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Preface

This book presents the discipline of immunology which studies a unique

physiological phenomenon contradicting many of the generally established

rules in the field: immunology of pregnancy. It provides a wide overview of the

current research of this topic. Prominent and leading international groups con-

tributed by reviewing the most significant findings in the field.

Pregnancy is the symbiosis of two allogeneic individuals which live in inti-

mate contact. The maternal immune system reacts towards the foreign tissue,

but instead of triggering rejection, it tolerates, supports and regulates its devel-

opment. It controls efficiently and indispensably the formation of the placenta

and thereby the development of the embryo and fetus. Many internal and exter-

nal factors can provoke imbalances of the system, which may result in preg-

nancy disorders including infertility and abortions.

Leading scientists in the field present the latest findings on physiological

mechanisms required for successful pregnancies and the respective pathologies.

The regulation of maternal NK cells, T cells and dendritic cells through hor-

mones, cytokines, complement system and HLA as well as other cell-surface

molecules are described in detail.

Knowledge of the immunoregulatory processes of pregnancy is necessary

to understand and treat a variety of disorders, which may lead to infertility, pre-

mature events, preeclamptic diseases and many other problems. The same

knowledge can be used to gain insight into distant fields of immunology, where

immunomodulatory mechanisms known from pregnancy are involved in

pathologies, such as HLA-G or progesterone-induced blocking factor (PIBF) in

tumor development, or in therapeutic approaches, such as in posttransplantation

or allergy therapies.

XIII



This book presents fascinating facets of immunology, which may surprise

those readers who are not yet familiar with the immunology of reproduction

and which will update the knowledge of specialists.

The general political and public interest in the field is reflected by the

establishment and support of a European Network of Excellence entitled

EMBIC (Embryo Implantation Control; www.embic.org; 2004–2008), which is

strongly supported by the European Union. Several of the authors of this book

are partners of the EMBIC.

Udo R. Markert
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Chem Immunol Allergy. Basel, Karger, 2005, vol 89, pp 1–2

The ‘Hatching’ of Reproductive
Immunology

Radslav Kinský

Zdar nad Sazavou, Czech Republic

Transplantation immunology has progressed since Paul Bert’s experiments

on rats in the 19th century regarding the riddle of the mother’s acceptance of an

antigenically different fetus carrying paternal antigens. The modification of the

pregnant female’s immune reactivity became a topic developed by several

research workers. Vera and Milan Hasek contributed largely to the field during

the days and years of ‘specific acquired tolerance’ in the early 1950s, showing in

particular that the pregnant mother was able to reject foreign and even paternal

tissue grafts when transplanted to an ectopic site. Furthermore, fetal tissue was

sufficiently immunogenic to elicit a rejection reaction when grafted on to a third

party or maternal recipient. Therefore, attention was focused on local events

linked to the placenta and trophoblast and to the hormonal balance during preg-

nancy. The long list of lymphokines and cytokines present in the vicinity of the

implantation site and the crucial role of NK cells and their respective control

represented topics aimed at an explanation of various types of failure of fetal

development and abortions. It was soon clear that a large number of conditions

and factors were involved in the chain of events during pregnancy, beginning at

the early stages (e.g. EPF � early pregnancy factor). However, the lack of even

one factor or step can lead to fetal demise. This is often compared to a delicate

and complex mechanism in which the removal of a single small part is able to

stop the functioning of the whole ‘machine’. This was clearly shown in the work

of Julia Szekeres-Bartho studying PIBF (progesterone-induced blocking factor).

Furthermore, the role of humoral antibodies and suppressor cells linked

reproductive immunology to immunological enhancement facilitation. This facet

was thoroughly studied by Gérard Chaouat and myself in Guy Voisin’s labora-

tory in Paris. With Gérard Chaouat we further showed the role of anti-idiotypic

antibodies and later with Ricardo Margni and Ruben Binaghi the participation of
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the so-called ‘incomplete antibodies’, not fixing C and significantly increased

during pregnancy mainly in the long-term gravidity of the equine species. Over

half a century the working conditions in our laboratories, using various kits of

highly specific materials, sophisticated apparatuses with automatic distributors

and measurements, have made it possible to shift efforts in the present scientific

community from benchwork to the field of invention and intellectual originality.

I remember one of Professor Pierre Grabar’s remarks stating that when at the end

of his career and life he visited modern laboratories with extraordinarily expen-

sive equipment he still thought that the outstanding work achieved by the scien-

tists of his generation with their own hands was mainly possible because they

were close to the actual realization of their results.

Radslav Kinský

ZÁMEK c. 13/13

591 02 Zdar nad Sazavou (Czech Republic)
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increase in number and are found in close contact with trophoblast. Natural killer

(NK) cells, macrophages and T cells are the most abundant immunocytes present

in the decidua, whereas B cells are virtually absent. It is apparent that immuno-

logical mechanism may play an important role in pregnancy. We outline below the

possible roles of T cells in successful pregnancy, pregnancy failure and preim-

plantation embryo development.

Decidual T Cells

In early pregnancy, the T cells comprise 10–20% of the leukocytes in the

uterine mucosa. The relative number of T cells is greater during implantation.

Many years ago, a role of T cells in the development of the placenta and in the

fetal survival was suggested. The injection of anti-T cell antibodies in MRL-

lpr/lpr homologous mice, which exhibit excessive T cell proliferation and large

placentas, reduced placental parameters to normal [1]. In normal mice, the

same treatment decreased placental size and in some strain combinations

caused fetal resorption [1].

Inasmuch as many T cell effects are mediated via the production of

cytokines, the type of cytokines produced could influence the maintenance of the

fetoplacental unit. The human CD4� T cells can be classified on the basis of their

pattern of cytokine production [2, 3]. Type 1 CD4� T cells (Th1) produce inter-

leukin (IL)-2, tumor necrosis factor-� and interferon (IFN)-� and are the main

effectors of phagocyte-mediated host defense, which is highly protective against

infections sustained by intracellular parasites [2, 3]. On the other hand, type 2

CD4� T cells (Th2) produce IL-4, which stimulate IgE and IgG1 antibody pro-

duction, IL-5 (promoting the growth and the differentiation of eosinophils), IL-13

and IL-10 which together with IL-4 inhibit several macrophage functions. The

Th2 cell is mainly responsible for phagocyte-independent host defense, e.g.

against certain nematodes [2, 3].

The maternal decidua, which is in direct contact with the trophoblast,

contains macrophages, dentritic cells and T lymphocytes. These cell types are

potentially able to promote the rejection of fetal allograft, which is first medi-

ated by the recognition of paternal MHC antigens by the antigen-presenting

cells (dendritic cells and macrophages) and then by the activity of effector

T cells via the release of various cytokines. Therefore, changes in the recog-

nition mechanisms and/or in the pattern of cytokines produced by the acti-

vated T cells may play an important role in the immunological tolerance of

the conceptus during successful pregnancy, as well as in its premature rejec-

tion. It appears that some Th1-dependent effector mechanisms play a central

role in acute allograft rejection. Proteins and/or transcripts for intragraft IL-2,
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Chem Immunol Allergy. Basel, Karger, 2005, vol 89, pp 3–9

T Cells in Pregnancy

Marie-Pierre Piccinni

Department of Internal Medicine, Immunoallergology Unit, 

University of Florence, Florence, Italy

Abstract
Maternal tolerance of the fetal allograft could be the result of the integration of

numerous mechanisms promoted by different cells present in the decidua. Decidual

macrophages and dendritic cells, which are found in close association with T lymphocytes

are the most potent activators of T lymphocyte responses and could play a sentinel function

for the immune system, initiating antigen-specific T cell responses to fetal antigens. T cell

cytokines produced in response to fetal molecules could have a role in the maintenance or

in the failure of pregnancy. The levels of LIF, IL-4, IL-10 and M-CSF produced by decid-

ual T cells of women suffering from unexplained spontaneous abortion are lower than

those of normal pregnant women indicating that these cytokines may contribute to the

maintenance of pregnancy. T cells from the cumulus oophorus surrounding the preimplan-

tation embryo produce LIF and IL-4. These findings suggest that cytokines produced by

maternal T cells create a suitable microenvironment for preimplantation embryo develop-

ment and maintenance of pregnancy. T cell cytokine profile could be modulated by the

hormones present in the microenvironment of T cells: high doses of progesterone present

at fetomaternal interface and in the cumulus induce the production of IL-4 and LIF,

whereas relaxin induces IFN-� production.

Copyright © 2005 S. Karger AG, Basel

Introduction

In pregnancy, the embryo implants into the specialized mucosal wall of the

uterus (decidua) and the placenta starts to form. Trophoblast invades into the uter-

ine mucosa in order to open up maternal uterine arteries to ensure an adequate

supply of blood to the developing fetus. The uterine mucosa differentiates in

preparation for implantation. One of the changes that takes place is the appear-

ance in the endometrium of a large number of maternal leukocytes in the final

part of the menstrual cycle. If pregnancy ensues, these leukocytes continue to

Cytokine Regulation and Signal Transduction in Pregnancy
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IFN-� and the cytotoxic T lymphocytes-specific marker, granzyme B, have

consistently been detected in rejecting allografts [4, 5]. Several in vivo stud-

ies that examined the pattern of cytokine expression during tolerance induc-

tion have consistently shown a dramatic decrease in the expression of IL-2

and IFN-�, while increased levels of IL-4 and IL-10 transcripts are manifest

[4, 5]. This has suggested, maybe in a simplistic way, that Th1-type cytokines,

that promote allograft rejection [4, 5], may compromise pregnancy, whereas

the Th2-type cytokines, inhibiting the Th1 responses, promote allograft toler-

ance and therefore may improve fetal survival.

Th1- and Th2-type cytokines produced by maternal T lymphocytes present at

fetomaternal interface seem to play a role in the development of pregnancy. In

mice, it has been reported that IL-4, IL-5 and IL-10 are detectable at the fetoma-

ternal interface throughout the period of gestation, whereas IFN-� is transient,

being detectable only in the first period [6, 7]. In humans, studies of pathological

conditions can shed light on the normal situation in the uterus. In women suffer-

ing from unexplained recurrent abortion with histories of at least 3 prior first-

trimester spontaneous abortions, which cannot be explained on the basis of the

conventional criteria, a role of the detrimental immune system has been sug-

gested. Indeed, we have shown a defect of IL-4 production by both decidual

CD4� and CD8� T cells and a defect of IL-10 and M-CSF by decidual CD4� T

cells of women suffering from unexplained recurrent abortion undergoing a spon-

taneous abortion in comparison with the decidual T cells of women with a normal

pregnancy undergoing a voluntary abortion [8, 9]. Accordingly, very recently in

women with unexplained recurrent abortion with normal chromosomal content a

decrease of CD4� and CD8� T cells expressing CRTH2, a marker of Th2 and

Tc2 cells, at the site of implantation, has been observed [10]. Therefore, in

humans at the fetomaternal interface the success of pregnancy seems to be asso-

ciated with the production of IL-4, IL-10 and M-CSF by T cells [8, 9, 11]. The

defect in IL-10 production by decidual T cells of women suffering from unex-

plained recurrent abortion is consistent with the results obtained in abortion-

prone CBA � DBA/2 mice. These mice have placentas deficient in IL-10 and

intraperitoneal injection of IL-10 reduces fetal loss to a normal level [12].

Interestingly, the levels of IFN-� produced by decidual T cells of women with

unexplained recurrent abortion and normal pregnancy did not differ. Therefore,

we did not find an increased production of IFN-� by decidual T cells during the

spontaneous abortion, as could be expected because of the potential role of Th1-

type cytokines on allograft rejection.

Leukemia inhibitory factor (LIF) is an endometrial requirement for implan-

tation and embryo development, inasmuch as female mice lacking a functional

LIF gene are fertile but their blastocysts fail to implant and do not develop 

unless the blastocysts are transferred to wild-type pseudopregnant recipients or
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the animals are treated locally with LIF [13]. We have seen that LIF known to

be produced by endometrial epithelial cells and NK cell is also produced by

T cells and mainly by Th2-like cells [8]. Finally, we have found not only a

defective production of IL-4 and IL-10 in decidual T cells of women suffering

from unexplained recurrent abortion, but also a defective production of LIF by

these cells [8]. All these results suggest that T cell LIF, M-CSF and Th2-type

cytokine production at the fetomaternal interface could contribute to the devel-

opment of pregnancy. The relative contribution of LIF produced by T cells

compared with the contribution of LIF produced by endometrium epithelial

cells or NK cells is not clear. Recently, it has been reported that in the decidua

there is a strong LIF mRNA expression among the CD45� leukocytes. Little or

no expression of LIF mRNA was seen in the glandular epithelium of the

decidua, even though adjacent CD45� leukocytes were strongly positive.

Interestingly, in nonpregnant endometrium, the glandular epithelium expresses

abundant LIF mRNA with little apparent expression by leukocytes [14].

Therefore, LIF expression by glandular epithelium is dramatically downregu-

lated after implantation, whereas expression by leukocytes is upregulated in the

decidua. The authors assigned most of the LIF expression to NK cells that rep-

resent 70% of the leukocytes present in the decidua. However, decidual NK

cells (the apparent source) purified and cultured alone did not produce LIF even

if these cells were stimulated by exogenous IL-2, IL-1� or IFN-� [14].

Therefore, it seems that the production of LIF protein in the deciduas during

pregnancy could be predominantly assigned to the T cells.

A reduced production of Th2-type cytokines, LIF and M-CSF at the fetoma-

ternal interface in women suffering from unexplained recurrent abortion has not

been found at the level of peripheral blood, suggesting that this is not an inherent

feature of T cells, but rather a microenvironmentally oriented alteration. We won-

der what are the factors present in the microenvironment of the T cells that could

be responsible for the cytokine profile of the T cells in unexplained recurrent

abortion and in successful pregnancy. The cytokine profile of T cells in pregnancy

could be influenced by hormones. Progesterone, at concentrations comparable to

those present at the maternofetal interface during pregnancy, is a potent inducer

of the production of Th2-type cytokines (i.e. IL-4 and IL-5) [12], but also a potent

inducer of LIF and M-CSF production by T cells. The productions of M-CSF and

LIF induced by progesterone are mediated by IL-4 [8, 11, 15–17]. Moreover,

relaxin, a polypeptide hormone predominantly produced by the corpus luteum

and decidua during pregnancy, favors the development of T cells producing 

IFN-�, without exerting any effect on the production of IL-4 [18]. 17�-Estradiol

and hCG have no effect on the T cell differentiation into Th1 or Th2 cells [15].

Therefore, hormonal influences seem to play a critical role in determining the

T cell cytokine pattern at the fetomaternal interface [8, 11, 15–18].
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Our results suggest a hormone-cytokine-T cell network at the fetomaternal

interface. Progesterone, present at a high level at the fetomaternal interface,

may be at least in part responsible for a Th2 switch at the fetomaternal interface.

IL-4 produced by the Th2 cells can in turn promote the development of T cells

producing LIF and M-CSF, which seem to be important for embryo implanta-

tion and development. Both IL-4 and IL-10 can inhibit the development and

function of Th1 cells and macrophages, thus preventing the allograft rejection.

Moreover, both IL-10- and IL-4-promoting progesterone production by luteal

cells derived from corpora lutea of early pregnancy [19] could amplify this pos-

sible mechanism. A defect in the integrity of this network may result in fetal

loss. Obviously, the possibility that functional changes in T cells are the result

rather than the cause of pregnancy failure cannot be excluded. Even in this case,

however, T cell functional alterations may aggravate the situation and accelerate

the rejection.

Cumulus Oophorus T Cells

In most mammals, T cells are not confined exclusively to the uterus. We

detected T cells in the large and expanded mass of cells, called cumulus oopho-

rus, which surrounds the oocyte during ovulation. Clusters of these cells pro-

gressively detach, but variable numbers of cells remain around the egg for the

first 72 h before the implantation of the blastocyst in the uterus [20]. We have

detected both macrophages and CD4� T cells in all cumuli from women suffer-

ing from blocked fallopian tubes, who underwent an in vitro fertilization pro-

gram. However, only very few NK cells have been found occasionally [21].

These cumulus T cells produce higher levels of IL-4 and LIF than the T cells of

peripheral blood or ovary specimens isolated from the same women. Of note,

although T cells from the cumulus oophorus were derived from the ovary, they

produced higher levels of IL-4 and lower levels of IL-10 than T cells from biopsy

specimens of the ovaries. This finding demonstrates that T cells present in the

cumulus oophorus are different from other T cells present in the ovary and sug-

gests the existence of a peculiar microenvironmental orientation for cumulus

T cells [21]. As was suggested for decidua, hormones can modulate the cytokine

profile of the cumulus oophorus T cells. Very high levels of progesterone found

in the culture medium of human cumulus-oocyte/fertilized egg complexes [22],

produced by cumulus luteal cells, may favor IL-4 production by T cells, which in

turn can produce LIF. The physiological meaning of LIF and IL-4 production by

T cells present in the cumulus oophorus is unclear and may only be an object of

speculation. The treatment with LIF enhances the in vitro growth and develop-

ment of murine [23], bovine [24] and ovine [25] embryos, suggesting that LIF
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and probably other cytokines acting in concert with LIF are required to create a

suitable microenvironment for the early embryo development.

Conclusion

T cells could play a role in embryo development and implantation and in

the maternal tolerance towards the fetus. The T cells could work in parallel with

NK cells, macrophages and/or dendritic cells restraining or increasing the

effects of these cells. The integration of numerous mechanisms of various ori-

gins could be responsible for the maternal tolerance towards the fetus [26–28].
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Abstract
We review recent studies of two cytokines IL-15 and IL-18, showing that they are the

critical cytokines controlling uterine NK cell cytokine production and cytolytic potential.

Further, IL-15 has been implicated in differentiation and proliferation of uterine NK cells, while

IL-18 enhanced innate immunity and both Th1- and Th2-driven immune responses depending

on the cytokine milieu. We addressed the possible role of these two cytokines in induction of the

IFN-� production as a key molecule in vascular remodeling during early pregnancy.

Copyright © 2005 S. Karger AG, Basel

Interleukin 15

Distribution of IL-15 and IL-15R at the Maternal-Fetal Interface
IL-15 is a four �-helical cytokine (14–15 kDa) that was first identified as a

T cell growth factor (IL-T) and was subsequently found to be also essential for

NK cell development [1–4]. Although IL-2 and IL-15 have numerous overlap-

ping activities on cells of the immune system, the differential expression of

these cytokines within tissues and by various cell types suggests that they may

perform at least partially distinct physiological functions. While IL-15 is

expressed more broadly in a wide variety of tissues (including placenta) and

cells, IL-2 is produced only by activated T cells and LPS-activated dendritic

cells [1, 5, 6]. As IL-2 has been detected only in a few samples of isolated
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decidual T and NK cells by using nested RT-PCR [7], IL-15, therefore, seems

likely to provide an important regulatory role for decidual NK cells in vivo.

To mediate its effects, IL-15 interacts with a heterotrimeric receptor that

consists of the � and � subunits of IL-2R, as well as a specific, high-affinity

IL-15 binding subunit, which is designated IL-15R� [8, 9]. IL-2/IL-15R� is

expressed constitutively by NK cells and to a lesser extent by monocytes and

CD8 cells [10, 11]. Expression of the IL-2R� by decidual NK cells has previ-

ously been reported by many investigators [12–15] as well as the expression of

the IL-2R� by these cells [14, 15]. IL-15R� has a wide cellular and tissue dis-

tribution [16] including placenta [1]. Its expression is observed in T and B

cells, macrophages, in thymic and bone marrow stromal cell lines [17] and

recently on purified decidual CD56� cells [15]. Thus the widespread distribu-

tion of IL-15R�, IL-2/IL-15R� and �c elements of the IL-15R system is one of

the mechanisms underlying the pleiotropy of IL-15.

The murine uterus initiates transcription of IL-15 following onset of decidu-

alization until gestation day 11, when it is lost [18]. Both IL-15 mRNA and pro-

tein were demonstrated in the human nonpregnant endometrium, decidua and

placenta [15, 18–20]. Moreover IL-15 was detected in uterine macrophages, stro-

mal cells, amnion, and chorion [15, 18, 21] (fig. 1). Kitaya et al. [20] documented

that IL-15 protein was localized in glandular epithelial cells and stroma of human

endometrium during the late cycle with the most prominent expression in perivas-

cular cells surrounding the decidual spiral arteries. Expression of IL-15 during

the early pregnancy is most prominent in endothelial cells of spiral arteries [20].

IL-15 expression was shown to peak in the mid- to late-secretory phase of the

normal human menstruation and was upregulated during progesterone-induced

decidualization [19]. Progesterone is a potent inducer of IL-15 mRNA expression

as well as IL-15 protein secretion in human endometrial stromal cells in vitro

[22]. When progesterone levels drop either premenstrually or as a result of a fail-

ing pregnancy, the first obvious morphological manifestation is apoptosis of the

NK cells which could be the result of a decreasing level of IL-15 [23]. Recently,

microarrays have provided expression profiling for endometrium from women

with and free from endometriosis during the window of implantation [24]. IL-15

was a candidate gene upregulated during the normal window of implantation but

significantly decreased in women with endometriosis [24]. However, exaggerated

inflammatory responses may perturb the integrity of endometrial function and

lead to pathological conditions. Endometria of women with unexplained recur-

rent spontaneous abortion express elevated levels of IL-15 compared to control

endometrium [25]. Therefore, negative regulators are required to control IL-15

induction associated with disease such as unexplained recurrent spontaneous

abortion. Recently, IL-1� has been proposed as one of the negative regulators of

IL-15 expression [26].



Influence of IL-15 on Cytokine Production
Most reports support the classification of IL-15 as a proinflammatory

type 1 cytokine [27, 28], whereas a few have considered IL-15 as a costimu-

latory of type 2 cytokines [29–31] (fig. 1). IL-15 acts in concert with IL-12

to induce the macrophage-activating factors IFN-� and tumor necrosis factor
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Fig. 1. Biological significance of IL-15 and IL-18 at the maternal-fetal interface. IL-15,

mainly produced by decidual macrophages (M) and endometrial stromal cells, together with

SCF is involved in maturation of pre-NK cells into CD56bright� uNK cells. IL-15R��� con-

stitutively expressed on uNK cells binds IL-15 and has been involved in the activation of uNK

cells. IL-15 induces uNK proliferation, cytokine production (IFN-�, GM-CSF, MIP-1�, MIP-

1�, TNF-� and IL-18), upregulation of cytolytic mediators (perforin and FasL) and NK recep-

tors (activating: NKp44, NKp46 as well as inhibitory: CD94/NKG2-A). Three MHC class I

molecules are expressed by extravillous trophoblast cells (HLA-C, HLA-E and HLA-G) and

interact with inhibitory and activating NK receptors. IL-18 at the maternal-fetal interface is

produced by endometrial stromal cells, activated macrophages and giant extravillous tro-

phoblast. IL-18 induces perforin expression on uNK cells. IL-18 through IL-18R, constitutively

expressed on NK cells and syncytiotrophoblast, and induction of Fas expression on extravillous

cytotrophoblast could be involved in the regulation of trophoblast invasion. IFN-� plays a key

role in vascular remodeling, apoptosis of T and B cells and could be induced in uNK cells by

IL-15 and IL-18. IFN-� produced by uNK cells could enhance IL-18BP which decreases proin-

flammatory activity of IL-18. On the other hand, IFN-�-stimulated macrophages produce

proinflammatory cytokines (TNF�, IL-12, IL-18 and IL-15), which in turn could further aug-

ment NK activation. Thus, macrophage-derived IL-15 production should be tightly regulated

by Th2 cytokines and progesterone.
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(TNF)-� [32, 33] whereas IL-15 alone appears to be a potent stimulus for 

GM-CSF production [32, 34] by resting CD56 human and murine NK cells

[1]. Interestingly, human CD56bright NK cells stimulated with IL-15 plus

IL-12 produce approximately 10-fold greater amounts of IFN-�, TNF-�, and

GM-CSF protein compared with an equal number of CD56dim NK cells

[34]. Since IL-15 acts as a costimulator of IFN-� production by NK cells, it

may therefore be essential in the control of proinflammatory environment at

the implantation site. NK cells also produce the C-C chemokines

macrophage inflammatory protein (MIP)-1� and MIP-1� after stimulation

with IL-15, which is augmented with the addition of IL-12 [33, 35]. Because

C-C chemokines also serve as chemoattractants for NK cells [36], 

IL-15/IL-12-induced MIP-1� and MIP-1� production may be one mecha-

nism for proper trafficking of additional NK cells to the site of implantation.

In addition, chemokine production may have implications in the interactions

between macrophages and NK cells, as MIP-1� has been shown to potentiate

IFN-�-inducible secretion of inflammatory cytokines by macrophages [37].

IL-15 is reported to be essential for type 2 cytokine production by NK cells

[38]. Stimulation of uterine NK (uNK) cells with IL-2 and IL-15 induced 

IFN-� and IL-10 production [39]. IFN-� production by uNK cell clones was

completely inhibited by TGF-� [40]. This suggests that NK cell cytokine pro-

duction may be governed in part by the monokine IL-15 milieu induced during

the early implantation.

Influence of IL-15 on Cytolytic Potential
IL-15 is a cytokine having biological properties similar to those of IL-2

[1, 32]. One such attribute of IL-15 is the ability to generate lymphokine-activated

killers from NK cells [1, 2, 32]. IL-15 was found to activate cytotoxicity and anti-

body-dependent cellular cytotoxicity by sorted CD56bright and CD56dim human

NK cell subsets [32]. IL-15 and IL-2 induce nearly identical levels of cytotoxicity,

and both depend upon signals through the IL-2/IL-15R� [32]. Infection of human

PBMCs with herpes viruses resulted in endogenous IL-15-dependent increases in

NK cell cytotoxicity, suggesting that IL-15 participates in the normal innate host

defense against viral infections [40]. We have found that IL-15 augmented decid-

ual NK cell cytotoxicity against K562 in a dose-dependent manner [41] and

Verma et al. [15] reported IL-15-stimulated decidual NK cell killing against JEG-

3 but there was little or no cytotoxicity against extravillous trophoblast cells. 

IL-15 upon binding to IL-2R�/IL-15R� on decidual NK cells leads to the initia-

tion of effector functions including cytotoxicity and secretion of cytokines.

Expression of triggering receptors such as NKp44 and NKp46 is under the influ-

ence of IL-2 and IL-15 [42, 43] (fig. 1). After their engagement the activation of

NK cells occurs. At the same time, it was reported that IL-15 provides an



appropriate stimulus to the expression of the inhibitory receptor, CD94/NKG2A,

in the process of maturation of NK cells from thymocyte precursors [44] (fig. 1).

Relatively little is known about the control of cytotoxic molecule expression by

decidual NK cells. Ye et al. [18] demonstrated that IL-15 is involved in regulating

the differentiation of granulated metrial gland cells during murine pregnancy. Our

preliminary data suggest that IL-15 directly induces upregulation of perforin and

FasL mRNA and protein expression on human decidual NK cells [unpubl. data]

(fig. 1). We showed an increase of perforin expression in decidual lymphocytes

(DL) when activated by IL-2 (1,000 IU/ml) or IL-15 (2 ng/ml) and we proved

using inhibitors of granule exocytosis (concanamycin A), a predominant role of

perforin-mediated cytotoxicity in unstimulated as well as IL-15-stimulated DL

[45, 46]. Further, we found that decidual CD56� cells, isolated from the suspen-

sion of decidual mononuclears following 18 h culture, were equally efficient in

lysing NK-susceptible K562 cells as well as the NK-resistant P815 cell line [46].

It is possible that IL-15-activated decidual CD56� cells, at the maternal-fetal

interface, use perforin and Fas/FasL-mediated cytotoxic mechanisms against

transformed cells, cells infected with intracellular pathogens or, under specific

circumstances, against trophoblast cells.

We demonstrated in vitro that both decidual adherent cell (dAC) and dAC

supernatants are responsible for modulation of perforin expression [47, 48].

Further, since these effects could be blocked by anti-IL-15 we proposed that

IL-15 has an important role at the maternal-fetal interface in the regulation of

perforin expression [47, 49]. Moreover, the membrane-bound IL-15 was

observed on decidual CD14� cells as well as on decidual stromal cells [20].

Depleting decidual macrophages from the suspension of dAC eliminates per-

forin upregulation, supporting the hypothesis that macrophages and their

humoral products (IL-15) have an essential role in perforin expression [48].

Biological Significance of IL-15 at the Maternal-Fetal Interface
With pregnancy changes in stromal and smooth muscle cells of the uterus

associated with decidualization elevate IL-15 as well as SCF [15, 50] which both

promote survival of pre-NK cells present in and mobilized to the uterus. The

SCF receptor c-kit is expressed by blood CD56bright� cells [51] and also by a

proportion of decidual CD56bright cells [52]. This subpopulation may repre-

sent the undifferentiated cells capable of a vigorous proliferative response.

Since it has been shown that a combination of cytokines including IL-15, SCF,

IL-2 and IL-7 [4, 53] induced maturation from an immature (CD34�CD7�)

population into CD56�CD3� cells, it is possible that a subpopulation of

CD56brightCD16–c-kit� cells home to the uterine mucosa and differentiate in

response to SCF and IL-15 (fig. 1). Recently studies performed by Ashkar et al.

[54] clearly demonstrated that IL-15 is absolutely essential for the support of NK
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cell differentiation in the decidualizing uterus. Analyses of implantation sites in

IL-15�/� mice revealed a complete absence of uNK cells as well as a pathology

consistent with that seen in other strains severely or totally deficient in uNK

cells: unmodified spiral structure of arteries, poor development of decidua and

absence of MLAp development within the uterine wall. These features do not

compromise fetal viability or postnatal survival [54]. IL-15R� deficiency is

characterized by lymphopenia and NK cell deficiency, again indicating the

major role of IL-15 in NK cell development and lymphocyte maintenance [55].

IL-15 has been shown to promote survival of blood NK cells with an

increase in bcl-2 expression [56]. IL-15 induced the proliferation of CD56bright

NK cells in a dose-dependent fashion to a similar extent as IL-2, yet required a

nanomolar concentration to activate IL-2/IL-15R� for proliferative activity [32].

Proliferation of decidual CD56� NK cells could be induced by IL-15, also in a

dose-dependent manner [15] (fig. 1). A dose of 5 ng/ml produced a maximal

proliferative response, which is similar to results reported for blood CD56bright

cells [15, 32]. In contrast, the circulating CD56dim cells are reported to respond

poorly to IL-15 [32]. Verma et al. [15] have also found that there was a synergis-

tic response when decidual NK cells were cultured with IL-15 (even at subopti-

mal levels) in contact with a monolayer of irradiated decidual stromal cells,

indicating that other factors are responsible for the proliferation in vivo [14].

Other studies support the importance of stromal cells in the proliferation of

CD56bright cells. From the pool of CD56�CD3� blood NK cells, only the

CD56bright subset was responsible for the expansion mediated by contact with

an irradiated murine fibroblast cell line [57]. The close physical association of

NK cells to the uterine mucosal stromal cells also suggests a mutual interdepen-

dence in vivo. On the other hand, Verma et al. [15] demonstrated that proges-

terone had an opposite effect on IL-15 production by macrophage-enriched

cultures. In contrast to an increased production of IL-15 by stromal cells stimu-

lated with progesterone and PGE2, progesterone and PGE2 caused a significant

decrease of IL-15 secretion from macrophage-enriched cultures [15]. This could

represent an important regulatory mechanism by which progesterone balances

innate immune response (fig. 1). It has been demonstrated that autocrine IL-15

regulation of macrophage proinflammatory cytokine production was highly

dependent upon the concentrations of IL-15 available to macrophages [58].

Interleukin-18

Distribution of IL-18 and IL-18R Expression at the 
Maternal-Fetal Interface
IL-18 is an 18-kDa glycoprotein derived by enzymatic cleavage of a 23-kDa

precursor, pro-IL-18, by caspase 1 [59]. Pro-IL-18 expression is widespread,



including monocyte/macrophages, dendritic cells, Kupffer cells, keratinocytes,

articular chondrocytes, synovial fibroblasts and osteoblasts, and within the

adrenal cortex and pituitary gland [60]. IL-18 mediates bioactivities through a

heterodimeric receptor consisting of � and � chains that are widely expressed on

naive T lymphocyte subsets, NK cells, macrophages, neutrophils, and chondro-

cytes [61]. IL-18R�, characterized earlier as IL-1R-related protein (IL1Rrp)

binds IL-18 at relatively low affinity (in the range of 10–8 M) [62]. Generation of

IL-18R�-deficient mice confirmed that this receptor is nevertheless essential for

signaling [63]. IL-18R� chain, initially termed IL-1 receptor accessory protein-

like (AcPL), is related and similar to IL1RacP and does not bind ligand directly,

but rather binds to the complex formed by the IL-18/IL-18R� chain generating

the likely high affinity complex [64]. IL-18� chain is indispensable for activation

of NF-kB and c-Jun N-terminal kinase (JNK) in response to IL-18 [65]. Recently,

a naturally occurring inhibitor of IL-18, IL-18 binding protein (BP), was

described [66, 67]. IL-18BP is secreted in soluble form because it lacks a trans-

membrane domain. IL-18BP can block binding of mature IL-18 to IL-18R,

resulting in the inhibition of IL-18-induced IFN-� production [66, 67].

Time course studies localizing IL-18 in the pregnant uterus indicate that

the entire decidua on gestation day 4 produces IL-18 [68]. IL-18 production

starts in the basal proliferative stroma, followed by weaker staining of glandular

cells in the normal peri-implantation murine uterus [69]. Transient, very strong

labeling of uNK cells by anti-IL-18 antibodies appears in the immediate

postimplantation period. IL-18 appears early in murine spongiotrophoblast

[69], but not in human villous trophoblast cells [70]. Later on, IL-18 staining

persists in giant extravillous trophoblast cells and rare activated macrophages of

both species, mice and humans [69, 70] (fig. 1). IL-18 is capable of inducing

Fas receptor in amniochorion [71]. There is the possibility that IL-18 by influ-

encing Fas expression on extravillous trophoblast regulates trophoblast

invasion (fig. 1).

IL-18R mRNA was detected in epithelial and stromal cells of human

endometrial tissue [72]. Also, Tokmadzic et al. [70] demonstrated IL-18R

expression on human first trimester villous trophoblast cells. The expression of

IL-18BP was demonstrated both in epithelial and stromal cells but there are no

findings about its expression in first trimester pregnancy decidua [72]. In view

of this data, it is possible that a systemic increase of IL-18 could be involved in

the rejection of the maternal-fetal unit through IL-18R, although the presence of

IL-18BP in decidual tissue could modify the reaction (fig. 1).

Role of IL-18 on Cytokine Production
The most prominent biological significance of IL-18 is induction of IFN-�

production from Th1 and nonpolarized T cells, NK, B cells and dendritic
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cells [73–75]. IL-18 by itself induces only a small amount of IFN-� in anti-

CD3-stimulated T cells, but a combination of IL-12 and IL-18 can synergisti-

cally induce IFN-� production [76–78]. Human T cells also require stimulation

with both IL-12 and IL-18 to produce significant amounts of IFN-� [79].

Human CD4� T cells (CD4� CD45RA� T cells) increased their expression

of IL-18R� after being stimulated with IL-12 and displayed dose-dependent

IFN-� production and cell proliferation in response to IL-18 [79, 80]. Contrary

to the synergistic effect of IL-18 and IL-12 on the Th1-mediated response, 

IL-18 itself has the potential to induce IL-4 and IL-13 production in T cells, NK

cells, mast cells and basophiles and promotes a Th2-mediated response [81].

Also, IL-18 possesses several biological properties such as regulation of 

GM-CSF production [82], induction of TNF-�, IL-1�, IL-8, CC and CXC

chemokines [83] (fig. 1). IL-18 should be seen as a unique cytokine that

enhances innate immunity and both Th1- and Th2-driven immune responses,

depending on its cytokine milieu [81]. IL-18 might be of importance in regulat-

ing trophoblast invasion and adhesion through its ability to induce production

of different chemokines.

IL-12 and IL-18 present at the peri-implantation site could stimulate

murine uNK cells to produce IFN-� that plays key role in vascular remodeling

during early pregnancy [84] (N98) (fig. 1). IFN-� might restrain proinflamma-

tory immune response caused by implantation by enhancing IL-1R antagonist

and IL-18BP production that downregulate biological activity of IL-1 or IL-18,

respectively [85] (fig. 1). Induction of apoptosis of activated macrophages and

particularly T and B cells by IFN-� [85] might occur in normal early pregnancy

decidua and might affect specific distribution of leukocyte cell populations

with predominance of NK cells (fig. 1). On the other hand, it has been reported

that high levels of IFN-� and TNF-� are results of an IL-18/IL-12 synergic

effect, and thus higher levels of IL-18 in the absence of high IL-12 levels might

indeed be beneficial [86].

Role of IL-18 on the Cytolytic Potential
Another important feature of IL-18 is its role in expression of cytotoxic

mediators. IL-18- or IL-18R�-deficient mice have almost the same number of

NK cells, but show reduced cytolytic activity against NK cell targets [87]. IL-18

directly upregulates cytotoxic activity of NK cells and CD8� T cells [76, 88, 89].

IL-18 itself has an extensive ability to induce cell apoptosis by increasing Fas

ligand/Fas receptor and granzyme expression on NK, NK/T and CD8� T cells

[81, 89]. It is also known that IL-18 induces perforin expression in NK cells [88].

Moreover, IL-18 upregulates the perforin-dependent cytotoxic activity and FasL-

mediated killing of NK cells, but does not enhance their TRAIL expression

[89, 90]. Although IL-18 and IL-12 synergistically induce the production of 



IFN-� by NK cells, the two cytokines do not synergize for the upregulation of

their cytotoxic activities and it has been shown that IL-18 activates the cytotoxic-

ity of CD8� T cells independently of IL-12 [91]. This finding may indicate that

the activation of the signal transduction system for IFN-� production is not the

same as that for perforin and granzyme-mediated cytotoxicity.

There are only few studies that have investigated IL-18 and its influence on

the cytolytic potential of decidual NK cells [69–72]. Tokmadzic et al. [70] have

shown that stimulation of DL with IL-18 increases both perforin protein expres-

sion and perforin-mediated cytotoxicity against NK-sensitive K562 cells (fig. 1).

The combination of IL-12 and IL-18 synergistically increases perforin-mediated

activity of early pregnancy peripheral blood lymphocytes by activation of IRAK

and NF-kB transcription factor through IL-18 [92] and JAK-STAT signaling

pathway through IL-12 [93, 94]. All this acts as a very strong stimulus for perforin

exocytosis. Contrary to peripheral blood lymphocytes, IL-12 and IL-18 stimula-

tion of DL significantly increases perforin expression and perforin-mediated

cytotoxicity, but does not exceed values obtained by IL-18 stimulation [70]. IL-4,

IL-10 and TGF-�, abundantly present in decidua [95], downregulate IL-12R

expression [96], possibly ensuring functional inefficiency of IL-12 cytokine.

Furthermore, GM-CSF, produced by decidual cells [97], efficiently suppresses

IL-12, IL-12-induced IFN-� production and cytotoxicity of DL in vitro [98].

Since both cytokines, IL-15 and IL-18, are present at the maternal-fetal

interface, and they are strong stimulators of cytolytic activity, their effects on

cytolytic potential of DL could be important for the control of local cytolytic

potential at the interface (fig. 1). Tokmadzic et al. [70] have shown that the

combination of IL-15 and IL-18 synergistically enhances the percentage of

perforin-positive DL, as well as the average number of perforin protein per cell,

but enhanced perforin-mediated cytotoxicity has not been achieved. It is known

that IL-15 upregulates inhibitory NK cell receptor, CD94/NKG2A [44], which

in turn might inhibit IL-18-mediated cytolytic activity of DL (fig. 1).

Biological Significance of IL-18 at the Maternal-Fetal Interface
IL-18 has an important role in the host defense against intracellular microbes

(viruses, bacteria, fungi and protozoa) and against various types of tumors [81].

On the other hand, the excessive production of IL-18 may induce local or sys-

temic injury in the host, as reported for the ontogenesis of autoimmune diseases

[81]. Thus, IL-18 could be a double-edged sword that may require tight

regulation.

There is a significant elevation of human IL-18 levels in sera from the first

trimester until the onset of labor compared to nonpregnant women [99]. Once

labor began, IL-18 levels increased further and remained at a high level until at

least the third day of puerperium [99]. Elevation of IL-18 in early pregnancy
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indicates the possible role of IL-18 during implantation. However, there are

reports of high levels of IL-18 in sera of women with unexplained implantation

failure (NK-IL-18 group) [100], complicated pregnancies (acute fatty liver of

pregnancy, fetal growth restriction or preterm premature rupture of membrane)

[99] as well as of increased pre-pregnancy serum levels of IL-18 in women with

a history of recurrent miscarriage [101, 102]. An increased level of IL-18 pro-

motes strong NK activation and probably excessive IFN-� production and this

state could reflect an inadequate uterine control of NK proliferation and activa-

tion (fig. 1). Indeed, the same mechanisms are supposed to be involved in IL-18

and IL-12-induced abortions in mice [103, 104]. On the other hand, implanta-

tion sites of IL-18-ablated mice had unmodified spiral arteries [87]. Since it is

known that IL-18 is a major enhancer of IL-12-promoted IFN-� production and

IFN-� is a regulatory cytokine involved in remodeling of decidual arteries [81],

this suggests that IL-18 might be necessary for proper vascularization of the

implantation site. An IL-18-rich environment would bias the NK cells towards

dominance of their activation receptors and induction of cell division and syn-

thesis of IFN-� and perforin. It seems that the tight regulation of IL-18 expres-

sion is important for normal implantation and decidual remodeling events in

early pregnancy.

Conclusions

We propose a model (fig. 1) which shows the main aspects of IL-15 and

IL-18 action(s) at the maternal-fetal interface and their interplay with various

cytokines expressed/produced at this interface.
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Abstract
Pregnancy is accompanied by a Th2-prone immune modulation, which is a major puzzle

piece among maternofetal tolerance-promoting factors. A large number of cytokines is physi-

ologically or pathologically present in the decidua and is potentially able to act on lympho-

cytes and NK cells, which express a variety of respective receptors. Intracellular signals from

these receptors are to a major part transduced via the Janus kinases (JAK) and signal trans-

ducers and activators of a transcription (STAT) system, which consists of at least 4 different

kinases and 7 STATs plus several subtypes and splicing variants. A network of suppressors of

cytokine signaling (SOCS) controls their balance. The interactions of all these intracellular

factors and cross-linking with further signaling systems seem to be crucial for the mainte-

nance of a maternal cytokine profile which promotes the tolerance of the fetus.

Copyright © 2005 S. Karger AG, Basel

Introduction

Lymphocytes at the Fetomaternal Interface
During the menstrual cycle, the number of CD45� leukocytes increases

premenstrually from 10–15 to 20–25% of all endometrial cells [1, 2]. During the

first trimenon of pregnancy, the number increases further and approximately

70% of immunocompetent decidual cells are CD45� leukocytes. The predomi-

nant type of these cells are transient, pregnancy-associated uterine natural killer

cells (46%), followed by macrophages (19%) and T cells (8%), mainly CD8�
T cells [3].
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As shown in various knockout animal models, most classes of immune

cells are indispensable for successful pregnancy, but their function and way of

action are modified compared with leukocytes from peripheral blood, other tis-

sues or inflammation areas. It may be suggested that such modifications are

regulated on the signal transduction level.

The JAK/STAT Pathway

Cytokines bind lymphocytes via cytokine receptors, which induces phos-

phorylation of their intracellular tail through tyrosine kinases. Janus kinases

(JAK) represent a major group of them. The phosphorylated receptor tails offer

docking sites for SH2-containing signaling proteins which can be phosphory-

lated at various tyrosine and serine binding sites following their association

with the complex [4]. Signal transducers and activators of transcription (STAT)

form a major family of substrates of phosphorylation. Phosphorylation at dif-

ferent binding sites of the STATs fundamentally changes function, DNA bind-

ing and transcription and is influenced by various further signaling systems

such as mitogen-activated protein kinases MAPK/ERK, phosphatidylinositol 3-

kinase and calcium/calmodulin-dependent kinase (CaMKII) [5–8] (for details,

see Fitzgerald et al., volume 89). Phosphorylated STATs may then form homo-

and heterodimers and translocate into the nucleus. After DNA binding, STATs

can modulate the expression of target genes [9] and induce negative feedback

loops [10]. Positive loops also exist: For example, interleukin-2 (IL-2) induces

transcription and production of IL-2 receptor via the JAK-STAT pathway in

lymphocytes [11, 12].

Most cytokines use more than one of at least four JAK and seven STAT

family members, but also each JAK and STAT molecule is used by several dis-

tinct cytokines [4].

Cytokines and Growth Factors in the Decidua with Capacity to
Use the JAK/STAT Pathway

A wide spectrum of cytokines and growth factors is present in the decidua

physiologically, but can be present pathologically and, thus, signal via the

JAK/STAT system. These cytokines include leukemia inhibitory factor, tumor

necrosis factor-�, interferon-� (IFN-�), IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10,

IL-11, IL-12, IL-13, IL-15, IL-16, and IL-18 [13–16]. These signals may again

lead to production and release of a variety of further cytokines. Compared to the

general balance of cytokine profiles in the uterus, anti-inflammatory T helper 2
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(Th2)-type cytokines are predominant during pregnancy and especially in the

decidua [17, 18]. Nonetheless, proinflammatory Th1-type cytokines are present

in relatively low concentrations. The potential exists to produce and release these

cytokines in response to various stimuli, such as infectious reagents, cell stress,

neural transmitters and other factors. It may be expected that the fine-tuned

cytokine balance between Th1 and Th2, which is crucial for maintenance of

pregnancy, is regulated on the intracellular signaling level, which on the other

hand is regulated by cytokines and other factors, thus forming a complex net-

work of intra- and extracellular regulation mechanisms. This includes, to a sub-

stantial part, the JAK/STAT system [19]. The availability and susceptibility of

these signaling molecules to stimuli may be the key regulator of leukocyte func-

tions in the decidua.

In the following, those mechanisms and factors will be presented and dis-

cussed which favor the predominance of Th2 and the downregulation of Th1

cytokines or other potentially dangerous factors for pregnancy.

Signaling in T Cells

Many factors, including the cytokines mentioned, influence and regulate

T cell functions. IL-12, IL-2, IL-23 and IL-27 play a major role in the differen-

tiation of naive T cells to that of the Th1 subset, while IL-4 does for differentia-

tion into the Th2 subset [20]. Very little is known about specific intracellular

signals in decidual or other lymphocytes during pregnancy that may support

maternofetal tolerance. Thus, here we can provide only a brief overview of

known JAK/STAT aspects, independent of pregnancy, but which might be

involved in the regulation of lymphocytes in pregnancy.

IL-4-Induced Signaling
IL-4 is the essential anti-inflammatory cytokine for Th2 differentiation. It

derives from dendritic cells, T cells themselves, mast cells and others. IL-4 is con-

tinuously present at the maternal-fetal interface, where it is involved in

pregnancy-supporting mechanisms [16, 21, 22]. Progesterone-induced blocking

factor is a major inducer of IL-4 production in pregnancy [23, 24]. The IL-4

receptor is a heterodimer. One chain, the IL-4R �-chain, binds IL-4 with high

affinity and determines the nature of the biochemical signals that are induced.

Although the �-chain is shared with other inflammatory cytokines, such as IL-2,

IL-6, IL-12, IL-15, IL-21 and others, the signaling pathway is different [25]. IL-4

upregulates the transcription of GATA3 via STAT6, which leads to Th2 cytokine

production and to a silencing of the IFN-� production [20, 26]. Mice lacking

STAT6 exclusively develop a Th1 response [27].
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Furthermore, IL-18 has been well characterized as a costimulatory factor

for the induction of IL-12-mediated IFN-� production by Th1 cells, but it can

also induce IL-4 production and thus facilitate the differentiation of Th2 cells.

The positive/negative regulation of the IL-18 receptor (IL-18R) � by the major

inductive cytokines (IL-12 and IL-4) determines the capacity of IL-18 to polar-

ize an immune response [28].

IL-13-Induced Signaling
IL-13, a cytokine similar to IL-4, is a regulator of human B cell and mono-

cyte functions. Furthermore, IL-13, like IL-4, induces distinct STAT6-DNA

binding complexes and tyrosine phosphorylation of STAT6 and Janus kinase 3

(JAK3) in NK and T cells [29].

IL-10-Family-Induced Signaling
IL-10 is a crucial interleukin for the survival of the fetal allograft, which

counteracts the effects of deleterious inflammatory cytokines [30]. Binding of

cytokines of the IL-10 family to its receptors leads to STAT1 and STAT3

phosporylation via JAK1 [31, 32]. STAT3 seems to be the main, but not unique

mediator of IL-10 anti-inflammatory functions [33]. The role of several further

cytokines of this group during pregnancy, such as IL-19, IL-20, IL-22, IL-24

and IL-26, is not yet known, although they share the IL-10R, IL-20R and IL-

22R and the same intracellular pathways [34].

IL-12-Induced Signaling
IL-12 is produced by antigen-presenting cells, dendritic cells as well as

macrophages, and induces Th1-type T cells [35, 36]. It signals through JAK2,

Tyk2, STAT3 and STAT4 intracellularly [37]. IL-12 or STAT4-deficient mice

are defective in Th1 reactions [38, 39]. High levels of IL-12 during pregnancy

are associated with severe disorders, such as preterm labor, preterm birth or

recurrent miscarriage [22, 40].

IL-2-Induced Signaling
IL-2 is produced by Th1 cells themselves and is able to initiate an

autocrine signal via IL-2 receptors on their own cell surfaces. This leads to a

further increase of IL-2 production and release via STAT1, STAT3, STAT5a and

STAT5b activation [26, 41, 42]. Simultaneously, MAPKinase and phos-

phatidylinositol 3-kinase pathways are also activated. Similar receptors and

pathways are used by the other IL-2 family cytokines IL-6, IL-12, IL-15 or IL-

21 [26, 43]. Incubation of lymphocytes with supernatants from Jeg-3 choriocar-

cinoma cells reduces the expression of the STAT molecules mentioned, as well
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as of JAK1 and JAK3, along with cellular activity [41, 44]. Supernatants from

trophoblast cells, but also from tumors display similar capacities [45, 46].

IFN-a/b- and IFN-g-Induced Signaling
IFN-�/� is produced by virally infected cells and plays an important role

in early phases of the innate immune response. IFN-�/� inhibits IL-4 signaling

in B cells and monocytes, suggesting that IFN-�/� (like IFN-�) is a Th1

cytokine [47]. IFN-�, IFN-� and, less intensively, IFN-� are present in the pla-

centa, mostly localized in extravillous interstitial trophoblast, but also in villous

syncytiotrophoblast [48]. IFN-�/� induces STAT1, STAT2, STAT3 and STAT4

tyrosine phosphorylation and DNA binding leading to IL-21 expression and

downregulation of IL-21R in T cells [49, 50]. IFN-� enhances IL-4-mediated

STAT6 activation in CD4� and CD8� human T cells. The effect is specific

because IFN-� does not enhance IL-4-mediated STAT6 activation. IFN-�-

mediated STAT1 and STAT2 activation is not modulated by IL-4, and activation

of Janus kinases is not enhanced or prolonged by simultaneous stimulation with

IFN-� and IL-4 [47]. IFN-� signals mainly via tyrosine phosphorylation of

STAT1 and STAT3 [49]. The above-described suppression of JAK/STAT factors

by trophoblast or tumor-derived culture supernatants may also reduce poten-

tially harming effects of IFN-� in pregnancy [40].

Suppressors of Cytokine Signaling

Suppressor of cytokine signaling (SOCS) proteins have emerged as impor-

tant regulators of cytokine signals in lymphocytes and are constitutively

expressed in naive Th cells, albeit at low levels. They are differentially induced

by Th-polarizing cytokines. STAT1 signals play major roles in inducing SOCS

expression in T helper cells. Induction of SOCS expression by IL-4, IL-12, or

IFN-� is compromised in STAT1-deficient primary Th cells. IL-4 is a potent

inducer of STAT1 activation in Th2, but not Th1 cells, and SOCS1 or SOCS3

expression is dramatically reduced in STAT1(–/–) Th2 cells [51]. Overexpression

of SOCS1 in Th2 cells represses STAT6 activation and profoundly inhibits 

IL-4-induced proliferation, while depletion of SOCS1 by an antisense SOCS1

cDNA construct enhances cell proliferation and induces constitutive activation

of STAT6 in Th2 cells [51]. In addition to the polarized activation of STAT4 in

Th1 cells and STAT6 in Th2 cells, STAT3 and STAT5 are selectively activated

in Th1 cells following differentiation that was associated with the differential

induction of SOCS molecules. In this way, it could be suggested that STAT3

and STAT5, possibly regulated by the SOCS proteins, may play a role in the dif-

ferentiation of Th cells, in the maintenance of the Th1 and Th2 phenotype, and,
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thus, the regulation of the Th1/Th2 cytokine balance [52]. This is supported by

the observation that SOCS3 is expressed at high concentrations in Th2 cells,

where it inhibits IL-12-induced STAT4 signaling [53].

SOCS1 deficiency in mice leads to lymphocyte-dependent multiorgan dis-

ease and perinatal death. Experiments with SOCS1 knockout mice published by

Fujimoto et al. [54] suggest that SOCS1 plays a regulatory role in both T(h)1

and T(h)2 polarizations.

SOCS are detected in gestational tissues and their differential regulation

is associated with the onset of labor, but no information about their role in

decidual or peripheral lymphocytes in pregnancy has been published thus

far [55, 56].

JAK/STAT Signaling in NK Cells

To date, little is known about JAK/STAT signal transduction in decidual

NK cells. CD56� NK cells from endometrial tissue express prolactin (PRL)

receptor and might be a potential target of the hormone PRL, whose secretion

is increased during early pregnancy and decreases to term. PRL engagement

triggers tyrosine phosphorylation of JAK2 and STAT1 and STAT5. PRL, like

other class I cytokines, also stimulates MAPK/ERK pathway [57]. SOCS1 can

prevent intracellular PRL signaling and gene expression in decidual cells [58].

PRL stimulation of NK cells increases expression of IL-2R and IL-15R, per-

forin and Fas ligand, all events which are potentially harming the fetal allo-

graft, similar to the induction of antitumor cytotoxicity of NK cells through

PRL [59, 60]. When female alymphoid recombinase activating gene (RAG)-2

and common cytokine receptor chain-� knockout mice were grafted with bone

marrow from STAT1 knockout donors, uterine NK cells were overexpressed

and immature [61].

Optimal NK cell development and activation, as well as cytolytic activ-

ity, involves IL-2R � signals that also upregulate expression of the pore-

forming effector molecule perforin. IL-2 ligation of its receptor stimulates

STAT1, STAT3 and STAT5 [61, 62]. In some NK cell lines it also triggers

activation of STAT4 and increases responsiveness to IL-12 [62] which acts

via STAT4 leading to proliferation, activation and perforin expression [63].

In the NK cell line NK92, IL-18 stimulates STAT3 signaling [64]. Also fur-

ther IL-2 family cytokines, such as IL-21 and IL-27, use JAK1, JAK3,

STAT1, STAT3, STAT4 and STAT5 for NK cell activation [65, 66]. It can,

thus, be expected that factors are present in the decidua, which reduce avail-

ability of these signaling molecules in uterine NK cells in order to protect

the fetus from maternal NK cell attacks.
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Conclusion

The literature provides a multitude of information about the JAK/STAT

pathway in lymphocytes, but thus far, very little is known about this system in

decidual lymphocytes. JAK/STAT is involved in the differentiation of T helper

cells into Th1 and Th2 subsets. Many cytokines signal via this pathway and

influence it. Also the production of numerous cytokines and other factors

depends on JAK/STAT signaling. It may, therefore, be suggested that the regu-

lation of the JAK/STAT system is crucial for the development and maintenance

of the immunological balance in the decidua and placenta necessary for suc-

cessful pregnancy.
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Abstract
Mechanisms explaining maternal tolerance of her semiallogeneic histoincompatible fetus

have been proposed to include a number of unique signaling molecules including CD200, novel

MHC class I-b molecules such as HLA-G and HLA-E, Th2,3 cytokines, apoptosis-inducing

molecules such as FASL, and indoleamine 2,3-dioxygenase. Novel CD4�CD25� Treg cells

and �� T cell receptor-positive regulatory cells appear to play key roles in responding to and in

generating signals. This chapter will critically review current data concerning the mechanisms

and relevance of the various proposed mechanisms.

Copyright © 2005 S. Karger AG, Basel

Introduction

In the beginning, the purpose of the immune system was to distinguish self

from nonself, and to reject nonself [1]. Not to tolerate self was a real ‘horror

autotoxicus’ (Ehrlich) that led to autoimmune diseases. Not to tolerate self also

leads to other unpleasant consequences. For example, the gut is full of food

antigens and commensal bacteria. Reacting to absorbed food antigens (and/or

bacterial antigens) could cause both local and systemic inflammation.

Similarly, inhaled antigens in air could cause asthma and pulmonary inflamma-

tory conditions. At a related mucosal surface, the vagina and uterus, reactions

to male tissue antigens (e.g. spermatozoa, seminal plasma) and to male antigens

expressed by the embryo could abrogate reproductive processes essential to sur-

vival of an outbred species. In this chapter I am not going to review all of the

details explaining how the immune system is organized to ensure health rather

than disease. Instead, I will discuss some key signaling mechanisms promoting

‘tolerance’ of nonself antigens and the key issue of ensuring pregnancy success

when the implanted embryo is ‘normal’ and needed.
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Tolerance Concepts

The conventional view of antigen-specific ‘tolerance’ is primarily centered

on activation versus nonactivation of antigen-specific thymus-derived (T) cells

bearing conventional �� receptors for antigen (TcR). Here, antigen, usually in

the from of 9 amino acid peptides, are ‘presented’ in the groove of a class MHC

class I or MHC class II self-antigen by antigen-presenting cells (APC) such as

dendritic cells or macrophages. Triggering of the T cells requires binding of

CD4 on T cells to class II MHC or CD8 on the T cells to class I to complete

‘signal 1’, followed by costimulation provided by binding of CD80/86 to

CD288 on the T cell or CD40L to CD40 along with additional adhesion inter-

actions mediated by ICAM1,2,3 with LFA-1 (on the T cell) or LFA-3 (on the

APC) with CD2 on the T cell. Expansion of the activated T cell was then facili-

tated by growth factors (cytokines) provided by the APC and/or T cell itself. T

cells making proinflammatory cytokines such as IL-2, TNF-�, IFN-�, and

related mediators (IL-12, IL-15, IL-18) promoted cell-mediated immune rejec-

tion. Cytokines such as IL-3, IL-4, IL-6, IL-10, IL-13 (called Th2 as distinct

from Th1) promoted antibody production by antigen-activated B cells, and anti-

body then promoted humoral rejection. In this model, ‘tolerance’ could occur

due to ignorance, anergy, clonal deletion (apoptosis/exhaustion), or regulation.

‘Ignorance’ could occur due to a lack of antigen presentation, or absence of

T cells with receptors for that particular peptide � MHC combination. The lat-

ter represents holes in the repertoire occurring as T cell mature in the thymus

where T cells first expand in response to self-MHC, and then cells reactive with

self-MHC and self-MHC-bearing self-peptides are vetoed. A hole in the reper-

toire occurred when T cells able to react with certain foreign antigen � self-

MHC did not develop. Absence CD4 or CD8 could also prevent effective

binding of TcR to antigen. ‘Anergy’, on the other hand, could arise following

binding to TcR to antigen if one or more of the important second signals were

missing. An alternative consequence of missing second signals could be activa-

tion of pathways leading to apoptosis. T cells becoming apoptotic were then

deleted. ‘Regulation’ on the other hand represented a distinct mechanism where

outsiders (e.g. regulatory T cells) acted to stop an ongoing immune response or

to stop it at the outset. Self-tolerance preventing autoimmunity has been

ascribed in mice to a distinct population of regulatory CD4�25� �� T cells

emigrating from thymus in the immediate postnatal period. The mechanism of

action of these Treg cells is debated. Direct cell contact is required, and cell sur-

face TGF-�, a cytokine that suppresses both Th1 and Th2 response, has been

proposed, as well as production of CTLA4. CTLA4 binds to CD80/86 and

blocks binding to CD28 on T cells; CTLA4 also reverse signals via CD80/86

such that APC express indoleamine 2,3-dioxygenase (IDO) that deprives
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nearby activated T cells of tryptophan [2]. Such starvation leads to apoptosis. A

novel population of allo-MHC-specific CD4–8– T cells (double-negative or DN

cells) can suppress via expression of FASL that binds to FAS receptors on acti-

vated CD4 or CD8 Th1 Th2 T cells and causes their apoptosis [3]. Finally, cer-

tain populations of regulatory CD4 and CD8 T cells will make TGF-� (and

related IL-10 that inhibits Th1 response) when these cells are proliferating in

the presence of these cytokines, and CD4�25� Treg cells may act in part by

facilitating expansion of these cytokine-secreting populations [4, 5].

It is important to stress that there is a more primitive immune system, the

innate or natural immune system, which is hard-wired to act without a complex

activation sequence of �� T cells and their expansion which delays action, and

to act as an immediate defense at the interface between mucosa/skin and the

outside world. These cells include macrophages and related APCs, polymor-

phonuclear leukocytes, natural killer (NK) cells, and mast cells (that produce a

variety of mediators and Th1 cytokines). Indeed, the classical antigen-specific

immune system depends upon an activated innate system APC to stimulate ��
T cell immunity. Matzinger [6] has suggested that it is danger signals (that are

seen by the innate system) that decide if the classical �� T cell system will react

to antigen. Danger signals upregulate expression of costimulatory molecules

such as CD80/86 on APC as well as expression of class II MHC that presents

peptides to CD4� T cells. Danger signals such as LPS can also act directly on

B cells to produce polyclonal autoantibody responses and autoimmunity. As a

certain amount of ‘danger’ is present at mucosal surfaces and must be tolerated,

‘tolerance’ mechanisms are also needed.

There are a large number of hard-wired receptors for PAMP danger sig-

nals, and currently, the focus is on toll-like (tlr) molecules [7]. Failure to

express particular tlrs at an adequate level on the cell surface could potentially

recreate the ‘ignorance’ phenomenon. TGF-� and IL-10 are cytokines that may

promote quiescence amongst innate effector cells [8]. NK cells are also turned

off via self-MHC interaction with surface KIR (Ly49A-N in the mouse) and/or

CD94/NKG2 receptors (and it has been proposed NK cells are hard-wired to

react to absent self MHC) [9]. (Some KIR-MHC interactions can activate, and

Ly49 subtypes show a degree of MHC specificity.) There is also a population T

cells bearing �� TcR which can arise in part in the absence of a thymus, which

accumulate in mucosa and skin, and which can recognize antigens in the

absence of MHC and without need for CD4 or CD8 [10]. Some of these �� T

cells when activated become effector cells, but many act as suppressor cells.

Interestingly, a significant percentage of �� TcR� cells express CD94/NKG2,

and a small percentage express KIRs. There are also cells with both T and NK

cell markers, both NK��T cells and NK��T cells [11]. The �� type tends to

see antigens in the context of atypical MHC class I-b antigens (such as CD1, or
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MHC-linked Qa-1a/b, Qa-2, TL) [12]. The recognition patterns of innate system

cells is therefore distinct from the adaptive �� T cell system which can see anti-

gen in the context of MHC class I-a, I-b, or II. Another difference is that the

adaptive immune system has memory, and will react more rapidly and with a

magnified response to a second challenge with antigen, whereas innate system

cells lack memory. However, just as an activated innate system facilitates

immune responses by the adaptive immune system, the innate system can have

suppressive effects on its own activity as well as on the adaptive system.

Production of tolerogenic cytokines such as TGF-� provides one mechanism.

Certain immunoregulatory APC, primarily dendritic cells, express CD200, a

costimulatory molecule that is the antithesis of CD80/86 [13]. APC with

CD200 receptors may be downregulated, and �� T cells exposed to anti-

gen � CD200 may become antigen-specific suppressor cells acting on both the

adaptive and innate systems via TGF-� and IL-10 [14].

What does the above have to do with successful reproduction? The concep-

tus is enveloped in a cocoon of fetal trophoblast cells that form the fetomaternal

interface and placenta. Nonreactivity of the conventional �� T cell system with

trophoblast was attributed to lack of expression of classical class I-a and class II

paternal MHC, but forced expression of class I-a MHC on trophoblast did not

overcome the problem [15]. Although excess paternal class I-a expression could

deplete systemic �� T cells reactive with such antigens [16], the relevance of this

phenomenon was questionable as only at the implanting blastocyst stage can ��
T cells harm embryos (via deposition of proinflammatory C3) and only when the

local effects of IDO are blocked [17]. By contrast, �� T cells, specifically the sub-

set expressing V�1.1 in the mouse, is able to react with trophoblasts from a vari-

ety of species [18]. The cytokine pattern produced by these cells depends on

presence or absence of CD200 and Th1 versus Th2/3 cytokines. CD200 and pos-

sibly Th2/3 cytokines promote cells which make a novel TGF-�2,3-type molecule

[19]. Conventional TGF-�s, �1,2,3, have a 25-kDa bioactive form, whereas in both

the mouse and human, the �� suppressor cells in deciduas make a lower molecu-

lar weight homodimer, which is relatively less fibrogenic for its immunosuppres-

sive potency [20, 21]. Another innate immune effector, the NK cell, has been

implicated in ‘rejection’ of embryos at a later stage of gestation when a distinct

fetus and placenta have developed (e.g. the CBA � DBA/2 model), but must act

indirectly as there is no evidence trophoblast cells (with or without paternal MHC

expression) are killed, and the relevant abortogenic cells are not graft rejecting

TcRd� T cells but are NK cells probably coexpressing V�1.1 and are thus

NK��T cells [22, 23]. The importance of ‘danger’ signals also merits emphasis.

The CBA � DBA/2 system is a novel mating where there is a lack of maternal

NK��T cell tolerance to an as yet undefined paternal antigen [24]. Abortions

are promoted by Th1 cytokines, flora/LPS, and stress that enhances gut
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permeability (and LPS absorption). In most mouse mating systems, including

natural matings in the wild, more heterozygous allogeneic embryos have a sur-

vival advantage compared to homozygous (more syngeneic) embryos [25]. This

has been attributed to activation of protective suppressor cells by more

foreign/allogeneic embryos to facilitate birth of progeny more likely to survive in

a dangerous (e.g. stressful) environment. Indeed, in the CBA � DBA/2 model, a

specific non-MHC antigen presented in the context of paternal MHC-linked anti-

gens protects [24], BALB/c can prime for a protective response [26], and there is

new information concerning the identity of the protective T cell subsets in the

uterus and how they may act.

In the remainder of this chapter, I will discuss four types of putative toler-

ance signaling molecules and how they may facilitate fetomaternal tolerance to

enhance the chance of survival of heterozygous embryos.

CD200-CD200R Interaction

CD200 is a glycoprotein which lacks a transmembrane signaling domain

and must act by binding to a receptor [13]. There are four CD200 receptor sub-

types described [27]. Current antibodies do not distinguish between CD200R1

and R4, so these will be denoted as CD200R1/4. In the murine uterus, all

CD200R subtypes are expressed, but R1/4 and R3 are most evident, and are

seen on trophoblast cells and in certain areas of the deciduas on days 8.5–12.5

of pregnancy. R2 is also expressed [28].

The relevance of CD200 for reproduction was originally suspected when

CD200 was found essential for induction of alloantigen-specific tolerance to

kidney allografts [14]. Portal vein infusion of donor splenocytes induced

CD4–8– ��Ts that activated via cytokines such as TGF-� and IL-10 [14]. As

such, these ��Ts were very similar to the cells found in the decidua of success-

ful allogeneic pregnancies in mice [20]. In situ hybridization for CD200 mRNA

demonstrated expression on fetal trophoblast and in certain areas of deciduas (a

cap at the peripheral margin of the primary deciduas and in the mesometrial

secondary decidual zone) [29]. The functional significance of CD200 and its

receptors was then obtained by use of anti-CD200-neutralizing monoclonal

antibody and by injection of a soluble immunosuppressiveCD200Fc construct

using the abortion-prone CBA � DBA/2 model. In this model, it was known

that expression of fgl2 prothrombinase triggered losses by activating inflamma-

tion via thrombin generation [22, 29]. The abortion rate was about 40–50% of

that expected on the basis of implantations overexpressing fgl2. The expected

rate of loss was achieved when monoclonal anti-CD200 was injected. A single

dose on gestation day 8.5 or 9.5 was more effective than treatment on gestation
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day 7.5, and CD200Fc given on day 8.5 reduced the abortion rate to �4% [29].

Abortion rates in CBA � BALB/c matings (where the striking accumulation of

Th1 NK��T cells from gestation day 5.5 is not seen [30]) were also increased

by anti-CD200 antibody, suggesting a continuing role of CD200-CD200R

interaction was required from day 8.5 of pregnancy to prevent abortions.

Interestingly, administration of BALB/c splenocytes to CBA females was

known to prevent abortions in the CBA � DBA/2 model, and a prior pregnancy

by BALB/c protected similarly [26]. The BALB/c splenocytes were effective if

given before pregnancy, or during early pregnancy up to day 7.5 of pregnancy

(although the progesterone-induced release of an NK blocking factor was able

to act on day 8.5–10.5), and CD8�� cells were required to mediate suppression

as was also the case when GM-CSF was used to prevent abortions [31]. Further,

blocking CD200 on the BALB/c splenocytes abrogated suppression [32]. As

BALB/c cells survive for a period of time following injection, it was puzzling

why the CD200� cells did not show the protective effect that was seen when

CD200Fc was injected on day 8.5 or 9.5 of gestation. Obviously, the answer had

to lie in the mechanism. The effect of CD200Fc is most likely pharmacological

and acts on CD200R on cells which have either ‘seen’ antigen or do not ‘see’

antigen. CD200R is expressed on trophoblast and other cells in decidua, most

likely APC and ��T cells [28]. In contrast, the effect of action of CD200�
splenocytes is likely mediated by immunogenic APC, such as BALB/c dendritic
cells. The protective antigen on BALB/c has been studied using

(DBA/2 � BALB/c) � DBA/2 recombinant lines. Two nonallelic minor anti-

gens denoted as P (protects against abortion) and S (stimulates abortion) were

identified. P appears to be a peptide (i.e. minor histocompatibility antigen)

expressed by both DBA/2 and BALB/c which must be expressed in the context

of MHC H-2d [24]. The MHC antigen required is probably not MHC class I-a

(H-2K, L, or D), but rather the class I-b antigen Qa-2 is essential: Qa-2 is

known to be expressed on mouse embryo cells and trophoblasts. BALB/c sub-

lines expressing low Qa-2 compared to BALB/cJ were unable to immunize

CBA/J females against abortions when mated with DBA/2 males. The S anti-

gen, by contrast, appeared to be expressed in DBA/2, and is therefore not likely

MHC H-2d restricted. This is important as cells with TcR �� can recognize class

I-b MHC and other small molecules, but not peptides bound in the groove of an

MHC molecule [12, 33]. It would be possible for Th1 NK��T and Th1 �� T

cells to react to S, but not to P. The minor antigen P peptide could, however, be

recognized by �� TcR� cells. There is a striking accumulation of TcR ��� T

cells in the secondary decidua of CBA � DBA/2 matings on gestation day 5.5

when APC such as macrophages are infiltrating [22, 30]. If these T cells were

stimulated by soluble P peptide associated with Qa-2, generation of a regula-

tory environment with Th2 cytokine production should bias differentiation of
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activated �� T cells towards the Th2/3 phenotype [19]. Thus, CD4�25� Treg

cells may play an important role in local �� T cell differentiation. Adoptive

transfer of CD4�25� Treg cells from the spleens of day 14.5 CBA � BALB/c

mated mice to CBA � DBA/2 mated mice on gestation day 0.5 or 1.5 or 2.5

(but not thereafter) has recently been reported to present abortions [34]. Treg

cells also infiltrate deciduas at the implantation site in other mating combina-

tions, and removal of the CD25� subset of CD4� T cells appears to result in a

combination of classical resorptions and early occult pregnancy failure [35]. As

CD4�25� Treg cells require IL-2 to develop, and no IL-2 has been found in

decidua [4], Treg production is likely systemic rather than local. Alternately,

Treg cells may have a different growth factor receptor and ligand.

Our understanding of S and P and related tolerance signaling molecules

would be greatly enhanced if the S and P molecules were cloned, and subtrac-

tive hybridization using the most extreme of the recombinant lines has been

considered [24]. V�1.1� TcR� cells can react to all trophoblasts, including

within-species and extra-species xenogeneic trophoblasts [18]. Is S the antigen,

or is S a peptide that interferes with P? Where do CD200Fc and CD200�
alloantigenic BALB/c cells act, and via which CD200Rs? CD200R1/4 signal-

ing may lead to direct suppression whereas preliminary data suggests CD200R2

or R3 signaling may act via CD4�25� cell activation as the Th1?Th2 cytokine

shift is much less [27, 28]. Are the CD8�� suppressor cells required for ame-

lioration of abortion in CBA � DBA/2 matings and for additional abortion

reduction in response to BALB/c splenocyte treatment CD8� �� Ts cells that

make Th2 cytokines impacting �� T cell development, or are they CD8���
dendritic cells expressing CD200 [36]? Which of the immunoprotective

responses occur locally in decidua, and which occur systemically? Reduction in

CD200 expression has proven essential for fgl2 prothrombinase triggering of

abortions, but the mechanisms of this suppression remain hypothetical [29]. It

is known that a ‘danger’ signal acting via tlr is required along with the Th1

cytokines TNF-� and IFN-� [37]. Finally, CD200 and CD200Rs are expressed

both in decidua and in trophoblasts. Are both sites important? Does CD200

have effects other than immunoregulation of CD200R� trophoblast cells?

Many questions, and as yet, no answers.

What about Atypical Class I-b Molecules such as 
HLA-G and HLA-E?

Although trophoblasts prior to implantation downregulate cell surface

expression of most class I-a and class II molecules, certain class I-b molecules

and paternal minor histocompatibility antigens are expressed, albeit sometimes
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in soluble form. Table 1 summarizes similarities and differences between the

mouse and human. HLA-G was found to inhibit cytotoxicity by NK cells, and

thought important given the presence of atypical CD16– NK cells in the decidua

of successful pregnancies and increased presence of classical CD16� NK cells

in pregnancy failure [22]. It has been argued that Qa-2 may be the homolog of

human HLA-G1 and G2 [41] but recently another mouse homolog of HLA-G1

and G2 called blastocyst antigens 1 and 2 (BA1 and 2) has been reported [42].

Production of soluble HLA-G may be essential for implantation [44], but some

HLA-G-deficient humans (but perhaps not all [45]) reproduce successfully, and

the CBA � DBA/2 and CBA � BALB/c systems lack expression of the murine

HLA-G1 and G2 analogs BA1 and BA2 [42]; on the other hand, blocking IL-10

increases abortions in CBA � BALB/c matings and this IL-10 dependence is

not seen in other mating combinations where the murine analogs of human

HLA-G1 and G2 exist [41, 46]. It is also possible to prevent abortions in the

CBA � DBA/2 model by injecting L cells transfected with H-2L [47], so MHC-

dependent inhibition of NK, and NK��T cells could represent an antiabortive

mechanism. However, this protective effect of transfected cells may represent a

pharmacological effect that does not occur physiologically. HLA-G in the human

is thought to facilitate expression of HLA-E (homologous to murine Qa-1b

which has not been described on embryo trophoblast), and HLA-E inhibits NK

cell cytotoxicity [43]. However, there is no evidence that NK cells act via direct

perforin-mediated cytotoxicity to cause abortions. Indeed, perforin knockout

mice can abort [48]! NK and related innate effector cells act via their cytokine

production, and the role of MHC-KIR and MHC-CD94/NKG2 interactions does

not appear to fit the Th1/Th2 paradigm [49].

Recently it has been shown that HLA-G expression may promote survival

of allografts [50]. Such data suggest HLA-G could play a role in semiallogeneic

pregnancy success, but more convincing data is required.

What about Apoptosis-Inducing Molecules?

One mechanism of tolerance described above is inactivation of effector

cells via induction of apoptosis. As mentioned, DN �� FASL� Ts cells have

been described in one model of allograft tolerance using the class I-a MHC H-

2L [3]. It was suggested by Hunt et al. [51] that mice deficient in FASL might

experience reproductive failure. This was not found reproducible by Rogers et

al. [52], and Chaouat and Clark [53] found no evident problems with FAS–

mice even when the female was preimmunized against paternal antigens. The

poor reproductive performance in the study of Hunt et al. was most likely an

artifact related to conditions in her animal colony (e.g. excess ‘danger’). Other
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apoptosis-inducing lined-receptor combinations have been suggested as alter-

natives to FASL-FAS (e.g. trail), but no in vivo evidence has been forthcoming.

Indeed, there are so many apoptosis-inducing pathways, it may not be possible

to conduct a convincing scientific experiment (as defined by Popper), as all
apoptosis pathways would have to be blocked to abrogate ‘tolerance’ [24].

Chaouat and Clark [53] did note higher levels of antifetal CTL in the spleens of

allopregnant FAS– females, so FAS-FASL might provide a mechanism for

females to dispose of antigen-fetal cells escaping into her circulation during

pregnancy.

What about IDO?

The immunosuppressive effects of IDO on alloreactive �� T cells has been

described above. Mellor et al. [17] reported that blocking IDO by administra-

tion of 1-methyl-tryptophan caused CD4� maternal T cells to accumulate in

deciduas and cause pregnancy failure via deposition of the C3 component of

complement. These losses began within 2 days after implantation in mice, and

before the formation of a distinct fetus and placenta when classical abortions

(resorptions) occur [54]. The losses were allospecific and paternal minor anti-

gens as well as MHC played a role [17]. The phenomenon was similar to rejec-

tion of allogeneic blastocysts placed under the kidney capsule of mice

preimmunized to minor paternal transplantation antigens; by contrast, tro-

phoblasts developing later in gestation were not rejectable [15]. Similar early

losses (equivalent to occult loss or chemical pregnancies in humans) was pro-

ducible by injecting monoclonal antibody H57 that binds to TcR � and activates

�� T cells, and by �-GalCer that activates NK��T cells via a CD1-dependent

process [30, 55]. In the latter model, it was proven that perforin was required

[55]. These early loss models are quite distinct from the spontaneous abortion

models and IDO� cells are viewed as essential for ‘tolerance’ that prevents

rejection of the ‘fetal allograft’. There are IDO� APC in deciduas, and possibly

Table 1. Comparison of expression of different types of antigens by trophoblasts in

mice and humans

Species MHC class I-a MHC class I-b Minor H antigens

Mouse H-2 [16, 22, 39] Qa-2 [41], BA1 and 2 [42], Qa-1a yes [15]

Human HLA-C [3, 8, 40] HLA-G1 and G2 [40], HLA-E [43] ?

aNot reported to be expressed by trophoblasts.



Tolerance Signals 45

trophoblasts can produce IDO although direct evidence is hard to find; since ��
T cells do not react to trophoblasts, there may be no need for IDO here.

Recently occult loss in the A/J � DBA/2 model has been studied to deter-

mine if stress might cause loss by inhibiting expression of IDO [56]. To our sur-

prise, stress-induced occult losses occurred without reduced IDO in deciduas,

but Th1/Th2 ratios were increased. Alloimmunization reduced IDO, which is

what one would expect if the immune response were to be able to proceed;

occult loss in this setting was entirely consistent with the increase in decidual

Th1/Th2 ratios. Indeed, combined treatment produced quite low IDO levels and

higher Th1/Th2 ratios, but no increase in the rate of occult loss. A similar limi-

tation has been observed in the CBA � DBA/2 abortion model and has been

explained by the need for an adequate level of ‘danger’ signals (e.g. LPS)

absorbed from the intestine. LPS can also cause occult loss [37]! Taken

together, these observations suggest that occult losses, like abortions, are

caused by the combined action of Th1 cytokines and a danger signal in the

absence of counteracting Th2/3 cytokines. The purpose is to terminate preg-

nancy, a burden, when the health and life of the mother are in jeopardy. In this

situation, heterozygous embryos are less likely to be lost, as shown by Potts et

al. [25]. If reduced IDO were the mechanism of pregnancy termination, one

would have the selective elimination of the more heterozygous (antigenic)

embryos. Indeed, in a poly-IC-induced loss model where poly-IC acts via tlr3,

the loss rate of syngeneic matings was much greater than of allogeneic matings

[44, 57]. (The higher abortion rate in the CBA � DBA/2 model is an anomaly

due to an NK��T cell reaction driven by the S signal.) One situation in which

loss due to low IDO might prove advantageous would be elimination of chro-

mosomally abnormal embryos. Here, rejection would benefit the mother and

the species. Some preliminary human data may support this hypothesis, but fur-

ther work will be needed to determine if IDO has any significance to naturally

occurring reproductive pathology such as recurrent loss of karyotype-normal

embryos, or rather, is merely an artifact of a model in which IDO can be com-

pletely inhibited pharmacologically (�5 mg of 1-methyltryptophan per mouse

per day was required for any effect [17]).
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Abstract
Preeclampsia is a placenta-dependent disorder with both local and systemic anomalies

with neonatal and maternal morbidity. It is manifested late in pregnancy, but the onset is during

early stages of gestation. The current hypothesis regarding the aetiology of preeclampsia is

focused on maladaptation of immune responses and defective trophoblast invasion. Thus, an

excessive maternal inflammatory response, perhaps directed against foreign fetal antigens,

results in a chain of events including shallow trophoblast invasion, defective spiral artery

remodelling, placental infarction and release of pro-inflammatory cytokines and placental frag-

ments in the systemic circulation. During normal pregnancy, trophoblasts interact in the

decidua with the unique uterine NK cells, modifying their cytokine repertoire, regulating adhe-

sion molecules and matrix metalloproteinases. The inability of trophoblasts to accomplish these

changes might be a critical factor for the onset of preeclampsia. Several cytokines, produced at

the maternal-fetal interface, have an impact on trophoblast invasion. It is suggested that defi-

ciency of interleukin-10 may contribute to enhanced inflammatory responses towards the tro-

phoblasts elicited by e.g. tumour necrosis factor-� and interferon-�. Consequently, trophoblasts

subjected to a high rate of apoptosis are hampered in their invasive capacity resulting in defec-

tive transformation of spiral arteries, hypoxia, thrombosis and infarction of the placenta. The

ensuing infarction of placenta leads to leakage of increasing amounts of placental fragments

and cytokines in the maternal circulation and an exaggerated systemic endothelial activation as

identified in preeclampsia. So far, treatment of preeclampsia is focused on signs like hyperten-

sion, whereas attempts of modifying immune responses may be a possibility in the future.

Copyright © 2005 S. Karger AG, Basel

Introduction

Preeclampsia is a complication that is detected in the second half of preg-

nancy, but most probably has its onset during the early stages of gestation. This
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pregnancy-associated disorder is histologically characterized by restrained

trophoblast invasion, vasculitis, thrombosis and ischaemia of the placenta.

These features may also be apparent in other obstetric complications like recur-

rent spontaneous abortion, intrauterine growth retardation, fetal death, and

abruptio placentae. The seemingly disparate clinical entities might have their

common aetiology in the immune responses including local subclinical inflam-

mation at the placental bed and systemically (in preeclampsia) in the maternal

circulation. Preeclampsia is hard to detect in its early form and predictors that

can be used to identify the women at risk of preeclampsia would be of value for

the clinician. This paper deals with preeclampsia in humans and associated

immunological changes and is an overview of recent important findings of this

important but still poorly understood condition.

Clinical Preeclampsia

Preeclampsia occurs after the 20th week of gestation and is a heteroge-

neous disease. Since termination of pregnancy cures the disease, preeclampsia

is a placenta-dependent disorder with both local intrauterine and systemic signs

and symptoms. The hallmark signs are hypertension and proteinuria (table 1).

The incidence of preeclampsia is 3–5% of all pregnancies depending on the

population studied [1].

A number of risk factors are thought to increase the risk of developing

preeclampsia: maternal vascular disease, autoimmune disorders, maternal and

paternal genetic causes, diabetes mellitus, primiparity and twin pregnancy.

Although the exact aetiology remains to be delineated, all of the associated

causes converge into a common pathophysiological denominator: endothelial

dysfunction. Thus, it has been suggested that an excessive maternal inflamma-

tory response, perhaps directed against foreign fetal antigens, results in an

impaired trophoblast invasion with a defective spiral artery remodelling ensued

by high-resistance vessels and a reduced placental perfusion. The consequences

are placental hypoxia and infarction with release of pro-inflammatory cytokines

and placental fragments into the maternal circulation with ultimately general-

ized maternal, and possibly fetal, endothelial activation [1].

Trophoblast Invasion

An adequate trophoblast invasion is possible only after a proper endome-

trial decidualization of the uterine wall has occurred. The decidualization is ini-

tiated immediately after ovulation in order to receive the embryo. The

production of progesterone from the corpus luteum stimulates the decidua to
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increase the vascularization and secretory activity of the endometrial glands.

The leukocytes in the decidua consist mainly of unique uterine natural killer

(uNK) cells (65–70%) and monocyte/macrophages (15–20%), whose exact

function is unknown. A small number of T cells are also present, whereas B

cells are almost absent. In the endometrial extracellular matrix (consisting of

different types of collagens, proteoglycans, and glycoproteins), changes occur

facilitating the invasive properties of trophoblasts creating a safe anchor of the

placenta in the decidua and the vascular remodelling of the spiral arteries [2, 3].

The invading cytotrophoblasts are a subpopulation of villous cytotro-

phoblasts, which in turn differentiate into an outer layer of multinucleated cells,

the syncytiotrophoblasts. The syncytiotrophoblasts cover the fetal mesenchyme

and blood vessels and are in direct contact with maternal circulating blood.

Across this syncytiotrophoblast cell membrane, nutrients and oxygen are deliv-

ered to the fetus and waste products are returned to the maternal circulation.

Table 1. Diagnosis of preeclampsia

Definition of preeclampsia according to WHO

Preeclampsia is a syndrome defined by hypertension and proteinuria and may be 

associated with other signs and symptoms

Preeclampsia occurs after the 20th gestational week

Moderate preeclampsia

Systolic blood pressure �140 mm Hg and/or a diastolic pressure �90 mm Hg measured

on separate occasions at least 4 h apart

Proteinuria in a 24-hour protein excretion �300 mg or 1� on two random urine samples 

collected 4 h apart

Severe preeclampsia

Systolic blood pressure �160 mm Hg and/or diastolic �110 mm Hg measured on 

separate occasions at least 4 h apart

Proteinuria in a 24-hour protein excretion �5 g or 3� on two random urine samples 

collected 4 h apart

Cerebral dysfunction (blurred vision, scotoma, headache, cerebrovascular accidents)

Epigastric or right upper quadrant pain

Renal failure or oliguria �500 ml in 24 h

Pulmonary oedema

Impaired liver function (serum transaminase levels 2 times normal or greater)

Thrombocytopenia (�100,000 platelets/mm3)

Coagulopathy

Fetal growth restriction

Eclampsia (generalized convulsions)

HELLP
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The cytotrophoblasts that differentiate into extravillous cytotrophoblasts

are designed to develop a migratory capacity to invade deep into the decidual

matrix and the maternal spiral arteries. The musculoelastic media of the spiral

arteries are replaced by the invading cytotrophoblasts and fibrinoid material.

The spiral arteries are thereby modulated into low-resistance flow channels

allowing increased blood volume to the intervillous space [3]. The invasion of

cytotrophoblasts relies on their expression of cell adhesion molecules and

secretion of proteolytic enzymes, matrix metalloproteinases (MMP). Integrins

are cell membrane adhesion receptors that adhere to different matrix glycopro-

teins depending on their expression of tissue-specific �� subunits. When tro-

phoblasts migrate across the basement membrane and into the decidua towards

the spiral arteries their expression of integrins is modulated according to the

structure of the surrounding tissue. The surrounding matrix is digested by pro-

teolytic enzymes secreted by the trophoblasts. Thus, the integrins and proteases

together give trophoblasts a migratory capacity, which is a significant physio-

logical adaptation for a successful pregnancy outcome. A shallow trophoblast

invasion results in a poor placenta vascularization and deficient anchor in the

matrix tissue. This is associated with a high risk of preeclampsia, intrauterine

growth retardation and abruptio placentae [3–5 ].

Balancing Act between Inflammatory and Anti-Inflammatory
Immune Responses

The trophoblast invasion is under the influence of several cytokines pro-

duced at the maternal-fetal interface by several cells of immune and non-immune

origin, such as leucocytes including NK cells, trophoblasts, stromal cells and

glandular endothelium [6]. Thus, the current hypothesis regarding the aetiology

of preeclampsia should focus on maladaptation of immune responses and defec-

tive trophoblast invasion (fig. 1). The activation of the adaptive immune response

is characterized according to the phenomenon of polarized cytokine secretion by

T helper (Th) cells. These are primarily divided into two subsets: Th1 and Th2. In

humans, Th1 cells secrete inflammatory cytokines such as interferon-� (IFNI-�)

and tumour necrosis factor-� (TNF-�), whereas Th2 cells secrete anti-inflamma-

tory cytokines such as IL-4, IL-5, and IL-9. Both Th1 and Th2 cells as well as

non-lymphoid cells, including macrophages, secrete IL-10. Although the

Th1/Th2 model is too simple to encompass all the complex differentiation pro-

files of cytokine-producing cells, it still provides a useful framework to explain

the immune responses imparted either by immune cells or non-immune cells [7].

An important decisive factor for the induction of either the Th1 or Th2

pathway is the presence of certain cytokines during the initial process when
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antigens are recognized. IL-4 dictates the immune response to Th2 and the

effects of IL-4 have been shown to dominate over those of IFN-� [8]. Thus, it is

possible that the presence of the trophoblasts in a uterine cavity with a poor res-

ident anti-inflammatory milieu initiates an incompatible activation of the decid-

ual immune cells that direct the local immune activity towards inflammation.

Mechanisms of placentation
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Fig. 1. Flow chart showing mechanisms of placental development in uncomplicated

pregnancies (‘normal’) and of pathological placentation (‘abnormal’), as in preeclampsia.

Other pregnancy complications, spontaneous abortion, fetal death and growth retardation,

may also be clinical signs of placental ischaemia and inflammation as shown.
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Subsequently, the systemic cytokine production and immune responses are

likely to be predominant in their inflammatory functions which might initiate

the pathology associated with preeclampsia.

Cytokines and Preeclampsia

A set of cytokines have so far been of particular interest in the pathological

pregnancy outcome, including preeclampsia (fig. 1).

Transforming Growth Factor-b
Transforming growth factor-� (TGF-�) is secreted by decidual stroma

cells, macrophages and T cells and is present locally at the maternal-fetal inter-

face. This cytokine exerts a regulatory role by a potent negative effect on tro-

phoblast invasiveness by induction of tissue inhibitors of matrix proteases and

increased adhesiveness to matrix proteins [5, 6]. However, the impact of an

overexpression of TGF-� on a shallow cytotrophoblast invasion at the 

fetal-placental unit has been disputed since no difference was found either in

the placental bed or in the placenta in preeclamptic patients compared with nor-

mal pregnancies [9].

Tumour Necrosis Factor-a
TNF-� is a proinflammatory cytokine produced e.g. by NK cells, mono-

cytes/macrophages and trophoblasts. TNF-� promotes apoptosis and leakage of

the endothelial vessels, leading to systemic endothelial activation and thereby

signs associated with preelampsia [10]. In conjunction with an overexpression

and secretion of TNF-� in the placenta and in plasma – as observed in

preeclampsia – an enhanced plasma and placental expression of IL-1 has been

reported. IL-1 and TNF-� both promote structural and functional changes in

endothelial cells including oxidative stress, activation of the complement cas-

cade, secretion of vasoconstrictors, microthrombosis and infarction, and ele-

vated thromboxane levels. All these changes are seen in preeclampsia and the

effects of increased expression of TNF-� seem to be involved in the pathophys-

iological mechanisms leading to the clinical signs [1, 11]. Thus, TNF-� is a

major contributor to many of the local and systemic changes that characterize

preeclampsia. TNF-� has also been shown to elevate leptin protein levels, a

phenomenon associated with preeclampsia. Interestingly, microarray analysis

of differentially expressed genes in placental tissue of preeclampsia revealed

that one of the most upregulated transcripts in preeclampsia tissue was the

obese leptin gene [12].
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Interferon-g
IFN-� released by activated T cells activates the specialized uNK cells

which possess regulatory properties for physiological trophoblast invasion in

the decidua. However, excessive amounts of IFN-� in conjunction with TNF-�
and IL-1 can lead to apoptosis of trophoblasts [2, 13]. This may indeed also be

the case in unexplained spontaneous abortions [14]. In an inflammatory envi-

ronment, macrophages secrete high levels of IL-12 that stimulate IFN-� secre-

tion by NK cells, thereby inhibiting angiogenesis [6].

IL-10
IL-10 is an important anti-inflammatory cytokine in pregnancy that inhibits

upregulation of MMP-2 and MMP-9 and promotes the termination of Th1

inflammatory rejection reactions against the fetal-placental unit. In a small num-

ber of preeclampsia cases, high levels of IL-10 are seen both in the placenta and

in peripheral blood, which might be a compensatory response to elevated levels

of IFN-�, TNF-�, IL-2 and IL-12 [5, 8, 15]. On the other hand, IL-10 deficiency

and an increase of TNF-� expression in the placenta and decidua are observed in

preeclampsia compared to those with a normal pregnancy. This was interpreted

as a modified immune balance consistent with inflammatory responses in

preeclampsia [16]. This suggests that coupling of IL-10 deficiency and inflam-

matory signals at different stages of pregnancy may contribute to disparate clin-

ical conditions, including preeclampsia [17, Sharma, unpubl. observations].

Other Cytokines
Recently, several other cytokines have been identified in the

immunopathological cascade of preeclampsia. Since these cytokines do not

adjust to the original concept of Th2 as beneficial and Th1 as deleterious to

pregnancy, it has been proposed that caution should be observed with the

immunotrophism theory stated by Wegmann et al. [18]. Nevertheless, the

Th1/Th2 paradigm in its simplistic form may still be part of complex

immune-endocrine interactions locally or systemically. In this context,

Chaouat et al. [19] suggest that the preclinical cytokine network has come

closer to the patient bedside, showing a correlation between the evaluation of

uterine blood flow, ultrasonographic morphology of uterine-placental vessels

and immunohistochemical localization and levels of IL-12, IL-18 and counts

of uNK cells. They showed, in a group of patients enrolled in an in vitro

fertilization programme, that a correlation exists between cytotoxic cytokine

profiles and vascular anomalies in implantation failures. This scenario is in

contrast with the proper activation and localization of uNK cells and vas-

culature seen in implantation success. Pro-inflammatory cytokines trigger
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activation of the coagulation cascade leading to vasculitis and infarction and

may further deteriorate the early placental development and hamper the tro-

phoblast invasion [1, 5, 10].

Recently, an elegant way of measuring cytotoxic responses, by means of

granulysin levels in serum, was reported to be associated with the occurrence

and clinical manifestations of preeclampsia [20]. The real challenge is to find

early markers of subsequent preeclampsia. In this context, soluble IL-2 receptor

in plasma was elevated in the 1st trimester of women that later developed

preeclampsia compared with controls [21].

Maternal-Fetal Interactions

In the uterine cavity, the extravillous cytotrophoblast cells reveal themselves

by the expression of the unusual HLA class I molecules: HLA-E, and HLA-G

together with HLA-C. At present, the only receptors that have been found to

these HLA class I molecules are located on the unique uNK cells (fig. 1). uNK

cells are CD56bright CD16– compatible with a low cytotoxic potential com-

pared with the classical killer NK cells in peripheral blood that express

CD56dim CD16�. The syncytiotrophoblast, covering the placental villi and

thereby exposed to maternal blood, expresses no HLA molecules [2].

The uNK cells show a variation over the menstrual period. During the

luteal phase and until midgestation uNK cells increase in number and they

accumulate around the invading cytotrophoblasts. After initial development of

the placenta, levels of uNK cells decline and cease to be present at term [2].

The interaction between extravillous cytotrophoblasts and uNK cells, pos-

sibly after stimulation by IFN-�, has recently been suggested to have an influ-

ence on the remodelling of spiral arteries [22]. A high expression of receptors

signalling inhibition of cytotoxic activity of uNK cells interacts with HLA-E,

HLA-C, and HLA-G [2].

The inability of cytotrophoblasts to modify the cytokine repertoire of uNK

cells and their regulation of adhesion molecules, MMPs and sufficient neovas-

cularization may be critical factors for the onset of pregnancy complications

including preeclampsia [2, 3, 6, 17, 18].

Apoptosis and Syncytial Knots

Programmed cell death or apoptosis plays an important role in cell home-

ostasis and tissue remodelling, particularly placental development. Importantly,

placental degeneration observed in preeclampsia may be due to unscheduled
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apoptosis of trophoblasts. The pregnancy-associated remodelling of the spiral

arteries is mediated by invasive cytotrophoblasts. However, if these trophoblasts

are subjected to a high rate of apoptosis, this defective transformation of spiral

arteries may result in local ischaemia, thrombosis and infarction (fig. 1). The

exact causes of enhanced apoptosis in preeclampsia are currently unknown.

Likewise, increased apoptosis of syncytiotrophoblasts may increase the amount

of syncytiotrophoblast debris, syncytial knots, that leak into the maternal circu-

lation and generate an exaggerated systemic endothelial activation [23]. Sargent

et al. [24] have proposed that when syncytial knots break off in increasing

amounts from the placenta and are shed into the maternal circulation they may

be the cause of the systemic endothelial activation that is seen in preeclampsia

(fig. 1). The deported trophoblast debris can, in vitro, activate maternal sources

of TNF-� and IL-12 from monocytes, which further pushes the systemic

immune response towards extensive inflammation instead of the normal innate

immune reactivity that syncytial knots usually accomplish during pregnancy.

The reason for this strong apoptosis is unknown, but it has been shown that 

pro-inflammatory cytokines are capable of upregulating Fas/FasL genes, while

anti-inflammatory cytokines protect trophoblasts against Fas-induced apoptosis

[24, Sharma, unpubl. observations].

Free Radicals

Other mediators of inflammation are also important in the pathogenesis of

preeclampsia, including reactive oxygen species, in particular superoxide

anions. These agents are increased in preeclampsia, where the equilibrium of

antioxidants (vitamin E, ascorbic acid, glutathione peroxidase, superoxide

catalase/mutase, and caeruloplasmin) is disturbed. Antioxidants are produced

by many cells, also trophoblasts and leucocytes, to protect them from free rad-

icals or as part of cellular homeostasis and ageing. Free radicals and levels of

lipid peroxidation are increased in preeclampsia and capable of evoking 

systemic endothelial activation, including platelet consumption, altered throm-

boxane/prostacyclin ratio, increased TNF-� production and promotion of the

coagulation cascade [25].

During normal pregnancy, a rise in antioxidants is detected in blood with

increasing gestational age. However, if the inflammation is strong or the produc-

tion of the antioxidants is low, the predominating condition inevitably favours oxi-

dizing species. This is the case in preeclampsia, where free radicals are present at

significantly higher levels than during normal pregnancy [25] (fig. 1). In the

‘haemolysis, elevated liver enzymes, low platelet’ (HELLP) syndrome, haemoly-

sis of erythrocytes might occur due to a high degree of oxidation of glutathione,
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which causes cell damage. As a consequence, it has been suggested that treatment

with inhibitors of cyclooxygenase to block oxidative stress on erythrocytes as

well as nutritional supplements with antioxidants, vitamin E and C, might reduce

the incidence of preeclampsia in high-risk pregnancies [25].

Lymphocyte Populations in Blood

Preeclampsia is also characterized by systemic changes in the distribution

of lymphocyte populations in peripheral blood. Increased levels of

activated/memory cells (CD4�CD45RO� and CD4�CD29�) and decreased

levels of naïve/‘suppressor’ cells (CD4�CD45RA�) have been noted. The

interpretation is that antigens have activated the T cells observed in preeclamp-

sia. In contrast, lymphocytes in normal pregnancy are switched towards a pre-

dominance of CD4�CD45RA� naïve/‘suppressor’ T cells. The level of

cytotoxic CD8� T cells expressing the S6F1 marker, which represent killer

effector functions, is increased in preeclamptic pregnancies compared with nor-

mal pregnancies, again indicating inflammatory activity [26].

The mechanisms behind leucocyte activation in preeclampsia are

unknown, but the changes are similar to those observed in humans after viral

or bacterial infections. Low doses of bacterial endotoxin injected into preg-

nant rats resulted in a condition resembling preeclampsia including the

appearance of T cell activation markers [15]. This presents an intriguing basis

to probe the role of clinical and subclinical infections in the pathogenesis of

preeclampsia. These observations also indicate that preeclampsia is associ-

ated with both the innate and the adaptive immune activity in the peripheral

blood [6, 18, 24, 26].

Toxic Substances of Preeclampsia

What is the nature of the ‘toxic’ substances that escape from an obvious

‘sick’ placenta, swim out into the maternal circulation and gain access to and

disturb almost every organ in the human body and reveal their presence by the

characteristic signs and symptoms of preeclampsia (fig. 1)? Many candidates

(fig. 1) have been suggested although no complete agreement has been reached

[1, 6, 10, 11, 16, 18, 23–25].

Concerning cytokines as potential villains and as potential diagnostic tools

in the prediction of preeclampsia, we addressed this question (like many others)

by measuring cytokine levels in serum using the Luminex® assay (Camarillo,

Calif., USA) in preeclamptic patients (n 	 15) and compared them with normal
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pregnancies (n 	 15). In preeclampsia, we observed an upregulated systemic

innate immune reactivity with increased levels of TNF-�, IL-6, and IL-8. When

we stimulated peripheral blood mononuclear cells with paternal antigens (‘fetus-

specific’) or recall antigens (purified protein derivates of Mycobacterium tuber-
culosis or tetanus toxoid) similar levels of induced secretions of IL-4, IL-10,

IL-12 and IFN-� (detected by the highly sensitive ELISPOT assay) were

detected in preeclampsia and normal pregnancies. This does not exclude local

cytokine aberrations at the placental level that are compatible with inflammatory

activity. However, the results agree with the main concept of preeclampsia being

an inflammatory phenomenon [1, 6, 15, 18, 23, 24], but with a much more com-

plex picture than a Th1 deviation only [19].

Conclusion

Preeclampsia is a multisystem disorder based on a cascade of immuno-

pathological events originating from the placenta. No single candidate mecha-

nism exists to explain the complex pathogenesis. As of now, there is no reliable

marker or predictor of preeclampsia. Clearly, however, local as well as systemic

inflammatory activity occurs in preeclamptic patients. To identify these com-

plex immune factors and ‘arrange’ them in a test where the diverted inflamma-

tory activity will be detected should be the target in future research concerning

preeclampsia.

To further elucidate the mechanisms underlying preeclampsia, it is our

hope that animal models can be developed in the very near future, wherein

depletion or the overwhelming presence of key players in the aetiology of the

disease can be studied developmentally.
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Abstract
Background: Leukemia inhibitory factor (LIF) is at present suggested to be essential

for implantation in mammals. In parallel, the possibility that it may also be involved in the

pathogenesis of stress-induced early embryonic death seems to emerge from studies, which

addressed the embryotoxic potential of another cytokine, tumor necrosis factor-� (TNF-�).

In this brief review, we discuss this possibility based on these studies as well as on those

addressing TNF-� and LIF signaling. Methods: Existing data were reviewed critically.

Results: Data summarized in this review suggest that: (1) TNF-� may act as a mediator of

stress-induced early embryonic death, (2) TNF-�-mediated early embryonic death induced

by some detrimental stimuli may be attributed to a dysfunction of mechanisms, which are

critical for the ability of the uterus to become receptive to blastocysts, allowing implantation,

(3) one such mechanism was shown to be associated with LIF signaling in uterine cells, and

(4) TNF-� seems to have the potential to affect LIF signaling. Conclusion: Data presented in

the this review suggest LIF as a good candidate for further studies addressing molecular

mechanisms underlying stress-induced early embryonic death.

Copyright © 2005 S. Karger AG, Basel

Introduction

Early embryonic death is the main adverse result of various harmful mater-

nal stimuli or environmental embryopathic stresses acting before or during

implantation [1]. Studies addressing the pathogenesis of this phenomenon

revealed that stresses inducing embryonic death also alter the production of
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some cytokines operating in the embryonic microenvironment [2, 3]. As the

balance between various cytokines acting in the embryonic vicinity was shown

to be an essential condition for a successful pregnancy [4], these observations

suggested a role for cytokines as regulators of the embryo’s response to embry-

otoxic stimuli.

Leukemia inhibitory factor (LIF), a proinflammatory cytokine, was shown

to be essential for implantation in mice [5]. Maybe, due to this fact, its role in

mediating stress-induced early embryonic death remains practically uninvesti-

gated. At the same time, such a role seems to emerge from studies which

addressed the embryotoxic potential of another cytokine, tumor necrosis factor-

� (TNF-�). In this brief review, we summarize results of these studies and dis-

cuss whether LIF may be involved in the pathogenesis of TNF-�-mediated

stress-induced early embryonic death. Since there is a plethora of reviews

addressing the role of both cytokines in reproduction as well as TNF-� and LIF

signaling, we will not address this topic here in detail but will focus only on

points which have relevance to the topic of the review.

TNF-� as an Inducer of Embryonic Death

TNF-�, a multifunctional cytokine, was identified in the ovary, oviduct,

uterus and placenta practically at all stages of development [6]. Although

results of a number of studies suggested its functional role in reproduction

(especially in implantation) [references in 6], experiments in TNF-� knock-

out mice [7, 8] revealed neither alterations in indices characterizing their

reproductive performance nor structural anomalies in fetuses, indicating that

the cytokine hardly plays an essential role in regulating the antenatal period of

development. At the same time, there is a large body of data, which, taken

together, suggest its involvement in mediating spontaneous and stress-

induced early embryonic death [9]. These data may briefly be summarized

as follows.

(1) The embryotoxic potential of the cytokine seems to have been

suggested for the first time by studies demonstrating that injection of TNF-�
into pregnant mice results in embryonic death [10]. Further experiments in

the CBA/J � DBA/2J mouse combination (a model with a high incidence of

embryonic death) have revealed an increased level of TNF-� in supernatants

of decidual cell cultures [10]. TNF-� expression has also been found to be

raised in the placentae of CBA/J � DBA/2J mice [11]. These observations

have implicated TNF-� as a cytokine involved in triggering immunological

pregnancy loss [12], i.e. death of embryos due to failure of defense mecha-

nisms preventing rejection of the semiallogeneic fetoplacental unit.
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(2) The ability of TNF-� to influence the preimplantation development of

embryos seems to be well documented. Thus, rat blastocysts exposed to TNF-�
exhibited decreased cell proliferation [13] and an increased rate of blastomere

apoptosis [14]. Practically the same results have been observed in studies with

cultured mouse and cattle blastocysts [15, 16]. Remarkably, the possibility that

this impact of TNF-� on preimplantation embryos could be detrimental is

clearly demonstrated by embryo transfer studies addressing in vivo develop-

ment of blastocysts, which were exposed in vitro to TNF-� [15]. They revealed

that TNF-� pretreatment caused a 17% decrease in the proportion of implanted

embryos and that the proportion of embryos, which died after implantation, was

about 40% higher in the TNF-�-pretreated group as compared to controls.

There are a number of studies which suggest that uterine cells may also

serve as targets for the toxic effect of TNF-�. Thus, experiments in the mouse

uterine epithelial cell line WEG-1 revealed that TNF-� exerts a dose- and time-

dependent toxic effect on these cells while stimulating apoptosis [17]. The

human endometrial HEC-1 cell line was found also to be sensitive to the toxic

effect of the cytokine [18]. Finally, the possibility that TNF-� may be involved

in pathological processes, leading to pregnancy loss by disturbing normal tro-

phoblast endocrine function, has also been demonstrated [19].

(3) Three types of data exist suggesting an involvement of TNF-� in the

pathogenesis of stress-induced early embryonic death.

First, data demonstrating that stress-induced cell death was accompanied

by an upregulation of TNF-� expression in embryonic vicinity. Thus, elevated

TNF-� expression has been observed in the uterine epithelium and stroma, and

in the giant and spongiotrophoblast cells of the placenta of mice exposed to the

DNA-damaging agent cyclophosphamide [20]. Increased production of TNF-�
by decidual NK cells and/or macrophages has been observed in mice treated

with LPS [21]. TNF-�-producing cells located at the fetomaternal interface

have been observed to be activated and to increase the local production of 

TNF-� in mice exposed to ultrasonic sound stress [22]. Finally, studies in dia-

betic animals, which demonstrate a dramatic decrease in pregnancy rate [23],

have revealed that the synthesis of TNF-� is upregulated in the uterine cells of

these mice [18, 24].

Second, data demonstrating that maternal immunostimulation, which

increased the resistance of embryos to various embryopathic stresses [3], also

partially normalized (decreased) the expression of TNF-� at the fetomaternal

interface. This phenomenon was observed in experiments with immunostimu-

lated mice exposed to ultrasound stress, cyclophosphamide and LPS as well as

in immunostimulated diabetic mice [references in 3].

Finally, the involvement of the cytokine in mediating stress-induced cell death

is also suggested by studies in TNF-� knockout mice. Thus, TNF-� was shown to
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be essential to mediate embryonic death induced by �-galactosylceramide, a

specific ligand for a distinct subset of lymphocytes, Va14 NKT cells, which accu-

mulate in the decidua during pregnancy [25]. Also, in a study with diabetic mice

[26] we observed a much greater decrease in the pregnancy rate in severely dia-

betic TNF-��/� mice than in TNF-��/� mice. The comparative analysis of results

obtained in diabetic mice tested on days 4, 8 and 18 of pregnancy suggests that this

decrease could be due to TNF-�-induced death of peri-implantation embryos.

The Blastocyst and Uterus as Targets for TNF-�

In vitro studies with blastocysts exposed to TNF-� revealed that the

cytokine predominantly induces a deficit in fetal precursor cells situated in the

inner cell mass but not in preplacental cells situated in the trophectoderm [refer-

ences in 18]. These observations are in a good agreement with embryo transfer

experiments, which demonstrated that TNF-�-pretreated blastocysts implanted

at about the same rate as control embryos but the resorption rate (postimplanta-

tion death) was significantly higher among embryos exposed to the cytokine

[15]. Together, these results suggest that TNF-� acting on blastocysts decreases

mainly their ability to differentiate into fetuses after implantation rather than

their ability to implant in the uterus.

Since TNF-�-treated blastocysts were transferred to intact females, the

pattern of the embryonic death observed in these experiments reflects a situa-

tion, where only blastocysts but not females are exposed to the embryopathic

stress. At the same time, the pattern of embryonic death demonstrated by dia-

betic females dramatically differed from that observed in the above-mentioned

embryo transfer experiments.

As we mentioned the above, diabetes was shown to be accompanied by a

sustained increased expression of TNF-� in the reproductive tract and the extent

of TNF-� expression seems to be directly dependent on the severity of diabetes

[18]. Studies in a number of labs and our experiments in diabetic mice [23, 27]

revealed that they demonstrate a decrease in the pregnancy rate (the proportion of

mated females which turned out to be pregnant), but not in the number of implan-

tations per litter or a significant increase in the resorption rate. The claim that

TNF-� can act as a mediator of diabetes-induced early pregnancy loss [18] was

supported by our study [26], which revealed that severely diabetic TNF-��/�

mice exhibit a significantly lower pregnancy rate than severely diabetic 

TNF-��/� females. Importantly, differences in the pregnancy rate were observed

in these females tested on day 8 of pregnancy. However, the pregnancy rate in

these mice tested on day 4 of pregnancy (existence of blastocysts in the uterus)

did not differ and was comparable with that demonstrated by nondiabetic females.
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Since in embryo transfer experiments the implantation rate of TNF-�
exposed blastocysts was found to be comparable with that of control ones, one

can suggest that the decrease in the pregnancy rate in diabetic mice was mainly

due to some defects arising in the uterus. The observation that diabetic mice

exhibited an ‘all-or-nothing’ response, i.e. a decreased pregnancy rate but not a

decrease in the number of implanted embryos in litters of pregnant diabetic

females, clearly supports such a suggestion. In parallel, it implies that such a

total implantation failure might be due to a dysfunction of mechanisms which

are critical for the ability of the uterus to become receptive to the blastocysts,

allowing implantation. Studies addressing the role of LIF in reproduction imply

that LIF represents such amechanism.

Indeed, it has been revealed [5] that LIF knockout mice produce normal

blastocysts but implantation of the embryos did not occur. Reciprocal transfer

experiments have shown that LIF null blastocysts transferred to pseudopregnant

wild-type females developed successfully to term, whereas wild-type blastocysts

transferred to pseudopregnant LIF null females failed to implant. Furthermore,

LIF null blastocysts were found to be appropriately located in the uterine lumen

but no morphological signs of implantation such as apoptosis in the luminal

epithelium and decidualization of the underlying stroma were observed in

LIF�/� uteri.

Thus, these results strongly suggest that the implantation failure in LIF-

deficient mice was not due to some defects specific to the embryos but to those

arising in the uterus and these defects resulted in the total loss of its receptivity.

Because studies in diabetic mice suggest that early pregnancy loss in these mice

might also be due to the total loss of uterine receptivity and that TNF-� can,

at least partially, be responsible for this effect, the question arises of whether

TNF-� has the potential to alter LIF signaling pathways.

Signaling between TNF-� and LIF

In the past dozen years, significant progress has been made in understand-

ing the molecular details of cytokine-mediated signal transduction, suggesting a

variety of mechanisms whereby TNF-� can alter LIF signaling pathways.

However, all of these mechanisms function in a cell type-dependent fashion and

here we mainly discuss those that may presently be expected to act in the

embryonic vicinity.

LIF and TNF-�, as well as many other cytokines, have the potential to reg-

ulate the proliferation, differentiation and apoptosis of cells, which is realized

through their interaction with specific receptors on the surface of target cells,

which are coupled to intracellular signal transduction pathways.
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LIF signaling is realized through the binding of LIF to the LIF receptor/gp130

receptor complex, resulting mainly in activation of the JAK family kinases, which,

in turn, activate STAT (signal transducer and activator of transcription) transcrip-

tion factors, in particular STAT3 [28, 29]. This LIF signaling pathway is abrogated

by the SOCS (suppressor of cytokine signaling) and PIAS (protein inhibitors of

activated STAT) proteins [30]. Also, LIF is able to stimulate the mitogen-activated

protein kinase (MAPK) pathway and such activation may result in suppression of

STAT3-mediated effects [29].

The importance of the STAT3 signal transduction pathway for the acquisi-

tion of receptivity by the uterus was demonstrated in a study in mice having a

gp130 receptor, which was deleted for STAT binding sites [31]. These mice

exhibited failure of blastocyst implantation. Also, there is evidence implicating

STAT3 in the regulation of trophoblast invasiveness [32]. These observations

and a number of other studies addressing the functional role of LIF signaling in

the uterus [references in 33] led to the conclusion that, for implantation to be

successful, not only the ligand, LIF, must be expressed in the uterus at the right

time and right level, but also its receptors and the signaling pathways must be

activated [33].

The possibility that LIF signaling may be affected due to alterations in

TNF-� expression seems first to stem from data demonstrating that LIF gene

expression in many types of cells can be induced by the TNF-� [34–36]. As to

the uterus, it has been shown that TNF-� is able to induce LIF expression in

human endometrial epithelial and stromal cells in a concentration- and time-

dependent manner [37]. The expression of LIF in this organ is tightly regulated.

In the murine uterus, LIF is expressed at the basal level in the glandular cells by

the end of day 1 of pregnancy, sharply increases on day 4 of pregnancy and

again declines to the basal level on day 5 of pregnancy [33]. In other species,

the temporal pattern of LIF expression is, generally, similar to that observed in

mice [references in 33]. In summary, the above observations seem to suggest

that a sustained increased TNF-� expression in the reproductive tract of females

exposed to stress can alter the temporal pattern of LIF expression. Such a sug-

gestion seems to be supported by data [37] suggesting that the NF-�B tran-

scription factor can be involved in mediating signaling between TNF-� and LIF.

Indeed, TNF-� is able to activate various signaling cascades, one of which

culminates in the activation of the NF-�B transcription factor [38]. The func-

tional role of NF-�B residing in uterine and trophoblast cells remains unclear

[39]. Experiments in mice with null mutations in genes encoding members of the

NF-�B family proteins or those encoding key proteins that regulate its activity

revealed no embryonic death, which can be attributed to an implantation failure

[references in 39], suggesting that NF-�B is dispensable for implantation during

an uncomplicated pregnancy. At the same time, there is convincing evidence
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suggesting aberrant NF-�B activation as a key event in the pathogenesis of a

number of diseases such as asthma, rheumatoid arthritis, diabetes, and some

types of cancer [40, 41]. In the light of these data, studies should be mentioned

which suggest that diabetes may lead to activation of NF-�B in uterine cells [17].

Some authors consider this event as the first response to mount a transient 

NF-�B-dependent antiapoptotic reaction. Not questioning this suggestion, we

only want to point out that, as a positive feedback loop exists between TNF-�
and NF-�B [38], this burst of NF-�B activity may also alter signaling between

TNF-� and LIF.

In this context, it is worth mentioning that NF-�B by itself seems to have a

prominent potential to modulate the LIF signal transduction pathway [28].

Thus, it has been shown that STAT binding sites are often in close proximity to

binding sites for NF-�B and some other transcription factors and that NF-�B

can both inhibit and promote STAT3 DNA binding [references in 28]. Also, the

promoter region of the IL-6 gene contains NF-�B binding sites and expression

of this cytokine, which like LIF belongs to IL-6-type family of cytokines and

also potently activates STAT3, is also controlled by NF-�B [references in 28].

Finally, members of the SOCS family proteins, which act as inhibitors of JAK-

STAT signaling, are induced by cytokines such as IL-2, GM-SCF and some oth-

ers [references in 28], the expression of which is controlled by NF-�B [42].

Remarkably, in vitro studies [43, 44] suggest that TNF-� has the potential to

induce the production of feedback inhibitors of the JAK-STAT signaling path-

way such as SOCS-3 and SOCS-1.

It seems data presented above support the hypothesis that an alteration of

LIF expression may be involved in the pathogenesis of TNF-mediated stress-

induced early embryonic death.

Conclusion

To date, relatively little is known about molecular mechanisms underlying

stress-induced early embryonic death. Data presented in this review seem to sug-

gest LIF as a good candidate for further studies addressing this topic. It appears

that these studies may also contribute significantly to our understanding of

mechanisms underlying the function of LIF during normal pregnancy. Indeed,

gene ablation experiments revealed a number of molecules acting in LIF signal-

ing pathways, which seem to be dispensable for normal embryonic development

[28, 33]. It is conceivable that studies in stress-exposed models make it possible

to reveal the functional role of these molecules.
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Abstract
Human decidual NK (dNK) cells differ from their peripheral blood (PB)-NK counter-

parts. The major subset of PB-NK is CD56dim, CD16�, CD160� (highly cytolytic), whereas

the major subpopulation of dNK is CD56bright, CD16– and CD160– (high cytokine producer).

Extravillous cytotrophoblast invading the decidua basalis in early pregnancy expresses the

polymorphic HLA-C, and nonpolymorphic HLA-E and HLA-G molecules that can interact

with specific HLA class I-dependent dNK receptors, including the immunoglobulin-like KIRs,

the lectin-like CD94/NKG2 and the CD160 receptors. There is no clear evidence thus far that

dNK cells kill trophoblast cells. Instead they are able to secrete cytokines which are likely to be

beneficial for the placental development, maternal uterine spiral arteries remodeling, and the

antiviral immune response.

Copyright © 2005 S. Karger AG, Basel

Introduction

Natural killer (NK) cells are a class of lymphocytes involved in the innate

immunity, providing an important first line of immune surveillance. They are

characterized by the expression of CD56, an isoform of the NCAM adhesion

molecule, and the absence of CD3 [1]. NK cells express a broad variety of

Antigen Presentation, HLA Expression, NK Cells and Lymphocytes
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activating receptors that, upon ligation with their specific ligands expressed on

or secreted by target cells, triggered cytotoxic activity and/or cytokine and

chemokine production [2]. To prevent unwanted reactivity, NK cells also

express various inhibitory receptors, most of which are HLA class I-dependent

[3]. Such inhibitory receptors control activation signals mediated by activating

receptors [2, 4]. The consequences of NK cell activation are target cell lysis

and/or the production of inflammatory cytokines, such as TNF-� and IFN-�.

NK cell effector functions limit viral infection and tumor burden. NK cells are

found in peripheral blood (PB; they constitute �10–15% of the lymphocytes)

in secondary lymphoid organs from which they can migrate to infected or

inflammatory sites in vivo [5]. NK cells were also found in the nonpregnant

endometrium where their number varies according to the ovarian cycle [3]. NK

cells are also massively recruited at the embryonic site of implantation, consti-

tuting the dominant cell type of maternal immune cells in the decidua basalis in

early pregnancy [6]. Their numbers then decrease from mid-gestation onwards

[3]. They are phenotypically and functionally different from their PB-NK coun-

terparts. Such decidual NK cells (dNK) are in close contact with invading

extravillous cytotrophoblast which migrates deeply into the myometrium and

maternal spiral arteries, replacing the endothelial cells lining these vessels [7].

Such a massive presence of dNK cells at the maternal-fetal interface is intrigu-

ing and strongly suggests important functions.

Unique Subsets of dNK Cells

The intense expression of the CD56 NK cell marker together with the

absence of CD3 confirmed the NK nature of these decidual cells [3]. However,

dNK cells are phenotypically and functionally different from their PB-NK coun-

terparts. They differ from PB-NK cells in many ways. First, they differ quantita-

tively, as 15% of circulating lymphocytes are NK cells, whereas in decidua NK

cells represent �70% of the total immune cells. Second, it was found recently that

around 3% of 10,000 genes studied by microarrays showed a significantly differ-

ent expression in PB-NK and dNK cells [8]. Third, different subpopulations of

NK cells defined by their CD56, CD16 and CD160 expression also differ

between PB-NK and dNK cells (fig. 1). PB-NK cells contain two different sub-

sets namely CD56dim and CD56bright constituting �90 and �10%, respec-

tively. The major subset (CD56dim) which consists mainly of killer cells is also

CD16�, CD160� and perforin� [9]. CD16 is a low affinity receptor for FcRIII,

responsible for antibody-dependent cellular cytotoxicity [10]. The BY55/CD160

receptor is a MHC class I-dependent glycosylphosphatidylinositol-anchored

(GPI) molecule [11, 12]. CD160� cells have a high cytotoxic potential, do not
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proliferate in response to IL-2, and mediate lysis upon interaction with HLA-C

[13]. Upon specific triggering of CD160, PB-NK cells also produce IFN-�, TNF-

� and IL-6 [14]. The minor PB-NK subset is CD56bright and is mainly a cytokine

producer. This subpopulation expresses low levels or no CD16, and is CD160–. It

is a proliferative and high cytokine producer NK population. In contrast to PB-

NK, the major dNK cell subset is CD56bright, CD16– [3] and CD160– [Le

Bouteiller et al., unpubl. data]. Only a minor dNK subpopulation is CD56dim and

CD160� (fig. 1). There are morphological differences between the PB-NK and

dNK CD56bright cells. All the CD56bright PB-NK cells are small and agranular

whereas most CD56bright dNK are large granular lymphocytes [15].

All these differences between PB-NK and dNK strongly suggest that they

could exert distinct functions, the latter being possibly more dedicated to the

placental development and pregnancy outcome.

Unique HLA Class I Expression of Fetal-Derived Invading
Extravillous Cytotrophoblast

Extravillous cytotrophoblasts which invade the decidua are among the few

somatic cell types which are devoid of classical HLA-A and HLA-B class I

expression [16]. Among the polymorphic classical class I molecules, they only

express HLA-C, as �2-microglobulin-associated bound forms and free heavy

chains, both maternal and paternal alleles being transcribed [17]. They also

express the nonclassical HLA-E, HLA-F and HLA-G class I molecules
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Cytokine production 

CD160�

Peripheral blood Decidua

CD56dim ≈ 90% CD56dim ≈ 10%
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100
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Cytotoxicity 
IFN-� production 

CD160�
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Fig. 1. Comparative flow cytometry analysis of CD56/CD160-expressing subsets

between human PB (a) and dNK (b) cells.
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[16, 18, 19]. Several HLA-G isoforms have been described to date, including

membrane-bound and soluble ones [20]. Membrane-bound HLA-G1 and solu-

ble HLA-G isoforms, including soluble HLA-G1 and soluble HLA-G2, have

been detected in extravillous trophoblast [21].

A Number of dNK Cell Receptors May Interact with Extravillous
Trophoblast HLA Class I Molecules

Extravillous trophoblast cells intermingle with maternal immune cells at

the implantation site in the decidua basalis, including the abundant NK cells,

some antigen-presenting cells (macrophages, dendritic cells), CD4� T cells

and a few CD8� T cells [22, 23]. A close association with endometrial stromal

cells has also been described [24]. We will focus on the possible interactions

between extravillous trophoblast HLA class I molecules and MHC class I-

dependent receptors present on the surface of dNK cells. Such interactions are

likely to occur since the extravillous cytotrophoblast attracts dNK cells by pro-

ducing MIP-1� chemokines [25]. HLA class I-dependent cell receptors

expressed on dNK cells comprise the following families of molecules (fig. 2).

(1) The killer immunoglobulin-like receptors (KIR). They possess various

numbers of immunoglobulin domains and each member interacts with a particu-

lar HLA class I molecule expressed on extravillous cytotrophoblast cells, namely

Decidual NK cell 
receptors

Trophoblast ligands HLA-C HLA-G HLA-G HLA-E HLA-C 
(G, E)

HLA-E

NKG2A/B CD94 CD160

KIR2DL2, 3/ 
CD158b

NKG2C CD94

KARAP/ 
DAP12

ILT2/ 
CD85j

KIR2DL1/ 
CD158a

HLA-C HLA-C HLA-C

KIR2DS2/ 
CD159j

KARAP/ 
DAP12

KIR2DS1/ 
CD158h

KARAP/ 
DAP12

Lys 80 Asn 80

KIR2DL4/ 
CD158d

ITIM Dual roleITAMGPIIg-like domain Lectin domain

Fig. 2. Potential interactions between HLA class I molecules expressed by extravillous

cytotrophoblast and HLA class I-dependent dNK cell receptors.
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HLA-C and/or HLA-G. KIR have both inhibitory and activating isoforms

depending on the presence of inhibitory or activating motifs. Inhibitory KIR

have one or two immunoreceptor tyrosine-based inhibitory (ITIM) motifs in

their cytoplasmic domain which recruit and activate SHP-1 and/or SHP-2 phos-

phatases, thereby preventing downstream activating signaling cascades [26].

Activating KIR have immunoreceptor tyrosine-based activating (ITAM) motifs

in associated molecules, such as KARAP/DAP12 [10]. HLA-C molecules are

the ligands for inhibitory and activating KIR on dNK cells. Two major KIR epi-

topes have been described on the basis of a dimorphism at position 80 of the �1

domain [27, 28]. HLA-Casn80 is the ligand for KIR2DL2/3 inhibitory receptor

and KIR2DS2 activating receptor, whereas HLA-Clys80 is the ligand for

inhibitory KIR2DL1 and activating KIR2DS1. KIR2DL4/CD158d expression

has been reported in both PB-NK and dNK. The putative ligand is HLA-G

expressed by extravillous trophoblast. KIR2DL4/CD158d can act as activating

receptor in resting PB-NK cells, inducing IFN-� secretion but no cytotoxic

potential, whereas in activated PB-NK cells the same receptor is capable of

inducing cytotoxicity [29]. The activating signals sent by KIR2DL4 are sensitive

to inhibition by other ITIM-containing receptors. However, a CD158d-null indi-

vidual can successfully reproduce, suggesting that interaction between HLA-G

and CD158d might not be so crucial for the pregnancy outcome [30].

(2) The Ig-like receptor ILT2/CD85j interacts with HLA-G, present on

extravillous trophoblast [31, 32]. Although ILT2 contains ITIM motifs in its

cytoplasmic tail, this receptor can exert dual inhibitory/activating functions

[33]. ILT2 is expressed by 20–25% of dNK [18].

(3) The CD160 receptor is a cysteine-rich GPI-anchored receptor having

an immunoglobulin external domain exhibiting a weak homology to the first

immunoglobulin-type domain of KIR2DL4 [11]. HLA-C is a major ligand of

CD160, triggering activating functions such as cytotoxicity and cytokine pro-

duction [13, 14]. Although CD160 is expressed on a minor dNK subpopulation

[34], the presence of HLA-C ligand on the extravillous trophoblast suggests

that it can be activated.

(4) The C-type lectin family CD94/NKG2 heterodimers are composed of

covalently associated CD94 and C-type lectin-like inhibitory NKG2A/NKG2B,

or activatory NKG2C whose ligand is HLA-E. HLA-E molecules bind a pep-

tide derived from the leader sequences of other HLA class I molecules [35],

including those present on extravillous trophoblast (i.e., HLA-G, HLA-C). It

should be noted that only the HLA-G leader sequence peptide complexed with

HLA-E binds CD94/NKG2C with an affinity that is great enough to trigger an

NK cell response [36]. So one can think that dNK cells could respond differ-

ently to extravillous trophoblast HLA-E compared to other maternal HLA-E

expressing decidual cells which are HLA-G negative [6]. NKG2C and NKG2E
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transcripts were found overexpressed in dNK cells [8]. The ligand, function and

detection of NKG2E protein have not been reported yet. It was shown that most

dNK were able to bind soluble HLA-E tetramer [37], suggesting that such inter-

action also occurs in vivo. Furthermore, it has been shown that the binding

affinity of the inhibitory receptor CD94/NKG2A for HLA-E was higher than

that of the activating CD94/NKG2C receptor [6].

Distinct Functions for dNK Cells in Pregnancy?

dNK cells express receptors for classical and nonclassical HLA class I which

are expressed on the cell surface of or secreted by extravillous trophoblast.

Exposure of dNK to fetal membrane-bound HLA-C, HLA-E, HLA-G and/or sol-

uble HLA-G is likely to influence their cytokine secretion and/or their cytotoxic

potential as well as their phenotype. It is still unclear whether such binding would

block or activate cell lysis and/or lead to cytokine production that would control

placental development, maintenance of pregnancy and contribute to preventing

uterine viral spreading in case of infection. However, a number of observations

indicate that such interactions have indeed functional consequences.

A recent important study reported that the combination of maternal KIR of

AA genotype (lacking most or all activating KIR) with fetal HLA-Clys80 was

associated with an increased risk of preeclampsia [38]. The authors hypothe-

sized that this would be caused by an excess of dNK cell inhibition leading to

poor trophoblast invasion and that an activating signal from maternal KIR is

beneficial if HLA-Clys80 is presented by the fetus [38]. Further genetic studies

performed by the same group showed that the addition of each activating KIR

was associated with a 1.2-fold reduction in the prevalence of preeclampsia. This

was the first observation that indicates a clear relationship between HLA-C

molecules expressed by fetal extravillous trophoblast and maternal dNK cell

KIR receptors. Another report extended these observations, indicating that 60%

of the women tested who had recurrent spontaneous abortion were lacking the

KIR2DL1 inhibitory receptor [39]. These authors further showed that a lack of

KIR2DL1 resulted in a lack of epitope matching between maternal inhibitory

KIR and fetal extravillous trophoblast HLA-Cw alleles in 33% of the cases.

Such a lack of matching may predispose to miscarriage. The results presented

in these two studies are in accordance with previous observations showing that

more dNK cells than PB-NK cells did express KIR specific for HLA-C [38].

Overall, knowing that preeclampsia is characterized by defects in trophoblast

invasion and maternal vascular remodeling, these results suggest that the inter-

action between maternal KIR and fetal HLA-C molecules may have important

nonimmune functional consequences.
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dNK Cells Are Very Unlikely to Play a Role in Cytotoxicity
So far, there is no clear evidence that dNK cells have a cytotoxic potential

and are able to exert this function. Instead, a number of observations strongly

support an absence of cytotoxic effects, contrasting with the major CD56dim

PB-NK cell subset:

(1) dNK cells exhibit a noncytotoxic phenotype: they are CD56bright,

CD16–, and CD160–. The CD56bright PB-NK cell subpopulation has a low

cytotoxic potential. CD16 is expressed on the major CD56dim PB-NK subpop-

ulation but is not present on dNK during early pregnancy [40]. This may be a

factor explaining the low cytotoxicity of dNK cells. dNK cells also lack another

marker of cytotoxicity, namely CD160 [13]. Despite the fact that granzyme B

and perforin have been detected at similar RNA levels in dNK and CD56dim

PB-NK, and that granzyme A is overexpressed in dNK versus PB-NK [8], dNK

cells have a low potential cytotoxic effect on K562 target cells [3]. Thus,

although a cytolytic potential does exist in dNK [41], it is likely to be controlled

by unknown mechanisms.

(2) It is possible that extravillous trophoblast cells do not express enough

triggering ligands of activating NK receptors such as NKG2D and natural cyto-

toxicity receptors. Indeed it has been shown that NKp30, 2B4 and NKG2D

were not involved in the PB-NK cell-mediated killing of JEG-3 or JAR chorio-

carcinoma cell lines [42].

(3) Trophoblast cells are very resistant to cell lysis [43], unless dNK have

been stimulated by IL-2 [44]. However, IL-2 is not present in the decidua. A

recent study demonstrates that such trophoblast resistance to apoptosis was the

result of the expression of the X-linked inhibitor of apoptosis (XIAP) which

prevents activation of caspases 9 and 3 [45].

(4) In situ, no evidence of trophoblast cell lysis in early decidua has been

provided yet.

(5) dNK cells are exposed to progesterone at very high concentrations

[46]. It has been shown that a mediator of progesterone called progesterone-

induced blocking factor blocked the dNK lytic activity [47].

dNK Cells Do Produce Cytokines
Transcripts for various cytokines have been detected in CD56bright dNK

cells, including M-CSF, GM-CSF, TNF-�, IFN-�, TGF-� and leukemia

inhibitory factor whereas only TNF-� and TGF-�1 have been detected in rest-

ing PB-NK [48, 49]. Furthermore, dNK cells produce cytokines that are not

normally produced by PB-NK cells, including leukemia inhibitory factor

[50], and angiogenic growth factors angiopoietin-2 [51]. Such cytokine pro-

duction by dNK cells may fulfill a number of functions which are subject

of debates.
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The role of these cytokines in the control of trophoblast invasion has been

questionable since uterine NK cells are present in species with no trophoblast

invasion into the uterus [3]. Furthermore, human trophoblast cells are very

resistant to cell lysis (see above). Furthermore, perforin-deficient female mice

were found to reproduce as efficiently as normal control females [52].

Such cytokines may also influence trophoblast growth since receptors for

GM-CSF, CSF-1, IFN-� and TNF-� have been found in human trophoblast

cells [49].

Their potential role in the control of uterine vascular remodeling has also

been evoked. It is based on the elegant experiments performed by the group of

Croy [53] in murine models. NK cell-deficient or IFN-�-KO-pregnant mice

exhibit abnormalities in their decidual vasculature including abnormal thicken-

ing of the spiral arteries. Such vascular defaults are rescued after injection of

allogeneic NK cells or after murine or human IFN-� [54]. The mouse model

provides important information about the role of dNK cell cytokine secretion in

early pregnancy. Whether such a role also occurs during human pregnancy

remains to be demonstrated. Some observations suggest that it could be the

case. dNK cells are closely associated with maternal spiral arteries; they often

form aggregates around them, possibly reflecting their trafficking from the cir-

culation [55]. An increased production of IFN-� and VEGF by dNK cells upon

HLA-G interaction in vitro was recently reported [50]. Preeclampsia defaults of

vascularization are associated with a lack of HLA-G expression [56].

NK cells play an important role in the early defense against viruses and

also influence adaptive immunity to limit viremia. The cytokine production by

dNK cells might be crucial to prevent possible viral spreading to the fetus in

case of uterine infection by stimulating adaptive immunity. They might control

cytomegalovirus spreading by secreting large amounts of IFN-� [57]. It is strik-

ing that HLA-C, HLA-E and HLA-G trophoblast molecules are uniquely resis-

tant to the effects of some human cytomegalovirus-derived US proteins [58–60]

or HIV-1 proteins [61].

It should be noted that, in addition to the HLA class I-dependent receptors,

some HLA class I-independent activating receptors, including natural cytotoxi-

city receptors, can also be expressed by dNK [62]. Such activating receptors are

likely to be negatively controlled by the different HLA class I-dependent

inhibitory receptors present on dNK.

Conclusion

Human dNK cells comprise distinct subpopulations in terms of phenotype

and functions, which made them different from their PB-NK counterparts. It is
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likely that more functional dNK cell subsets will be defined in the future.

Much remains to be done to precisely define their functions in terms of tro-

phoblast growth, control of uterine vascularization and antiviral functions. As

pointed out by Bulmer and Lash [3], it is also possible that dNK cell function

varies in different areas of the decidua basalis, ‘those cells which are in a

perivascular position being exposed to a different microenvironment than cells

distant from vessels’.
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Abstract
Large numbers of decidual natural killer (dNK) cells are in direct contact with the

invading trophoblast and are considered to be important for pregnancy, since they can pro-

duce cytokines and other mediators involved in the control of trophoblast invasion, tro-

phoblast differentiation, decidual artery remodeling and placental augmentation. The dNK

cells are also the main candidate cells to attack trophoblast in cases of alloimmune abortions,

where the fetus is ‘rejected’ by the pregnant woman. The function of NK cells is regulated by

a balance between activating and inhibitory signals provided by their heterocladic receptor

repertoire upon recognition of specific ligands, most of which are HLA molecules (HLA-C,

HLA-G, HLA-E) expressed on invading trophoblast. It is a challenge to investigate abortions

in regard to the receptors that dNK cells bear and the MHC molecules that the trophoblast

expresses. Our studies in couples with recurrent spontaneous abortion as well as in random

cases of abortion revealed that aborting women usually have a limited repertoire of inhibitory

receptors of the KIR family (inhKIR), and that many of them lack inhKIRs specific for the

fetal HLA-Cw antigens. We suggest that some spontaneous abortions are caused because of

a limited maternal inhKIR repertoire and a lack of maternal inhKIR-fetal HLA-C epitope

matching. Among the different interactions of NK receptors with their specific counterparts

on trophoblast, the inhKIR-HLA-C interactions appear to be those mainly involved in the

function of an NK cell-mediated allorecognition system in pregnancy.

Copyright © 2005 S. Karger AG, Basel

Introduction

Natural killer (NK)-like cells (large granulated lymphocytes with the pheno-

type CD3–CD16–CD56�bright) are the dominant decidual cell population from
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the first stages of pregnancy [1]. Due to their increased presence and direct contact

with invading trophoblast, they are considered to play an important role in the

establishment and the outcome of pregnancy [2]. There is evidence that, after blas-

tocyst implantation and decidualization, dNK cells are activated, they produce

IFN-�, perforin and other molecules, including angiogenetic factors, so that they

may control trophoblast invasion through their cytotoxic activity, and also initiate

vessel instability and remodelling of decidual arteries to increase the blood supply

to the fetoplacental unit [3, 4]. On the other hand, they are involved in cytokine-

mediated immunoregulation of the maternal immune response producing Th2- and

Th3-type cytokines, which result in placental augmentation and local immunosup-

pression and immunomodulation [5, 6].

After IL-2 stimulation dNK-like cells can become like classical NK cells

expressing CD16 (CD3–CD16�CD56�) [7], thus providing a population that

can actually get involved in cytotoxicity and alloimmune reactions, where the

fetus is recognized as ‘foreign’ and it is ‘rejected’ by the immune system of the

pregnant woman (alloimmune abortion). Clinical studies have demonstrated

that women who tend to abort have increased numbers of NK cells of the con-

ventional CD3–CD56�CD16� type in the uterus [8, 9], and increased blood

NK subsets and NK cell activity have been associated with abortion of chromo-

somally normal embryos [10–12]. The triggering mechanism for NK cells to

attack trophoblast has been an enigma, which can now be approached after all

the new knowledge on the biology of NK cell that has appeared during the last

decade and has illuminated many fields of immunology.

Biology of NK Cells and NK Cell Receptors

In the past, NK cells were considered to get involved in innate immune

responses lysing infected and tumor cells without prior sensitization or MHC

restriction. Today, it is known that these cells are not only direct cytotoxic killers,

but that they also serve a critical role in cytokine production in order to control

infections, cancer and fetal implantation [13]. It is also known that NK cell func-

tions are tightly regulated by a balance between activating and inhibitory signals,

transduced by distinct receptor types [14]. The NK cell receptors (NKR) belong

to three main families: the KIR family (killer immunoglobulin-like receptors)

[15], the C-type lectin family (CD94/NKGs) [16] and the immunoglobulin-like

transcripts (ILTs or LIRs) [17]. All NKR families have both activating and

inhibitory members. The activating members recognize specific, widely distrib-

uted ligands (including MHC class I molecules) on target cells, and trigger NK

cell cytotoxicity after associating with molecules containing immunoreceptor

tyrosine-based activation motifs (ITAMs). However, activation is controlled by
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the inhibitory receptors, which bear immunoreceptor tyrosine-based inhibition

motifs (ITIMs) and deliver negative signals upon engagement to specific MHC

class I molecules on target cells [18]. Human NK cells employ NKRs of all fam-

ilies for the recognition of different HLA class I molecules and the coexpression

of multiple NKR combinations with specificity for different HLA alleles results

in an effective regulation of immune responses. The NKR repertoire varies

among individuals [19], and all mature NK cells express at least one dominant

inhibitory receptor recognizing self-HLA class I products so that autoreactivity

against normal host cells is prevented [20, 21].

The study of NKRs has provided important data indicating a possible

involvement of these receptors in pregnancy. First, it was shown that an individual

may express receptors for which he or she does not possess the relevant HLA

class I ligand [22, 23], an indication that these receptors may potentially

encounter nonself HLA alleles during alloimmune reactions, such as the host-ver-

sus-graft and the graft-versus-host reactions in allogeneic transplantation, and the

maternal immune response against the semiallogeneic fetus in pregnancy. Then, it

was demonstrated that dNK cells do express NKRs [24, 25], some of which

appear to be selectively expressed on decidual cells [26]. More interestingly, the

specific ligands for most NKRs are the only HLA molecules expressed on extrav-

illous trophoblast (HLA-G, HLA-E, HLA-C) (table 1) [27–29].

Implication of NKR-HLA Interactions in Pregnancy

The importance to investigate the role of the interaction of dNK receptors

with their HLA class I ligands on trophoblast was first emphasized in 1996, dur-

ing a meeting on NK cells and reproduction, where it was suggested that

Medwar’s concept of ‘the fetus as an allograft’ needed to be redefined to encom-

pass NK cells, and that the NKR-HLA interactions may provide a system that

could explain several observations about the allorecognition at the fetomaternal

interface [30]. This suggestion was a challenge for researchers to investigate the

engagement of the different NKR members by specific HLA molecules

expressed on trophoblast and the implication of these molecules for the function

of dNK cells. In vitro studies have provided evidence for the involvement of

NKR-HLA-class I interactions in the protection of trophoblast, although it was

understood that the resistance of trophoblast to NK lysis also involves HLA class

I-independent mechanisms [31, 32]. Most of the studies have focused on the

interactions of the HLA-G antigen, which was thought to be a main factor for the

protection of the fetus from dNK lysis, since its tissue distribution is restricted to

the placenta. It was demonstrated that, although the protection of trophoblast

from dNK cell lysis is not the main way for HLA-G to protect the embryo [33],
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this molecule is a ligand for at least three inhibitory NKRs (table 1) [34–36], and

that the expression of the HLA-G1 isoform as well other HLA-G truncated iso-

forms protects trophoblastic cells from lysis by activated NK cell clones [37, 38].

Implication of NKR-HLA Interactions in Abortion

In parallel to the in vitro studies, researchers started to investigate the func-

tion of the NKR-HLA system in the clinical setting of recurrent spontaneous

abortion (RSA). As the HLA-C gene is known to be polymorphic, and the

HLA-G and HLA-E genes have been shown to have a limited polymorphism, it

was hypothesized that specific HLA alleles expressed on trophoblast could be

inappropriate ligands for the engagement of the NKRs and the inhibition of

NK-cell-mediated antitrophoblast cytotoxicity. However, the results derived

from the comparison between fertile and aborting couples are conflicting.

HLA-C and HLA-E polymorphisms were not associated with the outcome of

pregnancy since no differences in allele frequency were found between aborting

and fertile women [39–41]. As far as HLA-G polymorphisms are concerned,

Table 1. NKRs and their MHC ligands

NKR MHC ligand

KIR
KIR2DL1 (inh) HLA-C allotypes Asn77, Lys80 (Cw2,4,5,6,15)a

KIR2DL2 (inh) HLA-C allotypes Ser77, Asn80 (Cw1,3,7,8,12)b

KIR2DL3 (inh) HLA-C allotypes Ser77, Asn80 (Cw1,3,7,8,12)b

KIR2DL4 (inh � act) HLA-G

KIR2DS1 (act) HLA-Cw4

NKG (CD94/NKG)
CD94/NKG2A (inh) HLA-Ec

CD94/NKG2B (inh) HLA-Ec

CD94/NKG2C (act) HLA-Ec

CD94/NKG2E (?) HLA-Ec

ILT (Ig-like transcripts)
ILT2/LIR1 (inh) HLA-G (?), C

ILT4/LIR2 (inh) HLA-G

inh � Inhibitory function; act � activating function; ? � unknown function.
a C2 group allotypes.
b C1 group allotypes.
c When specific HLA peptides (HLA-G1, HLA-C) stabilize HLA-E surface expression.
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the results are contradictory. There are studies where no association was found

[42, 43], and some others reporting an increased frequency of specific HLA-G

alleles in aborting women, but there is no agreement between them on the alle-

les that are found to be increased [44–47].

Introducing a new approach to the investigation of the NKR allorecognition

system in cases of RSAs, our team has focused on the NKR repertoire of aborting

women and their partners. In a first study, we genotyped childless couples with

RSA characterized by alloimmune abnormalities and fertile control couples for

NKRs known to have as ligands HLA class I molecules, which are expressed on

trophoblast: inhibitory 2DL1, 2DL2, 2DL3 and activating 2DS1 receptors of the

KIR family (recogniton of supertypic epitopes shared between certain HLA-C

alleles and HLA-Cw4, respectively), as well as inhibitory NKG2A and activating

NKG2C receptors of the CD94/NKG family (recognition of HLA-E) (table 1).

The comparison of the NKR repertoire between groups and/or partners revealed

that any differences found concerned only the inhibitory KIR (inhKIR) receptors

(2DL1, 2DL2, 2DL3), and that a significantly higher percentage of aborting

women than women with successful pregnancies had a limited inhKIR repertoire

and/or were lacking inhKIRs possessed by their husbands [48]. In an interpreta-

tion of our results, we hypothesized that a limited inhKIR repertoire may predis-

pose to miscarriage and that some alloimmune abortions may occur because the

MHC-C molecules on trophoblast are not recognized by dNK cells inhKIR recep-

tors which would abort activating signals. To confirm this hypothesis, we investi-

gated the specificity of women’s inhKIR repertoire for the HLA-Cw antigens

expressed on trophoblast in selected couples where the partners’ HLA-C pheno-

types consisted of antigens that are ligands for inhKIRs (Cw2,6,5,6 � ligands for

2DL2, 2DL3, Cw1,3,7,8 � ligands for 2DL1). Based on the HLA-C antigens of

the partners, there was speculation about the four possible HLA-C phenotypes,

one of which would be expressed on trophoblast, and it was estimated whether

maternal inhKIRs had specificity for the HLA-Cw antigens of these phenotypes.

The results revealed that 40% of the aborters did not have the appropriate

inhKIRs to recognize ligands on all HLA-C phenotypes possibly expressed on the

trophoblast [49]. To confirm this indirect finding, we analyzed epitope matching

between maternal inhKIR and trophoblastic HLA-Cw allotypes in randomly

selected women, who were undergoing vacuum uterine curettage for pregnancy

failure in the 1st trimester or for elective termination of normal pregnancy. The

samples taken via uterine curetting were used to extract DNA from isolated decid-

ual and trophoblastic cells in order to genotype maternal inhKIRs (2DL1, 2DL2,

2DL3) and fetal HLA-Cw alleles, respectively. This new approach revealed that

60% of the women who experienced spontaneous abortion (vs. 6.6% in the

women with elective abortion) did not have the full repertoire of 3 inhKIRs, all of

them missing the 2DL1 receptor alone or in combination with other ihnKIRs. In
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addition, in 33.3% of the aborters (vs. 0% in the control group) no epitope

matching existed between maternal ihnKIRs and trophoblastic HLA-Cw alleles,

and more cases among them were found with a limited epitope matching (less

than three inhKIRs with specificity for fetal HLA-Cw allele) [50]. Interestingly, it

was observed that most of the aborters with a lack of matching had experienced

repeated miscarriages and had no live birth.

Based on the above results, we suggest that the interaction of inhKIR

receptors expressed on dNK cells with their trophoblastic HLA-C counterparts

has a regulatory role in pregnancy, and it is involved in abortion (inhKIR/HLA-

C allorecognition system) [51]. In cases where the women do not possess the

appropriate inhKIRs to interact with trophoblastic HLA-Cw molecules, the

triggering signals that the dNK cells may receive to attack the trophoblast

(including activation signals provided through interactions of activating NKR-

trophoblastic HLA-Cw pairs) are not inhibited, and the embryo is not protected.

Thus, the detection of a lack of maternal inhKIR-trophoblastic HLA-Cw epi-

tope matching in aborting women may indicate an immunogenetic etiology of

their miscarriage, and similar to the above analysis could be useful in the inves-

tigation of women with unexplained RSA (fig. 1).

Importance of the inhKIR/HLA-C Interactions

Although the potential exists for dNK receptors to interact with trophoblas-

tic HLA-I molecules, the way in which these receptors function in the outcome

Cw*0202 Cw*0602

Trophoblastic cell

Cw*0701 Cw*1203

Decidual NK cell

2DL2 2DL3 2DL1

Trophoblastic cell

Decidual NK cell

2DL2
2DL3

Trophoblast does not provides HLA- Cw ligands 

 for decidual inhKIRs 

(NO inhKIR/HLA-C epitope matching → ABORTION)

Trophoblast provides HLA-Cw ligands 

 for decidual inhKIRs 

(inhKIR/HLA-C epitope matching → no abortion)

Fig. 1. Example of decidual inhKIR/trophoblastic HLA-Cw epitope matching (a) and

no epitope matching (b) according to the inhKIRs that the mother possesses and the HLA-Cw

alleles found on trophoblast.
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of pregnancy still remains unclear. Our suggestion for the implication of the

inhKIR receptors and their HLA-C counterparts in abortion is an interesting

hypothesis, which still needs to be confirmed by studies from other groups. Up

to now, no similar analysis of maternal inhKIR-trophoblastic HLA-Cw epitope

matching has been published, and in one recent study, where KIR polymorphism

was investigated, no differences were found in the KIR repertoire (both

inhibitory and activation KIRs) between RSA patients and controls [52].

Despite the absence of other studies confirming the implication of inhKIR-

HLA-C or suggesting other specific maternal NKR-trophoblastic HLA class I

interactions in abortion, there are several data in favor of the involvement of

inhKIRs and their counterparts, HLA-C allotypes, in the recognition/rejection of

the semiallogeneic fetus by the mother. For example, it has been demonstrated

that in normal pregnancy the proportion of dNK expressing inhKIRs specific for

HLA-C is increased, in comparison to that of peripheral NKs [23], and that this

proportion decreases significantly in anembryonic pregnancies [53].

Furthermore, in a recent study, where the immunophenotypic characteristics of

peripheral NK cells were investigated, a significant decrease in CD158a expres-

sion (2DL1) was demonstrated in RSA women as compared with that in controls

[54]. On the other hand, there are no data suggesting an association of other

KIRs or NKRs interacting with HLA-G and/or HLA-E with abortion. In our own

study, where aborting couples were also genotyped for NKG2 receptors having a

specificity for HLA-E, no difference was found in the NKG2 repertoire between

aborters and controls [48]. Even for the interaction between the 2DL4 KIR

receptor with HLA-G, which has attracted much interest because of the unique

structural, functional and genetic features of 2DL4 and the restricted distribution

of HLA-G to the placenta, it was demonstrated that it is not essential for

pregnancy [55].

The control of the antitrophoblast activity of dNK cells during pregnancy

is probably the result of the cumulative interaction of several NKRs on maternal

dNK with different self and nonself class I molecules appearing on the HLA

haplotypes expressed on trophoblast. However, inhKIR-HLA-C interactions are

likely to have a predominant inhibitory effect, the absence of which may be a

reason for abortion. An answer to the question of ‘why inhKIR-HLA-C and not

other NKR-HLA class I interactions?’ must be given in regard to the polymor-

phism of both the KIR and HLA-C loci, which results in the expression of dif-

ferent HLA-C alleles and KIR genotypes in unrelated individuals. HLA-C

locus is highly polymorphic, while HLA-G and HLA-E have a limited poly-

morphism [56]. The KIR genomic region also displays extensive polymor-

phism, both in the number of genes expressed in an individual and the alleles

present for a gene, and inhKIR genes (2DL1, 2, 3) are among those KIR genes

that can be absent or present on different haplotypes [19, 57, 58]. This is not the
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case for all KIR genes (KIR2DL4, which engage HLA-G, is present on most

haplotypes) [57], CD94/NKG2 genes are generally conserved (only NKG2

genes exhibit some polymorphism) [57, 59], and, with the exception of ILT6,

ILT genes do not exhibit a presence/absence variation [60]. Given the differ-

ences in both the inhKIR repertoire and the HLA-C allotypes among unrelated

individuals, each pregnancy presents a different combination of maternal

inhKIR receptors on dNK and self and nonself HLA-C allotypes on tro-

phoblast. This combination does not always ensure the appropriate receptor-lig-

and interactions to inhibit dNK antitrophoblast activity, thus sometimes it

favors abortion. The combined effect of the polymorphic maternal KIR and

fetal HLA-C genes has also been demonstrated to influence the risk of

preeclampsia and reproductive success [61, 62].

Apart from their possible involvement in abortion, inhKIR/HLA-C inter-

actions have been suggested to contribute to the pathogenesis of other diseases,

including disorders of human reproduction and autoimmune diseases.

Overexpression of the KIR2DL1 inhibitory receptor on women’s NK cells in

peritoneal fluid and peripheral blood represents a risk factor in the pathogenesis

of endometriosis [63, 64]. In rheumatoid arthritis, psoriatic arthritis and type I

diabetes, the interaction of activating KIRs with HLA molecules in the absence

of or during the downregulation of inhKIR/ligand pairs appears to facilitate

autoimmune responses [65–67]. Finally, inhKIR/HLA-C interactions influence

the success rate of hematopoietic stem cell transplantation. In leukemic patients

who receive transplants mismatched for KIR ligands (absence in recipients of

donor HLA-C allelic groups that engage inhKIRs), the donor-versus-recipient

NK cell alloreactivity eliminates leukemia relapse and graft rejection and pro-

tects against graft-versus-host disease [68, 69]. This implication is similar to the

suggested implication in abortion, given that the two situations involve allo-

geneic interactions, where KIRs specific for nonself HLA allotypes may meet

their cognate ligands. In the case of hematopoietic stem cell transplantation,

several groups have started clinical approaches to manipulate receptor/ligand

interactions for clinical benefit, and search for the appropriate HLA class I mis-

matches to set NK cells in action [69]. In abortion, such a manipulation is not

possible, but the inhKIR/HLA-C allorecognition model, if confirmed, could be

used in the investigation of unexplained abortions.
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Abstract
Maternal tolerance against fetal antigens is still one of the unsolved questions in

pregnancy. Focusing on the various subsets of immune cells playing in concert with the human

immune system, tolerance induction is nowadays often accredited to a specialized group of

immune cells, the antigen-presenting cells (APC). There are surprisingly few reports about

APC populations in the decidualized endometrium, the decidua where fetal cells get into con-

tact with the maternal immune system. Nowadays it seems to be clear that at least three popu-

lations of APC, the macrophages, dendritic cells and immature, monocyte-derived APC, could

be found in the decidua of a pregnant uterus. This chapter summarizes the characteristics of

dendritic cells and macrophages as APC in general and focuses on the description and charac-

terization of APC in the decidua of different species found in the literature.

Copyright © 2005 S. Karger AG, Basel

Antigen-Presenting Cells in General

Antigen-presenting cells (APC) are critical players in the immune

response. In order to fulfill their function as antigen presenters, APC serve two

major functions. First, they capture the proteins from pathogens or cellular

debris and process them in that they digest them into fragments called epitopes.

Second, APC present these epitopes on either class I or class II major histocom-

patibility complex (MHC) proteins for T lymphocyte recognition. In addition to

MHC presentation of peptides, APC express signals required for the prolifera-

tion and differentiation of T lymphocytes that specifically recognize the pre-

sented antigen. In general, APC are a heterogeneous group of immune cells, but

traditional APC include dendritic cells (DC) and macrophages which are

described in more detail below.
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Dendritic Cells
DC are a heterogeneous population of bone-marrow-derived cells, yet they

are the most potent of all APC. In vivo, DC exhibit a distinct shape, described as

veiled or dendritic, with long motile cytoplasmic processes extending from their

surface (fig. 1). DC express high levels of MHC class II on their surface and are

able to migrate selectively through tissues [for review, see 1, 2]. DC pass through

changing states of functional activity to optimally fulfill their mission; this is typi-

cal for APC (fig. 2). The first stage in their ‘life cycle’ is the so-called immature

state; DC function as sentinels of the immune system. Immature DC are preferen-

tially located at the surfaces of the body, throughout the epithelium of the skin, the

respiratory tract, the gastrointestinal tract and the urogynecological tract, where

they attach themselves via the long cytoplasmic processes. Upon invading

pathogens and/or local tissue disturbance, resident immature DC are activated and

together with additional APC are attracted by chemokines. The APC accumulate in

the inflamed tissue and pick up antigens from pathogens or from dead cell debris

through pinocytosis and phagocytosis [3]. Immature DC express several DC-char-

acteristic adsorptive receptors mainly belonging to the lectin family. One of these

monolectins is DC-SIGN (DC-specific ICAM-grabbing nonintergin, classified as

CD209) which is a DC-specific adhesion receptor with a high affinity for the

adhesion molecules ICAM-2 and ICAM-3. DC-SIGN can be found predomi-

nantly on immature DC and is capable of binding various antigens, for example the

HIV protein gp120 [4]. Exogenous antigens are captured and internalized into the

Fig. 1. Two DC isolated from human first trimester decidua exhibiting the typical DC

phenotype with long dendrites extending from their surface and irregular body shape.

Magnification �1,000.
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endosomal compartments for processing of the antigen into peptides. DC become

activated by proinflammatory cytokines like IL-1 or TNF-� and migrate from the

site of inflammation via the lymph vessels into the regional lymph nodes. By the

time they enter the lymph nodes, they have matured and are now able to present

antigens to the ever-changing populations of naive T lymphocytes located in the

cortex of lymph nodes. Mature DC have upregulated costimulatory surface mole-

cules CD40, CD80, CD86 and CD83 and produce T cell-activating cytokines like

IL-12. Therefore, they are potent immunostimulatory APC [5]. The last part of a

DC’s life cycle is terminating their antigenpresenting and T cell-stimulating activi-

ties by undergoing apoptotic cell death.

DC have long been studied to understand their capacity to activate T cell

responses in vivo and in vitro [5]. However, in addition to their significant stim-

ulatory capacity, DC have an important regulatory role in the immune system,

including the induction of peripheral tolerance and regulation of the types of

T cell responses. Concerning the function of DC as tolerance-inducing

Fig. 2. Scheme of the life cycle of a DC. Immature DC placed as sentinels in a tissue

get into contact with invading foreign antigen (e.g. infection; top). After uptake of antigens,

DC migrate into the lymph vessels and undergo maturation (upper left). While migrating into

the next lymph node, DC process the antigen into peptides which could then be presented on

the DC’s surface in a MHC-dependent manner (lower left). In the lymph node, the now fully

mature DC loaded with the antigen in question select those T cells, whose receptor fit to the

antigen presented. Via costimulatory molecules, these T cells were activated and start prolif-

eration (bottom). The activated T cells will then migrate into the site of antigen invasion and

attack the pathogens/foreign cells (right side).
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mediators, there is evidence that DC can be converted to Th2-skewing cells

when treated with anti-inflammatory cytokines such as IL-10 [6] or glucocorti-

coids like dexamethasone [7]. There is further evidence that DC seeded on

mucosal surfaces are responsible for the tolerogenic phenotype [8]. This may

reflect a special DC subpopulation prone to act as ‘tolerance inducing’. Thus, a

similar subpopulation could be responsible for maternal tolerance against fetal

antigens in the uterine mucosa, the decidua.

Macrophages
Macrophages are involved in almost all aspects of immunological and

inflammatory responses. They seem to play an essential role in linking innate

and acquired immunity Their main function is to phagocytose and destroy

microorganisms and to kill virally infected and malignant cells. As APC, they

present antigens to T lymphocytes. In addition, they play important roles in

angiogenesis and tissue remodeling. Tissue macrophages are of a heteroge-

neous phenotype, because they adapt to the local microenvironment to perform

a tissue-specific function [for review, see 9, 10].

There are relatively few markers that ‘distinguish’ between macrophages

and DC, and the relationship between macrophages and DC has been a matter

of as much debate as the original definition of the APC. Macrophages are

derived from circulating monocytes which are attracted to migrate into tissues

by chemokines/cytokines like the monocyte chemoattractant protein-1 (MCP-

1). Under the influence of colony-stimulating factor-1 (CSF-1), the attracted

monocytes proliferate in situ and differentiate into mature, nondividing tissue

macrophages. Upon contact with antigens/microorganisms and under the influ-

ence of inflammatory cytokines the macrophages could be activated. This acti-

vation results in an increase in the production of toxic oxygen radicals, nitric

oxide, and hydrolytic lysosomal enzymes. Furthermore, activated macrophages

secrete cytokines such as TNF-� and IL-1, which promote inflammation to

recruit phagocytic leukocytes, as well as IL-12, which enables naive T4 lym-

phocytes to differentiate into Th1 cells. The phenotype of activated

macrophages changes in that a higher expression of B7 costimulator molecules

and MHC-1 molecule expression increase T lymphocyte activation.

APC in Decidua

The precise mechanism by which the maternal immune system deals with

fetally derived antigens during pregnancy is still not completely resolved. The

requirement for APC to present antigens to lymphocytes make these cells an

integral part for the induction of immunological responses. Therefore, it could
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be assumed that APC at the fetomaternal interface would be ideally located for

presenting fetal antigens in a tolerance-inducing way. Endometrial tissue and

the decidualized endometrium (decidua) in humans, nonhuman primates and

rodents contain numerous leukocytes with the morphology and the phenotype

of APC.

Early histochemical studies have shown a possible role for macrophages in

the implantation on the rat uterus [11]. In contrast to the human uterus, where a

remarkable population of early pregnancy human decidual cells was found to be

HLA-DR� by immunohistochemistry [12], macrophages were depleted from

rat decidua shortly after implantation and therefore seem to only be important in

implantation [11]. In 1984, Hunt et al. [13] demonstrated that macrophages from

pregnant mouse uterus are immunosuppressive. Thus, they provided the first

hints that APC may create a local environment prohibitive to maternal lympho-

cyte stimulation against the embryo. The first description of human decidual

APC was published in the same year, when Bulmer and Sunderland [12] quanti-

fied HLA-DR� cells in human decidua by immunohistochemistry and con-

cluded that the HLA-DR� cells in human decidua mainly belong to the

macrophages. One year later, Elcock and Searle [14] described functional stud-

ies on isolated mouse decidua cells, which revealed at least two morphologically

distinct populations of APC from day 8 till day15 of pregnancy. One of those

APC populations was subsequently identified by Hunt et al. [15], who could

identify a remarkably large population of mouse decidual cells as macrophages

by immunohistochemistry with a rabbit-anti-mouse antibody raised against tis-

sue macrophages. This immunohistochemical finding on mouse decidual

macrophages was confirmed by Matthews et al. in 1985 [16], who used a rat

monoclonal macrophage-specific antibody (F4–80) to demonstrate that a signif-

icant proportion of Fc receptor-bearing cells in the decidua were macrophages.

One year later Oksenberg et al. [17] demonstrated ‘dendritic-like Ia-positive

cells’ in human decidua that could be stained with the antibody 63D3

(macrophages) and were able to induce T cell proliferation. In the next publica-

tion on ‘APC in decidua’, Kamat and Isaacson [18] demonstrated using

immunohistochemistry that macrophages (identified by UCHM1 and HLA-

DR�) were diffusely distributed in the stroma of human endometrium. In 1988,

Bulmer et al. [19] demonstrated that macrophages increase premenstrually and

make up 35% of the decidual leukocytes around implantation. In the same year,

Lessin et al. [20] performed a systematic study of HLA expression by human

decidual cells throughout gestation. Like Oksenberg et al., they found a major

(21–32%) proportion of maternal decidual cells with strong positivity for HLA

class I and class II molecules. The class II� cells were identified as

macrophages by 63D3 staining. Also in 1988, Dorman and Searle [21] reported

the alloantigen-presenting capacity of human decidual cells. Using the F4–80
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antibody like Matthews in 1991, De et al. [22] demonstrated that, at the time of

implantation, macrophages in the mouse uterus increase in number and are

localized subepithelially to endometrial glands. Improvement in functional stud-

ies was seen in 1992, when Searle and Wren [23] managed to isolate decidual

APC from whole-decidua cell suspensions via a plastic adherence step. In 1994,

Mizuno et al. [24] described that isolated decidual macrophages are able to pre-

sent soluble antigens in an MHC-restricted manner but also possess some sup-

pressive activity for the maternal immune response. Contrary to these findings,

Olivares et al. [25] described decidual stromal cells that by flow cytometry did

not express the classical macrophage marker CD14, but did express HLA-DR as

well as the activation markers CD80 and CD86. Since these cells were potent

stimulators of allogeneic T cells, the authors were in favor of professional APC

seeding the human decidua. The concrete nature of those decidual APC was not

further characterized until 2000, when it was demonstrated that human

endometrium and early pregnancy decidua harbors classical mature CD83� DC,

similar to those described for other mucousal surfaces [26]. Evidence for imma-

ture precursors of decidual DC was provided by Soilleux et al. [27], who

detected DC-SIGN on HLA-DR� decidual cells and described them as special-

ized decidual macrophages by their costaining for CD14 and the ‘classical’

macrophage marker CD68. In 2003, those DC-SIGN-positive decidual cells

were then identified as precursors of immunostimulatory decidual DC by prov-

ing in vitro that isolated decidual DC-SIGN-positive cells can mature into classi-

cal CD83-expressing DC with high T cell-stimulatory capacity [28]. Also in

2003, Gardener and Moffet [29] identified a small (1.7% of decidual CD45-pos-

itive leukocytes) population of decidual DC expressing CD11c, a marker for

myeloid DC, but none of the other classical leukocyte lineage markers.

Confirmation of such a HLA-DRbright but lin– population of DC was given by

Miyazaki et al. [30] who could clearly demonstrate by FACS analysis that human

early pregnancy decidua contains lin– HLA-DRbright DC. Characterizing uter-

ine DC populations in the mouse, Blois et al. [31] found the vast majority of

uterine DCs to be of the myeloid lineage. Evidence for APC in the rhesus mon-

key was recently given in a report by Slukvin et al. [32], who found numerous

CD64�/CD68� macrophages in early pregnancy decidua in close association

with invasive cytotrophoblasts. New data from the mouse uterus concerning

macrophages were described by Lagadari et al. [33] who analyzed number and

distribution of macrophages in placental tissue and found a significantly higher

number of macrophages in multiparous than in primiparous mice. In a very

recent publication, Askelund et al. [34] found a significantly higher number of

mature DC in human decidual tissue from abortions than in normal pregnancies

and speculated that mature DC may play a role in the pathophysiology of some

cases of recurrent abortion.
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In summary, different groups of APC populations are harbored in the

decidua of pregnancy in the species investigated: classical macrophages, classi-

cal mature DC, immature/intermediate cells prone to mature into potent

immunostimulatory DC (and perhaps macrophages?) as well as immature DC

and myeloid DC (fig. 3).

The Functional Role of Decidual APC
The function of APC in the decidua is still far from being understood. It is

very likely that specialized APC present fetal antigens (derived from the inva-

sive trophoblasts) to the maternal immune system, but how this function of anti-

gen presentation relates to inducing a state of tolerance to fetal antigens is

unclear. It seems possible that the intradecidual microenvironment and cellular

interactions decide whether APC will acquire characteristics and functions of

classical antigen-presenting mature DC with T-activating features, or – more

likely – arrest the APC in an immature or ‘semimature’ state which is thought to

mediate tolerance induction [35]. In this respect, it is noteworthy that many of

the factors described so far to promote tolerogenic DC are present in abundance

in the decidua. Hopefully, further research on decidual APC will shed light on

how these cells help to create the delicate balance between tolerance to fetal

antigens and immunity to threatening agents.
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Fig. 3. Quantification of different APC populations in human decidua. From left to right

there are mature DC as identified by CD83 staining, immature DC positive for DC-SIGN

(CD209), CD14� monocytes and classical macrophages stained with CD68.
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Abstract
Controlled immune cell access to the pregnant uterus may be one of the mechanisms

involved in maternal tolerance leading to the presence of a selected population of immune

cells at the maternal/fetal interface. The molecular determinants responsible for coordinating

recruitment of leukocytes include the cellular adhesion molecules and members of the

chemokine superfamily. During the critical period of initial placenta development in the

mouse an elegantly orchestrated progression of leukocyte homing events in the decidua

basalis has been described. Moreover, the maternal/fetal interface displays an unparalleled

compartmentalization of microdomains associated with highly differentiated vessels

expressing vascular addressins in nonoverlapping patterns. These expression patterns are

functionally correlated with the distinct localization of uterine NK cells, monocyte-like cells

and neutrophils. Switches in vascular specificity and the partial loss of microenvironmental

specialization during the second half of mouse development have been shown to parallel dra-

matic changes in the populations of leukocytes recruited to the maternal/fetal interface.

Recently, complex expression patterns of chemokines and their receptors were described in

the human pregnant uterus suggesting that along with adhesion molecules these determi-

nants are critical for leukocyte trafficking to the pregnant uterus.

Copyright © 2005 S. Karger AG, Basel

Introduction

During the process of hemochorial placenta formation (as in rodents and

primates), the genetically distinct fetal trophoblast is invading the maternal

decidua and comes into intimate contact with maternal immune cells. In

normal pregnancy, however, the maternal immune system fails to react to the

fetus or the placenta as an allogeneic graft. Indeed those specialized
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leukocytes that are allowed access to the decidua are hypothesized to control

trophoblast development and invasion, to function in angiogenesis and to reg-

ulate local immunity [1, 2].

Analysis of the types of immune cells that are present at the maternal/fetal

interface has shown that, in both mouse and man, the predominant population

represents phenotypically unusual uterine NK (uNK) cells. In rodents these

unique cells increase in the mesometrial decidua just after implantation and

accumulate a few days later in the mesometrial triangle between layers of the

circular smooth muscle. At midterm uNK cells reach their maximal accumula-

tion, infiltrating the whole decidua basalis and are seen in close contact with the

invading trophoblast. Their numbers decline in the second half of pregnancy

and only few remain in the term pregnant uterus. The fate of these cells remains

uncertain. However, there is evidence that beginning at day 12 of gestation uNK

cells undergo progressive nuclear fragmentation [3, 4]. Several observations

suggest that uNK cells play an important role in reproduction, including regula-

tion of trophoblast invasion and development, but a protective role against pla-

cental infections has also been proposed [5–8]. Recently, it has been shown that

uNK cells are a major source of IFN-�, which modifies the expression of genes

in the uterine vasculature and stroma, initiating vessel instability and facilitat-

ing pregnancy-induced remodeling of decidual arteries [9, 10]. Cells of the

myeloid lineage are also present and thought to participate in regulating many

aspects of the local immune environment and of maternal/fetal tolerance.

Macrophages, for example, are a major cell type in the maternal compartment

of the uteroplacental unit. The production of a broad repertoire of cytokines and

bioactive lipids suggests that these cells perform specific pregnancy-associated

tasks [11, 12]. Recently, dendritic cells (mainly of the myeloid lineage) have

been described to be present at the maternal/fetal interface in humans and mice.

Several observations propose that these cells may silence T cell-dependent

immune responses to trophoblast, but may also be involved in activation of

uNK cells [13–15]. Neutrophils are located near the placenta where they might

phagocytose cellular debris from decidual cells killed by invading trophoblast

[16]. T cells, which are typical of the adaptive immune system, are rare, espe-

cially early on. Their proportion, however, increases with gestational age, fol-

lowed by a decline in the term pregnant uterus. The production of a complex

network of cytokines, however, suggests that T cells (together with other leuko-

cyte subsets) could play a role on embryo development, implantation and on

maternal tolerance towards the fetus [17–19].

Taken together, the decidua in pregnancy is a highly complex tissue con-

taining unique, highly specialized leukocyte subpopulations for each stage of

gestation that may play a critical role in determining the nature of local immune

responses at the maternal/fetal interface. The specificity of decidual leukocyte
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composition during the course of pregnancy is controlled at the level of cell

trafficking. This has been demonstrated in the mouse, where microdomains of

differentially expressed cellular adhesion molecules involved in leukocyte

recruitment have been identified at the maternal/fetal interface, especially dur-

ing the critical period of initial placenta development. Switches in vascular

specificity and the partial loss of microenvironmental specialization during the

second half of mouse development have been shown to parallel dramatic

changes in the populations of leukocytes recruited to the maternal/fetal inter-

face [20, 21]. This review will focus on the importance of selective leukocyte

trafficking to the pregnant uterus in the mouse. For a better understanding of

the mechanisms and molecular determinants involved, the following section

should provide a general perspective on the mechanisms of leukocyte-endothe-

lial cell recognition which are known to play an important role in regulating the

nature of immune responses in different tissues throughout the body.

The Mechanisms of Leukocyte Extravasation

Leukocyte extravasation is viewed as an active, multistep process involv-

ing initial cell-cell contact (tethering), rolling, activation through G protein-

linked chemoattractant receptors, firm integrin-mediated adhesion and

diapedesis. The molecular determinants responsible for coordinating recruit-

ment and extravasation of leukocytes include the cellular adhesion molecules

and members of the chemokine superfamily.

Tethering and rolling are usually mediated by the selectins and their carbo-

hydrate ligands, but also by low-affinity �4 integrins (albeit less efficiently than

selectins). Selectins consist of three members: leukocyte (L), platelet (P) and

endothelial (E) selectin. They recognize distinct if overlapping sets of carbohy-

drate ligands, which can display considerable specificity for particular selectins at

the cellular as well as the molecular level. To stop rolling leukocytes must engage

secondary adhesion molecules which all belong to the integrin family. Integrins

involved in leukocyte-endothelial interaction are �4 (�4�1, �4�7) and �2 (LFA-

1, Mac-1) integrins which interact with members of the immunoglobulin family

of adhesion molecules, mucosal addressin cell adhesion molecule-1 (MAdCAM-

1), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion mol-

ecules (ICAMs). On most circulating and resting leukocytes, integrins are

expressed in a low affinity state. To mediate leukocyte arrest and firm adhesion,

integrins must become functionally upregulated. Rolling brings leukocytes into

contact with the endothelium where they can sample the surface for chemo-

attractants that act through G protein-coupled receptors. Chemokine-induced

signalling triggers rapid and dramatic changes in the adhesive function of
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preexisting cell surface integrins. In the presence of appropriate chemoattractant

signals, activation-dependent stable arrest is followed by the final step in extrava-

sation, called diapedesis. In this process leukocytes subsequently migrate across

the endothelium to the underlying tissue parenchyma and then to distinct

microenvironmental sites. These steps are also guided by adhesion molecules and

multiple chemoattractant signals [reviewed in 22–26].

These considerations merely serve to emphasize the general point that

complex molecular mechanisms operate coordinately to regulate local leuko-

cyte trafficking and these mechanisms thereby play a critical role in determin-

ing the nature of local immune responses based both on the tissue involved and

the nature of the physiological insult.

Leukocyte-Vascular Homing Interactions at the Maternal/Fetal
Interface during the Critical Period of Initial Placenta
Development

After implantation the pregnant uterus undergoes a radical transformation in

structure. Uterine stromal cells proliferate and differentiate (the decidual

response) producing a massive thickened uterine wall. New blood vessels develop

within the decidua and existing vessels dilate. During the period of initial pla-

centa development (day 8–10 of murine gestation) three histologically defined

zones can be identified within the maternal tissue of the pregnant mouse uterus:

the central decidua basalis, the vascular zone (a region of sinusoidal vessels

within the decidua basalis) and the decidua capsularis (fig. 1). This time appears

to be an immunologically critical period, characterized by a striking influx of

maternal immune cells to the maternal/fetal interface [27]. As demonstrated in

the mouse, the major infiltrating leukocyte types (neutrophils, monocyte-like

cells and uNK cells) are compartmentalized into discrete, well-defined domains

within the decidua basalis. The degree of separation of microenvironments is dra-

matic, and reminiscent of the organized architecture thought to play a significant

role in regulating immune responses at the tissue level in lymphoid tissues.

Moreover, each of these specialized microenvironments is associated with

unique, nonoverlapping patterns of vascular adhesion receptor expression

involved in leukocyte recruitment (fig. 1) [20, 21].

In the mouse an almost linear array of E-selectin has been described in the

outer region of the trophoblast adjacent to the decidua basalis [20, 21]. E-

selectin plays an important role in leukocyte contact and rolling in certain

inflammatory models [28, 29]. In the pregnant uterus E-selectin activity is asso-

ciated with maternal blood spaces containing luminally bound neutrophils and

it is likely to be important in neutrophil recruitment to areas of enzymatic
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digestion at the leading edge of the invading trophoblast [16, 20]. Interestingly,

several studies demonstrated the expression of E-selectin in proliferating

endothelial cells of hemangiomas, neonatal foreskin and human placenta [30,

31]. Vascular endothelial cells of reproductive tissues exhibit a mitotic rate

equal to or greater than that observed for tumor endothelial cells, and it has

been suggested that E-selectin may also function in angiogenesis [30].

The dilated maternal vessels of the vascular zone selectively display the

unusual combination of P-selectin (partially associated with platelets) and

MAdCAM-1. The expression of ICAM-1 is low, in contrast to ICAM-2, which

is uniformly highly expressed on maternal vessels in the pregnant uterus. The

predominant cell population observed in these vessels as well as the surround-

ing tissue of the vascular zone belong to the monocyte/macrophage lineage.

The majority of these cells express �4�7 integrin, the ligand for MAdCAM-1

[20, 21]. Interestingly, most circulating monocytes are �4�7 negative [32]

while immature dendritic cells are known to express �4�7 integrin [13].

Whether these cells are monocytes or dendritic-like cells is still unknown. 

T and B cells are rare or even absent at this time of gestation. In the context of

Trophoblast: 
cytokeratin+

Vessels of the vascular zone:

Vessels of the central decidua basalis:

Trophoblast

Day 9

a

b

c d

Decidua capsularis

E-selectin
MAdCAM-1 P-selectin

VCAM-1

MacrophageNeutrophil Monocyte-like cell T cell (rare) uNK cell

Fig. 1. Organization of day 9 pregnant mouse uterus with schematic summary of

infiltrating leukocytes, distribution patterns and immunofluorescence stainings of vascular

adhesion molecules. Neutrophils are limited to the leading edge of the invading trophoblast,

where an almost linear array of maternal blood spaces display the neutrophil ligand 

E-selectin (a). �4�1 integrin� uNK cells are positioned in the central decidua basalis

around vessels prominently expressing the �4�1 ligand VCAM-1 (b). Monocyte-like cells

expressing �4�7 integrin are localized in the maternal blood vessels of the vascular zone,

which display the unusual combination of the �4�7 ligand MAdCAM-1 (c) and P-selectin

(d) (partially associated with platelets). Magnification: �100 (a); �200 (b–d).
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current multistep models of leukocyte homing, the unusual coexpression of

vascular P-selectin and MAdCAM-1 in the pregnant mouse uterus may provide

a mechanism for selecting specialized subsets of leukocytes displaying a unique

combination of P-selectin binding and MAdCAM-1 binding activities (e.g. the

�4�7� monocyte-like cells observed in the vessels and tissue of the vascular

zone). Thus, either endothelial cells and/or platelet-associated P-selectin may

initiate attachment of �4�7 integrin expressing monocyte-like cells to the vas-

cular zone vessels which then bind to vascular MAdCAM-1 via their �4�7

integrin ligand. Recently, in vivo studies clearly demonstrated that both adhe-

sion molecules are functional [21; unpubl. data] and support the importance of

this unusual combination of vascular adhesion receptor expression for the

recruitment of �4�7� monocyte-like cells to the maternal/fetal interface.

Interestingly, Salmi et al. [33] reported an involvement of MAdCAM-1 in

immune cell trafficking to the human uterus.

Vessels in the central microenvironment of the decidua basalis as well as

those of the large venous channels at the base of the mesentery express high

levels of VCAM-1 and ICAMs but no other vascular addressins. The VCAM-

1� vessels in the central decidua basalis are surrounded by uNK cells which

express the VCAM-1 ligand �4�1 integrin [20, 21]. Consistent with this,

Burrows et al. [34] observed that human decidual NK cells located near

VCAM-1� vessels at the implantation site also express the �4�1 integrin.

Injection of �4�1� L1–2 cells into pregnant mice in the presence or absence

of blocking monoclonal antibodies against VCAM-1 clearly demonstrated that

vascular VCAM-1 in this site is functional [21]. It is, however, hard to imagine

that such very large cells (up to 50 �m) [3] are involved in a normal process of

leukocyte trafficking and extravasation. To address the question of the origin

of uNK cells, it is well established in both rodents and humans that uNK cells

are unable to self-renew within the uterus and early reports suggested local

decidual differentiation of uNK cells from bone marrow-derived small lym-

phocytic precursors [35, 36]. Recently, the group of Croy [35] performed

experiments in which thymus, bone marrow, lymph node or spleen cells were

grafted from virgin or pregnant NK cell-competent donors into mated

NK/uNK cell-deficient recipients. Interestingly, their results revealed that

some secondary lymphoid tissues, especially the spleen, gave a higher level of

reconstitution than primary lymphoid tissue, suggesting that precursors of

uNK cells move into the uterus from secondary lymphoid tissues during preg-

nancy [35]. It has also been proposed that hormonal events from the decidual-

izing uterus may be involved in this process [37]. However, to date it is not

clear whether endothelial VCAM-1, selectively and highly expressed by

venules in the uNK cell-rich zone, may help mediate the recruitment of

precursors of uNK cells.
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Leukocyte-Vascular Homing Interactions at the Maternal/Fetal
Interface from Midgestation to Term

At midterm the basic decidual zones described above remain almost intact.

Differences to earlier stages include a stronger expression of vascular adhesion

molecules and an increased influx of leukocytes (fig. 2). The increased recruit-

ment of leukocytes to the maternal/fetal interface may result from a recognition

of paternal MHC class I alloantigens, whose transcripts can initially be detected

at day 9.5 postcoitus in the primary and secondary trophoblast giant cell popu-

lations [38]. One of the most striking observations at this period is the begin-

ning of loss of microenvironmental specialization, a trend which continues to

term. The dilated maternal vessels of the vascular zone display a combination

of vascular adhesion receptors (P-selectin, MAdCAM-1 and VCAM-1) which

may be unique to this setting [21]. Expression of endothelial VCAM-1 by vas-

cular zone vessels at this stage of pregnancy and the appearance of �4�1 inte-

grin expressing uNK cells in the lumen of these vessels and the surrounding

tissue suggest an involvement of VCAM-1 in the spreading and recruitment of

these cells to other parts of the uterus. Within the vessels of the vascular zone

adherent leukocytes are now predominantly neutrophils and monocytes with

increased numbers of T cells [21, 39]. The mechanisms which are involved in T

cell recruitment to these vessels are not clear. The exclusion of lymphocytes in

the P-selectin� MAdCAM-1� vascular zone vessels in earlier stages suggests

that it is unlikely that the recruited lymphocytes use MAdCAM-1 as vascular

ligand. It has been shown that on most circulating lymphocytes (including

�4�7(hi) T cells, which tend to be �4�1(lo) but not negative), binding to

VCAM-1 is dominated by �4�1, with �4�7-VCAM-1 interaction being diffi-

cult to demonstrate except under artificial experimental conditions [23]. Thus,

T cells expressing �4�1 or even �4�7 might be allowed access to the decidua at

this time of gestation by binding to endothelial VCAM-1.

During the second half of pregnancy in the mouse the uterus lacks the

microenvironmental compartmentalization mentioned above. The maternal ves-

sels of the decidua basalis express vascular adhesion molecules in overlapping

patterns (fig. 2). Changes in vascular adhesion receptor expression (decline of

MAdCAM-1, upregulation of VCAM-1 and P-selectin), parallel dramatic alter-

ations in recruited leukocyte subpopulations (decreased recruitment of mono-

cyte-like cells, elevated influx of granulocytes and T lymphocytes) [21].

Increased recruitment of T cells during the second half of pregnancy was also

described by Kearns and Lala [39]. The role of T cells at the maternal/fetal inter-

face is not fully understood. According to Wegmann et al. [40], the maternal

immune response in the pregnant uterus is biased to the less damaging Th2 type,

as indicated by the fact that mouse fetomaternal tissues spontaneously secrete
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the Th2-type cytokines IL-4, IL-5 and IL-10. Other groups reported the

production of both Th1 and Th2 cytokines at the maternal/fetal interface [9, 41,

Day  14

SP

LAB

Day  20

SP

LAB

Day  12

Decidua capsularis

SP
LAB

Vessels of the
central decidua basalis:
VCAM-1+

Vessels of the vascular zone:
MAdCAM-1+

P-selectin+

VCAM-1lo

Outer spongy zone:
E-selectin++

Cytokeratin+

Undilated maternal vessels
of the decidua basalis:
VCAM-1+

Dilated maternal vessels
of the decidua basalis:
VCAM-1+

P-selectin+�++

MAdCAM-1+�lo

Outer spongy zone:
E-selectinhi

Cytokeratin+

Maternal vessels
of the decidua basalis:
Some VCAM-1+

P-selectin+

MAdCAM-1lo-neg

Outer spongy zone:
E-selectinlo-neg

Cytokeratin+

LAB
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SP
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MacrophageNeutrophil Monocyte-like cell T cell uNK cell

Fig. 2. Organization of the pregnant mouse uterus from gestational days 12, 14 and 20

with a schematic summary of the infiltrating leukocytes and distribution patterns of vascular

adhesion molecules characteristic for each day of gestation. SP 	 Spongiotrophoblast (spongy

zone); LAB 	 labyrinthine zone.
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42]. A recent report, however, showed that mice lacking four Th2-type cytokines

can reproduce normally [43] and it has also been demonstrated in humans that

regulatory indoleamine 2,3-dioxygenase-producing dendritic cells inhibited T

cell proliferation [44, 45].

The term pregnant decidua in the mouse contains remarkably few maternal

leukocytes (predominantly neutrophils and macrophages) (fig. 2), suggesting

diminished recruitment of immune cells to the maternal/fetal interface [21].

Decreased expression of integrins, vascular addressins and vascular differentia-

tion antigens has also been described either in the human or in the mouse pla-

centa and decidua [27, 46, 47] suggesting that trophoblast cells and maternal

endothelial cells lose their selective antigeneic characteristics when the process

of placentation is complete and as the placenta dies. However, the mechanisms

determining the end of pregnancy are still not well understood. Histological

analysis of human myometrium during spontaneous labor at term demonstrated

E-selectin expression on vascular endothelium associated with strong infiltra-

tion of neutrophils and macrophages [48]. In mouse endometrium, 1 day before

parturition the macrophage population was found to be diminished by 70%

whereas macrophage numbers in the myometrium remained stable [49].

Mackler et al. [49] suggested that withdrawal of these immune cells from the

endometrium may eliminate a major restraint on uterine contractile activity

while the macrophages residing in the myometrium may shift the balance of

activity to produce inflammatory factors like IFN-� and TNF-� that promote

contraction of the uterus during labor.

Chemokines at the Maternal/Fetal Interface

Along with surface adhesion molecules chemokines play a critical role in

regulating the leukocyte recruitment cascade as well as chemotaxis within

tissues. To date little is known about chemokine and chemokine receptor

expression and their role in leukocyte recruitment to and within the pregnant

uterus. In human and mouse uteri constant expression of mRNA and protein for

MCP-1, MIP-1� and RANTES have been reported during the estrous cycle.

Postimplantation the expression of these chemokines increases, suggesting an

involvement in leukocyte recruitment to the pregnant uterus [50–53]. Their

receptors (CCR2 for MCP-1, CCR5 for MIP-1� and RANTES) are constitu-

tively expressed on peripheral NK cells and MCP-1, MIP-1� and RANTES

have been described to be potent in NK cell migration to their appropriate loca-

tion in tumor-bearing and virally challenged animals [54–56]. Analysis of

implantation sites of mice genetically ablated for CCR2, CCR5, MIP-1� or

CCR2 and MIP-1�, however, suggests that migration and distribution of NK
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cells within the pregnant uterus are independent of CCR2, CCR5 and MIP-1�
[51]. Recently challenging studies were performed by Red-Horse et al. [52]

investigating chemokine ligand and receptor expression in the human pregnant

uterus. They found a widespread expression of chemokine mRNA in the decid-

ual stroma and specific expression patterns in decidual leukocytes and cytotro-

phoblast cells. Importantly, the receptors for these chemokines could be

detected on decidual leukocytes. For example, chemokine receptor characteris-

tic of NK cells, T cells and monocytes were abundant (e.g. CX3CR1, CXCR3,

CCR1, CCR2, CCR5, and CCR7), as were their ligands within the decidua

(fractalkine, IP-10, MIP-1�, MCP-1, HCC-1 and SLC). Several of the

chemokines shared identical expression patterns at the maternal/fetal interface

and some of the molecules expressed in similar locations share the same recep-

tors suggesting overlapping functions. The chemokines seem not only to be

involved in leukocyte recruitment like SLC and SDF-1 observed in the lumen

of uterine vessels, but also in cell migration within the uterine tissue. Red-

Horse et al. [52] suggested a possible combination of factors acting on the

migration of decidual leukocytes, like SLC/CCR7 for extravasation, HCC-

1/CCR1 for moving within the decidual stroma and IP-10/CXCR3 to cluster the

cells near glands. Middleton et al. [57] demonstrated that endothelial cells in

general transport chemokines from the basolateral to the luminal surface, so

that it is likely that chemokines produced in the uterine tissue can also impact

on leukocyte recruitment.

Taken together, the extravasation of leukocytes from the blood to the tissue

of the pregnant uterus needs to be a well-controlled process to ensure the

recruitment of the right cells to the correct location at the right time. The highly

regulated expression of vascular addressins clearly indicates that adhesion

receptor expression and, more generally, mechanisms of vascular differentiation

and specialization are fundamental to this process. Recent studies in the human

uterus clearly indicate that chemokines and their receptors may play a critical

role in leukocyte trafficking to the maternal/fetal interface.
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Abstract
The biological effects of progesterone are mediated by a 34-kDa protein named the prog-

esterone-induced blocking factor (PIBF). PIBF, synthesized by lymphocytes of healthy preg-

nant women in the presence of progesterone, inhibits arachidonic acid release as well as NK

activity, and modifies the cytokine balance. Within the cell the full-length PIBF is associated

with the centrosome, while secretion of shorter forms is induced by activation of the cell. PIBF

induces nuclear translocation of STAT6 as well as PKC phosphorylation and exerts a negative

effect on STAT4 phosphorylation. The concentration of PIBF in pregnancy urine is related to

the positive or negative outcome of pregnancy; furthermore, premature pregnancy termination

is predictable by lower than normal pregnancy PIBF values. In vivo data suggest the biological

importance of the above findings. Treatment of pregnant Balb/c mice with the antiproges-

terone RU 486 results in an increased resorption rate, which is associated with the inability of

spleen cells to produce PIBF. High resorption rates induced by progesterone receptor block as

well as those due to high NK activity are corrected by simultaneous PIBF treatment.

Copyright © 2005 S. Karger AG, Basel

Progesterone-Induced Blocking Factor Mediates the
Immunological Effects of Progesterone

Beside its well-known endocrine effects, progesterone is endowed with

immunomodulatory properties, which contribute to its pregnancy-protective

role. High concentrations of progesterone prolong the survival of xenogenic

and allogenic grafts [1, 2], and the hormone affects various phases of the

immune response in vitro [3–5].

Psycho-Immuno-Endocrine Interactions
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NK activity of lymphocytes of healthy pregnant women can be suppressed

by a relatively low (100–400 nM) concentration of progesterone, whereas 100

times higher concentrations are required for reducing the natural cytotoxic

activity of nonpregnancy lymphocytes [6] and this effect is inhibited by

equimolar concentrations of RU 486 (a blocker of progesterone and glucocorti-

coid receptors) [7].

The biological effects of progesterone are mediated by a 34-kDa protein,

named the progesterone-induced blocking factor (PIBF). PIBF, synthesized

by lymphocytes of healthy pregnant women in the presence of progesterone

[8, 9], inhibits arachidonic acid release by acting directly on the phopho-

lipase A2 enzyme [10] as well as NK activity and modifies the cytokine bal-

ance [11]. Through the above mechanisms PIBF exerts an antiabortive

effect [12–14].

Molecular Structure of PIBF

The PIBF cDNA encodes a protein of 757-amino acid residues with an 89-

kDa predicted molecular mass, which shows no significant amino acid

sequence homology with any of the known proteins [15].

The full-length PIBF is associated with the centrosome, while secretion of

shorter forms, among others; the previously described secreted 34-kDa protein

is induced by activation of the cell. The 48-kDa N-terminal part of PIBF is bio-

logically active, and the region responsible for modulating NK activity is

encoded by exons 2–4 [15]. These data suggest that PIBF might act both as a

transcription factor and as a cytokine, via binding to receptors.

Biological Effects of PIBF

PIBF affects arachidonic acid metabolism of lymphoid cells and the subse-

quent decrease in prostaglandin and/or leukotriene synthesis goes in parallel

with lower cytotoxic activity [8]. IL-12 induces NK activity and there is evi-

dence for a relationship between high NK activity and pregnancy termination

both in mice [16, 17] and humans [18]. In our hands, neutralization of PIBF

resulted in an increased IL-12 expression, which was corrected by treatment of

the cells with phospholipase A2 inhibitor [10].

These results suggest that PIBF inhibits arachidonic acid release. The sub-

sequent block of prostaglandin synthesis reduces IL-12 production and results

in a lowered cytotoxic NK activity, which favors a normal pregnancy outcome.

In line with this hypothesis, aspirin treatment starting before implantation may
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reduce the rate of abortion in patients suffering from recurrent miscarriages

[19]. Furthermore, the frequency of postmaturity and the length of gestation

were significantly increased in women who regularly took large doses of

prostaglandin synthesis inhibitors [20].

Cytokine Effects and Signal Transduction

The effect of PIBF on NK activity is manifested via an altered cytokine

production both in vitro and in vivo. Neutralization of endogenous PIBF in

pregnancy lymphocytes by a PIBF-specific antibody results in increased NK

activity, which is corrected by IL-12-neutralizing antibody [11]. PIBF inhibits

IL-12 synthesis by activated lymphocytes, and recent data from our laboratory

revealed an increased IL-12 production by peripheral lymphocytes of women

with pathological pregnancies and high NK activity [21]. In vitro PIBF treat-

ment of activated lymphocytes favors the production of Th2 type of cytokines

[22]. Joachim et al. [23] detected reduced PIBF concentrations, together with

increased resorption rates in pregnant mice that had been subjected to acoustic

stress. Both PIBF levels and resorption rates were corrected by treating the ani-

mals with a retroprogesterone, and this was accompanied by a significantly

increased decidual IL-4 production. These data together support the concept

that the NK inhibitory action of PIBF is mediated – at least in part – by

cytokines, and PIBF induces a Th2-biased cytokine production.

STAT transcription factors mediate virtually all cytokine-driven signaling,

whereas protein kinase C (PKC) plays a critical role in the differentiation of

T cells to the Th1 or Th2 type.

STAT6 and STAT4 specifically mediate signals that stem from IL-4 and

IL-12 receptors, respectively [24]. INF-� has been shown to be a negative reg-

ulator of STAT6-dependent transcription of target genes [25]. STAT4 is

mainly phosphorylated by the IL-12-mediated signaling pathway in T cells

and in NK cells by the tyrosine kinases Jak2 and Tyk2 [26, 27]. Mice lacking

STAT4 clearly demonstrated that STAT4 is necessary for the generation of

Th1 cells [28, 29].

STAT6-deficient animals are unable to mount an immune response to

helminthic parasites and therefore are unable to clear the parasitic infections

[30]. IL-4 signaling via STAT6 appears to play role in the development of aller-

gic asthma; it has been also observed that STAT6-deficient mice did not develop

airway hyperresponsiveness after allergen sensitization like their wild-type lit-

termates and were protected from allergic asthma [31].

The 48-kDa recombinant human PIBF as well as two smaller proteins

encoded by exons 2–4 and 13–16 induce nuclear translocation of STAT6 [32].
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PIBF exerts a negative effect on STAT4 phosphorylation and inhibits IL-12-

induced STAT4 activation.

The PKC pathway represents a major signal transduction system that is

activated following ligand stimulation of receptors by hormones, neurotrans-

mitters, and growth factors. PKC (80-kDa proteins) play a critical role in the

regulation of differentiation and proliferation in many cell types and in the

response to diverse stimuli [33].

Development of naive T cells into type 1 (Th1) or type 2 (Th2) effector

cells is thought to be under the control of cytokines. IL-12 and IL-4 are widely

accepted to be the major factors inducing T cells to develop into type 1 or type

2 cells [34]. When IL-12 and IL-4 are present, murine and human T cell differ-

entiation is regulated by the balance of PKC and calcium signaling within

T cells [35].

It has long been known that Th2 clones show reduced calcium flux after

activation compared with Th1 clones [36]. High levels of PKC activity com-

bined with low calcium signals favor Th2 development, while predominance of

calcium signaling with low PKC activity favors Th1 development [35]. Signals

downstream of PKC and calcineurin directly result in preferential type 1 or type

2 cytokine gene expressions, perhaps via expression of transcription factors

associated with Th2 cells [37, 38].

Phosphorylation of PKC is increased in the cytoplasmic fraction of lym-

phocytes treated with the 48-kDa recombinant PIBF as well as with a peptide

encoded by exons 13–16. Intracellular calcium levels are not altered by PIBF

treatment. High PKC activity and low intracellular calcium levels favor the

development of Th2 cytokine-sensitive cells, whereas inhibition of STAT4 phos-

phorylation decreases the sensitivity of the cell to Th1 cytokines. These together

might account for the Th2-biased immune response induced by PIBF [32].

PIBF Concentration in Pregnancy Urine Is Related to the
Outcome of Pregnancy

PIBF is a secreted molecule; thus it might appear in biological fluids, and

due to its small molecular weight, it is filtrated into the urine. Urinary PIBF con-

centrations of 86 healthy nonpregnant individuals and those from 496 pregnant

women were determined by ELISA. The concentration of PIBF continuously

increased until the 37th gestational week of normal pregnancies, followed by a

sharp decrease after the 41st week of gestation. In pathological pregnancies

urinary PIBF levels failed to increase. Samples from 86 healthy nonpregnant indi-

viduals were used for determining the threshold of nonpregnancy values. Eighty

percent of women with a normal, uneventful pregnancy whereas only 10% of
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those whose pregnancies ended up in miscarriage, or preterm labor had higher

PIBF concentrations than control threshold. The sensitivity (defined as the ability

to correctly identify those who will deliver preterm) and specificity (the ability to

correctly identify those who will not deliver preterm) of the test for predicting

pregnancy failure are 90 and 80%, respectively. These data suggest that low PIBF

values might indicate the onset of spontaneous pregnancy termination.

Women with toxemia had lower PIBF values than healthy pregnant

women. Since PIBF favors a Th2 cytokine response, these women should have

a relative Th1 dominance. Rein et al. [39] reported that trophoblast cells from

preeclamptic women produce significantly less IL-10 in the 3rd trimester of

pregnancy than those from healthy pregnant women, and an excessive Th1

activity has been associated with toxemia [40]. Several studies have shown that

the clinical severity of preeclampsia is related to the severity of cytokine abnor-

malities [41]. PIBF concentrations in urine of toxemic women were related to

the clinical symptoms. PIBF levels of women demonstrating hypertension only

did not differ from those of healthy pregnant women. In contrast to this, only

33% of women with two or more symptoms had levels higher than the thresh-

old. This is in line with earlier observations of Varga et al. [42], who could not

demonstrate an increased peripheral NK activity in the group of preeclamptic

patients with a single symptom (hypertension), whereas lymphocytes of

preeclamptic women with at least two symptoms showed a significantly

increased NK activity. PIBF inhibits NK activity both in vitro [2, 5], and the

lack of PIBF results in an increased NK activity [11].

All the women bearing small-for-date babies had lower than normal PIBF

values. This suggests that similar mechanisms might play a role in the develop-

ment of intrauterine growth retardation. Bartha et al. [43] have shown an associ-

ation between increased TNF-� levels and intrauterine growth retardation. In our

hands treatment of pregnant mice with high NK activity spleen cells resulted in

elevated serum and placental TNF-� levels in pregnant Balb/c mice, together

with increased resorption rates. Simultaneous TNF-� administration corrected

both TNF-� levels and resorption rates. In vitro data suggest that PIBF counter-

acts the cytotoxic action of TNF-� but does not interfere with its production [44].

In general, the concentration of PIBF is related to the positive or negative

outcome of pregnancy; furthermore, premature pregnancy termination is pre-

dictable by lower than normal pregnancy PIBF values.

PIBF Exerts an Antiabortive Effect in Mice

In vivo data suggest the biological importance of the above findings.

Treatment of pregnant Balb/c mice with the antiprogesterone RU 486 results in
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an increased resorption rate, which is associated with the inability of spleen

cells to produce PIBF. High resorption rates induced by progesterone receptor

block as well as those due to high NK activity are corrected by simultaneous

PIBF treatment [13, 14].

Neutralization of endogenous PIBF by a PIBF-specific antibody termi-

nates pregnancy in mice [11]. Depletion of NK activity with anti-NK antibodies

counteracts the above effects [45]. Both anti-PIBF treatment and that with prog-

esterone receptor blocker result in increased splenic NK activity, together with

reduced IL-10 and an increased IFN-�? production of the spleen cells.

Based on these data we suggest that the immunological pregnancy-protec-

tive effects of progesterone are manifested via the following mechanism: in the

presence of progesterone activated pregnancy lymphocytes synthesize a media-

tor (PIBF), which, by interfering with arachidonic acid metabolism and by

inducing a Th2-biased immune response, allows pregnancy to go to term.
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Abstract
Embryonic-maternal signaling is vital to implantation. We have identified a cellular

protein that indirectly regulates secretion of IL-1�, a proinflammatory cytokine that is

involved in this signaling process. Regeneration and tolerance factor is a V-ATPase protein

that regulates ATP levels in a variety of cells including macrophages, which, in turn, regu-

lates the P2X7 ligand-gated ion channel. As extracellular levels of ATP rise, the P2X7 recep-

tor undergoes a change in permeability, which leads to the onset of apoptotic events and the

release of IL-1�. IL-1� leads to local inflammation and vascularization, which is integral to

establishing a successful implantation site.

Copyright © 2005 S. Karger AG, Basel

Introduction

A successful pregnancy requires both a viable blastocyst that is capable of

implanting in the uterus and a receptive endometrium. How a mother and an

embryo participate in and contribute to these two requirements has been the

subject of much inquiry and research over the years. While the regulatory role

of ovarian and pituitary hormones has been well documented, recent research

suggests additional regulatory factors. One such factor is embryonic-maternal

signaling through the presence and activity of growth factors and cytokines

[1–3]. We are particularly interested in a specific cytokine, interleukin-1� (IL-

1�) because of its ability to initiate inflammation and the subsequent vascular-

ization of the endometrium. This vascularization is necessary for implantation

to proceed. Factors that participate in the production and release of IL-1�
include regeneration and tolerance factor (RTF), which is a vacuolar ATPase,
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and the P2X7 purinoceptor. The relationship that exists between these proteins

and their relevance to pregnancy is the topic of this manuscript.

IL-1 Cytokines and Pregnancy

IL-1� cytokine is present at the maternal-fetal interface in a number of

mammals. In humans, mRNA for IL-1� has been found in endometrial tissue [4],

and active IL-1� has been detected in endometrial macrophages, endothelial

cells, and leukocytes [5]. Human preimplantation embryos also produce IL-1�
and IL-1� [6, 7]. Similarly, in mice, both mRNA for IL-1� and IL-1� as well as

the proteins themselves are detected in high levels in uterine tissue just prior to

implantation [8]. Examination of developing embryos reveals that 4-cell

embryos are the first to contain mRNA for IL-1�, and that mRNA is present up

through to the blastocyst stage [1]. IL-1 type 1 receptors in mice were localized in

the maternal lumenal epithelium, and during periimplantation (day 4 in mice)

type 1 receptors were evident in the epithelium surrounding the blastocyst [5].

Mated mice treated with IL-1 receptor antagonist during the first 9 days of gesta-

tion failed to achieve pregnancy [9]. Other studies that examined matings of mice

that lacked the IL-1 type 1 receptor resulted in relatively normal implantation and

pregnancy [10] as did matings between IL-1� knockout mice [11]. This suggests

that embryonic IL-1� signaling may not be imperative for implantation.

Two forms of IL-1, IL-1� and IL-1�, mediate inflammation and share the

same cell surface receptors [12]. IL-1� is membrane bound and IL-1� is a solu-

ble protein [13]. Two IL-1 receptors have been identified, along with a natural

receptor antagonist [14]. When the type 1 receptor binds IL-1�, signal transduc-

tion occurs, while the type 2 receptor lacks any known function. Both IL-1� and

IL-1� are synthesized as 31-kDa precursors and are secreted as 17-kDa active

proteins. IL-1� must be proteolytically cleaved by caspase-1 (ICE, IL-1�-con-

verting enzyme) to become a biologically active protein [15]. This cleavage

requires the external activation of another membrane receptor, P2X7 [16], which

will be discussed shortly. Unlike most secreted proteins, IL-1� lacks a

hydrophobic leader sequence [17]. Therefore, it does not enter the endoplasmic

reticulum and Golgi complex for processing the way that most secretory proteins

do [18, 19]. For years, the exact mechanism of IL-1� secretion was unknown;

however, recent research has revealed new insights into its release [20–22].

RTF and Pregnancy

Another protein that is present at the maternal-fetal interface and plays a

role in implantation is RTF. We have shown that RTF participates in and regulates
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IL-1� secretion [23]. RTF was originally cloned from a mouse T cell line [24].

Early treatment of mated mice with antibody to RTF prevented pregnancy [25],

suggesting that RTF has a role in reproduction. In humans, the pattern of RTF

expression can be used as a diagnostic indicator of a successful pregnancy. When

compared to nonpregnant controls, RTF is upregulated on B cells (CD19�) from

pregnant women, but not T cells (CD3�). In addition, women who experience

recurrent, spontaneous abortions have NK cells (CD56�) with surface RTF [26].

RTF is present on the cell surface of a number of cell types including placental

cells [27, 28], T cells, B cells, macrophages [29], and regenerating hepatocytes

[30]. It is also present on B cell lymphocytic leukemia cells [31], choriocarci-

noma cell lines, and ovarian cancer cell lines, such as OVCAR-3 and ES-2.

Using computer analysis, RTF is proposed to be a transmembrane protein

that spans the plasma membrane 7 times, with an intracellular C-terminus and

an extracellular N-terminus [24]. RTF is expressed in two forms, a 70-kDa pro-

tein that is found intracellularly and a 50-kDa protein that is present on the cell

surface. It is believed that as the 70-kDa RTF comes to the surface of the cell,

a 20-kDa N-terminal portion is cleaved off at a serine protease site [24].

RTF Is a V-ATPase

RTF shares 100% amino acid sequence homology with the �2 isoform 

of the � subunit of vacuolar H�-adenosine triphosphatase (V-ATPase) [32]. 

V-ATPases are enzymes present in vacuolar organelles and in the plasmalemma

of specialized cells [33]. The surface form of vacuolar ATPase is responsible for

hydrolyzing extracellular adenosine triphosphate (ATP). V-ATPase is composed

of two multisubunit domains. There is a transmembrane domain, which is

responsible for proton translocation, and a peripheral, catalytic domain that

extends into the extracellular matrix and is responsible for ATP hydrolysis [34].

The � subunit of V-ATPase is a glycoprotein that spans the membrane with 6–8

helices [35]. The � subunit may allow for proton translocation to other subunits

and may be important for assembly of the V-ATPase protein [36]. This enzyme

requires ATP to pump protons across intracellular membranes. This creates a

pH gradient that leads to acidification within the intracellular compartments

while the cytosol remains neutral [37]. V-ATPases are responsible for energiz-

ing the plasma membrane in animal cells and are as important as Na�K�

ATPases [37, 38]. In macrophages and neutrophils, V-ATPases maintain a neu-

tral environment in the cytosol [39, 40]. Increasing levels of V-ATPases in 

the plasma membrane of neutrophils have been shown to delay apoptosis [41].

V-ATPases are also functionally expressed in a variety of human tumor cells

and may have specialized roles in cell growth and metastasis [42–45].
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As V-ATPase, RTF is present in an intracellular form as well as an

extracellular form embedded in the plasma membrane. We demonstrated that the

50-kDa surface form is a functional ATPase by using antibody to RTF to block

ATP hydrolysis. Human peripheral blood mononuclear cells (PBMC) that were

incubated with anti-RTF had a 10-fold decrease in surface ATPase activity when

compared to PBMCs treated with an isotype control antibody [46]. RTF’s ability

to hydrolyze extracellular ATP in turn regulates the P2X7 receptor. We believe

that this is the method for the production and release of mature, bioactive IL-1�.

P2X7 Ion Channels

P2X7 receptors are part of a family of ion channels that bind nucleotides

[47]. P2X7 receptors are present primarily on cells of hemopoietic origin, such

as T cells, B cells, macrophages, and monocytes, as well as epithelial cells [48,

49]. Upon binding extracellular ATP, the plasma membrane undergoes a change

in permeability, initially allowing an influx of small ions such as Ca2� into the

cell through selective channels. K� ions then exit the cell. If ATP exposure is

prolonged, larger cations and hydrophobic molecules 600–900 Da enter into the

cell through nonselective channels [50]. Activation of P2X7 receptors leads to

activation of caspases [51], which leads to apoptosis [52, 53]. The activation of

the P2X7 receptor by extracellular ATP is also connected with the release of IL-

1�. Studies in mice lacking functional P2X7 receptors were unable to produce

IL-1� upon stimulation with ATP [54, 55].

RTF, Apoptosis and Cellular Activation

Work in our lab has focused on how RTF regulates apoptosis. We have

studied apoptosis in human PBMC, purified T cells, T cell lines (Jurkat and

THP-1) and macrophage lines (J774). We measured annexin V binding to phos-

phatidyl-serine residues on the cell surface, DNA fragmentation, as well as cas-

pase 3 activation, and uptake of propidium iodide as indicators of apoptosis. We

found that T cells and macrophages that were treated with antibody directed

against RTF underwent apoptosis at significantly higher rates than cells treated

with isotype-matched control antibody [46, 56, 57]. The addition of ATP to

cells treated with anti-RTF antibody resulted in increased apoptosis. When

ATPase was added to cells treated with anti-RTF antibody and ATP, no apopto-

sis occurred. This demonstrated that RTF regulates surface ATPase activity and

binding of ATP to the P2X7 receptor. By regulating the amount of extracellular

ATP available to bind P2X7, RTF regulates apoptosis.
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Further studies demonstrated that the amount of apoptosis that occurred

was directly related to the levels of surface RTF as opposed to intracellular

RTF [46]. The state of activation of the cell was also found to be highly sig-

nificant with respect to RTF expression. RTF was analyzed by Western blot

that had been probed with anti-RTF antibody. Resting human PBMC were

examined for RTF on their cells. Normal cells express both forms of RTF;

however, the 70-kDa intracellular form was far more prevalent than the 50-

kDa surface form [46]. Upon cell activation, the surface form of RTF was

upregulated [23]. In vitro activation of T cells and PBMC was achieved by

incubating cells with anti-CD3� and/or anti-CD28 antibody. An interesting

time course display of RTF emerged. Prior to activation, PBMC display

mostly 70-kDa RTF. Following activation with anti-CD3� and anti-CD28 anti-

body, RTF levels were undetectable for 16–24 h. After 24–48 h RTF became

measurable; however, now the predominant form was the 50-kDa surface form

of the protein [23, 46].

We also examined RTF mRNA during this same time period and found that

in resting cells the amount of mRNA was at the highest level seen. This high

level of mRNA continued when RTF was undetectable in the cell and the

amount of mRNA began to drop as the 50-kDa surface form became predomi-

nant. The consequence of this RTF shift was evident in V-ATPase activity and

apoptotic activity of activated cells. Unstimulated PBMC demonstrated low

levels of apoptosis when treated with anti-RTF antibody and no apoptosis was

seen in cells 16–24 h after stimulation when treated with anti-RTF antibody.

Higher levels of apoptosis were measured at 48 and 72 h when the 50-kDa sur-

face form of RTF was predominant [46].

RTF and IL-1�

Our most recent work takes the next step and demonstrates the effect RTF

exerts upon IL-1� secretion. We used the macrophage cell line THP-1, which

expresses both RTF and P2X7 on the cell surface. THP-1 cells were incubated

with lipopolysaccharide and PBMC that were first activated with phytohemag-

glutinin, which we found to be necessary for the production of pro-IL-1�. As

shown in figure 1, when these activated THP-1 cells were treated with ATP they

released IL-1� into their culture supernatants in levels dependent on the

concentration of ATP. Adding anti-RTF antibody along with ATP to activated

THP-1 cells resulted in significantly higher levels of IL-1� being released by

these cells. Adding ATPase along with the anti-RTF antibody and ATP to acti-

vated THP-1 cells brought the levels of IL-1� back down to those of cells

treated with just ATP alone.
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From these studies we conclude the following (please refer to fig. 2 for a

schematic representation). RTF is an important membrane protein that

hydrolyzes ATP. By regulating the amount of ATP available at the cell surface,

RTF regulates P2X7 activation, which in turn controls apoptosis and IL-1� pro-

duction and secretion. In other words, upregulation of RTF leads to decreased

levels of extracellular ATP, which leads to less activation of P2X7 receptors.
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Fig. 1. RTF regulates IL-1� secretion in macrophages. IL-1� secretion of THP-1 cells

incubated with varying concentrations of ATP alone, ATP � anti-RTF, or ATP � anti-

RTF � ATPase is shown. Levels of IL-1� were assayed by ELISA. Bars represent standard

error of the mean. Statistical significance is indicated.
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This leads to less apoptosis and less IL-1� production. Downregulation of RTF

leads to increased apoptosis and increased production of IL-1�. The presence of

these proteins at the maternal-fetal interface indicates that RTF regulates these

processes, thereby regulating implantation. These data provide a mechanism to

explain the antipregnancy effect of anti-RTF antibody [58].

References

1 Takacs P, Kauma S: The expression of interleukin-1 alpha, interleukin-1 beta, and interleukin-1

receptor type I mRNA during preimplantation mouse development. J Reprod Immunol 1996;

32/1:27.

2 Sharkey A: Cytokines and implantation. Rev Reprod 1998;3:52.

3 Robertson SA, Redman CW, McCracken SA, Hunt JS, Dimitriadis E, Moffett-King A, Chamely L:

Immune modulators of implantation and placental development – A workshop report. Placenta

2003;24(suppl A):S16–S20.

4 Kauma S, Matt D, Strom S, Eierman D, Turner T: Interleukin-1 beta, human leukocyte antigen

HLA-DR alpha, and transforming growth factor-beta expression in endometrium, placenta and

placental membranes. Am J Obstet Gynecol 1990;163:1430.

5 Simon C, Piquette G, Frances A, Polan M: Localization of interleukin-1 type receptor and inter-

leukin-1b in human endometrium throughout the menstrual cycle. J Clin Endocrinol Metab 1993;

77:549.

6 Zolti M, Ben-Rafael Z, Meirom R, Shemesh M, Bider D, Mashiach S, Apte R: Cytokine involve-

ment in oocytes and early embryos. Fertil Steril 1991;56:265.

7 De los Santos M, Mercader A, Frances A, Portoles E, Remohf J, Pellicer A: Immunoreactive

human embryonic interleukin-1 system and endometrial factors regulating their secretion during

embryonic development. Biol Reprod 1996;54:563.

8 De M, Sanford TR, Wood GW: Expression of interleukin 1, interleukin 6 and tumour necrosis fac-

tor alpha in mouse uterus during the peri-implantation period of pregnancy. J Reprod Fertil 1993;

97/1:83.

9 Simon C, Frances A, Piquette G, Danasouri I, Zurawski G, Dang W, Polan M: Embryonic implan-

tation in mice is blocked by interleukin-1 receptor antagonist. Endocrinology 1994; 134:521.

10 Abbondanzo S, Cullinan E, McIntyre K, Labow M, Stewart C: Reproduction in mice lacking a

functional type 1 IL-1 receptor. Endocrinology 1996;137:3598.

11 Zheng L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A,

Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G: Intratumoral T cells, recurrence, and

survival in epithelial ovarian cancer. N Engl J Med 2003;348/3:203.

12 Dower SK, Kronheim SR, Hopp TP, Cantrell M, Deeley M, Gillis S, Henney CS, Urdal DL:

The cell surface receptors for interleukin-la and interleukin-lb are identical. Nature 1986;

324:266.

13 Lepe-Zuniga B, Gery I: Production of intracellular and extracellular interleukin-1 by human

monocytes. Clin Immunol Immunopathol 1984;31:222.

14 Dinarello C: Interleukin-1 and interleukin-1 antagonism. Blood 1991;77:1627.

15 Dinarello C: Biologic basis of interleukin-1 in disease. Blood 1996;87:2095.

16 Ferrari D, Los M, Bauer M, Vandenabeele P, Wesselborg S, Schulze-Osthoff K: P2Z purinorecep-

tor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alteration of

cell death. FEBS Lett 1999;447:71–75.

17 March C, Mosley B, Larson A, Cerretti D, Braedt B, Price V, Gillis S, Henney C, Kronheim 

S, Grabstein K, Conlon P, Hopp T, Cosman D: Cloning, sequence and expression of two distinct

human interleukin 1 complementary DNAs. Nature 1985;315:641.

18 Singer II, Scott S, Hall G, Limjuco G, Chin J, Schmidt J: Interleukin 1 beta is localized in the

cytoplasmic ground substance but is largely absent from the Golgi apparatus and plasma mem-

brane of stimulated human monocytes. J Exp Med 1988;167:389.



RTF, V-ATPase and IL-1� Secretion 133

19 Rubatelli A, Sitia R: Secretion of mammalian proteins that lack a signal sequence; in Kuchler 

K, Rubatelli A, Holland B (eds): Usual Secretory Pathways: From Bateria to Man. Austin, Landes,

1997, p 87.

20 MacKenzie A, Wilson H, Kiss-Toth E, Dower S, North A, Surprenant A: Rapid secretion of inter-

leukin-1b by microvesicle shedding. Immunity 2001;8:825.

21 Gudipaty L, Munetz J, Verhoef P, Dubyak G: Essential role for Ca2� in regulation of IL-1beta

secretion by P2X7 nucleotide receptor in monocytes, macrophages and HEK-293 cell. Am 

J Physiol 2003;285:C286.

22 Brough D, Feuvre RL, Wheeler R, Solovyova N, Hilfiker S, Rothwell N, Verkhratsky A: Ca2�

stores and Ca2� entry differentially contribute to the release of IL-1 beta and IL-1 alpha from

murine macrophages. J Immunol 2003;170:3029.

23 Derks R, Beaman K: Regeneration and tolerance factor modulates the effect of ATP induced IL-1b

secretion in human macrophages. Hum Immunol 2004;65:676.

24 Lee C, Ghoshal K, Beaman KD: Cloning of a cDNA for a T cell produced molecule with a puta-

tive immune regulatory role. Mol Immunol 1990;27:1137.

25 Ribbing SL, Hoversland RC, Beaman KD: T cell suppressor factors play an integral role in pre-

venting fetal rejection. J Reprod Immunol 1988;14:83.

26 Nichols TC, Kang JA, Angkachatchi V, Beer AE, Beaman KD: Expression of a membrane form of

the pregnancy-associated protein TJ6 on lymphocytes. Cell Immunol 1994;155:219.

27 Lee GW, Boomer JS, Gilman-Sachs A, Chedid A, Gudelj L, Rukavina D, Beaman KD:

Regeneration and tolerance factor of the human placenta induces IL-10 production. Eur J Imm-

unol 2001;31:687.

28 Rubesa G, Beaman KD, Lucin P, Rukavina D: Expression of RTF protein in the human first

trimester decidual lymphocytes. Reg Immunol 1994;6:331.

29 Mandal M, Beaman KD: Purification and characterization of a pregnancy associated protein from

the feto-placental unit. Am J Reprod Immunol 1994;33:60.

30 Chedid A, Sung CC, Lepe MR, Ahmed SA, Iftikhar SA, Feller A, Beaman KD: Expression of a

novel protein by regenerating hepatocytes and peripheral blood lymphocytes. Clin Diagn Lab

Immunol 2001;8:1292.

31 Aslakson CJ, Lee GW, Gilman-Sachs A, Kucuk O, Beaman KD: Regeneration and tolerance fac-

tor is expressed on leukemias and may be a mechanism for leukemias to escape immune surveil-

lance. Am J Hematol 1999;61:46.

32 Toyomura T, Oka T, Yamaguchi C, Wada Y, Futai M: Three subunit a isoforms of mouse vacuolar

H�-ATPase. J Biol Chem 2000;275:8760.

33 Gluck S: V-ATPases of the plasma membrane. J Exp Biol 1992;172:29.

34 Forgac M: Structure function and regulation of the vacuolar (H�)-ATPases. FEBS Lett 1998;

440:258.

35 Perin M, Fried V, Stone K, Xie X, Sudhof T: Structure of the 116-kDa polypeptide of the clathrin-

coated vesicle/synaptic vesicle proton pump. J Biol Chem 1991;266:3877–3881.

36 Leng X, Manolson M, Liu Q, Forgac M: Site directed mutagenesis of the 100 kDa subunit (Vphlp)

of the yeast vacuolar (H�)-ATPase. J Biol Chem 1996;271:22487.

37 Nelson N: The vacuolar H�-ATPases. J Exp Biol 1992;172:19.

38 Wieczorek H, Brown D, Grinstein S, Ehrenfeld J, Harvey W: Energization of animal plasma mem-

branes by proton-motive V-ATPase. Bioassays 1999;21:637.

39 Swallow C, Grinstein S, Rotstein O: A vacuolar type (H�)-ATPase regulates cytoplasmic pH in

murine macrophages. J Biol Chem 1990;265:7645.

40 Swallow C, Grinstein S, Sudsbury R, Rotstein O: Relative roles of Na�/H� exchange and vacuolar-

type H� ATPases in regulating cytoplasmic pH and function in murine peritoneal macrophages.

J Cell Physiol 1993;157:453.

41 Gottlieb R, Giesing H, Zhu J, Engler R, Babior B: Cell acidification in apoptosis granulocyte

colony-stimulating factor delays programmed cell death in neutrophils by up-regulating the vac-

uolar H�-ATPase. Proc Natl Acad Sci USA 1995;92:5965.

42 Martinez-Zaguilan R, Martinez G, Gomez A, Hendrix M, Gillies R: Distinct regulation of pH

and Ca2� in human melanoma cells with different metastatic potential. J Cell Physiol 1998;

176:196.



Levine/Derks/Beaman 134

43 Martinez-Zaguilan R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, Smith D,

Dalton WS, Gillies RJ: pH and drug resistance. I. Functional expression of plasmalemmal V-type

H�-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol 1999;57:1037.

44 Sennoune S, Luo D, Martinez-Zaguilan R: Plasmalemmal vacuolar-type H�-ATPase in cancer

biology. Cell Biochem Biophys 2004;40:185.

45 Sennoune S, Bakunts K, Martinez G, Chua-Tuan J, Kebir Y, Attaya M, Martinez-Zaguilan R:

Vacuolar H�-ATPase in human breast cancer cells with distinct metastatic potential: Distribution

and functional activity. Am J Physiol 2004;286:C1443–C1452.

46 Derks R, Beaman KD: Regeneration and tolerance factor (RTF) prevents bystander T cell death

associated with HIV infection. Clin Diagn Lab Immunol 2004;11:835–840.

47 North A: Molecular physiology of P2X receptors. Physiol Rev 2002;82:1013.

48 Collo G, Neidhart S, Kawashima E, Kosco-Vilbois R, North A, Buell G: Tissue distribution of the

P2X7 receptor. Neuropharmacology 1997;36:1277.

49 DiVirgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz J, Morelli Z, Torboli M, Bolognesi F, Baricordi

R: Nucleotide receptors: An emerging family of regulatory molecules in blood cells. Blood 2001;

97:587.

50 DiVirgilio F: The P2Z purinoceptor: An intriguing role in immunity, inflammation and cell death.

Immunol Today 1995;16:524.

51 Martin SJ, Green DR: Protease activation during apoptosis: Death by a thousand cuts? Cell 1995;

82:349.

52 Ferrari D, Chiozzi P, Falzoni S, Susino MD, Melchiorri L, Baricordi OR, Virgilio FD:

Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human

macrophages. J Immunol 1997;159:1451–1458.

53 Schulze-Lohoff E, Hugo C, Rost S, Arnold S, Gruber A, Brune B, Sterzel RB: Extracellular ATP

causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors. Am J Physiol

1998;275:F962.

54 Labasi J, Petrushova N, Donovan C, McCurdy S, Lira P, Payette M, Brissette W, Wicks J, Audoly L,

Gabel C: Absence of the P2X7 receptor alters leukocyte function and attenuates and inflammatory

response. J Immunol 2002;168:6436.

55 Solle M, Labasi J, Perregauz G, Stam E, Petrushova N, Koller B, Griffiths R, Gabel C: Altered

cytokine production in mice lacking P2X7 receptors. J Biol Chem 2001;276:126.

56 Boomer JS, Lee GW, Givens TS, Gilman-Sachs A, Beaman KD: Regeneration and tolerance fac-

tors’ potential role in T cell activation and apoptosis. Hum Immunol 2000;61:959.

57 Boomer JS, Derks RA, Lee GW, DuChateau BK, Gilman-Sachs A, Beaman KD: Regeneration and

tolerance factor (RTF) is expressed during T lymphocyte activation and plays a role in apoptosis.

Hum Immunol 2001;62:577.

58 Beaman KD, Hoversland RC: Induction of abortion in mice with a monoclonal antibody specific

for suppressor T-lymphocyte molecules. J Reprod Immunol 1988;14:83.

Kenneth Beaman,

Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science

3333 Green Bay Road,

North Chicago, IL 60064 (USA)

Tel. �1 847 578 8832, Fax �1 847 775 6506 

E-Mail Kenneth.Beaman@rosalindfranklin.edu



Market UR (ed): Immunology of Pregnancy.

Chem Immunol Allergy. Basel, Karger, 2005, vol 89, pp 135–148

Nerve Growth Factor in Reproductive
Biology: Link between the Immune,
Endocrine and Nervous System?

Mareike Tometten, Sandra Blois, Petra C. Arck

Charité, University Medicine Berlin, Berlin, Germany

Abstract
Successful pregnancy outcome requires balanced networking of the immune and

endocrine system. In addition, numerous sophisticated adaptive mechanisms promote inva-

sion of fetal tissue and facilitate tolerance. This highly sensitive and vulnerable environment

may be challenged from either the maternal or the fetal site. In this overview we collect evi-

dence of a functional role of neurotrophins, predominately nerve growth factor (NGF), in

pregnancy maintenance. We demonstrate several pathways through which NGF may be

involved in maintaining pregnancy and/or – if exaggerated – inducing pregnancy failure. Due

to the pleiotropism of NGF, we hypothesize that NGF is mandatory for the success of preg-

nancy, e.g. via inhibition of paternal MHC II molecule expression on trophoblast cells. This

is supported by published evidence on progesterone, the hormone of pregnancy, which main-

tains local levels of NGF. On the other hand, if levels of NGF are upregulated in response to

environmental challenges, e.g. stress, this may result in a threat to pregnancy maintenance

due to a skew towards proinflammatory cytokines and increased apoptotic cell death. Hence,

we strongly suggest that NGF constitutes a functional link between the nervous, endocrine

and immune system translating environmental or endocrine signals during pregnancy into an

immunological answer.

Copyright © 2005 S. Karger AG, Basel

Introduction

Reproductive success constitutes a major feat and need for species conser-

vation. In mammalian pregnancies, a nutritious environment for growth and

development of the fetus is compulsory, but maternal immune responses

against fetal alloantigens ought to be suppressed to avoid rejection. For toler-

ance of the allograft, adaptation of the uterine environment is required. Thus,
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successful pregnancy implies exceeding coordination and adjustment to divers

complex biological processes, including endocrine, vascular, metabolic and

immune functions.

In the present overview, we highlight the role of neurotrophins (NTs), a

chameleonic family of proteins, as a potent mediator within the coordinative

network of successful and/or adverse pregnancy outcome. Nerve growth factor

(NGF) was the first identified member of the NTs, and in the past decades, the

existence of additional members of this family has emerged, including the

brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neu-

rotrophin-4/5 (NT-4/5) [1]. NTs represent a family of polypeptide growth fac-

tors that have similarities in structure, receptor utility as well as physiological

activities, and are essential for the development of the vertebrate nervous sys-

tem. They regulate survival, death or differentiation of neurons in embryonic

and postnatal stages as well as neuronal maintenance later in life. For signal

transduction all members of NTs use two different types of cell surface recep-

tors: the high-affinity tropomyosin-related tyrosine kinase (trk) receptors and

the low-affinity NT receptor p75NTR [2, 3].

Originally, the role of NTs was considered to be limited to the nervous sys-

tem. However, a wealth of recent data indicates that NTs exert actions in a wide

variety of tissues outside the nervous system including the reproductive organs

[4]. NGF is now considered to maintain balanced interactions between the ner-

vous, immune and endocrine systems, since – beside the nervous system – NGF

receptor expression and responsiveness to NGF are found in a variety of

immune and endocrine cells [5].

In reproductive systems, NTs are considered as critical components due to

their role in the acquisition of ovarian reproductive competence. NGF promotes

ovarian development by maintaining ovarian innervation and by predifferative

and proliferative effects on ovarian cells. It also participates in processes

involved in follicular rupture at the time of first ovulation [reviewed in 6]. In

male reproductive systems, NTs and their receptors are considered to play com-

plex autocrine or paracrine roles in both testicular development and spermato-

genesis [7, 8].

Decidualization and NGF

Decidualization implies a highly specialized, endocrinologically controlled

process which begins in the luteal phase of every menstrual cycle in primates.

Typically, the presence and invasion of immunocompetent cells accompany and

regulate this transformation. Via a distinct cytokine profile, these cells may

contribute to the specialized decidual microenvironment, providing essential
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tolerance mechanisms for the protection of the fetal graft. We refrain from

reviewing details on distinct microenvironmental cell populations, cell migra-

tion, antigen presentation or Th1/Th2 profiles in our contribution and refer to

the relevant chapters in this book. Predominance of Th2 cytokines seems to be

required to ensure fetal tolerance. Emerging evidence indicates that also neural

factors are involved in the regulation of the Th1/Th2 balance. Being in a key

position, the potent functions of NGF and other NTs in the responsiveness of

immunocompetent cells are known by now [reviewed in 5, 9, 10], which

strongly suggests that NTs could also act on decidual immune cells. This is

based on observations indicating that lymphocytes both synthesize and release

NTs and express NT receptors, which proposes autocrine and/or paracrine

actions. Murine CD4� and CD8� T cell clones express NGF and functional

trkA receptor, which is increasingly inducible by antigenic stimulation. Further,

both human Th1 and Th2 cells have been demonstrated to express NGF and

trkA. Interestingly, one study demonstrated a selective expression for NGF,

trkA and trkC receptor in Th2 cells [11]. NT-3, which has the highest affinity

for trkC, was found to enhance IL-4 production by stimulated Th2 cells sug-

gesting that NT-3 induced a Th2 skew in these cells. In B lymphocytes, trkA

and p75NTR as well as NGF expression has been reported mediating prolifera-

tion and survival of B cells with subsequent stimulation of immunoglobulin

production. Mast cells synthesize, store and – during degranulation (�activa-

tion) – release biologically active NGF, e.g. in allergic responses. NGF

enhances local mast cell numbers and has chemotactic effects on the respective

cells. Since mast cells have been found in human and murine decidua [12, 13]

and may further be innervated by peripheral neurons, NGF might participate in

the regulation of cross talk between nerves and mast cells also in the context of

decidualization [for a review, see 9].

Further, we know from experiments on human palatine tonsils and lymph

nodes that trkA and p75NTR, but not NGF are present on dendritic cells (DCs)

suggesting that lymphocyte-derived NGF could act as mediator of the cell-cell

communication between lymphocytes and DCs [14]. A wealth of data now

points towards the importance of identifying mediators which regulate decidual

DCs, e.g. lineage or maturation [15]. Hence, future research is urgently required

to identify the influence of NTs on DCs.

Monocytes express trkA and the expression increases after activation,

whereas it is downregulated during differentiation towards macrophages.

However, macrophages express NGF and both trkA and p75NTR, and in vitro

studies revealed stimulation of TNF-� production by NGF pointing towards an

activating function on macrophages during inflammatory responses [16]. NGF

stimulates the secretion of other cytokines, i.e. IL-1 and IL-6. Cytokines in turn,

such as TNF-�, IL-1�, IL-6, IFN-� and transforming growth factor-� (TGF-�),
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are strong inducers of NGF production [5]. The level of NGF rises substantially

in inflamed tissue secondary to an initial rise in the level of IL-1�.

Recent data indicate that interactional processes between NGF and

immune cells could be primarily mediated by activation of endothelial cells.

NGF was demonstrated to induce expression of ICAM-1 on endothelial cells,

and accumulation of neutrophilic leukocytes attracted by NGF was inhibited by

treatment with specific antibodies against NGF in the skin [17].

Taken together, dependent on the type of inflammation and its stage, NGF

is promiscuous, possibly similar to IL-6, since it may act as an inducer of a pro-

or anti-inflammatory response. However, clear evidence exists that NGF consti-

tutes an autocrine and/or paracrine factor in the development and regulation of

immune responses and is part of an integrated neuroimmune adaptive response.

The association between pregnancy-induced immune responses and NTs is

based on the presence of NGF and its functional receptor trkA in decidual cells

[18, 19]. In a disturbed pregnancy, e.g. upon stress exposure, both NGF- and

trkA-expressing decidual cells are upregulated. Increased levels of NGF con-

tribute to the deleterious shift of cytokines from protective Th2 (IL-4, IL-10) to

inflammatory Th1 (TNF-�, IFN-� and IL-12) which can be abrogated by the

treatment of mice with an adequate dose of neutralizing NGF antibodies.

Moreover, in disturbed pregnancies NGF mRNA levels increase, which is abol-

ished by pretreatment with neutralizing antibodies against adhesion molecules

ICAM-1/LFA-1 [Tometten et al., unpubl. data]. The presence of NGF and its

functional receptor in uterine tissue of normally progressing and adverse preg-

nancy points towards a regulatory role, expanding NGF functions also in preg-

nancy-related physiologies and pathophysiologies. As a linking molecule

between nervous, endocrine and immune system, NGF may mediate cross talk

between the distinctive systems in reproductive maintenance. Based on the cur-

rently available literature we suggest that moderate levels of NGF contribute to a

balanced Th2 cytokine profile while high NGF expression, as seen in response to

stress, aggravates the increase of abortogenic, inflammatory cytokines.

Additionally, the predominance of Th1 cytokines then leads to increased decid-

ual NGF and trkA expression. Observations of functional effects between NGF

and ICAM-1/-LFA-1 point towards a proximate NT-mediated activation of

endothelial cells with subsequent recruitment of Th1 cells into the decidua.

Neurotrophins and Apoptosis at the Fetomaternal Interface

Apoptosis is an important mechanism for invasion of the developing

embryo during implantation and remodeling of the maternal decidual tissue. By
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limiting lymphocyte proliferation following activation, programmed cell death

has been proposed as one further mechanism to maintain the immunologically

privileged situation at the fetomaternal interface [20, 21]. After cells have

undergone programmed cell death, the apoptotic cell bodies are phagocytosed

by macrophages without inducing an inflammatory response [22]. Apoptosis

occurring in human villous trophoblast is thought to participate in the regula-

tion of placental growth and function being a normal physiological process

throughout gestation [23, 24].

Regulation of apoptosis is a complex process involving a family of related

proteins that can exert promotive or inhibitory functions [for reviews, see 25,

26]. A prototypical member of cell death surface receptors is Fas (CD95) which

mediates apoptosis through binding to its ligand FasL [20, 21, 27]. Fas-FasL

interactions function to protect immune-privileged organs, and expression of

FasL by placental cells may contribute to the immune-privileged status of the

conceptus by protecting itself against maternal leukocytic influx [20, 26]. Also,

TNF-� and IFN-�, expressed in placental tissue, are involved in apoptotic

mechanisms: cytotrophoblasts undergo apoptosis after TNF-� exposure, which

is enhanced by IFN-� [28–30].

Further ligand-receptor systems belonging to the apoptosis-mediating

family are NTs and low-affinity NT receptor p75NTR. NGF has been

detected and isolated from murine and human placental tissue [31].

Moreover, p75NTR has been demonstrated to be coexpressed in human pla-

cental tissue suggesting functional roles in this organ compartment [32]. The

p75NTR is a member of the TNF receptor/Fas/CD40 superfamily and binds

all the NTs with low affinity. The functional role of p75NTR still remains

unclear: it is assumed to function as a coreceptor for the high-affinity recep-

tors and as a mediator of proapoptotic programmes induced by NGF, depend-

ing on the physiological or developmental stage of the cells. Further, in

Schwann cells and melanoma cells, p75NTR has been shown to mediate cell

migration and cell invasiveness [33, 34].

Effects of NGF were investigated on trophoblastic giant cell transforma-

tion of the ectoplacental cone cells in pregnant mouse uteri showing that NGF

strongly accelerated this process [18]. However, little is known on whether

NGF/p75NTR exert any effects on apoptosis in the placenta. Macrophages,

which are an important source for NGF synthesis, are immensely involved in

the processes of programmed cell death, and p75NTR is expressed on

trophoblast cells. Therefore, another possible function of NGF may be the

regulatory function of physiologically occurring apoptosis. Here again, a cer-

tain level of NGF at the fetomaternal interface would be essential for

progressing pregnancy.
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Fetal Antigenic Immaturity

Allograft rejection is mediated by genes of the major histocompatibility

complex (MHC) which include the human leukocyte antigen (HLA) genes.

Though maternal-fetal HLA incompatibility is not deleterious during preg-

nancy, the survival of the fetal allograft in mammalian pregnancy remains a

paradox. In brief (since this topic has been addressed more extensively in other

chapters of this book), adaptive mechanisms concerning the expression of

MHC molecules in fetal tissue include the lack of classical MHC antigens on

placental cells. Instead, fetal extravillous cytotrophoblast cells, which directly

contact and invade maternal uterine tissue, express an unusual combination of

one classical and two nonclassical MHC I molecules, HLA-G, HLA-E and

HLA-C [35–37]. Expression of HLA-G protein occurs exclusively in cells at

the fetal-maternal interface. Existence of at least five isoforms suggests that

there may be multiple functions of HLA-G, including antigen presentation,

immunomodulation of maternal T cell populations as well as permission of

fetal allograft tolerance [38, 39]. The absence of MHC II molecules on tro-

phoblast layers appears to be an important feature for fetal survival. IFN-� is

one of the most potent inducers of MHC II antigens, which may also be applic-

able for trophoblastic tissue. Imbalances of the local cytokine profile with

increased IFN-� production may effect placental MHC II expression resulting

in the initiation of fetal rejection [40]. Interestingly, in isolated microglia cells,

MHC class II inducibility by IFN-� is enhanced by neutralization of NTs, while

the presence of NGF, BDNF or NT-3 inhibits this process [41].

Accordingly, in kinetic studies with treatment of stressed pregnant mice

with neutralizing antibodies against NGF, it was observed that a moderate anti-

body dose had a pregnancy protective effect by lowering the abortion rate.

However, animals treated with a high antibody dose presented an increased

abortion rate [Tometten et al., unpubl. data]. Based on the insights of Neumann

et al. [41], it could be hypothesized that depriving the microenvironment at the

fetomaternal interface beyond a certain level of NGF might result in an induc-

tion of deleterious MHC II expression on trophoblast cells, further indicating

that balanced NGF levels are essential for pregnancy maintenance.

Interactions between Neurotrophins and Progesterone

For successful implantation and maintenance of pregnancy, the steroidal

hormone progesterone is indispensable. Adequate progesterone production by

the corpus luteum, the source of progesterone, is critical for the maintenance of

pregnancy until the placenta undertakes this function at 7–9 weeks of human
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gestation. Inadequate progesterone levels result in pregnancy loss in humans

and rodents [42, 43]. Progesterone is able to lower immune responses and to

displace the Th1/Th2 balance towards Th2 [44, 45]. By suppressing proges-

terone levels, psychoemotional stress is considered to inhibit female reproduc-

tion. Substitution of progesterone in stressed animals abrogates the abortogenic

stress effects by influencing the cytokine profile towards pregnancy-protective

Th2 [43, 46]. Many of the progesterone effects are mediated by progesterone-

induced blocking factor. Immunological functions of progesterone-induced

blocking factor include inhibition of NK cell activity and action on the cytokine

balance exerting antiabortive effects.

Interactions between reproductive hormones and both NTs and their recep-

tors in the central and peripheral nervous system are well documented [47–50].

Physiological changes in the levels of gonadal steroids affect central trkA levels

and progesterone treatment upregulates NGF in rodent uterus [51, 52].

Ovariectomized mice exhibit a decreased uterine NGF protein content, while

estrogen and/or progesterone treatment of the respective animals restore NGF

protein levels. Keeping these effects of progesterone on NGF expression in

mind, it may be assumed that progesterone regulates local NGF content in preg-

nant uterine tissue. This hormone-NT interplay would hence extend proges-

terone-protective functions in pregnancy by providing the required and

balanced NGF concentration at the fetomaternal interface.

Indoleamine 2,3-Dioxygenase Expression and NGF

Additionally to immunosuppressive mechanisms at the fetomaternal inter-

face protecting the conceptus, tryptophan catabolism has been proposed as one

potential component. Indoleamine 2,3-dioxygenase (IDO) is an enzymatic pro-

tein that catabolizes tryptophan. Inhibition of IDO by application of 1-methyl-

tryptophan to pregnant mice results in extensive inflammation, hemorrhagic

necrosis and T cell infiltrate at the fetomaternal interface. Strikingly, transgeni-

cally altered DCs with high IDO expression lower the tryptophan concentration

and suppress allogeneic T cell responses [53], possibly by depriving T cells of

tryptophan [54]. IDO is synthesized and secreted by human trophoblast cells

and, hence, may be required for pregnancy maintenance. Due to the IDO

expression on trophoblasts, it has been suggested that the fetus protects itself by

suppressing rejection by the maternal T cells. However, it has recently been

revealed that mice with defective IDO genes have successful pregnancies, indi-

cating that IDO activity is not the sole mechanism to protect the allogeneic

fetus from rejection. Other mechanisms, perhaps redundant in normal mice,

seem to compensate for the loss of IDO activity during gestation [55].
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Besides its implication in T cell response, tryptophan has been shown to

stimulate NGF production in cultured mouse astroglial cells in a dose-dependent

manner [56]. No data are available about tryptophan-metabolic pathways of NGF

production in immune cells. However, high tryptophan levels – due to low IDO

activity in threatened pregnancies – could result in an increased local NGF pro-

duction; we hypothesize that this contributes to a deleterious pregnancy course.

Adverse Pregnancy Outcome: Stress and Pregnancy Loss

Beside ‘classical’ causes of pregnancy loss – genetic, endocrinological,

anatomic, microbiological and allo-/autoimmune causes – social-environmental

influences such as stress have been linked to spontaneous abortion as an

adverse reproductive outcome [57]. Increased stress perception correlates with

rejection of chromosomally normal embryos, and improved stress coping by

psychotherapeutic intervention results in uncomplicated pregnancy outcome.

Stress-related hormones, which are partially also pregnancy related, interact

with peripheral and local immune cells resulting in changes of cytokine pro-

duction. By disturbing the required balanced interaction of nervous, endocrine

and immune system, the effects on pregnancy induced by stress constitute con-

siderable mechanisms in pregnancy failure [58].

In this context, the well-established concept of neurogenic inflammation

ought to be mentioned. By definition, local inflammatory reactions in response

to infection, toxins or trauma involve nerves which contain inflammatory neu-

ropeptides, also referred to as neurogenic inflammation. Further, psychological

or physical stress can cause neurogenic inflammatory responses by release of

neuropeptides from sensory nerves and consecutive activation of mast cells

and/or other immune cells. The most potent agent is neurotransmitter substance

P (SP) which mediates extravasation from postcapillary venules, increases

blood flow due to dilatation of arterioles and acts chemotactically on polymor-

phonuclear leukocytes [59]. Functional SP receptors are expressed on various

immune cells including lymphocytes, macrophages, neutrophils and mast cells

[60]. Effects on divers immune responses such as T cell proliferation,

immunoglobulin synthesis, lymphocyte traffic, macrophage activation and mast

cell degranulation as well as stimulation of cytokine production, e.g. IL-6,

TNF-� and IFN-�, are part of its functions.

Attempting to further elucidate the precise underlying mechanisms by

which stress affects pregnancy, it is now well established that stress exposure

during the peri-implantation period results in a decrease of pregnancy-protec-

tive Th2 cytokines and an increase of abortogenic Th1 cytokines, e.g. IL-12,

TNF-� and IFN-� [61, 62]. In humans, high stress scores in women with
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abortion correlate with increased numbers of local mast cells, CD8� T cells

and TNF-�-expressing cells. Further, SP is involved in the pathway of stress-

induced pregnancy failure. The abortogenic Th1 cytokine profile observed in

stressed pregnancies is mediated by SP-dependent pathways. Peri-implantation

stress exposure of pregnant mice results in SP-mediated activation of uterine T

cells, mast cells and macrophages, an increase of local TNF-� levels and a

decrease of protective TGF-�.

Interactional functions between NGF and both stress and SP have been

intensively studied and revealed that NGF participates in specific neuroen-

docrine/endocrine functions [63]. Using different stressors, several studies in

humans and rodents demonstrated an increase of NGF due to stressful events,

e.g. the first parachute jump, exposure to aggressive behavior or the chronic

stress of caregivers. NGF is considered as an alerting signal for priming the

immune system by the brain towards noxious inputs. The inflammatory milieu

is characterized by high local SP and NGF levels [64, 65]. SP has been shown

to directly induce NGF mRNA expression and secretion of bioactive NGF in

distinct human and murine cells [66]. In turn, in vivo and in vitro studies

revealed NGF as activator of SP synthesis and release, proposing a regulatory

function for NGF during inflammatory processes [67]. Due to these bidirec-

tional interactions, an interdependency between NGF and SP has been assumed

pointing to a functional link between NGF and neuropeptides [68]. Recently,

we could prove the hypothesis of interactional relationships between abortion

induced by stress, SP and NGF. Examining decidual tissue of stressed mice,

both NGF and functional trkA-expressing cells and mRNA levels are increased,

which was also observed in SP-injected mice, supporting the above-mentioned

insights [19]. The increase of decidual NGF caused by exposure to a stressor

seems to be mediated by SP. Further, increased NGF levels after stress exposure

contribute to the deleterious shift of cytokines from protective Th2 (IL-4, IL-

10) to inflammatory Th1 (TNF-�, IFN-� and IL-12). As mentioned earlier,

these stress effects can be abrogated by treatment of stressed animals with an

adequate dose of neutralizing NGF antibodies [Tometten et al., unpubl. data].

Taken together, these studies provide strong evidence for an additional link in

the neuroimmunological pathogenesis of abortion induced by stress.

Concluding Remarks

Successful pregnancy outcome requires a balanced interplay between

various systems, e.g. the immune, nervous and endocrine system. NGF may be

involved in maintaining pregnancy and/or – if exaggerated – inducing preg-

nancy failure (fig. 1a). Due to the pleiotropism of NGF, we hypothesize that a
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well-balanced, progesterone-mediated level of NGF is required for successful

pregnancy outcome (fig. 1b). Due to its functional role, insufficient levels of

NGF may provoke fetal rejection by a lack of MHC II downregulation (fig. 1c).

Future work on NGF and other NTs and their respective receptors in pregnancy

is urgently needed and we hope that this overview will foster recognition of NTs

in basic science and clinical research in reproductive biology.
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Fig. 1. Hypothetical scenario of the role of NGF in reproduction: NGF-dependent

pathways. a High levels of NGF at the fetomaternal interface due to e.g. stress or high tryp-

tophan/low IDO activity induce neurogenic inflammation, characterized by an increase of

substance P, recruitment of immune cells and bias towards a Th1 cytokine profile, which

results in fetal injury and rejection. b Adequate levels of NGF, possibly regulated by proges-

terone, contribute to the tolerogenic Th2 cytokine profile. c Deprivation of local NGF results

in increased expression of abortogenic MHC II molecules on the trophoblast, hence maternal

immune cells recognize and reject the fetus.
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Abstract
The placenta has a unique structural organization that allows fetal cells expressing pater-

nal alloantigens to establish a peaceful cohabitation with the maternal immune system. The

fetal cells are continuously exposed to the humoral and cellular components of the maternal

immune system present in the maternal blood that circulates in the intervillous space and in

the decidual vessels. This review deals with the role played by the complement system at the

placental level both in physiological and pathological conditions of pregnancies. Complement

components found in the placental tissue derive to a large extent from blood circulating in pla-

cental vessels. However, some complement components may also be produced locally by

macrophages and other cell types. Deposition of complement components at tissue level is

usually found in association with inflammatory diseases. This is not the case in placentae in

which deposits of complement components can also be documented in physiological condi-

tions not resulting in fetal damage. Protection of the semiallogenic human conceptus against

maternal complement activation products is achieved by surface expression of complement

regulators that act at different steps of the complement sequence. These complement regula-

tors are localized in a strategic position on the surface of villous trophoblast protecting the

fetus from the damage that may derive from uncontrolled complement activation. However,

pathological conditions of pregnancies may lead to deposition of a higher amount of comple-

ment activation products that may exceed the protection of local complement regulators.

Copyright © 2005 S. Karger AG, Basel

Introduction

The complement system is an important component of innate immunity that

contributes to host defense acting either alone or, more often, in collaboration

The Complement System and Humoral Immunity in Pregnancy
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with other components of both the innate and acquired immune system. The

main function of the complement system is to control infectious agents and to

help remove immune complexes and apoptotic cells [1]. The active role of com-

plement in fulfilling this function is ensured by the widespread distribution of

complement components in the circulation and in various tissues and also by the

multiple biological activities of this system. These activities include opsoniza-

tion of the target and promotion of inflammation through the recruitment and

activation of leukocytes. Although the complement system is organized to

distinguish self from nonself, massive activation of complement leads to the

release of biologically active products that may cause local damage as a result of

a direct cell or tissue destruction or following complement-medi ated leukocyte

infiltration. The consequences may be deleterious in all tissues and organs,
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but become particularly dangerous in organs, like the placenta, the integrity of

which is critical for the survival of the fetus.

In this review we describe the organization that the complement system

has adopted in the placenta to accomplish its important task of an efficient

defense system and to avoid the damaging effect that may derive from an

uncontrolled activation of the system.

The placental tissue contains a fully organized complement system that is

mostly contributed by the complement components present in the maternal

blood circulating in placental vessels, although some components are likely to

be produced locally. The conditions for the complement activation at the pla-

cental level are essentially similar to those encountered in any other tissue and

include immune complexes and infectious agents. However, the placenta is a

newly formed organ that undergoes an intense process of tissue remodeling.

This inevitably leads to the generation of debris that can activate the comple-

ment system resulting in the release of potentially destructive activation prod-

ucts that need to be neutralized.

In humans the developing fetus is not exposed directly to maternal blood

except in one specialized organ at the fetomaternal interface, the placenta, the

newly formed organ at the uterine level that plays a key role in the mainte-

nance of local tolerance and allows the mother to accept the embryo until

completion of pregnancy. The villous trophoblast, the fetal side of the pla-

centa, covers a large surface area of the chorionic villi floating into the inter-

villous space and forms a continuous barrier that physically separates the

mother from the fetus allowing only a selective passage of soluble molecules.

The villous trophoblast bearing fetal antigens is continuously exposed to

maternal immunocompetent cells present in the blood that circulates in the

intervillous space. Syncytiotrophoblast and villous cytotrophoblast have also

been found in the maternal circulation and in the lung and provide additional

antigenic stimuli of fetal origin for the mother during pregnancy. Trophoblast

is not only present on the surface of chorionic villi, but trophoblastic cells are

found to be widely diffuse also in the decidua where they contribute to further

stimulating the maternal immune system with fetal antigens. Finally, the

endovascular trophoblast enters the spiral arteries forming a plug where the

arteries open out into the intervillous space and from there these cells move

upward replacing the endothelium of the arterial wall [2, 3]. Pregnancy is a

unique physiological condition characterized by close physical contact of the

maternal immune system with fetal cells expressing paternal alloantigens,

which should therefore be recognized as foreign to the mother. The contact

between fetal and maternal cells has in general no pathological consequence

and does not trigger a maternal immune reaction that leads to fetal death.
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The Complement System

The complement system is an effector of nonspecific humoral immunity and

it is composed by a group of about 35 proteins either soluble in plasma or associ-

ated with cell membranes. The complement proteins are mainly synthesized by

several cell types including hepatocytes, monocytes, tissue macrophages, fibrob-

last, endothelial cells, and adipocytes. Cells from various tissues have also been

shown to secrete complement, such as gastrointestinal, urogenital and lung

epithelial cells, synoviocytes, and astrocytes. In the genital tract the human

endometrium secretes C3 and factor B and the secretion of C3 by rat endometrial

epithelial cells appears to be regulated by estrogen [4].

The complement system needs to be activated in order to express lytic and

nonlytic activities that are critically important for the host protection from

pathogens and other noxious agents. Since inappropriate activation can cause

disease, tight regulation of the activation process is required to prevent tissue

damage. Complement activation occurs via classical, lectin and alternative

pathways. The classical pathway is triggered by immunocomplexes or other

nonimmune-activating factors recognized by C1q, which normally circulates

in blood as a complex with the two serine protease zymogens, C1r and C1s.

[5, 6]. Conversely, the recently described lectin pathway [7, 8] utilizes man-

nan-binding lectin (MBL) to recognize mannose or N-acetylglucosamine on

the surface of bacterial pathogens. The structure of MBL is similar to that of

C1q and is normally associated in the blood with the zymogen form of the ser-

ine proteases MASP-1 and MASP-2 [9]. These activation pathways share C4

and C2, which are utilized to form the C3 convertase C42. The alternative

pathway initiates with the assembly of a C3 convertase on various cellular sur-

faces, including pathogenic bacteria, parasites, viruses, virus-infected cells

and fungi [10]. Factor B, P, D, C3b and the regulators factor I and H are

involved in this pathway. Activation of the late components of the complement

system from C5 to C9 represents the final step of all three pathways and leads

to the assembly of the terminal C complex (TCC). This is the first perforin

identified that inserts as membrane attack complex (MAC) into the cell target

causing cytolysis [11].

Since the main function of the complement system is to destroy foreign

pathogens, it is essential that it is tightly regulated at the key steps of initiation,

amplification and membrane attack [12] to avoid tissue injury. The regulator of

the initiation step of the classical pathway is the C1-Inh which inactivates C1r

and C1s. Other regulators are involved in the regulation of the amplification

step. Factor I cleaves C3b/C4b in the presence of cofactor proteins, such as the

membrane cofactor protein (MCP), factor H or the complement receptor type 1

(CR1). The decay-accelerating factor (DAF) accelerates the decay of the C3/C5
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convertases, while properdin (P) stabilizes the alternative pathway convertase.

The lytic activity of MAC is regulated in the fluid phase by clusterin and S pro-

tein and on the cell membrane by CD59, which blocks the full assembly of

MAC on the host cells.

Deposition of Complement Components on Placentae in
Physiological Pregnancies

Deposition of complement components at the tissue level is usually seen

in association with diseases. This is not the case with the placenta where

deposits of complement components can also be documented in physiological

pregnancy. Since trophoblast cells express paternal antigens, these are the

cells that can be a potential target of complement-fixing maternal alloanti-

bodies. Syncytiotrophoblast and endovascular trophoblast are in contact with

maternal blood and syncytiotrophoblast microvilli embolize into the maternal

circulation [13].

The first evidence for the presence of complement at the fetomaternal

interface was provided by Faulk et al. [14], who analyzed term and preterm

normal human placentae for the presence and distribution of complement

components by immunofluorescence and documented deposits of C1q, C4,

C5, C6 and C9 in human placenta. These complement components were

found to be associated with some stromal cells and areas of fibrinoid necrosis

within the trophoblastic mantle and were also seen in the wall of fetal stem

vessels. In the case of syncytiotrophoblasts, deposits of these proteins were

not seen on the apical plasma membrane but were found to be colocalized

with fibrin on trophoblast plasma membranes and perivillous fibrin. Sinha

et al. [15] found fluorescence staining C1q in the larger fetal stem vessels of

placentae and in stromal cells of chorionic villi. These authors reported a dis-

tribution of C4 similar to that observed by Faulk et al. [14] whereas C3d and

C9, but not C4, were seen associated with the trophoblast basement mem-

branes. This suggests that the activation pathways leading to complement

deposition on trophoblast basement membrane and on perivillous fibrin may

be different [15, 16].

Complement components have also been reported to be deposited on spiral

arteries in normal pregnancy [17, 18]. Wells et al. [18] analyzed formalin-fixed

sections of hysterectomy specimens of normal pregnancies ranging between

4 and 40 weeks of gestational age for the presence of C1q, C3d, C4, C6 and C9.

They observed deposits of these components on spiral arteries with the most

intense staining for C3d and C9 suggesting that the complement system is

likely to be activated through the classical pathway and that a humoral immune
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response leading to complement activation may be involved in the physiological

changes occurring in spiral arteries in the early stage of pregnancy [18].

The TCC represents the end product of complement activation and

deposits of this complex can easily be detected using antibodies directed

against a neoantigen exposed on the polymerized C9 of the complex, but not

on the native molecule. This complex was found to localize in the fibrinoid

material of the decidua of the basal plate, in the stroma of the chorionic villi

and in the vessel wall of term placentae as subendothelial deposits [19]. The

finding of TCC in normal placentae was not unexpected as both early and late

complement components are present in term placentae although these studies

did not provide conclusive evidence for tissue deposition of the late compo-

nents in the activated form [19]. TCC deposits did not colocalize with S pro-

tein, which is usually associated with the cytolytically inactive complex,

indicating that some degree of continuing C activation occurs at the placen-

tal level.

The exact mechanism of complement activation leading to deposition of

TCC in normal placenta has not yet been clarified. One possibility is that

complement is activated by cellular and tissue remnants made available

locally by tissue turnover. Mitochondrial membranes, lysosomal enzymes,

cytoskeletal intermediate filaments and red blood cell membranes are exam-

ples of potential local activators of complement. It is possible that mild

deposits of TCC in normal placenta are an expression of a general phenome-

non occurring in normal tissue, as they may also be observed in normal

human kidney [11].

Regulators of the Complement System in Human Placenta

The protection of the semiallogenic human conceptus against maternal

complement activation products is achieved by the surface expression of com-

plement regulators that act at different steps of the complement sequence [20].

The complement regulatory protein DAF or CD55 controls the C3 convertase,

while MCP and CR1 are cofactors of the C3b inactivator that cleaves C3b caus-

ing degradation of this molecule. CD59, like DAF, is bound to the cell mem-

brane through a GPI anchor and neutralizes the cytolytic activity of the complex

inhibiting the polymerization of C9 within the MAC. All these complement reg-

ulators are present in placenta from at least 6 weeks of gestation until term.

As a consequence of the direct contact with the maternal blood, syncy-

tiotrophoblast is well protected from complement attack by expressing the three

regulatory molecules DAF, MCP and CD59 [21, 22]. In addition, these fetal

cells are able to bind S protein or vitronectin, an inhibitor of the terminal com-
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plex, from the maternal plasma as a further means of protection [19]. Villous

trophoblast expresses very little DAF probably because these cells need less

protection from complement attack as compared to syncytiotrophoblast. To

demonstrate the protective function of the regulatory molecules, we tested syn-

cytiotrophoblast for its susceptibility to complement-dependent killing using

either a complement-fixing antibody-directed syncytiotrophoblast to activate

complement through the classical pathway or the cytolytically active MAC in

the reactive lysis system [23]. The addition of blocking antibodies to comple-

ment inhibitors in both situations resulted in increased cell lysis and the effect

was additive when the antibodies were combined in blocking experiments.

Interestingly the presence of DAF, MCP and CD59 has also been detected on

extravillous trophoblast. We have found that, while CD59 is distributed on all

types of trophoblast, DAF and MCP were preferentially expressed on giant

decidual cells [24] although these cells are not directly exposed to maternal

blood except for the endovascular trophoblast.

The effect of complement on trophoblast is not necessarily cytotoxic and

may result either in impairment or in stimulation of the cell function caused by

the MAC. It is now well established that the complex formed by the assembly of

the five terminal components can be inserted into the membrane of several cell

types in a sublytic form exhibiting noncytolytic activity [22].

Complement Deposition on Placentae in 
Pathological Pregnancies

The role played by complement in the subinvolution of the uteroplacental

arteries, a well-recognized cause of hemorrhage in the postpartum period, was

investigated by Andrew et al. [25]. Subinvoluted vessels have no endothelial

lining whereas uteroplacental arteries normally reendothelialize in the third

trimester of pregnancy. Interstitial and occasionally endovascular trophoblast

persisted within subinvoluted vessels while these vessels normally reendothe-

lialize during the third trimester so that endovascular trophoblast is not nor-

mally present at term. Andrew et al. [26] demonstrated that deposition on C1q,

C3d, and C4 was absent in subinvoluted vessels and C9 was detected focally. It

is therefore debatable whether vascular complement deposition in abnormal

pregnancy is truly immunopathological. Altemani et al. [27] examined placen-

tae with villitis of unknown etiology for the presence and distribution of C1q

and C3d and showed the presence of C1q only in the inflamed villi with a

diffuse distribution of C1q in the stroma of these villi.

Placentae obtained from preeclamptic patients have been examined for the

presence of complement components and complement activation products. These
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were detected by Sinha et al. [15] in substantial amounts on preeclamptic placen-

tae suggesting that immune processes may be operative in the pathophysiology of

this clinical condition. We have extended these observations documenting a

marked deposition of TCC both in the decidua and in the villi.

In conclusion, deposition of complement occurs physiologically in placenta

indicating that it may be compatible with a physiological progression of preg-

nancy. It may be involved in the promotion of cell-cell interaction and vascular

remodeling. Under these physiological conditions, the presence of complement-

regulatory proteins is absolutely essential to protect fetal cells from an uncon-

trolled activation of the maternal complement. This protection is overcome in

pathological situations associated with deposition of a substantial amount of

complement activation products.
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Abstract
In normal conditions, a simple change in the pattern of cytokines towards a Th2

response is associated with the production of aggressive antibodies. This fact could not com-

pletely explain phenomena such as the fetal survival or the chronicity of certain infections.

However, it has been demonstrated that Th2 cytokines increase the proportion of asymmetric

antibodies, which are unable to activate effector immune mechanisms (complement fixation,

clearance of antigens and phagocytosis). Investigations of asymmetrically glycosylated anti-

bodies demonstrated that these IgG molecules have an extracarbohydrate in one of the Fab

regions. This glycosylation affects their antigen interaction turning them into a functionally

univalent and blocking antibodies. It has been established that their synthesis is increased

under different physiopathological situations involving Th2 responses: chronic infections by

extracellular microorganisms, pregnancy and allergic processes. In this review we summa-

rize the experiments performed by our research group over the last years as well as the

advances made concerning the role and mechanism of asymmetric antibodies.

Copyright © 2005 S. Karger AG, Basel

The Role of Asymmetric Antibodies

In 1972 we demonstrated in bovine serum albumin (BSA)-inoculated rab-

bits an immune response characterized by the production of precipitating anti-

BSA IgG antibodies, accompanied by 10–20% of IgG antibodies of the same

isotype but exhibiting different immunochemical and biological properties [1].

These antibodies lack the ability to fix complement and to form insoluble anti-

gen-antibody complexes and have also been reported in humans and other

mammals inoculated with several antigens [2–5]. These IgG molecules have
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two antigen-combining sites of dissimilar affinity: one paratope has a high

affinity with a Ko (medium equilibrium affinity association constant) similar to

the precipitating antibody, and the other paratope with an affinity for the hapten

that is roughly 100 times lower [6]. As a consequence and although they can

combine with antigens, they are not capable of triggering immune effector

mechanisms. The functional univalence of these antibodies is due to steric hin-

drance in one of the paratopes due to the presence of an oligosaccharide residue

of the high-mannose type, inserted in the Fd fragment of the H chain of one of

the Fab regions [7] (fig. 1). Taking this into account, it is possible to isolate

these asymmetric IgG molecules from the total IgG present in normal or

immune sera using concanavalin A-Sepharose B chromatography [8]. We have

demonstrated that a proportion of 10–20% of the IgG molecules in nonimmune

sera is asymmetric [9].

Asymmetric IgG antibodies behave as both univalent and blocking ones do.

This property enables them to protect the antigen from the aggression by diverse

immune mechanisms triggered during the immune response. Therefore, it could

be assumed that the existence of these antibodies might be either beneficial or

Asymmetric IgG

L chain

H chain

High mannose-type 
oligosaccharide

Fab

Paratope

Fig. 1. Asymmetric IgG molecule. One of the Fab fragments is hindered by a high

mannose-type oligosaccharide.
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harmful to the host, depending on the ‘self’ or ‘nonself’ nature of the antigen.

Upon binding self-antigens they could act as protective, regulating antibodies

[10]. On the other hand, in certain chronic bacterial and parasitic diseases, the

presence of blocking antibodies may favor the evasion mechanisms developed

by the pathogen perpetuating the process and leading to chronicity [11].

The percentage of asymmetric antibodies increases in particular situations,

for example, following repeated inoculations of particulated antigens and cell

suspensions [12]. Asymmetric IgG antibodies react in a competitive manner

when they are mixed with precipitating symmetric antibodies of the same speci-

ficity, and therefore, the final effect observed will depend on the percentage of

each IgG population in the mixture.

By using hybridoma cultures we demonstrated that both symmetric and

asymmetric IgG molecules are synthesized by the same clone [13]. Besides, the

treatment with endo-N-�-acetylglycosaminidase H, an enzyme that removes

oligosaccharides attached to the Asn residue of the protein, transforms the

asymmetric IgG into precipitating antibodies, indicating that glycosylation of

one of the paratopes of the IgG molecule is a posttranslational phenomenon [7].

Asymmetric Antibodies and Pregnancy

The central role of cytokines in the immune response has been emphasized.

It is considered that a Th1-type cytokine profile (IL-2, INF-�, TNF-�) activates

cytotoxic T lymphocytes, whereas a Th2-type cytokine profile (IL-4, IL-5, IL-6,

IL-10, IL-11, IL-13) is an inductor of B lymphocytes and noncytotoxic T lym-

phocytes [14]. It was also postulated that Th1 responses are suppressed during

pregnancy; this suppression is accompanied by local expression of Th2

cytokines in placental tissue that may be beneficial for fetal survival [15].

It should be borne in mind that a Th2-type response means antibody pro-

duction by B cells, and that most of these antibodies, especially those of the IgG

class, can fix complement and are involved in other effector immune mecha-

nisms such as phagocytosis and antibody-dependent cell cytotoxicity, among

others. Upon binding to antigen epitopes these antibodies trigger the mecha-

nisms that lead to the antigen degradation process. Taking this into account, a

change in the cytokine profile involved in Th1- or Th2-type responses could

have deleterious effects on the normal course of pregnancy.

In murine pregnancy, antibodies with antipaternal specificity were

detected both in serum and fixed on the placenta [16]. These murine antibodies

were predominantly of the IgG1 subclass, a non-complement-fixing molecule

that can act as a ‘facilitating’ antibody. Bell and Billington [17] analyzed the

participation of the humoral immune response in pregnant females and the
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predominance of antipaternal blocking IgG antibodies was demonstrated. These

findings would indicate that only blocking antibodies, in the context of a Th2-

type response, could have an active participation in protection of the fetus dur-

ing pregnancy. However, in humans and other species, it has been demonstrated

that serum antipaternal antibodies having blocking properties are mostly of the

same IgG isotypes that usually fix complement.

Considering the antigen-protective properties, asymmetric antibodies

could be of importance in the mother-fetus relationship. Studies carried out in

our laboratory in 1990 showed that multiparous women, during the first

trimester of pregnancy, had a marked increase in asymmetric IgG in serum and

that in IgG isolated by 4 M KCl treatment of term placenta homogenates the

asymmetry percentage reached 60–70%. When the antipaternal lymphocyte

activity was investigated by indirect immunofluorescence (IIF) in asymmetric

and symmetric IgG isolated from placenta, antibody activity was located in

both immunoglobulins, in a 5:1 ratio, indicating the prevalence of asymmetric

antibodies in this immune response. We also demonstrated that serum levels of

asymmetric IgG decrease after delivery and return to baseline levels within

20–30 days [18].

Even though in primiparous females the increase in asymmetric IgG in

serum is moderate and no paternal antilymphocyte antibodies are detected by

IIF, this does not mean that the mechanism suggested for multiparous females is

not operative in primiparous ones. The cause lies in the sensitivity of the sero-

logical method normally used for their detection. An antibody concentration of

about 1.5 �g/ml (10–8 M) or 10–11 mol/ml, the sensitivity limit of IIF, multiplied

by Avogadro’s number (6.2 � 1023), corresponds to 6 � 1012 molecules/ml or

3 � 1016 molecules in the bloodstream. This number is more than sufficient to

block all the possible epitopes present in a human placenta, with a total number

of cells calculated to be 1012, each one bearing 104 epitopes, not all of which are

related to paternal antigens.

The Synthesis of Asymmetric Antibodies and the Placenta

The participation of antipaternal asymmetric IgG antibodies in the mainte-

nance of a successful mother-fetus relationship was demonstrated but the

question is how the mechanism of their synthesis is modulated. Considering

that the placenta carries out many physiological functions during pregnancy, it

was investigated whether the products synthesized by such tissue cells could

have some participation in the regulation of the synthesis of those protective

antibodies. For this purpose homogenates of human placenta were cultured

in RPMI 1640 separating the placental supernatants (PS) after 72 h. Two
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hybridomas producing different proportions of asymmetric and symmetric

IgG1 and IgG2a antibodies, respectively, were supplemented with variable

quantities of PS and incubated at 37�C. After 3 days of incubation, the percent-

age of asymmetric IgG antibodies was determined. A considerable increase in

the proportion of these molecules was observed, reaching a peak value of

5–10% PS. When 20% or more PS was added, the proportion of asymmetric

IgG antibodies did not increase [19].

These results were confirmed by in vivo studies. Two groups of Fischer

rats were inoculated subcutaneously with ovalbumin (OVA) and one of the

groups received, prior to inoculations with OVA, several doses of PS by the

intraperitoneal route. All animals were bled to determine the percentage of

symmetric and asymmetric anti-OVA IgG antibodies. The results obtained

showed an increase in the proportion of asymmetric antibodies in animals

injected with PS, confirming the results obtained in vitro [20].

In order to isolate and identify the placental factor responsible for the phe-

nomenon described PS from several human placentae from multiparae obtained

by cesarean surgery were concentrated and filtered through Sephacryl-200.

Several peaks were obtained, their protein concentrations adjusted to the same

value and their activities tested by addition to hybridoma 112-B4 (which pro-

duces monoclonal anti-DNP antibodies) at different concentrations, followed

by evaluation of the proportion of asymmetric anti-DNP IgG antibodies.

Several peaks were analyzed, and only a protein peak of a molecular weight of

23–27 kDa was responsible for this effect.

IL-6 and Asymmetric Antibodies

Knowing that IL-6 is associated with the modulation of glycosyltrans-

ferase activity by increasing the glycosylation rate of diverse proteins, and that

its molecular weight (27 kDa) is similar to that of the protein purified from PS,

assays were performed in order to establish whether both IL-6 and the 27-kDa

PS fraction were related. In another assay, the 27-kDa protein peak or IL-6 was

added to hybridoma cultures. The increase in the proportion of asymmetric IgG

antibodies was the same in both cases, displaying maximal efficiency when

added at 20 �g/ml (fraction of molecular weight 27 kDa) or 200 U/ml (rhIL-6).

This effect was abolished by previous addition of an anti-IL-6 serum to the cul-

ture medium or by addition of a high concentration of the 27-kDa fraction

or rhIL-6 [21].

Resorption rate of the CBA � DBA/2 murine model usually provides the

opportunity to evaluate cytokine influence on the survival of the fetoplacental

unit. We demonstrated that at day 9.5 of pregnancy, CBA � DBA/2 fetoplacental



Asymmetric Antibodies 163

units secrete lower IL-6 levels than normal CBA � BALB/c. Although in vitro

cytokine production may not reflect accurately the in vivo situation, the present

results agree with the hypothesis that CBA � DBA/2 placentae are quantitatively

or qualitatively deficient in their production of Th2-type cytokines compared to

the non-resorption-prone CBA � BALB/c mating combination. In vivo inocula-

tion of 2,500 U of rhIL-6 was able to increase fetoplacental IL-6 levels up to

normal values (CBA � BALB/c fetoplacental IL-6 levels) and this autocrine

effect seems to be only local. Moreover, the same dose of rIL-6 was able to

decrease the fetal resorption rate as well as to increase the proportion of asym-

metric antibodies secreted by placental cells from 6-month-old multiparous

CBA � DBA/2 female mice. On the other hand, almost 100% of fetoplacental

units were aborted when CBA � DBA/2 females were treated with double doses

of rIL-6 (5,000 U) [22].

Furthermore, in normal pregnant women, and in agreement with the same

results obtained in animal models, we have also demonstrated an increase in the

percentage of asymmetric IgG molecules (38–47%). On the other hand, serum

levels in recurrent spontaneous abortion patients were not increased (15–18%).

When the recurrent spontaneous abortion women received lymphocyte

immunotherapy prior to pregnancy, the serum asymmetric IgG levels increased

[23]. These results are consistent with those obtained after repeated inocula-

tions of particulate antigens in rat and rabbit models, where a higher proportion

of asymmetric antibodies was found [16, 24].

When analyzing human placental tissues from first-trimester spontaneous

abortions, excluding anatomical, endocrinological, chromosomal or infectious

etiologies, we observed that syncytiotrophoblast cells expressed high levels of

IL-6, and gp80 and gp130 (the two components of IL-6R) [25]. The same

observations were also made when we analyzed murine resorption unit cells

from a high resorption rate in the CBA/J � DBA/2 mating combination [26].

The above-mentioned studies leave no doubt about the identity of the 27-

kDa peak, isolated from human placenta culture supernatants, with IL-6, which

is the main responsible factor for the glycosylation of asymmetric IgG mole-

cules, synthesized by the hybridoma. In all likelihood, this is the product that

regulates the quality of the humoral immune response during pregnancy, play-

ing a major role in the preservation of the maternofetal relationship. Interleukin

regulation of asymmetric IgG synthesis by isolated placenta B cells was also

analyzed. In these experiments we showed that the highest increase in asym-

metric antibody synthesis was observed when IL-6 was added to placental B

lymphocyte cultures in combination with IL-4 and IL-10. Nevertheless, when

IL-4 or IL-10 alone or in combination were added to cultures, asymmetric IgG

production was not significantly different from unstimulated control cells [27].

In this study we observed that the effect of interleukins on asymmetric IgG
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synthesis by placental B cells was variable depending upon each cytokine being

analyzed separately or in combination.

Some authors have reported that the hormonal microenvironment during

pregnancy could contribute to a Th2 response development [28, 29]. In addi-

tion, indirect effects of progesterone on in vitro asymmetric antibody synthesis

have been shown [30]. The complex expression patterns of interleukins occur-

ring in pregnancy, and even more so, the possible dose-dependent opposite

effects of a cytokine and its precise location have been analyzed by Chaouat

[31], among others [32, 33].

Intracellular Mechanisms of Asymmetric IgG Glycosylation

Taking into account this evidence the next question to be answered was

how does IL-6 modulate an increase in the glycosylation rate of IgG molecules.

This glycosylation mechanism takes place during the heavy chain translation in

the endoplasmic reticulum of the antibody-producing cells where the UDP-Glc

glycoprotein glucosyltransferase (GT), an enzyme involved in the quality con-

trol and folding of glycoproteins, participates. In order to analyze modifications

in the activity of this enzyme we employed a mouse hybridoma that was cul-

tured in the presence of IL-6 and dexamethasone, two modulators of the asym-

metric antibody synthesis. We observed that IL-6 was able to upregulate both

the in vitro GT activity and the asymmetric molecule synthesis, while dexam-

ethasone showed an inhibitory effect on both parameters. The correlation analy-

sis between GT activity and asymmetric antibody synthesis found in this in

vitro model suggests that GT is involved in the synthesis of asymmetric anti-

bodies. From this bulk of evidence we can hypothesize that IL-6 secreted by

trophoblasts and other cell types could promote changes in immunoglobulin H

chain folding by modulating GT activity in B lymphocytes, exposing new

sequons and facilitating their glycosylation. As a result of this process an

increase in antipaternal asymmetric IgG antibodies during gestation is observed

[34]. Moreover, we have also demonstrated an enhanced in vitro hsp72 expres-

sion induced by IL-6. It is tempting to speculate that hsp72 might act as an

intracellular intermediate product in the putative mechanism [35].

According to these results, we have hypothesized that during pregnancy, in

the context of a predominant Th2 immune response, where inhibition or no acti-

vation of components of the cellular immunity occur, the quality of the IgG anti-

bodies synthesized is modified by IL-6 of placental origin. When the levels of

IL-6 secreted by placental cells are low (normal), there is a preferential synthesis

of asymmetric glycosylated antibodies, which have a blocking activity and par-

ticipate in the protection of the fetal antigens against the aggressive biological
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mechanisms of the immune response [36]. This could be one of the various

mechanisms that facilitate an immunological symbiosis between mother and

fetus. Neither lower nor higher levels of IL-6 than the normal ones can enhance

the blocking antibody synthesis. Therefore, with an abnormal level of IL-6, there

is a predominance of aggressive antibodies (fig. 2).

It was also of interest to evaluate whether the modulation during pregnancy

of a humoral immune response with the predominance of asymmetric IgG anti-

bodies was related exclusively to antigens of paternal origin or whether it was a

more general phenomenon. To assess this issue, virgin and pregnant Fischer rats

were inoculated with OVA. Virgin rats had a normal anti-OVA response,

whereas in pregnant rats an increase in the proportion of asymmetric IgG anti-

bodies was observed on day 14 which corresponds to two thirds of the gestation

period [20]. Similar results to those obtained in pregnant rats were observed in

Maternal immune response in 
successful pregnancy

Th1-type 
cytokines

Th2-type 
cytokines

IL-6
Normal
level 
(200–2500 U)

High or 
low level

CTL

I

II

B cells

Aggressive 
IgG AbAsymm.IgG

AbRegulatory 
components of 
the innate immunity

No aggression

Blocking of antigens 
and receptors

I IIand : deactivated aggressive vias

Inactivation of  cellular 

immune response

Fig. 2. In a successful pregnancy, the innate immunity participates by inhibiting some

aggressive mechanisms. In the adoptive immune response there is a shift in the cytokine

profile with the Th2 pattern (IL-4, IL-5, IL-10) predominating over the proinflammatory Th1

cytokines (IL-2, INF-�, TNF-�) that activate cytotoxic T lymphocytes (CTL), which down-

regulates the Th1 response. Furthermore, the Th2 response activates B cells which secrete

either aggressor or blocking antibodies depending upon the modulatory effects of the IL-6

secreted by the trophoblast.
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virgin rats passively transferred with PS. By day 20 postpartum, anti-OVA

asymmetric IgG antibodies had decreased to normal levels. These findings indi-

cate that the modulation of an immune response with an increase in the propor-

tion of asymmetric IgG antibodies is a general phenomenon, restricted not only

to the antigens of paternal origin, and which ends after delivery with the expul-

sion of the placenta.

In conclusion, when asymmetric IgG antibodies are specific for self-

antigens, they are beneficial to the host, as they can exert regulatory functions.

In allergy manifestations, in some autoimmune diseases and especially during

pregnancy despite the fact that the antigens responsible for the process are for-

eign to the host, they also have a beneficial activity. When asymmetric IgG

antibodies are specific for the foreign aggressors, as occurs in chronic bacter-

ial and parasitic infections, the predominance of these antibodies proves harm-

ful to the host by blocking the antigens of the pathogen, facilitating its survival

and favoring chronicity.

Considering that during pregnancy there is a preferential synthesis of

asymmetric IgG antibodies by the mother, whatever the nature of the injected

antigen may be, routine vaccination in pregnancy to ensure the transfer of a

protective humoral immunity to the fetus is questionable.
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In Loving Memory

Professor Ricardo Margni was a well-known and respected

Argentinean basic scientist. In 1963, he founded the first Latin-American

molecular immunology department at the University of Buenos Aires. He

was past chairman of the Institute of Humoral Immunity Studies of the

National Council of Scientific and Technical Research and contributed to

several studies dealing with immunology of reproduction. He is also the

author of books and numerous scientific publications.

In 1970 he discovered asymmetric antibodies and then spent his

entire academic life analyzing the impact of these molecules on the suc-

cess or failure of pregnancy.

He died on December 15, 2004 at the ripe age of 83. He was still

working at his lab and sharing his ideas with his colleagues the day

before. We will miss him dearly.
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Gabriela Gutierrez
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Abstract
Reproduction is indispensable to evolution and, thus, life. Nonetheless, it overcomes

common rules known to established life. Immunology of reproduction, and especially the tol-

erance of two genetically distinct organisms and their fruitful symbiosis, is one of the most

imposing paradox of life. Mechanisms, which are physiologically used for induction of said

tolerance, are frequently abused by pathogens or tumors intending to escape the host’s

immune response. Understanding the regulation of immune responses in pregnancy and the

invasion of allogeneic fetus-derived trophoblast cells into the decidua may lead to new thera-

peutic concepts. In transplantation, knowledge concerning local physiological immunotoler-

ance may be useful for the development of new therapies, which do not require a general

immune suppression of the patient. In immunological disorders, such as autoimmune dis-

eases or allergies, immune deviations occur which are either prevented during pregnancy or

have parallels to pregnancy. Vice versa, lessons from other fields of immunology may also

offer new notions for the comprehension of reproductive immunology and may lead to new

therapies for the treatment of pregnancy-related problems.

Copyright © 2005 S. Karger AG, Basel

Tumor Immunology

Malignant tumor cells frequently express altered protein patterns which

are not recognized as ‘self’ by the host’s immune system [1, 2]. Thus, they are

potential targets for immune attacks. A variety of strategies used by tumor cells

to escape the host’s immune system are similar to those of trophoblast cells.

Conclusion
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Immune Escape through Modified Surface Characteristics
To avoid recognition through their tumor-associated antigens, several

tumors reduce the expression of classical HLA class I molecules [3]. Instead,

many malignant tumors, including melanoma, glioma as well as lymphoprolif-

erative, renal, breast and ovarian cancers, express nonclassical HLA molecules

similar to those found in trophoblast cells such as HLA-G, soluble HLA-G

(sHLA-G) or HLA-E [4–6]. This provides an advantage over tumor cells within

the same tumor, which do not express these molecules [7]. The introduction of

classical HLA I molecules into deficient tumor cells enhances T cell responses

[8]. Several tumors downregulate the expression of costimulatory molecules,

such as CD80 or CD86, a phenomenon also seen in trophoblast cells. In these

cases also, the introduction of the lacking molecules induces T cell responses

[8, 9]. Furthermore, the costimulatory molecule B7-H1 induces apoptosis in

activated T cells and is expressed in high concentrations on syncytiotro-

phoblast, cytotrophoblast and various tumors [9, 10].

Immune Modulations via Soluble Substances
Trophoblast cells express a wide spectrum of soluble factors to modify the

immune response of the host. These include, besides sHLA-G, a multitude of oth-

ers, the tryptophan-catabolizing and T cell-inactivating enzyme indoleamine

dioxygenase (IDO) and hormones such as �-human choriogonadotropin [11–13].

These factors are also expressed by a number of nontrophoblastic tumors [11, 13].

Furthermore, progesterone induces the production of an immunomodulatory

blocking factor in lymphocytes, and adequately coined progesterone-induced

blocking factor (PIBF) [14, 15]. PIBF is also released by numerous tumors and

can serve as a diagnostic tumor marker in most body fluids [16].

Invasion
Trophoblast cells display potent invasive capacities. The expression of sev-

eral matrix metalloproteinases is protooncogene regulated and allows for their

invasive expansion into the maternal host tissue [17]. Most tumors use similar

enzymes for invasion [18]. Regulation and intracellular signaling are also simi-

lar for trophoblast invasion and tumors, as can be recognized in the invasion-

promoting role of signal transducer and activator of transcription-3 (STAT3), a

regulatory molecule found in both several tumors, but also trophoblast

cells [19–22].

Pregnancy-Malignancy Interactions
Malignant diseases and pregnancy may occur simultaneously, but this is a

very rare event. The frequency was 0.32/1,000 deliveries in an US American

retrospective study analyzing the coexistence of cancer and pregnancy between
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1974 and 2002 in Chicago, Ill. All cancer patients had healthy babies [23].

Another study reports 3,500 annual cases of such a coexistence in the United

States, which is equivalent to 1/1,000 deliveries [24]. The most frequently

occurring tumors are breast cancer (1/3,000 deliveries), cervical cancer

(1.2/10,000 deliveries), malignant melanoma (frequency unclear) and lym-

phomas (1–6/6,000 deliveries). Generally, pregnancy and cancer do not affect

each other. Cytostatic cancer therapies are tolerated by mature fetuses and ther-

apeutic abortions are extremely seldom. Vertical transmission of cancer to the

conceptus is extremely rare and is up to 30% caused by melanoma and less 

frequently by leukemias, and breast and lung carcinomas [24].

Microbiological Immunology

Parasites
Parasites need to survive in a xenogeneic ambience. Extracellular para-

sites, especially helminths, have developed some escape mechanisms similar to

those of the conceptus. They are able to suppress inflammatory cytokines of

Th1 and Th2 type [e.g. IL-2, IL-5 and interferon-� (IFN-�)] in the host compa-

rable to pregnancy [25]. In contrast to pregnancy though, helminths usually

induce a strong increase of IgE production, but without atopic symptoms [26].

The underlying mechanisms seem to occur beyond the classical Th1-Th2 con-

cept and may be regulated by IL-10 producing innate effector and regulatory T

cells, a phenomenon which is also observed in pregnancy [27–29]. Intracellular

parasites, such as Leishmania, also use similar mechanisms. They live within

dendritic cells, from where they induce T cells to produce IL-4, IL-5 and IL-10

[30]. This expression correlates with their persistence, whereas induction of

IFN-� leads to their elimination [30].

Viruses
Viruses live intracellularly and need to protect their host cells from

immune attacks for a certain time span. Such an attack would release the virus

and make it a potential target for the host’s immune system. Many viruses

implement this requirement by downregulation or modification of HLA expres-

sion on host cells. This is most efficient, when they avoid presentation of virus

particles to cytotoxic T cells, but without activation of innate immune responses

through NK cells. For this aim, several viruses induce HLA I profiles similar to

those on trophoblast cells. The human cytomegalovirus downregulates surface

expression of most HLA isotypes, but not for HLA-C, HLA-E and HLA-G. In

the same manner, the human immunodeficiency virus and the human herpes

virus 8 suppress HLA expression, except for HLA-C and HLA-E in both cases.
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These findings are consistent with the role of HLA-C, HLA-E and HLA-G on

trophoblast cells for escaping innate immune responses [31].

Pregnancy-Infection Interactions
All infections are principally possible during pregnancy. Generally, the

maternal immune system responds similarly to that of nonpregnant individuals

during pregnancy, but a few exceptions exist. Infections during pregnancy have

several aspects. Generalized effects of infections, such as fever, weakness, gas-

trointestinal problems and malnutrition, may disturb pregnancy greatly, but not

directly due to immune reactions. Especially in cases of reproductive tract

infection, the placenta or fetus may be involved or harmed, possibly triggering

premature contractions or deliveries. Placental infections may lead to placental

damage associated with loss of function, release of inflammatory mediators,

induction of premature labor and subsequent preterm birth and transplacental

infection of the fetus [32]. In some cases, the immune response against the

germ may also activate decidual immune cells to work against the maintenance

of pregnancy. For example, abortions occur in mice infected with Leishmania
maior, when the parasite is rejected, while pregnancy supports survival of the

parasite [30, 33].

Transplantation

Rejection Mechanisms
Allogeneic transplantations of many organs and tissues are a routine

method in medicine. Without supplemental treatments transplants would be

rejected. Nonself proteins, and especially allogeneic HLA molecules are highly

immunogenic and capable of generating severe immune reactions in the host

which lead to rejection. Mainly cytotoxic T cells, T helper cells and NK cells,

but also all other immune cells of the host are involved in rejections [34].

Antirejection Therapies
It is necessary to suppress expected immune responses in order to avoid

rejections. The optimal requirements of drugs are to protect the graft maximally

while affecting the host’s immune system minimally so that susceptibility for

infections and tumors might be avoided. Pregnancy offers an almost perfect

model of a graft being tolerated locally by the immune system while simultane-

ously only marginally limiting general immunity. Factors which protect the

fetus may denote the potential for future drugs in immunosuppressive therapies

of transplantation patients.
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Similar to the presence of protective antibodies in pregnancy, such as

BA11 or asymmetric antibodies, the application of alloantibodies prior to trans-

plantation prolongs graft survival in mice, but the mechanisms of their action

are unclear [35–37].

Recent studies indicate a capacity of IDO, a main player for maternofetal

tolerance in pregnancy, to protect graft in allograft transplantation among

rats [38].

Pregnancy-Transplantation Interactions
Pregnancy is, with very few exceptions of liver insufficiency, a strict con-

traindication for transplantation. Transplantations accidentally performed dur-

ing pregnancy are extremely seldom. Both successful and nonsuccessful

transplantations with different pregnancy outcomes are reported. It can be

assumed that cases of failure are mostly not published and occur at a higher fre-

quency than reported in the literature. The high-dose application of immuno-

suppressive drugs may lead to a loss of control of trophoblast invasion and

disturb several fundamental functions of decidual immune cells. One case of a

hydatidiform mole following renal transplantation in early pregnancy is

reported and may have been related to such a loss of invasion control [39].

Cases of pregnancy several months or years after transplantation are much

more frequent and often successful. Doses of immunosuppression are much

lower than shortly after transplantation and, therefore, better tolerable. Thus,

pregnancy is not a strict contraindication for transplant patients anymore [40].

Autoimmune Diseases

Loss of Tolerance
Mechanisms of self-tolerance and tolerance against the semiallogeneic

fetus are regulated on different levels. Self-tolerance is mainly induced through

T cell selection and depletion in the thymus, whereas tolerance to fetal cells is a

peripheral event. Thus, the reasons for a loss of tolerance against self-antigens

initiating an autoimmune disease and against nonself antigens are manifold and

mostly distinct.

Immunosuppressive Therapy
Nonetheless, knowledge of the physiological tolerance of the fetus may lead

to the development of therapeutic strategies for treatment of autoimmune dis-

eases that do not require a general suppression of the immune system, especially

in the case of organ-specific reactions. The problems are similar to those of ther-

apies following transplantation. The above-mentioned pregnancy-supporting
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IDO is currently under successful experimental investigation in animal models

for therapeutic approaches to induce tolerance in autoimmune diseases, such as

diabetes or autoimmune encephalomyelitis [41, 42].

Pregnancy-Autoimmune Disorder Interactions
Pregnancies in women with autoimmune diseases are generally risky, but

the risk depends very much on the type of disease, localization, activity, sever-

ity and necessary treatment. Reasons for complications in pregnancy may be

due in a large part to nonimmunological problems of the disease, such as liver

or kidney insufficiency. The activation of the immune system in autoimmune

disorders is frequently accompanied by a Th1-dominated cytokine imbalance

which may be disturbing pregnancy, it being a Th2-related period. In up to 50%

of couples with recurrent pregnancy loss, antiphospholipid antibodies are pre-

sent, but the causal association is unclear [43].

Frequently, the state of autoimmune diseases changes during pregnancy [44].

For example, rheumatoid arthritis improves in more than 70% of patients, which

is associated with maternal-fetal disparity in alleles of HLA-DR�1, DQ� and

DQ� [45, 46]. However, the course of systemic lupus erythematosus is more vari-

able. Highly specific autoantibody profiles in the mother are related to neonatal

lupus syndromes with congenital heart block as the most severe one [45].

The immunosuppressive treatment of autoimmune diseases that may not be

abandoned during pregnancy in order to maintain vital organ functions may funda-

mentally disturb the decidual immune balance, induce preterm labor or affect the

development of the fetal immune system [47]. A meta-analysis indicated a non-

significantly increased prevalence of preterm birth in patients with cyclosporine

therapy during pregnancy, but the reasons seem to be multifactorial [48].

Initiation of autoimmune diseases during pregnancy is very seldom, but the

prevalence of most autoimmune diseases is higher in women with children com-

pared to those without. In several recent studies, cells of fetal origin were detected

in inflamed foci of autoimmune diseases many years after pregnancy and such

microchimerism was interpreted as a possible inducer of the reaction [49, 50].

Allergies

The Th2-Prone Immune Response
Similar to pregnancy, allergies occur with a Th2-favored cytokine profile.

In their case, IgE production is induced as was described above for certain par-

asites and in contrast to pregnancy. However, distinct from parasite-induced

IgE, allergies induce a specific production [26]. These differences may be due

to distinct costimulatory signals joining the cytokine signals from T helper cells
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to B cells, such as CD154-CD40 interactions, which occur in allergies, but are

not observed in the placenta or during pregnancy [51, 52].

Fetal Programming for Allergies
Allergies are multifactorially induced diseases. Several patterns of circum-

stances, which may favor the development of allergies, are described. One frag-

ment of such patterns is the hereditary component with more detailed

observations revealing that maternal allergies were a stronger factor than pater-

nal allergies. This finding led to the conclusion that allergic events during preg-

nancy may increase the risk of allergies in later life. Subsequent mouse model

experiments supported these hypotheses [53, 54].

Immunotherapies in Allergy
Immunotherapies in allergy may induce a cytokine shift towards Th1,

which is mostly well known and accepted for insect venom immunotherapies.

To avoid the risk of negative interference with the Th2-favored pregnancy,

immunotherapies should not be initiated during pregnancy. If a patient on a

well-tolerated maintenance dose of immunotherapy becomes pregnant,

immunotherapy can be continued. Although insect venom immunotherapy is

the strongest Th1 inducer and poses the highest risk for pregnancy, it represents

an exception and may be initiated during pregnancy, because a sting may be a

life-threatening event. This risk can only be lowered by immunotherapy and

should be initiated in highly allergic pregnant women, although the induction of

premature events may be possible. Several cases of abortions have been

reported under such circumstances [55]. Therefore, all aspects of risks versus

benefits must be weighed very carefully.

The IDO Concept
IDO also seems to display a potential for allergy treatment. Ovalbumin-

induced allergic asthma in mice could be inhibited by application of IDO [56].

Patients with asymptomatic atopy display increased IDO activity compared to

symptomatic individuals, indicating a major role for the regulation of the clini-

cal state of allergy [57].

Pregnancy-Allergy Interactions
Allergy is a frequent disease and coexistence with pregnancy occurs com-

monly. Very severe symptoms, such as anaphylaxis, severe asthma or general-

ized dermatitis may harm pregnancy and the fetus due to organ dysfunction

rather than to the underlying immune disorder itself. The most common com-

plications of asthmatic women during pregnancy are meconium-stained amni-

otic fluid, preterm labor or delivery, oligohydramnios, and pregnancy-induced
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hypertension [58]. Necessary immunomodulatory or immunosuppressive

treatment may also affect the decidual immune balance or impair growth and

development of the fetus [58]. It is not yet clear to what extent decidual mast

cells or other immune cells are involved in allergic reactions and if they signif-

icantly release mediators inducing premature labor or delivery in humans. In

animal models such events were induced experimentally [59, 60]. In conclu-

sion, it should be recommended that allergic mothers avoid allergens during

pregnancy or, better, to treat allergies by immunotherapy before pregnancy.

Concluding Remarks

Immunology of reproduction includes a wide span of physiological

immune reactions and modulations, which allow and support the development

of the semiallogeneic fetus. Many of them are also used by a variety of non-

pregnancy-related pathologies.

The better understanding of these immunological features will be helpful

for both the treatment of fertility disorders as well as the treatment of numerous

diseases facilitated through modifying immune responses.

Thus far, several discoveries in the field of reproductive immunology, such

as the role of the Th1/Th2 balance, HLA-G, IDO or PIBF, offered new concepts

for general immunology. There is no doubt that further lessons will follow.
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