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Introduction 

There are many books now which deal with Fibonacci numbers, either 
explicitly or by way of examples. So why one more? What does this book 
do that the others do not? 

Firstly, the book covers new ground from the very beginning. It is 
not isomorphic to any existing book. This new ground, we believe, will 
appeal to the research mathematician who wishes to advance the ideas still 
further, and to the recreational mathematician who wants to enjoy the 
puzzles inherent in the visual approach. 

And that is the second feature which differentiates this book from others. 
There is a continuing emphasis on diagrams, both geometric and combina­
torial, which act as a thread to tie disparate topics together - together, 
that is, with the unifying theme of the Fibonacci recurrence relation and 
various generalizations of it. 

Experienced teachers know that there is great pedagogic value in getting 
students to draw diagrams whenever possible. These, together with the el­
egant identities which have always characterized Fibonacci number results, 
provide attractive visual perspectives. While diagrams and equations are 
static, the process of working through the book is a dynamic one for the 
reader, so that the reader begins to read in the same way as the discoverer 
begins to discover. 

V 



VI Introduction 

The structure of this book follows from the efforts of the four authors 
(both individually and collaboratively) to approach the theme from differ­
ent starting points and with different styles, and so the four parts of the 
book can be read in any order. Furthermore, some readers will wish to 
focus on one or two parts only, whilst others will digest the whole book. 

Like other books which deal with Fibonacci numbers, very little prior 
mathematical knowledge is assumed other than the rudiments of algebra 
and geometry, so that the book can be used as a source of enrichment ma­
terial to stimulate that shrewd guessing which characterizes mathematical 
thinking in number theory, and which makes many parts of number theory 
both accessible and attractive to devotees, whether they be in high school 
or graduate college. 

All of the mathematical results given in this book have been discovered 
or invented by the four authors. Some have already been published by 
the authors in research papers; but here they have been developed and 
inter-related in a new and expository manner for a wider audience. All 
earlier publications are cited and referenced in the Bibliographies, to direct 
research mathematicians to original sources. 



Foreword 

by A. F. Horadam 

How can it be that Mathematics, being after all a prod­
uct of human thought independent of experience, is so 
admirably adapted to the objects of reality? 

— A. Einstein. 

It has been observed that three things in life are certain: death, taxes 
and Fibonacci numbers. Of the first two there can be no doubt. Nor, 
among its devotees in the worldwide Fibonacci community, can there be 
little less than certainty about the third item. 

Indeed, the explosive development of knowledge in the general region of 
Fibonacci numbers and related mathematical topics in the last few decades 
has been quite astonishing. This phenomenon is particularly striking when 
one bears in mind just what little attention had been directed to these 
numbers in the eight centuries since Fibonacci's lifetime, always excepting 
the significant contributions of Lucas in the nineteenth century. 

Coupled with this expanding volume of theoretical information about 
Fibonacci-related matters there have been extensive ramifications in prac-
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tical applications of theory to electrical networks, to computer science, and 
to statistics, to name only a few special growth areas. So outreaching have 
been the tentacles of Fibonacci-generated ideas that one ceases to be sur­
prised when Fibonacci and Lucas entities appear seemingly as if by magic 
when least expected. 

Several worthy texts on the basic theory of Fibonacci and Lucas num­
bers already provide background for those desiring a beginner's knowledge 
of these topics, along with more advanced details. Specialised research jour­
nals such as "The Fibonacci Quarterly", established in 1963, and "Notes 
on Number Theory and Discrete Mathematics", begun as recently as 1996, 
offer springboards for those diving into the deeper waters of the unknown. 

What is distinctive about this text (and its title is most apt) is that it 
presents in an attractive format some new ideas, developed by recognised 
and experienced research workers, which readers should find compelling and 
stimulating. Accompanying the explanations is a wealth of striking visual 
images of varying complexity - geometrical figures, tree diagrams, fractals, 
tessellations, tilings (including polyhedra) - together with extensions for 
possible further research projects. A useful flow-chart suggests the connec­
tions between the number theoretic and geometric aspects of the material 
in the text, which actually consists of four distinct, but not discrete, com­
ponents reflecting the individualistic style, tastes, and commitment of each 
author. 

Beauty in Mathematics, it has been claimed, can be perceived, but not 
explained. There is much of an aesthetic nature offered here for perception, 
both material and physical, and we know, with Keats, that 

A thing of beauty is a joy for ever: 
Its loveliness increases; ... 

Some germinal notions in the book which are ripe for exploitation and 
development include: the generation of pairs of sequences of inter-linked 
second order recurrence relations (with extensions and modifications); Fi­
bonacci numbers and the honeycomb plane; the poetically designated gold-
point geometry associated with the golden ratio divisions of a line segment; 
and tracksets. Inherent in this last concept is the interesting investigation 
of the way in which group theory might have originated if Cayley had used 
the idea of a trackset instead of tables of group operations. 

An intriguing application of goldpoint tiling geometry relates to recre-
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ational games such as chess. Indeed, there is something to be gleaned from 
this book by most readers. 

In any wide-ranging mathematical treatise it is essential not to neglect 
the human aspect in research, since mathematical discoveries (e.g., zero^ 
the irrationals, infinity, Fermat's Last Theorem, non-Euclidean geometry, 
Relativity theory) have originated, often with much travail and anguish, in 
the human mind. They did not spring, in full bloom, as the ancient Greek 
legend assures us that Athena sprang fully-armed from the head of the god 
Zeus. Readers will find some of the warmth of human association in various 
compartments of the material presented. 

Moreover, those readers also looking for a broad and challenging outlook 
in a book, rather than a narrow, purely mathematical treatment (however 
effectively organised), will detect from time to time something of the mu­
sic, the poetry, and the humour which Bertrand Russell asserted were so 
important to an appreciation of higher mathematics. 

A suitable concluding thought emanates from Newton's famous dictum: 
... / seem to have been only like a boy playing on the 
seashore, and diverting myself in now and them find­
ing a smoother pebble or a prettier shell than ordinary, 
while the great ocean of truth lay all undiscovered before 
me. 

While much has changed since the time of Newton, there are still many 
glittering bright pebbles and bewitching, mysterious shells cast up by that 
mighty ocean (of truth) for our discovery and enduring pleasure. 

A. F. Horadam 

The University of New England, 
Armidale, Australia 

October 2001 
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Preface 

This book presents new ideas in Fibonacci number theory and related top­
ics, which have been discovered and developed by the authors in the past 
decade. In each topic, a diagrammatic or geometric approach has pre­
dominated. The illustrations themselves form an integral part of the de­
velopment of the ideas, and the book in turn unravels the illustrations 
themselves. 

There is a two-fold emphasis in the diagrams: partly to illustrate theory 
and examples, and partly as motivation and springboard for the develop­
ment of theory. In these ways the visual illustrations are tools of thought, 
exemplifying or analogous to ideas developed by K. E. Iverson about math­
ematical symbols.* 

The resulting visual perspectives comprise, in a sense, two sub-books 
and two sub-sub-books! That is not to say that there are four separate and 
unrelated monographs between the same covers. The two major parts, the 
number theoretic and the geometric, and the four sections are distinct, but 
there are many interrelations and connecting links between them. 

'Iverson, Kenneth E. 1980: Notation as a Tool of Thought. Communications of the 
Association of Computing Machinery. Vol. 23(8), 444-465. 

xi 
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The following flowchart gives a simple overview of the book's structure 
and contents. 
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The reason for developing the book this way, rather than producing a 
traditional text on number theory, is to preserve the styles of the originating 
authors in the various parts rather than to homogenize the writing. The 
'urgency' of the authors' work is thereby conserved. 
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The topics in the book can be entered at different points for different 
purposes. There are sections for various (though overlapping) audiences: 

* Enrichment work for high school students, 
* Background material for teacher education workshops, 
* Exercises for undergraduate majors, 
* Ideas for development by graduate students, 
* Topics for further research by professional mathemati­

cians, 
* Enjoyment for the interested amateur (in the original 

sense of this word, which comes from the Latin amo: 
I love). 

There are several common notational threads built around the sequence 
of Fibonacci numbers, Fn, defined by the second order homogeneous linear 
recurrence relation 

Fn = Fn_i + F„_2 , n > 2, 

with initial conditions Fi = F2 = 1. 

The golden ratio is also a constant thread which links otherwise diverse 
topics in the various sections. It is represented here by a = (1 + V5)/2 , and 
it arises as the dominant solution of the auxiliary (or characteristic) poly­
nomial equation x2 — x — 1 = 0, associated with the Fibonacci recurrence 
relation. 

In this book golden ratio gives rise in turn to new ideas relating golden 
means to a variety of geometric objects, such as goldpoint rings, various 
goldpoint fractals, and jigsaw tiles marked with goldpoints. 

The geometric connections with number theory bring out some funda­
mental mathematical properties which are not always included in the mod­
ern school syllabus, yet they are very much part of the cultural heritage of 
mathematics, which, presumably, is one reason for including mathematics 
in a high school curriculum. 

These fundamental properties are also an important component in the 
development of conceptual frameworks which enable mathematicians to ex­
periment, to guess shrewdly, to test their guesses and to see visual perspec­
tives in symbols, formulas and diagrams. 
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Thus we have presented new extensions and inventions, all with visual 
methods helping to drive them, in several areas of the rapidly expanding 
field now known as Fibonacci mathematics. We hope that readers within a 
wide range of mathematical abilities will find material of interest to them; 
and that some will be motivated sufficiently to pick up and add to our 
ideas. 

K. T. ATANASSOV 
Bulgarian Academy of Sciences, Sofia-1113, Bulgaria. 

VASSIA ATANASSOVA 
University of Sofia, Bulgaria. 

A. G. SHANNON 
Warrane College, University of New South Wales, Kensington, 1465 
& KvB Institute of Technology, North Sydney, NSW, 2060, Australia. 

J. C. TURNER 
University of Waikato, Hamilton, New Zealand. 
JCT@thenet.net.nz 

May 2002 

mailto:JCT@thenet.net.nz
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PART A: NUMBER THEORETIC 

PERSPECTIVES 

SECTION 1 

COUPLED RECURRENCE RELATIONS 

Krassimir Atanassov and Anthony Shannon 

Coupled differential equations are well-known and arise quite naturally in 
applications, particularly in compartmental modelling [13]. Coupled differ­
ence equations or recurrence relations are less well known. They involve 
two sequences (of integers) in which the elements of one sequence are part 
of the generation of the other, and vice versa. At one level they are simple 
generalizations of ordinary recursive sequences, and they yield the results 
for those by just considering the two sequences to be identical. This can 
be a merely trivial confirmation of results. At another level, they provide 
visual patterns of relationships between the two coupled sequences which 
naturally leads into 'Fibonacci geometry'. In another sense again, they can 
be considered as the complementary picture of the intersections of linear 
sequences [32] for which there are many unsolved problems [25]. 

l 
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Chapter 1 

Introductory Remarks by the First 
Author 

The germ of the idea which has been unfolded with my colleagues came to 
me quite unexpectedly. A brief description of that event will help explain 
the nature of this first Section of our book. 

It was a stifling hot day in the summer of 1983. I had started to work 
on Generalized Nets, and extension of Petri Nets, and I had searched for 
examples of parallel processes which are essential in Generalized Nets. After 
almost twenty years I can remember that day well. I was discussing my 
problem with colleagues at the Physical Institute of the Bulgarian Academy 
of Sciences, when one of them (she is an engineer) asked me: "Are there 
real examples of parallelism in Mathematics?" 

I was not ready for such a question then. Nor do I have a good answer 
to it now! Nevertheless, as a young mathematician who naively thought 
that Mathematics readily discloses its secrets, I answered that there are 
obviously such examples; and I began to try to invent one on the spot. 

I started by saying that the process of construction of the Fibonacci 
numbers is a sequential process [1,2], and began to describe the sequence 
and its properties. At that moment I suddenly thought of an extension of 
the idea, which perhaps would give an example of a parallel process. I said: 
"Consider two infinite sequences {an} and {bn}, which have given initial 
values ai,d2 and 61,62, and which are generated for every natural number 
n > 2 by the coupled equations: 

O-n+2 — bn+\ + bn 

t>n+2 = O-n+1 + an • 

3 



4 Coupled Recurrence Relations 

Is this a good example of parallelism in Mathematics?" The answer is 
No, although at the time it seemed to satisfy my colleagues. It did not 
satisfy me, however, because the process of computation of each sequence 
can be realized sequentially, though this is not reflected in the results. 

The problem of parallelism in Mathematics, and the 'example' I had 
created, nagged away at me; and I continued to think about it that day. To­
wards evening I had invented more details, when Dimitar Sasselov, a friend 
of mine (now at the Harvard-Smithsonian Astrophysical Centre) came to 
my home. I asked him and my wife Lilija Atanassova (a fellow student and 
colleague at the Bulgarian Academy of Sciences) to examine some of the 
cases I had formulated. 

This process was just an intellectual game for us. We ended our cal­
culations, and then at that moment the following question was generated: 
"Why do we waste time on all this?". These results are very obvious and 
probably well-known. Up until this time I had not been seriously interested 
in the Fibonacci numbers. In the next two months I interviewed all my col­
leagues - mathematicians - and read books on number theory, but nowhere 
did I come across or find anything about such results. In the library of my 
Institute I found the only volumes of The Fibonacci Quarterly in Bulgaria 
and read everything which was available, but I did not find similar ideas 
there either. Then I decided to send my results to Professor Gerald Bergum, 
the Editor of the Quarterly. His answer was very encouraging. 

This was the history of my first paper on the Fibonacci numbers [9]. 
The second one [4] is its modification. It was written some months after 
the positive referee's report. 

In the meantime, the first paper was published and three months after 
this I obtained a letter from Professor Bergum with a request to referee 
J.-Z. Lee and J.-S. Lee's paper [22] in which almost all the results of my 
second paper and some other results were included. I gave a positive report 
on their paper and wrote to Prof. Bergum that my results were weaker and 
I offered him to throw them into the dustbin. However, he published first 
my second paper and in the next issue J.-Z. Lee and J.-S. Lee's paper. 
I write these words to underline the exceptional correctness of Professor 
Bergum. Without him I would not have worked in the area of the Fibonacci 
sequence at all. The next results [5; 10] were natural consequences of the 
first ones. I sent some of them to Professor Aldo Peretti, who published 
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them in "Bulletin of Number Theory and Related Topics" and I am very 
grateful to him for this (see [6; 7]). 

The essentially new direction of this research, related to these new types 
of the Fibonacci sequences, is related to my contacts with Professor An­
thony Shannon. He wrote to me about the possibility for a graph repre­
sentation of the Fibonacci sequence and I answered him with the question 
about the possibility for analogical representation of the new sequences. In 
two papers Anthony Shannon, John Turner and I showed this representa­
tion [26; 11]. 

In the last seven years other results related to extensions of the Fi­
bonacci numbers were obtained. Some of them are continuations of the 
first one, but the others are related to new directions of Fibonacci sequence 
generalizations or other non-standard ideas. 

Four years ago, I invited my friend the physicist Professor Peter Georgiev 
from Varna to research the matrix representation of the new Fibonacci se­
quences. When he ended his research, I helped him to finalize it. Therefore, 
my merit in writing of the series of (already 6) papers [14; 15; 16; 17; 18; 
19] in press in "Bulletin of Number Theory and Related Topics" is in gen­
eral in the beginning and end of the work, and only Peter's categorical 
insistence made me his co-author. With these words I would like to under­
line his greater credit for the matrix representation of the new Fibonacci 
sequences. 

I must note also the research of V. Vidomenko [36], W. Spickerman, R. 
Joyner and R. Creech [28; 29; 30; 3l], A. Shannon and R. Melham [27], S. 
Ando S. and M. Hayashi [l] and M. Randic, D. A. Morales and O. Araujo 
[24]. 

In this Section I would like to collect only those of my results related 
to the Fibonacci sequence, which are connected to ideas for new gener­
alizations for this sequence. For this reason, the results related to their 
representations and applications will not be included here. 
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Chapter 2 

The 2-Fibonacci Sequences 

In this chapter we first define and study four different ways to generate pairs 
of integer sequences, using inter-linked second order recurrence equations. 

2.1 The four 2-F-sequences 

Let the arbitrary real numbers a, b, c, and d be given. 

There are four different ways of constructing two sequences { a j } ~ 0 and 
{&}£()• We shall call them 2-Fibonacci sequences (or 2-F-sequences). The 
four schemes are the following: 

a0 = a, ft, = b, ai = c, ft = d 

Ctn+2 = fti+1 + fti, n > 0 (2.1) 

/?„+2 = O-n+l +C*n, n > 0 

a0 = a, ft. — b, ai = c, ft = d 
Qn+2 = OJn+1 + ft, " > 0 (2.2) 
ft+2 =f t i+i + " « , n > 0 

Q0 = a, ft. = &, a i = c, ft = d 
an+2 = fti+i + a „ , n > 0 (2.3) 
ft+2 = an+i +ft», n > 0 

7 



Coupled Recurrence Relations 

ao = a, Po = b, a\ = c, Pi = d 
an+2 = Qn+1 + Qm n > 0 

Pn+2 = Pn+1 + Pn, n > 0 

(2.4) 

Graphically, the (n+2)-th members of the different schemes are obtained 
from the n-th and the (n + l)-th members as is shown in Figures 1-4. 

an+i Qn+2 

Figure 1 

ttn+l 

Figure 2 

Qn+l Otn+2 

Figure 3 
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Oin an+l « n + 2 

o — o — o 
Pn Pn+l Pn+2 

o o — o 
Figure 4 

We shall discuss these four schemes sequentially. 

2.2 The Scheme (2.1) 

First, we shall study the properties of the sequences for the scheme (2.1). 
Clearly, if we set a = b and c = d, then the sequences {ai}?l0 and {/?i}^0 

will coincide with each other and with the sequence {Fi}^l0, which is called 
a generalized Fibonacci sequence, where 

F0(a,c) = a, Fiia,^} = c, F n + 2(a ,c) = Fn+1(a,c) +Fn(a,c). 

Let Fi = Fi(0,1); {Fi}^ be the ordinary Fibonacci sequence. 
The first ten terms of the sequences denned in (2.1)-(2.4) are: 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Oin 

a 
c 

b + d 
a + c + d 

a + b + 2.c + d 
a + 2.b + 2.c + Z.d 

3.a + 2.6 + 4.c + 4.d 
4.a + 4.b + 7.c + 6.d 

6.o + 7 . 6 + 1 0 . c + l l . d 
l l .o + 10.6+17.c+17.d 

Pn 
b 
d 

a + c 
b + c + d 

a + b + c + 2.d 
2.a + b + 3.c + 2.d 

2.a + 3.b + 4.c + 4.d 
4.a + i.b + 6.c + 7.d 

7.a + 6 .6+l l .c+10.<i 
10 .a+11.6+17.c+17.d 

A careful examination of the corresponding terms in each column leads 
one immediately to: 
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Theorem 2.1: For every integer n > 0: 

(a) a3.n + pQ = /33.n + ao, 
(b) a3.n+i+(3i = /?3.n+i+«i, 
(c) a3 .n + 2 + ao + a i = /33.n+2 + Po + Pi-

Proof: (a) The statement is obviously true if n = 0. Assume 
the statement is true for some integer n > 1. Then by the 
scheme (2.1): 

«3.n+3 + Po = p3.n+2 + Pz.n+1 + Po (by (2 .1) ) 

= az.n+i + a3.n + /?3.n+i + Po (ind. hyp.) 
= 03.n+l + #3.n + #3.n+l + a 0 (by (2.1)) 
= 0:3.n+i + a3.n+2 + a0 (by (2.1)) 
= fo.n+3 + ao (by (2.1)). 

Hence, the statement is true for all integers n > 0. Similar 
proofs can be given for parts (b) and (c). • 

Adding the first n terms of each sequence { a j } ^ 0 and {/5;}?fi0 yields a 
result similar to that obtained by adding the first n Fibonacci numbers. 

Theorem 2.2: For all integer k > 0: 

3.k 

(a) a3.fc+2 = E Pi+Pi, 

(b) 

(c) 

(d) 

£*3.fc+3 = 

Oi3.k+4 = 

P3.k+2 = 

i=0 

3.fc+l 
E <*;+/?! 
i=0 

3.A+2 

E ft + <*1 
j=0 

3.it 

E a» + ai, 

i=0 

3.fc+l (e) /?3.fc+3 = E Pi + oci, 
4=0 
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3.k+2 

(/)ft.*+4 = E «i+A-
i=0 

Proof: (e) if k = 0 the statement is obviously true, since 

I 

E ft + «i = A) + ft + Q-i = a2 + Qi = ft) 
i=0 

Let us assume that (e) be true for some integer k > 1. 
Then from (2.1): 

fti.k+6 = 03.fc+5 + 03.A+4 

= Ai.fc+4 + ft.ifc+3 + «3.fc+4 (from (2.1)) 

3.k+l 

= ftl.k+4 + E ft + 0!l + fti.fc+3 + fts.fc+2 
«=0 

3.k+4 

E ft + «i- (by ind. hyp. and (2.1)) 
i=0 

Hence, (e) is true for all integers A: > 0. • 

Adding the first n terms with even or odd subscripts for each sequence 
{ai}fl0 and { f t } ^ 0 we obtain more results which are similar to those 
obtained when one adds the first n terms of the Fibonacci sequence with 
even or odd subscripts. That is, 

Theorem 2.3: For all integers k > 0, we have: 

3.k+2 

(a) a6.k+5 = E ftu-ao+ft, 

i=0 

3.k+3 

(b) ae.k+e = E # 2 . i - i + a o , 

i=0 

3.fc+3 

(c) ae.k+i - E fti.i-/?o + a i , 
j=0 
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3.k+i 

(d) a6.k+8 - 52 ft.i-i+ft, 
4=0 

3.A+4 

(e) a6,k+g — 52 ft-i - A) + ft, 

i=0 

3.k+5 

(f) ae.k+9 = 52 ft.»-i+«o+«i-ft, 
i = 0 

3.fc+2 

(5) ft.A+5 = I ] a 2 . i - ^ o + a i , 

»=0 

3.A+3 

{h) Pe.k+6 = 52 Q2 . i - i+ /3o , 

t=0 

3.A+3 

(«) ft.fc+7 = 52 a 2 . j - a o + f t , 
*=0 

3.fc+4 

(i) ft.fc+8 = 52 «2.t-i + "o, 
»=0 

3.fc+4 

(6) ft-fc+9 = 52 a2.i - OlQ + aX, 
i=0 

3.fc+5 

(0 ft.fc+9 = 52 " 2 . 1 - 1 + f t ) + f t - a i . 
»=0 

Proof: (g) if fc = 0 the statement is obviously true, since 

2 

13 a2.« _ ft + <*i = «o + a2 + 0:4 - ft + a i 
»=o 

= 2.a + 6 + 3.c + 2.d = ft. 

Let us assume that (g) be true for some integer k > 1. 
Then from (2.1): 
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/?6.fc+ll = Q6.A+10 + Q6.*:+9 

= ae.k+io + Pe.k+9 + a0 - 0O (by (2.1)a) 

= ot6.k+w + a6.k+8 + ot6.k+7 + a0 - Po 
(by (2.1) and ind. hyp.) 

3.fc+2 

+ £ a2.i + ax + a0 - 2-A, (Thm. 2.1 (a)) 
i=0 

3.fc+3 

= ae.k+io + de.k+8 + E a2.» + «i - Po 

3.k+5 

E «2.i + «i - 0o (by Thm. 2.1(a)). 
i=0 

Hence, (g) is true for all integers k > 0. A similar proof 
can be given for each of the remaining eleven parts of the 
theorem. • 

The following result is an interesting relationship which follows imme­
diately from Theorems 2.1 and 2.2. Therefore, the proofs are omitted. 

Theorem 2.4: If the integer k > 0, then 

3.fc 

(a) E (an -Pi) =a0 - Po, 

t=0 

3.fc+l 

(b) E {at - 0i) = fo - a2, 

i=0 

3.fc+2 

(c) E (ai-Pi)=0. 
i=0 

As one might suspect, there should be a relationship between the new 
sequence and the Fibonacci numbers. The next theorem establishes one of 
these relationships. 
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Theorem 2.5: If the integer n > 0, then 

an+2 + /?n+2 = Fn+i.(a0 + A,) + Fn+2.(ai + Pi). 

Proof: The statement is obviously true if n = 0 and n = 1. 
Let us assume that the statement is true for all integers less 
than or equal to some integer n > 2. Then by (2.1): 

O-n+Z + Pn+3 = Pn+2 + Pn+l + C*n+2 + 0=n+l 

(by induction hypothesis) 

= F n + i . ( a 0 + A))+i7 ,n+2-(ai+/?i) 

+ F„.(a0 + A,) + Fn+1.(a! + 0i) 

= Fn+2.(a0 + M + Fn+3.(ai + ft). 

Hence, the statement is true for all integers n > 0. • 

At this point, one could continue to establish properties for the two 
sequences { a j } ^ 0 and {ft}?^0 which are similar to those of the Fibonacci 
sequence. However, we have chosen another route. 

Express the members of the sequences {ai}?Z0 and {ft}^I0, when n > 0, 
as follows: 

an = jn.a + 7^.6 + y^.c + j*.d 
(2.5) 

pn = 6la + %.b + 63
n.c + 6*.d 

In this way we obtain the eight sequences { 7 f } ^ 0
 an(^ {<^}£o U = 

1,2,3,4). The purpose of this section is to show how these eight sequences 
are related to each other and to the Fibonacci numbers with the major 
intent of finding a direct formula for calculating an and /?„ for any n. 

The following theorem establishes a relationship between these eight 
sequences and the Fibonacci numbers. 

Theorem 2.6: For every integer n > 0: 

(a)ln + tn=Fn-l, 
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(6)7^ + ^ = ^ - 1 , 

(d)ri + 5*=Fn. 
Proof: (a) If n = 0, then: 

^ + ^ = 1 + 0 = ^ - 1 

and 

jl+6\ = 0 + 0 = F O . 

Let us assume that the assertion is true for all integers 
less than or equal to some integer n > 2. Then by (2.5) and 
induction hypothesis 

7^+1 + <5i+i = <5i + <£-i + 7n + ln-1 

= Fn-1 + -Pn-2 = ^tii 

and, therefore, (a) is true for all integers n > 0. Similarly, 
one can prove parts (b), (c), and (d). • 

The next step is to show how the above eight sequences are related to 
each other. 

Theorem 2.7: For every integer k > 0: 

(a) l L = <53.A + 1> 

W l3.k+l = "3.fc+l ' 

(c) 73.fc+2 = "3.k+2 ~~ 1> 

(d) ilk = * ! . * - ! , 

(e) 73.fc+l = ^3.fc+l' 

( / ) 73
2.fc+2 = <%fc+2 + 1> 
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(9) 

(h) 

(0 

(j) 

(k) 

(0 

ilk ~-

-y3 
I3.k+1 ~ 

73.A+2 = 

73.A ' 

73.jfc+l ~ 

^3.k+2 ~ 

= *!.*> 

= tfi.fc+i + 1. 

- & - 1 

~ °3.k' 

= °3.*+l ~ *> 

= "3.k+2 + 1-

Proof: (j) It is obvious that (j) is true if k — 0, since 7g = 
6Q = 0. Let us assume that the statement is true for some 
integer k > 1. Then by (2.1): 

l3.k+3 = "3.k+2 + "3.k+l 

= T L + I + T I * + <&*+! (by (2.1)) 

= i L + i + <*s.* + sik+i ( by i n d - hyp-) 

= iik+i + iik+2 = ii.k+3 (by (2-1)) 

and the statement is proved. The remaining parts are proved 
in a similar way. • 

now show: 
Theorem 2.8: For every integer n > 0: 

(a)ln+ll = ^n + ^n, 

(&) 7*+7* =<£ + # . 

Proof: (a) This is obviously true if n = 0 and n = 1. Assume 
true for all integers less than or equal to some integer n > 2. 
Then by (2.1): 
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= 7^ + 7i_i + 7^ + TS-I (byind- hyp-) 

= ^ + i + ^ + i (by (2.1)). 

Similarly, one can prove part (b). • 

Before stating and proving our main result for this section, we need the 
following three theorems. 

Theorem 2.9: For every integer n > 0: 

(e) ll =7n+i . 

( / ) T £ = 7A+I. 

(9)S3
n = 6Z+1, 

{h)Sn = Sn+l. 

Proof: (a) The statement is obviously true for n = 0, 1 and, 
2, so assume it is true for all integers less than or equal to 
integer n > 2. Then by (2.1): 

<^+l = In + 7n-l 

= ^ - ! + ^ - 2 + ^ - 2 + ^ _ 3 ^ (2-1)) 

= 7^-1 + 7^-2 + 7^-2 + 7n-s- (by i n d - hyP-) 

A n d b y ( 2 . 1 ) : ^ + ^ _ i = 7 * + i -

Two applications of (2.1) will complete the proof of part 
(a) of the theorem. The other parts are proved by similar 
arguments. • 
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From Theorems 2.6 and 2.9, we have the following: 

Theorem 2.10: For every integer n > 0: 

Finally, we have the following statement: 

Theorem 2.11: For every integer n > 2: 

( o ) 7 i = 7 i - i + 7 i - 2 + 3 . [ f ] - n + l, 

(c)7i = 72 + 3 . [ f ] - n + l , 

( d )7S=7S- i+7S-2 -3 . [ 2 f i ] + n, 

( e ) 7 ^ = 7 L 1 + 7 L 2 + 3 . [ ^ ] - n , 

( / )7^ = 7^ -3 . [ f ]+n . 

Proof: (a) The statement is obviously true if n = 2 or 3. 
Assume the statement true for all integers less than or equal 
to n > 2. Then by (2.1) and Theorem 2.9 (a): 

7i+i = # + # - i = # + # - i 

= ^ - 1 + ^ - 2 + ^ - 2 + ^ - 3 (by (2.1) 

= 7 i - i + 7 i - 2 + 7^-2 + 7n-3 (by Thm. 2.9 (b)) 

(then by the induction hypothesis:) 

- 7 i - 3 . [ f ] + n - l + 7 i - i - 3 . [ 2 f i ] + n - 2 

= 7i + 7i- i + 2 .n -3 -3 . [ f ] -3 . [2= i ] 



The 2-Fibonacci Sequences 19 

= 7n + 7 n - i + 2 - n - 3 - 3 . p ± i ] - 3 . n + 3 

= 7 i _ i + 7 i - 2 + 3 . [ 2 ± i ] - n 

and part (a) is proved. We shall note, that it can be shown 
that 

rn + 1.. rnn rn — 1, 

^-T^ + k] + [-T-] = n-1 

for n > 1. 

Similarly, one can prove the other parts. D 

Prom Theorem 2.9 (a) and Theorem 2.10 (a), we have, for n > 0, 

S2
n+2 = ln+2 = ^-(Fn+l ~ ln+2 + 7i+l + In + 3-[!L|~"] ~ " " 1) 

= l(Fn+1 - jl+2 + Sn+2 + 3.[2±*] - n - 1) (by (2.1)) 

= | . ( F „ + 1 + 3.[2±*] - n - 1) (by Thm. 2.9(a)). 

Similarly, we have 

7^+2 = Si+2 = l(Fn+1-3.[^]+n + l), 

ll+i = ^ + 2 = | . ( ^ + 2 - 3 . [ f ] + n - l ) , 

7*+2 = ^ + 2 = | . ( F n + 2 + 3 . [ f ] - n + l). 
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Substituting these four equations into (2.5), we have: 

FIRST BASIC THEOREM. If n > 0, then 

an+2 = I . ( ( j r n + 1 + 3 . [ 2 ± ^ ] - n - l ) . a 

+ ( F n + 1 - 3 . [ 2 ± * ] + n + l).6 

+ ( F n + 2 - 3 . [ f ] + n - l ) . c 

+ ( F n + 2 + 3 . [ f ] - n + l).d) 

= i.((a + 6).Fn+i + (c + d).i',n+2 

+ (3.[=±*] - n - l).(a -&) + ( » - 3.[f ] - l).(c - d), 

(3n+2 = | . ( ( F „ + 1 - 3 . [ ^ ] + n + l).o 

+ (Fn+1+3.[^]-n-l).b 

+ (Fn+2+3.[*]-n + l).c 

+ ( F n + 2 - 3 . [ f ] + n - l ) . d ) 

= i.((a + 6).F„+i + (c + d).F„+2 

+ ( 3 - [ ^ ] - n - 1).(6 -a) + (n- 3.[f ] - l).(d - c). 

2.3 The Scheme (2.2) 

We shall study next the properties of the sequences for the scheme (2.2) 
and will conclude with a second basic theorem, as above. Since the proofs 
of the results below are similar to those above, we shall only list the results. 
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The first ten terms of the sequences defined in (2.2) are: 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

an 

a 
c 

b + c 
b + c + d 

a + b + c + 2.d 
2.a + b + 2.c + 3.d 

3.a + 2.b + 4.c + 4.d 
4.a + 4.6 + 7.c + 6.d 

6.a + 7 . 6 + l l . c + 1 0 . d 
10.a+11.6+17.c+17.d 

Pn 
b 
d 

a + d 
a + c + d 

a + b + 2.c + d 
a + 3.b + 3.c + 2.d 

2.a + 3.6 + 4.c + 4.d 
4.a + 4.6 + 6 .c+7.d 

7.a + 6.b+10.c+ll.d 
l l . o + 1 0 . 6 + 1 7 . c + 1 7 . d 

Theorem 2.12: For every integer n > 0: 

(a) a6.n + /30 = As.n + a0 , 

(b) a6 .n + 1 + fa = Pe.n+i + ati, 

(c) a6.n+2 +a0+ Pi = Ps.n+2 + /Jo + <*1. 

(d) a6 .n + 3 + a0 = /?6.n+3 + A)> 

(e) a 6 . n + 4 +OLi= P%.n+A + Pi, 

( / ) a 6 . „ + 5 + C*i + /J0 = Pe.n+5 + Pi +a0-

Theorem 2.13: For every integer n > 0: 

n 

(a) an+2 = £ Pi + ai, 
i=0 

(b)pn+2= Y: <*i+0i-
i=0 
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Theorem 2.14: For the integer k > 0: 

6.fc 
(a) J2 (an - Pi) = a0 - ft., 

i=0 

6.fc+l 
(b) £ (ai - pi) = a0 - Po + ai ~ fa, 

6.k+2 

(c) £ fa - Pi) = 2 . ( a 1 - f t ) . 

i=0 

6.fc+3 

(d) £ ( a i _ / 3 i ) = - a o + /?2 + 2 . ( a 1 - f t ) , 

i=0 

6.k+4 

(e) X) ( a * - f t ) = - a 0 + f t > + a i - f t , 

i=0 

6.fc+5 

(/) £ K-ft) = o. 
Theorem 2.15: For every integer n > 0: 

an+2 + fti+2 = -Fn+i-(ao + Po) + Fn+2.(ai + ft). 

As above, we express the members of the sequences { a ; } ~ 0 and {ft}g.0, 
when n > 0 by (2.5). 

It is interesting to note that the Theorems 2.6, 2.8 and 2.9 with identical 
forms are valid here. 

Let ip be the integer function defined for every k > 0 by: 

r 
0 
1 
2 
3 
4 
5 

V»(6. k + r) 
1 
0 

- 1 
- 1 

0 
1 
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Obviously, for every n > 0, tp(n + 3) = —ip{n). 

Using the definition of the function if>, the following are easily proved 
by induction: 

Theorem 2.16: For every integer n > 0: 

(a)1
1

n=S1
n + rP(n), 

(c)ri = 63
n+iP(n + 4), 

Theorem 2.17: For every integer n > 0: 

(a) 

(b) 

(c) 

(d) 

(e) 

(/) 

7^+2 

<-/ 2 „ 

)n+2 

-yi 

'Y3 

7n+2 

-V4 
/n+2 

7 3 
In 

-

= 

= 

= 

= 

= 

7^+1+7^ + ^ + 3), 

7n+l+7*+V'(™)> 

T £ + IK>*)> 

73
J+1+7n+<Kn + 4), 

7 * + i + 7 ^ + ^ + 1), 

7 4 + V ( n + 4). 

From the above theorems, we obtain the equations: 

ll=6n=
1-.{Fn^+^{n + Z)), 

<Y3
n=6n = l.(Fn-.1+iP(n + 4)), 
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We may now state our second basic theorem. 

S E C O N D BASIC T H E O R E M . If n > 0, then 

a„ = | . ( ( F n _ i + ^ ( n ) ) . a + ( F n _ 1 V ( n + 3).6 

+ (Fn + i/>(n + 4)).c + (Fn + i/>(n + l)).d) 

= | . ( (o + 6).Fn_i + (c + d).Fn 

+ r/>(n).a + i/>(n + 3).6 + i/)(n + 4).c + ^(n + 1), 

/?„ = | . ( ( F n _ i + ^ ( n + 3)).a + (Fn_i^(n).& 

+ (Fn + ^(n + l)).c + (Fn + </>(n + 4)).d) 

= | . ( (a + fc).Fn_i + (c + d).Fn 

+ V(n + 3).o + </>(n).& + ^ ( ^ + l)-c + <Kn + 4)-

The sequences (2.4) are actually two independent Fibonacci sequences 
of the form {-Fi(a,c)}?^0 and {Fi(b,d)}^0. It is easily seen that the se­

quences (2.3) can be expressed through the sequences {Fi(a,d)}^l0 and 
{Fi(6,c)}g0 , for n > 1, thus: 

CH2.n = F2.n{a,d), 

Q2.71+1 = - p 2 . n + i ( 6 , c ) , 

l#2.n = F2.n(b,c), 

fa.n+l = F2.n+l{a,d), 

On the basis of what has been done above, one could be led to generalize 
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and examine sequences of the following types: 

a0 

O-n+2 

Pn+2 

Oto 

O-n+2 

Pn+2 

= 

= 

= 

= 

= 

= 

a, fa = 6, a i = c, pi 

p.Pn+i + q.p„, n > 0 

r.an+i + s.an, n>0 

a, p0 = 6, a i = c, Pi 

p.an+i + q.pn, n > 0 

r./9„+i + s.an, n > 0 

for the fixed real numbers p, q, r, and s. 

This problem was formulated in 1986, but up to this moment it is open. 

Finally, we shall describe one more modification of the above schemes, 
and outline the solutions. The new schemes have the following forms: 

I type (trivial): 
a0 = a, po — b, Qi = c, Pi = d 
an+2 = «n+i -a», n > 0 
Pn+2 = Pn+1 ~ Pn, Tl > 0 

II type (trivial): 
a 0 = a, P0 = b, ai=c, Pi = d 
an+2 = Pn+i - <xn, n > 0 
Pn+2 = Q-n+1 - Pn, « > 0 

III type: 
Q0 = o, Po = b, Qi = c, ft = d 
a n + 2 = « n + l - A i , ^ > 0 

A i+2 = Pn+1 - " „ , 71 > 0 

IV type: 
Qo = a, /30 = &, a i = c, P\ = d 
OLn+2 = Pn+1 ~ Pn, n>0 

Pn+2 = an+i -an, n > 0 

For the first case (I type) we obtain directly, that: 
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Pn 

a, 

c, 
c — a, 
-a, 

-c, 
a — c, 

b, 
d, 
d-b, 

-b, 
-d, 
b-d, 

if n = 0 (mod 6) 
if n = 1 (mod 6) 
if n = 2 (mod 6) 
if n = 3 (mod 6) 
if n = 4 (mod 6) 
if n = 5 (mod 6) 

if n = 0 (mod 6) 
if n = 1 (mod 6) 
if n = 2 (mod 6) 
if n = 3 (mod 6) 

if n = 4 (mod 6) 
if n = 5 (mod 6) 

and for the second case (II type), we find that: 

an = < 

A. 

a, 
c, 
d — a, 

-6, 
-d, 
b — c, 

b, 
d, 
c — b, 
-a, 

-c, 
a — d, 

if n = 0 (mod 6) 
if n = 1 (mod 6) 
if n = 2 (mod 6) 

if n = 3 (mod 6) 
if n = 4 (mod 6) 

if n = 5 (mod 6) 

if n = 0 (mod 6) 

if n = 1 (mod 6) 
if n = 2 (mod 6) 

if n = 3 (mod 6) 
if n = 4 (mod 6) 
if n = 5 (mod 6) 

When the other two cases are valid, the following two theorems can be 
proved analagously to the respective ones given above for the first schemes. 



The 2-Fibonacci Sequences 27 

T h e o r e m 2.18: For every integer n > 0, for the third 
scheme: 

an = | . ( ( F n _ i + V ( n ) ) . a - ( F n _ i + t f ( n + 3)).6 

+ (Fn + rl>(n + 4)).c - (Fn + i/,(n + l)).d), 

Pn = | . ( - ( K _ 1 + V ( n + 3)).a + (F n _i+V(n) .6 

- {Fn + V<n + l)).c + (Fn + V(n + 4)).d). 

T h e o r e m 2.19: For every integer n > 0, for the fourth 
scheme: 

an = i . ( ( - l ) » . ( F n _ 1 + 3 . [ 2 ± a ] - n + l).a 

+ ( - l )n+i . (F n _ 1 -3 . [2±2] + n - l ) . 6 

+ ( - l ) ^ 1 . ^ - 3.[a=Z] + n - 3).c 

+ ( - l ) n . ( F n - 3 . [ s ^ ] - n + 3).d), 

/?„ = | .((_i)»»+i.(irn_1_3.[2] + n _ i ) . a 

+ ( - l ) » . ( F n _ 1 + 3 . [ 2 ] - n - l ) . 6 

+ ( - l ) n . ( F n + 3 . [==*]-n + 3).c 

+ ( - l ) " + 1 . ( F n - 3 . [ ^ ] + n - 3).d). 
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Chapter 3 

Extensions of the Concepts of 
2-Fibonacci Sequences 

A new direction for generalizing the Fibonacci sequence was described in 
Chapter 2. Here, we shall continue that direction of research. 

Let CI,C2,.--,CQ be fixed real numbers. Using C\ to C&, we shall 
construct new schemes which are of the Fibonacci type and called 3-F-
sequences. Let for n > 0 

do = Ci, &o = Cii Co = C3, a\ = C4, 61 = C5, c\ = CQ 

an+2 = xl+1 + yl
n 

bn+2 = X2
n+i + Vl 

Cn+2 = X3
n+i + Vl 

where < xn+1,xn+l,x^+l > is any permutation of < an+i, bn+1, cn+i > 
and < xn,xn,x^ > is any permutation of < an,bn,cn > . 

The number of different schemes is obviously 36. 

In [22], the specific scheme (n > 0) 

do = Ci> bo = C2, Co = C3, a\ = d, b\ = C5, ci = C6 

fln+2 — frn+1 "+" cn 

bn+2 — Cn+1 + On 

29 
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Cn+2 — On+1 + bn 

is discussed in detail. For the sake of brevity, we devise the following 
representation for this scheme: 

( a b c \ 
b c a \ (3.1) 

c a b ) 
Note that we have merely eliminated the subscripts and the equal and plus 
symbols so that our notation is similar to that used in representing a system 
of linear equations in matrix form. Using this notation, it is important to 
remember that the elements in their first column are always in the same 
order while the elements in the order column can be permuted within that 
column. Every elememt a, b and c must be used in each column. 

We now define an operation called substitution over these 3-F-sequences 
and adopt the notation \p,q]S, where p,q £ {a,b,c}, p ^ q. Applying the 
operation to S merely interchanges all occurrences of p and q in each column. 
For example, using (3.1), we have 

( c b a \ 
b a c I (3.2) 

a c b J 
Note that in the result we do not maintain the order of the elements in the 
first column. To maintain this order we interchange the first and last rows 
of (3.2) to obtain: 

( a c b \ 
b a c (3.3) 

c b a ) 
which corresponds to the scheme (n > 0) 

do = Clt bo = C2, Co = C3, ai = C4, &i = C5, C1 = C6 

an+2 = c„+i + bn 

bn+2 — an+i + cn 

cn+2 — bn+i + an 
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where C[, C2,..., C'G are real numbers. 

We shall say that the two schemes S and 5" are equivalent under the 
operation of substitution and denote this by S <-> S'. 

It is now obvious that for any two 3-F-sequences S and S", if \p, q]S «-> 
5 ' , then \p,q]S' <-> S. To investigate the concept of equivalence to a deeper 
extent, it is necessary to list all 36 schemes: 

S2 = b b c S3 = 

a a b 
b b a 

a a b 
Sg = I b C C | Sg = 

c b a 

a a c 
Su = | b c a | Si 2 = 

e b b 

a b a 
S14 = [ b a c | S i 5 = 

c c b 

a b b 
Sn = | b a a | S i 8 = 

c c c 

a 6 6 \ 
S20 = I 6 c c S2i = 

c a a I 

a 
b 
c 

a 
b 
c 

a 
b 
c 

a 
b 
c 

a 
b 
c 

a 
b 
c 

a 
b 
c 

a 
c 
b 

a 
b 
c 

a 
b 
c 

a 
c 
b 

b 
c 
a 

b 
a 
c 

b 
a 
c 

a 
b 
c 

b 
c 
a 

c 
a 
b 

c 
b 
a 

a 
b 
c 

b 
c 
a 

c 
a 
b 
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S22 = [ b a b \ S23 = I b c a \ S24 = 

S25 = \ b a b ] S26 = [ b a c S27 = 

5-28 = I b b c I 52g = I b a a \ S30 = 

S31 = \ b b a \ S32 = I 0 v c I 033 

S34 = I 6 a 6 S35 = I 6 6 a 5 3 6 = 

\ c b a / \ c a b ) 

Note that S = S23 and S' = 530, so that 523 <-* ^ o • 

We say that a 3-F-sequence S is trivial if at least one of the resulting 
sequences is a Fibonacci sequence. Otherwise, 5 is said to be an essential 
generalization of the Fibonacci sequence. 

Observe that there are ten trivial 3-F-sequences. They are Si, S2, S3, 
S4, S5, S10, S13, Sir > S27 and 536-

These 10 schemes are easy to detect since they have at least one row 
all with the same letter. Furthermore; for these schemes one of the three 
possible substitutions returns the scheme itself. For example, 

[b,c]Si <-> Si, i = 1 ,2 ,3 ,4 

[a,b]Si^Si, i = l,5,13,17 

[a,c]Si <-> Si, i = 1,10,27,36. 
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The twenty-six remaining schemes are essential generalizations of the Fi­
bonacci sequence. For eight of these schemes, the result is independent of 
the substitution made. That is, 

\p,q]S6 <-> S 9 

fa, q]Sl5 <-> 525 

fa, q]S20 <-> S 3 3 

fa, q]Sl3 ^ 530 

for all p,q € {a,b,c}. This means the substitution operation for these 
schemes is cyclic of length 2. 

For the other eighteen essential generalizations of the Fibonacci se­
quence schemes, all three possible substitutions generate three different 
schemes. For example, 

[b, c]S7 <-> Si2 [b, c]Ss <-> Su [6, c]Si6 <-> S26 

[a,c]S7 «-> Su [a,c]S8 <-> S2i [a,c]Si6 <-> S29 

[a, b]S7 «-+ S31 [a, b]S8 «-> S35 [a, 6]Si6 <-> S34 

All of the substitutions associated with the remaining eighteen schemes 
and their results are conveniently illustrated by the following three figures. 
That is, these pictures determine all possible cycles. 
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Figure 1 

Figure 2 

Figure 3 
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For example, 

[a,b]S29 <-> Si9 

and 

[a,6]([fe,c]([a,c]S24))^S29. 

Note that the figures tell us that many of the schemes are independent. 
That is, Sig and S24 are independent. In fact, Sis is related only to the six 
schemes listed in Fig. 3. Similar results can be found for the other schemes. 

The closed form equation of the members for all three sequences of the 
scheme S23 is given in [22]. 

For every one of the above groups we shall give the recurrence relations 
of its members. 

Let everywhere 

a® — Ci, bo = C*2, Co = C3, 01 = 6*4, bi — C§, ci = C$ 

and n > 0 be a natural number, where C\,CI,---,CG are given constants 
and lx' is one of the symbols 'a', '6' and 'c'. 

Group / contains the schemes S& and Sg, where: 

{ On+2 = O-n+1 + bn 

bn+2 = bn+l + C„ 

Cn+2 = C n +i + an 

The recurrence relation for this scheme is: 

•^n+6 = o.Xn+§ o.Xn_)_4 + ^ n + 3 r ^ n j 

i.e. 

fln+6 = 3 . a n + 5 — 3.on_)-4 + a „ + 3 + an, 

bn+6 — 3.fe„+5 — 3.6„+4 + bn+3 + bn, 

Cn+6 ~ 3.C„+5 — 3.C„+4 + Cn_f-3 + C„. 
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Group II contains the schemes S15 and 525 , where: 

( O-n+2 = &n+l + «n 

bn+2 = C„+i + bn 

CJI+2 = O-n+1 + cn 

The recurrence relation for this scheme is: 

Xn+6 = 3.2„+4 + Xn+3 - 3.Xn+2 + Xn. 

Group III contains the schemes S20 and 533 , where: 

{ a-n+2 = bn+i + bn 

bn+2 = Cn+l + Cn 

Cn+2 — O-n+1 + an 

The recurrence relation for this scheme is: 

Xn+6 = xn+3 + 3.Z„+2 + 3.£n+i + Xn. 

Group IV contains the schemes 523 and 533 , where: 

{ O-n+2 = bn+l + Cn 

bn+2 = C„+l + an 

Cn+2 = O.n+1 + bn 

The recurrence relation for this scheme is: 

Xn+6 — ^-Xn+3 ~r Xn-

Group V contains the schemes Sj, S12, S14, S22, S28 and 531, where: 

( an+2 = O-n+l + bn 

bn+2 = cn+i + an 

Cn+2 = bn+l + Cn 

The recurrence relation for this scheme is: 

Xn+6 = Xn+h + 2.Z„+4 - 2.Xn+3 + Xn+2 ~ Xn. 

Group VI contains the schemes Sg,Sn, Sis, 821,832 and 535, where: 

[ O-n+2 — O-n+1 + bn 

58 : s bn+2 = cn+i + cn 

cn+2 = bn+i + an 
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The recurrence relation for this scheme is: 

Xn+6 = Xn+5 + Xn+4 - Xn+2 + Xn+i + Xn. 

Group VII contains the schemes S^, S\g, S24, S26, S29 and 534, where: 

{ O-n+2 = bn+\ + 8n 

bn+2 = C„+l + Cn 

Cn+2 = an+l + bn 

The recurrence relation for this scheme is: 

Xn+6 = Xn+4 + 1.Xn+3 + 2 . X „ + 2 - Xn+i - Xn. 

Following the above idea and the idea from [22], we can construct 8 different 
schemes of generalized Tribonacci sequences in the case of two sequences. 
We introduce their recurrence relations below. 

Let lx' be one of the symbols 'a' and '&'. 

The different schemes are as following: 

n + l 1 (In 

+1 + bn 

rp . f on+3 — an+2 + ar 

\ bn+3 = bn+2 + bn 

rp . \ O-n+3 = O-n+2 + an+l + bn 

I bn+3 — bn+2 + bn+i + an 

[3 : 
\ On+3 — «n+2 + bn+l + «n 

I bn+z = bn bn+2 + a « + i + bn 

n+2 + bn+l + bn 

'n+2 + O-n+1 + O-n 

rp . f On+3 — & 

\ bn+3 = b, 

rp . \ O-n+3 = bn+2 + 0,n+l + dn 

I bn+3 = an+2 + bn+i + bn 

j O-n+3 — bn 

i bn+3 = O-n 

— bn+2 + O-n+1 + bn 

+2 + bn+i + an 
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{ O-n+3 — bn 

bn+3 = an 

J O-n+3 ~ bn-i 
i bn+3 = a„_| 

— bn+2 + bn+i + an 

n+2 + O-n+1 + bn 

— bn+2 + bn+i + bn 

T-n+2 + On+1 + 0-n 

The first scheme is trivial. All of the others are nontrivial; they have the 
following recurrent formulas for n > 0: 

for T2 : xn+6 = 2.xn+5 + xn+i — 2.xn+3 — xn+2 + xn, 
for T3 : xn+6 = 2.xn+s — xn+i + 2.xn + 3 - xn+2 - xn, 
for T4 : xn+e = 2.xn+5 - xn+i + xn+2 + xn+i + xn, 
for T5 : xn+6 = 3.arn+4 + 2.xn+3 - xn+2 - 2.a:n+i - xn, 
for T6 : xn+6 — 3.xn+4 + xn+2 + xn, 
for T7 : xn+6 = xn+i + A.xn + 3 + xn+2 - xn, 
for Tg : xn+6 = £n+4 + 2.xn+3 + 3.xn+2 + 2.a;n+i + a;n. 

The proofs for these results can be shown by induction, using methods 
similar to those in Chapter 2. 

An open problem is the construction of an explicit formula for each of 
the schemes given above. 



Chapter 4 

Other Ideas for Modification of the 
Fibonacci Sequence 

In this chapter we shall describe some new ideas which are, in general, gen­
erated by the first one. After that, we can think about the question: How 
will the 'Fibonacci numbers world' look (because, the formidable quantity 
and quality of researches in this mathematical area generate one world!) 
when modified in the sense of the parallel sequences? Can we show essen­
tial examples of parallel processes in this world? 

4.1 Remark on a new direction for a generalization of the 
Fibonacci sequence 

Combining Peter Hope's idea from [21] with the above ideas for a gener­
alization of the Fibonacci sequence, we can introduce a new direction for 
a generalization of the Fibonacci sequence (see also [8]). At the moment, 
all generalizations of this sequence are 'linear'. The sequence proposed 
here has a 'multiplicative' form. The analogue of the standard Fibonacci 
sequence in this form will be: 

x0 = a,xi — b,xn+2 = xn+i.xn(n > 0), 

where a and b are real numbers. These are types of Fibonacci words (see 
[34]). Directly it can be seen, that for n > 1: 

xn = ain~1.bin. 

In the case of two (or more) sequences, by analogy with the development 
in Chapter 2, we shall define the following four schemes: 

39 
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ao = a, p0 = b, a i = c, Pi = d 

Otn+2 — Pn+l-Pn, Tl > 0 

Pn+2 — an+i-an, n>0 

a 0 = a, p0 — b, a.\ = c, Pi — d 

an+2 = an+i.p„, n > 0 
/3„+2 = /8„+i.a„, n > 0 

a 0 = a, p0 — b, a i = c, Pi = d 

an+2 = / W i - a n , « > 0 
/#n+2 = an+l-/3n, n > 0 

ao = a, Po = b, Qi = c, Pi = d 

an+2 = a„+i .a n , n > 0 
£n+2 = Pn+l-Pn, n > 0 

Obviously, these schemes are analogous to the 'additive' schemes. Thus 
we can call them 'multiplicative' schemes. 

The n-th terms of these schemes are determined, e.g., as constructed in 
Chapter 2. We shall give the formulas for the (n + 2)-th terms (n > 0), 
using the above notation. These terms are as follows: 

• Scheme I: 

an+2 = a i C ^ + i + S - I ^ l - n - l J ^ f ^ n + i - a . I ^ l + n + ^ ^ i . f F n + a - S . I t l + n - l ) 

_di.(jF„+2+3.[f]-n+l) 

Pn+2 = al(Fn+1-3.[^]+n+l)Mi.(Fn+1+3.[^.]-n-l)c^.(Fn+2+3.[f]-n+l) 

dL.(Fn+2-3.[%]+n-l) 

• Scheme II: 

where t/j is the integer function denned in 4.1. 
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• Scheme III: 

an+2 = a
a(n^Fn+1.b'T(n+1')-Fn+1.ca(n+1'l-Fn+2.d'T('nS)-Fn+2 

Pn+2 - aCT(n+1)-F"+1.&CT(n)-Fn+1.cCT(n)-F'i+2.dCT(n+1)'F"+2, 

where a is an integer function defined for every k < 0 by: 

m 
a{2k + m) 

0 
1 

1 
0 

• Scheme IV: 

a n + 2 =aF"+1.c i?"+2 

Pn+2 = bF»+i.dF^. 

4.2 Fibonacci sequence via arithmetic progression 

The idea for this research was generated by Marchisotto's paper [23]. Thus 
we borrowed the first part of its title and invited colleagues to prepare a 
series of papers under the first part of this title. 

Here we shall discuss an approach for an interpretation of the Fibonacci 
sequence as an arithmetic progression. The reasoning for this is the fact that 
there is a relation between the way of generating the Fibonacci sequence 
and the way of generating the arithmetic progression. On the other hand, 
obviously, the Fibonacci sequence is not an ordinary arithmetic progression. 
Thus we can construct a new type of progression which will include both the 
ordinary arithmetic progression, and the Fibonacci sequences (the classical 
one and its generalizations. 

Let / : N —>• R be a fixed function, where N and R are the sets of the 
natural and real numbers, respectively, and a be a fixed real number. The 
sequence 

a,a + f(l),a + f(2),...,a + f(k),... (4.1) 

we shall call an A-progression (from 'arithmetic progression'). 
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Obviously, if ak = a + f(k) is its k-th member, then 

E ak = (n + l).a+ £ /(A). 
fc=0 k=0 

When f(k) = k.d for the fixed real number d we obtain from (4.1) the 
ordinary arithmetic progression. 

When a = 0 and / is the function defined by: 

/ ( l ) - 1, /(2) = 1, f(k + 2) = / ( * + 1) + f(k) for A > 1, 

we obtain from (4.1) the ordinary Fibonacci sequence. Therefore, the ordi­
nary Fibonacci sequence can be represented by an A-progression. We shall 
show that some of the generalizations of this sequence can be represented 
by an A-progression, too. When a and b are fixed real numbers and / is a 
function defined by 

/ ( l ) = b - a, /(2) = 6, f(k + 2) = / ( * + 1) + f(k) + a, 

we obtain from (4.1) the generalized Fibonacci sequence a,b,a + b, a + 2.6, 
2.o + 3.6, .... 

When a, b and c are fixed real numbers and / is a function defined by 

/ ( l ) = 6 - o , f(2) = c-a, f(3)=b + c, 

f(k + 3) = f{k + 2) + f(k + 1) + f(k) + 2.a, 

we obtain from (4.1) the generalized Fibonacci sequence sometimes known 
as the Tribonacci sequence: a, b, c, a + b + c, a + 2.6 + 2.c, 2.a + 3.6 + 4.c,... 
When a, 6, c and d are fixed real numbers, and / and g are functions defined 
by: 

/ ( l ) = -a + b, f{2) = -a + c + d, 

f(k + 2) = g(k + 1) + g(k) - a + 2.c (k > 1) 

5(1) = -c + d, g(2) = a + b-c, 

g(k + 2) = f(k + l) + f{k) + 2.a-c (k > 1) 
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we obtain from (4.1) the first of the generalizations of the Fibonacci se­
quence from Chapter 2. When for the same a, b, c and d 

/ ( l ) = -a + b, f{2) = -a + b + c, 

f(k + 2) = f(k + l)+g(k)+c(k>l) 

S(l) = -c + d, g(2)=a-c + d, 

g(k + 2) = g(k + l) + f(k) + a(k>l) 

we obtain from (4.1) the second of the generalizations of the Fibonacci 
sequence from Chapter 2. 

The above idea for combination of elements of different mathematical 
areas with Fibonacci numbers founded a realization in the following short 
research, too. 

Let {cti}il0 be a sequence with real numbers. We can construct a 
new sequence {/?j}£^0 related to the first one, which is an analogy (and 
extension) of the arithmetic progression, following the scheme: 

b0 = a0 

k (4 2) 
h = bk-i + £ ffli-

f=i 

For example, if ao = 0, a\ = a-i — ... — 1, we obtain the sequence 
b0 — 0,6i = 1,&2 = 3, ...,bk = k.(k + l ) /2 = ifc(A;-th triangle number) for 
1 < k. 

n 

Let Sn = J2 bk-
fc=i 

The following assertion can be proved directly by induction: 
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Theorem 4.1: For every natural number n: 

(a) bn — a0 + £ (n + l-k).ak, 
k-l 

(4.3) 

(b) Sn = n.o0 + X) in+i-fc-afc-
fc=i 

We can see that dk = bk — bk~i — Y^ ai a n ^ dh — °k-i — ak-

Therefore we obtain a situation which is analogous to acceleration in 
mechanics (in the sense of a velocity of a velocity). In the particular case, 
when a2 = as = ... = 0, we obtain the ordinary arithmetic progression. 

The extension of the concept 'arithmetic progression' introduced in [3], 
which has the b-form of the following sequence: 

b, b + d, b + 2.d, ...,b + p.d, b + p.d + e,b + p.d + 2.e,..., 

b + p.d + q.e, b + (p + l).d + q.e, ...,b + 2.p.d + q.e, b + 2.p.d + (q + l).e,... 

also can be represented in the above form by the o-sequence 

b, d, d, ...,d, e,e, ...,e,d, d, ...,d, e,.... 

p times q times p times 

When a sequence {/?j}£fi0 is given, we can construct the sequence {ai}^l0 

from the formulae (see (4.2)): 

ao = bo 

k (4 4) 
ak - h - Z) {n + 1 - k).ai7 

i=l 

where a, are previously calculated members of {aj}g 0 . 

Therefore, we can define a function F, which juxtaposes to the sequence 
{ati}iZo ^ e sequence {/3i}?Z0, or briefly, F(a) = b. If all members of the 
sequence b are members of sequence a, after a finite member of initial 
members, then we say that b is a sequence autogenerated by a. It can also 
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be easily seen that the sequence {oii}^0 for which a,i = 0 (0 < i < oo) is 
the unique fixed point of F. 

As shown above, the ordinary arithmetic progression is not autogener-
ated (in the general case). Below we shall construct a sequence which is 
autogenerate in a special sense. 

Let ao = l , a i = 0,a2 = 1,0:3 — 0,0:4 = 1,05 = 1,Q!6 = 2,07 = 3, etc. 
(after the first 3 elements, all other members of this sequence are the mem­
bers of the Fibonacci sequence). Then the sequence { f t } ^ 0 has the form 
1,1,2,3,..., i.e. the same Fibonacci sequence without its 0-th member. We 
can construct another a- sequence which generates the Fibonacci sequence 
as its 6-sequence. 

Let ao = 0,ai = 1,02 == ~ l>c*3 — l,a!4 = 0,0:5 = 1,06 = 1,0:7 = 2, 
etc. (after the first four elements, all other members of this sequence are 
the members of the Fibonacci sequence). Therefore, the Fibonacci sequence 
{Fjj^Q is an autogenerated one. From here it can easily be seen that the 
following equality (see [20]) is valid for every natural number n: 

n 

Fn+4 = n + 3+ D (n + 1-*)•**• 
fc=i 
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PART A: NUMBER THEORETIC 

PERSPECTIVES 

SECTION 2 

NUMBER TREES 

Krassimir Atanassov, Anthony Shannon and John Turner 

Turner gave the name 'number trees' to tree graphs whose nodes or edges 
are weighted (or coloured) by numbers in systematic ways. Several papers 
on studies of number trees are cited in Chapter 1 and others are listed in 
the A2 Bibliography. 

This Section introduces several new methods for analysing number trees. 
Tableaux of functions of nodal numbers are derived and generalized; Gray 
codes are used; various node sums are studied; and connections are made 
with Pascal-T triangles. 
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Chapter 1 

Introduction - Turner's Number 
Trees 

1.1 Introduction 

In a paper by Turner and Beder [19, 1985], certain stochastic processes 
were defined and studied on a sequence of binary trees, in which the tree Tn 

had Fn leaf-nodes where Fn was the nth element of the Fibonacci number 
sequence (see Fig. 1 below). Turner gave the name number trees to tree 
graphs whose nodes and/or edges are weighted (or coloured) by numbers 
in systematic ways. An expository article on a variety of number trees is 
[25]. 

In a later paper Turner showed how to construct trees so that the nodes 
were weighted with integers from a general sequence {Cn} using a sequen­
tial weighting method referred to as the 'drip-feed principle' [20, 1985a]. 
Subsequently it was shown how generalized Fibonacci numbers can be used 
to colour convolution trees so that the shades of the trees establish a gener­
alization of Zeckendorf's theorem and its dual [21, 1985b]. There was also a 
construction which provided an illustration of the original Zeckendorf theo­
rem, which established the completeness of the Fibonacci sequence and gen­
erated the Zeckendorf integer representations. In [ll] all the Pythagorean 
triples were discovered and classified in new ways from a rational number 
tree. 

In the sequence of Fibonacci convolution trees {Tn} given in [20, 1985a], 
the sum of the weights assigned to the nodes of Tn is equal to the nth term 
of the convolution of {Fn} and {Cn}. That is, if il means the sum of 
weights, we have 
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n 

il(Tn) = (F*C)n = J2*iCn-i+l. (1.1) 
t = i 

For instance, 
(F * F)5 =FlF5 + F2FA + F3F3 + F4F2 + F^ 

= 5 + 3 + 4 + 3 + 5 = 20, 

to which we shall refer later. 

With the same tree construction, and a modified coloring rule, a graph­
ical 'proof was given of Zeckendorf's theorem, namely that every positive 
integer can be represented as the sum of distinct Fibonacci numbers, using 
no two consecutive Fibonacci numbers, and that such a representation is 
unique [8, 1964]. 

1 

IT 1^ 1 

! • 1* 2 

Ti T2 T3 T4 

Figure 1. Number tree sequence, with Fibonacci weights 

Given a sequence of colors C = {Ci, C2, C3, • • •}, we construct fcth order 
colored, rooted trees, Tn, as follows: The first k trees: 

Ti = C\ •; Tn = Tn_i • • Cn, n = 2 , 3 , . . . , k, 

with the root node being Ci for each of these; subsequent trees: 
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fc-1 
Tn+k — Cn+k Y Tn+i, 

i=0 

using the 'drip-feed' construction, in which the fcth order fork operation 
V is to mount trees Tn,Tn+i,... ,Tn+k-i on separate branches of a new 
tree with root node colored by Cn+k- Thus, for example, when k = 2, and 
C = {Fn}, the sequence of Fibonacci numbers, the first four second-order 
colored trees are as pictured in Figure 1 above. 

1.2 The Tree Sequence with Weights from F(a, b) 

Now consider the first four trees associated with F(a,b), as pictured in 
Figure 2. The coloring sequence is the general Fibonacci one, namely, 
F(a,b) = {a,b,a + b,a + 2b,...}. 

a+b a+2b 

Ti T3 T4 

Figure 2. Number tree sequence, with general Fibonacci weights 
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Let (Na,Nb) represent the number of a's and the number of b's at a 
given level of a tree. We may tabulate these pairs as in Table 1. 

Table 1 - (Na,Nb) at tree levels 

Level + 1 = m 

Tx 

T2 

T3 

T4 

T5 

T6 

1 

(1,0) 

(1,0) 
(1,1) 
(1,2) 
(2,3) 
(3,5) 

2 

(0,D 
(2,0) 
(2,1) 
(2,3) 
(3,5) 

3 

(0,1) 
(1,1) 
(4,1) 
(4,4) 

4 

(0,1) 
(2,2) 
(6,2) 

5 6 

(0,1) 
(2,3) (0,1) 

If we represent the element in the nth row and mth column of this array 
by the vector xnm, then xnm satisfies the partial recurrence relation: 

%nm = 3-n—l,m —1 T Xn—2,m — 1, 1 < TTl < Tl, XI > / , 

where the addition of number pairs is elementwise, and the boundary con­
ditions are: 

z n =£21 = (1,0); xni = (.Fn_2,.Fn_i), n > 2; 

Z22 = (0,1); x„ m = (0,0), m>n. 



Chapter 2 

Generalizations using Tableaux 

2.1 Generalized tableaux 

The tableau (of Table 1, Chapter 1) can be generalized for arbitrary k as 
follows: Consider xnm as a A:-component vector, with xnm equal to the null 
vector when m > n, and 

* 
xnm = X ^ " - ' . ™ - 1 ' 1 < m < n, n > k, (2.1) 

t = l 
with 

Xnl = (Uin, U2n, • • • , Ukn), Tl - 1,2, ..., k, 

where {Usn},s = l,2,...,k, are the k 'basic' sequences of order k denned 
by the recurrence relation 

k 

Usn = Y,U°<n-J' U>k (2-2) 

with initial terms when n = 1,2,... ,k, Usn = Ssn, [15], where Sij is the 
Kronecker delta. 

When k = 2, we have, as before, that if we represent the element in 
the nth row and mth column of this array by xnm, then xnm satisfies the 
partial recurrence relation 

Xnm = Xn-l,m-l+Xn-2,m-l, I < m< U, U > 2, 

xnm = (Sim,52m), n = l ,2; l<m<n 

with boundary conditions xn\ = (Fn-2,Fn-i) and xnm = (0,1). 
As illustrations of the {Usn} we have Table 2 when k = 3 and Table 3 

when k = 4. 
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Table 2 

n 

Uln 

u2n 
u3n 

n 

1 

1 
0 
0 

1 

2 

0 
1 
0 

2 

3 

0 
0 
1 

3 

4 

1 
1 
1 

5 6 

1 2 
2 3 
2 4 

Table 3 

4 5 6 

7 

4 
6 
7 

7 

8 

7 
11 
13 

8 

9 

13 
20 
24 

9 

Um 1 0 0 0 1 1 2 4 8 
c/2„ 0 1 0 0 1 2 3 6 12 

£/3 n 0 0 1 0 1 2 4 7 14 

C/4„ 0 0 0 1 1 2 4 8 15 

Various properties of {t/ sn} have been developed by [13]. To see more 
easily what follows, it is useful to continue the tree table of (Na,Ni,) for 
k = 2 (see Table 4 overleaf). 

It can be observed in Tables 4 and 5 that, for n > k and m > 1, 

•Enm — / y *^n—l,m—!• l^*"J 

»=1 

As explained elsewhere [23], the rule of formation comes directly from the 
construction of the trees. When k = 3, we have the array as shown in Table 
5. 

The first main result is that for m = 1,2,.. . , [nj^-\, 
(where [ J is the floor function): 

Proof and examples follow the tables overleaf. 
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m 

Ti 
T2 

n 
T4 

T5 

T6 

T7 

T8 

T9 

T10 

m 

T6 

T7 

T8 

T9 

Tio 

m 

T7 

T8 

T9 

Tio 
Tn 

m 

T7 

T8 

T9 

Tio 
Tu 

1 

(l,t 
(i,c 
(i,c 
(1,1 
(1,5 
(2,2 
(4,e 

1 

(5,8) 
(8,13) 
(13,2i; 
(21,34; 
(34,55; 

6 

(2,4) 
(10,7) 

(22,11! 
(31,24! 
(29,50! 

),o) 
),0) 

),o) 
L,l) 
5,2) 

i,4) 
'',7) 

(7,11,13) 
(13,20,24) 
(24. 

6 

(1,C 
(0,2 

(3,8 

,37,44) 

1,0) 
1,3) 
1,6) 

(15,20,8) 
(35: ,36,13) 

2 

(5,8 
(8,13) 

) (13,21) 
) (21,34) 
) (34,55) 

7 

(0,1) 
(2,5) 

) (12,11) 
) (32,18) 
) (53,35) 

i 

2 

(0,1,0) 
(0,1,0) 
(3,0,0) 

(3,1,1) 
(3,3,3) 
(4,6,7) 
(7,11,13) 
(13,20,24) 
(24,37,44) 

7 

(0,0,1) 
(0,2,4) 
(3,10,10) 
(18,30,17) 

Table 4 

3 

(5,8) 
(8,13) 
(13,21) 
(21,34 
(34,55) 

8 

(0,1) 
(2,6) 
(14,16) 
(44,29) 

Table 5 

3 

(0,0,1) 
(0,2,0) 
(3,2,0) 
(6,2,1) 
(9,4,4) 

4 

(8,5) 
(9,12) 
(13,21) 
(21,34) 
(34,55) 

9 

(0,1) 
(2,7) 
(16,22) 

4 

5 

(8,4) 
(14,7! ) 
(17,17) 
(22,33) 
(34,55) 

10 

(0,1) 
(2,8) 

(0,0,1) 
(0,2,1) 
(3,4, 
(9,6, 

•1) 

1) 
(10,10,11) (18,8,5) 
(14,20,23) (25,! 
(24,37,44) (33,; 

8 

(0,0,1) 
(0,2,5) 
(3,12,15! 

9 

(0,0, 
> (0,2, 

16,16) 
54,38) 

1) 
6) 

11 

(0,1) 

5 

(0,0,1) 
(0,2,2) 
(3,6,3) 
(12,12,3) 
(20,18,7) 
(52,30,22) 

10 

(0,0,1) 
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Proof: The proof follows from induction on m by utilizing 
the results: 

k k 

Xn2 = 2 J xn-i,l = 2 j ( ^ l , n - t ) ^2,n-t> • • • , Uk,n-i) 
j = l 7=1 

( k k k \ 

/ „ U\,n-i /_^ U2,n-i, • • • 1 2_^ ^k,n-\ I 
t = l i = l t = l / 

= (f^l.Ti) ^2,71) • • • ) t^fc.n) 

= a;„i, and so on. • 

For instances (of the first main result), when k = 3, 

x72 = (4,6,7) = (U17,U27,U37), 

x10,a = (24,37,44) = (1/1,10,1/2,10,1/3,10); 

and when k — 2, 

S52 = (2,3) = (^iB,^2B), 

*73 = (5,8) = (£/i7,t/27), 

x9i = (13,21) = (t/ i9 , t /2 9), 

in which U\n — U2,n-i — Fn-2 in the conventional Fibonacci notation. 

The second main result is that for m > |_n 7" j , xnm is formed from 
the boundary conditions 

Xk+\,m = (0 ,0 , . . . , k - m + 2 , . . . , 0) 

in which the nonzero position is the (m - l)th; thereafter, the elements 
are generated by the algorithm defined by the vector difference operator A 
such that if 

L±Xnm — £ n - | - l , m _ |_ l 3*71,771, 

then the sth order difference is given by 

A sx„+S ,„ = (0 ,0 , . . . ,0 ,1 , ) , fo rn>fc . 

The proof follows from the initial conditions and the ordinary recurrence 
relation (2.2) for {Usn} to get Xk+i,m, and then from the partial recurrence 
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relation (2.3) for xk+n,k+n-i. • 

Examples: 

As examples, we have when k = 2, 

au2 = (2,l) 
Axi2 = X53 - X42 = (2, 0) 

Z53 = (4, 1) A2X42 = (0, 1 
Ax53 = x64 - x53 = (2,1) 

z64 = (6,2) A 2z 5 3 = (0,l 
Ax6i = x75 - x64: = (2,2) 

z75 = (8,4) A2a;64 = (0,l 
Ax75 =x86 -x75 = (2,3) 

186 = (10,7) A 2z 7 5 = (0,l 
Ax86 = x97 -x8e = (2,4) 

3:97 = (12,11) A2z8 6 = (0,l 
Ax97 - xWt8 - x97 = (2,5) 

sio,8 = (14,16) A2a;97 = (0,l 
Az10,8 = xutg - x10,8 = (2,6) 

a;ii,9 = (16,22) 

When k = 4 

z52 = (4,0,0,0) 
Ax52 = (0,3,0,0) 

x63 = (4,3,0,0) A2x52 = (0,0,2,0) 
Ax63 = (0,3,2,0) 

x74 = (4,6,2,0) A2z6 3 = (0,0,2,1) 
Ax74 = (0,3,4,1) 

a:85 = (4; 9,6,1) A2z7 4 = (0,0,2,2) 
Ax85 = (0,3,6,3) 

x96 = (4,12,12,4) A2x8 5 = (0,0,2,3) 
Ax96 = (0,3,8,6) 

o;io.7 = (4,15,20,10) 

and 



x53 = (0,3,0,0) 

z64 = (0,3,2,0) 

ar75 = (0,3,4,1) 

x86 = (0,3,6,3) 

x97 = (0,3,8,6) 

x54 = (0,0,2,0) 

z6 5 = (0,0,2,l) 

x76 = (0,0,2,2) 

i87 = (0,0,2,4). 

Number Trees 

Ax53 = (0,0,2,0) 

Ax64 = (0,0,2,1) 

Az7 5 = (0,0,2,2) 

Ax86 = (0,0,2,3) 

AxB4 = (0,0,0,l) 

Az6 5 = (0,0,0,1) 

Ax76 = (0,0,0,1) 

A2x5 3 = (0,0,0,1) 

A2z6 4 = (0,0,0,1) 

A 2z 7 5 = (0,0,0,1) 



Chapter 3 

On Gray Codes and Coupled 
Recurrence Trees 

3.1 Gray code of the cube, and recurrences 

We use the matrices, G, G, of the Gray Code [26] of the cube and its binary 
complement: 

G = 

" 0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
1 
1 
0 
0 

0 ' 
1 
1 
0 
0 
1 
1 
0 

G = 

" 1 1 1 
1 1 0 
1 0 0 
1 0 1 
0 0 1 
0 0 0 
0 1 0 
0 1 1 

(3.1) 

to define third-order recursive sequences {an} and {/3„} with initial 
terms 

ao = a, ai = b, a.i = c, 
/Jo = d, fi1=e, p2 = f. 

The eight pairs of recurrence relations are defined by 

Oik 

fa 
9i-
9i-

9i-
9i-

[ttfc-3, (*k-2, ajfc-1, Pk-3, Pk-2, Pk-l] (3.2) 

in which gi, is the ith row of G, g^ is the ith row of G, i = 1,2,. . . , 8. The 
Gray Codes were chosen since they permit ready generalizations for higher 
order recurrences. Moreover, they can be generated from a recurrence rela-
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tion, and the location of any row of the matrices can be easily found with 
the use of a parity checker. For an example of the coupled sequences [4], 
applying (3.2) gives the pair (for k > 3) when i = 2: 

ak = Pk-1 + Oik-2 + Oik-3, 

h =OLk-l + Pk-2 +Pk-3-
(3.3) 

3.2 Third-order coloured trees 

Given a sequence of colours C = {C\, C2, C3, . . .} , we construct third order 
coloured trees, Tn, as before: 

T1=C1 

Tn = T „ _ i • Gr> 

with Cn • defined to be the root node in each case when n = 2 , 3 , . . . ,r , 
(the order of the recurrence), and 

Tn+3 — Cn+3 \f Tn+i, n > 1 
j = 0 

and in the 'drip-feed' construction, in which the third-order fork operation 
V is to mount trees Tn,Tn+\,Tn+2 on separate branches of a new tree with 
root node at Cn+3 for n > 3. Thus, when n = 1, we get 

T4 = 

We now generate graph sequences {T^fc} from the initial trees of Figure 1, 
and the recurrence relations (3.2). 
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b " 

T i rri rri rri rri rri 

iOl li02 -ii03 Jil l J-ii.2 J-ilZ 

Figure 1. Tijk, for j = 0,l;k = 1,2,3. 

For instance, when i — 2, we get the trees T204, T205, I214 and T2is from 
(3.3) as in Figure 2. 

3.3 Matrix representations of coloured trees 

Table 1 displays matrix representations of the trees T20k,k = 4,5,6,7. It 
can be observed and proved by induction on k, that Nk, the number of 
nodes in tree T^fc, is given by the nonhomogeneous linear recurrence rela­
tion: 

Nk = Nk-i + Nk-2 + Nk-3 + 1, * > 3, 

with N0 = 1, Nx = 2, N2 = 3. This can be solved by 

Nk=uk- -

where Uk satisfies the homogenous linear recurrence relation 

Uk = Uk-l + Uk-2 + Uk-3 

with initial conditions u\ = | , u2 = §, U3 = f • 

(3.4) 

(3.5) 

(3.6) 



66 Number Trees 

'a+b+f 

f t 

b t e 

c+d+e 

j+2c+d+e 

T204 

rc+d+e 

T205 

a+b+f 

ra+b+e+2f 

r2i4 r215 

Figure 2. T2j*, for j = 0,1; A = 4,5. 
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Table 1. Coupled Recurrence Trees, T2ok,k = 4,5,6,7. 

TREE NUMBER 204: 

Number of Nodes: 7; Sum of node Weights: 15 

0 0 3 
0 1 1 
1 1 3 
5 0 0 

TREE NUMBER 205: 

Number of Nodes: 13; Sum of node Weights: 27 

0 0 0 0 1 
0 1 0 1 1 
1 1 3 3 1 
1 1 5 0 0 
7 0 0 0 0 

TREE NUMBER 206: 

Number of Nodes: 24; Sum of node Weights: 68 

0 0 0 0 0 0 0 0 3 
0 0 0 3 3 3 3 1 1 
1 0 1 1 1 1 1 1 3 
1 1 1 3 3 3 5 0 0 
1 5 0 0 9 0 0 0 0 
15 0 0 0 0 0 0 0 0 

TREE NUMBER 207: 

Number of Nodes: 45; Sum of node Weights: 133 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 
0 0 3 0 1 0 1 1 3 0 1 1 1 1 3 3 1 
0 1 1 1 1 3 3 1 1 3 3 1 1 1 5 0 0 
1 1 3 1 1 5 0 0 3 5 0 0 7 0 0 0 0 
5 0 0 7 0 0 0 0 15 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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More generally, Nki, the number of nodes at level / in T^k are displayed in 
Table 2 in which we see that: 

Nk,i = iVfc_i,i_i + Nk-2,i-i + Nk-3,i-i k > 3, I > 1. (3.7) 

Table 2. N^, the number of nodes at level I for tree T, ,k 

1 = 

k = l 

2 

3 
4 
5 
6 
7 

8 

9 
10 
11 
12 

13 
14 

1 

1 

1 
1 
1 
1 
1 
1 

1 

1 

1 
1 
1 
1 

1 

2 

0 

1 
1 
3 
3 
3 

3 
3 

3 

3 
3 
3 
3 

3 

3 

0 

0 
1 
2 

5 
7 
9 

9 

9 

9 
9 
9 

9 

9 

4 

0 

0 
0 
1 

3 
8 
14 

21 

25 

27 
27 
27 
27 

27 

5 

0 

0 
0 
0 
1 
4 

12 

25 

43 

60 
73 
79 

81 

81 

6 

0 

0 
0 
0 
0 
1 

5 
17 

41 

80 
128 
176 
212 

233 

7 

0 

0 
0 
0 
0 
0 
1 

6 

23 

63 
138 
249 
384 

516 

8 

0 

0 
0 
0 
0 
0 
0 
1 

7 

30 
92 
224 

450 

771 

Nk 

1 

2 

3 
7 
13 
24 

45 

83 

152 

273 
471 
768 

1167 
1641 

The boundary conditions for the partial linear recurrence relation (3.7) are 
given by: 

Nk,i = Nk,k = 1, 

Nkj = 0,l>k, 

Nk,i = 3 ' - 1 , A: > 3 (1 -1 ) . 
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To solve (3.7), we set up the (formal) generating function 

oo 

so that 

n = 0 

Fm(x) = (x + x2+x3)mF0(x) 

= {l + x + x2)mY^=0x
m+i 

^2m r \poo m+j = T a xr T™ x 

_ ^ o o y , 2 m m+r+j 
— l~ij=0 2-ir=0 UrX 

Z ^ n = m 2-,j=m "j-ro-*-

in which the a r are multinomial coefficients; on equating coefficients of xn 

we get 

n 

^n,m = / j O-j—m-
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Chapter 4 

Studies of Node Sums on Number 
Trees 

In Table 1 we set out {Tijk}, i = 1,2,. . . , 8, j = 0,1, k = 0 ,1 ,2 , . . . , 12, a -
b = c = e = 1, d= f = 3. We observe that {TV,-*}, i = 4,6, j = 0,1, inter­
sect at every fourth element, and so on. It is worth remarking that the cou­
pled sequences {T2jk} and {TV/fc} are identical, with (/3jt — a^) alternately 
0 or 2. (For further discussion on the intersection of linear recurrences see 
([14]; [18]). Finally, observe that the term-by-term sum over j is the same 
for each coupled sequence. Thus, 

{Ti0k + Tilk} = 2{2,1,2,5,8,15,28,. . .} 

= {2u0,fc-i + 3u0,fc + 2u0,k+i} 

where {uitk},i = 0,1,2, are the three fundamental third order sequences 
defined by the initial terms u,^ = Sitk (the Kronecker delta) for k = 0,1,2 
and the recurrence relation 

3 

"t.fc = ]T]wi,fc-j, k > 3, i = 0,1,2. (4.1) 

Note in Table 2 that 

U0,k — U2,k-l 

Wl,fc = U0,k +U2,k-2-

T\fl,n — U0,n — Wo,n-2 

Tl,l,n = 3uo ,n+ l + 4«o,n + " O . n - l -

The u0,n can be generated from binomial coefficients [12]. 
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Table 1. Tijk, for a = b = c = e = 1; d = / = 3; * = 1,2,..., 8; j = 0,1 

3 

1 

3 
1 
3 
1 
3 
1 
3 
1 
3 
1 
3 
1 
3 
1 
3 

4 

3 

7 
5 
5 
5 
5 
3 
7 
5 
5 
7 
3 
7 
3 
7 
5 

5 

5 

11 
7 
9 
9 
7 
7 
9 
9 
7 
7 
9 
5 

11 
5 
9 

6 

9 

21 
15 
15 
13 
17 
15 
15 
17 
13 
15 
15 
21 
9 

15 
15 

7 

17 

39 
27 
29 
29 
27 
27 
29 
29 
27 
27 
29 
17 
39 
27 
29 

8 

31 

71 
51 
51 
53 
49 
49 
53 
49 
53 
53 
49 
71 
31 
51 
51 

9 

57 

131 
93 
95 
89 
99 
93 
95 
89 
99 
93 
95 
57 

131 
93 
95 

10 

105 

241 
173 
173 
177 
169 
173 
173 
169 
177 
173 
173 
241 
105 
173 
173 

11 

193 

443 
317 
319 
321 
315 
317 
319 
321 
315 
317 
319 
193 
443 
317 
319 

12 

355 

815 
585 
585 
573 
597 
583 
587 
597 
573 
587 
583 
815 
355 
585 
585 

Table 2. {£/*,„} 

n 0 1 2 3 4 5 6 7 8 

U0n 1 0 0 1 1 2 4 7 13 

0i„ 0 1 0 1 2 3 6 11 20 
U2n 0 0 1 1 2 4 7 13 24 

^ l O i f c 

Tllk 
?20fc 

1*2110 

?30fc 

T3IA: 

TiOk 

Ti\k 

Tkofc 
^51*: 

^60*: 

^61*; 

TlOk 

Tl\k 
T&Ok 

Talk 

1 

3 
1 
3 
1 
3 
1 
3 
1 
3 
1 
3 
1 
3 
1 
3 
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Table 3. Sums of Node Weights 

n 1 2 3 4 5 6 7 

Wi,0,n 1 2 3 9 19 40 85 

W1)ltn 3 4 7 21 43 24 195 
W2fi,n 1 2 3 15 27 68 133 
W2,i,n 3 4 7 15 35 64 147 

~-^r.v,*)(r)- -
m=0 r=0 x ' / \ / 

Table 3 is an array of the sums of the node weights for the two sets of 
trees when a = 6 = c = e = l , d = / = 3 again. It can be seen that the 
sum of the weights of the nodes in tree Tijtk is given by Wijtk, where 

Wi,0,k = Wi,fl„,*-i + Wi,gi2,k-2 + Wi,giuk-3 + Tifitk (4.3) 

Withk = Wi ,^ ,* - ! + Wi,g.2,k-2 + Wi.g^k-3 + Ti:0,k (4-4) 

This is in fact a generalization of the result for second order sequences [16]. 
There the sum of the weights of the trees coloured at the nodes by the 
Fibonacci numbers, Fn, is given by the convolution 

f2(r„) — 2__/ FiFn-i+\ • 
i=l 

Now the recurrence relation [9] for the convolution Fibonacci numbers F„ ( i ) 

is 

^ ^ l - ' l + ^ + f n - l , (4-5) 

and the F„^ are the node weight sums fi(Tn) above. A solution of (4.5) in 
terms of the Fibonacci numbers is 

(1) _ (n - l)Fn+1 + (n + l)Fn_i 
5 
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Bicknell-Johnson [7] has also established that for the third order convolu­
tion numbers G„ ' : 

<#> = G^ + G<£2 + G™3 + Gn-lt (4.6) 

where Gn = u0>n+2 • A solution of (4.6) in terms of the tribonacci numbers 

{Gi1}} = {0,1,1,2,4, . . .} is 

(i) _ 3nGra+i + (7n + 12)Gn + 2(n + l)Gw_i 
^ n + i - 2 2 

This formula is easily modified to deal with tribonacci sequences which be­
gin with sequences with initial values other than 0,1,1. It can be seen that 
(4.3) and (4.4) have similar forms to (4.5) and (4.6). As an illustration of 
(4.3) observe that 

W2,i,6 + ^2,0,5 + ^2,o,4 + T2,0,7 = 64 + 27 + 15 + 27 = 133 = W2,o,7, 

so that the Wijtk
 a r e convolutions of the tree numbers. 



Chapter 5 

Connections with Pascal-T Triangles 

Turner ([21], [22]) has defined the level counting function 

*m 11 

as the number of nodes in Tn which at level m are colored Ci, where Tn is 
the tree coloured by integers of sequence C = {C\, Ci, C 3 , . . . } . 

One of the results proved is that 

n \ ^-^ / n — j 

It is also shown in effect that 

tf*.*+n=E(m"l)-
m=0 v ' ' 

Thus 

m=0j=l v ' ' 

It is also worth noting that (5.1) has the same form as (2.2). Now Uk,k+n 
is, in the terminology of Macmahon [10], the homogeneous product sum 
of weight n of the zeros aj,j = 1,2,... ,k, assumed distinct, of the aux­
iliary polynomial, f(x), associated with the linear recurrence relation for 
{Uk,k+n}- Shannon and Horadam [16] have proved that formally 
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EW=t(*"'(i))"-
n = l m=0 

Thus if we expand the right-hand side of 

oo .. 

E £4,fc+nX™ = , « F 1 — a; — a;-* — . . . — x" 
n=l 

by the multinomial theorem and equate corresponding coefficients of pow­
ers of x we get 

t W = E Al!A2!.*.Afc!
 (5-3) 

which agrees with the analogous result in Macmahon. This is worth noting 
because Turner [22] has shown that the ( ^ J are multinomial coefficients 
generated from x(x + x2 + x3 + ... + xk)m. For example, 

v ^ ( E ^ i ) ! ^ (n-m 
_f-^ Ai!A2! J-" V m 

where Ai = s and A2 = m, as in Barakat [6], and 

rr v - (EAi)! v - (n - m - 2t) 
U3'3+n ~ _ > A J W - s+2£f3t n slmltl 

E fn — m — 2t\ fm +1 
V m + t 

s+2m+3t v 

where Ai = s, A2 = m and A3 = t, as in Shannon [12]. 
We can also develop trees for other generalizations. For instance, 

Atanassov ([3], [l]) defines 2-F-sequences: 

Ctn+2 = Pn+1 + Pn, Pn+2 = Qn+1 + OLn, n > 0 (5.4) 

with a0 = a, a\ = b, Po = c, Pi = d fixed real numbers. The trees for this 
scheme are shown in Figure 1. 
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b t c * c A c 

a» a c+d 

c • c • a+b 

Figure 1. Tree sequences with coupled colourings 

Similarly, there are 7 basic 3-F-sequences, two of which are denned by 
(5.5a) and (5.5b). These are studied in (Atanassov [2]). 

«n+2 = 7n+l + In, 

Pn+2 = an+i + an, 

7n+2 = Pn+1 + Pn-

Oin+1 = Pn+1 + In, 

Pn+2 = an+i + an, 

ln+2 = ln+1 + Pn-

(5.5a) 

(5.5b) 

These trees all have the same structure as the Fibonacci convolution 
trees, but their node colourings are different since their colouring rules are 
determined by coupled recurrences such as those of (5.4) and (5.5). 

One simple illustration of how studies of the colours arising on the trees 
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lead to interesting tableaux with Fibonacci properties is the following: For 
the two tree sequences 5i and S2 (say) from the 2-F scheme, we may com­
pute the total weight (i.e. sum of the node colours) for each tree. For 
example, the fourth tree in sequence Si has weight Aa + 3& + lc + 2d. Then 
we may tabulate the coefficients of a, b, c, d, for each sequence (as shown up 
to the seventh tree in Tables 1 and 2). 

Table 1. 

Tree a 

Ti 1 

r2 1 
T3 0 
T4 4 
T5 5 
T6 7 
T7 19 

Si 

b 

0 

1 
0 
3 
6 
8 

20 

Coefficients 

c 

0 

0 
3 
1 
5 

11 
14 

d 

0 

0 
2 
2 
4 

12 
18 

E 

1 

2 
5 

10 
20 
38 
71 

Table 

Tree 

Ti 

T2 

T3 

Ti 

T5 

T6 

T7 

1 2 . 

a 

0 

0 
3 
1 
5 

11 
14 

s2 

b 

0 

0 
2 
2 
4 

12 
18 

Coefficients 

c 

1 

1 
0 
4 
5 
7 

19 

d E 

0 1 

1 2 
0 5 
3 10 
6 20 
8 38 

20 71 

Table 3. Total weights W ^ + W%\ where 
W ^ is the weight of T„ in sequence S,-. 

n 

1 

2 
3 
4 
5 
6 
7 

a 

1 

1 
3 
5 

10 
18 
33 

b 

0 

1 
2 
5 

10 
20 
38 

c 

1 

1 
3 
5 

10 
18 
33 

d 

0 

1 
2 
5 

10 
20 
38 

^n 

2 

4 
10 
20 
40 
76 

142 

As we expect from the manner in which the trees were coloured (fol­
lowing (4.1)), the table for S2 is table S± with its columns permuted thus: 
(a, c)(b, d). Note that the sequence of row sums is 

{1,2,5,10,. ..,} = {(F*F)}, 

the convolution of the Fibonacci sequence with itself as in (1.1). 
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If we add Table 1 and Table 2, elementwise, we get Table 3; and we see 
that the sum of the weights of the nth trees from the two sequences is: 

W™ + WP =Un(a + c) + Vn(b + d), where 

{£/„} = 1,1,3,5,10,18,33,. . . and {Vn} = 0 ,1,2,5,10,20,38, . . . . 

Now Vn = (F * F)n-i (proof given below); and Un + Vn = (F * F)n 

(since £ „ in the table is 2(F*F)n); therefore Un = (F*F)n - ( F * F ) n _ : . 

In Hoggatt and Bicknell-Johnson [9] the following identity for the Fi­
bonacci convolution term is given: 

5(F * F )„_! = (n + l ) F n _ ! + (n - l)Fn+1. 

Using this we obtain: 

Vn = ±[(n + ^F^! + (n - l)Fn+1}; and so 

5Un = [{n + 2)Fn + nFn+2] - [(n + l )F„_i + (n - l)Fn+1] 

= (n + l)(Fn + Fn-2) + Fn+1. 

Therefore 

Un = - [(n + l )L n _i + Fn+\], where Ln-% is a Lucas number. 
5 

We finally prove the convolution forms given above for Un, Vn thus: 

Proof: It was established in (Turner [20]) that if a single se­
quence of the convolution trees is coloured sequentially, using 
colour Cn of a sequence {Cn} to colour the root node of Tn, and 
mounting the previously coloured T„_i and Tn_2 on the fork, 
then the weight of Tn is (F * C)n. 

Now the general term of J^n (in table 3) is obtained by setting 
a = 6 = c = d = l ; i n that event, both Si and S2 are Fibonacci 
convolution trees (i.e., C = F in both cases), so ^2n = 2 (F*C)„ . 

Similarly, if we set a — 0 = c and b — 1 = d, we find that Si 
and 52 are identical but with colour sequences {Fn-i}; and then 
Un • 0 + Vn • 2 = 2(F * F)„_i , giving the required form of Vn. • 
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PART B: GEOMETRIC PERSPECTIVES 

SECTION 1 

FIBONACCI VECTOR GEOMETRY 

John Turner 

Fibonacci Vector Geometry is the study of properties of vectors whose 
coordinates are drawn from integer sequences which are generated by linear 
recurrence equations. Normally the vectors consist of integer triples, taken 
in order from an integer recurrence sequence. 

The vectors can be studied geometrically, as points in Z3 . Then se­
quences of vectors can be regarded as polygons (by joining up the points 
with line segments); such polygons lie in planes, and a variety of related 
geometric objects can be defined and studied. 

This approach is helpful in suggesting many ways to study classes of 
integer vector sequences, enabling geometric theorems about them to shed 
light on their individual and collective properties. Conversely, geometric ob­
jects can be generated sequentially, using Fibonacci-type recurrences, and 
study of these objects sheds new light on the integer sequences associated 
with their vertices. 

The author began developing these ideas and themes in 1994. 
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Chapter 1 

Introduction and Elementary Results 

1.1 Introduction 

In this and the following chapters, ideas about integer vectors and vector 
recurrence equations are introduced. Then various integer vector sequences 
are studied, both algebraically and geometrically. In almost all of the work, 
the vectors are 3-dimensional and with integer co-ordinates. Thus the work 
is essentially algebraic geometry in Z3; and it is strongly connected with 
integer sequences. Sometimes the results will hold also in R3; it will be 
clear from context when this is intended. 

Many of the examples and theorems will relate to the doubly infinite se­
quence of the Fibonacci numbers ..., F-n, . . . ,—1,1,0,1,1,2,3,5, ..., Fn,...; 
or to the Lucas numbers which are defined by Ln = Fn_i + Fn+\; or to 
generalised Fibonacci numbers which are defined next. 

Definition 1.1: 
A general Fibonacci sequence of integers is defined by {Gn}, 
with G\ = a, G2 = b, and a,b and n £ Z, and with terms 
of this sequence satisfying the linear recurrence: 

Gn+2 = Gn+1 + Gn • 
Thus {Gn} = ..., a, b, a + b, la + 26, 2a + 3b, ...,Fn-2a + 
Fn-ib,... where a and b are integers. The sequence {Gn} 
will sometimes be referred to simply by F(a, b). 

Much of the vector geometry to be described deals with the so-called 
Fibonacci vectors, which we define as follows: 
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Definition 1.2: 
The nth Fibonacci vector is F n = (F n _ i ,F n , F n +i ) . 
The nth Lucas vector is L n = (Ln-i,Ln,Ln+i). 
The nth general Fibonacci vectoris Gn = (Gn-i,Gn,Gn+i). 

+~Y 

Figure 1. The Fibonacci vector point 

The work of this Section evolved from ideas advanced by the author 
(Turner) in several papers which developed mathematical theories about 
sequences of integer pairs or triples by linking them with geometric di­
agrams or graphs. For example, in [27] rational numbers were studied as 
integer pairs, arranging them in a special way on the nodes of a binary tree, 
producing what was called 'enteger geometry'. The chapters in this book 
deal with integer triples obtained from well-known integer sequences and 
treated as vectors as defined in (1.2) above. The ideas presented combine 
in a variety of ways work on integer sequences (known as Fibonacci mathe­
matics) with well-known ideas of three-dimensional geometry: so this new 
subject-matter would seem to deserve the title Fibonacci Vector Geometry. 

It is particularly helpful in suggesting ways to study classes of integer 
sequences by depicting them as geometric objects, and enabling geometric 
theorems to shed light on their individual and collective properties. Con-
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versely, geometric objects can be generated sequentially, using Fibonacci-
type recurrences, and study of these objects sheds new light on the integer 
sequences associated with their vertices. 

The author (Turner) first presented some of these ideas at a Confer­
ence of the Australian Mathematical Society, held in Hobart, Tasmania, in 
January 1995. A further introductory paper was presented to the Seventh 
International Conference on Fibonacci Numbers and Their Applications, 
which took place in Graz, Austria, in July, 1996. This paper [30] subse­
quently appeared in the Graz Conference Proceedings. The chapters in this 
book combine and extend material introduced in those two talks. 

Some similar geometric work has been done by others, but mostly in 
two dimensions in the XF-plane, with point-coordinates being consecutive 
pairs of elements from Fibonacci sequences [4],[15],[20],[10]. 

Work of a somewhat different nature, on geometric tessellations involv­
ing the golden section, arose as an off-shoot from the Fibonacci vector 
geometry. Some of this so-called goldpoint geometry is presented by the 
author and a co-developer, Vassia Anatassov, in later chapters. 

Most previous work on Fibonacci tessellations of spaces has focussed 
on tiling [2],[3],[9],[ll],[l3], as has some previous work linking Fibonacci 
numbers with geometry [5]. Regular tiling, such as that investigated below, 
has generally concentrated on polyominoes [17],[21],[24],[34]. 

At first thought, taking the idea of Fibonacci vectors into three di­
mensions would seem somewhat pointless in view of the linear dependency 
between their coordinates; but the author quickly found it to have many 
appealing consequences. For example, each member of a large class of linear 
second-order recurrence equations determines (or corresponds to) a plane 
in R 3 : each integer sequence generated by a member equation (with given 
starting values) determines a vector polygon which lies in the corresponding 
plane; indeed, the set of such polygons partitions the integer points of the 
plane. We shall see in chapter 3 that the polygons determined by the basic 
Fibonacci vector sequences lie in a plane which has a honeycomb of integer 
points; and much interesting geometry concerning them can be discovered. 
Whereas, for example, the polygons and geometry of Pell vector sequences 
occur in a different plane. Comparisons and links between these Fibonacci 
and Pell geometries make interesting and fruitful studies. 
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1.2 The Fibonacci Vector—some Elementary Results 

Before introducing linear vector recurrences, a few elementary results which 
derive directly from the Fibonacci vector of Definition 1.2 will be presented. 

RESULTS I: Solutions of 'squares' equations 

Figure 1 above shows the 'point' of vector F„ = (Fn-i,Fn,Fn+i) re­
ferred to Cartesian axes with origin (5(0,0,0). 

Surprisingly, the first geometric object suggested by this simple diagram, 
namely the triangle ABC, proved worthy of study. The formula for its 
area, given below, led immediately to interesting results about an infinite 
sequence of Diophantine equations. 

A„ = Area AABC = ^{FnFn^f + {Fn+1Fn-i)
2 + (FnFn+1)

2 (1.1) 

The given formula may be checked using any text on 3D-geometry (see, 
e.g. [8]), or by elementary means directly from the diagram. Its easiest 
derivation is obtained by applying the vector product formula 

Area= \\AC x BC\. 

On calculating the first six values of A„, the following sequence of tri­
angle areas was obtained: A n = ~{1, 3, 7, 19, 129, 337, ... }. 

It is easy to show that the ratio of consecutive terms of this sequence, 
A n + i / A „ , tends to a2 as n tends to infinity (where a is the Golden Mean). 

It was a pleasant surprise to find that the expression under the root 
sign, in the formula for A n , was always a perfect square. With a little 
algebraic manipulation, using Fibonacci identities, it can be shown that: 

(FnFn-i) + (Fn+iFn_i) + (FnFn+i) 

= {Fl_x + Fn
2 + Fn^Fnf (1.2) 

Consequently, from (1.1), we can write 

A„ = i ( F 2 _ 1 + f n 2 + F n _ l f n ) = l(Fin_1+Fn^Fn) (1.3) 

Moreover, it is evident from (1.2) that a general solution for the 'four­
squares equation' x2 + y2 + z2 = w2, in terms of the Fibonacci numbers, 
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has been discovered. (N.B. It is easy to show [32] that we can replace F 

by L in the above equation (2), and thus obtain a similar solution to the 
four-squares equation, in terms of the Lucas numbers.) 

The author was encouraged to look for solutions to the general m-
squares equation, in terms of the Fibonacci numbers, namely for the equa­
tion: 

x\ + x% + x% + ... + x2^ = x2
m (1.4) 

The general solutions he found, for m = 3,4,5,..., are given below. The 
presentation has a poetic style to it; so I was tempted to entitle it Square 
Dance in Fibonacci Numbers, an ode with an infinity of verses. 

A SQUARE DANCE IN FIBONACCI NUMBERS 

.2 , „,2 _ ^2 
Z (1) The equation: x2 + y2 = 

Solution: 
x = F2n-i + Fn-\Fn 

y = 2Fn-XF2Fn+l 

z = 2Fn-1F
2Fn+1 + 1. 

(2) The equation: x2 + y2 + z2 = w2. 

Solution: 
X = rn—\rn 

y = -Fn-i-Fn+i 
z — FnFn+\ 

w = F*^ + F* + Fn-!Fn . 

(3) The equation: x2 + y2 + z2 + u2 = v2 

Solution: 
x = Fn-iFn 

y = Fn-\Fn+i 
z = FnFn+i 
u = \[{n-i+n+Fn-iFn)

2-i] 
v = ^[(F2_1+F2+Fn^Fn)

2 + l}. 

[N.B. The general case follows on the next page.] 
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Extension to the mth case (and hence 
to infinity): we can use the identity v2 = 
(u2 + l ) 2 / 4 - ( u 2 - l ) 2 / 4 to extend verse (3) 
to verse (4), and so on ad infinitum. [It is 
necessary to remark that the last variable 
(on the right-hand side of the m-squares 
equation) is always odd.] 

RESULTS II: Geometric properties of Fibonacci triangles 

Some elementary geometric results concerning the geometry of the trian­
gle ABC, shown in Figure 1 above, now follow. They are easily confirmed, 
using formulae from [8], say. 

(i) The Fibonacci and Lucas F-triangles ABC lie, respectively, in the fol­
lowing planes: 

x y z „ , x y z 
+ 4r + -= = 1 and + 4- + = 1. Fn-l Fn Fn+i Ln-i Ln Ln+l 

(ii) Let the normal from the point F n to the plane of ABC be denoted by 
PN. Then its length is \PN\ = 2 K - i K F n + 1 / ( F 2 _ 1 + F% + FnFn^). 

(iii) The angle between the nth Fibonacci and nth Lucas F-triangles is 
given by: 

cos0 = 4F2n/^DFDL , where 

DF = F 2 _ x + Fl + F2
+1 and DL = L\_x + L2 + L 2

+ 1 . 

(iv) Consider two consecutive Fibonacci F-triangles. Let their respective 
areas be A n and A„ + 1 . then: 

(iv)(a) Ratio 

A n + i FnFn+i +1*2,1+1 

Ara Fn-iFn + F2n-i 

This ratio tends to a2 as n tends to infinity, where a is the golden ratio. 

(iv)(b) Difference 

An+i — A n = FnFn+iF2n+i • 
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(v) Consider the sides of the general F-triangle. Each of them is the hy­
potenuse of a right triangle, made with two of the reference axes. Let 
AB = u,BC = v,CA = w. 

(v)(a) Using Pythagoras' theorem and a Fibonacci identity we obtain: 

u = AB = ^F2n-i, v = BC = v ^ n + i , 

W = CA = ^F2_1 + F2
+1 =y/Ll-2Fn.1Fn+1. 

It follows that, using the formula (1.1) for A n which was given above, and 
also its standard trigonometric formula: 

liF^Fn+F^) = ^(s - jF^[){s - ^ ) ( S - y/F*^ + F2
+1) , 

where s is half the sum of the sides, that is s = (u + v + w)/2. 
(v)(b) Let 8 be the angle between AB and BC. 

Using the cosine formula w2 = v2 + u2 — 2vucos6, and also direction ratios 
for AB and BC, we can find expressions for cosd in two ways. Equating 
these gives the following identity: 

Ln — L2n = 2(Fn-iFn+i — Fn). 

(vi) If we take the origin Q(0,0,0) as a fourth point joined to the vertices 

of the F-triangle, we have defined a tetrahedron T„ (indeed a sequence of 
tetrahedrons, if n is allowed to vary). The volumes are given by: 

= z;Fn-iFnFn+i . 
6 

It follows easily that: 
(vi)(a) The ratio Vn+i/Vn tends to a3 as n tends to infinity. 
(vi)(b) The difference Vn+1 -Vn = \Fn+xFl . 

Formulae similar to those given in (i) to (vi) can be given for Lucas 
F-triangles and tetrahedra, in terms of the Lucas numbers. 

Vn = Vol(Tn) -

0 0 0 1 
Fn-! 0 0 1 

0 Fn 0 1 
0 0 Fn+1 1 
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RESULTS I I I : Some Fibonacci Vector Identities 

The third set of results is a collection of elementary identities involving 
Fibonacci vectors. In order to discover them it was only necessary to take 
well-known Fibonacci identities, and, wherever terms such as Fn occurred in 
the left-hand sides, replace them by F„; then it was usually a simple matter 
to determine the form of the new right-hand side, in terms of Fibonacci 
vectors*. We believe that some have more mathematical charm than their 
original ones in terms of the ordinary Fibonacci numbers. Moreover, the 
scope for deriving vector identities is widened by the fact that both dot-
products and vector-products can enter into them too; some Fibonacci 
identities give rise to more than one vector identity. 

To save space, we shall list the Fibonacci vector identities directly, with­
out giving the ordinary Fibonacci identites from whence they came (these 
should be obvious to the reader). 

(i) F„ = F„_! + F„_2 . 

(ii) L« = L„_i + L„_2 • 

(iii) L„ = F„_i + F „ + 1 . 

(iv) Fi + F 2 + F 3 + . . . + F„ = F „ + 2 - F 2 . 

(v) Li + L2 + L3 + . . . -I- L„ = L n + 2 - L2 • 

The next three identities constitute another ode in three verses: this 
one we call Partial Sums and Parities. 

is odd; 
is even. 

(vi) F1+F3+Fs + . . . + F2„_1 =(^f"' [i
f
ni 

[FnLn, l f n i 

fvirt F -uF ± p . , F _ (LnFn+1, i f n i 
[ F n L „ + 1 , if m 

is odd; 
is even. 

i\mn F F -u -uF F -J ~L^Fn-u if n is odd; 
(VlllJ l i - J ? 2 + . . . + t 2 n - l - *2n — S p T -r • 

' -i*„L„_i, if n is even. 

*N.B. Sometimes no such form emerges, and hence no corresponding identity can be 
given. 
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Some Fibonacci vector identities with multiples of 2 occurring as sub­
scripts now follow: 

(ix) F2n — Fn-iFn + F „ F n + 1 . 

(x) \j2n = Ln-\Fn + L „ F n + i . 

(xi) F 2 i „ = i ? ( 2 i - l ) n - l F n + f (2 i - l )nFn+ l • 

When binary products of Fibonacci numbers occur in an identity, they 
can be replaced by scalar products, or cross products, of Fibonacci vectors. 
Thus sometimes more than one vector identity may be found, correspond­
ing to a single Fibonacci number identity, (xii)-(xv) below give simple 
examples of products of Fibonacci vectors. 

(xh) F„.F„ = Fn+1Fn+2 — -Fji-l-Pn-2 • 

(xiii) F n .F„+i = Fn-iFn + Fn+iLn+i. 

(xiv) F n . F n + 2 = Fn+iFn+3 + Fn+i . 

(xv) F „ A F „ + 1 = ( - 1 ) " ( 1 , 1 , - 1 ) . 

In the next chapter we define general linear recurrences for vectors, and 
discuss the particular case for generating Fibonacci vectors sequentially. In 
later chapters, we shall study further the geometry of Fibonacci vectors, 
finding where the vectors (regarded as points) are situated, and how they 
configure together in 3-space. 
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Chapter 2 

Vector Sequences from Linear 
Recurrences 

2.1 Integer-vector Recurrence Equations 

Any recurrence equation for numbers can be turned into a recurrence equa­
tion for vectors, by the simple technique of changing number-terms into 
corresponding vector-terms. And then, providing the initial vectors are 
integer-vectors (i.e. vectors with integer coordinates), and the coefficients 
in the equation are suitably chosen integers, the recurrence will produce a 
sequence of integer-vectors. Of course, the arithmetic operations involved 
must also be changed into corresponding vector operations—thus the nu­
merical + operation will become the vector + operation, and so on. 

The most general vector recurrence of this kind which we wish to study 
is given by the following definition. 

Definition 2.1: A general linear integer-vector recurrence 
equation is: xn +2 = cx n + 1 + dxn (2.1) 
where c and d are integers, and x n and x n + i are integer-
vectors (of the same dimension). 

If the initial integer-vectors xi and x2 are given, the recurrence (2.1) will 
generate an integer-vector sequence. This may be singly or doubly infinite. 

Definition 2.2: By putting c = 1 = d in (2.1), we obtain 
the simplest recurrence, which we shall call the Fibonacci 
vector recurrence: xn_|_2 = xn+i + x n (2.2) 

We next describe the general Fibonacci vector sequence, which is gen­
erated by means of the recurrence (2.2), with the initial vectors designated 
by a and b. 

95 
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2.2 Fibonacci Vector Sequences 

If we let xi = a and X2 = b in (2.2), then the doubly infinite Fibonacci 
vector sequence generated has terms thus: 

..., a, b, a + b, a + 2b, 2a + 3b, ..., P„_2a + Fn-ib, ... (2.3) 

It has exactly the same form as F(a,b) (see Def. 1.2), but with a,b 
changed to a, b respectively. We shall use G = {G„} to denote this se­
quence, and call it the general Fibonacci vector sequence. 

In this book we shall require a and b to represent fixed 3-dimensional 
vectors, with initial points at the origin Q(0,0,0) and with end-points at 
A(ai,a2,a3) and B(bi,b2,b3) respectively. Usually, we shall require all the 
coordinates to be integers. In other words, generally a and b are position 
vectors in Z3 . 

Example 
If a = (1,2,3) = A(or point Pi), and b = (2,3,4) = B(or point P2), 

then x3 = (3,5,7) = P3 , x4 = (5,8,11) = P4 and etc. 

We can take the sequence backwards, operating the recurrence 'to the 
left', obtaining terms x0 = (1,1,1), x_i = (0,1,2) and so on for terms 
x_2,x_3,---

We shall now study some geometric properties of sequences of the form 
(2.3), namely the general Fibonacci vector sequences. 

2.3 Geometric Properties of G 

The diagram below (see Fig. 1) shows how the sequence of vectors from 
(2.3) appear in space. 

We note at the outset that since each vector in the sequence is of the 
form ma + nb, they each lie in the plane determined by the origin Q(0,0,0) 
and the two points A and B (assuming that a and b are not collinear). We 
shall call this plane 7r(a,b). 

We also note from (2.3) that the coefficients m and n are Fibonacci 
numbers. 
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Observations: 
Several simple, but attractive, geometric observations can be inferred 

more or less directly from Fig. 1, and from the law of vector addition. 
Thus: 

(i) We have assumed that a and b are not collinear. If they were, 
then the whole sequence would lie in the direction of a, if 6\ = 0°. 

Whereas if 6\ = 180°, the vectors G„ will alternate in direc­
tion for a while, before settling into the direction of a or of b , 
depending on the respective values of |a| and |b|. We know that 
a = cb, with c a negative constant: then if \c\ > a = 1.6180... the 
sequence will eventually move in the direction of a, and otherwise 
it will move in the direction of b . 

(ii) After some value of n, say n > N, the lengths |G n | are in­
creasing with n. N is the integer for which |G| — | F„_ 2 a+F n _ ib | 
is minimal. In general, this value is unique. The only exceptions 
are the basic Fibonacci vector sequence and its multiples. These 
each have three terms which are of equal smallest length. 

(iii) The angle 6n between G„ and G n + i 
(a) alternates in sense, clockwise, anti-clockwise, etc., and 
(b) decreases in size, since it is always less than the angle 

of the parallelogram formed on G„_i and G n . 

(iv) In view of (ii) and (iii) we can deduce that the vectors Gn 

tend, as n —» oo, towards an upward limit ray, emanating from 
Q(0,0,0), which we call L. In Section 2.4 below, in Theorem 2.1, 
we shall derive equations for this limit ray. 

Commen t s : 

(1) The changes in G„, and its convergence to L, as n steps through 
the sequence 1, 2, 3 , . . . are geometric analogues of the changes that occur 
in the ratio Fn+i/Fn from the Fibonacci number sequence: the values of 
this ratio alternate in value, being alternately above and below the golden 
mean a; and they tend to a with n. 

(2) It is not evident from Fig. 1 that there are two other limit rays to 
the vectors of sequence (2.3). In fact, when n < N, and n -> -oo , the 
vectors G„ still oscillate, but they point respectively 'left' and 'right' as 
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they grow in length. This happens because after n = - 1 the coefficients 
Fn-2, Fn-i of a, b respectively begin to alternate in sign. There is thus also 
a left-limit ray (call it L') and a right-limit ray (call it L") for the vector 
sequence G. We study these two rays in section 2.4 below. 

Q(0,0,0) 

Figure 1. The Fibonacci Vector Sequence in plane 7r(a,b) 

We now continue with further geometric observations from Figure 1. 

(v) AP3 = P3P4, with A, P3, P4 being collinear points. 
Proof: QB and AP3 form a parallelogram (by construction of 

the point P3); and QB and P3P4 also form a parallelogram (by 
construction of point P4). Hence both AP3 and P3P4 are equal 
in length and parallel to QB. • 

(vi) It follows from (v) that parallelograms QAP3B and QP2PiP3 

have equal areas. 
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Corollary: Precisely the same arguments show that QP3P5P4 
is a parallelogram with P2 , P4, P5 being collinear points, P2P4 = 
P4P5, and the areas QP2P4P3 and QP3P5P4 being equal. 

We can extend this argument by induction, to show that 
these properties hold for all subsequent figures QPnPn+2Pn+i', 
and the points Pn, Pn+2, Pn+z are collinear for all n. 

(vii) (a) The areas of the triangles Pn,Pn+i, Pn+2 and 
Pn-2,Pn,Pn+2 are equal for all n, and (b) each is equal to that 
of AQAB. 

Proof: 
(a) AP„Pn+iPn+2 is half of the parallelogram QPnPn+2Pn+i; 

and AQAB is half of QP1P3P2; the result then follows from (vi). 
(b) Triangles Pn,Pn+1,Pn+2 and P„_2 ,Pn ,Pn+2 have equal 

areas because they have equal bases (PnP„+2 and Pn+2Pn+3) and 
equal heights. • 

Prom the above geometric observations, and theorems 2.1 and 2.2 below, 
it emerges that a general Fibonacci vector sequence has two interesting, 
fundamental properties, namely (1) the vectors QPn tend to the upward, 
left and right limit rays L, L'andL", and (2) the area of AQAB is an 
invariant property of the two types of triangle defined along any given 
vector sequence F(a ,b) . 

It is worth noting that the geometric proofs of observations made in (v), 
(vi) and (vii) were elementary. Proving those properties algebraically is a 
more tedious exercise. 

However, we must resort next to algebraic geometry, in order to obtain 
a general formula for the area of AQAB, in terms of the coordinates of a 
and b. Fortunately we can do the job with a single vector product. 

Theorem 2.1: If a = (ai, 02, a3) and b = (bib2, b3) in 
F(a, b), then the area of AQAB is: 

A = -\Aa2&3 - a3b2)2 + (a3bi - aib3)2 + (ai&2 - a2&i)2 . 

From (vii), this area is constant for A P n P n + i P n + 2 , and for 
APn-2PnPn+2, along any given Fibonacci vector sequence. 
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Proof: The area of AQAB is given by \QA.QB$mLAQB, 
which is half the magnitude of the vector product a x b . This 
vector product is [(<i2&3 —13^2), (13 &i—0163), (ai&2 — 02^1)] • 
The formula for A, in the theorem, follows immediately. • 

We next give various results about the limit rays of vector sequences. 

2.4 The Limit Rays of Vector Sequence G 

In all of this sub-section, the initial vectors a and b of the vector sequence 
G are assumed to have all positive co-ordinates. Of course, if they are all 
negative, then the resulting limit rays will be in the same lines but with 
opposite senses. 

The following theorem gives formulae for the direction ratios and cosines 
of the upward limit ray L, of the vector sequence G. 

Theorem 2.2: The direction ratios of the limit ray L are 
{a\ +abi, a,2+ab2, a^ + abs), where a is the golden mean. 
Hence the direction cosines are: 

at + abi . 
k = , = , lor 1 = 1,2,6. 

\IY?j=i(ai + abi)2 

Proof: Since G„ = -Fn-2a + Fn-±h, the ray from Q(0,0, 0) 
t o P „ 
has equation: 

x y z 

Fn-20.1 + Fn-ibi Fn-2<l2 + Fn-ib2 Fn-20-3 + Fn-ib3 

Hence direction ratios of ray QPn are (dividing by F„_2): 

(01 + p 01, a2 + -= 62, a3 + 63) . 
•fn-2 Pn-2 ^n-2 

Since ^~_x —> a as n —> 00, and QPn —> QL, taking limits 
on the bracketed coordinates gives the desired formulae for 
the direction ratios (ri, r2, r 3 ) . The formulae for (Z1; l2, I3) 
follow immediately. D 
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Thus, in general the limit ray of a vector sequence depends upon the 
initial vectors a and b. It is evident that if they are scaled, say to ca and 
cb respectively, the same limit ray will result, since c can then be cancelled 
through the direction ratios. 

What is not evident, however, is that non-proportional but different 
choices of a and b can be made and still have the same limit ray resulting. 
This occurs only with choices from a very special class of initial vectors. 
We shall discover this class in Theorem 2.3 below. 

This next theorem states the general forms of a and b which lead to 
the sequence's limit vector L being independent of the particular choices 
of their coordinates. The key idea is that if a and b are two consecutive 
terms from any given Fibonacci vector sequence, then L will not have any 
of their coordinates in its defining equations. 

Theorem 2.3: L, the limit vector of {G(a, b)}, is the ray 
from Q which has equations x/1 = y/a = z/a2, if and only 
if the initial vectors a and b are consecutive terms of a Fi­
bonacci vector sequence (i.e. of any such sequence). 

Proof: 
(1) Let a, b be consecutive terms of a Fibonacci vector se­
quence. Then their forms can be written: 
a = (ai,a2,ai + a2) and b = (a2 ,ai + a2 ,a i + 2a2). Then, 
by Theorem 2.2, the limit vector of {G(a, b)} has direction 
ratios: 

ai + aa2 

i.e. oi + aa2 

i.e. a± + aa2 

a2 + a(ai + o2) 
(1 + a)a2 + aai 
a(aa2 + ai) 

ai + a2 + a(ai + 2a2) 
(1 + a)(ai + a2) + aa2 

a2ai + o?a2 

Dividing through by {a,\ + aa2), we obtain direction ratios 
of 1 : a : a2 for L. Hence the limit vector for this sequence 
is the ray from Q having equations x/1 = y/a = z/a2; it is 
in the plane x + y = z. It is seen to be independent of the 
numbers ai and a2 which serve to define a and b. 
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(2) Now suppose that G(a, b) has the limit vector as given 
in the theorem. Then the first direction ratio is 1 : a, and so 
we must have: (ai + abi) : (02 + afo) - 1 : a; 

Hence 
Thus 

a(ai + abi) = 
a(ai — b2 + h) = 

02 + a&2 • 

a2 - h. 

Since a is irrational, this is true only if both sides vanish, 
in which case 61 = 02 and 62 = ai + 02 • Also, since L is in 
plane x + y = z, we have 63 = 61 + &2 = «i + %a2- Hence b 
immediately follows a in a Fibonacci vector sequence. • 

We now examine the points of Fibonacci vector sequences, to discover 
how they behave as n tends to —00. We shall find that there are two 
limiting directions in which they point away from the origin. We designate 
these the left and right limit rays respectively, in the obvious senses relative 
to the ray L. We shall use the symbols 1/ and L" to denote these rays. 

In order to establish formulae for the two limit rays, we first have to 
show that every Fibonacci vector sequence of type G(a, b) has a shortest 
vector, and that beyond that, as n —> —00 the vectors will grow longer and 
oscillate in direction, alternately pointing left and right. 

The sequence of 'left vectors' will tend to the limit ray L', and the 
sequence of 'right vectors' will tend to the limit ray L". Vectors of the 
former type have coordinate signs (—, +, —), whilst those of the latter type 
have coordinate signs (+,—,+). Theorem 2.4 below deals with all these 
ideas. 

There are three possible cases to be dealt with. Before stating the the­
orem about them, we give examples to illustrate and aid discussion. We 
treat only the sequence G having initial vectors a and b which are consec­
utive terms of a Fibonacci vector sequence, and for which the coordinates 
of a are all positive. 

In this case we need only state the coordinate values for a (which we 
shall designate G\), and then use the recurrence equation 'backwards' to 
obtain GQ,G-I, ... 
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Examples: 

Case 
(i) ai > a2 

(ii) a± — a2 

(iii) ai < a2 

Gi 
(4,3,7) 
(3,3,6) 
(3,4,7) 

Go 
(-1,4,3) 
(0,3,3) 
(1,3,4) 

G- i 
(5 , -1 ,4) 
(3,0,3) 
(2,1,3) 

G- 3 

(11,-6,5) 
(6 , -3 ,3) 
(3 , -1 ,2) 

G-2 
( - 6 , 5 , - 1 ) 
(-3,3,0) 

(-1,2,1) 
G_4 

( -17 ,11 , -6 ) 
( - 9 , 6 , - 3 ) 
( - 4 , 3 , - 1 ) 

In the cases (i) and (iii) examples the shortest vectors, relative to Q, are 
respectively (—1,4,3) and (—1,2,1). Notice that each of their sign pat­
terns is (—,+,+). We show in the theorem below that this pattern must 
always occur in a shortest vector in these two cases, and that the short­
est one is unique. Whereas in (ii) there are three shortest vectors, viz. 
(0,3,3), (3,0,3) and (—3,3,0); these points are three vertices of a regular 
hexagon having centre Q. 

Note, too, the following points: 
With case (i), the shortest vector occurs immediately next to Gi; i.e. it 
is Go- Case (ii) is special, in that it is a multiple of the basic Fibonacci 
vector sequence; and for it, one obtains three (different) shortest vectors, 
with the last one having the sign type (—, +, +) . For convenience, we shall 
define this last to be the shortest vector of the case (ii) sequence. It is easy 
to see that this must always occur when a\ = a2. Case (iii) needs more 
explanation; the number of backward steps required to arrive at the shortest 
vector depends on the ratio a\ja2 relative to the ratio |.Fn_i|/|.Fn_2|. This 
is so because, whether going backwards or forwards, the general term of 
the sequence is Fn-2a. + Fn-{b. 

The main points are that in each of the three cases, the shortest vec­
tor must occur as n changes from 0 to —1 to —2 etc.; it must have sign 
type (—, +, +); and thereafter the sign types of the vectors alternate thus: 
(+, —, +) , (—, +, —). We gather all this into the following theorem. 

Theorem 2.4: In every general Fibonacci vector sequence 
G(a, b) with a = (ai, a2, ai + a2) and both oi, a2 > 0, 
there is one, and only one, shortest vector, say (vi,v2,V3), 
such that vi is negative, and v2 and V3 are both positive (113 
is 0 in case (ii)). 
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The backward vector sequence proceeds, to the left of 
this shortest vector, with vectors which alternate in sign-type 
thus, ( + , - , + ) , ( - , + , - ) • 

Proof: 
Case (i): {a\ > a2) 

Consider the three adjacent vectors G\, Go, G_i. They 
are, respectively, (ai,02,01 4- 02), (02 — 01,01,02), (2ai — 
a2,a2 — ax,ax). And in Go, we see that 02—01 < 0, Oi > 0 
and 02 > 0, therefore Go is of the required sign type. It is 
the shortest; for |Gi| > |Go since 01 + a2 > 02—01, and 
|G_i | > I Go I since 2ai — a2 > a2. And as the sequence 
proceeds, either backwards or forwards from Go, the lengths 
of the vectors increase monotonically, since in each new vec­
tor two coordinates are the same and the other is bigger (in 
magnitude) than the remaining one in the previous vector. 

Case (ii): (ai = 02) 
Here a = (ai ,oi ,2ai) = 01 (1,1,2); and b = oi( l ,2 ,3) . 

Hence G(a, b) is equal to a iF , a multiple of the basic Fi­
bonacci vector sequence. Since F has three shortest vectors, 
viz. F _ ! = ( -1 ,1 ,0 ) ,F 0 = (1,0,1) and Fi = (0,1,1), then 
so does G. The unique one required for the theorem is a i F _ i . 

Case (in): {a\ < 02) 
Consider what happens when passing from Gi = (01, 02, ai + 

02) to Go = (02,01,02). Since 02—01 > 0, the signs in Go 
are ( + , + , + ) . But in Go, it may be that a2 — ai > ai; in 
which case Go will be a vector of Case (i) type: so a second 
'step backwards' to G_i will take us to the shortest vector. 
For this, the requirement on Go is that a2 > 2ai, that is 
a2 /oi > 2(= F3/F2), note). 

Example: Gi(3,7,10) -» G0(4,3,7) -> G_i ( -1 ,4 ,3) , the 
shortest vector. Note that the coordinate signs are (—, +, +) . 

If this requirement is not met, we must take another step 
backwards, to G_i = (2ai - 02,02 - 01,01). The sign-type 
of this triple is ( + , + , + ) , since 2a\ — ai > 0,02/01 < 2 
and o2 — ai > 0. Hence we must step backwards again, to 
G_2 = (2o2 - 3ai,2ai - 02,02 - Oi). 



Vector Sequences from Linear Recurrences 105 

This will be of the required sign-type (—,+,+) if the first 
coordinate is negative. That is, if a^la\ < 3/2(— F4/F3). 
[An example starts from G2 — (3,4,7), shown in the table 
above.] 

As this process continues, we have to compare the ratio 
02/ai with Fn/Fn-i, using alternately the relations < and 
>. Only if the ratio a 2 /a i lies forever between alternate 
values of Fn/Fn-i will the process never cease. This cannot 
happen, 

for Fn/Fn_i —> a, which is irrational; eventually one of the 
inequalities must be satisfied; and then a vector of sign-type 
(—, +, +) will have been reached. By the reasoning used at 
the end of Case (i), this must be the shortest vector in the 
sequence. 

To complete the proof, we have to show that after the short­
est vector, the backward sequence proceeds with vectors which 
alternate in sign types thus: (+,—,+), (—,+,—), ••• This 
follows immediately from the way in which each new vector 
is formed from the current one. • 

We are now in a position to obtain formulae for the two limit rays, L' 
and L", which obtain when n —> -00 . Prom the proof of Theorem 2.2, we 

know that the vectors in the sequence G have direction ratios thus: 

(ai + -= 61) : (a2 + -= 62) : {a3 + ^ 63) • 
•rn-2 rn-2 rn-2 

When n < 0, F n_i and F„_2 differ in sign, and |.F„_i| < |Fn-2|- With this 
knowledge, taking limits a s n - > o o gives the following direction ratios for 
the limit rays: 

n : r2 : r3 — (ax 61) : (a2 62) : (03 b3) . 
a a a 

These determine a line through the origin in the plane of a and b , which 
has equation x/ri = j / / r 2 = z/r$. 

L' is the limit ray for those points (alternating in G) which move away 
from the origin in the direction of this line to the left of L; and L" is the 
limit ray for the other points of G moving in the opposite direction : the 
union of L' and L" is the line itself. 
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It should be noted that all points of a given sequence G lie above (or 
all below) this line. 

To give but one example, we use again the case of Theorem 2.3, taking 
a = (01,02,03) and b = (02,01 + a2,01 + 2a2). 

The combined limit line has direction ratios: 

(ai o2) : (o2 (ai + a2)) : ((ai + a2) (ai + 2o2) . 
a a a 

This gives the direction for determining the two limit rays through the origin 
Q(0,0,0). One is for the sequences of odd-negative-subscripted terms of all 
the Fibonacci vector sequences; and the other, in the opposite direction, is 
for the even-negative-subscripted terms from those sequences. 

The direction ratios are independent of the values of aj and o2; that 
is why the same limit rays apply to all Fibonacci vector sequences in the 
plane determined by this a and b. 

Continuation: We shall continue this study of limit rays, and make 
further geometric observations on the vector sequences, in Chapter 6, after 
having had the opportunity to study more deeply the generation of vector 
sequences in planes. 

The next three chapters concentrate on geometry in the honeycomb 
plane x + y — z — 0, and the Fibonacci and Lucas vector polygons. 
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The Fibonacci Honeycomb Plane 

In this chapter we shall study the locations, and various configurations, of 
the integer-points (those with integer coordinates) in the plane x+y—z — 0, 
wherein lie all the Fibonacci vectors. It will soon become apparent why we 
have named this plane the honeycomb plane. We shall often refer to it by 
the symbols TTQ. 

In particular, properties of points of the Fibonacci and Lucas vector 
sequences, and geometric facts related to them, will be discovered. 

3.1 A Partition of the Integer Lattice 

Let (a, b, c) € Z3 be a point in the integer lattice £. We can partition the 
points of £ into three non-intersecting sets thus: 

Si = {(a,b,c) : a + b>c} 
52 = {(a,b,c) : a + b = c} 
53 = {(a,b,c) : a + b<c} 

Note that, if (a, b, c) is in the positive octant and represents lengths of three 
sides of a triangle, then 5 i , 5 2 and S3 represent, respectively, the sets of 
'real', 'degenerate' and 'virtual' integer triangles. 

Theorem 3.1: Points in 52 lie in the plane x + y — z = 0; 
call this plane -KQ . S\ is the set of points in C which lie below 
7ro; whereas S3 is the set of points in C which lie above no • 

We turn now to a study of how Fibonacci vectors and Fibonacci vector 
sequences behave in plane 7TQ. 
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3.2 Fibonacci Vectors in the Plane no 

We first examine how the points in ir0 determine Fibonacci vectors and 
Fibonacci vector sequences. 

Theorem 3.2: Any point (a, 6, c) in 7r0 determines the gen­
eral Fibonacci sequence F(a,b), since c = a + b (see defini­
tions (1.1) and (1.2) above). Hence it is a Fibonacci vector 
G n . If a and b are integers, we may call these Fibonacci 
points. 

Theorem 3.3: Three different vector sequences may be dis­
tinguished within F(a, b), each of which contains amongst 
the vectors' coordinates all elements of F(a, b) exactly once. 
These are: 

G(1) = {... , (a,b,a + b), (a + 26,2a + 36,3a + 56), . . .} 
G(2) = {... , (6, a + 6, a + 26), (2a + 36,3a + 56,), . . .} 
Gen = {... , (a + 6, a + 26, 2a + 36), (3a + 56,5a + 86,8 »(3) {... , (a + 6, a + 26, 2a + 36), (3a + 56,5a + 86,8a + 136), . . .} 

Proofs are not needed for the above two theorems: each follows directly 
from definitions. 

Note that if (a, 6, c) is the point Q(0,0,0), these vector sequences are 
identically equal to the constant vector sequence {... , (0,0,0), (0,0,0), . . . } , 
which is Q repeated indefinitely. 
We shall denote the union of these three sets of vectors by G = {G„}, and 
call it the general Fibonacci vector sequence. 

Examples: 
(1) The basic Fibonacci vector sequence F is defined to be the union of 

the following three vector sequences: 

F ( 1 ) = {F_!} = {..., ( -1,1,0) , (1,1,2), (3,5,8), (13,21,34), . . .} 
F(2) = {F0} = {... , (1,0,1), (1,2,3), (5,8,13), (21,34,55), . . .} 
F(3) = {Fi} = {..., (2 , -1 ,1) , (0,1,1), (2,3,5), (8,13,21), . . .} 

Thus: F = {F„} = {F ( 1 )} U {F{2)} U {F ( 3 )} . We shall usually omit the 
word 'basic', when referring to this Fibonacci vector sequence, if the context 
allows it. 

It will be seen that the three subsequences of F, listed above, are ob­
tained from the basic sequence by taking every third Fibonacci vector in 
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turn, and placing it into its appropriate subsequence. Symbolically, this 
appears as follows: 

F( i) = {•••> F - i> F 2 , F 5 , ... } 
F(2) = {•••) F 0 , F 3 , F 6 , ... } 
F(3) = {••• , F i , F 4 , F 7 , ... } 

A glance at the actual numbers (coordinates) in the vector sequences writ­
ten out in detail above, shows that the following vector recurrence equation 
will generate each of the subsequences of vectors. 

Sm+2 = 4STO_|_i + S m . 

A proof of this recurrence, using elementary Fibonacci identities, is sim­
ple. Since each vector, in all three subsequences, is a Fibonacci vector, all 
subsequence vectors approach the same limiting ray as n tends to infinity, 
namely the line L^ from Q, which has direction-ratios 1 : a : a2. 

It is obvious how we may generalise the above procedure; for example, if 
we took every fourth vector from the Fibonacci vector sequence, we should 
obtain four subsequences whose union would be F . This time, however, we 
would not have the attractive property that each subsequence uses all the 
Fibonacci numbers exactly once amongst its coordinates; every fourth one 
would be missing. For example, the vector subsequence which includes Fo 
is ..., (1,0,1), (2,3,5), (13,21,34), .... The 'gaps' in the Fibonacci number 
sequence are 1,8,55, ... etc. However, we may note that the differences 
between successive vectors in the subsequence are Lucas vectors. And that 
the subsequences of vectors are now generated by the following vector re­
currence: 

Sm+2 = '&m+l ~ &m . 

If we generalize this process still further, we can take every fcth vector from 
the basic Fibonacci vector sequence, and obtain a union of k vector subse­
quences for F. These subsequences are generated by the vector recurrence 
(where L). is the fcth Lucas number): 

Sm+2 = LkSm+i + ( — 1) S m . 
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(2) For a second numerical example, we show the Lucas vector sequence, 
separated into a union of three subsequences, as was done with the basic 
Fibonacci vector sequence. 

{L (1)} = {L_x} = { . . . , ( - 1 1 , 7 , - 4 ) , (3 , -1 ,2) , (1,3,4), (7,11,18),.. .} 
{L (2)} = {L0} = { . . . , (7 , -4 ,3 ) , ( -1,2,1) , (3,4,7), (11,18,29),...} 
{L (3)} = { L J = { . . . , ( - 4 , 3 , - 1 ) , (2,1,3), (4,7,11), (18,29,47),...} 

Thus: L = {Ln} = {L (1)} U {L (2)} U {L (3)} . 
For these three vector subsequences, the generating recurrence is again 

S m + 2 = 4S m + i + S m . And the limit vector is again the ray through Q 
with direction ratios 1 : a : a2. 

Theorem 3.4: Every integer point in 7r0 belongs to one 
and only one general Fibonacci vector sequence. 

Proof: Given a point (a,b,c) in 7To. Since c — a + b the 
point determines uniquely some general Fibonacci vector se­
quence, which contains the vector (a,b,a + b). Hence that 
point cannot occur in any other general Fibonacci vector se­
quence. • 

Corollary: The set of integer points of the plane 7i"o is parti­
tioned by the class of all general Fibonacci vector sequences. 

We remark here that we do not need to confine ourselves 
to integer points. For example, we could take the point 
(1, a, a 2) . It lies in the plane no; and its associated Fibonacci 
sequence is l,a,a2,a3, .... This is a geometric progression 
with common ratio a; but it is also a Fibonacci sequence, 
since an+2 = an+1 + an . Moreover, every one of the vectors 
derived from it, taking three consecutive members as coordi­
nates, has the same direction ratios, namely 1 : a : a2. Thus 
they all lie upon the limit vector Loo that we have talked 
much about above. Indeed, if we join the vector-points up, 
from this sequence, the resulting line segments constitute 
Loo! It is highly fitting that the geometric sequence of the 
Golden Mean should do this. 

We move now from our discussion on vector sequences in the Fibonacci 
plane, in order to study how points in the plane are situated. We shall 
return to the vector sequences later, when we know more about the ar­
rangement of the integer points in TTQ. 
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3.3 The Honeycomb of Points in 7To 

We shall now show that the points in the plane no form a honeycomb 
arrangement, which we shall call The Fibonacci Honeycomb. 

First we show that every integer point P in ir0 has six neighbouring 
points in no placed symmetrically with respect to it. They determine a 
regular hexagon having P as centre. It will follow from this, that the set of 
points in 7r0 can be covered by three sets of parallel lines, arranged at 60° 
to one another. 
Nearest neighbours of P(a, b,a + b) are: 

Pi = (a,b + l,a + b + l) 
P2 = ( a + l , 6 , a + 6 + l ) 
P3 = ( a + 1 , 6 - 1 , a + 6) 
P4 = ( a , 6 - l , a + 6 - 1 ) 
P5 = ( a - l , 6 , a + 6 - l ) 
P6 = ( a - l , 6 + l , a + 6) 

Theorem 3.5 below shows that these points determine a regular hexagon 
centred at P(a, 6, a + 6). 

Theorem 3.5: 
Let P = (a, 6, c) be any integer point in no- Then its nearest 
neighbours are the six points P, defined above. They are 
arranged in a regular hexagon about P , of side length y/2 
and diameter 2\/2. 

Proof: It may quickly be established that the Euclidean dis­
tances PPi, with i = 1 , . . . ,6, and also the distances PjP,+ i , 
with i = 1 , . . . , 5 and PePi are all equal to A/2. In view of the 
relation a + 6 = c for points in TTO , all other points are further 
than \/2 from P , since all possible arrangements where a 1 is 
added to or subtracted from the coordinates of P have been 
included amongst the six points; adding or subtracting a 2 
(or more) to any coordinate will require a 2 (or more) to be 
added or subtracted to one of the other coordinates; then the 
distance from P to this new point will be greater than v2 . 
• 
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The resulting hexagon is shown as the left-hand diagram of Fig. 1. The 
right-hand diagram shows the hexagon having Q(0,0,0) as centre-point. 

P. Pi 9,(0,1,1) 0,0,1)92 

AA A A 
J V ^ - — ^ (-lA-DfN1—-^fCi.-i)*?, 

The neighbours of P(a,b,c) The neighbours of Q(0, 0,0) 

Figure 1. Hexagons in the plane TTO. 

Theorem 3.6: Let (5(0,0,0) be designated the centre (ori­
gin) of the plane no- Let l,m,n be symbols for three sets of 
parallel lines, which are defined as follows: 

/o is the line through Q and Q\(0,1,1); it has direction 
cosines (0,1, l ) / \ /2-

/ is the set of all lines parallel to lo, separated by perpen­
dicular distances which are multiples of \ /6/2. 

m0 is the line through Q and (^2(1,0,1); it has direction 
cosines (1,0, l ) / \ /2-

m is the set of all lines parallel to mo, separated by per­
pendicular distances which are multiples of \ /6/2. 

no is the line through Q and <2s(l, —1,0); it has direction 
cosines (1, —1,0)/-\/2. 

n is the set of all lines parallel to lo, separated by per­
pendicular distances which are multiples of "\/6/2. 

Any three lines, one of each of l,m, and n, intersect in a 
point. Each of the sets of parallel lines (i.e. each of /, m, n) 
covers every integer point of the plane -K0. 

Proof: This is immediately evident, as a glance at Fig. 2 
will confirm. The sets of lines l,m,n triangulate the plane 
7To, into equilateral triangles of side \/2 and height \ /6/2. 
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The set of vertices of all the triangles constitutes the set of 
integer points in -K0. 

Figure 2. The Fibonacci Honeycomb—the plane TTQ and axes 

The centres of the hexagons are the 5-points; 
all other integer points are il-points. 

Also shown are the Fibonacci and Lucas vector polygons. 

Definition 3.1: We shall call mo the X-axis, Zo the F-axis; and 
the Z-axis is taken to be the line through Q (in 7To) which is 
perpendicular to no-
We shall use the set of these three axes, with Q(0,0,0) as origin, 
as a reference frame, in order to define points and figures in 7TQ. 
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Unit 'steps' along both the X- and F-axes are to be of length V2, 
whereas unit 'steps' along the Z-axis are to be of length y/E/2. 
With these conventions, taking X = a and Y = b (with a, b being 
integers) will serve to define the integer point P(a, b, c). Note that 
actually the Z-axis is redundant, since in TTO we have c = a + b; 
it is often convenient to use it, however. Finally, on occasion we 
shall refer to the line through Q which is perpendicular to the 
Z-axis as the Z'—axis. 

If we take the hexagon drawn on the nearest neighbours of Q, it is 
evident that we can draw six hexagons around it, on its sides; then continue 
drawing hexagons on the outer sides, and so on, until the whole plane is 
tessellated with hexagons. 

It will follow that by this tessellation we partition the points of 7To into 
two sets, namely: 

B = the set of points at the hexagon centres; 
H = the set of points on all the hexagons. 

We may call the points in B the B-points (Bees!) of ir0; and the points 
in H the .ff-points (Honey points). 

Definition 3.2: The .ff-points and the lines parallel to the 
three axes which join them constitute the Fibonacci Honey­
comb, with the B-point (2(0,0,0) being the Queen Bee. (see 
Fig. 2) 

Before embarking on a study of Fibonacci vector sequences and other 
geometric figures on the Honeycomb, we shall state one or two useful the­
orems about B- and .ff-points. A great deal more can be said about these 
sets of points, and lines joining them, than we have space for here. 

3.4 Some Properties of B-points 

This section gives a method for determining whether a point in Pio is a 
5-point. Then it treats several properties of the B-points. Location of 
the B-points 

Let P(a, b, c) be any point in 7T0. The following algorithm determines 
whether or not P is a 5-point. (Note that |d|3 designates the remainder 
from d after division by 3; i.e. 'remainder modulo 3'.) 



The Fibonacci Honeycomb Plane 115 

Algorithm: Compute jaJ3 and I&I3. Then P is a B-point if 
and only if both these remainders modulo 3 are equal. 
Proof: We can arrive at P in two moves, travelling from Q 
to P as follows: 

Move (i): Move a hexagon-side lengths (i.e. a\/2) in the 
direction QQ2 (along the X-axis); move up if a is positive, 
and down if a is negative. 

Move (ii): Move b hexagon-side lengths (i.e. by/2) in 
the direction QQ\ (parallel to the F-axis); move up if b is 
positive, and down if b is negative. 

There are three possibilities to be considered, for move 
(i) followed by move (ii). They are: 
First: If |a|3 = 0, then move (i) arrives at a B-point, after 
which move (ii) will lead to a B-point if and only if jfo|3 — 0, 
because of the honeycomb structure. 
Second: If |a|3 = 1, then move (i) arrives at an B-point, after 
which move (ii) will lead to a B-point if and only if |?>|3 = 1, 
because of the honeycomb structure. 
Third: If |o|3 = 2, then move (i) arrives at an B-point, after 
which move (ii) will lead to a B-point if and only if |6|3 = 2, 
because of the honeycomb structure. 

Since these are the only possible ways in which a B-point 
can be arrived at, the Theorem is proved. 

Evidently, all other points in 7To are B-points. • 

Corollary 1: It easily follows from the theorem that P is 
a B-point iff \a + c\3 = 0. 

Corollary 2: The above algorithm shows that we can clas­
sify the B-points into three types, as follows: 

(Bo, iff \a\3 = 0 ; 
A B-point P(a, b,c) is of type < B\, iff \a\3 = 1 ; 

{ B2 , iff \a\3 = 2 . 

Corollary 3: The set of B-points in ir0 which are of type 
B 0 form an Abelian group under vector addition; the identity 
element is the Queen Bee (i.e. <3(0,0,0)!). 
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Proof: Q is a point of type -Bo- Take any two points of 
type Bo and add them. In the resulting point, the value of 
|a + c\s is zero; so by Corollary 1, the new point is also of 
type -Bo- Hence the set is closed under addition; and vector 
addition is commutative; so the set forms an Abelian group 
under addition. • 

Corollary 4: Addition of B-point types can be defined in 
the obvious way, since the addition of elements of two given 
types always leads to an element of the same type. 

Below we give the addition table for S-point types. It shows that the 
three types form an Abelian group under addition, with the identity element 
being the type B0. This group is the cyclic group of order 3. 

+ 
Bo 
Bx 

B2 

Bo 
Bo 
Bx 

B2 

Bi 

Bi 
B2 

Bo 

B2 

B2 

B0 

B1 

Much more can be said about points and lines in TTO, and their geometry, 
but space does not allow it. Triangles are studied in Chapter 5. 

We shall close the chapter by stating and proving a theorem about line 
segments in the Fibonacci plane. The objective is to show that no integer-
segment (that is, no segment whose endpoints are integer-vectors) in this 
plane has integer length. 

Theorem 3.7: Let A = (01,02,03) and B = {bi,b2,bz), 
with all six coordinates being integers, be any two integer-
points in the plane no- Denote by AB the line-segment join­
ing them; and by \AB\ the length of this segment. 

Then \AB\ = vRo i 
integral. 

A ) 2 + ( a 2 - & 2 ) 2 + (a3-&3)2] is not 

Proof: Let A'B' and A"B" be the projections of AB onto 
QZ and QZ' respectively (see Fig. 3). They have lengths 
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ma, and nb respectively, where a = y/6/2, b = \ /2/2, and 
m,n are integers (the projections are from integer-points). 

B" A" 

Figure 3. Projections of AB onto the z-axes. 

Hence: \AB\2 = m V + n2b2 = m2- + n2-. 
4 2 

Suppose that \AB\ is an integer d. Then we have to show 
that this is impossible; namely, that the equation 3m2 +n2 = 
2d2 has no integer triple (m, n, d) solution. 

We begin by assuming that there is an integer solution, 
with gcd(m,n,d) = 1, and then derive a contradiction. 

First observe that the equation implies that either (i) 
both m and n are even, or (ii) both m and n are odd. 

In case (i), set m = 2m' and n = 2n', and note that d 
must be odd, since gcd(m,n,d) = 1. The equation is then: 

2d2 = 12m'2 + An'2 -> d is even . 

This is a contradiction, therefore (i) is impossible. 

In case (ii), we shall prove that 3m2 = 2d2 — n2, with m, 
n both odd, has no integer solution. 

The right-hand side must be divisible by 3. 
Assume that 3 divides both d and n ; then 3 doesn't divide 
m, since gcd(m, n, d) = 1. Put d = 3r and n = 3s and the 
equation becomes: m2 = 6r2 — 3s2 which —> 3|m . This is a 
contradiction, hence the assumption is wrong. 
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Then, for 3 to divide evenly the right-hand side of the 
equation, the remainders modulo 3 of 2d2 and —n2 must add 
to 3. But it is easy to show that both 2d2 and —n2 are either 
0 or 2 modulo 3; so it is impossible for their remainders to 
sum to three, when at least one of d or n is not a multiple of 
3. • 



Chapter 4 

Fibonacci and Lucas Vector Polygons 

Recall that the Fibonacci vector sequence {F n} is: 
{. . . , (2, -1 ,1 ) , ( -1,1,0) , (1,0,1), (0,1,1), (1,1,2), (1,2,3), (2 ,3 ,5) , . . . } , 
with the general element being F„ = (Fn-i,Fn,Fn+i). 

In similar fashion, we can write down the Lucas vector sequence {Ln} . 

Definition 4.1: If we join the 'points' of the Fibonacci 
vector sequence, plotted in the Honeycomb plane, by straight 
lines, we obtain a geometric figure which we shall call the 
Fibonacci Polygon. Similarly, we can join the points of the 
Lucas vector sequence, to obtain the Lucas Polygon. Fig. 2 
(in Chap. 3) shows these two polygons drawn in the Hon­
eycomb plane. 

4.1 Convergence Properties of the Polygons 

It may be observed that both polygons progress indefinitely upwards, and 
appear to tend towards a line which passes through Q and has a direction 
which is to the left of the Z-axis. Below, we find the equation of this line. 

It may also be observed that there are two other limit directions for 
the polygons; the vectors F n with negative and odd values of n tend to one 
of these, whilst those with negative even values of n tend to the other. 

We shall use the notations u, v, w for the direction cosines of these three 
limit lines, respectively. 

Theorem 4 .1 : The direction cosines u are ( l /2a , 1/2 , a /2) , 
where a is the golden ratio. 

119 
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Proof: Since Q is the point (0,0,0), and F n is the point 
(Fn-i,Fn,F„+i), the direction cosines of the vector QPn 

are: (Fn-UFn, i ^ + O / ^ / C ^ - i + ^ + F„2
+1). 

Dividing numerator and denominator by -Fn_i, and letting n 
tend to infinity, for each coordinate, we obtain the required 
result. • 

In like manner, we can take the general Fibonacci vector sequence, de­
rived from F(a,b), and compute the limit of vector QPn. We find that 
the result is independent of the choice of a and 6 (except that at least one 
must be nonzero). This means that all (except F(0,0)) Fibonacci vector 
sequences tend to the same ray Q-Poo which has direction cosines u. The 
equations of this line are: ax = y = z/a . 

Theorem 4.2: The direction cosines for v and w are, 
respectively, 

(a/2, - 1 / 2 , l /2a) and ( - a / 2 , 1 / 2 , - l / 2 a ) . 

Proof: The proof follows similar lines to that for Theorem 
4.1. It will be left to the reader. 

'l = 104.48* 
>2 = 75.52' 

0j = 7.77" 
9 l+9 2 = 180° 

Figure 1. The limit lines in -KQ, for the Fibonacci polygons. 

The diagram of Fig. 1 above summarizes these results, and shows the 
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angles between the limit lines. Note that v and w are collinear: v.w = —1. 
The line x = —ay = a2z is a lower bound to both polygons. 

4.2 Some Theorems about Triangles, Lines, and Quadrilat­
erals 

The following results are about triangles, lines and quadrilaterals which are 
drawn upon Fibonacci vector polygons. 

Theorem 4.3: Let U, V, and W be three consecutive 
points in a general Fibonacci polygon. Let U = (a, b, a + b). 
Consider their relationship with Q(0,0,0); in particular, con­
sider the quadrilateral QUWV (see Fig. 2). Then: 

(i) The figure QUWV is a parallelogram. 

(ii) A{QUV) = A(UVW) = %b2-a2-ab\. 

W(n + i,a + 26.2a + 36) 

V{b,a + b,a + 2b) 

V(a,b.a + b) 

Q(0,0,0) 

Figure 2. The quadrilateral QUWV defined in Theorem 4-3-

Proof: 

(i) Since U - Q = W - V w e have QU \\ VW. Sim­
ilarly, QV || UW. Hence QUWV is a parallelogram; and 
A(QUV) = A(UVW). 
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(ii) The area of A(QUV) is given by ^/{A\ + A2 + A2) 
where: 

0 0 1 
2A2 = a b 1 

b a + b 1 

= \b2 — a2 — ab\. Similarly 

we find that both 2A2 and 2A3 are equal to \b2 — a2 — ab\. 
Hence the theorem's result for A. • 

Theorem 4.4: For any given Fibonacci vector sequence, 
the triangle formed by any three consecutive Fibonacci vec­
tors has an area which is constant throughout the sequence. 
The formula for this area is ^\b2 — a2 — ab\. 

Proof: Take two consecutive general Fibonacci vectors, namely 
U(Fn-3a+Fn-2b, Fn_2o+Fn_x&, Fn^a+Fnb) and V(Fn-2a+ 
Fn-ib, Fn-ia + Fnb, Fna + Fn+ib), and then compute the 
area of triangle QUV. It is found that, after reduction us­
ing Fibonacci identities, the area is the formula of the theo­
rem. Then, applying Theorem 4.3 shows that it is constant 
throughout the sequence. • 

Corollaries: 
(i) The area of A ( F n _ 1 F n F „ + 1 ) is constant, and equals 
\ /3/2. 
(ii) The area of A(L„_iL n L n + i ) is constant, and equals 
5\/3/2. 

The final three theorems give interesting geometric results about the 
Fibonacci and Lucas polygons. They will be stated, and left to the reader 
to prove. 

Theorem 4.5: The triangle A(L n _ i ,L n ,L„ + 1 ) includes 
the point Fn +2- In fact, we have that: 

F n + 2 = | L n _ i + | L n + | L n + i , for all n. 

Theorem 4.6: Side L n L„ + i cuts side F n + 2 F„+3 in the 
ratio I : | internally; and vice versa. It also cuts side 
F„+iF„+2 in the ratio 2 : 1 externally. 

Theorem 4.7: The quadrilateral L n F „ + 1 L „ + 1 F n + 3 is a 
parallelogram, for all n, of constant area 



Chapter 5 

Trigonometry in the Honeycomb 
Plane 

In this chapter, we present some theorems about triangles which occur in 
the Fibonacci plane 7r0. We shall be concerned only with triangles on the 
lattice points; we shall call these integer triangles. 

We have already given some results on triangles related to Fibonacci 
vector polygons, in the previous chapter. In this chapter, we begin by 
showing that a (90°,45°,45°) integer triangle is impossible in no- By con­
trast, integer equilateral triangles are 'everywhere', which we demonstrate 
by giving a general formula for computing equilateral triangles in 7To, and 
develop some construction algorithms using the formula. Finally we shall 
define and study transforms of triangles by means of equilateral triangle 
constructions, and apply them to Fibonacci vector polygons. 

5.1 The Impossibility of a (90,45,45) Integer Triangle 

From Definition 3.1 in Chapter 3, it is easy to see how the projections of 
a lattice segment in 7To onto the z-axes QZ and QZ' are integer multiples 
of VE/2 and V2/2 and respectively. We may use this fact to prove that a 
(90°, 45°, 45°) integer triangle cannot exist in the honeycomb plane TTQ. 

Theorem 5.1: Let ABC be a triangle in the honeycomb 
plane x + y = z, having angles 90°,45°,45°. Then not all of 
the vertices A, B, C are integer points; i.e. the triangle is not 
an integer triangle. 

123 
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Proof: AABC is isosceles, with AB = AC. If we project 
the arm AB onto the axis QZ, and the arm AC onto the axis 
QZ', then the two projections will be of equal length (since 
AB J_ BC and QZ ± QZ', the projection angles are equal). 

Suppose that each vertex is an integer point. Then, since an 
integer point projects into an integer point on an axis, there 
must exist integers, say m and n, such that m\/6/2 = ny/2/2. 
But that means that n = m\/3, which is impossible, since \/3 
is irrational. Hence a contradiction, therefore the theorem is 
true. • 

Corollary: It follows immediately that no square with 
integer vertices exists in the honeycomb plane. 

5.2 The Ubiquity of (60,60,60) Integer Triangles 

We now will show in what sense equilateral triangles with integer vertices 
are 'everywhere' in the honeycomb plane. 

Let A{a\,a2,a3) and B(b\,b2,b3) be any two lattice points in ir0. Then 
we know that a3 = a\ + a2 and b3 = b\ + b2. 

Consider the following diagram, which shows equilateral triangles drawn 
on either side of AB, with ABL anticlockwise and ABR clockwise. 

We shall say that point L is to the left of AB (directed); and point R is to 
the right of AB. We can conveniently write L = E{AB) and R = E(BA), 
using the single letter E to mean 'equilateral triangle transform'. We shall 
sometimes call these the ST-transforms of AB. Note that both AABL and 
ABAR are traversed in the anticlockwise direction. 
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Theorem 5.2: With A and B denned as above, the ET-
transforms of AB are given by the following formulae: 

L = (ai + a2 - b2, bi + 6 2 - ai , a2 +61) 
R = (&i 4 - 6 2 - a 2 , a i + o 2 - 61, ai + 62) 

Clearly both L and R are lattice points. 

Proof: (i) For AABL, we have: 

A-B — (oi - 61, a2 - 62, ai +^2 - b\ — 62) 
B-L = (bi +&2 - o i - a2, 01 - 61, &2 - 0 2 ) 
L - A = (02 — 62, a i + ^ 2 — &i — 62, 61 — ai) 

These are the vectors for the three sides of the triangle. The 
squared-lengths of the sides are obtained by summing the 
squares of the coordinates of each of these vectors in turn. It 
is easy to see that these sums are all equal; hence the three 
sides are equal, so AABL is equilateral. 

(ii) Similar calculations for A — B, B — R and R — A show 
that AABR is also equilateral. • 

Hence every pair of lattice points in TTQ is a side of two equilateral 
triangles, with all vertices being lattice points. 

Theorem 5.3: If A and B are S-points in 7To, then so are 
both L and R. 

Proof: We showed in Chapter 3 (section 3.4) that (&i, 62, ̂ 3) 
is a 5-point iff &i + 63 = 0 (mod 3). 

From Theorem 5.2, the formulae for L and R give: 

(i) I1 + I3 = ai + 2o2 + h - 62 ; 
(ii) ri + r3 = &i + 2&2 + ai - a2 . 

Consider point A(ai, 02,03); we know that 01+03 = O(mod 3), 
and that 03 = ai + 02. Hence 2ai + a2 =0 (mod 3). Adding 
and subtracting ai we get: 
3ai + (a2 - ai) = 0 -» (a2 - ai) = 0 = (ai - a2) (mod 3). 

Also, since (2ai+a2) + (ai+2a2) = 3(ai+a2) = O(mod 3) 
we deduce that ai + 2a2 = 0 (mod 3) . 
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The same deductions can be made about B(bi,b2,bz), and 
indeed any B-point. Hence 3|[(ai + 2a2) + (&i — 62)], and 
3|[(bi + 2b2) + (cii — 02)]) so both L and R are 5-points. • 

It is evident that if ABC is an integer equilateral triangle, each vertex, 
is an .ET-transform of the other pair. We use this fact in the next theorem. 

Theorem 5.4: The centroid of an equilateral triangle of 
.B-points in TTQ is a lattice point. 

Proof: Let A, B, C be the B-point vertices of the equilateral 
triangle. Suppose that A —> B —> C is anticlockwise. Then: 

C = E(AB) = (ai + a2- b2, h + b2 - ax, o2 + 61) 

Hence, if G is the centroid of AABC: 

3G = (ai + bi + ai + a2 — b2, a,2 + b2 + h + b2 — ai, 
ai + 2o2 + 2fei + b2) 

= [(2a! + o2) + (61 - b2), (01 - a2) + (6X + 262), 
(ai + 2a2) + (2&i + b2)} . 

We showed in the proof of Theorem 5.3 that all the expres­
sions in round brackets, in the above coordinates, are con­
gruent to 0 (mod 3). It follows that, dividing through by 3, 
all the coordinates of G are integer, and hence G is a lattice 
point. • 

5.3 Study of Triangles in 7To, using .ET-transforms 

We have seen how certain triangles with integer vertices can be drawn in 
the honeycomb plane, whilst others cannot. We can use the -ET-transform 
and the theorems obtained above, to discover other triangles in these cat­
egories. We can also apply the -ET-transform to the sides of triangles (or 
other polygons), and study the geometric figures that can be drawn on 
the resulting points. Many interesting questions can be asked about these 
figures. 
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5.31 Some triangle constructions 

The diagrams below illustrate the constructions which are now to be de­
scribed. 

(i) and (ii) 

(iii) 

X 
A B 

Xf? \\J3y 

75 

>Q 

R3(=C) 

B A 

Figure 1. Some triangle constructions in plane x+y—z 

(i) Given a segment AB. Construct a 60° rhombus on AB, and an 
integer (90,60,30) right-triangle with AB the short arm. 

Method: Determine points Ri, R2, #3 (= C) by three consecutive ET-
transforms: Rx = E(BA), R2 = E(BRi), R3 = C = E{R2Ri). 

Ri = (h+b2 - a2, ai+a2-b±, b2 + ai) 
R2 — (2bi+b2-ai-a2, a\+b2-b1, bi+2b2 - a2) 
R3 = (2bi +2b2 -ai -2a2, 2ax + a2 -2&i, ~3a± - a2 + 2b2) . 

Then ABR2Ri is the required rhombus; and ABR3A is the required trian­
gle. It is evident that in each case there are several other solutions. 
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(ii) Construct an integer (90, 60, 30) right-triangle with the given 
segment AB being the long arm. And another with AB the hypotenuse 
(state conditions). 

Method: We can use figure (i) again. Let AR2 and BR3 intersect in 
D. Then AABD is the required triangle if D (which is the centroid of 
ABR\R2) is an integer point. From theorems 5.3 and 5.4, we know that 
D is an integer point if both A and B are B-points. In fact, D will be an 
integer point whenever (iff) (02 — a±) = (62 — &i) modulo 3. Examples of 
the three possible cases are: 

( 1 ) J 4 ( 1 , 4 , 5 ) , B ( 2 , 5 , 7 ) -» D = (3,4,7) (A, B, Rx are B-points) 
(2) 4(1,2,3), 5(2,3,5) -> D = (3,2,5) (a2 - ax = +1 , b2 - h = +1) 
(3) 4(1,3,4), 5(2,4,6) - Z? = (3,3,6) (a2 - ai = - 1 , b2 - h = - 1 ) 

It is easy to examine all possible cases modulo 3, to prove the above state­
ment, using the fact that: 

3D = [(-ai -2a2+4b1+2b2), (2oj + a2 - 2h + 2b2), 
(oi - a2 + 26i + 462)] 

For example, to prove case (2) we set: a2 = a\ +1 + 3j and b2 = b\ +1 + 3k 
into the first two coordinates of 3D, and find that they are both exactly 
divisible by 3, for any values of 01, bi, j , k. We can proceed similarly to test 
cases (1) and (3), and also those for which A and B differ in their respective 
values of a2 — a\ and b2 — b\ modulo 3. 

To make an integer, (90°, 60°, 30°) right-triangle having AB as hy­
potenuse, we see in figure (ii) that AABE has the required properties if 
E is an integer point. Now, E = (B + i?i)/2. Using the formulae for B 
and i?i, we find that E is an integer point only when a\ = 61 (mod 2) and 
a2 = b2 (mod 2). 

(iii) Show that a (30°, 75°, 75°) integer triangle is impossible. 

Demonstration: In figure (iii), P and Q are ST-transforms of BC 
and CA respectively of a (30°, 75°, 75°) triangle ABC. We show, by a 
contradiction, that triangle ABC is not an integer triangle. 
Suppose that it were. Then by theorem 5.2 both P and Q are integer points. 
Also C is an integer point (given). Now LACB = 30° and LPCB = 60°, 
which implies that IPC A = 30°. Similarly LBCQ = 30° and therefore 
LPCQ = 90°. Finally, since CP = CA = CB = CQ, we have that APCQ 
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is a (90°,45°,45°) integer triangle. But this is impossible, by Theorem 5.1. 
Hence AABC is not an integer triangle. 

(iv) Show that a (90°, 75°, 15°) integer triangle is impossible in 7r0. 

Demonstration: Suppose one were possible, drawn as in figure (iv). 
Then using construction (i), we can construct a (90°, 60°, 30°) integer-
triangle BCD having BC as short side, as shown in the diagram. 
But that gives a combined integer triangle AD AC which is (30°, 75°, 75°). 
But we have already shown that such an integer triangle is impossible. 
Hence the triangle AABC shown in figure (iv) cannot have all integer ver­
tices. 

5.32 The ET-transform set £ of a triangle 

Suppose we are given an integer triangle AABC. Then from each side we 
can find two ET-transform points. We shall call a transform point an outer 
one if the perpendicular from it to its associated side lies wholly outside 
AABC. The others will be called inner transform points. We designate 
the transform points as follows: From sides AB, BC, CA the outers are 
respectively P, Q, R, and the inners are respectively P', Q', R'. We shall 
call the following set of integer points 

£ = {A, B, C, P, Q, R, P', Q', R'} the ET-transform set of AABC. 

Now we can pose various types of problem about the set £, for given 
types of integer triangle AABC. And we shall find that in order to answer 
them, we can resort to a mixture of geometric and number theoretic meth­
ods. 
For example, we can ask what kinds of triangle are PQR and P',Q',R', 
and compare them with AABC. 
There is one special triangle for which the answer to that is immediate: if 
ABC is equilateral, then PQR is also equilateral (with double the side-
length) whilst P',Q',R' is an equilateral triangle which coincides with 
ACAB. 

More generally, we can ask which triples of points in £ are collinear 
(can more than three points be collinear?); and which triples form triangles 
which are similar to AABC. The following two examples deal with these 
questions, for special cases of triangles. 
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The BT-transform set of (90,60,30) triangles 

The diagram shows A ABC, a general (90°, 60°, 30°), together with all its 
six ET-transform points. Prom the diagram we glean the following infor­
mation: 

RQ'R' and PQ'P' are coUinear triples, their 
lines intersecting at Q', the mid-point of AC. 
The following eight triangles are congruent to 
ABC: 

AQ'R, CQ'R,P'BQ, AP'R, 
AP'C, APR', AQ'R', CQ'R'. 

Apart from the equilateral triangles used in the jET-transforms, AR'QQ' 
is also equilateral, with B as its centroid. 
The sets of four points A,P,R',B and A,B,C,P' each forms a cyclic 
quadrilateral. 
All of these lines and figures can be specified generally, using the coordi­
nates from A(ai,0,2,0,3) and B(bi,b2,bs). 

Constructing triangles ABC, for which P',Q',R' are coUinear 

It is possible for the three inner points in Z to be coUinear, as the following 
right-hand diagram shows. Note that the triangle ABC is isosceles. We 
shall show how to find the correct point C, when any two points A, B are 
given. And we conjecture that only an isosceles triangle similar to that 
constructed can have this property. 

A ^ 3 ^ B 
A v ^ ! " gB 

Q' «[- \ \ I /[ . R-
\ \ \ I / / / 

Q' 

Figure 2. Diagrams for Theorem 5.5 
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Theorem 5.5: Given any two integer points, say A(a\, a2, 0,3) 
and B(bi,b2,b3). Then a point C can be found on the per­
pendicular bisector of AB such that the three inner transform 
points of AABC are collinear. 

Proof: Let C be any point on the perpendicular bisector 
of AB, as shown in the left-hand diagram. Let the ET-
transforms of AC and CB be respectively R' and Q'. And 
let LBAR! = LABQ' = 6. The inner transform of AB is P', 
and this point must lie on DC, by symmetry. 

If C be moved downwards from D, angle 6 will increase; 
points Q' and R' will move apart, but the line joining them 
will remain parallel to AB. And since 6 will increase, this 
line will move downwards. Hence, since P' remains fixed, 
there will be one value for 8 at which Q'R' will contain P'. 
Then the inner tranform points of A.ABC will be collinear. 
• 

A formula for the point C 
It is evident that a necessary and sufficient condition for the segment Q'R' 
to pass through P' is that P' is the mid-point of Q'R1. 

Using this fact, we compute formulae for the coordinates of C as follows. 
By the ST-transform formulae, 

P' = (bi+b2 —a2,ai+a2-bi,b2 + ai) 
Q' = (ci+c2-b2,bi+b2-c1,C2+bi) 
R' = {a\ + a2 - c2,c\ +c2 —ai,a2 + ci) 

Q'+ R' = (ai+a2+ci-b2,bi+b2-ai+c2,a2 + bi+C!+c2) 

Applying the condition Q' + R' = 2P', and equating the first two coordi­
nates, we can solve for c\ and c2 to get the required coordinates of C: 

c\ = 2&i + 3b2 — a\ — Za2 

c2 = 3ai + 2a2 — 36i — b2 

c3 = ci + c2 . 

There is another point C which satisfies our initial requirement, which of 
course is the mirror image (in AB) of the above solution. 

Notes: 
(i) We conjecture that the above solutions, obtained from isosceles tri-
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angles with coordinates calculated by the formulae, are the only possible 
solutions to the problem of finding a triangle whose inner IST-transform 
points are collinear. 

(ii) Adding the coordinates of A, B, C for the solution triangle, we find 
that each coordinate is divisible by 3, and the resulting point is P'. Thus 
we have found that P' is the centroid of the solution triangle. 

(iii) The sides of the solution triangle are in proportions 1 : y/l : y/7. 
This is found by computing the lengths of the vectors A — B and B — C, 
algebraically from the coordinates of the formulae for A, B and C, thus: 

BC2 = |B - C|2 

= (2ai + 3a2 - 2&i - 3&2)
2 

+ (3ai + a2- 3&i - b2)
2 + (ai - 2a2 - &i + 262)2 

= a?(4 + 9 + 1) + oia2(12 + 6 - 4) + a£(9 + 1 + 4) 
+ 6?(4 + 9 + 1) + 6i62(12 + 6 - 4) + 62(9 + 1 + 4) 
- ai6i(8 + 18 + 2) - 0162(12 + 6 - 4 ) 
- a26i(12 + 6 - 4) - a262(18 = 2 + 8) 

= 7 x 2{a\ + axa2 + a\ + b\ + bxb2 + h2, 
-2oi&i - aib2 - a2&i - 2a262) 

= 7|A — B| 2 = TAB2 , which was to be demonstrated. 

5.33 An associated Diophantine equation 

We can link the triangle calculations from the above subsection with number 
theory in an immediate, and satisfying, way, as follows. 

The equation just used to find the squares of sides of (1, y/7, yjl) tri­
angles suggests the Diophantine problem: Find all solutions in natural 
numbers of the equation 

x2 + y2 + z2 = 7(u2 + v2 + w2) (*) 

The parametric solution (possibly not for all solutions, but we believe it 
might be so) is: Take any four natural numbers (p, q, r, s) and compute 
(x, y, z, u, v, w) by the following formulae (obtained from above, by setting 
(ai,a2)&i,&2) = (p,q,r,s)): 

x = (2p + 3q) - (2r + 3s) 
V = (3p + q) - (3r + s) 
z = (p-2q)-{r- 2s) 
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U = (p — r) 
v = {q-s) 
w = (p + q) - (r + s). 

We can express this transformation in matrix form thus: 

(x,y,z,u,v,w) = 

1 
- 3 
- 2 

1 
0 
1 

3 
- 2 

1 
0 
1 
1 

- 1 
3 
2 

- 1 
0 

- 1 

- 3 
2 

- 1 
0 

- 1 
- 1 

f p\ 
q 
r 

Examples and notes 

(i) Six solutions: 

(4,1,5,1,2,1), (7,7,0,2,3,1), (7,14,7,4,5,1) 
(3,1,2,0,1,1), (10,8,2,4,2,2), (18,13,5,3,4,7) 

(ii) For any given solution, there are 35 others which are equivalent up to 
permutations of the x, y, z terms and the u, v, w terms. 

For example, (4,1,5,1,2,1) = (1,4,5,1,1,2). 

(iii) We define a primitive solution in the usual way. A solution is primitive 
iff gcd(a:,.y, z, u,v,w) = 1. In examples (i), all solutions are primitive except 
(10,8,2,4,2,2); this is permutation-equivalent to 2(4,1,5,1,2,1). 

(iv) It is curious, with a Diophantine equation of this type, that some­
times two solutions can be added to form another one. For example: 
(4,1,5,1,1,2) + (1,2,3,0,1,1) = (5,3,8,1,2,3) is a solution to equation 
(*). But (4,1,5,1,2,1)+ (3,1,2,0,1,1) = (7,2,7,1,3,2) is not a solution. 

A glance at the sum solution in (iv), viz. (5,3,8,1,2,3), shows that its 
terms are all Fibonacci numbers. It is natural, since we are working in the 
honeycomb plane, that we ask if there are classes of solutions of (*) which 
either are Fibonacci vectors (6-tuples), or which can be characterised in 
terms of the Fibonacci numbers. One such infinite class of solutions of (*) 
is the following, Vn 6 Z: 

{(x,y,z,u,v,w) - {Fn+Z + Fn+1, F„ + 4 - F n _ i , Fn-2, Fn, Fn+i, Fn+2) } 
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This is obtained by putting {p,q,r,s) = (Fn+2,Fn+3,Fn+i,Fn+2) in the 
parametric form of the solution. 

Expressing the result in another way, we can say that 

Sn = (Fn+3 + Fn+i) + (i?„+4 — Fn+1) + Fn_2 

is always divisible by 7, and also by 

Tn = {Fl + Fl+1 + Fl+2) : and Sn = 7Tn. 

This version says something interesting about sums of squares of three con­
secutive Fibonacci numbers. 
Further, 14 divides 5„, since Tn is even (because two of any three consec­
utive Fibonacci numbers are odd, and the other is even). 
One observation is that S\ = 2.72 and 54 = 2.73; we ask how many Sn are 
of the form 2.7\ 

5.34 I?T-transforms of Fibonacci vector polygons 

Consider the basic Fibonacci vector polygon in no, drawn on the vertices 

••• ,F1(0,1,1) ,F2(1,1,2) ,F3(1,2,3) ,F4(2,3,5) ,F5(3,5,8), ••• 

Taking the left .ET-transforms of the polygon's sides, we get: 

EL(F1F2) = (0,2,2) 
EL(F2F3) = (0,2,2) 
£ i ( F 3 F 4 ) = (0,4,4) 
EL(F*F6) = (0,6,6) 

It quickly becomes apparent, when a few more sides are £T-transformed, 
that all of the sides of the Fibonacci vector polygon are transformed onto the 
F-axis; and that the points are themselves in a Fibonacci vector sequence 
generated by F(a ,b) with a = (0,2,2) and b = (0,2,2). 

The corresponding right £T-transforms are: 

••• ,(1,0,1),(2,1,3),(3,1,4),(5,2,7), ••• 

We note that this is another Fibonacci vector sequence, with initial vectors 
(1,0,1) and (2,1,3); but it is NOT a vector sequence inherent to plane 7r0. 

If we take the left .ET-transform of this new vector sequence, we find a 
small surprise. It does not return us to the original vector sequence, but to 
one which is twice the original. Symbolically, EL{ER{J-)) = IT . 
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We shall not pursue these studies of ET-transforms of Fibonacci vector 
polygons any further, although it is evident that many interesting results 
await discovery. We conclude the Chapter by stating and proving the gen­
eral result for left .ET-transforms of inherent Fibonacci vector sequences, 
as exemplified above. 

Theorem 5.6: Let F(a, b) be an inherent Fibonacci vector se­
quence in 7To. Then the left £T-transform of its vector polygon 
is a linear Fibonacci vector sequence in the Y-axis. 

Proof: Let a = {ai,0,2,0,1 + 02). Then, for an inherent vector 
sequence in 7To, we have b = (02, a\ + 02, a± + 2a2). And the next 
two terms are: 

c = (ai +02,01 + 2a2,2ai + 3a2) 
d = ( a i + 2 a 2 , 2 a i + 3 a 2 , 3 o i + 5 a 2 ) . 

Taking left ET-transforms, we obtain: 

EL(ah) = (0,2a2,2a2) = 2a 2 (0 , l , l ) 
EL(bc) = (0,2(01 + 02), 2(oi +02)) = 2 ( a i + a 2 ) (0,1,1) 
EL(CSL) = (0,2(oi + 2a2),2(ai + 2a2)) = 2(ax + 2a2)(0,l , 1) 

It is evident that this is a sequence on the Y-axis, with the general 
term being 2(Fna,i +i rn+io2)(0,1,1) . We should show this to be 
true by taking c, d as the nth and (n+ l)st terms respectively of 
F(ab), and taking the JBT-transform of cd. It is an elementary 
exercise to do this. • 

As a final comment, we remark that it is curious that we have found 
a way to transform all of the inherent Fibonacci vector polygons onto the 
same straight line (the Y-axis), when the start of all our investigations in 
this Part was to 'lift' all of the Fibonacci number sequences (by 'vectoriz­
ing') out of the number line and spread them out into the plane TTQ. 
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Chapter 6 

Vector Sequences Generated in Planes 

In Chapters 2 and 3 we defined integer-vector recurrence equations, and 
studied some of the geometric properties of vector sequences generated by 
them. Figure 2 of Chapter 3 shows the honeycomb plane iro = z — x + y 
with parts of the basic Fibonacci and Lucas vector polygons plotted on it. 

In this Chapter we shall develop these ideas further. In particular, we 
shall study vector sequences in the general plane z = cx + dy, defining first 
a vector/matrix mode of generating vector sequences which are 'inherent to 
the plane'. We shall call the equation for this generating mode the general 
Type I vector recurrence equation. And the vector recurrence relation 
defined in Chapter 2 will now be called a Type II recurrence equation. 

We begin by listing eight examples of integer vector sequences, and 
discussing properties of them. Then we state and prove several general 
theorems about Type I and Type II generated vector sequences. 

Finally, we concentrate upon the class of Fibonacci vector sequences in 
the honeycomb plane, and study various aspects and transformations of 
them. 

6.1 Eight Example Vector Sequences 

We recall the following terminology: x = (x, y, z) is an integer vector if all 
of its coordinates are integers; we shall say it is a coprime vector if also 
gcd(x,y,z) = 1. We shall generally omit the adjective 'integer' when it is 
clear that integer vectors are being treated. 
{x„} will denote an integer vector sequence if x„ is an integer vector for 
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each given value of n. It will be a coprime vector sequence if all its terms 
are coprime vectors. 

Eight examples of integer vector sequences follow, with discussion on 
some of their properties. 

Examples of vector sequences: 

(1) Basic Fibonacci: 
(0,1,1), (1,1,2), (1,2,3), ..., (F„_i 

(2) Basic Lucas: 
(2,1,3), (1,3,4), (3,4,7), ..., (Ln_i, Ln, Ln+1), ... 

(3) Basic Pell: 
(0,1,2), (1,2,5), (2,5,12), ..., (P n _! 

(4) (0,1,1), (1,2,3), (3,5,8), ..., (F 2 n_ 2 , F 2 n _i , F 2 n_ 2 ) , ... 
(5) (0,1,1), (2,3,5), (8,13,21), ..., (F 3 n _ 3 , F 3 n _ 2 , F 3 n _i) , ... 
(6) (0,1,2), (1,1,3), (1,2,5), ..., (F n_i , Fn, Fn+2), ... 
(7) (0,1,3), (1,3,8), (3,8,21), (8,21,55), ..., (F 2 n_ 2 , F2n, F2n+2), ... 
(8) (1,1,2), (3,5,8), (4,6,10), (7,11,18), (11,17,28), ... 

We observe that vector sequences (1), (2) and (3) are, respectively, the 
basic Fibonacci, Lucas and Pell sequences. (4) is a subsequence of (1), and 
in vector form it is: F i , F 3 , F5, ..., { F 2 n - i } , ... All eight are integer vector 
sequences: only example (8) is not a coprime sequence. 

It is of interest to note that in both the vector sequences (4) and (5), 
the union set of all coordinates used in the vectors is the set of Fibonacci 
numbers T= {0,1,1,2,3,5,8,. . .}. In (5) the set T is used exactly, each 
Fibonacci number appearing once only among the coordinates; whereas in 
(4) there is redundancy — the set {F2n} is used twice. A problem for study 
is to determine other vector sequences which use only Fibonacci numbers 
as coordinates; in which planes these sequences occur, and how much re­
dundancy they have. 
Vectors in (6) use only Fibonacci numbers, but they do not lie in the Fi­
bonacci plane. Vector sequence (7) is another example of such sequences; 
this time the vectors all lie in the plane z — — x + 3y, and there is both 
deficiency and redundancy in the use of the Fibonacci numbers in their 
coordinates. Other examples of vector sequences with these properties will 
be given below. 

Finally, vectors in sequence (8) lie in the same plane as do those of 
sequence (1); but only the first two vectors have all their coordinates Fi­
bonacci numbers. 
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6.2 Vector Sequence Planes 

The vectors in sequences (1) to (8) above lie in planes of type z — ex + dy. 
Thus vectors of (1) and (2) are all in the plane 7r0 = z = lx + ly. Vectors 
of (3) lie in the plane z = lx + 2y; we shall refer to it as the Pell plane, and 
designate the nth vector in the sequence by P n . 

We can use ir(c, d) to symbolize the planes z = ex + dy. Then the Fi­
bonacci and Pell planes are, respectively, 7r(l, 1) and 7r(l, 2). The only other 
plane represented in the examples is 7r(—1,3), which includes sequence (7). 
We shall call the planes 7r(c, d), when c and d are both integers, sequence 
planes; we shall see below how vector sequences can be generated in them 
in a special way, which determines their inherent vector sequences. 

Before moving on to discuss vector recurrence relations, we include an 
example of an integer vector sequence which is not in a sequence plane as 
just denned, thus: 
(9) (1,2,2), (3,2,3), (4,4,5), (7,6,8), ..., (Ln, 2Fn, Fn+2), ... 
The vectors in this sequence all lie in the plane 2x + 3y = 4z, which is not 
a sequence plane since it cannot be expressed in the form z ~ cx + dy with 
integer coefficients.. 

In Section 6.4 we shall define two types of recurrence relation, by which 
the vector sequences exemplified above are generated. First we must look 
at certain transformation matrices, which are associated with the plane 
equations in interesting ways. 

6.3 Inherent Transformations of Planes 

Suppose that the vector x = (x, y, z) belongs to the plane ir(c, d). Then we 
call* the 3 x 3 matrix H the inherent transformation matrix of the plane if 
x' = (y, z, cy + dz) and if xH = x'; that is, if H transforms x into the given 
x'. We call this a forward transformation of x. It may quickly be checked 
that: 

/ 0 0 0 
H= 1 0 c 

\ 0 1 d 

*We use the symbol H for this matrix as a tribute to the Australian mathematician 
A. F . Horadam, who has published so many beautiful results about pairs of Fibonacci 
sequences. 
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We note that det(H) = 0, so H is a singular matrix; therefore it has no 
inverse. However, we can choose (see below) a pseudo-inverse H~ which 
will perform a backward transformation of the kind we want. The desired 
pseudo-inverse is one which satisfies x'H~ = x; it has the following form, 
as may be checked easily: 

H~ = 

To see that H and H~ are pseudo-inverses of one another, it is only 
necessary to check that both have zero determinant and that HH~H = H 
and H~HH~ — H~. Thus, the matrix H~ is a reflexive generalized inverse 
ofH. 
The inherent matrix H(l,l) for the honeycomb plane has the following 
properties, in its powers Hn and H~n. 

Theorem 6.1 

(i) Hn = 

H~n = 

(«) Hn + H~n=\ Fx-n + Fi+n | , for n = 1,2,3, 
F „ 

[Recall that F„ = (Fn_1 ,F„,F„+ 1) . ] 
It is easy to show that the middle row of this matrix is 

L„_iFo if n is odd, and Fn-\Lo if n is even. 

(iii) The characteristic polynomial of Hn is —A(A — 
a")(A —/?"); hence its characteristic roots are 0, an, j3n where 
a is the golden ratio, and a/? = — 1. 

Proof (i): Both formulae, for Hn and H~n, are proved easily 
using induction on n. • 
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-A 
Fn-2 
Fn-\ 

0 
Fn-i -

Fn 

A 
0 

F„ 

Fn+i ~ A 

Proof (ii): Using (i), only trivial checking of the terms of the 
formulae is required. • 

Proof (iii): Using Hn from (i), and 112, 113 from [12, p. 57] 
we have: 

\Hn - XI\ = 

= - A ( A 2 - L n A + ( - l ) " ) . 

The roots of the quadratic factor in the above expression are 
A - Ln±y/I%-i(-l)»)/2 = (L„±F„V5)/2, (using identity 
112). Hence, using a" = F„_i + Fna, we obtain the required 
results: the characteristic roots are 0,an,/3n. O 

Now we are ready to define our two types of recurrence relation, for 
generating vector sequences. 

6.4 Vector Recurrence Relations 

6.41 Type I: The matrix/vector equation, order 1 
We shall study how we can use inherent transition matrices (and others 
that are closely related to them) to generate the kinds of vector sequence 
which we gave as examples in Section 6.1. 

Using H and H~, for any given sequence plane, we can generate vector 
sequences which are entirely in that plane, if we take a starting vector which 
is also in the plane. The two recurrence equations which we need to do this 
are: 

Forward: xn+i = xnH(c,d) (6.1) 
Backward: x n _i = KnH~(c,d) (6.2) 

These two relations, together with a starting vector xi in 7r(c, d), will gen­
erate a doubly-infinite vector sequence, all in that same plane. 

Looking back to the examples (1) to (8) in Section 6.1, we see the 
following illustrations of (6.1) and (6.2) in operation. Thus: 
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(1)' Using # ( 1 , 1), with Xi = (0,1,1), we get the forward sequence 
shown. And, using H~(l,l), the following backward sequence is 
produced: 
« - . . . , ( - 2 , 1 , - 1 ) , (1 , -1 ,0) , ( -1,0,1) , (0,1,1) . The two together 
comprise the full, basic, Fibonacci vector sequence. 

(2)' Similarly, using #(1 ,1) and # - ( 1 , 1 ) , with xi = (2,1,3), the 
two-way basic Lucas vector sequence is generated. 

(3)' The two-way Pell vector sequence shown is generated using 
#(1 ,2) and its inverse, together with xi = (1,1,3), in relations (6.1) 
and (6.2). In order to generate the basic Pell vector sequence, we 
must use initial vector P„ = (0,1,2) in the relations. We then ob­
tain the vector sequence: 

<- . . . ( -2 ,1 ,0) , (1,0,1), (0,1,2), (1,2,5), (2,5,12), . . . -

(4)' The vectors in the sequence (4) are the basic Fibonacci vectors 
taken two-apart. We could write this sequence thus: 

F l , F3, F5, F2n_l, . . . —» 
The square of #(1 ,1) will effect the transformations needed for 

this sequence. Similarly, #~ 2 (1 ,1) will effect the backward transfor­
mations. Hence this two-way vector sequence is given by the follow­
ing recurrence relations, of order 1: 

x „ + 1 = x n # 2 ( l , l ) and x„_i = x n # - 2 ( l , l ) , again with Xi = 
(0,1,1). 
If we were to use (1,1,2) as initial vector, we should generate the vec­
tor sequence of all even-subscripted basic Fibonacci vectors. Hence 
the union of these two subsequences would use up all the Fibonacci 
numbers, in their coordinates, three times. 

We remark, looking back at Theorem 6.1, that we can generate the Fi­
bonacci vectors n-apart by using #"(1 ,1) and its inverse; it seems most ap­
propriate that their characteristic roots should include an and a~n, linked 
to forward and backward generation respectively. However, it is not so sur­
prising, for the general solution to the vector/matrix equation is intimately 
linked with the characteristic roots of # . The next theorem shows how. 
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Theorem 6.2: (General solution of inherent Type I, Binet 
form) 

Let x n + 1 ) € TT(1, 1) and H = H(l, 1). Then: 

(t) x n + 1 = i [ a - 2 i J ( / + a f f ) - r W + ^ ) l x i . 
(ii) x n + i —y A=an~2H(I + aH)xi, as n —» oo . 

Proof: 
If we repeatedly apply the recurrence x n + i = i?x„, for n = 
1 ,2 ,3 , . . . , n, we obtain xn+i = i?nXi. 

Inserting the Binet identity F„ = (an — (3n)/y/& into the 
expression for Hn given in Theorem 6.1, we get the following: 

0 0 0 
y/lHn = Q " - 2 

a71'1 
an~x 

an 

- | 
\ 

an 

an+l 

( ° 
0n~2 

V/?"-1 

/ 
0 

pn-l 

0n 

0 
j 8 n 

^n+l 

= an-2H(I + aH) - /3n~2H(I + 0H). 

Part (i) of the theorem follows immediately. And, letting n —» 
oo and noting that (3 < 1, part (ii) also follows. • 

6.42 General Type I vector recurrences 

The inherent transmission matrix if is a specially chosen matrix, related 
directly to the equation of the plane of operation. We can, however, replace 
H by any 3 x 3 integer matrix (say T), and choose the elements of T so 
that different kinds of vector sequence result from the recurrence relation. 
It is clear that setting rules for the choice of Ts elements is tantamount to 
defining classes of integer vector sequences. We shall call the recurrence 
equation: x„ + i = xnT the general Type I vector recurrence, and give one 
new example. [N.B.—the use of H2 for T is an example already discussed.] 
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Example: 
Working in the Pell plane TTQ, with starting vector Xi = (1,2,5), and 

transmission matrix: 

T = 1 1 3 with inverse T~ = 
0 
3 
-1 

0 
- 2 
1 

0 
- 1 
1 

the following double vector sequence is generated: 

«- . . . (1,1,3), (1,2,5), (2,3,8), (3,5,13), . . . -

This sequence uses the Fibonacci numbers twice, for its coordinates, with 
all the vectors being in the Pell plane. Some pleasing comparisons of T 
with #(1 ,1) can be made: for example, they have the same characteristic 
equation. 

6.43 Type II: The Fibonacci vector recurrence equation, order 2 

The Type II vector recurrence relation (in plane no) is simply the analogue 
of the one which generates the well-known Fibonacci numbers: the num­
bers in that relation become vectors, and the number addition operation 
becomes vector addition. Thus the Type II vector recurrence relative to 
plane TTO is (see Def. 2.1, in Chap.2): x„ + 2 = x n + x„+i . Although 
this is the vector recurrence equation relative to the Fibonacci plane, the 
vector sequence which it generates is always entirely in the plane which is 
determined by Q(0,0,0) and the two starting vectors. 

Similarly, the Type II recurrence equation relative to plane 7r(c, d) is: 

X n +2 = CX„ + dxn_|_i . 

For examples, we observe that each of the vector sequences (1), (2), (3), 
(5), and (7) may be generated by a Type II recurrence. Notice that, for 
example, vector sequence (3) is in the Pell plane, whereas it is generated 
by the Type II recurrence which is relative to the Fibonacci plane. 

This type of vector sequence has been treated in earlier Chapters; for 
example, some geometric properties of it were given in Chapter 3. For 
now, we will give one useful theorem which relates Type I and Type II 
generations of vector sequences in the general plane w(c, d). 
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Theorem 6.3: If x = (a;, y, z) is in the plane ir(c, d), then the 
sequence generated by the Type I inherent recurrence x n + i = 
xnH(c, d) is the same as that generated by the Type II relative 
recurrence of that plane, viz. x„ + 2 = cxn 4- dx„+i. 

Proof: The first three terms of the sequence generated by 
the Type I recurrence are x, xH, andxi? 2 . Using the general 
form of the inherent matrix H(c,d) (see Section 6.3), we find 
that -X.H2 = ex + d(x.H) if (and only if) z = ex + dy — that 
is, if x is in the plane n(c, d). • 

afy) 

Q(OAO) 

Figure 1. Type II production of vector sequence G(a, b) 

6.5 Some Geometric Observations (continuation from Chap­
ter 2) 

The first subsection (6.51) begins with a recapitulation of the essential 
results presented in Chapter 2. It seems appropriate to give this before 
presenting further geometric findings on the whole class of Fibonacci vector 
polygons in the honeycomb plane, in 6.52 et seq. It would be wise, perhaps, 
to re-read Chapter 2 before continuing. 

6.51 Demonstration 1 (recapitulation): 

Figure 1 above shows the general development of a general Type II vector 
sequence, say G(a, b). We assume that a and b are non-collinear, integer 
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vectors directed from origin Q. 

Observations (i): 

Because of the repeated operation of the vector addition law, the an­
gle 6n reduces each time that n increases; it is clear that limn^.oo 6n — 
0. Further, successive vectors in the sequence oscillate above and be­
low a line through Q(0,0,0). We call this the limit-line L. Note that 
all vectors with odd subscripts are above, and all with even subscripts 
are below, the line L. We can write, formally, that limn-^oo x„ = L. 

It is easy to show (see section 2.4), algebraically, that if a and b are 
any two vectors in Z3, then L has equations x/(ai + ab±) = yj{ai + 
0:62) = z/{a,3 + abz), where a is the golden ratio. If the sequence is 
in the honeycomb plane, then the following theorem holds. 

Theorem 6.4: If a and b are consecutive Fibonacci vectors 
in 7To, then the limit-line L is independent of them. 

Proof: Let a = (01,02,01 + 02); then, since a and b are 
consecutive Fibonacci vectors, b = (02,01+02,01+202). Now, 
considering the direction-ratios of L, the ratio of the first two 
components is: 

q2 + ab2 _ 02 + a(ai +02) _ 
ai + ab\ a\ + ab\ 

a(ai + aa2) . . 2 , , s 
= a (using a = 1 + a ) . 

ai + aa2 
Similarly, it follows easily that the ratio of the second two 

components is also a. Hence direction-ratios of L are I, a, a2, 
and so L is x/1 = y/a = z/a2, independent of the two starting 
vectors. • 

Comment: This result is analogous to the fact that in any 
Fibonacci number sequence, the ratio Fn+i/Fn tends to a, 
independently of the choice of starting numbers. 

Observations (ii): 

(a) The sequence of triangles Qxi ,x 2 , <3x2,x3, Qx 3 ,x 4 , . . . 
have equal areas. 

(b) The sequence of quadrilaterals 
Qxix 3x 2 , QX2X4X3, QX3X5X4, . . . are parallelograms of equal area. 
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(c) X1X3X4, X2X4X5, X3X5X6, . . . are straight-line segments, with 
X3,X4,X5 etc. being their mid-points. 

(d) All terms of the vector sequence are in the plane determined 
by the three points Q,a, b . 

Observations (Hi): 

The well-known Simson's identities (see 113, [12, p. 57]) may be 
deduced directly from (ii)(a) and the geometry of the plane, thus: 
—Suppose that a = xi and b = X2 are consecutive Fibonacci vec­
tors, in the plane 7i"o = x + y — z = 0. Then x„ and x n + i lie 
in 7ro, and the areas of all triangles Qx„xra+i are proportional to 
the magnitudes of the vector cross-products x n x x n + i (recall that 
A = | | x n | . | x n + i |sin#); but the cross-product coordinates are propor­
tional to (1 ,1 , -1) , the direction-ratios of a normal to the plane TTQ. 
Putting these two results together, we immediately get the Fibonacci 
identities: 

Fn-\Fn+i — Fn = (—1) = Fn-.iFn+2 — FnFn+i 

It is curious how the inductive process of arriving at proof of these 
identities is all taken care of by the geometry of the plane and the 
Type II vector sequence generated in it. 

It is also of note that we can immediately generalize Simson's 
identities to other sequences, in other planes. For example, if a 
and b are both in the Pell plane 7r(l,2), we know that the normal 
coordinates are proportional to (1,2, —1) (the plane is x+2y—z = 0), 
and there follow from this two identities in the basic Pell sequence 
of numbers. 

6.52 Demonstration 2: 

In Figure 2, Chapter 3, we showed how the Fibonacci and Lucas vector 
polygons zig-zagged upwards in the honeycomb plane, tending towards the 
limit line L = x/1 = y/a = za2. 

We now wish the reader to form in his/her mindspace (see [22]) a picture 
of the complete set of Fibonacci vector polygons in the plane no- Imagine 
that every integer vector in the plane x + y = z simultaneously generates 
(by the inherent matrix/vector Type I recurrence equation) a Fibonacci 
vector sequence. Joining consecutive points by line-segments, we now have 
a 'mind-picture' of the complete set of Fibonacci vector polygons. 
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It should be clear that (i) each integer point lies on only one such poly­
gon, and (ii) all the polygons will criss-cross each other infinitely often, 
but only at non-integer points; and (iii) we know that as they all progress 
'upwards' they will tend to each other and the line L. The total result is 
a very complex networking of intersecting polygons in 7r0 — a seemingly 
incomprehensible mish-mash of them. 

To reduce the mental strain, instead of thinking of the formation of 
Fibonacci polygons, we can imagine a point map of the whole plane to 
itself. That is, imagine every point, such as x n , moving to its image point 
x n + i under the Type I inherent transformation. 

To help see where all the points go, we show in (a) below how the 
transformation x „ + 1 = x „ # , when applied simultaneously to all points of 
7T0, causes the plane to transform. The points move as a sequence of sectors, 
say {Si}. Thus sector S0 maps to sector Si, which maps to sector 5 2 , and 
so on. The boundaries of these sectors are the lines (rays from Q(0,0,0)): 
a;/Fn_i = y/Fn - z/Fn+1, with n - 0 ,1 ,2 , . . . . (These sectors are marked 
in Figure 2(a) below.) 

Another helpful thing to do, is to think of the mapping obtained by 
using H2 rather than H as the transformation matrix. With this, sectors 
map to alternate sectors thus: Si -> 5 3 -> S5 ..., and S0 -> S2 -» S4 ... 

Figure 2(a). The points transformation of TTQ, using H 
2(b). The upper and lower chimneys ±xi 
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If we 'join up' the consecutive pairs of dots in this H2 mapping, we 
find that each vector polygon is now separated into two branches, with no 
crossings at all. In Figure 2(b) we show the two branches which together 
contain the basic Fibonacci vector sequence. They form a kind of tilted 
funnel, or chimney, up which the basic Fibonacci polygon zig-zags. We 
have also included in the diagram the negative of this chimney — i.e. the 
mappings of all points —Fn under H2. 

Therefore, we propose to call the pair of branches the upward basic 
Fibonacci Chimney, and its negative the downward basic Fibonacci chimney. 
Similarly, we can imagine the chimneys formed from the vector sequence 
{2F n}, and from {3F„}, and so on, applying the H2 transformation to all 
of their points. The result is a sequence of nested chimneys, which we shall 
designate by {xm}- [The notation seems most appropriate: using 'chi-m' 
for 'chimney'.] 

In Figure 3 below, we give two diagrams which show how the nests of 
chimneys are arranged in the plane TTQ-

Figure 3(a). The first five upward Fibonacci chimneys 
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Figure 3(b). The Fibonacci chimney diagram (or web) (smoothed) 

In Figure 3(a), we show the first four upper chimneys only. On the 
branches, we show points from other Fibonacci vector sequences; and we 
claim that in all of the branches of the whole set of chimneys, there lie all 
the integer-vectors in the plane 7To (above the UV-limit-line). 

To prove this, we only have to look in the sector S\, and observe that 
there are m 'nearest points' on the edge which joins mF_i to m¥\ (in the 
left branch of that chimney). And the transformation by H takes this edge, 
and all of the evenly spaced integer points in it, into the image edge in sector 
52, in the right branch of Xm- Letting m — 1,2,3, . . . , and then generating 
all chimneys from Si, we see that each integer point above UV will be sited 
on some Fibonacci chimney branch. It follows that all integer-vectors below 
UV will occur on the downward Fibonacci chimneys. 

In Figure 3(b), we give a picture of the way in which the Fibonacci 
chimneys cover the integer-points of the plane TTQ- The branches are actually 
piece-wise linear, but we have 'smoothed' their sides together, to produce a 
memorable diagram; the similarities to hyperbolic curves are striking. Note 
the asymmetry of the chimney directions with respect to the axes, and to 
limit-line UV. Note too how the branches of the chimneys are different on 
either side of limit-line L; but they each have symmetry axes, which are 
perpendicular. 
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This is our simplified, pictorial representation of the set of all Fibonacci 
vector sequences, to be stored in our mindspaces. (We have drawn in the 
first three central hexagons, dotted, to create a spider's web image of the 
system.) 

A final remark is that we can think of the two branches of a chimney Xm 
as being the envelope of all the m Fibonacci vector polygons which zig-zag 
upwards within the chimney. 

6.53 Demonstration 3: 

The Lucas vector polygon zig-zags upwards in the second Fibonacci chim­
ney. Since Lo = | ( 2 F _ i +2F i ) it is the mid-point of the first side (in sector 
S\) of the left branch of the chimney. 

Figure 4- The chimney X2 o,nd the Lucas polygon 

Figure 4 shows the first four sides of the polygon. We have marked the 
incidence and reflection angles, respectively i and r, occurring when the 
polygon changes direction at point L2. To describe such changes of direc­
tion, when the vector polygon 'bounces off the chimney walls', we define 
the chimney reflection (or zig-zag) ratio to be: /„ — 6„sinr/(a„sini). It can 
be computed for each reflection point, and the sequence {/„} provides a 
measure of the stretching and flattening-out of the polygon as n increases. 
Below the diagram, we give a formula for / „ , and note that fn tends to a. 

By taking the dot-products of the edges L„_iL„ and LnL„+i with the 
chimney side 2F n _i2F„ + i , and forming the ratio of the results, we get the 
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formula: 

, _ F2n+1 + F2n+3 + -^271+5 + ( — 1) 

Fin + -P271+2 + F2n+4 + ( _ 1) 

It is easy to show* that /„ —> a, the golden ratio, as n —> oo (which we 
could easily deduce by geometric observations on the rising Lucas vector 
polygon, but perhaps not rigorously). 

6.6 Summary 

In this Chapter we have defined two types of vector recurrence equation, 
and given many examples of vector sequences generated by them. These 
examples have all been related to Fibonacci sequences of one form or an­
other; and we have tried to show that there is much of interest and value 
to be gained from studies of these. In particular, we have shown how in­
herent transmission matrices of a family of sequence planes generate vector 
sequences in those planes. We have given an attractive way of viewing 
(imagining) the whole set of Fibonacci vector sequences in the honeycomb 
plane x + y — z — 0; and we have demonstrated how the Lucas vector 
polygon 'rises' up its Fibonacci chimney. 

We used the term 'transmission matrix' because we wish to encourage 
the notion of dynamic generation of vector sequences. Fibonacci vector 
sequences may be thought of as loci of points moving in zig-zag paths, up 
and down chimneys! This view has similarities with that usually taken 
in Markov Chain theory, where sequences of state probability vectors are 
generated using probability transition matrices. Perhaps fruitful parallels 
between Markov chain theory and Fibonacci vector geometry can be drawn. 

tDivide numerator and denominator by Fin, and let n —> oo. 



Chapter 7 

Fibonacci Tracks, Groups and 
Plus-Minus Sequences 

7.1 Introduction 

During the past fifteen years J. Turner has had cause to study several 
types of sequences which were not of numbers but of other mathematical 
objects, such as trees [26], words [25], vectors [30], [31] and 2x2 matrices 
[28]. In each case they were generated by a generalized form of the Fibonacci 
recurrence equation: the objects concerned were defined in a set, and a 
binary relation for combining pairs of them was suitably defined; the symbol 
for this relation replaced + in the Fibonacci recurrence equation. 

He began to believe that this procedure, and the resulting 'Fibonacci se­
quences', should have a generic definition and title; that the form itself was 
worthy of general study; and that, moreover, it could be a useful tool for 
studying the algebras of binary relations. In [29] he expressed these views, 
and proposed to use the name track for sequences which arose from the gen­
eralized form of Fibonacci recurrence. This name was intended to convey 
connotations suggested by some or all of the following words: 'sequence', 
'path', 'process', 'route', 'stepping-stones', 'trajectory', 'trail', 'walk', 'sam­
ple', 'probe', 'trace', 'track in cloud chamber', and of course ' track' itself. 
Most of these words are well-used elsewhere in mathematics. In particular, 
the author thought that 'Fibonacci sequence' suggests 'Fibonacci number 
sequence' far too strongly for it to be retained for sequences generated from 
a form which is defined on any kind of object-set. 

This chapter begins with a definition of the Fibonacci track recurrence 
form and follows with one example drawn from [29]. Then it develops the 
'tool-use' of the form, by describing various studies of sets of tracks (called 

153 
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tracksets) which derive from binary algebras defined on finite sets, such as 
finite groups and latin-square algebras. The hope is expressed that at least 
some of the trackset properties discovered will shed new light on the binary 
algebras. 

Finally, the methods of [31] are used to link studies of tracks in finite 
groups with vector geometry; and it is shown how a trackset of a group can 
be viewed as a knot. 

7.2 Definition of a Track in a Set S 

7.21 Definitions 

General sequences of Fibonacci numbers are given by the linear second-
order recurrence equation: 

xn+2 = cxn+i + dxn , with n = 0,1,2, • • • 

where c and d are fixed integers, and initial terms XQ and x\ are chosen 
from Z. 

In [29] the author proposed to remove the restriction that the terms 
xn shall be integers (they may or may not be). All that is necessary is 
that they are elements of a given set S, which has a binary operation © 
defined on S x S. The coefficients c and d and 'scalar multiplication' must 
be suitably well-defined such that the linear forms {cxn+\ ® dxn) exist and 
belong to S for all choices of c and d. 

For now, c and d will be left out of consideration* (by setting them 
both equal to 1), in order to define the simplest possible Fibonacci track 
recurrence. This form will be called a Fibonacci track recurrence in S. The 
sequences of objects which it generates will be called tracks in S, or just 
tracks. 

*In Section 7.6, however, we shall see how 'plus-minus sequences' relate to linear (c,d)-
forms in Z3. 
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Definition 1: Let the system-pair (5,©) be given, 
where S is any set of objects, and © is a binary relation 
defined on S x S. 

A track in S, relative to (a, b) and ©, is the sequence 
of elements in S which is generated by the Fibonacci 
track recurrence: 

xn+2 — £n+i © %n > with XQ = a, x\ — b, and (a, b) £ S x S . 

Definition 2: Two tracks in S will be deemed equiv­
alent if they have the same set of elements and differ 
only by a cyclic displacement. 

Notation: In general, a bold-face T will denote a track 
in S, and the symbol Tn its nth term. More detail may 
be given thus: T$(a , 6) for the track, and T^' (a, b) for 
its nth element. The symbol T will denote the class of 
all (inequivalent) tracks which can be generated by the 
track recurrence by varying (a, 6) over S x S: we shall 
call this class the trackset in S. 

Definition 3: The collection of sub-track triples or 
('points') (xn,xn+\, xn+2) which occur in the formation 
of a track T is called the triple-set of T, denoted by Tr. 
The union of the triple-sets over T will be denoted by 
Tr. 

Definition 4: All tracks will be infinite, but some will 
be purely, and some partially, periodic. A purely peri­
odic track of period p will be represented thus: 

T = [x0, xi, x2, ••• , xp-i]p . 

A purely periodic track of period p has p equivalent 
forms, each obtained from any other by a cyclic rotation 
of elements. For example, 

T" = [xi, x2, • • • , xp-i, x0}p = T. 

7.22 An example in Vector Geometry: rectilinear spirals 

The main type of track which was studied in [29] was the vector-product 
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track, defined in S = Z3 Thus, the binary relation was (5,©) = (Z3 , x) , 
where the objects are vectors with integer coordinates and x is the vector-
product operation (or 'cross-product'). 

The first five terms of the vector-product track in Z3 are: 

T x ( a , b ) = a, b , (b x a), ((b x a) x b), ((b x a) x b) x (b x a)), • • • 

If numerical examples of vector-product tracks are studied, the locus of their 
terms (i.e. points in Z3 , joined-up sequentially by straight lines) seems to 
'thrash about' wildly in the space. Analysis of the above formulae for the 
terms, however, shows that in general the joined-up points of a track form 
a rectilinear spiral, passing systematically from one to the next of three 
mutually orthogonal arms or directions. The points spread rapidly away 
from each other along these arms. 

In [29] the following formulae were derived for the positions (points) 
represented by successive terms of the vector-product track: 

Formulae: Successive terms (points) on the three arms of the spiral track 
are given by the following formulae for n = 0, 1, 2, 3, • • • : 

the b-arm : T 3 n + 2 = c ^ " ^ 3 — 1 - ^ ; 
the c-arm : T 3 n + 3 = c

F3n+1-1bFanc; 
the d-arm : T 3 n + 4 = c

F3n+2-1bF'3"+1-1d. 

In these formulae, c = b x a and d = 62a — (a • b)b , b = | b | , c = |c | . 

Note the appearances of Fibonacci numbers in the coefficients of the 
arm vectors. Perhaps they might have been expected to occur as exponents, 
since vector-products were being carried out in the recurrence, rather than 
additions; but that was by no means assured at the outset of the investiga­
tion. Thus the Fibonacci vector-product track is an interesting [3D]-vector 
figure, a spiral on three mutually orthogonal arms, which can be placed 
anywhere in Z3 by suitable choice of the initial vectors a and b. 

7.3 On Tracks in Groups 

In Chapters 3, 4 and 6 it was shown how Fibonacci vectors (-Fn-i, Fn, Fn+i) 
can be plotted in the honeycomb plane x + y = z; and that vector poly­
gons can be drawn by joining alternating points in vector sequences by line 
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segments. In the set of all such figures (if2-polygons, or 'chimneys'), no 
polygon intersects any other polygon, and every integer-point in the honey­
comb plane occurs on just one polygon. The diagram in Chapter 6 and [31] 
which illustrates the set of chimneys is reminiscent of a class of hyperbolas, 
with two asymptotes which, however, are not perpendicular to one another. 

It is evident that an infinite Fibonacci vector sequence (which zig-zags 
within a chimney (see Ch. 6) is a Fibonacci vector track in (Z3, +) , and 
that the set of all possible Fibonacci vector tracks (the trackset) exactly 
covers the integer-points of the Fibonacci honeycomb plane (note that these 
points form a group under vector addition). This is an interesting property 
of the trackset of Fibonacci vector tracks. 

It is shown below how tracksets of finite groups can tell us interesting 
things about their groups, too. Similarly, the tracksets of Latin Square 
algebras yield useful information about their algebras. 

7.31 Tracksets and Spectra of the Groups of Order 4 

In this subsection it is shown how to obtain the tracksets of the two possible 
groups of order 4, and then their track spectra. Some of their trackset 
properties are presented and discussed. 

First the operation tables* are given of the cyclic group and the Vier 
group, both of order four. Then their Fibonacci tracksets and associated 
period-spectra and identity-spectra are computed (the spectra are explained 
in observation (4) below, with reference to the two examples). 

Fibonacci Tracksets and Spectra 

Operation tables 

Cyclic Group, C± Vier Group, V 

* 
e 
a 
b 
c 

e 
e 
a 
b 
c 

a 
a 
e 
c 
b 

b 
b 
c 
e 
a 

c 
c 
b 
a 
e 

+The use of operation tables was suggested by A. Cayley in Phil. Mag. vol vii (4), 1854. 
The underlying motivation for the work in this Chapter was to explore how group theory 
might have begun to develop, had Cayley proposed using tracksets instead. 
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Vier Group, V 

e)i 
e,a, a]3 

e, b, b]3 

e, c, cjg 
a, b, c]3 

a, c, b}3 

= Ox 

= (72 

= o?, 

= <74 

= o5 

= o6 

T(V) - {0i,<T2,03,04,05,(T6} 

P(V) = l ^ 5 

(max. period n = 3) 

I(V) = l^3 

(max. period -K — 3) 

7.32 Observations [1] 

(1) To obtain a Fibonacci trackset from an operation table (e.g. for 
C4), begin with the initial pair (xo, x\) = (e, e). Then iterate the Fibonacci 
track recurrence, using the table. The result is the infinite track e, e, e, • • • 
which has period 1: we denote this track by [e]i. 

Next take the pair (e,a) for initial elements, and generate the infinite 
track e, a, a, b, c, a, e, a, a, b, c, a, • • • which has period 6: we denote this track 
by [e,a,a,b,c,a}6. 
Repeat this process, always selecting the initial pair so that (i) it has not 
already appeared as a consecutive pair in an earlier track, and (ii) it is the 
next possible unused pair in alphabetic (i.e. dictionary) ordering of initial 
pairs. 

(2) Track T\ = [e]1 obviously must occur in every group trackset, if e is 
the identity element of the group. 

(3) In the two group tracksets shown, all the tracks are purely periodic. 

Cyclic Group, C4 
Tracksets 

[e]i = n 
[e, a, a, b, c, a]6 = r2 

[e, b, b]3 = r3 

[e, c, c, b, a, c]6 = r4 

T(C4) - { T I , T 2 , T 3 , T 4 } 

Spectra 

period-spectra: 

p(c4) = lWe2 

(max. period -K = 6) 

identity-spectra: 

I(C4) = l ^ 2 

(max. period n = 6) 
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(4) The Period-spectrum (P) of C(4), namely 113162 , signifies that 
there is 1 track of period 1, 1 track of period 3, and 2 tracks of period 6. 
Similarly, for the Vier group there is 1 track of period 1, and 5 of period 
3. Thus they are frequency distributions of track periods, with frequencies 
shown as superscripts. 

(5) The Identity-spectrum (I) of a group is the frequency distribution of 
periods of those tracks in the trackset which have the identity as an element. 
For the cyclic group C4 all the tracks have one and only one identity element 
e, so the Period- and Identity-spectra are the same. Whereas for the Vier 
Group they are different, since two tracks of V do not contain an element 
e. Which groups have identical P- and /-spectra? 

(6) Note that for both groups, Y,Tej-p{T) x / ( r ) = 16, where p, f refer 
respectively to period and frequency of track r , 

Proposition: For a group G of order g, 
VreTPiT) x f(r) = g2 . 

Proof: The sum on the L.H.S. is equal to the cardinal number 
of the multi-set of elements occurring in all the tracks of G. 
But, by the method of construction of tracks, this multi-set 
must consist of all the elements in the group operation table, 
of which there are g2. • 

Before discussing further the properties of tracksets, we show below the 
tracksets of all groups of orders 1 to 8, together with their P-spectra. It will 
be noted that we have used the integers of the set Z n = {0,1,2, • • •, n — 1} 
to label all their elements: 0 is used for the identity element. A discussion 
on numeric labelling of elements will follow the table. 



160 Fibonacci Vector Geometry 

Tracksets of the fourteen groups of orders 1 to 8 
(i) The eight Cyclic groups: 

Gp. Trackset P-spectrum 

Ci [0]i P = l1 

;o]i 
:o,i,i]3 P = II3I 

;0,1,1,2,0,2,2,11s P = l181 

0]i 
0,1,1,2,3,1]6 

0,2,2]3 

0,3,3,2,1,3]6 P = l13162 

P]i 
0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1]2 0 

1,3,4,2]4 P = l 1 4 1 2 0 1 

0]i 
0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4, 

5,3,2,5,1]24 
0,2,2,4,0,4,4,2]8 

0,3,3]3 P = l13181241 

0]i 
p, 1,1,2,3,5,1,6,0,6,6,5,4,2,6, l]ie 
0,2,2,4,6,3,2,5,0,5,5,3,1,4,5,2]1 6 

0,3,3,6,2,1,3,4,0,4,4,1,5,6,4,3]1 6 P = l1163 

p]i 
0,1,1,2,3,5,0,5,5,2,7,1]1 2 

0,2,2,4,6,2]6 

0,3,3,6,1,7,0,7,7,6,5,3]1 2 

:0,4,4]3 

0,6,6,4,2,6]6 

1,3,4,7,3,2,5,7,4,3,7,2]1 2 

1,4,5,1,6,7,5,4,1,5,6,3 12 P = 113162124 



Fibonacci Tracks, Groups and Plus-Minus Sequences 

(ii) The six Non-cyclic groups: 

V = [Oh 

C 2 x C 2 [0>l ,l]3)[0,2,2]3,[0 I3,3]s 
[1,2,3]3 ,[1,3,2]3 P = l 1 3 5 

Da [0]i 
[0,1,1,2,0,2,2,11s 
[0,3,3]s>[0,4,4]3,[0,5,5]3 
[1,3,5,2,4,51a 
[1,4,3,2,5,316 
[1,5,4,2,3,41a P = l ^ ^ 1 

C2XC2X C2 [0]i 
[0,1,1]3,[0,2,2]3,[0,3,3]3, 
[0,4,4]3,[0,5,5]3,[0,6,6]3,[0,7,7]3 

[1,2,6]3,[1,3,5]3 ,[1,4,7]3, 
[1,5,3]3 , [1,6,21s, [1,7,41s, 
[2,3,4]3,[2,4,3] s ,[2,5,7]3 ,[2,7,5]3 
[3,6,7]s, [3,7,6]s, [4,5,6]s, [4,6,5]3 P=l13n 

C4xC2 [ 0 ] i , [ 0 , l , l , 2 , 3 , l ] 8 

[0,2,2]s,[0,3,3,2, l ,3]8 

[0,4,4]3,[0,5,5,2,7,5]6 
[0,6,6]3, [0,7,7,2,5,7]6 

[1,4,5,1,6,7]6 

[l,5,6,3,5,4] f l 

[1,7,4,3,7,6]6 

[2,4,61s, [2,6,4]3 

[3,4,7,3,6,516 P = l13568 

Z?4 [0]i , [0 ,1 ,1 ,2 ,3 ,11s 

[ 0 , 2 , 2 ] s , [ 0 , 3 , 3 , 2 , l , 3 ] « 

[0,4,4]s,[0,5,5]3,[0,6,6]3,[0,7,7]3 

[ 1 , 4 , 7 , 3 , 6 , 7 ] B , [ 1 , 5 , 4 , 3 , 7 , 4 ] 6 

[ l ,6 ,5 ,3 ,4 ,5] 6 , [ l ,7 ,6 ,3 ,5 ,6] a 

[2,4,6]3 , [2,5,7]3 , [2,6,4]3 , [2,7,5]3 P = l ^ " 

Q4 [0]i, [0,1,1,2,3,1]6 

[0 ,2 ,2] s , [0 ,3 ,3 ,2 , l ,3] 8 

[ 0 , 4 , 4 , 2 , 6 , 4 ] 6 , [ 0 , 5 , 5 , 2 , 7 , 5 ] B 

[ 0 , 6 , 6 , 2 , 4 , 6 ] B , [ 0 , 7 , 7 , 2 , 5 , 7 ] 6 

[ 1 , 4 , 7 ] S , [ 1 , 5 , 4 ] 3 , [ 1 , 6 , 5 ] S , [ 1 , 7 , 6 ] 3 

[3,4,5]3 , [3,5,6]s , [3,6,7]3 , [3,7,4]3 P = l ^ G 6 
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7.33 Observations [2] 

(1) The two groups of order 4 have different tracksets; so do the two of 
order 6; so do the five of order 8. It appears that if two group tracksets are 
equivalent, then the groups are equal. Indeed, this implication is true for 
finite groups, and moreover, it is two-way. In other words, two tracksets 
are equal (up to labelling) if and only if the two associated groups are 
isomorphic. The following paragraph gives an outline proof of this assertion. 

It is evident from the way by which a trackset is derived from a group 
table, that all information about binary operations which is stored in an 
operation table is transferred to the tracks of the corresponding trackset. 
Moreover, if the trackset is given, the operation table can be recovered from 
the tracks, reading off its terms from successive triples in them. The set 
Tr of triples (which link together to form the tracks) determines both the 
operation table and the trackset uniquely. 

(2) Likewise, the corresponding P- and /-spectra for the various groups 
listed in (1) are different. It is evident that a trackset spectrum is an 
invariant of its group. We do not know whether two groups may have the 
same spectrum: I doubt whether this could be so. We have examples of 
two different Latin-square algebras which have the same P-spectra; but 
they are not groups. 

(3) The numeric labelling of the objects was not done arbitrarily, al­
though it could have been: the integers (symbols) in Z„ are merely substi­
tutes for symbols such as e, a, b, c, • • • We shall not spell out my labelling 
method, except for the case of the cyclic groups: for those we assigned the 
integer symbols from Z„ so that the resulting tracksets were equivalent to 
the tracksets obtainable from (Z„, | x |„); these systems are well-known to 
be isomorphic to the cyclic groups. 

(4) Since the early 1960s Fibonacci sequences modulo n (which are se­
quences in Cn) have been much studied [l]. Hence most, perhaps all, of the 
properties given here about tracksets of cyclic groups may be already well-
known. However, trackset methods can be used with any finite group of 
order n, using the elements of Zn to label the group's elements. The track-
sets will then indicate structural properties of the group, particularly those 
which are invariant to changes in object-labellings. The period-spectrum 
of T is one such property. Indeed, one can go on to handle the tracks and 
tracksets as if they were composed of integers (which in general they are 
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not) provided one keeps in mind that the integers are just symbols for group 
elements, and takes care not to assume number attributes for the elements 
which they don't possess, for example ordering properties. 

An interesting question to ask is: How does a permutation of the ele­
ments of Z„, when applied to all the elements of a group and its trackset. 
affect the tracket's reflection of the group's properties? The answer is: Not 
at all! The trackset remains the same, but with different symbols for its 
elements; hence it tells the same story about the group, whose symbols 
have changed in the same way. In particular, its period-spectrum remains 
exactly the same. 

Some tracksets are even invariant under all permutations applied to the 
set of their elements (other than their identity). This would seem to be a 
strong invariance property. For example, keeping 0 fixed, permuting the 
elements of Z n \{0} in any possible way leaves the tracksets of Ci, C2, C3 
and the Vier group V unchanged. 

7.4 Equivalence of Tracksets and Groups 

Before examining properties of tracksets further, we shall spell out which 
properties a trackset must have for it to be equivalent to a group. Here 
'equivalence' is used in the sense that a group may be derived, uniquely, 
from a trackset, and vice-versa. 

Let T be a set of tracks (i.e. a trackset) in (5,©), with | 5 | = n; and 
let Tr be its triple-set union (see Section 2, Definition 3). Without loss of 
generality, we shall let S = Z„. 

7.41 Equivalence of trackset with a group 

T is equivalent to a finite group of order n if: 

G l : With every ordered pair of elements a, b in 
Z n there is associated a unique triple (a, b, c) in Tr; 

G2: For each x <E Z„\{0}, both (0,a;,a;) and 
(x, 0, x) are in Tr. (0 is the identity element of the 
group.) 
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G3: For each a G Z„, there is an x G Z„ with 
both (a, 2;, 0) and (a;, a, 0) being in Tr. (x is called 
the inverse of a.) 

G4: Let a, b, c be any three elements of Z„; then, 
by Gl, there are (a,b,r) and (b,c,s) in Tr. There 
exists an x £ Z„ such that both (a, s, x) and (r, c, x) 
are in Tr . 

It may be seen that these postulates correspond directly with those 
usually given as axioms for a group, viz.: Gl (closure), G2 (existence of 
an identity element), G3 (existence of unique inverses) and G4 (associative 
law holds). 

From Gl, there are n2 triples in the trackset; and each triple (a, b, c) 
corresponds to a relation a ®b — c. Clearly, the group addition table is 
obtainable from the trackset, and vice-versa. 

We can drop the requirement for finiteness, and allow infinite tracks 
and tracksets. The same postulates then ensure equivalence of an infinite 
trackset with an infinite group. 

7.5 Some Operations with Tracksets 

In this Section, we show first how useful tracksets are for determining 
whether a binary relation is a group relation, and for discovering subgroups 
by checking for inclusion of their tracksets within that of a larger group 
trackset. Then we study certain properties of tracksets; in particular we 
look at the period spectra of cyclic groups. 

7.51 Checking if a binary relation is a group relation 

If we are given a binary operation on a finite set, we can determine its 
trackset directly, without first writing out the operating table. Then we 
can compare this trackset with those listed in Section 3. The following 
example demonstrates the procedure. 

Example 1: (quadratic residues modulo 11) 

It is easily checked that if n G N, and r is the residue of n2 modulo 
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11, then r G {1,3,4,5,9} = Mn. We show next that with multiplication 
modulo 11, M n is a group. 

The trackset, determined directly, is: 

n = [l]i 
T2 = [1,3,3,9,5,1,5,5,3,4,1,4,4,5,9,1,9,9,4,3]2 0 

r3 = [3,5,4,9)4 

N.B. We began with |1 x l | u = 1; then |1 x 3|n = 3, and so on, until after 
4,3 the sequence in r2 repeated itself. Then we checked that 3,5 was the 
first pair of elements not included in the first two tracks, so track r3 began 
with those. Since three tracks use up 52 = 25 elements, and |M |n has 5 
elements, we know that the trackset is complete. 

The only group of order 5 is C5. Comparing the M n trackset with 
the C5 trackset, we see that their period spectra are the same (viz. P = 
1141201): and a quick check shows that the mapping (0,1,2,3,4) <-> (1,3,9,5,4) 
carries one trackset into the other. Hence Mi 1 is a cyclic group of order 5, 
under multiplication modulo 11. 

7.52 Determining subgroups 

The next example shows how to determine subgroups from tracksets. 

Example 2: 

If we are given the trackset of a group, we can determine from its P-
spectrum, and a standard list of spectra of smaller groups, which sub-
tracksets are possible candidates for subgroups. 

For example, the Vier group has P-spectrum l 1 3 s . We know that the 
trivial subgroup (spectrum l1) is a subgroup. And since C2 has spectrum 
1131, there are five candidates for subgroups of V. The trackset for C2 is 
{ [0]i , [0,1,1]3 } ; and from V we see that the following three sub-tracksets 
are all of this form: 

{ [0]i , [0,1,1]3 } , { [0]i , [0,2,2]3 } , { [0]i , [0,3,3]3 }. 

Thus the subgroups of V are < 0 > , < 0,1 > , < 0,2 > and < 0,3 >. 

A slightly more complex example is the quarternion group QA. Its 
P-spectrum (see the table in Section 3) is P = 113966, which indicates 
that Ci t l 1 ) , C2(l131) , C4(l13162) and ^ ( l ^ 5 ) are subgroup candidates. 
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Looking at the tracks of Qi, we quickly determine that < 0 > , < 0,2 > 
, < 0,1,2,3 > and < 0,2,4,6 > are the only subgroups. The Vier group, 
V4, cannot be a subgroup, since Q4 doesn't have three tracks of period 3 
which include the identity element. 

As an aside, we comment that in an early paper on groups, circa 1855, 
Arthur Cayley announced that he had found three groups of order 6. In 
fact there are only two, D3 and C%. Had he done this simple trackset check, 
the P-spectra would have shown him that two of his three were isomorphic. 

7.53 Properties of trackset-spectra of cyclic groups 

We have computed the tracksets of the first 127 cyclic groups, and there 
follow a few observations upon them. It is likely that many of the points 
made will be well-known, so we shall be brief, and not give any proofs. 

(1): The track beginning [0,1,1,...] in each trackset has maximal pe­
riod, say TT*. It is observed in all P-spectra that all track periods divide the 
maximal period TT* evenly. 

(2): In [l], [7] it is stated that the period for an odd prime modulo 
p is related to the entry point Z{p) in the Fibonacci sequence F ( l , 1), as 
follows. The sequence modulo p has period which is respectively 4*Z(p), 2* 
Z(p), or Z(p) according as Z(p) is odd, |Z(p)|4 = 0 or |^(p) |4 = 2. 

For example, the entry point for p = 5 is Z(5) = 5, since F5 = 5. Then, 
since Z(5) is odd, the period is 4 * Z(5) = 20. It may be checked from our 
table of tracksets, that C5 has a track of period 20, which begins [0,1,1,...]. 

(3): Whilst the theories and tables of [l] and [7] do much to explain the 
properties of P-spectra of cyclic groups, those for non-cyclic groups are not 
so easily explained, although it is clear that entry-points still play a crucial 
role. 

(4): By inspection of the first hundred or so of tracksets of cyclic groups 
with prime order, it appears that their P-spectra take certain simple forms. 
They are expressible, both their periods and period-frequencies, in terms 
of p, {p— 1) or (p + 1), as shown in the tables below; and they are related 
to the entry points of p in the basic Fibonacci sequence. 
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One-period Cp tracksets 

Labels 
A 

B 

C 

D 

E 

Forms 

(p+l)1"-1 ' 

KP+D1"-1' 

2(p+l)* ( p - 1 ) 

(p-l)**- 1 ' 

hip-lf[P+1> 

Values of p 
2 

47, 107 
103 

3, 7, 23, 43 
67, 83, 103, 127 
17, 73, 97 
13, 37, 53 
41 
61, 109 

89 

Entry points Z(p) 
3 

16, 36 
19 

4, 8, 24, 44 
68, 84, 104, 128 
9, 37, 49 
7, 19, 27 
20 
15, 27 
11 

Z(p) relations 
Z = p+1 

3 = t ( p + l ) 
Z=1(P+1) 
Z = | ( p + 1 ) 

Z = * ( P + 1 ) 
Z = ± ( p + 1 ) 
Z = i ( p - 1 ) 
Z=J(p - l ) 
Z = J ( p - l ) 

|ZU 
|ZU = 3 

\zu = o 
\ZU = 3 

|Z|4 = 0 

\Z\t = 1 
|Z|4 = 3 
\Z\t = 0 
|Z|4 = 3 
\Z\4 = 3 

Two-period Cp t racksets 

Labels 
F 

G 

H 

Forms 
( p - 1 ) , p ( p - l ) 
( ^ ) 2 , (P-1) P 

( ^ ) 4 , <&)* 

Values of p 
5 
11, 19, 31 
59, 71, 79 
29, 101 

Entry points Z(p) 
5 
10, 18, 30 
58, 70, 78 
14, 50 

Z(p) relations 
Z = p 

Z=p-1 

Z = I ( P - 1 ) 

|Z|4 

\zu = i 
|Z|4 = 2 

|Z|« = 2 

First there is a dichotomy. Disregarding the 1-period identity track, 
which occurs in every spectrum, there are either one period, or two periods, 
in the P-spectrum of Cp if p is prime. The above two tables show the 
trackset forms for p = 2,3,5,.. . , 127. 

(5): Within the tables, it may be observed that when |p|io is 3 or 7, 
the trackset periods are all of the form a(p + 1), with frequencies of form 
b(p - 1), with a, b e Q+: and Z(p)\{p + 1). 
Whereas, when |p|i0 is 1 or 9, the periods are of form a{p— 1) and b(p — 1), 
with frequencies of 2n and 2n~1p respectively: and Z(p)\{p — 1). 

The above observations lead us to make the following conjectures*. 

*Dr. L. Somer (The C. U. A.) published papers on Fibonacci sequences modulo p in 
the Fibonacci Quarterly, in the 1980s. In a recent conversation with this author, he 
suggested that his results would settle these conjectures. He thought, however, that the 
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7.54 Conjectures on tracksets of cyclic groups: 

In the following, we omit primes 2 and 5 from consideration; and we do not 
count the track of period 1 which occurs in every group-trackset. 

(1) Every trackset P-spectrum has one or two period-values. 

(2) For those tracksets with one period-value, the P-spectrum 
has form 

either (i) period = a(p + 1) with frequency = l/a(p — 1), 
or (ii) period = b(p — 1) with frequency = l/b(p + 1), 

with a, b G Q + . 
An infinity of values of a, b will occur as p —> oo. 

(3) For those tracksets with two period-values (pi and P2) the 
P-spectrum has form: 

Pih,P2h = ( ^ ) > ( g ^ T ) ) " , where n e N . 

An infinity of values of n will occur as p —> oo. 

(4) In all cases, (i) if |p|io = 1 or 9, then Z(p)\p— 1 ; whereas 
(ii), if |p|io = 3 or 7, then Z(p)\p + 1. 

(5) (i) In cases (2), for each form \p\i0 is either (1 or 9) or 
else it is (3 or 7). 

(ii) In cases (3), for every form |p|i0 is (1 or 9). 

(6) (i) In cases (2), for every form of P-spectra examples will 
exist such that Z{p)± — 0,1, or 3. 

(ii) In cases (3), every form of P-spectra will have \Z(p) \± = 
2; and Z(p) = (p - l)/n with n G N. 

In the next Section, some tracksets are shown which are equivalent to 
the operation tables of what the author calls 'plus-minus algebras'. These 
algebras are not generally groups; but they have Latin square operation 
tables, and so in this respect their tracksets can be compared with those 
of cyclic groups, studied above. Furthermore, the 'plus-minus' sequences 
are simple generalisations of the Fibonacci sequences modulo p, which adds 
interest to their study in this context. 

conjectures were interesting in the context of tracksets. We are indebted to Dr. Somer 
for his information and comments. 
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7.6 Plus-Minus Sequences Modulo p 

7.61 Definitions 

A 'plus-minus' sequence of integers is generated by the recurrence given in 
Definition 2 below. It will be observed that this is, in fact, a Fibonacci 
track form in (Z,[±]m), where [±]m is the binary operation described in 
Definition 1. 

Definition 1: (the plus-minus operation) 

Let [±]m be a binary operation on elements a, b, 
which involves a succession of additions or subtractions 
as determined by a particular (given) string of plus and 
minus signs, of length m. 

For example, if m is 3 and the given string is (-1 h), 
then a[±]36 = a(-l h)6 = 2a + b, obtained thus: first 
we get, applying the plus sign, a, b —> (a + b); then, 
applying the minus sign, (a+b)—b —> a; finally, applying 
the plus sign gives a + (a + b) —> 2a + b. 

Definition 2: (the plus-minus recurrence form) 

Let Si and 52 be given integers. Then the sequence 
{£„} of integers obtained by applying the recurrence 
5n+2 = Sn+i [i]m Sn is the Fibonacci plus-minus track 
with the given initial values and the given plus-minus 
string of length m, 

7.62 Equivalence with a linear Fibonacci recurrence 

Following the example given in Definition 1, it is not difficult to see that 
whatever [±]m operation is given, the result will be a linear form ca + db; 
and that g.c.d.(c, d) = 1 if c ^ 0 and d ^ 0. 

Thus each plus-minus recurrence form is equivalent to a Fibonacci re­
currence of the type: Sn+i = cSn+i + dSn for some pair (c, d). 

It remains for us to find an algorithm for determining the pair (c, d) for 
each given string [±]m . The tree-diagram below gives a neat solution to 
this problem. 
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(a,0) 

The tree for plus-minus recurrence forms 

The ordered pairs on the nodes of the tree indicate the required forms. For 
example, using again [±]3 = (H h), proceeding from the lowest branching 
node along the three branches labelled +, —, + takes us to the node labelled 
(2a, b). This means that 5„ + 2 = 5„+i[±]35„ = 2S„+i + lSn. 

This tree, and its relationships with plus-minus recurrences, has many 
interesting properties. We have space to mention only a few. 

(i) Each pair (c, d) occurs on an infinity of nodes: thus there is an infinity 
of plus-minus strings which correspond to the same (c, d) recurrence. 

(ii) If we set any plus-minus recurrence sequence in vector form§ we get 
a sequence of vectors in the plane z = ex + dy: this is an inherent sequence 
in that plane (see Ch. 2 and Ch. 6). 

§To do this, replace each triple (Sn-i,Sn,Sn-\-i) in the sequence by the vector S n 
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(iii) The pairs (c, d) from the tree's nodes can be put in 1-1 correspon­
dence with those on the trees used to model the modular group in paper [28]. 
A sub-tree provides all pairs corresponding to rational fractions c/d € Q 
(see the rational number tree in [26]). 

For the purposes of this book, we wish only to present trackset-spectra 
of a few of the Latin-square algebras derivable from plus-minus sequences 
modulo p. For each choice of {p : (c, d)) there is a an algebra on {0,1,2, ...,p— 
1} which has a Latin-square operation table (if c, d ^ 0). 

In the table below are shown the resulting P-spectra for seven different 
choices of (c, d) and with p = 7,11,..., 41. 

P — spectra 
P\(c,d) 

7 
11 
13 
17 
19 
23 
29 
31 
37 
41 

Cyclic 

(1,1) 
163 

5*10" 
286 

368 

92i819 

4 8 u 

? 4 1 4 2 8 

1523031 

7618 

4042 

(1,2) 
3267 

524 

6 2 8 

1618 

409 

1122223 

2042 

1523031 

7 6 1 8 

g 8 1 0 164 

Pell{2) 
(2,1) 

233266 

251011 

2 6 1 2 i 3 

28834 

291819 

2 U 11 2 

2 i 4 2 8 2 9 

21556 

2183637 

2lo2082 

(2,3) 
481 

304 

341213 

1612721 

631819 

1763 

8401 

3203 

13681 

2806 

(1,3) 
163 

815 

43523 

1618 

409 

1122223 

2830 

6415 

7618 

2860 

Pe//(3) 
(3,1) 

242 

1201 

^ l se 1 

441617 

904 

1122223 

742829 

2404 

1718 

336s 

(3,2) 

2367 

25521010 

2634624 

2816lv 

2 9 1 8 i 9 

2 l l l l 222 2 2 

2142829 

2153031 

2181874 

O20o205 

Trackset P-spectra for various values ofp\(c,d) 

7.63 Comments and comparisons 

There are many interesting comments and comparisons that can be made 
about the spectra shown above. We have space for only a few brief remarks. 

(i) The first column is of the cyclic groups, treated above. The spectra 
are not all unique; for example, 163 occurs in columns (1,1) and (1,3) when 
p = 7. 

(ii) Tracksets with periods of frequency 1 are rare, and therefore of 
interest. For (c, d) = (2,3) they occur three times, when p = 7,29 and 37. 
For these algebras there is just one track, passing through all of the p2 — 1 
tabled elements, before repeating. Will there be more such tracksets in the 
column headed (2,3) a s p - * oo? An infinite number of them? What rule 
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causes them to occur? 

(iii) Occurrences of tracksets having three different periods are also rare. 
Three occur in the column headed (3,2), and one in column (2,1). They 
all fit the formula 2 ^ ) ( E y i ) 2 (p - l ) ( p - 1 ) . What is the underlying reason 
for this? 

(iv) Three trackset-spectra in column (1,2) are equal to the three cor­
responding ones (when p = 17,23,37) in column (1,3). Why does this 
happen? We hope that further study will shed light on this question. 

Next we show briefly how tracksets of the vector forms of sequences 
treated above may be said to correspond to knots in Z3. 

7.7 A Knot from a Trackset 

If we follow the techniques of Ch. 1 and papers [30] and [31], we can con­
vert the tracks of finite groups and plus-minus algebras into sequences of 
vectors in Z3. If we then 'join up consecutive points' with line-segments, 
each track becomes a closed polygon in Z3 . With care, we can define this 
process (making infinitessimal adjustments in coordinates where necessary) 
so that no track polygon is self-intersecting; and, further, that no two track 
polygons have common points. Thus, every track (except [0]i) is topologi­
cal^ equivalent to a knot. We define the identity track [0]i (now regarded 
as an infinite sequence of vectors (0,0,0)) to be equivalent to a degenerate 
null knot. 

Thus, if a Latin-square algebra has a trackset of v tracks, its corre­
sponding set of vector polygons (with appropriately well-defined coordinate 
adjustments to avoid intersections) is topologically equivalent to a set of v 
knots; that is, to a i/-link in Z3. 

Study of these links reveals that each track (i.e. its vector polygon) 
moves within and between a stack of planes z = x + y + m, m £ Z, all 
parallel to the Fibonacci honeycomb plane z = x + y (see Ch. 3). In 
particular, for the cyclic groups modulo p, the planes are just two, viz. 
z = x + y and z = x + y — p. 

We give examples only of those knots which arise from the first five finite 
groups, of orders 1 through 4. The cyclic groups have knots as follows: 
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C\ is a degenerate null knot (as defined). 

C2 has a knot which is the disjoint union of the Ci knot (all group knots 
have this degenerate knot as a component) and the null knot obtained from 
the triangle on points (0,1,1), (1,1,0), (1,0,1). Note that the first and third 
points are in plane x + y = z, and the second point is in plane x + y — 2 = z. 

C3 has only two tracks. One gives the degenerate knot. The other 
is [0,1,1,2,0,2,2,1]g which provides eight points, of which 5 are in plane 
x + y = z and 3 are in x + y — 3 = z. The vector polygon intersects itself 
at one point at which we change x, y, z to x, y, —Sz. The closed polygon is 
then equivalent to a null knot. 

Ci has four tracks. One provides the degenerate knot, and the knot 
resulting from the other three is a 3-link which is commonly known as the 
Russian Wedding Rings. In the topological knot tables it is the link 6|. Its 
diagram is shown below. 

The only non-cyclic group with n < 4 is the Vier group: 

V4, the Vier group, has five tracks other than [0]i, each of which has a 3-
point vector polygon. Their points lie in a stack of four parallel honeycomb 
planes, with parameters m = 0, —2, —4, —6. The equivalent knot is the 
disjoint union of a degenerate knot, a null knot, and a chain of four linked 
rings. Its diagram is shown below. 

(a) The C4 Knot (b) The V4 Knot 

7.8 On Aesthetics and Applicability of Tracksets 

In this Chapter the concept of a Fibonacci trackset, denoted by the symbol 
T, has been defined and illustrated. The author has attempted to show 
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not only that tracksets are elegant mathematical objects, having many 
interesting properties that beg for deeper study, but also that they are 
useful tools for investigating a wide variety of algebraic structures. Indeed, 
he has shown how tracksets actually define binary operation algebras, and 
in themselves display, or hint at, many of their properties. 

To review examples of trackset use, and to discuss associated aesthetic 
values, let us consider first the tracksets of the cyclic groups (see the table 
in Section 3). We wish to do this in the spirit of J. P. King's plea [16, p. 
181], in his book The Art of Mathematics. He says that mathematicians 
should attempt to assess^ the aesthetic values of any mathematical con­
cepts which they create or discover. He suggests that we use two principles 
as standards by which the aesthetic quality of a mathematical notion can 
be gauged, namely the principles of minimal completeness and of maximal 
applicability. The closer the new notion meets these two standards, the 
higher is its aesthetic quality. 

For tracksets (say T) to score highly on these tests, it must be demon­
strated [quote] (1) that T contains within itself all properties necessary to 
fulfil its mathematical mission, with T containing no extraneous proper­
ties (i.e. minimal completeness), and (2) that T contains properties which 
are widely applicable to mathematical notions other than T (i.e. maximal 
applicability). 

The following paragraphs give evidence for a good rating of T against 
both of these standards. 

Minimal completeness 

Tracksets are exactly equivalent to operation tables; the one can be 
derived from the other, and vice versa. Thus a trackset completely defines 
a binary algebra. Its 'mathematical mission' is to enable lists of properties 
of the algebra to be discovered; that is, to develop and analyse the algebra. 
This it can do, or at least it provides a complete basis for doing so. It 
is minimal in the sense that with any less information than the trackset 
contains, the binary algebra would not be completely defined. 

[It is conceded that there are other ways of presenting algebras, each of 
which provides its own benefits for further study of its algebra: for example, 
representations of groups by means of generators and relations.] 

^The noted American painter Robert Henri has said of 'telling': "Low art is just telling 
things, for example 'There is the night.'; High art gives the feel of the night." 
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The next two paragraphs compare and contrast the use of tracksets and 
operation tables for studying groups. 

The operation table of a cyclic group is merely a square matrix with a 
top row of {0,1,2, • • • , z n _ i } , followed by n—1 rows which are progressively 
cycled permutations of the top one. The result is an n x n matrix having all 
forward (upward) diagonals sporting constant elements: a serene, simple, 
block of n2 integers - pretty but bland. Moreover, with regard to the whole 
class of cyclic groups, if you've seen one such table you have seen them 
all (likewise for the generator/relation presentations). There is no hint in 
them that cyclic groups have different properties amongst themselves, with 
interesting (sometimes surprising) actions and subgroups to explore. 

By contrast, even a cursory examination of the tracksets of groups 
(cyclic and non-cyclic; and also of other binary operation structures) re­
veals all manner of patterns worthy of study. Subgroups can be readily 
discovered as subsets of tracks, and checked against smaller tracksets; and 
the period- and identity-spectra vary widely, with interesting properties 
presenting themselves for study; the periodic behaviour of elements within 
tracks, related to Fibonacci sequence entry-point theory, also holds much 
fascination. If work were to be done to understand and classify trackset 
properties, then new developments in the algebraic structures which they 
define would be bound to follow. The contrasts in aesthetic appeals of op­
eration tables versus tracksets seem to the author to be 'static and bland' 
versus 'dynamic, vigorous and revealing'. 

Maximal applicability 

With regard to standard (2), the Venn diagram below shows adequately 
that the notion T has a huge range of 'mathematical applicability'. It was 
a pleasant surprise to the author to realise that Fibonacci tracksets (i.e. T) 
could be used to underpin - indeed define - every binary algebraic structure. 

A good case has surely been made for tracksets to be highly rated by 
King's two aesthetic-value principles. 
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Plus-minus 
algebras ^/_~ Latin square algebras^v 

Binary algebras 

Groups \ 

- Cyclic ^ / 

Fibonacci Track Mathematics 

Figure 1. Venn diagram showing the embrace 
of Fibonacci Trackset mathematics 
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PART B: GOLDPOINT GEOMETRY 

SECTION 2 

GOLDPOINT GEOMETRY 

Vassia Atanassova and John Turner 

'Goldpoint' is a word coined by Turner to designate a point of golden section 
in a line segment. Goldpoints arise naturally in certain geometric figures, 
and it is always of interest to discover them, and to find out why they are 
there in the figures. Such studies have often been recorded by mathemati­
cians since the ancient times of the great Greek geometers. In this Section 
we explore new possibilities for introducing goldpoints into figures, making 
constructions which involve them, and analysing the consequences. 

Turner has dubbed the study of goldpoints in geometric figures, whether 
discovered or introduced, as 'goldpoint geometry'. Many interesting exam­
ples of such studies are given in the next seven chapters. 
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Chapter 1 

On Goldpoints and Golden-Mean 
Constructions 

1.1 Introduction 

In [l] Turner introduced a notion which he called Goldpoint Geometry. It 
consists of the study of geometric figures into which golden-mean points 
have been constructed or introduced. Such points he defined to be 'gold-
points'. 

In fact, goldpoint geometry began with a Christmas puzzle. In late 
1996, Turner sent the Atanassov family a Christmas card, on which he 
had drawn the star diagram shown below, and had set a puzzle about its 
crossing points for them to attempt. 

The Fibonacci Star 
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He included also a set of equilateral triangles, made from card and marked 
with golden section points; various jig-saw problems with these cards were 
suggested. The Atassanovs became interested in these problems, and sub­
sequent developments with related geometric and combinatoric themes led 
to results which are to be described in this Section. Christmas puzzle: Find 
how many points in this Star are interior golden section points of line seg­
ments, given that the figure is based on four equilateral triangles, and that 
the two boundary points immediately below the apex are golden section 
points of the top triangle's sides. 

In subsection 1.6 we discuss this puzzle in detail. Before that, however, 
we define 'goldpoints' and then introduce the reader to many simple results 
and examples of studies in goldpoint geometry. 

Definition of goldpoints 

In general, P is an interior goldpoint with respect to a line-segment 
AB if P is an interior golden-mean of the line-segment. There are two 
candidates for the position of a goldpoint in AB. 
There are also two exterior goldpoints relative to AB. 

We can achieve a simple definition of all four goldpoints if we assign a 
sense (±) to segments in the line of AB, according as they are traversed 
(or described) in the direction A —> B (+), or in the direction B —> A {—). 

Definition: 
(i) If AB is a line-segment, and P is a point in the line 
of AB such that \AP : PB\ equals a or 1/a (where 
a = (1 + \/5)/2) then P is a goldpoint with respect to 
AB. 

(ii) A goldpoint is an interior goldpoint if AP/PB is pos­
itive, and an exterior goldpoint if AP/PB is negative. 
(AP and PB are to be given senses (±) as described in 
the paragraph above.) 

(hi) If \AP : PB\ equals a1 or l / a \ we shall call P an 
ith-order goldpoint with respect to AB. 

When calculating goldpoint coordinates, or when checking to see whether 
a given point is a goldpoint, the following lemma is often most useful. 
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- * -

a2 G a"3 H a"2 

- • 

Lemma 1: The interior goldpoints with respect to two points 
A and B_ are G = 1/aA + l/a2B_ and H_ = 1/a2 A + l/aB_. 

Proof: This follows from the fact that the weights 1/a and 
1/a2 sum to 1, and form ratios a : 1 or 1 : a. In calculations, 
use is often made of the identitites 1/a = a — 1 and 1/a2 = 
2 - a . • 

Whenever we are studying only ratios, we may assume the length of the 
line-segment AB to be \AB\ = 1. Then \AG\ = 1/a2, \GH\ = 1/a3 and 
\HB\ = 1/a2. The situation is shown in Figure 1 below. 

B 

Figure 1. Unit segment AB, and its goldpoints 

The following lemma is about cross-ratios in AB, with respect to its 
goldpoints. It follows directly from formulae given in [6]. A second lemma 
is given below it, which links goldpoints with harmonic ratios. These lem­
mas indicate that interesting results in goldpoint geometry may be found 
as special cases of results in cross-ratio geometry. We do not follow this 
direction in this book, but intend to do so later. 

Lemma 2: The six possible cross-ratios from AGHB are 

±a±1 and a ± 2 . 
Proof: The cross-ratio {AG, HB) is: 

AH GH 1/a 1/a , + 1 : = —— x —7—5- = a = + a . 
AB GB 1 1/a3 

Then (see [6]) the other possible cross-ratio values are 
1/a, 1/(1 - a) , (1 - a) , (a - l ) / a , a/{a -1), which yield the 
values given in the lemma. C 

The next lemma concerns two points placed in AB, which, together with 
A and B form an harmonic range. The first point is a goldpoint of AB. 
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a'2 aA 

K 
A« •J-%—I—• B 

- « * * - « • -
a 

Figure 2. Diagram for Lemma 3 

Lemma 3: Let J, K be defined with respect to A,B as 
follows: 
J, K are points internal to the segment AB such that: 

A J 1 J AK" „ 
~ = l a , a n d — = 2 a . 

Then (i) A, J, if, B is a harmonic range [6]; 

(ii) J is a goldpoint of AB; 

(iii) AT is a goldpoint of JB; 

(iv) J is a 3rd-order goldpoint of AK. 

Proof: We may set \JB\ = 1, and then the diagram of the 
range is as shown above, since: 

AJ/ JB = a=>AJ = a; 
and AK/KB = 2a 

=> AJ + JK = 2a(JB-JK) 
a + JK = 2a- 2aJK 

=> JK = 1/a2; 
=>• KB = JB-JK = l/a; 
=> AK = a + 1/a2 = 2, 

and so AB = 2 + 1/a - a2 . 

Then for (i), the cross ratio is: 

,, _, . „ T. KB AJ 1/a a 
(KA.BJ) x = — x — = - 1 
V ' ' KJ AB -1/a2 a2 

(The other two cross-ratio values are 2 and 1/2.) 
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So, by definition, the range is harmonic [6]. 
Results (ii), (iii) and (iv) follow directly from the diagram 
measures. • 

In view of Lemma 3, we could call (J, K) a golden-harmonic pair of 
points with respect to the segment AB. 

After the above preamble, definitions and lemmas, we shall now state 
and discuss briefly the objectives of goldpoint geometry, as we see them. 

The general objectives for studies in Goldpoint Geometry 
are the discovery and analysis of properties of goldpoints in 
geometric figures, as the goldpoints arise, naturally or by 
design, in geometric constructions. 

The occurrences of the goldpoints are either by construction, or else by 
direct introduction of such points into the figures. Further constructions 
may then be made by which additional goldpoints arise, thereby extend­
ing the scope and interest of the associated figures and analyses. Many 
examples of these procedures are given in this Section. 

By contrast, we point out that so-called Fibonacci mathematics is often 
concerned with study of pure mathematical or natural objects and processes 
in which discoveries of golden-means or Fibonacci numbers, and identities 
involving them, bring surprise, delight and new insights into the objects 
and processes. The goldpoints occur naturally, not by introduction. Many 
books have been written which detail studies of this nature, across sundry 
domains. The book by Huntley [3] is a good example. The web-page 
maintained by Knott [4] may be consulted for many more examples. 

The next purpose of this Chapter, following the above introduction, is 
to give four simple examples of studies in Goldpoint Geometry. The first 
two examples were introduced briefly in a talk to the Fibonacci Association 
Conference in July, 2000; they were not, however, presented in the paper 
submitted for the Conference, so are new* in this book. 

The first one concerns the construction of a segment of length a, within 
the hypotenuse of a (90°, 60°, 30°) triangle. The second example shows the 

*It is appropriate to acknowledge here that these two examples may be re-discoveries, 
such is their elementary nature and the antiquity of the subject. However, their pre­
sentation in the context of Goldpoint Geometry is surely new. 
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construction of a snowflake fractal, all of whose points are goldpoints. This 
fractal will be used and studied in much more detail in Chapter 3. 

The third example shows how attractive results about goldpoints of 
various orders are found when points are introduced into the sides of a 
square. Squares with goldpoints are treated in more detail in Chapters 4, 
5 and 6. 

The fourth and final example presents an algorithm for, and solution of, 
a counting problem which was proposed for a goldpoint set which arises in 
the formation of a Fibonacci Golden Star [l]. 

1.2 Constructing a Segment of Length alpha 

The construction of a segment of length a, as shown below, is carried 
out entirely within the well-known (90°, 60°, 30°) triangle of Mechanics 
problems fame. It also uses the even more famous (90°,45°, 45°) triangle, 
whose hypotenuse wrought havoc to the religious beliefs of the Pythagorean 
School, some 2500 years ago. We shall use the usual triples of sides to denote 
these two triangles thus: Xi = (1,2, \/3) and T2 = (1,1, y/2). The algorithm 
to construct the segment can be described in three lines, and proved in one 
or two, as we shall see. It's description is: 

Embed T-i in Xi; 'switch' the hypotenuse of T% to 
span from the common right-angle onto the diagonal 
of Xi. A segment of length a then appears on the 
latter diagonal! 

The entire construction is carried out with straight-edge and compass, 
as shown in Figure 3 below. A final swing of the compass creates a goldpoint 
in a segment of unit length, if such is desired. 

The usual method given for constructing a goldpoint in a unit segment 
is described in [3] and [4], as it is in all similar texts. 

The elegance of our 'new' construction lies in its brevity and wit (if a 
hypotenuse switch can be so described), and the fact that everything occurs 
within or between two famous right-angled triangles. 
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1.21 Construction algorithm for a 

AT., = ABD 

AT2=AA'D 

PD = AA' 

Figure 3. Construction of an a-segment 

(1) Construct triangle Ti(l , 2, \/3) as half an equilateral triangle of side 
2. Label it ABD. 

(2) Use the compass, with centre on D, radius DA, to mark A' on DB. 
This completes AA'D as triangle T2(l, 1, A/2). 

(3) With compass again on centre D, and radius AA', mark off point P 
on AB (this is the hypotenuse switch referred to above). 

Theorem 1: AP = a = (1 + A/5)/2 

Proof: Let x = AP, and consider triangle APD. By the 
cosine rule, and since PD = A/2, X2 = 2 — 1 + 2.1.x.cos60° = 
1 + x . Hence x2 — x — 1 = 0. Clearly x > 1, hence x = a. • 

Let us denote the final triangle APD by T3(l,o;, A/2). A number of 
interesting consequences follow easily. 

Theorem 2: 

(i) The new triangle T3 lies between Ti and T2 in area, 
with T2<T3<Tx. 

(ii) Their areas are in proportions 1 : ^/Za/2 : A/3. 

(iii) AP x PB = a~l . Hence P is a 3rd-order goldpoint 
otAB. 
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Proof: (i) and (ii) both follow from the fact that all three 
triangles are on the same base AD — 1, and have heights 
l,asin60° and \/3 respectively. 

(iii) follows from the fact that PB = 2 

1.22 Further constructions within Ti( l ,2 , \/3) 

a = a D 

If we use the compasses to mark off just four more points in T\, we can 
construct several more segments involving powers of a. Now that the basic 
idea has been explained with reference to Figure 3, we shall give a second 
figure which contains all six constructed points; and then we shall list what 
has been achieved with regard to the six points. Proofs are all simple 
calculations from triangle and a formulae, and so only hints at them are 
given. 

DA" = DA' = 1 
PB' = PB 
AC = DP' B\ 
AP = a A» 

Z CAD = -i? 

Figure 4- Construction of points and segments in T\ 

The constructions will be clear from the dotted lines and small arcs. 
The points are produced in the following order: A', A", P (the hypotenuse 
switch), B',P'. 
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DA' 
AP 
A"P 
PB 
A"B' 
DP' 
sin# 
P'C 

= 
-

= 
= 
= 
= 
= 
= 

1 
a 
a - 1 

a - 2 

a" 3 

a1 /2 

a- 1 / 2 

a- 3 / 2 

The following constructions have been achieved: 

= DA" 
= AP1, (proved above) 
(AA" - 1, since ADA" is equilateral) 
( = 2 - a ) 
( = q - l - q - 2 ) 

( = V ^ ? ^ 1 ) ) 
(see below, for segment C D ) 
( = Q l / 2 _ a - l / 2 ) _ 

We can obtain a segment of length a - 1 / 2 by setting the compass at DP' = 
^/a and marking a hypotenuse of that length from A to a new point C on 
BD, forming another right-triangle ADC Then the required segment is 
ClD = yf(^T) = a-1/2. 

By the above we have achieved, and differently from normal textbook 
presentations [e.g. [3]], the construction of goldpoints in unit segments: for 
both A"B and A"A are segments of unit length: and the point P is an 
interior respectively exterior golden-mean of these two segments. 

We note that we could easily have constructed a goldpoint of the original 
unit segment AD, by placing compass on A, radius AP, and marking P" 
on AD produced. Then with compass on D and radius DP", mark point 
Q between A and D, and that will be the required goldpoint. 

To summarize, beginning with the famous mechanics triangle, and mak­
ing just four or five swings of the compass, we have constructed within the 
triangle a large number of goldpoints and powers of a, and observed rela­
tionships between three fundamental triangles. 

1.3 The Goldpoint Snowflake Fractal 

In this second example of 'Goldpoint Geometry in action' we show how to 
construct a snowflake fractal, all of whose limit points are goldpoints. 

Since a variety of applications of this fractal are described in some detail 
in Chapter 3, we shall simply define it here (i.e. give its base and motif), 
give pictures of its motif and fifth phase, and compute its fractal dimension 
using a formula given in [5]. 
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1.31 The base and motif 

Following von Koch (1904), [see [5], page 32], the goldpoint snowflake fractal 
is a Cantor-type fractal formed from the unit line-segment U — [0,1]. This 
segment U is therefore the base of the fractal. It is said to be phase 0 of 
the recurrence process which converges to the fractal itself. 

The segment AB of length 1 (not shown in Fig. 5) is the base, phase 
0, of the snowflake. To construct the motif, which is called phase 1 of the 
process, we mark in the goldpoints of segment AB = U, which occur at 
points ( l / a 2 , 0 ) and ( l / a ,0 ) . Then we remove the set of points which lie 
between the goldpoints and replace it by an inverted V, whose arms are 
each of length 1/a2. 

q,-̂  / \ yi ^.gSt^a \ah^ 
A G,j G 2 B 

Figure 5(i) Figure 5(ii) 
The snowflake motif, phase 1 The goldpoint snowflake, phase 5 

Figure 5(i) shows this motif; and Figure 5(M) shows the goldpoint 
snowflake after the above process has been re-applied four times, using 
reduction factor a2 each time, to all line-segments. The process is to be 
continued ad infinitum; because of the reduction factor (less than 1), the 
total length of all segments at a phase will tend to a finite limit. 

1.32 Calculation of the snowflake's fractal dimension 

The number of segments achieved at each phase is 4 times the number of 
segments at the previous phase; we denote this multiplication factor by m. 
And the reduction factor is denoted by r. Then the fractal dimension of 
the snowflake is: 

d=iom= iog4 = 1 4 4 0 4 2 

logr logo;2 
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1.4 On Triangles Involving the Golden Mean 

The bounding triangle of the snowflake motif (see Figure 5(i)) consists of 
two triangles similar to AG\H, and the triangle G1G2H. It is easy to cal­
culate the angles and sides of these triangles: their angles are, respectively, 
108°,36°,36° and 72°, 72°,36°. Their sides are in ratios indicated in the 
following designations. 

Designating the triangles by S and T respectively, we can write them 
thus: 

S H ^ a - ' . a - 1 ) a n d T ^ r ^ c * - 1 / 2 ^ - 1 / 2 ) . 

These triangles are indeed well-known, for the motif appears five times 
in the construction of the pentagram star within a regular pentagon, a 
mystical symbol of the Pythagorean Brotherhood and other religions of 
antiquity. In [3] the second triangle T is called the Golden Triangle, whereas 
in [4] the author refers to them respectively as the 'flat' and the 'sharp' 
triangle, the former having an obtuse angle and the latter an acute angle at 
the apex. We shall meet these triangles again, in Chapter 3, when fractals 
are treated in more detail. 

The occurrence of these triangles, having sides of integer or a-power 
lengths, as well as integer-degree angles, prompts us to propose the following 
problem: 

Can the class of all triangles which have one side of integer 
length, at least one angle of integer-degree, and two sides of 
a-power length (or, more generally, two sides whose lengths 
are real multiples of a-powers), be characterized? 

We have discovered a list of examples* in this class (not presented here); 
but we have no idea how to proceed with the characterization problem. 

More generally, we could study triangles whose sides have lengths each 
of which is a quadratic integer of the field Q(-\/5), that is, each of which are 
members of Z(a) (see [2] for details of this field). 

t A right-angled triangle in the class is (1,1/^/a, y/a) 
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1.5 On a Square with Goldpoints 

This example of goldpoint geometry begins with a square, and marks two 
points on each of two adjacent edges. Further constructions are made, 
which determine two other points; the somewhat surprising conclusion is 
that these two are goldpoints with respect to a constructed segment if the 
first pairs of marks are first- or second-order goldpoints within the edges of 
the square. 

Theorem: Let ABCD be a square. 

M 

A 

D 

R / ! \ s \ y 

J X V 
/ 01 \ 

B 

w 

u 

c 

A 

D 

RJ 
/ ' ' 

1 
I 

1 
1 
1 

oj 
1 

" l 
1 

V 
lW 

\ v 
B \T 

U 
Case 

C 
Case (i) 

Figure 6. Diagrams for the two cases 

Construction: In the side AB mark two distinct points 
R, S, symmetrically placed with respect to AB. Similarly, 
in the side BC mark two distinct points T, U symmetrically 
placed with respect to BC. 
Draw DR and CS, and produce them to meet at P. Draw 
AT and DU, and produce them to meet at Q. Join P to Q. 
Let the line PQ cut the lines AB, BC in points V, W respec­
tively. 

Propositions: 

Case (i): If R,S and T,U are goldpoints of AB,BC re­
spectively, then V, W are goldpoints of segment PQ. (PQ 
cuts the square internally; and V is a third-order goldpoint 
of AB.) 
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Case (ii): If R, S and T, U are second-order goldpoints of 
AB,BC respectively (e.g. AS/SB = a 2 ) , then again V,W 
are goldpoints of segment PQ. (Now PQ 'cuts' the square 
externally; and V is an external first-order goldpoint of AB.) 

Proof of Case (i): 

We are concerned with ratios, so we can choose to let the 
side AB of the square be unity. And we can place Cartesian 
axes as shown (dotted) with origin at the centre of the square. 

Since \RS\ = 1/a3, the goldpoint S has coordinates 
( l / (2a 3 ) , l /2 ) ; and C has coordinates (1 /2 , -1 /2 ) . So the 
line CS has gradient (1/2 - ( - l / 2 ) ) / ( l / ( 2a 3 ) - 1 / 2 ) = - a 2 . 

Therefore PF = a2FC = ( l /2)a 2 . 
So PE = PF-EF = ( l /2)a 2 - 1 = l / (2a) . 
Now, by symmetry, PQ has gradient -45° , hence 

PV = y/2PE = l/{y/2a), and PW = V2(l/2) = 1/V2 = 
VQ. 

Hence PV/VQ = 1/a, so V is a goldpoint of PQ. 
Similarly, W is the other goldpoint of PQ. 

The length of PQ is PV + PW = (1/a + 1)/V2 = a/y/2. 

It is evident that V is internal to AB (EV = PE = l / (2a) < 
1/2). And since AV/VB = (1/2 + l / (2a ) ) / ( l / 2 - l / (2a)) = 
a3 , we find that V is a third-order goldpoint of AB. • 

Proof of Case (ii): 

Similar Cartesian analysis establishes the claims of Case 
(ii). 

Corollary to Case (i): Produce AB and DU to meet at 
K. Let the intersection of DU and CP be J . Then: 
BK = a (from AK/AD = BK/BU); and the circle drawn on 
SK as diameter passes through J , since LSJK = 90°. [N.B. 
we shall see in Chapter 2 that this circle is the B-ring, or 
goldpoint ring, of AB. Note that K is an exterior goldpoint 
of AB.] 
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The following figure shows what is achieved by carrying out the con­
structions used for Case (i) for all sides of the square ABCD. 

Figure 7. Square and Star constructed from a SGP 

It is evident that PQRS is a square; and all its goldpoints are con­
structed, being the points where its sides cut the sides of ABCD. 
The interior of the diagram displays an attractive star-like figure, with eight 
vertices. It is not fully regular, since ABCD and PQRS are not equivalent 
squares. Some measurements from the diagram, given that \AB\ = 1, are: 
PQ = y/2.PO = V2.(a/2) = a/V2 : hence the square PQRS has area 
a2/2, and diagonal a. 

Further developments: We could apply the case (i) constructions 
directly to the new square PQRS and its goldpoints, and obtain a third 
square. This would be rotated through 45° anti-clockwise from PQRS, and 
hence would be in similar position, and concentric with, the original square 
ABCD. Its area would be a 4 / 4 

Evidently we could repeat this process again and again, indefinitely. The 
result would be a sequence of squares, all with centre O and alternately 
having sides parallel to ABCD or PQRS. Their areas would form the 
sequence: 1, a 2 / 2 , a 4 /4 , a6/8, • • • 

A moment's thought, too, reveals a method for constructing a sequence of 
squares with goldpoints which starts with ABCD and whose members also 
rotate about O but which shrink in size from one to the next. 

Another result about this Star is the following: Diagonals SB and AQ 
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meet in a point F, say. Then lines DH and CG also meet in F (here we 
are using G and H to denote the goldpoints of AB). Moreover, the vertical 
from centre O to P also passes through F; let this vertical bisect AB in 
point E; then points E and F are the goldpoints of OP. 

Many more things could be said about this Star — indeed, there is an 
embarrassment of goldpoint riches in it — but we must leave it there. 

1.6 Fibonacci Golden Stars: Goldpoint Counting 

The purpose of this subsection is to show how the points of Star figures 
may be enumerated and checked for goldponts. 

We may write G^ to denote a goldpoint of multiplicity A, if it is a 
goldpoint with respect to A different* line-segments in the geometric fig­
ure. We call A the goldpoint number of the point. The total of goldpoint 
numbers in a geometric figure may be computed, and a goldpoint density 
computed from it. 

In fact, in this section we treat only the simple goldpoint count and 
simple goldpoint density, whereby a point in the figure is counted once if it 
is a goldpoint in at least one line-segment. 

We study only one example, namely that of the Fibonacci Golden Star, 
first introduced by Turner on the 1996 Christmas card described in subsec­
tion 1.1 above. 

Since the total number of points (say N) on the Fibonacci Star is large, 
it is difficult even to count them, let alone to decide which of them are 
goldpoints, and what their goldpoint multiplicities are. It was deemed 
necessary to develop a few techniques for simplifying the counting and a-
analysis procedures. These techniques are to be described next. 

We tried several approaches, none of which provided a single algorithm 
for tackling any given geometric figure. The following notes and methods, 
however, do give some general insights into these counting problems. For 
the Fibonacci Star itself, we finally discovered a simple solution method, 
using similar triangles and Euclidean geometry, which completes most of 

t Define G^0' to be a null-goldpoint (that is, a point which is not a goldpoint of any 
segment). 
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the analysis; we present that (in chronological order!) as a postscript to 
this Section. 

AH.1,0) 0(0,0,0) B(1,-1,0) 

(ii) Sub-star S1 

Figure 8. The Fibonacci Golden Star, and two sub-Stars 

Using symmetries to partition the figure 

In Figure 8 above, we show first the Fibonacci Star from the Christmas 
card, and with it two less complicated Stars (or sub-Stars), labelled S\ and 
52 respectively. It is easy to see that the union of these two graphs equals 
the first one, i.e. S — Si U S2 • Note that we use the symbol U to mean an 
operation of superposition and graph union: the two sub-stars are drawn 
to the same scale. This union graph is also shown. 

(i) The Fibonacci Star 
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Counting crossing-points in the Stars 

In the Fibonacci star, diagram 8(i), a lower-right, right-angled triangle is 
shown shaded. This triangle is formed under the intersection and between 
two medians. There are six triangles similar to this one, all having the 
same geometric design, whose union comprises the whole Fibonacci Star. 
In this union of six right-angled triangles, the points on the hypotenuse 
of a triangle 'occur' three times, and so do the points on the short side. 
Whereas, the points in the interior and on the third side 'occur' six times. 

Using these facts, we can easily count the number of points in each of 
the three stars shown above. The results are in the following table. 

Number of points 
Interior and third side 

hypotenuse and short side 
Totals 

Star Si 
1 x 6 
4 x 3 

18 

Star 52 
3 x 6 
4 x 3 

30 

Fibonacci Star 
6 x 6 
6 x 3 

54 

There appear to be discrepancies in the totals row of the table; but it must 
be observed that (a) points counted in S2 were already counted in Si, and 
(b) when the union is formed in fig. (iv) new points arise at intersections of 
full and dotted lines, as shown by open squares. In fact, the total of points 
in the Fibonnaci Star is the sum of full dots, open dots, and open squares 
in figs, (ii), (iii) and (iv) respectively, giving a total of 54, as in the table. 

We now turn to the problem of counting goldpoints in the Stars. 

Goldpoints in the sub-star Si 

In diagram 8(ii) we have shown axes OX, OY, OZ, placing the triangle 
in the honeycomb plane x + y = z as shown; the coordinates of some of the 
points are given. [N.B. We could have worked in the xy-plane, but for this 
work we preferred using the honeycomb plane.] 

G is the centroid of AABC, which is the union of six triangles equivalent 
to the shaded one (i.e. AOBG). G has coordinates ( l , l ,2) /3. 

(i) The star's points: In sub-star Si all the intersection points are shown 
with full dots. On the boundary sides BG and GO of AOBG there are the 
four dots (points) O, b, f, B. There are no dots in the open third side; but 
in the interior is the one point T. These observations confirm the result 
tabulated above, namely that this Star has a total number of points: 

# 5 ! = 4 x 3 + 1 x 6 = 18 . 
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[N.B. Of course, it is easy to obtain this count directly from the well-drawn 
figure 8(ii). It is much more difficult to count the points of the Fibonacci 
Star in figure 8(i) directly.] 

(ii) The Star's goldpoints: To determine which points in Si are gold-
points, we only have to examine which of {0,b,f,B} and {T} are gold-
points, and multiply their numbers by 3 and 6 respectively. 

Now O and B are clearly not goldpoints of any line-segment in Si; 
whereas T is a goldpoint, of both OW and OK, by the construction of 
the Fibonacci Star and similar triangles. Hence only b and / remain to 
be checked. Their coordinates are easily found to be b = a - 3 ( l , l , 2 ) and 
/ = [l /(2a — l)(l,a~3,2a)], using equations of line-pairs (BW',AW) and 
(CT, AW) respectively. [Incidental observation: b is a 3rd-order goldpoint 
of the median OC] 

Since the arrangements of points on line-segments AW, BW' and CT 
are identical, we only need to study the points on one of them: we chose 
AW, and the following diagram shows all the coordinates of the points on 
it. 

A H b f w 

(-1,1,0) T2(0,1,1) X3(1,1,2) *f T(1,0,1) 

For b, we have to check [A, b, W], [a, b, / ] , [H, b, / ] , [H, b, W]; whereas for 
/ we must check [A, f, W], [H, f, W], [b, f, W). 

It is often found that once two or three such segments have been checked, 
to see whether the inner point is a goldpoint, other segments can be dis­
carded from consideration. Nevertheless, this work is very tedious to carry 
out. 

We found that neither b nor / are goldpoints in Si. Hence, finally for 
Si, there are 18 points, of which 6 (of type T) are goldpoints. The simple 
goldpoint density of Si is therefore 6/18 = 1/3. 

Goldpoints in the sub-Star S2 

We can use the same methods as above to determine the goldpoint 
density of S2. However, we remark that with hindsight, after drawing the 
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diagrams of Figure 8 using CAD software on a PC, we realised that we 
could place the figure (iii) on a lcm-scale grid on the PC screen, and use 
the mouse to discover directly the (approximate) coordinates of the points 
on line-segment DK. This was all we needed for discovering candidates for 
goldpoints. Designating the interior crossing-points of DK by H,p,q,r,s, 
the following diagram results (N.B. t and u are further points, occurring in 
the union fig. (iv)): 

D H P q r 8 ( t u ) K 

x: -2.54 -.81 -.27 0 .32 .62 2 
y: 0 1.31 1.75 1.94 2.21 2.42 3.51 

The point p lies in four segments, namely Dq, Dr, Ds, DK. Given 
the measurements of the above diagram, it is quickly established that p 
is not a goldpoint in any of the four segments. Similarly for q, in its six 
segments. However, it is found that both r and s appear to be goldpoints, in 
segments DK and pK respectively: the ratios concerned, namely Dr : rK 
and sK : ps, are calculated to be approximately 1.65. We check them 
geometrically, as follows: 

The point r is the intersection of lines DK and OU (see fig. (iv)). Now 
U is a goldpoint of CK and is found to have coordinates ( l , r , a), where 
r = 1/a. Hence the lines are: 

DK = — T(X — 1) = y/r = 1 — z (= s, say) 
OU = x — 1 = a(y — r) = T(Z — a) (= t) 

From these line equations we calculate the coordinates of r to be r ( r , r 2 , 1 ) . 

Next we calculate the corresponding goldpoint of DK thus: 

goldpoint = T2(lD_+aK) 
= r 2 [ ( - r , r , 0 ) + a ( l , 0 , l ) ] = r . 

Thus we have shown that indeed r is a goldpoint in DK. Similarly we may 
confirm that s is a goldpoint in pK. 

Finally we observe that in all the six line-segments which correspond to 
DK in the sub-star 52, nine of the twelve central points (marked with an 
open circle in fig. (iii)) correspond to either r or s and hence are themselves 
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goldpoints. The other three, marked with a black square in fig. (i), are not 
goldpoints of any segment. We also observe that all of the nine points on 
the triangle AOKR are goldpoints, as previously demonstrated. 

Hence the total count of goldpoints in 52 is 9 + 9 + 6 = 24. Dividing by 
the total number of points gives the simple goldpoint density of 52 to be 
24/30 = 4/5 = 80%, a pleasingly high result. 

Goldpoints in the Fibonacci Star 

Finally, we address the Christmas puzzle which introduced this chap­
ter. [In retrospect, we should say that this is not suitable puzzle-fare for 
Christmas day! Indeed, one might use up all the twelve days of Christmas 
in search of its solution — unless one hits upon the method which is shown 
at the end and labelled Postscript!] 

We have already discovered that the Fibonacci Star has 54 points. And 
we can count up the goldpoints found in sub-stars Si and 52- But now we 
must take into account the new points formed in the union of Si and 52. 
We must place these points into the line-segments DK and AW, and check 
them off for new goldpoints: furthermore, we must re-examine the points 
which were found not to be goldpoints earlier, in the light of the newly 
introduced points. 

After doing all that, we find that, finally, the only non-goldpoints in the 
Fibonacci Star are the six shown by black squares in fig. (i) above. These 
are the three outer-corner vertices, and the three innermost points. This 
gives a total of 48 goldpoints in the figure, out of the 54 points in the Star. 
Thus the simple goldpoint density is 48/54 = 8/9 « 89% — a very high 
density indeed. 

Postscript! 

The whole process described above was lengthy and extremely tedious, 
relieved only somewhat by the attractiveness of the diagrams, and the pleas­
ing final result. However, it can be much curtailed, using similar triangles,§ 
as follows: 

' T h e author, to his simultaneous shame and joy, only spotted these triangles after the 
above treatment of the problem was typeset and the diagrams were being drawn using 
a CAD package. He decided to leave the preliminary, lengthy analysis herein, since it 
demonstrates many interesting points about the Fibonacci Star and its two sub-Stars. 
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(1) H is a goldpoint in OW. It follows by similar triangles in AOJA, 
with DH\\AJ, that p and r are goldpoints. 

(2) s is a goldpoint since it corresponds in segment RS to point p in 
segment DK. 

(3) t is a goldpoint in ARTK, since IW\\RT, and / , W are goldpoints 
in RK and Tif respectively. 

(4) u is a goldpoint in HK, since Hu/uK — RJ/JK. 

(5) The points on AW can be dealt with similarly, using AOKW, with 

(6) The quite major task that remains is to show that q is not a gold-
point. This involves checking a ratio in each of the fifteen segments along 
DK which include q. Many can be quickly dismissed, but it seems that 
coordinate geometry has still to be used, for at least part of this task. 



This page is intentionally left blank



Chapter 2 

The Goldpoint Rings of a 
Line-Segment 

2.1 Definition of Goldpoint Rings 

In this chapter we introduce the notion of goldpoint rings with respect to 
a line segment, which is a generalization of the concept of goldpoints in a 
line segment. We begin with a definition of goldpoint rings, and then study 
some of their properties. 

Definition 2.1: Let AB be a line segment in a plane, and P 
be a point in the plane which satisfies one of the following 
two conditions: (i) AP/PB = a ; (ii) AP/PB = 1/a . 
Then the two loci of P determined by the conditions are 
called the goldpoint rings of AB. 

We shall see below that one ring is a circle that contains point A (we 
shall call this the A-ring of AB); and the other is a circle containing point 
B (which we shall call the B-ring of AB). Sometimes we shall refer to them 
as the a-rings of AB. 

Note that the goldpoint rings contain the goldpoints (both interior and 
exterior) of AB. These are, of course, where the loci of P cuts the line of 
AB produced in both directions. 

Our first task is to show that the name 'ring' is appropriate for these 
loci. We shall do this by showing that the rings are in fact two circles, placed 
symetrically with respect to the ends of AB. The arrangement of AB and 
its two goldpoint rings in the plane has a diagram which looks much like a 
pair of spectacles. The centre of the A-ring is on BA produced, whereas the 
centre of the B-ring is on AB produced. Later we shall compute formulae 
for the positions of these centres, and show that each ring has radius \AB\. 
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Figure 1. Segment AB with its goldpoint rings 

Note that G and H are the goldpoints of AB. The radius of each gold-
point ring is \AB\, as we shall prove shortly. 

2.2 The General p-rings Relative to AB 

It will be convenient to solve a more general problem first, taking AP/PB = 
p with 0 < p < oo; that is, using a general ratio instead of the golden mean 
a or its reciprocal. 

Figure 2. Diagram with AB = [0,d\, and AP/PB = p 

Without much loss of generality, we can place AB and P in the Cartesian 
xy-pl&ne, and let AB be the segment [0,d]. Then we can announce the 
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details of several rings with specially chosen values of p. Figure 2 is a 
general diagram for the situation. 

The locus of P is obtained thus: 

AP2 = PB2p2 

x2 + y2 = (x- d)2p2 + y2p2 

x2{l-p2)+y2{l-p2) = -2dx + cPp2 

x2+y2+2dxp2/(l-p2) = p 2 / ( l - p 2 ) ( p ^ l ) . 

Writing u = p2/(l — p2), and completing the square for x we get: 

(a; + du)2 + y2 = d2u(u + 1) . 

Thus the locus of P is a circle. It has centre C(—du,0) and radius 
dyju{u + 1). Each value of p (^ 1) determines a circle. We shall call these 
circles p^s-rings, and note the following theorem about them. 

Theorem 1: Given any segment AB of length d, then the 
set of its p^B-rings, together with the vertical line x = d/2 
(which is the 'p = 1 ring of infinite radius') partitions the set 
of points in the xy-plane. 

Proof: Any finite point P(x,y) in the plane determines a 
unique value of p(= AP/PB) which determines the p-ring to 
which P belongs. And no two p^s-rings intersect (finitely), 
otherwise an intersection point would have two values of p, 
which is impossible. • 

Definition: The two rings for which p = r and p = 1/r 
are complementary p^s-rings. 

The circles for a pair of complementary rings have u-values of r2 / ( l—r2) 
and l / ( r 2 —1) respectively. Using the formulae given above, these determine 
their circle equations, centres and radii directly. 
They are of equal radius, R = | r / ( l — r2)\, since u(u + 1) = r 2 / ( l — r2) in 
each case. Their common area is therefore 7rd2r2/(l — r2) . 

We are specially interested in the goldpoint rings, and also other cases 
where p is a power of a. A table of the simpler cases follows. We give details 
of the 'infinite ring' (the line x = 1/2) , and three pairs of complementary 
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p-rings, taking AB to be the interval [0,1]. 

p 
—u(centre) 
R(radius) 

1 
oo 
oo 

a1/2 

a2 

a3 /2 

a'1'2 

—a 
a3/2 

a 
a 
1 

a - 1 

- a - 1 

1 

a3/2 

a212 
a 1 ^ 

a- 3 / 2 

-a-72 

A sketch of these p-rings indicates how the B-rings are nested to the right 
of the line x = 1/2, with their centres approaching B(l ,0) from above as p 
decreases to one. The A-rings, with p < 1, are mirror images (in x = 1/2) 
of the B-rings. The whole picture is somewhat reminiscent of a strangely 
oriented magnetic field in a plane, with AB being the magnet. 

2.3 The .B-ring of AB, with AB = [0,1] 

We now study some properties of the B-ring (p = a) of a segment AB of 
unit length. The following figure is used for the next two theorems. 

Figure 3. Segment AB, with its B-ring 

Constructions: 
AB = [0,1], and G,H are its interior goldpoints. 
The B-ring has centre C(a,0), radius 1; and it cuts the 
x-axis at the goldpoints H(l/a,0) and D(a2,0) of AB. 
APQ is any ray from A which cuts the B-ring in P, Q. 
AT is a tangent to the B-ring. PQ = u, QB — v, BP = w. 
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Theorem 2: 

(0 

(«) 
(Hi) 

(iv) 

(v) 

Proof: 

(t) AT2 

u/(v 

AT 

TB 

HT 

wv 

— w) 

= AH.AD = 

= 

= 

= 

= 

= 

\fa 

a'1'2 and TB _L AB 

2/a 

1/a 

a , hence uvw = v — w . 

- a =>• AT = *Ja ; 

(ii) AT/TB = a therefore TB = AT/a = a"1 /2 ; 
The converse of Pythagoras' theorem on AABT 
shows that TB ± AB ; 

(tit) HT2 = HB2 + BT2 = a~4 + a'1 = 4a" 2 ; 

(iv) and (v) AP = wa and AP = u = va since P and Q are 
on the P-ring. Also AP(AP + u)= AT2 = a . 
Therefore toa.va = a =>- uw = 1/a and u — (v — w)a. Elim­
inating a gives uvw = v — w. • 

Theorem 3: 

If APQB is isosceles, then P is a goldpoint of AQ. 

Proof: 
APQB is isosceles if either u = u, or v = iu, or w = u. The 
case v = w is impossible, in view of Thm. 2(v) above. 

Case u = v. By Thm. 2(v), v = a(v — w) =$• v = wa2 = 
u. Now AP = wa, since P is on the P-ring. Therefore 
AP/PQ = wa/u = wa/wa2 — 1/a. Hence P is a goldpoint 
of AQ. (Note that APQB is now (u,v,w) = al/2(l, l,a~2)). 

Case w — u: AP/PQ — wa/u = wa/w = a, hence P is 
a goldpoint of AQ. (Note that APQB = a " 2 ( l , a , 1); it is 
similar to the 'sharp' golden triangle.) • 
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2.4 A Sequence of Goldpoint Rings 

The following equation determines (with parameter i) an interesting se­
quence of goldpoint rings. The case i = 1 is the one discussed in subsection 
2.3. 

(x - a1)2 +y2= a 2 ^ 1 ' . 

We shall first give a table for four rings in the sequence, showing their 
main features. Figure 4 below shows how they relate to one another. Some 
construction lines are added, such as their common tangent lines from A. 
After the figure we list some of their interesting properties as a theorem. 

i 
- 2 
- 1 
0 
1 

rel. segment 
AI = [0,1/a3] 
AH = [0,1/a2] 
AG = [0,1/a] 

AB = [0,1] 

Centre Ci 
ff(l/a2,0) 
G( l / a ,0 ) 

5(1,0) 
C(a,0) 

Radius i?. 
1/a3 

1/a2 

1/a 
1 

Figure 4- Five a-rings in a general sequence 

It is evident from the table and figure, that each relative segment is a 
golden section segment of the previous one. And that this sequence of rings 
could be extended indefinitely in either direction, as i ranges over Z. 
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The following theorem lists five properties of this sequence of goldpoint 
rings. The proofs follow directly from earlier observations and theorems, 
or by elementary geometry. 

Theorem 4: 

(i) The a-rings in the sequence are enveloped by the two lines 
y — ±a~1/2x, which are tangential to all the circles. 

(ii) The i-ring (relative to segment Si say) touches the (i—3)-
ring in a goldpoint of Si. And the (i — l)-ring touches the 
(i — 4)-ring in the other goldpoint of 5j . 

(iii) The (i + l)-ring touches the complementary ring of the 
i-ring in a goldpoint of Si. 

(iv) Let the i-ring meet the (i-2)-ring in point P;. Then the 
triangle under Pj (see shaded example) is similar to (1,1, a 1 / 2 ) . 
And the locus of Pi is a line through A. 
The triangle APid-2 is similar to ( a 1 / 2 , a - 1 / 2 , a ) . 

(v) The (i - 2)-ring is inscribed in AAT,T/. 

A-ring 

Figure 5. Diagram for Theorem 5 

Theorem 5: 

(i) The circle G, drawn on AB as diameter, is orthogonal to 
the a^s-rings. 
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(ii) Let AB = [-1/2,1/2]: and let the circle © intersect the 
^4-ring and S-ring in X" and T respectively (upper half of 
plane). Then the circle $ which touches the OIAB-rings at T" 
and T has radius 1/4 and centre E(0, %/5/4). 

(iii) Let the abscissae of T' and T be respectively S' and 5. 
Then S'STT' is a square. 

Proof: 

(i) Consider the triangle AOTC (see Fig. 5). We know that 
OT = 1/2, by construction, and that CT = 1, the radius 
of the B-ring: and that OC = OB + BC = 1/2 + 1/a = 
(l/2)(2a - 1). Therefore: 

OC2 = (1/4)(2a - l ) 2 = 5/4 = OT2 + CT2 . 

By the converse of Pythagoras' theorem, LOTC = 7r/2. 
Hence OT is tangent to the jB-ring at T, and CT is tangent 
to the circle 0 : so the B-ring and 0 intersect orthogonally. 
Similarly, the A-nng and 0 intersect orthogonally at T". It 
follows that 0 is orthogonal to the a^s-ririgs. 

(ii) By (i) CTE is a straight line, of length r + 1, where r is 
the radius of $. By similar triangles inside AEOC, 

r / ( l / 2 ) = ( l / 2 ) / l = » r = l / 4 . 

From AOTE, we find that OE2 = 1/16 4-1/4 = 5/16. 

Therefore the radius of $ is 1/4, and its centre is (0, \ /5/4). 

[Note that the three radii concerned are 1/4, 1/2 and 1.] 

(iii) Evidently T'T is horizontal, by symmetry; and TS\\T'S'. 
From AOTC we find tan(9 = 1/2; so sin<9 = 1/V5 and 
cos# = 2/VZ. Hence, from AOST we compute ST = 1/y/b 
and OS = 1/(2^/5). Therefore S'S = 20S = ST, and so 
S'STT' is a square. • 
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Theorem 6: Given segment AB, having A-vmg and B-ring 
with centres C and C respectively. Then the ellipse having 
major diameter CC and minor radius of length AB has foci 
A and B. The eccentricity e = AB/CC. 

Figure 6. Diagram for theorem 6. 

Proof: We shall take \AB\ = 1. P is an intersection of ellipse 
and B-ring. Then CC = AB + 2BC =l + 2/a={a + 2) /a. 
The eccentricity of the ellipse is given by e2 = 1 — b2/a2, 
with a = CC/2 and b = \AB\ = 1. Simple algebra gives 
e = a/(a + 2). Therefore e = 1/CC. If S is the right-hand 
focus, then OS = ae = 1/2. Therefore S = B; similarly, the 
other focus of the ellipse is at A. • 

We find the ellipse to be 4a;2 + 5y2 = 5; and AP.PB = 5 / Q 3 . 
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Chapter 3 

Some Fractals in Goldpoint Geometry 

3.1 Introduction 

As we have already seen (in 1.7, for example), problems of interest in gold-
point geometry [8; 9] arise from study of figures that are obtained when 
goldpoints are marked on sides of triangles, squares, pentagons etc. and 
joined by lines in various ways. In Chapter 4 we shall designate such dia­
grams as tile-figures or golden tiles. 

Many combinatoric problems arise naturally when studying such ob­
jects. Another type of problem is to determine how to combine collections 
of golden tiles in jig-saw fashion, so that they tile a given geometric figure 
(or the whole plane) with goldpoint marks on touching sides corresponding 
everywhere. We treat these types of problem in Chapter 4. 

Before dealing with tiling and combinatoric problems, however, we wish 
to present more geometric figures which involve goldpoints, thereby extend­
ing the scope of our enquiries. The new figures to be presented are fractals, 
which are formed as sequences of self-similar figures; in many of our exam­
ples we shall find that the end result (limiting situation) of the sequencing 
process is an infinite set of points all of which are goldpoints (or multi­
ple goldpoints) with respect to other points in the set. In the literature 
on fractals, the limit sets are known as dust-sets. We shall call our figures 
goldpoint fractals; and be tempted to call the limit sets of goldpoint fractals 
gold-dust setsl 
We shall study a variety of fractals which are achieved by using as base the 
segment [0,1], and a motif which involves the goldpoints of that segment.* 

' T h e terms 'base' and 'motif are now well-known. Excellent references for these terms, 
and for several of the analytic techniques used in this chapter, are [3],[6],[ll]. 
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216 Goldpoint Geometry 

In the first three sections goldpoint fractals are described which are ded­
icated to the memory of the inspirational American mathematician Herta 
Freitag, who passed away early in 2000, in her 91st year. 

In the final section studies of fractals are presented which are based on 
the regular pentagon. It is well-known (indeed the knowledge goes back 
to antiquity, since it is mentioned in caballistic literature) that the golden 
mean occurs frequently in the geometry of the pentagon [3] and its accompa­
nying pentagram star. It is hoped that the results given below on pentagon 
goldpoint fractals will add to existing literature on the pentagram. 

3.2 The Goldpoint Shield (a Golden Snowflake) 

The work of this section originated with a fractal picture, which Turner 
developed for a card to send to Herta Freitag for her 90th birthday. This 
occurred in November 1998; and just five months earlier Herta had attended 
the eighth Biennial Conference of The Fibonacci Mathematics Association, 
where she presented no fewer than three papers. She had attended all 
the biennial conferences, the first of which was held in 1984; and with her 
radiant personality, excellent research and delightful presentations, she was 
an inspiration to all the attendees. 

To obtain her birthday fractal picture, Turner took an equilateral tri­
angle, inserted all six goldpoints on its sides, and produced the first five 
phases of a snowflake exterior to it. This was by the same construction as 
for the well-known von Koch (1904) snowflake (or island), except that he 
discarded the open sets between the goldpoints of edges, rather than their 
middle-third sets. 

Below is shown the starting triangle (phase 0), marked with goldpoints, 
and phases 1, 2, 3 and 5 of the developing snowflake. Since the snowflake 
is evidently bounded by a non-regular hexagon, and looks very much like a 
shield that a gallant knight would hold on his arm, the figure was dubbed 
Herta's Shield. On her birthday card the hope was expressed that the shield 
would keep her safe for many more years to come. Sadly that did not come 
to pass. 

After the diagrams, formulae are given for the growing snowflake's 
perimeter, and its fractal dimension is computed. 
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Formulae: In the subsections below, much use will be made of the fol­
lowing identities which relate negative powers of a (i.e. the golden mean 
(1 + \/5)/2) to themselves and to the ordinary Fibonacci numbers. 

(0 F_„ = (-l)n+1Fn; 
(it) a " " = a - ( n + 1 > + a - ( n + 2 ) ; 

(Hi) arn = F_„Q + F_(„+ 1 ) . 

phase 0 phase 1 phase 2 

phase 3 phase 5 

Figure 1. The goldpoint shield 
[The dotted bounding-polygon in phase 2 indicates the shield's outer shape.] 

3.21 The fractal dimension of the goldpoint shield 

If each side of the starting equilateral triangle (see phase 0 in the figure 
above), is taken as a base of length 1 (unity), then at phase p = 1 each side 
is replaced by the motif which consists of four segments of length 1/a2, 
arranged as shown in the second figure. Since there are 12 segments in all, 
the snowflake at phase 1 has perimeter length P\ = 12/a2 . Then, at each 
phase the lengths of segments used are reduced by a factor of a2 , and their 
total number is increased by a factor of 4. So the formula for the perimeter 
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length at phase p is given by a recurrence as follows: 

PP = -~Pp-i , with P0 = 3, p > 0. 

Solving the recurrence gives: 

P p = 3 ( ^ ) ' forP = 0 ' 1 » 2 . -

The fractal (or self-similarity) dimension (see [3]) is: d — logm/logr where 
r = a2 is the reduction factor, and m = 4 is the number of new segments 
formed at stagep from a segment at s tagep—1. 

Thus d = J ^ l = 1.44042... 
21oga 

The phase 5 diagram shows how the shield is converging towards a 
snowflake fractal. Next we examine the goldpoint dust-set, and derive other 
fractals. 

3.3 The Goldpoint Dust-set, and the Comb and Jewel 

3.31 The goldpoint dustset 

We define the goldpoint dust-set (the gp-dustset) by prescribing an infinite 
process similar to that used to produce Cantor's fractal set. 

We take the unit line-segment [0,1] on the x-axis, and compute its 
goldpoints, which are at points (a _ 1 , 0 ) and ( Q _ 2 , 0 ) ; call these points G\ 
and G2 respectively. Then we discard all points in the open set of the 
segment (G1G2). 

Next we compute the positions of the goldpoints of the two remaining 
segments [0, G2] and [Gi, l] . Then we discard the two open sets between 
the two pairs of goldpoints. 

We continue this process ad infinitum, at each stage discarding all the 
central open sets between pairs of goldpoints. The limiting set of points 
(all goldpoints, note), minus the two endpoints (0,0) and (0,1), is called 
the goldpoint dust-set. 

The computations below Figure 2 describe some properties of this set. 
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° <* % G2 5 ~ H 2 H1 1 

Figure 2. The goldpoint dust-set (to stage 2) 

G\ and G2 are the goldpoints of line segment [0,1], and G3, G4 are the 
goldpoints of [0G2]. 

Measuring lengths from 0, and writing Gi for |[0G;]|, we find: 

Gx = 1/a2 + 1/a3 = 1/a = F_ i a + F-2 = a - 1 

G2 = 1/a2 = -a + 2 = F_ 2 a + F_ 3 = a - 2 

G3 = 1/a4 + 1/a5 = 1/a3 = F_ 3a + F_ 4 = a" 3 

Gi = 1/a4 = F_ 4 a + F_ 5 = a" 4 

and so on. 

Similarly, Hi, H2 are the goldpoints of line segment [G\, 1], and for 
them we find: 

Hi = 1/a + 1/a4 + 1/a5 = 1/a + 1/a3 = 3a - 4 
H2 = 1/a + 1/a4 = - 2 a + 4 

It may be noted that: 

Gi is a goldpoint of [0,1] (given) 
Gi is a goldpoint of [G2H2] (since G2G1 = a~3 and GiH2 = a - 4 ) 
Gi is a goldpoint of [G3.H1] (since G3G1 = a~2 and G1H1 = a~3) 

It follows that, as the process of discarding central open segments continues, 
all of the points left in the dust-set are goldpoints (except 0 and 1): and 
in the limit, each point is a goldpoint an infinite number of times, with 
respect to pairs of other points in the dust-set. It might be appropriate to 
call this the gold-dust set. 

It is evident from the above analysis that each goldpoint in the dust-set 
can be expressed uniquely in a-nary form thus: 

goldpoint = O.C1C2C3 • • • = Cia - 1 + C2a -2 + c3a~3 + • • • 

where all the Cj coefficients are zero or unity, and with no pair of adjacent 
coefficients being (1,1).* 

+If in the calculation of a goldpoint we obtain both Cj = 1 and Cj+i = 1 we are required 
to combine the adjacent terms, using a~' + a~('+1) = a - ( i — 1 ) . 
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Examples : 

Gi = 0.1, G2 = 0.01, G3 = 0.001, etc. 

H1=G1+ a~4 + a~5 = Gi + a " 3 = 0.101; 

# 2 = G i + a" 4 = 0.1001. 

The goldpoint dust-set is the set of all points in (0,1) which have this type 
of a-nary form (reminiscent of maximal Zeckendorf representations of n in 
terms of the Fibonacci numbers). 

3.32 The goldpoint comb 

Figure 3. The goldpoint comb 

Not long after her 90th birthday, Turner had an email message to say 
that Herta had had to go into a nursing home. He tried to think of some 
mathematical item that might make her smile. He wrote to her to say that 
perhaps she she had not worn the goldpoint shield constantly: hence her 
recent illness. He included with his letter two further talismans, to add (as 
he wrote) to her comfort and protection. They were a goldpoint comb for 
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her hair, and a fractal star jewel to ward off evil spirits. He knew something 
was sadly amiss when he didn't receive a reply to this letter. 

The figure above shows Herta's goldpoint comb (imagined to be made 
of ivory). In the limit it has an infinite number of teeth, the 'prong' points 
forming a set of measure zero. 

It is easy to see how the comb is built up of rectangles, erected upon line 
segments parallel to those 'left in' during the process of obtaining the gold-
point set (see Fig. 2). Upon each segment a golden rectangle is constructed, 
with the horizontal segment being the larger side. 

Figure 3 shows how the short sides of the rectangles have lengths in the 
sequence: 

I J_ J_ J_ 
a a J a" er 

This is a geometric progression of common ratio 1/a2, and its infinite sum 
is 1. Therefore the goldpoint comb has height 1, and it covers (in the limit, 
and except for the limit line) a square of side 1. 

Thus the unit square of the comb is tiled by golden rectangles in a most 
interesting way. 

If we check the 'hole' or 'spaces' in the comb, we see that they are also 
rectangles, all standing on the horizontal limit line where the teeth 'end'. 
Again checking the dimensions, we see that each of these rectangles is also 
a golden rectangle. Moreover, the largest 'hole' rectangle is equal to the 
second largest ivory rectangle; the second largest 'hole' rectangle is equal 
to the third largest ivory rectangle; and so on. 

3.33 The area (A) of the ivory, and the area (H) of the 'holes' 

Working directly from Fig. 3, we get for the total ivory in the comb: 

A = l x i + 2 x ^ + 4 x ^ + 8 x ^ + ••• 

= E S i ^ l / a 4 * - 3 ) . 

= E ~ i ( 2 / a ) i ( l / a 3 ) i - 1 

= E ~ i ( 2 « - 2 ) i ( 2 a - 3 ) i - 1 = a 2 / 3 . 
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An alternative way to find A, using the knowledge already found above, 
is as follows: 

The area of the comb = the area of ivory + the area of holes; and 
Ri = Ai+i for i > 1. Therefore (see Figure 3): 

1 = (Ai + 2A2 + 4A3 + 8A4 + • • •) + (1^2 + 2A3 + 4A, + • • •) 

from which 

1-Ai = %{2A2+4A3 + 8A4 + ---). 

And so A = f ( l - j 4 i ) + .Ai = !(2 + j4i) 

This, then, is the sum of the infinite sequence just given above. 
The total area of the holes is: 

H = l - A = l-a2/3 
= a 2 / 3 - (Check: 1 = A + H = | ( a 2 + cT2) = | x 3) . 

3.34 Herta's star jewel 

We now give a description of the star jewel, which was to ward off evil 
spirits from Herta. 

Figure 4- The star jewel fractal, phases 2,3 and 5 

A fractal can be constructed either outside the supporting polygon, or 
inside the polygon [6]. The resulting two fractals are quite different. Herta's 
goldpoint shield was constructed outside an equilateral triangle; the star 
jewel is the interior fractal. 

In Figure 4 above, the fractal is shown being constructed on the inside 
of an equilateral triangle, using the same motif as for the shield (see Fig. 
1). We hope the reader will see why we call this fractal a star jewel; it has 
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three striking points, each connected to a central figure which looks like a 
sparkling diamond. 

We shall not give any further analysis of the figure, but merely invite 
the reader to admire it. 

3.4 The Goldpoint Motif Triangle, and Pentagon Fractals 

In this final Section we first analyse the goldpoint motif triangle, showing 
various ways by which it can be partitioned. 

Then we take a regular pentagon, and study some of its goldpoint prop­
erties. We show how a fractal of pentagon fractals can be constructed 
within it, and point out one or two of the properties of this object. 

3.41 Properties of the goldpoint motif bounding triangle 

In Figure 5(a) below, the goldpoint motif AGCHB is shown, together with 
its bounding triangle ABC. (It was also shown in Figure 1, above.) This 
triangle partitions into two (108°, 36°, 36°) triangles, viz. AGC and BHC, 
which we call S-triangles, and a (36°, 72°, 72°) triangle, GHC, which we 
call a T—triangle. We shall use the convention Si to describe an S-triangle 
drawn on a base line segment of length l/a\ i = 0,1,2, ...; and similarly 
use Ti for T-triangles drawn on such base line segments. 

When making the analyses and calculations, we shall have recourse to 
the formulae given at the beginning of Section 2, and also to the following 
trigonometric relations. 

9 
sin# 
COS0 

tan# 

36° 
Va + 2/(2a) 

a/2 
y/a + 2/a2 

72° 

( l /2)V« + 2 
l / (2a) 

ay/a + 2 

3.42 The goldpoint motif triangle, and some partitions of it 

Figure 5(a) is used to demonstrate several partition properties of the gold-
point motif triangle. Figure 5(b) shows how the triangle can be partitioned 
by pentagrams and S-triangles of diminishing sizes and with sides 1/a'. 
Various calculations and comments on these figures are given below the 
diagrams. 
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Figure 5(a). The motif triangle and some dividing lines 

If AB = 1, then it is immediately seen that ABC is an S0 triangle, 
which is partitioned by GC and HC into two 5_i and one TL3 triangles 
(since AC = BC = 1/a and GH = 1/a3). Thus 5 0 = 25_i U T_3. 

The area of triangle ABC is (l/2)^Csin36° = y/a + 2/(4a2). 
Other partitions of ABC can be seen in the constructions. For example, 

the two T—3 triangles ADG and BJH together with the central pentagon 
P—3 on GH. Another is the set of decreasing and overlapping pentagons, 
on sides CD, DE, EF, ... and similarly on the right side of centre, whose 
union limitingly fills triangle ABC. 

Finally, we observe that since an 5-triangle can be partitioned into a T-
triangle and an 5-triangle (e.g. ABC = AGCUGCB), by repeated divisions 
ABC can be partitioned into a sequence of diminishing 5-triangles; or else, 
similarly, into a sequence of diminishing T-triangles. We won't spell out 
their relative sizes, but point out that they are all in ratios of powers of a. 

Figure 5(b). Pentagrams and S-triangles constructed in the motif triangle 

Figure 5(b) demonstrates how the golden motif triangle can be parti­
tioned into an attractive double sequence of diminishing pentagrams, with 
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sides in diminishing powers of a, together with sequences of diminishing 
S-triangles. 

3.43 Some properties of the regular pentagon, with goldpoints 
and partitions 

The next two figures, 5(c) and 5(d), show regular pentagons, of side 1, with 
various construction lines upon them. 

Figure 5(c). A regular pentagon Figure 5(d). A fractal of pentagons 

In fig. 5(c), AACB is a Tx triangle, so AC = l/(2cos72) = a. Prom 
AAGD we get AG = l/(2cos54) = a / v

/ o H r 2 , and GD = (l/2)tan54 = 
a2/2y/c7+2. And CD = (l/2)tan72 = {Il2)a^/^T2. 

By similar pentagons, G'D = a~3GD. And G"A = aG'D/sm54 = 

l / ( a V a + 2). 

Proposition: 

(i) GG1 = GG". 

(ii) G is a goldpoint of CG'. 

Proof: 

(») GG' = GD - G'D 
= a 2 / 2 y / a T 2 - l/(2ay/o7+~2) 
= l/y/a + 2, (since a2 - 1/a = 2). 
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and GG" = GA-G"A 

so GG' 

(ii) GG'/GC 

= a/y/a + 2 - 11 {ay/a + 2) 
= 1/Va + 2, (since a — 1/a = 1); 
= GG". 

= GG'/GA 
l/y/a + 2) x ( V O 7 + 2 ) / Q : = 1/a.D 

Other results about goldpoints in a pentagon construction may be found 
in [3, p. 28]. Let us turn to fig. 5(d), and examine the fractal of pentagons. 

It is evident how fig. 5(d) can be obtained from fig. 5(c). The shaded 
pentagon P2 is replaced by its inner pentagon (a P4), and then the two 
small pentagons are replicated around pentagon abcde (a P2). 

Looking at fig. 5(d) we see 5P3S and 5P4S arranged alternately with 
their centres on a circle by Proposition (i) above, and with a pentagon P2 
in the middle. We can regard this as a motif for constructing a fractal of 
pentagons in the interior of pentagon ABCDE. 

Thus, to arrive at phase 1, we must remove all points in the unshaded 
regions, together together with the perimeter of ABCDE. Then, to arrive 
at phase 2, we repeat the above constructions and removals in each of the 
eleven shaded pentagons. What remains will be 121 shaded pentagons, 
each scaled by a factor of a1, i = 2,3, or 4 according to its construction. 
From the tree diagram below we see that the distribution of pentagons will 
then be: 1P4 ,10P5 ,35P6 ,50P7 ,25P8 . 

P4 5P5 5P6 5P5 25P6 25P7 5P6 25P7 25P8 
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Evidently this process can be continued indefinitely. And formulae can 
be computed for the coefficients on the tree, and for reduction factors in 
areas when passing from phase i to phase i + 1. 

The dust-set of the fractal is the set of points in ABCDE which are 
not removed by this infinite process. A moment's thought shows that this 
set consists of the centres of all the pentagons constructed in the 'whole' 
process. And the set consists of a cosmos of points arranged in circles, 
with similar, reduced, circles arranged around each of them, and so on ad 
infinitum. Because of the similarity of this system with Ptolemy's model 
of the Universe, we name this dust-set the Ptolemaic dust-set. 

3.44 Interior/Exterior goldpoint fractals 

The next two figures show phases of the interior and exterior fractals which 
are constructed on a regular pentagon using the goldpoint motif on its sides. 

Figure 5(e). Interior goldpoint fractal of a pentagon, phases 2,3,4 

Phase 2 shows an attractive clover-leaf arrangement of five leaves, each 
a portion of a Pi , around a central P2 • 

Phase 4 shows clearly how the interior goldpoint fractal of a regular 
pentagon is equal to the exterior goldpoint fractal of its pentagram. 

It is clear from the phase 1 diagram of figure 5(f) below, that the exterior 
goldpoint fractal of a regular pentagon is bounded by a regular pentagon. 
It is easy to prove this, using angle values of the S- and T-triangles which 
touch the boundary. We believe this property of a von Koch-type fractal 
having a bounding polygon which is similar to the generating polygon to 
be unique. 
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A final interesting comment is the following: the sharp points on the 
boundary in the phase 1 diagram can be connected by two unicursal poly­
gons of chords of the diagram (each chord begins and ends along an arm 
of a point-angle); whereas the sharp points of the phase 2 diagram require 
four such unicursal polygons to join them all up. In phase n, there will be 
2™ unicursal polygons required. The perimeters of the unicursals can be 
computed in terms of a, given that PQ has side length 1. For example, in 
Pi , the two unicursals have perimeters 5 and 5(7 — 3a) respectively. 

phase 3 

Figure 5(f). Exterior goldpoint fractal of a pentagon, phases 1,2,3 



Chapter 4 

Triangles and Squares marked with 
Goldpoints 

4.1 Introduction 

It was explained in Chapter 1 how triangles marked with goldpoints first 
came to be studied, by Turner and the Atanassov family. We now take 
up that story again, and show how ideas about triangles and squares with 
goldpoints were developed. In particular, we will show how these objects 
(which we call golden tiles) can be fitted together, jig-saw fashion, in order 
to tile figures in the plane or in space. 

Before studying tiling problems we will recall our definition of gold-
points, and prove two theorems about them in relation to two triangles 
forming a rhombus. 

4.2 Equilateral Triangles and Goldpoints 

In Part B, Section 1, Fibonacci vector polygons were studied, and it was 
shown how they behaved in the honeycomb plane. Each polygon zig-zags 
upwards, its sides lengthening and its points oscillating about, and tending 
towards, a limit line. They all tend to the same limit line. 

It was shown that for each vector polygon, its vertices tend, as n —> oo, 
to lie on the line x/1 = y/a = z/a2, where a denotes the golden mean. 

It is intriguing to observe how this line, as it leaves the origin and moves 
upwards, cuts sides of the vector polygons in ratios which involve a and 
the Fibonacci numbers. 

229 
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The simplest cases are when the sides [(1,0,1), (0,1,1)] and 
[(0,1,1), (1,1,2)] are cut. These intersections occur as the limit line passes 
upwards from the equilateral triangle closest to the origin and through the 
triangle above it. The ratios in the two side-cuts are respectively 1 : a and 
a : 1. These observations constitute the raison d' etre of Theorems 1 and 
2, and of the triangular tiles to be described below. First we recall the 
definition of a goldpoint. 

Definition: A goldpoint is an internal point of a line-segment, 
which divides the segment length in the ratio a : 1 or 1 : a, 
where a is the golden mean (1 + -\/5)/2. 

Theorem 1. Let ABDC be a rhombus, with angle 6 at A 
and D. Let AR be a ray through A which cuts CB in P and 
CD in Q. 

Then P is a goldpoint of CB if and only 
if Q is the goldpoint of CD such that 
CQ/QD = a. 
If 9 = 60°, then PC = QD. 

Proof: Since AB \\ CD, LCQP = LPAB and IQCP = 
IPBA; and LQPC = LAPB (vertically opposite angles). 
Hence APQC is similar to APAB. 

ThereforePB/PC = AB/QC = CD/CQ (since AB = CD). 

If P is a goldpoint of CB (and by construction CP < PB), 
then PB/PC = a. Hence CD/CQ — a, so Q is a goldpoint 
of CD: note that CD/CQ = {CQ + QD)/CQ = 1 + QD/CQ. 
Therefore QD/CQ = a - 1 = 1/a, hence CQ/QD = a. 

For the converse, suppose that CQ/QD = a. 
Then PB/BC = CD/CQ = 1 + 1/a , hence P is a goldpoint 
ofCB. 

Finally, if 9 = 60° then ABCD is equilateral, so CB = CD. 
Then since CB/PB = CD/CQ = a, we have PB = CQ and 
hence PC = QD. • 
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The following theorem shows how the 60°-rhombus can be set in the 
honeycomb plane, and 3D coordinate geometry used to determine the line 
through AR. 

Theorem 2: Let the rhombus of Theorem 1, with 0 = 60°, 
be set in the plane x + y — z = 0, with points A, B, C, D being 
respectively 
(0,0,0), (1,0,1), (0,1,1), (1,1,2). Then if P is a goldpoint of 
CB, the ray AR lies in the line x/1 = y/a = z/a2. 

Proof: In the accompanying diagram, ue (0, \) is the frac­
tional distance of P from C to B. 

R D (1,1,2) 

C(0,1,1)LM \B (1,0,1) 

A (0,0,0) 

Figure 1. A 60° -rhombus in the plane x + y — z = 0 

Since P is a goldpoint, and AR is to the left of AD, we have 
PB/PC = a. Therefore: 

PB2 = a2PC2 

(1 - u)2 + {u - l ) 2 = a 2 ( u 2 + u 2 + 0 ) 
=>• u — 1 = ±ua (reject +, since u > 0) 

Hence u = 1/a2. 

The coordinates of P are ( 1 / a 2 , 1 - 1 / a 2 , 1 ) = l / a 2 ( l , a , a 2 ) . 

Therefore the line through AR has direction ratios 1 : a : a2; 
and the equation of the line follows immediately, since A is 
(0,0,0). The direction cosines of the line are (l,a,a2)/(2a), 
since 1 + a2 + a4 = 4a2 

D 
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4.3 Golden Tiles and Combination Rules 

The above theorems show that adjacent equilateral triangles, with gold-
points marked on their sides, can give rise to interesting geometry involving 
the golden mean a. Having discovered this, Turner made up (in cardboard) 
a set of equilateral triangles, and he marked upon each side of every triangle 
one of its goldpoints. He proposed the following rules of equivalence and 
combination for the triangles (and, by extension, for polygons): 

Rule 1. Two marked triangles in a plane are equivalent if one triangle 
can be rotated, and translated, until it and its three side-markings* coincide 
with the other triangle and its side-markings. 

Rule 2. Two marked triangles can be combined (juxtaposed) if they can 
be placed in a plane with two sides coinciding and with the goldpoints in 
those two sides coinciding too. (Note: This is the jigsaw combination move; 
we shall speak of jigging two triangles together.) If we wish to indicate that 
two triangles, say T\ and T2, can be jigged, we shall write Ti * T2. 

These same rules are to apply generally, to polygons. 

4.31 Definitions of names 

Golden tiles: Polygons with sides each marked with a goldpoint will be 
called golden tiles. The abbreviations TGP and SGP will be used for golden 
tiles made respectively from equilateral triangles and squares. These are 
abbreviations for 'triangles with goldpoints' and 'squares with goldpoints' 
respectively. 
Tile figure: The tile figure of a golden tile with one mark per side is the 
polygon which is obtained by drawing on the tile straight lines which join 
up all pairs of marks occuring on adjacent sides of the tile. 
J igsaw: When two or more golden tiles are combined by jigsaw combi­
nation moves, the result will be called a jigsaw and the pattern displayed 
upon it, resulting from all the tile figures, will be called the jigsaw pattern. 

4.32 Problems 

Many types of problem can be posed about golden tiles and jigsaws. Combi­
natorial and geometric ones include: How many different (i.e inequivalent) 

*[In this chapter, only one goldpoint per side will be marked. In general, however, both 
goldpoints may be marked on any side of a triangle, or polygon. Rules 1 and 2 cover 
the general case.] 
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tiles can be derived from a given polygonal shape? How many different 
ways can 2 (or 3, or 4 etc.) tiles be combined to form a jigsaw in a plane 
(or on the surface of a given polyhedral solid)? What kinds of tile figures 
are there; and what are their geometric properties (for example, what are 
their symmetries)? What kinds of jigsaw patterns can be made with a given 
set of golden tiles? The list could go on and on. 

In this book we have space only to show a few of the results we have 
obtained, and those only for TGPs and SGPs. We begin by showing the 
tile figures for TGPs, and discussing a few of their properties. 

4.4 The TGPs , and some Basic Properties 

If one thinks of marking one goldpoint on each side of an equilateral trian­
gle, since there are two different goldpoints on each side, there are 23 ways 
of placing the marks. However, the eight resulting TGPs are not all in-
equivalent. In fact, there are four equivalence classes, each with two TGPs 
in them. The set of four inequivalent TGPs is shown in Figure 2. 

(i) type-M (ii) type-V (iii) type-R (iv) type-P 

Figure 2. The four types of TGP 

It will be noted that the four tile figures in the TGPs are of two types, 
namely: an equilateral triangle, and a scalene triangle. The two tiles with 
equilateral triangles are inequivalent,- and likewise are the two with sca­
lene triangles. Evidently, tiles with equilateral and scalene triangles are 
inequivalent. 
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MO.0.0) 

Figure 3. A TGP with full and dotted lines, labelled for Theorem 3 

Rota t ions : When studying tile figures and jigsaw patterns, it will some­
times be necessary to specify rotations of TGPs in the plane. We define a 
positive rotation to be an anti-clockwise motion, and a negative rotation to 
be a clockwise one. Sometimes the vertices of a golden tile will be labelled, 
so that rotations and combinations can be explicitly defined. 

Turner coloured his original golden tiles Mauve (M), Violet (V), Red (R) 
and Pink (P); hence the letters used in Fig. 2 to name these TGP types. 
He also drew dotted lines on them, joining all vertices to the goldpoints on 
sides opposite them. These added to the geometric complexity of the tile 
figure, of course: Fig. 3 above shows one of these figures, and a theorem 
about its properties follows. 

Theorem 3. Let ABC be an equilateral triangle, with P,Q,R 
goldpoints of the sides, marked such that APQR is equilat­
eral. Let AP meet BQ in U, and CR in W; and let CR meet 
BQ in V. Then: 

(i) U, V, W are mid-points of AP, BQ, CR respectively. 

(ii) U, V, W are goldpoints of AW, BU, CV respectively. 

(iii) Triangle areas: AUVW = \APQR = ^AABC. 

file:///APQR
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Proof: The 3D coordinate system and lower triangle, ex­
plained for Theorem 2, is used again here. We study only 
ratios, or relative figures, so that the results are general (i.e. 
independent of the choice of side length (\/2) for the trian­
gle). We could use well-known vector geometry techniques 
to find the coordinates of P , Q, R, U, and V, and by these 
means effect proofs directly. However, we shall use a mixture 
of Euclidean and vector geometry, to demonstrate interesting 
ways for studying tile figures. 

(i) Using 3D vector geometry, we find the points P , U and 
W , thus: P = (aC + B ) / ( a + 1) = (1/a2 , 1/a, 1); similarly 
Q = l /a 2 (0 ,1 ,1) . Then U = | ( l / a 2 , 1/a, 1) is found from 
intersection of lines AP, QR, by standard procedures with 
coordinates. Hence U is the mid-point of AP, since A is 
(0,0,0). Similarly, V and W are mid-points of BQ and CR. 

(ii) Prom their coordinates, we see immediately that W = 
aXJ. Then AW : AU = a : 1, and hence U is a goldpoint of 
AW. Similarly V, W are goldpoints of BU, CV respectively. 

(iii) The following argument leads to the ratio of areas of 
triangles PQR and ABC. 

APQR = AABC-3AAQR, 
(since AQPC = APBR = AAQR). 

AAQR = (l/a)AAQB = ( l / a ) ( ( l / a 2 )AABC) . 
=» APQR = (1 - 3 / a 3 )AA£C = (2/a4)AABC . 

Next we find triangle UVW as a ratio of triangle ABC, thus: 

AUVW = APQR - 3AQVR . 
NowAQVR = (l/2)AQBR {V is the mid-point of QB) 

= {l/2a2)AAQB = (l/2a2)(l/a2)AABC . 
=* AUVW = (l/2a4)AABC. 

Putting the results for APQR and AUVW together, the 
proof of (iii) is completed. • 

It is of interest to note that we can cast part (i) of Theorem 3 in a way 
similar to that of Theorem 2, where a ray AR was involved. Thus: 
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Theorem 3'(i). Let ABC be equilat­
eral; and let AR\, BR2 be rays rotat­
ing about A and B respectively, with 
AD always kept equal to CE. Then when 
their intersection X is mid-point of AE, 
or of BD, E is a goldpoint of BC and 
D is a goldpoint of AC. 

4.5 Forming Jigsaws, and Tiling with TGPs 

We shall now discuss various results about how the TGPs can be combined 
using the jigsaw rule. We shall first treat combinations of two tiles: and 
then give examples of how TGPs can be used to tile the plane. Later 
several examples of jigsaw tiling of polyhedra surfaces by TGPs will be 
given. Because of lack of space, we can only give diagrams of these tilings, 
and not discuss the many aspects of their jigsaw patterns which beg to be 
studied and described. 

We shall, however, begin with a few definitions of concepts which are 
involved in jigsaw formations, so that the reader will appreciate how rapidly 
the complexity of these combined objects develops. At every step in the 
development, new combinatorial problems of increasing difficulty suggest 
themselves. 

4.51 Orientation and labelling of TGPs 

Any jigsaw move in a plane can be carried out by a rotation, followed by 
a translation without rotation. In order to specify rotations of a TGP, it 
is necessary to have a fixed line in the plane (say H, which we shall say is 
'horizontal') and refer the TGP to that line in a well-defined manner. Before 
saying how the fixed line becomes useful, we shall define an 'n-jigsaw' and 
a 'connected n-jigsaw', thus: 

Definitions: An n-jigsaw is a jigsaw composed of n tiles in a 
plane, combined by jigsaw moves. It is a connected n-jigsaw if 
every tile in it has at least one side (or point) coinciding with 
a side (or point) of another of the n tiles. Two n-jigsaws are 
equivalent if they can be translated and rotated in the plane 
until their jigsaw patterns are identical. 

A 
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Labelling of TGPs: In Figure 2 we showed the four possible TGPs, 
and identified each by a letter (standing for a colour). We also labelled the 
three vertices of each tile, using the letters a, b and c, with anti-clockwise 
alphabetic ordering around the triangle in each case. 

It may be noted that we always drew a triangle with one side horizontal 
(parallel to line H); theorems 4 and 5 below tell us that with any n-jigsaw 
of TGPs we can always rotate it in the plane until every one of its tiles has 
a horizontal side. Then, in each tile there will be one vertex either above 
its horizontal side or below it. Suppose in a particular tile T (where T is 
one of the four types M, V, R or P) this vertex has label I (where I is a, b, 
or c). Then we propose the following notation: Tj means that the /-vertex 
points downwards in T (it is below the horizontal side); whereas Tv means 
that the /-vertex points upwards in T (it is above the horizontal side). The 
two diagrams in Figure 4 illustrate this convention. They should convince 
the reader that the notation used, together with the labellings of TGPs 
given in Figure 2 above, specifies the orientation of tile T relative to line 
H precisely. 

b e a 
H H 

Figure 4- Two TGPs, labelled and oriented relative to line H 

Theorem 4: If a tile Ti has a horizontal side, and Ti * T2 is 
a 2-jigsaw, then tile T2 has a horizontal side. 

Proof: If T2 is jigged to Ti on the horizontal side of Ti, then 
T2 has a horizontal side which coincides with that. If T2 is 
jigged to one of T\'s sloping sides, then the 2-jigsaw is in the 
form of a rhombus: this is a parallelogram, one of whose sides 
is horizontal and not in Ti. Hence this horizontal side is in T2. 
• 
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Theorem 5: Let a connected jigsaw (say Jn) be composed 
of n TGP tiles. Then if any one tile (say T{) has a horizontal 
side, each of the tiles in the n-jigsaw has a horizontal side. 
Proof: Proof is easily established by induction, using Theo­
rem 4. • 

4.52 Linear TGP jigsaws 

A jigsaw composed of TGPs and which takes one of the following four 
forms will be called a linear TGP jigsaw, and designated an LTGP. Its 
length will be the number of TGPs used in its formation. 

Linear forms: (i) AVA • • • V (ii) AVA • • • A 
(iii) VAV • • • V (iv) VAV • • • A . 

Example 

The following LTGP of length 4 is composed of one TGP of each type: 

AVAV 
The symbol string Pa' * Rc * Ma' * Vc gives a proper definition of one of 
these linear forms, and shows that one such actually exists. Moreover, since 
Vc * Pa< is a valid combination, it follows that this LTGP can be extended 
indefinitely (in both directions). Hence we can say that this 4-jigsaw, of 
type defined by its symbol string, tiles the jigsaw line. 

We can now ask the question: Does this LTGP tile the plane? The an­
swer is: Yes. Two of these tile-strings may be placed end-to-end, or on top 
of or under one another, in suitably staggered positions. And the process 
may be continued indefinitely. These remarks could be made precise, using 
the symbols developed above; but we will leave it to the reader's visual 
imagination to confirm them. 

4.53 Jigsaws with two tiles 

Having studied single TGPs, and linear combinations of them, albeit most 
briefly, we can look at 2-jigsaws. Two jigged equilateral triangles form a 
60° rhombus. We shall say that two of these rhombuses, each formed from 
two TGPs, are equivalent if their overall geometric patterns are identical 
(can be placed exactly over each other). 
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We ask how many inequivalent rhombus tiles there are, and the answer 
is 16. We have not space to give diagrams of all these; we present only two, 
in Fig. 5, to demonstrate how varieties of geometric patterns are presented 
on these rhombuses. Under the diagram we give a table which shows how 
often the various V, M, P and R tiles can be jigged together in pairs, in a 
total of 16 inequivalent ways. 

Figure 5. The two (M,P)-rhombuses 

No. Pairs 
V 
M 
P 
R 

Total 

V 
0 

M 
1 
0 

P 
1 
2 
2 

R 
2 
1 
5 
2 

Totals 
4 
3 
7 
2 
16 

Table: Numbers of possible rhombuses, from TGP-pairs 

As final comments on tiling the plane, we note that neither the V- nor the 
M-type tiles combine with themselves in pairs, so they cannot tile the plane. 
Although there are two types of (R,R) combinations, it can be shown that 
the R-tiles cannot tile the plane. Similarly, the pink tiles cannot tile the 
plane. Some of the rhombuses will tile the plane (e.g. Pb * Ra' will do so); 
the (V,P) rhombus will not. 

4.54 Tiling surfaces of solids 

V. Assanova has discovered many examples of tilings of polyhedra. A small 
selection of her findings are presented below. Chapter 6 has more. 
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Each of the following diagrams is a developed, planar view of a surface 
tiling for the solid which is named above it. If these were to be cut out and 
folded, all the boundary edges could be matched in pairs, with goldpoints 
coinciding on these edges; and the solid's surface would result. 

(A) Two pyramids, each using four TGPs of different types 

(B) Two pyramids, using two type-P and two type-R TGPs 

(C) A pyramid using four TGPs of each type 

M 

V., M. 
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(D) An octahedron using two TGPs of each type 

(E) A regular icosahedron using five TGPs of each type. 
[N.B. Neighbouring faces are everywhere coloured differently.] 

4.6 On Squares with Goldpoints (SGPs) 

V. Atanassova extended the idea of goldpoint triangles to squares marked 
with goldpoints (SGPs), and she has discovered much about them. Not 
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only has she studied some of their combinatorial and geometric problems, 
but she has also invented intriguing games which make use of them (see 
Chs. 6 and 7). 

We shall first show the different types of SGP that can be drawn; and 
then demonstrate a few solutions to the problem of tiling the plane with 
them. 

4.61 The six different (inequivalent) SGPs 

The four goldpoints of a square may be marked in 24 = 16 ways, since 
there are two ways to place a goldpoint on each of its sides. Allowing for 
plane rotations, there are six equivalence classes, which may be described 
in terms of the tile figures. These figures are: rectangle (1 type), square 
(2 types), trapezium (1 type) and quadrangle (2 types). A set of distinct 
representatives of these types is shown in Figure 6. (Note, incidentally, that 
they are arranged so that they jig-tile a 2 x 3-rectangle: and observe the 
centrally placed kite and diamond shapes, which play roles in SGP jigsaw 
patterns.) 

Figure 6. The six possible types of SGP 
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4.62 On tiling the plane 

The four diagrams in Figure 7 below, each of four SGPs arranged in a 2 x 2 
square, demonstrate how the plane may be tiled by SGPs in the following 
ways: 

(i) Using only the rectangle tile; 
(ii) Using only the trapezium tile; 
(iii) Using both types of quadrangle; 
(iv) Using both types of square and two trapezia. 

In each case, it is obvious how each 2 x 2 jig-tile can be jigged with a copy 
of itself, on either side, or on top or bottom; and thence how the plane can 
be tiled by further copies. 

Figure 7. Four ways to tile the plane with SGPs 

There are other solutions for jigging SGPs into 2 x 2 squares, some of 
which tile the plane, and some which do not. (N. B. Another plane 2 x 2 
tiling solution may be found on the right side of Figure 6.) 

4.7 S u m m a r y 

The first part of the chapter was concerned with two theorems about rhom­
buses with a line being drawn from a vertex to cut two sides in goldpoints. 
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Then definitions of golden tiles, tile figures and jigsaws were given, followed 
by a theorem on properties of a type-V tile figure. 
The rest of the chapter dealt with golden tiles which were either equilateral 
triangles or squares marked with one goldpoint on each of their sides. A 
variety of jigsaw problems were described, and solutions given. 

The construction of golden tiles, and their applications to jigsaw tiling of 
plane and solid figures, provides a potentially endless source of fascinating 
problems in combinatorics and geometry. More are treated in the next two 
chapters. All results from these are of necessity, in view of the manner of 
tile markings, directly related to the golden mean. 

In his book The Divine Proportion, Dover (1970), H. E. Huntley has 
given many geometric instances of what he calls the 'ubiquity of the golden 
mean'. Several relate to the angle 36° or multiples of that, for example 
when a arises in the geometry of a pentagram star (p. 28). Our relations 
of a to the angle 60° can hardly be new, as this kind of geometry has been 
studied at least since the Golden Age of classical Greece. However, we 
believe that our treatment of them, followed by their use in the study of 
golden tiles, is new. 



Chapter 5 

Plane Tessellations with Goldpoint 
Triangles 

5.1 Introduction 

In this chapter we shall begin by extending our jigsaw tile labelling tech­
niques. Then we shall define jig-chains of TGPs, and show how the adja­
cency matrix for these chains can be used to study and count the ways of 
forming certain n-tiles. Much use will be made of Burnside's theorem for 
counting equivalence classes. 

In particular the table given in Ch. 4 for counting 2-tiles will be verified, 
and then the 3-, 4-, 5- and 6-tiles will be counted. The general solution 
to the problem of tiling a hexagon with TGPs will be presented, and the 
hexagon tile-figures investigated. 

5.2 The fs-String Notation for TGPs and SGPs 

The diagrams in Fig. 1 show how we can describe the perimeter of a 
TGP-tile (or an SGP-tile) by recording the steps (long = I or short = s) 
when passing (walking) around it, from vertex to goldpoint to vertex in 
the anticlockwise direction. We need only record the first step on each 
side, since the second must be its complement. This greatly simplifies all 
discussions and proofs about properties and relations between goldpoint 
jigsaw tiles. 

First we must decide where we start the 'walk' around the tile, when 
measuring the steps. We require the start of each walk to be always from 
the left-hand vertex on the horizontal side of the TGP when it is 'horizontal 
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side up' (HSU). When the TGP is 'horizontal side down' (HSD), we must 
start the walk at the right-hand vertex of the horizontal side. We shall use 
the same device with goldpoint squares (SGPs): the walk start on an SGP 
will always be from the left-hand vertex of the top edge of the square. 

V A '0 
P(lsl) P'(lsl) SGP(slls) 

Figure 1. Examples of Is-labellings 

We call the start vertices of walks walk-origins. In all future diagrams 
we shall mark the TGPs and SGPs (when necessary) with an angle sign, 
as shown in Figure 1. 

Definition: the succession of l,s labels of alternate steps 
around a golden tile, from its walk-origin, is called the Is-
string of the tile. 

It must be noted that the Zs-string of a tile is measured on a particular 
aspect of the tile relative to a horizontal line in the plane. It is not a fixed 
attribute of the TGP concerned. We saw in Figure 1 that the Zs-strings for 
P„ and Pai were the same; but for the other rotational aspects of the P-tile 
they are not. 

The following diagram shows what happens to the Zs-strings when the 
pink tile is rotated anti-clockwise through multiples of 60°. 

Pa - » A ' - » Pc - » Pa' - » Pb - » Pe> ~» Pa 

(Isl) (sll) (Us) (Isl) (all) (Us) (Isl) 

We note that, given P t t = Isl, we can get p , (= Py) and Pc by cyclically 
permuting Isl one element at a time, taking the first element to the third 
position and so on. 
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The /s-strings are very useful for proving various jigging properties of 
tiles. Several basic observations about them are the following: their proofs 
are immediate, from definitions. 

Lemma: If Tx is a TGP in HSU position (vertex x pointing 
down) and Tx* is the TGP in HSD position (vertex x pointing 
up), then the Zs-string is the same for both Tx and Tx>. 

Theorem 1: When two tile sides are placed next to each 
other, they will have opposite walk directions (see the dia­
gram below Theorem 2). 

Theorem 2: A side of a unit TGP (or other golden tile) 
will jig to a side of another unit golden tile if and only if the 
Is-values of the two adjacent sides are complementary (see 
the diagram below). (N.B. The complement of Z is s, and 
vice versa.) 

VA 
Tx(x1x2*3> V(y1y2y3> 

Theorem 3: Let Tx be a TGP tile (HSU) with Zs-string 
x\x2xz\ and Ty be a TGP tile with Zs-string 3/12/22/3- Then: 

(i) Ty = Txi (a triangle rotation of Tx through 180°), if 
and only if 2/12/22/3 = x\x2x$ (N.B. Tx> has the same Zs-string 
as Tx.) (ii) If Ty is a 60° anti-clockwise rotation of Tx, 
then 2/12/22/3 = Z2Z3Z1 (N.B. This implies that 2/1 = x2,2/2 = 

£3, 2/3 =x\-) 

(iii) If Tz is a 120° anti-clockwise rotation of Tx, then 
z\z2Z3 — xzx\x2 Hence z\ = x3, z2 = x\, 23 = x2. 

Finally we give a theorem about the jigging of two faces from squares with 
goldpoints (SGPs). 
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Theorem 4: Two faces (say G and H) from two unit cubes, 
which are formed from unit SGPs, will jig as G * H if the 
complement of the Zs-string of H is equal to [(13)(2)(4) x (Is-
string of G)], where (13) indicates a transposition of 1st and 
3rd terms of G's Zs-string. 

Proof: The 1st side of G has to jig with the 3rd side of H, 
and vice-versa. Whereas the 2nd and 4th sides of G have to 
jig respectively with the 2nd and 4th sides of H (these are the 
horizontal sides, and have opposing directions when the pairs 
are jigged). All pairs of jigged sides have opposing directions, 
and the condition of Theorem 2 requires complementation. 
• 

Example: The diagram shows two SGPs, namely G(lssl) and H(llss). 
Applying the theorem, we find that they will jig if G is a face of one cube, 
and H a face of another, since H(U^) = (ssll) = (13) (2)(4) x G(lssl). 

G(lssl) H(llss) 

5.3 Jigsaws with n = 2,3,4,5,6 TGPs 

In Chapter 4 we dealt briefly with 2-tile rhombuses (n = 2 TGPs). Here 
we begin to study jigsaws more generally. The goal of this subsection is to 
reach a point where the tiling of a hexagon, using 6 TGPs, can be solved 
in some detail. We shall first discuss the positional aspects of TGPs in 
jigsaws, and then introduce a powerful counting tool, namely Burnside's 
Theorem, and use it to verify that there are only 4 types of TGP which 
are jigsaw inequivalent. Later we shall use it several times to count n-tile 
jigsaws. 
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5.31 The two positional aspects of TGPs in jigsaws 

In view of Theorems 4 and 5 of Chapter 4, we know that all tiles in a 
jigsaw are either in the position V (horizontal side up, HSU), or they are in 
position A (horizontal side down, HSD), given that one tile has a horizontal 
side. We shall confine ourselves to jigsaws of this kind, since all jigsaws of 
TGPs are rotationally equivalent to ones of this type. 

Clearly the two triangles V and A are not translation-equivalent, but 
they are rotational-equivalent. When constructing jigsaws with TGPs, both 
kinds of triangle must be taken into account. To be precise, we must 
consider the union of both of the following sets: 

HSU-triangles:5 = {V,M,Pa,Pb,Pc,Ra,Rb,Rc} 

HSD-triangles:S' = {V',M',Pa.,P^,Pc.,Ra.,Rv,Rc.}. 

Let 5+ = S U 5 ' . Then \S+\ = 16. Note that V ^ V and M ^ AT. 

It is evident that a rotation of any of the triangles in S+, through any 
multiple of 60°, will carry it to itself or to another triangle in S+. If a 
triangle is in S, a rotation through 60° will carry it to a triangle in S1, and 
vice versa. It is easy to see that applying the group of rotations through 
multiples of 60° to all elements S+ produces a group of permutations on 
the elements of S+. The equivalence relation induced by this group has 
four equivalence classes, which are immediately found to be 

{V,V}, {M,M% {Pa,Pb,Pc,Pa,,Pb,,Pc,}, {Ra,Rb,Rc,Ra,,Rb,,Rc,}. 

That is why we declared in Chapter 4 that there are four types of TGP, 

and designated them V, M, P, R. 

It will be appropriate now to state Burnside's theorem*, which we shall 
use frequently later, and to illustrate its use by applying the permutation 
group to S+ directly, thereby deducing that there are 4 distinct types of 
TGP. 

•This theorem is a fundamental lemma in Polya's Enumeration Theory, treated in most 
advanced textbooks on Combinatorics. 
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5.32 Burns ide ' s Theo rem 

T h e o r e m (Burns ide ' s ) : The number of equivalence sets 
into which a set S is divided by the equivalence relation in­
duced by a permutation group G of S is given by T^T £)„.eG VK71") > 
where i/K71') is the number of elements of S that are invariant 
under the permutation n (i.e. its number of fixed points). 

Application to S+: Let the triangles in S+ be ordered and labelled 1-
16. If we apply the cyclic group of rotations through multiples of 60' to the 
triangles, we obtain a group of permutations, of order 6. Let us designate 
this by G{7ri,7T2,7T3,7r4,7r5,7r6} To apply Burnside's theorem, we have to 
count the fixed points when applying each permutation in G, in turn, to 
the 16 elements of S+. The following table lists and counts these fixed 
points. 

Rotation 
60° (TTI) 

120° (TT2) 

180° (TT3) 

240° (TT4) 
300° (TTB) 
360° (7r6) 

Total: 

# 
0 
4 
0 
4 
0 

16 

24 

Invariant maps 

V -> V, V -» V, M -> M, M' -> M' 

V - • V, V -> V, M -» M, M' - • M' 

Identity permutation 

Hence, applying Burnside's theorem, the number of different TGP types 
(i.e. the number of equivalence classes) is (1/6) x 24 = 4. 

This theorem makes the counting of equivalence classes relatively simple, 
since only the invariant mappings, or fixed points of the permutations, have 
to be determined. 

5.33 Notations for the tiles in S 

When considering how to jig TGPs together, it is necessary to think of eight 
different tiles as in S, or sometimes sixteen as in S+, because we need to 
take account of their positions relative to the horizontal line H (see Figures 
2 and 4 of Ch. 4). The following table introduces notations for the eight 
HSU-TGPs of set S. 

We have assigned the digits 1,2,..., 8 to these different (HSU-positioned) 
tiles. The three rows give the alphabetic, numeric, and /s-string notations 
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for each of the eight tiles. 

Alphabetic: 
Numeric : 
Zs-string : 

V M Pa Pb Pc Ra Rb Rc 

1 2 3 4 5 6 7 8 
III sss Isl sll Us Iss ssl sis 

Table 1. The alphabetic, numeric and Is-string designations of TGPs 

5.34 TGP n-chains 

In Figure 2 below, we give an example of four TGPs, all 'horizontal side up' 
arranged in a horizontal line; and we call such an arrangement a 4-chain of 
TGPs. If they actually jig together properly, as they do in the example, we 
may place an asterisk between adjacent triangles. 

In general we shall talk of n-chains of TGPs, when n TGPs are arranged 
in this way. 

wwww 
6(Ra) 1(V) 2(M) 3(Pa ) 

Figure 2. Example: a 4-chain of TGPs which will jig downwards 

Using the numeric definitions of tiles, from Table 1, we can designate 
the whole chain merely by writing down the digit string 6123. 

We developed this numeric notation in order to be able to write com­
puter programs for solving combinatoric problems about TGPs, and also to 
have a shorthand method for recording jigsaws of several tiles. The reader 
will see much evidence of its use from now on. 

5.35 The jigging matrix 

We can check which TGP pairs can be jigged, in a 2-chain, and record all 
the successful pairs in a matrix, in the same way that a connection (or 
transition) matrix is computed for a directed graph. Thus, in the following 
matrix, a 0 in row i and column j means that the jig-pair i*j is not possible; 
whereas a 1 in that position means that i * j is possible. We shall designate 
the matrix M, and call it the jigging matrix for the set of oriented and 
labelled TGP-tiles. 
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Exactly as with directed graphs, we can multiply M by itself n times, 
and then the ij-th element of Mn will be an integer which counts the 
number of possible n-chains which begin with TGP labelled i, and end 
in TGP labelled j . (A proof of this can be found in any Graph Theory 
text-book.) Below we give the matrices M and M2. 

M = 

1 
2 
3 
4 
5 
6 
7 
8 

1 
0 
1 
1 
0 
0 
1 
1 
0 

2 
1 
0 
0 
1 
1 
0 
0 
1 

3 
0 
1 
1 
0 
0 
1 
1 
0 

4 
1 
0 
0 
1 
1 
0 
0 
1 

5 
0 
1 
1 
0 
0 
1 
1 
0 

6 
0 
1 
1 
0 
0 
1 
1 
0 

7 
1 
0 
0 
1 
1 
0 
0 
1 

8 
1 
0 
0 
1 
1 
0 
0 
1 

M2 = 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
2 
2 
2 
2 
2 
2 
2 
2 

4 
2 
2 
2 
2 
2 
2 
2 
2 

5 
2 
2 
2 
2 
2 
2 
2 
2 

6 
2 
2 
2 
2 
2 
2 
2 
2 

7 
2 
2 
2 
2 
2 
2 
2 
2 

8 
2 
2 
2 
2 
2 
2 
2 
2 

2C7 

Successive multiplication by M gives: 

M 3 = 2MU = W ; M 4 = 8MJ7 = 32(7 ; • • • ; Mn = 2 2 n - 3 [/. 

5.36 Formation of rhombuses from 2-chains 

If a 2-chain of TGPs is jigged downwards, the result is a 60° rhombus. It 
is immaterial whether the left-hand triangle is dropped, or the right-hand 
one, for the two rhombuses are jigsaw equivalent: a 60° rotation takes one 
into the other. In chapter four (p. 202) we gave a table showing how many 
different rhombuses can be formed from the four different types of TGPs. 

The information in that table (and the jigging matrix M given in 5.35) 
was found by trial and error, moving cardboard triangles around like jigsaw 
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pieces. It took some time to get all the counts right. The final, correct, 
count of inequivalent rhombuses is sixteen. 

In figure 3 below, we give the jigging matrix M again, with a lot more 
information added to it; and beneath it we give the table of rhombus counts, 
blocked to colour-pairs only. After the figure, we shall explain how the 
new matrix M was obtained, and show how it may be used to confirm 
the rhombus count-table. Later we shall use the much easier method of 
Burnside's to re-confirm the total. 

1 
2 
3 
4 
5 
6 
7 
8 

TGP 
no. 

/s-string 

V 
M 

Pa 
A 
Pc 
Ra 
Rb 

Re 

111 
sss 
lsl 
sll 
lis 
lss 
ssl 
sis 

V 
1 
111 
0 

l l 

h 
0 
0 
Is 
14 

0 

M 
2 

sss 

l l 
0 
0 

le 
Is 
0 
0 
I7 

Pa Pb Pc 
3 4 5 

lsl sll lis 
0 12 0 
15 0 1„ 
Is 0 19 

0 19 0 
0 18 0 

113 0 I n 
114 0 I12 
0 lio 0 

Ra Rb Re 
6 7 8 

lss ssl sis 

0 i 3 i 4 

17 0 0 

lio 0 0 
0 I n I12 
0 I13 ll4 

l is 0 0 
lie 0 0 
0 l is lie 

(a) The jigging matrix, with added information (M+) 

V 
M 
P 
R 

V 
0 
1 
1 
2 

M 
1 
0 
2 
1 

P R 
1 2 
2 1 
4 5 
5 4 

(b) Table 2. The blocked rhombus counts 

Figure 3. Counting rhombuses 

In the matrix M+ we have shown the /s-string for each triangle, as mea­
sured from its top left-hand corner. From these strings, we can immediately 
fill in the 8 x 8 table of Os and Is, because we know that a 2-chain will jig if 
the second /s-symbol on the left-hand triangle (second column) is equal to 
the complement of the first Zs-symbol on the right-hand triangle (top row). 
Otherwise it won't. 
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We have appended a subscript to each 1 in the table, and it may be 
checked that the subscripts 1 ,2 ,3 , . . . , 16 occur twice each within the table. 
If a pair of TGPs form a rhombus associated with symbols U in M, and 
another pair form a rhombus again with symbols lj in M, then the two 
rhombuses are rotationally equivalent. That is, they are the same jigsaw 
piece. 
An example is l 5 which occurs for both the jigging 2-chains M * Pa and 
Pc * M. When jigged (dropping the left tile) they form the two rhombuses 
AV = MPa and AV = Pa'M respectively. Since a 180° rotation will 
carry one into the other, they represent the same jigsaw piece. This means, 
immediately, that the 32 pairs indicated in M+ form exactly 16 inequivalent 
rhombuses. 

We can prove this fact directly using Burnside's theorem, thus: 

Form the 32 rhombuses, one for each 1 in the matrix, and apply the 
rotation group G(0°, 180°) to each. Note that a 60°-rhombus has 2-fold 
rotational symmetry about its centroid, and that no rhombus pattern can 
rotate into itself by a 180° rotation. 

Then the permutations on the 32 rhombuses induced by the 0° and 180° 
rotations have respectively 32 and 0 fixed points. Therefore, the number of 
rotationally inequivalent rhombuses is (1/2) (32 + 0) = 16. 

5.37 Formation of jigsaw n-tiles, for n = 3,4,5 

Now that we have dealt with 2-tile rhombuses in some detail, we shall 
proceed to count the 3-tiles, 4-tiles and 5-tiles which are made from TGPs 
using the jigsaw rules. Figure 4 below shows the various possible shapes 
for these tiles. 

Counting the 3-tiles 

There are only two ways of placing three TGPs together to form a 3-
tile, with at least one side being horizontal. These provide the following 
two shapes: AVA and VAV. But since a rotation through 180° will carry 
one of these shapes into the other, we only need consider and count the 
left-hand shape of jigsaw 3-tiles. This is easily done, as follows: 
Let us think of the three triangles as A, B, C, in the order they appear in 
the jigsaw shape. Then there are 8 possible TGPs for filling A, then 4 for 
filling B (see the rows in the jigging matrix M), and again four for filling 
C. Thus there are 8 x 4 x 4 = 128 different 3-tiles. Note that a 3-tile has 
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no rotational axis of symmetry, so we do not need to consider fixed points 
of permutation operations here. 

V V\ W 
n = 1,m = 1 n = 2,m = 1 n = 3,m = 1 

n = 4, m = 4 

n = 5, m = 6 

Figure 4- The possible shapes of 1-, 2-, 3-, 4~ and 5-tiles of TGPs 

Counting the 4-tiles 
(n = 4 row: labelled 4(a), 4(b), 4(c), 4(d) left to right in Fig. 4) 

The linear forms: 

We shall first count the two linear forms 4(c) and 4(d). We note first that 
these are not equivalent shapes under a 180° rotation: but it is evident that 
they will have the same numbers of inequivalent jigsaw pieces. So we need 
only count the type 4(c) pieces: there will be an equal number of type 4(d) 
cases. 

Designate the four TGPs of VAVA (in 4(c)) by A,B,C,D reading 
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from the left. Then there are 8 choices of TGP for A, then four choices 
for each of B, C, D taken in turn: a total of 8 x 43 of 4-tiles of shape 4(c). 
However, under rotations of 180° in the plane, each of these 4-tiles rotates 
into another of them. The following theorem tells us that there are no fixed 
points under these rotations. First we need a lemma. 

Lemma: No pair of TGPs such as VA = X.X' can jig. 

Proof: If the corners of the left-hand triangle X be labelled 
a,b,c in an anticlockwise direction, starting at the top-left 
corner, then X' will have anticlockwise labelling a, b, c start­
ing at the bottom-right corner. This means that the adjacent 
sides of the triangles in the rhombus, taken in anticlockwise 
directions, are be on X, and be on X'. Hence both these sides 
have the same Zs-value, and by Theorem 2 of this chapter, 
they do not jig on those sides. • 

Theorem 5: No linear 4-tile of TGPs can rotate through 
180° into itself. 

Proof: If AVAV is to rotate into itself, then the TGP tiles 
used must be of only two types, jigged in the following form: 
X' * Y * Y' * X. But by the lemma, the central two TGPs, 
namely Y and Y', do not jig as required. Hence such a 4-tile 
is impossible, and the theorem is true. • 

Now we are in a position to determine the number of inequivalent lin­
ear jigsaw 4-tiles of TGPs (for each of 4(c) and 4(d)). We showed above 
that there are 8 x 43 = 512 possible tile combinations. Applying Burn-
side's theorem to these, with the group of rotations G(0°,180°) inducing 
an equivalence relation in them, we find that the number of equivalence 
classes amongst the 512 4-tiles is (1/2) (512 + 0) = 256. Here the 0 is 
the number of fixed points under 180° rotations, and is a consequence of 
Theorem 5. 

The following theorem generalises this result. 
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Theorem 6: The number of distinct linear (2n)-tiles is 24 n , 
of either kind. 

Proof: By the same arguments as for the 4-tiles, there are 
8 x 42™-1 = 2 4 n + 1 possible linear (2n)-tiles, of either kind. 
There can be no fixed points under 180° rotations (applying 
the lemma to the centre two TGPs). Hence by Burnside's 
theorem, there are a total of ( l /2 ) (2 4 n + 1 +0) = 24" different 
linear (2n)-tiles, of either kind. • 

The shape 4(a): 

Since there are no rotational symmetries for this shape, we find immediately 
that there are 8 x 43 = 29 ways of filling the triangles by TGPs, drawn from 
the 8 types available: we can fill the first one (any) in 8 different ways, and 
then each of the others can be filled in turn, laying each against an already 
filled one, in 4 x 4 x 4 ways. Thus there are 512 different 4(a) tiles. 

The shape 4(b): 

Let us call this the triangle 4-tile. Again, as for the shape 4(a), there are 512 
different ways to place TGPs within the four triangles. This time, however, 
some of these triangle 4-tiles have rotational symmetries, and these must 
be treated. 

The triangle 4-tile shape has 3-fold rotational symmetry, with the group 
of rotations being G(0C, 120°,240°). For the second two rotations, only 
those whose inner TGP is either V or M, and with all three outer TGPs 
being the same as each other, can rotate into themselves — that is be 
rotation invariant (fixed points). So we can fill the inner triangle in 2 ways 
(V or M), and then choose any one of the four TGPs which will jig with 
V or M, as the case may be. 

Hence there are 2 x 4 = 8 triangle 4-tiles which have 3-fold rotational 
symmetry. So the numbers of fixed points in the induced permutations of 
the 512 tiles is 512,8,8 respectively for the three corresponding rotations 
0°, 120°, 240° of the symmetry group G. 

Finally, then, using Burnside's theorem we obtain the number of distinct 
jigsaw triangle 4-tiles as: (1/3) (512 + 8 + 8) = 176. 
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Counting the 5-tiles 

The six possible shapes of the 5-tiles composed of TGPs are shown in 
Figure 4 above. Since each shape has no rotational symmetries (except 
1-fold), there can be no rotational fixed points when five TGPs are placed 
into those shapes, except under the identity rotation. Hence the number of 
possible 5-tiles of TGPs, of each of the four shapes, is: 8 x 44 = 211. 

5.38 Studies of the 6-tiles of TGPs 
Figure 5 below shows the nineteen different shapes which can be formed 
from six jigged TGPs. These shapes are non-equivalent under translations 
and rotations in the plane. 

AA7V 
XAAA 

(Six shapes have rotational 
symmetries; centres shown by o) 

Figure 5. The possible shapes of 6-tiles 

Note that most of these 6-tiles do not have rotational symmetries, other 
than the trivial 1-fold one. Those that have are marked with small circles, 
placed at the centres of rotational symmetry. Five of these have 2-fold ro­
tational symmetry: but, in view of the lemma before Theorem 5, none of 
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these shapes can be rotated into themselves when filled with TGPs. Hence 
we do not have to consider their individual rotation properties when ap­
plying Burnside's theorem, except that we must use the group G(Q°, 180°) 
rather than the trivial one used for the others. 

Counting the 6-tiles 

To count the numbers of possible 6-tile jigsaws, filling any but the hexagon 
shape with selections of the 8 TGPs, we have only to apply the simple 
arguments given several times above for smaller n-tiles. Consider any 6-
tile shape but the hexagon one. Choose an empty triangle, and fill it with 
any TGP chosen from the 8 available. Then move to an adjacent empty 
triangle, and (see the jigging matrix M) there are 4 TGPs available to fill 
it. Repeat this latter process until all six tiles are filled with a TGP. Then 
that procedure provides a total of 8 x 45 = 213 = 8192 jigsaw tiles of the 
given shape. 

Now, using Burnside's theorem on the 6-tiles with 1-fold symmetry, we 
obtain the result that there are (1/1) x 8192 = 8192 distinct such jigsaw 
6-tiles of each shape. Whereas for each of the shapes which have 2-fold 
symmetry, there are (1/2)(8192 + 0) = 4096 distinct jigsaw 6-tiles. 

The one remaining shape, the 6-tile hexagon, has 6-fold rotational sym­
metry, and hence its possible jigsaw tiles are much harder to count. When 
it is filled with TGPs, fixed points under rotations can arise. We shall treat 
this complicated case in a separate subsection, to follow. 

On the hexagons formed from six TGPs 

We now show how to count the hexagon 6-tiles; then we determine how 
many of these are distinct jigsaw hexagons: the answer is shown to be 700. 
A study of the inner hexagons (tile figures in the 6-tile hexagons) is then 
described. 

If we take a 6-chain of TGPs which will jig, and fold it downwards and 
around until all adjacent sides meet, we will get a tiled hexagon — provided 
that the first side of the first TGP will jig with the second side of the last 
TGP of the chain. An example of such a tiling follows: 
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v-v-v-v-v-v 
c e b b 

Figure 6. A 6-chain which jigs to a hexagon 

We can easily count how many hexagons can be formed in this way, if 
we do not allow for repetitions due to rotational symmetries. We can do 
this by computing the 6th power of the jigging matrix M, and then adding 
the numbers on its leading diagonal. 
Diagonal elements of the matrix M 6 count the 7-chains which begin with 
one TGP and end with the same TGP. That is, they count the 6-chains 
which will fold around and jig the sixth TGP with the first TGP (since the 
first TGP is congruent to the last TGP of the 7-chain). Now M " = 22n~*U, 
hence M6 — 29U. There are 8 diagonal elements, so the total of these is 
8 x 29 = 212 = 4096. 

[An easier way to count the hexagons is to multiply the ways of filling 
one triangle (from the 8 TGPs available), by the number (4) ways of filling 
an adjacent triangle, and so on, until the last triangle is reached: it can be 
filled in only 2 ways. The total is therefore 8 x 44 x 2 = 212.] 

Each of the above 7-chains has to be listed, and the first six TGPs (the 6-
chain) of each has to be examined for cyclic permutational symmetries. For 
example, one hexagon-tiling is given by the chain 121212 (i.e. alternating 
Violet and Mauve TGPs). In the listing of 4096 possible tilings, the chain 
212121 will also occur: this must be discarded from the count, since it codes 
the same hexagon tile as does 121212. A rotation through 60° will carry 
one into the other. 

The task of sorting out the set of hexagon-tiling 6-chains into types, 
and then discovering all the redundant chains, was too large to tackle 'by 
hand' (although it was attempted!); so a computer program was written to 
do it. The set of inequivalent 6-chains which was obtained thus is listed 
in the table below. The count of this list, that is the number of hexagon 
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6-tiles, is 700. Below the list, we shall provide a mathematical proof for the 
number 700. 

Table 3: The set of 6-chains which will tile a hexagon 
(1 = V, 2 = M, 3 = Pa, 4 = A, 5 = Pc, Q = Ra,7 = Rb,S = Rc) 

121212 

121423 
121717 
121826 

123126 
123333 
123542 

123636 

125252 

125473 
125757 

125876 
126182 

126366 

126587 

142142 
142336 
142547 

142652 

144257 
144476 
144763 
144882 

147333 
147542 

147636 
148252 
148473 
148757 

148876 
171763 
171882 

121217 

121426 
121733 
121842 

123142 

123336 
123547 

123652 

125257 

125476 
125763 

125882 
126187 
126523 
126617 

142147 
142352 
142573 

142657 

144263 
144482 
144766 
144887 

147336 
147547 
147652 

148257 
148476 
148763 
148882 
171766 
171887 

121233 
121442 

121736 
121847 

123147 
123352 

123573 

123657 

125263 
125482 

125766 
125887 
126317 

126526 
126633 

142173 
142357 
142576 

142663 

144266 
144487 
144823 

147147 
147352 

147573 
147657 
148263 
148482 

148766 
148887 
171823 
173173 

121236 

121447 
121752 

121873 

123173 
123357 
123576 
123663 

125266 

125487 

125823 
126126 
126333 
126542 

126636 

142176 
142363 
142582 

142666 
144423 
144717 
144826 

147173 
147357 

147576 
147663 

148266 
148487 

148823 
171717 

171826 
173176 

121252 

121473 
121757 

121876 

123176 
123363 
123582 

123666 

125423 
125717 

125826 
126142 

126336 
126547 
126652 

142182 

142366 
142587 

144217 
144426 
144733 
144842 

147176 
147363 
147582 

147666 

148423 
148717 
148826 
171733 
171842 
173182 

121257 
121476 
121763 
121882 

123182 
123366 
123587 
125217 

125426 
125722 

125842 
126147 
127352 

126573 

126657 

142187 
142523 
142617 

144233 
144442 
144736 
144847 
147182 
147366 
147587 
148217 

148426 
148733 
148842 

171786 
171847 
173187 

121263 
121482 

121766 
121887 

123187 
123523 
123617 
125233 
125442 

125736 

125847 

126173 
126357 

126576 
126663 

142317 
142526 
142633 

144236 
144447 
144752 
144873 
147187 
147523 
147617 

148233 
148442 

148736 
148847 
171752 
171873 
173333 

121266 
121487 
121823 

123123 

123317 
123526 
123633 

125236 
125447 

125752 

125873 

126176 
126363 

127582 

126666 

142333 
142542 
142636 

144252 
144473 
134757 
144876 
147317 
147526 
147633 

148236 
148447 

148752 

148873 
171757 
171876 
173336 
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173352 

173573 

173663 
175423 
175733 
175852 
176187 
176526 
176636 
182336 
182547 
182657 
184266 
184487 

184826 
187333 
187542 

187652 

188263 
188482 

188823 

233335 
233585 

235258 
235735 
235884 

236548 

252525 

252658 
254484 

254875 

257548 

258258 
258754 

263335 

263588 

265475 

265848 
266544 

173357 
173576 
173666 
175426 
175736 
175847 

176333 
176542 
176652 
182352 

182573 
182663 
184423 
184733 
184842 

187336 
187547 

187657 

188266 
188487 

188826 
233354 
233588 

235265 
235754 

235888 

236575 
252544 

252665 
254488 

254884 

257575 

258265 
258758 
263354 

263635 
265484 

265875 

266548 

173363 
173582 

175233 
175442 
175752 
175873 
176336 

176547 
176657 
182357 
182576 
182666 
184426 
184736 
184847 
187352 

187573 
187663 
188423 

188733 
188842 

233358 
233635 

235425 
235758 
236335 
236584 

252548 
254254 

254735 

254888 
257584 

258444 

258765 

263358 
263654 

265488 

265884 

266575 

173366 
173587 

175236 
175447 
175757 
175876 
176352 

176573 
176663 
182363 
182582 
184233 
184442 
184752 

184873 
187357 

187576 

187666 
188426 
188736 

188847 
233365 
233654 

235444 
235765 
236354 

236588 

252575 

254258 
254754 

257335 

357588 

258448 
258844 

263365 

263658 

265735 

265888 
266584 

173523 
173633 
175252 

175473 
175763 
175882 

176357 

176576 
176666 
182366 
182587 
184236 
184447 

184757 
184876 
187363 
187582 

188233 
188442 
188752 

188873 
233525 
233658 

235448 
235825 
236358 

236635 
252584 

254265 
254758 

257354 

257635 

258475 
258848 
263544 

263665 
265754 

266335 

266588 

173526 
173636 
175257 

175476 
175766 
175887 

176363 
176582 
182182 
182523 
182633 
184252 

184473 
184763 
184882 

187366 

187587 

188236 
188447 
188757 

188876 
233544 

233665 

235475 
235844 

236365 
236654 

252588 

254444 
254765 

257358 
257654 

258484 

258875 

263548 

265265 

265758 

266354 

266635 

173542 
173652 

175263 
175482 
175823 
176176 

176366 

176587 
182187 
182526 
182636 
184257 

184476 

184766 
184887 
187523 

187633 
188252 

188473 
188763 
188882 

233548 
235235 
235484 
235848 
236525 

236658 

252635 

254448 
254844 

257365 

257658 

258488 
258884 

263575 

265444 

265765 

266358 

266654 

173547 
173657 

175266 

175487 
175826 
176182 

176523 

176633 
182333 
182542 
182652 

184263 
184482 

184823 
187187 
187526 

187636 

188257 

188476 
188766 
188887 

233575 
235254 

235488 
235875 
236544 

236665 

252654 

254475 
254848 

257544 

257665 

258735 
258888 
263584 

265448 
265844 

266365 

266658 
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266665 

333636 
335766 

336576 

354736 
357547 

358487 
363657 

365878 
444444 

444888 
448488 

475758 

476658 

487665 
575876 
588876 

333333 

333657 
335847 

336587 

354757 
357576 

358736 

363666 
365887 

444448 
447548 

448758 
475765 

476665 

488488 
575887 
588887 

Proof that there 

333336 

333666 
335876 

336636 

354766 
357587 

358757 
365447 

366366 
444475 

447575 

448765 
475848 

484848 
488758 
576576 
666666 

are 700 

333357 

335447 
335887 

336657 

354847 
357636 

358766 

365476 
366547 

444488 

447588 

448848 
475875 

484875 
488765 
576587 
888888 

333366 

335476 
336336 

336666 

354876 
357657 

358847 
365487 

366576 
444758 

447658 

448875 
475888 

484888 
488875 
576666 

hexagon jigsaw 

333547 

335487 
336357 

354447 

354887 
357666 

358876 
365757 
366587 

444765 

447665 

448888 
476548 

487575 
488888 
587587 

tiles 

333576 

335736 

336366 

354476 

357357 
358447 

358887 
365767 

366657 

444848 
448448 

475475 
476575 

487588 
575757 

587666 

333587 

335757 
336547 

354487 

357366 
358476 

363636 
365847 

366666 

444875 
448475 
475488 

476588 
487658 
575766 
588766 

We have already shown that there are 212 = 4096 different hexagon 
6-tiles, when rotations are not considered. 

If we wish to count the jigsaw-different hexagons, we must allow for 
rotations in the group G(0°, 60°, 120°, 180°, 240°, 300°). In order to apply 
Burnside's theorem, we must imagine applying the six rotations to the set 
S of 4096 hexagon 6-tiles, and counting the invariant transformations (fixed 
points) among them. 

Fortunately we need not check all combinations of six tiles. The task 
is considerably cut down by using four theorems (given below), selection 
of colour combinations, and the fact that only conditions on one, two, or 
three of adjacent tiles in a hexagon have to be checked if symmetry occurs. 

The following Figure shows the five types of hexagon which have rota­
tional symmetries. The last two are of different colour patterns, but they 
have the same 2-fold symmetry. The letters A,B,C refer to TGPs of three 
particular colours: note how they are arranged all facing the centre point of 
the hexagon. This means that any of these hexagons would be formed from 
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the six types shown, by arranging them in a 6-chain, and then jigging them 
downwards. Which means that one can then refer to the jigging matrix 
M+ to obtain their Zs-strings directly. 

Type-I 
6-fold, 4 cases 

/t° 
\ A . 

A 

a 

* \ 
•w 

Type-ll 
3-fold, 2x6 cases 

/r 
\<s> 

A 

V 

<A 
A / 

Type-Ill 
2-fold, 2x6 cases 

Type-IV(a) 
2-fold, 3x8 cases 

/ w 
B 

a 

r \ 

\° / 

Type-IV(b) 
2-fold, 3x8 cases 

Figure 7. Hexagon tiles with rotational symmetries 

The hexagons which have the symmetry types shown in the Figure can 
be fairly quickly found by means of the following theorems, and using the 
jigging matrix. Tree diagrams, drawn from each TGP and using the Is 
in M, extending each tree down three levels, were found helpful to check 
that all the symmetric hexagon types had been found. Note that it is only 
necessary to check at most three conditions; and select appropriate colour 
combinations of one, two, three or four TGPs. 

Theorem 7: A hexagon of type-I can be formed from six 
tiles A(ai,a,2,03) if and only if ai — aV 

Theorem 8: A hexagon of type-II can be formed from three 
tiles A(ai,a,2,03) and three tiles B(b\, 62,63) if and only if 

a\ = 62 and 02 = \ . 
Theorem 9: A hexagon of type-Ill can be formed from four 
tiles ^.(01,02,03) and two tiles B(bi, 62,^3) if and only if 

o-i = &2, 0-2 = h — U\. 
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Theorem 10: Types IV(a) and IV(b) are in the same cat­
egory for counting fixed points, even though the former has 
two colours whilst the latter has three. Let us designate 
Ai = A and A2 = B. Then: two tiles A{a\,02,03), two tiles 
B(bi, &2,63) and two tiles C(ci, c<i, C3) will form a hexagon of 
type IV if and only if a\ = C2, 61 =02 , and c\ =62-

The list of hexagons with rotational symmetries, together with their 
contributions to the fixed point counts (omitting the ones from the identity 
permutation) needed for Burnside's theorem is as follows (see Figure 7): 

Type I: 4 cases, 5 fixed points each. 

333333 444444 666666 888888 

Type II: 12 cases, 2 fixed points each. 

121212 212121 171717 717171 
252525 525252 363636 636363 
484848 848484 575757 757575 

Type III: 12 cases, 1 fixed point each. 

336336 363363 633633 
366366 663663 636636 
448448 484484 844844 
488488 884884 848848 

Type IV: 48 cases, 1 fixed point each. 

(b) 
(b) 
(b) 
(b) 
(b) 
(a) 
(b) 
(a) 

123123 
126126 
142142 
147147 

173173 
176176 
182182 

187187 

231231 
261261 
421421 
471471 

731731 
761761 

821821 

871871 

312312 
612612 
214214 
714714 

317317 
617617 

218218 

718718 
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(a) 
(a) 

(b) 
(b) 
(a) 
(a) 
(a) 
(a) 

235235 
254254 
258258 

265265 
357357 
475475 
576576 
587587 

352352 
542542 
582582 

652652 
573573 
754754 

576576 
875875 

523523 

425425 
825825 

526526 
735735 
547547 
765765 

758758 

Finally, the number of fixed points contributed by the non-identity permu­
tations of the set S is 20 + 24 + 12 + 48 = 104. Therefore the number of 
distinct jigsaw hexagons formed with six TGPs is, by Burnside's theorem: 
(l/6)(4096+104) = 700. ° 

5.4 Hexagon Tile-Figures: the 14 Inner Hexagons 

Any hexagon tile formed from six TGPs has an inner hexagon tile-figure. 
The diagram below shows two examples, together with the Zs-labelling of 
their radii to the goldpoints on the inner sides. These radial /s-strings 
(measured from a walk-origin) enable us to classify the species of inner 
hexagons which occur in the 700 possible hexagon tiles. The example tiles 
have TGP numbers 182652 and 252658, labelled from their 6-chains. Their 
corresponding radial /s-strings are sllssl and lslssl respectively. 

Tile: 182652 Tile: 252658 

Example jigsaw hexagons, with irregular inner hexagons 
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Observe that any hexagon tile has an inner hexagon which is well-defined 
(up to rotations) by its radial Zs-string: it is a geometric property of the 
tile. Any cyclic permutation of the Zs-string will represent the same hexagon 
tile-figure. The numbers of l's and s's in the Zs-string are invariant under 
a cyclic permutation, and their sequential pattern determines the shape of 
the inner hexagon. 

Table 4-' Classification of inner hexagon tile-figures 

Species subSp. 
(Z,s) nos. 

A (0,6) 

£ (1 ,5 ) 
C(2,4) d 

c2 
c3 

0(3 ,3 ) Dt 
D2 

D3 

D4 

£(4 ,2 ) Ei 
E2 

E3 

F ( 5 , l ) 
G(6,0) 

radial 
Is—string 

ssssss 
sssssl 

ssssll 
ssslsl 
sslssl 

ssslll 
sslsll 
ssllsl 
slslsl 

ssllll 
slslll 
sllsll 

slim 
111111 

freqy. 
no. 

14 
64 

64 
64 
36 

64 
64 
64 
24 

64 
64 
36 

64 
14 

700 

triangles 
(U,V,W) 

(6,0,0) 
(4,0,2) 

(3,1,2) 
(2,0,4) 
(2,0,4) 

(2,2,2) 
(1,1,4) 

(1,1,4) 
(0,0,6) 

(1,3,2) 
(0,2,4) 
(0,2,4) 

(0,4,2) 
(0,6,0) 

symmetries 

6 rotation,6 mirror 
1 mirror 

1 mirror 
1 mirror 

2 rotation, 2 mirror 

1 mirror 
none 
none 

3 rotation, 3 mirror 

1 mirror 
1 mirror 

2 rotation, 2 mirror 

1 mirror 
6 rotation, 6 mirror 

We have analysed the radial Zs-strings of the 700 possible hexagon tiles, 
and have found that there are just 14 different inner hexagons. The above 
table summarizes our analysis: and Figure 8 below gives diagrams of all of 
the inner hexagons. There are 7 species labelled A,B,C,D,E,F,G, and 
subspecies labelled Ci,C2,Cz,Di,D2,D3,D4:,Ei,E2,Ez. It will be clear 
from the representative radial Zs-strings why these subdivisions of species 
occur. The diagrams show how the corresponding tile-figures differ in shape; 
and dotted lines show axes of symmetry in the inner hexagon figures. 

Also given in the table is the distribution of three triangles which occur 
in various numbers within the interior of each inner hexagon. U refers to 
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an equilateral triangle of side r2 ; V refers to an equilateral triangle of side 

T; and W refers to the scalene triangle having sides r, r 2 , and y/2r5/2 • 

Type A (Ex. 111111) Type G (Ex. 222222) Type B (BXm 111U2) Type F (Ex. 122222) 

A I A X A A A 

(MA (Bk /M\ 
\av v^v Vzt/ 

i 

Type C1 (Ex. 111122) Type C3 (Ex. 112112) Type C2 (Ex. 111212) 

TypeDI (Ex.111222) TypeD2 (Ex.112122) TypeD3 (Ex.112212) TypeD4 (Ex.121212) 

A A A—?•> A A M Aa\ /M\ 
VW \ A[/ OT7 

Type E1 (Ex. 112222) Type E2 (Ex. 121222) Type E3 (Ex. 122122) 

Figure 8. The 14 inner hexagons 

(1 = short radius, 2 = long radius) 



Chapter 6 

Tessellations with Goldpoint Squares 

6.1 Introduction 

In this Chapter we continue the study of squares marked with goldpoints 
(goldpoint squares, or SGPs) which was begun in Chapter 4. 

First we describe again the six jigsaw-distinct SGPs, adding numbers, 
colours and Zs-strings to their diagrams. Then we use the /s-strings and the 
group of symmetry rotations of a square to show how Burnside's theorem 
confirms the existence of six distinct SGPs, and enables the listing of the 
equivalence classes under the rotations. 

After giving the jigging matrix for SGPs, we use it to count jigsaw n-
tiles of SGPs, for n = 2,3 and 4. A general solution is given for linear 
forms. 

Finally we show a few tilings of polyhedra, using either all SGPs or else 
combinations of TGPs and SGPs. 

6.2 On the Six Types of Goldpoint Squares 

Description of the six types of SGP 

In Chapter 4 we gave a diagram showing the six different square tiles that 
can be obtained by marking a goldpoint into each side of a square. Below, 
we repeat this diagram, but with much added information. We have num­
bered them 1 to 6, and assigned the colours Blue (B), Fawn (F), Green (G), 
Orange (O), Cream (C) and Yellow (Y). We have marked a walk-origin in 

269 
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each left-hand corner (designated a), and we also give the Zs-string obtained 
by noting the first steps from the corners when walking anti-clockwise round 
the square (1 = long, and s = short). The corners of squares are always 
to be imagined with labels a, b, e, d, placed in anti-clockwise order from the 
walk-origin. 

B(lsls) F(ssss) G(llll) 

d a 

c b 

J 

6/ 
\ /yel low 

O(ssll) C(slll) Y(ssls) 

Figure 1. The six types of SGP, with notations 

Demonstration that there are only six different SGPs 

Before going further with a study of how the SGP types form jigsaws, 
it is necessary, and instructive, to give a proof that there are only six types 
of SGP, under jigsaw rules (i.e. allowing for translations and rotations in 
the plane). So far, we have only given six diagrams and claimed that there 
are no more types possible. 

We begin with the statement that there are 24 = 16 possible ways of 
marking a square with one goldpoint on each side. This follows from the 
fact that there are two ways of marking each side, and four sides to mark. 
Once a square is marked, its Zs-string can be written down. The list of the 
16 possible strings is given in the second column of the table below. They 
have been labelled l-to-16, in column one. 
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Each square may be subjected to four anti-clockwise rotations, of amounts 
90°, 180°,270°,360°, the last one returning it to its original position. Using 
the labels a,b,c,d applied to the square's corners in its original position, we 
can express these rotations as a group of four permutations, thus: 

( abed \ _ / abed \ _ / abed \ _ ( abed \ 

beda J \ cdab J \ dabc J \ abed J 
Suppose that the permutation 7Ti is applied to each of the 16 labelled SGPs 
in turn. Each will be turned through 90° anti-clockwise, bringing a new 
corner into the top-left hand position, from which a new Zs-string can be 
recorded. This string will evidently be the original one, but with the last 
element of it moved up to the front of the string. And of course, the new 
string must correspond with one which occurred in the original set (say 
5) of Zs-strings. Hence we can say that n\ operating upon S induces a 
permutation of the elements of S. 

# 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Zs-string 
ssss 
sssl 
ssls 
ssll 
slss 
slsl 
slls 
sill 
Isss 
Issl 
Isls 
Isll 
llss 
llsl 
Ills 
llll 

mS 
ssss 
Isss 
sssl 
Issl 
ssls 
Isls 
ssll 
Isll 
slss 
llss 
slsl 
llsl 
slls 
Ills 
sill 
llll 

1 
9 
2 
10 
3 
11 
4 
12 
5 
13 
6 
14 
7 
15 
8 
16 

•K2S 

1 
5 
9 
13 
2 
6 
10 
14 
3 
7 
11 
15 
4 
8 
12 
16 

vr35 
1 
3 
5 
7 
9 
11 
13 
15 
2 
4 
6 
8 
10 
12 
14 
16 

7T45 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Table 1. The four rotation permutations induced on S 
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In column three of table 1 above, we have shown the results of 7ri op­
erating on each element of 5; and in column 4, we have given the original 
number of each Zs-string. 

In columns 5, 6 and 7 we have written the element numbers resulting 
from applications of 1T2, its, and TT4 in turn to the elements of set S. 

Thus columns 2, 4, 5, 6, and 7 give us the four Zs-strings for all the 
16 SGPs in all their four symmetry rotations. Burnside's Theorem tells us 
that if we count the number of invariant mappings in all the four induced 
permutations, and divide by the group cardinal number, we shall obtain 
the number of equivalence classes of the elements in set S under the group 
(G) operations. 

There are two invariant mappings in columns 4 and 6 (viz. 1 —> 1 and 
16 —> 16. In column 5, each of 1, 6, 11 and 16 maps to itself. And in column 
7, all of the elements map to themselves, since 7r4 is the identity element of 
the group of rotations. Then (using |G| = 4): 

No. of equivalence classes in 5 = (2 + 4 + 2 + 16) /4 = 6 . 

This confirms that there are six types of SGP, which are inequivalent un­
der translations and rotations. To describe them, we need only to take a 
representative from each equivalence class, and note its /s-string. A quick 
way of doing this is to take the first induced permutation from column 4, 
and write it out in cycle-form, thus: 

_ / 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \ 
71-1 ~ V 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 ) 

= (1)(2,9,5,3)(4,10,13,7)(6,11)(8,12,14,15)(16) 

There are six bracketed subsets of S, and these are the type equivalence 
classes. In the following table, we have chosen a set of representatives which 
matches with the six diagrams given in Figure 1 above. 
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lsls ( # 11) 
ssss(# 1) 
1111 ( # 16) 
ssll (# 4) 
sill ( # 8) 
ssls ( # 3) 

— rectangle 
— first square 
— second square 
— trapezium 
— first quadrangle 
— second quadrangle 

(fig-

(fig-
(fig-
(fig-
(fig-
(fig-

1, number 1) 
1, number 2) 
1, number 3) 
1, number 4) 
1, number 5) 
1, number 6) 

Table 2. Set of representatives for the six SGP types 

Thus, using Zs-strings we have proved that there are six types of SGPs, 
under jigsaw rules; and we have identified their equivalence classes amongst 
the 16 fixed aspect SGPs. 

6.3 The Jigging Matrix for SGPs 

In order to study tiling problems with SGPs, we shall follow procedures 
similar to those used for TGPs. For example, we shall speak of n-chains of 
SGPs, to mean a horizontal row of SGPs, and they will jig together if the 
pairs of vertical adjacent sides have complementary Is-values. 

There are a total of 16 different sub-types of SGP under rotations of 
the six basic types shown above. We have demonstrated that they are 
counted as follows: Blue(l) has 2 types; Fawn(2) and Green(3) have 1 type 
each; 0range(4), Cream(5) and Yellow(6) have 4 types each. The letters 
at the column heads B,F,G,0,C,Y refer to the six colour types; and the 
small letters a, b, c, d refer to the sub-types within a colour. Small letters 
also code the anti-clockwise rotations from the original position, namely 
o(0°), 6(90°), c(180°), d(270°). 

We begin developing our jigsaw counting techniques by setting out the 
possible ways of jigging two SGP's side-by-side, placing the information in 
a 16 x 16 jigging matrix. We shall use the same symbol for this (namely 
M or M+) as we did for the TGPs matrix. No confusion will arise. 

A glance at the jigging matrix M below shows that there are only two 
different row-patterns of Is and 0s; and similarly there are only two column-
patterns. This seems surprising at first, but once the meaning of the Is and 
0s is understood, the reasons for there being only two row- and two column-



274 Goldpoint Geometry 

patterns become obvious. Theorems 1 to 6 below give the explanations. 

B. 
Bt 
F 
G 
0. 
Ot 

oc Oi 
Ca 

Gt 

cc Gt 
Y. 

n 
Yc 

Yi 

SGP B„ 5i 
number la 14 | 

Is — string lsls sisl | 
lsls 0 1 
slsl 1 0 
ssss 1 0 
1111 0 1 
ssll 0 1 
lssl 1 0 
Uss 1 0 
slls 0 1 
sill 0 1 
lsll 0 1 
llsl 1 0 
lUs 0 1 
ssls 0 1 
sssl 1 0 
lsss 1 0 
slss 1 0 

F 
2 

ssss | 
1 
0 1 
0 
1 
1 
0 
.0 
1 
1 
1 
0 
1 
1 
0 
0 
0 

G I! Oa Oa Oa 0 . 
3 4a 46 4c 4a* 

11111 lsls slsl ssss 1111 
0 II 1 0 0 1 
1 || 0 1 1 0 
1 jj 0 1 1 0 
0 |j 1 0 0 1 
0 
1 
1 
0 | 
0 1 
0 
1 

[ 0J 
0 
1 
1 

1 1 

1 0 0 1 
0 1 1 0 
0 1 1 0 
1 0 0 1 
1 0 0 1 
1 0 0 1 
0 1 1 0 
1 0 0 1 
1 0 0 1 
0 1 1 0 
0 1 1 0 
0 1 1 0 

ca c a d II Y. n YC Yd 
5a 56 5c 5d 6a 66 6c 6<f 
sill lsll llsl Ills || ssls sssl lsss slss 
1 0 0 0 1 1 0 1 
0 1 1 1 || 0 0 1 0 
0 1 1 1 jl 0 0 1 0 
1 0 0 0 || 1 1 0 1 
1 0 0 0 | 1 1 0 1 
0 1 1 1 0 0 1 0 
0 1 1 1 0 0 1 0 
1 0 0 0 || 1 1 0 1 
1 0 0 0 
1 0 0 0 
0 1 1 1 
1 0 0 0 
1 0 0 0 
0 1 1 1 
0 1 1 1 
0 1 1 1 

1 1 0 1 
1 1 0 1 
0 0 1 0 

| 1 1 0 1 
1 1 0 1 
0 0 1 0 
0 0 1 0 
0 0 1 0 

(a) The jigging matrix, with added information (M) 

B 
F 
G 
O 
C 
Y 

B F G O C Y 
2 1 1 4 4 4 
1 0 1 2 3 1 
1 1 0 2 1 3 
4 2 2 8 8 8 
4 3 1 8 6 10 
4 1 3 8 10 6 

(b) Table 3. The blocked 2-SGP jigsaw counts 

Figure 2. Counting 2-SGP jigsaws 

Let S = {Si : Si is an SGP, with i G 1,2,..., 16}. And recall that a 
1-entry in position (i, j) of M indicates that Si and Sj can jig as S% * Sj. 
Otherwise, a 0-entry occurs in that position. 
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Theorem 1: Two SGPs will jig together if the third side 
of the left SGP has /s-value which is complementary to the 
Is-value of the first side of the right SGP. 

Proof: By theorems 1 and 2 of chapter 5. • 

Theorem 2: The Is-value in the third side of Si determines 
the (0,l)-pattern in the ith row of M 

Proof: The 3rd element of the /s-string of Si is known, and 
it is compared with the first element of each of the 16 SGPs 
in S, taken in turn. These comparisons determine the (0,1)-
pattern of the ith row of M. • 

Theorem 3: There are only two different (0,1) row-patterns 
in M: and only two different column-patterns in M. In both 
cases, the two (0,l)-patterns are complementary. 

Proof: The 3rd Zs-value in the /s-string of any SGP is either 
1 or s. Hence, by theorem 1, there exist only two kinds of (0,1) 
row-pattern in M. A similar argument holds for the columns. 
It is obvious that the two patterns must be complementary 
in their 0s and Is. • 

Theorem 4: There are eight Is and eight 0s in every row 
and column of M. 

Proof: The /s-strings of the 16 SGPs constitute every pos­
sible arrangement of an 1 or an s on each of their four sides. 
Hence eight of the SGPs will have an 1 on their 3rd side, and 
eight a 0. Similarly, eight will have a 1 on their first sides, 
and eight a 0. The result follows. • 

Theorem 5: If the top row of M is filled in (i.e. deter­
mined), and the first column is determined too, then the rest 
of matrix M can be written in directly. 

Proof: Obvious, by theorem 3. • 

Theorem 6 (powers of M) : For n > 2, Mn = 23n~4U, 
where £ / i s a l 6 x l 6 matrix with every element unity. 

Proof: By direct multiplication we find that M 2 = iU. 
Repeated multiplication by M gives the theorem. • 
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6.4 Formation of Jigsaw n-Tiles of SGPs 

Counting the 2-tiles 

Two tiles can be jigged only into a 1 x 2 linear form (i.e. a 1 x 2 rectangle). 
[90° rotations of these produces an equivalent set of 2 x 1 rectangles.] The 
set of possible 2-tiles has cardinal number 2 4x2 3 = 27 = 128 members. This 
total may also be obtained by counting the 1 elements in the jigging matrix; 
since there are 8 in each row, and there are 16 rows, it is 8 x 16 = 128. 

As we did with the golden triangles, we can study and count the 2-tiles 
by blocking the matrix M according to tile colours. The result of that was 
shown in Table 3, Figure 2. Since no 2-tile can rotate into itself under a 180° 
rotation, the total number of distinct 2-tiles is half the total number of Is in 
M, which is 64. This result is, of course, obtained using Burnside's theorem, 
by application of the group G(0°, 180°), and calculation (l/2)(27 + 0) = 64. 
There are no fixed points under rotation through 180° since none of tiles 
1(a), 1(6), 2 and 3 can jig with itself. 

Counting the 3-tiles 

Three SGP tiles can be jigged into two different shapes, namely an angle 
and a 1 x 3 linear form: 

(i) The angles have only 1-fold rotational symmetry. Then, A 
can be chosen in 24 ways, and each of B,C in 23 ways. So the total number 
of distinct angle 3-tiles is 16 x 8 x 8 = 210 = 1024. 

(ii) The linear form [A1£?|C1 has the same number of possible 3-tiles. 
But it has 2-fold rotational symmetry, and so fixed points under 180° ro­
tations must be counted. There are eight 3-tiles which have this rotational 
symmetry, namely: 

ABC 
la lb la 
2 la 2 

ABC 
la 2 la 

2 3 2 

ABC 
16 la 16 
3163 

ABC 
16 316 
3 2 3 

Hence, by Burnside's theorem, the number of distinct 3-tile linear forms is: 
(1/2)(1024 + 8 )=516 . 

Counting the linear forms 

Using the arguments given above for counting 1 x 2 and 1 x 3 linear 
forms, we can easily show that: 
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(i) The number of distinct even linear forms, using 1 x 2n tiles of SGPs 
is: 

2 4 x ( 2 3 ) ( 2 n - l ) = 2 (6n+ l ) , for n G N . 

This follows from the fact that no linear form of even length can have 2-fold 
rotational symmetry, since its central pair cannot have that symmetry. 

(ii) The number of distinct odd linear forms, using 1 x (2n + 1) tiles of 
SGPs is: 

(l/2)[24 x 26" + 2("+2>] = 2(n+1>[2(5"+2) + 1] , f o r n S N . 

This follows from Burnside's theorem, using the fact that we can construct 
2("+2) linear forms of odd length (2n + 1) which have 2-fold rotational 
symmetry. 

An inductive argument proves the fact just stated: 
Thus, when n = 1 there are the eight (= 23) cases just shown above in 

the table for linear 3-tiles with 2-fold rotational symmetry. 

For a linear 5-tile (i.e. n = 2) we can begin with any of the 3-tiles from 
the table, and place it as the central triple: selecting two SGPs (each of 
the same type) from the type-set {la, 16,2,3} and adding one to each end 
will complete a linear 5-tile with 2-fold symmetry. An example using this 
procedure is: 2(la, 16, la)2. 

This last step can always be carried out in exactly two ways, as we 
can check from the jigging matrix M. Thus we can construct 23 x 2 = 24 

different linear 5-tiles with 2-fold symmetry. 

Similarly, we can construct 24 x 2 = 25 linear 7-tiles with that symmetry, 
by adding an SGP (two choices) to each end of each of the 5-tiles. just con­
structed. For example, 2(la, 16, la)2 can become either 3[2(la, 16, la)2]3 
or la[2(la,16, la)2]la. 

Clearly the number of linear (2n + 3)-tiles is twice the number of linear 
(2n + l)-tiles, by the same argument. And this general inductive step 
establishes proof of the fact claimed at the outset. • 

Counting the 4-tiles 

Four SGP tiles can be formed into seven inequivalent jigsaw 4-tiles. The 
different possible shapes are shown below, in Figure 3. 
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<*>•••[ 
(b) 

(e) | 

1 1 1 

1 1 

(d) 

(f) 

1 II 1 

(g) 

Figure 3. The seven possible 4-tile shapes 

The linear form (a) has already been counted, above. 
Each of the shapes (b), (c), (d), (e) and (f) may be filled in 24 x (23)3 = 213 

ways, using SGPs chosen from the 16 available ones (16 for the first tile, 
then 8 for each subsequent one). 

Now, shapes (b), (c) and (d) have 1-fold symmetry, whereas (e) and 
(f) have 2-fold symmetry; and the square shape (g) has 4-fold rotational 
symmetry. So we have to act with groups of orders 1, 2 and 4 respectively, 
on the sets of 4-tiles for each case. The counts for the first five shapes are 
as follows: 
(i) (b) , (c) and (d): There are 213 jigsaw 4-tiles of each of these shapes. 
(ii) (e) and (f): There are (l/2)(21 3 + 0) = 212 jigsaw 4-tiles of each of 
these shapes; none provides a fixed point under 180° rotation. 

(iii) The 2 x 2 square (g): This shape may be filled in the following 
ways: Choose any tile (from 16) to fill the top-left corner: then fill each 
of the top-right and bottom-left corners (8 available for each): finally, the 
bottom-right corner can be filled in 2 x 2 ways, since two of its edges are 
already determined. The total in the set S of possible such tiles is therefore 
16 x 8 x 8 x 4 = 212 = 4096. 

A square has the 4-fold group of rotational symmetries, G(0°, 90°, 180°, 270°). 
We must consider the action of this group on the set S, and count all the 
fixed points. 

[Four examples of these squares, three having 4-fold symmetry, may be 
found in Figure 7 of Chapter 4, section 4.62.1 
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In the following table, we list those combinations of SGPs which will 
form 2 x 2-tiles with either 2-fold or 4-fold symmetry. Each of the former 
contributes 1, and each of the latter contributes 3, to the count of fixed 
points under rotations other than the identity. 

2-fold: 44(2) 1242(4) 1252(4) 1262(4) 
2232(2) 2242(2) 2252(4) 3242(2) 
3262(4) 4252(4) 4262(4) 5262(4) 

4-fold: 14(2) 44(2) 54(2) 64(2) 

N.B. In the above table, the notation MlNi(k) means: i SGPs labelled 
M can be combined with j SGPs labelled N in k ways, with the stated 
rotational symmetries. 

We can total the fixed points from the above table, and apply Burnside's 
theorem, thus: the total number of distinct 2 x 2-squares of SGPs is: 

(l/4)(4096 + 4 x 2 + 8 x 4 + 8 x 3 ) = 1040. 

We shall leave problems of counting n-tiles now, although there are clearly 
many more which could be treated in similar manner to those dealt with 
above. There are also many challenging problems about tiling the plane, 
using different types of TGP and/or SGP, which can be posed and at­
tempted. To mention only one, a method is required to determine which 
of the hexagons of TGPs will tile the plane, and to study the tile-figure 
patterns engendered by those tilings. 

6.5 Tiling of Polyhedra 

Introduction 

In this final section, we will show how a variety of tiling problems can be 
solved when the goal is to use TGPs, or SGPs, or both, to tile the sides of 
given polyhedra. 

In particular, we shall give the complete solution for the construction of 
tetrahedra using six TGPs. Then we shall discuss the tiling of cubes which 
have sides using one SGP, or four SGPs, or generally, using n3 SGPs. 
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Finally, we shall give several diagrams showing how more exotic poly-
hedra can be tiled; one will use both TGPs and SGPs for its basic tiles. 

Producing and counting the TGP tetrahedra 

A tetrahedron can be made from four TGPs, as the following diagram 
shows. Start with a jigging 3-chain A,B,C; then add the fourth TGP la­
belled D, and fold A and C backwards. Finally D drops on top. 

a,b,c 

Figure 4- Constructing a tetrahedron 

To be able to bring vertices a,b,c together, and to swing C round the 
back to join A, it is necessary for the first side of A to have the same Is-
value as the complement of the Is-value of the second side of C. To count the 
3-chains which have this property, we make use of the following theorem. 

Theorem 7: The set (say 74) of jigging 4-chains of TGPs 
which have the same first and fourth TGPs maps one-to-one 
with the elements of the set (say J3) of 3-chains which have 
the property that the first side of their first TGP will jig to 
the second side of their third (last) TGP. 
Proof: If V G J4, then the first three TGPs of U form a 
3-chain which belongs to J3 . We map V to this 3-chain. 
Conversely, if W 6 J3 , then W * A, where A is the first TGP 
of W, is a jigging 4-chain belonging to J A. Since both J3 and 
J4 are finite sets, we have established a one-to one mapping 
of J3 to J4. (Therefore the two sets have the same cardinal 
number.) • 

We can count J4 by adding up the elements on the leading diagonal of 
the matrix M3 = 8U This count is 8 x 8 = 64 — 26. And so, by the theorem 
just proved, set J3 also has 26 elements. 
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To count the tetrahedra, we first note that the side D is uniquely de­
termined by the Zs-string, xyz, on the top edges of sides A, B, C. There is 
one and one only TGP with Zs-string yzx. 

Hence there are 26 x 1 tetrahedra produced in this way. However, they 
are not all rotationally different; for A, B, C may be rotated about a vertical 
axis through the common point a, b, c. We have to go back to the 3-chains, 
and remove rotational redundancies. There are four 3-chains which produce 

only one tetrahedron, namely those for which A = B — C. These cases 
are from the 3-chains 333, 444, 666, and 888. Each other 3-chain in J 3 is 
rotationally equivalent to two others: e.g. 132 = 213 = 321. Hence the 
number of possible tetrahedra is 4 + 60/3 = 24. Below we list the codes 
for these 24 tetrahedra. The D triangle TGP is given in brackets, after the 
3-chain numbers. Two example diagrams are given below the table. 

123(7') 
182(3') 
333(2) 
475(6') 

126(3') 
187(7') 
336(6') 
488(3') 

142(6') 
235(5') 
357(7') 
576(5') 

147(2) 
254(4') 
366(3') 
587(4') 

173(2) 
258(1) 
444(2) 
666(1) 

176(6') 
265(1) 
448(6') 
888(1) 

Table 6. The 24 possible tetrahedra 

123(7') 

VMPa(Rb . ) 

Figure 5. Two examples of tetrahedra tilings 

147(2) 

VPbRb(M) 

Thus we have given a complete solution to the problem of constructing 
and counting the tetrahedra formed by jigging four TGP tiles. 
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6.6 On Cubes Tiled with Six SGPs 

We have not done a full analysis of this substantial problem: a few partial 
results will be presented. 

How many cubes can be formed? 

The answer to this question is easy if rotations in space are not allowed. 
The counting method proceeds thus: consider the following diagram, of 
four SGPs in linear form. 

X (top ls-string) 

A B C 

Y (bottom ls-string) • Y 

Since there are 16 inequivalent SGPs, if rotations are not allowed, then 
the cell A can be filled in 16 = 24 ways. Then cell B can be filled in 23 

ways, if A * B jigs; similarly cell C can be filled in 23 ways. Finally, we 
require D to be filled with an SGP which jigs with C, and whose right-edge 
jigs with the left-edge of A, since to form a cube we require edge YX to jig 
with edge XY. Then D can be filled in 22 ways. 

Hence the linear form can be filled by SGPs in 24.23.23.22 = 212 different 
ways, with the given jigging properties. 

Now this linear form determines a unique cube. This is so because it 
can be folded through a right-angle at all the cell joins, and then the YX 
and XY edges can be glued together. The result is an open-ended square 
cylinder: and the goldpoint patterns on the open sections uniquely deter­
mine two SGPs which can be jigged and glued into them, thus completing 
a cube. 

We conclude that there is a set S of 212 = 4096 different cubes which 
can be tiled from the 16 SGPs, provided that rotations in space are not 
allowed. 

To determine how many different cubes there are when rotations are al­
lowed, we may use Burnside's theorem, applying the elements of the cube's 
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symmetry group to each of the cubes in S, and counting fixed points of the 
induced permutations on S. This complex task remains to be completed. 

A lower bound on the number follows immediately from the fact that 
the rotations group of the cube has order 24, thus: 
Let Nc be the number of distinct tiled cubes. Then 

1 4096 
iVc = - ( 4 0 9 6 + FP)> — > 170. 

where FP is the total number of fixed points occurring in the 23 permu­
tations induced on S by actions of elements of the symmetry group other 
than the identity. 

The Zs-strings of SGPs can be put to good use when studying tiling of 
cubes, as the following theorem and examples demonstrate. 

Some examples of tiled cubes 

Theorem 8: (one tile-type only) 

A cube tiled with six SGPs each of the same type is possible 
only with the rectangle tile (type-1) and the trapezium tile 
(type-4). 

Proof: 

(i) Type-1: Below we give the developed version of a tiled 
cube using only type-1 tiles, four in position lb and two in 
position la. We also give the Zs-strings of these two rotation 
variants of a type-1 SGP. 

1b 

1a 

1b 

1b 1a 1b 

top string: Isls 

bottom string: slsl 

16 = slsl 

Now la * 16 jigs, since the 3rd side of la is Z = s = the 
complement of first side of 16. Similarly 16* la jigs. The top 
and bottom Zs-strings of the four tiles forming the central 
linear form are respectively Isls and slsl when read from 
left-to-right: hence a tile of type 16 will fit onto both the top 
and bottom open-sections of the folded-up square cylinder. 
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(ii) Type-4: Below we give the developed version of a tiled 
cube using only type-4 tiles, three in position 4c, two in po­
sition 4b, and one in position 4d. We also give the Zs-strings 
of these rotation variants of a type-4 SGP. 

top string: Issl 
bottom string: Issl 
4a = ssll 46 = Issl 
4c = llss Ad = slls 

4c 

4c 

4d 

4b 4b 4c 

The Zs-strings on top and bottom of the linear form are re­
spectively Issl and Issl: one can obtain these (top) from 
complements of fourth sides of the individual tiles, and (bot­
tom) second sides of individual tiles. 
Then 4c will fit on top of the square cylinder, since its sides 
(starting with the second one) give Issl, as it 'rolls clockwise 
along the top of the linear form'. And Ad will fit on the 
bottom, since its sides (starting with the fourth, reading its 
string in reverse, and taking complements) is also Issl. Read­
ing the string complement in reverse is because the Ad tile 
in effect 'rolls anti-clockwise along the bottom of the linear 
form'. 

(iii) Types-2,3,5,6: None of these tiles individually will form 
a cube. To see this, first consider types-2 and -3. They 
cannot tile a cube because neither of 2 * 2 and 3 * 3 jigs; that 
disposes of them. 

In the case of type-5 tiles, one way to form a linear form with 
four of them is [5a|5o|5a|5a]. But with this form, the top 
and bottom Zs-strings are respectively ssss and llll, which 
requires squares of type-2 and type-3 respectively to complete 
the cube. Other forms of linear forms with four type-5 tiles 
fail in either this way, or else they do not have the right-
end side jigging to the left-end side. Hence six type-5 SGPs 
cannot form a cube. 

Similar arguments hold to show that six type-6 SGPs 
cannot form a cube. • 

A cube using two types of SGP 

The right- and left-ends of the linear form [4c|la|4a|16] jig. And the top 
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and bottom /s-strings are llss and Issl respectively. Hence two type-4 tiles 
(both 4d) will fill the open-sections of the rolled up form, and complete a 
cube. This example is therefore one of four type-4 tiles and two type-1 tiles 
forming a cube. 

Three cubes using three types of SGP 

(i) The right- and left-ends of the linear form [la|6a|16|6c] jig. And the 
top and bottom Zs-strings are llsl and ssls respectively. Hence two type-5 
tiles (5d on top, 5b underneath) will fill the open-sections of the rolled up 
form, and complete a cube. This example is therefore one of two type-1 
tiles, two type-5 tiles and two type-6 tiles forming a cube. 

(ii) The following two examples are of cubes formed from two type-1 
tiles, two type-2 tiles and two type-3 tiles. They are different cubes in our 
set S; however, if rotations are allowed, it may easily be seen how one can 
be rotated into the other. So they are not distinct jigsaw cubes in 3-space. 

2 

3 

2 
Hi\ 1b 

6.7 Filling Cubes with SGP Cubes 

Figure 6. Jigging SGP-cubes 

We have studied problems on the formation o f n x n squares, and o f n x n x n 
cubes, with unit SGP-tiled cubes. But we have only got complete answers 
for cases when rotations of the objects are not allowed. We present here four 
of the basic combinatoric results, whose proofs are very straight-forward. 
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The first one gives the numbers of ways of jigging unit cubes together with 
others. 

Theorem 9: When building a solid with unit SGP cubes 
(see Figure 6), any cube placed into the solid must jig with 
all those cubes which adjoin it (any pair of adjoining sides 
must have mirror-image patterns). The numbers of ways of 
adjoining a unit cube to m surrounding ones are: 

m = 0 
m = 1 
m-2 
m — 3 
m = 4 

m = 5 or 6 

212 (number of ways of forming an SGP cube) 
28 

24 or 25 (see the figure above) 
22 or 23 (see the figure above) 
21 

2° 

Theorem 10: An nxn square formed from members of the 
set of 212 unit SGP-cubes may be formed in 

different ways, if rotations in space are not allowed. 

Theorem 11: The number of different nxn squares of SGP 
cubes which can be jigged on top of a given nxn square of 
SGP-cubes is 

7V2 = 2 ( 3 " 2 + 4 n + 1 ) 

if rotations in space are not allowed. 

Theorem 12: An n x n x n cube formed from members of 
the set of 212 unit SGP-cubes may be formed in 

JV3 = JVi x N?'1 = 2t3n("+1>2l 

different ways, if rotations in space are not allowed. 

6.8 A Variety of Solids Tiled with TGPs and SGPs 

To end this chapter we give seven diagrams which display exploded plans 
of solids which are tiled with TGPs (equilateral triangles of side 1, with 
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goldpoints) and SGPs (squares of side 1, with goldpoints). 

Included are a truncated tetrahedron, two tilings of a solid known as 
a rhombocubooctahedron, two tilings of a cubooctahedron, an 80-sided 
TGP-tiled polyhedron, and Kepler's stella octangula. For details of these 
solids, consult the book Polyhedron Models by M. Wenninger, Cambridge 
University Press (1971). 

A truncated tetrahedron 
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An/\ 

\ / B \ / 

A P A 

\ y p \ / 

/ r * / \ 

\ Iv^y 

A v \ 

\ /s-/ 

v 
^ \ 

V 

First rhombocubooctahedron 

^ A X ^ A ^ A C T 

/ p y / \ \ / p y / \ \ / p y / \ \ / P V / \ 

Second rhombocubooctahedron 
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An 80-sided polyhedron; no neighbouring sides of same colour 

(goldpoints not shown: they may easily be added, 
working from the V- and M-tile markings) 
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First cubooctahedron 

Second cubooctahedron 
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Kepler's star-like octahedron (stella octangula) 
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Chapter 7 

Games with Goldpoint Tiles 

7.1 Introduction 

It is possible to design interesting games which use the goldpoint triangles 
(TGPs) and goldpoint squares (SGPs) as pieces. In this chapter we describe 
the rules for playing several types of game, each of which exploits the vari­
ety of the TGP and SGP tiles and their tile figures. The moves which the 
players can make exploit the jigging operation. Indeed, the games might 
be called jigsaw games using golden tiles as jigsaw pieces. Anyone who 
enjoys doing jigsaw puzzles, and is a mathematician with a taste for geo­
metric figures and combinatorics, will enjoy playing these games. Problems 
for mathematical study within goldpoint geometry will doubtless suggest 
themselves, during play. 

Some of the games can be played by one person d la solitaire, whilst 
others are competitive, and can be played by two or more players. 

7.2 Equipment Needed for the Games 

First it is necessary to prepare a sufficient quantity of the TGPs and SGPs 
as described in chapters 4 and 5. For any particular game, a collection 
of these tiles (or pieces for a jigsaw game) will be prescribed, and that 
will be known as the pool for the game. Players will be required to select a 
given number of pieces from that pool, before starting the game. A player's 
selection from the pool will be called his or her hand, as in card games. 

293 
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Constructing the pieces is a relatively simple matter, especially if one 
has the use of a computer-aided drawing package. It is recommended that 
equilateral triangles and squares be drawn with side length 5 cm., and the 
goldpoints be marked approximately, say at a 2 cm. or a 3 cm. distance 
from each corner (1.9 cm. and 3.1 cm. are better approximations). Then 
the tile figures can be drawn, joining up the goldpoints in sequence around 
the triangle or square. Consult the diagrams in chapter 5 to get all the 
details correct. One corner (the 'a' corner) on each tile should be angle-
marked; this makes it very easy to determine which sub-type (rotant) * 
a tile is, according to its position relative to the horizontal at any time. 
Finally, the number of each tile type must be printed, in large font-size, in 
the centre of the tile The numbers used must be 1-4 for the TGPs and 1-6 
for the SGPs, assigned in the orders of their colours, being respectively V, 
M, P, R for the TGPs and B, F, G, 0 , C, Y for the SGPs. 

It is only necessary to draw one example of each type of TGP and SGP. 
Then, using copying techniques, these can be multiplied to fill an A4 sheet. 
About twenty of each can be so arranged. Four sheets of TGPs and six 
sheets of SGPs should be prepared like this. 

Finally, take the ten prepared sheets of diagrams to a copy-shop, and 
have them copied onto thin cardboard sheets, each in the right colour, as 
specified above. That is: violet, mauve, pink, red for the TGPs; and blue, 
fawn, green, orange, cream, yellow for the SGPs. It would be wise to have 
two card copies made of each, and to keep the spares and master sheets for 
future use. 

Have the copy-shop guillotine the pieces from one card of each type (or 
cut them out carefully with scissors). Then you will have an overall pool 
of 200 pieces, twenty of each type of golden tile. This will be adequate for 
all the games to be described below. 

With some games it will be recommended that a board be drawn up, 
on which to place and move the pieces around. We shall give details of 
those when they are required. In most games, the playing surface will be 
a smooth table top. A large wooden tray might make a good surface, also 
keeping the pieces together and enabling games in play to be portable. 

*We define rotant to mean a 'rotational variant' of a tile. The TGP types 1 and 2 have 
only one distinct rotant each, whereas TGP types 3 and 4 have three distinct rotants 
each. 
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We next describe several games which can be played with TGPs, using 
only the four types (all the rotants), allowing for translations, and rotations 
of the equilateral triangles through integer multiples of 60°. 

7.3 Games with Goldpoint Triangles (TGPs) 

7.31 GOLDPOINT TRIANGLE DOMINOES 

THE POOL: Twelve TGPs of each colour are mixed well, then formed 
into a stack, which is placed in the middle of the table. 

THE HANDS: Each player (2-4 players) draws a hand of six pieces, 
taking them one at a time in turn from the top of the stack. 

THE OBJECTIVE: The aim of the game is to get rid of all one's pieces, 
by placing them on the table in the manner specified by the rules given 
below. 

THE PLAY: Like in dominoes, a line (linear form) is to be formed with 
the pieces. The first player is chosen by tossing a coin, or drawing cards 
from a pack. The first player places a piece on the table. The second player 
(on his left) must place a piece alongside the first, jigging them, and thereby 
determining the line orientation. 
The third player (to the left) must extend the line, in either direction, by 
jigging one of her pieces onto an end tile. And so on, as each player plays 
in turn, anti-clockwise round the players. 
If a player is unable to place a piece on the line, when taking a turn, then 
she forfeits the turn and must pick up a piece from the top of the stack, 
and add it to her hand. 
If a line reaches an edge of the table, it is slid lengthwise to the middle of 
the table. Once a line can be extended no more, the next player in turn 
begins a new line. 
Play continues thus until a player uses the last piece from her hand, and 
she is declared the winner. 

7.32 GOLDPOINT HEX SOLITAIRE: 

THE BOARD: For this game, it is helpful to have a board (white card­
board) on which is drawn a regular hexagon, of side length just slightly 
longer than 5cm, with the six radii drawn in to its centre. 
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THE POOL: Six TGPs of each type are shuffled together, to form a 
36-piece stack. 

THE GAME: The player draws six tiles from the top of the stack, and 
tries to arrange them into the hexagon on the board, jigging all pieces 
correctly. If she fails to do so, she draws a further three tiles from the 
stack; and then tries to complete the hexagon WITHOUT REMOVING 
ANY TILES ALREADY PLACED, AND WITH NO FURTHER REAR­
RANGEMENTS OF THOSE TILES BEING ALLOWED. If she succeeds, 
then that is a winning game. If not, the game is abandoned, and another 
begun. 

VARIATION: This time, the objective is to complete hexagons and 
to maximize a score which is determined by the kinds of inner hexagons 
(tile figures, see Ch. 5, Fig. 8) achieved. The following scoring table is 
suggested. 

Inner hexagon: 
Score: 

A 
15 

B 
6 

C 
3 

D 
2 

E 
3 

F 
6 

G 
15 

The player proceeds as above, but at any one turn he may decide not to 
use a piece which will jig into the hexagon, and instead draw the next three 
tiles from the stack. This option may only be used once in the course of 
the play. It might help achieve a higher scoring inner hexagon. 
A player cannot start another hexagon until the current one is completed. 
The game is repeated until five hexagons have been completed, and then 
the total score for the five inner hexagons is the player's final score. 

COMBAT VARIATION: If two players each form five hexagons, sepa­
rately with two stacks, and total the scores for their five inner hexagons, 
the winner will be the one achieving the highest score. They will play to a 
fixed time limit (e.g. 15 minutes), and their total score will be computed 
from their completed hexagons. 

7.33 GOLDPOINT HEX COMBAT (two players) 

THE BOARD: As for Goldpoint Hex Solitaire. 

THE POOL AND HANDS: As for the dominoes game. 

THE PLAY: The starting player is decided by coin toss. He places a 
piece inside the hexagon, anywhere. The next player does likewise; if her 
piece goes alongside the first one, it must jig; but it need not be adjacent 
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to the first. 
Play continues thus until a player cannot place a piece. He or she then 
forfeits the turn, and takes another piece from the stack pool. 

THE OBJECTIVE: The aim is to complete a hexagon jigsaw; and the 
first player to fill the hexagon on the board is declared the winner. 

VARIATION: When a player succeeds in placing a piece, he is allowed 
a second turn. 

7.4 Games with goldpoint squares (SGPs) 

7.41 NOUGHTS A N D CROSSES 

This simple game, beloved by all youngsters, takes on new and interesting 
aspects when played with goldpoint squares. We offer three versions, but 
more are possible. Players can invent variations for themselves. It is a 
game for two players, which we shall call A and B. 

THE START: A tosses a coin and B calls 'head' or 'tails'. The winner 
of the toss starts the game. Suppose it is A. 

THE HANDS: A takes 5 pieces (i.e. SGPs) of any one colour she wishes. 
Then B takes 5 pieces of any other colour. 

THE PLAY: The play proceeds by players taking turns (A starts) in 
putting down a piece on the table, in order to fill a 3 x 3 square. Whenever 
a piece is placed by the side of one or other previously placed pieces, it 
must jig there properly. If a player is unable to place a piece, on her turn, 
then she forfeits that turn. 

THE OBJECTIVE: The first player to get a full line of pieces of her 
own colour, either row, column or diagonal, is the winner. 

THE WIN OR DRAW: The play proceeds until one player is declared 
winner, or else a position is reached whereby both players are unable to 
place another piece, in which case a draw is declared. 

VARIATIONS: 
(1) Colour choice is important! The two colours to be used may be fixed 
beforehand. 
(2) Player A chooses 3 pieces of one colour and 2 of another colour; then B 
chooses 3 and 2 pieces of two colours different from A's. Then the winner 
is any player who first places a line of any three pieces from his hand. 
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(3) Draw hands of 8 pieces, and play to fill a 4 x 4 square. Win with a line 
of any three pieces (or 4 pieces - decided beforehand). 

7.42 GOLDPOINT SQUARE DOMINOES 

THE POOL: Twelve SGPs of each colour are mixed well, then formed 
into a stack, which is placed in the middle of the table. 

THE HANDS: Each player (2-4 players) draws a hand of six pieces, 
taking them one at a time in turn from the top of the stack. 

THE OBJECTIVE: The aim of the game is to get rid of all ones pieces, 
by placing them on the table in the manner specified by the rules given 
below. 

THE PLAY: Like in dominoes, a line (linear form) is to be formed with 
the pieces. The first player is chosen by tossing a coin, or drawing cards 
from a pack. The first player places a piece on the table. The second player 
(on his left) must place a piece alongside the first, jigging them, and thereby 
determining the line orientation. 
The third player (to the left) must extend the line, in either direction, by 
jigging one of her pieces onto an end side. And so on, as each player plays 
in turn, anti-clockwise round the players. 
If a player is unable to place a piece on the line, when taking a turn, then 
she forfeits the turn and must pick up a piece from the top of the stack, 
and add it to her hand. 
If a line reaches and edge of the table, it is slid lengthwise to the middle 
of the table. Once a line can be extended no more, the next player in turn 
begins a new line. 
Play continues thus until a player uses the last piece from her hand, and 
she is declared the winner. 

7.43 FILLING THE SQUARES 

SOLITAIRE (1): From a well-shuffled stack of 72 pieces (12 of each 
colour), the player draws 13 pieces from the top. The objective is to form 
a 3 x 3 square and a 2 x 2 square with the 13 tiles, jigging them properly 
together. 
If this objective is not achieved, the player draws a further 3 pieces from 
the stack, and tries to complete the two squares, without rearranging them. 
If this attempt fails, the game is abandoned, and the 16 pieces are shuffled 
into the stack, to begin a new game. 
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SOLITAIRE (2): As for (1), but drawing 25 pieces from the stack, and 
trying to form a 4 x 4 square and a 3 x 3 square. 

SOLITAIRE (3): Have an unlimited supply of SGPs, and try to fulfil 
certain conditions or challenges on the nxn tile to be produced. Example 
challenges are: 
(1) Produce an n x n-tile that will tile the plane (a) with one type of SGP, 
(b) with two types of SGP, (c) with 3 types of SGP, and so on. 
(2) Produce a Latin square (a) of n differently coloured tiles, (b) of n 
different tile-types (i.e. rotants). (3) Produce a Graeco-Latin square with 
a specified set of tiles (e.g. of specified colours and specified rotants). 

Figure 1. Six tiled 3 x 3 squares 

In Fig. 1 we show six 3 x 3-tiled squares, to illustrate some possibili­
ties. In the table below, we give their written notations; it is very easy to 
write these down, row-wise, and thereby keep a record of the tiles you have 
achieved. After a little time spent on this activity, you will find which are 
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the hardest challenges to meet, and begin to devise strategies for achieving 
them. 

The notations for the squares are: 

A: 
B : 

C: 
D: 
E: 
F: 

row 1 

46 4c 46 

6d 56 6d 

3 2 3 

66 6c 5c 

4c 46 4c 

la 16 la 

row 2 

4a 4d 4a 

6c 3 6a 

2 3 2 

5c 3 6a 

Ad Aa Ad 

16 la 16 

row 3 

46 
66 
3 
6d 
Ac 
la 

4c 
5d 
2 
4 
46 
16 

46 
66 
3 
5c 
4c 
la 

The F-square is made up of nine type-1 tiles (rectangles). 
The A-square and the E-square are both constructed with nine type-4 tiles 
(trapezia). On examination we find that they are the same 3 x 3 jigsaw 
square, since a 90° turn of A, anti-clockwise, carries it into E. 
Pleasing comparisons can be made of the E- and F-squares, in regard to 
their tile figures. 

Challenges for the Ax A square 
The following conditions on jigsaw tiling of the 4 x 4 square pose prob­

lems of varying levels of difficulty. 

(1) Solution with all 16 SGPs in the a-position. 
(2) Solution with one row (column) all the same colour. 
(3) Solution with two rows all the same colour. 
(4) Solution with three rows all the same colour. 
(5) Solution with four rows all the same colour. 
(6) Solution with each row having four different colours. 
(7) Solution in which no two adjacent sides have the same colour. 
(8) Solution which uses all 16 SGP rotants (la, lb, 2, ... , 6b, 6c, 6d). 
(9) Solution which uses four SGP-types, four of each, as a Latin Square. 

SQUARES COMBAT (2 players): A and B toss for start. Assume A 
wins. Then A and B in turn draw 4 pieces from the stack, again and again 
until they each have 16 pieces. 

Player A places a piece on the table. B jigs one onto it. And so on, each 
trying to form a 2 x 2 square. The first player to do this scores two points. 
Then the two players continue, adding pieces in turn, in order to build the 
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2 x 2 square into a 3 x 3 square. The first player to complete this scores 3 
points. 

This process continues until a 4 x 4 square is built. The first player to 
complete this scores 4 points. 
This whole process is now restarted, with the player who DID NOT score 
the last 4 points placing the first piece. 
If a position is reached such that a player cannot place a piece, he forfeits 
that turn. 
If a position is reached such that neither player can place a piece, then a 
new 2 x 2 square is started, by the player whose turn it was when play was 
found to be blocked. 
And so on, until all 32 pieces have been placed on the table. 

THE WINNER: The player who has scored most points during the play 
is declared the winner. 

7.44 THE GAME "15" (solitaire) 

Take a set of the 16 rotants of SGPs. Arrange them as a goldpoint 
jigsaw on a 4 x 4 chessboard (any rotation of a piece is allowed, so long as 
it jigs with its adjacent pieces). Now remove any piece (say a central one) 
leaving a vacant cell. Call the piece P, and lay it aside. 

The purpose of the game is to move (slide) a piece into the vacant cell 
- from above, below, or either side - leaving another vacant cell. Continue 
this process until (i) a goldpoint jigsaw of the 15 pieces is reached, and (ii) 
the piece P jigs into the final vacant cell. Thus another goldpoint jigsaw is 
arrived at, filling the 4 x 4 board. 

Of course, other rules can be imposed upon allowable juxtapositions, to 
make the game more complex. Try introducing one or two. 

7.45 C A P T U R I N G 4-SQUARES 

EQUIPMENT: An 8 x 8 chess board, .with cells to take SGPs. 

THE PLAY: Their are two players. Each has a set of the sixteen SGP 
rotants. One set is all in colour white (say) and the other all in another 
colour (blue, say). 

THE OBJECTIVE: Each player tries to fill as many 2 x 2 squares as 
he can, with his tiles. Of course, they will try to prevent their opponents 
from achieving this goal, by using their tiles wisely. 
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THE PLAY: All tiles are to be kept face-up, and visible to both players. 
Players place a piece in turn, into a cell on the board. When placing an 
SGP, it must jig with all surrounding pieces. 
The game ends when all tiles are used up, or when neither player can place 
another tile. 
If at any stage a player cannot place a tile, he forfeits that turn. 
Completed 2 x 2 squares remain on the board, and players can add tiles 
around them. If, for example, a player completes a 2 x 4 rectangle, he/she 
will gain scores for two 2 x 2 completions. 

SCORING: When the game ends, each player totals the number of 2 x 2 
squares he/she has covered. The winner is the one with the highest total. 

7.46 GOLDPOINT CHESS 
Chess is one of the oldest, best and most popular two-person games in 

the world. Over the centuries there have been many versions of this 'battle 
board-game', but the rules of play are now standard over most countries. 
However, we now offer a slightly revised version, which does complicate 
the play, and which requires new strategies to be devised. Perhaps some 
readers of this book will try out this variety of chess, and judge whether it 
is worth persevering with. 

It uses the square goldpoint tiles for its pieces; and it is played with all 
the normal moves and rules of standard chess (which we assume are known 
by the reader). The addition that we make is called the jigsaw rule, which 
must be obeyed whenever a piece is moved into an empty cell; then the 
piece must jig with all pieces which are already in position around that 
cell. The only piece which is exempted from the jigsaw rule is the King, 
which can only move one step anyway, and often has great need to move 
into an empty cell adjacent to it. 

EQUIPMENT: An 8 x 8 chess board is required, whose squares are big 
enough to comfortably accommodate the SGP chess pieces. 
Two sets of 16 chess 'pieces' must be prepared, one set for each player, 
using two different colours (or shadings) for the sets. 
All this equipment can be prepared from diagrams which we present later 
in figure 2. 

Using our notations for SGPs, we can describe the pieces as follows: 

Second row: 6a 5a 6a 5a 6a 5a 6a 5a 
First row: 46 l a 4a 2 3 Ad lb Ac 
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Note that this arrangment is for the (traditionally) white player. So the 
white Queen is the 2-tile, and the white King is the 3-tile. 
When this arrangement is swung around through 180°, it becomes the black 
player's pieces; the black Queen is now the 3-tile, and the black King is the 
2-tile. Otherwise, the corresponding pieces have different colours but the 
same notations and tile figures. And, of course, First row now means Eighth 
row, and Second row means Seventh row on the board. 

In order that the players know immediately which piece is which, the 
SGPs must be marked with letters as follows: 

P (pawn), R (rook), N (knight), B (bishop), Q (queen), K (king) 
It is not necessary to mark the major pieces 'left' or 'right', as the starting 
positions are already denned, and pieces are allowed to rotate when moving 
into new cells. 

The diagram on page 305 shows a set of pieces, and also gives two rows 
of a board. Anyone wishing to play this game can copy the diagram (at 
double size and as many times as needed), and quickly make up a chess set 
by sticking the copied sheets onto card, and cutting out the pieces. The 
black pieces have a dark-shaded area on them, to distinguish them from 
the white pieces. 

THE PLAY: Play proceeds exactly as in standard chess, except that the 
following jigsaw rules must be observed. The objective is the same, namely 
to checkmate one's opponent's King. 

THE JIGSAW RULES: The Kings are exempt from the jigsaw rules. 
All other pieces must obey them. 

(1) When a piece is moved to a cell which is empty, it may be rotated to 
any position, but when placed in the cell it must jig with all pieces already 
adjacent to the cell. 

(2) When a piece is moved to an occupied cell, for the purpose of captur­
ing an enemy piece, it may take and remove the occupying piece, regardless 
of whether it can properly jig with all adjacent pieces. Moreover, it can be 
rotated into any position before being placed in the cell. 

(3) When a pawn is taking en passant, rule (1) is waived, and the pawn 
may rotate before placement. 
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(4) Rule (1) is waived for both pieces taking part in a 'castling move'. 
The rook may rotate before placement. 

FINAL COMMENT: We have made the chess jigsaw rules as simple as 
possible, so that they will be remembered and applied easily. We hope that 
readers who try Goldpoint Chess will not feel frustrated by Rule (1), but 
will enjoy the challenge of finding new strategies, and find pleasure in the 
ways in which tile figures can be observed and used to help grapple with 
the added complexities of the game. 

7.47 GOLDPOINT RUBIK'S CUBE 

Figure 6, Ch. 6, shows a cube made up of 33 tiled SGP-cubes. This object 
immediately suggests that a Rubik's cube could be constructed of SGP-
cubes, and the goldpoint tile-figures on the outer sides used to add to the 
complexities of 'solving' it. We assume that the reader knows what is meant 
by this — that the pattern on the sides of a Rubik cube can be scrambled 
by rotating layers of the constituent cubes, and to solve the puzzle means 
to find a sequence of rotations which will cause the original pattern to be 
restored. 

As is well known, Rubik's cube took the world by storm in the late 
1970s, and a huge literature and mathematical theory developed around 
it. A fascinating account of this explosion of cube activity may be read 
in Metamagical Themes: Questing for the Essence of Mind and Pattern, 
D. R. Hofstadter, Basic Books Inc., N. Y. [1985, pp. 301-363]. During 
these times the Rubik's cube captured the imagination and perseverance of 
millions of people, many of whom became afflicted by the sickness which 
Hofstadter describes thus, from a medical dictionary entry: 

Cubitis magikia, n A severe mental disorder accompa­
nied by itching of the fingertips, which can be relieved only 
by prolonged contact with a multicoloured cube originating 
in Hungary and Japan. Symptoms often last for months. 
Highly contagious. 

It is evident that Goldpoint Rubik's Cubes, by posing a virtually indef­
inite list of new patterns and challenges to puzzlers, would greatly add to 
the risks of contracting that mental disorder. 
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Figure 2. Set of chess pieces, and portion of board 
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2-jigsaws, 238 
3-tile counting, 254 
3-tiles of SGPs 
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5-tile counting, 258 
6-tile counting, 259 
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6-tile shapes, 258 
6-tile studies, 258 
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basic theorem 
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second, 24 
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constructing a tetrahedron, 280 
constructions, 188 
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convergence properties of vector 

polygons, 119 
counting (2n)-tiles, 257 



310 Index 

counting 2-SGP jigsaws, 273 
counting 2-tiles, 276 
counting 3-tiles, 276 
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general, 276 
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Cyclic group tracksets, 157 

deficiency, 138 
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dust-sets, 215 

equivalence of n-jigsaws, 236 
equivalence of schemes, 31 
ST-transform, 124 
ET-transform of (90, 60, 30) 

triangles, 130 
ET-transforms of triangles, 123 
£T-transforms of vector polygons, 
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F-triangles, 90 
Fibonacci chimney, 149, 157 
Fibonacci golden star 

two sub-stars, 198 
Fibonacci golden stars, 197 
Fibonacci honeycomb plane, 107 
Fibonacci mathematics, 187 
Fibonacci sequence generalization 
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Fibonacci sequence via arithmetic 

progression, 41 
Fibonacci track recurrence, 153 
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Fibonacci vector plane, 139 
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Fibonacci vector sequences, 108 
Fibonacci vectors, 85, 108 
filling cubes with SGP cubes, 285 
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fixed points, 250 
formulae for ST-transforms, 124 
four-squares equation, 88 
fractal of pentagons, 225 
fractals in gp geometry, 215 
fractional dimension, 217 

game 
Goldpoint Chess, 302 
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with SGPs, 297 
with TGPs, 295 

general Fibonacci sequence, 85 
general Fibonacci vector sequence, 

95, 96, 108 
generalized Fibonacci sequence, 9, 42 
geometric properties of G, 96 
golden mean 

triangles, 193 
golden motif triangle, 224 
golden snowflake, 216 
golden tile equivalence, 232 
golden tiles, 232 
golden triangles 

flat and sharp, 193 
Goldpoint Chess, 302 
goldpoint comb, 220 
goldpoint counting, 197 
goldpoint definition, 230 
goldpoint density 

simple, 197 
goldpoint dust-set, 219, 220 
goldpoint fractals, 215 

interior/exterior, 227 
goldpoint geometry, 87 

objectives, 187 
Goldpoint Hex Combat, 296 
Goldpoint Hex Solitaire, 295 
goldpoint motif triangle, 223, 224 
goldpoint rings, 205 

definition of, 205 
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Goldpoint triangle dominoes, 295 
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count in the Fibonacci Star, 202 
definition, 184 
snowflake fractal, 191 

group of B-points, 115 
group of rotations, 263 

harmonic range, 185 
Herta Freitag, 216, 220 
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hexagon 6-tiles 

set of, 261 
hexagon symmetries, 263 
hexagon tiling, 245 
hexagons 

inner 
14, 266 

hexagons in IIo, 114 
higher order goldpoints, 184 
honeycomb plane, 87, 114, 140 
H-points, 114 

identity-spectra, 157 
identity-spectrum, 159 
impossibilty of integer squares, 124 
incidence and reflection angles, 151 
inherent, 137 
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inherent transformation matrix, 139 
inherent Type I solution, 143 
inherent vector sequence, 135 
inner hexagons, 259, 296 

diagrams, 267 
integer (60, 60, 60) triangles, 124 
integer (90, 45, 45) triangles, 123 
integer equilateral triangles, 123, 124 
integer line-segments, 116 
integer point cover, 112 
integer triangles, 123 

integer vector, 137 
integer vector sequences, 85 
integer-vectors, 95 
inter-linked recurrence equations, 7 
invariant mappings, 250 

jig-chains, 245 
jigging matrix, 251 

SGPs, 269 
jigging SGP-cubes, 285 
jigsaw combination rules, 232 
jigsaw formation, 236 
jigsaw hexagons, 267 
jigsaw pattern, 232 
jigsaw-distinct SGPs, 269 

knot from a trackset, 172 

Latin Square tracksets, 157 
limit rays of G, 100 
limit vector, 101 
limit vectors 

properties, 104 
limiting ray of vector sequences, 109 
linear TGP form, 238 
location of B-points, 114 
LTGP, 238 
Lucas vector polygon, 151 
Lucas vector polygons, 119 

M+, 253 
m-squares equation, 90 
mathematical mission, 174 
maximal applicability, 174 
minimal completeness, 174 
motif, 215 
multiplicative schemes, 39 

n-tiles of SGPs, 276 
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111 
notation for TGPs, 250 
Noughts and Crosses, 297 



312 Index 

parametric solution of Diophantine 
equation, 133 

partition of Ilo, 110 
partition of integer lattice, 107 
Pell vector plane, 139, 144 
pentagom fractal 

interior unicursals, 228 
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period spectra, 157 
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period-spectrum of V4, 159 
periodic tracks, 155 
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plus-minus algebras, 168 
plus-minus operation, 169 
plus-minus recurrence form, 169 
plus-minus recurrence tree, 170 
plus-minus sequences modulo p, 169 
points in the honeycomb plane, 111 
projection of AB onto axes, 117 
proof of 700 hexagon tiles, 263 
properties of B-points, 114 
pseudo-inverses, 140 
Ptolemaic dust-set, 227 
purely periodic track, 155 

quadrilateral on vector polygon, 121 

redundancy, 138 
regular pentagon 

properties, 225 
rhombus counting, 253 
rhombus counts, 239 
rhombus theorem, 230 
rhombuses, 252 
rotation group, 250 
rotation of TGPs, 234 
rotational symmetry, 257 

S+, 250 
second order recurrence equations 

inter-linked, 7 
segment of length a, 187 
sequence of goldpoint rings, 210 
SGP tessellations, 269 
SGP types, 242 
SGPs, 233, 241 

jigging matrix, 269 
symmetry rotations, 272 

simple goldpoint count, 197 
six SGPs 

set of representatives, 273 
six types of SGP 

diagrams, 270 
proof, 270 

snowflake fractal, 191 
snowflake fractal dimension, 192 
spectra of cyclic groups, 166 
spiral vector-product track, 156 
square with goldpoints, 194 
Squares combat, 300 
squares with goldpoints, 241 
substitution 

3-F-sequences, 30 
sums of squares equation, 134 

tessellations with goldpoint squares, 
269 

tetrahedron sequence, 91 
TGP 

linear jigsaw, 238 
TGP 3-chains 

tetrahedra, 281 
TGP labelling, 236 
TGP n-chains, 251 
TGP orientation, 236 
TGP tetrahedra 

2 examples, 281 
TGP types, 233 
TGPs, 233 

4 types of 
proof, 249 

the .ET-transform set £, 129 
the Fibonacci star, 183 
tiled cube 
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two SGP types, 284 
tiled cubes, 283 

three SGP types, 285 
tiling cubes with SGPs, 282 
tiling of polyhedra, 279 
tiling with TGPs, 243 
tilings with TGPs, 239 
track, 153 
track in S, 154 
tracks in groups, 154 
trackset equivalent to group, 163 
trackset from an operation table, 158 
transform of Fibonacci vector 

polygons, 135 
transmission matrix, 152 
triangle on Fibonacci vectors, 122 
triangles on vector polygons, 121 
triangles with collinear inner 

transform points, 131 
triangles with collinear triples in £, 

130 
tribonacci sequence, 42 
trigonometry in Ilo, 123 
triple-set, 155 
Type I inherent transformation, 148 
Type I vector recurrence equation, 

137 
Type II vector recurrence equation, 

137 
Type II vector recurrence relation, 

144 
type-I hexagons, 264 
type-II hexagons, 264 
type-Ill hexagons, 264 
type-IV hexagons, 265 
types of TGP, 233 

upward and downward Fibonacci 
chimneys, 150 

uses of -ET-transforms, 126 

variety of tiled solids, 286 
vector polygon, 87 
vector polygons in the honeycomb 

plane, 119 
vector recurrence equations, 95 
vector recurrence relations, 141 
vector sequence planes, 139 
vector-product track, 155 
vector/matrix equation, 142 
Vier group track sets, 157 

walk-origin, 246 

zig-zag ratio, 151 




