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Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in development methodologies has switched in the last two decades from
functional issues to structural issues: both data and functions are encapsulated
into software units which are integrated into large systems by means of various
techniques supporting reusability and modifiability. This encapsulation principle
is essential to both the object-oriented and the more recent component-based
software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability, and their implementation in new extensions of existing programming
languages like Java.

The 7th Symposium on Formal Methods for Components and Objects was
held in Sophia Antipolis, France, during October 21–23, 2008. It was realized as
a concertation meeting of European projects focussing on formal methods for
components and objects. This volume contains the contributions submitted after
the symposium by the speakers of each of the following European IST projects
involved in the organization of the program:

– The IST-FP7 project COMPAS on compliance-driven models, languages,
and architectures for services. The contact person is Schahram Dustdar
(Technical University of Vienna, Austria)

– The IST-FP6 project CREDO on modelling and analysis of evolutionary
structures for distributed services. The contact person is Frank de Boer
(CWI, The Netherlands).

– The IST-FP7 DEPLOY on industrial deployment of advanced system engi-
neering methods for high productivity and dependability. The contact person
is Alexander Romanovsky (Newcastle University, UK).

– The IST-FP6 project GridComp on grid programming with components.
The contact person is Denis Caromel (INRIA Sophia-Antipolis, France).

– The IST-FP6 project MOBIUS aiming at developing the technology for es-
tablishing trust and security for the next generation of global computers,
using the proof carrying code paradigm. The contact person is Gilles Barthe
(IMDEA Software, Spain).

The proceedings of the previous editions of FMCO have been published as
volumes 2852, 3188, 3657, 4111, 4709 and 5382 of Springer’s Lecture Notes in
Computer Science. We believe that these proceedings provide a unique combi-
nation of ideas on software engineering and formal methods which reflect the
expanding body of knowledge on modern software systems.
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Finally, we thank all authors for the high quality of their contributions, and
the reviewers for their help in improving the papers for this volume.

June 2009 Frank de Boer
Marcello Bonsangue

Eric Madelaine



Organization

FMCO 2008 was part of the 5th Grids@Work event, co-organized by ERCIM,
ETSI, INRIA, I3S, and CNRS. The 5th Grids@Work event was composed of:

The 5th Grid Plugtest, including the Grids for Finance and Telecommuni-
cation Contest
The GridCOMP conference
The FMCO symposium
The European technical concertation meeting From Components to Services
to Utilities by the European units D3, Software, Service Architectures and
Infrastructures, and F3, eInfrastructures
ProActive and GCM user groups and tutorials

The FMCO symposia are organized in the context of the project Mobi-J,
a project founded by a bilateral research program of The Dutch Organization
for Scientific Research (NWO) and the Central Public Funding Organization for
Academic Research in Germany (DFG). The partners of the Mobi-J projects are:
the Centrum voor Wiskunde en Informatica, the Leiden Institute of Advanced
Computer Science, and the Christian-Albrechts-Universität Kiel.

This project aims at the development of a programming environment which
supports component-based design and verification of Java programs annotated
with assertions. The overall approach is based on an extension of the Java lan-
guage with a notion of component that provides for the encapsulation of its
internal processing of data and composition in a network by means of mobile
asynchronous channels.

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)

L’Institut National de Recherche en Informatique et Automatique (INRIA)

Le Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S,
Université de Nice Sophia-Antipolis et CNRS)
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Reusable Architectural Decision Model for Model and
Metadata Repositories

Christine Mayr, Uwe Zdun, and Schahram Dustdar

Distributed Systems Group
Information System Institute

Vienna University of Technology, Austria
christine.mayr@inode.at, {zdun,dustdar}@infosys.tuwien.ac.at

Abstract. Models are gaining importance in software development, for instance
in the MDD field, as well as in other disciplines such as biology and physics.
Hence, tool support is needed to manage these models and metadata about the
models. Model repositories support this trend by managing these model artifacts.
While setting up model and metadata repositories, architects have to make sev-
eral fundamental design decisions and balance various forces. In this paper we
describe reusable knowledge in form of reusable architectural decisions for IT-
architects in setting-up, planning, and developing model and metadata reposito-
ries, as well as the main decision drivers. Our decisions are documented in a
reusable architectural decision model that can be instantiated for a concrete sys-
tem. It also supports a lightweight approach to architecture documentation. A
case study illustrates the decisions made when setting up our own data access
object model repository by walking through the reusable architectural decision
model.

1 Introduction

Today many systems are modeled with precisely specified and detailed models. Reasons
are among others the increasing support for model interoperability between modeling
tools [1] and the increasing use of model-driven development (MDD) [2, 3]. In MDD
many tools in a tool chain must work on a set of models, and they must be able to import
models developed with external modeling tools.

Model repositories [4, 5, 6, 7] support this trend by managing modeling artifacts,
such as models, model instances, model relationships, and so on. A model repository
enables modelers to create, retrieve, update, and delete modeling artifacts, and to query
for them. Usually additional metadata about the modeling artifacts can be stored and
used in the queries. Some repositories are even pure metadata repositories. In addition,
model repositories can support extra functionality, such as versioning support, security
functions, or storing of related source code artifacts.

Model repositories should often be optimized for the kind of modeling artifacts they
store and the task they should fulfill. For instance, usually custom, model-aware queries
should be provided that are simplified or more powerful compared to standard queries,
such as SQL queries, because they can make use of the information in the modeling
artifacts. Model repositories are often realized on top of existing basic technology such

F.S. de Boer et al. (Eds.): FMCO 2008, LNCS 5751, pp. 1–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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as databases, but it is not enough to simply store the models in and retrieve them from
such a basic technology. In this context, a number of recurring design decisions must be
made. In this paper, we propose a reusable architectural decision model that describes
these design decisions in a reusable fashion, so that they can be applied step-by-step for
new model repository projects. Our research results are based on field notes and obser-
vations from our own model repository projects, a detailed analysis of existing model
repository projects (both open source and commercial), and interviews and discussions
with other model repository developers.

In this paper we provide architectural decision-support for architects in finding a
suitable solution to resolve fundamental design problems arising when planning and
setting-up model and metadata repositories. For each decision we present recommen-
dations which alternative to choose depending on certain requirements and boundary
conditions. Some of our decisions might be intuitively decided in a suitable way by
architects. However, other decisions might be skipped or decided in a non-optimal way
because of missing knowledge of alternatives and consequences. Our approach mainly
aims at decreasing the costs and impact of making wrong decisions related to setting-up
model and metadata repositories. In addition, our approach can be used as a lightweight
approach to architecture documentation: If the reusable architectural decision model
is used to make decisions, only a reference to the decision model is needed to docu-
ment an architectural decision instead of documenting the whole decision as well as the
rationale.

Our paper is structured as follows: First, we define the terms repository, metadata
repository, and model repository in Section 2. In Section 3 we introduce reusable ar-
chitectural decision models as the background of our work. Section 4 provides detailed
specifications of the architectural decisions and describes the dependencies between
them. We illustrate the applicability of our approach through a case study in the area
of modeling jurisdictional provisions in the context of a district court, described in
Section 5. Section 6 discusses related work, and finally Section 7 concludes this paper.

2 Repository, Metadata Repository, and Model Repository

Before we go deeper into modeling architectural decisions of a model repository or
metadata repository, we would like to define the terms repository, metadata repository,
model repository and model and metadata repository, as these are forming the basis for
our work. The field of repositories is currently a popular area of research. Therefore
the following definitions are not exhaustive with regard to a full functional and non-
functional requirements specification of a repository. These nominal provisions rather
point out those characteristics of a repository we in particular focus on in this paper.

We define a repository as a central accessible component storing information about
reusable artifacts [8]. Examples of these artifacts are source code, documents, and
special-purpose models such as data models for defining the relationships between ob-
jects in object-oriented environments, models for MDD [2], biology models [9], and so
on. Furthermore, a repository has to provide the means to query these information ar-
tifacts and metadata about these information artifacts respectively according to certain
search criteria. In many cases, querying is performed using some query language.
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When setting-up a repository, architects can choose between two alternatives. The
repository can either provide this information by storing the artifacts themselves, or
it stores metadata about where and how a specific artifacts can be accessed, reached,
or invoked. We refer to a repository that stores arbitrary or user-defined metadata on
artifacts as a metadata repository. Typical examples of (categorized) information many
metadata repositories use is information about users, versions, affiliations, etc.

When a repository provides models and/or model instances such that it either stores
models and/or model instances as its artifacts or provides these models and/or model in-
stances stored at other locations, we refer to a repository as a model repository. Usually,
a model repository additionally provides metadata of models or model instances. Hence,
we refer to a repository that provides meta-data of models and/or model instances as a
model and metadata repository.

3 Reusable Architectural Decision Models

According to Taylor and van der Hoek [10], as well as Jansen and Bosch [11], software
architecture is a set of principal design decisions governing a system. During a software
system’s design phase, architects have to make numerous decisions for organizational
and business issues, for matters of broad and detailed design, and for technologies [12].
We refer to a design decision using the term architectural decision, if firstly it affects
either the architecture of a system or the role of the architect. Secondly, the architects
of the system see those decisions as principal decisions. The main argument for using
architectural decision modeling is that such principal decisions should not get lost.

Architectural decision models are used to document architectural decisions [11, 13,
14]. These architectural models capture selected decision options and justifications for
these decisions. In industry, architects often do not attach great value to decision mod-
eling, and, if it is performed at all, architectural decision modeling is usually done in
retrospect. Thus, architectural decision models cannot solve all problems of lacking
documentation [15, 14]. Many techniques such as text templates and tool support have
been proposed, but until now they have not become broadly adopted in practice [12].

Reusable architectural decision models proposed by Zimmermann et al. [16, 12]
focus on solving these problems. A reusable architectural decision model enhances
the basic decision model by steering the architectural decision making activities [12].
Reusable decision models are closely related to software pattern concepts (see [15]).
For instance, Zimmermann et al.’s approach uses the resuable decision models for pat-
tern selection. The advantage of this approach is that a decision model that is based
on patterns does not have to copy the pattern text and hence is easier to create than a
self-contained decision model.

In this paper, we describe a reusable architectural decision model for model and
metadata repositories. Each architectural decision is characterized by a decision name.
In our model, the decisions either have a number of alternatives or options for which the
architect can decide. Some alternatives or options have variants, which can be selected,
too. For each decision, we describe the forces or decision drivers that must be con-
sidered when selecting an alternative or option. Usually, the different alternatives and
options have different consequences with regard to the forces. To illustrate the alterna-
tives or options, we describe a few known uses. Finally, decisions have relationships to
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Fig. 1. Dependencies between architectural decisions

other decisions. For instance, a decision can be a follow-on decision to another decision,
if a specific alternative or option is chosen.

4 Architectural Decisions

In this section, we describe architectural decisions architects must make for planning,
setting-up, developing, and installing a model repository. In particular, we focus on
the underlying data model design – the core of a model repository. At first, we give a
short overview over these decisions and the dependencies between them (see Figure 1).
Subsequently, we present each of these decisions in detail.

The decision model is distilled from our experiences, our study of other projects
(both open source and commercial), as well as the documented experiences of others.
Please note that the decisions and their alternatives are for this reason not exhaustive.

– Select Basic Repository Technology: Usually, one of the first decisions is which
basic technology should be used for the repository. Depending on the types and
amounts of models or metadata to be stored, either an XML database, a specific file
structure, or a standard relational database are alternatives.

– Select XML to NXD Mapping: When architects decide for an XML database, they
can select between two basic mapping alternatives, namely an XSD model-based
and a text-based approach.
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– Select XML to RDBMS Mapping: When architects choose an RDMBS, an important
follow-on decision is how to map the XML documents to the database, namely by
a domain model mapping or an XSD model mapping.

– Select XML to File Mapping: When architects decide for a file storage solution, they
can select between three basic mapping alternatives, namely a XSD model-based,
a domain model-based and a simple text-based approach.

– Select Repository Type: Depending on important decision drivers such as searching
capabilities and data categorization, architects can decide for a Model Repository,
a Metadata Repository, or a Model and Metadata Repository.

– Select Support for Metamodel: When architects decide for storing models by select-
ing the Model Repository and Model and Metadata Repository respectively, they
optionally can choose a Metamodel that specifies the elements of the stored models.

– Select Modeling Levels Stored in the Repository: Architects have to select the mod-
eling levels such as models, model instances, source code, and runnable code to be
stored in a Model Repository or a Model and Metadata Repository.

– Select Metadata Types: In case a Metadata Repository or a Model and Metadata
Repository is used, architects can select model-independent metadata such as ver-
sion information, ownership, affiliations, and security data.

– Select Version Metadata Types: An optional follow-on decision of selecting neces-
sary metadata types is choosing an adequate version granularity. Versioning can be
either settled on the model or model element level.

– Select Change Log Metadata Types: According to the decision of selecting version
metadata, architects have to decide whether to add change log metadata to either
the model or model element level.

– Select Security Metadata Types: Architects can choose among several security
metadata options. Unlike the decisions described before, security metadata does
not solely focus on several artifacts, but on mechanisms to secure the whole
repository.

– Select Life Cyle Metadata Types: Architects can opt for a life cycle manager, that
can determine if a requested action is allowed dependent on the current state.

– Select Association Model: This decision deals with whether to model relationships
in the domain models themselves or using a general association model [17].

4.1 Architectural Decision: Select Basic Repository Technology

A fundamental task of a model repository architect is to choose a basic storage tech-
nology for the repository. As illustrated in Figure 2, there are three basic alternatives
for storing artifacts: Native XML Databases (NXD), (XML-enabled) RDMBS, and a
File System using a specific file structure. RDF triple stores are a popular variant of
NXD.

Important decision drivers for this decision are the amount of data to be stored in
the repository and the expected performance/throughput the repository should provide.
For developers and administrators it is important to know which technology know-how
is needed in order to set-up and run the repository technology. One important aspect
of the repository technology are the searching capabilities provided. When a partner
or a customer should be enabled to search for a model or model instance, it is helpful
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Fig. 2. Architectural Decision: Select basic Repository Technology

to use a repository based on standard technology, as standard interfaces often ease the
integration. For standard technologies, often a number of tools and IDE plugins exist,
which help developers and partners to work with the repository.

There are a number of follow-on decisions related to mapping XML to one of these
storage alternatives. Although we mention alternative exchange formats such as ob-
jects of a programming language (e.g., as possible in EMF [18]), because XML is the
common model data exchange format, in the following we focus only on an in-detail
description on XML model exchange format mappings.

Each of these approaches has its own advantages and limitations [19]. Particularly
with regard to throughput and huge amount of data, a NXF system may work best,
because no mapping process from XML files to database schemes is required [19]. Fur-
thermore most native XML databases support sophisticated full-text searches. However,
due to the document-centric approach, complex queries can have longer response times
compared to (XML-enabled) RDBMS systems [20]. One known use is XTC, the XML
Transformation Coordinator for XML Document Transformation Technologies [21].

Relational databases provide both maturity, scalability, portability, and stability [19,
22], and they are the RDBMS that are probably most widely used today [19]. Known
uses of model repositories based on RDMBS are the SWISS–MODEL Repository [23]
for three-dimensional comparative protein structure models and the BrainML Model
Repository [24] storing neuroscience data.

Alternatively, especially for small amounts of data, architects could choose a simple
file structure as repository storage. For this, one of many known uses is the CellML
Model Repository [9] for storing and exchanging computer-based mathematical mod-
els. Of course, when using a file storage, searching a large amount of data, could be
rather inefficient in comparison to using either a NXD system or RDBMS. However,
for repositories with only small amount of data, this might be the simplest and most
appropriate solution. In particular when using proprietary file formats, the repository
can be set-up quickly, because no data mapping is required.

4.2 Architectural Decision: Select XML to NXD Mapping

Provided that architects opt to use a Native XML database, they can decide between two
basic storing alternatives (see Figure 2). Either the entire XML document can be stored
in Text format or the XML document can be modeled as DOM and mapped to XSD
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Model objects such as Elements, Values, etc. [19]. In the former case the database or file
managing component has to manage indexes to improve performance on its own. In the
latter case, XML documents can be stored as type-annotated trees on disk pages [25].
These database trees are indexed with path-specific indexes, and can be queried with
XQuery and SQL/XML [25].

Whether to use a text-based or an XSD model-based mapping depends on the re-
quired performance and on the effort to establish the system. There are many NXD sys-
tems both commercial and open-source. Most XML databases such as DB2 [25] support
the XSD Model for Mapping XML to corresponding tree structures in NXD [20].

4.3 Architectural Decision: Select XML to RDBMS Mapping

Provided an RDMBS database is selected as the basic repository technology and the
raw models are provided in XML format, an important follow-on decision is how to
resolve the conflict between the hierarchical nature of an XML data model and the row
and column nature of a relational data model [19, 20]. Architects can mainly choose
between two alternatives: They can either decide to map the Domain Model elements
to a database schema or use an XSD model approach by mapping standard XML model
elements to RDBMS. By using the Domain Model mapping approach, a separate ta-
ble is generated for each domain model element. In contrast, the XSD Model mapping
approach is characterized by a lesser number of resulting tables and columns, because
unlike the Domain Model approach, several XML elements are combined into a single
table. Moreover, the resulting RDBMS schema, here, can either be generated from an
XSD or from a DTD. Algorithms for mapping XML data to relational data can be found
in [20]. See [26] for a comparison of the most cited and DTD-independent methods in
terms of resource usage and query response times.

Many commercial XML-enabled database systems such as SQL Server and Oracle
support both the XSD Model and the Domain Model mapping. In the latter approach the
existing data model is extended to an additional XML data type [20].

Decision drivers are both performance and the effort to accomplish the mapping.
In case neither an XSD nor a DTD exists, architects should decide to use the XSD
Model mapping approach. Additionally, this approach can reduce the number of join
operations incurred during query operations [19]. Florescu’s and Kossmann’s work [27]
shows that even the simplest and most obvious approaches provide a good performance.
Thus, in most cases, we would clearly recommend to use the XSD model mapping
approach, especially if performance is the most important decision driver.

4.4 Architectural Decision: Select XML to File Mapping

In case architects decide to use an appropriate file system structure and the models
are stored as XML documents, they can select among three basic storing alternatives
(see Figure 2). The file itself can contain the entire XML document as Text, the XML
document can be separated according to the XSD model, or the document can be split
into several files according to its Domain Model.

The advantages and disadvantages for using the XSD model-based or the Domain
model-based approach were already discussed in Section 4.2 and Section 4.3
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respectively. The obvious advantages of the text-based alternative are simplicity and
the low effort to establish the system. Thus which alternative to use depends on the
required performance and on the effort to establish the file system storage.

4.5 Architectural Decision: Select Repository Type

Depending on the repository’s functional requirements, models, model instances, and/or
metadata must be stored in a model repository. As already defined in Section 2, we can
distinguish three alternative repository types: Model Repository, Metadata Repository,
and Model and Metadata Repository. Figure 1 depicts these alternatives. Most reposi-
tories use metadata to describe general characteristics such as version information, user
information, and security data. In contrast to metadata, models contain domain-specific
elements. Some metadata, such as version information, is linked to specific models as
add-on data, other metadata, such as user authorization data, can be considered as gen-
eral repository data that is not linked to specific model data. In Section 4.8 we focus on
selecting adequate metadata types.

The decision drivers for storing models in the repository are mainly functional re-
quirements. Examples are: An important decision for architects is if the MDD paradigm
[2] should be supported using the repository architecture. When using MDD, the source
code is generated from the underlying models and these models must be accessible
from the repository. In Section 2 we stated that a repository should provide query
mechanisms to search for repository artifacts according to certain search criteria. These
query mechanisms are based on categorized data such as domain specific model data
and repository metadata.If architects want to store non-model artifacts, in order to pro-
vide appropriate searching mechanisms, they should at least provide these artifacts with
some add-on metadata. Accordingly, in case solely non-model artifacts are stored in the
repository and provided with add-on metadata, architects decide in favor of a Metadata
Repository.

Architects choose a Model Repository if they intend to store models in the repository
and do not require additional metadata, because the domain models possibly contain
part of this information. Moreover, adding special-purpose metadata such as ownership
and affiliation information to repositories in small companies may not be necessary.

If more sophisticated queries about the repository artifacts are required, architects
should consider storing categorized model data and thus select the Model and Metadata
Repository alternative. A known use of a Model and Metadata Repository is the Data
Access Object (DAO) Repository that we developed during our studies. In our case
study (see Section 5) we give more details about the DAO repository by applying it to
our reusable architecture decision model.

Once this decision has been made and if we have decided for one of the alternatives
that include metadata, we need to make a follow-on design decision, selecting the types
of metadata that are represented in the repository. Accordingly, if we have decided for
one of the alternatives that include modeling data, we need to make one or two follow-
on decisions: An optional follow-on decision is selecting support for metamodels, and
an mandatory decision is selecting the modeling levels stored in the repository.
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(a) Select Support for Metamodels (b) Select Modeling Levels Stored in the
Repository

Fig. 3. Architectural Decisions

4.6 Architectural Decision: Select Support for Metamodel

Provided that architects decide for a Model Repository or a Model and Metadata Repos-
itory, they can select a metamodel for the domain models to be stored. A metamodel
describes models and thus is the basis for model validation by tools. Eessaar illustrates
the advantages of using metamodels [28]: Metamodels are a clear and useful supple-
ment to textual specifications. Compared to a purely textual specifications, metamodels
enable a much more compact and clear overview of the model. In addition, metamodels
such as UML and EMF [18] can support visualizing models and thus ease model read-
ability and understandability. It has also been demonstrated that a metamodel could be
used to compare heterogeneous models. In the literature there are various approaches
addressing the problem of integrating heterogeneous models [29, 30].

Decision drivers are both the functional and technical requirements. Firstly, archi-
tects might use an explicit metamodel if they wish to benefit from one or more of the
properties described above. Secondly, technology reasons such as using MDD [2] can
be a determining factor for using a metamodel. In case of MDD [2], architects profit
from tool support. For instance, they can use a metamodel-based generator, such as
openArchitectureWare [31], to generate source code from models specified by a corre-
sponding metamodel such as EMF [18]. If architects do not want to profit from these
functional and technical features, they can make use of a simple, but much less flexible
approach: To support no explicit meta-model. That means, to hard-code the metamodel
information and thus specifying a model without an underlying metamodel.

In addition to that option, in Figure 3(a) we illustrate several metamodel options
among which architects can select: EMF [18], UML, XSD, and a proprietary domain
meta model (see Figure 3(a)). They should choose a proprietary domain metamodel, if
standard metamodels such as UML and EMF [18] do not fulfill the requirements.

A known use of using EMF [18] metamodels, is our VbMF [32] repository that we
developed during our studies. A known use for a model repository that loads UML2
models into EMF is the AndroMDA’s EMF UML2 Repository [33]. In contrast, the
BrainML Model Repository [24] consists of a standard XML Schema, defining XML
elements, and referencing other schema definitions using standard mechanisms.



10 C. Mayr, U. Zdun, and S. Dustdar

4.7 Architectural Decision: Select Modeling Levels Stored in the Repository

Provided that architects choose a Model Repository or a Model and Metadata Repos-
itory, an important follow-on decision is to select the modeling levels stored in the
repository: Models, model instances, source code, runnable (byte) code, or all of them.

Figure 3(b) depicts this architectural decision and its four modeling layer options. In
the following we specify important decision drivers for each of these layers.

At first, architects should face the question whether to store models or not. In this
context an important decision driver is automatic validation of new models and model
instances. When storing models in addition to model instances, the model instances
can be validated using their models. In order to accomplish this validation, the model
instances have to be linked with their specific models. Accordingly, if an automatic
syntax-check fails, the publishing request can be rejected by the repository. Further-
more, in an extended version the repository could try to automatically adapt existing
model instances when the underlying model changes. When architects do not want to
profit by the advantages of automatic syntax checking and automatic adaption of source
code, they can ignore the model layer in favor of saving storage space and effort.

The next decision is whether architects should store model instances in the repos-
itory. This decision is closely related to the required search capabilities. Besides the
desired search capabilities, another decision driver is whether to support MDD or not.
In case MDD is supported, model instances rather than source code are stored by the
repository because the generator can use transformations to generate the source code. In
some cases, this means that the transformations for the generator should also be placed
in the repository . However, even for non-model-driven projects, we recommend storing
model instances, if at least simple queries to find certain source code are required.

There is also the option to store the model instances but not the models. An example
of a known use that stores model instances, but no models is the Eclipse CDO Project
[6]. In contrast, another known use, the Netbeans Metadata Repository (MDR) [7],
stores both models and model instances.

Whether the repository should provide source code, depends both on the technical
requirements, such as using MDD [2], and on the development environment and plat-
form of repository users. When MDD is used, commonly technology- and platform-
independent model instances are stored in the repository. Accordingly, on the client
side, repository users can generate source code from these model instances according to
their specific platform- and technology requirements. Thus, if more than one technology
or platform should be supported, source code should not be stored in the repository, but
generated by the repository users. Otherwise, if no technology- and platform-dependent
source code generators are required, architects can decide to store the source code in
the repository. In this case, generated source code can also be stored in the repository,
e.g., to archive it. Alternatively, the source code can be stored in an external repository
specified by references in the models (if the model instances should be aware of the
source code artifacts) or appropriate metadata information (for more information about
selecting metadata types please refer to Section 4.8).

The next decision architects should make is whether the repository should supply
runnable byte code and how. In the following we present three alternatives: The first al-
ternative proposes to build the source code on the client side. This alternative primarily
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depends on the users’ source code build environment that has to fulfill the technical
requirements to build the source code. The second alternative discusses storing the byte
code in the repository itself. A disadvantage of this alternative are the associated storage
costs. An advantage is that building the source code on the client side is not necessary.
The third alternative only provides metadata about where and how to locate a runnable
software component. From the users’ point of view, this alternative is probably the sim-
plest one. However, for technical reasons, such as performance issues, architects could
reject this alternative and decide in favor of storing or building the byte code.

4.8 Architectural Decision: Select Metadata Types

Common repositories include metadata to provide additional, model-independent infor-
mation of repository artifacts. Figure 4 shows a few options: Metadata can include ver-
sioning information; change log data; ownership and/or affiliation information;
security data such as information on role-based access control and identity manage-
ment; location information; life cycle data and data for internationalization features (see
Section 4.8). In the following we give a detailed overview of each of these metadata op-
tions commonly used in repositories. Architects can use this checklist to decide whether
to apply a certain metadata type or not. We have developed this checklist by studying
common repositories to the best of our knowledge. However, due to the diversity of
possible metadata types, the list is not exhaustive. After illustrating the checklist, in
the proceeding sections (4.9, 4.10, 4.11, 4.12) we particularly focus on the follow-on
decisions as well as resulting options and alternatives depicted in Figure 4.

Version Information Metadata. Architects have to decide whether to add version meta-
data or not. In the simple case, architects can opt for using no versioning. For this
purpose, they solely need to provide the most recent version of repository artifacts.

Fig. 4. Architectural Decisions: Select Metadata Types
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Otherwise, if the repository shall support version management, the have to make the
follow-on decision illustrated in Section 4.9.

Change Log Metadata Change log metadata can include information about which user
inserted or updated a certain repository artifact. The decision whether to add change
log data is based on the previous decision of adding version information metadata.
Thus, architects can not opt for providing change log metadata, not until they decide in
favor of using version metadata. In Section 4.10, we present the follow-on decision of
selecting different change log metadata types.

Ownership and Affiliation Metadata. Architects can decide to tag repository artifacts
with ownership and affiliation metadata. This information can contain name, contact
details, and affiliation information of repository artifact owners. By using this meta-
data, architects can enhance reuse of stored artifacts such as models, model instances
and source code. Adding this metadata and thus being able to search for specific arti-
facts, is especially essential in large and medium-sized companies. If, however, stored
repository artifacts are intended to be solely used by a small team of developers anyway,
architects could determine to omit this type of metadata.

Security Metadata. According to their security requirements, architects can choose one
or more types of security metadata (see ebXML Registry Services and Protocols [17]).
Please note that unlike other types of metadata, security metadata does not solely focus
on several artifacts, but on mechanisms to secure the whole repository. In Section 4.11
we present some basic security options architects can install.

Location Metadata. Another type of metadata architects can choose is location meta-
data. As already mentioned in Section 4.7, source code and runnable code can be linked
to models and model instances stored in other repositories. The decision drivers for de-
ciding whether source code and runnable (byte) code should be stored in the repository
itself or in an external repository are the same as those describd in Section 4.7. Besides
source code and runnable code, location metadata can be important, e.g., for linking
model instances or source code to specific documentation on document servers. In or-
der to save storage cost and maintainance efforts, we recommend to decide in favor of
referring to existing documentation instead of storing this information redundantly.

Life Cycle Metadata. A repository incorporating life cycle metadata manages all life
cycle actions such as inserting, updating, deleting, and deprecating repository artifacts.
Besides these basic actions, the life cycle manager can oversee further actions such as
validating model instances and finally publishing changes to repository users. Depend-
ing on the current life cycle state, the life cycle manager determines if the requested
action is allowed and consequently performs or rejects the action. In Section 4.12 we
present the follow-on decision of selecting a suitable life cycle metadata type.

Internationalization Metadata. Internationalization metadata can be used for storing
location-specific settings, such as different languages and coding sets. In the EBXML
standard [17] internationalization metadata is defined as attributes that are I18N capable
and may be localized into multiple native languages. Architects may choose internation-
alization metadata, if e.g. international project members shall access the repository or
different coding sets shall be supported.
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4.9 Architectural Decision: Select Version Metadata Types

When storing models, architects can decide to either add version information meta-
data to the whole model or to each model element. The CellML Model Repository [9]
is a known use of a repository, that stores version information at the model level. If
a CellML model is modified, the new updated version(s) are added to the repository
and they are automatically allocated a new version number [9]. The BrainML Model
Repository [24] is another known use that adds version information metadata at the
model level. Version numbers start at 1 and are incremented whenever an augmented
or modified version of the model is submitted. Earlier versions remain available in
the repository and can be referenced by their version number to support data using
them.

Standards such as UDDI [34], EbXML [17], and the Content Repository API for
Java Technology of Java Specification Request (JSR) 170 [35] support adding version
information to model elements. JCR consists of one or more workspaces that each con-
sist of a tree of items representing either nodes or properties. A content repository [35]
workspace that supports versioning may contain both versionable and nonversionable
nodes. A known use open-source implementation variant of a Java Content Reposi-
tory is eXo JCR [36]. According to the JCR , eXo JCR supports separate versioning of
repository artifacts such as model elements.

The decision, which of the alternative to select, depends on the type of update-
strategy in case of changes. If selective updates are desirable, we recommend using ver-
sioning for Model Elements. If artifacts such as models should be updated as a whole,
the alternative of versioning Models rather than Model Elements should be chosen.

4.10 Architectural Decision: Select Change Log Metadata Types

The decision whether to set-up versioning on the model or model element level is
closely related to the question how fine-grained changes need to be traced and mon-
itored. When choosing the alternative to version Model Elements a specific event log of
changes for each model element is stored. An alternative is versioning of Models where
an event log of changes is only available on the model level.

If architects want to provide change log data on the model element level, the corre-
sponding change log information on the model level can be a view of all related model
element change log data. Moreover, when architects only need change logging on the
model level, they save effort compared to storing logs on the model element level. How-
ever, if architects already decided in favor of versioning, the change log information
should be set-up on the same model and model element respectively as selected for the
previous version management decision.

4.11 Architectural Decision: Select Security Metadata Types

Provided that architects settled for storing security metadata, they can decide in favor
of one or more of the following options.

The first option is to provide access log metadata. Hereby, the repository keeps
a journal of all significant actions performed by repository requesters on repository
resources. Another option is to establish identity management and authentication.
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Choosing this option means, the repository manages the identity and credentials as-
sociated with authorized users and services. Finally, architects can enable authorized
users to perform specific actions or to access specific resources by establishing the au-
thorization and access control option. The repository provides a mechanism to protect
its resources from unauthorized access. In this context, architects can augment a role
based access control solution with well-defined authorizations for each role.

4.12 Architectural Decision: Select Life Cycle Metadata Types

In this decision, architects have two basic alternatives: They can either assign a life cy-
cle state to each repository artifact or implement a general process model containing
flows of activities. In the latter case, a process engine is needed to drive the execution
of activities [8]. When deciding for the first alternative, the complexity of the life cycle
grows much more than proportional by the number of life cycle states. Thus, if archi-
tects intend to use only basic life cycle actions such as insert, update, and delete, this
alternative is a very effective one.

A known use implementation incorporating life cycle metadata is the ebXML Reg-
istry Reference Implementation Project [37]. The exXMLRR project aims at delivering
a functionally complete reference implementation for the OASIS ebXML specifica-
tion [17]. According to the ebXML standard, each RegistryObject instance must have a
life cycle status indicator that is assigned by the registry. In contrast, the alternative of
using a general process model should be used if there are potentially new actions that
will be developed in future. Accordingly, if architects attach a great value on life cycle
scalability, they should decide in favor of a general life cycle model.

4.13 Architectural Decision: Select Association Model

Modeling associations among models and model instances is a commonly addressed
problem today. As described in [38] a current problem in process-driven SOAs is to re-
trieve the relationships between different components, such as which service operations
can be invoked from which process activity and which services access which data. Fur-
thermore components that are not depending on any component can be seen as obsolete
and thus can be deleted [38]. Another benefit of modeling dependencies between differ-
ent components is to visualize these dependencies to better support understandability
of the models. For this purpose, graphical tools can be designed because the tools are
what give value to a repository [39].

As seen in Figure 1 there are two basic alternatives among which architects can
choose: As described in our previous work [38], general models can specify associations
between certain special-purpose models. In the example, our view-based models of the
View-based Data Modeling Framework describe the associations between processes,
services, and DAOs [38]. If domain models do not specify associations between them,
the repository should handle these associations by defining a general Association Model
as specified in the EbXML standard [17]. EbXML’s Association Information Model
defines classes that enable artifact instances to be associated with each other.
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Fig. 5. Case Study: Selected Architecture Decisions of the DAO Repository

5 Case Study

In this case study we illustrate major design decisions that we made when setting-up
our own Data Access Object (DAO) Model Repository. During the design process of the
repository we were faced with several fundamental architectural decisions. In this case
study we reflect the decisions made to set-up our DAO Model Repository by walking
through the reusable architectural decision model presented in the section before (see
Figure 5).

Before we walk step by step through our reusable architecture decision model we
would like to shortly motivate the use of a Data Access Object (DAO) Model Reposi-
tory: Developers typically store DAOs in local file systems and concurrent versioning
systems, such as CVS or SVN. However, especially as the number of DAOs grows,
finding a particular DAO on a concurrent versioning system, in order to reuse the DAO,
can become rather time-consuming. Thus, developers need more sophisticated query
mechanisms to quickly locate existing database operations in order to increase DAO
reuse. The DAO Model Repository supports queries for retrieving desired DAOs by
diverse search criteria, such as finding all DAOs accessing a particular database, all
DAO operations inserting data into a particular table, or all DAO operations updating a
certain column of a table. Moreover, DAO developers are able to query ownership in-
formation about a certain DAO and thus look for all DAOs registered by a certain user
or department. Furthermore we use a model-driven approach so that DAO developers
do not have to deal with various Object Relational Mapping (ORM) technologies. The
goal was that developers simply need to generate source code from a chosen model
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instance persistently stored in the DAO Model Repository or from a newly defined
model respectively to create a DAO for a specific ORM technology.

1. Select Basic Repository Technology: When setting-up our DAO repository, we de-
cided in favor of the (XML-enabled) Relational Database alternative. Our main
decision driver was that RDBMS are very common and hence, we can benefit from
tool support. We decided against using a NXD system, because our DAO repository
models have many associations between them and thus many joins are necessary
when querying DAO data. Accordingly, they are the joins in NXD storages, that can
have longer response times compared to RDBMS. As searching a large number of
DAOs could be rather inefficient, for us, a File System storage, was out of question.

2. Select XML to RDBMS Mapping: We decided in favor of the XSD Mapping Model
alternative because this approach requires less tables to join and thus results in
quicker response times than the Domain Model approach.

3. Select Repository Type: Our DAO Model Repository should primarily store models,
but also to be defined metadata. As a consequence we opted for the Model and
Metadata Repository alternative.

4. Select Support for Metamodel: We chose EMF [40] as an explicit metamodel to
specify our models of Viewbased Data Modeling Framework [38]. Thus, we can
benefit from existing tool support such as openArchitectureWare [31] to generate
code from existing model instances.

5. Select Modeling Levels Stored in the Repository: Our generated DAO source should
be dependent on the specific Object Relational Mapping (ORM) technology such
as HIBERNATE [41] or IBATIS [42]. For this purpose our DAO Repository stores
technology- and platform-independent model instances, that are used for source
code generation on the client side. Another requirement was to automatically val-
idate checked-in model instances. In order meet this requirement, we settled for
storing models in addition to model instances. As they are the repository users that
have to generate the source code, they need to integrate required source code gener-
ation tools into their development environment. Accordingly, repository users gen-
erate runnable code by compiling the generated source code. Thus our repository
does neither store source code nor runnable code.

6. Select Metadata Types: According to the decision of selecting the Model and Meta-
data Repository as repository type, we decide to add metadata to our repository. In
the following we focus on those decisions that are not covered by follow-on de-
cisions: We settled for adding ownership and affiliation metadata to being able to
efficiently set-up our prototype in medium-sized and large companies. Up-to-now,
we do not relate to documentation or source code stored on other repository. Thus
we do not store location metadata in our repository. As our Repository still is a pro-
totype solution, at the moment, we do not provide internationalization metadata.

7. Select Version Metadata Types: Our DAO repository requires versioning artifacts.
However, we wanted to save extra efforts related to versioning model elements.
Thus, we decided in favor of adding version information metadata to whole models
and model instances.

8. Select Change Log Metadata Types: As this decision is based on the decision of se-
lecting version metadata types, we opted for adding change log metadata to models
and model instances rather than to model and model instance elements.
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9. Select Security Metadata Types: As we intend to provide our repository to industry,
we added basic security metadata for all three security options illustrated before,
namely access log metadata, identity management and authentication metadata
and authorization and access control metadata.

10. Select Life Cycle Metadata Types: Our repository incorporates a basic life cycle
manager, that manages basic actions such as insert, update, delete and validate. As
we required both a simple solution and the life cycle manager not necessarily to be
scalable related to new actions and states, we opted for assigning a life cycle state
to repository artifacts. We have decided against using a general process model,
because this solution seems a bit oversized for our prototype repository solution.

11. Select Association Model: Our DAO models incorporate relationships between do-
main model instances. Thus, we use our own domain models to specify associations
between DAO model instances instead of using a general association model.

6 Related Work

To be able to accomplish this work we were inspired of repositories in general. In [8],
Bernstein and Dayal give a fundamental overview of repository technology as well
as functional requirements of a repository. Afterwards, we focused on repositories in-
corporating metadata. A common representative of Metadata Repositories are service
repositories that contain metadata about location information such as service bindings
according to the Web Service Description Language (WSDL). Here, there exist various
standards such as [34], ebXML [17] and related implementations such as the ebXML
Repository Reference implementation [37] and the WebSphere Service Registry and
Repository that is based on UDDI.

Furthermore we focused on current model repository standards and implementations.
As illustrated in this paper, there are many known model repository implementations
such as Netbeans MDR [7] that stores models and model instances and Eclipse CDO
[6] that stores models, but no XMI model instances. In [43] France et.al.’s interesting
approach introduces a development plan for setting up model repositories storing MDD
artifacts. In contrast to our paper, the authors of the ReMoDD project in particular
focus on the types of interactions that are most useful for repository users. Besides, the
ReMoDD project’s scope of research does not include storing metadata.

Finally, there are many articles that focus on each of the illustrated decisions for their
own. For example, several work [19,20] focus on algorithms of mapping XML model in-
stances to a certain Repository storage type. However, for the best of our knowledge there
is no work that connects all these illustrated architecture decisions with each other. In [44]
Milanovic et.al. presents an approach of designing and implementing a repository that
supports storing and managing of artifacts such as metamodels, models, code, and their
metadata. As our approach, the illustrated repository stores metadata such as versioning
information. However they do not provide an overview about different types of metadata
such as those presented in our work. They exemplary illustrate the design of the BIZY-
CLE repository architecture without identifying architecture decisions to select different
alternatives and options. Instead of involving management issues such as project man-
agement and user control, our decisions primarily deal with the question which artifacts
should be stored in a repository and how to model the associations between them.
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7 Conclusion and Outlook

In this paper we introduced a Reusable Architecture Decision Model (RADM) for
setting-up Model and Metadata Repositories. These decisions in particular aim at data
design for Model and Metadata Repositories. We provided a decision basis for
fundamental choices such as selecting a basic repository technology, choosing appro-
priate repository metadata, and selecting suitable modeling levels of the model infor-
mation stored in the repository. Our experiences result from developing our own Model
Repositories, from researching on other works, discussions with other people involved
in repository projects, and applying our RADM in a case study.

Part of our future work could be a more precise evaluation of our decisions based
on using quality management methods such as Quality Function Deployment (QFD).
QFD could capture the repository’s requirements and thus selectively deploying the
activities for each decision alternative. Besides specifying reusable architecture deci-
sions for setting-up Model and Metadata Repositories we increasingly concentrate on
server-client interactions and repository client tools, that give value to the repositories.
Finally, using ontologies for querying repository artifacts could improve the quality of
the retrieved result sets.
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edge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp.
43–58. Springer, Heidelberg (2006)

14. Tyree, J., Ackerman, A.: Architecture decisions: Demystifying architecture. IEEE Soft-
ware 22(19-27) (2005)

15. Harrison, N., Avgeriou, P., Zdun, U.: Using patterns to capture architectural decisions. IEEE
Software, 38–45 (July/August 2007)

16. Zimmermann, O., Gschwind, T., Kuester, J., Leymann, F., Schuster, N.: Reusable architec-
tural decision models for enterprise application development. In: Overhage, S., Szyperski,
C., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 15–32. Springer,
Heidelberg (2008)

17. OASIS/ ebXML Registry Technical Committee: Registry Services Specification v2.0 (De-
cember 2001), http://www.ebxml.org/specs/ebrs2.pdf

18. Eclipse: Eclipse Modeling Framework Project,
http://www.eclipse.org/modeling/emf/ (retrieved December 2008)

19. Haw, S., Rao, G.R.K.: Query optimization techniques for xml databases. International Jour-
nal of Information Technology 2(1), 97–104 (2005)

20. Atay, M., Sun, Y., Liu, D., Lu, S., Fotouhi, F.: Mapping xml data to relational data: A dom-
based approach. In: Eighth IASTED International Conference on Internet and Multimedia
Systems and Applications, Kauai, pp. 59–64 (2004)

21. Fotsch, D., Speck, A.: XTC – The XML Transformation Coordinator for XML Document
Transformation Technologies. In: DEXA 2006: Proceedings of the 17th International Confer-
ence on Database and Expert Systems Applications, pp. 507–511. IEEE Computer Society,
Los Alamitos (2006)

22. Khan, L., Rao, Y.: A performance evaluation of storing XML data in relational database
management systems. In: WIDM 2001: Proceedings of the 3rd international workshop on
Web information and data management, pp. 31–38. ACM, New York (2001)

23. Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: Swiss-model: An automated protein
homology-modeling server. Nucleic Acids Res. 31(13), 3381–3385 (2003)

24. BrainML: Neurodatabase construction kit, repository server, http://brainml.org
(retrieved January, 2009)

25. Nicola, M., van der Linden, B.: Native xml support in db2 universal database. In: VLDB
2005: Proceedings of the 31st international conference on Very large data bases, VLDB En-
dowment, pp. 1164–1174 (2005)

26. Emadi, M., Rahgozar, M., Ardalan, A., Kazerani, A., Ariyan, M.M.: Approaches and
schemes for storing dtd-independent xml data in relational databases. Trans. on Engineer-
ing, Computing and Technology 13 (May 2006)

27. Florescu, D., Kossmann, D.: Storing and querying xml data using an rdmbs. IEEE Data Eng.
Bull. 22(3), 27–34 (1999)



20 C. Mayr, U. Zdun, and S. Dustdar

28. Eessaar, E.: Using metamodeling in order to evaluate data models. In: AIKED 2007: Proceed-
ings of the 6th Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Data Bases, Stevens Point, Wisconsin, USA, pp. 181–186. World Scientific
and Engineering Academy and Society, WSEAS (2007)

29. Nayak, R., Xia, F.B.: Automatic integration of heterogenous xml-schemas. In: iiWAS (2004)
30. Castano, S., Ferrara, A., Ottathycal, G.S.K., Antonellis, V.D.: A disciplined approach for

the integration of heterogeneous xml datasources. In: DEXA 2002: Proceedings of the 13th
International Workshop on Database and Expert Systems Applications, pp. 103–110. IEEE
Computer Society, Los Alamitos (2002)

31. openArchitectureWare: oaw (August 2002),
http://www.openarchitectureware.org

32. Tran, H., Zdun, U., Dustdar, S.: View-based and model-driven approach for reducing the
development complexity in process-driven SOA. In: In Abramowicz, W., Maciaszek, L.A.
(eds.) Business Process and Services Computing: 1st International Conference on Business
Process and Services Computing (BPSC 2007), Leipzig, Germany, September 25-26. LNI,
vol. 116, pp. 105–124. GI (2007)

33. AndroMDA: Emf uml2 repository (November 2006), http://galaxy.andromda.
org/docs-3.2/andromda-repository-emf-uml2/index.html

34. Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2, UDDI Spec Techni-
cal Committee Draft. (October 2004), http://www.uddi.org/pubs/uddi_v3.htm

35. Nuescheler, D., Piegaze, P.: Other members of the JSR 170 expert group: Content Repos-
itory API for Java Technology Specification, Java Specification Request 170 (May 2005),
http://www.jcp.org/en/jsr/all

36. eXo: Java content repository (jcr - jsr 170),
http://www.exoplatform.org/portal/public/en/product/oemisv
(retrieved December, 2008)

37. freebXML: Oasis ebxml registry reference implementation project (July 2007),
http://ebxmlrr.sourceforge.net/

38. Mayr, C., Zdun, U., Dustdar, S.: Model-driven integration and management of data access
objects in process-driven sOAs. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008.
LNCS, vol. 5377, pp. 62–73. Springer, Heidelberg (2008)

39. Bernstein, P.A.: Repositories and object oriented databases. In: BTW, pp. 34–46 (1997)
40. Eclipse: Eclipse modeling framework (emf) (2006), http://www.eclipse.org/emf/
41. Hibernate: Hibernate (2006), http://www.hibernate.org
42. Ibatis: Ibatis (2006-2007), http://www.ibatis.org
43. France, R.B., Bieman, J., Cheng, B.H.C.: Repository for model driven development

(ReMoDD). In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 311–317. Springer,
Heidelberg (2007)

44. Milanovic, N., Kutsche, R.-D., Baum, T., Cartsburg, M., Elmasgünes, H., Pohl, M., Widiker,
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Abstract. In this paper, we present a framework for formal modeling
and verification of service-based business processes with focus on their
compliance to external regulations such as Segregation of Duties (SoD)
or privacy protection policies. In our framework, control/data flow is
modeled using the exogenous coordination language Reo. Reo process
models are designed from scratch or (semi-)automatically obtained from
BPMN, UML or WS-BPEL specifications. Constraint automata (CA),
a semantic model for Reo, provide state-based representations of pro-
cess workflows and enable their verification by means of model checking
technology. Various extensions of CA make it possible to analyze time-,
resource- and Quality-of-Service (QoS) process models.

1 Introduction

One if the key ideas of Service-Oriented Computing (SOC) is to enable the de-
velopment of cross-organizational software systems by composing pre-existing
services. Services are self-contained and loosely-coupled applications that ad-
vertise their interfaces and/or observable behavior specifications. Given such
specifications, one can compose appropriate services to realize a certain business
logic. This paradigm helps designers to abstract from low-level details and imple-
mentation issues, reduces time and cost of software development and increases
its reusability and adaptability to changing process requirements.

Despite this promise, implementation of business processes by composing
services remains a challenging task. The problem of ensuring that the com-
posed behavior is compliant to the process specification and related business
requirements is one of the key issues here. Formal approaches to process behav-
ior specification such as Petri-nets, automata-based models or process algebras
together with logic-based formalisms for specifying system properties provide
rigorous tools for compliance analysis. However, complexity, the absence of vi-
sual notations and difficulties to obtain these models from widely-recognized
high-level specification formats such as Unified Modeling Language (UML) or
Business Process Modeling Notation (BPMN) limit their utility in practice. An-
other problem is the absence of actually implemented software tools that use
theoretical approaches in this area to support automated process analysis and
generate executable code to run corresponding service compositions. Finally,
business requirements may affect various aspects of the corresponding process
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model such as its control, data or time- flow, impose constraints on access control
or performance. All these issues entail the need for an extensible formal model
for service-based business process design suitable for reasoning about various
types of functional and non-functional properties.

In this paper, we introduce a framework to benefit compliance-aware business
process development with formal analysis and automated code generation. This
work is part of the EU project COMPAS (Compliance-driven Models, Languages,
and Architectures for Services) which aims at designing and implementing novel
models, languages, and an architectural framework to ensure dynamic and on-
going compliance of software services to business regulations and stated user-
service requirements. We understand compliance as any explicitly stated rule or
regulation that prescribes any aspect of an internal or cross-organizational busi-
ness process. Such compliance rules come from internal sources, e.g., technical
instructions, regulations aimed at improving Quality-of-Service (QoS) delivered
to end users, Service-level Agreements (SLAs), or external sources such as user
privacy protection policies, fraud prevention regulations and laws. Compliance
policy is a logical grouping of a set of coherent rules that realizes a specific goal,
e.g., fraud prevention by limiting access to vulnerable data. By context-aware
analysis and stepwise decomposition of organizational high-level goals such as
“comply to Sarbanes-Oxley Act or Basel II” to a set of relevant policies and,
finally, to concrete compliance rules, we can come up with a number of formally-
expressed constraints that must be satisfied to guarantee the compliance of a
particular process to the initial requirements. We aim at developing a unified
extensible behavioral model that is able to incorporate various types of infor-
mation relevant to automated design-time compliance analysis. Our solution
is based on Constraint Automata (CA) which offers an operational model for
specifying composite service behavior. CA are essentially a variant of a labeled
transition system where transitions are augmented with pairs of synchronization
and data constraints. The states of a CA stand for the process configurations
while transition labels can be viewed as input/output operations performed in
parallel (more precisely, sets of nodes where data flow is observed in paral-
lel and boolean conditions on the data items observed on those models). This
model is fully compositional, and can express arbitrary mixes of synchronous and
asynchronous communication. CA were developed as a semantic model for the
coordination language Reo [1] (although several other semantic models for Reo
are available) and later have been extended to express time dependent behavior,
probabilistic, and stochastic systems.

There are several reasons that motivate our choice of Reo and CA for speci-
fying the behavioral composition of business processes and web services. First,
Reo has a simple graphical notation which makes it easy to use in practical
applications by process designers without any prior experience in formal meth-
ods. A small number of Reo modeling primitives (channels) are sufficient for
representing rather complex behavioral protocols. Second, precise semantics of
Reo in terms of CA enables automated process verification. Reo process mod-
els can be automatically translated into CA which are suitable for representing
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service compositions with QoS guarantees [2], and time- and resource-aware pro-
cesses [3,4]. Moreover, there is a solid set of software tools supporting process
modeling, verification and code generation based on Reo process models.

The rest of this paper is organized as follows: Section 2 contains an overview of
domain-level compliance-aware business process design. In Section 3, we introduce
the coordination language Reo and illustrates its application to business process
modeling. In Section 4, we discuss several extensions of constraint automata used
for automated workflow analysis. Section 5 exemplifies the application of Reo/CA
for detecting errors in process workflow. Section 6 illustrates how our framework
can be applied to deal with advanced process requirements such as separation-
of-duty and privacy constraints. Section 7 is a survey of related work. Finally,
Section 8 provides our conclusions and an outline of our future work.

2 Business Process Modeling

In SOC, business process is defined as a collaborative service that is closely linked
to a business purpose1. A collaborative service is a service implemented through
the composition of other services. This definition poses no restrictions on the
nature of the composed services. We can distinguish functional services which
perform self-contained business operations, and coordination services, which im-
plement so called “glue code”. In our approach, we assume that observable be-
havior of functional services is described using CA, while “glue code” is modeled
by means of the Reo coordination language.

Traditional graphical notations for business process modeling such as BPMN
and UML Activity Diagrams (ADs) represent business processes in the form of ab-
stract tasks (activities) with a control flow over them. Additionally, BPMN pro-
vides modeling primitives for specifying important events occurring in the system,
exception handling, compensation associations and transactional sub-processes,
which make it possible to depict most common features of real-world business pro-
cesses. However, the specification of this notation does not assume a formal se-
mantics. As a result, BPMN process diagrams can be misunderstood and require
preprocessing and refinement before they become suitable for rigorous analysis or
software implementation.

Figure 1 shows a BPMN diagram for a sample purchase order process that
appeared in [5]. It consists of three basic activities, checkCreditCard, prepare-
Products and shipItems. When a purchase request is received, the client’s credit
card is checked and the requested products are prepared simultaneously. After
that the prepared products are shipped to the customer.

UML Sequence Diagrams (SDs) present a conceptually different approach to
system modeling. The goal of UML SDs is to model dynamic system behav-
ior in terms of entities, components/services or objects that exchange messages
or functional calls. The diagram conveys the information along the horizontal
and vertical dimensions: the vertical dimension shows the time sequence of mes-
sages/calls as they occur, and the horizontal dimension shows with the help of
1 http://www.nexof-ra.eu/?q=node/187
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Fig. 1. BPMN diagram for the purchase order scenario [5]

lifelines, the object instances that the messages are sent to. In the context of busi-
ness process modeling UML SDs are convenient to represent scenarios involving
several interacting entities such as auctions or service contract negotiation.

WS-BPEL is a language for describing executable business processes on top of
WSDL service specifications. Due to the lack of graphical notation and the need
to deal with implementation-level details, WS-BPEL is not suitable for domain
analysis and conceptual business process modeling, although some efforts exist to
adopt WS-BPEL for this purpose. Nevertheless, modern business processes are
rarely developed from scratch. We assume they can be composed from reusable
business process fragments with existing behavioral specifications in WS-BPEL.

The aforementioned notations lack support for compliance. For example, they
provide no standard ways to express Segregation of Duties (SoD) requirements,
show link dependencies, or specify QoS constraints on sub-processes rather than
using textual annotations or additional domain-specific languages. Both indus-
try and academia have proposed numerous extensions for process compliance
support on top of these notations. For instance, in [6] BPMN processes are an-
notated with QoS information, in [7] additional textual annotations expressing
task authorization constraints are introduced, while in [8] a language for speci-
fying regulatory compliance on top of WS-BPEL is proposed. Due to the higher
level of expressiveness of Reo, we can explicitly model some of these require-
ments in a formal way. In Section 6, for instance, we demonstrate how SoD can
be enforced using our framework.

3 Process Modeling with Eclipse Coordination Tools

In this section, we summarize the main concepts of Reo. Further details about
Reo and its semantics can be found in [9,1,10].

Reo [1] is a channel-based exogenous coordination model wherein complex
coordinators, called connectors, are compositionally constructed from simpler
ones. Complex connectors in Reo are formed as a network of primitive con-
nectors, called channels, that serve to provide the protocol which controls and
organizes the communication, synchronization and cooperation among the ser-
vices that they interconnect. Each channel has two channel ends which can be
of two types: source or sink. A source end accepts data into its channel, and
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Fig. 2. Basic Reo channels

a sink end dispenses data out of its channel. It is possible for both ends of a
channel to be either sinks or sources. Reo places no restriction on the behavior
of a channel and thus allows an open-ended set of different channel types to be
used simultaneously together.

Figure 2 shows the graphical representation of basic channel types in Reo. A
synchronous channel SYNC(A1,B1) has a source and a sink end and no buffer.
It accepts a data item through its source end iff it can simultaneously dispense
it through its sink. A lossy synchronous channel LOSSY(A2,B2) is similar to
synchronous channel except that it always accepts all data items through its
source end. The data item is transferred if it is possible for the data item to be
dispensed through the sink end, otherwise the data item is lost. A FIFO1 channel
FIFO1(A3,B3) represents an asynchronous channel with one buffer cell which is
empty if no data item is shown in the box. If a data element d is contained in
the buffer of a FIFO1 channel, it looks like a channel FIFO1 FULL(A4, B4) in
this figure.

A synchronous drain SYNC DRAIN(A5,B5) has two source ends and no
sink end. A synchronous drain can accept a data item through one of its ends
iff a data item is also available for it to simultaneously accept through its
other end as well, and all data accepted by this channel are lost. An asyn-
chronous drain ASYNC DRAIN(A7,B7) accepts data items through its source
ends and loses them, but never simultaneously. Synchronous and asynchronous
spouts SYNC SPOUT(A6,B6) and ASYNC SPOUT(A8,B8) are duals to the
drain channels, as they have two sink ends. For a filter channel FILTER(A9,B9),
its pattern P ⊆ Data specifies the type of data items that can be transmitted
through the channel. Any value d ∈ P is accepted through its source end iff its
sink end can simultaneously dispense d; all data items d /∈ P are always accepted
through the source end but are immediately lost. Finally, a transformer channel
TRANSFORMER(A10, B10) accepts a data item and rewrites it according to
the transform expression of the channel (e.g., xPath expression), as the data
item passes through.

The aforementioned channels are supported by Eclipse Coordination Tools
(ECTs), a tool suite consisting of Eclipse plug-ins for designing, testing and
verification of connectors, as well as runtime engines for executing coordination
protocols on multiple platforms [11]. This set can be extended with new channels.
For example, timer channels, namely, t-timer, t-timer with off- and reset-option
and t-timer with early expiration have been introduced to deal with time-aware
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service coordination [3]. Essentially, these channels accept data items at their
input ports and dispose them at their output ports after t units of time, thus,
enabling modeling of process timeouts and delays. Additionally, (a)synchronous
drains with filter conditions appear to be useful for business process modeling
when conditional synchronization of two flows is required.

Complex connectors are constructed by composing simpler ones via the join
and hiding operations. Join plugs two channel-ends together creating a node at
the point of connection. To this node one can connect more channels via join
afterwards. If more than one accepting channel end is connected to a node every
incoming message is simultaneously written to all outgoing channels whenever
all outgoing channels at the node are ready to accept data. Whenever more than
one channel-end offers data at a node a non-deterministic choice decides which
data item is taken and written to all outgoing channels. The hiding operation
hides away one node which means that the data-flow occurring at this node
cannot be observed from outside and no new channel-end can be connected to
this node.

Figure 3 shows a Reo connector that simulates the purchase order scenario
introduced in Figure 1. We represent BPMN activities as simple FIFO1 channels
meaning that data flow in the source end of each channel corresponds to the
start of the activity, data flow in the sink end of the channel corresponds to the
end of the activity, while the data token residing in the channel buffer implies
that the activity is being executed. Special components, Writer and Reader, are
used to introduce and consume data flow at the beginning and the end of the
process. Nodes obtained by joining both source and sink ends of Reo channels
are called mixed and considered to be internal for the connector. In contrast,
nodes where only source or only sink channel ends are merged are considered
to be external and can be attached to writers or readers, respectively. The Reo
editor in the ECT environment automatically highlights the internal nodes with
grey color. Two parallel flows are initiated by joining a sink end of a Reo channel
with start ends of two other channels (see, e.g., node start), and synchronized
using a synchronous drain (see, e.g., SYNC DRAIN(paymentIsOk, paymentAck)
which requires tokens on both sides to fire). As explained in [12], data-driven
conditional choice can be realized using Reo filter channels. However, in this
model, for simplicity, we abstract from data issues and use a non-deterministic
exclusive router connector to direct a token from the node isPaymentOk either
to the node paymentIsNotOk or to the node paymentIsOk, thus, obtaining a
process model with two possible execution paths.

Preliminary business process analysis and simulation can be accomplished us-
ing a tool that generates flash animated simulations of Reo connectors. The plug-
in depicts the connector shown in the editor in the animation view and generates
a list of possible execution scenarios. The parts of the connector highlighted blue
represent synchronous data flow. Tokens move along these synchronous regions.
Two simulation modes are supported: a plain mode, which demonstrates all pos-
sible execution alternatives for the whole process, and a guided or stepwise mode,
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Fig. 3. Reo circuit for the purchase order scenario

which shows each execution step separately, including all possible alternatives
for a current step.

Reo process models can be automatically obtained from BPMN diagrams us-
ing the BPMN2Reo converter available as part of ECT. In our previous work [12],
we defined rules for mapping all major BPMN modeling primitives to Reo. In
this way, we can also refine ambiguous BPMN diagrams by giving them precise
semantics. The mapping of UML ADs to Reo is similar to the mapping of a
subset of BPMN to Reo and will be integrated into ECT as well. The theoretical
basis for the converter from UML SDs to Reo is given in [13]. Such conversion is
automatically performed by the UMLSDs2Reo mapping tool which is currently
being integrated into ECT. Finally, BPEL2Reo converter is a tool provided by
the University of Tehran for converting BPEL process specifications to Reo [14].

4 Formal Behavioral Model for Service Composition:
Extended Constrained Automata

There are several extensions of CA that can be useful for automated analysis of
time-, resource- and QoS-aware Reo process models.

Let N be a finite set of nodes, Data a fixed, non-empty set of data that can be
sent and received via Reo channels, and define a function δ : N → Data, N ∈ N
as a data assignment. CA use a symbolic representation of data assignments by
data constraints which are propositional formulas built from the atoms dA ∈ P,
dA = dB, and dA = d with standard boolean connectors, where A, B ∈ N , dA

is a symbol for the observed data item at node A and d ∈ Data, P ∈ Data.
We write DA(N) to refer to the set of all data assignments for the node-set N ,
DC(N) to denote the set of data constraints that at most refer to the observed
data items dA at node A ∈ N , and DC for DC(N ).

Definition 1 (Constraint Automaton (CA) [10]). A CA is a tuple A =
(S, S0,N , E) where

– S is a finite set of control states,
– S0 is is a set of initial states,
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Fig. 4. Constraint automata for basic Reo channels

– N is a finite set of node names (e.g., I/O ports of components/services),
– E is a finite subset of S × 2N × DC × S called the transition relation of A,
– DC is a data constraint that plays the role of the guard for a transition.

Figure 4 shows the CA for the basic Reo channels. The behavior of any Reo
process model can be obtained by computing the product of these automata.

Definition 2 (Product of CA [10]). The product for two constraint automata
A1 = (S1, S0,1,N1, E1) and A2 = (S2, S0,2,N2, E2) is defined as a constraint
automaton A1 �� A2 with the components (S1 × S2, S0,1 × S0,2,N1 ∪ N2, E)
where E is the set of transitions e given by the following rules, where e1 ∈ E1

and e2 ∈ E2:

– If e1 = (s1, N1, g1, s
′
1), e2 = (s2, N2, g2, s

′
2), N1 ∩ N2 = N2 ∩ N1 = ∅ and

g1 ∧ g2 is satisfable, then e = (〈s1, s2〉, N1 ∪ N2, g1 ∧ g2, 〈s′1, s′2〉).
– If e1 = (s1, N, g, s′1) where N ∩ N2 = ∅, then e = (〈s1, s2〉, N, g, 〈s′1, s2〉).
– If e2 = (s2, N, g, s′2) where N ∩ N1 = ∅, then e = (〈s1, s2〉, N, g, 〈s1, s

′
2〉).

Figure 5(a) shows the CA for one instance of the purchase order scenario, that
is, only states that are reachable from the initial state after a single reading
operation. Such CA are automatically obtained from Reo process models. Intu-
itively, each state of a CA without hiding corresponds to a unique combination of
empty/full buffers of the corresponding Reo circuit. We reflect this dependency
in state names by writing 1 for a full FIFO1 channel and 0 for an empty FIFO1
channel assuming their top-down left-to-right order in Fig. 3. CA transition la-
bels correspond to the names of Reo nodes where data flow is simultaneously
observed during the transition. After hiding internal ports, CA control states
represent process states observable by an external user. In this example, three
logical states have been identified: the initial state s1, state s2 corresponding
to the started process execution, and state s3 that implies the presence of the
deadlock in the process model due to the payment failure.

Reo timer channels can be exploited for time-aware analysis of business pro-
cess models with ECT. In our case study, one may be interested to know how
much time is required to process a single purchase order. The operational model
for time-aware Reo connector circuits is given with the help of Timed Constraint
Automata (TCA), which can be defined as follows. Additionally to the notation
introduced for CA, let C be a finite set of clocks. A clock assignment means a
function v : C → R≥0. If t ∈ R≥0 then v + t denotes the clock assignment that
assigns the value v(x) + t to every clock x ∈ C. If C ∈ C then v[C := 0] stands
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(a) Without hiding

(b) With hiding

Fig. 5. Constraint automata for the purchase order scenario

for the clock assignment that returns the value 0 for every clock x ∈ C and the
value v(x) for every clock x ∈ C \ C. A clock constraint (denoted cc) for C is a
conjunction of atoms of the form x �� n where x ∈ C, N ∈ {<,≤, >,≥, =} and
n ∈ N. CS(C) (or CS) denotes the set of all clock assignments and CC(C) (or
CC) the set of all clock constraints.

Definition 3 (Timed Constraint Automaton (TCA) [3]). A TCA is an
extended CA A = (S, S0,N , E, C, ic) where the transition relation E is a finite
subset of S × 2N ×DC ×CC × 2C ×S such that dc ∈ DC(N) for any transition
e = (s, N, dc, cc, C, s′) ∈ E, C is a finite set of clocks, and ic : S → CC is a
function that assigns to any state s an invariance condition ic(s).

The time required to perform certain actions in the process may depend on the
availability of resources. For example, the time to deliver products in our case
study may depend on the capacity of a purchase delivery service. Moreover, most
of the systems have to change their states if an interaction has not occurred or
an operation has not been completed within a certain timeout. For modeling
such requirements in business processes, we extend Reo with time and resource-
awareness information. The formal model for this extension relies on the notion
of Resource-aware Timed Constraint Automata (RSTCA) [4].

It is possible to enable QoS analysis of Reo process models by assigning certain
properties to Reo basic channels such as the execution time required to transmit
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a data item, the cost of a single data transmission, the bandwidth that limits
simultaneous data transmission, or reliability which represents the probability of
a successful data transmission. Operations over these parameters can be formally
specified using a notion of Q-algebra [15]. A Q-algebra is an algebraic structure
R = (C,⊕,⊗, ||,0,1) where C is the domain of R and represents a set of QoS
values. The operation ⊕ induces a partial order on the domain of R and is used
to define a preferred value of QoS dimension, ⊗ is an operator for sequential
channel composition, while || is an operator for parallel channel composition.
For example, the Q-algebras corresponding to the above QoS dimensions are as
follows:

– Execution time: (R≥ ∪ {∞}, min, +, max,∞, 0),
– Cost : (R≥ ∪ {∞}, min, +, +,∞, 0),
– Bandwidth: (N ∪ {∞}, max, min, +, 0,∞),
– Reliability: ([0, 1], max,×,×, 0, 1).

Taking into account this definition, Quantitative Constraint Automata (QCA)
[2] is as an extended CA A = (S, S0,N , E, R) where the transition relation E
is a finite subset of ∪N∈NS × {N} × DC(N) × C × S and R = (C,⊕,⊗, ||, 0, 1)
is a labeled Q-algebra with domain C. However, this model is not sufficient
for practical applications as certain QoS (e.g., execution time) may change the
intended behavior of Reo circuits. For example, consider a circuit consisting of
two channels, SYNC(A, B) and ASYNC DRAIN(A, B), whose execution times
are t1 and t2, respectively. Assuming that the asynchronous drain accepts data
at port A at time t0 only if there is no data flow on port B within the time
interval [t0, t0 + t1], while the synchronous channel accepts data at port A only if
it can dispose it at time t = t0 + t2, the overall connector will accept data if t2 >
t1, and get blocked, otherwise. Therefore, QoS-aware Reo models require more
expressive formalisms to represent their behavior. Indeed, depending on whether
delays are attributed to input/output operations on source/sink ends or to data
transmission across the channel, the computation of a delay of data transmission
across a composite connector may differ. Another type of automata, namely,
Quantitative Intentional Automata (QIA), have been introduced to specify the
semantics of stochastic Reo: a version of Reo where one or more delays can be
assigned to input/output operations on channel ends and transmission delays.
QIA can be converted to Continuous-Time Markov Chains (CTMC) and used for
process performance analysis using PRISM model checker2. More details about
this work can be found in [16].

5 Verifying Business Process Specification

The main purpose of the formal models presented above is to enable automated
verification of compliance-aware business processes and web service composi-
tions. This can be accomplished with the help of the Vereofy model checking

2 http://www.prismmodelchecker.org/
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tool [17] developed at the University of Dresden. Vereofy is integrated into ECT,
but also can be executed from a command shell. It uses two input languages,
namely, Reo Scripting Language (RSL), and a guarded command language called
Constraint Automata Reactive Module Language (CARML) which are textual
versions of Reo and CA, respectively. Scripts in these languages are automati-
cally generated from graphical Reo/CA models, however, they can be written
manually as well, e.g., to specify connectors composed of a huge number of chan-
nels with repeating patterns.

Vereofy supports linear and branching-time model checking. Properties of the
Reo circuits are specified either in Linear Temporal Logic (LTL) or Alternating-
time Stream Logic (ASL). LTL allows designers to encode formulae about the
future of execution paths such as that some condition will eventually be true
or will be true until another condition remains true. Computation Tree Logic
(CTL) is a branching-time logic which models time as a tree-like structure and
allows designers to encode formulae about the future of possible execution paths.
Branching Time Stream Logic (BTSL) is a logic specifically designed for Reo [18].
It extends CTL with the ability to express conditions on data flow in channel
nodes using regular expressions. A standard Alternating-time temporal Logic
(ATL) aims at reasoning about existence or absence of a coalition’s strategy to
achieve or avoid a specific temporal goal given the behavioral specification of each
component. ASL is a CTL-like branching-time logic which combines features of
BTSL and ATL.

For model checking, a constraint automaton needs to be associated with an
arbitrary finite data domain (Data), which collects all possible data items trans-
mitting through the corresponding Reo circuit or stored within the local variables
of components. Data is a global data type, which can be Bool, int, or enum, de-
pending on the user settings. The default data domain is int(0,1) and in our case
it is used for control flow analysis.

There exist a number of studies on how system properties can be expressed
using logical formalisms. COMPAS deliverable D2.2 [19] examines the suitabil-
ity of Deontic logic, LTL, and XML-based approaches for formal specification
of regulatory compliance requirements. It demonstrates that basic compliance
requirements can be successfully expressed in all these languages, but advocates
the use of LTL as the most comprehensible notation by end users. In our case
study, the following LTL formula

G(PrepareProductsOut → FShipItemsIn)

states that whenever the data flow is observed in PrepareProductsOut port mean-
ing that the activity PrepareProducts is finished, a data flow must be eventually
observed in ShipItemsIn port corresponding to the invocation of the ShipItems
activity. An ASL formula AG[EX[true]] which literally means “for all paths, it
is globally true that there exists a next state” can be used for deadlock detection.
Both these formulae fail for the Reo process model presented in Figure 3. Indeed,
in this scenario, if customer payment fails, the products remain prepared (e.g.,
packed), but will never be shipped. A proper model for this scenario is shown in
Figure 6.
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(a) BPMN model

(b) Reo process model

Fig. 6. Refined purchase order scenario

Once the process model is refined to satisfy all necessary conditions, it can
be turned into an executable process. Figure 7 shows our scenario with Reo
primitives called components attached to in/out ports of the FIFO1 channels
which simulate activity invocations and replies. The observable behavior of real
world services expressed by means of extended CA can be associated with these
components. An executable code that realizes such a service composition is
automatically generated by code generation tools of ECT.

Certain compliance requirements can be seen as informal descriptions of ideal
business process fragments. Such process fragments in their turn can be modeled
using Reo and/or CA. In this case, the compliance of software systems actually
used in organizations with the ideal processes can be established by checking
bisimulation equivalence of their corresponding CA models. Beforehand, one
can abstract from unimportant details of an existing process by hiding data
flow of the automata ports that are not relevant to a particular compliance
policy. Algorithms for finding bisimilar states, and, thus, checking behavioral
equivalence of CA or Reo circuits are presented in [20].

6 Compliance-Aware Process Modeling by Examples

One of the popular resource-aware constraints is a dual control or so-called four
eyes principle. It is applied, for example, in investment banking, to segregate the
duties of a trader from the duties of an internal auditor. In the corresponding
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Fig. 7. Reo model of a service composition for the purchase order scenario

process model, it is important to ensure that generally each bank clerk can play
both roles, but he/she cannot play both roles in a single instance of the process.
Later, the term SoD was introduced for referring to a principle of information
protection and fraud prevention by limiting user access to vulnerable data and/or
operations. This category of compliance requirements is extensively discussed
in [21,22].

Figure 8 shows a Reo process model which consists of sequential invocation of
two activities, T 1 (investment) and T 2 (authorization), simulated using FIFO1
channels in separate Reo connectors. In this model, the activity T 1 can be exe-
cuted by three authorized clerks, Alice, Bob and Clara, while the activity T 2 can
be executed by Alice, Bob and Frank. These access control rights are modeled
by means of filter channels FILTER(T1in, T1start) and FILTER(T2in, T2start)
with conditions

#T 1in.clerkName ∈ D1 = {Alice, Bob, Clara}

and
#T 2in.clerkName ∈ D2 = {Alice, Bob, Frank},

respectively. Here we use “#X” to refer to data observed at port X. Parts of the
Coordinator circuit emphasized with dashed rectangles impose the dual control
constraint in this scenario. The two Writer components connected to ports U1
and U2 correspond to two users, trader and internal auditor, who login to the
system and perform the investment and authorization operations, respectively.
The synchronous drain channel with filter FILTER SYNC DRAIN(U2, A5) uses
a condition #U2 �= #A5.trador to ensure that the internal auditor differs from
the trader who performed the investment operation in this process instance. This
circuit uses two special join nodes A2 and A6 which merge the data items from
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Fig. 8. Modeling a process with segregation of duties in Reo

the incoming channels. Transformer channels TRANSFORMER(A2, T1in) and
TRANSFORMER(A6, T2in) are employed to transform data objects from the
Coordinator circuit to the format used in circuits representing operations T 1
and T 2.

The compliance of this process model to the dual control principle can be
checked using the ASL formula

A[#T 1start.clerkName �= #T 2.start.clerkName]true,

which requires clerk names executing the involved operations to be different.
Suppose now an organization providing a composite service needs to ensure

compliance to a privacy policy stating that user personal data can be transferred
to a third party only if the user explicitly authorized such a transfer. For example,
in the above investment process, the trader may invest on behalf of a bank
client who entrusts his/her personal data (name, passport number, organization,
address, etc.) to the bank, but does not want them to be shared with other
partners/services (e.g., trading organization). On the other hand, some of these
data can be vital for involved services, and to complete the process the bank
needs to get the client’s permission to transfer particular data to particular
services. Such permissions can be formalized by means of privacy rules and
stored in the following format:

ri = (ruleID, clientID, dataItem, recipientID, action, permission),

where ruleID is a rule identifier, clientID is a client identifier, dataItem is a data
item that requires authorization, recipientID is a partner (service) to whom the
data item will be transferred, action is an action on data item performed by the
recipient (e.g., use, retain, share, etc.) permission is a boolean value that permits
or prohibits the transfer of the specified data item to the specified partner for the
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particular purpose defined by the action. For example, Alice can authorize the
transfer of her passport number to the T1 (Investment) service if it is needed for
processing her request (use), but prohibit to retain this data after her request
has been processed.

Although the majority of the publicly available service policies are published
in plain natural languages, they usually provide sufficient information about
the intended use of personal data. XML-based specifications such as WP-Policy
and XARML allow designers to express privacy policies in a more structured
manner. Recent approaches to privacy management suggest the transfer from
static policies to customizable solutions which allow parties to negotiate the use
of personalized data. This assumes a formalization of possible actions performed
by each partner on these data. In our case, providers of composite services may
store privacy policies of individual services in the form

pj = (ruleID, serviceID, dataItem, action, purpose, necessity, disclosure),

where ruleID is a rule identifier, serviceID is a service used in the composition,
dataItem is a private information concern, action is an action on data item
performed by the service, purpose explains the intended use of this data item,
necessity indicates whether this data item is vital for a service or optional, while
disclosure specifies whether it can be shared with other partners.

The selection of permitted actions on protected data items regarding the
invocation of a particular service by a particular client can be modeled using
Reo transformer channels. Assuming that R : ri, i = 1, n is a table of client
permissions, an SQL request

SELECT action FROM R
WHERE clientID = %currentClientName
AND dataItem = ‘passport number’
AND recipientID = ‘T1’
AND permission = ‘true’

can be realized by a channel TRANSFORMER(A2, T1in) to select a set P of
actions permitted for the service T 1 over a client’s passport number. Here the
variable %currentClientName refers to a client name from the current investment
request (Alice). Similarly, assuming that P : pj, j = 1, m is a table of rules
formalizing service privacy policies, a set R of requested actions can be obtained
using the following SQL request

SELECT action FROM P
WHERE serviceID = ‘T1’
AND dataItem = ‘passport number’
AND necessity = ‘vital’.

A constraint R ⊆ P for the FILTER(T1in, T1start) channel will ensure that
the data transition through this channel is possible only if the set of requested
actions is included in the set of permitted actions. Checking an appropriate
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(a) Auditor notification

(b) TCA for a t-timer with off and reset options

Fig. 9. Modeling time-aware business processes

formula over the domain Act = enum {‘use’, ‘retain’, ‘share’,...} we can auto-
matically establish whether privacy policies match (state T 1start is reachable)
or mismatch (state T 1start is unreachable). Potentially, more complex match-
ing functions, e.g., ones that take into account action implication (e.g., ‘retain’
implies ‘use’, etc.) can be implemented.

In the above model of the investment banking process the system waits until a
trader and an auditor perform their activities. Using timer channels we can model
a system that notifies the trader about pending requests and the auditor about
the need to authorize the performed investment operations if they do not execute
their activities in a required time period. Figure 9(a) shows an example of a Reo
circuit that uses a t-timerwith off- and reset-option TIMER(B2,B3) to achieve this
goal. A TCA for this channel is shown in Figure 9(b). A t-timer channel accepts
any input data and returns on its sink end a timeout signal after a delay of t time
units. In our case, we use a t-timer to measure how long the investment request
waits for authorization. The off-option allows the timer to be stopped before the
expiration of its delay when a special “off” value is consumed through its source
end. This option is used to switch off the timer when the authorization message is
received from the auditor. The reset-option allows the timer to be reset to 0 after
it has been activated, when a special “reset” value is consumed through its source
end. We reset the timer after sending a notification message to the auditor.

Additionally, timer channels can be exploited to initiate the rollback of an
investment activity that was not authorized in a certain time period after au-
ditor notification. Modeling of long-running business transactions with Reo is
discussed in [23].
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7 Related Work

The problem of formal business process modeling and high-level property specifi-
cation has received plenty of attention in the research community. Formal struc-
tures such as Petri-nets, transition systems, process algebras and logic-based
approaches have been widely employed to formalize the semantics of BPMN
[5,24], UML ADs [25] and WS-BPEL [26,27,28]. A comparative analysis of Petri-
nets, transactional logics and temporal logics can be found in [29]. At a first
glance, Reo is somewhat reminiscent of Petri-nets. However, Petri-nets normally
offer synchronization at each transition of a net, whereas in Reo synchronization
is defined by the types of channels connected together. This enables more con-
cise representation of complex workflow patterns. Synchronous drain channels
in Reo are convenient for modeling processes where token cleaning is required,
while Petri-nets are usually extended with inhibitor and reset arcs for this pur-
pose, which significantly reduces the number of software tools able to analyze
such models [30]. Due to the compositional nature of Reo, designers can eas-
ily model various sub-processes separately, assemble them for verification and
testing purposes and later on deploy and execute coordination code on separate
machines without any changes in the system behavior. Process algebras have
been used for formal modeling and analysis of business processes. Like other
traditional models of concurrency, process algebras offer an action based model
of concurrency, where more complex actions (i.e., processes) are composed out of
simpler ones. In these models, action is the first class concept making the inter-
action protocols implicit in the static structures of the compound processes that
manifest themselves as the sequences of the matching actions of process pairs
only as they unravel their behavior in the temporal domain. In contrast, Reo
offers a model of concurrency where interaction constitutes the only first class
concept. The distinction between Reo and traditional models of concurrency is
analogous to the distinction between constraint programming and imperative
programming. Every channel in Reo explicitly represents a primitive interac-
tion, as a binary relation that imposes a constraint on the actions at its ends.
More complex interaction protocols are constructed by composing such binary
constraints into Reo circuits. Having interaction protocols as explicit constraints
makes it easier to associate other properties and constraints, such as QoS or
compliance, to them. Moreover, Reo/CA-based models are easier than process
algebras, which make them a promising technique for practical applications for
designers without a strong formal background.

In the area of SOC, the aforementioned formalisms have been applied for
web service compatibility checking [31,32] and composition verification [33,34].
Extended CA are suitable for time-, resource- and QoS-aware behavioral com-
patibility analysis as well. An interesting property of CA as a formal model for
web service compositions is their ability to deal with interaction transactions.
For example, if a user has to provide his name, birth date, passport number and
home address to a system, it is often not important in what order he/she in-
troduces these data. CA allow us to abstract from such details by modeling the
whole interaction as a single transition.
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Various types of logic-based languages (First-Order Logic [35,36], LTL [8],
CTL [37,38], deontic logic [39,40], temporal deontic assignments [41], concurrent
transaction logic [37], etc.) have been applied for high-level process property
specification. Existing approaches provide means for formal specification, veri-
fication and enforcement of compliance requirements, but their integration ap-
pears to be very problematic. Each model is specifically designed to deal with a
certain set of requirements representing a single compliance category, e.g., tem-
poral constraints on control flow [42,43], security requirements [44], privacy poli-
cies [45,32], task based entailment constraints [46], segregation of duties [47,48],
or performance evaluation [49]. The advantage of our approach is that it al-
lows designers to check various types of compliance requirements represented as
constraints on transitions in a single CA model. LTL/ASL property specifica-
tion formats provide powerful means for formalizing and model checking these
requirements.

8 Conclusions and Future Work

In this paper, we discussed how Reo/CA can be used for compliance-aware busi-
ness process modeling and web service composition verification. We aligned vari-
ous extensions of CA and illustrated their applications using simple but realistic
examples. We showed how structural errors in workflow models can be detected,
and formalized the problem of process compliance verification to segregation of
duties and privacy policies as reachability problems in CA. All steps of business
process development, including control/data flow modeling, property specifica-
tion, process verification and code generation are accomplished with the ECT.

We plan to extend the presented work in several ways. First, additional tools
for property specification and verification will be introduced. For example, by
integrating appropriate real-time model checking tools with TCA, we can sup-
port more powerful time-aware business process analysis. Second, by integrating
syntactic/semantic interface matching algorithms with CA bisimulation check-
ing we can enable (semi-)automated service discovery and composition given
Reo process models and CA-based specifications of required service operations.
Another line of work is related to the generation of graphical Reo circuits from
RSL which will provide the basis for efficient process model reconfiguration using
RSL-like scripts. Moreover, there is ongoing work on enabling Reo/CA to ex-
press priority of certain alternatives and transitions. Such models can be useful
for implementing exception and compensation handling in Reo process models.
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Abstract. This paper presents work on object-oriented modelling of
wireless biomedical sensors in order to analyse their behaviour. These
sensors combine synchronous and asynchronous communication, hard
and soft real-time requirements, and have limited resources in terms of
memory and energy. Moreover, design decisions tend to influence the
validity of other requirements; e.g., higher communication throughput
increases energy requirements. A single language is proposed in which
design concerns can be expressed and analysed. This language is an ex-
tension for real-time systems of Creol, a modelling language specifically
designed for distributed, asynchronously communicating, active objects.
The extension proposes language primitives to capture requirements on
the progress of time and the progress of the system. We integrate the
timing requirements and the underlying object-oriented modelling lan-
guage in a timed denotational semantics. The controller of a biomedical
sensor node is used to illustrate the approach, for which there are both
hard real-time requirements imposed by taking sensor measurements and
soft requirements imposed by the communication network.

1 Introduction

Object-orientation is the leading paradigm for concurrent and distributed sys-
tems. It has been recommended by the RM-ODP and standardised by the
ISO/IEC [1]. It is also applied in development processes for real-time embedded
systems [2]. In particular, model-driven engineering, pushed by the increasing
maturity of modelling languages and tools, is increasingly used among software
designers and developers [3]. System models, traditionally created using ad-hoc
languages and formalisms, are now combined with SysML [4] and other architec-
ture description languages and formalisms. However, the heterogeneity of these
approaches form a major obstacle for the formal verification of the models, which
is crucial for safety-critical applications [5]. For correctness reasoning, the mod-
elling language needs a well-defined formal semantics and a simple proof theory,
which makes it possible to find and check the correctness proofs.
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Creol [6] is a modelling language with these features. The semantics of Creol
is formally defined in rewriting logic [7] and is executable in Maude [8]. Creol
has a compositional Hoare-style proof system [9]. This proof system is signifi-
cantly simpler than corresponding proof theories for other object-oriented lan-
guages such as, e.g., (subsets of) Java [10]. Creol is therefore a good candidate
for modelling distributed safety-critical systems. Creol unites object-orientation
and distribution in a natural way [11]: The language is inherently concurrent
and separates method invocation from synchronisation. This allows a range of
communication and synchronisation forms to be captured in an simple manner.
In Creol, all inter-object communication is asynchronous, each object executes
on its own virtual processor, and method execution is coordinated using explicit
processor release points. These release points influence the implicit internal con-
trol flow in Creol objects. Since there is only one virtual processor per object, at
most one method m may execute at a given time for a given object; any other
invocations must wait until m finishes or explicitly releases the processor. This
“cooperative” approach to intra-object concurrency has the advantage that while
a method is executing between two such release points, no other method activa-
tions can access the object’s attributes. This leads to a programming and rea-
soning style reminiscent of monitors [12], but simplified since explicit signalling
is not needed. This approach also increases parallelism when objects are waiting
for replies and allows objects to combine active and reactive behaviour [13].

This paper proposes an extension of Creol with time, called CreolRT, and
discusses how this extension can be applied to the modelling of sensor nodes in
the biomedical domain. We present the syntax of Creol in Sect. 2 and develop a
timed denotational semantics for the language in Sect. 2.2. Based on this timed
semantics, language primitives are proposed in Sect. 3 which extend Creol for
real-time modelling. The extension to real-time is inspired by timed automa-
tons [14] and is therefore declarative. No specific architecture is assumed, but
constraints on time are declared, relating time to the untimed behaviour. The
advantage of this approach is that it is platform-independent and allows a simple
extension of the underlying semantics and proof theory, as demonstrated in [15].
To illustrate the use of CreolRT, we model the timed behaviour of a biomedical
sensor controller in Sect. 4. We report on our initial experience in Sect. 6, where
we discuss the impact of the timed extension on the object-oriented language
and point towards future work.

2 Modelling Distributed Concurrent Objects in Creol

Creol is a concurrent object-oriented modelling language. Communication be-
tween concurrent objects is by means of asynchronous method calls only. Await
synchronisation is used to coordinate intra-object activities. Consequently, syn-
chronization and communication are a priori decoupled and may be combined in
different ways. This makes Creol well-suited for modelling concurrent and dis-
tributed systems. In addition, Creol is executable, has a formally defined opera-
tional semantics and a concise and compositional proof theory. We can validate
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interface Radio
begin

with Network op send (in data: Data)
with Controller

op write (in data: Data)
op read (out data: Data)
op setPower (in power: Int)
op setState (in state: State)
op getChannelStatus (out status: Int)
op getError (out error: Int)

end

interface Controller
begin

with Sensor op write (in value: Data)
end

Fig. 1. Interfaces of a radio

interface Sensor
begin

with Controller
op setResolution (in res: Data)
op setEncoding (in encoding: Data)
op switchOn
op switchOff

end

interface PassiveSensor inherits Sensor
begin

with Controller
op read(out value: Data)

with Radio
op setRate (in newRate: Duration)

end

Fig. 2. Interfaces of a sensor

Creol models in various ways, including simulation, script-driven testing, and
deductive verification. Creol, its type system, and its operational semantics are
described in detail in [6]. For simplicity, we shall assume that all programs are
well-typed. This section describes a kernel of the Creol language which we call
Core Creol. For this language, we define a denotational semantics which we use
in Sect. 3 to model timed behaviours.

2.1 Syntax

Creol is an object-oriented modelling language in which classes are structured
in a multiple-inheritance hierarchy. Classes provide high-level implementations
and do not as such declare the behaviour of objects. This means that classes
are not types in Creol. Instead, objects are typed by interfaces. An interface
controls which methods an object exports and which objects may access these
methods. An interface may declare a cointerface, in which case only objects
typed by the cointerface may invoke the methods of the interface. An object
may support several interfaces. This allows a fine-grained access control and the
static declaration of mutual dependencies. Fig. 1 shows the Radio and Controller
interfaces and Fig. 2 shows the interfaces to a simple sensor which only provides
methods to objects of the type Controller (the cointerface).

The grammar of class and interface declarations is given in Fig. 3. A Creol
class has a list of formal constructor parameters, a list of attributes, and a list
of methods. In addition, a class declares a list of the interfaces it implements
(specifying its types), a list of interfaces it contracts, and a list of super-classes.
A class need not inherit the interfaces implemented by its superclasses, so a
subclass may reuse the code from superclasses while overriding the superclass’
behavior. In contrast, contracted interfaces must be provided by all subclasses.
This separation enables flexible code reuse yet supports formal reasoning [16].

A method body is a sequence of variable declarations followed by a statement.
We assume a first-order functional language of expressions e, including this
and caller. The latter is bound to the object calling the method and typed
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If ::= interface I [inherits I {, I}] begin {MDecl} end

Cl ::= classC[(Vdecl {, Vdecl})] [inheritsC[(�e)] {, C[(�e)]}]
[implements I {, I}] [contracts I {, I}]begin {varVdecl} {Meth} end

MDecl ::= [with Type] op m[([in Vdecl {, Vdecl}][[; ] outVdecl {, Vdecl}])]
Vdecl ::= v : Type

Meth ::= MDecl == {var Vdecl ; } Stmt

Stmt ::= skip | v := e | �!o.m(�e) | �?(�v) | await c | release |
if b then Stmt [else Stmt ] end | Stmt ;Stmt | Stmt � Stmt

Fig. 3. The syntax of the Creol kernel language. The symbol {. . .} represent repetition
of the enclosed production. The symbol [. . .] represents that the enclosed production
is optional. The symbol � is a terminal symbol for the choice operator.

by the declared cointerface. Variables are represented by v. Comma-separated
lists of terms and variables are denoted by �e and �v, respectively. The await c
statement behaves like skip if the guard c holds when the statement is executed,
and otherwise suspends the process until c holds (await synchronisation). The
release statement unconditionally yields control to some other process. The
choice statement S1 � S2 executes S1 if S2 would cause suspension, S2 if S1

would cause suspension, and is a non-deterministic choice if neither statement
suspends. The choice operator � is associative and commutative. Finally, S1; S2

represents the sequential composition of S1 and S2.
The communication primitive �!o.m(�e) calls a method m with actual parame-

ters �e on the object o and binds a handle to the variable �. This handle uniquely
identifies a future from which the result of the method invocation can be re-
trieved. The statement �?(�v) is used to retrieve this result and bind it to �v,
potentially blocking the execution until the result is available. Control can be
suspended until the call has returned by polling the handle in the guard of an
await statement; e.g., await �?.

2.2 Denotational Semantics

We develop a timed denotational semantics for Creol models in three steps. First,
a denotational semantics of Creol statements is defined. Then, this denotational
semantics is extended to objects and, finally, to classes.

Notation. Let N denote the domain of names and D the domain of values, and
let {L, A} partition N into sets of names for local variables and attributes. The
domain of states Σ = N → D bind names to values. Exceptional behaviour is
reflected by a symbol ⊥ �∈ Σ. Let D⊥ denote the domain of values extended
with exception and similarly Σ⊥ = Σ∪{⊥} for the states. The binding of values
to local variables and attributes is captured by the maps σL : L → D⊥ and
σA : A→ D⊥, respectively. A variant (or update) of a state σ is defined by
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σ[v �→ u](w) �
{

u if w = v

σ(v) if w �= v.

In a state, the attribute this ∈ A identifies the current object, the local variable
caller ∈ L identifies the object which invoked the method, and the local variable
handle ∈ L uniquely identifies the method activation and names the future to
which the result of the call will be returned. These names are read-only and
cannot be assigned new values by the modeller. Object states are organised in
heaps H � O → Σ⊥ which map a non-empty set of (observed) objects O to their
individual states.

Given a set O of observed objects, let O denote a set of observations :

Silent Action τ represents the internal behaviour of the observed objects or
the behaviour of other objects which is hidden to the observed object.

Send Actions are written o
n−→ o′.m(�u), where o is the identity of the sender,

o′ is the identity of the receiver, n is a value, m is the name of the method,
and �u are actual argument values.

Receive Actions are written o
n←− o′(�u), where o is the identity of the sender,

o′ is the identity of the receiver, n is a value, and �u are the result values.
Delays are observations of the form Δ(t) for any t ∈ IR>t and represent the

progress of time. These delays are discussed in detail in Sect. 3.

Statements are defined in the scope of a method. The meaning of an atomic
statement in a method m is a triple 〈σ, o, σ′〉 ∈ S, where S � Σm×O×Σm

⊥ ∪{⊥}×
O×{⊥}. Here, σ ∈ Σm

⊥ is a state of the method before executing the statement,
σ′ ∈ Σm

⊥ is a state of the method after executing the statement, and o ∈ O is an
observation. Note that even exceptional states must at least admit observations
〈⊥, Δ(t),⊥〉, because the failure of an individual object cannot stop the time of
the whole system. All other observations 〈⊥, o, σ〉 for any o ∈ O and σ ∈ Σm

are disallowed, because objects cannot recover after an exception. We define
projections pre(〈σ, o, σ′〉) � σ, post(〈σ, o, σ′〉) � σ′, and obs(〈σ, o, σ′〉) � o.

The semantics of compound statements is defined in terms of (sets of) runs.
A run ρ of the system is a possibly infinite sequences of elements from S. Let
ε represent the empty run, ρ · ρ′ the concatenation of runs ρ and ρ′, and |ρ|
the length of ρ with |ρ| = ω for infinite sequences. Write first(ρ) for the first
element of a run, last(ρ) for the last element of a run, rest(ρ) for the run with
its first element removed, and ρ(i) for the ith element of a run ρ. A run ρ
is local if and only if pre(ρ(i))(this) = post(ρ(i))(this) for all 0 < i ≤ |ρ| and
pre(ρ(i+1))(this) = post(ρ(i))(this) for all 0 < i < |ρ|. We use similar notations
for all sequences. A run is called connected, when the post state of one statement
agrees with the pre-state of a succeeding statement.

For a run ρ, its (communication) history θ(ρ) � 〈obs(ρ(i))〉i<|ρ| is the sequence
of observations obtained by projection from ρ. Given a set O of observations, let
O∗ denote the set of all finite histories, Oω the set of all infinite histories, and
Ō the set of finite and infinite histories (i.e., Ō = O∗ ∪ Oω). Histories form a
partially ordered set 〈O∗;�〉 with least element ε, where � is the prefix order on
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O∗. Observe that θ � θ′ implies that there exists θ′′ ∈ O∗ such that θθ′′ = θ′.
This motivates the extension of the prefix order � to Ō as follows:

1. If θ ∈ O∗ and θ′ ∈ Ō, then θ � θ′ if and only if there exists θ′′ ∈ Ō such
that θθ′′ = θ′.

2. If θ ∈ Oω and θ′ ∈ Ō, then θ � θ′ if and only if θ = θ′.

An observation d is local to an object o, if and only if d = τ , d = Δ(t) for
some t ∈ IR>0, d = o

n−→ o′.m(�u), or d = o
n←− o′(�u) for some values o′, n, m, and

�u. Let Oo denote the set of observations local to o. A history θ is called local to
an object o if and only if ∀i < |θ| : θ(i) ∈ Oo. Let θ/o denote the projection of
a history θ ∈ Ō to the local observables Oo of an object o, so θ/o ∈ Ōo. For a
history θ, the sets of call handles C(θ) and reply handles R(θ) are given by

C(θ) � {n | ∃i, o, o′, m, �u : i < |θ| ∧ θ(i) = o
n−→ o′.m(�u)}

R(θ) � {n | ∃i, o, o′, m′�u : i < |θ| ∧ θ(i) = o
n←− o′(�u)} .

Objects only have well-formed histories, which are formally defined as follows:

Definition 1 (Well-formedness). A history θ ∈ O∗
o is well-formed, written

wf(θ), if and only if:

wf(ε) = true
wf(θ · τ) = wf(θ)

wf(θ ·Δ(t)) = wf(θ)

wf(θ · o n−→ o′.m(�u)) = wf(θ) ∧ n �∈ C(θ)

wf(θ · o n←− o′(�u)) = wf(θ) ∧ n ∈ C(θ) ∧ n �∈ R(θ)

For a set O of observed objects, a history θ ∈ O∗ is well-formed if it is well-
formed for all the objects in the set; i.e., wf(θ) � ∀o ∈ O : wf(θ/o).

We define the following extensions to well-formed histories (recall that the local
state is denoted σL):

Definition 2. Let O be a set of observed objects, θ′ ∈ Ō, and θ ∈ O∗ such that
wf(θ). Then

– θ′ is an extension of θ, written θ � θ′, if and only if θ � θ′, wf(θ), wf(θ′) and
for all |θ| ≤ i < |θ′| we have post(last(θ))L = pre(θ′(i))L and pre(θ′(i))L =
post(θ(i))L.

– θ′ is an input extension of θ, written θ � θ′, if and only if θ � θ′, ∃θ′′ ∈ Ō
such that θ′ = θ · θ′′, and for any o ∈ O we have ∀o′, n, m, �u : θ′′(i) �= o

n−→
o′.m(�u) (o does not call a method) or ∀o′, n, m, �u : θ′′(i) �= o′ n←− o.m(�u) (o
does not emit a reply to a call) for all i < |θ′′|.

Prefix relations admit time progression, since 〈σ, Δ(t), σ′〉 is always allowed as
an extension. Input extensions will extend histories with messages (calls and
replies) from objects outside of the observed objects O to objects in of O, but
not in the other direction.
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A Denotational Representation of Creol Statements is given in Fig. 4 and
explained below. The denotation of a Creol statement is an extended reactive
sequence; i.e., a sequence of triples 〈σ, o, σ′〉, where o is an observation and σ
and σ′ are the states before and after the statement is executed. The state after
executing some statement need not be the same as the state before executing
the following statement. This models possible interleaving between objects or be-
tween different method activations within the same object. Once all statements
are considered, the semantics of the system is given by connected sequences; i.e.,
sequences in which the post-state of one statement agrees with the pre-state of
a succeeding statement, but the succeeding statement may belong to another
method or object.

Lets motivate our choice for using these reactive sequences. Reactive sequences
have been introduced to obtain a compositional semantics for shared-variable
programs [17]. Each Creol object is, to some extend, a shared variable program,
because many method activations may exist in each object and execution may
change between these activations, e.g. by executing a release statement. When-
ever control yields to another activation, we cannot assume that the object’s
state remains unchanged once control returns. The behaviour between objects,
however, should be defined by the exchanged messages. Consequently, the inter-
nal observation is a sequence of object-states and the external observation is a
sequence of observations.

Let the auxiliary predicate fresh(n, θ) assert that a handle value or object
identifier n does not occur in the history θ and the function eval(e, σ, θ) evaluate
expressions e in the context of a state σ and a history θ. Histories record the
communication history of objects and are used to evaluate the polling of handle
variables, for example in a statement in await v?.

Equation (1) states that skip has no effect and Eq. (2) that an assignment
evaluates the expressions on its right hand side and updates the object’s state
with the new values. Equation (3) describes object creation; the freshness of the
new object’s name o is ensured by requiring that the name o has not been seen
in the current run. We assume the presence of a constructor method init, which
describes initialisation and activates the on-going behaviour of the object. This
method is called upon object creation. Equation (4) describes the call statement,
which evaluates all actual parameter expressions, binds a fresh handle value n to
the handle �, and appends the send action σ(this) n−→ eval(o, σ, ρ).m(eval(�e, σ, ρ))
to the history. Equation (5) describes the reply statement ; if the reply to the call
with handle � occurs in the history θ, the received reply values are assigned to
the variables �v. Equation (6) explains release; after the release statement, the
values of the attributes may have changed and the history extended as an effect
of other activities in the object. Similarly for the await statement in Eq. (7);
either b holds when the statement is executed (then it behaves like skip) or
the thread suspends, in which case the values of the attributes may change and
the history extended by some input-extension. The last observation of ρ′ is the
time when the method is reactivated after suspension. However, the release and
await statements need not return. Equation (8) explains the (standard) meaning
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DC
m[[skip]]ρ � {ρ · 〈σ, τ, σ〉 | σ ∈ Σ} (1)

DC
m[[v := e]]ρ � {ρ · 〈σ, τ, σ[v �→ eval(e, σ, ρ)]〉 | σ ∈ Σ} (2)

DC
m[[v := new C(e)]]ρ � {ρ · 〈σ, σ(this) n−→ o.init(), σ[v �→ o]〉

| σ ∈ Σ ∧ fresh(n, ρ) ∧ fresh(o, ρ)} (3)

DC
m[[�!o.m(�e)]]ρ � {ρ · 〈σ, σ(this) n−→ eval(o, σ, ρ).m(eval(�e, σ, ρ)), σ[� �→ n]〉

| σ ∈ Σ ∧ fresh(n, ρ)} (4)

DC
m[[�?(�v)]]ρ �{ρ · 〈σ, σ(this)

eval(�,σ,ρ)−−−−−−→ o.m(�u), σ[�v �→ �u]〉
| σ ∈ Σ ∧ ∃m′, o′ : m′ = m ∧ o′ = o}

(5)

DC
m[[release]]ρ � {ρ · ρ′ | ρ � ρ · ρ′ ∧ obs(first(ρ′)) = τ} (6)

DC
m[[await b]]ρ � {ρ · 〈σ, τ, σ〉 | eval(b, σ, ρ)}
∪ {ρ · ρ′ | ρ � ρ · ρ′ ∧ obs(first(ρ′)) = τ

∧ ¬ eval(b, post(last(ρ)), ρ) ∧ eval(b, pre(last(ρ′)), ρ · ρ′)}
(7)

DC
m[[if b then S else S′ end]]ρ �
{ρ · ρ′ ∈ DC

m[[S]]ρ | eval(b, pre(first(ρ′)), ρ · first(ρ′))}
∪ {ρ · ρ′ ∈ DC

m[[S′]]ρ | ¬ eval(b, pre(first(ρ′)), ρ · first(ρ′))}
(8)

DC
m[[S � S′]]ρ � DC

m[[S]]ρ ∪ DC
m[[S′]]ρ (9)

DC
m[[S; S′]]ρ � {ρ′′′ | ∃ρ′ ∈ DC

m[[S]]ρ ∧ (∃ρ′′ : ρ′ � ρ′′ ∧ ρ′′′ ∈ DC
m[[S′]]ρ′′)} (10)

Fig. 4. The denotational semantics of Creol statements

of a conditional statement and the choice statement in Equation (9) is simply
the union of the denotations of its branches.

Equation (10) captures the sequential composition of statements. The run
ρ which leads to the composed statement S; S′ is extended with the effect of
the first statement S. The resulting run ρ′ is extended with an arbitrary input
extension to a run ρ′′, which captures incoming messages and the passage of
time. Finally, ρ′′ is extended with the effect of the second statement S′. If the
first statement fails, the second statement will not be executed. The meaning
of a sequential statement is, consequently, the history that leads to the first
statement, an extension, followed by the effect of the last statement. All messages
received between both statements are remembered in the resulting history.

The denotational semantics for methods and classes is given in Fig. 5. Equa-
tion 11 describes a method m with input parameters �p, output parameters �q
and method body S: The run ρ is extended with the effect of the method body
(which may be interleaved with the effect of other suspended method bodies), if
a call to that method has not been answered and the initial state of that method
body is updated to assign the actual arguments to the formal parameters.

Finally, consider the denotational semantics of a flattened class in Eq. (12). We
first focus on a single instance of the class, since the behavior of other instances
can be obtained by substituting the value of this. A single object may execute
many methods in an arbitrary order, but it always starts with executing its
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DC [[m(�p; �q) == S]]ρ � {ρ′ · 〈σ′, σ′(caller) n←− σ′(this)(σ′(�q)), σ′〉 |
σ = post(last(ρ)) ∧ σ′ = post(last(ρ′)) ∧ ∃c, n, �u, i : n �∈ R(θ(ρ)) ∧

obs(ρ(i)) = c
n−→ σ′(this).m(�u) ∧

ρ′ ∈ DC
m[[S]](ρ · 〈σ, τ, σ[handle �→ n, caller �→ c, �p �→ �u]〉)}

(11)

D[[C]] � {ρ | ∃o′, o, σ, ρ′, ρ′′, n, n′ :

ρ′ ∈ DC [[init == S]]〈σ, o′ n−→ o.init(), σ[this �→ o]〉 ∧
ρ′′ ∈ DC [[run == S′]]ρ′ · 〈σ′, σ(this) n′−→ σ(this).run(), σ′〉 ∧

σ′ = post(last(ρ′)) ∧ ρ′′ � ρ ∧ wf(ρ) ∧ conn(ρ)}
(12)

Fig. 5. The denotational semantics of Creol methods and classes

constructor init and continues by executing the method run which models the
active behaviour. Self calls are needed to maintain that behaviour. The meaning
of these calls is usually provided by the extensions of Eqs. (6) and (7), together
with the input extensions of Eq. (10) and finally, by Eq. (11) providing the
meaning of the executed code. The meaning of an object that executes a number
of methods can be obtained by composing the semantics of those methods. A
run of a class is connected if the post-state of one observation corresponds to the
pre-state of its successor component; i.e.,

conn(ρ) � ∀i < |ρ| : post(ρ(i)) = pre(ρ(i + 1)) .

Connected sequences have been used as a compositional semantic model for
shared variable concurrency [17].

The semantics of a model is obtained from the semantics of objects by refor-
mulating runs in terms of heaps. We assume one instance of a root class in the
heap and consider all runs from that root class. Observe that well-formedness
will guarantee causality between all communication events, whereas progress of
time is observed equally by all objects. Furthermore, when executing new state-
ments, the heap must be extended to include the state of the newly created
object in addition to the effect described in Eq. (3).

3 CreolRT: Extending Creol with Real-Time Constraints

Based on the timed denotational semantics introduced in Sect. 2.2, we now
propose an extension CreolRT of Creol to model real-time behaviours. The model
is intended to capture the timing requirements of the original specification and to
help find inconsistencies and identify conditions under which these requirements
can be met. The proposed extension follows Hooman [15].

The time-dependent properties of a system can be captured using two data
types and two statements. The first data type is Time, with domain IR≥0, and
which is the type of the value of clocks. We assume one global clock, which
all objects can read through the expression now. This expression behaves like a
read-only global system variable. Values read from now can be stored in variables
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now : Time

= : Time × Time → Bool

< : Time × Time → Bool

− : Time × Time → Duration

+ : Time × Duration → Time

0, 1, 1.5, . . . : Duration

= : Duration × Duration → Bool

< : Duration × Duration → Bool

− : Duration × Duration → Duration

+ : Duration × Duration → Duration

· : Real × Duration → Duration

Fig. 6. Real-time expressions and constraints

of type Time and compared to other values of type Time. There is no absolute
notion of time available to the modeller, instead timing must be expressed rela-
tive to observations in the model. A practical advantage of this design choice is
that the specifications are shift invariant ; i.e., properties that hold for histories
starting with time t0 also hold for histories starting at another time. In addition,
a second data type Duration is used to express the difference between two clock
values. All floating-point literals can be used as values of type Duration. The
operations on Time and Duration are summarised in Fig. 6.

The denotational semantics of Sect. 2.2 already supports observations of the
passage of time. For all t ∈ IR>0, delay events Δ(t) represent that the clock
advances by t time units. Consequently, delays may be seen as a form of inputs
to the object, which increase the clock value of the object. Thus, the timed
semantics is very similar to the semantics formulated for timed automatons [14];
time progresses in states, while executing statements is instantaneous.

With these operations, a modeller can observe time, express durations, and
formulate predicates on time. In the sequel, a timed constraint is any Boolean
predicate in which all non-Boolean expressions have the type Time or Duration.
The latter clause allows scalar multiplication of durations in timed constraints
(the scalar has type Real) without admitting comparisons of real numbers as
part of timed constraints.

The value of now in an object can be obtained from the history leading to
that statement by summing up all delay values in the run

eval(now, σ, ρ) =
|ρ|∑
i

δ(ρ(i)), where δ(〈σ, o, σ′〉) �
{

t if o = Δ(t)
0 otherwise

.

We now consider how time constraints may be combined with untimed behavior.

Waiting. As in timed automatons, the execution of statements is instantaneous,
that is, time does not progress while a statement is executed. Time can only
progress while an object is not executing any statements; e.g., when it is waiting
for a reply or a condition. Using the await statement with a time constraint
forces the advance of time before the process can proceed. The fragment

var t: Time :=now; S; await now ≥t +1

expresses that the execution of S takes at least 1 time unit: it stores the value
of the current time in t, executes S, and then waits until now has advanced for
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at least 1 time unit since storing t. In this example, time may advance before
executing S, after executing S or, if S is compound, anywhere between executing
statements in S. Rather, we express that at least 1 time unit has passed from
the assignment to t until the termination of the await statement.

This kind of await statement is easily implementable; e.g., by a busy waiting
loop. Creol does not guarantee that the method activation resumes execution as
soon as the condition is true, but that the condition is true in the moment the
busy waiting loop terminates.

The elapse of time can be modelled by await statements with timed con-
straints. Combined with the non-deterministic choice operator these statements
can be used to model time-dependent execution of statements, as shown in

var t: Time :=now; S;
begin

await now ≥t +1; S1 � await now <t +1; S2
end

This example suggests a way to model a time-out. Here, S1 should be chosen if
S terminates after 1 time unit and S2 should be chosen otherwise.

Timed constraints may also be used in while and if conditions. Time does
not advance while the condition is evaluated, but it may advance before, while,
and after executing the substatements.

Combining await statements with timed constraints imposes constraints on
how time is supposed to advance. Furthermore, we require that all infinite runs
are non-Zeno; i.e., for all t ∈ IR>0 there is an i < ω such that

∑|ρ|
j<i δ(ρ(i)) > t.

However, this requirement allows undesired or uninteresting behaviour, where
runs only consist of delay observations.

Progress could in principle be captured similarly. However, the fragment

var t: Time :=now; S; await now <t +1

does not express that executing S takes at most 1 time unit. If the execution
of S takes more than 1 time unit, the method would be suspended and never
reactivated. Similarly, the fragment

await now ≥t +1; S1 � await now <t +1; S2

allows to wait forever instead of selecting a branch. Consequently, the await
statement is not expressive enough to ensure progress of the system.

We introduce the declarative “statement” posit ϕ to express progress, where
ϕ is a time constraint. A posit statement is not executable, but it declares a
property on time which should hold for all computations of the system. Thus,
the posit statement acts like a filter on acceptable runs of the model. The
semantics of posit statements ressemble invariants in timed automatons [14]:
Each timed history must satisfy all posit constraints in order to be considered
a timed history of the CreolRT model.

If ρ is a run of a system and the prefix of length j leads to a statement
posit ϕ, the run is valid, if and only if ρj |= ϕ. As a consequence, the posit
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statement conceptually blocks execution unless the condition ϕ holds. Remark
that time-constraints do not necessarily describe convex sets, but may contain
“holes”. Our semantics allows time to “jump” over these holes without violating
the posit constraint. For example, in the fragment

posit (t0 <now ∧now <t0 +10) ∨ t1 <now

the constraint t0+10<t1 contains such a hole. The posit constraint states that
local observations do not occur between time t0+10 and t1.

Observe that the timing requirements of different posit statement may re-
sult in systems with objects that do not have any computations at all; e.g.,
posit false or await now >c; posit now <c. If one object allows no run to
satisfy all its posit constraints, then the whole system has no run, too. This is
because a posit constraint is a constraint on time, and time is a global entity.
If a time fails for one object, it fails for every other object in the same instant.
Furthermore, posit statement may make the behaviour of objects incompatible;
i.e., their composition does not contain any behaviour. Proving that there exists
a connected sequence that satisfies all relevant posit constraints implies that the
objects’ behaviours are compatible.

The addition of the declarative posit statements to CreolRT has as a conse-
quence that models need not be realisable. The posit declarations are assumed
as axioms of the model and therefore become proof obligations at the implemen-
tation level. In order to discharge these proof obligations, suitable schedulers may
be needed for each object. In addition,the inter-object communication must be
realisable as postulated by the modeller.

To implement a CreolRT model we would usually use the facilities of some
real-time operating system, which would select the next method activation by
following some priority scheme. There, it is usually assumed that the operat-
ing system will avoid undue waiting by trying to schedule and execute tasks
eagerly, i.e. as soon as a task is eligible for execution. This assumption makes
one motivation for our posit statement redundant, whereas a second aspect still
remains: Priorities ought to be assigned in a way that all posit conditions are
never violated. After priorities have been assigned, as described in, e.g., [18], the
posit statements may take the rôle of assertions when validating the objects
behaviour.

The semantics of a CreolRT model is a set of timed histories. We explain
why we did not cover inheritance in Sect. 6. We continue with representing how
CreolRT is used to model a simple case study.

4 Modelling Biomedical Sensor Nodes in CreolRT

Biomedical sensor nodes are used to monitor biological parameters in tissues and
organs and to detect any biological changes in patients. A range of different sensor
nodes may be used on patients in diagnostic, surgical, and post-operative phases.
To facilitate patient mobility and avoid blind phases when moving patients, we are
interested in sensor nodes which use wireless communication.
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n1: Node

s0: Sensor

s1: Sensor

c: Controller r: Radio e: Environment

n2: Node

n3: Node

s: Sink

Fig. 7. The architecture of a sensor node and its relation to other nodes

A wireless biomedical sensor node controls one or more sensors, collects data
with fixed sampling rates, and sends the data to a base station for further process-
ing; e.g., visualisation. Different requirements have to be balanced for this applica-
tion: The sensor node runs on battery and is expected to last for some time (e.g., 7
days) and as a consequence, the sensor node needs to manage power carefully. To
this end, biomedical controllers support two different modes: the monitoring mode
is used in situations where approximate data about the patient’s condition suffice,
and the diagnostic mode, in which precise high-resolution data are required. For
example, to monitor ECG data a sampling-frequency of 150Hz is used in monitor-
ing mode and up to 600 Hz in diagnostic mode. The quality of a network of such
sensor nodes is determined by the time and the duration with which the sensor
nodes listen to neighbouring sensor nodes: The longer a sensor node listens, the
more data will be delivered successfully to the base station, but the shorter the
battery will last. A certain loss of data packets is acceptable to conserve energy.
Combined with the soft real-time tasks of transporting and routing data, the sen-
sor node has to execute the hard real-time task of sampling biological values. The
sampling frequency must be observed strictly: if the sensor samples too often, the
sampled signal needs to be time-stamped to obtain the correct data, more packets
have to be sent, and the battery charge is depleted too fast. If the sampling fre-
quency is too low, the sampled signal will contain erroneous information [19] and
cannot be used at all.

The overall architecture of the sensor nodes is shown in Fig. 7. A sensor
node n1 consists of a controller c and a radio r, whose interface is specified in
Fig. 1, as well as two sensors s0 and s1, whose interface is specified in Fig. 2.
The controller decides whether it operates in monitoring or diagnostic mode,
and in each mode it reads data from the sensor with a fixed frequency. After
a certain number of values have been sampled from a sensor, the node sends
these values via the radio to a neighbour node or the sink node. In addition,
the controller listens for packets on the network and forwards them towards the
sink node if necessary. In the considered architecture, the object e represents the
environment and decides whether a node is within reach of another node. Here,
we assume that the network contains a single sink node s. Finally, neighbouring
nodes can be dynamically introduced and removed from the environment.

To ensure that the sensor node will work as expected, the sensor node was
modelled in CreolRT as part of a case study on biomedical sensor networks.
The satisfaction of all timing constraints has been checked on that model. The
timing assumptions of our model are coarse and need to be validated by testing
or simulation of the real implementation. Nonetheless, modelling the sensor node
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helped in finding ambiguities, omissions, and errors in the specification. We focus
on the timing aspects of the sensor node, and abstract from the behaviour of
the sensor. The sensors will therefore provide the data of a “healthy patient.”
Furthermore, the behaviour of the sensors does not impose any constraints on
time. They can be read at any time providing an appropriate value.

A CreolRT model of a sensor node with two simple sensors is given in the
class TwoSimpleSensorNode in Fig. 8. The run method describes the active
behaviour of the object. It cycles the radio through three different modes: in off
mode the radio is turned off and the node cannot receive any messages from the
environment, in rx mode the radio is listening for messages. In tx mode the radio
can send messages. The hardware of the radio is not able to send and receive
at the same time. The controller maintains a buffer with a number of free slots.
Once that buffer is full, its content should be sent to the network.

The listening task reads data from the radio while the radio is in rx mode. We
have elided the code that reads data sent by neighbouring nodes. In that case
the message are queued for resending when the radio enters tx mode. If energy
is low, the controller may decide to drop data. In addition, protocol information
has to be processed. We only consider control messages pertaining to the switch
between monitoring and diagnostic mode.

The sensor node has to support switching between the monitor mode and the
diagnostic mode at run-time. While listening to the network, it may receive a
message which triggers such a change. Switching between the modes of operation
entails changing the sampling frequency of the sensor, and therefore the over-
all timed behaviour. Switching from the diagnostic mode to the monitor mode
is simple, because it increases the duration of the period of activity. Switching
from monitor mode to diagnostic mode is more difficult, because the duration
between taking samples is decreased. Naively setting the new rate may inval-
idate the model by violating posit now ≤clock0 +rate0 in the run0 method.
A common idiom is await now ≥t0 +rate0; posit now ≤t0 +rate0; S, which
expresses that S is executed precisely at time t0+rate0 (this is convenient for
modelling, but hardly implementable).

Figure 9 illustrates the possible scenarios. Assume that the sensor node started
sampling the latest value from the sensor at t0 (the black area suggests the time
needed for sampling). Then reading the next sample is scheduled at time t0 + p,
where p is the sampling period in monitoring mode. If a request to change to
diagnostic mode is received at t1, and the new sampling period is set to p′, such
that t1 ≤ t0 +p′, then we can safely change the mode and start reading the next
sample at t0 + p′. However, if a request to change to diagnostic mode is received
at t2 with t2 > t0 + p′ then the change cannot happen easily, since we must not
violate the posit constraint.

Completing the cycle with the old rate may cause an unnecessary delay and
render some data unusable. In the ECG scenario, changing from 150 Hz to 600 Hz
could mean to lose up to 5 samples and the packed data could become hard to
interpret. This may be unacceptable. Instead, we decided in our model to send
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class TwoSimpleSensorNode(sensor0: PassiveSensor, sensor1: PassiveSensor,
radio: Radio, size: Int,
initialRate0: Duration, initialRate1: Duration)

contracts Controller
begin

var buffer: List[Data] :=nil
var slots: Int :=size
var rate0: Duration :=initialRate0
var rate1: Duration :=initialRate1
var t0: Time
var t1: Time

op init == t0, t1 :=now, now

op run == !run0() ; !run1()

op run0 == read0(;); await now ≥t0 +rate0; posit now ≤t0 +rate0;
t0 :=now; !run0()

op read0 == var temp: Data; sensor0.read(; temp); posit now ≤t0;
await slots >0; buffer :=buffer 	temp; slots :=slots − 1;
if slots = 0 then packAndSend(;) end

op run1 == read1(;); await now ≥t1 +rate1; posit now ≤t1 +rate1;
t1 :=now; !run1()

op read1 == var temp: Data; sensor1.read(; temp); posit now ≤t1;
await slots >0; buffer :=buffer 	temp; slots :=slots − 1;
if slots = 0 then packAndSend(;) end

op packAndSend == var x: Time; var l: Label � ; radio.setMode(1;);
l!radio.write(this 
now 
buffer); await l?;
buffer, slots :=nil, size; await now ≥x +5; radio.setMode(0;);

with Radio
op setRate0(in newRate: Duration) ==

if newRate <rate0 ∧now >t0 +newRate then t0 :=now; read0(;) end;
rate0 :=newRate; posit now <t0 +rate0

op setRate1(in newRate: Duration) ==
if newRate <rate1 ∧now >t1 +newRate then t1 :=now; read1(;) end;
rate1 :=newRate; posit now <t1 +rate1

with Sensor
op write(in data: Data) == skip

end

Fig. 8. A sensor node class which reads two sensors with different rates. Here, the
expression buffer �temp states, that the element temp is appended to the list buffer.

t0 t0 + p′ t0 + p

t1 t2

Fig. 9. Sampling time line

a short packet, read a new sample immediately, and set the new sampling rate.
This may cost slightly more energy, but ensures a timely reaction and quality.

It is also possible to delay the switch to diagnostic mode. While the timely
reading of samples is necessary to ensure the quality of the data, delays in
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delivery can be hidden by the tolerated packet loss. It depends on the overall
network, if such a calculated loss is acceptable, since packet loss due to sleep-
ing neighbours and environmental noise could prove sufficient for reducing the
number of packages to barely acceptable levels.

5 Analysis

We use the denotational semantics described in Sect. 2 to assign a meaning
to the model of Sect. 4. Asserting that the set of runs is non-empty implies
that all timing constraints can be satisfied. Conversely, showing that there is no
denotation shows that some constraints cannot be satisfied.

For the TwoSimpleSensorNode class, we manually proved the existence of an
infinite run. To satisfy all timing constraints, all long-running methods must be
preemptable by means of await statements to allow the timely reading of sensor
values. For example when a buffer for sending on the radio has been prepared,
the buffer used by the sensor node is freed in the packAndSend method: the radio
is instructed to send that package and control is then preempted to other tasks
by the await l? statement. The condition becomes true when the radio finishes
sending the message, after which the buffer is freed for further processing.

Verifying scheduling properties of the models often shows at which program
locations a task should be preempted by an await statement and a timing
constraint. Thus, the described method can be applied to designing real-time
systems in Creol. On the other hand, the described method is deductive and
therefore expensive to apply. Automatic methods that reduce the verification
effort might not exist, because the problem is undecidable in the presence of
preemption. Creol’s cooperative nature restricts preemption to explicit locations
and may help in making automatic methods applicable.

In time-critical systems, everything depends on timing and the timing require-
ments must be strictly enforced. The time needed to execute a method is often
part of the implicit assumptions of the callers. Overriding or replacing a method
body with one with different timing characteristics can therefore be fatal to the
system’s behaviour. The timing guarantees of a method must therefore be stated
explicitly in the interface of that method. Moreover, the assumptions made on
all methods called from this method need also be explicit.

The complete design of this example contains many other challenges for the
modeller. Most of the results about the model, which we described in this sec-
tion, have been obtained by deductive reasoning techniques. Many omissions and
ambiguities have been identified in that process, which increases our confidence
in the soundness of the design.

6 Discussion

This paper describes CreolRT, an extension of the concurrent object-oriented
modelling language Creol with constructs for modelling real-time systems. This
extension is illustrated on a small case study, modelling the behaviour of a
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biomedical sensor node. Modelling the sensor node in CreolRT was instrumental
in deriving an improved specification of its timed behaviour.

The CreolRT extension combines a timed-automatons based timing model with
Creol’s concurrent object model, and necessitated a close examination of the par-
ticular semantics of the Creol language in the timed setting: asynchronous com-
munication and cooperative multiprogramming within objects. A fine-grained
model of the real-time behaviour of a system is very difficult to obtain, because
it often involves an analysis of the system at the level of its machine code, which
must take the actual target platform into account [20]. Such models are un-
necessarily detailed for our purposes, and focusing on time is often harmful for
modelling [21]. The declarative approach taken here allows to abstract from the
concrete details of the hardware and makes the necessary requirements explicit.
Furthermore, the cooperative multiprogramming model of Creol significantly
helps in controlling possible interference between processes in the same object.

We have not considered the challenges of combining inheritance and late bind-
ing with the timed semantics in this paper. Inheritance interacts with the time
extension by breaking encapsulation. The problems are similar to such anomalies
as the fragile base class problem [22] for the sequential setting and the inheritance
anomaly [23] in the concurrent setting. Specifically, the timing requirements and
guarantees of a method that arise from the implementation become part of the
method’s interface and should be documented. Overriding a method should not
change the timing-characteristics of the overridden method: the execution of that
method should not take more or less time than specified. This has already been
observed in [24].

For the case study, all proofs needed to verify the consistency of the specifica-
tion have been obtained by hand. Formalising the theory described in this paper
has been definitely helpful in increasing our confidence in our extension and the
models. We are looking into formalising the described theory within a proof as-
sistant in order to help automate many proof steps. In this work, the focus has
not been so much on execution times but on timeliness properties. Methods can
specify when they are expected to be executed: The execution times of the sensor
controllers in the example are less important than the execution frequency. The
requirements state that a method must be called once every t time units. As a
next step, we intend to refine the tx and rx modes of the radio. We are currently
able to reason about the time spent in each mode and we are able to derive how
long each node needs to send a message.

To analyse sensor networks, we need to specify the properties of the (asyn-
chronous and reordering) communication media. In addition, timed specifications
impose global constraints on communication and couple objects in unexpected
ways, because the caller decides whether to block on a method call and imposes
constraints on the round-trip time of calls. The conjunction of all such local con-
straints need not be satisfiable, leading to inconsistent models. Time requires an
explicit model of the communication medium with which objects are synchronis-
ing, e.g., in the form of timed automatons. This helps identify inconsistencies.
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To facilitate simulation and verification, we consider translating a subset of
the CreolRT modelling language to timed automatons, preferably the language
used by the UPPAAL model checker [25]. Obtaining finite-state timed models
from CreolRT models is a major challenge: Asynchronous channels need bounds
to have a finite queue, reductions need to deal with message overtaking, and
data abstractions have to be applied. A translation to UPPAAL will enable us to
combine our model of the controller with the radio model presented by Tschirner
and Wang in [26]. Then we can analyse the global behaviour of the system.
However, the generated automaton will generally be an under-approximations
of the CreolRT model, because we need to limit the number of active tasks
to keep the state space finite. This will only preserve existential properties: If
an error can be reproduced in the finite system, then it is also present in the
unbounded one. It is a challenge to infer reasonable bounds which guarantee
that the universal properties required by the system are indeed satisfied.
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Abstract. This paper presents a unified approach to test case genera-
tion and conformance test execution in a distributed setting. A model in
the object-oriented, concurrent modeling language Creol is used both for
generating test inputs and as a test oracle. For test case generation, we
extend Dynamic Symbolic Execution (also called Concolic Execution) to
work with multi-threaded models and use this to generate test inputs that
maximize model coverage. For test case execution, we establish a con-
formance relation based on trace inclusion by recording traces of events
in the system under test and replaying them in the model. User input
is handled by generating a test driver that supplies the needed stimuli
to the model. An industrial case study of the Credo project serves to
demonstrate the approach.
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1 Introduction

Model-based testing has become an increasingly important part of robust soft-
ware development practices. Specifying a system’s behavior in a formal model
helps to uncover specification ambiguities that would otherwise be resolved in
an ad-hoc fashion during implementation. Using the model as a test oracle as
well as a specification aid reinforces its critical role in the development process.

The techniques presented in this paper are based on the object-oriented mod-
eling language Creol, a language designed to model concurrent and distributed
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systems. Creol models are high-level as they abstract from, e.g., particular net-
work properties as well as specific local schedulers. However, Creol is an exe-
cutable language with a formal semantics defined in rewriting logic [19]. Thus,
Creol models may be seen as executable designs. Test cases are written in Creol
as well, and dynamic symbolic execution (DSE) is applied to calculate a test
suite that reaches the desired model coverage. DSE is a combination of concrete
and symbolic execution, and therefore, it is also known as concolic execution.

To show conformance between model and implementation, sequences of events
are recorded from the instrumented implementation and replayed on the model.
This approach allows reasoning about control flow and code coverage and goes
beyond observations on program input/output. The conformance relation is
based on trace inclusion, that is, every behavior shown by the implementation
must be observable on the model as well. In case of non-deterministic models,
we apply model-checking techniques in order to reach conclusive fail verdicts.
To deal with user input events, the generated test driver stimulates the model
in the same way as was observed in the implementation.

This testing methodology is applied in the context of the ASK system, one
of the industrial demonstrators of the Credo project. However, Creol and the
presented model-based testing technique is general and covers a wide range of
distributed architectures.

The major contributions of this paper are:

– A tool-supported method for calculating optimal-coverage test cases from a
model that serves as a test oracle.

– An extension of DSE to deal with concurrency.
– A conformance relation that can handle both input/output events and inter-

nal actions in a uniform way and allows reasoning about program flow and
code coverage.

– A tool to generate a test driver from recorded implementation behavior that
copes with arbitrary input events.

The rest of the paper is organized as follows: Section 2 gives an in-depth overview
of the approach, including the techniques and the conformance relation devel-
oped, and Section 3 presents the unique features of the Creol modeling language
that enable parallel DSE. Section 4 explains how to calculate test inputs from
a Creol model, and Section 5 shows how to generate full test cases by record-
ing an implementation’s behavior responding to these test inputs, and checking
whether its Creol model can exhibit the same behavior. Finally, Sections 6 and
7 contain related work and a conclusion to the paper.

2 Overview: The Testing Approach

The method described in this paper consists of two parts: generating test cases
from a Creol model, and validating the implementation against the model. Gen-
erating test cases is done by computing test input values to achieve maximal
model coverage. To handle the parallelism in the models, dynamic symbolic ex-
ecution is used to avoid the combinatorial state space explosion that is inherent
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in static analysis of such systems. Validating the implementation is achieved via
light-weight instrumentation of both model and implementation, and replaying
traces that were recorded on the implementation on the model in order to verify
the conformance of the implementation’s behavior.

2.1 Finding Test Cases with Dynamic Symbolic Execution

This section gives a brief introduction to dynamic symbolic execution (DSE) and
its application to test case generation of sequential programs. Our extensions for
distributed and concurrent systems are presented in Section 4.1. Conventional
symbolic execution uses symbols to represent arbitrary values during execution.
When encountering a conditional branch statement, the run is forked. This re-
sults in a tree covering all paths in the program. In contrast, dynamic symbolic
execution calculates the symbolic execution in parallel with a concrete run that
is actually taken, avoiding the usual problem of eliminating infeasible paths.
Decisions on branch statements are recorded, resulting in a set of conditions
over the symbolic values that have to evaluate to true for the path to be taken.
We call the conjunction of these conditions the path condition; it represents an
equivalence class of concrete input values that could have taken the same path.
Note, in the case of non-determinism, there is no guarantee that all inputs of
this equivalence class will take this path. For the application of DSE to system-
atic test case generation, the symbolic values represent the inputs of a program;
concrete input values from outside this equivalence class are selected to force
new execution paths, and thereby new test cases. Hence, the selection of new
input values for finding new paths is a typical constraint solving problem.

Example 1. Consider the following piece of code from an agent system calculat-
ing the number of threads needed to handle job requests.
1 amountToCreate:= tasks −idlethreads+ . . . ;
2 if (amountToCreate > (maxthreads −threads)) then
3 amountToCreate:= maxthreads −threads;
4 end;
5 if (amountToCreate > 0) then . . . end;

Testers usually analyze the control flow in order to achieve a certain coverage. For
example, a run evaluating both conditions above to true is sufficient to ensure
statement coverage. Branch coverage needs two cases at least and path coverage
all four combinations. The symbolic computation calculates all possible condi-
tions, expressed in terms of symbolic input values. We denote the symbolic value
of an input parameter by appending S to the parameter’s variable name. Let
threads, idlethreads, and tasks denote the input parameters for testing,
and maxthreads being a constant. Then statement coverage (both conditions
evaluate to true) is obtained for all input values fulfilling the condition
(tasksS-idlethreadsS)>(maxthreads-threadsS)
∧(maxthreadsS-threadsS)>0
Dynamic symbolic execution calculates these input conditions for a concrete
execution path. The next test case is generated in such a way that the same path
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is avoided by negating the input conditions of the previous paths and choosing
new input values satisfying this new condition. For example, inputs satisfying
(tasksS-idlethreadsS)≤(maxthreads-threadsS)
∧(maxthreads-threadsS)>0
will avoid the first then-branch, resulting in a different execution path.

One immediately realizes that the choice of which sub-condition to negate de-
termines the kind of coverage obtained, but the coverage that can actually be
achieved also depends on the actual program and the symbolic values used. For
example, the presence of unreachable code obviously makes full statement cov-
erage impossible. The concrete test values from symbolic input vectors can be
found by modern constraint solvers (e.g., ILOG Solver) or SMT-solvers (e.g.,
Yices, Z3).

2.2 Conformance Testing Using Recorded Event Traces

In the setting of asynchronous, concurrent systems, and when facing non-
determinism, testing for expected behavior by examining the outputs of the sys-
tem under test (SuT) is not always sufficient. Our approach utilizes the observed
structural similarity of a model written in Creol and its implementation to test
that the implementation has a similar control flow as the executable model. To
this end, both model and implementation are instrumented at points in the code
where meaningful events occur. At a high level, an implementation can be seen
as a mapping I from an initial configuration confI to an event trace eventsI – or
more generally, in the face of nondeterminism, to a set of event traces {eventsI}.
Similarly, the instrumented model M maps an initial configuration confM to a
set of traces {eventsM}.

Given a function ρ that converts (refines) configurations from the model to
the implementation view, and a function α to abstract event traces from im-
plementation to the model, the relationship between model and implementation
can be seen in Diagram 1:

confM
M−→ {eventsM}

↓ ρ ↑ α

confI
I−→ {eventsI}

(1)

In the literature this is also called U-simulation [12]. The conformance relation
of the approach can then be described as follows: given a test input (written by
a test engineer or calculated via DSE), all possible event traces resulting from
stimulating the implementation by that input must also be observable on the
model. Equation 2 shows the formulation of this trace inclusion relation:

α(I(ρ(confM ))) ⊆ M(confM ) (2)

Section 5.2 shows an implementation of the α function as a generated Creol
test driver class that is run in parallel with the instrumented model to reach
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a test verdict. Some of the recorded events correspond to user input to the
implementation; the generated test driver supplies the equivalent stimuli to the
model.

In contrast to the automated α mapping, currently the ρ mapping between
initial configurations is manual.

3 Creol

Creol is a modeling language for executable designs, targeting distributed sys-
tems in which concurrent objects communicate asynchronously [18]. The lan-
guage decouples communication from synchronization. Furthermore, it allows
local scheduling to be left underspecified but controlled through explicitly de-
clared process release points. The language has a formal semantics defined in
rewriting logic [19] and executes on the Maude platform [9]. In the remainder of
this section, we present Creol and emphasize its essential features for DSE.

A concurrent object in Creol executes a number of processes that have access
to its local state. Each process corresponds to the activation of one of the object’s
methods; a special method run is automatically activated at object creation
time, if present, and represents the object’s active behavior. Objects execute
concurrently: each object has a processor dedicated to executing the processes
of that object, so processes in different objects execute in parallel. In contrast
to, e.g., Java, each Creol object strictly encapsulates its state; i.e., external
manipulation of the object state happens via calls to the object’s methods only.

Only one process can be active in an object at a time; the other processes in the
object are suspended. We distinguish between blocking a process and releasing
a process. Blocking causes the execution of the process to stop, but does not
let a suspended process resume. Releasing a process suspends the execution of
that process and lets another (suspended) process resume. Thus, if a process
is blocked there is no execution in the object, whereas if a process is released
another process in the object may execute. The execution of several processes
within an object can be combined using release points within method bodies.
At a release point, the active process may be released and some suspended
process resumes. Note, due to the non-deterministic scheduling semantics of
Creol it is possible that the active process may be immediately rescheduled
for execution. Hence, (non-terminating) active and reactive behavior are easily
combined within a concurrent object in Creol.

Communication in Creol is based on method calls. These are a priori asyn-
chronous; method replies are assigned to labels (also called future variables,
see [10]). There is no synchronization associated with calling a method. How-
ever, reading a reply from a label is a blocking operation and allows the calling
object to synchronize with the callee. A method call that is directly followed
by a read operation models a synchronous call. Thus, the calling process may
decide at runtime whether to call a method synchronously or asynchronously.
The local scheduling of processes inside an object is given by conditions associ-
ated with release points. These conditions may depend on the value of the local
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T::= C | Bool | Void L ::= class C(v) begin var f : T ; M end
| Int | String | ... M::= op m(in x : T out x : T ) == var x : T ; s end

v::= f | x e ::= v | new C(v) | null | this | v + v | ...

b ::= true | false | v s ::= l!e.m(e) | !e.m(e) | l?(v) | e.m(e; v) | await g

g::= b | v? | g ∧ g | v := e | skip | release | await e.m(e; v)

| while g do s end | if g then s end

Fig. 1. Language syntax of a subset of Creol

state, allowing cooperative scheduling between the processes within an object,
but may also depend on the object’s communication with other objects in the
environment. Guards on release points include synchronization operations on
labels, so the local scheduling can depend on both the object’s state and the
arrival of replies to asynchronous method calls.

In summary, only one process is executing on each object’s local state at
a time, and the interleaving of processes is flexibly controlled via (guarded)
release points. Together with the fact that objects communicate exclusively via
messages (strict encapsulation), this gives us the concurrency control necessary
for extending DSE to the distributed paradigm.

Syntax. The language syntax of the subset of Creol used in this paper is pre-
sented in Figure 1. In this overview, we omit some features of Creol, including
inheritance, non-deterministic choice, and many built-in data types and their
operations. For a full overview of Creol, see for example [18]. In the language
subset used in the examples of this paper, classes L are of type C with a set of
methods M . Classes can implement zero or more interfaces, which define meth-
ods that the class must then implement. Expressions e over variables v (either
fields f or local variables x) are standard. Statements s are standard apart from
the asynchronous method call l!e.m(e) where the label l points to a reference to
the reply, the (blocking) read operation l?(v), and release points await g and
release. Guards g are conjunctions of Boolean expressions b and synchroniza-
tion operations l? on labels l. When the guard in an await statement evaluates
to false , the statement is disabled and becomes a release, otherwise it is en-
abled and becomes a skip. A release statement suspends the active process
and another suspended process may be rescheduled. Hence, the suspended pro-
cess releases lock on the object’s attributes. The guarded call await e.m(e; v)
is a typical pattern which suspends the active process until the reply to the call
has arrived and abbreviates l!e.m(e);await l?; l?(v).

3.1 Representation of a Run

A run of a Creol system captures the parallel execution of processes in different
concurrent objects. Such a run may be perceived as a sequence of atomic execu-
tion steps where each step contains a set of local state-transitions on a subset of
the system’s objects. However, only one process may be active at a time in each
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object and different objects operate on disjoint data. Therefore, the transitions
in each execution step may be performed in a truly concurrent manner or in any
sequential order, so long as all transitions in one step are completed before the
next execution step commences. For the purposes of dynamic symbolic execu-
tion the run is represented as a sequence of statements which manipulate the
state variables, together with the conditions which determine the control flow,
as follows.

The representation of an assignment v := e is straightforward: Because fields
and local variables in different processes can have the same name and state-
ments from different objects are interleaved, the variable names are expanded to
unique identifiers by adding the object id for fields and the call label for local
variables. This expansion is done transparently for all variables and we will omit
the variable scope in the sequel.

An asynchronous method call in the run is reflected in four execution steps
(remark that the label value l uniquely identifies the steps that belong to the
same method call): o1

l
⇀ o2.m(e) represents the call of method m in object o2

from object o1 with arguments e; o1
l

⇁ o2.m(v) represents the moment when a
called object starts execution, where v are the local names of the parameters for
m; o1

l
↼ o2.m(e) represents the emission of the return values from the method

execution; and o1
l

↽ o2.m(v) represents the corresponding reception of the val-
ues. These four events fully describe method calling in Creol. In this execution
model the events reflecting a specific method call always appear in the same
order, but they can be interleaved with other statements.

Object creation, new C(v), is similar to a method call. The actual object
creation is reduced to generating a new identifier for the object and a call to the
object’s init and run methods, which create the sequences as described above.

Conditional statements in Creol are side effect free, i.e. they do not change an
object’s state. In order to record the choice made during a run, the condition or
its negated version are included into the run as Boolean guard 〈g〉. Hence, a run
represents both, the variable changes together with the taken branch. As will be
shown later, the conditions in a run are used to calculate the equivalence class
of all input values that may take this path.

Await statements await g require careful treatment: if they evaluate to false,
no code is executed. To reflect the information that the interpreter failed to
execute a process because the condition g of the await statement evaluated to
false, the negated condition 〈¬g〉 is recorded.

3.2 The ASK Case Study

We demonstrate the approach using the ASK system as a running example
throughout the paper. ASK is an industrial software system for connecting peo-
ple based on context-aware response, developed by the research company Al-
mende [3] and marketed by ASK Community Systems [4]. The ASK system
provides mechanisms for matching users requiring information or services with
potential suppliers and is used by various organizations for applications such as



68 B.K. Aichernig et al.

Fig. 2. Overview of the ASK system architecture

workforce planning and emergency response. The number of people connected
varies from several hundred to several thousand, making it imperative to have
good testing support.

Figure 2 shows the basic architectural view of the existing ASK systems. The
“heartbeat” of the system is the Request loop, indicated with thick arrows. A
request contains the information of two participants (a requester and a respon-
der). Based on the request, the ASK system attempts to provide a connection
between the two participants if possible, and otherwise attempts to suggest an
alternative responder. A number of more or less independent components work
together to search for appropriate participants for a request, determine how to
connect them, or in general figure out the best way in which a request can be
fulfilled.

Each of these components is itself multi-threaded. The threads act as workers
in a thread pool, executing tasks put into a component-wide shared task queue.
Tasks are used to implement the requests described above. Within a single com-
ponent, threads do not communicate directly with each other. However, they can
dispatch new tasks to the task queue that are eventually executed by another or
the same thread. Threads are also able to send messages to other components. In
most of the components, the number of threads can change over time, depending
on the number of pending tasks in the task queue and on the number of idle
threads.

A reference model for ASK systems has been developed in Creol, in collabora-
tion with Almende [2]. An example of a class in Creol is given in Figure 3, which
shows the implementation of the ThreadPool and also contains the system-wide
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1 class ThreadPool(size : Int, maxNofThreads : Int)
2 contracts ThreadPool
3 begin
4 vars taskCtr, threadCtr, busyCtr :Counter;
5 var taskQueue : TaskQueue;
6 var threads : List[Thread];
7 var balancer : Task;
8

9 op init ==
10 // removed variable initialization
11 balancer:= new BalancerTask(1, taskCtr, threadCtr, busyCtr,
12 maxNofThreads, mrate, taskQueue, this);
13 this.dispatchTask(balancer;)
14

15 with Any op dispatchTask(in task : Task) ==
16 taskQueue.enqueueTask(task;)
17

18 with Any op createThreads(amount : Int) ==
19 var i : Int;
20 var thread : Thread;
21 i:= 0;
22 while (i< amount) do
23 thread:= new Worker(taskQueue, busyCtr, threadCtr);
24 threads:= threads � thread;// append thread
25 threadCtr.inc(;);
26 i:= i +1
27 end
28

29 with Any op start ==
30 this.createThreads(size;)
31 end

Fig. 3. ThreadPool of the ASK system (instantiation of Counter and TaskQueue
omitted)

task queue. The thread pool is initialized with the parameters size and
maxNofThreads which determine the initial number of threads in the pool and
the maximum allowed number respectively. It also contains a number of coun-
ters to keep record of tasks and threads (number of pending tasks taskCtr,
total number of worker threads threadCtr, and number of worker threads
that currently execute a task busyCtr). The initialization of these variables
is straightforward and omitted in the shown code for matters of presentation.
When the class is initialized, the init method is automatically executed and
creates the balancer task which is responsible for creating and deleting working
threads when needed. We will discuss this thread in more detail in Section 4.2.
The dispatch method inserts tasks into the task queue to be executed by an
idle worker thread. Method createThreads creates a given number of worker
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threads, which themselves look into the task queue for open tasks. Note that
in Creol input and output parameters are separated by semicolon. Hence, the
absence of output is indicated by a semicolon at the end of the actual parameter
list, as e.g. in the call to createThreads at the end. When the system is set
up, the thread pool is activated by the start method (being called from a client
object), which calls createThreads with the initial number of worker threads
(as set by the class parameter size).

This reference model forms the basis for our work on testing ASK systems.
Note that in this paper we only show excerpts of the model and omit some of the
details for better demonstration of the approach. This simplified model consist
of six different kinds of objects with various instances and does not induce any
performance problems.

4 Test Case Generation

To generate test cases from the Creol model, we extend dynamic symbolic execu-
tion from Section 2.1 to distributed concurrent objects. Coverage criteria define a
measurement of the amount of the program that is covered by the test suite. Two
runs that cover the same parts of a system can be considered equivalent. A good
test suite maximizes the coverage while minimizing the number of equivalent
runs in order to avoid superfluous effort in executing the tests.

To set up a test case, the testing engineer first selects a test scenario, a de-
scription of the intention of the test, either from use cases or a high level speci-
fication of the system. Using this scenario, a first test run is set up that triggers
a corresponding execution of the system. Starting with this run, the coverage is
enhanced by introducing symbolic values tS in the test object and computing
new values such that new, non-equivalent runs are performed.

Dynamic symbolic execution on a run gives the set of conditions that are
combined to the path condition C =

∧
1≤i≤n ci (for n conditions), characterizing

exactly the equivalence class of tS that can repeat the same execution path.
Only one test case that fulfills C is required. A new test case is then chosen
by violating some ci so that another branch is executed. Note that by executing
new branches, also new conditions may be discovered. To reach decision coverage
(DC) in a test suite, for instance, test cases are created until for each condition
ci there is at least one test case that reach and fulfill as well as violate this
condition. The process of generating new test cases ends after all combinations
required for the required coverage criterion are explored.

In the case of distributed concurrent systems, however, we frequently deal
with scenarios in which the naive approach does not terminate. Most impor-
tantly, such concurrent systems often contain active objects that do not termi-
nate and thus create an infinite run. In this case, execution on the model has to
be stopped after exceeding some threshold. The computation of the path condi-
tion can be performed as before and will prohibit the same partial run in future
computations. Creol also supports infinite datatypes. For a code sample such as
while (i > 0) do i := i - 1 end, there is a finite run for each i, but
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there are infinitely many of them. To make sure that the approach terminates,
a limiting condition has to be introduced manually, for example by creating an
equivalence class for all i greater than a user defined constant.

4.1 Dynamic Symbolic Execution in the Parallel Setting

We now present the rules to compute the symbolic values for a given run. The
formulas given in this section very closely resemble the rewrite rules of the Creol
simulation environment [18], defined in rewriting logic [19] and implemented
in Maude [9]. A rewrite rule t =⇒ t′ may be interpreted as a local transition
rule allowing an instance of the pattern t in the configuration of the rewrite
system to evolve into the corresponding instance of the pattern t′. When auxiliary
functions are needed in the semantics, these are defined in equational logic, and
are evaluated in between the state transitions [19]. The rules are presented here
in a slightly simplified manner to improve readability.

Denote by s the representation of a sequence of program statements. Let
σ = 〈v1 � e1, v2 � e2, . . . , vn � en〉 = 〈v � e〉 be a map which records key–
value entries v � e, where a variable v is bound to a symbolic value e. The
value assigned to the key v is accessed by vσ. For an expression e and a map
σ, define a parallel substitution operator eσ which replaces all occurrences of
every variable v in e with the expression vσ (if v is in the domain of σ). For
simplicity, let eσ denote the application of the parallel substitution to every
expression in the list e. Furthermore, let the expression σ1 � σ2 combine two
maps σ1 and σ2 so that, when entries with the same key exist in both maps,
the entry in σ2 is taken. In the symbolic state σ, all expanded variable names
are bound to symbolic expressions. However, operations for method calls do not
change the value of the symbolic state, but generate or receive messages that are
used to communicate actual parameter values between the calling and receiving
objects. Similar to the expressions bound to variables in the symbolic state σ,
the symbolic representations of these actual parameters are bound in a map Θ
to the actual and unique label value l provided for each method call by Creol’s
operational semantics. Finally, the conditions of control statements along an
execution path are collected in a list C; the concatenation of a condition c to C
is denoted by C ĉ.

The configurations of the rewrite system for dynamic symbolic execution are
given by s

[
Θ, σ, C]

, where s is a sequence of statements, Θ and σ are the maps
for messages and symbolic variable assignments as described above, and C is
the list of conditions. Recall that the sequence s (as described in Section 3.1) is
in fact generated on the fly by the concrete rewrite system for Creol executed
in parallel with the dynamic symbolic execution. Thus, the rules of the rewrite
system have the form

s
[
Θ, σ, C]

=⇒ s′
[
Θ′, σ′, C′].

The primed terms on the right-hand side are updated results from the execution
of the rule. The rules are given in Figure 4 and explained below.

Rule assign defines the variable updates that are performed for an assign-
ment. All variables in the right hand side are replaced by their current values in
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v := e; s
[
Θ, σ, C]

=⇒ s
[
Θ, σ � 〈v � (eσ)〉, C]

. (assign)

o1
l

⇀ o2.m(e); s
[
Θ, σ, C]

=⇒ s
[
Θ � 〈l � eσ〉, σ, C]

. (call)

o1
l

⇁ o2.m(v); s
[
Θ, σ, C]

=⇒ s
[
Θ, σ � 〈v � lΘ〉, C]

. (bind)
〈g〉; s[Θ, σ, C]

=⇒ s
[
Θ, σ, C 〈̂gσ〉]. (cond)

Fig. 4. Rewrite rules for symbolic execution of Creol statements

σ, which is then updated by the new expressions. Note that we do not handle
variable declarations, but work in the runtime-environment. We expect that a
type check already happened during compile time and insert variables into σ the
first time they appear. A method call as defined by Rule call emits a message
that records the expressions that are passed to the method. Because of the asyn-
chronous behavior of Creol, the call might be received at a later point in the
run (or not at all if the execution terminates before the method was selected for
execution) by Rule bind, which handles the binding of a call to a new process
and assigns the symbolic representation of the actual parameter values to the
local variables in the new process. The emission and reception of return values
are handled similarly to call statements and call reception.

Object creation is represented as a call to the constructor method init of the
newly created object. In this case there is no explicit label for the call statement,
so the object identifier is used to identify the messages to call the init and run
methods, which are associated to the new statement. For conditionals, the local
variables in the condition are replaced by their symbolic values (Rule cond).
This process is identical for the different kinds of conditional statements (if,
while, await). The statement itself acts as a skip statement; it changes no
variables and does not produce or consume messages. The expression gσ char-
acterizes the equivalence class of input values that fulfill the condition if it is
reached. The conjunction of all conditions found during symbolic evaluation rep-
resents the set of input values that can trigger that run. The tool records the
condition that evaluated to true during runtime. Therefore, if the else branch of
an if statement is entered or a disabled await statement with g is approached,
the recorded condition will be ¬g.

4.2 The ASK Case Study Revisited

We revisit our running example to demonstrate the parallel version of DSE
and the way test cases are generated. The balancer Task is instantiated by the
ThreadPool in Figure 3 to compute the number of worker threads to create or
destroy depending on a given maximal number of threads, the currently existing
number of threads and the number of remaining tasks. Figure 5 shows one cen-
tral part of this balancing task: the tail-recursive method createThreads. This
method and its opponent in the model, killThreads, are responsible for creat-
ing and killing threads as needed. The balancer is initialized with maxthreadsS ,
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1 op init ==
2 maxthreads:= maxthreads+1;
3

4 op createThreads ==
5 var amountToCreate : Int;
6 var idlethreads : Int:= threads −busythreads;
7 await ((threads< maxthreads)
8 ∧ ((idlethreads−tasks)< (threads/ 2)));
9 amountToCreate:= tasks −idlethreads+(threads/ 2);

10 if (amountToCreate > (maxthreads −threads)) then
11 amountToCreate:= maxthreads −threads;
12 end;
13 if (amountToCreate > 0) then
14 await threadpool.createThreads(amountToCreate);
15 end;
16 createThreads();// infinite loop by tail−recursion

Fig. 5. Parts of the balancing thread to initialize and create new threads. The fields
threads, idlethreads and tasks are updated by outside method calls, so the
conditions in the await statements can become true.

the maximum number of threads that are allowed in the thread pool. In the
balancer’s init method (not shown here), the local variable maxthreads is in-
cremented by one to account for the balancer task itself, which also runs in-
side the thread pool. The balancer has access to the number of threads that
are active (threads), the number of threads that are processing some task
(busythreads), and the number of tasks that are waiting to be assigned to a
worker thread (tasks).

The await statement in the line 7 suspends the process while it is not neces-
sary to create further worker threads; i.e., if the maximal number of threads is
already reached or half of the threads are without a task (they are neither pro-
cessing a task nor is there a task open for processing). The if statement in line 10
checks that there are not more tasks created than allowed by maxthreads. Fi-
nally, the thread pool is instructed to create the required numbers of threads in
the line 14.

Figure 6 shows the code to instantiate the model and create a fixed number
of tasks (10 in our example). The dynamic symbolic interpreter allows to treat
special variables as values. Such variables are treated as a symbolic value for
the dynamic symbolic execution and are selected by a special naming scheme,
here denoted by the subscript S . This enables a flexible monitoring of symbolic
values of variables at any arbitrary level in the code.

The test case setup of Figure 6 uses two symbolic variables as parameters:
the maximum number of working threads maxWorkThreadsS and the initial
number of threads nthreadsS . DSE is used to find different concrete values for
those symbolic values to optimize the coverage of the model.
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1 class Main(nthreadsS : Int, maxWorkThreadsS : Int)
2 begin
3 var threadpool : ThreadPool;
4 var executionCounter : Counter;
5

6 op init ==
7 threadpool:= new ThreadPool(nthreadsS, maxWorkThreadsS);
8 executionCounter:= new Counter;
9

10 op run ==
11 var task : Task;
12 var i : Int;
13 i:= 0;
14 while (i< 10) do
15 task:= new CounterTask(i, executionCounter);
16 threadpool.dispatchTask(task;);
17 i:= i +1;
18 end
19 threadpool.start(;)
20 // After running, the executionCounter should be 10
21 end

Fig. 6. Setting up a model for DSE. Here, nthreadsS is the number of initial threads
to be created and maxthreadsS is the maximal size of the thread pool.

For a first run we randomly choose the initial values maxWorkThreadsS==0
and nthreadsS==1. Dynamic symbolic execution with these starting values
results in the path condition:

{"ifthenelse" : (0< nthreadsS)}
{"ifthenelse" : not(1< nthreadsS)}
{"disabled await" : not( 1< (maxWorkThreadsS +1) ∧ true)}

The first two conditions are from the loop in the line 22 of Figure 3 and
correspond to one loop traversal in which a thread is created. The third condition
corresponds to the line 7 in Figure 5 and shows that the path was taken because
0 >= maxWorkThreadsS and the balancer is not allowed to create any worker
threads. Any other start values will lead to a different run.

Each of the conjuncts in the path condition depends only on the input
maxWorkThreadsS. For easier presentation, we will exploit this fact in the
following and compute new values only for this input and leave nthreadsS
constant. Note that this is generally not the case, conditions that rely on sev-
eral symbolic values require that the input space is partitioned considering all
variables.

For the second run we choose a value that it outside the previously computed
path condition and continue with maxWorkThreadsS==15, which records the
conditions:
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{"enabled await" : (1< (maxWorkThreadsS +1) ∧ true) }
{"ifthenelse" : not(10 > maxWorkThreadsS ) }

for the await in line 7 and the if in line 10 of Figure 5. The number 10
in the second condition reflects that we create ten tasks at initialization in in
Figure 6. The path condition reflects that all inputs with maxWorkThreadsS
>= 10 lead to the same path because there will not be more threads created
than the number of outstanding tasks. There is no condition for the if in the
line 13 because the amount to create does not exceed maxWorkThreadsS and
therefore is not dependent on it.

A third run, created with maxWorkThreadsS == 5, results in

{"disabled await" : (1< (maxWorkThreadsS +1) ∧ true) }
{"ifthenelse" : 10 > maxWorkThreadsS }
{"ifthenelse" : maxWorkThreadsS > 0 }

In this test case the amount of threads to create exceeded the maximal allowed
number of threads and therefore was recomputed in line 11. The new value
depends on maxWorkThreadsS, which causes the if statement in the line 13
to contribute to the path condition. The new path condition does not further
divide the input space, so the maximal possible coverage according to the chosen
coverage criterion is reached.

The nthreadsS variable controls the initial number of threads in the thread-
pool, and is the only variable that determines the number of traversals through
the loop in the line 22 of Figure 3. This is also reflected in the path condition that
we got from nthreadsS==1— it states that the same path through the loop will
be taken if (0 < nthreadsS) and (1 ≥ nthreadsS), i.e., nthreadsS == 1.
Thus, using this condition for test case selection, we need a test case for each
value of nthreadsS , it is not possible to create bigger equivalence classes. A
closer look at the path condition shows us how to create a new run that never tra-
verses the loop: negating the first condition, (0 < nthreadsS). Thus, we get a
new test case with nthreadsS==0 (we keep the value maxWorkThreadsS==5
from the initial test case). The path condition only consists of:

{"ifthenelse" not(0< nthreadsS) }

None of the conditions of Figure 5 is reached. This is due to the fact that in this
case no worker thread is created on initialization of the threadpool, thus, the
balancer cannot be executed.

Test cases with nthreadsS>1 lead to similar test cases as the initial one,
with the variation that a different number of threads are calculated to be created.
If too many threads are created in the beginning, the tasks are all completed
before the balancer is called. This is because the tasks in the model are strongly
abstracted versions of the real implementation and complete instantly. A delay
in the tasks or more tasks in the test setup can be used to solve that problem.

The computation of the values for maxWorkThreadsS can be automatized
by constraint- or SMT solvers. For the example above we used Yices [11], which
takes the negated path condition as input and computes an valuation for the
variables if it is satisfiable.
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<trace>
<createThreads thread="3079972528" time="501911878"

number="10"/>
<starting thread="3075214224" time="501911929" info=""/>
<waiting thread="3075214224" time="501911951" info=""/>
<starting thread="3066821520" time="501911980" info=""/>
<waiting thread="3066821520" time="501911999" info=""/>
...
<enqueue thread="3079972528" time="501912403"

info="Sabbey - balancer (Sabbey.c 353)"/>
...

</trace>

Fig. 7. Parts of a recorded event trace from the ASK system. At the beginning, 10
threads are created; each thread emits a starting and a waiting event when created.
Later, a task is added to the system.

5 Test Case Execution

Section 4 explained how to calculate test inputs for the implementation. This
section describes how to reach test verdicts by generating test drivers to run
the test cases and validate the implementation’s behavior against the model. As
mentioned in Section 2, our test assumption is that a sequence of events that is
observed on the implementation can be reproduced (replayed) by the model.

5.1 Obtaining Traces from the Implementation

In order to obtain traces of events, the implementation is instrumented via code
injection. The case study, where the system under test is implemented in C, uses
AspectC [5] for this purpose; similar code injection or aspect-oriented program-
ming solutions can be used for systems implemented in other languages.

Traces are recorded in a simple XML-based format, for ease of automatic
processing. Figure 7 shows parts of a trace from the ASK system. At the start, a
createThreads event occurs, followed by the events associated with threads
being started and waiting for a task to work on (starting and waiting,
respectively). Other events used in the case study are killThreads (recorded
when the balancing thread decides to remove some threads), enqueue (recorded
when a new Task is created) and dequeue (recorded when a thread starts
working on a task).

5.2 Generating the Test Driver

As mentioned in Section 2.2, some of the events recorded in the implementation
originate from the environment (user input, incoming network data, etc.). We
call these “external” events actions, and generate a test driver that stimulates
the model in the same way. In the example, enqueue is an event that comes
from outside – in the implementation, it is typically triggered by an incoming
phone call or by a database-stored work queue; the test driver has to trigger the
same action when replaying the trace on the model.
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Fig. 8. Generating the tester from a recorded trace: separating Actions and Events.
“enqueue” is to be triggered by the tester, so is designated to be an Action using this
dialog.

1 interface TestActions
2 begin
3 with Any op enqueue(in thread :Int, time :Int, info :String)
4 end
5

6 class TestAdapter implements TestActions
7 begin
8 op init ==
9 skip// TODO : implement test driver setup here

10 with Any op enqueue(in thread :Int, time :Int, info :String) ==
11 skip// TODO : implement enqueue action
12 end

Fig. 9. Test actions interface and test adapter class template, created from the imple-
mentation trace

Figure 8 shows the dialog that is used to differentiate actions and events
from the recorded trace for the purpose of generating the tester. Each action
is a stimulus that the tester gives to the model. The tool generates a Creol
interface TestActions and a class TestAdapter which is ready to contain
code for initializing the model and for stimulating the model from the test case
implementation. Methods with empty bodies are generated for these purposes.

Figure 9 shows the interface TestActions and class TestAdapter that are
generated using the choices made in Figure 8. The one designated action (“en-
queue”) results in a method called enqueue, which will be called by the generated
tester code. In the TestAdapter class, the test engineer then supplies implemen-
tations for model initialization (Figure 9, line 9) and any actions (line11).
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1 op run ==
2 ok:= false;
3 this.allow("createThreads";);
4 await get(sem, "createThreads") = 0;
5 this.allow("starting";);
6 await get(sem, "starting") = 0;
7 this.allow("waiting";);
8 await get(sem, "waiting") = 0;
9 this.allow("starting";);

10 await get(sem, "starting") = 0;
11 this.allow("waiting";);
12 await get(sem, "waiting") = 0;
13 ...
14 this.enqueue(3079972528, 501912403,
15 "Sabbey − balancer (Sabbey.c 353)";);
16 ...
17 ok:= true

Fig. 10. Replaying the trace of Figure 7: tester event and action behavior in the model

In addition to implementing the methods in TestAdapter, the test engineer
has to add events to the model at the place equivalent to where they were added
in the implementation to record the trace. At each point where an event occurs,
the model communicates with the tester, indicating which event is about to hap-
pen. The thread of execution which generates an event is blocked until the tester
accepts the event; other threads can continue executing. The tester, in turn, waits
for each event in sequence and then unblocks the model so that it can continue.
The model thus synchronizes with the sequence of events recorded from the im-
plementation, as implemented by the tester. The following code snippet shows the
createThreads event added to the createThreads method from Figure 5:

if (amountToCreate > 0) then
tester.request("createThreads"); // EVENT
await threadpool.createThreads(amountToCreate);

end;

Figure 10 shows parts of the tester’s run method; the sequence of Creol state-
ments corresponds one-to-one to the sequence of events and actions in the trace
of Figure 7. The ok variable is set to false at the beginning and to true at the
end of the run method; this allows us to use model checking to find a successful
run. Each action in the trace is converted to a call to the corresponding method
in the TestAdapter class, as implemented by the user. In line 14 is a call
to action. Each event is converted to a pair of statements, the first statement
(this.allow(...)) unblocks the model and allows the event to occur, the
second statement (await get(...)) blocks the tester until the event actually
occurs in the model.
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5.3 Obtaining Test Verdicts

To actually run the test case, an instance of the generated TestCase class is
generated. Its init method, inherited from TestAdapter and implemented
by the user, sets up and starts the model, and its run method (Figure 10),
generated from the recorded implementation trace, steers the model to generate
the expected events in sequence.

A test results in a verdict of “pass” if the model can reproduce the trace recorded
from the implementation and if all assertions and invariants in the model hold. If
an assertion in the model is violated, the model itself has an inconsistency and
is in error (assuming the model is supposed to be valid for all inputs); no verdict
about the implementation can be reached. If the run method of TestCase runs
to completion, the test passes. If the tester deadlocks when running in parallel with
the model, the implementation potentially violates the test assumption. But this
result is inconclusive, it is still a possibility that a different scheduling in the model
allows the test to pass; model checking the combination of model and tester can
give a definitive answer and let us reach a verdict of “pass” or “fail”.

6 Related Work

To our knowledge, the first to use symbolic execution on single runs were Boyer
et al. in 1975 [8] who developed the interactive tool SELECT that computes
input values for a run selected by the user. Some of the first automated tools for
testing were DART (Directed Automated Random Testing) from Godefroid et
al. [15], and the CUTE and jCUTE tools from Sen at al. [20]. Perhaps the most
prominent and most widely used tool in that area is PEX by Tillmann et al. [21],
which creates parameterized unit tests for single-threaded .NET programs. A
closer look at DSE for generating test input in a parallel setting can be found
in [17,16], recent work on examining all relevant interleavings in [1].

The use of formal models for testing has a long history, some of the more influ-
ential work are [14] and [22]. Various conformance relations have been proposed.
They place varying demands w.r.t. controllability and observability placed on the
SuT; for example ioco [23] by Tretmans et al. demands that implementations be
input-enabled, while Petrenko and Yevtushenko’s queued-quiescence testing does
away with that assumption. Our proposed conformance relation is even more per-
missive, in that arbitrary input can become part of the test case and conforming
behavior is checked after the fact instead of in parallel with the implementation.

Most tools for automated or semi-automated model-based software testing,
including TorX [6] and TGV [13], work by simulating a user of the system,
controlling input and checking output. A testing method similar to the one
described in this paper, also relying on event traces, was developed by Bertolino
et al. [7], whereby at run-time traces are extracted and model-checked to verify
conformance to a stereotyped UML2 model. They emphasize black-box testing of
components and reconstruct cause-effect relationships between observed events
to construct message sequence charts. Consequently, they have to employ more
intrusive monitoring than our approach.
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7 Conclusions

We have presented an approach to test case generation and conformance test-
ing which is integrated into the development cycle of distributed systems. We
specify models in Creol, a concurrent object-oriented modeling language for ex-
ecutable designs of distributed systems. A single model serves to both optimize
test cases in terms of coverage, and as test oracle for test runs on the actual
implementation. Test input generation and model coverage are controlled via
dynamic symbolic execution extended to a parallel setting, which has been im-
plemented on top of the Maude execution platform for Creol. The conformance
relation is based on U-simulation. Only a lightweight level of instrumentation
of the implementation is needed, which is here achieved by means of aspect-
oriented programming. The problem of reaching conclusive verdicts in case of
non-determinism is handled by replaying the traces using Maude’s search facil-
ities. The techniques have been successfully applied in the context of the ASK
systems, one model serving as a reference for several versions of the system.

Acknowledgments. The authors wish to thank the anonymous reviewers for
their helpful comments and clarifications.
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Faculty of Computer Science,
Technische Universität Dresden, Germany

Abstract. In previous work, constraint automata have been introduced
as a uniform model for behavioral interfaces of components, (possibly
dynamic) component connectors and systems consisting of several com-
ponents and their glue code. The purpose of the paper is to provide
an overview of the techniques for specifying and verifying temporal re-
quirements, conditions on the data flow at the I/O-ports of components
and alternating-time properties that have been designed for constraint
automata. The paper presents the syntax and semantics of the logics,
sketches the model checking algorithms, summarizes the main features of
the implementation within the tool Vereofy and reports on experimental
studies.

1 Introduction

The main idea of component-based software engineering is to divide a complex
system into smaller logical components with well-defined interfaces. For this
purpose, a variety of coordination models and languages have been introduced
which support the separation between computations inside the components and
the interactions between the components. All these models and languages aim
to improve productivity, enhance maintainability, advocate modularity, promote
reusability, and lead to software organizations and architectures that are more
tractable and more amenable to verification and analysis. For providing tool
support for the verification of such systems one needs operational models that
are powerful enough to describe both the coordination imposed by the connectors
and the behavioral interfaces of the connected components and that can serve
as structures for temporal logics and as basis for model checking algorithms.
For this purpose, constraint automata have been introduced in [6]. They have
been used as a compositional semantics for the exogenous coordination language
Reo [3]. In the exogenous setting the components are not aware of the context in
which say are used. The component interactions and communication is handled
by a network from outside the components.

Constraint automata are a special variant of labeled transition systems where
the transitions are labeled with sets of I/O-ports and constraints on the data
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transferred at those ports. This special type of automata is adequate to rep-
resent any kind of synchronous and asynchronous peer-to-peer communication,
to model exogenous and endogenous coordination mechanisms and to deal with
component connectors with dynamically changing network topologies [4]. In this
paper, we provide an overview of the approaches that have been designed for
the analysis of systems modeled by constraint automata and implemented to a
large extent within our toolkit Vereofy, see www.vereofy.de. These approaches
cover model checking techniques against temporal properties as well as equiva-
lence checking techniques. The formalisms to specify temporal properties rely on
the modalities of classical temporal logics (dynamic linear temporal logic [17,12],
computation tree logic [9] and alternating-time temporal logic [2]) and operators
to specify regular temporal conditions on the data streams at the I/O-ports of
components or observable “inner nodes” of the network. Since constraint au-
tomata are a generic model for connectors, behavioral interfaces of components
and the composite system (consisting of several components and a connector),
our techniques are adequate to verify (i) coordination mechanisms with black-box
components, (ii) the observable behavior of components, and (iii) special scenar-
ios of coordination algorithms where assumptions are made on the component
interfaces. While the model checking algorithms for linear and branching-time
logics rely on standard concepts, the alternating-time approach is based on a
concurrent game structure where the components serve as players and a non-
standard notion of strategies is required due to the special mixture of synchrony
and asynchrony and the mutual dependencies of I/O-operations.

The main concepts of the verification approaches introduced in this paper
are supported by our toolkit Vereofy, see Figure 1. For modeling, Vereofy relies
on a hybrid approach with two input languages [4], the guarded command lan-
guage CARML, which is most appropriate to specify the behavioral interfaces
of the components, and the scripting language RSL (Reo scripting language),
which mainly serves to specify the coordination mechanism. CARML provides a
convenient way to specify the component interfaces and to provide a high-level
description of the operational behavior of components. It supports channel-based
message passing and is even expressive enough to specify complex component
connectors. In CARML, the transitions of constraint automata are described in
a symbolic way, i.e., by means of Boolean conditions on the current state and
on the enabled concurrent I/O-operations (guards) and assignments that specify
the effect of the taken transitions.

network components requirements

CARML specification
library

model checker

for components
RSL specification

constraint automaton

temporal formula
of the network

Fig. 1. Vereofy overview
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RSL combines the major features of the exogenous coordination language
Reo [3] with concepts to specify connectors with dynamically changing network
topologies and some features of other languages. Reo’s coordination primitives
(creation of channels of an arbitrary type, joining channel ends or nodes, hid-
ing) allow to reason about all kinds of coordination patterns with an arbitrary
mixture of synchronous or asynchronous peer-to-peer communication. In par-
ticular, standard CCS-like handshaking or message passing over FIFO can be
modeled in Reo (and RSL). Besides Reo’s coordination primitives, RSL contains
operators for the instantiation of component connectors or components. The
code for the templates of components or connectors can be provided in RSL or
CARML as part of the RSL main script or taken from a library. In this way,
our approach with RSL and CARML naturally supports the reuse of compo-
nents and connectors by instantiation and offers an elegant way for the compo-
sitional, hierarchical construction of component connectors and components. To
ease the automatic translation of CARML specifications into a compact internal
representation based on Binary Decision Diagrams (BDD), we adapted some
concepts of reactive modules [1] for the syntax of CARML modules. Our sym-
bolic implementation constructs BDDs for the constraint automata semantics
of CARML modules directly and BDDs for RSL scripts compositionally using
a product construction of constraint automata [6,7]. A more detailed descrip-
tion of both languages can be found in [4] or in the Vereofy manual available at
www.vereofy.de. Our tool Vereofy can be used as as stand-alone version work-
ing on models stated in RSL and CARML or via the graphical user interface
offered by the Eclipse Coordination Tools [18].

Organization. Section 2 presents the definition of constraint automata and
related notations. The syntax, semantics and model checking algorithms for
the temporal logics LTLIO and ASL that have been designed for constraint au-
tomata are presented in Section 3. Furthermore this section explains the connec-
tion between these logics and bisimulation equivalence for constraint automata.
Section 4 reports on the main features of our implementation, presents some
experimental results and summarizes future directions.

2 Constraint Automata

Constraint automata (CA) provide a generic operational model to formalize the
behavioral interfaces of the components, the network that coordinates the compo-
nents (i.e., the glue code or connector), and the composite system consisting of the
components and the glue code. Constraint automata are variants of labeled tran-
sition systems (LTS) where the labels of the transitions represent the (possibly
data-dependent) I/O-operations of the components and the network. Thus, they
support any kind of synchronous and asynchronous peer-to-peer communication.

The nodes of a CA play the role of the I/O-ports of the components or the
network. The states of a CA represent the local states of components and/or
configurations of a connector. The transitions in a CA describe the potential
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one-step behavior. In the approach of [6] transitions in a CA are labeled with
a set of active nodes and Boolean conditions on the data values observable at
active nodes. In the sequel, let Data be a finite nonempty data domain and N
a finite, nonempty set of nodes. We slightly depart from the syntax of CA as
introduced in [6] and deal with transitions q c−→ p, where c is a concurrent I/O-
operation, i.e., c consists of a (possibly empty) node-set N ⊆ N together with
data items for each A ∈ N that are written or received at node A. In the moment
where c is executed there is no data flow (i.e., no read or write operation) at the
nodes A ∈ N \N .

Concurrent I/O-operations (CIO). A concurrent I/O-operation is a partial
function assigning data values to the nodes, i.e., a function c : N → Data∪{⊥},
where the symbol ⊥ means “undefined”. We write Nodes(c) for the set of nodes
A ∈ N such that c(A) ∈ Data. The empty concurrent I/O-operation, denoted c∅,
is the unique concurrent I/O-operation where Nodes(c∅) = ∅. CION , or briefly
CIO, denotes the set of all concurrent I/O-operations (including c∅). The empty
concurrent I/O-operation c∅ represents any step where no data flow at some
node A ∈ N is observable. Thus, it models any internal step of some component
or any non-observable step of the network where data flow appears at most at
some “hidden nodes” of the network. As N and Data are supposed to be finite,
the set CIO = CION of concurrent I/O-operations is finite as well.

Our logical framework refers to two kinds of labels. One refers to the I/O-
operations in the network and the other to the states of constraint automata.
The labels for the states can be regarded as unary state predicates. They are
called atomic propositions. For example, if the network (i.e., connector) contains
a FIFO channel then there might be atomic propositions stating, e.g., that all
buffer cells are empty or that the first buffer cell contains a value d in some set
D ⊆ Data.

Constraint automata [6]. A constraint automaton (CA) is a tuple A =
〈Q,N ,−→, Q0,AP, L〉 where Q is a finite and non-empty set of states, N a
finite set of nodes, −→ is a subset of Q × CIO × Q, called the transition rela-
tion of A, Q0 ⊆ Q a non-empty set of initial states, AP a finite set of atomic
propositions, and L : Q → 2AP a labeling function. We write q c−→ p instead of
(q, c, p) ∈−→. The set of all I/O-operations enabled in state q ∈ Q is defined by

CIO(q) def=
{
c ∈ CIO : q c−→ p for some p ∈ Q}

.

The meaning of a transition q c−→ p is that in configuration q, the concurrent I/O-
operation c is enabled and state p is a possible successor state of q executing the
concurrent I/O-operation c.

Example 1 (Railway track). To illustrate the main features of CA we model a
simple railway track. The node set N = {A,B} consists of two nodes. The track
can be entered if a signal has been received from A and left via synchronizing
with B. A train may pass the track if both ports A and B are ready for synchro-
nization and it has to stop on the track if A is ready only. In the latter case the
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q2

q0q1 q2

[A → TRAIN1, B → ⊥]

[A → ⊥, B → TRAIN1] [A → TRAIN2, B → ⊥]

[A → ⊥, B → TRAIN2]

[A → TRAIN0, B → TRAIN0] ∨ [A → TRAIN1, B → TRAIN1][A → ⊥, B → ⊥]

Fig. 2. Example constraint automaton for a railway track

train has to wait until B is ready for synchronization. Figure 2 shows the con-
straint automaton for two trains, i.e., Data = {TRAIN1,TRAIN2}. We use AP =
{FREE, OCCUPIED, TRANSIT, WAITING} as the set of atomic propositions and label-
ing function L with L(q0) = {FREE}, L(q1) = L(q2) = {OCCUPIED, WAITING}, and
L(q2) = {OCCUPIED, TRANSIT}. State q0 is the initial state, i.e., initially there is
no train on the track. �

To simplify the presentation of the paper, we describe here our logical approach
under the assumption that there are no terminating behaviors. That is, we de-
part here from [6] and require that for every state of a CA there is at least
one outgoing transition. This assumption is somehow unrealistic since deadlock
situations can appear, e.g., when the requested interactions of the components
are contradicting. The treatment of infinite and terminating behaviors causes
some technical difficulties which are avoided here to provide a clear and simple
presentation of the major concepts.

Executions, paths, I/O-streams. As in standard LTS an execution in A is
a finite or infinite sequence built by consecutive transitions:

η = q0
c1−→ q1

c2−→ . . .

where qi ∈ Q, ci ∈ CIO, and qi
ci+1−−−→ qi+1 for all i ≥ 0. As stated above, in

this paper we focus on explanations of our approaches to reason about infinite
behaviors. We therefore define a path of A to be an infinite execution. We write
Paths(q) to denote the set of all paths starting in q. Let π = q0

c1−→ q1
c2−→ . . . be

a path and 0 ≤ n. Then, π↓n denotes the prefix of path π with length n and
π↑n the suffix starting at the n-th state. Thus,

π↓n def= q0
c1−−→ . . .

cn−−−→ qn

π↑n def= qn
cn+1−−−→ qn+1

cn+2−−−→ qn+2
cn+3−−−→ . . . .

The notion of an I/O-stream for CA corresponds to action sequences in LTS.
The I/O-stream ios(η) of a finite execution η is the finite word over CIO that is
obtained by taking the projection to the labels of the transitions. Formally, if
η = q0

c1−→ . . .
cn−→ qn is a finite execution then ios(η) def= c1 . . . cn ∈ CIO∗. The

set of all I/O-streams is denoted by IOS
def= CIO∗.



Formal Verification for Components and Connectors 87

I/O constraints (IOC). Sometimes it is useful to switch to a symbolic rep-
resentation of the transition relation by combining transitions with the same
starting and target state. (For example, our implementation of the model checker
relies on a symbolic representation of CA.) For this purpose, we deal with I/O-
constraints, i.e., propositional formulas in positive normal form that stand for
sets of concurrent I/O-operations. The I/O-constraints may impose conditions
on the nodes that may or may not be involved and on the data items written on
or read from them. The abstract syntax of I/O-constraints over the node-set N
is given by the grammar:

ioc ::= tt
∣
∣ ff

∣
∣ A

∣
∣ ¬A ∣

∣ (dA1 , . . . , dAk
) ∈ D ∣

∣ ioc1 ∧ ioc2

∣
∣ ioc1 ∨ ioc2

where A ∈ N , A1, . . . , Ak are pairwise distinct nodes in N , dAi the data value
written or read at port Ai, and D ⊆ Datak. The meaning of an I/O-constraint
ioc is a subset ���ioc��� of CIO defined in the expected way. We define ���tt��� def= CIO,
���ff��� def= ∅, and for the literals A ∈ N and their negations ¬A:

���A��� def=
{
c ∈ CIO : A ∈ Nodes(c)

}

���¬A��� def=
{
c ∈ CIO : A /∈ Nodes(c)

}

The I/O-constraints (dA1 , . . . , dAk
) ∈ D impose conditions for the written and

read data items. That is, ���(dA1 , . . . , dAk
) ∈ D��� agrees with the set

{
c ∈ CIO : {A1, . . . , Ak} ⊆ Nodes(c), (c(A1), . . . , c(Ak)) ∈ D }

.

Conjunction and disjunction have their standard meaning, i.e.,

���ioc1 ∧ ioc2��� def= ���ioc1��� ∩ ���ioc2���
���ioc1 ∨ ioc2��� def= ���ioc1��� ∪ ���ioc2���

We often use simplified notations for the IOC of the form (dA1 , . . . , dAk
) ∈ D.

E.g., the notation dA = dB is a shorthand for (dA, dB) ∈ {(d1, d2) ∈ Data2 :
d1 = d2}. The notation {A,B} is used as a shorthand for A∧B∧

C∈N ¬C with
meaning ���{A,B}��� def= {c ∈ CIO : Nodes(c) = {A,B}}.
Example 2 (Railway track). An ioc for the railway track example may state that
either a train has to stop or pass through.

({A}∧dA ∈ {TRAIN1,TRAIN2})∨({A,B}∧dA = dB) ��

Stream expressions. To impose conditions on the data flow at the I/O-ports of
components or nodes in the network, our logics will use a symbolic representation
for sets of I/O-streams by means of regular I/O-stream expressions, briefly called
stream expressions. The abstract syntax of stream expressions over N is given
by the following grammar:

α ::= ioc
∣∣
∣ α∗

∣∣
∣ α1;α2

∣∣
∣ α1 ∪ α2
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where ioc ranges over all I/O-constraints over N . The formal definition of the
regular languages IOS(α) ⊆ IOS is defined by structural induction. IOS(ioc) is the
set consisting of the I/O-streams of length 1 given by ioc, i.e., IOS(ioc) = ���ioc���.
Union (∪), Kleene star (∗) and concatenation (;) have their standard meaning.

3 Specifying and Verifying Components and Connectors

Constraint automaton yield a general framework for the behavior of a compo-
nent, a connector or a composite system and serve as starting point for model
checking. The model checking problem asks whether a given property holds
for the automaton. In our framework and the tool Vereofy, the properties can
be specified by temporal formulas with classical modalities to formalize safety
or liveness conditions, but also constraints on the observable data flow (I/O-
streams). Vereofy supports model checking against linear-time, branching-time
or alternating-time properties formalized in the logics LTLIO or ASL. The logic
LTLIO (see Section 3.1) is a variant of linear temporal logic LTL which is closely
related to dynamic LTL [12] and combines the standard temporal modalities
of LTL with stream expressions. It is appropriate to specify complex tempo-
ral conditions on paths (such as Boolean combinations of reachability, repeated
reachability or persistence conditions), possibly in combination with regular con-
ditions on I/O-streams of their prefixes. Alternating-time stream logic ASL (see
Section 3.2) allows reasoning about the branching structure of the states by
means of branching-time temporal formulas stating, e.g., the existence of a path
where a certain path property holds (as in CTL [9]), or alternating-time condi-
tions stating, e.g., the possibility of selected components to enforce a certain
path property (as in ATL [2]). The path properties expressible in ASL rely on the
ATL-syntax extended by stream expressions that can be attached to the until
operator (as in LTLIO). Furthermore, Vereofy supports equivalence checking by
means of a notion of bisimulation equivalence for constraint automata that pre-
serves all properties expressible in LTLIO and ASL (see Section 3.3). Throughout
this section, we fix a finite set AP of atomic propositions for the states and a
finite node-set N .

3.1 Linear-Time Properties

In this section we describe the logic LTLIO, which is adapted from Dynamic Linear
Time Temporal Logic (DLTL) [12] to the context of constraint automata and I/O-
stream expressions. DLTL itself extends LTL with regular expressions to achieve
the full expressiveness of omega-regular languages. For LTLIO the concurrent I/O-
operations over the given node-set N (i.e., the elements in the set CION = CIO)
serve as names for actions and the I/O-stream expressions take the role of the
propositional dynamic logic programs (regular expressions) of DLTL.

Syntax of LTLIO. The abstract syntax of LTLIO formulas over AP and N is
defined by the following grammar.

ϕ ::= true
∣∣
∣ a

∣∣
∣ ¬ϕ

∣∣
∣ ϕ1 ∧ ϕ2

∣∣
∣ ϕ1 Uα ϕ2
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where a ∈ AP and α is a stream expression over N . Recall that the syntax and
semantics of stream expressions has been provided in the end of Section 2.

Semantics of LTLIO. Let π = q0
c1−→ q1

c2−→ . . . be a path in a constraint
automaton, with qi ∈ Q and ci ∈ CIO. Let ϕ be LTLIO formula over AP and N .
The satisfaction relation π |= ϕ is defined as follows:

π |= true
π |= a iff a ∈ L(q0)
π |= ¬ϕ iff π �|= ϕ
π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ϕ1 Uα ϕ2 iff there exists n ≥ 0 such that π↑n |= ϕ2 and
ios(π↓n) ∈ IOS(α) and π↑ i |= ϕ1 for all 0 ≤ i < n

Recall that π↓n is the prefix of π of length n, π↑n is the suffix of π starting at
the n-th state, ios(η) is the projection on the corresponding I/O-operation and
IOS(α) is the set of finite executions satisfying the stream expression α.

The until operator is indexed by a stream expression α over I/O-constraints.
Intuitively, it is satisfied on a given path if there exists a finite prefix such that
its I/O-stream satisfies α and ϕ1 holds for all the suffixes starting at a state
in this prefix and ϕ2 holds for the suffix starting in the state after the prefix
matching α. In addition to the usual propositional operators (∨, →, ↔, etc.) we
can derive the path modalities 〈〈α〉〉ϕ and [[α]]ϕ by

〈〈α〉〉ϕ def= true Uα ϕ and [[α]]ϕ def= ¬〈〈α〉〉¬ϕ.

Intuitively, 〈〈α〉〉ϕ holds if there exists a prefix whose I/O-stream matches α and
afterwards ϕ holds for the suffix. The dual operator, [[α]]ϕ, holds if for all prefixes
with I/O-streams matching α afterwards ϕ holds for the suffix. For convenience,
we also derive 〈〈α〉〉t def= 〈〈α〉〉 true, which holds if there is a prefix with I/O-stream
matching α. The standard LTL until operator without stream expressions can
be derived by ϕ1 Uϕ2

def= ϕ1 Utt∗ ϕ2, where tt∗ is the stream expression signifying
an I/O-stream of any length. We can derive as well the standard LTL operators
“eventually ♦” “always �” and “neXt X”:

♦ϕ def= true Uϕ, �ϕ def= ¬♦¬ϕ, Xϕ
def= 〈〈tt〉〉ϕ.

Given a constraint automaton A, the model checking problem asks whether
all paths in A starting in an initial state satisfy the formula ϕ:

A |= ϕ
def⇐⇒ π |= ϕ for all π ∈ Paths(q0) and all q0 ∈ Q0

Example 3 (Railway track). For the CA modeling a railway track depicted in
Figure 2 the LTLIO formula � (〈〈A ∧B〉〉t → 〈〈dA = dB〉〉t) can be used to verify
that if both A and B send/ receive a signal concurrently then the data values
at A and B agree, i.e. that the train entering through A is the same as the one
leaving through B. The property specified by the LTLIO formula

� (WAITING→ 〈〈(¬A)∗ ;B〉〉FREE)
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can be used to check that whenever the track is occupied by a waiting train
there will be no new train entering at A until the train has left through B and
the track has thus become unoccupied again. �

Model checking LTLIO formulas. Checking whether A |= ϕ can be per-
formed using the standard automata theoretic approach to LTL model checking
[20,19], as illustrated in Figure 3. For an LTLIO formula φ, we can construct a
non-deterministic Büchi automaton recognizing exactly the paths π |= φ (e.g.,
using the construction in [11]). Non-deterministic Büchi automata are similar
to non-deterministic finite automata over finite words, but range over infinite
words/paths. The Büchi acceptance condition specifies a subset of automata
states that has to be visited infinitely often for a path to be accepted. To check
whether A |= ϕ, we construct a non-deterministic Büchi automaton Z¬ϕ for the
negation of ϕ. Z¬ϕ recognizes all the paths that violate ϕ. Then the product
automaton A �� Z¬ϕ is built, resulting in a constraint automaton augmented
with a Büchi acceptance condition. The paths of the product can be viewed as
pairs 〈π, s〉 of a path inA and a run s for π in Z¬ϕ. The model checking algorithm
seeks for a path in the product such that s meets the acceptance condition of
Z¬ϕ. If such a path 〈π, s〉 exists then π is a path in A that violates ϕ. Otherwise
no such path in A violates ϕ and consequently A |= ϕ. In the case that A �|= ϕ,
the path in A violating ϕ can be output to the user as a counterexample to ϕ.
This allows the user to inspect the model and find the cause of the property
violation.

constraint
automaton A

LTLIO formula ϕ

NBA Z¬ϕ for negated formula

construct the product-CA A �� Z¬ϕ

search for accepting path π in product-CA

A |= ϕ A �|= ϕ, output π as counterexample

¬∃π ∃π

Fig. 3. Schema for model checking an LTLIO formula

Fairness. It is often useful to restrict the behavior of an interleaving model
to those paths that satisfy some fairness constraints, e.g., to rule out infinite
behavior that is considered unrealistic as the activities of some components are
ignored forever. Unconditional, weak and strong fairness constraints can be di-
rectly expressed using LTLIO and model checking a formula ϕ under fairness
constraints ψi can be performed by checking the formula ϕ′ = (

∧
i ψi)→ ϕ.
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To specify fairness conditions, atomic propositions of the form enabled(ioc)
(where ioc is an I/O-constraint) will be used that assert the enabledness of some
concurrent I/O-operation that satisfies ioc. That is, we suppose that enabled(ioc)
is an atomic proposition such that the labeling function L of the given CA enjoys
the following property:

enabled(ioc) ∈ L(q) ⇔ ∃ q c−→ q′ : c ∈ ���ioc���
For example, the following formula ψ specifies a weak fairness constraint for the
railway track example. We require that, whenever infinitely often there is a train
occupying the track and the train is allowed to leave the track via B infinitely
many times, then infinitely often a train does leaves the track via B. This averts
infinite paths where the train always has the chance to leave but does not, e.g.
because another train is always scheduled to move instead.

ψ = ♦� (enabled(B) ∧ ¬FREE) → �♦〈〈B〉〉t

Example 4 (A railway network). As a more complex example consider the sys-
tem in Figure 4, which shows a high-level view of a railway network composed
out of the railway tracks from Example 1, as well as tracks with a train initially
occupying the track, a train station (where trains have to stop, i.e. no instanta-
neous pass-through) and non-deterministic switches connecting the tracks. Each
of the building blocks is modeled by means of a constraint automaton and the
constraint automaton for the composite system results from a product construc-
tion [6]. The constraint automaton corresponding to the composed system has
three nodes N = {A1, A2, A3} where data flow – in this case modeling train
travel – can be observed. The data domain is again Data = {TRAIN1,TRAIN2}.

The following fairness constraint ψ ensures that the switch switch1 will behave
fairly in the sense that the non-deterministic choice will not be resolved in such
a way that one of its two entries A1, A2 will be blocked forever:

ψ =
(
�♦enabled(A1) → �♦〈〈A1〉〉t

) ∧ (
�♦enabled(A2)→ �♦〈〈A2〉〉t

)

T2

T1

switch1switch2

station

A1

A2

A3

Fig. 4. High-level view of a small railway network composed out of basic elements
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Using ψ as fairness constraint, the following formula is satisfied, specifying that
both trains can be observed at node A3 infinitely often:

ϕ = �♦〈〈A3 ∧ dA3 = TRAIN1〉〉t ∧ �♦〈〈A3 ∧ dA3 = TRAIN2〉〉t

Withoutthefairnessconstraintψ, itwouldbepossible–duetothenon-deterministic
choice between the entries of switch1 – that one train cycles through the railway
network and the other train never gets the chance to pass through switch switch1 .
Thus formula ϕ would be violated, as the blocked train would never be observed
atA3. �

3.2 Branching and Alternating-Time Properties

Alternating-time stream logic, ASL for short, is a branching-time logic with ATL-
like [2] modalities to reason about the possibility for components to cooperate
in such way that a certain temporal property or property on the observable data
flow holds.

Constraint automata as multi-player games. The logic ASL relies on a
game-based view of constraint automata. In this context, it is assumed that the
CA under consideration models a system where several components are glued
together using (a)synchronous peer-to-peer communication. The players of the
game are the individual components. Each of the players has control over his
write and read operations at its interface ports. A player might refuse some
or even any synchronization operation with other players. Players might build
arbitrary coalitions to achieve a certain common goal, e.g., to enforce that a
certain temporal property holds. In our approach, a coalition of players is given
by a set of controllable nodes N ⊆ N , the union of all controllable coalition
nodes, for which the players might try to develop a common strategy to achieve
their objectives.

Intuitively, a strategy for the set N of controllable nodes, briefly called an N -
strategy, takes the history of the system formalized by a finite execution as input,
and declares the conditions under which the N -agents (members of the coalition)
are willing to cooperate with each other and their opponents. For instance, an
N -strategy might offer to write data value 0 at a source node A ∈ N , but refuse
to write data value 1. Furthermore, an N -strategy might suggest the N -agents
to completely refuse any participation in concurrent I/O-operations. To meet
the simplifying assumption that all potential “behaviors” under S are infinite,
one might suppose that c∅ is enabled in all states.

Definition 1 (Strategy). Let A = 〈Q,N ,−→, Q0,AP, L〉 be a constraint au-
tomaton, and let N ⊆ N be a node-set. An N -strategy is a function

S : Execfin(A) → 2CIO,

assigning to any finite execution η a set S(η) consisting of I/O-operations c ∈
CIO such that if c ∈ CIO and Nodes(c) ∩N = ∅ then c ∈ S(η). �
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Unlike strategies in standard multi-player games, an N -strategy does not nec-
essarily determine unique activities for the controlled components. Instead it
yields a set of potential interactions. This is reasonable for the game seman-
tics of CA since the enabledness of a concurrent I/O-operations c with node-set
Nodes(c) = M depends on the agreement of all components that have an I/O-
port in M to perform synchronized write and read operations according to c.
Hence, only if M is a nonempty subset of N then c is controllable by N in the
sense that the N -nodes can offer c, although they cannot enforce that c will in-
deed we taken. The ratio behind the condition requiring that c ∈ S(η) whenever
c is a concurrent I/O-operation with Nodes(c) ∩ N = ∅ is that the N -nodes
are not in the position to refuse an I/O-operation c where none of the N -nodes
is involved. In particular, invisible actions (i.e., the concurrent I/O-operation c∅
with the empty node-set) cannot be ruled out by an N -strategy. Thus, c∅ ∈ S(η)
for each execution η and N -strategy S.

Given anN -strategy S, the S-paths are those paths inA that can be obtained
when the I/O-operations performed at the nodes in N are consistent with S.
Formally, a S-path is a path π = q0

c1−→ q1
c2−→ . . . such that ci+1 ∈ S(η↓ i) for

all positions i ∈ N. We write Paths(q,S) to denote all S-paths starting in q.
The general definition of strategies does not impose any restrictions on their

realizability. E.g., strategies may even be not computable. As we will see later,
for our purposes it suffices to consider strategies that make their decisions on the
basis of a finite automaton rather than the full history. Formally, a finite-memory
N -strategy is a tuple M = (Modes, Δ, μ,m0), where

– Modes is a finite set (of so-called modes),
– m0 ∈ Modes the starting mode,
– μ : Q×Modes→ 2CIO the decision function, and
– Δ : Modes× (Q× CIO×Q)→ Modes the next-mode function.

For the decision function μ we require that μ(q,m) ⊆ {c ∈ CIO : Nodes(c)∩N =
∅} for all states q ∈ Q and modes m ∈ Modes. If Modes is a singleton then
we refer to M as a memoryless strategy. Memoryless strategies are typically
specified as functions S : Q→ 2CIO. Given a finite-memory N -strategy M then
the associated N -strategy SM (in the sense of Definition 1) is given by:

SM

(
q0

c1−→ . . .
ci−→ qi

)
= μ

(
qi, Δ

∗(m0, q0
c1−→ . . .

ci−→ qi)
)

where Δ∗(m, η) denotes the mode that M reaches when starting in mode m

and scanning the execution η. That is, Δ∗(m, q0) = m, Δ∗(m, q0
c1−→ q1) =

Δ(m, q0
c1−→ q1), and Δ∗(m, q0

c1−→ q1
c2−→ . . .

ci−→ qi
)

= Δ∗(Δ(m, q0
c1−→

q1), q1
c2−→ . . .

ci−→ qi
)
.

Syntax of ASL. To reason about the components from a game-based point
of view, alternating-time stream logic (ASL) has been introduced in [16] as an
ATL-like logic [2] for the game-structures associated with constraint automata.
We present here a slightly different syntax for ASL than in [16] and deal here
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with the modality U α (as in LTLIO). Furthermore, in [16] and [15] we discussed
the treatment of finite and infinite paths, while in this paper we restrict our
observations on infinite paths only to simplify the notations. Infinite behavior
could e.g. be achieved my assuming that in each state of the automaton the
empty concurrent I/O-operation c∅ is enabled.

As in other CTL-like branching time logics, ASL distinguishes between state
and path formulas. The state formula fragment is as in ATL, but adapted to the
CA framework where the alternating-time quantifiers range over the strategies of
certain node-sets. Intuitively, these node-sets stand for the interface nodes of one
or more components. The existential quantifier EN is used to indicate that the
components with sink and source nodes in N have a strategy ensuring to reach
a certain goal, no matter how the other components connected to the nodes in
N \N behave. The universal quantifier AN is dual and serves to state that the
components providing the write and read actions at the N -nodes cannot avoid
that a certain condition holds.

In the sequel, we assume a fixed, non-empty and finite node-set N and a
non-empty and finite set AP of atomic propositions. N and AP will serve as
signature for ASL-formulas. State-formulas (denoted by capital Greek letters Φ,
Ψ) and path-formulas (denoted by small Greek letters ϕ, ψ) of ASL are built by
the following grammar:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧ Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ENϕ

∣
∣
∣ ANϕ

ϕ ::= Φ1 U αΦ2

where N ⊆ N , a ∈ AP and α is a stream expression. The operator EN corre-
sponds to an existential quantification while the AN corresponds to an universal
quantification over all N -strategies. In the following, we shortly write EAϕ for
E{A}ϕ and AAϕ for A{A}ϕ. The standard CTL path quantifiers that range over
all paths can be derived using the EN and AN -quantifiers with the empty node-
set N = ∅, by ∀ϕ def= E∅ϕ and ∃ϕ def= A∅ϕ.

Derived path modalities. The path modalities 〈〈α〉〉Φ and [[α]]Φ from BTSL [15]
can be derived by 〈〈α〉〉Φ def= (trueU αΦ) and

EN [[α]]Φ def= ¬AN 〈〈α〉〉¬Φ and AN [[α]]Φ def= ¬EN 〈〈α〉〉¬Φ.

The standard CTL operators for “next step”, “until” and “eventually” are ob-
tained by XΦ

def= (true U ttΦ) = 〈〈tt〉〉Φ, Φ1 UΦ2
def= (Φ1 U tt∗Φ2) and ♦Φ def= (true UΦ).

The definition of the always operator � in ASL is as follows:

EN�Φ def= ¬AN (true U¬Φ) and AN�Φ def= ¬EN (true U¬Φ).

Other Boolean connectives, like disjunction or implication, are obtained in the
obvious way.
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Semantics of ASL. Let A be a CA and π a path in A. The satisfaction
relation |= for ASL state formulas is defined by structural induction as shown
below:

q |= true
q |= a iff a ∈ L(q)
q |= Φ1 ∧ Φ2 iff q |= Φ1 and q |= Φ2

q |= ¬Φ iff q �|= Φ
q |= ENϕ iff there is an N -strategy S such that

for all π ∈ Paths(q,S) we have: π |= ϕ
q |= ANϕ iff for all N -strategies S there exists π ∈ Paths(q,S)

such that π |= ϕ

The satisfaction relation |= for ASL path-formulas and the path π in A is
defined as follows:

π |= Φ1 U
αΦ2 iff there exists n ∈ N such that ios(π↓n) ∈ IOS(α)

and qi |= Φ1 for all 0 ≤ i < n and qn |= Φ2

Given a state q and an ASL path formula ϕ, an N -strategy S is called winning
for the tuple 〈q, ϕ〉 if ϕ holds for all S-paths starting in q. Thus, q |= ENϕ iff
there exists a winning N -strategy for 〈q, ϕ〉. We say that S is winning for ϕ if
S is winning for all pairs 〈q, ϕ〉 where q |= ENϕ. An ASL state formula Φ is said
to hold for a constraint automaton A, written A |= Φ, if q0 |= φ for all initial
states q0 of A.

Example 5 (Railway track). To illustrate some ASL example formulas we recon-
sider the railway track from Example 1. The following formula asks for a {B}-
strategy S ensuring that for all S-paths we have that the first train passes
through until the second train has to stop.

EB((FREE ∨ TRANSIT) U α OCCUPIED),

where α = (((A ∧ B ∧ dA = TRAIN1); (¬A ∧ ¬B))∗; {A} ∧ dA = TRAIN2).
Obviously, the formula does not hold, since no {B}-strategy can detain the first
train to stop as well. But even if we use α′ = ((dA �= TRAIN2)∗; {A} ∧ dA =
TRAIN2) instead of α the path where the second train never arrives is a S-path
for all {B}-strategies S. This can be illustrated by the following ASL formula

AB [[(dA �= TRAIN2)∗; dA = TRAIN2]]false.

Standard turn-based games are determined which means that given a state q,
a coalition C and a winning objective ϕ then either C has a strategy to ensure
that ϕ holds or the opponents, i.e., all agents not in C, have a strategy to ensure
that ¬ϕ holds. As shown in [16], this does not hold for the ASL games. For
the example above, neither A has a winning strategy for the ASL path formula
〈〈(tt)∗; {A} ∧ dA = TRAIN2〉〉true nor can the opponent B enforce the dual path
property. �
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ASL model checking. The model checking problem for ASL asks whether, for
a given CA A and ASL state formula Φ0, all initial states q0 of A satisfy Φ0.
The main procedure for ASL model checking follows the standard approach for
CTL-like branching time logics [10] and recursively calculates the satisfaction sets

Sat(Ψ) def= {q ∈ Q : q |= Ψ}
for all subformulas Ψ of Φ0. To compute the satisfaction sets of EN (Φ1 U αΦ2)
and AN (Φ1 U

αΦ2), we follow an automata-theoretic approach which resembles
the standard automata-based LTL model checking procedure and relies on a
representation of α by means of a finite automaton Z and model checking ASL
state formulas of the form EN (Ψ1 UΨ2) and AN (Ψ1 UΨ2), respectively, in the
product of A and Z. Using standard methods for regular languages, we first
generate a deterministic finite automata (DFA) Z over the alphabet CIO such
that the accepted language of Z agrees with IOS(α). In the sequel, let

Z = (Z,CIO, δ, z0, ZF ),

where Z stands for the state space, z0 denotes the initial state, ZF is the set
of final (accept) states and δ : Z × CIO → Z the transition function. In fact, Z
can be viewed as a CA where the set ZF plays the role of the labeling function
which separates the final states from the non-final states. Given A and Z, we
built the product A �� Z, similar to the product of finite automata and the join
operator for CAs [6].

Let A be a CA as in Definition 1 and Z a DFA as above. Furthermore, let
∅ �= N ⊆ N and Φ an ASL state formula. We define the CA A ��N,Φ Z, or briefly
A �� Z if N and Φ are clear from the context, as follows:

A �� Z def= (S,N ,−→, S0,AP′, L′).

The state space S is Q×Z, the set of initial states is given by S0
def=

{ 〈q, z0〉 :
q ∈ Q0

}
. The transitions inA �� Z are obtained by the following synchronization

rule for concurrent I/O-operations c ∈ CIO state q in A, and state z ∈ Z:

q
c−→ q′ ∧ z′ = δ(z, c)

〈q, z〉 c−→ 〈q′, z′〉
The set of atomic propositions in A �� Z is AP′ = {aΦ, accept}, while the
labeling function L′ is given by the requirements (i) aΦ ∈ L′(〈q, z〉) iff q |= Φ
and (ii) accept ∈ L′(〈q, z〉) iff z ∈ ZF .

The following lemmas formalize the reduction of the model checking prob-
lem for ASL state formulas of the form EN (Φ1 U αΦ2) and AN (Φ1 U αΦ2) to the
problem of computing satisfaction sets for formulas of the type EN (Ψ1 UΨ2) and
AN (Ψ1 UΨ2) in the product, respectively. See Figure 5.

Lemma 1 (Treatment of EN (Φ1 U
αΦ2)). Let A be a CA, and Z = (Z,CIO, δ,

z0, ZF ) a DFA for a stream expression α. Furthermore, let q be a state in A,
N ⊆ N and Φ1 and Φ2 ASL state formulas. Then, the following statements are
equivalent:
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(a) q |= EN (Φ1 U αΦ2) in A
(b) 〈q, z0〉 |= EN (aΦ1 U (aΦ2 ∧ accept)) in A �� Z
(c) There exists a finite-memory N -strategy S for A that is winning for 〈q, Φ1

U αΦ2〉.
Lemma 2 (Treatment of AN (Φ1 U αΦ2)). LetA,Z,α,Φ1, Φ2 be as in Lemma 1.
Then, for all states q ∈ Q the following statements are equivalent:

(a) q |= AN (Φ1 U αΦ2) in A
(b) 〈q, z0〉 |= AN (aΦ1 U (aΦ2 ∧ accept)) in A �� Z
(c) For all finite memory N -strategies S there is a path π ∈ Paths(q,S) in A

such that π |= (Φ1 U αΦ2).

constraint
automaton A

DFA Z for α

ASL state formula
EN (Φ1 U

αΦ2)

construct the product-CA A �� Z
compute the set of states q in A s.t.
〈q, z0〉 |= EN (aΦ1 U (aΦ2 ∧ accept))

A |= EN (Φ1 U
αΦ2)

return a finite-memory strategy S
that is winning for 〈q, (Φ1 U

αΦ2)〉
A �|= EN (Φ1 U

αΦ2)

q �∈ Sat(·)q ∈ Sat(·)

Fig. 5. Schema for the treatment of EN(Φ1 U
αΦ2)

It remains to explain how to calculate Sat(EN (Φ1 UΦ2)) and Sat(AN (Φ1 UΦ2))
for a node-set N ⊆ N . The essential ingredient for this are the predecessor
operators Pre(P,N) and P̃re(P,N) where P is a set of states and N a set of
nodes. The former denotes the set of all states q such that the N -nodes have
a strategy which guarantees to move within one step to a state in P , while
P̃re(P,N) denotes the set of all states q such that no N -strategy can avoid that
a transition emanating from q and leading to a state in P will be taken.

Post, Pre-operators. Let A = 〈Q,N ,−→, Q0,AP, L〉 be a constraint automa-
ton, q ∈ Q, N ⊆ N and P ⊆ Q. If c is a concurrent I/O-operation then

Post[c](q) def= {p ∈ Q : q c−→ p}.
Let P ⊆ Q and N ⊆ N a node-set. Then, Pre(P,N) denotes the set of all states
q ∈ Q such that the following two conditions hold:
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(1) for all c ∈ CIO(q) such that Nodes(c) ∩N = ∅ we have Post[c](q) ⊆ P
(2) there exists c ∈ CIO(q) such that Nodes(c) ⊆ N and Post[c](q) ⊆ P

Recall that CIO(q) denotes the set of all concurrent I/O-operations that are
enabled in state q. Condition (1) is needed to ensure that no uncontrollable
transition (from the view of the N -agents) leads to a state outside of P , while
condition (2) asserts the existence of at least one concurrent I/O-operation that
is controllable by the N -agents and certainly leads to a state in P . The set

P̃re(P,N) def= Q \ Pre(Q \ P,N)

denotes the set of all states q ∈ Q such that there is a concurrent I/O-operation
c ∈ CIO(q) with Nodes(c)∩N = ∅ and Post[c](q)∩P �= ∅. (Recall that we suppose
that each state q has an outgoing c∅-transition. Thus, the N -agents can never
avoid that some transition will be taken.) We then have:

Pre(P,N) =
{
q ∈ Q : q |= EN XP

}

P̃re(P,N) =
{
q ∈ Q : q |= AN XP

}

As for standard CTL (and ATL), the semantics of until has a least fixed point
characterization. Formally, the sets P = Sat(EN (Φ1 UΦ2)) and Sat(AN (Φ1 UΦ2))
are the least fixpoints of the following functions 2Q → 2Q:

P �→ Sat(Φ2) ∪ (Pre(P,N) ∩ Sat(Φ1)) (EN )

P �→ Sat(Φ2) ∪ (P̃re(P,N) ∩ Sat(Φ1)) (AN )

Hence, we have the following expansion laws:

EN (Φ1 UΦ2) ≡ Φ2 ∨ (Φ1 ∧ EN XEN (Φ1 UΦ2))

AN (Φ1 UΦ2) ≡ Φ2 ∨ (Φ1 ∧ AN XAN (Φ1 UΦ2))

where ≡ denotes equivalence of ASL state formulas. On the basis of the expansion
laws, we obtain that for winning objectives formalized by ASL state formulas
of the form EN (Φ1 UΦ2) and AN (Φ1 UΦ2), memoryless strategies are sufficient.
Furthermore, the satisfaction sets Sat(EN (Φ1 UΦ2)) and Sat(AN (Φ1 UΦ2)) can
be computed by means of the standard procedures to compute least fixed points
of monotonic operators.

3.3 Bisimulation Equivalence for Constraint Automata

Besides verifying constraint automaton against temporal logic formulas, Vereofy
provides an equivalence checker that relies on the notion of bisimulation equiv-
alence for CA. The problem of checking bisimulation equivalence appears nat-
urally in the design and optimization of complex systems. For example, given
a complex component connector C that uses many internal channels, one might
ask whether C can be replaced by a simpler connector C′ that is cheaper
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according to some cost function. One possibility to verify that C and C′ realize the
same coordination mechanism is to prove the bisimulation equivalence of the CA
associated with C and C′. Furthermore, bisimulation equivalence can also serve
as a specification formalism. For example, the specification of a connector might
be provided by means of a CA Aspec and the task is to provide the code for a
connector C in some coordination language (e.g., Reo [3]) such that the CA for
C and Aspec are bisimulation equivalent.

Let A be a CA as before, q ∈ Q, and P ⊆ Q. Then CIO(q, P ) denotes the set
of all I/O-operations that are enabled in state q and can lead to a state in P .
That is, CIO(q, P ) = { c ∈ CIO : q c−→ p for some p ∈ P }.
Definition 2 (Bisimulation). Let A be as above. An equivalence relation R
on Q is called bisimulation for A if for all pairs (q1, q2) ∈ R the following two
conditions (i) and (ii) are satisfied:

(i) L(q1) = L(q2)
(ii) CIO(q1, P ) = CIO(q2, P ) for all R-equivalence classes P ∈ Q/R.

Two states q1, q2 ∈ Q are called bisimilar (or bisimulation equivalent) iff there
exists a bisimulation R with (q1, q2) ∈ R. �

As usual, the above definition of bisimulation equivalence for the states of a single
CA can be adapted to define bisimulation equivalence of two CA. Suppose that
A1 and A2 are CA with the same node-set N and the same set AP of atomic
propositions. LetA1�A2 be the “large” automaton obtained through the disjoint
union of the state spaces ofA1 andA2. Automata A1 andA2 are called bisimilar,
denoted A1 ∼ A2, if for each bisimulation equivalence class P in A1 �A2 either
P does not contain any initial state of A1 or A2 or P contains at least one initial
state of both automata A1 and A2.

The classical partitioning refinement approach [14] for computing the bisim-
ulation equivalence classes of a finite labeled transition system can be adapted
for CA [6,7]. This algorithm serves at the same time for checking bisimulation
equivalence of two constraint automata and can also be used as a reduction tech-
nique by replacing a “large” CA with its the bisimulation quotient. Indeed the
switch from a constraint automaton A to a bisimilar automaton A′ preserves all
properties that are expressible in the logics LTLIO and ASL.

Lemma 3. If A1 ∼ A2 then A1, A2 satisfy the same ASL and LTLIO formulas.

The proof for these statements are standard (see e.g. [5]) and can be provided by
structural induction. As for other CTL-like branching-time logics (see [8]), even a
small fragment of ASL is sufficient to provide a complete logical characterization
of bisimulation equivalence. Constraint automata A1 and A2 are called equiva-
lent with respect to a logic L, denoted A1 ≡L A2, if A1 and A2 yield the same
truth value for all formulas in L, i.e.,

A1 ≡L A2 iff for all φ ∈ L: A1 |= φ ⇐⇒ A2 |= φ
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Let us now consider the sublogic L of ASL consisting of all ASL state formulas
which can be build using the propositional fragment of ASL (i.e., atomic propo-
sitions and the Boolean connectors ∧ and ¬) and formulas of the form ∃〈〈ioc〉〉Φ
where Φ is a formula of L and ioc a basic stream expression given by an I/O-
constraint (and representing a set consisting of I/O-streams of length 1). Then,
A1 ≡L A2 implies that A1 and A2 are bisimilar. Thus:

A1 ≡L A2 iff A1 ≡ASL A2 iff A1 ∼ A2

Hence, in order to show that two constraint automata are not bisimilar then a
formula Φ in L can be provided that holds for A1, but not for A2. Such a formula
Φ can be understood as a counterexample.

4 Results, Conclusion and Future Work

Our verification toolkit Vereofy currently supports model checking the LTLIO

fragment consisting of propositional logic, the standard LTL until operator (and
the derived temporal operators) as well as the indexed next step operator 〈〈ioc〉〉ϕ
where ioc is an I/O-constraint. It also supports the use of enabled(ioc) to talk
about the enabled CIO at a state, which can be used to specify fairness con-
straints. The ASL-fragment of our implementation cannot yet treat the U α-
operator, but directly supports the derived operators on path formulas 〈〈α〉〉Φ
and [[α]]Φ. The currently implemented version of the bisimulation algorithm ab-
stracts away from state labels. Thus, it establishes equivalences only for the
observable data flow.

Our tool has been applied to different examples. Some of them are text-book
examples like the dining philosophers where the highly symmetrical structure of
the system allows for huge numbers (ca. 800 philosopher on actual computers,
600MB, 6 minutes of work) of components and therefore large state spaces. Using
the implementation of the bisimulation algorithm, we proved the equivalence of
two variants of a mutual exclusion protocol. The bisimulation checker of Vereofy
has also been used to show the correctness of several “advanced coordination
patterns” that have been modeled as Reo circuits using just a small set of basic
channels. Currently, we are working on some real-life examples. An initial ver-
sion of the peer-to-peer system presented in [13] has been specified using RSL
and CARML. Vereofy can build the composite system for three peers in about
9 seconds and check for deadlock freedom in half the time. Furthermore, we for-
malized a mobile sensor network and have been able to check first properties for
up to 10 sensor nodes.

We are continuously enhancing our implementation. On the one hand, this
includes extensions of the modeling languages and several optimizations to im-
prove the time and space requirements. On the other hand, we are studying
other model checking challenges like ASL with observation-based strategies, the
synthesis problem for constraint automata and questions regarding compatibility
of constraint automata.
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Abstract. Characterising for a context-aware software is its ability to adjust  
to the prevailing situation. Such software reacts and bases the context-aware 
decisions upon inputs describing its operating conditions, i.e. on context(s). In 
this paper, we will seek the roots of context(s) and reason on the methods for 
deducing information by processing contexts; that is, present a methodology to 
enhance the relevance from raw data to knowledge. Thus, this paper will point 
out the relationship between introducing, constructing, serving, gluing and util-
ising context. Moreover, we show how to in a structured manner construct a 
context-service that satisfies given requirements and supplement the context-
aware utiliser. For the sake of reuse and scalability, we will separate an applica-
tion’s specification from context reasoning and consider them as systems  
in their own rights. The findings will be motivated on a general level, with an 
easily conceivable example and formalised with the action system formalism.  

1   Introduction 

With the electro-mechanical development and the miniaturisation of transistors, the once 
fictitious deployment scenarios of computerised gadgetry turn into reality. As the com-
puting is being weaved into the very foundations of our society, the domain of applicabil-
ity extends. The reliance and expectations placed on these computerised gadgets are also 
ever increasing. Among others, gadgets are expected to be aware of the surrounding 
conditions and adapt automatically to them as envisioned by Weiser in 1991 [1]; that is, 
be context-aware. Because this development is likely going to continue, the future will be 
about navigating the ubiquity of information, being able to select, rely on and process 
relevant information [2, 3] as well as to reason rigorously with these.  

Context in all its aspects complements software. As software alone is algorithmic and 
bound to operate on mathematical rules; the source of context in all its forms is data 
relying on some reading that characterise the operating conditions, e.g. temperature, 
location or identity. However, the contexts are ambiguous due to inherent inaccuracies of 
the acquiring equipments but are from the system’s point of view unambiguous as no 
more descriptive data is available. Hence, context breaks the algorithmic model down [4] 
but introduces the possibility to context-awareness. Moreover, the provided contexts 
must be universal as no obligations on its utiliser aka. context consumer [5] or widgets 
[6], can be placed at time of creation. On the other hand, even though the application’s 
algorithmic calculations were verifiable correct, misinterpreting a context is similar to 
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misinterpreting the operating conditions. Since context typically constitutes a decisive 
artefact, such misinterpretation can potentially result in faulty behaviour. We will how-
ever not consider faulty, absent, timeout or ambiguity of contextual information, as sheer 
fault tolerance and dependability issues branches to a separate field of research [7, 8, 9]. 

In paper we argue that a context-aware system cannot be said to be verified unless 
the construction and integration process of the necessary contextual information is. The 
sole reason is that discarding the treatment of context is intolerable for the sake of 
rigour, constituting the motivation of this paper. The main contribution addresses this 
source of motivation; this paper provides a methodology that will challenge the context 
(system) engineer to formally specify how the contextual information is constructed 
and integrated to a context-aware system that is to operate in a continuously changing 
contextual surrounding. That is, this paper is not about how to use context(s) but on 
what the context(s) constitute of, what are demanded from them and specifying how 
they are treated for providing rigorously to the required context-aware functionality.   

Our approach takes an abstract view on the continuously changing context in a sys-
tem. The contexts are considered globally available and thus, modelling the functional 
behaviour with shared variables suites our purpose well. Hence, we will concentrate 
on assuring the correct treatment of the provided (deduced) context. We treat context 
in a modular fashion defining an interface for the utiliser with which to depend on the 
contextual information through the glue that acquires and prepares contexts. This 
modularity is fundamental for the sake of adaptability [3], and hence also for scalabil-
ity and reusability. Consequently, the context can be considered to be provided by a 
standalone, independent, replaceable and interoperable service. We use the action 
system formalism [10, 11, 12] to formally specify treatment of context, where the 
required syntactical language constructs are discussed in greater detail in Section 3. 

We build on our earlier work [13, 14, 15] providing a methodology for integrating, 
depending on and formally treating continuously changing context. The context is 
represented by modules in separation from its utiliser alike in Context UNITY [3] that 
relates to our work but having an agent-like view on context-awareness with policies 
on updating the common context. In process calculi, Braione and Picco [16] consider 
an approach where inhibiting channels with context enables different implementations 
satisfying the same basic requirement whilst Zimmer [17] formalises, among others, a 
remote procedure call. Other approaches we are aware of [18, 19, 20] consider how a 
specification can be constructed given a rigorously modelled continuously changing 
environment, yielding a specification on the certain environment that it models.  

The outline of this paper is as follows: in Section 2 we provide our definition of 
context and an example that is used throughout the paper. Section 3 introduces the 
action system formalism used to formally reason about context. Section 4 ties the 
context model with the action system formalism presenting how context is utilised, 
discovered, processed and composed for increasing the informative value. Finally, 
Section 5 concludes this paper.  

2   Concepts Used in This Paper 

We start by providing a definition of context and its different appearances. In Section 2.2 
we outline an example to support the intuition of the reader when gradually referred to 
along with the formal definitions to various aspects that are provided throughout this 
paper.  
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2.1   Definition of Context and Context Related Matters 

Research on context and context-awareness stems from 1992 and Olivetti’s Active 
Badge research [21]. Following this, context has been given many and varying defini-
tions. Pascoe [22] consider context to be subjective and defined by the entity that 
perceives it. Pascoe’s subjectivity however refers to the perception made on the given 
context, such as ‘close to’. Schilt et al. [23] considers aspects of context as “where 
you are, who you are with and what resources are nearby”. Chen and Kotz [24] de-
fines context to be environmental states and settings that affect the application and 
Yang and Galis [25] add the virtual object to the definition. Hence, according to these 
definitions context describe the operating conditions that have an impact on the appli-
cation. As we concur with all, but further add the dictionary interpretations [26, 27] 
and Dey’s and Abowd’s [28], we end up in defining context accordingly: 

 
Thus, according to the definition, context is a piece of information describing the 
situation of/in an entity that impacts the output/computations. Such context is typi-
cally extracted from either the logical e.g. identity, member of workgroup, time; or 
from the physical surroundings e.g. temperature, luminosity [29]. We do however not 
consider context to be cold, high, close, pretty, late or any other perceived matter.  

In this paper, we call the source of contextual data elementary context. An elemen-
tary context is always from the system’s point of view, a still-shot of the matter as it 
was at a specific moment. We call the outcome of composing contexts together and/or 
processing elementary contexts for providing enhanced information deduced context; 
which covers roles and relations of entities [30]. Consequently, we use the word con-
text on a general level, whether it being an elementary or deduced context. The con-
texts are only updated by the entity introducing them. Given this definition and its 
interpretations, we define an activity or a system to be context-aware whenever any of 
its functionalities are impacted by some context per definition [28]. In other words, 
nearly all software reacting on some input could be considered context-aware to some 
extent [6].  

The instance providing for the context is called a context-service. Thereby, a  
context-service is typically a careful composition of elementary context(s) that is 
considered an entity in its own right. The consumer of a service, the application or an 
intermediate compositional entity, is called the utiliser of this context-service.  

In order for a context-service to provide some deduced contextual information, the 
service’s output needs to be published. As an elementary context as such can poten-
tially constitute a context-service in its own right, all context need to be published. 
Because all contexts are published, one context can provide to several context-
services. For example, temperature at location x can be inquired by an utiliser, where 
translated to a Boolean (<20°C) as well as read to be used in some other service for 
calculating average temperature. 

Definition 1, context: Context is any information that can be used to charac-
terise the situation of entities. An entity is a person, place, object, virtual ob-
ject or state that is considered relevant to the interaction between a user and 
an application, including the user and the application themselves. 
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2.2   The Example: A Fictitious Speed Surveillance System 

In order to motivate our ideas, we will construct a fraction of a simplified fictitious 
context-service providing the necessities for a speed surveillance system. The speed 
surveillance system is able to decide whether to allow further acceleration, qualifying 
as a good example encompassing straight forward decision making. The example 
demonstrate that once the algorithmic functionality of a context utiliser is verified, the 
hazards relate to the informal acquiring and perception of the information provided by 
context [31, 32]. It relies on easily conceivable calculations and on three distinct ele-
ments of contexts; namely one counting for current speed, one for the speed limit and 
one for whether the gas pedal position indicates acceleration. As the speed inevitably 
involves the logical context of time, we will show how to construct and integrate the 
context-service providing the perceived state of speeding, depicted in Figure 1.  

 

Fig. 1. Speed surveillance context architecture 

In Figure 1, the bottommost “diamonds” depicts elementary contexts. The boxes 
compose and/or process the elementary context. Because the surveillance system is 
context-aware functioning in a continuously changing conditions where non-
algorithmic events occur, exceptions to the functionality are implementable, depicted 
with the dashed lines and ‘other’ boxes. We show the adaptability of our approach by 
introducing the factor of a trailer coupling fixing the maximum speed limit.  Exam-
ples basing on this surveillance system are clearly distinguishable in the text. 

3   The Action System Formalism at a Glimpse 

Formal methods facilitate systematic construction of reliable and rigorous software. 
Even though elementary contexts, as defined in this paper, are not software, formal 
treatment of them is important as they constitute in a decisive factor in the functional-
ity of the context-aware software. Hence, not only the way contexts are integrated  
to software, but the methodology of composing deduced contexts from elementary 
context is of interest.  



106 M. Neovius and K. Sere 

We model the construction and integration of contextual knowledge in the action 
system formalism. The action system framework provides means for reasoning about 
the contextual information in a modular, distributed, manner. For brevity, we omit 
type checking of the variables. Moreover, we aim at presenting a methodology rather 
than stepwise development, omitting the supported paradigm of refinement. Readers 
interested in the powerful methodology of refinement are directed to publications 
devoted to describing this [10, 11, 13, 33, 34, 35, 36, 37]. However, we feel obliged to 
stress that since refinement is about preserving correctness on mathematical founda-
tions, it is restricted to the algorithmic part [4, 31, 32] and thereby, refinement as 
presented in the referenced literature, cannot be directly applied on the physical or 
logical elementary contexts.  

3.1   Action System at a Glimpse 

The action system framework is a state based formalism for defining distributed sys-
tems [12, 38]. It bases on Dijkstra’s language of guarded commands [39, 40] and is 
defined with the weakest precondition predicate transformer, wp. From wp (A, q) we 
can derive all pre-conditions for which executing action A, the post-condition q is 
satisfied where pre and post-conditions are predicates over state variables. The weak-
est precondition is defined for various actions as follows:  

wp (abort, q)  = false Aborting action 
wp (magic, q)  = true Miraculous action 
wp (skip, q)  = q Stuttering action 
wp (x ≔ E, q)  = q[E/x] Multiple assignment 
wp (A; B, q)  = wp (A, wp (B, q))  Sequential composition 
wp (A [] B, q)  = wp (A, q) ∧ wp (B, q)  Nondeterministic choice 
wp ([a], q)  = a ⇒ q  Assumption 
wp ({a}, q)  = a ∧ q  Assertion 

The action abort is used to model disallowed behaviour, thus q is never satisfied, i.e. 
the outcome is false. Action magic always establishes true. Stuttering action skip does 
nothing, thus, the weakest pre-condition for establishing post-condition q is q. Action 
x ≔ E is multiple assignment where every occurrence of x is substituted with an ele-
ment from E. A; B is the sequential composition of two actions and A [] B the nonde-
terministic choice between actions A and B. [a] is the assumption and {a} is called the 
assertion. Assumption [a] is assumed true and {a} is a predicate needed to evaluate 
true in order for the execution to proceed to guarantee q. If assumption ‘a’ is false, the 
action behaves magically whilst if assertion ‘a’ evaluates false, the action aborts. 

The language allows guarded commands, [g]; A, for convenience written g → A, 
where g is the guard, the predicate and A the action, meaning in the wp-notation: 

wp (g → A, q)  = g ⇒ wp (A, q)  
that given the guard g, executing A satisfies q. The guard of A, gA is defined so that it 
does assure the establishment of a valid post-condition. 

gA = ¬wp (A, false)  
Having defined the guarded actions, we can define conditional choice and repetitive 
construct: 



 Formal Modular Modelling of Context-Awareness 107 

wp (if A fi, q)  = wp (A, q) ∧ gA 
wp (do A od, q) = (∀n.wp (An, gA ∨ q)) ∧ (∃n.¬gAn)  

where A0 = skip and An+1 = An; A. The repetitive construct defines that each action 
enables another or establishes q and that there must exist some that does not enable 
any other, i.e. partial correctness and termination. Within the repetitive construct, we 
define an action to only execute whenever its guarding predicate evaluates true. 

To start reasoning with action systems, we define the elements of one, here  
named :  

 

In , v and w* are the variables declared by this action system. Variables v are local 
and w* constitute the uniquely named exported variables (denoted with an asterisk). 
The clause proc defines procedures where P: p is a local procedure p labelled P, only 
executed if called upon whilst R* is a uniquely named globally referable procedure. A 
procedure is substituted for each call on it from an action. Action Init:A0 is the initial-
ising action assigning the variables their initial value where Init is the label of this 
action, A0. Each action and procedure label belongs to the Names of labels in the de-
claring action system. The do…od bracket pair constitutes the repetitive construct 
within which the action A, labelled Lbl, is repeatedly executed until A aborts or until 
termination i.e. when gA evaluates false; otherwise it continues infinitely. Whenever 
gA evaluates true, we say that the action is enabled. Of the enabled action(s) within 
the do…od clause, one is chosen non-deterministically for atomic execution. Vari-
ables i stand for the optional imported variables that are declared and exported  
by other action systems but referenced from this. Together, import i and export w* 
variables constitute a situation resembling shared writable memory between action 
systems.  

This paper considers reactive action systems in which action system  is a part of 
a greater system where all other action systems are considered in their own rights but 
as ‘s environment, commonly denoted as ℰ for environment. As the action atomic-
ity holds on the greater system, an action of  can be preceded by an action in ℰ 
impacting  by writing to ‘s global variable space. Consequently, in a reactive 
system a component does not terminate by itself as the environment can, through the 
global variables, enable some actions within this. This makes termination a global 
property and the formalism comes to showing properties of execution traces.  

Distinct action systems can be composed according to Definition 3:  

Definition 3, parallel composition ‘||’: Let  and ℬ be two action systems 
 = |[var va, wa*; proc P:p ● Init:A0; do LblA: A od]| : i  ℬ = |[var vb, wb*; proc R*:r ● Init:B0; do LblB: B od]| : j  

Then, their compositional action system  =  || ℬ is 
 = |[var vm, wn*; proc P:p; R*:r ●Init:A0; B0 do LblA: A  

 [] LblB: B od]|: h 
Where h = i ⋃ j\(wa ⋃ wb), wc* = wa ⋃ wb and vc = va ⋃ vb given that va ⋂ vb= ∅. 

Definition 2, action system:   = |[var v,w*; proc P:p; R*:r● Init: A0; do Lbl:A od]|:i 
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In Definition 3, action system  is a parallel composition of  and ℬ. The definition 
basically states that if a set of action systems operate on disjoint set of local variables, 
va ⋂ vb = ∅, procedure names and action labels, they can be composed to one action 
system where the actions within the repetitive do … od loop are treated non-
deterministically and procedures remain intact. If the local variables are not disjoint or 
the local procedure names coincide, non-interference can be achieved through renam-
ing. This compositionality provides a powerful means to formally compose and de-
compose action systems for abstraction and refactoring. In total, the action system 
framework provides us with a well established mathematically verified ‘toolbox’ with 
a sound semantic foundation to formally master modularisation, parallel composition, 
parallel and sequential execution, conditional and repetitive constructs.  

3.2 Action Systems for Modelling Context 

When modelling context, the import and export clauses do not suffice for passing of 
context due to the possibility of overwriting.  Consequently, we introduce two new 
variable types for declarations of locally writable and globally readable variables: 
read_only and publish respectively denoted by a suffixing ⋄, called sentient and im-
pact variables by Roman et. al. [3]. Hence, advertising and reading the non-writeable 
context is possible, addressed in Property 1.  

Property 1, context passing: Each read_only variable has exactly one system pub-
lishing it.  

In addition, the introduction of elementary contexts motivates declaration of a special 
clause to the action system called elemContext, revising Definition 2 to 2’. 

 

In Definition 2’, elemContext denotes the non-writeable elementary context c intro-
duced by this action system whilst variables x⋄ and y⋄ denote the published and 
read_only variables respectively. 

One elementary context can contribute to many deduced context. Thus, the action 
system introducing an elementary context needs to publish it as such, without 
alternation or processing, addressed in Property 2.  

Property 2, introduction of context: Each elementary context is published as such.  

The new variable types compel to revision of Definition 3 to 3’:  

 

Definition 2’, contextual action system:  
=|[elemContext c; var v,w*, x⋄; proc P:p; R*:r● Init:A0; do Lbl:Aod]|:i, y⋄ 

Definition 3’, parallel composition of contextual action systems ‘||’: 
Definition 3 with read_only variables va⋄, vb⋄, vc⋄; publish variables wa⋄, wb⋄, 
wc⋄ and elemContext ca, cb

 and cc for , ℬ and  respectively. Then:  
vc⋄ = va⋄ ⋃ vb⋄\ (wa⋄ ⋃ wb⋄), wc⋄ = wa⋄ ⋃ wb⋄, cc⋄ = ca⋄ ⋃ cb⋄  

provided that ∀ca∈ wa
 and ∀cb ∈ wb. 
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Given these definitions and properties, we can denote contextual action systems 
and encapsulate its algorithmic calculations for verification. We exemplify this in 
example 1, omitting several pitfalls such as assurance of type checking. 

Example 1: Consider three action systems, ℱ,  and ℋ calculating velocity based on 
revolutions in degrees per second (rps) and diameter.  ℱ = |[var vel⋄ ● Init:F0;  

do Km/h: true → vel⋄ ≔ rpm⋄ × dia⋄ × π × 60 ÷ 1000 od]| : iF, rpm⋄, dia⋄  = |[elemContext rps; var rpm⋄, v⋄ ● Init:G0;  
do RevPerMin: true → v⋄ ≔ rps; rpm⋄ ≔ (rps ÷ 360 × 60) mod 1 od]|: iG ℋ = |[elemContext diameter; var dia⋄● Init:H0;  
do WheelDia: true → dia⋄ ≔ diameter od]| : iH

 

The action system ℱ provides a service constituting of the deduced context velocity in 
km/h through the publish variable vel⋄. vel⋄ is calculated in the action labelled Km/h, 
given that the read_only variables are provided. Service ℋ provides the diameter in me-
ters and publishes this as dia⋄ and  provides the service rpm⋄ in revolutions per min-
ute. Here, ℋ merely maps the elementary context whilst  processes the elementary 
context rps to rpm⋄. Hence,  and ℱ function as the algorithmic part that is subjects to 
verification. Moreover,  publishes the elementary context rps unchanged as v⋄. Unit 
concurrence, absolute vs. relative velocity, tolerance to mention a few are omitted. – 
end of example 

In addition to the two types of variables and elemContext, we need to define means 
for the context utiliser to acquire this with unidirectional dependency, the glue. 
Thereby, we define a language construct called dependency operator, \\: 

 

Definition 4 states the definition for \\ language construct denoting a dependency 
relation between two actions. This dependency relation is unidirectional, where both 
actions A and B need to be enabled and A guaranteed not to disable B1 for A\\B to be 
enabled. Mathematically, action B evaluates its guard gB prior to execution.  

We will model the dependency on action/procedure labels in order to avoid confu-
sion of concepts, i.e. A\\Borig in action system  where Borig is the label of an action. 

 = |[var w; proc P; ● Init: D0; do  LblAdependB: A\\Borig [] Borig: B od]| : i  

Declaring dependency between A and B directly restricts the expressiveness of action B 
to the inclusion of its guard as we cannot differentiate when action B is executed as a 
dependency reference and when as an action in its own right. Expressiveness is 
achieved by referencing a procedure instead of action B’s label directly i.e. the action 
labelled LblAdependB: A\\Borig translates to A\\P where P stands for a procedure that 
enables a specific variant of action B where the procedure action is substituted for the 
call on it. We label this specific variant Bwake. Bwake is executed once in the wake of a 
dependency reference, disables itself with a guard complementing gBorig. Hence, the 
action labelled Borig split up to two actions, Bnat and Bwake, making an action specifically 

                                                           
1 The guard for A\\B: ¬wp(A\\B, false) = gA ∧ gB ∧ ¬wp(A, ¬gB). 

Definition 4, \\ dependency operator: Let A and B be two actions. Then, 
A\\B is defined as: A\\B = gA ∧ gB → A; B.
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for dependency reference purposes. However, doing so breaks the atomicity of \\ and 
assurance of no other action disabling Bwake needs to be guaranteed, formally defined as 
atomicity refinement [10, 11]. 

 = |[ … do LblAdependB: A\\Borig [] Borig: B od …]| 
-- translates to –  

 = |[ … proc P: gB ∧ coord = false → coord ≔ true 
 do LblAdependB: gA ∧ gP → A; P 
 [] Bwake: gB ∧ coord = true → B; coord ≔ false  
 [] Bnat: gB ∧ coord = false → B  
 od … ]| 

In the operational outline above, notable is that both Bwake and Bnat assure execution 
of action B, i.e. Borig and the add-on guards exclude each other. The referenced proce-
dure P’s guard must include gB. The Boolean coordination variable coord assures that 
no dependencies are “pending”2. Procedure call substitution makes action labelled 
LblAdependB to execute the following:  

LblAdependB: gA ∧ gB ∧ coord = false → A; coord ≔ true 

For assurance of the transformation validity, the translation compliance with refine-
ment ought to be shown. Indeed, the refinement calculus provides the conditions for 
auxiliary functionality to be added to Bwake and/or Bnat. Consequently, we have 
reached the situation of Definition 4 where given action A\\Borig, A depends on an 
action labelled Bwake through the variables assigned by procedure P that guarantees 
execution of action B exactly once in the wake of action A.  

In addition to \\, we define the @ operator to enable remote references in  
Definition 5.  

 

Combining Definitions 4 and 5, writing in action system : A\\K@  3 makes action 
A depend on an action labelled K in action system , providing for, for example, 
some deduced context. Recalling breaking of atomicity above, referring to a remotely 
available procedure is as follows where gP* is the outcome of gB ∧ coord = false and 
P is coord ≔ true: 

 = |[ … do LblAdependB: A\\P*@  od …]| 

-- translates to –  
 = |[ … do LblAdependB: gA ∧ gP* → A; P od … ]| 
 = |[ … proc P*: gB ∧ coord = false → coord ≔ true 

 [] Bwake: gB ∧ coord = true → B; coord ≔ false  
 [] Bnat: gB ∧ coord = false → B  
 od … ]| 

                                                           
2 Other data structures are implementable as well, such as queues, rings and so forth. 
3 Writing A\\K*@  refers to a remote procedure. 

Definition 5, @ construct location: Let K label an action or a globally refer-
able procedure and  an action system where K ∈ labels of .  Then K@  
refers to action or globally referable procedure labelled K in action system . 
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Definition 3’ is applicable for composition. Hence, if K@  provides a context, we 
have managed to successfully encapsulate the behaviour and construction of this con-
textual information and its updates from A@ , just as intended, still complying with 
Definition 4.  In the rest of the paper, we focus on showing how this separation of 
concerns can be exploited in a sensible manner.  

4   Context Modelled with Actions Systems as a Part of a Program 

As all software operates algorithmically, reasoning mathematically about its functional-
ity is feasible and software can be shown to satisfy its requirements given that these are 
provided formally. When a system is formally verified, it explicitly meets with the for-
mal requirements. Consequently, on a theoretical level, formally verified software on 
formally expressed requirements does not fail; it merely complies with its requirements.  

Following the definition of context used in this paper, context and changes in it 
cannot be modelled formally as we cannot model the behaviour of the elementary 
contexts. However, putting effort into reasoning with context is motivated, as from a 
user point of view the reason for failing software, let it be misinterpretation or errone-
ous algorithm, is irrelevant as the consequences remain.  

The aim of treating context in the presented modelling methodology is to reveal the 
characteristics of context to the designer for specifying them rigorously and verifying 
the involved algorithmic calculations. Because of this, we start by describing how a 
context-service is integrated to an utiliser, followed by describing how the elementary 
contexts are introduced. In Section 4.3 we show how these are formally treated to 
provide context information and provide a complete view of the characteristics.  

4.1   Integrating Contextual Information to an Application 

Claiming to have verified a context-aware system inevitably includes verification of its 
context. As the utiliser’s context-aware decisions are impacted by read_only variables, 
a context-service can be treated as a black (white) box. Thereby, a context-service can 
be independently substituted for another, given that it provides the same verified con-
textual information on the same publish variables. This modularisation of contextual 
information facilitates reuse and provides comprehensibility through abstraction.  

 

Fig. 2. Context-service - utiliser relation with references to example 
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A context-aware system can be depicted as in Figure 2, where the context utilising 
action system  depends on its glue to perceive matters based on certain context(s). 
Action U in  inquires an action or procedure in its glue, LblY@ lue to resolve 
some matter based on the read_only variable x⋄ published by a context-service. The 
action initiating this, i.e. U, is only enabled given that the guard of LblY@ lue 
evaluate true. The dotted arrows and the labels in Figure 2 concur with action system 

 and lue action U labelled LblU and action Y labelled LblY respectively, outlined 
below.  

 =|[var w ● Init:U0; do  LblUdependonY: U\\LblY@ lue  
 [] ‘other actions’ od ]| : j  

lue =|[var  y ● Init:Y0; do LblY: Y [] ‘other actions’ od]| : i, x⋄   

Considering action system  to be the utiliser in Figure 2, it relies on action system 
lue to glue. When so, guard gY is a predicate on the read_only variable(s) x⋄ pub-

lished by some other context-service. With this, we say that action system lue  
perceives a feature of interest to .  

The operators \\ and @ abstract the perception of context from the specific action 
that decides on it, i.e. LblUdependonY. This is essential as the utiliser cannot antici-
pate all operating conditions it will have to place decisions in throughout its lifetime 
[3]. Moreover, the read_only variable x⋄ can be a prerequisite for several independent 
gluing action systems, facilitating scalability.  

Example 2: Consider a speed surveillance system assembled in a car assuring that 
speeding will not take place, action system  in Figure 2. Because speeding is some-
thing that bases on speed limit and velocity, the system cannot proceed unless they are 
provided. Action system lue counts for the glue, defining its action LbLY as follows: 

lue =|[var ; ● Init:Y0; 
 do  LblY: vel⋄ ≤ spdLmt⋄ → Y  

  [] ‘other actions’  
 od]| : i, vel⋄, spdLmt⋄ 

where vel⋄ refers to velocity as calculated in example 1 and spdLmt⋄ to speed limit that 
are updated and published by some context-service. According to Definition 4, 
U\\LblY@ lue is to be enabled if gU is true and speeding is false, resolved in the guard 
of action labelled LblY. As maximum velocity is fixed whenever a trailer is coupled, in-
cluding the Boolean trailCpl⋄ according to Figure 1, action labelled LblY must treat this 
for the whole range of values. Consequently, action system lue becomes: 

lue =|[var ; ● Init:Y0; 
 do  LblY: ((vel⋄ ≤ spdLmt⋄ ∧ ¬trailCpl⋄) ∨  
       (vel⋄ ≤ spdLmt⋄ ∧ trailCpl⋄ ∧ vel⋄ ≤ 80kmh)) → Y  

  [] ‘other actions’  
 od]| : i, vel⋄, spdLmt⋄, trailCpl⋄   

Notable is that the utiliser needs only to rely on that the action system lue indeed pro-
vides adequate velocity. Having actions in the glue raising specific flags whenever  
certain condition are met abstracts the evaluation of sometimes long guards from the 
utiliser – end of example 
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Because the utiliser  and the glue lue are treated independently from the context-
service providing x⋄, the service must not pose any obligations on how its reading is to 
be perceived. For the context x⋄ we cannot allow confusion between a valid “context 
value” and the absence/timeout of it, i.e. “do not know”. The absence/timeout refers to 
erroneous or outdated context that as noted earlier, is out of the scope of this paper. 

We define context universality for valid values, Definition 6:  

 

Since the nature of context, the utiliser becomes a coordinating system that triggers 
some functionality based on current context(s). The impact of a context can be tuned 
with non-contextual information in the referencing action , for example, scheduling 
action U in action system  or prioritising it over another [41].  

4.2   Composing Information from Elementary Contexts 

The elementary contexts constitute the basis for all deduced contexts and context-
awareness, making the process of constructing a context-service seemingly hierarchical. 
Figure 3 depicts any level in the process of constructing a context-service. The input 
data to this level, the context dependent (CD) segment aka. context provider [5], takes 
the elementary context c introduced here and/or some read_only variables y⋄ as inputs, 
publishing it as z⋄. z⋄ is then processed in the context refiner/reasoner (CI) segment (aka. 
context synthesizer [5]). The output is published by the providing (CP) segment [13]. 
We define the segment interdependencies as follows, omitting type checking: 

Hence, the output of this processing level is x⋄ ≔ f(z⋄ ⋃ c) ⋃ r⋄ given that the neces-
sary input is provided. Writing this as action systems, the three segments in Figure 3 and 
Definition 7 through 9 translate into namesake action systems , ℐ and .  =|[elemContext c; var z⋄, r⋄● CD0;  

do Get: true → z⋄ ≔ y⋄ ⋃ c, r⋄ ≔ c [] ‘other actions’ od]| : y⋄ ℐ =  |[var q⋄, β; ● CI0; proc;  
 do Process: true ∧ i → q⋄ ≔ f1(z⋄, i)[] ‘other actions’ od]| : i, z⋄   = |[var x⋄; ● CP0; do Provide: true→ x⋄ ≔ q⋄⋃ r⋄ [] ‘other actions’ od]| : i, q⋄, r⋄  

Definition 6, context universality: Let cn denote the domain of a context and 
cm the range decided on, where cm ⊆ cn and let ci be the complement of cm. 
Then the context-service must provide for ci as well. 

Definition 7, acquiring context CD: Let CD read_only y⋄, introduce ele-
mentary context(s) c ⊆ cn and publish z⋄ and r⋄, then z⋄ ⊆ y⋄⋃c and r⋄ = c.  

Definition 9, providing context CP: Let CP publish x⋄ and read_only q⋄, 
then assuming q⋄ is published by the CI and r⋄ is the set of elementary con-
text(s) introduced by this processing level, x⋄ ≔ q⋄ ⋃ r⋄ and i be updated. 

Definition 8, improving context CI: Let CI read_only z⋄ and publish q⋄, 
then q⋄ ≔ f(z⋄) according to refiner/reasoner involving optional imported 
variable conditions i. 
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Fig. 3. Processing context  

The action system labelled  handles the introduction of the variables, the ℐ the 
actual algorithmic functionality and the  the publishing of the deduced context(s) 
and the possible elementary context(s). The import variables i provide the possibility 
for shared variables, e.g. asynchronous handshaking.  

This segmentation defines input and output interfaces and encapsulates the algo-
rithmic part. At the same time, the elementary context(s) is available as measured to 
be included by other systems. Combined with the read_only variables, the processing 
increases the level of information that is eventually published.  

4.3   Processing Context 

The task of constructing a context-service providing the context read by the glue re-
veals the importance of mastering the composition and calculation with context. Re-
calling Figure 3, one instance of context processing, Figure 4 illustrates the relation of 
several such instances resulting in context services providing for action system lue 
in Section 4.1.  

Figure 4 depicts how the en route context improvers increase the relevance depend-
ing on publish variables [2, 13] and elementary contexts. Hence, guaranteeing loop 
freeness of the context variables is necessary; declaring that the publish variable(s)  
 

 

Fig. 4. Context processing 
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that are read_only to a certain level must not include that same level’s published vari-
ables nor a deduced context depending on such constituting in Property 3. 

Property 3, loop avoidance: Let an instance read_only yn⋄ relying on publish vari-
ables tn⋄ and α ≔ yn⋄ ⋃ tn⋄. Then α denote all variables this instance relies on. Let c 
denote elementary contexts introduced by this instance and x⋄ variables it publishes, 
then α ⋂ x⋄ = ∅ and x⋄ comes to rely on α ⋃ c. 
In addition to Property 3, in order to provide well defined abstractions and verifiable 
deduced context, keeping track of the context unit(s) is important.  

With these restrictions, processing context is the act of increasing the relevance of 
information by applying some algorithm or composing several contexts together. 
Each context processing level, as there might be several (denoted by three dots in 
Figure 4), is alike the one depicted within the dotted lines down left in Figure 4 and in 
Figure 3. The context utiliser, in upper right corner Figure 4, is as the dependency 
references depicted in Figure 2.  

 

 

Fig. 5. Construction of a context-service 

Example 3: Considering example 1 and 2 and Figure 4, the unit of velocity and speed 
limit must coincide. The three CI boxes in Figure 4 could stand for action systems ℱ,  
and ℋ in example 1. The utiliser’s names correspond to names used in Section 4.1. 
Moreover, for the sake of reuse, the system must take a stand on the units and their  
implementation, such as whether the velocity is absolute or relative – end of example. 

Figure 5 combines all presented the figures depicting the processing of context to a 
context-aware system. The Definitions 4 through 9 presented in this paper assure that 
contexts place no obligation on its utilisers and that it can be reasoned about like if it 
was a special variable with restricted write access.   

5   Conclusions 

This paper stresses the importance of processing contextual information systemati-
cally as context most certainly constitutes a decisive factor of any context-aware sys-
tem. Because of this, in order to claim that a system is formally verified, we argue that 
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the decisive matters, including context and its processing, need to be formally  
expressed and its mathematical matters verified. In this paper, we have presented a 
methodology and a language construct to the action system formalism that split the 
contextual characteristics from the software through a gluing system. The contexts are 
considered to be provided and processed within context-services. We have also out-
lined and motivated qualities of a context variable that need to hold for facilitating 
scalability and reuse.  

Modelling context in the presented methodology challenges the designer to con-
struct rigorous realistic context-aware systems. This is achieved by revealing the 
characteristics of the needed context when formally specifying the processing of con-
text utilised by an application. Once these contexts are formalised, the formalisation 
has fulfilled a purpose of revealing shortcomings to the designer. The action system 
framework is used for processing and composing contexts where the constraints are 
placed by the elementary context. Moreover, as this paper consider modularised con-
text, we can foresee that the presented ideas could be extended to formalise other 
distributed well-defined matters as well.  

Being able to express dependencies between actions and services is a first step in 
modelling services with action systems; future work will address chains of dependen-
cies, unordered dependencies as well as showing characteristics of refinement of 
inter-dependent actions. We aim at instead of having a library of model transforma-
tion rules, to define new simple language construct with which expressing the chal-
lenges brought along with the ever increasing distribution of computations and  
responsibilities are possible.  
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Abstract. In this paper we investigate the feasibility of a demonstra-
bly correct compiler for Java bytecode. We first examine the suitability
of adapting the existing high assurance compiler DeCCo for the Pascal-
like language PASP, based on a Z formalisation of the compiler manually
transcribed to Prolog. During the investigation we have uncovered several
problematic issues and argue that these can be avoided by formally de-
riving the code of the compiler from the formal specification, rather than
manually transcribing it. We have conducted a case study, developing a
compiler for a subset of Java bytecode to an idealised RISC processor
using the B-method. We show that refinement is a natural way to model
compilation and that the B-method can in principle be used to develop
a demonstrably correct compiler. In particular, the tool support for B
turned out to be extremely valuable: animation, automated refinement
checking, and proof each uncovered a series of mistakes.

1 Introduction and Motivation

Ensuring the correctness of the compilation process is an important consideration
in the construction of reliable software. If the compiler generates code that is
not faithful to the original source program code, then all efforts spent in proving
the correctness of the system could have been in vain. Proving that target code
is correct w.r.t. the program source is especially important for high assurance
systems, as unfaithful target code can lead to loss of life and/or property.

In earlier work [38], AWE together with Susan Stepney and the company Logica
have developed the DeCCo compiler which translates a Pascal-like high-level lan-
guage (called PASP) into machine code for the ASP (Arming System Processor)
processor, an in-house “RISC processor with separate data and program buses,
only three registers, and built-in test utilities” [18]. For this, the semantics of PASP
and of ASP were specified in Z [3,36]. Also, various intermediate levels such as un-
linked, relocatable ASP assembly modules were also formally specified, and the
whole compiler and linker process was proven to be meaning preserving and thus
correct. The ASP chip itself was also formally specified and verified in [35].

Note that DeCCo stands for DEmonstrably Correct COmpiler. There are
two reasons why DeCCo is only called “demonstrably correct” and not just
plain “correct”:
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1. The compiler was formalised and proven in Z, but was then manually trans-
lated into Prolog for execution. While the translation was “straightforward”
[38], one cannot exclude errors having been made in the translation.

2. The proof of correctness was performed by hand (i.e., using pencil and
paper).

Still, the development of DeCCo was a Herculean task and it provides a degree
of assurance that is far beyond what traditional compiler construction techniques
provide.

Unfortunately, several major issues are limiting the practical use of DeCCo
within AWE:

1. It is difficult to find qualified programmers for the PASP language (based
on Pascal).

2. The compiler has performance problems in the presence of complex branching.
3. Maintenance of the DeCCo system is an issue. In particular, it turned out

to be difficult to adapt the source code to work on recent hardware.

Contributions of the Paper

To address the first issue, AWE is keen on replacing PASP by (a subset of) Java
bytecode as the input language of the compiler. This would allow to produce
various front ends (e.g., for ADA [27] or JavaCard), for which programmers
can be found. New front ends could be developed as the need arises. In this
paper, we investigate whether the existing DeCCo implementation is a suitable
starting point for this endeavour and whether the DeCCo approach can be
further improved.

Investigation of DeCCo. We have first inspected the Prolog code of the
DeCCo system, uncovering some relatively surprising issues. Indeed, while great
care went into the Z specifications of DeCCo and the translation to Prolog, the
quality of some of the infrastructure code is poor. We have uncovered a series of
issues with the current implementation, more precisely with the way the formal
compiler specification was transcribed into Prolog. Some of these issues are also
the likely cause of the performance problems. This does not put the DeCCo
approach itself into question, as it is clearly still better than conventional com-
piler development. Still, we argue to strengthen the DeCCo approach, by more
rigorously transcribing the formal specification of the compiler into code.

Formal Compiler Development using B. We have investigated using a
DeCCo style approach for compiling Java bytecode, but replacing the use of Z
by B [2], which is the successor of Z developed with tool support in mind. This
allows us to replace the manual pencil and paper proofs by mechanical proofs,
and also allows automated code generation via refinement, closing one of the
loopholes of the original DeCCo system. Indeed, the type of errors we uncov-
ered in the existing DeCCo system can be avoided if we succeed to formally
derive the whole compiler using the B-method. The use of B also gives us access
to powerful tool support, e.g., in the form of animation and model checking.
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A Worked-out Compiler for a Subset of Java Bytecode. The development
of a compiler from simplified bytecode to a simplified RISC architecture was
conducted using the adapted DeCCo approach. Our experiment has proven the
value of the various B tools (each finding different kind of errors), and has also
shown the feasibility and potential of the approach. We have also shown that
B refinement is a natural way to express the compilation process and prove it
correct.

Note that we were also able to develop part of the compilation process in
another language (here, Prolog), ensuring the integrity of the compilation process
by validating the output of the subsidiary Prolog programs using properties
expressed in B. This may allow us to tap into the vast number of tools developed
for Java bytecode (e.g., the tools [7,6,5,19]).

While a number of research advances will certainly be required to develop a
fully verified Java bytecode compiler to completion, the fact that we start from
intermediate code (and not high-level code) leads us to believe that the overall
goal of a verified compiler could be achieved within the medium-term future.

2 Study of the Existing DeCCo System

General Architecture and Code Quality. The existing DeCCo system
is implemented in LPA WinProlog. A interesting discovery we made is that
DeCCo was accidentally run in a mode where LPA WinProlog does not raise
exceptions when encountering errors with built-in predicates, but silently fails,
thereby initiating backtracking. This meant that a series of runtime errors, such
as calls to built-in predicates of LPA WinProlog which no longer existed in the
current version, were not detected.

Also, several predicates were discovered which produced multiple solutions
in circumstances where the predicates should behave like a function. Finally,
several bugs were uncovered in the infrastructure predicates of the compiler. For
example, the predicate, inserting elements into a keyed binary tree, contained
a bug whereby elements were sometimes inserted in the wrong position of the
tree. The predicate is used at over 120 places in the source code of the compiler,
e.g., inserting entries into the symbol table, or for merging environments.

Instantiation of Arguments. To achieve a translation of the Z schemas into
executable code, the DeCCo project used DCTGs (Definite Clause Translation
Grammars; see, e.g., part 3 of paper VI of [38]). Apart from this, very little
additional Prolog predicates for Z constructs were required. Indeed, as mentioned
in page 3 of part VI of [38], the Z schemas are constructive, and hence the Prolog
counterparts of the Z operators behave like functions and it is clearly determined
which are the inputs and which the outputs. For example, x = {1, 2} ∪ {3} is
a constructive use of the set union operator: the value of x can be computed
from the value of its operands {1, 2} and {3}. This allows for a much simpler
Prolog counterparts to be used within DeCCo than, e.g., within ProB [30], in
which predicates can be used in various directions.1 Within, DeCCo the Prolog
1 I.e., ProB also has to deal with, e.g., {1, 2, 3} = x ∪ {3} or {1, 2, y} = x ∪ {z}.
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cut was also liberally used for those predicates to improve efficiency. The price
is that those Prolog predicates are only correct when used in the prescribed
way. Indeed, page 12 of part VI of [38] says that correctness of the domRes/3
predicate (representing the Z operator to restrict the relation to a particular
domain) requires that the first two arguments are ground. Given that we work in
a safety critical environment, it would be advisable that this aspect of the Prolog
translation is ensured more formally. Indeed, there are analysis techniques [8,33]
which could in principle guarantee that all Z operators are indeed used in a
constructive fashion. One could also use runtime supervision to at least detect
those errors when they occur.

Moreover, a lot of other DeCCo predicates also assume that certain argu-
ments are instantiated when being called (e.g., because of their use of the Prolog
cut). Again, these assumptions should be tested, as otherwise unsound compila-
tion may ensue. In our investigation, we have added some runtime supervision
to a handful of predicates of the DeCCo system, and have indeed uncovered
various instances where these assumptions were not met (such as when calling
the predicate to delete from a keyed binary tree). This is very likely to cause
errors in the compilation process.

Summary. Great care went into the underlying formalisation of the DeCCo
system and the translation of Z schemas into Prolog. The DeCCo approach
is still superior to convential compiler development in terms of reliability and
correctness. Nonetheless, the existing implementation of DeCCo still contains
bugs and has not enough safeguards against erroneous runtime behaviour.

The most reliable (and interesting) part of the DeCCo code is the one derived
from the Z schemas. However, PASP is very different from Java bytecode and
the whole parsing process of DeCCo (which is intertwined with the compilation
process) would need to be rewritten anyway.

Thus, given the various findings of our investigation, we argue to strengthen
the DeCCo approach, by more rigorously establishing the equivalence between
the formal compiler specification and the code of the compiler. One way to
achieve this is by moving from Z to B and to use B’s code generation facilities;
an approach which we evaluate in the remainder of this paper. The B-method
also gives us access to various provers, which can also be used to perform the the
compiler correctness proofs mechanically — rather than by hand using pencil
and paper — thereby closing another loophole.

One potential problem, however, is that B is not very good at dealing with
recursive datastructures, such as trees (often used in compiling algorithms). On
the other hand, the notion of refinement is very well suited to compilation:
a correctly compiled program can be viewed as a refinement of the original
high-level source program. Also, B is reasonably close to Z used in DeCCo.
Hence, in the remainder of this paper we evaluate the feasibility of using B for
a demonstrably correct compiler from a subset of Java Bytecode to an idealised
RISC processor.
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3 Description of the Subset of Java Bytecode

So as not to be overwhelmed with small details, we have decided in the remainder
of this paper to stick to a small subset of the Java bytecode. A precise formalisa-
tion of a large part of the Java bytecode can be found in [37]; other formalisations
can be found in [29,20]. For the remainder of this paper it is important to know
that, for each method, the Java bytecode operates on:

– a set of local variables, which are numbered (from 0..255)
– a local operator stack. Note that this stack must have the important property

that for each program point, the stack layout is independent of the way
this program point was reached. We will return to this issue later, as it is
important for compilation.

We have dealt with the following eleven opcodes, where Addr refers to an address
in the bytecode, Var to the number of a local variable and Cst to an immediate
constant:

– nop:anoperationhavingnoeffect(apart fromincreasingtheprogramcounter),
– return: terminate the execution of the current method,
– goto Addr : jump to a specific address Addr in the bytecode,
– istore Var : pop the top of the operator stack and write it into local variable

numbered Var ,
– iload Var : push the contents of variable Var on top of the stack,
– iconst Cst : push the immediate constant Cst on top of the stack,
– pop: pop the top of the stack and discard it,
– ifle Addr : pop the top of the operator stack and if it is less or equal to 0

jump to the address Addr ,
– iinc Var , Cst : add the immediate constant Cst to the contents of the local

variable Var ,
– imul: pop the two topmost values of the operator stack, multiply them and

push the result onto the stack,
– iadd: pop the two topmost values of the operator stack, add them and push

the result onto the stack.

Note, that we thus do not treat method calls and the ensuing possible recursion;
nor do we consider object orientation. For simplicity, we have also assumed that
the above opcodes operate on unbounded integers.

As it turns out, this subset is complicated enough to exhibit some interesting
issues, and allowed us to experiment with several approaches within the confines
of this paper.
Example 1. In the remainder of this paper we will use the following example
bytecode program to illustrate various points:

0: iconst_2 10: ifle 25

1: istore_1 13: iinc 3, -1

2: iconst_5 16: iload 4

3: istore_2 18: iload_1

4: iload_2 19: imul

5: istore_3 20: istore 4



124 M. Leuschel

6: iconst_1 22: goto 9

7: istore 4 25: return

9: iload_3

It was obtained by running javap -c Power on the following Java program, and
removing method calls and keeping the bytecode for the main method:
public class Power {

public static void main(String args[])

{

int base = 2; int exp = 5; int i = exp; int res = 1;

while (i>0) {

i--; res = res*base;

}

}}

4 Stack Layout Analysis

Java bytecode has the property [34] that at every program point we need to have
the same stack layout, irrespective of the particular execution path that has led
to this program point. This is crucial for our compiler, as it allows to replace
the stack operations by direct register or memory accesses, without requiring to
explicitly having to update a stack pointer.

We have implemented a way to obtain the stack layout using abstract inter-
pretation [13] in Prolog. We will see later that the output of the analysis will be
formally validated (but not the implementation of the anlysis itself).

The idea of abstract interpretation is to replace the set of concrete values by a
set of abstract values, in order to ensure that one can obtain finite representations
of all possible program behaviours in finite time. In particular, the state of an
abstract interpreter contains abstract values rather than concrete values. Also,
instead of applying concrete operations, the abstract interpreter applies abstract
counterparts of these operations.

First, we have implemented a Java byte code interpreter in Prolog, which
includes a small DCG (Definite Clause Grammar) parser to read in decompiled
byte code programs. You may notice that the bytecode from Example 1 actually
contains some specialized opcodes, such as istore 2, iconst 5. In the remainder of
this paper, we have treated these as an unspecialized opcode taking an argument.
Indeed, the parser automatically converts those opcodes into the corresponding
more general instructions (e.g., istore 2 gets translated into istore 2).

We have then adapted our Java bytecode interpreter to perform abstract inter-
pretation; the full code can be found in [25]. Note that it replaces concrete arith-
metic operations and comparisons by abstract ones. Our abstract interpreter does
a little bit more analysis than strictly necessary for our purposes, i.e., it infers ad-
ditional information about whether values can be zero, positive or negative. For
full-blown Java bytecode, we will actually also have to infer types of the values on
the stack, so this extension illustrates the way this can be achieved.

Below is a sample output of our abstract interpreter. For every program point,
we obtain information about the operand stack and the local variables, where
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top denotes the abstract value which represents every possible value, pos only
denotes strictly positive values.

Starting ABSTRACT Interpretation

runtime_ms(0)

ABSTRACT INFORMATION AT PROGRAM POINTS:

0 : iconst(2) : env([], [])

1 : istore(1) : env([pos], [])

2 : iconst(5) : env([], [1/pos])

3 : istore(2) : env([pos], [1/pos])

4 : iload(2) : env([], [1/pos,2/pos])

5 : istore(3) : env([pos], [1/pos,2/pos])

6 : iconst(1) : env([], [1/pos,2/pos,3/pos])

7 : istore(4) : env([pos], [1/pos,2/pos,3/pos])

9 : iload(3) : env([], [1/pos,2/pos,3/top,4/pos])

10 : if1(<=,0,25): env([top], [1/pos,2/pos,3/top,4/pos])

13 : iinc(3,-1) : env([], [1/pos,2/pos,3/top,4/pos])

16 : iload(4) : env([], [1/pos,2/pos,3/top,4/pos])

18 : iload(1) : env([pos], [1/pos,2/pos,3/top,4/pos])

19 : imul : env([pos,pos],[1/pos,2/pos,3/top,4/pos])

20 : istore(4) : env([pos], [1/pos,2/pos,3/top,4/pos])

22 : goto(9) : env([], [1/pos,2/pos,3/top,4/pos])

25 : return : env([], [1/pos,2/pos,3/top,4/pos])

As can be seen, we have inferred for every program point the layout of the stack
(the first part of the env term). For example for program point 19, performing the
imul instruction, we have as stack layout [pos,pos], i.e., there are exactly two
values on the stack (which are also guaranteed to be positive). For compilation
this means that when generating the compiled code for program point 19 we
know exactly how the stack looks like and exactly from which memory location
we need to take the two operands for the multiplication.

Soundness of abstract interpretation is an important consideration, and can
be established mathematically [13]. However, we could still have made an error in
the implementation of the abstract interpreter, deviating from the mathematical
theory. Hence, one important question for correct compilation is: how can we
trust the output of this analysis?

In turns out we do not have to trust the output. In the upcoming formal B
specification of Java bytecode, we will introduce properties which will guarantee
that a correct stack layout is provided. Hence, the output of our abstract inter-
preter can be validated formally, either by using a B prover or using the ProB
model checker.

Related Work. The CLIP group from the Technical University of Madrid has de-
veloped a class file loader Prolog library and analyse Java bytecode using their
CiaoPP abstract interpretation engine; see, for example, [7,6,5,19]. Another re-
lated work is [17] as well as part of [21]. Also, since Java SE 6 (version 50.0 of the
class file format), class files now also contain information about the stack layout
(see, e.g., Section 4.8.4 of [11]). Note that Section 4.11 of [11] contains Prolog code
as a specification of the type checking verfication procedure for class files.
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5 B Formalisation of the Java Bytecode

5.1 B

Both B [2] and Z [3,36] are formal mathematical specification notations, using the
same underlying set theory and predicate calculus, providing a wide array of so-
phisticated data structures (sets, sequences, relations, higher-order functions) and
operations on them (set union, difference, function composition to name but a
few). Both formalisms are used in industry, mainly for safety-critical applications.

The B-method was derived from Z with the goal of enabling tool support
in general and automatic proving and code generation in particular. B formal
models are structured into machines, each machine having a set of variables
which can be modified through operations. The consistency of a B machine is
expressed in terms of an invariant: a predicate that should be true in all initial
states and preserved by all operations. In addition to variables, B machines
can also contain constants. One can express assumptions about the constants
as properties. Another core concept of the B-method is refinement, whereby a
given abstract machine can be refined by a more concrete one, closer to an actual
implementation. Every possible state of the concrete machine should be linked
to a corresponding state of the abstract machine; this link is expressed through
a glueing invariant.

5.2 Formalisation of Java Bytecode Execution

In a first instance we have developed a formal B model of our subset of Java byte-
code from Section 3. The B model describes the structure of a bytecode program
as well as operations which perform individual bytecode instructions. All B mod-
els can be found in [25]. Due to our focus on a small subset of Java bytecode, our
formalisation is of course much less ambitious than the one in [37] using abstract
state machines [9], the one in [29] using Coq, or the one in [20] using Isabelle/HOL.

First, we use the constant PSIZE to indicate the number of instructions in the
bytecode program under consideration. The bytecode program itself is modelled
by three total functions: PrgOpcode, PrgArg1, and PrgArg2. The domain of
these functions is 1..PSIZE, and as such can be viewed as arrays (see Figure 1).
The functions indicate for each instruction the opcode, the value of the first and
second argument respectively. (In case an opcode takes less than two arguments
the value of PrgArg2 is irrelevant. The same applies to PrgArg1 in case the
opcode takes no arguments.)

In addition, we include another total function StackLayout, which contains
the statically computed stack layout information (see Figure 1), using, e.g., the
technique described in Section 4. Note that we encode a certain number of prop-
erties of the stack layout in B, and will later prove that these ensure that the
statically computed information is correct for all possible runtime executions.

In addition to the bytecode program, the B model also contains constants for
the number of local variables (MAXVAR), the set of all local variables (VARS), the
integer range of a byte (BYTE), and the maximum positive number representable
by a signed byte (MAXBYTE).
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0

...
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Fig. 1. B Data Representation of the Bytecode Program

Let us now look more precisely at the properties of our model:

PROPERTIES

...

PSIZE : NATURAL1 &

PrgOpcode: 1..PSIZE --> Opcodes &

PrgArg1: 1..PSIZE --> VARS &

PrgArg2: 1..PSIZE --> BYTE &

...

StackLayout: 1..PSIZE --> VARS

/* for each Program Point: indicate size of stack */

&

StackLayout(1) = 0 & /* Initially stack is empty */

...

!pc1.(pc1:1..PSIZE =>

((PrgOpcode(pc1)/=goto & PrgOpcode(pc1)/=return)=> pc1+1 <= PSIZE ))

&

!pc2.(pc2:1..PSIZE & PrgOpcode(pc2) = goto

=> (PrgArg1(pc2):1..PSIZE &

StackLayout(PrgArg1(pc2))= StackLayout(pc2)) )

...

As an example, the universially quantified2 formula over pc1 stipulates that any
address following an opcode instruction different from a goto and return must
be within the scope of the program. The universally quantified formula over pc2
expresses the fact that a jump does not alter the stack layout.

The state of the B model contains the current program counter PC, the state
of the stack Stack, the values of the defined variables Vars, as well as a boolean
Finished indicating whether execution of the bytecode program has terminated.
The full invariant of the model is the following, which also establishes a link be-
tween the statically computed StackLayout and the dynamic state of the stack:

INVARIANT

PC: 1..PSIZE & /* PC remains in the bounds of the program */

Stack: seq(INTEGER) &

Vars: VARS +->INTEGER &

2 Universal quantification is expressed in B as ∀x.(P ⇒ Q) or !x.(P => Q) in ASCII,
where the predicate P must be sufficient to give x a type.
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Finished: BOOL &

size(Stack) = StackLayout(PC) /* StackLayout is correct for PC */

Note that the model was proven correct using B4Free [12] (44 proof obligations
were generated and proven, of which 8 had to be proven interactively). Correct-
ness in this case means that, given the assumptions about the Java bytecode
expressed in the properties,

– the program counter PC will always remain within the boundaries of the
bytecode and

– that the statically established StackLayout is a correct description of all
possible dynamic stack layouts encountered while executing the bytecode.

Note that in order to prove the model, we had to decompose the representation of
the bytecode into three total functions (PrgOpcode, PrgArg1, PrgArg2) rather
than one function to tuples (as the prover was having difficulty with the pro-
jection functions prj1 and prj2). The prover also uncovered assumptions which
were missing in earlier versions of our model (e.g., StackLayout(1) = 0), which
were not uncovered by animation and model checking (as this was done for our
particular sample bytecode, which satisfied those properties).

The model can be animated and model checked using ProB, which is impor-
tant as this formal specification is a starting point for our compiler; any error
here would also lead to an erroneous compiler. Figure 2 shows a screenshot of
ProB, animating the model for our bytecode from Example 1 for inputs 2 and
5. As can be seen, variable 4 contains 25 = 32 as expected.

Here is an example operation of the JavaBC0 machine, implementing the
iload opcode:

ex_iload(A1)= PRE PrgOpcode(PC) = iload & A1=PrgArg1(PC) & A1:dom(Vars)

THEN PC := PC+1 || Stack := Stack <- Vars(A1) END;

This is quite succinct and readable, thus also allowing easy human inspection. Let
us look at one construct which we can compare with a corresponding construct
in DeCCo, the ifle opcode of the Java bytecode. First, the B operation to
execute this opcode is:

ex_ifle(A1) = PRE PrgOpcode(PC) = ifle & A1=PrgArg1(PC) THEN

IF Stack(1) <= 0 THEN PC := A1

ELSE PC := PC+1 END ||

Stack := tail(Stack) END;

This is arguably more readable than the corresponding DCTG formalisation
in part VI of [38] (see also appendix of [25]) or the Z schemas in [38]. The
B specification is relatively succinct and clear, and can of course be formally
reasoned upon.

6 B Description of the RISC Processor

In order to formalise the compilation process, we also need to describe the tar-
get architecture. To avoid distracting from central issues, we have chosen the
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Fig. 2. Animating the Power bytecode using ProB

simple RISC Instruction set from the Dragon book [4] chapters on code gen-
eration. Note, exactly as in the Java bytecode, we furthermore assume the use
of unbounded integers for simplicity. The following are the instructions of the
processor:

– LDI Reg, Cst:
– LDM Reg, Mem
– STM Reg, Mem
– ADD Reg, Reg, Reg
– MUL Reg, Reg, Reg
– res := ISPOS Reg

Note that this model of the processor contains no conditional or unconditional
jumps yet. This will be added later; for the moment the control flow will be
handled by the abstract specification.

Maybe the semantics is best explained using B, which we believe to be easily
readable. Readiblity is important, as this is a specification of the target hardware
and as such needs to be validated independently:
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MACHINE RISC

CONSTANTS

NrReg, /* Number of registers */

MSize, /* Memory Size */

RBYTE, MAXRBYTE

PROPERTIES

MAXRBYTE = 31 & /* 127 & */

NrReg:INT & NrReg>1 & MSize:INTEGER & MSize>1 &

RBYTE = (-MAXRBYTE-1)..MAXRBYTE &

NrReg =2 & MSize = 4*(MAXRBYTE+1)-1

VARIABLES

R, /* Register Contents */ MEM /* Memory Contents */

INVARIANT

R: 1..NrReg --> INTEGER &

MEM: 0..MSize --> INTEGER

INITIALISATION

R := %x.(x:1..NrReg | 0) || MEM := %y.(y:0..MSize | 0)

OPERATIONS

LDI(r,imm) = PRE r:1..NrReg & imm:RBYTE THEN

R(r) := imm

END;

LDM(r,mem) = PRE mem:0..MSize & r:1..NrReg THEN

R(r) := MEM(mem)

END;

STM(r,mem) = PRE mem:0..MSize & r:1..NrReg THEN

MEM(mem) := R(r)

END;

ADD(r1,r2,r3) = PRE r1: 1..NrReg & r2: 1..NrReg & r3: 1..NrReg THEN

R(r1) := R(r2)+R(r3)

END;

MUL(r1,r2,r3) = PRE r1: 1..NrReg & r2: 1..NrReg & r3: 1..NrReg THEN

R(r1) := R(r2)*R(r3)

END;

SUBT(r1,r2,r3) = PRE r1: 1..NrReg & r2: 1..NrReg & r3: 1..NrReg THEN

R(r1) := R(r2)-R(r3)

END;

res <-- ISPOS(r) = PRE r:1..NrReg THEN

IF R(r)> 0 THEN res := TRUE

ELSE res := FALSE END

END

END

In order to get closer to the ASP processor used in the DeCCo project, we have
fixed in the remainder the number of registers to two.

7 Compiling Data Operations by Refinement

The main idea of our compiler is to refine every opcode in the JavaBC0 model
into a sequence of calls of the operations of the RISC machine. If we can prove
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Fig. 3. Illustrating the Gluing Invariant

that this results in a correct refinement, we have proven correctness of our trans-
lation patterns for the opcodes. Hence, our new machine JavaBCR1 refines the
machine JavaBC0 from Section 5 and includes the machine RISC from Section 6.

Also, part of the memory of the RISC processor is allocated for the local
variables and a separate part is used to hold the stack’s contents. More precisely,
memory locations 0 to MAXVAR hold the values of the (defined) local variables
0 to MAXVAR respectively. The stack starts at memory location MAXVAR+1 and
grows upwards. In other words, memory location MAXVAR+1 contains the bottom
element of the stack (if the stack is non-empty). Note that there is no stack
pointer: for every Java bytecode instruction the compiler knows the exact size of
the stack through the B constant StackLayout. Hence, if we are at instruction
PC, the top of the stack can be found at MAXVAR+StackLayout(PC).

To make our model more readable, we use the following DEFINITIONS:

AdvancePC == BEGIN PC := PC+1 END;

TOP == (MAXVAR + StackLayout(PC));

The link between the state of the Java bytecode program and the state of the
compiled RISC program is specified by the following gluing invariant, which is
also illustrated in Figure 3:

!v.(v:dom(Vars) => Vars(v) = MEM(v)) &

!sv.(sv:dom(Stack) => Stack(sv) = MEM(MAXVAR+sv))

Let us look at how one particular opcode, iload which we have already seen
earlier, is refined into two assembly language instructions:

ex_iload(A1) = PRE PrgOpcode(PC)=iload & PrgArg1(PC)=A1 THEN

LDM(1,A1); STM(1,TOP+1); AdvancePC

END;

Note that AdvancePC advances the program counter of the Java bytecode pro-
gram, not the assembly program. The control flow inside the assembly program
is dealt with in the Section 8.
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Before attempting a formal proof that JavaBCR1 is indeed a correct refinement
of JavaBC0, we have first used the ProB automated refinement checker (using
the bytecode of Example 1). This has already uncovered a number of errors in
the first versions of our model:

– it caught two mistakes in the translation of the ifle opcode. Firstly, the
refinement operation was checking for >= 0 while it should have checked
for > 0. Secondly, the refinement incorrectly took two arguments (only one
argument is provided; the other value is popped from the stack).

– ProB animation revealed an error in one of the preconditions.
After the refinement checker found no more errors, we switched to using

B4Free [12] to formally prove the refinement. This process allowed us to catch a
few more errors:

– We discovered an error in our definition of the top of the stack. Note that this
error did not lead to an erroneous behaviour (and hence was not caught by
the ProB trace refinement checker), only to the gluing invariant being false.

– We found a subtle error in the translation of iconst: the argument pro-
vided to a RISC operation was in the range 0..63 whereas the RISC machine
expected -32..31.

– There was an error in imul, it was pulling off the second operand from the
wrong side of the stack. This was not detected earlier, as we only have one
type of operand for the stack and for all animation examples there were
exactly two elements on the stack when imul was called.

– There was an error in the abstract version of ifle, where again the bottom
element rather than the top element was checked and removed. During ani-
mation this was not detected, as the stack was always of size 1 at the point
ifle was executed.

After correcting the above errors, we have started interactively proving the
refinement. We have fully proven the translation for all opcodes (overall all 58
proof obligations were discharged, of which 28 interactively).

The proof effort was sometimes relatively laborious, mainly because the prover
had trouble dealing with operations upon the stack (modelled as a sequence).
After proving lemmas about the stack (such as size(Stack)>0 => last(Stack)
= Stack(size(Stack))), proof became easier and the last proof obligations were
discharged in about 10 minutes each. If we wish to scale up our approach to a
larger subset of Java bytecode and more detailed models of the hardware, it is
likely that the development of a lot of custom proof rules will be required to
keep the proof effort under control.

In summary, the combination of animation, refinement checking and proof was
extremely useful to uncover problems with our compiler model. Some problems
are easier to uncover using animation, while for other aspects proof was better.

8 Compiling Control Flow

In the above we have developed and proven correct the compilation of the data-
manipulation aspects of Java bytecode. We now turn our attention to the control
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flow. First, we have extended the RISC Machine to include its own program
counter and to include branching instructions. All instructions always advance
the program counter RPC of the RISC machine by one, except for the branching
instructions:

BLEZ(r,Lbl) = PRE r:1..NrReg & Lbl:NATURAL THEN

IF R(r)<=0 THEN RPC := Lbl ELSE RPC := RPC+1 END

END

Note that we now need an additional gluing invariant linking the Java bytecode
program counter PC to the RISC program counter RPC. For this we have defined
the constant function patsize defines for each opcode the size of the RISC
translation as well as the constant function loc, which gives for every Java
bytecode instruction the corresponding location in the RISC machine:

CONSTANTS patsize,loc

PROPERTIES

patsize = { istore|->2, iconst|->2, iload|->2, imul|->4,

iadd|->4, iinc |->4, ifle|->2, nop|->1,

goto|->2, return |->1, pop |-> 1} &

patsize: Opcodes --> NATURAL &

MAXRBYTE = MAXBYTE &

loc: 1..PSIZE >-> NATURAL & /* location of Java PC in RISC RPC */

loc(1) = 0 &

!x.(x:2..PSIZE => loc(x) = loc(x-1)+patsize(PrgOpcode(x-1)))

In the invariant, we can now write loc(PC) = RPC to establish the link between
the abstract and refined program counters. Note that the constant loc could
be computed by a subsidiary B development or by a subsidiary program. In
the latter case, one could use the B properties to validate the output of the
subsidiary program. Below, we have simply used ProB to compute the solution
for loc for us.

In the next step we have performed animation and refinement checking with
ProB, which again found two interesting errors. One error was found in the
translation of ifle, where the branch was going the wrong way. Another was
that RISC instructions in the middle of a translation pattern were accessing the
wrong stack layout information. No interactive proof has been attempted so far,
but the automatic prover of B4Free has proven 57 of 91 proof obligations.

Note that we have not constructed an explicit represenation of the compiled
program, but it is possible to do so (e.g., using our ProB validation tool).

Optimisations

So far we have basically looked at a non-optimising compiler: apart from getting
rid of stack management, we have not tried to optimise the generated machine
code and have tried to keep the compiler as simple as possible, in the hope of
proving it correct.

Indeed, introducing compiler optimisations poses further challenges for cor-
rectness. There is, however, one kind of optimisation that can be introduced with
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reasonable effort into our approach. The idea is to provide optimised translations
for certain combinations of Java bytecodes. For this, we would need to specify
these combinations of opcodes in our abstract model JavaBC0, and then refine
these combinations differently. E.g., one could specify the recurring pattern of
an iload followed by an istore as follows:

ex_iload_istore(CA1,SA1) = PRE PrgOpcode(PC)=iload & CA1=PrgArg1(PC) &

PrgOpcode(PC+1) = istore & SA1=PrgArg1(PC+1) THEN

PC := PC+2 || Vars(SA1) := Vars(CA1)

END;

Now, in case there is no jump to the istore opcode location, we can use shorter
translation for this combination: LDM(1, CA1) ; STM(1,SA1).

9 Related Work: Overview of Alternative Approaches

Considerable research has been done in the area of verified compilers, start-
ing from the work of McCarthy [26]. Most efforts directed at proving compiler
correctness fall into three categories:

Proof. Those that treat the compiler as just another program and use standard
verification techniques to manually or semi-automatically establish its correct-
ness (e.g., [14,15,16]). Even with semi-automation this is a very labour intensive
and expensive undertaking, which has to be repeated for every new language, or
if the compiler is changed.

Nonetheless, Xavier Leroy and his group are very active developing formally
certified compilers using Coq, see, e.g., [39,24,31] as well as the Compcert com-
piler (http://gallium.inria.fr/~xleroy/compcert/). In [23] Leroy reports on a
formally certified compiler from Cminor to PowerPC assembly code.

Program Transformation. Those that use program transformation systems to
transform source code into target code [22,28]. The disadvantage in this approach
is that specifying the compiler operationally can be quite a lengthy process. Also,
the compilation time can be quite large.

Validating Compilers. Recently, Pnueli et al have taken the approach of ver-
ifying a given run of the compiler rather than a compiler itself [1]. This removes
the burden of maintaining the compiler’s correctness proof; instead each run is
proved correct by establishing a refinement relationship. However, this approach
is limited to very simple languages. As the authors themselves mention, their
approach “seems to work in all cases that the source and target programs each
consist of a repeated execution of a single loop body .”

Automatic Compiler Generation. Those that generate the compiler
automatically from the mathematical semantics of the language. Typically the
semantics used is denotational (see for example Chapter 10 of [32]). The so au-
tomatically generated compilers, however, have not been used in practice due to
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their slowness and/or inefficiency/poor quality of the code generated. In more re-
cent work [40] we have presented a compilation approach based on formal seman-
tics, Horn logic, and partial evaluation for obtaining provably correct compiled
code. We showed that not only the syntax specification, but also the semantic
specification can be coded in the DCG notation.

More precisely, we adapted our interpreter in such a way that it calls a lower-
level layer, which itself is implemented in terms of Prolog predicates, mimicking
the RISC’s instruction set. On the one hand, this experiment was successful;
the compiler was very fast and the stack layout analysis was actually performed
automatically by the partial evaluator. On the other hand, the correctness of the
approach relies on the correctness of the partial evaluator and of the interpreter.
The latter is probably the most problematic, because in order for partial evalu-
ation to be effective the interpreter had to be rewritten in a certain style. This
actually means that the compilation is actually not fully done by partial eval-
uation, part of the compilation is hidden in the way the interpreter is written.
We believe that for a more realistic subset of Java bytecode and more realistic
processor, a substantial part of the compilation process will be encoded in the
way the interpreter is written. Hence, it is not obvious that the automatic code
generation provided by the partial evaluator will be a big benefit.

10 Conclusion

We have examined the existing DeCCo system for compiling PASP to a RISC
processor, based on a Z formalisation of the compiler then manually transcribed
into Prolog. The goal was to investigate whether the system or approach could
be adapted for a compiler from Java bytecode to a RISC processor, with the
aim of making the compiler more widely applicable. In the investigation we have
uncovered several issues with the DeCCo implementation, and have argued that
the DeCCo approach should be strengthened for a new high assurance compiler,
by more rigorously transcribing the compiler specification into code. This can
be achieved for instance by using the B-method instead of Z.

We have then conducted a case study, whereby we developed a compiler for a
small subset of Java bytecode to an idealised RISC processor using the B-method.
All in all, the outcome of this case study is very positive. We have shown that
refinement is a natural way to model compilation and that the B-method can in
principle be used to develop a demonstrably correct compiler. In particular, the
tool support for B turned out to be extremely valuable: animation, automated
refinement checking, and proof each uncovered a series of errors. Of course,
considerable effort and further research will be required to tackle a translation
of a larger subset of Java bytecode to a realistic processsor with carry bits,
overflows and a much larger instruction set.

In summary, compared to the DeCCo approach based on Z schemas manually
translated to Prolog, the B approach provides following benefits:

– animation and model checking tools to validate the semantic specifications
of the Java bytecode and the target processor,
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– proof support for proving properties of the abstract models, and proving
that the compiled code is a refinement of the Java bytecode semantics,

– potential test-case generation from the abstract model,
– execution of the compiler either via code generation using a B code generator

or even using ProB animation, obliviating the need for hand-translation of
Z schemas and hand-writing infrastructure predicates for the Z operators.
One can also use subsidiary programs written in arbitrary programming
languages (e.g, Haskell or Prolog), and then validate the output using B.

The drawbacks are that:

– the model will have to be written with automated proof in mind (such as
the way we had to replace one function representing the bytecode by three
functions),

– the additional effort for mechanical proof; mechanical proof will probably
be more labour intensive than paper and pencil proofs in DeCCo, but also
provides a much higher assurance of correctness.

Given that our starting point (Java bytecode) is already at a relatively low-
level, and given that we are not aiming to produce an optimizing compiler, the
goal of achieving demonstrably correct compilation of a subset of Java bytecode
to a RISC processor seems achievable in the near to mid-term future.
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Abstract. A reasonable approach to formal modelling is to start with a specifi-
cation that captures the requirements of a system and then use formal refinement
to implement it.

The problem with this approach is that for complex systems the specifica-
tion itself is complex. It becomes a challenge to say whether the specification is
the right one for the given requirements. Sometimes requirements also concern
features of a system closely related to its implementation. This would make an
abstract specification necessarily incomplete.

We believe that it is better not to follow the rigid approach to modelling
described above. Instead, we argue that the specification itself should be elab-
orated by refinement. Ultimately, the distinction between specification and im-
plementation is no longer made in the strict sense above. There is only one model
of the system that is connected by successive refinements. Using Event-B, we
demonstrate how this can be applied to cope with the complexity of specifica-
tions. On the one hand we benefit from the reduced number of detail to consider
at different times. On the other hand we are encouraged to reason about the for-
mal model since the beginning and to rethink it occasionally to capture better its
intended behaviour and match the requirements.

1 Introduction

When we create a complex model, usually, our understanding of it is incomplete at first;
and a modelling method should help to improve our understanding of the model. During
initial phases in the modelling process, we use refinement to manage the many details
of a complex model. Refinement is seen as a technique to introduce detail gradually
at a rate that eases understanding. We do not assume that we have one most abstract
model, the specification, that could serve as point of reference for all further refine-
ments. Instead, the model is completed by refinement until we are satisfied that the
model captures all important requirements and assumptions. In this article we concern
ourselves only with what is involved in coming up with an abstract model of some sys-
tem. Refinement can also be used to produce implementations of abstract models, for
instance, in terms of a sequential program [1,16]. But this is not discussed in this article.
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Event-B [2] is a formal modelling method for discrete systems based on refinement
[4,5,6]. Event-B and its predecessor, the B Method, have been used in large scale indus-
trial projects [7,8,19]. In Event-B formal modelling serves primarily for reasoning: rea-
soning is an essential part of modelling because it is the key to understanding complex
models. Reasoning about complex models should not happen accidentally but needs
systematic support within the modelling method. This thinking lies at the heart of the
Event-B method. It gives a prominent rôle to proof obligations. Proof obligations serve
to reason about a model and to provide meaning [11].

We briefly contrast the incremental refinement-based modelling approach to two
well-known approaches, TLA+ [14] and ASM [9]. In TLA+ modelling begins with
a specification, in ASM with a ground model. In both methods there are guidelines on
how to begin. This is a difficult and serious problem as an inadequate model may not
provide the kinds of insight we seek or may be plainly wrong (as a starting point for an
implementation). Among the hints on how to begin we find: (1) choose the appropriate
abstraction level; (2) be as abstract as possible yet complete; (3) be simple and concise.
This article addresses (1) and (2) by effectively avoiding the precise choice of an ini-
tial abstraction level. We begin with some simple abstract model and introduce detail
gradually. Guideline (3) remains, being the key to comprehensibility.

We understand incremental modelling in two ways. The first way is by formal re-
finement. An existing model is proved to be refined by another: all properties of the
existing model are preserved in the refined model. The second way is by alteration of
an existing model: properties of the existing model may be broken. When a model is
shown to be not consistent, it needs to be modified in order to make it consistent. This
reflects a learning process supported by various forms of reasoning about a model, for
instance, proof, animation, or model-checking. This way of thinking about a model is
common in mathematical methodology [13,17,18]. The first way is commonly used in
formal methods, whereas the second is at least not acknowledged. We believe both ways
are crucial for formal modelling.

The incremental approach is only feasible in the presence of software tools that make
reasoning easy and modifications to a model painless. We have relied on the Rodin mod-
elling tool [3] for Event-B for proof obligation generation and proof support and on the
ProB tool [15] for animation and model-checking. Both tools are integrated in the Rodin
platform and can be used seamlessly. In later sections we do not further specify the tools
used, though, as this should be clear from the context. Also note that we present proof in
an equational style [10,20] whereas the Rodin tool uses sequents as in [2].

Overview. In Section 2 we introduce Event-B. The following sections are devoted to
solving a concrete problem in Event-B. In Section 3 the problem is stated. A first model
is produced and discussed in Section 4. In Sections 5 and 7 we elaborate the model
by refinement. Section 6 contains a small theory of transitive closures that is needed
in the refinement. In Section 8 some further improvements of the model are made and
limitations of formal modelling discussed.

2 Event-B

Event-B models are described in terms of the two basic constructs: contexts and ma-
chines. Contexts contain the static part of a model whereas machines contain the
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dynamic part. Contexts may contain carrier sets, constants, axioms, where carrier sets
are similar to types [4]. In this article, we simply assume that there is some context and
do not mention it explicitly. Machines are presented in Section 2.1, and proof obliga-
tions in Section 2.2 and Section 2.3. All proof obligations in this article are presented
in the form of sequents: “premises” � “conclusion”.

For the purpose of this article, we have reduced the Event-B notation used so that
only a little notation suffices and formulas are easier to comprehend, in particular, con-
cerning the relationship between formal model and proof obligations. We have also
reduced the amount of proof obligations associated with a model. We have done this for
two reasons: firstly, it is easier to keep track of what is to be proved; secondly, it permits
us to make a point about a limitation of formal methods later on.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v = v1, . . . , vm define
the state of a machine. They are constrained by invariants I(v). Theorems are predicates
that are implied by the invariants. Possible state changes are described by means of
events E(v). Each event is composed of a guard G(t, v) and an action x := S(t, v),
where t = t1, . . . , tr are parameters the event may contain and x = x1, . . . , xp are
the (distinct) variables it may change1. The guard states the necessary condition under
which an event may occur, and the action describes how the state variables evolve when
the event occurs. We denote an event E(v) by

E(v) =̂ any t when

G(t, v)
then

x := S(t, v)
end

or E(v) =̂ begin

x := S(v)
end

The short form on the right hand side is used if the event does not have parameters
and the guard is true. A dedicated event of the latter form is used for initialisation. All
assignments of an action x := S(t, v) occur simultaneously; variables y that do not
appear on the left-hand side of an assignment of an action are not changed by the action,
yielding one simultaneous assignment

x1, . . . , xp, y1, . . . , yq := S1(t, v), . . . , Sp(t, v), y1, . . . , yq , (1)

where x1, . . . , xp, y1, . . . , yq are the variables v of the machine. The action x :=
S(t, v) of event E(v) denotes the formula (1), whereas in the proper model we only
specify those variables x� that may change.

2.2 Machine Consistency

Invariants are supposed to hold whenever variable values change. Obviously, this does
not hold a priori for any combination of events and invariants I(v) = I1(v)∧. . .∧ Ii(v)

1 Note that, as x is a list of variables, S(t, v) = S1(t, v), . . . , Sp(t, v) is a corresponding list
of expressions.
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and, thus, needs to be proved. The corresponding proof obligations are called invariant
preservation (� ∈ 1 .. i):

I(v)
G(t, v)

�
I� (S(t, v)) ,

(2)

for every event E(v). Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that neither an invariant nor a guard appears in
the premises of proof obligation (2), that is, the only premises are axioms and theorems
of the context. We say that a machine is consistent if all events preserve all invariants.

2.3 Machine Refinement

Machine refinement provides a means to introduce more details about the dynamic prop-
erties of a model [4]. The refinement theory of Event-B originates in the Action System
formalism [6]. We present some important proof obligations for machine refinement
that are used in this article.

A machine N can refine at most one other machine M . We call M the abstract
machine and N a concrete machine. The state of the abstract machine is related to
the state of the concrete machine by a gluing invariant J(v, w) = J1(v, w) ∧ . . . ∧
Jj(v, w), where v = v1, . . . , vm are the variables of the abstract machine and w =
w1, . . . , wn the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by a concrete event F (w). Let
abstract event E(v) with parameters t = t1, . . . , tr and concrete event F (w) with
parameters u = u1, . . . , us be

E(v) =̂ any t when

G(t, v)
then

v := S(t, v)
end

and F (w) =̂ any u when

H(u, w)
with

t = W (u)
then

w := T (u, w)
end

Informally, concrete event F (w) refines abstract event E(v) if the guard of F (w) is
stronger than the guard of E(v), and the gluing invariant J(v, w) establishes a simula-
tion of the action of F (w) by the action of E(v). The corresponding proof obligations
are called guard strengthening (� ∈ 1 .. g):

I(v)
J(v, w)
H(u, w)

�
G� (W (u), v) ,

(3)

with the abstract guard G(t, v) = G1(t, v) ∧ . . . ∧ Gg(t, v), and (again) invariant
preservation (� ∈ 1 .. j):



Incremental System Modelling in Event-B 143

I(v)
J(v, w)
H(u, w)�
J� (S(W (u), v), T (u, w)) .

(4)

The term W (u) denotes witnesses for the abstract parameters t, specified by the equa-
tion t = W (u) in event F (w), linking abstract parameters to concrete parameters. It
describes how F (w) refines E(v) just as the gluing invariant describes how concrete
machine N refines abstract machine M 2.

(The variable lists v and w do not need to be disjoint. If a variable name gets reused
in a refined machine, equality between the abstract and the concrete variable is postu-
lated implicitly, corresponding to a gluing invariant “vabs = vcon”. Similarly, equality
for common parameters of abstract and concrete events is postulated with a witness
“tabs = tcon”.)

3 Problem Statement

In the following sections we develop a simple model of a secure building equipped with
access control. The problem statement is inspired by a similar problem used by Abrial
[2]. Instead of presenting a fully developed model, we illustrate the process of how we
arrive at the model. We can not follow the exact path that we took when working on the
model: we made changes to the model as a whole several times. So we would soon run
out of space. We comment on some of the changes without going too much into detail
in the hope to convey some of the dynamic character of the modelling process.

The model to be developed is to satisfy the following properties:

P1 : The system consists of persons and one building.
P2 : The building consists of rooms and doors.
P3 : Each person can be at most in one room.
P4 : Each person is authorised to be in certain rooms (but not others).
P5 : Each person is authorised to use certain doors (but not others).
P6 : Each person can only be in a room where the person is authorised to be.
P7 : Each person must be able to leave the building from any room where the person

is authorised to be.
P8 : Each person can pass from one room to another if there is a door connecting the

two rooms and the person has the proper authorisation.
P9 : Authorisations can be granted and revoked.

Properties P1, P2, P8, and P9 describe environment assumptions whereas properties
P3, P4, P5, P6, and P7 describe genuine requirements. It is natural to mix them in the
description of the system. Once we start modelling, the distinction becomes important.
We have to prove that our model satisfies P3, P4, P5, P6, and P7 assuming we have P1,
P2, P8, and P9.

2 In full Event-B, instead of an equation t = W (u) a witness can be any predicate. It can also
have more free variables than just the abstract parameters u.
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4 Getting Started with a Fresh Model

Our aim is to produce a faithful formal model of the system described by the properties
P1 to P9 of Section 3. The first decision we need to make concerns the use of refinement.
We have decided to introduce the properties of the system in two steps. In the first step
we deal only with persons and rooms, in the second also with doors. This approach
appears reasonable. At first we let persons move directly between rooms. Later we state
how they do it, that is, by passing through doors. In order to specify doors we need
to know about rooms they connect. It is a good idea, though, to reconsider the strategy
chosen for refinement when it turns out to be difficult to tackle the elements of the model
in the planned order. For now, we intend to produce a model with one refinement:

(i) the abstract machine (this section) models room authorisations;
(ii) the concrete machine (sections 5 and 7) models room and door authorisations.

In Event-B we usually begin modelling by stating invariants that a machine should pre-
serve. (For an alternative approach see, for instance, [12].) When events are introduced
subsequently, we think more about how they preserve invariants than about what they
would do. The focus is on the properties that have to be satisfied. We declare two carrier
sets for persons and rooms, Person and Room, and a constant O, where O ∈ Room,
modelling the outside. We choose to describe the state by two variables for authorised
rooms and locations of persons, arm and loc, with invariants

inv1 : arm ∈ Person ↔ Room 3 Property P4

inv2 : Person × {O} ⊆ arm

inv3 : loc ∈ Person → Room Property P3

inv4 : loc ⊆ arm Property P6

Invariant inv2, that each person is authorised to be outside, is necessary because we
decided to model location by a total function making the outside a special room. In a
first attempt, we made loc a partial function from Person to Room expressing that a
person not in the domain of loc is outside. However, this turned out to complicate the
gluing invariant when introducing doors into the model later on. (Because of property
P7 we need an explicit representation of the outside in the model.) As a consequence
of our decision we had to introduce invariant inv2. It corresponds to a new requirement
that is missing from the list in Section 3 but that we have uncovered while reasoning
formally about the system. In the following we focus on how formal reasoning is used
to improve the model of the system.

In order to satisfy inv2, inv3 and inv4 we let

initialisation

begin

act1 : arm := Person × {O}
act2 : loc := Person × {O}

end

3 The term A ↔ B denotes the set of relations from A to B.
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We model passage from one room to another by event pass,

pass

any p, r when

grd1 : p �→ r ∈ arm p is authorised to be in r

grd2 : p �→ r /∈ loc but not already in r

then

act1 : loc := loc �− {p �→ r}
end

(For relations a and b relational overwriting �− is defined by a �− b = dom(b) �− a ∪ b ,
and, for a set s, domain subtraction �− by x �→ y ∈ s �− a ⇔ x /∈ s ∧ x �→ y ∈ a .)
Event pass preserves the invariants. For instance, it preserves inv4:

loc ⊆ arm Invariant inv4
p �→ r ∈ arm Guard grd1
p �→ r /∈ loc Guard grd2�
loc �− {p �→ r} ⊆ arm Modified invariant inv4

We prove,

loc �− {p �→ r} { def. of �− }
= {p} �− loc ∪ {p �→ r} { {p} �− loc ⊆ loc }
⊆ loc ∪ {p �→ r} { inv4 and grd1 }
⊆ arm .

Granting and revoking authorisations for rooms is modelled by the two events

grant revoke

any p, r when

grd1 : p ∈ Person

grd2 : r ∈ Room

then

act1 : arm := arm ∪ {p �→ r}
end

any p, r when

grd1 : p ∈ Person

grd2 : p �→ r /∈ loc

then

act1 : arm := arm \ {p �→ r}
end

The two events do not yet model all of P9 which refers to authorisations in general,
including authorisations for doors. Events grant and revoke appear easy enough to
get them right. But it is as easy to make a mistake. This is why we have specified
invariants: to safeguard us against mistakes. If the proof of an invariant fails, we have
the opportunity to learn something about the model and improve it. The two events
preserve all invariants except for revoke which violates invariant inv2,

Person × {O} ⊆ arm Invariant inv2
p ∈ Person Guard grd1
p �→ r /∈ loc Guard grd2�
Person × {O} ⊆ arm \ {p �→ r} Modified invariant inv2
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In an instance of the model with two different rooms I and O and one person P we find
a counter example:

arm = {P �→ I, P �→ O}, loc = {P �→ I}, p = P, r = O .

In fact, we must not remove O from the set of authorised rooms of any person. To
achieve this, we add a third guard to event revoke:

grd3 : r �= O .

A counter example provides valuable information, pointing to a condition that it does
not satisfy. It may not always be as simple to generalise but at least one can obtain an
indication where to look closer.

The model we have obtained thus far is easy to understand. Ignoring the doors in
the building, it is quite simple but already incorporates properties P3, P4, and P6. Its
simplicity permits us to judge more readily whether the model is reasonable. We can
inspect it or animate it and can expect to get a fairly complete picture of its behaviour.
Way may ask: Is it possible to achieve a state where some person can move around
in the building? We have only partially modelled the assumptions P1, P2, P8, and P9.
We could split them into smaller statements that would be fully modelled but have
decided not to do so. Instead, we are going to document how they are incorporated in
the refinement that is to follow.

5 Elaboration of More Details

We are satisfied with the abstract model of the secure building for now and turn to
the refinement where doors are introduced into the model. In the refined model we
employ two variables adr for authorised doors and loc for the locations of persons
in the building (as before). The intention is to keep the information contained in the
abstract variable arm implicitly in the concrete variable adr. That is, in the refined
model variable arm would be redundant. We specify

inv5 : adr ∈ Person → (Room ↔ Room) Property P5

inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}] 4 Property P4

5.1 Moving between Rooms

Let us first look at event pass. Only a few changes are necessary to model property P8,

pass

any p, r when

grd1 : loc(p) �→ r ∈ adr(p)
then

act1 : loc := loc �− {p �→ r}
end

4 The term R[A] denotes the relational image of the set A under the realtion R, that is, R[A] =
{y | ∃x · x ∈ A ∧ x �→ y ∈ R}.
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We only have to show guard strengthening, because loc does not occur in inv5 and
inv6. For the abstract guard grd1 we have to show:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
loc(p) �→ r ∈ adr(p) Concrete guard grd1�
p �→ r ∈ arm Abstract guard grd1

which holds because r ∈ ran(adr(p)). The second guard strengthening proof obliga-
tion of event pass is:

loc ∈ Person → Room Invariant inv3
loc(p) �→ r ∈ adr(p) Concrete guard grd1�
p �→ r /∈ loc Abstract guard grd2

Using inv3 we can rephrase the goal,

p �→ r /∈ loc { inv3 }
⇔ loc(p) �= r

Neither concrete guard grd1 nor the invariants inv1 to inv6 imply this. The invariant
is too weak. We do not specify that doors connect different rooms. In fact, our model of
the building is rather weak. We decide to model the building by the doors that connect
the rooms in it. They are modelled by a constant Door. We make the following three
assumptions about doors:

axm1 : Door ∈ Room ↔ Room Each door connects two rooms.

axm2 : Door ∩ idRoom = ∅ No door connects a room to itself.

axm3 : Door ⊆ Door−1 Each door can be used in both directions.

These assumptions are based on our domain knowledge about properties of typical
doors. They were omitted from the problem description because they seemed obvi-
ous. However, the validity of our model will depend on them. As such they ought to
be included. We began to think about properties of doors because we did not succeed
proving a guard strengthening proof obligation. If axiom axm2 would hold for all re-
lations adr(p), for p ∈ Person, we should succeed. Hence, we add a new invariant
inv7. We realise that it captures much better property P5 than invariant inv5,

inv7 : ∀ q · adr(q) ⊆ Door . Property P5

We prove,

x �→ y ∈ adr(p) { inv7 with “q := p” }
⇒ x �→ y ∈ Door { axm2 }
⇒ x �→ y /∈ idRoom { def. of idRoom }
⇔ x �= y ,
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thus, ∀x, y · x �→ y ∈ adr(p) ⇒ x �= y , and with “x, y := loc(p), r” we are able
to show:

Door ∩ idRoom = ∅ Axiom axm2
loc ∈ Person → Room Invariant inv3
∀ q · adr(q) ⊆ Door Invariant inv7
loc(p) �→ r ∈ adr(p) Concrete guard grd1�
p �→ r /∈ loc Abstract guard grd2

6 Intermezzo on Transitive Closures

Property P7 is more involved. It may be necessary to pass though various rooms in order
to leave the building. We need to specify a property about the transitive relationship of
the doors. We can rely on the well-known mathematical theory of the transitive closure
of a relation.

A relation x is called transitive if x ; x ⊆ x. In other words, any composition of
elements of x is in x. The transitive closure of a relation x is the least relation that
contains x and is transitive. We define the transitive closure x+ of a relation x by

∀x · x ⊆ x+ (5)

∀x · x+ ; x ⊆ x+ (6)

∀x, z · x ⊆ z ∧ z ; x ⊆ z ⇒ x+ ⊆ z . (7)

That is, x+ is the least relation z satisfying x ∪ z ; x ⊆ z. Furthermore, the order in
which the transitive closure is formed does not matter,

∀x · x ∪ x+ ; x = x+ (8)

∀x · x ∪ x ; x+ = x+ . (9)

The transitive closure is monotonic and maps identity and empty relation to
themselves,

∀x, y · x ⊆ y ⇒ x+ ⊆ y+ (10)

∀w · id+
w = idw (11)

∅
+ = ∅ . (12)

A relation x is called symmetric if x ⊆ x−1. For a symmetric relation we can prove
more laws about its transitive closure: it is symmetric too and the identity is contained
in it,

∀x · x ⊆ x−1 ⇒ (x+)−1 ⊆ x+ (13)

∀x · x ⊆ x−1 ⇒ iddom(x) ⊆ x+ . (14)
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7 Towards a Full Model of the Building

Using the transitive closure of authorised rooms we can express that every person can
at least reach the authorised rooms from the outside,

inv8 : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] .

This invariant is weaker than property P7. However, given the discussion about prop-
erties of doors in Section 5 we should be able to prove that all invariants jointly imply
property P7 which we formalise as a theorem,

thm1 : ∀ q · (arm[{q}] \ {O}) × {O} ⊆ adr(q)+ . Property P7

We proceed like this because we expect that proving inv8 to be preserved would be
much easier than doing the same with thm1. Let us continue working with inv8 for
now and return to thm1 later.

7.1 Initialisation

In the abstract model all persons can only be outside initially. This corresponds to them
not being authorised to use any doors,

initialisation

begin

act1 : adr := Person × {∅}
act2 : loc := Person × {O}

end

The invariant preservation proof obligations for inv5 and inv6 hold, as can easily be
seen letting “arm, adr := Person × {O}, P erson × {∅}” in inv5, inv6, and inv7,

� Person × {∅} ∈ Person → (Room ↔ Room)
� ∀ q · ran((Person × {∅})(q)) ⊆ (Person × {O})[{q}]
� ∀ q · (Person × {∅})(q) ⊆ Door

For invariant inv8 there is more work to do. We have to show:

� ∀ q · (Person × {O})[{q}] ⊆ (Person × {∅})(q)+[{O}]
We prove,

(Person × {∅})(q)+[{O}] { set theory }
= ∅

+[{O}] { law (12) }
= ∅[{O}] { set theory }
= ∅

�⊇ {O} { set theory }
= (Person × {O})[{q}] .

Invariant inv8 is too strong! Because of invariant inv7 we cannot initialise adr to
Person × {{O �→ O}} and because of inv6 we cannot use any other door. Thus,
we must weaken invariant inv8. We replace it by:
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inv8′ : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O}
After analysing initialisation and event pass of the refined machine, the gluing invari-
ants of the refined machine have become

inv5 : adr ∈ Person → (Room ↔ Room)
inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}]
inv7 : ∀ q · adr(q) ⊆ Door

inv8′ : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} .

7.2 Granting Door Authorisations

A new door authorisation can be granted to a person if (a) it has not been granted yet
and (b) authorisation for one of the connected rooms has been granted to the person.
We introduce constraint (a) to focus on the interesting case and constraint (b) to satisfy
invariant inv8′. Thus,

grant

any p, s, r when

grd1 : s �→ r /∈ adr(p)
grd2 : s ∈ dom(adr(p))

then

act1 : adr := adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}} 5

end

Invariant inv5 is preserved by event grant by definition of relational overwriting �−.
For invariant inv6 we have to prove:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s �→ r /∈ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2�
ran((adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}})(q))
⊆ (arm ∪ {p �→ r})[{q}] Modified invariant inv6

for all q. For q �= p the proof is easy. For the other case q = p we prove, letting
D = {s �→ r, r �→ s},

ran(adr(p) ∪ D) ⊆ (arm ∪ {p �→ r})[{p}] { set theory, def. of D }
⇔ ran(adr(p)) ∪ {r, s} ⊆ arm[{p}] ∪ {r} { inv6 with “q := p” }
⇔ {r, s} ⊆ arm[{p}] ∪ {r} { {r} ⊆ {r} }
⇔ {s} ⊆ arm[{p}] ∪ {r} { set theory }
⇔ s ∈ arm[{p}] ∨ s = r { inv6 with “q := p” }
⇐ s ∈ ran(adr(p))

5 Event-B has the shorter (and more legible) notation adr(p) := adr(p) ∪ {s �→ r, r �→ s}
for this. We do not use it because we can use the formula above directly in proof obligations.
We also try as much as possible to avoid introducing more notation than necessary.
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We would expect s ∈ ran(adr(p)) to hold because doors are symmetric and because
of concrete guard grd2, that is, s ∈ dom(adr(p)). We specified symmetry in axiom
axm3 but this property is not covered by invariant inv7. We have to specify it explicitly,

inv9 : ∀ q · adr(q) ⊆ adr(q)−1 . (see axiom axm3)

We can continue the proof where we left off

s ∈ ran(adr(p)) { inv9 with “q := p” }
⇐ s ∈ dom(adr(p))

It is easy to show that invariant inv9 itself is preserved by event grant:

∀ q · adr(q) ⊆ adr(q)−1 Invariant inv9
s �→ r /∈ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2

�
(adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}})(q) Modified invariant inv9
⊆ (adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}})(q)−1

for all q. Let D = {s �→ r, r �→ s}. The interesting case is q = p as above,

adr(p) ∪ D { inv9 with “q := p” }
⊆ adr(p)−1 ∪ D { D−1 = D }
= adr(p)−1 ∪ D−1 { set theory }
= (adr(p) ∪ D)−1 .

Invariants inv8′ and inv7 remain to be analysed. We begin with the proof obligation
for the preservation of invariant inv7:

∀ q · adr(q) ⊆ Door Invariant inv7
s �→ r /∈ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2�
(adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}})(q)
⊆ Door Modified invariant inv7

for all q. For q = p,

adr(p) ∪ {s �→ r, r �→ s} ⊆ Door { inv7 and set theory }
⇐ {s �→ r, r �→ s} ⊆ Door { inv9 and set theory }
⇐ s �→ r ∈ Door . (15)

The guard of event grant needs to be strengthened; we replace grd1 by grd1′,

grd1′ : s �→ r ∈ Door \ adr(p) ,
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which implies s �→ r ∈ Door, that is, (15). With grd1′ in place of grd1 the proof
succeeds. For invariant inv8′ we have some more work to do:

∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} Invariant inv8′

s �→ r ∈ Door \ adr(p) Guard grd1′

s ∈ dom(adr(p)) Guard grd2�
(arm ∪ {p �→ r})[{q}] Modified invariant inv8′

⊆ (adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}})(q)+[{O}] ∪ {O}

for all q. Let D = {s �→ r, r �→ s}. For q = p we have to prove:

arm[{p}] ∪ {r} ⊆ (adr(p) ∪ D)+[{O}] ∪ {O} ,

given that (arm ∪ {p �→ r})[{p}] = arm[{p}] ∪ {r}. We begin with the case
“arm[{p}] ⊆ (adr(p) ∪ D)+[{O}] ∪ {O}”:

arm[{p}] { inv8′ with “q := p” }
⊆ adr(p)+[{O}] ∪ {O} { law (10) with “x, y := adr(p), adr(p) ∪ D” }
⊆ (adr(p) ∪ D)+[{O}] ∪ {O} .

Before proving the second case “{r} ⊆ (adr(p) ∪ D)+[{O}] ∪ {O}”, we have a
closer look at guard grd2,

s ∈ dom(adr(p)) { inv9 with “q := p” }
⇒ s ∈ ran(adr(p)) { inv6 with “q := p” }
⇒ s ∈ arm[{p}] { inv8′ with “q := p” }
⇒ s ∈ adr(p)+[{O}] ∪ {O} { set theory }
⇔ s ∈ adr(p)+[{O}] ∨ s = O . (16)

Now we can conclude the proof, letting AD = adr(p) ∪ D:

AD+[{O}] ∪ {O} { set theory }
⊇ AD+[{O}] { law (8) with “x := AD”, set theory }
= AD[{O}] ∪ (AD+ ; AD)[{O}] { set theory }
⊇ D[{O}] ∪ (AD+ ; D)[{O}] { law (10) with “x, y := adr(p), AD” }
⊇ D[{O}] ∪ (adr(p)+ ; D)[{O}] { set theory }
= D[{O}] ∪ D[adr(p)+[{O}]] { (16) and def. of D }
⊇ {r} .

Having specified invariant inv9 we would now succeed proving theorem thm1 pos-
tulated in the beginning of this section. This shows that our model satisfies property P7.
We do not carry out the proof but turn to the last event not yet refined.
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7.3 Revoking Door Authorisations

We model revoking of door authorisations symmetrically to granting door authorisa-
tions. A door authorisation can be revoked if (a) there is an authorisation for the door,
(b) the corresponding person is not in the room that could be removed, and (c) the room
is not the outside. Condition (a) is just chosen symmetrically to grd1 of refined event
revoke (for the same reason). The other two conditions (b) and (c) are already present in
the abstraction. The two refined events grant and revoke together model property P9.

revoke

any p, s, r when

grd1 : s �→ r ∈ adr(p)
grd2 : p �→ r /∈ loc

grd3 : r �= O
then

act1 : adr := adr �− {p �→ adr(p) \ {s �→ r, r �→ s}}
end

We expect that the guard of event revoke will be to weak to preserve invariant inv8′.
We are going to search for it in the corresponding proof. But we can get started without
it, in particular, proving guard strengthening of the abstract guards grd1 to grd3 and
preservation of inv5, inv6, inv7, and inv9. For instance, preservation of inv6:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s �→ r ∈ adr(p) Concrete guard grd1
p �→ r /∈ loc Concrete guard grd2
r �= O Concrete guard grd3�
ran((adr �− {p �→ adr(p) \ {s �→ r, r �→ s}})(q))
⊆ (arm \ {p �→ r})[{q}] Modified invariant inv6

for all q. For q = p we have to prove

ran(adr(p) \ {s �→ r, r �→ s}) ⊆ arm[{p}] \ {r} ,

thus,

r /∈ ran(adr(p) \ {s �→ r, r �→ s}) .

This does not look right. Indeed, we find a counter example with one person P and
three different rooms H, I, O:

adr = {P �→ {O �→ H, H �→ O, O �→ I, I �→ O, I �→ H, H �→ I}}
arm = {P �→ H, P �→ I, P �→ O}
loc = {P �→ O} p = P s = I r = H

In order to resolve this problem we could remove all doors connecting to r. But this
seems not acceptable: we grant door authorisations one by one and we should revoke
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them one by one. We could also strengthen the guard of the concrete event requiring,
say, adr(p)[{r}] = {s}. But then we would not be able to revoke authorisations once
there are two or more doors for the same room. The problem is in the abstraction! The
abstract event revoke should not always remove r. We weaken the guard of the abstract
event,

revoke

any p, R when

grd1 : p ∈ Person

grd2 : loc(p) /∈ R

grd3 : R ∈ S(Room \ {O})
then

act1 : arm := arm \ ({p} × R)
end

where for a set X by S(X) we denote all subsets of X with at most one element:

Y ∈ S(X) =̂ Y ⊆ X ∧ (∀x, y · x ∈ Y ∧ y ∈ Y ⇒ x = y) .

With this the proof obligation for invariant preservation of inv6 becomes:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s �→ r ∈ adr(p) Concrete guard grd1
p �→ r /∈ loc Concrete guard grd2
r �= O Concrete guard grd3�
ran((adr �− {p �→ adr(p) \ {s �→ r, r �→ s}})(q))
⊆ (arm \ ({p} × R))[{q}] Modified invariant inv6

for all q. For q = p we have to prove,

ran(adr(p) \ {s �→ r, r �→ s}) ⊆ arm[{p}] \ R . (17)

Before we can continue we need to make a connection between r and R. We need a
witness for R. After some reflection we decide for

R = {r} \ ran(adr(p) \ {s �→ r, r �→ s}) . (18)

Witness (18) explains how the concrete and the abstract event are related. If there is
only one door s connecting to room r, then R = {r} and the authorisation for room
r is revoked. Otherwise, R = ∅ and the authorisation for room r is kept. Now we are
ready to prove (17). In case r ∈ ran(adr(p) \ {s �→ r, r �→ s}), that is R = ∅

by (18),

ran(adr(p) \ {s �→ r, r �→ s}) { set theory }
⊆ ran(adr(p)) { inv6 with “q := p” }
⊆ arm[{p}] { R = ∅ }
= arm[{p}] \ R ,
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otherwise, that is in case r /∈ ran(adr(p) \ {s �→ r, r �→ s}),

ran(adr(p) \ {s �→ r, r �→ s}) { r /∈ ran(. . .) }
⊆ ran(adr(p)) \ {r} { R = {r} by (18) }
= ran(adr(p)) \ R { inv6 with “q := p” }
⊆ arm[{p}] \ R .

We note without showing the proofs that guard strengthening of the abstract guards
grd1 to grd3 and preservation of inv5, inv7, and inv9 all hold. Only preservation of
invariant inv8′ remains:

∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} Invariant inv8′

s �→ r ∈ Door \ adr(p) Guard grd1′

s ∈ dom(adr(p)) Guard grd2�
(arm \ ({p} × R))[{q}] Modified invariant inv8′

⊆ (adr �− {p �→ adr(p) \ {s �→ r, r �→ s}})(q)+[{O}] ∪ {O}

for all q. Let D = {s �→ r, r �→ s}. For q = p we have to show

(arm \ ({p} × R))[{p}] ⊆ (adr(p) \ D)+[{O}] ∪ {O} . (19)

We have seen above that the term on term on the left hand side is either arm[{p}] or
arm[{p}] \ {r}. So we won’t succeed proving (19) unless we add a guard to event
revoke. We cannot use arm[{p}] in the guard because the refined machine does not
contain variable arm. If inv6 was an equality, we could use ran(adr(p)) instead of
arm[{p}], obtaining the guard

grd4 : ran(adr(p)) \ {r} ⊆ (adr(p) \ D)+[{O}] ∪ {O} .

It says that all rooms except for r must still be reachable from the outside after revoking
the authorisation for door D leading to room r. This sounds reasonable. We find that it
is not possible to turn the set inclusion into an equality in invariant inv6. However, we
can still prove the weaker theorem

thm2 : ∀ q · ran(adr(q)) ∪ {O} = arm[{q}] ,

using inv2, inv6, inv8′, and property (8) of the transitive closure. The authorised rooms
are maintained precisely by means of the authorised doors. As a matter of fact, initially
we used thm2 as invariant instead of inv6 but then weakened the invariant to inv6
and proved thm2 as a theorem. This is a useful strategy for reducing the amount of
proof necessary while keeping powerful properties such as thm2. Similarly, we get the
theorem

thm3 : ∀ q · arm[{q}] = adr(q)+[{O}] ∪ {O} .
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We prove (19) by case distinction similarly to (17). In case r ∈ ran(adr(p) \ D),
letting AD = adr(p) \ D,

(arm \ ({p} × R))[{p}] ⊆ AD+[{O}] ∪ {O} { R = ∅ }
⇔ arm[{p}] ⊆ AD+[{O}] ∪ {O} { thm2, “q := p” }
⇔ ran(adr(q)) ⊆ AD+[{O}] ∪ {O} { grd4 }
⇐ AD+[{O}] ∪ {O} ∪ {r} ⊆ AD+[{O}] ∪ {O} { set theory }
⇐ r ∈ AD+[{O}] { (8), “x := AD” }
⇔ r ∈ (AD ∪ AD+ ; AD)[{O}] { set theory }
⇐ r ∈ AD[{O}] ∪ AD[AD+[{O}]] { AD−1[{r}] �= ∅ }
⇐ AD−1[{r}] ⊆ {O} ∪ AD+[{O}] { inv9, def. of D }
⇔ AD[{r}] ⊆ {O} ∪ AD+[{O}] { set theory }
⇐ adr(p)[{r}] ⊆ {O} ∪ AD+[{O}] { r /∈ adr(p)[{r}] }
⇐ ran(adr(p)) \ {r} ⊆ AD+[{O}] ∪ {O} ,

and in case r /∈ ran(adr(p) \ D),

(arm \ ({p} × R))[{p}] { R = {r} }
= arm[{p}] \ {r} { thm2 with “q := p” }
= (ran(adr(p)) ∪ {O}) \ {r} { r �= O }
= (ran(adr(p)) \ {r}) ∪ {O} { grd4 }
⊆ (adr(p) \ D)+[{O}] ∪ {O} .

Now we have taken into account all important properties P1 to P9 and we have proved
that the abstract and the concrete model are consistent. We have proved that all invari-
ants inv1 to inv9 are preserved by the initialisation and the events pass, grant and
revoke.

8 Towards a Better Model

Assuming we have one person P and three different rooms H, I, and O we can inspect
how the modelled system would behave.

Initially variables adr and loc have the values

adr = Person × {∅}
loc = Person × {O} .

Event pass is disabled as expected; grd1, that is, loc(p) �→ r ∈ adr(p) cannot be
satisfied for any p and r. Similarly, event revoke is disabled, but also event grant:
guard grd2, s ∈ dom(adr(p)), cannot be satisfied for any s, leading to a deadlock. We
have not proved all properties we would expect from our model. This property seems
to be implicitly contained in properties P8 and P9, but we have missed it. We have to
weaken grd2,
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grant

any p, s, r when

grd1′ : s �→ r ∈ Door \ adr(p)
grd2′ : s ∈ dom(adr(p)) ∪ {O}

then

act1 : adr := adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}}
end

As a consequence, we have to check again that concrete event grant preserves all in-
variants. Fortunately, our proof of preservation of inv8′ can is easily adaptable because
we have first inferred (16) from grd2; it is still implied by grd2′.

The proof obligations shown in Section 2 have been restricted not to take into account
deadlock-freedom to emphasise the problem that we only verify properties where we
expect difficulties but not more. This is a problem of formal modelling in general. But
it is more visible in the incremental approach.

9 Conclusion

We have demonstrated how a model in Event-B is created incrementally by refinement
and alteration. Refinement permits to structure a complex model thus to cope better
with complexity. While reasoning formally about the model developed in this article as
a whole we found some problems. These led us to alter the model, both the abstraction
and the refinement. Although this is only mentioned in the introduction it should be
clear how much this depends on good tool support [3,15]. Modifying a model is en-
couraged by these tools that that have been developed expressly to facilitate changes.
Without such tools the approach would fail in practice. In this article we have focused
more on methodological benefits than on how to use the respective tools because this is
where the principal gain of using them is to be found. The techniques we have used are
not meant to be comprehensive. For instance, we have not made use of temporal logic,
behaviour specification, or testing.

We have not solved the problem of how to come up with a perfect specification. That
is not our aim. We are content with achieving a model of good quality that captures re-
quired behaviour reasonably well and reasonably complete. By serious reasoning about
the model we have gone some way towards a meticulous validation of the intended
behaviour of the model. Some required properties are usually linked to the implemen-
tation. They would be difficult to incorporate into a more abstract model. Our solution
would be not to incorporate them but to deal with them at the appropriate level.

Acknowledgment. I am grateful to Michael Leuschel and the STUPS group at the
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References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. CUP (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-

sity Press, Cambridge (2008)



158 S. Hallerstede

3. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for
event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer,
Heidelberg (2006)

4. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Discrete Mod-
els: Application to Event-B. Fundamentae Informatica 77(1-2) (2007)

5. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.) B 1998.
LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

6. Back, R.-J.: Refinement Calculus II: Parallel and Reactive Programs. In: de Bakker, J.W.,
de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 67–93. Springer,
Heidelberg (1990)

7. Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial
project: Roissy VAL. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005.
LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005)

8. Behm, P., Desforges, P., Meynadier, J.-M.: MéTéOR: An industrial success in formal devel-
opment. In: Bert, D. (ed.) B 1998. LNCS, vol. 1393, pp. 26–26. Springer, Heidelberg (1998)

9. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Heidelberg (2003)

10. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Springer, Heidelberg
(1994)

11. Hallerstede, S.: On the purpose of event-B proof obligations. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 125–138. Springer,
Heidelberg (2008)

12. Hoang, T.S., Kuruma, H., Basin, D.A., Abrial, J.-R.: Developing topology discovery in event-
B. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 1–19. Springer,
Heidelberg (2009)

13. Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)
14. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Soft-

ware Engineers. Addison-Wesley, Reading (2002)
15. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method. International

Journal on Software Tools for Technology Transfer 10(2), 185–203 (2008)
16. Morgan, C.C.: Programming from Specifications: Second Edition. Prentice-Hall, Englewood

Cliffs (1994)
17. Pólya, G.: Mathematics and Plausible Reasoning. Induction and Analogy in Mathematics,

vol. 1. Princeton University Press, Princeton (1954)
18. Pólya, G.: How to Solve It: A New Aspect of Mathematical Method, 2nd edn. Princeton

Science Library. Princeton University Press, Princeton (1957)
19. Pouzancre, G.: How to diagnose a modern car with a formal B model? In: Bert, D., Bowen,

J.P., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 98–100. Springer, Heidelberg (2003)
20. van Gasteren, A.J.M.: On the Shape of Mathematical Arguments. LNCS, vol. 445. Springer,

Heidelberg (1990)



An Asynchronous Distributed Component

Model and Its Semantics

Ludovic Henrio1, Florian Kammüller2, and Marcela Rivera1

1 INRIA – CNRS – I3S – Université de Nice Sophia-Antipolis
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Abstract. This paper is placed in the context of large scale distributed
programming, providing a programming model based on asynchronous
components. It focuses on the semantics of asynchronous invocations and
component synchronisation. Our model is precise enough to enable the
specification of a formal semantics. A variant of this model has been
implemented, together with tools for managing components.

This paper explains why we consider that our component model is
efficient and provides a convenient programming model. We show how
futures play a major role for such asynchronous components, and provide
a reduction semantics for the component model. This reduction semantics
has been specified in the Isabelle theorem prover, and will be used to
prove properties on the component model and its implementations.

1 Introduction

Component models provide a structured programming paradigm, and ensure
a better re-usability of programs. Indeed application dependencies are defined
together with provided functionalities by the means of provided/required ports;
this improves the program specification and thus its re-usability. In distributed
systems, this takes even more importance as the structure of components can
also be used at runtime to discover services or adapt component behaviour.
Several effective distributed component models have been specified, developed,
and implemented in the last years [1, 2, 3, 4] ensuring different kinds of properties
to their users. To be able to prove such properties, one must rely on some well
defined semantics for the underlying programming language or middleware. This
paper provides such a background for a category of component models.

This work is a study of asynchrony in component models. We present here
a model for distributed components. This model is based on one key princi-
ple: Components are the unit of concurrency. More precisely, components only
communicate by sending requests or results for those requests. We say that this
model is asynchronous because requests can be treated in an asynchronous man-
ner thanks to the introduction of futures (place-holders for request results). In
order to prevent other communications or concurrency to occur, we require that
components do not share memory, which ensures that components really are the

F.S. de Boer et al. (Eds.): FMCO 2008, LNCS 5751, pp. 159–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



160 L. Henrio, F. Kammüller, and M. Rivera

concurrency units. From a computational point of view, components are loosely
coupled: the only strong synchronisation consists in waiting for the result of a
request, and can be performed only when and where this result is really needed
thanks to the use of futures.

Such components can then provide a convenient abstraction for distribution:
each component can be placed on a different (virtual) machine. Indeed, the
abstractions suggested above imply that each memory location is only accessible
by one component, and thus it is easy to place each component on a different
independent location. This makes our component model adapted to distribution.

This component model is closely related to the Grid Component Model (GCM).
Indeed, this work can be considered as the GCM model, where communication is
chosen to be a request / reply mechanism with futures. ProActive/GCM is a ref-
erence implementation of the GCM. Our objective is to provide a programming
model more general than the one adopted in ProActive/GCM, but more precise
than the strict GCM definition. Indeed, GCM provides a structural description
of components. From this definition, we precise component composition and com-
munication semantics; more precisely we define composite component behaviour
and an asynchronous communication mechanism using futures. ProActive/GCM
can also be considered as a possible implementation of our model where compo-
nents are implemented as active objects. Our definition of components being both
precise and formalised, we expect it to be a strong guide and a reliable basis for
both component system implementation and formal tools.

Our components are loosely coupled, with a data-flow oriented synchronisa-
tion. While being a very convenient way of parallelising computations, loose
coupling can raise issues when one wants to synchronise the management of sev-
eral components. We will show in this paper some of the issues that can arise
for synchronising the management of components, and some possible solutions.

We first detail the component model we suggest and explain why we think
the proposed constructs are efficient (Section 2). After this introduction of our
major concepts, we offer a comparison by summarising the main component
models found in the literature (Section 3). Next, we introduce our formal model
of asynchronous components (Section 4), and we present several implementa-
tion and component management issues (Section 5). Finally, we conclude this
paper.

2 An Asynchronous Component Model

The GCM [4] is a component model defined by the European Network of Ex-
cellence CoreGrid. It extends the Fractal component model, by addressing Grid
computing: it supports deployment, scalability, autonomic behaviour, and asyn-
chronous communications. The GCM relies on the following aspects:

– Fractal as the basis for the component architecture: the main characteristics
GCM benefits from Fractal are its hierarchical structure, the enforcement of
separation between functional and non-functional concerns, its extensibility,
and the separation between interfaces and implementation.
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Fig. 1. A GCM component
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Fig. 2. A component system

– Communication Semantics: GCM components should allow for any kind
of communication semantics (e.g., streaming, file transfer, event-based) ei-
ther synchronous or asynchronous. However, for dealing with latency, asyn-
chronous communication is preferred, and considered as the default.

– GCM supports collective communications – one-to-many, many-to-one, but
also many-to-many.

– GCM also comes with a support for autonomic aspects and better separation
of concerns (functional vs. non-functional).

In this section, we will first recall precisely the component structure of GCM
components; then we will refine this model to define the semantics of our
asynchronous components.

2.1 Component Structure

Let us start by the structure of the component model that is inherited from
Fractal [5]. GCM is a hierarchical and reflective component model. A GCM
component can be either composite (i.e. composed of subcomponents), or primi-
tive (a basic element encapsulating the business code). A component comprises a
content (providing the functional code) and a membrane (a container managing
non-functional operations).

The interfaces are the access points to components. The components have
client interfaces – emitting messages/invocations– and server interfaces – able
to receive messages/invocations. A binding connects a client interface to a server
interface (shown in Figure 2), with the implicit semantics that the message emit-
ted by the client will be received by the server interface. Each client interface
is bound to a single server interface. For composite components, if the interface
is exposed to subcomponents this is an internal interface. If, on the contrary,
the interface is exposed to other components this interface is an external inter-
face. All the external interfaces of a component as well as its internal interfaces
must have distinct names. Depending on its functionality, each interface is either
functional or non-functional. Each internal functional interface must have a cor-
responding external interface of the same name. The implicit semantics is that
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a call received on a server external (resp. internal) interface will be transmitted
– unchanged – to the corresponding internal (resp. external) client interface.
Among those notions, only non-functional client interfaces have been introduced
in GCM compared to Fractal. A GCM component architecture can be described
using an architecture description language (ADL).

A GCM component and its different parts are shown in Figure 1. Functional
interfaces are shown horizontally, and non-functional ones vertically. Client in-
terfaces are on the right (or bottom) and server on the left (or top). Note that
each external functional interface has a corresponding internal one, whereas non-
functional interfaces may not have any corresponding internal ones in case non-
functional requests are treated by the membrane. Figure 2 shows a component
assembly composed of two main components, the left one is a composite com-
posed of two primitives; the figure also illustrates all the kind of bindings that
can be encountered in a GCM component assembly.

Adaptation mechanisms are triggered by the control part of the components;
we call this part non-functional (NF). This NF part, named membrane, is com-
posed of controllers that implement NF concerns. The membrane is a set of (con-
troller) components that can be (re)configured. These controllers can manage
configurations and reconfigurations. Compared to Fractal, GCM gives a compo-
nent structure to the membrane; moreover in GCM controllers inside the mem-
brane can interact with the membranes of other components through bindings
between NF interfaces.

Interface Cardinality. The interface cardinality indicates how many bindings
can be made from or to this interface. We have three kinds of cardinalities:
singleton, collection, and collective. Collection interfaces were defined in Fractal
to let an interface be instantiated as many times as necessary. GCM defines
collective interfaces: multicast (one-to-many) and gathercast (many-to-one).

A multicast interface is a client interface that transforms a single invocation
into a list of invocations, forwarded in parallel to a set of connected interfaces.
The result of an invocation on a multicast interface is a list of results. Invocation
parameters can be distributed according to a distribution policy: for example,
broadcast sends the same parameter to each of the connected server interfaces;
and scatter strips the parameter so that the bound components work on different
data. Distribution policy can also be customized.

Symmetrically, a gathercast interface is a server interface that synchronises a
set of invocations toward the same destination. A gathercast interface coordi-
nates a set of incoming invocations before continuing the invocation flow, for-
warding a single invocation. This interface may define synchronisation barriers
and may gather incoming data.

Formalising collection and collective interfaces is outside the scope of this
paper and we will focus on singleton interfaces. Singleton cardinality is to our
mind sufficient to express the crucial points of asynchrony, and many-to-many
communications can be studied as an extension to this work.
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2.2 Informal Semantics

We focus now on the semantics of our component model; for this we make a
few additional assumptions compared to the GCM component model. First of
all, we start from the point of view presented in the introduction: “components
are the unit of concurrency” and components do not share memory. This way
interaction between components is limited to communication.

Communication. The basic communication paradigm we consider is asyn-
chronous message sending: upon a communication the message is enqueued at
the receiver side in a queue. To prevent shared memory between components,
messages can only transmit parameters which are copied at the receiver side;
no object or component can be passed by reference.1 This communication se-
mantics is similar to requests in an active object model like ASP [6], but also
to communication in Actors [7], where messages are enqueued in the message
delivery system of the destination.

We call requests the messages that are transmitted between components, and
that can contain parameters also transmitted (copied) between components.

References to components cannot be passed between components, for example,
method parameters cannot contain references to components. More precisely,
in order to allow non-functional features to be aware of component structure
and manage the component system, we restrict component manipulations to
non-functional concerns.

Returning Results. We call our component model asynchronous because com-
munication does not trigger computation on the receiver side immediately, it just
enqueues a request. Such a mechanism can be implemented with synchronous or
asynchronous communications. As in ASP and ProActive, the model defined in
Section 4 relies on a rendez-vous (enqueueing a request is done synchronously
but the receiver component is always ready to enqueue a request). Asynchronous
invocations could be performed by enforcing request results to be returned by
an explicit call-back mechanism, but we prefer handling results automatically in
order to prevent business code from dealing with communication purposes.

To allow for transparent asynchronous requests with results, we use futures,
first introduced in [8, 9]. A future is an empty object that represents the result
of a computation and will be updated when the result is available. In our case,
futures are a transparent and natural way to handle asynchronous requests: a
future is automatically created when sending a request from a component to
another, it represents the result of this request. Transparent futures come with
a natural and automatic synchronisation called wait-by-necessity: futures can
be safely transmitted between components or stored while the real value of the
result is not needed. When the value is really needed the thread accessing the
future is automatically blocked until the result is available.

1 To be precise, only futures are passed by reference, because their value will be finally
transmitted by a copy semantics.
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Transmitting a future between components is not considered as an operation
requiring the value. Consequently, the result or the parameters of a request can
contain a future, or even can simply be a future. Consequently, several compo-
nents in the system may have a reference to the same future, the component
platform will then be in charge of updating all those references. Updating a
future consists in replacing a future reference by the result for the correspond-
ing request. We call those futures first-class because they can be transmitted
between components as any other value.

Primitive Component Behaviour. Let us now detail a behaviour for prim-
itive components that will ensure asynchronous communications and future
handling.

The primitive components encapsulate the business code, thus in our model
we consider they can have, internally, any behaviour. They will serve requests
in the order they wish, providing answer for all the requests they receive. They
can call other components by emitting a request on one of the client interface.
However, each primitive component must always be able to accept a request
(that will just be enqueued in its request queue), and to receive a result (that
will replace a future reference by the received value).

Figure 3 illustrates a primitive component and its behaviour. A primitive
component consists of a request queue, a content, a membrane, and a result list.
Its content contains the business code that serves the requests; requests arrive
from the server interfaces on the left and are emitted by the client interface on the
right. An incoming request is enqueued immediately, associated with its future
identifier. Later this request is served and treated by the component content,
possibly emitting new requests to the clients. When the service is finished and
a value is calculated for its result, this value is stored in the result list, stating
that the future for the request is mapped to this calculated value. The calculated
value can itself contain references to other futures. Later, the result will be sent
from the result list to the components that hold a reference to the corresponding
future. As future references can spread in all the components, including requests,
results, and current component states, received results are used to update future
references in all parts of the component.

Mono-threadedComponents. In our model, a given thread manipulates a sin-
gle component, but nothing prevents our components from being multi-threaded.
Even, a component can serve several requests at the same time.

However, like in ProActive/GCM, components can be chosen to be mono-
threaded; this simplifies concurrency, as each component has a sequential be-
haviour but can create deadlocks. For example, if there is a cycle of dependencies
between results of requests: in a subsystem with two components, C1 and C2, a
request A, computed by C1 depends on the result of a request B to component
C2, itself depending on the result of another request C, but awaited from C1. In
that case, C1 will be indirectly waiting for itself, which could only be resolved
by a second thread in C1. Fortunately, most applications can be written without
such cyclic dependencies, especially thanks to first-class futures.
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Composite Component Behaviour. To summarise, the behaviour of the
primitive components is highly parameterised. We have just specified the han-
dling of requests and futures in the preceding paragraphs. By contrast, composite
components have a predefined behaviour.2 Composite components serve requests
in a FIFO order, delegating request to the bound components or to the external
ones in a much transparent and natural way. Globally, a request emitted by the
client interface of a primitive component will be sent unchanged to the server
interface of the primitive component that is linked by a binding. More precisely,
several bindings may be used and several composite components may be crossed.

This request transmission can rely on a mechanism similar to the handling
of requests by primitive components; this mechanism is illustrated by Figure 4.
Requests are dequeued in a FIFO order from the request queue. Consider one
request (associated with the future f), suppose the request has been received
from the outside of the composite, i.e., it was received on an external server
interface. There is necessarily an internal client interface matching this external
one. Handling the requests consists in sending another request from the inter-
nal client interface matching the interface that receives the request (i1). This
request is sent to the interface bound to i1, that is i2 in the figure; this interface
necessarily belongs to an inner component. This new request corresponds to a
future f ′, and the result for the first one is just a reference to f ′, i.e. f = f ′. In
case the request was received from the inside of the composite, the mechanism
is similar, with a new request sent from the matching external client interface.

An alternative approach would consist in implementing a delegation mech-
anism, like in allowing a component to delegate the calculation of a result to
another component, like handlers of [10]. However, we did not choose this tech-
nique in order to avoid introducing a new mechanism, but also to ensure that
the component calculating a value for a given future will not change along time.

2 In the future, we want to study how the behaviour of the composite component
could be changed safely but this is not the purpose of this paper.
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3 Comparison with Some Component Models

This section presents the main distributed component models, focusing on their
main characteristics with respect to structure, distribution, and synchronisation.
We summarise this comparison in Table 1.

CCA [1] aims at a minimal specification of component architecture for high-
performance computing. CCA builds on core concepts, defining a component
(the software entity), a framework (the container), and ports (the access towards
the environment). The components are assembled at runtime connecting ports
together, thanks to scripts that interact with the CCA framework. The container
allows building, connecting and running components. Component composition
is not hierarchical. CCA considers parallelism and distribution of data.

CCM (CORBA Component Model) [11, 2] is a specification for business com-
ponents which can be distributed, heterogeneous, and implemented over different
programming languages or operating systems. CCM components communicate
through ports that can be interconnected. Also, the OMG D&C specification
[12] supports hierarchical assemblies. All component instances are handled at
runtime by their container. A fortitude of CCM is to provide a clear separation
between functional and non-functional concerns.

SCA (Service Component Architecture) [3] provides a component-oriented
programming model for building applications and solutions based on a Service
Oriented Architectures. SCA provides a model for both the composition of ser-
vices and the creation of service components, including the reuse of existing
application functions within SCA composites. SCA is a hierarchical component
model, but its component structure is not specified at runtime. Additionally,
SCA components can be implemented with different languages such as Java,
BPEL, and state machines.

ASP [6, 13] is the computation model behind ProActive. This calculus of
active objects starts from ςimp-calculus [14] extending it with explicit commands
for activating an object and for serving requests. Activities contain an active
object, possibly several passive objects, and are managed by only one thread.
Communication is realized using an asynchronous request reply mechanism with
futures. A request is associated to each future, and the request service aims
at providing a result value to the future. Using a translational semantics, ASP
components are defined as hierarchical combinations of activities.

Creol [15, 16] is a programming and modelling language for distributed sys-
tems based on active objects communicating via asynchronous method calls using
futures. Creol’s base language is – at least in more recent publications, e.g. [17] –
an extended version of the functional ς-calculus [14]. Besides explicit distinction
between fields and methods of objects the authors introduce classes and threads
as first class citizens. Classes contain implementation of methods; threads are
sequences of method calls referenced by futures; objects’ fields contain the val-
ues resulting from thread evaluation. Concurrent access to objects is controlled
by an explicit lock mechanism. The operational semantics is a reduction style
structural operational semantics based on rewriting logic implemented in Maude
which enables testing of model specifications [18]. Interfaces are integral part of
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the Creol language. They describe the observable behaviour of objects using
assumption guarantee specifications [19]. Traces of communication events be-
tween the object and its environment specify input and output behaviour based
on visible parts of an object’s features. More recently, [17] defines Creol com-
ponents, and a framework for describing and testing them. The authors use a
simple specification language over communication labels enabling the expression
of component behaviour as a set of traces at the interfaces.

A Creol component is a collection of classes, objects, and threads where the
threads are simply composed in parallel. Thus, components are not hierarchical.
Threads – or sets of threads – define concurrent components. A thread never
leaves the object in which it is defined. Thus objects are the unit of concurrency.
Distribution is not given by explicit locations but using independent object eval-
uation and asynchronous method call invocations. In comparison to Creol, our
approach is hierarchical. We use a separate level of component specification with
an abstract behaviour model. We separate the structural component level from
the program semantics.

focus [20] is a framework for the systematic formal specification and devel-
opment of distributed components communicating by asynchronous messages.
Contrarily to other models, in this framework the basic notion is the stream.
There are two types of streams: streams of actions (traces) and streams of mes-
sages. Streams of messages are used to represent communication histories of
channels. The behaviour of a component is described by logical formulas speci-
fying stream processing functions. Compared to this approach, our formalization
focuses on components that could be imperative and can have a much richer be-
haviour, more difficult to specify, but more expressive. We expect to be able
to prove automatically properties on component composition and component
behaviour.

The Relational Calculus of Object and Component Systems (rCOS) [21] is
based on the Unifying Theory of Programming by He and Hoare supporting
concurrency and relational refinement. In the rCOS component model [22] com-
ponents are aggregations of objects; it uses required and provided interfaces to-
gether with contracts. rCOS has a rich and fine-grained object model but lacks
– in comparison to our approach – the variety of hierarchical composition at the
component level and consequently the explicitness of component interaction.

Fractal [5] and GCM [4] were presented in the preceding section. Let us
simply recall their main differences. Contrary to Fractal, GCM specifies distri-
bution aspects of the component model, and defines one-to-many and many-to-
one communication, which are particularly efficient for distributed components.
The GCM model also refines the structure of the membrane, and defines some
controllers for autonomic behaviour.

A GCM reference implementation is based on ProActive [23]. In this imple-
mentation each component and each composite membrane is an active object.
The controllers are encapsulated in the membrane which also dispatches func-
tional calls to inner components. In this implementation, components
communicate through asynchronous method calls with futures. Futures can be
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Table 1. Comparison of component models

Component
Model

Hierarchy Distribution
Unit

Concurrency Communication

CCA no Application
dependent

Unspecified Synchronous

CCM yes Application
dependent

Unspecified Synchronous or
Asynchronous

SCA yes Unspecified Unspecified Call-and-return
messages

ASP-
component

yes Active Object Monothreaded
Active Objects

Asynchronous,
implicit futures

Creol no Object Multi-threaded
Active Objects

Asynchronous,
explicit futures

Fractal(Julia) yes Unspecified Multi-threaded
Components

Synchronous

GCM yes Primitive
Component

Unspecified Request-Reply
Paradigm

GCM
(ProActive)

yes Primitive
Component

Unique control thread
per component

Asynchronous,
implicit futures

forwarded to any component in a non-blocking manner. A property inherent to
this implementation is the absence of shared memory between components, this
leads to constraints but also greatly simplifies the reasoning about concurrency.
The primitive components act as the unit of distribution and concurrency (each
thread is isolated in a component).

In order to formalise Fractal components, several models and calculi have
been designed, addressing different aspects. The Kell-calculus was introduced
as a very general calculus able to represent component containment, control
and passivation [24]. Then, this work was extended and adapted in order to
deal with shared components [25]. In Fractal, a component is shared if it is
the subcomponent of several different composite components. The formalism
we present does not deal with component sharing. More recently, the Fractal
component model has been formalised in Alloy [26]. This paper gives a very
precise and unambiguous formalisation of Fractal component’s structure and
control. Compared to this framework, our work focuses on the asynchronous
aspects of components, and somehow takes the decision of giving a less general
semantics to components and component communications in order to provide a
formal model of the interplay between component communication, component
behaviour, their control and their structure.

Amongst the formal models for distributed computing, our work relies on
the notion of futures and requests that have already been formalised, outside
the context of components, see for example [27] in the context of Creol or [10]
in the context of functional programming.
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4 Formal Model

This section defines a semantics for our component model. It is being formalised
in Isabelle/HOL [28].3 This explains some design choices made here.

4.1 Structure and Notations

We let vj , pj range over values, fj range over futures, ij range over interfaces,
N range over component names, and C over components. A list is denoted
[ai]i∈1..n. The operator # is the list append operation. l \ f removes f from the
list l, whatever its position is.

Component definition. We build requests as triples (future identifier, pa-
rameter value, invoked interface): Rj ::= [fj, vj , ij ]. A result maps a value
to an identified future: Fj ::= [fj , vj ]. A component is either a primitive
or a composite, each one has a state and a set of interfaces, a composite
has additionally bindings and subcomponents (subCp): Prim[itfs,PrimState],
Comp[itfs, subCp, bindings,CompState]. Enqueue(C, R) enqueues a request R in
the request queue of the component C.

States. Each state (PrimState, CompState) is a record containing a queue, and
a list of computed results (results); additionally a primitive component state
(PrimState) contains an internal state (intState), and a behaviour (behaviour).
A behaviour is a labelled transition system between internal states where labels
are actions defined below. An internal state contains a set of current requests
(currRq), and a state referencing a set of futures.

s.queue returns the current queue of state s. The constituents of a state s,
e.g. its queue, can be updated individually, for example s�queue := Q� denotes
a new state obtained by changing the queue of s to Q.

Subcomponents. The set of subcomponents of a composite is a mapping from
component names to components: SubCp ::= [N �→ C]i∈1..n. The subcomponent
named N of the composite component Comp[itfs, subCp, bindings,CompState]
is denoted subCp[N ], and subCp[N �→ C] denotes a new set of subcomponents
where C is the new component associated to the name N .

Bindings. Each binding is of the form [N.i1, N
′.i2], if interface i1 of component

named N is plugged to the interface i2 of N ′ (where N and N ′ can be This if
the plugged interface is the composite component that defines the bindings).

Futures. For any value, state, or component, futs(v) (resp. futs(s), futs(C))
represents the set of futures referenced by this element. We use a function UpdFut
that is applied to values; UpdFut(vi, f, v) replaces the future f – if present – in
value vi by v. Note that futs(UpdFut(vi, f, v)) ⊆ futs(v)∪ futs(vi) \ {f} (\ is the
set subtraction). findRes(S, f) looks inside a component system S and returns
the value which is the result corresponding to future f , if it is already computed.
3 Prototype specification available at www.inria.fr/oasis/Ludovic.Henrio/misc
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4.2 Local Actions

The behaviour of the primitive components is greatly customisable. For the
purpose of the component model, we suppose this behaviour is specified by an
(infinite) labelled transition system, it is denoted by BC for a given primitive C.
The actions of the primitive components are the labels of the transitions, and
states are those of the primitive component. Actions of interest are the following:

NewService itfs p f dequeues a request on an interface of the set itfs and starts
serving it; f receives the future identifier and p the request parameter.

Tau is a non-observable action allowing to encapsulate internal behaviour.
Call i p f sends a request on interface i with parameter p; f receives the

future identifier that corresponds to the request. i must be one of the client
interfaces of the primitive component.

EndService f v finishes a service associating value v to future f ; this action
adds a new entry in the result list.

ReceiveResult f v receives a result value: future f is updated with value v. A
primitive component must always be able to receive a future (if f /∈ futs(s)
this action has no effect):

(∀f, s, v.∃s′. (s, ReceiveResult f v, s′) ∈ BC)

Constraints on Current Requests. The set currRq of requests currently
handled by the primitive component changes only when a request is served (one
current request added), or a service is finished (one current request removed).
Additionally, one can only finish a service for a request that is current; this leads
to the following constraints:

(s,NewService itfs p f, s′) ∈ BC) ⇒ s′.currRq = f#s.currRq

(s, EndService f v, s′) ⇒ (f ∈ s.currRq ∧ s′.currRq = s.currRq \ f)

For all the other actions we have (s, action, s′) ∈ BC ⇒ s′.currRq = s.currRq.

Constraints on Referenced Futures. Futures referenced by the internal state
of a primitive component are also constrained. In general (s, action, s′) ∈ BC

implies futs(s′) ⊆ futs(s), except when a new request is served or a result is
received. In those cases, the request parameter or the result may contain new
futures. Additionally, when a result is received, the future updated should not
be referenced any more.

(s,NewService itfs p f, s′) ∈ BC) ⇒ futs(s′) ⊆ futs(s) ∪ futs(p)

(s,ReceiveResult f v, s′)∈BC)∧f ∈ futs(s) ⇒ futs(s′) ⊆ (futs(s) \ {f})∪futs(v)

Moreover, sent values can only reference futures known by the internal state:

(s,Call i p f, s′) ∈ BC) ⇒ futs(p) ⊆ futs(s)

(s, EndService f v, s′) ⇒ futs(v) ⊆ futs(s)
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Handling Received Values. When an action receives a value, for example,
NewService itfs p f receives p, the action must accept any value for parameter p
and alter the internal state accordingly; p is, in fact, a variable that will, in turn,
receive a value from the request queue. Similarly, f will receive the identifier of
the future to handle. Instead of introducing variables and scoping, we simply
chose to state that some of the parameters must be able to receive any value:

(s,NewService itfs p f, s′)∈BC ⇒ ∀ p′, f ′. ∃s′. (s,NewService itfs p′ f ′, s′)∈BC

This applies also for f in Call i p f : the future must be chosen fresh, and v
in ReceiveResult f v : the received result is given by another component.

4.3 Semantics of the Component Model

The formal semantics of the component model defines a reduction relation →R

by a set of inductive rules. S � C →R C′ if, in the component system S,
the component C can be reduced to the component C′; S is the composite
component containing all the components of the system. It is necessary to know
the whole component system to retrieve request results and update futures.
From →R, a reduction for the global component system can then be defined:
S � S′ ⇔ S � S →R S′.

There is a second parameterised relation −� i1, f, v �→ allowing to express that
a component is willing to emit a request, and must be matched with a reception
action; statements of the form − � i1, f, v �→ used as hypotheses to the rules for
composite components lead back to statements of →R. If � C − � i1, f, v �→C′,
then C emits a request on the interface i1, with parameter v, and associated to
a future f ; after the emission, C becomes C′.

There are two kinds of reduction rules: the ones for primitive components
(Figure 5), and the ones dealing with composite components (Figure 8).

In detail, the behaviour defined in primitive components determines the fol-
lowing rules of reduction.

Tau: If the state s of a primitive component Prim[itfs, s] contains a Tau tran-
sition from the internal state s.intState to another state s2 then the compo-
nent’s internal state can be replaced by s2. In Figure 3, this rule corresponds
to internal transitions inside the content of the composite.

RcvResultPrim: The primitive component’s behaviour always contains a
transition defining the reception of value v for future f , i.e. ReceiveResult f v,
changing the internal state into the result state s2 defined in the behaviour.
The result value is found in the component system S; it is returned by the
function findRes(S, f). The future is also updated in the request queue and
the result list by the function UpdFut. After such a reception, the future f is
not referenced anymore by the primitive. In Figure 3, this rule corresponds
to the three thick arrows with “results received from other components”.

Call: The call to an interface i1 with future f and parameter value v presup-
poses that the future f is fresh. Such a call transition in the behaviour of
a primitive component creates now a parameterised reduction − � i1, f, v �→
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Tau
(s.intState, Tau, s2) ∈ s.behaviour

S � Prim[itfs, s] →R Prim[itfs, s�intState := s2�]

RcvResultPrim
(s.intState,ReceiveResult f v, s2) ∈ s.behaviour

findRes(S, f) = v s.queue = [fj , vj , ij ]
j∈1..n Q = [fj ,UpdFut(vj , f, v), ij ]

j∈1..n

s.results = [fk, vk]k∈1..n′
R = [fk,UpdFut(vk, f, v)]k∈1..n′

S � Prim[itfs, s] →R Prim[itfs, s�intState := s2, queue := Q, results := R�]

Call
(s.intState, Call i1 v f, s2) ∈ s.behaviour f /∈ futs(S)

� Prim[itfs, s]−� i1, f, v �→ Prim[itfs, s�intState := s2�]

EndService
(s.intState, EndService f v, s2) ∈ s.behaviour

S � Prim[itfs, s] →R Prim[itfs, s�intState :=s2, results :=s.results#[f, v]�]

ServeNext
(s.intState,NewService itfs v f, s2) ∈ s.behaviour

[f ′, v′, i′] ∈ Q ⇒ i′ /∈ itfs s.queue = Q#[f, v, i]#Q′

S � Prim[itfs, s] →R Prim[itfs, s�intState := s2, queue := Q#Q�]

Fig. 5. Primitive Component Semantics

of the primitive component because this call is passed on to the enclosing
composite component. Upon synchronisation with the component bound to
this one, the reduction will occur, modifying the internal state and storing
locally the future f . In Figure 3, this rule corresponds to the “request sent”
arrow sent to the client interface.

EndService: The end of a service denotes that one of the current requests
of a primitive component is finalised yielding value v. Hence, the respective
primitive component’s result list is extended by the pair [f, v] where f is
the future that corresponds to the finalised current request. After reduction
the primitive component’s current requests does not contain f anymore (see
above). In Figure 3, this rule corresponds to the arrow.

ServeNext: Finally, a NewService itfs v f transition in a primitive compo-
nent’s behaviour leads to the creation of a new current request in the internal
state of the component. The oldest request on the interface i is served. The
parameter v matches the parameter of the first request in the request queue,
and f , its corresponding future. The reduction updates the internal state by
plugging in the target state s2 of the behaviour’s transition, and by popping
off the head of the request queue. In Figure 3, this rule corresponds to the
“end of service” arrow.

The inductive rules for composite components determine how the service com-
munication distributes on properly assembled systems. The first rule embeds
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Fig. 7. Subcomponents communicate

subcomponent reduction in composite contexts; the second performs future up-
dates inside composite components. The three Comm-rules, in the middle, define
the communications transmitted by the different kinds of bindings inside the
composite component; finally the last rule allows composite components to emit
requests on their external client interfaces. In detail, the rules finalise the formal
semantics as follows. Figure 6 illustrates the different kinds of communications
expressed by the four last rules.

Hierarchy: This rule is a compositionality rule; it expresses that if a subcom-
ponent subCp[N ] reduces in isolation to a component C then it does so as
well in the context of a component hierarchy – given by updating SubCp
with SubCp[N �→ C] in the context Comp[itfs,SubCp, bindings, s].

RcvResultComp: This rule is very similar to the RcvResultPrim rule for
primitive components. However, this one is simpler because the composite
component does not have any internal state; only the request queue and the
result list are updated by the received result.

CommBrothers, illustrated by Figure 7: a subcomponent N can pass a call to
subcomponent N ′ inside the set of subcomponents subComp of a composite
component. The respective client interface of N , on which the call was emit-
ted – N.i1 – must be bound to the interface i2 of the destination component
– N ′.i2 – this binding must be stored in bindings. The call parameters f, v –
parameterised in the request emission relation – are passed to interface i2 of
subcomponent N ′. The operator Enqueue denotes that the request [f, v, i2]
is properly added onto the request list of subcomponent N ′. N is reduced
simultaneously, sending a request.

CommParent, illustrated by Figure 9: if a subcomponent – a child – N of
a composite component utters a request i1, f, v to its parent component,
then – similar to the previous rule – N is reduced simultaneously as it sends
a request, and the request is added to the composite component’s request
queue. The bindings must bind the component N interface to the (inner
server) interface of the parent.
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Hierarchy
S � subCp[N ] →R C

S � Comp[itfs, subCp, bindings, s] →R Comp[itfs, (subCp[N �→ C]), bindings, s]

RcvResultComp
findRes(S, f)=v s.queue = [fj , vj , ij ]

j∈1..n Q = [fj ,UpdFut(vj , f, v), ij ]
j∈1..n

s.results = [fk, vk]k∈1..n′
R = [fk,UpdFut(vk, f, v)]k∈1..n′

S � Comp[itf, subCp, bindings, s] →R

Comp[itf, subCp, bindings, s�queue :=Q, results :=R�]

CommBrothers
[N.i1, N

′.i2]∈bindings �subCp[N ]− � i1, f, v �→C
SubCp′ = subCp[N �→C] C′ =Enqueue(subCp′[N ′], [f, v, i2])

S � Comp[itfs, subCp, bindings, s] →R Comp[itfs,SubCp′[N ′�→C′], bindings, s]

CommParent
[N.i1, This.i2] ∈ bindings;� subCp[N ]− � i1, f, v �→C

S � Comp[itfs, subCp, bindings, s] →R

Enqueue(Comp[itfs, subCp[N �→C], bindings, s], [f, v, i2])

CommChild
s.queue = [f, v, i1]#Q [This.i1, N

′.i2] ∈ bindings f ′ /∈ futs(S)
C′ =Enqueue(subCp[N ′], [f ′, v, i2]) s′ = s�queue :=Q, results :=s.results#[f, f ′]�

S � Comp[itfs, subCp, bindings, s] →R Comp[itfs, subCp[N ′�→C′], bindings, s′]

CompositeCall
s.queue = [f, v, i1]#Q i1is a client interface

f ′ /∈ futs(S) s′ = s�queue :=Q, results :=s.results#[f, f ′]�

� Comp[itfs, subCp, bindings, s] − � i1, f
′, v �→ Comp[itfs, subCp, bindings, s′]

Fig. 8. Semantics of the component composition

(f,v)
i 1

i 2

[f, v, i2])

[N.i1, This.i2] ∈ bindings;

fresh f

Fig. 9. CommParent rule

i 1
i 2

(f',v)

fresh f'

N'

f'=f

[This.i1, N
′.i2] ∈ bindings

′

[f, v, i1]#
′

[
[f ′, v, i2]

Fig. 10. CommChild rule
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CommChild, illustrated in Figure 10: this rule is the inverse case of the preced-
ing one – a component communicates to a child – corresponds to a delegation
of a request to subcomponents as shown in Figure 4. The parent component’s
request queue is reduced by its first element, a new future f ′ for the result
of this request is created and added to the result list of the parent compo-
nent, and the request – with the new future – is queued into the respective
subcomponent. The subcomponent is determined using the bindings: if the
original request was on the (external server) interface i1 and This.i1 is bound
to N.i2 then the request will be sent to the interface i2 of the subcomponent
N . The composite component records in its request queue that the result for
the future f is in fact the newly created future f ′.

CompositeCall: This rule explains how a call received by a subcomponent
is emitted on the external client interface onto the context of the enclosing
component. This rule corresponds to the Call rule for the primitive compo-
nents. The first request f, v received on (internal server) interface i1 is sent
on the matching external client interface (with same name). This call will be
matched against a Comm rule that will enqueue this request. A fresh future
f ′ is found for this new request and the composite records that the value of
f is in fact the future f ′.

Figure 11 illustrates a sequence of rules allowing a client component Cli to send,
on interface c, a request to the interface s of a component Srv; Srv is encapsu-
lated in a composite component Cmp, thus the request transits by the interface
i. The first reduction sends a request from Cli to the composite, then the re-
quest is delegated to Srv by the composite, with a new future f ′ aliased to f .
Finally, Cli obtains a direct reference to future f ′ while Srv starts serving the
request. The original configuration is of the following form (for the sake of expo-
sition, we only mention internal states of primitives, and interface descriptions
are omitted).

Comp[∅, Cli �→ Prim[{c}, sc
0],

Cmp �→ Comp[{i}, Srv �→ Prim[{s}, ss
0], {[This.i, Srv.s]}, s0]

{[Cli.c, Cmp.i]}, s′0]

5 Tools/Middleware

This section presents component management tools which are necessary to pro-
vide adaptation mechanism for distributed components. Proving the correctness
of these tools could be a great opportunity for using the formal component
model presented in the preceding section. We focus below on two aspects: stop-
ping components, and component reconfiguration; tools for dealing with these
two aspects have been implemented in the ProActive/GCM component platform,
thus showing already their practical impact.
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5.1 Synchronisation and Stop

Fractal component lifecycle proposes a stop action, and a stopped state. Existing
frameworks for Fractal and GCM sometimes consider recursively stopping a
component assembly. However, safely stopping asynchronous components cannot
be addressed by stopping procedures proposed so far.

The paper [29] proposes an algorithm for stopping a GCM component system.
This algorithm recursively stops a component together with all its subcompo-
nents, and reaches a safe state where the component is idle and has no request
to serve. This algorithm defines as master component the component that re-
ceives initially a stop request. The algorithm is split into two phases. In the first
phase the master component marks all the requests it sends. This phase lasts
until all the requests, for which the master awaits the results, are marked. In the
second phase the master component blocks all the requests it receives (except
the marked ones) and the inner components continue processing their requests.
When all the components are idle, and all inner components have empty re-
quest queues, the components are stopped. Let us only focus here on the request
marking mechanism. This mechanism is useful to identify re-entrant requests,
and to avoid deadlocks involving such requests. Roughly, the algorithm relies on
a propagation of marks: each request sent during the service of a marked request
is marked too. The master does not propagate marks to its subcomponents; thus
only requests outside the master component are marked.

The formal component model presented in this paper allows, for example,
the identification of waiting states, of deadlocks, and of re-entrant requests; it
will allow us to reason about such requests, and to prove the correctness of
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the algorithm sketched above. This model also could verify properties on the
algorithm termination and the state of the components when stopped.

5.2 Adaptation and Reconfiguration

One of the main purposes of stopping a component system is to be able to recon-
figure it in order to adapt it to a different execution context, or to provide new
functionalities. Indeed, for safely reconfiguring a component system, a compo-
nent assembly must be in a state where components are stopped, and considered
as easily reconfigurable.

In Fractal and GCM, adaptation is performed by dynamic reconfiguration.
For adaptivity purposes, the GCM extends the reconfiguration capabilities of
Fractal to the non-functional aspects: the control part of a component can be
reconfigured dynamically. Moreover, the GCM specifies interfaces for the auto-
nomic management and adaptation of components. Autonomicity is the ability
for a component to adapt to situations without relying on the outside. By de-
fault, support for some autonomicity concerns are implemented by GCM com-
ponents with precise non-functional interfaces, but the model being extensible,
autonomic behaviour can easily be improved, adapted, and extended.

The formal model presented above enables reasoning on the interplay between
the component configuration and the communications. To our mind, it is a crucial
tool to prove correctness of autonomic adaptation procedures. Also, in order to
ease the development of adaptation procedures, we are developing a scripting
reconfiguration language that can be interpreted in a distributed manner, and
that can synchronise with communication events or component state.

6 Conclusions

In this paper we presented a model for asynchronous components. Compared
to existing component models and language specifications, our work is focused
on the interaction between the programming model and the component model.
More precisely, we defined the structure of our component model: it relies on the
notion of interfaces, separation of non-functional and functional aspects, hierar-
chy, and bindings transmitting communications. Then, we presented a coherent
model for allowing components to communicate asynchronously through a re-
quest/reply mechanism, but also through the use of futures. The semantics of
our model is flexible enough to allow for multiple implementations and design
choices, like multi-threaded versus mono-threaded components, choice of a fu-
ture update strategy, choice of one of several local programming models, etc. On
the contrary the interplay between hierarchy, asynchrony, and communication is
quite precisely defined.

The definition of the component model’s semantics is precise enough for a
formal specification of this semantics to be written, for example in a theorem
prover like Isabelle/HOL. We expect this formal specification to allow us to prove
properties on component systems, management protocols for those components,
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or design choices of the different implementations of the model. Such a frame-
work will provide a consequent step toward safe compositions of components,
design of verification frameworks for asynchronous components, and safety of
their management procedures.

On the other hand, we have taken care that the component model stays suffi-
ciently abstract to be refined to different execution models. Since our component
model abstracts from a concrete execution model it can be instantiated to oth-
ers. One suitable execution model could be ASP, but also Creol is a candidate
that could thereby be extended by hierarchical components. Even in the context
of SOA, our model could enable SCA to be extended with a precise semantics
for asynchronous communications.
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Abstract. Computer Grids offer large-scale infrastructures for computer inten-
sive applications, as well as for new service-oriented paradigms. Programming
such applications brings a number of difficulties due to asynchrony and dynam-
icity, and require specific verification methods. We define a behavioural model
called pNets for describing the semantics of distributed component systems.
pNets (for parameterized networks of synchronised automatas) are hierarchical
assemblies of labelled transition systems, with data parameters expressing both
value-passing and parameterized topology. We use pNets for building models for
Fractal (hierarchical) and GCM (distributed) components. We present the Ver-
Cors platform, that implements these model generation procedures, but also ab-
straction mechanisms and connections with the model-checking engines of the
CADP toolset.

1 Introduction

Software components [1] are the de facto standard in many information technology
industries. Component-based frameworks and languages are seen as the natural succes-
sors of object-oriented languages for obtaining applications which are more modular,
composable and reusable. Many solutions have been proposed during the past 10 years,
with EJB being certainly the most well-known and used one. However, these promises
are often considered from a software engineering perspective and are at best only em-
pirically verified. We want to build development methods and environments that allow
application designers to specify the external behaviour of software components in a
black-box fashion, assemble them to build bigger components while guaranteeing that
the parts will behave smoothly together, and check that such an assembly implements
the overall behaviour expected by the user requirements. Beyond interoperability be-
tween components constituting large modern systems, e.g. in grid computing appli-
cations, or in large scale distributed software services, raise additional problems. In
particular distributed and asynchronous components require more complex behaviour
models, and the complexity of the analysis is higher. The analysis of properties related
with reconfiguration and dynamicity brings new aspects to check, e.g. defining evolving
systems, or checking substitutability.

Among the existing component models, Fractal [2] provides the following crucial
features: the explicit definition of provided/required interfaces for expressing depen-
dencies between components; a hierarchical structure allowing to build components
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by composition of smaller components; and the definition of non-functional features
through specific interfaces, providing a clear separation of concerns between functional
and non-functional aspects. The Grid Component Model (GCM) [3], extends Fractal by
addressing large scale distributed aspects of components, providing structures for asyn-
chronous method calls with implicit futures1, and NxM communication mechanisms.
Both Fractal and GCM models provide means to specify and implement management
and reconfiguration operations.

The objective of our work is to provide tools to the programmer of distributed com-
ponents systems in order to verify the correct behaviour of programs. We require those
tools to be intuitive and user-friendly to be usable by non-experts of formal methods.
To this end we build an analysis toolset, including graphical editors for defining the ar-
chitecture and the behaviour of components, and state-of-the-art model-checking tools.
At the heart of this platform lie the behaviour semantics of our component systems, and
the model generation tools that are the subject of this article. In this context the choice
of the behavioural model is crucial: it has to be compact, expressive enough to represent
the behavioural semantics, but not too much, that could prevent us to map the models
to the input formats of automatic verification tools. Some recent approches, for exam-
ple π-ADL [4], are using formalisms based on the π-calculus, others, like μ-CRL [5]
or STS [6] use algebraic descriptions of data domains. In both cases, such foundations
give them powerful primitives for describing dynamic or mobile architectures, but also
strong limitations for using automatic verification.

Most established approaches, on the other side, are using intermediate formats with
data, that can be unfolded to finite-state structures. This is the case e.g. for the CADP
toolbox [7], or for the SPIN model-checker and its specification language PROMELA,
whose data values are instantiated (on bound domains) by the state exploration
engines.

Our choice is to use an intermediate approach with a compositional semantic model
including data called pNets [8]. It is different from previous approaches in the sense that
we want a low-level model able to express various mechanisms for distributed systems,
and that we do not limit ourselves to finite systems: we shall be able to define map-
pings to various classes of systems, finite or not. At the same time, the structure of our
parameterized model is closer to the programming language or the specification lan-
guage structure. Consequently, parameterized models are more compact, and easier to
produce, than classical internal models. Typically, our pNets model is lower level than
Lotos and Promela, but more flexible for expressing different synchronisation mecha-
nisms. On the other hand, it has no recursive constructs, in order to better control the
finiteness of encodings.

The second half of this work is a set of software tools called VerCors [9] for speci-
fying and verifying GCM component systems. In the middle term, it will include both
a textual and a graphical specification languages, unifying the architectural and the be-
havioural description of components [10]. It provides tools for defining abstractions
of the system, and for computing their behaviour model in term of pNets. Finally it

1 This is in contrast with languages like MultiLisp or Creol, where futures are explicit in the
code. Having implicit futures in GCM/ProActive allows us to automatically provide optimal
asynchrony.
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has bridges with the CADP verification toolset, allowing efficient (explicit) state-space
construction, and model-checking.

In the next section we describe the context of this work, namely the formalisms and
models that we use for hierarchical distributed components: Fractal and GCM, and the
communication mechanisms of the GCM implementation ProActive. In section 3 we
recall the definitions of the parameterized networks of synchronised automatas (pNets),
and we give the definition of the behavioural semantics of distributed components, start-
ing with active objects, then modelling hierarchical components, Fractal components,
and finishing with the specific features of GCM components, including multicast and
gathercast interfaces, and first-class futures. In section 4, we describe the VerCors spec-
ification and verification platform, with a glimpse at its architecture, a description of
the graphical editors, of the model generation tool, and some results obtained with the
platform.

2 Context: Asynchronous Component Model, Active Objects,
Grids

2.1 ASP and Active Objects

The ASP calculus [11] is a distributed object calculus with futures featuring:

– asynchronous communications: by a request-reply mechanism,
– futures, that are promised replies of remote method invocations,
– sequential execution within each process: each object is manipulated by a single

thread of control,
– imperative objects: each object has a state.

An essential design decision is the absence of sharing: objects live in disjoint activ-
ities. An activity is a set of objects managed by a unique process and a unique active
object. Active objects are accessible through global/distant references. They commu-
nicate through asynchronous method calls with futures. A future is a global reference
representing a result not yet computed. The main result consists in a confluence property
and its application to the identification of a set of programs behaving deterministically.
This property can be summarized as follows: future updates can occur at any time; ex-
ecution is only characterized by the order of requests; programs communicating over
trees are deterministic.

From the proposed framework, we have shown a path that can lead to a component
calculus [12]. It demonstrates how we can go from asynchronous distributed objects to
asynchronous distributed components, including collective remote method invocations
(group communications), while retaining determinism.

The impact of this work on the development of the ProActive library on one hand,
and on the building of the behavioural semantics on the other hand, is probably one of
our strongest achievements.

2.2 Fractal and GCM

Fractal [2] is a flexible and extensible component model. Its main features are: a hier-
archical structure, in which everything can be built from components (including bind-
ings and membranes), a generic description of non-functional concerns (e.g. life-cycle,
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binding, attribute management) through specific control interfaces, a strong separation
of concerns between functional and non-functional aspects, a well-defined architecture
description language (ADL), and several implementations [13, 14].

The Grid Component Model (GCM) [3] is a novel component model that has been
defined by the European Network of Excellence CoreGrid and implemented by the EU
project GridCOMP. The GCM is based on Fractal, and extends it to address Grid concerns.

Grids consider thousands of computers all over the world; programming Grids
involve dealing with latency in communications between computing nodes, and opti-
mizing whenever possible the parallelism of the computation. For that, GCM extends
Fractal using asynchronous method calls. Grid applications usually have numerous sim-
ilar components, so the GCM defines collective interfaces which ease design and im-
plementation of such parallel components by providing synchronisation and distribution
capacities. There are two kinds of collective interfaces in the GCM: multicast (client)
and gathercast (server).

(a) Content of a composite component (b) Membrane of a component

Fig. 1. GCM components

One to N and N to one interfaces. Typically a multicast interface (such as the interface
Multi in Fig. 1(a)) is bound to the service interfaces of a number of parallel compo-
nents, and a method call toward this interface is distributed, as well as its parameters,
to several or all of them. GCM provides various policies for the request parameters,
that can be broadcast, or scattered, or distributed in a round-robin fashion; additional
policies can be specified by the user. The computation on the remote components will
eventually terminate and send back, asynchronously, their results; Then the results of
the invocations have to be assembled back with different possible policies (gather the
results in a list, return the sum of the results, compute the maximum, or just pick the
first that arrives and discard others...).

Symmetrically, gathercast interfaces (e.g. Gather in Figure 1(a)) are bound to a num-
ber of client components, and various synchronisation policies are provided. This corre-
sponds to synchronisation barriers in message-based parallel programming, though here
you may also have to specify how you redistribute the result on the client interfaces.

This treatment of collective communications provides a clear separation of concern
between the programming of each component, and the management of the application
topology: within a component code, method calls are addressed simply to the compo-
nent local interfaces. The management of bindings of clients (on a gathercast interface)
or services (on a multicast interface) is separated from the functional code.
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Membranes and Non-functional interfaces. The component’s non-functional (NF) as-
pects are handled by the component’s membrane. The membrane is structured as a
component system defining so-called NF components. Moreover, the GCM specifies in-
terfaces for the autonomic management and adaptation of components. The membrane
is also in charge of controlling the interaction between the component’s content and the
environment: the membrane decides how requests entering or leaving the component
are to be treated.

The simplest binding one can define in a membrane is a binding from an external
interface to an internal interface (e.g server interface I to internal interface Multi in
Figure 1(b)): requests will simply be forwarded to a subcomponent server interface. But
a NF component called Interceptor can be inserted between an external and an internal
functional interface that will perform some non-functional processing (e.g. encrypting,
logging, etc); an example is the Interceptor component between interfaces IR1 and
IR2 in Fig. 1(b)).

More complex NF components can be used for introspection, reconfiguration, or
autonomic management. Those will typically lie between the external and internal NF
interfaces of the composite component.

Architecture. The Architecture Description Language (ADL) of both Fractal and
the GCM is an XML-based format, that contains both the structural definition of the
system components (subcomponents, interfaces and bindings), and some deployment
concerns. Deployment relies on virtual nodes that are an abstraction of the physical
infrastructure on which the application will be deployed. The ADL only refers to an
abstract architecture, and the mapping between the abstract architecture and a real one
is given separately as a deployment descriptor.

The Fractal/GCM ADL descriptions are static. Dynamicity of component applica-
tions, and the ability to reconfigure them, is gained through specific operations of their
APIs. Several aspects of GCM, including its ADL, API, deployment description, appli-
cation resources description, are now standardized by the European Telecommunication
Standards Institute ETSI [15].

2.3 A GCM Reference Implementation: GCM/ProActive

The GCM reference implementation is based on ProActive [16], an Open Source mid-
dleware implementing the ASP calculus. In this implementation, an active object is
used to implement each primitive component and each composite membrane. Although
composite components do not have functional code themselves, they have a membrane
that encapsulates controllers, and dispatches functional calls to inner subcomponents.
As a consequence, this implementation also inherits some constraints and properties
w.r.t. the programming model:

– components communicate through asynchronous method calls with transparent fu-
tures (place-holders for promised replies): a method call on a server interface adds
a request in the server’s request queue;

– communication semantics use a “rendez-vous” ensuring the causal ordering of
communications;
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Subcomponents C

runActivity()

C.sEI
QueueC

C.cEI
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ELF EBC

C.sIEC.cIE

SubCk.sEI SubCk.cEI

SubCk

Fig. 2. ProActive composite component

– synchronisation between components is ensured with a data-flow synchronisation
called wait-by-necessity: futures are first order objects that can be forwarded to any
component in a non-blocking manner, execution is only blocked if the concrete
value of the result is needed (accessed), while the result is still unavailable;

– there is no shared memory between components, and a single thread is available
for each component.

Each primitive component is associated with an active object written by the program-
mer. Some methods of this active object are exported as the methods of the compo-
nent’s interfaces. The active object managing a composite is generic and provided by
the GCM/ProActive platform; it forwards the functional requests it receives to its sub-
components. Primitive component functionalities are addressed by the encapsulated ac-
tive object. For primitive components, it is possible to define the order in which requests
are served by writing a specific method called runActivity(); we call this the service
policy. If no runActivity() is given, a default one implements a FIFO policy (excepted
for non-functional requests, see below). Composite components always use a FIFO pol-
icy. Note that futures create some kinds of implicit return channels, which are only used
to return one value to a component that might need it.

Life-Cycle of GCM/ProActive Components. GCM/ProActive implements the mem-
brane of a composite as an active object, thus it contains a unique request queue and
a single service thread. The requests to its external server interfaces (including con-
trol requests) and from its internal client interfaces are dropped to its request queue. A
graphical view of a composite is shown in Fig. 2.

Like in Fractal, when a component is stopped, only control requests are served. A
component is started by invoking the non-functional request: start(). Because threads
are non-interruptible in Java, a component necessarily finishes the request it is treating
before being stopped. If a runActivity() method is specified by the programmer, the
stop signal must be taken into account in this method.

Note that a stopped component will not emit functional calls on its required inter-
faces, even if its subcomponents are active and send requests to its internal interfaces.
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2.4 Example

We will use the example in Fig. 3 to illustrate the various aspects of this paper. It is
formed from one composite component B and three primitive components A, C, D.
Component B has a number of subcomponents, and requests on its server interface S are
dispatched to them through the multicast interface MC. Component D has two server
interfaces W and R, and is supposed to host some shared resource (e.g. a database);
its role in the example is to show the possible race-conditions or deadlocks that could
arise, e.g, if a request on interface W has a side effect on the shared resource. Com-
ponent A plays the client role, and will send requests to B, creating futures containing
their promised responses, and transmitting these futures as parameters to requests to C.
Component B also has two non-functional interfaces NF1 and NF2 that may be used
e.g. to reconfigure its content.

Fig. 3. Running example

3 Semantic Model

In this section, we recall the main definitions of the parameterized Networks of synchro-
nised automatas (pNets, [8]). We use pNets as a general low level behaviour model for
encoding different variants of our languages or component models. We start with the
formal definitions of the model. Then we use pNets to define the behavioural seman-
tics of two basic and important formalisms in the domain of distributed components: the
ProActive “Active Objects” on one hand, and Fractal hierarchical components on the
other hand (both examples are excerpts from [8]). Finally, we give an encoding for GCM
components, including the management of request queues in primitives and composite
components, and the encoding of future proxies, in presence of first class futures.

3.1 Parameterized Networks of Synchronised Automata (pNets)

The following definitions are taken from [8]. We start with classical labelled transi-
tion systems and structure them using synchronisation networks. Then we extend these
definitions to include parameters, both as arguments in communication and in state defi-
nitions (à la “value-passing CCS”), and in synchronisation operators, obtaining a model
powerful enough to describe parameterized and dynamic topologies.
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We model the behaviour of a process as a Labelled Transition System (LTS) in a
classical way [17]. The LTS transitions encode the actions that a process can perform
in a given state.

Definition 1. LTS. A labelled transition system is a tuple 〈S , s0, L,→〉 where S (possi-
bly infinite) is the set of states, s0 ∈ S is the initial state, L is the set of labels,→ is the

set of transitions :→⊆ S xLxS . We write s
α−→ s′ for (s, α, s′) ∈→.

We define Nets in a form inspired by the synchronisation vectors of Arnold and Nivat
[18], that we use to synchronise a (potentially infinite) number of processes.

In the following definitions, we frequently use indexed vectors: we note x̃I the vector
〈..., xi, ...〉 with i ∈ I, where I is a countable set.

Definition 2. Network of LTSs.2 Let Act be an action set. A Net is a tuple 〈AG, J, ÕJ,
−→
V 〉

where AG ⊆ Act is a set of global actions, J is a countable set of argument indexes, each

index j ∈ J is called a hole and is associated with a sort O j ⊂ Act.
−→
V = {−→v } is a set of

synchronisation vectors of the form: −→v = 〈ag.α̃I〉 where ag ∈ AG, I ⊆ J∧∀i ∈ I, αi ∈ Oi

Fig. 4 gives a naive representation of the Net representing component B, with four sub-
components. Here the semantics has been configured so that call requests are going
through a MC policy component, and are made visible (to the next level) as
“?call(m,args)” for requests received by B, and “B[i].call(m,args)” for the requests
dispatched to the respective B[i]. As an example, the second synchronisation vector in−→
V reads as: action “!call(m,x1)” of the first hole (here MC) can occur synchronised with
action “?call(m,x1)” of B1, and the corresponding global action is “B[1].call(m,x1)”.
There should be one such vector for each possible value of x1.

Note that the specific syntax (and meaning) of the actions is not important here: it
depends on the specific formalism that has been translated into Nets. The synchronisa-
tion vectors are the only means that we use to express the synchronisation mechanisms.
This way we can express traditional message passing (matching emission/reception),
as well as other mechanisms like one to N synchronisation. In this first non parameter-
ized version, we may need a infinite number of vectors to express the synchronisations
occuring in a Net.

Definition 3. A System is a tree-like structure whose nodes are Nets, and leaves are
LTSs. At each node a partial function maps holes to corresponding subsystems. A
system is closed if all holes are mapped, and open otherwise.

Definition 4. The Sort of a system is the set of actions that can be observed from
outside the system. It is determined by its top-level node, with:

Sort(〈S , s0, L,→〉) = L Sort(〈AG, J, ÕJ,
−→
V 〉) = AG

2 This definition is simpler than the one we gave in [8], from which we have removed the trans-
ducer element in the pNet structure. It is possible to obtain an expressiveness similar to pNets
with transducers by adding an extra argument to each pNet, and specifying this “Controller”
as an argument pLTS.
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B2

B3

B1
B

MC

{call(m,x1),
resp(y1)}

{call(m, args)
resp(val)}

{call(foo())
resp(z)}

where B-3-Net = 〈AG, J, ÕJ ,
−→
V 〉 with:

AG = {?call(m,args), !resp(val), B1.call(m,x), ...}
J = {MC, B1, B2, B3}
OMC = {?call(m,args), !resp(val), !call(m,x1), ...}
OB1 = OB2 = OB3 = {?call(m,x), !resp(val),
!call(foo()), ?resp(z)}
−→
V ={
〈 ?call(m,args), ?MC.call(m,args), -, -, -〉
〈 B[1].call(m,x1), !B1.call(m,x1), ?call(m,x1), -, -〉
〈 B[2].call(m,x2), !B2.call(m,x2), -, ?call(m,x2), -〉
... }

Fig. 4. Example of Net

Next we enrich the above definitions with parameters in the spirit of Symbolic Tran-
sition Graphs [19]. We start by giving the notion of parameterized actions. We leave
unspecified here the constructors and operators of the action algebra, they will be
defined together with the encoding of some specific formalism.

Definition 5. Parameterized Actions. Let P be a set of names, LA,P a term algebra
built over P, including at least a distinguished sort Action, and a constant action τ. We
call v ∈ P a parameter, and a ∈ LA,P a parameterized action, BA,P the set of boolean
expressions (guards) over LA,P.

Definition 6. pLTS. A parameterized LTS is a tuple 〈P, S , s0, L,→〉 where:

• P is a finite set of parameters, from which we construct the term algebra LA,P,
• S is a set of states; each state s ∈ S is associated to a finite indexed set of free

variables fv(s) = x̃Js ⊆ P,
• s0 ∈ S is the initial state,
• L is the set of labels,→ the transition relation→⊂ S × L × S

• Labels have the form l = 〈α, eb, x̃Js′:= ẽJs′ 〉 such that if s
l−→ s′, then:

• α is a parameterized action, expressing a combination of inputs iv(α) ⊆ P
(defining new variables) and outputs oe(α) (using action expressions),
• eb ∈ BA,P is the optional guard,
• the variables x̃Js′ are assigned during the transition by the optional expressions

ẽJs′

with the constraints: fv(oe(α)) ⊆ iv(α)∪ x̃Js and fv(eb)∪ fv(ẽJs′ ) ⊆ iv(α)∪ x̃Js ∪ x̃Js′ .

Example: Fig. 5 represents a possible behaviour of the body of component A from
our example. The action alphabet used here reflects the active object communication
schema: each remote request sent by the body has the form “!call( f ,M( ˜arg))”, where
M is the method name, eventually with parameters ˜arg, and f is the identifier of the fu-
ture proxy instance. Thus in this example, the action expressions are built from variables
f and val, from the constants M1 and M2, and from the binary action constructors call
and getValue. These actions allow the component to perform a remote method call, and
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(f,val)
?getValue

?stop

!call

!call
(f,M2)

(f,M1)

?getValue
(f,val)

?start

A-LTS = 〈P, S , s0, L,→〉
with:

P = { f , val}
S = {si}, i ∈ [0:3]
L= { ?start,?stop,!call( f ,M1),!call( f ,M2),?getValue( f ,val)

}
→ such that:

s0 : ?start → s1,

s1 : ?stop → s0,

s1 : !call( f ,M1) → s2,

s2 : ?getValue( f ,val) → s1

s3 : !call( f ,M2) → s3

s4 : ?getValue( f ,val) → s1

Fig. 5. Behavioural model of component A

access the return value resp.; more details on how the component communicates with
its environment are given later in Fig. 7.

Now, we define pNets as Nets where the holes can be indexed by a parameter, to
represent (potentially unbounded) families of similar arguments.

Definition 7. A pNet is a tuple 〈P, pAG, J, p̃J, ÕJ,
−→
V 〉 where: P is a set of parameters,

pAG ⊂ LA,P is its set of (parameterized) external actions, J is a finite set of holes, each
hole j being associated with (at most) a parameter p j ∈ P and with a sort O j ⊂ LA,P.−→
V = {−→v } is a set of synchronisation vectors of the form: −→v = 〈ag, {αt}i∈I,t∈Bi〉 such that:
I ⊆ J ∧ Bi ⊆ Dom(pi) ∧ αi ∈ Oi ∧ fv(αi) ⊆ P

Explanations: Each hole in the pNet has a parameter p j, expressing that this “parame-
terized hole” corresponds to as many actual arguments as necessary in a given instan-
tiation of its parameter (we could have, without changing the expressiveness, several
parameters per hole). In other words, the parameterized holes express parameterized
topologies of processes synchronised by a given Net. Each parameterized synchroni-
sation vector in the pNet expresses a synchronisation between some instances ({t}t∈Bi )
of some of the pNet holes (I ⊆ J). The hole parameters being part of the variables of
the action algebra, they can be used in communication and synchronisation between the
processes.

Fig. 6 is the parameterized version of the pNets for component B, in which the second
hole (B) has a parameter n. The second synchronisation vector in the examples synchro-
nises one (parameterized) action of the first hole MC, with an action (?call(m,x)) of the
nth instance of B. The comparison with the instantiated version in Fig. 4 shows clearly
the benefits of parameterization, in term of compactness, and of generality. Note that
this is still a very simplified and naive version of the pNet for B, the full semantics of
GCM composite components will be given later.

A pNet by itself is stateless, but it has state variables that encode some notion of
internal memory that can influence the synchronisation. pNets have the nice property
that they can be easily represented graphically, e.g. using the Autograph editor [20].
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B[n]

B

MC
resp(y)}

{call(m,x),

{call(foo()),
resp(z)}

!resp(val)}
{?call(m, args)

where B-param-Net = 〈P, pAG, J, p̃J , ÕJ ,
−→
V 〉 with:

P = {n, args, val, x}
pAG = {?call(m,args), !resp(val), B[n].call(m,x), ...}
J = {MC, B}
pMC = {}, pB = {n}
OMC = {?call(m,args), !resp(val), !call(m,x), ?resp(y)}
OB = {?call(m,x), !resp(val), !call(foo()), !resp(z)}
−→
V ={
〈 ?call(m,args), ?call(m,args), - 〉
〈 B[n].call(m,x), !B(n).call(m,x), n&?call(m,x)〉

... }

Fig. 6. Example of a pNet

Building hierarchical pNets. Once a pNet hierarchical system is built, you need
operations to transform it, and, at least:

– a product operation for reducing a pNets hierarchy to a flat pLTS,
– a way of instantiating a parameterized pNet system with respect to a given domain

for one or several of its parameters.

In [8], we gave the definition of pNets instantiation, and we defined the product opera-
tion only for fully instantiated systems. This is enough for instantiating a pNet system
for some finite abstraction of the parameter domains, and building the global state-space
of the system.

3.2 Model Generation for Active Objects

The first application of pNets that we have published was for defining the behavioural
semantics of active objects of the ProActive library. In [21, 22] we presented a method-
ology for generating behavioural models for active objects (AOs), based on static anal-
ysis of the Java/ProActive code. The pNets model fits well in this context, and allows
us to build compact models, with a natural relation to the code structure: we associate
a hierarchical pNet to each active object of the application, and build a synchronisation
network to represent the communication between them.

Fig. 7 illustrates the structure of the pNets expressing an asynchronous communi-
cation between two active objects. A method call to a remote activity goes through a
proxy, that encodes the creation of the local future object, while the request goes to the
remote request queue. Note that for each program point pp corresponding to a remote
method call in the source code, a series of futures, indexed by a counter c, can be cre-
ated. The request arguments include the references to the caller and callee objects, but
also to the future. Later, the request may eventually be served, and its result value will
be sent back and used to update the future value.

This method is composed of two steps: first the source code is analysed by classical
compilation techniques, with a special attention to tracking references to remote objects
in the code, and identifying remote method calls. This analysis produces a graph includ-
ing the method call graph and some data-flow information. The second step consists in
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Client Role Server Role

Proxy[pp].

?response
(val)

getValue(val)

!getValue(val)
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response(c, val)

?Counter[c].call

!Counter[c].

?Proxy[pp].
[c]

(〈pp, c〉,M( ˜arg))

Proxy[pp].
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getValue(c, val)

request(c)

?Counter[c].
response(val)

?request

?caller.request(f,M( ˜arg))

(caller, f,M( ˜arg))

!caller.response(f, val)

!o.request(〈pp, c〉,M( ˜arg))

!o.request

Fig. 7. Communication between two Active Objects

applying a set of structured operational semantics (SOS) rules to the graph, computing
the states and transitions of the behavioural model.

The construction of the extended graphs by static analysis is technically difficult,
and fundamentally imprecise. Imprecision comes from classical reasons (having only
static information about variables, types, etc), but also from specific sources: it may
not be decidable statically whether a variable references a local or a remote object.
Furthermore, the middleware libraries include a lot of dynamic code generation, and
the analysis would not be possible for Java code relying on introspection, classically
used to manage some types of “dynamic topologies” in ProActive.

3.3 Model Generation for Hierarchical Components

Going from active objects to distributed and hierarchical components allows us to gain
precision in the generated models. The most significant difference is that required inter-
faces are explicitly declared, and active objects are statically identified by components,
so we always know whether a method call is local or remote. Moreover, the pNets’s
formalism expresses naturally the hierarchical structure of components, and will allow
to scale up better, using compositional verification methods,

The pNet construction here may apply to any kind of hierarchical component model
that features:

– Components with a set of interfaces and a content.
– Interfaces typed by a set of methods with their signature.
– Bindings between sibling subcomponents, or between a component and one of its

subcomponent.
– Composite content composed of subcomponents, internal interfaces, and bindings.
– Empty content for primitive components.

We leave here undefined the code of a primitive component. It will depend on the
framework, and will be used to generate a pLTS representing the primitive behaviour.
We also leave undefined the data domains used for specifying indexes within the
parameterized structure, and for building the arguments of the method calls.

From the information in a Component structure, it is straightforward to generate a
pNet representing the communication between the interfaces and the subcomponents,
from the following elements:
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• the pNet has one hole for each (parametric) subcomponent;
• the global actions pAG and hole sorts ÕJ of the pNets are sets of actions of the form

[!|?]Ci.Itf.M(−−→arg) for invoking/serving a methodM on the interface Itf.
• for each binding, and for each method in the signature of the source interface of

the binding, it has two parameterized synchronisation vectors, one for sending the
request, and one for receiving the response.

3.4 Hierarchical Components +Management Interfaces = Fractal

In the Fractal model, and in Fractal implementations, the ADL describes a static view
of the architecture (used to build the initial component system through a component
factory), and non-functional (NF) interfaces are used to control dynamically the evolu-
tion of the system. In this section we consider the core of the Fractal model, containing
the hierarchical structure from the previous section, plus the basic non-functional inter-
faces and controllers, namely the Life-Cycle Controller (LF) and the Binding Controller
(BC). We defined the behavioural semantics of Fractal applications in terms of pNets,
giving the overall structure of the pNets encoding primitive and composite components,
and the pLTS defining the LF and BC controllers.

A life controller pLTS (see Fig. 8) is attached to each component. Control actions
(start/stop) are synchronised with the parent component and with all of its subcom-
ponents. Status actions (started/stopped) are synchronised with the component’s func-
tional behaviour and with the BC, because the BC may only allow rebinding of interfaces
when stopped.

LF

?start ?stop

!stopped
?start !started

!stopped !started

?stop

BC

?bind(Ci.Itf) ?unbind(Ci.Itf)

?bind(Ci.Itf)

!unbound

?unbind(Ci.Itf)

!bound(Ci.Itf)

Ci.Itf

?bind(Ci.Itf)
→ Ci.Itf

?unbind(Ci.Itf)

!bound(Ci.Itf)

?M( ˜arg)

!unbound

!Ci.Itf.M( ˜arg)

!E

Fig. 8. pLTS of Fractal Life Cycle and Binding Controllers

A binding controller pLTS (see Fig. 8) is attached to each interface. Control actions
(bind/unbind) are synchronised up to the higher level (Fractal defines a white-box defi-
nition for NF actions) and with the affected interface; status actions (bound/unbound) are
used to allow method callsM( ˜arg), to forward the call to the appropriate bound inter-
face and to signal errors. The latter is a distinguished action E(unbound,C, It f ), visible
to the higher level of hierarchy, and triggered whenever a method call is performed over
an unbound interface.

Fig. 9 sketches the structure of the synchronisation of a component with its subcom-
ponents. In this drawing, the behaviour of subcomponents is represented by the box
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errors & visibles

Interceptor
!start/stop

methods M( ˜arg)
(visible ∨ τ )

methods M( ˜arg)
(visible ∨ τ )

SubCk

E1

M( ˜arg)

(1)

(3)

(2)

sEIscnp

cIInp

M( ˜arg) M( ˜arg)

sIInr

sEInp

cEInr

E2

M( ˜arg)
M( ˜arg)

cEIscnr

B

M( ˜arg)

?bind/unbind(self.cIInp, SubCk.sEIscnp)

(1)!bind/unbind(self.cIInp, SubCk.sEIscnp)

(3)!bind/unbind(SubCk.cEIscnr, self.sIInr)

(2)!bind/unbind(SubCk.cEIscnr, SubCj.sEIscnr), k �= j

!bind/unbind(cEInr, Cj.Itf)

?bind/unbind(self.cEInr, Cj.Itf) ∨
?start/stop

Fig. 9. Synchronisation pNet for a Fractal Composite Component

named SubCk. For each interface defined in the component’s ADL description, a box
encoding the behaviour of its internal (cII and sII) and external (cEI and sEI) views is
incorporated. The dotted lines inside the boxes indicate a causality relation induced by
the data flow through the box. Primitive components have a similar automaton without
subcomponents and internal interfaces.

3.5 Model Generation for GCM

In Figure 10, we show the behavioural model of a GCM primitive component. There is
a pLTS for dealing with the component’s life-cycle (LF), and a pLTS for serving func-
tional and non-functional requests (Service). The behavioural model for a composite
component is an instance of the model of Figure 9, in which the interceptor itself is a
primitive component.

Service implements the treatment of control requests. It interacts with the LF con-
troller through the !start and !stop actions. The action !start fires the process rep-
resenting the runActivity() method in the Body, and at the same time changes the LF
state to “started”. The !stop action is more complicated: it is sent by Service to the
Body, but a running body may not be able to stop immediately upon reception of a stop
request (because Java is non-interruptible). If the service policy of the component is
the default FIFO, this stop request will be executed when all previous requests will be
served. If the developer has specified his own runActivity() method, she/he has the re-
sponsibility for testing the presence of a stop request, and terminate the runActivity()
method. At this point the !stop action will be transmitted to the LF controller, while
the Body will be back in its initial state, ready for receiving a !start action.

The Queue pNet encodes an unbounded Fifo queue, containing requests composed
by a method name and its arguments, and a selection mode (typically oldest or younguest
request matching a predicate). It is always ready to perform any of the three actions
numbered (1) to (3) in Fig. 10:
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– (1) serve the first functional method obeying the selection mode;
– (2) serve a control method only at the head of the queue;
– (3) serve only control methods in FIFO order, bypassing the functional ones.

Depending on the state of the life-cycle controller, these actions may or may not
synchronise with the Body and the Service pNets. This is encoded through the emission
of the !started or !stopped actions by the LF pNet.

LF

Service

Body
Proxy

Queue

?serve

!stop

!start

!bind/unbind ( ˜arg)

(bind/unbind ( ˜arg))

!started

!stopped

?serve
(start/stop)

!start/stop

started

(1) !serve∗
(f,M( ˜arg))

(NF( ˜arg))
(2) !serveFirst

(3) !serveFirstNF
(NF( ˜arg))

?call(f,M( ˜arg)) !bind/unbind ( ˜arg)

!stop

!cItf.call(f2,m,args)

?resp(f2, x)
getValue(f2, x)

!f.resp(x)

?call(f,NF( ˜arg))

Fig. 10. Behavioural model of a primitive component

Modelling Collective Interfaces. Collective interfaces are responsible of distributing
and gathering request calls and responses. Therefore, we provide a particular kind of
proxy pLTS and N-ary synchronisation vectors encoding the control and data flow of
these interfaces.

In Fig. 3, the multicast interface MC broadcasts request calls to all B’s subcomponents
and gathers the results. We gave incomplete views of its pNet model, in Figures 4 and 6,
and we show now its complete model in Figure 11. The proxy Multicast( f) pLTS is in
charge of distributing the requests to all bound interfaces (in this case the server inter-
faces of B’s subcomponents). We use N-ary synchronisation vectors for broadcasting the
call (!call(args)). This ensures that the call will be enqueued in every subcomponent
at the same time. On the contrary, the response values of each component (?resp(val))
are sent back to the proxy individually and in any order. The proxy is in charge of gath-
ering the result values in a vector. Later, when all results have arrived (guaranteed by
the guard [rep==N]), it allows the component to access the result (!getValue( f,x)).

Modelling First-Call Futures. In Fig. 7 we depicted a simple proxy structure for
ProActive futures. In GCM, futures can be transmitted in the parameters of a method
call, or in the return value of a method call. In a naive approach, this requires know-
ing statically the flow of futures for each component because a future may have been
created locally or by a third-party. This requires the analysis of the complete system.
Instead, a better approach is to assign locally in each component an identifier fid for
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B1

B2

B3

Multicast(f)

!call
(m,x)

!getValue

?resp(2, y)

!call

?call
(m,args)

[rep==N]

(f,�x)

(m,x)

?resp(i,y)
→ x[i] = y; rep++

?resp(1, y)
!resp(y)

?resp(3, y)

Fig. 11. Behavioural model of a multicast interface

each future, which permits the construction of behavioural models independently from
the environment. Later, when the environment is known, the data-flow between com-
ponents will determine which identifiers represent the same future object. At this point,
these identifiers will be put in correspondence, and will be matched in the corresponding
synchronisation vectors. This approach yields a compositional model.

In [23] we have shown the technical details of how to address different scenarios
depending whether (i) a component transmits a locally created future; (ii) a component
receives a future; and (iii) a component receives a future and retransmits it to a third-
party. Here we define a new generic proxy that is able to deal with any combination
of the 3 scenarios above. The proxy model has additional transitions w.r.t. the model
presented in Figure 7 to allow futures to be transmitted. Figure 12 depicts this proxy3.

When the local component is the creator of the future, the proxy starts by a transition
?call. This allows the component to perform the remote remote call. In this case the
proxy will wait for the ?response transition to synchronise on the response value. Then
there is a transition !forward for transmitting the future value to all components (if
any) that may receive the future reference. Finally, the component body may access the
content of the future through a !getValue transition.

Complementarily, if the local component did not create the future, the first transition
of the proxy is a ?forward which receives the value of the future. Afterward, the proxy
behaves as in the previous case: it transmits the value to the remote components, and
allows the component to access the future value.

Example: Sending a future created locally as a method call parameter. In Figure 12,
the Client performs a method callM1 on Server-A, and creates a Proxy( f) for dealing
with the result. Then the Client sends the future to a third activity (Server-B) in the
parameter of the methodM2( f ) (this call should eventually create another future f2, but
we have omitted it for simplicity).

3 In this modelisation, we have an unbounded number of proxy instances, that live forever,
and don’t need to be terminated/destroyed. In the implementation, we may want to be more
efficient: based on static analysis, the implementation can decide that some futures have a
limited life-time, and that they can be destroyed or recycled at some point. Then we may want
to prove correctness of such an optimisation.
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Client

Server−B

Server−A

Body
!forward
(val)

?forward
(val)

!getValue
(val)

Queue Body

(f,val)
!forward

(x, v)
?forward

!call(f,M1)

Proxy(f)

?response
(val)

!call(M2(f))

(f,val)
getValue

call

?call

Proxy(x)
getValue(x, v)

(M2(f))

response(f,val)

call(f,M1)

serve(M2(x))

Fig. 12. Model for sending a future created locally as a method call parameter

From Server-B’s point of view, there is no way of knowing if a parameter is (or
contains) a future, so every parameter in a method call must be considered as a potential
future. Server-B includes, therefore, a proxy for dealing with the parameter x of the
method callM2.

This example concludes the construction of pNets models for GCM components, in-
corporating non-functional controllers, request queues, future proxies, and NxM com-
munication. In the current implementation, described in the next sections, the NxM
communication and the proxies for first class futures are not yet supported.

4 VerCors: A Toolset for Specification and Verification

In this section, we report on the tool developments ongoing within our VerCors plat-
form, implementing the behaviour model generation explained in the first half of this
paper. We start with a description of the current and middle term functionalities of the
platform, and we explain briefly the software tools used for the construction of the plat-
form. Then we give more details on the graphical editors, on the model generation tool,
and the model instantiation tools. Finally, we discuss some pragmatic aspects of various
verification strategies for using the tools, and give some figures on typical case-studies.

4.1 Vercors Architecture

Fig. 13 sketches the architecture of VerCors. This toolset is available as free software,
from our web site [9]. The platform has two goals: the verification of designs, and the
generation of safe-by-construction code. In the following description of the VerCors
modules, we shall indicate which functionalities are already available in the distribution
(V0.2, spring 2009), and which are still under construction.

Front-End. VCE (for Vercors Component Editor) is our graphical component editor
for designing components. It provides diagrams for defining the component architecture
(see Section 4.3), and diagrams for defining the component behaviour (see Section 4.4).
The latter is not yet available in V0.2. The Java Distributed Components specification
language (JDC) is a textual language more expressive than our graphical diagrams, but
is not yet implemented. It has been described in [10, 24].
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Fig. 13. The VerCors toolset

Model Generator. The model generator is the kernel of the platform. It is fed with
specifications given by VCE diagrams or JDC specifications. It includes tools for data
abstraction (from user-defined classes in JDC to Simple Types in pNets), tools for build-
ing the parameterized models from the specifications, and tools for manipulating and
instantiating pNets (see section 4.5).

Code Generator. Another central part of the platform will be the code generator that
is not (yet) currently developed. We will generate code capable of running under the
standard GCM specification. It has an architecture definition based on the GCM ADL
and Java code based on GCM / ProActive framework. The latter must be refined by the
user by filling-in the business code.

External Tools. Externally to the platform, we interact with model-checking engines
and with the GCM runtime. For now, VerCors uses the CADP toolset [25] for dis-
tributed state-space generation, hierarchical minimization, on-the-fly verification, and
equivalence checking (strong/weak bisimulation). The connection with CADP is done
through various textual input formats, that we generate from (fully instantiated) pNet
models. A better approach would be to use a more generic and standardized intermedi-
ate format, like the FIACRE format [26], that would allow us to represent directly many
(parameterized) constructs from the pNet model.

Verification is done by verifying regular μ-calculus formula encoding the user re-
quirements. In the future, we would like to specify these properties within JDC, which
would be subject to the same abstractions, and finally be translated into regularμ-calculus
formula. We also plan to use other state-of-the-art provers, and in particular apply so-
called “infinite system” provers to deal directly with certain types of parameterized
systems.

4.2 Building Tools Using Eclipse Meta-modelling Framework

From a practical point of view, VCE consists of graphical editors for specifying the
architecture and the behaviour of distributed components. It is built as an Eclipse plug-in
based on EMF and GEF.
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We use two similar meta-modelling frameworks, namely Topcased [27] and GMF.
EMF plays the role of the domain model whereas Topcased and GMF provide graphical
editors on top of the domain model. Unfortunately, Topcased is slowing down the devel-
opment of their meta-modelling framework and future support is uncertain. Therefore,
our early work on the architectural editor is generated by Topcased, but our more recent
work on the behavioural editor is generated by GMF.

Model validation is based on OCL (Object Constraint Language) [28] rules that val-
idate instances of the meta-model, and Java code that checks interface compatibility.
There are a minimum set of invariants that every model must hold. Complementary, an
additional set of rules cope with particular GCM implementations. All errors in the user
models are reported in the Eclipse environment.

There is also compatibility with GCM ADL files. VCE is able to import and ex-
port GCM ADL files, though this is limited to functional components since there is no
standard definition of NF components in the GCM ADL.

Fig. 14. Vercors Component Editor

4.3 Graphical Diagrams for Component Architecture

The kernel of the graphical language is a meta-model that reflects the GCM compo-
nent structure. As these graphical constructions have already been used throughout this
paper, we will only comment here on the main design choices that we have made.

At the top-level, the designer defines the root component that sets the services to be
provided and required by the application to the environment. A component has a content
that implements the business code, and a membrane that contains the non-functional
code.

Components in the content are called functional components and those in the mem-
brane are called non-functional (NF) components. The content is represented as a white
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rectangle inside the component, and the membrane is the grey area that surrounds the
content. Nevertheless, the content of primitive components is not depicted; therefore,
primitive components are distinguished as grey rectangles. We colour blue the “usual”
functional interfaces, and green the NF interfaces.

Interface icons are inspired by the ones used in UML component diagrams. Server
interfaces are drawn as filled circles (e.g. interfaces I, IA, ... in Figure 14), and client
interfaces as semi-circles (e.g. interfaces IC, IR, ... ). GCM’s collective interfaces are not
defined in UML and hence we adopted our own icons. Figure 14 also shows the icons we
provide for multicast and gathercast interfaces, labelled Multi and Gather respectively.
In the example, the interface Multi broadcasts incoming requests to components A and
B, and the interface Gather gathers and synchronises requests coming from interfaces
IC of components A and B towards the component C.

4.4 Diagrams for Behaviour Specification

The diagrams for behaviour specification have been defined in [29], but the diagram
editors are not yet available in the toolset. They are based on a variant of UML 2 State
Machine diagrams, with a number of State Machines used to specify respectively: the
component service policy, each service method and each local method, the interface
policies, etc.

4.5 Model Generation

The role of the ADL2N tool is to:

– build an abstract version of the component system, in which the user-defined Java
classes used for the parameter domains are abstracted by some Simple Types from
the pNets library.

– use the behaviour semantics defined in sections 3.3 to 3.5 to build the pNet model
for each piece of the system.

The first step of the model generation deals with data abstraction: data types in a JDC
specification are standard, user-defined Java classes, but they must be mapped to Simple
Types before generating the behavioural models and running the verification tools. The
result is an abstract specification with the same structure than the initial ADL.

In practice the user of ADL2N uses a GUI to specify at the same time the methods
that will be visible, the arguments that are significant for the proofs, and finite domains
for these arguments. This is shown in Fig. 15. Here some tool guidance would be very
helpful to reduce the amount of user input required, and to guarantee the coherency of
the abstraction with the dataflow within the system. This kind of guidance is not yet
available in the toolset.

Such an Abstract Specification will then be given as input to the model generator.
This tool builds a model in terms of pNets, including all necessary controllers for non-
functional and asynchronous capabilities of the components. The only missing part
is the functional behaviour (Body) of primitive components for which ADL2N only
defines their sorts.

The second usage of the abstraction module of ADL2N is to specify a finite abstrac-
tion of the parameters domains (from Simple Types to finite Simple Types), so that the
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Fig. 15. Screenshot of ADL2N

final pNet system is finite, and suitable for analysis with finite-state model-checkers. In
practice ADL2N produces two files, one file with the parameterized system, the other
file with the definitions of the finite instantiations for the parameter domains.

pNets instantiations and export formats. The textual notation we use currently in the
platform to encode pNets is called FC2 [30]. We provide two tools, FC2Instantiate and
FC2Exp [31], that create finite instantiations of the models and transform the files into
the input formats of CADP, namely BCG for transition systems, and Exp for synchro-
nisation vectors [32].

4.6 Model-Checking: Engineering, Pragmatic Complexity

Having produced our models in a structured and hierarchical format allows us to use
many pragmatic strategies to master as much as possible the state-space complexity of
model-checking. The main tool is compositionality: as we use a bisimulation-based ver-
ification toolset, it is essential that each intermediate subsystem is reduced (by branch-
ing or weak minimization) before being synchronized with others. If we are careful to
reduce as much as possible the visibility of actions, then state-space explosion can be
contained (to some extent) within the model of composite components. Additionally, a
number of advanced features of the CADP toolset can help us to fight state-explosion,
and to scale up. Typically, we can build the state-space at each level of the hierarchy
using the distributed state-space generation of CADP, including on-the-fly hiding and
tau-reduction, but also behaviour generation constrained by the environment. Then the
minimization has to take place on a single machine, because the bisimulation engine is
not implemented in a distributed way. And the next cycle of construction can be dis-
tributed again... This way your state-space construction can scale up to any system in
which the largest intermediate structure will be in the range of 108 states. The model-
checker engine itself has an experimental version working in a distributed fashion.

Using this kind of strategy, we have done some middle-size case studies, including
for example the Common Component Modeling Example (CoCoME, [33]). This is a
system of 17 components structured in 5 levels of hierarchy, with more than 10 data
parameters, and some broadcast communication. We have treated this case using the
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Fractal model generation (3.4), with very small abstract domains for the variables (typ-
ically 2 or 3 values). The brute force state space for this would be approximately 2.108,
while the biggest intermediate structure that we generate is lower than 10000 states. We
have shown in [33] a number of properties and problems verified on this model.

Such models can be used to check the satisfiability of safety or liveness formulas in
branching time logics, or to check the bisimulation equivalence with respect to an ab-
stract specification. In practice, we want to provide non-expert users with simple “press
button” verification functions. This is easy for some families of reachability properties,
like correct termination of deployment, or occurrence of some predefined sets of error
actions. Deadlock detection is also a popular “push button” function, but explaining to
the user the reasons of a deadlock can be challenging; it often involves some “missed
synchronisation”, that may be difficult to show, especially in presence of abstraction
and instantiation.

The type of properties we can check on our models are more versatile than in most
approaches, because we do not only encode the usual functional interactions between
the components, but also their reconfiguration operations. So we can prove properties
of applications in which one would change bindings, or remove and update subcom-
ponents, while the rest of the system keeps running. This kind of properties typically
depends on the behaviour of the system parts, and is not a general property of the
middleware.

5 Conclusion and Perspectives

In this paper we have presented the models and tools we have been implementing to
assist the development of Grid component-based applications. The approach is based
on the modelling of the component behaviour using parameterized networks of au-
tomata. In addition, we have presented tools that generate these models, and tools for the
specification of the component system.

This paper makes a step forward towards the verification of Grid applications. It
provides novel models for multicast interfaces and generic proxies for transmitting fu-
tures. Moreover, one of the strong original aspects of this work is the focus put on
non-functional properties, and the results we provide on the interleaving between func-
tional and non-functional concerns. Thus, the programmer should be able to prove the
correct behaviour of his distributed component system in presence of evolution (or
reconfiguration) of the system.

We are currently developing additional tools in the VerCors platform to support our
methodology. This includes the front-ends for textual and graphical specification lan-
guages, a tool for helping the user to build correct abstractions, and tools for providing
readable explanations of the provers diagnostics.

Finally, we have presented techniques to master state-space explosion. The key
aspect is the use of compositionality to reduce the system at each level of hierar-
chy. Nevertheless, in some cases, particularly when queues are unbounded, state-space
explosion is inevitable when using explicit-state model-checkers. Therefore, our lat-
est work focuses on the development of an infinite-state model-checker that verifies
automata endowed with unbounded FIFO queues.
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Abstract. Functional and non-functional concerns require different pro-
gramming effort, different techniques and different methodologies when
attempting to program efficient parallel/distributed applications. In this
work we present a “programmer oriented” methodology based on formal
tools that permits reasoning about parallel/distributed program devel-
opment and refinement. The proposed methodology is semi-formal in
that it does not require the exploitation of highly formal tools and tech-
niques, while providing a palatable and effective support to programmers
developing parallel/distributed applications, in particular when handling
non-functional concerns.
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1 Introduction

Modern distributed systems including grids, clouds and, more generally, service
oriented architectures, are characterized by heterogeneity and dynamism in the
sense of failure, delays and the varying availability of services. They therefore
pose new challenges to the programmer of parallel/distributed applications.

In particular,whendeveloping a parallel/distributed application, a programmer
has to deal with two distinct kinds of concern: functional and the non-functional
(a.k.a. extra-functional) concerns. Functional concerns are those related to what
has to be computed, i.e. to the algorithm defining the result as a function of the
input data. Non-functional concerns are those related to how the result has to
be computed, i.e. to the techniques needed to implement the algorithm in an ef-
ficient way on the parallel/distributed architecture at hand. Examples of typical
non-functional concerns include performance tuning, fault tolerance, security and
power management.

In fact, programming the non-functional part of a distributed application is
frequently much more demanding than programming the functional part. Pro-
gramming the functional part of these applications requires sound knowledge of
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the application field and of the algorithms that can be used to solve the prob-
lem at hand. This knowledge is normally in the repertoire of the application
programmer. The situation is significantly different for non-functional concerns.
In this case, specific knowledge related to the target architecture is required
in order to develop efficient solutions/implementations solving the problems re-
lated to non-functional concern management. For example, if load balancing is
to be achieved in the computation of some embarrassingly parallel application,
the overall architecture of the target machine (shared memory vs. distributed
memory, high vs. low bandwidth (latency) interconnection network, etc.) must
be known to tackle effectively the load balancing. Also, the techniques used to
manage non-functional concerns are often significantly different from those used
to address functional concerns. The “normal” application programmer, however,
usually has in his background neither specific knowledge related to the target
architecture nor knowledge related to the particular techniques needed to tackle
non-functional concerns.

It is therefore commonly recognized that, ideally, functional concerns should
be the responsibility of the application programmer, i.e. the programmer with
specific knowledge on the application field, whereas the non-functional concerns
should be addressed by system programmers, i.e. the programmers with specific
knowledge of the target architecture and of the techniques and peculiarities
of particular non-functional concerns. In the terminology of Aspect-Oriented
Programming, non-functional concerns represent cross-cutting concerns w.r.t.
functional ones, and thus typically require orthogonal techniques and experience.

The remainder of the paper is structured as follows: Sec.2 further discusses
the functional/non-functional aspects in parallel and distributed programming
and Sec. 3 introduces behavioural skeletons and GCM, the Grid Component
Model by CoreGRID where these concepts were first introduced. Then Sec. 4
introduces Orc, the formal model we use in our semi-formal program develop-
ment support methodology. Finally, Sections 5 to 7 discuss how the semi-formal
methodology supports reasoning about alternative implementations (5), auto-
nomic management strategy design (6) and metadata usage to evaluate again
alternative implementations (7).

2 Addressing Functional and Non-functional Concerns

In this work we consider some typical non-functional concerns that have to be
managed when developing parallel and distributed applications on modern ar-
chitectures and we propose a methodology based on semi-formal use of formal
models and tools to support design, refinement, improvement and in general
reasoning about non-functional concerns in parallel and distributed applica-
tions. However, as will be seen, here we do not take a classical approach to
non-functional concern management.

In both sequential and concurrent programming, coding for a specific non-
functional behaviour to achieve a given QoS goal was evident three decades
ago. The software engineering solution to achieve it was to introduce levels of
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Fig. 1. Basic control loop for autonomic management

abstraction, effectively yielding a tree of refinements, from the problem speci-
fication to alternative target programs [1]. The derivation of a target program
then follows a path down this tree. The transition from one node to the next
can be described formally by a semantics-preserving program transformation or
refinement. Conceptually, porting a program to a different execution platform
configuration and/or QoS specification means backtracking to a previous node
on the path and then following another path to a different target program. Typ-
ically, the goal is achieved according to the spiral model by way of a number of
tuning iterations [2]. In this, the real extent of non-functional flexibility is often
experienced ex-post. Commonly, the cost of some of those iterations turns out
to be unacceptably high, thus reducing the potential market of the applications.
Traditionally, the design backtracking happens off-line because it requires the
partial re-design of the code. This makes the approach completely unsuited to
capturing variation points modelling run time events or dynamic changes in the
required QoS. Moreover, the design backtracking cost is directly related to the
frequency of non-functional adaptations.

An alternative approach consists in moving the non-functional concern han-
dling into an autonomic manager associated with the functional application code.
This autonomic manager, implementing a control loop such as that depicted in
Fig. 1, moves the choice of different design alternatives to launch or run time.
These alternatives may have been either fully or partially abstracted out during
the static design of the application.

In this work we assume this latter approach. Thus we consider that non-
functional concerns are dealt with within autonomic managers as is the case in
behavioural skeletons – introduced in Sec. 3 – which can be considered as code
factories in the form of high-order, parametric components that can be dynam-
ically adapted along a predefined schema that is dynamically instantiated by a
previously unknown QoS contract. Having restricted the domain to autonomic
management of non-functional concerns á la behavioural skeleton, we introduce
semi-formal reasoning, i.e. a semi-formal way to use formal models [3,4,5] and
we demonstrate how several semi-formal techniques can be used to support
the design, development and refinement of autonomic managers dealing with
non-functional concerns in parallel and distributed applications.
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3 Components and Behavioural Skeleton

Behavioural skeletons are component abstractions that capture both the func-
tional and non-functional behaviour of some component assemblies, each of them
specialised to solve one or more management goals, such as configuration, opti-
misation, healing and protection. Given a component model, these paradigms can
be represented as parametric schema of wiring and/or nesting. The concept of be-
havioural skeleton was originally introduced to bring autonomic features within
the Grid Component Model (GCM); however, since it is more abstract than the
component model itself, it can be used in any component model admitting the
dynamic reconfiguration of component assemblies.

3.1 The Grid Component Model (GCM)

The Grid Component Model (GCM) is a hierarchical component model explic-
itly designed to support component-based autonomic applications in distributed
contexts. GCM allows component interactions to take place with several distinct
mechanisms. In addition to classical “RPC-like” use/provide ports, GCM allows
streaming ports and collective interaction patterns to be used in component inter-
action. GCM disciplines the life-cycle of components, which can be dynamically
created, destroyed, bound to and unbound from assemblies. These distinguished
features makes GCM particularly suitable for modelling distributed and dynami-
cally adaptable applications. The full specification of GCM can be found in [6].

GCM is assumed to provide several levels of autonomic managers in com-
ponents; they monitor and steer the non-functional features of the component
programs. GCM components thus have two kinds of interfaces: functional and
non-functional ones. The functional interfaces host those ports concerned with
implementation of the functional features of the component. The non-functional
interfaces host those ports needed to support the component management ac-
tivity in the implementation of the non-functional features, i.e. those features
contributing to the efficiency of the component in obtaining the expected (func-
tional) results but not directly involved in result computation. Each GCM com-
ponent contains an Autonomic Manager (AM), interacting with other managers
in other components via the non-functional interfaces.

In this vision, the AM can reconfigure the assembly of its managed components
to pursue a QoS goal. This typically happens if one of its plans is foreseen to
be effective in re-establishing the validity of the QoS contract. Alternatively, the
AM can contact a number of the other AMs in order to set up a cooperative
reconfiguration plan, which will involve the union of managed components. In
both cases, the AM may induce a structural reconfiguration of the component
assembly through a number of functionally equivalent component assemblies.

The design of those plans is clearly a critical step for the effectiveness of the
whole process. Two key aspects come into play:

1. the “creative” exploration of possible equivalent design alternatives, their
aggregation and variation points, and their non-functional profile;

2. the checking of their functional equivalence.
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While formal tools are useful for the second aspect, they are not very effective
for addressing the first. The use of behavioural skeletons also address the second
point since they represent, by definition, families of functionally equivalent as-
semblies. In this case the issue is raised at the skeleton design time, i.e. reduced to
the first aspect. In this paper we advocate the use of a semi-formal methodology
to address the first aspect. The methodology uses Orc as specification tool.

3.2 Behavioural Skeletons

Behavioural skeletons represent a specialisation of the algorithmic skeleton con-
cept for component management [7]. Algorithmic skeletons have been tradition-
ally used as a vehicle to provide efficient implementation templates of parallel
paradigms. Behavioural skeletons, as algorithmic skeletons, represent patterns of
parallel computations (which are expressed in GCM as graphs of components),
but in addition they exploit the inherent skeleton semantics to design sound
self-management schemes of parallel components.

As shown in Fig. 2, behavioural skeletons are composed of an algorithmic
skeleton together with an autonomic manager and provide the programmer with
a component that can be turned into a running application by providing the
code parameters needed to instantiate the algorithmic skeleton parameters (e.g.
the different stages in a pipeline or the workers in a farm) and some kind of
Service Level Agreement (SLA, e.g. the expected parallelism degree or the ex-
pected throughput of the application). The choice of the skeleton to be used
as well as the code parameters provided to instantiate the behavioural skele-
ton are functional concerns, while the autonomic management itself is a non-
functional concern. In turn, the implementation of both the algorithmic skeleton
and the autonomic manager is in the charge of the “system” programmer, i.e. the
one providing the behavioural skeleton framework to the application user, while
the instantiation of the behavioural skeleton is in the charge of the application
programmer.

Algorithmic
Skeletons

Autonomic
Management

Standard code, 
parameters

Behavioral
Skeletons

(factory usage)

Working
automomic
application

Developing framework concern

Application programmer concern

Functional concern Non-Functional concern

Behavioral
Skeletons

(factory design)

Fig. 2. Behavioural skeleton rationale
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Autonomic management of non-functional concerns is based on the concurrent
execution (with respect to the application “business logic”) of a basic control loop
such as that shown in Fig. 1. In the monitor phase, the application behaviour is
observed, then in the analyse and plan phases the observed behaviour is exam-
ined to discover possible malfunctioning and corrective actions are planned. The
corrective actions are usually taken from a library of known actions and the cho-
sen action is determined by the result of the analysis phase. Finally, the actions
planned are applied to the application during the execute phase [8,9,10,4].

Component technology, promotes the engineered development of distributed
autonomic applications by enabling the co-design of autonomic management of
non-functional concerns (performance tuning, in particular) and parallelism ex-
ploitation, which can be just-in-time derived from well-known, efficient patterns,
such as behavioural skeletons [11].

In a component assembly, the autonomic management ultimately aims to
induce non-functional alterations of the component assembly, which may trans-
late into structural alterations of the component assembly. This means that an
application is really described by an evolving assembly of components, i.e. an
initial assembly and all its possible evolutions across the iterations of the adap-
tation phase. These reconfigurations of the assembly should be formally specified
(at least) because they should be encoded in the manager. In addition, since in
an autonomic system the management is inherently non-centralized, these recon-
figuration should be locally specified, whereas the global evolution of the system
is distributively realized via the cooperation of managers.

The formal description of evolving assemblies of processes, services and com-
ponents has been the subject of active research in the global computing commu-
nity [12]. Some of the results achieved in that community have also been cast
to formal specification of the evolving assembly of autonomic components (see
Sec. 8). However, the fully-fledged formal treatment of them requires enrich-
ment of the model with many details that rapidly bring the complexity beyond
reasonable (human) limits.

For this reason, we advocate the idea of semi-formal reasoning, i.e. a semi-
formal way to reason about the equivalence of formal specifications [3,4,5].
Here, the main idea is to develop a, possibly partial, formal specification of
a component assembly described using some formal tool such as Orc [13]. The
specification provides the developer with a representation of the assembly and
management overlay which allows exploration of their properties and the devel-
opment of what-if scenarios while hiding the inessential detail. By studying the
communication patterns present within the Orc process traces, the designer is
able to derive for some paradigmatic assemblies (e.g. behavioural skeletons) an
alternative structure which maintains core functionality, while allowing variation
of non-functional behaviour, and thus different QoS. The derivation proceeds in
a series of semi-formally justified steps, with incorporation of insight and ex-
perience as exemplified by the inclusion of expressions such as “reasonable to
transfer this functionality” and “such modification makes sense”.
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4 Tools to Support Reasoning about Autonomic
Management

As stated above, in modern parallel and, in particular, distributed systems much
of the challenge lies in composing the various units of core functionality, rather
than in implementation of the core functionality itself. Typically non-functional
properties of an application depend on the overall “shape” of the system and
this has led to an increased emphasis on orchestration: different designs of an
application may be used to obtain different non-functional properties. A devel-
oper may, at design time, wish to explore the nature of different designs in terms
of non-functional properties. Moreover, it is increasingly the case that dynamic
adaption of the system design is required in response, for example, to differing
resource availability, differing security considerations and so on. (Indeed, func-
tional properties may lead to demand for architecture change: the occurrence of
a hot-spot in processing data may require the addition of further resources, for
example, to maintain a throughput requirement). In essence, this requirement
for dynamic change is the raison d’être for autonomic management. The de-
velopment of such dynamic systems requires means to describe both functional
and non-functional concerns in relation to different designs; and means to sup-
port argument that the change induced by an autonomic system in response
to, for example, environmental change, maintains functionality while adapting
non-functional properties to the new conditions.

The need to explore different designs and their relation to differing non-
functional properties motivates the search for a notation to be used as a vehicle
for such investigation. We sought a notation which would

1. be oriented toward orchestration of components providing core functionality,
rather than the core functionality itself;

2. allow an operational-style description of a system so that different designs
could be described;

3. ideally, have a simple syntax and well-defined semantics so that properties
of systems could be described and reasoned about with relative ease.

To this end we identified Orc [13] by Misra and Cook as a suitable candidate:
Orc is an orchestration language which abstracts core functionality as site calls
(see Sec. 4.1); it is operational in nature and provides a very small range of
constructs and these are oriented toward describing the key aspects of concur-
rent/distributed systems. Thus it fits with our philosophy and lends itself to the
level of reasoning that we wished to pursue: that is, a semi-formal style of rea-
soning in which one benefits from the clean, abstract, semantically well-founded
description mechanism provided, but shies away from fully-formal proofs of gen-
eral properties. Generally, we are content to prove properties that hold in par-
ticular situations and to draw upon insight and experience to allow conclusions
to be drawn that are not fully supported by formal argument.
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4.1 Orc

Orc is a language for distributed and concurrent programming that is targeted
at the description of systems where the challenge lies in organising a set of
computations, rather than in the computations themselves. Orc has, as primitive,
the notion of a site call, which is intended to represent basic computations. A
site, which represents the simplest form of Orc expression, either returns a single
value or remains silent. Three operators (plus recursion) are provided for the
orchestration of site calls:

1. operator > (sequential composition)
E1 > x > E2(x) evaluates E1, receives a result x, calls E2 with parameter
x. If E1 produces two results, say x and y, then E2 is evaluated twice, once
with argument x and once with argument y. The abbreviation E1 � E2 is
used for E1 > x > E2 when evaluation of E2 is independent of x.

2. operator (parallel composition)
(E1 E2) evaluates E1 and E2 in parallel. Both evaluations may produce
replies. Evaluation of the expression returns the merged output streams of
E1 and E2.

3. where (asymmetric parallel composition)
E1 where x :∈ E2 begins evaluation of both E1 and x :∈ E2 in parallel.
Expression E1 may name x in some of its site calls. Evaluation of E1 may
proceed until a dependency on x is encountered; evaluation is then delayed.
The first value delivered by E2 is returned in x; evaluation of E1 can proceed
and the thread E2 is halted.

Orc has a number of special sites:

– 0 never responds (0 can be used to terminate execution of threads);
– if b returns a signal if b is true and remains silent otherwise;
– RTimer(t), always responds after t time units (can be used for time-outs);
– let always returns (publishes) its argument.

The notation
(|i : 1 ≤ i ≤ 3 : workeri)

is used as an abbreviation for
(worker1|worker2|worker3).

In Orc processes may be represented as expressions which, typically, name chan-
nels which are shared with other expressions. In Orc a channel is represented
by a site [13]. c.put(m) adds m to the end of the (FIFO) channel and publishes
a signal. If the channel is non-empty c.get publishes the value at the head and
removes it; otherwise the caller of c.get suspends until a value is available.

5 Sample “Semi-formal” Usage of Orc

As an example of the way Orc can be used to support reasoning about paral-
lel/distributed programs we consider the reverse engineered model of the muskel
interpreter as derived in [3].
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system(pgm,tasks, contract, G, t) �
taskpool.add(tasks)

| discovery(G, pgm, t)
| manager(pgm,contract, t)

discovery(G,pgm, t) � (|g∈G ( if remw �= false � rworkerpool.add(remw)
where remw :∈

( g.can execute(pgm)
| Rtimer(t) � let(false) )

)
) � discovery(G,pgm, t)

manager(pgm,contract, t) �
|i : 1 ≤ i ≤ contract : (rworkerpool.get > remw > ctrlthreadi(pgm, remw, t))
| monitor

ctrlthreadi(pgm, remw, t) � taskpool.get > tk >
( if valid � resultpool.add(r) � ctrlthreadi(pgm, remw, t)
| if ¬valid � ( taskpool.add(tk)

| alarm.put(i) � ci.get > w > ctrlthreadi(pgm,w, t)
)

)
where (valid, r) :∈

( remw(pgm, tk) > r > let(true, r) | Rtimer(t) � let(false, 0) )

monitor � alarm.get > i > rworkerpool.get(remw) > remw > ci.put(remw)
� monitor

Fig. 3. Reverse engineering of the muskel prototype

muskel is a full Java skeleton programming environment under development
at the University of Pisa1 since the early ’00s [9]. The muskel environment can
execute in parallel stream-parallel skeleton programs on networks/clusters/grids
of Java enabled workstations. A simple autonomic manager maintains “best
effort”—a performance contract (parallelism degree) provided by the user—in
the presence of faulty or malfunctioning processing elements. In fact, autonomic
managers were first implemented in muskel and then moved and greatly ex-
tended in the behavioural skeleton research framework.

When a muskel skeleton program is run, the muskel framework scans the avail-
able network looking for processing nodes hosting a muskel runtime system and re-
cruits a number of these resources to execute the program.Thenumber of resources
recruited is as close as possible to the parallelism degree requested by the user via
a performance contract provided with the program code. Then, the recruited re-
sources are used to compute tasks appearing on the program input stream. In par-
ticular, an instance of the distributed macro data flow interpreter used in muskel
to execute skeleton programs is used on each of the resources recruited.

1 See http://cotognata.di.unipi.it/∼marcodanelutto/wiki/doku.php?id=muskel
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The muskel prototype is written in Java and uses RMI to interact with remote
interpreter instances and UDP multicast to discover available resources in the
network. The full muskel environment amounts to some 5K lines of code.

In Fig. 3 we show the “reverse engineering” of the muskel prototype in Orc.
The Orc code here presents all the significant features of the actual prototype.
This code has been manually derived from the actual Java code of the muskel
prototype. A first version of the Orc code was written, which was much more
complex than that of Fig. 3. This version was then refined to produce that of
Fig. 3. No specific tools were used in this process, but most of the techniques out-
lined in this work relating to transformation and manipulation of Orc programs
were used.

The discovery process, performed in parallel with the complete execution of
the skeleton program, is modelled by the process behind the discovery(G, pgm, t)
expression. G represents the grid environment on which the program executes,
pgm is the skeleton program itself, and t is the timeout delay before initiating
another discovery action.

The autonomic manager action is modelled by the manager(pgm,contract,t)
term. The manager starts a pool of contract control threads. Each of the control
threads is in charge of fetching fireable macro data flow instructions2 from the
task pool and executing them on the remote interpreter instance (remw in the
control thread) associated with the control thread. The manager also starts a
monitor process in charge of getting a new remote resource from the discovery
process and launching a new control thread when a previously running control
thread terminates upon discovery of failure of the associated remote interpreter.

This Orc code can be understood much more readily than the actual Java
muskel implementation and can be used to investigate properties of the imple-
mentation. In fact, in [3] it has been used to derive a new version of muskel
where the potential bottleneck represented by the centralized discovery service
has been removed. The new version was derived in three steps:

– First, the Orc code was analysed looking for possible modifications that may
be used to remove the bottleneck. In fact we first analysed process traces
to aid understanding of the interactions involved and, using insight gleaned
from this, identified functionality that could be shifted between processes to
achieve the desired non-functional goal—removal of the bottleneck—while
retaining the functional behaviour.

– Then a new Orc model was written with the bottleneck removed—with a
discovery service distributed among the control threads.

– Finally, the actual muskel code was modified in accordance with the model
redesign to produce a new decentralized discovery version.

The whole process allowed us to postpone all Java related coding until a feasible
solution had been identified and modelled in Orc. The modified version of the
Java muskel prototype fulfilled the expectations of its Orc model.

2 That in turn derive from the compilation of the muskel skeleton program.
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The technique used to derive the new Orc model of autonomic management
and discovery in muskel uses traces derived from Orc computations. In particu-
lar, the approach followed to derive the new manager/discovery structure in the
muskel interpreter is the following:

– we take the Orc description of the muskel interpreter and expand terms so as
to obtain traces modelling the evolution of the different parallel/distributed
computations involved;

– we match traces by identifying matching pairs of send receive statements;
– we try to merge these traces into a single trace by collapsing send/receive

pairs and moving item generation accordingly;
– we finally reverse-engineer an Orc expression that generates the resulting

trace.

This process is effectively the application of a rule such as:

a > x > ch.put(x) > R) | (. . . � ch.get() > y > S)
R | . . . � a > y > S

(1)

where R should be a term with no occurrence of x. Rule 1 states that part of
process A leading to the generation of a value x eventually sent to process B
can be moved to process B in place of the actions receiving the x value from A,
provided x is not needed in the continuation of A.

The same procedure will be used in Sec. 6 to validate skeleton transforma-
tion rules used within behavioural skeleton autonomic managers in a completely
different context. It is worth pointing out the kind of usage made of Orc here:
we use a formal notation to develop an abstract version of the code needed to
implement the application at hand. The programmer can then reason on the
abstract version in terms of mechanisms and tools close to his background: com-
putations, traces, pairing of communication primitives, etc. Eventually, when
something satisfactory from the viewpoint of the goal he had in mind has been
achieved in the abstract code, this solution can be programmed with the actual
programming tools at hand, that are much more difficult to manage properly and
require a significantly more substantial effort than “programming” with Orc.

6 Demonstrating the Validity of Autonomic Management
Policy with Semi-formal Reasoning in Orc

In this section we illustrate in more detail the kind of reasoning we have found
useful with models expressed in Orc. We first introduce a model of the auto-
nomic managers used in GCM behavioural skeletons (as discussed in Sec. 3).
Then we introduce the skeleton structured programming model defined through
behavioural skeletons and we provide an Orc modelling of the skeletons used.
Finally, we show how we can justify the source-to-source transformations applied
by autonomic managers of behavioural skeletons taking care of the performance
tuning of an application.
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6.1 Modelling Autonomic Management

We introduce an Orc model of the autonomic management activities in be-
havioural skeletons. Any autonomic manager in a GCM behavioural skeleton
can be modelled by the following Orc code:

Mgr(Sk, SLA) = distribute(Sk, SLA) > s >
monitor(s) > m > analyse(s, m) > (b, p, v) >
((if(b) � adapt(s, p) > s1 > Mgr(s1, SLA))
| (if(∼ b) � raise(v) > Mgr(s, SLA))

where Sk is the skeleton program derived from the behavioural skeleton nesting
used by programmers to model their application and SLA is the contract the user
specifies/requires to be ensured. The manager structure clearly reflects the con-
trol cycle outlined in Fig.1. During the adapt phase, a new version of the original
Sk program may be produced to adapt the program to the dynamic change in ei-
ther the target architecture or in the computation, as perceived from the monitor
phase. This new version may differ from the pervious one, either by some non-
functional feature (e.g. a varied number of workers in the implementation of a
task farm skeleton) or by some functional feature (e.g. a varied parallelism ex-
ploitation pattern). In this latter case, the varied pattern will be one among the
possible rewritings of the original skeleton program Sk that preserve the function-
ality of the application while (possibly) improving some non-functional feature.
The new version of the program—s1—is eventually used to call recursively the
Mgr. If the analyse phase does not succeed in finding a corrective plan for a mal-
function perceived through the monitor phase, a violation is raised to the upper
levels of management (upper level autonomic managers in the case of a hierarchy
of behavioural skeletons, or to the user if this is the top level manager).

For example, if in the analyse phase the manager discovers that the user de-
fined SLA cannot be guaranteed due to the too fine grain of two consecutive
pipeline stages in Sk it may consequently decide to apply a stage merging rule
(i.e. a rule merging the computation of two consecutive pipeline stages at the
same computing element)3 in the adapt phase, and therefore restart with de-
ployment (distribute) of the (possibly new) SLA related to the new program
version s1 with the collapsed stages.

Another notable case of adaptation is represented by the variation of non-
functional features of the skeleton program in execution—typically, variations
of the parallelism degree used when implementing task farms. If in the analyse
phase the manager discovers that there is a farm with a small inter arrival
time for input tasks and a longer service time, its parallelism degree can be
increased—new workers can be added—to improve the overall program efficiency
[14].

Once more, the Orc model allows system designers to reason about the logical
behaviour of the system at hand without needing to resort to analyzing the
actual implementation code. In the following sections, we will show how Orc

3 This rule will be better explained and demonstrated in Sec. 6.2.
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based reasoning can be used in the application of one of the transformation
rules used within the manager.

6.2 Reasoning about Program Transformation Rule Correctness
with Orc

We assume the availability of behavioural skeletons modelling the more com-
mon patterns of stream parallel computations, namely pipeline and task farm
computations (i.e. computations organised in stages, and embarrassingly paral-
lel computations over streams of input tasks). We also assume the availability
of a skeleton modelling sequential composition of other skeletons onto the same
processing resources (aka “in place” pipeline, henceforth named comp).

An application parallel program will thus be structured as a hierarchical tree
of skeletons with pipeline, farm and comp skeletons in the nodes of the tree,
and sequential components in the leaves providing the sequential code to be
computed in the lowest level pipeline stages or task farm workers. Here we will
assume that the structure of the parallel application, in terms of the skeleton
used, can be represented with terms derived using the following grammar:

Sk ::= farm(Sk) | pipeline(Sk, Sk) | comp(Sk, Sk) | seq(f)

where seq models a sequential component implementing some function f4. The
task farm and pipeline skeletons can be modelled in Orc as follows:

pipeline(A, B, chin, chout) = stage(A, chin, chnew) | stage(B, chnew, chout)

farm(W, nw, chin, chout) = | i = 1, nw : stagei(W, chin, chout)

seq(A, chin, chout) = stagei(A, chin, chout)

comp(A, B, chin, chout) = cBody(A, B, chin, chout) �
comp(A, B, chin, chout)

cBody(A, B, chin, chout) = chin.get() > task > A(task) > y >
B(y) > result > chout.put(result)

stage(A, chin, chout) = body(A, chin, chout) � stage(A, chin, chout)

body(A, chin, chout) = chin.get() > task > A(task) >
result > chout.put(result)

In the algorithmic skeleton framework it has been demonstrated that suit-
able rewriting can be performed at the skeleton tree level to obtain differently
performing applications.

For example, pipeline computations with sequential stages can be collapsed
to sequential computations to provide higher grain stages/workers and therefore
to improve efficiency of the parallel computation:

pipeline(seq(f), seq(g)) ≡ comp(seq(f); seq(g))
4 That is represents the skeleton wrapping of sequential code modelling a function (i.e.

code with no side effects).
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This result can be easily demonstrated using the Orc modelling of the skele-
tons presented above, and we will use this example to illustrate the Orc-based
semi-formal reasoning that underpins our methodology.

The approach followed to demonstrate the equivalence above is the same as
that used to derive the new version of the muskel manager in Sec. 5: we generate
traces relative to the execution of Orc code, we look for matching put and get
pairs, and we try to collapse traces using rule 1 of Sec. 5.

Applying this rule to our sample equation gives the following transformation:

pipe(A, B, c1, c3) =

stage(A, c1, c2) | stage(B, c2, c3)

= body(A, c1, c2) � stage(A, c1, c2) | body(B, c2, c3) � stage(B, c2, c3)

= c1.get() > t > A(t) > y > c2.put(y) � stage(A, c1, c2) |
c2.get() > t > B(t) > y > c3.put(y) � stage(B, c2, c3)

≡ stage(A, c1, c2) |
c1.get() > t > A(t) > y > B(y) > z > c3.put(z) � stage(B, c2, c3)

= stage(A, c1, c2) |
comp(A, B, c1, c3) � stage(B, c2, c3)

and unfolding another iteration we get:

= c1.get() > t > A(t) > y > c2.put(y) � stage(A, c1, c2) |
comp(A, B, c1, c3) � c2.get() > t > B(t) > y > c3.put(y) � stage(B, c2, c3)

≡ stage(A, c1, c2) | comp(A,B, c1, c3) �
c1.get() > t > A(t) > y > B(y) > z > c3.put(z) � stage(B, c2, c3)

= stage(A, c1, c2) | comp(A, B, c1, c3) � comp(A, B, c1, c3) � stage(B, c2, c3)

It is clear that pipe(A, B, c1, c3) unfolds to an iterated sequence of comp(A, B,
c1, c3) when rule 1 is applied. The parallelism degree of the original program
schema (pipe(A, B, c1, c3)) is clearly higher than that of the derived schema
(comp(A, B, c1, c3)). The original schema allows A and B to be computed in
parallel on two consecutive tasks appearing on the pipeline input stream. The
derived schema allows only computation of one item at a time, but this compu-
tation has clearly a higher computation grain5 and therefore is more suitable for
use in conditions where communication overheads are not negligible. In other
words, the two schemas can be considered functionally equivalent but they differ
non-functionally in that they offer different grains of computation and thus are
suitable for differing execution platforms.

Although the result emerging here from transformation of the Orc model is
well-known (pipeline stage collapsing to coarsen granularity) the intent here is
to illustrate the way in which we use Orc descriptions supported by semi-formal
reasoning to investigate design alternatives for non-functional properties. In the

5 Ratio between the time spent to compute and the time spent to communicate, i.e.
the time spent to receive the input task and to deliver the result.
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case of the earlier muskel example, no such well-known pattern underpinned the
design, but reasoning at a similar level allowed redesign to achieve the desired
non-functional property—bottleneck removal.

7 Extending Orc with Metadata

In the previous sections we showed how an Orc based framework can be used to
described parallel/distributed programs, to analyze their features and possibly
to compare different versions of the same parallel/distributed applications with
respect to some well defined features (e.g. number of actual parallel activities,
kind of synchronizations involved, etc.).

The next step in the methodology is aimed at extending the amount and the
kind of information within the Orc based framework, in such a way that further
applications of the methodology presented so far can be investigated.

The kind of enrichment of the Orc framework we consider is adding metadata
to the Orc expressions and terms used to model the parallel application [15].
By metadata we mean any data associated with Orc terms and expressions to
represent non-functional concerns of the computation. Metadata are therefore
annotations associated with Orc terms.

We will demonstrate how metadata can be used by considering a simple case:
metadata representing locations of the computation where the associated Orc
terms are actually computed. Other typical kinds of metadata modelling infor-
mation on the non-functional concerns include those related to security (e.g.
whether a given computation described by an Orc term has to be considered
confidential or not), to performance (e.g. actual and predicted performance val-
ues relative to computations performed by the Orc term/expression) or to fault
tolerance (e.g. MTBF of a node). Using location metadata we will eventually be
able to evaluate the best implementation among a set of functionally equivalent
implementations differing only with respect to their non-functional features.

7.1 Introducing location Metadata

According to our methodology, metadata is associated to Orc terms in a formal
way. We assume that each Orc expression has one or more metadata associated.
We also assume that metadata are represented by using names (functors) and
parameters (parameters of the functors). As an example, the term location(E, a)
represents the fact that location(a) is associated with the Orc expression E.

Location metadata can be formally associated to complex Orc expressions in
a completely formal way. For example, consider Orc expressions using the farm
and pipeline skeletons presented in Sec. 6. Location metadata can be associated
as follows:

– explicit association of user supplied metadata with expressions/terms in the
Orc code;

– a rule rewrite method is defined to derive location metadata from the user
supplied metadata in such a way that location information is propagated
along the entire skeleton tree.
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Several policies can be defined to propagate location metadata along the skele-
ton tree. We consider, at the extremes:

conservative placement policy the location of the root skeleton nodes are
propagated unchanged to all the immediate descendant nodes, unless differ-
ently specified by the user/programmer. The process is applied recursively.

speculative placement policy independent of the location of the root node,
a fresh location is assigned to each of the immediate descendant nodes, un-
less differently specified by the user/programmer. The process is applied
recursively.

What usually will happen is that the user supplies location metadata for a few,
notable expressions, and then the other metadata location can be derived with
one of the available policies, possibly the one identified by appropriate metadata
provided by the user/programmer. For example, consider the code:

prog(f, g, h) ≡ pipeline(seq(f), pipeline(seq(g), seq(h))

In our example, the programmer may be interested in expressing the maxi-
mum parallelism degree possible, and to keep the root of the tree on his own
workstation. Therefore the program sketched above can be user annotated as
follows: location(prog,my workstation), locPropagPolicy(speculative).
This in turn, will lead to the following annotation of the skeleton tree:

〈 location(prog, my workstation), location(seq(f), fresh loc()),
location(pipe(seq(f), pipe(seq(g), seq(h))), fresh loc()),
location(pipe(seq(g), seq(h)), fresh loc()),
location(seq(g), fresh loc()), location(seq(h), fresh loc()) 〉

where the fresh loc() function will query a resource manager and return the
name of a fresh location.

7.2 Exploiting location Metadata

The annotation of a skeleton tree with location metadata can be used for different
purposes. First (and obviously) it can be used to drive the deployment of the
skeleton program on the distributed architecture at hand (the one represented
by the resource manager answering the fresh loc() calls. Then, it can be used
to analyse those non-functional concerns that depend on (relative) location of
computations: communication cost analysis, for example.

If we wish to evaluate the communication cost of our sample computation,
we can keep expanding the relevant Orc terms and adding/deriving location
metadata in such a way that we eventually get the locations of the sites in-
volved in sends and receives. In turn, this information can be used to derive
the cost of all the communications involved, assuming we know some constant
Tlc and Trc for communications having partners on the same node (Tlc local
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communication) and those having the involved partners on different nodes (Trc

remote communication), respectively6.
Traces may also be considered, associated to location metadata. In this case,

the cost derived using metadata represents the overall amount of time spent
communicating in the parallel/distributed application generating the trace.

These results, however, are not so interesting of themselves. The ability to take
a program model and come up with a figure stating that the communication cost
is k × Tlc + h × Trc is not so meaningful, independent of the ks and hs involved.

A much more interesting result stems from the ability to compare two alterna-
tive implementations. Let us assume that the parallel/distributed computation
at hand can be implemented with two different algorithms/applications, mod-
elled by Orc terms OrcAppla and OrcApplb

In this case, we can proceed with the same user supplied initial metadata and
location propagation policies and evaluate the final ground location labelling of
our program (or, better, of the corresponding traces). Once this is done, we can
compute the communication costs in terms of Tlc and Trc. This time, however, by
getting the two resulting terms giving the communication costs of traces relative
to the same computation in OrcAppla and OrcApplb, we can compare them
and therefore determine which is the better of the computations with respect to
communication costs.

More formally, this example of exploitation of Orc associated metadata can
be expressed by:

– a grammar of terms over Orc expressions and metadata values is defined.
For example:

E ::= . . . Orc expressions . . .
LocationMetadata ::= location(E, M) | locPropPolicy(M)

M ::= fresh loc() | loc(〈literal〉) | . . .

The grammar is used to denote all the “admissible” metadata for our Orc
code.

– a set of rewriting rules are defined that provide a rewriting system propa-
gating metadata along the Orc expressions modelling the computations: As
an example, the following rule will belong to the set, denoting propagation
of location in case of a conservative policy within a pipeline program:

location(pipe(A, B), L)
location(A, L), location(B, L)

Cons.1

– an abstract interpreter that computes the Orc expressions with respect to
the associated metadata only and exploiting the rewriting rule set mentioned
above.

6 More realistically, we may consider functions of the sizes d of transmitted data
Tlc(d) = d/memory bandwidth and Trc(d) = latency +d/bandwidth, with the same
kind of results.
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7.3 Exploiting location Metadata within Autonomic Managers

In previous sections, we have shown how location metadata can be used to eval-
uate which is the best implementation—with respect to a particular aspect, e.g.
communication cost—among a set of equivalent, alternative implementations.

Such a result can be exploited in the manager described in Sec. 6.1. In particu-
lar, the result can drive choices made during the analyse(s, m) > (b, p, v) phase,
i.e. when analyzing a particular skeleton implementation s and the correspond-
ing monitored behaviour m to determine whether some corrective action can
be planned (b:boolean), which is the relative actuation plan p and, if necessary,
which violation v has to be reported to the upper level manager. If alternative,
feasible plans p′ and p′′ exist the result of analyze(s, m) will be (b, px, v) with
px ∈ {p′, p′′} being the plan that in the subsequent adapt(s, p) > s1 phase will
generate the improved new skeleton configuration, s1.

8 Related Work

In this work we concentrated on various issues relating to autonomic manage-
ment of non-functional features in parallel/distributed computations. Although
there is extensive work demonstrating how various aspects of parallel and dis-
tributed programming can be modelled using formal tools, there is much less
work on exploitation of semi-formal techniques to support reasoning about non-
functional concerns in parallel and distributed programs. We mention here a few
research areas where reasoning schemas similar to that discussed in this work
can be adopted.

The Service Component Architecture (SCA) [16] focuses on policies and
implementation aspects of services but does not natively support dynamic re-
configuration of service assembly. However, the model can be extended to sup-
port dynamic reconfiguration. For example, the Spatio-Temporal sKeleton Model
(STKM) [17,18], which can be defined in term of SCA, supports model recon-
figuration by way of behavioural skeletons [4]. The STKM does not provide
any specific methodology to reason about functionally equivalent assemblies or
workflows of components.

An alternative approach is based on UML models. The work of [19] pro-
poses the use of modes to address dynamic reconfiguration of service-oriented
architectures and extends the UML to visualise such reconfiguration. The UML
extension sticks to the mode terminology and does not include a visualisation of
the transformation rules. The OMG is also working to standardize a UML profile
and metamodel for services (UPMS) [20]. The current version does not support
reconfigurations. Those approaches also propose a non-formalised approach (i.e.
neither formal nor semi-formal). The only exception is the UML extension for
service-oriented architectures that can be found in [21], which proposes refine-
ment issues based on architectural styles formalised by graph transformation
systems.

Architectural styles are the basis of the Architectural Design Rewriting (ADR)
approach, which has been inspired mainly by graph-based approaches [22,23].
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The use of graphs and graph transformations to model architectural styles has
been proposed by several authors (e.g [24]) who based their approaches on the
concept of shapes in programming languages. ADR shares also concepts with
approaches based on process calculi with reconfigurable components (e.g. [25]).
iADR is also related to approaches that deal with reconfigurations in software
architectures defined by an ADL [26], and by graph transformation such as
the Synchronised Hyperedge Replacement (SHR)[27]. Models in this family typi-
cally support the fully-fledged formal reasoning on assembly reconfiguration and
equivalence; they have been proved effective in proving the correctness of single
adaptations and simple sequences of them [28]. However, to be checked, these
abstract models should be mapped down into concrete models describing a spe-
cific implementation enormously increasing the complexity of the description. As
a matter of a fact, this complexity often prevents the designer from reasoning
about the expected long-term evolution of the distributed system.

Model Driven Architecture [29] concepts look close to the idea of using Orc
as the modelling language for actual application code. In this perspective, Orc
can be intended as the PIM (platform independent model) to be used to derive,
with some kind of automatic or semi-automatic tools, the PSM (platform specific
model) and eventually an actual implementation.

Aspect Oriented Programming techniques have been taken into account in
different frameworks to model and handle non-functional concerns (see, for ex-
ample, [30,31]). We believe this approach is complementary to the behavioural
skeleton idea adopted here. However, AOP techniques and mechanisms could
probably be exploited in the autonomic manager implementation to further re-
lieve system programmers of non-functional concern handling details, providing
a finer grain of “separation of concerns” within the non-functional ones.

Finally, we chose Orc as our modelling language for two reasons. First, our
interest was in management of functionality, and Orc’s emphasis on orchestration
of computations made it thus a perfect fit; second we wished to have a very
compact language that allowed us to develop constructive representations of
different designs, and reason about them at a high (but not too high) level of
abstraction: this caused us to steer away from, on the one hand, very abstract
notations such as π-calculus [32] which support a more abstract level of reasoning
than we desired; and, on the other hand, parallel programming languages such
as Erlang [33] and Oz [34] which are suitable for implementation rather than
design.

9 Conclusions

In this paper we have discussed the challenge of non-functional concern manage-
ment in parallel/distributed systems and emphasized the desirability of separation
of functional and non-functional concerns. We have presented behavioural skele-
tons as a means of extending component-based parallel/distributed skeletons with
autonomic managers taking care of non-functional concerns. The suitability and
use of Orc (and its extension with metadata) to specify such autonomic manage-
ment has then been argued and, to this end, we have emphasized a semi-formal
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style in which the specifications are treated as designs and an informal style of
reasoning, drawing heavily upon insight and experience, is used to compare non-
functional properties of alternative designs. While the experience has suggested
the efficacy of the approach, much more experimentation is needed to determine
the extent to which aspects of the methodology such as, for example, the rule iden-
tified in section 5 are transferable across different applications within a domain
and even across domains of application. Ideally, rules of thumb of this sort would
be identified at a level consistent with the approach, that is, an approach in which
one gains benefit from the curt, well-founded definitions without resort to onerous
formal reasoning.
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ponent assembly language enhanced with workflows and skeletons. In: Proc. of the
ACM SIGPLAN Component-Based High Performance Computing (CBHPC), pp.
1–11. ACM, New York (2008)
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Abstract. This paper outlines a general picture of our ongoing work under EU
Mobius and Sensoria projects on a type-based compilation and execution frame-
work for a class of multicore CPUs. Our focus is to harness the power of con-
currency and asynchrony in one of the major forms of multicore CPUs based on
distributed, non-coherent memory, through the use of type-directed compilation.
The key idea is to regard explicit asynchronous data transfer among local caches
as typed communication among processes. By typing imperative processes with
a variant of session types, we obtain both type-safe and efficient compilation into
processes distributed over multiple cores with local memories.

1 Introduction

This paper presents a brief overview of our ongoing work under EU Mobius and Sen-
soria projects on a type-based compilation and execution framework for distributed-
memory multicore CPUs. Our aim is to obtain a new level of understanding on the
effective shape of compilation and runtime architecture for distributed-memory chip-
level multiprocessing. We take the viewpoint that communication and concurrency are
a natural and fundamental structuring principle for modern applications. We identify
typed processes exchanging messages through asynchronous communication as a basic
model of computation, which we reify as a typed intermediate language. This inter-
mediate language acts both as the target of translation from high-level programming
languages and as the source of compilation to distributed memory chip-level multipro-
cessors. In both translation processes, types for communicating processes are used for
ensuring key correctness properties for the resulting low-level code.

The background of this project is a recent fundamental change in the internal en-
vironment of computing machinery, driven by limiting physical parameters in VLSI
manufacturing process [13, 34, 36], from monolithic Von Neumann architectures to
chip-level multiprocessing (CMP), or CPUs with multiple cores. In the present work we
are mainly interested in the CMP architectures based on distributed memory [24, 35],
which offer the hardware interface analogous to distributed memory parallel computers
[8] (in contrast to SMP/ccNUMA-like cache coherent CMP architectures [25, 27, 44]).
This choice reflects our belief that a major factor for maximally exploiting the physical
potential of future microprocessors is how one can harness asynchrony and latency in
intra-chip data transfer.
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A non-uniform access to memories inside a chip can be realised by different meth-
ods, such as cache-line locking, eviction hints and pre-fetching. One method, often used
for distributed memory CMP, employs direct asynchronous memory-to-memory data
transfer, or Direct Memory Access (DMA), to share data among cores’ on-chip local
memories. A central observation underlying this approach is that trying to annihilate
distance (i.e. to maintain global coherence) can be too costly, just as maintaining hard-
ware interface for coherent distributed shared memory over a large number of nodes is
unfeasible. This observation favours the use of explicit operations for directly transfer-
ring data from one part of a chip to another, and one of the efficient methods for doing
so, effectively exploiting intra-chip communication bandwidth, is DMA operations. In
a high-level view, this approach regards CMP as distributed parallel machines with
explicit remote data transfer among them, making the framework close to computing
models such as the LogP model [7] and parallel hierarchical memories [1]. The di-
rect, asynchronous memory-to-memory transfer as a means of data exchange is flexible
and can potentially make the most of on-chip network bandwidth [26], which is many-
fold larger than intra-host computer networks [9], promoting concurrent, asynchronous
use of communication and computing elements inside a chip. As has been studied in
the literature [15–17, 30, 31], message passing concurrency can flexibly and generally
represent the diverse forms of control and data flows found in sequential and concur-
rent applications. At the same time, the very nature of DMA operations, in particular
asynchronous, direct rewrite of local memory of a distributed core, makes it hard to har-
ness their power with safety assurance and controllability comparable to the traditional
sequential hardware (for further discussions on this model, see §2.1).

In future, high-level applications will be designed and programmed using many dif-
ferent abstractions, especially regarding concurrency [6, 28, 39, 40, 42]. To understand
the programming potential of distributed memory CMP, we need to examine whether
these diverse abstractions, with associated data and control flow, can be mapped to this
hardware model with efficiency, precision and fundamental safety assurance. One of the
central concerns in this regard is to find an effective, disciplined method for using the
DMA operations, making the most of their raw, asynchronous nature for flexibility and
expressiveness while ensuring their correct usage. The desirable correctness properties
include the freedom from synchronisation and racing errors (in the sense that data is
remotely written only when a receiver is expecting it and at an expected region, and no
other simultaneous writes can corrupt the data), the freedom from type errors (only data
of a expected type and size is written), and progress of ongoing conversations (interac-
tion sequences take place following the expected structure: in particular, a receiver will
eventually obtain an expected datum).

In this paper we discuss one approach to the general compilation framework for
distributed memory CMP. The framework is intended to offer a general, uniform and
flexible basis for realising efficient translations of diverse (concurrent) programming
abstractions to CMP executable code, with a formal guarantee of the aforementioned
key correctness properties. The basic idea of our approach is to stipulate typed commu-
nicating processes as a representation for an intermediate compilation step from high-
level abstractions, and, after a type-based analysis of this intermediate representation,
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perform a type-directed compilation [32] onto executable binary code for distributed
memory CMP. Schematically:

High-level concurrent languages (L2)
⇓

Typed imperative processes (L1)
⇓

CMP executable (L0)

Above L0, L1, L2 refer to abstraction levels. Each ⇓ stands for one or more type-
preserving compilations. At L1, we use an intermediate concurrent imperative language
with types for channel-based conversations. The preceding studies on types for com-
municating processes, many centring on the π-calculus, have shown that they can offer
fundamental articulation and basic safety guarantee for diverse communication patterns.
As communication types for the compilation framework, we use a variant of session
types [19, 41] for multiparty interactions [3, 5, 20], into which various high-level ab-
stractions can be translated and which allows their efficient and safety-preserving com-
pilation to distributed CMP primitives. The session types at L1 are generated from the
interaction structures implicit in the high-level abstractions in L2, as we shall illustrate
with a concrete example in the subsequent sections. The resulting typed communicating
processes are amenable to uniform program analyses for safety assurance, and can be
directly mapped to efficient code in L0, with a formal guarantee of the aforementioned
key correctness properties.

2 Preliminaries

In this section we first clarify our assumptions on a hardware model, followed by a brief
illustration of essential features of DMA operations. Then we present a running exam-
ple for our type-preserving compilation framework, a simple streaming application. In
particular we focus on the behaviour of the double-buffering algorithm used for com-
piling the running example. The algorithm is the standard method for stream and media
processing to make the best of high-performance, multicore computing [21, 37].

2.1 A Hardware Model and DMA Primitives

Hardware Model. We assume an idealised model where a chip consists of multiple
cores of the same Instruction Set Architecture (ISA), each with a local memory. Cores
may or may not allow preemptive threads. Data sharing among distributed cores is
performed via asynchronous data transfer from one local memory to another (DMA),
as illustrated in the following diagram.

On-Chip System Interconnect

Core 1

DMA Controller

Local Store

Threads

Core N

DMA Controller

Local Store

Threads
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Our focus in the present inquiry is on the DMA-based data sharing among distributed
memories: we do not consider other issues in distributed memory CMP such as the size
of local memory, hierarchical memory organisation, capability control, security and
heterogeneity. These are relatively orthogonal issues whose analysis may benefit from
the understanding of the factor studied in the present paper.

DMA Primitives. Two versions of DMA primitives are known, an asynchronous write
(“put”), and an asynchronous read (“get”). We mainly focus on put for brevity. The
semantics of the put does not demand the sender to know the arrival of data for its
sending action to complete: it is a non-blocking write. This asynchronous nature is
essential for efficiency. Since a remote operation is anyway relatively expensive (even
inside a chip [26]), we amortise the cost by sending a block or blocks of words, which
can total hundreds of thousands of bytes. A sender can block until the data is sent out,
or can be asynchronously notified. The DMA gains further efficiency by sending (even
contiguous) words out-of-order. The receiver can be notified either asynchronously by
a different messaging/interrupt mechanism or by a subsequent locally ordered put to an
associated flag: for example one can place a memory fence [23] between the first put for
data transfer and the subsequent put for a flag, so that the write to the flag (say turning 0
to 1) takes place after all the writes for the first put. Since consecutive writes are often
cheap, this is an efficient method for checking the delivery.

Throughout the present paper, we assume a “macro” command for put, which in-
cludes initiating a send operation (including, if we use the scheme discussed above, a
subsequent fenced flag) and waiting for the data to be sent out from the sender’s local
memory, but not for its arrival (and writing) at the receiver’s remote memory. Thus,
as soon as the data has been sent out, the CPU will become free. This is the standard
usage of put [26], based on which we can easily accommodate an asynchronous noti-
fication as simple optimisation. Dually we assume a single macro command wait for
the receiving side of put, which can, for example, consist of waiting for a fenced flag
to be turned from 0 to 1, as discussed above. Each of these macros can be realised by
a few hardware instructions [23], with different schemes depending on the mechanisms
offered by a given hardware/software environment.

Observations on DMA Primitives. Because of its efficiency and flexibility, DMA is
often used (partially or wholly) in multiprocessor system-on-chips. One of the promi-
nent recent examples include Cell microprocessor [35]. This model considers CMP as
a microscopic form of distributed computing, and is capable of making the most of on-
chip interconnect, suggesting its potential scalability when the number of cores per chip
increases and a relative wire delay inside a chip takes effect [9]. It can realise arbitrary
forms of data sharing among cores’ local memories, and in that sense it is general-
purpose. Being efficient and general-purpose, however, the DMA operations are also
extremely hard and unsafe to program in their raw form: the very element that makes
the DMA operations fast and flexible — asynchronous, direct rewrites of memory —
also makes them unwieldy and dangerous. The direct writes of one memory area to
another, asynchronously issued and asynchronously performed, can easily destroy the
works being conducted by applications. The danger of programming using these asyn-
chronous operations may be compared to that of bare machine-level programming in
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sequential computers, without assistance of high-level language constructs such as pro-
cedures and data types and the associated compilation infrastructure, aggravated by the
presence of concurrency and asynchrony.

2.2 Stream Processing and Double-Buffering

A Simple Stream Program. We take a simple stream program for data encryption as
an illustration of our compilation framework [38]. Consider the following stream graph.

KernelSource
x[i]

x[i−1]

x[i] x[i−1]

Sink

A data producer Source continuously feeds data to a Kernel, which calculates the XOR
of each element with a key and writes the result on a stream to a consumer Sink. Sink
may also have its own processing on the resulting data. The key used at each turn comes
from (except for the first time) the Kernel’s own output through a feedback, for a cipher
block chaining. Such a stream algorithm can be easily expressed in stream program-
ming languages [4, 12, 39, 43], whose program consists of transformers (called kernels
or actors) connected through directed streams: each actor gets data from its incoming
streams, processes them and places the results to its outgoing streams. For example, in
the application above, a stream program for Kernel will be specified as a transformer
which receives (say) an integer x from an incoming stream, calculates the XOR x⊕ p
where p is a variable storing the preceding value of x (where the initial value of p would
be set to be some encryption key), and places the resulting value to an outgoing stream
as well as assigning it to the new value for p. Stream programming has applications
in DSP, multimedia and scientific computing and enables natural exploitation of par-
allelism at various levels, starting from high-level transformation of stream graphs to
DMA-based multicore execution.

Double Buffering. In order to execute such a stream graph in a distributed memory
CMP, the first step is to enlarge data granules, through the standard strip mining tech-
nique [29]: for example we may decide to treat these streams by units of say 16kB. This
allows actors to exchange data in large blocks, instead of byte by byte (which would
incur high overheads). We then program these three actors to exchange data strips (each
of size 16kB) through an interactional algorithm called double buffering [37], illustrated
in Figure 1, which is often found at the heart of implementations of stream programs
in CMP.1 Kernel uses two 16kB arrays, or buffers, named A and B in the picture: while
Source uses a single 16k array (in practice it can use a large cyclic buffer), fed by, say, a
byte stream from an external channel. The central idea of the algorithm is to repeat the
following procedure.

1 An effective method to allocate/schedule actors in a CMP environment is an interesting prob-
lem: we do not address this issue here because it involves runtime resource management, which
is outside the focus of our present discussions.
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Fig. 1. Double-Buffering

While Kernel is receiving data into array A from Source, it processes data in
array B and sends the result to Sink; it then repeats the process by exchanging
the roles of A and B.

The five steps in Figure 1 materialise this idea:

(a) Kernel tells Source it is ready to receive an initial strip at buffer A;
(b) Source starts sending to A; asynchronously Kernel tells Source it is also ready to

receive at buffer B, and again asynchronously Sink tells Kernel it is ready to receive
at its own 16kB array;

(c) Kernel finishes processing its A-strip and sends the resulting data to Sink, while
Source is sending a strip to B;

(d) Source continues sending to B; Kernel asynchronously tells Source it is ready to
receive at A (since Kernel has now sent out its A-strip); again asynchronously Sink
tells Kernel it is ready to receive the next strip;

(e) Now the situation is symmetric with respect to (c): Source writes to A and Kernel
writes from B. We now go back to (b).

The algorithm allows asynchrony among computations and communications with min-
imal synchronisation to prevent data pollution. By overlapping computation and com-
munication [7, 14], it makes the most of the available hardware resources, allowing
concurrent and asynchronous execution of computation and communication. This al-
lows the effective usage of available communication bandwidth in code execution, the
tenet of effective network programming.
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3 The Intermediate Language with Multiparty Session Types

This section introduces imperative processes with multiparty session types [41] as an
intermediate language using the double-buffering example. This intermediate language
serves two purposes. First, it provides an effective source language for compilation
into a typed assembly language for CMP. Second, it offers an expressive target lan-
guage into which we can efficiently and flexibly translate different kinds of high-level
programs. This latter aspect is based on the observation that many concurrent and po-
tentially concurrent programs (such as a streaming example above) can be represented
as a collection of structured conversations, where we can abstract the structure of data
movement in their programs as types for conversations. Through the use of these types
and associated program analyses, we can formally ensure communications in programs
are free from synchronisation and type errors, and satisfy progress.

3.1 Double Buffering in the Intermediate Language

The double buffering algorithm is both imperative and interactional, with highly struc-
tured communication structures. Asynchrony between sending and receiving is funda-
mental for its efficiency. The aim of the design of the intermediate language L1 (for
Session-typed Intermediate Language) is to allow a precise and flexible typed descrip-
tion of such interactional imperative programs with precision and flexibility, in a form
directly translatable to the execution mechanisms of distributed CMP.

Main Program :
newPlace p0,p1,p2;
newChan a;
spawn(Source(a))@p0;
spawn(Kernel(a))@p1;
spawn(Sink(a))@p2

Source(a) :
a[0](r1r2s1s2t1t2u1u2).
newVar y : int[n];
μX .(

//send to xA
foreach(i : 1..n){

y[i] = get int();
}
r1?(); s1!〈y〉;
//send to xB

foreach(i : 1..n){
y[i] = get int();

}
r2?() ;s2!〈y〉;X

)

Kernel(a) :
a[1](r1r2s1s2t1t2u1u2).

newVar xA,xB : int[n];
newVar key : int = KEY;
r1!〈〉; r2!〈〉;
μX .(

//process xA
s1?xA;
foreach(i : 1..n){

xA[i] := xA[i]⊕key;
key := xA[i];

};
t1?(); u1!〈xA〉; r1!〈〉;
//process xB
s2?xB;
foreach(i : 1..n){

xB[i] := xB[i]⊕key;
key := xB[i];

};
t2?(); u2!〈xB〉; r2!〈〉; X

)

Sink(a) :
a[2](r1r2s1s2t1t2u1u2).
newVar z : int[n];
μX .(

//receive & print xA
t1!〈〉; u1?z;
foreach(i : 1..n){
print z[i];

};

//receive & print xB
t2!〈〉; u2?z;
foreach(i : 1..n){
print z[i];

};
X

)

Fig. 2. Double-Buffering Algorithm in L1
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Figure 2 shows the description of the double buffering algorithm in L1. Program
Main first finds three idle (virtual) cores denoted p0 to p2 (newPlace) and creates a
new service channel a (newChan) to be used for the session initialisation by programs
Source, Kernel, and Sink, running at different cores (spawn). Each “place” denotes an
abstract unit of processing and memory resources, which may as well be considered as
a virtual notion of a core with local memory in a distributed CMP chip.

The first line in Source represents session initialisation (on channel a); this is the
point where Source receives the channels shared by all participants. The asynchronous
session types in L1 require distinct channels to be used for distinct communications
(except for communications iterated in a loop, which use the same channels), essential
for translation into DMA operations. Thus we use four channels r1,r2,s1,s2 between
Source and Kernel, and another four between Kernel and Sink. Now Source starts a
conversation: after feeding its array through a for-loop (foreach(i : 1..n) denotes the
pointwise iterator for processing arrays which allows us to work with non-trivial pro-
grams without addressing array-bound checks [6]), it waits for an “A-ready” signal
through r1 (“?” denotes input), sends the data in the array through s1 (“!” for output);
repeats the same for r2 and s2, and returns to the main loop. Communication is purely
asynchronous—the sending order is not guaranteed to be preserved at arrival.

Kernel, after allocating its variables (including the initial key value), signals Source
that its buffers are both empty, via channels r1 and r2; then enters the main loop, where
it proceeds as follows: first receives a datum at buffer xA via s1, goes through the buffer
taking the XOR element-wise, after which it waits for Sink’s cue via t1 (which may have
already arrived asynchronously), and finally sends out the buffer contents to Sink via u1,
and tells Source via r1 that it is ready to receive at buffer A. It then works similarly for
the second buffer. Sink acts in a way symmetric to Source (print prints a datum).

The three programs precisely describe the interactional behaviour informally
illustrated in Figure 1.

3.2 L1 with Multiparty Session Types

We now outline how these structured dialogues can be abstracted as types for conver-
sations in the form of multiparty session types [20], where pure asynchrony in com-
munication is captured by a subtyping relation [33]. For example, in Figure 2, we see
Source interacting with Kernel through channels r1, s1, r2 and s2 in this order, which is
different from what we read from Kernel which starts by interacting at r1 and r2. How
can we make sure that the Source’s behaviour correctly matches that of the Kernel?

The theory of multiparty session types can type-abstract and verify the structure of a
whole conversation. In the present context, the most notable feature of these types is that
they can formally guarantee communication-safety and progress (deadlock-freedom).
From a design viewpoint, developing a distributed program including a compilation
framework demands a clear formal design as to how multiple participants communicate
and synchronise with each other. These are the reasons why we start from a global type
G, which plays the role of a type signature for distributed communications. These global
types present an abstract high-level description of the protocol that all participants have
to honour when an actual conversation takes place [20].
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Once this signature G is agreed upon by all parties as the global protocol to be fol-
lowed, a local protocol from each party’s viewpoint, local type Ti, is generated as a
projection of G to each party. If the global signature is too rigid, an individual party
might wish to change their implementation locally. In this case, each local type Ti can
be locally refined to, say, T ′

i , possibly yielding optimised protocols that are realised by
programs Pi. If all the resulting local programs P1, ..,Pn can be type-checked against
refined T ′

1 , ..,T
′

n , then they are automatically guaranteed to interact properly, without
incurring in communication mismatch or getting stuck inside sessions, while precisely
following the intended scenario.

Global Types. The development of type-safe programs for a double-buffering algorithm
starts from designing the global type G,

μt.(
Kernel → Source : r1〈〉;
Source → Kernel : s1〈U〉;
Sink → Kernel : t1〈〉;
Kernel → Sink : u1〈U〉;

Kernel → Source : r2〈〉;
Source → Kernel : s2〈U〉;
Sink → Kernel : t2〈〉;
Kernel → Sink : u2〈U〉; t)

where Source, Kernel and Sink denote participant names, identified as p0,p1 and p2 in
the program in Figure 2.

A global type p→ p′ : k 〈U〉;G′ means that participant p sends participant p′ a mes-
sage of type U on channel k, and then interactions described in G′ take place. In this
example, U denotes an int-array type. Type μt.G is use for recursive protocols where
t, t′, . . . are type variables.

The global type G uses recursion to describe an infinite loop where Kernel first no-
tifies Source via r1,r2 that it is ready to receive data in its two channels s1,s2 (a signal
at ri says si is ready); Source complies, sending two chunks of data sequentially via
s1,s2. Then Kernel (internally processes data and) waits for Sink to inform (via t1, t2)
that Sink is ready to receive data via u1,u2; upon receiving the signals, Kernel sends
the two chunks of processed data to Sink. This global protocol specifies a safe and
deadlock-free scenario.

Local Session Types and Refinement. Once given global types, a programmer can
develop code, one for each participant, incrementally validating its conformance to the
projection of G onto each participant by efficient type-checking. When programs are
executed, their interactions are guaranteed to follow the stipulated scenario. The type
specification also serves as a basis for maintenance and upgrade.

Local session types abstract sessions from each endpoint’s view. For example, Type
k!〈U〉 expresses the sending of a value of type U on channel k. Type k?〈U〉 is its dual
input. The relation between global and local types is formalised by projection, written
G�p and called projection of G onto p, defined as in [20].

Now we give the local types of Source, Kernel and Sink.

Tsource = μt.r1?〈〉;s1!〈U〉;r2?〈〉;s2!〈U〉; t

Tkernel = μt.r1!〈〉;s1?〈U〉;t1?〈〉;u1!〈U〉;r2!〈〉;s2?〈U〉;t2?〈〉;u2!〈U〉; t

Tsink = μt.t1!〈〉;u1?〈U〉;t2!〈〉;u2?〈U〉; t
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The local type of the program Kernel in Figure 2 is given below but it does not match
the local type Tkernel, which is directly projected from global type G.

T � = r1!〈〉;r2!〈〉; μt.s1?〈U〉;t1?〈〉;u1!〈U〉;r1!〈〉;s2?〈U〉;t2?〈〉;u2!〈U〉;r2!〈〉; t

Our purpose is to refine Tkernel so that the new local protocol allows further asynchrony
by overlapping communication and computation while still conforming to G [7, 14];
this allows us to start from a sequential global type, which is easily checked to be correct
and deadlock-free, and refine it to a more optimised protocol, while guaranteeing that
all participants still safely interact, e.g., that Kernel can interact with Source and Sink
safely so that their interactions as a whole conform to the original global type G.

In the refined protocol T �, Kernel notifies Source via both r1,r2 before entering the
loop, allowing Source to start its work. Now inside the loop, the refined protocol dic-
tates that Kernel first receives data from Source via its first channel s1, processes the
data and sends out the result to Sink via its first channel u1 and immediately notifies
Source via r1 that it is ready on its first channel, allowing Source to start sending data
early. Kernel then repeats the same procedure for its second set of channels shared with
Source and Sink. In this way, the refined local type says that Kernel can process data
it has already received in one channel while still receiving data in the other, noting that
sending, transferring and receiving large pieces of data can be time consuming.

We now summarise how this optimised local protocol is in fact safe with respect to
the other participants conforming to G, through the notion of asynchronous communi-
cation subtyping. The justification is non-trivial: it uses a combination of a partial com-
mutativity of the input and output actions and nested unfolding of recursive types [33].
The two key subtyping rules for permuting finite actions we use are as follows:

k!〈U〉;k′?〈U ′〉;T0 � k′?〈U ′〉;k!〈U〉;T0 (k 	= k′)
k!〈U〉;k′!〈U ′〉;T0 � k′!〈U ′〉;k!〈U〉;T0 (k 	= k′)

In the first rule, the left-hand type allows for more asynchrony (optimal) than the right-
hand side type since the output action on k can be performed without waiting for the
input on k′. The second rule permutes the two outputs at distinct names since they are
sent asynchronously. The rule � are applied to only finite length of the session types
(hence � is decidable). We write T 
 T ′ for T ′ � T .

To define the subtyping for recursive types, we need to combine � with unfolding.
We call a relation ℜ ∈ Type×Type an asynchronous subtype simulation if (T1,T2) ∈ ℜ
implies the following conditions.

1. If T1 = end, then unfoldn(T2) = end.
2. If T1 = k!〈U1〉;T ′

1, then unfoldn(T2) 
 k!〈U2〉;T ′
2, (T ′

1 ,T
′

2) ∈ ℜ and (U1,U2) ∈ ℜ.
3. If T1 = k?〈U1〉;T ′

1 , then unfoldn(T2) = k?〈U2〉;T ′
2, (T ′

1 ,T
′

2) ∈ ℜ and (U2,U1) ∈ ℜ.
4. If T1 = μt.T , then (unfold1(T1),T2) ∈ ℜ.

where unfoldn(T ) is the result of inductively unfolding the top level recursion up to
a fixed level of nesting. The coinductive subtyping relation T1 <: T2 (read: T1 is an
asynchronous subtype of T2) is defined when there exists a type simulation ℜ with
(T1,T2)∈ℜ. An output of T1 can be simulated after applying asynchronous optimisation

 to the unfolded T2. We also need to ensure object type U1 is a subtype of U2. This
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subtyping relation T <: T ′ is decidable if all channels under each recursive prefix are
distinct. T � and Tkernel satisfy this condition since r1,s1, t1,u1,r2,s2, t2 and u2 are distinct
under the recursive prefix.

To show that T � <: Tkernel, we start by unfolding Tkernel once to obtain

T0 = r1!〈〉;s1?〈U〉;t1?〈〉;u1!〈U〉;r2!〈〉;s2?〈U〉;t2?〈〉;u2!〈U〉;Tkernel

Then r1!〈〉 matches the initial part of T �. To simulate the r2!〈〉 part of T �, r2!〈〉 is per-
muted by applying the asynchronous subtyping rules above, together with transitivity.

T0 
 T ′
0 = r1!〈〉;r2!〈〉;s1?〈U〉;t1?〈〉;u1!〈U〉;s2?〈U〉;t2?〈〉;u2!〈U〉;Tkernel.

Let T � = r1!〈〉;r2!〈〉;T �
R . Thus the unfold of T �

R must be simulated by T ′.

T ′ = s1?〈U〉;t1?〈〉;u1!〈U〉;s2?〈U〉;t2?〈〉;u2!〈U〉;Tkernel.

Next we unfold T �
R as:

s1?〈U〉;t1?〈〉;u1!〈U〉;r1!〈〉;s2?〈U〉;t2?〈〉;u2!〈U〉;r2!〈〉;T �
R

The first three types s1?〈U〉;t1?〈〉;u1!〈U〉 can be simulated by T ′ in this order. However
to simulate r1!〈〉 in above T �

R , Tkernel must be unfolded again since the type in front of T ′
does not include r1!〈〉 outside the recursive prefix. Hence we apply the asynchronous
subtyping rule to solve the following relation:

r1!〈〉;s2?〈U〉;t2?〈〉;u2!〈U〉;r2!〈〉;T �
R <: s2?〈U〉;t2?〈〉;u2!〈U〉;

r1!〈〉;s1?〈U〉;t1?〈〉;u1!〈U〉;
r2!〈〉;s2?〈U〉;t2?〈〉;u2!〈U〉;Tkernel

By applying 
 to the r.h.s., r1!〈〉 can be permuted to the top. Then we can use the input
and output subtyping simulation rules in order to achieve the original pair (T �

R , T ′)
again. This concludes the verification of the double-buffering example.

Subject reduction for L1 is proved as in [33], just by replacing the standard branch-
ing subtyping relation in [20] to the one which incorporates asynchronous commutative
subtyping in [33]. We can also obtain the three key correctness properties, communi-
cation safety, type safety and progress, as stated in [20, §5]. Hence we can formally
show that the double-buffering example in L1 is correct with respect to these proper-
ties — neither deadlock, type-error nor communication mismatch can happen in the
interactions among the three participants.

3.3 Further Safety Analysis

One of the key merits of the use of type signatures for interactions, multiparty session
types, in the present compilation framework is that they enable and facilitate various
safety analyses pertaining to communication actions (hence their DMA translations).
One of such analyses is the following race freedom analysis, where we guarantee that,
when communication operations in L1 are compiled into DMA primitives, no local
writes will interfere with remote writes. This analysis is done at the L1 level. The net
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consequence is that, as far as the compiled code from L2 to L1 is statically checked to
be safe by this analysis, its further compilation into L0 is ensured to be race-free.

We illustrate the basic idea via an example. Assume given three participants, (say)
Alice, Bob and Carol, where Alice sends a boolean value to Bob, Bob sends an integer
to Carol, and Carol sends another integer to Alice. Note there is a causal chain from
the initial output by Alice to the final input, again at Alice.2 Now assume the following
is the program for Alice, with sb its initial output channel to Bob and sa its final input
channel from Carol:

sb!〈true〉; . . . ; sa?〈x〉; print(x); (3.1)

Now let us fill “. . . ” in (3.1) as follows.

sb!〈true〉; x := 5; sa?〈x〉; print(x); (3.2)

Assuming x is private, the coloured command can have a local write at x in parallel with
the remote write at the same variable x, the latter represented as communication through
the channel sa but which is in effect carried out, in the compiled code, as a DMA write
on x. This asynchronous remote write at x can take place concurrently as the local write
at x by the command x := 5. Thus we do not know whether 5 or a different number by
the remote write will get printed in the final print command.

Next we consider the following variation of the program above:

x := 5; sb!〈true〉; y := 5; sa?〈x〉; print(x); (3.3)

In this case, assuming the causally chained communications among Alice, Bob and
Carol as specified above, we have no racing at x (as far as x and y are not aliased).
This is because we know Carol will write only after this program does the first output
above, via sb: as far as x is used for reading or writing after this prompting output via
sb — which will eventually initiate the asynchronous write at x via sa — there can be
no interference. Let us summarise this principle:

If a participant’s output action is the cause of its subsequent input for a vari-
able x, then using x between the prompting output and the subsequent input is
dangerous. We want to prevent such dangerous occurrences of variables.

Several observations are due:

– The safety property crucially depends on causality information (i.e. the relationship
between an input and its prompting output) derived from session types.

– Once given this causality information, the standard control flow analysis can quickly
check the existence/lack of such a dangerous path (modulo e.g. dead branches).

– This analysis can be done regardless of high-level languages in L2: it can be
uniformly performed on all typable programs in L1.

2 Such causal chains can be altered by permutations discussed in the previous subsection. Thus
these chains need be extracted from the minimal local types of programs (which coincide with
the principal types algorithmically inferred from untyped processes [33]).
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This analysis is crucial for ensuring safety in the use of DMA operations. Note the
analysis does not have to be performed for each L1 program: it suffices to ensure, once
and for all, that a compilation from a given high-level language at L2 never induce
dangerous processes in L1 in the above sense.

Another significant program analysis which can exploit the session type structures in
L1 is the guarantee of the progress property, or of the lack of a deadlocked input. This
property is immediately ensured when no two sessions interleave with each other, or
no other blocking operations are present, which may often be the case in the compiled
code. When two or more sessions can interleave, we can use many type-based and other
analyses which can ensure the lack of deadlocks in communication, exploiting session
type structures including its linearity.

There are other useful analyses depending on execution environments and kinds of
applications, which will be discussed elsewhere.

4 Compiling Typed Processes to Distributed CMP

4.1 Basic Ideas

Processes with session types are guaranteed to follow rigorous communication struc-
tures, given as types. By tracing a session type, we know beforehand what and when
processes will send and receive messages: we can even statically determine the target
remote addresses of these communications. Such addresses can be exchanged at the
time of session initiation.

Using this information, we can replace each message passing in a typed process with
a direct remote write to the address of a variable in a core’s local memory in a distributed
memory CMP chip. As noted, the addresses of many of these variables can be known
statically, hence can be exchanged at the time of session initiation. This allows an ef-
ficient execution of a conversation code, especially when a loop (iteration) is included
inside a session. When one does need to treat dynamically generated data structures
such as trees and graphs, whose size may not be able to be determined statically, one
may also need to have dynamically allocated addresses communicated at runtime, for
their use in subsequent communications. Note such addresses can be piggybacked in
preceding messages in the same session.

Since our purpose is to have type-safe compilation, we use a (prototypical) typed
low-level programming language targeted at distributed memory CMP and NoC [2, 10],
which we call L0 for brevity. L0 is based on the C programming language, and features,
among others:

– A two-level code structure where the outer level (called a section) encompasses all
the code to run at a (virtual) core, and the inner level conventional C functions and
variable/data declarations;

– a new type, place, denoting a core (that can be virtualised and mapped into avail-
able physical cores); and

– primitives to obtain an idle place (newPlace), to launch a new thread at some place
(spawn), to obtain the current place (here), to asynchronously copy an array into
some other place via DMA (put), and to wait for the completion of an incoming
DMA operation (wait).
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These constructs, together with the safety conditions for L1 programs, allow a direct
translation from L1 programs to L0 programs. By the type-based analyses on L1 dis-
cussed in the preceding section, the resulting compiled code is guaranteed to satisfy key
correctness properties such as synchronisation/type safety, race freedom, and progress,
as far as we assume a correct compilation. Also note that the type annotations on the
DMA operations in L0 coming from those in the original L1 programs enable us to
perform type-based analyses on L0 programs independently.

Type information for multiparty sessions can be used not only at compile time from
L1 to L0, but also at runtime. For example, process migration will become neces-
sary from various needs for reconfiguration including load balancing. For this purpose,
sound treatment of pending messages are essential, which can be assisted by precise in-
formation on the type signatures of involved conversations. In the following, we focus
on the most basic usage of session type information in compilation to L0, i.e. compila-
tion of session communications to safe and efficient DMA operations. Other usage of
type information will be reported elsewhere.

4.2 Compilation

Figures 3 and 4 present a compilation of our running example into L0. As we have
already observed, all typed message passing is replaced by DMA primitives, using ad-
dresses of the variables in the local memory of a target place for remote asynchronous
write operations, where the addresses are shared by the session initiation protocol
adapted for distributed memory CMP, as described below.

Section Main defines a program comprising a single procedure, necessarily named
main. The program is uploaded at some (virtual) core and the execution of the main
function starts. The first spawn instruction in Main.main copies section Kernel into the
(virtual) core obtained previously via a call to the newPlace primitive (we assume this
operation will block if no core is available), and launches the execution of Kernel.main.

The session initiation protocol works as follows: Kernel writes in variable a0 (re-
ceived from Main at spawn time) a data-structure with two fields to be filled by the
producer and the consumer. These fields are then passed to the respective places at
spawn time. At this point both the producer and the consumer know the remote address
of a variable in the kernel. They can now write in these variables the addresses of the
data structures to be shared later, so that these components can communicate by writing
to these addresses.

Section Producer comprises a local buffer to hold the produced data, two variables
of type Sync (syncA, and syncB) used as a notification for safe DMA operation, and
the variables for the target of the remote addresses of the communication. After the
session initiation, the place running this section continuously fills the local buffer and
puts it in one of the kernel’s target buffers with a put instruction. A clearance, e.g.,
wait(&syncA), stating that the target buffer is ready must precede the actual placing of
the data in the kernel’s memory.

The Kernel section declares two incoming/outgoing buffers. After session initiation,
it signals the producer that its buffers can now be written (the two instructions that
precede the loop). It then waits for the completion of the DMA operation regarding
the first of its buffers (bufferA), fills it with the XOR of each data element with the
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typede f i n t [ 4 0 9 6 ] Bu f f e r ; // 16KBytes b u f f e r
typede f s t r u c t {} Sync ;
typede f s t r u c t {Bu f f e r ∗bu f f e rA , Bu f f e r ∗ bu f f e rB} Bu f f e r s ;
typede f s t r u c t {Sync ∗syncA , Sync ∗syncB} Syncs ;

typede f s t r u c t {Syncs ∗ syncs , B u f f e r s b u f f e r s } Consumer I n i t ;
typede f s t r u c t {Bu f f e r s ∗ b u f f e r s , Syncs s yncs } P r o du c e r I n i t ;
typede f s t r u c t {P r od u c e r I n i t ∗prod , Consumer In i t ∗cons} S e s s i o n I n i t ;

s e c t i o n Main ( ) {
vo id main ( ) {

p l a ce mainPlace = here ( ) ;
p l a ce p roduce r = newPlace ( ) ;
p l a ce consumer = newPlace ( ) ;
S e s s i o n I n i t a0 ;
spawn Kerne l (&a0 , mainPlace , producer , consumer ) at mainPlace ;
wait (&a0 ) ; // s e s s i o n i n i t i a t i o n
spawn Producer ( a0 . prod , ma inPlace ) at p roduce r ;
spawn Consumer ( a0 . cons , ma inPlace ) at consumer ;

}}

s e c t i o n Producer ( P r o d u c e r I n i t ∗a1 , p l a ce k e r n e l ) {
Bu f f e r b u f f e r ;
Sync syncA ; Sync syncB ;
B u f f e r s k e r n e l B u f f e r s ;

vo id main ( ) {
put({&k e r n e lB u f f e r s , {&syncA , &syncB }} , a1 , k e r n e l ) ; // s e s s i o n i n i t i a t i o n
wait (& k e r n e l B u f f e r s ) ; // end s e s s i o n i n i t i a t i o n
produce : {

// Produce b u f f e r A
f o r each ( i : 0 . . 4 0 9 5 ) b u f f e r [ i ] = g e t i n t ( ) ;
wait (&syncA ) ;
put ( b u f f e r , k e r n e l B u f f e r s . bu f f e rA , k e r n e l ) ;
// Produce b u f f e r B
f o r each ( i : 0 . . 4 0 9 5 ) b u f f e r [ i ] = g e t i n t ( ) ;
wait (&syncB ) ;
put ( b u f f e r , k e r n e l B u f f e r s . bu f f e rB , k e r n e l ) ;
l oop produce ;

}}
}

Fig. 3. L0 code for the double buffering example (Main and Producer sections)

defined key and proceeds to write in the consumer memory, following the same wait-
put protocol used by the producer before writing on the kernel’s memory. Once the
operation is completed, the kernel signals the producer that bufferA is ready to be re-
written, proceeding to process bufferB.

Consumer should be easy to understand, it simply waits for the arrival of each buffer
at the time, printing their contents.

The resulting code is in direct correspondence with the original typed processes in
its operational structure, and, thanks to the well-typedness of the original process in
L1 with respect to the declared session types, together with the static analysis for race
freedom outlined in §3.3, we can show that the DMA operations in the resulting L0
code faithfully captures all and only communication and other behaviours as found in
the original L1 program, modulo the translation of the original session initiation into a
protocol realising the equivalent functionality (which distribute remote addresses used
for performing DMA writes: note these addresses in effect act as channel ends in the
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s e c t i o n Kerne l ( S e s s i o n I n i t ∗a0 , p l a ce mainPlace , p l a ce producer , p l a ce consumer ){
P r o du c e r I n i t a1 ;
Consumer I n i t a2 ;
Bu f f e r b u f f e rA ; Sync syncA ;
Bu f f e r b u f f e rB ; Sync syncB ;
i n t key = KEY;

vo id main ( ) {
put({&a1 , &a2} , a0 , ma inPlace ) ; // s e s s i o n i n i t i a t i o n
wait (&a1 ) ;
wait (&a2 ) ;
put({&buf f e rA , &bu f f e rB } , a1 . b u f f e r s , p roduce r ) ;
put({&syncA , &syncB } , a2 . syncs , consumer ) ; // end s e s s i o n i n i t i a t i o n
put ({} , a1 . s yncs . syncA , p roduce r ) ;
put ({} , a1 . s yncs . syncB , p roduce r ) ;
p r o c e s s : {

// Proces s b u f f e r A
wait (& bu f f e rA ) ;
f o r each ( i : 0 . . 4 0 9 5 ) bu f f e rA [ i ] = bu f f e rA [ i ] ˆ key ;
wait (&syncA ) ;
put ( bu f f e rA , a2 . b u f f e r s . bu f f e rA , consumer ) ;
put ({} , a1 . s yncs . syncA , p roduce r ) ;
// Proces s b u f f e r B
wait (& bu f f e rB ) ;
f o r each ( i : 0 . . 4 0 9 5 ) bu f f e rB [ i ] = bu f f e rB [ i ] ˆ key ;
wait (&syncB ) ;
put ( bu f f e rB , a2 . b u f f e r s . bu f f e rB , consumer ) ;
put ({} , a1 . s yncs . syncB , p roduce r ) ;
l oop p r o c e s s ;

}}
}

s e c t i o n Consumer ( Consumer In i t ∗a2 , p l a ce k e r n e l ) {
Bu f f e r b u f f e r ;
Syncs s yncs ;

vo id main ( ) {
put({&syncs , {&bu f f e r , &b u f f e r }} , a2 , k e r n e l ) ; // s e s s i o n i n i t i a t i o n
wait (& sync ) ; // end s e s s i o n i n i t i a t i o n
consume : {

// Consume b u f f e r A
put ({} , s yncs . syncA , k e r n e l ) ;
wait (& b u f f e r ) ;
p r i n t f ( ”\ nBu f f e r :\ n” ) ;
f o r each ( i : 0 . . 4 0 9 5 ) p r i n t f ( ”%d ” , b u f f e r [ i ] ) ;
// Consume b u f f e r B
put ({} , s yncs . syncB , k e r n e l ) ;
wait (& b u f f e r ) ;
p r i n t f ( ”\ nBu f f e r :\ n” ) ;
f o r each ( i : 0 . . 4 0 9 5 ) p r i n t f ( ”%d ” , b u f f e r [ i ] ) ;
l oop consume ;

}}
}

Fig. 4. L0 code for the double buffering example (Kernel and Consumer sections)

original process representation). In fact, the type-directed translation from L1 to L0
can annotate the resulting L0 code with types which closely correspond to those in the
original L1 program. This type annotations make the resulting L0 code amenable to the
type-based analyses isomorphic to those for L1 programs. This ensures, for the resulting
L0 code, the aforementioned three key correctness properties, the synchronisation and
race-error freedom, type-error freedom and progress.
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We have developed a prototype compiler targeting for a IBM Cell Broadband Engine
processor [14], so that we can compile high-level code to low-level code as in Figures 3
and 4, which can further be compiled and executed on Cell. More discussions on this
implementation are given in Section 5.

4.3 Further Features

There are several key features of our intermediate language which we do not discuss
in the present paper. In particular, although the example under consideration does not
use shared session initialisation channels, we often need a component which accepts
possibly concurrent requests for session initialisation at a shared channel from multiple
clients. Such a channel may be located at main memory or at local memory of a dis-
tributed core. The shared server receives a request, at which point (for example) it may
fork a thread to one of the available cores for serving the client’s needs. Such a frame-
work is especially important for realising shared services used by an unknown number
of client processes, either inside an application or across applications, and demands an
efficient treatment of possibly concurrent requests arriving at a same channel.

We can treat the arrival of such an indeterminate number of requests through several
methods. As a simple way, each core may run a supervisor-mode process to which each
user-level process may ask for communication to a shared channel in a remote core
(note such requests tend to be relatively fewer than communications inside a session, so
that a slightly higher cost for a shared request may be justified). Then a supervisor can
put the request to its own queue in a remote or shared memory, which can be polled by
a receiver of these requests. Putting a request in a queue can be followed by a simple
notification. Such a scheme may be combined with mutual exclusion primitives (lock
and/or compare and swap, see [45]) by multiple threads at the service process.

5 Conclusion

Conclusion and Further Topics. The translation from the initial simple stream applica-
tion to the low-level code based on double buffering, through intermediate representa-
tion as typed processes, suggests flexibility in compilation and execution of concurrent
programs in distributed CMP and other extremely concurrent computing environments,
opening new opportunities and challenges. We already mentioned the use of our re-
cent work [33] in our compilation framework, which is based on a subtyping relation
on multiparty session types which are generalised to capture asynchrony as found in
the double buffering process above. Further development of the compilation framework
will necessitate new compilation and static analysis techniques for inherently concur-
rent code, a new, scalable runtime framework for dynamic allocations of hardware re-
sources to communicating processes making the best of their type structures, a formal
guarantee of correctness properties for such a runtime, an effective threads scheduling
mechanism in each local core, protection and security mechanisms, and integration and
management of different abstractions for concurrency.
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Related Work. There are several recent works which are closely related and will
complement the approaches taken in the presented research direction: research from
multiple directions will be needed to explore the rich field of structured concurrent
programming. Among these related works, we list only a few. Occam-Pi [46] offers a
highly efficient language architecture for channel-based concurrency with potentially
millions of light-weight processes. Sing#, a derivative of C# developed for Singular-
ity OS [11], uses a variant of session types called contracts to specify the interfaces
between OS components, which communicate via channel-based message passing in
shared memory environments. X10 [6] presents an advanced language constructs for
structured, typed concurrent imperative programming for partitioned shared memory
with high-performance computing as its application domain. Kilim [40] is an actor
framework for Java based on cooperatively-scheduled lightweight threads which com-
municate by message-passing. StreamFlex [39] is a real-time stream API for Java guar-
anteeing sub-millisecond response times and type safety, using a type-based classifi-
cation of heap objects to obtain a high throughput. In all these languages, high-level
structuring constructs play an essential role not only for clean description of concur-
rency but also for efficient program execution.

A preliminary version of this paper was presented in [18].

Implementation Status. We are currently working on the experiments of the general
framework proposed in the present paper. It centres on a simple imperative concurrent
language equipped with multiparty session communications and their types, which is
close to the language we discussed in Section 3. The language, combined with two
other associated languages, is intended to serve as an intermediate language (roughly of
level L1 in Section 1), to which typed high-level concurrent languages such as X10 [6],
StreamIt [42] and others are compiled into.

The current framework implements a series of type-directed translation steps from
high-level typed concurrent languages into C-code targeted at the Cell Broadband En-
gine architecture. Our experiments so far have been restricted to a single Cell processor.
Current efforts focus on, among others, providing support for the deploying of applica-
tions across processors on the same blade and across blades. For that purpose we are
using a cluster of three IBM QS21 bladecenters [22] and their compiler architecture.
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248 R. Bubel, R. Hähnle, and B. Weiß

languages are undecidable. Technically, the necessity of user interaction arises
when suitable invariants or induction hypotheses are required that characterize
the effect of unbounded loops or recursion.

Automatic verification approaches avoid interaction by working on abstract
execution models (and specification languages) that are decidable or even have a
finite state space. This allows the full exploration of the state space of a program
(as in model checking) or finite fixed point approximation of invariants (as in
abstract interpretation).

There are various attempts to combine the advantages of verification systems
and abstraction-based approaches, usually, by using the latter to boost the degree
of automation of the former (for example, [18,24]). In the present paper we set
a more ambitious goal: we want to provide a uniform theoretical basis for fully
precise reasoning about programs and for abstract interpretation at the same
time. The aim is to achieve a deep integration of deductive verification and
abstract interpretation. One obvious reason is to be able to re-use the substantial
investments and progress made in the context of deductive verification in the past
years to improve the precision of abstract interpretation. Another important
motivation for this work is the possibility to achieve automation of deductive
verification without completely losing precision.

Our starting point is a program logic that allows to cast symbolic program
execution as deduction in a sequent calculus. This so-called dynamic logic is an
extension of first-order logic and is complete relative to arithmetic. The software
verification systems KeY [5] and KIV [2] formally model large fragments of the
Java programming language based on dynamic logic. Our exposition in Sect. 2
is based on a simplified2 version of the KeY logic [5, Chapter 3].

Section 3 is the core of the paper: we define a calculus for logic-based symbolic
execution that allows for any program variable at any time to move from concrete
symbolic execution to computation in an abstract domain. The abstract domain
is a sound approximation of the program in the sense of abstract interpretation
theory [7]. The approach is based on the symbolic state updates featured by
our logic-based symbolic execution: a very compact language for representing
the intermediate results of symbolic computation. It is on these updates that
abstraction takes place, not on full target programs. While it is still possible to
use the calculus interactively and let the user specify the loop invariants, the
abstraction also makes an automatic procedure possible, where loop invariants
are derived without interaction by iterating symbolic execution of the loop body
until stabilization to a fixed point. The overall approach is illustrated by an
extended example in Sect. 4.

One potentially very rewarding area for a program logic with abstraction such
as suggested here is the analysis of secure information flow. This problem has
received a lot of attention in the past years with many type-based (see [23]
for an overview), some deduction-based (for example, [17,4,1,9,6,13]) and a few

2 Ultimately, we aim to cover as much of Java as done in the KeY system based
on the logic described in this paper, but in order to stay reasonably short and
comprehensible we give formal definitions only for a toy programming language.
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abstract interpretation-based approaches (for example, [11]). The information
flow analysis problem has also been the original motivation for the work
undertaken here.

While type-based approaches to information flow analysis are automatic, but
suffer from limited precision, most deduction-based approaches recast flow anal-
ysis as a general verification problem [4,9,6] that typically requires user interac-
tion to prove it. Other deduction-based approaches provide a logical model of
type-based flow analysis [1,13], but this results in rather specialized calculi with
limited prospects of re-use of existing verification systems.

In the second part of this paper we extend our symbolic execution/abstract
interpretation framework to model secure information flow. It was shown by
Hunt & Sands [16] that information flow policies can be expressed as mappings
from a program variable to all those locations that may influence its value. This
property was exploited in [13] where the symbolic execution machinery and
update mechanism of a dynamic logic was used to keep track of the locations
that a program variable depends on. By virtue of a simple abstraction rule from
a certain point onwards during symbolic execution a program variable x could
be made to record dependencies on other variables instead of precise values.
Unfortunately, this meant that at this point all information on the symbolic
value of x was discarded. It also lead to some non-standard and non-deterministic
rules. In the present paper we avoid these disadvantages. In Sect. 5 we extend
the semantics of our programming language such that the dependencies of the
program variables are tracked explicitly. We give sound modifications of the
affected symbolic execution rules with respect to this semantics.

In Sect. 6 we discuss additional related work not mentioned above. In Sect. 7
we give directions for future work and summarize our results.

2 A Dynamic Logic with Updates

In this section, we describe our logic for reasoning about programs. It is a sim-
plified version of the dynamic logic of KeY [5, Chapter 3]. Compared to classical
dynamic logic [14] its most important new feature is a new syntactic category
called updates [22]. Updates are used to describe state changes in an explicit
and programming language independent way. Our overview begins with syntax
in Sect. 2.1, continues with semantics in Sect. 2.2, and ends with the calculus
used for symbolic program execution in Sect. 2.3.

2.1 Syntax

The syntax is based on a (first-order) signature:

Definition 1 (Signature). A signature is a tuple Σ = (F ,P ,PV,V), where F
is a set of function symbols, P is a set of predicate symbols, PV is a finite set
of program variables, and where V is a set of (logical) variables.

Function and predicate symbols have fixed arities. We require that F contains
infinitely many function symbols of each arity.
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Note that program variables (i.e., variables occurring in programs) and logical
variables (i.e., variables that may be quantified over) are separate syntactic cat-
egories. For the rest of this paper, we assume a fixed signature Σ. For this reason
we drop the signature as a parameter in all subsequent definitions.

Definition 2 (Syntax). Terms t, formulas ϕ, updates U and programs p are
defined by the following grammar, where f ∈ F ranges over function symbols,
p ∈ P over predicate symbols, x ∈ PV over program variables, and y ∈ V over
logical variables:

t ::= f(t, . . . , t) | x | y | if (ϕ)then(t)else(t) | {U}t
ϕ ::= true | false | p(t, . . . , t) | ϕ & ϕ | (ϕ | ϕ) | ϕ −> ϕ | !ϕ |

∀y.ϕ | ∃y.ϕ | t .= t | {U}ϕ | [p]ϕ
U ::= (x := t ‖ . . . ‖ x := t)
p ::= x = t | p;p | �� (ϕ) {p} ���� {p} | ����� (ϕ) {p}

Terms f(t1, . . . , tn) and formulas p(t1, . . . , tn) must respect the arities of the
symbols f and p, respectively. Terms and formulas that appear inside programs
may not contain any logical variables, quantifiers, updates, or nested programs.

An expression of the form [p]ϕ is a program formula. Intuitively, it denotes partial
correctness of the program p with respect to the postcondition ϕ. The symbol
.= denotes referential equality. Updates are lists of pairs of locations (program
variables) and terms. They are used to represent the incremental difference be-
tween two states within a computation. In the KeY system [5] updates render
symbolic execution efficient. In the present paper updates provide a convenient
layer between programs and logic where abstraction takes place.

We allow programs of the form �� (ϕ) {p}, i.e., conditionals without an
����-block. This can be seen as an abbreviation for �� (ϕ) {p} ���� {x = x},
where x ∈ PV is an arbitrary program variable.

Example 1. Let p denote the following program computing the Gaussian sum
for the first i numbers and storing the result in n:
n = 0;
����� (i>0) {

i = i-1;
n = n+i

}

We can state partial correctness of this program (with respect to a rather weak
postcondition), for example, by i ≥ 0 −> [p](i .= 0 & n ≥ 0).

2.2 Semantics

The semantics of terms, formulas, updates and programs is based on an inter-
pretation I of the function and predicate symbols, a state s giving values for the
program variables, and a variable assignment β assigning values to the logical
variables:
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Definition 3 (Interpretations, States, Variable Assignments). Given a
universe D of values, an interpretation I is a function mapping every function
symbol f ∈ F with arity n to a function I(f) : Dn → D and every predicate
symbol p ∈ P with arity n to a relation I(p) ⊆ Dn. A state is a function s :
PV → D; the set of all states is denoted S. A variable assignment is a function
β : V → D.

Definition 4 (Semantics). Given a universe D, an interpretation I, a state
s and a variable assignment β, we evaluate terms t to a value valI,s,β(t) ∈ D,
formulas ϕ to a truth value valI,s,β(ϕ) ∈ {tt ,ff }, updates U to a result state
valI,s,β(U) ∈ S, and programs p to a set of states val I,s,β(p) ∈ 2S, where the
cardinality of valI,s,β(p) is either 0 or 1. The evaluation function valI,s,β is
formally defined in App. A.1.

A formula ϕ is called (logically) valid iff valI,s,β(ϕ) = tt for all interpretations
I, all states s and all variable assignments β.

For terms and formulas without updates and without programs, the evaluation
valI,s,β is essentially defined as usual in first-order logic. For an update U =
(x1 := t1 ‖ . . . ‖ xn := tn), the result of valI,s,β(U) is the state which results from
s by assigning the values of the terms ti to the program variables xi in parallel.
In case of a clash between two sub-updates (i.e., when xi = xj for i 	= j), the
rightmost update “wins” and overwrites the effect of the other. The meaning
of a term {U}t and of a formula {U}ϕ is that the result state of the update U
should be used for evaluating t and ϕ, respectively.

A program is evaluated to the set of states that it may terminate in when
started in s. We only consider deterministic programs, so this set is always
either empty (if the program does not terminate) or it consists of exactly one
state. The semantics of a program formula [p]ϕ is that ϕ should hold in all result
states of the program p, which corresponds to partial correctness of p wrt. ϕ.

2.3 Calculus

We reason about logical validity of dynamic logic formulas via a sequent calculus.
A sequent is an expression of the form Γ =⇒ Δ, where Γ (called the antecedent)
and Δ (called the succedent) are finite sets of formulas. The semantics of a
sequent is defined as valI,s,β(Γ =⇒ Δ) = val I,s,β(

∧
Γ −> ∨

Δ). As usual,
∧
Γ

stands for the conjunction (&) and
∨
Δ for the disjunction (|) of the formulas

in Γ and in Δ, respectively (in an arbitrary order). A sequent calculus rule is
an inference rule of the form

seq1 . . . seqn

seq

where seq1, . . . , seqn (called the premisses of the rule) and seq (called the con-
clusion of the rule) are sequents. A rule is called sound iff logical validity of all
the premisses implies logical validity of the conclusion.

A proof tree is constructed by starting with some root sequent to be proven,
and then applying sequent rules. Applying a rule means to find a leaf in the proof
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tree that is identical to the conclusion of a rule, and to add the rule’s premisses
as new children of the former leaf. Provided that all applied rules are sound,
it is guaranteed that at any time during this process, validity of all the leaves
implies validity of the root sequent. If one arrives at a tree whose leaves are all
obviously valid, one has proven the validity of the original proof obligation.

To achieve finite representation of a calculus, sequent rules are denoted
schematically. For example, the following schematic rule is applicable to all se-
quents where an arbitrary conjunctive formula ϕ1 & ϕ2 occurs in the antecedent:

andLeft
Γ, ϕ1, ϕ2 =⇒ Δ

Γ,ϕ1 & ϕ2 =⇒ Δ

We handle formulas with programs in them by transforming them into formulas
without programs. This process can be understood as symbolic execution of
the code: the rules walk through the program in a forward manner, at each step
discharging the first statement, until the program has been dealt with completely.
For example, an assignment statement is handled with the rule below:

assignment
Γ =⇒ {U}{x := t}[...]ϕ,Δ
Γ =⇒ {U}[x = t; ...]ϕ,Δ

The update U may have resulted from an assignment symbolically executed
earlier. As a border case, this update may be empty and disappear. The notation
“...” stands for an arbitrary “trail program” behind the assignment. As another
border case, this trail program may be empty; then, the subformula [...]ϕ in
the premiss is simply ϕ without a program attached to it.

The assignment rule transforms a program-level assignment into an equivalent
update. This is a useful step because updates are in general easier to reason
about than programs; for example, updates always terminate, and they never
have implicit side effects. The difference between programs and updates becomes
more profound when dealing with a more realistic programming language than
the toy language considered in this paper, such as Java. In particular, updates
are then helpful for a sound handling of the aliasing problem, without having
to do case splits for every assignment [5, Chapter 3].

A conditional statement can be handled by splitting the proof depending on
whether the guard is true or false:

ifElse
Γ, {U}g =⇒ {U}[p1; ...]ϕ,Δ Γ, {U} ! g =⇒ {U}[p2; ...]ϕ,Δ

Γ =⇒ {U}[if (g) {p1} else {p2}; ...]ϕ,Δ

For a loop, the simplest approach is to unwind it:

loopUnwind

Γ, {U}g =⇒ {U}[p; while (g) {p}; ...]ϕ,Δ
Γ, {U} ! g =⇒ {U}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

Obviously, unwinding is sufficient only if an upper bound on the number of loop
iterations is known statically. In general, an invariant rule is needed. Unlike the
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other rules described here, such a rule usually cannot be applied automatically,
because it relies on the presence of a suitable loop invariant.

Updates can be simplified and applied to terms and formulas using the set of
(schematic) rewrite rules provided in App. B.

Example 2. Suppose we want to prove the validity of this sequent:

i > 0 =⇒ [n=0; i=i-1; n=n+i]n ≥ 0

Applying the assignment rule two times gives us:

i > 0 =⇒ {n := 0}{i := i− 1}[n=n+i]n ≥ 0

Since the two updates are independent of each other, this can be rewritten to:

i > 0 =⇒ {n := 0 ‖ i := i− 1}[n=n+i]n ≥ 0

Another application of assignment and another round of update rewriting yields:

i > 0 =⇒ {n := 0 ‖ i := i− 1 ‖ n := 0 + i− 1}n ≥ 0

Note that now, the effect of the sub-update n := 0 is overwritten by the rightmost
sub-update which also writes to n. Since the program has now been dealt with
completely, we can syntactically apply the update to the postcondition n ≥ 0
(also using the rewrite rules in App. B):

i > 0 =⇒ 0 + i− 1 ≥ 0

Proving this sequent is a matter of simple arithmetic reasoning.

3 A Dynamic Logic with Abstraction

The main motivation for incorporating abstraction into a symbolic execution
framework is to achieve automation. The core issue is to discover loop invariants
automatically instead of relying on a human user. Our main idea is to employ
a fixed point algorithm that performs repeated symbolic executions of the loop
body, interleaved with abstraction steps, until an invariant is found.

To this end, we first introduce a notion of an abstract domain in Sect. 3.1. We
expect an abstract domain to be a lattice of “abstract values”, each representing
a set of possible concrete values. For every abstract value, we introduce a partially
interpreted constant symbol into our logic. Partially interpreted in this context
means that the interpretation of such a symbol can vary on the concrete value as
long as the latter satisfies certain domain restrictions. These constant symbols
are used to represent abstract values within our updates. During construction
of a proof, abstraction can be performed as an instance of logical weakening, for
which we define a sound rule in Sect 3.2.

The invariants found by our algorithm can be used to get rid of loops by using
the loop invariant rule of Sect. 3.3. Since the invariants we derive are updates
instead of formulas, this rule is slightly different from the classical loop invariant
rule of dynamic logic. The algorithm itself is described in Sect. 3.4 and Sect. 3.5.
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3.1 Abstract Domains

Definition 5 (Abstract Domains). Given a universe D (which we will also
call concrete domain from now on), an abstract domain is a countable lattice A
with partial order � and join operator �. We require that A does not contain any
infinite ascending chains. Further, an abstract domain comes with an abstraction
function α : 2D → A and a concretization function γ : A → 2D with the following
properties (from [7]):

1. α and γ are monotone wrt. the partial orders ⊆ and �
2. for each a ∈ A : a = α(γ(a))
3. for each c ∈ 2D : c ⊆ γ(α(c))

The second property states that concretizing does not lead to a loss of informa-
tion, while the third one expresses correctness of the abstraction: no concrete
values are lost.

Example 3. As a simple example, our concrete domain may be D = ZZ, and
our abstract domain A may be the sign lattice depicted in Fig. 1. The abstrac-
tion function α and concretization function γ are as usual for this domain. For
convenience, γ is given in the right part of Fig. 1.

�

∅

≤ ≥

0neg pos

γ(�) = ZZ

γ(≤) = {i ∈ ZZ | i ≤ 0}
γ(≥) = {i ∈ ZZ | i ≥ 0}

γ(neg) = {i ∈ ZZ | i < 0}
γ(pos) = {i ∈ ZZ | i > 0}
γ(0) = {0}
γ(∅) = {}

Fig. 1. Abstract domain lattice for sign analysis

Definition 6 (Logical Representation of Abstract Domains). A signa-
ture ΣA for an abstract domain A is a signature where

– for every a ∈ A and every z ∈ ZZ, there is a constant symbol γa,z ∈ F
– for every a ∈ A there is a unary predicate symbol χa ∈ P

For a signature ΣA, we only consider interpretations I satisfying

– for every a ∈ A and every z ∈ ZZ: I(γa,z) ∈ γ(a)
– for every a ∈ A: I(χa) = γ(a)

The constant symbols γa,z are used to represent abstract values in logical formu-
las, in particular, on the right hand side of updates. For example, using the sign
lattice abstract domain from Ex. 3, the update (n := γ≥,1 ‖ i := γ≥,2) sets n and
i to unknown, not necessarily equal, non-negative values. The predicate symbols
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χa are used to express membership of a concrete value in the concretization of
an abstract value.

For working with the partially interpreted γa,z and χa symbols, we need rules
for handling them; e.g., we want to be able to prove the validity of a sequent such
as ¬γ≥,1

.= 0 =⇒ γ≥,1 > 0, which depends on the restriction that I(γ≥,1) ≥ 0
for every interpretation I. We assume that these rules are provided together
with the abstract domain. From now on, we assume a fixed signature ΣA for an
abstract domain A.

3.2 Update Weakening and Abstraction Rule

In this section we extend the classical notion of logical weakening to updates for
which we give a weakening rule. Update weakening is used in the loop invariant
rule directly and also implicitly during loop invariant computation.

To formulate weakening, respectively, strengthening rules for updates, we need
to say what weaker, respectively, stronger means for updates. We define this
ordering here with respect to a given sequent proof P and a set of context
formulas (or constraints) C.

Definition 7 (
P,C-relation on updates). Let P denote a proof, U1 and U2

updates, and C a set of formulas. We call U2 P,C-weaker than U1, i.e.,

U1 
P,C U2

if for any interpretation I, state s, and variable assignment β, where for all
ψ ∈ C we have val I,s,β(ψ) = tt, the following holds:

val I,s,β(U1) ∈ {valI′,s,β(U2) | I P,C I ′}

where I P,C I ′ means that I and I ′ coincide on all function and predicate
symbols occurring in P or C.3 In case of an empty set of context formulas C,
we omit C and write P -weaker and 
P instead.

Example 4. Assume a proof P consisting of a single sequent

c > 0 =⇒ {i := i + 1 ‖ j := c+ 3
︸ ︷︷ ︸

U

}ϕ

with program variables i, j and a constant symbol c.

1. The update i := d + 1 ‖ j := e, where d, e are new constant symbols, is
P -weaker than U , because for any I, s, β, we can choose the interpretation
I ′ P I with I ′(d) = s(i) and I ′(e) = I(c) + 3.

2. The update i := f(1) ‖ j := g(c, 3), where f, g are new function symbols, is
P -weaker than U , because for any I, s, β we can choose the interpretation
I ′ P I with I ′(f)(1) = s(i) + 1 and I ′(g)(I(c), 3) = I(c) + 3.

3 Note that in particular val I′,s,β(ψ) = tt holds for all ψ ∈ C.
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3. The update i := j ‖ j := c + 3 is not P -weaker than U , as for any s′ with
s′(j) 	= s(i) + 1 the membership requirement from Def. 7 does not hold.

4. The update i := γ�,0 ‖ j := γpos,0, where γ�,0 and γpos,0 are new, is not
P -weaker than U , but it is {c > 0}, P -weaker.

Weakening by replacing the right hand side of an update with a suitable γa,z

symbol corresponds to abstracting to the chosen abstract domain. In the fol-
lowing, we restrict ourselves to this form of weakening. The rule weakenUpdate
below allows to use it in a sequent proof:

weakenUpdate
Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ Γ =⇒ {U ′}ϕ,Δ

Γ =⇒ {U}ϕ,Δ
where

– x̄ = (x1, . . . , xn) is a list of all program variables occurring on the left hand
side in U or U ′ (duplicate-free, in an arbitrary order)

– c̄ = (c1, . . . , cn) is a list of fresh constant symbols of the same length as x̄
– γ̄ = (γa1,z1 , . . . , γam,zm) is a list of all γa,z symbols introduced freshly in U ′

– the notation ∃γ̄.ψ is an abbreviation for ∃ȳ.(χā(ȳ) & ψ[γ̄/ȳ]), where ȳ =
(y1, . . . , ym) is a list of fresh logical variables of the same length as γ̄, and
where ψ[γ̄/ȳ] stands for the formula obtained from ψ by replacing all occur-
rences of a symbol in γ̄ with its counterpart in ȳ

– vector notation is used as an abbreviation: ∃ȳ.ψ stands for the multiply quan-
tified formula ∃y1. · · · .∃ym.ψ, t̄ .= t̄′ and χā(ȳ) stand for the conjunctions
t1

.= t′1 & · · · & tn
.= t′n resp. χa1(y1) & · · · & χam(ym)

The first premiss of weakenUpdate guarantees that U ′ is (P, Γ ∪ !Δ)-weaker
than U : for any initial I, s, β, it must be possible to choose an interpretation
of the newly introduced γ̄ such that with this interpretation, U ′ assigns to all
relevant program variables x̄ the same value as U . In the second premiss, the
proof of ϕ continues with the weaker update U ′ in place of U .

Lemma 1. The weakenUpdate rule is sound: if all of its premisses are logically
valid, then its conclusion is also logically valid.

The proof of this lemma is contained in App. C.1.

3.3 An Invariant Rule Based on Updates

Below we define a variation of the classical loop invariant rule, based on updates.
The rule makes use of an “invariant update” U ′, which must be provided instead
of an invariant formula.

invariantUpdate

Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′}g, {U ′}[p](x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ
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where x̄, c̄, γ̄, ∃γ̄.ψ and the vector notation are defined as in the weakenUpdate
rule.

The first premiss of invariantUpdate is identical to that of weakenUpdate. It
ensures that U ′ is weaker than U , or in other words, that the initial state for
the loop, as produced by U , can also be reached by executing U ′ (using some
suitable interpretation of the fresh γ̄ symbols). The second premiss states that
U ′ is “preserved” by the loop body p: for any state reached by executing first U ′

and then p, we can find an interpretation of the γ̄ such that U ′ directly produces
this state. Together, the first two premisses establish an inductive argument: any
state reachable by an arbitrary number of loop iterations can also be reached
directly by U ′, for some interpretation of the γ̄ symbols. The result of this in-
duction is used in the third premiss, where for handling the trail program “...”
we only have to consider runs starting in states which can be produced by U ′.

Example 5. The following sequent occurs after applying the assignment rule in
Ex. 1:

i ≥ 0 =⇒ {n := 0}[while (i>0) {i = i-1; n = n+i
︸ ︷︷ ︸

b

}](i .= 0 & n ≥ 0)

An appropriate choice for the “invariant update” is U ′ = (n := γ≥,1 ‖ i := γ≥,2).
We will later see how this update can be found automatically. With this choice,
the rule produces the following three sequents:

i ≥ 0, {n := 0}(n .= c1 & i
.= c2)

=⇒ ∃y1, y2.
(
χ≥(y1) & χ≥(y2) & {n := y1 ‖ i := y2}(n .= c1 & i

.= c2)
)

i ≥ 0, {n := γ≥,1‖i := γ≥,2}(i > 0), {n := γ≥,1‖i := γ≥,2}[b](n .= c1 & i
.= c2)

=⇒ ∃y1, y2.
(
χ≥(y1) & χ≥(y2) & {n := y1 ‖ i := y2}(n .= c1 & i

.= c2)
)

i ≥ 0, {n := γ≥,1 ‖ i := γ≥,2} !(i > 0)
=⇒ {n := γ≥,1 ‖ i := γ≥,2}(i .= 0 & n ≥ 0)

All of these sequents are logically valid, and provided that our calculus contains
rules covering the semantics of the γ≥,z and χ≥ symbols, they are proveable. For
the first two, one needs to instantiate the existential quantifiers with c1 and c2.

Lemma 2. The invariantUpdate rule is sound.

The proof of this lemma is contained in App. C.2.

3.4 The Proof Search Strategy

In this section we describe the proof search strategy. The proof search strategy
implements the fixed point algorithm for handling loops automatically without
needing to be provided with loop invariants by a human user.

As our calculus is not proof confluent, defining a good search strategy is cru-
cial. In particular, the proof search strategy needs to choose the right degree of
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abstraction and to maintain normal form-like properties of updates, terms and
formulas (this is important, for example, to actually find a fixed point).

Depending on the proof context (e.g., main or side proof to compute the loop
invariant) we will employ different proof search strategies.

Assume we intend to prove that after the execution of a program p the formula
ϕ holds:

Γ =⇒ [p]ϕ,Δ

The proof search strategy acts now like a symbolic interpreter on p and executes
assignments (applying rule assignment) as well as conditional statements (ifElse).
Note that these rules are precise in the sense that no information on the possible
poststate is lost.

The critical point in a proof P occurs when a loop statement is encountered
and we are faced with a situation similar to

Γ =⇒ {U}[while (g) {b}; ...]ϕ,Δ

In abstract-interpretation approaches, loop treatment involves the computation
of a safe approximation of the set of states observable after the loop termination.
It remains then to show that the formula [...]ϕ holds in all of them. The main
idea of our approach is to describe this set in terms of an (abstract) update Ua

such that for each I, β the set {s′ | s′ = valI′,s,β(Ua)(s), s ∈ S, f.a. I ′ P,C I} is
a safe approximation of the post loop states. A higher precision can be achieved
by requiring that the considered interpretations I satisfy additional formulas.

To compute abstract (weaker) updates, the proof search strategy spawns side
proofs. The purpose of these side proofs is to compute updates that capture
the state changes in successive executions of the loop body. The results of the
side proofs are later combined after suitable abstraction using the join rule.
Consequently, in the side proofs we handle the top-level loop by unwinding
(loopUnwind) while possible nested loops are treated by rule invariantUpdate. As
in the side proofs we are only interested in state changes, all proof branches that
do not involve symbolic execution are discarded.

Consider now one unwinding step: the proof search strategy executes the loop
body until the loop is about to be re-entered. In general, symbolic execution
of the loop body may result in several branches; the proof search continues on
these branches until they are either closed or the loop body has been completely
symbolically executed and the loop is about to be re-entered. After complete
execution of one loop iteration, the proof situation is similar to the one shown
in Fig. 2.

At this point the proof search strategy computes a weakened update repre-
senting a superset of all possible states reachable after this loop iteration. A new
sequent of the form

Γ ′ =⇒ {U ′}[while (g) {b}; ...]ϕ, Δ′

is created where update U ′ is the weakened (by abstraction) update computed
by comparing the updates U1, . . . ,Um from the open branches and update U
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{U}[while (g) {b}; ...]ϕ

• {U}[b; while (g) {b}; ...]ϕ

{U1}[while(g){b};...]ϕ {U2}[while(g){b};...]ϕ . . . {Um}[while(g){b};...]ϕ

Fig. 2. Invariant computation: side proof after symbolic execution of one loop iteration

representing the symbolic state just before the loop unwinding. Γ ′ (Δ′) are
formula sets that are weaker (stronger) than any of the corresponding Γ1, . . . , Γm

(Δ1, . . . , Δm) belonging to the open leaves considered in Fig. 2. In Sect. 3.5 we
describe this join in detail. The constructed sequent is then appended at one
of the open branches. The other branches are closed, i.e. not further taken into
consideration.

The proof search strategy stops the side computation if after an application
of the join rule a fixed point is detected. A fixed point is reached when update
U taken from immediately before the last loopUnwind rule application is weaker
than (or equal to) update U ′ resulting from the current join operation.

To detect a fixed point the proof search strategy tries to prove for all program
variables x̄ that the states represented by update U subsume those of U ′:

∀ȳ′.∃ȳ.(Eq(ȳ′, ȳ) & χγ̄′(ȳ′) −> χγ̄(ȳ) & {U [γ̄/ȳ]}x̄ .= {U ′[γ̄′/ȳ′]}x̄) (1)

where

– γ̄, γ̄′ denote sequences of all γ symbols occurring in one of the sequents
– ȳ, ȳ′ are duplicate-free sequences of variables of same length as γ̄ resp. γ̄′

– Eq(ȳ′, ȳ) :=
∧

yi∈ȳ,y′
j∈ȳ′,

γai,i=γaj,j

yi = y′j and χγ̄(ȳ) :=
∧

γai,i∈γ̄,
yi∈ȳ

χai(yi) (analog. χγ̄′)

To find fixed points earlier the sequent side-formulas Γ,Δ, Γ ′, Δ′ can be used
in the proof. The join operation defined in the next section guarantees that if
the value of a variable x has been changed in the most recent loop iteration then
the abstraction produces an elementary update x := γk,a. In combination with
a finite abstract domain (1) becomes trivial to prove such that a fixed point is
guaranteed to be found.

3.5 Joining Proof Branches

In this section we describe how different execution paths are joined by the proof
search strategy in a side proof. The join rule introduced in this section is a
combination of a classical weakening and the update weakening rule. Deviating
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from other rules, it is not a sequent rule but a “meta rule” combining several
sequents. Let P denote a proof with several open branches

...
Γs0 =⇒ {Us0}[while (g){b}]ϕ, Δs0

...
Γs1 =⇒ {Us1}[while (g){b}]ϕ, Δs1 . . . Γsm =⇒ {Usm}[while (g){b}]ϕ, Δsm

Applying the join rule closes all except one of these open branches. The open
branch that is left is extended by adding the sequent

sm∨

i=s0

(Γsi & !Δsi) =⇒ {(Cs0 ,Us0) �̇ . . . �̇ (Csm ,Usm)}[while (g) {b}]ϕ

as a new leaf with

– formula set Csi := Γsi ∪ !Δsi and
– (C1,U1) �̇ (C2,U2) is an update join operation as defined below.

Definition 8 (Update Join · �̇ ·). The update join operation has the signature

�̇ : (2For × Updates) × (2For × Updates) → Updates

where 2For denotes the power set of formulas and is defined by the following
property:

Let U1 and U2 denote arbitrary updates occurring in a proof P and let C1, C2

be formula sets representing constraints on the update values. Then an update
(C1,U1) �̇ (C2,U2) must be (P,C1/2)-weaker than U1 resp. U2, i.e.

Ui 
P,Ci (U1, C1) �̇ (U2, C2), i = 1, 2 .

Lemma 3. Rule join is sound.

The join rule, even though sound, is only used within side proofs that compute
loop invariants. Its correctness is not strictly necessary as the loop invariant rule
checks the invariance property and will reject unsuitable invariants, but increases
the likelihood that meaningful fixed points and, hence, loop invariants are found.

Finally, we describe the concrete realization �abs of an update join operator
for finite abstract domains.

Let U1, C1 and U2, C2 denote updates and their value restrictions. The update
join (U1, C1)�̇abs(U2, C2) computes the update Ures as follows: let x be a program
variable occurring on the left side of U1 or U2.

1. Try to prove

=⇒ ∃y.((C1 −> ({U1}x) .= y) & (C2 −> ({U2}x) .= y))

if the proof attempt succeeds, then the elementary update x := t1 occurring
last in U1 with x on the left side (resp. x := t2 if x occurred only on the
left side of U2) is added to Ures by parallel composition. Otherwise, if the
proof attempt fails (timeout or counterexample found) then continue with
the next step.
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2. For each pair (Ci,Ui), i = 1, 2, for any abstract domain element a starting
with the smallest one, try to prove

Ci =⇒ χa({Ui}x)

and stop processing a pair as soon as an a has been found for which the
sequent is valid, i.e. a proof has been found (within a given timeout). After
termination we are left with two abstract domain elements a1, a2 for the resp.
pairs for which we compute a1 � a2 (or at least an upper bound). Finally,
the elementary update x := γa1�a2,z is added to update Ures by parallel
composition.

Example 6. Given the program variables i, n and the update/constraint pairs
(n := 0, i ≥ 0) and (n := i−1‖i := i−1, i > 0), the join computation proceeds
as follows:

Starting with program variable n, we check first, if n is evaluated to the same
value under both updates in their resp. context. Obviously, that does not hold
in a state where i has, for example, the value 10.

Thus we enter the abstraction phase. Starting with the minimal abstract do-
main element ⊥ the proof obligations described in step 2 are attempted to prove.
The attempts succeed for

i ≥ 0 =⇒ χ0({n := 0}n) and i > 0 =⇒ χ≥({n := i− 1 ‖ i := i− 1}n)

The join for the abstract domain elements is (≥ � 0) = ≥. Thus, we get as first
sub-update n := γ≥,0. A similar computation for program variable i gives us
finally the complete update

n := γ≥,0 ‖ i := γ≥,1

4 Example

Recall the proof obligation from Ex. 1:

i ≥ 0 =⇒ [n = 0; while (i > 0) i = i-1; n = n+i](i .= 0 & n ≥ 0) (2)

In this section, we illustrate our approach by slowly walking through the proof
for this sequent. We abbreviate the while-loop with W, the loop body with B and
the postcondition with ϕ. The first step is to apply the assignment rule, which
produces the following sequent:

i ≥ 0 =⇒ {n := 0}[W]ϕ (3)

At this point we open a side computation with this subgoal in order to determine
a suitable loop invariant update. After this side computation, we will return to
the main proof at sequent (3) and apply the invariantUpdate rule using this
update.
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The side computation starts by applying loopUnwind, which splits the side
proof into two branches:

i ≥ 0, {n := 0}(i > 0) =⇒ {n := 0}[B;W]ϕ
i ≥ 0, {n := 0} !(i > 0) =⇒ {n := 0}ϕ

The second of these branches is uninteresting to us in this side computation, and
we simply ignore it. Using update rewriting rules and some arithmetic simplifi-
cation, the first branch can be simplified to

i > 0 =⇒ {n := 0}[B;W]ϕ
Note that the path condition from the loop guard strengthens the precondition.
We continue by symbolically executing the loop body, which (after some update
rewriting) yields

i > 0 =⇒ {n := 0 ‖ i := i − 1 ‖ n := 0 + i− 1}[W]ϕ (4)

Now, we have completed our first iteration: we have unwound the loop once,
executed its body, and obtained a sequent where W is the first active statement
like in (3). We use the join rule to merge the current state (4) with the previous
state (3):

i > 0 | i ≥ 0 =⇒ {n := γ≥,1 ‖ i := γ≥,2}[W]ϕ (5)

The computation performed by join rule is explained in detail in Ex. 6 in Sect. 3.5.
We unwind the loop once more with loopUnwind, which gives us the following
for the loop entry branch:

i > 0 | i ≥ 0, {n := γ≥,1 ‖ i := γ≥,2}(i > 0) =⇒ {n := γ≥,1 ‖ i := γ≥,2}[B;W]ϕ
Update rewriting and arithmetic simplification turns this into:

i ≥ 0, γ≥,2 > 0 =⇒ {n := γ≥,1 ‖ i := γ≥,2}[B;W]ϕ
We symbolically execute the body a second time, which produces:

i ≥ 0, γ≥,2 > 0 (6)
=⇒ {n := γ≥,1 ‖ i := γ≥,2 ‖ i := γ≥,2 − 1 ‖ n := γ≥,1 + γ≥,2 − 1}[W]ϕ

This finishes our second iteration. We apply join to combine (6) and (5), which
yields:

i > 0 | i ≥ 0 | (i ≥ 0 & γ≥,2 > 0) =⇒ {n := γ≥,3 ‖ i := γ≥,4}[W]ϕ (7)

Now, we observe that the update U = (n := γ≥,3 ‖ i := γ≥,4) of the current
sequent (7) “implies” the corresponding update U ′ = (n := γ≥,1 ‖ i := γ≥,2) of
the previous iteration (5). The fixed point detection formula (1) from Sect. 3.4

∀y1, y2.∃y′1, y′2.
(

χ≥(y1) & χ≥(y2) −> (χ≥(y′1) & χ≥(y′2) &
(({n := y′1 ‖ i := y′2}n) .= ({n := y1 ‖ i := y2}n) &
({n := y′1 ‖ i := y′2}i) .= ({n := y′1 ‖ i := y′2}i))

)
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becomes then trivial to solve as the existential quantifiers need only to be instan-
tiated with the skolem constant resulting from the enclosing universal quantifier.

Thus, U (or U ′) is a “fixed point”. At this point we leave the side computation.
We continue the main proof by applying the rule invariantUpdate to (3), which
eliminates the loop from our proof obligation, making the remainder of the proof
straightforward as shown already in Ex. 5.

In conclusion, we have constructed a proof for the validity of (2). Our use of
abstraction allowed us to do so in a completely mechanical process, which did
not require any manually supplied loop invariant.

5 Modeling Information Flow

The problem of information flow security is about preventing a program from leak-
ing “secret” data to output channels of a “lower security level”. Typically, the se-
curity levels to be distinguished are defined and ordered in a security lattice. In the
simplest case, one distinguishes only between the security levels High and Low.

Example 7. In the following example programs, h and l are program variables,
where h has security level High and l security level Low. A program is considered
secure if an attacker who reads the final values of the Low variables cannot infer
any information about the initial values of the High variables.

1. l=h is obviously insecure, because information flows directly from h to l.
2. �� (h>0) {l=1} ���� {l=2} is also insecure, because information about

the sign of the initial value of h flows indirectly to l.
3. �� (l>0) {h=1} ���� {h=2} is secure, because the value of l is not touched

at all.
4. �� (h>0) {l=1} ���� {l=2}; l=3 is secure, because the final value of l is

always 3, independently of the initial value of h.
5. h=0;l=h is secure, because the final value of l is always 0.
6. �� (h>0) {h=l;l=h} is secure, because the value of l is not changed.
7. �� (h>0) {l=2;h=1} ���� {l=2;h=2} is secure, because the final value of

l is always 2.
8. l=h-h is secure, because the final value of l is always 0.

The most common technique for a language-based analysis of information flow
is to use special type systems. The security levels are then used as types that are
assigned to program variables. The analysis ensures via type checking or type
inference that no information about the value of a High-labeled variable is leaked
to a Low-labeled variable.

Soundness of any approach to information-flow analysis entails that an inse-
cure program will not be classified as secure. To achieve full automation, however,
many approaches, in particular type-based ones, classify certain secure programs
as insecure. To identify program (4) as secure, the approach under consideration
has to be control-flow sensitive. Some, but not all, available analyses have this
property. In order to correctly identify programs (5), (6), (7) and (8) as secure,
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the analysis must be value-sensitive. At the moment this is only achieved by
some deduction-based systems [9,6,13] that require human interaction.

Information-flow analysis can be restated as an analysis of variable dependen-
cies (see [16]). Here, we want to find for any variable x the set of variables on
whose initial values the final value of x can at most depend. In particular, we
may ask whether the final value of a Low-labeled variable can depend on the
initial value of any High-labeled variable.

In this section we extend our program logic to allow the analysis of vari-
able dependencies in programs. In contrast to [9], where the dependencies of a
program variable are implicitly tracked using free logical variables, we use an ap-
proach where the dependencies are encoded explicitly into program states. The
execution of a program statement directly manipulates these dependencies. This
approach allows to apply the abstraction mechanism introduced in this paper
also to variable dependencies, which serves to achieve automation of our infor-
mation flow analysis while maintaining a high degree of precision and achieving
value-sensitivity in more cases than type-based systems.

We omitted formal correctness statements and proofs in this section which
are tedious, but do not offer additional insights.

5.1 Dependencies in Dynamic Logic

Formally, the dependencies of a variable can be defined as follows.

Definition 9 (Variable Dependencies). Given a program variable x and a
program p, the dependencies of x under p form the smallest set D(x, p) ⊆ PV of
program variables such that the following holds for all interpretations I and all
variable assignments β: if s1, s2 ∈ S are such that for all y ∈ D(x, p) we have
s1(y) = s2(y), then either

– val I,s1,β(p) = val I,s2,β(p) = ∅ (i.e., from both initial states the execution of
p does not terminate), or

– valI,s1,β(p) = {s′1} and valI,s2,β(p) = {s′2}, where s′1(x) = s′2(x) (i.e., from
both initial states the execution terminates and yields the same value for x).

The dependencies formalized in Def. 9 are difficult to reason about: they are
based on comparing all possible runs of a program p instead of being a local
property which is true or false in a given program state. To be able to talk
about dependencies in our logical formulas in the same way as about other
program properties, we extend our logic and the semantics of programs so that
dependencies are stored in states explicitly. The main idea is to associate with
every program variable x a program variable xdep that records the dependencies
of x with respect to the program that has been symbolically executed so far.
The variable xdep is updated by the program whenever x itself is changed, such
that in any state during program execution, xdep evaluates to a set of program
variables which contains all variables on whose initial value the current value of
x can depend.
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Definition 10 (Logical Representation of Dependencies). Given a signa-
ture Σ = (F ,P ,PV,V), the dependency extension of Σ is a signature Σdep =
(Fdep,Pdep ,PVdep ,V), where

– Fdep = F ∪ {{}, ∪̇} ∪ {{x} | x ∈ PV}, where {} is a constant symbol, ∪̇ is
a function symbol with arity 2, and where the {x} are function symbols with
arity 0,

– Pdep = P ∪ {⊆̇}, where ⊆̇ is a predicate symbol with arity 2, and
– PVdep = PV ∪ {xdep | x ∈ PV}.

For such a signature Σdep, we do not allow the new symbols to occur in pro-
grams: programs over a signature Σdep are built only from the symbols defined
in the sub-signature Σ. We only consider universes D ⊇ 2PV where every set of
program variables also occurs as a value in the universe. Finally, we only allow
interpretations I that fix the meaning of the additional symbols as follows:

– I({}) = ∅,
– for all P1, P2 ∈ 2PV : I(∪̇)(P1, P2) = P1 ∪ P2,
– for all x ∈ PV: I({x}) = {x}, and
– I(⊆̇) = {(P1, P2) | P1 ⊆ P2 ⊆ PV}.

Definition 11 (Program Semantics with Dependencies). Given a uni-
verse D, an interpretation I, a state s and a variable assignment β, we evaluate
programs p to a set of states val ′I,s,β(p) ∈ 2S as defined in App. A.2. As before,
our programs are deterministic, so the sets always have at most one element.

One difference to the program semantics without dependencies is that executing
an assignment x = t not only changes x, but also xdep : we assign to it the
value of deps(t), where for every term or formula t, deps(t) is a term which over-
approximates the precise semantic dependencies of t. For example, deps(n+i) =
ndep ∪̇ idep . The formal definition of deps is given in App. A.3.

The second difference is that after executing a conditional statement or a
loop iteration with guard g, we add deps(g) to xdep for every program variable x
which has been changed in the body of the conditional or loop. This is necessary
in order to cover implicit flow of information via control flow (see Ex. 7).

Example 8. Consider program (6) of Ex. 7. We can express security of this
program with the sequent

hdep .= {h}, ldep .= {l} =⇒ [if (h>0) {h=l;l=h}](ldep ⊆̇ {l})

The precondition in the antecedent means that we assume the initial value of
every variable to depend exactly on itself. The postcondition demands that after
running the program, the final value of l depends at most on the initial value of
l (so that in particular, it does not depend on the initial value of h).

Let s1 ∈ S be a state satisfying the precondition, i.e., s1(hdep) = {h} and
s1(ldep) = {l}. If we execute the assignment h=l in s1, this will produce a state
s2 with s2(hdep) = s1(ldep) = {l}, reflecting the fact that now the value of h
depends on the initial value of l.
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Continuing the execution of the program, the assignment l=h yields a state
s3 with s3(ldep) = s2(hdep) = {l}. After the end of the conditional statement,
the dependencies of the guard h>0 are injected into all variables changed inside
the conditional, yielding a state s4 where s4(ldep) = s3(ldep) = {l} (since l
has the same value in s3 at the end of the conditional as it had in s1 before the
conditional), and where s4(hdep) = s3(hdep) ∪ s1(hdep) = {h} (where s1(hdep)
are the dependencies of the guard).

Thus, the final state s4 satisfies s4(ldep) = {l}, meaning that the postcon-
dition is satisfied. As this holds for all initial states satisfying the precondition,
our sequent is logically valid.

Note that our formalisation of dependencies is control flow- and value-sensitive;
it correctly classifies programs (3)–(6) of Ex. 7 as secure. Nevertheless, it is
an overapproximation of the semantic dependencies as formalized in Def. 9. For
example, it conservatively classifies programs (7) and (8) as insecure, even though
they are in fact secure. This is a price we pay for the ability to reason about
dependencies in the same way as state properties.

5.2 Dependency Aware Rules

For working with the changed semantics of Def. 11 in our calculus, we need to
adapt the symbolic execution rules from Sect. 2.3 and also the update invariant
rule from Sect. 3.3 accordingly. The other rules (in particular, weakenUpdate
and join) are not affected, because they do not deal with programs. For the
assignment rule, we can simply add the update xdep := deps(t):

assignmentdep
Γ =⇒ {U}{x := t ‖ xdep := deps(t)}[...]ϕ,Δ

Γ =⇒ {U}[x = t; ...]ϕ,Δ

For conditional statements, the new semantics introduces an additional state
transition after execution of the conditional where the dependencies of the guard
are retroactively added to the dependencies of all variables modified inside the
conditional. We capture these additional dependencies in the rule by inserting a
suitable update V into our premises:

ifElsedep

Γ, {U}g, {U}(ȳ .= ȳpre) =⇒ {U}[p1]{V}[...]ϕ,Δ
Γ, {U} ! g, {U}(ȳ .= ȳpre) =⇒ {U}[p2]{V}[...]ϕ,Δ
Γ =⇒ {U}[if (g) {p1} else {p2}; ...]ϕ,Δ

where

– ȳ = (y1, y
dep
1 , . . . , yn, y

dep
n ) is a list of all program variables occurring in g,

p1 or p2, together with the corresponding dependency variables
– ȳpre = (ypre1 , ypredep1 . . . , ypren , ypredepn ) is a list of fresh constant symbols of

the same length as ȳ
– V is the update
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ydep
1 := if (y1

.= ypre1 )then(ydep
1 )else

(
ydep
1 ∪̇ {ȳ := ȳpre}deps(g))

‖ . . . ‖
ydep

n := if (yn
.= ypren )then(ydep

n )else
(
ydep

n ∪̇ {ȳ := ȳpre}deps(g))

The fresh constant symbols ȳpre are used to store the pre-state values of the
program variables ȳ. The update V compares the current values of all (non-
dependency) program variables with their pre-state values, and adds deps(g) to
variable’s dependencies if the value has been changed. A subtle detail is that
deps(g) must be evaluated in the pre-state, which is achieved by prefixing it
with the update ȳ := ȳpre .

The same idea can be applied to the loopUnwind and invariantUpdate rules
(where ȳ, ȳpre and V are as above):

loopUnwinddep

Γ, {U}g, {U}(ȳ .= ȳpre) =⇒ {U}[p]{V}[while (t) {p}; ...]ϕ,Δ
Γ, {U} ! g =⇒ {U}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

invariantUpdatedep

Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′}g, {U ′}(ȳ .= ȳpre), {U ′}[p]{V}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

5.3 Dependency Aware Abstraction

To apply abstraction in the dependency-aware version of our calculus two ab-
stract domains have to be defined:

1. The abstract domain Aval for the value abstraction of normal program vari-
ables that carry values. The choice of Aval depends on the application con-
text. An example is the sign domain for integers used for illustration in the
previous sections.

2. The abstract domain Adep for the value abstraction of the dependency pro-
gram variables. Again, the suitable choice depends on the application con-
text. In an information-flow security context, a natural choice for Adep is
suggested by the security lattice.

The proof search strategy remains nearly unchanged from the standard version
as defined in Sec. 3.4. When computing an abstraction, the abstract domain Aval

is used for normal program variables x ∈ PV and Adep for dependency program
variables xdep ∈ PVdep .

Example 9. Assume that we are given a security policy with security levels High
and Low for program variables PV = {l1, l2, h}.
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For regular values, we keep using the sign domain from previous sections as
Aval . For dependencies, we use Adep := {∅, Low,High, �dep} with γ(∅) = ∅,
γ(Low) = 2{l1,l2}, γ(High) = 2{h}, γ(�dep) = 2PV . Consider now the following
simple program P:

l1=0; l2=0; ����� (h<0) { l2=l2+1; h=h+1 }
︸ ︷︷ ︸

W

; �� (l2<0) { l1=1 }
︸ ︷︷ ︸

C

To check whether P satisfies the specified security policy for program variable
l1, the sequent

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h} =⇒ [P]
(
l1dep ⊆̇ {l1} ∪̇ {l2}

)

needs to be proven. The precondition demands that program variables depend
on themselves in the initial state, as in Ex. 8.

Applying rule assignmentdep twice yields an update where l1 and l2 are set
to 0 and where all dependencies of l1 and l2 have been erased, i.e. l1dep , l2dep

are assigned the empty set {} (= deps(0)). The resulting sequent is:

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h}

=⇒ {l1 := 0 ‖ l1dep := {} ‖ l2 := 0 ‖ l2dep := {}}[W;C](l1dep ⊆̇ {l1} ∪̇ {l2}
)

At this point the loop invariant update needs to be computed in a side proof as
described in Sect. 3.4, which automatically yields as invariant update UInv :

l1 := 0 ‖ l1dep := {} ‖ l2 := γ≥,0 ‖ l2dep := γHigh,0 ‖ h := γ�val ,0 ‖ hdep := {h}
Note that we keep the precise value for l1 and l1dep, as l1 is not modified

by the loop. The other variables may be changed and have to be abstracted. In
particular l2 may depend on h due to the implicit information-flow caused by
the loop guard, which is reflected in the value for l2dep .

Applying now rule invariantUpdatedep and instantiating U ′ with UInv creates
three new branches. For lack of space we focus on the third branch:

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h}, {UInv} !h < 0

=⇒ {UInv}[C](l1dep ⊆̇ {l1} ∪̇ {l2})

Applying rule ifElsedep results in two branches. As we know that the condi-
tional guard l2<0 under UInv is never satisified, we can close the then-branch
immediately. We continue on the else-branch and after a few rule applications
and simplifications we are left with

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h}, γ�val ,0 ≥ 0 =⇒ {} ⊆̇ {l1} ∪̇ {l2}

This formula is obviously valid, and thus the program does not leak any infor-
mation on the initial value of h to l1. Note that we would not have been able
to prove that fact with a value-insensitive approach as we would then need to
consider the possibility of the then branch injecting implicitly a High dependency
into l1dep via the conditional’s guard. Note also that the security policy does
not hold for program variable l2, and that the proof would not close if we had
included l2dep ⊆̇ {l1} ∪̇ {l2} in our postcondition.
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6 Related Work

Several approaches for combining deductive verification and abstract interpre-
tation exist. One example is the “loop invariants on demand” technique [18],
where an abstract interpretation system is invoked by a theorem prover to pro-
duce invariants for a specific program context. If the generated invariant is too
weak, the abstract interpreter is iteratively called again using a more expressive
abstract domain. Nevertheless, the theorem prover and the abstract interpreter
are separate entities. In [19], a widening operator is built into a theorem prover.

Our goal of deeply integrating abstract interpretation into deductive verifi-
cation based on dynamic logic is also pursued in [26]. There, the abstraction is
done on logical formulas instead of on updates, using the technique of predicate
abstraction [12]. The approach of [26] has not been applied to the problem of
secure information flow.

For information flow analysis, our approach is more precise than typical secu-
rity type systems, because it is flow- and value-sensitive. It is also more precise
than the abstract interpretation defined in [11]. For example, in our setting not
all locations to which a value is assigned in the body of a conditional or loop
need depend on the guard (see Ex. 8).

Deductive approaches for reasoning about information-flow have been already
listed in Sect. 1. Only some of the approaches focused on automation as one
major concern. Papers [6] and [13] aim at the embedding of type-based analyses
into program logics. To achieve full automation type-based systems are needed
to construct either a certain formula entailing non-interference [6] or a derivation
that can be translated into a proof of the program logic [13]. Neither includes a
proof search algorithm.

The approach presented in [1] uses a Hoare logic and does not need a theorem
prover to generate necessary invariants. On the other hand, it tracks only the
independence relationship among variables and is therefore not value-sensitive.
In [4] the authors use self-composition of programs to show information-flow
security considering a formalisation of non-interference for a Hoare logic and an
encoding in CTL. For the first one, automation is not targeted and for the second
one model checking would be possible but is restricted to finite state programs.

7 Conclusion and Future Work

In this paper we presented a sound and relatively complete dynamic logic calcu-
lus that integrates abstract interpretation and keeps track of variable dependen-
cies. The abstract domain is not fixed and the abstraction can be dynamically
changed during symbolic execution. In the first part, we described an algorithm
to compute loop invariants by abstraction-on-demand for a classical definition
of a program logic. In the second part of the paper we extended the program
logic to keep also track of variable dependencies so that information-flow can be
modelled in a straightforward manner. We achieve the same degree of automa-
tion as type-based approaches while increasing the number of provable programs
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due to value-sensitivity. The resulting calculus is close to the one used for Java
in the KeY system [5] and we expect much of the machinery can be re-used.

In the future we want to focus on the followinng aspects: (i) extending the
program logic to cover the sequential subset of Java; (ii) tracking dependencies
even more precisely, e.g. currently an assignment such as l = h-h introduces
h in the dependency set of l, even though it is a constant value in each pro-
gram run and the symbolic execution machinery is in principle able to detect
this. We have ideas how to treat such cases by extending our program logic
semantics to include a trace semantics; (iii) supporting more sophisticated ab-
stract interpretations involving infinite relational domains such as linear inequa-
tions; (iv) implementation and experimental evaluation including a comparison
to other approaches.

References

1. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004)

2. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system devel-
opment with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, p. 363–366.
Springer, Heidelberg (2000)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, CSFW-17, Pacific
Grove, CA, USA, pp. 100–114. IEEE Computer Society Press, Los Alamitos (2004)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. Beringer, L., Hofmann, M.: Secure information flow and program logics. In: 20th
IEEE Computer Security Foundations Symposium CSF, Venice, Italy, pp. 233–248.
IEEE Computer Society, Los Alamitos (2007)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Fourth
ACM Symposium on Principles of Programming Languages (POPL), Los Angeles,
pp. 238–252. ACM Press, New York (1977)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
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A Formal Semantics

A.1 Basic Semantics

valI,s,β(f(t1, . . . , tn)) = I(f)(val I,s,β(t1), . . . , val I,s,β(tn))

val I,s,β(x) = s(x)

val I,s,β(y) = β(y)

val I,s,β(if (ϕ)then(t1)else(t2)) =

{
valI,s,β(t1) if val I,s,β(ϕ) = tt
valI,s,β(t2) otherwise

val I,s,β({U}t) = val I,s′,β(t) where s′ = val I,s,β(U)
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val I,s,β(true) = tt

val I,s,β(false) = ff

val I,s,β(p(t1, . . . , tn)) = tt iff (val I,s,β(t1), . . . , val I,s,β(tn)) ∈ I(p)

val I,s,β(ϕ1 & ϕ2) = tt iff ff �∈ {val I,s,β(ϕ1), val I,s,β(ϕ2)}
valI,s,β(ϕ1 | ϕ2) = tt iff tt ∈ {val I,s,β(ϕ1), val I,s,β(ϕ2)}

val I,s,β(ϕ1 −> ϕ2) = val I,s,β(!ϕ1 | ϕ2)

valI,s,β(!ϕ) = tt iff val I,s,β(ϕ) = ff

val I,s,β(∀y.ϕ) = tt iff ff �∈ {val I,s,βv
y
(ϕ) | v ∈ D}

val I,s,β(∃y.ϕ) = tt iff tt ∈ {val I,s,βv
y
(ϕ) | v ∈ D}

val I,s,β(t1
.
= t2) = tt iff val I,s,β(t1) = val I,s,β(t2)

valI,s,β({U}ϕ) = val I,s′,β(ϕ) where s′ = val I,s,β(U)

val I,s,β([p]ϕ) = tt iff ff �∈ {val I,s′,β(ϕ) | s′ ∈ val I,s,β(p)}
val I,s,β(x1 := t1 ‖ . . . ‖ xn := tn) =

{
x �→ s(x) | x �∈ {x1, . . . , xn}

} ∪
{
x �→ val I,s,β(tk) | x = xk and x �∈ {xk+1, . . . , xn}

}

val I,s,β(x = t) =
{
val I,s,β(x := t)

}

val I,s,β(p1;p2) =
{
val I,s′,β(p2) | s′ ∈ val I,s,β(p1)

}

val I,s,β(��(g){p1} ���� {p2}) =

{
valI,s,β(p1) if val I,s,β(g) = tt
valI,s,β(p2) otherwise

valI,s,β(����� (g) {p}) =

{⋃
s1∈S1

valI,s1,β(�����(g) p) if val I,s,β(g) = tt

{s} otherwise

where S1 = val I,s,β(p)

A.2 Semantics Enriched with Dependency Tracking

val ′I,s,β(x = t) =
{
val I,s,β

(
x := t ‖ xdep := deps(t)

)}

val ′I,s,β(p1;p2) =
{
val ′I,s′,β(p2) | s′ ∈ val ′I,s,β(p1)

}

val ′I,s,β(��(g){p1} ���� {p2}) =

{
S′

1 if val I,s,β(g) = tt
S′

2 otherwise

where S1 = val ′I,s,β(p1), S2 = val ′I,s,β(p2),

S′
i = ∅ iff Si = ∅, otherwise S′

i = {s′i} where

s′i(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

si(x) if x ∈ PV or

x = ydep and
si(y) = s(y)
for Si = {si}

si(x) ∪ val I,s,β(deps(g)) otherwise

val ′I,s,β(����� (g) {p}) =

{⋃
s′1∈S′

1
val ′I,s′1,β(�����(t) p) if val I,s,β(g) = tt

{s} otherwise

where S1 = val ′I,s,β(p),

and where S′
1 is derived from S1 as above
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A.3 Dependencies of a Term or Formula

This section defines the function deps which takes a term or a formula (occur-
ing inside a program) and returns a term that overapproximates the semantic
dependencies of the argument. It is used both in the semantics with dependency
tracking (App. A.2) and in the dependency-aware calculus rules (Sect. 5.2).
Since logical variables, quantifiers, updates, nested programs, and dependency
variables xdep ∈ PVdep are not allowed to occur in programs, we refrain from
providing a definition for these cases.

deps(f(t1, . . . , tn)) = deps(t1) ∪̇ . . . ∪̇ deps(tn)

deps(x) = x
dep

deps(if (ϕ)then(t1)else(t2)) = deps(ϕ) ∪̇ deps(t1) ∪̇ deps(t2)

deps(a) = {} where a ∈ {true, false}
deps(p(t1, . . . , tn)) = deps(t1) ∪̇ . . . ∪̇ deps(tn)

deps(ϕ1 ∗ ϕ2) = deps(ϕ1) ∪̇ deps(ϕ2) where ∗ ∈ {&, |,−>}
deps(!ϕ) = deps(ϕ)

deps(t1
.
= t2) = deps(t1) ∪̇ deps(t2)

B Update Rewriting Rules

A rewrite rule a � b is applicable to any occurrence of a within a sequent, and
applying it means to replace that occurrence of a with b.

{U}{x1 := t1 ‖ . . . ‖ xn := tn} � {U ‖ x1 := {U}t1 ‖ . . . ‖ xn := {U}tn}
{U}f(t1, . . . , tn) � f({U}t1, . . . , {U}tn)

{x1 := t1 ‖ . . . ‖ xn := tn}x �
{
x if x �∈ {x1, . . . , xn}
tk if x = xk and x �∈ {xk+1, . . . , xn}

{U}a � a where a ∈ V ∪ {true, false}
{U}if (ϕ)then(t1)else(t2) � if ({U}ϕ)then({U}t1)else({U}t2)

{U}p(t1, . . . , tn) � p({U}t1, . . . , {U}tn)

{U}(ϕ1 ∗ ϕ2) � {U}ϕ1 ∗ {U}ϕ2 where ∗ ∈ {&, |,−>}
{U} !ϕ � !{U}ϕ

{U}Qy.ϕ � Qy.{U}ϕ where Q ∈ {∀,∃}, y �∈ free(U)

{U}(t1 .
= t2) � {U}t1 .

= {U}t2

C Proofs

C.1 Lemma 1: Soundness of weakenUpdate

Proof. We assume that the following two statements hold for all I, s, β:

val I,s,β

(
Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ

)
= tt (8)

val I,s,β

(
Γ =⇒ {U ′}ϕ,Δ)

= tt (9)



274 R. Bubel, R. Hähnle, and B. Weiß

Let I0, s0, β0 be an arbitrary interpretation, state, and variable assignment.
We need to show that valI0,s0,β0

(
Γ =⇒ {U}ϕ,Δ)

= tt . If val I0,s0,β0

( ∧
Γ

)
= ff

or if valI0,s0,β0

( ∨
Δ

)
= tt , then we are done immediately. Thus, we assume

val I0,s0,β0

( ∧
(Γ ∪ !Δ)

)
= tt (10)

and aim to prove that valI0,s0,β0

({U}ϕ)
= tt .

Let s1 = val I0,s0,β0(U), i.e., s1 is the state reached by starting in s0 and
executing U . Our goal is to prove that valI0,s1,β(ϕ) = tt .

Let I ′0 be the interpretation which is identical to I0 except that I ′0(c̄) = s1(x̄),
i.e., I ′0 interprets the constant symbols c̄ like the corresponding program variables
x̄ are interpreted in s1. This definition of I ′0 implies val I′

0,s0,β0(x̄
.= c̄) = tt , and

thus (as the symbols c̄ do not occur in U)

valI′
0,s0,β0

({U}(x̄ .= c̄)
)

= tt (11)

Since the symbols c̄ occur neither in Γ nor in Δ, and since I ′0 is otherwise
identical to I0, we get from (10) that

val I′
0,s0,β0

( ∧
(Γ ∪ !Δ)

)
= tt (12)

Combining (12), (11) and the first premiss (8) yields

val I′
0,s0,β0

(∃γ̄.{U ′}(x̄ .= c̄)
)

= tt (13)

This means that there is an interpretation I ′′0 which is identical to I ′0 except in
the interpretation of the symbols γ̄, and which satisfies

valI′′
0 ,s0,β0

({U ′}(x̄ .= c̄)
)

= tt (14)

Let s′1 = val I′′
0 ,s0,β0(U ′), i.e., s′1 is the state reached by starting in s0 and exe-

cuting U ′ under the interpretation I ′′0 . Equation 14 is equivalent to

val I′′
0 ,s′

1,β0(x̄
.= c̄) = tt (15)

This means that s′1(x̄) = I ′′0 (c̄). Also, by definition of I ′′0 and I ′0, we have I ′′0 (c̄) =
I ′0(c̄) = s1(x̄). Thus, s′1(x̄) = s1(x̄), i.e., s′1 and s1 are identical on all program
variables x̄ which are potentially changed by either U or U ′. Since both s1 and s′1
are derived from s0 by executing one of these updates, this implies that s′1 = s1.
Inserting the definition of s′1, this reads as

val I′′
0 ,s0,β0(U ′) = s1 (16)

Let I1 be the interpretation identical to I ′′0 except that the symbols c̄ are in-
terpreted as in I0. Since the symbols c̄ do not occur in U ′, we get from (16)
that

valI1,s0,β0(U ′) = s1 (17)
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Since the γ̄ do not occur in Γ nor in Δ, (10) tells us that

val I1,s0,β0

( ∧
(Γ ∪ !Δ)

)
= tt (18)

Combining (18) with the second premiss (9) yields

valI1,s0,β0

({U ′}ϕ)
(19)

With (17), this implies

valI1,s1,β0(ϕ) = tt (20)

Since the symbols γ̄ do not occur in ϕ, and since I1 is otherwise identical to I0,
we get

valI0,s1,β0(ϕ) = tt (21)

which is what we had to show. ��

C.2 Lemma 2: Soundness of invariantUpdate

Proof. We assume that the following three statements hold for all I, s, β:

val I,s,β

(
Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ

)
= tt (22)

valI,s,β

(
Γ, {U ′}g, {U ′}[p](x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ

)
= tt (23)

val I,s,β

(
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,Δ)

= tt (24)

Let I0, s0, β0 be an arbitrary interpretation, state, and variable assignment. We
need to show that valI0,s0,β0

(
Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

)
= tt . If

valI0,s0,β0

( ∧
Γ

)
= ff or if val I0,s0,β0

( ∨
Δ

)
= tt , then we are done immediately.

Thus, we assume

val I0,s0,β0

( ∧
(Γ ∪ !Δ)

)
= tt (25)

and aim to prove that valI0,s0,β0

({U}[while (g) {p}; ...]ϕ
)

= tt .
Let s1 = val I0,s0,β0(U), i.e., s1 is the state reached by starting in s0 and

executing U . If the loop does not terminate when started in s1, then our proof
goal val I0,s0,β0

({U}[while (g) {p}; ...]ϕ
)

= tt holds trivially. Therefore, we
assume that the loop terminates. From the programming language semantics,
we know that there is a finite sequence of states s1, . . . , sk, where

valI0,si,β0(p) = {si+1} i ∈ {1, . . . , k − 1} (26)
valI0,si,β0(g) = tt i ∈ {1, . . . , k − 1} (27)
val I0,sk,β0(g) = ff (28)

Our task is to show that val I0,sk,β0

(
[...]ϕ

)
= tt .



276 R. Bubel, R. Hähnle, and B. Weiß

We will use induction to prove that for all i ∈ {1, . . . , k}, there is an interpre-
tation Ii which is identical to I0 except for the interpretation of the symbols γ̄,
and for which valIi,s0,β0(U ′) = si. Intuitively, this means we show that for every
state si of the chain, we can find an interpretation Ii of the symbols γ̄ such that
applying U ′ to the initial state s0 with this interpretation Ii directly produces
si. Afterwards, we will use this result and the third premiss (24) for showing
valI0,sk,β0

(
[...]ϕ

)
= tt .

– Base case (i = 1). As our first premiss (22) is identical to the first premiss
of the weakenUpdate rule (8), we can construct an interpretation I1 with the
desired properties in the same way as we did in the proof of updateWeaken
(see (17)). For lack of space, we do not repeat this construction here.

– Step case (i ∈ {2, . . . , k}). We assume that the induction hypothesis holds
for i − 1, i.e., there is an interpretation Ii−1 identical to I0 except for the
interpretation of the symbols γ̄, and which satisfies

valIi−1,s0,β0(U ′) = si−1 (29)

Let I ′i−1 be the interpretation which is identical to Ii−1 except that I ′i−1(c̄) =
si(x̄). This definition of I ′i−1 implies valI′

i−1,si,β0(x̄
.= c̄) = tt . As the symbols

c̄ do not occur in p, we can combine this with (26) to get

val I′
i−1,si−1,β0

(
[p](x̄ .= c̄)

)
= tt (30)

By the induction hypothesis and the definition of I ′i−1, I
′
i−1 is identical to I0

except in the interpretation of the symbols γ̄ and c̄. Since all of these occur
neither in Γ nor in Δ, we get from (25) that

val I′
i−1,s0,β0

( ∧
(Γ ∪ !Δ)

)
= tt (31)

As the c̄ do not occur in U ′, and as I ′i−1 is otherwise identical to Ii−1, the
induction hypothesis (29) also gives us

valI′
i−1,s0,β0(U ′) = si−1 (32)

Together, (32) and (30) imply

valI′
i−1,s0,β0

({U ′}[p](x̄ .= c̄)
)

= tt (33)

Since the symbols γ̄ and c̄ do not occur in g, we can combine (32) with (27)
to get

val I′
i−1,s0,β0

({U ′}g) = tt (34)

Taken together, (31), (34), (33) and the second premiss (23) yield

val I′
i−1,s0,β0

(∃γ̄.{U ′}(x̄ .= c̄)
)

= tt (35)
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This means that there is an interpretation I ′′i−1 which is identical to I ′i−1

except in the interpretation of the symbols γ̄, and which satisfies

val I′′
i−1,s0,β0

({U ′}(x̄ .= c̄)
)

= tt (36)

Let s′i = val I′′
i−1,s0,β0(U ′), i.e., si is the state reached by starting in s0 and

executing U ′ under the interpretation I ′′i−1. Equation (36) is equivalent to

valI′′
i−1,s′

i,β0(x̄
.= c̄) = tt (37)

This means that s′i(x̄) = I ′′i−1(c̄). Also, by definition of I ′′i−1 we have I ′′i−1(c̄) =
si(x̄). Thus s′i = si. Inserting the definition of s′i, this reads as

val I′′
i−1,s0,β0(U ′) = si (38)

Let Ii be the interpretation identical to I ′′i−1 except that the symbols c̄ are
interpreted as in Ii−1. Since the c̄ do not occur in U ′, we get from (38) that

valIi,s0,β0(U ′) = si (39)

Since Ii also differs from I0 only in the interpretation of the symbols γ̄, it
has both desired properties.

This finishes our induction. We know now that in particular for i = k, there is
an interpretation Ik which is identical to I0 except for the interpretation of the
symbols γ̄, and for which

val Ik,s0,β0(U ′) = sk (40)

Since the symbols γ̄ do not occur in g, we can combine this with (28) to get

val Ik,s0,β0

({U ′}g) = ff (41)

Since the γ̄ also do not occur in Γ nor Δ, (25) tells us that

val Ik,s0,β0

( ∧
(Γ ∪ !Δ)

)
= tt (42)

Combining (42) and (41) with the third premiss (24) yields

val Ik,s0,β0

({U ′}[...]ϕ)
(43)

With (40), this implies

valIk,sk,β0

(
[...]ϕ

)
= tt (44)

Since the symbols γ̄ do not occur in [...]ϕ, and since Ik is otherwise identical
to I0, we get

val I0,sk,β0

(
[...]ϕ

)
= tt (45)

which is what we had to show. ��
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Abstract. The Bytecode Modeling Language (BML) is a specification
language for Java bytecode, that provides a high level of abstraction,
while not restricting the format of the bytecode. Notably, BML specifica-
tions can be stored in class files, so that they can be shipped together with
the bytecode. This makes BML particularly suited as property speci-
fication language in a proof-carrying code framework. Moreover, BML is
designed to be close to the source code level specification language JML,
so that specifications (and proofs) developed at — the more intuitive—
source code level can be compiled into bytecode level.

This paper describes the BML language and its binary representation.
It also discusses the tool set that is available to support BML, containing
BMLLib, a library to inspect and edit BML specifications; Umbra, a BML
viewer and editor, integrated in Eclipse; JML2BML, a compiler from JML
to BML specifications; BML2BPL, a translator from BML to BoogiePL,
so that the BoogiePL verification condition generator can be used; and
CCT, a tool to store proofs in class files.

1 Introduction

Typically, if formal methods are used in the process of software development,
they are applied at source code level [18,24,6]. Modern programming languages
introduce a strict structure on the code and provide a layer of abstraction that
makes a program quite comprehensive for humans. The use of an appropriate
specification language introduces another, even higher, level of abstraction into
the software development process. An advantage of this abstraction is that it
reduces the difficulty of program construction, in particular when it is supported
by tools.

However, sometimes severe restrictions are made on program execution time
or resource usage, and to satisfy these demands, code must be optimised. Because
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of the strict code structure imposed by high-level programming languages, it is
often better to fine-tune programs at the lower level of executable code. But if
one does this, one still needs to understand why and how the code works. Here
a specification language can be useful as well, because it can reintroduce the
abstraction that was eliminated by the compilation and optimisation process.
Thus, a good specification language for executable code can provide a basis for
the development of reliable, highly optimised programs in low-level form.

Moreover, since low-level languages can be the target platform for several
different source code languages, a specification formalism for a low-level language
can serve as a common ground for understanding software from different sources.

This led to the proposal of a program logic for Java bytecode [5] and, based on
this, a specification language for bytecode — the Bytecode Modeling Language
(BML) [8]. BML is based on the principle of design-by-contract and it is strongly
inspired by the Java Modeling Language (JML) [14,17,18]. JML is the de facto
Java specification language, supported by a wide range of tools [7].

One of the most promising applications of low-level specification languages
such as BML is in the context of proof-carrying code (PCC). In this context,
code that is shipped from the code producer to the code consumer comes together
with a specification and a correctness proof. Since BML can specify executable
code, it seems an appropriate specification language for foundational PCC [2,1],
where a relatively small but expressive framework can capture the class of desir-
able properties of mobile code. Because of its expressiveness, BML specifications
can give hints to the prover (e.g., one can supply loop invariants and suggest
appropriate lemmas using assert statements), which can ease the automatic con-
struction of proofs. To be able to ship BML specifications together with the
code, a BML representation within Java class files is defined.

To be able to use BML in a PCC context, and as a specification language on
its own, it is designed with the following two goals in mind: (i) it should be easy
to transform specifications and proofs from the source code level to the bytecode
level, and (ii) specifications should be comprehensive.

When BML is used in a PCC context, we expect it be used as an intermediate
format. People will rather specify and verify their source code, and then trans-
late these into properties and proofs of the executable code. Since Java is our
privileged application language, we assume JML will be the source code speci-
fication language. Therefore, translation from JML specifications and proofs to
BML should be as straightforward as possible. Realising a PCC platform for
Java to support this use of BML is one of the goals of the MOBIUS project1.

Since BML can also be used as a specification language on its own (for exam-
ple, to ensure that a program optimisation is correct), the specifications should
be intelligible. To achieve this, the language reuses many constructs from JML.
Since JML is designed in such a way that it is intuitive and easily understand-
able for common Java programmers, we believe the same should apply to BML.
Therefore, we developed a textual representation of bytecode classes augmented

1 See http://mobius.inria.fr for more information.
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1 public class KeyPool {

private int[] keyIds;
//@ invariant keyIds != null;

5 /∗@ invariant (\forall int i, j ; 0 <= i && i < j && j < keyIds.length;
@ keyIds[ i ] >= keyIds[j]); @∗/

//@ ghost int lastPos;
9 //@ invariant 0 <= lastPos && lastPos < keyIds.length;

/∗@ invariant (\forall int i; lastPos < i && i < keyIds.length;
@ keyIds[ i ] == 0); @∗/

13 // ...other methods...

/∗@ requires keyId > 0 && lastPos < keyIds.length − 1;
@ ensures (\exists int i; 0 <= i && i < lastPos && keyIds[i] = keyId);

17 @∗/
public void insert(int keyId) {
int i ;
/∗@ loop_invariant −1 <= i &&

21 @ (\forall int k; i < k && k < keyIds.length; keyId > keyIds[k]);
@∗/

for ( i = keyIds.length − 2; i >= 0 && keyId > keyIds[i]; i−−) {
keyIds[ i+1] = keyIds[i ];

25 }
keyIds[ i+1] = keyId;
//@ set lastPos = lastPos + 1;
}

29 }

Fig. 1. Source code and JML specifications for class KeyPool

with BML that indicate clearly the relation between the specification and the
different pieces of the program.

A crucial element for the success of a specification formalism is tool support.
Therefore, a set of prototype tools is developed for BML. This tool set contains
the following tools:

– BMLLib, a library to represent and manipulate specifications;
– Umbra, a BML editor within Eclipse IDE;
– JML2BML, a compiler from JML specifications to BML;
– BML2BPL, a translator of bytecode enhanced with BML to BoogiePL, a

language from which verification conditions can be generated easily; and
– CCT, a tool to store proofs in class files.

A precise description of the BML language is given in the BML Reference
Manual [10]. The current paper gives a brief overview of BML (Sect. 2) and its
two representations (Sect. 3). Then it discusses the tools in the BML tool set
(Sect. 4). We conclude the paper in Sect. 5.
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Throughout the paper, fragments of a class KeyPool are used as example.
Figure 1 shows relevant parts of the Java source code and JML specifications
of this class. We expect the reader to be able to grasp the intention of this
specification.

2 Overview of BML

As motivated above, the design of BML is very similar to its source-code-level
counterpart JML: each element of a class file can be annotated with specifica-
tions. This section illustrates this by showing how the specifications in Fig. 1
are translated. Figure 2 shows the translation of the Java code, without the
specifications. The full definition of BML can be found in [10].

It is important to note that BML covers most of the so-called JML Level 0, i.e.,
the essential part of JML that is supposed to be supported by all JML tools [18,
Sect. 2.9]. The missing features are informal descriptions and extended debug
statements. Informal descriptions are in fact a special kind of comments, which
are impossible to formalise. The JML debug statements can contain arbitrary
Java expressions, while BML debug statements allow only variable names, the
value of which is supposed to be printed out by tools that execute BML spec-
ifications (e.g., a run-time checker). In addition, BML allows one to use pure
method calls in specifications (mandated by JML Level 1 — describing features
to be supported by most tools). Also, the expression language contains a few
BML-specific constructs, to denote the size and elements of the operand stack
and the size of arrays. Constants and variables are also addressed differently in
BML: in the binary representation fields are encoded as an index in the constant
pool (to the location where the FieldRef structure is stored), while local vari-
ables are referenced by a number that denotes their position in the local variable
table. This is the same as fields and local variables are addressed in bytecode. For
the sake of readability, in the textual representation, those numerical references
are shown as appropriate identifiers.

2.1 Class-Level Specifications

Class-level specifications specify behaviour of all instances of a class. The most
prominent example of class-level specifications are invariants. An (instance) in-
variant specifies a property that should hold for all instances of that class, after
completion of the constructor and before and after the execution of all methods of
the class. Figure 3 shows the BML specification of the invariants and other class-
level specification constructs for the class KeyPool. Notice that compared to the
JML specification, the specifications are more rigid in format: the constructs are
given in a fixed order and the receiver object is always mentioned explicitly. In
addition, a keyword \length is used to denote the length of an array.

Another class-level specification is the declaration of a so-called ghost field.
These are fields that exist only at specification level. To change their value,
BML has a special set instruction (see also Sect. 2.3). Ghost fields can be used
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package [default]
// ... Constant pool and Second constant pool omitted ...
public class KeyPool extends java.lang.Object
// ... class−level specifications omitted ...

// ... other methods omitted ...

// ... method specification omitted ...
public void insert(int)
0: aload_0
1: getfield KeyPool.keyIds [I (20)
4: arraylength
5: iconst_2
6: isub
7: istore_2
//@ loop_specification ... specification omitted ...
8: goto #28
11: aload_0
12: getfield KeyPool.keyIds [I (20)
15: iload_2
16: iconst_1
17: iadd
18: aload_0
19: getfield KeyPool.keyIds [I (20)
22: iload_2
23: iaload
24: iastore
25: iinc %2 −1
28: iload_2
29: iflt #42
32: iload_1
33: aload_0
34: getfield KeyPool.keyIds [I (20)
37: iload_2
38: iaload
39: if_icmpgt #11
42: aload_0
43: getfield KeyPool.keyIds [I (20)
46: iload_2
47: iconst_1
48: iadd
49: iload_1
50: iastore
//@ set ... specification omitted ...
51: return

Fig. 2. Bytecode for class KeyPool
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/∗@ public ghost int lastPos @∗/
/∗@ invariant keyIds != null @∗/
/∗@ invariant 0 <= this.lastPos && this.lastPos < \length(this.keyIds) @∗/
/∗@ invariant \forall int i,j ; 0 <= i && i < j && j < \length(this.keyIds)

@ ==> this.keyIds[i] >= this.keyIds[j]
@∗/

/∗@ invariant \forall int i; this. lastPos < i && i < \length(this.keyIds)
@ ==> this.keyIds[i] == 0)
@∗/

Fig. 3. BML class-level specifications for class KeyPool

to represent values that are implicit in the actual code, but must be mentioned
explicitly in specifications.

In our example, the lastPos ghost field represents the position of the last
key inserted in the table. The invariants constrain the possible values of the field
keyIds and the ghost field lastPos: keyIds cannot be null, lastPos should
be less than the length of the array, the values in the array should be sorted in
decreasing order, and all entries of the array to the right of lastPos should be 0.
The value of lastPos is updated by a set instruction, placed before instruction
label 51 in the bytecode (see Fig. 5).

Apart from invariants and ghost variable declarations, BML class-level speci-
fications can also be static invariants, i.e., invariant properties over static fields;
history constraints, that express a relation between two states before and after
method calls; and model field declarations to abstract complex expressions (e.g.
the sum of all elements in a table).

2.2 Method-Level Specifications

Method-level specifications describe the behaviour of a single method. The ba-
sic principle is the use of pre- and postconditions. Preconditions state what is
expected about parameters and the state of objects upon method invocation,
while postconditions state what the method guarantees upon termination. It is
possible to refer to the prestate of the method in the postcondition, using the
keyword \old. In addition, BML method-level specifications contain assignable,
signals and signals-only clauses. These specify which variables may be modified
by a method, which exceptions may be thrown by a method, and under which
conditions. Assignable clauses are necessary for sound modular verification. In
JML specifications, these clauses are often left implicit, using an appropriate de-
fault clause, but in BML they have to be specified explicitly. In addition, BML
allows one to flag a method as pure, meaning that it does not modify state, and
therefore can be used in specifications.

Figure 4 shows the BML specification for method insert. The precondition
(keyword requires) specifies that parameter keyId should be strictly positive
and ghost variable lastPos should be less than the length of the table minus 1,
i.e., there should be space for inserting another key. The postcondition (keyword
ensures) specifies that after completion of the method, one of the elements of
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/∗@ requires keyId > 0 && this.lastPos < \length(this.keyIds) − 1
@ modifies \everything
@ ensures (\exists int i; 0 <= i && i < lastPos && this.keyIds[i] == keyId)
@ signals (java/lang/Exception) true
@ signals_only \nothing
@∗/

Fig. 4. BML method specification for insert in class KeyPool

the keyIds table is the newly inserted keyId. Notice that the implicit assignable,
signals and signals-only clauses from Fig. 1 are explicit in the BML specification.

2.3 Code-Level Specifications

The last group of BML specifications are those that refer to specific points of the
code inside amethodbody.Such specifications are typically there tohelpautomatic
verification procedures. A common code-level specification construct is a loop in-
variant, specifying a condition that is met every time control is at the beginning of
the loop. Loop invariants are necessary to prove partial correctness of a loop.

Figure 5 shows the BML specification of the loop invariant of method insert
in class KeyPool. The loop ranges from label 8 to 39. All instructions before
label 8 initialise the loop; the first eight instructions of the loop (labels 8–19)
check the loop condition; and the loop body is implemented by the instructions
labelled 22–35. The invariant is specified just before the beginning of the loop,
i.e., before instruction 8. It states that the loop variable i never is less than -1,
and all keys that have been examined, i.e., between i and the length of keyIds,
are less than keyId.

Apart from the loop invariant, a BML loop specification also contains a loop
variant, i.e., a non-negative integer expression that is supposed to strictly de-
crease for each iteration of the loop. The variant is used to prove termination of
the loop. In our example it is a meaningless 1, since no variant is given at the
source code level. Thus, with this specification, it will not be possible to prove
termination of this method.

7: istore_2
/∗@ loop_specification

@ loop_inv −1 <= i && (\forall int k; i < k && k < \length(this.keyIds)
@ ==> keyId > this.keyIds[k])
@ decreases 1
@∗/

8: goto #28
// ... code omitted ...
50: iastore
/∗@ set this. lastPos = this.lastPos + 1 @∗/
51: return

Fig. 5. BML code-level specifications for class KeyPool
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Other BML code-level specifications include set instructions, used to change
the value of ghost variables (before label 51 in Fig. 5); assert and assume
annotations, to assert/assume facts about the program; and debug annotations,
to print out values of a variable in case the program is executed by a BML-aware
execution environment.

2.4 Verification of BML Specifications

Work on BML and its semantics was initiated by Mariela Pavlova [25] within the
context of JACK (Java Applet Correctness Kit) [4]. Pavlova’s work is based on
an operational semantics of Java bytecode which covers a representative set of 22
instructions. She gives a semantics for a representative subset of the specification
language in the form of a weakest precondition calculus. An overview of the work
is presented in [9,8].

Development of the formal underpinning of BML continued in the context of
the MOBIUS project (see [22] for more details). The Bicolano specification [26],
within the proof assistant Coq, formalises the operational semantics of a con-
siderable subset of bytecode instructions. On top of Bicolano a bytecode logic,
called the MOBIUS base logic, is developed and formalised in Coq, following the
principles of [5]. A translation from BML specifications into the MOBIUS base
logic is defined (where BML predicates are translated using an additional deep
embedding layer for assertions in Isabelle).

To make verification of BML specifications more practical, a translation into
BoogiePL is necessary. BoogiePL is an intermediate language for program ver-
ification [12]. It has procedures and only 5 instructions (including assume and
assert). This makes it easy to define a correct verification condition generator for
it. The strength of BoogiePL lies in its non-determinism and its use of guards to
control the program flow (similar to Dijkstra’s guarded commands [13]). A pro-
gram and its specification are translated into a BoogiePL program; verification
conditions are generated from this BoogiePL program.

Lehner and Müller present a translation from bytecode instructions to Boo-
giePL [19]. Properties are specified in first-order logic. Using a translation that
is similar to the one presented by Darvas and Müller for JML0 [11], BML speci-
fications can be translated into first-order logic. In addition, Mallo [21] presents
a direct translation for a subset of BML into BoogiePL.

3 Representation of BML Specifications

The bytecode presented in Fig. 2 is of course only a textual representation of
the actual binary code. Various tools exist to produce such textual representa-
tions from class files, e.g., javap and Umbra (see Sect. 4.3). BML also has two
representations: (i) a binary form, using non-standard attributes stored inside
class files, and (ii) a textual representation, as shown in the previous section.
This textual representation is very similar to JML, but a bit more rigid, as it
must be in correspondence with the binary form. This section discusses the two
representations of BML.
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Invariants_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 invariants_count;
{ u2 access_flags;

formula_info invariant;
} invariants[invariants_count];

}

Fig. 6. Structure of the org.bmlspecs.Invariants attribute

3.1 Binary Representation of BML

Several possibilities exist to define a binary format for BML.
A simple approach would be to use standard Java serialisation to dump Java

objects representing abstract syntax trees of specifications. However, this choice
would force BML tool builders to use Java and our abstract syntax tree defini-
tion. Instead, we preferred to define a precise specification of a binary format,
that tool builders can freely manipulate.

As said above, BML specifications are stored inside a class file. It would also
be possible to store specifications in a separate file, but since specifications refer
to elements of the class file, it is most natural to take advantage of the possibility
to add information to the class file.

To store additional information in class files, there are currently two different
possibilities: attributes and annotations [15]. Attributes are more low-level, they
appear in the specification of the Java Virtual Machine since its first version and
they are used by the compiler to store the different optional elements of classes,
such as the method code, line number tables and local variable tables. Attributes
are also used in the initial tools that support BML, in the JACK environment [4].

Java annotations are introduced in Java 5.0 as a mechanism to describe prop-
erties of Java methods and classes (metadata). They have become the official
standard of annotating Java code with machine checkable information. Support
to compile and store them in special attributes inside a class file is available,
as well as an API to inspect them at runtime. However, the main benefit of
using annotations is at source code level. Inserting annotations in an already
compiled class file is a bit contrary to the idea of annotations. Besides, Java
annotations cannot be placed inside code2, specifications would be necessary at
least for code-level specifications. In addition, Java annotations are not used
in JML, and adopting annotations would practically preclude specifying code
written in earlier versions of Java than 5.0.

Taking all these considerations into account, we decided to define a precise
binary format for BML specifications, stored as non-standard JVM attributes
inside the class file.

2 Even the ongoing development in JSR308 [16] to allow one to use annotations in
more places still does not support annotation of instructions.
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Encoding of BML Specifications. The structure of Java class files is quite flexi-
ble. Some elements are obligatory, e.g., the magic number CAFEBABE3, header,
constant pool, field table and method table, but most elements are optional.
All optional elements are stored in so-called attributes, which are just blocks
of bytes with a name (to distinguish them). Attributes can be stored in dif-
ferent “places” in the class file structure: there are class attributes, field at-
tributes, method attributes, and code attributes. So, for example, the bytecode
of a method is stored in a method attribute named Code, and inside this Code
attribute there is also space for code-level attributes, such as LineNumberTable
and LocalVariableTable. Abstract methods simply do not have a Code
attribute.

BML specifications are stored in appropriately placed JVM attributes: class-
level specifications are stored in class attributes, method specifications in method
attributes and code-level specifications in code attributes. The names of all
BML-related attributes start with a common prefix org.bmlspecs. An impor-
tant class-level attribute is the second constant pool. This structure is similar to
the standard constant pool, but it is used to stored all constants that are part
of the specification only.

All class invariants are stored together in a single class-level attribute named
org.bmlspecs.Invariants, whose structure is given in Fig. 6. To specify the for-
mat of these attributes, we use a C-like structure notation, cf. [20], where each en-
try is preceded by a special identifier, e.g., u1, u2 and u4, that describes the type
of the corresponding value. The first two fields of the org.bmlspecs.Invariants
attribute are attribute_name_index and attribute_length. These are oblig-
atory for all attributes. They contain an index in the constant pool, where the
attribute name (here: org.bmlspecs.Invariants) is stored, and the length
in bytes of the whole attribute. The next two fields, invariants_count and
invariants, describe the invariants table: the number of invariants and the table
containing the invariants themselves. Each entry of the table contains informa-
tion about an invariant, namely its access flags (public, protected, private,
static) and its formula.

Formulae and expressions are stored as the prefix traversal sequence of the ab-
stract syntax tree of a given expression, with binary representation of operands.
The names of variables and fields are represented as indexes of appropriate string
constants in the constant pool (either the original constant pool or the second
specification-only constant pool).

As another example, Fig. 7 specifies the binary format for the code-level at-
tribute describing loop specifications. The first two mandatory fields are as be-
fore; the attribute name is now org.bmlspecs.LoopSpecificationTable. The
last two fields describe the length and contents of the loop specification table.
Each loop specification in the table is represented by the following elements:
point_pc, the label of the instruction to which the specification is attached;
the order entry that specifies the respective order in which code-level specifica-
tions should be considered if they are attached to the same instruction; and the

3 See http://www.artima.com/insidejvm/whyCAFEBABE.html for more information.
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LoopSpecificationTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 loops_count;
{ u2 point_pc;

u2 order;
formula_info invariant;
formula_info variant;

} loops[loops_count];
}

Fig. 7. Structure of the org.bmlspecs.LoopSpecificationTable attribute

PCCClassCert {
u2 attribute_name_index;
u4 attribute_length;
u2 cert_type;
u1 major_version;
u1 minor_version;
u2 imported_certs_count;
u2 imported_certs[imported_certs_count];
u4 proofs_section_length;
u1 proofs_section[proofs_section_length];

}

(a)

PCCMethodCert {
u2 attribute_name_index;
u4 attribute_length;
u2 cert_type;
u1 cert_major_version;
u1 cert_minor_version;
u4 proofs_section_length;
u1 proofs_section[proofs_section_length];

}

(b)

Fig. 8. Format of PCC certificates in class files

invariant and the variant formulae. The order field is necessary if for example
several set annotations are related to the same bytecode instruction: it ensures
that the assignments are properly ordered.

Other BML specification constructs are encoded in a similar way. More details
can be found in the BML Reference Manual [10].

Representation of Certificates. To support proof-carrying code, besides the at-
tributes that contain specifications, one also needs attributes that can store a
proof that an implementation respects its specification. A flexible, generic for-
mat in which different kinds of PCC certificates can be encoded is proposed in
[23, Sect. 2.5]. In this proposal, the certificates can be divided into two groups:
class-level certificates and method-level certificates. The format of these certifi-
cates is presented in Fig. 8(a) and Fig. 8(b), respectively. This format allows
one to store certificates concerning various properties of bytecode, produced by
tools supporting different technologies (e.g., fixpoints for abstract interpretation
or type derivations). Note that the actual certification technology may choose
not to use both of the certificate levels and to store the complete certificate
information in the class-level attribute only or in the method-level attributes
only.

To use BML specifications in a PCC context, this generic certificate scheme
is instantiated to certificates that encode Coq proofs of the properties expressed
in BML. In this case, the type checking engine of Coq, combined with a tool to
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generate a Coq representation of the program and its BML specifications, is the
final certificate checker.

At the client side, the class file, BML specifications and the proofs that are
encoded in the certificates are expanded to Coq modules. At class-level these
modules include:

– a Coq representation of the class structure (i.e., fields, methods, code of
methods etc.) and the BML specifications;

– a representation of properties for each method that express that whenever
the method is called in a state in which the method’s precondition is satisfied
then the method’s postcondition holds after the method returns; and

– proofs of the properties above.

The method definitions are generated based on the class file method struc-
tures. The method properties combine the BML pre- and postconditions with
invariants. The certificates contain the necessary proofs.

In order to conceptually separate proofs of a class’s interface properties (like
invariants, method specifications, etc.) from the proofs of implementation details
(like loop specifications, asserts etc.), the latter are included in separate Coq
modules that are constructed from method-level specifications and certificates.
These method-level Coq modules contain the following:

– a theorem that states that if the method is called in a state in which the pre-
condition holds then the postcondition holds after a return from the method;

– for each assert, a theorem that states that if the method is called in a state
in which the precondition holds then the assert holds in a related program
position;

– for each strong invariant (i.e., an invariant that must be maintained by all
program steps) and method a theorem that states that if the method is called
in a state in which the precondition holds then the invariant holds at each
instruction of the method;

– proofs of the theorems above.

3.2 Textual Representation of BML

Since we expect that programmers will read and edit specifications at bytecode
level (for example, if one wishes to develop correct code that is more optimal than
compilers can generate), we also defined a textual representation of bytecode files
augmented with specifications. This ensures that programmers have a file format
that is easy to read, exchange, and edit by common textual editors.

There is no standard for textual bytecode representation, but some popular
tools (e.g., Sun’s javap, Apache’s BCEL4, and ObjectWeb’s ASM5) print out
class files in a textual form to facilitate debugging and understanding of the
code. However, these tools do not support parsing of any textual representation
of class files (and thus also no editing).
4 Byte Code Engineering Library, available from http://jakarta.apache.org/bcel/
5 Available from http://asm.objectweb.org/
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There are also tools such as Javaa6 and, more popular, Jasmin7 that allow one
to write classes and methods using Java bytecode mnemonics. However, they are
not tuned to program specification and verification, and they require the user
to supply much information that is not relevant for specifications. In addition,
their source code is only available under a non-standard license, which makes it
difficult to integrate them in an open source project such as MOBIUS. Therefore,
we decided to develop our own bytecode viewer and editor, described in the next
section, that adheres to the textual representation standard of BML.

We assume that programmers work at the same time with class files and tex-
tual files. Therefore, we decided not to display certain values such as the bytecode
file version number or the contents of foreign attributes. In this way, only the
relevant information is presented to the user. Roughly, the format displays in
sequence: the package name, the class header with the class name and infor-
mation about its location in the type hierarchy, the constant pools – including
the second constant pool, fields, class-level specifications (such as invariants and
constraints) and methods augmented with their method-level specifications and
code-level specifications. All other information (e.g., the Line Number Table) is
stored in the class file and not shown to the user.

4 Overview of the BML Tools

Just as for a programming language, if a specification language is to be used
successfully, it needs good tool support to read, write, and manipulate specifica-
tions. Moreover, one needs tools to check that a program respects the properties
stated in the specifications.

This section provides an overview of the tools that are developed to support
BML. We start with a brief description of JACK, the historical predecessor of
the currently existing tools. Then the tools which support the current version
of BML are presented: (i) BMLLib, a library to represent and manipulate spec-
ifications; (ii) Umbra, an interactive BML editor integrated into Eclipse IDE;
(iii) JML2BML, a compiler from JML specifications to BML; (iv) BML2BPL, a
translator from BML and bytecode to BoogiePL; and (v) CCT, a tool to package
proofs in class files. Figure 9 shows how the different tools connect with each
other.

4.1 JACK

Overview and goals. JACK is a tool that integrates the verification machinery
developed for JML with a programming environment, namely Eclipse. Program-
mers can manipulate Java source code and JML specifications, while the (tex-
tual) representation of bytecode specifications is hidden and can be viewed only
on demand by expanding the structure of bytecode attributes [9].
6 Available from
http://tinf2.vub.ac.be/~dvermeir/courses/compilers/javaa/jasm.html

7 Available from http://jasmin.sourceforge.net/
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Fig. 9. BML tool set. The tools that are developed especially for BML are written in
bold. A dashed line means that the tool is still under development.

Design of the tool. The JACK tool is an Eclipse plugin. It takes JML annotated
source code and generates proof obligations expressed in an internal Java/JML
Proof Obligation Language. The proof obligations are generated by means of
a weakest precondition generator. Then one of the available provers (AtelierB,
Simplify, Coq, PVS) can be used to discharge the generated proof obligations. In
case the proof obligation cannot be discharged automatically, it can be viewed
in the IDE and proved interactively.

Availability. The final release of JACK, both in binary and source form, is avail-
able from http://www-sop.inria.fr/everest/soft/Jack/jack.html.

4.2 BMLLib: A Library to Manipulate BML Specifications

Overview and goals. The most basic tool support that is needed for BML is pars-
ing and pretty-printing of its textual representation as well as reading and storing
of specifications in class files. This functionality is provided by the BMLLib li-
brary. In addition, this library provides a Java API to generate and manipulate
BML specifications. Most of the tools discussed below depend on BMLLib.

Design of the tool. BMLLib is developed at the University of Warsaw. It uses the
BCEL library as the basic library to manipulate class files. BCEL is known to be
difficult and non-intuitive in use, but it has the advantage that it is maintained
by the Jakarta project8, which gives confidence in its future existence. BMLLib
allows one to store and read BML specifications represented in class files. It
defines an abstract syntax tree to represent BML specifications. The classes
and methods augmented with specifications are implemented as delegate classes
which can either return the specifications or the BCEL representation of the
8 Available from http://jakarta.apache.org/
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Fig. 10. Bytecode for class KeyPool edited in Umbra

class or method, respectively. The parser of the specifications is written with the
ANTLR parser generator9, a highly reliable parser generator for Java. A detailed
description of the library is presented in [27].

Additionally, BMLLib provides a translation from the BCEL representation
into ASM representation used in BML2BPL (discussed below). This translation
is necessary to enable the translation into BoogiePL and subsequent generation
of proof obligations with FreeBoogie.

Availability. The alpha version of the library is available from http://www.
mimuw.edu.pl/˜alx/umbra/. It is written in Java and tested primarily under
Linux and Windows.

4.3 Umbra: A BML Editor

Overview and goals. Most existing class file editors are developed as a series of
windows that correspond to the layout of the attributes and other structures of
the class file. This design leads to an environment which is not easy to navigate
for a programmer. Instead, we developed Umbra as an Eclipse plugin that allows
9 Available from http://www.antlr.org/
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one to view, add, delete and edit BML specifications and bytecode in a textual
representation. Moreover, if available, the textual representation is associated
with the Java source code. This makes it possible to relate fragments of the
source code with fragments of the byte code and the other way round [27]; in
particular it allows one to see field and variable names, instead of indexes in the
constant pool and local variable table.

Furthermore, Umbra gives programmers the possibility to change not only the
specifications, but also the bytecode instructions.

The Umbra plugin also provides a user interface for several of the tools pre-
sented below; in particular it has buttons to run the JML2BML compiler, the
BML2BPL translator, and the FreeBoogie verification back-end.

Design of the tool. Umbra is developed as an Eclipse plugin that extends the Java
editor plugin and adds its own functionality for editing class files. Umbra relies
on the representation of class files provided by the BCEL library. The internal
representation of BML specifications is provided by BMLLib. Fig. 10 shows the
code from Fig. 2 being edited in Umbra.

Availability. The alpha version of the editor is available from http://www.
mimuw.edu.pl/˜alx/umbra/. It is written in Java and tested primarily under
Linux and Windows.

4.4 JML2BML: A Specification Compiler from JML to BML

Overview and goals. The JACK tool contains a compiler of JML annotations to
BML. However, this compiler is highly integrated with the tool itself. Therefore,
the need for a standalone JML to BML compiler arose.

The JML2BML compiler takes as input a Java source file with JML annota-
tions, together with the corresponding class file and outputs the class file with
proper BML annotations inserted. This allows the user to write the specifica-
tions at the more comprehensive source code level and then translate them into
the bytecode level representation. At bytecode level these specifications can then
be combined with specifications written by hand or with specifications coming
from other tools. Note that JML2BML does not erase any specifications that are
present in the class file, it only adds the specifications translated from the JML
specifications.

Currently, the JML2BML compiler focuses on supporting JML Level 0, roughly
corresponding to the subset of JML covered by the BML language.

Design of the tool. The compiler uses an enhanced Abstract Syntax Tree (AST)
for the Java source code, taken from the OpenJML10 compiler (a Java compiler
with JML checker based upon OpenJDK). The result is stored in the class file,
using the BMLLib library [27]. The compilation is described by a set of transfor-
mation rules that are one by one applied to the JML AST. This approach makes
10 Available from http://sourceforge.net/projects/jmlspecs
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the compiler easily extensible. It is enough to just write a new translation rule
to support additional features of the JML language. The JML2BML compiler is
intergrated in the Umbra editor as a push-button, but it can also be used as a
standalone tool.

Availability. The compiler is available from http://www.mimuw.edu.pl/˜alx/
jml2bml/. It is written in Java and tested primarily under Linux and Windows.

4.5 BML2BPL: A Translation from BML Specifications to BoogiePL

Overview and goals. BoogiePL is an intermediate language designed to alleviate
part of the burden of the transformation from the specified source code to proof
obligations. The Boogie verifier (which is originally developed to reason about
Spec# programs) has the ability to transform BoogiePL code into formulae for
various proving back-ends including Simplify, Z3, and HOL/Isabelle [3]. There
is also an open source alternative for the environment called FreeBoogie11.

Lehner and Müller [19] presented a translation from bytecode to BoogiePL.
On top of this, one of their students at ETH Zürich, Mallo, developed a tool
that transforms BML-annotated bytecode into BoogiePL. This translation is
only defined for a subset of the BML language as defined in the BML Reference
Manual [10].

Design of the tool. The tool allows one to read class files with BML specifications,
and outputs a BoogiePL encoding of the annotated classes. However, BML2BPL
uses a non-standard way of representing the BML attributes in classes and it is
based on the ASM bytecode library which is different from the one used in other
BML-related tools. Therefore a suitable translation is implemented in BMLLib,
that provides an interface between the standard representation and BML2BPL
(see also Sect. 4.2).

Availability. The translator is available from https://mobius.ucd.ie/trac/
browser/src/BML_BPL_Translator. It is written in Java and tested primarily
under Linux and Windows.

4.6 CCT: A Tool for Packaging Certificates

Overview and goals. The Class Certificate Transformer (CCT) is a modular tool
which is able to create and extract certificates from class files [29]. These cer-
tificates can for example be typing derivations, information inferred by abstract
analysis, or proofs of BML specifications. In addition, CCT allows one to manip-
ulate certificates by adding or removing data. Finally, it also allows one to add
plugins which understand the internal structure of certificates and can generate
the code which performs the actual verification. For example, one can add a
module which retrieves typing information from a certificate and then runs a
particular type checker on the program.
11 Available from http://secure.ucd.ie/products/opensource/FreeBoogie/
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Design of the tool. CCT is built in a highly modular way. One can easily construct
plugins for the tool to define the actual PCC certificate verification process. It also
allows one to adddifferent libraries that supportmanipulation of the class file struc-
ture so that one is not restricted to using BCEL or ASM for the verification tool.

Availability. The translator is available (in source code format) from https://
mobius.ucd.ie/trac/browser/src/CCT. It is written in Java and tested
primarily under Linux and Windows.

5 Conclusions and Further Work

This paper motivates the development of the specification language BML and its
supporting tool set. BML is developed with the proof carrying code paradigm in
mind. This motivates part of the design choices: in particular BML is designed to
be closely related with the source code level specification language JML, and a
binary representation to store BML in class files is defined. However, BML is also
intended to be used as a specification language on its own, for example to reason
directly about the correctness of low-level program optimisations. Therefore,
BML specifications are also designed to be readable and understandable.

An important merit of BML is that it is largely supported by a tool set.
The different tools are described in this paper. Currently, the main efforts are
focused on filling in the remaining gaps to develop a complete platform for PCC.
In particular, we concentrate on the following topics:

– extending the existing verification link through BoogiePL, since it is only
defined for a subset of the BML language;

– using the planned extension of FreeBoogie to generate proof obligations in
Coq; and

– development of the direct generation of proof obligations for Coq, using the
methods of the verification condition generator described in [22, Sect. 5.1].

At the moment, the BML tool set has been tested on small examples only. In
the near future, we plan to work on a more realistic case study, that demonstrates
the usability of the tools for a non-trivial MIDP application. This case study
should demonstrate that the PCC infrastructure works in the environment of
the Java Virtual Machine.

In addition to these main goals, we work on a translation from an information-
flow type system to BML, based upon the translation described in [28]. This
should enable the BML-based verification system to incorporate a mechanism
to ensure non-interference.
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