

dc=dcgain(GS); if key==1, x=[x,Tau]; end

y=opt_fun(x,GS,key,r,k,dc);

x=fminsearch(’opt_fun’,x,[],GS,key,r,k,dc);

alph=[1,x(r+1:r+k)]; beta=x(1:r+1); if key==0, Td=0; end

beta(r+1)=alph(end)*dc;

if key==1, Tau=x(end)+Td; else, Tau=0; end

G_r=tf(beta,alph,’ioDelay’,Tau);

Two lower-level MATLAB function should also be designed as

function y=opt_fun(x,G,key,nn,nd,dc)

ff0=1e10; alph=[1,x(nn+1:nn+nd)];

beta=x(1:nn+1); beta(end)=alph(end)*dc; g=tf(beta,alph);

if key==1,

tau=x(end); if tau<=0, tau=eps; end

[nP,dP]=pade(tau,3); gP=tf(nP,dP);

else, gP=1; end

G_e=G-g*gP;

G_e.num{1}=[0,G_e.num{1}(1:end-1)];

[y,ierr]=geth2(G_e);

if ierr==1, y=10*ff0; else, ff0=y; end

%---sub function geth2

function [v,ierr]=geth2(G)

G=tf(G); num=G.num{1}; den=G.den{1}; ierr=0;

n=length(den); v=0;

if abs(num(1))>eps

disp(’System not strictly proper’); ierr=1; return

else, a1=den; b1=num(2:end); end
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for k=1:n-1

if (a1(k+1)<=eps), ierr=1; v=0; return

else,

aa=a1(k)/a1(k+1); bb=b1(k)/a1(k+1);

v=v+bb*bb/aa; k1=k+2;

for i=k1:2:n-1

a1(i)=a1(i)-aa*a1(i+1); b1(i)=b1(i)-bb*a1(i+1);

end, end, end

v=sqrt(0.5*v);

We call the above procedure sub-optimal since Oustaloup’s method is used
for each single term sγ in (12.8), and the Padé approximation is used for pure
delay terms.

Example 8 Consider the following non-commensurate FO-LTI system:

G(s) =
5s0.6 + 2

s3.3 + 3.1s2.6 + 2.89s1.9 + 2.5s1.4 + 1.2
.

Using the following MATLAB scripts:

>> N=5; w1=1e-3; w2=1e3;

g1=ousta_fod(0.3,N,w1,w2); g2=ousta_fod(0.6,N,w1,w2);

g3=ousta_fod(0.9,N,w1,w2); g4=ousta_fod(0.4,N,w1,w2);

s=tf(’s’);

G=(5*g2+2)/(s^3*g1+3.1*s^2*g2+2.89*s*g3+2.5*s*g4+1.2);

G=minreal(G)

an extremely high-order model can be obtained with Oustaloup’s filter, such
that

G(s) =

39.97s20+7.68×104s19+5.16×107s18+1.53×1010s17+2.06×1012s16

+1.339×1014s15+4.388×1015s14+7.32×1016s13+6.053×1017s12

+2.515×1018s11+5.422×1018s10+6.149×1018s9+3.597×1018s8

+1.067×1018s7+1.671×1017s6+1.41×1016s5+6.229×1014s4

+1.344×1013s3+1.459×1011s2+7.703×108s+1.577×106

s23+2211s22+1.782×106s21+6.524×108s20+1.122×1011s19

+9.336×1012s18+4.013×1014s17+9.167×1015s16+1.114×1017s15

+7.328×1017s14+2.739×1018s13+6.03×1018s12+8.058×1018s11

+6.695×1018s10+3.651×1018s9+1.462×1018s8+3.952×1017s7

+6.472×1016s6+6.007×1015s5+2.934×1014s4+6.775×1012s3

+7.745×1010s2+4.275×108s + 9.103×105

,

and the order of rational approximation to the original order model is the
23th for N = 5. For larger values of N , the order of rational approximation
may be much higher. For instance, the order of the approximation may reach
the 30th- and 40th-order respectively for the selections N = 7 and N = 9,
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with extremely large coefficients. Thus the model reduction algorithm should
be used with the following MATLAB statements:

>> G2=opt_app(G,2,3,0); G3=opt_app(G,3,4,0);

G4=opt_app(G,4,5,0); step(G,G2,G3,G4,60)

The step responses can be compared in Figure 12.9 and it can be seen that
the seventh-order approximation is satisfactory and the fourth order fitting
gives a better approximation. The obtained optimum approximated results
are listed in the following:

G2(s) =
0.41056s2 + 0.75579s + 0.037971

s3 + 0.24604s2 + 0.22176s + 0.021915
,

G3(s) =
−4.4627s3 + 5.6139s2 + 4.3354s + 0.15330

s4 + 7.4462s3 + 1.7171s2 + 1.5083s + 0.088476
,

G4(s) =
1.7768s4 + 2.2291s3 + 10.911s2 + 1.2169s + 0.010249

s5 + 11.347s4 + 4.8219s3 + 2.8448s2 + 0.59199s + 0.0059152
.

It can be seen that with the lower-order models obtained, the system
response of the system may not change much. The sub-optimum fitting
algorithm presented may be useful in a class of linear fractional-order system
approximation. �

0 10 20 30 40 50 60

0

1

2

3

4

5

Time (sec)

A
m

pl
itu

de

Figure 12.9 Step responses comparisons: solid lines for the original system, and the other
lines are respectively for G2(s), G3(s), and G4(s)

Example 9 Let us consider the following FO-LTI plant model:

G(s) =
1

s2.3 + 3.2s1.4 + 2.4s0.9 + 1
.
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Let us first approximate it with Oustaloup’s method and then fit it with
a fixed model structure known as first-order lag plus deadtime (FOLPD)

model, where Gr(s) =
K

Ts + 1
e−Ls. The following MATLAB scripts:

>> N=5; w1=1e-3; w2=1e3; g1=ousta_fod(0.3,N,w1,w2);

g2=ousta_fod(0.4,N,w1,w2); g3=ousta_fod(0.9,N,w1,w2);

s=tf(’s’); G=1/(s^2*g1+3.2*s*g2+2.4*g3+1);

G2=opt_app(G,0,1,1); step(G,’-’,G2,’--’)

can perform this task and the optimal FOLPD model obtained is given as
follows:

Gr(s) =
0.9951

3.5014s + 1
e−1.634s.

The comparison of the open-loop step response is shown in Figure 12.10. It
can be observed that the approximation is fairly effective.
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Figure 12.10 Step response comparison of the optimum FOLPD and the original model

Designing a suitable feedback controller for the original FO-LTI system
G can be a formidable task. Now let us consider designing an integer-order
PID controller for the optimally reduced model Gr(s) and let us see if the
designed controller still works for the original system.

The integer-order PID controller to be designed is in the following form:

Gc(s) = Kp

(
1 +

1
Tis

+
Tds

Tds/N + 1

)
. (12.17)
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The optimum ITAE criterion-based PID tuning formula [180] can be used:

Kp =
(0.7303 + 0.5307T/L)(T + 0.5L)

K(T + L)
, (12.18)

Ti = T + 0.5L, Td =
0.5LT

T + 0.5L
. (12.19)

Based on this tuning algorithm, a PID controller can be designed for Gr(s)
as follows:

>> L=0.63; T=3.5014; K=0.9951; N=10; Ti=T+0.5*L;

Kp=(0.7303+0.5307*T/L)*Ti/(K*(T+L));

Td=(0.5*L*T)/(T+0.5*L); [Kp,Ti,Td]

Gc=Kp*(1+1/Ti/s+Td*s/(Td/N*s+1))

The parameters of the PID controller are then Kp = 3.4160, Ti = 3.8164, Td =
0.2890, and the PID controller can be written as

Gc(s) =
1.086s2 + 3.442s + 0.8951

0.0289s2 + s
.

Finally, the step response of the original FO-LTI with the above designed
PID controller is shown in Figure 12.11. A satisfactory performance can be
clearly observed. Therefore, we believe the method presented can be used for
integer-order controller design for general FO-LTI systems. �
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Figure 12.11 Closed-loop step response of the fractional-order plant model under the
integer-order PID controller
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12.5 Summary

In this chapter, several finite-dimensional integer-order approximations to
fractional-order operators as well as systems are explored. For fractional-
order differentiators and integrators, the frequency domain fitting using
Oustaloup’s recursive method is usually good enough over the frequency
range of interest. The modified version is an extension to Oustaloup’s fitting
filter. The approximation method can be used to construct a Simulink block
for fractional-order operators, and details will be given in the next chapter.
Based on the approximation, a block diagram based simulation approach
will be presented in the next chapter to handle fractional-order systems with
any complexity. Discrete-time implementation to fractional-order operators
are also presented in the chapter. Further, finite-dimensional integer-order
identification methods based on given frequency domain response data are
also presented and fractional-order controllers with complicated structures
are explored. For FOTF models, an H2 norm minimization approach for
model fitting is presented, and an illustrative example is given to demonstrate
its use in controller design applications.



Chapter 13

Numerical Issues and MATLAB
Implementations for Fractional-order
Control Systems

There are several relevant MATLAB toolboxes which can be used to handle
fractional-order systems. The N-integer toolbox [162] is the one used widely
by the researchers. We also developed useful MATLAB code and an object-
oriented toolbox in [181–183] which solves similar problems. This chapter is
designed to be self-contained and is presented in the sequence of modeling,
analysis, and design of fractional-order systems. Readers can run the exam-
ples on their own computer and obtain the same results. Many illustrative
examples are given in the chapter to demonstrate the modeling, analysis,
and design problems in fractional-order systems. Also the code can easily be
applied to tackle other problems in the other chapters.

In Chapter 2, the theoretical aspects of fractional calculus were given.
In this chapter, numerical issues of fractional calculus and fractional-order
control are discussed. In Section 13.1, the computation aspect of fractional
calculus problems are discussed. First, the evaluation of Mittag–Leffler func-
tions is presented with MATLAB implementations. Then the fractional-
order differentiations of a given function are given and closed-form solutions
to linear fractional-order differential equations can be obtained. Analytical
solutions are also explored in some special cases. In Section 13.2, a MATLAB
object FOTF is designed and, based on the object, overload functions are
developed for model simplifications, time and frequency domain analysis,
as well as stability assessment. The concepts and ideas follow the Control
System Toolbox of MATLAB, which is very easy for users to start with.
In Section 13.3, filter approximations to fractional-order differentiators are
explored and a Simulink block is designed to implement it. A block diagram
based simulation strategy is illustrated for fractional-order nonlinear systems,
including delay systems, through examples. Section 13.4 concentrates on
optimum design of controllers for fractional-order systems. A meaningful
control criterion, the finite-time ITAE criterion, is introduced and explored.

213
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Then a controller design approach using an optimization problem solver is
presented through several examples.

13.1 Computations in Fractional Calculus

In this section, numerical solutions to typical problems in fractional cal-
culus are presented. The evaluation of Mittag–Leffler functions of different
kinds is explored first, then computation of fractional-order derivatives using
Grünwald–Letnikov’s and Caputo’s definitions are presented. A closed-form
solution algorithm for linear fractional-order differential equations together
with MATLAB implementations are given. Then analytical solutions to some
special forms of fractional-order differential equations are explored.

13.1.1 Evaluation of Mittag–Leffler functions

In fractional calculus and control, Mittag–Leffler functions play very im-
portant roles. These can be considered analogous to the use of exponential
functions in integer-order systems.

In Section 2.2, Mittag–Leffler functions in one and two parameters can
respectively be expressed as

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
(13.1)

and

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (13.2)

where α, β ∈ C, and �(α) > 0,�(β) > 0.
It can be seen that the Mittag–Leffler function in one parameter is a special

case of that in two parameters, with β = 1, i.e.,

Eα,1(z) = Eα(z). (13.3)

Also, the Mittag–Leffler function in one parameter is an extension of the
exponential function ez, where

E1(z) =
∞∑

k=0

zk

k!
= ez. (13.4)

It can be seen that, in most applications, Mittag–Leffler functions can
be evaluated directly by the truncation method, if MATLAB is used. The
MATLAB function thus defined can be written. And in some applications,
truncation methods may fail due to the nature of poor convergence. The
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numerical integration based method implemented by Podlubny [184] can be
embedded. The listings of the MATLAB function will be given later.

The syntaxes of the function are respectively y=ml func(α,z,n,ε0),
and y=ml func([α,β],z,n,ε0) for Mittag–Leffler functions in one and two
parameters, where n is the order of derivative, with a default value of 0,
while ε0 is the error tolerance. It should be noted that, in the case where
the truncation method is not convergent, the Podlubny’s code can be called
automatically instead. However, unfortunately, the speed of the embedded
code is extremely slow.

Example 1 The curves of Mittag–Leffler functions E1(−t), E3/2,3/2(−t), and
E1,2(−t) can be drawn as shown in Figure 13.1, with the following MATLAB
statements:

>> t=0:0.1:5; y1=ml_func(1,-t); y2=ml_func([1,2],-t);

y3=ml_func([3/2,3/2],-t); plot(t,y1,t,y2,t,y3)
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Figure 13.1 Curves of some Mittag–Leffler functions

It should be noted that E1(−t) is in fact the exponential function e−t. The
decay of the other two curves is slower than the exponential function. �

In some applications, generalized Mittag–Leffler functions, i.e., Mittag–
Leffler functions in three or four parameters, have to be used. These functions
are defined respectively as [185]

E γ
α,β(z) =

∞∑
k=0

(γ)k

Γ(αk + β)
zk

k!
(13.5)
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and

E γ,q
α,β(z) =

∞∑
k=0

(γ)kq

Γ(αk + β)
zk

k!
, (13.6)

where α, β, γ ∈ C, �(α) > 0, �(β) > 0, �(γ) > 0, and q ∈ N;

(γ)0 = 1, and (γ)k = γ(γ + 1)(γ + 2) · · · (γ + k − 1) =
Γ(k + γ)

Γ(γ)
. (13.7)

It is easily seen, by comparing the definitions, that

Eα,β(z) = E 1
α,β(z), E γ,1

α,β (z) = E γ
α,β(z). (13.8)

The above-mentioned ml func() can still be used to deal with the general-
ized Mittag–Leffler function evaluation problems. The syntaxes for the evalu-
ation of generalized Mittag–Leffler functions in three and four parameters are
y=ml func([α,β,γ],z,n,ε0) and y=ml func([α,β,γ,q],z,n,ε0), respec-
tively. The listing of the function is given below, where the function mlf() is
the embedded code to be downloaded separately from [184]:

function f=ml_func(aa,z,n,eps0)

aa=[aa,1,1,1]; a=aa(1); b=aa(2); c=aa(3); q=aa(4);

f=0; k=0; fa=1; aa=aa(1:4); if nargin<4, eps0=eps; end

if nargin<3, n=0; end

if n==0

while norm(fa,1)>=eps0

fa=gamma(k*q+c)/gamma(c)/gamma(k+1)/gamma(a*k+b) *z.^k;

f=f+fa; k=k+1;

end

if ~isfinite(f(1))

if c*q==1

f=mlf(a,b,z,round(-log10(eps0))); f=reshape(f,size(z));

else, error(’Error: truncation method failed’); end, end

else

aa(2)=b+n*a; aa(3)=c+q*n;

f=gamma(q*n+c)/gamma(c)*ml_func(aa,z,0,eps0);

end, end

Example 2 The curves of Mittag–Leffler functions in more parameters,
E

1/3
1,2 (−t), E

1/3,2
2,2 (−t) are shown in Figure 13.2, together with E2,2(−t):

>> t=0:0.01:5; y1=ml_func([1,2,1/3],-t);

y2=ml_func([2,2,1/3,2],-t);

y3=ml_func([2,2],-t); plot(t,y1,t,y2,t,y3) �
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Figure 13.2 Curves of some Mittag–Leffler functions in more parameters

Also the nth-order derivative of the Mittag–Leffler function in four parame-
ters can be evaluated from [185]

dn

dtn
E γ,q

α,β (z) = (γ)qnE γ+qn,q
α,β+nα(z), (13.9)

and, in particular, the integer nth-order derivative of the Mittag–Leffler
function in two parameters can be evaluated from [3]

dn

dzn
Eα,β(z) =

∞∑
j=0

(j + n)!
j! Γ(αj + αn + β)

zj . (13.10)

13.1.2 Evaluations of Fractional-order Derivatives

There are several definitions on fractional-order differentiations, such as
Riemann–Liouville’s definition, Grünwald–Letnikov’s definition, Caputo’s def-
inition, and others, as shown in Section 2.1. It has been shown that Riemann–
Liouville’s definition and Grünwald–Letnikov’s definition are equivalent, while
there exist discrepancies between the Grünwald–Letnikov’s definition and
Caputo’s definition due to differences in the description at initial time
instances. The computation via Grünwald–Letnikov’s definition and Caputo’s
definition is discussed here. Among the definitions, the Grünwald–Letnikov’s
definition is the most straightforward from the numerical implementation
point of view.
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13.1.2.1 Grünwald–Letnikov’s Definition

Recall the approximate Grünwald–Letnikov’s definition given below, where
the step size of h is assumed to be very small:

aDα
t f(t) ≈ 1

hα

[(t−a)/h]∑
j=0

w
(α)
j f(t − jh), (13.11)

where the binomial coefficients can recursively be calculated with the follow-
ing formula:

w
(α)
0 = 1, w

(α)
j =

(
1 − α + 1

j

)
w

(α)
j−1, j = 1, 2, · · · . (13.12)

Based on the above algorithm, the γth-order derivative of a given function
can be evaluated, and the syntax of y1=glfdiff(y,t,γ), where y and t are
signal and time vectors, respectively, and y1 is a vector of γth-order derivative
of f(t):

function dy=glfdiff(y,t,gam)

h=t(2)-t(1); dy(1)=0; y=y(:); t=t(:); w=1;

for j=2:length(t), w(j)=w(j-1)*(1-(gam+1)/(j-1)); end

for i=2:length(t), dy(i)=w(1:i)*[y(i:-1:1)]/h^gam; end

Example 3 Consider a sinusoidal function f(t) = sin(3t + 1). It is known
from Cauchy’s formula that the kth-order derivative of the function is

f (k)(t) = 3k sin (3t + 1 + kπ/2) ,

and the formula also works for non-integer values of k. It is known from
integer-order calculus that the integer-order derivatives can only be sinusoidal
functions with phase shift of multiples of π/2. The fractional-order derivatives
may provide more intermediate information, since the phase shifts are no
longer integer multiples of π/2. The 3D plot of the fractional-order integrals
and derivatives is shown in Figure 13.3 (a), with the following MATLAB
commands:

>> t=0:0.1:pi; y=sin(3*t+1); Y=[]; n_vec=[-1:0.2:1];

for n=n_vec, Y=[Y; glfdiff(y,t,n)]; end

surf(t,n_vec,Y), shading flat

With Grünwald–Letnikov’s definition, the 0.75th-order derivative of func-
tion f(t) can be obtained as shown in Figure 13.3 (b), while that with the
Cauchy formula above can also be shown:

>> t=0:0.01:pi; y=sin(3*t+1); y1=3^0.75*sin(3*t+1+0.75*pi/2);

y2=glfdiff(y,t,0.75); plot(t,y1,t,y2)
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It can be seen that there exist some differences only initially, since in
Grünwald–Letnikov’s definition, the initial values of function f(t), for t � 0,
are assumed to be zero, while in the Cauchy formula, the initial values of the
function f(t) is still assumed to be obtainable from f(t) = sin(3t + 1). Thus
one must be careful with the differences in the definitions. �
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Figure 13.3 Fractional-order derivatives and integrals: (a) fractional-order derivatives
and integrals for different orders and (b) comparisons under different definitions

Example 4 It is well known in the field of integer-order calculus that the
derivative of a step function is a straight line. Now let us investigate the case
for fractional-order derivatives and integrals. With the following MATLAB
statements, the derivatives and integrals of selected orders can be obtained
as shown in Figure 13.4:

>> t=0:0.01:1; u=ones(size(t));

n_vec=[-0.5,0,0.5,1,1.5]; Y=[];
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for n=n_vec, Y=[Y; glfdiff(u,t,n)]; end

plot(t,Y), ylim([-2 2])
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Figure 13.4 Fractional-order differentiations of a unit step function

It can be seen that, when fractional calculus is involved, the fractional-order
derivatives and integrals of a step function may not be straight lines. �

13.1.2.2 Evaluating Caputo’s Derivatives

Caputo’s fractional-order differentiation is defined by

0D
α
t f(t) =

1
Γ(1 − α)

∫ t

0

f (m+1)(τ)
(t − τ)α

dτ, (13.13)

where α = m + γ, m is an integer, and 0 < γ � 1. Similarly, by Caputo’s
definition, the integral is described by

0D
−γ
t f(t) =

1
Γ(γ)

∫ t

0

f(τ)
(t − τ)1−γ

dτ, γ > 0. (13.14)

With the help of Symbolic Math Toolbox, a MATLAB function caputo()

can be written as

function dy=caputo(t0,f,gam)

m=floor(gam); a=gam-m; dy=0;

if gam>0, syms t; fd=diff(f,t,m+1); else; a=-gam; end

for t1=t0(2:end)

if gam>0,

f=@(x)subs(fd,t,x)./(t1-x).^a/gamma(1-a);

else
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f=@(x)subs(f,t,x)./(t1-x).^(1-a)/gamma(a);

end

dy=[dy; quadl(f,0,t1)];

end

and the syntax of the function is y1=caputo(t0,f,γ), where f is a symbolic
function of variable t, t0 is a numerical vector of evenly distributed time
instances. The function returns a numerical vector y1 of γth-order derivatives.

Example 5 Again consider the original function in Example 3, where f(t) =
sin(3t + 1). The numerical solutions of 0.3th-order derivatives by Caputo’s
definition and Grünwald–Letnikov’s definition can be obtained with the
following statements:

>> syms t; f=sin(3*t+1); t0=0:0.01:5; dy=caputo(t0,f,0.3);

y0=subs(f,t,t0); y1=glfdiff(y0,t0,0.3); plot(t0,dy,t0,y1)

and the comparison of the two derivatives is shown in Figure 13.5, and it can
be seen that there are differences between the two definitions, due to non-zero
initial values. �
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Figure 13.5 Fractional-order differentiations of step functions

13.1.3 Closed-form Solutions to Linear
Fractional-order Differential Equations

As in the case for conventional linear systems, for linear fractional-order
systems, linear fractional-order differential equations are the fundamental
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governing equations. The linear fractional-order differential equation is de-
fined as

a1D
β1
t y(t) + a2D

β2
t y(t) + · · · + anDβn

t y(t)

= b1D
γ1
t v(t) + b2D

γ2
t v(t) + · · · + bmDγm

t v(t).
(13.15)

Denoting the left hand side of the equation by

u(t) = b1D
γ1v(t) + · · · + bmDγmv(t), (13.16)

where for a given function v(t), the signal u(t) can easily be evaluated
with the above-mentioned algorithms, the original fractional-order differential
equation can be rewritten in the form

a1D
β1
t y(t) + a2D

β2
t y(t) + · · · + anDβn

t y(t) = u(t). (13.17)

Substituting (13.11) into the above equation, one may find that

a1

hβ1

[(t−a)/h]∑
j=0

w
(β1)
j y(t − jh) + · · · + an

hβn

[(t−a)/h]∑
j=0

w
(βn)
j y(t − jh) = u(t), (13.18)

where the binomial coefficients w
(βi)
j can still be evaluated recursively with

w
(βi)
0 = 1, w

(βi)
j =

(
1 − βi + 1

j

)
w

(βi)
j−1, j = 1, 2, · · · . (13.19)

By slight rearrangement of the terms, the closed-form solution of the
fractional-order differential equation can be obtained as

y(t) =
1

n∑
i=1

ai

hβi

⎡⎣u(t) −
n∑

i=1

ai

hβi

[(t−a)/h]∑
j=1

w
(βi)
j y(t − jh)

⎤⎦ . (13.20)

Based on the above algorithm, the numerical solutions to the linear
fractional-order differential equation can be obtained with a MATLAB func-
tion of

function y=fode_sol(a,na,b,nb,u,t)

h=t(2)-t(1); D=sum(a./[h.^na]); nT=length(t);

vec=[na nb]; W=[]; D1=b(:)./h.^nb(:); nA=length(a);

y1=zeros(nT,1); W=ones(nT,length(vec));

for j=2:nT, W(j,:)=W(j-1,:).*(1-(vec+1)/(j-1)); end

for i=2:nT,

A=[y1(i-1:-1:1)]’*W(2:i,1:nA);

y1(i)=(u(i)-sum(A.*a./[h.^na]))/D;

end

for i=2:nT, y(i)=(W(1:i,nA+1:end)*D1)’*[y1(i:-1:1)]; end



13.1 Computations in Fractional Calculus 223

whose syntax is y=fode sol(a,na,b,nb,u,t), where a = [a1, · · · , an] and
b = [b1, · · · , bm] are respectively the coefficients of y and u of the equation,
while na = [β1, · · · , βn] and nb = [γ1, · · · , γm] are, respectively, the orders.
The vectors t and u contain the time instances and the input sequence. The
function returns the solution vector y of the equation.

Example 6 Consider a linear fractional-order differential equation
D1.6y(t) + 10D1.2y(t) + 35D0.8y(t) + 50D0.4y(t) + 24y(t)

= D1.2u(t) + 3D0.4u(t) + 5u(t),
with zero initial conditions. It is also known that the input signal is a step
function. To solve the differential equation numerically, one should specify
the coefficients and orders in the equation; then fode sol() can be called.
The following MATLAB statements can be issued:

>> a=[1,10,35,50,24]; na=[1.6 1.2 0.8 0.4 0];

b=[1 3 5]; nb=[1.2 0.4 0]; t=0:0.01:10; u=ones(size(t));

y=fode_sol(a,na,b,nb,u,t); plot(t,y)

The step response of the system is obtained as Figure 13.6. The most im-
portant step in numerical solutions is the validation process of the solutions.
A simple way to validate the solution is to select a smaller step-size, and see
whether consistent results can be obtained. If not, one should select smaller
step-sizes and try again. For the problem in this example, the step-size of
0.01 is good enough.
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Figure 13.6 Solution of the fractional-order differentiations

As in the case of integer-order systems, only very limited classes of
fractional-order systems can be studied analytically. �
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13.1.4 Analytical Solutions to Linear Fractional-order
Differential Equations

As in the case of integer-order systems, only very limited classes of fractional-
order systems can be studied analytically. Laplace transforms of some partic-
ular functions are presented first. Based on the properties, step and impulse
responses for commensurate-order systems are presented. Then for ordinary
fractional-order systems, in particular, three-term fractional-order systems,
analytical solutions to step responses are given.

13.1.4.1 Some Useful Laplace Transform Formulas

One of the most important Laplace transform formula for finding the analyt-
ical solutions of a class of fractional-order systems is presented first. Based
on the formula, some of the other particular properties will be presented.

The general form of the Laplace transform formula is given by [185,186]

L −1

[
sαγ−β

(sα + a)γ

]
= tβ−1E γ

α,β (−atα) , (13.21)

and with the use of the property, many useful formulas can be derived:

• When γ = 1 and αγ = β, then the inverse Laplace transform can be
interpreted as the analytical response of an FOTF 1/(sα + a) driven by
an impulse input. In this case, one has β = α, and the Laplace transform
can be expressed as

L −1

[
1

sα + a

]
= tα−1Eα,α (−atα) . (13.22)

• When γ = 1, and αγ−β = −1, then the inverse Laplace transform can be
interpreted as the analytical solution of a fractional-order transfer function
1/(sα + a) driven by a step input. In this case, one has β = α+1, and the
Laplace transform can be expressed as

L −1

[
1

s(sα + a)

]
= tαEα,α+1 (−atα) . (13.23)

It can also be shown that the inverse Laplace transform of the function
can alternatively be written as

L −1

[
1

s(sα + a)

]
=

1
a

[
1 − Eα (−atα)

]
. (13.24)

• When γ = k is an integer and αγ = β, then the inverse Laplace transform
can be interpreted as the analytical solution of an FOTF 1/(sα + a)k

driven by an impulse input. In this case, one has β = αk, and the Laplace
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transform can be expressed as

L −1

[
1

(sα + a)k

]
= tαk−1E k

α,αk (−atα) . (13.25)

• When γ = k is an integer and αγ − β = −1, then the inverse Laplace
transform can be interpreted as the analytical solution of a fractional-
order transfer function 1/(sα + a)k driven by a step input. In this case,
one has β = αk + 1, and the Laplace transform can be expressed as

L −1

[
1

s(sα + a)k

]
= tαkE k

α,αk+1 (−atα) . (13.26)

13.1.4.2 Analysis of Commensurate-order Systems

Consider the orders in (13.15). If one can find a greatest common divisor α

to them, then the original equation can be rewritten as

a1D
nα
t y(t) + a2D

(n−1)α
t y(t) + · · · + anDα

t y(t) + an+1y(t)

= b1Dmα
t v(t) + b2D

(m−1)α
t v(t) + · · · + bmDα

t v(t) + bm+1v(t).
(13.27)

If zero initial conditions are assumed for the input and output signals,
then the Laplace transform can be applied to the fractional-order differential
equation, and the FOTF

G(s) =
b1s

mα + b2s
(m−1)α + · · · + bmsα + bm+1

a1snα + a2s(n−1)α + · · · ansα + an+1
(13.28)

can be obtained. This kind of system is usually referred to as commensurate-
order systems. For commensurate-order systems, denoting λ = sα, the
transfer function can be re-expressed as an integer-order rational function
of variable of λ, such that

G(λ) =
b1λ

m + b2λ
m−1 + · · · + bmλ + bm+1

a1λn + a2λn−1 + · · · anλ + an+1
. (13.29)

Suppose there are no repeated poles in G(λ), then partial fraction expan-
sion can be made to the original system such that

G(λ) =
n∑

i=1

ri

λ + pi
=

n∑
i=1

ri

sα + pi
. (13.30)

With the use of the Laplace transforms defined in (13.22) and (13.23), the
analytical solutions to impulse and step input can be obtained directly such
that

L −1

[
n∑

i=1

ri

sα + pi

]
=

n∑
i=1

rit
α−1Eα,α (−pit

α) , (13.31)
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L −1

[
n∑

i=1

ri

s(sα + pi)

]
=

n∑
i=1

rit
αEα,α+1 (−pit

α) , (13.32)

or, alternatively,

L −1

[
n∑

i=1

ri

s(sα + pi)

]
=

n∑
i=1

ri

pi

[
1 − Eα (−pit

α)
]
. (13.33)

Example 7 The fractional-order differential equation is described as

G(s) =
s1.2 + 3s0.4 + 5

s1.6 + 10s1.2 + 35s0.8 + 50s0.4 + 24
.

Denoting λ = s0.4, a commensurate-order system can be obtained:

G(λ) =
λ3 + 3λ + 5

λ4 + 10λ3 + 35λ2 + 50λ + 24
.

With MATLAB commands

>> n=[1,0,3,5]; d=[1,10,35,50,24];

[r,p,k]=residue(n,d)

it is easily found that the partial fraction expansion of the system can be
written as

G(λ) =
71
6

× 1
λ + 4

− 31
2

× 1
λ + 3

+
9
2
× 1

λ + 2
+

1
6
× 1

λ + 1
,

from which the impulse response of the system can be written as

y1(t) =
71
6

t−0.6E0.4,0.4

(−4t0.4
)− 31

2
t−0.6E0.4,0.4

(−3t0.4
)

+
9
2
t−0.6E0.4,0.4

(−2t0.4
)

+
1
6
t−0.6E0.4,0.4

(−t0.4
)
.

Also, with (13.23) and (13.24), the step responses of the system can be
written as

y2(t) =
71
6

t0.4E0.4,1.4

(−4t0.4
)− 31

2
t0.4E0.4,1.4

(−3t0.4
)

+
9
2
t0.4E0.4,1.4

(−2t0.4
)

+
1
6
t0.4E0.4,1.4

(−t0.4
)
,

or alternatively

y3(t) =
5
24

−71
24

E0.4

(−4t0.4
)
+

31
6

E0.4

(−3t0.4
)−9

4
E0.4

(−2t0.4
)−1

6
E0.4

(−t0.4
)
.

The impulse response of the system can be obtained as shown in Fig-
ure 13.7 (a), with the following MATLAB statements:

>> t=0:0.02:2;

y1=t.^(-0.6).*(71/6*ml_func([0.4,0.4],-4*t.^(0.4))...

-31/2*ml_func([0.4,0.4],-3*t.^(0.4))...

+9/2*ml_func([0.4,0.4],-2*t.^(0.4))...
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+1/6*ml_func([0.4,0.4],-t.^(0.4)));

plot(t,y1)

The numerical solutions of step responses can alternatively be evaluated
using one of the above two formulas, with the following MATLAB statements
and the step response is shown in Figure 13.7 (b). It should be noted that
the truncation method does not converge for this example, and Podlubny’s
code is called automatically, which makes the computation extremely slow:

>> y3=5/24-71/24*ml_func(0.4,-4*t.^(0.4))...

+31/6*ml_func(0.4,-3*t.^(0.4))...

-9/4*ml_func(0.4,-2*t.^(0.4))...

-1/6*ml_func(0.4,-t.^(0.4));

y2=(71/6*ml_func([0.4,1.4],-4*t.^(0.4))-...

31/2*ml_func([0.4,1.4],-3*t.^(0.4))+...

9/2*ml_func([0.4,1.4],-2*t.^(0.4))+...

1/6*ml_func([0.4,1.4],-t.^(0.4))).*t.^(0.4);

plot(t,y2,t,y3)

By comparing the results obtained numerically in the previous example,
it can be seen that the step responses with the two analytical formulas are
almost the same as that using numerical methods, which validates the results�

If there are repeated poles of sα with multiplicity of k, for instance, the
related partial fraction expansion can be written as

rj

sα + pi
+

rj+1

(sα + pi)2
+ · · · + rj+m−1

(sα + pi)m
=

m∑
k=1

rj+k−1

(sα + pi)k
, (13.34)

then using the inverse Laplace transform properties, the step response and
impulse response can be obtained as

L −1

[
m∑

k=1

rj+k−1

(sα + pi)k

]
=

m∑
k=1

rj+k−1t
αk−1E k

α,αk (−pit
α) , (13.35)

L −1

[
m∑

k=1

rj+k−1

s(sα + pi)k

]
=

m∑
k=1

rj+k−1t
αkE k

α,αk+1 (−pit
α) . (13.36)

Example 8 Consider the fractional-order differential equation given by

D1.2y(t) + 5D0.9y(t) + 9D0.6y(t) + 7D0.3y(t) + 2y(t) = u(t),

where u(t) is a step input. Assume that the initial conditions of y(t) and
its derivatives are zero. Again, by selecting λ = s0.3, the original transfer
function can be rewritten as
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Figure 13.7 Impulse and step responses: (a) impulse response and (b) step response

G(λ) =
1

λ4 + 5λ3 + 9λ2 + 7λ + 2
.

The following MATLAB statements can be used to find the partial fraction
expansion of the related transfer function:

>> num=1; den=[1 5 9 7 2]; [r,p]=residue(num,den)

from which it is immediately seen that the transfer function of variable λ can
be rewritten as

G(λ) =
1

λ + 2
+

1
λ + 1

− 1
(λ + 1)2

+
1

(λ + 1)3
.

With the use of the above formula, the analytical solutions to the impulse
response of the system can be written as

y1(t) = −t−0.7E0.3,0.3

(−2t0.3
)

+ t−0.7E0.3,0.3

(−t0.3
)

− t0.4E 2
0.3,0.6

(−t0.3
)

+ t0.1E 3
0.3,0.9

(−t0.3
)
,
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and the analytical solution to the step response can be written as
y2(t) = −t0.3E0.3,1.3

(−2t0.3
)

+ t0.3E0.3,1.3

(−t0.3
)

− t0.6E 2
0.3,1.6

(−t0.3
)

+ t0.9E 3
0.3,1.9

(−t0.3
)
.

It can be seen that, with the use of partial fraction expansion technique,
the analytical solutions can be found:

>> t=0:0.05:2; t1=0:0.001:2;

y2=-t.^(0.3).*ml_func([0.3,1.3],-2*t.^(0.3))+...

t.^(0.3).*ml_func([0.3,1.3,1],-t.^(0.3))-...

t.^(0.6).*ml_func([0.3,1.6,2],-t.^(0.3))+...

t.^(0.9).*ml_func([0.3,1.9,3],-t.^(0.3));

y0=fode_sol(den,[1.2:-0.3:0],1,0,ones(size(t1)),t1);

plot(t,y2,t1,y0)

Since the numerical solution to step responses of the system can also be
obtained, as shown in Figure 13.8, the responses can be compared with the
analytical solutions and it can be seen that both results agree well. �
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Figure 13.8 Step responses comparison

13.1.4.3 Analytical Solutions with Mittag–Leffler Functions for a
Class of Linear Fractional-order Differential Equations

The Mittag–Leffler function plays an important part in the analytic solutions
of linear fractional-order systems.

Consider an (n+1)-term fractional-order differential equation given by

anDβn

t y(t) + an−1D
βn−1
t y(t) + · · · + a0D

β0
t y(t) = u(t), (13.37)
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whose analytical solution to step input function can be obtained as [3]

y(t) =
1
an

∞∑
m=0

(−1)m

m!

∑
k0+k1+···+kn−2=m

k0�0, ··· , kn−2�0

(m; k0, k1, · · · , kn−2)

n−2∏
i=0

(
ai

an

)ki

t
(βn−βn−1)m+βn+

n−2∑
j=0

(βn−1−βj)kj−1

(13.38)

E
(m)

βn−βn−1, βn+
n−2∑
j=0

(βn−1−βj)kj

(
−an−1

an
tβn−βn−1

)
,

where (m; k0, k1, · · · , kn−2) is a multinomial coefficient defined as

(m; k0, k1, · · · , kn−2) =
m!

k0!k1! · · · kn−2!
. (13.39)

Unfortunately, for general fractional-order differential equations, the above
formulas are very difficult, if not impossible, to solve. One usually considers
only special cases, i.e., systems with three terms only in the denominator.
The transfer function thus studied is given below:

G(s) =
1

a2sβ2 + a1sβ1 + a0
, (13.40)

where â0 = a0/a2, â1 = a1/a2. The step response to such a system can be
written as

y(t) =
1
a2

∞∑
k=0

(−1)kâk
0t−â1+(k+1)β2

k!
E

(k)
β2−β1,β2+β1k+1

(−â1t
β2−β1

)
, (13.41)

where â0 = a0/a2, â1 = a1/a2. A MATLAB function ml step is written to
implement the step response of the system. The syntax y=ml step(a,b,t,ε)

can be used to find the numerical solution of the three-term system, where
a = [a0, a1, a2], and b = [β1, β2]. The argument ε is the error tolerance:

function y=ml_step(a,b,t,eps0)

a0=a(1); a1=a(2); a2=a(3); b1=b(1); b2=b(2);

y=0; k=0; ya=1; a0=a0/a2; a1=a1/a2;

if nargin==3, eps0=eps; end

while max(abs(ya))>=eps0

ya=(-1)^k/gamma(k+1)*a0^k*t.^((k+1)*b2).*...

ml_fun(b2-b1,b2+b1*k+1,-a1*t.^(b2-b1),k,eps0);

y=y+ya; k=k+1;

end

y=y/a2;
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Example 9 For the FOTF

G(s) =
1

s0.8 + 0.75s0.4 + 0.9
it can be seen that the parameters can be expressed as a0 = 0.9, a1 =
0.75, a2 = 1, β1 = 0.4, β2 = 0.8. The step response can be obtained as shown
in Figure 13.9, and the curve agrees well with that obtained by closed-form
solution algorithm:

>> t=0:0.001:5; u=ones(size(t));

y=ml_step([0.9,0.75,1],[0.4,0.8],t);

y1=fode_sol([1,0.75,0.9],[0.8,0.4,0],1,0,u,t);

plot(t,y,t,y1)

whose analytical solution of step response is

y(t) =
∞∑

k=0

(−0.9)k

k!
t−0.75+0.8(k+1)E

(k)
0.4,1.8+0.4k

(−0.75t0.4
)
.
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Figure 13.9 Step response of the three-term fractional-order system

13.2 Fractional-order Transfer Functions

It is well known that the Control System Toolbox of MATLAB provides a
very simple and straightforward way for the modeling, analysis, and design
of linear transfer function models.

With the use of the property of Laplace transform for signal y(t) at rest

L [dαy(t)/dtα] = sαL [y(t)], (13.42)
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the FOTF can be defined as

G(s) =
b1s

γ1 + b2s
γ2 + · · · + bmsγm

a1sβ1 + a2sβ2 + · · · + an−1sβn−1 + ansβn
. (13.43)

In order to deal better with control systems, the above FOTF is extended
to include a pure time delay as

G(s) =
b1s

γ1 + b2s
γ2 + · · · + bmsγm

a1sβ1 + a2sβ2 + · · · + an−1sβn−1 + ansβn
e−τs. (13.44)

It can be seen that, like integer-order transfer functions, one can uniquely
describe the FOTF, with the four vectors, i.e., coefficient vectors of numerator
and denominator, and the vectors of orders, and a delay constant τ . In this
section, a MATLAB object for FOTFs is designed and, based on the object,
different modeling and analysis routines are defined.

13.2.1 Design of an FOTF Object

To implement an object in MATLAB, for instance, the FOTF object, fotf,
one should create a folder @fotf, and in the folder, at least two functions
should be written. One is fotf.m file which defines the object, and the other,
display.m, which displays the object.

• FOTF object creation file: The file fotf.m listed below can be used to
define FOTFs:

function G=fotf(a,na,b,nb,T)

if nargin==0,

G.a=[]; G.na=[]; G.b=[]; G.nb=[]; G.ioDelay=0;

G=class(G,’fotf’);

elseif isa(a,’fotf’), G=a;

elseif nargin==1 & isa(a,’double’), G=fotf(1,0,a,0,0);

elseif nargin==1 & a==’s’, G=fotf(1,0,1,1,0);

else, ii=find(abs(a)<eps); a(ii)=[]; na(ii)=[];

ii=find(abs(b)<eps); b(ii)=[]; nb(ii)=[];

if nargin==5, G.ioDelay=T; else, G.ioDelay=0; end

G.a=a; G.na=na; G.b=b; G.nb=nb; G=class(G,’fotf’);

end

One may define an FOTF object with a command in the syntax G=fotf(a,
na,b,nb,τ), where a = [a1, · · · , an], b = [b1, · · · , bm], na = [β1, · · · , βn],
and nb = [γ1, · · · , γm] are respectively the coefficients and orders of the
numerator and denominator, and τ is the delay constant. If there is no
delay in the system, the argument can be omitted. Also a fractional-order
operator s can alternatively be defined as s=fotf(’s’).
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• Object display file: Another file which is essential in the folder is
the display file, display.m, listed below. The function can be called
automatically once an FOTF object is defined:

function display(G)

strN=polydisp(G.b,G.nb); strD=polydisp(G.a,G.na);

nn=length(strN); nd=length(strD); nm=max([nn,nd]);

disp([char(’ ’*ones(1,floor((nm-nn)/2))) strN]), ss=[];

T=G.ioDelay; if T>0, ss=[’ exp(-’ num2str(T) ’s)’]; end

disp([char(’-’*ones(1,nm)), ss]);

disp([char(’ ’*ones(1,floor((nm-nd)/2))) strD])

function strP=polydisp(p,np)

P=’’; [np,ii]=sort(np,’descend’); p=p(ii);

for i=1:length(p),

P=[P,’+’,num2str(p(i)),’s^{’,num2str(np(i)),’}’];

end

P=P(2:end); P=strrep(P,’s^{0}’,’’);

P=strrep(P,’+-’,’-’); P=strrep(P,’^{1}’,’’);

P=strrep(P,’+1s’,’+s’);

strP=strrep(P,’-1s’,’-s’); nP=length(strP);

if nP>=2 & strP(1:2)==’1s’, strP=strP(2:end); end

Example 10 An FOTF

G(s) =
0.8s1.2 + 2

1.1s1.8 + 1.9s0.5 + 0.4
e−0.5s

can be entered into MATLAB environment with the following command:

>> G=fotf([1.1,1.9,0.4],[1.8,0.5,0],[0.8,2],[1.2,0],0.5);

and the object can be displayed as follows:

0.8s^{1.2}+2

------------------------- exp(-0.5s)

1.1s^{1.8}+1.9s^{0.5}+0.4

In later examples, mathematical ways of display rather than direct MATLAB
display will be given in the chapter. �

13.2.2 Modeling Using FOTFs

Based on the newly defined FOTF class, the functions plus(), mtimes() and
feedback() can be written to implement interconnections of FOTF objects.
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In this way, complicated systems under different connections can be obtained
easily with simple commands:

• Multiplication function mtimes() for blocks in series connections. If
two FOTF object G1 and G2 are multiplied together, i.e., performing series
connections to the two blocks, one can simply multiply the numerators of
the blocks together to form the numerator of overall system, and multiply
the denominator together, to form the denominator of the overall system.
In mathematical terms,

G(s) = G1(s)G2(s) =
N1(s)N2(s)
D1(s)D2(s)

, (13.45)

where Ni(s) and Di(s) are the numerator and denominator polynomials
respectively. The MATLAB implementation of the above manipulation is
given below:

function G=mtimes(G1,G2)

G1=fotf(G1); G2=fotf(G2); na=[]; nb=[];

a=kron(G1.a,G2.a); b=kron(G1.b,G2.b);

for i=1:length(G1.na), na=[na,G1.na(i)+G2.na]; end

for i=1:length(G1.nb), nb=[nb,G1.nb(i)+G2.nb]; end

G=simple(fotf(a,na,b,nb,G1.ioDelay+G2.ioDelay));

If the above-listed file is included in the @fotf folder, one can then use
∗ operator in MATLAB for FOTF objects. This kind of programming
technique is the so-called overload function design in object-oriented
programming. A lower level function simple() is also programmed and
will be explained later.

• Plus function plus() for blocks in parallel connections. Similarly, the +
operator can be redefined for FOTF objects. The overall system can be
expressed as

G(s) = G1(s) + G2(s) =
N1(s)D2(s) + N2(s)D1(s)

D1(s)D2(s)
, (13.46)

where the listing of the function is

function G=plus(G1,G2)

G1=fotf(G1); G2=fotf(G2); na=[]; nb=[];

if G1.ioDelay==G2.ioDelay

a=kron(G1.a,G2.a); b=[kron(G1.a,G2.b),kron(G1.b,G2.a)];

for i=1:length(G1.a),

na=[na G1.na(i)+G2.na]; nb=[nb, G1.na(i)+G2.nb];

end

for i=1:length(G1.b), nb=[nb G1.nb(i)+G2.na]; end
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G=simple(fotf(a,na,b,nb,G1.ioDelay));

else, error(’cannot handle different delays’); end

It should be noted that, if the two blocks have different time delay
constants, the overall model cannot be expressed with FOTF block. In
this case, an error message is given by the function.

• Feedback function feedback() for blocks in negative feedback connec-
tions. The overall system is then described as

G(s) =
G1(s)

1 ± G1(s)G2(s)
=

N1(s)D2(s)
D1(s)D2(s) ± N1(s)N2(s)

, (13.47)

and the system can be implemented with

function G=feedback(F,H)

F=fotf(F); H=fotf(H); na=[]; nb=[];

if F.ioDelay==H.ioDelay

b=kron(F.b,H.a); a=[kron(F.b,H.b), kron(F.a,H.a)];

for i=1:length(F.b),

nb=[nb F.nb(i)+H.nb]; na=[na,F.nb(i)+H.nb];

end

for i=1:length(F.a), na=[na F.na(i)+H.na]; end

G=simple(fotf(a,na,b,nb,F.ioDelay));

else, error(’cannot handle different delays’); end

For positive feedback systems, the feedback −H(s) should be used instead.
Again, if the two blocks have different delay constants, the feedback system
cannot be expressed by FOTF object, and an error message will be given.

• Division of FOTFs. The division of FOTFs, G(s) = G1(s)/G2(s), can

be evaluated by taking multiplications as G(s) = G1(s)G−1
2 (s). Thus an

overload function can be written as

function G=mrdivide(G1,G2)

G1=fotf(G1); G2=fotf(G2); G=G1*inv(G2);

G.ioDelay=G1.ioDelay-G2.ioDelay;

if G.ioDelay<0, warning(’block with positive delay’); end

• Simplification function simple(). Polynomial collection simplifications
as well as other simplification method, including removing the minus terms
of s, can be obtained. The function can be written as

function G=simple(G1)

[a,n]=polyuniq(G1.a,G1.na); G1.a=a; G1.na=n; na=G1.na;

[a,n]=polyuniq(G1.b,G1.nb); G1.b=a; G1.nb=n; nb=G1.nb;

nn=min(na(end),nb(end)); nb=nb-nn; na=na-nn;
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G=fotf(G1.a,na,G1.b,nb,G1.ioDelay);

% local function polyuniq for collecting polynomial terms
function [a,an]=polyuniq(a,an)

[an,ii]=sort(an,’descend’); a=a(ii); ax=diff(an); key=1;

for i=1:length(ax)

if ax(i)==0,

a(key)=a(key)+a(key+1); a(key+1)=[]; an(key+1)=[];

else, key=key+1; end

end

• Power of FOTF. This file only works for integer power of FOTF or taking
the power of the Laplace operator. This facility is also useful in specifying
fractional-order PID controllers:

function G1=mpower(G,n)

if n==fix(n),

if n>=0, G1=1; for i=1:n, G1=G1*G; end

else, G1=inv(G^(-n)); end

G.ioDelay=n*G.ioDelay;

elseif length(G.a)*length(G.b)==1 & G.na==0 & G.nb==1,

G1=fotf(1,0,1,n);

else, error(’mpower: power must be an integer.’); end

• Other supporting functions. Other functions should also be designed,
such as the minus(), uminus(), inv(), and the files should be placed in
the @fotf directory to overload the existing ones. The listings of the three
functions are given below:

function G=uminus(G1), G=G1; G.b=-G.b;

function G=minus(G1,G2), G=G1+(-G2);

function G=inv(G1)

G=fotf(G1.b,G1.nb,G1.a,G1.na,-G.ioDelay);

Example 11 Fractional-order PID controller Gc(s) = 5+2s−0.2 +3s0.6 can
easily be entered into MATLAB with the following statements:

>> s=fotf(’s’); Gc=5+2*s^(-0.2)+3*s^0.6

which returns the Gc(s) =
3s0.8 + 5s0.2 + 2

s0.2
. �

Example 12 The transfer function G(s) =
(s0.3 + 3)2

(s0.2 + 2)(s0.4 + 4)(s0.4 + 3)
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can easily be entered into the MATLAB environment with the following
statements:

>> s=tf(’s’); G=(s^0.3+3)^2/(s^0.2+2)/(s^0.4+4)/(s^0.4+3)

which gives G(s) =
s0.6 + 6s0.3 + 9

s + 2s0.8 + 7s0.6 + 14s0.4 + 12s0.2 + 24
. �

Example 13 Suppose in the unity negative feedback system, the models are

given by

G(s) =
0.8s1.2 + 2

1.1s1.8 + 0.8s1.3 + 1.9s0.5 + 0.4
, Gc(s) =

1.2s0.72 + 1.5s0.33

3s0.8
.

The plant and controller can easily be entered and the closed-loop system
can be directly obtained with the following commands:

>> G=fotf([1.1,0.8 1.9 0.4],[1.8 1.3 0.5 0],[0.8 2],[1.2 0]);

Gc=fotf([3],[0.8],[1.2 1.5],[0.72 0.33]);

GG=feedback(G*Gc,1)

and the result is obtained as

G(s) =
0.96s1.59 + 1.2s1.2 + 2.4s0.39 + 3

3.3s2.27+2.4s1.77+0.96s1.59+1.2s1.2+5.7s0.97+1.2s0.47+2.4s0.39+3
.

It can be seen from the above illustrations that, although both the plant
and controller models are relatively simple, extremely complicated closed-
loop models may be obtained. This makes the analysis and design of a
fractional-order system a difficult task. �

13.2.3 Stability Assessment of FOTFs

The stability assessment of fractional-order systems is different from those
in integer-order systems. The only known stability assessment method is for
commensurate-order systems. For commensurate-order systems with no time
delay, where λ = sα, if the absolute values of the angles of all the poles
of λ are larger than απ/2, the system is stable [14]. The stable region of
commensurate-order systems is shown in Figure 13.10.

A MATLAB function isstable() is written for assessing the stability
of FOTFs. For a given FOTF, the greatest common divisor for the orders
are found and denoted by α. To prevent extremely high-order system being
obtained, the minimum value of α is assigned to 0.01, and approximate
commensurate-order model can be obtained automatically. Then for λ = sα,
the roots of polynomial of λ can be evaluated and validated. The stability
assessments based on the positions of roots of λ are made. The syntax of the



238 13 Numerical Issues and MATLAB Implementations

α
π

2

−α
π

2

�

�

st
ab

le

stable

�[s]

�[s]

Figure 13.10 Stable region illustration for commensurate-order systems

function is [K,α,ε]=isstable(G,a0), where G is an FOTF object, a0 is
the minimum allowed greatest common divisor, with a default of 0.01. If the
return variable K is one, the system G is stable, otherwise it is not. ε returns
the error norm when the roots are substituted back to the polynomials:

function [K,alpha,err,apol]=isstable(G,a0)

if G.ioDelay~=0, error(’delay system cannot be assessed’); end

if nargin==1, a0=0.01; end

a=G.na; a1=fix(a/a0); n=gcd(a1(1),a1(2));

for i=3:length(a1), n=gcd(n,a1(i)); end

alpha=n*a0; a=fix(a1/n); b=G.a; c(a+1)=b; c=c(end:-1:1);

p=roots(c); p=p(abs(p)>eps); err=norm(polyval(c,p));

plot(real(p),imag(p),’x’,0,0,’o’)

apol=min(abs(angle(p))); K=apol>alpha*pi/2;

xm=xlim; xm(1)=0; line(xm,alpha*pi/2*xm)

Example 14 For the FOTF model

G(s) =
−2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
,

the system model can be entered into the MATLAB environment, and the
stability of the system can be assessed with the following statements:

>> b=[-2,-4]; nb=[0.63,0];

a=[2,3.8,2.6,2.5,1.5]; na=[3.501,2.42,1.798,1.31,0];

G=fotf(a,na,b,nb); [key,alpha,err,apol]=isstable(G)
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With the function call, the commensurate-order description, after assum-
ing automatically by the program for α = 0.001, can be rewritten as

G(λ) =
−2λ630 − 4

2λ3501 + 3.8λ2420 + 2.6λ1798 + 2.5λ1310 + 1.5
.

The poles of λ equation can be obtained as shown in Figure 13.11 (a), and
the zoomed plot in the interested area is given in Figure 13.11 (b). It can be
seen that all the poles of the system are located in the stable area, and the
fractional-order system is stable. �

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

�(s)

�(
s
)

0 0.5 1 1.5

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

�(s)

�(
s
)

(a) (b)

Figure 13.11 Pole locations and stability assessment: (a) pole locations and (b) zoomed
plot

13.2.4 Numerical Time Domain Analysis

The solutions of fractional-order differential equations have been presented
in the previous section. In particular, a closed-form algorithm has been given
for linear fractional-order differential equations, with a MATLAB function
fode sol(). Based on the function, step responses of an FOTF object, and
also time response of FOTF subject to arbitrary input signal, can be obtained
with the following overload functions:

function y=step(G,t)

y=fode_sol(G.a,G.na,G.b,G.nb,ones(size(t)),t);

ii=find(t>G.ioDelay); lz=zeros(1,ii(1)-1);

y=[lz, y(1:end-length(lz))];

and

function y=lsim(G,u,t)

y=fode_sol(G.a,G.na,G.b,G.nb,u,t);
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ii=find(t>G.ioDelay); lz=zeros(1,ii(1)-1);

y=[lz, y(1:end-length(lz))];

The syntaxes of the functions are y=step(G,t) and y=lsim(G,u,t)

respectively, where G is an FOTF object, t is an evenly distributed time
vector, and u is a vector of input samples. The syntaxes are quite similar
those in the Control System Toolbox.

Example 15 Consider the numerical solution problem of the fractional-
order differential equation

D3.5
t y(t) + 8D3.1

t y(t) + 26D2.3
t y(t) + 73D1.2

t y(t) + 90D0.5
t y(t) = 90 sin t2.

From the given fractional-order differential equation, one can easily extract
the FOTF object

G(s) =
1

s3.5 + 8s3.1 + 26s2.3 + 73s1.2 + 90s0.5
,

with the input signal u(t) = 90 sin t2. The following MATLAB commands
can then be used to find the time response of the system, and the solution
and input signals are shown in Figure 13.12:

>> a=[1,8,26,73,90]; n=[3.5,3.1,2.3,1.2,0.5];

G=fotf(a,n,1,0); t=0:0.002:10; u=90*sin(t.^2);

y=lsim(G,u,t);

subplot(211), plot(t,y); subplot(212), plot(t,u)
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Figure 13.12 Input signal and solution of the equation

One can change the step-size of the solution process to different values and
check whether consistent results can be obtained. If so, one may say that the
solution is accurate. However, if they are not consistent, one has to reduce
the step-sizes and perform the validation process again. �
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13.2.5 Frequency Domain Analysis

For the FOTF G(s) defined in (13.44), if one substitutes operator s by jω,
complex gain G(jω) can be found. To compare Bode plots, an overload
function bode() for FOTF objects is written and placed in the @fotf

directory such that

function H=bode(G,w)

if nargin==1, w=logspace(-4,4); end

j=sqrt(-1); H1=freqresp(j*w,G); H1=frd(H1,w);

if nargout==0, bode(H1); else, H=H1; end

with a low-level function given by

function H1=freqresp(w,G)

a=G.a; na=G.na; b=G.b; nb=G.nb; j=sqrt(-1);

for i=1:length(w)

P=b*(w(i).^nb.); Q=a*(w(i).^na.); H1(i)=P/Q;

end

if G.ioDelay>0,

A=abs(H1); B=angle(H1)-w1*G.ioDelay; H1=A.*exp(j*B);

end

Similarly, the Nyquist plot and Nichols chart of FOTFs can also be
obtained easily with the following overload functions:

function nyquist(G,w)

if nargin==1, w=logspace(-4,4); end

H=bode(G,w); nyquist(H);

and

function nichols(G,w)

if nargin==1, w=logspace(-4,4); end

H=bode(G,w); nichols(H);

The facilities of the Control System Toolbox, such as the M and N circles,
can be drawn immediately with the grid command.

Example 16 Consider again the FOTF model given in Example 14. The
Bode plot of the system can be obtained as shown in Figure 13.13, with the
following statements:

>> b=[-2,-4]; nb=[0.63,0]; w=logspace(-2,2);

a=[2,3.8,2.6,2.5,1.5]; na=[3.501,2.42,1.798,1.31,0];

G=fotf(a,na,b,nb); bode(G,w)
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Figure 13.13 Bode plot of FOTF

It can be seen that the exact Bode plot of a fractional-order system can
easily be drawn. One can also draw other frequency domain responses and
easily use mouse facilities as in the Control System Toolbox functions. �

13.2.5.1 Norm Evaluations of FOTFs

Norm measures of systems are very important in robust controller design
problems. Like in the cases of integer-order systems, the H2 and H∞ norms
of an FOTF G(s) are defined, respectively, as

||G(s)||2 =
1

2πj

∫ j∞

−j∞
G(s)G(−s)ds (13.48)

and
||G(s)||∞ = sup

ω
|G(jω)|. (13.49)

It can be seen that the evaluation of ||G(s)||2 involves a numerical integration
problem, while the evaluation of ||G(s)||∞ involves an optimization problem.
An overload function norm() can be written, with the syntaxes norm(G)

and norm(G,inf), for the calculation of the H2 and H∞ norms of the FOTF
G(s). Also for H2 norm evaluation, an error tolerance ε can be introduced,
with norm(G,ε):

function n=norm(G,eps0)

j=sqrt(-1); dx=1; f0=0;

if nargin==1, eps0=eps; end

if nargin==2 & ~isfinite(eps0) % H∞ norm
f=@(x)[-abs(freqresp(j*x,G))];

x=-fminsearch(f,0); n=abs(freqresp(j*x,G));
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else % H2 norm
f=@(x)freqresp(x,G).*freqresp(-x,G);

while (1)

n=quadgk(f,-dx*j,dx*j)/(2*pi*j);

if abs(n-f0)<eps0, break; else, f0=n; dx=dx*1.2;

end, end, end

Example 17 Consider again the FOTF object defined in Example 14. The
H2 and H∞ norms of the system can be obtained with the following MATLAB
statements:

>> b=[-2,-4]; nb=[0.63,0];

a=[2,3.8,2.6,2.5,1.5]; na=[3.501,2.42,1.798,1.31,0];

G=fotf(a,na,b,nb); n1=norm(G), n2=norm(G,inf)

from which follows that n1 = 7.3808, and n2 = 8.6115, respectively. �

13.3 Simulation Studies of Fractional-order Nonlinear
Systems with Block Diagrams

A closed-form solution has been presented previously and the method can
only be applicable to linear fractional-order systems. Many numerical meth-
ods for solving fractional-order nonlinear systems, however, require that the
input signal to the system should be given first, before solution can be made.
This requirement is problematic since, for a component in a closed-loop
control system, the input signal injected to the component is not known.
Thus the methods cannot be used in simulation of the closed-loop systems.

In integer-order nonlinear system simulation study, it is known that an
integrator is very essential in defining relevant signals in constructing block
diagrams. Similarly, for fractional-order systems, fractional-order integrator
or differentiator may also be very useful in describing block diagrams. The
Oustaloup’s recursive filter presented in Section 12.1.2 can be used to define
essential signals in the block diagrams. In this section, a Simulink block for
fractional-order integrator and differentiator is constructed first, then, based
on the block, a block diagram modeling strategy. Hints on validation processes
for simulation results are also suggested.

Fractional-order differentiators and integrators are essential components
in block diagram based simulation. In this section, a fractional-order differ-
entiator/integrator block is created.
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13.3.1 Design of a Fractional-order Operator Block in
Simulink

It can be seen that the Oustaloup recursive filter and the modified version
presented in Section 12.1.2 are effective ways for evaluating fractional-order
differentiations. Because of the orders of the numerator and denominator
in the ordinary Oustaloup filter, it is likely to cause algebraic loops in
simulation. Thus a low-pass filter should be appended to the filter. The block
in Figure 13.14 (a) can be used for modeling fractional-order differentiators.

1

Out1
T.s+1

1

Transfer Fcn1

num(s)

den(s)

Transfer Fcn

1

In1 fo_diffFractional
Der  s^0.9

(a) (b)

(c)

Figure 13.14 Fractional-order differentiator block design: (a) filter for fractional-order
differentiator, (b) masked block, and (c) parameter dialog box

With the use of masking technique in Simulink [187], the designed block
can be masked as shown in Figure 13.14 (b). The block thus designed is
saved in fo diff.mdl. Double click such a block and a dialog box appears as in
Figure 13.14 (c). The corresponding parameters can be filled into the dialog
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box to complete the fractional-order differentiator block. The following code
can be attached to the masked block:

wb=ww(1); wh=ww(2);

if key==1, G=ousta_fod(gam,n,wb,wh);

else, G=new_fod(gam,n,wb,wh); end

num=G.num{1}; den=G.den{1}; T=1/wh; str=’Fractional\n’;

if isnumeric(gam)

if gam>0, str=[str, ’Der s^’ num2str(gam) ];

else, str=[str, ’Int s^{’ num2str(gam) ’}’]; end

else, str=[str, ’Der s^gam’]; end

Currently, only two filters, Oustaloup filter and modified Oustaloup filter,
can be used in the block. However, the users can add their own filter easily
by slightly modifying the masking parameters in the block.

It is strongly recommended to use stiff equation solvers, such as ode15,
ode23t, in the Simulink model to get fast simulation results.

13.3.2 Simulation Studies by Examples

In this part, three examples are given. In the first example, a linear fractional-
order differential equation is studied again using block diagram method
and consistent results can be obtained. In the second example, a nonlinear
fractional-order system is studied, and in the third example, a nonlinear
fractional-order delay system is simulated. It might be quite difficult, if not
impossible, to study the last two examples with other methods.

Example 18 Consider the linear fractional-order differential equations in
Example 15, which is again expressed as

D3.5
t y(t) + 8D3.1

t y(t) + 26D2.3
t y(t) + 73D1.2

t y(t) + 90D0.5
t y(t) = 90 sin t2.

For linear fractional-order differential equations, the block diagram-based
method is not as straightforward as the method used in Example 15. An
auxiliary variable z(t) = D0.5

t y(t) can be introduced, and the original
differential equation can be rewritten as

z(t) = sin t2 − 1
90
[
D3

t z(t) + 8D2.6
t z(t) + 26D1.8

t z(t) + 73D0.7
t z(t)

]
.

The Simulink block diagram shown in Figure 13.15 can be established
based on the new equation. With stiff ODE solvers, the numerical solution
to the problem can be found and the results are exactly the same as those in
Figure 13.12. �
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Figure 13.15 Simulink block diagram for the linear system

Example 19 Consider the nonlinear fractional-order differential equation
3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
+
∣∣∣2D0.7y(t)

∣∣∣1.5

+
4
3
y(t) = 5 sin 10t.

From the given equation, the explicit form of y(t) can be written as

y(t) =
3
4

[
5 sin 10t − 3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
−
∣∣∣2D0.7y(t)

∣∣∣1.5
]

,

and from the explicit expression of y(t), the block diagram in Simulink can
be established as shown in Figure 13.16 (a). From the simulation model, the
simulation results can be obtained as shown in Figure 13.16 (b). The results
are verified by different control parameters in the filter, such as the orders of
filters, and they give consistent results. �

Example 20 Consider a nonlinear fractional-order delay differential equa-
tion described as

D1.5y(t) + 3D0.8y(t − 0.1)y(t − 0.2) + 2y(t − 0.5) + y(t) = u(t),

where u(t) is a step function.
To construct a block diagram model, one should first rewrite the plant

model as an explicit expression of y(t) such that

y(t) = u(t) − D1.5y(t) − 3D0.8y(t − 0.1)y(t − 0.2) − 2y(t − 0.5),

then the Simulink model for the closed-loop system can be constructed as
shown in Figure 13.17 (a), and the solution to the delay equation is shown
in Figure 13.17 (b). �



13.3 Simulation Studies of Fractional-order Nonlinear Systems 247

y(t)

1

Out1
Sine Wave

Product

3

Gain4
0.75

Gain3

2

Gain2

0.9

Gain1

0.2

Gain

Fractional
Der  s^0.7

Fractional
Der  s^0.2

Fractional
Der  s^0.8

Fractional
Der  s^0.9

abs(u)^1.5

Fcn

3

Constant

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (sec)

A
m

p
li
tu

d
e

(b)

Figure 13.16 Simulink description and simulation results: (a) Simulink model and (b)
simulation results

13.3.3 Validations of Simulation Results

It is known that if the parameters in simulation processes are not properly
chosen, then the results obtained with Simulink may not be accurate.
Sometimes the numerical results may be miseading [182]. Thus the simulation
results obtained with the Simulink model must be validated. There are
many ways to validate simulation results obtained directly with the block
diagram based method. Like the validation process for other Simulink models,
the simulation control parameters such as ODE solvers and relative error
tolerance can be modified to see whether consistent results can be obtained.
If not, one should specify a smaller error tolerance and validate again. Also,
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Figure 13.17 Simulation analysis of fractional-order delay system: (a) Simulink descrip-
tion of a nonlinear delay differential equation and (b) output signal

for the fractional-order differentiator blocks, the interesting frequency range
(ωb, ωh]) and the order N should also be validated.

13.4 Optimum Controller Design for Fractional-order
Systems

Many controller design methods have been discussed earlier in Chapters 4–10.
In this section, an optimal controller design method and tool are presented.
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First we shall pose the key problem of optimality: what kind of controller can
be considered “optimal.” Then MATLAB based solution methods on optimal
controller design are given.

13.4.1 Optimum Criterion Selection

Varieties of optimal criteria for optimal control exist both in control education
and real-world controller design. For instance, for linear-quadratical (LQ)
optimal control systems, the most widely used criterion is the so-called LQ-
criterion, defined as follows:

J =
1
2
xT(tf)Sx(tf) +

1
2

∫ tf

t0

[
xT(t)Q(t)x(t) + uT(t)R(t)u(t)

]
dt, (13.50)

where the matrices S, Q, and R are weighting matrices. Since the criterion
leads to a Riccati differential equation, which is usually difficult to solve,
the infinite-time period optimal control, i.e., setting tf → ∞, referred to
as the regulator problem (LQR), is used. However by introducing regulator
problems, the physical meanings of tracking properties are lost.

There are advantages and disadvantages in using LQ criterion. The LQR
problem has a good mathematical formula, and usually has closed-form solu-
tions to the problem, which makes LQR a widely used approach. However, by
introducing the LQR problem, there is no direct relationship with responses
and tracking errors. Also there is no widely acceptable ways in selecting the
Q, R, S weighting matrices. Thus the optimality of the problem is superficial
and depends heavily upon the selection of the weighting matrices. When the
matrices are poorly chosen, the designed controller is useless, and sometimes
very bad system behaviors may be observed. Thus LQR-type “optimal”
controllers are not suitable for servo control problems.

For servo control problems, the tracking error e(t) is a meaningful specifi-
cation, and tracking error based criteria, for instance, the ISE criterion, the
ITAE criterion, IAE criterion, and finite-time ITAE criterion, should be used
to assess the quality of tracking. These criteria are defined as follows:

JISE =
∫ ∞

0

e2(t)dt, JITAE =
∫ ∞

0

t|e(t)|dt,

JIAE =
∫ ∞

0

|e(t)|dt, JFT−ITAE =
∫ tf

0

t|e(t)|dt.

(13.51)

It should be noted that there is no closed-form solutions to the criteria such
as IAE, ITAE, and finite-time ITAE: calculations of these criteria should be
made upon simulation results. Although the closed-form solution to the ISE
problems exists, there are certain limitations. For instance, if there exists
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nonlinear elements, such as actuator saturation, the closed-form solutions
to the ISE criterion do not exist. Again, numerical computations should be
performed instead to evaluate the ISE criterion.

Example 21 Suppose that the plant model is given by G(s) =
1

(s + 1)5
,

the best PID controller for ISE criterion can be found as Gc(s) = 1.5644 +
0.6751s−1 +4.6666s, while the best for finite-time ITAE criterion is Gc2(s) =
1.1900+0.3292s−1 +1.4879s, with tf = 30. The step responses under the two
controllers are obtained as shown in Figure 13.18.
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Figure 13.18 Comparisons on closed-loop step responses under the two controllers, solid
line for optimal ISE controller, dashed line for FT-ITAE controller, and dotted line for
FT-ITAE controller with saturation

It should also be noted that the above controllers may yield an extremely
large input signal to the plant at the initial time, which may cause damage
to the hardware. In practical control systems, actuator saturation should be
considered. A PID controller for finite-time ITAE criterion under |u(t)| � 3
can be redesigned as Gc3(s) = 1.3718 + 0.2863s−1 + 1.7850s, and the closed-
loop step response is also shown in Figure 13.18. The redesigned system is
a compromise in control quality; however, it is much better than the above
designed ISE optimal controller.

It is noted that the ISE criterion has certain disadvantages. Since the errors
at any time are treated equally, oscillations in the responses are allowed.
However with the use of ITAE criterion, weighting function of t is imposed
on the error signal which penalizes the error for large values of time and forces
the output signal approaches to the steady-state value as fast as possible. The
illustration of the ITAE curve for the example is shown in Figure 13.19.
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Figure 13.19 ITAE curve illustration

The controller parameters and the ITAE values for different selections of
finite-time tf are given in Table 13.1. Since the integrand is non-negative, the
ITAE curve is a monotonically increasing function. Assume that when the
ITAE curve goes flat, the time is denoted as ta. For instance, in this example,
ta = 25. Then for the tf selection of tf ∈ (ta, 2ta), the optimal controller
parameters and ITAE values are quite close. One may say that the selected
value of tf is proper. �

Table 13.1 Controller comparisons for different selections of tf

tf Kp Ki Kd ITAE tf Kp Ki Kd ITAE

15 1.3602 0.27626 1.9773 9.3207 20 1.4235 0.27228 2.0731 9.7011

25 1.3524 0.26555 1.8846 9.945 30 1.3506 0.26454 1.8669 9.9814

35 1.3488 0.26395 1.859 10.008 40 1.3457 0.26363 1.8495 10.016

45 1.346 0.26357 1.8493 10.019 50 1.3452 0.26351 1.8472 10.021

55 1.345 0.26349 1.8467 10.021 60 1.345 0.26349 1.8467 10.021

It is concluded that the finite-time ITAE criterion, with proper choice of
finite-time tf , is the most suitable criterion for servo control problems.

13.4.2 Optimal Controller Design via Optimizations

The mathematical formulation of the unconstrained optimization problem is

min
x

f(x), (13.52)
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where x = [x1, x2, · · · , xn]T is referred to as the decision variable and the
scalar function f(x) is referred to as the objective function. The interpreta-
tion to the formula is finding the vector x such that the objective function
f(x) is minimized. If a maximization problem is expected, the objective
function can be changed to −f(x), such that it can be converted to a
minimization problem. A MATLAB function fminsearch() is provided using
the well established simplex algorithm [183]. The syntax of the function
is [x,fopt,key,c]=fminsearch(fun,x0, OPT) where fun is a MATLAB
function or an anonymous function to describe the objective function. The
variable x0 is the staring point of searching method. The argument OPT

contains the further control options for the optimization process.

Example 22 For an objective function z = f(x, y) = (x2 − 2x)e−x2−y2−xy,
where the minimum point is required, one should first introduce a vector x

for the unknown variables x and y. One may select x1 = x and x2 = y. The

objective function can be rewritten as f(x) = (x2
1 − 2x1)e−x2

1−x2
2−x1x2 . The

objective function can be expressed as an anonymous function such that

>> f=@(x)[(x(1)^2-2*x(1))*exp(-x(1)^2-x(2)^2-x(1)*x(2))];

If one selects an initial search point at [0, 0], the minimum point can be found
with the following statements:

>> x0=[0; 0]; x=fminsearch(f,x0)

then the solution obtained is x = [0.6110,−0.3055]T. �

With the use of the MATLAB Optimization Toolbox, other types of
optimization problems, such as constrained optimization problems, can easily
be solved with existing functions. Global optimal controllers can also be found
with genetic algorithm toolboxes [188,189].

Example 23 Consider a time varying plant model given by

ÿ(t) + e−0.2tẏ(t) + e−5t sin(2t + 6)y(t) = u(t),

where u(t) is the signal generated by the preceding controller. One wishes to
design an optimal PID controller, which is followed by an actuator saturation
with bounds of ±2. This kind of controller may not be easy to design using
traditional methods.

The Simulink model is constructed as shown in Figure 13.20, where the
control structure is represented. Also the ITAE integral is expressed as
an output port. A MATLAB function is written to describe the objective
function as follows, if one selects tf = 10:
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1

Kd.s

0.01s+1

s

Ki(s)

Step ScopeSaturation

1/s

1/s1/s

Kp
exp(−0.2*u)

exp(−5*u)*sin(2*u+6)

Clock

|u|

Figure 13.20 PID control for a time varying plant model

function y=my_obj(x)

assignin(’base’,’Kp’,x(1)); assignin(’base’,’Ki’,x(2));

assignin(’base’,’Kd’,x(3));

[t,x,y1]=sim(’my_sys’,[0,5]); y=y1(end);

The optimal PID controller can be designed automatically with the
following statements:

>> x=fminsearch(@my_obj,rand(3,1));

The best PID obtained is GPID(s) = 121.1324 + 29.4108s, which is in fact
a PD controller. The step response of the closed-loop systems under PD
controller is shown in Figure 13.21. It can be seen that the controller can
easily be designed with optimization methods. �

13.4.3 Optimum PIλDμ Controller Design

According to [52], the PIλDμ controller is described as

Gc(s) = Kp + Kis
−λ + Kdsμ, (13.53)

where λ, μ are not necessarily integers. Since there are two more tuning
knobs, λ and μ, than the integer-order PID controller, the behavior under
PIλDμ controller may have superior properties compared to ordinary PID
controllers.

From the previous examples, it can be seen that to design an optimal
controller, the following steps should be taken:

• Design a Simulink model, where the feedback control structure should be
described. Also the criterion, such as finite-time ITAE criterion, should be
included and given in the block diagram, as an output port.
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Figure 13.21 Step response with PD controller

• Write an objective function in MATLAB, in the format shown in the
previous example.

• Start the optimization process, by calling fminsearch(), or others, to find
the optimal controllers numerically.

Example 24 Consider again the plant model G(s) = 1/(s + 1)5, with
actuator saturation of |u(t)| � 2, studied in Example 21. The Simulink model
with a PIλDμ controller can be established, as shown in Figure 13.22.

1

den(s)

1

Step ScopeSaturation

1/s

1/s

Kd

Ki

Kp

Fractional
Der  s^1

Fractional
Der  s^1

Clock |u|

Figure 13.22 Simulink model with fractional-order PID controller

An M-function for the objective function can be written as

function y=my_obj1(x)

assignin(’base’,’Kp’,x(1)); assignin(’base’,’Ki’,x(2));
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assignin(’base’,’Kd’,x(3)); assignin(’base’,’L’,x(4));

assignin(’base’,’M’,x(5));

[t,x,y1]=sim(’cxfpid’,[0,15]); y=y1(end);

In the model, ITAE integration is also implemented and connected to
output port 1. In the simulation model, it is suggested to append an integer-
order integrator to reduce steady-state error. The following command to find
optimal parameters

>> x=fminsearch(@my_obj1,rand(5,1))

returns a controller Gc(s) = 0.1138+0.5557s−0.7807 +2.1543s0.6057. Also the
obtained x can be used as an initial vector and function fminsearch() can
be run several times to find better parameters. The step response under such
a controller is obtained as shown in Figure 13.23. It can be seen that with
fractional-order PID controller, the output of the system is satisfactory. �
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Figure 13.23 PID control for a time varying plant model

It is concluded from this example that one can easily set up a Simulink
model for optimal controller design, using the procedure shown in the
example, then issue MATLAB commands to tune optimally the parameters of
fractional-order PID controllers or other types of fractional-order controllers.
A MATLAB graphical user interface OCD [183] can be used directly for
controller design problems.
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13.5 Summary

In this chapter, the complete process of modeling, analysis, simulation, and
design of fractional-order control systems is presented, with reproducible
MATLAB code and illustrative examples. This chapter is a self-contained
one, with easy-to-follow presentations, which makes it easier for readers to
begin research on fractional-order systems.

Computational algorithms and MATLAB implementations of Mittag–
Leffler functions, fractional-order differentiations, and linear fractional-order
differential equation solutions are presented first, then analytical solutions to
certain types of equations are explored.

For linear systems, an FOTF class is designed in MATLAB and a series of
overload functions are prepared, which makes the analysis of FOTF systems
as easy as the integer-order transfer functions using Control System Toolbox
of MATLAB.

For nonlinear fractional-order systems, a block diagram based simulation
strategy is presented, with the use of Oustaloup and modified Oustaloup
filters. Illustrative examples of linear systems, nonlinear systems, and delay
systems with fractional-order terms are presented, again with easy-to-follow
procedures. With the use of the strategy, the reader can simulate systems
with more complicated structures.

In the final section, a controller parameter tuning methodology based on
numerical optimization is adopted. The objective function selection problem
is also addressed and it is concluded that finite-time ITAE criterion is suitable
for servo control problems. A fractional-order PID controller optimization
procedure is demonstrated and again the method can be used for the design
of other systems.
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Real Applications



Chapter 14

Systems Identification

14.1 Introduction

It has been experimentally observed or analytically found that both the time
domain and frequency domain behaviors of some linear systems and processes
do not fit the standard laws, i.e., exponential evolution in time domain or
integer-order slopes in their frequency responses. In the time domain, it has
been shown that these complicated dynamics can be described by, (i.e., the
solutions of the constitutive equations are) generalized hyperbolic functions,
F k

α,β(z), defined as

F k
α,β(z) = C

∞∑
n=0

knzαn+β

(αn + β)!
. (14.1)

In particular, the Mittag–Leffler function in two parameters is defined as

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
, (14.2)

from which we can obtain the standard exponential, hyperbolic, or time-
scaling functions as particular cases.

On the other hand, and correspondingly, the non-integer-order slopes in
the frequency responses can be fitted by irrational-order transfer functions,
transfer functions constructed as products of zeros and poles of fractional
power, or ratios of polynomials in sα, 0 < α < 1, in agreement with the
expressions of the Laplace transforms of the mentioned functions.

All these systems and processes have in common the presence of phe-
nomena (anomalous relaxation and diffusion, mainly) that can be seen as
incorporating memory into the systems, and, in a formal way, memory can
be incorporated into the constitutive equations through a causal convolution.
All these ways lead us to consider fractional calculus, as an appropriate tool

259
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to describe phenomenologically the richness of dynamic features exhibited by
the system, since we know that:

• The solutions of integro-differential equations of fractional-order (FDEs)
are the generalized hyperbolic or Mittag–Leffler functions.

• To apply the Laplace transform to these FDEs yields transfer functions
that are ratios of polynomials in sα, 0 < α < 1, where α is the order of
the fractional-order derivative or integral.

Considering these points, we can reformulate the constitutive equations of
the systems using fractional calculus in order to agree with the time domain
or frequency domain behaviors.

The aim of this chapter is to show how we can generalize some methods and
techniques of the control theory in order to manage this class of systems. For
this purpose, in Section 14.2, we describe an algorithm for frequency domain
identification of commensurate-order systems; in Section 14.3 we apply the
identification algorithm to model an electrochemical process, and in Section
14.4 to a flexible structure.

14.2 Frequency Domain Identification of
Commensurate-order Systems

Consider a commensurate-order system described by the transfer function

H(s, θ) =

n∑
k=0

akskα

m∑
k=0

bkskα

, (14.3)

with m < n (the usual assumption for physical causal systems), and θ the
set of parameters to be identified, where

θ = [a0, a1, · · · , an, b0, b1, · · · , bm]. (14.4)

As in [57,190], we will use the cost function,

J =

∫ ∞

0

[y(t)−ỹ(t)]2 dt∫ ∞

0

[h(t)]2 dt

=

∫ ∞

−∞

[
H(ω)−H̃(ω)

] [
H(ω)−H̃(ω)

]dω

ω2∫ ∞

−∞
H(ω)H(ω)dω

, (14.5)

where [·] means the complex conjugate, h(t) is the impulse response of the sys-
tem with transfer function H(s), y(t) is the step response, H(ω) the measured
frequency response, H̃(ω) the frequency response of the fitted model, and the
last equality results from the application of Parseval’s Theorem. Also, the
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iterative algorithm proposed by Shanathanan and Koerner [191, 192] will be
used for minimizing (14.5). The motivations for the choice of the cost function
and the detailed description of the iterative algorithm are in [57, 190], and
here we only try to note that these transfer function models have important
advantages if compared with the case of α = 1. These are:

• We can achieve better fittings of the frequency response data with more
simple models, (i.e., with lower n and m) for systems whose frequency
responses exhibit non-integer-order slopes.

• We can achieve the same degree of fitting when the frequency response
exhibit integer-order slopes.

• The algorithm is numerically more stable than in the case of α = 1.

The reasons for the above are:

• In the absence of noise, because these transfer function models can be
exact models for that kind of systems, we can find the value of α that fits
the data exactly.

• We can choose α = 1 in the identification algorithm or, on the other hand,
choose α = 1/q, q being an integer, only the powers multiples of αq having
significant coefficients after identification.

• Because α < 1, the condition number of the correlation matrix will be,
for the same range of frequency, always smaller than in the usual case of
α = 1, diminishing the risk of singularity of the matrix.

14.3 Electrochemical Process

One of the most useful methods to study electrochemical processes is the
impedance measurement method [193]. This method, shown in Figure 14.1,
consists of applying small sinusoidal perturbations (current or voltage) to
excite the electrochemical cell system, which brings advantages in terms of
the solution of the relevant mathematical equations, since it is possible to
use limiting forms of this equations which are normally linear. Measuring the
impedance or the admittance (magnitude and phase) allows the analysis of
the electrode process in relation to contributions from diffusion, kinetics, dou-
ble layer, etc. Usually, for comparison with the electrochemical cell equivalent
electrical circuitsare used whose elements represent the relevant phenomena
in the process. Among these equivalent circuits, the most frequently used
is the so-called Randle’s equivalent circuit, shown in Figure 14.2, where Cd

is a pure capacitor representing the double layer, R is the uncompensated
resistance which is, usually, the solution resistance between the working
and reference electrodes, and Zf is the impedance of the Faradic process.
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This last one element, the Faradic impedance, can be subdivided into a
purely resistive element representing the resistance to charge transfer and
an element representing the difficulty of mass transport of the electroactive
species, called the Warburg impedance. We can extend the validity of the
Randle’s equivalent circuit if we take into account the influence in the double
layer of the rugosity and porosity of the electrodes, representing it by the so-
called constant phase element (CPE) [194–200], thus obtaining the equivalent
circuit shown in Figure 14.3.

signal
generator

electrochemical
cell

network
analyzer

�

�

��

frequency response

Figure 14.1 Impedance measurement

R

�Ic + If

�

�

Ic

If

Cd

Zf

Figure 14.2 Randle’s equivalent circuit

R

Ic + If �

CPE

�

�

Ic

If Zw Rct

Figure 14.3 Modified Randle’s equivalent circuit



14.3 Electrochemical Process 263

In the admittance form, these elements can be described by

GΩ =
1

RΩ
, Gct =

1
Rct

, Yw = a (jω)1/2
, YCPE = b (jωC)α, (14.6)

with α = 0.5 for porous electrodes and α = 1 for smooth electrodes. As
in [201] for viscoelastic models and using the same symbology, we will use
the generalized Randle’s equivalent circuit shown in Figure 14.4, where FEi

denotes a fractional-order element defined by its admittance as

�

�

�

FE1

FE2

FE3 FE4
Ic + If

Ic

If

Figure 14.4 Generalized Randle’s equivalent circuit

FEi = FE (bi, τi, αi) = bi (jωτi)
αi , (14.7)

from which all the elements of the traditional Randle’s equivalent circuit can
be obtained as particular cases. For this circuit, and using the given notation
for fractional-order operators, the current/voltage relations can be described
by the following equations:

ic(t) = b2τ
α2
2 Dα2v2(t), (14.8)

b3τ
α3
3 Dα3if(t) + b4τ

α4
4 Dα4if(t) = b3τ

α3
3 b4τ

α4
4 Dα3+α4v2(t), (14.9)

i(t) = ic(t) + if(t) = b1τ
α1
1 Dα1v1(t), (14.10)

which adequately combined and using the law of exponents for the fractional-
order differential operators, gives us the equation that can describe the
general relation between the applied voltage and current. That is:

i(t)+k1D
α4−α3i(t)+k2D

α2−α1i(t)+k3D
α4−α1i(t)+k4D

α4+α2−α3−α1i(t)

= k5D
α2v(t) + k6D

α4v(t) + k7D
α4+α2−α3v(t). (14.11)

Now, we will apply the described identification algorithm to show how,
by using a transfer function model in sα, 0 < α < 1, we can obtain better
fittings to impedance data than by using the traditional s-transfer function
model. For this purpose, we simulate the experimental data giving values to
the elements of the general equivalent circuit. The values taken from [190]
are:
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FE1 → b1τ
α1
1 = 100; α1 = 0 =⇒ resistor,

FE2 → b2τ
α2
2 = 104; α2 = 0.75 =⇒ CPE,

FE3 → b3τ
α3
3 = 105; α3 = 0 =⇒ resistor,

FE4 → b4τ
α4
4 =

√
2 × 103;α4 = 0.5 =⇒ Warburg impedance.

This corresponds to the following fractional-order differential equation:

100D1.25i(t) + 1.414D0.75i(t) + 1.001 × 104D0.5i(t) + 141.4i(t)

= D1.25v(t) + 0.0141D0.75v(t) + 0.1D0.5v(t),

and the following impedance function:

Z(s) =
V (s)
I(s)

=
100s1.25 + 1.414s0.75 + 1.001 × 104s0.5 + 141.4

s0.5 (s0.75 + 0.0141s0.25 + 0.1)
.

With the use of MATLAB invfreq() function discussed in Chapter 12,
a fourth-order model can be obtained, with a warning of a huge condition
number of 1039. The identified integer-order model is

G1(s) =
100.2s4+1.218×107s3+1.975×1011s2+2.457×1014s+1.106×1016

s4 + 1.195×105s3 + 1.812×109s2 + 1.06×1012s + 3.677×1010
.

The Bode plots of the identified model as well as the original model are
shown in Figure 14.5. It is immediately seen that the fitting is not good.
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Figure 14.5 Identification for α = 1 with invfreqs() function, with circles for original
model, and plus signs for identified model

The identification results in the frequency range of 10−5 Hz to 105 Hz for
α = 1 shown in Figure 14.6. For α = 0.25 and 0.5, the fitting results are
virtually the same, as shown in Figure 14.7.

From these results we can observe that:
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Figure 14.6 Identification for α = 1
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Figure 14.7 Identification for α = 0.5 and α = 0.25

• The impedance plots agree with the typical shape for electrochemical
processes [193] where we can find two different regions:

– The mass transfer region, characterized by a unit slope curve. For ω → 0
the reaction is controlled solely by diffusion which predominates the
effects of the Warburg impedance.

– The kinetic control region, characterized by a semicircular shape. For
ω → ∞ the control is purely kinetic and the electrical analogy is a
parallel R-C combination.

• In both regions the deviations from the typical shapes are due to the
presence of the CPE element instead of a pure or ideal capacitor.



266 14 Systems Identification

• The fitting is better for α < 1. In this case, selecting α = 0.25, an exact
divisor of 0.5 and 0.75, and the order of the fractional elements (the order
of the fractional-order derivatives in the constitutive equation), we can
obtain the real transfer function of the system, in the form

Ẑ(s) =

100s1.25 − 1.108×10−7s + 1.414s0.75 + 1.001×104s0.5

+1.282×10−9s0.25 + 141.4
s1.25 − 7.45×10−12s + 0.01414s0.75 + 0.1s0.5

+1.179×10−14s0.25 − 2.3×10−16

≈ Z(s).

On the other hand, we can verify that the algorithm is more stable
numerically for α < 1. In our example we verified that the condition numbers
of the matrix are 5.39 × 1021 for α = 1, 3.6483 × 1013 for α = 0.5, and
1.1347 × 1012 for α = 0.25.

14.4 Flexible Structure

The system under test is a typical experimental prototype of flexible robotic
arms: a beam with transversal distributed flexibility constrained to move on
a horizontal plane by the action of piezoelectric crystals, i.e., a clamped-
free Euler–Bernouilli beam with piezoelectric actuators. It is schematically
illustrated in Figure 14.8, and the relevant parameters and characteristics are
given in Table 14.1 for the beam, Table 14.2 for the actuators, and Table 14.3
for the accelerometer.

piezo (Va)

x1

x2

L

�
T

Mt, It

Figure 14.8 Device under test

In the range 0.1∼ 100 Hz, the frequency response of the system has been
measured considering the voltage exciting the crystals as the input and the
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Table 14.1 Beam parameters

Tip inertia, It → 0 Linear mass density, ρ 0.7245 kg/m

Hub inertia, Ih → ∞ Stiffness modulus, EI 22.2589 N-m2

Length, L 1.3 m Thickness, tb 4 × 10−3 m

Widht, h 0.07 m

Table 14.2 Piezoelectric actuator parameters

Type PZT4D Vernitron

Thickness, ta 5 × 10−4 m

Width, w 0.07 m

Charge constant, d31 135 × 10−12 m/V

Young modulus, Ea 7.5 × 1010 m

Position in the beam x1 = 8 × 10−3 m; x2 = 30 × 10−3 m

Table 14.3 Accelerometer characteristics

Type 3148 DYTRAN Frequency range 1 − 5000 Hz (±10%)

Weight, Mt 48 g Sensitivity 100 mV/G (±5%)

acceleration in the free end as the output. The experimental system used for
the measurement is shown in Figure 14.9.

SIGLAB

AMP.

Power source

Piezo Accelerometer 

Figure 14.9 Measurement test bench for experiments
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After measurement, we have applied the identification algorithm for α = 1
and α = 0.5 for several values of n and m. The results are shown in Figure
14.10 (for α = 0.5 and n = m = 10) and Table 14.4.

Figure 14.10 Identified response for α = 0.5 and measured response

Table 14.4 Identification errors over measurements

n,n α = 1 α = 0.5 n,n α = 1 α = 0.5

10, 10 3.1 × 10−3 5.7 × 10−4 12, 12 1.8 × 10−3 6.0 × 10−4

18, 18 1.7 × 10−3 3.2 × 10−4 20, 20 2.0 × 10−3 9.6 × 10−5

We can verify that the fittings with α = 0.5 are better. We will try to
show why by analyzing the physical modeling the system.

The physical model of the system can be described by [202,203]

∂2

∂x2

[
EI

∂2y(x, t)
∂x2

− CaVa (x, t)
]

+ ρA
∂2y (x, t)

∂t2
= 0 (14.12)

and the boundary conditions

y (0, t) = 0, (14.13)

EI
∂2y(0, t)

∂x2
− Ih

∂3y (0, t)
∂t2∂x

+ T (t) = 0, (14.14)

EI
∂2y(L, t)

∂x2
+ It

∂3y (L, t)
∂t2∂x

= 0, (14.15)

EI
∂3y(L, t)

∂x3
− Mt

∂2y (L, t)
∂t2

= 0, (14.16)

where CaVa(x, t) is the moment due to actuators, Ca = Ead31w(ta + tb)/2 is
the actuator voltage constant, and Va(·) is the actuator voltage.
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Proceeding as in [203] we can obtain the transfer function between the tip
acceleration and the actuator voltage (see [57] for more details),

Ga,Va (L, s) =
Y (L, s)
Va(s)

=
s2N (s)
D (s)

, (14.17)

with

N (s) = Caβ
2
[
− cos (βL) cos (βx2) − sin (βL) sin (βx2) + cosh (βL) cos (βx1)

+ sin (βL) sin (βx1) + sin (βL) sin (βx1) + cosh (βL) cosh (βx2)
+ cos (βL) cos (βx2) − sin (βL) sinh (βx2) − cosh (βL) cosh (βx1)
− cosh (βL) cos (βx2) + sin (βL) sinh (βx1) − cos (βL) cosh (βx1)
− sin (βL) sin (βx2) + sin (βL) sinh (βx1) + cos (βL) cos (βx1)

− sin (βL) sin (βx2)
]
,

D (s) = 2ρA
[
1 + cosh (βL) cos (βL)

]
−2βMt

[
cosh (βL) sin (βL) − cos (βL) sinh (βL)

]
,

where β4 = −As2/(EI).
As we can see, this transfer function is a relation between transcendental

functions of the variable β, representing an infinite-dimensional system. In
Figure 14.11 it is shown that the measurements fit the model.

Figure 14.11 Analytic and measured responses, solid line for analytic, + for measured
data

In order to obtain a transfer function in terms of ratios of polynomials,
in [203] the numerator and denominator transcendental functions are ratio-
nalized using the Maclaurin series expansion in β4, i.e., s2. From the point
of view of our identification algorithm this means using α = 2. In the same
way, we could expand the transcendental functions in the variable β2 (s = 1)
or β (s = 0.5). Since β is the variable of the transcendental functions, it
seems that the expansion in β is a more natural way, which leads us to
transfer functions in terms of ratios of polynomials in s1/2. This means that
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we have to model the system using fractional-order derivatives. By fitting the
theoretical curve, we obtain the results shown in Table 14.5.

Table 14.5 Identification results over (14.17)

n,n α = 2 α = 1 α = 0.5 n,n α = 2 α = 1 α = 0.5

5, 5 1.6 × 10−5 − − 10, 10 − 7.2 × 10−5 3.9 × 10−5

12, 12 − 2.4 × 10−5 1.8 × 10−6 16, 16 − 6.4 × 10−5 2.6 × 10−7

18, 18 − 6.6 × 10−5 8.8 × 10−9 20, 20 − − 2.4 × 10−9

Though by choosing n and m adequately for the different basis functions
(n = m = 5 for s2, n = m = 10 for s and s1/2) we can obtain good fittings
in all the cases for the frequency range studied, we can observe that:

• For n = m = 10 and α = 0.5, the larger power of s in the transfer function
is 5 instead of 10. This means that we will need lower-order derivatives to
model and control the system.

• Due to both, the nature of the system and the better numerical stability
for α = 0.5, we can obtain, using larger n and m, better fittings without
increasing the order of the derivatives with respect to the cases of α = 1
and α = 2. Also, we could obtain good fittings for larger frequency ranges.
In fact, if we enlarge the frequency range to 200 Hz, only with α = 0.5 can
we obtain a good fitting, as shown in Figure 14.12.

Figure 14.12 Identification for α = 0.5
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14.5 Summary

In this chapter we have briefly shown in two different ways that by applying
the concepts of fractional calculus it is possible to obtain models that fit better
the frequency behaviors of some type of distributed-parameter systems. In the
first case, the electrochemical process, the convenience of applying fractional
calculus has been derived from the presence of phenomena that can be better
modeled only using fractional-order derivatives or integrals. In the second,
the flexible structure is of infinite-dimensional nature leading us to build
an approximate model that explicitly prompts the use of fractional-order
derivatives. But, really, both ways are closely related for several reasons:

• It is well known that for infinite-dimensional or distributed-parameter
systems a usual and useful electrical equivalent model is the transmission
line model, in which the characteristic impedance is a function (algebraic
or transcendental) of s1/2. In the case of R-C ladder configuration the
impedance has the following form:

Zc(s) =
R

C

1√
s
. (14.18)

• A fractional-order relation, i.e., a fractional-order element in the equivalent
circuits, can be physically realized through transmission line, ladder, trees,
or fractal arrangements of traditional elements (resistors and capacitors,
springs and dashpots or dampers, etc.).

• In certain conditions the Warburg impedance, representing the diffusion
phenomena, has an expression corresponding to a distributed-parameter
system, that is

Zw(ω) = Rw
tanh

√
jτwω√

jτwω
. (14.19)

A further justification can be made by noting the fact that the consti-
tutive equation of some materials employed in “smart material systems”
(piezoelectrics, electrorheological fluids and solids, fiber optics, etc.) could
be formulated using fractional-order derivatives.

We can conclude that transfer functions that are ratios of polynomials
of sα, 0 < α < 1, can be exact “lumped-parameter” models for systems in
which diffusion and/or relaxation phenomena are present and, meanwhile,
good approximate models for distributed-parameter systems.



Chapter 15

Position Control of a Single-link
Flexible Robot

In this chapter fractional-order control is applied to accurate positioning of
the tip of a single-link lightweight flexible manipulator. This kind of robot ex-
hibits the advantage of being very lightweight. But they present a drawback in
that vibrations appear in the structure when they move that prevent precise
positioning of the end effector. Moreover, these vibrations may substantially
change their amplitudes and frequencies when the tip payload changes,
which is quite usual in robotics. The control of this kind of mechanical
structure is nowadays a very challenging and attractive research area. These
robots have found application in the aerospace and building construction
industries, among others. This chapter develops a fractional-order controller
that removes the structural vibrations and is robust to payload changes. The
proposed control system is based on Bode’s ideal transfer function described
in Section 2.3.4. Properties of this transfer function are used to design a
controller with the interesting feature that the overshoot of the controlled
robot is independent of the tip mass. This allows a constant safety zone
to be delimited for any given placement task of the arm, independently of
the load carried, thereby making it easier to plan collision avoidance. Other
considerations about noise and motor saturation issues are also presented
throughout the chapter. To achieve the performance, the overall control
scheme proposed consists of three nested control loops. Once the friction and
other nonlinear effects have been compensated, the inner-loop is designed
to give a fast motor response. The middle-loop simplifies the dynamics of
the system, and reduces its transfer function to a double integrator, that
allows for Bode’s ideal loop transfer function design. Then a fractional-
order derivative controller is used to shape the outer-loop into the form of
a fractional-order integrator. The result is a constant phase system with, in
the time domain, step responses exhibiting constant overshoot, independent
of variations in the load. Experimental results are shown when controlling
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the flexible manipulator with this fractional-order differential operator, that
prove the good performance of the system.

15.1 Introduction

Novel robotic applications have demanded lighter robots that can be driven
using small amounts of energy, for example, robotic booms in the aerospace
industry, where lightweight manipulators with high performance require-
ments (high-speed operation, better accuracy, high payload/weight ratio) are
required [204]. Another example is the need for lightweight manipulators to
be mounted on mobile robots, where power limitations imposed by battery
autonomy have to be taken into account.

Unfortunately, the flexibility that appears in these robots as a consequence
of minimizing the cross section of their links leads to an undesired oscillatory
behavior at the tip of the link, making precise pointing or tip positioning a
daunting task that requires complex closed-loop control. In order to address
control objectives, such as tip position accuracy and suppression of residual
vibrations, many control techniques have been applied to flexible robots (see,
for instance, the survey [205]).

In addition, some new robotic designs are being implemented that exploit
mechanical flexibility in order to achieve new robotic behaviors. For example,
collisions of flexible robots present remarkably less destructive effects than
those caused by traditional robots, since the kinetic energy of the movement
is transformed into potential energy of deformation at the moment of impact.
This fact allows us to perform some control strategy over the actuator before
any damage takes place or, at least, to minimize it, which may lead, in the not
very distant future, to a robot-human cooperation without the actual dangers
in case of malfunction, which is an emergent topic of research interest [206].
Another application is the robotic impedance control or force control, used
to carry out dexterous tasks like assembly. This kind of task can be more
efficiently carried out if the end effector, the wrist, or even the whole arm,
have some degree of structural flexibility.

As a consequence of the preliminary considerations, considerable interest
has been attracted to the control of lightweight flexible manipulators during
the last 2 decades, becoming a most challenging research area of robotic
control. Recently, some reviews in flexible robotics have been published. They
divide the previous work into some sort of classification: control schemes
[205], modeling [207], overview of main researches [208], etc. They are usually
comprehensive enumerations of the different approaches and/or techniques
used in the diverse fields involving flexible manipulators.
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In 1974, W.J. Book provided the first known work dealing with this
topic explicitly in his Ph. D. Thesis [209] entitled “Modeling, design and
control of flexible manipulators arms” and supervised by D.E. Whitney, who
was a professor at MIT Mechanical Engineering Department. In the same
department in the very same year Dr. Maizza-Neto also studied the control
of flexible manipulator arms but from a modal analysis approach [210]. Fruits
of their joint labor, the first work published in a journal in the field of
flexible robotics, appeared in 1975, dealing with the feedback control of a two-
link-two-joints flexible robot [211]. A recursive, Lagrangian, assumed modes
formulation for modeling a flexible arm that incorporates the approach taken
by Denavit and Hartenberg [212], to describe in a efficient, complete and
straightforward way the kinematics and dynamics of elastic manipulators
was proposed by Book in 1984 [213].

This structural flexibility was also intensively studied in satellites and
other large spacecraft structures (again spatial purposes and NASA behind
the scenes) which generally exhibit low structural damping in the materials
used and lack of other forms of damping. The generic studies by M.J. Balas
on the control of flexible structures, carried out mainly between 1978 and
1982, deserve a special mention, e.g., [214] and [215]. They established some
key concepts such as the influence of highly unmodeled dynamics in system
controllability and performance, which is known as “spillover.” In addition,
the numerical/analytical examples included in his work dealt with controlling
and modeling the elasticity of a pinned or cantilevered Euler-Bernoulli beam
with a single actuator and a sensor, which is the typical configuration for a
one degree of freedom flexible robot as we will discuss in later sections. After
these promising origins, the theoretical challenge of controlling a flexible arm
(while still very open) turned into the technological challenge of building a
real platform testing those control techniques. And there it was, the first
known robot exhibiting notorious flexibility to be controlled was built by
Schmitz and Cannon [216]. A single-link flexible manipulator was precisely
positioned by sensing its tip position while it was actuated on the other end
of the link. In this work another essential concept appeared in flexible robots:
a flexible robot is a non-collocated system and thus of non-minimum phase
nature. Point-to-point motion of elastic manipulators had been studied with
remarkable success taking a number of different approaches, but it was not
until 1989 that the tracking control problem of the end-point of a flexible
robot was properly addressed. This problem was tackled from a mixed open-
closed-loop control approach by De Luca and Siciliano in 1989 [217] in the
line proposed 2 years before by Bayo [218]. Also in 1989, the passivity concept
was used for the first time in this field: D. Wang and M. Vidyasagar studied
appropriate outputs of flexible arms in order to attain this property [219].
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Book, in his review of 1993 [220], remarks on the exponential growth in the
number of publications in this field and also the possibility of corroborating
simulation results with experiments, which turns a flexible arm into “one test
case for the evaluation of control and dynamics algorithms.” And so it was. In
the aforementioned [205], a summary of the main control theory contributions
to flexible manipulators is shown, such as PD, PID, feedforward, adaptive,
intelligent, robust, strain feedback, energy-based, wave-based, etc.

15.2 Problem Statement

One important problem in robotics is the variation of the dynamics as a
consequence of changes in the payload to be carried by the manipulator, which
causes the untuning of the controllers and degradation on the closed-loop
positioning performance. This problem cannot be avoided as most robots are
made for this purpose: to pick and place different loads. However this problem
is often not relevant in standard robots (rigid industrial robots) because they
have reduction gears connected to the actuators that reduce the torques,
generated by the payload and robot structure inertias, seen by the actuators,
by dividing them by n, this value being the gear reduction ratio. As n is
usually high, then changes in the tip payload have relatively little effect on
the actuators, and therefore in the actuators controllers performance.

Industrial robots are designed to be heavy and bulky in order to achieve
rigidity in the robot mechanical structure. This guarantees that no more
dynamics are involved in the robot than the associated rigid body motions
and, very important, that controlling only the actuators involves the precise
positioning of the tip, as a consequence of applying some trigonometric
calculations.

Instead, in a flexible robot, more dynamic rather than the rigid ones appear
as a consequence of the flexibility, and tip position cannot be guaranteed by
simply controlling the robot actuators dynamics. In this case, payload changes
again have little effect on the actuators (because the reduction gears are also
present) but flexible link dynamics strongly vary as a consequence of these
changes, as the frequencies of the arm vibrations depend (approximately) on
the inverse of the square root of the payload mass.

Then if the payload changes from one movement to another, controllers
designed for a nominal tip mass become untuned, which produces a very
noticeable impairment in the tip trajectory or even instability. Thus the
main objective of this chapter is to design a control system for single-link
very lightweight flexible arms such that: 1. it achieves a good accuracy in tip
trajectory tracking of rapid maneuvers, 2. it is extremely robust to large
changes of the tip payload, in the sense of not only keeping the closed-
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loop system stability but also maintaining the tip tracking performance
nearly unaltered, 3. it is very robust to motor friction changes and removes
the steady-state error caused by Coulomb friction, 4. it is also robust to
high-frequency dynamics not regarded in the controller design (spillover
effects), and 5. it is a very simple linear controller that can be tuned in a
very straightforward manner. In this chapter a fractional-order controller is
developed that removes the structural vibrations and is robust to payload
changes. The proposed control system is based on Bode’s ideal loop transfer
function described in Section 2.3.4. Properties of this transfer function are
used to design a controller with the interesting feature that the overshoot of
the controlled robot is independent of the tip mass. This allows a constant
safety zone to be delimited for any given placement task of the arm,
independently of the load being carried, thereby making it easier to plan
collision avoidance.

The problem of controlling single-link flexible arms with changing tip
payload has already been studied from different points of view. The most
efficient strategies to achieve good tip trajectory tracking are introduced next.
Adaptive control needs an online parametric estimation to modify, in real
time, the controller parameters; [221] is an example of a nonlinear adaptation
law applied to a two-link flexible arm in the case of uncertainties in several
robot parameters, and [222, 223] deal specifically with the problem of large
payload changes. Adaptive control has the drawbacks of 1. the difficulty to
guarantee the closed-loop stability in all the circumstances which usually
requires some complicated Lyapunov stability analysis, 2. the condition of
a persistent excitation condition in order to achieve an accurate estimate
of the robot parameters, 3. the deterioration of the transient response of
the tip during the time interval from the start of the movement until the
manipulator parameters are estimated and the controller retuned, leading
to tracking errors that sometimes may be unacceptable. Neural networks
have also been used to design controllers robust to load changes for flexible
arms [224, 225]. They often implement adaptation laws that change the
controller behavior in real time depending on some measured signals. In this
technique it is also difficult to guarantee the stability of the control system,
and it requires a previous, often laborious, network training process. Another
approach is to use sliding control: [226] proposes an adaptive scheme for
joint flexibility and [227] a method that adapts the sliding surface depending
on initial conditions for a single-link flexible arm. These methods need the
fulfilment of the so-called matching condition in order to be applicable, which
requires that the uncertainties remain in the space range of the control input
to ensure an invariance property of the system behavior during the sliding
mode. Moreover, arm dynamic performance is not well controlled during
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the initial phase to reach the sliding surface. Another approach is to use
robust control techniques. In [228], the authors presented a control robust to
payload changes composed of feedforward and feedback terms. An energy-
based robust controller was designed for multi-link flexible arms in [229],
which does not require any information of the system dynamics, and only
makes use of the very basic energy relationship of the system. In [230] a
very efficient robust to payload changes controller was proposed for the very
special case of a single-link flexible arm with only one vibration mode. A
robust control combining pole placement and sensitivity function shaping
method was developed in [231], where experiments were reported of changes
in the tip payload that implied changes of 50% in the moment of inertia of
the arm. Another robust controller for the same robot was designed using
the quadratic d-stability approach in [232], but changes allowed in the tip
payload were smaller. A recent example of design of robust controllers for
single-link flexible arms based on the H∞ methodology is [233], which splits
the arm dynamics into two time scale systems, and imposes some uncertainty
bounds mostly to the fast dynamics subsystem. This methodology was mainly
designed to control spillover effects but can also be adapted to consider other
parameter uncertainties. Finally, robust time-optimal control strategies for
the motion of flexible structures in an open-loop mode are studied in [234].
In all these robust control approaches the stability of the controlled system
is guaranteed under payload variations or non-negligible spillover effects, but
the quality of the reference tracking is not as good as that achieved by a
controller designed only for the nominal plant (assuming this controller of the
same complexity than the robust one), i.e., the stability margin is increased
at the expense of losing system response performance (usually the system
becomes slower). Moreover, these controllers exhibit another two drawbacks:
1. they are designed to cope with limited variations of the tip load and 2.
the quality of the reference tracking deteriorates considerably as the payload
differs more from the nominal value.

In the above context, it will be shown that the fractional-order controller
to be developed in this chapter provides a constant stability margin, phase
margin, independently of the value of the payload while the gain crossover
frequency (speed of response) varies as the payload changes (the speed
of response diminishes as the payload increases, keeping approximately
constant the maximum of the control signal for the different payloads).
These robustness features cannot be achieved by any of the aforementioned
techniques. The remainder of this chapter is organized as follows. Section
15.3 outlines the dynamics of the considered flexible arm. Section 15.4 briefly
describes the general control scheme composed of three nested loops. Section
15.5 develops the outer control loop which is the one that includes the
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fractional-order control law and provides the robot with the robustness to
payload changes. Section 15.6 studies the effects of the spillover on this control
law, and some controller conditions are analytically derived to guarantee
stability under these circumstances. Section 15.7 presents the results obtained
from the test of the control strategy in an experimental platform. Finally,
some relevant concluding remarks are drawn in Section 15.8.

15.3 Dynamic Model of the Single-link Flexible
Manipulator

A dynamic model of the single-link flexible arm will be used for the control
system design. A lumped mass model, which assumes a massless link and a
single mass located at the arm tip (which represents the payload), is used
in this work. This is the simplest dynamic model of a flexible arm, and it
is well known [230]. Particularly, a single tip mass that can rotate freely
(no torque is produced at the tip) will be adopted for the description of
the link dynamics [230]. The effect of gravity is assumed negligible since the
arm moves in a horizontal plane. The motor has a reduction gear with a
reduction relation n. The magnitudes seen from the motor side of the gear
will be written with an upper hat, while the magnitudes seen from the link
side will be denoted by standard letters.

The dynamics of the link is described by

c(θm − θt) = ml2θ̈t, (15.1)

where m is the mass at the end, l and c are the length and the stiffness of
the bar, respectively, θm is the angle of the motor, and θt is the angle of the
tip. A scheme of this arm is shown in Figure 15.1.

θm

θtJ, v

l,
c

m

Figure 15.1 Diagram of the single-link flexible arm
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The electromechanical actuator is constituted by a DC motor. This DC
motor is supplied by a servo-amplifier with a current inner-loop control. The
dynamic equation of the system can be written by using Newton’s second
law:

KV = J
¨̂
θm + ν

˙̂
θm + Γ̂coup + Γ̂Coul, (15.2)

where K is the electromechanical constant of the motor servo-amplifier
system, J is the motor inertia, ν is the viscous friction coefficient, Γ̂coup

is the coupling torque between the motor and the link, Γ̂Coul is the Coulomb
friction, and V is the motor input voltage. This last variable is the control
variable of the system, which is the input to a servo-amplifier that controls the
input current to the motor by means of an internally PI current controller
(see Figure 15.2). This electrical dynamics can be rejected because this is
faster than the mechanical dynamics of the motor. Thus, the servo-amplifier
can be considered as a constant relation, ke, between the voltage and the
current to the motor: im = V ke (see Figure 15.3), where im is the armature
circuit current and ke includes the gain of the amplifier, k̃, and R the input
resistance of the amplifier circuit. The total torque given to the motor, Γ̂ , is
directly proportional to the armature circuit in the form Γ̂ = kmim where km

is the electromechanical constant of the motor. Thus, the electromechanical
constant of the motor servo-amplifier system is K = kekm.
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Figure 15.2 Servo-amplifier scheme
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Figure 15.3 Servo-amplifier scheme

From now on it is supposed that the Coulomb friction is negligible or is
compensated by a term [235] of the form

VCoul =
Γ̄Coul

K
sgn
( ¨̂
θm

)
, (15.3)
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as shown in Figure 15.4, where Γ̄Coul is an estimation of the Coulomb friction
value.

On the other hand, the coupling torque equation between the motor and
the link is

Γcoup = c(θm − θt), (15.4)

and, finally, the conversion equations θ̂ = nθ and Γ̂coup = Γcoup/n complete
the dynamic model.

Laplace transform is applied to (15.1), leading to the following transfer
function for the link:

Gb(s) =
θt(s)
θm(s)

=
ω2

0

s2 + ω2
0

, (15.5)

where ω0 is the natural frequency of the link

ω2
0 =

c

ml2
, (15.6)

which is mass dependant.
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Figure 15.4 Block diagram for the inner-loop with its compensating terms

With all the previous equations, the transfer functions of the robot are

θm(s)
V (s)

=
Kn
(
s2 + ω2

0

)
s [Jn2s3 + νn2s2 + (Jn2ω2

0 + c) s + νn2ω2
0 ]

, (15.7)

θt(s)
V (s)

=
Knω2

0

s [Jn2s3 + νn2s2 + (Jn2ω2
0 + c)s + νn2ω2

0 ]
. (15.8)

It is evident that these robot equations are mass dependant (so is ω0) and,
therefore, changes in the tip mass (payload) will affect the system behavior.

Table 15.1 shows the parameters of the motor-gear set and the flexible link
used for the experimental tests, respectively.
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Table 15.1 Data of the motor-gear set and flexible link

Motor-gear set Flexible link

γ Kp Kv J(kg· m2) ν (N·m·s) K (N·m/V) n c (N·m) m (kg) l (m)

0.022 1 0.025 24.24 × 10−4 51.66 × 10−4 3.399 50 443.597 1.9 0.866

15.4 General Control Scheme

This chapter develops a simple control scheme for positioning the tip of
single-link flexible arms whose payload changes, based on the use of a
fractional-order derivative controller. This scheme uses measurement of the
link deflection provided by a strain gauge placed at the base of the link. This
sensorial system lets us construct control schemes that are more robust than
those based on accelerometer measurements (as was demonstrated in [230],
too). This is because strain gauges are placed at the base of the link while
accelerometers are located at the tip, where collisions are more likely to
happen, so the sensor is more likely to be damaged. Moreover, strain gauges
are much simpler to instrument than accelerometers.

The general control scheme proposed here consists of three nested loops
(see Figure 15.5). The features of the inner-loops and outer-loops have
been previously detailed in [230], while the middle-loop has simplifying
purposes, and is included to cope with the fractional-order control strategy.
Basically, this scheme allows us to design the loops separately, making the
control problem simpler and minimizing the effects of the inaccuracies in the
estimation of Coulomb and viscous frictions in control performance (as shown
in [235]). The purposes of these three loops are:

• An inner-loop that controls the position of the motor. This loop uses a
classical PD controller of high gains in order to give a closed-loop transfer
function close to unity (it is detailed in Figure 15.4).

• A simplifying-loop using positive unity-gain feedback. The purpose of this
loop is to reduce the dynamics of the system to that of a double integrator.

• An outer-loop that uses a fractional-order derivative controller to shape
the loop and to give an overshoot independent of payload changes.

In Figure 15.5, θm is the motor angle, θt the tip-position angle, Gb(s) the
transfer function of the beam, and Ri(s), Re(s) the inner- and outer-loop
controllers, respectively. The design of the first two loops follows [223]. The
fractional-order control strategy of the outer-loop utilizes a fractional-order
controller and is based on the concept of Bode’s ideal loop transfer function
design. More details on this control scheme and the fractional-order controller
design can be found in [75,236].
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Figure 15.5 Proposed general control scheme

15.4.1 Inner-loop

The inner control loop, shown in Figure 15.4, fixes the dynamic behavior of
the motor. This purpose is achieved by means of a standard PD controller
with proportional constant Kp and derivative constant Kv, which is tuned to
make the motor dynamics critically damped. Moreover two compensating
terms are added to this inner-loop: 1. one that cancels the nonlinearity
associated with the Coulomb friction by adding a term VCoul calculated from
(15.3), and 2. another that compensates the coupling torque existing between
the motor and the link, which is expressed as Vcoup.

This last term is calculated by

Vcoup =
1

Kn
Γcoup, (15.9)

that can be implemented because the strain gauge placed at the base of the
link provides Γcoup.

The control law uses feedback of the measured motor position θ̂m, and
may be expressed as

V (t) = Kp(nθr
m(t) − θ̂m(t)) − Kv

˙̂
θm(t) + VCoul + Vcoup, (15.10)

where θr
m(t) is the reference angle for the motor.

The second-order critically damped equation obtained for the closed-loop
motor system, as a consequence of tuning control law (15.10), is

M(s) =
θm(s)
θr
m(s)

=
1

(1 + γs)2
, (15.11)

where γ is the closed-loop motor dynamics constant.
Next we define the PD parameters tuning laws. As a consequence of the

two compensating terms (15.3) and (15.9), the motor equation (15.2) reduces
to

KVc = J
¨̂
θm + ν

˙̂
θm, (15.12)

where Vc is a fictitious input to the reduced motor dynamics (see Figure
15.4). The PD parameters easily yield from some algebraic manipulations:
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Kp =
J

Kγ2
, (15.13)

Kv =
1
K

(
2J

γ
− ν

)
. (15.14)

Theoretically, as γ =
√

J/(KpK), it is possible to make the motor
dynamics as fast as desired (γ → 0) by simply making Kp → ∞. But a very
demanding speed would saturate the motor, with the subsequent malfunction
of the controlled system. This fact implies that, although the motor dynamics
can be made quite fast, it cannot be considered negligible in general.

It is important to note that the assumption that the coupling torque may
be compensated within the inner-loop by a term of the form (15.9) is well
supported. Previous experimental works have proven the correctness of this
assumption in direct driven motors, and motors with reduction gears as well
[223]. It has also been demonstrated that, in the case of motors with gears,
the effect of the coupling torque is very small compared to the motor inertia
and friction, as its value is divided by n [230].

15.4.2 Simplifying-loop

As stated previously, the response of the inner-loop (position control of the
motor) is significantly faster than the response of the outer-loop (position
control of the tip). The motor position is first supposed to track the reference
motor position with negligible error and the motor dynamics will be consid-
ered later. That is, the dynamics of the inner-loop can be approximated by
M(s) ≈ 1 when designing the outer-loop controller. Taking this into account,
a strategy for simplifying the dynamics of the arm, shown in Figure 15.6, is
proposed.
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u �

P (s)

s2 + ω2
0

� � � �

β

�

�

θt
θr
m ∼ θm

Figure 15.6 Block diagram of the simplifying middle-loop

For the case of a beam with only one vibrational mode, a simplifying-loop
can be implemented that reduces the dynamics of the system to a double
integrator by simply closing a positive unity-gain feedback loop around the
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tip position (β = 1). Then, the equation relating the output and input of the
loop is

θt(s) =
ω2

0

s2
u(s) +

1
s2

P (s), (15.15)

where P (s) represents disturbances with the form of a first-order polynomial
in s, which models initial deviations in tip position and tip velocity [75].
In (15.15), the dynamics of the arm has been reduced to a double-integrator
dynamics, simplifying the control strategy to be designed for the tip position,
as will be seen later.

The stability study by using Nyquist plots shows that the condition β = 1
is not critical to get stable control systems, being sufficient to implement a
feedback gain close to 1.

15.4.3 Outer-loop

The block diagram for the outer-loop used in this work is shown in Fig-
ure 15.7.
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Figure 15.7 Basic scheme of the outer control loop

As observed in the scheme, an estimation of the tip position, θe
t , is used

to close the loop. We actually feed back the measurements of a strain gauge
placed at the base of the link to control the arm. These measurements provide
the value of the coupling torque Γcoup between the arm and the motor, which
is used to decouple motor and link dynamics and estimate tip position [230].
Combining (15.1), (15.4), and the fundamental frequency definition, we can
obtain the relation between Γcoup and the output θt, which yields

C(s) =
Γcoup(s)

θt(s)
= c

s2

ω2
0

. (15.16)
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Given the values of θm and Γcoup, experimentally measured, the value of
θt can be calculated from (15.4) by

θe
t = θm − Γcoup/c. (15.17)

This estimated tip angle is used to close the control loop, and can be expressed
by a block diagram as shown in Figure 15.7, where H(s) = −1/c.

The main purpose of this chapter is to design the outer controller Re(s)
of Figure 15.7 so that the time response of the controlled system has an
overshoot independent of the tip mass and the effects of disturbances are
removed. These specifications will lead to the use of a fractional-order
derivative controller, as will be detailed in the next section.

Besides, in this particular case the outer controller will be designed in
the frequency domain for the specifications of phase margin (damping of the
response), and gain crossover frequency (speed of the response). In order to
guarantee a critically damped response (overshoot Mp = 0), a phase margin
ϕm = 76.5◦ is selected. Besides, the response is desired to have a rise time
around 0.3 sec, so the gain crossover frequency is fixed to ωcg = 6 rad/sec. The
crossover frequency defines the speed of response of the closed-loop system.
The practical constraint that limits the speed of response of the arm, and
hence the value of ωcg, is the maximum torque provided by the motor. This
maximum torque limits the speed of response of the inner motor loop, and
hence its bandwidth. The control scheme proposed here works ideally if the
dynamics of the inner-loop is negligible. Consequently, its bandwidth must
be much larger than the desired gain crossover frequency ωcg. However, it
must be taken into account that the experimental results to be presented
in this chapter show the behavior of the arm assuming non-negligible inner-
loop dynamics, since the value of the torque provided by the motor limits
the speed of response of this loop. This fact may change slightly the final
frequency specifications found for the system, as will be shown later.

15.5 Design of the Outer-loop Controller Re(s)

With the inner-loops and simplifying-loops closed, the reduced diagram of
Figure 15.8 is obtained, which is based on (15.15). From this diagram, the
equation for the tip position is

θt(s) =
1

1 +
s2

Re(s)ω2
0

θr
t (s) +

1

1 +
s2

Re(s)ω2
0

P (s)
Re(s)ω2

0

. (15.18)

The controller Re(s) has a twofold purpose. One objective is to obtain a
constant phase margin in the frequency response, in other words, a constant
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Figure 15.8 Reduced diagram for the outer-loop

overshoot in time response to a step reference for varying payloads. The
other is to remove the effects of the disturbance, represented by the initial
conditions polynomial, on the steady state. To attain these objectives, most
authors propose the use of some kind of adaptive control scheme [223]. We
propose here a fractional-order derivative controller with enhanced robustness
properties to achieve the above two objectives, without needing any kind of
adaptive algorithm. Some methods have been developed in the last few years
to tune fractional-order PID controllers with robustness properties to changes
in one parameter which is typically the plant gain [237, 238] (note that in
our case the process gain is ω2

0 , which changes with the payload according to
(15.6)). Some of them have been studied in previous chapters, and were based
on optimization procedures. The approach proposed here is based on Bode’s
ideal loop transfer function studied in Section 2.3.4. It is much simpler than
other methods as it is specifically tailored to our particular arm dynamics,
leading to very straightforward tuning rules.

15.5.1 Condition for Constant Phase Margin

The condition for a constant phase margin can be expressed as

arg
[
Re(jω)

ω2
0

(jω)2

]
= constant, ∀ω, (15.19)

and the resulting phase margin ϕm is

ϕm = arg [Re(jω)] . (15.20)

For a constant phase margin 0 < ϕm < π/2 the controller that achieves
this must be of the form

Re(s) = Kcs
α, α =

2
π

ϕm, (15.21)
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so that 0 < α < 1. This Re(s) is a fractional-order derivative controller of
order α.

15.5.2 Condition for Removing the Effects of
Disturbance

From the Final-Value Theorem, the condition to remove the effects of the
disturbance is

lim
s→0

1

1 +
s2

Re(s)ω2
0

P (s)
Re(s)ω2

0

= 0. (15.22)

Substituting Re(s) = Kcs
α and P (s) = as+b (initial tip position and velocity

errors different from zero), this condition becomes

lim
s→0

1

1 +
s2−α

Kcω2
0

b

Kcω2
0

s1−α = 0, (15.23)

which implies that α < 1.

15.5.3 Ideal Response to a Step Command

Assuming that the dynamics of the inner-loop can be approximated by unity
and that disturbances are absent, the closed-loop transfer function with
controller (15.21) is

Fcl(s) =
θt

θr
t

=
1

1 +
s2

Re(s)ω2
0

=
Kcω

2
0

s2−α + Kcω2
0

, (15.24)

which exhibits the form of Bode’s ideal loop transfer function. The corre-
sponding step response is

θt(t)=L −1

{
Kcω

2
0

s(s2−α+Kcω2
0)

}
= Kcω

2
0t2−αE2−α,3−α(−Kcω

2
0t2−α), (15.25)

where Eδ,δ+1(−Atδ) is the Mittag–Leffler function in two parameters. The
overshoot is fixed by 2 − α, which is independent of the payload, and the
speed by Kcω

2
0 , that is, by the payload and the controller gain. In fact, notice

that this equation can be normalized with respect to time by

θt(tn) = t2−α
n E2−α,3−α(−t2−α

n ), (15.26)

where tn = t(Kcω
2
0)1/(2−α). This equation shows that the effect of a change

in the payload implies a change in ω0 that only means a time scaling of the
response θt(t).
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To obtain a required step response, it is necessary to select the values of
two parameters. The first is the order α to adjust the overshoot between
0 (α = 1) and 1 (α = 0), or, equivalently, a phase margin between 90◦

and 0◦. The second is the gain Kc to adjust the gain crossover frequency,
or, equivalently, the speed of the response for a nominal payload. Note that
increasing α decreases the overshoot but increases the time required to correct
the disturbance effects [50].

15.5.4 Controller Design

As stated above, the design of the controller thus involves the selection of
two parameters:

• α, the order of the derivative, which determines 1. the overshoot of the
step response, 2. the phase margin, or 3. the damping.

• Kc, the controller gain, which determines for a given α 1. the speed of the
step response or 2. the gain crossover frequency.

These parameters can be selected by working in the complex plane, the
frequency domain, or the time domain. In the frequency domain, the selection
of the parameters of the fractional-order derivative controller can be regarded
as choosing a fixed phase margin by selecting α, and choosing a gain crossover
frequency ωcg, by selecting Kc for a given α. That is,

α =
2
π

ϕm, Kc =
ωcg

ω2
0

. (15.27)

According to Table 15.1, where the parameters of the flexible manipulator
are presented, the fundamental frequency of the system is ω0 = 17.7 rad/sec.
The frequency specifications required for the controlled system, stated pre-
viously, are phase margin ϕm = 76.5◦ and gain crossover frequency around
ωcg = 6 rad/sec. Therefore, the parameters of the fractional-order derivative
controller are α = 0.85 and Kc = 0.02. With this controller, and under the
assumption of negligible inner-loop dynamics, the Bode plots obtained for the
open-loop system are shown in Figure 15.9, where it can be observed that at
the gain crossover frequency ωcg = 6 rad/sec the phase margin is ϕm = 76.5◦,
fulfilling the design specifications.

The simulated step responses of the controlled system for m = 0.6 kg,
m = 1.9 kg, m = 3.2 kg, and m = 6 kg are shown in Figure 15.10. It is
observed that the overshoot of the response remains constant to payload
changes, being Mp = 0, fulfilling the robustness purpose. For the nominal
mass (m = 1.9 kg), a rise time tr = 0.3 sec is obtained.

Finally, and for comparison purposes, a standard PD controller, designed
for the same frequency specifications as above, has been simulated. In order
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Figure 15.10 Simulated time responses of the system with the fractional-order derivator
to a step input for different payloads, considering negligible inner-loop dynamics

to remove an undesirable overshoot that may appear associated with the zero
that the controller introduces in the closed-loop system, the PD controller has
been modified as shown in Figure 15.11 (velocity is fed back to the controller
instead of velocity error). The tuned controller is

u(t) = 0.305(θr
t (t) − θt(t)) − 0.013θ̇t(t), (15.28)

where control signal u was defined in Figure 15.5. Note that the simplifying-
loop is also implemented in this case to keep complete equivalence between
this controller and the fractional-order one.
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Figure 15.11 Modified PD control system for the outer-loop

Figure 15.12 shows simulated responses of the closed-loop system with
this PD controller (15.28) to a step command for different payload values.
These plots show that performance deteriorates very noticeably as payload
differs from the nominal value: overshoot changes significantly. These results
highlight the interest of using a fractional-order controller if a nearly constant
overshoot were required.
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Figure 15.12 Simulated time responses of the system with PD controller (15.28) to a
step input for different payloads, considering negligible inner-loop dynamics

15.6 Some Practical Issues

In this section some practical issues related to the effect on the closed-loop
performance of the robot dynamics neglected in the controller design pro-
cedure are analyzed. In particular two sources of errors and instabilities are
studied: spillover effects associated with higher vibration modes of the flexible
link that have not been taken into account, and effects of non-negligible motor
inner closed-loop dynamics. Moreover, the discrete implementation of the
controller is studied.
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15.6.1 Robustness to Higher Vibration Modes
(Spillover)

The robustness of the developed fractional-order controller to unmodeled
higher vibration modes is analyzed here. These modes can influence the
closed-loop system in two ways: 1. they are fed back to the controller and, if
they were not taken into account in the controller design, the global system
can become unstable, 2. the estimator of the tip position based on (15.17) no
longer remains correct, exhibiting high-frequency estimation errors that are
fed to the closed-loop system. In order to avoid these destabilizing effects we
propose a lemma based on the next dynamic property.

Let us consider the transfer function GΓ(s) between the motor angle and
the motor-beam coupling torque (the other measured variable). Then we state
that this transfer function exhibits the interlacing property of its poles and
zeros on the imaginary axis if it verifies that

GΓ(s) = c
s2(s2 + �2

1) · · · (s2 + �2
i ) · · · (s2 + �2

n̄)
(s2 + ω2

0)(s2 + ω2
1) · · · (s2 + ω2

i ) · · · (s2 + ω2
n̄)

, (15.29)

ωi−1 < �i < ωi, 1 � i � n̄ being n̄ the number of vibration modes of the
flexible link considered, and c > 0.

The simplest flexible robot is our arm with simplified dynamics described
in Section 15.3. In this case it is found that

GΓ(s) = Gb(s)C(s) =
cs2

s2 + ω2
0

, (15.30)

from combining (15.5) and (15.16). This transfer function corresponds to
(15.29) in the case of a single vibration mode (n̄ = 1).

This property is also verified by uniform single-link flexible manipulators
with distributed mass and a payload at the tip. This is illustrated next.

The governing equation of a flexible link (Euler–Bernoulli equation) can
be normalized by defining tb =

√
ρL4/(EI), where ρ is the mass per unit

length, L the link length, E the Young’s modulus, I the second moment
of area about the bending axis, and introducing the non-dimensional time
tn = t/tb. Consequently the tip payload is also normalized with respect to
the beam mass mn = m/ρL. Transfer functions GΓ(s) are obtained for the
normalized beam for different mn ratios, and the poles and zeros associated
with the first six modes are calculated. We assume that modeling six modes
is enough to study the spillover effects in most flexible manipulators. Figure
15.13, shows the values of these poles and zeros for mass ratios ranging from
negligible link mass (m−1

n = 0) to the case of a link mass 10 times larger than
the tip payload (m−1

n = 10). This figure shows that the interlacing property
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mentioned earlier is verified by any uniform beam at least in the specified
range of variation of the link mass.
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Figure 15.13 Verification of the interlacing property in GΓ(s) in a distributed mass
flexible link: the dashed lines are ωi and the solid lines i

The next lemma proves that, if this property is verified, a family of
fractional-order controllers, to which the controller proposed in the previous
section belongs, is robust to unmodeled higher modes (spillover).

Lemma 15.1. Assume that our flexible arm verifies the interlacing property
(15.29), and that the inner-loop dynamics is negligible. Then any outer-loop
controller with a structure

Re(s) = Kp + Kαsα, Kα > 0, 0 � α � 1, (15.31)

which uses as feedback signal a tip position estimator of a form similar to
(15.17)

θe
t = θm − Γcoup

ĉ
, (15.32)

where parameter ĉ verifies
ĉ � c, (15.33)

and c is the value given in (15.29), which is equivalent to the value c in (15.1),
keeps stable the closed-loop system.
Proof. Figure 15.14 shows a block diagram of the control scheme. Operating
this block diagram (and assuming that M(s) = 1) we obtain the equivalent
transfer function

HΓ(s) =
Γcoup(s)
Θr

t (s)
=

GΓ(s)
1 + GΓ(s)(−1 + R−1

e (s))/ĉ
. (15.34)
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If GΓ(s) verifies the above interlacing property, the alternation between poles
and zeros of (15.29) produces a Nyquist plot of GΓ(jω) of the form shown in
Figure 15.15 (a). It exhibits as many half-turns in the infinity as vibration
modes has the transfer function (as many as terms (s2 + ω2

i ) are in the
denominator of this transfer function). This plot shows that the closed-loop
system associated with GΓ(s) is marginally stable. It is clear that if the
product (−1 + R−1

e (s))/ĉ subtracts phase to the system, it is equivalent to
approximately rotating the before Nyquist plot clockwise increasing the phase
margin, as shows Figure 15.15 (b). Moreover, in order to guarantee that the
Nyquist plot does not embrace the point (−1, j0), it must be verified that

lim
ω→∞

1
ĉ
GΓ(s)(−1 + R−1

e (s)) � 1. (15.35)

Assuming that Re(s) is of the form (15.31), and taking into account (15.29),
it easily follows that condition (15.35) becomes ĉ � c, and (15.33) is proven.
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Figure 15.14 Detailed block diagram of the control system including the dynamics of
the tip position estimator

Moreover if the controller is of the form (15.31), after some operations we
have that

ξ(jω) =
1
ĉ
GΓ(s)(−1 + R−1

e (s))

=
Kp(1−Kp)+Kαωα cos(πα/2)(1−2Kp)−K2

αω2−jKαωα sin(πα/2)
ĉ(K2

p + 2KαKpωα cos(πα/2) + K2
αω2α)

.

(15.36)
The imaginary component of this equation is negative ∀ω �0 provided that
0�α� 1 and Kα > 0. Then ∠ξ(jω)� 0, ∀ω � 0, and it subtracts phase from
GΓ(jω) at all frequencies, as the Nyquist stability condition requires. �



15.6 Some Practical Issues 295

Remark 15.2. Conditions (15.31) and (15.33) make the closed-loop system
stable for any single-link flexible arm that fulfils the interlacing property
(15.29), independently of the number of high-frequency modes considered.

�

Figure 15.15 Nyquist plots of: (a) GΓ(s) and (b) GΓ(s)(−1 + R−1
e (s))/ĉ

15.6.2 Effect of the Non-negligible Inner-loop
Dynamics

In the practical robot studied here, the dynamics of the inner-loop is not
negligible, being given by the transfer function (15.11) with γ = 0.022. Notice
that M(s) is independent of the value of the tip payload as its effects on the
motor dynamics are removed by the compensation term Vcoup in (15.9) based
on the measurement of the motor-beam coupling torque. The introduction of
M(s) implies that the response of the controlled system will be affected by
this dynamics, since the simplifying-loop does not result in a double integrator
anymore.

Besides, it is important to note that step inputs are not very appropriate
for robotic systems, the use of smoother references being more suitable to
avoid surpassing the physical limitations of the robot, such as the maximum
torque allowed to the links before reaching the elastic limit or the maximum
feasible control signal value, (V for a DC motor-amplifier set). For that
reason, a fourth-order polynomial reference θr

t has been used in our case.
It has been observed that with the introduction of M(s) the settling time

of the response gets longer. To reduce it, a proportional part Kp is introduced
in the controller to make the output converge faster to its reference. However,
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it must be taken into account that the introduction of this constant affects
the frequency response of the system, changing the specifications. Therefore,
there must be a trade off between the fulfilment of the frequency specifications
and the settling time required, resulting in Kp = 0.25 in our case. Then, the
final controller is

Re(s) = 0.25 + 0.02s0.85. (15.37)

Only a slight modification of the frequency specifications is obtained with
this controller, resulting in ωcg = 6.6 rad/sec and ϕm = 70◦. Recall that this
controller keeps the structure (15.31), which is robust to spillover effects, as
was shown in the previous section.

15.6.3 Fractional-order Controller Implementation

No physical devices are available to perform the fractional-order derivatives,
so approximations are needed to implement fractional-order controllers.
These approximate implementations of FOC have been studied in Chapter 12.
In this particular case, an indirect discretization method is used. That is,
first a finite-dimensional continuous approximation is obtained, and second
the resulting s-transfer function is discretized.

It must be taken into account that the fractional-order derivative s0.85

has been implemented as s0.85 = ss−0.15 = s/s0.15, that is, an integer-order
derivative multiplied by a fractional-order integrator. This way, the resulting
open-loop system in the ideal case would be Re(s)ω2

0/s2 = ω2
0s−0.15/s,

guaranteeing the cancelation of the steady-state-position error due to the
effect of the pure (integer-order) integral part. Therefore, only the fractional-
order part Rd(s) = s−0.15 has been approximated.

To obtain a finite-dimensional continuous approximation of the fractional-
order integrator, a frequency domain identification technique is used, pro-
vided by the MATLAB function invfreqs(); see Section 12.3. An integer-
order transfer function that fits the frequency response of the fractional-order
integrator Rd in the range ω ∈ (10−2, 102) is obtained. Later, the discretiza-
tion of this continuous approximation is made by using the Tustin rule with
prewarp-frequency ωcg and sampling period T = 0.002 sec, obtaining a fifth-
order digital IIR filter

Rd(z)=
−0.1124z−5+0.7740z−4−2.0182z−3+2.5363z−2−1.5523z−1+0.3725
−0.4332z−5+2.6488z−4−6.3441z−3+7.4747z−2−4.3462z−1+1

.

Therefore, the resulting total fractional-order controller is a sixth-order
digital IIR filter given by

Re(z) = 0.25 + 0.02
(

1 − z−1

T

)
Rd(z), (15.38)
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where the integer-order derivative is implemented by the standard finite
differences formula.

15.7 Experimental Results

The control strategy proposed here, with the use of the outer-loop controller
in (15.38), has been tested in the experimental platform of the picture in
Figure 15.16, whose dynamics corresponds to the one described previously for
the single-link flexible manipulator. In this section, the experimental results
obtained are presented. The robustness of the system has been tested by
changing the payload at the tip. Motor and tip position records are shown.
Simulated control signals are plotted together with the experimental motor
control signals for comparison purposes. Note that the simulations neglect
Coulomb friction, whilst in the experimental platform a compensation term,
+0.3V for positive motor velocities and −0.25 V for negative ones, has been
added to the control signal. These compensation values have been found by
a trial and error process.

Figure 15.16 Photo of the experimental platform

The time responses of the system for payload changes are shown in
Figure 15.17. Bigger masses than 3.2 kg have not been considered since they
could cause the beam to reach its elastic limit and, hence, they will be
neither simulated nor experimented with. For the nominal mass an overshoot
Mp = 0% is obtained. As far as the robustness is concerned, a slight change
in the overshoot of the response appears when the payload changes, due to
the effect of the non-negligible inner-loop dynamics. However, only a 0.59%
variation in the overshoot is obtained for the different masses.
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Figure 15.17 Time responses of the system with controller Re(s), considering non-
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Figure 15.18 (a) shows the measurements of the tip angle θt and the
motor angle θm, while 15.18 (b) shows the motor voltage V , both figures
corresponding to a mass m = 3.2 kg. A relay type control appears in the
transient and steady states due to Coulomb friction compensation. For this
reason the experimental voltage signal obtained presents quick oscillations
and is not zero in the steady state.
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Figure 15.18 Experimental results obtained using controller Re(s) for m = 3.2 kg:
(a) experimental tip angle θt and motor angle θm, and (b) a comparison between the
experimental and simulated motor voltage V

Figure 15.19 shows the measurements of the tip and motor angles and
motor voltage obtained for the nominal mass m = 1.9 kg. And finally, Figure
15.20 shows the results when m = 0.6 kg.

Through Figures 15.18 (b), 15.19 (b), and 15.20 (b), it can be observed that
the peak of the control signal keeps lower than the saturation limit (which is
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Figure 15.19 Experimental results obtained using controller Re(s) for m = 1.9 kg:
(a) experimental tip angle θt and motor angle θm, and (b) a comparison between the
experimental and simulated motor voltage V
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Figure 15.20 Experimental results obtained using controller Re(s) for m = 0.6 kg:
(a) experimental tip angle θt and motor angle θm, and (b) a comparison between the
experimental and simulated motor voltage V

3V) and remains almost constant in the presence of payload changes, with a
value around 0.65 V, making this control strategy very suitable for avoiding
motor saturation problems.

Another important aspect to note is that the fractional-order differentiator
part of the controller, s0.85, is implemented by s0.85 = s/s0.15. That is, the
fractional-order integrator part acts like a low-pass filter of the signal that
enters the derivative operator and reduces the noise introduced through the
control loop. Therefore, with the fractional-order controller, the system is
not only more robust to payload changes, but also to noise presence. In fact,
the control signals obtained with controller (15.28) when repeating the above
experiments show a much noisier aspect than those exhibited here.
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15.8 Summary

A fractional-order controller has been developed in this chapter to control
single-link lightweight flexible arms in the presence of payload changes. The
overall controller consists of three nested control loops. Once the Coulomb
friction and the motor-beam coupling torque have been compensated, the
inner-loop has been designed to give a fast motor response, by using a PD
controller with high gains. The middle simplifying-loop reduced the system
transfer function to a double integrator. The fractional-order derivative
controller was used to shape the outer-loop into the form of a fractional-order
integrator. The result is an open-loop constant phase system whose closed-
loop responses to a step command exhibit constant overshoot, independent
of variations in the load, unlike with a PD controller. It is also noted that
the obtained fractional-order controller has a much simpler structure, and
can be much more easily designed, than any robust controller designed to
achieve similar specifications with any robust control methodology (H∞,
QFT, etc.), which imply costly optimization procedures and the definition
of specifications by auxiliary transfer functions.

The fractional-order controller has been tested in an experimental platform
by using approximate discrete implementations. From the results obtained it
can be concluded that an interesting feature of the fractional-order control
scheme is that the overshoot is independent of the tip mass. This allows a
constant safety zone to be delimited for any given placement task of the
arm, independent of the load being carried, thereby making it easier to plan
collision avoidance. It must be noted that with the fractional-order controller
the control signal is less noisy than with a standard PD controller, since the
fractional-order integrator acts like a low-pass filter and reduces the effects of
the noise introduced in the control loop. Besides, with this control strategy,
changes in the payload impose only slight variations in the maximum value
of the control signal, avoiding possible saturation issues.



Chapter 16

Automatic Control of a Hydraulic
Canal

Let us now turn our attention to the problem of the automation of water
transportation processes, which are often implemented by means of open
hydraulic canals. We will show how simple fractional-order PI controllers like
those described in Chapter 5 can substantially improve the robustness of
standard PI or PID controllers. Hydraulic canals are a typical example of
dynamical systems with important delays and whose parameters may vary
over a large range. Fractional-order controllers are designed that improve
phase and/or gain margins — which are classical indices that measure closed-
loop process robustness — while keeping the desired closed-loop behavior of
the canal with the nominal dynamics. Moreover, it is shown that, for canals
with significant and variable time delays, fractional-order controllers behave
better than standard controllers when all of them are combined with the
Smith predictor.

16.1 Background and Motivations

Nowadays water is becoming a precious, rare, and scarce resource in many
countries of the world. Then there is a growing interest in the application
of advanced management methods to prevent wastage of this vital resource.
Irrigation systems are the major water users, with a world’s average of 71%
of water use [239]. The most important objective of irrigation systems is to
provide the demanded quantity of water to the different users at specified
instants, and to guarantee the safety of the infrastructure [240].

Water losses in irrigation canals are large. Many irrigation systems are
still being managed manually, leading to low efficiency in terms of delivered
water vs water taken from the resource [241]. It is widely accepted that
these losses can be substantially reduced by employing automatic control
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systems [242, 243]. In particular, automatic control leads to more efficient
water management in irrigation systems which are based on open main canals
subject to large losses [244]. The main objectives of these automatic control
systems are: 1. improving water efficiency and distribution, 2. reducing water
losses, and 3. supplying water users in due time.

New canals often have an automatic control system of water distribution.
Additionally different old canals are being modernized with control equip-
ments that help the canal operators to manage water distribution better.
Therefore, canal automation has become a significant research area [245].

A typical main irrigation canal consists of several pools separated by
gates that are used for regulating the water distribution from one pool to
the next one. Figure 16.1 shows a scheme of a main irrigation canal with
gates. In automatically regulated canals, the controlled variables are the
water levels yi(t), the manipulated variables are the gate positions ui(t), and
the fundamental perturbation variables are the unknown offtake discharges
qi(t). In this figure Qi(t) is the discharge through the transversal section of
the canal. If the water levels are measured near the end of the pool, the
control system is called distant downstream control. Downstream control
is considered as being superior to upstream control (water level measured
immediately after the control gate) because it increases the efficiency of water
use and improves the reliability and flexibility of the system [246]. The choice
between downstream and upstream control is to a certain extent dictated by
the design of the canal, and it may not be a variable the control engineer
can play with [247]. It is not necessary to know the water level variations
along the whole pool in order to control the water levels in the canals. It
is enough to measure it at some specific points that depend on the specific
canal control method to be used. The previous considerations make it possible
to approximate the main irrigation canal dynamics by linear models with
concentrated parameters and a time delay for control purposes [244,247].

yi−1(t)
yi(t)

gate i+1gate i

LS
LS

LS — level sensor

ui−1(t)
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pool i−1
pool i

pool i+1

ui(t)
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Qi(t)

Qi+1(t)

qi−1(t)
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Figure 16.1 Scheme of a main irrigation canal with gates
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Research pursued by some authors show that the parameters that char-
acterize the dynamic behavior of different irrigation canals may exhibit wide
variations when the water discharge regimes change in the operation range
[248–250]. These canals are known as canals with time-varying dynamical
parameters [251]. Thus any controller to be designed for this class of irrigation
canal has to be robust to time variations in some parameters of the dynamical
behavior [252].

Several strategies have been proposed for canal control. The most popular
one is based on the classical PI controller [253–256]. However, many studies
have shown that simple PI controllers do not seem to be well suited to
solve the problem of effective water distribution control in irrigation canals
characterized by significant time-varying dynamical parameters [249, 256,
257].

Then it would be desirable to provide a simple way to tune PI controllers
according to a minimum performance, guaranteed for a set of hydraulic
conditions. This is called the robust performance design problem [258].
The first robust tuning method of PI controller for an irrigation canal was
proposed [248]. The designed controller appears to be efficient and robust,
but the method lacks some flexibility in the design, since the controller pa-
rameters cannot be changed according to performance or robustness criteria.
Litrico and coworkers developed in [258] a method to tune a robust distant
downstream PI controller for an irrigation canal pool based on gain and phase
margins requirements.

In this chapter we will explore the possibility of using quite simple
fractional-order PI controllers in order to improve the robustness of the
classical PI controller. According to the basic idea of enlarging phase and/or
gain margins, we will show that these margins can be conveniently increased
by using fractional-order controllers. We will develop a simple method
for designing fractional-order robust controllers, and experimental results
obtained in a laboratory hydraulic canal will be reported. More details about
these contents can be found in [259, 260]. We also develop a fractional-order
PI controller embedded in a Smith predictor structure to regulate canals with
significant and variable time delays, according to the proposals in [261,262].

This chapter is divided into two parts.
The first part begins with the description of the experimental canal. Then

a linearized model of the dynamics of the canal is obtained, together with the
range of variation of the model parameters. Afterward, the method to design
robust fractional-order PI controllers is developed, and its robustness features
are compared with those of an equivalent PI controller in the frequency do-
main. Later robustness features of the proposed controller in the time domain
are compared with those of the equivalent PI controller and, as a consequence
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of this, a modification is proposed for the fractional-order controller in order
to improve its steady-state behavior. Then experimental results are reported
for all these controllers. Next the fractional-order PI controllers are compared
with equivalent PID controllers, both in the time and frequency domains.
Experimental responses of the fractional-order controllers are also compared
with the best equivalent PID controller (the most robust one) and, finally,
some conclusions are drawn.

The second part of the chapter begins by introducing the problem of
real irrigation main canals, where the time delay is significant. Then the
methodology developed in the first part to design controllers using frequency
specifications is extended to the case of using a Smith predictor: a section
is devoted to design standard controllers and another to design fractional-
order ones. In the following section the dynamic model of a real canal pool
is obtained. Afterward, several controllers (of integer and fractional-orders)
are compared using this model. Later some conclusions are drawn, and the
chapter ends with a section that summarizes the main results.

16.2 Description of the Laboratory Hydraulic Canal

The laboratory hydraulic canal where the fractional-order controllers will
be tested is located in the Fluids Mechanics Laboratory of the Castilla-La
Mancha University in Ciudad Real (Spain). It is a variable slope rectangular
canal 5m long, 8cm wide, and the height of the walls is 25cm. All experiments
were developed with a very small slope (very close to zero slope). The
canal has two motorized adjustable slide undershoot gates (upstream and
downstream) of 8cm width that allow its division into pools of different
lengths. It has been arranged as three pools of different length separated
by two submerged flow gates, the canal main pool being 4m long. However,
considering its small dimensions, the canal is fundamentally operated as a
single main pool approximately 4.7m long (the second submerged gate is
kept open and pools two and three have been united) and in a downstream
end operation method. The canal has a relatively small upstream pool. The
nominal operation depth is 50mm and depth relative to nominal depth is
±10mm. Figure 16.2 shows this experimental prototype canal, where the
upstream canal pool can be seen at the right end and the canal main pool at
the center of this figure.

A schematic representation of the control system of this experimental
laboratory hydraulic canal is sketched in Figure 16.3. The water flows in a
closed circuit from the upstream reservoir to the downstream storage reservoir
in order to economize water. The water return to the upstream reservoir is
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Figure 16.2 Experimental prototype canal of Fluids Mechanics Laboratory of the
Castilla-La Mancha University (Spain)

maintained by two electric parallel variable speed pumps that can operate in
an independent way (as redundant hardware) or simultaneously, depending
on the water inflow needed to supply the canal. The total canal inflow is
adjustable from 0 to 14 m3/h (≈ 3.88 L/sec). Therefore, the canal does not
have water losses except evaporation effects which are not significant in this
case.

Two piezoelectric pressure sensors (PS), located in the canal external
bottom, are used to monitor and control the upstream and downstream end
water levels. The motorized slide undershoot gates are equipped with DC
motors and gate position sensors (GPS). The canal is also equipped with an
electromagnetic flowmeter (EMF) installed in the water return tube which
measures the canal water inflow pumped by the electric pumps from the
storage downstream reservoir toward the upstream reservoir. This flowmeter
facilitates the supervision of the pumping operations. The canal uses a
Pentium PC as canal control station. A SCADA application is installed
in this PC to ensure the canal automatic control and supervision. Signals
from different installed sensors and downstream gate positions, upstream
and downstream end canal water levels, and canal water inflow are available
through a profibus connection protocol. The developed SCADA application
allows the implementation of different control strategies like fractional-
order, standard and advanced, as well as different canal operation methods
(upstream, downstream, downstream end, mixed, Bival, etc.), and set-points
change of primary and secondary control loops.
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Figure 16.3 Overall control system of experimental prototype canal

Control of this hydraulic canal is very complicated because the maneuvers
of opening and closing the upstream gate produce very large changes in the
upstream water levels, due to the small dimensions of the upstream pool.
In order to solve this problem, a secondary control loop that controls the
upstream water level and keeps it in a fixed reference was implemented. The
upstream water level is controlled by a PID controller, which acts on two
variable speed pumps. The primary control loop carries out the control of
the downstream end water level in the main pool of the hydraulic canal, by
means of a fractional-order controller or a classical controller. All hydraulic
canal controllers (control strategies) are installed inside the canal control
station and are managed by the SCADA application. Figure 16.3 also shows
a scheme of the overall control system of this canal. The primary control
loop can be seen in the upper part of this figure, and the secondary standard
control loop can be seen in its lower part.

The primary control loop has a second-order band-pass filter in order to
reduce measurement noises whose transfer function is

F (s) =
(

8
s + 8

)2

. (16.1)

This filter has a gain crossover frequency of 8 rad/sec which is high enough
not to modify the dynamics of the canal (the next section will show that the
largest time constant is around 10 sec and the smallest around 1 sec, having
associated gain crossover frequencies of 0.1 rad/sec and 1 rad/sec respectively,
both of them being much smaller than the crossover frequency of the filter). In
turn the filter crossover frequency is much smaller than the noise frequencies,
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allowing for effective noise attenuation. This filter is applied to the signal
obtained from the water level sensor. Moreover a saturation filter is also
inserted between the controller and the DC motor in order to ensure that the
control signal will not be out of the control range (0∼50mm).

16.3 Control-oriented Hydraulic Canal Dynamic Model

The dynamics of water flowing in irrigation open canals is modeled by using
the so-called Saint-Venant equations, which are nonlinear hyperbolic partial
differential equations, and are given by [263]

∂Ah

∂t
+

∂Qh

∂xh
= qh,

∂Qh

∂t
+

∂Qh
2/Ah

∂xh
+ gAh

∂yh

∂xh
= −gAhSf + KhqhVh,

(16.2)

where, Ah(xh, t) is the canal cross section area; Qh(xh, t) is the discharge
through section Ah; qh(xh, t) is the lateral discharge; V (xh, t) is the mean
velocity in section Ah; yh(xh, t) is the absolute water surface elevation; xh

is the distance along the canal; g is the gravity acceleration; t is the time
variable; Kh is the weighting coefficient, Kh = 0 if qh > 0 and Kh = 1
if qh < 0; Sf(xh, t) is the friction slope. Nowadays, different methods exist
for the solution of the Saint-Venant equations, but all of them exhibit large
mathematical complexities [264]. Moreover, these equations are very difficult
to use directly for controller design [244]. Often, the Saint-Venant equations
are linearized around a set-point, and equivalent first-order systems plus a
delay are used to model the canal dynamic behavior [247]. Sometimes second-
order systems plus a delay are also used [250]. As was mentioned in Section
16.1, these linearized models have the strong drawback that their parameters
may experience large changes when the canal operation regime varies, as a
consequence of having been obtained from a highly nonlinear dynamic system.
Then any controller to be designed for an irrigation canal has to be robust
to variations in the parameters of such a linearized model.

The previous model of a single canal pool must be completed with the
equation that describes the interaction between consecutive pools, and the
influence of the gate opening signal u(t). This is given by the equation of the
discharge through a submerged flow gate [263]

Qh(t) = CdL
√

2gu(t)
√

yup(t) − ydn(t), (16.3)

where Cd is the gate discharge coefficient; L is the gate width; yup(t), ydn(t)
is the upstream and downstream water levels, respectively.
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The discharge variations through an upstream gate originate changes in
the canal pool flow propagation, which is determined as a function of the wave
velocity Ch(t) and the already defined mean flow velocity Vh(t) [265, 266]. If
the measure of the water level variations is carried out at the downstream
end of the canal pool, variations of the flow propagation imply variations in
the canal pool time delay in the range (τmin, τmax). In this case, the time
delay canal pool variations may be determined by [266]

τ(t) =
lh

Ch(t) + Vh(t)
, (16.4)

where lh is the canal pool length.
Taking into account all the above considerations, we use in this chapter

a linearized dynamic model for the main canal pool consisting of a second-
order system plus a delay, where all the parameters of the model (including
the delay) may change with time:

T1(t)T2(t)
d2Δy(t)

dt2
+ (T1(t) + T2(t))

dΔy(t)
dt

+ Δy(t) = K(t)Δu(t − τ(t)),

(16.5)
where Δu(t) is the incremental gate opening and Δy(t) is the incremental
downstream water level.

As we consider that all these parameters only change when the flow regime
changes — the linearization point changes — main canal dynamics can be
described by the following transfer function:

G(s) =
ΔY (s)
ΔU(s)

=
K

(1 + T1s)(1 + T2s)
e−τs, (16.6)

whose parameters are regarded as constant during a maneuver. Then the
control problem of an irrigation main canal can be stated as the robust control
of system (16.6) whose parameters may take values in specified ranges. This
implies that the control-oriented dynamic model must include a set of nominal
plant parameters and the range of variation of each of these parameters.

Figure 16.4 shows a scheme of the experiment carried out to identify the
dynamics of our canal. A set of step like opening maneuvers are applied to
the upstream gate of the main canal pool u(t), and the downstream water
level y(t) is measured. A wide range of gate opening operations is used in
order to characterize the nominal model and its range of variation.

Figure 16.5 shows the experimental results obtained with one of the gate
maneuvers sequences carried out. This figure plots 1. the sequence of gate
openings, 2. the downstream water level of the first pool (the water level
immediately before the control gate), i.e., the value yup(t) of (16.3), measured
by a piezoelectric pressure sensor, and 3. the second pool downstream
water level y(t) signal measured by a piezoelectric pressure sensor. It can
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Figure 16.4 Step test of the canal pool

be observed that the PID controller of the secondary control loop keeps
approximately constant the downstream water level of the first pool at a
set-point of 60 mm. At the beginning of each gate maneuver some interaction
can be noticed between the first and second pools: an instantaneous variation
of this pool downstream water level with respect to the set-point is produced
which is quickly removed by the controller. Experiments showed that the
effects of this interaction on the main pool dynamics (second pool) are of
secondary order and have little influence on the identification process.
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Figure 16.5 Canal responses to a step sequence test applied to a pool

Figure 16.6 shows the fittings attained with linear dynamic models of
the form (16.6). The solid line shows the downstream water level signal of
the second pool after having been filtered with (16.1). The dashed line of
this figure shows the best fittings achieved with model (16.6), having run
a standard least squares algorithm to identify its parameters. Fitting of
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model (16.6) has been carried out for each maneuver yielding different sets
of parameter values depending on the initial and final control gate openings
u(t). Then the dashed line represents the simulated responses of the different
models fitted to the different experimental transient responses, obtained for
the different gate opening maneuvers. This figure shows quite good agreement
between experimental and simulated responses, demonstrating that model
(16.6) adequately represents the dynamics of the canal.
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Figure 16.6 Identified models fittings of the experimental responses (solid line) for the
second pool downstream water-level filtered signal (dashed line, not easily distinguishable,
or the smoother line)

We define a nominal operating point given by Qnom(t)≈7m3/h(1.94L/sec),
a first pool downstream water level (or immediately upstream from the
control gate) yup(t) = 65mm, and a second pool downstream water level
y(t) = 55mm. In this case, the least squares identification procedure applied
to the downstream water level response of the main pool when a step
command is applied in the gate opening yields the following nominal values
of the model (16.6) (hereinafter denoted as nominal model): K0 = 0.6,
T10 = 10 sec, T20 = 1 sec, and τ0 = 2.6 sec.

However, when the discharge regime changes through the upstream gate
in the operation range (Qmin, Qmax), where Qmin = 1 m3/h ≈ 0.27 L/sec
and Qmax = 14 m3/h ≈ 3.88 L/sec, the dynamical parameters of our canal
prototype undergo wide variations. Carrying on the least square fitting
identification procedure on several experiments like that shown in Figure 16.5
for different discharge regimes yields the following ranges of variation for the
parameters of model (16.6):

0.2 � K � 1.1, 7.9 � T1 � 12.4, 0.3 � T2 � 1.6, τ = 2.6. (16.7)
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We consider that T1 is the dominant time constant (the larger time
constant associated with the dynamics of the canal pool), while T2 is the
smaller time constant, which represents the motor + gate dynamics and the
canal secondary dynamics, which is much faster than the canal pool dominant
dynamics and can be regarded as almost invariant with regard to discharge
regimes. This hypothesis is clearly supported by the obtained experimental
results (16.7).

Moreover, as a result of the small size of our canal prototype, its time
delay is approximately constant (and small). In real canals this value would
be much larger and would undergo noticeable variations.

Figure 16.7 shows the Bode plots of the nominal plant and the extreme
cases in the operation range (Qmin, Qmax). In these and the following plots
the x axis expresses decimal logarithms of the frequency expressed in radians
per second (decades). The effective control of hydraulic canals whose dynamic
behavior is characterized by means of mathematical models with time-varying
parameters requires the implementation of controllers that are robust to these
parameter variations, and to all the frequency responses included between the
limits drawn in Figure 16.7.
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Figure 16.7 Bode plots of the nominal and extreme plants in the operation range
(Qmin, Qmax)

Finally, we mention that our hydraulic canal has no offtake discharges
qh(t), so a disturbance model is not needed for the controller design.
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16.4 Design and Experimental Studies of
Fractional-order PI Controllers

16.4.1 Fractional-order PI Controller Design

Considering that the PI control strategy is the most commonly used in real
hydraulic canal control systems because it can be tuned properly more easily
than a PID [253, 267], in this section a fractional-order control strategy
based on the generalization of a PI controller is proposed to control our
laboratory hydraulic canal. Our controller may exhibit enhanced stability and
robustness performance to hydraulic canal parameters variations compared
to the standard (classical) control strategies (PI or PID). The extension of
the derivation and integration orders from integer to non-integer numbers
provides more flexible tuning strategies and, according to Chapter 5, an
easier way of achieving control requirements with respect to classical control
strategies. The proposed fractional-order PI controller, hereinafter denoted
an FPI controller, is of the form

uFPI(t) = Kp

[
1
Ti

D−λe(t) + D1−λe(t)
]

, 0 � λ � 1, (16.8)

whose transfer function is:

CFPI(s) = Kps1−λ +
Ki

sλ
=

Kps + Ki

sλ
, (16.9)

where Ki = Kp/Ti. Notice that (16.8), (16.9) becomes a PI controller when
λ = 1, and a PD controller when λ = 0. We chose this particular controller
structure because we wanted to have a PD controller (with its nice features of
providing large positive phase, and faster and more damped time responses),
but modified (by including the fractional-order denominator) in order to
achieve closed-loop zero permanent error to a step command, and reduce the
amplification of high-frequency noises. With a standard PI controller these
last two features can be achieved but paying the price of a constant phase lag
of 90◦. Our control structure allows achieving these features with a reduced
constant phase lag of 90λ◦, which allows better transient dynamics than with
a PI. Regarding high-frequency noise amplification, the magnitude Bode plot
of a PD controller has a slope at high frequencies of 20 dB/dec while the
slope of our FPI controller is smaller: 20(1−λ) dB/dec. In this aspect the PI
controller is the best one as its slope at high frequencies is 0 dB/dec. Three
parameters can be tuned in this controller: Kp, Ki, and λ. They are one
more than in the case of the standard PI controller. The fractional-order can
be used to fulfil additional specifications of the controlled system. The block
diagram of the fractional-order control system of our experimental laboratory
hydraulic canal is shown in Figure 16.8. This block diagram also includes a
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disturbance D(s) caused by error in flow settings, emergency pump shutoff,
changes in offtake backwater effects, offtake gate clogging, etc.
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Figure 16.8 Block diagram of the laboratory hydraulic canal control system with
fractional-order controller

We design a controller (for the nominal plant) that verifies the typical
control system design frequency specifications: 1. a desired phase margin ϕm,
which guarantees desired nominal damping and robustness to changes in the
delay; 2. a desired gain crossover frequency ωcg, which guarantees a desired
nominal speed of response, and 3. zero steady-state error. The parameters
of controller (16.9) that fulfil specifications 1–3 can be calculated by the
following procedure. According to the Final-Value Theorem [22], condition 3
implies that λ > 0 must be verified. Conditions 1 and 2 can be expressed in
a compact form by the complex equation

G(jωcg)CFPI(jωcg) = −ejϕm , (16.10)

which involves two real equations. If the form of controller (16.9) is substi-
tuted in (16.10) and operating it thus follows that

Ki + jωcgKp = − (jωcg)λejϕm

G(jωcg)
. (16.11)

If one takes into account that (jωcg)λ = ωλ
cge

j(π/2)λ, the controller gains
are easily determined from

Ki = −ωλ
cg�
(

ej[(π/2)λ+ϕm]

G(jωcg)

)
, Kp = −ωλ−1

cg �
(

ej[(π/2)λ+ϕm]

G(jωcg)

)
, (16.12)

where �(·) and �(·) take the real and imaginary parts of a complex number
respectively. Then a different controller that achieves conditions 1–3 is
obtained for any value of λ. We use this free parameter to increase the
robustness of the system. The model obtained from identification in Section
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16.3 showed that the larger parameter variations are produced in the process
static gain K. Therefore, the parameter λ has been designed in such a way that
the closed-loop system robustness, in the sense of stability, to gain changes is
maximum, i.e., the gain margin obtains its maximum value. This procedure
is applied to the laboratory hydraulic canal. Having taken into account the
nominal values of the hydraulic canal model parameters (nominal model)
defined in Section 16.3, the following design specifications were chosen:

1. Desired settling time. The open-loop nominal canal settling time is
approximately tos = 3T10 + τ0 = 32.6 sec (see Section 16.3). The designer
wishes to make the closed-loop system response about twice as fast. Thus
a settling time tcs = 15 sec, was chosen, which implies an equivalent
closed-loop time constant T c

10 = tcs/3 = 5 sec and, therefore, a gain
crossover frequency ωcg = 1/T c

10 = 0.2 rad/sec (this is a standard result
in Control Theory which relates the time constant with the frequency
response bandwidth [22].

2. A phase margin ϕm = 60◦, which is a fairly standard value for this
specification. A well known result for second-order systems is that the
damping ratio ζ is related to the phase margin through the equation

ζ ≈ ϕm/100 for values 0 � ζ � 0.6. By using Mp = e−πζ/
√

1−ζ2 , which
relates the overshooting Mp and the damping ratio for second-order
systems, one finds that this phase margin corresponds to a value of Mp ≈
10%. These equations can often be used as reasonable approximations for
higher order systems [22]. Our open-loop transfer function G(s)CFPI(s)
is more complex than a second-order system. But the delay of our canal
is relatively small and the secondary time constant T2 is much smaller
than the main time constant T1. Consequently, the overshooting value
given by these equations can be regarded as an accurate estimation.

According to the dynamic model (16.7) obtained in Section 16.3, the
gain K is the canal parameter that undergoes the largest changes: the ratio
between the maximum and minimum gains, given in that equation, is about
5 (T2 may experience variations, which are as large as the gain but this is not
taken into account in this stability analysis as its influence on the open- and
closed-loop dynamics is very small). Thus, gain change is the most critical
feature to be taken into account when designing a robust controller for the
writers’ canal.

Gain margin (the inverse of the magnitude of the frequency response at the
frequency at which the phase is −180◦) expresses how much the plant gain
can be increased before the closed-loop system becomes unstable. It would
therefore be desirable to maximize the gain margin in order to allow large
gain changes without destabilizing the closed-loop system. Figure 16.9 shows
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the gain margins attained with the nominal model of the laboratory canal
controlled by the proposed FPI regulator, as a function of the fractional order
parameter λ. Figure 16.9 shows a maximum gain margin of 3.1 obtained for a
value λ = 0.37. As the gain margin of the standard PI is 2.4 (see Figure 16.9
when λ = 1), the improvement achieved is 29 %. Thus the designed controller,
obtained from (16.12) with that λ value, is

CFPI(s) = 2
1 + 1.6s

s0.37
. (16.13)
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Figure 16.9 Gain margin in function of the fractional order parameter λ

For comparison purposes, the standard PI controller has also been de-
signed. By using (16.12) with λ = 1, the following is obtained:

CPI(s) = 0.2
1 + 18.1s

s
. (16.14)

The frequencies (ωcp) corresponding to the gain margins with these con-
trollers are, respectively, ωcp = 0.54 rad/sec (16.13) and ωcp = 0.47 rad/sec
(16.14).

Figure 16.10 shows the magnitude and phase plots of the Bode plots of the
open-loop systems, with the designed FPI and the standard PI controllers,
respectively. The phase of the FPI controller is always less negative than the
phase of the PI (with the exception of the frequency design point ωcg, where
both must logically coincide). Moreover, the magnitude with both controllers
is quite similar in the frequency range from ωcg to 1.2 rad/sec. This last
frequency is much larger than frequencies ωcp, which correspond to both
the designed controllers. In fact, Figure 16.10 shows that the difference of
magnitudes is less than 1 dB in the aforementioned frequency range.
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Figure 16.10 Bode plots for the nominal plant, with solid line for PI and dash line for
FPI controller

• If the magnitude of both controllers is similar and the phase is less negative
with the FPI than with the PI, then ωcp with the FPI is greater than with
the PI, and the gain margin is consequently also greater, thus increasing
the robustness to plant gain changes.

• The fact that the FPI exhibits a less negative phase than the PI also
implies more robustness (in the sense of stability) to changes in the main
time constant of the plant. This last assertion can be justified as follows: if
T1 increases then the variation of the term 1/(1+jωT1) causes attenuation
in the magnitude of G(jω)CFPI(jω) and a decrease in its phase. These
changes increase as T1 increases. The system becomes unstable when the
magnitude of G(jω)CFPI(jω) is 0 dB and the phase −180◦ (marginally
stable condition). As the magnitude of the open-loop frequency response
is similar for both controllers in a wide frequency range, and both remain
similar in that range under changes in T1, the value of T1 that makes
the closed-loop system marginally stable depends on the phase response
of the open-loop transfer functions. A frequency response with smaller
phase implies a smaller value for the T1 that makes the closed-loop system
marginally stable. As the fractional-order controller exhibits larger phase
than the PI controller in all the frequency range, one will obtain a larger
stability limit value for T1 with the fractional-order controller than with
the PI. A similar reasoning can be applied in the case of decrease in T1.
The arguments presented above are valid only under the assumption that
frequencies ωcp remain within the frequency range where the magnitudes
of the frequency responses remain similar.

These Bode plots show that:
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Otherwise, the robustness of the FPI and PI controllers to changes in
the time delay (assuming that all the other plant parameters remain at
their nominal values) is the same as this only depends on the phase margin,
which has been designed to be the same for both controllers under nominal
conditions. If time delay were the only parameter to change, the stability
robustness to these changes would be given by ωcgΔτ = ϕm, where Δτ is the
maximum increment allowed from the nominal time delay τ0 (Δτ = τ − τ0 )
and the phase margin is given in radians. Given the general control scheme
shown in Figure 16.8, any controller C(s) designed to have a given phase
margin would therefore exhibit the same robustness to changes in the time
delay, as is the case of the two controllers used here.

A further question is that of the stability robustness to simultaneous
changes in all the plant parameters (K, T1, and T2 can take values in all the
range (16.7)). Figure 16.11 shows the Nichols chart of the nominal open-loop
dynamics, and the curves enclosing all the possible open-loop dynamics given
by ranges (16.7), for the PI controller (i.e., frequency responses of the open-
loop transfer functions for any combination of parameters belonging to the
intervals defined in (16.7) will be within the mentioned two extreme curves).
This figure shows that the closed-loop system with the PI controller may
become very undamped for some combinations of parameters related to the
highest plant gain cases (the band defined in the Nichols chart includes the
point (−180, 0)). Figure 16.12 shows the Nichols charts of the nominal open-
loop dynamics, and the curves enclosing all the possible open-loop dynamics
for the FPI controller. This last figure shows that the closed-loop system
with the FPI controller remains more damped than the PI, even for the worst
combination of the three aforementioned parameters (the band defined in the
Nichols chart passes to the right of the point (−180, 0), further away than
with the PI). Then, the proposed fractional-order PI controller increases the
robustness of the standard PI controller and improves the dynamical behavior
while keeping a similar temporal response of the closed-loop system in the
nominal plant case.

One final comment is that if one changed the design specifications (and the
controller design problem) in the sense of allowing for the same robustness
in the PI and the FPI controllers, then one would obtain an FPI controller
which would attain a faster response with about the same damping as the PI
for all the range of variation of canal parameters.
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Figure 16.11 Nichols chart of the system with the PI controller
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Figure 16.12 Nichols chart of the system with the FPI controller

16.4.2 Time Response of the Fractional-order PI
Controller

In this section the temporal responses of both the PI and FPI controllers are
studied by carrying out some simulations. Temporal responses of the closed-
loop systems sketched in Figure 16.8 to step commands of amplitude 1 are
obtained for the nominal plant, and two cases of the plant with extreme
dynamics. Moreover, the ability to reject perturbations of these controllers
is also compared. Considered perturbations are represented in Figure 16.8,
where the input disturbance f(t) is a step of amplitude −1, and the time
constant T3 of the associated block is assumed to be a third of the nominal
value of T1: T3 = 3.33 sec (it is assumed that an offtake discharge is produced
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somewhere between the upstream gate and the downstream sensor, in a
location closer to the downstream end of the pool than to the upstream
end).

Plant dynamics are simulated with a simulation step of 0.01 sec. However
controllers are simulated assuming a sampling period T = 0.1 sec and a zero-
order hold with this period too, in order to reproduce the control system
hardware used in the experimental setup.

Figure 16.13 shows the closed-loop responses with the PI controller to
a unit step command for three cases: the nominal plant (K0 = 0.6m/m,
T10 = 10 sec, T20 = 1 sec, τ0 = 2.6 sec), an extreme case with minimum gain
(K = 0.2m/m, T1 = 12.4 sec, T2 = 1.6 sec, τ0 = 2.6 sec), and an extreme case
with maximum gain (K = 1.1, T1 = 7.9 sec, T2 = 0.3 sec, and τ0 = 2.6 sec).

Figure 16.14 shows the closed-loop responses with the FPI controller to the
unit step command for the same three cases as above. Figure 16.15 shows the
responses of both PI and FPI controllers in the cases of the three mentioned
plant dynamics, when the offtake discharge disturbance described above is
produced at instant 0 sec.
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Figure 16.13 Temporal response of the system to a step command with the PI controller,
solid line for nominal gain, dashed line and dashed dotted line for minimum and maximum
gains, and dotted lines for ±5% of reference variations

Comparing Figures 16.13 and 16.14 it is observed that the fractional-
order controller provides more damped responses than the PI while having
similar rise times. However, the settling time of the closed-loop response is
much larger when using FPI than PI controllers. Similar conclusions can be
obtained from Figure 16.15 when comparing the ability of both controllers
for removing the effects of offtake discharge disturbances
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Figure 16.14 Temporal response of the system to a step command with the FPI
controller, solid line for nominal gain, dashed line and dashed dotted line for minimum
and maximum gains, and dotted lines for ±5% of reference variations

The reason why the fractional-order controller exhibits a much larger
settling time than the PI controller is because the order of the integral term
of the fractional-order controller is α = 0.37. The Final-Value Theorem states
that the fractional-order controller exhibits null steady-state error to a step
reference if α > 0 [22]. But in the case of our fractional-order controller,
where α � 1, the output converges to its final-value more slowly than if a PI
controller is used.

Next a modification of the fractional-order controller is proposed in such
a way that the settling time is decreased without changing the dynamics and
robustness properties of this controller. In order to make the system reach its
steady state faster, the open-loop frequency response is shaped in the sense of
modifying its characteristics at low frequencies by increasing the type of the
system, but leaving the frequency characteristics unchanged at medium and
high frequencies. This can be achieved by multiplying the fractional-order
controller by a term of the form (s+η)/s. If the parameter η is small enough,
then this term improves the steady-state behavior, increases the type of the
system, while leaving the dynamics unchanged (this is a standard procedure
for designing PI controllers). After some numerical simulations we conclude
that the best value of η for the referenced system is 0.02. Then the modified
fractional-order controller, hereinafter denoted as FPI-PI controller, is given
by

CFPI−PI(s) = 2
(

1 + 1.6s

s0.37

)(
s + 0.02

s

)
. (16.15)

Note that η � ωcg. Then frequency specifications attained by the previous
FPI are not therefore modified by this term.
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Figure 16.15 Temporal response of the system to an offtake discharge disturbance with
the PI and FPI controllers, with nominal in solid line, while the other two lines for
minimum and maximum gains: (a) PI controller and (b) fractional-order PI controller

Figure 16.16 shows the responses of the closed-loop system to a unit step
command with this new controller in the cases of the three plant dynamics
mentioned before.

Table 16.1 shows the settling times (defined as the time required by the
system response to enter the band of ±5% of the desired steady-state value
without exiting later) of the PI and FPI-PI controllers for these three plant
dynamics. It can be observed that both controllers behave very similarly in
the case of the nominal plant, while the fractional-order controller reaches
in significantly less time the band of ±5 % of the desired state than the
PI in the cases of non-nominal dynamics. It is also mentioned that the
settling time attained by both controllers with the nominal plant (28.4 sec
is quite different from the design value defined in the specifications of Section
16.4.1. This is because the used relationship between this specification and
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Figure 16.16 Temporal response of the system with the FPI-PI controller, with nominal
in solid line, while the other two lines for minimum and maximum gains

the gain crossover frequency (ωcg = 3/tcs) is exact only for certain second-
order systems. It is often used as an approximate equation, but in the case
of plants with delays the errors may become noticeable. Therefore if a faster
closed-loop system was wished, a larger design value for ωcg must be chosen.

Table 16.1 Settling times of the PI and FPI-PI controllers

Controller Settling time (sec)

Minimum gain plant Nominal plant Maximum gain plant

PI 79.4 28.4 71.6

FPI-PI 56.1 28.4 25.1

Figure 16.17 draws the Nichols charts of the nominal open-loop dynamics,
and the curves enclosing all the possible open-loop dynamics for the FPI and
FPI-PI controllers. It shows that frequency responses of both controllers are
very similar with the exception of at very low frequencies (the region of larger
gains of this figure).

16.4.3 Experiments with the Fractional-order PI
Controller

In order to show the feasibility and robust performance of the proposed FPI
controllers, real-time experiments were carried out in the laboratory hydraulic
canal. The fractional-order control algorithm has been implemented in a
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Figure 16.17 Nichols chart of the system with the FPI (solid lines) and the FPI-PI
controller (dashed lines)

SCADA application with a home-tailored fractional-order control LabView
library. Fractional-order operators have been approximated by FIR filters
based on the Grünwald–Letnikov’s definition of the discretized fractional-
order operator as expressed in (2.14), combined with the short memory
principle (see Chapter 2). A sampling period T = 0.1 sec has been used
for all the controllers implemented in the SCADA application (fractional-
order or standard). Taking into account the variation ranges of the dominant
time constant T1 and the time delay τ of the laboratory hydraulic canal (the
dominant time constant can reach values of up to T1 = 12.4 sec, whereas
the time delay experiences only small variations), the transient of this canal
to a step input may last up to 50 sec. Then fractional-order operators were
implemented with a memory of 50 sec, which takes into account most of the
transient history in the discretized fractional-order operator. If the sampling
period was T = 0.1 sec, then N = 500 was chosen for the truncation value
applied to (2.14). Therefore controller (16.13) was implemented as

u(t) = 2D−0.37e(t) + 3.2D0.63e(t), (16.16)

by using the approximation

Dαe(t) = T−α

min(ĵ,N)∑
j=0

(−1)j

(
α

j

)
e(t − jT ), (16.17)

with this N value, being ĵ such that ĵT � t < (ĵ + 1)T . Figure 16.18 shows
the frequency responses of the ideal fractional-order controller (16.13) and
its discretized implementation using (16.16) and (16.17), with T = 0.1 sec
and N = 500. This figure shows that both responses are quite similar in
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the range of one decade over and down the designed gain crossover frequency
ωcg, which is the interval of interest for the closed-loop behavior (also includes
the frequency of the phase crossover frequency ωcp). In the surroundings of
ωcg the magnitude difference is smaller than 1 dB, and the phase difference
is smaller than 5◦. Moreover these differences diminish as the frequency
increases. Then it is assumed that the proposed implementation is accurate
enough to reproduce the fractional-order behavior of the FPI controller.
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Figure 16.18 Frequency responses of fractional-order controllers: continuous and its
implementation for the real time application with T = 0.1 sec

The robustness performances of controllers (16.13) and (16.14) are evalu-
ated in comparison with changes in the laboratory hydraulic canal dynamical
parameters. Both controllers were designed to present the same phase margin
ϕm. This means that both controllers with the nominal plant should exhibit
the same robustness (from the point of view of stability) to changes in the
process time delay τ . Both controllers were designed in order to present
the same gain crossover frequency ωcg with the nominal plant. They should
therefore exhibit approximately the same settling time. However, the gain
margins are different, which implies different robustness (again from the
point of view of stability) to changes in the laboratory hydraulic canal static
gain K. Moreover, the fact that the FPI controller has a less negative phase
than the PI controller while exhibiting a similar magnitude in a significant
range of frequencies makes the former more robust to changes in the main
time constant. In Figures 16.19 and 16.20 the real-time closed-loop responses
of the PI and FPI control systems are, respectively, shown for a working
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regime which does not correspond to the nominal operation regime (nominal
parameters). In this case, the downstream water level set-point was increased
by 5mm. If one had the nominal operation regime, both responses would
have exhibited similar responses as a result of the equivalent behavior of
both controllers in the nominal regime. Figures 16.19 and 16.20 show that
the FPI control system exhibits a better dynamic response than that of the
PI (more damped and faster). But the settling time of the FPI control system
is much larger than with the PI. Figure 16.20 shows that when the system
output approaches the desired final-value the speed of convergence abruptly
diminishes (it also shows that a small perturbation occurs at approximately
550 sec). This illustrates the phenomenon mentioned in Section 16.4.2 that if
λ < 1 then the control system output converges on its referenced value more
slowly than in the case of an integer controller with λ = 1.

Figure 16.19 Real-time closed-loop responses of the PI control system

Next, the modified FPI controller of (16.15) was implemented by passing
the output of (16.16) through the PI term

û(t) = u(t) + 0.02
∫ t

0

u(τ)dτ . (16.18)

The integral term of this last equation may be discretized by using any
standard method (for example, simple summation of samples of u(t) mul-
tiplied by the sampling period). Thus, the overall controller maintains the
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Figure 16.20 Real-time closed-loop responses of the FPI control system

Figure 16.21 Real-time closed-loop responses of the FPI-PI control system

integration effect after discretization, in spite of this effect having been lost
in the discretization of the FPI component by using (16.16) and (16.17).
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Figure 16.21 shows the real-time closed-loop response of this FPI-PI
control system. From Figure 16.21 it may be observed that the settling time
has been improved significantly. Figures 16.19–16.21 demonstrate what was
stated in Sections 16.4.1 and 16.4.2 by analysis and simulation: that the FPI-
PI controller gives a faster response and with less overshooting than the PI
controller, while keeping the zero steady-state error, unlike the simple FPI
controller. It is mentioned that in all the experiments the step command
signal has been passed through a first-order filter of time constant 3 sec in
order to smooth the step and prevent the actuator saturation at the first
instants of the control action.

With regards to the real-time implementation of the controller, the com-
putation of (16.17) required the implementation of an FIR filter of length
N = 500. This signifies that implementing control law (16.16) involves
approximately 1000 additions and 1000 multiplications (two fractional-order
operators have to be calculated), which have to be carried out in T = 0.1 sec.
These operations can easily be carried out by any industrial computer in this
time. Moreover, real canals exhibit slower dynamics than that used here. A
fractional-order PI controller has been implemented in a real main irrigation
canal pool in the Ebro River, Spain. In this implementation, the sampling
period was T = 60 sec and the open-loop transient dynamics had a possible
duration of up to 15,000 sec. A FIR filter of 500 operations was also used
(details can be found in [268]). This number of operations can be drastically
reduced by implementing an IIR filter rather than an FIR, as was explained in
Chapter 12. In this case an IIR filter of order 3 or 4 is sufficient to reproduce
the fractional-order operator behavior in the frequency range of interest for
this application.

16.5 Design and Experimental Studies of PID
Controllers

16.5.1 Design of a PID Controller

In Section 16.4.3 it was demonstrated that the proposed fractional-order con-
troller is more robust than the standard PI controller, for controllers designed
to achieve the same frequency specifications for the nominal dynamics. It
can be argued that it has little merit since a PI has two parameters to be
tuned while the FPI has three. Then the extra parameter of the FPI can be
tuned to improve the robustness, but it is not clear that this controller can
perform better than any other standard controller which would also offer three
parameters to be tuned. This section is devoted to compare the proposed
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fractional-order controller with a standard PID controller, which also has
three parameters to be tuned:

uPID(t) = Kp

[
1
Ti

D−1e(t) + e(t) + TdD1e(t)
]

, (16.19)

whose transfer function is

CPID(s) = Kp +
Ki

s
+ Kds, (16.20)

where Ki = Kp/Ti and Kd = KpTd.
First a method to design the PID controller from frequency specifications

is proposed which is an extension of the method developed in Section 16.4.1.
Assume that the PID controller has to achieve the same three specifications
required in Section 16.4.1 for the PI and FPI controllers. If the form of
controller (16.20) is substituted in (16.10) and operating it thus follows that

Ki − Kdω2
cg + jωcgKp = − (jωcg)ejϕm

G(jωcg)
, (16.21)

and the controller gains have to verify equations

Ki − ω2
cgKd = −ωcg�

(
jejϕm

G(jωcg)

)
, Kp = −�

(
jejϕm

G(jωcg)

)
. (16.22)

Then there are now three parameters with which to tune a controller
that must fulfil two specifications: 1 and 2 (specification 3 is always verified
provided that the closed-loop system is stable) of Section 16.4.1. A further
specification is therefore needed. It is chosen to maximize the robustness to
changes in the gain K as the additional specification, accordingly to what
was done in Section 16.4.1 for the FPI controller.

The design problem can therefore be reformulated as: maximize the gain
margin Mg subject to constraints (16.22) and Ki � 0 (this is an additional
closed-loop stability constraint obtained from the Nyquist stability criterion).
Note that this optimization problem is very simple as only one parameter has
to be determined to get the maximum. In fact this optimization problem is
of similar complexity to that solved in Section 16.4.1 for the FPI controller
design.

Figure 16.22 shows the gain margin attained for the family of PID
controllers that fulfil (16.22), in function of Ki. This plot exhibits a maximum
gain margin of Mg = 3.1 at Ki = 0.37, which corresponds to the controller

CPID(s) = 3.67 +
0.37
s

+ 4.18s. (16.23)

This maximum gain margin value is very close to the maximum gain margin
attained with the FPI controller.
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Figure 16.22 Gain margin in function of the Ki gain

Figure 16.23 draws the Nichols charts of the nominal open-loop dynamics,
and the curves enclosing all the possible open-loop dynamics for the FPI and
PID controllers. It shows that the bands corresponding to both controllers
do not enclose the point (−180, 0), and pass similarly closely to that point.
Instead, in general, the frequency response of the PID controller has higher
magnitude than that of the FPI.

Figure 16.24 plots the Bode plots of the nominal plant with the three
controllers: PI, FPI, and PID. From these plots the phase crossover frequency
with controller (16.23) is obtained: ωcp = 0.645 rad/sec. Figure 16.24 shows
that the PID controller is the one with the largest magnitude both at low
and high frequencies (the phase crossover frequency of the PID is also the
largest among the three controllers). This means that though the FPI and
PID controllers have the same gain margin, exhibiting the same robustness
features to plant gain changes, the closed-loop system with the PID controller
is the most sensitive to the effects of high-frequency unmodeled dynamics, or
high-frequency noises (which are quite likely to appear in water level sensors).
For example, a common case is having sensor noise at the Nyquist frequency
of the sampling, which in this case would be ωN = π/T = 31.4 rad/sec.
Noise attenuation attained by the closed-loop system implemented with
the PID controller would be 42 dB while the attenuation using the FPI
controller would be 55.4 dB. This means that the FPI controller attenuates
this noise 4.7 times more than the PID controller. In any case the controller
that would attenuate this noise most is the PI controller as it exhibits
a slope of −20 dB/dec at high frequencies while the slope of the FPI is
−20λ = −7.4 dB/dec.



330 16 Automatic Control of a Hydraulic Canal

−405 −360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

Open−Loop Phase (deg)

O
pe

n−
L

oo
p 

G
ai

n 
(d

B
)

at higher gains

nominal plant

at lower gains

(−180◦, 0 dB)

Figure 16.23 Comparison of Nichols chart of the system with the FPI (solid lines) and
the PID controller (dashed lines)
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Figure 16.24 Bode plots for the nominal plant with FPI (solid lines), PI (dashed lines)
and PID (dashed dotted lines) controllers

16.5.2 Experimental Comparison of the PID
Controller and the Fractional-order Controllers

Experiments with these controllers showed that the PID controller (16.23)
often became very oscillatory (mainly with low flows) while both FPI con-
trollers (16.13) and (16.15) remained stable in all of the cases. Moreover,
in the cases where the PID controller remained stable, its behavior was
much more oscillatory than the behaviors of both fractional-order controllers.
Figures 16.25–16.27 show the closed-loop responses with the PID, FPI, and
FPI-PI controllers, respectively, in a maneuver that implies two steps: the
first one involves passing from a very low water level to a low water level
(from a very low to a low flow), and the second step involves passing
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from the previous low water level to a medium water level (the nominal
level). These figures illustrate the aforementioned dynamic features. System
specifications obtained in this experiment with these three controllers are
shown in Table 16.2. Note that these specifications differ from the design ones
because the parameters of the plant in the working regime of this experiment
are not the nominal ones (though the last steady state is close to the nominal
regime).

Table 16.2 System specifications with controllers (16.23), (16.13), and (16.15)

PID FPI FPI-PI

Rise time Overshoot Settling Rise time Overshoot Settling Rise time Overshoot Settling

(sec) (%) time(sec) (sec) (%) time(sec) (sec) (%) time(sec)

11 50 117 9 19 50 10 6 55

Figure 16.25 Real-time closed-loop responses of the PID control system

Figure 16.28 shows the control signals generated by the three controllers
(16.23), (16.13), and (16.15). In these experiments the command signal has
also been passed through the same first-order filter of time constant 3 sec as
in the PI control experiments, in order to avoid the actuator saturation at
the first instants of the control action. Such filtered command signal is shown
in the upper part of Figure 16.28.

In the first time interval of the experiment, the PID controller is detuned
as a consequence of the values of the canal parameters in this particular



332 16 Automatic Control of a Hydraulic Canal

Figure 16.26 Real-time closed-loop responses of the FPI control system

Figure 16.27 Real-time closed-loop responses of the FPI-PI control system

working regime, leading to an oscillatory control signal. In the target working
regime the new canal parameters are closer to the nominal parameters leading
to a better tuning of the PID parameters and a much better behavior.
Both fractional-order controllers remain satisfactorily tuned under these two
working regimes, always yielding good closed-loop dynamic performances.
Note in Figure 16.28 that signals generated by the fractional-order controllers
are smoother and less oscillatory than the signal generated by the PID
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controller in both maneuvers. Experimentally obtained responses in other
working conditions of the hydraulic canal exhibit similar features to those
presented here, showing the increased robustness of the FPI-PI controller
over the PID. Moreover, the control signal of the FPI-PI controller (16.15) is
less oscillatory than that of the FPI controller (16.13).

Figure 16.28 Control signals of the three studied controllers

16.5.3 Conclusions on the Robust Control of the
Laboratory Hydraulic Canal

The implementation of a simple fractional-order strategy in an experimental
laboratory hydraulic canal, which was characterized to present time-varying
gain and time constants, but a fixed time delay, has been described. A
class of fractional-order PI controllers has been proposed (other possible
structures of fractional-order PI controllers could have been nominated), and
a straightforward method to design it from frequency specifications has been
developed. Moreover, the use of a fractional-order PI controller rather than a
PD controller (or a fractional version of this) was motivated by the desire to
attain zero steady-state error to step changes in the reference, and attenuate
the high frequency noises as far as possible.

The fractional-order controller has been compared with two industrial
controllers: a PI and a PID. In order to study equivalent controllers, the
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three controllers had to achieve the same frequency specifications (ωcg, ϕm)
with the nominal plant.

As it was noticed that the canal gain parameter is that which experiences
the largest variations, the fractional order of the controller transfer function
was designed in order to maximize the robustness of the closed-loop system
to changes in a such parameter (thus maintaining the system’s stability).
This involved maximizing the gain margin of the open-loop system. The
PID controller was also designed in order to maximize such robustness (gain
margin was also maximized) for comparison purposes. The Nichols charts
show that, for all the possible combinations of canal parameter values, the
FPI and PID plots pass far away from the point (−180, 0). However the PI
band passes very close to such point, showing that this controller is not robust
to the highest plant gains.

PID and FPI controllers exhibit similar robustness to gain changes.
However, their magnitude Bode diagrams show that the open-loop system
with the PID has larger magnitudes than with the FPI. This means that
the FPI is less sensitive to high gain noises and unmodeled high-frequency
dynamics (e.g., changes in the main time constant T1).

Therefore, the FPI design has increased the robustness of the closed-loop
system not only to changes in the gain but also to changes in the other
parameters of the process. The robustness of this fractional-order controller
was then studied under realistic conditions in the laboratory hydraulic canal,
where canal parameters could vary within the intervals given in Section
16.3, showing better behavior than the two industrial controllers. The FPI
controller has also been modified in order to achieve an acceptable settling
time by adding a PI factor. By doing this, the design of the steady-state error
behavior is decoupled from the design of the frequency characteristics. In fact,
parameter λ, which influences both the phase margin and the steady-state
error, is designed in the method proposed here to attain only the maximum
gain margin.

16.6 Control of Hydraulic Canals with Significant
Delays

Real irrigation main canals are systems which are distributed over long
distances, with significant time delays and dynamics that change with the
operating hydraulic conditions [247,250,269,270].

Moreover, experiments reported by some authors confirm that several
irrigation main canal pools (IMCP) exhibit large time-varying time delays
(LTVD) when their discharge regimes change in a given operation range
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[251, 256, 269, 271–273]. Controllers designed for this class of IMCP must
therefore be robust to these time delay variations [241,252,256,274].

Many studies have shown that simple PID controllers appear to be
unsuitable for solving the problem of effective water distribution control in
an IMCP with LTVD [240,256,258,275–277].

Some authors have proposed the use of the Smith predictor in IMCP
control systems to overcome the time delay that characterizes these systems
[241,252,278]. However, it is well known that small modeling errors can cause
instability in Smith predictor based control systems if the controller is not
properly designed [279–281].

Various works concerning the application of fractional-order PID con-
trollers to control water distribution in IMCP, which are characterized by
large time-varying dynamic parameters, have recently appeared [261, 262,
274, 282]. These papers explore the robustness features of fractional-order
controllers combined with the Smith predictor when applied to the effective
water distribution control in an IMCP with LTVD. This section and the
next ones report some of these results. In particular they are focused on
the design of a robust fractional-order PI controller combined with a Smith
predictor [261, 262] (SP-FPI controller). We will show that this class of
controllers increases the robustness to changes in the process time delay,
which is the most determinant parameter in the stability of the closed-loop
control system of water distribution in an IMCP [258,266,283].

In the following some basics of the Smith predictor based control will be
presented.

16.6.1 Standard Control Scheme

Assume it is desired to design a controller for an IMCP with LTVD exhibiting
a linearized model of the form (16.5), (16.6).

First a control system is designed for the nominal model G0(s) with
parameters {K0, T10, T20, τ0}, which must verify the typical design frequency
specifications: 1. a desired phase margin (ϕm), which guarantees the desired
nominal damping and robustness to changes in time delay; 2. a desired
crossover frequency (ωcg), which guarantees the desired nominal speed of
response, and 3. zero steady state error to a step command, which implies
that the controller must include an integral term. As was stated previously,
these three specifications can be attained through the use of a PI controller
arranged according to the standard control scheme of Figure 16.8.

The robustness of this controller to changes in the canal pool time delay
is given by τ̂ , which is the maximum time delay with which the closed-loop
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control system remains stable. It can be easily calculated in this control
scheme:

τ̂ =
ϕm

ωcg
+ τ0. (16.24)

It must be noted that any controller used in the scheme of Figure 16.8 that
fulfils specifications 1 and 2 will exhibit the same time delay stability margin
(16.24), independently of its particular form. A different control structure
must therefore be used if it were desired to improve such robustness value.

Consider the frequency response of model (16.6) in the nominal case:

G0(jω) = G′
0(jω)e−jωτ0 , (16.25)

where G′
0(jω) is the rational part of the model. Design specifications in the

frequency domain 1 and 2 are accomplished if the following condition is
verified:

G′
0(jωcg)C(jωcg) = −ej(ϕm+τ0ωcg), (16.26)

which is easily obtained from (16.10) substituting there G(jω) by G′
0(jω)

according to (16.25), and CPIλ(jωcg) by C(jωcg).
Defining X = ej(ϕm+τ0ωcg)/G′

0(jωcg), the parameters of a controller with a
particular structure are obtained from

C(jωcg) = −X. (16.27)

The closed-loop transfer function of the standard control system shown in
Figure 16.8 becomes, for the nominal plant

M0(s) =
C(s)G′

0(s)e
−τ0s

1 + C(s)G′
0(s)e−τ0s

. (16.28)

The time delay term that appears in the denominator of (16.28) prevents
the use of many well-known techniques for the analysis and design of
linear control systems. Alternative control schemes have consequently been
proposed in the last few decades to overcome this problem. Among these,
the most widely used is the Smith Predictor scheme [281, 284, 285], which
permits more efficient controllers than the traditional scheme of Figure 16.8.
Several Smith predictor based control systems are proposed for our IMCP in
the following sections.

16.6.2 Smith Predictor Based Control Scheme

The structure of a Smith predictor based control system for our IMCP is
shown in Figure 16.29, in which model (16.6) is considered for the canal
dynamics. Given a nominal model according to (16.25), and the real canal
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model G(jω) = G′(jω)e−jωτ , then the closed-loop transfer function of the
scheme shown in Figure 16.29 is

Y (s) = M(s)R(s) + N(s)D(s), (16.29)

where

M(s) =
C(s)G′(s)e−τs

1 + C(s)(G(s) − G0(s) + G′
0(s))

, (16.30)

N(s) =
1 + C(s)(G′

0(s) − G0(s))
1 + C(s)(G(s) − G0(s) + G′

0(s))
. (16.31)

C(s) G(s) = G′(s)e−τs

gate+canal pool dynamics

G′
0(s)(1 − e−τ0s)

�

� �

�

� � � � ��R(s)

D(s)

Y (s)

−

Figure 16.29 Smith predictor based control scheme of an irrigation main canal pool

Note that the time delay stability margin τ̂ now depends on the partic-
ular form of the controller C(s), fulfilling specifications 1 and 2 (see the
denominators of (16.30) and (16.31)), as opposed to that which occurred in
the standard control system of Figure 16.8, in which any controller fulfilling
these conditions exhibited the same delay stability margin. A proper design of
the controller embedded in a Smith predictor scheme may thus increase such
a stability margin. In the nominal case (G(s) = G0(s)) the Smith predictor is
tuned, and the time delay term is removed from denominators of expressions
(16.30), (16.31) yielding

M(s) =
C(s)G′

0(s)e
−τ0s

1 + C(s)G′
0(s)

, N(s) =
1 + C(s)G′

0(s)(1 − e−τ0s)
1 + C(s)G′

0(s)
. (16.32)

According to these equations, the parameters of the C(s) controller may be
designed using the time delay-free part of the plant model [281,286], allowing
the use of standard techniques for linear systems. Expression (16.32) can be
rewritten as

M0(s) = M ′
0(s)e

−τ0s, (16.33)

where M ′
0(s) contains the closed-loop rational dynamics, and the delay is

being applied to its output.
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16.6.2.1 Design Method for Smith Predictor Based PI Controllers
(SP-PI)

In this section we consider that the controller C(s) which is embedded in
this control structure is a PI controller which fulfils specifications 1–3. It can
be designed by repeating the same process shown in Section 16.6.1, but by
taking into account that G′

0(s) must be handled rather than G0(s) in the
characteristic equation of (16.28) (this basically implies that the term τ0ωcg

of the imaginary exponential of (16.26) disappears there and in X of (16.27)).
It now yields

CSP−PI(s) = Kp +
Ki

s
, Kp = −� (XSP) , Ki = ωcg� (XSP) , (16.34)

where

XSP =
ejϕm

G′
0(jωcg)

. (16.35)

16.6.2.2 Design Method for Smith Predictor Based PID
Controllers (SP-PID)

In order to design a PID controller of the form

CSP−PID(s) = Kp + Kds +
Ki

s
, (16.36)

the same process shown in Section 16.6.1 can be repeated, again taking into
account that G′

0(s) must be handled rather than G0(s) in the characteristic
equation of (16.28). It now follows that

Kp = −� (XSP) , Ki − Kdωcg
2 = ωcg� (XSP) . (16.37)

We now have three parameters with which to tune a controller that must
fulfil two specifications: 1 and 2 (specification 3 is always verified provided
that the closed-loop system is stable). A further specification is therefore
needed. We choose to maximize the robustness to changes in the time delay
(τ̂) as the additional specification. The design problem can therefore be
reformulated as maximize τ̂ subject to constraints (16.37) and Ki > 0 (this
is an additional closed-loop stability constraint obtained from the Nyquist
stability criterion).



16.7 Fractional-order Control of Hydraulic Canals with Significant Delays 339

16.7 Fractional-order Control of Hydraulic Canals with
Significant Delays

In this section fractional-order PI controllers embedded in a Smith predictor
structure are proposed to increase the robustness to time delay changes
of IMCP with LTVD. First the simplest fractional-order controller, an Iλ

controller, is designed. Later a PIλ controller is designed. Parameters of both
controllers are calculated by using the same methodology of the previous
section.

16.7.1 Design Method for Smith Predictor Based Iλ

Controllers (SP-FI)

A fractional-order I controller (Iλ) embedded in a Smith predictor based
control scheme is described. This controller was studied in [261], and is of the
form uFI(t) = KiD−λe(t), 0 < λ � 1. Its transfer function is

CSP−FI(s) =
Ki

sλ
. (16.38)

Two parameters are to be designed in this controller: Ki and λ. They
are tuned to fulfil frequency specifications 1 and 2. We should mention that
the zero steady state error condition 3 is guaranteed by controller (16.38)
provided that λ > 0, according to the Final Value Theorem [22]. The complex
equation given by conditions 1 and 2 now becomes (see (16.35))

Ki

(jωcg)λ
= −XSP. (16.39)

Taking into account that (jωcg)λ = ωλ
cge

j(π/2)λ, and operating in (16.39),
this yields the parameters of controller (16.38)

λ =
2
π

(π − ∠XSP) , Ki = ωλ
cg|XSP|. (16.40)

16.7.2 Design Method for Smith Predictor Based PIλ

Controllers (SP-FPI)

Here a robust fractional-order PI controller embedded in a Smith predictor
based control scheme is designed. It is of the form uPIλ(t) = Kpe(t) +
KiD−λe(t), 0 < λ � 1 which is also denoted as the PIλ controller. Its transfer
function is

CSP−FPI(s) = Kp +
Ki

sλ
. (16.41)
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In (16.41), λ = 1 gives the standard PI controller. Also note that the
structure of this controller is different from the fractional-order PI controller
used in the laboratory hydraulic canal (16.8), (16.9). Three parameters are to
be designed in this controller: Kp, Ki, and λ. Again we have one parameter
more than in the case of the SP-PI controller. As occurred with the SP-PID,
we design controller (16.41) in order to fulfil frequency specifications 1 and
2, and to maximize the robustness to changes in the time delay (maximize
τ̂). As with the SP-FI controller, the zero steady state error condition 3 is
guaranteed by the Final Value Theorem. The complex equation given by
conditions 1 and 2 now becomes

Kp +
Ki

(jωcg)λ
= −XSP. (16.42)

Expanding (jωcg)−λ = ω−λ
cg [cos (πλ/2) − j sin (πλ/2)], and operating in

(16.42), yields the parameters of controller (16.41):

Kp = −� (XSP) − cot
(π

2
λ
)
� (XSP) , Ki =

ωλ
cg

sin (πλ/2)
� (XSP) . (16.43)

16.8 Control-oriented Dynamic Model of an IMCP

The laboratory hydraulic canal of the previous sections cannot be used here
because its delay time is small compared with the dominant time constant
(τ0 = 2.6 sec. and T10 = 10 sec). Moreover its time delay remains quite
constant for the different flow regimes.

Then the controllers proposed in the previous two sections will be com-
pared in the regulation problem of a real IMCP with a significant delay. In
order to do this, the second pool of the Aragon Imperial Main Canal (AIMC),
which pertains to the Ebro Hydrographical Confederation in Zaragoza, Spain,
has been considered. It constitutes one of the most important hydrographical
confederations in this country, with an approximate area of 86,100 km2. This
canal is considered to be an excellent hydraulic work and flows more or less
parallel to the right-hand bank of the Ebro River. It supplies drinking water to
the city of Zaragoza, guaranteeing 60% of its needs. The surface irrigated by
this canal is 26,500 ha. The production of the area under irrigation is mainly
oriented towards extensive herbaceous crops, along with fruit cultivation and
horticulture. This canal obtains its water from the Ebro river thanks to the
elevation of the Pignatelli dam. This dam is 230 m long and 6.5 m high,
and its building was completed in 1790. The water passes through the Casa
de Compuertas (Gate House) which controls the 30 m3/sec of discharge at
its origin, although this value may sometimes be superior as a result of a
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high flow in the Ebro river. This canal is 108 km long and has a variable
depth of between 3m and 4 m and a trapezoidal cross section. It has ten
pools of different lengths which are separated by undershoot flow gates. All
the pools of the Aragon Imperial main canal are electrified and equipped
with downstream end water level and gate position sensors, motors for the
gates’ positioning, and systems for data acquisition, processing, and storage.
The canal also has a remote supervisory control and data acquisition system
(SCADA) with communication by radio and field buses that provide real time
data of controlled variables. This system allows the effective implementation
of daily water management decisions in the canal, thus permitting water to
be supplied according to the irrigation schedule.

Data and results reported in this section were obtained from the second
pool in the AIMC, which is known as PK8 and has a complex hydraulic
infrastructure. It is a cross structure main canal pool of 11 km in length,
a variable depth of between 3.5 m and 3.2 m, a variable width of between
15.0m and 20.0m, and a design maximum discharge of 30 m3/sec, in its
entire extension. The available measurements are the downstream end water
level and the upstream gate position.

Experiments based on the response to a step like input were carried out
at PK8 in order to obtain a mathematical model with which to describe
its dynamic behavior. In this test the downstream gate was kept in a
fixed position, the upstream gate was excited with a step signal, and the
downstream end water level was measured with a level sensor. The water
level and gate position are given in meters, and were uniformly sampled over
a period of T = 60 sec. The fully shut gate has a 0 m position, while positive
values signify an open gate. The experimental response of this IMCP to a
step command is presented in Figure 16.30. Such a response was obtained
under its nominal hydraulic operation regime (Qnom(t) = 14 m3/sec) and
shows that the dynamic behavior of this main canal pool can be described
by the second-order transfer function with a time delay (16.6).

When the discharge through the upstream gate corresponds to the nominal
hydraulic operation regime, the nominal values of the parameters of model
(16.6) are obtained. Then nominal parameters of nominal model G0(s) are
K0 = 1.11m/m, T10 = 1250 sec, T20 = 50 sec, and τ0 = 550 sec. As may be
observed in Figure 16.30, measurements of the water level in this IMCP are
not affected by reflecting waves caused by upstream discharge changes, since
the downstream end water level sensor is installed inside an off-line stilling
well at the downstream end of the pool. Validation results of linear model
(16.6) with the parameters’ estimated nominal values (nominal model) are
also shown in Figure 16.30. This figure shows good agreement between the
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Figure 16.30 Validation result of the linear model (16.6) with estimated nominal values
of parameters: (a) PK8 measured water level/nominal model, and (b) PK8 upstream gate
position

results obtained from the step test and from the simulation of the nominal
linear model (16.6).

Experiments reported in previously cited works [243, 249, 250, 273] on the
identification of the dynamic behavior of IMCP have shown that canals
similar to this experience large variations in their model parameters when
the discharge regimes change across their upstream gates in the operation
range. In our specific IMCP we will pay particular attention to changes in
the time delay (τmin � τ � τmax), as this is the most determinant parameter
in the stability of its closed-loop control system [249,252]. It is thus assumed
that all the other dynamical parameters of (16.6) remain at their nominal
values.

By using (16.3) and (16.4) and the experimental temporal responses
of PK8, it was determined that if the discharge regime through the PK8
upstream gate varies in its operation range (Qmin(t) = 10 m3/sec, Qmax(t) =
25m3/sec), then its time delay undergoes an operation variation range
(τmin = 500 sec, τmax = 1450 sec). Details of this calculation can be found
in [262].
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16.9 Comparison of Controllers from Simulation Results

In this section the robustness of the previously described control systems to
changes in the time delay of our IMCP is compared. Five control laws will
then be studied: 1. the standard PI controller, 2. the PI controller with Smith
predictor, 3. the PID controller with Smith predictor, 4. the fractional-order
I controller with Smith predictor, and 5. the fractional-order PI controller
with Smith predictor. All these controllers are designed in order to exhibit
the same closed-loop dynamic behavior (the same overshooting and settling
time) when the parameters of model (16.6) corresponding to our IMCP take
the nominal values obtained in the previous section. Our robustness analysis
considers the variation of the time delay obtained at the end of the previous
section (τ ∈ [500, 1450] sec) as a consequence of the canal operation regime
variations. The other parameters remain fixed. The controllers are compared
from three points of view: 1. the time delay robustness index, 2. their temporal
response in a nominal operation regime, and 3. their control signal amplitude
in the nominal operation regime.

In order to compare the controllers, simulated results are reported, ob-
tained using the IMCP model identified in the previous section from real
data.

16.9.1 Controller Design Specifications for the
Nominal Plant

Crossover frequency and settling time. The open-loop settling time of
the nominal plant is approximately tocl ≈ 3T10 + τ0 = 4300 sec. We wish to
make the closed-loop Smith predictor based control system response about
twice as fast. Thus, we choose a crossover frequency of ωcg = 0.0019 rad/sec
which approximately corresponds to a settling time of tocl ≈ 5/ωcg = 2630 sec.
This last expression is an approximation obtained from general considerations
concerning the inverse relationship existing between the crossover frequency
and the settling time [22]. However, for very small values of the integral
gain in the PID controller, or small values of λ in the PIλ controller, the
convergence to the steady state value of the closed-loop system becomes very
slow and the previous relation no longer holds. Therefore, besides the design
specification of ωcg, we will also impose the condition that the settling time
must always be smaller than 2700 sec.

Phase margin. The same value ϕm = 60◦ is chosen here as in Section
16.4, as this is a quite standard value. In that section it was found that
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the overshooting corresponding to this phase margin is approximately 10%,
which is acceptable for our IMCP application.

16.9.2 Standard PI Controller

Expression (16.27) particularized to a PI controller yields

CPI(s) = Kp +
Ki

s
, Kp = −� (X) , Ki = ωcg� (X) . (16.44)

By using the pair of frequency design specifications (ϕm, ωcg) defined
above, (16.44), when applied to the nominal plant, yields the PI controller:

CPI(s) = 2.28 − 9.56×10−4

s
, (16.45)

which makes the closed-loop system unstable. The above specifications can-
not, therefore, be achieved by a simple PI controller.

16.9.3 Smith Predictor Based PI Controller

The delay is now taken out of the closed-loop. The desired settling time
(having taken the delay apart) is therefore t̂ocl = tocl−τ0 = 2080 sec, yielding a
crossover frequency ωcg ≈ 5/t̂ocl = 0.0025 rad/sec. The phase margin remains
the same. If we apply these frequency design specifications to expressions
(16.34), (16.35) assuming the nominal plant, the following SP-PI controller
is obtained:

CSP−PI(s) = 2.26 +
0.0048

s
. (16.46)

The temporal response of the closed-loop system with controller (16.46)
to a unit step command is plotted in Figure 16.31 (a), in which the region of
errors lower than ±5% of the desired final value, which defines the settling
time, is also drawn (this region will also be plotted in Figure 16.33). This
figure shows that the overshooting is 15.2%, the settling time is 2615 sec,
and the control system exhibits zero steady state error. Figure 16.31 (b)
shows the upstream gate position signal u(t) generated by the control system,
whose maximum value is 2.46. Since it is assumed that the time delay is the
only variable parameter in the plant, it is verified that G′(s) = G′

0(s), and
operating in (16.30) yields

M(s) =
C(s)G′

0(s)e
−τs

1 + C(s)G′
0(s)(1 + e−τs − e−τ0s)

. (16.47)
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From the characteristic equation of (16.47) we find that this control system
remains stable for any value of the time delay τ < τ0. However, for τ > τ0

there is a limit value τ̂ = 1230 sec above which the system becomes unstable.
Therefore, this controller cannot guarantee stability throughout the entire
range of variation of the time delay.
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Figure 16.31 Unit step responses and control signals of the Smith predictor based control
systems to a unit step command in the nominal plant case, with SP-PID shown in solid
line, SPI-FPI-M shown in dashed line, SP-PI shown in dotted line, and SP-FI-M shown in
dashed dotted line: (a) step responses, and (b) control signals

16.9.4 Smith Predictor Based PID Controller

In accordance with Section 16.6.2.2, we apply (16.37), together with the
optimization procedure to maximize τ̂ , in order to obtain controller (16.36).
Figure 16.32 (a) plots the time delay limit τ̂ with regard to the controller
integral gain Ki, and Figure 16.32 (b) plots the settling time tocl with regard
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to the same controller gain. This figure plots the values corresponding to the
previous SP-PI controller, and shows that it is possible to obtain an SP-PID
controller (also represented in this figure) with the same settling time but a
larger time delay limit τ̂ , which is

CSP−PID(s) = 2.26 +
0.0018

s
− 483s. (16.48)

We should also like to note that there is a wide range 0.0033 < Ki <

0.0065 in which the relationship ωcg ≈ 5/t̂ocl is approximately verified (see
Figure 16.32 (b)) but outside this interval (both for smaller and larger gain
values) the settling time grows, making it necessary to impose the additional
design constraint of tocl < 2700 sec. In fact the SP-PID controller designed
is outside this range and is obtained as a consequence of applying the
aforementioned constraint.

The temporal response of the closed-loop system with controller (16.48) to
a unit step command is also plotted in Figure 16.31 (a), and shows a settling
time of 2618 sec similar to the previous design. Figure 16.31 (b) shows the
corresponding control signal u(t) whose maximum value is 3.19. The limit
value of the time delay is now τ̂ = 1410 sec. Robustness has therefore been
improved with regard to the previous controller, but it is not yet sufficient
to guarantee stability in the entire range τ ∈ [500, 1450] sec.

16.9.5 Fractional-order I Controller with Smith
Predictor

We now apply the previous frequency design specifications to (16.40), assum-
ing the nominal plant. The following SP-FI controller is obtained:

CSP−FI(s) =
0.2

s0.45
. (16.49)

The temporal response of this control system to a unit step command is
plotted in Figure 16.33. This shows that the response provided by the SP-FI
controller is more damped than that provided by the SP-PI, but less than
that provided by the SP-PID controller. Moreover, the settling time of this
SP-FI controller is much larger than in the other two cases. This is due to
the fractional order of the integral term of the controller. The Final Value
Theorem states that this SP-FI controller exhibits null steady state error if
λ > 0. But the fact of λ being smaller than 1 makes the output converge on
its reference value more slowly than in the case of an integer controller with
λ = 1.
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Figure 16.32 Time delay stability limit τ̂ and closed-loop settling time of the SP-PID
controller: (a) delay limit value, and (b) settling time

In order to overcome the aforementioned problem, the SP-FI controller can
be modified in such a way that the settling time is decreased without changing
its dynamic and robustness properties. This can be achieved by shaping the
open-loop frequency response so that its characteristics at low frequencies
are changed by increasing the type of the control system, while leaving the
frequency characteristics at medium and large frequencies unchanged. This
can be achieved by multiplying the SP-FI controller (16.49) by a term of the
form (s + μ)/s:

CSP−FI−M(s) =
0.2

s0.45

(
s + μ

s

)
. (16.50)

This technique has been successfully used in previous works [259,260], and
was justified and utilized in Section 16.4.2. If the parameter is sufficiently
small, then this term improves the steady state behavior (increases the
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type of the control system) while leaving the dynamic behaviors unchanged.
After some numerical simulations we concluded that the best value of μ for
our modified SP-FI-M controller is 0.00007. Note that since μ � ωcg, the
frequency specifications attained with the SP-FI-M controller are only slightly
modified by this term with regard to those which are desired. The temporal
response of this controller is plotted in Figure 16.31 (a) and Figure 16.33, and
its control signal in Figure 16.31 (b). These figures show that the settling time
of this controller is 1980 sec, the overshot is 8.3%, and the maximum value
of the control signal is 2.36. We have therefore shown that this controller,
which exhibits approximately the same frequency specifications as before —
these were modified to ϕm = 58.4◦, ωcg = 0.0025 rad/sec — has less settling
time than with the SP-PI and SP-PID controllers, and less overshooting than
with the SP-PI, but uses a control signal of less amplitude. This suggests that
the SP-FI-M controller “manages” the control effort better than the classical
controllers. The characteristic equation of (16.47) now states that this control
system remains stable for time delay values under τ̂ = 1408 sec.
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Figure 16.33 Responses of the Smith predictor based control system with the FI
controller with and without the term (s + μ)/s

16.9.6 Fractional-order PI Controller with Smith
Predictor

According to Section 16.7.2, we should apply (16.43) together with the
optimization procedure to maximize τ̂ , in order to obtain controller (16.41).
Figure 16.34 plots the maximum allowed time delay τ̂ with regard to λ,
calculated for controller (16.41). Since τ̂(λ) is a strictly decreasing function,
the optimum is given by the boundary condition tocl < 2700 sec. As was
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previously mentioned, small values of the fractional-order integral term make
the output converge very slowly to its final value, and we propose adding
an integral term of the form (s + μ)/s to the controller to solve this. In
turn, such a term decreases the robustness (the limit value τ̂). Therefore, for
each controller (16.41) (for a given λ), the parameter μ must be optimized
in the sense of becoming the minimum value (in order to influence the value
τ̂ as little as possible), which makes the closed-loop system verify condition
tocl < 2700 sec. Figure 16.35 plots the optimal values of μ with regard to λ. It
shows that for values of λ > 0.55 such a term is not necessary. Figure 16.34
also plots the maximum allowed time delay τ̂ for the SP-FPI controller plus
the optimized integral term (given by Figure 16.35). From now on this will be
denoted as the SP-FPI-M controller. We should mention that the magnitudes
of controller gains Kp, Ki grow very quickly as λ decreases. In Figure 16.34 we
therefore choose the controller which corresponds to the maximum value of
λ (in order to obtain moderate controller gains), which verifies τ̂ = 1450 sec,
and this controller is thus:

CSP−FPI−M(s) =
(
−3.71 +

1.89
s0.2

)(
s + 1.52×10−4

s

)
. (16.51)

The temporal response of the closed-loop system with controller (16.51)
to a unit step command is also plotted in Figure 16.31 (a), and shows a
settling time of 1871 sec which is the smallest among all the controllers, and an
overshooting of 8.3 %. Figure 16.31 (b) shows the corresponding control signal
u(t) whose maximum value is 2.5. As the limit value of the time delay is τ̂ =
1450 sec, the robustness condition in the time delay range τ ∈ [500, 1450] sec
is now fulfilled.
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16.9.7 Conclusions on the Robust Control of the
IMCP with LTVD

Simulations of several Smith predictor based controllers applied to the model
of a real canal pool have been carried out: PI, PID, fractional-order integral
FI, and fractional-order PI. For the same given frequency specifications, these
simulations have shown that:

• Fractional-order controllers (SP-FI-M and SP-FPI-M) behave better than
standard controllers (SP-PI and SP-PID) in the nominal regime: there is
much less settling time, and less overshooting.

• The maximum amplitude of the control signal is smaller with the fractional-
order controllers than with the standard ones, thus the former better
prevent the saturation of the actuators. This issue, combined with the first
issue, allows us to conclude that the proposed fractional-order controllers
manage the control effort more efficiently than their standard counterparts
(SP-FI-M vs SP-PI) and (SP-FPI-M vs SP-PID).

• A computer costly optimization procedure allows us to obtain an SP-PID
controller that significantly improves the robustness value attained by the
SP-PI: 14.6% better. But similar results can be achieved by using the
proposed SP-FI-M controller, which is obtained by applying very simple
formulas (16.40).
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• The use of an optimization procedure to design the proposed SP-FPI-
M controller allows us to increase the limit delay value further. In our
particular canal pool, this allows us to attain the stability margin needed
to operate the canal safely in all its possible operation regimes.

The design procedure of the SP-FPI-M controller is as laborious as that
of the standard SP-PID controller, and more laborious than that of the PI
controller, but only requires optimization with regard to one parameter λ,
or in some cases as many as two parameters λ, and μ. However, it yields
controllers whose robustness is similar to those which can be obtained from
standard robust control techniques, such as H∞, which requires a much more
costly optimization process in which many control parameters have to be
tuned.

16.10 Summary

The design of simple robust fractional-order controllers for hydraulic canals,
characterized to present time-varying dynamical parameters, has been de-
scribed.

First, a simple fractional-order control strategy was designed and imple-
mented in an experimental laboratory hydraulic canal, which was charac-
terized to present time-varying gain and time constants, but a fixed time
delay. A class of fractional-order PI controllers has been proposed, and a
straightforward method to design it from frequency specifications has been
developed. It was shown that this controller outperformed standard PI and
PID controllers – all of them designed to have the same closed-loop behavior
than the fractional-order controller at nominal conditions – in its robustness
features.

Second, another simple FPI control strategy combined with a Smith
predictor was designed and simulated using an experimentally obtained model
of an irrigation main canal pool. This plant was characterized to present
basically a large time-varying time delay, the other dynamic parameters
remaining approximately constant. The fractional-order PI controller de-
signed here had a different structure from the previous one, but the design
methodology employed was the same as that used in the laboratory hydraulic
canal. It was shown that this controller allowed to attain better robustness
features than standard PI and PID controllers embedded in a Smith predictor
– all of them designed to have the same closed-loop behavior as the fractional-
order controller at nominal conditions. Moreover it was shown that the
fractional-order I controller attained similar robustness characteristics as the
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PID controller, both of them combined with the Smith predictor, while being
much easier to design.

The comparison of real-time and simulated responses of FPI, and standard
PI and PID controllers (both in the standard control scheme and the Smith
predictor scheme) proved the effectiveness of the proposed fractional-order
control strategies in terms of performance, and supported the robustness
results obtained in the frequency response theoretical analysis. Moreover,
these results suggest that the best robustness features are not strictly
associated with having more controller parameters to tune (FPI and PID
controllers both have three parameters to tune), but also the structure of the
controller makes an impact on the robustness. In this chapter we have tried
to prove that, in dynamical systems with a delay, fractional-order controllers
like those developed here, possess a structure that allows for more robustness
to combinations of changes of plant parameters. It should be pointed out that
the interest in such fractional-order controllers in this application is justified
by the fact that dynamical parameters of irrigation main canals may change
drastically as a function of their operating hydraulic regimes.

It should be mentioned that a main canal usually has multiple pools. Then
modern canal control systems may be more complex than a PI, sometimes
including feedforward terms to compensate for the interactions between
consecutive pools. These control systems often include a series of simple PI
controllers as the lowest control level which are coordinated by other more
complex controllers at upper levels [255]. Substituting these PI controllers for
the fractional-order controllers proposed here at such a low level of control
may improve the global control system as local control robustness is increased
and thus makes an impact on the overall control system performance.



Chapter 17

Mechatronics

In this chapter, the tuning and auto-tuning methods described in Part III
of the book will be applied to the control of a real mechatronic laboratory
platform consisting of position and velocity servos. This type of devices are
very commonly used in industrial environments and many other processes
have the same type of transfer functions modeling their dynamics. For this
reason, this application is rather practical and representative of a class of
industrial processes.

The experimental platform and the implementation of the control strategy
are described in the following sections.

17.1 The Experimental Platform

The connection scheme in Figure 17.1 shows the different elements of the
experimental platform:

• Data acquisition board AD 512, by Humusoft, running on MATLAB 5.3
and using the real-time toolbox “Real-Time Windows Target.” This board
was previously used for the implementation of robust fractional-order
controllers [287].

• A computer Pentium II, 350MHz, 64M RAM, which supports the data
acquisition board and where the programs run for the implementation of
the method proposed.

• A servomotor 33-002 by Feedbak, consisted of 1. a mechanical unit 33-
100, which constitutes the servo, strictly speaking, 2. an analog unit 33-
110, which connects to the mechanical unit through a 34-way ribbon cable
which carries all power supplies and signals enabling the normal circuit
interconnections to be made on the analog unit, and 3. a power supply
01-100 for the system. The mechanical unit has a brake the position of

353
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which changes the gain of the system, that is, the brake acts like a load to
the motor.

PC

board
AD 512

power supply

34-way cable

Analog
unit

33-110

Mechanical
unit

33-100

I/O

Figure 17.1 Connection scheme of the experimental mechatronic platform

In Figure 17.2 a photo of the system described here is displayed.

Figure 17.2 Photo of the experimental mechatronic platform

For the implementation of the control loop in MATLAB, the scheme in
Figure 17.3 has been used, where:



17.2 Experimental Tuning of the Control Platform 355

• Board. Refers to the data acquisition board described above. The type
AD 512 is selected and its libraries are loaded.

• Input/Output. These blocks refer to the analog input and output
that will be used for the control loop. The sampling period is set to
T = 0.01 sec. The output signal of the servo is connected to the input
of the loop (Input), and the controller output (Output) is connected to
the input of the servo, closing the loop this way.

• Adaptor. It has to be taken into account that a gain scaling must be
done for the input and output signals, since the board amplifies both the
signals to and from the servo. These adaptor blocks ensure a unity gain
for the inputs and outputs.

• Controller C(z). The controller is implemented by using a discrete
transfer function C(z), obtained as will be described in the following
section.

• ZOHs. Since a discrete version of the controller is used and the inputs and
outputs are continuous signals, two zero-order holds (ZOH block) are used
for the continuous-discrete and discrete-continuous signal conversions.

• Step. Refers to the step reference signal.
• Scope. To show the signals generated through the process.

board

input

output

ZOH2ZOH1Step

Scope2

Scope1

ScopeC(z)

n(z)

d(z)

Adaptor 1

In1 Out1

Adaptor

In1 Out1

Figure 17.3 Simulink scheme for the implementation of the fractional-order controller

17.2 Experimental Tuning of the Control Platform

In this section, the design of the controller is done by using an .m file
(MATLAB file) in which the basis of the tuning method proposed in Chapter
8 will be taken into account. Let us show the experimental results obtained
when controlling the position servo and the velocity servo.

17.2.1 Position Servo

The experimentally obtained transfer function of the position servo is

G1(s) =
1.4

s(0.7s + 1)
e−0.05s. (17.1)
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The design specifications are: phase margin ϕm = 80◦; gain crossover
frequency ωcg = 2.2 rad/sec; velocity error constant Kv = 0.82, that is, k′ =
Kcx

α = 1. As can be observed, a lead compensator is needed to fulfil these
requirements, giving

C1(s) =
(

2.0161s + 1
0.0015s + 1

)0.7020

,

with k′ = 1, x = 7.4012× 10−4, λ = 2.0161, and α = 0.7020. The Bode plots
of this compensator are shown in Figure 17.4. At the gain crossover frequency
ωcg = 2.2176 rad/sec, the compensator has a magnitude of 9.2803 dB and a
phase of 54.1961◦. At that frequency the magnitude of the open-loop system
is 0 dB, and the phase is −100◦, fulfilling the frequency specifications.
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Figure 17.4 Bode plots of controller C1(s)

Once the compensator is calculated, its implementation is carried out.
An indirect digital method is used for the discretization of the controller,
with MATLAB function invfreqs() and Tustin method with prewarping
(see Chapter 12). This way, an integer-order transfer function is obtained
which fits the frequency response of the fractional-order controller in the
range ω ∈ (10−2, 102), with five poles and zeros. Later, the discretization of
this continuous approximation is made by using Tustin rule with prewarping,
with a sampling period T = 0.01 sec and prewarp frequency ωcg, resulting
controller C1(z). This controller is a 5th-order digital IIR filter, given by

C1(z) =
1.976z−5−4.807z−4−34.46z−3+130.25z−2−149.2z−1 + 56.2538

−0.0093z−5−0.121z−4+0.431z−3+0.284z−2−1.575z−1+1
.
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The experimental step response of the closed-loop system is shown in Fig-
ure 17.5. This response has been compared with that obtained in simulation.
It can be observed that the experimentation fits perfectly well the simulation
results.
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Figure 17.5 Step response of the position servo system with controller C1(s), solid line
for experimental data, and dashed smooth line for simulation results

17.2.2 Velocity Servo

The experimental transfer function of the velocity servo to be controlled is

G2(s) =
1.4

0.7s + 1
e−0.05s. (17.2)

In order to cancel the steady-state error, an integrator has been added to
the compensator. Therefore, the final controller will consist of an integrator
plus a fractional-order compensator. The compensator will be designed taking
into account the contribution in magnitude and phase of the integrator. The
frequency specifications to fulfil are ωcg = 4 rad/sec, ϕm = 80◦, and k′ = 1.

The resulting controller is

C2(s) =
1
s

(
3.1394s + 1
0.0047s + 1

)0.85

,

with k′ = 1, x = 0.0015, λ = 3.1394, and α = 0.85. Figure 17.6 shows the
Bode plots of C2(s). At the frequency ωcg the controller has a magnitude of
6.6871 dB and a phase of −18.3488◦. The magnitude of the open-loop system
at this frequency is 0 dB, and the phase −100◦. Once again the specifications
are fulfilled.
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Figure 17.6 Bode plots of controller C2(s)

Following the indirect discretization method explained in Chapter 12, with
a frequency range ω ∈ (10−2, 102) and sampling period T = 0.01 sec, the
resulting discrete controller, a third-order IIR digital filter, is

C2(z) =
0.01
2

1 + z−1

1 − z−1

75.9289z−2 − 210.8592z−1 + 135.5044
0.0084z−2 − 0.6858z−1 + 1

.

Figure 17.7 shows the experimental step response of the system with con-
troller C2(z), comparing it with the response obtained from the simulation
results.
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Figure 17.7 Step response of the position servo system with controller C2(s), solid line
for experimental data, and emphdashed smooth line for simulation results

The robustness constraint regarding plant gain variations has not been
tested in these experiments. For this purpose, the auto-tuning method
proposed in Chapter 9 will be implemented and tested in the following section
for the control of this mechatronic platform.
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17.3 Experimental Auto-tuning on the Mechatronic
Platform

The same experimental platform presented in Section 17.1 will be used to
test the robustness performance of the controlled system when using the
auto-tuning method described in Chapter 9.

The Simulink block diagram used for the implementation of the relay test
is the one in Figure 17.8. The blocks are already described in Section 17.1.
The relay is implemented by using Simulink block “relay,” with amplitude
δ and hysteresis ε = 0. Equally, the delay is also a Simulink block. Impulse
refers to the impulse signal to initialize the relay test.

board
input

output

Switch 1

Switch

Scope3

Scope2

Scope1

ScopeRelay

Impulse

Out1

Delay

Constant1

0

Constant

0

Adaptor 2

In1 Out1

Adaptor 1

In1 Out1

Adaptor

In1 Out1

Figure 17.8 Scheme for the implementation of the relay test using MATLAB

The control loop is implemented as previously explained in Section 17.1.
Specifications of gain crossover frequency, phase margin, and robustness

to plant gain variations are given. In this case, the desired gain crossover
frequency is ωcg = 2.3 rad/sec. The relay has an output amplitude of δ = 6,
without hysteresis, ε = 0. The two initial values (θ−1 and θ0) of the delay
used to reach the frequency specified are 0.1 sec and 0.04 sec, respectively.
After several iterations the output signal shown in Figure 17.9 is obtained.

The value of the delay θa obtained for the selection of the frequency
specified is θa = 0.2326 sec, and the corresponding frequency is ωu =
2.2789 rad/sec. The amplitude and period of this oscillatory signal are a =
1.8701 and Tu = 2.7571 sec, respectively. Therefore, the magnitude and phase
of the plant estimated through the relay experiment at the frequency ωu =
2.2789 rad/sec are |G(jωu)|dB = −12.2239 dB and arg(G(jωu)) = −149.6328◦,
respectively. Measuring experimentally the frequency response of the system
in order to validate these values, a magnitude of −11.8556 dB and a phase
of −150.2001◦ are obtained. So, only a slight error is committed in the
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Figure 17.9 Output signal of the relay test

estimation. Next, a fractional-order PIλDμ controller is designed with the
proposed tuning method to obtain a phase margin ϕm = 60◦ at the gain
crossover frequency ωu = 2.2789 rad/sec. The gain of the controller will be
fixed to 1, that is, k′ = Kcx

α = 1.

The first step is the design of the fractional-order PIλ part, in (9.2). For
that purpose, the slope of the phase of the plant υ is estimated by (9.7). The
slope obtained in this case is υ = −0.2568 sec . With the value of the slope
and applying the criterion described for the fractional-order PIλ controller
(see (9.9) and (9.11)), the controller that cancels the slope of the phase curve
of the plant is

PIλ(s) =
(

0.4348s + 1
s

)0.8468

. (17.3)

At the frequency ωu this fractional-order PIλ controller has a magnitude
of −3.5429 dB, a phase of −38.3291◦ and a phase slope of 0.2568. Therefore,
the estimated system Gflat(s) has a magnitude of −15.7668 dB and a phase
of −187.9619◦. These values can be easily obtained through the values of
the magnitude and phase of the plant estimated by the relay test at the
frequency ωu and the magnitude and phase of the controller PIλ at the same
frequency. Next, the controller PDμ(s) is designed to fulfil the specifications of
phase margin and gain crossover frequency required for the controlled system.
Following the iterative process described previously, the resulting controller
is given by

PDμ(s) =
(

4.0350s + 1
0.0039s + 1

)0.8160

. (17.4)

At the frequency ωu = 2.2789 rad/sec the controller PDμ(s) has a magni-
tude of 15.7668 dB and a phase of 67.9619◦.
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Then, the resulting total controller C(s) is the following one:

C(s) =
(

0.4348s + 1
s

)0.8468(4.0350s + 1
0.0039s + 1

)0.8160

. (17.5)

The Bode plots of C(s) are shown in Figure 17.10. The magnitude and
phase of this controller at the frequency ωu are 12.2239 dB and 29.6328◦,
respectively. Therefore, the open-loop system F (s) has a phase margin of 60◦

and a magnitude of 0 dB at the gain crossover frequency ωu = 2.2789 rad/sec,
fulfilling the design specifications.
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Figure 17.10 Bode plots of the fractional-order controller C(s)

For the implementation of the resulting fractional-order controller C(s),
the frequency domain identification technique using MATLAB function
invfreqs() is applied again (Chapter 12). An integer-order transfer function
is obtained which fits the frequency response of the fractional-order controller
in the range ω ∈ (10−2, 102), with three poles/zeros for the PIλ part and three
poles/zeros for the PDμ part. Later, the discretization of this continuous
approximation is made by using the Tustin rule with prewarping, with a
sampling period T = 0.01 sec and prewarp frequency ωcg. With this controller
the phase of the open-loop system F (s) is the flattest possible, ensuring
the maximum robustness to variations in the gain of the plant, as can be
seen in the step responses of the controlled system for k = Knom (nominal
gain), k = 2Knom, and k = 0.5Knom (Figure 17.11). The gain variations are
provoked by changing the position of the motor brake. Figure 17.12 shows
the control laws of the system for the different gains. It can be observed that
for this gain range this control strategy is very suitable, since the peak of the
control laws is much lower than 10 V, the saturation voltage of the motor.
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Comparing the step responses with those obtained (in simulation) with the
PID controller Czn(s) = 22.1010 (1 + 1/(0.55s) + 0.1375s) designed by the
second method of Ziegler–Nichols (Figure 17.13), the better performance of
the system with the fractional-order controller C(s) can be observed.
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Figure 17.11 Step responses of the system with controller C(s), with solid line, dashed
line and dashed dotted line for k = 2knom, k = 0.5knom, and k = knom, respectively

0 5 10 15 20 25 30
−1

0

1

2

3

Time (sec)

C
on

tr
ol

 la
w

s

Figure 17.12 Experimental control laws of the controlled system with controller C(s)
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Figure 17.13 Step responses of the system with controller Czn(s), with solid lines, dashed
lines and dashed dotted lines for k = 0.5knom, k = knom, and k = 2knom, respectively

17.4 Summary

From these experimental results, we can conclude that the tuning and auto-
tuning methods proposed are very effective and easy to implement. The
relations among the parameters of the controller are direct and simple, and
a constraint regarding robustness to plant gain variations is fulfilled together
with specifications of gain crossover frequency and phase margin.



Chapter 18

Fractional-order Control Strategies for
Power Electronic Buck Converters

This chapter presents several alternative methods for the control of power
electronic buck converters applying fractional-order control (FOC). For achiev-
ing this goal, the controller design will be carried out by two strategies. On
the one hand, the design of a linear controller for the DC/DC buck converter
will be considered. In that sense, the Bode’s ideal loop transfer function
presented in Chapter 2 will be used as reference system. On the other hand,
the fractional calculus is proposed in order to determine the switching surface
applying a fractional sliding mode control (FRSMC) scheme to the control
of such devices. In that sense, switching surfaces based on fractional-order
PID and PI structures are defined. An experimental prototype has been
developed and the experimental and simulation results confirm the validity
of the proposed control strategies.

18.1 Introduction

Switched mode DC/DC power converters are used in a wide variety of
applications, including power supplies for personal computers, DC motor
drives, active filters, etc. Pulse-width modulation (PWM) sets the basis for
the regulation of switched mode converters. The operation of these devices
is often based on the control of the output voltage of a passive filter. A
basic DC/DC converter circuit known as the buck converter is illustrated in
Figure 18.1. The buck converter consists of a switch network that reduces
the DC component of voltage and a low-pass filter that removes the high-
frequency switching harmonics. Several control strategies, both linear and
nonlinear, have been used for the control of DC/DC converters, such as PI,
dead beat, sliding mode control, etc. [288]

365
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Figure 18.1 Buck converter

On the one hand, one of the goals with the control of the buck converter is
to achieve more robust control systems despite input voltage changes or load
perturbations. The input voltage variations in a buck converter can be viewed
as changes in the process gain. One of the main advantages of fractional-order
controllers is the possibility of obtaining an open-loop transfer function in the
form of a fractional-order integrator, that is, the mentioned Bode’s ideal loop
transfer function, providing a controlled system robust to changes in the
process gain. In this way, here we propose a method for the control of power
electronic converters by using a linear controller based on FOC and Bode’s
ideal function [18,90] and then to obtain a discrete equivalent that allows its
practical implementation.

On the other hand, since power electronic converters inherently include
switching devices which exhibit a discontinuous behavior, the DC/DC buck
converter can be modeled as a bilinear system, which achieves a different
linear topology for every state of the control signal, u. From this point of view,
the DC/DC converter can be considered as a variable structure system (VSS)
since its structure is periodically changed by the action of the controlled
switches. Sliding mode control (SMC) for VSS [141] offers an alternative way
to implement a control action which exploits the inherent variable structure
of DC/DC converters. In particular, the converter switches are driven as a
function of the instantaneous values of the state variables in such a way as to
force the system trajectory to follow a suitable selected surface on the phase
space called the sliding surface, s. The use of techniques based on switching
surfaces in the control of such devices have been referenced since the earlier
1980s [289–291]. SMC is well known for its robustness to disturbances and
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parameters variations. This chapter also deals with the design of switching
surfaces for a buck converter using alternative techniques based on FOC.
In this sense, a fractional-order form of linear compensation PID and PI
networks will be used in order to obtain fractional sliding surfaces of the
form PIλDμ (see Section 18.4.2.1).

The rest of the chapter is organized as follows. Section 18.2 describes the
processes of modeling and linearization of the plant and a real system model is
obtained. Section 18.3 deals with the design of linear controllers for the buck
converter based on the fractional-order control and the Bode’s ideal loop
transfer function. Section 18.4 deals with the design of switching surfaces
for a buck converter using alternative techniques based on FOC. Section
18.5 shows simulation and experimental results and Section 18.6 states some
conclusions.

18.2 Model of the Buck Converter

To design the control system of a converter, it is necessary to model the
converter dynamic behavior. Unfortunately, modeling of converter dynamic
behavior is hampered by the nonlinear time-varying nature of the switching
and PWM process. The formulation in the form of a bilinear system of a
DC/DC buck converter defined on Rn is

ẋ = Ax + BVgu, (18.1)

where x ∈ Rn is the state vector; A ∈ Rn×n and B ∈ Rn×m are matrices
with constant real entries; u is a scalar control (m = 1) taking values from
the discrete set u = {0, 1}. The state-space model of the buck converter is

i̇L = − 1
L

vc +
Vg

L
u,

v̇c =
1
C

iL − 1
RC

vc,
(18.2)

and its state-space model in phase canonical form is[
v̇c

v̈c

]
=

[
0 1

− 1
LC

− 1
RC

] [
vc

v̇c

]
+

[
0
1

LC

]
Vg u. (18.3)

In general, in order to obtain positive output voltages only two structures
are necessary (Figure 18.2). These structures correspond to different state-
space models. The desired output voltage is obtained by changing these
structures temporarily. A state-space model for every structure yields to

ẋ = A0x + B0Vg , for u = 0,

ẋ = A1x + B1Vg , for u = 1.
(18.4)
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Figure 18.2 DC-DC buck converter topologies

The methods of design proposed in Section 18.3 are based on frequency
domain techniques. Therefore, a linearized model of the plant is necessary in
order to apply the design process.

18.2.1 Discrete Plant Model

In order to obtain a valid model of the DC/DC converter, this system is
considered as composed of two subsystems: LC filter and a PWM actuator.
A time-invariant linear LC filter may be represented by a state-space model:

ẋ(t) = Ax(t) + Bvs(t),
y(t) = Cx(t),

(18.5)

where vs(t) is the input of the filter and it is provided by a PWM actuator
where the control input is the duty cycle, d. In the case of an “ON-OFF-ON”
PWM actuator of symmetric pulse with respect to T/2 (being T the sampling
period), its model is

vs(t) =

⎧⎪⎨⎪⎩
0, for kT � t < kT + t1(k),
Vg, for kT + t1(k) � t < kT + t2(k),
0, for kT + t2(k) � t < (k + 1)T,

(18.6)

where t1(k) = T (1 − d(k))/2 and t2(k) = T (1 + d(k))/2.
An equivalent discrete model of the joint system PWM actuator-LC filter

can be obtained from the solution of (18.5)

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)Bvg(τ)dτ. (18.7)
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Particularizing for t0 = kT , t = (k + 1)T , and vs(t) given by (18.6), the
discretized model is given by the equation

x(k + 1) = eAT x(k) + eAT
[
e−At1(k) − e−At2(k)

]
A−1BVg,

y(k) = Cx(k).
(18.8)

The matrix A is diagonalizable, and its Jordan canonical form is

A = V ΛV −1, Λ = diag(λ1, λ2, · · · , λn). (18.9)

Then, (18.8) becomes

x(k + 1) = eAT x(k) + V Ψ (k)V −1BVg, (18.10)

where Ψ(k) is a diagonal control matrix of the form

Ψ(k) = eΛT/2
[
eΛTd(k)/2 − e−ΛTd(k)/2

]
, (18.11)

which defines the relation between Ψ and d(k) in the case of a symmetric
“ON-OFF-ON” actuator. Equation 18.10 defines a nonlinear relationship
between the control variable d(k) and the state x(k + 1).

The control design methods proposed in Section 18.3 are based on a
frequency domain approach. Consequently, the first step in the control design
process is to obtain a linear model of the DC/DC converter. Several methods
have been proposed to carry out this linearization: model averaging [292],
first-order truncation of a Taylor series expansion [293], and methods based
on the functional minimization [294]. The last one is used in this case, which
allows the use of lower switching frequencies.

18.2.2 Linearized Plant Model

The method used for obtaining the linearized discrete model of the converter
is developed in [294] and is based on the approximation of the diagonal matrix
Ψ(k) by

Ψ(k) ≈ Γ̂ v(d(k)), (18.12)

where Γ̂ is a constant diagonal complex matrix of the same dimension of Ψ ,
and v is a real function of the physical control variable d(k).

Applying this method, the linearized model becomes

x (k + 1) = eAT x(k) + V diag
(
Γ̂
)

V −1BVgv̄(k), (18.13)

where v̄(k) is a fictitious control signal related to the real control signal d(k).
The inverse of v̂(d) can be tabulated and used in the control algorithm in
order to obtain the duty cycle d(k) to be applied. In the case of an “ON-
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OFF-ON” actuator the equation to use is

d(k) = v̄−1 (v̄ (k)) . (18.14)

18.2.3 Real System Model for Design

The selected parameter values for the converter shown in Figure 18.2 are L =
3.24 mH, RL = 0 Ω, C = 48 μF, R = 117 Ω, and Vg = 20V, for a switching
frequency of 2 kHz (T = 0.5 ms). This choice depends on the application of
the converter. This one is used as a voltage compensator for canceling wave
subharmonic perturbations up to 2 ms and so a settling time less than 1ms
is required. This fact limits the values of L and C. The switching frequency
is limited by the switching devices used. With these parameter values, the
obtained linear discrete model is

x (k + 1) =
[

0.3070 − 0.1100
7.4237 0.2585

]
x(k) +

[
0.1798
1.0571

]
× 103Vgv̄(k), (18.15)

where v̄(k) is the fictitious control signal and the duty ratio d(k) is obtained
from (18.14).

Then, the discrete-time transfer function of the converter is

G(z) = k
c1z

−1 + c2z
−2

d0 + d1z−1 + d2z−2
, (18.16)

being k = 103, c1 = 1.0571, c2 = 1.01, d0 = 1, d1 = −0.5655, d2 = 0.8958.
As the model system is discrete and the design method used is based

on the continuous frequency domain, the discrete model must be converted
into a pseudo-continuous system using the bilinear w-transformation. So, the
obtained pseudo-continuous system is

G(w) = k
1 − wT/2
1 + wT/2

Tw

[
c1 + c2z

−1

d0 + d1z−1 + d2z−2

]
= k

2/T − w

2/T + w
Tw

[
c1 + c2z

−1

d0 + d1z−1 + d2z−2

]
,

(18.17)

where Tw represents the w-transformation.
As can be observed, the previous system (18.17) corresponds to a non-

minimum-phase system, whose transfer function, G(w), can be written as
the composition of a minimum-phase function, Gmp(w), with an all-pass filter
A(w) [295]:

G(w) = A(w)Gmp(w), (18.18)

where

Gmp(w) = k
(w + p) (b1w + b2)
a1w2 + a2w + a3

, (18.19)
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and
A(w) =

−w + p

w + p
, (18.20)

being k = 103, p = 4 × 103, b1 = 471, b2 = 8.2684 × 107, a1 = 2.4613 × 104,
a2 = 8.336 × 106, a3 = 2.12848 × 1011.

18.3 Linear Fractional-order Control

The final objective of the control of a DC/DC buck converter is to achieve
a constant output voltage despite load variations and input voltage (Vg)
disturbances. The gain factor, k, in (18.16) depends directly on Vg and so, the
input voltage variations can be viewed as changes in the process gain and so
Bode’s ideal function can be used as reference system. Since the methods of
design proposed in this section are based on frequency domain techniques, a
linearized model of the plant is necessary in order to apply the design process.

By using the w-transform, the pseudo-continuous system obtained is a
non-minimum-phase system, whose phase lag must be canceled. To take into
account this phase lag two methods are proposed. One of them is based on
considering the non-minimum-phase term like a delay and to use a controller
that combines a fractional-order integrator and a Smith predictor structure
in order to achieve the working specifications. The other one deals with the
design of the controller taking into account the phase lag at the frequency of
interest for determining the order of the Bode’s ideal loop transfer function.
Finally, in order to avoid the handling of non-minimum-phase systems due
to the use of the w transform, the design problem is approached considering
directly the discrete linearized model of the DC/DC converter and applying
the discrete version of the Bode’s ideal function as reference system.

18.3.1 Controller Design Based on the Smith
Predictor Structure

This method of design is applied in two steps. First, the minimum-phase
subsystem Gmp(w) will be compensated. Next, the non-minimum-phase
subsystem A(w) will be considered.
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18.3.1.1 Minimum-phase Subsystem Compensation

For this purpose, the Bode’s ideal loop transfer function will be taken
as reference system. Considering the transfer function of the minimum-
phase subsystem (18.19) and a desired open-loop transfer function for the
compensated minimum-phase subsystem, the parameters Kc and λ will be
selected to obtain a specified phase margin ϕm and crossover frequency ωc.
So, the transfer function of the compensator Do(w) can be obtained as

Do(w) =
Kc

wλGmp(s)
=

Kc

(
a1w

2 + a2w + a3

)
wλk (w + p) (b1w + b2)

, (18.21)

being the design equations

Kc = ωλ
c , λ =

2
π

(π − ϕm). (18.22)

Taking as working specifications for the design: ϕm = 64◦; ωc = 1.36 ×
103 rad/sec, the parameters of the compensator are Kc = 1.1×104, λ = 1.29.
Taking into account the original non-minimum-phase system G(w), the open-
loop transfer function of the compensated system responds to the equation

G(w)Do(w) =
Kc

wλ

(−w + p)
(w + p)

, (18.23)

which consists of the Bode’s ideal loop transfer function plus an all-pass
filter. The phase margin has fallen considerably until 26.21◦. This is due to
the phase lag introduced by the all-pass filter.

18.3.1.2 Non-minimum-phase Subsystem Compensation Using the
Smith Predictor Structure

The previous analysis reveals that the non-minimum-phase effects must be
considered in the controller design process. In this section, the non-minimum-
phase term will be compensated by using the Smith predictor structure shown
in Figure 18.3.

This structure was proposed by Smith to deal with delay systems. In this
work, this structure is applied to a non-minimum-phase system with the aim
of designing the controller taking the minimum-phase subsystem and then to
implement the resultant controller in the form shown in Figure 18.3. In this
control scheme, the non-minimum-phase subsystem, A(w), is used instead of
the delay block of the Smith Predictor structure.

By using this control structure, the total controller D1(w), marked with a
dotted line in Figure 18.3, will be
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Figure 18.3 Smith predictor structure

D1(w) =
Do(w)

1 + Do(w)Gmp(w) − Do(w)G(w)
. (18.24)

Consequently, the global transfer function of the closed-loop compensated
system will be

F (w) =
Kc

wλ + Kc
A(w). (18.25)

18.3.2 Controller Design Using Phase-lag
Compensation

The second proposed design technique takes into account the additional
phase-lag introduced by the all-pass filter. This additional phase delay can
be evaluated at the frequency of interest ωc being

∠ (A(jv))
∣∣∣
v=ωc

= −37.55◦

resulting in a new phase margin for design:

ϕ′
m = ϕm−∠ (A(jv))

∣∣∣
v=ωc

= 64 + 37.55 = 101.55◦.

The open-loop transfer function of the compensated system in this case
will be:

D2(w)G(w) =
1

Gmp(w)
Kc

wλ
G(w). (18.26)

The controller D2(w) will be obtained from the minimum-phase subsys-
tem, considering the phase lag of A(w). From (18.22) controller parameters
are obtained as Kc = 532, λ = 0.87.

Figure 18.4 shows the resulting open-loop Bode plots. As can be observed,
the phase margin achieved with both controllers, D1(w) and D2(w), are
63.65◦ and 64.01◦ at the indicated gain crossover frequencies of 1.2 ×
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103 rad/sec and 1.36 × 103 rad/sec, respectively. Therefore, the design speci-
fications are very approximately fulfilled.
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Figure 18.4 Bode plots of the compensated pseudo-continuous system

18.3.3 Controller Design Based on the Discrete
Linearized Model

In this section a new design alternative for the controller is proposed from the
discrete linearized model of the converter. For this purpose a discrete version
of the Bode’s ideal loop transfer function will be taken as reference system.
So, the open-loop transfer function of the desired compensated system will
become

G(z)D(z) =
Kc

[Δ(z)]λ
, (18.27)

where Δ(z) denotes the discrete equivalent of the Laplace operator s. The
parameters Kc and λ will be selected to obtain the specified phase margin ϕm

and crossover frequency ωc. The transfer function of the compensator D(z)
is

D(z) =
Kc

[Δ(z)]λ
1

G(z)
, (18.28)

where G(z) corresponds to (18.16) and the design equations are (18.22).
In the frequency range of interest, we suppose that the frequency responses

of the following equations coincide:
Kc

sλ

∣∣∣
s=jω, ω∈[100,5×103 rad/sec]

≈ Kc

[Δ(z)]λ

∣∣∣∣
z=ejω

.
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Taking as working specifications for the design ϕm = 64◦, ωc = 1.36 ×
103 rad/sec, the parameters of the compensator are Kc = 1.1×104, λ = 1.29.
Figure 18.5 shows the open-loop Bode plots of the compensated system using
the discrete linearized model. The phase margin achieved is 63.92◦ at the gain
crossover frequency of 1.31×103 rad/sec. Therefore, the design specifications
are very approximately fulfilled. This fact validates the design hypothesis.
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Figure 18.5 Bode plot of the compensated discrete linearized model G(z)

18.4 Fractional Sliding Mode Control (FRSMC)

Sliding mode control is well known for its robustness to disturbances and
parameter variations. The sliding mode design approach consists of two
steps. The first one involves the design of a switching function, S = 0, so
that the sliding motion satisfies the design specifications. The second one is
concerned with the selection of a control law which will enforce the sliding
mode, therefore existence and reachability conditions are satisfied. These
conditions are obtained from geometrical considerations: the deviation from
the switching surface S and its time derivative Ṡ should be of opposite signs
in the vicinity of a switching surface S = 0:

lim
S→0+

Ṡ < 0, and, lim
S→0−

Ṡ > 0. (18.29)

These conditions are usually written more conveniently as SṠ < 0.
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This section deals with the design of switching surfaces for a buck con-
verter using alternative techniques based on FOC. Two alternative switching
surfaces are presented in order to achieve a good agreement between both
transitory and stationary responses. First, sliding surfaces based on linear
compensation networks PID or PI are presented. Then, the fractional-order
form of these networks, PIλDμ or PIλ, are used in order to obtain the sliding
surfaces. The integral component of this networks makes zero the steady-state
error. The control law used in this section is based on the PWM technique
applied by computer combined with the generation of trajectories from the
different structures of the bilinear model [296].

18.4.1 Sliding Surfaces Through PID and PI
Structures

First, this section presents a class of linear sliding surface, based on the
canonical form of the converter, using a PID structure to achieve a zero
steady-state error.

By using the state-space model in phase canonical form (18.3), the open-
loop dynamics of vc can be expressed as

v̈c +
1

RC
v̇c +

1
LC

vc =
Vg

LC
u. (18.30)

From (18.30) a candidate sliding surface for a buck converter can be
obtained of the form [297]

S = Kp (vr − vc) + Ki

∫
(vr − vc) dt + Kd

d (vr − vc)
dt

, (18.31)

where vr is the reference voltage and Kp, Ki, and Kd are the design
parameters to be determined. The control system block diagram is shown in
Figure 18.6. Since the measurement variables are iL and vc, and the design
method used here is based on the phase canonical form (the state vector is
x =
[
vc v̇c

]T), a state-space transformation block is needed.
In sliding motion (S = 0, Ṡ = 0), the closed-loop dynamics of vc becomes

v̈c +
Kp

Kd
v̇c +

Ki

Kd
vc =

Ki

Kd
u. (18.32)

The steady-state solution of (18.32) shows asymptotic stability if the
following conditions are fulfiled:

Kp

Kd
> 0,

Ki

Kd
> 0.
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Figure 18.6 Block diagram of the control system

The existence of the sliding mode requires that inequality SṠ < 0 is
fulfilled. From (18.31) the equivalent control law ueq is obtained. By doing
Ṡ = 0 and applying the equivalent control definition, ueq is obtained as

ueq =
vc

Vg
+

KiLC

KdVg
(vr − vc) − L

KdVg

(
Kp − Kd

RC

)(
iL − vc

R

)
, (18.33)

where
iL = Cv̇c +

vc

R
. (18.34)

The equivalent control, ueq, can be interpreted as the continuous control
law that maintain Ṡ = 0 if the dynamics were exactly known and, therefore,
this value is not computed for obtaining the control variable u. From (18.33)
and the constraint |ueq| � 1 and considering the equilibria conditions in
stationary regime, vc = vr and iL = 0, the conditions that limit the existence
region of the design parameters are obtained as

0 <
Ki

Kd
<

Vg

LCvr
,

0 <
Kp

Kd
<

1
RC

+
R

L

(
Vg

vr
− 1
)

.

(18.35)

Another candidate sliding surface, using a PI structure, can be obtained
of the form [297]

S = ir − iL, (18.36)

where
ir = Kp (vr − vc) + Ki

∫
(vr − vc) dτ,

and vr is the reference voltage, Kp and Ki are the parameters to be
determined. The choice of this structure is due to the fact that the closed-
loop converter behaves in sliding mode as a linear first-order system. Previous
sliding surface guarantees a null steady-state error because of the integral
term. The proportional term allows to get a satisfactory transient response.
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The sensed state-space variables are the inductor current iL and the capacitor
voltage vc. Now the state-space transformation that appears in Figure 18.6 is
not necessary and the state-vector is x =

[
iL vc

]T. From (18.36) and letting
Ṡ = 0, the equivalent control law ueq in this case becomes

ueq =
L

Vg

[
Ki (vr − vc) − Kp

C
iL +

(
Kp

RC
+

1
L

)
vc

]
. (18.37)

From (18.37) and using the constraint |ueq| � 1, and considering the
aforementioned equilibria conditions, the conditions that limit the existence
region of the design parameters are obtained as

0 < Ki <
Vg

Lvr
,

0 < Kp <
Vg − vr

vr

RC

L
.

(18.38)

From (18.33) and (18.37), the existence region in steady state takes the
form 0 < vc < Vg, which corroborates the step-down behavior of the buck
converter. Finally, the control law is chosen in order to satisfy the reachability
condition SṠ < 0.

18.4.2 Fractional Sliding Surfaces

This section develops two extensions of the aforementioned sliding surfaces
which apply fractional calculus to the design of such surfaces. The goal of this
procedure is to get a hybrid system that combines the advantages in terms of
robustness of the fractional-order control and the sliding mode control. First,
the design of switching surfaces by the application of fractional-order PID
compensation networks is carried out. The use of PIλDμ allows one to choose,
besides the parameters of the classical PID (Kp, Ki, and Kd), the orders
of integration λ and derivation μ. Next, the sliding surfaces are obtained
using the power model of the converter (taking as state-vector

[
iL vc

]T) and
applying a fractional-order PIλ compensation network.

18.4.2.1 PIλDμ Sliding Surfaces

Taking into account the integro-differential equation which defines PIλDμ

control action

u(t) = Kpe(t) + KiD
−λe(t) + KdDμe(t), (18.39)
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where, Kp, Ki, Kd, λ, and μ are the design parameters to be determined
(and, for simplicity in notation, D (∗) ≡ oD

(∗)
t ), a candidate fractional sliding

surface with generalized fractional-order PIλDμ structure can be obtained of
the form

S = Kp (vr − vc) + KiD
−λ (vr − vc) + KdDμ (vr − vc) , (18.40)

with 0 < μ < 1, 0 < λ < 2. The first derivative of the sliding surface will be

Ṡ = KpD (vr − vc) + KiDD−λ (vr − vc) + KdDDμ (vr − vc) . (18.41)

By using definitions and properties of the fractional-order derivatives and
integrals [3, 298], where these properties have been used for obtaining an
alternative state-space representation of fractional-order systems, we can
express the former condition as

Ṡ = Kp (v̇r − v̇c) + KiD
1−λ (vr − vc) + KdDμ−1 (v̈r − v̈c) . (18.42)

By substituting (18.2) into (18.42), with vr =constant (v̇r = v̈r = 0), the
condition becomes

Dμ−1ueq = − KpL

KdVg
iL +

KpL

KdVgR
vc +

KiLC

KdVg
D1−λ (vr − vc)

+
1
Vg

Dμ−1vc +
L

RCVg
Dμ−1iL − L

R2CVg
Dμ−1vc.

(18.43)

So, the equation for equivalent control is

ueq =
vc

Vg
+

KiLC

KdVg
D2−μ−λ (vr−vc)+

L

RCVg

(
iL− vc

R

)
− KpL

KdVg
D1−μ

(
iL− vc

R

)
=

vc

Vg
−KiLC

KdVg
D1−μ−λv̇c+

L

RCVg

(
iL− vc

R

)
− KpL

KdVg
D1−μ

(
iL− vc

R

)
,

(18.44)
that is, equivalent control is a function of the states and their fractional-order
derivatives and integrals. If λ = μ = 1 (PID structure for sliding surface),
(18.33) is obtained.

From (18.44), with restriction |ueq| � 1, and for the equilibria conditions:
1. vc = vr, iL = 0, and 2. vc = 0, iL = 0, the reachability conditions can be
obtained:

1. vc = vr, iL = 0,

0 <
Kp

Kd
<

1
D1−μvr

(
RVg

L
− Rvr

L
+

vr

RC

)
. (18.45)

2. vc = 0, iL = 0,

0 <
Ki

Kd
<

Vg

LCD2−μ−λvr
. (18.46)
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If μ = λ = 1, these conditions reduce to (18.35).
The block diagram of the control system in this case is the same as that

shown in Figure 18.6 changing the block of the PID network by a PIλDμ one.

18.4.2.2 PIλ Sliding Surfaces

Next, a PI fractional sliding surface based on the power model of the converter
is generated. The proposed sliding surface for achieving this goal is given by

S = ir − iL, (18.47)

being
ir = Kp (vr − vc) + KiD

−λ (vr − vc) , (18.48)

where Kp, Ki and λ are the design parameters to be determined.
From (18.47) and (18.48), the sliding surface with generalized fractional-

order PIλ structure becomes

S = Kp (vr − vc) + KiD
−λ (vr − vc) − iL, (18.49)

where 0 < λ < 2. Following the procedure of the previous section, the
equation obtained for equivalent control is:

ueq =
L

Vg

[
KiD

1−λ (vr − vc) +
(

Kp

RC
+

1
L

)
vc − Kp

C
iL

]
, (18.50)

that is, equivalent control is a function of the states and their fractional-order
derivatives and integrals. If λ = 1 (PI structure for sliding surface), (18.37)
is obtained.

From (18.50), with restriction |ueq| � 1, and for the aforementioned
equilibria conditions, reachability conditions are obtained:

1. vc = vr, iL = 0,

0 < Kp <
RC

L

Vg − vc

vc
. (18.51)

2. vc = 0, iL = 0,

0 < Ki <
Ve

LD1−λvr
. (18.52)

If λ = 1, these conditions reduce to (18.38).
The control block diagram corresponds to that displayed in Figure 18.6

without the state-space transformation and changing the PID network by a
PIλ one.
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18.5 Simulation and Experimental Results

18.5.1 Simulation Results

In order to show the performance of the proposed methods, both linear
and sliding mode control, simulation and experimental results for all the
controllers, with the specifications listed before, are shown here. In the case
of linear control, the simulated system corresponds to the block diagram
of Figure 18.7 where: the block “table” performs the conversion between
fictitious control signal and duty ratio; the block PWM provides to the filter
a voltage Vg during the interval d(k); the block “filter” is the LC filter plus
the load resistance.

vr =12 V
controller table PWM filter� � � � � �

�

Vv(k) d(k)

−

Figure 18.7 Block diagram for simulation

In order to implement the calculated linear regulators in a digital proces-
sor, the first step is to find the realizable discrete equivalents of the previous
controllers. This is achieved using inverse w-transformation, and, in the
case of fractional-order integrators, they are approximated by the continued-
fraction expansion (CFE) and the Tustin’s rule [165], for obtaining discrete
equivalents of order 5. Using the previous approximation, (18.22) does not
satisfy the causality principle and so a modification is introduced. Since the
order λ is bigger than 1, Δ(z) is considered as composed of a pure integrator
and a fractional-order integrator of order λ′ = λ − 1. The fractional-order
integrator is approximated by the expressed method and the pure integrator
using the forward rectangular rule. Figure 18.8 displays the open-loop Bode
plots of the compensated system with the described approximations. These
results show that the design specification, phase margin ϕm and gain crossover
frequency ωc, achieved in the design process are kept.

Next, the simulated step responses are presented. Figure 18.9 shows the
simulated step responses obtained with the described linear controllers. An
overshoot can be observed in the time response of the controlled system using
a controller based on the discrete version of the Bode’s ideal loop transfer
function. This overshoot is due to λ > 1, and can be removed by changing
the design specifications.
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Figure 18.8 Bode plots of the compensated system
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Figure 18.9 Simulated step responses for the designed controllers

For obtaining the simulation results of the controlled system when a
fractional structure is used to obtain sliding surfaces, the first step is to
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find the discrete equivalents of D−λ(vr − vc) and Dμ(vr − vc) using the
continued fraction expansion method and the Tustin’s rule aforementioned,
for obtaining discrete equivalents of order 5. Figure 18.10 shows the simulated
results obtained with the described controllers. These results are very similar
to each other and they agreed with the expected ones from the used
methodology to carry out the design of the controllers. The compensation
parameters for the sliding mode controllers are displayed in Table 18.1. As can
be observed, the fractional orders are close to one, but it must be taken into
account that these parameters are mainly introduced to show the possibility
of using fractional-order surfaces without obtaining the optimal values. New
works are going to deal with the optimizing process.

Time (sec)

v
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o
lt

)

Figure 18.10 Simulation results of the controlled converter for the defined sliding surfaces

Table 18.1 SMC controller parameters

Network Kp Ki Kd λ μ

PID 1 20 0.25 × 10−3 − −
PI 0.2 15 − − −

PIλDμ 100 20 0.125 × 10−4 1.06 0.90

PIλ 0.2 25 − 1.06 −
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18.5.2 Experimental Results

In order to show the feasibility of the proposed methods, a real prototype of
the buck converter has been built and experimental results are reported and
discussed. The prototype of the converter system is shown in Figure 18.11.

Figure 18.11 Prototype of the converter system

Figure 18.12 shows the block diagram of the controller. The controller
algorithms have been implemented in a Pentium 166 MHz machine. The
process interface has been carried out with a multifunction data acquisition
card PCL 818 and a multifunction Counter/Timer card PCL 836, which
provides three PWM channels.

to switch network

adapter

u

signum
PCL
836

control
algorithm

PCL
818

iL

vC
from LC

filter

Figure 18.12 Controller block diagram

Figure 18.13 (a-c) shows the experimental responses obtained with the lin-
ear controllers. Figure 18.13 (d-g) shows the experimental responses obtained
with the sliding mode controllers.
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Since there is a good agreement between simulated and experimental
results in all the cases, the following comparison is only done considering
simulation results.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 18.13 Experimental step responses: (a) Smith predictor structure case, (b) phase-
lag compensation case, (c) design based on the discrete model case, (d) sliding surface
through a PID structure, (e) sliding surface through a PI structure, (f) sliding surface
through a PIλ structure, and (g) sliding surface through a PIλDμ structure
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18.5.3 Robustness Comments on Simulation Results

In order to make a comparison between the different controllers, the distur-
bance rejection characteristics of the converter, namely audio-susceptibility
and closed-loop output impedance, have to be considered. There are other
methods for achieving this goal, e.g., applying an input voltage feedforward
to the PWM or using a peak current mode control, where two control loops
are necessary. However with the proposed controllers the requirements are
fulfilled with a single control loop. In order to show the robustness and
low sensitivity to plant parameters variations of these controllers, a series
inductance L = 3 mH is considered in the load circuit of the converter.
The simulation results in the case of sliding mode controllers are shown in
Figure 18.14. As can be observed, there are no significant variations in the
step responses with reference to the results shown in Figure 18.10.

Time (sec)

v
(V

o
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)

Figure 18.14 Simulation results of the sliding mode controlled converter considering a
series inductance L = 3mH

Figures 18.15 and 18.16 show the responses to step input voltage changes
when a linear controller and a sliding mode controller are used, respectively.
These results are compared with those obtained with two control algorithms
usually used for controlling converters. The design and implementation of
these controllers of reference can be seen in [299]. The best performance is
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achieved with the controller based on the discrete version of the Bode’s ideal
function.
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Figure 18.15 Response to step input voltage changes, with: (a) dead beat control, (b)
Smith predictor structure, (c) phase-lag compensation, (d) discrete version of Bode’s ideal
function

Figures 18.17 and 18.18 show the response to input voltage ripple when a
linear controller and a sliding mode controller are used, respectively. As can
be observed, the best performance in presence of ripple in the source voltage
Vg is achieved with the PIλ structure. Therefore, this control scheme shows
much better disturbance rejection properties.

18.6 Summary

In this chapter several alternative methods for the control of power electronic
buck converters applying fractional-order control have been presented. On the
one hand, the design of a linear controller for the DC/DC buck converter is
considered where Bode’s ideal loop transfer function presented in Chapter 2
is used as the reference system. On the other hand, the fractional calculus
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Figure 18.16 Response to step input voltage changes: (a) weighted mean of the state
errors, (b) PID structure, (c) PI structure, (d) PIλDμ structure, and (e) PIλ structure

is proposed in order to determine the switching surface applying a fractional
sliding mode control scheme to the control of such devices. In this case,
switching surfaces based on fractional-order PID and PI structures are
defined. An experimental prototype has been developed and the experimental
and simulation results confirm the validity of the proposed control strategies.
The practical implementation of the obtained controllers is feasible, as has
been demonstrated, to offer good results. New research is being carried out
in order to obtain an analytical justification of the robustness properties
observed in the behavior of the PIλ structure, as well as in the definition
of new fractional switching surfaces and in the application of the designed
controllers to other topologies (as boost and buck-boost converters) and more
complex systems (as motor drives). Boost and buck-boost converters show a
right-half-plane zero in their control-to-output transfer function, which makes
their control more complex. Several of the proposed control strategies for the
buck converter can be directly applied to the control of these converters.
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Figure 18.17 Response to step input voltage ripple, with: (a) dead beat control, (b)
Smith predictor structure, (c) phase-lag compensation, and (d) discrete version of Bode’s
ideal function
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Figure 18.18 Response to input voltage ripple, with: (a) weighted mean of the state
errors, (b) PID structure, (c) PI structure (d) PIλDμ structure, and (e) PIλ structure



Appendix
Laplace Transforms Involving
Fractional and Irrational Operations

As the cases of integer-order systems, Laplace transform and its inverse are
very important. In this appendix, the definition is given first. Then some
of the essential special functions are described. Finally, an inverse Laplace
transform table involving fractional and irrational-order operators is given.

A.1 Laplace Transforms

For a time-domain function f(t), its Laplace transform, in s-domain, is
defined as

L [f(t)] =
∫ ∞

0

f(t)e−stdt = F (s), (A.53)

where L [f(t)] is the notation of Laplace transform.
If the Laplace transform of a signal f(t) is F (s), the inverse Laplace

transform of F (s) is defined as

f(t) = L −1[F (s)] =
1

j2π

∫ σ+j∞

σ−j∞
F (s)estds, (A.54)

where σ is greater than the real part of all the poles of function F (s).

A.2 Special Functions for Laplace Transform

Since the evaluation for some fractional-order is difficult, special functions
may be needed. Here some of the special functions are introduced and listed
in Table A.1.

A.3 Laplace Transform Tables

An inverse Laplace transform table involving fractional and irrational oper-
ators is collected in Table A.2 [86,300].

391



392 Appendix

Table A.1 Some special functions

Special functions Definition

Mittag-Leffler E γ
α,β(z) =

∞∑
k=0

(γ)k

Γ(αk + β)

zk

k!
, Eα,β(z) = E 1

α,β(z), Eα(z) = Eα,1(z)

Dawson function daw(t) = e
−t2
∫ t

0
e

τ2
dτ

erf function erf(t) =
2√
π

∫ t

0
e
−τ2

dτ

erfc function erfc(t) =
2√
π

∫ ∞

t

e
−τ2

dτ = 1 − erf(t)

Hermit polynomial Hn(t) = e
t2 dn

dtn
e
−t2

Bessel function Jν(t) is the solution to t2ÿ + tẏ + (t2 − ν2)y = 0

Extended Bessel function Iν(t) = j−νIν(jt)

Table A.2 Inverse Laplace transforms with fractional and irrational operators

F (s) f(t) = L −1[F (s)] F (s) f(t) = L −1[F (s)]

sαγ−β

(sα + a)γ
t
β−1E γ

α,β

(−at
α) 1

sn
√

s
, n=1, 2, · · · 2ntn− 1

2
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√

π

k
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e
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Table A.2 (continued)

F (s) f(t) = L −1[F (s)] F (s) f(t) = L −1[F (s)]
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√
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F (s) f(t) = L −1[F (s)]
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39. D. Matignon, B. d’Andréa-Novel. Observer-based controllers for fractional differential
systems. 36st IEEE-CSS SIAM Conference on Decision and Control, 1997

40. Y.Q. Chen, H.S. Ahn, I. Podlubny. Robust stability check of fractional order linear
time invariant systems with interval uncertainties. Signal Processing, 2006, 86:2611–
2618

41. Y.Q. Chen, H.S. Ahn, D.Y. Xue. Robust controllability of interval fractional order
linear time invariant systems. Signal Processing, 2006, 86:2794–2802

42. A. Si-Ammour, S. Djennoune, M. Bettayeb. A sliding mode control for linear
fractional dystems with input and state delays. Communications in Nonlinear Science
and Numerical Simulation, 2009, 14:2310–2318



References 397
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Systèmes à Dérivées Non Entières, LAP-ENSEIRB, Bordeaux, France, 2003

65. C.A. Monje, B.M. Vinagre, V. Feliu, et al. Tuning and auto-tuning of fractional order
controllers for industry applications. Control Engineering Practice, 2008, 16(7):798–
812

66. R. Malti, M. Aoun, O. Cois, et al. Norm of fractional differential systems. Proceedings
of the ASME 2003 Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Chicago, USA, 2003
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162. D. Valério. Ninteger Toolbox. [online] http://www.mathworks.com/matlabcentral

/fileexchange/8312-ninteger

163. D.Y. Xue, C.N. Zhao, Y.Q. Chen. A modified approximation method of fractional
order system. Proceedings of IEEE Conference on Mechatronics and Automation.
Luoyang, China, 2006, 1043–1048

164. B.M. Vinagre, I. Podlubny, A. Hernandez, et al. On realization of fractional-order
controllers. Proc of the Conference Internationale Francophone d’Automatique, Lille,
France, 2000

165. B.M. Vinagre, Y.Q. Chen, I. Petras. Two direct Tustin discretization methods for
fractional-order differentiator/integrator. The Journal of Franklin Institute, 2003,
340(5):349–362

166. Y.Q. Chen, B.M. Vinagre. A new IIR-type digital fractional order differentiator.
Signal Processing, 2003, 83(11):2359–2365

167. M. A. Al-Alaoui. Novel digital integrator and differentiator. Electronics Letters,
1993, 29(4):376–378

168. M. A. Al-Alaoui. A class of second-order integrators and low-pass differentiators.
IEEE Trans on Circuit and Systems I: Fundamental Theory and Applications, 1995,
42(4):220–223

169. M. A. Al-Alaoui. Filling the gap between the bilinear and the backward difference
transforms: an interactive design approach. Int J of Electrical Engineering Education,
1997, 34(4):331–337

170. C.C. Tseng, S.C. Pei, S.C. Hsia. Computation of fractional derivatives using Fourier
transform and digital FIR differentiator. Signal Processing, 2000, 80:151–159

171. C.C. Tseng. Design of fractional order digital FIR differentiator. IEEE Signal
Processing Letters, 2001, 8(3):77–79

172. Y.Q. Chen, B.M. Vinagre, I. Podlubny. A new discretization method for fractional
order differentiators via continued fraction expansion. Proc. of The First Symposium



References 403

on Fractional Derivatives and Their Applications at The 19th Biennial Conference
on Mechanical Vibration and Noise, the ASME International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference
(ASME DETC2003). Chicago, Illinois, 2003, 1–8, DETC2003/VIB--48391
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modal canonical form, see modal
canonical form

observable form, see observable canonical
form

Caputo’s definition, 11, 13, 36, 43, 214,
217, 220

Cauchy principal value, 21

Cauchy’s argument principle, 23

Cauchy’s formula, 6, 7, 10, 218, 219

Cayley–Hamilton method, 46–53

Cayley–Hamilton Theorem, 46

CFE, see continued fraction expansion

characteristic equation, 22, 25, 26, 42, 46,
170, 178

characteristic parameter, 32

characteristic polynomial, 22

charge transfer, 262

Clegg integrator, 181–183

closed-form solution, 159, 213, 221–223,
231, 243, 249

collision avoidance, 273, 277, 300

commensurate-order system, 17, 18, 22,
26–28, 35–37, 43, 54, 56, 74, 224–226,
237, 239, 260

compensating term, 283

complementary sensitivity function, 90,
123

complete difference equation, 64

complex plane, 19, 24, 26, 37, 77–79, 90,
135–137, 146, 289

condition number, 261, 264, 266

constant overshoot, 151, 273, 287, 291, 300

constant phase element, 4, 262

constant phase margin, 75, 151, 286–288

constrained optimization, 252

continued fraction, 192–193, 195, 197, 383
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control law, 128, 134, 165, 166, 168, 170,
279, 283, 327, 361, 375–378

Control System Toolbox, 213, 231, 241,
256

controllability, 35, 54–56, 275

controllability criterion, 56, 71

controllability Gramian, 69

controllability matrix, 56

controllable canonical form, 38, 50, 52, 53,
56, 58

convolution, 6, 10, 43, 259

Coulomb friction, 277, 280, 281, 283, 297,
298, 300

coupling torque, 280, 281, 283–285, 292,
295, 300

CPE, see constant phase element

critically damped, 283, 286

CRONE controller, 31, 76, 134, 151,
151–157, 159, 162

d-stability, 278

damped oscillation, 14, 20, 27

damping ratio, 32, 33, 122, 154–156, 314

data acquisition, 115, 126, 146, 353, 355,
384

DC motor, 108, 115, 118, 280, 305, 307,
365

DC/DC converter, 365–369, 371, 387

dead beat, 365

delay dominant, 97–99, 101, 104

derivative action, 4, 77, 79, 80

describing function, 183

design specification, 121, 122, 124, 126,
129, 142, 158, 161, 162, 166, 181, 289,
314, 317, 356, 361, 374, 375, 381

DF, see describing function

diagonal matrix, 50, 369

diagonalizable, 369

diffusion, 4, 259, 261, 265, 271

Dirac’s delta function, 43

direct discretization, 196

direct transmission matrix, 35

discrete implementation, 196–201, 291, 300

discrete-time, 59–74

discretization, 60, 61, 196, 197, 199, 296,
326

direct discretization, see direct
discretization

indirect discretization, see indirect
discretization

Tustin method, see Tustin method

distributed mass, 292

distributed-parameter systems, 271

dominant time constant, 311, 323

double integrator, 165–170, 273, 282, 284,
295, 300

elastic limit, 295, 297

elastic manipulator, 275

electrical dynamics, 280

electrochemical process, 260, 261, 265, 271

electromechanical actuator, 280

end effector, 273, 274

equivalent control, 168, 170, 172, 377–380

equivalent electrical circuit, 4, 261

erfc function, 51

Euler–Bernouilli beam, 266

evolutionary algorithm, 159, 162, 163

expanded state, 61

exponential function, 13, 44, 214, 215

F-MIGO method, 88–92, 95–97, 100–104

fast Fourier transform, 16

FDE, see fractional-order differential
equation

feasible region, 124

feasible solution, 97, 124, 388

feedforward, 177, 276, 278, 352, 386

feedforward gain, 180

FFT, see fast Fourier transform

Final-Value Theorem, 123, 288, 313, 320

finite differences formula, 297

finite impulse response, 198

finite-dimensional system, 191, 198, 205,
212, 296

finite-time ITAE criterion, 213, 249, 250,
253, 256

FIR, see finite impulse response

first-order backward difference, 61

first-order forward difference, 60

first-order plus dead-time, 87, 95, 107

flatness of the phase curve, 133, 135, 140,
142, 145, 147

flexible manipulator, 77, 273–276, 289, 292,
297

multi-link flexible manipulator, see
multi-link flexible arms

single-link flexible manipulator, see
single-link flexible arm

two-link flexible manipulator, see
two-link flexible arms

flexible robot, 266, 274–276, 292

flexible structure, 260, 271, 275, 278

flexible transmission, 76

FOLLC, see fractional-order lead-lag
compensator

FOPDT, see first-order plus dead-time

force control, 274
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FOTF object, 196, 213, 232, 232–243, 256

Fourier transform

inverse Fourier transform, see inverse
Fourier transform

fractional calculus, 3, 4, 7, 12, 17, 75, 76,
214–231

Caputo’s, see Caputo’s definition

Cauchy’s formula, see Cauchy’s formula

Grünwald–Letnikov’s, see Grünwald–
Letnikov’s definition

Riemann-Louiville’s, see Riemann-
Louiville’s definition

fractional horsepower dynamometer, 115

fractional sliding mode control, 365,
375–380, 388

fractional sliding surface, 367, 378–380

fractional switching function, 170

fractional-order, 391

fractional-order transfer function, see
FOTF

fractional-order control, 34, 75–84

CRONE, see CRONE

FOLLC, see fractional-order lead-lag
compensator

FRSMC, see fractional-order sliding
mode control

PDμ, see fractional-order PD

PIλDμ, see fractional-order PID

PIλ, see fractional-order PI

FPI-PI, see FPI-PI controller

QFT, see QFT

reset control, see reset control

fractional-order delay system, 245

fractional-order differential equation,
12–16, 213, 214, 221–231, 239, 240,
245, 256, 264

fractional-order Kalman filter, 74

fractional-order lag compensator, 133, 138

fractional-order lead compensator, 133, 142

fractional-order lead-lag compensator, 130,
141, 147

fractional-order PD, 107–119

fractional-order PI, 87–106, 301, 303, 304,
312–352

fractional-order PID, 76, 81–83, 236, 255,
287, 303, 365, 378, 388

fractional-order transfer function, see
FOTF

frequency domain identification, 201, 260,
296, 361

FRSMC, see fractional-order sliding mode
control

gain crossover frequency, 31, 75, 76, 107,
109, 111, 122, 135, 138, 141, 145, 152,
161, 199, 289

gain margin, 32, 154, 301, 303, 314–316,
324, 328, 329

generalized hyperbolic function, 259

generalized Mittag–Leffler function, 215,
216

global optimization, 124

Grünwald–Letnikov’s definition, 7, 11, 12,
15, 16, 60, 61, 63, 71, 214, 217–221,
323

gradient approach, 174

H2 norm, 76, 205, 206, 212, 242

H∞ norm, 242

high-frequency dynamics, 277, 334

high-frequency gain, 160

high-frequency noise, 4, 80, 122

homogeneous difference equation, 62

hydraulic actuator, 76

IAE, 90, 249

ideal cutoff characteristic, 75

ideal sliding mode, 168

identity matrix, 36

IE, 90

IIR, see infinite impulse response

immersed plate, 56, 58

impedance measurement, 261

impulse response, 13–15, 27, 224, 226, 227,
260

impulse response invariant, 192, 198, 200

indirect discretization, 196, 296, 358

infinite impulse response, 197

infinite-dimensional system, 61, 66, 269,
271

initial condition, 4, 13–15, 18, 36, 69, 70,
82, 95, 124, 125, 133, 141, 166, 223,
225, 227, 277, 287

input matrix, 35

integer-order, 13, 17, 18, 22, 30, 44, 45, 56,
60, 66, 74, 87, 134, 198, 205, 212, 214,
224, 296, 391

integral action, 4, 77, 78, 80

integral criterion

finite-time ITAE, see finite-time ITAE

IAE, see IAE

IE, see IE

ISE, see ISE

ITAE, see ITAE

integral of absolute error, see IAE

integral of squared errors, see ISE

integral of the error, see IE
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integral of time weighted absolute error,
see ITAE

integrated absolute error, see IAE

interlacing property, 292–295

interval uncertainty, 161

inverse Fourier transform, 16

inverse Laplace transform, 6, 43, 45, 53,
224, 227, 391, 391–394

irrational-order, 18, 21, 28, 152, 259, 391

ISE, 76, 88, 90, 249, 250

iso-damping property, 113, 123, 147

ITAE, 113, 116–118, 213, 249, 250, 255

iterated integral, 6

iterative algorithm, 261

Jordan canonical form, 369

Jordan matrix, 46

Jury, 23

Kalman filter, 74

lag dominant, 99, 101, 102

Laplace transform, 4, 15, 37, 42, 43, 53,
224, 225, 231, 260, 281, 391, 391–394

inverse Laplace transform, see inverse
Laplace transform

LC filter, 368, 381

lead-lag compensator, 81, 133, 134

fractional-order lead-lag compensator,
see fractional-order lead-lag
compensator

linear time invariant, 12, 17, 18, 22, 34, 35

linearized model, 303, 307, 368, 369, 371,
374, 375

link deflection, 282

liquid level system, 125, 126, 160

load disturbance, 89, 90, 101, 102, 122

load disturbance rejection, 88, 89

local optimization, 124

loop shaping, 88, 89, 159, 160, 161

low-pass filter, 154, 172, 244, 299, 300, 365

LTI, see linear time invariant

Lyapunov stability, 277

magnitude Bode plot, 192, 312, 329

MARC, see model reference adaptive
control

marginally stable, 294, 316

mass per unit length, 292

mass transport, 4, 262

MATLAB, 50, 51, 60, 198–210, 213–256

Control System Toolbox, see Control
System Toolbox

Optimization Toolbox, see Optimization
Toolbox

Real-Time Workshop, see Real-Time
Workshop

Simulink, see Simulink

maximum sensitivity, 88

mechatronic platform, 358

memory, 4, 8, 18, 44, 61, 259, 323

memory length, 16

MIGO method, 88, 93, 100, 105

minimum-phase, 151, 197, 275, 371–373

MIT rule, 175–178

Mittag–Leffler function, 13, 14, 44, 46, 48,
51, 52, 213–217, 229, 256, 260

Mittag–Leffler function evaluation,
214–217

Mittag–Leffler function in more
parameters, 215

Mittag–Leffler function in one parameter,
214

Mittag–Leffler function in two
parameters, 15, 214, 215, 217, 259,
288, 289

Mittag–Leffler matrix function, 44, 50, 51

modal canonical form, 39–42, 50–52

model reference, 165

model reference adaptive control, 173–181

modified Oustaloup filter, 192, 195–196,
245, 256

motion control application, 107

motor inertia, 280, 284

motor-gear set, 281

Ms constrained integral gain optimization,
see MIGO

multi-link flexible arms, 278

multinomial coefficient, 230

multiple-input multiple-output, see MIMO

multiplicity, 39, 227

n-fold integral, 5, 9, 10

N-integer toolbox, 192, 193, 213

natural frequency, 32, 281

neural network, 277

Newton’s second law, 280

Newton–Raphson technique, 94–96

Newtonian fluid, 40

Nichols chart, 155–157, 159, 241, 317, 329

nominal plant, 160, 278, 308, 311, 313, 317,
318, 321, 324, 329

nominal tip mass, 276

nominal value, 161, 278, 291, 310, 314, 317,
318

non-collocated system, 275

non-convex optimization, 158, 159
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non-minimum-phase, 151, 370–372

nonlinear constraint, 125, 129

nonlinear control, 115

nonlinear equation, 94

nonlinear system, 243

nonlinear time-varying, 367

norm, 66, 238, 242–243

H2 norm, see H2 norm

H∞ norm, see H∞ norm

null matrix, 62

numerical solution, 15–16, 34, 214–223, 230

Nyquist path, 23, 24

Nyquist plot, 31, 75, 90, 143, 241, 294

Nyquist stability criterion, 294, 328

object-oriented programming, 213, 234

objective function, 76, 205, 252, 254, 256

observability, 35, 57–58, 71, 74

observability criterion, 58

observability Gramian, 71

observability matrix, 58

observable canonical form, 39

observer, 74

observer-based controller, 74

operating point, 310

operational calculus, 7

optimization, 88, 89, 91–95, 124, 126, 161,
206, 214, 242, 251–256, 300

constrained optimization, see constrained
optimization

optimization constraint, 92, 124, 328

unconstrained optimization, see
unconstrained optimization

Optimization Toolbox, 252

oscillation equation, 12

Oustaloup recursive approximation

modified Oustaloup recursive
approximation, see modified
Oustaloup filter

Oustaloup’s recursive approximation, 97,
112, 126, 152, 154, 186, 192–196, 208,
212, 244

output disturbance rejection, 123

output equation, 36, 39, 50, 57, 59, 72

output matrix, 35

overload function, 213, 234, 235, 239, 241,
242, 256

Parseval’s Theorem, 260

partial fraction expansion, 39, 45, 225,
227–229

particular solution, 13, 14

passivity, 275

PDμ, see fractional-order PD

peak sensitivity, 88, 90

phase crossover frequency, 324, 329

phase margin, 32, 75, 76, 107, 109, 111,
122, 133, 135–137, 142, 145, 161, 289,
313, 324, 372

PI, see proportional integral controller

PID, see proportional integral derivative

PIλDμ, see fractional-order PID

PIλ, see fractional-order PI

FPI-PI controller, 320–322, 327, 330, 333

pole, 21, 25, 32, 39, 126, 135, 155, 193, 225,
239, 259, 292, 356, 391

pole placement, 278

pole-zero excess, 160

position control, 273, 284

position servo, 108, 355

positive unity-gain feedback, 282, 284

power electronic converters, 366

prewarping, 199

primitive, 5, 10

principal Riemann sheet, 22

proportional action, 4, 77, 78, 80

pulse width modulation, see PWM

pure integrator with time delay, 104

pure time delay system, 104

PWM, 365, 368, 376, 381, 384, 386

QFT, 158–163, 203, 300

quantitative feedback theory, see QFT

quarter amplitude damping design method,
88

ramp response, 114, 117

Randle’s equivalent circuit, 261, 262, 263

rational commensurate-order system, 37

rational-order, 17, 41

reachability, 68

reachability condition, 71, 166, 168, 172,
378–380

Real-Time Workshop, 115

reduction gear, 276, 279, 284

reference angle, 283

relative dead time, 88, 96, 97, 100, 101,
104–106

relative stability, 4, 77, 181

relaxation equation, 12, 31, 271

relay test, 142–147, 359, 360

relevant root, 21

reset control, 181–188

Riemann principal sheet, 23, 25, 27

Riemann surface, 19, 20

Riemann–Liouville’s definition, 6, 10, 11,
172, 185, 217

rigid robot, 77
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rise time, 77, 187, 286, 289
robotic impedance control, 274
robust stability, 151, 160, 163, 314, 316,

324
robustness criterion, 133, 135, 140, 142,

145
Routh, 23, 178

sampler, 59
sampling period, 59–61, 126, 141, 157, 198,

199, 203, 323, 325, 327, 355, 356, 361,
368

saturation, 300, 307, 361
secondary sheet, 20
semi-group property, 45, 64
sensitivity constraint, 91, 92
sensitivity derivative, 174
sensitivity function, 90, 122, 123, 126, 278
servo-amplifier system, 280
set-point, 89, 90, 307, 309, 325
settling time, 77, 79, 295, 296, 314,

319–321, 324, 325, 327, 370
short memory principle, 16, 323
signal processing, 198
Simulink, 116, 185, 212, 213, 243–248, 252,

253, 255, 359
single-input single-output, 37, 43, 54, see

SISO
single-link flexible arm, 275, 278, 279, 282,

292, 295, 297, 300
sliding mode, 277, 375, 377
sliding mode control, 165, 188, 365, 375,

378, 381, 383, 384, 386
sliding surface, 165, 166, 168, 277, 366,

376–380, 382
SMC, see sliding mode control
Smith predictor, 301, 303, 304, 371, 372
spillover, 275, 277–279, 291–293, 296
stability, 19–26, 36–37, 66–68, 176–179,

199, 213, 237–239, 277, 285, 312, 314
stability boundary, 160, 162
stability condition, 21, 22, 37, 42, 66,

178, 294
stability margin, 66, 153, 278
stability radius, 68

state feedback, 74
state pseudo-transition matrix, 45, 46, 47,

49, 63, 64, 67
state transition matrix, 43, 45
state-space

state-space canonical realization, see
canonical state-space representation

state-space difference equation, 62
steady-state error, 123, 154, 181, 255, 277,

313, 320, 327, 357, 377

steady-state error constant, 133, 140

step function, 52, 219, 220, 223, 246

step response, 27, 32, 89, 100, 101, 106,
112–113, 116, 157, 186, 209, 224, 230,
239, 253, 260, 273, 289, 357, 362

step response invariant, 200

strain gauge, 282, 283, 285

structural root, 21, 21, 25, 26, 32

switching function, 165, 167, 168, 375

Sylvester’s interpolation formula, 47

symbolic method, 7, 220

Taylor’s matrix series, 46

template, 153, 159

test batch, 88, 96, 97

thermal system, 77

tip payload, 273, 276–278, 292, 295

trajectory tracking, 276, 277

transcendental function, 269

transfer function matrix, 36

transient response, 75, 77, 179, 277, 310,
377

tuning method, 87, 88, 106, 107, 117, 121,
122, 125, 133, 138, 355

Tustin method, 192, 198, 199

two-link flexible arm, 277

UHFB, see universal high-frequency
boundary

uncertainty, 155, 159

uncertainty bound, 278

unconstrained optimization, 251

universal high-frequency boundary, 160

Vandermonde matrix, 47–49

variable structure control system, 165

velocity servo, 353, 355, 357

viscoelastic damped structure, 76

viscous friction, 280

VSCS, see variable structure control
system

w-transform, 370, 371, 381

Warburg impedance, 4, 262, 265, 271

Young’s modulus, 292

zero, 81, 126, 193, 259, 292, 356

zero-crossing detector, 182

zero-order hold, 59, 319, 355

Ziegler–Nichols tuning rule, 88, 89, 101,
121

ZOH, see zero-order hold
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