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B A C K G R O U N D
Fluid mechanics is an exciting and fascinating subject with unlimited practi-
cal applications ranging from microscopic biological systems to automobiles, 
airplanes, and spacecraft propulsion. Fluid mechanics has also historically 
been one of the most challenging subjects for undergraduate students because 
proper analysis of fluid mechanics problems requires not only knowledge 
of the concepts but also physical intuition and experience. Our hope is that 
this book, through its careful explanations of concepts and its use of numer-
ous practical examples, sketches, figures, and photographs, bridges the gap 
between knowledge and the proper application of that knowledge.
 Fluid mechanics is a mature subject; the basic equations and approxima-
tions are well established and can be found in any introductory textbook. Our 
book is distinguished from other introductory books because we present the 
subject in a progressive order from simple to more difficult, building each 
chapter upon foundations laid down in earlier chapters. We provide more dia-
grams and photographs that other books because fluid mechanics, is by its 
nature, a highly visual subject. Only by illustrating the concepts discussed, 
can students fully appreciate the mathematical significance of the material. 

O B J E C T I V E S
This book has been written for the first fluid mechanics course for under-
graduate engineering students. There is sufficient material for a two-course 
sequence, if desired. We assume that readers will have an adequate back-
ground in calculus, physics, engineering mechanics, and thermodynamics. 
The objectives of this text are

• To present the basic principles and equations of fluid mechanics.

• To show numerous and diverse real-world engineering examples to 
give the student the intuition necessary for correct application of fluid 
mechanics principles in engineering applications.

• To develop an intuitive understanding of fluid mechanics by emphasiz-
ing the physics, and reinforcing that understanding through illustrative 
figures and photographs.

The book contains enough material to allow considerable flexibility in teach-
ing the course. Aeronautics and aerospace engineers might emphasize poten-
tial flow, drag and lift, compressible flow, turbomachinery, and CFD, while 
mechanical or civil engineering instructors might choose to emphasize pipe 
flows and open-channel flows, respectively. 

N E W  T O  T H E  T H I R D  E D I T I O N
In this edition, the overall content and order of presentation has not changed 
significantly except for the following: the visual impact of all figures and 
photographs has been enhanced by a full color treatment. We also added new 
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photographs throughout the book, often replacing existing diagrams with pho-
tographs in order to convey the practical real-life applications of the material. 
Several new Application Spotlights have been added to the end of selected 
chapters. These introduce students to industrial applications and exciting 
research projects being conducted by leaders in the field about material pre-
sented in the chapter. We hope these motivate students to see the relevance 
and application of the materials they are studying. New sections on Biofluids 
have been added to Chapters 8 and 9, written by guest author Keefe Manning 
of The Pennsylvania State University, along with bio-related examples and 
homework problems in those chapters.
 New solved example problems were added to some chapters and several 
new end-of-chapter problems or modifications to existing problems were 
made to make them more versatile and practical. Most significant is the addi-
tion of Fundamentals of Engineering (FE) exam-type problems to help students 
prepare to take their Professional Engineering exams. Finally, the end-of-
chapter problems that require Computational Fluid Dynamics (CFD) have 
been moved to the text website (www.mhhe.com/cengel) where updates 
based on software or operating system changes can be better managed.

P H I L O S O P H Y  A N D  G O A L
The Third Edition of Fluid Mechanics: Fundamentals and Applications has 
the same goals and philosophy as the other texts by lead author Yunus Çengel.

• Communicates directly with tomorrow’s engineers in a simple yet 
precise manner

• Leads students toward a clear understanding and firm grasp of the basic 
principles of fluid mechanics

• Encourages creative thinking and development of a deeper understand-
ing and intuitive feel for fluid mechanics

• Is read by students with interest and enthusiasm rather than merely as a 
guide to solve homework problems

The best way to learn is by practice. Special effort is made throughout the 
book to reinforce the material that was presented earlier (in each chapter 
as well as in material from previous chapters). Many of the illustrated 
example problems and end-of-chapter problems are comprehensive and 
encourage students to review and revisit concepts and intuitions gained 
previously.
 Throughout the book, we show examples generated by computational fluid 
dynamics (CFD). We also provide an introductory chapter on the subject. Our 
goal is not to teach the details about numerical algorithms associated with 
CFD—this is more properly presented in a separate course. Rather, our intent 
is to introduce undergraduate students to the capabilities and limitations of 
CFD as an engineering tool. We use CFD solutions in much the same way 
as experimental results are used from wind tunnel tests (i.e., to reinforce 
understanding of the physics of fluid flows and to provide quality flow visual-
izations that help explain fluid behavior). With dozens of CFD end-of-chapter 
problems posted on the website, instructors have ample opportunity to intro-
duce the basics of CFD throughout the course.
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C O N T E N T  A N D  O R G A N I Z A T I O N
This book is organized into 15 chapters beginning with fundamental concepts 
of fluids, fluid properties, and fluid flows and ending with an introduction to 
computational fluid dynamics.

• Chapter 1 provides a basic introduction to fluids, classifications of fluid 
flow, control volume versus system formulations, dimensions, units, 
significant digits, and problem-solving techniques.

• Chapter 2 is devoted to fluid properties such as density, vapor pressure, 
specific heats, speed of sound, viscosity, and surface tension.

• Chapter 3 deals with fluid statics and pressure, including manometers 
and barometers, hydrostatic forces on submerged surfaces, buoyancy 
and stability, and fluids in rigid-body motion.

• Chapter 4 covers topics related to fluid kinematics, such as the differ-
ences between Lagrangian and Eulerian descriptions of fluid flows, flow 
patterns, flow visualization, vorticity and rotationality, and the Reynolds 
transport theorem.

• Chapter 5 introduces the fundamental conservation laws of mass, 
momentum, and energy, with emphasis on the proper use of the mass, 
Bernoulli, and energy equations and the engineering applications of 
these equations.

• Chapter 6 applies the Reynolds transport theorem to linear momentum 
and angular momentum and emphasizes practical engineering applica-
tions of finite control volume momentum analysis.

• Chapter 7 reinforces the concept of dimensional homogeneity and intro-
duces the Buckingham Pi theorem of dimensional analysis, dynamic 
similarity, and the method of repeating variables—material that is useful 
throughout the rest of the book and in many disciplines in science and 
engineering.

• Chapter 8 is devoted to flow in pipes and ducts. We discuss the dif-
ferences between laminar and turbulent flow, friction losses in pipes 
and ducts, and minor losses in piping networks. We also explain how 
to properly select a pump or fan to match a piping network. Finally, we 
discuss various experimental devices that are used to measure flow rate 
and velocity, and provide a brief introduction to biofluid mechanics.

• Chapter 9 deals with differential analysis of fluid flow and includes der-
ivation and application of the continuity equation, the Cauchy equation, 
and the Navier-Stokes equation. We also introduce the stream function 
and describe its usefulness in analysis of fluid flows, and we provide a 
brief introduction to biofluids. Finally, we point out some of the unique 
aspects of differential analysis related to biofluid mechanics.

• Chapter 10 discusses several approximations of the Navier–Stokes equa-
tion and provides example solutions for each approximation, including 
creeping flow, inviscid flow, irrotational (potential) flow, and boundary 
layers.

• Chapter 11 covers forces on bodies (drag and lift), explaining the 
distinction between friction and pressure drag, and providing drag 
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coefficients for many common geometries. This chapter emphasizes 
the practical application of wind tunnel measurements coupled with 
dynamic similarity and dimensional analysis concepts introduced 
earlier in Chapter 7.

• Chapter 12 extends fluid flow analysis to compressible flow, where the 
behavior of gases is greatly affected by the Mach number. In this chapter, 
the concepts of expansion waves, normal and oblique shock waves, and 
choked flow are introduced.

• Chapter 13 deals with open-channel flow and some of the unique fea-
tures associated with the flow of liquids with a free surface, such as 
surface waves and hydraulic jumps.

• Chapter 14 examines turbomachinery in more detail, including pumps, 
fans, and turbines. An emphasis is placed on how pumps and turbines 
work, rather than on their detailed design. We also discuss overall pump 
and turbine design, based on dynamic similarity laws and simplified 
velocity vector analyses. 

• Chapter 15 describes the fundamental concepts of computational fluid 
dyamics (CFD) and shows students how to use commercial CFD codes 
as tools to solve complex fluid mechanics problems. We emphasize the 
application of CFD rather than the algorithms used in CFD codes.

 Each chapter contains a wealth of end-of-chapter homework problems. 
Most of the problems that require calculation use the SI system of units, how-
ever about 20 percent use English units. A comprehensive set of appendices is 
provided, giving the thermodynamic and fluid properties of several materials, 
in addition to air and water, along with some useful plots and tables. Many of 
the end-of-chapter problems require the use of material properties from the 
appendices to enhance the realism of the problems.

L E A R N I N G  T O O L S
EMPHASIS ON PHYSICS
A distinctive feature of this book is its emphasis on the physical aspects 
of the subject matter in addition to mathematical representations and 
manipulations. The authors believe that the emphasis in undergraduate 
education should remain on developing a sense of underlying physical 
mechanisms and a mastery of solving practical problems that an engineer 
is likely to face in the real world. Developing an intuitive understanding 
should also make the course a more motivating and worthwhile experi-
ence for the students.

EFFECTIVE USE OF ASSOCIATION
An observant mind should have no difficulty understanding engineering 
sciences. After all, the principles of engineering sciences are based on our 
everyday experiences and experimental observations. Therefore, a physi-
cal, intuitive approach is used throughout this text. Frequently, parallels are 
drawn between the subject matter and students’ everyday experiences so that 
they can relate the subject matter to what they already know.
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SELF-INSTRUCTING
The material in the text is introduced at a level that an average student can 
follow comfortably. It speaks to students, not over students. In fact, it is self-
instructive. Noting that the principles of science are based on experimental 
observations, most of the derivations in this text are largely based on physical 
arguments, and thus they are easy to follow and understand.

EXTENSIVE USE OF ARTWORK AND PHOTOGRAPHS
Figures are important learning tools that help the students “get the picture,” 
and the text makes effective use of graphics. It contains more figures, photo-
graphs, and illustrations than any other book in this category. Figures attract 
attention and stimulate curiosity and interest. Most of the figures in this text 
are intended to serve as a means of emphasizing some key concepts that 
would otherwise go unnoticed; some serve as page summaries.

CONSISTENT COLOR SCHEME FOR FIGURES
The figures have a consistent color scheme applied for all arrows.

• Blue: ( ) motion related, like velocity vectors

• Green: ( ) force and pressure related, and torque

• Black: ( ) distance related arrows and dimensions

• Red: ( ) energy related, like heat and work

• Purple: ( ) acceleration and gravity vectors, vorticity, and 
miscellaneous

NUMEROUS WORKED-OUT EXAMPLES 
All chapters contain numerous worked-out examples that both clarify the 
material and illustrate the use of basic principles in a context that helps devel-
ops the student’s intuition. An intuitive and systematic approach is used in 
the solution of all example problems. The solution methodology starts with a 
statement of the problem, and all objectives are identified. The assumptions 
and approximations are then stated together with their justifications. Any 
properties needed to solve the problem are listed separately. Numerical values 
are used together with numbers to emphasize that without units, numbers are 
meaningless. The significance of each example’s result is discussed following 
the solution. This methodical approach is also followed and provided in the 
solutions to the end-of-chapter problems, available to instructors.

A WEALTH OF REALISTIC END-OF-CHAPTER PROBLEMS
The end-of-chapter problems are grouped under specific topics to make 
problem selection easier for both instructors and students. Within each 
group of problems are Concept Questions, indicated by “C,” to check the 
students’ level of understanding of basic concepts. Problems under Funda-
mentals of Engineering (FE) Exam Problems are designed to help students 
prepare for the Fundamentals of Engineering exam, as they prepare 
for their Professional Engineering license. The problems under Review 
Problems are more comprehensive in nature and are not directly tied 
to any specific section of a chapter—in some cases they require review 
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of material learned in previous chapters. Problems designated as 
Design and Essay are intended to encourage students to make engineering 
judgments, to conduct independent exploration of topics of interest, and to 
communicate their findings in a professional manner. Problems designated by 
an “E” are in English units, and SI users can ignore them. Problems with the 

 icon are solved using EES, and complete solutions together with paramet-
ric studies are included the text website. Problems with the  icon are com-
prehensive in nature and are intended to be solved with a computer, prefer-
ably using the EES software. Several economics- and safety-related problems 
are incorporated throughout to enhance cost and safety awareness among 
engineering students. Answers to selected problems are listed immediately 
following the problem for convenience to students.

USE OF COMMON NOTATION
The use of different notation for the same quantities in different engineering 
courses has long been a source of discontent and confusion. A student taking 
both fluid mechanics and heat transfer, for example, has to use the notation Q 
for volume flow rate in one course, and for heat transfer in the other. The need 
to unify notation in engineering education has often been raised, even in some 
reports of conferences sponsored by the National Science Foundation through 
Foundation Coalitions, but little effort has been made to date in this regard. 
For example, refer to the final report of the Mini-Conference on Energy Stem 
Innovations, May 28 and 29, 2003, University of Wisconsin. In this text we 
made a conscious effort to minimize this conflict by adopting the familiar 
thermodynamic notation V̇  for volume flow rate, thus reserving the notation 
Q for heat transfer. Also, we consistently use an overdot to denote time rate. 
We think that both students and instructors will appreciate this effort to pro-
mote a common notation.

A CHOICE OF SI ALONE OR SI/ENGLISH UNITS
In recognition of the fact that English units are still widely used in some 
industries, both SI and English units are used in this text, with an emphasis on 
SI. The material in this text can be covered using combined SI/English units 
or SI units alone, depending on the preference of the instructor. The property 
tables and charts in the appendices are presented in both units, except the ones 
that involve dimensionless quantities. Problems, tables, and charts in English 
units are designated by “E” after the number for easy recognition, and they 
can be ignored easily by the SI users.

COMBINED COVERAGE OF BERNOULLI AND ENERGY EQUATIONS
The Bernoulli equation is one of the most frequently used equations in fluid 
mechanics, but it is also one of the most misused. Therefore, it is important 
to emphasize the limitations on the use of this idealized equation and to 
show how to properly account for imperfections and irreversible losses. In 
Chapter 5, we do this by introducing the energy equation right after the 
Bernoulli equation and demonstrating how the solutions of many practical 
engineering problems differ from those obtained using the Bernoulli equa-
tion. This helps students develop a realistic view of the Bernoulli equation.
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A SEPARATE CHAPTER ON CFD
Commercial Computational Fluid Dynamics (CFD) codes are widely used 
in engineering practice in the design and analysis of flow systems, and it has 
become exceedingly important for engineers to have a solid understanding of 
the fundamental aspects, capabilities, and limitations of CFD. Recognizing 
that most undergraduate engineering curriculums do not have room for a full 
course on CFD, a separate chapter is included here to make up for this defi-
ciency and to equip students with an adequate background on the strengths 
and weaknesses of CFD.

APPLICATION SPOTLIGHTS
Throughout the book are highlighted examples called Application Spotlights 
where a real-world application of fluid mechanics is shown. A unique fea-
ture of these special examples is that they are written by guest authors. The 
Application Spotlights are designed to show students how fluid mechanics 
has diverse applications in a wide variety of fields. They also include eye-
catching photographs from the guest authors’ research.

GLOSSARY OF FLUID MECHANICS TERMS
Throughout the chapters, when an important key term or concept is introduced 
and defined, it appears in black boldface type. Fundamental fluid mechanics 
terms and concepts appear in red boldface type, and these fundamental terms 
also appear in a comprehensive end-of-book glossary developed by Professor 
James Brasseur of The Pennsylvania State University. This unique glossary 
is an excellent learning and review tool for students as they move forward 
in their study of fluid mechanics. In addition, students can test their knowl-
edge of these fundamental terms by using the interactive flash cards and other 
resources located on our accompanying website (www.mhhe.com/cengel).

CONVERSION FACTORS
Frequently used conversion factors, physical constants, and properties of air 
and water at 20°C and atmospheric pressure are listed on the front inner cover 
pages of the text for easy reference.

NOMENCLATURE
A list of the major symbols, subscripts, and superscripts used in the text are 
listed on the inside back cover pages of the text for easy reference.

SUPPLEMENTS
These supplements are available to adopters of the book:

Text Website
Web support is provided for the book on the text specific website at www.
mhhe.com/cengel. Visit this robust site for book and supplement information, 
errata, author information, and further resources for instructors and students.
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Engineering Equation Solver (EES)
Developed by Sanford Klein and William Beckman from the University of 
Wisconsin–Madison, this software combines equation-solving capability and 
engineering property data. EES can do optimization, parametric analysis, 
and linear and nonlinear regression, and provides publication-quality plot-
ting capabilities. Thermodynamics and transport properties for air, water, and 
many other fluids are built-in and EES allows the user to enter property data 
or functional relationships.
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Online Resources available at www.mhhe.com/cengel
Your home page for teaching and studying fluid mechanics, the Fluid 

Mechanics: Fundamentals and Applications text-specific website offers 

resources for both instructors and students. 

 For the student, this website offer various resources, including:

■ FE Exam Interactive Review Quizzes—chapter-based self-quizzes provide 

hints for solutions and correct solution methods, and help students prepare 

for the NCEES Fundamentals of Engineering Examination.

■ Glossary of Key Terms in Fluid Mechanics—full text and chapter-based 

glossaries.

■ Weblinks—helpful weblinks to relevant fluid mechanics sites.

 For the instructor, this password-protected website offers various resources, 
including:

■ Electronic Solutions Manual—provides PDF files with detailed solutions to 

all text homework problems.

■ Image Library—provide electronic files for text figures for easy integration 

into your course presentations, exams, and assignments.

■ Sample Syllabi—make it easier for you to map out your course using this 

text for different course durations (one quarter, one semester, etc.) and for 

different disciplines (ME approach, Civil approach, etc.).

■ Transition Guides—compare coverage to other popular introductory 

fluid mechanics books at the section level to aid transition to teaching 

from our text.

■ Links to ANSYS Workbench®, FLUENT FLOWLAB®, and EES (Engineering Equa-
tion Solver) download sites—the academic versions of these powerful soft-

ware programs are available free to departments of educational institutions 

who adopt this text.

■ CFD homework problems and solutions designed for use with various CFD 

packages.

McGraw-Hill Connect® Engineering provides online presentation, assign-
ment, and assessment solutions. It connects your students with the tools and 
resources they’ll need to achieve success. With Connect Engineering, you can 
deliver assignments, quizzes, and tests online. A robust set of questions and 
activities are presented and aligned with the textbook’s learning outcomes. As 
an instructor, you can edit existing questions and author entirely new prob-
lems. Track individual student performance—by question, assignment, or 
in relation to the class overall—with detailed grade reports. Integrate grade 
reports easily with Learning Management Systems (LMS), such as WebCT 
and Blackboard—and much more. ConnectPlus Engineering provides stu-
dents with all the advantages of Connect Engineering, plus 24/7 online access 
to an eBook. This media-rich version of the book is available through the 
McGraw-Hill Connect platform and allows seamless integration of text, 
media, and assessments. To learn more, visit www.mcgrawhillconnect.com.

Online Resources for Students and Instructors
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1

I N T R O D U C T I O N  A N D 
B A S I C  C O N C E P T S

In this introductory chapter, we present the basic concepts commonly 
used in the analysis of fluid flow. We start this chapter with a discussion 
of the phases of matter and the numerous ways of classification of fluid 

flow, such as viscous versus inviscid regions of flow, internal versus exter-
nal flow, compressible versus incompressible flow, laminar versus turbulent 
flow, natural versus forced flow, and steady versus unsteady flow. We also 
discuss the no-slip condition at solid–fluid interfaces and present a brief his-
tory of the development of fluid mechanics. 
 After presenting the concepts of system and control volume, we review 
the unit systems that will be used. We then discuss how mathematical mod-
els for engineering problems are prepared and how to interpret the results 
obtained from the analysis of such models. This is followed by a presenta-
tion of an intuitive systematic problem-solving technique that can be used as 
a model in solving engineering problems. Finally, we discuss accuracy, pre-
cision, and significant digits in engineering measurements and calculations. 

1

1
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Understand the basic concepts 
of fluid mechanics 

■ Recognize the various types of 
fluid flow problems encountered 
in practice

■ Model engineering problems 
and solve them in a systematic 
manner

■ Have a working knowledge 
of accuracy, precision, and 
significant digits, and recognize 
the importance of dimensional 
homogeneity in engineering 
calculations

Schlieren image showing the thermal plume produced 
by Professor Cimbala as he welcomes you to the 

fascinating world of fluid mechanics.
Michael J. Hargather and Brent A. Craven, Penn State Gas 

Dynamics Lab. Used by Permission.

     CHAPTER
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2
INTRODUCTION AND BASIC CONCEPTS

1–1 ■ INTRODUCTION
Mechanics is the oldest physical science that deals with both stationary and 
moving bodies under the influence of forces. The branch of mechanics that 
deals with bodies at rest is called statics, while the branch that deals with 
bodies in motion is called dynamics. The subcategory fluid mechanics is 
defined as the science that deals with the behavior of fluids at rest (fluid 
statics) or in motion (fluid dynamics), and the interaction of fluids with 
solids or other fluids at the boundaries. Fluid mechanics is also referred to 
as fluid dynamics by considering fluids at rest as a special case of motion 
with zero velocity (Fig. 1–1).
 Fluid mechanics itself is also divided into several categories. The study of 
the motion of fluids that can be approximated as incompressible (such as liq-
uids, especially water, and gases at low speeds) is usually referred to as hydro-
dynamics. A subcategory of hydrodynamics is hydraulics, which deals with 
liquid flows in pipes and open channels. Gas dynamics deals with the flow 
of fluids that undergo significant density changes, such as the flow of gases 
through nozzles at high speeds. The category aerodynamics deals with the 
flow of gases (especially air) over bodies such as aircraft, rockets, and automo-
biles at high or low speeds. Some other specialized categories such as meteo-
rology, oceanography, and hydrology deal with naturally occurring flows.

What Is a Fluid?
You will recall from physics that a substance exists in three primary phases: 
solid, liquid, and gas. (At very high temperatures, it also exists as plasma.) 
A substance in the liquid or gas phase is referred to as a fluid. Distinction 
between a solid and a fluid is made on the basis of the substance’s abil-
ity to resist an applied shear (or tangential) stress that tends to change its 
shape. A solid can resist an applied shear stress by deforming, whereas a 
fluid deforms continuously under the influence of a shear stress, no matter 
how small. In solids, stress is proportional to strain, but in fluids, stress is 
proportional to strain rate. When a constant shear force is applied, a solid 
eventually stops deforming at some fixed strain angle, whereas a fluid never 
stops deforming and approaches a constant rate of strain.
 Consider a rectangular rubber block tightly placed between two plates. As 
the upper plate is pulled with a force F while the lower plate is held fixed, 
the rubber block deforms, as shown in Fig. 1–2. The angle of deformation a 
(called the shear strain or angular displacement) increases in proportion to 
the applied force F. Assuming there is no slip between the rubber and the 
plates, the upper surface of the rubber is displaced by an amount equal to 
the displacement of the upper plate while the lower surface remains station-
ary. In equilibrium, the net force acting on the upper plate in the horizontal 
direction must be zero, and thus a force equal and opposite to F must be 
acting on the plate. This opposing force that develops at the plate–rubber 
interface due to friction is expressed as F 5 tA, where t is the shear stress 
and A is the contact area between the upper plate and the rubber. When the 
force is removed, the rubber returns to its original position. This phenome-
non would also be observed with other solids such as a steel block provided 
that the applied force does not exceed the elastic range. If this experiment 
were repeated with a fluid (with two large parallel plates placed in a large 
body of water, for example), the fluid layer in contact with the upper plate 

Contact area,
A

Shear stress
t = F/A

Shear
strain, a

Force, F

a
Deformed 

rubber

FIGURE 1–2
Deformation of a rubber block placed 
between two parallel plates under the 
influence of a shear force. The shear 
stress shown is that on the rubber—an 
equal but opposite shear stress acts on 
the upper plate.

FIGURE 1–1
Fluid mechanics deals with liquids and 
gases in motion or at rest. 
© D. Falconer/PhotoLink /Getty RF
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3
CHAPTER 1

would move with the plate continuously at the velocity of the plate no mat-
ter how small the force F. The fluid velocity would decrease with depth 
because of friction between fluid layers, reaching zero at the lower plate. 
 You will recall from statics that stress is defined as force per unit area 
and is determined by dividing the force by the area upon which it acts. The 
normal component of a force acting on a surface per unit area is called the 
normal stress, and the tangential component of a force acting on a surface 
per unit area is called shear stress (Fig. 1–3). In a fluid at rest, the normal 
stress is called pressure. A fluid at rest is at a state of zero shear stress. 
When the walls are removed or a liquid container is tilted, a shear develops 
as the liquid moves to re-establish a horizontal free surface. 
 In a liquid, groups of molecules can move relative to each other, but the 
volume remains relatively constant because of the strong cohesive forces 
between the molecules. As a result, a liquid takes the shape of the container it 
is in, and it forms a free surface in a larger container in a gravitational field. A 
gas, on the other hand, expands until it encounters the walls of the container 
and fills the entire available space. This is because the gas molecules are 
widely spaced, and the cohesive forces between them are very small. Unlike 
liquids, a gas in an open container cannot form a free surface (Fig. 1–4).
 Although solids and fluids are easily distinguished in most cases, this dis-
tinction is not so clear in some borderline cases. For example, asphalt appears 
and behaves as a solid since it resists shear stress for short periods of time. 
When these forces are exerted over extended periods of time, however, the 
asphalt deforms slowly, behaving as a fluid. Some plastics, lead, and slurry 
mixtures exhibit similar behavior. Such borderline cases are beyond the scope 
of this text. The fluids we deal with in this text will be clearly recognizable as 
fluids.
 Intermolecular bonds are strongest in solids and weakest in gases. One 
reason is that molecules in solids are closely packed together, whereas in 
gases they are separated by relatively large distances (Fig. 1–5). The mole-
cules in a solid are arranged in a pattern that is repeated throughout. Because 
of the small distances between molecules in a solid, the attractive forces of 
molecules on each other are large and keep the molecules at fixed positions. 
The molecular spacing in the liquid phase is not much different from that of 

Free surface

Liquid Gas

^

FIGURE 1–4
Unlike a liquid, a gas does not form a 
free surface, and it expands to fill the 

entire available space.

(a) (b) (c)

FIGURE 1–5
The arrangement of atoms in different phases: (a) molecules are at relatively fixed positions

in a solid, (b) groups of molecules move about each other in the liquid phase, and 
(c) individual molecules move about at random in the gas phase.

FIGURE 1–3
The normal stress and shear stress at 

the surface of a fluid element. For 
fluids at rest, the shear stress is zero 

and pressure is the only normal stress.
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the solid phase, except the molecules are no longer at fixed positions relative 
to each other and they can rotate and translate freely. In a liquid, the inter-
molecular forces are weaker relative to solids, but still strong compared with 
gases. The distances between molecules generally increase slightly as a solid 
turns liquid, with water being a notable exception.
 In the gas phase, the molecules are far apart from each other, and molecu-
lar ordering is nonexistent. Gas molecules move about at random, continu-
ally colliding with each other and the walls of the container in which they 
are confined. Particularly at low densities, the intermolecular forces are very 
small, and collisions are the only mode of interaction between the mole-
cules. Molecules in the gas phase are at a considerably higher energy level 
than they are in the liquid or solid phase. Therefore, the gas must release a 
large amount of its energy before it can condense or freeze. 
 Gas and vapor are often used as synonymous words. The vapor phase of 
a substance is customarily called a gas when it is above the critical tempera-
ture. Vapor usually implies that the current phase is not far from a state of 
condensation.
 Any practical fluid system consists of a large number of molecules, and the 
properties of the system naturally depend on the behavior of these molecules. 
For example, the pressure of a gas in a container is the result of momentum 
transfer between the molecules and the walls of the container. However, one 
does not need to know the behavior of the gas molecules to determine the pres-
sure in the container. It is sufficient to attach a pressure gage to the container 
(Fig. 1–6). This macroscopic or classical approach does not require a knowl-
edge of the behavior of individual molecules and provides a direct and easy 
way to analyze engineering problems. The more elaborate microscopic or sta-
tistical approach, based on the average behavior of large groups of individual 
molecules, is rather involved and is used in this text only in a supporting role.

Application Areas of Fluid Mechanics
It is important to develop a good understanding of the basic principles of 
fluid mechanics, since fluid mechanics is widely used both in everyday 
activities and in the design of modern engineering systems from vacuum 
cleaners to supersonic aircraft. For example, fluid mechanics plays a vital 
role in the human body. The heart is constantly pumping blood to all parts 
of the human body through the arteries and veins, and the lungs are the sites 
of airflow in alternating directions. All artificial hearts, breathing machines, 
and dialysis systems are designed using fluid dynamics (Fig. 1–7). 
 An ordinary house is, in some respects, an exhibition hall filled with appli-
cations of fluid mechanics. The piping systems for water, natural gas, and 
sewage for an individual house and the entire city are designed primarily on 
the basis of fluid mechanics. The same is also true for the piping and ducting 
network of heating and air-conditioning systems. A refrigerator involves tubes 
through which the refrigerant flows, a compressor that pressurizes the refrig-
erant, and two heat exchangers where the refrigerant absorbs and rejects heat. 
Fluid mechanics plays a major role in the design of all these components. 
Even the operation of ordinary faucets is based on fluid mechanics.
 We can also see numerous applications of fluid mechanics in an automo-
bile. All components associated with the transportation of the fuel from the 
fuel tank to the cylinders—the fuel line, fuel pump, and fuel injectors or 

Pressure
gage

FIGURE 1–6
On a microscopic scale, pressure 
is determined by the interaction of 
individual gas molecules. However, 
we can measure the pressure on a 
macroscopic scale with a pressure 
gage.

FIGURE 1–7
Fluid dynamics is used extensively in 
the design of artificial hearts. Shown 
here is the Penn State Electric Total 
Artificial Heart.
Photo courtesy of the Biomedical Photography 
Lab, Penn State Biomedical Engineering Institute. 
Used by Permission.
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carburetors—as well as the mixing of the fuel and the air in the cylinders 
and the purging of combustion gases in exhaust pipes—are analyzed using 
fluid mechanics. Fluid mechanics is also used in the design of the heating 
and air-conditioning system, the hydraulic brakes, the power steering, the 
automatic transmission, the lubrication systems, the cooling system of the 
engine block including the radiator and the water pump, and even the tires. 
The sleek streamlined shape of recent model cars is the result of efforts to 
minimize drag by using extensive analysis of flow over surfaces.
 On a broader scale, fluid mechanics plays a major part in the design and 
analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines, 
biomedical devices, cooling systems for electronic components, and trans-
portation systems for moving water, crude oil, and natural gas. It is also 
considered in the design of buildings, bridges, and even billboards to make 
sure that the structures can withstand wind loading. Numerous natural phe-
nomena such as the rain cycle, weather patterns, the rise of ground water to 
the tops of trees, winds, ocean waves, and currents in large water bodies are 
also governed by the principles of fluid mechanics (Fig. 1–8). 

FIGURE 1–8
Some application areas of fluid mechanics.

Cars
© Mark Evans/Getty RF

Power plants
© Malcom Fife/Getty RF

Human body
© Ryan McVay/Getty RF

Piping and plumbing systems
Photo by John M. Cimbala.

Wind turbines
© F. Schussler/PhotoLink/Getty RF

Industrial applications
Digital Vision/PunchStock

Aircraft and spacecraft
© Photo Link/Getty RF

Natural flows and weather
© Glen Allison/Betty RF

Boats
© Doug Menuez/Getty RF
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1–2 ■ A BRIEF HISTORY OF FLUID MECHANICS1

One of the first engineering problems humankind faced as cities were devel-
oped was the supply of water for domestic use and irrigation of crops. Our 
urban lifestyles can be retained only with abundant water, and it is clear 
from archeology that every successful civilization of prehistory invested in 
the construction and maintenance of water systems. The Roman aqueducts, 
some of which are still in use, are the best known examples. However, per-
haps the most impressive engineering from a technical viewpoint was done 
at the Hellenistic city of Pergamon in present-day Turkey. There, from 283 to 
133 bc, they built a series of pressurized lead and clay pipelines (Fig. 1–9), 
up to 45 km long that operated at pressures exceeding 1.7 MPa (180 m of 
head). Unfortunately, the names of almost all these early builders are lost to 
history.
 The earliest recognized contribution to fluid mechanics theory was made 
by the Greek mathematician Archimedes (285–212 bc). He formulated and 
applied the buoyancy principle in history’s first nondestructive test to deter-
mine the gold content of the crown of King Hiero I. The Romans built great 
aqueducts and educated many conquered people on the benefits of clean 
water, but overall had a poor understanding of fluids theory. (Perhaps they 
shouldn’t have killed Archimedes when they sacked Syracuse.)
 During the Middle Ages, the application of fluid machinery slowly but 
steadily expanded. Elegant piston pumps were developed for dewatering 
mines, and the watermill and windmill were perfected to grind grain, forge 
metal, and for other tasks. For the first time in recorded human history, sig-
nificant work was being done without the power of a muscle supplied by a 
person or animal, and these inventions are generally credited with enabling 
the later industrial revolution. Again the creators of most of the progress 
are unknown, but the devices themselves were well documented by several 
technical writers such as Georgius Agricola (Fig. 1–10).
 The Renaissance brought continued development of fluid systems and 
machines, but more importantly, the scientific method was perfected and 
adopted throughout Europe. Simon Stevin (1548–1617), Galileo Galilei 
(1564–1642), Edme Mariotte (1620–1684), and Evangelista Torricelli 
(1608–1647) were among the first to apply the method to fluids as they 
investigated hydrostatic pressure distributions and vacuums. That work was 
integrated and refined by the brilliant mathematician and philosopher, Blaise 
Pascal (1623–1662). The Italian monk, Benedetto Castelli (1577–1644) was 
the first person to publish a statement of the continuity principle for flu-
ids. Besides formulating his equations of motion for solids, Sir Isaac New-
ton (1643–1727) applied his laws to fluids and explored fluid inertia and 
resistance, free jets, and viscosity. That effort was built upon by  Daniel 
Bernoulli (1700–1782), a Swiss, and his associate Leonard Euler (1707–
1783). Together, their work defined the energy and momentum equations. 
Bernoulli’s 1738 classic treatise Hydrodynamica may be considered the first 
fluid mechanics text. Finally, Jean d’Alembert (1717–1789) developed the 
idea of velocity and acceleration components, a differential expression of 

1 This section is contributed by Professor Glenn Brown of Oklahoma State University.

FIGURE 1–9
Segment of Pergamon pipeline. 
Each clay pipe section was 
13 to 18 cm in diameter. 
Courtesy Gunther Garbrecht.  
Used by permission.

FIGURE 1–10
A mine hoist powered 
by a reversible water wheel. 
G. Agricola, De Re Metalica, Basel, 1556.
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continuity, and his “paradox” of zero resistance to steady uniform motion 
over a body.
 The development of fluid mechanics theory through the end of the eigh-
teenth century had little impact on engineering since fluid properties and 
parameters were poorly quantified, and most theories were abstractions that 
could not be quantified for design purposes. That was to change with the 
development of the French school of engineering led by Riche de Prony 
(1755–1839). Prony (still known for his brake to measure shaft power) and 
his associates in Paris at the École Polytechnique and the École des Ponts 
et Chaussées were the first to integrate calculus and scientific theory into 
the engineering curriculum, which became the model for the rest of the 
world. (So now you know whom to blame for your painful freshman year.) 
Antonie Chezy (1718–1798), Louis Navier (1785–1836), Gaspard Coriolis 
(1792–1843), Henry Darcy (1803–1858), and many other contributors to 
fluid engineering and theory were students and/or instructors at the schools.
 By the mid nineteenth century, fundamental advances were coming on 
several fronts. The physician Jean Poiseuille (1799–1869) had accurately 
measured flow in capillary tubes for multiple fluids, while in Germany 
Gotthilf Hagen (1797–1884) had differentiated between laminar and turbu-
lent flow in pipes. In England, Lord Osborne Reynolds (1842–1912) con-
tinued that work (Fig. 1–11) and developed the dimensionless number that 
bears his name. Similarly, in parallel to the early work of Navier, George 
Stokes (1819–1903) completed the general equation of fluid motion (with 
friction) that takes their names. William Froude (1810–1879) almost single-
handedly developed the procedures and proved the value of physical model 
testing. American expertise had become equal to the Europeans as demon-
strated by James Francis’ (1815–1892) and Lester Pelton’s (1829–1908) 
pioneering work in turbines and Clemens Herschel’s (1842–1930) invention 
of the Venturi meter.
 In addition to Reynolds and Stokes, many notable contributions were made 
to fluid theory in the late nineteenth century by Irish and English  scientists, 
including William Thomson, Lord Kelvin (1824–1907), William Strutt, Lord 
Rayleigh (1842–1919), and Sir Horace Lamb (1849–1934). These individu-
als investigated a large number of problems, including dimensional analysis, 
irrotational flow, vortex motion, cavitation, and waves. In a broader sense, 

FIGURE 1–11
Osborne Reynolds’ original apparatus 
for demonstrating the onset of turbu-

lence in pipes, being operated 
by John Lienhard at the University 

of Manchester in 1975. 
Photo courtesy of John Lienhard, University of 

Houston. Used by permission.
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their work also explored the links between fluid mechanics, thermodynam-
ics, and heat transfer.
 The dawn of the twentieth century brought two monumental developments. 
First, in 1903, the self-taught Wright brothers (Wilbur, 1867–1912; Orville, 
1871–1948) invented the airplane through application of theory and deter-
mined experimentation. Their primitive invention was complete and contained 
all the major aspects of modern aircraft (Fig. 1–12). The Navier–Stokes equa-
tions were of little use up to this time because they were too difficult to solve. 
In a pioneering paper in 1904, the German Ludwig Prandtl (1875–1953) 
showed that fluid flows can be divided into a layer near the walls, the bound-
ary layer, where the friction effects are significant, and an outer layer where 
such effects are negligible and the simplified Euler and Bernoulli equations 
are applicable. His students, Theodor von Kármán (1881–1963), Paul Blasius 
(1883–1970), Johann Nikuradse (1894–1979), and others, built on that theory 
in both hydraulic and aerodynamic applications. (During World War II, both 
sides benefited from the theory as Prandtl remained in Germany while his 
best student, the Hungarian-born von Kármán, worked in America.) 
 The mid twentieth century could be considered a golden age of fluid 
mechanics applications. Existing theories were adequate for the tasks at 
hand, and fluid properties and parameters were well defined. These sup-
ported a huge expansion of the aeronautical, chemical, industrial, and 
water resources sectors; each of which pushed fluid mechanics in new 
directions. Fluid mechanics research and work in the late twentieth century 
were dominated by the development of the digital computer in America. 
The ability to solve large complex problems, such as global climate mod-
eling or the optimization of a turbine blade, has provided a benefit to our 
society that the eighteenth-century developers of fluid mechanics could 
never have imagined (Fig. 1–13). The principles presented in the following 
pages have been applied to flows ranging from a moment at the micro-
scopic scale to 50 years of simulation for an entire river basin. It is truly 
mind-boggling.
 Where will fluid mechanics go in the twenty-first century and beyond? 
Frankly, even a limited extrapolation beyond the present would be sheer folly. 
However, if history tells us anything, it is that engineers will be applying 
what they know to benefit society, researching what they don’t know, and 
having a great time in the process.

1–3 ■ THE NO-SLIP CONDITION
Fluid flow is often confined by solid surfaces, and it is important to under-
stand how the presence of solid surfaces affects fluid flow. We know that 
water in a river cannot flow through large rocks, and must go around them. 
That is, the water velocity normal to the rock surface must be zero, and 
water approaching the surface normally comes to a complete stop at the sur-
face. What is not as obvious is that water approaching the rock at any angle 
also comes to a complete stop at the rock surface, and thus the tangential 
velocity of water at the surface is also zero. 
 Consider the flow of a fluid in a stationary pipe or over a solid surface 
that is nonporous (i.e., impermeable to the fluid). All experimental observa-
tions indicate that a fluid in motion comes to a complete stop at the surface 

FIGURE 1–12
The Wright brothers take 
flight at Kitty Hawk.
Library of Congress Prints & Photographs 
Division [LC-DIG-ppprs-00626]

FIGURE 1–13
Old and new wind turbine technologies 
north of Woodward, OK. The modern 
turbines have 1.6 MW capacities.
Photo courtesy of the Oklahoma Wind Power 
Initiative. Used by permission.
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and assumes a zero velocity relative to the surface. That is, a fluid in direct 
contact with a solid “sticks” to the surface, and there is no slip. This is 
known as the no-slip condition. The fluid property responsible for the no-
slip condition and the development of the boundary layer is viscosity and is 
discussed in Chap. 2.
 The photograph in Fig. 1–14 clearly shows the evolution of a velocity 
gradient as a result of the fluid sticking to the surface of a blunt nose. The 
layer that sticks to the surface slows the adjacent fluid layer because of vis-
cous forces between the fluid layers, which slows the next layer, and so 
on. A consequence of the no-slip condition is that all velocity profiles must 
have zero values with respect to the surface at the points of contact between 
a fluid and a solid surface (Fig. 1–15). Therefore, the no-slip condition is 
responsible for the development of the velocity profile. The flow region 
adjacent to the wall in which the viscous effects (and thus the velocity gra-
dients) are significant is called the boundary layer. Another consequence 
of the no-slip condition is the surface drag, or skin friction drag, which is 
the force a fluid exerts on a surface in the flow direction. 
 When a fluid is forced to flow over a curved surface, such as the back 
side of a cylinder, the boundary layer may no longer remain attached to the 
sur face and separates from the surface—a process called flow separation 
(Fig. 1–16). We emphasize that the no-slip condition applies everywhere 
along the surface, even downstream of the separation point. Flow separation 
is discussed in greater detail in Chap. 9. 
 A phenomenon similar to the no-slip condition occurs in heat transfer. 
When two bodies at different temperatures are brought into contact, heat 
transfer occurs such that both bodies assume the same temperature at the 
points of contact. Therefore, a fluid and a solid surface have the same tem-
perature at the points of contact. This is known as no-temperature-jump 
condition.

1–4 ■ CLASSIFICATION OF FLUID FLOWS
Earlier we defined fluid mechanics as the science that deals with the behav-
ior of fluids at rest or in motion, and the interaction of fluids with solids or 
other fluids at the boundaries. There is a wide variety of fluid flow prob-
lems encountered in practice, and it is usually convenient to classify them 
on the basis of some common characteristics to make it feasible to study 
them in groups. There are many ways to classify fluid flow problems, and 
here we present some general categories.

FIGURE 1–14
The development of a velocity profile 
due to the no-slip condition as a fluid 

flows over a blunt nose.
“Hunter Rouse: Laminar and Turbulent Flow Film.” 
Copyright IIHR-Hydroscience & Engineering, The 
University of Iowa. Used by permission.

Relative
velocities
of fluid layers

Uniform
approach
velocity, V

Zero 
velocity
at the 
surface

Plate

FIGURE 1–15
A fluid flowing over a stationary 

surface comes to a complete stop at 
the surface because of the no-slip 

condition.

Separation point

FIGURE 1–16
Flow separation during flow over a curved surface.
From G. M. Homsy et al, “Multi-Media Fluid Mechanics,” Cambridge Univ. 
Press (2001). ISBN 0-521-78748-3. Reprinted by permission.
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Viscous versus Inviscid Regions of Flow
When two fluid layers move relative to each other, a friction force devel-
ops between them and the slower layer tries to slow down the faster layer. 
This internal resistance to flow is quantified by the fluid property viscosity, 
which is a measure of internal stickiness of the fluid. Viscosity is caused by 
cohesive forces between the molecules in liquids and by molecular colli-
sions in gases. There is no fluid with zero viscosity, and thus all fluid flows 
involve viscous effects to some degree. Flows in which the frictional effects 
are significant are called viscous flows. However, in many flows of practi-
cal interest, there are regions (typically regions not close to solid surfaces) 
where viscous forces are negligibly small compared to inertial or pressure 
forces. Neglecting the viscous terms in such inviscid flow regions greatly 
simplifies the analysis without much loss in accuracy. 
 The development of viscous and inviscid regions of flow as a result of 
inserting a flat plate parallel into a fluid stream of uniform velocity is shown 
in Fig. 1–17. The fluid sticks to the plate on both sides because of the no-slip 
condition, and the thin boundary layer in which the viscous effects are signifi-
cant near the plate surface is the viscous flow region. The region of flow on 
both sides away from the plate and largely unaffected by the presence of the 
plate is the inviscid flow region. 

Internal versus External Flow
A fluid flow is classified as being internal or external, depending on whether 
the fluid flows in a confined space or over a surface. The flow of an 
unbounded fluid over a surface such as a plate, a wire, or a pipe is external 
flow. The flow in a pipe or duct is internal flow if the fluid is completely 
bounded by solid surfaces. Water flow in a pipe, for example, is internal flow, 
and airflow over a ball or over an exposed pipe during a windy day is external 
flow (Fig. 1–18). The flow of liquids in a duct is called open-channel flow if 
the duct is only partially filled with the liquid and there is a free surface. The 
flows of water in rivers and irrigation ditches are examples of such flows.
 Internal flows are dominated by the influence of viscosity throughout the 
flow field. In external flows the viscous effects are limited to boundary lay-
ers near solid surfaces and to wake regions downstream of bodies. 

Compressible versus Incompressible Flow
A flow is classified as being compressible or incompressible, depending 
on the level of variation of density during flow. Incompressibility is an 
approximation, in which the flow is said to be incompressible if the density 
remains nearly constant throughout. Therefore, the volume of every portion 
of fluid remains unchanged over the course of its motion when the flow is 
approximated as incompressible. 
 The densities of liquids are essentially constant, and thus the flow of liq-
uids is typically incompressible. Therefore, liquids are usually referred to as 
incompressible substances. A pressure of 210 atm, for example, causes the 
density of liquid water at 1 atm to change by just 1 percent. Gases, on the 
other hand, are highly compressible. A pressure change of just 0.01 atm, for 
example, causes a change of 1 percent in the density of atmospheric air.

FIGURE 1–18
External flow over a tennis ball, and 
the turbulent wake region behind.
Courtesy NASA and Cislunar Aerospace, Inc.

Inviscid flow
region

Viscous flow

region

Inviscid flow
region

FIGURE 1–17
The flow of an originally uniform 
fluid stream over a flat plate, and 
the regions of viscous flow (next to 
the plate on both sides) and inviscid 
flow (away from the plate).
Fundamentals of Boundary Layers, 
National Committee from Fluid Mechanics Films, 
© Education Development Center.
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 When analyzing rockets, spacecraft, and other systems that involve high-
speed gas flows (Fig. 1–19), the flow speed is often expressed in terms of 
the dimensionless Mach number defined as 

Ma 5
V
c

5
Speed of flow

Speed of sound

where c is the speed of sound whose value is 346 m/s in air at room tempera-
ture at sea level. A flow is called sonic when Ma 5 1, subsonic when Ma , 1, 
supersonic when Ma . 1, and hypersonic when Ma .. 1. Dimensionless 
parameters are discussed in detail in Chapter 7.
 Liquid flows are incompressible to a high level of accuracy, but the level 
of variation of density in gas flows and the consequent level of approxi-
mation made when modeling gas flows as incompressible depends on the 
Mach number. Gas flows can often be approximated as incompressible if 
the density changes are under about 5 percent, which is usually the case 
when Ma , 0.3. Therefore, the compressibility effects of air at room tem-
perature can be neglected at speeds under about 100 m/s.
 Small density changes of liquids corresponding to large pressure changes 
can still have important consequences. The irritating “water hammer” in a 
water pipe, for example, is caused by the vibrations of the pipe generated by 
the reflection of pressure waves following the sudden closing of the valves.

Laminar versus Turbulent Flow
Some flows are smooth and orderly while others are rather chaotic. The 
highly ordered fluid motion characterized by smooth layers of fluid is called 
laminar. The word laminar comes from the movement of adjacent fluid 
particles together in “laminae.” The flow of high-viscosity fluids such as 
oils at low velocities is typically laminar. The highly disordered fluid motion 
that typically occurs at high velocities and is characterized by velocity fluc-
tuations is called turbulent (Fig. 1–20). The flow of low-viscosity fluids 
such as air at high velocities is typically turbulent. A flow that alternates 
between being laminar and turbulent is called transitional. The experiments 
conducted by Osborne Reynolds in the 1880s resulted in the establishment 
of the dimensionless Reynolds number, Re, as the key parameter for the 
determination of the flow regime in pipes (Chap. 8). 

Natural (or Unforced) versus Forced Flow
A fluid flow is said to be natural or forced, depending on how the fluid 
motion is initiated. In forced flow, a fluid is forced to flow over a surface 
or in a pipe by external means such as a pump or a fan. In natural flows,  
fluid motion is due to natural means such as the buoyancy effect, which 
manifests itself as the rise of warmer (and thus lighter) fluid and the fall of 
cooler (and thus denser) fluid (Fig. 1–21). In solar hot-water systems, for 
example, the thermosiphoning effect is commonly used to replace pumps by 
placing the water tank sufficiently above the solar collectors.

Laminar

Transitional

Turbulent

FIGURE 1–20
Laminar, transitional, and turbulent 

flows over a flat plate.
Courtesy ONERA, photograph by Werlé.

FIGURE 1–19
Schlieren image of the spherical shock 

wave produced by a bursting ballon 
at the Penn State Gas Dynamics Lab. 
Several secondary shocks are seen in 

the air surrounding the ballon.
Photo by G. S. Settles, Penn State University. Used 

by permission.
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Steady versus Unsteady Flow
The terms steady and uniform are used frequently in engineering, and thus 
it is important to have a clear understanding of their meanings. The term 
steady implies no change of properties, velocity, temperature, etc., at a point 
with time. The opposite of steady is unsteady. The term uniform implies no 
change with location over a specified region. These meanings are consistent 
with their everyday use (steady girlfriend, uniform distribution, etc.).
 The terms unsteady and transient are often used interchangeably, but these 
terms are not synonyms. In fluid mechanics, unsteady is the most general term 
that applies to any flow that is not steady, but transient is typically used for 
developing flows. When a rocket engine is fired up, for example, there are tran-
sient effects (the pressure builds up inside the rocket engine, the flow accelerates, 
etc.) until the engine settles down and operates steadily. The term periodic refers 
to the kind of unsteady flow in which the flow oscillates about a steady mean.
 Many devices such as turbines, compressors, boilers, condensers, and heat 
exchangers operate for long periods of time under the same conditions, and they 
are classified as steady-flow devices. (Note that the flow field near the rotating 
blades of a turbomachine is of course unsteady, but we consider the overall 
flow field rather than the details at some localities when we classify devices.) 
During steady flow, the fluid properties can change from point to point within 
a device, but at any fixed point they remain constant. Therefore, the volume, 
the mass, and the total energy content of a steady-flow device or flow section 
remain constant in steady operation. A simple analogy is shown in Fig. 1–22.
 Steady-flow conditions can be closely approximated by devices that are 
intended for continuous operation such as turbines, pumps, boilers, con-
densers, and heat exchangers of power plants or refrigeration systems. Some 
cyclic devices, such as reciprocating engines or compressors, do not sat-
isfy the steady-flow conditions since the flow at the inlets and the exits is 

FIGURE 1–21
In this schlieren image of a girl in 
a swimming suit, the rise of lighter, 
warmer air adjacent to her body 
indicates that humans and warm-
blooded animals are surrounded by 
thermal plumes of rising warm air.
G. S. Settles, Gas Dynamics Lab, 
Penn State University. Used by permission.

FIGURE 1–22
Comparison of (a) instantaneous 
snapshot of an unsteady flow, and 
(b) long exposure picture of the 
same flow.
Photos by Eric A. Paterson. Used by permission. (a) (b)
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pulsating and not steady. However, the fluid properties vary with time in a 
periodic manner, and the flow through these devices can still be analyzed as 
a steady-flow process by using time-averaged values for the properties.
 Some fascinating visualizations of fluid flow are provided in the book An 
Album of Fluid Motion by Milton Van Dyke (1982). A nice illustration of 
an unsteady-flow field is shown in Fig. 1–23, taken from Van Dyke’s book. 
Figure 1–23a is an instantaneous snapshot from a high-speed motion picture; it 
reveals large, alternating, swirling, turbulent eddies that are shed into the peri-
odically oscillating wake from the blunt base of the object. The eddies produce 
shock waves that move upstream alternately over the top and bottom surfaces 
of the airfoil in an unsteady fashion. Figure 1–23b shows the same flow field, 
but the film is exposed for a longer time so that the image is time averaged 
over 12 cycles. The resulting time-averaged flow field appears “steady” since 
the details of the unsteady oscillations have been lost in the long exposure.
 One of the most important jobs of an engineer is to determine whether it is 
sufficient to study only the time-averaged “steady” flow features of a problem, 
or whether a more detailed study of the unsteady features is required. If the 
engineer were interested only in the overall properties of the flow field (such 
as the time-averaged drag coefficient, the mean velocity, and pressure fields), a 
time-averaged description like that of Fig. 1–23b, time-averaged experimental 
measurements, or an analytical or numerical calculation of the time-averaged 
flow field would be sufficient. However, if the engineer were interested in details 
about the unsteady-flow field, such as flow-induced vibrations, unsteady pres-
sure fluctuations, or the sound waves emitted from the turbulent eddies or the 
shock waves, a time-averaged description of the flow field would be insufficient.
 Most of the analytical and computational examples provided in this text-
book deal with steady or time-averaged flows, although we occasionally 
point out some relevant unsteady-flow features as well when appropriate.

One-, Two-, and Three-Dimensional Flows
A flow field is best characterized by its velocity distribution, and thus a flow 
is said to be one-, two-, or three-dimensional if the flow velocity varies in 
one, two, or three primary dimensions, respectively. A typical fluid flow 
involves a three-dimensional geometry, and the velocity may vary in all three 
dimensions, rendering the flow three-dimensional [V

!
(x, y, z) in rectangular 

or V
!
(r, u, z) in cylindrical coordinates]. However, the variation of velocity in 

certain directions can be small relative to the variation in other directions and 
can be ignored with negligible error. In such cases, the flow can be modeled 
conveniently as being one- or two-dimensional, which is easier to analyze. 
 Consider steady flow of a fluid entering from a large tank into a circular 
pipe. The fluid velocity everywhere on the pipe surface is zero because of the 
no-slip condition, and the flow is two-dimensional in the entrance region of 
the pipe since the velocity changes in both the r- and z-directions, but not in 
the u-direction. The velocity profile develops fully and remains unchanged after 
some distance from the inlet (about 10 pipe diameters in turbulent flow, and 
less in laminar pipe flow, as in Fig. 1–24), and the flow in this region is said 
to be fully developed. The fully developed flow in a circular pipe is one-dimen-
sional since the velocity varies in the radial r-direction but not in the angular 
u- or axial z-directions, as shown in Fig. 1–24. That is, the velocity profile is 
the same at any axial z-location, and it is symmetric about the axis of the pipe.

(a)

(b)

FIGURE 1–23
Oscillating wake of a blunt-based 

airfoil at Mach number 0.6. Photo (a) 
is an instantaneous image, while 

photo (b) is a long-exposure 
(time-averaged) image.

(a) Dyment, A., Flodrops, J. P. & Gryson, P. 1982 
in Flow Visualization II, W. Merzkirch, ed., 331–

336. Washington: Hemisphere. Used by permission 
of Arthur Dyment.

(b) Dyment, A. & Gryson, P. 1978 in Inst. Mèc. 
Fluides Lille, No. 78-5. Used by permission of 

Arthur Dyment.

001-036_cengel_ch01.indd   13 12/14/12   12:13 PM



14
INTRODUCTION AND BASIC CONCEPTS

 Note that the dimensionality of the flow also depends on the choice of coor-
dinate system and its orientation. The pipe flow discussed, for example, is 
one-dimensional in cylindrical coordinates, but two-dimensional in Cartesian 
coordinates—illustrating the importance of choosing the most appropriate 
coordinate system. Also note that even in this simple flow, the velocity cannot 
be uniform across the cross section of the pipe because of the no-slip condi-
tion. However, at a well-rounded entrance to the pipe, the velocity profile may 
be approximated as being nearly uniform across the pipe, since the velocity is 
nearly constant at all radii except very close to the pipe wall.
 A flow may be approximated as two-dimensional when the aspect ratio is 
large and the flow does not change appreciably along the longer dimension. For 
example, the flow of air over a car antenna can be considered two-dimensional 
except near its ends since the antenna’s length is much greater than its diam-
eter, and the airflow hitting the antenna is fairly uniform (Fig. 1–25).

EXAMPLE 1–1    Axisymmetric Flow over a Bullet

Consider a bullet piercing through calm air during a short time interval in which 

the bullet’s speed is nearly constant. Determine if the time-averaged airflow 

over the bullet during its flight is one-, two-, or three-dimensional (Fig. 1–26).

SOLUTION  It is to be determined whether airflow over a bullet is one-, two-, 

or three-dimensional.

Assumptions  There are no significant winds and the bullet is not spinning.

Analysis  The bullet possesses an axis of symmetry and is therefore an axi-

symmetric body. The airflow upstream of the bullet is parallel to this axis, 

and we expect the time-averaged airflow to be rotationally symmetric about 

the axis—such flows are said to be axisymmetric. The velocity in this case 

varies with axial distance z and radial distance r, but not with angle u. There-

fore, the time-averaged airflow over the bullet is two-dimensional.
Discussion  While the time-averaged airflow is axisymmetric, the instantaneous 

airflow is not, as illustrated in Fig. 1–23. In Cartesian coordinates, the flow 

would be three-dimensional. Finally, many bullets also spin.

1–5 ■ SYSTEM AND CONTROL VOLUME
A system is defined as a quantity of matter or a region in space chosen for 
study. The mass or region outside the system is called the surroundings. 
The real or imaginary surface that separates the system from its surround-
ings is called the boundary (Fig. 1–27). The boundary of a system can be 

SURROUNDINGS

BOUNDARY

SYSTEM

FIGURE 1–27
System, surroundings, and boundary.

FIGURE 1–25
Flow over a car antenna is 
approximately two-dimensional 
except near the top and bottom 
of the antenna.

Axis of
symmetry

r

z
u

FIGURE 1–26
Axisymmetric flow over a bullet.

z

r

Developing velocity
profile, V(r, z)

Fully developed
velocity profile, V(r)

FIGURE 1–24
The development of the velocity 
profile in a circular pipe. V 5 V(r, z) 
and thus the flow is two-dimensional 
in the entrance region, and becomes 
one-dimensional downstream when 
the velocity profile fully develops 
and remains unchanged in the flow 
direction, V 5 V(r).
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fixed or movable. Note that the boundary is the contact surface shared by 
both the system and the surroundings. Mathematically speaking, the bound-
ary has zero thickness, and thus it can neither contain any mass nor occupy 
any volume in space.
 Systems may be considered to be closed or open, depending on whether 
a fixed mass or a volume in space is chosen for study. A closed system 
(also known as a control mass or simply a system when the context makes 
it clear) consists of a fixed amount of mass, and no mass can cross its 
boundary. But energy, in the form of heat or work, can cross the boundary, 
and the volume of a closed system does not have to be fixed. If, as a special 
case, even energy is not allowed to cross the boundary, that system is called 
an isolated system.
 Consider the piston–cylinder device shown in Fig. 1–28. Let us say that 
we would like to find out what happens to the enclosed gas when it is 
heated. Since we are focusing our attention on the gas, it is our system. The 
inner surfaces of the piston and the cylinder form the boundary, and since 
no mass is crossing this boundary, it is a closed system. Notice that energy 
may cross the boundary, and part of the boundary (the inner surface of the 
piston, in this case) may move. Everything outside the gas, including the 
piston and the cylinder, is the surroundings.
 An open system, or a control volume, as it is often called, is a selected 
region in space. It usually encloses a device that involves mass flow such as 
a compressor, turbine, or nozzle. Flow through these devices is best stud-
ied by selecting the region within the device as the control volume. Both 
mass and energy can cross the boundary (the control surface) of a control 
volume.
 A large number of engineering problems involve mass flow in and out 
of an open system and, therefore, are modeled as control volumes. A water 
heater, a car radiator, a turbine, and a compressor all involve mass flow 
and should be analyzed as control volumes (open systems) instead of as 
control masses (closed systems). In general, any arbitrary region in space 
can be selected as a control volume. There are no concrete rules for the 
selection of control volumes, but a wise choice certainly makes the analy-
sis much easier. If we were to analyze the flow of air through a nozzle, for 
example, a good choice for the control volume would be the region within 
the nozzle, or perhaps surrounding the entire nozzle.
 A control volume can be fixed in size and shape, as in the case of a noz-
zle, or it may involve a moving boundary, as shown in Fig. 1–29. Most con-
trol volumes, however, have fixed boundaries and thus do not involve any 
moving boundaries. A control volume may also involve heat and work inter-
actions just as a closed system, in addition to mass interaction.

1–6 ■ IMPORTANCE OF DIMENSIONS AND UNITS
Any physical quantity can be characterized by dimensions. The magnitudes 
assigned to the dimensions are called units. Some basic dimensions such 
as mass m, length L, time t, and temperature T are selected as primary or 
fundamental dimensions, while others such as velocity V, energy E, and 
volume V are expressed in terms of the primary dimensions and are called 
secondary dimensions, or derived dimensions.

GAS
2 kg
1.5 m3GAS

2 kg
1 m3

Moving
boundary

Fixed
boundary

FIGURE 1–28
A closed system with a moving 

boundary.

FIGURE 1–29
A control volume may involve 

fixed, moving, real, and imaginary 
boundaries.

CV

Moving
boundary

Fixed
boundary

Real boundary

(b) A control volume (CV) with fixed and
     moving boundaries as well as real and
     imaginary boundaries

(a) A control volume (CV) with real and
      imaginary boundaries

Imaginary
boundary

CV
(a nozzle)
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 A number of unit systems have been developed over the years. Despite 
strong efforts in the scientific and engineering community to unify the 
world with a single unit system, two sets of units are still in common use 
today: the English system, which is also known as the United States Cus-
tomary System (USCS), and the metric SI (from Le Système International 
d’  Unités), which is also known as the International System. The SI is a 
simple and logical system based on a decimal relationship between the vari-
ous units, and it is being used for scientific and engineering work in most of 
the industrialized nations, including England. The English system, however, 
has no apparent systematic numerical base, and various units in this system 
are related to each other rather arbitrarily (12 in 5 1 ft, 1 mile 5 5280 ft, 
4 qt 5 1 gal, etc.), which makes it confusing and difficult to learn. The 
United States is the only industrialized country that has not yet fully con-
verted to the metric system.
 The systematic efforts to develop a universally acceptable system of units 
dates back to 1790 when the French National Assembly charged the French 
Academy of Sciences to come up with such a unit system. An early version of 
the metric system was soon developed in France, but it did not find universal 
acceptance until 1875 when The Metric Convention Treaty was prepared and 
signed by 17 nations, including the United States. In this international treaty, 
meter and gram were established as the metric units for length and mass, 
respectively, and a General Conference of Weights and Measures (CGPM) was 
established that was to meet every six years. In 1960, the CGPM produced 
the SI, which was based on six fundamental quantities, and their units were 
adopted in 1954 at the Tenth General Conference of Weights and Measures: 
meter (m) for length, kilogram (kg) for mass, second (s) for time, ampere (A) 
for electric current, degree Kelvin (°K) for temperature, and candela (cd) for 
luminous intensity (amount of light). In 1971, the CGPM added a seventh 
fundamental quantity and unit: mole (mol) for the amount of matter.
 Based on the notational scheme introduced in 1967, the degree symbol 
was officially dropped from the absolute temperature unit, and all unit 
names were to be written without capitalization even if they were derived 
from proper names (Table 1–1). However, the abbreviation of a unit was 
to be capitalized if the unit was derived from a proper name. For example, 
the SI unit of force, which is named after Sir Isaac Newton (1647–1723), 
is newton (not Newton), and it is abbreviated as N. Also, the full name 
of a unit may be pluralized, but its abbreviation cannot. For example, the 
length of an object can be 5 m or 5 meters, not 5 ms or 5 meter. Finally, no 
period is to be used in unit abbreviations unless they appear at the end of a 
sentence. For example, the proper abbreviation of meter is m (not m.).
 The recent move toward the metric system in the United States seems to 
have started in 1968 when Congress, in response to what was happening 
in the rest of the world, passed a Metric Study Act. Congress continued to 
promote a voluntary switch to the metric system by passing the Metric Con-
version Act in 1975. A trade bill passed by Congress in 1988 set a Septem-
ber 1992 deadline for all federal agencies to convert to the metric system. 
However, the deadlines were relaxed later with no clear plans for the future.
 As pointed out, the SI is based on a decimal relationship between units. The 
prefixes used to express the multiples of the various units are listed in Table 1–2. 

TABLE 1–1

The seven fundamental (or primary) 

dimensions and their units in SI

Dimension Unit

Length meter (m)

Mass kilogram (kg)

Time second (s)

Temperature kelvin (K)

Electric current ampere (A)

Amount of light candela (cd)

Amount of matter mole (mol)

TABLE 1–2

Standard prefixes in SI units

 Multiple Prefix

 1024 yotta, Y

 1021 zetta, Z

 1018 exa, E

 1015 peta, P

 1012 tera, T

 109 giga, G

 106 mega, M

 103 kilo, k

 102 hecto, h

 101 deka, da

 1021 deci, d

 1022 centi, c

 1023 milli, m

 1026 micro, m

 1029 nano, n

 10212 pico, p

 10215 femto, f

 10218 atto, a

 10221 zepto, z

 10224 yocto, y
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They are standard for all units, and the student is encouraged to memorize some 
of them because of their widespread use (Fig. 1–30).

Some SI and English Units
In SI, the units of mass, length, and time are the kilogram (kg), meter (m), 
and second (s), respectively. The respective units in the English system are 
the pound-mass (lbm), foot (ft), and second (s). The pound symbol lb is 
actually the abbreviation of libra, which was the ancient Roman unit of 
weight. The English retained this symbol even after the end of the Roman 
occupation of Britain in 410. The mass and length units in the two systems 
are related to each other by

1 lbm 5 0.45359 kg

1 ft 5 0.3048 m

 In the English system, force is often considered to be one of the primary 
dimensions and is assigned a nonderived unit. This is a source of confu-
sion and error that necessitates the use of a dimensional constant (gc) in 
many formulas. To avoid this nuisance, we consider force to be a secondary 
dimension whose unit is derived from Newton’s second law, i.e.,

Force 5 (Mass) (Acceleration)

or F 5 ma (1–1)

In SI, the force unit is the newton (N), and it is defined as the force required 
to accelerate a mass of 1 kg at a rate of 1 m/s2. In the English system, the 
force unit is the pound-force (lbf) and is defined as the force required to 
accelerate a mass of 32.174 lbm (1 slug) at a rate of 1 ft/s2 (Fig. 1–31). 
That is,

 1 N 5 1 kg·m/s2

1 lbf 5 32.174 lbm·ft/s2

A force of 1 N is roughly equivalent to the weight of a small apple 
(m 5 102 g), whereas a force of 1 lbf is roughly equivalent to the weight of 
four medium apples (mtotal 5 454 g), as shown in Fig. 1–32. Another force 
unit in common use in many European countries is the kilogram-force (kgf), 
which is the weight of 1 kg mass at sea level (1 kgf 5 9.807 N).
 The term weight is often incorrectly used to express mass, particularly 
by the “weight watchers.” Unlike mass, weight W is a force. It is the gravi-
tational force applied to a body, and its magnitude is determined from an 
equation based on Newton’s second law,

 W 5 mg  (N) (1–2)

where m is the mass of the body, and g is the local gravitational accel-
eration (g is 9.807 m/s2 or 32.174 ft/s2 at sea level and 45° latitude). An 
ordinary bathroom scale measures the gravitational force acting on a body. 
The weight per unit volume of a substance is called the specific weight g 
and is determined from g 5 rg, where r is density.

1 kg200 mL
(0.2 L) (103 g)

1 MV

(106 V)

FIGURE 1–30
The SI unit prefixes are used in all 

branches of engineering.

m = 1 kg

m = 32.174 lbm

a = 1 m/s2

a = 1 ft/s2

F = 1 lbf

F = 1 N

FIGURE 1–31
The definition of the force units.

1 kgf

10 apples
m � 1 kg

4 apples
m � 1 lbm

1 lbf

1 apple
m � 102 g

1 N

FIGURE 1–32
The relative magnitudes of the force 

units newton (N), kilogram-force 
(kgf), and pound-force (lbf).
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 The mass of a body remains the same regardless of its location in the uni-
verse. Its weight, however, changes with a change in gravitational accelera-
tion. A body weighs less on top of a mountain since g decreases (by a small 
amount) with altitude. On the surface of the moon, an astronaut weighs 
about one-sixth of what she or he normally weighs on earth (Fig. 1–33).
 At sea level a mass of 1 kg weighs 9.807 N, as illustrated in Fig. 1–34. A 
mass of 1 lbm, however, weighs 1 lbf, which misleads people to believe that 
pound-mass and pound-force can be used interchangeably as pound (lb), 
which is a major source of error in the English system.
 It should be noted that the gravity force acting on a mass is due to the 
attraction between the masses, and thus it is proportional to the mag-
nitudes of the masses and inversely proportional to the square of the dis-
tance between them. Therefore, the gravitational acceleration g at a location 
depends on the local density of the earth’s crust, the distance to the center 
of the earth, and to a lesser extent, the positions of the moon and the sun. 
The value of g varies with location from 9.8295 m/s2 at 4500 m below sea 
level to 7.3218 m/s2 at 100,000 m above sea level. However, at altitudes up 
to 30,000 m, the variation of g from the sea-level value of 9.807 m/s2, is 
less than 1 percent. Therefore, for most practical purposes, the gravitational 
acceleration can be assumed to be constant at 9.807 m/s2, often rounded to 
9.81 m/s2. It is interesting to note that the value of g increases with distance 
below sea level, reaches a maximum at about 4500 m below sea level, and 
then starts decreasing. (What do you think the value of g is at the center of 
the earth?)
 The primary cause of confusion between mass and weight is that mass is 
usually measured indirectly by measuring the gravity force it exerts. This 
approach also assumes that the forces exerted by other effects such as air 
buoyancy and fluid motion are negligible. This is like measuring the dis-
tance to a star by measuring its red shift, or measuring the altitude of an 
airplane by measuring barometric pressure. Both of these are also indirect 
measurements. The correct direct way of measuring mass is to compare it 
to a known mass. This is cumbersome, however, and it is mostly used for 
calibration and measuring precious metals.
 Work, which is a form of energy, can simply be defined as force times 
distance; therefore, it has the unit “newton-meter (N.m),” which is called a 
joule (J). That is,

 1 J 5 1 N·m (1–3)

A more common unit for energy in SI is the kilojoule (1 kJ 5 103 J). In the 
English system, the energy unit is the Btu (British thermal unit), which is 
defined as the energy required to raise the temperature of 1 lbm of water at 
68°F by 1°F. In the metric system, the amount of energy needed to raise the 
temperature of 1 g of water at 14.5°C by 1°C is defined as 1 calorie (cal), 
and 1 cal 5 4.1868 J. The magnitudes of the kilojoule and Btu are very 
nearly the same (1 Btu 5 1.0551 kJ). Here is a good way to get a feel for 
these units: If you light a typical match and let it burn itself out, it yields 
approximately one Btu (or one kJ) of energy (Fig. 1–35).
 The unit for time rate of energy is joule per second (J/s), which is called 
a watt (W). In the case of work, the time rate of energy is called power. 
A commonly used unit of power is horsepower (hp), which is equivalent 

FIGURE 1–33
A body weighing 150 lbf on earth will 
weigh only 25 lbf on the moon.

g = 9.807 m/s2

W = 9.807 kg·m/s2

 = 9.807 N
 = 1 kgf

W = 32.174 lbm·ft/s2

 = 1 lbf

g = 32.174 ft/s2

kg lbm

FIGURE 1–34
The weight of a unit mass at sea level.

FIGURE 1–35
A typical match yields about one Btu 
(or one kJ) of energy if completely 
burned.
Photo by John M. Cimbala.
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to 745.7 W. Electrical energy typically is expressed in the unit kilowatt-hour 
(kWh), which is equivalent to 3600 kJ. An electric appliance with a rated 
power of 1 kW consumes 1 kWh of electricity when running continu-
ously for one hour. When dealing with electric power generation, the units 
kW and kWh are often confused. Note that kW or kJ/s is a unit of power, 
whereas kWh is a unit of energy. Therefore, statements like “the new wind 
turbine will generate 50 kW of electricity per year” are meaningless and 
incorrect. A correct statement should be something like “the new wind tur-
bine with a rated power of 50 kW will generate 120,000 kWh of electricity 
per year.” 

Dimensional Homogeneity
We all know that you cannot add apples and oranges. But we somehow 
manage to do it (by mistake, of course). In engineering, all equations must 
be dimensionally homogeneous. That is, every term in an equation must 
have the same dimensions. If, at some stage of an analysis, we find our-
selves in a position to add two quantities that have different dimensions 
or units, it is a clear indication that we have made an error at an earlier 
stage. So checking dimensions (or units) can serve as a valuable tool to 
spot errors.

EXAMPLE 1–2   Electric Power Generation by a Wind Turbine

A school is paying $0.09/kWh for electric power. To reduce its power bill, 

the school installs a wind turbine (Fig 1–36) with a rated power of 30 kW. 

If the turbine operates 2200 hours per year at the rated power, determine 

the amount of electric power generated by the wind turbine and the money 

saved by the school per year.

SOLUTION  A wind turbine is installed to generate electricity. The amount of 

electric energy generated and the money saved per year are to be determined.

Analysis  The wind turbine generates electric energy at a rate of 30 kW or 

30 kJ/s. Then the total amount of electric energy generated per year becomes 

Total energy 5 (Energy per unit time)(Time interval)
  5 (30 kW)(2200 h)
  5 66,000 kWh

The money saved per year is the monetary value of this energy determined as 

Money saved 5 (Total energy)(Unit cost of energy)
 5 (66,000 kWh)($0.09/kWh)
 5 $5940

Discussion  The annual electric energy production also could be determined 

in kJ by unit manipulations as

Total energy 5  (30 kW)(2200 h)a3600 s

1 h
b a1 kJ/s

1 kW
b 5 2.38 3 108 kJ

which is equivalent to 66,000 kWh (1 kWh = 3600 kJ).

FIGURE 1–36
A wind turbine, as discussed in 

Example 1–2.
Photo by Andy Cimbala.
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 We all know from experience that units can give terrible headaches if they 
are not used carefully in solving a problem. However, with some attention 
and skill, units can be used to our advantage. They can be used to check 
formulas; sometimes they can even be used to derive formulas, as explained 
in the following example.

EXAMPLE 1–3    Obtaining Formulas from Unit Considerations

A tank is filled with oil whose density is r 5 850 kg/m3. If the volume of the 

tank is V 5 2 m3, determine the amount of mass m in the tank.

SOLUTION  The volume of an oil tank is given. The mass of oil is to be 

determined.

Assumptions  Oil is a nearly incompressible substance and thus its density 

is constant.

Analysis  A sketch of the system just described is given in Fig. 1–37. Sup-

pose we forgot the formula that relates mass to density and volume. However, 

we know that mass has the unit of kilograms. That is, whatever calculations 

we do, we should end up with the unit of kilograms. Putting the given infor-

mation into perspective, we have

r 5 850 kg/m3  and  V 5 2 m3

It is obvious that we can eliminate m3 and end up with kg by multiplying 

these two quantities. Therefore, the formula we are looking for should be

m 5 rV

Thus,

m 5 (850 kg/m3)(2 m3) 5 1700 kg

Discussion  Note that this approach may not work for more complicated 

formulas. Nondimensional constants also may be present in the formulas, 

and these cannot be derived from unit considerations alone.

 You should keep in mind that a formula that is not dimensionally homo-
geneous is definitely wrong (Fig. 1 –38), but a dimensionally homogeneous 
formula is not necessarily right.

Unity Conversion Ratios
Just as all nonprimary dimensions can be formed by suitable combina-
tions of primary dimensions, all nonprimary units (secondary units) can be 
formed by combinations of primary units. Force units, for example, can be 
expressed as

N 5 kg 
m

s2  and  lbf 5 32.174 lbm 
ft

s2

They can also be expressed more conveniently as unity conversion ratios as

N

kg·m/s2 5 1  and  
lbf

32.174 lbm·ft/s2 5 1

FIGURE 1–38
Always check the units in your 
calculations.

Oil
   = 2 m3

m = ?
r = 850  kg/m3

FIGURE 1–37
Schematic for Example 1–3.
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Unity conversion ratios are identically equal to 1 and are unitless, and thus 
such ratios (or their inverses) can be inserted conveniently into any calcu-
lation to properly convert units (Fig 1–39). You are encouraged to always 
use unity conversion ratios such as those given here when converting units. 
Some text books insert the archaic gravitational constant gc defined as 
gc 5 32.174 lbm·ft/lbf·s2 5 kg·m/N·s2 5 1 into equations in order to force 
units to match. This practice leads to unnecessary confusion and is strongly 
discouraged by the present authors. We recommend that you instead use 
unity conversion ratios.

EXAMPLE 1–4    The Weight of One Pound-Mass

Using unity conversion ratios, show that 1.00 lbm weighs 1.00 lbf on earth 

(Fig. 1–40).

Solution  A mass of 1.00 lbm is subjected to standard earth gravity. Its 

weight in lbf is to be determined.

Assumptions  Standard sea-level conditions are assumed.

Properties  The gravitational constant is g 5 32.174 ft/s2.
Analysis  We apply Newton’s second law to calculate the weight (force) that 

corresponds to the known mass and acceleration. The weight of any object 

is equal to its mass times the local value of gravitational acceleration. Thus,

W 5 mg 5 (1.00  lbm)(32.174  ft/s2)a 1 lbf

32.174  lbm·ft/s2b 5 1.00  lbf

Discussion  The quantity in large parentheses in this equation is a unity 

conversion ratio. Mass is the same regardless of its location. However, on 

some other planet with a different value of gravitational acceleration, the 

weight of 1 lbm would differ from that calculated here.

 When you buy a box of breakfast cereal, the printing may say “Net 
weight: One pound (454 grams).” (See Fig. 1–41.) Technically, this means 
that the cereal inside the box weighs 1.00 lbf on earth and has a mass of 
453.6 g (0.4536 kg). Using Newton’s second law, the actual weight of the 
cereal on earth is

W 5 mg 5 (453.6 g)(9.81 m/s2)a 1 N

1 kg·m/s2b a 1 kg

1000 g
b 5 4.49 N

1–7 ■  MODELING IN ENGINEERING
An engineering device or process can be studied either experimentally (test-
ing and taking measurements) or analytically (by analysis or calculations). 
The experimental approach has the advantage that we deal with the actual 
physical system, and the desired quantity is determined by measurement, 

lbm

FIGURE 1–40
A mass of 1 lbm weighs 1 lbf on earth.

0.3048 m
1 ft

1 min
60 s

1 lbm
0.45359 kg

32.174 lbm?ft/s2

1 lbf
1 kg?m/s2

1 N

1 kPa
1000 N/m2

1 kJ
1000 N?m

1 W
1 J/s

FIGURE 1–39
Every unity conversion ratio (as well 
as its inverse) is exactly equal to one. 

Shown here are a few commonly used 
unity conversion ratios.
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within the limits of experimental error. However, this approach is expen-
sive, time-consuming, and often impractical. Besides, the system we are 
studying may not even exist. For example, the entire heating and plumbing 
systems of a building must usually be sized before the building is actu-
ally built on the basis of the specifications given. The analytical approach 
(including the numerical approach) has the advantage that it is fast and 
inexpensive, but the results obtained are subject to the accuracy of the 
assumptions, approximations, and idealizations made in the analysis. 
In engineering studies, often a good compromise is reached by reduc-
ing the choices to just a few by analysis, and then verifying the findings 
experimentally.
 The descriptions of most scientific problems involve equations that relate 
the changes in some key variables to each other. Usually the smaller the 
increment chosen in the changing variables, the more general and accurate 
the description. In the limiting case of infinitesimal or differential changes 
in variables, we obtain differential equations that provide precise math-
ematical formulations for the physical principles and laws by represent-
ing the rates of change as derivatives. Therefore, differential equations are 
used to investigate a wide variety of problems in sciences and engineering 
(Fig. 1–42). However, many problems encountered in practice can be solved 
without resorting to differential equations and the complications associated 
with them.
 The study of physical phenomena involves two important steps. In the 
first step, all the variables that affect the phenomena are identified, reason-
able assumptions and approximations are made, and the interdependence 
of these variables is studied. The relevant physical laws and principles are 
invoked, and the problem is formulated mathematically. The equation itself 
is very instructive as it shows the degree of dependence of some variables 
on others, and the relative importance of various terms. In the second step, 
the problem is solved using an appropriate approach, and the results are 
interpreted.
 Many processes that seem to occur in nature randomly and without any 
order are, in fact, being governed by some visible or not-so-visible physi-
cal laws. Whether we notice them or not, these laws are there, governing 
consistently and predictably over what seem to be ordinary events. Most of 
these laws are well defined and well understood by scientists. This makes 
it possible to predict the course of an event before it actually occurs or to 
study various aspects of an event mathematically without actually running 
expensive and time-consuming experiments. This is where the power of 
analysis lies. Very accurate results to meaningful practical problems can be 
obtained with relatively little effort by using a suitable and realistic mathe-
matical model. The preparation of such models requires an adequate knowl-
edge of the natural phenomena involved and the relevant laws, as well as 
sound judgment. An unrealistic model will obviously give inaccurate and 
thus unacceptable results.
 An analyst working on an engineering problem often finds himself or her-
self in a position to make a choice between a very accurate but complex 
model, and a simple but not-so-accurate model. The right choice depends 
on the situation at hand. The right choice is usually the simplest model that 

Identify
important
variables Make

reasonable
assumptions and
approximationsApply

relevant
physical laws

Physical problem

A differential equation

Apply
applicable
solution

technique

Apply
boundary
and initial
conditions

Solution of the problem

FIGURE 1–42
Mathematical modeling of physical 
problems.

Net weight:
One pound 
(454 grams)

FIGURE 1–41
A quirk in the metric system of units.
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yields satisfactory results (Fig 1–43). Also, it is important to consider the 
actual operating conditions when selecting equipment.
 Preparing very accurate but complex models is usually not so difficult. 
But such models are not much use to an analyst if they are very difficult 
and time-consuming to solve. At the minimum, the model should reflect the 
essential features of the physical problem it represents. There are many sig-
nificant real-world problems that can be analyzed with a simple model. But 
it should always be kept in mind that the results obtained from an analysis 
are at best as accurate as the assumptions made in simplifying the problem. 
Therefore, the solution obtained should not be applied to situations for 
which the original assumptions do not hold.
 A solution that is not quite consistent with the observed nature of the 
problem indicates that the mathematical model used is too crude. In that 
case, a more realistic model should be prepared by eliminating one or more 
of the questionable assumptions. This will result in a more complex problem 
that, of course, is more difficult to solve. Thus any solution to a problem 
should be interpreted within the context of its formulation.

1–8 ■  PROBLEM-SOLVING TECHNIQUE
The first step in learning any science is to grasp the fundamentals and to gain 
a sound knowledge of it. The next step is to master the fundamentals by test-
ing this knowledge. This is done by solving significant real-world problems. 
Solving such problems, especially complicated ones, requires a systematic 
approach. By using a step-by-step approach, an engineer can reduce the 

FIGURE 1–43
Simplified models are often used in fluid mechanics to obtain approximate solutions to difficult engineering problems. 
Here, the helicopter’s rotor is modeled by a disk, across which is imposed a sudden change in pressure. The helicopter’s 
body is modeled by a simple ellipsoid. This simplified model yields the essential features of the overall air flow field in the 
vicinity of the ground.
Photo by John M. Cimbala.

Ground

Rotor disk

Simplified body

(a) Actual engineering problem (b) Minimum essential model of the engineering problem
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solution of a complicated problem into the solution of a series of simple 
problems (Fig. 1–44). When you are solving a problem, we recommend that 
you use the following steps zealously as applicable. This will help you avoid 
some of the common pitfalls associated with problem solving.

Step 1: Problem Statement
In your own words, briefly state the problem, the key information given, 
and the quantities to be found. This is to make sure that you understand the 
problem and the objectives before you attempt to solve the problem.

Step 2: Schematic
Draw a realistic sketch of the physical system involved, and list the relevant 
information on the figure. The sketch does not have to be something elabo-
rate, but it should resemble the actual system and show the key features. 
Indicate any energy and mass interactions with the surroundings. Listing 
the given information on the sketch helps one to see the entire problem 
at once. Also, check for properties that remain constant during a process 
(such as temperature during an isothermal process), and indicate them on 
the sketch.

Step 3: Assumptions and Approximations
State any appropriate assumptions and approximations made to simplify 
the problem to make it possible to obtain a solution. Justify the ques-
tionable assumptions. Assume reasonable values for missing quantities 
that are necessary. For example, in the absence of specific data for atmo-
spheric pressure, it can be taken to be 1 atm. However, it should be noted 
in the analysis that the atmospheric pressure decreases with increasing 
elevation. For example, it drops to 0.83 atm in Denver (elevation 1610 m) 
(Fig. 1–45).

Step 4: Physical Laws
Apply all the relevant basic physical laws and principles (such as the con-
servation of mass), and reduce them to their simplest form by utilizing the 
assumptions made. However, the region to which a physical law is applied 
must be clearly identified first. For example, the increase in speed of water 
flowing through a nozzle is analyzed by applying conservation of mass 
between the inlet and outlet of the nozzle.

Step 5: Properties
Determine the unknown properties at known states necessary to solve the 
problem from property relations or tables. List the properties separately, and 
indicate their source, if applicable.

Step 6: Calculations
Substitute the known quantities into the simplified relations and perform the 
calculations to determine the unknowns. Pay particular attention to the units 
and unit cancellations, and remember that a dimensional quantity without a 
unit is meaningless. Also, don’t give a false implication of high precision 

SOLUTION

H
A

R
D

 W
A

YEASY W
AY

PROBLEM

FIGURE 1–44
A step-by-step approach can greatly 
simplify problem solving.

Given: Air temperature in Denver

To be found: Density of air

Missing information: Atmospheric
pressure

Assumption #1: Take P = 1 atm
(Inappropriate. Ignores effect of 
altitude. Will cause more than 
15% error.)

Assumption #2: Take P = 0.83 atm
(Appropriate. Ignores only minor 
effects such as weather.)

FIGURE 1–45
The assumptions made while solving 
an engineering problem must be 
reasonable and justifiable.
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by copying all the digits from the screen of the calculator—round the final 
results to an appropriate number of significant digits (Section 1–10).

Step 7: Reasoning, Verification, and Discussion
Check to make sure that the results obtained are reasonable and intuitive, 
and verify the validity of the questionable assumptions. Repeat the calcula-
tions that resulted in unreasonable values. For example, under the same test 
conditions the aerodynamic drag acting on a car should not increase after 
streamlining the shape of the car (Fig. 1–46).
 Also, point out the significance of the results, and discuss their implications. 
State the conclusions that can be drawn from the results, and any recommen-
dations that can be made from them. Emphasize the limitations under which 
the results are applicable, and caution against any possible misunderstand-
ings and using the results in situations where the underlying assumptions do 
not apply. For example, if you determined that using a larger-diameter pipe 
in a proposed pipeline will cost an additional $5000 in materials, but it will 
reduce the annual pumping costs by $3000, indicate that the larger-diameter 
pipeline will pay for its cost differential from the electricity it saves in less 
than two years. However, also state that only additional material costs associ-
ated with the larger-diameter pipeline are considered in the analysis.
 Keep in mind that the solutions you present to your instructors, and 
any engineering analysis presented to others, is a form of communication. 
Therefore neatness, organization, completeness, and visual appearance are 
of utmost importance for maximum effectiveness (Fig 1–47). Besides, neat-
ness also serves as a great checking tool since it is very easy to spot errors 
and inconsistencies in neat work. Carelessness and skipping steps to save 
time often end up costing more time and unnecessary anxiety.
 The approach described here is used in the solved example problems with-
out explicitly stating each step, as well as in the Solutions Manual of this 
text. For some problems, some of the steps may not be applicable or neces-
sary. For example, often it is not practical to list the properties separately. 
However, we cannot overemphasize the importance of a logical and orderly 
approach to problem solving. Most difficulties encountered while solving a 
problem are not due to a lack of knowledge; rather, they are due to a lack of 
organization. You are strongly encouraged to follow these steps in problem 
solving until you develop your own approach that works best for you.

1–9 ■  ENGINEERING SOFTWARE PACKAGES
You may be wondering why we are about to undertake an in-depth study of 
the fundamentals of another engineering science. After all, almost all such 
problems we are likely to encounter in practice can be solved using one 
of several sophisticated software packages readily available in the market 
today. These software packages not only give the desired numerical results, 
but also supply the outputs in colorful graphical form for impressive presen-
tations. It is unthinkable to practice engineering today without using some 
of these packages. This tremendous computing power available to us at the 
touch of a button is both a blessing and a curse. It certainly enables engi-
neers to solve problems easily and quickly, but it also opens the door for 

Before streamlining
V

V
After streamliningUnreasonable!

Before streamliningBefore streamlining
V

V
After streamliningAfter streamliningUnreasonable!Unreasonable!

FD

FD

FIGURE 1–46
The results obtained from an 

engineering analysis must be checked 
for reasonableness.

FIGURE 1–47
Neatness and organization are highly 

valued by employers.
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abuses and misinformation. In the hands of poorly educated people, these 
software packages are as dangerous as sophisticated powerful weapons in 
the hands of poorly trained soldiers.
 Thinking that a person who can use the engineering software packages 
without proper training in the fundamentals can practice engineering is like 
thinking that a person who can use a wrench can work as a car mechanic. If 
it were true that the engineering students do not need all these fundamental 
courses they are taking because practically everything can be done by com-
puters quickly and easily, then it would also be true that the employers would 
no longer need high-salaried engineers since any person who knows how 
to use a word-processing program can also learn how to use those software 
packages. However, the statistics show that the need for engineers is on the 
rise, not on the decline, despite the availability of these powerful packages.
 We should always remember that all the computing power and the engi-
neering software packages available today are just tools, and tools have 
meaning only in the hands of masters. Having the best word-processing 
program does not make a person a good writer, but it certainly makes the 
job of a good writer much easier and makes the writer more productive 
(Fig. 1–48). Hand calculators did not eliminate the need to teach our chil-
dren how to add or subtract, and sophisticated medical software packages 
did not take the place of medical school training. Neither will engineering 
software packages replace the traditional engineering education. They will 
simply cause a shift in emphasis in the courses from mathematics to physics. 
That is, more time will be spent in the classroom discussing the physical 
aspects of the problems in greater detail, and less time on the mechanics of 
solution procedures.
 All these marvelous and powerful tools available today put an extra bur-
den on today’s engineers. They must still have a thorough understanding 
of the fundamentals, develop a “feel” of the physical phenomena, be able 
to put the data into proper perspective, and make sound engineering judg-
ments, just like their predecessors. However, they must do it much better, 
and much faster, using more realistic models because of the powerful tools 
available today. The engineers in the past had to rely on hand calculations, 
slide rules, and later hand calculators and computers. Today they rely on 
software packages. The easy access to such power and the possibility of a 
simple misunderstanding or misinterpretation causing great damage make it 
more important today than ever to have solid training in the fundamentals 
of engineering. In this text we make an extra effort to put the emphasis on 
developing an intuitive and physical understanding of natural phenomena 
instead of on the mathematical details of solution procedures.

Engineering Equation Solver (EES)
EES is a program that solves systems of linear or nonlinear algebraic or 
differential equations numerically. It has a large library of built-in thermo-
dynamic property functions as well as mathematical functions, and allows 
the user to supply additional property data. Unlike some software packages, 
EES does not solve engineering problems; it only solves the equations sup-
plied by the user. Therefore, the user must understand the problem and for-
mulate it by applying any relevant physical laws and relations. EES saves 

FIGURE 1–48
An excellent word-processing program 
does not make a person a good writer; 
it simply makes a good writer a more 
efficient writer.
© Ingram Publishing RF

001-036_cengel_ch01.indd   26 12/14/12   12:14 PM



27
CHAPTER 1

the user considerable time and effort by simply solving the resulting math-
ematical equations. This makes it possible to attempt significant engineering 
problems not suitable for hand calculations and to conduct parametric stud-
ies quickly and conveniently. EES is a very powerful yet intuitive program 
that is very easy to use, as shown in Example 1–5. The use and capabilities 
of EES are explained in Appendix 3 on the text website.

EXAMPLE 1–5    Solving a System of Equations with EES

The difference of two numbers is 4, and the sum of the squares of these two 

numbers is equal to the sum of the numbers plus 20. Determine these two 

numbers.

SOLUTION  Relations are given for the difference and the sum of the 

squares of two numbers. The two numbers are to be determined.

Analysis  We start the EES program by double-clicking on its icon, open a 

new file, and type the following on the blank screen that appears:

x–y54

x ˆ 21y ˆ 25x1y120

which is an exact mathematical expression of the problem statement with 

x and y denoting the unknown numbers. The solution to this system of two 

nonlinear equations with two unknowns is obtained by a single click on the 

“calculator” icon on the taskbar. It gives (Fig. 1–49)

x 5 5 and y 5 1

Discussion  Note that all we did is formulate the problem as we would on 

paper; EES took care of all the mathematical details of solution. Also note 

that equations can be linear or nonlinear, and they can be entered in any 

order with unknowns on either side. Friendly equation solvers such as EES 

allow the user to concentrate on the physics of the problem without worry-

ing about the mathematical complexities associated with the solution of the 

resulting system of equations.

CFD Software
Computational fluid dynamics (CFD) is used extensively in engineering 
and research, and we discuss CFD in detail in Chapter 15. We also show 
example solutions from CFD throughout the textbook since CFD graphics 
are great for illustrating flow streamlines, velocity, and pressure distribu-
tions, etc.– beyond what we are able to visualize in the laboratory. However, 
because there are several different commercial CFD packages available 
for users, and student access to these codes is highly dependent on depart-
mental licenses, we do not provide end-of-chapter CFD problems that are 
tied to any particular CFD package. Instead, we provide some general 
CFD problems in Chapter 15 , and we also maintain a website (see link 
at www.mhhe.com/cengel) containing CFD problems that can be solved 
with a number of different CFD programs. Students are encouraged to work 
through some of these problems to become familiar with CFD.

FIGURE 1–49
EES screen images for Example 1–5.
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1–10 ■  ACCURACY, PRECISION, 
AND SIGNIFICANT DIGITS

In engineering calculations, the supplied information is not known to more 
than a certain number of significant digits, usually three digits. Conse-
quently, the results obtained cannot possibly be precise to more significant 
digits. Reporting results in more significant digits implies greater precision 
than exists, and it should be avoided.
 Regardless of the system of units employed, engineers must be aware of 
three principles that govern the proper use of numbers: accuracy, precision, and 
significant digits. For engineering measurements, they are defined as follows:

• Accuracy error (inaccuracy) is the value of one reading minus the 
true value. In general, accuracy of a set of measurements refers to the 
closeness of the average reading to the true value. Accuracy is generally 
associated with repeatable, fixed errors. 

• Precision error is the value of one reading minus the average of readings. 
In general, precision of a set of measurements refers to the fineness of the 
resolution and the repeatability of the instrument. Precision is generally 
associated with unrepeatable, random errors.

• Significant digits are digits that are relevant and meaningful.

 A measurement or calculation can be very precise without being very 
accurate, and vice versa. For example, suppose the true value of wind speed 
is 25.00 m/s. Two anemometers A and B take five wind speed readings each:

Anemometer A: 25.50, 25.69, 25.52, 25.58, and 25.61 m/s. Average 
of all readings 5 25.58 m/s.

Anemometer B: 26.3, 24.5, 23.9, 26.8, and 23.6 m/s. Average of all 
readings 5 25.02 m/s.

Clearly, anemometer A is more precise, since none of the readings differs 
by more than 0.11 m/s from the average. However, the average is 25.58 m/s, 
0.58 m/s greater than the true wind speed; this indicates significant bias 
error, also called constant error or systematic error. On the other hand, 
anemometer B is not very precise, since its readings swing wildly from the 
average; but its overall average is much closer to the true value. Hence, 
anemometer B is more accurate than anemometer A, at least for this set of 
readings, even though it is less precise. The difference between accuracy 
and precision can be illustrated effectively by analogy to shooting arrows at 
a target, as sketched in Fig. 1–50. Shooter A is very precise, but not very 
accurate, while shooter B has better overall accuracy, but less precision.
 Many engineers do not pay proper attention to the number of significant 
digits in their calculations. The least significant numeral in a number implies 
the precision of the measurement or calculation. For example, a result 
written as 1.23 (three significant digits) implies that the result is precise to 
within one digit in the second decimal place; i.e., the number is somewhere 
between 1.22 and 1.24. Expressing this number with any more digits would 
be misleading. The number of significant digits is most easily evaluated 
when the number is written in exponential notation; the number of signifi-
cant digits can then simply be counted, including zeroes. Alternatively, the 
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B

+
+
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+
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+

+
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FIGURE 1–50
Illustration of accuracy versus 
precision. Shooter A is more precise, 
but less accurate, while shooter B is 
more accurate, but less precise.
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least significant digit can be underlined to indicate the author’s intent. Some 
examples are shown in Table 1–3.
 When performing calculations or manipulations of several parameters, the 
final result is generally only as precise as the least precise parameter in the 
problem. For example, suppose A and B are multiplied to obtain C. If A 5 
2.3601 (five significant digits), and B 5 0.34 (two significant digits), then 
C 5 0.80 (only two digits are significant in the final result). Note that most 
students are tempted to write C 5 0.802434, with six significant digits, since 
that is what is displayed on a calculator after multiplying these two numbers.
 Let’s analyze this simple example carefully. Suppose the exact value of 
B is 0.33501, which is read by the instrument as 0.34. Also suppose A is 
exactly 2.3601, as measured by a more accurate and precise instrument. In 
this case, C 5 A 3 B 5 0.79066 to five significant digits. Note that our first 
answer, C 5 0.80 is off by one digit in the second decimal place. Likewise, 
if B is 0.34499, and is read by the instrument as 0.34, the product of A and 
B would be 0.81421 to five significant digits. Our original answer of 0.80 
is again off by one digit in the second decimal place. The main point here 
is that 0.80 (to two significant digits) is the best one can expect from this 
multiplication since, to begin with, one of the values had only two signifi-
cant digits. Another way of looking at this is to say that beyond the first two 
digits in the answer, the rest of the digits are meaningless or not signifi-
cant. For example, if one reports what the calculator displays, 2.3601 times 
0.34 equals 0.802434, the last four digits are meaningless. As shown, the 
final result may lie between 0.79 and 0.81—any digits beyond the two sig-
nificant digits are not only meaningless, but misleading, since they imply to 
the reader more precision than is really there.
 As another example, consider a 3.75-L container filled with gasoline 
whose density is 0.845 kg/L, and determine its mass. Probably the first 
thought that comes to your mind is to multiply the volume and density 
to obtain 3.16875 kg for the mass, which falsely implies that the mass so 
determined is precise to six significant digits. In reality, however, the mass 
cannot be more precise than three significant digits since both the volume 
and the density are precise to three significant digits only. Therefore, the 
result should be rounded to three significant digits, and the mass should be 
reported to be 3.17 kg instead of what the calculator displays (Fig. 1–51). 
The result 3.16875 kg would be correct only if the volume and density 
were given to be 3.75000 L and 0.845000 kg/L, respectively. The value 
3.75 L implies that we are fairly confident that the volume is precise within 
60.01  L, and it cannot be 3.74 or 3.76 L. However, the volume can be 
3.746, 3.750, 3.753, etc., since they all round to 3.75 L.
 You should also be aware that sometimes we knowingly introduce small 
errors in order to avoid the trouble of searching for more accurate data. 
For example, when dealing with liquid water, we often use the value of 
1000  kg/m3 for density, which is the density value of pure water at 0°C. 
Using this value at 75°C will result in an error of 2.5 percent since the den-
sity at this temperature is 975 kg/m3. The minerals and impurities in the 
water will introduce additional error. This being the case, you should have 
no reservation in rounding the final results to a reasonable number of sig-
nificant digits. Besides, having a few percent uncertainty in the results of 
engineering analysis is usually the norm, not the exception.

Given:

Also,  3.75 × 0.845 = 3.16875

Volume:

Density:

Find: Mass: m =   V = 3.16875 kg

Rounding to 3 significant digits:
m = 3.17 kg

(3 significant digits)

V = 3.75 L

r = 0.845 kg/L

r

FIGURE 1–51
A result with more significant digits 

than that of given data falsely implies 
more precision.

TABLE 1–3

Significant digits

   Number of

  Exponential Significant

 Number Notation Digits

 12.3 1.23 3 101 3

 123,000 1.23 3 105 3

 0.00123 1.23 3 1023 3

 40,300 4.03 3 104 3

 40,300. 4.0300 3 104 5

 0.005600 5.600 3 1023 4

 0.0056 5.6 3 1023 2

 0.006 6. 3 1023 1
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 When writing intermediate results in a computation, it is advisable to 
keep several “extra” digits to avoid round-off errors; however, the final 
result should be written with the number of significant digits taken into 
consideration. You must also keep in mind that a certain number of signifi-
cant digits of precision in the result does not necessarily imply the same 
number of digits of overall accuracy. Bias error in one of the readings may, 
for example, significantly reduce the overall accuracy of the result, perhaps 
even rendering the last significant digit meaningless, and reducing the over-
all number of reliable digits by one. Experimentally determined values are 
subject to measurement errors, and such errors are reflected in the results 
obtained. For example, if the density of a substance has an uncertainty of 
2 percent, then the mass determined using this density value will also have 
an uncertainty of 2 percent.
 Finally, when the number of significant digits is unknown, the accepted 
engineering standard is three significant digits. Therefore, if the length of a 
pipe is given to be 40 m, we will assume it to be 40.0 m in order to justify 
using three significant digits in the final results.

EXAMPLE 1–6    Significant Digits and Volume Flow Rate

Jennifer is conducting an experiment that uses cooling water from a garden 

hose. In order to calculate the volume flow rate of water through the hose, 

she times how long it takes to fill a container (Fig. 1–52). The volume of 

water collected is V 5 1.1 gal in time period Dt 5 45.62 s, as measured 

with a stopwatch. Calculate the volume flow rate of water through the hose 

in units of cubic meters per minute.

SOLUTION  Volume flow rate is to be determined from measurements of 

volume and time period.

Assumptions  1 Jennifer recorded her measurements properly, such that 

the volume measurement is precise to two significant digits while the time 

period is precise to four significant digits. 2 No water is lost due to splash-

ing out of the container.

Analysis  Volume flow rate V
.
 is volume displaced per unit time and is 

expressed as

Volume flow rate: V
#

5
DV 

Dt

Substituting the measured values, the volume flow rate is determined to be

V
#

5
1.1 gal

45.62 s
 a3.7854 3 1023 m3

1 gal
b a 60 s

1 min
b 5 5.5 3 1023m3/min

Discussion  The final result is listed to two significant digits since we can-

not be confident of any more precision than that. If this were an interme-

diate step in subsequent calculations, a few extra digits would be carried 

along to avoid accumulated round-off error. In such a case, the volume flow 

rate would be written as V
.
 5 5.4765 3 1023 m3/min. Based on the given 

information, we cannot say anything about the accuracy of our result, since 

we have no information about systematic errors in either the volume mea-

surement or the time measurement.

FIGURE 1–52
Photo for Example 1–6 for the 
measurement of volume flow rate.
Photo by John M. Cimbala.
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 Also keep in mind that good precision does not guarantee good accuracy. 

For example, if the batteries in the stopwatch were weak, its accuracy could 

be quite poor, yet the readout would still be displayed to four significant dig-

its of precision.

 In common practice, precision is often associated with resolution, which 

is a measure of how finely the instrument can report the measurement. For 

example, a digital voltmeter with five digits on its display is said to be more 

precise than a digital voltmeter with only three digits. However, the number 

of displayed digits has nothing to do with the overall accuracy of the mea-

surement. An instrument can be very precise without being very accurate 

when there are significant bias errors. Likewise, an instrument with very few 

displayed digits can be more accurate than one with many digits (Fig. 1–53).

Exact time span = 45.623451 . . . s

(a)

TIMEXAM

46. s

(b)

TIMEXAM

43. s

(c)

TIMEXAM

44.189 s

(d)

TIMEXAM

45.624 s

FIGURE 1–53
An instrument with many digits of 

resolution (stopwatch c) may be less 
accurate than an instrument with few 

digits of resolution (stopwatch a). 
What can you say about stopwatches b 

and d?

SUMMARY

In this chapter some basic concepts of fluid mechanics are 
introduced and discussed. A substance in the liquid or gas 
phase is referred to as a fluid. Fluid mechanics is the science 
that deals with the behavior of fluids at rest or in motion 
and the interaction of fluids with solids or other fluids at the 
boundaries.
 The flow of an unbounded fluid over a surface is external 
flow, and the flow in a pipe or duct is internal flow if the 
fluid is completely bounded by solid surfaces. A fluid 
flow is classified as being compressible or incompressible, 
depending on the density variation of the fluid during flow. 
The densities of liquids are essentially constant, and thus the 
flow of liquids is typically incompressible. The term steady 
implies no change with time. The opposite of steady is 
unsteady. The term uniform implies no change with location 
over a specified region. A flow is said to be one-dimensional 
when the properties or variables change in one dimension 
only. A fluid in direct contact with a solid surface sticks to 

the surface and there is no slip. This is known as the no-slip 
condition, which leads to the formation of boundary layers 
along solid surfaces. In this book we concentrate on steady 
incompressible  viscous flows—both internal and external.
 A system of fixed mass is called a closed system, and a 
system that involves mass transfer across its boundaries is 
called an open system or control volume. A large number 
of engineering problems involve mass flow in and out of a 
system and are therefore modeled as control volumes.
 In engineering calculations, it is important to pay particular 
attention to the units of the quantities to avoid errors caused 
by inconsistent units, and to follow a systematic approach. It 
is also important to recognize that the information given is 
not known to more than a certain number of significant digits, 
and the results obtained cannot possibly be accurate to more 
significant digits. The information given on dimensions and 
units; problem-solving technique; and accuracy, precision, 
and significant digits will be used throughout the entire text.
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Guest Author: Lorenz Sigurdson, Vortex Fluid Dynamics Lab, 
University of Alberta

Why do the two images in Fig. 1–54 look alike? Figure 1–54b shows an above-
ground nuclear test performed by the U.S. Department of Energy in 1957. An 
atomic blast created a fireball on the order of 100 m in diameter. Expansion 
is so quick that a compressible flow feature occurs: an expanding spherical 
shock wave. The image shown in Fig. 1–54a is an everyday innocuous event: 
an inverted image of a dye-stained water drop after it has fallen into a pool of 
water, looking from below the pool surface. It could have fallen from your spoon 
into a cup of coffee, or been a secondary splash after a raindrop hit a lake. Why 
is there such a strong similarity between these two vastly different events? The 
application of fundamental principles of fluid mechanics learned in this book 
will help you understand much of the answer, although one can go much deeper.
 The water has higher density (Chap. 2) than air, so the drop has experienced 
negative buoyancy (Chap. 3) as it has fallen through the air before impact. The 
fireball of hot gas is less dense than the cool air surrounding it, so it has posi-
tive buoyancy and rises. The shock wave (Chap. 12) reflecting from the ground 
also imparts a positive upward force to the fireball. The primary structure at 
the top of each image is called a vortex ring. This ring is a mini-tornado of 
concentrated vorticity (Chap. 4) with the ends of the tornado looping around 
to close on itself. The laws of kinematics (Chap. 4) tell us that this vortex ring 
will carry the fluid in a direction toward the top of the page. This is expected in 
both cases from the forces applied and the law of conservation of momentum 
applied through a control volume analysis (Chap. 5). One could also analyze 
this problem with differential analysis (Chaps. 9 and 10) or with computational 
fluid dynamics (Chap. 15). But why does the shape of the tracer material look 
so similar? This occurs if there is approximate geometric and kinematic simi-
larity (Chap. 7), and if the flow visualization (Chap. 4) technique is similar. 
The passive tracers of heat and dust for the bomb, and fluorescent dye for the 
drop, were introduced in a similar manner as noted in the figure caption.
 Further knowledge of kinematics and vortex dynamics can help explain 
the similarity of the vortex structure in the images to much greater detail, as 
discussed by Sigurdson (1997) and Peck and Sigurdson (1994). Look at the 
lobes dangling beneath the primary vortex ring, the striations in the “stalk,” 
and the ring at the base of each structure. There is also topological similarity 
of this structure to other vortex structures occurring in turbulence. Compari-
son of the drop and bomb has given us a better understanding of how turbu-
lent structures are created and evolve. What other secrets of fluid mechanics 
are left to be revealed in explaining the similarity between these two flows?
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FIGURE 1–54
Comparison of the vortex structure 
created by: (a) a water drop after 
impacting a pool of water (inverted, 
from Peck and Sigurdson, 1994), and 
(b) an above-ground nuclear test in 
Nevada in 1957 (U.S. Department of 
Energy). The 2.6 mm drop was dyed 
with fluorescent tracer and illuminated 
by a strobe flash 50 ms after it had 
fallen 35 mm and impacted the clear 
pool. The drop was approximately 
spherical at the time of impact with 
the clear pool of water. Interruption of 
a laser beam by the falling drop was 
used to trigger a timer that controlled 
the time of the strobe flash after impact 
of the drop. Details of the careful 
experimental procedure necessary to 
create the drop photograph are given by 
Peck and Sigurdson (1994) and Peck 
et al. (1995). The tracers added to the 
flow in the bomb case were primarily 
heat and dust. The heat is from the orig-
inal fireball which for this particular 
test (the “Priscilla” event of Operation 
Plumbob) was large enough to reach 
the ground from where the bomb was 
initially suspended. Therefore, the 
tracer’s initial geometric condition 
was a sphere intersecting the ground.
(a) From Peck, B., and Sigurdson, L. W., 
Phys. Fluids, 6(2)(Part 1), 564, 1994. 
Used by permission of the author.

(b) United States Department of Energy. 
Photo from Lorenz Sigurdson.

 (a) (b)

APPLICATION SPOTLIGHT ■ What Nuclear Blasts and Raindrops Have in Common
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PROBLEMS*

Introduction, Classification, and System

1–1C  What is a fluid? How does it differ from a solid? 
How does a gas differ from a liquid? 

1–2C  Consider the flow of air over the wings of an aircraft. 
Is this flow internal or external? How about the flow of gases 
through a jet engine?

1–3C  Define incompressible flow and incompressible fluid. 
Must the flow of a compressible fluid necessarily be treated 
as compressible?

1–4C  Define internal, external, and open-channel flows.

1–5C  How is the Mach number of a flow defined? What 
does a Mach number of 2 indicate?

1–6C  When an airplane is flying at a constant speed rela-
tive to the ground, is it correct to say that the Mach number 
of this airplane is also constant?

1–7C  Consider the flow of air at a Mach number of 0.12. 
Should this flow be approximated as being incompressible?

1–8C  What is the no-slip condition? What causes it?

1–9C  What is forced flow? How does it differ from natural 
flow? Is flow caused by winds forced or natural flow?

1–10C  What is a boundary layer? What causes a boundary 
layer to develop?

1–11C  What is the difference between the classical and the 
statistical approaches?

1–12C  What is a steady-flow process?

1–13C  Define stress, normal stress, shear stress, and pressure.

1–14C  When analyzing the acceleration of gases as they 
flow through a nozzle, what would you choose as your sys-
tem? What type of system is this?

1–15C  When is a system a closed system, and when is it a 
control volume?

1–16C  You are trying to understand how a reciprocating air 
compressor (a piston-cylinder device) works. What system 
would you use? What type of system is this?

1–17C  What are system, surroundings, and boundary?

Mass, Force, and Units
1–18C  Explain why the light-year has the dimension of length.

1–19C  What is the difference between kg-mass and kg-force?

1–20C  What is the difference between pound-mass and 
pound-force?

1–21C  In a news article, it is stated that a recently devel-
oped geared turbofan engine produces 15,000 pounds of 
thrust to propel the aircraft forward. Is “pound” mentioned 
here lbm or lbf? Explain.

1–22C  What is the net force acting on a car cruising at a 
constant velocity of 70 km/h (a) on a level road and (b) on 
an uphill road?

1–23  A 6-kg plastic tank that has a volume of 0.18 m3 is 
filled with liquid water. Assuming the density of water is 
1000 kg/m3, determine the weight of the combined system.

1–24  What is the weight, in N, of an object with a mass of 
200 kg at a location where g 5 9.6 m/s2?

1–25  What is the weight of a 1-kg substance in N, kN, 
kg∙m/s2, kgf, lbm∙ft/s2, and lbf?

1–26  Determine the mass and the weight of the air contained 
in a room whose dimensions are 6 m 3 6 m 3 8 m. Assume 
the density of the air is 1.16 kg/m3.  Answers: 334.1 kg, 3277 N

1–27  While solving a problem, a person ends up with the 
equation E 5 16 kJ 1 7 kJ/kg at some stage. Here E is the 
total energy and has the unit of kilojoules. Determine how to 
correct the error and discuss what may have caused it.

1–28E  A 195-lbm astronaut took his bathroom scale 
(a spring scale) and a beam scale (compares masses) to the 
moon where the local gravity is g 5 5.48 ft/s2. Determine 
how much he will weigh (a) on the spring scale and (b) on 
the beam scale.  Answers: (a) 33.2 lbf, (b) 195 lbf

1–29  The acceleration of high-speed aircraft is sometimes 
expressed in g’s (in multiples of the standard acceleration of 
gravity). Determine the net force, in N, that a 90-kg man would 
experience in an aircraft whose acceleration is 6 g’s.

1–30  A 5-kg rock is thrown upward with a force of 
150 N at a location where the local gravitational 

acceleration is 9.79 m/s2. Determine the acceleration of the 
rock, in m/s2.

1–31  Solve Prob. 1–30 using EES (or other) software. 
Print out the entire solution, including the 

numerical results with proper units.

1–32  The value of the gravitational acceleration g decreases 
with elevation from 9.807 m/s2 at sea level to 9.767 m/s2 at 
an altitude of 13,000 m, where large passenger planes cruise. 
Determine the percent reduction in the weight of an airplane 
cruising at 13,000 m relative to its weight at sea level.

* Problems designated by a “C” are concept questions, and 

students are encouraged to answer them all. Problems designated 

by an “E” are in English units, and the SI users can ignore them. 

Problems with the  icon are solved using EES, and complete 

solutions together with parametric studies are included on the 

text website. Problems with the  icon are comprehensive in 

nature and are intended to be solved with an equation solver 

such as EES.
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1–33  At 45° latitude, the gravitational acceleration as a 
function of elevation z above sea level is given by g 5 a 2 bz, 
where a 5 9.807 m/s2 and b 5 3.32 3 1026 s22. Determine 
the height above sea level where the weight of an object will 
decrease by 1 percent.  Answer: 29,500 m

1–34  A 4-kW resistance heater in a water heater runs for 
2 hours to raise the water temperature to the desired level. 
Determine the amount of electric energy used in both kWh 
and kJ.

1–35  The gas tank of a car is filled with a nozzle that dis-
charges gasoline at a constant flow rate. Based on unit con-
siderations of quantities, obtain a relation for the filling time 
in terms of the volume V of the tank (in L) and the discharge 
rate of gasoline (V̇, in L/s).

1–36  A pool of volume V (in m3) is to be filled with water 
using a hose of diameter D (in m). If the average discharge 
velocity is V (in m/s) and the filling time is t (in s), obtain a 
relation for the volume of the pool based on unit consider-
ations of quantities involved.

1–37  Based on unit considerations alone, show that the 
power needed to accelerate a car of mass m (in kg) from rest 
to velocity V (in m/s) in time interval t (in s) is proportional 
to mass and the square of the velocity of the car and inversely 
proportional to the time interval.

1–38  An airplane flies horizontally at 70 m/s. Its propel-
ler delivers 1500 N of thrust (forward force) to overcome 
aerodynamic drag (backward force). Using dimensional 
reasoning and unity converstion ratios, calculate the use-
ful power delivered by the propeller in units of kW and 
horsepower.

1–39  If the airplane of Problem 1–38 weighs 1450 lbf, esti-
mate the lift force produced by the airplane’s wings (in lbf 
and newtons) when flying at 70.0 m/s.

1–40E  The boom of a fire truck raises a fireman (and his 
equipment—total weight 280 lbf) 40 ft into the air to fight 
a building fire. (a) Showing all your work and using unity 
conversion ratios, calculate the work done by the boom on 
the fireman in units of Btu. (b) If the useful power supplied 
by the boom to lift the fireman is 3.50 hp, estimate how long 
it takes to lift the fireman.

1–41  A man goes to a traditional market to buy a steak for 
dinner. He finds a 12-oz steak (1 lbm = 16 oz) for $3.15. 
He then goes to the adjacent international market and finds a 
320-g steak of identical quality for $3.30. Which steak is the 
better buy?

1–42  Water at 20°C from a garden hose fills a 2.0 L con-
tainer in 2.85 s. Using unity converstion ratios and showing 
all your work, calculate the volume flow rate in liters per 
minute (Lpm) and the mass flow rate in kg/s.

1–43  A forklift raises a 90.5 kg crate 1.80 m. (a) Showing 
all your work and using unity conversion ratios, calculate the 

work done by the forklift on the crane, in units of kJ. (b) If it 
takes 12.3 seconds to lift the crate, calculate the useful power 
supplied to the crate in kilowatts.

Modeling and Solving Engineering Problems

1–44C  When modeling an engineering process, how is the 
right choice made between a simple but crude and a com-
plex but accurate model? Is the complex model necessarily a 
better choice since it is more accurate?

1–45C  What is the difference between the analytical and 
experimental approach to engineering problems? Discuss the 
advantages and disadvantages of each approach.

1–46C  What is the importance of modeling in engineering? 
How are the mathematical models for engineering processes 
prepared?

1–47C  What is the difference between precision and accuracy? 
Can a measurement be very precise but inaccurate? Explain.

1–48C  How do the differential equations in the study of a 
physical problem arise?

1–49C  What is the value of the engineering software pack-
ages in (a) engineering education and (b) engineering practice?

1–50  Solve this system of three equations with three 
unknowns using EES:

 2x 2 y 1 z 5 9 

 3x2 1 2y 5 z 1 2 

 xy 1 2z 5 14 

1–51  Solve this system of two equations with two 
unknowns using EES:

 x3 2 y2 5 10.5 

 3xy 1 y 5 4.6 

1–52  Determine a positive real root of this equation 
using EES:

3.5x3 2 10x0.5 2 3x 5 24

1–53  Solve this system of three equations with three 
unknowns using EES:

 x2y 2 z 5 1.5 

 x 2 3y0.5 1 xz 5 22 

 x 1 y 2 z 5 4.2 

Review Problems

1–54  The reactive force developed by a jet engine to push 
an airplane forward is called thrust, and the thrust developed 
by the engine of a Boeing 777 is about 85,000 lbf. Express 
this thrust in N and kgf.
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1–55  The weight of bodies may change somewhat from one 
location to another as a result of the variation of the gravita-
tional acceleration g with elevation. Accounting for this varia-
tion using the relation in Prob. 1–33, determine the weight of 
an 80.0-kg person at sea level (z 5 0), in Denver (z 5 1610 m), 
and on the top of Mount Everest (z 5 8848 m).

1–56E  A student buys a 5000 Btu window air conditioner 
for his apartment bedroom. He monitors it for one hour on 
a hot day and determines that it operates approximately 
60 percent of the time (duty cycle 5 60 percent) to keep the 
room at nearly constant temperature. (a) Showing all your 
work and using unity conversion ratios, calculate the rate of 
heat transfer into the bedroom through the walls, windows, 
etc. in units of Btu/h and in units of kW. (b) If the energy 
efficiency ratio (EER) of the air conditioner is 9.0 and elec-
tricity costs 7.5 cents per kilowatt-hr, calculate how much it 
costs (in cents) for him to run the air conditioner for one hour.

1–57  For liquids, the dynamic viscosity m, which is a measure 
of resistance against flow is approximated as m 5 a10b/(T2c), 
where T is the absolute temperature, and a, b and c are experi-
mental constants. Using the data listed in Table A-7 for metha-
nol at 20ºC, 40ºC and 60ºC, determine the constant a, b and c.

1–58  An important design consideration in two-phase pipe 
flow of solid-liquid mixtures is the terminal settling velocity 
below, which the flow becomes unstable and eventually the 
pipe becomes clogged. On the basis of extended transportation 
tests, the terminal settling velocity of a solid particle in the rest 
water given by VL 5 FL "2gD 1S 2 1 2 , where FL is an experi-
mental coefficient, g the gravitational acceleration, D the pipe 
diameter, and S the specific gravity of solid particle. What is the 
dimension of FL? Is this equation dimensionally homogeneous?

1–59  Consider the flow of air through a wind turbine whose 
blades sweep an area of diameter D (in m). The average air 
velocity through the swept area is V (in m/s). On the bases of 
the units of the quantities involved, show that the mass flow 
rate of air (in kg/s) through the swept area is proportional to 
air density, the wind velocity, and the square of the diameter 
of the swept area.

1–60  The drag force exerted on a car by air depends on 
a dimensionless drag coefficient, the density of air, the car 
velocity, and the frontal area of the car. That is, FD = function 
(CDrag, Afront, r, V ). Based on unit considerations alone, obtain 
a relation for the drag force.

Fundamentals of Engineering (FE) Exam Problems

1–61  The speed of an aircraft is given to be 260 m/s in air. 
If the speed of sound at that location is 330 m/s, the flight of 
aircraft is
(a) Sonic (b) Subsonic (c) Supersonic (d) Hypersonic

1–62  The speed of an aircraft is given to be 1250 km/h. 
If the speed of sound at that location is 315 m/s, the Mach 
number is
(a) 0.5 (b) 0.85 (c) 1.0 (d) 1.10 (e) 1.20

1–63  If mass, heat, and work are not allowed to cross the 
boundaries of a system, the system is called
(a) Isolated (b) Isothermal (c) Adiabatic (d) Control mass
(e) Control volume

1–64  The weight of a l0-kg mass at sea level is
(a) 9.81 N (b) 32.2 kgf (c) 98.1 N (d) 10 N (e) l00 N

1–65  The weight of a 1-lbm mass is
(a) 1 lbm∙ft/s2 (b) 9.81 lbf (c) 9.81 N (d) 32.2 lbf (e) 1 lbf

1–66  One kJ is NOT equal to
(a) 1 kPa∙m3 (b) 1 kN∙m (c) 0.001 MJ (d) 1000 J (e) 1 kg∙m2/s2

1–67  Which is a unit for the amount of energy?
(a) Btu/h (b) kWh (c) kcal/h (d) hp (e) kW

1–68  A hydroelectric power plant operates at its rated 
power of 7 MW. If the plant has produced 26 million kWh of 
electricity in a specified year, the number of hours the plant 
has operated that year is
(a) 1125 h (b) 2460 h (c) 2893 h (d) 3714 h (e) 8760 h

Design and Essay Problems

1–69  Write an essay on the various mass- and volume-
measurement devices used throughout history. Also, explain 
the development of the modern units for mass and volume.

1–70  Search the Internet to find out how to properly add 
or subtract numbers while taking into consideration the num-
ber of significant digits. Write a summary of the proper tech-
nique, then use the technique to solve the following cases: (a) 
1.006 1 23.47, (b) 703,200 2 80.4, and (c) 4.6903 2 14.58. 
Be careful to express your final answer to the appropriate 
number of significant digits.

Air
V

Air
V

FIGURE P1–60
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In this chapter, we discuss properties that are encountered in the analy-
sis of fluid flow. First we discuss intensive and extensive properties and 
define density and specific gravity. This is followed by a discussion of 

the properties vapor pressure, energy and its various forms, the specific 
heats of ideal gases and incompressible substances, the coefficient of com-
pressibility, and the speed of sound. Then we discuss the property viscos-
ity, which plays a dominant role in most aspects of fluid flow. Finally, we 
present the property surface tension and determine the capillary rise from 
static equilibrium conditions. The property pressure is discussed in Chap. 3 
together with fluid statics. 

    CHAPTER

2
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Have a working knowledge of 
the basic properties of fluids 
and understand the continuum 
approximation

■ Have a working knowledge of 
viscosity and the consequences 
of the frictional effects it causes 
in fluid flow

■  Calculate the capillary rise (or 
drop) in tubes due to the surface 
tension effect

A drop forms when liquid is forced out of a small tube. 
The shape of the drop is determined by a balance of 

pressure, gravity, and surface tension forces.
Royalty-Free/CORBIS
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2–1 ■  INTRODUCTION
Any characteristic of a system is called a property. Some familiar proper-
ties are pressure P, temperature T, volume V, and mass m. The list can be 
extended to include less familiar ones such as viscosity, thermal conductiv-
ity, modulus of elasticity, thermal expansion coefficient, electric resistivity, 
and even velocity and elevation.
 Properties are considered to be either intensive or extensive. Intensive 
properties are those that are independent of the mass of the system, such 
as temperature, pressure, and density. Extensive properties are those whose 
values depend on the size—or extent—of the system. Total mass, total vol-
ume V, and total momentum are some examples of extensive properties. An 
easy way to determine whether a property is intensive or extensive is to 
divide the system into two equal parts with an imaginary partition, as shown 
in Fig. 2–1. Each part will have the same value of intensive properties as the 
original system, but half the value of the extensive properties.
 Generally, uppercase letters are used to denote extensive properties (with 
mass m being a major exception), and lowercase letters are used for intensive 
properties (with pressure P and temperature T being the obvious exceptions).
 Extensive properties per unit mass are called specific properties. Some 
examples of specific properties are specific volume (v 5 V/m) and specific 
total energy (e 5 E/m).
 The state of a system is described by its properties. But we know from 
experience that we do not need to specify all the properties in order to fix 
a state. Once the values of a sufficient number of properties are specified, 
the rest of the properties assume certain values. That is, specifying a certain 
number of properties is sufficient to fix a state. The number of properties 
required to fix the state of a system is given by the state postulate: The 
state of a simple compressible system is completely specified by two inde-
pendent, intensive properties.
 Two properties are independent if one property can be varied while the 
other one is held constant. Not all properties are independent, and some are 
defined in terms of others, as explained in Section 2–2.

Continuum
A fluid is composed of molecules which may be widely spaced apart, espe-
cially in the gas phase. Yet it is convenient to disregard the atomic nature of 
the fluid and view it as continuous, homogeneous matter with no holes, that 
is, a continuum. The continuum idealization allows us to treat properties as 
point functions and to assume that the properties vary continually in space 
with no jump discontinuities. This idealization is valid as long as the size of 
the system we deal with is large relative to the space between the molecules 
(Fig. 2–2). This is the case in practically all problems, except some special-
ized ones. The continuum idealization is implicit in many statements we 
make, such as “the density of water in a glass is the same at any point.”
 To have a sense of the distances involved at the molecular level, consider 
a container filled with oxygen at atmospheric conditions. The diameter of an 
oxygen molecule is about 3 3 10210 m and its mass is 5.3 3 10226 kg. Also, 
the mean free path of oxygen at 1 atm pressure and 20°C is 6.3 3 1028 m. 
That is, an oxygen molecule travels, on average, a distance of 6.3 3 1028 m 
(about 200 times its diameter) before it collides with another molecule.

FIGURE 2–1
Criterion to differentiate intensive and 
extensive properties.

FIGURE 2–2
The length scale associated with most 
flows, such as seagulls in flight, is 
orders of magnitude larger than the 
mean free path of the air molecules. 
Therefore, here, and for all fluid flows 
considered in this book, the continuum 
idealization is appropriate.
PhotoLink /Getty RF
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 Also, there are about 3 3 1016 molecules of oxygen in the tiny volume 
of 1 mm3 at 1 atm pressure and 20°C (Fig. 2–3). The continuum model 
is applicable as long as the characteristic length of the system (such as its 
diameter) is much larger than the mean free path of the molecules. At very 
low pressure, e.g., at very high elevations, the mean free path may become 
large (for example, it is about 0.1 m for atmospheric air at an elevation of 
100 km). For such cases the rarefied gas flow theory should be used, and 
the impact of individual molecules should be considered. In this text we 
limit our consideration to substances that can be modeled as a continuum.

2–2 ■  DENSITY AND SPECIFIC GRAVITY
Density is defined as mass per unit volume (Fig. 2–4). That is,

Density: r 5
m

V
  (kg/m3) (2–1)

The reciprocal of density is the specific volume v, which is defined as volume 
per unit mass. That is, v 5 V/m 5 1/r. For a differential volume element of 
mass dm and volume dV, density can be expressed as r 5 dm/dV.
 The density of a substance, in general, depends on temperature and 
pressure. The density of most gases is proportional to pressure and inversely 
proportional to temperature. Liquids and solids, on the other hand, are 
essentially incompressible substances, and the variation of their density with 
pressure is usually negligible. At 20°C, for example, the density of water 
changes from 998 kg/m3 at 1 atm to 1003 kg/m3 at 100 atm, a change of 
just 0.5 percent. The density of liquids and solids depends more strongly 
on temperature than it does on pressure. At 1 atm, for example, the density 
of water changes from 998 kg/m3 at 20°C to 975 kg/m3 at 75°C, a change of 
2.3 percent, which can still be neglected in many engineering analyses.
 Sometimes the density of a substance is given relative to the density of a 
well-known substance. Then it is called specific gravity, or relative density, 
and is defined as the ratio of the density of a substance to the density of 
some standard substance at a specified temperature (usually water at 4°C, 
for which rH2O 5 1000 kg/m3). That is,

Specific gravity: SG 5
r

rH2O
 (2–2)

Note that the specific gravity of a substance is a dimensionless quantity. 
However, in SI units, the numerical value of the specific gravity of a sub-
stance is exactly equal to its density in g/cm3 or kg/L (or 0.001 times the 
density in kg/m3) since the density of water at 4°C is 1 g/cm3 5 1 kg/L 5 
1000 kg/m3. The specific gravity of mercury at 20°C, for example, is 13.6. 
Therefore, its density at 20°C is 13.6 g/cm3 5 13.6 kg/L 5 13,600 kg/m3. 
The specific gravities of some substances at 20°C are given in Table 2–1. 
Note that substances with specific gravities less than 1 are lighter than 
water, and thus they would float on water (if immiscible).
 The weight of a unit volume of a substance is called specific weight or 
weight density and is expressed as

Specific weight: gs 5  rg  (N/m3) (2–3)

where g is the gravitational acceleration.

VOID

1 atm, 20°CO2

3 ´ 1016 molecules/mm3

FIGURE 2–3
Despite the relatively large gaps 

between molecules, a gas can usually 
be treated as a continuum because of 

the very large number of molecules 
even in an extremely small volume.

3V = 12 m = 12 m
m = 3 kg = 3 kg

3

3/kg/kg

r = 0.25 kg/m = 0.25 kg/m

v = =        = 4 m= 4 m1–r

FIGURE 2–4
Density is mass per unit volume; 

specific volume is volume 
per unit mass.

TABLE 2–1

The specific gravity of some 

substances at 20°C and 1 atm 

unless stated otherwise

Substance SG

Water 1.0

Blood (at 37°C) 1.06

Seawater 1.025

Gasoline 0.68

Ethyl alcohol 0.790

Mercury 13.6

Balsa wood 0.17

Dense oak wood 0.93

Gold 19.3

Bones 1.7–2.0

Ice (at 0°C) 0.916

Air 0.001204
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 Recall from Chap. 1 that the densities of liquids are essentially constant, 
and thus they can often be approximated as being incompressible substances 
during most processes without sacrificing much in accuracy.

Density of Ideal Gases
Property tables provide very accurate and precise information about the 
properties, but sometimes it is convenient to have some simple relations 
among the properties that are sufficiently general and reasonably accurate. 
Any equation that relates the pressure, temperature, and density (or specific 
volume) of a substance is called an equation of state. The simplest and 
best-known equation of state for substances in the gas phase is the ideal-gas 
equation of state, expressed as

 Pv 5 RT  or  P 5 rRT (2–4)

where P is the absolute pressure, v is the specific volume, T is the thermo-
dynamic (absolute) temperature, r is the density, and R is the gas constant. 
The gas constant R is different for each gas and is determined from R 5 
Ru /M, where Ru is the universal gas constant whose value is Ru 5 8.314 kJ/
kmol·K 5 1.986 Btu/lbmol·R, and M is the molar mass (also called molecu-
lar weight) of the gas. The values of R and M for several substances are 
given in Table A–1.
 The thermodynamic temperature scale in the SI is the Kelvin scale, and 
the temperature unit on this scale is the kelvin, designated by K. In the Eng-
lish system, it is the Rankine scale, and the temperature unit on this scale is 
the rankine, R. Various temperature scales are related to each other by

 T(K) 5  T(8C) 1 273.15 5 T(R)/1.8 (2–5)

 T(R) 5  T(8F) 1 459.67 5 1.8 T(K) (2–6)

It is common practice to round the constants 273.15 and 459.67 to 273 and 
460, respectively, but we do not encourage this practice.
 Equation 2–4, the ideal-gas equation of state, is also called simply the 
ideal-gas relation, and a gas that obeys this relation is called an ideal gas. 
For an ideal gas of volume V, mass m, and number of moles N 5 m/M, the 
ideal-gas equation of state can also be written as PV 5 mRT or PV 5 NRuT. 
For a fixed mass m, writing the ideal-gas relation twice and simplifying, the 
properties of an ideal gas at two different states are related to each other by 
P1V1/T1 5 P2V2/T2.
 An ideal gas is a hypothetical substance that obeys the relation Pv 5 RT. 
It has been experimentally observed that the ideal-gas relation closely 
approximates the P-v-T behavior of real gases at low densities. At low pres-
sures and high temperatures, the density of a gas decreases and the gas 
behaves like an ideal gas (Fig. 2 –5). In the range of practical interest, many 
familiar gases such as air, nitrogen, oxygen, hydrogen, helium, argon, neon, 
and krypton and even heavier gases such as carbon dioxide can be treated 
as ideal gases with negligible error (often less than 1 percent). Dense gases 
such as water vapor in steam power plants and refrigerant vapor in refrig-
erators, air conditioners, and heat pumps, however, should not be treated as 
ideal gases since they usually exist at a state near saturation.

FIGURE 2–5
Air behaves as an ideal gas, even 
at very high speeds. In this schlieren 
image, a bullet traveling at about 
the speed of sound bursts through 
both sides of a balloon, forming two 
expanding shock waves. The turbulent 
wake of the bullet is also visible.
Photograph by Gary S. Settles, Penn State Gas 
Dynamics Lab. Used by permission.
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EXAMPLE 2–1     Density, Specific Gravity, and Mass of Air in a Room

Determine the density, specific gravity, and mass of the air in a room whose 

dimensions are 4 m 3 5 m 3 6 m at 100 kPa and 25°C (Fig. 2–6).

SOLUTION  The density, specific gravity, and mass of the air in a room are 

to be determined.

Assumptions  At specified conditions, air can be treated as an ideal gas.

Properties  The gas constant of air is R 5 0.287 kPa?m3/kg?K.

Analysis  The density of the air is determined from the ideal-gas relation P 5 
rRT to be

r 5
P

RT
5  

100 kPa

(0.287 kPa·m3/kg·K)(25 1 273.15) K
5  1.17 kg/m3

Then the specific gravity of the air becomes

SG 5
r

rH2O
5

1.17 kg/m3

1000 kg/m3 5 0.00117

Finally, the volume and the mass of the air in the room are

V 5 (4 m)(5 m)(6 m) 5 120 m3

m 5 rV 5 (1.17 kg/m3)(120 m3) 5 140 kg

Discussion  Note that we converted the temperature to (absolute) unit K from 

(relative) unit °C before using it in the ideal-gas relation.

2–3 ■  VAPOR PRESSURE AND CAVITATION
It is well-established that temperature and pressure are dependent properties 
for pure substances during phase-change processes, and there is one-to-one 
correspondence between temperature and pressure. At a given pressure, the 
temperature at which a pure substance changes phase is called the saturation 
temperature Tsat. Likewise, at a given temperature, the pressure at which 
a pure substance changes phase is called the saturation pressure Psat. At 
an absolute pressure of 1 standard atmosphere (1 atm or 101.325 kPa), for 
example, the saturation temperature of water is 100°C. Conversely, at a 
temperature of 100°C, the saturation pressure of water is 1 atm.
 The vapor pressure Pv of a pure substance is defined as the pressure 
exerted by its vapor in phase equilibrium with its liquid at a given tempera-
ture (Fig. 2–7). Pv is a property of the pure substance, and turns out to be 
identical to the saturation pressure Psat of the liquid (Pv 5 Psat). We must be 
careful not to confuse vapor pressure with partial pressure. Partial pressure 
is defined as the pressure of a gas or vapor in a mixture with other gases. 
For example, atmospheric air is a mixture of dry air and water vapor, and 
atmospheric pressure is the sum of the partial pressure of dry air and the par-
tial pressure of water vapor. The partial pressure of water vapor constitutes 
a small fraction (usually under 3 percent) of the atmo spheric pressure since 
air is mostly nitrogen and oxygen. The partial pressure of a vapor must be 
less than or equal to the vapor pressure if there is no liquid present. However, 
when both vapor and liquid are present and the system is in phase equilib-
rium, the partial pressure of the vapor must equal the vapor pressure, and 
the system is said to be saturated. The rate of evaporation from open water 

6 m
4 m

5 mAIR

P =
T =

 100 kPa
 25°C

FIGURE 2–6
Schematic for Example 2–1.

Water molecules—vapor phase 

Water molecules—liquid phase 

FIGURE 2–7
The vapor pressure (saturation 

pressure) of a pure substance (e.g., 
water) is the pressure exerted by its 

vapor molecules when the system is 
in phase equilibrium with its liquid 

molecules at a given temperature.
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bodies such as lakes is controlled by the difference between the vapor pres-
sure and the partial pressure. For example, the vapor pressure of water at 
20°C is 2.34 kPa. Therefore, a bucket of water at 20°C left in a room with 
dry air at 1 atm will continue evaporating until one of two things happens: 
the water evaporates away (there is not enough water to establish phase equi-
librium in the room), or the evaporation stops when the partial pressure of 
the water vapor in the room rises to 2.34 kPa at which point phase equilib-
rium is established.
 For phase-change processes between the liquid and vapor phases of a pure 
substance, the saturation pressure and the vapor pressure are equivalent since 
the vapor is pure. Note that the pressure value would be the same whether it is 
measured in the vapor or liquid phase (provided that it is measured at a loca-
tion close to the liquid–vapor interface to avoid any hydrostatic effects). Vapor 
pressure increases with temperature. Thus, a substance at higher pressure boils 
at higher temperature. For example, water boils at 134°C in a pressure cooker 
operating at 3 atm absolute pressure, but it boils at 93°C in an ordinary pan at 
a 2000-m elevation, where the atmospheric pressure is 0.8 atm. The saturation 
(or vapor) pressures are given in Appendices 1 and 2 for various substances. 
An abridged table for water is given in Table 2–2 for easy reference.
 The reason for our interest in vapor pressure is the possibility of the liquid 
pressure in liquid-flow systems dropping below the vapor pressure at some 
locations, and the resulting unplanned vaporization. For example, water at 
10°C may vaporize and form bubbles at locations (such as the tip regions of 
impellers or suction sides of pumps) where the pressure drops below 1.23 kPa. 
The vapor bubbles (called cavitation bubbles since they form “cavities” in 
the liquid) collapse as they are swept away from the low-pressure regions, 
generating highly destructive, extremely high-pressure waves. This phenom-
enon, which is a common cause for drop in performance and even the erosion 
of impeller blades, is called cavitation, and it is an important consideration in 
the design of hydraulic turbines and pumps.
 Cavitation must be avoided (or at least minimized) in most flow systems 
since it reduces performance, generates annoying vibrations and noise, and 
causes damage to equipment. We note that some flow systems use cavita-
tion to their advantage, e.g., high-speed “supercavitating” torpedoes. The 
pressure spikes resulting from the large number of bubbles collapsing near 
a solid surface over a long period of time may cause erosion, surface pit-
ting, fatigue failure, and the eventual destruction of the components or 
machinery (Fig. 2–8). The presence of cavitation in a flow system can be 
sensed by its characteristic tumbling sound.

EXAMPLE 2–2    Minimum Pressure to Avoid Cavitation

In a water distribution system, the temperature of water is observed to be 

as high as 30°C. Determine the minimum pressure allowed in the system to 

avoid cavitation.

SOLUTION  The minimum pressure in a water distribution system to avoid 

cavitation is to be determined.

Properties  The vapor pressure of water at 30°C is 4.25 kPa (Table 2–2).

TABLE 2–2

Saturation (or vapor) pressure of 

water at various temperatures

 Saturation

Temperature Pressure

T, °C Psat, kPa

 210 0.260

 25 0.403

  0 0.611

  5 0.872

 10 1.23

 15 1.71

 20 2.34

 25 3.17

 30 4.25

 40 7.38

 50 12.35

 100 101.3 (1 atm)

 150 475.8

 200 1554

 250 3973

 300 8581

FIGURE 2–8
Cavitation damage on a 16-mm by 
23-mm aluminum sample tested at 
60 m/s for 2.5 hours. The sample was 
located at the cavity collapse region 
downstream of a cavity generator 
specifically designed to produce high 
damage potential.
Photo by David Stinebring, ARL/Pennsylvania 
State University. Used by permission.
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Analysis  To avoid cavitation, the pressure anywhere in the flow should not 

be allowed to drop below the vapor (or saturation) pressure at the given tem-

perature. That is,

Pmin 5  Psat@308C 5  4.25 kPa

Therefore, the pressure should be maintained above 4.25 kPa everywhere in 

the flow.

Discussion  Note that the vapor pressure increases with increasing tempera-

ture, and thus the risk of cavitation is greater at higher fluid temperatures.

2–4 ■  ENERGY AND SPECIFIC HEATS
Energy can exist in numerous forms such as thermal, mechanical, kinetic, 
potential, electrical, magnetic, chemical, and nuclear (Fig. 2–9) and their 
sum constitutes the total energy E (or e on a unit mass basis) of a system. 
The forms of energy related to the molecular structure of a system and the 
degree of the molecular activity are referred to as the microscopic energy. 
The sum of all microscopic forms of energy is called the internal energy of 
a system, and is denoted by U (or u on a unit mass basis).
 The macroscopic energy of a system is related to motion and the influence 
of some external effects such as gravity, magnetism, electricity, and surface 
tension. The energy that a system possesses as a result of its motion is called 
kinetic energy. When all parts of a system move with the same velocity, the 
kinetic energy per unit mass is expressed as ke 5 V 2/2 where V  denotes the 
velocity of the system relative to some fixed reference frame. The energy that 
a system possesses as a result of its elevation in a gravitational field is called 
potential energy and is expressed on a per-unit mass basis as pe 5 gz where 
g is the gravitational acceleration and z is the elevation of the center of gravity 
of the system relative to some arbitrarily selected reference plane.
 In daily life, we frequently refer to the sensible and latent forms of inter-
nal energy as heat, and we talk about the heat content of bodies. In engi-
neering, however, those forms of energy are usually referred to as thermal 
energy to prevent any confusion with heat transfer.
 The international unit of energy is the joule (J) or kilojoule (1 kJ 5 1000 J). 
A joule is 1 N times 1 m. In the English system, the unit of energy is the 
British thermal unit (Btu), which is defined as the energy needed to raise 
the temperature of 1  lbm of water at 68°F by 1°F. The magnitudes of kJ 
and Btu are almost identical (1 Btu 5 1.0551 kJ). Another well-known 
unit of energy is the calorie (1 cal 5 4.1868 J), which is defined as the 
energy needed to raise the temperature of 1 g of water at 14.5°C by 1°C.
 In the analysis of systems that involve fluid flow, we frequently encounter 
the combination of properties u and Pv. For convenience, this combination 
is called enthalpy h. That is,

Enthalpy: h 5 u 1 Pv 5 u 1
P
r

 (2–7)

where P/r is the flow energy, also called the flow work, which is the energy 
per unit mass needed to move the fluid and maintain flow. In the energy 
analysis of flowing fluids, it is convenient to treat the flow energy as part 
of the energy of the fluid and to represent the microscopic energy of a fluid 

(a)

FIGURE 2–9
At least six different forms of energy 

are encountered in bringing power 
from a nuclear plant to your home, 

nuclear, thermal, mechanical, kinetic, 
magnetic, and electrical.

(a) © Creatas/PunchStock RF
(b) Comstock Images/Jupiterimages RF

(b)
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stream by enthalpy h (Fig. 2–10). Note that enthalpy is a quantity per unit 
mass, and thus it is a specific property.
 In the absence of such effects as magnetic, electric, and surface tension, a 
system is called a simple compressible system. The total energy of a simple 
compressible system consists of three parts: internal, kinetic, and potential 
energies. On a unit-mass basis, it is expressed as e 5 u 1 ke 1 pe. The 
fluid entering or leaving a control volume possesses an additional form of 
energy—the flow energy P/r. Then the total energy of a flowing fluid on a 
unit-mass basis becomes

 eflowing 5 P/r 1 e 5 h 1 ke 1 pe 5 h 1
V 2

2
1 gz   (kJ/kg) (2–8)

where h 5 P/r 1 u is the enthalpy, V is the magnitude of velocity, and z is 
the elevation of the system relative to some external reference point.
 By using the enthalpy instead of the internal energy to represent the energy 
of a flowing fluid, we do not need to be concerned about the flow work. The 
energy associated with pushing the fluid is automatically taken care of by 
enthalpy. In fact, this is the main reason for defining the property enthalpy.
 The differential and finite changes in the internal energy and enthalpy of 
an ideal gas can be expressed in terms of the specific heats as

 du 5 cv dT  and  dh 5 cp dT  (2–9)

where cv and cp are the constant-volume and constant-pressure specific heats of 
the ideal gas. Using specific heat values at the average temperature, the finite 
changes in internal energy and enthalpy can be expressed approximately as

 Du > cv,avg DT  and  Dh > cp,avg DT  (2–10)

 For incompressible substances, the constant-volume and constant-pressure 
specific heats are identical. Therefore, cp ù cv ù c for liquids, and the 
change in the internal energy of liquids can be expressed as Du ù cavg DT.
 Noting that r 5 constant for incompressible substances, the differenti-
ation of enthalpy h 5 u 1 P/r gives dh 5 du 1 dP/r. Integrating, the 
enthalpy change becomes

 Dh 5 Du 1 DP/r > cavg DT 1 DP/r (2–11)

Therefore, Dh 5 Du ù cavg DT for constant-pressure processes, and Dh 5 DP/r 
for constant-temperature processes in liquids.

2–5 ■  COMPRESSIBILITY AND SPEED OF SOUND

Coefficient of Compressibility
We know from experience that the volume (or density) of a fluid changes 
with a change in its temperature or pressure. Fluids usually expand as they 
are heated or depressurized and contract as they are cooled or pressurized. 
But the amount of volume change is different for different fluids, and we 
need to define properties that relate volume changes to the changes in pres-
sure and temperature. Two such properties are the bulk modulus of elasticity k 
and the coefficient of volume expansion b.
 It is a common observation that a fluid contracts when more pressure is 
applied on it and expands when the pressure acting on it is reduced (Fig. 2–11). 
That is, fluids act like elastic solids with respect to pressure. Therefore, in an 

FIGURE 2–10
The internal energy u represents the 
microscopic energy of a nonflowing 
fluid per unit mass, whereas enthalpy 
h represents the microscopic energy of 
a flowing fluid per unit mass.

Energy = hFlowing 
fluid

Energy = uStationary 
fluid

P2 > P1

P1

FIGURE 2–11
Fluids, like solids, compress when 
the applied pressure is increased 
from P1 to P2.
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analogous manner to Young’s modulus of elasticity for solids, it is appropriate 
to define a coefficient of compressibility k (also called the bulk modulus of 
compressibility or bulk modulus of elasticity) for fluids as

 k 5 2v a 0P
0v

b
T

 5  ra 0P
0r

b
T

  (Pa) (2–12)

It can also be expressed approximately in terms of finite changes as

 k > 2
DP

Dv/v
>

DP

Dr/r
  (T 5 constant) (2–13)

Noting that Dv/v or Dr/r is dimensionless, k must have the dimension of 
pressure (Pa or psi). Also, the coefficient of compressibility represents the 
change in pressure corresponding to a fractional change in volume or density 
of the fluid while the temperature remains constant. Then it follows that the 
coefficient of compressibility of a truly incompressible substance (v 5 constant) 
is infinity.
 A large value of k indicates that a large change in pressure is needed to 
cause a small fractional change in volume, and thus a fluid with a large k 
is essentially incompressible. This is typical for liquids, and explains why 
liquids are usually considered to be incompressible. For example, the pres-
sure of water at normal atmospheric conditions must be raised to 210 atm 
to compress it 1 percent, corresponding to a coefficient of compressibility 
value of k 5 21,000 atm.
 Small density changes in liquids can still cause interesting phenomena in 
piping systems such as the water hammer—characterized by a sound that 
resembles the sound produced when a pipe is “hammered.” This occurs 
when a liquid in a piping network encounters an abrupt flow restriction 
(such as a closing valve) and is locally compressed. The acoustic waves 
that are produced strike the pipe surfaces, bends, and valves as they propa-
gate and reflect along the pipe, causing the pipe to vibrate and produce the 
familiar sound. In addition to the irritating sound, water hammering can be 
quite destructive, leading to leaks or even structural damage. The effect can 
be suppressed with a water hammer arrestor (Fig. 2–12), which is a volu-
metric chamber containing either a bellows or piston to absorb the shock. 
For large pipes, a vertical tube called a surge tower often is used. A surge 
tower has a free air surface at the top and is virtually maintenance free.
 Note that volume and pressure are inversely proportional (volume 
decreases as pressure is increased and thus ∂P/∂v is a negative quantity), 
and the negative sign in the definition (Eq. 2–12) ensures that k is a positive 
quantity. Also, differentiating r 5 1/v gives dr 5 2dv/v2, which can be 
rearranged as

 
dr

r
5 2

dv
v

 (2–14)

That is, the fractional changes in the specific volume and the density of a 
fluid are equal in magnitude but opposite in sign.
 For an ideal gas, P 5 rRT and (∂P/∂r)T 5 RT 5 P/r, and thus

 kideal gas 5 P  (Pa) (2–15)

Therefore, the coefficient of compressibility of an ideal gas is equal to its 
absolute pressure, and the coefficient of compressibility of the gas increases 

FIGURE 2–12
Water hammer arrestors: 

(a) A large surge tower built to 
protect the pipeline against 

water hammer damage.
Photo by Arris S. Tijsseling, visitor 

of the University of Adelaide, Australia. 
Used by permission.

(b) Much smaller arrestors used 
for supplying water to a household 

washing machine.
Photo provided courtesy of Oatey Co.

(a)

(b)
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with increasing pressure. Substituting k 5 P into the definition of the coef-
ficient of compressibility and rearranging gives

Ideal gas: 
Dr

r
5
DP

P
  (T 5  constant) (2–16)

Therefore, the percent increase of density of an ideal gas during isothermal 
compression is equal to the percent increase in pressure.
 For air at 1 atm pressure, k 5 P 5 1 atm and a decrease of 1 percent in 
volume (DV/V 5 20.01) corresponds to an increase of DP 5 0.01 atm in 
pressure. But for air at 1000 atm, k 5 1000 atm and a decrease of 1 percent 
in volume corresponds to an increase of DP 5 10 atm in pressure. Therefore, 
a small fractional change in the volume of a gas can cause a large change in 
pressure at very high pressures.
 The inverse of the coefficient of compressibility is called the isothermal 
compressibility a and is expressed as

 a 5
1
k

5 2
1

v
 a 0v
0P

b
T

5
1
r

 a 0r
0P

b
T

  (1/Pa) (2–17)

The isothermal compressibility of a fluid represents the fractional change in 
volume or density corresponding to a unit change in pressure.

Coefficient of Volume Expansion
The density of a fluid, in general, depends more strongly on temperature 
than it does on pressure, and the variation of density with temperature is 
responsible for numerous natural phenomena such as winds, currents in 
oceans, rise of plumes in chimneys, the operation of hot-air balloons, heat 
transfer by natural convection, and even the rise of hot air and thus the 
phrase “heat rises” (Fig. 2–13). To quantify these effects, we need a prop-
erty that represents the variation of the density of a fluid with temperature at 
constant pressure.
 The property that provides that information is the coefficient of volume 
expansion (or volume expansivity) b, defined as (Fig. 2–14)

 b 5  
1

v
 a 0v
0T

b
P

 5 2
1
r

 a 0r
0T

b
P

  (1/K) (2–18)

It can also be expressed approximately in terms of finite changes as

 b <
Dv/v
DT

5 2
Dr/r

DT
  (at constant P) (2–19)

A large value of b for a fluid means a large change in density with tem-
perature, and the product b DT represents the fraction of volume change of 
a fluid that corresponds to a temperature change of DT at constant pressure.
 It can be shown that the volume expansion coefficient of an ideal gas 
(P 5 rRT ) at a temperature T is equivalent to the inverse of the tempe rature:

 bideal gas 5
1

T
  (1/K) (2–20)

where T is the absolute temperature.

FIGURE 2–13
Natural convection over a woman’s 
hand. 
Photograph by Gary S. Settles, Penn State Gas 
Dynamics Lab. Used by permission.

20°C
100 kPa

1 kg

21°C
100 kPa

1 kg

20°C
100 kPa

1 kg

21°C
100 kPa

1 kg

Q R

Q R

P

P

(a) A substance with a large b 

(b) A substance with a small b

v

v

FIGURE 2–14
The coefficient of volume expansion 
is a measure of the change in volume 
of a substance with temperature at 
constant pressure.
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 In the study of natural convection currents, the condition of the main fluid 
body that surrounds the finite hot or cold regions is indicated by the sub-
script “infinity” to serve as a reminder that this is the value at a distance 
where the presence of the hot or cold region is not felt. In such cases, the 
volume expansion coefficient can be expressed approximately as

 b < 2
(rq 2 r)/r

Tq 2 T
  or  rq 2 r 5 rb(T 2 Tq) (2–21)

where r` is the density and T` is the temperature of the quiescent fluid 
away from the confined hot or cold fluid pocket.
 We will see in Chap. 3 that natural convection currents are initiated by the 
buoyancy force, which is proportional to the density difference, which is in turn 
proportional to the temperature difference at constant pressure. Therefore, the 
larger the temperature difference between the hot or cold fluid pocket and the 
surrounding main fluid body, the larger the buoyancy force and thus the stron-
ger the natural convection currents. A related phenomenon sometimes occurs 
when an aircraft flies near the speed of sound. The sudden drop in temperature 
produces condensation of water vapor on a visible vapor cloud (Fig. 2–15).
 The combined effects of pressure and temperature changes on the volume 
change of a fluid can be determined by taking the specific volume to be a 
function of T and P. Differentiating v 5 v(T, P) and using the definitions of 
the compression and expansion coefficients a and b give

 dv 5 a 0v
0T

b
P

 dT 1 a 0v
0P

b
T

 dP 5 (b dT 2 a dP)v  (2–22)

Then the fractional change in volume (or density) due to changes in pres-
sure and temperature can be expressed approximately as

 
Dv
v

5 2
Dr

r
 >  b DT 2 a DP (2–23)

EXAMPLE 2–3     Variation of Density with Temperature and Pressure

Consider water initially at 20°C and 1 atm. Determine the final density of the 

water (a) if it is heated to 50°C at a constant pressure of 1 atm, and (b) if it 

is compressed to 100-atm pressure at a constant temperature of 20°C. Take 

the isothermal compressibility of water to be a 5 4.80 3 1025 atm21.

SOLUTION  Water at a given temperature and pressure is considered. The 

densities of water after it is heated and after it is compressed are to be 

determined.

Assumptions  1 The coefficient of volume expansion and the isothermal 

compressibility of water are constant in the given temperature range. 2 An 

approximate analysis is performed by replacing differential changes in quan-

tities by finite changes.

Properties  The density of water at 20°C and 1 atm pressure is r1 5 
998.0  kg/m3. The coefficient of volume expansion at the average tempera-

ture of (20 1 50)/2 5 35°C is b 5 0.337 3 1023 K21. The isothermal com-

pressibility of water is given to be a 5 4.80 3 1025 atm21.

Analysis  When differential quantities are replaced by differences and the 

properties a and b are assumed to be constant, the change in density in 

FIGURE 2–15
Vapor cloud around an F/A-18F 

Super Hornet as it flies near 
the speed of sound.

U.S. Navy photo by Photographer’s Mate 
3rd Class Jonathan Chandler.
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terms of the changes in pressure and temperature is expressed approximately 

as (Eq. 2–23) 

Dr 5  ar DP 2  br DT

(a) The change in density due to the change of temperature from 20°C to 

50°C at constant pressure is

Dr 5 2br DT 5 2(0.337 3 1023 K21)(998 kg/m3)(50 2 20) K

 5 210.0 kg/m3 

Noting that Dr 5 r2 2 r1, the density of water at 50°C and 1 atm is

r2 5 r1 1 Dr 5 998.0 1 (210.0) 5 988.0 kg/m3

which is almost identical to the listed value of 988.1 kg/m3 at 50°C in 

Table A–3. This is mostly due to b varying with temperature almost linearly, 

as shown in Fig. 2–16.

(b) The change in density due to a change of pressure from 1 atm to 

100 atm at constant temperature is

Dr 5 ar DP 5 (4.80 3 1025 atm21)(998 kg/m3)(100 2 1) atm 5 4.7 kg/m3

Then the density of water at 100 atm and 20°C becomes

r2 5 r1 1 Dr 5 998.0 1 4.7 5 1002.7 kg/m3

Discussion  Note that the density of water decreases while being heated and 

increases while being compressed, as expected. This problem can be solved 

more accurately using differential analysis when functional forms of proper-

ties are available.

Speed of Sound and Mach Number
An important parameter in the study of compressible flow is the speed of 
sound (or the sonic speed), defined as the speed at which an infinitesimally 
small pressure wave travels through a medium. The pressure wave may be 
caused by a small disturbance, which creates a slight rise in local pressure.
 To obtain a relation for the speed of sound in a medium, consider a duct that 
is filled with a fluid at rest, as shown in Fig. 2–17. A piston fitted in the duct 
is now moved to the right with a constant incremental velocity dV, creating a 
sonic wave. The wave front moves to the right through the fluid at the speed of 
sound c and separates the moving fluid adjacent to the piston from the fluid still 
at rest. The fluid to the left of the wave front experiences an incremental change 
in its thermodynamic properties, while the fluid on the right of the wave front 
maintains its original thermodynamic properties, as shown in Fig. 2–17.
 To simplify the analysis, consider a control volume that encloses the wave 
front and moves with it, as shown in Fig. 2–18. To an observer traveling 
with the wave front, the fluid to the right appears to be moving toward the 
wave front with a speed of c and the fluid to the left to be moving away 
from the wave front with a speed of c 2 dV. Of course, the observer sees  
the control volume that encloses the wave front (and herself or himself) as 
stationary, and the observer is witnessing a steady-flow process. The mass 
balance for this single-stream, steady-flow process is expressed as

m# right 5 m# left

x

dV

 + dr r r

Moving
wave frontPiston

Stationary
fluid

P + dP
h + dh

P
h

dV

V

x
0

P + dP

P

P

c

FIGURE 2–17
Propagation of a small pressure wave 
along a duct.

FIGURE 2–16
The variation of the coefficient of 
volume expansion b of water with 
temperature in the range of 20°C 
to 50°C. 
Data were generated and plotted using EES.

0.00050

0.00020
504540353025

T, °C

20

0.00025

0.00030

0.00035

0.00040

0.00045

β,
 1

/K

037-074_cengel_ch02.indd   48 12/14/12   11:26 AM



49
CHAPTER 2

dV

 + r r rd

Control volume
traveling with
the wave front

P + dP
h + dh

P
hc  – c

FIGURE 2–18
Control volume moving with the small 

pressure wave along a duct.

 0
¡

or

rAc 5 (r 1 dr)A(c 2 dV)

By canceling the cross-sectional (or flow) area A and neglecting the higher-
order terms, this equation reduces to

 c dr 2 r dV 5 0 

 No heat or work crosses the boundaries of the control volume during this 
steady-flow process, and the potential energy change can be neglected. Then 
the steady-flow energy balance ein 5 eout becomes

h 1
c2

2
5 h 1 dh 1

(c 2 dV)2

2

which yields

 dh 2 c dV 5 0 

where we have neglected the second-order term dV 2. The amplitude of the ordi-
nary sonic wave is very small and does not cause any appreciable change in 
the pressure and temperature of the fluid. Therefore, the propagation of a sonic 
wave is not only adiabatic but also very nearly isentropic. Then the thermody-
namic relation T ds 5 dh 2 dP/r (see Çengel and Boles, 2011) reduces to

T ds 5 dh 2
dP
r

or

 dh 5
dP
r

 

Combining the above equations yields the desired expression for the speed 
of sound as

c2 5
dP

dr
  at s 5 constant

or

 c2 5 a 0P
0r

b
s

 (2–24)

It is left as an exercise for the reader to show, by using thermodynamic 
property relations, that Eq. 2–24 can also be written as

 c2 5 ka 0P
0r

b
T

 (2–25)

where k 5 cp /cv is the specific heat ratio of the fluid. Note that the speed of 
sound in a fluid is a function of the thermodynamic properties of that fluid 
Fig. 2–19.
 When the fluid is an ideal gas (P 5 rRT), the differentiation in Eq. 2–25 
can be performed to yield

c2 5 ka 0P
0r

b
T

5 k c 0(rRT )

0r
d

T

5 kRT

or

 c 5 "kRT  (2–26)

FIGURE 2–19
The speed of sound in air increases 

with temperature. At typical outside 
temperatures, c is about 340 m/s. In 

round numbers, therefore, the sound of 
thunder from a lightning strike travels 

about 1 km in 3 seconds. If you see 
the lightning and then hear the thunder 

less than 3 seconds later, you know 
that the lightning is close, and it is 

time to go indoors!
© Bear Dancer Studios/Mark Dierker
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Noting that the gas constant R has a fixed value for a specified ideal gas and 
the specific heat ratio k of an ideal gas is, at most, a function of tempera-
ture, we see that the speed of sound in a specified ideal gas is a function of 
temperature alone (Fig. 2–20).
 A second important parameter in the analysis of compressible fluid flow 
is the Mach number Ma, named after the Austrian physicist Ernst Mach 
(1838–1916). It is the ratio of the actual speed of the fluid (or an object in 
still fluid) to the speed of sound in the same fluid at the same state:

 Ma 5
V
c

 (2–27)

Note that the Mach number depends on the speed of sound, which depends 
on the state of the fluid. Therefore, the Mach number of an aircraft cruising at 
constant velocity in still air may be different at different locations (Fig. 2–21).
 Fluid flow regimes are often described in terms of the flow Mach number. 
The flow is called sonic when Ma 5 1, subsonic when Ma , 1, supersonic 
when Ma . 1, hypersonic when Ma .. 1, and transonic when Ma ù 1.

EXAMPLE 2–4    Mach Number of Air Entering a Diffuser

Air enters a diffuser shown in Fig. 2–22 with a speed of 200 m/s. Determine 

(a) the speed of sound and (b) the Mach number at the diffuser inlet when 

the air temperature is 30°C.

SOLUTION  Air enters a diffuser at high speed. The speed of sound and the 

Mach number are to be determined at the diffuser inlet.

Assumption  Air at the specified conditions behaves as an ideal gas.

Properties  The gas constant of air is R 5 0.287 kJ/kg·K, and its specific 

heat ratio at 30°C is 1.4.

Analysis  We note that the speed of sound in a gas varies with temperature, 

which is given to be 30°C.

(a) The speed of sound in air at 30°C is determined from Eq. 2–26 to be

c 5 "kRT 5 Å(1.4)(0.287 kJ/kg·K)(303 K)a1000 m2/s2

1 kJ/kg
b 5 349 m/s

(b) Then the Mach number becomes

Ma 5
V
c

5
200 m/s

349 m/s
5 0.573

Discussion  The flow at the diffuser inlet is subsonic since Ma , 1.

2–6 ■ VISCOSITY
When two solid bodies in contact move relative to each other, a friction 
force develops at the contact surface in the direction opposite to motion. 
To move a table on the floor, for example, we have to apply a force to the 
table in the horizontal direction large enough to overcome the friction force. 

AIR HELIUM

347 m/s

634 m/s

200 K

300 K

1000 K

284 m/s

1861 m/s

1019 m/s

832 m/s

FIGURE 2–20
The speed of sound changes with 
temperature and varies with the fluid.

V  = 320 m/sAIR
220 K Ma = 1.08

V  = 320 m/sAIR
300 K Ma = 0.92

FIGURE 2–21
The Mach number can be different 
at different temperatures even if the 
flight speed is the same.
© Alamy RF

Diffuser
V  = 200 m/s
T  = 30°C

AIR

FIGURE 2–22
Schematic for Example 12–4.
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The magnitude of the force needed to move the table depends on the friction 
coefficient between the table legs and the floor.
 The situation is similar when a fluid moves relative to a solid or when two 
fluids move relative to each other. We move with relative ease in air, but not 
so in water. Moving in oil would be even more difficult, as can be observed 
by the slower downward motion of a glass ball dropped in a tube filled with 
oil. It appears that there is a property that represents the internal resistance of 
a fluid to motion or the “fluidity,” and that property is the viscosity. The force 
a flowing fluid exerts on a body in the flow direction is called the drag force, 
and the magnitude of this force depends, in part, on viscosity (Fig. 2–23).
 To obtain a relation for viscosity, consider a fluid layer between two very 
large parallel plates (or equivalently, two parallel plates immersed in a large 
body of a fluid) separated by a distance , (Fig. 2–24). Now a constant par-
allel force F is applied to the upper plate while the lower plate is held fixed. 
After the initial transients, it is observed that the upper plate moves continu-
ously under the influence of this force at a constant speed V. The fluid in 
contact with the upper plate sticks to the plate surface and moves with it at 
the same speed, and the shear stress t acting on this fluid layer is

 t 5
F

A
 (2–28)

where A is the contact area between the plate and the fluid. Note that the 
fluid layer deforms continuously under the influence of shear stress.
 The fluid in contact with the lower plate assumes the velocity of that plate, 
which is zero (because of the no-slip condition—see Section 1–2). In steady 
laminar flow, the fluid velocity between the plates varies linearly between 
0 and V, and thus the velocity profile and the velocity gradient are

 u( y) 5
y

,
V  and  

du

dy
5

V

,
 (2–29)

where y is the vertical distance from the lower plate.
 During a differential time interval dt, the sides of fluid particles along a 
vertical line MN rotate through a differential angle db while the upper plate 
moves a differential distance da 5 V dt. The angular displacement or defor-
mation (or shear strain) can be expressed as

 db <  tan db 5
da

,
5

V dt

,
5

du

dy
 dt (2–30)

Rearranging, the rate of deformation under the influence of shear stress t 
becomes

 
db

dt
5

du

dy
 (2–31)

Thus we conclude that the rate of deformation of a fluid element is equiva-
lent to the velocity gradient du/dy. Further, it can be verified experimentally 
that for most fluids the rate of deformation (and thus the velocity gradient) 
is directly proportional to the shear stress t,

 t r  
db

dt
  or  t r  

du

dy
 (2–32)

Water

Air

Drag
force

Drag
force
Drag
force

V

V Water

FIGURE 2–23
A fluid moving relative to a body 

exerts a drag force on the body, partly 
because of friction caused by viscosity.

© Digital Vision/Getty RF

V

V

u(y) = 

u = 0

Vu =

y

,

,

N

da

M

N' ′

Velocity profile

Force F

x

y
db

Velocity 

Area A

FIGURE 2–24
The behavior of a fluid in laminar 

flow between two parallel plates 
when the upper plate moves with 

a constant velocity.
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Fluids for which the rate of deformation is linearly proportional to the shear 
stress are called Newtonian fluids after Sir Isaac Newton, who expressed it first 
in 1687. Most common fluids such as water, air, gasoline, and oils are Newtonian 
fluids. Blood and liquid plastics are examples of non-Newtonian fluids.
 In one-dimensional shear flow of Newtonian fluids, shear stress can be 
expressed by the linear relationship

Shear stress: t 5  m 
du

dy
  (N/m2) (2–33)

where the constant of proportionality m is called the coefficient of viscosity 
or the dynamic (or absolute) viscosity of the fluid, whose unit is kg/m·s, or 
equivalently, N·s/m2 (or Pa?s where Pa is the pressure unit pascal). A common 
viscosity unit is poise, which is equivalent to 0.1 Pa?s (or centipoise, which is 
one-hundredth of a poise). The viscosity of water at 20°C is 1.002 centipoise, 
and thus the unit centipoise serves as a useful reference. A plot of shear stress 
versus the rate of deformation (velocity gradient) for a Newtonian fluid is a 
straight line whose slope is the viscosity of the fluid, as shown in Fig. 2–25. 
Note that viscosity is independent of the rate of deformation for Newtonian 
fluids. Since the rate of deformation is proportional to the strain rate, Fig. 2–25 
reveals that viscosity is actually a coefficient in a stress–strain relationship.
 The shear force acting on a Newtonian fluid layer (or, by Newton’s third 
law, the force acting on the plate) is

Shear force: F 5 tA 5 mA 
du

dy
  (N) (2–34)

where again A is the contact area between the plate and the fluid. Then the 
force F required to move the upper plate in Fig. 2–24 at a constant speed of 
V while the lower plate remains stationary is

 F 5 mA 
V

,
  (N) (2–35)

This relation can alternately be used to calculate m when the force F is 
measured. Therefore, the experimental setup just described can be used to 
measure the viscosity of fluids. Note that under identical conditions, the 
force F would be very different for different fluids.
 For non-Newtonian fluids, the relationship between shear stress and rate 
of deformation is not linear, as shown in Fig. 2–26. The slope of the curve 
on the t versus du/dy chart is referred to as the apparent viscosity of the 
fluid. Fluids for which the apparent viscosity increases with the rate of 
deformation (such as solutions with suspended starch or sand) are referred 
to as dilatant or shear thickening fluids, and those that exhibit the oppo-
site behavior (the fluid becoming less viscous as it is sheared harder, such 
as some paints, polymer solutions, and fluids with suspended particles) are 
referred to as pseudoplastic or shear thinning fluids. Some materials such 
as toothpaste can resist a finite shear stress and thus behave as a solid, but 
deform continuously when the shear stress exceeds the yield stress and  
behave as a fluid. Such materials are referred to as Bingham plastics after 
Eugene C. Bingham (1878–1945), who did pioneering work on fluid viscos-
ity for the U.S. National Bureau of Standards in the early twentieth century.

Rate of deformation, du/dy

Sh
ea

r 
st

re
ss

, t

Oil

Water

Air

Viscosity = Slope

= =

a

a

b

bdu /dy

t
m

FIGURE 2–25
The rate of deformation (velocity 
gradient) of a Newtonian fluid is 
proportional to shear stress, and 
the constant of proportionality 
is the viscosity.
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FIGURE 2–26
Variation of shear stress with the rate 
of deformation for Newtonian and 
non-Newtonian fluids (the slope of 
a curve at a point is the apparent 
viscosity of the fluid at that point).
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 In fluid mechanics and heat transfer, the ratio of dynamic viscosity to 
density appears frequently. For convenience, this ratio is given the name 
kinematic viscosity n and is expressed as n 5 m/r. Two common units of 
kinematic viscosity are m2/s and stoke (1 stoke 5 1 cm2/s 5 0.0001 m2/s).
 In general, the viscosity of a fluid depends on both temperature and pres-
sure, although the dependence on pressure is rather weak. For liquids, both 
the dynamic and kinematic viscosities are practically independent of pres-
sure, and any small variation with pressure is usually disregarded, except at 
extremely high pressures. For gases, this is also the case for dynamic vis-
cosity (at low to moderate pressures), but not for kinematic viscosity since 
the density of a gas is proportional to its pressure (Fig. 2–27).
 The viscosity of a fluid is a measure of its “resistance to deformation.” 
Viscosity is due to the internal frictional force that develops between differ-
ent layers of fluids as they are forced to move relative to each other.
 The viscosity of a fluid is directly related to the pumping power needed to 
transport a fluid in a pipe or to move a body (such as a car in air or a sub-
marine in the sea) through a fluid. Viscosity is caused by the cohesive forces 
between the molecules in liquids and by the molecular collisions in gases, 
and it varies greatly with temperature. The viscosity of liquids decreases 
with temperature, whereas the viscosity of gases increases with temperature 
(Fig. 2–28). This is because in a liquid the molecules possess more energy 
at higher temperatures, and they can oppose the large cohesive intermolec-
ular forces more strongly. As a result, the energized liquid molecules can 
move more freely.
 In a gas, on the other hand, the intermolecular forces are negligible, and 
the gas molecules at high temperatures move randomly at higher velocities. 
This results in more molecular collisions per unit volume per unit time 
and therefore in greater resistance to flow. The kinetic theory of gases predicts 
the viscosity of gases to be proportional to the square root of temperature. 
That is, mgas r !T. This prediction is confirmed by practical observations, 
but deviations for different gases need to be accounted for by incorporat-
ing some correction factors. The viscosity of gases is expressed as a func-
tion of temperature by the Sutherland correlation (from The U.S. Standard 
Atmosphere) as

Gases: m 5
aT1/2

1 1 b/T
 (2–36)

where T is absolute temperature and a and b are experimentally determined 
constants. Note that measuring viscosity at two different temperatures is 
sufficient to determine these constants. For air at atmospheric conditions, 
the values of these constants are a 5 1.458 3 1026 kg/(m?s?K1/2) and 
b 5 110.4 K. The viscosity of gases is independent of pressure at low to 
moderate pressures (from a few percent of 1 atm to several atm). But vis-
cosity increases at high pressures due to the increase in density.
 For liquids, the viscosity is approximated as

Liquids: m 5 a10 
b/(T2c)  (2–37)

where again T is absolute temperature and a, b, and c are experimentally 
determined constants. For water, using the values a 5 2.414 3 1025 N?s/m2, 
b 5 247.8 K, and c 5 140 K results in less than 2.5 percent error in viscosity 
in the temperature range of 0°C to 370°C (Touloukian et al., 1975).

Air at 20°C and 1 atm:
m = 1.83 × 10–5 kg/m⋅s
n = 1.52 × 10–5 m2/s

Air at 20°C and 4 atm:
m = 1.83 × 10–5 kg/m⋅s
n  = 0.380 × 10–5 m2/s

FIGURE 2–27
Dynamic viscosity, in general, does 

not depend on pressure, but kinematic 
viscosity does.

Liquids

Gases

Temperature

Viscosity

FIGURE 2–28
The viscosity of liquids decreases

 and the viscosity of gases increases 
with temperature.

037-074_cengel_ch02.indd   53 12/14/12   11:27 AM



54
PROPERTIES OF FLUIDS

TABLE 2–3

Dynamic viscosity of some fluids at 

1 atm and 20°C (unless otherwise 

stated)

 Dynamic Viscosity 

Fluid m, kg/m?s

Glycerin:

  220°C 134.0

     0°C 10.5

    20°C 1.52

    40°C 0.31

Engine oil:

  SAE 10W 0.10

  SAE 10W30 0.17

  SAE 30 0.29

  SAE 50 0.86

Mercury 0.0015

Ethyl alcohol 0.0012

Water:

    0°C 0.0018

   20°C 0.0010

  100°C (liquid) 0.00028

  100°C (vapor) 0.000012

Blood, 378C 0.00040

Gasoline 0.00029

Ammonia 0.00015

Air 0.000018

Hydrogen, 0°C 0.0000088

 The viscosities of some fluids at room temperature are listed in Table 2–3. 
They are plotted against temperature in Fig. 2–29. Note that the viscosities 
of different fluids differ by several orders of magnitude. Also note that it is 
more difficult to move an object in a higher-viscosity fluid such as engine oil 
than it is in a lower-viscosity fluid such as water. Liquids, in general, are 
much more viscous than gases.
 Consider a fluid layer of thickness , within a small gap between two con-
centric cylinders, such as the thin layer of oil in a journal bearing. The gap 
between the cylinders can be modeled as two parallel flat plates separated by 
the fluid. Noting that torque is T 5 FR (force times the moment arm, which 
is the radius R of the inner cylinder in this case), the tangential velocity is 
V 5 vR (angular velocity times the radius), and taking the wetted surface 
area of the inner cylinder to be A 5 2pRL by disregarding the shear stress 
acting on the two ends of the inner cylinder, torque can be expressed as

 T 5 FR 5 m  
2pR3vL

,
5 m 

4p2R3n
#
L

,
 (2–38)

where L is the length of the cylinder and n
.
 is the number of revolutions per 

unit time, which is usually expressed in rpm (revolutions per minute). Note 
that the angular distance traveled during one rotation is 2p rad, and thus the 
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FIGURE 2–29
The variation of dynamic (absolute) 
viscosity of common fluids with 
temperature at 1 atm (1 N?s/m2 5 
1 kg/m?s 5 0.020886 lbf?s/ft2).
Data from EES and F. M. White, Fluid Mechanics 7e. 
Copyright © 2011 The McGraw-Hill Companies, 
Inc. Used by permission.
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R

Shaft

Stationary
cylinder

Fluid

�

n = 300 rpm⋅

FIGURE 2–30
Schematic for Example 2–5 

(not to scale).

relation between the angular velocity in rad/min and the rpm is v 5 2pn
.
. 

Equation 2–38 can be used to calculate the viscosity of a fluid by measuring 
torque at a specified angular velocity. Therefore, two concentric cylinders 
can be used as a viscometer, a device that measures viscosity.

EXAMPLE 2–5    Determining the Viscosity of a Fluid

The viscosity of a fluid is to be measured by a viscometer constructed of 

two 40-cm-long concentric cylinders (Fig. 2–30). The outer diameter of the 

inner cylinder is 12 cm, and the gap between the two cylinders is 0.15 cm. 

The inner cylinder is rotated at 300 rpm, and the torque is measured to be 

1.8 N?m. Determine the viscosity of the fluid.

SOLUTION  The torque and the rpm of a double cylinder viscometer are 

given. The viscosity of the fluid is to be determined.

Assumptions  1 The inner cylinder is completely submerged in the fluid. 

2 The viscous effects on the two ends of the inner cylinder are negligible.

Analysis  The velocity profile is linear only when the curvature effects are 

negligible, and the profile can be approximated as being linear in this case 

since ,/R 5  0.025 ,, 1. Solving Eq. 2–38 for viscosity and substituting the 

given values, the viscosity of the fluid is determined to be

m 5
T,

4p2R3n
#
L

5
(1.8 N·m)(0.0015 m)

4p2(0.06 m)3a300 
1

min
b  a1 min

60 s
b (0.4 m)

5 0.158 N·s /m2

Discussion  Viscosity is a strong function of temperature, and a viscosity 

value without a corresponding temperature is of little usefulness. Therefore, 

the temperature of the fluid should have also been measured during this 

experiment, and reported with this calculation.

2–7 ■  SURFACE TENSION AND CAPILLARY EFFECT
It is often observed that a drop of blood forms a hump on a horizontal glass; 
a drop of mercury forms a near-perfect sphere and can be rolled just like 
a steel ball over a smooth surface; water droplets from rain or dew hang 
from branches or leaves of trees; a liquid fuel injected into an engine forms a 
mist of spherical droplets; water dripping from a leaky faucet falls as nearly 
spherical droplets; a soap bubble released into the air forms a nearly spheri-
cal shape; and water beads up into small drops on flower petals (Fig. 2–31a).
 In these and other observances, liquid droplets behave like small balloons 
filled with the liquid, and the surface of the liquid acts like a stretched elas-
tic membrane under tension. The pulling force that causes this tension acts 
parallel to the surface and is due to the attractive forces between the mol-
ecules of the liquid. The magnitude of this force per unit length is called 
surface tension or coefficient of surface tension ss and is usually expressed 
in the unit N/m (or lbf/ft in English units). This effect is also called surface 
energy (per unit area) and is expressed in the equivalent unit of N?m/m2 or 
J/m2. In this case, ss represents the stretching work that needs to be done to 
increase the surface area of the liquid by a unit amount.
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 To visualize how surface tension arises, we present a microscopic view 
in Fig. 2–32 by considering two liquid molecules, one at the surface and 
one deep within the liquid body. The attractive forces applied on the inte-
rior molecule by the surrounding molecules balance each other because of 
symmetry. But the attractive forces acting on the surface molecule are not 
symmetric, and the attractive forces applied by the gas molecules above are 
usually very small. Therefore, there is a net attractive force acting on the 
molecule at the surface of the liquid, which tends to pull the molecules on 
the surface toward the interior of the liquid. This force is balanced by the 
repulsive forces from the molecules below the surface that are trying to be 
compressed. The result is that the liquid minimizes its surface area. This is 
the reason for the tendency of liquid droplets to attain a spherical shape, 
which has the minimum surface area for a given volume.
 You also may have observed, with amusement, that some insects can land 
on water or even walk on water (Fig. 2–31b) and that small steel needles 
can float on water. These phenomena are made possible by surface tension 
which balances the weights of these objects.
 To understand the surface tension effect better, consider a liquid film 
(such as the film of a soap bubble) suspended on a U-shaped wire frame 
with a movable side (Fig. 2–33). Normally, the liquid film tends to pull the 
movable wire inward in order to minimize its surface area. A force F needs to 
be applied on the movable wire in the opposite direction to balance this pull-
ing effect. Both sides of the thin film are surfaces exposed to air, and thus the 
length along which the surface tension acts in this case is 2b. Then a force 
balance on the movable wire gives F 5 2bss, and thus the surface tension 
can be expressed as

 ss 5
F

2b
 (2–39)

Note that for b 5 0.5 m, the measured force F (in N) is simply the surface 
tension in N/m. An apparatus of this kind with sufficient precision can be 
used to measure the surface tension of various liquids.
 In the U-shaped wire frame apparatus, the movable wire is pulled to 
stretch the film and increase its surface area. When the movable wire is 
pulled a distance Dx, the surface area increases by DA 5 2b Dx, and the 
work W done during this stretching process is

W 5 Force 3  Distance 5 F Dx 5 2bss Dx 5 ss DA

where we have assumed that the force remains constant over the small 
distance. This result can also be interpreted as the surface energy of the 
film is increased by an amount ss DA during this stretching process, which 
is consistent with the alternative interpretation of ss as surface energy per 
unit area. This is similar to a rubber band having more potential (elastic) 
energy after it is stretched further. In the case of liquid film, the work is 
used to move liquid molecules from the interior parts to the surface against 
the attraction forces of other molecules. Therefore, surface tension also can 
be defined as the work done per unit increase in the surface area of the 
liquid.
 The surface tension varies greatly from substance to substance, and 
with temperature for a given substance, as shown in Table 2–4. At 20°C, 

A molecule
on the surface

A molecule
inside the
liquid

FIGURE 2–32
Attractive forces acting on a liquid 
molecule at the surface and deep 
inside the liquid.

FIGURE 2–31
Some consequences of surface tension: 
(a) drops of water beading up on a leaf, 
(b) a water strider sitting on top of the 
surface of water, and (c) a color schlieren 
image of the water strider revealing how 
the water surface dips down where its feet 
contact the water (it looks like two insects 
but the second one is just a shadow).
(a) © Don Paulson Photography/Purestock/
SuperStock RF
(b) NPS Photo by Rosalie LaRue.
(c) Photo courtesy of G. S. Settles, Gas Dynamics 
Lab, Penn State University, used by permission.

(a)

(b)

(c)
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for example, the surface tension is 0.073 N/m for water and 0.440 N/m for 
 mercury surrounded by atmospheric air. The surface tension of mercury is 
large enough that mercury droplets form nearly spherical balls that can be 
rolled like a solid ball on a smooth surface. The surface tension of a liq-
uid, in general, decreases with temperature and becomes zero at the critical 
point (and thus there is no distinct liquid–vapor interface at temperatures 
above the critical point). The effect of pressure on surface tension is usually 
negligible.
 The surface tension of a substance can be changed considerably by 
impurities. Therefore, certain chemicals, called surfactants, can be added to 
a liquid to decrease its surface tension. For example, soaps and detergents 
lower the surface tension of water and enable it to penetrate the small open-
ings between fibers for more effective washing. But this also means that 
devices whose operation depends on surface tension (such as heat pipes) 
can be destroyed by the presence of impurities due to poor workmanship.
 We speak of surface tension for liquids only at liquid–liquid or liquid–gas 
interfaces. Therefore, it is imperative that the adjacent liquid or gas be spec-
ified when specifying surface tension. Surface tension determines the size 
of the liquid droplets that form, and so a droplet that keeps growing by the 
addition of more mass breaks down when the surface tension can no longer 
hold it together. This is like a balloon that bursts while being inflated when 
the pressure inside rises above the strength of the balloon material.
 A curved interface indicates a pressure difference (or “pressure jump”) 
across the interface with pressure being higher on the concave side. 
Consider, for example, a droplet of liquid in air, an air (or other gas) bubble 
in water, or a soap bubble in air. The excess pressure DP above atmospheric  
pressure can be determined by considering a free-body diagram of half the  
droplet or bubble (Fig. 2–34). Noting that surface tension acts along the cir-
cumference and the pressure acts on the area, horizontal force balances for 
the droplet or air bubble and the soap bubble give

Droplet or air bubble: (2pR)ss 5 (pR2)DPdroplet S  DPdroplet 5 Pi 2 Po 5
2ss

R
 (2–40)

Soap bubble: 2(2pR)ss 5 (pR2)DPbubble S  DPbubble 5 Pi 2 Po 5
4ss

R
 (2–41)

where Pi and Po are the pressures inside and outside the droplet or bubble, 
respectively. When the droplet or bubble is in the atmosphere, Po is simply 
atmospheric pressure. The extra factor of 2 in the force balance for the soap 
bubble is due to the existence of a soap film with two surfaces (inner and 
outer surfaces) and thus two circumferences in the cross section.
 The excess pressure in a droplet of liquid in a gas (or a bubble of gas in a 
liquid) can also be determined by considering a differential increase in the 
radius of the droplet due to the addition of a differential amount of mass 
and interpreting the surface tension as the increase in the surface energy per 
unit area. Then the increase in the surface energy of the droplet during this 
differential expansion process becomes

dWsurface 5 ss dA 5 ss d(4pR 2) 5 8pRss dR

Δx

F

F

Movable
wire

Rigid wire frame

Liquid film Wire

Surface of film

b

x

σ

σ

s

s

FIGURE 2–33
Stretching a liquid film with a 

U-shaped wire, and the forces acting 
on the movable wire of length b.

TABLE 2–4

Surface tension of some fluids in 

air at 1 atm and 20°C (unless 

otherwise stated)

 Surface Tension

Fluid  ss, N/m*

†Water:

    0°C 0.076

   20°C 0.073

  100°C 0.059

  300°C 0.014

Glycerin 0.063

SAE 30 oil 0.035

Mercury 0.440

Ethyl alcohol 0.023

Blood, 37°C 0.058

Gasoline 0.022

Ammonia 0.021

Soap solution 0.025

Kerosene 0.028

* Multiply by 0.06852 to convert to lbf/ft.
† See Appendices for more precise data for water.
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The expansion work done during this differential process is determined by 
multiplying the force by distance to obtain

dWexpansion 5 Force 3  Distance 5 F dR 5 (DPA) dR 5 4pR2 DP dR

Equating the two expressions above gives DPdroplet 5 2ss /R, which is the 
same relation obtained before and given in Eq. 2–40. Note that the excess 
pressure in a droplet or bubble is inversely proportional to the radius.

Capillary Effect
Another interesting consequence of surface tension is the capillary effect, 
which is the rise or fall of a liquid in a small-diameter tube inserted into the 
liquid. Such narrow tubes or confined flow channels are called capillaries. 
The rise of kerosene through a cotton wick inserted into the reservoir of 
a kerosene lamp is due to this effect. The capillary effect is also partially 
responsible for the rise of water to the top of tall trees. The curved free sur-
face of a liquid in a capillary tube is called the meniscus.
 It is commonly observed that water in a glass container curves up slightly 
at the edges where it touches the glass surface; but the opposite occurs for 
mercury: it curves down at the edges (Fig. 2–35). This effect is usually 
expressed by saying that water wets the glass (by sticking to it) while mer-
cury does not. The strength of the capillary effect is quantified by the contact 
(or wetting) angle f, defined as the angle that the tangent to the liquid sur-
face makes with the solid surface at the point of contact. The surface tension 
force acts along this tangent line toward the solid surface. A liquid is said to 
wet the surface when f , 90° and not to wet the surface when f . 90°. In 
atmospheric air, the contact angle of water (and most other organic liquids) 
with glass is nearly zero, f < 0° (Fig. 2–36). Therefore, the surface tension 
force acts upward on water in a glass tube along the circumference, tending 
to pull the water up. As a result, water rises in the tube until the weight of 
the liquid in the tube above the liquid level of the reservoir balances the sur-
face tension force. The contact angle is 130° for mercury–glass and 26° for 
kerosene–glass in air. Note that the contact angle, in general, is different in 
different environments (such as another gas or liquid in place of air).
 The phenomenon of the capillary effect can be explained microscopically 
by considering cohesive forces (the forces between like molecules, such as 
water and water) and adhesive forces (the forces between unlike molecules, 
such as water and glass). The liquid molecules at the solid–liquid interface 
are subjected to both cohesive forces by other liquid molecules and adhesive 
forces by the molecules of the solid. The relative magnitudes of these forces 
determine whether a liquid wets a solid surface or not. Obviously, the water 
molecules are more strongly attracted to the glass molecules than they are to 
other water molecules, and thus water tends to rise along the glass surface. 
The opposite occurs for mercury, which causes the liquid surface near the 
glass wall to be suppressed (Fig. 2–37).
 The magnitude of the capillary rise in a circular tube can be determined 
from a force balance on the cylindrical liquid column of height h in the tube 
(Fig. 2–38). The bottom of the liquid column is at the same level as the free 
surface of the reservoir, and thus the pressure there must be atmospheric 
pressure. This balances the atmospheric pressure acting at the top surface of 

(a) Wetting
fluid

Water

(b) Nonwetting
fluid

Mercury

f

f

FIGURE 2–35
The contact angle for wetting and 
nonwetting fluids.

(a) Half of a droplet or air bubble

(2  R)  sπ σ

(  R2)ΔPdropletπ

(b) Half of a soap bubble

2(2  R)  s

(  R2)ΔPbubble

σπ

π

FIGURE 2–34
The free-body diagram of half of a 
droplet or air bubble and half of a soap 
bubble.

FIGURE 2–36
The meniscus of colored water in a 
4-mm-inner-diameter glass tube. Note 
that the edge of the meniscus meets 
the wall of the capillary tube at a very 
small contact angle.
Photo by Gabrielle Tremblay. Used by permission.
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Meniscus

Water Mercury

h > 0

h < 0

Meniscus

FIGURE 2–37
The capillary rise of water and 

the capillary fall of mercury in a 
small-diameter glass tube.

h

W

2R

Liquid

2pRss
f

FIGURE 2–38
The forces acting on a liquid column 

that has risen in a tube due to the 
capillary effect.

h

W
Water

Air

2pRss cos f

f

FIGURE 2–39
Schematic for Example 2–6.

the liquid column, and thus these two effects cancel each other. The weight 
of the liquid column is approximately

W 5 mg 5 rVg 5 rg(pR2h)

Equating the vertical component of the surface tension force to the weight gives

W 5 Fsurface S  rg(pR2h) 5 2pRss cos f

Solving for h gives the capillary rise to be

Capillary rise: h 5
2ss

rgR
 cos f  (R 5 constant) (2–42)

This relation is also valid for nonwetting liquids (such as mercury in glass) 
and gives the capillary drop. In this case f . 90° and thus cos f , 0, which 
makes h negative. Therefore, a negative value of capillary rise corresponds 
to a capillary drop (Fig. 2–37).
 Note that the capillary rise is inversely proportional to the radius of the 
tube. Therefore, the thinner the tube is, the greater the rise (or fall) of the 
liquid in the tube. In practice, the capillary effect for water is usually negli-
gible in tubes whose diameter is greater than 1 cm. When pressure measure-
ments are made using manometers and barometers, it is important to use 
sufficiently large tubes to minimize the capillary effect. The capillary rise is 
also inversely proportional to the density of the liquid, as expected. There-
fore, in general, lighter liquids experience greater capillary rises. Finally, it 
should be kept in mind that Eq. 2–42 is derived for constant-diameter tubes 
and should not be used for tubes of variable cross section.

EXAMPLE 2–6    The Capillary Rise of Water in a Tube

A 0.6-mm-diameter glass tube is inserted into water at 20°C in a cup. 

Determine the capillary rise of water in the tube (Fig. 2–39).

SOLUTION  The rise of water in a slender tube as a result of the capillary 

effect is to be determined.

Assumptions  1 There are no impurities in the water and no contamination 

on the surfaces of the glass tube. 2 The experiment is conducted in atmo-

spheric air.

Properties  The surface tension of water at 20°C is 0.073 N/m (Table 2–4). 

The contact angle of water with glass is approximately 0° (from preceding 

text). We take the density of liquid water to be 1000 kg/m3.

Analysis  The capillary rise is determined directly from Eq. 2–42 by substi-

tuting the given values, yielding

h 5
2ss

rgR
 cos f 5

2(0.073 N/m)

(1000 kg/m3)(9.81 m/s2)(0.3 3 1023m)
 (cos 08)a1kg·m/s2

1 N
b

 5 0.050 m 5 5.0 cm 

Therefore, water rises in the tube 5 cm above the liquid level in the cup.

Discussion  Note that if the tube diameter were 1 cm, the capillary rise would 

be 0.3 mm, which is hardly noticeable to the eye. Actually, the capillary rise 

in a large-diameter tube occurs only at the rim. The center does not rise at all. 

Therefore, the capillary effect can be ignored for large-diameter tubes.

037-074_cengel_ch02.indd   59 12/14/12   11:27 AM



60
PROPERTIES OF FLUIDS

Water

h
Water to
turbineAir

1

2

FIGURE 2–40
Schematic for Example 2-7.

EXAMPLE 2–7     Using Capillary Rise to Generate Power in a 
Hydraulic Turbine

Reconsider Example 2–6. Realizing that water rises by 5 cm under the influ-

ence of surface tension without requiring any energy input from an external 

source, a person conceives the idea that power can be generated by drilling 

a hole in the tube just below the water level and feeding the water spilling 

out of the tube into a turbine (Fig. 2–40). The person takes this idea even 

further by suggesting that a series of tube banks can be used for this pur-

pose and cascading can be incorporated to achieve practically feasible flow 

rates and elevation differences. Determine if this idea has any merit. 

SOLUTION  Water that rises in tubes under the influence of the capillary 

effect is to be used to generate power by feeding it into a turbine. The valid-

ity of this suggestion is to be evaluated.

Analysis  The proposed system may appear like a stroke of genius, since 

the commonly used hydroelectric power plants generate electric power by 

simply capturing the potential energy of elevated water, and the capillary 

rise provides the mechanism to raise the water to any desired height without 

requiring any energy input. 

 When viewed from a thermodynamic point of view, the proposed sys-

tem immediately can be labeled as a perpetual motion machine (PMM) since 

it continuously generates electric power without requiring any energy input. 

That is, the proposed system creates energy, which is a clear violation of the 

first law of thermodynamics or the conservation of energy principle, and it 

does not warrant any further consideration. But the fundamental principle 

of conservation of energy did not stop many from dreaming about being the 

first to prove nature wrong, and to come up with a trick to permanently solve 

the world’s energy problems. Therefore, the impossibility of the proposed 

system should be demonstrated. 

 As you may recall from your physics courses (also to be discussed in 

the next chapter), the pressure in a static fluid varies in the vertical direction 

only and increases with increasing depth linearly. Then the pressure differ-

ence across the 5-cm-high water column in the tube becomes

 DPwater column in tube 5 P2 2 P1 5 rwatergh

 5 (1000 kg/m2)(9.81 m/s2)(0.05 m)a 1 kN

1000 kg·m/s2b
 5 0.49 kN/m2 ( < 0.005 atm)

That is, the pressure at the top of the water column in the tube is 0.005 atm 

less than the pressure at the bottom. Noting that the pressure at the bottom 

of the water column is atmospheric pressure (since it is at the same horizon-

tal line as the water surface in the cup) the pressure anywhere in the tube 

is below atmospheric pressure with the difference reaching 0.005 atm at 

the top. Therefore, if a hole is drilled in the tube, air will leak into the tube 

rather than water leaking out.

Discussion  The water column in the tube is motionless, and thus, there 

cannot be any unbalanced force acting on it (zero net force). The force due 

to the pressure difference across the meniscus between the atmospheric air 

and the water at the top of water column is balanced by the surface tension. 

If this surface-tension force were to disappear, the water in the tube would 

drop down under the influence of atmospheric pressure to the level of the 

free surface in the tube.
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SUMMARY

In this chapter various properties commonly used in fluid 
mechanics are discussed. The mass-dependent properties 
of a system are called extensive properties and the others, 
intensive properties. Density is mass per unit volume, and 
specific volume is volume per unit mass. The specific grav-
ity is defined as the ratio of the density of a substance to the 
density of water at 4°C,

SG 5
r

rH2O

The ideal-gas equation of state is expressed as

P 5 rRT

where P is the absolute pressure, T is the thermodynamic tem-
perature, r is the density, and R is the gas constant.
 At a given temperature, the pressure at which a pure sub-
stance changes phase is called the saturation pressure. For 
phase-change processes between the liquid and vapor phases 
of a pure substance, the saturation pressure is commonly 
called the vapor pressure Pv. Vapor bubbles that form in 
the low-pressure regions in a liquid (a phenomenon called 
cavitation) collapse as they are swept away from the low-
pressure regions, generating highly destructive, extremely 
high-pressure waves.
 Energy can exist in numerous forms, and their sum con-
stitutes the total energy E (or e on a unit-mass basis) of a 
system. The sum of all microscopic forms of energy is called 
the internal energy U of a system. The energy that a system 
possesses as a result of its motion relative to some reference 
frame is called kinetic energy expressed per unit mass as 
ke 5 V2/2, and the energy that a system possesses as a result 
of its elevation in a gravitational field is called potential 
energy expressed per unit mass as pe 5 gz.
 The compressibility effects in a fluid are represented by 
the coefficient of compressibility k (also called the bulk mod-
ulus of elasticity) defined as

k 5 2v a 0P
0v

b
T

5 ra 0P
0r

b
T

 >  2
DP

Dv/v

 The property that represents the variation of the density of 
a fluid with temperature at constant pressure is the volume 
expansion coefficient (or volume expansivity) b, defined as

b 5
1

v
 a 0v
0T

b
P

5 2
1
r
a 0r
0T

b
P

 >  2
Dr/r

DT

 The velocity at which an infinitesimally small pressure 
wave travels through a medium is the speed of sound. For an 
ideal gas it is expressed as

c 5 Åa 0P
0r

b
s

5 "kRT

The Mach number is the ratio of the actual speed of the fluid 
to the speed of sound at the same state:

Ma 5
V
c

The flow is called sonic when Ma 5 1, subsonic when 
Ma , 1, supersonic when Ma . 1, hypersonic when 
Ma .. 1, and transonic when Ma ù 1.
 The viscosity of a fluid is a measure of its resistance to 
deformation. The tangential force per unit area is called 
shear stress and is expressed for simple shear flow between 
plates (one-dimensional flow) as

t 5 m 
du

dy

where m is the coefficient of viscosity or the dynamic (or 
absolute) viscosity of the fluid, u is the velocity component 
in the flow direction, and y is the direction normal to the flow 
direction. Fluids that obey this linear relationship are called 
Newtonian fluids. The ratio of dynamic viscosity to density is 
called the kinematic viscosity n.
 The pulling effect on the liquid molecules at an interface 
caused by the attractive forces of molecules per unit length 
is called surface tension ss. The excess pressure DP inside a 
spherical droplet or soap bubble, respectively, is given by

DPdroplet 5 Pi 2 Po 5
2ss

R
 and DPsoap bubble 5 Pi 2 Po 5

4ss

R

where Pi and Po are the pressures inside and outside the droplet 
or soap bubble. The rise or fall of a liquid in a small-diameter 
tube inserted into the liquid due to surface tension is called the 
capillary effect. The capillary rise or drop is given by

h 5
2ss

rgR
 cos f

where f is the contact angle. The capillary rise is inversely 
proportional to the radius of the tube; for water, it is negli-
gible for tubes whose diameter is larger than about 1 cm.
 Density and viscosity are two of the most fundamental 
properties of fluids, and they are used extensively in the 
chapters that follow. In Chap. 3, the effect of density on 
the variation of pressure in a fluid is considered, and the 
hydrostatic forces acting on surfaces are determined. In 
Chap. 8, the pressure drop caused by viscous effects dur-
ing flow is calculated and used in the determination of the 
pumping power requirements. Viscosity is also used as a key 
property in the formulation and solutions of the equations of 
fluid motion in Chaps. 9 and 10.
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(a)

(b)

FIGURE 2–41
(a) Vaporous cavitation occurs in 
water that has very little entrained 
gas, such as that found very deep in 
a body of water. Cavitation bubbles 
are formed when the speed of the 
body—in this case the bulbulous bow 
region of a surface ship sonar dome—
increases to the point where the local 
static pressure falls below the vapor 
pressure of the water. The cavitation 
bubbles are filled essentially with 
water vapor. This type of cavitation 
is very violent and noisy. (b) On the 
other hand, in shallow water, there is 
much more entrained gas in the water 
to act as cavitation nuclei. That’s 
because of the proximity of the dome 
to the atmosphere at the free surface. 
The cavitation bubbles first appear at 
a slower speed, and hence at a higher 
local static pressure. They are predom-
inantly filled with the gases that are 
entrained in the water, so this is known 
as gaseous cavitation.
Reprinted by permission of G. C. Lauchle 
and M. L. Billet, Penn State University.

Guest Authors: G. C. Lauchle and M. L. Billet, 
Penn State University

Cavitation is the rupture of a liquid, or of a fluid–solid interface, caused by 
a reduction of the local static pressure produced by the dynamic action of 
the fluid in the interior and/or boundaries of a liquid system. The rupture 
is the formation of a visible bubble. Liquids, such as water, contain many 
microscopic voids that act as cavitation nuclei. Cavitation occurs when these 
nuclei grow to a significant, visible size. Although boiling is also the forma-
tion of voids in a liquid, we usually separate this phenomenon from cavi-
tation because it is caused by an increase in temperature, rather than by a 
reduction in pressure. Cavitation can be used in beneficial ways, such as in 
ultrasonic cleaners, etchers, and cutters. But more often than not, cavitation 
is to be avoided in fluid flow applications because it spoils hydrodynamic 
performance, it causes extremely loud noise and high vibration levels, and it 
damages (erodes) the surfaces that support it. When cavitation bubbles enter 
regions of high pressure and collapse, the underwater shock waves some-
times create minute amounts of light. This phenomenon is called sonolumi-
nescence.
 Body cavitation is illustrated in Fig. 2–41. The body is a model of the under-
water bulbulous bow region of a surface ship. It is shaped this way because 
located within it is a sound navigation and ranging (sonar) system that is 
spherical in shape. This part of the surface ship is thus called a sonar dome. As 
ship speeds get faster and faster some of these domes start to cavitate and the 
noise created by the cavitation renders the sonar system useless. Naval archi-
tects and fluid dynamicists attempt to design these domes so that they will 
not cavitate. Model-scale testing allows the engineer to see first hand whether 
a given design provides improved cavitation performance. Because such tests 
are conducted in water tunnels, the conditions of the test water should have 
sufficient nuclei to model those conditions in which the prototype operates. 
This assures that the effect of liquid tension (nuclei distribution) is minimized. 
Important variables are the gas content level (nuclei distribution) of the water, 
the temperature, and the hydrostatic pressure at which the body operates. 
Cavitation first appears—as either the speed V is increased, or as the submer-
gence depth h is decreased—at the minimum pressure point Cpmin

 of the body. 
Thus, good hydrodynamic design requires 2(P` 2 Pv)/rV

2 . Cpmin
, where r 

is density, P` 5 rgh is the reference to static pressure, Cp is the pressure coef-
ficient (Chap. 7), and Pv is the vapor pressure of water.
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Density and Specific Gravity

2–1C  For a substance, what is the difference between mass 
and  molar mass? How are these two related?

2–2C  What is the difference between intensive and exten-
sive properties?

2–3C  What is specific gravity? How is it related to density?

2–4C  The specific weight of a system is defined as the 
weight per unit volume (note that this definition violates the 
normal specific property-naming convention). Is the specific 
weight an extensive or intensive property?

2–5C  What is the state postulate?

2–6C  Under what conditions is the ideal-gas assumption 
suitable for real gases?

2–7C  What is the difference between R and Ru? How are 
these two related?

2–8  A fluid that occupies a volume of 24 L weighs 
225 N at a location where the gravitational acceleration is 
9.80 m/s2. Determine the mass of this fluid and its density. 

2–9  A 100-L container is filled with 1 kg of air at a tem-
perature of 27°C. What is the pressure in the container?

2–10E  A mass of 1-lbm of argon is maintained at 200 psia 
and 100°F in a tank. What is the volume of the tank?

2–11E  What is the specific volume of oxygen at 40 psia 
and 80°F?

2–12E  The air in an automobile tire with a volume of 2.60 ft3 
is at 90°F and 20 psig. Determine the amount of air that must be 
added to raise the pressure to the recommended value of 30 psig. 
Assume the atmospheric pressure to be 14.6 psia and the tem-
perature and the volume to remain constant.  Answer: 0.128 lbm

2–13  The pressure in an automobile tire depends on the 
temperature of the air in the tire. When the air temperature is 
25°C, the pressure gage reads 210 kPa. If the volume of the 

* Problems designated by a “C” are concept questions, and 

students are encouraged to answer them all. Problems designated 

by an “E” are in English units, and the SI users can ignore them. 

Problems with the  icon are solved using EES, and complete 

solutions together with parametric studies are included on the text 

website. Problems with the  icon are comprehensive in nature 

and are intended to be solved with an equation solver such as EES.

FIGURE P2–13
Stockbyte/GettyImages
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Vapor Pressure and Cavitation

2–20C  What is cavitation? What causes it? 

2–21C  Does water boil at higher temperatures at higher 
pressures? Explain.

2–22C  If the pressure of a substance is increased during a 
boiling process, will the temperature also increase or will it 
remain constant? Why?

2–23C  What is vapor pressure? How is it related to satura-
tion pressure?

2–24E  The analysis of a propeller that operates in water at 
70°F shows that the pressure at the tips of the propeller drops 
to 0.1 psia at high speeds. Determine if there is a danger of 
cavitation for this propeller.

2–25  A pump is used to transport water to a higher reser-
voir. If the water temperature is 20°C, determine the lowest 
pressure that can exist in the pump without cavitation.

2–26  In a piping system, the water temperature remains 
under 30°C. Determine the minimum pressure allowed in the 
system to avoid cavitation.

2–27  The analysis of a propeller that operates in water at 
20°C shows that the pressure at the tips of the propeller drops 
to 2 kPa at high speeds. Determine if there is a danger of 
cavitation for this propeller.

Energy and Specific Heats

2–28C  What is flow energy? Do fluids at rest possess any 
flow energy?

2–29C  How do the energies of a flowing fluid and a fluid 
at rest compare? Name the specific forms of energy associ-
ated with each case.

2–30C  What is the difference between the macroscopic and 
microscopic forms of energy?

2–31C  What is total energy? Identify the different forms of 
energy that constitute the total energy.

2–32C  List the forms of energy that contribute to the inter-
nal energy of a system.

2–33C  How are heat, internal energy, and thermal energy 
related to each other?

2–34C  Using average specific heats, explain how internal 
energy changes of ideal gases and incompressible substances 
can be determined.

2–35C  Using average specific heats, explain how enthalpy 
changes of ideal gases and incompressible substances can be 
determined.

2–36  Saturated water vapor at 150°C (enthalpy h 5 
2745.9 kJ/kg) flows in a pipe at 50 m/s at an elevation of 
z 5 10 m. Determine the total energy of vapor in J/kg rela-
tive to the ground level.

tire is 0.025 m3, determine the pressure rise in the tire when 
the air temperature in the tire rises to 50°C. Also, determine 
the amount of air that must be bled off to restore pressure to 
its original value at this temperature. Assume the atmospheric 
pressure to be 100 kPa.

2–14  A spherical balloon with a diameter of 9 m is filled 
with helium at 20°C and 200 kPa. Determine the mole num-
ber and the mass of the helium in the balloon.  Answers: 

31.3 kmol, 125 kg

2–15  Reconsider Prob. 2–14. Using EES (or other) 
software, investigate the effect of the balloon 

diameter on the mass of helium contained in the balloon for 
the pressures of (a) 100 kPa and (b) 200 kPa. Let the diame-
ter vary from 5 m to 15 m. Plot the mass of helium against 
the diameter for both cases.

2–16  A cylindrical tank of methanol has a mass of 40 kg 
and a volume of 51 L. Determine the methanol’s weight, den-
sity, and specific gravity. Take the gravitational acceleration 
to be 9.81 m/s2. Also, estimate how much force is needed to 
accelerate this tank linearly at 0.25 m/s2.

2–17  The density of saturated liquid refrigerant–134a for 
220°C # T # 100°C is given in Table A– 4. Using this value 
develop an expression in the form r 5 aT 2 1 bT 1 c for the 
density of refrigerant–134a as a function of absolute tempera-
ture, and determine relative error for each data set.

2–18E  A rigid tank contains 40 lbm of air at 20 psia and 
70°F. More air is added to the tank until the pressure and 
temperature rise to 35 psia and 90°F, respectively. Determine 
the amount of air added to the tank.  Answer: 27.4 lbm

2–19  The density of atmospheric air varies with eleva-
tion, decreasing with increasing altitude. (a) Using 

the data given in the table, obtain a relation for the variation 
of density with elevation, and calculate the density at an ele-
vation of 7000 m. (b) Calculate the mass of the atmosphere 
using the correlation you obtained. Assume the earth to be a 
perfect sphere with a radius of 6377 km, and take the thick-
ness of the atmosphere to be 25 km.

 r, km r,kg/m3

 6377 1.225

 6378 1.112

 6379 1.007

 6380 0.9093

 6381 0.8194

 6382 0.7364

 6383 0.6601

 6385 0.5258

 6387 0.4135

 6392 0.1948

 6397 0.08891

 6402 0.04008
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Compressibility

2–37C  What does the coefficient of compressibility of a fluid 
represent? How does it differ from isothermal compressibility?

2–38C  What does the coefficient of volume expansion of 
a fluid represent? How does it differ from the coefficient of 
compressibility?

2–39C  Can the coefficient of compressibility of a fluid be 
negative? How about the coefficient of volume expansion?

2–40  Water at 15°C and 1 atm pressure is heated to 100°C 
at constant pressure. Using coefficient of volume expansion 
data, determine the change in the density of water.
Answer: 238.7 kg/m3

2–41  It is observed that the density of an ideal gas increases 
by 10 percent when compressed isothermally from 10 atm to 
11 atm. Determine the percent increase in density of the gas 
if it is compressed isothermally from 1000 atm to 1001 atm.

2–42  Using the definition of the coefficient of volume 
expansion and the expression bideal gas 5 1/T, show that the 
percent increase in the specific volume of an ideal gas during 
isobaric expansion is equal to the percent increase in absolute 
temperature.

2–43  Water at 1 atm pressure is compressed to 400 atm 
pressure isothermally. Determine the increase in the density 
of water. Take the isothermal compressibility of water to be 
4.80 3 1025 atm21.

2–44  The volume of an ideal gas is to be reduced by half by 
compressing it isothermally. Determine the required change in 
pressure.

2–45  Saturated refrigerant-134a liquid at 10°C is cooled to 
0°C at constant pressure. Using coefficient of volume expan-
sion data, determine the change in the density of the refrigerant.

2–46  A water tank is completely filled with liquid water 
at 20°C. The tank material is such that it can withstand ten-
sion caused by a volume expansion of 0.8 percent. Determine 
the maximum temperature rise allowed without jeopardizing 
safety. For simplicity, assume b 5 constant 5 b at 40°C.

2–47  Repeat Prob. 2–46 for a volume expansion of 1.5 per-
cent for water.

2–48  The density of seawater at a free surface where the 
pressure is 98 kPa is approximately 1030 kg/m3. Taking the 
bulk modulus of elasticity of seawater to be 2.34 3 109 N/m2 
and expressing variation of pressure with depth z as dP 5 
rg dz determine the density and pressure at a depth of 2500 m. 
Disregard the effect of temperature.

2–49E  Taking the coefficient of compressibility of water to 
be 7 3 105 psia, determine the pressure increase required to 
reduce the volume of water by (a) 1 percent and (b) 2 percent.

2–50E  Ignoring any losses, estimate how much energy (in 
units of Btu) is required to raise the temperature of water in a 
75-gallon hot-water tank from 60°F to 110°F.

2–51  Prove that the coefficient of volume expansion for an 
ideal gas is bideal gas 5 1/T.

2–52  The ideal gas equation of state is very simple, but its 
range of applicability is limited. A more accurate but compli-
cated equation is the Van der Waals equation of state given by

P 5
RT

v 2 b
2

a

v 2

 where a and b are constants depending on critical pressure and 
temperatures of the gas. Predict the coefficient of compress-
ibility of nitrogen gas at T 5 175 K and v5 0.00375 m3/kg, 
assuming the nitrogen to obey the Van der Waals equation of 
state. Compare your result with the ideal gas value. Take a 5 
0.175 m6?kPa/kg2 and b 5 0.00138 m3/kg for the given con-
ditions. The experimentally measured pressure of nitrogen is 
10,000 kPa.

2–53  A frictionless piston-cylinder device contains 10 kg 
of water at 20°C at atmospheric pressure. An external force 
F is then applied on the piston until the pressure inside the 
cylinder increases to 100 atm. Assuming the coefficient of 
compressibility of water remains unchanged during the com-
pression; estimate the energy needed to compress the water 
isothermally.  Answer: 29.4 J

FIGURE P2–53

Water Pressure gauge

F

2–54  Reconsider Prob. 2–53. Assuming a linear pressure 
increase during the compression, estimate the energy needed 
to compress the water isothermally.

Speed of Sound

2–55C  What is sound? How is it generated? How does it 
travel? Can sound waves travel in a vacuum?

2–56C  In which medium does a sound wave travel faster: 
in cool air or in warm air?

2–57C  In which medium will sound travel fastest for a 
given temperature: air, helium, or argon?
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2–58C  In which medium does a sound wave travel faster: 
in air at 20°C and 1 atm or in air at 20°C and 5 atm?

2–59C  Does the Mach number of a gas flowing at a con-
stant velocity remain constant? Explain.

2–60C  Is it realistic to approximate that the propagation of 
sound waves is an isentropic process? Explain.

2–61C  Is the sonic velocity in a specified medium a fixed 
quantity, or does it change as the properties of the medium 
change? Explain.

2–62  The Airbus A-340 passenger plane has a maximum 
takeoff weight of about 260,000 kg, a length of 64 m, a wing 
span of 60 m, a maximum cruising speed of 945 km/h, a 
seating capacity of 271 passengers, a maximum cruising alti-
tude of 14,000 m, and a maximum range of 12,000 km. The 
air temperature at the crusing altitude is about 260°C. Deter-
mine the Mach number of this plane for the stated limiting 
conditions.

2–63  Carbon dioxide enters an adiabatic nozzle at 1200 K 
with a velocity of 50 m/s and leaves at 400 K. Assuming 
constant specific heats at room temperature, determine the 
Mach number (a) at the inlet and (b) at the exit of the nozzle. 
Assess the accuracy of the constant specific heat approximation. 
Answers: (a) 0.0925, (b) 3.73

2–64  Nitrogen enters a steady-flow heat exchanger at 
150 kPa, 10°C, and 100 m/s, and it receives heat in the 
amount of 120 kJ/kg as it flows through it. Nitrogen leaves 
the heat exchanger at 100 kPa with a velocity of 200 m/s. 
Determine the Mach number of the nitrogen at the inlet and 
the exit of the heat exchanger.

2–65  Assuming ideal gas behavior, determine the speed of 
sound in refrigerant-134a at 0.9 MPa and 60°C.

2–66  Determine the speed of sound in air at (a) 300 K and 
(b) 800 K. Also determine the Mach number of an aircraft 
moving in air at a velocity of 330 m/s for both cases.

2–67E  Steam flows through a device with a pressure of 
120 psia, a temperature of 700°F, and a velocity of 900 ft/s. 
Determine the Mach number of the steam at this state by 
assuming ideal-gas behavior with k 5 1.3.  Answer: 0.441

2–68E  Reconsider Prob. 2–67E. Using EES (or other) 
software, compare the Mach number of steam 

flow over the temperature range 350 to 700°F. Plot the Mach 
number as a function of temperature.

2–69E  Air expands isentropically from 170 psia and 200°F 
to 60 psia. Calculate the ratio of the initial to final speed of 
sound.  Answer: 1.16

2–70  Air expands isentropically from 2.2 MPa and 77°C to 
0.4 MPa. Calculate the ratio of the initial to the final speed of 
sound.  Answer: 1.28

2–71  Repeat Prob. 2–70 for helium gas.

2–72  The isentropic process for an ideal gas is expressed as 
Pv k 5 constant. Using this process equation and the defini-
tion of the speed of sound (Eq. 2–24), obtain the expression 
for the speed of sound for an ideal gas (Eq. 2–26).

Viscosity

2–73C  What is viscosity? What is the cause of it in liq-
uids and in gases? Do liquids or gases have higher dynamic 
viscosities?

2–74C  What is a Newtonian fluid? Is water a Newtonian 
fluid?

2–75C  How does the kinematic viscosity of (a) liquids and 
(b) gases vary with temperature?

2–76C  How does the dynamic viscosity of (a) liquids and 
(b) gases vary with temperature?

2–77C  Consider two identical small glass balls dropped 
into two identical containers, one filled with water and the 
other with oil. Which ball will reach the bottom of the con-
tainer first? Why?

2–78E  The viscosity of a fluid is to be measured by a vis-
cometer constructed of two 5-ft-long concentric cylinders. The 
inner diameter of the outer cylinder is 6 in, and the gap between 
the two cylinders is 0.035 in. The outer cylinder is rotated at 
250 rpm, and the torque is measured to be 1.2 lbf?ft. Determine 
the viscosity of the fluid.  Answer: 0.000272 lbf?s/ft2

2–79  A 50-cm 3 30-cm 3 20-cm block weighing 150 N is 
to be moved at a constant velocity of 0.80 m/s on an inclined 
surface with a friction coefficient of 0.27. (a) Determine 
the force F that needs to be applied in the horizontal direc-
tion. (b) If a 0.40-mm-thick oil film with a dynamic viscos-
ity of  0.012 Pa?s is applied between the block and inclined 
 surface, determine the percent reduction in the required 
force.

150 N

F
30 cm

50 cm

20º

V= 0.80 m/s

FIGURE P2–79

2–80  Consider the flow of a fluid with viscosity m through 
a  circular pipe. The velocity profile in the pipe is given as 
u(r) 5 umax(1 2 rn/Rn), where umax is the maximum flow 
velocity, which occurs at the centerline; r is the radial dis-
tance from the centerline; and u(r) is the flow velocity at any 
position r. Develop a relation for the drag force exerted on 
the pipe wall by the fluid in the flow direction per unit length 
of the pipe.
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r

R

umax

u(r) = umax(1 – rn/Rn)

0

FIGURE P2–80

F

Fixed wall

Moving wall

    = 3 m/sh1 = 1 mm

h2 = 2.6 mm
  w = 0.3 m/s

V

V

FIGURE P2–81

2–81  A thin 30-cm 3 30-cm flat plate is pulled at 3 m/s hori-
zontally through a 3.6-mm-thick oil layer sandwiched between 
two plates, one stationary and the other moving at a constant 
velocity of 0.3 m/s, as shown in Fig. P2–81. The dynamic viscosity 
of the oil is 0.027 Pa?s. Assuming the velocity in each oil layer 
to vary linearly, (a) plot the velocity profile and find the location 
where the oil velocity is zero and (b) determine the force that 
needs to be applied on the plate to maintain this motion.

are negligible (we can treat this as a two-dimensional prob-
lem). Torque (T) is required to rotate the inner cylinder at 
constant speed. (a) Showing all of your work and algebra, 
generate an approximate expression for T as a function of 
the other variables. (b) Explain why your solution is only an 
approximation. In particular, do you expect the velocity pro-
file in the gap to remain linear as the gap becomes larger and 
larger (i.e., if the outer radius Ro were to increase, all else 
staying the same)?

2–83  The clutch system shown in Fig. P2–83 is used to trans-
mit torque through a 2-mm-thick oil film with m 5 0.38 N?s/m2 
between two identical 30-cm-diameter disks. When the driv-
ing shaft rotates at a speed of 1450 rpm, the driven shaft is 
observed to rotate at 1398 rpm. Assuming a linear velocity 
profile for the oil film, determine the transmitted torque.

2–82  A rotating viscometer consists of two concentric 
cylinders – an inner cylinder of radius Ri rotating at angular 
velocity (rotation rate) vi, and a stationary outer cylinder of 
inside radius Ro. In the tiny gap between the two cylinders 
is  the fluid of viscosity m. The length of the cylinders (into 
the page in Fig. P2–82) is L. L is large such that end effects 

30 cm

Driving
shaft

Driven
shaft

SAE 30W oil

2 mm

FIGURE P2–83

Liquid: r, m

Rotating inner cylinder

Stationary outer cylinder

Ro

Ri

vi

FIGURE P2–82

2–84  Reconsider Prob. 2–83. Using EES (or other) 
software, investigate the effect of oil film thick-

ness on the torque transmitted. Let the film thickness vary 
from 0.1 mm to 10 mm. Plot your results, and state your 
conclusions. 

2–85  The dynamic viscosity of carbon dioxide at 50°C and 
200°C are 1.612 3 1025 Pa?s and 2.276 3 1025 Pa?s, respec-
tively. Determine the constants a and b of Sutherland correla-
tion for carbon dioxide at atmospheric pressure. Then predict 
the viscosity of carbon dioxide at 100°C and compare your 
result against the value given in Table A-10.

2–86  One of the widely used correlations to describe the 
variation of the viscosity of gases is the power-law equation 
given by m/m0 5 (T/T0)

n, where m0 and T0 are the reference 
viscosity and temperature, respectively. Using the power and 
Sutherland laws, examine the variation of the air viscosity for 
the temperature range 100°C (373 K) to 1000°C (1273 K). 
Plot your results to compare with values listed in Table A-9. 
Take the reference temperature as 0°C and n 5 0.666 for the 
atmospheric air.

2–87  For flow over a plate, the variation of velocity with 
vertical distance y from the plate is given as u(y) 5 ay 2 by2 
where a and b are constants. Obtain a relation for the wall 
shear stress in terms of a, b,  and m.
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r R umax

umax( )1 – r2

R2

o

FIGURE P2–88

2–88  In regions far from the entrance, fluid flow through a 
circular pipe is one dimensional, and the velocity profile for 
laminar flow is given by u(r) 5 umax(1 2 r2/R2), where R is 
the radius of the pipe, r is the radial distance from the center of 
the pipe, and umax is the maximum flow velocity, which occurs 
at the center. Obtain (a) a relation for the drag force applied by 
the fluid on a section of the pipe of length L and (b) the value 
of the drag force for water flow at 20°C with R 5 0.08 m, 
L 5 30 m, umax 5 3 m/s, and m 5 0.0010 kg/m?s. Liquid: r, m

Stationary inner cylinder

Rotating outer cylinder

Ro

Ri

vo

FIGURE P2–91

D = 12 cm

L = 12 cm

d = 4 cm

Case

SAE 10W oil

r

w

z

FIGURE P2–90

2–89  Repeat Prob. 2–88 for umax 5 7 m/s.  Answer: (b) 2.64 N

2–90  A frustum-shaped body is rotating at a constant angu-
lar speed of 200 rad/s in a container filled with SAE 10W 
oil at 20°C (m 5 0.100 Pa?s), as shown in Fig. P2–90. If the 
thickness of the oil film on all sides is 1.2 mm, determine 
the power required to maintain this motion. Also determine 
the reduction in the required power input when the oil tem-
perature rises to 80°C (m 5 0.0078 Pa?s).

FIGURE P2–92

U = 4 m/s

h = 5 mm Engine oil

y

V

2–92  A large plate is pulled at a constant speed of U 5 
4 m/s over a fixed plate on 5-mm-thick engine oil film at 
20°C. Assuming a half-parabolic velocity profile in the oil 
film, as sketched, determine the shear stress developed on the 
upper plate and its direction. What would happen if a linear 
velocity profile were assumed?

2–93  A cylinder of mass m slides down from rest in a verti-
cal tube whose inner surface is covered by a viscous oil of 
film thickness h. If the diameter and height of the cylinder are 
D and L, respectively, derive an expression for the velocity of 
the cylinder as a function of time, t. Discuss what will happen 
as t S q. Can this device serve as a viscometer?

2–91  A rotating viscometer consists of two concentric 
cylinders—a stationary inner cyliner of radius Ri and an 
outer cylinder of inside radius Ro rotating at angular velocity 
(rotation rate) vo. In the tiny gap between the two cylinders 
is the fluid whose viscosity (m) is to be measured. The length 

of the cylinders (into the page in Fig. P2-91) is L. L is large 
such that end effects are negligible (we can treat this as a 
two-dimensional problem). Torque (T) is required to rotate 
the inner cylinder at constant speed. Showing all your work 
and algebra, generate an approximate expression of T as a 
function of the other variables.
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2–94  A thin plate moves between two parallel, horizontal, 
stationary flat surfaces at a constant velocity of 5 m/s. The 
two stationary surfaces are spaced 4 cm apart, and the medium 
between them is filled with oil whose viscosity is 0.9 N?s/m2. 
The part of the plate immersed in oil at any given time is 2-m 
long and 0.5-m wide. If the plate moves through the mid-plane 
between the surfaces, determine the force required to maintain 
this motion. What would your response be if the plate was 1 cm 
from the bottom surface (h2) and 3 cm from the top surface (h1)?

F

Stationary surface

Stationary surface

    = 5 m/sh1

h2

V

FIGURE P2–94

2–95  Reconsider Prob. 2–94. If the viscosity of the oil 
above the moving plate is 4 times that of the oil below the 
plate, determine the distance of the plate from the bottom sur-
face (h2) that will minimize the force needed to pull the plate 
between the two oils at constant velocity.

Surface Tension and Capillary Effect

2–96C  What is surface tension? What is its cause? Why is 
the surface tension also called surface energy?

2–97C  A small-diameter tube is inserted into a liquid whose 
contact angle is 110°. Will the level of liquid in the tube be 
higher or lower than the level of the rest of the liquid? Explain.

2–98C  What is the capillary effect? What is its cause? How 
is it affected by the contact angle?

2–99C  Consider a soap bubble. Is the pressure inside the 
bubble higher or lower than the pressure outside?

2–100C  Is the capillary rise greater in small- or large-diameter 
tubes?

2–101  Consider a 0.15-mm diameter air bubble in a liquid. 
Determine the pressure difference between the inside and out-
side of the air bubble if the surface tension at the air-liquid 
interface is (a) 0.080 N/m and (b) 0.12 N/m.

2–102E  A 2.4-in-diameter soap bubble is to be enlarged by 
blowing air into it. Taking the surface tension of soap solu-
tion to be 0.0027 lbf/ft, determine the work input required to 
inflate the bubble to a diameter of 2.7 in.

2–103  A 1.2-mm-diameter tube is inserted into an unknown 
liquid whose density is 960 kg/m3, and it is observed that the 
liquid rises 5 mm in the tube, making a contact angle of 15°. 
Determine the surface tension of the liquid.

2–104  Determine the gage pressure inside a soap bub-
ble of diameter (a) 0.2 cm and (b) 5 cm at 20°C.

2–105E  A 0.03-in-diameter glass tube is inserted into kero-
sene at 68°F. The contact angle of kerosene with a glass sur-
face is 26°. Determine the capillary rise of kerosene in the 
tube.  Answer: 0.65 in

FIGURE P2–93

Oil film, h

Cylinder L

D

FIGURE P2–105E

h

0.03 in

Kerosene

2–106  The surface tension of a liquid is to be measured 
using a liquid film suspended on a U-shaped wire frame with 
an 8-cm-long movable side. If the force needed to move the 
wire is 0.024 N, determine the surface tension of this liquid 
in air.

2–107  A capillary tube of 1.2 mm diameter is immersed 
vertically in water exposed to the atmosphere. Determine 
how high water will rise in the tube. Take the contact angle at 
the inner wall of the tube to be 6° and the surface tension to 
be 1.00 N/m.  Answer: 0.338 m

2–108  A capillary tube is immersed vertically in a water 
container. Knowing that water starts to evaporate when the 
pressure drops below 2 kPa, determine the maximum capil-
lary rise and tube diameter for this maximum-rise case. Take 
the contact angle at the inner wall of the tube to be 6° and the 
surface tension to be 1.00 N/m.
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2–109  Contrary to what you might expect, a solid steel ball 
can float on water due to the surface tension effect. Deter-
mine the maximum diameter of a steel ball that would float 
on water at 20°C. What would your answer be for an alumi-
num ball? Take the densities of steel and aluminum balls to 
be 7800 kg/m3 and 2700 kg/m3, respectively.

2–110  Nutrients dissolved in water are carried to upper 
parts of plants by tiny tubes partly because of the capillary 
effect. Determine how high the water solution will rise in a 
tree in a 0.0026-mm-diameter tube as a result of the capil-
lary effect. Treat the solution as water at 20°C with a contact 
angle of 15°.  Answer: 11.1 m

2–115  A rigid tank contains an ideal gas at 300 kPa and 
600 K. Half of the gas is withdrawn from the tank and the 
gas is at 100 kPa at the end of the process. Determine (a) the 
final temperature of the gas and (b) the final pressure if no 
mass were withdrawn from the tank and the same final tem-
perature were reached at the end of the process.

2–116  The absolute pressure of an automobile tire is mea-
sured to be 320 kPa before a trip and 335 kPa after the trip. 
Assuming the volume of the tire remains constant at 0.022 m3, 
determine the percent increase in the absolute temperature of 
the air in the tire.

2–117E  The pressure on the suction side of pumps is typi-
cally low, and the surfaces on that side of the pump are sus-
ceptible to cavitation, especially at high fluid temperatures. If 
the minimum pressure on the suction side of a water pump is 
0.95 psia absolute, determine the maximum water tempera-
ture to avoid the danger of cavitation.

2–118  The composition of a liquid with suspended solid 
particles is generally characterized by the fraction of solid 
particles either by weight or mass, Cs, mass 5 ms/mm or by vol-
ume, Cs, vol 5 Vs/Vm where m is mass and V is volume. The 
subscripts s and m indicate solid and mixture, respectively. 
Develop an expression for the specific gravity of a water-
based suspension in terms of Cs, mass and Cs, vol.

2–119  The specific gravities of solids and carrier fluids of a 
slurry are usually known, but the specific gravity of the slurry 
depends on the concentration of the solid particles. Show that 
the specific gravity of a water-based slurry can be expressed 
in terms of the specific gravity of the solid SGs and the mass 
concentration of the suspended solid particles Cs, mass as

SGm 5
1

1 1 Cs, mass(1/SGs 2 1)

2–120  A 10-m3 tank contains nitrogen at 25°C and 800 kPa. 
Some nitrogen is allowed to escape until the pressure in the 
tank drops to 600 kPa. If the temperature at this point is 20°C, 
determine the amount of nitrogen that has escaped.  Answer: 

21.5 kg

Combustion
chamber
1.80 MPa

450°C

FIGURE P2–114

Review Problems

2–111  Derive a relation for the capillary rise of a liquid 
between two large parallel plates a distance t apart inserted 
into the liquid vertically. Take the contact angle to be f.

2–112  Consider a 55-cm-long journal bearing that is lubri-
cated with oil whose viscosity is 0.1 kg/m?s at 20°C at the 
beginning of operation and 0.008 kg/m?s at the anticipated 
steady operating temperature of 80°C. The diameter of the 
shaft is 8 cm, and the average gap between the shaft and the 
journal is 0.08 cm. Determine the torque needed to overcome 
the bearing friction initially and during steady operation 
when the shaft is rotated at 1500 rpm.

2–113  The diameter of one arm of a U-tube is 5 mm while 
the other arm is large. If the U-tube contains some water, and 
both surfaces are exposed to atmospheric pressure, determine 
the difference between the water levels in the two arms.

2–114  The combustion in a gasoline engine may be approxi-
mated by a constant volume heat addition process, and the 
contents of the combustion chamber both before and after 

0.0026 mmWater 
solution

FIGURE P2–110

combustion as air. The conditions are 1.80 MPa and 450°C 
before the combustion and 1300°C after it. Determine the pres-
sure at the end of the combustion process.  Answer: 3916 kPa
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2–121  A closed tank is partially filled with water at 60°C. 
If the air above the water is completely evacuated, determine 
the absolute pressure in the evacuated space. Assume the 
temperature to remain constant.

2–122  The variation of the dynamic viscosity of water 
with absolute temperature is given as

 T, K m, Pa?s

 273.15 1.787 3 1023

 278.15 1.519 3 1023

 283.15 1.307 3 1023

 293.15 1.002 3 1023

 303.15 7.975 3 1024

 313.15 6.529 3 1024

 333.15 4.665 3 1024

 353.15 3.547 3 1024

 373.15 2.828 3 1024

 Using these tabulated data, develop a relation for viscosity 
in the form of m 5 m(T) 5 A 1 BT 1 CT 2 1 DT 3 1 ET 4. 
Using the relation developed, predict the dynamic viscosity 
of water at 50°C at which the reported value is 5.468 3 1024 
Pa?s. Compare your result with the results of Andrade’s equa-
tion, which is given in the form of m 5 D?eB/T, where D and 
B are constants whose values are to be determined using the 
viscosity data given.

2–123  A newly produced pipe with diameter of 2 m and 
length 15 m is to be tested at 10 MPa using water at 15°C. 
After sealing both ends, the pipe is first filled with water and 
then the pressure is increased by pumping additional water 
into the test pipe until the test pressure is reached. Assuming 
no deformation in the pipe, determine how much additional 
water needs to be pumped into the pipe. Take the coefficient 
of compressibility to be 2.10 3 109 Pa.  Answer: 224 kg

2–124  Although liquids, in general, are hard to compress, 
the compressibility effect (variation in the density) may 
become unavoidable at the great depths in the oceans due to 
enormous pressure increase. At a certain depth the pressure is 
reported to be 100 MPa and the average coefficient of com-
pressibility is about 2350 MPa.

 (a) Taking the liquid density at the free surface to be r0 5 
1030 kg/m3, obtain an analytical relation between density and 
pressure, and determine the density at the specified pressure. 
Answer: 1074 kg/m3

 (b) Use Eq. 2–13 to estimate the density for the specified 
pressure and compare your result with that of part (a).

2–125  Consider laminar flow of a Newtonian fluid of vis-
cosity m between two parallel plates. The flow is one-dimen-
sional, and the velocity profile is given as u(y) 5 4umax
[ y/h 2 (y/h)2], where y is the vertical coordinate from the 
bottom surface, h is the distance between the two plates, 

y

h
umax

u(y) = 4umax[y/h – (y/h)2]

0

FIGURE P2–125

2–127  A shaft with a diameter of D 5 80 mm and a length 
of L 5 400 mm, shown in Fig. P2–127 is pulled with a con-
stant velocity of U 5 5 m/s through a bearing with variable 
diameter. The clearance between shaft and bearing, which 
varies from h1 5 1.2 mm to h2 5 0.4 mm, is filled with a 
Newtonian lubricant whose dynamic viscosity is 0.10 Pa?s. 
Determine the force required to maintain the axial movement 
of the shaft.  Answer: 69 N

and umax is the maximum flow velocity that occurs at mid-
plane. Develop a relation for the drag force exerted on both 
plates by the fluid in the flow direction per unit area of the 
plates.

FIGURE P2–126

Liquid 1

U = 10 m/s

y

x

Liquid 2

Liquid interface

2–126  Two immiscible Newtonian liquids flow steadily 
between two large parallel plates under the influence of an 
applied pressure gradient. The lower plate is fixed while the 
upper one is pulled with a constant velocity of U 5 10 m/s. 
The thickness, h, of each layer of fluid is 0.5 m. The velocity 
profile for each layer is given by

V1 5 6 1 ay 2 3y2,  20.5 # y # 0

V2 5 b 1 cy 2 9y2,  0 # y # 20.5

where a, b, and c are constants.

 (a) Determine the values of constants a, b, and c.

 (b) Develop an expression for the viscosity ratio, e.g., m1/m2 5?

 (c) Determine the forces and their directions exerted by the 
liquids on both plates if m1 5 1023 Pa?s and each plate has a 
surface area of 4 m2.
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2–128  Reconsider Prob. 2–127. The shaft now rotates with 
a constant angular speed of n 5 1450 rpm in a bearing with 
variable diameter. The clearance between shaft and bearing, 
which varies from h1 5 1.2 mm to h2 5 0.4 mm, is filled with 
a Newtonian lubricant whose dynamic viscosity is 0.1 Pa?s. 
Determine the torque required to maintain the motion.

2–129  A 10-cm-diameter cylindrical shaft rotates inside a 
40-cm-long 10.3-cm diameter bearing. The space between the 
shaft and the bearing is completely filled with oil whose vis-
cosity at anticipated operating temperature is 0.300 N?s/m2. 
Determine the power required to overcome friction when the 
shaft rotates at a speed of (a) 600 rpm and (b) 1200 rpm.

2–130  Some rocks or bricks contain small air pockets in 
them and have a spongy structure. Assuming the air spaces 
form columns of an average diameter of 0.006 mm, deter-
mine how high water can rise in such a material. Take the 
surface tension of the air–water interface in that material to 
be 0.085 N/m.

Fundamentals of Engineering (FE) Exam Problems

2–131  The specific gravity of a fluid is specified to be 0.82. 
The specific volume of this fluid is
(a) 0.00100 m3/kg (b) 0.00122 m3/kg (c) 0.0082 m3/kg
(d ) 82 m3/kg (e) 820 m3/kg

2–132  The specific gravity of mercury is 13.6. The specific 
weight of mercury is
(a) 1.36 kN/m3 (b) 9.81 kN/m3 (c) 106 kN/m3 (d ) 133 kN/m3

(e) 13,600 kN/m3

2–133  An ideal gas flows in a pipe at 20°C. The density of 
the gas is 1.9 kg/m3 and its molar mass is 44 kg/kmol. The 
pressure of the gas is
(a) 7 kPa (b) 72 kPa (c) 105 kPa (d ) 460 kPa (e) 4630 kPa

2–134  A gas mixture consists of 3 kmol oxygen, 2 kmol 
nitrogen, and 0.5 kmol water vapor. The total pressure of the 
gas mixture is 100 kPa. The partial pressure of water vapor in 
this gas mixture is
(a) 5 kPa (b) 9.1 kPa (c) 10 kPa (d ) 22.7 kPa (e) 100 kPa

2–135  Liquid water vaporizes into water vapor as it flows 
in the piping of a boiler. If the temperature of water in the 
pipe is 180°C, the vapor pressure of the water in the pipe is
(a) 1002 kPa (b) 180 kPa (c) 101.3 kPa (d ) 18 kPa (e) 100 kPa

2–136  In a water distribution system, the pressure of water 
can be as low as 1.4 psia. The maximum temperature of 
water allowed in the piping to avoid cavitation is
(a) 50°F (b) 77°F (c) 100°F (d ) 113°F (e) 140°F

2–137  The thermal energy of a system refers to
(a) Sensible energy (b) Latent energy
(c) Sensible 1 latent energies (d ) Enthalpy (e) Internal energy

2–138  The difference between the energies of a flowing and 
stationary fluid per unit mass of the fluid is equal to
(a) Enthalpy (b) Flow energy (c) Sensible energy
(d ) Kinetic energy (e) Internal energy

2–139  The pressure of water is increased from 100 kPa to 
1200 kPa by a pump. The temperature of water also increases 
by 0.15°C. The density of water is 1 kg/L and its specific 
heat is cp 5 4.18 kJ/kg?°C. The enthalpy change of the water 
during this process is
(a) 1100 kJ/kg (b) 0.63 kJ/kg (c) 1.1 kJ/kg (d ) 1.73 kJ/kg
(e) 4.2 kJ/kg

2–140  The coefficient of compressibility of a truly incom-
pressible substance is
(a) 0 (b) 0.5 (c) 1 (d ) 100 (e) Infinity

2–141  The pressure of water at atmospheric pressure must 
be raised to 210 atm to compress it by 1 percent. Then, the 
coefficient of compressibility value of water is
(a) 209 atm (b) 20,900 atm (c) 21 atm (d ) 0.21 atm
(e) 210,000 atm

2–142  When a liquid in a piping network encounters an 
abrupt flow restriction (such as a closing valve), it is locally 
compressed. The resulting acoustic waves that are produced 
strike the pipe surfaces, bends, and valves as they propagate 
and reflect along the pipe, causing the pipe to vibrate and 
produce a familiar sound. This is known as
(a) Condensation (b) Cavitation (c) Water hammer
(d ) Compression (e) Water arrest

2–143  The density of a fluid decreases by 5 percent at con-
stant pressure when its temperature increases by 10°C. The 
coefficient of volume expansion of this fluid is
(a) 0.01 K21 (b) 0.005 K21 (c) 0.1 K21 (d ) 0.5 K21 (e) 5 K21

2–144  Water is compressed from 100 kPa to 5000 kPa at con-
stant temperature. The initial density of water is 1000 kg/m3 
and the isothermal compressibility of water is a 5 
4.8 3 1025 atm21 . The final density of the water is
(a) 1000 kg/m3    (b) 1001.1 kg/m3 (c) 1002.3 kg/m3

(d ) 1003.5 kg/m3 (e) 997.4 kg/m3

2–145  The speed of a spacecraft is given to be 1250 km/h in 
atmospheric air at 240°C. The Mach number of this flow is
(a) 35 .9 (b) 0.85 (c) 1.0 (d ) 1.13 (e) 2.74

2–146  The dynamic viscosity of air at 20°C and 200 kPa is 
1.83 3 1025 kg/m?s. The kinematic viscosity of air at this state is
(a) 0.525 3 1025 m2/s (b) 0.77 3 1025 m2/s 
(c) 1.47 3 1025 m2/s   (d ) 1.83 3 1025 m2/s
(e) 0.380 3 1025 m2/s

FIGURE P2–127

yh1

h2

x

L

D U

Bearing

Shaft

Viscous oil, μ

037-074_cengel_ch02.indd   72 12/14/12   11:27 AM



CHAPTER 2
73

2–147  A viscometer constructed of two 30-cm-long con-
centric cylinders is used to measure the viscosity of a fluid. 
The outer diameter of the inner cylinder is 9 cm, and the gap 
between the two cylinders is 0.18 cm. The inner cylinder is 
rotated at 250 rpm, and the torque is measured to be 1.4 N?m. 
The viscosity of the fluid is
(a) 0.0084 N?s/m2 (b) 0.017 N?s/m2 (c) 0.062 N?s/m2

(d ) 0.0049 N?s/m2 (e) 0.56 N?s/m2

2–148  Which one is not a surface tension or surface energy 
(per unit area) unit?
(a) lbf/ft (b) N?m/m2 (c) lbf/ft2 (d ) J/m2 (e) Btu/ft2

2–149  The surface tension of soap water at 20°C is ss 5 
0.025 N/m. The gage pressure inside a soap bubble of diam-
eter 2 cm at 20°C is
(a) 10 Pa (b) 5 Pa (c) 20 Pa (d) 40 Pa (e) 0.5 Pa

2–150  A 0.4-mm-diameter glass tube is inserted into water 
at 20°C in a cup. The surface tension of water at 20°C is ss 5
0.073 N/m. The contact angle can be taken as zero degrees. 
The capillary rise of water in the tube is
(a) 2.9 cm (b) 7.4 cm (c) 5.1 cm 
(d ) 9.3 cm (e) 14.0 cm

Design and Essay Problems

2–151  Design an experiment to measure the viscosity of 
liquids using a vertical funnel with a cylindrical reservoir of 
height h and a narrow flow section of diameter D and length L. 
Making appropriate assumptions, obtain a relation for viscos-
ity in terms of easily measurable quantities such as density 
and volume flow rate.

2–152  Write an essay on the rise of the fluid to the top of 
trees by capillary and other effects.

2–153  Write an essay on the oils used in car engines in dif-
ferent seasons and their viscosities.

2–154  Consider the flow of water through a clear tube. It is 
sometimes possible to observe cavitation in the throat created 
by pinching off the tube to a very small diameter as sketched. 
We assume incompressible flow with negligible gravitational 
effects and negligible irreversibilities. You will learn later 
(Chap. 5) that as the duct cross-sectional area decreases, the 
velocity increases and the pressure decreases according to 

 V1A1 5 V2 A2  and  P1 1 r 

V 2
1

2
5 P2 1 r 

V 2
2

2

 respectively, where V1 and V2 are the average velocities through 
cross-sectional areas A1 and A2. Thus, both the maximum 

velocity and minimum pressure occur at the throat. (a) If the 
water is at 208C, the inlet pressure is 20.803 kPa, and the throat 
diameter is one-twentieth of the inlet diameter, estimate the 
minimum average inlet velocity at which cavitation is likely to 
occur in the throat. (b) Repeat at a water temperature of 508C. 
Explain why the required inlet velocity is higher or lower than 
that of part (a).

2–155  Even though steel is about 7 to 8 times denser than 
water, a steel paper clip or razor blade can be made to float 
on water! Explain and discuss. Predict what would happen if 
you mix some soap with the water.

Throat

P2P1

V2V1
Inlet

FIGURE P2–154

FIGURE P2–155
Photo by John M. Cimbala.
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P R E S S U R E  A N D 
F L U I D  S TAT I C S

T his chapter deals with forces applied by fluids at rest or in rigid-body 
motion. The fluid property responsible for those forces is pressure, 
which is a normal force exerted by a fluid per unit area. We start this 

chapter with a detailed discussion of pressure, including absolute and gage 
pressures, the pressure at a point, the variation of pressure with depth in a 
gravitational field, the barometer, the manometer, and other pressure mea-
surement devices. This is followed by a discussion of the hydrostatic forces 
applied on submerged bodies with plane or curved surfaces. We then con-
sider the buoyant force applied by fluids on submerged or floating bodies, 
and discuss the stability of such bodies. Finally, we apply Newton’s second 
law of motion to a body of fluid in motion that acts as a rigid body and ana-
lyze the variation of pressure in fluids that undergo linear acceleration and 
in rotating containers. This chapter makes extensive use of force balances 
for bodies in static equilibrium, and it would be helpful if the relevant topics 
from statics are first reviewed.

  CHAPTER

3
OBJECTIVES

When you finish reading this chapter, you 
should be able to:

■ Determine the variation of 
pressure in a fluid at rest

■ Calculate pressure using various 
kinds of manometers

■ Calculate the forces and 
moments exerted by a fluid 
at rest on plane or curved 
submerged surfaces

■ Analyze the stability of floating 
and submerged bodies

■ Analyze the rigid-body motion of 
fluids in containers during linear 
acceleration or rotation

John Ninomiya flying a cluster of 72 helium-filled 
balloons over Temecula, California in April 

of 2003. The helium balloons displace approximately 
230 m3 of air, providing the necessary buoyant force. 

Don’t try this at home!
Photograph by Susan Dawson. Used by permission.
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3–1 ■  PRESSURE
Pressure is defined as a normal force exerted by a fluid per unit area. We 
speak of pressure only when we deal with a gas or a liquid. The counterpart 
of pressure in solids is normal stress. Since pressure is defined as force per 
unit area, it has the unit of newtons per square meter (N/m2), which is called 
a pascal (Pa). That is,

1Pa 5 1 N/m2

 The pressure unit pascal is too small for most pressures encountered in 
practice. Therefore, its multiples kilopascal (1 kPa 5 103 Pa) and megapas-
cal (1 MPa 5 106 Pa) are commonly used. Three other pressure units com-
monly used in practice, especially in Europe, are bar, standard atmosphere, 
and kilogram-force per square centimeter:

 1 bar 5 105 Pa 5 0.1 MPa 5 100 kPa 

 1 atm 5 101,325 Pa 5 101.325 kPa 5 1.01325 bars 

 1 kgf/cm2 5 9.807 N/cm2 5 9.807 3 104 N/m2 5 9.807 3 104 Pa 

 5 0.9807 bar 

 5 0.9679 atm 

Note the pressure units bar, atm, and kgf/cm2 are almost equivalent to each 
other. In the English system, the pressure unit is pound-force per square inch 
(lbf/in2, or psi), and 1 atm 5 14.696 psi. The pressure units kgf/cm2 and 
lbf/in2 are also denoted by kg/cm2 and lb/in2, respectively, and they are 
commonly used in tire gages. It can be shown that 1 kgf/cm2 5 14.223 psi.
 Pressure is also used on solid surfaces as synonymous to normal stress, 
which is the force acting perpendicular to the surface per unit area. For 
example, a 150-pound person with a total foot imprint area of 50 in2 exerts 
a pressure of 150 lbf/50 in2 5 3.0 psi on the floor (Fig. 3–1). If the person 
stands on one foot, the pressure doubles. If the person gains excessive 
weight, he or she is likely to encounter foot discomfort because of the 
increased pressure on the foot (the size of the bottom of the foot does not 
change with weight gain). This also explains how a person can walk on 
fresh snow without sinking by wearing large snowshoes, and how a person 
cuts with little effort when using a sharp knife.
 The actual pressure at a given position is called the absolute pressure, 
and it is measured relative to absolute vacuum (i.e., absolute zero pressure). 
Most pressure-measuring devices, however, are calibrated to read zero in the 
atmosphere (Fig. 3–2), and so they indicate the difference between the abso-
lute pressure and the local atmospheric pressure. This difference is called 
the gage pressure. Pgage can be positive or negative, but pressures below 
atmospheric pressure are sometimes called vacuum pressures and are mea-
sured by vacuum gages that indicate the difference between the atmospheric 
pressure and the absolute pressure. Absolute, gage, and vacuum pressures 
are related to each other by

 Pgage 5 Pabs 2 Patm (3–1)

 Pvac 5 Patm 2 Pabs (3–2)

This is illustrated in Fig. 3–3.

150 pounds

Afeet = 50 in2

P = 3 psi P = 6 psi

300 pounds

W––––
Afeet

150 lbf––––––
50 in2P =   n = = 3 psi=s

FIGURE 3–1
The normal stress (or “pressure”) 
on the feet of a chubby person is 
much greater than on the feet of 
a slim person.

FIGURE 3–2
Some basic pressure gages.
Dresser Instruments, Dresser, Inc. Used by 
permission.
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Absolute

vacuum

Absolute

vacuum

Pabs

Pvac

Patm

Patm

Patm

Pgage

Pabs

Pabs = 0 FIGURE 3–3
Absolute, gage, and vacuum pressures.

 Like other pressure gages, the gage used to measure the air pressure in 
an automobile tire reads the gage pressure. Therefore, the common reading 
of 32.0 psi (2.25 kgf/cm2) indicates a pressure of 32.0 psi above the atmo-
spheric pressure. At a location where the atmospheric pressure is 14.3 psi, 
for example, the absolute pressure in the tire is 32.0 1 14.3 5 46.3 psi.
 In thermodynamic relations and tables, absolute pressure is almost always 
used. Throughout this text, the pressure P will denote absolute pressure 
unless specified otherwise. Often the letters “a” (for absolute pressure) and 
“g” (for gage pressure) are added to pressure units (such as psia and psig) to 
clarify what is meant.

EXAMPLE 3–1    Absolute Pressure of a Vacuum Chamber

A vacuum gage connected to a chamber reads 5.8 psi at a location where 

the atmospheric pressure is 14.5 psi. Determine the absolute pressure in the 

chamber.

SOLUTION  The gage pressure of a vacuum chamber is given. The absolute 

pressure in the chamber is to be determined.

Analysis  The absolute pressure is easily determined from Eq. 3–2 to be

Pabs 5 Patm 2 Pvac 5 14.5 2 5.8 5 8.7 psi

Discussion  Note that the local value of the atmospheric pressure is used 

when determining the absolute pressure.

Pressure at a Point
Pressure is the compressive force per unit area, and it gives the impression 
of being a vector. However, pressure at any point in a fluid is the same in all 
directions (Fig. 3–4). That is, it has magnitude but not a specific direction, 
and thus it is a scalar quantity. This can be demonstrated by considering a 
small wedge-shaped fluid element of unit length (Dy 5 1 into the page) in 
equilibrium, as shown in Fig. 3–5. The mean pressures at the three surfaces 
are P1, P2, and P3, and the force acting on a surface is the product of mean 

P P

P

P P

FIGURE 3–4
Pressure is a scalar quantity, not a 

vector; the pressure at a point in a fluid 
is the same in all directions.
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pressure and the surface area. From Newton’s second law, a force balance in 
the x- and z-directions gives

 aFx 5 max 5 0:    P1 DyDz 2 P3 Dyl sin u 5 0  (3–3a)

 aFz 5 maz 5 0:   P2 DyDx 2 P3 D  yl cos u 2
1

2
 rg Dx Dy Dz 5 0  (3–3b)

where r is the density and W 5 mg 5 rg Dx Dy Dz/2 is the weight of 
the fluid element. Noting that the wedge is a right triangle, we have Dx 5 
l cos u and Dz 5 l sin u. Substituting these geometric relations and dividing 
Eq. 3–3a by Dy Dz and Eq. 3–3b by Dx Dy gives

 P1 2 P3 5 0  (3–4a)

 P2 2 P3 2
1

2
 rg Dz 5 0  (3–4b)

The last term in Eq. 3–4b drops out as Dz → 0 and the wedge becomes 
infinitesimal, and thus the fluid element shrinks to a point. Then combining 
the results of these two relations gives

 P1 5 P2 5 P3 5 P (3–5)

regardless of the angle u. We can repeat the analysis for an element in the 
yz-plane and obtain a similar result. Thus we conclude that the pressure at 
a point in a fluid has the same magnitude in all directions. This result is 
applicable to fluids in motion as well as fluids at rest since pressure is a 
scalar, not a vector.

Variation of Pressure with Depth
It will come as no surprise to you that pressure in a fluid at rest does not 
change in the horizontal direction. This can be shown easily by considering 
a thin horizontal layer of fluid and doing a force balance in any horizontal 
direction. However, this is not the case in the vertical direction in a gravity 
field. Pressure in a fluid increases with depth because more fluid rests on 
deeper layers, and the effect of this “extra weight” on a deeper layer is bal-
anced by an increase in pressure (Fig. 3–6).
 To obtain a relation for the variation of pressure with depth, consider a 
rectangular fluid element of height Dz, length Dx, and unit depth (Dy 5 1 
into the page) in equilibrium, as shown in Fig. 3–7. Assuming the density of 
the fluid r to be constant, a force balance in the vertical z-direction gives

 aFz 5 maz 5 0:  P1 Dx Dy 2 P2 Dx Dy 2 rg Dx Dy Dz 5 0 

where W 5 mg 5 rg Dx Dy Dz is the weight of the fluid element and Dz 5 
z2 2 z1. Dividing by Dx Dy and rearranging gives

 DP 5 P2 2 P1 5 2rg Dz 5 2gs Dz (3–6)

where gs 5 rg is the specific weight of the fluid. Thus, we conclude that the 
pressure difference between two points in a constant density fluid is propor-
tional to the vertical distance Dz between the points and the density r of the 
fluid. Noting the negative sign, pressure in a static fluid increases linearly 
with depth. This is what a diver experiences when diving deeper in a lake.

z

x

l

g

FIGURE 3–5
Forces acting on a wedge-shaped fluid 
element in equilibrium.

Pgage

FIGURE 3–6
The pressure of a fluid at rest 
increases with depth (as a result 
of added weight).

075-132_cengel_ch03.indd   78 12/14/12   11:48 AM



79
CHAPTER 3

 An easier equation to remember and apply between any two points in the 
same fluid under hydrostatic conditions is

 Pbelow 5 Pabove 1 rg|Dz| 5 Pabove 1 gs|Dz| (3–7)

where “below” refers to the point at lower elevation (deeper in the fluid) 
and “above” refers to the point at higher elevation. If you use this equation 
consistently, you should avoid sign errors.
 For a given fluid, the vertical distance Dz is sometimes used as a measure 
of pressure, and it is called the pressure head.
 We also conclude from Eq. 3–6 that for small to moderate distances, the 
variation of pressure with height is negligible for gases because of their low 
density. The pressure in a tank containing a gas, for example, can be con-
sidered to be uniform since the weight of the gas is too small to make a 
significant difference. Also, the pressure in a room filled with air can be 
approximated as a constant (Fig. 3–8).
 If we take the “above” point to be at the free surface of a liquid open to the 
atmosphere (Fig. 3–9), where the pressure is the atmospheric pressure Patm, 
then from  Eq. 3–7 the pressure at a depth h below the free surface becomes

 P 5 Patm 1 rgh  or  Pgage 5 rgh (3–8)

 Liquids are essentially incompressible substances, and thus the variation 
of density with depth is negligible. This is also the case for gases when 
the elevation change is not very large. The variation of density of liquids 
or gases with temperature can be significant, however, and may need to 
be considered when high accuracy is desired. Also, at great depths such as 
those encountered in oceans, the change in the density of a liquid can be 
significant because of the compression by the tremendous amount of liquid 
weight above.
 The gravitational acceleration g varies from 9.807 m/s2 at sea level to 
9.764 m/s2 at an elevation of 14,000 m where large passenger planes cruise. 
This is a change of just 0.4 percent in this extreme case. Therefore, g can be 
approximated as a constant with negligible error.
 For fluids whose density changes significantly with elevation, a relation 
for the variation of pressure with elevation can be obtained by dividing 
Eq. 3–6 by Dz, and taking the limit as Dz → 0. This yields

 
dP

dz
5 2rg (3–9)

Note that dP is negative when dz is positive since pressure decreases in an 
upward direction. When the variation of density with elevation is known, 
the pressure difference between any two points 1 and 2 can be determined 
by integration to be

 DP 5 P2 2 P1 5 2#
2

1
rg dz (3–10)

For constant density and constant gravitational acceleration, this relation 
reduces to Eq. 3–6, as expected.
 Pressure in a fluid at rest is independent of the shape or cross section 
of the container. It changes with the vertical distance, but remains constant 

P1

W

P2

x

0

z

z

z2

z1

x

�

�

g

FIGURE 3–7
Free-body diagram of a rectangular 

fluid element in equilibrium.

Ptop  = 1 atm

AIR

(A 5-m-high room)

Pbottom  = 1.006 atm

FIGURE 3–8
In a room filled with a gas, the 

variation of pressure with 
height is negligible.
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in other directions. Therefore, the pressure is the same at all points on a 
horizontal plane in a given fluid. The Dutch mathematician Simon Stevin 
(1548–1620) published in 1586 the principle illustrated in Fig. 3–10. Note 
that the pressures at points A, B, C, D, E, F, and G are the same since 
they are at the same depth, and they are interconnected by the same static 
fluid. However, the pressures at points H and I are not the same since these 
two points cannot be interconnected by the same fluid (i.e., we cannot draw 
a curve from point I to point H while remaining in the same fluid at all 
times), although they are at the same depth. (Can you tell at which point the 
pressure is higher?) Also notice that the pressure force exerted by the fluid 
is always normal to the surface at the specified points.
 A consequence of the pressure in a fluid remaining constant in the hori-
zontal direction is that the pressure applied to a confined fluid increases 
the pressure throughout by the same amount. This is called Pascal’s law, 
after Blaise Pascal (1623–1662). Pascal also knew that the force applied 
by a fluid is proportional to the surface area. He realized that two hydrau-
lic cylinders of different areas could be connected, and the larger could be 
used to exert a proportionally greater force than that applied to the smaller. 
“Pascal’s machine” has been the source of many inventions that are a part 
of our daily lives such as hydraulic brakes and lifts. This is what enables us 
to lift a car easily by one arm, as shown in Fig. 3–11. Noting that P1 5 P2 
since both pistons are at the same level (the effect of small height differ-
ences is negligible, especially at high pressures), the ratio of output force to 
input force is determined to be

 P1 5 P2  S  
F1

A1

 5
F2

A2

  S  
F2

F1

5
A2

A1

 (3–11)

Pabove = Patm

Pbelow = Patm + rgh

h

FIGURE 3–9
Pressure in a liquid at rest increases 
linearly with distance from the free 
surface.

FIGURE 3–10
Under hydrostatic conditions, the pressure is the same at all points on a horizontal plane in a given fluid regardless of 
geometry, provided that the points are interconnected by the same fluid.

h

A B C D E

Water

Mercury

F G

IH

Patm

PA = PB = PC = PD = PE = PF = PG = Patm + rgh
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The area ratio A2/A1 is called the ideal mechanical advantage of the hydraulic 
lift. Using a hydraulic car jack with a piston area ratio of A2/A1 5 100, for 
example, a person can lift a 1000-kg car by applying a force of just 10 kgf 
(5 90.8 N).

3–2 ■  PRESSURE MEASUREMENT DEVICES

The Barometer
Atmospheric pressure is measured by a device called a barometer; thus, the 
atmospheric pressure is often referred to as the barometric pressure.
 The Italian Evangelista Torricelli (1608–1647) was the first to conclu-
sively prove that the atmospheric pressure can be measured by inverting a 
mercury-filled tube into a mercury container that is open to the atmosphere, 
as shown in Fig. 3–12. The pressure at point B is equal to the atmospheric 
pressure, and the pressure at point C can be taken to be zero since there is 
only mercury vapor above point C and the pressure is very low relative to 
Patm and can be neglected to an excellent approximation. Writing a force 
balance in the vertical direction gives

 Patm 5 rgh (3–12)

where r is the density of mercury, g is the local gravitational acceleration, 
and h is the height of the mercury column above the free surface. Note that 
the length and the cross-sectional area of the tube have no effect on the 
height of the fluid column of a barometer (Fig. 3–13).
 A frequently used pressure unit is the standard atmosphere, which is 
defined as the pressure produced by a column of mercury 760 mm in height 
at 0°C (rHg 5 13,595 kg/m3) under standard gravitational acceleration 
(g 5 9.807 m/s2). If water instead of mercury were used to measure the 
standard atmospheric pressure, a water column of about 10.3 m would be 
needed. Pressure is sometimes expressed (especially by weather forecasters) 
in terms of the height of the mercury column. The standard atmospheric 
pressure, for example, is 760 mmHg (29.92 inHg) at 0°C. The unit mmHg 
is also called the torr in honor of Torricelli. Therefore, 1 atm 5 760 torr 
and 1 torr 5 133.3 Pa. 
 Atmospheric pressure Patm changes from 101.325 kPa at sea level to 
89.88, 79.50, 54.05, 26.5, and 5.53 kPa at altitudes of 1000, 2000, 5000, 
10,000, and 20,000 meters, respectively. The typical atmospheric pressure in 
Denver (elevation 5 1610 m), for example, is 83.4 kPa. Remember that the 
atmospheric pressure at a location is simply the weight of the air above that 
location per unit surface area. Therefore, it changes not only with elevation 
but also with weather conditions.
 The decline of atmospheric pressure with elevation has far-reaching rami-
fications in daily life. For example, cooking takes longer at high altitudes 
since water boils at a lower temperature at lower atmospheric pressures. 
Nose bleeding is a common experience at high altitudes since the difference 
between the blood pressure and the atmospheric pressure is larger in this 
case, and the delicate walls of veins in the nose are often unable to with-
stand this extra stress.
 For a given temperature, the density of air is lower at high altitudes, and 
thus a given volume contains less air and less oxygen. So it is no surprise 

F1 = P1A1

1 2A1
P1

F2 = P2A2

A2
P2

FIGURE 3–11
Lifting of a large weight by 

a small force by the application 
of Pascal’s law. A common example is 

a hydraulic jack.
(Top) © Stockbyte/Getty RF

h

W rghA=

A
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B

Vacuum

Mercury

C

Patm

FIGURE 3–12
The basic barometer.
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Engine Lungs

FIGURE 3–14
At high altitudes, a car engine 
generates less power and a person 
gets less oxygen because of the 
lower density of air.

A2
A1 A3

FIGURE 3–13
The length or the cross-sectional area 
of the tube has no effect on the height 
of the fluid column of a barometer, 
provided that the tube diameter is 
large enough to avoid surface tension 
(capillary) effects.

that we tire more easily and experience breathing problems at high altitudes. 
To compensate for this effect, people living at higher altitudes develop more 
efficient lungs. Similarly, a 2.0-L car engine will act like a 1.7-L car engine 
at 1500 m altitude (unless it is turbocharged) because of the 15 percent drop 
in pressure and thus 15 percent drop in the density of air (Fig. 3–14). A fan 
or compressor will displace 15 percent less air at that altitude for the same 
volume displacement rate. Therefore, larger cooling fans may need to be 
selected for operation at high altitudes to ensure the specified mass flow 
rate. The lower pressure and thus lower density also affects lift and drag: 
airplanes need a longer runway at high altitudes to develop the required lift, 
and they climb to very high altitudes for cruising in order to reduce drag 
and thus achieve better fuel efficiency.

EXAMPLE 3–2     Measuring Atmospheric Pressure 
with a Barometer

Determine the atmospheric pressure at a location where the barometric 

reading is 740 mm Hg and the gravitational acceleration is g 5 9.805 m/s2. 

Assume the temperature of mercury to be 10°C, at which its density is 

13,570 kg/m3.

SOLUTION  The barometric reading at a location in height of mercury col-

umn is given. The atmospheric pressure is to be determined.

Assumptions  The temperature of mercury is assumed to be 10°C.

Properties  The density of mercury is given to be 13,570 kg/m3.

Analysis  From Eq. 3–12, the atmospheric pressure is determined to be

Patm 5 rgh 

 5 (13,570 kg/m3)(9.805 m/s2)(0.740 m)a 1 N

1 kg·m/s2b a 1 kPa

1000 N/m2b
 5 98.5 kPa 

Discussion  Note that density changes with temperature, and thus this effect 

should be considered in calculations.

EXAMPLE 3–3     Gravity Driven Flow from an IV Bottle

Intravenous infusions usually are driven by gravity by hanging the fluid bot-

tle at sufficient height to counteract the blood pressure in the vein and to 

force the fluid into the body (Fig. 3–15). The higher the bottle is raised, the 

higher the flow rate of the fluid will be. (a) If it is observed that the fluid 

and the blood pressures balance each other when the bottle is 1.2 m above 

the arm level, determine the gage pressure of the blood. (b) If the gage pres-

sure of the fluid at the arm level needs to be 20 kPa for sufficient flow rate, 

determine how high the bottle must be placed. Take the density of the fluid 

to be 1020 kg/m3.

SOLUTION  It is given that an IV fluid and the blood pressures balance each 

other when the bottle is at a certain height. The gage pressure of the blood 

and elevation of the bottle required to maintain flow at the desired rate are 

to be determined.
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Assumptions  1 The IV fluid is incompressible.  2 The IV bottle is open to 

the atmosphere.

Properties  The density of the IV fluid is given to be r 5 1020 kg/m3.

Analysis  (a) Noting that the IV fluid and the blood pressures balance each 

other when the bottle is 1.2 m above the arm level, the gage pressure of the 

blood in the arm is simply equal to the gage pressure of the IV fluid at a 

depth of 1.2 m,

Pgage, arm 5 Pabs 2 Patm 5 rgharm2bottle 

 5 (1020 kg/m3)(9.81 m/s2)(1.20 m)a 1 kN

1000 kg·m/s2b a 1 kPa

1 kN/m2b
 5 12.0 kPa 

(b) To provide a gage pressure of 20 kPa at the arm level, the height of the 

surface of the IV fluid in the bottle from the arm level is again determined 

from Pgage, arm 5 rgharm2bottle to be

 
 harm2botttle 5

Pgage, arm

rg  

  5
20 kPa

(1020 kg/m3)(9.81 m/s2)
a1000 kg·m/s2

1 kN
b a1 kN/m2

1 kPa
b 

  5 2.00 m  

Discussion  Note that the height of the reservoir can be used to control flow 

rates in gravity-driven flows. When there is flow, the pressure drop in the tube 

due to frictional effects also should be considered. For a specified flow rate, 

this requires raising the bottle a little higher to overcome the pressure drop.

EXAMPLE 3–4     Hydrostatic Pressure in a Solar Pond 
with Variable Density

Solar ponds are small artificial lakes of a few meters deep that are used to 

store solar energy. The rise of heated (and thus less dense) water to the sur-

face is prevented by adding salt at the pond bottom. In a typical salt gradi-

ent solar pond, the density of water increases in the gradient zone, as shown 

in Fig. 3–16, and the density can be expressed as

r 5 r0Å1 1 tan2ap
4

 
s

H
b

where r0 is the density on the water surface, s is the vertical distance mea-

sured downward from the top of the gradient zone (s 5 2z ), and H is the 

thickness of the gradient zone. For H 5 4 m, r0 5 1040 kg/m3, and a 

thickness of 0.8 m for the surface zone, calculate the gage pressure at the 

bottom of the gradient zone.

SOLUTION  The variation of density of saline water in the gradient zone of a 

solar pond with depth is given. The gage pressure at the bottom of the gradi-

ent zone is to be determined.

Assumptions  The density in the surface zone of the pond is constant.

Properties  The density of brine on the surface is given to be 1040 kg/m3.

Analysis  We label the top and the bottom of the gradient zone as 1 and 

2, respectively. Noting that the density of the surface zone is constant, the 

FIGURE 3–15
Schematic for Example 3–3.

1.2 m

Patm

IV bottle

Increasing salinity
and density

Surface zone

Sun

H = 4 m

s
Gradient zone

Storage zone

1

2

r0 = 1040 kg/m3

FIGURE 3–16
Schematic for Example 3–4.
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gage pressure at the bottom of the surface zone (which is the top of the 

gradient zone) is

P1 5 rgh1 5 (1040 kg/m3)(9.81 m/s2)(0.8 m)a 1 kN

1000 kg·m/s2b 5 8.16 kPa

since 1 kN/m2 5 1 kPa. Since s 5 2z, the differential change in hydrostatic 

pressure across a vertical distance of ds is given by

dP 5 rg ds

Integrating from the top of the gradient zone (point 1 where s 5 0) to any 

location s in the gradient zone (no subscript) gives

P 2 P1 5 #
s

0
rg ds  S P 5 P1 1 #

s

0
 r0Å1 1 tan2ap

4
 
s

H
bg ds

Performing the integration gives the variation of gage pressure in the gradi-

ent zone to be

P 5 P1 1 r0g 
4H
p

 sinh21atan 
p

4
 

s

H
b

Then the pressure at the bottom of the gradient zone (s 5 H 5 4 m) becomes

P2 5 8.16 kPa 1 (1040 kg/m3)(9.81 m/s2) 
4(4 m)

p
 sinh21atan 

p

4
 
4

4
b a 1 kN

1000 kg·m/s2b
 5 54.0 kPa (gage) 

Discussion  The variation of gage pressure in the gradient zone with depth is 

plotted in Fig. 3–17. The dashed line indicates the hydrostatic pressure for 

the case of constant density at 1040 kg/m3 and is given for reference. Note 

that the variation of pressure with depth is not linear when density varies 

with depth. That is why integration was required.

The Manometer
We notice from Eq. 3–6 that an elevation change of 2Dz in a fluid at rest 
corresponds to DP/rg, which suggests that a fluid column can be used to 
measure pressure differences. A device based on this principle is called a 
manometer, and it is commonly used to measure small and moderate pres-
sure differences. A manometer consists of a glass or plastic U-tube contain-
ing one or more fluids such as mercury, water, alcohol, or oil (Fig. 3–18). 
To keep the size of the manometer to a manageable level, heavy fluids such 
as mercury are used if large pressure differences are anticipated.
 Consider the manometer shown in Fig. 3–19 that is used to measure the 
pressure in the tank. Since the gravitational effects of gases are negligible, 
the pressure anywhere in the tank and at position 1 has the same value. Fur-
thermore, since pressure in a fluid does not vary in the horizontal direction 
within a fluid, the pressure at point 2 is the same as the pressure at point 1, 
P2 5 P1.
 The differential fluid column of height h is in static equilibrium, and it is 
open to the atmosphere. Then the pressure at point 2 is determined directly 
from Eq. 3–7 to be

 P2 5 Patm 1 rgh (3–13)

4

3
Constant
density

Variable
density2

3.5

2.5

1.5

1

0.5

0

0 10 20 30

P, kPa

s,
 m

40 50 60

FIGURE 3–17
The variation of gage pressure with 
depth in the gradient zone of the 
solar pond.

FIGURE 3–18
A simple U-tube manometer, with 
high pressure applied to the right side.
Photo by John M. Cimbala.
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where r is the density of the manometer fluid in the tube. Note that the 
cross-sectional area of the tube has no effect on the differential height h, 
and thus the pressure exerted by the fluid. However, the diameter of the tube 
should be large enough (more than several millimeters) to ensure that the 
surface tension effect and thus the capillary rise is negligible.

EXAMPLE 3–5    Measuring Pressure with a Manometer

A manometer is used to measure the pressure of a gas in a tank. The fluid 

used has a specific gravity of 0.85, and the manometer column height is 

55 cm, as shown in Fig. 3–20. If the local atmospheric pressure is 96 kPa, 

determine the absolute pressure within the tank.

SOLUTION  The reading of a manometer attached to a tank and the atmo-

spheric pressure are given. The absolute pressure in the tank is to be 

determined.

Assumptions  The density of the gas in the tank is much lower than the den-

sity of the manometer fluid.

Properties  The specific gravity of the manometer fluid is given to be 0.85. 

We take the standard density of water to be 1000 kg/m3.

Analysis  The density of the fluid is obtained by multiplying its specific 

gravity by the density of water,

r 5 SG (rH2O
) 5 (0.85)(1000 kg/m3) 5 850 kg/m3

Then from Eq. 3–13,

P 5 Patm 1 rgh 

 5 96 kPa 1 (850 kg/m3)(9.81 m/s2)(0.55 m)a 1 N

1 kg·m/s2b a 1 kPa

1000 N/m2b
 5 100.6 kPa 

Discussion  Note that the gage pressure in the tank is 4.6 kPa.

Some manometers use a slanted or inclined tube in order to increase the 
resolution (precision) when reading the fluid height. Such devices are called 
inclined manometers.
 Many engineering problems and some manometers involve multiple 
immiscible fluids of different densities stacked on top of each other. Such 
systems can be analyzed easily by remembering that (1) the pressure change 
across a fluid column of height h is DP 5 rgh, (2) pressure increases 
downward in a given fluid and decreases upward (i.e., Pbottom . Ptop), and 
(3) two points at the same elevation in a continuous fluid at rest are at the 
same pressure.
 The last principle, which is a result of Pascal’s law, allows us to “jump” 
from one fluid column to the next in manometers without worrying about 
pressure change as long as we stay in the same continuous fluid and the 
fluid is at rest. Then the pressure at any point can be determined by start-
ing with a point of known pressure and adding or subtracting rgh terms as 
we advance toward the point of interest. For example, the pressure at the 
bottom of the tank in Fig. 3–21 can be determined by starting at the free 

P

SG

 = ?
h = 55 cm

= 0.85

Patm  = 96 kPa

FIGURE 3–20
Schematic for Example 3–5.

Gas
h

1 2

FIGURE 3–19
The basic manometer.

Patm

1
h3

h2

h1

Fluid 2

Fluid 1

Fluid 3

FIGURE 3–21
In stacked-up fluid layers at rest, the 

pressure change across each fluid 
layer of density r and height h is rgh.
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surface where the pressure is Patm, moving downward until we reach point 1 
at the bottom, and setting the result equal to P1. It gives

Patm 1 r1gh1 1 r2gh2 1 r3gh3 5 P1

In the special case of all fluids having the same density, this relation reduces 
to Patm 1 rg(h1 1 h2 1 h3) 5 P1.
 Manometers are particularly well-suited to measure pressure drops across 
a horizontal flow section between two specified points due to the presence 
of a device such as a valve or heat exchanger or any resistance to flow. This 
is done by connecting the two legs of the manometer to these two points, as 
shown in Fig. 3–22. The working fluid can be either a gas or a liquid whose 
density is r1. The density of the manometer fluid is r2, and the differential 
fluid height is h. The two fluids must be immiscible, and r2 must be greater 
than r1.
 A relation for the pressure difference P1 2 P2 can be obtained by starting 
at point 1 with P1, moving along the tube by adding or subtracting the rgh 
terms until we reach point 2, and setting the result equal to P2:

 P1 1 r1g(a 1 h) 2 r2gh 2 r1ga 5 P2 (3–14)

Note that we jumped from point A horizontally to point B and ignored the 
part underneath since the pressure at both points is the same. Simplifying,

 P1 2 P2 5 (r2 2 r1)gh (3–15)

Note that the distance a must be included in the analysis even though it has 
no effect on the result. Also, when the fluid flowing in the pipe is a gas, 
then r1 ,, r2 and the relation in Eq. 3–15 simplifies to P1 2 P2 ù r2gh.

EXAMPLE 3–6     Measuring Pressure with a Multifluid Manometer

The water in a tank is pressurized by air, and the pressure is measured by a 

multifluid manometer as shown in Fig. 3–23. The tank is located on a moun-

tain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. 

Determine the air pressure in the tank if h1 5 0.1 m, h2 5 0.2  m, and 

h3 5 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3, 

850 kg/m3, and 13,600 kg/m3, respectively.

SOLUTION  The pressure in a pressurized water tank is measured by a multi-

fluid manometer. The air pressure in the tank is to be determined.

Assumption  The air pressure in the tank is uniform (i.e., its variation with 

elevation is negligible due to its low density), and thus we can determine the 

pressure at the air–water interface.

Properties  The densities of water, oil, and mercury are given to be 

1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.

Analysis  Starting with the pressure at point 1 at the air–water interface, 

moving along the tube by adding or subtracting the rgh terms until we reach 

point 2, and setting the result equal to Patm since the tube is open to the 

atmosphere gives

P1 1 rwater gh1 1 roilgh2 2 rmercurygh3 5 P2 5 Patm

a

hr1

A B

Fluid

A flow section
or flow device

1 2

r2

FIGURE 3–22
Measuring the pressure drop across 
a flow section or a flow device by a 
differential manometer.

h1

h2
h3

Oil

Mercury

Water

Air

1

2

FIGURE 3–23
Schematic for Example 3–3; drawing 
not to scale.
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Solving for P1 and substituting,

P1 5 Patm 2 rwatergh1 2 roilgh2 1 rmercurygh3 

 5 Patm 1 g(rmercuryh3 2 rwaterh1 2 roilh2) 

 5 85.6 kPa 1 (9.81 m/s2)[(13,600 kg/m3)(0.35 m) 2 (1000 kg/m3)(0.1 m)

   2 (850 kg/m3)(0.2 m)]a 1 N

1 kg·m/s2b a 1 kPa

1000 N/m2b  

 5 130 kPa 

Discussion  Note that jumping horizontally from one tube to the next and 

realizing that pressure remains the same in the same fluid simplifies the 

analysis considerably. Also note that mercury is a toxic fluid, and mercury 

manometers and thermometers are being replaced by ones with safer fluids 

because of the risk of exposure to mercury vapor during an accident.

EXAMPLE 3–7    Analyzing a Multifluid Manometer with EES

Reconsider the multifluid manometer discussed in Example 3–6. Determine 

the air pressure in the tank using EES. Also determine what the differential 

fluid height h3 would be for the same air pressure if the mercury in the last 

column were replaced by seawater with a density of 1030 kg/m3.

SOLUTION  The pressure in a water tank is measured by a multifluid 

manometer. The air pressure in the tank and the differential fluid height h3 

if mercury is replaced by seawater are to be determined using EES.

Analysis  We start the EES program, open a new file, and type the following 

on the blank screen that appears (we express the atmospheric pressure in Pa 

for unit consistency):

g59.81 

Patm585600 

h150.1; h250.2; h350.35 

rw51000; roil5850; rm513600 

P11rw*g*h11roil*g*h22rm*g*h35Patm

Here P1 is the only unknown, and it is determined by EES to be

P1 5 129647 Pa >  130 kPa

which is identical to the result obtained in Example 3–6. The height of the 

fluid column h3 when mercury is replaced by seawater is determined easily by 

replacing “h3=0.35” by “P1=129647” and “rm=13600” by “rm=1030,” 

and clicking on the calculator symbol. It gives

h3 5 4.62 m

Discussion  Note that we used the screen like a paper pad and wrote down the 

relevant information together with the applicable relations in an organized manner. 

EES did the rest. Equations can be written on separate lines or on the same line 

by separating them by semicolons, and blank or comment lines can be inserted 

for readability. EES makes it very easy to ask “what if” questions and to perform 

parametric studies, as explained in Appendix 3 on the text website.
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Other Pressure Measurement Devices
Another type of commonly used mechanical pressure measurement device 
is the Bourdon tube, named after the French engineer and inventor Eugene 
Bourdon (1808–1884), which consists of a bent, coiled, or twisted hollow 
metal tube whose end is closed and connected to a dial indicator needle 
(Fig. 3–24). When the tube is open to the atmosphere, the tube is unde-
flected, and the needle on the dial at this state is calibrated to read zero 
(gage pressure). When the fluid inside the tube is pressurized, the tube 
stretches and moves the needle in proportion to the applied pressure.
 Electronics have made their way into every aspect of life, including pres-
sure measurement devices. Modern pressure sensors, called pressure trans-
ducers, use various techniques to convert the pressure effect to an electri-
cal effect such as a change in voltage, resistance, or capacitance. Pressure 
transducers are smaller and faster, and they can be more sensitive, reliable, 
and precise than their mechanical counterparts. They can measure pressures 
from less than a millionth of 1 atm to several thousands of atm.
 A wide variety of pressure transducers is available to measure gage, abso-
lute, and differential pressures in a wide range of applications. Gage pres-
sure transducers use the atmospheric pressure as a reference by venting the 
back side of the pressure-sensing diaphragm to the atmosphere, and they 
give a zero signal output at atmospheric pressure regardless of altitude.  
Absolute pressure transducers are calibrated to have a zero signal output at 
full vacuum. Differential pressure transducers measure the pressure difference 
between two locations directly instead of using two pressure transducers 
and taking their difference.
 Strain-gage pressure transducers work by having a diaphragm deflect 
between two chambers open to the pressure inputs. As the diaphragm 
stretches in response to a change in pressure difference across it, the strain 
gage stretches and a Wheatstone bridge circuit amplifies the output. A 
capacitance transducer works similarly, but capacitance change is measured 
instead of resistance change as the diaphragm stretches.
 Piezoelectric transducers, also called solid-state pressure transducers, 
work on the principle that an electric potential is generated in a crystalline 
substance when it is subjected to mechanical pressure. This phenomenon, 
first discovered by brothers Pierre and Jacques Curie in 1880, is called the 
piezoelectric (or press-electric) effect. Piezoelectric pressure transducers 
have a much faster frequency response compared to diaphragm units and 
are very suitable for high-pressure applications, but they are generally not as 
sensitive as diaphragm-type transducers, especially at low pressures.
 Another type of mechanical pressure gage called a deadweight tester 
is used primarily for calibration and can measure extremely high pres-
sures (Fig. 3–25). As its name implies, a deadweight tester measures pres-
sure directly through application of a weight that provides a force per unit 
area—the fundamental definition of pressure. It is constructed with an inter-
nal chamber filled with a fluid (usually oil), along with a tight-fitting piston, 
cylinder, and plunger. Weights are applied to the top of the piston, which 
exerts a force on the oil in the chamber. The total force F acting on the oil 
at the piston–oil interface is the sum of the weight of the piston plus the 
applied weights. Since the piston cross-sectional area Ae is known, the pres-
sure is calculated as P 5 F/Ae. The only significant source of error is that 

C-type Spiral

Twisted tube

Tube cross section
Helical

FIGURE 3–24
Various types of Bourdon tubes used 
to measure pressure. They work on the 
same principle as party noise-makers 
(bottom photo) due to the flat tube 
cross section.
(Bottom) Photo by John M. Cimbala.

FIGURE 3–25
A deadweight tester is able to 
measure extremely high pressures 
(up to 10,000 psi in some 
applications). 

Ae

F

Oil
reservoir

Adjustable
plunger

Crank

OilInternal chamber

Reference pressure port
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075-132_cengel_ch03.indd   88 12/14/12   11:48 AM



89
CHAPTER 3

due to static friction along the interface between the piston and cylinder, but 
even this error is usually negligibly small. The reference pressure port is 
connected to either an unknown pressure that is to be measured or to a pres-
sure sensor that is to be calibrated.

3–3 ■  INTRODUCTION TO FLUID STATICS
Fluid statics deals with problems associated with fluids at rest. The fluid 
can be either gaseous or liquid. Fluid statics is generally referred to as 
hydrostatics when the fluid is a liquid and as aerostatics when the fluid 
is a gas. In fluid statics, there is no relative motion between adjacent fluid 
layers, and thus there are no shear (tangential) stresses in the fluid trying to 
deform it. The only stress we deal with in fluid statics is the normal stress, 
which is the pressure, and the variation of pressure is due only to the weight 
of the fluid. Therefore, the topic of fluid statics has significance only in 
gravity fields, and the force relations developed naturally involve the gravi-
tational acceleration g. The force exerted on a surface by a fluid at rest is 
normal to the surface at the point of contact since there is no relative motion 
between the fluid and the solid surface, and thus there are no shear forces 
acting parallel to the surface.
 Fluid statics is used to determine the forces acting on floating or sub-
merged bodies and the forces developed by devices like hydraulic presses 
and car jacks. The design of many engineering systems such as water dams 
and liquid storage tanks requires the determination of the forces acting on 
their surfaces using fluid statics. The complete description of the resultant 
hydrostatic force acting on a submerged surface requires the determination 
of the magnitude, the direction, and the line of action of the force. In the 
following two sections, we consider the forces acting on both plane and 
curved surfaces of submerged bodies due to pressure.

3–4 ■  HYDROSTATIC FORCES ON 
SUBMERGED PLANE SURFACES

A plate (such as a gate valve in a dam, the wall of a liquid storage tank, or 
the hull of a ship at rest) is subjected to fluid pressure distributed over its 
surface when exposed to a liquid (Fig. 3–26). On a plane surface, the hydro-
static forces form a system of parallel forces, and we often need to deter-
mine the magnitude of the force and its point of application, which is called 
the center of pressure. In most cases, the other side of the plate is open to 
the atmosphere (such as the dry side of a gate), and thus atmospheric pres-
sure acts on both sides of the plate, yielding a zero resultant. In such cases, it 
is convenient to subtract atmospheric pressure and work with the gage pres-
sure only (Fig. 3–27). For example, Pgage 5 rgh at the bottom of the lake.
 Consider the top surface of a flat plate of arbitrary shape completely sub-
merged in a liquid, as shown in Fig. 3–28 together with its normal view. 
The plane of this surface (normal to the page) intersects the horizontal free 
surface at angle u, and we take the line of intersection to be the x-axis (out 
of the page). The absolute pressure above the liquid is P0, which is the local 
atmospheric pressure Patm if the liquid is open to the atmosphere (but P0 

FIGURE 3–26
Hoover Dam.

Courtesy United States Department of the Interior, 
Bureau of Reclamation-Lower Colorado Region.

h h

Patm

Patm + rgh

(a) Patm considered (b) Patm subtracted

rgh

FIGURE 3–27
When analyzing hydrostatic forces on 
submerged surfaces, the atmospheric 

pressure can be subtracted for 
simplicity when it acts on both 

sides of the structure.
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may be different than Patm if the space above the liquid is evacuated or pres-
surized). Then the absolute pressure at any point on the plate is

 P 5 P0 1 rgh 5 P0 1 rgy sin u (3–16)

where h is the vertical distance of the point from the free surface and y 
is the distance of the point from the x-axis (from point O in Fig. 3–28). 
The resultant hydrostatic force FR acting on the surface is determined by 
integrating the force P dA acting on a differential area dA over the entire 
surface area,

 FR 5 #
A

 P dA 5 #
A

 (P0 1 rgy sin u) dA 5 P0 A 1 rg sin u #
A

 y dA  (3–17)

But the first moment of area #
A

 y dA is related to the y-coordinate of the cen-

troid (or center) of the surface by

 yC 5
1

A
 #

A

y dA (3–18)

Substituting,

 FR 5 (P0 1 rgyC sin u)A 5 (P0 1 rghC)A 5 PC A 5 Pavg A  (3–19)

where PC 5 P0 1 rghC is the pressure at the centroid of the surface, which 
is equivalent to the average pressure Pavg on the surface, and hC 5 yC sin u 
is the vertical distance of the centroid from the free surface of the liquid 
(Fig. 3–29). Thus we conclude that:

The magnitude of the resultant force acting on a plane surface of a 
completely submerged plate in a homogeneous (constant density) fluid 
is equal to the product of the pressure PC at the centroid of the surface 
and the area A of the surface (Fig. 3–30).

 The pressure P0 is usually atmospheric pressure, which can be ignored in 
most force calculations since it acts on both sides of the plate. When this 
is not the case, a practical way of accounting for the contribution of P0 to 

dA

C
CP Centroid

Center of pressure
Plane surface
of area A

h = y sin

P = P0 + rgy sin u
O

PC = Pavg

FR = PC A
Pressure prism

Pressure
distribution

y
y

z

yC

A dA

Plane surface
P = P0 + rgh

FR = ∫P dA

u
u

FIGURE 3–28
Hydrostatic force on an inclined plane surface completely submerged in a liquid.

Free surface

hC

Patm

= PC = Patm + rghCPavg 

Centroid
of surface

FIGURE 3–29
The pressure at the centroid of a plane 
surface is equivalent to the average 
pressure on the surface.
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the resultant force is simply to add an equivalent depth hequiv 5 P0 /rg 
to hC; that is, to assume the presence of an additional liquid layer of thick-
ness hequiv on top of the liquid with absolute vacuum above.
 Next we need to determine the line of action of the resultant force FR. 
Two parallel force systems are equivalent if they have the same magnitude 
and the same moment about any point. The line of action of the resultant 
hydrostatic force, in general, does not pass through the centroid of the sur-
face—it lies underneath where the pressure is higher. The point of intersec-
tion of the line of action of the resultant force and the surface is the center 
of pressure. The vertical location of the line of action is determined by 
equating the moment of the resultant force to the moment of the distributed 
pressure force about the x-axis:

yPFR 5 #
A

 yP dA 5 #
A

 y(P0 1 rgy sin u) dA 5 P0 #
A

 y dA 1 rg sin u #
A

 y 2 dA

or

 yPFR 5 P0 yC A 1 rg sin u Ixx, O (3–20)

where yP is the distance of the center of pressure from the x-axis (point O 

in Fig. 3–30) and Ixx, O 5 3  
A

 y2 dA is the second moment of area (also called 

the area moment of inertia) about the x-axis. The second moments of area 
are widely available for common shapes in engineering handbooks, but 
they are usually given about the axes passing through the centroid of the 
area. Fortunately, the second moments of area about two parallel axes are 
related to each other by the parallel axis theorem, which in this case is 
expressed as

 Ixx, O 5 Ixx, C 1 y 2
C A (3–21)

where Ixx, C is the second moment of area about the x-axis passing through the 
centroid of the area and yC (the y-coordinate of the centroid) is the distance 
between the two parallel axes. Substituting the FR relation from Eq. 3–19 and 
the Ixx, O relation from Eq. 3–21 into Eq. 3–20 and solving for yP yields

 yP 5 yC 1
Ixx, C

[yC 1 P0 /(rg sin u)]A
 (3–22a)

For P0 5 0, which is usually the case when the atmospheric pressure is 
ignored, it simplifies to

 yP 5 yC 1
Ixx, C

yCA
 (3–22b)

Knowing yP, the vertical distance of the center of pressure from the free 
surface is determined from hP 5 yP sin u.
 The Ixx, C values for some common areas are given in Fig. 3–31. For areas 
that possess symmetry about the y-axis, the center of pressure lies on the 
y-axis directly below the centroid. The location of the center of pressure in 
such cases is simply the point on the surface of the vertical plane of sym-
metry at a distance hP from the free surface.
 Pressure acts normal to the surface, and the hydrostatic forces acting on 
a flat plate of any shape form a volume whose base is the plate area and 

Center of
pressure Centroid

of area

Line of action

0

FR = PC A

yC

yP
z

u

FIGURE 3–30
The resultant force acting on a plane 
surface is equal to the product of the 

pressure at the centroid of the surface 
and the surface area, and its line of 
action passes through the center of 

pressure.
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Surface
a

b

P

Pressure prism

FIGURE 3–32
The hydrostatic forces acting on a 
plane surface form a pressure prism 
whose base (left face) is the surface 
and whose length is the pressure.

whose length is the linearly varying pressure, as shown in Fig. 3–32. This 
virtual pressure prism has an interesting physical interpretation: its volume 
is equal to the magnitude of the resultant hydrostatic force acting on the 
plate since FR 5 e P dA, and the line of action of this force passes through 
the centroid of this homogeneous prism. The projection of the centroid on 
the plate is the pressure center. Therefore, with the concept of pressure 
prism, the problem of describing the resultant hydrostatic force on a plane 
surface reduces to finding the volume and the two coordinates of the cen-
troid of this pressure prism.

Special Case: Submerged Rectangular Plate
Consider a completely submerged rectangular flat plate of height b and 
width a tilted at an angle u from the horizontal and whose top edge is hori-
zontal and is at a distance s from the free surface along the plane of the 
plate, as shown in Fig. 3–33a. The resultant hydrostatic force on the upper 
surface is equal to the average pressure, which is the pressure at the mid-
point of the surface, times the surface area A. That is,

Tilted rectangular plate: FR 5 PC A 5 [P0 1 rg(s 1 b/2) sin u]ab (3–23)

b/2

b
C C C

b/2

A = ab,  Ixx, C = ab3/12

a/2a/2

y

x

(a) Rectangle

R

R

R

A = pR2,  Ixx, C = pR4/4

b

a

y

x

(b) Circle

A = pab,  Ixx, C = pab3/4

y

x

(c) Ellipse

2b/3

b/3

C
C C

A = ab/2,  Ixx, C = ab3/36

a/2a/2

y

x

(d) Triangle

R

A = pR2/2,  Ixx, C = 0.109757R4

a

y

x

(e) Semicircle

A = pab/2,  Ixx, C = 0.109757ab3

y

x

( f )  Semiellipse

b

4b
3p

4R
3p

FIGURE 3–31
The centroid and the centroidal moments of inertia for some common geometries.
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The force acts at a vertical distance of hP 5 yP sin u from the free surface 
directly beneath the centroid of the plate where, from Eq. 3–22a,

 yP 5 s 1
b

2
1

ab3/12

[s 1 b/2 1 P0 /(rg sin u)]ab

  5 s 1
b

2
1

b2

12[s 1 b/2 1 P0 /(rg sin u)]
  (3–24)

When the upper edge of the plate is at the free surface and thus s 5 0, 
Eq. 3–23 reduces to

Tilted rectangular plate (s 5 0): FR 5 [P0 1 rg(b sin u)/2]ab (3–25)

For a completely submerged vertical plate (u 5 90°) whose top edge is hori-
zontal, the hydrostatic force can be obtained by setting sin u 5 1 (Fig. 3–33b)

Vertical rectangular plate:          FR 5 [P0 1 rg(s 1 b/ 2)]ab (3–26)

Vertical rectangular plate (s 5 0):         FR 5 (P0 1 rgb/ 2)ab (3–27)

When the effect of P0 is ignored since it acts on both sides of the plate, the 
hydrostatic force on a vertical rectangular surface of height b whose top 
edge is horizontal and at the free surface is FR 5 rgab2/2 acting at a dis-
tance of 2b/3 from the free surface directly beneath the centroid of the plate.
 The pressure distribution on a submerged horizontal surface is uniform, 
and its magnitude is P 5 P0 1 rgh, where h is the distance of the surface 
from the free surface. Therefore, the hydrostatic force acting on a horizontal 
rectangular surface is

Horizontal rectangular plate: FR 5 (P0 1 rgh)ab (3–28)

and it acts through the midpoint of the plate (Fig. 3–32c).

O

s
yp

b

O

s

yp

b

FR = [P0 + rg(s + b/2) sin u]ab FR = [P0 + rg(s + b/2)]ab

FR = (P0 + rgh)ab

(b) Vertical plate (c) Horizontal plate(a) Tilted plate

a

h

P0 P0 P0

θ

FIGURE 3–33
Hydrostatic force acting on the top surface of a submerged rectangular plate for tilted, vertical, and horizontal cases.
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EXAMPLE 3–8     Hydrostatic Force Acting on the Door 
of a Submerged Car

A heavy car plunges into a lake during an accident and lands at the bottom 

of the lake on its wheels (Fig. 3–34). The door is 1.2 m high and 1 m wide, 

and the top edge of the door is 8 m below the free surface of the water. 

Determine the hydrostatic force on the door and the location of the pressure 

center, and discuss if the driver can open the door.

SOLUTION  A car is submerged in water. The hydrostatic force on the door 

is to be determined, and the likelihood of the driver opening the door is to 

be assessed.

Assumptions  1 The bottom surface of the lake is horizontal. 2 The passen-

ger cabin is well-sealed so that no water leaks inside. 3 The door can be 

approximated as a vertical rectangular plate. 4 The pressure in the passen-

ger cabin remains at atmospheric value since there is no water leaking in, 

and thus no compression of the air inside. Therefore, atmospheric pressure 

cancels out in the calculations since it acts on both sides of the door. 5 The 

weight of the car is larger than the buoyant force acting on it.

Properties  We take the density of lake water to be 1000 kg/m3 throughout.

Analysis  The average (gage) pressure on the door is the pressure value at 

the centroid (midpoint) of the door and is determined to be

Pavg 5 PC 5 rghC 5 rg(s 1 b/2) 

 5 (1000 kg/m3)(9.81 m/s2)(8 1 1.2/2 m)a 1 kN

1000 kg·m/s2b
 5 84.4 kN/m2 

Then the resultant hydrostatic force on the door becomes

FR 5 Pavg A 5 (84.4 kN/m2) (1 m 3 1.2 m) 5 101.3 kN

The pressure center is directly under the midpoint of the door, and its dis-

tance from the surface of the lake is determined from Eq. 3–24 by setting 

P0 5 0, yielding

yP 5 s 1
b

2
1

b2

12(s 1 b/2)
5 8 1

1.2

2
1

1.22

12(8 1 1.2/2)
5 8.61 m

Discussion  A strong person can lift 100 kg, which is a weight of 981 N or 

about 1 kN. Also, the person can apply the force at a point farthest from the 

hinges (1 m farther) for maximum effect and generate a moment of 1 kN·m. 

The resultant hydrostatic force acts under the midpoint of the door, and thus 

a distance of 0.5 m from the hinges. This generates a moment of 50.6 kN·m, 

which is about 50 times the moment the driver can possibly generate. There-

fore, it is impossible for the driver to open the door of the car. The driver’s 

best bet is to let some water in (by rolling the window down a little, for 

example) and to keep his or her head close to the ceiling. The driver should 

be able to open the door shortly before the car is filled with water since at 

that point the pressures on both sides of the door are nearly the same and 

opening the door in water is almost as easy as opening it in air.

1.2 m

8 m

Lake

1 m

FIGURE 3–34
Schematic for Example 3–8.
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3–5 ■  HYDROSTATIC FORCES ON 
SUBMERGED CURVED SURFACES

In many practical applications, submerged surfaces are not flat (Fig. 3–35). 
For a submerged curved surface, the determination of the resultant hydro-
static force is more involved since it typically requires integration of the 
pressure forces that change direction along the curved surface. The concept 
of the pressure prism in this case is not much help either because of the 
complicated shapes involved.
 The easiest way to determine the resultant hydrostatic force FR acting on 
a two-dimensional curved surface is to determine the horizontal and verti-
cal components FH and FV separately. This is done by considering the free-
body diagram of the liquid block enclosed by the curved surface and the 
two plane surfaces (one horizontal and one vertical) passing through the two 
ends of the curved surface, as shown in Fig. 3–36. Note that the vertical 
surface of the liquid block considered is simply the projection of the curved 
surface on a vertical plane, and the horizontal surface is the projection of 
the curved surface on a horizontal plane. The resultant force acting on the 
curved solid surface is then equal and opposite to the force acting on the 
curved liquid surface (Newton’s third law).
 The force acting on the imaginary horizontal or vertical plane surface and 
its line of action can be determined as discussed in Section 3–4. The weight 
of the enclosed liquid block of volume V is simply W 5 rgV, and it acts 
downward through the centroid of this volume. Noting that the fluid block 
is in static equilibrium, the force balances in the horizontal and vertical 
directions give

Horizontal force component on curved surface:          FH 5 Fx (3–29)

Vertical force component on curved surface:        FV 5 Fy 6 W  (3–30)

FIGURE 3–35
In many structures of practical 

application, the submerged surfaces 
are not flat, but curved as here at Glen 

Canyon Dam in Utah and Arizona.
© Corbis RF

Horizontal projection
of the curved surface

Curved
surface

Liquid

Liquid
block

Vertical projection
of the curved surface

Free-body diagram
of the enclosed
liquid block

aA B

A B

C

C

b
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FR
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W
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V

FIGURE 3–36
Determination of the hydrostatic force acting on a submerged curved surface.
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where the summation Fy 6 W is a vector addition (i.e., add magnitudes if 
both act in the same direction and subtract if they act in opposite directions). 
Thus, we conclude that

 1. The horizontal component of the hydrostatic force acting on a curved 
surface is equal (in both magnitude and the line of action) to the 
hydrostatic force acting on the vertical projection of the curved surface.

 2. The vertical component of the hydrostatic force acting on a curved 
surface is equal to the hydrostatic force acting on the horizontal 
projection of the curved surface, plus (minus, if acting in the opposite 
direction) the weight of the fluid block.

 The magnitude of the resultant hydrostatic force acting on the curved sur-
face is FR 5 !F2

H 1 F2
V, and the tangent of the angle it makes with the 

horizontal is tan a 5 FV /FH. The exact location of the line of action of the 
resultant force (e.g., its distance from one of the end points of the curved 
surface) can be determined by taking a moment about an appropriate point. 
These discussions are valid for all curved surfaces regardless of whether 
they are above or below the liquid. Note that in the case of a curved sur-
face above a liquid, the weight of the liquid is subtracted from the verti-
cal component of the hydrostatic force since they act in opposite directions 
(Fig. 3–37).
 When the curved surface is a circular arc (full circle or any part of it), the 
resultant hydrostatic force acting on the surface always passes through 
the center of the circle. This is because the pressure forces are normal to the 
surface, and all lines normal to the surface of a circle pass through the cen-
ter of the circle. Thus, the pressure forces form a concurrent force system 
at the center, which can be reduced to a single equivalent force at that point 
(Fig. 3–38).
 Finally, the hydrostatic force acting on a plane or curved surface submerged 
in a multilayered fluid of different densities can be determined by consid-
ering different parts of surfaces in different fluids as different surfaces, find-
ing the force on each part, and then adding them using vector addition. For 
a plane surface, it can be expressed as (Fig. 3–39)

Plane surface in a multilayered fluid: FR 5 aFR, i 5 aPC, i Ai (3–31)

where PC, i 5 P0 1 righC, i is the pressure at the centroid of the portion of 
the surface in fluid i and Ai is the area of the plate in that fluid. The line of 
action of this equivalent force can be determined from the requirement that 
the moment of the equivalent force about any point is equal to the sum of 
the moments of the individual forces about the same point.

EXAMPLE 3–9    A Gravity-Controlled Cylindrical Gate

A long solid cylinder of radius 0.8 m hinged at point A is used as an auto-

matic gate, as shown in Fig. 3–40. When the water level reaches 5 m, the 

gate opens by turning about the hinge at point A. Determine (a) the hydro-

static force acting on the cylinder and its line of action when the gate opens 

and (b) the weight of the cylinder per m length of the cylinder.

Curved
surface

W

Fx

Fy

FIGURE 3–37
When a curved surface is above the 
liquid, the weight of the liquid and the 
vertical component of the hydrostatic 
force act in the opposite directions.

O

FR

Resultant
force

Circular
surface

Pressure
forces

FIGURE 3–38
The hydrostatic force acting on a 
circular surface always passes 
through the center of the circle since 
the pressure forces are normal to the 
surface and they all pass through 
the center.
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FR1
b1

FR2
b2

Oil

Water

FIGURE 3–39
The hydrostatic force on a surface 

submerged in a multilayered fluid can 
be determined by considering parts 
of the surface in different fluids as 

different surfaces.

SOLUTION  The height of a water reservoir is controlled by a cylindrical gate 

hinged to the reservoir. The hydrostatic force on the cylinder and the weight 

of the cylinder per m length are to be determined.

Assumptions  1 Friction at the hinge is negligible. 2 Atmospheric pressure 

acts on both sides of the gate, and thus it cancels out.

Properties  We take the density of water to be 1000 kg/m3 throughout.

Analysis  (a) We consider the free-body diagram of the liquid block enclosed 

by the circular surface of the cylinder and its vertical and horizontal projec-

tions. The hydrostatic forces acting on the vertical and horizontal plane sur-

faces as well as the weight of the liquid block are determined as

Horizontal force on vertical surface:

FH 5 Fx 5 Pavg A 5 rghCA 5 rg(s 1 R /2)A  

 5 (1000 kg/m3)(9.81 m/s2)(4.2 1 0.8/2 m)(0.8 m 3 1 m)a 1 kN

1000 kg·m/s2b
  5 36.1 kN  

Vertical force on horizontal surface (upward):

Fy 5 Pavg A 5 rghC A 5 rghbottom A  

 5 (1000 kg/m3)(9.81 m/s2)(5 m)(0.8 m 3 1 m)a 1 kN

1000 kg·m/s2b
 5 39.2 kN 

Weight (downward) of fluid block for one m width into the page:

W 5 mg 5 rgV 5 rg(R2 2 pR2/4)(1 m) 

 5 (1000 kg/m3)(9.81 m/s2)(0.8 m)2(1 2 p/4)(1 m)a 1 kN

1000 kg·m/s2b
 5 1.3 kN 

Therefore, the net upward vertical force is

FV 5 Fy 2 W 5 39.2 2 1.3 5 37.9 kN

Then the magnitude and direction of the hydrostatic force acting on the 

cylindrical surface become

 FR 5 "F2
H 1 F2

V 5 "36.12 1 37.92 5 52.3 kN 

 tan u 5 FV /FH 5 37.9/36.1 5 1.05 S  u 5 46.48 

Therefore, the magnitude of the hydrostatic force acting on the cylinder is 

52.3 kN per m length of the cylinder, and its line of action passes through 

the center of the cylinder making an angle 46.4° with the horizontal.

(b) When the water level is 5 m high, the gate is about to open and thus the 

reaction force at the bottom of the cylinder is zero. Then the forces other 

than those at the hinge acting on the cylinder are its weight, acting through 

the center, and the hydrostatic force exerted by water. Taking a moment 

about point A at the location of the hinge and equating it to zero gives

FRR sin u 2 W cyl R 5 0 S  W cyl 5 FR sin u 5 (52.3 kN) sin 46.48 5 37.9 kN

Discussion  The weight of the cylinder per m length is determined to be 

37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m 

length and to a density of 1921 kg/m3 for the material of the cylinder.

Wcyl

Fx

FR

A

W

R = 0.8 m

0.8 m

5 m

s = 4.2 m

Fy

FR

FH

FV

u

FIGURE 3–40
Schematic for Example 3–9 and 

the free-body diagram of the liquid 
underneath the cylinder.
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3–6 ■  BUOYANCY AND STABILITY
It is a common experience that an object feels lighter and weighs less in 
a liquid than it does in air. This can be demonstrated easily by weighing a 
heavy object in water by a waterproof spring scale. Also, objects made of 
wood or other light materials float on water. These and other observations 
suggest that a fluid exerts an upward force on a body immersed in it. This 
force that tends to lift the body is called the buoyant force and is denoted 
by FB.
 The buoyant force is caused by the increase of pressure with depth in 
a fluid. Consider, for example, a flat plate of thickness h submerged in a 
liquid of density rf parallel to the free surface, as shown in Fig. 3–41. The 
area of the top (and also bottom) surface of the plate is A, and its distance 
to the free surface is s. The gage pressures at the top and bottom surfaces 
of the plate are rfgs and rfg(s 1 h), respectively. Then the hydrostatic force 
Ftop 5 rfgsA acts downward on the top surface, and the larger force Fbottom 5 
rfg(s 1 h)A acts upward on the bottom surface of the plate. The difference 
between these two forces is a net upward force, which is the buoyant force,

 FB 5 Fbottom 2 Ftop 5 rf g(s 1 h)A 2 rf gsA 5 rf ghA 5 rf gV  (3–32)

where V 5 hA is the volume of the plate. But the relation rfgV is simply 
the weight of the liquid whose volume is equal to the volume of the plate. 
Thus, we conclude that the buoyant force acting on the plate is equal to the 
weight of the liquid displaced by the plate. For a fluid with constant density, 
the buoyant force is independent of the distance of the body from the free 
surface. It is also independent of the density of the solid body.
 The relation in Eq. 3–32 is developed for a simple geometry, but it is 
valid for any body regardless of its shape. This can be shown mathemati-
cally by a force balance, or simply by this argument: Consider an arbitrarily 
shaped solid body submerged in a fluid at rest and compare it to a body of 
fluid of the same shape indicated by dashed lines at the same vertical loca-
tion (Fig. 3–42). The buoyant forces acting on these two bodies are the same 
since the pressure distributions, which depend only on elevation, are the 
same at the boundaries of both. The imaginary fluid body is in static equi-
librium, and thus the net force and net moment acting on it are zero. There-
fore, the upward buoyant force must be equal to the weight of the imaginary 
fluid body whose volume is equal to the volume of the solid body. Further, 
the weight and the buoyant force must have the same line of action to have 
a zero moment. This is known as Archimedes’ principle, after the Greek 
mathematician Archimedes (287–212 bc), and is expressed as

The buoyant force acting on a body of uniform density immersed in a fluid 
is equal to the weight of the fluid displaced by the body, and it acts upward 
through the centroid of the displaced volume.

 For floating bodies, the weight of the entire body must be equal to the 
buoyant force, which is the weight of the fluid whose volume is equal to the 
volume of the submerged portion of the floating body. That is,

 FB 5 W S  rf gVsub 5 ravg, bodygVtotal S  
Vsub

Vtotal

5
ravg, body

rf
 (3–33)

rf gsAs

h

  rf g(s + h)A

A

FIGURE 3–41
A flat plate of uniform thickness h 
submerged in a liquid parallel to the 
free surface.

Fluid

FluidSolid

Ws

FB FB

W
CC

FIGURE 3–42
The buoyant forces acting on a solid 
body submerged in a fluid and on a 
fluid body of the same shape at the 
same depth are identical. The buoyant 
force FB acts upward through the 
centroid C of the displaced volume 
and is equal in magnitude to the 
weight W of the displaced fluid, but 
is opposite in direction. For a solid 
of uniform density, its weight Ws 
also acts through the centroid, but its 
magnitude is not necessarily equal 
to that of the fluid it displaces. (Here 
Ws . W and thus Ws . FB; this solid 
body would sink.)
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Fluid

Sinking
body

Suspended body 
(neutrally buoyant)

Floating
body r < rf

 r = rf

 r > rfrf

FIGURE 3–43
A solid body dropped into a fluid will 

sink, float, or remain at rest at any point 
in the fluid, depending on its average 

density relative to the density of the 
fluid.

FIGURE 3–44
The altitude of a hot air balloon 
is controlled by the temperature 

difference between the air inside and 
outside the balloon, since warm air 

is less dense than cold air. When the 
balloon is neither rising nor falling, 

the upward buoyant force exactly 
balances the downward weight.

© PhotoLink/Getty RF

Therefore, the submerged volume fraction of a floating body is equal to the 
ratio of the average density of the body to the density of the fluid. Note 
that when the density ratio is equal to or greater than one, the floating body 
becomes completely submerged.
 It follows from these discussions that a body immersed in a fluid (1) remains 
at rest at any location in the fluid where its average density is equal to the den-
sity of the fluid, (2) sinks to the bottom when its average density is greater than 
the density of the fluid, and (3) rises to the surface of the fluid and floats when 
the average density of the body is less than the density of the fluid (Fig. 3–43).
 The buoyant force is proportional to the density of the fluid, and thus we 
might think that the buoyant force exerted by gases such as air is negligible. 
This is certainly the case in general, but there are significant exceptions. For 
example, the volume of a person is about 0.1 m3, and taking the density of 
air to be 1.2 kg/m3, the buoyant force exerted by air on the person is

FB 5 rf gV 5 (1.2 kg/m3)(9.81 m/s2)(0.1 m3) > 1.2 N

The weight of an 80-kg person is 80 3 9.81 5 788 N. Therefore, ignoring 
the buoyancy in this case results in an error in weight of just 0.15 percent, 
which is negligible. But the buoyancy effects in gases dominate some impor-
tant natural phenomena such as the rise of warm air in a cooler environ-
ment and thus the onset of natural convection currents, the rise of hot-air or 
helium balloons, and air movements in the atmosphere. A helium balloon, 
for example, rises as a result of the buoyancy effect until it reaches an alti-
tude where the density of air (which decreases with altitude) equals the den-
sity of helium in the balloon—assuming the balloon does not burst by then, 
and ignoring the weight of the balloon’s skin. Hot air balloons (Fig. 3–44) 
work by similar principles.
 Archimedes’ principle is also used in geology by considering the conti-
nents to be floating on a sea of magma.

EXAMPLE 3–10    Measuring Specific Gravity by a Hydrometer

If you have a seawater aquarium, you have probably used a small cylindrical 

glass tube with a lead-weight at its bottom to measure the salinity of the 

water by simply watching how deep the tube sinks. Such a device that floats 

in a vertical position and is used to measure the specific gravity of a liquid 

is called a hydrometer (Fig. 3–45). The top part of the hydrometer extends 

above the liquid surface, and the divisions on it allow one to read the spe-

cific gravity directly. The hydrometer is calibrated such that in pure water 

it reads exactly 1.0 at the air–water interface. (a) Obtain a relation for the 

specific gravity of a liquid as a function of distance Dz from the mark cor-

responding to pure water and (b) determine the mass of lead that must be 

poured into a 1-cm-diameter, 20-cm-long hydrometer if it is to float halfway 

(the 10-cm mark) in pure water.

SOLUTION  The specific gravity of a liquid is to be measured by a hydrom-

eter. A relation between specific gravity and the vertical distance from the 

reference level is to be obtained, and the amount of lead that needs to be 

added into the tube for a certain hydrometer is to be determined.

Assumptions  1 The weight of the glass tube is negligible relative to the 

weight of the lead added. 2 The curvature of the tube bottom is disregarded.
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Hydrometer

Lead

1.0

W

FB

z0

z

FIGURE 3–45
Schematic for Example 3–10.

FB

FT, water

W

Water

FT, air

W

Concrete
block

Concrete
block

Air

Rope

FIGURE 3–46
Schematic for Example 3–11.

Properties  We take the density of pure water to be 1000 kg/m3.

Analysis  (a) Noting that the hydrometer is in static equilibrium, the buoyant 

force FB exerted by the liquid must always be equal to the weight W of the 

hydrometer. In pure water (subscript w ), we let the vertical distance between 

the bottom of the hydrometer and the free surface of water be z0. Setting 

FB, w 5 W in this case gives

 Whydro 5 FB, w 5 rw gVsub 5 rw gAz0 (1)

where A is the cross-sectional area of the tube, and rw is the density of pure 

water.

 In a fluid lighter than water (rf , rw), the hydrometer will sink deeper, and 

the liquid level will be a distance of Dz above z0. Again setting FB 5 W gives

 Whydro 5 FB, f 5 rf gVsub 5 rf gA(z0 1 Dz) (2)

This relation is also valid for fluids heavier than water by taking Dz to be a 

negative quantity. Setting Eqs. (1) and (2) here equal to each other since 

the weight of the hydrometer is constant and rearranging gives

rwgAz0 5 rf gA(z0 1 Dz) S  SGf 5
rf

rw
5

z0

z0 1 Dz

which is the relation between the specific gravity of the fluid and Dz. Note 

that z0 is constant for a given hydrometer and Dz is negative for fluids 

heavier than pure water.

(b) Disregarding the weight of the glass tube, the amount of lead that needs 

to be added to the tube is determined from the requirement that the weight 

of the lead be equal to the buoyant force. When the hydrometer is floating 

with half of it submerged in water, the buoyant force acting on it is

FB 5 rwgVsub

Equating FB to the weight of lead gives

W 5 mg 5 rwgVsub

Solving for m and substituting, the mass of lead is determined to be

m 5 rwVsub 5 rw(pR 2hsub) 5 (1000 kg/m3)[p(0.005 m)2(0.1 m)] 5 0.00785 kg

Discussion  Note that if the hydrometer were required to sink only 5 cm in 

water, the required mass of lead would be one-half of this amount. Also, the 

assumption that the weight of the glass tube is negligible is questionable 

since the mass of lead is only 7.85 g.

EXAMPLE 3–11    Weight Loss of an Object in Seawater

A crane is used to lower weights into the sea (density 5 1025 kg/m3) for 

an underwater construction project (Fig. 3–46). Determine the tension in 

the rope of the crane due to a rectangular 0.4-m 3 0.4-m 3 3-m concrete 

block (density 5 2300 kg/m3) when it is (a) suspended in the air and (b) 

completely immersed in water.

SOLUTION  A concrete block is lowered into the sea. The tension in the 

rope is to be determined before and after the block is in water.
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Assumptions  1 The buoyant force in air is negligible. 2 The weight of the 

ropes is negligible.

Properties  The densities are given to be 1025 kg/m3 for seawater and 

2300 kg/m3 for concrete.

Analysis  (a) Consider a free-body diagram of the concrete block. The forces 

acting on the concrete block in air are its weight and the upward pull action 

(tension) by the rope. These two forces must balance each other, and thus 

the tension in the rope must be equal to the weight of the block:

 V 5 (0.4 m)(0.4 m)(3 m) 5 0.48 m3 

FT, air 5 W 5 rconcrete gV 

 5 (2300 kg/m3)(9.81 m/s2)(0.48 m3)a 1 kN

1000 kg·m/s2b 5 10.8 kN

(b) When the block is immersed in water, there is the additional force of 

buoyancy acting upward. The force balance in this case gives

 FB 5 rf gV 5 (1025 kg/m3)(9.81 m/s2)(0.48 m3)a 1 kN

1000 kg·m/s2b 5 4.8 kN

FT, water 5 W 2 FB 5 10.8 2 4.8 5 6.0 kN  

Discussion  Note that the weight of the concrete block, and thus the tension 

of the rope, decreases by (10.8 2 6.0)/10.8 5 55 percent in water.

Stability of Immersed and Floating Bodies
An important application of the buoyancy concept is the assessment of the 
stability of immersed and floating bodies with no external attachments. 
This topic is of great importance in the design of ships and submarines 
(Fig. 3–47). Here we provide some general qualitative discussions on verti-
cal and rotational stability.
 We use the classic “ball on the floor” analogy to explain the fundamental 
concepts of stability and instability. Shown in Fig. 3–48 are three balls at rest 
on the floor. Case (a) is stable since any small disturbance (someone moves 
the ball to the right or left) generates a restoring force (due to gravity) that 
returns it to its initial position. Case (b) is neutrally stable because if some-
one moves the ball to the right or left, it would stay put at its new location. 
It has no tendency to move back to its original location, nor does it continue 
to move away. Case (c) is a situation in which the ball may be at rest at the 
moment, but any disturbance, even an infinitesimal one, causes the ball to 
roll off the hill—it does not return to its original position; rather it diverges 
from it. This situation is unstable. What about a case where the ball is on an 
inclined floor? It is not appropriate to discuss stability for this case since the 
ball is not in a state of equilibrium. In other words, it cannot be at rest and 
would roll down the hill even without any disturbance.
 For an immersed or floating body in static equilibrium, the weight and the 
buoyant force acting on the body balance each other, and such bodies are 

(c)  Unstable

(a) Stable

(b) Neutrally stable

FIGURE 3–48
Stability is easily understood by 

analyzing a ball on the floor.

FIGURE 3–47
For floating bodies such as ships, 

stability is an important 
consideration for safety.

© Corbis RF
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inherently stable in the vertical direction. If an immersed neutrally buoyant 
body is raised or lowered to a different depth in an incompressible fluid, the 
body will remain in equilibrium at that location. If a floating body is raised 
or lowered somewhat by a vertical force, the body will return to its original 
position as soon as the external effect is removed. Therefore, a floating body 
possesses vertical stability, while an immersed neutrally buoyant body is neu-
trally stable since it does not return to its original position after a disturbance.
 The rotational stability of an immersed body depends on the relative loca-
tions of the center of gravity G of the body and the center of buoyancy B, 
which is the centroid of the displaced volume. An immersed body is sta-
ble if the body is bottom-heavy and thus point G is directly below point B 
(Fig. 3–49a). A rotational disturbance of the body in such cases produces 
a restoring moment to return the body to its original stable position. Thus, 
a stable design for a submarine calls for the engines and the cabins for the 
crew to be located at the lower half in order to shift the weight to the bot-
tom as much as possible. Hot-air or helium balloons (which can be viewed 
as being immersed in air) are also stable since the heavy cage that carries 
the load is at the bottom. An immersed body whose center of gravity G is 
directly above point B is unstable, and any disturbance will cause this body 
to turn upside down (Fig 3–49c). A body for which G and B coincide is 
neutrally stable (Fig 3–49b). This is the case for bodies whose density is 
constant throughout. For such bodies, there is no tendency to overturn or 
right themselves.
 What about a case where the center of gravity is not vertically aligned 
with the center of buoyancy, as in Fig. 3–50? It is not appropriate to discuss 
stability for this case since the body is not in a state of equilibrium. In other 
words, it cannot be at rest and would rotate toward its stable state even with-
out any disturbance. The restoring moment in the case shown in Fig. 3–50 
is counterclockwise and causes the body to rotate counterclockwise so as 
to align point G vertically with point B. Note that there may be some oscil-
lation, but eventually the body settles down at its stable equilibrium state 
[case (a) of Fig. 3–49]. The initial stability of the body of Fig. 3–50 is anal-
ogous to that of the ball on an inclined floor. Can you predict what would 
happen if the weight in the body of Fig. 3–50 were on the opposite side of 
the body?
 The rotational stability criteria are similar for floating bodies. Again, if the 
floating body is bottom-heavy and thus the center of gravity G is directly 
below the center of buoyancy B, the body is always stable. But unlike 
immersed bodies, a floating body may still be stable when G is directly above 
B (Fig. 3–51). This is because the centroid of the displaced volume shifts to 
the side to a point B9 during a rotational disturbance while the center of grav-
ity G of the body remains unchanged. If point B9 is sufficiently far, these two 
forces create a restoring moment and return the body to the original position. 
A measure of stability for floating bodies is the metacentric height GM, 
which is the distance between the center of gravity G and the metacenter 
M—the intersection point of the lines of action of the buoyant force through 
the body before and after rotation. The metacenter may be considered to be 
a fixed point for most hull shapes for small rolling angles up to about 20°. A 
floating body is stable if point M is above point G, and thus GM is positive, 
and unstable if point M is below point G, and thus GM is negative. In the 

(a) Stable

(b) Neutrally stable

(c) Unstable

FB

B
G
W

FB
B

W
G

FB

B

W

G

Fluid

Weight

Weight

FIGURE 3–49
An immersed neutrally buoyant body 
is (a) stable if the center of gravity G is 
directly below the center of buoyancy B 
of the body, (b) neutrally stable if G 
and B are coincident, and (c) unstable 
if G is directly above B.

Restoring moment

Weight

FB

B

W

G

FIGURE 3–50
When the center of gravity G of an 
immersed neutrally buoyant body is 
not vertically aligned with the center 
of buoyancy B of the body, it is not in 
an equilibrium state and would rotate 
to its stable state, even without any 
disturbance.
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latter case, the weight and the buoyant force acting on the tilted body gener-
ate an overturning moment instead of a restoring moment, causing the body 
to capsize. The length of the metacentric height GM above G is a measure of 
the stability: the larger it is, the more stable is the floating body.
 As already discussed, a boat can tilt to some maximum angle without 
capsizing, but beyond that angle it overturns (and sinks). We make a final 
analogy between the stability of floating objects and the stability of a ball 
rolling along the floor. Namely, imagine the ball in a trough between two 
hills (Fig. 3–52). The ball returns to its stable equilibrium position after 
being perturbed—up to a limit. If the perturbation amplitude is too great, 
the ball rolls down the opposite side of the hill and does not return to its 
equilibrium position. This situation is described as stable up to some limit-
ing level of disturbance, but unstable beyond.

3–7 ■  FLUIDS IN RIGID-BODY MOTION
We showed in Section 3–1 that pressure at a given point has the same mag-
nitude in all directions, and thus it is a scalar function. In this section we 
obtain relations for the variation of pressure in fluids moving like a solid 
body with or without acceleration in the absence of any shear stresses (i.e., 
no motion between fluid layers relative to each other).
 Many fluids such as milk and gasoline are transported in tankers. In an 
accelerating tanker, the fluid rushes to the back, and some initial splashing 
occurs. But then a new free surface (usually nonhorizontal) is formed, each 
fluid particle assumes the same acceleration, and the entire fluid moves like 
a rigid body. No shear stresses exist within the fluid body since there is no 
deformation and thus no change in shape. Rigid-body motion of a fluid also 
occurs when the fluid is contained in a tank that rotates about an axis.
 Consider a differential rectangular fluid element of side lengths dx, dy, 
and dz in the x-, y-, and z-directions, respectively, with the z-axis being 
upward in the vertical direction (Fig. 3–53). Noting that the differential 
fluid element behaves like a rigid body, Newton’s second law of motion for 
this element can be expressed as

 dF
!
5 dm·a

!
 (3–34)

where dm 5 r dV 5 r dx dy dz is the mass of the fluid element, a
!
 is the 

acceleration, and dF
!
 is the net force acting on the element.

Metacenter

Restoring
moment

(a) Stable (b) Stable (c) Unstable

W

B

G

G B′

M

FB

Overturning
moment

G

B′′
M

FIGURE 3–51
A floating body is stable if the body is 

(a) bottom-heavy and thus the center 
of gravity G is below the centroid B 
of the body, or (b) if the metacenter 

M is above point G. However, the 
body is (c) unstable if point M is 

below point G.

FIGURE 3–52
A ball in a trough between two hills 
is stable for small disturbances, but 

unstable for large disturbances.
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FIGURE 3–53
The surface and body forces acting 

on a differential fluid element 
in the vertical direction.
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 The forces acting on the fluid element consist of body forces such as grav-
ity that act throughout the entire body of the element and are proportional 
to the volume of the body (and also electrical and magnetic forces, which 
will not be considered in this text), and surface forces such as the pressure 
forces that act on the surface of the element and are proportional to the sur-
face area (shear stresses are also surface forces, but they do not apply in this 
case since the relative positions of fluid elements remain unchanged). The 
surface forces appear as the fluid element is isolated from its surroundings 
for analysis, and the effect of the detached body is replaced by a force at 
that location. Note that pressure represents the compressive force applied 
on the fluid element by the surrounding fluid and is always normal to the 
surface and inward toward the surface.
 Taking the pressure at the center of the element to be P, the pressures at 
the top and bottom surfaces of the element can be expressed as P 1 (0P/0z) 
dz/2 and P 2 (0P/0z) dz/2, respectively. Noting that the pressure force act-
ing on a surface is equal to the average pressure multiplied by the surface 
area, the net surface force acting on the element in the z-direction is the dif-
ference between the pressure forces acting on the bottom and top faces,

 dFS, z 5 aP 2
0P
0z

 
dz

2
b dx dy 2 aP 1

0P
0z

 
dz

2
b dx dy 5 2

0P
0z

 dx dy dz (3–35)

Similarly, the net surface forces in the x- and y-directions are

 dFS, x 5 2
0P
0x

 dx dy dz  and  dFS, y 5 2
0P
0y

 dx dy dz (3–36)

Then the surface force (which is simply the pressure force) acting on the 
entire element can be expressed in vector form as

dF
!
S 5 dFS, x  i 

!
1 dFS, y  j 

!
1 dFS, z k

!
 

  5 2a 0P
0x

  i 

!
1
0P
0y

   j 

!
1
0P
0z

 k
!b dx dy dz 5 2=

!
P dx dy dz (3–37)

where  i  

!
,  j 

!
, and k

!
 are the unit vectors in the x-, y-, and z-directions, respec-

tively, and

 =
!
P 5

0P
0x

  i  

!
1
0P
0y

  j 

!
1
0P
0z

 k
!
 (3–38)

is the pressure gradient. Note that =
!
 or “del” is a vector operator that is 

used to express the gradients of a scalar function compactly in vector form. 
Also, the gradient of a scalar function is expressed in a given direction and 
thus it is a vector quantity.
 The only body force acting on the fluid element is the weight of the element 
acting in the negative z-direction, and it is expressed as dFB, z 5 2gdm 5 
2rg dx dy dz or in vector form as

 dF
!
B, z 5 2gdmk

!
5 2rg dx dy dzk

!
 (3–39)

Then the total force acting on the element becomes

 dF
!
5 dF

!
S 1 dF

!
B 5 2(=

!
P 1 rgk

!
) dx dy dz (3–40)

075-132_cengel_ch03.indd   104 12/14/12   11:48 AM



105
CHAPTER 3

Substituting into Newton’s second law of motion dF
→

 5 dm ? a
!
 5 r dx dy 

dz ? a
!
 and canceling dx dy dz, the general equation of motion for a fluid 

that acts as a rigid body (no shear stresses) is determined to be

Rigid-body motion of fluids:           =
!
P 1 rgk

!
5 2ra

!
 (3–41)

Resolving the vectors into their components, this relation can be expressed 
more explicitly as

 
0P
0x

  i 

!
1
0P
0y

   j 

!
1
0P
0z

 k
!
1 rgk

!
5 2r(ax i 

!
1 ay   j 

!
1 azk

!
) (3–42)

or, in scalar form in the three orthogonal directions as

Accelerating fluids: 
0P
0x

5 2rax, 
0P
0y

5 2ray, and 
0P
0z

5 2r(g 1 az) (3–43)

where ax, ay, and az are accelerations in the x-, y-, and z-directions, respec-
tively.

Special Case 1: Fluids at Rest
For fluids at rest or moving on a straight path at constant velocity, all com-
ponents of acceleration are zero, and the relations in Eqs. 3–43 reduce to

Fluids at rest: 
0P
0x

5 0, 
0P
0y

5 0, and  
dP

dz
5 2rg (3–44)

which confirm that, in fluids at rest, the pressure remains constant in any 
horizontal direction (P is independent of x and y) and varies only in the 
vertical direction as a result of gravity [and thus P 5 P(z)]. These relations 
are applicable for both compressible and incompressible fluids (Fig. 3–54).

Special Case 2: Free Fall of a Fluid Body
A freely falling body accelerates under the influence of gravity. When the 
air resistance is negligible, the acceleration of the body equals the gravi-
tational acceleration, and acceleration in any horizontal direction is zero. 
Therefore, ax 5 ay 5 0 and az 5 2g. Then the equations of motion for 
accelerating fluids (Eqs. 3–43) reduce to

Free-falling fluids: 
0P
0x

5
0P
0y

5
0P
0z

5 0  S  P 5 constant (3–45)

Therefore, in a frame of reference moving with the fluid, it behaves like 
it is in an environment with zero gravity. (This is the situation in an orbit-
ing spacecraft, by the way. Gravity is not zero up there, despite what many 
people think!) Also, the gage pressure in a drop of liquid in free fall is zero 
throughout. (Actually, the gage pressure is slightly above zero due to sur-
face tension, which holds the drop intact.)
 When the direction of motion is reversed and the fluid is forced to accel-
erate vertically with az 5 1g by placing the fluid container in an elevator or 
a space vehicle propelled upward by a rocket engine, the pressure gradient 
in the z-direction is 0P/0z 5 22rg. Therefore, the pressure difference across 
a fluid layer now doubles relative to the stationary fluid case (Fig. 3–55).

FIGURE 3–54
A glass of water at rest is a special 

case of a fluid in rigid-body motion. 
If the glass of water were moving at 

constant velocity in any direction, 
the hydrostatic equations would 

still apply.
© Imagestate Media (John Foxx)/Imagestate RF

az = –g

z z

az = g

P2 = P1

P1 P1

P2 = P1 + 2rgh

(a) Free fall of a
liquid

(b) Upward acceleration
of a liquid with az = +g

Liquid, rLiquid, rh h

FIGURE 3–55
The effect of acceleration on the 

pressure of a liquid during free 
fall and upward acceleration.
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�zs = zs2 – zs1

x1 – x2

az
a

g

ax

Constant
pressure
lines

Free
surface2

1

z

x

FIGURE 3–57
Lines of constant pressure (which 
are the projections of the surfaces of 
constant pressure on the xz-plane) in 
a linearly accelerating liquid. Also 
shown is the vertical rise.

Acceleration on a Straight Path
Consider a container partially filled with a liquid. The container is moving 
on a straight path with a constant acceleration. We take the projection of the 
path of motion on the horizontal plane to be the x-axis, and the projection 
on the vertical plane to be the z-axis, as shown in Fig. 3–56. The x- and 
z-components of acceleration are ax and az. There is no movement in the 
y-direction, and thus the acceleration in that direction is zero, ay 5 0. Then 
the equations of motion for accelerating fluids (Eqs. 3–43) reduce to

 
0P
0x

5 2rax, 
0P
0y

5 0, and 
0P
0z

5 2r(g 1 az) (3–46)

Therefore, pressure is independent of y. Then the total differential of P 5 P(x, z), 
which is (0P/0x)dx 1 (0P/0z) dz, becomes

 dP 5 2rax dx 2 r(g 1 az) dz (3–47)

For r 5 constant, the pressure difference between two points 1 and 2 in the 
fluid is determined by integration to be

 P2 2 P1 5 2rax(x2 2 x1) 2 r(g 1 az)(z2 2 z1) (3–48)

Taking point 1 to be the origin (x 5 0, z 5 0) where the pressure is P0 and 
point 2 to be any point in the fluid (no subscript), the pressure distribution 
is expressed as

Pressure variation: P 5 P0 2 raxx 2 r(g 1 az)z (3–49)

The vertical rise (or drop) of the free surface at point 2 relative to point 1 is 
determined by choosing both 1 and 2 on the free surface (so that P1 5 P2), 
and solving Eq. 3–48 for z2 2 z1 (Fig. 3–57),

Vertical rise of surface: Dzs 5 zs2 2 zs1 5 2
ax

g 1 az

 (x2 2 x1) (3–50)

where zs is the z-coordinate of the liquid’s free surface. The equation for 
surfaces of constant pressure, called isobars, is obtained from Eq. 3–47 by 
setting d P 5 0 and replacing z by zisobar, which is the z-coordinate (the ver-
tical distance) of the surface as a function of x. It gives

Surfaces of constant pressure: 
dzisobar

dx
5 2

ax

g 1 az
5 constant (3–51)

Thus we conclude that the isobars (including the free surface) in an incom-
pressible fluid with constant acceleration in linear motion are parallel sur-
faces whose slope in the xz-plane is

Slope of isobars: Slope 5
dz isobar

dx
5 2

ax

g 1 az

5 2tan u (3–52)

Obviously, the free surface of such a fluid is a plane surface, and it is 
inclined unless ax 5 0 (the acceleration is in the vertical direction only). 
Also, conservation of mass, together with the assumption of incompressibility 
(r 5 constant), requires that the volume of the fluid remain constant before 
and during acceleration. Therefore, the rise of fluid level on one side must 
be balanced by a drop of fluid level on the other side.

�zmax

z

x

b

ho

az

g

g ax

Liquid

Free
surface

a

a–

FIGURE 3–56
Rigid-body motion of a liquid in a 
linearly accelerating tank. The system 
behaves like a fluid at rest except that 
g
!
2 a

!
 replaces g

!
 in the hydrostatic 

equations.
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FIGURE 3–58
Schematic for Example 3–12.

EXAMPLE 3–12     Overflow from a Water Tank During Acceleration

An 80-cm-high fish tank of cross section 2 m 3 0.6 m that is partially filled 

with water is to be transported on the back of a truck (Fig. 3–58). The truck 

accelerates from 0 to 90 km/h in 10 s. If it is desired that no water spills 

during acceleration, determine the allowable initial water height in the tank. 

Would you recommend the tank to be aligned with the long or short side par-

allel to the direction of motion?

SOLUTION  A fish tank is to be transported on a truck. The allowable water 

height to avoid spill of water during acceleration and the proper orientation 

are to be determined.

Assumptions  1 The road is horizontal during acceleration so that accelera-

tion has no vertical component (az 5 0). 2 Effects of splashing, braking, 

shifting gears, driving over bumps, climbing hills, etc., are assumed to be 

secondary and are not considered. 3 The acceleration remains constant.

Analysis  We take the x-axis to be the direction of motion, the z-axis to be 

the upward vertical direction, and the origin to be the lower left corner of the 

tank. Noting that the truck goes from 0 to 90 km/h in 10 s, the acceleration 

of the truck is

ax 5
DV

Dt
5

(90 2 0) km/h

10 s
a 1 m/s

3.6 km/h
b 5 2.5 m/s2

The tangent of the angle the free surface makes with the horizontal is

tan u 5
ax

g 1 az

5
2.5

9.81 1 0
5 0.255   (and thus u 5 14.38)

The maximum vertical rise of the free surface occurs at the back of the tank, 

and the vertical midplane experiences no rise or drop during acceleration 

since it is a plane of symmetry. Then the vertical rise at the back of the tank 

relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:

Dzs1 5 (b1/2) tan u 5 [(2 m)/2] 3 0.255 5 0.255 m 5 25.5 cm

Case 2: The short side is parallel to the direction of motion:

Dzs2 5 (b2/2) tan u 5 [(0.6 m)/2] 3 0.255 5 0.076 m 5 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be 
oriented such that its short side is parallel to the direction of motion. Emptying 

the tank such that its free surface level drops just 7.6 cm in this case will 

be adequate to avoid spilling during acceleration.

Discussion  Note that the orientation of the tank is important in controlling 

the vertical rise. Also, the analysis is valid for any fluid with constant den-

sity, not just water, since we used no information that pertains to water in 

the solution.

Rotation in a Cylindrical Container
We know from experience that when a glass filled with water is rotated about 
its axis, the fluid is forced outward as a result of the so-called centrifugal 
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FIGURE 3–60
Surfaces of constant pressure in a 
rotating liquid.

force (but more properly explained in terms of centripetal acceleration), and 
the free surface of the liquid becomes concave. This is known as the forced 
vortex motion.
 Consider a vertical cylindrical container partially filled with a liquid. The 
container is now rotated about its axis at a constant angular velocity of v, as 
shown in Fig. 3–59. After initial transients, the liquid will move as a rigid 
body together with the container. There is no deformation, and thus there 
can be no shear stress, and every fluid particle in the container moves with 
the same angular velocity.
 This problem is best analyzed in cylindrical coordinates (r, u, z), with z 
taken along the centerline of the container directed from the bottom toward 
the free surface, since the shape of the container is a cylinder, and the fluid 
particles undergo a circular motion. The centripetal acceleration of a fluid 
particle rotating with a constant angular velocity of v at a distance r from 
the axis of rotation is rv2 and is directed radially toward the axis of rotation 
(negative r-direction). That is, ar 5 2rv2. There is symmetry about the z-axis, 
which is the axis of rotation, and thus there is no u dependence. Then P 5 
P(r, z) and au 5 0. Also, az 5 0 since there is no motion in the z-direction.
 Then the equation of motion for accelerating fluids (Eq. 3–41) reduces to

 
0P
0r

5 rrv2,  
0P
0u

5 0,  and  
0P
0z

5 2rg (3–53)

Then the total differential of P 5 P(r, z), which is dP 5 (0P/0r)dr 1 
(0P/0z)dz, becomes

 dP 5 rrv2 dr 2 rg dz (3–54)

The equation for surfaces of constant pressure is obtained by setting dP 5 0 
and replacing z by zisobar, which is the z-value (the vertical distance) of the 
surface as a function of r. It gives

 
dzisobar

dr
5

rv2

g
 (3–55)

Integrating, the equation for the surfaces of constant pressure is determined 
to be

Surfaces of constant pressure: zisobar 5
v2

2g
 r2 1 C1 (3–56)

which is the equation of a parabola. Thus we conclude that the surfaces of 
constant pressure, including the free surface, are paraboloids of revolution 
(Fig. 3–60).
 The value of the integration constant C1 is different for different parabo-
loids of constant pressure (i.e., for different isobars). For the free surface, 
setting r 5 0 in Eq. 3–56 gives zisobar(0) 5 C1 5 hc, where hc is the distance 
of the free surface from the bottom of the container along the axis of rota-
tion (Fig. 3–59). Then the equation for the free surface becomes

 zs 5
v2

2g
 r2 1 hc (3–57)

where zs is the distance of the free surface from the bottom of the con-
tainer at radius r. The underlying assumption in this analysis is that there is 

ho

zs

z

Axis of
rotation

Free
surface

R

r

g

hc

FIGURE 3–59
Rigid-body motion of a liquid in a 
rotating vertical cylindrical container.
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sufficient liquid in the container so that the entire bottom surface remains 
covered with liquid.
 The volume of a cylindrical shell element of radius r, height zs, and thick-
ness dr is dV 5 2przs dr. Then the volume of the paraboloid formed by the 
free surface is

 V 5 #
R

r50
 2pzsr dr 5 2p #

R

r50
 av2

2g
 r2 1 hcbr dr 5 pR2av2R2

4g
1 hcb  (3–58)

Since mass is conserved and density is constant, this volume must be equal 
to the original volume of the fluid in the container, which is

 V 5 pR2h0 (3–59)

where h0 is the original height of the fluid in the container with no rotation. 
Setting these two volumes equal to each other, the height of the fluid along 
the centerline of the cylindrical container becomes

 hc 5 h0 2
v2R2

4g
 (3–60)

Then the equation of the free surface becomes

Free surface: zs 5 h0 2
v2

4g
 (R2 2 2r2) (3–61)

The paraboloid shape is independent of fluid properties, so the same free 
surface equation applies to any liquid. For example, spinning liquid mercury 
forms a parabolic mirror that is useful in astronomy (Fig. 3–61).
 The maximum vertical height occurs at the edge where r 5 R, and the 
maximum height difference between the edge and the center of the free sur-
face is determined by evaluating zs at r 5 R and also at r 5 0, and taking 
their difference,

Maximum height difference: Dzs, max 5 zs(R) 2 zs(0) 5
v2

2g
 R 2 (3–62)

 When r 5 constant, the pressure difference between two points 1 and 2 in 
the fluid is determined by integrating dP 5 rrv2 dr 2 rg dz. This yields

 P2 2 P1 5
rv2

2
 (r2

2 2 r2
1) 2 rg(z2 2 z1) (3–63)

Taking point 1 to be the origin (r 5 0, z 5 0) where the pressure is P0 and 
point 2 to be any point in the fluid (no subscript), the pressure distribution 
is expressed as

Pressure variation: P 5 P0 1
rv2

2
 r2 2 rgz (3–64)

Note that at a fixed radius, the pressure varies hydrostatically in the vertical 
direction, as in a fluid at rest. For a fixed vertical distance z, the pressure 
varies with the square of the radial distance r, increasing from the center-
line toward the outer edge. In any horizontal plane, the pressure difference 
between the center and edge of the container of radius R is DP 5 rv2R2/2.

FIGURE 3–61
The 6-meter spinning liquid-mercury 
mirror of the Large Zenith Telescope 

located near Vancouver, British 
Columbia.

Photo courtesy of Paul Hickson, The University of 
British Columbia. Used by permission.
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FIGURE 3–62
Schematic for Example 3–13.

EXAMPLE 3–13    Rising of a Liquid During Rotation

A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig. 3–62, 

is partially filled with 50-cm-high liquid whose density is 850 kg/m3. Now the 

cylinder is rotated at a constant speed. Determine the rotational speed at which 

the liquid will start spilling from the edges of the container.

SOLUTION  A vertical cylindrical container partially filled with a liquid is 

rotated. The angular speed at which the liquid will start spilling is to be 

determined.

Assumptions  1 The increase in the rotational speed is very slow so that the 

liquid in the container always acts as a rigid body. 2 The bottom surface of 

the container remains covered with liquid during rotation (no dry spots).

Analysis  Taking the center of the bottom surface of the rotating vertical 

cylinder as the origin (r 5 0, z 5 0), the equation for the free surface of the 

liquid is given as

zs 5 h0 2
v2

4g
 (R2 2 2r2)

Then the vertical height of the liquid at the edge of the container where r 5 

R becomes

zs(R) 5 h0 1
v2R2

4g

where h0 5 0.5 m is the original height of the liquid before rotation. Just 

before the liquid starts spilling, the height of the liquid at the edge of the 

container equals the height of the container, and thus zs(R) 5 H 5 0.6 m. 

Solving the last equation for v and substituting, the maximum rotational 

speed of the container is determined to be

v 5 Å4g(H 2 h0)

R2 5 Å4(9.81 m/s2)[(0.6 2 0.5) m]

(0.1 m)2 5 19.8 rad/s

Noting that one complete revolution corresponds to 2p rad, the rotational 

speed of the container can also be expressed in terms of revolutions per 

minute (rpm) as

n
#

5
v

2p
5

19.8 rad/s

2p rad/rev
a 60 s

1 min
b 5 189 rpm

Therefore, the rotational speed of this container should be limited to 189 rpm 

to avoid any spill of liquid as a result of the centrifugal effect.

Discussion  Note that the analysis is valid for any liquid since the result is 

independent of density or any other fluid property. We should also verify that 

our assumption of no dry spots is valid. The liquid height at the center is

zs(0) 5 h0 2
v2R2

4g
5 0.4 m

Since zs(0) is positive, our assumption is validated.
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SUMMARY

The normal force exerted by a fluid per unit area is called pres-
sure, and its SI unit is the pascal, 1 Pa ≡ 1 N/m2. The pressure 
relative to absolute vacuum is called the absolute pressure, 
and the difference between the absolute pressure and the local 
atmospheric pressure is called the gage pressure. Pressures 
below atmospheric pressure are sometimes called vacuum pres-
sures. The absolute, gage, and vacuum pressures are related by

 Pgage 5 Pabs 2 Patm 

 Pvac 5 Patm 2 Pabs 5 2Pgage

The pressure at a point in a fluid has the same magnitude in 
all directions. The variation of pressure with elevation in a 
fluid at rest is given by

dP

dz
5 2rg

where the positive z-direction is taken to be upward by con-
vention. When the density of the fluid is constant, the pres-
sure difference across a fluid layer of thickness Dz is

Pbelow 5 Pabove 1 rg|Dz| 5 Pabove 1 gs|Dz|

The absolute and gage pressures in a static liquid open to the 
atmosphere at a depth h from the free surface are

P 5 Patm 1 rgh  and  Pgage 5 rgh

The pressure in a fluid at rest does not vary in the horizontal 
direction. Pascal’s law states that the pressure applied to a 
confined fluid increases the pressure throughout by the same 
amount. The atmospheric pressure can be measured by a 
barometer and is given by

Patm 5 rgh

where h is the height of the liquid column.
 Fluid statics deals with problems associated with fluids at 
rest, and it is called hydrostatics when the fluid is a liquid. 
The magnitude of the resultant force acting on a plane surface 
of a completely submerged plate in a homogeneous fluid is 
equal to the product of the pressure PC at the centroid of the 
surface and the area A of the surface and is expressed as

FR 5 (P0 1 rghC)A 5 PC A 5 Pavg A

where hC 5 yC sin u is the vertical distance of the centroid 
from the free surface of the liquid. The pressure P0 is usually 
atmospheric pressure, which cancels out in most cases since 
it acts on both sides of the plate. The point of intersection of 
the line of action of the resultant force and the surface is the 
center of pressure. The vertical location of the line of action 
of the resultant force is given by

yP 5 yC 1
Ixx, C

[yC 1 P0 /(rg sin u)]A

where Ixx, C is the second moment of area about the x-axis 
passing through the centroid of the area.

 A fluid exerts an upward force on a body immersed in it. 
This force is called the buoyant force and is expressed as

FB 5 rf gV

where V is the volume of the body. This is known as 
Archimedes’ principle and is expressed as: the buoyant force 
acting on a body immersed in a fluid is equal to the weight 
of the fluid displaced by the body; it acts upward through 
the centroid of the displaced volume. In a fluid with constant 
density, the buoyant force is independent of the distance of 
the body from the free surface. For floating bodies, the sub-
merged volume fraction of the body is equal to the ratio of 
the average density of the body to the density of the fluid.
 The general equation of motion for a fluid that acts as a 
rigid body is

=
!
P 1 rgk

!
5 2ra

!

When gravity is aligned in the 2z-direction, it is expressed 
in scalar form as

0P
0x

5 2rax,  
0P
0y

5 2ray,  and  
0P
0z

5 2r(g 1 az)

where ax, ay, and az are accelerations in the x-, y-, and 
z-directions, respectively. During linearly accelerating motion 
in the xz-plane, the pressure distribution is expressed as

P 5 P0 2 raxx 2 r(g 1 az)z

The surfaces of constant pressure (including the free surface) 
in a liquid with constant acceleration in linear motion are 
parallel surfaces whose slope in some xz-plane is

Slope 5
dz isobar

dx
5 2

ax

g 1 az

5 2tan u

During rigid-body motion of a liquid in a rotating cylinder, 
the surfaces of constant pressure are paraboloids of revolu-
tion. The equation for the free surface is

zs 5 h0 2
v2

4g
 (R2 2 2r2)

where zs is the distance of the free surface from the bottom 
of the container at radius r and h0 is the original height of 
the fluid in the container with no rotation. The variation of 
pressure in the liquid is expressed as

P 5 P0 1
rv2

2
 r2 2 rgz

where P0 is the pressure at the origin (r 5 0, z 5 0).
 Pressure is a fundamental property, and it is hard to imag-
ine a significant fluid flow problem that does not involve 
pressure. Therefore, you will see this property in all chap-
ters in the rest of this book. The consideration of hydrostatic 
forces acting on plane or curved surfaces, however, is mostly 
limited to this chapter.

075-132_cengel_ch03.indd   111 12/14/12   11:48 AM



112
PRESSURE AND FLUID STATICS

h1

h2
h3

Oil

Mercury

Water

Air

1

2

FIGURE P3 –12

A = 0.012 m2

Patm = 95 kPa
m = 40 kg

FIGURE P3–7

REFERENCES AND SUGGESTED READING

 1. F. P. Beer, E. R. Johnston, Jr., E. R. Eisenberg, and G. H. 
Staab. Vector Mechanics for Engineers, Statics, 10th ed. 
New York: McGraw-Hill, 2012.

 2. D. C. Giancoli. Physics, 6th ed. Upper Saddle River, NJ: 
Prentice Hall, 2012.

PROBLEMS*

Pressure, Manometer, and Barometer

3–1C  Someone claims that the absolute pressure in a liquid 
of constant density doubles when the depth is doubled. Do 
you agree? Explain.

3–2C  A tiny steel cube is suspended in water by a string. 
If the lengths of the sides of the cube are very small, how 
would you compare the magnitudes of the pressures on the 
top, bottom, and side surfaces of the cube?

3–3C  Express Pascal’s law, and give a real-world example of it.

3–4C  Consider two identical fans, one at sea level and the 
other on top of a high mountain, running at identical speeds. 
How would you compare (a) the volume flow rates and (b) 
the mass flow rates of these two fans?

3–5C  What is the difference between gage pressure and 
absolute pressure?

3–6C  Explain why some people experience nose bleeding and 
some others experience shortness of breath at high elevations.

3–7  The piston of a vertical piston-cylinder device con-
taining a gas has a mass of 40 kg and a cross-sectional area 
of 0.012 m2 (Fig P3–7). The local atmospheric pressure is 
95 kPa, and the gravitational acceleration is 9.81 m/s2. (a) 
Determine the pressure inside the cylinder. (b) If some heat 
is transferred to the gas and its volume is doubled, do you 
expect the pressure inside the cylinder to change?

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Problems 

with the  icon are solved using EES, and complete solutions 

together with parametric studies are included on the text website. 

Problems with the  icon are comprehensive in nature and are 

intended to be solved with an equation solver such as EES.

3–8  A vacuum gage connected to a chamber reads 36 kPa at 
a location where the atmospheric pressure is 92 kPa. Deter-
mine the absolute pressure in the chamber.

3–9E  The pressure at the exit of an air compressor is 
150 psia. What is this pressure in kPa?

3–10E  The pressure in a water line is 1500 kPa. What is 
the line pressure in (a) lbf/ft2 units and (b) Ibf/in2 (psi) units?

3–11E  A manometer is used to measure the air pressure in a 
tank. The fluid used has a specific gravity of 1.25, and the differ-
ential height between the two arms of the manometer is 28 in. If 
the local atmospheric pressure is 12.7 psia, determine the abso-
lute pressure in the tank for the cases of the manometer arm with 
the (a) higher and (b) lower fluid level being attached to the tank.

3–12  The water in a tank is pressurized by air, and the 
pressure is measured by a multifluid manometer as shown in 
Fig. P3–12. Determine the gage pressure of air in the tank if 
h1 5 0.4 m, h2 5 0.6 m, and h3 5 0.8 m. Take the densities 
of water, oil, and mercury to be 1000 kg/m3, 850 kg/m3, and 
13,600 kg/m3, respectively.

3–13  Determine the atmospheric pressure at a location 
where the barometric reading is 735 mmHg. Take the density 
of mercury to be 13,600 kg/m3.

3–14  The gage pressure in a liquid at a depth of 3 m is read 
to be 28 kPa. Determine the gage pressure in the same liquid 
at a depth of 12 m.
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3–15  The absolute pressure in water at a depth of 8 m is 
read to be 175 kPa. Determine (a) the local atmospheric pres-
sure, and (b) the absolute pressure at a depth of 8 m in a liq-
uid whose specific gravity is 0.78 at the same location.

3–16E  Show that 1 kgf/cm2 5 14.223 psi.

3–17E  A 200-lb man has a total foot imprint area of 72 in2. 
Determine the pressure this man exerts on the ground if (a) 
he stands on both feet and (b) he stands on one foot.

3–18  Consider a 55-kg woman who has a total foot imprint 
area of 400 cm2. She wishes to walk on the snow, but the snow 
cannot withstand pressures greater than 0.5 kPa. Determine the 
minimum size of the snowshoes needed (imprint area per shoe) 
to enable her to walk on the snow without sinking.

3–19  A vacuum gage connected to a tank reads 45 kPa at a 
location where the barometric reading is 755 mmHg. Determine 
the absolute pressure in the tank. Take rHg 5 13,590  kg/m3.
Answer: 55.6 kPa

3–20E  A pressure gage connected to a tank reads 50 psi at a 
location where the barometric reading is 29.1 inHg. Determine 
the absolute pressure in the tank. Take rHg 5 848.4  lbm/ft3.  
Answer: 64.3 psia

3–21  A pressure gage connected to a tank reads 500 kPa at 
a location where the atmospheric pressure is 94 kPa. Deter-
mine the absolute pressure in the tank.

3–22  If the pressure inside a rubber balloon is 1500 mmHg, 
what is this pressure in pounds-force per square inch (psi)? 
Answer: 29.0 psi

3–23  The vacuum pressure of a condenser is given to be 80 kPa. 
If the atmospheric pressure is 98 kPa, what is the gage pressure 
and absolute pressure in kPa, kN/m2 , lbf/in2, psi, and mmHg.

3–24  Water from a reservoir is raised in a vertical tube 
of internal diameter D 5 30 cm under the influence of the 
pulling force F of a piston. Determine the force needed to 
raise the water to a height of h 5 1.5 m above the free sur-
face. What would your response be for h 5 3 m? Also, taking 
the atmospheric pressure to be 96 kPa, plot the absolute water 
pressure at the piston face as h varies from 0 to 3 m. 

Neglecting the effect of altitude on local gravitational accel-
eration, determine the vertical distance climbed. Assume an 
average air density of 1.20 kg/m3.  Answer: 1614 m

3–26  The basic barometer can be used to measure the 
height of a building. If the barometric readings at the top and 
at the bottom of a building are 730 and 755 mmHg, respec-
tively, determine the height of the building. Assume an aver-
age air density of 1.18 kg/m3.

Water

Air

h D

F

FIGURE P3–24

3–27  Solve Prob. 3–26 using EES (or other) software. 
Print out the entire solution, including the 

numerical results with proper units, and take the density of 
mercury to be 13,600 kg/m3.

3–28  Determine the pressure exerted on a diver at 20 m below the 
free surface of the sea. Assume a barometric pressure of 101 kPa 
and a specific gravity of 1.03 for seawater.  Answer: 303 kPa

3–29E  Determine the pressure exerted on the surface of a 
submarine cruising 225 ft below the free surface of the sea. 
Assume that the barometric pressure is 14.7 psia and the spe-
cific gravity of seawater is 1.03.

3–30  A gas is contained in a vertical, frictionless piston– 
cylinder device. The piston has a mass of 4 kg and a cross-
sectional area of 35 cm2. A compressed spring above the pis-
ton exerts a force of 60 N on the piston. If the atmospheric 
pressure is 95 kPa, determine the pressure inside the cylinder.
Answer: 123.4 kPa

Ptop = 730 mmHg

h = ? 

Pbot = 755 mmHg

FIGURE P3–26

A = 35 cm2

P = ?

Patm = 95 kPa

mP = 4 kg

60 N

FIGURE P3–30
3–25  The barometer of a mountain hiker reads 980 mbars 
at the beginning of a hiking trip and 790 mbars at the end. 
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3–31  Reconsider Prob. 3–30. Using EES (or other) soft-
ware, investigate the effect of the spring force in 

the range of 0 to 500 N on the pressure inside the cylinder. Plot 
the pressure against the spring force, and discuss the results.

3–32  Both a gage and a manometer are attached to a 
gas tank to measure its pressure. If the reading on 

the pressure gage is 65 kPa, determine the distance between 
the two fluid levels of the manometer if the fluid is (a) mer-
cury (r 5 13,600 kg/m3) or (b) water (r 5 1000 kg/m3).

by DP in the water pipe. When Dh 5 70 mm, what is the 
change in the pipe pressure?

3–36  The manometer shown in the figure is designed to 
measure pressures of up to a maximum of 100 Pa. If the 
reading error is estimated to be 60.5 mm, what should the 
ratio of d/D be in order for the error associated with pressure 
measurement not to exceed 2.5% of the full scale.

Gas
h = ?

Pg = 65 kPa

FIGURE P3–32

3–37  A manometer containing oil (r 5 850 kg/m3) is 
attached to a tank filled with air. If the oil-level difference 
between the two columns is 150 cm and the atmospheric 
pressure is 98 kPa, determine the absolute pressure of the air 
in the tank.  Answer: 111 kPa

3–38  A mercury manometer (r 5 13,600 kg/m3) is con-
nected to an air duct to measure the pressure inside. The dif-
ference in the manometer levels is 10 mm, and the atmospheric 
pressure is 100 kPa. (a) Judging from Fig. P3–38, determine 
if the pressure in the duct is above or below the atmospheric 
pressure. (b) Determine the absolute pressure in the duct.

3–33  Reconsider Prob. 3–32. Using EES (or other) 
software, investigate the effect of the manometer 

fluid density in the range of 800 to 13,000 kg/m3 on the dif-
ferential fluid height of the manometer. Plot the differential 
fluid height against the density, and discuss the results.

3–34  The variation of pressure P in a gas with density r is 
is given by P 5 Crn where C and n and are constants with 
P 5 P0 and r 5 r0 at elevation z 5 0. Obtain a relation for the 
variaton of P with elevation in terms of z, g, n, P0 and r0.

3–35  The system shown in the figure is used to accurately 
measure the pressure changes when the pressure is increased 

FIGURE P3–35

Glycerin, SG = 1.26

D = 30 mm

d = 3 mm

Δh

Water

Pipe

FIGURE P3–38

AIR

h = 10 mm
P = ?

FIGURE P3–36

D Scale

θ = 30°

L
dP

3–39  Repeat Prob. 3–38 for a differential mercury height of 
30 mm.

3–40  Blood pressure is usually measured by wrapping a 
closed air-filled jacket equipped with a pressure gage around 
the upper arm of a person at the level of the heart. Using a 
mercury manometer and a stethoscope, the systolic pressure 
(the maximum pressure when the heart is pumping) and the 
diastolic pressure (the minimum pressure when the heart is rest-
ing) are measured in mmHg. The systolic and diastolic pres-
sures of a healthy person are about 120 mmHg and 80 mmHg, 
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respectively, and are indicated as 120/80. Express both of these 
gage pressures in kPa, psi, and meter water column.

3–41  The maximum blood pressure in the upper arm of a 
healthy person is about 120 mmHg. If a vertical tube open to 
the atmosphere is connected to the vein in the arm of the per-
son, determine how high the blood will rise in the tube. Take 
the density of the blood to be 1040 kg/m3.

h

FIGURE P3–41

70 cm
Water

Oil

FIGURE P3–43

50 cm

10 cm

70 cm

30 cmFresh-
water

Sea-
water

Mercury

Air

FIGURE P3–45

14 in

6 in

2 in

22 in

Natural
Gas

Water

Air

Mercury
SG = 13.6

FIGURE P3–47E

3–46  Repeat Prob. 3–45 by replacing the air with oil whose 
specific gravity is 0.72.

3–47E  The pressure in a natural gas pipeline is measured by 
the manometer shown in Fig. P3–47E with one of the arms 
open to the atmosphere where the local atmospheric pressure 
is 14.2 psia. Determine the absolute pressure in the pipeline.

3–48E  Repeat Prob. 3–47E by replacing air by oil with a 
specific gravity of 0.69.

3–49  The gage pressure of the air in the tank shown in 
Fig. P3–49 is measured to be 65 kPa. Determine the differen-
tial height h of the mercury column.

3–42  Consider a 1.73-m-tall man standing vertically in 
water and completely submerged in a pool. Determine the 
difference between the pressures acting at the head and at the 
toes of this man, in kPa.

3–43  Consider a U-tube whose arms are open to the atmo-
sphere. Now water is poured into the U-tube from one arm, 
and light oil (r 5 790 kg/m3) from the other. One arm con-
tains 70-cm-high water, while the other arm contains both 
fluids with an oil-to-water height ratio of 6. Determine the 
height of each fluid in that arm.

3–44  The hydraulic lift in a car repair shop has an output 
diameter of 40 cm and is to lift cars up to 1800 kg. Determine 
the fluid gage pressure that must be maintained in the reservoir.

3–45  Freshwater and seawater flowing in parallel horizon-
tal pipelines are connected to each other by a double U-tube 
manometer, as shown in Fig. P3–45. Determine the pressure 
difference between the two pipelines. Take the density of sea-
water at that location to be r 5 1035 kg/m3. Can the air col-
umn be ignored in the analysis?

Air

30 cm

75 cm

h Mercury
SG = 13.6

Water

Oil
SG = 0.7265 kPa

FIGURE P3–49
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3–50  Repeat Prob. 3–49 for a gage pressure of 45 kPa.

3–51  The 500-kg load on the hydraulic lift shown in 
Fig. P3–51 is to be raised by pouring oil (r 5 780 kg/m3) 
into a thin tube. Determine how high h should be in order to 
begin to raise the weight.

LOAD
500 kg

h

1.2 m 1 cm

FIGURE P3–51

Oil
P1

Oil
P2

10 in

32 in

Mercury

FIGURE P3–52E

3–54  Two chambers with the same fluid at their base are 
separated by a 30-cm-diameter piston whose weight is 25 N, 
as shown in Fig. P3–54. Calculate the gage pressures in cham-
bers A and B.

3–52E  Two oil tanks are connected to each other through 
a manometer. If the difference between the mercury levels 
in the two arms is 32 in, determine the pressure difference 
between the two tanks. The densities of oil and mercury are 
45 lbm/ft3 and 848 lbm/ft3, respectively.

Water

Air

E

C

Air

A B

Piston

50 cm

25 cm
30 cm

30 cm

90 cm

D

FIGURE P3–54

3–55  Consider a double-fluid manometer attached to an air 
pipe shown in Fig. P3–55. If the specific gravity of one fluid 
is 13.55, determine the specific gravity of the other fluid for 
the indicated absolute pressure of air. Take the atmospheric 
pressure to be 100 kPa.  Answer: 1.34

SG2

Air

P = 76 kPa

22 cm

40 cm

SG1 = 13.55

FIGURE P3–55
3–53  Pressure is often given in terms of a liquid column 
and is expressed as “pressure head.” Express the standard 
atmospheric pressure in terms of (a) mercury (SG 5 13.6), 
(b) water (SG 5 1.0), and (c) glycerin (SG 5 1.26) columns. 
Explain why we usually use mercury in manometers.

3–56  The pressure difference between an oil pipe and water 
pipe is measured by a double-fluid manometer, as shown in 
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Fluid Statics: Hydrostatic Forces on Plane 
and Curved Surfaces

3–60C  Define the resultant hydrostatic force acting on a 
submerged surface, and the center of pressure.

3–61C  Someone claims that she can determine the magni-
tude of the hydrostatic force acting on a plane surface sub-
merged in water regardless of its shape and orientation if she 
knew the vertical distance of the centroid of the surface from 
the free surface and the area of the surface. Is this a valid 
claim? Explain.

3–62C  A submerged horizontal flat plate is suspended in 
water by a string attached at the centroid of its upper surface. 
Now the plate is rotated 458 about an axis that passes through 
its centroid. Discuss the change in the hydrostatic force act-
ing on the top surface of this plate as a result of this rotation. 
Assume the plate remains submerged at all times.

3–59  Consider a hydraulic jack being used in a car repair 
shop, as in Fig. P3–59. The pistons have an area of A1 5 
0.8 cm2 and A2 5 0.04 m2. Hydraulic oil with a specific gravity 
of 0.870 is pumped in as the small piston on the left side is 
pushed up and down, slowly raising the larger piston on the 
right side. A car that weighs 13,000 N is to be jacked up. (a) At
the beginning, when both pistons are at the same elevation 
(h 5 0), calculate the force F1 in newtons required to hold 
the weight of the car. (b) Repeat the calculation after the car 
has been lifted two meters (h 5 2 m). Compare and discuss.

3–57  Consider the system shown in Fig. P3–57. If a change 
of 0.9 kPa in the pressure of air causes the brine-mercury 
interface in the right column to drop by 5 mm in the brine 
level in the right column while the pressure in the brine pipe 
remains constant, determine the ratio of A2/A1.

Oil
SG = 0.88

Glycerin
SG = 1.26Water

SG = 1.0

Mercury
SG = 13.5

A

B

20 cm

55 cm

10 cm

12 cm

FIGURE P3–56

Mercury
SG = 13.56

Water

Air

Area, A1

Area, A2

Brine 
pipe

SG = 1.1

FIGURE P3–57

Water 
A

Mercury
SG = 13.6

2a

u

26.8 cm
a

a

Water 
B

FIGURE P3–58

Hydraulic oil
SG = 0.870

h

A1

F1 A2

F2

FIGURE P3–59

3–58  Two water tanks are connected to each other through 
a mercury manometer with inclined tubes, as shown in 
Fig. P3–58. If the pressure difference between the two tanks 
is 20 kPa, calculate a and u.

Fig. P3–56. For the given fluid heights and specific gravities, 
calculate the pressure difference DP 5 PB 2 PA.
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3–63C  You may have noticed that dams are much thicker at 
the bottom. Explain why dams are built that way.

3–64C  Consider a submerged curved surface. Explain how 
you would determine the horizontal component of the hydro-
static force acting on this surface.

3–65C  Consider a submerged curved surface. Explain how 
you would determine the vertical component of the hydro-
static force acting on this surface.

3–66C  Consider a circular surface subjected to hydrostatic 
forces by a constant density liquid. If the magnitudes of the 
horizontal and vertical components of the resultant hydro-
static force are determined, explain how you would find the 
line of action of this force.

3–67  Consider a heavy car submerged in water in a lake 
with a flat bottom. The driver’s side door of the car is 1.1 m 
high and 0.9 m wide, and the top edge of the door is 10 m 
below the water surface. Determine the net force acting on 
the door (normal to its surface) and the location of the pres-
sure center if (a) the car is well-sealed and it contains air at 
atmospheric pressure and (b) the car is filled with water.

3–68E  A long, solid cylinder of radius 2 ft hinged at point A 
is used as an automatic gate, as shown in Fig. P3–68E. When 
the water level reaches 15 ft, the cylindrical gate opens by 
turning about the hinge at point A. Determine (a) the hydro-
static force acting on the cylinder and its line of action when 
the gate opens and (b) the weight of the cylinder per ft length 
of the cylinder.

(b) the force per unit area of the dam near the top and near 
the bottom.

3–71  A room in the lower level of a cruise ship has a 
30-cm-diameter circular window. If the midpoint of the win-
dow is 4 m below the water surface, determine the hydro-
static force acting on the window, and the pressure center. 
Take the specific gravity of seawater to be 1.025.  Answers: 

2840 N, 4.001 m

A

15 ft

2 ft

FIGURE P3–68E

3–69  Consider a 8-m-long, 8-m-wide, and 2-m-high 
aboveground swimming pool that is filled with water to the 
rim. (a) Determine the hydrostatic force on each wall and the 
distance of the line of action of this force from the ground. 
(b) If the height of the walls of the pool is doubled and the 
pool is filled, will the hydrostatic force on each wall double 
or quadruple? Why?  Answer: (a) 157 kN

3–70E  Consider a 200-ft-high, 1200-ft-wide dam filled to 
capacity. Determine (a) the hydrostatic force on the dam and 

Sea4 m

30 cm

FIGURE P3–71

3–72  The water side of the wall of a 70-m-long dam is a 
quarter circle with a radius of 7 m. Determine the hydro static 
force on the dam and its line of action when the dam is filled 
to the rim.

3–73  For a gate width of 2 m into the paper (Fig. P3–73), 
determine the force required to hold the gate ABC at its 
location.  Answer: 17.8 kN

3–74  Determine the resultant force acting on the 0.7-m-high 
and 0.7-m-wide triangular gate shown in Fig. P3–74 and its 
line of action.

FIGURE P3–73

10 cm

45°

Hinge

50 cmSG = 0.86

SG = 1.23 80 cm

40 cm

C

F

B

A
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in Fig. P3–77E. If it is desired that the gate open when the 
water height is 12 ft, determine the mass of the required 
weight W.  Answer: 30,900 lbm

3–78E  Repeat Prob. 3–77E for a water height of 8 ft.

3–79  A water trough of semicircular cross section of radius 
0.6 m consists of two symmetric parts hinged to each other at 
the bottom, as shown in Fig. P3–79. The two parts are held 
together by a cable and turnbuckle placed every 3 m along 
the length of the trough. Calculate the tension in each cable 
when the trough is filled to the rim.

3–75  A 6-m-high, 5-m-wide rectangular plate blocks the end 
of a 5-m-deep freshwater channel, as shown in Fig. P3–75. 
The plate is hinged about a horizontal axis along its upper edge 
through a point A and is restrained from opening by a fixed ridge 
at point B. Determine the force exerted on the plate by the ridge.

1 m

5 m

A

B

FIGURE P3–75

A
B

8 ft

12 ft
15 ftGate

W

FIGURE P3–77E

1.2 m
Cable

Hinge

FIGURE P3–79

3–76  Reconsider Prob. 3–75. Using EES (or other) 
software, investigate the effect of water depth on 

the force exerted on the plate by the ridge. Let the water 
depth vary from 0 to 5 m in increments of 0.5 m. Tabulate 
and plot your results.

3–77E  The flow of water from a reservoir is controlled 
by a 5-ft-wide L-shaped gate hinged at point A, as shown 

3–80  A cylindrical tank is fully filled with water (Fig. P3–80). 
In order to increase the flow from the tank, an additional 
pressure is applied to the water surface by a compressor. For 
P0 5 0, P0 5 3 bar, and P0 5 10 bar, calculate the hydro-
static force on the surface A exerted by water.

3–81  An open settling tank shown in the figure contains a 
liquid suspension. Determine the resultant force acting on the 
gate and its line of action if the liquid density is 850 kg/m3. 
Answers: 140 kN, 1.64 m from bottom

FIGURE P3–74

Water0.9 m

0.3 m 0.7 m

0.7 m

b

FIGURE P3–80

Air, P0

Water level

Water 80 cm A

FIGURE P3–81

y

xy = 2x2

3 m

5 m

 = 60°
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Determine the mud height at which (a) the blocks will over-
come friction and start sliding and (b) the blocks will tip over.

3–82  From Prob. 3-81, knowing that the density of the 
suspension depends on liquid depth and changes linearly 
from 800 kg/m3 to 900 kg/m3 in the vertical direction, 
determine the resultant force acting on the gate ABC, and 
its line of action.

3–83  The 2.5 m 3 8.1 m 3 6 m tank shown below is filled 
by oil of SG 5 0.88. Determine (a) the magnitude and the 
location of the line of action of the resultant force acting on 
surface AB and (b) the pressure force acting on surface BD. 
Will the force acting on surface BD equal the weight of the 
oil in the tank? Explain.

0.75 m
45°45°

Cable

Hinge

FIGURE P3–84

3–84  The two sides of a V-shaped water trough are hinged 
to each other at the bottom where they meet, as shown in 
Fig. P3–84, making an angle of 45° with the ground from 
both sides. Each side is 0.75 m wide, and the two parts are 
held together by a cable and turnbuckle placed every 6 m 
along the length of the trough. Calculate the tension in each 
cable when the trough is filled to the rim.  Answer: 5510 N

1.2 m Mud
rm

h

0.25 m

FIGURE P3–86

A

B

3 m

Spring

FIGURE P3–88

3–87  Repeat Prob. 3–86 for 0.4-m-wide concrete blocks.

3–88  A 4-m-long quarter-circular gate of radius 3 m 
and of negligible weight is hinged about its upper 

edge A, as shown in Fig. P3–88. The gate controls the flow of 
water over the ledge at B, where the gate is pressed by a spring. 
Determine the minimum spring force required to keep the gate 
closed when the water level rises to A at the upper edge of the gate.

3–85  Repeat Prob. 3–84 for the case of a partially filled 
trough with a water height of 0.4 m directly above the hinge.

3–86  A retaining wall against a mud slide is to be con-
structed by placing 1.2-m-high and 0.25-m-wide rectangular 
concrete blocks (r 5 2700 kg/m3) side by side, as shown in 
Fig. P3–86. The friction coefficient between the ground and 
the concrete blocks is f 5 0.4, and the density of the mud is 
about 1400 kg/m3. There is concern that the concrete blocks 
may slide or tip over the lower left edge as the mud level rises. 

H

F

t

b

FIGURE P3–90

3–89  Repeat Prob. 3–88 for a radius of 4 m for the gate.
Answer: 314 kN

3–90  Consider a flat plate of thickness t, width w into the 
page, and length b submerged in water, as in Fig. P3–90. The 
depth of water from the surface to the center of the plate is H, 

FIGURE P3–83

8 m

A

B D

C

10 cm

3.5 m

2.5 m
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and angle u is defined relative to the center of the plate. 
(a) Generate an equation for the force F on the upper face of the 
plate as a function of (at most) H, b, t, w, g, r, and u. Ignore 
atmospheric pressure. In other words, calculate the force that 
is in addition to the force due to atmospheric pressure. (b) As 
a test of your equation, let H 5 1.25 m, b 5 1 m, t 5 0.2 m, 
w 5 1 m, g 5 9.807 m/s2, r 5 998.3 kg/m3, and u 5 30o. If 
your equation is correct, you should get a force of 11.4 kN.

3–91  The weight of the gate separating the two fluids is 
such that the system shown in Fig. P3–91 is at static equilib-
rium. If it is known that F1/F2 5 1.70, determine h/H.

Buoyancy

3–94C  What is buoyant force? What causes it? What is the 
magnitude of the buoyant force acting on a submerged body 
whose volume is V? What are the direction and the line of 
action of the buoyant force?

3–95C  Consider two identical spherical balls submerged in 
water at different depths. Will the buoyant forces acting on 
these two balls be the same or different? Explain.

3–96C  Consider two 5-cm-diameter spherical balls—one 
made of aluminum, the other of iron—submerged in water. 
Will the buoyant forces acting on these two balls be the same 
or different? Explain.

3–97C  Consider a 3-kg copper cube and a 3-kg copper 
ball submerged in a liquid. Will the buoyant forces acting on 
these two bodies be the same or different? Explain.

3–98C  Discuss the stability of (a) a submerged and (b) a 
floating body whose center of gravity is above the center of 
buoyancy.

3–99  The density of a liquid is to be determined by an old 
1-cm-diameter cylindrical hydrometer whose division marks 
are completely wiped out. The hydrometer is first dropped 
in water, and the water level is marked. The hydrometer is 
then dropped into the other liquid, and it is observed that the 
mark for water has risen 0.3 cm above the liquid–air inter-
face (Fig. P3–99). If the height of the original water mark is 
12.3 cm, determine the density of the liquid.

3–92  Consider a 1-m wide inclined gate of negligible 
weight that separates water from another fluid. What would 
be the volume of the concrete block (SG 5 2.4) immersed in 
water to keep the gate at the position shown? Disregard any 
frictional effects.

Mark for
water

Unknown
liquid

0.3 cm

12 cm

FIGURE P3–99

3–100E  A crane is used to lower weights into a lake for an 
underwater construction project. Determine the tension in the 
rope of the crane due to a 3-ft-diameter spherical steel block 
(density 5 494 lbm/ft3) when it is (a) suspended in the air 
and (b) completely immersed in water.

3–101  The volume and the average density of an irregu-
larly shaped body are to be determined by using a spring 
scale. The body weighs 7200 N in air and 4790 N in water. 
Determine the volume and the density of the body. State your 
assumptions.

FIGURE P3–91

F1

H
h

F2

 SG = 1.25

 SG = 0.86

α

FIGURE P3–92

2.5 m

0.6 m

3 m Carbon
tetrachloride
SG = 1.59

Water

β = 60°

FIGURE P3–93

Water

Oil, SG = 1.5 4 m
3 m

BD

C

A

F

x

y

9 m

3–93  The parabolic shaped gate with a width of 2 m shown 
in Fig. P3–93 is hinged at point B. Determine the force F 
needed to keep the gate stationary.
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3–102  Consider a large cubic ice block floating in seawater. 
The specific gravities of ice and seawater are 0.92 and 1.025, 
respectively. If a 25-cm-high portion of the ice block extends 
above the surface of the water, determine the height of the ice 
block below the surface.  Answer: 2.19 m

the average density of an irregularly shaped object by weigh-
ing it in air and also in water. If the crown weighed 3.55 kgf 
(5 34.8 N) in air and 3.25 kgf (5 31.9 N) in water, deter-
mine if the crown is made of pure gold. The density of gold 
is 19,300 kg/m3. Discuss how you can solve this problem 
without weighing the crown in water but by using an ordi-
nary bucket with no calibration for volume. You may weigh 
anything in air.

3–108  The hull of a boat has a volume of 180 m3, and the 
total mass of the boat when empty is 8560 kg. Determine 
how much load this boat can carry without sinking (a) in a 
lake and (b) in seawater with a specific gravity of 1.03.

Fluids in Rigid-Body Motion

3–109C  Under what conditions can a moving body of fluid 
be treated as a rigid body?

3–110C  Consider a glass of water. Compare the water pres-
sures at the bottom surface for the following cases: the glass 
is (a) stationary, (b) moving up at constant velocity, (c) mov-
ing down at constant velocity, and (d) moving horizontally at 
constant velocity.

3–111C  Consider two identical glasses of water, one sta-
tionary and the other moving on a horizontal plane with con-
stant acceleration. Assuming no splashing or spilling occurs, 
which glass will have a higher pressure at the (a) front, (b) 
midpoint, and (c) back of the bottom surface?

3–112C  Consider a vertical cylindrical container partially 
filled with water. Now the cylinder is rotated about its axis at 
a specified angular velocity, and rigid-body motion is estab-
lished. Discuss how the pressure will be affected at the mid-
point and at the edges of the bottom surface due to rotation.

3–113  A water tank is being towed by a truck on a level 
road, and the angle the free surface makes with the horizon-
tal is measured to be 12°. Determine the acceleration of the 
truck.

3–114  Consider two water tanks filled with water. The first 
tank is 8 m high and is stationary, while the second tank 
is 2 m high and is moving upward with an acceleration of 
5 m/s2. Which tank will have a higher pressure at the bottom?

3–115  A water tank is being towed on an uphill road that 
makes 14° with the horizontal with a constant acceleration of 
3.5 m/s2 in the direction of motion. Determine the angle the 
free surface of water makes with the horizontal. What would 
your answer be if the direction of motion were downward on 
the same road with the same acceleration?

3–116E  A 3-ft-diameter vertical cylindrical tank open to the 
atmosphere contains 1-ft-high water. The tank is now rotated 
about the centerline, and the water level drops at the center 
while it rises at the edges. Determine the angular velocity 
at which the bottom of the tank will first be exposed. Also 
determine the maximum water height at this moment.

Sea

25 cm

Cubic
ice block h

FIGURE P3–102

FIGURE P3–104

10 cm

20 cm

40 cm

Water

Cord

3–103  A spherical shell made of a material with a density 
of 1600 kg/m3 is placed in water. If the inner and outer radii 
of the shell are R1 5 5 cm, R2 5 6 cm, determine the percent-
age of the shell’s total volume that would be submerged.

3–104  An inverted cone is placed in a water tank as shown. 
If the weight of the cone is 16.5 N, what is the tensile force 
in the cord connecting the cone to the bottom of the tank?

3–105  The weight of a body is usually measured by dis-
regarding buoyancy force applied by the air. Consider a 
20-cm-diameter spherical body of density 7800 kg/m3. What 
is the percentage error associated with the neglecting of air 
buoyancy?

3–106  A 170-kg granite rock (r 5 2700 kg/m3) is dropped 
into a lake. A man dives in and tries to lift the rock. Deter-
mine how much force the man needs to apply to lift it from 
the bottom of the lake. Do you think he can do it?

3–107  It is said that Archimedes discovered his principle 
during a bath while thinking about how he could determine 
if King Hiero’s crown was actually made of pure gold. While 
in the bathtub, he conceived the idea that he could determine 
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3–117  A 60-cm-high, 40-cm-diameter cylindrical water 
tank is being transported on a level road. The highest accel-
eration anticipated is 4 m/s2. Determine the allowable initial 
water height in the tank if no water is to spill out during 
acceleration.  Answer: 51.8 cm

3–118  A 30-cm-diameter, 90-cm-high vertical cylindrical 
container is partially filled with 60-cm-high water. Now the 
cylinder is rotated at a constant angular speed of 180 rpm. 
Determine how much the liquid level at the center of the cyl-
inder will drop as a result of this rotational motion.

3–119  A fish tank that contains 60-cm-high water is moved 
in the cabin of an elevator. Determine the pressure at the bot-
tom of the tank when the elevator is (a) stationary, (b) mov-
ing up with an upward acceleration of 3 m/s2, and (c) moving 
down with a downward acceleration of 3 m/s2.

3–120  A 3-m-diameter vertical cylindrical milk tank rotates 
at a constant rate of 12 rpm. If the pressure at the center of 
the bottom surface is 130 kPa, determine the pressure at the 
edge of the bottom surface of the tank. Take the density of 
the milk to be 1030 kg/m3.

3–121  Consider a tank of rectangular cross-section partially 
filled with a liquid placed on an inclined surface, as shown in the 
figure. When frictional effects are negligible, show that the slope 
of the liquid surface will be the same as the slope of the inclined 
surface when the tank is released. What can you say about the 
slope of the free surface when the friction is significant?

(SG . 1, like glycerin) and the rest with water, as shown in 
the figure. The tank is now rotated about its vertical axis at a 
constant angular speed of v. Determine (a) the value of the 
angular speed when the point P on the axis at the liquid-liquid 
interface touches the bottom of the tank and (b) the amount 
of water that would be spilled out at this angular speed.

3–123  Milk with a density of 1020 kg/m3 is transported on 
a level road in a 9-m-long, 3-m-diameter cylindrical tanker. 
The tanker is completely filled with milk (no air space), and it 
accelerates at 4 m/s2. If the minimum pressure in the tanker is 
100 kPa, determine the maximum pressure difference and the 
location of the maximum pressure.  Answer: 66.7 kPa

9 m

3 m

FIGURE P3–123

30 cm

20 cm

FIGURE P3–125

3 ft

ω 

FIGURE P3–116E

FIGURE P3–121

z

y

a

α

FIGURE P3–122

P

D = 0.3 m

h = 0.1 m

3h

3–124  Repeat Prob. 3–123 for a deceleration of 2.5 m/s2.

3–125   The distance between the centers of the two arms of 
a U-tube open to the atmosphere is 30 cm, and the U-tube 
contains 20-cm-high alcohol in both arms. Now the U-tube is 

3–122  The bottom quarter of a vertical cylindrical tank of 
total height 0.4 m and diameter 0.3 m is filled with a liquid 
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rotated about the left arm at 4.2 rad/s. Determine the eleva-
tion difference between the fluid surfaces in the two arms.

3–126  A 1.2-m-diameter, 3-m-high sealed vertical cylinder is 
completely filled with gasoline whose density is 740 kg/m3. The 
tank is now rotated about its vertical axis at a rate of 70 rpm. 
Determine (a) the difference between the pressures at the centers 
of the bottom and top surfaces and (b) the difference between 
the pressures at the center and the edge of the bottom surface.

level road. The truck driver applies the brakes and the water 
level at the front rises 0.5 ft above the initial level. Determine 
the deceleration of the truck.  Answer: 4.03 ft/s2

3–130  A 3-m-diameter, 7-m-long cylindrical tank is com-
pletely filled with water. The tank is pulled by a truck on a 
level road with the 7-m-long axis being horizontal. Deter-
mine the pressure difference between the front and back ends 
of the tank along a horizontal line when the truck (a) acceler-
ates at 3 m/s2 and (b) decelerates at 4 m/s2.

3–131  The rectangular tank is filled with heavy oil (like 
glycerin) at the bottom and water at the top, as shown in 
the figure. The tank is now moved to the right horizontally 
with a constant acceleration and ¼ of water is spilled out 
as a result from the back. Using geometrical considerations, 
determine how high the point A at the back of the tank on 
the oil-water interface will rise under this acceleration. 
Answer: 0.25 m

3–127  Reconsider Prob. 3–126. Using EES (or other) 
software, investigate the effect of rotational 

speed on the pressure difference between the center and the 
edge of the bottom surface of the cylinder. Let the rotational 
speed vary from 0 rpm to 500 rpm in increments of 50 rpm. 
Tabulate and plot your results.

3–128E  A 15-ft-long, 6-ft-high rectangular tank open to the 
atmosphere is towed by a truck on a level road. The tank is filled 
with water to a depth of 5 ft. Determine the maximum accelera-
tion or deceleration allowed if no water is to spill during towing.

3–129E  An 8-ft-long tank open to the atmosphere initially 
contains 3-ft-high water. It is being towed by a truck on a 

3–132  A sealed box filled with a liquid shown in the figure 
can be used to measure the acceleration of vehicles by mea-
suring the pressure at top point A at back of the box while 
point B is kept at atmospheric pressure. Obtain a relation 
between the pressure PA and the acceleration a.

3–133  A centrifugal pump consists simply of a shaft and 
a few blades attached normally to the shaft. If the shaft 
is rotated at a constant rate of 2400 rpm, what would the 
theoretical pump head due to this rotation be? Take the impel-
ler diameter to be 35 cm and neglect the blade tip effects.  
Answer: 98.5 m

3 m1.20 m

FIGURE P3–126

8 ft

Water
3 ft

0.5 ft

FIGURE P3–129E

FIGURE P3–131

Water

Oil a0.5 m

1.0 m

A

L

FIGURE P3–132

PA

A B

L

a
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3–138  A 30-cm-diameter vertical cylindrical vessel is rotated 
about its vertical axis at a constant angular velocity of 100 rad/s. 
If the pressure at the midpoint of the inner top surface is 
atmospheric pressure like the outer surface, determine the 
total upward force acting upon the entire top surface inside 
the cylinder.

3–139  Balloons are often filled with helium gas because it 
weighs only about one-seventh of what air weighs under iden-
tical conditions. The buoyancy force, which can be expressed 
as Fb 5 rairgVballoon, will push the balloon upward. If the bal-
loon has a diameter of 12 m and carries two people, 70 kg 
each, determine the acceleration of the balloon when it is first 
released. Assume the density of air is r 5 1.16 kg/m3, and 
neglect the weight of the ropes and the cage.  Answer: 25.7 m/s2

Review Problems

3–135  An air-conditioning system requires a 34-m-long 
section of 12-cm-diameter ductwork to be laid underwa-
ter. Determine the upward force the water will exert on the 
duct. Take the densities of air and water to be 1.3 kg/m3 and 
1000 kg/m3, respectively.

3–136  The 0.5-m-radius semi-circular gate shown in the 
figure is hinged through the top edge AB. Find the required 
force to be applied at the center of gravity to keep the gate 
closed.  Answer: 11.3 kN

3–140  Reconsider Prob. 3–139. Using EES (or other) 
software, investigate the effect of the number of 

people carried in the balloon on acceleration. Plot the accelera-
tion against the number of people, and discuss the results.

Helium
D = 12 m
rHe =   rair

1
7

m = 140 kg

FIGURE P3–139

FIGURE P3–134
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FIGURE P3–136
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Oil
SG = 0.91
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SG = 1.26

4.74 m

A B

R

CG

F

FIGURE P3–137

ω = 10 rad/s

h = 15 cm

20 cm 10 cm

3–137  If the rate of rotational speed of the 3-tube system 
shown in Fig. P3–137 is v 5 10 rad/s, determine the water 
heights in each tube leg. At what rotational speed will the 
middle tube be completely empty?

3–134  A U-tube is rotating at a constant angular velocity of v. 
The liquid (glycerin) rises to the levels shown in Fig. P3–134. 
Obtain a relation for v in terms of g, h, and L.
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3–145  A vertical, frictionless piston–cylinder device contains 
a gas at 500 kPa. The atmospheric pressure outside is 100 kPa, 
and the piston area is 30 cm2. Determine the mass of the piston.

3–146  A pressure cooker cooks a lot faster than an ordinary 
pan by maintaining a higher pressure and temperature inside. 
The lid of a pressure cooker is well sealed, and steam can 
escape only through an opening in the middle of the lid. A sep-

arate metal piece, the petcock, sits on top of this opening and 
prevents steam from escaping until the pressure force overcomes 
the weight of the petcock. The periodic escape of the steam in 
this manner prevents any potentially dangerous pressure buildup 
and keeps the pressure inside at a constant value. Determine the 
mass of the petcock of a pressure cooker whose operation pres-
sure is 120 kPa gage and has an opening cross-sectional area of 
3 mm2. Assume an atmospheric pressure of 101 kPa, and draw 
the free-body diagram of the petcock.  Answer: 36.7 g

3–147  A glass tube is attached to a water pipe, as shown in 
Fig. P3–147. If the water pressure at the bottom of the tube is 
115 kPa and the local atmospheric pressure is 98 kPa, deter-
mine how high the water will rise in the tube, in m. Assume 
g 5 9.8 m/s2 at that location and take the density of water to 
be 1000 kg/m3.

3–141  Determine the maximum amount of load, in kg, the 
balloon described in Prob. 3–139 can carry.  Answer: 521 kg

3–142E  The pressure in a steam boiler is given to be 
90 kgf/cm2. Express this pressure in psi, kPa, atm, and bars.

3–143  The basic barometer can be used as an altitude- 
measuring device in airplanes. The ground control reports a 
barometric reading of 760 mmHg while the pilot’s reading is 
420 mmHg. Estimate the altitude of the plane from ground 
level if the average air density is 1.20 kg/m3.  Answer: 3853 m

3–144  The lower half of a 12-m-high cylindrical con-
tainer is filled with water (r 5 1000 kg/m3) and the upper 
half with oil that has a specific gravity of 0.85. Determine 
the pressure difference between the top and bottom of the 
cylinder.  Answer: 109 kPa

Duct

25°

8 cm
L

Air

FIGURE P3–149

3–148  The average atmospheric pressure on earth is 
approximated as a function of altitude by the relation Patm 5 
101.325 (1 2 0.02256z)5.256, where Patm is the atmospheric 
pressure in kPa and z is the altitude in km with z 5 0 at sea 
level. Determine the approximate atmospheric pressures at 
Atlanta (z 5 306 m), Denver (z 5 1610 m), Mexico City 
(z 5 2309 m), and the top of Mount Everest (z 5 8848 m).

3–149  When measuring small pressure differences with a 
manometer, often one arm of the manometer is inclined to 
improve the accuracy of the reading. (The pressure differ-
ence is still proportional to the vertical distance and not the 
actual length of the fluid along the tube.) The air pressure in 

Oil
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a circular duct is to be measured using a manometer whose 
open arm is inclined 25° from the horizontal, as shown in 
Fig. P3–149. The density of the liquid in the manometer is 
0.81 kg/L, and the vertical distance between the fluid levels in 
the two arms of the manometer is 8 cm. Determine the gage 
pressure of air in the duct and the length of the fluid column 
in the inclined arm above the fluid level in the vertical arm.

3–150E  Consider a U-tube whose arms are open to the 
atmosphere. Now equal volumes of water and light oil 
(r 5 49.3 lbm/ft3) are poured from different arms. A person 
blows from the oil side of the U-tube until the contact surface 
of the two fluids moves to the bottom of the U-tube, and thus 
the liquid levels in the two arms are the same. If the fluid 
height in each arm is 40 in, determine the gage pressure the 
person exerts on the oil by blowing.

3–151  An elastic air balloon having a diameter of 30 cm is 
attached to the base of a container partially filled with water 
at 14°C, as shown in Fig. P3–151. If the pressure of the 
air above the water is gradually increased from 100 kPa to 
1.6 MPa, will the force on the cable change? If so, what is 
the percent change in the force? Assume the pressure on the 
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free surface and the diameter of the balloon are related by 
P 5 CDn, where C is a constant and n 5 22. The weight of 
the balloon and the air in it is negligible.  Answer: 98.4 percent

3–152  Reconsider Prob. 3–151. Using EES (or other) 
software, investigate the effect of air pressure 

above water on the cable force. Let this pressure vary from 
0.5 MPa to 15 MPa. Plot the cable force versus the air 
pressure.

3–153  A gasoline line is connected to a pressure gage 
through a double-U manometer, as shown in Fig. P3–153. If 
the reading of the pressure gage is 260 kPa, determine the 
gage pressure of the gasoline line.

3–156  The pressure of water flowing through a pipe is mea-
sured by the arrangement shown in Fig. P3–156. For the val-
ues given, calculate the pressure in the pipe.

3–154  Repeat Prob. 3–153 for a pressure gage reading of 
330 kPa.

3–155E  A water pipe is connected to a double-U manom-
eter as shown in Fig. P3–155E at a location where the local 
atmospheric pressure is 14.2 psia. Determine the absolute 
pressure at the center of the pipe.
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3–157  Consider a U-tube filled with mercury as shown in 
Fig. P3–157. The diameter of the right arm of the U-tube is 
D 5 1.5 cm, and the diameter of the left arm is twice that. 
Heavy oil with a specific gravity of 2.72 is poured into the left 
arm, forcing some mercury from the left arm into the right 
one. Determine the maximum amount of oil that can be added 
into the left arm.  Answer: 0.0884 L

and z is the elevation from sea level in m. Obtain a relation for 
the variation of pressure in the tropo sphere (a) by ignoring and 
(b) by considering the variation of g with altitude.

3–159  The variation of pressure with density in a thick gas 
layer is given by P 5 Crn, where C and n are constants. 
Noting that the pressure change across a differential fluid 
layer of thickness dz in the vertical z-direction is given as 
dP 5 2rg dz, obtain a relation for pressure as a function of 
elevation z. Take the pressure and density at z 5 0 to be P0 
and r0, respectively.

3–160  A 3-m-high, 6-m-wide rectangular gate is hinged 
at the top edge at A and is restrained by a fixed ridge at B. 
Determine the hydrostatic force exerted on the gate by the 
5-m-high water and the location of the pressure center.

3–163  A 30-ton, 4-m-diameter hemispherical dome on a 
level surface is filled with water, as shown in Fig. P3–163. 
Someone claims that he can lift this dome by making use of 
Pascal’s law by attaching a long tube to the top and filling 
it with water. Determine the required height of water in the 
tube to lift the dome. Disregard the weight of the tube and 
the water in it.  Answer: 0.72 m

Water

150 ft

40 ft

Tunnel

FIGURE P3–162E

3–158  It is well known that the temperature of the atmo-
sphere varies with altitude. In the troposphere, which extends to 
an altitude of 11 km, for example, the variation of temperature 
can be approximated by T 5 T0 2 bz, where T0 is the temper-
ature at sea level, which can be taken to be 288.15 K, and b 5 
0.0065 K/m. The gravitational acceleration also changes with 
altitude as g(z) 5 g0/(1 1 z/6,370,320)2 where g0 5 9.807 m/s2 
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3–161  Repeat Prob. 3–160 for a total water height of 2 m.

3–162E  A semicircular 40-ft-diameter tunnel is to be built 
under a 150-ft-deep, 800-ft-long lake, as shown in Fig. P3–162E. 
Determine the total hydrostatic force acting on the roof of 
the tunnel.
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both arms become the same, and the fluids meet at the axis 
of rotation. Determine the density of the fluid in the left arm.

3–166  A 1-m-diameter, 2-m-high vertical cylinder is com-
pletely filled with gasoline whose density is 740 kg/m3. The 
tank is now rotated about its vertical axis at a rate of 130 rpm, 
while being accelerated upward at 5 m/s2. Determine (a) the 
difference between the pressures at the centers of the bottom 
and top surfaces and (b) the difference between the pressures 
at the center and the edge of the bottom surface.

3–165  A U-tube contains water in the right arm, and 
another liquid in the left arm. It is observed that when the 
U-tube rotates at 50 rpm about an axis that is 15 cm from 
the right arm and 5 cm from the left arm, the liquid levels in 

5 m

Vent

Water
tank2.5 m

1.5 m

2 m/s2

FIGURE P3–167

3–167  A 5-m-long, 4-m-high tank contains 2.5-m-deep 
water when not in motion and is open to the atmosphere 
through a vent in the middle. The tank is now accelerated to 
the right on a level surface at 2 m/s2. Determine the maxi-
mum pressure in the tank relative to the atmospheric pressure.
Answer: 29.5 kPa
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3–164  The water in a 25-m-deep reservoir is kept inside 
by a 150-m-wide wall whose cross section is an equilateral 
triangle, as shown in Fig. P3–164. Determine (a) the total 
force (hydrostatic 1 atmospheric) acting on the inner surface 
of the wall and its line of action and (b) the magnitude of the 
horizontal component of this force. Take Patm 5 100 kPa.

3–168  Reconsider Prob. 3–167. Using EES (or other) 
software, investigate the effect of acceleration 

on the slope of the free surface of water in the tank. Let the 
acceleration vary from 0 m/s2 to 15 m/s2 in increments of 
1 m/s2. Tabulate and plot your results.
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The gate is to be opened from its lower edge by applying a 
normal force at its center. Determine the minimum force F 
required to open the water gate.  Answer: 626 kN

3–173  Repeat Prob. 3–172 for a water height of 0.8 m 
above the hinge at B.

Fundamentals of Engineering (FE) Exam Problems

3–174  The absolute pressure in a tank is measured to be 
35 kPa. If the atmospheric pressure is 100 kPa, the vacuum 
pressure in the tank is
(a) 35 kPa (b) 100 kPa (c) 135 psi 
(d ) 0 kPa (e) 65 kPa

3–175  The pressure difference between the top and bottom 
of a water body with a depth of 10 m is (Take the density of 
water to be 1000 kg/m3.)
(a) 98,100 kPa (b) 98.1 kPa (c) 100 kPa 
(d ) 10 kPa (e) 1.9 kPa

3–176  The gage pressure in a pipe is measured by a 
manometer containing mercury (r 5 13,600 kg/m3). The top 
of the mercury is open to the atmosphere and the atmospheric 
pressure is 100 kPa. If the mercury column height is 24 cm, 
the gage pressure in the pipe is
(a) 32 kPa (b) 24 kPa (c) 76 kPa 
(d ) 124 kPa (e) 68 kPa

3–177  Consider a hydraulic car jack with a piston diam-
eter ratio of 9. A person can lift a 2000-kg car by applying 
a force of
(a) 2000 N (b) 200 N (c) 19,620 N
(d ) 19.6 N (e) 18,000 N

3–178  The atmospheric pressure in a location is measured 
by a mercury (r 5 13,600 kg/m3) barometer. If the height of 
the mercury column is 715 mm, the atmospheric pressure at 
that location is
(a) 85.6 kPa (b) 93.7 kPa (c) 95.4 kPa 
(d ) 100 kPa (e) 101 kPa

3–179  A manometer is used to measure the pressure of a 
gas in a tank. The manometer fluid is water (r 5 1000 kg/m3) 
and the manometer column height is 1.8 m. If the local atmo-
spheric pressure is 100 kPa, the absolute pressure within the 
tank is
(a) 17,760 kPa (b) 100 kPa (c) 180 kPa 
(d ) 101 kPa (e) 118 kPa

3–180  Consider the vertical rectangular wall of a water tank 
with a width of 5 m and a height of 8 m. The other side of 
the wall is open to the atmosphere. The resultant hydrostatic 
force on this wall is
(a) 1570 kN (b) 2380 kN (c) 2505 kN 
(d ) 1410 kN (e) 404 kN

3–169  A cylindrical container whose weight is 65 N is 
inverted and pressed into the water, as shown in Fig. P3–169. 
Determine the differential height h of the manometer and the 
force F needed to hold the container at the position shown.

45°

B

A

0.5 m

3 m

Water

F

FIGURE P3–172

3–170  The average density of icebergs is about 917 kg/m3. 
(a) Determine the percentage of the total volume of an iceberg 
submerged in seawater of density 1042 kg/m3. (b) Although 
icebergs are mostly submerged, they are observed to turn 
over. Explain how this can happen. (Hint: Consider the tem-
peratures of icebergs and seawater.)

3–171  The density of a floating body can be determined by 
tying weights to the body until both the body and the weights 
are completely submerged, and then weighing them sepa-
rately in air. Consider a wood log that weighs 1540 N in air. 
If it takes 34 kg of lead (r 5 11,300 kg/m3) to completely 
sink the log and the lead in water, determine the average den-
sity of the log.  Answer: 835 kg/m3

3–172  The 280-kg, 6-m-wide rectangular gate shown 
in Fig. P3–172 is hinged at B and leans against 

the floor at A making an angle of 45° with the horizontal. 
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3–181  A vertical rectangular wall with a width of 20 m 
and a height of 12 m is holding a 7-m-deep water body. The 
resultant hydrostatic force acting on this wall is
(a) 1370 kN (b) 4807 kN (c) 8240 kN 
(d ) 9740 kN (e) 11,670 kN

3–182  A vertical rectangular wall with a width of 20 m and 
a height of 12 m is holding a 7-m-deep water body. The line 
of action yp for the resultant hydrostatic force on this wall is 
(disregard the atmospheric pressure)
(a) 5 m (b) 4.0 m (c) 4.67 m (d ) 9.67 m (e) 2.33 m

3–183  A rectangular plate with a width of 16 m and a 
height of 12 m is located 4 m below a water surface. The 
plate is tilted and makes a 35° angle with the horizontal. The 
resultant hydrostatic force acting on the top surface of this 
plate is
(a) 10,800 kN (b) 9745 kN (c) 8470 kN 
(d ) 6400 kN (e) 5190 kN

3–184  A 2-m-long and 3-m-wide horizontal rectangular 
plate is submerged in water. The distance of the top surface 
from the free surface is 5 m. The atmospheric pressure is 
95 kPa. Considering atmospheric pressure, the hydrostatic 
force acting on the top surface of this plate is
(a) 307 kN (b) 688 kN (c) 747 kN 
(d ) 864 kN (e) 2950 kN

3–185  A 1.8-m-diameter and 3.6-m-long cylindrical con-
tainer contains a fluid with a specific gravity of 0.73. The 
container is positioned vertically and is full of the fluid. 
Disregarding atmospheric pressure, the hydrostatic force 
acting on the top and bottom surfaces of this container, 
respectively, are
(a) 0 kN, 65.6 kN (b) 65.6 kN, 0 kN (c) 65.6 kN, 65.6 kN
(d ) 25.5 kN, 0 kN (e) 0 kN, 25.5 kN

3–186  Consider a 6-m-diameter spherical gate holding a 
body of water whose height is equal to the diameter of the 
gate. Atmospheric pressure acts on both sides of the gate. The 
horizontal component of the hydrostatic force acting on this 
curved surface is
(a) 709 kN (b) 832 kN (c) 848 kN 
(d) 972 kN (e) 1124 kN

3–187  Consider a 6-m-diameter spherical gate holding a 
body of water whose height is equal to the diameter of the 
gate. Atmospheric pressure acts on both sides of the gate. 
The vertical component of the hydrostatic force acting on this 
curved surface is
(a) 89 kN (b) 270 kN (c) 327 kN
(d ) 416 kN (e) 505 kN

3–188  A 0.75-cm-diameter spherical object is completely 
submerged in water. The buoyant force acting on this object is
(a) 13,000 N (b) 9835 N (c) 5460 N 
(d ) 2167 N (e) 1267 N

3–189  A 3-kg object with a density of 7500 kg/m3 is placed 
in water. The weight of this object in water is
(a) 29.4 N (b) 25.5 N (c) 14.7 N (d ) 30 N (e) 3 N

3–190  A 7-m-diameter hot air balloon is neither rising nor 
falling. The density of atmospheric air is 1.3 kg/m3. The total 
mass of the balloon including the people on board is
(a) 234 kg (b) 207 kg (c) 180 kg (d ) 163 kg (e) 134 kg

3–191  A 10-kg object with a density of 900 kg/m3 is placed 
in a fluid with a density of 1100 kg/m3. The fraction of the 
volume of the object submerged in water is
(a) 0.637 (b) 0.716 (c) 0.818 (d ) 0.90 (e) 1

3–192  Consider a cubical water tank with a side length of 
3 m. The tank is half filled with water, and is open to the 
atmosphere with a pressure of 100 kPa. Now, a truck carry-
ing this tank is accelerated at a rate of 5 m/s2. The maximum 
pressure in the water is
(a) 115 kPa (b) 122 kPa (c) 129 kPa 
(d ) 137 kPa (e) 153 kPa

3–193  A 15-cm-diameter, 40-cm-high vertical cylindrical 
container is partially filled with 25-cm-high water. Now the 
cylinder is rotated at a constant speed of 20 rad/s. The maxi-
mum height difference between the edge and the center of the 
free surface is
(a) 15 cm (b) 7.2 cm (c) 5.4 cm (d ) 9.5 cm (e) 11 .5 cm

3–194  A 20-cm-diameter, 40-cm-high vertical cylindrical 
container is partially filled with 25-cm-high water. Now the 
cylinder is rotated at a constant speed of 15 rad/s. The height 
of water at the center of the cylinder is
(a) 25 cm (b) 19.5 cm (c) 22.7 cm 
(d ) 17.7 cm (e) 15 cm

3–195  A 15-cm-diameter, 50-cm-high vertical cylindrical 
container is partially filled with 30-cm-high water. Now the 
cylinder is rotated at a constant speed of 20 rad/s. The pres-
sure difference between the center and edge of the container 
at the base surface is
(a) 7327 Pa (b) 8750 Pa (c) 9930 Pa 
(d ) 1045 Pa (e) 1125 Pa

Design and Essay Problems

3–196  Shoes are to be designed to enable people of up to 
80 kg to walk on freshwater or seawater. The shoes are to be 
made of blown plastic in the shape of a sphere, a (American) 
football, or a loaf of French bread. Determine the equivalent 
diameter of each shoe and comment on the proposed shapes 
from the stability point of view. What is your assessment of 
the marketability of these shoes?

3–197  The volume of a rock is to be determined without 
using any volume measurement devices. Explain how you 
would do this with a waterproof spring scale.
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3–198  The density of stainless steel is about 8000 kg/m3 
(eight times denser than water), but a razor blade can float on 
water, even with some added weights. The water is at 20oC. 
The blade shown in the photograph is 4.3 cm long and 
2.2 cm wide. For simplicity, the center cut-out area of the 
razor blade has been taped so that only the outer edges of 
the blade contribute to surface tension effects. Because the 
razor blade has sharp corners, the contact angle is not rele-
vant. Rather, the limiting case is when the water contacts the 
blade vertically as sketched (effective contact angle along 
the edge of the blade is 1808). (a) Considering surface ten-
sion alone, estimate (in grams) how much total mass (razor 
blade 1 weights placed on top of it) can be supported. 
(b) Refine your analysis by considering that the razor blade 
pushes the water down, and thus hydrostatic pressure effects 
are also present. Hint: You will also need to know that due 
to the curvature of the meniscus, the maximum possible 

depth is h 5 Å2ss

rg
.

Added weights

Pabove = Patm

Pbelow

h = 0f

FIGURE P3–198  
(Bottom) Photo by John M. Cimbala.
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F L U I D  K I N E M AT I C S

Fluid kinematics deals with describing the motion of fluids without nec-
essarily considering the forces and moments that cause the motion. In 
this chapter, we introduce several kinematic concepts related to flow-

ing fluids. We discuss the material derivative and its role in transforming 
the conservation equations from the Lagrangian description of fluid flow 
(following a fluid particle) to the Eulerian description of fluid flow (per-
taining to a flow field). We then discuss various ways to visualize flow 
fields—streamlines, streaklines, pathlines, timelines, optical methods schlie-
ren and shadowgraph, and surface methods; and we describe three ways to 
plot flow data—profile plots, vector plots, and contour plots. We explain the 
four fundamental kinematic properties of fluid motion and deformation—
rate of translation, rate of rotation, linear strain rate, and shear strain rate. 
The concepts of vorticity, rotationality, and irrotationality in fluid flows are 
then discussed. Finally, we discuss the Reynolds transport theorem (RTT), 
emphasizing its role in transforming the equations of motion from those fol-
lowing a system to those pertaining to fluid flow into and out of a control 
volume. The analogy between material derivative for infinitesimal fluid ele-
ments and RTT for finite control volumes is explained.

CHAPTER 

4
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Understand the role of 
the material derivative 
in transforming between 
Lagrangian and Eulerian 
descriptions

■ Distinguish between various 
types of flow visualizations 
and methods of plotting the 
characteristics of a fluid flow

■ Appreciate the many ways that 
fluids move and deform

■ Distinguish between rotational 
and irrotational regions of flow 
based on the flow property 
vorticity

■ Understand the usefulness of 
the Reynolds transport theorem

Satellite image of a hurricane near the Florida 
coast; water droplets move with the air, enabling us 
to visualize the counterclockwise swirling motion. 

However, the major portion of the hurricane is 
actually irrotational, while only the core (the eye 

of the storm) is rotational.
© StockTrek/Getty RF

133-184_cengel_ch04.indd   133 12/14/12   12:07 PM



134
FLUID KINEMATICS

4–1 ■  LAGRANGIAN AND EULERIAN DESCRIPTIONS
The subject called kinematics concerns the study of motion. In fluid dynam-
ics, fluid kinematics is the study of how fluids flow and how to describe fluid 
motion. From a fundamental point of view, there are two distinct ways to 
describe motion. The first and most familiar method is the one you learned 
in high school physics—to follow the path of individual objects. For example, 
we have all seen physics experiments in which a ball on a pool table or a 
puck on an air hockey table collides with another ball or puck or with the wall 
(Fig. 4–1). Newton’s laws are used to describe the motion of such objects, 
and we can accurately predict where they go and how momentum and kinetic 
energy are exchanged from one object to another. The kinematics of such 
experiments involves keeping track of the position vector of each object, x

→

A, 
x
→

B, . . . , and the velocity vector of each object, V
!
A, V
!
B , . . . , as functions of 

time (Fig. 4–2). When this method is applied to a flowing fluid, we call it 
the Lagrangian description of fluid motion after the Italian mathematician 
Joseph Louis Lagrange (1736–1813). Lagrangian analysis is analogous to the 
(closed) system analysis that you learned in thermodynamics; namely, we fol-
low a mass of fixed identity. The Lagrangian description requires us to track 
the position and velocity of each individual fluid parcel, which we refer to as a 
fluid particle, and take to be a parcel of fixed identity.
 As you can imagine, this method of describing motion is much more dif-
ficult for fluids than for billiard balls! First of all we cannot easily define 
and identify fluid particles as they move around. Secondly, a fluid is a 
continuum (from a macroscopic point of view), so interactions between 
fluid particles are not as easy to describe as are interactions between distinct 
objects like billiard balls or air hockey pucks. Furthermore, the fluid par-
ticles continually deform as they move in the flow.
 From a microscopic point of view, a fluid is composed of billions of 
molecules that are continuously banging into one another, somewhat like 
billiard balls; but the task of following even a subset of these molecules 
is quite difficult, even for our fastest and largest computers. Nevertheless, 
there are many practical applications of the Lagrangian description, such as 
the tracking of passive scalars in a flow to model contaminant transport, rar-
efied gas dynamics calculations concerning reentry of a spaceship into the 
earth’s atmosphere, and the development of flow visualization and measure-
ment systems based on particle tracking (as discussed in Section 4–2).
 A more common method of describing fluid flow is the Eulerian descrip-
tion of fluid motion, named after the Swiss mathematician Leonhard Euler 
(1707–1783). In the Eulerian description of fluid flow, a finite volume 
called a flow domain or control volume is defined, through which fluid 
flows in and out. Instead of tracking individual fluid particles, we define 
field variables, functions of space and time, within the control volume. 
The field variable at a particular location at a particular time is the value of 
the variable for whichever fluid particle happens to occupy that location at 
that time. For example, the pressure field is a scalar field variable; for gen-
eral unsteady three-dimensional fluid flow in Cartesian coordinates,

Pressure field: P 5 P(x, y, z, t) (4–1)

We define the velocity field as a vector field variable in similar fashion,

Velocity field: V
S

5 V
S

(x, y, z, t) (4–2)

FIGURE 4–1
With a small number of objects, 
such as billiard balls on a pool table, 
individual objects can be tracked.

VB

VC

xA

xB
xC

A

B
C

VA

FIGURE 4–2
In the Lagrangian description, we 
must keep track of the position and 
velocity of individual particles.
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Likewise, the acceleration field is also a vector field variable,

Acceleration field: a
!
5 a

!
(x, y, z, t) (4–3)

Collectively, these (and other) field variables define the flow field. The veloc-
ity field of Eq. 4–2 is expanded in Cartesian coordinates (x, y, z), (i

→

, j
→

, k
→

) as

 V
!
5 (u, v, w) 5 u(x, y, z, t) i  

!
1 v(x, y, z, t) j 

!
1 w(x, y, z, t)k

!
 (4–4)

A similar expansion can be performed for the acceleration field of Eq. 4–3. In the 
Eulerian description, all such field variables are defined at any location (x, y, z) 
in the control volume and at any instant in time t (Fig. 4–3). In the Eulerian 
description we don’t really care what happens to individual fluid particles; rather 
we are concerned with the pressure, velocity, acceleration, etc., of whichever 
fluid particle happens to be at the location of interest at the time of interest.
 The difference between these two descriptions is made clearer by imagining 
a person standing beside a river, measuring its properties. In the Lagrangian 
approach, he throws in a probe that moves downstream with the water. In the 
Eulerian approach, he anchors the probe at a fixed location in the water.
 While there are many occasions in which the Lagrangian description is use-
ful, the Eulerian description is often more convenient for fluid mechanics appli-
cations. Furthermore, experimental measurements are generally more suited to 
the Eulerian description. In a wind tunnel, for example, velocity or pressure 
probes are usually placed at a fixed location in the flow, measuring V

!
(x, y, z, t) 

or P(x, y, z, t). However, whereas the equations of motion in the Lagrangian 
description following individual fluid particles are well known (e.g., Newton’s 
second law), the equations of motion of fluid flow are not so readily apparent 
in the Eulerian description and must be carefully derived. We do this for control 
volume (integral) analysis via the Reynolds transport theorem at the end of this 
chapter. We derive the differential equations of motion in Chap. 9.

EXAMPLE 4–1    A Steady Two-Dimensional Velocity Field

A steady, incompressible, two-dimensional velocity field is given by

 V
S

5 (u, v ) 5 (0.5 1 0.8x) i
S

1 (1.5 2 0.8y) j
S

 (1)

where the x- and y-coordinates are in meters and the magnitude of velocity is in 

m/s. A stagnation point is defined as a point in the flow field where the velocity 

is zero. (a) Determine if there are any stagnation points in this flow field and, if 

so, where? (b) Sketch velocity vectors at several locations in the domain between 

x 5 22 m to 2 m and y 5 0 m to 5 m; qualitatively describe the flow field.

SOLUTION  For the given velocity field, the location(s) of stagnation point(s) 

are to be determined. Several velocity vectors are to be sketched and the 

velocity field is to be described.

Assumptions  1 The flow is steady and incompressible. 2 The flow is two-

dimensional, implying no z-component of velocity and no variation of u or v 

with z.

Analysis  (a) Since V
!
 is a vector, all its components must equal zero in 

order for V
→
 itself to be zero. Using Eq. 4–4 and setting Eq. 1 equal to zero,

Stagnation point:  u 5 0.5 1 0.8x 5 0  S  x 5 20.625 m
 v 5 1.5 2 0.8y 5 0  S  y 5 1.875 m

Yes. There is one stagnation point located at x 5 20.625 m, y 5 1.875 m.

FIGURE 4–3
(a) In the Eulerian description, we 
define field variables, such as the 

pressure field and the velocity field, 
at any location and instant in time. 

(b) For example, the air speed probe 
mounted under the wing of an airplane 
measures the air speed at that location.

(Bottom) Photo by John M. Cimbala.

Control volume

V(x, y, z, t)

P(x, y, z, t)

(x, y, z)

(a)

(b)
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(b) The x- and y-components of velocity are calculated from Eq. 1 for several 

(x, y) locations in the specified range. For example, at the point (x 5 2 m, 

y 5 3 m), u 5 2.10 m/s and v 5 20.900 m/s. The magnitude of velocity 

(the speed) at that point is 2.28 m/s. At this and at an array of other loca-

tions, the velocity vector is constructed from its two components, the results 

of which are shown in Fig. 4–4. The flow can be described as stagnation 

point flow in which flow enters from the top and bottom and spreads out to 

the right and left about a horizontal line of symmetry at y 5 1.875 m. The 

stagnation point of part (a) is indicated by the blue circle in Fig. 4–4.

 If we look only at the shaded portion of Fig. 4–4, this flow field models a 

converging, accelerating flow from the left to the right. Such a flow might be 

encountered, for example, near the submerged bell mouth inlet of a hydro-

electric dam (Fig. 4–5). The useful portion of the given velocity field may be 

thought of as a first-order approximation of the shaded portion of the physi-

cal flow field of Fig. 4–5.

Discussion  It can be verified from the material in Chap. 9 that this flow 

field is physically valid because it satisfies the differential equation for 

conservation of mass.

Acceleration Field
As you should recall from your study of thermodynamics, the fundamen-
tal conservation laws (such as conservation of mass and the first law of 
thermodynamics) are expressed for a system of fixed identity (also called 
a closed system). In cases where analysis of a control volume (also called 
an open system) is more convenient than system analysis, it is necessary to 
rewrite these fundamental laws into forms applicable to the control volume. 
The same principle applies here. In fact, there is a direct analogy between 
systems versus control volumes in thermodynamics and Lagrangian versus 
Eulerian descriptions in fluid dynamics. The equations of motion for fluid 
flow (such as Newton’s second law) are written for a fluid particle, which 
we also call a material particle. If we were to follow a particular fluid par-
ticle as it moves around in the flow, we would be employing the Lagrangian 
description, and the equations of motion would be directly applicable. 
For example, we would define the particle’s location in space in terms of 
a material position vector (xparticle(t), yparticle(t), zparticle(t)). However, some 
mathematical manipulation is then necessary to convert the equations of 
motion into forms applicable to the Eulerian description.
 Consider, for example, Newton’s second law applied to our fluid particle,

Newton’s second law: F
S

particle 5 mparticlea
!
particle (4–5)

where F
!
particle is the net force acting on the fluid particle, mparticle is its mass, 

and a
!
particle is its acceleration (Fig. 4–6). By definition, the acceleration of 

the fluid particle is the time derivative of the particle’s velocity,

Acceleration of a fluid particle: a
!
particle 5

dV
S

particle

dt
 (4–6)

However, at any instant in time t, the velocity of the particle is the same 
as the local value of the velocity field at the location (xparticle(t), yparticle(t), 
zparticle(t)) of the particle, since the fluid particle moves with the fluid by 

Scale:

5

4

3

2
y

1

0

–1

–3 –2 –1 0
x

1 2 3

10 m/s

FIGURE 4–4
Velocity vectors (blue arrows) for 
the velocity field of Example 4–1. 
The scale is shown by the top arrow, 
and the solid black curves represent 
the approximate shapes of some 
streamlines, based on the calculated 
velocity vectors. The stagnation point 
is indicated by the blue circle. The 
shaded region represents a portion of 
the flow field that can approximate 
flow into an inlet (Fig. 4–5).

Region in which the
velocity field is modeled

Streamlines

FIGURE 4–5
Flow field near the bell mouth inlet of 
a hydroelectric dam; a portion of the 
velocity field of Example 4–1 may be 
used as a first-order approximation of 
this physical flow field. The shaded 
region corresponds to that of Fig. 4–4.
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definition. In other words, V
!
particle(t) ; V

!
(xparticle(t), yparticle(t), zparticle(t), t). 

To take the time derivative in Eq. 4–6, we must therefore use the chain rule, 
since the dependent variable (V

!
) is a function of four independent variables 

(xparticle, yparticle, zparticle, and t),

 a
!
particle 5

dV
!
particle

dt
5

dV
!

dt
5

dV
!
(xparticle, yparticle, zparticle, t)

dt
 

  5
0V
!

0t
 
dt

dt
1

0V
!

0xparticle

 
dxparticle

dt
1

0V
!

0yparticle

 
dyparticle

dt
1

0V
!

0zparticle

 
dzparticle

dt
 

(4–7)

In Eq. 4–7, − is the partial derivative operator and d is the total derivative 
operator. Consider the second term on the right-hand side of Eq. 4–7. Since 
the acceleration is defined as that following a fluid particle (Lagrangian 
description), the rate of change of the particle’s x-position with respect to 
time is dxparticle/dt 5 u (Fig. 4–7), where u is the x-component of the veloc-
ity vector defined by Eq. 4–4. Similarly, dyparticle/dt 5 v and dzparticle/dt 5 w. 
Furthermore, at any instant in time under consideration, the material position 
vector (xparticle, yparticle, zparticle) of the fluid particle in the Lagrangian frame is 
equal to the position vector (x, y, z) in the Eulerian frame. Equation 4–7 thus 
becomes

 a
!
particle(x, y, z, t) 5

dV
!

dt
5
0V
!

0t
1 u 

0V
!

0x
1 v 

0V
!

0y
1 w 

0V
!

0z
 (4–8)

where we have also used the (obvious) fact that dt/dt 5 1. Finally, at any 
instant in time t, the acceleration field of Eq. 4–3 must equal the accelera-
tion of the fluid particle that happens to occupy the location (x, y, z) at that 
time t. Why? Because the fluid particle is by definition accelerating with the 
fluid flow. Hence, we may replace a

!
particle with a

!
(x, y, z, t) in Eqs. 4–7 and 

4–8 to transform from the Lagrangian to the Eulerian frame of reference. In 
vector form, Eq. 4–8 is written as

Acceleration of a fluid particle expressed as a field variable:

 a
!
(x, y, z, t) 5

dV
!

dt
5
0V
!

0t
1 (V

!
 · =
!
)V
!
 (4–9)

where =
!
 is the gradient operator or del operator, a vector operator that is 

defined in Cartesian coordinates as

Gradient or del operator: =
!
5 a 0

0x,
 
0
0y,

 
0
0z
b 5  i 

! 0
0x

1  j 

!
 
0
0y

1 k
!
 
0
0z

 (4–10)

In Cartesian coordinates then, the components of the acceleration vector are

 ax 5
0u
0t

1 u 

0u
0x

1 v 

0u
0y

1 w 
0u
0z

Cartesian coordinates:  ay 5
0v
0t

1 u 

0v
0x

1 v 

0v
0y

1 w 

0v
0z

 (4–11)

 az 5
0w
0t

1 u 

0w
0x

1 v 

0w
0y

1 w 

0w
0z

 The first term on the right-hand side of Eq. 4–9, −V
!
/−t, is called the local 

acceleration and is nonzero only for unsteady flows. The second term, 
(V
!
·=
!
)V
!
, is called the advective acceleration (sometimes the convective 

Vparticle ; V

Fparticle

aparticle

(xparticle, yparticle, zparticle)

Fluid particle at time t

Fluid particle at time t + dt

mparticle

FIGURE 4–6
Newton’s second law applied to a 

fluid particle; the acceleration vector 
(purple arrow) is in the same direction 

as the force vector (green arrow), but 
the velocity vector (blue arrow) may 

act in a different direction.

Fluid particle at time t

Fluid particle
at time t + dt

(xparticle, yparticle)

(xparticle + dxparticle, yparticle + dyparticle)

dyparticle dxparticle

FIGURE 4–7
When following a fluid particle, the 

x-component of velocity, u, is defined 
as dxparticle/dt. Similarly, v 5 dyparticle/dt 

and w 5 dzparticle/dt. Movement is 
shown here only in two dimensions 

for simplicity.
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acceleration); this term can be nonzero even for steady flows. It accounts 
for the effect of the fluid particle moving (advecting or convecting) to a 
new location in the flow, where the velocity field is different. For example, 
consider steady flow of water through a garden hose nozzle (Fig. 4–8). We 
define steady in the Eulerian frame of reference to be when properties at 
any point in the flow field do not change with respect to time. Since the 
velocity at the exit of the nozzle is larger than that at the nozzle entrance, 
fluid particles clearly accelerate, even though the flow is steady. The accel-
eration is nonzero because of the advective acceleration terms in Eq. 4–9. 
Note that while the flow is steady from the point of view of a fixed observer 
in the Eulerian reference frame, it is not steady from the Lagrangian refer-
ence frame moving with a fluid particle that enters the nozzle and acceler-
ates as it passes through the nozzle.

EXAMPLE 4–2    Acceleration of a Fluid Particle through a Nozzle

Nadeen is washing her car, using a nozzle similar to the one sketched in 

Fig. 4–8. The nozzle is 3.90 in (0.325 ft) long, with an inlet diameter of 

0.420  in (0.0350 ft) and an outlet diameter of 0.182 in (see Fig. 4–9). 

The volume flow rate through the garden hose (and through the nozzle) is 

V
.
 5  0.841  gal/min (0.00187 ft3/s), and the flow is steady. Estimate the 

magnitude of the acceleration of a fluid particle moving down the centerline 

of the nozzle.

SOLUTION  The acceleration following a fluid particle down the center of a 

nozzle is to be estimated.

Assumptions  1 The flow is steady and incompressible. 2 The x-direction is 

taken along the centerline of the nozzle. 3 By symmetry, v 5 w 5 0 along 

the centerline, but u increases through the nozzle.

Analysis  The flow is steady, so you may be tempted to say that the accel-

eration is zero. However, even though the local acceleration −V
!
/−t is identi-

cally zero for this steady flow field, the advective acceleration (V 
→

·=
→
)V 

→
 is not 

zero. We first calculate the average x-component of velocity at the inlet and 

outlet of the nozzle by dividing volume flow rate by cross-sectional area:

Inlet speed:

uinlet >
V
#

A inlet

5
4V
#

pD2
inlet

5
4(0.00187 ft3/s)

p(0.0350 ft)2 5 1.95 ft/s

Similarly, the average outlet speed is uoutlet 5 10.4 ft/s. We now calculate 

the acceleration two ways, with equivalent results. First, a simple average 

value of acceleration in the x-direction is calculated based on the change in 

speed divided by an estimate of the residence time of a fluid particle in the 

nozzle, Dt 5 Dx/uavg (Fig. 4–10). By the fundamental definition of accelera-

tion as the rate of change of velocity,

Method A: ax >
Du

Dt
5

uoutlet 2 uinlet

Dx/uavg

5
uoutlet 2 uinlet

2 Dx/(uoutlet 1 uinlet)
5

uoutlet
2 2 u inlet

2

2 Dx

 The second method uses the equation for acceleration field components in 

Cartesian coordinates, Eq. 4–11,

FIGURE 4–8
Flow of water through the nozzle of 
a garden hose illustrates that fluid par-
ticles may accelerate, even in a steady 
flow. In this example, the exit speed 
of the water is much higher than the 
water speed in the hose, implying that 
fluid particles have accelerated even 
though the flow is steady.

Doutlet

Dinlet

uoutlet

x

Dxuinlet

FIGURE 4–9
Flow of water through the nozzle of 
Example 4–2.
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Method B: ax 5
0u
0t

1 u 
0u
0x

1   v 

0u
0y
   1   w 

0u
0z
   > uavg

Du

Dx

 Steady v 5 0 along centerline w 5 0 along centerline

Here we see that only one advective term is nonzero. We approximate the 

average speed through the nozzle as the average of the inlet and outlet 

speeds, and we use a first-order finite difference approximation (Fig. 4–11) for 

the average value of derivative −u/−x through the centerline of the nozzle:

ax >
uoutlet 1 uinlet

2
 
 uoutlet 2 uinlet

Dx
5

uoutlet
2 2 u inlet

2

2 Dx

The result of method B is identical to that of method A. Substitution of the 

given values yields

Axial acceleration:

ax >
u2

outlet 2 u2
inlet

2 Dx
5

(10.4 ft/s)2 2 (1.95 ft/s)2

2(0.325 ft)
5 160 ft/s2

Discussion  Fluid particles are accelerated through the nozzle at nearly 

five times the acceleration of gravity (almost five g’s)! This simple example 

clearly illustrates that the acceleration of a fluid particle can be nonzero, 

even in steady flow. Note that the acceleration is actually a point function, 
whereas we have estimated a simple average acceleration through the entire 

nozzle.

Material Derivative
The total derivative operator d/dt in Eq. 4–9 is given a special name, the 
material derivative; it is assigned a special notation, D/Dt, in order to 
emphasize that it is formed by following a fluid particle as it moves through 
the flow field (Fig. 4–12). Other names for the material derivative include 
total, particle, Lagrangian, Eulerian, and substantial derivative.

Material derivative: 
D

Dt
5

d

dt
5
0
0t

1 (V
!
·=
!
) (4–12)

When we apply the material derivative of Eq. 4–12 to the velocity field, the 
result is the acceleration field as expressed by Eq. 4–9, which is thus some-
times called the material acceleration,

Material acceleration: a
!
(x, y, z, t) 5

DV
!

Dt
5

dV
!

dt
5
0V
!

0t
1 (V

!
·=
!
)V
!
 (4–13)

Equation 4–12 can also be applied to other fluid properties besides velocity, 
both scalars and vectors. For example, the material derivative of pressure is 
written as

Material derivative of pressure: 
DP

Dt
5

dP

dt
5
0P
0t

1 (V
!
·=
!
)P (4–14)

FIGURE 4–10
Residence time Dt is defined as the 

time it takes for a fluid particle to 
travel through the nozzle from inlet 

to outlet (distance Dx).

x

Δq

FIGURE 4–11
A first-order finite difference 

approximation for derivative dq/dx 
is simply the change in dependent 
variable (q) divided by the change 

in independent variable (x).

t

t + dt

t + 2 dt

t + 3 dt

FIGURE 4–12
The material derivative D/Dt is 

defined by following a fluid particle 
as it moves throughout the flow field. 
In this illustration, the fluid particle is 

accelerating to the right as it moves 
up and to the right.

f fF—0 0 0

— —
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Equation 4–14 represents the time rate of change of pressure following a 
fluid particle as it moves through the flow and contains both local (unsteady) 
and advective components (Fig. 4–13).

EXAMPLE 4–3    Material Acceleration of a Steady Velocity Field

Consider the steady, incompressible, two-dimensional velocity field of 

Example 4–1. (a) Calculate the material acceleration at the point (x 5 2 m, 

y 5 3 m). (b) Sketch the material acceleration vectors at the same array of 

x- and y-values as in Example 4–1.

SOLUTION  For the given velocity field, the material acceleration vector is 

to be calculated at a particular point and plotted at an array of locations in 

the flow field.

Assumptions  1 The flow is steady and incompressible. 2 The flow is two-

dimensional, implying no z-component of velocity and no variation of u or v 

with z.

Analysis  (a) Using the velocity field of Eq. 1 of Example 4–1 and the equa-

tion for material acceleration components in Cartesian coordinates (Eq. 4–11), 

we write expressions for the two nonzero components of the acceleration 

vector:

 ax 5
0u
0t
  1   u 

0u
0x
        1 v 

0u
0y
   1 w 

0u
0z

 5  0 1 (0.5 1 0.8x)(0.8) 1 (1.5 2 0.8y)(0) 1 0 5 (0.4 1 0.64x) m/s2

and

 ay 5
0v
0t
  1  u 

0v
0x
        1 v 

0v
0y
   1 w 

0v
0z

 5  0 1 (0.5 1 0.8x)(0) 1 (1.5 2 0.8y)(20.8) 1 0 5 (21.2 1 0.64y) m/s2

At the point (x 5 2 m, y 5 3 m), ax 5 1.68 m/s2 and ay 5 0.720 m/s2.
(b) The equations in part (a) are applied to an array of x- and y-values in the 

flow domain within the given limits, and the acceleration vectors are plotted 

in Fig. 4–14.

Discussion  The acceleration field is nonzero, even though the flow is 

steady. Above the stagnation point (above y 5 1.875 m), the acceleration 

vectors plotted in Fig. 4–14 point upward, increasing in magnitude away 

from the stagnation point. To the right of the stagnation point (to the right of 

x 5 20.625 m), the acceleration vectors point to the right, again increasing 

in magnitude away from the stagnation point. This agrees qualitatively with 

the velocity vectors of Fig. 4–4 and the streamlines sketched in Fig. 4–14; 

namely, in the upper-right portion of the flow field, fluid particles are accel-

erated in the upper-right direction and therefore veer in the counterclock-

wise direction due to centripetal acceleration toward the upper right. The flow 

below y 5 1.875 m is a mirror image of the flow above this symmetry line, 

and the flow to the left of x 5 20.625 m is a mirror image of the flow to 

the right of this symmetry line.

LocalLocalMaterialMaterial
derivativederivative

V V ? =? =

AdvectiveAdvective

FIGURE 4–13
The material derivative D/Dt is com-
posed of a local or unsteady part and a 
convective or advective part.

Scale:

5

4

3

2
y

1

0

–1

–3 –2 –1 0
x

1 2 3

10 m/s2

FIGURE 4–14
Acceleration vectors (purple arrows) 
for the velocity field of Examples 4–1 
and 4–3. The scale is shown by the 
top arrow, and the solid black curves 
represent the approximate shapes 
of some streamlines, based on the 
calculated velocity vectors (see 
Fig. 4–4). The stagnation point is 
indicated by the red circle.

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
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4–2 ■  FLOW PATTERNS AND FLOW 
VISUALIZATION

While quantitative study of fluid dynamics requires advanced mathematics, 
much can be learned from flow visualization—the visual examination of 
flow field features. Flow visualization is useful not only in physical experi-
ments (Fig. 4–15), but in numerical solutions as well [computational fluid 
dynamics (CFD)]. In fact, the very first thing an engineer using CFD does 
after obtaining a numerical solution is simulate some form of flow visu-
alization, so that he or she can see the “whole picture” rather than merely 
a list of numbers and quantitative data. Why? Because the human mind is 
designed to rapidly process an incredible amount of visual information; 
as they say, a picture is worth a thousand words. There are many types of 
flow patterns that can be visualized, both physically (experimentally) and/or 
computationally.

Streamlines and Streamtubes
A streamline is a curve that is everywhere tangent to the instantaneous local 
velocity vector.

Streamlines are useful as indicators of the instantaneous direction of fluid 
motion throughout the flow field. For example, regions of recirculating 
flow and separation of a fluid off of a solid wall are easily identified by the 
streamline pattern. Streamlines cannot be directly observed experimentally 
except in steady flow fields, in which they are coincident with pathlines and 
streaklines, to be discussed next. Mathematically, however, we can write a 
simple expression for a streamline based on its definition.
 Consider an infinitesimal arc length d r

!
 5 dx i  

!
 1 dy  j 

!
 1 dzk

→
 along a 

streamline; dr
!
 must be parallel to the local velocity vector V

!
 5 u i  

!
 1 v j 

!
 1 wk

→
 

by definition of the streamline. By simple geometric arguments using simi-
lar triangles, we know that the components of dr→ must be proportional to 
those of V

!
 (Fig. 4–16). Hence,

Equation for a streamline: 
dr

V
5

dx
u

5
dy

v
5

dz
w

 (4–15)

where dr is the magnitude of dr
!
 and V is the speed, the magnitude of veloc-

ity vector V
!
. Equation 4–15 is illustrated in two dimensions for simplicity 

in Fig. 4–16. For a known velocity field, we integrate Eq. 4–15 to obtain 
equations for the streamlines. In two dimensions, (x, y), (u, v), the following 
differential equation is obtained:

Streamline in the xy-plane: ady

dx
b

along a streamline

5
v
u

 (4–16)

In some simple cases, Eq. 4–16 may be solvable analytically; in the general 
case, it must be solved numerically. In either case, an arbitrary constant of 
integration appears. Each chosen value of the constant represents a different 
streamline. The family of curves that satisfy Eq. 4–16 therefore represents 
streamlines of the flow field.

FIGURE 4–15
Spinning baseball. 

The late F. N. M. Brown devoted many 
years to developing and using smoke 

visualization in wind tunnels at the 
University of Notre Dame. Here the 

flow speed is about 77 ft/s and the ball 
is rotated at 630 rpm. 

Photograph courtesy of T. J. Mueller.

y

x

Point (x, y)

Streamline

Point (x + dx, y + dy)

dx

dy

u

v

V

dr

FIGURE 4–16
For two-dimensional flow in the xy- 

plane, arc length dr
!
 5 (dx, dy) along 

a streamline is everywhere tangent to 
the local instantaneous velocity vector 

V
!
 5 (u, v).
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EXAMPLE 4–4     Streamlines in the xy-Plane—An Analytical 
Solution

For the steady, incompressible, two-dimensional velocity field of Example 4–1, 

plot several streamlines in the right half of the flow (x . 0) and compare to 

the velocity vectors plotted in Fig. 4–4.

SOLUTION  An analytical expression for streamlines is to be generated and 

plotted in the upper-right quadrant.

Assumptions  1 The flow is steady and incompressible. 2 The flow is two-

dimensional, implying no z-component of velocity and no variation of u or v 

with z.

Analysis  Equation 4–16 is applicable here; thus, along a streamline,

dy

dx
 5

v
u

 5
1.5 2 0.8y

0.5 1 0.8x

We solve this differential equation by separation of variables:

 
dy

1.5 2 0.8y
5

dx

0.5 1 0.8x
  S  # dy

1.5 2 0.8y
5 # dx

0.5 1 0.8x

After some algebra, we solve for y as a function of x along a streamline,

y 5
C

0.8(0.5 1 0.8x)
1 1.875

where C is a constant of integration that can be set to various values in order 

to plot the streamlines. Several streamlines of the given flow field are shown 

in Fig. 4–17.

Discussion  The velocity vectors of Fig. 4–4 are superimposed on the stream-

lines of Fig. 4–17; the agreement is excellent in the sense that the velocity 

vectors point everywhere tangent to the streamlines. Note that speed cannot 

be determined directly from the streamlines alone.

 A streamtube consists of a bundle of streamlines (Fig. 4–18), much like 
a communications cable consists of a bundle of fiber-optic cables. Since 
streamlines are everywhere parallel to the local velocity, fluid cannot cross 
a streamline by definition. By extension, fluid within a streamtube must 
remain there and cannot cross the boundary of the streamtube. You must 
keep in mind that both streamlines and streamtubes are instantaneous quan-
tities, defined at a particular instant in time according to the velocity field 
at that instant. In an unsteady flow, the streamline pattern may change sig-
nificantly with time. Nevertheless, at any instant in time, the mass flow rate 
passing through any cross-sectional slice of a given streamtube must remain 
the same. For example, in a converging portion of an incompressible flow 
field, the diameter of the streamtube must decrease as the velocity increases 
in order to conserve mass (Fig. 4–19a). Likewise, the streamtube diameter 
increases in diverging portions of an incompressible flow (Fig. 4–19b).

Pathlines
A pathline is the actual path traveled by an individual fluid particle over some 
time period.

5

4

3

2
y

1

0

–1

0 1 2 3
x

4 5

FIGURE 4–17
Streamlines (solid black curves) for 
the velocity field of Example 4–4; 
velocity vectors of Fig. 4–4 (blue 
arrows) are superimposed for 
comparison.

Streamlines

Streamtube

FIGURE 4–18
A streamtube consists of a bundle of 
individual streamlines.
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Pathlines are the easiest of the flow patterns to understand. A pathline is a 
Lagrangian concept in that we simply follow the path of an individual fluid 
particle as it moves around in the flow field (Fig. 4–20). Thus, a pathline is 
the same as the fluid particle’s material position vector (xparticle(t), yparticle(t), 
zparticle(t)), discussed in Section 4–1, traced out over some finite time inter-
val. In a physical experiment, you can imagine a tracer fluid particle that is 
marked somehow—either by color or brightness—such that it is easily dis-
tinguishable from surrounding fluid particles. Now imagine a camera with 
the shutter open for a certain time period, tstart , t , tend, in which the par-
ticle’s path is recorded; the resulting curve is called a pathline. An intrigu-
ing example is shown in Fig. 4–21 for the case of waves moving along the 
surface of water in a tank. Neutrally buoyant white tracer particles are 
suspended in the water, and a time-exposure photograph is taken for one 
complete wave period. The result is pathlines that are elliptical in shape, 
showing that fluid particles bob up and down and forward and backward, 
but return to their original position upon completion of one wave period; 
there is no net forward motion. You may have experienced something simi-
lar while bobbing up and down on ocean waves at the beach.

(b)(a)

FIGURE 4–19
In an incompressible flow field, a 

streamtube (a) decreases in diameter 
as the flow accelerates or converges 
and (b) increases in diameter as the 

flow decelerates or diverges.

 A modern experimental technique called particle image velocimetry 
(PIV) utilizes short segments of particle pathlines to measure the velocity 
field over an entire plane in a flow (Adrian, 1991). (Recent advances also 
extend the technique to three dimensions.) In PIV, tiny tracer particles are 
suspended in the fluid, much like in Fig. 4–21. However, the flow is illu-
minated by two flashes of light (usually a light sheet from a laser as in 
Fig. 4–22) to produce two bright spots (recorded by a camera) for each mov-
ing particle. Then, both the magnitude and direction of the velocity vector 
at each particle location can be inferred, assuming that the tracer particles 
are small enough that they move with the fluid. Modern digital photography 
and fast computers have enabled PIV to be performed rapidly enough so 
that unsteady features of a flow field can also be measured. PIV is discussed 
in more detail in Chap. 8.

Fluid particle at t = tstart

Fluid particle at t = tend

Fluid particle at some
intermediate time

Pathline

FIGURE 4–20
A pathline is formed by following the 

actual path of a fluid particle.

FIGURE 4–21
Pathlines produced by white 

tracer particles suspended in water 
and captured by time-exposure 

photography; as waves pass 
horizontally, each particle moves 

in an elliptical path during one 
wave period.

Wallet, A. & Ruellan, F. 1950, La Houille 
Blanche 5:483–489. Used by permission.
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 Pathlines can also be calculated numerically for a known velocity field. 
Specifically, the location of the tracer particle is integrated over time from 
some starting location x

!
start and starting time tstart to some later time t.

Tracer particle location at time t:                xS 5 xS start 1 #
t

tstart

V
!
 dt (4–17)

When Eq. 4–17 is calculated for t between tstart and tend, a plot of x
!
(t) is 

the pathline of the fluid particle during that time interval, as illustrated in 
Fig. 4–20. For some simple flow fields, Eq. 4–17 can be integrated analyti-
cally. For more complex flows, we must perform a numerical integration.
 If the velocity field is steady, individual fluid particles follow streamlines. 
Thus, for steady flow, pathlines are identical to streamlines.

Streaklines
A streakline is the locus of fluid particles that have passed sequentially 
through a prescribed point in the flow.

Streaklines are the most common flow pattern generated in a physical 
experiment. If you insert a small tube into a flow and introduce a continu-
ous stream of tracer fluid (dye in a water flow or smoke in an airflow), the 
observed pattern is a streakline. Figure 4–23 shows a tracer being injected 
into a free-stream flow containing an object, such as a wing. The circles 
represent individual injected tracer fluid particles, released at a uniform 
time interval. As the particles are forced out of the way by the object, they 
accelerate around the shoulder of the object, as indicated by the increased 
distance between individual tracer particles in that region. The streakline is 
formed by connecting all the circles into a smooth curve. In physical experi-
ments in a wind or water tunnel, the smoke or dye is injected continuously, 
not as individual particles, and the resulting flow pattern is by definition 
a streakline. In Fig. 4–23, tracer particle 1 was released at an earlier time 
than tracer particle 2, and so on. The location of an individual tracer par-
ticle is determined by the surrounding velocity field from the moment of 
its injection into the flow until the present time. If the flow is unsteady, 
the surrounding velocity field changes, and we cannot expect the resulting 
streakline to resemble a streamline or pathline at any given instant in time. 
However, if the flow is steady, streamlines, pathlines, and streaklines are 
identical (Fig. 4–24).
 Streaklines are often confused with streamlines or pathlines. While the 
three flow patterns are identical in steady flow, they can be quite differ-
ent in unsteady flow. The main difference is that a streamline represents 
an instantaneous flow pattern at a given instant in time, while a streakline 
and a pathline are flow patterns that have some age and thus a time history 
associated with them. A streakline is an instantaneous snapshot of a time-
integrated flow pattern. A pathline, on the other hand, is the time-exposed 
flow path of an individual particle over some time period.
 The time-integrative property of streaklines is vividly illustrated in an 
experiment by Cimbala et al. (1988), reproduced here as Fig. 4–25. The 
authors used a smoke wire for flow visualization in a wind tunnel. In opera-
tion, the smoke wire is a thin vertical wire that is coated with mineral oil. 
The oil breaks up into beads along the length of the wire due to surface 

V

Streakline

Object
8 7 6 5

4

3

2
1

Injected fluid particle

Dye or smoke

FIGURE 4–23
A streakline is formed by continuous 
introduction of dye or smoke from 
a point in the flow. Labeled tracer 
particles (1 through 8) were introduced 
sequentially.

–0.1 –0.05 0 0.05
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0.9
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FIGURE 4–22
Stereo PIV measurements of the wing 
tip vortex in the wake of a NACA-66 
airfoil at angle of attack. Color contours 
denote the local vorticity, normalized by 
the minimum value, as indicated in the 
color map. Vectors denote fluid motion 
in the plane of measurement. The black 
line denotes the location of the upstream 
wing trailling edge. Coordinates are 
normalized by the airfoil chord, and the 
origin is the wing root.
Photo by Michael H. Krane, ARL-Penn State.
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tension effects. When an electric current heats the wire, each little bead of 
oil produces a streakline of smoke. In Fig. 4–25a, streaklines are introduced 
from a smoke wire located just downstream of a circular cylinder of diameter 
D aligned normal to the plane of view. (When multiple streaklines are intro-
duced along a line, as in Fig. 4–25, we refer to this as a rake of  streaklines.) 
The Reynolds number of the flow is Re 5 rVD/m 5 93. Because of unsteady 
vortices shed in an alternating pattern from the cylinder, the smoke collects 
into a clearly defined periodic pattern called a Kármán vortex street. A 
similar pattern can be seen at much larger scale in the air flow in the wake of 
an island (Fig. 4–26).
 From Fig. 4–25a alone, you may think that the shed vortices continue to 
exist to several hundred diameters downstream of the cylinder. However, the 
streakline pattern of this figure is misleading! In Fig. 4–25b, the smoke wire 
is placed 150 diameters downstream of the cylinder. The resulting streaklines 
are straight, indicating that the shed vortices have in reality disappeared by 
this downstream distance. The flow is steady and parallel at this location, and 
there are no more vortices; viscous diffusion has caused adjacent vortices of 
opposite sign to cancel each other out by around 100 cylinder diameters. The 
patterns of Fig. 4–25a near x/D 5 150 are merely remnants of the vortex 
street that existed upstream. The streaklines of Fig. 4–25b, however, show 
the correct features of the flow at that location. The streaklines generated 
at x/D 5 150 are identical to streamlines or pathlines in that region of the 
flow—straight, nearly horizontal lines—since the flow is steady there.
 For a known velocity field, a streakline can be generated numerically. We 
need to follow the paths of a continuous stream of tracer particles from the 
time of their injection into the flow until the present time, using Eq. 4–17. 
Mathematically, the location of a tracer particle is integrated over time 
from the time of its injection tinject to the present time tpresent. Equation 4–17 
becomes

Integrated tracer particle location: xS 5 xS injection 1 #
tpresent

tinject

V
!
 dt (4–18)

FIGURE 4–26
Kármán vortices visible in the clouds 

in the wake of Alexander Selkirk 
Island in the southern Pacific Ocean.

Photo from Landsat 7 WRS Path 6
Row 83, center: -33.18, -79.99,

9/15/1999, earthobservatory.nasa.gov.
Courtesy of NASA.

FIGURE 4–24
Streaklines produced by colored fluid 
introduced upstream; since the flow is 
steady, these streaklines are the same 

as streamlines and pathlines. 
Courtesy ONERA. Photograph by Werlé.

(a)

(b)

0 50

Cylinder

x/D

100 150 200 250

Cylinder

FIGURE 4–25
Smoke streaklines introduced by a smoke wire at two different locations in the 
wake of a circular cylinder: (a) smoke wire just downstream of the cylinder and 
(b) smoke wire located at x/D 5 150. The time-integrative nature of streaklines 
is clearly seen by comparing the two photographs.
Photos by John M. Cimbala.
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Streamlines at t = 2 s

3 4 5

Pathlines for 0 < t < 2 s
Streaklines for 0 < t < 2 s

FIGURE 4–27
Streamlines, pathlines, and streaklines 
for the oscillating velocity field of 
Example 4–5. The streaklines and 
pathlines are wavy because of their 
integrated time history, but the 
streamlines are not wavy since they 
represent an instantaneous snapshot 
of the velocity field.

Timeline at t = 0

Timeline 
at t = t1

Timeline 
at t = t2

Timeline at t = t3

Flow

FIGURE 4–28
Timelines are formed by marking 
a line of fluid particles, and then 
watching that line move (and deform) 
through the flow field; timelines are 
shown at t 5 0, t1, t2, and t3.

In a complex unsteady flow, the time integration must be performed numeri-
cally as the velocity field changes with time. When the locus of tracer par-
ticle locations at t 5 tpresent is connected by a smooth curve, the result is the 
desired streakline.

EXAMPLE 4–5    Comparison of Flow Patterns in an Unsteady Flow

An unsteady, incompressible, two-dimensional velocity field is given by

 V
!
5 (u, v) 5 (0.5 1 0.8x) i 

!
1 (1.5 1 2.5 sin(vt) 2 0.8y) j 

!
 (1)

where the angular frequency v is equal to 2p rad/s (a physical frequency of 

1 Hz). This velocity field is identical to that of Eq. 1 of Example 4–1 except 

for the additional periodic term in the v-component of velocity. In fact, since 

the period of oscillation is 1 s, when time t is any integral multiple of 1
2 s 

(t 5 0, 1
2, 1, 3

2, 2, . . . s), the sine term in Eq. 1 is zero and the velocity field 

is instantaneously identical to that of Example 4–1. Physically, we imagine 

flow into a large bell mouth inlet that is oscillating up and down at a fre-

quency of 1 Hz. Consider two complete cycles of flow from t 5 0 s to t 5 

2 s. Compare instantaneous streamlines at t 5 2 s to pathlines and streak-

lines generated during the time period from t 5 0 s to t 5 2 s.

SOLUTION  Streamlines, pathlines, and streaklines are to be generated and 

compared for the given unsteady velocity field.

Assumptions  1 The flow is incompressible. 2 The flow is two-dimensional, 

implying no z-component of velocity and no variation of u or v with z.

Analysis  The instantaneous streamlines at t 5 2 s are identical to those 

of Fig. 4–17, and several of them are replotted in Fig. 4–27. To simulate 

pathlines, we use the Runge–Kutta numerical integration technique to march 

in time from t 5 0 s to t 5 2 s, tracing the path of fluid particles released 

at three locations: (x 5 0.5 m, y 5 0.5 m), (x 5 0.5 m, y 5 2.5 m), and 

(x 5  0.5 m, y 5 4.5 m). These pathlines are shown in Fig. 4–27, along 

with the streamlines. Finally, streaklines are simulated by following the paths 

of many fluid tracer particles released at the given three locations at times 

between t 5 0 s and t 5 2 s, and connecting the locus of their positions at 

t 5 2 s. These streaklines are also plotted in Fig. 4–27.

Discussion  Since the flow is unsteady, the streamlines, pathlines, and 

streaklines are not coincident. In fact, they differ significantly from each 

other. Note that the streaklines and pathlines are wavy due to the undulating 

v-component of velocity. Two complete periods of oscillation have occurred 

between t 5 0 s and t 5 2 s, as verified by a careful look at the pathlines 

and streaklines. The streamlines have no such waviness since they have no 

time history; they represent an instantaneous snapshot of the velocity field 

at t 5 2 s.

Timelines
A timeline is a set of adjacent fluid particles that were marked at the same 
(earlier) instant in time.

Timelines are particularly useful in situations where the uniformity of a 
flow (or lack thereof) is to be examined. Figure 4–28 illustrates timelines in 
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a channel flow between two parallel walls. Because of friction at the walls, 
the fluid velocity there is zero (the no-slip condition), and the top and bot-
tom of the timeline are anchored at their starting locations. In regions of 
the flow away from the walls, the marked fluid particles move at the local 
fluid velocity, deforming the timeline. In the example of Fig. 4–28, the 
speed near the center of the channel is fairly uniform, but small deviations 
tend to amplify with time as the timeline stretches. Timelines can be gener-
ated experimentally in a water channel through use of a hydrogen bubble 
wire. When a short burst of electric current is sent through the cathode wire, 
electrolysis of the water occurs and tiny hydrogen gas bubbles form at the 
wire. Since the bubbles are so small, their buoyancy is nearly negligible, 
and the bubbles follow the water flow nicely (Fig. 4–29).

Refractive Flow Visualization Techniques
Another category of flow visualization is based on the refractive property 
of light waves. As you recall from your study of physics, the speed of light 
through one material may differ somewhat from that in another material, 
or even in the same material if its density changes. As light travels through 
one fluid into a fluid with a different index of refraction, the light rays bend 
(they are refracted).
 There are two primary flow visualization techniques that utilize the 
fact that the index of refraction in air (or other gases) varies with density. 
They are the shadowgraph technique and the schlieren technique 
(Settles, 2001). Interferometry is a visualization technique that utilizes the 
related phase change of light as it passes through air of varying densities 
as the basis for flow visualization and is not discussed here (see Merzkirch, 
1987). All these techniques are useful for flow visualization in flow fields 
where density changes from one location in the flow to another, such as nat-
ural convection flows (temperature differences cause the density variations), 
mixing flows (fluid species cause the density variations), and supersonic 
flows (shock waves and expansion waves cause the density variations).
 Unlike flow visualizations involving streaklines, pathlines, and timelines, 
the shadowgraph and schlieren methods do not require injection of a visible 

FIGURE 4–29
Timelines produced by a hydrogen 

bubble wire are used to visualize the 
boundary layer velocity profile shape 
along a flat plate. Flow is from left to 

right, and the hydrogen bubble wire is 
located to the left of the field of view. 

Bubbles near the wall reveal a flow 
instability that leads to turbulence. 

Bippes, H. 1972 Sitzungsber, Heidelb. Akad. Wiss. 
Math. Naturwiss. Kl., no. 3, 103–180; NASA 

TM-75243, 1978.
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tracer (smoke or dye). Rather, density differences and the refractive property 
of light provide the necessary means for visualizing regions of activity in the 
flow field, allowing us to “see the invisible.” The image (a shadowgram) 
produced by the shadowgraph method is formed when the refracted rays of 
light rearrange the shadow cast onto a viewing screen or camera focal plane, 
causing bright or dark patterns to appear in the shadow. The dark patterns 
indicate the location where the refracted rays originate, while the bright pat-
terns mark where these rays end up, and can be misleading. As a result, the 
dark regions are less distorted than the bright regions and are more useful in 
the interpretation of the shadowgram. In the shadowgram of Fig. 4–30, for 
example, we can be confident of the shape and position of the bow shock 
wave (the dark band), but the refracted bright light has distorted the front of 
the sphere’s shadow.
 A shadowgram is not a true optical image; it is, after all, merely a shadow. 
A schlieren image, however, involves lenses (or mirrors) and a knife edge or 
other cutoff device to block the refracted light and is a true focused optical 
image. Schlieren imaging is more complicated to set up than is shadowgraphy 
(see Settles, 2001 for details) but has a number of advantages. For example, a 
schlieren image does not suffer from optical distortion by the refracted light 
rays. Schlieren imaging is also more sensitive to weak density gradients such 
as those caused by natural convection (Fig. 4–31) or by gradual phenomena 
like expansion fans in supersonic flow. Color schlieren imaging techniques 
have also been developed. Finally, one can adjust more components in a 
schlieren setup, such as the location, orientation, and type of the cutoff device, 
in order to produce an image that is most useful for the problem at hand.

Surface Flow Visualization Techniques
Finally, we briefly mention some flow visualization techniques that are useful 
along solid surfaces. The direction of fluid flow immediately above a solid 
surface can be visualized with tufts—short, flexible strings glued to the sur-
face at one end that point in the flow direction. Tufts are especially useful for 
locating regions of flow separation, where the flow direction reverses.
 A technique called surface oil visualization can be used for the same 
purpose—oil placed on the surface forms streaks called friction lines that 
indicate the direction of flow. If it rains lightly when your car is dirty (espe-
cially in the winter when salt is on the roads), you may have noticed streaks 
along the hood and sides of the car, or even on the windshield. This is simi-
lar to what is observed with surface oil visualization.
 Lastly, there are pressure-sensitive and temperature-sensitive paints that 
enable researchers to observe the pressure or temperature distribution along 
solid surfaces.

4–3 ■  PLOTS OF FLUID FLOW DATA
Regardless of how the results are obtained (analytically, experimentally, 
or computationally), it is usually necessary to plot flow data in ways that 
enable the reader to get a feel for how the flow properties vary in time 
and/or space. You are already familiar with time plots, which are especially 
useful in turbulent flows (e.g., a velocity component plotted as a function 

FIGURE 4–30
Shadowgram of a 14.3 mm sphere in 
free flight through air at Ma 5 3.0. 
A shock wave is clearly visible in the 
shadow as a dark band that curves 
around the sphere and is called a 
bow wave (see Chap. 12). 
A. C. Charters, Air Flow Branch, U.S. Army Bal-
listic Research Laboratory.

FIGURE 4–31
Schlieren image of natural convection 
due to a barbeque grill. 
G. S. Settles, Gas Dynamics Lab, Penn State Uni-
versity. Used by permission.
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of time), and xy-plots (e.g., pressure as a function of radius). In this sec-
tion, we discuss three additional types of plots that are useful in fluid 
mechanics—profile plots, vector plots, and contour plots.

Profile Plots
A profile plot indicates how the value of a scalar property varies along some 
desired direction in the flow field.

Profile plots are the simplest of the three to understand because they are like 
the common xy-plots that you have generated since grade school. Namely, 
you plot how one variable y varies as a function of a second variable x. In 
fluid mechanics, profile plots of any scalar variable (pressure, temperature, 
density, etc.) can be created, but the most common one used in this book is 
the velocity profile plot. We note that since velocity is a vector quantity, we 
usually plot either the magnitude of velocity or one of the components of 
the velocity vector as a function of distance in some desired direction.
 For example, one of the timelines in the boundary layer flow of Fig. 4–29 
is converted into a velocity profile plot by recognizing that at a given instant 
in time, the horizontal distance traveled by a hydrogen bubble at vertical 
location y is proportional to the local x-component of velocity u. We plot 
u as a function of y in Fig. 4–32. The values of u for the plot can also 
be obtained analytically (see Chaps. 9 and 10), experimentally using PIV 
or some kind of local velocity measurement device (see Chap. 8), or com-
putationally (see Chap. 15). Note that it is more physically meaningful in 
this example to plot u on the abscissa (horizontal axis) rather than on the 
ordinate (vertical axis) even though it is the dependent variable, since posi-
tion y is then in its proper orientation (up) rather than across.
 Finally, it is common to add arrows to velocity profile plots to make them 
more visually appealing, although no additional information is provided by 
the arrows. If more than one component of velocity is plotted by the arrow, 
the direction of the local velocity vector is indicated and the velocity profile 
plot becomes a velocity vector plot.

Vector Plots
A vector plot is an array of arrows indicating the magnitude and direction of a 
vector property at an instant in time.

While streamlines indicate the direction of the instantaneous velocity field, 
they do not directly indicate the magnitude of the velocity (i.e., the speed). 
A useful flow pattern for both experimental and computational fluid flows 
is thus the vector plot, which consists of an array of arrows that indicate 
both magnitude and direction of an instantaneous vector property. We have 
already seen an example of a velocity vector plot in Fig. 4–4 and an accel-
eration vector plot in Fig. 4–14. These were generated analytically. Vector 
plots can also be generated from experimentally obtained data (e.g., from 
PIV measurements) or numerically from CFD calculations.
 To further illustrate vector plots, we generate a two-dimensional flow 
field consisting of free-stream flow impinging on a block of rectangular 
cross section. We perform CFD calculations, and the results are shown in 

y

(a) u

y

(b) u

FIGURE 4–32
Profile plots of the horizontal com-
ponent of velocity as a function of 

vertical distance; flow in the boundary 
layer growing along a horizontal flat 

plate: (a) standard profile plot and 
(b) profile plot with arrows.
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Fig. 4–33. Note that this flow is by nature turbulent and unsteady, but only 
the long-time averaged results are calculated and displayed here. Stream-
lines are plotted in Fig. 4–33a; a view of the entire block and a large portion 
of its wake is shown. The closed streamlines above and below the symmetry 
plane indicate large recirculating eddies, one above and one below the line 
of symmetry. A velocity vector plot is shown in Fig. 4–33b. (Only the upper 
half of the flow is shown because of symmetry.) It is clear from this plot 
that the flow accelerates around the upstream corner of the block, so much 
so in fact that the boundary layer cannot negotiate the sharp corner and sep-
arates off the block, producing the large recirculating eddies downstream of 
the block. (Note that these velocity vectors are time-averaged values; the 
instantaneous vectors change in both magnitude and direction with time as 
vortices are shed from the body, similar to those of Fig. 4–25a.) A close-up 
view of the separated flow region is plotted in Fig. 4–33c, where we verify 
the reverse flow in the lower half of the large recirculating eddy.
 The vectors of Fig. 4–33 are colored by velocity magnitude, but with 
modern CFD codes and postprocessors, the vectors can be colored accord-
ing to some other flow property such as pressure (red for high pressure and 
blue for low pressure) or temperature (red for hot and blue for cold). In this 
manner, one can easily visualize not only the magnitude and direction of the 
flow, but other properties as well, simultaneously.

Contour Plots
A contour plot shows curves of constant values of a scalar property (or magni-
tude of a vector property) at an instant in time.

If you do any hiking, you are familiar with contour maps of mountain 
trails. The maps consist of a series of closed curves, each indicating a con-
stant elevation or altitude. Near the center of a group of such curves is the 
mountain peak or valley; the actual peak or valley is a point on the map 
showing the highest or lowest elevation. Such maps are useful in that not 
only do you get a bird’s-eye view of the streams and trails, etc., but you 
can also easily see your elevation and where the trail is flat or steep. In 
fluid mechanics, the same principle is applied to various scalar flow proper-
ties; contour plots (also called isocontour plots) are generated of pressure, 
temperature, velocity magnitude, species concentration, properties of turbu-
lence, etc. A contour plot can quickly reveal regions of high (or low) values 
of the flow property being studied.
 A contour plot may consist simply of curves indicating various levels of the 
property; this is called a contour line plot. Alternatively, the contours can be 
filled in with either colors or shades of gray; this is called a filled contour 
plot. An example of pressure contours is shown in Fig. 4–34 for the same 
flow as in Fig. 4–33. In Fig. 4–34a, filled contours are shown using color to 
identify regions of different pressure levels—blue regions indicate low pres-
sure and red regions indicate high pressure. It is clear from this figure that the 
pressure is highest at the front face of the block and lowest along the top of 
the block in the separated zone. The pressure is also low in the wake of the 
block, as expected. In Fig. 4–34b, the same pressure contours are shown, but 
as a contour line plot with labeled levels of gage pressure in units of pascal.

(a)

(c)

Block

FLOWFLOW

Recirculating eddy

Symmetry plane

FLOWFLOW

Block

(b)
Symmetry plane

Block

FIGURE 4–33
Results of CFD calculations of flow 
impinging on a block; (a) streamlines, 
(b) velocity vector plot of the upper 
half of the flow, and (c) velocity vector 
plot, close-up view revealing more 
details in the separated flow region.

133-184_cengel_ch04.indd   150 12/14/12   12:08 PM



151
CHAPTER 4

 In CFD, contour plots are often displayed in vivid colors with red usu-
ally indicating the highest value of the scalar and blue the lowest. A healthy 
human eye can easily spot a red or blue region and thus locate regions 
of high or low value of the flow property. Because of the pretty pictures 
produced by CFD, computational fluid dynamics is sometimes given the 
nickname “colorful fluid dynamics.”

4–4 ■  OTHER KINEMATIC DESCRIPTIONS

Types of Motion or Deformation of Fluid Elements
In fluid mechanics, as in solid mechanics, an element may undergo four 
fundamental types of motion or deformation, as illustrated in two dimen-
sions in Fig. 4–35: (a) translation, (b) rotation, (c) linear strain (some-
times called extensional strain), and (d) shear strain. The study of fluid 
dynamics is further complicated by the fact that all four types of motion or 
deformation usually occur simultaneously. Because fluid elements may be 
in constant motion, it is preferable in fluid dynamics to describe the motion 
and deformation of fluid elements in terms of rates. In particular, we dis-
cuss velocity (rate of translation), angular velocity (rate of rotation), linear 
strain rate (rate of linear strain), and shear strain rate (rate of shear strain). 
In order for these deformation rates to be useful in the calculation of fluid 
flows, we must express them in terms of velocity and derivatives of velocity.
 Translation and rotation are easily understood since they are commonly 
observed in the motion of solid particles such as billiard balls (Fig. 4–1). A 
vector is required in order to fully describe the rate of translation in three 
dimensions. The rate of translation vector is described mathematically as 
the velocity vector. In Cartesian coordinates,

Rate of translation vector in Cartesian coordinates:

 V
!
5 u  i  

!
1 v  j  

!
1 wk

!
 (4–19)

In Fig. 4–35a, the fluid element has moved in the positive horizontal (x) 
direction; thus u is positive, while v (and w) are zero.
 Rate of rotation (angular velocity) at a point is defined as the average 
rotation rate of two initially perpendicular lines that intersect at that point. 
In Fig. 4–35b, for example, consider the point at the bottom-left corner 
of the initially square fluid element. The left edge and the bottom edge of 
the element intersect at that point and are initially perpendicular. Both of 
these lines rotate counterclockwise, which is the mathematically positive 
direction. The angle between these two lines (or between any two initially 
perpendicular lines on this fluid element) remains at 908 since solid body 
rotation is illustrated in the figure. Therefore, both lines rotate at the same 
rate, and the rate of rotation in the plane is simply the component of angular 
velocity in that plane.
 In the more general, but still two-dimensional case (Fig. 4–36), the fluid 
particle translates and deforms as it rotates, and the rate of rotation is cal-
culated according to the definition given in the previous paragraph. Namely, 
we begin at time t1 with two initially perpendicular lines (lines a and b in 
Fig. 4–36) that intersect at point P in the xy-plane. We follow these lines 
as they move and rotate in an infinitesimal increment of time dt 5 t2 2 t1. 

(a)

(b)
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FLOWFLOW

FLOWFLOW

FIGURE 4–34
Contour plots of the pressure field 
due to flow impinging on a block, 
as produced by CFD calculations; 

only the upper half is shown due to 
symmetry; (a) filled color contour 

plot and (b) contour line plot where 
pressure values are displayed in 

units of Pa (pascals) gage pressure.
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At time t2, line a has rotated by angle aa, and line b has rotated by angle 
ab, and both lines have moved with the flow as sketched (both angle values 
are given in radians and are shown mathematically positive in the sketch). 
The average rotation angle is thus (aa 1 ab)/2, and the rate of rotation or 
angular velocity in the xy-plane is equal to the time derivative of this aver-
age rotation angle,

Rate of rotation of fluid element about point P in Fig. 4–36:

 v 5
d

dt
 ¢aa 1 ab

2
5

1

2
 a 0v
0x

2
0u
0y
b (4–20)

It is left as an exercise to prove the right side of Eq. 4–20 where we have writ-
ten v in terms of velocity components u and v in place of angles aa and ab.
 In three dimensions, we must define a vector for the rate of rotation at a 
point in the flow since its magnitude may differ in each of the three dimen-
sions. Derivation of the rate of rotation vector in three dimensions can be 
found in many fluid mechanics books such as Kundu and Cohen (2011) and 
White (2005). The rate of rotation vector is equal to the angular velocity 
vector and is expressed in Cartesian coordinates as

Rate of rotation vector in Cartesian coordinates:

 v
S

5
1

2
 a 0w
0y

 2  
0v
0z
b  i 

!
1

1

2
 a 0u
0z

 2  
0w
0x

b    j 

!
1

1

2
 a 0v
0x

 2  
0u
0y
bk
!
 (4–21)

 Linear strain rate is defined as the rate of increase in length per unit 
length. Mathematically, the linear strain rate of a fluid element depends 
on the initial orientation or direction of the line segment upon which we 
measure the linear strain. Thus, it cannot be expressed as a scalar or vector 
quantity. Instead, we define linear strain rate in some arbitrary direction, 
which we denote as the xa-direction. For example, line segment PQ in 
Fig. 4–37 has an initial length of dxa, and it grows to line segment P9Q9 
as shown. From the given definition and using the lengths marked in 
Fig. 4–37, the linear strain rate in the xa-direction is

 eaa 5
d

dt
 aP9Q9 2 PQ

PQ
b  

(4–22)

 >
d

dt
 §aua 1

0ua
0xa

 dxab dt 1 dxa 2 ua dt      2       dxa           

dxa
¥ 5

0ua
0xa

In Cartesian coordinates, we normally take the xa-direction as that of each of 
the three coordinate axes, although we are not restricted to these directions.

Linear strain rate in Cartesian coordinates: 

 exx 5
0u
0x
  eyy 5

0v
0y
  ezz 5

0w
0z

 (4–23)

For the more general case, the fluid element moves and deforms as sketched 
in Fig. 4–36. It is left as an exercise to show that Eq. 4–23 is still valid for 
the general case.

(a)

(c)

(d)

(b)

FIGURE 4–35
Fundamental types of fluid element 
motion or deformation: (a) translation, 
(b) rotation, (c) linear strain, and 
(d) shear strain.

y

x

Fluid element
at time t2

Fluid element
at time t1

Line a

Line b

Line b

Line a

P9

u
P

v

ab

p/2

aa

FIGURE 4–36
For a fluid element that translates 
and deforms as sketched, the rate of 
rotation at point P is defined as the 
average rotation rate of two initially 
perpendicular lines (lines a and b).

Length of PQ in the xa-direction

Length of PQ in the xa-direction

Length of P9Q9 in the xa-direction⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭

⎫ ⎬ ⎭
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 Solid objects such as wires, rods, and beams stretch when pulled. You 
should recall from your study of engineering mechanics that when such an 
object stretches in one direction, it usually shrinks in direction(s) normal to 
that direction. The same is true of fluid elements. In Fig. 4–35c, the origi-
nally square fluid element stretches in the horizontal direction and shrinks 
in the vertical direction. The linear strain rate is thus positive horizontally 
and negative vertically.
 If the flow is incompressible, the net volume of the fluid element must 
remain constant; thus if the element stretches in one direction, it must shrink 
by an appropriate amount in other direction(s) to compensate. The volume 
of a compressible fluid element, however, may increase or decrease as its 
density decreases or increases, respectively. (The mass of a fluid element 
must remain constant, but since r 5 m/V, density and volume are inversely 
proportional.) Consider for example a parcel of air in a cylinder being com-
pressed by a piston (Fig. 4–38); the volume of the fluid element decreases 
while its density increases such that the fluid element’s mass is conserved. 
The rate of increase of volume of a fluid element per unit volume is called 
its volumetric strain rate or bulk strain rate. This kinematic property is 
defined as positive when the volume increases. Another synonym of volu-
metric strain rate is rate of volumetric dilatation, which is easy to remem-
ber if you think about how the iris of your eye dilates (enlarges) when 
exposed to dim light. It turns out that the volumetric strain rate is the sum of 
the linear strain rates in three mutually orthogonal directions. In Cartesian 
coordinates (Eq. 4–23), the volumetric strain rate is thus

Volumetric strain rate in Cartesian coordinates: 

 
1

V
 
DV
Dt

5
1

V
 
dV
dt

5 exx 1 eyy 1 ezz 5
0u
0x

1
0v
0y

1
0w
0z

 (4–24)

In Eq. 4–24, the uppercase D notation is used to stress that we are talking 
about the volume following a fluid element, that is to say, the material vol-
ume of the fluid element, as in Eq. 4–12.

The volumetric strain rate is zero in an incompressible flow.

 Shear strain rate is a more difficult deformation rate to describe and 
understand. Shear strain rate at a point is defined as half of the rate of 
decrease of the angle between two initially perpendicular lines that intersect 
at the point. (The reason for the half will become clear later when we com-
bine shear strain rate and linear strain rate into one tensor.) In Fig. 4–35d, 
for example, the initially 908 angles at the lower-left corner and upper-right 
corner of the square fluid element decrease; this is by definition a positive 
shear strain. However, the angles at the upper-left and lower-right corners 
of the square fluid element increase as the initially square fluid element 
deforms; this is a negative shear strain. Obviously we cannot describe the 
shear strain rate in terms of only one scalar quantity or even in terms of one 
vector quantity for that matter. Rather, a full mathematical description of 
shear strain rate requires its specification in any two mutually perpendicular 
directions. In Cartesian coordinates, the axes themselves are the most obvi-
ous choice, although we are not restricted to these. Consider a fluid element 
in two dimensions in the xy-plane. The element translates and deforms with 
time as sketched in Fig. 4–39. Two initially mutually perpendicular lines 

y

x

xa

ua

P
P9

Q9

Q

ua dxa
ua
xa

+

ua dxa
ua
xa

+ dt( )
ua dt

dxa

FIGURE 4–37
Linear strain rate in some arbitrary 
direction xa is defined as the rate of 
increase in length per unit length in 

that direction. Linear strain rate would 
be negative if the line segment length 
were to decrease. Here we follow the 

increase in length of line segment 
PQ into line segment P9Q9, which 
yields a positive linear strain rate. 

Velocity components and distances are 
truncated to first-order since dxa 
and dt are infinitesimally small.

Air parcel

Time t1 Time t2

FIGURE 4–38
Air being compressed by a piston 

in a cylinder; the volume of a fluid 
element in the cylinder decreases, 

corresponding to a negative rate 
of volumetric dilatation.
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(lines a and b in the x- and y-directions, respectively) are followed. The 
angle between these two lines decreases from p/2 (908) to the angle marked 
aa-b at t2 in the sketch. It is left as an exercise to show that the shear strain 
rate at point P for initially perpendicular lines in the x- and y-directions is 
given by

Shear strain rate, initially perpendicular lines in the x- and y-directions: 

 exy 5 2
1

2
 
d

dt
 aa-b 5

1

2
 a 0u
0y

1
0v
0x
b (4–25)

Equation 4–25 can be easily extended to three dimensions. The shear strain 
rate is thus

Shear strain rate in Cartesian coordinates: 
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b (4–26)

 Finally, it turns out that we can mathematically combine linear strain 
rate and shear strain rate into one symmetric second-order tensor called the 
strain rate tensor, which is a combination of Eqs. 4–23 and 4–26:

Strain rate tensor in Cartesian coordinates: 
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 (4–27)

The strain rate tensor obeys all the laws of mathematical tensors, such as 
tensor invariants, transformation laws, and principal axes.
 Figure 4–40 shows a general (although two-dimensional) situation in a 
compressible fluid flow in which all possible motions and deformations 
are present simultaneously. In particular, there is translation, rotation, lin-
ear strain, and shear strain. Because of the compressible nature of the fluid 
flow, there is also volumetric strain (dilatation). You should now have a bet-
ter appreciation of the inherent complexity of fluid dynamics, and the math-
ematical sophistication required to fully describe fluid motion.

EXAMPLE 4–6     Calculation of Kinematic Properties 
in a Two-Dimensional Flow

Consider the steady, two-dimensional velocity field of Example 4–1:

 V
!
5 (u, v) 5 (0.5 1 0.8 x) i 

!
1 (1.5 2 0.8 y) j 

!
 (1)

where lengths are in units of m, time in s, and velocities in m/s. There is a 

stagnation point at (20.625, 1.875) as shown in Fig. 4–41. Streamlines of 

the flow are also plotted in Fig. 4–41. Calculate the various kinematic proper-

ties, namely, the rate of translation, rate of rotation, linear strain rate, shear 

strain rate, and volumetric strain rate. Verify that this flow is incompressible.

aa-b at t2

Line a

Line a u

v

y

x

Fluid element
at time t2

Fluid element
at time t1

Line b

Line b

P9

P

aa-b = p/2

FIGURE 4–39
For a fluid element that translates and 
deforms as sketched, the shear strain 
rate at point P is defined as half of the 
rate of decrease of the angle between 
two initially perpendicular lines (lines 
a and b).

C D

A B

C9

D9

A9

B9

FIGURE 4–40
A fluid element illustrating translation, 
rotation, linear strain, shear strain, and 
volumetric strain.
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SOLUTION  We are to calculate several kinematic properties of a given 

velocity field and verify that the flow is incompressible.

Assumptions  1 The flow is steady. 2 The flow is two-dimensional, implying 

no z-component of velocity and no variation of u or v with z.

Analysis  By Eq. 4–19, the rate of translation is simply the velocity vector 

itself, given by Eq. 1. Thus,

Rate of translation:    u 5 0.5 1 0.8x  v 5 1.5 2 0.8y  w 5 0 (2)

 The rate of rotation is found from Eq. 4–21. In this case, since w 5 0 

everywhere, and since neither u nor v vary with z, the only nonzero compo-

nent of rotation rate is in the z-direction. Thus,

Rate of rotation:              vS 5
1

2
 a 0v
0x

2
0u
0y
bk
!
5

1

2
 (0 2 0)k

!
5 0 (3)

In this case, we see that there is no net rotation of fluid particles as they 

move about. (This is a significant piece of information, to be discussed in 

more detail later in this chapter and also in Chap. 10.)

 Linear strain rates can be calculated in any arbitrary direction using 

Eq. 4–23. In the x-, y-, and z-directions, the linear strain rates are

 exx 5
0u
0x

5 0.8 s21  eyy 5
0v
0y

5 20.8 s21  ezz 5 0 (4)

Thus, we predict that fluid particles stretch in the x-direction (positive linear 

strain rate) and shrink in the y-direction (negative linear strain rate). This is 

illustrated in Fig. 4–42, where we have marked an initially square parcel of 

fluid centered at (0.25, 4.25). By integrating Eqs. 2 with time, we calculate 

the location of the four corners of the marked fluid after an elapsed time 

of 1.5 s. Indeed this fluid parcel has stretched in the x-direction and has 

shrunk in the y-direction as predicted.

 Shear strain rate is determined from Eq. 4–26. Because of the two- 

dimensionality, nonzero shear strain rates can occur only in the xy-plane. 

Using lines parallel to the x- and y-axes as our initially perpendicular lines, 

we calculate exy,

 exy 5
1

2
 a 0u
0y

1
0v
0x
b 5

1

2
 (0 1 0) 5 0 (5)

Thus, there is no shear strain in this flow, as also indicated by Fig. 4–42. 

Although the sample fluid particle deforms, it remains rectangular; its initially 

908 corner angles remain at 908 throughout the time period of the calculation.

 Finally, the volumetric strain rate is calculated from Eq. 4–24:

 
1

V
 
D V
Dt

5 exx 1 eyy 1 ezz 5 (0.8 2 0.8 1 0) s21 5 0 (6)

Since the volumetric strain rate is zero everywhere, we can say definitively 

that fluid particles are neither dilating (expanding) nor shrinking (compress-

ing) in volume. Thus, we verify that this flow is indeed incompressible. In 

Fig. 4–42, the area of the shaded fluid particle (and thus its volume since 

it is a 2-D flow) remains constant as it moves and deforms in the flow field.

Discussion  In this example it turns out that the linear strain rates (exx and eyy) 

are nonzero, while the shear strain rates (exy and its symmetric partner eyx) 

4

3

2
y

1

0

–1

–3 –2 –1 0
x

1

FIGURE 4–41
Streamlines for the velocity field 
of Example 4–6. The stagnation 

point is indicated by the red circle 
at x 5 20.625 m and y 5 1.875 m.

6

5

4
y

3

2

1

–1 0 1 2
x

3

FIGURE 4–42
Deformation of an initially square 

parcel of marked fluid subjected to 
the velocity field of Example 4–6 for 
a time period of 1.5 s. The stagnation 
point is indicated by the red circle at 
x 5 20.625 m and y 5 1.875 m, and 

several streamlines are plotted.
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are zero. This means that the x- and y-axes of this flow field are the princi-

pal axes. The (two-dimensional) strain rate tensor in this orientation is thus

 eij 5 aexx

eyx

exy

eyy

b 5 a0.8

0

0

20.8
b  s21  (7)

If we were to rotate the axes by some arbitrary angle, the new axes would not 

be principal axes, and all four elements of the strain rate tensor would be 

nonzero. You may recall rotating axes in your engineering mechanics classes 

through use of Mohr’s circles to determine principal axes, maximum shear 

strains, etc. Similar analyses are performed in fluid mechanics.

4–5 ■ VORTICITY AND ROTATIONALITY
We have already defined the rate of rotation vector of a fluid element (see 
Eq. 4–21). A closely related kinematic property of great importance to the 
analysis of fluid flows is the vorticity vector, defined mathematically as the 
curl of the velocity vector V

!
,

Vorticity vector: z
!
5 =

!
3 V

!
5 curl(V

!
) (4–28)

Physically, you can tell the direction of the vorticity vector by using the 
right-hand rule for cross product (Fig. 4–43). The symbol z used for vortic-
ity is the Greek letter zeta. You should note that this symbol for vorticity is 
not universal among fluid mechanics textbooks; some authors use the Greek 
letter omega (v) while still others use uppercase omega (V). In this book, 
v
→

 is used to denote the rate of rotation vector (angular velocity vector) of a 
fluid element. It turns out that the rate of rotation vector is equal to half of 
the vorticity vector,

Rate of rotation vector: v
!5

1

2
 =
! 
3 V

!
5

1

2
 curl(V

!
) 5
z
!

2
 (4–29)

Thus, vorticity is a measure of rotation of a fluid particle. Specifically,

Vorticity is equal to twice the angular velocity of a fluid particle (Fig. 4–44).

 If the vorticity at a point in a flow field is nonzero, the fluid particle that hap-
pens to occupy that point in space is rotating; the flow in that region is called 
rotational. Likewise, if the vorticity in a region of the flow is zero (or negligi-
bly small), fluid particles there are not rotating; the flow in that region is called 
irrotational. Physically, fluid particles in a rotational region of flow rotate end 
over end as they move along in the flow. For example, fluid particles within the 
viscous boundary layer near a solid wall are rotational (and thus have nonzero 
vorticity), while fluid particles outside the boundary layer are irrotational (and 
their vorticity is zero). Both of these cases are illustrated in Fig. 4–45.
 Rotation of fluid elements is associated with wakes, boundary layers, flow 
through turbomachinery (fans, turbines, compressors, etc.), and flow with 
heat transfer. The vorticity of a fluid element cannot change except through 
the action of viscosity, nonuniform heating (temperature gradients), or other 
nonuniform phenomena. Thus if a flow originates in an irrotational region, 
it remains irrotational until some nonuniform process alters it. For example, 

C = A 3 B

A

B

FIGURE 4–43
The direction of a vector cross product 
is determined by the right-hand rule.

z

v

FIGURE 4–44
The vorticity vector is equal to twice 
the angular velocity vector of a rotat-
ing fluid particle.
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air entering an inlet from quiescent (still) surroundings is irrotational and 
remains so unless it encounters an object in its path or is subjected to non-
uniform heating. If a region of flow can be approximated as irrotational, the 
equations of motion are greatly simplified, as you will see in Chap. 10.
 In Cartesian coordinates, (i

→
, j

→
, k

→
), (x, y, z), and (u, v, w), Eq. 4–28 is 

expanded as follows:

Vorticity vector in Cartesian coordinates: 

 z
!
5 a 0w

0y
2
0v
0z
b  i  

!
1 a 0u

0z
2
0w
0x

b      j 

!
1 a 0v

0x
2
0u
0y
b  k
!
 (4–30)

If the flow is two-dimensional in the xy-plane, the z-component of velocity 
(w) is zero and neither u nor v varies with z. Thus the first two components 
of Eq. 4–30 are identically zero and the vorticity reduces to

Two-dimensional flow in Cartesian coordinates: 

 z
S

5 ¢ 0v
0x

2
0u
0y

k
!
 (4–31)

Note that if a flow is two-dimensional in the xy-plane, the vorticity vector 
must point in either the z- or 2z-direction (Fig. 4–46).

EXAMPLE 4–7    Vorticity Contours in a Two-Dimensional Flow

Consider the CFD calculation of two-dimensional free-stream flow impinging 

on a block of rectangular cross section, as shown in Figs. 4–33 and 4–34. 

Plot vorticity contours and discuss.

SOLUTION  We are to calculate the vorticity field for a given velocity field 

produced by CFD and then generate a contour plot of vorticity.

Analysis  Since the flow is two-dimensional, the only nonzero component of 

vorticity is in the z-direction, normal to the page in Figs. 4–33 and 4–34. 

A contour plot of the z-component of vorticity for this flow field is shown in 

Fig. 4–47. The blue region near the upper-left corner of the block indicates 

large negative values of vorticity, implying clockwise rotation of fluid particles 

in that region. This is due to the large velocity gradients encountered in this 

portion of the flow field; the boundary layer separates off the wall at the corner 

Fluid particles not rotating

Velocity profile
Irrotational outer flow region

Rotational boundary layer region

Fluid particles rotatingWall

FIGURE 4–45
The difference between rotational and 

irrotational flow: fluid elements in a 
rotational region of the flow rotate, but 

those in an irrotational region of the 
flow do not.

yz

x

z

FIGURE 4–46
For two-dimensional flow in the 

xy-plane, the vorticity vector always 
points in the z- or 2z-direction. In 

this illustration, the flag-shaped fluid 
particle rotates in the counterclockwise 

direction as it moves in the xy-plane; 
its vorticity points in the positive 

z-direction as shown.

Block

Symmetry plane

FLOWFLOW

FIGURE 4–47
Contour plot of the vorticity field zz 

due to flow impinging on a block, 
as produced by CFD calculations; 

only the upper half is shown due to 
symmetry. Blue regions represent 

large negative vorticity, and red 
regions represent large positive vorticity.
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4

3

y
2

1

0

0 1 2 3
x

4

t = 0.25 s

t = 0

t = 0.50 s

FIGURE 4–48
Deformation of an initially square 
fluid parcel subjected to the velocity 
field of Example 4–8 for a time period 
of 0.25 s and 0.50 s. Several streamlines 
are also plotted in the first quadrant. It 
is clear that this flow is rotational.

of the body and forms a thin shear layer across which the velocity changes 

rapidly. The concentration of vorticity in the shear layer diminishes as vortic-

ity diffuses downstream. The small red region near the top right corner of the 

block represents a region of positive vorticity (counterclockwise rotation)—a 

secondary flow pattern caused by the flow separation.

Discussion  We expect the magnitude of vorticity to be highest in regions 

where spatial derivatives of velocity are high (see Eq. 4–30). Close exami-

nation reveals that the blue region in Fig. 4–47 does indeed correspond to 

large velocity gradients in Fig. 4–33. Keep in mind that the vorticity field of 

Fig. 4–47 is time-averaged. The instantaneous flow field is in reality turbu-

lent and unsteady, and vortices are shed from the bluff body.

EXAMPLE 4–8     Determination of Rotationality 
in a Two-Dimensional Flow

Consider the following steady, incompressible, two-dimensional velocity field:

 V
!
5 (u, v) 5 x2

 i  

!
1 (22xy 2 1)  j 

!
 (1)

Is this flow rotational or irrotational? Sketch some streamlines in the first 

quadrant and discuss.

SOLUTION  We are to determine whether a flow with a given velocity field 

is rotational or irrotational, and we are to draw some streamlines in the first 

quadrant.

Analysis  Since the flow is two-dimensional, Eq. 4–31 is applicable. Thus,

Vorticity: z
S

5 ¢ 0v
0x

2
0u
0y

k
!
5 (22y 2 0)k

!
5 22yk

!
 (2)

Since the vorticity is nonzero, this flow is rotational. In Fig. 4–48 we plot 

several streamlines of the flow in the first quadrant; we see that fluid moves 

downward and to the right. The translation and deformation of a fluid parcel 

is also shown: at Dt 5 0, the fluid parcel is square, at Dt 5 0.25 s, it has 

moved and deformed, and at Dt 5 0.50 s, the parcel has moved farther and 

is further deformed. In particular, the right-most portion of the fluid parcel 

moves faster to the right and faster downward compared to the left-most por-

tion, stretching the parcel in the x-direction and squashing it in the vertical 

direction. It is clear that there is also a net clockwise rotation of the fluid 

parcel, which agrees with the result of Eq. 2.

Discussion  From Eq. 4–29, individual fluid particles rotate at an angular 

velocity equal to v
→
 5 2yk

→
, half of the vorticity vector. Since v

→
 is not con-

stant, this flow is not solid-body rotation. Rather, v
→
 is a linear function of y. 

Further analysis reveals that this flow field is incompressible; the area (and 

volume) of the shaded regions representing the fluid parcel in Fig. 4–48 

remains constant at all three instants in time.

 In cylindrical coordinates, (e
→

r, e
→
u, e

→
z), (r, u, z), and (ur, uu, uz), Eq. 4–28 is 

expanded as

Vorticity vector in cylindrical coordinates: 

 z
S

5 a1
r
 
0uz

0u
2
0uu
0z

b e
S

r 1 a 0ur

0z
2
0uz

0r
b e
S
u 1

1
r
a 0(ruu)

0r
2
0ur

0u
b e
S

z (4–32)
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For two-dimensional flow in the ru-plane, Eq. 4–32 reduces to

Two-dimensional flow in cylindrical coordinates: 

 z
S

5
1
r
a 0(ruu)

0r
2
0ur

0u
bk
!
 (4–33)

where k
→

 is used as the unit vector in the z-direction in place of e
→

z. Note that 
if a flow is two-dimensional in the ru-plane, the vorticity vector must point 
in either the z- or 2z-direction (Fig. 4–49).

Comparison of Two Circular Flows
Not all flows with circular streamlines are rotational. To illustrate this point, 
we consider two incompressible, steady, two-dimensional flows, both of 
which have circular streamlines in the r u-plane:

Flow A—solid-body rotation:  ur 5 0  and  uu 5 vr (4–34)

Flow B—line vortex:  ur 5 0  and  uu 5
K
r

 (4–35)

where v and K are constants. (Alert readers will note that uu in Eq. 4–35 is 
infinite at r 5 0, which is of course physically impossible; we ignore the 
region close to the origin to avoid this problem.) Since the radial component 
of velocity is zero in both cases, the streamlines are circles about the origin. 
The velocity profiles for the two flows, along with their streamlines, are 
sketched in Fig. 4–50. We now calculate and compare the vorticity field for 
each of these flows, using Eq. 4–33.

Flow A—solid-body rotation:  z
S

5
1
r
a 0(vr2)

0r
2 0bk

!
5 2vk

!
  (4–36)

Flow B—line vortex:  z
S

5
1
r
a 0(K)

0r
2 0bk

!
5 0  (4–37)

Not surprisingly, the vorticity for solid-body rotation is nonzero. In fact, it is 
a constant of magnitude twice the angular velocity and pointing in the same 
direction. (This agrees with Eq. 4–29.) Flow A is rotational. Physically, this 
means that individual fluid particles rotate as they revolve around the origin 
(Fig. 4–50a). By contrast, the vorticity of the line vortex is zero everywhere 
(except right at the origin, which is a mathematical singularity). Flow B is 
irrotational. Physically, fluid particles do not rotate as they revolve in cir-
cles about the origin (Fig. 4–50b).
 A simple analogy can be made between flow A and a merry-go-round or 
roundabout, and flow B and a Ferris wheel (Fig. 4–51). As children revolve 
around a roundabout, they also rotate at the same angular velocity as that of 
the ride itself. This is analogous to a rotational flow. In contrast, children on 
a Ferris wheel always remain oriented in an upright position as they trace 
out their circular path. This is analogous to an irrotational flow.

y

z

x

r

z

FIGURE 4–49
For a two-dimensional flow in the 

ru-plane, the vorticity vector always 
points in the z (or 2z) direction. In 

this illustration, the flag-shaped fluid 
particle rotates in the clockwise 

direction as it moves in the ru-plane; 
its vorticity points in the 2z-direction 

as shown.

Flow A uu

uu = vr

r

(a)

Flow B uu

r

(b)

uu =    
r
K

FIGURE 4–50
Streamlines and velocity profiles for 

(a) flow A, solid-body rotation and 
(b) flow B, a line vortex. Flow A is 
rotational, but flow B is irrotational 

everywhere except at the origin.
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EXAMPLE 4–9    Determination of Rotationality of a Line Sink

A simple two-dimensional velocity field called a line sink is often used to 

simulate fluid being sucked into a line along the z-axis. Suppose the volume 

flow rate per unit length along the z-axis, V
.
/L, is known, where V

.
 is a nega-

tive quantity. In two dimensions in the ru-plane, 

Line sink: ur 5
V
#

2pL
  
1
r
  and  uu 5 0 (1)

Draw several streamlines of the flow and calculate the vorticity. Is this flow 

rotational or irrotational?

SOLUTION  Streamlines of the given flow field are to be sketched and the 

rotationality of the flow is to be determined.

Analysis  Since there is only radial flow and no tangential flow, we know 

immediately that all streamlines must be rays into the origin. Several stream-

lines are sketched in Fig. 4–52. The vorticity is calculated from Eq. 4–33:

 z
S

5
1
r
a 0(ruu)

0r
2

0
0u

 urb k
S

5
1
r
a0 2

0
0u

 a V
#

2pL
 
1
r
bb k

S
5 0 (2)

Since the vorticity vector is everywhere zero, this flow field is irrotational.
Discussion  Many practical flow fields involving suction, such as flow into 

inlets and hoods, can be approximated quite accurately by assuming irrota-

tional flow (Heinsohn and Cimbala, 2003).

4–6 ■  THE REYNOLDS TRANSPORT THEOREM
In thermodynamics and solid mechanics we often work with a system (also 
called a closed system), defined as a quantity of matter of fixed identity. In 
fluid dynamics, it is more common to work with a control volume (also 

y

x

Streamlines

u

r

FIGURE 4–52
Streamlines in the ru-plane for the 
case of a line sink.

FIGURE 4–51
A simple analogy: (a) rotational circular flow is analogous to a roundabout, while (b) irrotational circular flow is 
analogous to a Ferris wheel.
(a) Mc Graw-Hill Companies, Inc. Mark Dierker, photographer (b) © DAJ/Getty RF

(b)(a)
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called an open system), defined as a region in space chosen for study. The 
size and shape of a system may change during a process, but no mass 
crosses its boundaries. A control volume, on the other hand, allows mass to 
flow in or out across its boundaries, which are called the control surface. 
A control volume may also move and deform during a process, but many 
real-world applications involve fixed, nondeformable control volumes.
 Figure 4–53 illustrates both a system and a control volume for the case of 
deodorant being sprayed from a spray can. When analyzing the spraying pro-
cess, a natural choice for our analysis is either the moving, deforming fluid 
(a system) or the volume bounded by the inner surfaces of the can (a control 
volume). These two choices are identical before the deodorant is sprayed. 
When some contents of the can are discharged, the system approach consid-
ers the discharged mass as part of the system and tracks it (a difficult job 
indeed); thus the mass of the system remains constant. Conceptually, this is 
equivalent to attaching a flat balloon to the nozzle of the can and letting the 
spray inflate the balloon. The inner surface of the balloon now becomes part 
of the boundary of the system. The control volume approach, however, is 
not concerned at all with the deodorant that has escaped the can (other than 
its properties at the exit), and thus the mass of the control volume decreases 
during this process while its volume remains constant. Therefore, the system 
approach treats the spraying process as an expansion of the system’s vol-
ume, whereas the control volume approach considers it as a fluid discharge 
through the control surface of the fixed control volume.
 Most principles of fluid mechanics are adopted from solid mechanics, 
where the physical laws dealing with the time rates of change of extensive 
properties are expressed for systems. In fluid mechanics, it is usually more 
convenient to work with control volumes, and thus there is a need to relate 
the changes in a control volume to the changes in a system. The relationship 
between the time rates of change of an extensive property for a system and for 
a control volume is expressed by the Reynolds transport theorem (RTT), 
which provides the link between the system and control volume approaches 
(Fig. 4–54). RTT is named after the English engineer, Osborne Reynolds 
(1842–1912), who did much to advance its application in fluid mechanics.
 The general form of the Reynolds transport theorem can be derived by 
considering a system with an arbitrary shape and arbitrary interactions, but 
the derivation is rather involved. To help you grasp the fundamental mean-
ing of the theorem, we derive it first in a straightforward manner using a 
simple geometry and then generalize the results.
 Consider flow from left to right through a diverging (expanding) portion 
of a flow field as sketched in Fig. 4–55. The upper and lower bounds of the 
fluid under consideration are streamlines of the flow, and we assume uniform 
flow through any cross section between these two streamlines. We choose 
the control volume to be fixed between sections (1) and (2) of the flow field. 
Both (1) and (2) are normal to the direction of flow. At some initial time t, 
the system coincides with the control volume, and thus the system and con-
trol volume are identical (the greenish-shaded region in Fig. 4–55). During 
time interval Dt, the system moves in the flow direction at uniform speeds 
V1 at section (1) and V2 at section (2). The system at this later time is indi-
cated by the hatched region. The region uncovered by the system during 
this motion is designated as section I (part of the CV), and the new region 

(a)

Sprayed mass

(b)

System

CV

FIGURE 4–53
Two methods of analyzing the spray-

ing of deodorant from a spray can: 
(a) We follow the fluid as it moves 

and deforms. This is the system 
approach—no mass crosses the 

boundary, and the total mass of the 
system remains fixed. (b) We consider 

a fixed interior volume of the can. This 
is the control volume approach—mass 

crosses the boundary.

Control
volume

RTT

System

FIGURE 4–54
The Reynolds transport theorem 

(RTT) provides a link between the 
system approach and the control 

volume approach.
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covered by the system is designated as section II (not part of the CV). There-
fore, at time t 1 Dt, the system consists of the same fluid, but it occupies 
the region CV 2 I 1 II. The control volume is fixed in space, and thus it 
remains as the shaded region marked CV at all times.
 Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b 5 B/m represent the corresponding intensive property. 
Noting that extensive properties are additive, the extensive property B of the 
system at times t and t 1 Dt is expressed as

 Bsys, t 5 BCV, t  (the system and CV concide at time t)

 Bsys, t1Dt 5 BCV, t1Dt 2 BI, t1Dt 1 BII, t1Dt 

Subtracting the first equation from the second one and dividing by Dt gives
Bsys, t1Dt 2 Bsys, t

Dt
5

BCV, t1Dt 2 BCV, t

Dt
2

BI, t1Dt

Dt
1

BP, t1Dt

Dt

Taking the limit as Dt → 0, and using the definition of derivative, we get

 
dBsys

dt
5

dBCV

dt
2 B
#

in 1 B
#

out (4–38)

or
dBsys

dt
5

dBCV

dt
2 b1r1V1A1 1 b2r2V2A2

since

 BI, t1Dt 5 b1mI, t1Dt 5 b1r1V I, t1Dt 5 b1r1V1 Dt A1 

 BII, t1Dt 5 b2mII, t1Dt 5 b2r2V II, t1Dt 5 b2r2V2 D t A2 

and

 B
#

in 5 B
#

I 5 lim
DtS0

 
BI, t1Dt

Dt
5 lim
DtS0

 
b1r1V1 Dt A1

Dt
5 b1r1V1 A1 

 B
#

out 5 B
#

II 5 lim
DtS0

 
BII, t1Dt

Dt
5 lim
DtS0

 
b2r2V2 Dt A2

Dt
5 b2r2V2 A2 

where A1 and A2 are the cross-sectional areas at locations 1 and 2. Equation 4–38 
states that the time rate of change of the property B of the system is equal to the 
time rate of change of B of the control volume plus the net flux of B out of the 
control volume by mass crossing the control surface. This is the desired rela-
tion since it relates the change of a property of a system to the change of that 
property for a control volume. Note that Eq. 4–38 applies at any instant in time, 
where it is assumed that the system and the control volume occupy the same 
space at that particular instant in time.
 The influx B

.
in and outflux B

.
out of the property B in this case are easy to 

determine since there is only one inlet and one outlet, and the velocities are 
approximately normal to the surfaces at sections (1) and (2). In general, how-
ever, we may have several inlet and outlet ports, and the velocity may not be 
normal to the control surface at the point of entry. Also, the velocity may not 
be uniform. To generalize the process, we consider a differential surface area 
dA on the control surface and denote its unit outer normal by n

→
. The flow 

rate of property b through dA is rbV
!
·n

→ 
dA since the dot product V

!
·n

→ 
gives 

the normal component of the velocity. Then the net rate of outflow through 
the entire control surface is determined by integration to be (Fig. 4–56)

FIGURE 4–55
A moving system (hatched region) and 
a fixed control volume (shaded region) 
in a diverging portion of a flow field at 
times t and t 1 Dt. The upper and lower 
bounds are streamlines of the flow.

133-184_cengel_ch04.indd   162 12/14/12   12:08 PM



163
CHAPTER 4

 B
#

net 5 B
#

out 2 B
#

in 5 #
CS

 rbV
!
·nS dA   (inflow if negative) (4–39)

 An important aspect of this relation is that it automatically subtracts the 
inflow from the outflow, as explained next. The dot product of the velocity 
vector at a point on the control surface and the outer normal at that point is 
V
!
·nS 5 uV

!
u u nS u cos u 5 uV

!
u cos u, where u is the angle between the velocity 

vector and the outer normal, as shown in Fig. 4–57. For u , 908, cos u . 0 
and thus V

!
·n

→
 . 0 for outflow of mass from the control volume, and for 

u . 908, cos u , 0 and thus V
!
·n

→
 , 0 for inflow of mass into the control 

volume. Therefore, the differential quantity rbV
!
·n

→
 dA is positive for mass 

flowing out of the control volume, and negative for mass flowing into the 
control volume, and its integral over the entire control surface gives the rate 
of net outflow of the property B by mass.
 The properties within the control volume may vary with position, in 
general. In such a case, the total amount of property B within the control 
volume must be determined by integration:

 BCV 5 #
CV

 rb d V  (4–40)

 The term dBCV/dt in Eq. 4–38 is thus equal to 
d

dt
 #

CV
 rb dV , and represents

the time rate of change of the property B content of the control volume. 
A positive value for dBCV/dt indicates an increase in the B content, and a 
negative value indicates a decrease. Substituting Eqs. 4–39 and 4–40 into 
Eq. 4–38 yields the Reynolds transport theorem, also known as the system-
to-control-volume transformation for a fixed control volume:

RTT, fixed CV: 
dBsys

dt
5

d

dt
 #

CV
 rb dV 1 #

CS
 rbV

!
·nS dA (4–41)

 Since the control volume is not moving or deforming with time, the time 
derivative on the right-hand side can be moved inside the integral, since 
the domain of integration does not change with time. (In other words, it is 
irrelevant whether we differentiate or integrate first.) But the time derivative 
in that case must be expressed as a partial derivative (−/−t) since density 
and the quantity b may depend not only on time, but also on the position 
within the control volume. Thus, an alternate form of the Reynolds transport 
theorem for a fixed control volume is

Alternate RTT, fixed CV:            
dBsys

dt
5 #

CV
 
0
0t

 (rb) d V 1 #
CS
rbV

!
· n
S dA (4–42)

It turns out that Eq. 4–42 is also valid for the most general case of a mov-
ing and/or deforming control volume, provided that velocity vector V

!
 is an 

absolute velocity (as viewed from a fixed reference frame). 
 Next we consider yet another alternative form of the RTT. Equation 4–41 
was derived for a fixed control volume. However, many practical systems 
such as turbine and propeller blades involve nonfixed control volumes. For-
tunately, Eq. 4–41 is also valid for moving and/or deforming control vol-
umes provided that the absolute fluid velocity V

!
 in the last term is replaced 

by the relative velocity V
!
r,

Bnet = Bout – Bin = #
CS

 rbV ? n  dA
· · ·

Control volume

n
Mass

entering

outward
normal

Mass
leaving

Mass
leaving n

n
n

n =

FIGURE 4–56
The integral of brV

!
?n→ dA over the 

control surface gives the net amount 
of the property B flowing out of the 

control volume (into the control 
volume if it is negative) per unit time.

If u < 90°, then cos u > 0 (outflow).
If u > 90°, then cos u < 0 (inflow).
If u = 90°, then cos u = 0 (no flow).

n

Outflow:
u < 90°

dA
n

Inflow:
u > 90°

dA

    ? n = |   || n | cos u = V cos u

V

V

V V

u
u

FIGURE 4–57
Outflow and inflow of mass across the 

differential area of a control surface.
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Relative velocity: V
!
r 5 V

!
2 V

!
CS (4–43)

where V
!
CS is the local velocity of the control surface (Fig. 4–58). The most 

general form of the Reynolds transport theorem is thus

RTT, nonfixed CV: 
dBsys

dt
5

d

dt
 #

CV
 rb dV 1 #

CS
 rbV

!
r·n
S dA (4–44)

 Note that for a control volume that moves and/or deforms with time, the 
time derivative is applied after integration in Eq. 4–44. As a simple example 
of a moving control volume, consider a toy car moving at a constant abso-
lute velocity V

!
car 5 10 km/h to the right. A high-speed jet of water (absolute 

velocity 5 V
!
jet 5 25 km/h to the right) strikes the back of the car and pro-

pels it (Fig. 4–59). If we draw a control volume around the car, the relative 
velocity is V

!
r 5 25 2 10 5 15 km/h to the right. This represents the veloc-

ity at which an observer moving with the control volume (moving with the 
car) would observe the fluid crossing the control surface. In other words, V

!
r is 

the fluid velocity expressed relative to a coordinate system moving with the 
control volume.
 Finally, by application of the Leibniz theorem, it can be shown that the 
Reynolds transport theorem for a general moving and/or deforming control 
volume (Eq. 4–44) is equivalent to the form given by Eq. 4–42, which is 
repeated here:

Alternate RTT, nonfixed CV: 
dBsys

dt
5 #

CV
 
0
0t

 (rb) dV 1 #
CS

 rbV
!
· n
S dA (4–45)

In contrast to Eq. 4–44, the velocity vector V
!
 in Eq. 4–45 must be taken as 

the absolute velocity (as viewed from a fixed reference frame) in order to 
apply to a nonfixed control volume.
 During steady flow, the amount of the property B within the control vol-
ume remains constant in time, and thus the time derivative in Eq. 4–44 
becomes zero. Then the Reynolds transport theorem reduces to

RTT, steady flow: 
dBsys

dt
5 #

CS
 rbV

!
r·n
S dA (4–46)

Note that unlike the control volume, the property B content of the system 
may still change with time during a steady process. But in this case the 
change must be equal to the net property transported by mass across the 
control surface (an advective rather than an unsteady effect).
 In most practical engineering applications of the RTT, fluid crosses the 
boundary of the control volume at a finite number of well-defined inlets 
and outlets (Fig. 4–60). In such cases, it is convenient to cut the control sur-
face directly across each inlet and outlet and replace the surface integral in 
Eq. 4–44 with approximate algebraic expressions at each inlet and outlet 
based on the average values of fluid properties crossing the boundary. We 
define ravg, bavg, and Vr, avg as the average values of r, b, and Vr, respectively, 

across an inlet or outlet of cross-sectional area A [e.g., bavg 5
1

A
 #

A

 b dA]. The 

surface integrals in the RTT (Eq. 4–44), when applied over an inlet or outlet 

CS

= –r

–

CSV

CSV

CS

V

VVV

FIGURE 4–58
Relative velocity crossing a control 
surface is found by vector addition 
of the absolute velocity of the fluid 
and the negative of the local velocity 
of the control surface.

Control volume

Absolute reference frame:

Vjet Vcar

Control volume

Relative reference frame:

Vr = Vjet – Vcar

FIGURE 4–59
Reynolds transport theorem applied to 
a control volume moving at constant 
velocity.
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of cross-sectional area A, are then approximated by pulling property b out of 
the surface integral and replacing it with its average. This yields

#
A

 rbV
!
r ·n

S dA > bavg #
A

 rV
!
r·n

S dA 5 bavgm# r

where m
.
r is the mass flow rate through the inlet or outlet relative to the 

(moving) control surface. The approximation in this equation is exact when 
property b is uniform over cross-sectional area A. Equation 4–44 thus 
becomes

 
dBsys

dt
5

d

dt
 #

CV
 rb dV 1 a

out
m# r  

bavg 2 a
in

m# r  bavg (4–47)

In some applications, we may wish to rewrite Eq. 4–47 in terms of volume 
(rather than mass) flow rate. In such cases, we make a further approxima-
tion that m# r < ravgV

#
r 5 ravgVr, avg A. This approximation is exact when fluid 

density r is uniform over A. Equation 4–47 then reduces to

Approximate RTT for well-defined inlets and outlets: 

 
dBsys

dt
5

d

dt
 #

CV
 rb dV 1 a

out
ravgbavgVr, avg A 2 a

in
ravgbavgVr,avg A  (4–48)

 Note that these approximations simplify the analysis greatly but may 
not always be accurate, especially in cases where the velocity distribution 
across the inlet or outlet is not very uniform (e.g., pipe flows; Fig. 4–60). In 
particular, the control surface integral of Eq. 4–45 becomes nonlinear when 
property b contains a velocity term (e.g., when applying RTT to the linear 
momentum equation, b 5 V

!
), and the approximation of Eq. 4–48 leads to 

errors. Fortunately we can eliminate the errors by including correction fac-
tors in Eq. 4–48, as discussed in Chaps. 5 and 6.
 Equations 4–47 and 4–48 apply to fixed or moving control volumes, but 
as discussed previously, the relative velocity must be used for the case of a 
nonfixed control volume. In Eq. 4–47 for example, the mass flow rate m

.
r is 

relative to the (moving) control surface, hence the r subscript.

*Alternate Derivation of the Reynolds 
Transport Theorem
A more elegant mathematical derivation of the Reynolds transport theorem is 
possible through use of the Leibniz theorem (see Kundu and Cohen, 2011). 
You may be familiar with the one-dimensional version of this theorem, 
which allows you to differentiate an integral whose limits of integration are 
functions of the variable with which you need to differentiate (Fig. 4–61):

One-dimensional Leibniz theorem: 

 
d

dt
 #

x5b(t)

x5a(t)
 G(x, t) dx 5 #

b

a

 
0G
0t

 dx 1
db

dt
 G(b, t) 2

da

dt
 G(a, t) (4–49)

CV

1 2

3

FIGURE 4–60
An example control volume in which 
there is one well-defined inlet (1) and 
two well-defined outlets (2 and 3). In 

such cases, the control surface integral 
in the RTT can be more conveniently 
written in terms of the average values 
of fluid properties crossing each inlet 

and outlet.

G(x, t)

xb(t)a(t)

  x = b(t)

x = a(t)
# G(x, t) dx

FIGURE 4–61
The one-dimensional Leibniz theorem 
is required when calculating the time 
derivative of an integral (with respect 

to x) for which the limits of the 
integral are functions of time.* This section may be omitted without loss of continuity.

for each outlet for each inlet

for each outlet for each inlet

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

⎫ ⎬ ⎭ ⎫ ⎬ ⎭
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The Leibniz theorem takes into account the change of limits a(t) and b(t) 
with respect to time, as well as the unsteady changes of integrand G(x, t) 
with time.

EXAMPLE 4–10    One-Dimensional Leibniz Integration

Reduce the following expression as far as possible:

 F(t) 5
d

dt
 #

x5Ct

x50
 e2x2

 dx (1)

SOLUTION  F(t) is to be evaluated from the given expression.

Analysis  We could try integrating first and then differentiating, but since 

Eq. 1 is of the form of Eq. 4–49, we use the one-dimensional Leibniz theo-

rem. Here, G(x, t) 5 e2x2

 (G is not a function of time in this simple exam-

ple). The limits of integration are a(t) 5 0 and b(t) 5 Ct. Thus,

 F(t) 5 #
b

a

 
0G
0t

 dx 1
db

dt
 G(b, t) 2

da

dt
 G(a, t)   S    F(t) 5 Ce2C  

2t2
 (2)

Discussion  You are welcome to try to obtain the same solution without using 

the Leibniz theorem.

 In three dimensions, the Leibniz theorem for a volume integral is

Three-dimensional Leibniz theorem: 

 
d

dt
 #

V(t)
 G(x, y, z, t) dV 5 #

V(t)
 
0G
0t

 dV 1 #
A(t)

 GV
!
A·nS dA (4–50)

where V(t) is a moving and/or deforming volume (a function of time), A(t) 
is its surface (boundary), and V

!
A is the absolute velocity of this (moving) 

surface (Fig. 4–62). Equation 4–50 is valid for any volume, moving and/or 
deforming arbitrarily in space and time. For consistency with the previous 
analyses, we set integrand G to rb for application to fluid flow,

Three-dimensional Leibniz theorem applied to fluid flow: 

 
d

dt
 #

V(t)
 rb dV 5 #

V(t)
 
0
0t

 (rb) dV 1 #
A(t)

 rbV
!
A·nS dA (4–51)

If we apply the Leibniz theorem to the special case of a material volume 
(a system of fixed identity moving with the fluid flow), then V

!
A 5 V

!
 every-

where on the material surface since it moves with the fluid. Here V
!
 is the 

local fluid velocity, and Eq. 4–51 becomes

Leibniz theorem applied to a material volume: 

 
d

dt
 #

V(t)
 rb dV 5

dBsys

dt
5 #

V(t)
 
0
0t

 (rb) dV 1 #
A(t)

 rbV
!
·nS dA (4–52)

 Equation 4–52 is valid at any instant in time t. We define our control vol-
ume such that at this time t, the control volume and the system occupy the 
same space; in other words, they are coincident. At some later time t 1 Dt, 
the system has moved and deformed with the flow, but the control volume 

A(t)

V(t)

G(x, y, z, t) d V

G(x, y, z, t)
VA

V(t)
#

FIGURE 4–62
The three-dimensional Leibniz 
theorem is required when calculating 
the time derivative of a volume 
integral for which the volume itself 
moves and/or deforms with time. It 
turns out that the three-dimensional 
form of the Leibniz theorem can be 
used in an alternative derivation of 
the Reynolds transport theorem.

0 C e2b2
 0

⎫ ⎬ ⎭} } }
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may have moved and deformed differently (Fig. 4–63). The key, however, is 
that at time t, the system (material volume) and control volume are one and 
the same. Thus, the volume integral on the right-hand side of Eq. 4–52 can 
be evaluated over the control volume at time t, and the surface integral can 
be evaluated over the control surface at time t. Hence,

General RTT, nonfixed CV:       
dBsys

dt
5 #

CV
 
0
0t

 (rb) dV 1 #
CS

 rbV
!
·nS dA (4–53)

This expression is identical to that of Eq. 4–42 and is valid for an arbitrarily 
shaped, moving, and/or deforming control volume at time t. Keep in mind 
that V

!
 in Eq. 4–53 is the absolute fluid velocity.

EXAMPLE 4–11     Reynolds Transport Theorem 
in Terms of Relative Velocity

Beginning with the Leibniz theorem and the general Reynolds transport theo-

rem for an arbitrarily moving and deforming control volume, Eq. 4–53, prove 

that Eq. 4–44 is valid.

SOLUTION  Equation 4–44 is to be proven.

Analysis  The general three-dimensional version of the Leibniz theorem, 

Eq. 4–50, applies to any volume. We choose to apply it to the control vol-

ume of interest, which can be moving and/or deforming differently than the 

material volume (Fig. 4–63). Setting G to rb, Eq. 4–50 becomes

 
d

dt
 #

CV
 rb dV 5 #

CV
 
0
0t

 (rb) dV 1 #
CS

 rbV
!
CS  · n

S
 dA  (1)

We solve Eq. 4–53 for the control volume integral,

 #
CV

 
0
0t

 (rb) dV 5
dBsys

dt
2 #

CS
 rbV

!
·n
!
 dA (2)

Substituting Eq. 2 into Eq. 1, we get

 
d

dt
 #

CV
 rb dV 5

dBsys

dt
2 #

CS
 rbV

!
·n
!
 dA 1 #

CS
 rbV

!
CS·n

!
 dA  (3)

Combining the last two terms and rearranging,

 
dBsys

dt
5

d

dt
 #

CV
 rb dV 1 #

CS
 rb(V

!
2 V

!
CS) ·n

!
 dA  (4)

But recall that the relative velocity is defined by Eq. 4–43. Thus,

RTT in terms of relative velocity: 
dBsys

dt
5

d
dt

 #
CV

 rb dV 1 #
CS

 rbV
!
r · n
!
 dA (5)

Discussion  Equation 5 is indeed identical to Eq. 4–44, and the power and 

elegance of the Leibniz theorem are demonstrated.

Relationship between Material Derivative and RTT
You may have noticed a similarity or analogy between the material derivative 
discussed in Section 4–1 and the Reynolds transport theorem discussed here. 
In fact, both analyses represent methods to transform from fundamentally 

FIGURE 4–63
The material volume (system) and 

control volume occupy the same space 
at time t (the greenish shaded area), 

but move and deform differently. At a 
later time they are not coincident.
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Lagrangian concepts to Eulerian interpretations of those concepts. While the 
Reynolds transport theorem deals with finite-size control volumes and the 
material derivative deals with infinitesimal fluid particles, the same funda-
mental physical interpretation applies to both (Fig. 4–64). In fact, the Reyn-
olds transport theorem can be thought of as the integral counterpart of the 
material derivative. In either case, the total rate of change of some prop-
erty following an identified portion of fluid consists of two parts: There is 
a local or unsteady part that accounts for changes in the flow field with 
time (compare the first term on the right-hand side of Eq. 4–12 to that of 
Eq. 4–45). There is also an advective part that accounts for the movement 
of fluid from one region of the flow to another (compare the second term on 
the right-hand sides of Eqs. 4–12 and 4–45).
 Just as the material derivative can be applied to any fluid property, scalar 
or vector, the Reynolds transport theorem can be applied to any scalar or 
vector property as well. In Chaps. 5 and 6, we apply the Reynolds transport 
theorem to conservation of mass, energy, momentum, and angular momen-
tum by choosing parameter B to be mass, energy, momentum, and angular 
momentum, respectively. In this fashion we can easily convert from the fun-
damental system conservation laws (Lagrangian viewpoint) to forms that are 
valid and useful in a control volume analysis (Eulerian viewpoint).

Lagrangian
description

Eulerian
description

System
analysis RTT

Control
volume
analysis

D
Dt

FIGURE 4–64
The Reynolds transport theorem for 
finite volumes (integral analysis) is 
analogous to the material derivative 
for infinitesimal volumes (differential 
analysis). In both cases, we transform 
from a Lagrangian or system viewpoint 
to an Eulerian or control volume 
viewpoint.

SUMMARY

Fluid kinematics is concerned with describing fluid motion, 
without necessarily analyzing the forces responsible for such 
motion. There are two fundamental descriptions of fluid 
motion—Lagrangian and Eulerian. In a Lagrangian descrip-
tion, we follow individual fluid particles or collections of 
fluid particles, while in the Eulerian description, we define 
a control volume through which fluid flows in and out. We 
transform equations of motion from Lagrangian to Eulerian 
through use of the material derivative for infinitesimal fluid 
particles and through use of the Reynolds transport theo-
rem (RTT) for systems of finite volume. For some extensive 
property B or its corresponding intensive property b,

Material derivative: 
Db

Dt
5
0b
0t

1 (V
!
·=
!
)b

General RTT, nonfixed CV:
dBsys

dt
5 #

CV
 
0
0t

 (rb) dV 1 #
CS

 rbV
!
· n
!
 dA

In both equations, the total change of the property following a 
fluid particle or following a system is composed of two parts: 
a local (unsteady) part and an advective (movement) part.
 There are various ways to visualize and analyze flow 
fields—streamlines, streaklines, pathlines, timelines, surface 
imaging, shadowgraphy, schlieren imaging, profile plots, 

vector plots, and contour plots. We define each of these and 
provide examples in this chapter. In general unsteady flow, 
streamlines, streaklines, and pathlines differ, but in steady 
flow, streamlines, streaklines, and pathlines are coincident.
 Four fundamental rates of motion (deformation rates) are 
required to fully describe the kinematics of a fluid flow: veloc-
ity (rate of translation), angular velocity (rate of rotation), lin-
ear strain rate, and shear strain rate. Vorticity is a property of 
fluid flows that indicates the rotationality of fluid particles.

Vorticity vector: z
!
5 =

!
3 V

!
5 curl(V

!
) 5 2v

!

A region of flow is irrotational if the vorticity is zero in that 
region.
 The concepts learned in this chapter are used repeatedly 
throughout the rest of the book. We use the RTT to transform 
the conservation laws from closed systems to control volumes 
in Chaps. 5 and 6, and again in Chap. 9 in the derivation of 
the differential equations of fluid motion. The role of vortic-
ity and irrotationality is revisited in greater detail in Chap. 10 
where we show that the irrotationality approximation leads 
to greatly reduced complexity in the solution of fluid flows. 
Finally, we use various types of flow visualization and data 
plots to describe the kinematics of example flow fields in 
nearly every chapter of this book.
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Illinois Institute of Technology

Fluidic actuators are devices that use fluid logic circuits to produce oscilla-
tory velocity or pressure perturbations in jets and shear layers for delaying 
separation, enhancing mixing, and suppressing noise. Fluidic actuators are 
potentially useful for shear flow control applications for many reasons: they 
have no moving parts; they can produce perturbations that are controllable in 
frequency, amplitude, and phase; they can operate in harsh thermal environ-
ments and are not susceptible to electromagnetic interference; and they are 
easy to integrate into a functioning device. Although fluidics technology has 
been around for many years, recent advances in miniaturization and micro-
fabrication have made them very attractive candidates for practical use. The 
fluidic actuator produces a self-sustaining oscillatory flow using the princi-
ples of wall attachment and backflow that occur within miniature passages of 
the device.
 Figure 4–65 demonstrates the application of a fluidic actuator for jet thrust 
vectoring. Fluidic thrust vectoring is important for future aircraft designs, 
since they can improve maneuverability without the complexity of additional 
surfaces near the nozzle exhaust. In the three images of Fig. 4–65, the pri-
mary jet exhausts from right to left and a single fluidic actuator is located at 
the top. Figure 4–65a shows the unperturbed jet. Figures 4–65b and c show 
the vectoring effect at two fluidic actuation levels. Changes to the primary 
jet are characterized using particle image velocimetry (PIV). A simplified 
explanation is as follows: In this technique tracer particles are introduced 
into the flow and illuminated by a thin laser light sheet that is pulsed to 
freeze particle motion. Laser light scattered by the particles is recorded at 
two instances in time using a digital camera. Using a spatial cross correla-
tion, the local displacement vector is obtained. The results indicate that there 
exists the potential for integrating multiple fluidic sub-elements into aircraft 
components for improved performance.
 Figure 4–65 is actually a combination vector plot and contour plot. Veloc-
ity vectors are superimposed on contour plots of velocity magnitude (speed). 
The red regions represent high speeds, and the blue regions represent low 
speeds.
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APPLICATION SPOTLIGHT ■ Fluidic Actuators

FIGURE 4–65
Time-averaged mean velocity field 
of a fluidic actuator jet. Results are 
from 150 PIV realizations, overlaid 

on an image of the seeded flow. Every 
seventh and second velocity vector is 

shown in the horizontal and vertical 
directions, respectively. The color 
levels denote the magnitude of the 

velocity field. (a) No actuation; 
(b) single actuator operating at 3 psig; 
(c) single actuator operating at 9 psig.

Courtesy Ganesh Raman, Illinois Institute of 
Technology. Used by permission.

(a)

(b)

(c)
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Introductory Problems

4–1C  What does the word kinematics mean? Explain what 
the study of fluid kinematics involves.

4–2C  Briefly discuss the difference between derivative 
operators d and −. If the derivative −u/−x appears in an equa-
tion, what does this imply about variable u?

4–3  Consider steady flow of water through an axisymmet-
ric garden hose nozzle (Fig. P4–3). Along the centerline of 
the nozzle, the water speed increases from uentrance to uexit 
as sketched. Measurements reveal that the centerline water 
speed increases parabolically through the nozzle. Write an 
equation for centerline speed u(x), based on the parameters 
given here, from x 5 0 to x 5 L.

4–4  Consider the following steady, two-dimensional veloc-
ity field:

V
!
5 (u, v) 5 (a2 2 (b 2 cx)2)  i  

!
1 (22cby 1 2c2xy) j 

!

 Is there a stagnation point in this flow field? If so, where is it?

4–5  A steady, two-dimensional velocity field is given by

V
!
5 (u, v) 5 (20.781 2 4.67x)  i  

!
1 (23.54 1 4.67y)  j 

!

Calculate the location of the stagnation point.

4–6  Consider the following steady, two-dimensional veloc-
ity field:

V
!
5 (u, v) 5 (0.66 1 2.1x)  i  

!
1 (22.7 2 2.1y)  j 

!

 Is there a stagnation point in this flow field? If so, where is it?
Answer: Yes; x 5 20.314, y 5 21.29

Lagrangian and Eulerian Descriptions

4–7C  What is the Eulerian description of fluid motion? 
How does it differ from the Lagrangian description?

4–8C  Is the Lagrangian method of fluid flow analysis more 
similar to study of a system or a control volume? Explain.

4–9C  What is the Lagrangian description of fluid motion?

4–10C  A stationary probe is placed in a fluid flow and 
measures pressure and temperature as functions of time at 

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Problems 

with the  icon are solved using EES, and complete solutions 

together with parametric studies are included on the text website. 

Problems with the  icon are comprehensive in nature and are 

intended to be solved with an equation solver such as EES.

DexitDentrance

uexit
uentrance

u(x)

x = Lx = 0

FIGURE P4–3

Flow

Probe

FIGURE P4–10C

REFERENCES AND SUGGESTED READING

PROBLEMS*
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one location in the flow (Fig. P4–10C). Is this a Lagrangian 
or an Eulerian measurement? Explain.

4–11C  A tiny neutrally buoyant electronic pressure probe is 
released into the inlet pipe of a water pump and transmits 2000 
pressure readings per second as it passes through the pump. Is 
this a Lagrangian or an Eulerian measurement? Explain.

4–12C  Define a steady flow field in the Eulerian reference 
frame. In such a steady flow, is it possible for a fluid particle 
to experience a nonzero acceleration?

4–13C  List at least three other names for the material deriv-
ative, and write a brief explanation about why each name is 
appropriate.

4–14C  A weather balloon is launched into the atmosphere 
by meteorologists. When the balloon reaches an altitude where 
it is neutrally buoyant, it transmits information about weather 
conditions to monitoring stations on the ground (Fig. P4–14C). 
Is this a Lagrangian or an Eulerian measurement? Explain.

4–15C  A Pitot-static probe can often be seen protrud-
ing from the underside of an airplane (Fig. P4–15C). As the 

airplane flies, the probe measures relative wind speed. Is this 
a Lagrangian or an Eulerian measurement? Explain.

4–16C  Is the Eulerian method of fluid flow analysis more 
similar to study of a system or a control volume? Explain.

4–17  Consider steady, incompressible, two-dimensional 
flow through a converging duct (Fig. P4–17). A simple 
approximate velocity field for this flow is

V
!
5 (u, v) 5 (U0 1 bx)  i  

!
2 by j

!

 where U0 is the horizontal speed at x 5 0. Note that this 
equation ignores viscous effects along the walls but is a rea-
sonable approximation throughout the majority of the flow 
field. Calculate the material acceleration for fluid particles 
passing through this duct. Give your answer in two ways: 
(1) as acceleration components ax and ay and (2) as accelera-
tion vector a

→
.

Helium-filled
weather balloon

Transmitting
instrumentation

FIGURE P4–14C

Probe

FIGURE P4–15C

y

x

U0

FIGURE P4–17

4–18  Converging duct flow is modeled by the steady, 
two- dimensional velocity field of Prob. 4–17. The pressure 
field is given by

P 5 P0 2
r

2 
c2U0 

bx 1 b2(x2 1 y2) d
 where P0 is the pressure at x 5 0. Generate an expression for 
the rate of change of pressure following a fluid particle.

4–19  A steady, incompressible, two-dimensional velocity 
field is given by the following components in the xy-plane:

u 5 1.85 1 2.33x 1 0.656y

v 5 0.754 2 2.18x 2 2.33y

 Calculate the acceleration field (find expressions for accelera-
tion components ax and ay), and calculate the acceleration at 
the point (x, y) 5 (21, 2).  Answers: ax 5 0.806, ay 5 2.21
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4–20  A steady, incompressible, two-dimensional velocity 
field is given by the following components in the xy-plane:

 u 5 0.205 1 0.97x 1 0.851y

 v 5 20.509 1 0.953x 2 0.97y

 Calculate the acceleration field (find expressions for accelera-
tion components ax and ay) and calculate the acceleration at 
the point (x, y) 5 (2, 1.5).

4–21  The velocity field for a flow is given by 
V
!
5 ui

!
1 v j

!
1 wk

!
 where u 5 3x, v 5 22y, w 5 2z. Find 

the streamline that will pass through the point (1, 1, 0).

4–22  Consider steady flow of air through the diffuser por-
tion of a wind tunnel (Fig. P4–22). Along the centerline of 
the diffuser, the air speed decreases from uentrance to uexit as 
sketched. Measurements reveal that the centerline air speed 
decreases parabolically through the diffuser. Write an equa-
tion for centerline speed u(x), based on the parameters given 
here, from x 5 0 to x 5 L.

4–28C  What is the definition of a streamline? What do 
streamlines indicate?

4–29C  What is the definition of a streakline? How do 
streaklines differ from streamlines?

4–30C  Consider the visualization of flow over a 158 delta 
wing in Fig. P4–30C. Are we seeing streamlines, streaklines, 
pathlines, or timelines? Explain.

Dexit

Dentrance

uentrance

u(x)

x = Lx = 0

uexit

FIGURE P4–22

4–23  For the velocity field of Prob. 4–22, calculate the 
fluid acceleration along the diffuser centerline as a function 
of x and the given parameters. For L 5 1.56 m, uentrance 5 
24.3 m/s, and uexit 5 16.8 m/s, calculate the acceleration at 
x 5 0 and x 5 1.0 m.  Answers: 0, 2131 m/s2

4–24  A steady, incompressible, two-dimensional (in the 
xy-plane) velocity field is given by

V
!
5 (0.523 2 1.88x 1 3.94y)  i  

!
1 (22.44 1 1.26x 1 1.88y)  j  

!

Calculate the acceleration at the point (x, y) 5 (21.55, 2.07).

4–25  For the velocity field of Prob. 4–3, calculate the fluid 
acceleration along the nozzle centerline as a function of x and 
the given parameters.

Flow Patterns and Flow Visualization

4–26C  What is the definition of a pathline? What do path-
lines indicate?

4–27C  Consider the visualization of flow over a 128 cone 
in Fig. P4–27C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.

FIGURE P4–27C
Visualization of flow over a 12° cone at a 16° angle of 
attack at a Reynolds number of 15,000. The visualization 
is produced by colored fluid injected into water from ports 
in the body. 
Courtesy ONERA. Photograph by Werlé.

FIGURE P4–30C
Visualization of flow over a 15° delta wing at a 20° angle 
of attack at a Reynolds number of 20,000. The visualiza-
tion is produced by colored fluid injected into water from 
ports on the underside of the wing. 
Courtesy ONERA. Photograph by Werlé.

4–31C  Consider the visualization of ground vortex flow in 
Fig. P4–31C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.
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4–32C  Consider the visualization of flow over a sphere in 
Fig. P4–32C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.

(vector plot or contour plot) would be most appropriate, and 
explain why.
 (a) The location of maximum fluid speed is to be visualized.
 (b) Flow separation at the rear of the tubes is to be visualized.
 (c) The temperature field throughout the plane is to be 
visualized.
 (d ) The distribution of the vorticity component normal to the 
plane is to be visualized.

FIGURE P4–31C
Visualization of ground vortex flow. A high-speed round air 
jet impinges on the ground in the presence of a free-stream 
flow of air from left to right. (The ground is at the bottom 
of the picture.) The portion of the jet that travels upstream 
forms a recirculating flow known as a ground vortex. The 
visualization is produced by a smoke wire mounted verti-
cally to the left of the field of view. 
Photo by John M. Cimbala.

FIGURE P4–32C
Visualization of flow over a sphere at a Reynolds number 
of 15,000. The visualization is produced by a time expo-
sure of air bubbles in water. 
Courtesy ONERA. Photograph by Werlé.

4–33C  What is the definition of a timeline? How can time-
lines be produced in a water channel? Name an application 
where timelines are more useful than streaklines.

4–34C  Consider a cross-sectional slice through an array of 
heat exchanger tubes (Fig. P4–34C). For each desired piece 
of information, choose which kind of flow visualization plot 

OutIn

FIGURE P4–34C

4–35  Converging duct flow (Fig. P4–17) is modeled by the 
steady, two-dimensional velocity field of Prob. 4–17. Generate 
an analytical expression for the flow streamlines.
Answer: y 5 C/(U0 1 bx)

4–36  The velocity field of a flow is described by 
V
!
5 (4x)  i  

!
1 (5y 1 3)  j  

!
1 (3t2)k

!
. What is the pathline of a 

particle at a location (1 m, 2 m, 4 m) at time t 5 1 s?

4–37  Consider the following steady, incompressible, two-
dimensional velocity field:

V
!
5 (u, v) 5 (4.35 1 0.656x)  i  

!
1 (21.22 2 0.656y)  j  

!

 Generate an analytical expression for the flow streamlines 
and draw several streamlines in the upper-right quadrant from 
x 5 0 to 5 and y 5 0 to 6.

4–38  Consider the steady, incompressible, two-dimensional 
velocity field of Prob. 4–37. Generate a velocity vector plot 
in the upper-right quadrant from x 5 0 to 5 and y 5 0 to 6.

4–39  Consider the steady, incompressible, two-dimensional 
velocity field of Prob. 4–37. Generate a vector plot of the 
acceleration field in the upper-right quadrant from x 5 0 to 
5 and y 5 0 to 6.

4–40  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (1 1 2.5x 1 y) i  

!
1 (20.5 2 3x 2 2.5y)  j  

!

 where the x- and y-coordinates are in m and the magnitude of 
velocity is in m/s.
 (a) Determine if there are any stagnation points in this flow 
field, and if so, where they are.
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 (b) Sketch velocity vectors at several locations in the upper-
right quadrant for x 5 0 m to 4 m and y 5 0 m to 4 m; quali-
tatively describe the flow field.

4–41  Consider the steady, incompressible, two-dimensional 
velocity field of Prob. 4–40.
 (a) Calculate the material acceleration at the point (x 5 2 m, 
y 5 3 m).  Answers: ax 5 8.50 m/s2, ay 5 8.00 m/s2

 (b) Sketch the material acceleration vectors at the same array 
of x- and y-values as in Prob. 4–40.

4–42  The velocity field for solid-body rotation in the 
ru-plane (Fig. P4–42) is given by

ur 5 0     uu 5 vr

 where v is the magnitude of the angular velocity (v→ points in 
the z-direction). For the case with v 5 1.5 s21, plot a contour 
plot of velocity magnitude (speed). Specifically, draw curves 
of constant speed V 5 0.5, 1.0, 1.5, 2.0, and 2.5 m/s. Be sure 
to label these speeds on your plot.

Specifically, draw curves of constant speed V 5 0.5, 1.0, 1.5, 
2.0, and 2.5 m/s. Be sure to label these speeds on your plot.

4–44  The velocity field for a line source in the ru-plane 
(Fig. P4–44) is given by

ur 5
m

2pr
     uu 5 0

 where m is the line source strength. For the case with m/(2p) 5 
1.5 m2/s, plot a contour plot of velocity magnitude (speed). 
Specifically, draw curves of constant speed V 5 0.5, 1.0, 1.5, 
2.0, and 2.5 m/s. Be sure to label these speeds on your plot.

uu

uu = vr

r

FIGURE P4–42

uu

r

uu =
K
r

FIGURE P4–43

4–43  The velocity field for a line vortex in the ru-plane 
(Fig. P4–43) is given by

ur 5 0     uu 5
K
r

 where K is the line vortex strength. For the case with 
K 5 1.5 m/s2, plot a contour plot of velocity magnitude (speed). 

y

x

ur =
 m 
2pr

u

r

FIGURE P4–44

4–45  A very small circular cylinder of radius Ri is rotating 
at angular velocity vi inside a much larger concentric cyl-
inder of radius Ro that is rotating at angular velocity vo. A 
liquid of density r and viscosity m is confined between the 
two cylinders, as in Fig. P4–45. Gravitational and end effects 
can be neglected (the flow is two-dimensional into the page). 

Liquid: r, m

Inner cylinder

Outer cylinder

Ro

Ri

vo

vi

FIGURE P4–45
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If vi 5 vo and a long time has passed, generate an expression 
for the tangential velocity profile, uu as a function of (at most) 
r, v, Ri, Ro, r, and m, where v 5 vi 5 vo. Also, calculate the 
torque exerted by the fluid on the inner cylinder and on the 
outer cylinder.

4–46  Consider the same two concentric cylinders of 
Prob. 4–45. This time, however, the inner cylinder is rotat-
ing, but the outer cylinder is stationary. In the limit, as the 
outer cylinder is very large compared to the inner cylinder 
(imagine the inner cylinder spinning very fast while its radius 
gets very small), what kind of flow does this approximate? 
Explain. After a long time has passed, generate an expression 
for the tangential velocity profile, namely uu as a function of 
(at most) r, vi, Ri, Ro, r, and m. Hint: Your answer may con-
tain an (unknown) constant, which can be obtained by speci-
fying a boundary condition at the inner cylinder surface.

4–47E  Converging duct flow is modeled by the steady, 
two-dimensional velocity field of Prob. 4–17. For the case in 
which U0 5 3.56 ft/s and b 5 7.66 s21, plot several stream-
lines from x 5 0 ft to 5 ft and y 5 22 ft to 2 ft. Be sure to 
show the direction of the streamlines.

Motion and Deformation of Fluid Elements; 
Vorticity and Rotationality

4–48C  Explain the relationship between vorticity and rota-
tionality.

4–49C  Name and briefly describe the four fundamental 
types of motion or deformation of fluid particles.

4–50  Converging duct flow (Fig. P4–17) is modeled by 
the steady, two-dimensional velocity field of Prob. 4–17. 
Is this flow field rotational or irrotational? Show all your 
work.  Answer: irrotational

4–51  Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4–17. A fluid particle (A) 
is located on the x-axis at x 5 xA at time t 5 0 (Fig. P4–51). 

Fluid particle at
some later time t

Fluid particle at
 time t = 0

y

A
x A9

FIGURE P4–51

At some later time t, the fluid particle has moved downstream 
with the flow to some new location x 5 xA9, as shown in the 
figure. Since the flow is symmetric about the x-axis, the fluid 
particle remains on the x-axis at all times. Generate an ana-
lytical expression for the x-location of the fluid particle at 
some arbitrary time t in terms of its initial location xA and 
constants U0 and b. In other words, develop an expression 
for xA9. (Hint: We know that u 5 dxparticle/dt following a fluid 
particle. Plug in u, separate variables, and integrate.)

4–52  Converging duct flow is modeled by the steady, 
two-dimensional velocity field of Prob. 4–17. Since the 
flow is symmetric about the x-axis, line segment AB along 
the x-axis remains on the axis, but stretches from length 
j to length j 1  Dj as it flows along the channel center-
line (Fig. P4–52). Generate an analytical expression for the 
change in length of the line segment, Dj. (Hint: Use the 
result of Prob. 4–51.)  Answer: (xB 2 xA)(e

bt 2 1)

4–53  Using the results from Prob. 4–52 and the funda-
mental definition of linear strain rate (the rate of increase in 
length per unit length), develop an expression for the linear 
strain rate in the x-direction (exx) of fluid particles located 
on the centerline of the channel. Compare your result to the 
general expression for exx in terms of the velocity field, i.e., 
exx 5 −u/−x. (Hint: Take the limit as time t → 0. You may 
need to apply a truncated series expansion for ebt.)  Answer: b

4–54  Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4–17. A fluid particle (A) 
is located at x 5 xA and y 5 yA at time t 5 0 (Fig. P4–54). 
At some later time t, the fluid particle has moved down-
stream with the flow to some new location x 5 xA9, y 5 yA9, 
as shown in the figure. Generate an analytical expression 
for the y-location of the fluid particle at arbitrary time t 
in terms of its initial y-location yA and constant b. In other 
words, develop an expression for yA9. (Hint: We know that 
v 5 dyparticle/dt following a fluid particle. Substitute the equa-
tion for v, separate variables, and integrate.)  Answer: yAe

2bt

y

A B
B9

A9

x

FIGURE P4–52
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4–55  Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4–17. As vertical line 
segment AB moves downstream it shrinks from length h to 
length h 1 Dh as sketched in Fig. P4–55. Generate an ana-
lytical expression for the change in length of the line seg-
ment, Dh. Note that the change in length, Dh, is negative. 
(Hint: Use the result of Prob. 4–54.)

4–58  A general equation for a steady, two-dimensional 
velocity field that is linear in both spatial directions (x and y) is

V
!
5 (u, v) 5 (U 1 a1x 1 b1y)  i  

!
1 (V 1 a2x 1 b2y)  j 

!

 where U and V and the coefficients are constants. Their dimen-
sions are assumed to be appropriately defined. Calculate the 
x- and y-components of the acceleration field.

4–59  For the velocity field of Prob. 4–58, what relationship 
must exist between the coefficients to ensure that the flow 
field is incompressible?  Answer: a1 1 b2 5 0

4–60  For the velocity field of Prob. 4–58, calculate the lin-
ear strain rates in the x- and y-directions.  Answers: a1, b2

4–61  For the velocity field of Prob. 4–58, calculate the 
shear strain rate in the xy-plane.

4–62  Combine your results from Probs. 4–60 and 4–61 to 
form the two-dimensional strain rate tensor eij in the xy-plane,

eij 5 ¢exx   exy

eyx   eyy

 

 Under what conditions would the x- and y-axes be principal 
axes?  Answer: b1 1 a2 5 0

4–63  For the velocity field of Prob. 4–58, calculate the 
vorticity vector. In which direction does the vorticity vector 
point?  Answer: (a2 2 b1)k

→ 
in z 2 direction

4–64  Consider steady, incompressible, two-dimensional shear 
flow for which the velocity field is

V
!
5 (u, v) 5 (a 1 by)  i  

!
1 0  j 

!

 where a and b are constants. Sketched in Fig. P4–64 is a 
small rectangular fluid particle of dimensions dx and dy at 
time t. The fluid particle moves and deforms with the flow 
such that at a later time (t 1 dt), the particle is no longer rect-
angular, as also shown in the figure. The initial location of 
each corner of the fluid particle is labeled in Fig. P4–64. The 
lower-left corner is at (x, y) at time t, where the x-component 

4–56  Using the results of Prob. 4–55 and the fundamental 
definition of linear strain rate (the rate of increase in length 
per unit length), develop an expression for the linear strain 
rate in the y-direction (eyy) of fluid particles moving down the 
channel. Compare your result to the general expression for 
eyy in terms of the velocity field, i.e., eyy 5 −v/−y. (Hint: Take 
the limit as time t → 0. You may need to apply a truncated 
series expansion for e2bt.)

4–57  Converging duct flow is modeled by the steady, 
two-dimensional velocity field of Prob. 4–17. Use the equa-
tion for volumetric strain rate to verify that this flow field is 
incompressible.

Particle at time t
Particle at
time t + dt

y

x

(x + dx, y + dy)

u = a + by

dy

(x + dx, y)

(x, y + dy)

(x, y)

dx dx

dx dx

FIGURE P4–64

y

A
A9

B9

B

x

h

FIGURE P4–55

Fluid particle at
some later time t

Fluid particle at
 time t = 0

y
A

A9

x

FIGURE P4–54
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of velocity is u 5 a 1 by. At the later time, this corner moves 
to (x 1 u dt, y), or

(x 1 (a 1 by) dt, y)

 (a) In similar fashion, calculate the location of each of the 
other three corners of the fluid particle at time t 1 dt.
 (b) From the fundamental definition of linear strain rate (the 
rate of increase in length per unit length), calculate linear 
strain rates exx and eyy.  Answers: 0, 0

 (c) Compare your results with those obtained from the equa-
tions for exx and eyy in Cartesian coordinates, i.e.,

exx 5
0u
0x
  eyy 5

0v
0y

4–65  Use two methods to verify that the flow of Prob. 4–64 
is incompressible: (a) by calculating the volume of the fluid 
particle at both times, and (b) by calculating the volumetric 
strain rate. Note that Prob. 4–64 should be completed before 
this problem.

4–66  Consider the steady, incompressible, two-dimensional 
flow field of Prob. 4–64. Using the results of Prob. 4–64(a), 
do the following:
 (a) From the fundamental definition of shear strain rate 
(half of the rate of decrease of the angle between two initially 
perpendicular lines that intersect at a point), calculate shear 
strain rate exy in the xy-plane. (Hint: Use the lower edge and 
the left edge of the fluid particle, which intersect at 908 at the 
lower-left corner of the particle at the initial time.)
 (b) Compare your results with those obtained from the equa-
tion for exy in Cartesian coordinates, i.e.,

exy 5
1

2
 ¢ 0u
0y

1
0v
0x

Answers: (a) b/2, (b) b/2

4–67  Consider the steady, incompressible, two-dimensional 
flow field of Prob. 4–64. Using the results of Prob. 4–64(a), 
do the following:
 (a) From the fundamental definition of the rate of rotation 
(average rotation rate of two initially perpendicular lines that 
intersect at a point), calculate the rate of rotation of the fluid 
particle in the xy-plane, vz. (Hint: Use the lower edge and the 
left edge of the fluid particle, which intersect at 908 at the 
lower-left corner of the particle at the initial time.)
 (b) Compare your results with those obtained from the equa-
tion for vz in Cartesian coordinates, i.e.,

vz 5
1

2
 ¢ 0v
0x

2
0u
0y

Answers: (a) 2b/2, (b) 2b/2

4–68  From the results of Prob. 4–67,
 (a) Is this flow rotational or irrotational?
 (b) Calculate the z-component of vorticity for this flow field.

4–69  A two-dimensional fluid element of dimensions dx 
and dy translates and distorts as shown in Fig. P4–69 during 
the infinitesimal time period dt 5 t2 2 t1. The velocity com-
ponents at point P at the initial time are u and v in the x- and 
y-directions, respectively. Show that the magnitude of the rate 
of rotation (angular velocity) about point P in the xy-plane is

vz 5
1

2
 ¢ 0v
0x

2
0u
0y

y

x

Fluid element
at time t2

Fluid element
at time t1

Line a

Line b

Line b

Line a

P9

B9

B

dy

dx

A

u

P

v

A9

FIGURE P4–69

4–70  A two-dimensional fluid element of dimensions dx 
and dy translates and distorts as shown in Fig. P4–69 dur-
ing the infinitesimal time period dt 5 t2 2 t1. The velocity 
components at point P at the initial time are u and v in the 
x- and y-directions, respectively. Consider the line segment 
PA in Fig. P4–69, and show that the magnitude of the linear 
strain rate in the x-direction is

exx 5
0u
0x

4–71  A two-dimensional fluid element of dimensions dx 
and dy translates and distorts as shown in Fig. P4–69 dur-
ing the infinitesimal time period dt 5 t2 2 t1. The velocity 
components at point P at the initial time are u and v in the 
x- and y-directions, respectively. Show that the magnitude of 
the shear strain rate about point P in the xy-plane is

exy 5
1

2
 ¢ 0u
0y

1
0v
0x

4–72  Consider a steady, two-dimensional, incompress-
ible flow field in the xy-plane. The linear strain rate in the 
x-direction is 2.5 s21. Calculate the linear strain rate in the 
y-direction.
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4–73  A cylindrical tank of water rotates in solid-body rota-
tion, counterclockwise about its vertical axis (Fig. P4–73) at 
angular speed n

.
 5 175 rpm. Calculate the vorticity of fluid 

particles in the tank.  Answer: 36.7 k
→
 rad/s

y-axes, but has deformed into a rectangle of horizontal length 
2a. What is the vertical length of the rectangular fluid par-
ticle at this later time?

4–77  Consider a two-dimensional, compressible flow field 
in which an initially square fluid particle moves and deforms. 
The fluid particle dimension is a at time t and is aligned with 
the x- and y-axes as sketched in Fig. P4–76. At some later 
time, the particle is still aligned with the x- and y-axes but has 
deformed into a rectangle of horizontal length 1.08a and verti-
cal length 0.903a. (The particle’s dimension in the z-direction 
does not change since the flow is two-dimensional.) By what 
percentage has the density of the fluid particle increased or 
decreased?

4–78  Consider the following steady, three-dimensional veloc-
ity field:

V
!
5 (u, v, w) 

 5 (3.0 1 2.0x 2 y)  i  

!
1 (2.0x 2 2.0y)   j  

!
1 (0.5xy)k

!

 Calculate the vorticity vector as a function of space (x, y, z).

4–79  Consider fully developed Couette flow—flow between 
two infinite parallel plates separated by distance h, with the 
top plate moving and the bottom plate stationary as illustrated 
in Fig. P4–79. The flow is steady, incompressible, and two-
dimensional in the xy-plane. The velocity field is given by

V
!
5 (u, v) 5 V 

y

h
  i  

!
1 0  j 

!

 Is this flow rotational or irrotational? If it is rotational, cal-
culate the vorticity component in the z-direction. Do fluid 
particles in this flow rotate clockwise or counterclockwise?
Answers: yes, 2V/h, clockwise

4–80  For the Couette flow of Fig. P4–79, calculate the lin-
ear strain rates in the x- and y-directions, and calculate the 
shear strain rate exy.

4–81  Combine your results from Prob. 4–80 to form the 
two-dimensional strain rate tensor eij,

eij 5 ¢ exx  exy

eyx  eyy 

 Are the x- and y-axes principal axes?

y

x

a

a

FIGURE P4–76

x

y
h u = V 

y
h

V

FIGURE P4–79

n∙

Liquid

Free 
surface

z
rrim

r

FIGURE P4–73

4–74  A cylindrical tank of water rotates about its verti-
cal axis (Fig. P4–73). A PIV system is used to measure the 
vorticity field of the flow. The measured value of vorticity 
in the z-direction is 245.4 rad/s and is constant to within 
60.5 percent everywhere that it is measured. Calculate the 
angular speed of rotation of the tank in rpm. Is the tank rotat-
ing clockwise or counterclockwise about the vertical axis?

4–75  A cylindrical tank of radius rrim 5 0.354 m rotates about 
its vertical axis (Fig. P4–73). The tank is partially filled with 
oil. The speed of the rim is 3.61 m/s in the counterclockwise 
direction (looking from the top), and the tank has been spin-
ning long enough to be in solid-body rotation. For any fluid 
particle in the tank, calculate the magnitude of the component 
of vorticity in the vertical z-direction.  Answer: 20.4 rad/s

4–76  Consider a two-dimensional, incompressible flow 
field in which an initially square fluid particle moves and 
deforms. The fluid particle dimension is a at time t and is 
aligned with the x- and y-axes as sketched in Fig. P4–76. At 
some later time, the particle is still aligned with the x- and 
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4–82  A steady, three-dimensional velocity field is given by

 V
!
5 (u, v, w)

 5 (2.49 1 1.36x 2 0.867y)  i  

!

 1 (1.95x 2 1.36y)  j 

!
1 (2 0.458xy)k

!

Calculate the vorticity vector as a function of space variables 
(x, y, z).

4–83  A steady, two-dimensional velocity field is given by

 V
!
5 (u, v)

 5 (2.85 1 1.26x 2 0.896y)  i  

!

 1 (3.45x 1 cx 2 1.26y)  j  

!

Calculate constant c such that the flow field is irrotational.

4–84  A steady, three-dimensional velocity field is given by

 V
!
5 (1.35 1 2.78x 1 0.754y 1 4.21z)  i  

!

 1 (3.45 1 cx 2 2.78y 1 bz)  j  

!

 1 (24.21x 2 1.89y)k
!

Calculate constants b and c such that the flow field is 
irrotational.

4–85  A steady, three-dimensional velocity field is given by

 V
!
5 (0.657 1 1.73x 1 0.948y 1 az)  i  

!

 1 (2.61 1 cx 1 1.91y 1 bz)  j 

!

 1 (22.73x 2 3.66y 2 3.64z)k
!

Calculate constants a, b, and c such that the flow field is 
irrotational.

4–86E  Converging duct flow is modeled by the steady, 
two-dimensional velocity field of Prob. 4–17. 

For the case in which U0 5 5.0 ft/s and b 5 4.6 s21, consider 

an initially square fluid particle of edge dimension 0.5 ft, 
centered at x 5 0.5 ft and y 5 1.0 ft at t 5 0 (Fig. P4–86E). 
Carefully calculate and plot where the fluid particle will be 
and what it will look like at time t 5 0.2 s later. Comment on 
the fluid particle’s distortion. (Hint: Use the results of 
Probs. 4–51 and 4–54.)

4–87E  Based on the results of Prob. 4–86E, verify that this 
converging duct flow field is indeed incompressible.

Reynolds Transport Theorem

4–88C  Briefly explain the similarities and differences 
between the material derivative and the Reynolds transport 
theorem.

4–89C  Briefly explain the purpose of the Reynolds trans-
port theorem (RTT). Write the RTT for extensive property B 
as a “word equation,” explaining each term in your own 
words.

4–90C  True or false: For each statement, choose whether 
the statement is true or false and discuss your answer briefly.
 (a) The Reynolds transport theorem is useful for transform-
ing conservation equations from their naturally occurring 
control volume forms to their system forms.
 (b) The Reynolds transport theorem is applicable only to 
nondeforming control volumes.
 (c) The Reynolds transport theorem can be applied to both 
steady and unsteady flow fields.
 (d) The Reynolds transport theorem can be applied to both 
scalar and vector quantities.

4–91  Consider the integral 
d

dt#
2t

t

x22dx. Solve it two ways:

 (a) Take the integral first and then the time derivative.
 (b) Use Leibniz theorem. Compare your results.

4–92  Solve the integral 
d

dt#
2t

t

xxdx as far as you are able.

4–93  Consider the general form of the Reynolds transport 
theorem (RTT) given by

dBsys

dt
5

d

dt
 #

CV
 rb dV 1 #

CS
 rbV

!
r·n
!
 dA

 where V
!
r is the velocity of the fluid relative to the control 

surface. Let Bsys be the mass m of a closed system of fluid 
particles. We know that for a system, dm/dt 5 0 since no 
mass can enter or leave the system by definition. Use the 
given equation to derive the equation of conservation of mass 
for a control volume.

4–94  Consider the general form of the Reynolds transport 
theorem (RTT) as stated in Prob. 4–93. Let Bsys be the linear 
momentum mV

!
 of a system of fluid particles. We know that 

for a system, Newton’s second law is

a F
!
5 ma

!
5 m

dV
!

dt
5

d

dt
 (mV

!
)sys

Initially square fluid
particle at t = 0

Unknown shape and
location of fluid particle
at later time t 

y

x
?

FIGURE P4–86E
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 Use the RTT and Newton’s second law to derive the linear 
momentum equation for a control volume.

4–95  Consider the general form of the Reynolds transport 
theorem (RTT) as stated in Prob. 4–93. Let Bsys be the angu-
lar momentum H

→
 5 r→ 3 mV

!
 of a system of fluid particles, 

where r→ is the moment arm. We know that for a system, con-
servation of angular momentum is

a M
!
5

d

dt
 H
!
sys

 where S M
→

 is the net moment applied to the system. Use the 
RTT and the above equation to derive the equation of conser-
vation of angular momentum for a control volume.

4–96  Reduce the following expression as far as possible:

F(t) 5
d

dt
 #

x5Bt

x5At

 e22x2
 dx

 (Hint: Use the one-dimensional Leibniz theorem.)  Answer: 

Be2B2t2

2 Ae2A2t2

Review Problems

4–97  Consider a steady, two-dimensional flow field in the 
xy-plane whose x-component of velocity is given by

u 5 a 1 b(x 2 c)2

 where a, b, and c are constants with appropriate dimensions. 
Of what form does the y-component of velocity need to be in 
order for the flow field to be incompressible? In other words, 
generate an expression for v as a function of x, y, and the 
constants of the given equation such that the flow is incom-
pressible.  Answer: 22b(x 2 c)y 1 f(x)

4–98  In a steady, two-dimensional flow field in the xy-
plane, the x-component of velocity is

u 5 ax 1 by 1 cx2

where a, b, and c are constants with appropriate dimensions. 
Generate a general expression for velocity component v such 
that the flow field is incompressible.

4–99  Consider fully developed two-dimensional Poiseuille 
flow—flow between two infinite parallel plates separated by 
distance h, with both the top plate and bottom plate station-
ary, and a forced pressure gradient dP/dx driving the flow as 
illustrated in Fig. P4–99. (dP/dx is constant and negative.) 

The flow is steady, incompressible, and two-dimensional in 
the xy-plane. The velocity components are given by

u 5
1

2m
 
dP

dx
 (y2 2 hy)  v 5 0

 where m is the fluid’s viscosity. Is this flow rotational or irro-
tational? If it is rotational, calculate the vorticity component 
in the z-direction. Do fluid particles in this flow rotate clock-
wise or counterclockwise?

4–100  For the two-dimensional Poiseuille flow of Prob. 4–99, 
calculate the linear strain rates in the x- and y-directions, and 
calculate the shear strain rate exy.

4–101  Combine your results from Prob. 4–100 to form the 
two-dimensional strain rate tensor eij in the xy-plane,

eij 5 ¢exx exy

eyx eyy 

 Are the x- and y-axes principal axes?

4–102  Consider the two-dimensional Poiseuille flow of 
Prob. 4–99. The fluid between the plates is water 

at 408C. Let the gap height h 5 1.6 mm and the pressure gra-
dient dP/dx 5 2230 N/m3. Calculate and plot seven pathlines 
from t 5 0 to t 5 10 s. The fluid particles are released at x 5 0 
and at y 5 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 mm.

4–103  Consider the two-dimensional Poiseuille flow 
of Prob. 4–99. The fluid between the plates is 

water at 408C. Let the gap height h 5 1.6 mm and the pres-
sure gradient dP/dx 5 2230 N/m3. Calculate and plot seven 
streaklines generated from a dye rake that introduces dye 
streaks at x 5 0 and at y 5 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 
1.4 mm (Fig. P4–103). The dye is introduced from t 5 0 to 
t 5 10 s, and the streaklines are to be plotted at t 5 10 s.

4–104  Repeat Prob. 4–103 except that the dye is intro-
duced from t 5 0 to t 5 10 s, and the streak-

lines are to be plotted at t 5 12 s instead of 10 s.

4–105  Compare the results of Probs. 4–103 and 4–104 
and comment about the linear strain rate in the 

x-direction.

4–106  Consider the two-dimensional Poiseuille flow of 
Prob. 4–99. The fluid between the plates is water 

x

y

u(y)

h

FIGURE P4–99

x

y

u(y)
Dye rake

h

FIGURE P4–103

133-184_cengel_ch04.indd   180 12/21/12   2:20 PM



CHAPTER 4
181

at 408C. Let the gap height h 5 1.6 mm and the pressure gra-
dient dP/dx 5 2230 N/m3. Imagine a hydrogen bubble wire 
stretched vertically through the channel at x 5 0 (Fig. P4–106). 
The wire is pulsed on and off such that bubbles are produced 
periodically to create timelines. Five distinct timelines are gen-
erated at t 5 0, 2.5, 5.0, 7.5, and 10.0 s. Calculate and plot 
what these five timelines look like at time t 5 12.5 s.

calculate the shear strain rate exr. The strain rate tensor in 
cylindrical coordinates (r, u, x) and (ur, uu, ux), is

 eij 5 £err

eur
exr

eru

euu
exu

erx

eux
exx

 5 ¶ 0ur

0r
1

2
 ar 

0
0r

 auu
r
b 1

1

r
 
0ur

0u
b

1

2
 a 0ur

0x
1
0ux

0r
b

1

2
 ar 

0
0r

 auu
r
b 1

1

r
 
0ur

0u
b

1

r
 
0uu
0u

1
ur

r

1

2
 a1

r
 
0ux

0u
1
0uu
0x

b
1

2
 a 0ur

0x
1
0ux

0r
b

1

2
 a1

r
 
0ux

0u
1
0uu
0x

b
0ux

0x

4–111  Combine your results from Prob. 4–110 to form the 
axisymmetric strain rate tensor eij,

eij 5 aerr

exr

erx

exx

b
 Are the x- and r-axes principal axes?

4–112  We approximate the flow of air into a vacuum 
cleaner attachment by the following velocity components in 
the centerplane (the xy-plane):

u 5
2 V
#
x

pL
 

x2 1 y2 1 b2

x4 1 2x2y2 1 2x2b2 1 y4 2 2y2b2 1 b4

 and

v 5
2V
#

y

pL
 

x2 1 y2 2 b2

x4 1 2x2y2 1 2x2b2 1 y4 2 2y2b2 1 b4

 where b is the distance of the attachment above the floor, L 
is the length of the attachment, and V

.
 is the volume flow rate 

of air being sucked up into the hose (Fig. P4–112). Deter-
mine the location of any stagnation point(s) in this flow field.
Answer: at the origin

4–107  The velocity field of a flow is given by 
V
!
5 k(x2 2 y2)  i  

!
2 2kxy   j  

!
 where k is a constant. If the radius 

of curvature of a streamline is R 5 [1 1 y92]3/2/uy0 u , deter-
mine the normal acceleration of a particle (which is normal 
to the streamline) passing through the position x 5 l, y 5 2.

4–108  The velocity field for an incompressible flow is 
given as V

!
5 5x2

 i  

!
2 20 xy j 

!
1 100t k

!
. Determine if this flow 

is steady. Also determine the velocity and acceleration of a 
particle at (l, 3, 3) at t 5 0.2 s.

4–109  Consider fully developed axisymmetric Poiseuille 
flow—flow in a round pipe of radius R (diameter D 5 2R), 
with a forced pressure gradient dP/dx driving the flow as 
illustrated in Fig. P4–109. (dP/dx is constant and negative.) 
The flow is steady, incompressible, and axisymmetric about 
the x-axis. The velocity components are given by

u 5
1

4m
 
dP

dx
 (r2 2 R2)  ur 5 0  uu 5 0

 where m is the fluid’s viscosity. Is this flow rotational or irro-
tational? If it is rotational, calculate the vorticity component 
in the circumferential (u) direction and discuss the sign of the 
rotation.

x

u(y)
H2 wire

h
y

FIGURE P4–106

u(r)

D

R

u

r

x

FIGURE P4–109

4–110  For the axisymmetric Poiseuille flow of Prob. 4–109, 
calculate the linear strain rates in the x- and r-directions, and 

Floor

y

L

z x
b

FIGURE P4–112
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 (b) For the particular case in which V 5 1.00 m/s and cylinder 
radius a 5 10.0 cm, plot several streamlines in the upstream half 
of the flow (908 , u , 2708). For consistency, plot in the range 
20.4 m , x , 0 m, 20.2 m , y , 0.2 m, with stream function 
values evenly spaced between 20.16 m2/s and 0.16 m2/s.

4–119  Consider the flow field of Prob. 4–116 (flow over a 
circular cylinder). Calculate the two linear strain rates in the 
ru-plane; i.e., calculate err and euu. Discuss whether fluid line 
segments stretch (or shrink) in this flow field. (Hint: The strain 
rate tensor in cylindrical coordinates is given in Prob. 4–110.)

4–120  Based on your results of Prob. 4–119, discuss the 
compressibility (or incompressibility) of this flow.  Answer: 

flow is incompressible

4–121  Consider the flow field of Prob. 4–116 (flow over a 
circular cylinder). Calculate eru, the shear strain rate in the 
ru-plane. Discuss whether fluid particles in this flow deform 
with shear or not. (Hint: The strain rate tensor in cylindrical 
coordinates is given in Prob. 4–110.)

Fundamentals of Engineering (FE) Exam Problems

4–122  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (2.5 2 1.6x)  i  

!
1 (0.7 1 1.6y)  j  

!

 where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The values of x and y at the stagna-
tion point, respectively, are
(a) 0.9375 m, 0.375 m (b) 1.563 m, 20.4375 m 
(c) 2.5 m, 0.7 m (d ) 0.731 m, 1.236 m (e) 21.6 m, 0.8 m

4–117  Consider the flow field of Prob. 4–116 (flow over 
a circular cylinder). Consider only the front half of the flow 
(x , 0). There is one stagnation point in the front half of the 
flow field. Where is it? Give your answer in both cylindrical 
(r, u) coordinates and Cartesian (x, y) coordinates.

4–113  Consider the vacuum cleaner of Prob. 4–112. For the 
case where b 5 2.0 cm, L 5 35 cm, and V

.
 5 0.1098 m3/s, cre-

ate a velocity vector plot in the upper half of the xy-plane from 
x 5 23 cm to 3 cm and from y 5 0 cm to 2.5 cm. Draw as 
many vectors as you need to get a good feel of the flow field. 
Note: The velocity is infinite at the point (x, y) 5 (0, 2.0 cm), 
so do not attempt to draw a velocity vector at that point.

4–114  Consider the approximate velocity field given for 
the vacuum cleaner of Prob. 4–112. Calculate the flow speed 
along the floor. Dust particles on the floor are most likely to 
be sucked up by the vacuum cleaner at the location of maxi-
mum speed. Where is that location? Do you think the vacuum 
cleaner will do a good job at sucking up dust directly below 
the inlet (at the origin)? Why or why not?

4–115  In a steady, two-dimensional flow field in the xy-
plane, the x-component of velocity is

u 5 ax 1 by 1 cx2 2 dxy

where a, b, c, and d are constants with appropriate dimen-
sions. Generate a general expression for velocity component 
v such that the flow field is incompressible.

4–116  There are numerous occasions in which a fairly uni-
form free-stream flow encounters a long circular cylinder 
aligned normal to the flow (Fig. P4–116). Examples include 
air flowing around a car antenna, wind blowing against a 
flag pole or telephone pole, wind hitting electrical wires, and 
ocean currents impinging on the submerged round beams that 
support oil platforms. In all these cases, the flow at the rear of 
the cylinder is separated and unsteady, and usually turbulent. 
However, the flow in the front half of the cylinder is much 
more steady and predictable. In fact, except for a very thin 
boundary layer near the cylinder surface, the flow field may 
be approximated by the following steady, two-dimensional 
velocity components in the xy- or ru-plane:

ur 5 V cos ua1 2
a2

r2b  uu 5 2V  sin ua1 1
a2

r2b
 Is this flow field rotational or irrotational? Explain.

4–118  Consider the upstream half (x , 0) of the flow 
field of Prob. 4–116 (flow over a circular cylin-

der). We introduce a parameter called the stream function c, 
which is constant along streamlines in two-dimensional flows 
such as the one being considered here (Fig. P4–118). The 
velocity field of Prob. 4–116 corresponds to a stream func-
tion given by

c 5 V sin uar 2
a2

r
b

 (a) Setting c to a constant, generate an equation for a 
streamline. (Hint: Use the quadratic rule to solve for r as a 
function of u.)

V
y

r = a

r

u

x

FIGURE P4–116
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4–123  Water is flowing in a 3-cm-diameter garden hose at 
a rate of 30 L/min. A 20-cm nozzle is attached to the hose 
which decreases the diameter to 1.2 cm. The magnitude of 
the acceleration of a fluid particle moving down the center-
line of the nozzle is
(a) 9.81 m/s2 (b) 14.5 m/s2 (c) 25.4 m/s2 (d ) 39.1 m/s2

(e) 47.6 m/s2

4–124  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (2.5 2 1.6x)  i  

!
1 (0.7 1 1.6y)  j  

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The x-component of the accelera-
tion vector ax is
(a) 0.8y (b) 21.6x (c) 2.5x 2 1.6 (d ) 2.56x 2 4 
(e) 2.56x 1 0.8y

4–125  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (2.5 2 1.6x)  i  

!
1 (0.7 1 1.6y)   j

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The x- and y-component of mate-
rial acceleration ax and ay at the point (x 5 1 m, y 5 1 m), 
respectively, in m/s2, are
(a) 21.44, 3.68 (b) 21.6, 1.5 (c) 3.1, 21.32 
(d ) 2.56, 24 (e) 20.8, 1.6

4–126  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (0.65 1 1.7x)  i  

!
1 (1.3 2 1.7y)  j 

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The y-component of the accelera-
tion vector ay is
(a) l.7y (b) 2l.7y (c) 2.89y 2 2.21 (d ) 3.0x 2 2.73 
(e) 0.84y 1 1.42

4–127  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (0.65 1 1.7x)  i  

!
1 (1.3 2 1.7y)  j 

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The x- and y-component of mate-
rial acceleration ax and ay at the point (x 5 0 m, y 5 0 m), 
respectively, in m/s2, are
(a) 0.37, 21.85 (b) 21.7, 1.7 (c) 1.105, 22.21 
(d ) 1.7, 21.7 (e) 0.65, 1.3

4–128  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (0.65 1 1.7x)  i  

!
1 (1.3 2 1.7y)  j 

!

where the x- and y-coordinates are in meters and the magnitude 
of velocity is in m/s. The x- and y-component of velocity u 
and v at the point (x 5 1 m, y 5 2 m), respectively, in m/s, are
(a) 0.54, 22.31 (b) 21.9, 0.75 (c) 0.598, 22.21
(d ) 2.35, 22.1 (e) 0.65, 1.3

4–129  The actual path traveled by an individual fluid par-
ticle over some period is called a
(a) Pathline (b) Streamtube (c) Streamline 
(d ) Streakline (e) Timeline

4–130  The locus of fluid particles that have passed sequen-
tially through a prescribed point in the flow is called a
(a) Pathline (b) Streamtube (c) Streamline
(d ) Streakline (e) Timeline

4–131  A curve that is everywhere tangent to the instanta-
neous local velocity vector is called a
(a) Pathline (b) Streamtube (c) Streamline
(d ) Streakline (e) Timeline

4–132  An array of arrows indicating the magnitude and 
direction of a vector property at an instant in time is called a
(a) Profiler plot (b) Vector plot (c) Contour plot 
(d ) Velocity plot (e) Time plot

4–133  The CFD stands for
(a) Compressible fluid dynamics
(b) Compressed flow domain
(c) Circular flow dynamics
(d ) Convective fluid dynamics
(e) Computational fluid dynamics

4–134  Which one is not a fundamental type of motion or 
deformation an element may undergo in fluid mechanics?
(a) Rotation (b) Converging (c) Translation
(d ) Linear strain (e) Shear strain

4–135  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (2.5 2 1.6 x)  i  

!
1 (0.7 1 1.6y)  j 

!

where the x- and y-coordinates are in meters and the magnitude 
of velocity is in m/s. The linear strain rate in the x-direction in 
s21 is
(a) 21.6 (b) 0.8 (c) 1.6 (d ) 2.5 (e) 20.875

4-136  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (2.5 2 1.6 x)  i  

!
1 (0.7 1 1.6y)  j 

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The shear strain rate in s21 is
(a) 21.6 (b) 1.6 (c) 2.5 (d ) 0.7 (e) 0

4–137  A steady, two-dimensional velocity field is given by

V
!
5 (u, v) 5 (2.5 2 1.6 x)  i  

!
1 (0.7 1 0.8y)  j 

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The volumetric strain rate in s21 is
(a) 0 (b) 3.2  (c) 20.8 (d ) 0.8 (e) 21.6

4–138  If the vorticity in a region of the flow is zero, the 
flow is
(a) Motionless (b) Incompressible (c) Compressible 
(d ) Irrotational (e) Rotational
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4–141  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (2xy 1 1)  i  

!
1 (2y2 2 0.6)  j 

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The angular velocity of this flow is
(a) 0 (b) 22yk

!
 (c) 2yk

!
 (d ) 22xk

!
 (e) 2xk

!

4–142  A cart is moving at a constant absolute velocity 
V
!
cart  5 5 km/h to the right. A high-speed jet of water at an 

absolute velocity of V
!
jet  5 15 km/h to the right strikes the 

back of the car. The relative velocity of the water is
(a) 0 km/h (b) 5 km/h (c) 10 km/h (d ) 15 km/h (e) 20 km/h

4–139  The angular velocity of a fluid particle is 20 rad/s. 
The vorticity of this fluid particle is
(a) 20 rad/s (b) 40 rad/s (c) 80 rad/s (d ) 10 rad/s 
(e) 5 rad/s

4–140  A steady, incompressible, two-dimensional velocity 
field is given by

V
!
5 (u, v) 5 (0.75 1 1.2 x)  i  

!
1 (2.25 2 1.2y)  j 

!

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The vorticity of this flow is

(a) 0 (b) 1.2yk
!
 (c) 21.2yk

!
 (d ) yk

!
 (e) 21.2xyk

!
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    CHAPTER

5
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Apply the conservation of mass 
equation to balance the incom-
ing and outgoing flow rates in a 
flow system

■ Recognize various forms of me-
chanical energy, and work with 
energy conversion efficiencies

■ Understand the use and limita-
tions of the Bernoulli equation, 
and apply it to solve a variety of 
fluid flow problems

■ Work with the energy equation 
expressed in terms of heads, and 
use it to determine turbine power 
output and pumping power 
requirements

Wind turbine “farms” are being constructed all 
over the world to extract kinetic energy from 

the wind and convert it to electrical energy. 
The mass, energy, momentum, and angular 

momentum balances are utilized in the design 
of a wind turbine. The Bernoulli equation is also 

useful in the preliminary design stage.
© J. Luke/PhotoLink/Getty RF

B E R N O U L L I  A N D  E N E R G Y 
E Q U AT I O N S

This chapter deals with three equations commonly used in fluid mechan-
ics: the mass, Bernoulli, and energy equations. The mass equation is an 
expression of the conservation of mass principle. The Bernoulli equation 

is concerned with the conservation of kinetic, potential, and flow energies of 
a fluid stream and their conversion to each other in regions of flow where 
net viscous forces are negligible and where other restrictive conditions apply. 
The energy equation is a statement of the conservation of energy principle. In 
fluid mechanics, it is convenient to separate mechanical energy from thermal 
energy and to consider the conversion of mechanical energy to thermal energy 
as a result of frictional effects as mechanical energy loss. Then the energy 
equation becomes the mechanical energy balance.
 We start this chapter with an overview of conservation principles and the 
conservation of mass relation. This is followed by a discussion of various 
forms of mechanical energy and the efficiency of mechanical work devices 
such as pumps and turbines. Then we derive the Bernoulli equation by 
applying Newton’s second law to a fluid element along a streamline and 
demonstrate its use in a variety of applications. We continue with the devel-
opment of the energy equation in a form suitable for use in fluid mechanics 
and introduce the concept of head loss. Finally, we apply the energy equa-
tion to various engineering systems.
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5–1 ■  INTRODUCTION
You are already familiar with numerous conservation laws such as the 
laws of conservation of mass, conservation of energy, and conservation of 
momentum. Historically, the conservation laws are first applied to a fixed 
quantity of matter called a closed system or just a system, and then extended 
to regions in space called control volumes. The conservation relations are 
also called balance equations since any conserved quantity must balance 
during a process. We now give a brief description of the conservation of 
mass and energy relations, and the linear momentum equation (Fig. 5–1).

Conservation of Mass
The conservation of mass relation for a closed system undergoing a change 
is expressed as msys 5 constant or dmsys/dt 5 0, which is the statement that 
the mass of the system remains constant during a process. For a control vol-
ume (CV), mass balance is expressed in rate form as

Conservation of mass:  m  # in 2 m  # out 5
 dmCV 

  dt
  (5–1)

where m
.

in and m
.

out are the total rates of mass flow into and out of the con-
trol volume, respectively, and dmCV/dt is the rate of change of mass within 
the control volume boundaries. In fluid mechanics, the conservation of mass 
relation written for a differential control volume is usually called the conti-
nuity equation. Conservation of mass is discussed in Section 5–2.

The Linear Momentum Equation
The product of the mass and the velocity of a body is called the linear 
momentum or just the momentum of the body, and the momentum of a rigid 
body of mass m moving with a velocity V

!
 is mV

!
. Newton’s second law states 

that the acceleration of a body is proportional to the net force acting on it 
and is inversely proportional to its mass, and that the rate of change of the 
momentum of a body is equal to the net force acting on the body. Therefore, 
the momentum of a system remains constant only when the net force acting 
on it is zero, and thus the momentum of such systems is conserved. This 
is known as the conservation of momentum principle. In fluid mechanics, 
Newton’s second law is usually referred to as the linear momentum equation, 
which is discussed in Chap. 6 together with the angular momentum equation.

Conservation of Energy
Energy can be transferred to or from a closed system by heat or work, and 
the conservation of energy principle requires that the net energy transfer to 
or from a system during a process be equal to the change in the energy con-
tent of the system. Control volumes involve energy transfer via mass flow 
also, and the conservation of energy principle, also called the energy balance, 
is expressed as

Conservation of energy: E  
#
in 2 E  

#
out 5

dECV

dt
 (5–2)

where E
.

in and E
.

out are the total rates of energy transfer into and out of the 
control volume, respectively, and dECV/dt is the rate of change of energy 
within the control volume boundaries. In fluid mechanics, we usually limit 

FIGURE 5–1
Many fluid flow devices such as this 
Pelton wheel hydraulic turbine are 
analyzed by applying the conservation 
of mass and energy principles, along 
with the linear momentum equation.
Courtesy of Hydro Tasmania, www.hydro.com.au. 
Used by permission.
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our consideration to mechanical forms of energy only. Conservation of 
energy is discussed in Section 5–6.

5–2 ■  CONSERVATION OF MASS
The conservation of mass principle is one of the most fundamental prin-
ciples in nature. We are all familiar with this principle, and it is not difficult 
to understand. A person does not have to be a rocket scientist to figure out 
how much vinegar-and-oil dressing will be obtained by mixing 100 g of oil 
with 25 g of vinegar. Even chemical equations are balanced on the basis of 
the conservation of mass principle. When 16 kg of oxygen reacts with 2 kg 
of hydrogen, 18 kg of water is formed (Fig. 5–2). In an electrolysis process, 
the water separates back to 2 kg of hydrogen and 16 kg of oxygen.
 Technically, mass is not exactly conserved. It turns out that mass m and 
energy E can be converted to each other according to the well-known for-
mula proposed by Albert Einstein (1879–1955):

 E 5 mc2 (5–3)

where c is the speed of light in a vacuum, which is c 5 2.9979 3 108 m/s. 
This equation suggests that there is equivalence between mass and energy. 
All physical and chemical systems exhibit energy interactions with their sur-
roundings, but the amount of energy involved is equivalent to an extremely 
small mass compared to the system’s total mass. For example, when 1 kg 
of liquid water is formed from oxygen and hydrogen at normal atmospheric 
conditions, the amount of energy released is 15.8 MJ, which corresponds to 
a mass of only 1.76 3 10210 kg. However, in nuclear reactions, the mass 
equivalence of the amount of energy interacted is a significant fraction of 
the total mass involved. Therefore, in most engineering analyses, we con-
sider both mass and energy as conserved quantities.
 For closed systems, the conservation of mass principle is implicitly used by 
requiring that the mass of the system remain constant during a process. For 
control volumes, however, mass can cross the boundaries, and so we must 
keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates
The amount of mass flowing through a cross section per unit time is called 
the mass flow rate and is denoted by m

.
. The dot over a symbol is used to 

indicate time rate of change.
 A fluid flows into or out of a control volume, usually through pipes or 
ducts. The differential mass flow rate of fluid flowing across a small area 
element dAc in a cross section of a pipe is proportional to dAc itself, the fluid 
density r, and the component of the flow velocity normal to dAc, which we 
denote as Vn, and is expressed as (Fig. 5–3)

 dm# 5 rVn dAc (5–4)

Note that both d and d are used to indicate differential quantities, but d is 
typically used for quantities (such as heat, work, and mass transfer) that are 
path functions and have inexact differentials, while d is used for quantities 

2 kg
H2

16 kg
O2

18 kg
H2O

FIGURE 5–2
Mass is conserved even during 

chemical reactions.

dAc
Vn

V

n

Control surface

FIGURE 5–3
The normal velocity Vn for a surface 

is the component of velocity 
perpendicular to the surface.
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(such as properties) that are point functions and have exact differentials. For 
flow through an annulus of inner radius r1 and outer radius r2, for example,

#
2

1
dAc 5 Ac2 2 Ac1 5 p(r2

2 2 r1
2) but #

2

1
dm
#

5 m
#

total (total mass flow rate

through the annulus), not m
.

2 2 m
.

1. For specified values of r1 and r2, the 
value of the integral of dAc is fixed (thus the names point function and exact 
differential), but this is not the case for the integral of dm

.
 (thus the names 

path function and inexact differential).
 The mass flow rate through the entire cross-sectional area of a pipe or 
duct is obtained by integration:

 m# 5 #
Ac

dm# 5 #
Ac

rVn dAc  (kg/s) (5–5)

 While Eq. 5–5 is always valid (in fact it is exact), it is not always practical 
for engineering analyses because of the integral. We would like instead to 
express mass flow rate in terms of average values over a cross section of the 
pipe. In a general compressible flow, both r and Vn vary across the pipe. In 
many practical applications, however, the density is essentially uniform over 
the pipe cross section, and we can take r outside the integral of Eq. 5–5. 
Velocity, however, is never uniform over a cross section of a pipe because 
of the no-slip condition at the walls. Rather, the velocity varies from zero at 
the walls to some maximum value at or near the centerline of the pipe. We 
define the average velocity Vavg as the average value of Vn across the entire 
cross section of the pipe (Fig. 5–4),

Average velocity: Vavg 5
1

Ac
#
Ac

Vn dAc (5–6)

where Ac is the area of the cross section normal to the flow direction. Note 
that if the speed were Vavg all through the cross section, the mass flow rate 
would be identical to that obtained by integrating the actual velocity pro-
file. Thus for incompressible flow or even for compressible flow where r is 
approximated as uniform across Ac, Eq. 5–5 becomes

 m# 5 rVavg Ac  (kg/s) (5–7)

For compressible flow, we can think of r as the bulk average density over the 
cross section, and then Eq. 5–7 can be used as a reasonable approximation. For 
simplicity, we drop the subscript on the average velocity. Unless otherwise 
stated, V denotes the average velocity in the flow direction. Also, Ac denotes 
the cross-sectional area normal to the flow direction.
 The volume of the fluid flowing through a cross section per unit time is 
called the volume flow rate V

.
 (Fig. 5–5) and is given by

 V
#

5 #
Ac

Vn dAc 5 Vavg Ac 5 VAc  (m3/s) (5–8)

An early form of Eq. 5–8 was published in 1628 by the Italian monk Bene detto 
Castelli (circa 1577–1644). Note that many fluid mechanics textbooks use 
Q instead of V

.
 for volume flow rate. We use V

.
 to avoid confusion with heat 

transfer.
 The mass and volume flow rates are related by

 m# 5 rV
#

5
V
#

v
 (5–9)

Vavg

Cross section

Ac

V = VavgAc

FIGURE 5–5
The volume flow rate is the volume of 
fluid flowing through a cross section 
per unit time.

Vavg

FIGURE 5–4
Average velocity Vavg is defined 
as the average speed through a cross 
section.
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where v is the specific volume. This relation is analogous to m 5 rV 5 
V/v, which is the relation between the mass and the volume of a fluid in a 
container.

Conservation of Mass Principle
The conservation of mass principle for a control volume can be expressed 
as: The net mass transfer to or from a control volume during a time interval 
Dt is equal to the net change (increase or decrease) of the total mass within 
the control volume during Dt. That is,a Total mass entering

the CV during Dt
 b 2 a Total mass leaving

the CV during Dt
 b 5 a  Net change of mass

within the CV during Dt
 b

or

 min 2 mout 5 DmCV  (kg) (5–10)

where DmCV 5 mfinal – minitial is the change in the mass of the control volume 
during the process (Fig. 5–6). It can also be expressed in rate form as

 m# in 2 m# out 5 dmCV/dt  (kg/s) (5–11)

where m
.

in and m
.

out are the total rates of mass flow into and out of the con-
trol volume, and dmCV/dt is the rate of change of mass within the control 
volume boundaries. Equations 5–10 and 5–11 are often referred to as the 
mass balance and are applicable to any control volume undergoing any 
kind of process.
 Consider a control volume of arbitrary shape, as shown in Fig. 5–7. The 
mass of a differential volume dV within the control volume is dm 5 r dV. 
The total mass within the control volume at any instant in time t is deter-
mined by integration to be

Total mass within the CV: mCV 5 #
CV

  r  dV  (5–12)

Then the time rate of change of the amount of mass within the control volume 
is expressed as

Rate of change of mass within the CV: 
dmCV

dt
5

d

dt#CV
  r  dV  (5–13)

For the special case of no mass crossing the control surface (i.e., the con-
trol volume is a closed system), the conservation of mass principle reduces 
to dmCV/dt 5 0. This relation is valid whether the control volume is fixed, 
moving, or deforming.
 Now consider mass flow into or out of the control volume through a dif-
ferential area dA on the control surface of a fixed control volume. Let n→ be 
the outward unit vector of dA normal to dA and V

!
 be the flow velocity at 

dA relative to a fixed coordinate system, as shown in Fig. 5–7. In general, 
the velocity may cross dA at an angle u off the normal of dA, and the mass 
flow rate is proportional to the normal component of velocity V

!
n 5 V

!
 

cos u ranging from a maximum outflow of V
!
  for u 5 0 (flow is normal to 

dA) to a minimum of zero for u 5 90° (flow is tangent to dA) to a maximum 
inflow of V

!
 for u 5 180° (flow is normal to dA but in the opposite direction). 

Control
volume (CV)

Control surface (CS)

dV

dm
dA

n

V

u

FIGURE 5–7
The differential control volume dV 

and the differential control 
surface dA used in the derivation of 

the conservation of mass relation.

Water

Dmbathtub = min – mout =
 20 kg

min = 50 kg

mout = 30 kg

FIGURE 5–6
Conservation of mass principle 

for an ordinary bathtub.
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Making use of the concept of dot product of two vectors, the magnitude of 
the normal component of velocity is

Normal component of velocity: Vn 5 V cos u 5 V
!
·n
!
 (5–14)

The mass flow rate through dA is proportional to the fluid density r, normal 
velocity Vn, and the flow area dA, and is expressed as

Differential mass flow rate: dm# 5 rVn dA 5 r(V cos u) dA 5 r(V
!
·n
!
 ) dA (5–15)

The net flow rate into or out of the control volume through the entire con-
trol surface is obtained by integrating dm

.
 over the entire control surface,

Net mass flow rate: m# net 5 #
 CS

 dm# 5 #
 CS

 rVn dA 5 #
 CS

 r(V
!
·n
!
 ) dA (5–16)

Note that Vn 5 V
!
·n→ 5 V cos u is positive for u , 90° (outflow) and nega-

tive for u . 90° (inflow). Therefore, the direction of flow is automatically 
accounted for, and the surface integral in Eq. 5–16 directly gives the net 
mass flow rate. A positive value for m

.
net indicates a net outflow of mass and 

a negative value indicates a net inflow of mass.
 Rearranging Eq. 5–11 as dmCV/dt 1 m

.
out 2 m

.
in 5 0, the conservation of 

mass relation for a fixed control volume is then expressed as

General conservation of mass: 
d

dt
 #

 CV
 r dV 1 #

 CS
 r(V

!
·n
!
 ) dA 5 0 (5–17)

It states that the time rate of change of mass within the control volume plus 
the net mass flow rate through the control surface is equal to zero.
 The general conservation of mass relation for a control volume can also 
be derived using the Reynolds transport theorem (RTT) by taking the prop-
erty B to be the mass m (Chap. 4). Then we have b 5 1 since dividing 
mass by mass to get the property per unit mass gives unity. Also, the mass 
of a closed system is constant, and thus its time derivative is zero. That is, 
dmsys /dt 5 0. Then the Reynolds transport equation reduces immediately to 
Eq. 5–17, as shown in Fig. 5–8, and thus illustrates that the Reynolds trans-
port theorem is a very powerful tool indeed.
 Splitting the surface integral in Eq. 5–17 into two parts—one for the out-
going flow streams (positive) and one for the incoming flow streams 
(negative)—the general conservation of mass relation can also be expressed as

 
d

dt
 #

 CV
 r dV 1 a

out

  r k Vn k A 2 a
in

 r k Vn k A 5 0 (5–18)

where A represents the area for an inlet or outlet, and the summation signs 
are used to emphasize that all the inlets and outlets are to be considered. 
Using the definition of mass flow rate, Eq. 5–18 can also be expressed as

 
d

dt
 #

 CV
 r dV 5 a

in
m
#

2 a
out

m
#   or  

dmCV

dt
5 a

in
m
#

2 a
out

m
#  (5–19)

 There is considerable flexibility in the selection of a control volume when 
solving a problem. Many control volume choices are available, but some are 
more convenient to work with. A control volume should not introduce any 
unnecessary complications. A wise choice of a control volume can make the 
solution of a seemingly complicated problem rather easy. A simple rule in 
selecting a control volume is to make the control surface normal to the flow 

= +

B = m b = 1 b = 1

dBsys

dt
V

d

dt
CV
# rb(   · n ) dA

CS
#

= +
dmsys

dt
V

d

dt
CV
# r(   · n ) dA

CS
#rdV

rbdV

FIGURE 5–8
The conservation of mass equation 
is obtained by replacing B in the 
Reynolds transport theorem by 
mass m, and b by 1 (m per unit 
mass 5 m/m 5 1).
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at all locations where it crosses the fluid flow, whenever possible. This way 
the dot product V

!
·n→ simply becomes the magnitude of the velocity, and the

integral #
 A

 r(V
!
·n
!
 ) dA becomes simply rVA (Fig. 5–9).

Moving or Deforming Control Volumes
Equations 5–17 and 5–19 are also valid for moving control volumes pro-
vided that the absolute velocity V

!
 is replaced by the relative velocity V

!
r, 

which is the fluid velocity relative to the control surface (Chap. 4). In the 
case of a moving but nondeforming control volume, relative velocity is the 
fluid velocity observed by a person moving with the control volume and 
is expressed as V

!
r 5 V

!
 2 V

!
CS, where V

!
 is the fluid velocity and V

!
CS is the 

velocity of the control surface, both relative to a fixed point outside. Note 
that this is a vector subtraction.
 Some practical problems (such as the injection of medication through the 
needle of a syringe by the forced motion of the plunger) involve deforming 
control volumes. The conservation of mass relations developed can still be 
used for such deforming control volumes provided that the velocity of the 
fluid crossing a deforming part of the control surface is expressed relative to 
the control surface (that is, the fluid velocity should be expressed relative to 
a reference frame attached to the deforming part of the control surface). The 
relative velocity in this case at any point on the control surface is expressed 
again as V

!
r  5 V

!
 2 V

!
CS, where V

!
CS is the local velocity of the control surface 

at that point relative to a fixed point outside the control volume.

Mass Balance for Steady-Flow Processes
During a steady-flow process, the total amount of mass contained within a 
control volume does not change with time (mCV 5 constant). Then the con-
servation of mass principle requires that the total amount of mass entering a 
control volume equal the total amount of mass leaving it. For a garden hose 
nozzle in steady operation, for example, the amount of water entering the 
nozzle per unit time is equal to the amount of water leaving it per unit time.
 When dealing with steady-flow processes, we are not interested in the 
amount of mass that flows in or out of a device over time; instead, we are 
interested in the amount of mass flowing per unit time, that is, the mass flow 
rate m. . The conservation of mass principle for a general steady-flow system 
with multiple inlets and outlets is expressed in rate form as (Fig. 5–10)

Steady flow: a
in

m# 5 a
out

m#   (kg/s) (5–20)

It states that the total rate of mass entering a control volume is equal to the 
total rate of mass leaving it.
 Many engineering devices such as nozzles, diffusers, turbines, compres-
sors, and pumps involve a single stream (only one inlet and one outlet). 
For these cases, we typically denote the inlet state by the subscript 1 and 
the outlet state by the subscript 2, and drop the summation signs. Then 
Eq. 5–20 reduces, for single-stream steady-flow systems, to

Steady flow (single stream): m# 1 5 m# 2  S   r1V1 A1 5 r2V2 A2 (5–21)

n

A

m = rVA 

V

FIGURE 5–9
A control surface should always be 

selected normal to the flow at all 
locations where it crosses the fluid 
flow to avoid complications, even 

though the result is the same.

V
un

Vn = V cos u

A/cos uA

m = r(V cos u)(A/cos u) = rVA 

(a) Control surface at an angle to the flow

(b) Control surface normal to the flow

m

CV

  1 = 2 kg/s m  2 = 3 kg/s

m3 = m1 + m2 = 5 kg/s

FIGURE 5–10
Conservation of mass principle 

for a two-inlet–one-outlet 
steady-flow system.
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Special Case: Incompressible Flow
The conservation of mass relations can be simplified even further when the 
fluid is incompressible, which is usually the case for liquids. Canceling the 
density from both sides of the general steady-flow relation gives

Steady, incompressible flow: a
in

V
#

5 a
out

V
#
  (m3/s) (5–22)

For single-stream steady-flow systems Eq. 5–22 becomes

Steady, incompressible flow (single stream): V
#
1 5 V

#
2 S V1A1 5 V2 A2 (5–23)

It should always be kept in mind that there is no such thing as a “conserva-
tion of volume” principle. Therefore, the volume flow rates into and out of 
a steady-flow device may be different. The volume flow rate at the outlet of 
an air compressor is much less than that at the inlet even though the mass 
flow rate of air through the compressor is constant (Fig. 5–11). This is due 
to the higher density of air at the compressor exit. For steady flow of liq-
uids, however, the volume flow rates remain nearly constant since liquids 
are essentially incompressible (constant-density) substances. Water flow 
through the nozzle of a garden hose is an example of the latter case.
 The conservation of mass principle requires every bit of mass to be 
accounted for during a process. If you can balance your checkbook (by 
keeping track of deposits and withdrawals, or by simply observing the “con-
servation of money” principle), you should have no difficulty applying the 
conservation of mass principle to engineering systems.

EXAMPLE 5–1    Water Flow through a Garden Hose Nozzle

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The 

inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle 

exit (Fig. 5–12). If it takes 50 s to fill the bucket with water, determine 

(a)  the volume and mass flow rates of water through the hose, and (b)  the 

average velocity of water at the nozzle exit.

SOLUTION  A garden hose is used to fill a water bucket. The volume and 

mass flow rates of water and the exit velocity are to be determined.

Assumptions  1 Water is a nearly incompressible substance. 2 Flow through 

the hose is steady. 3 There is no waste of water by splashing.

Properties  We take the density of water to be 1000 kg/m3 5 1 kg/L.

Analysis  (a) Noting that 10 gal of water are discharged in 50 s, the volume 

and mass flow rates of water are

 V
#

5
V
Dt

5
10 gal

50 s
 a3.7854 L

1 gal
b 5 0.757 L/s 

 m# 5 rV
#

5 (1 kg/L)(0.757 L/s) 5 0.757 kg/s  

(b) The cross-sectional area of the nozzle exit is

Ae 5 pr2
e 5 p(0.4 cm)2 5 0.5027 cm2 5 0.5027 3 1024 m2

m  1 = 2 kg/s

Air
compressor

m  2 = 2 kg/s

V2 = 0.8 m3/s

V1 = 1.4 m3/s

FIGURE 5–11
During a steady-flow process, 
volume flow rates are not necessarily 
conserved although mass flow 
rates are.

FIGURE 5–12
Schematic for Example 5–1.
Photo by John M. Cimbala.
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The volume flow rate through the hose and the nozzle is constant. Then the 

average velocity of water at the nozzle exit becomes

Ve 5
V
#

Ae

5
0.757 L/s

0.5027 3 1024 m2 a 1 m 3

1000 L
b 5 15.1 m/s

Discussion  It can be shown that the average velocity in the hose is 2.4 m/s. 

Therefore, the nozzle increases the water velocity by over six times.

EXAMPLE 5–2    Discharge of Water from a Tank

A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the 

atmosphere is initially filled with water. Now the discharge plug near the 

bottom of the tank is pulled out, and a water jet whose diameter is 0.5 in 

streams out (Fig. 5–13). The average velocity of the jet is approximated as 

V 5 !2gh, where h is the height of water in the tank measured from the 

center of the hole (a variable) and g is the gravitational acceleration. Deter-

mine how long it takes for the water level in the tank to drop to 2 ft from 

the bottom.

SOLUTION  The plug near the bottom of a water tank is pulled out. The 

time it takes for half of the water in the tank to empty is to be determined.

Assumptions  1 Water is a nearly incompressible substance. 2 The distance 

between the bottom of the tank and the center of the hole is negligible com-

pared to the total water height. 3 The gravitational acceleration is 32.2 ft/s2.

Analysis  We take the volume occupied by water as the control volume. The 

size of the control volume decreases in this case as the water level drops, 

and thus this is a variable control volume. (We could also treat this as a 

fixed control volume that consists of the interior volume of the tank by dis-

regarding the air that replaces the space vacated by the water.) This is obvi-

ously an unsteady-flow problem since the properties (such as the amount of 

mass) within the control volume change with time.

 The conservation of mass relation for a control volume undergoing any pro-

cess is given in rate form as

 m# in 2 m# out 5
dmCV

dt
 (1)

During this process no mass enters the control volume (m
.

in 5 0), and the 

mass flow rate of discharged water is

 m# out 5 (rVA)out 5 r"2ghA jet (2)

where Ajet 5 pD2
jet/4 is the cross-sectional area of the jet, which is constant. 

Noting that the density of water is constant, the mass of water in the tank 

at any time is

 mCV 5 rV 5 rA tankh (3)

where Atank 5 pD2
tank/4 is the base area of the cylindrical tank. Substituting 

Eqs. 2 and 3 into the mass balance relation (Eq. 1) gives

2r"2ghAjet 5
d(rA tankh)

dt
S2r"2gh(pD2

jet /4) 5
r(pD2

tank/4)dh

dt

Water

Air

0
Dtank

Djet

h2

h0

h

FIGURE 5–13
Schematic for Example 5–2.
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Canceling the densities and other common terms and separating the vari-

ables give

dt 5 2
D2

tank

D2
jet

 
dh"2gh

Integrating from t 5 0 at which h 5 h0 to t 5 t at which h 5 h2 gives

#
t

0
 dt 5 2

D2
tank

D2
jet"2g

 #
h2

h0

 
dh

 "h
 S  t 5

"h0 2 "h2"g/2
 aDtank

Djet

b2

Substituting, the time of discharge is determined to be

t 5
"4 ft 2 "2 ft"32.2/2 ft/s2

 a3 3 12 in

0.5 in
b2

5 757 s 5 12.6 min

Therefore, it takes 12.6 min after the discharge hole is unplugged for half of 

the tank to be emptied.

Discussion  Using the same relation with h2 5 0 gives t 5 43.1 min for 

the discharge of the entire amount of water in the tank. Therefore, emptying 

the bottom half of the tank takes much longer than emptying the top half. 

This is due to the decrease in the average discharge velocity of water with 

decreasing h.

5–3 ■  MECHANICAL ENERGY AND EFFICIENCY
Many fluid systems are designed to transport a fluid from one location 
to another at a specified flow rate, velocity, and elevation difference, and 
the system may generate mechanical work in a turbine or it may con-
sume mechanical work in a pump or fan during this process (Fig. 5–14). 
These systems do not involve the conversion of nuclear, chemical, or ther-
mal energy to mechanical energy. Also, they do not involve heat transfer 
in any significant amount, and they operate essentially at constant tempera-
ture. Such systems can be analyzed conveniently by considering only the 
mechanical forms of energy and the frictional effects that cause the mechan-
ical energy to be lost (i.e., to be converted to thermal energy that usually 
cannot be used for any useful purpose).
 The mechanical energy is defined as the form of energy that can be con-
verted to mechanical work completely and directly by an ideal mechanical 
device such as an ideal turbine. Kinetic and potential energies are the famil-
iar forms of mechanical energy. Thermal energy is not mechanical energy, 
however, since it cannot be converted to work directly and completely (the 
second law of thermodynamics).
 A pump transfers mechanical energy to a fluid by raising its pressure, and 
a turbine extracts mechanical energy from a fluid by dropping its pressure. 
Therefore, the pressure of a flowing fluid is also associated with its mechan-
ical energy. In fact, the pressure unit Pa is equivalent to Pa 5 N/m2 5 
N·m/m3 5 J/m3, which is energy per unit volume, and the product Pv or its 
equivalent P/r has the unit J/kg, which is energy per unit mass. Note that 
pressure itself is not a form of energy. But a pressure force acting on a fluid 
through a distance produces work, called flow work, in the amount of P/r 
per unit mass. Flow work is expressed in terms of fluid properties, and it 
is convenient to view it as part of the energy of a flowing fluid and call 

FIGURE 5–14
Mechanical energy is a useful concept 
for flows that do not involve significant 
heat transfer or energy conversion, 
such as the flow of gasoline from an 
underground tank into a car.
Royalty-Free/CORBIS
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it flow energy. Therefore, the mechanical energy of a flowing fluid can be 
expressed on a unit-mass basis as

emech 5
P
r

1
V 2

2
1 gz

where P/r is the flow energy, V2/2 is the kinetic energy, and gz is the poten-
tial energy of the fluid, all per unit mass. Then the mechanical energy 
change of a fluid during incompressible flow becomes

 Demech 5
P2 2 P1

r
1

V 2
2 2 V 2

1

2
1 g(z2 2 z1)  (kJ/kg) (5–24)

Therefore, the mechanical energy of a fluid does not change during flow if 
its pressure, density, velocity, and elevation remain constant. In the absence 
of any irreversible losses, the mechanical energy change represents the 
mechanical work supplied to the fluid (if Demech . 0) or extracted from the 
fluid (if Demech , 0). The maximum (ideal) power generated by a turbine, 
for example, is W

#
max 5 m

#
Demech, as shown in Fig. 5–15.

 Consider a container of height h filled with water, as shown in Fig. 5–16, 
with the reference level selected at the bottom surface. The gage pressure 
and the potential energy per unit mass are, respectively, Pgage, A 5 0 and 
peA 5 gh at point A at the free surface, and Pgage, B 5 rgh and peB 5 0 at 
point B at the bottom of the container. An ideal hydraulic turbine at the 
bottom elevation would produce the same work per unit mass wturbine 5 gh 
whether it receives water (or any other fluid with constant density) from the 
top or from the bottom of the container. Note that we are assuming ideal flow 
(no irreversible losses) through the pipe leading from the tank to the turbine 
and negligible kinetic energy at the turbine outlet. Therefore, the total avail-
able mechanical energy of water at the bottom is equivalent to that at the top.
 The transfer of mechanical energy is usually accomplished by a rotating 
shaft, and thus mechanical work is often referred to as shaft work. A pump or 
a fan receives shaft work (usually from an electric motor) and transfers it 
to the fluid as mechanical energy (less frictional losses). A turbine, on the 
other hand, converts the mechanical energy of a fluid to shaft work. Because 
of irreversibilities such as friction, mechanical energy cannot be converted 
entirely from one mechanical form to another, and the mechanical efficiency 
of a device or process is defined as

 hmech 5
Mechanical energy output

Mechanical energy input
5

Emech, out

Emech, in

5 1 2
Emech, loss

Emech, in

 (5–25)

A conversion efficiency of less than 100 percent indicates that conver-
sion is less than perfect and some losses have occurred during conversion. 
A mechanical efficiency of 74 percent indicates that 26 percent of the 
mechanical energy input is converted to thermal energy as a result of fric-
tional heating (Fig 5–17), and this manifests itself as a slight rise in the 
temperature of the fluid.
 In fluid systems, we are usually interested in increasing the pressure, veloc-
ity, and/or elevation of a fluid. This is done by supplying mechanical energy 
to the fluid by a pump, a fan, or a compressor (we refer to all of them as 
pumps). Or we are interested in the reverse process of extracting mechanical 

FIGURE 5–15
Mechanical energy is illustrated by 
an ideal hydraulic turbine coupled 

with an ideal generator. In the absence 
of irreversible losses, the maximum 

produced power is proportional to 
(a) the change in water surface 

elevation from the upstream to the 
downstream reservoir or (b) (close-up 
view) the drop in water pressure from 

just upstream to just downstream of 
the turbine.

Generator

TurbineW

2

3

4

1

Generator

Turbine

h

W

Ẇmax 5 ṁDemech 5 ṁg(z1 2 z4) 5 ṁgh

since P1 < P4 5 Patm and V1 5 V4 < 0
(a)

Ẇmax 5 ṁDemech 5 ṁ
P2 2 P3

r
 5 ṁ  

DP
r

since V2 < V3 and z2 < z3

(b)
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energy from a fluid by a turbine and producing mechanical power in the form 
of a rotating shaft that can drive a generator or any other rotary device. The 
degree of perfection of the conversion process between the mechanical work 
supplied or extracted and the mechanical energy of the fluid is expressed by 
the pump efficiency and turbine efficiency. In rate form, these are defined as

 hpump 5
Mechanical power increase of the fluid

Mechanical power input
5
DE
#
mech, fluid

W
#

shaft, in

5
W
#

pump, u

W
#

pump

 (5–26)

where DE
.

mech, fluid 5 E
.

mech, out 2 E
.

mech, in is the rate of increase in the mechan-
ical energy of the fluid, which is equivalent to the useful pumping power 
W
.

pump, u supplied to the fluid, and

hturbine 5
Mechanical power output

Mechanical power decrease of the fluid
5

W
#

shaft, out

uDE
#
mech, fluid u

5
W
#

turbine

W
#

turbine, e

 (5–27)

where uDE
.

mech,  fluidu 5 E
.

mech,  in 2 E
.

mech,  out is the rate of decrease in the 
mechanical energy of the fluid, which is equivalent to the mechanical power 
extracted from the fluid by the turbine W

.
turbine, e, and we use the absolute 

value sign to avoid negative values for efficiencies. A pump or turbine 
efficiency of 100 percent indicates perfect conversion between the shaft work 
and the mechanical energy of the fluid, and this value can be approached 
(but never attained) as the frictional effects are minimized.
 The mechanical efficiency should not be confused with the motor 
efficiency and the generator efficiency, which are defined as

Motor: hmotor 5
Mechanical power output

Electric power input
5

W
#

shaft, out

W
#

elect, in

 (5–28)

and

Generator: hgenerator 5
Electric power output

Mechanical power input
5

W
#

elect, out

W
#

shaft, in

 (5–29)

A pump is usually packaged together with its motor, and a turbine with its 
generator. Therefore, we are usually interested in the combined or overall 
efficiency of pump–motor and turbine–generator combinations (Fig. 5–18), 
which are defined as

 hpump-motor 5 hpump hmotor 5
W
#

pump, u

W
#

elect, in

5
DE
#
mech, fluid

W
#

elect, in

 (5–30)

and

 hturbine-gen 5 hturbine hgenerator 5
W
#

elect, out

W
#

turbine, e

5
W
#

elect, out

uDE
#
mech, fluid u

 (5–31)

 All the efficiencies just defined range between 0 and 100 percent. 
The lower limit of 0 percent corresponds to the conversion of the entire 
mechanical or electric energy input to thermal energy, and the device in 
this case functions like a resistance heater. The upper limit of 100 percent 
corresponds to the case of perfect conversion with no friction or other irre-
versibilities, and thus no conversion of mechanical or electric energy to 
thermal energy (no losses).

m = 0.506 kg/s

Fan

50.0 W

1 2

= 

=

= 0.741

mech, fan =  ΔEmech, fluid––––––––––
Wshaft, in

 (0.506 kg/s)(12.1 m/s)2/2
––––––––––––––––––––

50.0 W

 mV 2
2/2

–––––––
Wshaft, in

    0, V1 = 12.1 m/s
= z2z1
  PatmP1    Patmand P2

 V2

h

FIGURE 5–17
The mechanical efficiency of a fan 
is the ratio of the rate of increase of 
the mechanical energy of the air to the 
mechanical power input.

m
0

z
h

pe = gh
Pgage = 0

Pgage = rgh
pe = 0

A

B

m

Wmax = mgh Wmax = mgh

FIGURE 5–16
The available mechanical energy of 
water at the bottom of a container 
is equal to the available mechanical 
energy at any depth including the free 
surface of the container.
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EXAMPLE 5–3    Performance of a Hydraulic Turbine–Generator

The water in a large lake is to be used to generate electricity by the instal-

lation of a hydraulic turbine–generator. The elevation difference between the 

free surfaces upstream and downstream of the dam is 50 m (Fig. 5–19). 

Water is to be supplied at a rate of 5000 kg/s. If the electric power gener-

ated is measured to be 1862 kW and the generator efficiency is 95 percent, 

determine (a) the overall efficiency of the turbine–generator, (b) the mechan-

ical efficiency of the turbine, and (c) the shaft power supplied by the turbine 

to the generator.

SOLUTION  A hydraulic turbine–generator is to generate electricity from the 

water of a lake. The overall efficiency, the turbine efficiency, and the shaft 

power are to be determined.

Assumptions  1 The elevation of the lake and that of the discharge site 

remain constant. 2 Irreversible losses in the pipes are negligible.

Properties  The density of water is taken to be r 5 1000 kg/m3.

Analysis  (a) We perform our analysis from inlet (1) at the free surface of 

the lake to outlet (2) at the free surface of the downstream discharge site. At 

both free surfaces the pressure is atmospheric and the velocity is negligibly 

small. The change in the water’s mechanical energy per unit mass is then

 emech, in 2 emech, out 5
Pin 2 Pout

r
1

V 2
in 2 V 2

out

2
1 g(z in 2 zout)

 5 gh

 5 (9.81 m/s2)(50 m) a 1 kJ/kg

1000 m2/s2b 5 0.491
kJ

kg

Then the rate at which mechanical energy is supplied to the turbine by the 

fluid and the overall efficiency become

uDE
#
mech, fluid u 5 m# (emech, in 2 emech, out) 5 (5000 kg/s)(0.491 kJ/kg) 5 2455 kW

hoverall 5 hturbine-gen 5
W
#

elect, out

uDE
#
mech, fluid u

5
1862 kW

2455 kW
5 0.760

(b) Knowing the overall and generator efficiencies, the mechanical efficiency 

of the turbine is determined from

hturbine-gen 5 hturbine hgenerator S  hturbine 5
hturbine-gen

hgenerator
5

0.76

0.95
5 0.800

(c) The shaft power output is determined from the definition of mechanical 

efficiency,

W
#

shaft, out 5 hturbineuDE
#
mech, fluid u 5 (0.800)(2455 kW) 5 1964 kW < 1960 kW

Discussion  Note that the lake supplies 2455 kW of mechanical power to 

the turbine, which converts 1964 kW of it to shaft power that drives the 

generator, which generates 1862 kW of electric power. There are irreversible 

losses through each component. Irreversible losses in the pipes are ignored 

here; you will learn how to account for these in Chap. 8.

⎫⎪⎬⎪⎭⎫⎪⎬⎪⎭

0 0

generator � 95%

2

h � 50 m

1

Generator

Turbine

m � 5000 kg/s

h

FIGURE 5–19
Schematic for Example 5–3.

Welect. out

Turbine

Generator

hturbine = 0.75 hgenerator = 0.97

0.73

0.75 0.97

h =
=
=

turbine–gen hturbinehgenerator

FIGURE 5–18
The overall efficiency of a turbine– 

generator is the product of the 
efficiency of the turbine and the 
efficiency of the generator, and 

represents the fraction of the 
mechanical power of the fluid 
converted to electrical power.
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EXAMPLE 5–4     Conservation of Energy for 
an Oscillating Steel Ball

The motion of a steel ball in a hemispherical bowl of radius h shown in 

Fig. 5–20 is to be analyzed. The ball is initially held at the highest location 

at point A, and then it is released. Obtain relations for the conservation of 

energy of the ball for the cases of frictionless and actual motions.

SOLUTION  A steel ball is released in a bowl. Relations for the energy balance 

are to be obtained.

Assumptions  For the frictionless case, friction between the ball, the bowl, 

and the air is negligible.

Analysis  When the ball is released, it accelerates under the influence of 

gravity, reaches a maximum velocity (and minimum elevation) at point B at 

the bottom of the bowl, and moves up toward point C on the opposite side. 

In the ideal case of frictionless motion, the ball will oscillate between points 

A and C. The actual motion involves the conversion of the kinetic and poten-

tial energies of the ball to each other, together with overcoming resistance to 

motion due to friction (doing frictional work). The general energy balance for 

any system undergoing any process is

Ein 2 Eout   5   DEsystem

 Net energy transfer  Change in internal, kinetic,
 by heat, work, and mass potential, etc., energies

Then the energy balance (per unit mass) for the ball for a process from point 

1 to point 2 becomes

2wfriction 5 (ke2 1 pe2) 2 (ke1 1 pe1)

or

V 2
1

2
1 gz1 5

V 2
2

2
1 gz2 1 wfriction

since there is no energy transfer by heat or mass and no change in the inter-

nal energy of the ball (the heat generated by frictional heating is dissipated to 

the surrounding air). The frictional work term wfriction is often expressed as eloss 

to represent the loss (conversion) of mechanical energy into thermal energy.

 For the idealized case of frictionless motion, the last relation reduces to

V 
2
1

2
1 gz1 5

V 
2
2

2
1 gz2  or  

V 
2

2
1 gz 5 C 5 constant

where the value of the constant is C 5 gh. That is, when the frictional 

effects are negligible, the sum of the kinetic and potential energies of the 

ball remains constant.

Discussion  This is certainly a more intuitive and convenient form of the 

conservation of energy equation for this and other similar processes such as 

the swinging motion of a pendulum. The relation obtained is analogous to 

the Bernoulli equation derived in Section 5–4.

 Most processes encountered in practice involve only certain forms of 
energy, and in such cases it is more convenient to work with the simplified 
versions of the energy balance. For systems that involve only mechanical 

Steel
ball

0

z

h A

B

C

1

2

FIGURE 5–20
Schematic for Example 5–4.

⎫⎬⎭ ⎫⎬⎭
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forms of energy and its transfer as shaft work, the conservation of energy 
principle can be expressed conveniently as

 Emech, in 2 Emech, out 5 DEmech, system 1 Emech, loss (5–32)

where Emech, loss represents the conversion of mechanical energy to ther-
mal energy due to irreversibilities such as friction. For a system in steady 
operation, the rate of mechanical energy balance becomes E

.
mech, in 5 E

.
mech, out 1

E
.

mech, loss (Fig. 5–21).

5–4 ■  THE BERNOULLI EQUATION
The Bernoulli equation is an approximate relation between pressure, velocity, 
and elevation, and is valid in regions of steady, incompressible flow where 
net frictional forces are negligible (Fig. 5–22). Despite its simplicity, it has 
proven to be a very powerful tool in fluid mechanics. In this section, we 
derive the Bernoulli equation by applying the conservation of linear momen-
tum principle, and we demonstrate both its usefulness and its limitations.
 The key approximation in the derivation of the Bernoulli equation is that 
viscous effects are negligibly small compared to inertial, gravitational, and 
pressure effects. Since all fluids have viscosity (there is no such thing as an 
“inviscid fluid”), this approximation cannot be valid for an entire flow field 
of practical interest. In other words, we cannot apply the Bernoulli equation 
everywhere in a flow, no matter how small the fluid’s viscosity. However, 
it turns out that the approximation is reasonable in certain regions of many 
practical flows. We refer to such regions as inviscid regions of flow, and we 
stress that they are not regions where the fluid itself is inviscid or friction-
less, but rather they are regions where net viscous or frictional forces are 
negligibly small compared to other forces acting on fluid particles.
 Care must be exercised when applying the Bernoulli equation since it is an 
approximation that applies only to inviscid regions of flow. In general, fric-
tional effects are always important very close to solid walls (boundary layers) 
and directly downstream of bodies (wakes). Thus, the Bernoulli approxima-
tion is typically useful in flow regions outside of boundary layers and wakes, 
where the fluid motion is governed by the combined effects of pressure and 
gravity forces.

Acceleration of a Fluid Particle
The motion of a particle and the path it follows are described by the velocity 
vector as a function of time and space coordinates and the initial position 
of the particle. When the flow is steady (no change with time at a speci-
fied location), all particles that pass through the same point follow the same 
path (which is the streamline), and the velocity vectors remain tangent to 
the path at every point.
 Often it is convenient to describe the motion of a particle in terms of its 
distance s along a streamline together with the radius of curvature along 
the streamline. The speed of the particle is related to the distance by 
V 5 ds/dt, which may vary along the streamline. In two-dimensional flow, 
the acceleration can be decomposed into two components: streamwise accel-
eration as along the streamline and normal acceleration an in the direction 
normal to the streamline, which is given as an 5 V2/R. Note that streamwise 

Bernoulli equation valid

Bernoulli equation not valid

FIGURE 5–22
The Bernoulli equation is an 

approximate equation that is valid 
only in inviscid regions of flow where 

net viscous forces are negligibly small 
compared to inertial, gravitational, or 

pressure forces. Such regions occur 
outside of boundary layers and wakes.

1 =   2      0
z2 = z1 + h

P1 = P2 = Patm

Emech, in = Emech, out + Emech, loss

Wpump + mgz1 = mgz2 + Emech, loss

Wpump = mgh + Emech, loss

h

2

Steady flow

1

V

Wpump

V

FIGURE 5–21
Many fluid flow problems involve 
mechanical forms of energy only, 

and such problems are conveniently 
solved by using a rate of mechanical 

energy balance.
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acceleration is due to a change in speed along a streamline, and normal 
acceleration is due to a change in direction. For particles that move along a 
straight path, an 5 0 since the radius of curvature is infinity and thus there 
is no change in direction. The Bernoulli equation results from a force bal-
ance along a streamline.
 One may be tempted to think that acceleration is zero in steady flow since 
acceleration is the rate of change of velocity with time, and in steady flow 
there is no change with time. Well, a garden hose nozzle tells us that this 
understanding is not correct. Even in steady flow and thus constant mass 
flow rate, water accelerates through the nozzle (Fig. 5–23 as discussed in 
Chap. 4). Steady simply means no change with time at a specified location, 
but the value of a quantity may change from one location to another. In the 
case of a nozzle, the velocity of water remains constant at a specified point, 
but it changes from the inlet to the exit (water accelerates along the nozzle).
 Mathematically, this can be expressed as follows: We take the velocity V 
of a fluid particle to be a function of s and t. Taking the total differential of 
V(s, t) and dividing both sides by dt yield

 dV 5
0V
0s

 ds 1
0V
0t

 dt  and  
dV

dt
5
0V
0s

 
ds

dt
1
0V
0t

 (5–33)

In steady flow ∂V/∂t 5 0 and thus V 5 V(s), and the acceleration in the 
s-direction becomes

 as 5
dV

dt
5
0V
0s

 
ds

dt
5
0V
0s

 V 5 V 
dV

ds
 (5–34)

where V 5 ds/dt if we are following a fluid particle as it moves along a 
streamline. Therefore, acceleration in steady flow is due to the change of 
velocity with position.

Derivation of the Bernoulli Equation
Consider the motion of a fluid particle in a flow field in steady flow. Apply-
ing Newton’s second law (which is referred to as the linear momentum 
equation in fluid mechanics) in the s-direction on a particle moving along a 
streamline gives

 aFs 5 mas (5–35)

In regions of flow where net frictional forces are negligible, there is no pump 
or turbine, and there is no heat transfer along the streamline, the significant 
forces acting in the s-direction are the pressure (acting on both sides) and the 
component of the weight of the particle in the s-direction (Fig. 5–24). There-
fore, Eq. 5–35 becomes

 P dA 2 (P 1 dP) dA 2 W sin u 5 mV  
dV

ds
 (5–36)

where u is the angle between the normal of the streamline and the vertical 
z-axis at that point, m 5 rV 5 r dA ds is the mass, W 5 mg 5 rg dA ds is 
the weight of the fluid particle, and sin u 5 dz/ds. Substituting,

 2dP dA 2 rg dA ds 
dz

ds
5 r dA ds V 

dV

ds
 (5–37)

FIGURE 5–23
During steady flow, a fluid may not 
accelerate in time at a fixed point, but 
it may accelerate in space.

z

x
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sn

P dA

(P + dP) dA

Steady flow along a streamline

dx

dz
ds

u

u

ds
g

FIGURE 5–24
The forces acting on a fluid 
particle along a streamline.
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Canceling dA from each term and simplifying,

 2dP 2 rg dz 5 rV dV  (5–38)

Noting that V dV 5 1
2 d(V2) and dividing each term by r gives

 
dP
r

1
1

2
 d(V 2) 1 g dz 5 0 (5–39)

Integrating,

Steady flow: # dP
r

1
V 2

2
1 gz 5 constant (along a streamline) (5–40)

since the last two terms are exact differentials. In the case of incompressible 
flow, the first term also becomes an exact differential, and integration gives

Steady, incompressible flow:  
P
r

1
V 2

2
1 gz 5 constant (along a streamline) (5–41)

This is the famous Bernoulli equation (Fig. 5–25), which is commonly 
used in fluid mechanics for steady, incompressible flow along a streamline 
in inviscid regions of flow. The Bernoulli equation was first stated in words 
by the Swiss mathematician Daniel Bernoulli (1700–1782) in a text written 
in 1738 when he was working in St. Petersburg, Russia. It was later derived 
in equation form by his associate Leonhard Euler (1707–1783) in 1755.
 The value of the constant in Eq. 5–41 can be evaluated at any point on the 
streamline where the pressure, density, velocity, and elevation are known. 
The Bernoulli equation can also be written between any two points on the 
same streamline as

Steady, incompressible flow: 
P1

r
1

V 2
1

2
1 gz1 5

P2

r
1

V 2
2

2
1 gz2 (5–42)

We recognize V2/2 as kinetic energy, gz as potential energy, and P/r as flow 
energy, all per unit mass. Therefore, the Bernoulli equation can be viewed 
as an expression of mechanical energy balance and can be stated as follows 
(Fig. 5–26):

The sum of the kinetic, potential, and flow energies of a fluid particle 
is constant along a streamline during steady flow when compressibility 
and frictional effects are negligible.

 The kinetic, potential, and flow energies are the mechanical forms of 
energy, as discussed in Section 5–3, and the Bernoulli equation can be viewed 
as the “conservation of mechanical energy principle.” This is equivalent to 
the general conservation of energy principle for systems that do not involve 
any conversion of mechanical energy and thermal energy to each other, and 
thus the mechanical energy and thermal energy are conserved separately. The 
Bernoulli equation states that during steady, incompressible flow with negli-
gible friction, the various forms of mechanical energy are converted to each 
other, but their sum remains constant. In other words, there is no dissipation 
of mechanical energy during such flows since there is no friction that con-
verts mechanical energy to sensible thermal (internal) energy.

General:

(Steady flow along a streamline)

Incompressible flow (r = constant):

# –– + + gz = constantdP  ––
2

 –– + + gz = constantP  ––
2

V2

V2

r

r

FIGURE 5–25
The incompressible Bernoulli 
equation is derived assuming 

incompressible flow, and thus it 
should not be used 

for flows with significant 
compressibility effects.

 –– –– + + + gzgz = constant = constant

FlowFlow
energyenergy

P
r  –– ––

2

PotentialPotential
energyenergy

KineticKinetic
energyenergy

V2

FIGURE 5–26
The Bernoulli equation states that the 
sum of the kinetic, potential, and flow 
energies (all per unit mass) of a fluid 

particle is constant along a streamline 
during steady flow.
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 Recall that energy is transferred to a system as work when a force is 
applied to the system through a distance. In the light of Newton’s second 
law of motion, the Bernoulli equation can also be viewed as: The work 
done by the pressure and gravity forces on the fluid particle is equal to the 
increase in the kinetic energy of the particle.
 The Bernoulli equation is obtained from Newton’s second law for a fluid 
particle moving along a streamline. It can also be obtained from the first law 
of thermodynamics applied to a steady-flow system, as shown in Section 5–6.
 Despite the highly restrictive approximations used in its derivation, the 
Bernoulli equation is commonly used in practice since a variety of prac-
tical fluid flow problems can be analyzed to reasonable accuracy with it. 
This is because many flows of practical engineering interest are steady (or 
at least steady in the mean), compressibility effects are relatively small, and 
net frictional forces are negligible in some regions of interest in the flow.

Force Balance across Streamlines
It is left as an exercise to show that a force balance in the direction n normal 
to the streamline yields the following relation applicable across the stream-
lines for steady, incompressible flow:

 
P
r

1 # V
2

R
 dn 1 gz 5 constant  (across streamlines) (5–43)

where R is the local radius of curvature of the streamline. For flow along 
curved streamlines (Fig 5–27a), the pressure decreases towards the center 
of curvature, and fluid particles experience a corresponding centripetal force 
and centripetal acceleration due to this pressure gradient.
 For flow along a straight line, R → ` and Eq. 5–43 reduces to P/r 1 gz 5 
constant or P 5 2rgz 1 constant, which is an expression for the variation of 
hydrostatic pressure with vertical distance for a stationary fluid body. There-
fore, the variation of pressure with elevation in steady, incompressible flow 
along a straight line in an inviscid region of flow is the same as that in the 
stationary fluid (Fig. 5–27b).

Unsteady, Compressible Flow
Similarly, using both terms in the acceleration expression (Eq. 5–33), it can 
be shown that the Bernoulli equation for unsteady, compressible flow is

Unsteady, compressible flow: # dP
r

1 # 0V0t  ds 1
V  

2

2
1 gz 5 constant (5–44)

Static, Dynamic, and Stagnation Pressures
The Bernoulli equation states that the sum of the flow, kinetic, and poten-
tial energies of a fluid particle along a streamline is constant. Therefore, the 
kinetic and potential energies of the fluid can be converted to flow energy (and 
vice versa) during flow, causing the pressure to change. This phenomenon can 
be made more visible by multiplying the Bernoulli equation by the density r,

 P 1 r 
V 2

2
1 rgz 5 constant (along a streamline) (5–45)

Each term in this equation has pressure units, and thus each term represents 
some kind of pressure:

Stationary fluid

A

(a)

(b)

z z

B

C

D

PB – PA =  PD – PC

Flowing fluid

A B

PA>PB

FIGURE 5–27
Pressure decreases towards the center 
of curvature when streamlines are 
curved (a), but the variation of 
pressure with elevation in steady, 
incompressible flow along a straight 
line (b) is the same as that in 
stationary fluid.
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• P is the static pressure (it does not incorporate any dynamic effects); 
it represents the actual thermodynamic pressure of the fluid. This is the 
same as the pressure used in thermodynamics and property tables.

• rV2/2 is the dynamic pressure; it represents the pressure rise when the 
fluid in motion is brought to a stop isentropically.

• rgz is the hydrostatic pressure term, which is not pressure in a real 
sense since its value depends on the reference level selected; it accounts 
for the elevation effects, i.e., fluid weight on pressure. (Be careful of the 
sign—unlike hydrostatic pressure rgh which increases with fluid depth h, 
the hydrostatic pressure term rgz decreases with fluid depth.)

The sum of the static, dynamic, and hydrostatic pressures is called the total 
pressure. Therefore, the Bernoulli equation states that the total pressure 
along a streamline is constant.
 The sum of the static and dynamic pressures is called the stagnation 
pressure, and it is expressed as

 Pstag 5 P 1 r 
V 2

2
  (kPa) (5–46)

The stagnation pressure represents the pressure at a point where the fluid is 
brought to a complete stop isentropically. The static, dynamic, and stagna-
tion pressures are shown in Fig. 5–28. When static and stagnation pressures 
are measured at a specified location, the fluid velocity at that location is 
calculated from

 V 5 Å2(Pstag 2 P) 
r  (5–47)

 Equation 5–47 is useful in the measurement of flow velocity when a combina-
tion of a static pressure tap and a Pitot tube is used, as illustrated in Fig. 5–28. 
A static pressure tap is simply a small hole drilled into a wall such that the 
plane of the hole is parallel to the flow direction. It measures the static pressure. 
A Pitot tube is a small tube with its open end aligned into the flow so as to 
sense the full impact pressure of the flowing fluid. It measures the stagnation 
pressure. In situations in which the static and stagnation pressure of a flowing 
liquid are greater than atmospheric pressure, a vertical transparent tube called a 
piezometer tube (or simply a piezometer) can be attached to the pressure tap 
and to the Pitot tube, as sketched in Fig. 5–28. The liquid rises in the piezom-
eter tube to a column height (head) that is proportional to the pressure being 
measured. If the pressures to be measured are below atmospheric, or if mea-
suring pressures in gases, piezometer tubes do not work. However, the static 
pressure tap and Pitot tube can still be used, but they must be connected to 
some other kind of pressure measurement device such as a U-tube manometer 
or a pressure transducer (Chap. 3). Sometimes it is convenient to integrate static 
pressure holes on a Pitot probe. The result is a Pitot-static probe (also called 
a Pitot-Darcy probe), as shown in Fig. 5–29 and discussed in more detail in 
Chap. 8. A Pitot-static probe connected to a pressure transducer or a manometer 
measures the dynamic pressure (and thus infers the fluid velocity) directly.
 When the static pressure is measured by drilling a hole in the tube wall, care 
must be exercised to ensure that the opening of the hole is flush with the wall 
surface, with no extrusions before or after the hole (Fig. 5–30). Otherwise the 
reading would incorporate some dynamic effects, and thus it would be in error.

Proportional
to static

pressure, P

Proportional to
stagnation
pressure, Pstag

Stagnation
point

2(Pstag – P)

Proportional to dynamic
pressure

Pitot
tube

Piezometer

––
2g

V

 =V

V2

r

FIGURE 5–28
The static, dynamic, and 

stagnation pressures measured 
using piezometer tubes.

Stagnation pressure hole

Static pressure holes

FIGURE 5–29
Close-up of a Pitot-static probe, 
showing the stagnation pressure 

hole and two of the five static 
circumferential pressure holes.

Photo by Po-Ya Abel Chuang. Used by permission.

High Correct Low

FIGURE 5–30
Careless drilling of the static pressure 
tap may result in an erroneous reading 

of the static pressure head.
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 When a stationary body is immersed in a flowing stream, the fluid is brought 
to a stop at the nose of the body (the stagnation point). The flow streamline 
that extends from far upstream to the stagnation point is called the stagnation 
streamline (Fig. 5–31). For a two-dimensional flow in the xy-plane, the stag-
nation point is actually a line parallel to the z-axis, and the stagnation stream-
line is actually a surface that separates fluid that flows over the body from 
fluid that flows under the body. In an incompressible flow, the fluid deceler-
ates nearly isentropically from its free-stream velocity to zero at the stagnation 
point, and the pressure at the stagnation point is thus the stagnation pressure.

Limitations on the Use of the Bernoulli Equation
The Bernoulli equation (Eq. 5–41) is one of the most frequently used and 
misused equations in fluid mechanics. Its versatility, simplicity, and ease of 
use make it a very valuable tool for use in analysis, but the same attributes 
also make it very tempting to misuse. Therefore, it is important to under-
stand the restrictions on its applicability and observe the limitations on its 
use, as explained here:

 1. Steady flow  The first limitation on the Bernoulli equation is that it is 
applicable to steady flow. Therefore, it should not be used during the 
transient start-up and shut-down periods, or during periods of change in 
the flow conditions. Note that there is an unsteady form of the Bernoulli 
equation (Eq. 5–44), discussion of which is beyond the scope of the 
present text (see Panton, 2005).

 2. Negligible viscous effects  Every flow involves some friction, no 
matter how small, and frictional effects may or may not be negligible. 
The situation is complicated even more by the amount of error that can 
be tolerated. In general, frictional effects are negligible for short flow 
sections with large cross sections, especially at low flow velocities. 
Frictional effects are usually significant in long and narrow flow pas-
sages, in the wake region downstream of an object, and in diverging 
flow sections such as diffusers because of the increased possibility of the 
fluid separating from the walls in such geometries. Frictional effects are 
also significant near solid surfaces, and thus the Bernoulli equation is 
usually applicable along a streamline in the core region of the flow, but 
not along a streamline close to the surface (Fig. 5–32).

    A component that disturbs the streamlined structure of flow and thus 
causes considerable mixing and backflow such as a sharp entrance of a 
tube or a partially closed valve in a flow section can make the Bernoulli 
equation inapplicable.

 3. No shaft work  The Bernoulli equation was derived from a force 
balance on a particle moving along a streamline. Therefore, the 
Bernoulli equation is not applicable in a flow section that involves a 
pump, turbine, fan, or any other machine or impeller since such devices 
disrupt the streamlines and carry out energy interactions with the fluid 
particles. When the flow section considered involves any of these devices, 
the energy equation should be used instead to account for the shaft work 
input or output. However, the Bernoulli equation can still be applied to a 
flow section prior to or past a machine (assuming, of course, that the other 

Stagnation streamline

FIGURE 5–31
Streaklines produced by colored fluid 
introduced upstream of an airfoil; 
since the flow is steady, the streaklines 
are the same as streamlines and 
pathlines. The stagnation streamline 
is marked.
Courtesy ONERA. Photograph by Werlé.

185-242_cengel_ch05.indd   204 12/17/12   10:55 AM



205
CHAPTER 5

restrictions on its use are satisfied). In such cases, the Bernoulli constant 
changes from upstream to downstream of the device.

 4. Incompressible flow  One of the approximations used in the derivation 
of the Bernoulli equation is that r 5 constant and thus the flow is in-
compressible. This condition is satisfied by liquids and also by gases at 
Mach numbers less than about 0.3 since compressibility effects and thus 
density variations of gases are negligible at such relatively low veloci-
ties. Note that there is a compressible form of the Bernoulli equation 
(Eqs. 5–40 and 5–44).

 5. Negligible heat transfer  The density of a gas is inversely proportional 
to temperature, and thus the Bernoulli equation should not be used for 
flow sections that involve significant temperature change such as heating 
or cooling sections.

 6. Flow along a streamline  Strictly speaking, the Bernoulli equation 
P/r 1 V2/2 1 gz 5 C is applicable along a streamline, and the value of the 
constant C is generally different for different streamlines. However, when a 
region of the flow is irrotational and there is no vorticity in the flow field, 
the value of the constant C remains the same for all streamlines, and the 
Bernoulli equation becomes applicable across streamlines as well (Fig. 5–33). 
Therefore, we do not need to be concerned about the streamlines when the 
flow is irrotational, and we can apply the Bernoulli equation between any 
two points in the irrotational region of the flow (Chap. 10).

 We derived the Bernoulli equation by considering two-dimensional flow 
in the xz-plane for simplicity, but the equation is valid for general three-
dimensional flow as well, as long as it is applied along the same streamline. 
We should always keep in mind the approximations used in the derivation of 
the Bernoulli equation and make sure that they are valid before applying it.

Hydraulic Grade Line (HGL) 
and Energy Grade Line (EGL)
It is often convenient to represent the level of mechanical energy graphically 
using heights to facilitate visualization of the various terms of the Bernoulli 
equation. This is done by dividing each term of the Bernoulli equation by g 
to give

 
P
rg

1
V 2

2g
1 z 5 H 5 constant  (along a streamline) (5–48)

Each term in this equation has the dimension of length and represents some 
kind of “head” of a flowing fluid as follows:

• P/rg is the pressure head; it represents the height of a fluid column that 
produces the static pressure P.

• V2/2g is the velocity head; it represents the elevation needed for a fluid 
to reach the velocity V during frictionless free fall.

• z is the elevation head; it represents the potential energy of the fluid.

Also, H is the total head for the flow. Therefore, the Bernoulli equation is 
expressed in terms of heads as: The sum of the pressure, velocity, and elevation 
heads along a streamline is constant during steady flow when compressibility 
and frictional effects are negligible (Fig. 5–34).

A fan

A sudden
expansion

A long narrow
tube

A heating section

Flow through
a valve

2

2

2

2
1

1

1

1

1 2

A boundary layer

A wake

FIGURE 5–32
Frictional effects, heat transfer, 

and components that disturb 
the streamlined structure of flow 

make the Bernoulli equation invalid. 
It should not be used in any of the 

flows shown here.
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 If a piezometer (which measures static pressure) is tapped into a pressur-
ized pipe, as shown in Fig. 5–35, the liquid would rise to a height of P/rg 
above the pipe center. The hydraulic grade line (HGL) is obtained by doing 
this at several locations along the pipe and drawing a curve through the liq-
uid levels in the piezometers. The vertical distance above the pipe center is 
a measure of pressure within the pipe. Similarly, if a Pitot tube (measures 
static 1 dynamic pressure) is tapped into a pipe, the liquid would rise to a 
height of P/rg 1 V2/2g above the pipe center, or a distance of V2/2g above 
the HGL. The energy grade line (EGL) is obtained by doing this at several 
locations along the pipe and drawing a curve through the liquid levels in the 
Pitot tubes.
 Noting that the fluid also has elevation head z (unless the reference level is 
taken to be the centerline of the pipe), the HGL and EGL are defined as fol-
lows: The line that represents the sum of the static pressure and the elevation 
heads, P/rg 1 z, is called the hydraulic grade line. The line that represents 
the total head of the fluid, P/rg 1 V 2/2g 1 z, is called the energy grade 
line. The difference between the heights of EGL and HGL is equal to the 
dynamic head, V 2/2g. We note the following about the HGL and EGL:

• For stationary bodies such as reservoirs or lakes, the EGL and HGL coin-
cide with the free surface of the liquid. The elevation of the free surface z 
in such cases represents both the EGL and the HGL since the velocity is 
zero and the static (gage) pressure is zero.

• The EGL is always a distance V2/2g above the HGL. These two curves 
approach each other as the velocity decreases, and they diverge as the 
velocity increases. The height of the HGL decreases as the velocity in-
creases, and vice versa.

• In an idealized Bernoulli-type flow, EGL is horizontal and its height 
remains constant. This would also be the case for HGL when the flow 
velocity is constant (Fig. 5–36).

• For open-channel flow, the HGL coincides with the free surface of the 
liquid, and the EGL is a distance V2/2g above the free surface.

• At a pipe exit, the pressure head is zero (atmospheric pressure) and thus 
the HGL coincides with the pipe outlet (location 3 on Fig. 5–35).

• The mechanical energy loss due to frictional effects (conversion to 
thermal energy) causes the EGL and HGL to slope downward in the 
direction of flow. The slope is a measure of the head loss in the pipe 

 –– –– + + + z =  = H = constant = constant

PressurePressure
headhead

P
g  –– ––

  2

2g

ElevationElevation
headhead

VelocityVelocity
headhead

Total headTotal head

V 
r

FIGURE 5–34
An alternative form of the Bernoulli 
equation is expressed in terms of 
heads as: The sum of the pressure, 
velocity, and elevation heads is 
constant along a streamline.

Diffuser

Arbitrary reference plane (z = 0)
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/2g

z
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/2g2V2 

V2 

FIGURE 5–35
The hydraulic grade line (HGL) and 
the energy grade line (EGL) for free 
discharge from a reservoir through a 
horizontal pipe with a diffuser.

2V2 

Streamlines
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+       + gz1 =
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2
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P2––  ––
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FIGURE 5–33
When the flow is irrotational, the 
Bernoulli equation becomes applicable 
between any two points along the flow 
(not just on the same streamline).
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(discussed in detail in Chap. 8). A component that generates significant 
frictional effects such as a valve causes a sudden drop in both EGL and 
HGL at that location.

• A steep jump occurs in EGL and HGL whenever mechanical energy 
is added to the fluid (by a pump, for example). Likewise, a steep drop 
occurs in EGL and HGL whenever mechanical energy is removed from 
the fluid (by a turbine, for example), as shown in Fig. 5–37.

• The gage pressure of a fluid is zero at locations where the HGL intersects 
the fluid. The pressure in a flow section that lies above the HGL is 
negative, and the pressure in a section that lies below the HGL is positive 
(Fig. 5–38). Therefore, an accurate drawing of a piping system overlaid 
with the HGL can be used to determine the regions where the gage 
pressure in the pipe is negative (below atmospheric pressure).

 The last remark enables us to avoid situations in which the pressure drops 
below the vapor pressure of the liquid (which may cause cavitation, as dis-
cussed in Chap. 2). Proper consideration is necessary in the placement of a 
liquid pump to ensure that the suction side pressure does not fall too low, 
especially at elevated temperatures where vapor pressure is higher than it is 
at low temperatures.
 Now we examine Fig. 5–35 more closely. At point 0 (at the liquid surface), 
EGL and HGL are even with the liquid surface since there is no flow there. 
HGL decreases rapidly as the liquid accelerates into the pipe; however, EGL 
decreases very slowly through the well-rounded pipe inlet. EGL declines con-
tinually along the flow direction due to friction and other irreversible losses in 
the flow. EGL cannot increase in the flow direction unless energy is supplied 
to the fluid. HGL can rise or fall in the flow direction, but can never exceed 
EGL. HGL rises in the diffuser section as the velocity decreases, and the static 
pressure recovers somewhat; the total pressure does not recover, however, 
and EGL decreases through the diffuser. The difference between EGL and 
HGL is V2

1/2g at point 1, and V2
2/2g at point 2. Since V1 . V2, the difference 

between the two grade lines is larger at point 1 than at point 2. The down-
ward slope of both grade lines is larger for the smaller diameter section of 
pipe since the frictional head loss is greater. Finally, HGL decays to the liquid 
surface at the outlet since the pressure there is atmospheric. However, EGL is 
still higher than HGL by the amount V2

2/2g since V3 5 V2 at the outlet.

Applications of the Bernoulli Equation
So far, we have discussed the fundamental aspects of the Bernoulli equa-
tion. Now, we demonstrate its use in a wide range of applications through 
examples.

EXAMPLE 5–5    Spraying Water into the Air

Water is flowing from a garden hose (Fig. 5–39). A child places his thumb to 

cover most of the hose outlet, causing a thin jet of high-speed water to emerge. 

The pressure in the hose just upstream of his thumb is 400 kPa. If the hose is 

held upward, what is the maximum height that the jet could achieve?

SOLUTION  Water from a hose attached to the water main is sprayed into 

the air. The maximum height the water jet can rise is to be determined.

Reference level
0

(Horizontal) EGL

z

HGL

P––  g

  2/2gV

r

FIGURE 5–36
In an idealized Bernoulli-type flow, 

EGL is horizontal and its height 
remains constant. But this is not 
the case for HGL when the flow 

velocity varies along the flow.

Pump Turbine

EGL

HGL

Wpump Wturbine

FIGURE 5–37
A steep jump occurs in EGL and HGL 
whenever mechanical energy is added 

to the fluid by a pump, and a steep drop 
occurs whenever mechanical energy is 

removed from the fluid by a turbine.

Negative P

P = 0

P = 0
HGL

Positive P

Positive P

FIGURE 5–38
The gage pressure of a fluid is zero at 

locations where the HGL intersects 
the fluid, and the gage pressure is 

negative (vacuum) in a flow section 
that lies above the HGL.
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Assumptions  1 The flow exiting into the air is steady, incompressible, and 

irrotational (so that the Bernoulli equation is applicable). 2 The surface ten-

sion effects are negligible. 3 The friction between the water and air is negli-

gible. 4 The irreversibilities that occur at the outlet of the hose due to abrupt 

contraction are not taken into account.

Properties  We take the density of water to be 1000 kg/m3.

Analysis  This problem involves the conversion of flow, kinetic, and potential 

energies to each other without involving any pumps, turbines, and wasteful 

components with large frictional losses, and thus it is suitable for the use of 

the Bernoulli equation. The water height will be maximum under the stated 

assumptions. The velocity inside the hose is relatively low (V1
2

 << Vj
2, and 

thus V1 > 0 compared to Vj) and we take the elevation just below the hose 

outlet as the reference level (z1 5 0). At the top of the water trajectory V2 5 0, 

and atmospheric pressure pertains. Then the Bernoulli equation along a 

streamline from 1 to 2 simplifies to

P1

rg
1

V 2
1

2g
  1 z1  5

P2

rg
1

V 2
2

2g
  1 z2 S 

P1

rg
5

Patm

rg
1 z2

Solving for z2 and substituting,

Water jet

2

Hose

0

z

Vj

V1
2 ,, Vj

2

1

1

Magnifying
glass

FIGURE 5–39
Schematic for Example 5–5. Inset 
shows a magnified view of the hose 
outlet region.
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0

z

1

2

V2

FIGURE 5–40
Schematic for Example 5–6.

  <0 0  0
     

¡
¡ ¡

z2 5
P1 2 Patm

rg
5

P1, gage

rg
5

400 kPa

(1000 kg/m3)(9.81 m/s2)
 a1000 N/m2

1 kPa
 b a1 kg·m/s2

1 N
b

 5 40.8 m 

Therefore, the water jet can rise as high as 40.8 m into the sky in this case.

Discussion  The result obtained by the Bernoulli equation represents the 

upper limit and should be interpreted accordingly. It tells us that the water 

cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be 

much less than 40.8 m due to irreversible losses that we neglected.

EXAMPLE 5–6    Water Discharge from a Large Tank

A large tank open to the atmosphere is filled with water to a height of 5 m 

from the outlet tap (Fig. 5–40). A tap near the bottom of the tank is now 

opened, and water flows out from the smooth and rounded outlet. Determine 

the maximum water velocity at the outlet.

SOLUTION  A tap near the bottom of a tank is opened. The maximum exit 

velocity of water from the tank is to be determined.

Assumptions  1 The flow is incompressible and irrotational (except very close 

to the walls). 2 The water drains slowly enough that the flow can be approxi-

mated as steady (actually quasi-steady when the tank begins to drain). 

3 Irreversible losses in the tap region are neglected.

Analysis  This problem involves the conversion of flow, kinetic, and potential 

energies to each other without involving any pumps, turbines, and wasteful 

components with large frictional losses, and thus it is suitable for the use of 

the Bernoulli equation. We take point 1 to be at the free surface of water so 

that P1 5 Patm (open to the atmosphere), V1
2
 << V2

2 and thus V1 > 0 com-

pared to V2 (the tank is very large relative to the outlet), z1 5 5 m and z2 5 0 

(we take the reference level at the center of the outlet). Also, P2 5 Patm (water 

discharges into the atmosphere). For flow along a streamline from 1 to 2, the 

Bernoulli equation simplifies to
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FIGURE 5–41
Schematic for Example 5–7.
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  1 z1 5

P2

rg
1

V 2
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2g
1 z2  S  z1 5

V 2
2

2g

Solving for V2 and substituting,

V2 5 "2gz1 5 "2(9.81 m/s2)(5 m) 5 9.9 m/s

The relation V 5 !2gz is called the Torricelli equation.
 Therefore, the water leaves the tank with an initial maximum velocity of 

9.9 m/s. This is the same velocity that would manifest if a solid were dropped 

a distance of 5 m in the absence of air friction drag. (What would the velocity 

be if the tap were at the bottom of the tank instead of on the side?)

Discussion  If the orifice were sharp-edged instead of rounded, then the 

flow would be disturbed, and the average exit velocity would be less than 

9.9 m/s. Care must be exercised when attempting to apply the Bernoulli equa-

tion to situations where abrupt expansions or contractions occur since the 

friction and flow disturbance in such cases may not be negligible. From con-

version of mass, (V1/V2)
2 5 (D2/D1)

4. So, for example, if D2/D1 5 0.1, then 

(V1/V2)
2 5 0.0001, and our approximation that V1

2
 << V2

2 is justified.

EXAMPLE 5–7    Siphoning Out Gasoline from a Fuel Tank

During a trip to the beach (Patm 5 1 atm 5 101.3 kPa), a car runs out of gaso-

line, and it becomes necessary to siphon gas out of the car of a Good Samaritan 

(Fig. 5–41). The siphon is a small-diameter hose, and to start the siphon it is 

necessary to insert one siphon end in the full gas tank, fill the hose with gaso-

line via suction, and then place the other end in a gas can below the level of 

the gas tank. The difference in pressure between point 1 (at the free surface of 

the gasoline in the tank) and point 2 (at the outlet of the tube) causes the liquid 

to flow from the higher to the lower elevation. Point 2 is located 0.75 m below 

point 1 in this case, and point 3 is located 2 m above point 1. The siphon 

diameter is 5 mm, and frictional losses in the siphon are to be disregarded. 

Determine (a) the minimum time to withdraw 4 L of gasoline from the tank to 

the can and (b) the pressure at point 3. The density of gasoline is 750 kg/m3.

SOLUTION  Gasoline is to be siphoned from a tank. The minimum time it 

takes to withdraw 4 L of gasoline and the pressure at the highest point in 

the system are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 Even though the 

Bernoulli equation is not valid through the pipe because of frictional losses, 

we employ the Bernoulli equation anyway in order to obtain a best-case esti-

mate. 3 The change in the gasoline surface level inside the tank is negligible 

compared to elevations z1 and z2 during the siphoning period.

Properties  The density of gasoline is given to be 750 kg/m3.

Analysis  (a) We take point 1 to be at the free surface of gasoline in the tank 

so that P1 5 Patm (open to the atmosphere), V1 > 0 (the tank is large relative 

to the tube diameter), and z2 5 0 (point 2 is taken as the reference level). 

Also, P2 5 Patm (gasoline discharges into the atmosphere). Then the Bernoulli 

equation simplifies to

P1

rg
1

V 2
1

2g
  1 z1 5

P2

rg
1

V 2
2

2g
1 z2  S  z1 5

V 2
2

2g
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Solving for V2 and substituting,

V2 5 "2gz1 5 "2(9.81 m/s2)(0.75 m) 5 3.84 m/s

The cross-sectional area of the tube and the flow rate of gasoline are

 A 5 pD2/4 5 p(5 3 1023 m)2/4 5 1.96 3 1025 m2

 V
#

5 V2 A 5 (3.84 m/s)(1.96 3 1025 m2) 5 7.53 3 1025 m3/s 5 0.0753 L/s

Then the time needed to siphon 4 L of gasoline becomes

Dt 5
V

V
# 5

4 L

0.0753 L/s
 5 53.1 s

(b) The pressure at point 3 is determined by writing the Bernoulli equation 

along a streamline between points 3 and 2. Noting that V2 5 V3 (conserva-

tion of mass), z2 5 0, and P2 5 Patm,

P2

rg
1

V 2
2

2g
1 z2  5

P3

rg
1

V 2
3

2g
1 z3 S 

Patm

rg
5

P3

rg
1 z3

Solving for P3 and substituting,

 P3 5 Patm 2 rgz3 

 5 101.3 kPa 2 (750 kg/m3)(9.81 m/s2)(2.75 m)a  1 N

1 kg·m/s2b a 1 kPa

1000 N/m2b
 5 81.1 kPa

Discussion  The siphoning time is determined by neglecting frictional 

effects, and thus this is the minimum time required. In reality, the time will 

be longer than 53.1 s because of friction between the gasoline and the tube 

surface, along with other irreversible losses, as discussed in Chap. 8. Also, 

the pressure at point 3 is below the atmospheric pressure. If the elevation 

difference between points 1 and 3 is too high, the pressure at point 3 may 

drop below the vapor pressure of gasoline at the gasoline temperature, and 

some gasoline may evaporate (cavitate). The vapor then may form a pocket 

at the top and halt the flow of gasoline.

EXAMPLE 5–8    Velocity Measurement by a Pitot Tube

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as 

shown in Fig. 5–42, to measure static and stagnation (static 1 dynamic) 

pressures. For the indicated water column heights, determine the velocity at 

the center of the pipe.

SOLUTION  The static and stagnation pressures in a horizontal pipe are 

measured. The velocity at the center of the pipe is to be determined.

Assumptions  1 The flow is steady and incompressible. 2 Points 1 and 2 are 

close enough together that the irreversible energy loss between these two 

points is negligible, and thus we can use the Bernoulli equation.

Analysis  We take points 1 and 2 along the streamline at the centerline of 

the pipe, with point 1 directly under the piezometer and point 2 at the tip of 

   0
Q

h3 = 12 cm

h2 = 7 cm

h1 = 3 cm

Stagnation
point

Water
1 2

V1

FIGURE 5–42
Schematic for Example 5–8.
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EXAMPLE 5–9    The Rise of the Ocean Due to a Hurricane

A hurricane is a tropical storm formed over the ocean by low atmospheric 

pressures. As a hurricane approaches land, inordinate ocean swells (very high 

tides) accompany the hurricane. A Class-5 hurricane features winds in excess 

of 155 mph, although the wind velocity at the center “eye” is very low.

 Figure 5–43 depicts a hurricane hovering over the ocean swell below. The 

atmospheric pressure 200 mi from the eye is 30.0 in Hg (at point 1, gener-

ally normal for the ocean) and the winds are calm. The atmo spheric pressure 

at the eye of the storm is 22.0 in Hg. Estimate the ocean swell at (a) the 

eye of the hurricane at point 3 and (b) point 2, where the wind velocity is 

155 mph. Take the density of seawater and mercury to be 64 lbm/ft3 and 

848 lbm/ft3, respectively, and the density of air at normal sea-level tempera-

ture and pressure to be 0.076 lbm/ft3.

SOLUTION  A hurricane is moving over the ocean. The amount of ocean 

swell at the eye and at active regions of the hurricane are to be determined.

Assumptions  1 The airflow within the hurricane is steady, incompressible, 

and irrotational (so that the Bernoulli equation is applicable). (This is certainly 

a very questionable assumption for a highly turbulent flow, but it is justified in 

the discussion.) 2 The effect of water sucked into the air is negligible.

Properties  The densities of air at normal conditions, seawater, and mercury 

are given to be 0.076 lbm/ft3, 64.0 lbm/ft3, and 848 lbm/ft3, respectively.

Analysis  (a) Reduced atmospheric pressure over the water causes the water 

to rise. Thus, decreased pressure at point 2 relative to point 1 causes the 

ocean water to rise at point 2. The same is true at point 3, where the storm air 

the Pitot tube. This is a steady flow with straight and parallel streamlines, 

and the gage pressures at points 1 and 2 can be expressed as

 P1 5 rg(h1 1 h2) 

 P2 5 rg(h1 1 h2 1 h3)

Noting that z1 5 z2, and point 2 is a stagnation point and thus V2 5 0, 

the application of the Bernoulli equation between points 1 and 2 gives

P1

rg
1

V 2
1

2g
1 z1 5

P2

rg
1

V 2
2

2g
   1 z2 S 

V 2
1

2g
5

P2 2 P1

rg

Substituting the P1 and P2 expressions gives

V 2
1

2g
5

P2 2 P1

rg
5
rg(h1 1 h2 1 h3) 2 rg(h1 1 h2)

rg
5 h3

Solving for V1 and substituting,

V1 5 "2gh3 5 "2(9.81 m/s2)(0.12 m) 5 1.53 m/s

Discussion  Note that to determine the flow velocity, all we need is to mea-

sure the height of the excess fluid column in the Pitot tube compared to that 

in the piezometer tube.

  0
   

¡

Calm
ocean
level

Ocean

Hurricane
Eye

1

2
3

h3
h2

A B

FIGURE 5–43
Schematic for Example 5–9. The 

vertical scale is greatly exaggerated.
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velocity is negligible. The pressure difference given in terms of the mercury 

column height is expressed in terms of the seawater column height by

DP 5 (rgh)Hg 5 (rgh)sw S  hsw 5
rHg

rsw
 hHg

Then the pressure difference between points 1 and 3 in terms of the seawa-

ter column height becomes

h3 5
rHg

rsw
 hHg 5 a 848 lbm/ft3

64.0 lbm/ft3b [(30 2 22) in Hg]a 1 ft

12 in
b 5 8.83 ft

which is equivalent to the storm surge at the eye of the hurricane (Fig. 5–44) 

since the wind velocity there is negligible and there are no dynamic effects.

(b) To determine the additional rise of ocean water at point 2 due to the high 

winds at that point, we write the Bernoulli equation between points A and B, 

which are on top of points 2 and 3, respectively. Noting that VB > 0 (the eye 

region of the hurricane is relatively calm) and zA 5 zB (both points are on the 

same horizontal line), the Bernoulli equation simplifies to

PA

rg
1

V 2
A

2g
1 zA 5

PB

rg
1

V 2
B

2g
  1 zB S 

PB 2 PA

rg
5

V 2
A

2g

Substituting,

PB 2 PA

rg
5

V 2
A

2g
5

(155 mph)2

2(32.2 ft/s2)
 a1.4667 ft/s

1 mph
b2

5 803 ft

where r is the density of air in the hurricane. Noting that the density of an 

ideal gas at constant temperature is proportional to absolute pressure and 

the density of air at the normal atmospheric pressure of 14.7 psia > 30 in Hg 

is 0.076 lbm/ft3, the density of air in the hurricane is

rair 5
Pair

Patm air

ratm air 5 a22 in Hg

30 in Hg
b(0.076 lbm/ft3) 5 0.056 lbm/ft3

Using the relation developed above in part (a), the seawater column height 

equivalent to 803 ft of air column height is determined to be

hdynamic 5
rair

rsw
 hair 5 a0.056 lbm/ft3

64 lbm/ft3 b(803 ft) 5 0.70 ft

Therefore, the pressure at point 2 is 0.70 ft seawater column lower than the 

pressure at point 3 due to the high wind velocities, causing the ocean to rise 

an additional 0.70 ft. Then the total storm surge at point 2 becomes

h2 5 h3 1 hdynamic 5 8.83 1 0.70 5 9.53 ft

Discussion  This problem involves highly turbulent flow and the intense 

breakdown of the streamlines, and thus the applicability of the Bernoulli 

equation in part (b) is questionable. Furthermore, the flow in the eye of the 

storm is not irrotational, and the Bernoulli equation constant changes across 

streamlines (see Chap. 10). The Bernoulli analysis can be thought of as the 

  0
 Q  

FIGURE 5–44
The eye of hurricane Linda (1997 
in the Pacific Ocean near Baja 
California) is clearly visible in 
this satellite photo.
© Brand X Pictures/PunchStock RF
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limiting, ideal case, and shows that the rise of seawater due to high-velocity 

winds cannot be more than 0.70 ft.

 The wind power of hurricanes is not the only cause of damage to coastal 

areas. Ocean flooding and erosion from excessive tides is just as serious, as 

are high waves generated by the storm turbulence and energy.

EXAMPLE 5–10    Bernoulli Equation for Compressible Flow

Derive the Bernoulli equation when the compressibility effects are not negli-

gible for an ideal gas undergoing (a) an isothermal process and (b) an isen-

tropic process.

SOLUTION  The Bernoulli equation for compressible flow is to be obtained 

for an ideal gas for isothermal and isentropic processes.

Assumptions  1 The flow is steady and frictional effects are negligible. 2 The 

fluid is an ideal gas, so the relation P 5 rRT is applicable. 3 The specific 

heats are constant so that P/rk 5 constant during an isentropic process.

Analysis  (a) When the compressibility effects are significant and the flow 

cannot be assumed to be incompressible, the Bernoulli equation is given by 

Eq. 5–40 as

 #
 

dP
r

1
V 2

2
1 gz 5 constant  (along a streamline) (1)

The compressibility effects can be properly accounted for by performing the 

integration e dP/r in Eq. 1. But this requires a relation between P and r for 

the process. For the isothermal expansion or compression of an ideal gas, 

the integral in Eq. 1 is performed easily by noting that T 5 constant and 

substituting r 5 P/RT,

 #
 
 
dP
r

5 # dP

P/RT
5 RT ln P 

Substituting into Eq. 1 gives the desired relation,

Isothermal process: RT ln P 1
V 2

2
1 gz 5 constant (2)

(b) A more practical case of compressible flow is the isentropic flow of ideal 

gases through equipment that involves high-speed fluid flow such as nozzles, 

diffusers, and the passages between turbine blades (Fig. 5–45). Isentropic 

(i.e., reversible and adiabatic) flow is closely approximated by these devices, 

and it is characterized by the relation P/rk 5 C 5 constant, where k is the 

specific heat ratio of the gas. Solving for r from P/rk 5 C gives r 5 

C 21/kP1/k. Performing the integration,

 # dP
r

5 # C
1/kP 21/k dP 5 C1/k 

P21/k11

21/k 1 1
5

P 1/k

r
 

P21/k11

21/k 1 1
5 a k

k 2 1
bP
r

 (3)

Substituting, the Bernoulli equation for steady, isentropic, compressible flow 

of an ideal gas becomes

Isentropic flow: a k
k 2 1

bP
r

1
V 2

2
1 gz 5 constant (4a)

FIGURE 5–45
Compressible flow of a gas through 

turbine blades is often modeled as 
isentropic, and the compressible form 

of the Bernoulli equation is a 
reasonable approximation.

Royalty-Free/CORBIS
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or

 a k
k 2 1

bP1

r1
1

V 2
1

2
1 gz1 5 a k

k 2 1
bP2

r2
1

V 2
2

2
1 gz2 (4b)

A common practical situation involves the acceleration of a gas from rest 

(stagnation conditions at state 1) with negligible change in elevation. In 

that case we have z1 5 z2 and V1 5 0. Noting that r 5 P/RT for ideal 

gases, P/rk 5 constant for isentropic flow, and the Mach number is defined 

as Ma 5 V/c where c 5 !kRT  is the local speed of sound for ideal gases, 

Eq. 4b simplifies to

 
P1

P2
5 c1 1 ak 2 1

2
bMa 2

2 d k /(k21)

 (4c)

where state 1 is the stagnation state and state 2 is any state along the flow.

Discussion  It can be shown that the results obtained using the compressible 

and incompressible equations deviate no more than 2 percent when the Mach 

number is less than 0.3. Therefore, the flow of an ideal gas can be considered 

to be incompressible when Ma ( 0.3. For atmospheric air at normal condi-

tions, this corresponds to a flow speed of about 100 m/s or 360 km/h.

5–5 ■  GENERAL ENERGY EQUATION
One of the most fundamental laws in nature is the first law of thermody-
namics, also known as the conservation of energy principle, which pro-
vides a sound basis for studying the relationships among the various forms 
of energy and energy interactions. It states that energy can be neither cre-
ated nor destroyed during a process; it can only change forms. Therefore, 
every bit of energy must be accounted for during a process.
 A rock falling off a cliff, for example, picks up speed as a result of its 
potential energy being converted to kinetic energy (Fig. 5–46). Experimen-
tal data show that the decrease in potential energy equals the increase in 
kinetic energy when the air resistance is negligible, thus confirming the 
conservation of energy principle. The conservation of energy principle also 
forms the backbone of the diet industry: a person who has a greater energy 
input (food) than energy output (exercise) will gain weight (store energy in 
the form of fat), and a person who has a smaller energy input than output 
will lose weight. The change in the energy content of a system is equal 
to the difference between the energy input and the energy output, and the 
conservation of energy principle for any system can be expressed simply as 
Ein 2 Eout 5 DE.
 The transfer of any quantity (such as mass, momentum, and energy) is 
recognized at the boundary as the quantity crosses the boundary. A quantity 
is said to enter a system (or control volume) if it crosses the boundary from 
the outside to the inside, and to exit the system if it moves in the reverse 
direction. A quantity that moves from one location to another within a sys-
tem is not considered as a transferred quantity in an analysis since it does 
not enter or exit the system. Therefore, it is important to specify the system 
and thus clearly identify its boundaries before an engineering analysis is 
performed.

PE1 = 10 kJ
m

KE1 = 0

PE2 = 7 kJ
m KE2 = 3 kJ

Δ z

FIGURE 5–46
Energy cannot be created or 
destroyed during a process; 
it can only change forms.
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 The energy content of a fixed quantity of mass (a closed system) can be 
changed by two mechanisms: heat transfer Q and work transfer W. Then the 
conservation of energy for a fixed quantity of mass can be expressed in rate 
form as (Fig. 5–47)

Q
#

net in 1 W
#
net in 5

 dE sys 

  dt
   or  Q

#
 net in 1 W

#
net in 5

 d

  dt
  #

 

 sys
 re dV  (5–49)

where the overdot stands for time rate of change, and Q
·
net in 5 Q

·
in 2 Q

·
out is 

the net rate of heat transfer to the system (negative, if from the system), W
·
net in 5 

W
·

in 2 W
·

out is the net power input to the system in all forms (negative, if 
power output), and dEsys/dt is the rate of change of the total energy con-
tent of the system. For simple compressible systems, total energy consists of 
internal, kinetic, and potential energies, and it is expressed on a unit-mass 
basis as (see Chap. 2)

 e 5 u 1 ke 1 pe 5 u 1
 V  2

2
 1 gz (5–50)

Note that total energy is a property, and its value does not change unless the 
state of the system changes.

Energy Transfer by Heat, Q
In daily life, we frequently refer to the sensible and latent forms of internal 
energy as heat, and talk about the heat content of bodies. Scientifically the 
more correct name for these forms of energy is thermal energy. For single-
phase substances, a change in the thermal energy of a given mass results in 
a change in temperature, and thus temperature is a good representative of 
thermal energy. Thermal energy tends to move naturally in the direction of 
decreasing temperature. The transfer of energy from one system to another 
as a result of a temperature difference is called heat transfer. The warming 
up of a canned drink in a warmer room, for example, is due to heat transfer 
(Fig. 5–48). The time rate of heat transfer is called heat transfer rate and 
is denoted by Q

.
.

 The direction of heat transfer is always from the higher-temperature body 
to the lower-temperature one. Once temperature equality is established, heat 
transfer stops. There cannot be any net heat transfer between two systems 
(or a system and its surroundings) that are at the same temperature.
 A process during which there is no heat transfer is called an adiabatic 
process. There are two ways a process can be adiabatic: Either the system is 
well insulated so that only a negligible amount of heat can pass through the 
system boundary, or both the system and the surroundings are at the same 
temperature and therefore there is no driving force (temperature difference) 
for net heat transfer. An adiabatic process should not be confused with an 
isothermal process. Even though there is no net heat transfer during an adia-
batic process, the energy content and thus the temperature of a system can 
still be changed by other means such as work transfer.

Energy Transfer by Work, W
An energy interaction is work if it is associated with a force acting through 
a distance. A rising piston, a rotating shaft, and an electric wire crossing the 
system boundary are all associated with work interactions. The time rate of 
doing work is called power and is denoted by W

.
. Car engines and hydraulic, 

Wshaft, in = 6 kJ

     = 18 kJ

Qout = 3 kJ

Qin = 15 kJ

E = (15 – 3) + 6

FIGURE 5–47
The energy change of a system 

during a process is equal to the net 
work and heat transfer between the 

system and its surroundings.

Room air
25°C

No heat
transfer Heat Heat

25°C

8 J/s 16 J/s

15°C

FIGURE 5–48
Temperature difference is the driving 
force for heat transfer. The larger the 
temperature difference, the higher is 

the rate of heat transfer.
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steam, and gas turbines produce power (W
.
shaft, in , 0); compressors, pumps, 

fans, and mixers consume power (W
.
shaft, in . 0).

 Work-consuming devices transfer energy to the fluid, and thus increase 
the energy of the fluid. A fan in a room, for example, mobilizes the air and 
increases its kinetic energy. The electric energy a fan consumes is first con-
verted to mechanical energy by its motor that forces the shaft of the blades 
to rotate. This mechanical energy is then transferred to the air, as evidenced 
by the increase in air velocity. This energy transfer to air has nothing to do 
with a temperature difference, so it cannot be heat transfer. Therefore, it 
must be work. Air discharged by the fan eventually comes to a stop and thus 
loses its mechanical energy as a result of friction between air particles of 
different velocities. But this is not a “loss” in the real sense; it is simply the 
conversion of mechanical energy to an equivalent amount of thermal energy 
(which is of limited value, and thus the term loss) in accordance with the 
conservation of energy principle. If a fan runs a long time in a sealed room, 
we can sense the buildup of this thermal energy by a rise in air temperature.
 A system may involve numerous forms of work, and the total work can be 
expressed as

 Wtotal 5 Wshaft 1 Wpressure 1 Wviscous 1 Wother  (5–51)

where Wshaft is the work transmitted by a rotating shaft, Wpressure is the work 
done by the pressure forces on the control surface, Wviscous is the work done 
by the normal and shear components of viscous forces on the control sur-
face, and Wother is the work done by other forces such as electric, magnetic, 
and surface tension, which are insignificant for simple compressible systems 
and are not considered in this text. We do not consider Wviscous either, since 
moving walls (such as fan blades or turbine runners) are usually inside the 
control volume and are not part of the control surface. But it should be kept 
in mind that the work done by shear forces as the blades shear through the 
fluid may need to be considered in a refined analysis of turbomachinery.

Shaft Work
Many flow systems involve a machine such as a pump, a turbine, a fan, or a 
compressor whose shaft protrudes through the control surface, and the work 
transfer associated with all such devices is simply referred to as shaft work 
Wshaft. The power transmitted via a rotating shaft is proportional to the shaft 
torque Tshaft and is expressed as

 W
#
shaft 5 vTshaft 5 2p n  # Tshaft  (5–52)

where v is the angular speed of the shaft in rad/s and n
.
 is the number of 

revolutions of the shaft per unit time, often expressed in rev/min or rpm.

Work Done by Pressure Forces
Consider a gas being compressed in the piston-cylinder device shown in 
Fig. 5–49a. When the piston moves down a differential distance ds under 
the influence of the pressure force PA, where A is the cross-sectional area 
of the piston, the boundary work done on the system is dWboundary 5 PA ds. 
Dividing both sides of this relation by the differential time interval dt gives 
the time rate of boundary work (i.e., power),

dW  
#
pressure 5 dW  

#
boundary 5 PAVpiston  

System

System boundary, A

dV

dm
dA

P
n

u

V

(b)

(a)

ds

P

A

Vpiston

System
(gas in cylinder)

FIGURE 5–49
The pressure force acting on (a) the 
moving boundary of a system in 
a piston-cylinder device, and 
(b) the differential surface area 
of a system of arbitrary shape.
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where Vpiston 5 ds/dt is the piston speed, which is the speed of the moving 
boundary at the piston face.
 Now consider a material chunk of fluid (a system) of arbitrary shape that 
moves with the flow and is free to deform under the influence of pressure, 
as shown in Fig. 5–49b. Pressure always acts inward and normal to the sur-
face, and the pressure force acting on a differential area dA is PdA. Again 
noting that work is force times distance and distance traveled per unit time 
is velocity, the time rate at which work is done by pressure forces on this 
differential part of the system is

 dW
#

pressure 5 2P dA  V n 5 2P dA(V
!
·n
!
) (5–53)

since the normal component of velocity through the differential area dA is 
Vn 5 V cos u 5 V

!
·n→. Note that n→ is the outward normal of dA, and thus the 

quantity V
!
·n→ is positive for expansion and negative for compression. The 

negative sign in Eq. 5–53 ensures that work done by pressure forces is posi-
tive when it is done on the system, and negative when it is done by the sys-
tem, which agrees with our sign convention. The total rate of work done by 
pressure forces is obtained by integrating dW

.
pressure over the entire surface A,

 W
#

pressure, net in 5 2 #
 

 A
 P(V

!
·n
!
)dA 5 2 #

 

A
 
P
r

 r (V
!
·n
!
)dA  (5–54)

 In light of these discussions, the net power transfer can be expressed as

W
#

net in 5 W
#

shaft, net in 1 W
#

pressure, net in 5 W
#

shaft, net in 2 #
 

A
 P (V

!
·n
!
) dA  (5–55)

Then the rate form of the conservation of energy relation for a closed system 
becomes

 Q
#
net in 1 W

#
shaft, net in 1 W

#
pressure, net in 5

dEsys

dt
 (5–56)

 To obtain a relation for the conservation of energy for a control volume, 
we apply the Reynolds transport theorem by replacing B with total energy E, 
and b with total energy per unit mass e, which is e 5 u 1 ke 1 pe 5 
u 1 V2/2 1 gz (Fig. 5–50). This yields

 
dEsys

dt
5

d

dt
 #

 

CV
  er dV 1 #

 

CS
 er (Vr

!
·n
!
)A (5–57)

Substituting the left-hand side of Eq. 5–56 into Eq. 5–57, the general form 
of the energy equation that applies to fixed, moving, or deforming control 
volumes becomes

Q
#
net in 1 W

#
shaft, net in 1 W

#
pressure, net in 5

d

dt
 #

 

CV
 er dV 1 #

 

CS
 er(Vr

!
·n
!
) dA  (5–58)

which is stated in words as§ The net rate of energy

  transfer into a CV by

  heat and work transfer

 ¥ 5 §  The time rate of

  change of the energy

  content of the CV

 ¥ 1 §  The net flow rate of

  energy out of the control

  surface by mass flow

 ¥  

= +brdV

B = E b = e b = e

dBsys

dt
V

d

dt
CV
# br(    r · n ) dA

CS
#

= +erdV
dEsys

dt
V

d

dt
CV
# er(    r · n ) dA

CS
#

FIGURE 5–50
The conservation of energy equation 

is obtained by replacing B in the 
Reynolds transport theorem by 

energy E and b by e.
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Here V
!
r 5 V

!
 2 V

!
CS is the fluid velocity relative to the control surface, and 

the product r(V
!
r ·n

→) dA represents the mass flow rate through area element 
dA into or out of the control volume. Again noting that n→ is the outward 
normal of dA, the quantity V

!
r·n

→ and thus mass flow is positive for outflow 
and negative for inflow.
 Substituting the surface integral for the rate of pressure work from Eq. 5–54 
into Eq. 5–58 and combining it with the surface integral on the right give

 Q
#
net in 1 W

#
shaft, net in 5

d

dt
 #

CV
  er dV 1 #

 

CS
 aP
r

1 ebr (Vr

!
·n
!
)dA  (5–59)

This is a convenient form for the energy equation since pressure work is 
now combined with the energy of the fluid crossing the control surface and 
we no longer have to deal with pressure work.
 The term P/r 5 Pv 5 wflow is the flow work, which is the work per 
unit mass associated with pushing a fluid into or out of a control volume. 
Note that the fluid velocity at a solid surface is equal to the velocity of the 
solid surface because of the no-slip condition. As a result, the pressure work 
along the portions of the control surface that coincide with nonmoving solid 
surfaces is zero. Therefore, pressure work for fixed control volumes can 
exist only along the imaginary part of the control surface where the fluid 
enters and leaves the control volume, i.e., inlets and outlets.
 For a fixed control volume (no motion or deformation of the control vol-
ume), V

!
r 5 V

!
 and the energy equation Eq. 5–59 becomes

Fixed CV: Q
#
net in 1 W

#
shaft, net in 5

d

dt
 #

 

CV
 er dV 1 #

 

CS
 aP
r

1 ebr (V
!
·n
!
) dA  (5–60)

 This equation is not in a convenient form for solving practical engineer-
ing problems because of the integrals, and thus it is desirable to rewrite it in 
terms of average velocities and mass flow rates through inlets and outlets. If 
P/r 1 e is nearly uniform across an inlet or outlet, we can simply take it 

outside the integral. Noting that m# 5 #
 

Ac

 r(V
!
·n
!
) dAc is the mass flow rate

across an inlet or outlet, the rate of inflow or outflow of energy through the 
inlet or outlet can be approximated as m

.
(P/r 1 e). Then the energy equa-

tion becomes (Fig. 5–51)

Q
#
net in 1 W

#
shaft, net in 5

d

dt
 #

CV
 er dV 1 a

out

 m# aP
r

1 eb 2 a
in

m# aP
r

1 eb  (5–61)

where e 5 u 1 V2/2 1 gz (Eq. 5–50) is the total energy per unit mass for 
both the control volume and flow streams. Then,

Q
#

net in 1 W
#

shaft, net in 5
d

dt
 #

 

CV
 er dV 1 a 

out

 m# aP
r

1 u 1
V 2

2
1 gzb 2 a 

in

 m# aP
r

1 u 1
V 2

2
1 gzb
(5–62)

      or

Q
#

net in 1 W
#
shaft, net in 5

d

dt
 #

 

CV
 er dV 1 a

out

 m# ah 1
V 2

2
1 gzb 2a 

in

m# ah 1
V 2

2
1 gzb
(5–63)

min ,

energyin

In

mout ,

Out

mout ,
Out

Wshaft, net in

mout ,

energyout

energyout

min ,

energyin

energyout

Qnet in

In
Out

Fixed
control
volume

FIGURE 5–51
In a typical engineering problem, the 
control volume may contain many 
inlets and outlets; energy flows in at 
each inlet, and energy flows out at 
each outlet. Energy also enters the 
control volume through net heat 
transfer and net shaft work.
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where we used the definition of specific enthalpy h 5 u 1 Pv 5 u 1 P/r. 
The last two equations are fairly general expressions of conservation of 
energy, but their use is still limited to fixed control volumes, uniform flow 
at inlets and outlets, and negligible work due to viscous forces and other 
effects. Also, the subscript “net in” stands for “net input,” and thus any heat 
or work transfer is positive if to the system and negative if from the system.

5–6 ■  ENERGY ANALYSIS OF STEADY FLOWS 
For steady flows, the time rate of change of the energy content of the con-
trol volume is zero, and Eq. 5–63 simplifies to

Q
#
net in 1 W

#
shaft, net in 5 a 

out
 m #  ah 1

V 2

2
1 gzb 2 a 

in
 m# ah 1

V 2

2
1 gzb  (5–64)

It states that during steady flow the net rate of energy transfer to a control 
volume by heat and work transfers is equal to the difference between the 
rates of outgoing and incoming energy flows by mass flow.
 Many practical problems involve just one inlet and one outlet (Fig. 5–52). 
The mass flow rate for such single-stream devices is the same at the inlet 
and outlet, and Eq. 5–64 reduces to 

 Q
#

net in 1 W
#

shaft, net in 5 m# ah2 2 h1 1
V 2

2 2 V 2
1

2
1 g (z2 2 z1)b  (5–65)

where subscripts 1 and 2 refer to the inlet and outlet, respectively. The 
steady-flow energy equation on a unit-mass basis is obtained by dividing 
Eq. 5–65 by the mass flow rate m

.
,

 qnet in 1 wshaft, net in 5 h2 2 h1 1
V 2

2 2 V 2
1

2
1 g(z2 2 z1) (5–66)

where qnet in 5 Q
.
net in/m

.
 is the net heat transfer to the fluid per unit mass and 

wshaft, net in 5 W
.
shaft, net in/m

.
 is the net shaft work input to the fluid per unit 

mass. Using the definition of enthalpy h 5 u 1 P/r and rearranging, the 
steady-flow energy equation can also be expressed as

wshaft, net in 1
P1

r1
1

V 2
1

2
1 gz1 5

P2

r2
1

V 2
2

2
1 gz2 1 (u2 2 u1 2 qnet in) (5–67)

where u is the internal energy, P/r is the flow energy, V2/2 is the kinetic 
energy, and gz is the potential energy of the fluid, all per unit mass. These 
relations are valid for both compressible and incompressible flows.
 The left side of Eq. 5–67 represents the mechanical energy input, while 
the first three terms on the right side represent the mechanical energy 
output. If the flow is ideal with no irreversibilities such as friction, the 
total mechanical energy must be conserved, and the term in parentheses 
(u2 2 u1 2 qnet in) must equal zero. That is,

Ideal flow (no mechanical energy loss): qnet in 5 u2 2 u1 (5–68)

Any increase in u2 2 u1 above qnet in is due to the irreversible conversion of 
mechanical energy to thermal energy, and thus u2 2 u1 2 qnet in represents 
the mechanical energy loss per unit mass (Fig. 5–53). That is,

Real flow (with mechanical energy loss): emech, loss 5 u2 2 u1 2 qnet in (5–69)

15.2°C

15.0°C

Water

0.7 kg/s

Δu = 0.84 kJ/kg
ΔT = 0.2°C

2 kW
  pump = 0.70h

FIGURE 5–53
The lost mechanical energy in a fluid 
flow system results in an increase in 

the internal energy of the fluid and 
thus in a rise of fluid temperature.

+ + h1

Qnet in + Wshaft, net in

gz12
1m
2V

In

Out

Fixed
control
volume

2

1

+ + h2 gz22
2m
2V

FIGURE 5–52
A control volume with only one inlet 

and one outlet and energy interactions.
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For single-phase fluids (a gas or a liquid), u2 2 u1 5 cv(T2 2 T1) where cv 
is the constant-volume specific heat.
 The steady-flow energy equation on a unit-mass basis can be written con-
veniently as a mechanical energy balance,

 emech, in 5 emech, out 1 emech, loss (5–70)

or

 wshaft, net in 1
P1

r1
1

V 2
1

2
1 gz1 5

P2

r2
1

V 2
2

2
1 gz2 1 emech, loss (5–71)

Noting that wshaft, net in 5 wpump 2 wturbine, the mechanical energy balance can 
be written more explicitly as

P1

r1
1

V 2
1

2
1 gz1 1 wpump 5

P2

r2
1

V 2
2

2
1 gz2 1 wturbine 1 emech, loss (5–72)

where wpump is the mechanical work input (due to the presence of a pump, 
fan, compressor, etc.) and wturbine is the mechanical work output (due to a tur-
bine). When the flow is incompressible, either absolute or gage pressure can 
be used for P since Patm/r would appear on both sides and would cancel out.
 Multiplying Eq. 5–72 by the mass flow rate m

.
 gives

m# aP1

r1
1

V 2
1

2
1 gz1b 1 W

#
pump 5 m# aP2

r2
1

V 2
2

2
1 gz2b 1 W

#
turbine 1 E

#
mech, loss (5–73)

where W
.
pump is the shaft power input through the pump’s shaft, W

.
turbine is 

the shaft power output through the turbine’s shaft, and E
.
mech, loss is the total 

mechanical power loss, which consists of pump and turbine losses as well as 
the frictional losses in the piping network. That is,

E
.
mech, loss 5 E

.
mech loss, pump 1 E

.
mech loss, turbine 1 E

.
mech loss, piping

 By convention, irreversible pump and turbine losses are treated separately 
from irreversible losses due to other components of the piping system 
(Fig. 5–54). Thus, the energy equation is expressed in its most common form 
in terms of heads by dividing each term in Eq. 5 –73 by m

.
g. The result is

 
P1

r1g
1

V 2
1

2g
1 z1 1 hpump, u 5

P2

r2g
1

V 2
2

2g
1 z2 1 hturbine, e 1 hL (5–74)

where

•
 

hpump, u 5
wpump, u

g
5

W
#

pump, u

m# g
5
hpump W

#
pump

m# g
 is the useful head delivered 

 to the fluid by the pump. Because of irreversible losses in the pump, 
hpump, u is less than W

.
pump/m

.
g by the factor hpump.

•
 

hturbine, e 5
wturbine, e

g
5

W
#

turbine, e

m
#
g

5
W
#

turbine

hturbinem
#
g

 is the extracted head removed

 from the fluid by the turbine. Because of irreversible losses in the 
turbine, hturbine, e is greater than W

.
turbine/m

.
g by the factor hturbine. 

•
 

hL 5
emech loss, piping

g
5

E
#
mech loss, piping

m
#
g

 is the irreversible head loss between

 1 and 2 due to all components of the piping system other than the pump 
or turbine.

FIGURE 5–54
A typical power plant has numerous 
pipes, elbows, valves, pumps, and 
turbines, all of which have irreversible 
losses.
© Brand X Pictures PunchStock RF
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Note that the head loss hL represents the frictional losses associated with 
fluid flow in piping, and it does not include the losses that occur within the 
pump or turbine due to the inefficiencies of these devices—these losses are 
taken into account by hpump and hturbine. Equation 5–74 is illustrated sche-
matically in Fig. 5–55.
 The pump head is zero if the piping system does not involve a pump, a 
fan, or a compressor, and the turbine head is zero if the system does not 
involve a turbine.

Special Case: Incompressible Flow with No 
Mechanical Work Devices and Negligible Friction
When piping losses are negligible, there is negligible dissipation of mechan-
ical energy into thermal energy, and thus hL 5 emech loss, piping/g ≅ 0, as shown 
later in Example 5–11. Also, hpump, u 5 hturbine, e 5 0 when there are no 
mechanical work devices such as fans, pumps, or turbines. Then Eq. 5–74 
reduces to

 
P1

rg
1

V 2
1

2g
1 z1 5

P2

rg
1

V 2
2

2g
1 z2  or  

P
rg

1
V 2

2g
1 z 5 constant (5–75)

which is the Bernoulli equation derived earlier using Newton’s second law 
of motion. Thus, the Bernoulli equation can be thought of as a degenerate 
form of the energy equation.

Kinetic Energy Correction Factor, A
The average flow velocity Vavg was defined such that the relation rVavgA gives 
the actual mass flow rate. Therefore, there is no such thing as a correction 
factor for mass flow rate. However, as Gaspard Coriolis (1792–1843) showed, 
the kinetic energy of a fluid stream obtained from V2/2 is not the same as the 
actual kinetic energy of the fluid stream since the square of a sum is not equal 
to the sum of the squares of its components (Fig. 5–56). This error can be 
corrected by replacing the kinetic energy terms V2/2 in the energy equation 
by aV avg

2 /2, where a is the kinetic energy correction factor. By using equa-
tions for the variation of velocity with the radial distance, it can be shown that 
the correction factor is 2.0 for fully developed laminar pipe flow, and it ranges 
between 1.04 and 1.11 for fully developed turbulent flow in a round pipe.

Control volume

Emech loss, pump

Wpump, u

Wpump

hpump, u

hturbine, e

Emech fluid, out

Wturbine, e

Wturbine

Emech loss,
 turbine

hL

P1 
z1 

rg
+ +

2g rg

P2 
z2 + +

2g

Emech loss, piping

2V2 1V2 
Emech fluid, in

FIGURE 5–55
Mechanical energy flow chart for 
a fluid flow system that involves 

a pump and a turbine. Vertical 
dimensions show each energy term 
expressed as an equivalent column 

height of fluid, i.e., head, 
corresponding to each term 

of Eq. 5–74.

KEact =  ##kedm = ##A

 ##A

[V(r)]
2 

[rV(r) dA]

m = rVavg A,         r = constant

V(r) A

––1
2

rAV3––1
2

KEavg = avg avg=mV2––1
2

KEact
a = =

3 

dA
KEavg

––––––––
V(r)
Vavg
––––1

A

r ##A[V(r)]
3
 dA= ––1

2

a b
FIGURE 5–56

The determination of the kinetic energy 
correction factor using the actual 
velocity distribution V(r) and the 

average velocity Vavg at a cross section.
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 The kinetic energy correction factors are often ignored (i.e., a is set equal 
to 1) in an elementary analysis since (1) most flows encountered in prac-
tice are turbulent, for which the correction factor is near unity, and (2) the 
kinetic energy terms are often small relative to the other terms in the energy 
equation, and multiplying them by a factor less than 2.0 does not make 
much difference. When the velocity and thus the kinetic energy are high, 
the flow turns turbulent, and a unity correction factor is more appropriate. 
However, you should keep in mind that you may encounter some situations 
for which these factors are significant, especially when the flow is laminar. 
Therefore, we recommend that you always include the kinetic energy cor-
rection factor when analyzing fluid flow problems. When the kinetic energy 
correction factors are included, the energy equations for steady incompressible 
flow (Eqs. 5–73 and 5–74) become

m# aP1

r
1 a1

V 1
2

2
1 gz1b 1 W

#
pump 5 m# aP2

r
1 a2 

V 2
2

2
1 gz2b 1 W

#
turbine 1 E

#
mech, loss

 
 (5–76)

EXAMPLE 5–11     Effect of Friction on Fluid Temperature 
and Head Loss

Show that during steady and incompressible flow of a fluid in an adiabatic 

flow section (a) the temperature remains constant and there is no head loss 

when friction is ignored and (b) the temperature increases and some head 

loss occurs when frictional effects are considered. Discuss if it is possible for 

the fluid temperature to decrease during such flow (Fig. 5–57).

SOLUTION  Steady and incompressible flow through an adiabatic section is 

considered. The effects of friction on the temperature and the heat loss are 

to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The flow section is 

adiabatic and thus there is no heat transfer, qnet in 5 0.

Analysis  The density of a fluid remains constant during incompressible flow 

and the entropy change is

Ds 5 cv ln 
T2

T1

 

This relation represents the entropy change of the fluid per unit mass as 

it flows through the flow section from state 1 at the inlet to state 2 at 

the outlet. Entropy change is caused by two effects: (1) heat transfer and 

(2) irrevers i bilities. Therefore, in the absence of heat transfer, entropy change 

is due to irre vers i bilities only, whose effect is always to increase entropy.

1 2

T1
u1

T2
u2

   = constantρ

(adiabatic)

FIGURE 5–57
Schematic for Example 5–11.

 
P1

rg
1 a1 

V 1
2

2g
1 z1 1 hpump, u 5

P2

rg
1 a2 

V 2
2

2g
1 z2 1 hturbine, e 1 hL (5–77)

If the flow at an inlet or outlet is fully developed turbulent pipe flow, we 
recommend using a 5 1.05 as a reasonable estimate of the correction factor. 
This leads to a more conservative estimate of head loss, and it does not take 
much additional effort to include a in the equations.
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(a) The entropy change of the fluid in an adiabatic flow section (qnet in 5 0) 

is zero when the process does not involve any irreversibilities such as friction 

and swirling, and thus for reversible flow we have

 Temperature change: Ds 5 cv ln 
T2

T1

5 0  S  T2 5 T1

 Mechanical energy loss:

emech loss, piping 5 u2 2 u1 2 qnet in 5 cv(T2 2 T1) 2 qnet in 5 0

 Head loss: hL 5 emech loss, piping /g 5 0

Thus we conclude that when heat transfer and frictional effects are negligible, 

(1) the temperature of the fluid remains constant, (2) no mechanical energy 

is converted to thermal energy, and (3) there is no irreversible head loss.

(b) When irreversibilities such as friction are taken into account, the entropy 

change is positive and thus we have:

 Temperature change: Ds 5 cv ln 
T2

T1

. 0 S   T2 . T1

 Mechanical energy loss: emech loss, piping 5 u2 2 u1 2 qnet in 5 cv(T2 2 T1) . 0

 Head loss: hL 5 emech loss, piping /g .  0

Thus we conclude that when the flow is adiabatic and irreversible, (1) the 

temperature of the fluid increases, (2) some mechanical energy is converted 

to thermal energy, and (3) some irreversible head loss occurs.

Discussion  It is impossible for the fluid temperature to decrease during 

steady, incompressible, adiabatic flow since this would require the entropy 

of an adiabatic system to decrease, which would be a violation of the second 

law of thermodynamics.

300 kPa

Water

Motor
15 kW

  motor = 90%η

50 L/s

100 kPa
1

2

Wpump

FIGURE 5–58
Schematic for Example 5–12.

EXAMPLE 5–12     Pumping Power and Frictional Heating 
in a Pump

The pump of a water distribution system is powered by a 15-kW electric motor 

whose efficiency is 90 percent (Fig. 5–58). The water flow rate through the 

pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, 

and the elevation difference across the pump is negligible. If the absolute 

pressures at the inlet and outlet of the pump are measured to be 100 kPa 

and 300 kPa, respectively, determine (a) the mechanical efficiency of the 

pump and (b) the temperature rise of water as it flows through the pump 

due to mechanical inefficiencies.

SOLUTION  The pressures across a pump are measured. The mechanical 

efficiency of the pump and the temperature rise of water are to be deter-

mined.

Assumptions  1 The flow is steady and incompressible. 2 The pump is driven 

by an external motor so that the heat generated by the motor is dissipated 

to the atmosphere. 3 The elevation difference between the inlet and outlet 

of the pump is negligible, z1 > z2. 4 The inlet and outlet diameters are the 
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same and thus the average inlet and outlet velocities are equal, V1 5 V2. 

5 The kinetic energy correction factors are equal, a1 5 a2.

Properties  We take the density of water to be 1 kg/L 5 1000 kg/m3 and its 

specific heat to be 4.18 kJ/kg·°C.

Analysis  (a) The mass flow rate of water through the pump is

m# 5 rV
#

5 (1 kg/L)(50 L/s) 5 50 kg/s

The motor draws 15 kW of power and is 90 percent efficient. Thus the 

mechanical (shaft) power it delivers to the pump is

W
#

pump, shaft 5 hmotorW
#

electric 5 (0.90)(15 kW) 5 13.5 kW

To determine the mechanical efficiency of the pump, we need to know the 

increase in the mechanical energy of the fluid as it flows through the pump, 

which is

DE
#
mech, fluid 5 E

#
mech, out 2 E

#
mech, in 5 m

# aP2

r
1 a2

V 2
2

2
1 gz2b 2 m

# aP1

r
1a1 

V 2
1

2
1gz1b

Simplifying it for this case and substituting the given values,

 DE
#
mech, fluid 5 m# aP2 2 P1

r
b 5 (50 kg/s)a(300 2100) kPa

1000 kg/m3 ba 1 kJ

1 kPa · m3b 5 10.0 kW

Then the mechanical efficiency of the pump becomes

hpump 5
W
#

pump, u

W
#

pump, shaft

5
DE
#
mech, fluid

W
#

pump, shaft

5
10.0 kW

13.5 kW
5 0.741  or  74.1%

(b) Of the 13.5-kW mechanical power supplied by the pump, only 10.0 kW 

is imparted to the fluid as mechanical energy. The remaining 3.5 kW is con-

verted to thermal energy due to frictional effects, and this “lost” mechanical 

energy manifests itself as a heating effect in the fluid,

E
#
mech, loss 5 W

#
pump,shaft 2 DE

#
mech, fluid 5 13.5 2 10.0 5 3.5kW

The temperature rise of water due to this mechanical inefficiency is deter-

mined from the thermal energy balance, E
.

mech, loss 5 m
.
(u2 2 u1) 5 m

.
cDT. 

Solving for DT,

DT 5
E
#
mech, loss

m
#
c

5
3.5 kW

(50 kg/s)(4.18 kJ/ kg·8C)
5 0.0178C

Therefore, the water experiences a temperature rise of 0.017°C which is very 

small, due to mechanical inefficiency, as it flows through the pump.

Discussion  In an actual application, the temperature rise of water would 

probably be less since part of the heat generated would be transferred to 

the casing of the pump and from the casing to the surrounding air. If the entire 

pump and motor were submerged in water, then the 1.5 kW dissipated due to 

motor inefficiency would also be transferred to the surrounding water as heat.

EXAMPLE 5–13    Hydroelectric Power Generation from a Dam

In a hydroelectric power plant, 100 m3/s of water flows from an elevation of 

120 m to a turbine, where electric power is generated (Fig. 5–59). The total 

irreversible head loss in the piping system from point 1 to point 2 (excluding 

  hturbine–gen = 80%

100 m3/s

hL = 35 m

2

120 m

1

Generator

Turbine

FIGURE 5–59
Schematic for Example 5–13.
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the turbine unit) is determined to be 35 m. If the overall efficiency of the 

turbine–generator is 80 percent, estimate the electric power output.

SOLUTION  The available head, flow rate, head loss, and efficiency of a 

hydroelectric turbine are given. The electric power output is to be determined.

Assumptions  1 The flow is steady and incompressible. 2 Water levels at the 

reservoir and the discharge site remain constant.

Properties  We take the density of water to be 1000 kg/m3.

Analysis  The mass flow rate of water through the turbine is

m# 5 rV
#

5 (1000 kg/m3)(100 m3/s) 5 105 kg/s

We take point 2 as the reference level, and thus z2 5 0. Also, both points 1 

and 2 are open to the atmosphere (P1 5 P2 5 Patm) and the flow velocities 

are negligible at both points (V1 5 V2 5 0). Then the energy equation for 

steady, incompressible flow reduces to

P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u 5

P2

rg
1 a2 

V 2
2

2g
1 z2     1 hturbine, e 1 hL

or

hturbine, e 5 z1 2 hL

Substituting, the extracted turbine head and the corresponding turbine 

power are

hturbine, e 5 z1 2 hL 5 120 2 35 5 85 m

W
#

turbine, e 5 m
#
ghturbine, e 5 (105 kg/s)(9.81 m/s2)(85 m)a 1 kJ/kg

1000 m2/s2b 5 83,400 kW

Therefore, a perfect turbine–generator would generate 83,400 kW of elec-

tricity from this resource. The electric power generated by the actual unit is

W
.
electric 5 hturbine–genW

.
turbine, e 5 (0.80)(83.4 MW) 5 66.7 MW

Discussion  Note that the power generation would increase by almost 1 MW 

for each percentage point improvement in the efficiency of the turbine–

generator unit. You will learn how to determine hL in Chap. 8.

EXAMPLE 5–14    Fan Selection for Air Cooling of a Computer

A fan is to be selected to cool a computer case whose dimensions are 12 cm 3 

40 cm 3 40 cm (Fig. 5–60). Half of the volume in the case is expected to 

be filled with components and the other half to be air space. A 5-cm-diam-

eter hole is available at the back of the case for the installation of the fan 

that is to replace the air in the void spaces of the case once every second. 

Small low-power fan–motor combined units are available in the market and 

their efficiency is estimated to be 30 percent. Determine (a) the wattage of 

the fan–motor unit to be purchased and (b) the pressure difference across 

the fan. Take the air density to be 1.20 kg/m3.

Solution  A fan is to cool a computer case by completely replacing the air 

inside once every second. The power of the fan and the pressure difference 

across it are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 Losses other than 

those due to the inefficiency of the fan–motor unit are negligible. 3 The flow 

Fan
Casing

Streamline

V21 2

3 4 Welect

FIGURE 5–60
Schematic for Example 5–14.

  0  0
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at the outlet is fairly uniform except near the center (due to the wake of the 

fan motor), and the kinetic energy correction factor at the outlet is 1.10.

Properties  The density of air is given to be 1.20 kg/m3.

Analysis  (a) Noting that half of the volume of the case is occupied by the 

components, the air volume in the computer case is

 V 5 (Void fraction)(Total case volume) 

 5 0.5(12 cm 3 40 cm 3 40 cm) 5 9600 cm3

Therefore, the volume and mass flow rates of air through the case are

 V
#

5
V
Dt

5
9600 cm3

1s
5 9600 cm3/s 5 9.6 3 1023m3/s

 m# 5 rV
#

5 (1.20 kg/m3)(9.6 3 1023m3/s) 5 0.0115 kg/s

The cross-sectional area of the opening in the case and the average air velocity 

through the outlet are

 A 5
pD2

4
5
p(0.05 m)2

4
5 1.96 3 1023 m2

 V 5
V
#

A
5

9.6 3 1023 m3/s

1.96 3 1023 m2 5 4.90 m/s

We draw the control volume around the fan such that both the inlet and the 

outlet are at atmospheric pressure (P1 5 P2 5 Patm), as shown in Fig. 5–60, 

where the inlet section 1 is large and far from the fan so that the flow 

velocity at the inlet section is negligible (V1 > 0). Noting that z1 5 z2 and 

frictional losses in the flow are disregarded, the mechanical losses consist of 

fan losses only and the energy equation (Eq. 5–76) simplifies to

m# a
P1

r
1 a1

V 2
1

2
1 gz2b 1 W

#
fan 5 m# aP2

r
1 a2

V 2
2

2
1 gz2b 1 W

#
turbine 1 E

#
mech loss, fan

Solving for W
.

fan 2 E
.

mech loss, fan 5 W
.

fan, u and substituting,

W
#

fan, u 5 m # a2 
V 2

2

2
5 (0.0115 kg/s)(1.10) 

(4.90 m/s)2

2
 a 1 N

1kg·m/s2b 5 0.152 W

Then the required electric power input to the fan is determined to be

W
#

elect 5
W
#

fan, u

hfan2motor
5

0.152 W

0.3
5 0.506 W

Therefore, a fan–motor rated at about a half watt is adequate for this job 

(Fig. 5–61). (b) To determine the pressure difference across the fan unit, we 

take points 3 and 4 to be on the two sides of the fan on a horizontal line. 

This time z3 5 z4 again and V3 5 V4 since the fan is a narrow cross section, 

and the energy equation reduces to

m
#  

P3

r
1 W

#
fan 5 m

#  
P4

r
1 E

#
mech loss, fan  S   W

#
fan, u 5 m

#  
P4 2 P3

r

 0              0 Q     

¬
¬

¬
"

FIGURE 5–61
The cooling fans used in computers 
and computer power supplies are 
typically small and consume only 
a few watts of electrical power.
© PhotoDisc/Getty RF
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Solving for P4 2 P3 and substituting,

P4 2 P3 5
rW
#

fan, u

m#
5

(1.2 kg/m3)(0.152 W)

0.0115 kg/s
a1Pa·m3

1 Ws
b 5 15.8 Pa

Therefore, the pressure rise across the fan is 15.8 Pa.

Discussion  The efficiency of the fan–motor unit is given to be 30 percent, 

which means 30 percent of the electric power W
.

electric consumed by the 

unit is converted to useful mechanical energy while the rest (70 percent) is 

“lost” and converted to thermal energy. Also, a more powerful fan is required 

in an actual system to overcome frictional losses inside the computer case. 

Note that if we had ignored the kinetic energy correction factor at the outlet, 

the required electrical power and pressure rise would have been 10 percent 

lower in this case (0.460 W and 14.4 Pa, respectively).

25 m

Pool

2

1

FIGURE 5–62
Schematic for Example 5–15.

EXAMPLE 5–15    Pumping Water from a Lake to a Pool

A submersible pump with a shaft power of 5 kW and an efficiency of 72 percent 

is used to pump water from a lake to a pool through a constant diameter 

pipe (Fig. 5–62). The free surface of the pool is 25 m above the free sur-

face of the lake. If the irreversible head loss in the piping system is 4 m, 

determine the discharge rate of water and the pressure difference across 

the pump.

SOLUTION  Water from a lake is pumped to a pool at a given elevation. For 

a given head loss, the flow rate and the pressure difference across the pump 

are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 Both the lake and 

pool are large enough that their surface elevations remain fixed.

Properties  We take the density of water to be 1 kg/L = 1000 kg/m3.

Analysis  The pump delivers 5 kW of shaft power and is 72 percent effi-

cient. The useful mechanical power it imparts to the water is

W
#

pump u 5 hpumpW
#

shaft 5 (0.72) (5 kW) 5 3.6 kW

We take point 1 at the free surface of the lake, which is also taken as the 

reference level (z1 5 0), and point 2 at the free surface of the pool. Also, 

both points 1 and 2 are open to the atmosphere (P1 5 P2 5 Patm), and the 

velocities are negligible there (V1 > V2 > 0). Then the energy equation for 

steady, incompressible flow through a control volume between these two sur-

faces that includes the pump is expressed as

m# aP1

r
1 a1

V 2
1

2
1 gz1b 1 W

#
pump, u 5 m

# aP2

r
1 a2

V 2
2

2
1 gz2b

       1 W
#

turbine, e 1 E
#
mech loss, piping

Under the stated assumptions, the energy equation reduces to

W
.
 pump, u 5 m

. gz2 1 E
.
 mech loss, piping
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Noting that E
.
 mech loss, piping5 m

. ghL, the mass and volume flow rates of water 

become

m# 5
W
#

pump, u

gz2 1 ghL

5
W
#

pump, u

g(z2 1 hL)
5

3.6 kJ/s

(9.81m/s2)(25 1 4 m)
 a1000 m2/s2

1 kJ
b 5 12.7 kg/s

V
#

5
m#

r
5

12.7 kg/s

1000 kg/m3 5 12.7 3 1023 m3/s 5 12.7 L/s

We now take the pump as the control volume. Assuming that the elevation 

difference and the kinetic energy change across the pump are negligible, the 

energy equation for this control volume yields

DP 5 Pout 2 Pin 5
W
#

pump, u

V
# 5

3.6 kJ/s

12.7 3 1023 m3/s
 a1 kN·m

1 kJ
b a 1 kPa

1 kN/m2b
5 283 kPa

Discussion  It can be shown that in the absence of head loss (hL 5 0) the 

flow rate of water would be 14.7 L/s, which is an increase of 16 percent. 

Therefore, frictional losses in pipes should be minimized since they always 

cause the flow rate to decrease.

SUMMARY

This chapter deals with the mass, Bernoulli, and energy 
equations and their applications. The amount of mass flow-
ing through a cross section per unit time is called the mass 
flow rate and is expressed as

m# 5 rVAc 5 rV
#

where r is the density, V is the average velocity, V
.
 is the 

volume flow rate of the fluid, and Ac is the cross-sectional 
area normal to the flow direction. The conservation of mass 
relation for a control volume is expressed as

d

dt
 #

CV
 r dV 1 #

CS
 r(V

!
·n
!
) dA 5 0

It states that the time rate of change of the mass within the 
control volume plus the net mass flow rate out of the control 
surface is equal to zero.
 In simpler terms,

dmCV

dt
5 a

in
m# 2 a

out
m#

 For steady-flow devices, the conservation of mass principle 
is expressed as

Steady flow: a
in

m# 5 a
out

m#

Steady flow (single stream): 

m# 1 5 m# 2 S r1V1A1 5 r2V2A2

Steady, incompressible flow: a
in

V
#

5 a
out

V
#

Steady, incompressible flow (single stream):

V
#
1 5 V

#
2 S  V1 A1 5 V2 A2

 Mechanical energy is the form of energy associated with 
the velocity, elevation, and pressure of the fluid, and it can 
be converted to mechanical work completely and directly by 
an ideal mechanical device. The efficiencies of various real 
devices are defined as 

 hpump 5
DE
#
mech, fluid

W
#

shaft, in

5
W
#

pump, u

W
#

pump

 

 hturbine 5
W
#

shaft, out

uDE
#
mech, fluid u

5
W
#

turbine

W
#

turbine, e

 hmotor 5
Mechanical power output

Electric power input
5

W
#

shaft, out

W
#
elect, in
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 hgenerator 5
Electric power output

Mechanical power input
5

W
#

elect, out

W
#

shaft, in

 hpump-motor 5 hpumphmotor 5
DE
#
mech, fluid

W
#

elect, in

5
W
#

pump, u

W
#

elect, in

 hturbine–gen 5 hturbinehgenerator 5
W
#

elect, out

uDE
#
mech, fluid u

5
W
#

elect, out

W
#

turbine, e

 The Bernoulli equation is a relation between pressure, 
velocity, and elevation in steady, incompressible flow, and is 
expressed along a streamline and in regions where net vis-
cous forces are negligible as

P
r

1
V 2

2
1 gz 5 constant

It can also be expressed between any two points on a stream-
line as

P1

r
1

V 2
1

2
1 gz1 5

P2

r
1

V 2
2

2
1 gz2

The Bernoulli equation is an expression of mechanical 
energy balance and can be stated as: The sum of the kinetic, 
potential, and flow energies of a fluid particle is constant 
along a streamline during steady flow when the compress-
ibility and frictional effects are negligible. Multiplying the 
Bernoulli equation by density gives

P 1 r 
V 2

2
1 rgz 5 constant

where P is the static pressure, which represents the actual 
pressure of the fluid; rV2/2 is the dynamic pressure, which 
represents the pressure rise when the fluid in motion is 
brought to a stop; and rgz is the hydrostatic pressure, 
which accounts for the effects of fluid weight on pressure. 
The sum of the static, dynamic, and hydrostatic pressures is 
called the total pressure. The Bernoulli equation states that 
the total pressure along a streamline is constant. The sum 
of the static and dynamic pressures is called the stagnation 
pressure, which represents the pressure at a point where the 
fluid is brought to a complete stop in an isentropic manner. 

The Bernoulli equation can also be represented in terms of 
“heads” by dividing each term by g,

P
rg

1
V 2

2g
1 z 5 H 5 constant

where P/rg is the pressure head, which represents the height 
of a fluid column that produces the static pressure P; V2/2g is 
the velocity head, which represents the elevation needed for a 
fluid to reach the velocity V during frictionless free fall; and 
z is the elevation head, which represents the potential energy 
of the fluid. Also, H is the total head for the flow. The curve 
that represents the sum of the static pressure and the elevation 
heads, P/rg 1 z, is called the hydraulic grade line (HGL), and 
the curve that represents the total head of the fluid, P/rg 1 
V2/2g 1 z, is called the energy grade line (EGL).
 The energy equation for steady, incompressible flow is

P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u

5
P2

rg
1 a2 

V 2
2

2g
1 z2 1 hturbine, e 1 hL

where

 hpump, u 5
wpump, u

g
5

W
#

pump, u

m# g
5
hpumpW

#
pump

m# g

 hturbine, e 5
wturbine, e

g
5

W
#
turbine, e

m# g
5

W
#

turbine

hturbinem
# g

 hL 5
emech loss, piping

g
5

E
#

mech loss, piping

m# g
 emech, loss 5 u2 2 u1 2 qnet in

 The mass, Bernoulli, and energy equations are three of the 
most fundamental relations in fluid mechanics, and they are 
used extensively in the chapters that follow. In Chap. 6, either 
the Bernoulli equation or the energy equation is used together 
with the mass and momentum equations to determine the 
forces and torques acting on fluid systems. In Chaps. 8 and 14, 
the mass and energy equations are used to determine the 
pumping power requirements in fluid systems and in the 
design and analysis of turbomachinery. In Chaps. 12 and 13, 
the energy equation is also used to some extent in the analy-
sis of compressible flow and open-channel flow.
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Smoking
lounge

40 smokers
Fan

FIGURE P5–13

PROBLEMS*

Conservation of Mass

5–1C  Name four physical quantities that are conserved and 
two quantities that are not conserved during a process.

5–2C  Define mass and volume flow rates. How are they 
related to each other?

5–3C  Does the amount of mass entering a control volume 
have to be equal to the amount of mass leaving during an 
unsteady-flow process?

5–4C  When is the flow through a control volume steady?

5–5C  Consider a device with one inlet and one outlet. If the 
volume flow rates at the inlet and at the outlet are the same, 
is the flow through this device necessarily steady? Why?

5–6  In climates with low night-time temperatures, an 
energy-efficient way of cooling a house is to install a fan in 
the ceiling that draws air from the interior of the house and 
discharges it to a ventilated attic space. Consider a house 
whose interior air volume is 720 m3. If air in the house is 
to be exchanged once every 20 minutes, determine (a) the 
required flow rate of the fan and (b) the average discharge 
speed of air if the fan diameter is 0.5 m.

5–7E  A garden hose attached with a nozzle is used to fill 
a 20-gal bucket. The inner diameter of the hose is 1 in and 
it reduces to 0.5 in at the nozzle exit. If the average veloc-
ity in the hose is 8 ft/s, determine (a) the volume and mass 
flow rates of water through the hose, (b) how long it will take 
to fill the bucket with water, and (c) the average velocity of 
water at the nozzle exit.

5–8E  Air whose density is 0.082 lbm/ft3 enters the duct of an 
air-conditioning system at a volume flow rate of 450 ft3/min. If 
the diameter of the duct is 16 in, determine the velocity of the 
air at the duct inlet and the mass flow rate of air.

5–9  A 0.75-m3 rigid tank initially contains air whose den-
sity is 1.18 kg/m3. The tank is connected to a high-pressure 
supply line through a valve. The valve is opened, and air is 
allowed to enter the tank until the density in the tank rises to 
4.95 kg/m3. Determine the mass of air that has entered the 
tank.  Answer: 2.83 kg

5–10  Consider the flow of an incompressible Newtonian fluid 
between two parallel plates. If the upper plate moves to right 
with u1 5 3 m/s while the bottom one moves to the left with 

u2 5 0.75 m/s, what would be the net flow rate at a cross-
section between two plates? Take the plate width to be b 5 5 cm.

5–11  Consider a fully filled tank of semi-circular cross 
section tank with radius R and width of b into the page, as 
shown in Fig. P5-11. If the water is pumped out of the tank at 
flow rate of V

#
5 Kh2, where K is a positive constant and h is 

the water depth at time t. Determine the time needed to drop 
the water level to a specified h value of ho in terms of R, K, 
and ho.

* Problems designated by a “C” are concept questions, and 

students are encouraged to answer them all. Problems designated 

by an “E” are in English units, and the SI users can ignore them. 

Problems with the  icon are solved using EES, and complete 

solutions together with parametric studies are included on the 

text website. Problems with the  icon are comprehensive in 

nature and are intended to be solved with an equation solver 

such as EES.

5–12  A desktop computer is to be cooled by a fan whose 
flow rate is 0.40 m3/min. Determine the mass flow rate of air 
through the fan at an elevation of 3400 m where the air den-
sity is 0.7 kg/m3. Also, if the average velocity of air is not to 
exceed 110 m/min, determine the minimum diameter of the 
casing of the fan.  Answers: 0.00467 kg/s, 0.0569 m

5–13  A smoking lounge is to accommodate 40 heavy smok-
ers. The minimum fresh air requirement for smoking lounges 
is specified to be 30 L/s per person (ASHRAE, Standard 62, 
1989). Determine the minimum required flow rate of fresh 
air that needs to be supplied to the lounge, and the minimum 
diameter of the duct if the air velocity is not to exceed 8 m/s.

Water
R

h

FIGURE P5–11

5–14  The minimum fresh air requirement of a residen-
tial building is specified to be 0.35 air changes per hour 
(ASHRAE, Standard 62, 1989). That is, 35 percent of the 
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entire air contained in a residence should be replaced by 
fresh outdoor air every hour. If the ventilation requirement of 
a 2.7-m-high, 200-m2 residence is to be met entirely by a fan, 
determine the flow capacity in L/min of the fan that needs 
to be installed. Also determine the minimum diameter of the 
duct if the average air velocity is not to exceed 5 m/s.

5–15  Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s 
and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the 
nozzle is 60 cm2, determine (a) the mass flow rate through 
the nozzle, and (b) the exit area of the nozzle.  Answers: 

(a) 0.265 kg/s, (b) 23.2 cm2

5–16  Air at 408C flow steadily through the pipe shown in 
Fig. P5–16. If P1 5 50 kPa (gage), P2 5 10 kPa (gage), 
D 5 3d, Patm > 100 kPa, the average velocity at section 2 
is V2530 m/s, and air temperature remains nearly constant, 
determine the average speed at section 1.

1.05 kg/m3 1.20 kg/m3

FIGURE P5–17

5–17  A hair dryer is basically a duct of constant diameter 
in which a few layers of electric resistors are placed. A small 
fan pulls the air in and forces it through the resistors where 
it is heated. If the density of air is 1.20 kg/m3 at the inlet and 
1.05 kg/m3 at the exit, determine the percent increase in the 
velocity of air as it flows through the hair dryer.

5–25  Electric power is to be generated by installing a 
hydraulic turbine–generator at a site 110 m below the free sur-
face of a large water reservoir that can supply water steadily 
at a rate of 900 kg/s. If the mechanical power output of the 
turbine is 800 kW and the electric power generation is 750 kW, 
determine the turbine efficiency and the combined turbine–
generator efficiency of this plant. Neglect losses in the pipes.

5–26  Consider a river flowing toward a lake at an average 
speed of 4 m/s at a rate of 500 m3/s at a location 70 m above 
the lake surface. Determine the total mechanical energy of the 
river water per unit mass and the power generation potential 
of the entire river at that location.  Answer: 347 MW

River 4 m/s

70 m

FIGURE P5–26

ΔT = 0.048°F

Pump

FIGURE P5–24EFIGURE P5–16

P1

P2

dD

1 2

Mechanical Energy and Efficiency

5–18C  Define turbine efficiency, generator efficiency, and 
combined turbine–generator efficiency.

5–19C  What is mechanical efficiency? What does a mechan-
ical efficiency of 100 percent mean for a hydraulic turbine?

5–20C  How is the combined pump–motor efficiency of a pump 
and motor system defined? Can the combined pump–motor effi-
ciency be greater than either the pump or the motor efficiency?

5–21C  What is mechanical energy? How does it differ from 
thermal energy? What are the forms of mechanical energy of 
a fluid stream?

5–22  At a certain location, wind is blowing steadily at 
8 m/s. Determine the mechanical energy of air per unit mass 
and the power generation potential of a wind turbine with 
50-m-diameter blades at that location. Also determine the 
actual electric power generation assuming an overall effi-
ciency of 30 percent. Take the air density to be 1.25 kg/m3.

5–23   Reconsider Prob. 5–22. Using EES (or other) 
software, investigate the effect of wind velocity 

and the blade span diameter on wind power generation. Let 
the velocity vary from 5 to 20 m/s in increments of 5 m/s, 
and the diameter to vary from 20 to 80 m in increments of 
20 m. Tabulate the results, and discuss their significance.

5–24E  A differential thermocouple with sensors at the inlet 
and exit of a pump indicates that the temperature of water rises 
0.0488F as it flows through the pump at a rate of 1.5 ft3/s. If 
the shaft power input to the pump is 23 hp and the heat loss 
to the surrounding air is negligible, determine the mechanical 
efficiency of the pump.  Answer: 72.4 percent

5–27  Water is pumped from a lake to a storage tank 18 m 
above at a rate of 70 L/s while consuming 20.4 kW of electric 
power. Disregarding any frictional losses in the pipes and any 
changes in kinetic energy, determine (a) the overall efficiency of 
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the pump–motor unit and (b) the pressure difference between 
the inlet and the exit of the pump.

5–39C  The velocity of a fluid flowing in a pipe is to be 
measured by two different Pitot-type mercury manometers 
shown in Fig. P5–39C. Would you expect both manometers 
to predict the same velocity for flowing water? If not, which 
would be more accurate? Explain. What would your response 
be if air were flowing in the pipe instead of water?

Flow

(a) (b)

Flow

FIGURE P5–38C

Flow Flow

1
2

FIGURE P5–39C

Pump

Storage tank

18 m

FIGURE P5–27

Bernoulli Equation

5–28C  What is stagnation pressure? Explain how it can be 
measured.

5–29C  Express the Bernoulli equation in three different 
ways using (a) energies, (b) pressures, and (c) heads.

5–30C  What are the three major assumptions used in the 
derivation of the Bernoulli equation?

5–31C  Define static, dynamic, and hydrostatic pressure. 
Under what conditions is their sum constant for a flow 
stream?

5–32C  What is streamwise acceleration? How does it differ 
from normal acceleration? Can a fluid particle accelerate in 
steady flow?

5–33C  Define pressure head, velocity head, and elevation 
head for a fluid stream and express them for a fluid stream 
whose pressure is P, velocity is V, and elevation is z.

5–34C  Explain how and why a siphon works. Someone 
proposes siphoning cold water over a 7-m-high wall. Is this 
feasible? Explain.

5–35C  How is the location of the hydraulic grade line deter-
mined for open-channel flow? How is it determined at the 
outlet of a pipe discharging to the atmosphere?

5–36C  In a certain application, a siphon must go over a 
high wall. Can water or oil with a specific gravity of 0.8 go 
over a higher wall? Why?

5–37C  What is the hydraulic grade line? How does it differ 
from the energy grade line? Under what conditions do both 
lines coincide with the free surface of a liquid?

5–38C  A glass manometer with oil as the working fluid 
is connected to an air duct as shown in Fig. P5–38C. Will 
the oil levels in the manometer be as in Fig. P5–38Ca or b? 
Explain. What would your response be if the flow direction 
is reversed?

5–40C  The water level of a tank on a building roof is 20 m 
above the ground. A hose leads from the tank bottom to the 
ground. The end of the hose has a nozzle, which is pointed 
straight up. What is the maximum height to which the water 
could rise? What factors would reduce this height?

5–41C  A student siphons water over a 8.5-m-high wall at 
sea level. She then climbs to the summit of Mount Shasta 
(elevation 4390 m, Patm 5 58.5 kPa) and attempts the same 
experiment. Comment on her prospects for success.

5–42  In a hydroelectric power plant, water enters the tur-
bine nozzles at 800 kPa absolute with a low velocity. If the 
nozzle outlets are exposed to atmospheric pressure of 100 kPa, 
determine the maximum velocity to which water can be 
accelerated by the nozzles before striking the turbine blades.

5–43  A Pitot-static probe is used to measure the speed of an 
aircraft flying at 3000 m. If the differential pressure reading 
is 3 kPa, determine the speed of the aircraft.

5–44  The air velocity in the duct of a heating system is to 
be measured by a Pitot-static probe inserted into the duct par-
allel to the flow. If the differential height between the water 
columns connected to the two outlets of the probe is 2.4 cm, 
determine (a) the flow velocity and (b) the pressure rise at 
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reach in the tank and (b) obtain a relation for water height z 
as a function of time.

Water
1.5 ft

2 ft

FIGURE P5–45E

5–50E  Water flows through a horizontal pipe at a rate of 
2.4 gal/s. The pipe consists of two sections of diameters 4 in 
and 2 in with a smooth reducing section. The pressure differ-
ence between the two pipe sections is measured by a mercury 
manometer. Neglecting frictional effects, determine the dif-
ferential height of mercury between the two pipe sections. 
Answer: 3.0 in

Do
z

DT

inm

FIGURE P5–49

4 in 2 in

h

FIGURE P5–50E

the tip of the probe. The air temperature and pressure in the 
duct are 45°C and 98 kPa, respectively.

5–45E     The drinking water needs of an office are 
met by large water bottles. One end of a 

0.25-in-diameter plastic hose is inserted into the bottle placed 
on a high stand, while the other end with an on/off valve is 
maintained 2 ft below the bottom of the bottle. If the water 
level in the bottle is 1.5 ft when it is full, determine how long 
it will take at the minimum to fill an 8-oz glass (5 0.00835 ft3) 
(a) when the bottle is first opened and (b) when the bottle is 
almost empty. Neglect frictional losses.

5–46  A piezometer and a Pitot tube are tapped into a 4-cm-
diameter horizontal water pipe, and the height of the water 
columns are measured to be 26 cm in the piezometer and 
35 cm in the Pitot tube (both measured from the top surface 
of the pipe). Determine the velocity at the center of the pipe.

5–47  The diameter of a cylindrical water tank is Do and its 
height is H. The tank is filled with water, which is open to the 
atmosphere. An orifice of diameter D with a smooth entrance 
(i.e., negligible losses) is open at the bottom. Develop a rela-
tion for the time required for the tank (a) to empty halfway 
and (b) to empty completely.

5–48E  A siphon pumps water from a large reservoir to a 
lower tank that is initially empty. The tank also has a rounded 
orifice 20 ft below the reservoir surface where the water 
leaves the tank. Both the siphon and the orifice diameters are 
2 in.  Ignoring frictional losses, determine to what height the 
water will rise in the tank at equilibrium.

5–49  Water enters a tank of diameter DT steadily at a mass 
flow rate of m

.
in. An orifice at the bottom with diameter Do 

allows water to escape. The orifice has a rounded entrance, 
so the frictional losses are negligible. If the tank is initially 
empty, (a) determine the maximum height that the water will 

5–51  An airplane is flying at an altitude of 12,000 m. 
Determine the gage pressure at the stagnation point on the 
nose of the plane if the speed of the plane is 300 km/h. How 
would you solve this problem if the speed were 1050 km/h? 
Explain.

5–52  While traveling on a dirt road, the bottom of a car hits 
a sharp rock and a small hole develops at the bottom of its 
gas tank. If the height of the gasoline in the tank is 30 cm, 
determine the initial velocity of the gasoline at the hole. Dis-
cuss how the velocity will change with time and how the 
flow will be affected if the lid of the tank is closed tightly. 
Answer: 2.43 m/s
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5–53  The water in an 8-m-diameter, 3-m-high above-ground 
swimming pool is to be emptied by unplugging a 3-cm-diameter, 
25-m-long horizontal pipe attached to the bottom of the pool. 
Determine the maximum discharge rate of water through the 
pipe. Also, explain why the actual flow rate will be less.

5–54  Reconsider Prob. 5–53. Determine how long it will 
take to empty the swimming pool completely.  Answer: 15.4 h

5–55  Reconsider Prob. 5–54. Using EES (or other) 
software, investigate the effect of the discharge 

pipe diameter on the time required to empty the pool com-
pletely. Let the diameter vary from 1 to 10 cm in increments 
of 1 cm. Tabulate and plot the results.

5–56  Air at 105 kPa and 37°C flows upward through a 
6-cm-diameter inclined duct at a rate of 65 L/s. The duct 
diameter is then reduced to 4 cm through a reducer. The 
pressure change across the reducer is measured by a water 
manometer. The elevation difference between the two points 
on the pipe where the two arms of the manometer are 
attached is 0.20 m. Determine the differential height between 
the fluid levels of the two arms of the manometer.

5–58  Water at 20°C is siphoned from a reservoir as shown 
in Fig. P5–58. For d 5 10 cm and D 5 16 cm, determine 
(a) the minimum flow rate that can be achieved without cavi-
tation occurring in the piping system and (b) the maximum 
elevation of the highest point of the piping system to avoid 
cavitation.

1 
m

4 
m

2 
m

7 
m

T = 20°C

d

D

1

2

3

4

FIGURE P5–58

5 cm Air

0.3 cm

10 cm

20 cm

Liquid
rising

F

FIGURE P5–57

2.5 m

10 cm

Air
250 kPa

FIGURE P5–60

Air

h

FIGURE P5–56

5–57  A handheld bicycle pump can be used as an atomizer 
to generate a fine mist of paint or pesticide by forcing air at 
a high velocity through a small hole and placing a short tube 
between the liquid reservoir and the high-speed air jet. The 
pressure across a subsonic jet exposed to the atmosphere is 
nearly atmospheric, and the surface of the liquid in the res-
ervoir is also open to atmospheric pressure. In light of this, 
explain how the liquid is sucked up the tube. Hint: Read 
Sec. 5-4 carefully.

5–59  The water pressure in the mains of a city at a particu-
lar location is 270 kPa gage. Determine if this main can serve 
water to neighborhoods that are 25 m above this location.

5–60  A pressurized tank of water has a 10-cm-diameter 
orifice at the bottom, where water discharges to the atmo-
sphere. The water level is 2.5 m above the outlet. The tank 
air pressure above the water level is 250 kPa (absolute) while 
the atmospheric pressure is 100 kPa. Neglecting frictional 
effects, determine the initial discharge rate of water from the 
tank.  Answer: 0.147 m3/s

5–61  Reconsider Prob. 5–60. Using EES (or other) 
software, investigate the effect of water height in 

the tank on the discharge velocity. Let the water height vary 
from 0 to 5 m in increments of 0.5 m. Tabulate and plot the 
results.
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5–62E  Air is flowing through a venturi meter whose diameter 
is 2.6 in at the entrance part (location 1) and 1.8 in at the throat 
(location 2). The gage pressure is measured to be 12.2 psia at 
the entrance and 11.8 psia at the throat. Neglecting frictional 
effects, show that the volume flow rate can be expressed as

V
#

5 A2Å 2(P1 2 P2)

r(1 2 A2
2/A2

1)

and determine the flow rate of air. Take the air density to be 
0.075 lbm/ft3.

5–65E  The air velocity in a duct is measured by a Pitot-static 
probe connected to a differential pressure gage. If the air is 
at 13.4 psia absolute and 70°F and the reading of the differ-
ential pressure gage is 0.15 psi, determine the air velocity. 
Answer: 143 ft/s

5–66  In cold climates, water pipes may freeze and burst if 
proper precautions are not taken. In such an occurrence, the 
exposed part of a pipe on the ground ruptures, and water 
shoots up to 42 m. Estimate the gage pressure of water in the 
pipe. State your assumptions and discuss if the actual pres-
sure is more or less than the value you predicted.

5–67  A well-fitting piston with 4 small holes in a sealed 
water-filled cylinder, shown in Fig. P5-67, is pushed to the 
right at a constant speed of 4 mm/s while the pressure in the 
right compartment remains constant at 50 kPa gage. Disre-
garding the frictional effects, determine the force F that needs 
to be applied to the piston to maintain this motion.

CHAPTER 5

2.6 in

12.2 psia

Air 1.8 in

11.8 psia

FIGURE P5–62E

Piston

Cylinder

Hole dh = 2 mm

dr = 3 cm

F

Water P = 50 kPa

dp = 12 cm

FIGURE P5–67

Pitot-static
probe

Manometer

Air 5.5 cm

FIGURE P5–64

15 m

3 atm

h

FIGURE P5–63

5–63  The water level in a tank is 15 m above the ground. A 
hose is connected to the bottom of the tank, and the nozzle at 
the end of the hose is pointed straight up. The tank cover is 
airtight, and the air pressure above the water surface is 3 atm 
gage. The system is at sea level. Determine the maximum 
height to which the water stream could rise.  Answer: 46.0 m

5–64  A Pitot-static probe connected to a water manometer is 
used to measure the velocity of air. If the deflection (the vertical 
distance between the fluid levels in the two arms) is 5.5 cm, deter-
mine the air velocity. Take the density of air to be 1.16 kg/m3.

5–68  A fluid of density r and viscosity m flows through a 
section of horizontal converging–diverging duct. The duct 
cross-sectional areas Ainlet, Athroat, and Aoutlet are known at the 
inlet, throat (minimum area), and outlet, respectively. Average 
pressure Poutlet is measured at the outlet, and average veloc-
ity Vinlet is measured at the inlet. (a) Neglecting any irrevers-
ibilities such as friction, generate expressions for the average 
velocity and average pressure at the inlet and the throat in 
terms of the given variables. (b) In a real flow (with irrevers-
ibilities), do you expect the actual pressure at the inlet to be 
higher or lower than the prediction? Explain.

Energy Equation
5–69C  What is useful pump head? How is it related to the 
power input to the pump?

5–70C  Consider the steady adiabatic flow of an incom-
pressible fluid. Can the temperature of the fluid decrease dur-
ing flow? Explain.

5–71C  What is irreversible head loss? How is it related to 
the mechanical energy loss?
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to be 250 kPa and the motor efficiency is 90 percent, deter-
mine the mechanical efficiency of the pump. Take the kinetic 
energy correction factor to be 1.05.

5–80  Water is being pumped from a large lake to a reser-
voir 25 m above at a rate of 25 L/s by a 10-kW (shaft) pump. 
If the irreversible head loss of the piping system is 5 m, 
determine the mechanical efficiency of the pump.  Answer: 

73.6 percent

5–81   Reconsider Prob. 5–80. Using EES (or other) 
software, investigate the effect of irreversible 

head loss on the mechanical efficiency of the pump. Let the 
head loss vary from 0 to 15 m in increments of 1 m. Plot the 
results, and discuss them.

5–82  A 15-hp (shaft) pump is used to raise water to a 45-m 
higher elevation. If the mechanical efficiency of the pump 
is 82 percent, determine the maximum volume flow rate of 
water.

5–83  Water flows at a rate of 0.035 m3/s in a horizontal pipe 
whose diameter is reduced from 15 cm to 8 cm by a reducer. 
If the pressure at the centerline is measured to be 480 kPa and 
445 kPa before and after the reducer, respectively,  determine 
the irreversible head loss in the reducer. Take the kinetic 
energy correction factors to be 1.05. Answer: 1.18 m

5–84  The water level in a tank is 20 m above the ground. A 
hose is connected to the bottom of the tank, and the nozzle 
at the end of the hose is pointed straight up. The tank is at 
sea level, and the water surface is open to the atmosphere. 
In the line leading from the tank to the nozzle is a pump, 
which increases the pressure of water. If the water jet rises to 
a height of 27 m from the ground, determine the minimum 
pressure rise supplied by the pump to the water line.

5–72C  Consider the steady adiabatic flow of an incom-
pressible fluid. If the temperature of the fluid remains con-
stant during flow, is it accurate to say that the frictional 
effects are negligible?

5–73C  What is the kinetic energy correction factor? Is it 
significant?

5–74C  The water level in a tank is 20 m above the ground. 
A hose is connected to the bottom of the tank, and the noz-
zle at the end of the hose is pointed straight up. The water 
stream from the nozzle is observed to rise 25 m above the 
ground. Explain what may cause the water from the hose to 
rise above the tank level.

5–75C  A person is filling a knee-high bucket with water 
using a garden hose and holding it such that water discharges 
from the hose at the level of his waist. Someone suggests that 
the bucket will fill faster if the hose is lowered such that water 
discharges from the hose at the knee level. Do you agree with 
this suggestion? Explain. Disregard any frictional effects.

5–76C  A 3-m-high tank filled with water has a discharge 
valve near the bottom and another near the top. (a) If these 
two valves are opened, will there be any difference between 
the discharge velocities of the two water streams? (b) If a 
hose whose discharge end is left open on the ground is first 
connected to the lower valve and then to the higher valve, 
will there be any difference between the discharge rates of 
water for the two cases? Disregard any frictional effects.

5–77E  In a hydroelectric power plant, water flows from an 
elevation of 400 ft to a turbine, where electric power is gen-
erated. For an overall turbine–generator efficiency of 85 per-
cent, determine the minimum flow rate required to generate 
100 kW of electricity.  Answer: 217 lbm/s

5–78E  Reconsider Prob. 5–77E. Determine the flow rate of 
water if the irreversible head loss of the piping system between 
the free surfaces of the inlet and the outlet is 36 ft.

5–79  An oil pump is drawing 25 kW of electric power 
while pumping oil with r 5 860 kg/m3 at a rate of 0.1 m3/s. 
The inlet and outlet diameters of the pipe are 8 cm and 12 cm, 
respectively. If the pressure rise of oil in the pump is measured 20 m

27 m

FIGURE P5–84
25 kW

DP = 250 kPa

0.1 m3/s

Motor

8 cm

12 cm

Oil

Pump

FIGURE P5–79

5–85  A hydraulic turbine has 50 m of head available at a 
flow rate of 1.30 m3/s, and its overall turbine–generator effi-
ciency is 78 percent. Determine the electric power output of 
this turbine.

5–86  A fan is to be selected to ventilate a bathroom 
whose dimensions are 2 m 3 3 m 3 3 m. The 

air velocity is not to exceed 8 m/s to minimize vibration and 
noise. The combined efficiency of the fan–motor unit to be 
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used can be taken to be 50 percent. If the fan is to replace the 
entire volume of air in 10 min, determine (a) the wattage of 
the fan–motor unit to be purchased, (b) the diameter of the 
fan casing, and (c) the pressure difference across the fan. 
Take the air density to be 1.25 kg/m3 and disregard the effect 
of the kinetic energy correction factors.

5–90  Water enters a hydraulic turbine through a 30-cm-
diameter pipe at a rate of 0.6 m3/s and exits through a 25-cm-
diameter pipe. The pressure drop in the turbine is measured 
by a mercury manometer to be 1.2 m. For a combined turbine– 
generator efficiency of 83 percent, determine the net electric 
power output. Disregard the effect of the kinetic energy cor-
rection factors.

0.03 m3/s
45 m

Pump
20 kW

FIGURE P5–92

Water
20 L/s

ΔP = 2 kPa

FIGURE P5–87

We

30 cm Turbine

ΔP = 1.2 m Hg

Generator

25 cm

FIGURE P5–90

Air

8 m/s

Exhaust
fan

FIGURE P5–86

5–87  Water flows at a rate of 20 L/s through a horizontal 
pipe whose diameter is constant at 3 cm. The pressure drop 
across a valve in the pipe is measured to be 2 kPa, as shown 
in Fig P5–87. Determine the irreversible head loss of the 
valve, and the useful pumping power needed to overcome the 
resulting pressure drop.  Answers: 0.204 m, 40 W

5–88E  The water level in a tank is 34 ft above the ground. 
A hose is connected to the bottom of the tank at the ground 
level and the nozzle at the end of the hose is pointed straight 
up. The tank cover is airtight, but the pressure over the water 
surface is unknown. Determine the minimum tank air pres-
sure (gage) that will cause a water stream from the nozzle to 
rise 72 ft from the ground.

5–89  A large tank is initially filled with water 5 m above 
the center of a sharp-edged 10-cm-diameter orifice. The 
tank water surface is open to the atmosphere, and the orifice 
drains to the atmosphere. If the total irreversible head loss 
in the system is 0.3 m, determine the initial discharge veloc-
ity of water from the tank. Take the kinetic energy correction 
factor at the orifice to be 1.2.

5–91  The velocity profile for turbulent flow in a circular 
pipe is approximated as u(r) 5 umax(1 2 r/R)1/n, where n 5 9. 
Determine the kinetic energy correction factor for this flow. 
Answer: 1.04

5–92  Water is pumped from a lower reservoir to a higher 
reservoir by a pump that provides 20 kW of useful mechani-
cal power to the water. The free surface of the upper reservoir 
is 45 m higher than the surface of the lower reservoir. If the 
flow rate of water is measured to be 0.03 m3/s, determine the 
irreversible head loss of the system and the lost mechanical 
power during this process.

5–93  Water in a partially filled large tank is to be supplied 
to the roof top, which is 8 m above the water level in the 
tank, through a 2.5-cm-internal-diameter pipe by maintaining 
a constant air pressure of 300 kPa (gage) in the tank. If the 
head loss in the piping is 2 m of water, determine the dis-
charge rate of the supply of water to the roof top.
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5–94  Underground water is to be pumped by a 78 percent 
efficient 5-kW submerged pump to a pool whose free surface 
is 30 m above the underground water level. The diameter of 
the pipe is 7 cm on the intake side and 5 cm on the discharge 
side. Determine (a) the maximum flow rate of water and 
(b) the pressure difference across the pump. Assume the eleva-
tion difference between the pump inlet and the outlet and the 
effect of the kinetic energy correction factors to be negligible.

 Suppose a utility company is selling electric power for 
$0.06/kWh at night and is willing to pay $0.13/kWh for power 
produced during the day. To take advantage of this opportunity, 
an entrepreneur is considering building a large reservoir 50 m 
above the lake level, pumping water from the lake to the reser-
voir at night using cheap power, and letting the water flow from 
the reservoir back to the lake during the day, producing power as 
the pump–motor operates as a turbine–generator during reverse 
flow. Preliminary analysis shows that a water flow rate of 2 m3/s 
can be used in either direction, and the irreversible head loss of 
the piping system is 4 m. The combined pump–motor and tur-
bine–generator efficiencies are expected to be 75 percent each. 
Assuming the system operates for 10 h each in the pump and 
turbine modes during a typical day, determine the potential rev-
enue this pump–turbine system can generate per year.

5–98  When a system is subjected to a linear rigid body 
motion with constant linear acceleration a along a distance L, 
the modified Bernoulli Equation takes the formaP1

r
1

V 2
1

2
1 gz1b 2 aP2

r
1

V 2
2

2
1 gz2b 5 aL 1 Losses

where V1 and V2 are velocities relative to a fixed point and 
‘Losses’ which represents frictional losses is zero when the 
frictional effects are negligible. The tank with two discharge 
pipes shown in Fig. P5–98 accelerates to the left at a constant 
linear acceleration of 3 m/s2. If volumetric flow rates from 
both pipes are to be identical, determine the diameter D of the 
inclined pipe. Disregard any frictional effects.

30 m

Pool

FIGURE P5–94

5–95  Reconsider Prob. 5–94. Determine the flow rate of 
water and the pressure difference across the pump if the irre-
versible head loss of the piping system is 4 m.

5–96E  A 73-percent efficient 12-hp pump is pumping water 
from a lake to a nearby pool at a rate of 1.2 ft3/s through a con-
stant-diameter pipe. The free surface of the pool is 35 ft above 
that of the lake. Determine the irreversible head loss of the pip-
ing system, in ft, and the mechanical power used to overcome it.

5–97  The demand for electric power is usually much higher 
during the day than it is at night, and utility companies often sell 
power at night at much lower prices to encourage consumers to 
use the available power generation capacity and to avoid building 
new expensive power plants that will be used only a short time 
during peak periods. Utilities are also willing to purchase power 
produced during the day from private parties at a high price.

Pump–
turbine

Lake

50 m

Reservoir

FIGURE P5–97

5–99  A fireboat is to fight fires at coastal areas by drawing 
seawater with a density of 1030 kg/m3 through a 10-cm-diam-
eter pipe at a rate of 0.04 m3/s and discharging it through a 
hose nozzle with an exit diameter of 5 cm. The total irrevers-
ible head loss of the system is 3 m, and the position of the 
nozzle is 3 m above sea level. For a pump efficiency of 70 
percent, determine the required shaft power input to the pump 
and the water discharge velocity.  Answers: 39.2 kW, 20.4 m/s

A

L = 8 m

h = 3 ma = 3 m/s

d = 1 cm

BC

D

V1 V2

FIGURE P5–98
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Review Problems

5–100  The velocity of a liquid flowing in a circular pipe 
of radius R varies from zero at the wall to a maximum at the 
pipe center. The velocity distribution in the pipe can be rep-
resented as V(r), where r is the radial distance from the pipe 
center. Based on the definition of mass flow rate m

.
, obtain a 

relation for the average velocity in terms of V(r), R, and r.

5–101  Air at 2.50 kg/m3 enters a nozzle that has an inlet-
to-exit area ratio of 2:1 with a velocity of 120 m/s and leaves 
with a velocity of 330 m/s. Determine the density of air at the 
exit.  Answer: 1.82 kg/m3

5–102E  The water level in a tank is 55 ft above the ground. 
A hose is connected to the bottom of the tank, and the nozzle 
at the end of the hose is pointed straight up. The tank is at 
sea level, and the water surface is open to the atmosphere. In 
the line leading from the tank to the nozzle is a pump, which 
increases the water pressure by 10 psia. Determine the maxi-
mum height to which the water stream could rise.

5–103  A pressurized 2-m-diameter tank of water has a 
10-cm-diameter orifice at the bottom, where water discharges 
to the atmosphere. The water level initially is 3 m above the 
outlet. The tank air pressure above the water level is main-
tained at 450 kPa absolute and the atmospheric pressure is 
100 kPa. Neglecting frictional effects, determine (a) how 
long it will take for half of the water in the tank to be dis-
charged and (b) the water level in the tank after 10 s.

5–104  Air flows through a pipe at a rate of 120 L/s. The 
pipe consists of two sections of diameters 22 cm and 10 cm 
with a smooth reducing section that connects them. The pres-
sure difference between the two pipe sections is measured by 
a water manometer. Neglecting frictional effects, determine 
the differential height of water between the two pipe sections. 
Take the air density to be 1.20 kg/m3.  Answer: 1.37 cm

3 m

FIGURE P5–99

22 cmAir
120 L/s

10 cm

h

FIGURE P5–104

2 cmAir
102 kPa

100 kPa
20°C

2 cm

4 cm

FIGURE P5–106

5–105  Air at 100 kPa and 25°C flows in a horizontal 
duct of variable cross section. The water column 

in the manometer that measures the difference between two 
sections has a vertical displacement of 8 cm. If the velocity in 
the first section is low and the friction is negligible, determine 
the velocity at the second section. Also, if the manometer read-
ing has a possible error of 62 mm, conduct an error analysis 
to estimate the range of validity for the velocity found.

5–106  A very large tank contains air at 102 kPa at a loca-
tion where the atmospheric air is at 100 kPa and 20°C. Now a 
2-cm-diameter tap is opened. Determine the maximum flow 
rate of air through the hole. What would your response be if 
air is discharged through a 2-m-long, 4-cm-diameter tube with 
a 2-cm-diameter nozzle? Would you solve the problem the 
same way if the pressure in the storage tank were 300 kPa?

5–107  Water is flowing through a Venturi meter whose 
diameter is 7 cm at the entrance part and 4 cm at the throat. 
The pressure is measured to be 380 kPa at the entrance and 
150 kPa at the throat. Neglecting frictional effects, determine 
the flow rate of water.  Answer: 0.0285 m3/s

5–108  Water flows at a rate of 0.011 m3/s in a horizontal 
pipe whose diameter increases from 6 to 11 cm by an enlarge-
ment section. If the head loss across the enlargement section 
is 0.65 m and the kinetic energy correction factor at both the 
inlet and the outlet is 1.05, determine the pressure change.

5–109  The air in a 6-m 3 5-m 3 4-m hospital room is to 
be completely replaced by conditioned air every 20 min. If 
the average air velocity in the circular air duct leading to the 
room is not to exceed 5 m/s, determine the minimum diam-
eter of the duct.

5–110  Underground water is being pumped into a pool 
whose cross section is 3 m 3 4 m while water is discharged 
through a 5-cm-diameter orifice at a constant average veloc-
ity of 5 m/s. If the water level in the pool rises at a rate of 
1.5 cm/min, determine the rate at which water is supplied to 
the pool, in m3/s.

5–111  A 3-m-high large tank is initially filled with water. 
The tank water surface is open to the atmosphere, and a 
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sharp-edged 10-cm-diameter orifice at the bottom drains to 
the atmosphere through a horizontal 80-m-long pipe. If the 
total irreversible head loss of the system is determined to be 
1.5 m, determine the initial velocity of the water from the 
tank. Disregard the effect of the kinetic energy correction 
factors.  Answer: 5.42 m/s

H2 = 4.5 m

D = 40 cm

H1 = 4 mWater

A

Air at Patm

FIGURE P5–116

ΔP

l
r1

R

r2

O

2

1

FIGURE P5–115

5–116  The cylindrical water tank with a valve at the bottom 
shown in Fig. P5–116 contains air at the top part at the local 
atmospheric pressure of 100 kPa and water as shown. Is it 
possible to completely empty this tank by fully opening the 
valve? If not, determine the water height in the tank when 
water stops flowing out of the fully open valve. Assume the 
temperature of the air inside the cylinder to remain constant 
during the discharging process.

3 mWater

10 cm
80 m

FIGURE P5–111

5–112  Reconsider Prob. 5–111. Using EES (or other) 
software, investigate the effect of the tank 

height on the initial discharge velocity of water from the 
completely filled tank. Let the tank height vary from 2 to 
15 m in increments of 1 m, and assume the irreversible head 
loss to remain constant. Tabu late and plot the results.

5–113  Reconsider Prob. 5–111. In order to drain the tank 
faster, a pump is installed near the tank exit. Determine the 
pump head input necessary to establish an average water 
velocity of 6.5 m/s when the tank is full.

5–114  A D0 5 8-m-diameter tank is initially filled with 
water 2 m above the center of a D 5 10-cm-diameter valve 
near the bottom. The tank surface is open to the atmosphere, 
and the tank drains through a L 5 80-m-long pipe connected 
to the valve. The friction factor of the pipe is given to be f 5 
0.015, and the discharge velocity is expressed as 

V 5 Å 2gz

1.5 1 fL /D
 where z is the water height above the center

of the valve. Determine (a) the initial discharge velocity from 
the tank and (b) the time required to empty the tank. The tank 
can be considered to be empty when the water level drops to 
the center of the valve.

5–115  In some applications, elbow-type flow meters like 
the one shown in Fig. P5–115 are used to measure flow rates. 
The pipe radius is R, the radius of curvature of the elbow is 
l, and the pressure difference DP across the curvature inside 
the pipe is measured. From the potential flow theory, it is 
known that V r 5 C, where V is the fluid velocity at a dis-
tance r from the center of curvature O, and C is a constant. 
Assuming frictionless steady-state flow and thus the Ber-
noulli equation across streamlines to be applicable, obtain a 
relation for the flow rate as a function of r, g, DP, l, and R.

Answer: V
#

5 pÅ 2DP

rglR
 (l2 2 R2) Al 2 "l2 2 R2B

5–117  A rigid tank of volume 1.5 m3 initially contains 
atmospheric air at 208C and 150 kPa. Now a compressor is 
turned on, and atmospheric air at a constant rate of 0.05 m3/s 
is supplied to the tank. If the pressure and density in the tank 
varies as P/r1.4 5 constant during charging, (a) obtain a rela-
tion for the variation of pressure in the tank with time and 
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5–125  A pump is used to increase the pressure of water 
from 100 kPa to 900 kPa at a rate of 160 L/min. If the shaft 
power input to the pump is 3 kW, the efficiency of the pump is
(a) 0.532 (b) 0.660 (c) 0.711 (d ) 0.747 (e) 0.855

5–126  A hydraulic turbine is used to generate power by 
using the water in a dam. The elevation difference between 
the free surfaces upstream and downstream of the dam is 120 m. 
The water is supplied to the turbine at a rate of 150 kg/s. If 
the shaft power output from the turbine is 155 kW, the effi-
ciency of the turbine is
(a) 0.77 (b) 0.80 (c) 0.82 (d ) 0.85 (e) 0.88

5–127  The motor of a pump consumes 1.05 hp of electric-
ity. The pump increases the pressure of water from 120 kPa 
to 1100 kPa at a rate of 35 L/min. If the motor efficiency is 
94 percent, the pump efficiency is
(a) 0.75 (b) 0.78 (c) 0.82 (d ) 0.85 (e) 0.88

5–128  The efficiency of a hydraulic turbine-generator unit 
is specified to be 85 percent. If the generator efficiency is 
96 percent, the turbine efficiency is
(a) 0.816 (b) 0.850 (c) 0.862 (d ) 0.885 (e) 0.960

5–129  Which parameter is not related in the Bernoulli 
equation?
(a) Density (b) Velocity (c) Time (d ) Pressure 
(e) Elevation

5–130  Consider incompressible, frictionless flow of a fluid 
in a horizontal piping. The pressure and velocity of a fluid 
is measured to be 150 kPa and 1.25 m/s at a specified point. 
The density of the fluid is 700 kg/m3. If the pressure is 140 kPa 
at another point, the velocity of the fluid at that point is 
(a) 1.26 m/s (b) 1.34 m/s (c) 3.75 m/s (d ) 5.49 m/s
(e) 7.30 m/s

5–131  Consider incompressible, frictionless flow of water 
in a vertical piping. The pressure is 240 kPa at 2 m from the 
ground level. The velocity of water does not change during 
this flow. The pressure at 15 m from the ground level is
(a) 227 kPa (b) 174 kPa (c) 127 kPa (d ) 120 kPa
(e) 113 kPa

5–132  Consider water flow in a piping network. The pres-
sure, velocity, and elevation at a specified point (point 1) of 
the flow are 150 kPa, 1.8 m/s, and 14 m. The pressure and 
velocity at point 2 are 165 kPa and 2.4 m/s. Neglecting fric-
tional effects, the elevation at point 2 is 
(a) 12.4 m (b) 9.3 m (c) 14.2 m (d ) 10.3 m (e) 7.6 m

5–133  The static and stagnation pressures of a fluid in a 
pipe are measured by a piezometer and a pitot tube to be 
200 kPa and 210 kPa, respectively. If the density of the fluid 
is 550 kg/m3, the velocity of the fluid is
(a) 10 m/s (b) 6.03 m/s (c) 5.55 m/s (d ) 3.67 m/s
(e) 0.19 m/s

5–134  The static and stagnation pressures of a fluid in a pipe 
are measured by a piezometer and a pitot tube. The heights of 

20°C
101.3 kPa

Wind tunnel

80 m/s

FIGURE P5–118

(b) calculate how long it will take for the absolute pressure in 
the tank to triple.

5–118  A wind tunnel draws atmospheric air at 20°C and 
101.3 kPa by a large fan located near the exit of the tunnel. If 
the air velocity in the tunnel is 80 m/s, determine the pressure 
in the tunnel.

Fundamentals of Engineering (FE) Exam Problems

5–119  Water flows in a 5-cm-diameter pipe at a velocity of 
0.75 m/s. The mass flow rate of water in the pipe is
(a) 353 kg/min (b) 75 kg/min (c) 37.5 kg/min
(d ) 1.47 kg/min (e) 88.4 kg/min

5–120  Air at 100 kPa and 208C flows in a 12-cm-diameter 
pipe at a rate of 9.5 kg/min. The velocity of air in the pipe is
(a) 1.4 m/s (b) 6.0 m/s (c) 9.5 m/s (d ) 11.8 m/s 
(e) 14.0 m/s

5–121  A water tank initially contains 140 L of water. Now, 
equal rates of cold and hot water enter the tank for a period 
of 30 minutes while warm water is discharged from the tank 
at a rate of 25 L/min. The amount of water in the tank at 
the end of this 30-min period is 50 L. The rate of hot water 
entering the tank is
(a) 33 L/min (b) 25 L/min (c) 11 L/min (d ) 7 L/min
(e) 5 L/min

5–122  Water enters a 4-cm-diameter pipe at a velocity of 
1 m/s. The diameter of the pipe is reduced to 3 cm at the exit. 
The velocity of the water at the exit is
(a) 1.78 m/s (b) 1.25 m/s (c) 1 m/s (d ) 0.75 m/s
(e) 0.50 m/s

5–123  The pressure of water is increased from 100 kPa to 
900 kPa by a pump. The mechanical energy increase of water is
(a) 0.9 kJ/kg (b) 0.5 kJ/kg (c) 500 kJ/kg (d ) 0.8 kJ/kg
(e) 800 kJ/kg

5–124  A 75-m-high water body that is open to the atmo-
sphere is available. Water is run through a turbine at a rate of 
200 L/s at the bottom of the water body. The pressure differ-
ence across the turbine is
(a) 736 kPa (b) 0.736 kPa (c) 1.47 kPa (d ) 1470 kPa
(e) 368 kPa
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is 575 kg/s, the extracted head removed from the fluid by 
the turbine is
(a) 48.7 m (b) 57.5 m (c) 147 m (d ) 139 m (e) 98.5 m

Design and Essay Problems

5–143  Using a large bucket whose volume is known and 
measuring the time it takes to fill the bucket with water from 
a garden hose, determine the mass flow rate and the average 
velocity of water through the hose.

5–144  Your company is setting up an experiment that 
involves the measurement of airflow rate in a duct, and you 
are to come up with proper instrumentation. Research the 
available techniques and devices for airflow rate measure-
ment, discuss the advantages and disadvantages of each tech-
nique, and make a recommendation.

5–145  Computer-aided designs, the use of better materi-
als, and better manufacturing techniques have resulted in a 
tremendous increase in the efficiency of pumps, turbines, 
and electric motors. Contact one or more pump, turbine, and 
motor manufacturers and obtain information about the effi-
ciency of their products. In general, how does efficiency vary 
with rated power of these devices?

5–146  Using a handheld bicycle pump to generate an air 
jet, a soda can as the water reservoir, and a straw as the tube, 
design and build an atomizer. Study the effects of various 
parameters such as the tube length, the diameter of the exit 
hole, and the pumping speed on performance.

5–147  Using a flexible drinking straw and a ruler, explain 
how you would measure the water flow velocity in a river.

5–148  The power generated by a wind turbine is propor-
tional to the cube of the wind velocity. Inspired by the accel-
eration of a fluid in a nozzle, someone proposes to install a 
reducer casing to capture the wind energy from a larger area 
and accelerate it before the wind strikes the turbine blades, as 
shown in Fig. P5–148. Evaluate if the proposed modification 
should be given a consideration in the design of new wind 
turbines.

Wind

FIGURE P5–148

the fluid in the piozemeter and pitot tube are measured to be 
2.2 m and 2.0 m, respectively. If the density of the fluid is 
5000 kg/m3, the velocity of the fluid in the pipe is
(a) 0.92 m/s (b) 1.43 m/s (c) 1.65 m/s (d ) 1.98 m/s
(e) 2.39 m/s

5–135  The difference between the heights of energy grade 
line (EGL) and hydraulic grade line (HGL) is equal to
(a) z (b) P/rg (c) V2/2g (d ) z 1 P/rg (e) z 1 V 2/2g

5–136  Water at 120 kPa (gage) is flowing in a horizontal 
pipe at a velocity of 1.15 m/s. The pipe makes a 908 angle 
at the exit and the water exits the pipe vertically into the air. 
The maximum height the water jet can rise is
(a) 6.9 m (b) 7.8 m (c) 9.4 m (d ) 11.5 m (e) 12.3 m

5–137  Water is withdrawn at the bottom of a large tank 
open to the atmosphere. The water velocity is 6.6 m/s. The 
minimum height of the water in the tank is
(a) 2.22 m (b) 3.04 m (c) 4.33 m (d ) 5.75 m (e) 6.60 m

5–138  Water at 80 kPa (gage) enters a horizontal pipe at a 
velocity of 1.7 m/s. The pipe makes a 908 angle at the exit and 
the water exits the pipe vertically into the air. Take the correc-
tion factor to be 1. If the irreversible head loss between the inlet 
and exit of the pipe is 3 m, the height the water jet can rise is
(a) 3.4 m (b) 5.3 m (c) 8.2 m (d ) 10.5 m (e) 12.3 m

5–139  Seawater is to be pumped into a large tank at a rate 
of 165 kg/min. The tank is open to the atmosphere and the 
water enters the tank from a 80-m-height. The overall effi-
ciency of the motor-pump unit is 75 percent and the motor 
consumes electricity at a rate of 3.2 kW. Take the correction 
factor to be 1. If the irreversible head loss in the piping is 7 m, 
the velocity of the water at the tank inlet is
(a) 2.34 m/s (b) 4.05 m/s (c) 6.21 m/s (d ) 8.33 m/s
(e) 10.7 m/s

5–140  Water enters a pump at 350 kPa at a rate of 1 kg/s. 
The water leaving the pump enters a turbine in which the pres-
sure is reduced and electricity is produced. The shaft power 
input to the pump is 1 kW and the shaft power output from 
the turbine is 1 kW. Both the pump and turbine are 90 percent 
efficient. If the elevation and velocity of the water remain 
constant throughout the flow and the irreversible head loss is 
1 m, the pressure of water at the turbine exit is
(a) 350 kPa (b) 100 kPa (c) 173 kPa (d ) 218 kPa
(e) 129 kPa

5–141  An adiabatic pump is used to increase the pressure of 
water from 100 kPa to 500 kPa at a rate of 400 L/min. If the 
efficiency of the pump is 75 percent, the maximum tempera-
ture rise of the water across the pump is
(a) 0.0968C (b) 0.0588C (c) 0.0358C (d ) 1.528C
(e) 1.278C

5–142  The shaft power from a 90 percent-efficient tur-
bine is 500 kW. If the mass flow rate through the turbine 
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CHAPTER

M O M E N T U M  A N A LY S I S 
O F  F L O W  S Y S T E M S

When dealing with engineering problems, it is desirable to obtain 
fast and accurate solutions at minimal cost. Most engineering 
problems, including those associated with fluid flow, can be ana-

lyzed using one of three basic approaches: differential, experimental, and 
control volume. In differential approaches, the problem is formulated accu-
rately using differential quantities, but the solution of the resulting differ-
ential equations is difficult, usually requiring the use of numerical methods 
with extensive computer codes. Experimental approaches complemented 
with dimensional analysis are highly accurate, but they are typically time
consuming and expensive. The finite control volume approach described in 
this chapter is remarkably fast and simple and usually gives answers that are 
sufficiently accurate for most engineering purposes. Therefore, despite the 
approximations involved, the basic finite control volume analysis performed 
with paper and pencil has always been an indispensable tool for engineers.
 In Chap. 5, the control volume mass and energy analysis of fluid flow 
systems was presented. In this chapter, we present the finite control volume 
momentum analysis of fluid flow problems. First we give an overview of 
Newton’s laws and the conservation relations for linear and angular momen-
tum. Then using the Reynolds transport theorem, we develop the linear 
momentum and angular momentum equations for control volumes and use 
them to determine the forces and torques associated with fluid flow.

6
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Identify the various kinds of 
forces and moments acting on 
a control volume

■ Use control volume analysis to 
determine the forces associated 
with fluid flow

■ Use control volume analysis to 
determine the moments caused 
by fluid flow and the torque 
transmitted

Steady swimming of the jellyfish Aurelia aurita. 
Fluorescent dye placed directly upstream of the 
animal is drawn underneath the bell as the body 
relaxes and forms vortex rings below the animal 

as the body contracts and ejects fluid. The vortex 
rings simultaneously induce flows for both 

feeding and propulsion.
Adapted from Dabiri et al., J. Exp. Biol. 208: 1257–1265. 

Photo credit: Sean P. Colin and John H. Costello.
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6–1 ■ NEWTON’S LAWS
Newton’s laws are relations between motions of bodies and the forces act-
ing on them. Newton’s first law states that a body at rest remains at rest, 
and a body in motion remains in motion at the same velocity in a straight 
path when the net force acting on it is zero. Therefore, a body tends to pre-
serve its state of inertia. Newton’s second law states that the acceleration of 
a body is proportional to the net force acting on it and is inversely propor-
tional to its mass. Newton’s third law states that when a body exerts a force 
on a second body, the second body exerts an equal and opposite force on 
the first. Therefore, the direction of an exposed reaction force depends on 
the body taken as the system.
 For a rigid body of mass m, Newton’s second law is expressed as

Newton’s second law:  F
!
5 ma

!
5 m  

dV
!

dt
5

d(mV
!
)

dt
 (6–1)

where F
!
 is the net force acting on the body and a

→
 is the acceleration of the 

body under the influence of F
!
.

 The product of the mass and the velocity of a body is called the linear 
momentum or just the momentum of the body. The momentum of a rigid 
body of mass m moving with velocity V

!
 is mV

!
 (Fig. 6–1). Then Newton’s 

second law expressed in Eq. 6–1 can also be stated as the rate of change 
of the momentum of a body is equal to the net force acting on the body 
(Fig. 6–2). This statement is more in line with Newton’s original statement 
of the second law, and it is more appropriate for use in fluid mechanics 
when studying the forces generated as a result of velocity changes of fluid 
streams. Therefore, in fluid mechanics, Newton’s second law is usually 
referred to as the linear momentum equation.
 The momentum of a system remains constant only when the net force 
acting on it is zero, and thus the momentum of such a system is conserved. 
This is known as the conservation of momentum principle. This principle 
has proven to be a very useful tool when analyzing collisions such as those 
between balls; between balls and rackets, bats, or clubs; and between atoms 
or subatomic particles; and explosions such as those that occur in rockets, 
missiles, and guns. In fluid mechanics, however, the net force acting on a 
system is typically not zero, and we prefer to work with the linear momentum 
equation rather than the conservation of momentum principle.
 Note that force, acceleration, velocity, and momentum are vector quanti-
ties, and as such they have direction as well as magnitude. Also, momen-
tum is a constant multiple of velocity, and thus the direction of momentum 
is the direction of velocity as shown in Fig 6–1. Any vector equation can 
be written in scalar form for a specified direction using magnitudes, e.g., 
Fx 5 max 5 d(mVx)/dt in the x-direction.
 The counterpart of Newton’s second law for rotating rigid bodies is ex -
pressed as  M

!
 5 Ia

→
, where  M

!
 is the net moment or torque applied on the 

body, I is the moment of inertia of the body about the axis of rotation, and 
a
→

 is the angular acceleration. It can also be expressed in terms of the rate of 
change of angular momentum d H

!
/dt as

Angular momentum equation:  M
!
5 I  a

!
5 I  

d v
!

dt
5

d(I v
!
)

dt
5

d H
!

dt
 (6–2)

V

mV
m

m

FIGURE 6–1
Linear momentum is the product of 
mass and velocity, and its direction 
is the direction of velocity.

Net forceNet force

Rate of changeRate of change
of momentumof momentum

→
F = ma= ma = m= m

→ VVd

dtdt dtdt
=

d(m m  )
→ →

FIGURE 6–2
Newton’s second law is also expressed 
as the rate of change of the momentum 
of a body is equal to the net force 
acting on it.
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where v
→

 is the angular velocity. For a rigid body rotating about a fixed x-axis, 
the angular momentum equation is written in scalar form as

Angular momentum about x-axis: Mx 5 Ix  
dvx

dt
5

dHx

dt
 (6–3)

The angular momentum equation can be stated as the rate of change of 
the angular momentum of a body is equal to the net torque acting on it 
(Fig. 6–3).
 The total angular momentum of a rotating body remains constant when 
the net torque acting on it is zero, and thus the angular momentum of such 
systems is conserved. This is known as the conservation of angular momen-
tum principle and is expressed as Iv 5 constant. Many interesting phenom-
ena such as ice skaters spinning faster when they bring their arms close to 
their bodies and divers rotating faster when they curl after the jump can be 
explained easily with the help of the conservation of angular momentum 
principle (in both cases, the moment of inertia I is decreased and thus the 
angular velocity v is increased as the outer parts of the body are brought 
closer to the axis of rotation).

6–2 ■ CHOOSING A CONTROL VOLUME
We now briefly discuss how to wisely select a control volume. A control 
volume can be selected as any arbitrary region in space through which fluid 
flows, and its bounding control surface can be fixed, moving, and even 
deforming during flow. The application of a basic conservation law is a 
systematic procedure for bookkeeping or accounting of the quantity under 
consideration, and thus it is extremely important that the boundaries of the 
control volume are well defined during an analysis. Also, the flow rate of 
any quantity into or out of a control volume depends on the flow velocity 
relative to the control surface, and thus it is essential to know if the control 
volume remains at rest during flow or if it moves.
 Many flow systems involve stationary hardware firmly fixed to a station-
ary surface, and such systems are best analyzed using fixed control volumes. 
When determining the reaction force acting on a tripod holding the nozzle 
of a hose, for example, a natural choice for the control volume is one that 
passes perpendicularly through the nozzle exit flow and through the bottom 
of the tripod legs (Fig. 6–4a). This is a fixed control volume, and the water 
velocity relative to a fixed point on the ground is the same as the water 
velocity relative to the nozzle exit plane.
 When analyzing flow systems that are moving or deforming, it is usu-
ally more convenient to allow the control volume to move or deform. When 
determining the thrust developed by the jet engine of an airplane cruising at 
constant velocity, for example, a wise choice of control volume is one that 
encloses the airplane and cuts through the nozzle exit plane (Fig. 6–4b). The 
control volume in this case moves with velocity V

!
CV, which is identical to 

the cruising velocity of the airplane relative to a fixed point on earth. When 
determining the flow rate of exhaust gases leaving the nozzle, the proper 
velocity to use is the velocity of the exhaust gases relative to the nozzle exit 
plane, that is, the relative velocity V

!
r . Since the entire control volume moves 

at velocity V
!
CV, the relative velocity becomes V

!
r 5 V

!
 2 V

!
CV, where V

!
 is the 

absolute velocity of the exhaust gases, i.e., the velocity relative to a fixed 

α d(I     )
M = I= I     = I= I

d

dtdt dtdt
=

ω ω dHdH

dtdt

ω ω 
=

Net torqueNet torque

Rate of changeRate of change
of angular momentumof angular momentum

→ →
→ → →

FIGURE 6–3
The rate of change of the angular 
momentum of a body is equal to 

the net torque acting on it.
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point on earth. Note that V
!
r is the fluid velocity expressed relative to a coor-

dinate system moving with the control volume. Also, this is a vector equa-
tion, and velocities in opposite directions have opposite signs. For example, 
if the airplane is cruising at 500 km/h to the left, and the velocity of the 
exhaust gases is 800 km/h to the right relative to the ground, the velocity of 
the exhaust gases relative to the nozzle exit is

V
!
r 5 V

!
2 V

!
CV 5 800  i  

!
2 (2500  i  

!
 ) 5 1300  i  

!
 km/h

That is, the exhaust gases leave the nozzle at 1300 km/h to the right rela-
tive to the nozzle exit (in the direction opposite to that of the airplane); this 
is the velocity that should be used when evaluating the outflow of exhaust 
gases through the control surface (Fig. 6–4b). Note that the exhaust gases 
would appear motionless to an observer on the ground if the relative veloc-
ity were equal in magnitude to the airplane velocity.
 When analyzing the purging of exhaust gases from a reciprocating inter-
nal combustion engine, a wise choice for the control volume is one that 
comprises the space between the top of the piston and the cylinder head 
(Fig. 6–4c). This is a deforming control volume, since part of the control 
surface moves relative to other parts. The relative velocity for an inlet or 
outlet on the deforming part of a control surface (there are no such inlets 
or outlets in Fig. 6–4c) is then given by V

!
r 5 V

!
 2 V

!
CS where V

!
 is the absolute 

fluid velocity and V
!
CS is the control surface velocity, both relative to a fixed 

point outside the control volume. Note that V
!
CS 5 V

!
CV for moving but 

nondeforming control volumes, and V
!
CS 5 V

!
CV 5 0 for fixed ones.

6–3 ■ FORCES ACTING ON A CONTROL VOLUME
The forces acting on a control volume consist of body forces that act 
throughout the entire body of the control volume (such as gravity, electric, 
and magnetic forces) and surface forces that act on the control surface (such 
as pressure and viscous forces and reaction forces at points of contact). Only 
external forces are considered in the analysis. Internal forces (such as the 
pressure force between a fluid and the inner surfaces of the flow section) 
are not considered in a control volume analysis unless they are exposed by 
passing the control surface through that area.
 In control volume analysis, the sum of all forces acting on the control vol-
ume at a particular instant in time is represented by Σ F

!
 and is expressed as

Total force acting on control volume: aF
!
5 aF

!
body 1 aF

!
surface (6–4)

Body forces act on each volumetric portion of the control volume. The body 
force acting on a differential element of fluid of volume dV within the con-
trol volume is shown in Fig. 6–5, and we must perform a volume integral to 
account for the net body force on the entire control volume. Surface forces 
act on each portion of the control surface. A differential surface element 
of area dA and unit outward normal n

→
 on the control surface is shown in 

Fig. 6–5, along with the surface force acting on it. We must perform an area 
integral to obtain the net surface force acting on the entire control surface. 
As sketched, the surface force may act in a direction independent of that of 
the outward normal vector.

V

V

(a)

(b)

(c)

CV

V

V

V

CV

r

r
Moving control volume

Deforming
control volume

Fixed control volume

x

x

y

VCS

→

→

→

→

→

→

FIGURE 6–4
Examples of (a) fixed, (b) moving, and 
(c) deforming control volumes.
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 The most common body force is that of gravity, which exerts a down-
ward force on every differential element of the control volume. While other 
body forces, such as electric and magnetic forces, may be important in some 
analyses, we consider only gravitational forces here.
 The differential body force d F

!
body 5 d F

!
gravity acting on the small fluid ele-

ment shown in Fig. 6–6 is simply its weight,

Gravitational force acting on a fluid element: dF
!
gravity 5 rg

!
 dV  (6–5)

where r is the average density of the element and g
→

 is the gravitational 
vector. In Cartesian coordinates we adopt the convention that g

→
 acts in the 

negative z-direction, as in Fig. 6–6, so that

Gravitational vector in Cartesian coordinates: g
!
5 2gk

!
 (6–6)

Note that the coordinate axes in Fig. 6–6 are oriented so that the gravity 
vector acts downward in the 2z-direction. On earth at sea level, the gravita-
tional constant g is equal to 9.807 m/s2. Since gravity is the only body force 
being considered, integration of Eq. 6–5 yields

Total body force acting on control volume: aF
!
body 5 #

CV
 rg
!
 dV 5 mCVg

!
 (6–7)

 Surface forces are not as simple to analyze since they consist of both 
normal and tangential components. Furthermore, while the physical force 
acting on a surface is independent of orientation of the coordinate axes, the 
description of the force in terms of its coordinate components changes with 
orientation (Fig. 6–7). In addition, we are rarely fortunate enough to have 
each of the control surfaces aligned with one of the coordinate axes. While 
not desiring to delve too deeply into tensor algebra, we are forced to define 
a second-order tensor called the stress tensor sij in order to adequately 
describe the surface stresses at a point in the flow,

Stress tensor in Cartesian coordinates: sij 5 £sxx

syx

szx

sxy

syy

szy

sxz

syz

szz

 (6–8)

The diagonal components of the stress tensor, sxx, syy, and szz, are called 
normal stresses; they are composed of pressure (which always acts inwardly 
normal) and viscous stresses. Viscous stresses are discussed in more detail 
in Chap. 9. The off-diagonal components, sxy, szx, etc., are called shear 
stresses; since pressure can act only normal to a surface, shear stresses are 
composed entirely of viscous stresses.
 When the face is not parallel to one of the coordinate axes, mathematical 
laws for axes rotation and tensors can be used to calculate the normal and 
tangential components acting at the face. In addition, an alternate notation 
called tensor notation is convenient when working with tensors but is usu-
ally reserved for graduate studies. (For a more in-depth analysis of tensors 
and tensor notation see, for example, Kundu and Cohen, 2011.)
 In Eq. 6–8, sij is defined as the stress (force per unit area) in the j-direction 
acting on a face whose normal is in the i-direction. Note that i and j are merely 
indices of the tensor and are not the same as unit vectors  i  

!
 and  j  

!
. For 

example, sxy is defined as positive for the stress pointing in the y-direction 
on a face whose outward normal is in the x-direction. This component of the 

body

Control volume (CV)

Control surface (CS)

n

dFbody

surfacedF

dA

dV

→

→

→

g
→

FIGURE 6–5
The total force acting on a control 

volume is composed of body forces 
and surface forces; body force is 

shown on a differential volume 
element, and surface force is shown 

on a differential surface element.

g

dFbody = dFgravity = rg dV
z, k

y, j

x, i

dy

dz

dx

→

→→→

→

→

→

dV,r

FIGURE 6–6
The gravitational force acting on 

a differential volume element of fluid 
is equal to its weight; the axes are 

oriented so that the gravity vector acts 
downward in the negative z-direction.
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stress tensor, along with the other eight components, is shown in Fig. 6–8 for 
the case of a differential fluid element aligned with the axes in Cartesian coor-
dinates. All the components in Fig. 6–8 are shown on positive faces (right, 
top, and front) and in their positive orientation by definition. Positive stress 
components on the opposing faces of the fluid element (not shown) point in 
exactly opposite directions.
 The dot product of a second-order tensor and a vector yields a second 
vector; this operation is often called the contracted product or the inner 
product of a tensor and a vector. In our case, it turns out that the inner 
product of the stress tensor sij and the unit outward normal vector n

→
 of a 

differential surface element yields a vector whose magnitude is the force per 
unit area acting on the surface element and whose direction is the direction 
of the surface force itself. Mathematically we write

Surface force acting on a differential surface element: dF
!
surface 5 sij  

· n
!
 dA  (6–9)

Finally, we integrate Eq. 6–9 over the entire control surface,

Total surface force acting on control surface:  aF
!
surface 5 #

CS

 sij  
· n
!
 dA  (6–10)

Substitution of Eqs. 6–7 and 6–10 into Eq. 6–4 yields

 aF
!
5 aF

!
body 1 aF

!
surface 5 #

CV

rg
!
 dV 1 #

CS

 sij  
· n
!
 dA  (6–11)

 This equation turns out to be quite useful in the derivation of the differ-
ential form of conservation of linear momentum, as discussed in Chap. 9. 
For practical control volume analysis, however, it is rare that we need to use 
Eq. 6–11, especially the cumbersome surface integral that it contains.
 A careful selection of the control volume enables us to write the total 
force acting on the control volume, Σ F

!
, as the sum of more readily available 

quantities like weight, pressure, and reaction forces. We recommend the fol-
lowing for control volume analysis:

Total force: aF
!
5 aF

!
gravity 1 aF

!
pressure 1 aF

!
viscous 1 aF

!
other (6–12)

 total force body force surface forces

The first term on the right-hand side of Eq. 6–12 is the body force weight, 
since gravity is the only body force we are considering. The other three 
terms combine to form the net surface force; they are pressure forces, vis-
cous forces, and “other” forces acting on the control surface. Σ F

!
other is com-

posed of reaction forces required to turn the flow; forces at bolts, cables, 
struts, or walls through which the control surface cuts; etc.
 All these surface forces arise as the control volume is isolated from its 
surroundings for analysis, and the effect of any detached object is accounted 
for by a force at that location. This is similar to drawing a free-body dia-
gram in your statics and dynamics classes. We should choose the control 
volume such that forces that are not of interest remain internal, and thus 
they do not complicate the analysis. A well-chosen control volume exposes 
only the forces that are to be determined (such as reaction forces) and a 
minimum number of other forces.

Control
surface

y

x

(a)

(b)

dFsurface

dFsurface, y

dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

Control
surface

y

x

dFsurface

dFsurface, y

dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

→

→

→

→

FIGURE 6–7
When coordinate axes are rotated (a) 
to (b), the components of the surface 
force change, even though the force 
itself remains the same; only two 
dimensions are shown here.
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 A common simplication in the application of Newton’s laws of motion is 
to subtract the atmospheric pressure and work with gage pressures. This is 
because atmospheric pressure acts in all directions, and its effect cancels out 
in every direction (Fig. 6–9). This means we can also ignore the pressure 
forces at outlet sections where the fluid is discharged at subsonic velocities 
to the atmosphere since the discharge pressures in such cases are very near 
atmospheric pressure.
 As an example of how to wisely choose a control volume, consider con-
trol volume analysis of water flowing steadily through a faucet with a par-
tially closed gate valve spigot (Fig. 6–10). It is desired to calculate the net 
force on the flange to ensure that the flange bolts are strong enough. There 
are many possible choices for the control volume. Some engineers restrict 
their control volumes to the fluid itself, as indicated by CV A (the purple 
control volume) in Fig 6–10. With this control volume, there are pressure 
forces that vary along the control surface, there are viscous forces along 
the pipe wall and at locations inside the valve, and there is a body force, 
namely, the weight of the water in the control volume. Fortunately, to cal-
culate the net force on the flange, we do not need to integrate the pressure 
and viscous stresses all along the control surface. Instead, we can lump the 
unknown pressure and viscous forces together into one reaction force, repre-
senting the net force of the walls on the water. This force, plus the weight of 
the faucet and the water, is equal to the net force on the flange. (We must be 
very careful with our signs, of course.)
 When choosing a control volume, you are not limited to the fluid alone. 
Often it is more convenient to slice the control surface through solid objects 
such as walls, struts, or bolts as illustrated by CV B (the red control vol-
ume) in Fig. 6–10. A control volume may even surround an entire object, 
like the one shown here. Control volume B is a wise choice because we are 
not concerned with any details of the flow or even the geometry inside the 
control volume. For the case of CV B, we assign a net reaction force act-
ing at the portions of the control surface that slice through the flange bolts. 
Then, the only other things we need to know are the gage pressure of 
the water at the flange (the inlet to the control volume) and the weights of 
the water and the faucet assembly. The pressure everywhere else along the 
control surface is atmospheric (zero gage pressure) and cancels out. This 
problem is revisited in Section 6–4, Example 6–7.

6–4 ■ THE LINEAR MOMENTUM EQUATION
Newton’s second law for a system of mass m subjected to net force Σ F

!
 is 

expressed as

 aF
!
5 ma

!
5 m 

dV
!

dt
5

d

dt
 (mV

!
) (6–13)

where mV
!
 is the linear momentum of the system. Noting that both the 

density and velocity may change from point to point within the system, 
Newton’s second law can be expressed more generally as

 aF
!
5

d

dt#sys
 rV
!
 dV  (6–14)

dy

dz

dx

sxz

sxx

sxy

syz

syy

syx

szy
szx

szz

y

x
z

FIGURE 6–8
Components of the stress tensor in 
Cartesian coordinates on the right, 

top, and front faces.

FR

P1

W

Patm

Patm

P1 (gage)

With atmospheric
pressure considered

With atmospheric
pressure cancelled out

FR

W

FIGURE 6–9
Atmospheric pressure acts in all 

directions, and thus it can be ignored 
when performing force balances since 

its effect cancels out in every direction.

Wfaucet

Wwater

CV B

Out

Spigot

In

Bolts

x

z

CV A

FIGURE 6–10
Cross section through a faucet 

assembly, illustrating the importance 
of choosing a control volume wisely; 

CV B is much easier to work with 
than CV A.

243-290_cengel_ch06.indd   249 12/17/12   12:06 PM



250
MOMENTUM ANALYSIS OF FLOW SYSTEMS

where rV
!
  dV is the momentum of a differential element dV, which has mass 

dm 5 r  dV. Therefore, Newton’s second law can be stated as the sum of 
all external forces acting on a system is equal to the time rate of change 
of linear momentum of the system. This statement is valid for a coordinate 
system that is at rest or moves with a constant velocity, called an inertial 
coordinate system or inertial reference frame. Accelerating systems such as 
aircraft during takeoff are best analyzed using noninertial (or accelerating) 
coordinate systems fixed to the aircraft. Note that Eq. 6–14 is a vector rela-
tion, and thus the quantities F

!
 and V

!
 have direction as well as magnitude.

 Equation 6–14 is for a given mass of a solid or fluid and is of limited use 
in fluid mechanics since most flow systems are analyzed using control vol-
umes. The Reynolds transport theorem developed in Section 4–6 provides 
the necessary tools to shift from the system formulation to the control vol-
ume formulation. Setting b 5 V

!
 and thus B 5 mV

!
, the Reynolds transport 

theorem is expressed for linear momentum as (Fig. 6–11)

 
d(mV

!
)sys

dt
5

d

dt
 #

CV
 rV
!
 dV 1 #

CS
 rV
!
 (V
!
r · n
!
 ) dA (6–15)

The left-hand side of this equation is, from Eq. 6–13, equal to Σ F
!
. Substi-

tuting, the general form of the linear momentum equation that applies to 
fixed, moving, or deforming control volumes is

General: aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 #

CS
 rV
!
(V
!
r· 

n
!
 ) dA (6–16)

which is stated in words as£The sum of all

external forces

acting on a CV

5 £ The time rate of change

of the linear momentum

of the contents of the CV

1 £ The net flow rate of

linear momentum out of the

control surface by mass flow

Here V
!
r 5 V

!
 2 V

!
CS is the fluid velocity relative to the control surface (for 

use in mass flow rate calculations at all locations where the fluid crosses the 
control surface), and V

!
 is the fluid velocity as viewed from an inertial refer-

ence frame. The product r(V
!
r·n

→
) dA represents the mass flow rate through 

area element dA into or out of the control volume.
 For a fixed control volume (no motion or deformation of the control volume), 
V
!
r 5 V

!
 and the linear momentum equation becomes

Fixed CV: aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 #

CS
 rV
!
(V
!
· n
!
 ) dA (6–17)

Note that the momentum equation is a vector equation, and thus each term 
should be treated as a vector. Also, the components of this equation can be 
resolved along orthogonal coordinates (such as x, y, and z in the Cartesian 
coordinate system) for convenience. The sum of forces Σ F

!
 in most cases 

consists of weights, pressure forces, and reaction forces (Fig. 6–12). The 
momentum equation is commonly used to calculate the forces (usually on 
support systems or connectors) induced by the flow.

= +rb dV

B = mV

dBsys

dt
V

d

dt
CV
# rb(  r · n ) dA

CS
#

= +rV dV
d(mV )sys

dt
V

d

dt
CV
# rV(  r · n ) dA

CS
#

b = V b = V

→→

→ →

→
→ → → →

→

FIGURE 6–11
The linear momentum equation 
is obtained by replacing B in the 
Reynolds transport theorem by 
the momentum mV

!
, and b by 

the momentum per unit mass V
!
.

FR1

FR2P2,gageA2 P1,gageA1

A2

An 180° elbow supported by the ground

(Pressure
force)

CS(Reaction
force)

(Reaction force)

A1

W (Weight)

FIGURE 6–12
In most flow systems, the sum of 
forces Σ F

!
 consists of weights, 

pressure forces, and reaction forces. 
Gage pressures are used here since 
atmospheric pressure cancels out on 
all sides of the control surface.
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Special Cases
Most momentum problems considered in this text are steady. During steady 
flow, the amount of momentum within the control volume remains constant, 
and thus the time rate of change of linear momentum of the contents of the 
control volume (the second term of Eq. 6–16) is zero. Thus,

Steady flow: aF
!
5 #

CS
 rV
!
 (V
!
r· 

n
!
 ) dA (6–18)

For a case in which a non-deforming control volume moves at constant 
velocity (an inertial reference frame), the first V

!
 in Eq. 6-18 may also be 

taken relative to the moving control surface.
 While Eq. 6–17 is exact for fixed control volumes, it is not always con-
venient when solving practical engineering problems because of the inte-
grals. Instead, as we did for conservation of mass, we would like to rewrite 
Eq. 6–17 in terms of average velocities and mass flow rates through inlets 
and outlets. In other words, our desire is to rewrite the equation in algebraic 
rather than integral form. In many practical applications, fluid crosses the 
boundaries of the control volume at one or more inlets and one or more out-
lets, and carries with it some momentum into or out of the control volume. 
For simplicity, we always draw our control surface such that it slices normal 
to the inflow or outflow velocity at each such inlet or outlet (Fig. 6–13).
 The mass flow rate m

.
  into or out of the control volume across an inlet or 

outlet at which r is nearly constant is

Mass flow rate across an inlet or outlet:  m# 5 #
Ac

 r(V
!
·n
!
 ) dAc 5 rVavgAc (6–19)

Comparing Eq. 6–19 to Eq. 6–17, we notice an extra velocity in the control 
surface integral of Eq. 6–17. If V

!
 were uniform (V

!
 5 V

!
avg) across the inlet 

or outlet, we could simply take it outside the integral. Then we could write 
the rate of inflow or outflow of momentum through the inlet or outlet in 
simple algebraic form,

Momentum flow rate across a uniform inlet or outlet:

 #
Ac

 rV
!
(V
!
· n
!
 ) dAc 5 rVavg AcV

!
avg 5 m

#
V
!
avg (6–20)

The uniform flow approximation is reasonable at some inlets and outlets, 
e.g., the well-rounded entrance to a pipe, the flow at the entrance to a wind 
tunnel test section, and a slice through a water jet moving at nearly uniform 
speed through air (Fig. 6–14). At each such inlet or outlet, Eq. 6–20 can be 
applied directly.

Momentum-Flux Correction Factor, B
Unfortunately, the velocity across most inlets and outlets of practical engi-
neering interest is not uniform. Nevertheless, it turns out that we can still 
convert the control surface integral of Eq. 6–17 into algebraic form, but a 
dimensionless correction factor b, called the momentum-flux correction 
factor, is required, as first shown by the French scientist Joseph Boussinesq 

Vavg,4m4,⋅

m3,⋅ Vavg,3
→

→Vavg,5m5,⋅ →

→

→

Vavg,1m1,⋅

Vavg,2m2,⋅

In

In

Out

Out

Out

Fixed
control
volume

FIGURE 6–13
In a typical engineering problem, 

the control volume may contain 
multiple inlets and outlets; at each 

inlet or outlet we define the mass flow 
rate m

.
 and the average velocity V

!
avg.
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(1842–1929). The algebraic form of Eq. 6–17 for a fixed control volume is 
then written as

 aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 a

out
bm# V

!
avg 2 a

in
bm# V

!
avg (6–21)

where a unique value of momentum-flux correction factor is applied to 
each inlet and outlet in the control surface. Note that b 5 1 for the case of 
uniform flow over an inlet or outlet, as in Fig. 6–14. For the general case, 
we define b such that the integral form of the momentum flux into or out 
of the control surface at an inlet or outlet of cross-sectional area Ac can be 
expressed in terms of mass flow rate m

.
 through the inlet or outlet and aver-

age velocity V
!
avg through the inlet or outlet,

Momentum flux across an inlet or outlet:   #
Ac

 rV
!
(V
!
· n
!
 ) dAc 5 bm# V

!
avg (6–22)

For the case in which density is uniform over the inlet or outlet and V
!
 is in 

the same direction as V
!
avg over the inlet or outlet, we solve Eq. 6–22 for b,

 b 5

#
Ac

 rV(V
!
·n
!
 ) dAc

m# Vavg

5

#
Ac

 rV(V
!
· n
!
 ) dAc

rVavg AcVavg

 (6–23)

where we have substituted rVavg Ac for m· in the denominator. The densi-
ties cancel and since Vavg is constant, it can be brought inside the integral. 
Furthermore, if the control surface slices normal to the inlet or outlet area, 
(V
!
·n

→
) dAc 5 V dAc. Then, Eq. 6–23 simplifies to

Momentum-flux correction factor:    b 5
1

Ac

 #
Ac

 a V

Vavg

b2

 dAc (6–24)

It may be shown that b is always greater than or equal to unity.

EXAMPLE 6–1     Momentum-Flux Correction Factor 
for Laminar Pipe Flow

Consider laminar flow through a very long straight section of round pipe. It 

is shown in Chap. 8 that the velocity profile through a cross-sectional area of 

the pipe is parabolic (Fig. 6–15), with the axial velocity component given by

 V 5 2Vavga1 2
r2

R 2b  (1)

where R is the radius of the inner wall of the pipe and Vavg is the average 

velocity. Calculate the momentum-flux correction factor through a cross sec-

tion of the pipe for the case in which the pipe flow represents an outlet of 

the control volume, as sketched in Fig. 6–15.

SOLUTION  For a given velocity distribution we are to calculate the momentum-

flux correction factor.

FIGURE 6–14
Examples of inlets or outlets 
in which the uniform flow 
approximation is reasonable: 
(a) the well-rounded entrance to 
a pipe, (b) the entrance to a wind 
tunnel test section, and (c) a slice 
through a free water jet in air.

CV

(a)

V   Vavg

CV

(b)

V   Vavg

CV

Nozzle

(c)

V   Vavg
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Assumptions  1 The flow is incompressible and steady. 2 The control volume 

slices through the pipe normal to the pipe axis, as sketched in Fig. 6–15.

Analysis  We substitute the given velocity profile for V in Eq. 6–24 and inte-

grate, noting that dAc 5 2pr dr,

 b 5
1

Ac

 #
Ac

 a V

Vavg

b2

 dAc 5
4

pR2 #
R

0
 a1 2

r2

R2b2

2pr dr (2)

Defining a new integration variable y 5 1 2 r 2/R2 and thus dy 5 22r dr /R 2 

(also, y 5 1 at r 5 0, and y 5 0 at r 5 R) and performing the integra-

tion, the momentum-flux correction factor for fully developed laminar flow 

becomes

Laminar flow: b 5 24 #
0

1
 y2 dy 5 24 c y3

3
d 0

1

5
4

3
 (3)

Discussion  We have calculated b for an outlet, but the same result would 

have been obtained if we had considered the cross section of the pipe as an 

inlet to the control volume.

 From Example 6–1 we see that b is not very close to unity for fully devel-
oped laminar pipe flow, and ignoring b could potentially lead to significant 
error. If we were to perform the same kind of integration as in Example 6–1 
but for fully developed turbulent rather than laminar pipe flow, we would 
find that b ranges from about 1.01 to 1.04. Since these values are so close 
to unity, many practicing engineers completely disregard the momentum-
flux correction factor. While the neglect of b in turbulent flow calculations 
may have an insignificant effect on the final results, it is wise to keep it in 
our equations. Doing so not only improves the accuracy of our calculations, 
but reminds us to include the momentum-flux correction factor when solv-
ing laminar flow control volume problems.

For turbulent flow b may have an insignificant effect at inlets and outlets, but 
for laminar flow b may be important and should not be neglected. It is wise 
to include b in all momentum control volume problems.

Steady Flow
If the flow is also steady, the time derivative term in Eq. 6–21 vanishes and 
we are left with

Steady linear momentum equation: aF
!
5 a

out
bm# V

!
2 a

in
b m# V

!
 (6–25)

where we have dropped the subscript “avg” from average velocity. Equa-
tion 6–25 states that the net force acting on the control volume during steady 
flow is equal to the difference between the rates of outgoing and incoming 
momentum flows. This statement is illustrated in Fig. 6–16. It can also be 
expressed for any direction, since Eq. 6–25 is a vector equation.

Vavg

VR
r

CV

FIGURE 6–15
Velocity profile over a cross section 

of a pipe in which the flow is fully 
developed and laminar.

In

In

Out

out in

Fixed
control
volume

Out

Out
V3b3m3

⋅

Vbm⋅
→

→

V4b4m4
⋅V5b5m5

⋅ →→

V2b2m2
⋅ →

V1b1m1
⋅ →

Σ ΣF = Vbm⋅
→Σ

→
–

F
→Σ

FIGURE 6–16
The net force acting on the control 

volume during steady flow is equal to 
the difference between the outgoing 

and the incoming momentum fluxes.
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Steady Flow with One Inlet and One Outlet
Many practical engineering problems involve just one inlet and one outlet 
(Fig. 6–17). The mass flow rate for such single-stream systems remains 
constant, and Eq. 6–25 reduces to

One inlet and one outlet: aF
!
5 m # (b2V

!
2 2 b1V

!
1) (6–26)

where we have adopted the usual convention that subscript 1 implies the 
inlet and subscript 2 the outlet, and V

!
1 and V

!
2 denote the average velocities 

across the inlet and outlet, respectively.
 We emphasize again that all the preceding relations are vector equations, and 
thus all the additions and subtractions are vector additions and subtractions. 
Recall that subtracting a vector is equivalent to adding it after reversing its 
direction (Fig. 6–18). When writing the momentum equation for a specified 
coordinate direction (such as the x-axis), we use the projections of the vec-
tors on that axis. For example, Eq. 6–26 is written along the x-coordinate as

Along x-coordinate: aFx 5 m# (b2V2, x 2 b1V1, x) (6–27)

where ΣFx is the vector sum of the x-components of the forces, and V2, x 
and V1, x are the x-components of the outlet and inlet velocities of the fluid 
stream, respectively. The force or velocity components in the positive 
x-direction are positive quantities, and those in the negative x-direction are 
negative quantities. Also, it is good practice to take the direction of unknown 
forces in the positive directions (unless the problem is very straightforward). 
A negative value obtained for an unknown force indicates that the assumed 
direction is wrong and should be reversed.

Flow with No External Forces
An interesting situation arises when there are no external forces (such as 
weight, pressure, and reaction forces) acting on the body in the direction of 
motion—a common situation for space vehicles and satellites. For a control 
volume with multiple inlets and outlets, Eq. 6–21 reduces in this case to

No external forces: 0 5
d(mV

!
 )CV

dt
1 a

out
bm# V

!
2 a

in
bm# V

!
 (6–28)

This is an expression of the conservation of momentum principle, which 
is  stated in words as in the absence of external forces, the rate of change 
of the momentum of a control volume is equal to the difference between the 
rates of incoming and outgoing momentum flow rates.
 When the mass m of the control volume remains nearly constant, the first 
term of Eq. 6–28 becomes simply mass times acceleration, since

 
d(mV

!
)CV

dt
5 mCV 

dV
!
CV

dt
5 (ma

!
 )CV 5 mCVa

!
 

Therefore, the control volume in this case can be treated as a solid body (a 
fixed-mass system) with a net thrusting force (or just thrust) of 

Thrust: F
!
thrust 5 mbodya

!
5a

in
bm
#
V
!
2 a

out
bm
#
V
!
 (6– 29)

acting on the body. In Eq 6–29, fluid velocities are relative to an inertial 
reference frame—that is, a coordinate system that is fixed in space or is 

V2b2m⋅

V1b1m⋅
In

Out

Fixed
control
volume

ΣF2

1

m⋅
→→ΣF = (b2V2 – b1V1)

→

→

→

→

FIGURE 6–17
A control volume with only one inlet 
and one outlet.

(Reaction force)

Support

Water flow CS

Note: V2 ≠ V1 even if |V2| = |V1|

u

u
FR

FR
→

→ → → →

V1b1m⋅
→

V2b2m⋅
→

V2b2m⋅
→

V1–b1m⋅
→

FIGURE 6–18
The determination by vector addition of 
the reaction force on the support caused 
by a change of direction of water.
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moving uniformly at constant velocity on a straight path. When analyzing the 
motion of bodies moving at constant velocity on a straight path, it is conve-
nient to choose an inertial reference frame that moves with the body at the 
same velocity on the same path. In this case the velocities of fluid streams 
relative to the inertial reference frame are identical to the velocities relative to 
the moving body, which are much easier to apply. This approach, while not 
strictly valid for noninertial reference frames, can also be used to calculate the 
initial acceleration of a space vehicle when its rocket is fired (Fig. 6–19).
 Recall that thrust is a mechanical force typically generated through the 
reaction of an accelerating fluid. In the jet engine of an aircraft, for exam-
ple, hot exhaust gases are accelerated by the action of expansion and out-
flow of gases through the back of the engine, and a thrusting force is pro-
duced by a reaction in the opposite direction. The generation of thrust is 
based on Newton’s third law of motion, which states that for every action 
at a point there is an equal and opposite reaction. In the case of a jet 
engine, if the engine exerts a force on exhaust gases, then the exhaust gases 
exert an equal force on the engine in the opposite direction. That is, the 
pushing force exerted on the departing gases by the engine is equal to the 
thrusting force the departing gases exert on the remaining mass of the air-
craft in the opposite direction F

!
thrust 5 2F

!
push. On the free-body diagram 

of an aircraft, the effect of outgoing exhaust gases is accounted for by the 
insertion of a force in the opposite direction of motion of the exhaust gases.

EXAMPLE 6–2    The Force to Hold a Deflector Elbow in Place

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a 

horizontal pipe upward 30° while accelerating it (Fig. 6–20). The elbow dis-

charges water into the atmosphere. The cross-sectional area of the elbow 

is 113 cm2 at the inlet and 7 cm2 at the outlet. The elevation difference 

between the centers of the outlet and the inlet is 30 cm. The weight of the 

elbow and the water in it is considered to be negligible. Determine (a) the 

gage pressure at the center of the inlet of the elbow and (b) the anchoring 

force needed to hold the elbow in place.

SOLUTION  A reducing elbow deflects water upward and discharges it to the 

atmosphere. The pressure at the inlet of the elbow and the force needed to 

hold the elbow in place are to be determined.

Assumptions  1 The flow is steady, and the frictional effects are negligible. 

2 The weight of the elbow and the water in it is negligible. 3 The water is 

discharged to the atmosphere, and thus the gage pressure at the outlet is 

zero. 4 The flow is turbulent and fully developed at both the inlet and outlet 

of the control volume, and we take the momentum-flux correction factor to 

be b 5 1.03 (as a conservative estimate) at both the inlet and the outlet.

Properties  We take the density of water to be 1000 kg/m3.

Analysis  (a) We take the elbow as the control volume and designate the 

inlet by 1 and the outlet by 2. We also take the x- and z-coordinates as 

shown. The continuity equation for this one-inlet, one-outlet, steady-flow sys-

tem is m
.
1 5 m

.
2 5 m

.
 5 14 kg/s. Noting that m

.
 5 rAV, the inlet and outlet 

velocities of water are

 V1 5
m
#

rA1

5
14 kg/s

(1000 kg/m3)(0.0113 m2)
5 1.24 m/s 

L = 2 m
V0 = 2000 m/s

FIGURE 6–19
The thrust needed to lift the space 
shuttle is generated by the rocket 
engines as a result of momentum 

change of the fuel as it is accelerated 
from about zero to an exit speed of 

about 2000 m/s after combustion.
NASA

FRz

FRx

Patm

30°
30 cm

P1,gage

z

x
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2
·

mV1
·

mV2
→

→

FIGURE 6–20
Schematic for Example 6–2.
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 V2 5
m#

rA2

5
14 kg/s

(1000 kg/m3)(7 3 1024 m2)
5 20.0 m/s 

We use the Bernoulli equation (Chap. 5) as a first approximation to calculate 

the pressure. In Chap. 8 we will learn how to account for frictional losses 

along the walls. Taking the center of the inlet cross section as the reference 

level (z1 5 0) and noting that P2 5 Patm, the Bernoulli equation for a stream-

line going through the center of the elbow is expressed as

 
P1

rg
1

V 2
1

2g
1 z1 5

P2

rg
1

V 2
2

2g
1 z2 

  P1 2 P2 5 rga V 2
2 2 V 2

1

2g
1 z2 2 z1b 

  P1 2 Patm 5 (1000 kg/m3)(9.81 m/s2) 

3 a (20 m/s)2 2 (1.24 m/s)2

2(9.81 m/s2)
1 0.3 2 0b a 1 kN

1000 kg·m/s2b
 P1, gage 5 202.2 kN/m2 5 202.2 kPa (gage)

(b) The momentum equation for steady flow is

aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!

We let the x- and z-components of the anchoring force of the elbow be FRx 

and FRz, and assume them to be in the positive direction. We also use gage 

pressure since the atmospheric pressure acts on the entire control surface. 

Then the momentum equations along the x- and z-axes become

 FRx 1 P1, gage A1 5 bm# V2 cos u 2 bm# V1

 FRz 5 bm# V2 sin u

where we have set b 5 b1 5 b2. Solving for FRx and FRz, and substituting the 

given values,

 FRx 5 bm# (V2 cos u 2 V1) 2 P1, gage A1

5 1.03(14 kg/s)[(20 cos 308 2 1.24) m/s]a 1 N

1 kg·m/s2b
2 (202,200 N/m2)(0.0113 m2)

 5 232 2 2285 5 22053 N 

 FRz 5 bm
#
V2 sin u 5 (1.03)(14 kg/s)(20 sin 308 m/s)a 1 N

1 kg·m/s2b 5 144 N 

The negative result for FRx indicates that the assumed direction is wrong, 

and it should be reversed. Therefore, FRx acts in the negative x-direction.

Discussion  There is a nonzero pressure distribution along the inside walls of 

the elbow, but since the control volume is outside the elbow, these pressures 

do not appear in our analysis. The weight of the elbow and the water in it 

could be added to the vertical force for better accuracy. The actual value 

of P1, gage will be higher than that calculated here because of frictional and 

other irreversible losses in the elbow.
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EXAMPLE 6–3    The Force to Hold a Reversing Elbow in Place

The deflector elbow in Example 6–2 is replaced by a reversing elbow such 

that the fluid makes a 180° U-turn before it is discharged, as shown in 

Fig. 6–21. The elevation difference between the centers of the inlet and the 

exit sections is still 0.3 m. Determine the anchoring force needed to hold 

the elbow in place.

SOLUTION  The inlet and the outlet velocities and the pressure at the inlet 

of the elbow remain the same, but the vertical component of the anchoring 

force at the connection of the elbow to the pipe is zero in this case (FRz 5 0) 

since there is no other force or momentum flux in the vertical direction (we 

are neglecting the weight of the elbow and the water). The horizontal com-

ponent of the anchoring force is determined from the momentum equation 

written in the x-direction. Noting that the outlet velocity is negative since it 

is in the negative x-direction, we have

FRx 1 P1, gage A1 5 b2m
# (2V2) 2 b1m

# V1 5 2bm# (V2 1 V1)

Solving for FRx and substituting the known values,

FRx 5 2bm# (V2 1 V1) 2 P1, gage A1

5 2(1.03)(14 kg/s)[(20 1 1.24) m/s]a 1 N

1 kg·m/s2b 2 (202,200 N/m2)(0.0113 m2)

 5 2306 2 2285 5 22591 N

Therefore, the horizontal force on the flange is 2591 N acting in the nega-

tive x-direction (the elbow is trying to separate from the pipe). This force 

is equivalent to the weight of about 260 kg mass, and thus the connectors 

(such as bolts) used must be strong enough to withstand this force.

Discussion  The reaction force in the x-direction is larger than that of Exam-

ple 6–2 since the walls turn the water over a much greater angle. If the 

reversing elbow is replaced by a straight nozzle (like one used by firefight-

ers) such that water is discharged in the positive x-direction, the momentum 

equation in the x-direction becomes

FRx 1 P1, gage A1 5 bm# V2 2 bm# V1  S   FRx 5 bm# (V2 2 V1) 2 P1, gage A1

since both V1 and V2 are in the positive x-direction. This shows the impor-

tance of using the correct sign (positive if in the positive direction and nega-

tive if in the opposite direction) for velocities and forces.

EXAMPLE 6–4    Water Jet Striking a Stationary Plate

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a 

stationary vertical plate at a rate of 10 kg/s with a normal velocity of 20 m/s 

(Fig. 6–22). After the strike, the water stream splatters off in all directions 

in the plane of the plate. Determine the force needed to prevent the plate 

from moving horizontally due to the water stream.

SOLUTION  A water jet strikes a vertical stationary plate normally. The force 

needed to hold the plate in place is to be determined.

Assumptions  1 The flow of water at the nozzle outlet is steady. 2 The water 

splatters in directions normal to the approach direction of the water jet. 

FRz
FRx

Patm

P1,gage

1

2

mV2
·

mV1
·

→

→

CV

FIGURE 6–21
Schematic for Example 6–3.

FR

z

x

Patm

In

Out

V1

V2

1

2

→

→

CV

FIGURE 6–22
Schematic for Example 6–4.
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3 The water jet is exposed to the atmosphere, and thus the pressure of the 

water jet and the splattered water leaving the control volume is atmospheric 

pressure, which is disregarded since it acts on the entire system. 4 The ver-

tical forces and momentum fluxes are not considered since they have no 

effect on the horizontal reaction force. 5 The effect of the momentum-flux 

correction factor is negligible, and thus b > 1 at the inlet.

Analysis  We draw the control volume for this problem such that it contains 

the entire plate and cuts through the water jet and the support bar normally. 

The momentum equation for steady flow is given as

 aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!
 (1)

Writing Eq. 1 for this problem along the x-direction (without forgetting the 

negative sign for forces and velocities in the negative x-direction) and noting 

that V1, x 5 V1 and V2, x 5 0 gives

2FR 5 0 2 bm# V1

Substituting the given values,

FR 5 bm# V1 5 (1)(10 kg/s)(20 m/s)a 1 N

1 kg·m/s2b 5 200 N

Therefore, the support must apply a 200-N horizontal force (equivalent to 

the weight of about a 20-kg mass) in the negative x-direction (the opposite 

direction of the water jet) to hold the plate in place. A similar situation 

occurs in the downwash of a helicopter (Fig. 6–23).

Discussion  The plate absorbs the full brunt of the momentum of the water 

jet since the x-direction momentum at the outlet of the control volume is 

zero. If the control volume were drawn instead along the interface between 

the water and the plate, there would be additional (unknown) pressure forces 

in the analysis. By cutting the control volume through the support, we avoid 

having to deal with this additional complexity. This is an example of a “wise” 

choice of control volume.

EXAMPLE 6–5     Power Generation and Wind Loading 
of a Wind Turbine

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed 

(minimum speed for power generation) of 7 mph, at which velocity the tur-

bine generates 0.4 kW of electric power (Fig. 6–24). Determine (a) the effi-

ciency of the wind turbine–generator unit and (b) the horizontal force exerted 

by the wind on the supporting mast of the wind turbine. What is the effect 

of doubling the wind velocity to 14 mph on power generation and the force 

exerted? Assume the efficiency remains the same, and take the density of air 

to be 0.076 lbm/ft3.

SOLUTION  The power generation and loading of a wind turbine are to be 

analyzed. The efficiency and the force exerted on the mast are to be deter-

mined, and the effects of doubling the wind velocity are to be investigated.

Assumptions  1 The wind flow is steady and incompressible. 2 The efficiency 

of the turbine–generator is independent of wind speed. 3 The frictional effects 

are negligible, and thus none of the incoming kinetic energy is converted to 

1 2

Patm

Patm

mV2
·

mV1
·

FR

Streamline

x

→
→

CV

FIGURE 6–24
Schematic for Example 6–5.

FIGURE 6–23
The downwash of a helicopter 
is similar to the jet discussed in 
Example 6–4. The jet impinges on 
the surface of the water in this case, 
causing circular waves as seen here.
© Purestock/SuperStock RF
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thermal energy. 4 The average velocity of air through the wind turbine is the 

same as the wind velocity (actually, it is considerably less—see Chap. 14). 

5 The wind flow is nearly uniform upstream and downstream of the wind 

turbine and thus the momentum-flux correction factor is b 5 b1 5 b2 > 1.

Properties  The density of air is given to be 0.076 lbm/ft3.

Analysis  Kinetic energy is a mechanical form of energy, and thus it can 

be converted to work entirely. Therefore, the power potential of the wind is 

proportional to its kinetic energy, which is V 2/2 per unit mass, and thus 

the maximum power is m
.
V 2/2 for a given mass flow rate:

 V1 5 (7 mph)a1.4667 ft/s

1 mph
b 5 10.27 ft/s 

 m# 5 r1V 1A1 5 r1V 1 
pD2

4
5 (0.076 lbm/ft3)(10.27 ft/s) 

p(30 ft)2

4
5 551.7 lbm/s

 W
#
max 5 m# ke1 5 m #

V 2
1

2
 

 5 (551.7 lbm/s) 
(10.27 ft/s)2

2
 a 1 lbf

32.2 lbm·ft/s2b a 1 kW

737.56 lbf·ft/s
b

 5 1.225 kW 

Therefore, the available power to the wind turbine is 1.225 kW at the wind 

velocity of 7 mph. Then the turbine–generator efficiency becomes

hwind turbine 5
W
#

act

W
#

max

5
0.4 kW

1.225 kW
5 0.327    (or 32.7%)

(b) The frictional effects are assumed to be negligible, and thus the portion 

of incoming kinetic energy not converted to electric power leaves the wind 

turbine as outgoing kinetic energy. Noting that the mass flow rate remains 

constant, the exit velocity is determined to be

 m# ke2 5 m# ke1(1 2 hwind turbine) S    m #
V 2

2

2
5 m #

V 2
1

2
 (1 2 hwind turbine) (1)

or

V2 5 V1"1 2 hwind turbine 5 (10.27 ft/s)"1 2 0.327 5 8.43 ft/s

To determine the force on the mast (Fig. 6–25), we draw a control volume 

around the wind turbine such that the wind is normal to the control surface 

at the inlet and the outlet and the entire control surface is at atmospheric 

pressure (Fig. 6–23). The momentum equation for steady flow is given as

 aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!
 (2)

Writing Eq. 2 along the x-direction and noting that b 5 1, V1, x 5 V1, and 

V2, x 5 V2 give

 FR 5 m
#
V2 2 m

#
V1 5 m

# (V2 2 V1) (3)

Substituting the known values into Eq. 3 gives

 FR 5 m
# (V2 2 V1) 5 (551.7 lbm/s)(8.43 2 10.27 ft/s) a 1 lbf

32.2 lbm·ft/s2b
 5 231.5 lbf

FIGURE 6–25
Forces and moments on the supporting 

mast of a modern wind turbine 
can be substantial, and increase 

like V 2; thus the mast is typically 
quite large and strong.

© Ingram Publishing/SuperStock RF
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The negative sign indicates that the reaction force acts in the negative 

x-direction, as expected. Then the force exerted by the wind on the mast 

becomes Fmast 5 2FR 5 31.5 lbf.
 The power generated is proportional to V 3 since the mass flow rate is 

proportional to V  and the kinetic energy to V 2. Therefore, doubling the wind 

velocity to 14 mph will increase the power generation by a factor of 23 5 8 

to 0.4 3 8 5 3.2 kW. The force exerted by the wind on the support mast 

is proportional to V 2. Therefore, doubling the wind velocity to 14 mph will 

increase the wind force by a factor of 22 5 4 to 31.5 3 4 5 126 lbf.

Discussion  Wind turbines are treated in more detail in Chap. 14.

EXAMPLE 6–6    Deceleration of a Spacecraft

A spacecraft with a mass of 12,000 kg is dropping vertically towards a 

planet at a constant speed of 800 m/s (Fig. 6–26). To slow down the 

spacecraft, a solid-fuel rocket at the bottom is fired, and combustion 

gases leave the rocket at a constant rate of 80 kg/s and at a velocity 

of 3000 m/s relative to the spacecraft in the direction of motion of the 

spacecraft for a period of 5 s. Disregarding the small change in the mass 

of the spacecraft, determine (a) the deceleration of the spacecraft during 

this period, (b) the change of velocity of the spacecraft, and (c) the thrust 

exerted on the spacecraft.

SOLUTION  The rocket of a spacecraft is fired in the direction of motion. 

The deceleration, the velocity change, and the thrust are to be determined. 

Assumptions  1 The flow of combustion gases is steady and one-dimensional 

during the firing period, but the flight of the spacecraft is unsteady. 2 There 

are no external forces acting on the spacecraft, and the effect of pressure 

force at the nozzle outlet is negligible. 3 The mass of discharged fuel is 

negligible relative to the mass of the spacecraft, and thus, the spacecraft 

may be treated as a solid body with a constant mass. 4 The nozzle is well 

designed such that the effect of the momentum-flux correction factor is neg-

ligible, and thus, b > 1.

Analysis  (a) For convenience, we choose an inertial reference frame that 

moves with the spacecraft at the same initial velocity. Then the velocities 

of the fluid stream relative to an inertial reference frame become simply the 

velocities relative to the spacecraft. We take the direction of motion of the 

spacecraft as the positive direction along the x-axis. There are no external 

forces acting on the spacecraft, and its mass is essentially constant. There-

fore, the spacecraft can be treated as a solid body with constant mass, and 

the momentum equation in this case is, from Eq. 6–29,

F
!
thrust 5 m spacecraft a

!
spacecraft 5 a

in
bm
#
V
!
2 a

out
bm
#
V
!

where the fluid stream velocities relative to the inertial reference frame in 

this case are identical to the velocities relative to the spacecraft. Noting 

that the motion is on a straight line and the discharged gases move in the 

positive x-direction, we write the momentum equation using magnitudes as

mspacecraftaspacecraft 5 mspacecraft

dV spacecraft

dt
5 2 m

#
gasV gas

800 m/s

80 kg/s3000 m/s
x

FIGURE 6–26
Schematic for Example 6–6.
© Brand X Pictures/PunchStock

243-290_cengel_ch06.indd   260 12/21/12   2:39 PM



261
CHAPTER 6

Noting that gases leave in the positive x-direction and substituting, the 

acceleration of the spacecraft during the first 5 seconds is determined to be

aspacecraft 5
dV spacecraft

dt
5 2

m
#
gas

mspacecraft

Vgas 5 2
80 kg/s

12,000 kg
(13000 m/s) 5 220 m/s2

The negative value confirms that the spacecraft is decelerating in the posi-

tive x direction at a rate of 20 m/s2.

(b) Knowing the deceleration, which is constant, the velocity change of the 

spacecraft during the first 5 seconds is determined from the definition of 

acceleration to be

 dVspacecraft 5 aspacecraftdt S  DV spacecraft 5 aspacecraftDt 5 (220 m/s2)(5 s)

 5 2100 m/s

(c) The thrusting force exerted on the space aircraft is, from Eq. 6-29,

Fthrust 5 0 2 m
#
gasVgas 5 0 2 (80 kg/s)(13000 m/s)a 1 kN

1000 kg·m/s2b 5 2240 kN

The negative sign indicates that the trusting force due to firing of the rocket 

acts on the aircraft in the negative x-direction. 

Discussion  Note that if this fired rocket were attached somewhere on a test 

stand, it would exert a force of 240 kN (equivalent to the weight of about 24 tons 

of mass) to its support in the opposite direction of the discharged gases.

EXAMPLE 6–7    Net Force on a Flange

Water flows at a rate of 18.5 gal/min through a flanged faucet with a par-

tially closed gate valve spigot (Fig. 6–27). The inner diameter of the pipe 

at the location of the flange is 0.780 in (5 0.0650 ft), and the pressure 

at that location is measured to be 13.0 psig. The total weight of the faucet 

assembly plus the water within it is 12.8 lbf. Calculate the net force on the 

flange.

SOLUTION  Water flow through a flanged faucet is considered. The net force 

acting on the flange is to be calculated.

Assumptions  1 The flow is steady and incompressible. 2 The flow at the 

inlet and at the outlet is turbulent and fully developed so that the momentum-

flux correction factor is about 1.03. 3 The pipe diameter at the outlet of the 

faucet is the same as that at the flange.

Properties  The density of water at room temperature is 62.3 lbm/ft3.

Analysis  We choose the faucet and its immediate surroundings as the control 

volume, as shown in Fig. 6–27 along with all the forces acting on it. These 

forces include the weight of the water and the weight of the faucet assembly, 

the gage pressure force at the inlet to the control volume, and the net force 

of the flange on the control volume, which we call F
→
R. We use gage pressure 

for convenience since the gage pressure on the rest of the control surface 

is zero (atmospheric pressure). Note that the pressure through the outlet of 

the control volume is also atmospheric since we are assuming incompressible 

flow; hence, the gage pressure is also zero through the outlet.

Wfaucet

Wwater

P1,gage

CV

Out

Spigot

Flange

x

z

In

FR

FIGURE 6–27
Control volume for Example 6–7 

with all forces shown; gage pressure 
is used for convenience.

243-290_cengel_ch06.indd   261 12/17/12   4:47 PM



262
MOMENTUM ANALYSIS OF FLOW SYSTEMS

 We now apply the control volume conservation laws. Conservation of mass 

is trivial here since there is only one inlet and one outlet; namely, the mass 

flow rate into the control volume is equal to the mass flow rate out of the 

control volume. Also, the outflow and inflow average velocities are identical 

since the inner diameter is constant and the water is incompressible, and 

are determined to be

V2 5 V1 5 V 5
V
#

Ac

5
V
#

pD2/4
5

18.5 gal/min

p(0.065 ft)2/4
 a0.1337 ft3

1 gal
b a1 min

60 s
b 512.42 ft/s

Also,

m# 5 rV
#

5 (62.3 lbm/ft3)(18.5 gal/min)a0.1337 ft3

1 gal
b a1 min

60 s
b 5 2.568 lbm/s

Next we apply the momentum equation for steady flow,

 aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!
 (1)

We let the x- and z-components of the force acting on the flange be FRx and 

FRz, and assume them to be in the positive directions. The magnitude of 

the velocity in the x-direction is 1V1 at the inlet, but zero at the outlet. The 

magnitude of the velocity in the z-direction is zero at the inlet, but 2V2 at 

the outlet. Also, the weight of the faucet assembly and the water within it 

acts in the 2z-direction as a body force. No pressure or viscous forces act on 

the chosen (wise) control volume in the z-direction.

 The components of Eq. 1 along the x- and z-directions become

 FRx 1 P1, gage A1 5 0 2 m# (1V1)

 FRz 2 Wfaucet 2 W water 5 m# (2V2) 2 0

Solving for FRx and FRz, and substituting the given values,

 FRx 5 2m# V1 2 P1, gage A1

 5 2(2.568 lbm/s)(12.42 ft/s)a 1 lbf

32.2 lbm·ft/s2b 2 (13 lbf/in2) 
p(0.780 in)2

4

 5 27.20 lbf

 FRz 5 2m
#
V2 1 Wfaucet1water 

 5 2(2.568 lbm/s)(12.42 ft/s)a 1 lbf

32.2 lbm·ft/s2b 1 12.8 lbf 5 11.8 lbf 

Then the net force of the flange on the control volume is expressed in vector 

form as

F
!
R 5 FRx   i 

!
1 FRz k

!
5 27.20   i

!
1 11.8k

!
 lbf

From Newton’s third law, the force the faucet assembly exerts on the flange 

is the negative of F
→
R,

 F
!
faucet on flange 5 2F

!
R 5 7.20  i

!
2 11.8 k

!
 lbf

Discussion  The faucet assembly pulls to the right and down; this agrees 

with our intuition. Namely, the water exerts a high pressure at the inlet, but 
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the outlet pressure is atmospheric. In addition, the momentum of the water 

at the inlet in the x-direction is lost in the turn, causing an additional force 

to the right on the pipe walls. The faucet assembly weighs much more than 

the momentum effect of the water, so we expect the force to be downward. 

Note that labeling forces such as “faucet on flange” clarifies the direction 

of the force.

6–5 ■  REVIEW OF ROTATIONAL MOTION
AND ANGULAR MOMENTUM

The motion of a rigid body can be considered to be the combination 
of  translational motion of its center of mass and rotational motion about 
its center of mass. The translational motion is analyzed using the linear 
momentum equation, Eq. 6–1. Now we discuss the rotational motion—a 
motion during which all points in the body move in circles about the axis 
of rotation. Rotational motion is described with angular quantities such as  
angular distance u, angular velocity 

→
v, and angular acceleration 

→
a.

 The amount of rotation of a point in a body is expressed in terms of the 
angle u swept by a line of length r that connects the point to the axis of 
rotation and is perpendicular to the axis. The angle u is expressed in radians 
(rad), which is the arc length corresponding to u on a circle of unit radius. 
Noting that the circumference of a circle of radius r is 2pr, the angular 
distance traveled by any point in a rigid body during a complete rotation 
is 2p rad. The physical distance traveled by a point along its circular path 
is l 5 ur, where r is the normal distance of the point from the axis of rota-
tion and u is the angular distance in rad. Note that 1 rad corresponds to 
360/(2p) > 57.3°.
 The magnitude of angular velocity v is the angular distance traveled per 
unit time, and the magnitude of angular acceleration a is the rate of change 
of angular velocity. They are expressed as (Fig. 6–28),

 v 5
du

dt
5

d(l/r)

dt
5

1
r
 
dl

dt
5

V
r
  and  a 5

dv

dt
5

d 2u

dt 2 5
1
r
 
dV

dt
5

at

r
 (6–30)

or

 V 5 rv  and  at 5 ra (6–31)

where V is the linear velocity and at is the linear acceleration in the tangen-
tial direction for a point located at a distance r from the axis of rotation. 
Note that v and a are the same for all points of a rotating rigid body, but V 
and at are not (they are proportional to r).
 Newton’s second law requires that there must be a force acting in the 
tangential direction to cause angular acceleration. The strength of the rotat-
ing effect, called the moment or torque, is proportional to the magnitude of 
the force and its distance from the axis of rotation. The perpendicular dis-
tance from the axis of rotation to the line of action of the force is called the 
moment arm, and the magnitude of torque M acting on a point mass m at  
normal distance r from the axis of rotation is expressed as

 M 5 rFt 5 rmat 5 mr2a (6–32)

v

v =  = du
dt

u

r

r

V = rv

V
r

FIGURE 6–28
The relations between angular 
distance u, angular velocity v, 

and linear velocity V in a plane.
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The total torque acting on a rotating rigid body about an axis is determined 
by integrating the torque acting on differential mass dm over the entire body 
to give

Magnitude of torque: M 5 #
mass

 r2a dm 5 c#
mass

 r2 dm da 5 Ia (6–33)

where I is the moment of inertia of the body about the axis of rotation, which 
is a measure of the inertia of a body against rotation. The relation M 5 Ia is 
the counterpart of Newton’s second law, with torque replacing force, moment 
of inertia replacing mass, and angular acceleration replacing linear accelera-
tion (Fig. 6–29). Note that unlike mass, the rotational inertia of a body also 
depends on the distribution of the mass of the body with respect to the axis 
of rotation. Therefore, a body whose mass is closely packed about its axis 
of rotation has a small resistance against angular acceleration, while a body 
whose mass is concentrated at its periphery has a large resistance against 
angular acceleration. A flywheel is a good example of the latter.
 The linear momentum of a body of mass m having velocity V

!
 is mV

!
, and 

the direction of linear momentum is identical to the direction of velocity. 
Noting that the moment of a force is equal to the product of the force and 
the normal distance, the magnitude of the moment of momentum, called 
the angular momentum, of a point mass m about an axis is expressed as 
H 5 rmV 5 r2mv, where r is the normal distance from the axis of rotation to 
the line of action of the momentum vector (Fig. 6–30). Then the total angular 
momentum of a rotating rigid body is determined by integration to be

Magnitude of angular momentum: H 5 #
mass

 r2v dm 5 c#
mass

 r2 dm dv 5 Iv (6–34)

where again I is the moment of inertia of the body about the axis of rota-
tion. It can also be expressed more generally in vector form as

  H
!
5 I v

!
 (6–35)

Note that the angular velocity v
→

 is the same at every point of a rigid body.
 Newton’s second law F

!
 5 ma

→
 was expressed in terms of the rate of change 

of linear momentum in Eq. 6–1 as F
!
 5 d(mV

!
)/dt. Likewise, the counter part of 

Newton’s second law for rotating bodies  M
!
 5 Ia

→
 is expressed in Eq. 6–2 in 

terms of the rate of change of angular momentum as

Angular momentum equation:  M
!
5 I  a

!
5 I 

d v
!

dt
5

d(I v
!
 )

dt
5

d H
!

dt
 (6–36)

where  M
!
 is the net torque applied on the body about the axis of rotation.

 The angular velocity of rotating machinery is typically expressed in rpm 
(number of revolutions per minute) and denoted by n

.
. Noting that veloc-

ity is distance traveled per unit time and the angular distance traveled 
during each revolution is 2p, the angular velocity of rotating machinery is 
v 5 2pn

.
 rad/min or

Angular velocity versus rpm: v 5 2pn
#  (rad/min) 5

2pn#

60
  (rad/s) (6–37)

 Consider a constant force F acting in the tangential direction on the outer 
surface of a shaft of radius r rotating at an rpm of n

.
. Noting that work W is 

Mass, Mass, m Moment of inertia, Moment of inertia, I

Linear acceleration, Linear acceleration, a Angular acceleration, Angular acceleration, a

Linear velocity, Linear velocity, V Angular velocity, Angular velocity, v

Force, Force, F Torque, Torque, M

Moment of force, Moment of force, M Moment of momentum, Moment of momentum, H

mVmV Iv

Linear momentumLinear momentum Angular momentumAngular momentum

F = maF = ma M = IM = Ia

M = r M = r 3 F F H = r H = r 3 mV mV

→→

→

→ →

→

→ →

→

→ → →→

→

→ → →→→→

FIGURE 6–29
Analogy between corresponding 
linear and angular quantities.

H = rmV
 = rm(rv)
 = r2mv
 = Iv

v

r
m

mV = mrv

V = rv

FIGURE 6–30
Angular momentum of point mass 
m rotating at angular velocity v at 
distance r from the axis of rotation.
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force times distance, and power W
.
 is work done per unit time and thus force 

times velocity, we have W
.
shaft 5 FV 5 Frv 5 Mv. Therefore, the power 

transmitted by a shaft rotating at an rpm of n
.
 under the influence of an 

applied torque M is (Fig. 6–31)

Shaft power: W
#

shaft 5 vM 5 2pn#M (6–38)

 The kinetic energy of a body of mass m during translational motion is 
KE 5 1

2mV2. Noting that V 5 rv, the rotational kinetic energy of a body of 
mass m at a distance r from the axis of rotation is KE 5 1

2mr2v2. The total 
rotational kinetic energy of a rotating rigid body about an axis is determined 
by integrating the rotational kinetic energies of differential masses dm over 
the entire body to give

Rotational kinetic energy: KEr 5
1

2
Iv2 (6–39)

where again I is the moment of inertia of the body and v is the angular 
velocity.
 During rotational motion, the direction of velocity changes even when its 
magnitude remains constant. Velocity is a vector quantity, and thus a change 
in direction constitutes a change in velocity with time, and thus accelera-
tion. This is called centripetal acceleration. Its magnitude is

ar 5
V 2

r
5 rv2

Centripetal acceleration is directed toward the axis of rotation (opposite 
direction of radial acceleration), and thus the radial acceleration is negative. 
Noting that acceleration is a constant multiple of force, centripetal accelera-
tion is the result of a force acting on the body toward the axis of rotation, 
known as the centripetal force, whose magnitude is Fr 5 mV 2/r. Tangential 
and radial accelerations are perpendicular to each other (since the radial and 
tangential directions are perpendicular), and the total linear acceleration is 
determined by their vector sum, a

→
 5 a

→
t 1 a

→
r. For a body rotating at con-

stant angular velocity, the only acceleration is the centripetal acceleration. 
The  centripetal force does not produce torque since its line of action inter-
sects the axis of rotation.

6–6 ■  THE ANGULAR MOMENTUM EQUATION
The linear momentum equation discussed in Section 6–4 is useful for deter-
mining the relationship between the linear momentum of flow streams 
and the resultant forces. Many engineering problems involve the moment 
of the linear momentum of flow streams, and the rotational effects caused 
by them. Such problems are best analyzed by the angular momentum equa-
tion, also called the moment of momentum equation. An important class of 
fluid devices, called turbomachines, which include centrifugal pumps, tur-
bines, and fans, is analyzed by the angular momentum equation.
 The moment of a force  F

!
 about a point O is the vector (or cross) product 

(Fig. 6–32) 

Moment of a force: M
!
5 r

!
3 F

!
 (6–40)

Wshaft = vM = 2pnM
⋅ ⋅

v = 2pn⋅

FIGURE 6–31
The relations between angular 

velocity, rpm, and the power 
transmitted through a rotating shaft.

Direction of
rotation

O

r

F

M 5 r 3 F
M 5 Fr sin

θ

r sinθ

θ

→→ →

→

→

FIGURE 6–32
The moment of a force F

!
 about a 

point O is the vector product of the 
position vector r

→
 and F

!
.
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where r
→

 is the position vector from point O to any point on the line of 
action of  F

!
. The vector product of two vectors is a vector whose line of 

action is normal to the plane that contains the crossed vectors (r
→

 and  F
!
 in 

this case) and whose magnitude is

Magnitude of the moment of a force: M 5 Fr sin u (6–41)

where u is the angle between the lines of action of the vectors r
→

 and  F
!
. 

Therefore, the magnitude of the moment about point O is equal to the mag-
nitude of the force multiplied by the normal distance of the line of action 
of the force from the point O. The sense of the moment vector  M

!
 is deter-

mined by the right-hand rule: when the fingers of the right hand are curled 
in the direction that the force tends to cause rotation, the thumb points the 
direction of the moment vector (Fig. 6–33). Note that a force whose line of 
action passes through point O produces zero moment about point O.
 The vector product of r

→
 and the momentum vector mV

!
 gives the moment of 

momentum, also called the angular momentum, about a point O as

Moment of momentum:  H
!
5  r

!
3 mV

!
 (6–42)

Therefore, r
→

 3 V
!
 represents the angular momentum per unit mass, and the 

angular momentum of a differential mass dm 5 r  dV is d H
!
 5 (r

→
 3 V

!
 )r  dV. 

Then the angular momentum of a system is determined by integration to be

Moment of momentum (system):  H
!
sys 5 #

sys
 (  r
!
3 V

!
)r dV  (6–43)

The rate of change of the moment of momentum is

Rate of change of moment of momentum: 
dH
!
sys

dt
5

d

dt
 #

sys
 (r
!
3 V

!
)r dV  (6–44)

 The angular momentum equation for a system was expressed in Eq. 6–2 as

 aM
!
5

dH
!
sys

dt
 (6–45)

where Σ M
!
 5 Σ(r

→
 3  F

!
) is the net torque or moment applied on the sys-

tem, which is the vector sum of the moments of all forces acting on the 
system, and d H

!
sys /dt is the rate of change of the angular momentum of the 

system. Equation 6–45 is stated as the rate of change of angular momentum 
of a system is equal to the net torque acting on the system. This equation is 
valid for a fixed quantity of mass and an inertial reference frame, i.e., a refer-
ence frame that is fixed or moves with a constant velocity in a straight path.
 The general control volume formulation of the angular momentum equa-
tion is obtained by setting b 5 r

→
 3 V

!
 and thus B 5  H

!
 in the general Reyn-

olds transport theorem. It gives (Fig. 6–34)

 
dH
!
sys

dt
5

d

dt
 #

CV
( r
!
3 V

!
 )r dV 1 #

CS
 ( r
!
3 V

!
 )r(V

!
r· n
!
 ) dA (6–46)

The left-hand side of this equation is, from Eq. 6–45, equal to Σ M
!
. Substi-

tuting, the angular momentum equation for a general control volume (sta-
tionary or moving, fixed shape or distorting) is

General: aM
!
5

d

dt
 #

CV
 ( r
!
3 V

!
 )r dV 1 #

CS
 ( r
!
3 V

!
 )r(V

!
r· 

n
!
 ) dA (6–47)

Sense of the
moment

F

M = r  3 F
→ →→

→

ω 

Axis of
rotation

r→

FIGURE 6–33
The determination of the direction of 
the moment by the right-hand rule.

= +rb dV

B = H

dBsys

dt
d

dt
CV
# rb(Vr · n ) dA

CS
#

= (r 3 V)r dV
dH sys

dt
d

dt
CV
#

b =  r 3 V b =  r  3 V

→

→

→

→ →→

→ →

+ (r  3 V)r(Vr · n) dA
CS
# → → → →

→

FIGURE 6–34
The angular momentum equation 
is obtained by replacing B in the 
Reynolds transport theorem by the 
angular momentum  H

!
, and b by 

the angular momentum per unit 
mass r

→
 3 V

!
.
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which is stated in words as£ The sum of all

external moments

acting on a CV

5 £ The time rate of change 

of the angular momentum

of the contents of the CV

1 ± The net flow rate of

angular momentum

out of the control

surface by mass flow

Again, V
!
r 5 V

!
 2 V

!
CS is the fluid velocity relative to the control surface (for 

use in mass flow rate calculations at all locations where the fluid crosses the 
control surface), and V

!
 is the fluid velocity as viewed from a fixed reference 

frame. The product r(V
!
r·n

→
) dA represents the mass flow rate through dA 

into or out of the control volume, depending on the sign.
 For a fixed control volume (no motion or deformation of the control 
volume), V

!
r 5 V

!
 and the angular momentum equation becomes

Fixed CV: aM
!
5

d

dt
 #

CV
 (  r 

!
3 V

!
 )r dV 1 #

CS
 ( r
!
3 V

!
 )r( V

!
·n
!
 ) dA (6–48)

 Also, note that the forces acting on the control volume consist of body 
forces that act throughout the entire body of the control volume such as grav-
ity, and surface forces that act on the control surface such as the pressure and 
reaction forces at points of contact. The net torque consists of the moments 
of these forces as well as the torques applied on the control volume.

Special Cases
During steady flow, the amount of angular momentum within the con-
trol volume remains constant, and thus the time rate of change of angular 
momentum of the contents of the control volume is zero. Then,

Steady flow: aM
!
5 #

CS
 ( r
!
3 V

!
 )r( V

!
r· 

n
!
 ) dA (6–49)

In many practical applications, the fluid crosses the boundaries of the control 
volume at a certain number of inlets and outlets, and it is convenient to replace 
the area integral by an algebraic expression written in terms of the average prop-
erties over the cross-sectional areas where the fluid enters or leaves the control 
volume. In such cases, the angular momentum flow rate can be expressed as 
the difference in the angular momentum of outgoing and incoming streams. 
Furthermore, in many cases the moment arm r

→
 is either constant along the 

inlet or outlet (as in radial flow turbomachines) or is large compared to the 
diameter of the inlet or outlet pipe (as in rotating lawn sprinklers, Fig. 6–35). 
In such cases, the average value of r

→
 is used throughout the cross-sectional 

area of the inlet or outlet. Then, an approximate form of the angular momen-
tum equation in terms of average properties at inlets and outlets becomes

 aM
!
>

d

dt
 #

CV
 (r
!
3 V

!
)r dV 1 a

out
(r
!
3 m# V

!
) 2 a

in
(r
!
3 m# V

!
) (6–50)

You may be wondering why we don’t introduce a correction factor into 
Eq. 6–50, like we did for conservation of energy (Chap. 5) and for conserva-
tion of linear momentum (Section 6–4). The reason is that the cross product 
of r

→
 and m

#
V
!
 is dependent on problem geometry, and thus, such a correction 

FIGURE 6–35
A rotating lawn sprinkler is a good 

example of application of the angular 
momentum equation.

© John A. Rizzo/Getty RF
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factor would vary from problem to problem. Therefore, whereas we can 
readily calculate a kinetic energy flux correction factor and a momentum 
flux correction factor for fully developed pipe flow that can be applied to 
various problems, we cannot do so for angular momentum. Fortunately, in 
many problems of practical engineering interest, the error associated with 
using average values of radius and velocity is small, and the approximation 
of Eq. 6–50 is reasonable.
 If the flow is steady, Eq. 6–50 further reduces to (Fig. 6–36)

Steady flow: aM
!
5 a

out
(r
!
3 m# V

!
 ) 2 a

in
(r
!
3 m# V

!
 ) (6–51)

Equation 6–51 states that the net torque acting on the control volume during 
steady flow is equal to the difference between the outgoing and incoming 
angular momentum flow rates. This statement can also be expressed for any 
specified direction. Note that velocity V

!
 in Eq. 6–51 is the velocity relative 

to an inertial coordinate system.
 In many problems, all the significant forces and momentum flows are in the 
same plane, and thus all give rise to moments in the same plane and about the 
same axis. For such cases, Eq. 6–51 can be expressed in scalar form as

 aM 5 a
out

rm
#
V 2 a

in
rm
#
V  (6–52)

where r represents the average normal distance between the point about 
which moments are taken and the line of action of the force or velocity, 
provided that the sign convention for the moments is observed. That is, all 
moments in the counterclockwise direction are positive, and all moments in 
the clockwise direction are negative.

Flow with No External Moments
When there are no external moments applied, the angular momentum equa-
tion Eq. 6–50 reduces to

No external moments: 0 5
dH
!
CV

dt
1 a

out
(r
!
3 m# V

!
) 2 a

in
(r
!
3 m# V

!
) (6–53)

This is an expression of the conservation of angular momentum principle, 
which can be stated as in the absence of external moments, the rate of 
change of the angular momentum of a control volume is equal to the differ-
ence between the incoming and outgoing angular momentum fluxes.
 When the moment of inertia I of the control volume remains constant, the 
first term on the right side of Eq. 6–53 becomes simply moment of inertia 
times angular acceleration, Ia

→
. Therefore, the control volume in this case 

can be treated as a solid body, with a net torque of

  M
!
body 5 Ibody a

!
5 a

in
(r
!
3 m# V

!
) 2 a

out
(r
!
3 m# V

!
) (6–54)

(due to a change of angular momentum) acting on it. This approach can 
be used to determine the angular acceleration of space vehicles and aircraft 
when a rocket is fired in a direction different than the direction of motion.

FIGURE 6–36
The net torque acting on a control 
volume during steady flow is equal 
to the difference between the outgoing 
and incoming angular momentum 
flow rates.

S M = S r  3 m
•

V – S r 3 m
•

V
out in

→ → →→ →
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Radial-Flow Devices
Many rotary-flow devices such as centrifugal pumps and fans involve flow 
in the radial direction normal to the axis of rotation and are called radial-
flow devices (Chap. 14). In a centrifugal pump, for example, the fluid enters 
the device in the axial direction through the eye of the impeller, turns out-
ward as it flows through the passages between the blades of the impel-
ler, collects in the scroll, and is discharged in the tangential direction, as 
shown in Fig. 6–37. Axial-flow devices are easily analyzed using the linear 
momentum equation. But radial-flow devices involve large changes in angu-
lar momentum of the fluid and are best analyzed with the help of the angu-
lar momentum equation. 
 To analyze a centrifugal pump, we choose the annular region that encloses 
the impeller section as the control volume, as shown in Fig. 6–38. Note that 
the average flow velocity, in general, has normal and tangential components 
at both the inlet and the outlet of the impeller section. Also, when the shaft 
rotates at angular velocity v, the impeller blades have tangential velocity vr1 
at the inlet and vr2 at the outlet. For steady, incompressible flow, the conser-
vation of mass equation is written as

 V
#

1 5 V
#

2 5 V
#
  S  (2pr1b1)V1, n 5 (2pr2b2)V2, n  (6–55)

where b1 and b2 are the flow widths at the inlet where r 5 r1 and at the 
outlet where r 5 r2, respectively. (Note that the actual circumferential 
cross-sectional area is somewhat less than 2prb since the blade thickness 
is not zero.) Then the average normal components V1, n and V2, n of abso-
lute velocity can be expressed in terms of the volumetric flow rate V

.
 as

 V1, n 5
V
#

2pr1b1

  and  V2, n 5
V
#

2pr2b2

 (6–56)

The normal velocity components V1, n and V2, n as well as pressure acting 
on the inner and outer circumferential areas pass through the shaft center, 
and thus they do not contribute to torque about the origin. Then only the 
tan gential velocity components contribute to torque, and the application of 
the angular momentum equation aM 5 a

out
rm# V 2 a

in
rm# V to the control 

volume gives

Euler’s turbine equation: Tshaft 5 m
# (r2V2, t 2 r1V1, t) (6–57)
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Impeller
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FIGURE 6–37
Side and frontal views of a typical 

centrifugal pump.
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FIGURE 6–38
An annular control volume that 

encloses the impeller section of a 
centrifugal pump.
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which is known as Euler’s turbine equation. When the angles a1 and a2 
between the direction of absolute flow velocities and the radial direction are 
known, Eq. 6–57 becomes

 Tshaft 5 m# (r2V2 sin a2 2 r1V1 sin a1) (6–58)

In the idealized case of the tangential fluid velocity being equal to the blade 
angular velocity both at the inlet and the exit, we have V1, t 5 vr1 and V2, t 5 
vr2, and the torque becomes

 Tshaft, ideal 5 m# v(r2
2 2 r2

1) (6–59)

where v 5 2pn
.
 is the angular velocity of the blades. When the torque is 

known, the shaft power is determined from W
.
shaft 5 vTshaft 5 2pn

.
Tshaft.

EXAMPLE 6–8     Bending Moment Acting at the Base 
of a Water Pipe

Underground water is pumped through a 10-cm- diameter pipe that consists 

of a 2-m-long vertical and 1-m-long horizontal section, as shown in Fig. 6–39. 

Water discharges to atmospheric air at an average velocity of 3 m/s, and the 

mass of the horizontal pipe section when filled with water is 12 kg per meter 

length. The pipe is anchored on the ground by a concrete base. Determine 

the bending moment acting at the base of the pipe (point A) and the required 

length of the horizontal section that would make the moment at point A zero.

SOLUTION  Water is pumped through a piping section. The moment acting 

at the base and the required length of the horizontal section to make this 

moment zero is to be determined.

Assumptions  1 The flow is steady. 2 The water is discharged to the atmo-

sphere, and thus the gage pressure at the outlet is zero. 3 The pipe diameter 

is small compared to the moment arm, and thus we use average values of 

radius and velocity at the outlet.

Properties  We take the density of water to be 1000 kg/m3.

Analysis  We take the entire L-shaped pipe as the control volume, and desig-

nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates 

as shown. The control volume and the reference frame are fixed.

 The conservation of mass equation for this one-inlet, one-outlet, steady-

flow system is m
.

1 5 m
.

2 5 m
.
, and V1 5 V2 5 V since Ac 5 constant. The 

mass flow rate and the weight of the horizontal section of the pipe are

m# 5 rAcV 5 (1000 kg/m3)[p(0.10 m)2/4](3 m/s) 5 23.56 kg/s

W 5 mg 5 (12 kg/m)(1 m)(9.81 m/s2)a 1 N

1 kg·m/s2b 5 117.7 N

To determine the moment acting on the pipe at point A, we need to take the 

moment of all forces and momentum flows about that point. This is a steady-

flow problem, and all forces and momentum flows are in the same plane. 

Therefore, the angular momentum equation in this case is expressed as

aM 5 a
out

rm# V 2 a
in

rm# V

where r is the average moment arm, V is the average speed, all moments in 

the counterclockwise direction are positive, and all moments in the clock-

wise direction are negative.

2 m

1 m
3 m/s

10 cm

A

FIGURE 6–39
Schematic for Example 6–8 and the 
free-body diagram.

V
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 The free-body diagram of the L-shaped pipe is given in Fig. 6–39. Noting 

that the moments of all forces and momentum flows passing through point A 

are zero, the only force that yields a moment about point A is the weight W 

of the horizontal pipe section, and the only momentum flow that yields a 

moment is the outlet stream (both are negative since both moments are in 

the clockwise direction). Then the angular momentum equation about point A 

becomes

MA 2 r1W 5 2r2m
# V2

Solving for MA and substituting give

 MA 5 r1W 2 r2m
# V2 

 5 (0.5 m)(118 N) 2 (2 m)(23.56 kg/s)(3 m/s)a 1 N

1 kg·m/s2b
 5 282.5 N~m

The negative sign indicates that the assumed direction for MA is wrong and 

should be reversed. Therefore, a moment of 82.5 N·m acts at the stem of 

the pipe in the clockwise direction. That is, the concrete base must apply a 

82.5 N·m moment on the pipe stem in the clockwise direction to counteract 

the excess moment caused by the exit stream.

 The weight of the horizontal pipe is w 5 W/L 5 117.7 N per m length. 

Therefore, the weight for a length of Lm is Lw with a moment arm of r1 5 L/2. 

Setting MA 5 0 and substituting, the length L of the horizontal pipe that 

would cause the moment at the pipe stem to vanish is determined to be

0 5 r1W 2 r2m
# V2 S 0 5 (L/2)Lw 2 r2m

# V2

or

L 5 Å2r2m
# V2

w
5 Å2(2 m)(23.56 kg/s)(3 m/s)

117.7 N/m
  a N

kg·m/s2b 5 1.55 m

Discussion  Note that the pipe weight and the momentum of the exit stream 

cause opposing moments at point A. This example shows the importance of 

accounting for the moments of momentums of flow streams when performing 

a dynamic analysis and evaluating the stresses in pipe materials at critical 

cross sections.

EXAMPLE 6–9    Power Generation from a Sprinkler System

A large lawn sprinkler (Fig. 6–40) with four identical arms is to be con-

verted into a turbine to generate electric power by attaching a generator to 

its rotating head, as shown in Fig. 6–41. Water enters the sprinkler from 

the base along the axis of rotation at a rate of 20 L/s and leaves the nozzles 

in the tangential direction. The sprinkler rotates at a rate of 300 rpm in a 

horizontal plane. The diameter of each jet is 1 cm, and the normal distance 

between the axis of rotation and the center of each nozzle is 0.6 m. Esti-

mate the electric power produced.

SOLUTION  A four-armed sprinkler is used to generate electric power. For a 

specified flow rate and rotational speed, the power produced is to be deter-

mined.

FIGURE 6–40
Lawn sprinklers often have 
rotating heads to spread the 

water over a large area.
© Andy Sotiriou/Getty RF
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Assumptions  1 The flow is cyclically steady (i.e., steady from a frame of 

reference rotating with the sprinkler head). 2 The water is discharged to the 

atmosphere, and thus the gage pressure at the nozzle exit is zero. 3 Genera-

tor losses and air drag of rotating components are neglected. 4 The nozzle 

diameter is small compared to the moment arm, and thus we use average 

values of radius and velocity at the outlet.

Properties  We take the density of water to be 1000 kg/m3 5 1 kg/L.

Analysis  We take the disk that encloses the sprinkler arms as the control 

volume, which is a stationary control volume.

 The conservation of mass equation for this steady-flow system is m
.
1 5 m

.
2 5 

m
.

total. Noting that the four nozzles are identical, we have m
.

nozzle 5 m
.

total/4 or 

V
.

nozzle 5 V
.

total/4 since the density of water is constant. The average jet exit 

velocity relative to the rotating nozzle is

Vjet,r 5
V
#

nozzle

Ajet

5
5 L/s

[p(0.01 m)2/4]
 a 1 m3

1000 L
b 5 63.66 m/s

The angular and tangential velocities of the nozzles are

 v 5 2pn# 5 2p(300 rev/min) a1 min

60 s
b 5 31.42 rad/s

 Vnozzle 5 rv 5 (0.6 m)(31.42 rad/s) 5 18.85 m/s

Note that water in the nozzle is also moving at an average velocity of 

18.85 m/s in the opposite direction when it is discharged. The average abso-

lute velocity of the water jet (velocity relative to a fixed location on earth) is 

the vector sum of its relative velocity (jet velocity relative to the nozzle) and 

the absolute nozzle velocity,

 V
!
jet 5 V

!
jet, r 1 V

!
nozzle

All of these three velocities are in the tangential direction, and taking the 

direction of jet flow as positive, the vector equation can be written in scalar 

form using magnitudes as

Vjet 5 V jet,r 2 V nozzle 5 63.66 2 18.85 5 44.81 m/s

 Noting that this is a cyclically steady-flow problem, and all forces and 

momentum flows are in the same plane, the angular momentum equation

is approximated as aM 5 a
out

rm# V 2 a
in

rm# V, where r is the moment arm,

all moments in the counterclockwise direction are positive, and all moments 

in the clockwise direction are negative.

 The free-body diagram of the disk that contains the sprinkler arms is given 

in Fig. 6–41. Note that the moments of all forces and momentum flows 

passing through the axis of rotation are zero. The momentum flows via the 

water jets leaving the nozzles yield a moment in the clockwise direction and 

the effect of the generator on the control volume is a moment also in the 

clockwise direction (thus both are negative). Then the angular momentum 

equation about the axis of rotation becomes

2Tshaft 5 24rm# nozzleVjet  or  Tshaft 5 rm# totalVjet

Substituting, the torque transmitted through the shaft is

Tshaft 5 rm# totalVjet 5 (0.6 m)(20 kg/s)(44.81 m/s)a 1 N

1 kg·m/s2b 5 537.7 N·m

FIGURE 6–41
Schematic for Example 6–9 and the 
free-body diagram.

mtotal

Electric
generator

v

⋅

jetV

jetV

jetV

jetV

r = 0.6 m

Tshaft

mnozzle
⋅

jetV

mnozzle
⋅

jetV

mnozzle
⋅

jetV

mnozzle
⋅

jetV
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since m
.
total 5 rV

.
total 5 (1 kg/L)(20 L/s) 5 20 kg/s.

 Then the power generated becomes

W
#

5 vTshaft 5 (31.42 rad/s)(537.7 N·m)a 1 kW

1000 N·m/s
b 5 16.9 kW

Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW 

of power.

Discussion  To put the result obtained in perspective, we consider two lim-

iting cases. In the first limiting case, the sprinkler is stuck, and thus, the 

angular velocity is zero. The torque developed is maximum in this case, since 

Vnozzle 5 0. Thus Vjet 5 Vjet, r 5 63.66 m/s, giving Tshaft, max 5 764 N?m. The 

power generated is zero since the generator shaft does not rotate.

 In the second limiting case, the sprinkler shaft is disconnected from the 

generator (and thus both the useful torque and power generation are zero), 

and the shaft accelerates until it reaches an equilibrium velocity. Setting 

Tshaft 5 0 in the angular momentum equation gives the absolute water-jet 

velocity (jet velocity relative to an observer on earth) to be zero, Vjet 5 0. 

Therefore, the relative velocity Vjet, r and absolute velocity Vnozzle are equal but 

in opposite direction. So, the absolute tangential velocity of the jet (and thus 

torque) is zero, and the water mass drops straight down like a waterfall under 

gravity with zero angular momentum (around the axis of rotation). The angular 

speed of the sprinkler in this case is

n# 5
v

2p
5

Vnozzle

2pr
5

63.66 m/s

2p(0.6 m)
a 60 s

1 min
b 5 1013 rpm

Of course, the Tshaft = 0 case is possible only for an ideal, frictionless nozzle (i.e., 

100 percent nozzle efficiency, as a no-load ideal turbine). Otherwise, there would 

be a resisting torque due to friction of the water, shaft, and surrounding air.

 The variation of power produced with angular speed is plotted in Fig. 6–42. 

Note that the power produced increases with increasing rpm, reaches a maxi-

mum (at about 500 rpm in this case), and then decreases. The actual power 

produced would be less than this due to generator inefficiency (Chap. 5) and 

other irreversible losses such as fluid friction within the nozzle (Chap. 8), 

shaft friction, and aerodynamic drag (Chap. 11).
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FIGURE 6–42
The variation of power produced 

with angular speed for the turbine of 
Example 6–9.

Guest Authors: Alexander Smits, Keith Moored and Peter 
Dewey, Princeton University

Aquatic animals propel themselves using a wide variety of mechanisms. 
Most fish flap their tail to produce thrust, and in doing so they shed two 
single vortices per flapping cycle, creating a wake that resembles a reverse 
von Kármán vortex street. The non-dimensional number that describes this 
vortex shedding is the Strouhal number St, where St 5 fA/U∞, where f is the 
frequency of actuation, A is the peak-to-peak amplitude of the trailing edge 
motion at the half-span, and U∞ is the steady swimming velocity. Remark-
ably, a wide variety of fish and mammals swim in the range 0.2 < St < 0.35.
 In manta rays (Fig. 6–43), propulsion is achieved by combining oscillatory 
and undulatory motions of flexible pectoral fins. That is, as the manta ray 

APPLICATION SPOTLIGHT ■ Manta Ray Swimming

FIGURE 6–43
The manta ray is the largest of the 

rays, reaching up to 8 m in span. 
They swim with a motion that is a 

combination of flapping and 
undulation of their large pectoral fins. 

© Frank & Joyce Burek/Getty RF
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flaps its fins, it is also generating a traveling wave motion along the chord, 
opposite to the direction of its motion. This wave motion is not readily 
apparent because the wavelength is 6 to 10 times greater than the chord 
length. A similar undulation is observed in sting rays, but there it is more 
obvious because the wavelength is less than the chord length. Field observa-
tions indicate that many species of manta ray are migratory, and that they 
are very efficient swimmers. They are difficult to study in the laboratory 
because they are a protected and somewhat fragile creature. However, it is 
possible to study many aspects of their swimming behavior by mimicking 
their propulsive techniques using robots or mechanical devices such as that 
shown in Fig. 6–44. The flow field generated by such a fin displays the vor-
tex shedding seen in other fish studies, and when time-averaged displays a 
high momentum jet that contributes to the thrust (Fig 6–45). The thrust and 
efficiencies can also be measured directly, and it appears that the undulatory 
motion due to the traveling wave is most important to thrust production at 
high efficiency in the manta ray.
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FIGURE 6–45
Measurements of the wake of the 
manta ray fin mechanism, with the flow 
going from bottom to top. On the left, 
we see the vortices shed in the wake, 
alternating between positive vorticity 
(red) and negative vorticity (blue). The 
induced velocities are shown by the 
black arrows, and in this case we see 
that thrust is being produced. On the  
right, we see the time-averaged velocity 
field. The unsteady velocity field 
induced by the vortices produces a 
high velocity jet in the time-averaged 
field. The momentum flux associated 
with this jet contributes to the total 
thrust on the fin.
Image courtesy of Peter Dewey, Keith Moored 
and Alexander Smits. Used by permission.

U∞

FIGURE 6–44
Manta ray fin mechanism, showing the 
vortex pattern produced in the wake 
when it is swimming in a range where 
two single vortices are shed into the 
wake per flapping cycle. The artificial 
flexible fin is actuated by four rigid 
spars; by changing the relative phase 
differences between adjacent actuators, 
undulations of varying wavelength 
can be produced. 
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SUMMARY

This chapter deals mainly with the conservation of momen-
tum for finite control volumes. The forces acting on the con-
trol volume consist of body forces that act throughout the 
entire body of the control volume (such as gravity, electric, 
and magnetic forces) and surface forces that act on the con-
trol surface (such as the pressure forces and reaction forces 
at points of contact). The sum of all forces acting on the 
control volume at a particular instant in time is represented 
by ΣF

!
and is expressed as

aF
!
5 aF

!
gravity 1 aF

!
pressure 1 aF

!
viscous 1 aF

!
other

 total force body force surface forces

 Newton’s second law can be stated as the sum of all 
external forces acting on a system is equal to the time rate of 
change of linear momentum of the system. Setting b 5 V

!
 and 

thus B 5 mV
!
 in the Reynolds transport theorem and utilizing 

Newton’s second law gives the linear momentum equation 
for a control volume as

aF
!
5

d

dt
 #

CV
rV
!
 dV 1 #

CS
 rV
!
(V
!
r 
·n
!
) dA

which reduces to the following special cases:

Steady flow: aF
!
5 #

CS
 rV
!
(V
!
r·n
!
) dA

Unsteady flow (algebraic form):

aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 a

out
bm# V

!
2 a

in
bm# V

!

Steady flow (algebraic form): aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!

No external forces: 0 5
d(mV

!
)CV

dt
1 a

out
bm# V

!
2 a

in
bm# V

!

where b is the momentum-flux correction factor. A con-
trol volume whose mass m remains constant can be treated 
as a solid body (a fixed-mass system) with a net thrusting 
force (also called simply the thrust) of 

 F
!
thrust 5 mCVa

!
5 a

in
bm# V

!
2 a

out
bm# V

!

acting on the body.

 Newton’s second law can also be stated as the rate of 
change of angular momentum of a system is equal to the net 
torque acting on the system. Setting b 5 r

→
 3 V

!
 and thus 

B 5 H
!
 in the general Reynolds transport theorem gives the 

angular momentum equation as

aM
!
5

d

dt
 #

CV
 (r
!
3 V

!
)r dV 1 #

CS
(r
!
3 V

!
)r(V

!
r·n
!
 ) dA

which reduces to the following special cases:

Steady flow: aM
!
5 #

CS
 (r
!
3 V

!
)r(V

!
r·n
!
 ) dA

Unsteady flow (algebraic form):

aM
!
5

d

dt
 #

CV
 (r
!
3 V

!
)r dV 1 a

out
r
!
3 m# V

!
2 a

in
r
!
3 m# V

!

Steady and uniform flow:

aM
!
5 a

out
r
!
3 m# V

!
2 a

in
r
!
3 m# V

!

Scalar form for one direction:

aM 5 a
out

rm# V 2 a
in

rm# V

No external moments:

0 5
dH
!
CV

dt
1 a

out
r
!
3 m# V

!
2 a

in
r
!
3 m# V

!

A control volume whose moment of inertia I remains constant  
can be treated as a solid body (a fixed-mass system), with a 
net torque of

 M
!
CV 5 ICVa

!
5 a

in
r
!
3 m# V

!
2 a

out
r
!
3 m# V

!
 

acting on the body. This relation is used to determine the 
angular acceleration of a spacecraft when a rocket is fired.
 The linear and angular momentum equations are of funda-
mental importance in the analysis of turbomachinery and are 
used extensively in Chap. 14.

 1. P. K. Kundu, I. M. Cohen, and D. R. Dowling. Fluid 
Mechanics, ed. 5. San Diego, CA: Academic Press, 2011.

 2. Terry Wright, Fluid Machinery: Performance, Analysis, 
and Design, Boca Raton, FL: CRC Press, 1999.
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Newton’s Laws and Conservation of Momentum

6–1C  Express Newton’s first, second, and third laws.

6–2C  Express Newton’s second law of motion for rotat-
ing bodies. What can you say about the angular velocity and 
angular momentum of a rotating nonrigid body of constant 
mass if the net torque acting on it is zero? 

6–3C  Is momentum a vector? If so, in what direction does 
it point?

6–4C  Express the conservation of momentum principle. 
What can you say about the momentum of a body if the net 
force acting on it is zero?

Linear Momentum Equation

6–5C  Two firefighters are fighting a fire with identical 
water hoses and nozzles, except that one is holding the hose 
straight so that the water leaves the nozzle in the same direc-
tion it comes, while the other holds it backward so that the 
water makes a U-turn before being discharged. Which fire-
fighter will experience a greater reaction force?

6–6C  How do surface forces arise in the momentum analy-
sis of a control volume? How can we minimize the number 
of surface forces exposed during analysis?

6–7C  Explain the importance of the Reynolds transport 
theorem in fluid mechanics, and describe how the linear 
momentum equation is obtained from it.

6–8C  What is the importance of the momentum-flux cor-
rection factor in the momentum analysis of flow systems? 
For which type(s) of flow is it significant and must it be con-
sidered in analysis: laminar flow, turbulent flow, or jet flow?

6–9C  Write the momentum equation for steady one-
dimensional flow for the case of no external forces and 
explain the physical significance of its terms.

6–10C  In the application of the momentum equation, 
explain why we can usually disregard the atmospheric pres-
sure and work with gage pressures only.

6–11C  A rocket in space (no friction or resistance to 
motion) can expel gases relative to itself at some high veloc-
ity V. Is V the upper limit to the rocket’s ultimate velocity?

6–12C  Describe in terms of momentum and airflow how a 
helicopter is able to hover.

PROBLEMS*

* Problems designated by a “C” are concept questions, and 

students are encouraged to answer them all. Problems designated 

by an “E” are in English units, and the SI users can ignore them. 

Problems with the  icon are solved using EES, and complete 

solutions together with parametric studies are included on the 

text website. Problems with the  icon are comprehensive in 

nature and are intended to be solved with an equation solver 

such as EES.

6–13C  Does it take more, equal, or less power for a heli-
copter to hover at the top of a high mountain than it does at 
sea level? Explain.

6–14C  In a given location, would a helicopter require more 
energy in summer or winter to achieve a specified perform-
ance? Explain.

6–15C  A horizontal water jet from a nozzle of constant exit 
cross section impinges normally on a stationary vertical flat 
plate. A certain force F is required to hold the plate against 
the water stream. If the water velocity is doubled, will the 
necessary holding force also be doubled? Explain.

6–16C  Describe body forces and surface forces, and 
explain how the net force acting on a control volume is deter-
mined. Is fluid weight a body force or surface force? How 
about pressure? 

6–17C  A constant-velocity horizontal water jet from a sta-
tionary nozzle impinges normally on a vertical flat plate that 
rides on a nearly frictionless track. As the water jet hits the 
plate, it begins to move due to the water force. Will the accel-
eration of the plate remain constant or change? Explain.

FIGURE P6–17C

Nozzle

Water jet

6–18C  A horizontal water jet of constant velocity V from 
a stationary nozzle impinges normally on a vertical flat plate 
that rides on a nearly frictionless track. As the water jet hits 

FIGURE P6–12C
© JupiterImages/ Thinkstock/Alamy RF
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negligible. Determine (a) the gage pressure at the center of 
the inlet of the elbow and (b) the anchoring force needed to 
hold the elbow in place. Take the momentum-flux correction 
factor to be 1.03 at both the inlet and the outlet.

FIGURE P6–22

Water
40 kg/s

50 cm

6–23  Repeat Prob. 6–22 for the case of another (identical) 
elbow attached to the existing elbow so that the fluid makes a 
U-turn.  Answers: (a) 9.81 kPa, (b) 497 N

6–24E  A horizontal water jet impinges against a vertical 
flat plate at 25 ft/s and splashes off the sides in the verti-
cal plane. If a horizontal force of 350 lbf is required to hold 
the plate against the water stream, determine the volume flow 
rate of the water.

6–25  A reducing elbow in a horizontal pipe is used to deflect 
water flow by an angle u 5 45° from the flow direction while 
accelerating it. The elbow discharges water into the atmo-
sphere. The cross- sectional area of the elbow is 150 cm2 at the 
inlet and 25 cm2 at the exit. The elevation difference between 
the centers of the exit and the inlet is 40 cm. The mass of the 
elbow and the water in it is 50 kg. Determine the anchoring 
force needed to hold the elbow in place. Take the momentum-
flux correction factor to be 1.03 at both the inlet and outlet.

FIGURE P6–25

150 cm2
40 cm

45°

25 cm2

Water
30.0 kg/s

6–26  Repeat Prob. 6–25 for the case of u 5 110°.

6–27  Water accelerated by a nozzle to 35 m/s strikes the 
vertical back surface of a cart moving horizontally at a con-
stant velocity of 10 m/s in the flow direction. The mass flow 
rate of water through the stationary nozzle is 30 kg/s. After 
the strike, the water stream splatters off in all directions in 

the plate, it begins to move due to the water force. What is 
the highest velocity the plate can attain? Explain.

6–19  Water enters a 10-cm-diameter pipe steadily with a 
uniform velocity of 3 m/s and exits with the turbulent flow 
velocity distribution given by u 5 umax (1 2 r/R)1/7. If the 
pressure drop along the pipe is 10 kPa, determine the drag 
force exerted on the pipe by water flow.

6–20  A 2.5-cm-diameter horizontal water jet with a speed 
of Vj 5 40 m/s relative to the ground is deflected by a 60° 
stationary cone whose base diameter is 25 cm. Water velocity 
along the cone varies linearly from zero at the cone surface 
to the incoming jet speed of 40 m/s at the free surface. Disre-
garding the effect of gravity and the shear forces, determine 
the horizontal force F needed to hold the cone stationary.

FIGURE P6–20

q 5 60°

Dc 5 25 cm
F

Water jet, Vj

Vj

6–21  A horizontal water jet of constant velocity V impinges 
normally on a vertical flat plate and splashes off the sides in 
the vertical plane. The plate is moving toward the oncoming 
water jet with velocity 1

2V. If a force F is required to maintain 
the plate stationary, how much force is required to move the 
plate toward the water jet?

FIGURE P6–21

Water jet

1
2

V

V

6–22  A 90° elbow in a horizontal pipe is used to direct 
water flow upward at a rate of 40 kg/s. The diameter of the 
entire elbow is 10 cm. The elbow discharges water into the 
atmosphere, and thus the pressure at the exit is the local 
atmospheric pressure. The elevation difference between the 
centers of the exit and the inlet of the elbow is 50 cm. The 
weight of the elbow and the water in it is considered to be 
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splatters in the plane of the retreating plate. Determine 
(a) the acceleration of the plate when the jet first strikes it 
(time 5 0), (b) the time it takes for the plate to reach a veloc-
ity of 9 m/s, and (c) the plate velocity 20 s after the jet first 
strikes the plate. For simplicity, assume the velocity of the 
jet is increased as the cart moves such that the impulse force 
exerted by the water jet on the plate remains constant.

6–32E  A fan with 24-in-diameter blades moves 2000 cfm 
(cubic feet per minute) of air at 70°F at sea level. Determine 
(a) the force required to hold the fan and (b) the minimum 
power input required for the fan. Choose a control volume 
sufficiently large to contain the fan, with the inlet sufficiently 
far upstream so that the gage pressure at the inlet is nearly 
zero. Assume air approaches the fan through a large area with 
negligible velocity and air exits the fan with a uniform veloc-
ity at atmospheric pressure through an imaginary cylinder 
whose diameter is the fan blade diameter.  Answers: (a) 0.820 lbf, 

(b) 5.91 W

6–33E  A 3-in-diameter horizontal jet of water, with veloc-
ity 140 ft/s, strikes a bent plate, which deflects the water by 
135° from its original direction. How much force is required 
to hold the plate against the water stream and what is its 
direction? Disregard frictional and gravitational effects.

6–34  Firefighters are holding a nozzle at the end of a hose 
while trying to extinguish a fire. If the nozzle exit diameter 
is 8 cm and the water flow rate is 12 m3/min, determine 
(a) the average water exit velocity and (b) the horizontal 
resistance force required of the firefighters to hold the nozzle.  
Answers: (a) 39.8 m/s, (b) 7958 N

FIGURE P6–34

12 m3/min

6–35  A 5-cm-diameter horizontal jet of water with a velocity 
of 40 m/s relative to the ground strikes a flat plate that is mov-
ing in the same direction as the jet at a velocity of 10 m/s. 
The water splatters in all directions in the plane of the plate. 
How much force does the water stream exert on the plate?

6–36  Reconsider Prob. 6–35. Using EES (or other) 
software, investigate the effect of the plate 

velocity on the force exerted on the plate. Let the plate veloc-
ity vary from 0 to 30 m/s, in increments of 3 m/s. Tabulate 
and plot your results.

the plane of the back surface. (a) Determine the force that 
needs to be applied by the brakes of the cart to prevent it 
from accelerating. (b) If this force were used to generate 
power instead of wasting it on the brakes, determine the 
maximum amount of power that could ideally be generated.   
Answers: (a) 2536 N, (b) 5.36 kW

FIGURE P6–27

35 m/s
10 m/s

Water jet

6–28  Reconsider Prob. 6–27. If the mass of the cart is 
400 kg and the brakes fail, determine the acceleration of the 
cart when the water first strikes it. Assume the mass of water 
that wets the back surface is negligible.

6–29E  A 100-ft3/s water jet is moving in the positive 
x-direction at 18 ft/s. The stream hits a stationary splitter, 
such that half of the flow is diverted upward at 45° and the 
other half is directed downward, and both streams have a final 
average speed of 18 ft/s. Disregarding gravitational effects, 
determine the x- and z-components of the force required to 
hold the splitter in place against the water force.

FIGURE P6–29E

100 ft3/s

18 ft/s

Splitter
45°

45°
x

z

6–30E  Reconsider Prob. 6–29E. Using EES (or other) 
software, investigate the effect of the splitter 

angle on the force exerted on the splitter in the incoming 
flow direction. Let the half splitter angle vary from 0° to 
180° in increments of 10°. Tabulate and plot your results, and 
draw some conclusions.

6–31  A horizontal 5-cm-diameter water jet with a velocity 
of 18 m/s impinges normally upon a vertical plate of mass 
1000 kg. The plate rides on a nearly frictionless track and is 
initially stationary. When the jet strikes the plate, the plate 
begins to move in the direction of the jet. The water always 
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6–40  Water is flowing through a 10-cm-diameter water pipe 
at a rate of 0.1 m3/s. Now a diffuser with an outlet diameter 
of 20 cm is bolted to the pipe in order to slow down water, 
as shown in Fig. P6–40. Disregarding frictional effects, deter-
mine the force exerted on the bolts due to the water flow.

FIGURE P6–40

d 5 10 cm D 5 20 cm
Diffuser

6–41  The weight of a water tank open to the atmosphere is 
balanced by a counterweight, as shown in Fig. P6–41. There 
is a 4-cm hole at the bottom of the tank with a discharge 
coefficient of 0.90, and water level in the tank is maintained 
constant at 50 cm by water entering the tank horizontally. 
Determine how much mass must be added to or removed 
from the counterweight to maintain balance when the hole at 
the bottom is opened.

FIGURE P6–41

Water h 5 50 cm

W

Hole, d 5 4 cm

6–42  Commercially available large wind turbines have 
blade span diameters larger than 100 m and 

generate over 3 MW of electric power at peak design conditions. 

6–37E  A 3-in-diameter horizontal water jet having a velocity 
of 90 ft/s strikes a curved plate, which deflects the water 180° 
at the same speed. Ignoring the frictional effects, determine the 
force required to hold the plate against the water stream.

FIGURE P6–37

90 ft/s

90 ft/s

3 in

Water jet

6–38  An unloaded helicopter of mass 12,000 kg hovers 
at sea level while it is being loaded. In the unloaded hover 
mode, the blades rotate at 550 rpm. The horizontal blades 
above the helicopter cause a 18-m-diameter air mass to move 
downward at an average velocity proportional to the over-
head blade rotational velocity (rpm). A load of 14,000 kg is 
loaded onto the helicopter, and the helicopter slowly rises. 
Determine (a) the volumetric airflow rate downdraft that the 
helicopter generates during unloaded hover and the required 
power input and (b) the rpm of the helicopter blades to hover 
with the 14,000-kg load and the required power input. Take 
the density of atmospheric air to be 1.18 kg/m3. Assume air 
approaches the blades from the top through a large area with 
negligible velocity and air is forced by the blades to move 
down with a uniform velocity through an imaginary cylinder 
whose base is the blade span area.

FIGURE P6–38

18 m

Load
14,000 kg

6–39  Reconsider the helicopter in Prob. 6–38, except that 
it is hovering on top of a 2800-m-high mountain where the 
air density is 0.928 kg/m3. Noting that the unloaded heli-
copter blades must rotate at 550 rpm to hover at sea level, 
determine the blade rotational velocity to hover at the higher 
altitude. Also determine the percent increase in the required 
power input to hover at 3000-m altitude relative to that at sea 
level.  Answers: 620 rpm, 12.8 percent FIGURE P6–42

30 km/h

60 m
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6–45  Consider the curved duct of Prob. 6–44, except allow 
the cross-sectional area to vary along the duct (A1 2 A2). (a) 
Write an expression for the horizontal force Fx of the fluid 
on the walls of the duct in terms of the given variables. (b) 
Verify your expression by plugging in the following values: 
r 5 998.2 kg/m3, A1 5 0.025 m2, A2 5 0.015 m2, b1 5 1.02, 
b2 5 1.04, V1 5 20 m/s, P1,gage 5 88.34 kPa, and P2,gage 5 
67.48 kPa.  Answer: (b) Fx 5 30,700 N to the right

6–46  As a follow-up to Prob. 6 –44, it turns out that for a 
large enough area ratio A2/A1, the inlet pressure is actually 
smaller than the outlet pressure! Explain how this can be true 
in light of the fact that there is friction and other irrevers-
ibilities due to turbulence, and pressure must be lost along the 
axis of the duct to overcome these irreversibilities.

6–47  An incompressible fluid of density r and viscosity m 
flows through a curved duct that turns the flow through angle u. 
The cross-sectional area also changes. The average velocity, 
momentum flux correction factor, gage pressure, and area 
are known at the inlet (1) and outlet (2), as in Fig. P6–47. (a) 
Write an expression for the horizontal force Fx of the fluid on 
the walls of the duct in terms of the given variables. (b) Verify 
your expression by plugging in the following values: u 51358, 
r 5 998.2 kg/m3, m 5 1.003 3 1023 kg/m·s, A1 5 0.025 m2, 
A2 5 0.050 m2, b1 5 1.01, b2 5 1.03, V1 5 6 m/s, P1,gage 5 
78.47 kPa, and P2,gage 5 65.23 kPa. (Hint: You will first need 
to solve for V2.) (c) At what turning angle is the force maxi-
mized?  Answers: (b) Fx 5 5500 N to the right, (c) 1808

FIGURE P6–47

V1

A1

Fx

V2, b2, P2,gage

P1,gage

A2

+

b1

q

6–48  Water of density r 5 998.2 kg/m3 flows through a 
fireman’s nozzle—a converging section of pipe that accel-
erates the flow. The inlet diameter is d1 5 0.100 m, and 
the outlet diameter is d2 5 0.050 m. The average velocity, 
momentum flux correction factor, and gage pressure are 
known at the inlet (1) and outlet (2), as in Fig. P6–48. (a) 
Write an expression for the horizontal force Fx of the fluid 
on the walls of the nozzle in terms of the given variables. (b) 
Verify your expression by plugging in the following values: 
b1 5 1.03, b2 5 1.02, V1 5 4 m/s, P1,gage 5 123,000 Pa, and 
P2,gage 5 0 Pa.  Answer: (b) Fx 5 583 N to the right

Consider a wind turbine with a 60-m blade span subjected to 
30-km/h steady winds. If the combined turbine–generator 
efficiency of the wind turbine is 32 percent, determine (a) the 
power generated by the turbine and (b) the horizontal force 
exerted by the wind on the supporting mast of the turbine. 
Take the density of air to be 1.25 kg/m3, and disregard fric-
tional effects on mast.

6–43  Water enters a centrifugal pump axially at atmo-
spheric pressure at a rate of 0.09 m3/s and at a velocity of 
5 m/s, and leaves in the normal direction along the pump cas-
ing, as shown in Fig. P6–43. Determine the force acting on 
the shaft (which is also the force acting on the bearing of the 
shaft) in the axial direction.

FIGURE P6–43

n⋅

Blade

Shaft

0.09 m3/S

Impeller
shroud

6–44  An incompressible fluid of density r and viscosity m 
flows through a curved duct that turns the flow 1808. The duct 
cross-sectional area remains constant. The average velocity, 
momentum flux correction factor, and gage pressure are known 
at the inlet (1) and outlet (2), as in Fig. P6–44. (a) Write an 
expression for the horizontal force Fx of the fluid on the walls of 
the duct in terms of the given variables. (b) Verify your expres-
sion by plugging in the following values: r 5 998.2 kg/m3, 
m 5 1.003 3 1023 kg/m · s, A1 5 A2 5 0.025 m2, b1 5 1.01, 
b2 5 1.03, V1 5 10 m/s, P1,gage 5 78.47 kPa, and P2,gage 5 
65.23 kPa.  Answer: (b) Fx 5 8680 N to the right

FIGURE P6–44

V1

V2

P1,gage

P2,gage

+
Fx

A1

A2

b1

b2
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6–54C  Consider two rigid bodies having the same mass and 
angular speed. Do you think these two bodies must have the 
same angular momentum? Explain.

6–55  Water is flowing through a 15-cm-diameter pipe that 
consists of a 3-m-long vertical and 2-m-long horizontal sec-
tion with a 90° elbow at the exit to force the water to be dis-
charged downward, as shown in Fig. P6–55, in the vertical 
direction. Water discharges to atmospheric air at a velocity 
of 7 m/s, and the mass of the pipe section when filled with 
water is 15 kg per meter length. Determine the moment act-
ing at the intersection of the vertical and horizontal sections 
of the pipe (point A). What would your answer be if the flow 
were discharged upward instead of downward?

FIGURE P6–55

2 m

15 cm
3 m

A

7 m/s

6–56E  A large lawn sprinkler with two identical arms is 
used to generate electric power by attaching a generator to its 
rotating head. Water enters the sprinkler from the base along 
the axis of rotation at a rate of 5 gal/s and leaves the nozzles 
in the tangential direction. The sprinkler rotates at a rate of 
180 rpm in a horizontal plane. The diameter of each jet is 
0.5 in, and the normal distance between the axis of rotation 
and the center of each nozzle is 2 ft. Determine the maximum 
possible electrical power produced.

6–57E  Reconsider the lawn sprinkler in Prob. 6–56E. If the 
rotating head is somehow stuck, determine the moment act-
ing on the head. 

6–58  The impeller of a centrifugal pump has inner and 
outer diameters of 13 and 30 cm, respectively, and a flow rate 
of 0.15 m3/s at a rotational speed of 1200 rpm. The blade 
width of the impeller is 8 cm at the inlet and 3.5 cm at the 
outlet. If water enters the impeller in the radial direction and 
exits at an angle of 60° from the radial direction, determine 
the minimum power requirement for the pump.

6–59  The impeller of a centrifugal blower has a radius of 
18 cm and a blade width of 6.1 cm at the inlet, and a radius of 
30 cm and a blade width of 3.4 cm at the outlet. The blower 
delivers atmospheric air at 20°C and 95 kPa. Disregarding 
any losses and assuming the tangential components of air 

FIGURE P6–48

L

V1

A1

P1

V2

r

x

A2
F

P2

d1

6–49  Water flowing in a horizontal 25-cm-diameter pipe at 
8 m/s and 300 kPa gage enters a 90° bend reducing section, 
which connects to a 15-cm-diameter vertical pipe. The inlet 
of the bend is 50 cm above the exit. Neglecting any frictional 
and gravitational effects, determine the net resultant force 
exerted on the reducer by the water. Take the momentum-flux 
correction factor to be 1.04.

6–50  A sluice gate, which controls flow rate in a channel 
by simply raising or lowering a vertical plate, is commonly 
used in irrigation systems. A force is exerted on the gate due 
to the difference between the water heights y1 and y2 and the 
flow velocities V1 and V2 upstream and downstream from 
the gate, respectively. Take the width of the sluice gate (into 
the page) to be w. Wall shear stresses along the channel walls 
may be ignored, and for simplicity, we assume steady, uni-
form flow at locations 1 and 2. Develop a relationship for the 
force FR acting on the sluice gate as a function of depths y1 
and y2, mass flow rate m

#
, gravitational constant g, gate width 

w, and water density r.

FIGURE P6–50

y1
V1

Sluice gate

V2y2

Angular Momentum Equation

6–51C  How is the angular momentum equation obtained 
from Reynolds transport equations?

6–52C  Express the angular momentum equation in scalar 
form about a specified axis of rotation for a fixed control vol-
ume for steady and uniform flow. 

6–53C  Express the unsteady angular momentum equation in 
vector form for a control volume that has a constant moment 
of inertia I, no external moments applied, one outgoing uni-
form flow stream of velocity V

→
, and mass flow rate m

.
.
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FIGURE P6–62

V

 = 50°a2

1

2

Impeller region

r1

r2

V

v

→

→

6–63  Reconsider Prob. 6–62. For the specified flow 
rate, investigate the effect of discharge angle a2 

on the minimum power input requirements. Assume the air to 
enter the impeller in the radial direction (a1 5 0°), and vary 
a2 from 0° to 85° in increments of 5°. Plot the variation of 
power input versus a2, and discuss your results. 

6–64E  Water enters the impeller of a centrifugal pump 
radially at a rate of 45 cfm (cubic feet per minute) when 
the shaft is rotating at 500 rpm. The tangential component 
of absolute velocity of water at the exit of the 2-ft outer 
diameter impeller is 110 ft/s. Determine the torque applied 
to the impeller and the minimum power input to the pump.  
Answers: 160 lbf?ft, 11.3 kW

6–65  A lawn sprinkler with three identical arms is used 
to water a garden by rotating in a horizontal plane by the 
impulse caused by water flow. Water enters the sprinkler 
along the axis of rotation at a rate of 60 L/s and leaves the 
1.5-cm-diameter nozzles in the tangential direction. The 
bearing applies a retarding torque of T0 5 50 N · m due to 
friction at the anticipated operating speeds. For a normal dis-
tance of 40 cm between the axis of rotation and the center of 
the nozzles, determine the angular velocity of the sprinkler 
shaft. 

6–66  Pelton wheel turbines are commonly used in hydro-
electric power plants to generate electric power. In these 
turbines, a high-speed jet at a velocity of Vj impinges on 
buckets, forcing the wheel to rotate. The buckets reverse the 
direction of the jet, and the jet leaves the bucket making an 
angle b with the direction of the jet, as shown in Fig. P6–66. 
Show that the power produced by a Pelton wheel of radius r 
rotating steadily at an angular velocity of v is W

. 
shaft 5 rvrV

.

(Vj 2 vr)(1 2 cos b), where r is the density and V
.
 is the 

volume flow rate of the fluid. Obtain the numerical value 
for r 5 1000 kg/m3, r 5 2 m, V

.
 510 m3/s, n

.
 5  150  rpm, 

b 5 160°, and Vj 5 50 m/s.

velocity at the inlet and the outlet to be equal to the impel-
ler velocity at respective locations, determine the volumet-
ric flow rate of air when the rotational speed of the shaft is 
900 rpm and the power consumption of the blower is 120 W. 
Also determine the normal components of velocity at the 
inlet and outlet of the impeller.

FIGURE P6–59

Outlet

ω 
Inlet

6–60  Water enters vertically and steadily at a rate of 35 L/s 
into the sprinkler shown in Fig. P6–60 with unequal arms 
and unequal discharge areas. The smaller jet has a discharge 
area of 3 cm2 and a normal distance of 50 cm from the axis 
of rotation. The larger jet has a discharge area of 5 cm2 and 
a normal distance of 35 cm from the axis of rotation. Dis-
regarding any frictional effects, determine (a) the rotational 
speed of the sprinkler in rpm and (b) the torque required to 
prevent the sprinkler from rotating.

FIGURE P6–60

50 cm 35 cm

Water
jet

Water
jet

6–61  Repeat Prob. 6–60 for a water flow rate of 50 L/s.

6–62  Consider a centrifugal blower that has a radius of 20 cm 
and a blade width of 8.2 cm at the impeller inlet, and a 
radius of 45 cm and a blade width of 5.6 cm at the outlet. 
The blower delivers air at a rate of 0.70 m3/s at a rotational 
speed of 700 rpm. Assuming the air to enter the impeller in 
the radial direction and to exit at an angle of 50° from the 
radial direction, determine the minimum power consumption 
of the blower. Take the density of air to be 1.25 kg/m3.
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moving to the left at Vc 5 10 m/s. Determine the external 
force, F, needed to maintain the motion of the cone. Disregard 
the gravity and surface shear effects and assume the cross-
sectional area of water jet normal to the direction of motion 
remains constant throughout the flow.  Answer: 3240 N

FIGURE P6–70

q 5 40°

Vc 5 10 m/s

F

Water jet, Vj

6–71  Water enters vertically and steadily at a rate of 
10 L/s into the sprinkler shown in Fig. P6–71. Both water 
jets have a diameter of 1.2 cm. Disregarding any frictional 
effects, determine (a) the rotational speed of the sprinkler 
in rpm and (b) the torque required to prevent the sprinkler 
from rotating.

FIGURE P6–71

40 cm 40 cm

60°

60°

6–72  Repeat Prob. 6–71 for the case of unequal arms—the 
left one being 60 cm and the right one 20 cm from the axis 
of rotation.

6–73  A 6-cm-diameter horizontal water jet having a veloc-
ity of 25 m/s strikes a vertical stationary flat plate. The water 
splatters in all directions in the plane of the plate. How much 
force is required to hold the plate against the water stream?  
Answers: 1770 N

6–74  Consider steady developing laminar flow of water in 
a constant-diameter horizontal discharge pipe attached to a 
tank. The fluid enters the pipe with nearly uniform velocity V 
and pressure P1. The velocity profile becomes parabolic 
after a certain distance with a momentum correction factor 

FIGURE P6–66

Vj − rv

v

b

Vj

r

Nozzle

Shaft

ω r

6–67  Reconsider Prob. 6–66. The maximum efficiency 
of the turbine occurs when b 5 180°, but this is 

not practical. Investigate the effect of b on the power genera-
tion by allowing it to vary from 0° to 180°. Do you think we 
are wasting a large fraction of power by using buckets with a 
b of 160°?

Review Problems

6–68  Water flowing steadily at a rate of 0.16 m3/s is deflected 
downward by an angled elbow as shown in Fig. P6–68. 
For D 5 30 cm, d 5 10 cm, and h 5 50 cm, determine the 
force acting on the flanges of the elbow and the angle its line 
of action makes with the horizontal. Take the internal vol-
ume of the elbow to be 0.03 m3 and disregard the weight of 
the elbow material and the frictional effects. 

FIGURE P6–68

Flange

Bolts

60°

h

d

D

6–69  Repeat Prob. 6–68 by taking into consideration the 
weight of the elbow whose mass is 5 kg.

6–70  A 12-cm diameter horizontal water jet with a speed of 
Vj 5 25 m/s relative to the ground is deflected by a 40° cone 
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FIGURE P6–76

300 m/s

150°

Thrust
reverser

Thrust
reverser

6–77  Reconsider Prob. 6–76. Using EES (or other) 
software, investigate the effect of thrust reverser 

angle on the braking force exerted on the airplane. Let the 
reverser angle vary from 0° (no reversing) to 180° (full 
reversing) in increments of 10°. Tabulate and plot your results 
and draw conclusions.

6–78E  A spacecraft cruising in space at a constant veloc-
ity of 2000 ft/s has a mass of 25,000 lbm. To slow down 
the spacecraft, a solid fuel rocket is fired, and the combus-
tion gases leave the rocket at a constant rate of 150 lbm/s 
at a velocity of 5000 ft/s in the same direction as the space-
craft for a period of 5 s. Assuming the mass of the spacecraft 
remains constant, determine (a) the deceleration of the space-
craft during this 5-s period, (b) the change of velocity of the 
spacecraft during this time period, and (c) the thrust exerted 
on the spacecraft.

6–79  A 60-kg ice skater is standing on ice with ice skates 
(negligible friction). She is holding a flexible hose (essen-
tially weightless) that directs a 2-cm-diameter stream of 
water horizontally parallel to her skates. The water velocity 
at the hose outlet is 10 m/s relative to the skater. If she is 
initially standing still, determine (a) the velocity of the skater 
and the distance she travels in 5  s and (b) how long it will 
take to move 5 m and the velocity at that moment.  Answers: 

(a) 2.62 m/s, 6.54 m, (b) 4.4 s, 2.3 m/s

FIGURE P6–79

10 m/s

Ice skater

D = 2 cm

of 2 while the pressure drops to P2. Obtain a relation for 
the horizontal force acting on the bolts that hold the pipe 
attached to the tank.

FIGURE P6–74

z

r

6–75  A tripod holding a nozzle, which directs a 5-cm-
diameter stream of water from a hose, is shown in Fig. P6–75. 
The nozzle mass is 10 kg when filled with water. The tripod 
is rated to provide 1800 N of holding force. A firefighter was 
standing 60 cm behind the nozzle and was hit by the noz-
zle when the tripod suddenly failed and released the nozzle. 
You have been hired as an accident reconstructionist and, 
after testing the tripod, have determined that as water flow 
rate increased, it did collapse at 1800 N. In your final report 
you must state the water velocity and the flow rate consistent 
with the failure and the nozzle velocity when it hit the fire-
fighter. For simplicity, ignore pressure and momentum effects 
in the upstream portion of the hose.  Answers: 30.3 m/s, 

0.0595 m3/s, 14.7 m/s

FIGURE P6–75

Nozzle

Tripod

D = 5 cm

6–76  Consider an airplane with a jet engine attached to the 
tail section that expels combustion gases at a rate of 18 kg/s 
with a velocity of V 5 300 m/s relative to the plane. Dur-
ing landing, a thrust reverser (which serves as a brake for the 
aircraft and facilitates landing on a short runway) is lowered 
in the path of the exhaust jet, which deflects the exhaust from 
rearward to 150°. Determine (a) the thrust (forward force) 
that the engine produces prior to the insertion of the thrust 
reverser and (b) the braking force produced after the thrust 
reverser is deployed.
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down from the building top. He builds a square platform 
and mounts four 4-cm-diameter nozzles pointing down at 
each corner. By connecting hose branches, a water jet with 
15-m/s velocity can be produced from each nozzle. Jones, the 
platform, and the nozzles have a combined mass of 150 kg. 
Determine (a) the minimum water jet velocity needed to raise 
the system, (b) how long it takes for the system to rise 10 m 
when the water jet velocity is 18 m/s and the velocity of 
the platform at that moment, and (c) how much higher will 
the momentum raise Jones if he shuts off the water at the 
moment the platform reaches 10 m above the ground. How 
much time does he have to jump from the platform to the 
roof?  Answers: (a) 17.1 m/s, (b) 4.37 s, 4.57 m/s, (c) 1.07 m, 

0.933 s

6–83E  An engineering student considers using a fan as a 
levitation demonstration. She plans to face the box-enclosed 
fan so the air blast is directed face down through a 3-ft-
diameter blade span area. The system weighs 5 lbf, and the 
student will secure the system from rotating. By increasing 
the power to the fan, she plans to increase the blade rpm and 
air exit velocity until the exhaust provides sufficient upward 
force to cause the box fan to hover in the air. Determine 
(a)  the air exit velocity to produce 5 lbf, (b) the volumetric 
flow rate needed, and (c) the minimum mechanical power 
that must be supplied to the airstream. Take the air density to 
be 0.078 lbm/ft3.

FIGURE P6–83E

600 rpm

6–84  Nearly frictionless vertical guide rails maintain a 
plate of mass mp in a horizontal position, such that it can 
slide freely in the vertical direction. A nozzle directs a water 
stream of area A against the plate underside. The water jet 
splatters in the plate plane, applying an upward force against 
the plate. The water flow rate m

.
 (kg/s) can be controlled. 

Assume that distances are short, so the velocity of the rising jet 
can be considered constant with height. (a) Determine the min-
imum mass flow rate m

.
min necessary to just levitate the plate 

and obtain a relation for the steady-state velocity of the upward 
moving plate for m

.
 . m

.
min. (b) At time t 5 0, the plate is at 

rest, and the water jet with m
.
 . m

.
min is suddenly turned on. 

Apply a force balance to the plate and obtain the integral that 
relates velocity to time (do not solve).

6–80  A 5-cm-diameter horizontal jet of water, with velocity 
30 m/s, strikes the tip of a horizontal cone, which deflects the 
water by 45° from its original direction. How much force is 
required to hold the cone against the water stream?

6–81  Water is flowing into and discharging from a pipe 
U-section as shown in Fig. P6–81. At flange (1), the total 
absolute pressure is 200 kPa, and 55 kg/s flows into the 
pipe. At flange (2), the total pressure is 150 kPa. At location 
(3), 15 kg/s of water discharges to the atmosphere, which is 
at 100 kPa. Determine the total x- and z-forces at the two 
flanges connecting the pipe. Discuss the significance of grav-
ity force for this problem. Take the momentum-flux correc-
tion factor to be 1.03 throughout the pipes.

FIGURE P6–81
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3 cm

15 kg/s
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6–82  Indiana Jones needs to ascend a 10-m-high building. 
There is a large hose filled with pressurized water hanging 

FIGURE P6–82

D = 4 cm

18 m/s
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and develop a relation for the soldier’s velocity after he opens 
the parachute at time t 5 0.

Answer:   V 5 VF 
VT 1 VF 1 (VT 2 VF)e

22gt/VF

VT 1 VF 2 (VT 2 VF)e
22gt/VF

6–90  A horizontal water jet with a flow rate of V
.
 and cross-

sectional area of A drives a covered cart of mass mc along a 
level and nearly frictionless path. The jet enters a hole at the 
rear of the cart and all water that enters the cart is retained, 
increasing the system mass. The relative velocity between the 
jet of constant velocity VJ and the cart of variable velocity V 
is VJ 2 V. If the cart is initially empty and stationary when 
the jet action is initiated, develop a relation (integral form is 
acceptable) for cart velocity versus time.

FIGURE P6–90

V

Cart
mc

A VJ

6–91  Water accelerated by a nozzle enters the impeller of a 
turbine through its outer edge of diameter D with a velocity 
of V making an angle a with the radial direction at a mass 
flow rate of m

.
. Water leaves the impeller in the radial direc-

tion. If the angular speed of the turbine shaft is n
.
, show that 

the maximum power that can be generated by this radial tur-
bine is W

.
shaft 5 pn

.
m
.
DV sin a.

6–92  Water enters a two-armed lawn sprinkler along the 
vertical axis at a rate of 75 L/s, and leaves the sprinkler noz-
zles as 2-cm diameter jets at an angle of u from the tangential 
direction, as shown in Fig. P6–92. The length of each sprinkler 

FIGURE P6–84

mp

Nozzle

m⋅

Guide
rails

6–85  A walnut with a mass of 50 g requires a force of 200 
N applied continuously for 0.002 s to be cracked. If walnuts 
are to be cracked by dropping them from a high place onto a 
hard surface, determine the minimum height required. Disre-
gard air friction.

6–86  A 7-cm diameter vertical water jet is injected upwards 
by a nozzle at a speed of 15 m/s. Determine the maximum 
weight of a flat plate that can be supported by this water jet 
at a height of 2 m from the nozzle.

6–87  Repeat Prob. 6–86 for a height of 8 m from the nozzle.

6–88  Show that the force exerted by a liquid jet on a sta-
tionary nozzle as it leaves with a velocity V is proportional to 
V 2 or, alternatively, to m

. 2. Assume the jet stream is perpen-
ticular to the incoming liquid flow line.

6–89  A soldier jumps from a plane and opens his parachute 
when his velocity reaches the terminal velocity VT. The para-
chute slows him down to his landing velocity of VF. After the 
parachute is deployed, the air resistance is proportional to the 
velocity squared (i.e., F 5 kV2). The soldier, his parachute, 
and his gear have a total mass of m. Show that k 5 mg/V 2

F 

FIGURE P6–89
© Corbis RF FIGURE P6–92

θ

θ

r = 0.52 m
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FIGURE P6–96

n

Blade

Shaft

0.3 m3/S

75°

6–97  Water flows steadily through a splitter as shown in 
Fig. P6–97 with V

#
1 5 0.08 m3/s, V

#
2 5 0.05 m3/s, D1 5 D2 5 

12 cm, D3 5 10 cm. If the pressure readings at the inlet and 
outlets of the splitter are P1 5 100 kPa, P2 5 90 kPa and 
P3 5 80 kPa, determine external force needed to hold the 
device fixed. Disregard the weight effects.

FIGURE P6–97

P1

P3y

x

30°

P2

1

3

2

6–98  Water is discharged from a pipe through a 1.2-m long 
5-mm wide rectangular slit underneath of the pipe. Water dis-
charge velocity profile is parabolic, varying from 3 m/s on one 
end of the slit to 7 m/s on the other, as shown in Fig. P6–98. 

arm is 0.52 m. Disregarding any frictional effects, determine 
the rate of rotation n

.
 of the sprinkler in rev/min for (a) u 5 

0°, (b) u 5 30°, and (c) u 5 60°.

6–93  Reconsider Prob. 6–92. For the specified flow 
rate, investigate the effect of discharge angle u 

on the rate of rotation n
.
 by varying u from 0° to 90° in incre-

ments of 10°. Plot the rate of rotation versus u, and discuss 
your results.

6–94  A stationary water tank of diameter D is mounted on 
wheels and is placed on a nearly frictionless level surface. 
A smooth hole of diameter Do near the bottom of the tank 
allows water to jet horizontally and rearward and the water 
jet force propels the system forward. The water in the tank 
is much heavier than the tank-and-wheel assembly, so only 
the mass of water remaining in the tank needs to be consid-
ered in this problem. Considering the decrease in the mass of 
water with time, develop relations for (a) the acceleration, (b) 
the velocity, and (c) the distance traveled by the system as a 
function of time.

6–95  An orbiting satellite has a mass of 3400 kg and is 
traveling at a constant velocity of V0. To alter its orbit, an 
attached rocket discharges 100 kg of gases from the reac-
tion of solid fuel at a speed of 3000 m/s relative to the 
satellite in a direction opposite V0. The fuel discharge rate 
is constant for 3s. Determine (a) the thrust exerted on the 
satellite, (b) the acceleration of the satellite during this 3-s 
period, and (c) the change of velocity of the satellite during 
this time period.

FIGURE P6–95

V0

Vgas Satellite
msat

x

→

→

6–96  Water enters a mixed flow pump axially at a rate of 
0.3 m3/s and at a velocity of 7 m/s, and is discharged to the 
atmosphere at an angle of 75° from the horizontal, as shown 
in Fig. P6–96. If the discharge flow area is half the inlet 
area, determine the force acting on the shaft in the axial 
direction. FIGURE P6–98

Parabolic velocity distribution

1.2 m

V1 5 3 m/s

Slit width 5 5 mm

V2 5 7 m/s
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the reaction force in the horizontal direction required to hold 
the pipe in place is 
(a) 73.7 N (b) 97.1 N (c) 99.2 N (d) 122 N (e) 153 N

6–106  A water jet strikes a stationary horizontal plate verti-
cally at a rate of 18 kg/s with a velocity of 24 m/s. The mass 
of the plate is 10 kg. Assume the water stream moves in the 
horizontal direction after the strike. The force needed to pre-
vent the plate from moving vertically is 
(a) 192 N (b) 240 N (c) 334 N (d) 432 N (e) 530 N

6–107  The velocity of wind at a wind turbine is measured 
to be 6 m/s. The blade span diameter is 24 m and the effi-
ciency of the wind turbine is 29 percent. The density of air is 
1.22 kg/m3. The horizontal force exerted by the wind on the 
supporting mast of the wind turbine is
(a) 2524 N (b) 3127 N (c) 3475 N (d) 4138 N
(e) 4313 N

6–108  The velocity of wind at a wind turbine is measured 
to be 8 m/s. The blade span diameter is 12 m. The density of 
air is 1.2 kg/m3. If the horizontal force exerted by the wind 
on the supporting mast of the wind turbine is 1620 N, the 
efficiency of the wind turbine is
(a) 27.5% (b) 31.7% (c) 29.5% (d) 35.1% (e) 33.8%

6–109  The shaft of a turbine rotates at a speed of 800 rpm. 
If the torque of the shaft is 350 N·m, the shaft power is
(a) 112 kW (b) 176 kW (c) 293 kW (d) 350 kW
(e) 405 kW

6–110  A 3-cm-diameter horizontal pipe attached to a sur-
face makes a 90° turn to a vertical upward direction before 
the water is discharged at a velocity of 9 m/s. The horizon-
tal section is 5 m long and the vertical section is 4 m long. 
Neglecting the mass of the water contained in the pipe, the 
bending moment acting on the base of the pipe on the wall is
(a) 286 N·m (b) 229 N·m (c) 207 N·m
(d) 175 N·m (e) 124 N·m

6–111  A 3-cm-diameter horizontal pipe attached to a sur-
face makes a 90° turn to a vertical upward direction before 
the water is discharged at a velocity of 6 m/s. The horizon-
tal section is 5 m long and the vertical section is 4 m long. 
Neglecting the mass of the pipe and considering the weight 
of the water contained in the pipe, the bending moment act-
ing on the base of the pipe on the wall is
(a) 11.9 N·m (b) 46.7 N·m (c) 127 N·m
(d) 104 N·m (e) 74.8 N·m

6–112  A large lawn sprinkler with four identical arms is 
to be converted into a turbine to generate electric power by 
attaching a generator to its rotating head. Water enters the 
sprinkler from the base along the axis of rotation at a rate of 
15 kg/s and leaves the nozzles in the tangential direction at a 
velocity of 50 m/s relative to the rotating nozzle. The sprin-
kler rotates at a rate of 400 rpm in a horizontal plane. The 
normal distance between the axis of rotation and the center of 
each nozzle is 30 cm. Estimate the electric power produced.

Determine (a) the rate of discharge through the slit and (b) the 
vertical force acting on the pipe due to this discharge process.

Fundamentals of Engineering (FE) Exam Problems

6–99  When determining the thrust developed by a jet 
engine, a wise choice of control volume is
(a) Fixed control volume (b) Moving control volume 
(c) Deforming control volume (d) Moving or deforming 
control volume (e) None of these

6–100  Consider an airplane cruising at 850 km/h to the 
right. If the velocity of exhaust gases is 700 km/h to the left 
relative to the ground, the velocity of the exhaust gases rela-
tive to the nozzle exit is
(a) 1550 km/h (b) 850 km/h (c) 700 km/h
(d) 350 km/h (e) 150 km/h 

6–101  Consider water flow through a horizontal, short 
garden hose at a rate of 30 kg/min. The velocity at the inlet 
is 1.5 m/s and that at the outlet is 14.5 m/s. Disregard the 
weight of the hose and water. Taking the momentum-flux 
correction factor to be 1.04 at both the inlet and the outlet, 
the anchoring force required to hold the hose in place is 
(a) 2.8 N (b) 8.6 N (c) 17.5 N (d) 27.9 N (e) 43.3 N

6–102  Consider water flow through a horizontal, short gar-
den hose at a rate of 30 kg/min. The velocity at the inlet is 
1.5 m/s and that at the outlet is 11.5 m/s. The hose makes 
a 180° turn before the water is discharged. Disregard the 
weight of the hose and water. Taking the momentum-flux 
correction factor to be 1.04 at both the inlet and the outlet, 
the anchoring force required to hold the hose in place is 
(a) 7.6 N (b) 28.4 N (c) 16.6 N (d) 34.1 N
(e) 11.9 N

6–103  A water jet strikes a stationary vertical plate horizon-
tally at a rate of 5 kg/s with a velocity of 35 km/h. Assume 
the water stream moves in the vertical direction after the 
strike. The force needed to prevent the plate from moving 
horizontally is 
(a) 15.5 N (b) 26.3 N (c) 19.7 N (d) 34.2 N (e) 48.6 N

6–104  Consider water flow through a horizontal, short 
garden hose at a rate of 40 kg/min. The velocity at the inlet 
is 1.5 m/s and that at the outlet is 16 m/s. The hose makes 
a 90° turn to a vertical direction before the water is dis-
charged. Disregard the weight of the hose and water. Taking 
the momentum-flux correction factor to be 1.04 at both the 
inlet and the outlet, the reaction force in the vertical direction 
required to hold the hose in place is 
(a) 11.1 N (b) 10.1 N (c) 9.3 N (d) 27.2 N (e) 28.9 N

6–105  Consider water flow through a horizontal, short pipe 
at a rate of 80 kg/min. The velocity at the inlet is 1.5 m/s and 
that at the outlet is 16.5 m/s. The pipe makes a 90° turn to 
a vertical direction before the water is discharged. Disregard 
the weight of the pipe and water. Taking the momentum-flux 
correction factor to be 1.04 at both the inlet and the outlet, 
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at 400 rpm. The tangential component of absolute velocity 
of water at the exit of the 70-cm outer diameter impeller is 
55 m/s. The torque applied to the impeller is
(a) 144 N·m (b) 93.6 N·m (c) 187 N·m
(d) 112 N·m (e) 235 N·m

Design and Essay Problem

6–115  Visit a fire station and obtain information about flow 
rates through hoses and discharge diameters. Using this infor-
mation, calculate the impulse force to which the firefighters 
are subjected when holding a fire hose.

(a) 5430 W (b) 6288 W (c) 6634 W (d) 7056 W 
(e) 7875 W

6–113  Consider the impeller of a centrifugal pump with a 
rotational speed of 900 rpm and a flow rate of 95 kg/min. 
The impeller radii at the inlet and outlet are 7 cm and 16 cm, 
respectively. Assuming that the tangential fluid velocity is 
equal to the blade angular velocity both at the inlet and the 
exit, the power requirement of the pump is
(a) 83 W (b) 291 W (c) 409 W (d) 756 W (e) 1125 W  

6–114  Water enters the impeller of a centrifugal pump 
radially at a rate of 450 L/min when the shaft is rotating 
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CHAPTER

D I M E N S I O N A L  A N A LY S I S 
A N D  M O D E L I N G

In this chapter, we first review the concepts of dimensions and units. We 
then review the fundamental principle of dimensional homogeneity, and 
show how it is applied to equations in order to nondimensionalize them 

and to identify dimensionless groups. We discuss the concept of similar-
ity between a model and a prototype. We also describe a powerful tool for 
engineers and scientists called dimensional analysis, in which the combi-
nation of dimensional variables, nondimensional variables, and dimensional 
constants into nondimensional parameters reduces the number of necessary 
independent parameters in a problem. We present a step-by-step method for 
obtaining these nondimensional parameters, called the method of repeat-
ing variables, which is based solely on the dimensions of the variables and 
constants. Finally, we apply this technique to several practical problems to 
illustrate both its utility and its limitations.

7
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Develop a better understanding 
of dimensions, units, and 
dimensional homogeneity of 
equations

■ Understand the numerous 
benefits of dimensional analysis

■ Know how to use the method of 
repeating variables to identify 
nondimensional parameters

■ Understand the concept of 
dynamic similarity and how 
to apply it to experimental 
modeling

A 1:46.6 scale model of an Arleigh Burke class 
U.S. Navy fleet destroyer being tested in the 
100-m-long towing tank at the University of 

Iowa. The model is 3.048 m long. In tests like 
this, the Froude number is the most important 

nondimensional parameter. 
Photograph courtesy of IIHR-Hydroscience & 

Engineering, University of Iowa. 
Used by permission.
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7–1 ■ DIMENSIONS AND UNITS
A dimension is a measure of a physical quantity (without numerical val-
ues), while a unit is a way to assign a number to that dimension. For exam-
ple, length is a dimension that is measured in units such as microns (mm), 
feet (ft), centimeters (cm), meters (m), kilometers (km), etc. (Fig. 7–1). 
There are seven primary dimensions (also called fundamental or basic 
dimensions)—mass, length, time, temperature, electric current, amount of 
light, and amount of matter.

All nonprimary dimensions can be formed by some combination of the seven 
primary dimensions.

For example, force has the same dimensions as mass times acceleration (by 
Newton’s second law). Thus, in terms of primary dimensions,

Dimensions of force:   {Force} 5 eMass 
Length

Time2 f 5 {mL/t2} (7–1)

where the brackets indicate “the dimensions of” and the abbreviations are 
taken from Table 7–1. You should be aware that some authors prefer force 
instead of mass as a primary dimension—we do not follow that practice.

3.2 cm

1 2 3cm

Length

FIGURE 7–1
A dimension is a measure of a physical 
quantity without numerical values, 
while a unit is a way to assign a 
number to the dimension. For example, 
length is a dimension, but centimeter 
is a unit.

FIGURE 7–2
The water strider is an insect that can 
walk on water due to surface tension.
NPS Photo by Rosalie LaRue.

EXAMPLE 7–1    Primary Dimensions of Surface Tension

An engineer is studying how some insects are able to walk on water (Fig. 7–2). 

A fluid property of importance in this problem is surface tension (ss), which 

has dimensions of force per unit length. Write the dimensions of surface tension 

in terms of primary dimensions.

SOLUTION  The primary dimensions of surface tension are to be determined.

Analysis  From Eq. 7–1, force has dimensions of mass times acceleration, or 

{mL/t2}. Thus,

Dimensions of surface tension: 5ss6 5 e Force

Length
f 5 e m · L/t2

L
f  5 {m/t2} (1)

Discussion  The usefulness of expressing the dimensions of a variable 

or constant in terms of primary dimensions will become clearer in the 

discussion of the method of repeating variables in Section 7–4.

TABLE 7–1

Primary dimensions and their associated primary SI and English units

Dimension Symbol* SI Unit English Unit

Mass m kg (kilogram) lbm (pound-mass)

Length L m (meter) ft (foot)

Time† t s (second) s (second)

Temperature T K (kelvin) R (rankine)

Electric current I A (ampere) A (ampere)

Amount of light C cd (candela) cd (candela)

Amount of matter N mol (mole) mol (mole)

* We italicize symbols for variables, but not symbols for dimensions.
† Note that some authors use the symbol T for the time dimension and the symbol u for the temperature 

dimension. We do not follow this convention to avoid confusion between time and temperature.
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7–2 ■ DIMENSIONAL HOMOGENEITY
We’ve all heard the old saying, You can’t add apples and oranges (Fig. 7–3). 
This is actually a simplified expression of a far more global and fundamen-
tal mathematical law for equations, the law of dimensional homogeneity, 
stated as

Every additive term in an equation must have the same dimensions.

Consider, for example, the change in total energy of a simple compressible 
closed system from one state and/or time (1) to another (2), as illustrated in 
Fig. 7–4. The change in total energy of the system (DE) is given by

Change of total energy of a system: DE 5 DU 1 DKE 1 DPE (7–2)

where E has three components: internal energy (U), kinetic energy (KE), 
and potential energy (PE). These components can be written in terms of the 
system mass (m); measurable quantities and thermodynamic properties at 
each of the two states, such as speed (V ), elevation (z), and specific internal 
energy (u); and the gravitational acceleration constant (g),

  
DU 5 m 1u2 2 u1 2   DKE 5

1

2
 m  (V 2

2 2 V 2
1)  DPE 5 mg 1z2 2 z1 2  (7–3)

It is straightforward to verify that the left side of Eq. 7–2 and all three addi-
tive terms on the right side of Eq. 7–2 have the same dimensions—energy. 
Using the definitions of Eq. 7–3, we write the primary dimensions of each 
term,

 5DE6 5 5Energy6 5 5Force # Length6 S  5DE6 5 5mL2/t26
 5DU6 5 eMass  

Energy

Mass
f 5 5Energy6 S  5DU6 5 5mL2/t26 

 5DKE6 5 eMass 
Length2

Time2 f       S        5DKE6 5 5mL2/t26 
 {DPE} 5 eMass 

Length

Time2  Length f    S   5DPE6 5 5mL2/t26  
 If at some stage of an analysis we find ourselves in a position in which 
two additive terms in an equation have different dimensions, this would be 
a clear indication that we have made an error at some earlier stage in the 
analysis (Fig. 7–5). In addition to dimensional homogeneity, calculations are 
valid only when the units are also homogeneous in each additive term. For 
example, units of energy in the above terms may be J, N·m, or kg·m2/s2, all 
of which are equivalent. Suppose, however, that kJ were used in place of J 
for one of the terms. This term would be off by a factor of 1000 compared to 
the other terms. It is wise to write out all units when performing mathemati-
cal calculations in order to avoid such errors.

+ + = ?

FIGURE 7–3
You can’t add apples and oranges!

System at state 2

E2 = U2 + KE2 + PE2

System at state 1

E1 = U1 + KE1 + PE1

FIGURE 7–4
Total energy of a system at 

state 1 and at state 2.

FIGURE 7–5
An equation that is not dimensionally 

homogeneous is a sure sign of an error.
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EXAMPLE 7–2     Dimensional Homogeneity 
of the Bernoulli Equation

Probably the most well-known (and most misused) equation in fluid mechanics 

is the Bernoulli equation (Fig. 7–6), discussed in Chap. 5. One standard form 

of the Bernoulli equation for incompressible irrotational fluid flow is

 Bernoulli equation: P 1
1

2
rV  

2 1 rgz 5 C (1)

(a) Verify that each additive term in the Bernoulli equation has the same 

dimensions. (b) What are the dimensions of the constant C?

SOLUTION  We are to verify that the primary dimensions of each additive 

term in Eq. 1 are the same, and we are to determine the dimensions of 

constant C.

Analysis  (a) Each term is written in terms of primary dimensions,

{P} 5 {Pressure} 5 e Force

Area
f 5 eMass 

Length

Time2  
1

Length2 f 5 e m

t2L
fe 1

2
rV 2 f 5 e Mass

Volume
 aLength

Time
b2 f 5 e Mass 3 Length2

Length3 3 Time2 f 5 e m

t2L
f

{rgz} 5 e Mass

Volume
 
Length

Time2  Length f 5 e Mass 3 Length2

Length3 3 Time2 f 5 e m

t2L
f   

Indeed, all three additive terms have the same dimensions.

(b) From the law of dimensional homogeneity, the constant must have the 

same dimensions as the other additive terms in the equation. Thus,

 Primary dimensions of the Bernoulli constant:  {C} 5 e m

t2L
f

Discussion  If the dimensions of any of the terms were different from the 

others, it would indicate that an error was made somewhere in the analysis.

Nondimensionalization of Equations
The law of dimensional homogeneity guarantees that every additive term in 
an equation has the same dimensions. It follows that if we divide each term 
in the equation by a collection of variables and constants whose product
has those same dimensions, the equation is rendered nondimensional 
(Fig. 7–7). If, in addition, the nondimensional terms in the equation are of 
order unity, the equation is called normalized. Normalization is thus more 
restrictive than nondimensionalization, even though the two terms are some-
times (incorrectly) used interchangeably.

Each term in a nondimensional equation is dimensionless.

In the process of nondimensionalizing an equation of motion, nondimen-
sional parameters often appear—most of which are named after a notable 
scientist or engineer (e.g., the Reynolds number and the Froude number). 
This process is referred to by some authors as inspectional analysis.

Equation of the Day
 

The Bernoulli equation

P 1 rV
2 1 rgz = C 

1
2

FIGURE 7–6
The Bernoulli equation is a good 
example of a dimensionally homoge-
neous equation. All additive terms, 
including the constant, have 
the same dimensions, namely that 
of pressure. In terms of primary 
dimensions, each term has dimensions 
{m/(t2L)}.

The nondimensionalized Bernoulli
equation

 P      rV2     rgz     C 
P`     2P  ̀    P  ̀     P` 

{1} {1} {1} {1}

+ + =

FIGURE 7–7
A nondimensionalized form of the 
Bernoulli equation is formed by 
dividing each additive term by a 
pressure (here we use P`). Each 
resulting term is dimensionless 
(dimensions of {1}).
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 As a simple example, consider the equation of motion describing the ele-
vation z of an object falling by gravity through a vacuum (no air drag), as in 
Fig. 7–8. The initial location of the object is z0 and its initial velocity is w0 
in the z-direction. From high school physics,

Equation of motion: 
d2z

dt2 5 2g (7–4)

Dimensional variables are defined as dimensional quantities that change or 
vary in the problem. For the simple differential equation given in Eq. 7–4, 
there are two dimensional variables: z (dimension of length) and t (dimension 
of time). Nondimensional (or dimensionless) variables are defined as quanti-
ties that change or vary in the problem, but have no dimensions; an example 
is angle of rotation, measured in degrees or radians which are dimension-
less units. Gravitational constant g, while dimensional, remains constant and 
is called a dimensional constant. Two additional dimensional constants are 
relevant to this particular problem, initial location z0 and initial vertical speed 
w0. While dimensional constants may change from problem to problem, they 
are fixed for a particular problem and are thus distinguished from dimensional 
variables. We use the term parameters for the combined set of dimensional 
variables, nondimensional variables, and dimensional constants in the problem.
 Equation 7–4 is easily solved by integrating twice and applying the initial 
conditions. The result is an expression for elevation z at any time t:

Dimensional result:  z 5 z0 1 w0t 2
1

2
 gt2 (7–5)

The constant 1
2 and the exponent 2 in Eq. 7–5 are dimensionless results of 

the integration. Such constants are called pure constants. Other common 
examples of pure constants are p and e.
 To nondimensionalize Eq. 7–4, we need to select scaling parameters, 
based on the primary dimensions contained in the original equation. In fluid 
flow problems there are typically at least three scaling parameters, e.g., L, V, 
and P0 2 P` (Fig. 7–9), since there are at least three primary dimensions in 
the general problem (e.g., mass, length, and time). In the case of the falling 
object being discussed here, there are only two primary dimensions, length 
and time, and thus we are limited to selecting only two scaling parameters. 
We have some options in the selection of the scaling parameters since we 
have three available dimensional constants g, z0, and w0. We choose z0 and 
w0. You are invited to repeat the analysis with g and z0 and/or with g and w0. 
With these two chosen scaling parameters we nondimensionalize the dimen-
sional variables z and t. The first step is to list the primary dimensions of all 
dimensional variables and dimensional constants in the problem,

Primary dimensions of all parameters:

{z} 5 {L}  {t} 5 {t}  {z0} 5 {L}  {w0} 5 {L/t}  {g} 5 {L/t2}

The second step is to use our two scaling parameters to nondimensionalize z 
and t (by inspection) into nondimensional variables z* and t*,

Nondimensionalized variables: z* 5
z
z0
  t* 5

w0t

z0
 (7–6)

295
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w = component of velocity
in the z-direction

z = vertical distance

g = gravitational
acceleration in the
negative z-direction

FIGURE 7–8
Object falling in a vacuum. Vertical 

velocity is drawn positively, so w , 0 
for a falling object.

L

P0

V, P∞

FIGURE 7–9
In a typical fluid flow problem, the 

scaling parameters usually include a 
characteristic length L, a characteristic 

velocity V, and a reference pressure 
difference P0 2 P`. Other parameters 

and fluid properties such as density, 
viscosity, and gravitational accelera-

tion enter the problem 
as well.
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Substitution of Eq. 7–6 into Eq. 7–4 gives

 
d2z

dt2 5
d2(z0z*)

d(z0t*/w0)
2 5

w2
0

z0
 
d2z*

dt*2 5 2g  S  
w2

0

gz0
 
d2z*

dt*2 5 21 (7–7)

which is the desired nondimensional equation. The grouping of dimensional 
constants in Eq. 7–7 is the square of a well-known nondimensional param-
eter or dimensionless group called the Froude number,

Froude number: Fr 5
w0"gz0

 (7–8)

The Froude (pronounced “Frude”) number also appears as a nondimen-
sional parameter in free-surface flows (Chap. 13), and can be thought of as 
the ratio of inertial force to gravitational force (Fig. 7–10). You should note 
that in some older textbooks, Fr is defined as the square of the parameter 
shown in Eq. 7–8. Substitution of Eq. 7–8 into Eq. 7–7 yields

Nondimensionalized equation of motion: 
d2z*

dt*2 5 2
1

Fr2 (7–9)

In dimensionless form, only one parameter remains, namely the Froude 
number. Equation 7–9 is easily solved by integrating twice and applying the 
initial conditions. The result is an expression for dimensionless elevation z* 
as a function of dimensionless time t*:

Nondimensional result: z* 5 1 1 t* 2
1

2Fr2 t*2 (7–10)

Comparison of Eqs. 7–5 and 7–10 reveals that they are equivalent. In fact, 
for practice, substitute Eqs. 7–6 and 7–8 into Eq. 7–5 to verify Eq. 7–10.
 It seems that we went through a lot of extra algebra to generate the same 
final result. What then is the advantage of nondimensionalizing the equation? 
Before answering this question, we note that the advantages are not so clear 
in this simple example because we were able to analytically integrate the dif-
ferential equation of motion. In more complicated problems, the differential 
equation (or more generally the coupled set of differential equations) cannot 
be integrated analytically, and engineers must either integrate the equations 
numerically, or design and conduct physical experiments to obtain the needed 
results, both of which can incur considerable time and expense. In such cases, 
the nondimensional parameters generated by nondimensionalizing the equations 
are extremely useful and can save much effort and expense in the long run.
 There are two key advantages of nondimensionalization (Fig. 7–11). First, 
it increases our insight about the relationships between key parameters. 
Equation 7–8 reveals, for example, that doubling w0 has the same effect as 
decreasing z0 by a factor of 4. Second, it reduces the number of parameters 
in the problem. For example, the original problem contains one dependent 
variable, z; one independent variable, t; and three additional dimensional 
constants, g, w0, and z0. The nondimensionalized problem contains one 
dependent parameter, z*; one independent parameter, t*; and only one 
additional parameter, namely the dimensionless Froude number, Fr. The 
number of additional parameters has been reduced from three to one! 
Example 7–3 further illustrates the advantages of nondimensionalization.

Sluice
gate

y1

V1

2V
y2

FIGURE 7–10
The Froude number is important in 
free-surface flows such as flow in 
open channels. Shown here is flow 
through a sluice gate. The Froude 
number upstream of the sluice 

gate is Fr1 5 V1  /"gy1, and it is 

Fr2 5 V2  /"gy2 downstream of the 
sluice gate.

Relationships between key
 parameters in the problem

are identified.

The number of parameters 
in a nondimensionalized 
equation is less than the 

number of parameters in 
the original equation.

FIGURE 7–11
The two key advantages of non-
dimensionalization of an equation.
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EXAMPLE 7–3     Illustration of the Advantages 
of Nondimensionalization

Your little brother’s high school physics class conducts experiments in a 

large vertical pipe whose inside is kept under vacuum conditions. The stu-

dents are able to remotely release a steel ball at initial height z0 between 0 

and 15 m (measured from the bottom of the pipe), and with initial vertical 

speed w0 between 0 and 10 m/s. A computer coupled to a network of pho-

tosensors along the pipe enables students to plot the trajectory of the steel 

ball (height z plotted as a function of time t) for each test. The students are 

unfamiliar with dimensional analysis or nondimensionalization techniques, 

and therefore conduct several “brute force” experiments to determine how 

the trajectory is affected by initial conditions z0 and w0. First they hold w0 

fixed at 4 m/s and conduct experiments at five different values of z0: 3, 6, 

9, 12, and 15 m. The experimental results are shown in Fig. 7–12a. Next, 

they hold z0 fixed at 10 m and conduct experiments at five different values 

of w0: 2, 4, 6, 8, and 10 m/s. These results are shown in Fig. 7–12b. Later 

that evening, your brother shows you the data and the trajectory plots and 

tells you that they plan to conduct more experiments at different values of 

z0 and w0. You explain to him that by first nondimensionalizing the data, the 

problem can be reduced to just one parameter, and no further experiments 

are required. Prepare a nondimensional plot to prove your point and discuss.

SOLUTION  A nondimensional plot is to be generated from all the available 

trajectory data. Specifically, we are to plot z* as a function of t*.

Assumptions  The inside of the pipe is subjected to strong enough vacuum 

pressure that aerodynamic drag on the ball is negligible.

Properties  The gravitational constant is 9.81 m/s2.

Analysis  Equation 7–4 is valid for this problem, as is the nondimension-

alization that resulted in Eq. 7–9. As previously discussed, this problem 

combines three of the original dimensional parameters (g, z0, and w0) into 

one nondimensional parameter, the Froude number. After converting to the 

dimensionless variables of Eq. 7–6, the 10 trajectories of Fig. 7–12a and 

b are replotted in dimensionless format in Fig. 7–13. It is clear that all 

the trajectories are of the same family, with the Froude number as the only 

remaining parameter. Fr2 varies from about 0.041 to about 1.0 in these exper-

iments. If any more experiments are to be conducted, they should include 

combinations of z0 and w0 that produce Froude numbers outside of this range. 

A large number of additional experiments would be unnecessary, since all the 

trajectories would be of the same family as those plotted in Fig. 7–13.

Discussion  At low Froude numbers, gravitational forces are much larger than 

inertial forces, and the ball falls to the floor in a relatively short time. At large 

values of Fr on the other hand, inertial forces dominate initially, and the ball 

rises a significant distance before falling; it takes much longer for the ball to 

hit the ground. The students are obviously not able to adjust the gravitational 

constant, but if they could, the brute force method would require many more 

experiments to document the effect of g. If they nondimensionalize first, 

however, the dimensionless trajectory plots already obtained and shown in 

Fig. 7–13 would be valid for any value of g; no further experiments would be 

required unless Fr were outside the range of tested values.

 If you are still not convinced that nondimensionalizing the equations and the 
parameters has many advantages, consider this: In order to reasonably docu-
ment the trajectories of Example 7–3 for a range of all three of the dimensional 

FIGURE 7–12
Trajectories of a steel ball falling in 
a vacuum: (a) w0 fixed at 4 m/s, and 
(b) z0 fixed at 10 m (Example 7–3). 

(a)

(b)
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FIGURE 7–13
Trajectories of a steel ball falling 
in a vacuum. Data of Fig. 7–12a 

and b are nondimensionalized and 
combined onto one plot.
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parameters g, z0, and w0, the brute force method would require several (say a 
minimum of four) additional plots like Fig. 7–12a at various values (levels) 
of w0, plus several additional sets of such plots for a range of g. A complete 
data set for three parameters with five levels of each parameter would require 
53 5 125 experiments! Nondimensionalization reduces the number of param-
eters from three to one—a total of only 51 5 5 experiments are required for the 
same resolution. (For five levels, only five dimensionless trajectories like those 
of Fig. 7–13 are required, at carefully chosen values of Fr.)
 Another advantage of nondimensionalization is that extrapolation to 
untested values of one or more of the dimensional parameters is possible. 
For example, the data of Example 7–3 were taken at only one value of grav-
itational acceleration. Suppose you wanted to extrapolate these data to a dif-
ferent value of g. Example 7–4 shows how this is easily accomplished via 
the dimensionless data.

EXAMPLE 7–4    Extrapolation of Nondimensionalized Data

The gravitational constant at the surface of the moon is only about one-sixth 

of that on earth. An astronaut on the moon throws a baseball at an initial 

speed of 21.0 m/s at a 5° angle above the horizon and at 2.0 m above the 

moon’s surface (Fig. 7–14). (a) Using the dimensionless data of Example 7–3 

shown in Fig. 7–13, predict how long it takes for the baseball to fall to 

the ground. (b) Do an exact calculation and compare the result to that of 

part (a).

SOLUTION  Experimental data obtained on earth are to be used to predict 

the time required for a baseball to fall to the ground on the moon.

Assumptions  1 The horizontal velocity of the baseball is irrelevant. 2 The 

surface of the moon is perfectly flat near the astronaut. 3 There is no aero-

dynamic drag on the ball since there is no atmosphere on the moon. 4 Moon 

gravity is one-sixth that of earth.

Properties  The gravitational constant on the moon is gmoon ≅ 9.81/6 5
1.63 m/s2.

Analysis  (a) The Froude number is calculated based on the value of gmoon 

and the vertical component of initial speed,

w0 5 (21.0 m/s) sin (58) 5 1.830 m/s 

from which

Fr2 5
w2

0

gmoon 
z0

5
(1.830 m/s)2

(1.63 m/s2) (2.0 m)
5 1.03

This value of Fr2 is nearly the same as the largest value plotted in Fig. 7–13. 

Thus, in terms of dimensionless variables, the baseball strikes the ground 

at t* ≅ 2.75, as determined from Fig. 7–13. Converting back to dimensional 

variables using Eq. 7–6,

 Estimated time to strike the ground: t 5
t*z0

w0
5

2.75 (2.0 m)

1.830 m/s
5 3.01 s 

(b) An exact calculation is obtained by setting z equal to zero in Eq. 7–5 

and solving for time t (using the quadratic formula),

FIGURE 7–14
Throwing a baseball on the moon 
(Example 7–4).
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Exact time to strike the ground:

t 5
w0 1 "w2

0 1 2z0g

g
 

 5
1.830 m/s 1 "(1.830 m/s)2 1 2(2.0 m)(1.63 m/s2)

1.63 m/s2 5 3.05 s

Discussion  If the Froude number had landed between two of the trajecto-

ries of Fig. 7–13, interpolation would have been required. Since some of 

the numbers are precise to only two significant digits, the small difference 

between the results of part (a) and part (b) is of no concern. The final result 

is t 5 3.0 s to two significant digits.

 The differential equations of motion for fluid flow are derived and dis-
cussed in Chap. 9. In Chap. 10 you will find an analysis similar to that pre-
sented here, but applied to the differential equations for fluid flow. It turns 
out that the Froude number also appears in that analysis, as do three other 
important dimensionless parameters—the Reynolds number, Euler number, 
and Strouhal number (Fig. 7–15).

7–3 ■ DIMENSIONAL ANALYSIS AND SIMILARITY
Nondimensionalization of an equation by inspection is useful only when we 
know the equation to begin with. However, in many cases in real-life engi-
neering, the equations are either not known or too difficult to solve; often-
times experimentation is the only method of obtaining reliable information. 
In most experiments, to save time and money, tests are performed on a geo-
metrically scaled model, rather than on the full-scale prototype. In such 
cases, care must be taken to properly scale the results. We introduce here a 
powerful technique called dimensional analysis. While typically taught in 
fluid mechanics, dimensional analysis is useful in all disciplines, especially 
when it is necessary to design and conduct experiments. You are encouraged 
to use this powerful tool in other subjects as well, not just in fluid mechanics. 
The three primary purposes of dimensional analysis are

• To generate nondimensional parameters that help in the design of 
experiments (physical and/or numerical) and in the reporting of 
experimental results

• To obtain scaling laws so that prototype performance can be predicted 
from model performance

• To (sometimes) predict trends in the relationship between parameters

 Before discussing the technique of dimensional analysis, we first explain 
the underlying concept of dimensional analysis—the principle of similarity. 
There are three necessary conditions for complete similarity between a 
model and a prototype. The first condition is geometric similarity—the 
model must be the same shape as the prototype, but may be scaled by some 
constant scale factor. The second condition is kinematic similarity, which 
means that the velocity at any point in the model flow must be proportional 
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r, m

g
P∞

P0

L

f V

Re =
rVL
m

St =
fL
V Eu =

P0 – P∞
rV2

Fr = V
gL

→

FIGURE 7–15
In a general unsteady fluid flow prob-

lem with a free surface, the scaling 
parameters include a characteristic 

length L, a characteristic velocity V,
a characteristic frequency f, and 
a reference pressure difference 

P0 2 P`. Nondimensionalization of 
the differential equations of fluid 

flow produces four dimensionless 
parameters: the Reynolds number, 
Froude number, Strouhal number, 
and Euler number (see Chap. 10).
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(by a constant scale factor) to the velocity at the corresponding point in the 
prototype flow (Fig. 7–16). Specifically, for kinematic similarity the velocity 
at corresponding points must scale in magnitude and must point in the same 
relative direction. You may think of geometric similarity as length-scale 
equivalence and kinematic similarity as time-scale equivalence. Geometric 
similarity is a prerequisite for kinematic similarity. Just as the geometric 
scale factor can be less than, equal to, or greater than one, so can the veloc-
ity scale factor. In Fig. 7–16, for example, the geometric scale factor is less 
than one (model smaller than prototype), but the velocity scale is greater than 
one (velocities around the model are greater than those around the proto-
type). You may recall from Chap. 4 that streamlines are kinematic phenom-
ena; hence, the streamline pattern in the model flow is a geometrically scaled 
copy of that in the prototype flow when kinematic similarity is achieved.
 The third and most restrictive similarity condition is that of dynamic 
similarity. Dynamic similarity is achieved when all forces in the model 
flow scale by a constant factor to corresponding forces in the prototype flow 
(force-scale equivalence). As with geometric and kinematic similarity, the 
scale factor for forces can be less than, equal to, or greater than one. In 
Fig. 7–16 for example, the force-scale factor is less than one since the force 
on the model building is less than that on the prototype. Kinematic similar-
ity is a necessary but insufficient condition for dynamic similarity. It is thus 
possible for a model flow and a prototype flow to achieve both geomet-
ric and kinematic similarity, yet not dynamic similarity. All three similarity 
conditions must exist for complete similarity to be ensured.

In a general flow field, complete similarity between a model and prototype is 
achieved only when there is geometric, kinematic, and dynamic similarity.

 We let uppercase Greek letter Pi (P) denote a nondimensional parameter. 
In Sec. 7–2, we have already discussed one P, namely the Froude number, 
Fr. In a general dimensional analysis problem, there is one P that we call 
the dependent P, giving it the notation P1. The parameter P1 is in general 
a function of several other P’s, which we call independent P’s. The func-
tional relationship is

Functional relationship between P’s:      P1 5 f (P2, P3, p  , Pk) (7–11)

where k is the total number of P’s.
 Consider an experiment in which a scale model is tested to simulate a 
prototype flow. To ensure complete similarity between the model and the 
prototype, each independent P of the model (subscript m) must be identical to 
the corresponding independent P of the prototype (subscript p), i.e., P2, m 5 
P2, p, P3, m 5 P3, p, . . . , Pk, m 5 Pk, p.

To ensure complete similarity, the model and prototype must be geometrically 
similar, and all independent P groups must match between model and 
prototype.

Under these conditions the dependent P of the model (P1, m) is guaranteed 
to also equal the dependent P of the prototype (P1, p). Mathematically, we 
write a conditional statement for achieving similarity,

If  P2, m 5 P2, p and P3, m 5 P3, p p   and  Pk, m 5 Pk, p,

then P1, m 5 P1, p (7–12)

Prototype:

Model:

Vp

Vm

FD, m

FD, p

FIGURE 7–16
Kinematic similarity is achieved 
when, at all locations, the speed in 
the model flow is proportional to that 
at corresponding locations in the 
prototype flow, and points in the 
same direction.
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 Consider, for example, the design of a new sports car, the aerodynamics 
of which is to be tested in a wind tunnel. To save money, it is desirable to 
test a small, geometrically scaled model of the car rather than a full-scale 
prototype of the car (Fig. 7–17). In the case of aerodynamic drag on an 
automobile, it turns out that if the flow is approximated as incompressible, 
there are only two P’s in the problem,

 P1 5 f (P2)  where  P1 5
FD

rV 2L2  and  P2 5
rVL

m
  (7–13)

The procedure used to generate these P’s is discussed in Section 7–4. In 
Eq. 7–13, FD is the magnitude of the aerodynamic drag on the car, r is the 
air density, V is the car’s speed (or the speed of the air in the wind tunnel), L 
is the length of the car, and m is the viscosity of the air. P1 is a nonstan-
dard form of the drag coefficient, and P2 is the Reynolds number, Re. You 
will find that many problems in fluid mechanics involve a Reynolds number 
(Fig. 7–18).

The Reynolds number is the most well known and useful dimensionless 
parameter in all of fluid mechanics.

 In the problem at hand there is only one independent P, and Eq. 7–12 
ensures that if the independent P’s match (the Reynolds numbers match: 
P2, m 5 P2, p), then the dependent P’s also match (P1, m 5 P1, p). This 
enables engineers to measure the aerodynamic drag on the model car and 
then use this value to predict the aerodynamic drag on the prototype car.

EXAMPLE 7–5    Similarity between Model and Prototype Cars

The aerodynamic drag of a new sports car is to be predicted at a speed of 

50.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-

fifth scale model of the car to test in a wind tunnel. It is winter and the wind 

tunnel is located in an unheated building; the temperature of the wind tunnel 

air is only about 5°C. Determine how fast the engineers should run the wind 

tunnel in order to achieve similarity between the model and the prototype.

SOLUTION  We are to utilize the concept of similarity to determine the 

speed of the wind tunnel.

Assumptions  1 Compressibility of the air is negligible (the validity of this 

approximation is discussed later). 2 The wind tunnel walls are far enough 

away so as to not interfere with the aerodynamic drag on the model car. 

3 The model is geometrically similar to the prototype. 4 The wind tunnel has 

a moving belt to simulate the ground under the car, as in Fig. 7–19. (The 

moving belt is necessary in order to achieve kinematic similarity everywhere 

in the flow, in particular underneath the car.)

Properties  For air at atmospheric pressure and at T 5 25°C, r 5 1.184 kg/m3 

and m 5 1.849 3 1025 kg/m·s. Similarly, at T 5 5°C, r 5 1.269 kg/m3 and 

m 5 1.754 3 1025 kg/m·s.

Analysis  Since there is only one independent P in this problem, the similarity 

equation (Eq. 7–12) holds if P2, m 5 P2, p, where P2 is given by Eq. 7–13, 

and we call it the Reynolds number. Thus, we write

P2, m 5 Rem 5
rmVmL m

mm
5 P2, p 5 Rep 5

rpVpL p

mp
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Prototype car

Model car

Vp

mp, rp

Lp

Vm 

mm, rm

Lm

FIGURE 7–17
Geometric similarity between 

a prototype car of length Lp 
and a model car of length Lm.

Re =  = 
rVL
m

r, m

VL
n

V

L

FIGURE 7–18
The Reynolds number Re is formed 

by the ratio of density, characteristic 
speed, and characteristic length to 

viscosity. Alternatively, it is the ratio 
of characteristic speed and length 
to kinematic viscosity, defined as 

n 5 m/r.
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which we solve for the unknown wind tunnel speed for the model 

tests, Vm,

 Vm 5 Vpamm

mp
b a rp

rm
b a Lp

Lm

b 

 5 (50.0 mi/h) a1.754 3 1025 kg/m·s

1.849 3 1025 kg/m·s
b  a1.184 kg/m3

1.269 kg/m3b(5) 5 221 mi/h

Thus, to ensure similarity, the wind tunnel should be run at 221 mi/h (to 

three significant digits). Note that we were never given the actual length of 

either car, but the ratio of Lp to Lm is known because the prototype is five 

times larger than the scale model. When the dimensional parameters are 

rearranged as nondimensional ratios (as done here), the unit system is irrel-

evant. Since the units in each numerator cancel those in each denominator, 

no unit conversions are necessary.

Discussion  This speed is quite high (about 100 m/s), and the wind tun-

nel may not be able to run at that speed. Furthermore, the incompressible 

approximation may come into question at this high speed (we discuss this in 

more detail in Example 7–8).

 Once we are convinced that complete similarity has been achieved 
between the model tests and the prototype flow, Eq. 7–12 can be used again 
to predict the performance of the prototype based on measurements of the 
performance of the model. This is illustrated in Example 7–6.

EXAMPLE 7–6     Prediction of Aerodynamic Drag Force 
on a Prototype Car

This example is a follow-up to Example 7–5. Suppose the engineers run the 

wind tunnel at 221 mi/h to achieve similarity between the model and the 

prototype. The aerodynamic drag force on the model car is measured with a 

drag balance (Fig. 7–19). Several drag readings are recorded, and the aver-

age drag force on the model is 21.2 lbf. Predict the aerodynamic drag force 

on the prototype (at 50 mi/h and 25°C).

SOLUTION  Because of similarity, the model results are to be scaled up to 

predict the aerodynamic drag force on the prototype.

Analysis  The similarity equation (Eq. 7–12) shows that since P2, m 5 P2, p, 

P1, m 5 P1, p, where P1 is given for this problem by Eq. 7–13. Thus, we write

P1, m 5
FD, m

rmV 2
mL2

m

5 P1, p 5
FD, p

rpV
2
pL2

p

which we solve for the unknown aerodynamic drag force on the prototype car, 

FD, p,

FD, p 5 FD, ma rp

rm
b aVp

Vm

b2a Lp

Lm

b2

 5 (21.2 lbf)a1.184 kg/m3

1.269 kg/m3b a50.0 mi/h

221 mi/h
b2

(5)2 5 25.3 lbf

Model

Moving belt

Wind tunnel test section

Drag balance

FD

V

FIGURE 7–19
A drag balance is a device used 
in a wind tunnel to measure the aero-
dynamic drag of a body. When testing 
automobile models, a moving belt is 
often added to the floor of the wind 
tunnel to simulate the moving ground 
(from the car’s frame of reference).
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Discussion  By arranging the dimensional parameters as nondimensional 

ratios, the units cancel nicely even though they are a mixture of SI and Eng-

lish units. Because both velocity and length are squared in the equation for 

P1, the higher speed in the wind tunnel nearly compensates for the model’s 

smaller size, and the drag force on the model is nearly the same as that on 

the prototype. In fact, if the density and viscosity of the air in the wind tun-

nel were identical to those of the air flowing over the prototype, the two drag 

forces would be identical as well (Fig. 7–20).

 The power of using dimensional analysis and similarity to supplement 
experimental analysis is further illustrated by the fact that the actual values 
of the dimensional parameters (density, velocity, etc.) are irrelevant. As long 
as the corresponding independent P’s are set equal to each other, similarity 
is achieved—even if different fluids are used. This explains why automobile 
or aircraft performance can be simulated in a water tunnel, and the perfor-
mance of a submarine can be simulated in a wind tunnel (Fig. 7–21). Sup-
pose, for example, that the engineers in Examples 7–5 and 7–6 use a water 
tunnel instead of a wind tunnel to test their one-fifth scale model. Using the 
properties of water at room temperature (20°C is assumed), the water tunnel 
speed required to achieve similarity is easily calculated as

 Vm 5 Vpamm

mp
b a rp

rm
b a Lp

Lm

b  

 5 (50.0 mi/h)a1.002 3 1023 kg/m·s)

1.849 3 1025 kg/m·s
b a1.184 kg/m3

998.0 kg/m3b(5) 5 16.1 mi/h

As can be seen, one advantage of a water tunnel is that the required water 
tunnel speed is much lower than that required for a wind tunnel using the 
same size model.

7–4 ■  THE METHOD OF REPEATING VARIABLES 
AND THE BUCKINGHAM PI THEOREM

We have seen several examples of the usefulness and power of dimensional 
analysis. Now we are ready to learn how to generate the nondimensional 
parameters, i.e., the P’s. There are several methods that have been developed 
for this purpose, but the most popular (and simplest) method is the method 
of repeating variables, popularized by Edgar Buckingham (1867–1940). 
The method was first published by the Russian scientist Dimitri Ria bou-
chinsky (1882–1962) in 1911. We can think of this method as a step-by-step 
procedure or “recipe” for obtaining nondimensional parameters. There are 
six steps, listed concisely in Fig. 7–22, and in more detail in Table 7–2. 
These steps are explained in further detail as we work through a number of 
example problems.
 As with most new procedures, the best way to learn is by example and 
practice. As a simple first example, consider a ball falling in a vacuum as 
discussed in Section 7–2. Let us pretend that we do not know that Eq. 7–4 
is appropriate for this problem, nor do we know much physics concerning 
falling objects. In fact, suppose that all we know is that the instantaneous 
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FIGURE 7–21
Similarity can be achieved even when 

the model fluid is different than the 
prototype fluid. Here a submarine 

model is tested in a wind tunnel.
Courtesy NASA Langley Research Center.

Prototype

Model

Vp

mp, rp FD, p

Lp

Vm = Vp 

mm = mp
rm = rp FD, m = FD, p

Lm

Lp

Lm

FIGURE 7–20
For the special case in which the wind 
tunnel air and the air flowing over the 

prototype have the same properties 
(rm 5 rp, mm 5 mp), and under 

similarity conditions (Vm 5 VpLp/Lm), 
the aerodynamic drag force on the 

prototype is equal to that on the scale 
model. If the two fluids do not have 

the same properties, the two drag forces 
are not necessarily the same, even 

under dynamically similar conditions.
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elevation z of the ball must be a function of time t, initial vertical speed w0, 
initial elevation z0, and gravitational constant g (Fig. 7–23). The beauty of 
dimensional analysis is that the only other thing we need to know is the pri-
mary dimensions of each of these quantities. As we go through each step of 
the method of repeating variables, we explain some of the subtleties of the 
technique in more detail using the falling ball as an example.

Step 1
There are five parameters (dimensional variables, nondimensional variables, 
and dimensional constants) in this problem; n 5 5. They are listed in func-
tional form, with the dependent variable listed as a function of the indepen-
dent variables and constants:

List of relevant parameters: z 5 f(t, w0, z0, g)  n 5 5

The Method of Repeating Variables

Step 1: List the parameters in the problem
 and count their total number n.

Step 2: List the primary dimensions of each
 of the n parameters.

Step 5: Construct the k II’s, and manipulate
 as necessary.

Step 6: Write the final functional relationship
 and check your algebra.

Step 4: Choose j repeating parameters.

Step 3: Set the reduction j as the number
 of primary dimensions. Calculate k,
 the expected number of II’s, 
             k = n – j

FIGURE 7–22
A concise summary of the six steps 
that comprise the method of repeating 
variables.

w0 = initial vertical speed

z = 0 (datum plane)

z0 = initial
elevation

g = gravitational
acceleration in the
negative z-direction

z = elevation of ball
   = f (t, w0, z0, g)

FIGURE 7–23
Setup for dimensional analysis of a 
ball falling in a vacuum. Elevation z 
is a function of time t, initial verti-
cal speed w0, initial elevation z0, and 
gravitational constant g.

TABLE 7–2

Detailed description of the six steps that comprise the method of repeating 

variables*

Step 1  List the parameters (dimensional variables, nondimensional variables, 

and dimensional constants) and count them. Let n be the total 

number of parameters in the problem, including the dependent 

variable. Make sure that any listed independent parameter is indeed 

independent of the others, i.e., it cannot be expressed in terms of 

them. (E.g., don’t include radius r and area A 5 pr2, since r and A 

are not independent.)

Step 2 List the primary dimensions for each of the n parameters.

Step 3  Guess the reduction j. As a first guess, set j equal to the number of

  primary dimensions represented in the problem. The expected num-

ber of P’s (k) is equal to n minus j, according to the Buckingham Pi 
theorem,

 The Buckingham Pi theorem:  k 5 n 2 j (7–14)

  If at this step or during any subsequent step, the analysis does not 

work out, verify that you have included enough parameters in step 1. 

Otherwise, go back and reduce j by one and try again.

Step 4  Choose j repeating parameters that will be used to construct each P. 

Since the repeating parameters have the potential to appear in each 

P, be sure to choose them wisely (Table 7–3).

Step 5  Generate the P’s one at a time by grouping the j repeating parameters

with one of the remaining parameters, forcing the product to be 

dimensionless. In this way, construct all k P’s. By convention the 

first P, designated as P1, is the dependent P (the one on the left 

side of the list). Manipulate the P’s as necessary to achieve estab-

lished dimensionless groups (Table 7–5).

Step 6  Check that all the P’s are indeed dimensionless. Write the final 

functional relationship in the form of Eq. 7–11.

* This is a step-by-step method for finding the dimensionless P groups when performing a dimensional 

analysis.
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Step 2
The primary dimensions of each parameter are listed here. We recommend 
writing each dimension with exponents since this helps with later algebra.

z t w0 z0 g

{L1} {t1} {L1t21} {L1} {L1t22}

Step 3
As a first guess, j is set equal to 2, the number of primary dimensions repre-
sented in the problem (L and t).

Reduction: j 5 2

If this value of j is correct, the number of P’s predicted by the Buckingham 
Pi theorem is

Number of expected P’s: k 5 n 2 j 5 5 2 2 5 3

Step 4
We need to choose two repeating parameters since j 5 2. Since this is often 
the hardest (or at least the most mysterious) part of the method of repeating 
variables, several guidelines about choosing repeating parameters are listed 
in Table 7–3.
 Following the guidelines of Table 7–3 on the next page, the wisest choice 
of two repeating parameters is w0 and z0.

Repeating parameters: w0 and z0

Step 5
Now we combine these repeating parameters into products with each of the 
remaining parameters, one at a time, to create the P’s. The first P is always 
the dependent P and is formed with the dependent variable z.

Dependent P: P1 5 zwa1
0 zb1

0  (7–15)

where a1 and b1 are constant exponents that need to be determined. We 
apply the primary dimensions of step 2 into Eq. 7–15 and force the P to be 
dimensionless by setting the exponent of each primary dimension to zero:

Dimensions of P1:  {P1} 5 {L0t0} 5 {zwa1
0 zb1

0 } 5 {L1(L1t21)a1Lb1} 

Since primary dimensions are by definition independent of each other, we 
equate the exponents of each primary dimension independently to solve for 
exponents a1 and b1 (Fig. 7–24).

Time:  {t0} 5 {t2a1}   0 5 2a1  a1 5 0

Length: {L0} 5 {L1La1Lb1}  0 5 1 1 a1 1 b1  b1 5 21 2 a1  b1 5 21

Equation 7–15 thus becomes

 P1 5
z
z0

 (7–16)
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Multiplication: Add exponentsMultiplication: Add exponents
xaxbx2c 5 xa+b+a+b+2c

Division: Subtract exponentsDivision: Subtract exponents

3  5 xa–b–a–b–2cxa

xb
1

x2c

FIGURE 7–24
The mathematical rules for adding 
and subtracting exponents during 

multiplication and division, 
respectively.
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 In similar fashion we create the first independent P (P2) by combining 
the repeating parameters with independent variable t.

First independent P: P2 5 twa2
0 

zb2
0

Dimensions of P2:    {P2} 5 {L0t0} 5 {twa2
0 zb2

0 } 5 {t(L1t21)a2Lb2}

TABLE 7–3

Guidelines for choosing repeating parameters in step 4 of the method of repeating variables*

Guideline Comments and Application to Present Problem

1. Never pick the dependent variable.  In the present problem we cannot choose z, but we must choose from among 

 Otherwise, it may appear in all the  the remaining four parameters. Therefore, we must choose two of the following 

 P’s, which is undesirable. parameters: t, w0, z0, and g.

2. The chosen repeating parameters   In the present problem, any two of the independent  parameters would be valid 

 must not by themselves be able according to this guideline. For illustrative purposes, however, suppose we have

 to form a dimensionless group. to pick three instead of two repeating parameters. We could not, for example,

 Otherwise, it would be impossible   choose t, w0, and z0, because  these can form a P all by themselves (tw0/z0).

 to generate the rest of the P’s. 

3. The chosen repeating parameters  Suppose for example that there were three primary dimensions (m, L, and t) and

 must represent all the primary  two repeating parameters were to be chosen. You could not choose, say, a length

 dimensions in the problem.  and a time, since primary dimension mass would not be represented in the 

dimensions of the repeating parameters. An appropriate choice would be a density 

and a time, which together represent all three primary dimensions in the problem.

4. Never pick parameters that are Suppose an angle u were one of the independent parameters. We could not choose

 already dimensionless. These are u as a repeating parameter since angles have no dimensions (radian and degree

 P’s already, all by themselves.  are dimensionless units). In such a case, one of the P’s is already known, namely u.

5. Never pick two parameters with  In the present problem, two of the parameters, z and z0, have the same 

 the same dimensions or with dimensions (length). We cannot choose both of these parameters.

 dimensions that differ by only (Note that dependent variable z has already been eliminated by guideline 1.) 

 an exponent.  Suppose one parameter has dimensions of length and another parameter has 

dimensions of volume. In dimensional analysis, volume contains only one primary 

dimension (length) and is not dimensionally distinct from length—we cannot 

choose both of these parameters.

6. Whenever possible, choose If we choose time t as a repeating parameter in the present problem, it would 

 dimensional constants over appear in all three P’s. While this would not be wrong, it would not be wise

 dimensional variables so that since we know that ultimately we want some nondimensional height as a 

 only one P contains the function of some nondimensional time and other nondimensional parameter(s).

 dimensional variable.  From the original four independent parameters, this restricts us to w0, z0, and g.

7. Pick common parameters since In fluid flow problems we generally pick a length, a velocity, and a mass or 

 they may appear in each of the P’s.  density (Fig. 7–25). It is unwise to pick less common parameters like viscosity 

m or surface tension ss, since we would in general not want m or ss to appear in 

each of the P’s. In the present problem, w0 and z0 are wiser choices than g.

8. Pick simple parameters over It is better to pick parameters with only one or two basic dimensions (e.g., 

 complex parameters whenever a length, a time, a mass, or a velocity) instead of parameters that are composed 

 possible. of several basic dimensions (e.g., an energy or a pressure).

* These guidelines, while not infallible, help you to pick repeating parameters that usually lead to established nondimensional P groups with minimal effort.
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Equating exponents,

Time:  {t0} 5 {t1t2a2}  0 5 1 2 a2  a2 5 1

Length:  {L0} 5 {La2Lb2}  0 5 a2 1 b2  b2 5 2a2  b2 5 21

P2 is thus

 P2 5
w0t

z0
 (7–17)

 Finally we create the second independent P (P3) by combining the repeat-
ing parameters with g and forcing the P to be dimensionless (Fig. 7–26).

Second independent P:  P3 5 gwa3
0 zb3

0

Dimensions of P3: {P3} 5 {L0t0} 5 {gwa3
0 zb3

0 } 5 {L1t22(L1t21)a3Lb3}

Equating exponents,

Time:  {t0} 5 {t22t2a3}  0 5 22 2 a3  a3 5 22

Length: {L0} 5 {L1La3Lb3}  0 5 1 1 a3 1 b3  b3 5 21 2 a3  b3 5 1

P3 is thus

 P3 5
gz0

w2
0

 (7–18)

 All three P’s have been found, but at this point it is prudent to examine 
them to see if any manipulation is required. We see immediately that P1 and 
P2 are the same as the nondimensionalized variables z* and t* defined by 
Eq. 7–6—no manipulation is necessary for these. However, we recognize 
that the third P must be raised to the power of 21

2 to be of the same form 
as an established dimensionless parameter, namely the Froude number of 
Eq. 7–8:

Modified P3: P3, modified 5 agz0

w2
0

b21/2

5
w0"gz0

5 Fr (7–19)

Such manipulation is often necessary to put the P’s into proper estab-
lished form. The P of Eq. 7–18 is not wrong, and there is certainly no 
mathematical advantage of Eq. 7–19 over Eq. 7–18. Instead, we like to 
say that Eq. 7–19 is more “socially acceptable” than Eq. 7–18, since it is 
a named, established nondimensional parameter that is commonly used in 
the literature. In Table 7–4 are listed some guidelines for manipulation of 
nondimensional P groups into established nondimensional parameters.
 Table 7–5 lists some established nondimensional parameters, most of 
which are named after a notable scientist or engineer (see Fig. 7–27 and the 
Historical Spotlight on p. 311). This list is by no means exhaustive. When-
ever possible, you should manipulate your P’s as necessary in order to con-
vert them into established nondimensional parameters.
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Hint of the Day
 

A wise choice of

repeating parameters

for most fluid flow

problems is a length,

a velocity, and a mass

or density.

FIGURE 7–25
It is wise to choose common 

parameters as repeating parameters 
since they may appear in each of 

your dimensionless P groups.

{II1} = {m0L0t0T0I0C0N0} = {1}

{II2} = {m0L0t0T0I0C0N0} = {1}

{IIk} = {m0L0t0T0I0C0N0} = {1}

•

•

•

FIGURE 7–26
The P groups that result from the 
method of repeating variables are 

guaranteed to be dimensionless 
because we force the overall 

exponent of all seven primary 
dimensions to be zero.
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Step 6
We should double-check that the P’s are indeed dimensionless (Fig. 7–28). 
You can verify this on your own for the present example. We are finally ready 
to write the functional relationship between the nondimensional parameters. 
Combining Eqs. 7–16, 7–17, and 7–19 into the form of Eq. 7–11,

Relationship between P’s:  P1 5 f (P2, P3)  S  
z
z0

5 f    ¢w0t

z0
, 

w0"gz0

Or, in terms of the nondimensional variables z* and t* defined previously 
by Eq. 7–6 and the definition of the Froude number,

Final result of dimensional analysis:      z* 5 f (t *, Fr) (7–20)

 It is useful to compare the result of dimensional analysis, Eq. 7–20, to 
the exact analytical result, Eq. 7–10. The method of repeating variables 
properly predicts the functional relationship between dimensionless groups. 
However,

The method of repeating variables cannot predict the exact mathematical 
form of the equation.

This is a fundamental limitation of dimensional analysis and the method of 
repeating variables. For some simple problems, however, the form of the 
equation can be predicted to within an unknown constant, as is illustrated in 
Example 7–7.

Wow!

Aaron, you've made it! 
They named a nondimensional
parameter after you!

FIGURE 7–27
Established nondimensional 
parameters are usually named after 
a notable scientist or engineer.

TABLE 7–4

Guidelines for manipulation of the P’s resulting from the method of repeating variables*

Guideline Comments and Application to Present Problem

1. We may impose a constant We can raise a P to any exponent n (changing it to Pn) without changing the 

 (dimensionless) exponent on  dimensionless stature of the P. For example, in the present problem, we 

 a P or perform a functional  imposed an exponent of −1/2 on P3. Similarly we can perform the functional 

 operation on a P.   operation sin(P), exp(P), etc., without influencing the dimensions of the P.

2. We may multiply a P by a  Sometimes dimensionless factors of p, 1/2, 2, 4, etc., are included in a P for 

 pure (dimensionless) constant.  convenience. This is perfectly okay since such factors do not influence the 

dimensions of the P.

3. We may form a product (or quotient) We could replace P3 by P3P1, P3/P2, etc. Sometimes such manipulation

 of any P with any other P in the  is necessary to convert our P into an established P. In many cases, the 

 problem to replace one of the P’s.  established P would have been produced if we would have chosen different 

  repeating parameters. 

4. We may use any of guidelines In general, we can replace any P with some new P such as AP3
B sin(P1

C),

 1 to 3 in combination. where A, B, and C are pure constants.

5. We may substitute a dimensional For example, the P may contain the square of a length or the cube of a 

 parameter in the P with other  length, for which we may substitute a known area or volume, respectively,   

 parameter(s) of the same dimensions. in order to make the P agree with established conventions.

*These guidelines are useful in step 5 of the method of repeating variables and are listed to help you convert your nondimensional P groups into standard, 

established nondimensional parameters, many of which are listed in Table 7–5.
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TABLE 7–5

Some common established nondimensional parameters or P’s encountered 

in fluid mechanics and heat transfer*

Name Definition Ratio of Significance

Archimedes number Ar 5
rsgL3

m2   (rs 2 r) 
Gravitational force

Viscous force

Aspect ratio AR 5
L

W
 or 

L

D
 

Length

Width
 or 

Length

Diameter

Biot number Bi 5
hL

k
 

Surface thermal resistance

Internal thermal resistance

Bond number Bo 5
g(rf 2 rv)L

2

ss

 
Gravitational force

Surface tension force

Cavitation number Ca (sometimes sc) 5
P 2 Pv

rV   

2  
Pressure 2 Vapor pressure

Inertial pressure

  asometimes 
2(P 2 Pv)

rV  

2

Darcy friction factor f 5
8tw

rV 2 
Wall friction force

Inertial force

Drag coefficient CD 5
FD

1
2rV

2A
 

Drag force

Dynamic force

Eckert number Ec 5
V 2

cPT
 

Kinetic energy

Enthalpy

Euler number Eu 5
DP

rV 2   asometimes 
DP

1
2rV 2

 
Pressure difference

Dynamic pressure

Fanning friction factor Cf 5
2tw

rV 2 
Wall friction force

Inertial force

Fourier number Fo (sometimes t) 5
at

L2 
Physical time

Thermal diffusion time

Froude number Fr 5
V"gL

 asometimes 
V 

2

gL
 

Inertial force

Gravitational force

Grashof number Gr 5
gbuD uTL3r2

m2  
Buoyancy force

Viscous force

Jakob number Ja 5
cp(T 2 Tsat)

hfg

 
Sensible energy

Latent energy

Knudsen number Kn 5
l

L
 

Mean free path length

Characteristic length

Lewis number Le 5
k

rcpDAB

5
a

DAB

 
Thermal diffusion

Species diffusion

Lift coefficient CL 5
FL

1
2rV

2A
 

Lift force

Dynamic force
(Continued)

FIGURE 7–28
A quick check of your algebra 

is always wise.

ARE YOUR PI’S
DIMENSIONLESS?
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TABLE 7–5 (Cont inued)

Name Definition Ratio of Significance

Mach number Ma (sometimes M) 5
V

c
 

Flow speed

Speed of sound

Nusselt number Nu 5
Lh

k
 

Convection heat transfer

Conduction heat transfer

Peclet number Pe 5
rLVcp

k
5

LV
a

 
Bulk heat transfer

Conduction heat transfer

Power number NP 5
W
#

rD5v3 
Power

Rotational inertia

Prandtl number Pr 5
n

a
5
mcp

k
 

Viscous diffusion

Thermal diffusion

Pressure coefficient Cp 5
P 2 Pq

1
2rV

2
 

Static pressure difference

Dynamic pressure

Rayleigh number Ra 5
gb|DT|L3r2cp

km
 

Buoyancy force

Viscous force

Reynolds number Re 5
rVL

m
5

VL

v
 

Inertial force

Viscous force

Richardson number Ri 5
L5gDr

rV
#

2
 

Buoyancy force

Inertial force

Schmidt number Sc 5
m

rDAB

5
n

DAB

 
Viscous diffusion

Species diffusion

Sherwood number Sh 5
VL

DAB

 
Overall mass diffusion

Species diffusion

Specific heat ratio k (sometimes g) 5
cp

cV
 

Enthalpy

Internal energy

Stanton number St 5
h

rcpV
 

Heat transfer

Thermal capacity

Stokes number Stk (sometimes St) 5
rpD

2
pV

18mL
 

Particle relaxation time

Characteristic flow time

Strouhal number St (sometimes S or Sr) 5
fL

 V
  

 Characteristic flow time

  Period of oscillation
 

Weber number We 5
rV 2L

ss

 
Inertial force

  Surface tension force
  

* A is a characteristic area, D is a characteristic diameter, f is a characteristic frequency (Hz), L is a character-

istic length, t is a characteristic time, T is a characteristic (absolute) temperature, V is a characteristic velocity, 

W is a characteristic width, W
.
 is a characteristic power, v is a characteristic angular velocity (rad/s). Other 

parameters and fluid properties in these P’s include: c 5 speed of sound, cp, cv 5 specific heats, Dp 5 particle 

diameter, DAB 5 species diffusion coefficient, h 5 convective heat transfer coefficient, hfg 5 latent heat of 

evaporation, k 5 thermal conductivity, P 5 pressure, Tsat 5 saturation temperature, V
#
 5 volume flow rate, 

a 5 thermal diffusivity, b 5 coefficient of thermal expansion, l 5 mean free path length, m 5 viscosity, 

n 5 kinematic viscosity, r 5 fluid density, rf 5 liquid density, rp 5 particle density, rs 5 solid density, 

rv 5 vapor density, ss 5 surface tension, and tw 5 shear stress along a wall.
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Commonly used, established dimensionless numbers have been given names for convenience, and to honor persons 
who have contributed in the development of science and engineering. In many cases, the namesake was not the first to 
define the number, but usually he/she used it or a similar parameter in his/her work. The following is a list of some, 
but not all, such persons. Also keep in mind that some numbers may have more than one name.

HISTORICAL SPOTLIGHT ■ Persons Honored by Nondimensional Parameters

Archimedes (287–212 bc) Greek mathematician who defined 
buoyant forces.

Biot, Jean-Baptiste (1774–1862) French mathematician who 
did pioneering work in heat, electricity, and elasticity. He 
also helped measure the arc of the meridian as part of the 
metric system development.

Darcy, Henry P. G. (1803–1858) French engineer who per-
formed extensive experiments on pipe flow and the first 
quantifiable filtration tests.

Eckert, Ernst R. G. (1904–2004) German–American engineer 
and student of Schmidt who did early work in boundary 
layer heat transfer.

Euler, Leonhard (1707–1783) Swiss mathematician and 
associate of Daniel Bernoulli who formulated equations 
of fluid motion and introduced the concept of centrifugal 
machinery.

Fanning, John T. (1837–1911) American engineer and 
textbook author who published in 1877 a modified form 
of Weisbach’s equation with a table of resistance values 
computed from Darcy’s data.

Fourier, Jean B. J. (1768–1830) French mathematician who 
did pioneering work in heat transfer and several other 
topics.

Froude, William (1810–1879) English engineer who 
developed naval modeling methods and the transfer 
of wave and boundary resistance from model to 
prototype.

Grashof, Franz (1826–1893) German engineer and educa-
tor known as a prolific author, editor, corrector, and 
dispatcher of publications.

Jakob, Max (1879–1955) German–American physicist, 
engineer, and textbook author who did pioneering work 
in heat transfer.

Knudsen, Martin (1871–1949) Danish physicist who helped 
develop the kinetic theory of gases.

Lewis, Warren K. (1882–1975) American engineer who 
researched distillation, extraction, and fluidized bed 
reactions.

Mach, Ernst (1838–1916) Austrian physicist who was 
first to realize that bodies traveling faster than the 

speed of sound would drastically alter the properties of 
the fluid. His ideas had great influence on twentieth-
century thought, both in physics and in philosophy, 
and influenced Einstein’s development of the theory of 
relativity.

Nusselt, Wilhelm (1882–1957) German engineer who was 
the first to apply similarity theory to heat transfer.

Peclet, Jean C. E. (1793–1857) French educator, physicist, 
and industrial researcher.

Prandtl, Ludwig (1875–1953) German engineer and develop-
er of boundary layer theory who is considered the founder 
of modern fluid mechanics.

Lord Raleigh, John W. Strutt (1842–1919) English scientist 
who investigated dynamic similarity, cavitation, and 
bubble collapse.

Reynolds, Osborne (1842–1912) English engineer who 
investigated flow in pipes and developed viscous flow 
equations based on mean velocities.

Richardson, Lewis F. (1881–1953) English mathematician, 
physicist, and psychologist who was a pioneer in the 
application of fluid mechanics to the modeling of 
atmospheric turbulence.

Schmidt, Ernst (1892–1975) German scientist and pioneer 
in the field of heat and mass transfer. He was the first 
to measure the velocity and temperature field in a free 
convection boundary layer.

Sherwood, Thomas K. (1903–1976) American engineer and 
educator. He researched mass transfer and its interac-
tion with flow, chemical reactions, and industrial process 
operations.

Stanton, Thomas E. (1865–1931) English engineer and 
student of Reynolds who contributed to a number of areas 
of fluid flow.

Stokes, George G. (1819–1903) Irish scientist who devel-
oped equations of viscous motion and diffusion.

Strouhal, Vincenz (1850–1922) Czech physicist who 
showed that the period of oscillations shed by a wire are 
related to the velocity of the air passing over it.

Weber, Moritz (1871–1951) German professor who applied 
similarity analysis to capillary flows.
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Soap 
film

Pinside

Poutside

ss

ss

R

FIGURE 7–29
The pressure inside a soap bubble is 
greater than that surrounding the soap 
bubble due to surface tension in the 
soap film.

What happens ifWhat happens if
k 5 n – – j 5 0? 0?

Do the following:Do the following:
• Check your list of parameters.• Check your list of parameters.
• Check your algebra.• Check your algebra.
• If all else fails, reduce • If all else fails, reduce j by one. by one.

FIGURE 7–30
If the method of repeating variables 
indicates zero P’s, we have either 
made an error, or we need to 
reduce j by one and start over.

EXAMPLE 7–7    Pressure in a Soap Bubble

Some children are playing with soap bubbles, and you become curious as to 

the relationship between soap bubble radius and the pressure inside the soap 

bubble (Fig. 7–29). You reason that the pressure inside the soap bubble must 

be greater than atmospheric pressure, and that the shell of the soap bubble 

is under tension, much like the skin of a balloon. You also know that the 

property surface tension must be important in this problem. Not knowing any 

other physics, you decide to approach the problem using dimensional analysis. 

Establish a relationship between pressure difference DP 5 Pinside 2 Poutside, 

soap bubble radius R, and the surface tension ss of the soap film.

SOLUTION  The pressure difference between the inside of a soap bubble 

and the outside air is to be analyzed by the method of repeating variables.

Assumptions  1 The soap bubble is neutrally buoyant in the air, and gravity is 

not relevant. 2 No other variables or constants are important in this problem.

Analysis  The step-by-step method of repeating variables is employed.

Step 1  There are three variables and constants in this problem; n 5 3. 

They are listed in functional form, with the dependent variable listed as a 

function of the independent variables and constants:

List of relevant parameters: DP 5 f (R, ss)  n 5 3

Step 2  The primary dimensions of each parameter are listed. The dimen-

sions of surface tension are obtained from Example 7–1, and those of 

pressure from Example 7–2.

 DP R ss

{m1L21t22} {L1} {m1t22}

Step 3  As a first guess, j is set equal to 3, the number of primary dimen-

sions represented in the problem (m, L, and t).

Reduction (first guess): j 5 3

If this value of j is correct, the expected number of P’s is k 5 n 2 j 5 3 2 

3 5 0. But how can we have zero P’s? Something is obviously not right 

(Fig. 7–30). At times like this, we need to first go back and make sure that 

we are not neglecting some important variable or constant in the problem. 

Since we are confident that the pressure difference should depend only on 

soap bubble radius and surface tension, we reduce the value of j by one,

 Reduction (second guess): j 5 2

If this value of j is correct, k 5 n 2 j 5 3 2 2 5 1. Thus we expect one P, 

which is more physically realistic than zero P’s.

Step 4  We need to choose two repeating parameters since j 5 2. Following 

the guidelines of Table 7–3, our only choices are R and ss, since DP is the 

dependent variable.

Step 5  We combine these repeating parameters into a product with the 

dependent variable DP to create the dependent P,

 Dependent P: P1 5 DPRa1sb1
s  (1)
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Lc

FL

V
r, m, c

a

FIGURE 7–31
Lift FL on a wing of chord length Lc 

at angle of attack a in a flow of 
free-stream speed V with density r, 

viscosity m, and speed of sound c. The 
angle of attack a is measured relative 

to the free-stream flow direction.

We apply the primary dimensions of step 2 into Eq. 1 and force the P to be 

dimensionless.

Dimensions of P1:

{P1} 5 {m0L0t0} 5 {DPR 

a1sb1
s } 5 {(m1L21t22)La1(m1t22)b1}

We equate the exponents of each primary dimension to solve for a1 and b1:

 Time: {t0} 5 {t22t22b1}  0 5 22 2 2b1  b1 5 21

 Mass:  {m0} 5 {m1mb1}    0 5 1 1 b1    b1 5 21 

 Length:  {L0} 5 {L21La1}   0 5 21 1 a1   a1 5 1 

Fortunately, the first two results agree with each other, and Eq. 1 thus 

becomes

 P1 5
DPR
ss

 (2)

From Table 7–5, the established nondimensional parameter most similar to 

Eq. 2 is the Weber number, defined as a pressure (rV2) times a length 

divided by surface tension. There is no need to further manipulate this P.

Step 6  We write the final functional relationship. In the case at hand, 

there is only one P, which is a function of nothing. This is possible only if 

the P is constant. Putting Eq. 2 into the functional form of Eq. 7–11,

 Relationship between P’s:

 P1 5
DPR
ss

5 f (nothing) 5 constant → DP 5 constant 
ss

R
 (3)

Discussion  This is an example of how we can sometimes predict trends with 

dimensional analysis, even without knowing much of the physics of the prob-

lem. For example, we know from our result that if the radius of the soap 

bubble doubles, the pressure difference decreases by a factor of 2. Similarly, 

if the value of surface tension doubles, DP increases by a factor of 2. Dimen-

sional analysis cannot predict the value of the constant in Eq. 3; further anal-

ysis (or one experiment) reveals that the constant is equal to 4 (Chap. 2).

EXAMPLE 7–8    Lift on a Wing

Some aeronautical engineers are designing an airplane and wish to predict 

the lift produced by their new wing design (Fig. 7–31). The chord length Lc 

of the wing is 1.12 m, and its planform area A (area viewed from the top 

when the wing is at zero angle of attack) is 10.7 m2. The prototype is to fly 

at V 5 52.0 m/s close to the ground where T  5  25°C. They build a one-

tenth scale model of the wing to test in a pressurized wind tunnel. The wind 

tunnel can be pressurized to a maximum of 5 atm. At what speed and pres-

sure should they run the wind tunnel in order to achieve dynamic similarity?

SOLUTION  We are to determine the speed and pressure at which to run the 

wind tunnel in order to achieve dynamic similarity.
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Assumptions  1 The prototype wing flies through the air at standard atmo-

spheric pressure. 2 The model is geometrically similar to the prototype.

Analysis  First, the step-by-step method of repeating variables is employed 

to obtain the nondimensional parameters. Then, the dependent P’s are 

matched between prototype and model.

Step 1  There are seven parameters (variables and constants) in this 

problem; n 5 7. They are listed in functional form, with the dependent 

variable listed as a function of the independent parameters:

List of relevant parameters:   FL 5 f (V, Lc, r, m, c, a)  n 5 7

where FL is the lift force on the wing, V is the fluid speed, Lc is the chord 

length, r is the fluid density, m is the fluid viscosity, c is the speed of 

sound in the fluid, and a is the angle of attack of the wing.

Step 2  The primary dimensions of each parameter are listed; angle a is 

dimensionless:

FL V Lc r m c a

{m1L1t22} {L1t21} {L1} {m1L23} {m1L21t21} {L1t21} {1}

Step 3  As a first guess, j is set equal to 3, the number of primary 

dimensions represented in the problem (m, L, and t).

Reduction: j 5 3

If this value of j is correct, the expected number of P’s is k 5 n 2 j 5 

7 2 3 5 4.

Step 4  We need to choose three repeating parameters since j 5 3. Following 

the guidelines listed in Table 7–3, we cannot pick the dependent variable FL. 

Nor can we pick a since it is already dimensionless. We cannot choose both 

V and c since their dimensions are identical. It would not be desirable to 

have m appear in all the P’s. The best choice of repeating parameters is 

thus either V, Lc, and r or c, Lc, and r. Of these, the former is the better 

choice since the speed of sound appears in only one of the established 

nondimensional parameters of Table 7–5, whereas the velocity scale is 

more “common” and appears in several of the parameters (Fig. 7–32).

Repeating parameters:    V, Lc, and r

Step 5  The dependent P is generated:

P1 5 FLV a1Lb1
c r

c1 S {P1} 5 {(m1L1t22)(L1t21)a1(L1)b1(m1L23)c1}

The exponents are calculated by forcing the P to be dimensionless 

(algebra not shown). We get a1 5 22, b1 5 22, and c1 5 21. The 

dependent P is thus

P1 5
FL

rV 2Lc
2

From Table 7–5, the established nondimensional parameter most similar to 

our P1 is the lift coefficient, defined in terms of planform area A rather than 

the square of chord length, and with a factor of 1/2 in the denominator. 

Thus, we may manipulate this P according to the guidelines listed in 

Table 7–4 as follows:

Modified P1:    P1, modified 5
FL

1
2rV 2A

5 Lift coefficient 5 CL

FIGURE 7–32
Oftentimes when performing the 
method of repeating variables, the 
most difficult part of the procedure 
is choosing the repeating parameters. 
With practice, however, you will learn 
to choose these parameters wisely.
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Similarly, the first independent P is generated:

P2 5 mV  

a2Lb2
c r

c2 S {P2} 5 {(m1L21t21)(L1t21)a2(L1)b2(m1L23)c2}

from which a2 5 21, b2 5 21, and c2 5 21, and thus

P2 5
m

rVLc

We recognize this P as the inverse of the Reynolds number. So, after 

inverting,

Modified P2: P2, modified 5
rVL c

m
5 Reynolds number 5 Re

The third P is formed with the speed of sound, the details of which are left 

for you to generate on your own. The result is

P3 5
V
c

5 Mach number 5 Ma

Finally, since the angle of attack a is already dimensionless, it is a 

dimensionless P group all by itself (Fig. 7–33). You are invited to go 

through the algebra; you will find that all the exponents turn out to be zero, 

and thus

P4 5 a 5 Angle of attack

Step 6  We write the final functional relationship as

 CL 5
FL

1
2 rV2A

5 f (Re, Ma, a) (1)

 To achieve dynamic similarity, Eq. 7–12 requires that all three of the 

dependent nondimensional parameters in Eq. 1 match between the model 

and the prototype. While it is trivial to match the angle of attack, it is not so 

simple to simultaneously match the Reynolds number and the Mach number. 

For example, if the wind tunnel were run at the same temperature and pres-

sure as those of the prototype, such that r, m, and c of the air flowing over 

the model were the same as r, m, and c of the air flowing over the prototype, 

Reynolds number similarity would be achieved by setting the wind tunnel air 

speed to 10 times that of the prototype (since the model is one-tenth scale). 

But then the Mach numbers would differ by a factor of 10. At 25°C, c is 

approximately 346 m/s, and the Mach number of the prototype airplane wing 

is Map 5 52.0/346 5 0.150—subsonic. At the required wind tunnel speed, 

Mam would be 1.50—supersonic! This is clearly unacceptable since the phys-

ics of the flow changes dramatically from subsonic to supersonic conditions. 

At the other extreme, if we were to match Mach numbers, the Reynolds 

number of the model would be 10 times too small.

 What should we do? A common rule of thumb is that for Mach numbers 

less than about 0.3, as is the fortunate case here, compressibility effects 

are practically negligible. Thus, it is not necessary to exactly match the 

Mach number; rather, as long as Mam is kept below about 0.3, approximate 

dynamic similarity can be achieved by matching the Reynolds number. Now 

the problem shifts to one of how to match Re while maintaining a low Mach 

number. This is where the pressurization feature of the wind tunnel comes 

in. At constant temperature, density is proportional to pressure, while viscosity 

and speed of sound are very weak functions of pressure. If the wind tunnel 

pressure could be pumped to 10 atm, we could run the model test at the 

A parameter that is already 
dimensionless becomes a P 
parameter all by itself.

FIGURE 7–33
A parameter that is dimensionless 

(like an angle) is already a 
nondimensional P all by itself—

we know this P without doing 
any further algebra.
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same speed as the prototype and achieve a nearly perfect match in both 

Re and Ma. However, at the maximum wind tunnel pressure of 5 atm, the 

required wind tunnel speed would be twice that of the prototype, or 104 

m/s. The Mach number of the wind tunnel model would thus be Mam 5 

104/346 5 0.301—approximately at the limit of incompressibility according 

to our rule of thumb. In summary, the wind tunnel should be run at approxi-

mately 100 m/s, 5 atm, and 25°C.

Discussion  This example illustrates one of the (frustrating) limitations of 

dimensional analysis; namely, You may not always be able to match all the 

dependent P’s simultaneously in a model test. Compromises must be made 

in which only the most important P’s are matched. In many practical situa-

tions in fluid mechanics, the Reynolds number is not critical for dynamic 

similarity, provided that Re is high enough. If the Mach number of the prototype 

were significantly larger than about 0.3, we would be wise to precisely match 

the Mach number rather than the Reynolds number in order to ensure rea-

sonable results. Furthermore, if a different gas were used to test the model, 

we would also need to match the specific heat ratio (k), since compressible 

flow behavior is strongly dependent on k (Chap. 12). We discuss such model 

testing problems in more detail in Section 7–5.

 Recall that in Examples 7–5 and 7–6 the air speed of the prototype car 
is 50.0 mi/h, and that of the wind tunnel is 221 mi/h. At 25°C, this corre-
sponds to a prototype Mach number of Map 5 0.065, and at 5°C, the Mach 
number of the wind tunnel is 0.29—on the borderline of the incompress-
ible limit. In hindsight, we should have included the speed of sound in our 
dimensional analysis, which would have generated the Mach number as an 
additional P. Another way to match the Reynolds number while keeping the 
Mach number low is to use a liquid such as water, since liquids are nearly 
incompressible, even at fairly high speeds.

EXAMPLE 7–9    Friction in a Pipe

Consider flow of an incompressible fluid of density r and viscosity m through 

a long, horizontal section of round pipe of diameter D. The velocity profile 

is sketched in Fig. 7–34; V is the average speed across the pipe cross sec-

tion, which by conservation of mass remains constant down the pipe. For a 

very long pipe, the flow eventually becomes hydrodynamically fully developed, 
which means that the velocity profile also remains uniform down the pipe. 

Because of frictional forces between the fluid and the pipe wall, there exists 

a shear stress tw on the inside pipe wall as sketched. The shear stress is also 

constant down the pipe in the fully developed region. We assume some con-

stant average roughness height « along the inside wall of the pipe. In fact, 

the only parameter that is not constant down the length of pipe is the pres-

sure, which must decrease (linearly) down the pipe in order to “push” the 

fluid through the pipe to overcome friction. Develop a nondimensional rela-

tionship between shear stress tw and the other parameters in the problem.

SOLUTION  We are to generate a nondimensional relationship between shear 

stress and other parameters.

tw

V

D

e

r, m

FIGURE 7–34
Friction on the inside wall of a pipe. 
The shear stress tw on the pipe walls 
is a function of average fluid speed V, 
average wall roughness height «, fluid 
density r, fluid viscosity m, and inside 
pipe diameter D.
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Assumptions  1 The flow is hydrodynamically fully developed. 2 The fluid is 

incompressible. 3 No other parameters are significant in the problem.

Analysis  The step-by-step method of repeating variables is employed to 

obtain the nondimensional parameters.

Step 1  There are six variables and constants in this problem; n 5 6. They 

are listed in functional form, with the dependent variable listed as a 

function of the independent variables and constants:

 List of relevant parameters: tw 5 f (V, e, r, m, D)  n 5 6

Step 2  The primary dimensions of each parameter are listed. Note that 

shear stress is a force per unit area, and thus has the same dimensions as 

pressure.

tw V e r m D

{m1L21t22} {L1t21} {L1} {m1L23} {m1L21t21} {L1}

Step 3  As a first guess, j is set equal to 3, the number of primary 

dimensions represented in the problem (m, L, and t).

 Reduction: j 5 3

If this value of j is correct, the expected number of P’s is k 5 n 2 j 5 

6 2 3 5 3.

Step 4  We choose three repeating parameters since j 5 3. Following the 

guidelines of Table 7–3, we cannot pick the dependent variable tw. We 

cannot choose both « and D since their dimensions are identical, and it 

would not be desirable to have m or « appear in all the P’s. The best choice 

of repeating parameters is thus V, D, and r.

Repeating parameters:     V, D, and r

Step 5  The dependent P is generated:

P1 5 twV  

a1Db1rc1 S {P1} 5 {(m1L21t22)(L1t21)a1(L1)b1(m1L23)c1}

from which a1 5 22, b1 5 0, and c1 5 21, and thus the dependent P is

P1 5
tw

rV  

2

From Table 7–5, the established nondimensional parameter most similar 

to this P1 is the Darcy friction factor, defined with a factor of 8 in the 

numerator (Fig. 7–35). Thus, we manipulate this P according to the 

guidelines listed in Table 7–4 as follows:

 Modified P1: P1, modified 5
8tw

rV 

2 5 Darcy friction factor 5 f

Similarly, the two independent P’s are generated, the details of which are 

left for you to do on your own:

P2 5 mV 

a2 Db2 rc2  S   P2 5
rVD

 m
5 Reynolds number 5 Re

P3 5 eV 

a3 Db3 rc3   S   P3 5
e

D
5 Roughness ratio

Darcy friction factor:

Fanning friction factor:

tw

r

V

8tw

rV2
f =

2tw

rV2
Cf =

FIGURE 7–35
Although the Darcy friction factor 

for pipe flows is most common, you 
should be aware of an alternative, 
less common friction factor called 

the Fanning friction factor. The 
relationship between the 

two is f 5 4Cf.

291-346_cengel_ch07.indd   317 12/17/12   12:24 PM



318
DIMENSIONAL ANALYSIS AND MODELING

Step 6  We write the final functional relationship as

 f 5
8tw

rV2 5 f aRe, 
 e
D

 (1)

Discussion  The result applies to both laminar and turbulent fully developed 

pipe flow; it turns out, however, that the second independent P (roughness 

ratio «/D) is not nearly as important in laminar pipe flow as in turbulent pipe 

flow. This problem presents an interesting connection between geometric 

similarity and dimensional analysis. Namely, it is necessary to match «/D 

since it is an independent P in the problem. From a different perspective, 

thinking of roughness as a geometric property, it is necessary to match «/D 

to ensure geometric similarity between two pipes.

 To verify the validity of Eq. 1 of Example 7–9, we use computational 
fluid dynamics (CFD) to predict the velocity profiles and the values of wall 
shear stress for two physically different but dynamically similar pipe flows:

• Air at 300 K flowing at an average speed of 14.5 ft/s through a pipe of 
inner diameter 1.00 ft and average roughness height 0.0010 ft.

• Water at 300 K flowing at an average speed of 3.09 m/s through a pipe of 
inner diameter 0.0300 m and average roughness height 0.030 mm.

The two pipes are clearly geometrically similar since they are both round 
pipes. They have the same average roughness ratio («/D 5 0.0010 in both 
cases). We have carefully chosen the values of average speed and diameter 
such that the two flows are also dynamically similar. Specifically, the other 
independent P (the Reynolds number) also matches between the two flows.

Reair 5
rairV air 

 Dair

mair
5

(1.225 kg/m3)(14.5 ft/s)(1.00 ft)

1.789 3 1025 kg/m·s
 a0.3048 m

ft
b2

5 9.22 3 104

where the fluid properties are those built into the CFD code, and

Rewater 5
rwaterVwater  

Dwater

mwater
5

(998.2 kg/m3)(3.09 m/s)(0.0300 m)

0.001003 kg/m·s
5 9.22 3 104

Hence by Eq. 7–12, we expect that the dependent P’s should match between 
the two flows as well. We generate a computational mesh for each of the two 
flows, and use a commercial CFD code to generate the velocity profile, from 
which the shear stress is calculated. Fully developed, time-averaged, turbu-
lent velocity profiles near the far end of both pipes are compared. Although 
the pipes are of different diameters and the fluids are vastly different, the 
velocity profile shapes look quite similar. In fact, when we plot normalized 
axial velocity (u/V) as a function of normalized radius (r/R), we find that the 
two profiles fall on top of each other (Fig. 7–36).
 Wall shear stress is also calculated from the CFD results for each flow, a 
comparison of which is shown in Table 7–6. There are several reasons why 
the wall shear stress in the water pipe is orders of magnitude larger than that 
in the air pipe. Namely, water is over 800 times as dense as air and over 50 
times as viscous. Furthermore, shear stress is proportional to the gradient of 
velocity, and the water pipe diameter is less than one-tenth that of the air 

r/R

0

0 0.5 1 1.5
u/V

0.2

0.4

0.6

0.8

1

1.2

FIGURE 7–36
Normalized axial velocity profiles for 
fully developed flow through a pipe 
as predicted by CFD; profiles of air 
(circles) and water (crosses) are 
shown on the same plot.
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pipe, leading to steeper velocity gradients. In terms of the nondimensional-
ized wall shear stress, f, however, Table 7–6 shows that the results are iden-
tical due to dynamic similarity between the two flows. Note that although 
the values are reported to three significant digits, the reliability of turbu-
lence models in CFD is accurate to at most two significant digits (Chap. 15).

7–5 ■  EXPERIMENTAL TESTING, MODELING,
AND INCOMPLETE SIMILARITY

One of the most useful applications of dimensional analysis is in designing 
physical and/or numerical experiments, and in reporting the results of such 
experiments. In this section we discuss both of these applications, and point 
out situations in which complete dynamic similarity is not achievable.

Setup of an Experiment and Correlation 
of Experimental Data
As a generic example, consider a problem in which there are five original 
parameters (one of which is the dependent parameter). A complete set of 
experiments (called a full factorial test matrix) is conducted by testing 
every possible combination of several levels of each of the four independent 
parameters. A full factorial test with five levels of each of the four inde-
pendent parameters would require 54 5 625 experiments. While experimen-
tal design techniques (fractional factorial test matrices; see Montgomery, 
2013) can significantly reduce the size of the test matrix, the number of 
required experiments would still be large. However, assuming that three pri-
mary dimensions are represented in the problem, we can reduce the number 
of parameters from five to two (k 5 5 2 3 5 2 nondimensional P groups), 
and the number of independent parameters from four to one. Thus, for the 
same resolution (five tested levels of each independent parameter) we would 
then need to conduct a total of only 51 5 5 experiments. You don’t have to 
be a genius to realize that replacing 625 experiments by 5 experiments is 
cost effective. You can see why it is wise to perform a dimensional analysis 
before conducting an experiment.
 Continuing our discussion of this generic example (a two-P problem), 
once the experiments are complete, we plot the dependent dimensionless para-
meter (P1) as a function of the independent dimensionless parameter (P2), as 
in Fig. 7–37. We then determine the functional form of the relationship by 

P1

(a)

P2

P1

(b)

P2

FIGURE 7–37
For a two-P problem, we plot 

dependent dimensionless parameter 
(P1) as a function of independent 

dimensionless parameter (P2). The 
resulting plot can be (a) linear or 

(b) nonlinear. In either case, 
regression and curve-fitting 

techniques are available to determine 
the relationship between the P’s.

TABLE 7–6

Comparison of wall shear stress and nondimensionalized wall shear stress for 

fully developed flow through an air pipe and a water pipe as predicted by CFD*

Parameter Air Flow Water Flow

Wall shear stress tw, air 5 0.0557 N/m2 tw, water 5 22.2 N/m2

Dimensionless

wall shear stress

(Darcy friction factor) 
fair 5

8tw, air

rair V 2
air

5 0.0186 fwater 5
8tw, water

rwater V 2
water

5 0.0186

* Data obtained with ANSYS-FLUENT using the standard k-« turbulence model with wall functions.
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performing a regression analysis on the data. If we are lucky, the data may 
correlate linearly. If not, we can try linear regression on log–linear or log–
log coordinates, polynomial curve fitting, etc., to establish an approximate 
relationship between the two P’s. See Holman (2001) for details about these 
curve-fitting techniques.
 If there are more than two P’s in the problem (e.g., a three-P problem or 
a four-P problem), we need to set up a test matrix to determine the relation-
ship between the dependent P and the independent P’s. In many cases we 
discover that one or more of the dependent P’s has negligible effect and can 
be removed from the list of necessary dimensionless parameters.
 As we have seen (Example 7–7), dimensional analysis sometimes yields 
only one P. In a one-P problem, we know the form of the relationship 
between the original parameters to within some unknown constant. In such 
a case, only one experiment is needed to determine that constant.

Incomplete Similarity
We have shown several examples in which the nondimensional P groups 
are easily obtained with paper and pencil through straightforward use of 
the method of repeating variables. In fact, after sufficient practice, you 
should be able to obtain the P’s with ease—sometimes in your head or on 
the “back of an envelope.” Unfortunately, it is often a much different story 
when we go to apply the results of our dimensional analysis to experimental 
data. The problem is that it is not always possible to match all the P’s of a 
model to the corresponding P’s of the prototype, even if we are careful to 
achieve geometric similarity. This situation is called incomplete similarity. 
Fortunately, in some cases of incomplete similarity, we are still able to 
extrapolate model test data to obtain reasonable full-scale predictions.

Wind Tunnel Testing
We illustrate incomplete similarity with the problem of measuring the aero-
dynamic drag force on a model truck in a wind tunnel (Fig. 7–38). Sup-
pose we purchase a one-sixteenth scale die-cast model of a tractor-trailer rig 
(18-wheeler). The model is geometrically similar to the prototype—even in 
the details such as side mirrors, mud flaps, etc. The model truck is 0.991 m 
long, corresponding to a full-scale prototype length of 15.9 m. The model 
truck is to be tested in a wind tunnel that has a maximum speed of 70 m/s. 
The wind tunnel test section is 1.0 m tall and 1.2 m wide—big enough to 
accommodate the model without needing to worry about wall interference 
or blockage effects. The air in the wind tunnel is at the same temperature 
and pressure as the air flowing around the prototype. We want to simulate 
flow at Vp 5 60 mi/h (26.8 m/s) over the full-scale prototype truck.
 The first thing we do is match the Reynolds numbers,

Rem 5
rmVm 

L m

mm
5 Rep 5

rpVp 
L p

mp

which can be solved for the required wind tunnel speed for the model tests Vm,

Vm 5 Vp¢mm

mp
¢ rp

rm
¢ Lp

Lm

5 (26.8 m/s)(1)(1)¢16

1
5 429 m/s

Model

Moving belt Drag balance

FD

V

Wind tunnel test section

FIGURE 7–38
Measurement of aerodynamic drag 
on a model truck in a wind tunnel 
equipped with a drag balance and 
a moving belt ground plane.
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Thus, to match the Reynolds number between model and prototype, the 
wind tunnel should be run at 429 m/s (to three significant digits). We obvi-
ously have a problem here, since this speed is more than six times greater 
than the maximum achievable wind tunnel speed. Moreover, even if we 
could run the wind tunnel that fast, the flow would be supersonic, since the 
speed of sound in air at room temperature is about 346 m/s. While the Mach 
number of the prototype truck moving through the air is 26.8/335 5 0.080, 
that of the wind tunnel air moving over the model would be 429/335 5 1.28 
(if the wind tunnel could go that fast).
 It is clearly not possible to match the model Reynolds number to that of 
the prototype with this model and wind tunnel facility. What do we do? 
There are several options:

• If we had a bigger wind tunnel, we could test with a larger model. Auto-
mobile manufacturers typically test with three-eighths scale model cars 
and with one-eighth scale model trucks and buses in very large wind tun-
nels. Some wind tunnels are even large enough for full-scale automobile 
tests (Fig. 7–39a). As you can imagine, however, the bigger the wind tunnel 
and the model the more expensive the tests. We must also be careful that 
the model is not too big for the wind tunnel. A useful rule of thumb is that 
the blockage (ratio of the model frontal area to the cross-sectional area 
of the test section) should be less than 7.5 percent. Otherwise, the wind 
tunnel walls adversely affect both geometric and kinematic similarity.

• We could use a different fluid for the model tests. For example, water 
tunnels can achieve higher Reynolds numbers than can wind tunnels of 
the same size, but they are much more expensive to build and operate 
(Fig. 7–39b).

• We could pressurize the wind tunnel and/or adjust the air temperature 
to increase the maximum Reynolds number capability. While these 
techniques can help, the increase in the Reynolds number is limited.

• If all else fails, we could run the wind tunnel at several speeds near the 
maximum speed, and then extrapolate our results to the full-scale 
Reynolds number.

Fortunately, it turns out that for many wind tunnel tests the last option is 
quite viable. While drag coefficient CD is a strong function of the Reynolds 
number at low values of Re, CD often levels off for Re above some value. 
In other words, for flow over many objects, especially “bluff” objects like 
trucks, buildings, etc., the flow is Reynolds number independent above 
some threshold value of Re (Fig. 7–40), typically when the boundary layer 
and the wake are both fully turbulent.

EXAMPLE 7–10    Model Truck Wind Tunnel Measurements

A one-sixteenth scale model tractor-trailer truck (18-wheeler) is tested in a 

wind tunnel as sketched in Fig. 7–38. The model truck is 0.991 m long, 

0.257 m tall, and 0.159 m wide. During the tests, the moving ground belt 

speed is adjusted so as to always match the speed of the air moving through 

the test section. Aerodynamic drag force FD is measured as a function of 

CD

Re
Unreliable data at low Re

Re
independence

FIGURE 7–40
For many objects, the drag coefficient 
levels off at Reynolds numbers above 
some threshold value. This fortunate 
situation is called Reynolds number 

independence. It enables us to 
extrapolate to prototype Reynolds 

numbers that are outside of the 
range of our experimental facility.

FIGURE 7–39
(a) The Langley full-scale wind tunnel 
(LFST) is large enough that full-scale 

vehicles can be tested. (b) For the 
same scale model and speed, water 

tunnels achieve higher Reynolds 
numbers than wind tunnels.

(b) NASA/Eric James 

(a)

(b)
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wind tunnel speed; the experimental results are listed in Table 7–7. Plot the 

drag coefficient CD as a function of the Reynolds number Re, where the area 

used for the calculation of CD is the frontal area of the model truck (the area 

you see when you look at the model from upstream), and the length scale 

used for calculation of Re is truck width W. Have we achieved dynamic simi-

larity? Have we achieved Reynolds number independence in our wind tunnel 

test? Estimate the aerodynamic drag force on the prototype truck traveling on 

the highway at 26.8 m/s. Assume that both the wind tunnel air and the air 

flowing over the prototype car are at 25°C and standard atmospheric pressure.

SOLUTION  We are to calculate and plot CD as a function of Re for a given 

set of wind tunnel measurements and determine if dynamic similarity and/or 

Reynolds number independence have been achieved. Finally, we are to esti-

mate the aerodynamic drag force acting on the prototype truck.

Assumptions  1 The model truck is geometrically similar to the prototype 

truck. 2 The aerodynamic drag on the strut(s) holding the model truck is 

negligible.

Properties  For air at atmospheric pressure and at T 5 25°C, r 5 1.184 kg/m3 

and m 5 1.849 3 1025 kg/m·s.

Analysis  We calculate CD and Re for the last data point listed in Table 7–7 

(at the fastest wind tunnel speed),

CD, m 5
FD, m

1
2  

 
rmV 

2
m Am

5
89.9 N

1
2 
(1.184 kg/m3) (70 m/s)2 (0.159 m) (0.257 m)

 ¢1 kg·m/s2

1 N

 5 0.758 

and

 Rem 5
rmVmWm

mm
5

(1.184 kg/m3) (70 m/s) (0.159 m)

1.849 3 1025 kg/m · s
5 7.13 3 105 (1)

We repeat these calculations for all the data points in Table 7–7, and we 

plot CD versus Re in Fig. 7–41.

 Have we achieved dynamic similarity? Well, we have geometric similarity 

between model and prototype, but the Reynolds number of the prototype 

truck is

   Rep 5
rpVpW p

mp
5

(1.184 kg/m3) (26.8 m/s)[16(0.159 m)]

1.849 3 1025 kg/m·s
5 4.37 3 106 (2)

where the width of the prototype is specified as 16 times that of the model. 

Comparison of Eqs. 1 and 2 reveals that the prototype Reynolds number is 

more than six times larger than that of the model. Since we cannot match 

the independent P’s in the problem, dynamic similarity has not been achieved.

 Have we achieved Reynolds number independence? From Fig. 7–41 we 

see that Reynolds number independence has indeed been achieved—at Re 

greater than about 5 3 105, CD has leveled off to a value of about 0.76 (to 

two significant digits).

 Since we have achieved Reynolds number independence, we can extrapo-

late to the full-scale prototype, assuming that CD remains constant as Re is 

increased to that of the full-scale prototype.

TABLE 7–7

Wind tunnel data: aerodynamic drag 

force on a model truck as a function 

of wind tunnel speed

 V, m/s FD, N

 20 12.4

 25 19.0

 30 22.1

 35 29.0

 40 34.3

 45 39.9

 50 47.2

 55 55.5

 60 66.0

 65 77.6

 70 89.9

CD

0.6

2 76543 8
Re � 10–5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

FIGURE 7–41
Aerodynamic drag coefficient as a 
function of the Reynolds number. The 
values are calculated from wind tunnel 
test data on a model truck (Table 7–7).
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Predicted aerodynamic drag on the prototype:

FD, p 5 1
2   
rpV 

2
p  

Ap CD, p

5 1
2 (1.184 kg/m3)(26.8 m/s)2[162 (0.159 m) (0.257 m)](0.76) a 1 N

1 kg·m/s2b
5 3400 N

Discussion  We give our final result to two significant digits. More than that 

cannot be justified. As always, we must exercise caution when performing an 

extrapolation, since we have no guarantee that the extrapolated results are 

correct.

Flows with Free Surfaces
For the case of model testing of flows with free surfaces (boats and ships, 
floods, river flows, aqueducts, hydroelectric dam spillways, interaction of 
waves with piers, soil erosion, etc.), complications arise that preclude com-
plete similarity between model and prototype. For example, if a model river 
is built to study flooding, the model is often several hundred times smaller 
than the prototype due to limited lab space. If the vertical dimensions of the 
model were scaled proportionately, the depth of the model river would be 
so small that surface tension effects (and the Weber number) would become 
important, and would perhaps even dominate the model flow, even though 
surface tension effects are negligible in the prototype flow. In addition, 
although the flow in the actual river may be turbulent, the flow in the model 
river may be laminar, especially if the slope of the riverbed is geometrically 
similar to that of the prototype. To avoid these problems, researchers often 
use a distorted model in which the vertical scale of the model (e.g., river 
depth) is exaggerated in comparison to the horizontal scale of the model 
(e.g., river width). In addition, the model riverbed slope is often made pro-
portionally steeper than that of the prototype. These modifications result in 
incomplete similarity due to lack of geometric similarity. Model tests are 
still useful under these circumstances, but other tricks (like deliberately 
roughening the model surfaces) and empirical corrections and correlations 
are required to properly scale up the model data.
 In many practical problems involving free surfaces, both the Reynolds 
number and Froude number appear as relevant independent P groups in the 
dimensional analysis (Fig. 7–42). It is difficult (often impossible) to match 
both of these dimensionless parameters simultaneously. For a free-surface 
flow with length scale L, velocity scale V, and kinematic viscosity n, the 
Reynolds number is matched between model and prototype when

 Rep 5
Vp 

L p

np
5 Rem 5

Vm 
L m

nm
 (7–21)

The Froude number is matched between model and prototype when

 Fr p 5
Vp"gLp

5 Frm 5
Vm"gLm

 (7–22)

Re = =

g

L

V

n

r, m

m

rVL VL
Fr =

gL

V

→

2

FIGURE 7–42
In many flows involving a liquid with 

a free surface, both the Reynolds 
number and Froude number are 

relevant nondimensional parameters. 
Since it is not always possible to match 

both Re and Fr between model and 
prototype, we are sometimes forced 

to settle for incomplete similarity. 
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To match both Re and Fr, we solve Eqs. 7–21 and 7–22 simultaneously for 
the required length scale factor Lm/Lp,

 
Lm

Lp

5
nm

np
 
Vp

Vm

5 aVm

Vp

b2

 (7–23)

Eliminating the ratio Vm/Vp from Eq. 7–23, we see that

Required ratio of kinematic viscosities to match both Re and Fr:

 
nm

np
5 aLm

Lp

b3/2

 (7–24)

Thus, to ensure complete similarity (assuming geometric similarity is 
achievable without unwanted surface tension effects as discussed previ-
ously), we would need to use a liquid whose kinematic viscosity satisfies 
Eq. 7–24. Although it is sometimes possible to find an appropriate liquid 
for use with the model, in most cases it is either impractical or impossible, 
as Example 7–11 illustrates. In such cases, it is more important to match 
Froude number than Reynolds number (Fig. 7–43).

EXAMPLE 7–11    Model Lock and River

In the late 1990s the U.S. Army Corps of Engineers designed an experiment 

to model the flow of the Tennessee River downstream of the Kentucky Lock 

and Dam (Fig. 7–44). Because of laboratory space restrictions, they built a 

scale model with a length scale factor of Lm /Lp 5 1/100. Suggest a liquid 

that would be appropriate for the experiment.

SOLUTION  We are to suggest a liquid to use in an experiment involving a 

one-hundredth scale model of a lock, dam, and river.

Assumptions  1 The model is geometrically similar to the prototype. 2 The 

model river is deep enough that surface tension effects are not significant.

Properties  For water at atmospheric pressure and at T = 20oC, the prototype 

kinematic viscosity is np = 1.002 3 1026 m2/s.

Analysis  From Eq. 7–24,

Required kinematic viscosity of model liquid:

 nm 5 npaLm

Lp

b3/2

5 (1.002 3 1026 m2/s)a 1

100
b3/2

5 1.00 3 1029 m2/s (1)

Thus, we need to find a liquid that has a viscosity of 1.00 3 1029 m2/s. A 

quick glance through the appendices yields no such liquid. Hot water has 

a lower kinematic viscosity than cold water, but only by a factor of about 3.

Liquid mercury has a very small kinematic viscosity, but it is of order 

1027 m2/s—still two orders of magnitude too large to satisfy Eq. 1. Even 

if liquid mercury would work, it would be too expensive and too hazardous 

to use in such a test. What do we do? The bottom line is that we cannot 

match both the Froude number and the Reynolds number in this model test. 

FIGURE 7–43
A NACA 0024 airfoil being tested in a 
towing tank at Fr 5 (a) 0.19, (b) 0.37, 
and (c) 0.55. In tests like this, the 
Froude number is the most important 
nondimensional parameter. 
Photograph courtesy of IIHR-Hydroscience 
& Engineering, University of Iowa. Used by 
permission.

(a)

(b)

(c)
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FIGURE 7–44
A 1:100 scale model constructed to 
investigate navigation conditions in 

the lower lock approach for a distance 
of 2 mi downstream of the dam. The 

model includes a scaled version of the 
spillway, powerhouse, and existing 

lock. In addition to navigation, 
the model was used to evaluate 

environmental issues associated with 
the new lock and required railroad 

and highway bridge relocations. The 
view here is looking upstream toward 
the lock and dam. At this scale, 52.8 ft
on the model represents 1 mi on the 

prototype. A (real, full-scale) pickup 
truck in the background gives you 

a feel for the model scale.
Photo courtesy of the U.S. Army Corps of 

Engineers, Nashville.

Measured
parameter

ReRepRange of Rem

Extrapolated
result

FIGURE 7–45
In many experiments involving free 
surfaces, we cannot match both the 

Froude number and the Reynolds 
number. However, we can often 

extrapolate low Re model test data to 
predict high Re prototype behavior.

In other words, it is impossible to achieve complete similarity between 

model and prototype in this case. Instead, we do the best job we can under

conditions of incomplete similarity. Water is typically used in such tests for 

convenience.

Discussion  It turns out that for this kind of experiment, Froude number 

matching is more critical than Reynolds number matching. As discussed pre-

viously for wind tunnel testing, Reynolds number independence is achieved 

at high enough values of Re. Even if we are unable to achieve Reynolds 

number independence, we can often extrapolate our low Reynolds number 

model data to predict full-scale Reynolds number behavior (Fig. 7–45). A 

high level of confidence in using this kind of extrapolation comes only after 

much laboratory experience with similar problems.

 In closing this section on experiments and incomplete similarity, we 
mention the importance of similarity in the production of Hollywood 
movies in which model boats, trains, airplanes, buildings, monsters, etc., 
are blown up or burned. Movie producers must pay attention to dynamic 
similarity in order to make the small-scale fires and explosions appear 
as realistic as possible. You may recall some low-budget movies where 
the special effects are unconvincing. In most cases this is due to lack of 
dynamic similarity between the small model and the full-scale prototype. 
If the model’s Froude number and/or Reynolds number differ too much 
from those of the prototype, the special effects don’t look right, even to 
the untrained eye. The next time you watch a movie, be on the alert for 
incomplete similarity!
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(a)

FIGURE 7–46
(a) The fruit fly, Drosophila 
melanogaster, flaps its tiny wings 
back and forth 200 times a second, 
creating a blurred image of the stroke 
plane. (b) The dynamically scaled 
model, Robofly, flaps its wings once 
every 5 s in 2 tons of mineral oil. 
Sensors at the base of the wings 
record aerodynamic forces, while 
fine bubbles are used to visualize the
flow. The size and speed of the robot, 
as well as the properties of the oil, 
were carefully chosen to match the 
Reynolds number of a real fly.
Photos © Courtesy of Michael Dickinson, CALTECH.

(b)

Guest Author: Michael Dickinson, 
California Institute of Technology

An interesting application of dimensional analysis is in the study of how 
insects fly. The small size and fast wing speed of an insect, such as a tiny 
fruit fly, make it difficult to directly measure the forces or visualize the air 
motion created by the fly’s wings. However, using principles of dimensional 
analysis, it is possible to study insect aerodynamics on a larger-scale, slowly 
moving model—a mechanical robot. The forces created by a hovering fly 
and flapping robot are dynamically similar if the Reynolds number is the 
same for each case. For a flapping wing, Re is calculated as 2FRLcv/n, 
where F is the angular amplitude of the wing stroke, R is the wing length, 
Lc is the average wing width (chord length), v is the angular frequency of 
the stroke, and n is the kinematic viscosity of the surrounding fluid. A fruit 
fly flaps its 2.5-mm-long, 0.7-mm-wide wings 200 times per second over 
a 2.8-rad stroke in air with a kinematic viscosity of 1.5 3 1025 m2/s. The 
resulting Reynolds number is approximately 130. By choosing mineral oil 
with a kinematic viscosity of 1.15 3 1024 m2/s, it is possible to match this 
Reynolds number on a robotic fly that is 100 times larger, flapping its wings 
over 1000 times more slowly! If the fly is not stationary, but rather moving 
through the air, it is necessary to match another dimensionless parameter to 
ensure dynamic similarity, the reduced frequency, s 5 2FRv/V, which mea-
sures the ratio of the flapping velocity of the wing tip (2FRv) to the forward 
velocity of the body (V ). To simulate forward flight, a set of motors tows 
Robofly through its oil tank at an appropriately scaled speed.
 Dynamically scaled robots have helped show that insects use a variety 
of different mechanisms to produce forces as they fly. During each back-
and-forth stroke, insect wings travel at high angles of attack, generating a 
prominent leading-edge vortex. The low pressure of this large vortex pulls 
the wings upward. Insects can further augment the strength of the leading-
edge vortex by rotating their wings at the end of each stroke. After the wing 
changes direction, it can also generate forces by quickly running through the 
wake of the previous stroke.
 Figure 7–46a shows a real fly flapping its wings, and Fig. 7–46b shows 
Robofly flapping its wings. Because of the larger length scale and shorter 
time scale of the model, measurements and flow visualizations are possi-
ble. Experiments with dynamically scaled model insects continue to teach 
researchers how insects manipulate wing motion to steer and maneuver.

References
Dickinson, M. H., Lehmann, F.-O., and Sane, S., “Wing rotation and the aerody-

namic basis of insect flight,” Science, 284, p. 1954, 1999.
Dickinson, M. H., “Solving the mystery of insect flight,” Scientific American, 

284, No. 6, pp. 35–41, June 2001.
Fry, S. N., Sayaman, R., and Dickinson, M. H., “The aerodynamics of free-flight 

maneuvers in Drosophila,” Science, 300, pp. 495–498, 2003.

APPLICATION SPOTLIGHT ■ How a Fly Flies
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SUMMARY

There is a difference between dimensions and units; a dimen-
sion is a measure of a physical quantity (without numerical 
values), while a unit is a way to assign a number to that dimen-
sion. There are seven primary dimensions—not just in fluid 
mechanics, but in all fields of science and engineering. They 
are mass, length, time, temperature, electric current, amount 
of light, and amount of matter. All other dimensions can be 
formed by combination of these seven primary dimensions.
 All mathematical equations must be dimensionally homo-
geneous; this fundamental principle can be applied to equa-
tions in order to nondimensionalize them and to identify 
dimensionless groups, also called nondimensional param-
eters. A powerful tool to reduce the number of necessary 
independent parameters in a problem is called dimensional 
analysis. The method of repeating variables is a step-by-
step procedure for finding the nondimensional parameters, 
or P’s, based simply on the dimensions of the variables and 
constants in the problem. The six steps in the method of 
repeating variables are summarized here.

Step 1  List the n parameters (variables and constants) 
in the problem.

Step 2  List the primary dimensions of each parameter.

Step 3  Guess the reduction j, usually equal to the num-
ber of primary dimensions in the problem. If the analysis 
does not work out, reduce j by one and try again. The 
expected number of P’s (k) is equal to n minus j.

Step 4  Wisely choose j repeating parameters for con-
struction of the P’s.

Step 5  Generate the k P’s one at a time by grouping 
the j repeating parameters with each of the remaining 
variables or constants, forcing the product to be dimen-
sionless, and manipulating the P’s as necessary to 
achieve established nondimensional parameters.

Step 6  Check your work and write the final functional 
relationship.

 When all the dimensionless groups match between a 
model and a prototype, dynamic similarity is achieved, and 
we are able to directly predict prototype performance based 
on model experiments. However, it is not always possible 
to match all the P groups when trying to achieve similarity 
between a model and a prototype. In such cases, we run the 
model tests under conditions of incomplete similarity, match-
ing the most important P groups as best we can, and then 
extrapolating the model test results to prototype conditions.
 We use the concepts presented in this chapter throughout 
the remainder of the book. For example, dimensional analysis 
is applied to fully developed pipe flows in Chap. 8 (friction 
factors, loss coefficients, etc.). In Chap. 10, we normalize the 
differential equations of fluid flow derived in Chap. 9, produc-
ing several dimensionless parameters. Drag and lift coeffi-
cients are used extensively in Chap. 11, and dimensionless 
parameters also appear in the chapters on compressible flow 
and open-channel flow (Chaps. 12 and 13). We learn in Chap. 14
that dynamic similarity is often the basis for design and test-
ing of pumps and turbines. Finally, dimensionless parameters 
are also used in computations of fluid flows (Chap. 15).

REFERENCES AND SUGGESTED READING

 1. D. C. Montgomery. Design and Analysis of Experiments, 
8th ed. New York: Wiley, 2013.

 2. J. P. Holman. Experimental Methods for Engineers, 7th 
ed. New York: McGraw-Hill, 2001.

Dimensions and Units, Primary Dimensions

7–1C  List the seven primary dimensions. What is signifi-
cant about these seven?

7–2C  What is the difference between a dimension and a 
unit? Give three examples of each.

7–3  Write the primary dimensions of the universal ideal gas 
constant Ru. (Hint: Use the ideal gas law, PV  5 nRuT where P 
is pressure, V  is volume, T is absolute temperature, and n is 
the number of moles of the gas.)  Answer: {m1L2t22T21N21}

7–4  Write the primary dimensions of each of the following 
variables from the field of thermodynamics, showing all your 
work: (a) energy E; (b) specific energy e 5 E/m; (c) power W

.
.

Answers: (a) {m1L2t22}, (b) {L2t22}, (c) {m1L2t23}

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Problems 

with the  icon are solved using EES, and complete solutions 

together with parametric studies are included on the text website. 

Problems with the  icon are comprehensive in nature and are 

intended to be solved with an equation solver such as EES.

PROBLEMS*
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7–6  Consider the table of Prob. 7–5 where the primary 
dimensions of several variables are listed in the mass–
length–time system. Some engineers prefer the force–length–
time system (force replaces mass as one of the primary 
dimensions). Write the primary dimensions of three of 
these (density, surface tension, and viscosity) in the force–
length–time system.

7–7  On a periodic chart of the elements, molar mass (M), 
also called atomic weight, is often listed as though it were a 
dimensionless quantity (Fig. P7–7). In reality, atomic weight 
is the mass of 1 mol of the element. For example, the atomic 
weight of nitrogen  Mnitrogen 5 14.0067. We interpret this as 
14.0067 g/mol of elemental nitrogen, or in the English sys-
tem, 14.0067 lbm/lbmol of elemental nitrogen. What are the 
primary dimensions of atomic weight?

7–5  When performing a dimensional analysis, one of the 
first steps is to list the primary dimensions of each relevant 
parameter. It is handy to have a table of parameters and their 
primary dimensions. We have started such a table for you 
(Table P7–5), in which we have included some of the basic 
parameters commonly encountered in fluid mechanics. As 
you work through homework problems in this chapter, add to 
this table. You should be able to build up a table with dozens 
of parameters.

7–8  Some authors prefer to use force as a primary dimen-
sion in place of mass. In a typical fluid mechanics problem, 
then, the four represented primary dimensions m, L, t, and 
T are replaced by F, L, t, and T. The primary dimension of 
force in this system is {force} 5 {F}. Using the results of 
Prob. 7–3, rewrite the primary dimensions of the universal 
gas constant in this alternate system of primary dimensions.

7–9  We define the specific ideal gas constant Rgas for a par-
ticular gas as the ratio of the universal gas constant and the 
molar mass (also called molecular weight) of the gas, Rgas 5 
Ru/M. For a particular gas, then, the ideal gas law is written 
as follows:

PV 5 mRgasT  or  P 5 rRgasT

where P is pressure, V  is volume, m is mass, T is absolute 
temperature, and r is the density of the particular gas. What are 
the primary dimensions of Rgas? For air, Rair 5 287.0 J/kg·K in 
standard SI units. Verify that these units agree with your result.

7–10  The moment of force ( M
!
) is formed by the cross 

product of a moment arm (r
!
) and an applied force (F

!
), as 

sketched in Fig. P7–10. What are the primary dimensions of 
moment of force? List its units in primary SI units and in 
primary English units.

7–11  What are the primary dimensions of electric voltage 
(E)? (Hint: Make use of the fact that electric power is equal 
to voltage times current.)

7–12  You are probably familiar with Ohm’s law for electric 
circuits (Fig. P7–12), where DE is the voltage difference or 
potential across the resistor, I is the electric current passing 
through the resistor, and R is the electrical resistance. What 
are the primary dimensions of electrical resistance?  Answer: 

{m1L2t23I22}

TABLE P7–5

Parameter Parameter Primary

Name Symbol Dimensions

Acceleration a L1t22

Angle u, f, etc. 1 (none)

Density r m1L23

Force F m1L1t22

Frequency f t21

Pressure P m1L21t22

Surface tension ss m1t22

Velocity V L1t21

Viscosity m m1L21t21

Volume flow rate V
#
 L3t21

7

N
14.0067

8

O
15.9994

6

C
12.011

15

P
30.9738

16

S
32.060

14

Si
28.086

FIGURE P7–7

F

M = r 3 F

Point O

r

→

→

→→ →

FIGURE P7–10

I
R

ΔE � IR

FIGURE P7–12
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7–13  Write the primary dimensions of each of the follow-
ing variables, showing all your work: (a) acceleration a; 
(b) angular velocity v; (c) angular acceleration a.

7–14  Angular momentum, also called moment of momentum 
( H
!
), is formed by the cross product of a moment arm (r

!
) and 

the linear momentum (mV
!
) of a fluid particle, as sketched 

in Fig. P7–14. What are the primary dimensions of angular 
momentum? List the units of angular momentum in primary 
SI units and in primary English units.  Answers: {m1L2t21}, 

kg·m2/s, lbm·ft2/s

7–15  Write the primary dimensions of each of the following 
variables, showing all your work: (a) specific heat at constant 
pressure cp; (b) specific weight rg; (c) specific enthalpy h.

7–16  Thermal conductivity k is a measure of the ability of 
a material to conduct heat (Fig. P7–16). For conduction heat 
transfer in the x-direction through a surface normal to the 
x-direction, Fourier’s law of heat conduction is expressed as

Q
#

conduction 5 2kA 
dT

dx

where Q
.

conduction is the rate of heat transfer and A is the area 
normal to the direction of heat transfer. Determine the pri-
mary dimensions of thermal conductivity (k). Look up a value 
of k in the appendices and verify that its SI units are consistent 
with your result. In particular, write the primary SI units of k.

7–17  Write the primary dimensions of each of the follow-
ing variables from the study of convection heat transfer 
(Fig. P7–17), showing all your work: (a) heat generation rate g

.
 

(Hint: rate of conversion of thermal energy per unit volume); 
(b) heat flux q

.
 (Hint: rate of heat transfer per unit area); (c) heat 

transfer coefficient h (Hint: heat flux per unit temperature 
difference).

H = r 3 mV

Point O

mV

Fluid
particle

r

→

→

→→→

FIGURE P7–14

7–18  Thumb through the appendices of your thermodynam-
ics book, and find three properties or constants not mentioned 
in Probs. 7–1 to 7–17. List the name of each property or con-
stant and its SI units. Then write out the primary dimensions 
of each property or constant.

7–19E  Thumb through the appendices of this book and/or 
your thermodynamics book, and find three properties or con-
stants not mentioned in Probs. 7–1 to 7–17. List the name of 
each property or constant and its English units. Then write 
out the primary dimensions of each property or constant.

Dimensional Homogeneity

7–20C  Explain the law of dimensional homogeneity in sim-
ple terms.

7–21  In Chap. 4, we defined the material acceleration, 
which is the acceleration following a fluid particle,

 a
!
(x, y, z, t) 5

0V
!

0t
1 (V

!
· =
!
 )V
!

(a) What are the primary dimensions of the gradient operator 
=
→

? (b) Verify that each additive term in the equation has the 
same dimensions.  Answers: (a) {L21}; (b) {L1t22}

T1 T2

A
k

x

Qconduction
•

FIGURE P7–16

7–22  Newton’s second law is the foundation for the differ-
ential equation of conservation of linear momentum (to be 
discussed in Chap. 9). In terms of the material acceleration 

q•

g•

h =
q•

Ts – T∞

T∞

Ts

FIGURE P7–17

V 5 V(x, y, z, t)

F

(x, y, z)

Fluid particle at time t

Fluid particle at time t 1 dt

a 5 a(x, y, z, t)
m

→ →

→

→→

FIGURE P7–21
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following a fluid particle (Fig. P7–21), we write Newton’s 
second law as follows: 

F
!
5 ma

!
 5 ma 0V!

0t
1 (V

!
·=
!
 )V
!b

Or, dividing both sides by the mass m of the fluid particle,

F
!

m
5
0V
!

0t
1 (V

!
·=
!
 )V
!

Write the primary dimensions of each additive term in the 
(second) equation, and verify that the equation is dimension-
ally homogeneous. Show all your work.

7–23  In Chap. 9, we discuss the differential equation for 
conservation of mass, the continuity equation. In cylindrical 
coordinates, and for steady flow,

1
r
 
0(rur)

0r
1

1
r
 
0uu
0u

1
0uz

0z
5 0

Write the primary dimensions of each additive term in the 
equation, and verify that the equation is dimensionally homo-
geneous. Show all your work.

7–24  The Reynolds transport theorem (RTT) is discussed in 
Chap. 4. For the general case of a moving and/or deforming 
control volume, we write the RTT as follows:

dBsys

dt
5

d

 dt
  #

 

CV
  rb dV 1 #

 

CS
  rbV

!
r·n
!
 dA

where V
!
r is the relative velocity, i.e., the velocity of the fluid 

relative to the control surface. Write the primary dimensions 
of each additive term in the equation, and verify that the 
equation is dimensionally homogeneous. Show all your work. 
(Hint: Since B can be any property of the flow—scalar, vec-
tor, or even tensor—it can have a variety of dimensions. So, 
just let the dimensions of B be those of B itself, {B}. Also, b 
is defined as B per unit mass.)

7–25  An important application of fluid mechanics is the 
study of room ventilation. In particular, suppose there is a 
source S (mass per unit time) of air pollution in a room of 
volume V  (Fig. P7–25). Examples include carbon monoxide 
from cigarette smoke or an unvented kerosene heater, gases 
like ammonia from household cleaning products, and vapors 
given off by evaporation of volatile organic compounds 
(VOCs) from an open container. We let c represent the mass 
concentration (mass of contaminant per unit volume of air).  
V
#
 is the volume flow rate of fresh air entering the room. If 

the room air is well mixed so that the mass concentration c is 
uniform throughout the room, but varies with time, the differ-
ential equation for mass concentration in the room as a func-
tion of time is

V 
dc

dt
5 S 2 V

#
c 2 cAs kw

where kw is an adsorption coefficient and As is the surface area 
of walls, floors, furniture, etc., that adsorb some of the contam-
inant. Write the primary dimensions of the first three terms in 
the equation (including the term on the left side), and verify 
that those terms are dimensionally homogeneous. Then deter-
mine the dimensions of kw. Show all your work.

7–26  In Chap. 4 we defined volumetric strain rate as the 
rate of increase of volume of a fluid element per unit volume 
(Fig. P7–26). In Cartesian coordinates we write the volumet-
ric strain rate as

1

V
 
DV
Dt

5
0u
0x

1
0v
0y

1
0w
0z

Write the primary dimensions of each additive term, and ver-
ify that the equation is dimensionally homogeneous. Show all 
your work.

Supply Exhaust

c(t)

As
kw S

V
V
⋅

FIGURE P7–25

Time = t1
Time = t2

Volume = V2

Volume = V1

FIGURE P7–26

7–27  Cold water enters a pipe, where it is heated by an 
external heat source (Fig. P7–27). The inlet and outlet water 
temperatures are Tin and Tout, respectively. The total rate of 
heat transfer Q

.
 from the surroundings into the water in the 

pipe is

Q
#

5 m
#
cp(Tout 2 Tin)

where m
.
 is the mass flow rate of water through the pipe, and 

cp is the specific heat of the water. Write the primary dimen-
sions of each additive term in the equation, and verify that the 
equation is dimensionally homogeneous. Show all your work.
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Nondimensionalization of Equations

7–28C  What is the primary reason for nondimensionaliz-
ing an equation?

7–29  Recall from Chap. 4 that the volumetric strain rate is 
zero for a steady incompressible flow. In Cartesian coordi-
nates we express this as

0u
0x

1
0v
0y

1
0w
0z

5 0

Suppose the characteristic speed and characteristic length 
for a given flow field are V and L, respectively (Fig. P7–29). 
Define the following dimensionless variables,

x* 5
x

L
, y* 5

y

L
, z* 5

z

L
,

u* 5
u

V
, v* 5

v

V
, and  w* 5

w

V
 

Nondimensionalize the equation, and identify any established 
(named) dimensionless parameters that may appear. Discuss.

t* 5 ft, V* 5
V
L3, x* 5

x

L
, y* 5

y

L
,

z* 5
z

L
, u* 5

u

V
, v* 5

v

V
, and  w* 5

w

V

Nondimensionalize the equation and identify any established 
(named) dimensionless parameters that may appear.

V

L

FIGURE P7–29

ƒ5 frequency of oscillation

L

V

V

Time t1 Time t2 Time t3

FIGURE P7–30

7–31  In Chap. 9, we define the stream function c for two-
dimensional incompressible flow in the xy-plane,

u 5
0c
0y
  v 5 2

0c
0x

where u and v are the velocity components in the x- and 
y-directions, respectively. (a) What are the primary dimen-
sions of c? (b) Suppose a certain two-dimensional flow 
has a characteristic length scale L and a characteristic time 
scale t. Define dimensionless forms of variables x, y, u, v, 
and c. (c) Rewrite the equations in nondimensional form, 
and identify any established dimensionless parameters that 
may appear.

7–32  In an oscillating incompressible flow field the force 
per unit mass acting on a fluid particle is obtained from New-
ton’s second law in intensive form (see Prob. 7–22),

F
!

m
5
0V
!

0t
1 (V

!
·=
!
 )V
!

Suppose the characteristic speed and characteristic length for 
a given flow field are V` and L, respectively. Also suppose 
that v is a characteristic angular frequency (rad/s) of the 
oscillation (Fig. P7–32). Define the following nondimension-
alized variables,

t* 5 vt, x
!
* 5

x
!

L
, =
!
* 5 L=

!
,  and  V

!
* 5

V
!

Vq

Q = mcp(Tout – Tin)

m

Tin Tout

• •

•

FIGURE P7–27

7–30  In an oscillating compressible flow field the volumet-
ric strain rate is not zero, but varies with time following a 
fluid particle. In Cartesian coordinates we express this as

1

V
 
DV
Dt

5
0u
0x

1
0v
0y

1
0w
0z

Suppose the characteristic speed and characteristic length for 
a given flow field are V and L, respectively. Also suppose that 
f is a characteristic frequency of the oscillation (Fig. P7–30). 
Define the following dimensionless variables,
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Since there is no given characteristic scale for the force per 
unit mass acting on a fluid particle, we assign one, noting 
that {F

!
/m} 5 {L/t2}. Namely, we let

(F
!
/m)* 5

1

v2L
  F
!
/m

Nondimensionalize the equation of motion and identify any 
established (named) dimensionless parameters that may 
appear.

Nondimensionalize the equation, and generate an expression 
for the pressure coefficient Cp at any point in the flow where 
the Bernoulli equation is valid. Cp is defined as

Cp 5
P 2 Pq

1
2rV

2
q

 

Answer: Cp 5 1 2 V2/V2
` 

7–34  Consider ventilation of a well-mixed room as in 
Fig. P7–25. The differential equation for mass concentration 
in the room as a function of time is given in Prob. 7–25 and 
is repeated here for convenience,

V  

dc

dt
5 S 2 V

#
c 2 cAs kw

There are three characteristic parameters in such a situation: 
L, a characteristic length scale of the room (assume L 5 V 1/3); 
V
#
, the volume flow rate of fresh air into the room, and climit, 

the maximum mass concentration that is not harmful. (a) Using 
these three characteristic parameters, define dimensionless 
forms of all the variables in the equation. (Hint: For example, 
define c* 5 c/climit.) (b) Rewrite the equation in dimension-
less form, and identify any established dimensionless groups 
that may appear.

Dimensional Analysis and Similarity

7–35C  List the three primary purposes of dimensional 
analysis.

7–36C  List and describe the three necessary conditions for 
complete similarity between a model and a prototype.

7–37  A student team is to design a human-powered subma-
rine for a design competition. The overall length of the pro-
totype submarine is 4.85 m, and its student designers hope 
that it can travel fully submerged through water at 0.440 m/s. 
The water is freshwater (a lake) at T 5 15°C. The design 
team builds a one-fifth scale model to test in their university’s 
wind tunnel (Fig. P7–37). A shield surrounds the drag balance 
strut so that the aerodynamic drag of the strut itself does not 
influence the measured drag. The air in the wind tunnel is at 

V

F/m
a

m
V∞

v

L

→

→
→

FIGURE P7–32

P∞, r

V∞

Wind tunnel test section

Model

Traverse
Crank

Pressure
probe

Strut

FIGURE P7–33

P∞, r

FDV

Wind tunnel test section

Model

Shield

Drag balance

Strut

FIGURE P7–37

7–33  A wind tunnel is used to measure the pressure distri-
bution in the airflow over an airplane model (Fig. P7–33). The 
air speed in the wind tunnel is low enough that compressible 
effects are negligible. As discussed in Chap. 5, the Bernoulli 
equation approximation is valid in such a flow situation every-
where except very close to the body surface or wind tunnel 
wall surfaces and in the wake region behind the model. Far 
away from the model, the air flows at speed V` and pressure 
P`, and the air density r is approximately constant. Gravita-
tional effects are generally negligible in airflows, so we write 
the Bernoulli equation as

P 1
1

2
 rV 2 5 Pq 1

1

2
 rV   

2
q
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25°C and at one standard atmosphere pressure. At what air 
speed do they need to run the wind tunnel in order to achieve 
similarity?  Answer: 30.2 m/s

7–38  Repeat Prob. 7–37 with all the same conditions except 
that the only facility available to the students is a much smaller 
wind tunnel. Their model submarine is a one-twenty-fourth 
scale model instead of a one-fifth scale model. At what air 
speed do they need to run the wind tunnel in order to achieve 
similarity? Do you notice anything disturbing or suspicious 
about your result? Discuss your results.

7–39  This is a follow-up to Prob. 7–37. The students mea-
sure the aerodynamic drag on their model submarine in the 
wind tunnel (Fig. P7–37). They are careful to run the wind 
tunnel at conditions that ensure similarity with the prototype 
submarine. Their measured drag force is 5.70 N. Estimate the 
drag force on the prototype submarine at the conditions given 
in Prob. 7–37.  Answer: 25.5 N

7–40E  A lightweight parachute is being designed for mili-
tary use (Fig. P7–40E). Its diameter D is 24 ft and the total 
weight W of the falling payload, parachute, and equipment 
is 230 lbf. The design terminal settling speed Vt of the para-
chute at this weight is 18 ft/s. A one-twelfth scale model 
of the parachute is tested in a wind tunnel. The wind tun-
nel temperature and pressure are the same as those of the 
prototype, namely 60°F and standard atmospheric pressure. 
(a) Calculate the drag coefficient of the prototype. (Hint: At 
terminal settling speed, weight is balanced by aerodynamic 
drag.) (b) At what wind tunnel speed should the wind tunnel 
be run in order to achieve dynamic similarity? (c) Estimate 
the aerodynamic drag of the model parachute in the wind 
tunnel (in lbf).

7–41  Some wind tunnels are pressurized. Discuss why a 
research facility would go through all the extra trouble and 
expense to pressurize a wind tunnel. If the air pressure in the 
tunnel increases by a factor of 1.8, all else being equal (same 
wind speed, same model, etc.), by what factor will the Reyn-
olds number increase?

7–42E  The aerodynamic drag of a new sports car is to be 
predicted at a speed of 60.0 mi/h at an air temperature of 
25°C. Automotive engineers build a one-third scale model of 
the car (Fig. P7–42E) to test in a wind tunnel. The temperature 
of the wind tunnel air is also 25°C. The drag force is measured 
with a drag balance, and the moving belt is used to simulate 
the moving ground (from the car’s frame of reference). Deter-
mine how fast the engineers should run the wind tunnel to 
achieve similarity between the model and the prototype.

Payload

Vt

D

FIGURE P7–40E

Moving belt Drag balance

FD, m

Vm

Lm

rm, mm

Wind tunnel test section

FIGURE P7–42E

7–43E  This is a follow-up to Prob. 7–42E. The aerody-
namic drag on the model in the wind tunnel (Fig. P7–42E) is 
measured to be 33.5 lbf when the wind tunnel is operated at 
the speed that ensures similarity with the prototype car. Esti-
mate the drag force (in lbf) on the prototype car at the condi-
tions given in Prob. 7–42E.

7–44  Consider the common situation in which a researcher 
is trying to match the Reynolds number of a large prototype 
vehicle with that of a small-scale model in a wind tunnel. 
Is it better for the air in the wind tunnel to be cold or hot? 
Why? Support your argument by comparing wind tunnel air 
at 10°C and at 40°C, all else being equal.

7–45E  Some students want to visualize flow over a spin-
ning baseball. Their fluids laboratory has a nice water tun-
nel into which they can inject multicolored dye streaklines, 
so they decide to test a spinning baseball in the water tun-
nel (Fig. P7–45E). Similarity requires that they match both 
the Rey n olds number and the Strouhal number between their 
model test and the actual baseball that moves through the air 
at 85 mi/h and spins at 320 rpm. Both the air and the water 
are at 68°F. At what speed should they run the water in the 
water tunnel, and at what rpm should they spin their base-
ball?  Answers: 5.63 mi/h, 21.2 rpm
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Dimensionless Parameters and the Method 
of Repeating Variables

7–46  Using primary dimensions, verify that the Archimedes 
number (Table 7–5) is indeed dimensionless.

7–47  Using primary dimensions, verify that the Grashof 
number (Table 7–5) is indeed dimensionless.

7–48  Using primary dimensions, verify that the Rayleigh 
number (Table 7–5) is indeed dimensionless. What other 
established nondimensional parameter is formed by the ratio 
of Ra and Gr?  Answer: the Prandtl number

7–49  A periodic Kármán vortex street is formed when a 
uniform stream flows over a circular cylinder (Fig. P7–49). 
Use the method of repeating variables to generate a dimen-
sionless relationship for Kármán vortex shedding frequency fk 
as a function of free-stream speed V, fluid density r, fluid 
viscosity m, and cylinder diameter D. Show all your work. 
Answer: St 5 f (Re)

r, m

V
D

fk

FIGURE P7–49

W

r, m

v

•

D

FIGURE P7–51

V

r, m

Water tunnel test section

Spinning
baseball

Shield

MotorDye
injection

Strut

n

FIGURE P7–45E

7–50  Repeat Prob. 7–49, but with an additional independent 
parameter included, namely, the speed of sound c in the fluid. 
Use the method of repeating variables to generate a dimen-
sionless relationship for Kármán vortex shedding frequency 
fk as a function of free-stream speed V, fluid density r, fluid 
viscosity m, cylinder diameter D, and speed of sound c. Show 
all your work.

7–51  A stirrer is used to mix chemicals in a large tank 
(Fig. P7–51). The shaft power W

.
 supplied to the stirrer blades 

is a function of stirrer diameter D, liquid density r, liquid 
viscosity m, and the angular velocity v of the spinning 

blades. Use the method of repeating variables to generate a 
dimensionless relationship between these parameters. Show 
all your work and be sure to identify your P groups, modify-
ing them as necessary.  Answer: Np 5 f (Re)

7–52  Repeat Prob. 7–51 except do not assume that the tank 
is large. Instead, let tank diameter Dtank and average liquid 
depth htank be additional relevant parameters.

7–53  Albert Einstein is pondering how to write his (soon-
to-be-famous) equation. He knows that energy E is a function 
of mass m and the speed of light c, but he doesn't know the 
functional relationship (E 5 m2c? E 5 mc4?). Pretend that 
Albert knows nothing about dimensional analysis, but since 
you are taking a fluid mechanics class, you help Albert 
come up with his equation. Use the step-by-step method of 
repeating variables to generate a dimensionless relationship 
between these parameters, showing all of your work. Com-
pare this to Einstein's famous equation—does dimensional 
analysis give you the correct form of the equation?

FIGURE P7–53

7–54  The Richardson number is defined as

Ri 5
L5g Dr

rV
#

 2

Miguel is working on a problem that has a characteristic 
length scale L, a characteristic velocity V, a characteristic 
density difference Dr, a characteristic (average) density r, 
and of course the gravitational constant g, which is always 
available. He wants to define a Richardson number, but does 
not have a characteristic volume flow rate. Help Miguel 
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define a characteristic volume flow rate based on the param-
eters available to him, and then define an appropriate Rich-
ardson number in terms of the given parameters.

7–55  Consider fully developed Couette flow—flow between 
two infinite parallel plates separated by distance h, with the 
top plate moving and the bottom plate stationary as illus-
trated in Fig. P7–55. The flow is steady, incompressible, and 
two-dimensional in the xy-plane. Use the method of repeat-
ing variables to generate a dimensionless relationship for the 
x-component of fluid velocity u as a function of fluid viscosity m, 
top plate speed V, distance h, fluid density r, and distance y. 
Show all your work.  Answer: u/ V 5 f (Re, y/h)

7–59  Repeat Prob. 7–57, except let the speed of sound c 
in an ideal gas be a function only of absolute temperature T 
and specific ideal gas constant Rgas. Showing all your work, 
use dimensional analysis to find the functional relationship 
between these parameters.  Answer:  c/!Rgas T  5 constant

7–60  Repeat Prob. 7–57, except let speed of sound c in an 
ideal gas be a function only of pressure P and gas density r. 
Showing all your work, use dimensional analysis to find the 
functional relationship between these parameters. Verify that 
your results are consistent with the equation for speed of 
sound in an ideal gas, c 5 !kRgas T  .

7–61  When small aerosol particles or microorganisms move 
through air or water, the Reynolds number is very small 
(Re ,, 1). Such flows are called creeping flows. The aero-
dynamic drag on an object in creeping flow is a function 
only of its speed V, some characteristic length scale L of the 
object, and fluid viscosity m (Fig. P7–61). Use dimensional 
analysis to generate a relationship for FD as a function of the 
independent variables.

r, m

h y
u

V

x

FIGURE P7–55

c

k, T, Rgas

FIGURE P7–57

V

L

FD

m

FIGURE P7–61

7–62  A tiny aerosol particle of density rp and character-
istic diameter Dp falls in air of density r and viscosity m 
(Fig. P7–62). If the particle is small enough, the creeping 
flow approximation is valid, and the terminal settling speed 
of the particle V depends only on Dp, m, gravitational con-
stant g, and the density difference (rp 2 r). Use dimensional 
analysis to generate a relationship for V as a function of the 
independent variables. Name any established dimensionless 
parameters that appear in your analysis.

7–56  Consider developing Couette flow—the same flow as 
Prob. 7–55 except that the flow is not yet steady-state, but is 
developing with time. In other words, time t is an additional 
parameter in the problem. Generate a dimensionless relation-
ship between all the variables.

7–57  The speed of sound c in an ideal gas is known to be a 
function of the ratio of specific heats k, absolute temperature 
T, and specific ideal gas constant Rgas (Fig. P7–57). Showing 
all your work, use dimensional analysis to find the functional 
relationship between these parameters.

7–58  Repeat Prob. 7–57, except let the speed of sound c in 
an ideal gas be a function of absolute temperature T, universal 
ideal gas constant Ru, molar mass (molecular weight) M of 
the gas, and ratio of specific heats k. Showing all your work, 
use dimensional analysis to find the functional relationship 
between these parameters.

V

g

r, m
Dp

rp →

FIGURE P7–62

7–63  Combine the results of Probs. 7–61 and 7–62 to gener-
ate an equation for the settling speed V of an aerosol particle 
falling in air (Fig. P7–62). Verify that your result is consistent 
with the functional relationship obtained in Prob. 7–62. For 
consistency, use the notation of Prob. 7–62. (Hint: For a particle 
falling at constant settling speed, the particle’s net weight must 
equal its aerodynamic drag. Your final result should be an equa-
tion for V that is valid to within some unknown constant.)
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7–64  You will need the results of Prob. 7–63 to do this 
problem. A tiny aerosol particle falls at steady settling speed 
V. The Reynolds number is small enough that the creeping 
flow approximation is valid. If the particle size is doubled, all 
else being equal, by what factor will the settling speed go up? 
If the density difference (rp 2 r) is doubled, all else being 
equal, by what factor will the settling speed go up?

7–65  An incompressible fluid of density r and viscosity m 
flows at average speed V through a long, horizontal section of
round pipe of length L, inner diameter D, and inner wall 
roughness height « (Fig. P7–65). The pipe is long enough 
that the flow is fully developed, meaning that the velocity 
profile does not change down the pipe. Pressure decreases 
(linearly) down the pipe in order to “push” the fluid through 
the pipe to overcome friction. Using the method of repeating 
variables, develop a nondimensional relationship between pres-
sure drop DP 5 P1 2 P2 and the other parameters in the prob-
lem. Be sure to modify your P groups as necessary to achieve 
established nondimensional parameters, and name them. 
(Hint: For consistency, choose D rather than L or « as one 
of your repeating parameters.)  Answer: Eu 5 f (Re, «/D, L/D)

result to the law of universal gravitation to find the form of 
the function (e.g., P1 5 P2

2 or some other functional form).

7–68  Jen is working on a spring–mass–damper system, 
as shown in Fig. P7–68. She remembers from her dynamic 
systems class that the damping ratio z is a nondimensional 
property of such systems and that z is a function of spring 
constant k, mass m, and damping coefficient c. Unfortunately, 
she does not recall the exact form of the equation for z. How-
ever, she is taking a fluid mechanics class and decides to use 
her newly acquired knowledge about dimensional analysis to 
recall the form of the equation. Help Jen develop the equa-
tion for z using the method of repeating variables, showing 
all of your work. (Hint: Typical units for k are N/m and those 
for c are N·s/m.)

D

P1 P2

V
r, m

e

L

FIGURE P7–65

Spring
(k)

Mass (m)

Damper
(c)

FIGURE P7–68

7–66  Consider laminar flow through a long section of pipe, as 
in Fig. P7–65. For laminar flow it turns out that wall roughness 
is not a relevant parameter unless « is very large. The volume
flow rate V

#
 through the pipe is a function of pipe diameter D, 

fluid viscosity m, and axial pressure gradient dP/dx. If pipe 
diameter is doubled, all else being equal, by what factor will 
volume flow rate increase? Use dimensional analysis.

7–67  One of the first things you learn in physics class is the

law of universal gravitation, F 5 G 
m1m2

r2
, where F is the

attractive force between two bodies, m1 and m2 are the masses 
of the two bodies, r is the distance between the two bodies,
and G is the universal gravitational constant equal to 
(6.67428 6 0.00067) 3 10211 [the units of G are not given 
here]. (a) Calculate the SI units of G. For consistency, give 
your answer in terms of kg, m, and s. (b) Suppose you don't 
remember the law of universal gravitation, but you are clever 
enough to know that F is a function of G, m1, m2, and r. Use 
dimensional analysis and the method of repeating variables 
(show all your work) to generate a nondimensional expres-
sion for F 5 F(G, m1, m2, r). Give your answer as P1 5 
function of (P2, P3, …). (c) Dimensional analysis cannot 
yield the exact form of the function. However, compare your 

7–69  Bill is working on an electrical circuit problem. He 
remembers from his electrical engineering class that voltage 
drop DE is a function of electrical current I and electrical 
resistance R. Unfortunately, he does not recall the exact form 
of the equation for DE. However, he is taking a fluid mechan-
ics class and decides to use his newly acquired knowledge 
about dimensional analysis to recall the form of the equation. 
Help Bill develop the equation for DE using the method of 
repeating variables, showing all of your work. Compare this 
to Ohm’s law—does dimensional analysis give you the correct 
form of the equation?

7–70  A boundary layer is a thin region (usually along a wall) 
in which viscous forces are significant and within which the 
flow is rotational. Consider a boundary layer growing along a 
thin flat plate (Fig. P7–70). The flow is steady. The boundary 
layer thickness d at any downstream distance x is a function 
of x, free-stream velocity V`, and fluid properties r (density) 

x

y

V

d(x)r, m

FIGURE P7–70

291-346_cengel_ch07.indd   336 12/17/12   12:24 PM



CHAPTER 7
337

and m (viscosity). Use the method of repeating variables to 
generate a dimensionless relationship for d as a function of 
the other parameters. Show all your work.

7–71  A liquid of density r and viscosity m is pumped at 
volume flow rate V

#
 through a pump of diameter D. The blades 

of the pump rotate at angular velocity v. The pump supplies 
a pressure rise DP to the liquid. Using dimensional analysis, 
generate a dimensionless relationship for DP as a function of 
the other parameters in the problem. Identify any established 
nondimensional parameters that appear in your result. Hint: 
For consistency (and whenever possible), it is wise to choose 
a length, a density, and a velocity (or angular velocity) as 
repeating variables.

7–72  A propeller of diameter D rotates at angular veloc-
ity v in a liquid of density r and viscosity m. The required 
torque T is determined to be a function of D, v, r, and m. 
Using dimensional analysis, generate a dimensionless rela-
tionship. Identify any established nondimensional parameters 
that appear in your result. Hint: For consistency (and when-
ever possible), it is wise to choose a length, a density, and a 
velocity (or angular velocity) as repeating variables.

7–73  Repeat Prob. 7–72 for the case in which the propeller 
operates in a compressible gas instead of a liquid.

7–74  In the study of turbulent flow, turbulent viscous dis-
sipation rate e (rate of energy loss per unit mass) is known 
to be a function of length scale l and velocity scale u9 of 
the large-scale turbulent eddies. Using dimensional analysis 
(Buckingham pi and the method of repeating variables) and 
showing all of your work, generate an expression for e as a 
function of l and u9.

7–75  The rate of heat transfer to water flowing in a pipe was 
analyzed in Prob. 7–27. Let us approach that same problem, 
but now with dimensional analysis. Cold water enters a pipe, 
where it is heated by an external heat source (Fig. P7–75). The 
inlet and outlet water temperatures are Tin and Tout, respec-
tively. The total rate of heat transfer Q

.
 from the surroundings 

into the water in the pipe is known to be a function of mass 
flow rate m

.
, the specific heat cp of the water, and the tem-

perature difference between the incoming and outgoing water. 
Showing all your work, use dimensional analysis to find 
the functional relationship between these parameters, and com-
pare to the analytical equation given in Prob. 7–27. (Note: We 
are pretending that we do not know the analytical equation.)

7–76  Consider a liquid in a cylindrical container in which 
both the container and the liquid are rotating as a rigid body 
(solid-body rotation). The elevation difference h between the 
center of the liquid surface and the rim of the liquid surface 
is a function of angular velocity v, fluid density r, gravitational 
acceleration g, and radius R (Fig. P7–76). Use the method of 
repeating variables to find a dimensionless relationship between 
the parameters. Show all your work.  Answer: h/R 5 f (Fr)

7–77  Consider the case in which the container and liquid of 
Prob. 7–76 are initially at rest. At t 5 0 the container begins 
to rotate. It takes some time for the liquid to rotate as a rigid 
body, and we expect that the liquid’s viscosity is an addi-
tional relevant parameter in the unsteady problem. Repeat 
Prob. 7–76, but with two additional independent parameters 
included, namely, fluid viscosity m and time t. (We are inter-
ested in the development of height h as a function of time 
and the other parameters.)

Experimental Testing and Incomplete Similarity

7–78C  Although we usually think of a model as being 
smaller than the prototype, describe at least three situations in 
which it is better for the model to be larger than the prototype.

7–79C  Discuss the purpose of a moving ground belt in 
wind tunnel tests of flow over model automobiles. Think of 
an alternative if a moving ground belt is unavailable.

7–80C  Consider again the model truck example discussed 
in Section 7–5, except that the maximum speed of the wind 
tunnel is only 50 m/s. Aerodynamic force data are taken for 
wind tunnel speeds between V 5 20 and 50 m/s—assume the 
same data for these speeds as those listed in Table 7–7. Based 
on these data alone, can the researchers be confident that 
they have reached Reynolds number independence?

Q
•

m•

Tin

cp = specific heat of the water

Tout

FIGURE P7–75
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7–81C  Define wind tunnel blockage. What is the rule of 
thumb about the maximum acceptable blockage for a wind 
tunnel test? Explain why there would be measurement errors 
if the blockage were significantly higher than this value.

7–82C  What is the rule of thumb about the Mach number 
limit in order that the incompressible flow approximation is 
reasonable? Explain why wind tunnel results would be incor-
rect if this rule of thumb were violated.

7–83  A one-sixteenth scale model of a new sports car is 
tested in a wind tunnel. The prototype car is 4.37 m long, 
1.30 m tall, and 1.69 m wide. During the tests, the moving 
ground belt speed is adjusted so as to always match the speed 
of the air moving through the test section. Aerodynamic drag 
force FD is measured as a function of wind tunnel speed; the 
experimental results are listed in Table P7–83. Plot drag coef-
ficient CD as a function of the Reynolds number Re, where 
the area used for calculation of CD is the frontal area of the 
model car (assume A 5 width 3 height), and the length scale 
used for calculation of Re is car width W. Have we achieved 
dynamic similarity? Have we achieved Reynolds number 
independence in our wind tunnel test? Estimate the aerody-
namic drag force on the prototype car traveling on the high-
way at 31.3 m/s (70 mi/h). Assume that both the wind tunnel 
air and the air flowing over the prototype car are at 25°C and 
atmospheric pressure.  Answers: no, yes, 408 N

TABLE P7–84

 V, m/s DP, N/m2

 0.5 77.0

 1 306

 2 1218

 4 4865

 6 10,920

 8 19,440

 10 30,340

 15 68,330

 20 121,400

 25 189,800

 30 273,200

 35 372,100

 40 485,300

 45 614,900

 50 758,700

TABLE P7–83

 V, m/s FD, N

 10 0.29

 15 0.64

 20 0.96

 25 1.41

 30 1.55

 35 2.10

 40 2.65

 45 3.28

 50 4.07

 55 4.91

7–84  Water at 20°C flows through a long, straight pipe. 
The pressure drop is measured along a section of the pipe of 
length L 5 1.3 m as a function of average velocity V through 
the pipe (Table P7–84). The inner diameter of the pipe is 
D 5 10.4 cm. (a) Nondimensionalize the data and plot the 
Euler number as a function of the Reynolds number. Has 
the experiment been run at high enough speeds to achieve 
Reynolds number independence? (b) Extrapolate the experi-
mental data to predict the pressure drop at an average speed 
of 80 m/s.  Answer: 1,940,000 N/m2

7–85  In the model truck example discussed in Section 7–5, 
the wind tunnel test section is 3.5 m long, 0.85 m tall, and 
0.90 m wide. The one-sixteenth scale model truck is 0.991 m
long, 0.257 m tall, and 0.159 m wide. What is the wind tunnel 
blockage of this model truck? Is it within acceptable limits 
according to the standard rule of thumb?

7–86E  A small wind tunnel in a university’s undergradu-
ate fluid flow laboratory has a test section that is 20 by
20 in in cross section and is 4.0 ft long. Its maximum 
speed is 145 ft/s. Some students wish to build a model 
18-wheeler to study how aerodynamic drag is affected by 
rounding off the back of the trailer. A full-size (prototype) 
tractor-trailer rig is 52 ft long, 8.33 ft wide, and 12 ft high. 
Both the air in the wind tunnel and the air flowing over the 
prototype are at 80°F and atmospheric pressure. (a) What 
is the largest scale model they can build to stay within the
rule-of-thumb guidelines for blockage? What are the dimen-
sions of the model truck in inches? (b) What is the maximum 
model truck Reynolds number achievable by the students? 
(c) Are the students able to achieve Reynolds number inde-
pendence? Discuss.

7–87  Use dimensional analysis to show that in a problem 
involving shallow water waves (Fig. P7–87), both the Froude 
number and the Reynolds number are relevant dimensionless 
parameters. The wave speed c of waves on the surface of a 
liquid is a function of depth h, gravitational acceleration g, 
fluid density r, and fluid viscosity m. Manipulate your P’s to 
get the parameters into the following form:

Fr 5
c"gh

5 f (Re)  where Re 5
rch

m
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Review Problems

7–88C  There are many established nondimensional param-
eters besides those listed in Table 7–5. Do a literature search 
or an Internet search and find at least three established, 
named nondimensional parameters that are not listed in 
Table 7–5. For each one, provide its definition and its ratio 
of significance, following the format of Table 7–5. If your 
equation contains any variables not identified in Table 7–5, 
be sure to identify those variables.

7–89C  Think about and describe a prototype flow and a 
corresponding model flow that have geometric similarity, but 
not kinematic similarity, even though the Reynolds numbers 
match. Explain.

7–90C  For each statement, choose whether the statement is 
true or false and discuss your answer briefly. 

(a)  Kinematic similarity is a necessary and sufficient condi-
tion for dynamic similarity.

(b)  Geometric similarity is a necessary condition for dynamic 
similarity. 

(c)  Geometric similarity is a necessary condition for kine-
matic similarity. 

(d )  Dynamic similarity is a necessary condition for kinematic 
similarity.

7–91  Write the primary dimensions of each of the follow-
ing variables from the field of solid mechanics, showing all 
your work: (a) moment of inertia I; (b) modulus of elastic-
ity E, also called Young’s modulus; (c) strain «; (d) stress s. 
(e) Finally, show that the relationship between stress and strain 
(Hooke’s law) is a dimensionally homogeneous equation.

7–92  Force F is applied at the tip of a cantilever beam of 
length L and moment of inertia I (Fig. P7–92). The modu-
lus of elasticity of the beam material is E. When the force is 
applied, the tip deflection of the beam is zd. Use dimensional 
analysis to generate a relationship for zd as a function of the 
independent variables. Name any established dimensionless 
parameters that appear in your analysis.

7–93  An explosion occurs in the atmosphere when an anti-
aircraft missile meets its target (Fig. P7–93). A shock wave 
(also called a blast wave) spreads out radially from the 
explosion. The pressure difference across the blast wave DP 
and its radial distance r from the center are functions of time t, 
speed of sound c, and the total amount of energy E released 
by the explosion. (a) Generate dimensionless relationships 
between DP and the other parameters and between r and the 
other parameters. (b) For a given explosion, if the time t since 
the explosion doubles, all else being equal, by what factor 
will DP decrease?

r, m
h

c

g
→

FIGURE P7–87
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7–94  The Archimedes number listed in Table 7–5 is appro-
priate for buoyant particles in a fluid. Do a literature search 
or an Internet search and find an alternative definition 
of the Archimedes number that is appropriate for buoyant 
fluids (e.g., buoyant jets and buoyant plumes, heating and air-
conditioning applications). Provide its definition and its ratio of 
significance, following the format of Table 7–5. If your equa-
tion contains any variables not identified in Table 7–5, be sure 
to identify those variables. Finally, look through the established 
dimensionless parameters listed in Table 7–5 and find one that 
is similar to this alternate form of the Archi medes number.

7–95  Consider steady, laminar, fully developed, two-
dimensional Poiseuille flow—flow between two infinite paral-
lel plates separated by distance h, with both the top plate and 
bottom plate stationary, and a forced pressure gradient dP/dx 
driving the flow as illustrated in Fig. P7–95. (dP/dx is con-
stant and negative.) The flow is steady, incompressible, and 
two-dimensional in the xy-plane. The flow is also fully devel-
oped, meaning that the velocity profile does not change with 
downstream distance x. Because of the fully developed nature 
of the flow, there are no inertial effects and density does not 
enter the problem. It turns out that u, the velocity component 
in the x-direction, is a function of distance h, pressure gradient 
dP/dx, fluid viscosity m, and vertical coordinate y. Perform a 
dimensional analysis (showing all your work), and generate a 
dimensionless relationship between the given variables.

F

L

E, I zd

FIGURE P7–92
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7–96  Consider the steady, laminar, fully developed, two-
dimensional Poiseuille flow of Prob. 7–95. The maximum 
velocity umax occurs at the center of the channel. (a) Generate 
a dimensionless relationship for umax as a function of distance 
between plates h, pressure gradient dP/dx, and fluid viscos-
ity m. (b) If the plate separation distance h is doubled, all 
else being equal, by what factor will umax change? (c) If the 
pressure gradient dP/dx is doubled, all else being equal, by 
what factor will umax change? (d) How many experiments are 
required to describe the complete relationship between umax 
and the other parameters in the problem?

7–97  The pressure drop DP 5 P1 2 P2 through 
a long section of round pipe can be written 

in terms of the shear stress tw along the wall. Shown in 
Fig. P7–97 is the shear stress acting by the wall on the fluid. 
The shaded region is a control volume composed of the fluid 
in the pipe between axial locations 1 and 2. There are two 
dimensionless parameters related to the pressure drop: the 
Euler number Eu and the Darcy friction factor f. (a) Using the 
control volume sketched in Fig. P7–97, generate a relationship 
for f in terms of Eu (and any other properties or parameters 
in the problem as needed). (b) Using the experimental data 
and conditions of Prob. 7–84 (Table P7–84), plot the Darcy 
friction factor as a function of Re. Does f show Reynolds 
number independence at large values of Re? If so, what is the 
value of f at very high Re?

Answers: (a) f 5 2 

D

L
Eu; (b) yes, 0.0487

and we wish to define a Reynolds number. We create a length 
scale L 5 !A, and define

Re 5
rV"A

m

In similar fashion, define the desired established dimension-
less parameter for each case: (a) Define a Froude number, 
given V

#
9 5 volume flow rate per unit depth, length scale L, 

and gravitational constant g. (b) Define a Reynolds number, 
given V

#
9 5 volume flow rate per unit depth and kinematic 

viscosity n. (c) Define a Richardson number (see Table 7–5), 
given V

#
9 5 volume flow rate per unit depth, length scale L, 

characteristic density difference Dr, characteristic density r, 
and gravitational constant g.

7–99  A liquid of density r and viscosity m flows by grav-
ity through a hole of diameter d in the bottom of a tank of 
diameter D (Fig. P7–99). At the start of the experiment, the 
liquid surface is at height h above the bottom of the tank, 
as sketched. The liquid exits the tank as a jet with average 
velocity V straight down as also sketched. Using dimensional 
analysis, generate a dimensionless relationship for V as a 
function of the other parameters in the problem. Identify any 
established nondimensional parameters that appear in your 
result. (Hint: There are three length scales in this problem. 
For consistency, choose h as your length scale.)

1 2

P1
CV P2

tw

L

D
V

r, m

FIGURE P7–97
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FIGURE P7–95

7–100  Repeat Prob. 7–99 except for a different dependent 
parameter, namely, the time required to empty the tank tempty. 
Generate a dimensionless relationship for tempty as a function 
of the following independent parameters: hole diameter d, 
tank diameter D, density r, viscosity m, initial liquid surface 
height h, and gravitational acceleration g.

7–101  A liquid delivery system is being designed such that 
ethylene glycol flows out of a hole in the bottom of a large 
tank, as in Fig. P7–99. The designers need to predict how 
long it will take for the ethylene glycol to completely drain. 
Since it would be very expensive to run tests with a full-scale 
prototype using ethylene glycol, they decide to build a one-
quarter scale model for experimental testing, and they plan 
to use water as their test liquid. The model is geometrically 
similar to the prototype (Fig. P7–101). (a) The temperature 

h

D

d

r, m
g

V

→

FIGURE P7–99

7–98  Oftentimes it is desirable to work with an established 
dimensionless parameter, but the characteristic scales avail-
able do not match those used to define the parameter. In 
such cases, we create the needed characteristic scales based 
on dimensional reasoning (usually by inspection). Suppose 
for example that we have a characteristic velocity scale V, 
characteristic area A, fluid density r, and fluid viscosity m, 
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of the ethylene glycol in the prototype tank is 60°C, at which 
n 5 4.75 3 1026 m2/s. At what temperature should the water 
in the model experiment be set in order to ensure complete 
similarity between model and prototype? (b) The experiment 
is run with water at the proper temperature as calculated in 
part (a). It takes 3.27 min to drain the model tank. Predict 
how long it will take to drain the ethylene glycol from the 
prototype tank.  Answers: (a) 45.8°C, (b) 6.54 min

7–102  Liquid flows out of a hole in the bottom of a tank 
as in Fig. P7–99. Consider the case in which the hole is very 
small compared to the tank (d ,, D). Experiments reveal 
that average jet velocity V is nearly independent of d, D, r, or 
m. In fact, for a wide range of these parameters, it turns out 
that V depends only on liquid surface height h and gravita-
tional acceleration g. If the liquid surface height is doubled, 
all else being equal, by what factor will the average jet veloc-
ity increase?  Answer: !2

7–103  An aerosol particle of characteristic size Dp moves 
in an airflow of characteristic length L and characteristic 
velocity V. The characteristic time required for the particle to 
adjust to a sudden change in air speed is called the particle 
relaxation time tp,

tp 5
rp 

D2
p

18m

Verify that the primary dimensions of tp are time. Then cre-
ate a dimensionless form of tp, based on some characteris-
tic velocity V and some characteristic length L of the airflow 
(Fig. P7–103). What established dimensionless parameter do 
you create?

7–104  Compare the primary dimensions of each of the fol-
lowing properties in the mass-based primary dimension sys-
tem (m, L, t, T, I, C, N) to those in the force-based primary 
dimension system (F, L, t, T, I, C, N): (a) pressure or stress; 
(b)  moment or torque; (c) work or energy. Based on your 
results, explain when and why some authors prefer to use 
force as a primary dimension in place of mass.

7–105  The Stanton number is listed as a named, established 
nondimensional parameter in Table 7–5. However, careful 
analysis reveals that it can actually be formed by a combi-
nation of the Reynolds number, Nusselt number, and Prandtl 
number. Find the relationship between these four dimen-
sionless groups, showing all your work. Can you also form 
the Stanton number by some combination of only two other 
established dimensionless parameters?

7–106  Consider a variation of the fully developed Couette 
flow problem of Prob. 7–55—flow between two infinite paral-
lel plates separated by distance h, with the top plate moving 
at speed Vtop and the bottom plate moving at speed Vbottom as 
illustrated in Fig. P7–106. The flow is steady, incompressible, 
and two-dimensional in the xy-plane. Generate a dimension-
less relationship for the x-component of fluid velocity u as a 
function of fluid viscosity m, plate speeds Vtop and Vbottom, dis-
tance h, fluid density r, and distance y. (Hint: Think carefully 
about the list of parameters before rushing into the algebra.)
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7–107  What are the primary dimensions of electric charge q, 
the units of which are coulombs (C)? (Hint: Look up the fun-
damental definition of electric current.)

7–108  What are the primary dimensions of electrical capac-
itance C, the units of which are farads? (Hint: Look up the 
fundamental definition of electrical capacitance.)

7–109  In many electronic circuits in which some kind of 
time scale is involved, such as filters and time-delay circuits 
(Fig. P7–109—a low-pass filter), you often see a resistor (R) 
and a capacitor (C) in series. In fact, the product of R and C is 
called the electrical time constant, RC. Showing all your work, 
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what are the primary dimensions of RC? Using dimensional 
reasoning alone, explain why a resistor and capacitor are often 
found together in timing circuits.

7–110  From fundamental electronics, the current flow-
ing through a capacitor at any instant of time is equal to the 
capacitance times the rate of change of voltage (electromo-
tive force) across the capacitor,

I 5 C  
dE

dt

Write the primary dimensions of both sides of this equation, 
and verify that the equation is dimensionally homogeneous. 
Show all your work.

7–111  An electrostatic precipitator (ESP) is a device 
used in various applications to clean particle-laden air. First, 
the dusty air passes through the charging stage of the ESP, 
where dust particles are given a positive charge qp (cou-
lombs) by charged ionizer wires (Fig. P7–111). The dusty air 
then enters the collector stage of the device, where it flows 
between two oppositely charged plates. The applied electric 
field strength between the plates is Ef (voltage difference per 
unit distance). Shown in Fig. P7–111 is a charged dust par-
ticle of diameter Dp. It is attracted to the negatively charged 
plate and moves toward that plate at a speed called the drift 
velocity w. If the plates are long enough, the dust particle 
impacts the negatively charged plate and adheres to it. Clean 
air exits the device. It turns out that for very small particles 
the drift velocity depends only on qp, Ef, Dp, and air viscos-
ity m. (a) Generate a dimensionless relationship between the 
drift velocity through the collector stage of the ESP and the 

given parameters. Show all your work. (b) If the electric field 
strength is doubled, all else being equal, by what factor will 
the drift velocity change? (c) For a given ESP, if the particle 
diameter is doubled, all else being equal, by what factor will 
the drift velocity change?

7–112  Experiments are being designed to measure the 
horizontal force F on a fireman’s nozzle, as shown in 
Fig. P7–112. Force F is a function of velocity V1, pressure 
drop DP 5 P1 2 P2, density r, viscosity m, inlet area A1, out-
let area A2, and length L. Perform a dimensional analysis for 
F 5 f (V1, DP, r, m, A1, A2, L). For consistency, use V1, A1, 
and r as the repeating parameters and generate a dimension-
less relationship. Identify any established nondimensional 
parameters that appear in your result.
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7–113  When a capillary tube of small diameter D is inserted 
into a container of liquid, the liquid rises to height h inside 
the tube (Fig. P7–113). h is a function of liquid density r, tube 
diameter D, gravitational constant g, contact angle f, and the 
surface tension ss of the liquid. (a) Generate a dimension-
less relationship for h as a function of the given parameters. 
(b) Compare your result to the exact analytical equation for h 
given in Chap. 2. Are your dimensional analysis results con-
sistent with the exact equation? Discuss.
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7–114  Repeat part (a) of Prob. 7–113, except instead of 
height h, find a functional relationship for the time scale trise 
needed for the liquid to climb up to its final height in the cap-
illary tube. (Hint: Check the list of independent parameters in 
Prob. 7–113. Are there any additional relevant parameters?)

7–115  Sound intensity I is defined as the acoustic power 
per unit area emanating from a sound source. We know that 
I is a function of sound pressure level P (dimensions of pres-
sure) and fluid properties r (density) and speed of sound c. 
(a) Use the method of repeating variables in mass-based pri-
mary dimensions to generate a dimensionless relationship for 
I as a function of the other parameters. Show all your work. 
What happens if you choose three repeating variables? Dis-
cuss. (b) Repeat part (a), but use the force-based primary 
dimension system. Discuss.

7–116  Repeat Prob. 7–115, but with the distance r from the 
sound source as an additional independent parameter.

7–117  Engineers at MIT have developed a mechanical 
model of a tuna fish to study its locomotion. The “Robotuna” 
shown in Fig. P7–117 is 1.0 m long and swims at speeds up 
to 2.0 m/s. Real bluefin tuna can exceed 3.0 m in length and 
have been clocked at speeds greater than 13 m/s. How fast 
would the 1.0-m Robotuna need to swim in order to match 
the Reynolds number of a real tuna that is 2.0 m long and 
swims at 10 m/s?

FIGURE P7–117
Photo by David Barrett of MIT, used by permission.
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7–118  In Example 7–7, the mass-based system of primary 
dimensions was used to establish a relationship for the pres-
sure difference DP 5 Pinside 2 Poutside between the inside and 
outside of a soap bubble as a function of soap bubble radius R 
and surface tension ss of the soap film (Fig. P7–118). Repeat 
the dimensional analysis using the method of repeating vari-
ables, but use the force-based system of primary dimensions 
instead. Show all your work. Do you get the same result?

7–119  Many of the established nondimensional parameters 
listed in Table 7–5 can be formed by the product or ratio of 
two other established nondimensional parameters. For each 
pair of nondimensional parameters listed, find a third estab-
lished nondimensional parameter that is formed by some 
manipulation of the two given parameters: (a) Reynolds num-
ber and Prandtl number; (b) Schmidt number and Prandtl 
number; (c) Reynolds number and Schmidt number.

7–120  A common device used in various applications 
to clean particle-laden air is the reverse-flow cyclone 
(Fig. P7–120). Dusty air (volume flow rate V

#
 and density r)

enters tangentially through an opening in the side of the cyclone 
and swirls around in the tank. Dust particles are flung out-
ward and fall out the bottom, while clean air is drawn out the 
top. The reverse-flow cyclones being studied are all geomet-
rically similar; hence, diameter D represents the only length 
scale required to fully specify the entire cyclone geometry. 
Engineers are concerned about the pressure drop dP through 
the cyclone. (a) Generate a dimensionless relationship between 
the pressure drop through the cyclone and the given param-
eters. Show all your work. (b) If the cyclone size is dou-
bled, all else being equal, by what factor will the pressure 
drop change? (c) If the volume flow rate is doubled, all else 
being equal, by what factor will the pressure drop change?
Answers: (a) D4dP/rV

#
2 5 constant, (b) 1/16, (c) 4
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Fundamentals of Engineering (FE) Exam Problems

7–121  Which one is not a primary dimension?
(a) Velocity (b) Time (c) Electric current
(d ) Temperature (e) Mass

7–122  The primary dimensions of kinematic viscosity are
(a) m·L/t2 (b) m/L·t (c) L2/t (d ) L2/m·t (e) L/m·t2

7–123  The thermal conductivity of a substance may be 
defined as the rate of heat transfer per unit length per unit 
temperature difference. The primary dimensions of thermal 
conductivity are
(a) m2·L/t2·T (b) m2·L2/t·T (c) L2/m·t2·T
(d ) m·L/t3·T (e) m·L2/t3·T

7–124  The primary dimensions of the gas constant over the 
universal gas constant R/Ru are
(a) L2/t2·T (b) m·L/N (c) m/t·N·T
(d ) m/L3 (e) N/m

7–125  The primary dimensions of the universal gas constant 
Ru are
(a) m·L/t2·T (b) m2·L/N (c) m·L2/t2·N·T
(d ) L2/t2·T (e) N/m·t

7–126  There are four additive terms in an equation, and 
their units are given below. Which one is not consistent with 
this equation?
(a) J (b) W/m (c) kg·m2/s2 (d) Pa·m3 (e) N·m

7–127  The heat transfer coefficient is a nondimensional 
parameter which is a function of viscosity μ, specific heat cp 
(kJ/kg·K), and thermal conductivity k (W/m·K). This nondi-
mensional parameter is expressed as 
(a) cp/μk (b) k/μcp (c) μ/cpk (d ) μcp/k (e) cpk/μ
7–128  The nondimensional heat transfer coefficient is a 
function of convection coefficient h (W/m2·K), thermal con-
ductivity k (W/m·K), and characteristic length L. This nondi-
mensional parameter is expressed as 
(a) hL/k (b) h/kL (c) L/hk (d ) hk/L (e) kL/h

7–129  The drag coefficient CD is a nondimensional param-
eter and is a function of drag force FD, density ρ, velocity V, 
and area A. The drag coefficient is expressed as

(a) 
FDV 2

2rA
 (b) 

2FD

rVA
 (c) 

rVA2

FD

 (d) 
FD  

A

rV
 (e) 

2FD

rV 2A

7–130  Which similarity condition is related to force-scale 
equivalence?
(a) Geometric (b) Kinematic (c) Dynamic
(d ) Kinematic and dynamic (e) Geometric and kinematic

7–131  A one-third scale model of a car is to be tested in a 
wind tunnel. The conditions of the actual car are V 5 75 km/h 
and T 5 0°C and the air temperature in the wind tunnel is 
20°C.

The properties of air at 1 atm and 0°C: ρ 5 1.292 kg/m3,
ν 5 1.338 3 1025 m2/s.

The properties of air at 1 atm and 20°C: ρ 5 1.204 kg/m3,
ν 5 1.516 3 1025 m2/s.

In order to achieve similarity between the model and the pro-
totype, the wind tunnel velocity should be
(a) 255 km/h (b) 225 km/h (c) 147 km/h (d ) 75 km/h
(e) 25 km/h

7–132  A one-fourth scale model of a car is to be tested in a 
wind tunnel. The conditions of the actual car are V 5 45 km/h 
and T 5 0°C and the air temperature in the wind tunnel is 
20°C. In order to achieve similarity between the model and the 
prototype, the wind tunnel is run at 204 km/h.

The properties of air at 1 atm and 0°C: ρ 5 1.292 kg/m3, 
ν 5 1.338 3 1025 m2/s.

The properties of air at 1 atm and 20°C: ρ 5 1.204 kg/m3, 
ν 5 1.516 3 1025 m2/s.

If the average drag force on the model is measured to be 70 N, 
the drag force on the prototype is
(a) 17.5 N (b) 58.5 N (c) 70 N (d ) 93.2 N (e) 280 N

7–133  A one-third scale model of an airplane is to be tested 
in water. The airplane has a velocity of 900 km/h in air at 
250°C. The water temperature in the test section is 10°C.

The properties of air at 1 atm and 250°C: ρ 5 1.582 kg/m3, 
μ 5 1.474 3 1025 kg/m·s.

The properties of water at 1 atm and 10°C: ρ 5 999.7 kg/m3, 
μ 5 1.307 3 1023 kg/m·s.

In order to achieve similarity between the model and the pro-
totype, the water velocity on the model should be
(a) 97 km/h (b) 186 km/h (c) 263 km/h (d ) 379 km/h
(e) 450 km/h

7–134  A one-fourth scale model of an airplane is to be 
tested in water. The airplane has a velocity of 700 km/h in air 
at −50°C. The water temperature in the test section is 10°C. 
In order to achieve similarity between the model and the pro-
totype, the test is done at a water velocity of 393 km/h.

The properties of air at 1 atm and 250°C: ρ 5 1.582 kg/m3, 
μ 5 1.474 3 1025 kg/m·s.

The properties of water at 1 atm and 10°C: ρ 5 999.7 kg/m3, 
μ 5 1.307 3 1023 kg/m·s.

If the average drag force on the model is measured to be 
13,800 N, the drag force on the prototype is
(a) 590 N (b) 862 N (c) 1109 N (d ) 4655 N
(e) 3450 N

7–135  Consider a boundary layer growing along a thin 
flat plate. This problem involves the following parameters: 
boundary layer thickness δ, downstream distance x, free-
stream velocity V, fluid density ρ, and fluid viscosity μ. The 
number of expected nondimensional parameters Πs for this 
problem is 
(a) 5 (b) 4 (c) 3 (d ) 2 (e) 1
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velocity V, fluid density ρ, and fluid viscosity μ. The number 
of primary dimensions represented in this problem is
(a) 1 (b) 2 (c) 3 (d ) 4 (e) 5

7–138  Consider a boundary layer growing along a thin 
flat plate. This problem involves the following parameters: 
boundary layer thickness δ, downstream distance x, free-
stream velocity V, fluid density ρ, and fluid viscosity μ. 
The dependent parameter is δ. If we choose three repeating 
parameters as x, ρ, and V, the dependent Π is
(a) δx2/V (b) δV2/xρ (c) δρ/xV (d ) x/δV (e) δ/x

7–136  Consider unsteady fully developed Coutte flow-flow 
between two infinite parallel plates. This problem involves 
the following parameters: velocity component u, distance 
between the plates h, vertical distance y, top plate speed V, 
fluid density ρ, fluid viscosity μ, and time t. The number of 
expected nondimensional parameters Πs for this problem is 
(a) 6 (b) 5 (c) 4 (d ) 3 (e) 2

7–137  Consider a boundary layer growing along a thin 
flat plate. This problem involves the following parameters: 
boundary layer thickness δ, downstream distance x, free-stream 
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I N T E R N A L  F L O W

Fluid flow is classified as external or internal, depending on whether the 
fluid is forced to flow over a surface or in a conduit. Internal and exter-
nal flows exhibit very different characteristics. In this chapter we con-

sider internal flow where the conduit is completely filled with the fluid, and 
the flow is driven primarily by a pressure difference. This should not be 
confused with open-channel flow (Chap. 13) where the conduit is partially 
filled by the fluid and thus the flow is partially bounded by solid surfaces, 
as in an irrigation ditch, and the flow is driven by gravity alone.
 We start this chapter with a general physical description of internal flow 
through pipes and ducts including the entrance region and the fully devel-
oped region. We continue with a discussion of the dimen sion less Reynolds 
number and its physical significance. We then introduce the pressure drop 
correlations associated with pipe flow for both laminar and turbulent flows. 
Then, we discuss minor losses and determine the pressure drop and pump-
ing power requirements for real-world piping systems. Finally, we present a 
brief overview of flow measurement devices.

    CHAPTER

8
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Have a deeper understanding 
of laminar and turbulent flow in 
pipes and the analysis of fully 
developed flow

■ Calculate the major and minor 
losses associated with pipe 
flow in piping networks and 
determine the pumping power 
requirements

■ Understand various velocity 
and flow rate measurement 
techniques and learn their 
advantages and disadvantages

Internal flows through pipes, elbows, tees, 
valves, etc., as in this oil refinery, are found 

in nearly every industry.
Royalty Free/CORBIS
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8–1 ■ INTRODUCTION
Liquid or gas flow through pipes or ducts is commonly used in heating and 
cooling applications and fluid distribution networks. The fluid in such appli-
cations is usually forced to flow by a fan or pump through a flow section. 
We pay particular attention to friction, which is directly related to the pressure 
drop and head loss during flow through pipes and ducts. The pressure drop 
is then used to determine the pumping power requirement. A typical piping 
system involves pipes of different diameters connected to each other by var-
ious fittings or elbows to route the fluid, valves to control the flow rate, and 
pumps to pressurize the fluid.
 The terms pipe, duct, and conduit are usually used interchangeably for 
flow sections. In general, flow sections of circular cross section are referred 
to as pipes (especially when the fluid is a liquid), and flow sections of non-
circular cross section as ducts (especially when the fluid is a gas). Small-
diameter pipes are usually referred to as tubes. Given this uncertainty, we 
will use more descriptive phrases (such as a circular pipe or a rectangular 
duct) whenever necessary to avoid any misunderstandings.
 You have probably noticed that most fluids, especially liquids, are trans-
ported in circular pipes. This is because pipes with a circular cross section 
can withstand large pressure differences between the inside and the outside 
without undergoing significant distortion. Noncircular pipes are usually 
used in applications such as the heating and cooling systems of buildings 
where the pressure difference is relatively small, the manufacturing and 
installation costs are lower, and the available space is limited for ductwork 
(Fig. 8–1).
 Although the theory of fluid flow is reasonably well understood, theoretical 
solutions are obtained only for a few simple cases such as fully developed 
laminar flow in a circular pipe. Therefore, we must rely on experimental 
results and empirical relations for most fluid flow problems rather than 
closed-form analytical solutions. Noting that the experimental results are 
obtained under carefully controlled laboratory conditions and that no two 
systems are exactly alike, we must not be so naive as to view the results 
obtained as “exact.” An error of 10 percent (or more) in friction factors 
calculated using the relations in this chapter is the “norm” rather than the 
“exception.”
 The fluid velocity in a pipe changes from zero at the wall because of the 
no-slip condition to a maximum at the pipe center. In fluid flow, it is con-
venient to work with an average velocity Vavg, which remains constant in 
incompressible flow when the cross-sectional area of the pipe is constant 
(Fig. 8–2). The average velocity in heating and cooling applications may 
change somewhat because of changes in density with temperature. But, in 
practice, we evaluate the fluid properties at some average temperature and 
treat them as constants. The convenience of working with constant proper-
ties usually more than justifies the slight loss in accuracy.
 Also, the friction between the fluid particles in a pipe does cause a slight 
rise in fluid temperature as a result of the mechanical energy being con-
verted to sensible thermal energy. But this temperature rise due to frictional 
heating is usually too small to warrant any consideration in calculations and 
thus is disregarded. For example, in the absence of any heat transfer, no 

Circular pipe

Rectangular
duct

Water
50 atm

Air
1.2 atm

FIGURE 8–1
Circular pipes can withstand large 
pressure differences between the 
inside and the outside without 
undergoing any significant distortion, 
but noncircular pipes cannot.

Vavg Vmax

FIGURE 8–2
Average velocity Vavg is defined as the 
average speed through a cross section. 
For fully developed laminar pipe flow, 
Vavg is half of the maximum velocity.
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noticeable difference can be detected between the inlet and outlet tempera-
tures of water flowing in a pipe. The primary consequence of friction in 
fluid flow is pressure drop, and thus any significant temperature change in 
the fluid is due to heat transfer.
 The value of the average velocity Vavg at some streamwise cross-section is 
determined from the requirement that the conservation of mass principle be 
satisfied (Fig. 8–2). That is,

 m# 5 rVavg Ac 5 #
Ac

 ru(r) dAc (8–1)

where m
.
 is the mass flow rate, r is the density, Ac is the cross-sectional area, 

and u(r) is the velocity profile. Then the average velocity for incompressible 
flow in a circular pipe of radius R is expressed as

 Vavg 5

#
Ac

 ru(r) dAc

rAc

5
#

R

0
 ru(r)2pr dr

rpR 2 5
2

R 2 #
R

0
 u(r)r dr (8–2)

Therefore, when we know the flow rate or the velocity profile, the average 
velocity can be determined easily.

8–2 ■ LAMINAR AND TURBULENT FLOWS
If you have been around smokers, you probably noticed that the cigarette 
smoke rises in a smooth plume for the first few centimeters and then starts 
fluctuating randomly in all directions as it continues its rise. Other plumes 
behave similarly (Fig. 8–3). Likewise, a careful inspection of flow in a pipe 
reveals that the fluid flow is streamlined at low velocities but turns chaotic 
as the velocity is increased above a critical value, as shown in Fig. 8–4. 
The flow regime in the first case is said to be laminar, characterized by 
smooth streamlines and highly ordered motion, and turbulent in the sec-
ond case, where it is characterized by velocity fluctuations and highly dis-
ordered motion. The transition from laminar to turbulent flow does not 
occur suddenly; rather, it occurs over some region in which the flow fluctu-
ates between laminar and turbulent flows before it becomes fully turbulent. 
Most flows encountered in practice are turbulent. Laminar flow is encoun-
tered when highly viscous fluids such as oils flow in small pipes or narrow 
passages.
 We can verify the existence of these laminar, transitional, and turbulent 
flow regimes by injecting some dye streaks into the flow in a glass pipe, 
as the British engineer Osborne Reynolds (1842–1912) did over a century 
ago. We observe that the dye streak forms a straight and smooth line at low 
velocities when the flow is laminar (we may see some blurring because of 
molecular diffusion), has bursts of fluctuations in the transitional regime, and 
zigzags rapidly and disorderly when the flow becomes fully turbulent. These 
zigzags and the dispersion of the dye are indicative of the fluctuations in the 
main flow and the rapid mixing of fluid particles from adjacent layers.
 The intense mixing of the fluid in turbulent flow as a result of rapid fluctu-
ations enhances momentum transfer between fluid particles, which increases 
the friction force on the pipe wall and thus the required pumping power. The 
friction factor reaches a maximum when the flow becomes fully turbulent.

Laminar
flow

Turbulent
flow

FIGURE 8–3
Laminar and turbulent flow regimes 

of a candle smoke plume.

Dye trace

(b) Turbulent flow

Dye trace

Dye injection

Vavg

Vavg

(a) Laminar flow

Dye injection

FIGURE 8–4
The behavior of colored fluid injected 

into the flow in (a) laminar and 
(b) turbulent flow in a pipe.
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Reynolds Number
The transition from laminar to turbulent flow depends on the geometry, sur-
face roughness, flow velocity, surface temperature, and type of fluid, among 
other things. After exhaustive experiments in the 1880s, Osborne Reynolds 
discovered that the flow regime depends mainly on the ratio of inertial forces 
to viscous forces in the fluid (Fig. 8–5). This ratio is called the Reynolds 
number and is expressed for internal flow in a circular pipe as

 Re 5
Inertial forces

Viscous forces
5

Vavg D

n
5
rVavg D

m
 (8–3)

where Vavg 5 average flow velocity (m/s), D 5 characteristic length of the 
geometry (diameter in this case, in m), and n 5 m/r 5 kinematic viscosity of 
the fluid (m2/s). Note that the Reynolds number is a dimensionless quantity 
(Chap. 7). Also, kinematic viscosity has units m2/s, and can be viewed as 
viscous diffusivity or diffusivity for momentum.
 At large Reynolds numbers, the inertial forces, which are proportional to 
the fluid density and the square of the fluid velocity, are large relative to 
the viscous forces, and thus the viscous forces cannot prevent the random 
and rapid fluctuations of the fluid. At small or moderate Reynolds numbers, 
however, the viscous forces are large enough to suppress these fluctuations 
and to keep the fluid “in line.” Thus the flow is turbulent in the first case 
and laminar in the second.
 The Reynolds number at which the flow becomes turbulent is called the 
critical Reynolds number, Recr. The value of the critical Reynolds number 
is different for different geometries and flow conditions. For internal flow in 
a circular pipe, the generally accepted value of the critical Reynolds number 
is Recr 5 2300.
 For flow through noncircular pipes, the Reynolds number is based on the 
hydraulic diameter Dh defined as (Fig. 8–6)

Hydraulic diameter: Dh 5
4Ac

p
 (8–4)

where Ac is the cross-sectional area of the pipe and p is its wetted perimeter. 
The hydraulic diameter is defined such that it reduces to ordinary diameter D 
for circular pipes,

Circular pipes: Dh 5
4Ac

p
5

4(pD2/4)

pD
5 D

 It certainly is desirable to have precise values of Reynolds numbers for 
laminar, transitional, and turbulent flows, but this is not the case in practice. 
It turns out that the transition from laminar to turbulent flow also depends 
on the degree of disturbance of the flow by surface roughness, pipe vibrations, 
and fluctuations in the upstream flow. Under most practical conditions, the 
flow in a circular pipe is laminar for Re & 2300, turbulent for Re * 4000, 
and transitional in between. That is,

Re & 2300  laminar flow

2300 & Re & 4000  transitional flow

Re * 4000  turbulent flow

m

Vavgavg Lr

Inertial forcesInertial forces––––––––––––––––––––––––
Viscous forcesViscous forces

Re = Re = 

=

=

=
Vavgavg L
n

rVavavg L 2

mVavavg L

2

L
Vavg

FIGURE 8–5
The Reynolds number can be viewed 
as the ratio of inertial forces to viscous 
forces acting on a fluid element.

Dh = = D
4(pD2/4)
pD

Dh = = a4a2

4a

Dh = =4ab
2(a + b)

2ab
a + b

Circular tube:

Rectangular duct:

Square duct:

a
b

D

a

a

Dh = 4ab
2a + b

Channel: a

b

FIGURE 8–6
The hydraulic diameter Dh 5 4Ac /p is 
defined such that it reduces to ordinary 
diameter for circular tubes. When 
there is a free surface, such as in 
open-channel flow, the wetted 
perimeter includes only the walls 
in contact with the fluid.
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In transitional flow, the flow switches between laminar and turbulent in a 
disorderly fashion (Fig. 8–7). It should be kept in mind that laminar flow can 
be maintained at much higher Reynolds numbers in very smooth pipes by 
avoiding flow disturbances and pipe vibrations. In such carefully controlled 
laboratory experiments, laminar flow has been maintained at Reynolds num-
bers of up to 100,000.

8–3 ■ THE ENTRANCE REGION
Consider a fluid entering a circular pipe at a uniform velocity. Because of 
the no-slip condition, the fluid particles in the layer in contact with the wall 
of the pipe come to a complete stop. This layer also causes the fluid par-
ticles in the adjacent layers to slow down gradually as a result of friction. To 
make up for this velocity reduction, the velocity of the fluid at the midsec-
tion of the pipe has to increase to keep the mass flow rate through the pipe 
constant. As a result, a velocity gradient develops along the pipe.
 The region of the flow in which the effects of the viscous shearing forces 
caused by fluid viscosity are felt is called the velocity boundary layer or 
just the boundary layer. The hypothetical boundary surface divides the 
flow in a pipe into two regions: the boundary layer region, in which the 
viscous effects and the velocity changes are significant, and the irrotational 
(core) flow region, in which the frictional effects are negligible and the 
velocity remains essentially constant in the radial direction.
 The thickness of this boundary layer increases in the flow direction until 
the boundary layer reaches the pipe center and thus fills the entire pipe, as 
shown in Fig. 8–8, and the velocity becomes fully developed a little farther 
downstream. The region from the pipe inlet to the point at which the veloc-
ity profile is fully developed is called the hydrodynamic entrance region, 
and the length of this region is called the hydrodynamic entry length Lh. 
Flow in the entrance region is called hydrodynamically developing flow 
since this is the region where the velocity profile develops. The region 
beyond the entrance region in which the velocity profile is fully developed 
and remains unchanged is called the hydrodynamically fully developed 
region. The flow is said to be fully developed when the normalized tem-
perature profile remains unchanged as well. Hydrodynamically fully 
developed flow is equivalent to fully developed flow when the fluid in the 
pipe is not heated or cooled since the fluid temperature in this case remains 

x

r

Hydrodynamic entrance region

Hydrodynamically fully developed region

Velocity boundary
layer

Developing velocity
profile

Fully developed
velocity profile

Irrotational (core)
flow region

Vavg Vavg Vavg Vavg Vavg

FIGURE 8–8
The development of the velocity 

boundary layer in a pipe. 
(The developed average velocity 

profile is parabolic in laminar flow, 
as shown, but much flatter or 

fuller in turbulent flow.)

Laminar Turbulent

Vavg

Dye trace

Dye injection

FIGURE 8–7
In the transitional flow region 

of 2300 # Re # 4000, the flow 
switches between laminar and 
turbulent somewhat randomly.
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essentially constant throughout. The velocity profile in the fully developed 
region is parabolic in laminar flow and much flatter (or fuller) in turbulent 
flow due to eddy motion and more vigorous mixing in the radial direction. 
The time-averaged velocity profile remains unchanged when the flow is 
fully developed, and thus

Hydrodynamically fully developed: 
0u (r, x)

0x
5 0 S u 5 u (r) (8–5)

The shear stress at the pipe wall tw is related to the slope of the velocity 
profile at the surface. Noting that the velocity profile remains unchanged 
in the hydrodynamically fully developed region, the wall shear stress also 
remains constant in that region (Fig. 8–9).
 Consider fluid flow in the hydrodynamic entrance region of a pipe. The 
wall shear stress is the highest at the pipe inlet where the thickness of the 
boundary layer is smallest, and decreases gradually to the fully developed 
value, as shown in Fig. 8–10. Therefore, the pressure drop is higher in the 
entrance regions of a pipe, and the effect of the entrance region is always to 
increase the average friction factor for the entire pipe. This increase may be 
significant for short pipes but is negligible for long ones.

Entry Lengths
The hydrodynamic entry length is usually taken to be the distance from the 
pipe entrance to where the wall shear stress (and thus the friction factor) 
reaches within about 2 percent of the fully developed value. In laminar flow, 
the nondimensional hydrodynamic entry length is given approximately as 
[see Kays and Crawford (2004) and Shah and Bhatti (1987)]

 
Lh, laminar

D
> 0.05Re (8–6)

tw

tw twtwtwtw

Lh

x

r

x

Fully
developed
region

Fully developed
region

Entrance region

Entrance region

tw w tww

VavgVavg

FIGURE 8–10
The variation of wall shear stress in 
the flow direction for flow in a pipe 
from the entrance region into the fully 
developed region.

twtw

twtw

FIGURE 8–9
In the fully developed flow region of 
a pipe, the velocity profile does not 
change downstream, and thus the wall 
shear stress remains constant as well.
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For Re 5 20, the hydrodynamic entry length is about the size of the 
diameter, but increases linearly with velocity. In the limiting laminar case of 
Re 5 2300, the hydrodynamic entry length is 115D.
 In turbulent flow, the intense mixing during random fluctuations usually 
overshadows the effects of molecular diffusion. The nondimensional hydro-
dynamic entry length for turbulent flow is approximated as [see Bhatti and 
Shah (1987) and Zhi-qing (1982)]

 
Lh, turbulent

D
5 1.359Re1/4 (8–7)

The entry length is much shorter in turbulent flow, as expected, and its depen-
dence on the Reynolds number is weaker. In many pipe flows of practical 
engineering interest, the entrance effects become insignificant beyond a pipe 
length of about 10 diameters, and the nondimensional hydrodynamic entry 
length is approximated as

 
Lh, turbulent

D
< 10 (8–8)

Precise correlations for calculating the frictional head losses in entrance 
regions are available in the literature. However, the pipes used in practice 
are usually several times the length of the entrance region, and thus the flow 
through the pipes is often assumed to be fully developed for the entire length 
of the pipe. This simplistic approach gives reasonable results for long pipes 
but sometimes poor results for short ones since it underpredicts the wall 
shear stress and thus the friction factor.

8–4 ■ LAMINAR FLOW IN PIPES
We mentioned in Section 8–2 that flow in pipes is laminar for Re & 2300, 
and that the flow is fully developed if the pipe is sufficiently long (relative 
to the entry length) so that the entrance effects are negligible. In this section, 
we consider the steady, laminar, incompressible flow of fluid with constant 
properties in the fully developed region of a straight circular pipe. We obtain 
the momentum equation by applying a momentum balance to a differential 
volume element, and we obtain the velocity profile by solving it. Then we 
use it to obtain a relation for the friction factor. An important aspect of the 
analysis here is that it is one of the few available for viscous flow.
 In fully developed laminar flow, each fluid particle moves at a constant axial 
velocity along a streamline and the velocity profile u(r) remains unchanged in 
the flow direction. There is no motion in the radial direction, and thus the 
velocity component in the direction normal to the pipe axis is everywhere 
zero. There is no acceleration since the flow is steady and fully developed.
 Now consider a ring-shaped differential volume element of radius r, thick-
ness dr, and length dx oriented coaxially with the pipe, as shown in Fig. 8–11. 
The volume element involves only pressure and viscous effects and thus the 
pressure and shear forces must balance each other. The pressure force acting 
on a submerged plane surface is the product of the pressure at the centroid 
of the surface and the surface area. A force balance on the volume element 
in the flow direction gives

 (2pr dr P)x 2 (2pr dr P)x1dx 1 (2pr dx t)r 2 (2pr dx t)r1dr 5 0 (8–9)

u(r)

umax

x

dx

dr r
R

Px Px�dx

tr

tr�dr

FIGURE 8–11
Free-body diagram of a ring-shaped 

differential fluid element of radius r, 
thickness dr, and length dx oriented 

coaxially with a horizontal pipe in 
fully developed laminar flow. (The 
size of the fluid element is greatly 

exaggerated for clarity.)
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which indicates that in fully developed flow in a horizontal pipe, the viscous 
and pressure forces balance each other. Dividing by 2pdrdx and rearranging,

 r 
Px1dx 2 Px

dx
1

(rt)r1dr 2 (rt)r

dr
5 0 (8–10)

Taking the limit as dr, dx S 0 gives

 r 
dP

dx
1

d (rt)

dr
5 0 (8–11)

Substituting t 5 2m(du/dr), dividing by r, and taking m 5 constant gives 
the desired equation,

 
m

r
 
d

dr
ar 

du

dr
b 5

dP

dx
 (8–12)

The quantity du/dr is negative in pipe flow, and the negative sign is included 
to obtain positive values for t. (Or, du/dr 5 2du/dy if we define y 5 
R 2 r.) The left side of Eq. 8–12 is a function of r, and the right side is a 
function of x. The equality must hold for any value of r and x, and an equal-
ity of the form f (r) 5 g(x) can be satisfied only if both f (r) and g(x) are 
equal to the same  constant. Thus we conclude that dP/dx 5 constant. This 
is verified by writing a force balance on a volume element of radius R and 
thickness dx (a slice of the pipe as in Fig. 8–12), which gives

 
dP

dx
5 2

2tw

R
 (8–13)

Here tw is constant since the viscosity and the velocity profile are constants 
in the fully developed region. Therefore, dP/dx 5 constant.
 Equation 8–12 is solved by rearranging and integrating it twice to give

 u(r) 5
r2

4m
adP

dx
b 1 C1 ln r 1 C2 (8–14)

The velocity profile u(r) is obtained by applying the boundary conditions 
−u/−r 5 0 at r 5 0 (because of symmetry about the centerline) and u 5 0 at 
r 5 R (the no-slip condition at the pipe wall),

 u(r) 5 2
R2

4m
adP

dx
b  a1 2

r 2

R2b  (8–15)

Therefore, the velocity profile in fully developed laminar flow in a pipe is 
parabolic with a maximum at the centerline and a minimum (zero) at the 
pipe wall. Also, the axial velocity u is positive for any r, and thus the axial 
pressure gradient dP/dx must be negative (i.e., pressure must decrease in the 
flow direction because of viscous effects—it takes pressure to push the fluid 
through the pipe).
 The average velocity is determined from its definition by substituting 
Eq. 8–15 into Eq. 8–2, and performing the integration, yielding

Vavg 5
2

R 2 #
R

0
 u(r)r dr 5

22

R 2  #
R

0
 
R 2

4m
adP

dx
b  a1 2

r 2

R 2br dr 5 2
R 2

8m
adP

dx
b  (8–16)

Combining the last two equations, the velocity profile is rewritten as

 u(r) 5 2Vavga1 2
r2

R 2b  (8–17)

tw

R2P –pR2(P � dP) – 2pR dx tw = 0

–=
dP

dx R

r

x

2pR dx tw

pR2(P � dP)

p

2

pR2P

R

Force balance:

Simplifying:

dx

FIGURE 8–12
Free-body diagram of a fluid disk 
element of radius R and length dx in 
fully developed laminar flow in a 
horizontal pipe.
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This is a convenient form for the velocity profile since Vavg can be deter-
mined easily from the flow rate information.
 The maximum velocity occurs at the centerline and is determined from 
Eq. 8–17 by substituting r 5 0,

 umax 5 2V avg (8–18)

Therefore, the average velocity in fully developed laminar pipe flow is one-
half of the maximum velocity.

Pressure Drop and Head Loss
A quantity of interest in the analysis of pipe flow is the pressure drop DP 
since it is directly related to the power requirements of the fan or pump to 
maintain flow. We note that dP/dx 5 constant, and integrating from x 5 x1 
where the pressure is P1 to x 5 x1 1 L where the pressure is P2 gives

 
dP

dx
5

P2 2 P1

L
 (8–19)

Substituting Eq. 8–19 into the Vavg expression in Eq. 8–16, the pressure 
drop is expressed as

Laminar flow: DP 5 P1 2 P2 5
8mLVavg

R 2 5
32mLVavg

D2  (8–20)

The symbol D is typically used to indicate the difference between the final 
and initial values, like Dy 5 y2 2 y1. But in fluid flow, DP is used to des-
ignate pressure drop, and thus it is P1 2 P2. A pressure drop due to viscous 
effects represents an irreversible pressure loss, and it is sometimes called 
pressure loss DPL to emphasize that it is a loss (just like the head loss hL, 
which as we shall see is proportional to DPL.)
 Note from Eq. 8–20 that the pressure drop is proportional to the viscosity m 
of the fluid, and DP would be zero if there were no friction. Therefore, 
the drop of pressure from P1 to P2 in this case is due entirely to viscous 
effects, and Eq. 8–20 represents the pressure loss DPL when a fluid of vis-
cosity m flows through a pipe of constant diameter D and length L at aver-
age velocity Vavg.
 In practice, it is convenient to express the pressure loss for all types of 
fully developed internal flows (laminar or turbulent flows, circular or non-
circular pipes, smooth or rough surfaces, horizontal or inclined pipes) as 
(Fig. 8–13)

Pressure loss: DPL 5 f 
L

D
 
rV 2

avg

2
 (8–21)

where rV 2
avg/2 is the dynamic pressure and f is the Darcy friction factor,

 
f 5

8tw

rV 2
avg

 (8–22)

It is also called the Darcy–Weisbach friction factor, named after the 
Frenchman Henry Darcy (1803–1858) and the German Julius Weisbach 
(1806–1871), the two engineers who provided the greatest contribution to 
its development. It should not be confused with the friction coefficient Cf 

Pressure loss: ΔPL = f L

Vavg

D 2

21

2g
Head loss: hL = = f LΔPL

Drg

D

L

ΔPL

Vavg

rVavg
2

2

FIGURE 8–13
The relation for pressure loss (and 

head loss) is one of the most general 
relations in fluid mechanics, and it is 
valid for laminar or turbulent flows, 

circular or noncircular pipes, and pipes 
with smooth or rough surfaces.
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[also called the Fanning friction factor, named after the American engineer 
John Fanning (1837–1911)], which is defined as Cf 5 2tw/(rV 2

avg) 5 f /4.
 Setting Eqs. 8–20 and 8–21 equal to each other and solving for f gives the 
friction factor for fully developed laminar flow in a circular pipe,

Circular pipe, laminar: f 5
64m

rDVavg

5
64

Re
 (8–23)

This equation shows that in laminar flow, the friction factor is a function of 
the Reynolds number only and is independent of the roughness of the pipe 
surface (assuming, of course, that the roughness is not extreme).
 In the analysis of piping systems, pressure losses are commonly expressed 
in terms of the equivalent fluid column height, called the head loss hL. Noting 
from fluid statics that DP 5 rgh and thus a pressure difference of DP cor-
responds to a fluid height of h 5 DP/rg, the pipe head loss is obtained by 
dividing DPL by rg to give

Head loss: hL 5
DPL

rg
5 f 

L

D
  
V 2

avg

2g
 (8–24)

The head loss hL represents the additional height that the fluid needs to be 
raised by a pump in order to overcome the frictional losses in the pipe. The 
head loss is caused by viscosity, and it is directly related to the wall shear 
stress. Equations 8–21 and 8–24 are valid for both laminar and turbulent 
flows in both circular and noncircular pipes, but Eq. 8–23 is valid only for 
fully developed laminar flow in circular pipes.
 Once the pressure loss (or head loss) is known, the required pumping 
power to overcome the pressure loss is determined from

 W
#

pump, L 5 V
#
 DPL 5 V

#
rghL 5 m

#
ghL (8–25)

where V
.
 is the volume flow rate and m

.
 is the mass flow rate.

 The average velocity for laminar flow in a horizontal pipe is, from Eq. 8–20,

Horizontal pipe: Vavg 5
(P1 2 P2)R

2

8mL
5

(P1 2 P2)D
2

32mL
5
DP D2

32mL
 (8–26)

Then the volume flow rate for laminar flow through a horizontal pipe of 
diameter D and length L becomes

 V
#

5 VavgAc 5
(P1 2 P2)R

2

8mL
 pR 2 5

(P1 2 P2)pD4

128mL
5
DP pD4

128mL
 (8–27)

This equation is known as Poiseuille’s law, and this flow is called Hagen– 
Poiseuille flow in honor of the works of G. Hagen (1797–1884) and 
J. Poiseuille (1799–1869) on the subject. Note from Eq. 8–27 that for a specified 
flow rate, the pressure drops and thus the required pumping power is propor-
tional to the length of the pipe and the viscosity of the fluid, but it is inversely 
proportional to the fourth power of the radius (or diameter) of the pipe. There-
fore, the pumping power requirement for a laminar-flow piping system can be 
reduced by a factor of 16 by doubling the pipe diameter (Fig. 8–14). Of course 
the benefits of the reduction in the energy costs must be weighed against the 
increased cost of construction due to using a larger-diameter pipe.
 The pressure drop DP equals the pressure loss DPL in the case of a hori-
zontal pipe, but this is not the case for inclined pipes or pipes with vari-
able cross-sectional area. This can be demonstrated by writing the energy 

2D

Wpump = 16 hp
⋅

Wpump = 1 hp

/4

⋅

D Vavg

Vavg

FIGURE 8–14
The pumping power requirement for 
a laminar-flow piping system can be 
reduced by a factor of 16 by doubling 
the pipe diameter.
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equation for steady, incompressible one-dimensional flow in terms of heads 
as (see Chap. 5)

 
P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u 5

P2

rg
1 a2 

V 2
2

2g
1 z2 1 hturbine, e 1 hL (8–28)

where hpump, u is the useful pump head delivered to the fluid, hturbine, e is the 
turbine head extracted from the fluid, hL is the irreversible head loss between 
sections 1 and 2, V1 and V2 are the average velocities at sections 1  and 2, 
respectively, and a1 and a2 are the kinetic energy correction factors at sections 
1 and 2 (it can be shown that a 5 2 for fully developed laminar flow and about 
1.05 for fully developed turbulent flow). Equation 8–28 can be rearranged as

P1 2 P2 5 r(a2V
2
2 2 a1V

2
1)/2 1 rg[(z2 2 z1) 1 hturbine, e 2 hpump, u 1 hL] (8–29)

Therefore, the pressure drop DP 5 P1 2 P2 and pressure loss DPL 5 rghL for 
a given flow section are equivalent if (1) the flow section is horizontal so that 
there are no hydrostatic or gravity effects (z1 5 z2), (2) the flow section does 
not involve any work devices such as a pump or a turbine since they change the 
fluid pressure (hpump, u 5 hturbine, e 5 0), (3) the cross- sectional area of the flow 
section is constant and thus the average flow velocity is constant (V1 5 V2), 
and (4) the velocity profiles at sections 1 and 2 are the same shape (a1 5 a2).

Effect of Gravity on Velocity and Flow Rate 
in Laminar Flow
Gravity has no affect on flow in horizontal pipes, but it has a significant 
effect on both the velocity and the flow rate in uphill or downhill pipes. 
Relations for inclined pipes can be obtained in a similar manner from a force 
balance in the direction of flow. The only additional force in this case is the 
component of the fluid weight in the flow direction, whose magnitude is

 Wx 5 W sin u 5 rgVelement sin u 5 rg(2pr dr dx) sin u (8–30)

where u is the angle between the horizontal and the flow direction (Fig. 8–15). 
The force balance in Eq. 8–9 now becomes

 (2pr dr P)x 2 (2pr dr P)x1dx 1 (2pr dx t)r 

  2 (2pr dx t)r1dr 2 rg(2pr dr dx) sin u 5 0  (8–31)

which results in the differential equation

 
m

r
  

d

dr
 ar 

du

dr
b 5

dP

dx
1 rg sin u (8–32)

Following the same solution procedure as previously, the velocity profile is

 u(r) 5 2
R2

4m
 adP

dx
1 rg sin ub a1 2

r 2

R 2b  (8–33)

From Eq. 8–33, the average velocity and the volume flow rate relations for 
laminar flow through inclined pipes are, respectively,

 Vavg 5
(DP 2 rgL sin u)D2

32mL
  and  V

#
5

(DP 2 rgL sin u)pD4

128mL
 (8–34)

which are identical to the corresponding relations for horizontal pipes, 
except that DP is replaced by DP 2 rgL sin u. Therefore, the results already 
obtained for horizontal pipes can also be used for inclined pipes provided 

u

r�drt

rt

Px�dxW sin

W

Px

x
r

u

u

dx

dr

FIGURE 8–15
Free-body diagram of a ring-shaped 

differential fluid element of radius r, 
thickness dr, and length dx oriented 

coaxially with an inclined pipe in fully 
developed laminar flow.

FIGURE 8–16
The relations developed for fully 
developed laminar flow through 

horizontal pipes can also be used 
for inclined pipes by replacing 

DP with DP 2 rgL sin u.

     Uphill flow: u > 0 and sinu > 0

Downhill flow: u < 0 and sinu < 0

Laminar Flow in Circular Pipes

turbine in the flow section, and 

ΔP = P1 – P2) 

(Fully developed flow with no pump or

Horizontal pipe: V = 
. ΔP pD4

128  Lm

.
Inclined pipe: V = 

(ΔP – rgL sinu)pD4

128mL
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that DP is replaced by DP 2 rgL sin u (Fig. 8–16). Note that u . 0 and thus 
sin u . 0 for uphill flow, and u , 0 and thus sin u , 0 for downhill flow.
 In inclined pipes, the combined effect of pressure difference and gravity 
drives the flow. Gravity helps downhill flow but opposes uphill flow. There-
fore, much greater pressure differences need to be applied to maintain a 
specified flow rate in uphill flow although this becomes important only for 
liquids, because the density of gases is generally low. In the special case of 
no flow (V

.
 5 0), Eq. 8–34 yields DP 5 rgL sin u, which is what we would 

obtain from fluid statics (Chap. 3).

Laminar Flow in Noncircular Pipes
The friction factor f relations are given in Table 8–1 for fully developed 
laminar flow in pipes of various cross sections. The Reynolds number for 
flow in these pipes is based on the hydraulic diameter Dh 5 4Ac /p, where Ac
is the cross-sectional area of the pipe and p is its wetted perimeter.

TABLE 8–1

Friction factor for fully developed laminar flow in pipes of various cross 

sections (Dh 5 4Ac /p and Re 5 Vavg Dh /n)

 a/b Friction Factor

Tube Geometry or u° f

Circle — 64.00/Re

Rectangle a/b

 1 56.92/Re

 2 62.20/Re

 3 68.36/Re

 4 72.92/Re

 6 78.80/Re

 8 82.32/Re

` 96.00/Re

Ellipse a/b

  1 64.00/Re

  2 67.28/Re

  4 72.96/Re

  8 76.60/Re

 16 78.16/Re

Isosceles triangle u

  10° 50.80/Re

  30° 52.28/Re

  60° 53.32/Re

  90° 52.60/Re

 120° 50.96/Re

D

 

 
b

a

b

a

uuuuuu
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EXAMPLE 8–1    Laminar Flow in Horizontal and Inclined Pipes

Consider the fully developed flow of glycerin at 408C through a 70-m-long,

4-cm-diameter, horizontal, circular pipe. If the flow velocity at the centerline 

is measured to be 6 m/s, determine the velocity profile and the pressure dif-

ference across this 70-m-long section of the pipe, and the useful pumping 

power required to maintain this flow. For the same useful pumping power 

input, determine the percent increase of the flow rate if the pipe is inclined 

158 downward and the percent decrease if it is inclined 158 upward. The 

pump is located outside this pipe section.

SOLUTION  The centerline velocity in a horizontal pipe in fully developed flow 

is measured. The velocity profile, the pressure difference across the pipe, and 

the pumping power required are to be determined. The effects of downward 

and upward tilting of the pipe on the flow rate is to be investigated.

Assumptions  1 The flow is steady, laminar, incompressible, and fully devel-

oped. 2 There are no pumps or turbines in the flow section. 3 There are no 

valves, elbows, or other devices that may cause local losses.

Properties  The density and dynamic viscosity of glycerin at 408C are 

r 5 1252 kg/m3 and m 5 0.3073 kg/m?s, respectively.

Analysis  The velocity profile in fully developed laminar flow in a circular 

pipe is expressed as

 u(r) 5 umaxa1 2
r2

R2b
Substituting, the velocity profile is determined to be

 u(r) 5 (6 m/s)a1 2
r2

(0.02 m)2b 5 6(1 2 2500r2)

where u is in m/s and r is in m. The average velocity, the flow rate, and the 

Reynolds number are

 V 5 V avg 5
umax

2
5

6 m/s

2
5 3 m/s

 V
#

5 Vavg Ac 5 V(pD2/4) 5 (3 m/s)[p(0.04 m)2/4] 5 3.77 3 1023 m3/s

 Re 5
rVD

m
5

(1252 kg/m3)(3 m/s)(0.04 m)

0.3073 kg/m·s
5 488.9

which is less than 2300. Therefore, the flow is indeed laminar. Then the 

friction factor and the head loss become

 f 5
64

Re
5

64

488.9
5 0.1309

 hL 5 f 
LV 2

D 2g
5 0.1309 

(70 m)

(0.04 m)
 

(3 m/s)2

2(9.81 m/s2)
5 105.1m

The energy balance for steady, incompressible one-dimensional flow is given 

by Eq. 8–28 as

 
P1

rg
1 a1

V 1 
2

2g
1 z1 1 hpump, u 5

P2

rg
1 a2 

V 2 
2

2g 
 1 z2 1 hturbine, e 1 hL

+15˚

–15˚

6 m/s
Glycerine

70 m

D = 2 cm

FIGURE 8–17
Schematic for Example 8–1.
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For fully developed flow in a constant diameter pipe with no pumps or tur-

bines, it reduces to

 DP 5 P1 2 P2 5 rg(z2 2 z1 1 hL)

Then the pressure difference and the required useful pumping power for the 

horizontal case become

DP 5 rg(z2 2 z1 1 hL)

5 (1252 kg/m3)(9.81 m/s2)(0 1 105.1 m)a 1 kPa

1000 kg/m·s2b
5 1291 kPa

W
#
pump, u 5  V

#
DP 5 (3.77 3 103 m3/s)(1291 kPa)a 1 kW

kPa·m3/s
b 5 4.87 kW

The elevation difference and the pressure difference for a pipe inclined 

upwards 158 is

  Dz 5 z2 2 z1 5 Lsin158 5 (70 m)sin158 5 18.1 m

  DPupward 5 (1252 kg/m3)(9.81 m/s2)(18.1 m 1 105.1 m)a 1 kPa

1000 kg/m·s2b
  5 1366 kPa

Then the flow rate through the upward inclined pipe becomes

 V
#
upward 5

W
#

pump, u

DPupward

5
4.87 kW

1366 kPa
a1 kPa·m3/s

1 kW
b 5 3.57 3 1023 m3/s

which is a decrease of 5.6 percent in flow rate. It can be shown similarly that 

when the pipe is inclined 15º downward from the horizontal, the flow rate 

will increase by 5.6 percent.
Discussion  Note that the flow is driven by the combined effect of pumping 

power and gravity. As expected, gravity opposes uphill flow, enhances down-

hill flow, and has no effect on horizontal flow. Downhill flow can occur even in 

the absence of a pressure difference applied by a pump. For the case of P1 5 P2 

(i.e., no applied pressure difference), the pressure throughout the entire pipe 

would remain constant, and the fluid would flow through the pipe under the 

influence of gravity at a rate that depends on the angle of inclination, reach-

ing its maximum value when the pipe is vertical. When solving pipe flow 

problems, it is always a good idea to calculate the Reynolds number to verify 

the flow regime—laminar or turbulent.

EXAMPLE 8–2    Pressure Drop and Head Loss in a Pipe

Water at 408F (r 5 62.42 lbm/ft3 and m 5 1.038 3 1023 lbm/ft·s) is flow-

ing steadily through a 0.12-in- (5 0.010 ft) diameter 30-ft-long horizontal 

pipe at an average velocity of 3.0 ft/s (Fig. 8–18). Determine (a) the head 

loss, (b) the pressure drop, and (c) the pumping power requirement to over-

come this pressure drop.

3.0 ft/s

30 ft

0.12 in

FIGURE 8–18
Schematic for Example 8–2.
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SOLUTION  The average flow velocity in a pipe is given. The head loss, the 

pressure drop, and the pumping power are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The entrance 

effects are negligible, and thus the flow is fully developed. 3 The pipe 

involves no components such as bends, valves, and connectors.

Properties  The density and dynamic viscosity of water are given to be r 5 

62.42 lbm/ft3 and m 5 1.038 3 1023 lbm/ft·s, respectively.

Analysis  (a) First we need to determine the flow regime. The Reynolds 

number is

Re 5
rV avgD

m
5

(62.42 lbm/ft3)(3 ft/s)(0.01 ft)

1.038 3 1023 lbm/ft·s
 5 1803

which is less than 2300. Therefore, the flow is laminar. Then the friction 

factor and the head loss become

 f 5
64

Re
5

64

1803
5 0.0355

 hL 5 f 
L

D
  

V 2
avg

2g
5 0.0355 

30 ft

0.01 ft
 

(3 ft/s)2

2(32.2 ft/s2)
5 14.9 ft

(b) Noting that the pipe is horizontal and its diameter is constant, the pres-

sure drop in the pipe is due entirely to the frictional losses and is equivalent 

to the pressure loss,

 DP 5 DPL 5 f 
L

D
  
rV2

avg

2
5 0.0355 

30 ft

0.01 ft
 

(62.42 lbm/ft3)(3 ft/s)2

2
 a 1 lbf

32.2 lbm·ft/s2b
 5 929 lbf/ft2 5 6.45 psi

(c) The volume flow rate and the pumping power requirements are

 V
#

5 Vavg Ac 5 V avg(pD2/4) 5 (3 ft/s)[p(0.01 ft)2/4] 5 0.000236 ft3/s

 W
#

pump 5 V
#
 DP 5 (0.000236 ft3/s)(929 lbf/ft2) a 1 W

0.737 lbf·ft/s
b 5 0.30 W

Therefore, power input in the amount of 0.30 W is needed to overcome the 

frictional losses in the flow due to viscosity.

Discussion  The pressure rise provided by a pump is often listed by a pump 

manufacturer in units of head (Chap. 14). Thus, the pump in this flow needs 

to provide 14.9 ft of water head in order to overcome the irreversible head loss.

8–5 ■ TURBULENT FLOW IN PIPES
Most flows encountered in engineering practice are turbulent, and thus it is 
important to understand how turbulence affects wall shear stress. However, 
turbulent flow is a complex mechanism dominated by fluctuations, and despite 
tremendous amounts of work done in this area by researchers, turbulent flow 
still is not fully understood. Therefore, we must rely on experiments and the 
empirical or semi-empirical correlations developed for various situations.
 Turbulent flow is characterized by disorderly and rapid fluctuations of swirl-
ing regions of fluid, called eddies, throughout the flow (Fig. 8–19). These 
fluctuations provide an additional mechanism for momentum and energy 

FIGURE 8–19
Water exiting a tube: (a) laminar flow 
at low flow rate, (b) turbulent flow at 

high flow rate, and (c) same as (b) 
but with a short shutter exposure 

to capture individual eddies.
Photos by Alex Wouden.

(a)

(c)

(b)
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transfer. In laminar flow, fluid particles flow in an orderly manner along path-
lines, and momentum and energy are transferred across streamlines by molec-
ular diffusion. In turbulent flow, the swirling eddies transport mass, momen-
tum, and energy to other regions of flow much more rapidly than molecular 
diffusion, greatly enhancing mass, momentum, and heat transfer. As a result, 
turbulent flow is associated with much higher values of friction, heat trans-
fer, and mass transfer coefficients (Fig. 8–20).
 Even when the average flow is steady, the eddy motion in turbulent flow 
causes significant fluctuations in the values of velocity, temperature, pressure, 
and even density (in compressible flow). Figure 8–21 shows the variation of 
the instantaneous velocity component u with time at a specified location, as 
can be measured with a hot-wire anemometer probe or other sensitive device. 
We observe that the instantaneous values of the velocity fluctuate about an 
average value, which suggests that the velocity can be expressed as the sum 
of an average value u– and a fluctuating component u9,

 u 5 u 1 u9 (8–35)

This is also the case for other properties such as the velocity component v 
in the y-direction, and thus v 5 v– 1 v9, P 5 P

–
 1 P9, and T 5 T

–
 1 T9. The 

average value of a property at some location is determined by averaging it 
over a time interval that is sufficiently large so that the time average levels 
off to a constant. Therefore, the time average of fluctuating components is 
zero, e.g., u95 0. The magnitude of u9 is usually just a few percent of u–, but 
the high frequencies of eddies (on the order of a thousand per second) make 
them very effective for the transport of momentum, thermal energy, and mass. 
In time-averaged stationary turbulent flow, the average values of properties 
(indicated by an overbar) are independent of time. The chaotic fluctuations 
of fluid particles play a dominant role in pressure drop, and these random 
motions must be considered in analyses together with the average velocity.
 Perhaps the first thought that comes to mind is to determine the shear 
stress in an analogous manner to laminar flow from t 5 2m du–/dr, where 
u–(r) is the average velocity profile for turbulent flow. But the experimental 
studies show that this is not the case, and the effective shear stress is much 
larger due to the turbulent fluctuations. Therefore, it is convenient to think of 
the turbulent shear stress as consisting of two parts: the laminar component, 
which accounts for the friction between layers in the flow direction 
(expressed as tlam 5 2m du–/dr), and the turbulent component, which accounts 
for the friction between the fluctuating fluid particles and the fluid body 
(denoted as tturb and is related to the fluctuation components of velocity). 
Then the total shear stress in turbulent flow can be expressed as

 ttotal 5 tlam 1 tturb (8–36)

 The typical average velocity profile and relative magnitudes of laminar and 
turbulent components of shear stress for turbulent flow in a pipe are given in 
Fig. 8–22. Note that although the velocity profile is approximately parabolic 
in laminar flow, it becomes flatter or “fuller” in turbulent flow, with a sharp 
drop near the pipe wall. The fullness increases with the Reynolds number, 
and the velocity profile becomes more nearly uniform, lending support to the 
commonly utilized uniform velocity profile approximation for fully devel-
oped turbulent pipe flow. Keep in mind, however, that the flow speed at the 
wall of a stationary pipe is always zero (no-slip condition).

(a) Before
      turbulence

(b) After
      turbulence

FIGURE 8–20
The intense mixing in turbulent flow 
brings fluid particles at different 
momentums into close contact and 
thus enhances momentum transfer.

u

u�
u–

Time, t

u =    + u'u–

FIGURE 8–21
Fluctuations of the velocity 
component u with time at a specified 
location in turbulent flow.

tturbtlam

u(r)

r

0

r

0

0

ttotal

t

FIGURE 8–22
The velocity profile and the variation 
of shear stress with radial distance for 
turbulent flow in a pipe.
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Turbulent Shear Stress
Consider turbulent flow in a horizontal pipe, and the upward eddy motion of 
a fluid particle from a layer of lower velocity to an adjacent layer of higher 
velocity through a differential area dA as a result of the velocity fluctuation v9, 
as shown in Fig. 8–23. The mass flow rate of the fluid particle rising through 
dA is rv9dA, and its net effect on the layer above dA is a reduction in its aver-
age flow velocity because of momentum transfer to the fluid particle with 
lower average flow velocity. This momentum transfer causes the horizontal 
velocity of the fluid particle to increase by u9, and thus its momentum in the 
horizontal direction to increase at a rate of (rv9dA)u9, which must be equal to 
the decrease in the momentum of the upper fluid layer. Noting that force in 
a given direction is equal to the rate of change of momentum in that direc-
tion, the horizontal force acting on a fluid element above dA due to the 
passing of fluid particles through dA is dF 5  (rv9dA)(2u9) 5 2ru9v9dA. 
Therefore, the shear force per unit area due to the eddy motion of fluid par-
ticles dF/dA 5 2ru9v9 can be viewed as the instantaneous turbulent shear 
stress. Then the turbulent shear stress can be expressed as

 tturb 5 2ru9v9 (8–37)

where u9v9 is the time average of the product of the fluctuating velocity 
components u9 and v9. Note that u9v9 2 0 even though u9 5 0 and v9 5 0 
(and thus u9 v9 5 0), and experimental results show that u9v9 is usually a 
negative quantity. Terms such as 2 ru9v9 or 2ru92 are called Reynolds 
stresses or turbulent stresses.
 Many semi-empirical formulations have been developed that model the 
Reynolds stress in terms of average velocity gradients in order to provide 
mathematical closure to the equations of motion. Such models are called 
turbulence models and are discussed in more detail in Chap. 15.
 The random eddy motion of groups of particles resembles the random 
motion of molecules in a gas—colliding with each other after traveling a 
certain distance and exchanging momentum in the process. Therefore, 
momentum transport by eddies in turbulent flows is analogous to the molec-
ular momentum diffusion. In many of the simpler turbulence models, turbu-
lent shear stress is expressed in an analogous manner as suggested by the 
French mathematician Joseph Boussinesq (1842–1929) in 1877 as

 tturb 5 2ru9v9 5 mt 
0u
0y

 (8–38)

where mt is the eddy viscosity or turbulent viscosity, which accounts for 
momentum transport by turbulent eddies. Then the total shear stress can be 
expressed conveniently as

 ttotal 5 (m 1 mt) 
0u
0y

5 r (n 1 nt) 
0u
0y  (8–39)

where nt 5 mt/r is the kinematic eddy viscosity or kinematic turbulent 
viscosity (also called the eddy diffusivity of momentum). The concept of eddy 
viscosity is very appealing, but it is of no practical use unless its value can be 
determined. In other words, eddy viscosity must be modeled as a function of 
the average flow variables; we call this eddy viscosity closure. For example, 
in the early 1900s, the German engineer L. Prandtl introduced the concept of 

v�

rv� dA u(y)

u

u�

dA

y

FIGURE 8–23
Fluid particle moving upward 

through a differential area dA as a 
result of the velocity fluctuation v9.
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mixing length lm, which is related to the average size of the eddies that are 
primarily responsible for mixing, and expressed the turbulent shear stress as

 tturb 5 mt 
0u
0y

5 rl2
ma 0u0y b2

 (8–40)

But this concept is also of limited use since lm is not a constant for a given 
flow (in the vicinity of the wall, for example, lm is nearly proportional to the 
distance from the wall) and its determination is not easy. Final mathemati-
cal closure is obtained only when lm is written as a function of average flow 
variables, distance from the wall, etc.
 Eddy motion and thus eddy diffusivities are much larger than their molec-
ular counterparts in the core region of a turbulent boundary layer. The 
eddy motion loses its intensity close to the wall and diminishes at the wall 
because of the no-slip condition (u9 and v9 are identically zero at a station-
ary wall). Therefore, the velocity profile is very slowly changing in the core 
region of a turbulent boundary layer, but very steep in the thin layer adja-
cent to the wall, resulting in large velocity gradients at the wall surface. So 
it is no surprise that the wall shear stress is much larger in turbulent flow 
than it is in laminar flow (Fig. 8–24).
 Note that the molecular diffusivity of momentum n (as well as m) is a 
fluid property, and its value is listed in fluid handbooks. Eddy diffusivity nt 
(as well as mt), however, is not a fluid property, and its value depends on 
flow conditions. Eddy diffusivity nt decreases toward the wall, becoming 
zero at the wall. Its value ranges from zero at the wall to several thousand 
times the value of the molecular diffusivity in the core region.

Turbulent Velocity Profile
Unlike laminar flow, the expressions for the velocity profile in a turbu-
lent flow are based on both analysis and measurements, and thus they are 
semi-empirical in nature with constants determined from experimental data. 
Consider fully developed turbulent flow in a pipe, and let u denote the time-
averaged velocity in the axial direction (and thus drop the overbar from u– 
for simplicity).
 Typical velocity profiles for fully developed laminar and turbulent flows 
are given in Fig. 8–25. Note that the velocity profile is parabolic in lami-
nar flow but is much fuller in turbulent flow, with a sharp drop near the 
pipe wall. Turbulent flow along a wall can be considered to consist of four 
regions, characterized by the distance from the wall (Fig. 8–25). The very 
thin layer next to the wall where viscous effects are dominant is the viscous 
(or laminar or linear or wall) sublayer. The velocity profile in this layer is 
very nearly linear, and the flow is streamlined. Next to the viscous sublayer 
is the buffer layer, in which turbulent effects are becoming significant, but 
the flow is still dominated by viscous effects. Above the buffer layer is the 
overlap (or transition) layer, also called the inertial sublayer, in which the 
turbulent effects are much more significant, but still not dominant. Above 
that is the outer (or turbulent) layer in the remaining part of the flow in 
which turbulent effects dominate over molecular diffusion (viscous) effects.
 Flow characteristics are quite different in different regions, and thus it is 
difficult to come up with an analytic relation for the velocity profile for the 
entire flow as we did for laminar flow. The best approach in the turbulent 

y=0

Turbulent flow

y

∂u

∂y

y=0

Laminar flow

y

∂u

∂y
a b

a b

FIGURE 8–24
The velocity gradients at the wall, and 
thus the wall shear stress, are much 
larger for turbulent flow than they are 
for laminar flow, even though the 
turbulent boundary layer is thicker 
than the laminar one for the same 
value of free-stream velocity.
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case turns out to be to identify the key variables and functional forms using 
dimensional analysis, and then to use experimental data to determine the 
numerical values of any constants.
 The thickness of the viscous sublayer is very small (typically, much less 
than 1 percent of the pipe diameter), but this thin layer next to the wall plays 
a dominant role on flow characteristics because of the large velocity gradi-
ents it involves. The wall dampens any eddy motion, and thus the flow in 
this layer is essentially laminar and the shear stress consists of laminar shear 
stress which is proportional to the fluid viscosity. Considering that velocity 
changes from zero to nearly the core region value across a layer that is some-
times no thicker than a hair (almost like a step function), we would expect 
the velocity profile in this layer to be very nearly linear, and experiments 
confirm that. Then the velocity gradient in the viscous sublayer remains 
nearly constant at du/dy 5 u/y, and the wall shear stress can be expressed as

 tw 5 m 
u
y

5 rn 
u
y
  or  

tw

r
5
nu
y

 (8–41)

where y is the distance from the wall (note that y 5 R 2 r for a circular pipe). 
The quantity tw /r is frequently encountered in the analysis of turbulent 
velocity profiles. The square root of tw /r has the dimensions of velocity, and 
thus it is convenient to view it as a fictitious velocity called the friction velocity 
expressed as u* 5 !tw /r. Substituting this into Eq. 8–41, the velocity profile 
in the viscous sublayer is expressed in dimensionless form as

Viscous sublayer: 
u
u*

5
yu*

n
 (8–42)

This equation is known as the law of the wall, and it is found to satisfacto-
rily correlate with experimental data for smooth surfaces for 0 # yu*/n # 5. 
Therefore, the thickness of the viscous sublayer is roughly

Thickness of viscous sublayer: y 5 dsublayer 5
5n
u*

5
25n
ud

 (8–43)

where ud is the flow velocity at the edge of the viscous sublayer (where 
ud ø 5u*), which is closely related to the average velocity in a pipe. Thus 
we conclude that the thickness of the viscous sublayer is proportional to the 
kinematic viscosity and inversely proportional to the average flow velocity. 
In other words, the viscous sublayer is suppressed and it gets thinner as the 
velocity (and thus the Reynolds number) increases. Consequently, the velocity 
profile becomes nearly flat and thus the velocity distribution becomes more 
uniform at very high Reynolds numbers.
 The quantity n/u* has dimensions of length and is called the viscous 
length; it is used to nondimensionalize the distance y from the surface. In 
boundary layer analysis, it is convenient to work with nondimensionalized 
distance and nondimensionalized velocity defined as

Nondimensionalized variables: y1 5
yu*

n
  and  u1 5

u
u*

 (8–44)

Then the law of the wall (Eq. 8–42) becomes simply

Normalized law of the wall: u1 5 y1 (8–45)

Note that the friction velocity u* is used to nondimensionalize both y and u, 
and y1 resembles the Reynolds number expression.

Laminar flow

u(r)r

0

Turbulent flow

Turbulent layer

Overlap layer

Buffer layer
Viscous sublayer

u(r)r

0

Vavg

Vavg

FIGURE 8–25
The velocity profile in fully developed 
pipe flow is parabolic in laminar flow, 
but much fuller in turbulent flow. Note 

that u(r) in the turbulent case is the 
time-averaged velocity component in 

the axial direction (the overbar on u 
has been dropped for simplicity).
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 In the overlap layer, the experimental data for velocity are observed to line 
up on a straight line when plotted against the logarithm of distance from the 
wall. Dimensional analysis indicates and the experiments confirm that the 
velocity in the overlap layer is proportional to the logarithm of distance, and 
the velocity profile can be expressed as

The logarithmic law: 
u
u*

5
1
k

 ln 
yu*

n
1 B (8–46)

where k and B are constants whose values are determined experimentally 
to be about 0.40 and 5.0, respectively. Equation 8–46 is known as the loga-
rithmic law. Substituting the values of the constants, the velocity profile is 
determined to be

Overlap layer: 
u
u*

5 2.5 ln 
yu*

n
1 5.0 or u 1 5 2.5 ln y 1 1 5.0 (8–47)

It turns out that the logarithmic law in Eq. 8–47 satisfactorily represents exper-
imental data for the entire flow region except for the regions very close to the 
wall and near the pipe center, as shown in Fig. 8–26, and thus it is viewed as 
a universal velocity profile for turbulent flow in pipes or over surfaces. Note 
from the figure that the logarithmic-law velocity profile is quite accurate for 
y1 . 30, but neither velocity profile is accurate in the buffer layer, i.e., the region 
5 , y1 , 30. Also, the viscous sublayer appears much larger in the figure than 
it is since we used a logarithmic scale for distance from the wall.
 A good approximation for the outer turbulent layer of pipe flow can be 
obtained by evaluating the constant B in Eq. 8–46 from the requirement that 
maximum velocity in a pipe occurs at the centerline where r 5 0. Solving 
for B from Eq. 8–46 by setting y 5 R 2 r 5 R and u 5 umax, and substitut-
ing it back into Eq. 8–46 together with k 5 0.4 gives

Outer turbulent layer: 
umax 2 u

u*

5 2.5 ln 
R

R 2 r
 (8–48)

The deviation of velocity from the centerline value umax 2 u is called the 
velocity defect, and Eq. 8–48 is called the velocity defect law. This rela-
tion shows that the normalized velocity profile in the core region of turbulent 
flow in a pipe depends on the distance from the centerline and is independent 
of the viscosity of the fluid. This is not surprising since the eddy motion is 
dominant in this region, and the effect of fluid viscosity is negligible.
 Numerous other empirical velocity profiles exist for turbulent pipe flow. 
Among those, the simplest and the best known is the power-law velocity 
profile expressed as

Power-law velocity profile: 
u

umax
5 a y

R
b1/n

  or  
u

umax

5 a1 2
r

R
b1/n

 (8–49)

where the exponent n is a constant whose value depends on the Reynolds 
number. The value of n increases with increasing Reynolds number. The 
value n 5 7 generally approximates many flows in practice, giving rise to 
the term one-seventh power-law velocity profile.
 Various power-law velocity profiles are shown in Fig. 8–27 for n 5 6, 8, 
and 10 together with the velocity profile for fully developed laminar flow 
for comparison. Note that the turbulent velocity profile is fuller than the 
laminar one, and it becomes more flat as n (and thus the Reynolds number) 

Viscous
sublayer

100

30

25

20

15

10

5

0
101 102

y+ = yu*/n

u+ = u/u*

103 104

Buffer
layer

Overlap
layer

Turbulent
layer

Eq. 8–47

Eq. 8–42

Experimental data

FIGURE 8–26
Comparison of the law of the wall and 
the logarithmic-law velocity profiles 
with experimental data for fully 
developed turbulent flow in a pipe.

0.20 0.4 0.6 0.8

1

0.8

0.6

0.4

0.2

0

u/umax

r/
R

1

Laminar

n = 6

n = 8
n = 10

FIGURE 8–27
Power-law velocity profiles for 
fully developed turbulent flow in 
a pipe for different exponents, and 
its comparison with the laminar 
velocity profile.
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increases. Also note that the power-law profile cannot be used to calculate 
wall shear stress since it gives a velocity gradient of infinity there, and it 
fails to give zero slope at the centerline. But these regions of discrepancy 
constitute a small portion of the overall flow, and the power-law profile 
gives highly accurate results for turbulent flow through a pipe.
 Despite the small thickness of the viscous sublayer (usually much less 
than 1 percent of the pipe diameter), the characteristics of the flow in this 
layer are very important since they set the stage for flow in the rest of the 
pipe. Any irregularity or roughness on the surface disturbs this layer and 
affects the flow. Therefore, unlike laminar flow, the friction factor in turbu-
lent flow is a strong function of surface roughness.
 It should be kept in mind that roughness is a relative concept, and it has 
significance when its height e is comparable to the thickness of the viscous 
sublayer (which is a function of the Reynolds number). All materials appear 
“rough” under a microscope with sufficient magnification. In fluid mechanics, 
a surface is characterized as being rough when the hills of roughness protrude 
out of the viscous sublayer. A surface is said to be hydrodynamically smooth 
when the sublayer submerges the roughness elements. Glass and plastic sur-
faces are generally considered to be hydrodynamically smooth.

The Moody Chart and the Colebrook Equation
The friction factor in fully developed turbulent pipe flow depends on the 
Reynolds number and the relative roughness e/D, which is the ratio of the 
mean height of roughness of the pipe to the pipe diameter. The functional 
form of this dependence cannot be obtained from a theoretical analysis, and all 
available results are obtained from painstaking experiments using artificially 
roughened surfaces (usually by gluing sand grains of a known size on the inner 
surfaces of the pipes). Most such experiments were conducted by Prandtl’s stu-
dent J. Nikuradse in 1933, followed by the works of others. The friction factor 
was calculated from measurements of the flow rate and the pressure drop.
 The experimental results are presented in tabular, graphical, and func-
tional forms obtained by curve-fitting experimental data. In 1939, Cyril F. 
Colebrook (1910–1997) combined the available data for transition and tur-
bulent flow in smooth as well as rough pipes into the following implicit 
relation (Fig. 8–28) known as the Colebrook equation:

 
1"f

5 22.0 logae/D
3.7

1
2.51

Re"f
b  (turbulent flow) (8–50)

We note that the logarithm in Eq. 8–50 is a base 10 rather than a natural 
logarithm. In 1942, the American engineer Hunter Rouse (1906–1996) veri-
fied Colebrook’s equation and produced a graphical plot of f as a function 
of Re and the product Re!f . He also presented the laminar flow relation 
and a table of commercial pipe roughness. Two years later, Lewis F. Moody 
(1880–1953) redrew Rouse’s diagram into the form commonly used today. 
The now famous Moody chart is given in the appendix as Fig. A–12. It 
presents the Darcy friction factor for pipe flow as a function of Reynolds 
number and e/D over a wide range. It is probably one of the most widely 
accepted and used charts in engineering. Although it is developed for circu-
lar pipes, it can also be used for noncircular pipes by replacing the diameter 
with the hydraulic diameter.

FIGURE 8–28
The Colebrook equation.

The Colebrook equation isThe Colebrook equation is
implicitimplicit in  in f since  since f appears appears
on both sides of the equation.on both sides of the equation.
It must be solved iteratively.It must be solved iteratively.

+= –2.0 log= –2.0 log1

f! fRe!
e/D/D
3.73.7

2.512.51 RQ
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 Commercially available pipes differ from those used in the experiments in 
that the roughness of pipes in the market is not uniform and it is difficult to 
give a precise description of it. Equivalent roughness values for some com-
mercial pipes are given in Table 8–2 as well as on the Moody chart. But it 
should be kept in mind that these values are for new pipes, and the relative 
roughness of pipes may increase with use as a result of corrosion, scale 
buildup, and precipitation. As a result, the friction factor may increase by 
a factor of 5 to 10. Actual operating conditions must be considered in the 
design of piping systems. Also, the Moody chart and its equivalent Cole-
brook equation involve several uncertainties (the roughness size, experimen-
tal error, curve fitting of data, etc.), and thus the results obtained should not 
be treated as “exact.” They are is usually considered to be accurate to 615 
percent over the entire range in the figure.
 The Colebrook equation is implicit in f, and thus the determination of the 
friction factor requires iteration. An approximate explicit relation for f was 
given by S. E. Haaland in 1983 as

 
1"f
> 21.8 log c 6.9

Re
1 ae/D

3.7
b1.11 d  (8–51)

The results obtained from this relation are within 2 percent of those obtained 
from the Colebrook equation. If more accurate results are desired, Eq. 8–51 
can be used as a good first guess in a Newton iteration when using a pro-
grammable calculator or a spreadsheet to solve for f with Eq. 8–50.
 We make the following observations from the Moody chart:

• For laminar flow, the friction factor decreases with increasing Reynolds 
number, and it is independent of surface roughness.

• The friction factor is a minimum for a smooth pipe (but still not zero be-
cause of the no-slip condition) and increases with roughness (Fig. 8–29). 
The Colebrook equation in this case (e 5 0) reduces to the Prandtl 
equation expressed as 1/!f 5  2.0 log(Re!f ) 2  0.8.

• The transition region from the laminar to turbulent regime (2300 , Re 
, 4000) is indicated by the shaded area in the Moody chart (Figs. 8–30 
and A–12). The flow in this region may be laminar or turbulent, 
depending on flow disturbances, or it may alternate between laminar 
and turbulent, and thus the friction factor may also alternate between the 
values for laminar and turbulent flow. The data in this range are the least 
reliable. At small relative roughnesses, the friction factor increases in the 
transition region and approaches the value for smooth pipes.

• At very large Reynolds numbers (to the right of the dashed line on the 
Moody chart) the friction factor curves corresponding to specified relative 
roughness curves are nearly horizontal, and thus the friction factors are 
independent of the Reynolds number (Fig. 8–30). The flow in that region 
is called fully rough turbulent flow or just fully rough flow because the 
thickness of the viscous sublayer decreases with increasing Reynolds 
number, and it becomes so thin that it is negligibly small compared to the 
surface roughness height. The viscous effects in this case are produced 
in the main flow primarily by the protruding roughness elements, and the 
contribution of the viscous sublayer is negligible. The Colebrook equation 
in the fully rough zone (Re S `) reduces to the von Kármán equation 

 Relative Friction

 Roughness, Factor,

 e/D f

 0.0* 0.0119

 0.00001 0.0119

 0.0001 0.0134

 0.0005 0.0172

 0.001 0.0199

 0.005 0.0305

 0.01 0.0380

 0.05 0.0716

* Smooth surface. All values are for Re 5 106 

and are calculated from the Colebrook equation.

FIGURE 8–29
The friction factor is minimum for a 
smooth pipe and increases with 
roughness.

TABLE 8–2

Equivalent roughness values for new 

commercial pipes*

Roughness, e

Material ft mm

Glass, plastic 0 (smooth)

Concrete 0.003–0.03 0.9–9

Wood stave 0.0016 0.5

Rubber,

 smoothed 0.000033 0.01

Copper or

 brass tubing 0.000005 0.0015

Cast iron 0.00085 0.26

Galvanized

 iron 0.0005 0.15

Wrought iron 0.00015 0.046

Stainless steel 0.000007 0.002

Commercial

 steel 0.00015 0.045

* The uncertainty in these values can be as 

much as 660 percent.
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expressed as 1/!f 5 22.0 log[(e/D)/3.7], which is explicit in f. Some 
authors call this zone completely (or fully) turbulent flow, but this is 
misleading since the flow to the left of the dashed blue line in Fig. 8–30 
is also fully turbulent.

In calculations, we should make sure that we use the actual internal diam-
eter of the pipe, which may be different than the nominal diameter. For 
example, the internal diameter of a steel pipe whose nominal diameter is 
1 in is 1.049 in (Table 8–3).

Types of Fluid Flow Problems
In the design and analysis of piping systems that involve the use of the 
Moody chart (or the Colebrook equation), we usually encounter three types 
of problems (the fluid and the roughness of the pipe are assumed to be spec-
ified in all cases) (Fig. 8–31):

1.  Determining the pressure drop (or head loss) when the pipe length and 
diameter are given for a specified flow rate (or velocity)

2.  Determining the flow rate when the pipe length and diameter are given 
for a specified pressure drop (or head loss)

3.  Determining the pipe diameter when the pipe length and flow rate are 
given for a specified pressure drop (or head loss)

 Problems of the first type are straightforward and can be solved directly 
by using the Moody chart. Problems of the second type and third type are 
commonly encountered in engineering design (in the selection of pipe diam-
eter, for example, that minimizes the sum of the construction and pumping 
costs), but the use of the Moody chart with such problems requires an itera-
tive approach—an equation solver (such as EES) is recommended.
 In problems of the second type, the diameter is given but the flow rate is 
unknown. A good guess for the friction factor in that case is obtained from 
the completely turbulent flow region for the given roughness. This is true 
for large Reynolds numbers, which is often the case in practice. Once the 
flow rate is obtained, the friction factor is corrected using the Moody chart 
or the Colebrook equation, and the process is repeated until the solution 

FIGURE 8–30
At very large Reynolds numbers, the 
friction factor curves on the Moody 
chart are nearly horizontal, and thus 

the friction factors are independent of 
the Reynolds number. See Fig. A–12 

for a full-page Moody chart.

TABLE 8–3

Standard sizes for Schedule 40 

steel pipes

 Nominal Actual Inside

 Size, in Diameter, in

  18 0.269

 1
4  0.364

 3
8  0.493

  12 0.622

 
3

4  0.824

 1 1.049

 11
2  1.610

 2 2.067

 21
2 2.469

 3 3.068

 5 5.047

 10 10.02

103 104 105 106 107 108

Re

e/D = 0.001

0.1

0.01

0.001

ƒ

Transitional

Laminar Fully rough turbulent flow (ƒ levels off)

e/D = 0.01

e/D = 0.0001

e/D = 0

Smooth turbulent

L, , D, , V

ProblemProblem
typetype

1

L, , ΔP, P, V
L, , D, , ΔP

ΔP P (or (or hL )

D
V2

3

GivenGiven FindFind
⋅

⋅
⋅

FIGURE 8–31
The three types of problems 

encountered in pipe flow.
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converges. (Typically only a few iterations are required for convergence to 
three or four digits of precision.)
 In problems of the third type, the diameter is not known and thus 
the Reynolds number and the relative roughness cannot be calculated. 
Therefore, we start calculations by assuming a pipe diameter. The pressure 
drop calculated for the assumed diameter is then compared to the specified 
pressure drop, and calculations are repeated with another pipe diameter in 
an iterative fashion until convergence.
 To avoid tedious iterations in head loss, flow rate, and diameter calcula-
tions, Swamee and Jain (1976) proposed the following explicit relations that 
are accurate to within 2 percent of the Moody chart:

hL 5 1.07 
V
#

2L

gD5 e ln c e
3.7D

1 4.62anD
V
# b0.9 d f22

 
1026 , e/D , 1022

3000 , Re , 3 3 108 (8–52)

V
#

5 20.965agD5hL

L
b0.5

 ln c e
3.7D

1 a3.17v 2L

gD3hL

b0.5 d    Re .  2000 (8–53)

D 5 0.66 ce1.25aLV
#

2

ghL

b4.75

1 nV
#

9.4a L

ghL

b5.2 d 0.04

 
1026 , e/D , 1022

5000 , Re , 3 3 108 (8–54)

Note that all quantities are dimensional and the units simplify to the 
desired unit (for example, to m or ft in the last relation) when consistent 
units are used. Noting that the Moody chart is accurate to within 15 percent 
of experimental data, we should have no reservation in using these approxi-
mate relations in the design of piping systems.

EXAMPLE 8–3    Determining the Head Loss in a Water Pipe

Water at 608F (r 5 62.36 lbm/ft3 and m 5 7.536 3 1024 lbm/ft·s) is flow-

ing steadily in a 2-in-diameter horizontal pipe made of stainless steel at a rate 

of 0.2 ft3/s (Fig. 8–32). Determine the pressure drop, the head loss, and the 

required pumping power input for flow over a 200-ft-long section of the pipe.

SOLUTION  The flow rate through a specified water pipe is given. The pressure 

drop, the head loss, and the pumping power requirements are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The entrance 

effects are negligible, and thus the flow is fully developed. 3 The pipe 

involves no components such as bends, valves, and connectors. 4 The piping 

section involves no work devices such as a pump or a turbine.

Properties  The density and dynamic viscosity of water are given to be r 5 

62.36 lbm/ft3 and m 5 7.536 3 1024 lbm/ft·s, respectively.

Analysis  We recognize this as a problem of the first type, since flow rate, 

pipe length, and pipe diameter are known. First we calculate the average 

velocity and the Reynolds number to determine the flow regime:

 V 5  
V
#

Ac

 5  
V
#

pD2/4
 5  

0.2 ft3/s

p(2/12 ft)2/4
5 9.17 ft/s

 Re 5  
rV D

m
 5  

(62.36 lbm/ft3)(9.17 ft/s)(2/12 ft)

7.536 3 1024 lbm/ft·s
5  126,400

200 ft

2 in 0.2 ft3/s
water

FIGURE 8–32
Schematic for Example 8–3.
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Since Re is greater than 4000, the flow is turbulent. The relative roughness 

of the pipe is estimated using Table 8–2

e/D 5  
0.000007 ft

2/12 ft
 5  0.000042 

The friction factor corresponding to this relative roughness and Reynolds 

number is determined from the Moody chart. To avoid any reading error, we 

determine f from the Colebrook equation on which the Moody chart is based:

1"f
5 22.0 logae/D

3.7
1

2.51

Re"f
b S 1"f

5 22.0 log a0.000042

3.7
1

2.51

126,400"f
b  

Using an equation solver or an iterative scheme, the friction factor is deter-

mined to be f 5 0.0174. Then the pressure drop (which is equivalent to 

pressure loss in this case), head loss, and the required power input become

DP 5 DPL 5 f 
L

D
 
rV 2

2
5 0.0174 

200 ft

2/12 ft
 
(62.36 lbm/ft3)(9.17 ft/s)2

2
 a 1 lbf

32.2 lbm·ft/s2b
5 1700 lbf/ft2 5 11.8 psi 

hL 5
DPL

rg
5 f 

L

D
  
V 2

2g
5  0.0174 

200 ft

2/12 ft
  

(9.17 ft/s)2

2(32.2 ft/s2)
 5  27.3 ft

 W
#

pump 5 V
#
 DP 5 (0.2 ft3/s)(1700 lbf/ft2)a 1 W

0.737 lbf·ft/s
b 5 461 W

Therefore, power input in the amount of 461 W is needed to overcome the 

frictional losses in the pipe.

Discussion  It is common practice to write our final answers to three signifi-

cant digits, even though we know that the results are accurate to at most two 

significant digits because of inherent inaccuracies in the Colebrook equation, 

as discussed previously. The friction factor could also be determined easily 

from the explicit Haaland relation (Eq. 8–51). It would give f 5 0.0172, 

which is sufficiently close to 0.0174. Also, the friction factor corresponding 

to e 5 0 in this case is 0.0171, which indicates that this stainless-steel 

pipe can be approximated as smooth with minimal error.

EXAMPLE 8–4    Determining the Diameter of an Air Duct

Heated air at 1 atm and 358C is to be transported in a 150-m-long circular 

plastic duct at a rate of 0.35 m3/s (Fig. 8–33). If the head loss in the pipe 

is not to exceed 20 m, determine the minimum diameter of the duct.

SOLUTION  The flow rate and the head loss in an air duct are given. The 

diameter of the duct is to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The entrance 

effects are negligible, and thus the flow is fully developed. 3 The duct 

involves no components such as bends, valves, and connectors. 4 Air is an 

ideal gas. 5 The duct is smooth since it is made of plastic. 6 The flow is 

turbulent (to be verified).

Properties  The density, dynamic viscosity, and kinematic viscosity of air at 

358C are r 5 1.145 kg/m3, m 5 1.895 3 1025 kg/m·s, and n 5 1.655 3 

1025 m2/s.

150 m

D
0.35 m3/s

air

FIGURE 8–33
Schematic for Example 8–4.
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Analysis  This is a problem of the third type since it involves the deter-

mination of diameter for specified flow rate and head loss. We can solve 

this problem using three different approaches: (1) an iterative approach by 

assuming a pipe diameter, calculating the head loss, comparing the result 

to the specified head loss, and repeating calculations until the calculated 

head loss matches the specified value; (2) writing all the relevant equations 

(leaving the diameter as an unknown) and solving them simultaneously using 

an equation solver; and (3) using the third Swamee–Jain formula. We will 

demonstrate the use of the last two approaches.

 The average velocity, the Reynolds number, the friction factor, and the 

head loss relations are expressed as (D is in m, V is in m/s, and Re and f are 

dimensionless)

 V 5  
V
#

Ac

5
V
#

pD2/4
5

0.35 m3/s

pD2/4

 Re 5
VD
n

5
VD

1.655 3 1025 m2/s

 
1"f

 5 22.0 logae/D
3.7

1
2.51

Re"f
b 5 22.0 loga 2.51

Re"f
b

 hL 5 f 
L

D
 
V 2

2g
  S  20 m 5  f 

150 m

D
 

V 2

2(9.81 m/s2)

The roughness is approximately zero for a plastic pipe (Table 8–2). There-

fore, this is a set of four equations and four unknowns, and solving them 

with an equation solver such as EES gives

D 5 0.267 m,  f 5 0.0180,  V 5 6.24 m/s,  and  Re 5 100,800

Therefore, the diameter of the duct should be more than 26.7 cm if the 

head loss is not to exceed 20 m. Note that Re . 4000, and thus the turbu-

lent flow assumption is verified.

 The diameter can also be determined directly from the third Swamee–Jain 

formula to be

 D 5 0.66 ce1.25aLV
#

2

ghL

b4.75

1 nV
#

9.4 a L

ghL

b5.2 d 0.04

 5 0.66 c0 1 (1.655 3 1025 m2/s)(0.35 m3/s)9.4a 150 m

(9.81 m/s2)(20 m)
b5.2 d 0.04

 5 0.271 m

Discussion  Note that the difference between the two results is less than 

2 percent. Therefore, the simple Swamee–Jain relation can be used with 

confidence. Finally, the first (iterative) approach requires an initial guess for D. 

If we use the Swamee–Jain result as our initial guess, the diameter converges 

to D 5 0.267 m in short order.

EXAMPLE 8–5    Determining the Flow Rate of Air in a Duct

Reconsider Example 8–4. Now the duct length is doubled while its diameter 

is maintained constant. If the total head loss is to remain constant, determine 

the drop in the flow rate through the duct.
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SOLUTION  The diameter and the head loss in an air duct are given. The 

drop in the flow rate is to be determined.

Analysis  This is a problem of the second type since it involves the deter-

mination of the flow rate for a specified pipe diameter and head loss. The 

solution involves an iterative approach since the flow rate (and thus the flow 

velocity) is not known.

 The average velocity, Reynolds number, friction factor, and the head loss rela-

tions are expressed as (D is in m, V is in m/s, and Re and f are dimensionless)

 V 5
V
#

Ac

5
V
#

pD2/4
  S  V 5

V
#

p(0.267 m)2/4

 Re 5
VD
n
  S  Re 5

V (0.267 m)

1.655 3 1025 m2/s

 
1"f

5 22.0 logae/D
3.7

1
2.51

Re"f
b  S  

1"f
5 22.0 loga 2.51

Re"f
b

 hL 5 f 
L

D
 
V 2

2g
  S  20 m 5 f 

300 m

0.267 m
  

V 2

2(9.81 m/s2)

This is a set of four equations in four unknowns and solving them with an 

equation solver such as EES (Fig. 8–34) gives

V
#

5 0.24 m3/s,  f 5 0.0195,   V 5 4.23 m/s,  and  Re 5 68,300

Then the drop in the flow rate becomes

V
#
drop 5 V

#
old 2 V

#
new 5 0.35 2 0.24 5 0.11 m3/s  (a drop of 31 percent)

Therefore, for a specified head loss (or available head or fan pumping power), 

the flow rate drops by about 31 percent from 0.35 to 0.24 m3/s when the 

duct length doubles.

Alternative Solution  If a computer is not available (as in an exam situation), 

another option is to set up a manual iteration loop. We have found that the 

best convergence is usually realized by first guessing the friction factor f, 

and then solving for the velocity V. The equation for V as a function of f is

Average velocity through the pipe: V 5 Å 2ghL

f  L / D

Once V is calculated, the Reynolds number can be calculated, from which a 

corrected friction factor is obtained from the Moody chart or the Colebrook 

equation. We repeat the calculations with the corrected value of f until con-

vergence. We guess f 5 0.04 for illustration:

Iteration f (guess) V, m/s Re Corrected f

1 0.04 2.955 4.724 3 104 0.0212

2 0.0212 4.059 6.489 3 104 0.01973

3 0.01973 4.207 6.727 3 104 0.01957

4 0.01957 4.224 6.754 3 104 0.01956

5 0.01956 4.225 6.756 3 104 0.01956

Notice that the iteration has converged to three digits in only three iterations 

and to four digits in only four iterations. The final results are identical to 

those obtained with EES, yet do not require a computer.

FIGURE 8–34
EES solution for Example 8–5.
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Discussion  The new flow rate can also be determined directly from the sec-

ond Swamee–Jain formula to be

 V
#

5 20.965agD5hL

L
b0.5

 ln c e
3.7D

1 a3.17n 2L

gD3hL

b0.5 d  
 5 20.965a (9.81 m/s2)(0.267 m)5(20 m)

300 m
b0.5

 

 3 ln c0 1 a3.17(1.655 3 1025 m2/s)2(300 m)

(9.81 m/s2)(0.267 m)3(20 m)
b0.5 d

 5 0.24 m3/s 

Note that the result from the Swamee–Jain relation is the same (to two sig-

nificant digits) as that obtained with the Colebrook equation using EES or 

using our manual iteration technique. Therefore, the simple Swamee–Jain 

relation can be used with confidence.

8–6 ■ MINOR LOSSES
The fluid in a typical piping system passes through various fittings, valves, 
bends, elbows, tees, inlets, exits, expansions, and contractions in addition to 
the straight sections of piping. These components interrupt the smooth flow of 
the fluid and cause additional losses because of the flow separation and mixing 
they induce. In a typical system with long pipes, these losses are minor com-
pared to the head loss in the straight sections (the major losses) and are called 
minor losses. Although this is generally true, in some cases the minor losses 
may be greater than the major losses. This is the case, for example, in systems 
with several turns and valves in a short distance. The head loss introduced by a 
completely open valve, for example, may be negligible. But a partially closed 
valve may cause the largest head loss in the system, as evidenced by the drop 
in the flow rate. Flow through valves and fittings is very complex, and a theo-
retical analysis is generally not plausible. Therefore, minor losses are deter-
mined experimentally, usually by the manufacturers of the components.
 Minor losses are usually expressed in terms of the loss coefficient KL 
(also called the resistance coefficient), defined as (Fig. 8–35)

Loss coefficient: KL 5  
hL

V 2/(2g)
 (8–55)

where hL is the additional irreversible head loss in the piping system caused 
by insertion of the component, and is defined as hL 5 DPL/rg. For example, 
imagine replacing the valve in Fig. 8–35 with a section of constant diameter 
pipe from location 1 to location 2. DPL is defined as the pressure drop from 
1 to 2 for the case with the valve, (P1 2 P2)valve, minus the pressure drop 
that would occur in the imaginary straight pipe section from 1 to 2 without 
the valve, (P1 2 P2)pipe at the same flow rate. While the majority of the 
irreversible head loss occurs locally near the valve, some of it occurs down-
stream of the valve due to induced swirling turbulent eddies that are pro-
duced in the valve and continue downstream. These eddies “waste” mechanical 
energy because they are ultimately dissipated into heat while the flow in the 

(P1 – P2)valve

1 2

ΔPL = (P1 – P2)valve – (P1 – P2)pipe

V

1 2
V

(P1 – P2)pipe

Pipe section without valve:

Pipe section with valve:

FIGURE 8–35
For a constant-diameter section of a 
pipe with a minor loss component, 
the loss coefficient of the component 
(such as the gate valve shown) is 
determined by measuring the 
additional pressure loss it causes 
and dividing it by the dynamic 
pressure in the pipe.
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downstream section of pipe eventually returns to fully developed conditions. 
When measuring minor losses in some minor loss components, such as 
elbows, for example, location 2 must be considerably far downstream (tens 
of pipe diameters) in order to fully account for the additional irreversible 
losses due to these decaying eddies.
 When the pipe diameter downstream of the component changes, determi-
nation of the minor loss is even more complicated. In all cases, however, it 
is based on the additional irreversible loss of mechanical energy that would 
otherwise not exist if the minor loss component were not there. For simplic-
ity, you may think of the minor loss as occurring locally across the minor 
loss component, but keep in mind that the component influences the flow for 
several pipe diameters downstream. By the way, this is the reason why most 
flow meter manufacturers recommend installing their flow meter at least 10 
to 20 pipe diameters downstream of any elbows or valves—this allows the 
swirling turbulent eddies generated by the elbow or valve to largely disap-
pear and the velocity profile to become fully developed before entering the 
flow meter. (Most flow meters are calibrated with a fully developed velocity 
profile at the flow meter inlet, and yield the best accuracy when such condi-
tions also exist in the actual application.)
 When the inlet diameter equals the outlet diameter, the loss coefficient of 
a component can also be determined by measuring the pressure loss across 
the component and dividing it by the dynamic pressure, KL 5 DPL/(1

2rV2). 
When the loss coefficient for a component is available, the head loss for that 
component is determined from

Minor loss: hL 5 KL 
V 2

2g
 (8–56)

The loss coefficient, in general, depends on the geometry of the component 
and the Reynolds number, just like the friction factor. However, it is usually 
assumed to be independent of the Reynolds number. This is a reasonable 
approximation since most flows in practice have large Reynolds numbers 
and the loss coefficients (including the friction factor) tend to be indepen-
dent of the Reynolds number at large Reynolds numbers.
 Minor losses are also expressed in terms of the equivalent length Lequiv, 
defined as (Fig. 8–36)

Equivalent length: hL 5  KL 
V 2

2g
5 f 

Lequiv

D
 
V 2

2g
 S Lequiv 5

D

f
 KL (8–57)

where f is the friction factor and D is the diameter of the pipe that contains 
the component. The head loss caused by the component is equivalent to the 
head loss caused by a section of the pipe whose length is Lequiv. Therefore, 
the contribution of a component to the head loss is accounted for by simply 
adding Lequiv to the total pipe length.
 Both approaches are used in practice, but the use of loss coefficients is 
more common. Therefore, we also use that approach in this book. Once all 
the loss coefficients are available, the total head loss in a piping system is 
determined from

Total head loss (general):  hL, total 5 hL, major 1  hL, minor 

  5 a
i

 fi 
Li

Di

 
V 2

i

2g
1 a

j

KL, j 

V 2
j

2g
 (8–58)

FIGURE 8–36
The head loss caused by a component 

(such as the angle valve shown) 
is equivalent to the head loss caused 

by a section of the pipe whose 
length is the equivalent length.

ΔP = P1 – P2 = P3 – P4

Lequiv

D

3 4

1

2

D
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where i represents each pipe section with constant diameter and j represents 
each component that causes a minor loss. If the entire piping system being 
analyzed has a constant diameter, Eq. 8–58 reduces to

Total head loss (D 5 constant): hL, total 5 af 
L

D
1 aKLbV 2

2g
 (8–59)

where V is the average flow velocity through the entire system (note that 
V 5 constant since D 5 constant).
 Representative loss coefficients KL are given in Table 8–4 for inlets, exits, 
bends, sudden and gradual area changes, and valves. There is considerable 
uncertainty in these values since the loss coefficients, in general, vary with 
the pipe diameter, the surface roughness, the Reynolds number, and the 
details of the design. The loss coefficients of two seemingly identical valves 
by two different manufacturers, for example, can differ by a factor of 2 or 
more. Therefore, the particular manufacturer’s data should be consulted in 
the final design of piping systems rather than relying on the representative 
values in handbooks.
 The head loss at the inlet of a pipe is a strong function of geometry. It 
is almost negligible for well-rounded inlets (KL 5 0.03 for r/D . 0.2), but 
increases to about 0.50 for sharp-edged inlets (Fig. 8–37). That is, a sharp-
edged inlet causes half of the velocity head to be lost as the fluid enters the 
pipe. This is because the fluid cannot make sharp 908 turns easily, especially 
at high velocities. As a result, the flow separates at the corners, and the flow 
is constricted into the vena contracta region formed in the midsection of 
the pipe (Fig. 8–38). Therefore, a sharp-edged inlet acts like a flow constric-
tion. The velocity increases in the vena contracta region (and the pressure 
decreases) because of the reduced effective flow area and then decreases as 
the flow fills the entire cross section of the pipe. There would be negligible 
loss if the pressure were increased in accordance with Bernoulli’s equation 
(the velocity head would simply be converted into pressure head). However, 
this deceleration process is far from ideal and the viscous dissipation caused 
by intense mixing and the turbulent eddies converts part of the kinetic energy 
into frictional heating, as evidenced by a slight rise in fluid temperature. The 
end result is a drop in velocity without much pressure recovery, and the inlet 
loss is a measure of this irreversible pressure drop.
 Even slight rounding of the edges can result in significant reduction of KL, 
as shown in Fig. 8–39. The loss coefficient rises sharply (to about KL 5 0.8) 
when the pipe protrudes into the reservoir since some fluid near the edge 
in this case is forced to make a 1808 turn.
 The loss coefficient for a submerged pipe exit is often listed in handbooks 
as KL 5 1. More precisely, however, KL is equal to the kinetic energy cor-
rection factor a at the exit of the pipe. Although a is indeed close to 1 for 
fully developed turbulent pipe flow, it is equal to 2 for fully developed 
laminar pipe flow. To avoid possible errors when analyzing laminar pipe 
flow, then, it is best to always set KL 5 a at a submerged pipe exit. At any 
such exit, whether laminar or turbulent, the fluid leaving the pipe loses all of 
its kinetic energy as it mixes with the reservoir fluid and eventually comes to 
rest through the irreversible action of viscosity. This is true regardless of the 
shape of the exit (Table 8–4 and Fig. 8–40). Therefore, there is no advantage 
to rounding off the sharp edges of pipe exits.

Well-rounded inlet
KL = 0.03

DDD

r

Sharp-edged inlet
KL = 0.50

Recirculating flow

Vena contracta

FIGURE 8–37
The head loss at the inlet of a pipe is 
almost negligible for well-rounded 
inlets (KL 5 0.03 for r/D . 0.2) 
but increases to about 0.50 for 
sharp-edged inlets.

347-436_cengel_ch08.indd   376 12/18/12   1:52 PM



TABLE 8–4

Loss coefficients KL of various pipe components for turbulent flow (for use in the relation hL 5 KLV 2/(2g), where V  is the 

average velocity in the pipe that contains the component)*

Pipe Inlet

Reentrant: KL 5 0.80 Sharp-edged: KL 5 0.50 Well-rounded (r /D . 0.2): KL 5 0.03

(t ,, D and I < 0.1D)  Slightly rounded (r /D 5 0.1): KL 5 0.12

  (see Fig. 8–39)

Pipe Exit

Reentrant: KL 5 a Sharp-edged: KL 5 a Rounded: KL 5 a

Note: The kinetic energy correction factor is a 5 2 for fully developed laminar flow, and a < 1.05 for fully developed turbulent flow.

Sudden Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

Sudden expansion: KL 5 a a1 2
d2

D2
b2

Sudden contraction: See chart.

Gradual Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

Expansion (for u 5 20°): Contraction:

KL 5 0.30 for d/D 5 0.2 KL 5 0.02 for u 5 30°

KL 5 0.25 for d/D 5 0.4 KL 5 0.04 for u 5 45°

KL 5 0.15 for d/D 5 0.6 KL 5 0.07 for u 5 60°

KL 5 0.10 for d/D 5 0.8 

DV

l t

DV DV

r

V V V

V d D

VdD

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

KL

d2/D2

KL for sudden
contraction

V d Du VD du
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TABLE 8–4 (CONCLUDED)

Bends and Branches

90° smooth bend: 90° miter bend 90° miter bend 45° threaded elbow:

Flanged: KL 5 0.3 (without vanes): KL 5 1.1 (with vanes): KL 5 0.2 KL 5 0.4

Threaded: KL 5 0.9

180° return bend: Tee (branch flow): Tee (line flow): Threaded union:

Flanged: KL 5 0.2 Flanged: KL 5 1.0 Flanged: KL 5 0.2 KL 5 0.08

Threaded: KL 5 1.5 Threaded: KL 5 2.0 Threaded: KL 5 0.9

Valves

Globe valve, fully open: KL 5 10 Gate valve, fully open: KL 5 0.2

Angle valve, fully open: KL 5 5  
1
4 closed: KL 5 0.3

Ball valve, fully open: KL 5 0.05  
1
2 closed: KL 5 2.1

Swing check valve: KL 5 2  
3
4 closed: KL 5 17

* These are representative values for loss coefficients. Actual values strongly depend on the design and manufacture of the components and may differ from the 

given values considerably (especially for valves). Actual manufacturer’s data should be used in the final design.

V V V V
45°

V

V V

V

FIGURE 8–38
Graphical representation of flow 
contraction and the associated head 
loss at a sharp-edged pipe inlet.

21

Head Pressure head converted
to velocity head

Remaining
pressure head

Remaining
velocity head

Lost velocity head

Total
head

Pressure
head

P0
rg

P1
rg

P2
rg

V1
2

2g V2
2 /2g

KLV2/2g

0

Vena contracta

Separated
flow

11 221 2
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 Piping systems often involve sudden or gradual expansion or contraction 
sections to accommodate changes in flow rates or properties such as density 
and velocity. The losses are usually much greater in the case of sudden expan-
sion and contraction (or wide-angle expansion) because of flow separation. 
By combining the equations of mass, momentum, and energy balance, the 
loss coefficient for the case of a sudden expansion is approximated as

 KL 5 a a1 2
Asmall

A large

b2

  (sudden expansion)  (8–60)

where Asmall and Alarge are the cross-sectional areas of the small and 
large pipes, respectively. Note that KL 5 0 when there is no area change 
(Asmall 5 Alarge) and KL 5 a when a pipe discharges into a reservoir (Alarge 
.. Asmall). No such relation exists for a sudden contraction, and the KL val-
ues in that case must be read from a chart or table (e.g., Table 8–4). The 
losses due to expansions and contractions can be reduced significantly by 
installing conical gradual area changers (nozzles and diffusers) between 
the small and large pipes. The KL values for representative cases of gradual 
expansion and contraction are given in Table 8–4. Note that in head loss 
calculations, the velocity in the small pipe is to be used as the reference 
velocity in Eq. 8–56. Losses during expansion are usually much higher than 
the losses during contraction because of flow separation.
 Piping systems also involve changes in direction without a change in 
diameter, and such flow sections are called bends or elbows. The losses in 
these devices are due to flow separation (just like a car being thrown off 
the road when it enters a turn too fast) on the inner side and the swirling 
secondary flows that result. The losses during changes of direction can be 
minimized by making the turn “easy” on the fluid by using circular arcs 
(like 908 elbows) instead of sharp turns (like miter bends) (Fig. 8–41). But 
the use of sharp turns (and thus suffering a penalty in loss coefficient) may 
be necessary when the turning space is limited. In such cases, the losses can 
be minimized by utilizing properly placed guide vanes to help the flow turn 
in an orderly manner without being thrown off the course. The loss coeffi-
cients for some elbows and miter bends as well as tees are given in Table 8–4. 
These coefficients do not include the frictional losses along the pipe bend. 
Such losses should be calculated as in straight pipes (using the length of the 
centerline as the pipe length) and added to other losses.

0.050 0.10 0.15 0.20

0.5

0.4

0.3

0.2

0.1

0

r/D

KL

0.25

D

r

FIGURE 8–39
The effect of rounding of a pipe inlet 

on the loss coefficient.
Data from ASHRAE Handbook of Fundamentals.

Mixing

Entrained
ambient fluid

Submerged
outlet

FIGURE 8–40
All the kinetic energy of the flow is 
“lost” (turned into thermal energy) 

through friction as the jet decelerates 
and mixes with ambient fluid 

downstream of a submerged outlet.

Flanged elbow
KL = 0.3

Sharp turn
KL = 1.1

FIGURE 8–41
The losses during changes of direction 
can be minimized by making the turn 
“easy” on the fluid by using circular 

arcs instead of sharp turns.
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 Valves are commonly used in piping systems to control flow rates by 
simply altering the head loss until the desired flow rate is achieved. For 
valves it is desirable to have a very low loss coefficient when they are fully 
open, such as with a ball valve, so that they cause minimal head loss during 
full-load operation (Fig. 8–42b). Several different valve designs, each with 
its own advantages and disadvantages, are in common use today. The gate 
valve slides up and down like a gate, the globe valve (Fig. 8–42a) closes a 
hole placed in the valve, the angle valve is a globe valve with a 908 turn, and 
the check valve allows the fluid to flow only in one direction like a diode 
in an electric circuit. Table 8–4 lists the representative loss coefficients of 
the popular designs. Note that the loss coefficient increases drastically as 
a valve is closed. Also, the deviation in the loss coefficients for different 
manufacturers is greatest for valves because of their complex geometries.

EXAMPLE 8–6     Head Loss and Pressure Rise 
during Gradual Expansion

A 6-cm-diameter horizontal water pipe expands gradually to a 9-cm-diameter 

pipe (Fig. 8–43). The walls of the expansion section are angled 108 from the 

axis. The average velocity and pressure of water before the expansion section 

are 7 m/s and 150 kPa, respectively. Determine the head loss in the expan-

sion section and the pressure in the larger-diameter pipe.

SOLUTION  A horizontal water pipe expands gradually into a larger-diameter 

pipe. The head loss and pressure after the expansion are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The flow at sections 1 

and 2 is fully developed and turbulent with a1 5 a2 > 1.06.

Properties  We take the density of water to be r 5 1000 kg/m3. The loss coef-

ficient for a gradual expansion of total included angle u 5 208 and diameter 

ratio d/D 5 6/9 is KL 5 0.133 (by interpolation using Table 8–4).

Analysis  Noting that the density of water remains constant, the downstream 

velocity of water is determined from conservation of mass to be

 m# 1 5 m# 2 S rV1A1 5 rV2A2 S V2 5
A1

A2

 V1 5
D2

1

D2
2

 V1

 V2 5
(0.06 m)2

(0.09 m)2 (7 m/s) 5 3.11 m/s

Then the irreversible head loss in the expansion section becomes

hL 5 KL 
V 2

1

2g
5 (0.133) 

(7 m/s)2

2(9.81 m/s2)
5 0.333 m

Noting that z1 5 z2 and there are no pumps or turbines involved, the energy 

equation for the expansion section is expressed in terms of heads as

P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u  5

P2

rg
1 a2 

V 2
2

2g
1 z2 1 hturbine, e  1 hL

or

P1

rg
1 a1 

V 2
1

2g
5

P2

rg
1 a2 

V 2
2

2g
1 hL 

S 0 0
¡

FIGURE 8–42
(a) The large head loss in a partially 
closed globe valve is due to 
irreversible deceleration, flow 
separation, and mixing of high-
velocity fluid coming from the narrow 
valve passage. (b) The head loss 
through a fully-open ball valve, on the 
other hand, is quite small. 
Photo by John M. Cimbala.

                   V2 = V1
       Vconstriction > V1

V1 V2

Constriction

A globe
valve

(a)

(b)

9 cm6 cm

Water 
7 m/s

150 kPa

1 2

FIGURE 8–43
Schematic for Example 8–6.
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Solving for P2 and substituting,

P2 5 P1 1 r e a1V
2
1 2 a2V

2
2

2
2 ghL f 5 (150 kPa) 1 (1000 kg/m3)

 3 e 1.06(7 m/s)2 2 1.06(3.11 m/s)2

2
2 (9.81 m/s2)(0.333 m) f

 3 a 1 kN

1000 kg·m/s2b a 1 kPa

1 kN/m2b
 5  168 kPa 

Therefore, despite the head (and pressure) loss, the pressure increases 

from 150 to 168 kPa after the expansion. This is due to the conversion 

of dynamic pressure to static pressure when the average flow velocity is 

decreased in the larger pipe.

Discussion  It is common knowledge that higher pressure upstream is neces-

sary to cause flow, and it may come as a surprise to you that the downstream 

pressure has increased after the expansion, despite the loss. This is because 

the flow is driven by the sum of the three heads that comprise the total 

head (namely, pressure head, velocity head, and elevation head). During flow 

expansion, the higher velocity head upstream is converted to pressure head 

downstream, and this increase outweighs the nonrecoverable head loss. Also, 

you may be tempted to solve this problem using the Bernoulli equation. Such 

a solution would ignore the head loss (and the associated pressure loss) and 

result in an incorrect higher pressure for the fluid downstream.

8–7 ■  PIPING NETWORKS AND PUMP SELECTION

Series and Parallel Pipes
Most piping systems encountered in practice such as the water distribu-
tion systems in cities or commercial or residential establishments involve 
numerous parallel and series connections as well as several sources (supply 
of fluid into the system) and loads (discharges of fluid from the system) 
(Fig. 8–44). A piping project may involve the design of a new system or the 
expansion of an existing system. The engineering objective in such projects 
is to design a piping system that will reliably deliver the specified flow rates 
at specified pressures at minimum total (initial plus operating and mainte-
nance) cost. Once the layout of the system is prepared, the determination of 
the pipe diameters and the pressures throughout the system, while remaining 
within the budget constraints, typically requires solving the system repeat-
edly until the optimal solution is reached. Computer modeling and analysis 
of such systems make this tedious task a simple chore.
 Piping systems typically involve several pipes connected to each other in 
series and/or in parallel, as shown in Figs. 8–45 and 8–46. When the pipes 
are connected in series, the flow rate through the entire system remains con-
stant regardless of the diameters of the individual pipes in the system. This 
is a natural consequence of the conservation of mass principle for steady 
incompressible flow. The total head loss in this case is equal to the sum of the 
head losses in individual pipes in the system, including the minor losses. The 

FIGURE 8–44
A piping network in an industrial 

facility.
Courtesy UMDE Engineering, Contracting, 

and Trading. Used by permission.

A

fA, LA, DA

VA = VB

hL, 1-2 = hL, A + hL, B

⋅ ⋅

fB, LB, DB

B

1 2

FIGURE 8–45
For pipes in series, the flow rate is the 

same in each pipe, and the total head 
loss is the sum of the head losses in 

the individual pipes.
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expansion or contraction losses at connections are considered to belong to the 
smaller-diameter pipe since the expansion and contraction loss coefficients are 
defined on the basis of the average velocity in the smaller-diameter pipe.
 For a pipe that branches out into two (or more) parallel pipes and then 
rejoins at a junction downstream, the total flow rate is the sum of the flow 
rates in the individual pipes. The pressure drop (or head loss) in each indi-
vidual pipe connected in parallel must be the same since DP 5 PA 2 PB and 
the junction pressures PA and PB are the same for all the individual pipes. 
For a system of two parallel pipes 1 and 2 between junctions A and B with 
negligible minor losses, this is expressed as

hL, 1 5 hL, 2  S  f1 
L1

D1

 
V 2

1

2g
5 f2 

L2

D2

 
V 2

2

2g

Then the ratio of the average velocities and the flow rates in the two parallel 
pipes become

V1

V2

5 a f2

f1

 
L2

L1

 
D1

D2

b1/2

  and  
V
#
1

V
#
2

5
Ac, 1V 1

Ac, 2V 2

5
D2

1

D2
2

 a f2

f1

 
L 2

L 1

 
D1

D2

b1/2

Therefore, the relative flow rates in parallel pipes are established from the 
requirement that the head loss in each pipe be the same. This result can be 
extended to any number of pipes connected in parallel. The result is also 
valid for pipes for which the minor losses are significant if the equivalent 
lengths for components that contribute to minor losses are added to the pipe 
length. Note that the flow rate in one of the parallel branches is proportional 
to its diameter to the power 5/2 and is inversely proportional to the square 
root of its length and friction factor.
 The analysis of piping networks, no matter how complex they are, is 
based on two simple principles:

1.  Conservation of mass throughout the system must be satisfied. This is 
done by requiring the total flow into a junction to be equal to the total 
flow out of the junction for all junctions in the system. Also, the flow 
rate must remain constant in pipes connected in series regardless of the 
changes in diameters.

2.  Pressure drop (and thus head loss) between two junctions must be the 
same for all paths between the two junctions. This is because pressure 
is a point function and it cannot have two values at a specified point. 
In practice this rule is used by requiring that the algebraic sum of head 
losses in a loop (for all loops) be equal to zero. (A head loss is taken to 
be positive for flow in the clockwise direction and negative for flow in 
the counterclockwise direction.)

Therefore, the analysis of piping networks is very similar to the analysis of 
electric circuits (Kirchhoff’s laws), with flow rate corresponding to electric 
current and pressure corresponding to electric potential. However, the situ-
ation is much more complex here since, unlike the electrical resistance, the 
“flow resistance” is a highly nonlinear function. Therefore, the analysis of 
piping networks requires the simultaneous solution of a system of nonlinear 
equations, which requires software such as EES, Mathcad, Matlab, etc., or 
commercially available software designed specifically for such applications.

PA

Branch 1

Branch 2

PB < PA 
A B

 hL, 1 = hL, 2

VA = V1 + V2 = VB
⋅ ⋅ ⋅ ⋅

f1, L1, D1

 f2, L2, D2

FIGURE 8–46
For pipes in parallel, the head loss is 
the same in each pipe, and the total 
flow rate is the sum of the flow rates 
in individual pipes.
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Piping Systems with Pumps and Turbines
When a piping system involves a pump and/or turbine, the steady-flow 
energy equation on a unit-mass basis is expressed as (see Section 5–6)

P1

r
1 a1 

V 2
1

2
1 gz1 1 wpump, u 5

P2

r
1 a2 

V 2
2

2
1 gz2 1 wturbine, e 1 ghL (8–61)

or in terms of heads as

 
P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u 5

P2

rg
1 a2 

V 2
2

2g
1 z2 1 hturbine, e 1 hL (8–62)

where hpump, u 5 wpump, u /g is the useful pump head delivered to the fluid, 
hturbine, e 5 wturbine, e /g is the turbine head extracted from the fluid, a is the 
kinetic energy correction factor whose value is about 1.05 for most (turbulent) 
flows encountered in practice, and hL is the total head loss in the piping 
(including the minor losses if they are significant) between points 1 and 2. 
The pump head is zero if the piping system does not involve a pump or a 
fan, the turbine head is zero if the system does not involve a turbine, and 
both are zero if the system does not involve any mechanical work-producing 
or work-consuming devices.
 Many practical piping systems involve a pump to move a fluid from one 
reservoir to another. Taking points 1 and 2 to be at the free surfaces of the 
reservoirs (Fig. 8–47), the energy equation is solved for the required useful 
pump head, yielding

 hpump, u 5 (z2 2 z1) 1 hL (8–63)

since the velocities at free surfaces are negligible for large reservoirs and 
the pressures are at atmospheric pressure. Therefore, the useful pump head 
is equal to the elevation difference between the two reservoirs plus the head 
loss. If the head loss is negligible compared to z2 2 z1, the useful pump 
head is equal to the elevation difference between the two reservoirs. In the 
case of z1 . z2 (the first reservoir being at a higher elevation than the sec-
ond one) with no pump, the flow is driven by gravity at a flow rate that 
causes a head loss equal to the elevation difference. A similar argument can 
be given for the turbine head for a hydroelectric power plant by replacing 
hpump, u in Eq. 8–63 by 2hturbine, e.
 Once the useful pump head is known, the mechanical power that needs to 
be delivered by the pump to the fluid and the electric power consumed by 
the motor of the pump for a specified flow rate are determined from

 W
#

pump, shaft 5
rV
#
ghpump, u

hpump
  and  W

#
elect 5

rV
#
ghpump, u

hpump–motor
 (8–64)

where hpump–motor is the efficiency of the pump–motor combination, which is 
the product of the pump and the motor efficiencies (Fig. 8–48). The pump–
motor efficiency is defined as the ratio of the net mechanical energy deliv-
ered to the fluid by the pump to the electric energy consumed by the motor 
of the pump, and it typically ranges between 50 and 85 percent.
 The head loss of a piping system increases (usually quadratically) with the 
flow rate. A plot of required useful pump head hpump, u as a function of flow 
rate is called the system (or demand) curve. The head produced by a pump 
is not a constant either. Both the pump head and the pump efficiency vary 

z1

z2

Pump

Control volume
boundary

hpump, u = (z2 – z1) + hL 

 Wpump, u = rVghpump, u
⋅⋅

1

2

FIGURE 8–47
When a pump moves a fluid from 

one reservoir to another, the useful 
pump head requirement is equal to the 

elevation difference between the two 
reservoirs plus the head loss.

FIGURE 8–48
The efficiency of the pump–motor 
combination is the product of the 
pump and the motor efficiencies.

Photo by Yunus Çengel.

Liquid in

Liquid out

Motor

hmotor = 0.90

hpump = 0.70

hpump–motor = hpumphmotor

 = 0.70 3 0.90 = 0.63

Pump
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with the flow rate, and pump manufacturers supply this variation in tabular 
or graphical form, as shown in Fig. 8–49. These experimentally determined 
hpump, u and hpump, u versus V

.
 curves are called characteristic (or supply or 

performance) curves. Note that the flow rate of a pump increases as the 
required head decreases. The intersection point of the pump head curve with 
the vertical axis typically represents the maximum head (called the shutoff 
head) the pump can provide, while the intersection point with the horizontal 
axis indicates the maximum flow rate (called the free delivery) that the pump 
can supply.
 The efficiency of a pump is highest at a certain combination of head and 
flow rate. Therefore, a pump that can supply the required head and flow rate 
is not necessarily a good choice for a piping system unless the efficiency of 
the pump at those conditions is sufficiently high. The pump installed in a 
piping system will operate at the point where the system curve and the char-
acteristic curve intersect. This point of intersection is called the operating 
point, as shown in Fig. 8–46. The useful head produced by the pump at this 
point matches the head requirements of the system at that flow rate. Also, 
the efficiency of the pump during operation is the value corresponding to 
that flow rate.

EXAMPLE 8–7    Pumping Water through Two Parallel Pipes

Water at 208C is to be pumped from a reservoir (zA 5 5 m) to another res-

ervoir at a higher elevation (zB 5 13 m) through two 36-m-long pipes con-

nected in parallel, as shown in Fig. 8–50. The pipes are made of commercial 

steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be 

pumped by a 70 percent efficient motor–pump combination that draws 8 kW 

of electric power during operation. The minor losses and the head loss in 

pipes that connect the parallel pipes to the two reservoirs are considered to 

be negligible. Determine the total flow rate between the reservoirs and the 

flow rate through each of the parallel pipes.
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Operating
point

No pipe is attached
to the pump (no load
to maximize flow rate)

System curve

Pump exit is closed to produce maximum head (shutoff head)

hpump, u

Supply 
curve

Free delivery

h

pumph

FIGURE 8–49
Characteristic pump curves for 
centrifugal pumps, the system curve 
for a piping system, and the operating 
point.
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SOLUTION  The pumping power input to a piping system with two parallel 

pipes is given. The flow rates are to be determined.

Assumptions  1 The flow is steady (since the reservoirs are large) and incom-

pressible. 2 The entrance effects are negligible, and thus the flow is fully 

developed. 3 The elevations of the reservoirs remain constant. 4 The minor 

losses and the head loss in pipes other than the parallel pipes are negligible. 

5 Flows through both pipes are turbulent (to be verified).

Properties  The density and dynamic viscosity of water at 208C are r 5 998 kg/m3 

and m 5 1.002 3 1023 kg/m·s. The roughness of commercial steel pipe is e 

5 0.000045 m (Table 8–2).

Analysis  This problem cannot be solved directly since the velocities (or flow 

rates) in the pipes are not known. Therefore, we would normally use a trial-

and-error approach here. However, equation solvers such as EES are widely 

available, and thus, we simply set up the equations to be solved by an equation 

solver. The useful head supplied by the pump to the fluid is determined from

 W
#
elect 5

rV
#
ghpump, u

hpump2motor
 S 8000 W 5

(998 kg/m3)V
#
(9.81 m/s2)hpump, u

0.70
 (1)

We choose points A and B at the free surfaces of the two reservoirs. Noting 

that the fluid at both points is open to the atmosphere (and thus PA 5 PB 5
Patm) and that the fluid velocities at both points are nearly zero (VA < VB < 0) 

since the reservoirs are large, the energy equation for a control volume between 

these two points simplifies to

PA

rg
1 aA 

V 2
A

2g
  1 zA 1 hpump, u 5

PB

rg
1 aB 

V 2
B

2g
  1 zB 1 hL 

or

hpump, u 5 (zB 2 zA) 1 hL 

or

 hpump, u 5 (13 m 2 5 m) 1 hL (2)

where

 hL 5 hL, 1 5 hL, 2 (3)(4)

  0  0
 Q  Q 

1

2

zA = 5 m

L1 = 36 m
D1 = 4 cm

Control 
volume

boundary

A

Pump

zB = 13 mB

D2 = 8 cm
L2 = 36 m

FIGURE 8–50
The piping system discussed in 

Example 8–7.
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We designate the 4-cm-diameter pipe by 1 and the 8-cm-diameter pipe by 2. 

Equations for the average velocity, the Reynolds number, the friction factor, 

and the head loss in each pipe are

  V1 5
V
#
1

Ac, 1

5
V
#
1

pD2
1/4
  S  V1 5

V
#
1

p(0.04 m)2/4
  (5)

  V2 5
V
#
2

Ac, 2

5
V
#
2

pD2
2/4
  S  V2 5

V
#
2

p(0.08 m)2/4
  (6)

  Re1 5
rV 1D1

m
  S  Re1 5  

(998 kg/m3)V 1(0.04 m)

1.002 3 1023 kg/m·s
 (7)

  Re2 5
rV2 D2

m
  S  Re2 5

(998 kg/m3)V 2(0.08 m)

1.002 3 1023 kg/m·s
 (8)

  
1"f1

5 22.0 logae/D1

3.7
1

2.51

Re1"f1

b  

    S  
1"f1

5 22.0 loga 0.000045

3.7 3 0.04
1

2.51

Re1"f1

b  (9)

  
1"f2

5 22.0 logae/D2

3.7
1

2.51

Re2"f2

b  

    S  
1"f2

5 22.0 loga 0.000045

3.7 3 0.08
1

2.51

Re2"f2

b  (10)

  hL, 1 5 f1 
L1

D1

  

V 2
1

2g
  S  hL, 1 5 f1 

36 m

0.04 m
  

V 2
1

2(9.81 m/s2)
  (11)

  hL, 2 5 f2 
L2

D2

  

V 2
2

2g
  S  hL, 2 5 f2 

36 m

0.08 m
  

V 2
2

2(9.81 m/s2)
  (12)

  V
#

5 V
#
1 1 V

#
2  (13)

This is a system of 13 equations in 13 unknowns, and their simultaneous 

solution by an equation solver gives

 V
#
 5  0.0300 m3/s,  V

#
1 5 0.00415 m3/s,  V

#
2 5 0.0259 m3/s

V1 5 3.30 m/s, V2 5 5.15 m/s, hL 5 hL, 1 5 hL, 2 5 11.1 m, hpump 5 19.1 m

Re1 5 131,600,  Re2 5 410,000,  f1 5 0.0221,  f2 5 0.0182

Note that Re . 4000 for both pipes, and thus the assumption of turbulent 

flow is verified.

Discussion  The two parallel pipes have the same length and roughness, but 

the diameter of the first pipe is half the diameter of the second one. Yet 

only 14 percent of the water flows through the first pipe. This shows the 

strong dependence of the flow rate on diameter. Also, it can be shown that 

if the free surfaces of the two reservoirs were at the same elevation (and 

thus zA 5  zB), the flow rate would increase by 20 percent from 0.0300 to 

0.0361 m3/s. Alternately, if the reservoirs were as given but the irreversible 

head losses were negligible, the flow rate would become 0.0715 m3/s (an 

increase of 138 percent).
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EXAMPLE 8–8    Gravity-Driven Water Flow in a Pipe

Water at 108C flows from a large reservoir to a smaller one through a 5-cm-

diameter cast iron piping system, as shown in Fig. 8–51. Determine the 

elevation z1 for a flow rate of 6 L/s.

SOLUTION  The flow rate through a piping system connecting two reservoirs 

is given. The elevation of the source is to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The elevations of 

the reservoirs remain constant. 3 There are no pumps or turbines in the line.

Properties  The density and dynamic viscosity of water at 108C are r 5 

999.7 kg/m3 and m 5 1.307 3 1023 kg/m·s. The roughness of cast iron 

pipe is e 5 0.00026 m (Table 8–2).

Analysis  The piping system involves 89 m of piping, a sharp-edged entrance 

(KL 5 0.5), two standard flanged elbows (KL 5 0.3 each), a fully open gate 

valve (KL 5 0.2), and a submerged exit (KL 5 1.06). We choose points 1 

and 2 at the free surfaces of the two reservoirs. Noting that the fluid at 

both points is open to the atmosphere (and thus P1 5 P2 5 Patm) and that 

the fluid velocities at both points are nearly zero (V1 < V2 < 0), the energy 

equation for a control volume between these two points simplifies to

P1

rg
1 a1 

V 2
1

2g
  1 z1 5

P2

rg
1 a2 

V 2
2

2g
  1 z2 1 hL  S  z1 5 z2 1 hL

where

hL 5 hL, total 5 hL, major 1 hL, minor 5 af 
L

D
1 aKLb V 2

2g

since the diameter of the piping system is constant. The average velocity in 

the pipe and the Reynolds number are

 V 5
V
#

Ac

5
V
#

pD2/4
5

0.006 m3/s

p(0.05 m)2/4
5 3.06 m/s

 Re 5
rVD

m
5

(999.7 kg/m3)(3.06 m/s)(0.05 m)

1.307 3 1023 kg/m·s
5 117,000

The flow is turbulent since Re . 4000. Noting that e/D 5 0.00026/0.05 5 

0.0052, the friction factor is determined from the Colebrook equation (or the 

Moody chart),

  0  0
 Q  Q 

1z1 = ?

2 z2 = 4 m

D = 5 cm

9 m

80 m

Standard elbow,
flanged, KL = 0.3

Gate valve,
fully open
KL = 0.2

Sharp-edged
entrance, KL = 0.5 

Control
volume
boundary

Exit, KL = 1.06

FIGURE 8–51
The piping system discussed in 

Example 8–8.
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1"f
5 22.0 logae/D

3.7
1

2.51

Re"f
b S 

1"f
5 22.0 loga0.0052

3.7
1

2.51

117,000"f
b

It gives f 5 0.0315. The sum of the loss coefficients is

 aKL 5 KL, entrance 1 2KL, elbow 1 KL, valve 1 KL, exit 

 5 0.5 1 2 3 0.3 1 0.2 1 1.06 5 2.36 

Then the total head loss and the elevation of the source become

 hL 5 af 
L

D
1 aKLbV 2

2g
5 a0.0315 

89 m

0.05 m
1 2.36b 

(3.06 m/s)2

2(9.81 m/s2)
5 27.9 m

z1 5 z2 1 hL 5 4 1 27.9 5 31.9 m

Therefore, the free surface of the first reservoir must be 31.9 m above the 

ground level to ensure water flow between the two reservoirs at the speci-

fied rate.

Discussion  Note that fL/D 5 56.1 in this case, which is about 24 times the 

total minor loss coefficient. Therefore, ignoring the sources of minor losses 

in this case would result in about 4 percent error. It can be shown that at 

the same flow rate, the total head loss would be 35.9 m (instead of 27.9 m) 

if the valve were three-fourths closed, and it would drop to 24.8 m if the 

pipe between the two reservoirs were straight at the ground level (thus elimi-

nating the elbows and the vertical section of the pipe). The head loss could 

be reduced further (from 24.8 to 24.6 m) by rounding the entrance. The 

head loss can be reduced significantly (from 27.9 to 16.0 m) by replacing 

the cast iron pipes by smooth pipes such as those made of plastic.

EXAMPLE 8–9    Effect of Flushing on Flow Rate from a Shower

The bathroom plumbing of a building consists of 1.5-cm-diameter copper 

pipes with threaded connectors, as shown in Fig. 8–52. (a) If the gage pres-

sure at the inlet of the system is 200 kPa during a shower and the toilet 

reservoir is full (no flow in that branch), determine the flow rate of water 

through the shower head. (b) Determine the effect of flushing of the toilet 

on the flow rate through the shower head. Take the loss coefficients of the 

shower head and the reservoir to be 12 and 14, respectively.

FIGURE 8–52
Schematic for Example 8–9. 5 m 4 m

Toilet reservoir
with float
KL = 14

KL = 0.9

KL = 2

KL = 10

KL = 12
Shower head

Globe valve,
fully open
KL = 10

Cold
water

1 m

2 m
3

1

2
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SOLUTION  The cold-water plumbing system of a bathroom is given. The 

flow rate through the shower and the effect of flushing the toilet on the flow 

rate are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The flow is turbu-

lent and fully developed. 3 The reservoir is open to the atmosphere. 4 The 

velocity heads are negligible.

Properties  The properties of water at 208C are r 5 998 kg/m3, m 5 1.002 3 

1023 kg/m·s, and n 5 m/r 5 1.004 3 1026 m2/s. The roughness of copper 

pipes is e 5 1.5 3 1026 m.

Analysis  This is a problem of the second type since it involves the determi-

nation of the flow rate for a specified pipe diameter and pressure drop. The 

solution involves an iterative approach since the flow rate (and thus the flow 

velocity) is not known.

(a) The piping system of the shower alone involves 11 m of piping, a tee 

with line flow (KL 5 0.9), two standard elbows (KL 5 0.9 each), a fully open 

globe valve (KL 5 10), and a shower head (KL 5 12). Therefore, aKL 5 0.9

1 2 3 0.9 1 10 1 12 5 24.7. Noting that the shower head is open to the 

atmosphere, and the velocity heads are negligible, the energy equation for a 

control volume between points 1 and 2 simplifies to

P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u 5

P2

rg
1 a2 

V 2
2

2g
1 z2 1 hturbine, e 1 hL

  S  
P1, gage

rg
 5 (z2 2 z1) 1 hL 

Therefore, the head loss is

hL 5
200,000 N/m2

(998 kg/m3)(9.81 m/s2)
2 2 m 5 18.4 m

Also,

hL 5 af 
L

D
1 aKLb  

V 2

2g
  S  18.4 5 af 

11 m

0.015 m
1 24.7b 

V 2

2(9.81 m/s2)

since the diameter of the piping system is constant. Equations for the aver-

age velocity in the pipe, the Reynolds number, and the friction factor are

 V 5
V
#

Ac

5
V
#

pD2/4
  S  V 5

V
#

p(0.015 m)2/4
 

 Re 5
VD
n
  S  Re 5

V (0.015 m)

1.004 3 1026 m2/s

 
1"f

5 22.0 logae/D
3.7

1
2.51

Re"f
b  

   S  
1"f

5 22.0 loga1.5 3 1026 m

3.7(0.015 m)
1

2.51

Re"f
b

This is a set of four equations with four unknowns, and solving them with an 

equation solver such as EES gives
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V
#

5 0.00053 m3/s, f 5 0.0218, V 5 2.98 m/s,  and  Re 5 44,550

Therefore, the flow rate of water through the shower head is 0.53 L/s.

(b) When the toilet is flushed, the float moves and opens the valve. The 

discharged water starts to refill the reservoir, resulting in parallel flow after 

the tee connection. The head loss and minor loss coefficients for the shower 

branch were determined in (a) to be hL, 2 5 18.4 m and aKL, 2 5 24.7, 

respectively. The corresponding quantities for the reservoir branch can be 

determined similarly to be

 hL, 3 5
200,000 N/m2

(998 kg/m3)(9.81 m/s2)
2 1 m 5 19.4 m

 aKL, 3 5 2 1 10 1 0.9 1 14 5 26.9

The relevant equations in this case are

 V
#
1 5 V

#
2 1 V

#
3 

 hL, 2 5 f1

5 m

0.015 m
 

V 2
1

2(9.81 m/s2)
1 af2

6 m

0.015 m
1 24.7b 

V 2
2

2(9.81 m/s2)
5 18.4

 hL, 3 5 f1

5 m

0.015 m
 

V 2
1

2(9.81 m/s2)
1 af3

1 m

0.015 m
1 26.9b 

V 2
3

2(9.81 m/s2)
5 19.4

 V1 5
V
#
1

p(0.015 m)2/4
, V2 5

V
#
2

p(0.015 m)2/4
, V3 5

V
#
3

p(0.015 m)2/4
 

 Re1 5
V1(0.015 m)

1.004 3 1026m2/s
, Re2 5

V2(0.015 m)

1.004 3 1026m2/s
,  Re3 5

V3(0.015 m)

1.004 3 1026m2/s

 
1"f1

5 22.0 loga1.5 3 1026 m

3.7(0.015 m)
1

2.51

Re1"f1

b  

 
1"f2

5 22.0 loga1.5 3 1026 m

3.7(0.015 m)
1

2.51

Re2"f2

b  

 
1"f3

5 22.0 loga1.5 3 1026 m

3.7(0.015 m)
1

2.51

Re3"f3

b  

Solving these 12 equations in 12 unknowns simultaneously using an equa-

tion solver, the flow rates are determined to be

V
#
1 5 0.00090 m3/s, V

#
2 5 0.00042 m3/s, and V

#
3 5 0.00048 m3/s

Therefore, the flushing of the toilet reduces the flow rate of cold water through 
the shower by 21 percent from 0.53 to 0.42 L/s, causing the shower water to 

suddenly get very hot (Fig. 8–53).

Discussion  If the velocity heads were considered, the flow rate through the 

shower would be 0.43 instead of 0.42 L/s. Therefore, the assumption of 

negligible velocity heads is reasonable in this case. Note that a leak in a 

piping system would cause the same effect, and thus an unexplained drop in 

flow rate at an end point may signal a leak in the system.

FIGURE 8–53
Flow rate of cold water through a 
shower may be affected significantly 
by the flushing of a nearby toilet.
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8–8 ■ FLOW RATE AND VELOCITY MEASUREMENT
A major application area of fluid mechanics is the determination of the flow 
rate of fluids, and numerous devices have been developed over the years 
for the purpose of flow metering. Flowmeters range widely in their level 
of sophistication, size, cost, accuracy, versatility, capacity, pressure drop, 
and the operating principle. We give an overview of the meters commonly 
used to measure the flow rate of liquids and gases flowing through pipes or 
ducts. We limit our consideration to incompressible flow.
 Some flowmeters measure the flow rate directly by discharging and 
recharging a measuring chamber of known volume continuously and keep-
ing track of the number of discharges per unit time. But most flowmeters 
measure the flow rate indirectly—they measure the average velocity V or 
a quantity that is related to average velocity such as pressure and drag, and 
determine the volume flow rate V

.
 from

 V
#

5 VAc (8–65)

where Ac is the cross-sectional area of flow. Therefore, measuring the flow 
rate is usually done by measuring flow velocity, and many flowmeters are 
simply velocimeters used for the purpose of metering flow.
 The velocity in a pipe varies from zero at the wall to a maximum at the 
center, and it is important to keep this in mind when taking velocity mea-
surements. For laminar flow, for example, the average velocity is half the 
centerline velocity. But this is not the case in turbulent flow, and it may be 
necessary to take the weighted average or an integral of several local veloc-
ity measurements to determine the average velocity.
 The flow rate measurement techniques range from very crude to very 
elegant. The flow rate of water through a garden hose, for example, can be 
measured simply by collecting the water in a bucket of known volume and 
dividing the amount collected by the collection time (Fig. 8–54). A crude 
way of estimating the flow velocity of a river is to drop a float on the river 
and measure the drift time between two specified locations. At the other 
extreme, some flowmeters use the propagation of sound in flowing fluids 
while others use the electromotive force generated when a fluid passes 
through a magnetic field. In this section we discuss devices that are com-
monly used to measure velocity and flow rate, starting with the Pitot-static 
probe introduced in Chap. 5.

Pitot and Pitot-Static Probes
Pitot probes (also called Pitot tubes) and Pitot-static probes, named after 
the French engineer Henri de Pitot (1695–1771), are widely used for flow 
speed measurement. A Pitot probe is just a tube with a pressure tap at the stag-
nation point that measures stagnation pressure, while a Pitot-static probe has 
both a stagnation pressure tap and several circumferential static pressure taps 
and it measures both stagnation and static pressures (Figs. 8–55 and 8–56). 
Pitot was the first person to measure velocity with the upstream pointed tube, 
while French engineer Henry Darcy (1803–1858) developed most of the fea-
tures of the instruments we use today, including the use of small openings and 
the placement of the static tube on the same assembly. Therefore, it is more 
appropriate to call the Pitot-static probes Pitot–Darcy probes.

FIGURE 8–54
A primitive (but fairly accurate) way 

of measuring the flow rate of water 
through a garden hose involves 

collecting water in a bucket and 
recording the collection time.

Nozzle

Bucket
Garden
hose

Stopwatch
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 The Pitot-static probe measures local velocity by measuring the pressure 
difference in conjunction with the Bernoulli equation. It consists of a slen-
der double-tube aligned with the flow and connected to a differential pres-
sure meter. The inner tube is fully open to flow at the nose, and thus it 
measures the stagnation pressure at that location (point 1). The outer tube 
is sealed at the nose, but it has holes on the side of the outer wall (point 2) 
and thus it measures the static pressure. For incompressible flow with suf-
ficiently high velocities (so that the frictional effects between points 1 and 2 
are negligible), the Bernoulli equation is applicable and is expressed as

 
P1

rg
1

V 2
1

2g
1 z1 5

P2

rg
1

V 2
2

2g
1 z2 (8–66)

Noting that z1 > z2 since the static pressure holes of the Pitot-static probe 
are arranged circumferentially around the tube and V1 5 0 because of the 
stagnation conditions, the flow velocity V 5 V2 becomes

Pitot formula: V 5 Å2(P1 2 P2)

r
 (8–67)

which is known as the Pitot formula. If the velocity is measured at a location 
where the local velocity is equal to the average flow velocity, the volume 
flow rate can be determined from V

.
 5 VAc.

 The Pitot-static probe is a simple, inexpensive, and highly reliable device 
since it has no moving parts (Fig. 8–57). It also causes very small pres-
sure drop and usually does not disturb the flow appreciably. However, it is 
important that it be properly aligned with the flow to avoid significant errors 
that may be caused by misalignment. Also, the difference between the static 
and stagnation pressures (which is the dynamic pressure) is proportional to 
the density of the fluid and the square of the flow velocity. It is used to 
measure velocity in both liquids and gases. Noting that gases have low den-
sities, the flow velocity should be sufficiently high when the Pitot-static probe 
is used for gas flow such that a measurable dynamic pressure develops.

Obstruction Flowmeters: Orifice, Venturi, 
and Nozzle Meters
Consider incompressible steady flow of a fluid in a horizontal pipe of diam-
eter D that is constricted to a flow area of diameter d, as shown in Fig. 8–58. 
The mass balance and the Bernoulli equations between a location before the 

FIGURE 8–55
(a) A Pitot probe measures stagnation 
pressure at the nose of the probe, 
while (b) a Pitot-static probe measures 
both stagnation pressure and static 
pressure, from which the flow 
speed is calculated.

Stagnation
pressure

To stagnation pressure meter To stagnation pressure meter

To static pressure meter

Pitot-static probePitot probe

(a) (b)

V V

Stagnation
pressure

Static
pressure

Wind tunnel wall

Flexible 
tubing

Differential pressure transducer 
or manometer to measure P1 – P2

P1 – P2

Flow
Pitot-static probe

Stagnation
pressure, P1

Static
pressure, P2

FIGURE 8–56
Measuring flow velocity with a 
Pitot-static probe. (A manometer may 
be used in place of the differential 
pressure transducer.)

FIGURE 8–57
Close-up of a Pitot-static probe, 
showing the stagnation pressure 
hole and two of the five static 
circumferential pressure holes. 
Photo by Po-Ya Abel Chuang.
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constriction (point 1) and the location where constriction occurs (point 2) 
are written as

Mass balance: V
#

5 A1V1 5 A2V2 S V1 5 (A2/A1)V2 5 (d/D)2V2 (8–68)

Bernoulli equation (z1 5 z2): 
P1

rg
1

V 2
1

2g
5

P2

rg
1

V 2
2

2g
 (8–69)

Combining Eqs. 8–68 and 8–69 and solving for velocity V2 gives

Obstruction (with no loss): V2 5 Å2(P1 2 P2)

r(1 2 b4)
 (8–70)

where b 5 d/D is the diameter ratio. Once V2 is known, the flow rate can be 
determined from V

.
 5 A2V2 5 (pd2/4)V2.

 This simple analysis shows that the flow rate through a pipe can be deter-
mined by constricting the flow and measuring the decrease in pressure due 
to the increase in velocity at the constriction site. Noting that the pressure 
drop between two points along the flow is measured easily by a differential 
pressure transducer or manometer, it appears that a simple flow rate mea-
surement device can be built by obstructing the flow. Flowmeters based on 
this principle are called obstruction flowmeters and are widely used to 
measure flow rates of gases and liquids.
 The velocity in Eq. 8–70 is obtained by assuming no loss, and thus it 
is the maximum velocity that can occur at the constriction site. In real-
ity, some pressure losses due to frictional effects are inevitable, and thus 
the actual velocity is less. Also, the fluid stream continues to contract past 
the obstruction, and the vena contracta area is less than the flow area of the 
obstruction. Both losses can be accounted for by incorporating a correction 
factor called the discharge coefficient Cd whose value (which is less than 1) 
is determined experimentally. Then the flow rate for obstruction flowmeters 
is expressed as

Obstruction flowmeters:  V
#

5 A0CdÅ2(P1 2 P2)

r(1 2 b4)
 (8–71)

where A0 5 A2 5 pd2/4 is the cross-sectional area of the throat or orifice 
and b 5 d/D is the ratio of throat diameter to pipe diameter. The value of Cd 
depends on both b and the Reynolds number Re 5 V1D/n, and charts and 
curve-fit correlations for Cd are available for various types of obstruction 
meters.
 Of the numerous types of obstruction meters available, those most widely 
used are orifice meters, flow nozzles, and Venturi meters (Fig. 8–59). For 
standardized geometries, the experimentally determined data for discharge 
coefficients are expressed as (Miller, 1997)

Orifice meters: Cd 5 0.5959 1 0.0312b2.1 2 0.184b8 1
91.71b2.5

Re0.75  (8–72)

Nozzle meters: Cd 5 0.9975 2
6.53b0.5

Re0.5  (8–73)

These relations are valid for 0.25 , b , 0.75 and 104 , Re , 107. Precise 
values of Cd depend on the particular design of the obstruction, and thus the 

FIGURE 8–58
Flow through a constriction in a pipe.

1 2 Dd

Obstruction

FIGURE 8–59
Common types of obstruction meters.

D

(c)  Venturi meter

D

d

d

(b)  Flow nozzle

21° 15°

(a)  Orifice meter

D d
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manufacturer’s data should be consulted when available. Also, the Reynolds 
number depends on the flow velocity, which is not known a priori. There-
fore, the solution is iterative in nature when curve-fit correlations are used 
for Cd. For flows with high Reynolds numbers (Re . 30,000), the value of 
Cd can be taken to be 0.96 for flow nozzles and 0.61 for orifices.
 Owing to its streamlined design, the discharge coefficients of Venturi 
meters are very high, ranging between 0.95 and 0.99 (the higher values are 
for the higher Reynolds numbers) for most flows. In the absence of specific 
data, we can take Cd 5 0.98 for Venturi meters.
 The orifice meter has the simplest design and it occupies minimal space as 
it consists of a plate with a hole in the middle, but there are considerable varia-
tions in design (Fig. 8–60). Some orifice meters are sharp-edged, while others 
are beveled or rounded. The sudden change in the flow area in orifice meters 
causes considerable swirl and thus significant head loss or permanent pres-
sure loss, as shown in Fig. 8–61. In nozzle meters, the plate is replaced by a 
nozzle, and thus the flow in the nozzle is streamlined. As a result, the vena 
contracta is practically eliminated and the head loss is smaller. However, 
flow nozzle meters are more expensive than orifice meters.
 The Venturi meter, invented by the American engineer Clemens Herschel 
(1842–1930) and named by him after the Italian Giovanni Venturi (1746– 
1822) for his pioneering work on conical flow sections, is the most accurate 
flowmeter in this group, but it is also the most expensive. Its gradual con-
traction and expansion prevent flow separation and swirling, and it suffers 
only frictional losses on the inner wall surfaces. Venturi meters cause very 
low head losses, and thus, they should be pre ferred for applications that 
cannot allow large pressure drops.
 When an obstruction flowmeter is placed in a piping system, its net effect 
on the flow system is like that of a minor loss. The minor loss coefficient of 
the flowmeter is available from the manufacturer, and should be included 
when summing minor losses in the system. In general, orifice meters have 
the highest minor loss coefficients, while Venturi meters have the lowest. 
Note that the pressure drop P1 2 P2 measured to calculate the flow rate is 
not the same as the total pressure drop caused by the obstruction flowmeter 
because of the locations of the pressure taps.
 Finally, obstruction flowmeters are also used to measure compressible-gas 
flow rates, but an additional correction factor must be inserted into Eq. 8–71 

FIGURE 8–60
An orifice meter and schematic 
showing its built-in pressure 
transducer and digital readout.
Courtesy KOBOLD Instruments, Pittsburgh, PA. 
www.koboldusa.com. Used by permission.
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FIGURE 8–61
The variation of pressure along a flow 
section with an orifice meter as 
measured with piezometer tubes; the 
lost pressure and the pressure recovery 
are shown.
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to account for compressibility effects. In such cases, the equation is written 
for mass flow rate instead of volume flow rate, and the compressible correc-
tion factor is typically an empirically curve-fitted equation (like the one for 
Cd,) and is available from the flowmeter manufacturer.

EXAMPLE 8–10    Measuring Flow Rate with an Orifice Meter

The flow rate of methanol at 208C (r 5 788.4 kg/m3 and m 5 5.857 3 

1024 kg/m·s) through a 4-cm-diameter pipe is to be measured with a 3-cm-

diameter orifice meter equipped with a mercury manometer across the orifice 

plate, as shown in Fig. 8–62. If the differential height of the manometer is 

11 cm, determine the flow rate of methanol through the pipe and the average 

flow velocity.

SOLUTION  The flow rate of methanol is to be measured with an orifice 

meter. For a given pressure drop across the orifice plate, the flow rate and 

the average flow velocity are to be determined.

Assumptions  1 The flow is steady and incompressible. 2 Our first guess for 

the discharge coefficient of the orifice meter is Cd 5 0.61.

Properties  The density and dynamic viscosity of methanol are given to be 

r 5 788.4 kg/m3 and m 5 5.857 3 1024 kg/m·s, respectively. We take the 

density of mercury to be 13,600 kg/m3.

Analysis  The diameter ratio and the throat area of the orifice are

 b 5
d

D
5

3

4
5 0.75

 A0 5
pd2

4
5
p(0.03 m)2

4
5 7.069 3 1024 m2

The pressure drop across the orifice plate is

DP 5 P1 2 P2 5 (rHg 2 rmet)gh

Then the flow rate relation for obstruction meters becomes

V
#

5 A0CdÅ2(P1 2 P2)

r(1 2 b4)
5 A0CdÅ2(rHg 2 rmet)gh

rmet(1 2 b4)
5 A0CdÅ2(rHg/rmet 2 1)gh

1 2 b4

Substituting, the flow rate is determined to be

 V
#

5 (7.069 3 1024 m2)(0.61)Å2(13,600/788.4 2 1)(9.81 m/s2)(0.11 m)

1 2 0.754

 5 3.09 3 1023 m3/s

which is equivalent to 3.09 L/s. The average flow velocity in the pipe is 

determined by dividing the flow rate by the cross-sectional area of the pipe,

V 5
V
#

Ac

5
V
#

pD2/4
5

3.09 3 1023 m3/s

p(0.04 m)2/4
5 2.46 m/s

The Reynolds number of flow through the pipe is

Re 5
rVD

m
5

(788.4 kg/m3)(2.46 m/s)(0.04 m)

5.857 3 1024 kg/m·s
5 1.32 3 105

FIGURE 8–62
Schematic for the orifice meter 

considered in Example 8–10.

1 2

11 cm

Mercury
manometer

347-436_cengel_ch08.indd   395 12/18/12   1:53 PM



396
INTERNAL FLOW

Substituting b 5 0.75 and Re 5 1.32 3 105 into the orifice discharge coef-

ficient relation

Cd 5 0.5959 1 0.0312b2.1 2 0.184b8 1
91.71b2.5

Re0.75  

gives Cd 5 0.601, which differs from the original guessed value of 0.61. 

Using this refined value of Cd, the flow rate becomes 3.04 L/s, which differs 

from our original result by 1.6 percent. After a couple iterations, the final 

converged flow rate is 3.04 L/s, and the average velocity is 2.42 m/s (to three 

significant digits).

Discussion  If the problem is solved using an equation solver such as EES, 

then it can be formulated using the curve-fit formula for Cd (which depends 

on the Reynolds number), and all equations can be solved simultaneously by 

letting the equation solver perform the iterations as necessary.

Positive Displacement Flowmeters
When we buy gasoline for our car, we are interested in the total amount of 
gasoline that flows through the nozzle during the period we fill the tank 
rather than the flow rate of gasoline. Likewise, we care about the total 
amount of water or natural gas we use in our homes during a billing period. 
In these and many other applications, the quantity of interest is the total 
amount of mass or volume of a fluid that passes through a cross section of 
a pipe over a certain period of time rather than the instantaneous value of 
flow rate, and positive displacement flowmeters are well suited for such 
applications. There are numerous types of displacement meters, and they are 
based on continuous filling and discharging of the measuring chamber. They 
operate by trapping a certain amount of incoming fluid, displacing it to the 
discharge side of the meter, and counting the number of such discharge– 
recharge cycles to determine the total amount of fluid displaced.
 Figure 8–63 shows a positive displacement flowmeter with two rotating 
impellers driven by the flowing liquid. Each impeller has three gear lobes, and 
a pulsed output signal is generated each time a lobe passes by a nonintrusive 
sensor. Each pulse represents a known volume of liquid that is captured in 
between the lobes of the impellers, and an electronic controller converts the 
pulses to volume units. The clearance between the impeller and its casing must 
be controlled carefully to prevent leakage and thus to avoid error. This particu-
lar meter has a quoted accuracy of 0.1 percent, has a low pressure drop, and 
can be used with high- or low-viscosity liquids at temperatures up to 2308C 
and pressures up to 7 MPa for flow rates of up to 700 gal/min (or 50 L/s).
 The most widely used flowmeters to measure liquid volumes are nutating 
disk flowmeters, shown in Fig. 8–64. They are commonly used as water and 
gasoline meters. The liquid enters the nutating disk meter through the cham-
ber (A). This causes the disk (B) to nutate or wobble and results in the rotation 
of a spindle (C) and the excitation of a magnet (D). This signal is transmitted 
through the casing of the meter to a second magnet (E). The total volume is 
obtained by counting the number of these signals during a discharge process.
 Quantities of gas flows, such as the amount of natural gas used in build-
ings, are commonly metered by using bellows flowmeters that displace a 
certain amount of gas volume (or mass) during each revolution.

FIGURE 8–63
A positive displacement flowmeter 
with double helical three-lobe 
impeller design.
Courtesy Flow Technology, Inc. 
Source: www.ftimeters.com.

FIGURE 8–64
A nutating disk flowmeter.
(Top) Courtesy Badger Meter, Inc. 
Used by Permission. 
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Turbine Flowmeters
We all know from experience that a propeller held against the wind rotates, and 
the rate of rotation increases as the wind velocity increases. You may also have 
seen that the turbine blades of wind turbines rotate rather slowly at low winds, 
but quite fast at high winds. These observations suggest that the flow velocity in 
a pipe can be measured by placing a freely rotating propeller inside a pipe sec-
tion and doing the necessary calibration. Flow measurement devices that work 
on this principle are called turbine flowmeters or sometimes propeller flow-
meters, although the latter is a misnomer since, by definition, propellers add 
energy to a fluid, while turbines extract energy from a fluid.
 A turbine flowmeter consists of a cylindrical flow section that houses a 
turbine (a vaned rotor) that is free to rotate, additional stationary vanes at 
the inlet to straighten the flow, and a sensor that generates a pulse each time 
a marked point on the turbine passes by to determine the rate of rotation. 
The rotational speed of the turbine is nearly proportional to the flow rate 
of the fluid. Turbine flowmeters give highly accurate results (as accurate as 
0.25 percent) over a wide range of flow rates when calibrated properly for 
the anticipated flow conditions. Turbine flowmeters have very few blades 
(sometimes just two blades) when used to measure liquid flow, but several 
blades when used to measure gas flow to ensure adequate torque generation. 
The head loss caused by the turbine is very small.
 Turbine flowmeters have been used extensively for flow measurement 
since the 1940s because of their simplicity, low cost, and accuracy over a 
wide range of flow conditions. They are commercially available for both 
liquids and gases and for pipes of practically all sizes. Turbine flowmeters 
are also commonly used to measure flow velocities in unconfined flows 
such as winds, rivers, and ocean currents. The handheld device shown in 
Fig. 8–65c is used to measure wind velocity.

Paddlewheel Flowmeters
Paddlewheel flowmeters are low-cost alternatives to turbine flowmeters for 
flows where very high accuracy is not required. In paddlewheel flowmeters, 

FIGURE 8–65
(a) An in-line turbine flowmeter 

to measure liquid flow, with flow from 
left to right, (b) a cutaway view of the 

turbine blades inside the flowmeter, 
and (c) a handheld turbine flowmeter 
to measure wind speed, measuring no 

flow at the time the photo was taken 
so that the turbine blades are visible. 

The flowmeter in (c) also measures the 
air temperature for convenience. 

Photos (a) and (c) by John M. Cimbala. 
Photo (b) Courtesy Hoffer Flow Controls.

(a) (c)(b)
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the paddlewheel (the rotor and the blades) is perpendicular to the flow, as 
shown in Fig. 8–66, rather than parallel as was the case with turbine flow-
meters. The paddles cover only a portion of the flow cross section (typically 
less than half), and thus the head loss is smaller compared to that of turbine 
flowmeters, but the depth of insertion of the paddlewheel into the flow is of 
critical importance for accuracy. Also, no strainers are required since the pad-
dlewheels are less susceptible to fouling. A sensor detects the passage of each 
of the paddlewheel blades and transmits a signal. A microprocessor then con-
verts this rotational speed information to flow rate or integrated flow quantity.

Variable-Area Flowmeters (Rotameters)
A simple, reliable, inexpensive, and easy-to-install flowmeter with reason-
ably low pressure drop and no electrical connections that gives a direct read-
ing of flow rate for a wide range of liquids and gases is the variable-area 
flowmeter, also called a rotameter or floatmeter. A variable-area flowme-
ter consists of a vertical tapered conical transparent tube made of glass or 
plastic with a float inside that is free to move, as shown in Fig. 8–67. As 
fluid flows through the tapered tube, the float rises within the tube to a loca-
tion where the float weight, drag force, and buoyancy force balance each 
other and the net force acting on the float is zero. The flow rate is deter-
mined by simply matching the position of the float against the graduated 
flow scale outside the tapered transparent tube. The float itself is typically 
either a sphere or a loose-fitting piston-like cylinder (as in Fig. 8–67a).
 We know from experience that high winds knock down trees, break power 
lines, and blow away hats or umbrellas. This is because the drag force 
increases with flow velocity. The weight and the buoyancy force acting on 
the float are constant, but the drag force changes with flow velocity. Also, 
the velocity along the tapered tube decreases in the flow direction because 
of the increase in the cross-sectional area. There is a certain velocity that 
generates enough drag to balance the float weight and the buoyancy force, 
and the location at which this velocity occurs around the float is the location 
where the float settles. The degree of tapering of the tube can be made such 
that the vertical rise changes linearly with flow rate, and thus the tube can 
be calibrated linearly for flow rates. The transparent tube also allows the 
fluid to be seen during flow.
 There are several kinds of variable-area flowmeters. The gravity-based 
flowmeter, as shown in Fig. 8–67a must be positioned vertically, with fluid 
entering from the bottom and leaving from the top. In spring-opposed flow-
meters (Fig. 8–67b), the drag force is balanced by the spring force, and such 
flowmeters can be installed horizontally.
 The accuracy of variable-area flowmeters is typically 65 percent. There-
fore, these flowmeters are not appropriate for applications that require preci-
sion measurements. However, some manufacturers quote accuracies of the 
order of 1 percent. Also, these meters depend on visual checking of the loca-
tion of the float, and thus they cannot be used to measure the flow rate of 
fluids that are opaque or dirty, or fluids that coat the float since such fluids 
block visual access. Finally, glass tubes are prone to breakage and thus they 
pose a safety hazard if toxic fluids are handled. In such applications, variable-
area flowmeters should be installed at locations with minimum traffic.

FIGURE 8–66
Paddlewheel flowmeter to measure 
liquid flow, with flow from left to 
right, and a schematic diagram of 
its operation. 
Photo by John M. Cimbala.
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Ultrasonic Flowmeters
It is a common observation that when a stone is dropped into calm water, 
the waves that are generated spread out as concentric circles uniformly in all 
directions. But when a stone is thrown into flowing water such as a river, 
the waves move much faster in the flow direction (the wave and flow veloci-
ties are added since they are in the same direction) compared to the waves 
moving in the upstream direction (the wave and flow velocities are subtracted 
since they are in opposite directions). As a result, the waves appear spread 
out downstream while they appear tightly packed upstream. The difference 
between the number of waves in the upstream and downstream parts of the 
flow per unit length is proportional to the flow velocity, and this suggests that 
flow velocity can be measured by comparing the propagation of waves in the 
forward and backward directions with respect to the flow. Ultrasonic flow-
meters operate on this principle, using sound waves in the ultrasonic range 
(beyond human hearing ability, typically at a frequency of 1 MHz).
 Ultrasonic (or acoustic) flowmeters operate by generating sound waves 
with a transducer and measuring the propagation of those waves through 
a flowing fluid. There are two basic kinds of ultrasonic flowmeters: tran-
sit time and Doppler-effect (or frequency shift) flowmeters. The transit time 
flowmeter transmits sound waves in the upstream and downstream direc-
tions and measures the difference in travel time. A typical transit time ultra-
sonic meter is shown schematically in Fig. 8–68. It involves two transducers 
that alternately transmit and receive ultrasonic waves, one in the direction 
of flow and the other in the opposite direction. The travel time for each 
direction can be measured accurately, and the difference in the travel time 
is calculated. The average flow velocity V in the pipe is proportional to this 
travel time difference Dt, and is determined from

 V 5 KL Dt (8–74)

where L is the distance between the transducers and K is a constant.

Doppler-Effect Ultrasonic Flowmeters
You have probably noticed that when a fast-moving car approaches with 
its horn blowing, the tone of the high-pitched sound of the horn drops to a 
lower pitch as the car passes by. This is due to the sonic waves being com-
pressed in front of the car and being spread out behind it. This shift in fre-
quency is called the Doppler effect, and it forms the basis for the operation 
of most ultrasonic flowmeters.
 Doppler-effect ultrasonic flowmeters measure the average flow velocity 
along the sonic path. This is done by clamping a piezoelectric transducer on 
the outside surface of a pipe (or pressing the transducer against the pipe for 
handheld units). The transducer transmits a sound wave at a fixed frequency 
through the pipe wall and into the flowing liquid. The waves reflected by 
impurities, such as suspended solid particles or entrained gas bubbles, are 
relayed to a receiving transducer. The change in the frequency of the reflected 
waves is proportional to the flow velocity, and a microprocessor determines 
the flow velocity by comparing the frequency shift between the transmit-
ted and reflected signals (Figs. 8–69 and 8–70). The flow rate and the total 
amount of flow can also be determined using the measured velocity by properly 
configuring the flowmeter for the given pipe and flow conditions.

Flow

A Reflect-mode
configuration

B

Top view

FIGURE 8–68
The operation of a transit time 
ultrasonic flowmeter equipped 

with two transducers.

FIGURE 8–67
Two types of variable-area 

flowmeters: (a) an ordinary 
gravity-based meter and 

(b) a spring-opposed meter.
(a) Photo by Luke A. Cimbala and 

(b) Courtesy Insite, Universal Flow 
Monitors, Inc. Used by permission.

(a)

(b)
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 The operation of ultrasonic flowmeters depends on the ultrasound waves 
being reflected off discontinuities in density. Ordinary ultrasonic flowmeters 
require the liquid to contain impurities in concentrations greater than 25 parts 
per million (ppm) in sizes greater than at least 30 mm. But advanced ultra-
sonic units can also measure the velocity of clean liquids by sensing the waves 
reflected off turbulent swirls and eddies in the flow stream, provided that they 
are installed at locations where such disturbances are nonsymmetrical and at a 
high level, such as a flow section just downstream of a 908 elbow.
 Ultrasonic flowmeters have the following advantages:

• They are easy and quick to install by clamping them on the outside of 
pipes of 0.6 cm to over 3 m in diameter (Fig. 8–70), and even on open 
channels.

• They are nonintrusive. Since the meters clamp on, there is no need to stop 
operation and drill holes into piping, and no production downtime.

• There is no pressure drop since the meters do not interfere with the flow.

• Since there is no direct contact with the fluid, there is no danger of corro-
sion or clogging.

• They are suitable for a wide range of fluids from toxic chemicals to slur-
ries to clean liquids, for permanent or temporary flow measurement.

• There are no moving parts, and thus the meters provide reliable and 
maintenance-free operation.

• They can also measure flow quantities in reverse flow.

• The quoted accuracies are 1 to 2 percent.

 Ultrasonic flowmeters are noninvasive devices, and the ultrasonic transducers 
can effectively transmit signals through polyvinyl chloride (PVC), steel, iron, 

FIGURE 8–69
The operation of a Doppler-effect 
ultrasonic flowmeter equipped 
with a transducer pressed 
on the outer surface of a pipe.

Transmitting 
element

Receiving 
element

Flow
direction

Reflectors

FIGURE 8–70
Ultrasonic clamp-on flowmeters 
enable one to measure flow velocity 
without even contacting (or 
disturbing) the fluid by simply 
pressing a transducer on the outer 
surface of the pipe.
Photo by J. Matthew Deepe.
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and glass pipe walls. However, coated pipes and concrete pipes are not suit-
able for this measurement technique since they absorb ultrasonic waves.

Electromagnetic Flowmeters
It has been known since Faraday’s experiments in the 1830s that when a con-
ductor is moved in a magnetic field, an electromotive force develops across 
that conductor as a result of magnetic induction. Faraday’s law states that the 
voltage induced across any conductor as it moves at right angles through a 
magnetic field is proportional to the velocity of that conductor. This suggests 
that we may be able to determine flow velocity by replacing the solid con-
ductor by a conducting fluid, and electromagnetic flowmeters do just that. 
Electromagnetic flowmeters have been in use since the mid-1950s, and they 
come in various designs such as full-flow and insertion types.
 A full-flow electromagnetic flowmeter is a nonintrusive device that con-
sists of a magnetic coil that encircles the pipe, and two electrodes drilled 
into the pipe along a diameter flush with the inner surface of the pipe so 
that the electrodes are in contact with the fluid but do not interfere with 
the flow and thus do not cause any head loss (Fig. 8–71a). The electrodes 
are connected to a voltmeter. The coils generate a magnetic field when sub-
jected to electric current, and the voltmeter measures the electric potential 
difference between the electrodes. This potential difference is proportional 
to the flow velocity of the conducting fluid, and thus the flow velocity can 
be calculated by relating it to the voltage generated.
 Insertion electromagnetic flowmeters operate similarly, but the magnetic 
field is confined within a flow channel at the tip of a rod inserted into the 
flow, as shown in Fig. 8–71b.
 Electromagnetic flowmeters are well-suited for measuring flow veloci-
ties of liquid metals such as mercury, sodium, and potassium that are used 
in some nuclear reactors. They can also be used for liquids that are poor 
conductors, such as water, provided that they contain an adequate amount 
of charged particles. Blood and seawater, for example, contain sufficient 
amounts of ions, and thus electromagnetic flowmeters can be used to mea-
sure their flow rates. Electromagnetic flowmeters can also be used to mea-
sure the flow rates of chemicals, pharmaceuticals, cosmetics, corrosive 

FIGURE 8–71
(a) Full-flow and (b) insertion 

electromagnetic flowmeters, 
www.flocat.com.(a) Full-flow electromagnetic flowmeter (b) Insertion electromagnetic flowmeter
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liquids, beverages, fertilizers, and numerous slurries and sludges, provided 
that the substances have high enough electrical conductivities. Electromag-
netic flowmeters are not suitable for use with distilled or deionized water.
 Electromagnetic flowmeters measure flow velocity indirectly, and thus 
careful calibration is important during installation. Their use is limited by 
their relatively high cost, power consumption, and the restrictions on the 
types of suitable fluids with which they can be used.

Vortex Flowmeters
You have probably noticed that when a flow stream such as a river encoun-
ters an obstruction such as a rock, the fluid separates and moves around the 
rock. But the presence of the rock is felt for some distance downstream via 
the swirls generated by it.
 Most flows encountered in practice are turbulent, and a disk or a short 
cylinder placed in the flow coaxially sheds vortices (see also Chap. 4). It is 
observed that these vortices are shed periodically, and the shedding frequency 
is proportional to the average flow velocity. This suggests that the flow rate 
can be determined by generating vortices in the flow by placing an obstruc-
tion in the flow and measuring the shedding frequency. The flow measure-
ment devices that work on this principle are called vortex flowmeters. The 
Strouhal number, defined as St 5 fd/V, where f is the vortex shedding fre-
quency, d is the characteristic diameter or width of the obstruction, and V is 
the velocity of the flow impinging on the obstruction, also remains constant 
in this case, provided that the flow velocity is high enough.
 A vortex flowmeter consists of a sharp-edged bluff body (strut) placed 
in the flow that serves as the vortex generator, and a detector (such as a 
pressure transducer that records the oscillation in pressure) placed a short 
distance downstream on the inner surface of the casing to measure the shed-
ding frequency. The detector can be an ultrasonic, electronic, or fiber-optic 
sensor that monitors the changes in the vortex pattern and transmits a pul-
sating output signal (Fig. 8–72). A microprocessor then uses the frequency 
information to calculate and display the flow velocity or flow rate. The fre-
quency of vortex shedding is proportional to the average velocity over a 
wide range of Reynolds numbers, and vortex flowmeters operate reliably 
and accurately at Reynolds numbers from 104 to 107.
 The vortex flowmeter has the advantage that it has no moving parts and 
thus is inherently reliable, versatile, and very accurate (usually 61 percent 
over a wide range of flow rates), but it obstructs the flow and thus causes 
considerable head loss.

Thermal (Hot-Wire and Hot-Film) Anemometers
Thermal anemometers were introduced in the late 1950s and have been 
in common use since then in fluid research facilities and labs. As the name 
implies, thermal anemometers involve an electrically heated sensor, as 
shown in Fig. 8–73, and utilize a thermal effect to measure flow velocity. 
Thermal anemometers have extremely small sensors, and thus they can be 
used to measure the instantaneous velocity at any point in the flow without 
appreciably disturbing the flow. They can take thousands of velocity mea-
surements per second with excellent spatial and temporal resolution, and 

FIGURE 8–72
The operation of a vortex flowmeter.
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The electrically heated sensor and its 
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thus they can be used to study the details of fluctuations in turbulent flow. 
They can measure velocities in liquids and gases accurately over a wide 
range—from a few centimeters to over a hundred meters per second.
 A thermal anemometer is called a hot-wire anemometer if the sensing ele-
ment is a wire, and a hot-film anemometer if the sensor is a thin metallic 
film (less than 0.1 mm thick) mounted usually on a relatively thick ceramic 
support having a diameter of about 50 mm. The hot-wire anemometer is char-
acterized by its very small sensor wire—usually a few microns in diameter 
and a couple of millimeters in length. The sensor is usually made of plati-
num, tungsten, or platinum–iridium alloys, and it is attached to the probe 
through needle-like holders. The fine wire sensor of a hot-wire anemometer 
is very fragile because of its small size and can easily break if the liquid or 
gas contains excessive amounts of contaminants or particulate matter. This is 
especially of consequence at high velocities. In such cases, the more rugged 
hot-film probes should be used. But the sensor of the hot-film probe is larger, 
has significantly lower frequency response, and interferes more with the flow; 
thus it is not always suitable for studying the fine details of turbulent flow.
 The operating principle of a constant-temperature anemometer (CTA), 
which is the most common type and is shown schematically in Fig. 8–74, is 
as follows: the sensor is electrically heated to a specified temperature (typi-
cally about 2008C). The sensor tends to cool as it loses heat to the surround-
ing flowing fluid, but electronic controls maintain the sensor at a constant 
temperature by varying the electric current (which is done by varying the 
voltage) as needed. The higher the flow velocity, the higher the rate of heat 
transfer from the sensor, and thus the larger the voltage that needs to be 
applied across the sensor to maintain it at constant temperature. There is a 
close correlation between the flow velocity and voltage, and the flow veloc-
ity is determined by measuring the voltage applied by an amplifier or the 
electric current passing through the sensor.
 The sensor is maintained at a constant temperature during operation, 
and thus its thermal energy content remains constant. The conservation of 
energy principle requires that the electrical Joule heating W

.
elect 5 I 2Rw 5 

E2/Rw of the sensor must be equal to the total rate of heat loss from the sen-
sor Q

.
total, which consists of convection heat transfer since conduction to the 

wire supports and radiation to the surrounding surfaces are small and can 
be disregarded. Using proper relations for forced convection, the energy 
balance is expressed by King’s law as

 E 2 5 a 1 bV n (8–75)

FIGURE 8–74
Schematic of a thermal 

anemometer system.
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where E is the voltage, and the values of the constants a, b, and n are cali-
brated for a given probe. Once the voltage is measured, this relation gives 
the flow velocity V directly.
 Most hot-wire sensors have a diameter of 5 mm and a length of approxi-
mately 1 mm and are made of tungsten. The wire is spot-welded to nee-
dle-shaped prongs embedded in a probe body, which is connected to the 
anemometer electronics. Thermal anemometers can be used to measure two- 
or three-dimensional velocity components simultaneously by using probes 
with two or three sensors, respectively (Fig. 8–75). When selecting probes, 
consideration should be given to the type and the contamination level of the 
fluid, the number of velocity components to be measured, the required spa-
tial and temporal resolution, and the location of measurement.

Laser Doppler Velocimetry
Laser Doppler velocimetry (LDV), also called laser velocimetry (LV) 
or laser Doppler anemometry (LDA), is an optical technique to measure 
flow velocity at any desired point without disturbing the flow. Unlike ther-
mal anemometry, LDV involves no probes or wires inserted into the flow, 
and thus it is a nonintrusive method. Like thermal anemometry, it can accu-
rately measure velocity at a very small volume, and thus it can also be used 
to study the details of flow at a locality, including turbulent fluctuations, and 
it can be traversed through the entire flow field without intrusion.
 The LDV technique was developed in the mid-1960s and has found wide-
spread acceptance because of the high accuracy it provides for both gas and 
liquid flows; the high spatial resolution it offers; and, in recent years, its 
ability to measure all three velocity components. Its drawbacks are the rel-
atively high cost; the requirement for sufficient transparency between the 
laser source, the target location in the flow, and the photodetector; and the 
requirement for careful alignment of emitted and reflected beams for accu-
racy. The latter drawback is eliminated for the case of a fiber-optic LDV 
system, since it is aligned at the factory.
 The operating principle of LDV is based on sending a highly coherent 
monochromatic (all waves are in phase and at the same wavelength) light 
beam toward the target, collecting the light reflected by small particles in 
the target area, determining the change in frequency of the reflected radia-
tion due to the Doppler effect, and relating this frequency shift to the flow 
velocity of the fluid at the target area.
 LDV systems are available in many different configurations. A basic dual-
beam LDV system to measure a single velocity component is shown in 
Fig. 8–76. In the heart of all LDV systems is a laser power source, which is 

FIGURE 8–75
Thermal anemometer probes 
with single, double, and triple 
sensors to measure (a) one-, (b) two-, 
and (c) three-dimensional velocity 
components simultaneously. (a) (c)(b)
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usually a helium–neon or argon-ion laser with a power output of 10 mW
to 20 W. Lasers are preferred over other light sources since laser beams 
are highly coherent and highly focused. The helium–neon laser, for 
example, emits radiation at a wavelength of 0.6328 mm, which is in the 
reddish-orange color range. The laser beam is first split into two parallel 
beams of equal intensity by a half-silvered mirror called a beam splitter. 
Both beams then pass through a converging lens that focuses the beams 
at a point in the flow (the target). The small fluid volume where the two 
beams intersect is the region where the velocity is measured and is called 
the measurement volume or the focal volume. The measurement volume 
resembles an ellipsoid, typically of 0.1 mm diameter and 0.5 mm in 
length. The laser light is scattered by particles passing through this mea-
surement volume, and the light scattered in a certain direction is collected 
by a receiving lens and is passed through a photodetector that converts the 
fluctuations in light intensity into fluctuations in a voltage signal. Finally, 
a signal processor determines the frequency of the voltage signal and thus 
the velocity of the flow.
 The waves of the two laser beams that cross in the measurement volume 
are shown schematically in Fig. 8–77. The waves of the two beams inter-
fere in the measurement volume, creating a bright fringe where they are in 
phase and thus support each other, and creating a dark fringe where they are 
out of phase and thus cancel each other. The bright and dark fringes form 
lines parallel to the midplane between the two incident laser beams. Using 
trigonometry, the spacing s between the fringe lines, which can be viewed 
as the wavelength of fringes, can be shown to be s 5 l/[2 sin(a/2)], where l 
is the wavelength of the laser beam and a is the angle between the two laser 
beams. When a particle traverses these fringe lines at velocity V, the fre-
quency of the scattered fringe lines is

 f 5
V
s

5
2V sin(a/2)

l
 (8–76)

This fundamental relation shows the flow velocity to be proportional to the 
frequency and is known as the LDV equation. As a particle passes through 
the measurement volume, the reflected light is bright, then dark, then bright, 
etc., because of the fringe pattern, and the flow velocity is determined by 
measuring the frequency of the reflected light. The velocity profile at a 
cross section of a pipe, for example, can be obtained by mapping the flow 
across the pipe (Fig. 8–78).

FIGURE 8–76
A dual-beam LDV system in forward 

scatter mode.
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 The LDV method obviously depends on the presence of scattered fringe 
lines, and thus the flow must contain a sufficient amount of small particles 
called seeds or seeding particles. These particles must be small enough to fol-
low the flow closely so that the particle velocity is equal to the flow velocity, 
but large enough (relative to the wavelength of the laser light) to scatter an ade-
quate amount of light. Particles with a diameter of 1 mm usually serve the pur-
pose well. Some fluids such as tap water naturally contain an adequate amount 
of such particles, and no seeding is necessary. Gases such as air are commonly 
seeded with smoke or with particles made of latex, oil, or other materials. By 
using three laser beam pairs at different wavelengths, the LDV system is also 
used to obtain all three velocity components at any point in the flow.

Particle Image Velocimetry
Particle image velocimetry (PIV) is a double-pulsed laser technique used 
to measure the instantaneous velocity distribution in a plane of flow by pho-
tographically determining the displacement of particles in the plane during a 
very short time interval. Unlike methods like hot-wire anemometry and LDV 
that measure velocity at a point, PIV provides velocity values simultaneously 
throughout an entire cross section, and thus it is a whole-field technique. PIV 
combines the accuracy of LDV with the capability of flow visualization and 
provides instantaneous flow field mapping. The entire instantaneous velocity 
profile at a cross section of pipe, for example, can be obtained with a single 
PIV measurement. A PIV system can be viewed as a camera that can take 
a snapshot of velocity distribution at any desired plane in a flow. Ordinary 
flow visualization gives a qualitative picture of the details of flow. PIV also 
provides an accurate quantitative description of various flow quantities such 
as the velocity field, and thus the capability to analyze the flow numerically 
using the velocity data provided. Because of its whole-field capability, PIV is 
also used to validate computational fluid dynamics (CFD) codes (Chap. 15).
 The PIV technique has been used since the mid-1980s, and its use and 
capabilities have grown in recent years with improvements in frame grab-
ber and charge-coupled device (CCD) camera technologies. The accuracy, 
flexibility, and versatility of PIV systems with their ability to capture whole-
field images with submicrosecond exposure time have made them extremely 
valuable tools in the study of supersonic flows, explosions, flame propaga-
tion, bubble growth and collapse, turbulence, and unsteady flow.
 The PIV technique for velocity measurement consists of two main steps: 
visualization and image processing. The first step is to seed the flow with 
suitable particles in order to trace the fluid motion. Then a pulse of laser 
light sheet illuminates a thin slice of the flow field at the desired plane, and 
the positions of particles in that plane are determined by detecting the light 
scattered by particles on a digital video or photographic camera positioned 
at right angles to the light sheet (Fig. 8–79). After a very short time period 
Dt (typically in ms), the particles are illuminated again by a second pulse 
of laser light sheet, and their new positions are recorded. Using the informa-
tion on these two superimposed camera images, the particle displacements Ds 
are determined for all particles, and the magnitude of velocity of each 
particle in the plane of the laser light sheet is determined from Ds/Dt. 
The direction of motion of the particles is also determined from the two 

FIGURE 8–78
A time-averaged velocity profile in 
turbulent pipe flow obtained by an 
LDV system.
Courtesy Dantec Dynamics, 
www.dantecdynamics.com. Used by permission.
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positions, so that two components of velocity in the plane are calculated. 
The built-in algorithms of PIV systems determine the velocities at hundreds 
or thousands of area elements called interrogation regions throughout the 
entire plane and display the velocity field on the computer monitor in any 
desired form (Fig. 8–80).
 The PIV technique relies on the laser light scattered by particles, and thus 
the flow must be seeded if necessary with particles, also called markers, 
in order to obtain an adequate reflected signal. Seed particles must be able 
to follow the pathlines in the flow for their motion to be representative of 

FIGURE 8–79
A PIV system to study flame 

stabilization.

FIGURE 8–80
Instantaneous PIV velocity vectors 

superimposed on a hummingbird in 
hover. Color scale is from low 

velocity (blue) to high velocity (red).
Photo by Douglas Warrick. Used by permission.
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the flow, and this requires the particle density to be equal to the fluid den-
sity (so that they are neutrally buoyant) or the particles to be so small 
(typically mm-sized) that their movement relative to the fluid is insignifi-
cant. A variety of such particles is available to seed gas or liquid flow. 
Very small particles must be used in high-speed flows. Silicon carbide 
particles (mean diameter of 1.5 mm) are suitable for both liquid and gas 
flow, titanium dioxide particles (mean diameter of 0.2 mm) are usually 
used for gas flow and are suitable for high-temperature applications, and 
polystyrene latex particles (nominal diameter of 1.0 mm) are suitable for 
low-temperature applications. Metallic-coated particles (mean diameter of 
9.0 mm) are also used to seed water flows for LDV measurements because 
of their high reflectivity. Gas bubbles as well as droplets of some liquids 
such as olive oil or silicon oil are also used as seeding particles after they 
are atomized to mm-sized spheres.
 A variety of laser light sources such as argon, copper vapor, and Nd:YAG 
can be used with PIV systems, depending on the requirements for pulse 
duration, power, and time between pulses. Nd:YAG lasers are commonly 
used in PIV systems over a wide range of applications. A beam delivery 
system such as a light arm or a fiber-optic system is used to generate and 
deliver a high-energy pulsed laser sheet at a specified thickness.
 With PIV, other flow properties such as vorticity and strain rates can also 
be obtained, and the details of turbulence can be studied. Recent advances 
in PIV technology have made it possible to obtain three-dimensional veloc-
ity profiles at a cross section of a flow using two cameras (Fig. 8–81). This 
is done by recording the images of the target plane simultaneously by both 
cameras at different angles, processing the information to produce two sepa-
rate two-dimensional velocity maps, and combining these two maps to gen-
erate the instantaneous three-dimensional velocity field.

Introduction to Biofluid Mechanics1

Biofluid mechanics can cover a number of physiological systems in the 
human body but the term also applies to all animal species as there are a 
number of basic fluid systems that are essentially a series of piping net-
works to transport a fluid (be it liquid or gas or perhaps both). If we focus 
on humans, these fluid systems are the cardiovascular, respiratory, lymphatic, 
ocular, and gastrointestinal to name several. We should keep in mind that 
all these systems are similar to other mechanical piping networks in that the 
fundamental constituents for the network include a pump, pipes, valves, and 
a fluid. For our purposes, we will focus more on the cardiovascular system to 
demonstrate the basic concepts of a piping network within a human.
 Figure 8–82 illustrates the cardiovascular system, more specifically, the 
systemic circulation or the vessels (pipes) that carry the blood (fluid) from 
the heart, specifically the left ventricle (pump), to the rest of the body. Keep 
in mind there is a separate network of vessels from the right ventricle to the 
lungs to oxygenate the blood again. What is unique about the series of pipes 
in the systemic circulation is that the geometry or cross section is not cir-
cular but rather elliptical and in fact, unlike the typical mechanical systems 
for piping networks that have fittings to transition from one size pipe to 

FIGURE 8–81
A three-dimensional PIV system 
set up to study the mixing of an 
air jet with cross duct flow. 
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1 This section was contributed by Professor Keefe Manning of Penn State University.
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FIGURE 8–82
The cardiovascular system.
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 Flow measurement techniques like PIV and LDV are extremely useful in 
characterizing the flow within and about medical devices, particularly those 
implanted in the cardiovascular system. Much can be ascertained, and design 
changes can be made, using these techniques with respect to how blood
might flow through or about these cardiovascular devices. Furthermore, 
we can even use these measurements to then estimate levels of blood dam-
age and the potential for clotting to occur. To ensure we have an accurate 
representation of the cardiovascular system on the bench, engineers have 
designed mock circulatory loops or flow loops that allow the experimental-
ist to simulate cardiac flow and pressure waveforms for bench top studies. 
For example, Dr. Gus Rosenberg developed the Penn State mock circu-
latory loop in the early 1970s (Rosenberg et al., 1981). We also need to 
simulate blood for these particular flow measurement techniques to ensure 
that the fluid is transparent but also mimics the behavior of blood as a non-
Newtonian fluid. We have developed a blood analog that does that and also 
matches the refractive index of the acrylic models that represent the cardio-
vascular devices, thus allowing the laser light to pass through the acrylic into 
the flow field without any refraction. The simulated loop and fluid are critical 
to ensure that the measurements are acquired under controllable physiological 
conditions and with sufficient accuracy.
 The Pennsylvania State University has been developing mechanical circu-
latory support devices (blood pumps) since the 1970s, which are devices that 
help patients stay alive as they await a heart transplant (former Vice Presi-
dent Dick Cheney used such technology while awaiting a heart transplant). 
Through the years, PIV and LDV have been used quite successfully to mea-
sure the flow and make design changes that reduce clotting. Our recent focus 
has been the development of a pulsatile pediatric ventricular assist device 
(PVAD) that helps children stay alive until they can receive a donor heart. 
The device operates pneumatically with air pulsing into a chamber which 
then causes a diaphragm to inflate against a polyurethane urea sac (the 
blood contacting surface within the PVAD). The flow is directed into the 
device from a tube attached to the left ventricle, passes through a mechanical 

another size pipe, the cardiovascular system starting with the aorta (the first 
vessel from the left ventricle) continually tapers from approximately 25 mm 
in diameter to 5 microns in diameter at the capillary level and then gradu-
ally increases in diameter to approximately 25 mm at the vena cava, which 
is the vessel connected to the right ventricle. Another important element of 
the circulation and specifically the vessels is that they are compliant and 
can expand to accommodate blood volume as needed to regulate pressure 
changes to maintain homeostasis.
 The cardiovascular system is a complex network of pipes that themselves 
are living and respond to stresses as do blood elements that react when the 
norm has changed. Even with this network, the system is even more intri-
cate given that the flow is continually moving based on pulses initiated from 
the heart to drive blood through the network. This pulsatility propagates 
through the blood and the vessel wall creating an interaction of waves and 
reflections within the system. Because of the discontinuities associated with 
the branching, bifurcations, and curvature as seen in Fig. 8-82 initial and 
boundary conditions are not straightforward. Understanding blood flow is a 
challenging endeavor given the complexities of the vessel network and the 
components themselves.
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heart valve into the PVAD, and then flows through the outlet of the device 
through another mechanical heart valve and into a tube which is attached to 
the ascending aorta as shown in Fig. 8–83a. Fig. 8–83b shows the flow path 
through the PVAD, and it should be noted that it can be placed within the 
palm of an adult’s hand. One of the first PIV PVAD studies was to deter-
mine which type of mechanical heart valve (tilting disc or bileaflet) would 
be used with the device. Fig. 8–84 illustrates part of the PIV study results 

(a) (b)

FIGURE 8–83
(a) An artist rendering of the 

12-cc pulsatile Penn State pediatric 
ventricular assist device with the 

inlet attached to the left atrium 
and the outlet attached to the 

ascending aorta (b) The direction 
of blood through the PVAD.

Photo (b) Permission granted from ASME, 
Cooper et al. JBME, 2008.

0.8 m/s

Vel Mag
1 m/s

0.6 m/s

0.4 m/s

0.2 m/s

0 m/s FIGURE 8–84
Particle traces for the BSM valve 

configuration at 250 ms (left column) 
and for the CM valve configuration at 

350 ms (right column) for the 7 mm 
(top row), 8.2 mm (middle row), and 

11 mm (bottom row) planes. These 
images highlight the first time step 

that the rotational flow pattern is 
fully developed.

Permission granted from ASME, Cooper et al. 
JBME, 2008.
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(Cooper et al., 2008). Here, we used particle traces as a way to examine how 
the vortical structure would develop inside the device, which for this tech-
nology is a way to ensure adequate wall washing (sufficient wall shear) to
prevent clotting on the blood contacting surfaces within the device. The 
tighter rotation would lead to more momentum over the entire cardiac cycle 
and create a larger vortical structure.
 Our research group has also looked at characterizing the flow through 
mechanical heart valves. In one study (Manning et al., 2008), we focused 
on the flow within the housing of a Bjork-Shiley Monostrut mechanical 
heart valve (tilting disc valve) as shown in Fig. 8–85b. We removed part 
of the housing and inserted an optical window to allow access for the 
LDV system. Instead of using a flow-through loop for this study, we used 
a single-shot chamber (Fig. 8–85a) that mimicked the mitral valve posi-
tion since we are more interested in the closure fluid dynamics. The mitral 
valve sits between the left atrium and left ventricle. The native heart 
valves, like the mitral valve, are passive, similar to a check valve, and 

Left Atrium Left Ventricle

Bjork-Shiley Monostrut MHV

WINDOW

(A)

(B)

FIGURE 8–85
(a) The single shot chamber mimics the closure 
dynamics of the Bjork-Shiley Monostrut valve. 
(b) On the lefthand side is a view of the intact 
Bjork-Shiley Monostrut mechanical heart valve. 
To the right, the modification to the valve housing 
is displayed. The window was later filled in with 
acrylic to maintain similar fluid dynamic patterns 
and rigidity.
Permission granted from ASME, Manning et al. JBME, 2008.
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1 ms before
impact

(A)

At impact

(B)

SIDE FRONT

1 ms after
impact

(C)

2 ms after
impact

(D)

FIGURE 8–86
These schematics depict side and 

front views of the overall flow 
structure generated by the closing 

occluder for four successive times.
Permission granted from ASME, 

Manning et al. JBME, 2008.

respond to the pressure changes within the heart’s different structures. In 
this study, we measured how fast the fluid flowed through the small gap 
between the tilting disc and valve housing, and also how large was the 
vortex that is created as the tilting disc closes. Figure 8–86 is a schematic 
illustration of the flow, and Fig. 8–87 is a time sequence of the flow that 
was measured using LDV within a couple of milliseconds around impact 
of the valve housing during closure. The intense vortex can be measured 
right at impact. These data were collected over hundreds of simulated heart 
beats. We then used these velocity measurements to estimate the amount 
of potential blood damage by relating time duration and shear magnitude.
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EXAMPLE 8–11    Blood flow through the Aortic Bifurcation

Blood flows from the heart (specifically, the left ventricle) into the aorta to 

feed the rest of the body oxygen. As blood flow moves from the ascending 

aorta and downward to the abdominal aorta, some of the volume is directed 

through a branching network. As the blood reaches the pelvic region, there 

is a bifurcation (see Fig. 8–88) into the left and right common iliac arteries. 

This bifurcation is symmetrical but the common iliac vessels are not the 

same diameter. Given that the kinematic viscosity of blood is 4 cSt (centi-

stokes), the abdominal aorta’s diameter is 15 mm, the right common iliac 

artery’s diameter is 10 mm, and the left common iliac artery’s diameter is 

8 mm, determine the mean flow rate through the right common iliac artery 

if the abdominal aorta’s mean velocity is 30 cm/s and the left common iliac 

artery’s mean velocity is 40 cm/s.

SOLUTION  The mean velocities for two of the three vessels is provided 

along with the diameters of all three vessels. Approximate the vessels as 

rigid pipes.

Assumptions  1 The flow is steady even though the heart contracts and 

relaxes approximately 75 beats per minute creating a pulsatile flow. 2 The 

entrance effects are negligible and the flow is considered fully developed. 

3 Blood acts as a Newtonian fluid.

Properties  The kinematic viscosity at 378C is 4 cSt.
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Three-dimensional flow structures 
are constructed with the vectors 
indicating direction and the color 
signifying axial velocity strength. 
The valve closes right to left, with 
x 5 0 representing the centerline of 
the leaflet. The four plots show the 
flow (a) 1 ms before impact, (b) at 
impact, (c) 1 ms following closure, 
and (d ) 2 ms after closure.
Permission granted from ASME, Manning et al. 
JBME, 2008.
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Analysis  Using conservation of mass, we can say the flow rate of the abdom-

inal aorta (V
#
1) equals the sum of both common iliac arteries (V

#
2 for left and V

#
3

for right). Thus,

V
#
1 5 V

#
2 1 V

#
3

Since we are using the mean velocities, we know the diameters, and the density 

of blood is the same throughout this section of the circulatory system, we can 

rewrite the equation to be

V1Al 5 V2A2 1 V3A3 where V are the average velocities and A are the areas.

By rearranging and solving for V3, the equation becomes,

V3 5 (V1A1 2 V2A2)/A3

Inserting the values we know,

V3 5 (30 cm/s 3 (1.5 cm)2 2 40 cm/s 3 (0.8 cm)2)/(1.0 cm)2

V3 5 41.9 cm/s

Discussion  Since we assume a steady flow, the mean velocities are appro-

priate, but in reality there will be a maximum positive velocity and also some 

retrograde (or reverse) flow towards the heart as the left ventricle fills during 

diastole. The velocity profiles through these vessels and many large arteries 

will vary over a cardiac cycle. It is also assumed that blood will behave as 

a Newtonian fluid even though it is viscoelastic. Many researchers use this 

assumption since at this particular location, the shear rate is sufficient to 

reach the asymptotic value for blood viscosity.

Aorta

Left com. iliac

Right kidney

Left renal
vessels

Transversus
abdominis

Quadratus
lumborum

Iliacus

Right com. iliac

Psoas major

Ureter

R. Suprarenal
gland

Diaphragm

L. Suprarenal
gland

Esophagus

Hepatic veins

Inferior phrenic
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Internal
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Left kidney
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FIGURE 8-88
Anatomy of the human body. Note the aorta and left and right common iliac 
arteries.
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MRI (magnetic resonance imaging) can measure the velocity field of blood 
moving through the human heart, including all three velocity components 
(u,v,w) with reasonable resolution in 3-D space and time (Bock et al., 2010). 
Figure 8–89 shows blood moving from the right atrium into the right ven-
tricle at the peak of diastole (the heart-filling phase) of a normal volunteer 
subject. The black arrow shows the long axis of the ventricle. The smaller 
arrows show the velocity vector field and are colored by velocity magnitude, 
with blue at the slow end of the scale, up to red at 0.5 m/s.
 The flow patterns change rapidly with time during the approximately one-
second long cardiac cycle, and show complex geometry. The flow moves 
in a subtle helical path from the atrium into the ventricle, as shown by the 
white stream tube. The tricuspid valve between the atrium and the ventricle 
is a set of three thin tissue flaps, which are not visible in this data set. 
The effect of the valve on flow patterns can be seen as flow curls around 
one of the flaps, shown by the yellow stream tube. The details of the flow 
(including vorticity, Chapter 4) are expected to reveal information about 
the underlying physics of the interaction between the heart and lungs, and 
lead to improved diagnostics for pathologic conditions like pulmonary 
hypertension (Fenster et al., 2012).
 After the right ventricle is filled, the tricuspid valve closes, the ventricle 
contracts, and blood is ejected into the pulmonary arteries which lead to the 
lungs, where the blood is oxygenated. After that, the blood goes to the left 
side of the heart, where the pressure is raised by the contraction of the left 
ventricle. The oxygenated blood is then ejected into the aorta and is distrib-
uted to the body. In this way, the heart functions as two separate positive 
displacement pumps.
 Since calibration of these data is difficult, it’s important to check the 
data for consistency. One useful test, conservation of mass in the ventricle 
throughout one cardiac cycle, is applied by computing the volume flow of 
blood entering the ventricle during diastole, and comparing it to the vol-
ume that leaves during systole. Similarly, the net flow through the right 
side of the heart must match the net flow through the left side of the heart 
in each cycle.

References
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Markl M. 2010. 40 phase contrast MRI at 3 T: Effect of standard and blood-
pool contrast agents on SNR, PC-MRA, and blood flow visualization. 
Magnetic Resonance in Medicine 63(2):330-338.

Fenster BE, Schroeder JD, Hertzberg JR, and Chung JH. 2012. 4-Dimensional 
Cardiac Magnetic Resonance in a Patient With Bicuspid Pulmonic Valve: 
Characterization of Post-Stenotic Flow. J Am Coll Cardiol 59(25):e49.

APPLICATION SPOTLIGHT ■ PIV Applied to Cardiac Flow
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FIGURE 8–89
MRI-PIV measurements of flow 
through a human heart.
Photo courtesy of Jean Hertzberg.
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SUMMARY

In internal flow, a pipe is completely filled with a fluid. 
Laminar flow is characterized by smooth streamlines and 
highly ordered motion, and turbulent flow is characterized 
by unsteady disorderly velocity fluctuations and highly dis-
ordered motion. The Reynolds number is defined as

Re 5
Inertial forces

Viscous forces
 5

VavgD

n
5
rVavgD

m

Under most practical conditions, the flow in a pipe is lami-
nar at Re , 2300, turbulent at Re . 4000, and transitional 
in between.
 The region of the flow in which the effects of the viscous 
shearing forces are felt is called the velocity boundary layer. 
The region from the pipe inlet to the point at which the 
flow becomes fully developed is called the hydrodynamic 
entrance  region, and the length of this region is called the 
hydrodynamic entry length Lh. It is given by 

Lh, laminar

D
> 0.05 Re    and    

Lh, turbulent

D
> 10 

The friction coefficient in the fully developed flow region 
is constant. The maximum and average velocities in fully 
developed laminar flow in a circular pipe are

umax 5 2Vavg  and  Vavg 5
DPD2

32mL

The volume flow rate and the pressure drop for laminar flow 
in a horizontal pipe are

V
#

5 Vavg Ac 5
DPpD4

128mL
 and DP 5

32mLVavg

D2

The pressure loss and head loss for all types of internal 
flows (laminar or turbulent, in circular or noncircular pipes, 
smooth or rough surfaces) are expressed as

DPL 5 f 
L

D
  
rV 2

2
 and hL 5

DPL

rg
 5 f 

L

D
  
V 2

2g

where rV 2/2 is the dynamic pressure and the dimensionless 
quantity f is the friction factor. For fully developed laminar 
flow in a round pipe, the friction factor is f 5 64/Re.
 For noncircular pipes, the diameter in the previous rela-
tions is replaced by the hydraulic diameter defined as 
Dh 5 4Ac/p, where Ac is the cross-sectional area of the pipe 
and p is its wetted perimeter.
 In fully developed turbulent flow, the friction factor 
depends on the Reynolds number and the relative roughness 

e/D. The friction factor in turbulent flow is given by the 
Colebrook equation, expressed as

1"f
5 22.0 logae/D

3.7
1

2.51

Re"f
 b

The plot of this formula is known as the Moody chart. The 
design and analysis of piping systems involve the determina-
tion of the head loss, flow rate, or the pipe diameter. Tedious 
iterations in these calculations can be avoided by the approx-
imate Swamee–Jain formulas expressed as

hL 5 1.07
V
#

 
2L

gD5 e ln c e
3.7D

1 4.62anD
V
# b0.9 d f 22

  

1026 ,  e/D ,  1022

3000 ,  Re ,  3 3 108

 V
#

5 20.965agD5hL

L
b0.5

 ln c e
3.7D

1 a3.17n2L

gD3hL

b0.5 d  
Re .  2000

 D 5 0.66 ce1.25aLV
#

2

ghL

b4.75

1 nV
#

9.4 a L

ghL

b5.2 d 0.04

 

1026 ,  e/D ,  1022

5000 ,  Re ,  3 3 108 

 The losses that occur in piping components such as fittings, 
valves, bends, elbows, tees, inlets, exits, expansions, and 
contractions are called minor losses. The minor losses are 
usually expressed in terms of the loss coefficient KL. The 
head loss for a component is determined from

hL 5 KL 
V 2

2g

When all the loss coefficients are available, the total head 
loss in a piping system is

hL, total 5 hL, major 1 hL, minor 5 a
i

 fi

L i

Di

  
V 2

i

2g
1 a

j

KL, j 
V 2

j

2g

If the entire piping system is of constant diameter, the total 
head loss reduces to 

hL, total 5 af 
L

D
1 aKLb V 2

2g
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The analysis of a piping system is based on two simple prin-
ciples: (1) The conservation of mass throughout the system 
must be satisfied and (2) the pressure drop between two points 
must be the same for all paths between the two points. When 
the pipes are connected in series, the flow rate through the 
entire system remains constant regardless of the diameters 
of the individual pipes. For a pipe that branches out into two 
(or more) parallel pipes and then rejoins at a junction down-
stream, the total flow rate is the sum of the flow rates in the 
individual pipes but the head loss in each branch is the same.
 When a piping system involves a pump and/or turbine, the 
steady-flow energy equation is expressed as

P1

rg
1 a1 

V 2
1

2g
1 z1 1 hpump, u

5
P2

rg
1 a2

V 2
2

2g
1 z2 1 hturbine, e 1 hL

When the useful pump head hpump, u is known, the mechani-
cal power that needs to be supplied by the pump to the fluid 
and the electric power consumed by the motor of the pump 
for a specified flow rate are

W
#

pump, shaft 5
rV
#
ghpump, u

hpump
 and W

#
elect 5

rV
#
ghpump, u

hpump-motor

where hpump–motor is the efficiency of the pump–motor com-
bination, which is the product of the pump and the motor 
efficiencies.
 The plot of the head loss versus the flow rate V

#
 is called 

the system curve. The head produced by a pump is not 
a constant, and the curves of hpump, u and hpump versus V

#
 

are called the characteristic curves. A pump installed in a 
piping system operates at the operating point, which is the 
point of intersection of the system curve and the character-
istic curve.
 Flow measurement techniques and devices can be consid-
ered in three major categories: (1) volume (or mass) flow 
rate measurement techniques and devices such as obstruc-
tion flowmeters, turbine meters, positive displacement flow-
meters, rotameters, and ultrasonic meters; (2) point velocity 
measurement techniques such as the Pitot-static probes, hot-
wires, and LDV; and (3) whole-field velocity measurement 
techniques such as PIV.
 The emphasis in this chapter has been on flow through 
pipes, including blood vessels. A detailed treatment of 
numerous types of pumps and turbines, including their 
operation principles and performance parameters, is given in 
Chap. 14.
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* Problems designated by a “C” are concept questions, and 

students are encouraged to answer them all. Problems designated 

by an “E” are in English units, and the SI users can ignore them. 

Problems with the  icon are solved using EES, and complete 

solutions together with parametric studies are included on the text 

website. Problems with the  icon are comprehensive in nature 

and are intended to be solved with an equation solver such as EES.

PROBLEMS*

Laminar and Turbulent Flow

8–1C  Consider the flow of air and water in pipes of the 
same diameter, at the same temperature, and at the same 
mean velocity. Which flow is more likely to be turbulent? 
Why?

8–2C  Consider laminar flow in a circular pipe. Is the wall 
shear stress tw higher near the inlet of the pipe or near the 
exit? Why? What would your response be if the flow were 
turbulent?

8–3C  What is hydraulic diameter? How is it defined? What 
is it equal to for a circular pipe of diameter D?

8–4C  How is the hydrodynamic entry length defined for 
flow in a pipe? Is the entry length longer in laminar or turbu-
lent flow?

8–5C  Why are liquids usually transported in circular pipes?

8–6C  What is the physical significance of the Reynolds 
number? How is it defined for (a) flow in a circular pipe of 
inner diameter D and (b) flow in a rectangular duct of cross 
section a 3 b?

a
bD

FIGURE P8–6C

8–7C  Consider a person walking first in air and then in 
water at the same speed. For which motion will the Reynolds 
number be higher?

8–8C  Show that the Reynolds number for flow in a circular 
pipe of diameter D can be expressed as Re 5 4m

.
/(pDm).

8–9C  Which fluid at room temperature requires a larger 
pump to flow at a specified velocity in a given pipe: water or 
engine oil? Why?

8–10C  What is the generally accepted value of the 
Reynolds number above which the flow in smooth pipes is 
turbulent?

8–11C  How does surface roughness affect the pressure drop 
in a pipe if the flow is turbulent? What would your response 
be if the flow were laminar?

8–12E  Shown here is a cool picture of water being released 
at 300,000 gallons per second in the spring of 2008. This was 
part of a revitalization effort for the ecosystem of the Grand 
Canyon and the Colorado River. Estimate the Reynolds num-
ber of the pipe flow. Is it laminar or turbulent? (Hint: For a 
length scale, approximate the height of the man in the blue 
shirt directly above the pipe to be 6 ft.)
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FIGURE P8–12E
Photo courtesy of Don Becker, U.S. Geological Survey.

Fully Developed Flow in Pipes

8–13C  Someone claims that the volume flow rate in a cir-
cular pipe with laminar flow can be determined by measuring 
the velocity at the centerline in the fully developed region, 
multiplying it by the cross-sectional area, and dividing the 
result by 2. Do you agree? Explain.

8–14C  Someone claims that the average velocity in a 
circular pipe in fully developed laminar flow can be deter-
mined by simply measuring the velocity at R/2 (midway 
between the wall surface and the centerline). Do you agree? 
Explain.

8–15C  Someone claims that the shear stress at the center of 
a circular pipe during fully developed laminar flow is zero. 
Do you agree with this claim? Explain.

8–16C  Someone claims that in fully developed turbulent 
flow in a pipe, the shear stress is a maximum at the pipe wall. 
Do you agree with this claim? Explain.

8–17C  How does the wall shear stress tw vary along the 
flow direction in the fully developed region in (a) laminar 
flow and (b) turbulent flow?

8–18C  What fluid property is responsible for the develop-
ment of the velocity boundary layer? For what kinds of fluids 
will there be no velocity boundary layer in a pipe?

8–19C  In the fully developed region of flow in a circular 
pipe, does the velocity profile change in the flow direction?

8–20C  How is the friction factor for flow in a pipe related 
to the pressure loss? How is the pressure loss related to the 
pumping power requirement for a given mass flow rate?

8–21C  Discuss whether fully developed pipe flow is one-, 
two-, or three-dimensional.

8–22C  Consider fully developed flow in a circular pipe 
with negligible entrance effects. If the length of the pipe is 
doubled, the head loss will (a) double, (b) more than double, 
(c) less than double, (d) reduce by half, or (e) remain constant.

8–23C  Consider fully developed laminar flow in a circular 
pipe. If the diameter of the pipe is reduced by half while the 
flow rate and the pipe length are held constant, the head loss 
will (a) double, (b) triple, (c) quadruple, (d) increase by a 
factor of 8, or (e) increase by a factor of 16.

8–24C  Explain why the friction factor is independent of the 
Reynolds number at very large Reynolds numbers.

8–25C  What is turbulent viscosity? What causes it?

8–26C  The head loss for a certain circular pipe is given by 
hL 5 0.0826fL(V

.
2/D5), where f is the friction factor (dimen-

sionless), L is the pipe length, V
.
 is the volumetric flow rate, 

and D is the pipe diameter. Determine if the 0.0826 is a dimen-
sional or dimensionless constant. Is this equation dimen sion-
ally homogeneous as it stands?

8–27C  Consider fully developed laminar flow in a circular 
pipe. If the viscosity of the fluid is reduced by half by heat-
ing while the flow rate is held constant, how does the head 
loss change?

8–28C  How is head loss related to pressure loss? For a 
given fluid, explain how you would convert head loss to 
pressure loss.

8–29C  Consider laminar flow of air in a circular pipe with 
perfectly smooth surfaces. Do you think the friction factor for 
this flow is zero? Explain.

8–30C  What is the physical mechanism that causes the fric-
tion factor to be higher in turbulent flow?

8–31  The velocity profile for the fully developed laminar 
flow of a Newtonian fluid between two large parallel plates 
is given by

u(y) 5
3u0

2
c1 2 ay

h
b2 d

where 2h is the distance between the two plates, u0 is the 
velocity at the center plane, and y is the vertical coordinate 
from the center plane. For a plate width of b, obtain a rela-
tion for the flow rate through the plates.

8–32  Water flows steadily through a reducing pipe section. 
The flow upstream with a radius of R1 is laminar with a velocity 
profile of u1(r) 5 u01(1 2 r2/R1

2) while the flow downstream 
is turbulent with a velocity profile of u2(r) 5 u02(1 2 r/R2)

1/7.
For incompressible flow with R2/R1 5 4/7, determine the 
ratio of centerline velocities u01/u02.
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8–33  Water at 108C (r 5 999.7 kg/m3 and m 5 1.307 3
1023 kg/m·s) is flowing steadily in a 0.12-cm-diameter, 
15-m-long pipe at an average velocity of 0.9 m/s. Determine 
(a) the pressure drop, (b) the head loss, and (c) the pumping 
power requirement to overcome this pressure drop.  Answers: 

(a) 392 kPa, (b) 40.0 m, (c) 0.399 W

8–34  Consider an air solar collector that is 1 m wide and 
5 m long and has a constant spacing of 3 cm between the glass 
cover and the collector plate. Air flows at an average tem-
perature of 458C at a rate of 0.15 m3/s through the 1-m-wide 
edge of the collector along the 5-m-long passageway. Disre-
garding the entrance and roughness effects and the 908 bend, 
determine the pressure drop in the collector.  Answer: 32.3 Pa

8–38  Repeat Prob. 8–37 for a pipe of inner radius 7 cm.

8–39  Water at 158C (r 5 999.1 kg/m3 and m 5 1.138 3
1023 kg/m·s) is flowing steadily in a 30-m-long and 
5-cm-diameter horizontal pipe made of stainless steel at a 
rate of 9 L/s. Determine (a) the pressure drop, (b) the head 
loss, and (c) the pumping power requirement to overcome 
this pressure drop.

Collector plate

Insulation

Glass cover

5 m

Air
0.15 m3/s

FIGURE P8–34

8–35E  Heated air at 1 atm and 1008F is to be transported 
in a 400-ft-long circular plastic duct at a rate of 12 ft3/s. If 
the head loss in the pipe is not to exceed 50 ft, determine the 
minimum diameter of the duct.

8–36  In fully developed laminar flow in a circular pipe, the 
velocity at R/2 (midway between the wall surface and the 
centerline) is measured to be 11 m/s. Determine the velocity 
at the center of the pipe.  Answer: 14.7 m/s

8–37  The velocity profile in fully developed laminar flow 
in a circular pipe of inner radius R 5 2 cm, in m/s, is given 
by u(r) 5 4(1 2 r2/R2). Determine the average and maximum 
velocities in the pipe and the volume flow rate.

R = 2 cm

 u(r) = 4 1 – r2
––
R2a          b

FIGURE P8–37

30 m

5 cm9 L/s

FIGURE P8–39

8–40  Consider the flow of oil with r 5 894 kg/m3 and 
m 5  2.33 kg/m·s in a 28-cm-diameter pipeline at an aver-
age velocity of 0.5 m/s. A 330-m-long section of the pipe-
line passes through the icy waters of a lake. Disregarding the 
entrance effects, determine the pumping power required to 
overcome the pressure losses and to maintain the flow of oil 
in the pipe.

8–41  Consider laminar flow of a fluid through a square 
channel with smooth surfaces. Now the average velocity of 
the fluid is doubled. Determine the change in the head loss of 
the fluid. Assume the flow regime remains unchanged.

8–42  Repeat Prob. 8–41 for turbulent flow in smooth pipes 
for which the friction factor is given as f 5 0.184Re20.2. 
What would your answer be for fully turbulent flow in a 
rough pipe?

8–43  Air enters a 10-m-long section of a rectangular duct 
of cross section 15 cm 3 20 cm made of commercial steel at 
1 atm and 358C at an average velocity of 7 m/s. Disregarding 
the entrance effects, determine the fan power needed to over-
come the pressure losses in this section of the duct.  Answer: 

7.00 W

10 m

15 cm

20 cm
Air
7 m/s

FIGURE P8–43

8–44E  Water at 708F passes through 0.75-in-internal- 
diameter copper tubes at a rate of 0.5 lbm/s. Determine the 
pumping power per ft of pipe length required to maintain this 
flow at the specified rate.
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8–45  Oil with r 5 876 kg/m3 and m 5 0.24 kg/m·s is flow-
ing through a 1.5-cm-diameter pipe that discharges into the 
atmosphere at 88 kPa. The absolute pressure 15 m before the 
exit is measured to be 135 kPa. Determine the flow rate of 
oil through the pipe if the pipe is (a) horizontal, (b) inclined 
88 upward from the horizontal, and (c) inclined 88 downward 
from the horizontal.

1 ft

1 ftAir
1600 ft3/min

FIGURE P8–47E

1.5 cm

15 m
135 kPa

Oil

FIGURE P8–45

Oil
tank

4 m

8 mm

FIGURE P8–50
8–46  Glycerin at 408C with r 5 1252 kg/m3 and m 5
0.27  kg/m·s is flowing through a 2-cm-diameter, 25-m-long 
pipe that discharges into the atmosphere at 100 kPa. 
The flow rate through the pipe is 0.048 L/s. (a) Determine 
the absolute pressure 25 m before the pipe exit. (b) At what 
angle u must the pipe be inclined downward from the hori-
zontal for the pressure in the entire pipe to be atmospheric 
pressure and the flow rate to be maintained the same?

8–47E  Air at 1 atm and 60°F is flowing through a 1 ft 3 1 ft 
square duct made of commercial steel at a rate of 1600  cfm. 
Determine the pressure drop and head loss per ft of the duct.

8–48  Water enters into a cone of height H and base radius R 
through a small hole of cross-sectional area Ah and the dis-
charge coefficient is Cd at the base with a constant uniform 
velocity of V. Obtain a relation for the variation of water 
height h from the cone base with time. Air escapes the cone 
through the tip at the top as water enters the cone from the 
bottom.

8–49  The velocity profile for incompressible turbulent flow 
in a pipe of radius R is given by u(r) 5 umax(1 2 r/R2)

1/7. 
Obtain an expression for the average velocity in the pipe.

8–50  Oil with a density of 850 kg/m3 and kinematic vis-
cosity of 0.00062 m2/s is being discharged by a 8-mm-diam-
eter, 40-m-long horizontal pipe from a storage tank open to 

the atmosphere. The height of the liquid level above the cen-
ter of the pipe is 4 m. Disregarding the minor losses, deter-
mine the flow rate of oil through the pipe.

8–51  In an air heating system, heated air at 40°C and 
105  kPa absolute is distributed through a 0.2 m 3 0.3 m 
rectangular duct made of commercial steel at a rate of 
0.5 m3/s. Determine the pressure drop and head loss through 
a 40-m-long section of the duct.  Answers: 124 Pa, 10.8 m

8–52  Glycerin at 40°C with r 5 1252 kg/m3 and m 5
0.27  kg/m·s is flowing through a 4-cm-diameter horizontal 
smooth pipe with an average velocity of 3.5 m/s. Determine 
the pressure drop per 10 m of the pipe.

8–53  Reconsider Prob. 8–52. Using EES (or other) 
software, investigate the effect of the pipe diameter 

on the pressure drop for the same constant flow rate. Let the 
pipe diameter vary from 1 to 10 cm in increments of 1 cm. 
Tabulate and plot the results, and draw conclusions.

8–54E  Oil at 808F (r 5 56.8 lbm/ft3 and m 5 0.0278 lbm/ft·s) 
is flowing steadily in a 0.5-in-diameter, 175-ft-long pipe. Dur-
ing the flow, the pressure at the pipe inlet and exit is measured 
to be 80 psi and 14 psi, respectively. Determine the flow rate 
of oil through the pipe assuming the pipe is (a) horizontal, (b) 
inclined 208 upward, and (c) inclined 208 downward.

8–55  Liquid ammonia at 220°C is flowing through a 
20-m-long section of a 5-mm-diameter copper tube at a rate 
of 0.09 kg/s. Determine the pressure drop, the head loss, and 
the pumping power required to overcome the frictional losses 
in the tube.  Answers: 1240 kPa, 189 m, 0.167 kW

Minor Losses

8–56C  During a retrofitting project of a fluid flow system 
to reduce the pumping power, it is proposed to install vanes 
into the miter elbows or to replace the sharp turns in 90° 
miter elbows by smooth curved bends. Which approach will 
result in a greater reduction in pumping power requirements?

8–57C  Define equivalent length for minor loss in pipe flow. 
How is it related to the minor loss coefficient?
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Piping Systems and Pump Selection

8–67C  Water is pumped from a large lower reservoir to 
a higher reservoir. Someone claims that if the head loss is 
negligible, the required pump head is equal to the elevation 
difference between the free surfaces of the two reservoirs. 
Do you agree?

8–68C  A piping system equipped with a pump is operating 
steadily. Explain how the operating point (the flow rate and 
the head loss) is established.

8–69C  A person filling a bucket with water using a gar-
den hose suddenly remembers that attaching a nozzle to the 
hose increases the discharge velocity of water and wonders 
if this increased velocity would decrease the filling time of 
the bucket. What would happen to the filling time if a nozzle 
were attached to the hose: increase it, decrease it, or have no 
effect? Why?

8–70C  Consider two identical 2-m-high open tanks filled 
with water on top of a 1-m-high table. The discharge valve 
of one of the tanks is connected to a hose whose other end 
is left open on the ground while the other tank does not have 
a hose connected to its discharge valve. Now the discharge 
valves of both tanks are opened. Disregarding any frictional 
loses in the hose, which tank do you think empties com-
pletely first? Why?

8–71C  A piping system involves two pipes of different 
diameters (but of identical length, material, and roughness) 
connected in series. How would you compare the (a) flow 
rates and (b) pressure drops in these two pipes?

8–72C  A piping system involves two pipes of different 
diameters (but of identical length, material, and roughness) 
connected in parallel. How would you compare the (a) flow 
rates and (b) pressure drops in these two pipes?

8–73C  A piping system involves two pipes of identical 
diameters but of different lengths connected in parallel. How 
would you compare the pressure drops in these two pipes?

8–74C  For a piping system, define the system curve, the 
characteristic curve, and the operating point on a head versus 
flow rate chart.

8–75  A 4-m-high cylindrical tank having a cross-sectional 
area of AT 5 1.5 m2 is filled with equal volumes of water and 
oil whose specific gravity is SG 5 0.75. Now a 1-cm-diameter 
hole at the bottom of the tank is opened, and water starts to 
flow out. If the discharge coefficient of the hole is Cd 5 0.85, 

8–58C  The effect of rounding of a pipe inlet on the loss 
coefficient is (a) negligible, (b) somewhat significant, or 
(c) very significant.

8–59C  The effect of rounding of a pipe exit on the loss 
coefficient is (a) negligible, (b) somewhat significant, or 
(c) very significant.

8–60C  Which has a greater minor loss coefficient during 
pipe flow: gradual expansion or gradual contraction? Why?

8–61C  A piping system involves sharp turns, and thus large 
minor head losses. One way of reducing the head loss is to 
replace the sharp turns by circular elbows. What is another way?

8–62C  What is minor loss in pipe flow? How is the minor 
loss coefficient KL defined?

8–63  Water is to be withdrawn from an 8-m-high water res-
ervoir by drilling a 2.2-cm-diameter hole at the bottom sur-
face. Disregarding the effect of the kinetic energy correction 
factor, determine the flow rate of water through the hole if 
(a) the entrance of the hole is well-rounded and (b) the 
entrance is sharp-edged.

8–64  Consider flow from a water reservoir through a circu-
lar hole of diameter D at the side wall at a vertical distance H 
from the free surface. The flow rate through an actual hole 
with a sharp-edged entrance (KL 5 0.5) is considerably less 
than the flow rate calculated assuming “frictionless” flow 
and thus zero loss for the hole. Disregarding the effect of 
the kinetic energy correction factor, obtain a relation for the 
“equivalent diameter” of the sharp-edged hole for use in fric-
tionless flow relations.

8–65  Repeat Prob. 8–64 for a slightly rounded entrance 
(KL 5 0.12).

8–66  A horizontal pipe has an abrupt expansion from 
D1 5 8 cm to D2 5 16 cm. The water velocity in the smaller 
section is 10 m/s and the flow is turbulent. The pressure 
in the smaller section is P1 5 410  kPa. Taking the kinetic 
energy correction factor to be 1.06 at both the inlet and the 
outlet, determine the downstream pressure P2, and estimate 
the error that would have occurred if Bernoulli’s equation had 
been used.  Answers: 432 kPa, 25.4 kPa

D

Frictionless flow Actual flow

Dequiv

FIGURE P8–64

D2 = 16 cm

D1 = 8 cm

10 m/s
410 kPa

Water

FIGURE P8–66
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Water
tank 4 m

2.4 m

Sharp-edged
orifice

FIGURE P8–79

determine how long it will take for the water in the tank, 
which is open to the atmosphere to empty completely.

8–76  A semi-spherical tank of radius R is completely filled 
with water. Now a hole of cross sectional area Ah and dis-
charge coefficient Cd at the bottom of the tank is fully opened 
and water starts to flow out. Develop an expression for the 
time needed to empty the tank completely. 

8–77  The water needs of a small farm are to be met by 
pumping water from a well that can supply water contin-
uously at a rate of 4 L/s. The water level in the well is 
20 m below the ground level, and water is to be pumped to 
a large tank on a hill, which is 58 m above the ground level 
of the well, using 5-cm internal diameter plastic pipes. The 
required length of piping is measured to be 420 m, and the 
total minor loss coefficient due to the use of elbows, vanes, 
etc. is estimated to be 12. Taking the efficiency of the 
pump to be 75 percent, determine the rated power of the 
pump that needs to be purchased, in kW. The density and 
viscosity of water at anticipated operation conditions are 
taken to be 1000 kg/m3 and 0.00131 kg/m?s, respectively. 
Is it wise to purchase a suitable pump that meets the total 
power requirements, or is it necessary to also pay particular 
attention to the large elevation head in this case? Explain.
Answer: 6.0 kW

8–78E  Water at 708F flows by gravity from a large reser-
voir at a high elevation to a smaller one through a 60-ft-long, 
2-in-diameter cast iron piping system that includes four stan-
dard flanged elbows, a well-rounded entrance, a sharp-edged 
exit, and a fully open gate valve. Taking the free surface of 
the lower reservoir as the reference level, determine the ele-
vation z1 of the higher reservoir for a flow rate of 10 ft3/min.
Answer: 12.6 ft

8–79  A 2.4-m-diameter tank is initially filled with water 
4 m above the center of a sharp-edged 10-cm-diameter 
orifice. The tank water surface is open to the atmosphere, and 
the orifice drains to the atmosphere. Neglecting the effect of 
the kinetic energy correction factor, calculate (a) the initial 
velocity from the tank and (b) the time required to empty the 
tank. Does the loss coefficient of the orifice cause a signifi-
cant increase in the draining time of the tank?

8–80  A 3-m-diameter tank is initially filled with water 2 m
above the center of a sharp-edged 10-cm-diameter orifice. The
tank water surface is open to the atmosphere, and the orifice 
drains to the atmosphere through a 100-m-long pipe. The fric-
tion coefficient of the pipe is taken to be 0.015 and the effect 
of the kinetic energy correction factor can be neglected. 
Determine (a) the initial velocity from the tank and (b) the 
time required to empty the tank.

8–81  Reconsider Prob. 8–80. In order to drain the tank faster, 
a pump is installed near the tank exit as in Fig. P8–81. Deter-
mine how much pump power input is necessary to establish an 
average water velocity of 4 m/s when the tank is full at z 5 2 m.
Also, assuming the discharge velocity to remain constant, esti-
mate the time required to drain the tank.
 Someone suggests that it makes no difference whether the 
pump is located at the beginning or at the end of the pipe, 
and that the performance will be the same in either case, but 
another person argues that placing the pump near the end of 
the pipe may cause cavitation. The water temperature is 30°C, 
so the water vapor pressure is Pv 5 4.246 kPa 5 0.43 m-H2O, 
and the system is located at sea level. Investigate if there is 
the possibility of cavitation and if we should be concerned 
about the location of the pump.

h(t)
R

Water

FIGURE P8–76

Water
tank

Pump 4 m/s

2 m

3 m

FIGURE P8–81

8–82  Water to a residential area is transported at a rate of 
1.5 m3/s via 70-cm-internal-diameter concrete pipes with 
a surface roughness of 3 mm and a total length of 1500 m. 
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In order to reduce pumping power requirements, it is proposed 
to line the interior surfaces of the concrete pipe with 2-cm-
thick petroleum-based lining that has a surface roughness 
thickness of 0.04 mm. There is a concern that the reduction 
of pipe diameter to 66 cm and the increase in average 
velocity may offset any gains. Taking r 5 1000 kg/m3 and
n 5 1 3 1026 m2/s for water, determine the percent increase 
or decrease in the pumping power requirements due to pipe 
frictional losses as a result of lining the concrete pipes.

8–83E  A clothes dryer discharges air at 1 atm and 120°F at 
a rate of 1.2 ft3/s when its 5-in-diameter, well-rounded vent 
with negligible loss is not connected to any duct. Determine 
the flow rate when the vent is connected to a 15-ft-long, 
5-in-diameter duct made of galvanized iron, with three 90° 
flanged smooth bends. Take the friction factor of the duct to 
be 0.019, and assume the fan power input to remain constant.

which is defined as the ratio of the actual flow rate through 
the funnel to the maximum flow rate for the “frictionless” 
case.  Answers: 3.83 3 1026 m3/s, 1.4 percent

8–85  Repeat Prob. 8–84 assuming (a) the diameter of the 
pipe is tripled and (b) the length of the pipe is tripled while 
the diameter is maintained the same.

8–86  Water at 15°C is drained from a large reservoir using 
two horizontal plastic pipes connected in series. The first pipe 
is 20 m long and has a 10-cm diameter, while the second pipe is
35 m long and has a 4-cm diameter. The water level in the 
reservoir is 18 m above the centerline of the pipe. The pipe 
entrance is sharp-edged, and the contraction between the two 
pipes is sudden. Neglecting the effect of the kinetic energy 
correction factor, determine the discharge rate of water from 
the reservoir.

8–87E  A farmer is to pump water at 70°F from a river to a 
water storage tank nearby using a 125-ft-long, 5-in-diameter 
plastic pipe with three flanged 90° smooth bends. The water 
velocity near the river surface is 6 ft/s, and the pipe inlet is 
placed in the river normal to the flow direction of water to 
take advantage of the dynamic pressure. The elevation dif-
ference between the river and the free surface of the tank is 
12  ft. For a flow rate of 1.5 ft3/s and an overall pump effi-
ciency of 70 percent, determine the required electric power 
input to the pump.

8–88E   Reconsider Prob. 8–89E. Using EES (or other) 
software, investigate the effect of the pipe 

diameter on the required electric power input to the pump. 
Let the pipe diameter vary from 1 to 10 in, in increments of 
1 in. Tabulate and plot the results, and draw conclusions.

8–89  A water tank filled with solar-heated water at 40°C is 
to be used for showers in a field using gravity-driven flow. 
The system includes 35 m of 1.5-cm-diameter galvanized 
iron piping with four miter bends (90°) without vanes and a 
wide-open globe valve. If water is to flow at a rate of 1.2 L/s
through the shower head, determine how high the water level 
in the tank must be from the exit level of the shower. Disre-
gard the losses at the entrance and at the shower head, and 
neglect the effect of the kinetic energy correction factor.

8–90  Two water reservoirs A and B are connected to each 
other through a 40-m-long, 2-cm-diameter cast iron pipe 

8–84  Oil at 20°C is flowing through a vertical glass fun-
nel that consists of a 20-cm-high cylindrical reservoir and a 
1-cm-diameter, 40-cm-high pipe. The funnel is always main-
tained full by the addition of oil from a tank. Assuming the 
entrance effects to be negligible, determine the flow rate of oil 
through the funnel and calculate the “funnel effectiveness,” 

Hot air

Clothes drier 15 ft

5 in

FIGURE P8–83E

20 cm

40 cm
1 cm

Oil

Oil

FIGURE P8–84

Water
tank

18 m

20 m 35 m

FIGURE P8–86
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2500 m

30 cm

0.4 m3/s

30 cm

1500 m

A

B

FIGURE P8–93

Air

2 cm

40 m

FIGURE P8–90

with a sharp-edged entrance. The pipe also involves a swing 
check valve and a fully open gate valve. The water level in 
both reservoirs is the same, but reservoir A is pressurized by 
compressed air while reservoir B is open to the atmosphere 
at 88 kPa. If the initial flow rate through the pipe is 1.2 L/s, 
determine the absolute air pressure on top of reservoir A. 
Take the water temperature to be 10°C.  Answer: 733 kPa

8–91  A vented tanker is to be filled with fuel oil with 
r 5 920 kg/m3 and m 5 0.045 kg/m·s from an underground 
reservoir using a 25-m-long, 4-cm-diameter plastic hose with 
a slightly rounded entrance and two 90° smooth bends. The 
elevation difference between the oil level in the reservoir and 
the top of the tanker where the hose is discharged is 5 m. The 
capacity of the tanker is 18 m3 and the filling time is 30 min. 
Taking the kinetic energy correction factor at the hose discharge
to be 1.05 and assuming an overall pump efficiency of 
82 percent, determine the required power input to the pump.

8–92  Two pipes of identical length and material are con-
nected in parallel. The diameter of pipe A is twice the diam-
eter of pipe B. Assuming the friction factor to be the same in 
both cases and disregarding minor losses, determine the ratio 
of the flow rates in the two pipes.

8–93  A certain part of cast iron piping of a water distri-
bution system involves a parallel section. Both parallel 
pipes have a diameter of 30 cm, and the flow is fully tur-
bulent. One of the branches (pipe A) is 1500 m long while 
the other branch (pipe B) is 2500 m long. If the flow rate 
through pipe A is 0.4 m3/s, determine the flow rate through 
pipe B. Disregard minor losses and assume the water 

temperature to be 15°C. Show that the flow is fully rough, and 
thus the friction factor is independent of Reynolds number.  
Answer: 0.310 m3/s

8–94  Repeat Prob. 8–93 assuming pipe A has a halfway-
closed gate valve (KL 5 2.1) while pipe B has a fully open 
globe valve (KL 5 10), and the other minor losses are 
negligible. 

8–95  A geothermal district heating system involves the 
transport of geothermal water at 110°C from a geothermal 
well to a city at about the same elevation for a distance of 
12 km at a rate of 1.5 m3/s in 60-cm-diameter stainless-steel 
pipes. The fluid pressures at the wellhead and the arrival point 
in the city are to be the same. The minor losses are negligible 
because of the large length-to-diameter ratio and the rela-
tively small number of components that cause minor losses. 
(a) Assuming the pump–motor efficiency to be 80 percent,
determine the electric power consumption of the system for 
pumping. Would you recommend the use of a single large 
pump or several smaller pumps of the same total pumping 
power scattered along the pipeline? Explain. (b) Determine 
the daily cost of power consumption of the system if the 
unit cost of electricity is $0.06/kWh. (c) The temperature 
of geo thermal water is estimated to drop 0.5°C during this 
long flow. Determine if the frictional heating during flow can 
make up for this drop in temperature.

8–96  Repeat Prob. 8–95 for cast iron pipes of the same 
diameter.

8–97  Water is transported by gravity through a 12-cm-
diameter 800-m-long plastic pipe with an elevation gradi-
ent of 0.01 (i.e., an elevation drop of 1 m per 100 m of pipe 
length). Taking r 5 1000 kg/m3 and n 5 1 3 1026 m2/s for 
water, determine the flow rate of water through the pipe. If 
the pipe were horizontal, what would the power requirements 
be to maintain the same flow rate? 

8–98  Gasoline (r 5 680 kg/m3 and n 5 4.29 3 
1027 m2/s) is transported at a rate of 240 L/s for a distance 
of 2 km. The surface roughness of the piping is 0.03 mm. 
If the head loss due to pipe friction is not to exceed 10 m, 
determine the minimum diameter of the pipe.

4 cm

Pump

5 m
25 m

Tanker 
18 m3

FIGURE P8–91
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8–99  In large buildings, hot water in a water tank is 
circulated through a loop so that the user doesn’t have 
to wait for all the water in long piping to drain before 
hot water starts coming out. A certain recirculating loop 
involves 40-m-long, 1.2-cm-diameter cast iron pipes with 
six 90° threaded smooth bends and two fully open gate 
valves. If the average flow velocity through the loop is 
2 m/s, determine the required power input for the recir-
culating pump. Take the average water temperature to be 
60°C and the efficiency of the pump to be 70 percent.  
Answer: 0.111 kW

8–100   Reconsider Prob. 8–99. Using EES (or other) 
software, investigate the effect of the average 

flow velocity on the power input to the recirculating pump. 
Let the velocity vary from 0 to 3 m/s in increments of 
0.3 m/s. Tabulate and plot the results.

8–101  Repeat Prob. 8–99 for plastic (smooth) pipes.

8–102   Water at 20°C is to be pumped from a reservoir 
(zA 5 2 m) to another reservoir at a higher ele-

vation (zB 5 9 m) through two 25-m-long plastic pipes con-
nected in parallel. The diameters of the two pipes are 
3 cm and 5 cm. Water is to be pumped by a 68 percent effi-
cient motor–pump unit that draws 7 kW of electric power 
during operation. The minor losses and the head loss in the 
pipes that connect the parallel pipes to the two reservoirs 
are considered to be negligible. Determine the total flow rate 
between the reservoirs and the flow rates through each of the 
parallel pipes.

8–104  An inverted 3-m-high conical container shown in 
Fig. P8–104 is initially filled with 2-m-high water. At time 
t 5 0, a faucet is opened to supply water into the container at 
a rate of 3 L/s. At the same time, a 4-cm-diameter hole with a 
discharge coefficient of 0.90 at the bottom of the container is 
opened. Determine how long it will take for the water level in 
the tank to drop to 1-m.

8–103  A 6-m-tall chimney shown in Fig. P8–103 is to be 
designed to discharge hot gases from a fireplace at 1808C at 
a constant rate of 0.15 m3/s when the atmospheric air tem-
perature is 208C. Assuming no heat transfer from the chim-
ney and taking the chimney entrance loss coefficient to be 
1.5 and the friction coefficient of the chimney to be 0.020, 
determine the chimney diameter that would discharge the hot 
gases at the desired rate. Note that P3 5 P4 5 Patm and P2 5 
P1 5 Patm 1 ρatm air gh, and assume the hot gases in the entire 
chimney are at 180°C. 

Pump

Reservoir A
zA = 2 m

25 m

3 cm

5 cm

Reservoir B
zB = 9 m

FIGURE P8–102

h = 6 m

z = 0Fireplace

Hood

2
1

34

Chimney

FIGURE P8–103

h1 = 2 m

D = 2 m

H = 3 m

d = 4 cm
C = 0.90

3 L/s

FIGURE P8–104

Flow Rate and Velocity Measurements

8–105C  What is the difference between the operating prin-
ciples of thermal and laser Doppler anemometers?

8–106C  What is the difference between laser Doppler velo-
cim etry (LDV) and particle image velocimetry (PIV)?

8–107C  What are the primary considerations when select-
ing a flowmeter to measure the flow rate of a fluid?

8–108C  Explain how flow rate is measured with a Pitot-
static tube, and discuss its advantages and disadvantages with 
respect to cost, pressure drop, reliability, and accuracy.
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1.8 in4 in

7 in

FIGURE P8–118E

8–109C  Explain how flow rate is measured with obstruc-
tion-type flowmeters. Compare orifice meters, flow nozzles, 
and Venturi meters with respect to cost, size, head loss, and 
accuracy.

8–110C  How do positive displacement flowmeters operate? 
Why are they commonly used to meter gasoline, water, and 
natural gas?

8–111C  Explain how flow rate is measured with a turbine 
flowmeter, and discuss how they compare to other types of 
flowmeters with respect to cost, head loss, and accuracy.

8–112C  What is the operating principle of variable-area 
flowmeters (rotameters)? How do they compare to other types 
of flowmeters with respect to cost, head loss, and reliability?

8–113  The flow rate of water at 20°C (r 5 998 kg/m3 and 
m 5 1.002 3 1023 kg/m·s) through a 60-cm-diameter pipe is 
measured with an orifice meter with a 30-cm-diameter open-
ing to be 400 L/s. Determine the pressure difference indi-
cated by the orifice meter and the head loss.

8–114  A Pitot-static probe is mounted in a 2.5-cm-inner dia-
meter pipe at a location where the local velocity is approx-
imately equal to the average velocity. The oil in the pipe has 
density r 5 860 kg/m3 and viscosity m 5 0.0103 kg/m?s. The 
pressure difference is measured to be 95.8 Pa. Calculate the 
volume flow rate through the pipe in cubic meters per second.

8–115  Calculate the Reynolds number of the flow of Prob. 
8–114. Is it laminar or turbulent?

8–116  A flow nozzle equipped with a differential pres-
sure gage is used to measure the flow rate of water at 10°C 
(r 5  999.7 kg/m3 and m 5 1.307 3 1023 kg/m·s) through a 
3-cm-diameter horizontal pipe. The nozzle exit diameter is 
1.5 cm, and the measured pressure drop is 3 kPa. Determine 
the volume flow rate of water, the average velocity through 
the pipe, and the head loss.

8–117  The flow rate of water through a 10-cm-diameter 
pipe is to be determined by measuring the water velocity at 
several locations along a cross section. For the set of mea-
surements given in the table, determine the flow rate.

 r, cm V, m/s

 0 6.4

 1 6.1

 2 5.2

 3 4.4

 4 2.0

 5 0.0

8–118E  An orifice with a 1.8-in-diameter opening 
is used to measure the mass flow rate of water at 60°F 
(r 5 62.36 lbm/ft3 and m 5 7.536 3 1024 lbm/ft·s) through 
a horizontal 4-in-diameter pipe. A mercury manometer is 
used to measure the pressure difference across the orifice. 
If the differential height of the manometer is 7 in, determine 
the volume flow rate of water through the pipe, the average 
velocity, and the head loss caused by the orifice meter.

1.5 cm3 cm

�P = 3 kPa

Differential
pressure gage

FIGURE P8–116

8–119E  Repeat Prob. 8–118E for a differential height of 10 in.

8–120  Air (r 5 1.225 kg/m3 and m 5 1.789 3 1025 kg/m?s) 
flows in a wind tunnel, and the wind tunnel speed is measured
with a Pitot-static probe. For a certain run, the stagnation 
pressure is measured to be 472.6 Pa gage and the static pres-
sure is 15.43 Pa gage. Calculate the wind-tunnel speed.

8–121  A Venturi meter equipped with a differential pres-
sure gage is used to measure the flow rate of water at 15°C 
(r 5 999.1 kg/m3) through a 5-cm-diameter horizontal pipe. 
The diameter of the Venturi neck is 3 cm, and the measured 
pressure drop is 5 kPa. Taking the discharge coefficient to be 
0.98, determine the volume flow rate of water and the aver-
age velocity through the pipe.  Answers: 2.35 L/s and 1.20 m/s
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8–124  Repeat Prob. 8–123 for a Venturi neck diameter of 
6 cm.

8–125  A vertical Venturi meter equipped with a differen-
tial pressure gage shown in Fig. P8–125 is used to measure 
the flow rate of liquid propane at 10°C (r 5 514.7 kg/m3) 
through an 10-cm-diameter vertical pipe. For a discharge 
coefficient of 0.98, determine the volume flow rate of pro-
pane through the pipe.

5 cm 3 cm

DP

Differential
pressure gage

FIGURE P8–121

8–126E  The volume flow rate of liquid refrigerant-134a at 
10°F (r 5 83.31 lbm/ft3) is to be measured with a horizontal 
Venturi meter with a diameter of 5 in at the inlet and 2 in at 
the throat. If a differential pressure meter indicates a pressure 
drop of 6.4 psi, determine the flow rate of the refrigerant. 
Take the discharge coefficient of the Venturi meter to be 0.98.

8–127  A 22-L kerosene tank (r 5 820 kg/m3) is filled with 
a 2-cm-diameter hose equipped with a 1.5-cm-diameter noz-
zle meter. If it takes 20 s to fill the tank, determine the pres-
sure difference indicated by the nozzle meter.

8–128  The flow rate of water at 20°C (r 5 998 kg/m3 and 
m 5 1.002 3 1023 kg/m · s) through a 4-cm-diameter pipe is 
measured with a 2-cm-diameter nozzle meter equipped with 
an inverted air–water manometer. If the manometer indicates a 

8–122   Reconsider Prob. 8–121. Letting the pressure 
drop vary from 1 kPa to 10 kPa, evaluate the 

flow rate at intervals of 1 kPa, and plot it against the pressure 
drop.

8–123  The mass flow rate of air at 20°C (r 5 1.204 kg/m3) 
through a 18-cm-diameter duct is measured with a Venturi 
meter equipped with a water manometer. The Venturi neck 
has a diameter of 5 cm, and the manometer has a maximum 
differential height of 40 cm. Taking the discharge coefficient 
to be 0.98, determine the maximum mass flow rate of air this 
Venturi meter/manometer can measure.  Answer: 0.188 kg/s

18 cm 5 cm

Water
manometer

h

FIGURE P8–123

10 cm

5 cm

30 cm

DP = 7 kPa

FIGURE P8–125

2 cm4 cm

44 cm

Water

FIGURE P8–128
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differential water height of 44 cm, determine the volume flow 
rate of water and the head loss caused by the nozzle meter.

8–129  The flow rate of ammonia at 10°C (r 5 624.6 kg/m3

and m 5 1.697 3 1024 kg/m·s) through a 2-cm-diameter 
pipe is to be measured with a 1.5-cm-diameter flow nozzle 
equipped with a differential pressure gage. If the gage reads 
a pressure differential of 4 kPa, determine the flow rate of 
ammonia through the pipe, and the average flow velocity.

Review Problems

8–130  In a laminar flow through a circular tube of radius 
of R, the velocity and temperature profiles at a cross-section 
are given by u 5 u0(1 2 r2/R2) and T(r) 5 A 1 Br2 2 Cr4 
where A, B and C are positive constants. Obtain a relation for 
the bulk fluid temperature at that cross section. 

8–131  The conical container with a thin horizontal tube 
attached at the bottom, shown in Fig. P8–131, is to be used 
to measure the viscosity of an oil. The flow through the tube 
is laminar. The discharge time needed for the oil level to drop 
from h1 to h2 is to be measured by a stopwatch. Develop an 
expression for the viscosity of oil in the container as a func-
tion of the discharge time t.

1.5 m

80 tubes

1 cm

Water

FIGURE P8–132

9 m

22
cm

Air, 0.27 m3/s
15°C, 95 kPa

Air
compressor

120 hp

FIGURE P8–133

H

R

h2

d

h1

FIGURE P8–131

8–132   Shell-and-tube heat exchangers with hundreds 
of tubes housed in a shell are commonly used 

in practice for heat transfer between two fluids. Such a heat 
exchanger used in an active solar hot-water system transfers 
heat from a water-antifreeze solution flowing through the 
shell and the solar collector to fresh water flowing through 
the tubes at an average temperature of 60°C at a rate of 
15 L/s. The heat exchanger contains 80 brass tubes 1 cm in 
inner diameter and 1.5 m in length. Disregarding inlet, exit, 
and header losses, determine the pressure drop across a single 
tube and the pumping power required by the tube-side fluid 
of the heat exchanger.
 After operating a long time, 1-mm-thick scale builds up on 
the inner surfaces with an equivalent roughness of 0.4 mm. 

For the same pumping power input, determine the percent 
reduction in the flow rate of water through the tubes.

8–134  A house built on a riverside is to be cooled in sum-
mer by utilizing the cool water of the river. A 15-m-long 
section of a circular stainless-steel duct of 20-cm diameter 
passes through the water. Air flows through the underwa-
ter section of the duct at 3 m/s at an average temperature of 
15°C. For an overall fan efficiency of 62 percent, determine 
the fan power needed to overcome the flow resistance in this 
section of the duct.

8–133  The compressed air requirements of a manufactur-
ing facility are met by a 120-hp compressor that draws in air 
from the outside through an 9-m-long, 22-cm-diameter duct 
made of thin galvanized iron sheets. The compressor takes in 
air at a rate of 0.27 m3/s at the outdoor conditions of 15°C 
and 95 kPa. Disregarding any minor losses, determine the 
useful power used by the compressor to overcome the fric-
tional losses in this duct.  Answer: 6.74 W
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8–135  The velocity profile in fully developed laminar flow 
in a circular pipe, in m/s, is given by u(r) 5 6(1 2 100r2), 
where r is the radial distance from the centerline of the pipe 
in m. Determine (a) the radius of the pipe, (b) the average 
velocity through the pipe, and (c) the maximum velocity in 
the pipe.

8–136E  The velocity profile in a fully developed laminar
flow of water at 40°F in a 250-ft-long horizontal circu-
lar pipe, in ft/s, is given by u(r) 5 0.8(1 2 625r2), where r 
is the radial distance from the centerline of the pipe in ft. 
Determine (a)  the volume flow rate of water through the 
pipe, (b) the pressure drop across the pipe, and (c) the useful 
pumping power required to overcome this pressure drop.

8–137E  Repeat Prob. 8–136E assuming the pipe is inclined 
12° from the horizontal and the flow is uphill.

8–138  Oil at 208C is flowing steadily through a 5-cm-
diameter 40-m-long pipe. The pressures at the pipe inlet and 
outlet are measured to be 745 and 97.0 kPa, respectively, and 
the flow is expected to be laminar. Determine the flow rate of 
oil through the pipe, assuming fully developed flow and that 
the pipe is (a) horizontal, (b) inclined 158 upward, and (c) 
inclined 158 downward. Also, verify that the flow through the 
pipe is laminar.

8–139  Consider flow from a reservoir through a horizontal 
pipe of length L and diameter D that penetrates into the side 
wall at a vertical distance H from the free surface. The flow 
rate through an actual pipe with a reentrant section (KL 5 0.8) 
is considerably less than the flow rate through the hole calcu-
lated assuming “frictionless” flow and thus zero loss. Obtain 
a relation for the “equivalent diameter” of the reentrant pipe 
for use in relations for frictionless flow through a hole and 
determine its value for a pipe friction factor, length, and 
diameter of 0.018, 10 m, and 0.04 m, respectively. Assume 
the friction factor of the pipe to remain constant and the 
effect of the kinetic energy correction factor to be negligible.

8–140  A highly viscous liquid discharges from a large con-
tainer through a small-diameter tube in laminar flow. Disre-
garding entrance effects and velocity heads, obtain a relation 
for the variation of fluid depth in the tank with time.

8–141  A student is to determine the kinematic viscosity 
of an oil using the system shown in Prob. 8–140. The initial 
fluid height in the tank is H 5 40 cm, the tube diameter is 
d 5 6 mm, the tube length is L 5 0.65 m, and the tank diam-
eter is D 5 0.63 m. The student observes that it takes 1400 s 
for the fluid level in the tank to drop to 34 cm. Find the fluid 
viscosity.

8–142  A circular water pipe has an abrupt expansion from 
diameter D1 5 8 cm to D2 5 24 cm. The pressure and the 
average water velocity in the smaller pipe are P1 5 135 kPa 
and 10 m/s, respectively, and the flow is turbulent. By apply-
ing the continuity, momentum, and energy equations and dis-
regarding the effects of the kinetic energy and momentum-
flux correction factors, show that the loss coefficient for 
sudden expansion is KL 5 (1 2 D1

2/D2
2)2, and calculate KL 

and P2 for the given case.

River

Air

Air, 3 m/s

FIGURE P8–134

8–143   In a geothermal district heating system, 10,000 kg/s 
of hot water must be delivered a distance of 

10 km in a horizontal pipe. The minor losses are negligible, and 
the only significant energy loss arises from pipe friction. The 
friction factor is taken to be 0.015. Specifying a larger-diameter 
pipe would reduce water velocity, velocity head, pipe friction, 
and thus power consumption. But a larger pipe would also cost 
more money initially to purchase and install. Otherwise stated, 
there is an optimum pipe diameter that will minimize the sum 
of pipe cost and future electric power cost.
 Assume the system will run 24 h/day, every day, for 30 years. 
During this time the cost of electricity remains constant at 
$0.06/kWh. Assume system performance stays constant over 
the decades (this may not be true, especially if highly miner-
alized water is passed through the pipeline—scale may form). 
The pump has an overall efficiency of 80 percent. The cost to 

D

d

L

H
Discharge
tube

FIGURE P8–140

D2D1V1 = 10 m/s

FIGURE P8–142
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500 m

30 cm

800 m

3 m3/s

Oil

A

B

45 cm

FIGURE P8–147

purchase, install, and insulate a 10-km pipe depends on the 
diameter D and is given by Cost 5 $106 D2, where D is in m. 
Assuming zero inflation and interest rate for simplicity and 
zero salvage value and zero maintenance cost, determine the 
optimum pipe diameter.

8–144 Water at 15°C is to be discharged from a reservoir 
at a rate of 18 L/s using two horizontal cast iron pipes con-
nected in series and a pump between them. The first pipe is 
20 m long and has a 6-cm diameter, while the second pipe 
is 35 m long and has a 4-cm diameter. The water level in 
the reservoir is 30 m above the centerline of the pipe. The 
pipe entrance is sharp-edged, and losses associated with the 
connection of the pump are negligible. Neglecting the effect 
of the kinetic energy correction factor, determine the required 
pumping head and the minimum pumping power to maintain 
the indicated flow rate.

8–148  Repeat Prob. 8–147 for hot-water flow of a district 
heating system at 100°C.

8–149  A system that consists of two interconnected cylin-
drical tanks with D1 5 30 cm and D2 5 12 cm is to be used 
to determine the discharge coefficient of a short D0 5 5 mm 
diameter orifice. At the beginning (t 5 0 s), the fluid heights 
in the tanks are h1 5 50 cm and h2 5 15 cm, as shown in 
Fig. P8–149. If it takes 170 s for the fluid levels in the two 
tanks to equalize and the flow to stop, determine the discharge 
coefficient of the orifice. Disregard any other losses associated 
with this flow.

Water
tank

Pump
35 m20 m

30 m

6 cm 4 cm

FIGURE P8–144

8–145   Reconsider Prob. 8–144. Using EES (or other) 
software, investigate the effect of the second 

pipe diameter on the required pumping head to maintain the 
indicated flow rate. Let the diameter vary from 1 to 10 cm in 
increments of 1 cm. Tabulate and plot the results.

8–146  Two pipes of identical diameter and material are 
connected in parallel. The length of pipe A is five times 
the length of pipe B. Assuming the flow is fully turbulent 
in both pipes and thus the friction factor is independent 
of the Reynolds number and disregarding minor losses, 
determine the ratio of the flow rates in the two pipes.  
Answer: 0.447

8–147   A pipeline that transports oil at 40°C at a rate 
of 3 m3/s branches out into two parallel pipes 

made of commercial steel that reconnect downstream. Pipe A 
is 500 m long and has a diameter of 30 cm while pipe B is 
800 m long and has a diameter of 45 cm. The minor losses 
are considered to be negligible. Determine the flow rate 
through each of the parallel pipes.

Orifice

h1 h

h2

Tank 2Tank 1

FIGURE P8–149

8–150  The compressed air requirements of a textile fac-
tory are met by a large compressor that draws in 0.6 m3/s 
air at atmospheric conditions of 20°C and 1 bar (100 kPa) 
and consumes 300 kW electric power when operating. Air is 
compressed to a gage pressure of 8 bar (absolute pressure of 
900 kPa), and compressed air is transported to the produc-
tion area through a 15-cm-internal-diameter, 83-m-long, gal-
vanized steel pipe with a surface roughness of 0.15 mm. The 
average temperature of compressed air in the pipe is 60°C. 
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The compressed air line has 8 elbows with a loss coefficient 
of 0.6 each. If the compressor efficiency is 85 percent, deter-
mine the pressure drop and the power wasted in the transpor-
tation line. Answers: 1.40 kPa, 0.125 kW

8–151  Reconsider Prob. 8–150. In order to reduce the head 
losses in the piping and thus the power wasted, someone sug-
gests doubling the diameter of the 83-m-long compressed air 
pipes. Calculating the reduction in wasted power, and deter-
mine if this is a worthwhile idea. Considering the cost of 
replacement, does this proposal make sense to you?

8–152E  A water fountain is to be installed at a remote loca-
tion by attaching a cast iron pipe directly to a water main 
through which water is flowing at 70°F and 60 psig. The 
entrance to the pipe is sharp-edged, and the 70-ft-long piping 
system involves three 90° miter bends without vanes, a fully 
open gate valve, and an angle valve with a loss coefficient of 
5 when fully open. If the system is to provide water at a rate 
of 15 gal/min and the elevation difference between the pipe 
and the fountain is negligible, determine the minimum diam-
eter of the piping system.  Answer: 0.713 in

8-oz glass (5 0.00835 ft3) (a) when the bottle is first opened 
and (b) when the bottle is almost empty. Take the total minor 
loss coefficient, including the on/off valve, to be 2.8 when it is 
fully open. Assume the water temperature to be the same as the 
room temperature of 70°F.  Answers: (a) 2.4 s, (b) 2.8 s

60 psig

70 ft 15 gpm

Water
main

FIGURE P8–152E

8–153E  Repeat Prob. 8–152E for plastic (smooth) pipes.

8–154  In a hydroelectric power plant, water at 20°C is sup-
plied to the turbine at a rate of 0.6 m3/s through a 200-m-long, 
0.35-m-diameter cast iron pipe. The elevation difference 
between the free surface of the reservoir and the turbine 
discharge is 140 m, and the combined turbine–generator
efficiency is 80 percent. Disregarding the minor losses 
because of the large length-to-diameter ratio, determine the 
electric power output of this plant.

8–155  In Prob. 8–154, the pipe diameter is tripled in order 
to reduce the pipe losses. Determine the percent increase in 
the net power output as a result of this modification.

8–156E  The drinking water needs of an office are met by 
large water bottles. One end of a 0.35-in-diameter, 6-ft-long 
plastic hose is inserted into the bottle placed on a high stand, 
while the other end with an on/off valve is maintained 3 ft 
below the bottom of the bottle. If the water level in the bottle is 
1 ft when it is full, determine how long it would take to fill an 

3 ft

1 ft

6 ft
0.35 in

FIGURE P8–156E

8–157E   Reconsider Prob. 8–156E. Using EES (or 
other) software, investigate the effect of the 

hose diameter on the time required to fill a glass when the 
bottle is full. Let the diameter vary from 0.2 to 2 in, in incre-
ments of 0.2 in. Tabulate and plot the results.

8–158E  Reconsider Prob. 8–156E. The office worker who 
set up the siphoning system purchased a 12-ft-long reel of 
the plastic tube and wanted to use the whole thing to avoid 
cutting it in pieces, thinking that it is the elevation difference 
that makes siphoning work, and the length of the tube is not 
important. So he used the entire 12-ft-long tube. Assuming 
the turns or constrictions in the tube are not significant (being 
very optimistic) and the same elevation is maintained, deter-
mine the time it takes to fill a glass of water for both cases 
(bottle nearly full and bottle nearly empty).

8–159  Water is to be withdrawn from a 7-m-high water 
reservoir by drilling a well-rounded 4-cm-diameter hole with 
negligible loss near the bottom and attaching a horizontal 

7 m

FIGURE P8–159
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90° bend of negligible length. Taking the kinetic energy cor-
rection factor to be 1.05, determine the flow rate of water 
through the bend if (a) the bend is a flanged smooth bend 
and (b) the bend is a miter bend without vanes.  Answers: 

(a) 12.7 L/s, (b) 10.0 L/s

8–160  The water at 20°C in a 10-m-diameter, 2-m-high 
aboveground swimming pool is to be emptied by unplug-
ging a 5-cm-diameter, 25-m-long horizontal plastic pipe 
attached to the bottom of the pool. Determine the initial rate 
of discharge of water through the pipe and the time (hours) it 
would take to empty the swimming pool completely assum-
ing the entrance to the pipe is well-rounded with negligible 
loss. Take the friction factor of the pipe to be 0.022. Using 
the initial discharge velocity, check if this is a reasonable 
value for the friction factor.  Answers: 3.55 L/s, 24.6 h

The flow rate within the bypass graft is 0.45 liters per minute 
(recall 1 ml equals 1 cm3). Blood has a density of 1060 kg/m3 
and a dynamic viscosity of 3.5 centipoise. Assume that the 
Dacron and coronary artery have the same material properties 
and ignore any minor losses. Assume the friction factor is the 
same in both tubes. Ignoring the plaque in determining the 
head loss for the coronary artery, calculate the velocity through 
the small gap between the plaque and the coronary artery.

Fundamentals of Engineering (FE) Exam Problems

8–164  The average velocity for fully developed laminar 
pipe flow is
(a) Vmax/2 (b) Vmax/3 (c) Vmax (d) 2Vmax/3 (e) 3Vmax/4

8–165  The Reynolds number is not a function of
(a) Fluid velocity (b) Fluid density
(c) Characteristic length (d) Surface roughness
(e) Fluid viscosity

8–166  Air flows in a 5 cm by 8 cm cross section rectangular 
duct at a velocity of 4 m/s at 1 atm and 158C. The Reynolds 
number for this flow is 
(a) 13,605 (b) 16,745 (c) 17,690 (d) 21,770
(e) 23,235 

8–167  Air at 1 atm and 208C flows in a 4-cm-diameter tube. 
The maximum velocity of air to keep the flow laminar is 
(a) 0.872 m/s (b) 1.52 m/s (c) 2.14 m/s
(d ) 3.11 m/s (e) 3.79 m/s

8–168  Consider laminar flow of water in a 0.8-cm-diameter 
pipe at a rate of 1.15 L/min. The velocity of water halfway 
between the surface and the center of the pipe is 
(a) 0.381 m/s (b) 0.762 m/s (c) 1.15 m/s
(d) 0.874 m/s (e) 0.572 m/s

8–169  Consider laminar flow of water at 158C in a 0.7-cm-
diameter pipe at a velocity of 0.4 m/s. The pressure drop of 
water for a pipe length of 50 m is
(a) 6.8 kPa (b) 8.7 kPa (c) 11.5 kPa (d) 14.9 kPa
(e) 17.3 kPa 

8–170  Engine oil at 408C (ρ 5 876 kg/m3, μ 5 0.2177 kg/m∙s) 
flows in a 20-cm-diameter pipe at a velocity of 1.2 m/s. The 
pressure drop of oil for a pipe length of 20 m is 
(a) 4180 Pa (b) 5044 Pa (c) 6236 Pa (d) 7419 Pa
(e) 8615 Pa 

8–171  A fluid flows in a 25-cm-diameter pipe at a velocity 
of 4.5 m/s. If the pressure drop along the pipe is estimated 
to be 6400 Pa, the required pumping power to overcome this 
pressure drop is 
(a) 452 W (b) 640 W (c) 923 W (d) 1235 W
(e) 1508 W 

8–172  Water flows in a 15-cm-diameter pipe at a velocity 
of 1.8 m/s. If the head loss along the pipe is estimated to be 

2 m
Swimming

pool

10 m

25 m 5 cm

FIGURE P8–160

8–161   Reconsider Prob. 8–160. Using EES (or other) 
software, investigate the effect of the discharge 

pipe diameter on the time required to empty the pool com-
pletely. Let the diameter vary from 1 to 10 cm, in increments 
of 1 cm. Tabulate and plot the results.

8–162  Repeat Prob. 8–160 for a sharp-edged entrance to the 
pipe with KL 5 0.5. Is this “minor loss” truly “minor” or not?

8–163  An elderly woman is rushed to the hospital because 
she is having a heart attack. The emergency room doctor 
informs her that she needs immediate coronary artery (a vessel
that wraps around the heart) bypass surgery because one coro-
nary artery has 75 percent blockage (caused by atherosclerotic 
plaque). This surgery involves using an artificial graft (typically 
made of Dacron) to divert blood from the coronary artery 
around the blockage and reattach to the coronary artery beyond 
the blockage site as illustrated in Figure P8-163. The coronary 
artery diameter is 5.0 mm and its length is 15.0 mm. The 
bypass graft diameter is 4.0 mm and its length is 20.0 mm. 

Coronary Artery

Bypass graft

FIGURE P8–163
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16 m, the required pumping power to overcome this head 
loss is 
(a) 3.22 kW (b) 3.77 kW (c) 4.45 kW (d ) 4.99 kW
(e) 5.54 kW 

8–173  The pressure drop for a given flow is determined to 
be 100 Pa. For the same flow rate, if we reduce the diameter 
of the pipe by half, the pressure drop will be
(a) 25 Pa (b) 50 Pa (c) 200 Pa (d) 400 Pa (e) 1600 Pa

8–174  Air at 1 atm and 258C (v 5 1.562 3 1025 m2/s) 
flows in a 9-cm-diameter cast iron pipe at a velocity of 5 m/s. 
The roughness of the pipe is 0.26 mm. The head loss for a 
pipe length of 24 m is
(a) 8.1 m (b) 10.2 m (c) 12.9 m (d) 15.5 m (e) 23.7 m

8–175  Consider air flow in a 10-cm-diameter pipe at a 
high velocity so that the Reynolds number is very large. The 
roughness of the pipe is 0.002 mm. The friction factor for 
this flow is
(a) 0.0311 (b) 0.0290 (c) 0.0247 (d) 0.0206 (e) 0.0163

8–176  Air at 1 atm and 408C flows in a 8-cm-diameter pipe 
at a rate of 2500 L/min. The friction factor is determined 
from the Moody chart to be 0.027. The required power input 
to overcome the pressure drop for a pipe length of 150 m is 
(a) 310 W (b) 188 W (c) 132 W (d) 81.7 W
(e) 35.9 W 

8–177  Water at 108C ( ρ 5 999.7 kg/m3, μ 5 1.307 3 1023 
kg/m∙s) is to be transported in a 5-cm-diamater, 30-m-long 
circular pipe. The roughness of the pipe is 0.22 mm. If the 
pressure drop in the pipe is not to exceed 19 kPa, the maxi-
mum flow rate of water is
(a) 324 L/min (b) 281 L/min (c) 243 L/min
(d) 195 L/min (e) 168 L/min 

8–178  The valve in a piping system causes a 3.1 m head 
loss. If the velocity of the flow is 6 m/s, the loss coefficient 
of this valve is 
(a) 0.87 (b) 1.69 (c) 1.25 (d) 0.54 (e) 2.03 

8–179  Consider a sharp-edged pipe exit for fully developed 
laminar flow of a fluid. The velocity of the flow is 4 m/s. 
This minor loss is equivalent to a head loss of  
(a) 0.72 m (b) 1.16 m (c) 1.63 m (d) 2.0 m (e) 4.0 m 

8–180  A water flow system involves a 1808 return bend 
(threaded) and a 908 miter bend (without vanes). The velocity 
of water is 1.2 m/s. The minor losses due to these bends are 
equivalent to a pressure loss of
(a) 648 Pa (b) 933 Pa (c) 1255 Pa (d) 1872 Pa
(e) 2600 Pa 

8–181  A constant-diameter piping system involves multiple 
flow restrictions with a total loss coefficient of 4.4. The fric-
tion factor of piping is 0.025 and the diameter of the pipe 

is 7 cm. These minor losses are equivalent to the losses in a 
pipe of length 
(a) 12.3 m (b) 9.1 m (c) 7.0 m (d) 4.4 m (e) 2.5 m 

8–182  Air flows in an 8-cm-diameter, 33-m-long pipe at a 
velocity of 5.5 m/s. The piping system involves multiple flow 
restrictions with a total minor loss coefficient of 2.6. The 
friction factor of pipe is obtained from the Moody chart to be 
0.025. The total head loss of this piping system is 
(a) 13.5 m (b) 7.6 m (c) 19.9 m (d) 24.5 m
(e) 4.2 m

8–183  Consider a pipe that branches out into two parallel 
pipes and then rejoins at a junction downstream. The two 
parallel pipes have the same lengths and friction factors. The 
diameters of the pipes are 2 cm and 4 cm. If the flow rate in 
one pipe is 10 L/min, the flow rate in the other pipe is
(a) 10 L/min (b) 3.3 L/min (c) 100 L/min (d) 40 L/min
(e) 56.6 L/min

8–184  Consider a pipe that branches out into two parallel 
pipes and then rejoins at a junction downstream. The two 
parallel pipes have the same lengths and friction factors. The 
diameters of the pipes are 2 cm and 4 cm. If the head loss in 
one pipe is 0.5 m, the head loss in the other pipe is
(a) 0.5 m (b) 1 m (c) 0.25 m (d) 2 m (e) 0.125 m 

8–185  A pump moves water from a reservoir to another 
reservoir through a piping system at a rate of 0.15 m3/min. 
Both reservoirs are open to the atmosphere. The elevation dif-
ference between the two reservoirs is 35 m and the total head 
loss is estimated to be 4 m. If the efficiency of the motor-
pump unit is 65 percent, the electrical power input to the 
motor of the pump is
(a) 1664 W (b) 1472 W (c) 1238 W (d) 983 W
(e) 805 W 

8–186  Consider a pipe that branches out into three paral-
lel pipes and then rejoins at a junction downstream. All three 
pipes have the same diameters (D 5 3 cm) and friction fac-
tors ( f 5 0.018). The lengths of pipe 1 and pipe 2 are 5 m 
and 8 m, respectively while the velocities of the fluid in pipe 
2 and pipe 3 are 2 m/s and 4 m/s, respectively. The length of 
pipe 3 is 
(a) 8 m (b) 5 m (c) 4 m (d) 2 m (e) 1 m

Design and Essay Problems

8–187  Electronic boxes such as computers are commonly 
cooled by a fan. Write an essay on forced air cooling of elec-
tronic boxes and on the selection of the fan for electronic 
devices.

8–188  Design an experiment to measure the viscosity of 
liquids using a vertical funnel with a cylindrical reservoir of 
height h and a narrow flow section of diameter D and length L. 
Making appropriate assumptions, obtain a relation for viscosity 
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Also estimate the cost of annual power consumption of this 
unit assuming continuous operation.

8–190  During a camping trip you notice that water is dis-
charged from a high reservoir to a stream in the valley 
through a 30-cm-diameter plastic pipe. The elevation differ-
ence between the free surface of the reservoir and the stream 
is 70 m. You conceive the idea of generating power from this 
water. Design a power plant that will produce the most power 
from this resource. Also, investigate the effect of power gen-
eration on the discharge rate of water. What discharge rate 
maximizes the power production?

in terms of easily measurable quantities such as density and 
volume flow rate. Is there a need for the use of a correction 
factor?

8–189  A pump is to be selected for a waterfall in a garden. 
The water collects in a pond at the bottom, and the eleva-
tion difference between the free surface of the pond and 
the location where the water is discharged is 3 m. The flow 
rate of water is to be at least 8 L/s. Select an appropriate 
motor– pump unit for this job and identify three manufactur-
ers with product model numbers and prices. Make a selec-
tion and explain why you selected that particular product. 
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D I F F E R E N T I A L  A N A LY S I S 
O F  F L U I D  F L O W

In this chapter we derive the differential equations of fluid motion, namely, 
conservation of mass (the continuity equation) and Newton’s second law 
(the Navier–Stokes equation). These equations apply to every point in the 

flow field and thus enable us to solve for all details of the flow everywhere 
in the flow domain. Unfortunately, most differential equations encountered 
in fluid mechanics are very difficult to solve and often require the aid of 
a computer. Also, these equations must be combined when necessary with 
additional equations, such as an equation of state and an equation for energy 
and/or species transport. We provide a step-by-step procedure for solving this 
set of differential equations of fluid motion and obtain analytical solutions 
for several simple examples. We also introduce the concept of the stream 
function; curves of constant stream function turn out to be streamlines in 
two-dimensional flow fields.

OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Understand how the differential 
equation of conservation of 
mass and the differential linear 
momentum equation are derived 
and applied

■ Calculate the stream function 
and pressure field, and plot 
streamlines for a known 
velocity field

■ Obtain analytical solutions 
of the equations of motion 
for simple flow fields

The fundamental differential 
equations of fluid motion are 

derived in this chapter, and 
we show how to solve them 

analytically for some simple 
flows. More complicated 

flows, such as the air flow 
induced by a tornado 

shown here, cannot be 
solved exactly.

Royalty-Free/CORBIS

CHAPTER

9

437-514_cengel_ch09.indd   437 12/21/12   3:31 PM



438
DIFFERENTIAL ANALYSIS OF FLUID FLOW

9–1 ■ INTRODUCTION
In Chapter 5, we derived control volume versions of the laws of conservation 
of mass and energy, and in Chap. 6 we did the same for momentum. The con-
trol volume technique is useful when we are interested in the overall features 
of a flow, such as mass flow rate into and out of the control volume or net 
forces applied to bodies. An example is sketched in Fig. 9–1a for the case of 
wind flowing around a satellite dish. A rectangular control volume is taken 
around the vicinity of the satellite dish, as sketched. If we know the air veloc-
ity along the entire control surface, we can calculate the net reaction force on 
the stand without ever knowing any details about the geometry of the satellite 
dish. The interior of the control volume is in fact treated like a “black box” 
in control volume analysis—we cannot obtain detailed knowledge about flow 
properties such as velocity or pressure at points inside the control volume.
 Differential analysis, on the other hand, involves application of differen-
tial equations of fluid motion to any and every point in the flow field over a 
region called the flow domain. You can think of the differential technique as 
the analysis of millions of tiny control volumes stacked end to end and on top 
of each other all throughout the flow field. In the limit as the number of tiny 
control volumes goes to infinity, and the size of each control volume shrinks 
to a point, the conservation equations simplify to a set of partial differential 
equations that are valid at any point in the flow. When solved, these differen-
tial equations yield details about the velocity, density, pressure, etc., at every 
point throughout the entire flow domain. In Fig. 9–1b, for example, differential 
analysis of airflow around the satellite dish yields streamline shapes, a detailed 
pressure distribution around the dish, etc. From these details, we can integrate 
to find gross features of the flow such as the net force on the satellite dish.
 In a fluid flow problem such as the one illustrated in Fig. 9–1 in which 
air density and temperature changes are insignificant, it is sufficient to solve 
two differential equations of motion—conservation of mass and Newton’s 
second law (the linear momentum equation). For three-dimensional incom-
pressible flow, there are four unknowns (velocity components u, v, w, and 
pressure P) and four equations (one from conservation of mass, which is 
a scalar equation, and three from Newton’s second law, which is a vector 
equation). As we shall see, the equations are coupled, meaning that some 
of the variables appear in all four equations; the set of differential equations 
must therefore be solved simultaneously for all four unknowns. In addition, 
boundary conditions for the variables must be specified at all boundaries 
of the flow domain, including inlets, outlets, and walls. Finally, if the flow 
is unsteady, we must march our solution along in time as the flow field 
changes. You can see how differential analysis of fluid flow can become 
quite complicated and difficult. Computers are a tremendous help here, as 
discussed in Chap. 15. Nevertheless, there is much we can do analytically, 
and we start by deriving the differential equation for conservation of mass.

9–2 ■  CONSERVATION OF MASS—
THE CONTINUITY EQUATION

Through application of the Reynolds transport theorem (Chap. 4), we have 
the following general expression for conservation of mass as applied to a 
control volume:

Control volume

Flow out

Flow out

Flow in

F

F

(a)

Flow domain

Flow out

Flow out

Flow in

(b)

FIGURE 9–1
(a) In control volume analysis, the 
interior of the control volume is 
treated like a black box, but (b) in 
differential analysis, all the details 
of the flow are solved at every point 
within the flow domain.

437-514_cengel_ch09.indd   438 12/18/12   4:39 PM



439
CHAPTER 9

Conservation of mass for a CV:

 0 5 #
CV

 
0r
0t

  dV 1 #
CS

 rV
!
·n
!
 dA (9–1)

Recall that Eq. 9–1 is valid for both fixed and moving control volumes, 
provided that the velocity vector is the absolute velocity (as seen by a 
fixed observer). When there are well-defined inlets and outlets, Eq. 9–1 is 
rewritten as

 #
CV

 
0r
0t

  dV 5a
in

m# 2 a
out

m#  (9–2)

In words, the net rate of change of mass within the control volume is equal 
to the rate at which mass flows into the control volume minus the rate at 
which mass flows out of the control volume. Equation 9–2 applies to any 
control volume, regardless of its size. To generate a differential equation for 
conservation of mass, we imagine the control volume shrinking to infinitesi-
mal size, with dimensions dx, dy, and dz (Fig. 9–2). In the limit, the entire 
control volume shrinks to a point in the flow.

Derivation Using the Divergence Theorem
The quickest and most straightforward way to derive the differential form of 
conservation of mass is to apply the divergence theorem to Eq. 9–1. The 
divergence theorem is also called Gauss’s theorem, named after the Ger-
man mathematician Johann Carl Friedrich Gauss (1777–1855). The diver-
gence theorem allows us to transform a volume integral of the divergence of 
a vector into an area integral over the surface that defines the volume. For 
any vector G

!
, the divergence of G

!
 is defined as =

!
·G
!
, and the divergence 

theorem is written as

Divergence theorem: #
V
 =
!
·G
!
 dV 5 BA

 G
!
·n
!
 dA (9–3)

The circle on the area integral is used to emphasize that the integral must 
be evaluated around the entire closed area A that surrounds volume V . Note 
that the control surface of Eq. 9–1 is a closed area, even though we do not 
always add the circle to the integral symbol. Equation 9–3 applies to any vol-
ume, so we choose the control volume of Eq. 9–1. We also let G

!
 5 rV

!
 

since G
!
 can be any vector. Substitution of Eq. 9–3 into Eq. 9–1 converts the 

area integral into a volume integral,

0 5 #
CV

 
0r
0t

  dV 1 #
CV

 =
!
·(rV

!
) dV

We now combine the two volume integrals into one,

 #
CV

 c 0r
0t

1 =
!
·(rV

!
) d  dV 5 0 (9–4)

Finally, we argue that Eq. 9–4 must hold for any control volume regardless 
of its size or shape. This is possible only if the integrand (the terms within 

dx dz
dy

CV

x1

y1

z1

y

z
x

FIGURE 9–2
To derive a differential conservation 

equation, we imagine shrinking a 
control volume to infinitesimal size.
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square brackets) is identically zero. Hence, we have a general differential 
equation for conservation of mass, better known as the continuity equation:

Continuity equation: 
0r
0t

1 =
!
·(rV

!
) 5 0 (9–5)

Equation 9–5 is the compressible form of the continuity equation since we 
have not assumed incompressible flow. It is valid at any point in the flow 
domain.

Derivation Using an Infinitesimal Control Volume
We derive the continuity equation in a different way, by starting with a con-
trol volume on which we apply conservation of mass. Consider an infini-
tesimal box-shaped control volume aligned with the axes in Cartesian coor-
dinates (Fig. 9–3). The dimensions of the box are dx, dy, and dz, and the 
center of the box is shown at some arbitrary point P from the origin (the 
box can be located anywhere in the flow field). At the center of the box 
we define the density as r and the velocity components as u, v, and w, 
as shown. At locations away from the center of the box, we use a Taylor 
series expansion about the center of the box (point P). [The series expan-
sion is named in honor of its creator, the English mathematician Brook 
Taylor (1685–1731).] For example, the center of the right-most face of the 
box is located a distance dx/2 from the middle of the box in the x-direction; 
the value of ru at that point is

 (ru)center of right face 5 ru 1
0(ru)

0x
 
dx

2
1

1

2!
 
02(ru)

0x 2  adx

2
b2

1 p (9–6)

As the box representing the control volume shrinks to a point, however, sec-
ond-order and higher terms become negligible. For example, suppose dx/L 5 
1023, where L is some characteristic length scale of the flow domain. Then 
(dx/L)2 5 1026, a factor of a thousand less than dx/L. In fact, the smaller dx, 
the better the assumption that second-order terms are negligible. Applying 
this truncated Taylor series expansion to the density times the normal veloc-
ity component at the center point of each of the six faces of the box, we have

Center of right face:  (ru)center of right face > ru 1
0(ru)

0x
 
dx

2
 

Center of left face:  (ru)center of left face > ru 2
0( ru)

0x
 
dx

2
 

Center of front face:  (rw)center of front face > rw 1
0(rw)

0z
 
dz

2
 

Center of rear face:  ( rw)center of rear face > rw 2
0(rw)

0z
 
dz

2
 

Center of top face:  ( rv)center of top face > rv 1
0(rv)

0y
 
dy

2

Center of bottom face:  ( rv)center of bottom face > rv 2
0(rv)

0y
 
dy

2

y

z
x

dx

dz

dy
u

v

w
P

r

FIGURE 9–3
A small box-shaped control volume 
centered at point P is used for 
derivation of the differential equation 
for conservation of mass in Cartesian 
coordinates; the red dots indicate 
the center of each face.
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 The mass flow rate into or out of one of the faces is equal to the density 
times the normal velocity component at the center point of the face times 
the surface area of the face. In other words, m

.
 5 rVnA at each face, where 

Vn is the magnitude of the normal velocity through the face and A is the 
surface area of the face (Fig. 9–4). The mass flow rate through each face 
of our infinitesimal control volume is illustrated in Fig. 9–5. We could con-
struct truncated Taylor series expansions at the center of each face for the 
remaining (nonnormal) velocity components as well, but this is unnecessary 
since these components are tangential to the face under consideration. For 
example, the value of rv at the center of the right face can be estimated by 
a similar expansion, but since v is tangential to the right face of the box, it 
contributes nothing to the mass flow rate into or out of that face.
 As the control volume shrinks to a point, the value of the volume integral 
on the left-hand side of Eq. 9–2 becomes

Rate of change of mass within CV:

 #
CV

 
0r
0t

  dV >
0r
0t

  dx dy dz  (9–7)

since the volume of the box is dx dy dz. We now apply the approximations 
of Fig. 9–5 to the right-hand side of Eq. 9–2. We add up all the mass flow 
rates into and out of the control volume through the faces. The left, bottom, 
and back faces contribute to mass inflow, and the first term on the right-
hand side of Eq. 9–2 becomes

Net mass flow rate into CV:

a
in

m# > ¢ru 2
0(ru)

0x
 
dx

2
 dy dz1 ¢rv 2

0(rv)

0y
 
dy

2
dx dz1 ¢rw 2

0(rw)

0z
 
dz

2
 dx dy

 left face bottom face rear face 

y

z
x

A = surface area

Vn = average normal
velocity component

FIGURE 9–4
The mass flow rate through a 

surface is equal to rVnA.

y

z
x

dx

dz

dy

arv + 
∂(rv) dyb dx dz

∂y    2

aru – 
∂(ru) dxb

 
dy dz

∂x    2 aru + 
∂(ru) dxb dy dz
∂x    2

arw + 
∂(rw) dzb dx dy

∂z     2

arw – 
∂(rw) dzb dx dy

∂z    2

arv – 
∂(rv) dy  

 
dx dz

∂y    2
b

FIGURE 9–5
The inflow or outflow of mass 

through each face of the differential 
control volume; the red dots indicate 

the center of each face.
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Similarly, the right, top, and front faces contribute to mass outflow, and the 
second term on the right-hand side of Eq. 9–2 becomes

Net mass flow rate out of CV:

a
out

m# > ¢ru1
0(ru)

0x
 
dx

2
 dy dz1 ¢rv1

0(rv)

0y
 
dy

2
 dx dz1 ¢rw1

0(rw)

0z
 
dz

2
 dx dy

 right face top face front face 

We substitute Eq. 9–7 and these two equations for mass flow rate into 
Eq. 9–2. Many of the terms cancel each other out; after combining and sim-
plifying the remaining terms, we are left with

0r
0t

 dx dy dz 5 2 

0(ru)

0x
 dx dy dz 2

0( rv)

0y
 dx dy dz 2

0(rw)

0z
 dx dy dz

The volume of the box, dx dy dz, appears in each term and can be elimi-
nated. After rearrangement we end up with the following differential 
equation for conservation of mass in Cartesian coordinates:

Continuity equation in Cartesian coordinates:

 

0r
0t

1
0(ru)

0x
1
0( rv)

0y
1
0(rw)

0z
5 0 (9–8)

Equation 9–8 is the compressible form of the continuity equation in Cartesian 
coordinates. It is written in more compact form by recognizing the divergence 
operation (Fig. 9–6), yielding the same equation as Eq. 9–5.

EXAMPLE 9–1    Compression of an Air–Fuel Mixture

An air–fuel mixture is compressed by a piston in a cylinder of an internal 

combustion engine (Fig. 9–7). The origin of coordinate y is at the top of 

the cylinder, and y points straight down as shown. The piston is assumed to 

move up at constant speed VP. The distance L between the top of the cylin-

der and the piston decreases with time according to the linear approximation 

L 5 Lbottom 2 VPt, where Lbottom is the location of the piston when it is at the 

bottom of its cycle at time t 5 0, as sketched in Fig. 9–7. At t 5 0, the 

density of the air–fuel mixture in the cylinder is everywhere equal to r(0). 

Estimate the density of the air–fuel mixture as a function of time and the 

given parameters during the piston’s up stroke.

SOLUTION  The density of the air–fuel mixture is to be estimated as a func-

tion of time and the given parameters in the problem statement.

Assumptions  1 Density varies with time, but not space; in other words, the 

density is uniform throughout the cylinder at any given time, but changes 

with time: r 5 r(t). 2 Velocity component v varies with y and t, but not with 

x or z; in other words v 5 v(y, t ) only. 3 u 5 w 5 0. 4 No mass escapes 

from the cylinder during the compression.

Analysis  First we need to establish an expression for velocity component v 

as a function of y and t. Clearly v 5 0 at y 5 0 (the top of the cylinder), 

and v 52VP at y 5 L. For simplicity, we approximate that v varies linearly 

between these two boundary conditions,

Vertical velocity component: v 5 2VP 
y

L
 (1)

Cylinder

L(t)

r(t)

y

VP

v

Lbottom

Piston

Time t

Time t = 0

FIGURE 9–7
Fuel and air being compressed by 
a piston in a cylinder of an internal 
combustion engine.

∂∂

The Divergence OperationThe Divergence Operation

Cartesian coordinates:Cartesian coordinates:

• (rV ) = =         (ru) ) + +              (rv) ) + +        (rw)

+

∂x
∂

∂r

∂y ∂z

Δ →

Cylindrical coordinates:Cylindrical coordinates:

1

r

• (rV ) = = 

Δ→ →

∂(rrur) 
+

∂u
1

r

∂(ru
u
) 

∂z

∂(ruz) 

→

FIGURE 9–6
The divergence operation in Cartesian 
and cylindrical coordinates.
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where L is a function of time, as given. The compressible continuity equa-

tion in Cartesian coordinates (Eq. 9–8) is appropriate for solution of this 

problem.

0r
0t

1
0(ru)

0x
1
0(rv)

0y
1
0(rw)

0z
5 0  S  

0r
0t

1
0(rv)

0y
5 0

 0 since u 5 0 0 since w 5 0 

By assumption 1, however, density is not a function of y and can therefore 

come out of the y-derivative. Substituting Eq. 1 for v and the given expres-

sion for L, differentiating, and simplifying, we obtain

 

0r
0t

5 2r 
0v
0y

5 2r 
0
0y

 ¢2VP

y

L
5 r 

VP

L
5 r 

VP

Lbottom 2 VP 
t
 (2)

By assumption 1 again, we replace −r/−t by dr/dt in Eq. 2. After separating 

variables we obtain an expression that can be integrated analytically,

 #
r

r5r(0)
 
dr

r
5 #

t

t50
  

VP

Lbottom 2 V P 
t
 dt  S  ln  

r

r(0)
5 ln  

L bottom

L bottom 2 V P 
t
 (3)

Finally then, we have the desired expression for r as a function of time,

 r 5 r(0) 
Lbottom

L bottom 2 V P 
t
 (4)

In keeping with the convention of nondimensionalizing results, Eq. 4 is 

rewritten as

  
r

r(0)
5

1

1 2 VP 
t/Lbottom

  S  r* 5
1

1 2 t*
 (5)

where r* 5 r/r(0) and t* 5 VPt/Lbottom. Equation 5 is plotted in Fig. 9–8.

Discussion  At t* 5 1, the piston hits the top of the cylinder and r goes 

to infinity. In an actual internal combustion engine, the piston stops before 

reaching the top of the cylinder, forming what is called the clearance volume, 

which typically constitutes 4 to 12 percent of the maximum cylinder volume. 

The assumption of uniform density within the cylinder is the weakest link 

in this simplified analysis. In reality, r may be a function of both space 

and time.

Alternative Form of the Continuity Equation
We expand Eq. 9–5 by using the product rule on the divergence term,

 
0r
0t

1 =
!
·(rV

!
) 5

0r
0t

1 V
!
·=
!
r 1 r=

!
·V
!
5 0 (9–9)

 Material derivative of r

Recognizing the material derivative in Eq. 9–9 (see Chap. 4), and dividing 
by r, we write the compressible continuity equation in an alternative form,

Alternative form of the continuity equation:

 

1
r

 
Dr

Dt
1 =

!
·V
!
5 0 (9–10)

Equation 9–10 shows that as we follow a fluid element through the flow field 
(we call this a material element), its density changes as =

!
·V
!
 changes (Fig. 9–9). 

5

4

3

2

r*

1

0 0.2 0.4 0.6
t*

0.8 1

FIGURE 9–8
Nondimensional density as a function 

of nondimensional time for 
Example 9–1.

Streamline

FIGURE 9–9
As a material element moves through 

a flow field, its density changes 
according to Eq. 9–10.
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On the other hand, if changes in the density of the material element are neg-
ligibly small compared to the magnitudes of the velocity gradients in =

!
·V
!
 as 

the element moves around, r21Dr/Dt > 0, and the flow is approximated as 
incompressible.

Continuity Equation in Cylindrical Coordinates
Many problems in fluid mechanics are more conveniently solved in cylin-
drical coordinates (r, u, z) (often called cylindrical polar coordinates), 
rather than in Cartesian coordinates. For simplicity, we introduce cylindri-
cal coordinates in two dimensions first (Fig. 9–10a). By convention, r is 
the radial distance from the origin to some point (P), and u is the angle 
measured from the x-axis (u is always defined as mathematically positive 
in the counterclockwise direction). Velocity components, ur and uu, and unit 
vectors, e

→
r and e

→
u, are also shown in Fig. 9–10a. In three dimensions, imag-

ine sliding everything in Fig. 9–10a out of the page along the z-axis (nor-
mal to the xy-plane) by some distance z. We have attempted to draw this in 
Fig. 9–10b. In three dimensions, we have a third velocity component, uz, 
and a third unit vector, e

→
z, also sketched in Fig. 9–10b.

 The following coordinate transformations are obtained from Fig. 9–10:

Coordinate transformations:

 r 5 "x2 1 y2  x 5 r  cos u   y 5 r sin u  u 5 tan21 
y

x
 (9–11)

Coordinate z is the same in cylindrical and Cartesian coordinates.
 To obtain an expression for the continuity equation in cylindrical coordi-
nates, we have two choices. First, we can use Eq. 9–5 directly, since it was 
derived without regard to our choice of coordinate system. We simply look 
up the expression for the divergence operator in cylindrical coordinates in 
a vector calculus book (e.g., Spiegel, 1968; see also Fig. 9–6). Second, we 
can draw a three-dimensional infinitesimal fluid element in cylindrical coor-
dinates and analyze mass flow rates into and out of the element, similar to 
what we did before in Cartesian coordinates. Either way, we end up with

Continuity equation in cylindrical coordinates:

 
0r
0t

1
1
r
 
0(rrur)

0r
1

1
r
 
0(ruu)
0u

1
0(ruz)

0z
5 0 (9–12)

Details of the second method can be found in Fox and McDonald (1998).

Special Cases of the Continuity Equation
We now look at two special cases, or simplifications, of the continuity equa-
tion. In particular, we first consider steady compressible flow, and then 
incompressible flow.

Special Case 1: Steady Compressible Flow
If the flow is compressible but steady, −/−t of any variable is equal to zero. 
Thus, Eq. 9–5 reduces to

Steady continuity equation: =
!
·(rV

!
) 5 0 (9–13)

y

y

x

x

x

y

z

eu
ur

uu

P

→

r

r

u

er
→

eu
ur

uu

P

→

er
→

ez
→

uz

zu

(b)

(a)

FIGURE 9–10
Velocity components and unit vectors 
in cylindrical coordinates: (a) two-
dimensional flow in the xy- or ru-plane, 
(b) three-dimensional flow.
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In Cartesian coordinates, Eq. 9–13 reduces to

 
0(ru)

0x
1
0(rv)

0y
1
0(rw)

0z
5 0 (9–14)

In cylindrical coordinates, Eq. 9–13 reduces to

 
1
r
 
0(rrur)

0r
1

1
r
 
0(ruu)
0u

1
0(ruz)

0z
5 0 (9–15)

Special Case 2: Incompressible Flow
If the flow is approximated as incompressible, density is not a function of 
time or space. Thus −r/−t > 0 in Eq. 9–5, and r can be taken outside of the 
divergence operator. Equation 9–5 therefore reduces to

Incompressible continuity equation: =
!
·V
!
5 0 (9–16)

The same result is obtained if we start with Eq. 9–10 and recognize that 
for an incompressible flow, density does not change appreciably following a 
fluid particle, as pointed out previously. Thus the material derivative of r is 
approximately zero, and Eq. 9–10 reduces immediately to Eq. 9–16.
 You may have noticed that no time derivatives remain in Eq. 9–16. We 
conclude from this that even if the flow is unsteady, Eq. 9–16 applies at 
any instant in time. Physically, this means that as the velocity field changes 
in one part of an incompressible flow field, the entire rest of the flow field 
immediately adjusts to the change such that Eq. 9–16 is satisfied at all 
times. For compressible flow this is not the case. In fact, a disturbance in 
one part of the flow is not even felt by fluid particles some distance away 
until the sound wave from the disturbance reaches that distance. Very loud 
noises, such as that from a gun or explosion, generate a shock wave that 
actually travels faster than the speed of sound. (The shock wave produced 
by an explosion is illustrated in Fig. 9–11.) Shock waves and other manifes-
tations of compressible flow are discussed in Chap. 12.
 In Cartesian coordinates, Eq. 9–16 is

Incompressible continuity equation in Cartesian coordinates:

 
0u
0x

1
0v
0y

1
0w
0z

5 0 (9–17)

Equation 9–17 is the form of the continuity equation you will probably 
encounter most often. It applies to steady or unsteady, incompressible, 
three-dimensional flow, and you would do well to memorize it.
 In cylindrical coordinates, Eq. 9–16 is

Incompressible continuity equation in cylindrical coordinates:

 

1
r
 
0(rur)

0r
1

1
r
 
0(uu)
0u

1
0(uz)

0z
5 0 (9–18)

EXAMPLE 9–2    Design of a Compressible Converging Duct

A two-dimensional converging duct is being designed for a high-speed wind 

tunnel. The bottom wall of the duct is to be flat and horizontal, and the top 

wall is to be curved in such a way that the axial wind speed u increases 

Shock
wave

Observer

Pow!Pow!

FIGURE 9–11
The disturbance from an explosion 

is not felt until the shock wave 
reaches the observer.
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approximately linearly from u1 5 100 m/s at section (1) to u2 5 300 m/s at 

section (2) (Fig. 9–12). Meanwhile, the air density r is to decrease approxi-

mately linearly from r1 5 1.2 kg/m3 at section (1) to r2 5 0.85 kg/m3 

at section (2). The converging duct is 2.0 m long and is 2.0 m high at 

section (1). (a) Predict the y-component of velocity, v(x, y), in the duct. 

(b) Plot the approximate shape of the duct, ignoring friction on the walls. 

(c) How high should the duct be at section (2), the exit of the duct?

SOLUTION  For given velocity component u and density r, we are to predict 

velocity component v, plot an approximate shape of the duct, and predict its 

height at the duct exit.

Assumptions  1 The flow is steady and two-dimensional in the xy-plane. 

2 Friction on the walls is ignored. 3 Axial velocity u increases linearly with x, 

and density r decreases linearly with x.

Properties  The fluid is air at room temperature (25°C). The speed of sound 

is about 346 m/s, so the flow is subsonic, but compressible.

Analysis  (a) We write expressions for u and r, forcing them to be linear in x,

 u 5 u1 1 Cu x  where  Cu 5
u2 2 u1

Dx
5

(300 2 100) m/s

2.0 m
5 100 s21 (1)

and

 r 5 r1 1 Cr    x  where  Cr 5
r2 2 r1

Dx
5

(0.85 2 1.2) kg/m3

2.0 m
 (2)

  5 20.175 kg/m4 

The steady continuity equation (Eq. 9–14) for this two-dimensional com-

pressible flow simplifies to

 
0(ru)

0x
1
0(rv)

0y
1
0(rw)

0z
5 0 S 

0(rv)

0y
5 2 

0(ru)

0x
 (3)

 0 (2-D) 

Substituting Eqs. 1 and 2 into Eq. 3 and noting that Cu and Cr are con-

stants,

0(rv)

0y
5 2 

0 [(r1 1 Crx)(u1 1 Cu x)]

0x
5 2(r1Cu 1 u1Cr) 2 2CuCrx

Integration with respect to y gives

 rv 5 2(r1Cu 1 u1Cr)y 2 2CuCr xy 1 f  (x) (4)

Note that since the integration is a partial integration, we have added an 

arbitrary function of x instead of simply a constant of integration. Next, we 

apply boundary conditions. We argue that since the bottom wall is flat and 

horizontal, v must equal zero at y 5 0 for any x. This is possible only if 

f (x) 5 0. Solving Eq. 4 for v gives

v 5
2(r1Cu 1 u1Cr)y 2 2CuCrxy

r
 S v 5

2(r1Cu 1 u1Cr)y 2 2CuCrxy

r1 1 Cr x

  (5)

(b) Using Eqs. 1 and 5 and the technique described in Chap. 4, we plot sev-

eral streamlines between x 5 0 and x 5 2.0 m in Fig. 9–13. The streamline 

starting at x 5 0, y 5 2.0 m approximates the top wall of the duct.

2.0 m

(1) (2)
x

y

Δx = 2.0 m

FIGURE 9–12
Converging duct, designed for a high-
speed wind tunnel (not to scale).

y

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Top wall

x
Bottom wall

FIGURE 9–13
Streamlines for the converging duct 
of Example 9–2.

437-514_cengel_ch09.indd   446 12/18/12   4:39 PM



447
CHAPTER 9

(c) At section (2), the top streamline crosses y 5 0.941 m at x 5 2.0 m. 

Thus, the predicted height of the duct at section (2) is 0.941 m.
Discussion  You can verify that the combination of Eqs. 1, 2, and 5 satis-

fies the continuity equation. However, this alone does not guarantee that the 

density and velocity components will actually follow these equations if the 

duct were to be built as designed here. The actual flow depends on the pres-

sure drop between sections (1) and (2); only one unique pressure drop can 

yield the desired flow acceleration. Temperature may also change consider-

ably in this kind of compressible flow in which the air accelerates toward 

sonic speeds.

EXAMPLE 9–3     Incompressibility of an Unsteady 
Two-Dimensional Flow

Consider the velocity field of Example 4–5—an unsteady, two-dimensional 

velocity field given by V
!
 5 (u, v) 5 (0.5 1 0.8x) i

→
 1 [1.5 1 2.5 sin (vt ) 2 

0.8y ] j
→
, where angular frequency v is equal to 2p rad/s (a physical frequency 

of 1 Hz). Verify that this flow field can be approximated as incompressible.

SOLUTION  We are to verify that a given velocity field is incompressible.

Assumptions  1 The flow is two-dimensional, implying no z-component of 

velocity and no variation of u or v with z.

Analysis  The components of velocity in the x- and y-directions, respectively, 

are

 u 5 0.5 1 0.8x  and  v 5 1.5 1 2.5 sin (vt) 2 0.8y

If the flow is incompressible, Eq. 9–16 must apply. More specifically, in 

Cartesian coordinates Eq. 9–17 must apply. Let’s check:

0u
0x

1
0y
0y

1  
0w
0z

 5 0  S  0.8 2 0.8 5 0

 0.8 20.8 0 since 2-D 

So we see that the incompressible continuity equation is indeed satisfied at 

any instant in time, and this flow field may be approximated as incompressible.

Discussion  Although there is an unsteady term in v, it has no y-derivative 

and drops out of the continuity equation.

EXAMPLE 9–4    Finding a Missing Velocity Component

Two velocity components of a steady, incompressible, three-dimensional flow 

field are known, namely, u 5 ax2 1 by2 1 cz2 and w 5 axz  1 byz2, where 

a, b, and c are constants. The y velocity component is missing (Fig. 9–14). 

Generate an expression for v as a function of x, y, and z.

SOLUTION  We are to find the y-component of velocity, v, using given 

expressions for u and w.

Assumptions  1 The flow is steady. 2 The flow is incompressible.

Analysis  Since the flow is steady and incompressible, and since we are 

working in Cartesian coordinates, we apply Eq. 9–17 to the flow field,

For Sale:
6-mo. old computer

$300 OBO
862-2720

Need a pl
to Lewis D
This Friday

234-228

Missing:
y velocity 
component

If found, call
1-800-CON-UITY

FIGURE 9–14
The continuity equation can be used to 

find a missing velocity component.

437-514_cengel_ch09.indd   447 12/18/12   4:39 PM



448
DIFFERENTIAL ANALYSIS OF FLUID FLOW

Condition for incompressibility: 
0v
0y

5 2 

0u
0x

2
0w
0z
 S 

0v
0y

5 23ax 2 2byz

 2ax ax 1 2byz 

Next we integrate with respect to y. Since the integration is a partial integra-

tion, we add some arbitrary function of x and z instead of a simple constant 

of integration.

 Solution: v 5 23axy 2 by2z 1 f(x,z)

Discussion  Any function f (x,z) yields a v that satisfies the incompressible 

continuity equation, since there are no derivatives of v with respect to x or z 

in the continuity equation.

EXAMPLE 9–5    Two-Dimensional, Incompressible, Vortical Flow

Consider a two-dimensional, incompressible flow in cylindrical coordinates; 

the tangential velocity component is uu 5 K/r, where K is a constant. This 

represents a class of vortical flows. Generate an expression for the other 

velocity component, ur.

SOLUTION  For a given tangential velocity component, we are to generate an 

expression for the radial velocity component.

Assumptions  1 The flow is two-dimensional in the xy- (ru-) plane (velocity is 

not a function of z, and uz 5 0 everywhere). 2 The flow is incompressible.

Analysis  The incompressible continuity equation (Eq. 9–18) for this 

two-dimensional case simplifies to

  
1
r
 
0(rur)

0r
1

1
r
 
0uu
0u

1
0uz

0z
5 0  S  

0(rur)

0r
5 2 

0uu
0u

 (1)

 0 (2-D) 

The given expression for uu is not a function of u, and therefore Eq. 1 

reduces to

 
0(rur)

0r
5 0  S  rur 5 f (u, t) (2)

where we have introduced an arbitrary function of u and t instead of a con-

stant of integration, since we performed a partial integration with respect to r. 

Solving for ur,

 ur 5
f(u, t)

r
 (3)

Thus, any radial velocity component of the form given by Eq. 3 yields a two-

dimensional, incompressible velocity field that satisfies the continuity equation.

 We discuss some specific cases. The simplest case is when f(u, t) 5 0 

(ur 5 0, uu 5 K/r). This yields the line vortex discussed in Chap. 4, as 

sketched in Fig. 9–15a. Another simple case is when f (u, t) 5 C, where C is 

a constant. This yields a radial velocity whose magnitude decays as 1/r. For 

negative C, imagine a spiraling line vortex/sink flow, in which fluid elements 

not only revolve around the origin, but get sucked into a sink at the origin 

(actually a line sink along the z-axis). This is illustrated in Fig. 9–15b.

uq

r

uq =
K
r

ur = 0

uq

r

uq =
K
r

ur =
C
r

(b)

(a)

FIGURE 9–15
Streamlines and velocity profiles 
for (a) a line vortex flow and (b) a 
spiraling line vortex/sink flow.
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Discussion  Other more complicated flows can be obtained by setting f (u, t) 

to some other function. For any function f (u, t), the flow satisfies the two-

dimensional, incompressible continuity equation at a given instant in time.

EXAMPLE 9–6     Comparison of Continuity 
and Volumetric Strain Rate

Recall the volumetric strain rate, defined in Chap. 4. In Cartesian coordinates,

 
1

V
 
DV
Dt

5 exx 1 eyy 1 ezz 5
0u
0x

1
0v
0y

1
0w
0z

 (1)

Show that volumetric strain rate is zero for incompressible flow. Discuss the 

physical interpretation of volumetric strain rate for incompressible and com-

pressible flows.

SOLUTION  We are to show that volumetric strain rate is zero in an incom-

pressible flow, and discuss its physical significance in incompressible and 

compressible flow.

Analysis  If the flow is incompressible, Eq. 9–16 applies. More specifi-

cally, Eq. 9–17, in Cartesian coordinates, applies. Comparing Eq. 9–17 to 

Eq. 1,

1

V
 
DV
Dt

5 0  for incompressible flow

Thus, volumetric strain rate is zero in an incompressible flow field. In fact, 

you can define incompressibility by DV/Dt 5 0. Physically, as we follow a 

fluid element, parts of it may stretch while other parts shrink, and the ele-

ment may translate, distort, and rotate, but its volume remains constant 

along its entire path through the flow field (Fig. 9–16a). This is true whether 

the flow is steady or unsteady, as long as it is incompressible. If the flow 

were compressible, the volumetric strain rate would not be zero, imply-

ing that fluid elements may expand in volume (dilate) or shrink in volume 

as they move around in the flow field (Fig. 9–16b). Specifically, consider 

Eq. 9–10, an alternative form of the continuity equation for compressible 

flow. By definition, r 5 m/V, where m is the mass of a fluid element. For a 

material element (following the fluid element as it moves through the flow 

field), m must be constant. Applying some algebra to Eq. 9–10 yields

1
r

 
Dr

Dt
5

V
m

 
D(m/V )

Dt
5 2 

V
m

 
m

V  

2 
DV
Dt

5 2 

1

V
 
DV
Dt

5 2=
!
 ·V
!
 S 

1
V

 
DV
Dt

5 =
!
 ·V
!

Discussion  The final result is general—not limited to Cartesian coordinates. 

It applies to unsteady as well as steady flows.

EXAMPLE 9–7    Conditions for Incompressible Flow

Consider a steady velocity field given by V
!
 5 (u, v, w) 5 a(x2y 1 y2)i

→
 1 

bxy 2 j
→
 1 cxk

→
, where a, b, and c are constants. Under what conditions is 

this flow field incompressible?

Time = t1

Time = t2

Time = t2

Volume = V2 = V1

Volume = V1

Volume = V1

Volume = V2

Time = t1

(a)

(b)

FIGURE 9–16
(a) In an incompressible flow field, 

fluid elements may translate, distort, 
and rotate, but they do not grow or 

shrink in volume; (b) in a compressible 
flow field, fluid elements may grow 

or shrink in volume as they translate, 
distort, and rotate.
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SOLUTION  We are to determine a relationship between constants a, b, and c 

that ensures incompressibility.

Assumptions  1 The flow is steady. 2 The flow is incompressible (under certain 

constraints to be determined).

Analysis  We apply Eq. 9–17 to the given velocity field,

0u
0x

1
0v
0y

1
0w
0z

5 0  S  2axy 1 2bxy 5 0

 2axy 2bxy 0 

Thus to guarantee incompressibility, constants a and b must be equal in 

magnitude but opposite in sign.

 Condition for incompressibility: a 5 2b

Discussion  If a were not equal to 2b, this might still be a valid flow field, 

but density would have to vary with location in the flow field. In other words, 

the flow would be compressible, and Eq. 9–14 would need to be satisfied in 

place of Eq. 9–17.

9–3 ■  THE STREAM FUNCTION

The Stream Function in Cartesian Coordinates
Consider the simple case of incompressible, two-dimensional flow in the 
xy-plane. The continuity equation (Eq. 9–17) in Cartesian coordinates reduces to

 
0u
0x

1
0v
0y

5 0 (9–19)

A clever variable transformation enables us to rewrite Eq. 9–19 in terms of 
one dependent variable (c) instead of two dependent variables (u and v). We 
define the stream function c as (Fig. 9–17)

Incompressible, two-dimensional stream function in Cartesian coordinates:

 u 5
0c
0y
  and  v 5 2 

0c
0x

 (9–20)

The stream function and the corresponding velocity potential function 
(Chap. 10) were first introduced by the Italian mathematician Joseph Louis 
Lagrange (1736–1813). Substitution of Eq. 9–20 into Eq. 9–19 yields

0
0x

 ¢ 0c
0y

1
0
0y

 ¢2 

0c
0x

5
02c

0x 0y
2

02c

0y 0x
5 0

which is identically satisfied for any smooth function c(x, y), because the 
order of differentiation (y then x versus x then y) is irrelevant.
 You may ask why we chose to put the negative sign on v rather than on u. 
(We could have defined the stream function with the signs reversed, and 
continuity would still have been identically satisfied.) The answer is that 
although the sign is arbitrary, the definition of Eq. 9–20 leads to flow from 
left to right as c increases in the y-direction, which is usually preferred. 
Most fluid mechanics books define c in this way, although sometimes c is 

Stream Function

2-D, incompressible, Cartesian
coordinates:

and
∂ c
∂ y=

∂ c
∂ xv =

2-D, incompressible, cylindrical
coordinates:

and∂ c
∂ u

1
=

∂ c
∂ r

r

r =

Axisymmetric, incompressible,
cylindrical coordinates:

and∂ c
∂ z

1
=

∂ c
∂ r

1
r=

2-D, compressible, Cartesian
coordinates:

andru =

ur uz

ur

u

uq

∂ cr
∂ y rv =

∂ cr
∂ x

FIGURE 9–17
There are several definitions of the 
stream function, depending on the type 
of flow under consideration as well as 
the coordinate system being used.
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defined with the opposite signs (e.g., in some British text books and in the 
indoor air quality field, Heinsohn and Cimbala, 2003).
 What have we gained by this transformation? First, as already mentioned, 
a single variable (c) replaces two variables (u and v)—once c is known, 
we can generate both u and v via Eq. 9–20, and we are guaranteed that the 
solution satisfies continuity, Eq. 9–19. Second, it turns out that the stream 
function has useful physical significance (Fig. 9–18). Namely,

Curves of constant c are streamlines of the flow.

This is easily proven by considering a streamline in the xy-plane, as sketched 
in Fig. 9–19. Recall from Chap. 4 that along such a streamline,

Along a streamline: 
dy

dx
5

v
u
  S  2v dx 1 u dy 5 0

 −c/−x −c/−y 

where we have applied Eq. 9–20, the definition of c. Thus,

Along a streamline: 
0c
0x

  dx 1
0c
0y

  dy 5 0 (9–21)

But for any smooth function c of two variables x and y, we know by the 
chain rule of mathematics that the total change of c from point (x, y) to 
another point (x 1 dx, y 1 dy) some infinitesimal distance away is

Total change of c: dc 5
0c
0x

  dx 1
0c
0y

  dy (9–22)

By comparing Eq. 9–21 to Eq. 9–22 we see that dc 5 0 along a streamline; 
thus we have proven the statement that c is constant along streamlines.

EXAMPLE 9–8     Calculation of the Velocity Field 
from the Stream Function

A steady, two-dimensional, incompressible flow field in the xy-plane has a 

stream function given by c 5 ax3 1 by 1 cx, where a, b, and c are con-

stants: a 5 0.50 (m·s)21, b 5 22.0 m/s, and c 5 21.5 m/s. (a) Obtain 

expressions for velocity components u and v. (b) Verify that the flow field 

satisfies the incompressible continuity equation. (c) Plot several streamlines 

of the flow in the upper-right quadrant.

SOLUTION  For a given stream function, we are to calculate the velocity 

components, verify incompressibility, and plot flow streamlines.

Assumptions  1 The flow is steady. 2 The flow is incompressible (this 

assumption is to be verified). 3 The flow is two-dimensional in the xy-plane, 

implying that w 5 0 and neither u nor v depend on z.

Analysis  (a) We use Eq. 9–20 to obtain expressions for u and v by differen-

tiating the stream function,

u 5
0c
0y

5 b  and  v 5 2
0c
0x

5 23ax2 2 c

(b) Since u is not a function of x, and v is not a function of y, we see immedi-

ately that the two-dimensional, incompressible continuity equation (Eq. 9–19) 

is satisfied. In fact, since c is smooth in x and y, the two-dimensional, 

V
→

dr
→

y

x

Streamline

Point (x, y)

Point (x + dx, y + dy)

dx

dy

u

v

FIGURE 9–19
Arc length dr

!
 5 (dx, dy) and local 

velocity vector V
!
5 (u, v) along 

a two-dimensional streamline 
in the xy-plane.

y

x

Streamlines

c = c1

c = c2

c = c3

c = c4

FIGURE 9–18
Curves of constant stream function 

represent streamlines of the flow.
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incompressible continuity equation in the xy-plane is automatically satisfied 

by the very definition of c. We conclude that the flow is indeed incompressible.
(c) To plot streamlines, we solve the given equation for either y as a function 

of x and c, or x as a function of y and c. In this case, the former is easier, 

and we have

 Equation for a streamline: y 5
c 2 ax3 2 cx

b

This equation is plotted in Fig. 9–20 for several values of c, and for the pro-

vided values of a, b, and c. The flow is nearly straight down at large values 

of x, but veers upward for x , 1 m.

Discussion  You can verify that v 5 0 at x 5 1 m. In fact, v is negative for 

x . 1 m and positive for x , 1 m. The direction of the flow can also be 

determined by picking an arbitrary point in the flow, say (x 5 3 m, y 5 4 m), 

and calculating the velocity there. We get u 5 22.0 m/s and v 5 212.0 m/s 

at this point, either of which shows that fluid flows to the lower left in this 

region of the flow field. For clarity, the velocity vector at this point is also 

plotted in Fig. 9–20; it is clearly parallel to the streamline near that point. 

Velocity vectors at three other locations are also plotted.

EXAMPLE 9–9     Calculation of Stream Function 
for a Known Velocity Field

Consider a steady, two-dimensional, incompressible velocity field with u 5 

ax 1 b and v 5 2ay 1 cx, where a, b, and c are constants: a 5 0.50 s21, 

b 5 1.5 m/s, and c 5 0.35 s21. Generate an expression for the stream func-

tion and plot some streamlines of the flow in the upper-right quadrant.

SOLUTION  For a given velocity field we are to generate an expression for c 

and plot several streamlines for given values of constants a, b, and c.

Assumptions  1 The flow is steady. 2 The flow is incompressible. 3 The flow 

is two-dimensional in the xy-plane, implying that w 5 0 and neither u nor v 

depend on z.

Analysis  We start by picking one of the two parts of Eq. 9–20 that define 

the stream function (it doesn’t matter which part we choose—the solution 

will be identical).

0c
0y

5 u 5 ax 1 b

Next we integrate with respect to y, noting that this is a partial integration, 

so we add an arbitrary function of the other variable, x, rather than a con-

stant of integration,

 c 5 axy 1 by 1 g(x) (1)

Now we choose the other part of Eq. 9–20, differentiate Eq. 1, and rearrange 

as follows:

 v 5 2 

0c
0x

5 2ay 2 g9(x) (2)

where g 9(x) denotes dg/dx since g is a function of only one variable, x. We 

now have two expressions for velocity component v, the equation given in the 

5

4

3

2
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Scale for velocity vectors: 10 m/s

c = –5 m2/s
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c = 0

–10

–7.5
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20
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5

FIGURE 9–20
Streamlines for the velocity field of 
Example 9–8; the value of constant 
c is indicated for each streamline, 
and velocity vectors are shown at 
four locations.
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problem statement and Eq. 2. We equate these and integrate with respect to 

x to find g (x),

v 5 2ay 1 cx 5 2ay 2 g9(x) S  g9(x) 5 2cx S  g(x) 5 2c 
x2

2
1 C (3)

Note that here we have added an arbitrary constant of integration C since g 

is a function of x only. Finally, substituting Eq. 3 into Eq. 1 yields the final 

expression for c,

 Solution: c 5 axy 1 by 2 c 
x2

2
1 C (4)

 To plot the streamlines, we note that Eq. 4 represents a family of curves, 

one unique curve for each value of the constant (c 2 C). Since C is arbitrary, 

it is common to set it equal to zero, although it can be set to any desired 

value. For simplicity we set C 5 0 and solve Eq. 4 for y as a function of x, 

yielding

 Equation for streamlines: y 5
c 1 cx2/   2

ax 1 b
 (5)

For the given values of constants a, b, and c, we plot Eq. 5 for several val-

ues of c in Fig. 9–21; these curves of constant c are streamlines of the flow. 

From Fig. 9–21 we see that this is a smoothly converging flow in the upper-

right quadrant.

Discussion  It is always good to check your algebra. In this example, you 

should substitute Eq. 4 into Eq. 9–20 to verify that the correct velocity 

components are obtained.

 There is another physically significant fact about the stream function:

The difference in the value of c from one streamline to another is equal to 
the volume flow rate per unit width between the two streamlines.

This statement is illustrated in Fig. 9–22. Consider two streamlines, c1 and 
c2, and imagine two-dimensional flow in the xy-plane, of unit width into the 
page (1 m in the 2z-direction). By definition, no flow can cross a streamline. 
Thus, the fluid that happens to occupy the space between these two stream-
lines remains confined between the same two streamlines. It follows that the 
mass flow rate through any cross-sectional slice between the streamlines is 
the same at any instant in time. The cross-sectional slice can be any shape, 
provided that it starts at streamline 1 and ends at streamline 2. In Fig. 9–22, 
for example, slice A is a smooth arc from one streamline to the other while 
slice B is wavy. For steady, incompressible, two-dimensional flow in the 
xy-plane, the volume flow rate V

.
 between the two streamlines (per unit width) 

must therefore be a constant. If the two streamlines spread apart, as they do 
from cross-sectional slice A to cross-sectional slice B, the average velocity 
between the two streamlines decreases accordingly, such that the volume flow 
rate remains the same (V

.
A 5 V

.
B). In Fig. 9–20 of Example 9–8, velocity vec-

tors at four locations in the flow field between streamlines c 5 0 m2/s and 
c 5 5 m2/s are plotted. You can clearly see that as the streamlines diverge 
from each other, the velocity vector decays in magnitude. Likewise, when 
streamlines converge, the average velocity between them must increase.
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FIGURE 9–21
Streamlines for the velocity field of 

Example 9–9; the value of constant c 
is indicated for each streamline.
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c = c1
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FIGURE 9–22
For two-dimensional streamlines in 

the xy-plane, the volume flow rate 
V
.
 per unit width between two 

streamlines is the same through 
any cross-sectional slice.
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 We prove the given statement mathematically by considering a control vol-
ume bounded by the two streamlines of Fig. 9–22 and by cross-sectional slice 
A and cross-sectional slice B (Fig. 9–23). An infinitesimal length ds along 
slice B is illustrated in Fig. 9–23a, along with its unit normal vector n→. A mag-
nified view of this region is sketched in Fig. 9–23b for clarity. As shown, the 
two components of ds are dx and dy; thus the unit normal vector is

 n
!
5

dy

ds
  i
!
2

dx

ds
  j
!

The volume flow rate per unit width through segment ds of the control 
surface is

 d V
#

5 V
!
·n
!
 dA 5 (u i

!
1 v j

!
) · ¢dy

ds
  i
!
2

dx

ds
  j
!

 ds (9–23)

 ds

where dA 5 ds times 1 5 ds, where the 1 indicates a unit width into the 
page, regardless of the unit system. When we expand the dot product of 
Eq. 9–23 and apply Eq. 9–20, we get

 d V
#

5 u dy 2 v dx 5
0c
0y

  dy 1
0c
0x

  dx 5 dc (9–24)

We find the total volume flow rate through cross-sectional slice B by inte-
grating Eq. 9–24 from streamline 1 to streamline 2,

 V
#
B 5 #

B
V
!
· n
!
 dA 5 #

B
 d V
#

5 #
c5c2

c5c1

 dc 5 c2 2 c1 (9–25)

Thus, the volume flow rate per unit width through slice B is equal to the 
difference between the values of the two stream functions that bound 
slice B. Now consider the entire control volume of Fig. 9–23a. Since we 
know that no flow crosses the streamlines, conservation of mass demands 
that the volume flow rate into the control volume through slice A be iden-
tical to the volume flow rate out of the control volume through slice B. 
Finally, since we may choose a cross-sectional slice of any shape or location 
between the two streamlines, the statement is proven.
 When dealing with stream functions, the direction of flow is obtained by 
what we might call the “left-side convention.” Namely, if you are looking 
down the z-axis at the xy-plane (Fig. 9–24) and are moving in the direction 
of the flow, the stream function increases to your left.

The value of c increases to the left of the direction of flow in the xy-plane.

In Fig. 9–24, for example, the stream function increases to the left of the 
flow direction, regardless of how much the flow twists and turns. Notice also 
that when the streamlines are far apart (lower right of Fig. 9–24), the mag-
nitude of velocity (the fluid speed) in that vicinity is small relative to the 
speed in locations where the streamlines are close together (middle region of 
Fig. 9–24). This is easily explained by conservation of mass. As the stream-
lines converge, the cross-sectional area between them decreases, and the 
velocity must increase to maintain the flow rate between the streamlines.
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dy/dsds
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dx
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Streamline 1

Streamline 2

A
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c = c2
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V
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n
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(b)

(a)

FIGURE 9–23
(a) Control volume bounded by 
streamlines c1 and c2 and slices A 
and B in the xy-plane; (b) magnified 
view of the region around infinitesimal 
length ds.
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x
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c = 5

FIGURE 9–24
Illustration of the “left-side convention.” 
In the xy-plane, the value of the stream 
function always increases to the left of 
the flow direction.
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EXAMPLE 9–10    Relative Velocity Deduced from Streamlines

Hele–Shaw flow is produced by forcing a liquid through a thin gap between 

parallel plates. An example of Hele–Shaw flow is provided in Fig. 9–25 for 

flow over an inclined plate. Streaklines are generated by introducing dye at 

evenly spaced points upstream of the field of view. Since the flow is steady, 

the streaklines are coincident with streamlines. The fluid is water and the 

glass plates are 1.0 mm apart. Discuss how you can tell from the streamline 

pattern whether the flow speed in a particular region of the flow field is 

(relatively) large or small.

SOLUTION  For the given set of streamlines, we are to discuss how we can 

tell the relative speed of the fluid.

Assumptions  1 The flow is steady. 2 The flow is incompressible. 3 The flow 

models two-dimensional potential flow in the xy-plane.

Analysis  When equally spaced streamlines of a stream function spread 

away from each other, it indicates that the flow speed has decreased in that 

region. Likewise, if the streamlines come closer together, the flow speed has 

increased in that region. In Fig. 9–25 we infer that the flow far upstream of 

the plate is straight and uniform, since the streamlines are equally spaced. 

The fluid decelerates as it approaches the underside of the plate, especially 

near the stagnation point, as indicated by the wide gap between streamlines. 

The flow accelerates rapidly to very high speeds around the sharp corners of 

the plate, as indicated by the tightly spaced streamlines.

Discussion  The streaklines of Hele–Shaw flow turn out to be similar to those 

of potential flow, which is discussed in Chap. 10.

EXAMPLE 9–11    Volume Flow Rate Deduced from Streamlines

Water is sucked through a narrow slot on the bottom wall of a water 

channel. The water in the channel flows from left to right at uniform velocity 

V 5 1.0 m/s. The slot is perpendicular to the xy-plane, and runs along the 

z-axis across the entire channel, which is w 5 2.0 m wide. The flow is thus 

approximately two-dimensional in the xy-plane. Several streamlines of the 

flow are plotted and labeled in Fig. 9–26.

FIGURE 9–25
Streaklines produced by Hele–Shaw 

flow over an inclined plate. The 
streaklines model streamlines 

of potential flow (Chap. 10) over a 
two-dimensional inclined plate of 

the same cross-sectional shape.
Courtesy Howell Peregrine,  School of 

Mathematics, University of Bristol. 
Used by permission.
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 The thick streamline in Fig. 9–26 is called the dividing streamline because 

it divides the flow into two parts. Namely, all the water below this dividing 

streamline gets sucked into the slot, while all the water above the dividing 

streamline continues on its way downstream. What is the volume flow rate of 

water being sucked through the slot? Estimate the magnitude of the velocity 

at point A.

SOLUTION  For the given set of streamlines, we are to determine the volume 

flow rate through the slot and estimate the fluid speed at a point.

Assumptions  1 The flow is steady. 2 The flow is incompressible. 3 The 

flow is two-dimensional in the xy-plane. 4 Friction along the bottom wall is 

neglected.

Analysis  By Eq. 9–25, the volume flow rate per unit width between the 

bottom wall (cwall 5 0) and the dividing streamline (cdividing 5 1.0 m2/s) is

V
#

w
5 cdividing 2 cwall 5 (1.0 2 0) m2/s 5 1.0 m2/s

All of this flow must go through the slot. Since the channel is 2.0 m wide, 

the total volume flow rate through the slot is

V
#

5
V
#

w
 w 5 (1.0 m2/s)(2.0 m) 5 2.0 m3/s

To estimate the speed at point A, we measure the distance d between the 

two streamlines that enclose point A. We find that streamline 1.8 is about 

0.21 m away from streamline 1.6 in the vicinity of point A. The volume flow 

rate per unit width (into the page) between these two streamlines is equal to 

the difference in value of the stream function. We thus estimate the speed 

at point A,

 VA >
V
#

wd
5

1

d
 
V
#

w
5

1

d
 (c1.8 2 c1.6) 5

1

0.21 m
  (1.8 2 1.6) m2/s 5 0.95 m/s

Our estimate is close to the known free-stream speed (1.0 m/s), indicating 

that the fluid in the vicinity of point A flows at nearly the same speed as the 

free-stream flow, but points slightly downward.

Discussion  The streamlines of Fig. 9–26 were generated by superposition of 

a uniform stream and a line sink, assuming irrotational (potential) flow. We 

discuss such superposition in Chap. 10.
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FIGURE 9–26
Streamlines for free-stream flow along 
a wall with a narrow suction slot; 
streamline values are shown in units 
of m2/s; the thick streamline is the 
dividing streamline. The direction 
of the velocity vector at point A is 
determined by the left-side convention.
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The Stream Function in Cylindrical Coordinates
For two-dimensional flow in the xy-plane, we can also define the stream func-
tion in cylindrical coordinates, which is more convenient for many problems. 
Note that by two-dimensional we mean that there are only two relevant inde-
pendent spatial coordinates—with no dependence on the third component. 
There are two possibilities. The first is planar flow, just like that of Eqs. 9–19 
and 9–20, but in terms of (r, u) and (ur, uu) instead of (x, y) and (u, v) (see 
Fig. 9–10a). In this case, there is no dependence on coordinate z. We simplify 
the incompressible continuity equation, Eq. 9–18, for two-dimensional planar 
flow in the ru-plane,

 
0(rur)

0r
1
0(uu)
0u

5 0 (9–26)

We define the stream function as follows:

Incompressible, planar stream function in cylindrical coordinates:

 ur 5
1
r
 
0c
0u
  and  uu 5 2 

0c
0r

 (9–27)

We note again that the signs are reversed in some textbooks. You can substi-
tute Eq. 9–27 into Eq. 9–26 to convince yourself that Eq. 9–26 is identically 
satisfied for any smooth function c(r, u), since the order of differentiation 
(r then u versus u then r) is irrelevant for a smooth function.
 The second type of two-dimensional flow in cylindrical coordinates is 
axisymmetric flow, in which r and z are the relevant spatial variables, ur and 
uz are the nonzero velocity components, and there is no dependence on u 
(Fig. 9–27). Examples of axisymmetric flow include flow around spheres, 
bullets, and the fronts of many objects like torpedoes and missiles, which 
would be axisymmetric everywhere if not for their fins. For incompressible 
axisymmetric flow, the continuity equation is

 
1
r
 
0(rur)

0r
1
0(uz)

0z
5 0  (9–28)

The stream function c is defined such that it satisfies Eq. 9–28 exactly, pro-
vided of course that c is a smooth function of r and z,

Incompressible, axisymmetric stream function in cylindrical coordinates:

 ur 5 2 

1
r
 
0c
0z
  and  uz 5

1
r
 
0c
0r

 (9–29)

 We also note that there is another way to describe axisymmetric flows, 
namely, by using Cartesian coordinates (x, y) and (u, v), but forcing coor-
dinate x to be the axis of symmetry. This can lead to confusion because the 
equations of motion must be modified accordingly to account for the axi-
symmetry. Nevertheless, this is often the approach used in CFD codes. The 
advantage is that after one sets up a grid in the xy-plane, the same grid can 
be used for both planar flow (flow in the xy-plane with no z-dependence) and 
axisymmetric flow (flow in the xy-plane with rotational symmetry about the 
x-axis). We do not discuss the equations for this alternative description of 
axisymmetric flows.

z

y

r

r

z

ur

uz

Rotational
symmetry

Axisymmetric
body

x
u

FIGURE 9–27
Flow over an axisymmetric body in 

cylindrical coordinates with rotational 
symmetry about the z-axis; neither 
the geometry nor the velocity field 

depend on u, and uu 5 0.
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EXAMPLE 9–12    Stream Function in Cylindrical Coordinates

Consider a line vortex, defined as steady, planar, incompressible flow in 

which the velocity components are ur 5 0 and uu 5 K/r, where K is a con-

stant. This flow is represented in Fig. 9–15a. Derive an expression for the 

stream function c(r, u), and prove that the streamlines are circles.

SOLUTION  For a given velocity field in cylindrical coordinates, we are to 

derive an expression for the stream function and show that the streamlines 

are circular.

Assumptions  1 The flow is steady. 2 The flow is incompressible. 3 The flow 

is planar in the ru-plane.

Analysis  We use the definition of stream function given by Eq. 9–27. We can 

choose either component to start with; we choose the tangential component,

 

0c
0r

5 2uu 5 2 

K
r
  S  c 5 2K ln r 1 f  (u) (1)

Now we use the other component of Eq. 9–27,

 ur 5
1
r
 
0c
0u

5
1
r

  f   9(u) (2)

where the prime denotes a derivative with respect to u. By equating ur from 

the given information to Eq. 2, we see that

f 9(u) 5 0  S  f (u) 5 C

where C is an arbitrary constant of integration. Equation 1 is thus

Solution: c 5 2K ln r 1 C (3)

Finally, we see from Eq. 3 that curves of constant c are produced by setting r 

to a constant value. Since curves of constant r are circles by definition, 

streamlines (curves of constant c) must therefore be circles about the origin, as 
in Fig. 9–15a.
 For given values of C and c, we solve Eq. 3 for r to plot the streamlines,

Equation for streamlines: r 5 e2(c2C )/K (4)

For K 5 10 m2/s and C 5 0, streamlines from c 5 0 to 22 are plotted in 

Fig. 9–28.

Discussion  Notice that for a uniform increment in the value of c, the 

streamlines get closer and closer together near the origin as the tangential 

velocity increases. This is a direct result of the statement that the difference 

in the value of c from one streamline to another is equal to the volume flow 

rate per unit width between the two streamlines.

The Compressible Stream Function*

We extend the stream function concept to steady, compressible, two-
dimensional flow in the xy-plane. The compressible continuity equation 
(Eq. 9–14) in Cartesian coordinates reduces to the following for steady 
two-dimensional flow:

 
0(ru)

0x
1
0(rv)

0y
5 0 (9–30)
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FIGURE 9–28
Streamlines for the velocity field of 
Example 9–12, with K 5 10 m2/s 
and C 5 0; the value of constant c is 
indicated for several streamlines.

* This section can be skipped without loss of continuity (no pun intended).
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We introduce a compressible stream function, which we denote as cr,

Steady, compressible, two-dimensional stream function in Cartesian coordinates:

 ru 5
0cr
0y
  and  rv 5 2 

0cr
0x

 (9–31)

By definition, cr of Eq. 9–31 satisfies Eq. 9–30 exactly, provided that cr 
is a smooth function of x and y. Many of the features of the compressible 
stream function are the same as those of the incompressible c as discussed 
previously. For example, curves of constant cr are still streamlines. How-
ever, the difference in cr from one streamline to another is mass flow rate 
per unit width rather than volume flow rate per unit width. Although not as 
popular as its incompressible counterpart, the compressible stream function 
finds use in some commercial CFD codes.

9–4 ■  THE DIFFERENTIAL LINEAR MOMENTUM 
EQUATION—CAUCHY’S EQUATION

Through application of the Reynolds transport theorem (Chap. 4), we have 
the general expression for the linear momentum equation as applied to a 
control volume,

 a F
!
5 #

CV
 rg
!
 dV 1 #

CS
 sij ·n

!
 dA 5 #

CV
  
0
0t

 (rV
!
) dV 1 #

CS
 (rV

!
)V
!
· n
!
 dA (9–32)

where sij is the stress tensor introduced in Chap. 6. Components of sij 
on the positive faces of an infinitesimal rectangular control volume are 
shown in Fig. 9–29. Equation 9–32 applies to both fixed and moving con-
trol volumes, provided that V

!
 is the absolute velocity (as seen from a fixed 

observer). For the special case of flow with well defined inlets and outlets, 
Eq. 9–32 is simplified as follows:

 
a F

!
5 a F

!
body 1 a F

!
surface 5 #

CV
 
0
0t

 (rV
!
) dV 1 a

out

bm# V
!
2 a

in

bm# V
!
 (9–33)

where V
!
 in the last two terms is taken as the average velocity at an inlet or 

outlet, and b is the momentum flux correction factor (Chap. 6). In words, the 
total force acting on the control volume is equal to the rate at which momen-
tum changes within the control volume plus the rate at which momentum 
flows out of the control volume minus the rate at which momentum flows 
into the control volume. Equation 9–33 applies to any control volume, 
regardless of its size. To generate a differential linear momentum equa-
tion, we imagine the control volume shrinking to infinitesimal size. In the 
limit, the entire control volume shrinks to a point in the flow (Fig. 9–2). We 
take the same approach here as we did for conservation of mass; namely, we 
show more than one way to derive the differential form of the linear momen-
tum equation. 

Derivation Using the Divergence Theorem
The most straightforward (and most elegant) way to derive the differen-
tial form of the momentum equation is to apply the divergence theorem of 
Eq. 9–3. A more general form of the divergence theorem applies not only 
to vectors, but to other quantities as well, such as tensors, as illustrated in 

dx

dy

dz

sxx

sxz

sxy

syy

syx

syz

szz

szy
szx

FIGURE 9–29
Positive components of the stress 

tensor in Cartesian coordinates on the 
positive (right, top, and front) faces 

of an infinitesimal rectangular 
control volume. The red dots 

indicate the center of each face. 
Positive components on the negative 

(left, bottom, and back) faces are 
in the opposite direction of those 

shown here.
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Fig. 9–30. Specifically, if we replace Gij in the extended divergence theorem 
of Fig. 9–30 with the quantity (rV

!
)V
!
, a second-order tensor, the last term in 

Eq. 9–32 becomes

 #
CS

 (rV
!
)V
!
·n
!
 dA 5 #

CV
 =
!
·(rV

!
 V
!
) dV  (9–34)

where V
!
  V
!
 is a vector product called the outer product of the velocity vector 

with itself. (The outer product of two vectors is not the same as the inner 
or dot product, nor is it the same as the cross product of the two vectors.) 
Similarly, if we replace Gij in Fig. 9–30 by the stress tensor sij, the second 
term on the left-hand side of Eq. 9–32 becomes

 #
CS

 sij·n
!
 dA 5 #

CV
 =
!
·sij dV  (9–35)

Thus, the two surface integrals of Eq. 9–32 become volume integrals by 
applying Eqs. 9–34 and 9–35. We combine and rearrange the terms, and 
rewrite Eq. 9–32 as

 #
CV

 c 0
0t

 (rV
!
) 1 =

!
·(rV

!
 V
!
) 2 rg

!
2 =

!
·sij d  dV 5 0 (9–36)

Finally, we argue that Eq. 9–36 must hold for any control volume regardless 
of its size or shape. This is possible only if the integrand (enclosed by square 
brackets) is identically zero. Hence, we have a general differential equation 
for linear momentum, known as Cauchy’s equation,

Cauchy’s equation: 
0
0t

 (rV
!
) 1 =

!
·(rV

!
 V
!
) 5 rg

!
1 =

!
·sij (9–37)

Equation 9–37 is named in honor of the French engineer and mathemati-
cian Augustin Louis de Cauchy (1789–1857). It is valid for compressible as 
well as incompressible flow since we have not made any assumptions about 
incompressibility. It is valid at any point in the flow domain (Fig. 9–31). 
Note that Eq. 9–37 is a vector equation, and thus represents three scalar 
equations, one for each coordinate axis in three-dimensional problems.

Derivation Using an Infinitesimal Control Volume
We derive Cauchy’s equation a second way, using an infinitesimal control 
volume on which we apply the linear momentum equation (Eq. 9–33). We 
consider the same box-shaped control volume we used to derive the con-
tinuity equation (Fig. 9–3). At the center of the box, as previously, we 
define the density as r and the velocity components as u, v, and w. We 
also define the stress tensor as sij at the center of the box. For simplicity, we 
consider the x-component of Eq. 9–33, obtained by setting Σ F

!
 equal to its 

x-component, ΣFx, and V
!
 equal to its x-component, u. This not only simplifies 

the diagrams, but enables us to work with a scalar equation, namely,

aFx 5 aFx, body 1 aFx, surface 5 #
CV 

0
0t

 (ru) dV 1 a
out
bm
#
u 2 a

in
bm
#
u (9–38)

As the control volume shrinks to a point, the first term on the right-hand 
side of Eq. 9–38 becomes
Rate of change of x-momentum within the control volume:

 #
CV 

0
0t

 (ru) dV >
0
0t

 (ru) dx dy dz (9–39)

#
V
 • Gij d V  = $

A
 Gij • n dA

→ →Δ

The Extended Divergence Theorem 

FIGURE 9–30
An extended form of the divergence 
theorem is useful not only for vectors, 
but also for tensors. In the equation, 
Gij is a second-order tensor, V  is a 
volume, and A is the surface area that 
encloses and defines the volume.

Equation of the Day
 

∂

∂t
(rV ) +  • (rVV ) = rg +  • sij

→
→→

→
→Δ

→ΔCauchy’s Equation

FIGURE 9–31
Cauchy’s equation is a differential 
form of the linear momentum equation. 
It applies to any type of fluid.
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since the volume of the differential element is dx dy dz. We apply first-order 
truncated Taylor series expansions at locations away from the center of the 
control volume to approximate the inflow and outflow of momentum in the 
x-direction. Figure 9–32 shows these momentum fluxes at the center point 
of each of the six faces of the infinitesimal control volume. Only the normal 
velocity component at each face needs to be considered, since the tangential 
velocity components contribute no mass flow out of (or into) the face, and 
hence no momentum flow through the face either.
 By summing all the outflows and subtracting all the inflows shown in 
Fig. 9–32, we obtain an approximation for the last two terms of Eq. 9–38,

Net outflow of x-momentum through the control surface:

 a
out
bm# u 2 a

in
bm# u > ¢ 0

0x
 (ruu) 1

0
0y

 (rvu) 1
0
0z

 (rwu)  dx dy dz (9–40)

where b is set equal to one at all faces, consistent with our first-order 
approximation.
 Next, we sum all the forces acting on our infinitesimal control volume 
in the x-direction. As was done in Chap. 6, we need to consider both body 
forces and surface forces. Gravity force (weight) is the only body force we 
take into account. For the general case in which the coordinate system may 
not be aligned with the z-axis (or with any coordinate axis for that matter), 
as sketched in Fig. 9–33, the gravity vector is written as

g
!
5 gx i

!
1 gy  j

!
1 gz k

!

Thus, in the x-direction, the body force on the control volume is

 aFx, body 5 aFx, gravity > rgx dx dy dz (9–41)

 Next we consider the net surface force in the x-direction. Recall that stress 
tensor sij has dimensions of force per unit area. Thus, to obtain a force, 
we must multiply each stress component by the surface area of the face on 

y

z
x

dx

dz

dy

arvu + 
∂(rvu) dyb

 
dx dz

∂y      2

aruu – 
∂(ruu) dxb

 
dy dz

∂x     2 aruu + 
∂(ruu) dxb dy dz

∂x      2

arwu + 
∂(rwu) dzb

 
dx dy

∂z      2

arwu – 
∂(rwu) dzb dx dy

∂z       2

arvu – 
∂(rvu) dyb dx dz

∂y     2

FIGURE 9–32
Inflow and outflow of the 

x-component of linear momentum 
through each face of an infinitesimal 
control volume; the red dots indicate 

the center of each face.

y

g

z

x

dy

dx

dz

→

Fgravity
→

FIGURE 9–33
The gravity vector is not neces-

sarily aligned with any particular 
axis, in general, and there are three 

components of the body force acting 
on an infinitesimal fluid element.
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which it acts. We need to consider only those components that point in the 
x- (or 2x-) direction. (The other components of the stress tensor, although 
they may be nonzero, do not contribute to a net force in the x-direction.) 
Using truncated Taylor series expansions, we sketch all the surface forces that 
contribute to a net x-component of surface force acting on our differential 
fluid element (Fig. 9–34).
 Summing all the surface forces illustrated in Fig. 9–34, we obtain an 
approximation for the net surface force acting on the differential fluid ele-
ment in the x-direction,

 aFx, surface > ¢ 0
0x

  sxx 1
0
0y

  syx 1
0
0z

  szx  dx dy dz (9–42)

 We now substitute Eqs. 9–39 through 9–42 into Eq. 9–38, noting that the 
volume of the differential element of fluid, dx dy dz, appears in all terms 
and can be eliminated. After some rearrangement we obtain the differential 
form of the x-momentum equation,

0(ru)

0t
1
0(ruu)

0x
1
0(rvu)

0y
1
0(rwu)

0z
5 rgx 1

0
0x

  sxx 1
0
0y

  syx 1
0
0z

  szx (9–43)

In similar fashion, we generate differential forms of the y- and z-momentum 
equations,

0(rv)

0t
1
0(ruv)

0x
1
0(rvv)

0y
1
0(rwv)

0z
5 rgy 1

0
0x

  sxy 1
0
0y

  syy 1
0
0z

  szy (9–44)

and

0(rw)

0t
1
0(ruw)

0x
1
0(rvw)

0y
1
0(rww)

0z
5 rgz 1

0
0x

  sxz 1
0
0y

   syz 1
0
0z

   szz (9–45)

respectively. Finally, we combine Eqs. 9–43 through 9–45 into one vector 
equation,

Cauchy’s equation: 
0
0t

 (rV
!
) 1 =

!
 ·(rV

!
 V
!
) 5 rg

!
1 =

!
 ·sij

This equation is identical to Cauchy’s equation (Eq. 9–37); thus we confirm 
that our derivation using the differential fluid element yields the same result 

y

z
x

dx

dz

dy

aszx – 
∂szx  dzb

 
dx dy

∂z    2

asxx – 
∂sxx  dxb dy dz

∂x    2

asyx – 
∂syx  dyb dx dz
∂y    2

aszx + 
∂szx  dzb

 
dx dy

∂z    2

asxx + 
∂sxx  dxb

 
dy dz

∂x    2

asyx + 
∂syx  dyb

 
dx dz

∂y    2

FIGURE 9–34
Sketch illustrating the surface forces 
acting in the x-direction due to the 
appropriate stress tensor component 
on each face of the differential control 
volume; the red dots indicate the 
center of each face.
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as our derivation using the divergence theorem. Note that the product V
!
  V
!
 is 

a second-order tensor (Fig. 9–35).

Alternative Form of Cauchy’s Equation
Applying the product rule to the first term on the left side of Eq. 9–37, we get

 
0
0t

 (rV
!
) 5 r  

0V
!

0t
1 V

!
  
0r
0t

 (9–46)

The second term of Eq. 9–37 is written as

 =
!
·(rV

!
 V
!
) 5 V

!
 =
!
·(rV

!
) 1 r(V

!
·=
!
)V
!
 (9–47)

Thus we have eliminated the second-order tensor represented by V
!
  V
!
. After 

some rearrangement, substitution of Eqs. 9–46 and 9–47 into Eq. 9–37 yields

 r 

0V
!

0t
1 V

! c 0r
0t

1 =
!
·(rV

!
) d 1 r(V

!
·=
!
)V
!
5 rg

!
1 =

!
·sij

But the expression in square brackets in this equation is identically zero by 
the continuity equation, Eq. 9–5. By combining the remaining two terms on 
the left side, we write

Alternative form of Cauchy’s equation:

 r c 0V!
0t

1 (V
!
·=
!
)V
!d 5 r 

DV
!

Dt
5 rg

!
1 =

!
·sij (9–48)

where we have recognized the expression in square brackets as the material 
acceleration—the acceleration following a fluid particle (see Chap. 4).

Derivation Using Newton’s Second Law
We derive Cauchy’s equation by yet a third method. Namely, we take the 
differential fluid element as a material element instead of a control volume. 
In other words, we think of the fluid within the differential element as a tiny 
system of fixed identity, moving with the flow (Fig. 9–36). The acceleration 
of this fluid element is a

!
 5 DV

!
/Dt by definition of the material accelera-

tion. By Newton’s second law applied to a material element of fluid,

 aF
!
5 ma

!
5 m 

DV
!

Dt
5 r dx dy dz 

DV
!

Dt
 (9–49)

At the instant in time represented in Fig. 9–36, the net force on the differen-
tial fluid element is found in the same way as that calculated earlier on the 
differential control volume. Thus the total force acting on the fluid element 
is the sum of Eqs. 9–41 and 9–42, extended to vector form. Substituting 
these into Eq. 9–49 and dividing by dx dy dz, we once again generate the 
alternative form of Cauchy’s equation,

 r 

DV
!

Dt
5 rg

!
1 =

!
·sij (9–50)

Equation 9–50 is identical to Eq. 9–48. In hindsight, we could have started 
with Newton’s second law from the beginning, avoiding some algebra. Nev-
ertheless, derivation of Cauchy’s equation by three methods certainly boosts 
our confidence in the validity of the equation!

VV =
uu uv uw

vu vv vw

wu wv ww

→→

FIGURE 9–35
The outer product of vector 

V
!
 5 (u, v, w) with itself is a second-

order tensor. The product shown is in 
Cartesian coordinates and is illustrated 

as a nine-component matrix.

y

z

dz

a

dx

dy

x

Streamline

→

FΣ
→

FIGURE 9–36
If the differential fluid element is 
a material element, it moves with 

the flow and Newton’s second law 
applies directly.
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 We must be very careful when expanding the last term of Eq. 9–50, which 
is the divergence of a second-order tensor. In Cartesian coordinates, the 
three components of Cauchy’s equation are

x-component: r 

Du

Dt
5 rgx 1

0sxx

0x
1
0syx

0y
1
0szx

0z
 (9–51a)

y-component: r 

Dv
Dt

5 rgy 1
0sxy

0x
1
0syy

0y
1
0szy

0z
 (9–51b)

z-component: r 

Dw

Dt
5 rgz 1

0sxz

0x
1
0syz

0y
1
0szz

0z
 (9–51c)

 We conclude this section by noting that we cannot solve any fluid mechan-
ics problems using Cauchy’s equation by itself (even when combined with 
continuity). The problem is that the stress tensor sij needs to be expressed 
in terms of the primary unknowns in the problem, namely, density, pressure, 
and velocity. This is done for the most common type of fluid in Section 9–5.

9–5 ■  THE NAVIER–STOKES EQUATION

Introduction
Cauchy’s equation (Eq. 9–37 or its alternative form Eq. 9–48) is not very 
useful to us as is, because the stress tensor sij contains nine components, six 
of which are independent (because of symmetry). Thus, in addition to den-
sity and the three velocity components, there are six additional unknowns, 
for a total of 10 unknowns. (In Cartesian coordinates the unknowns are 
r, u, v, w, sxx, sxy, sxz, syy, syz, and szz). Meanwhile, we have discussed 
only four equations so far—continuity (one equation) and Cauchy’s equa-
tion (three equations). Of course, to be mathematically solvable, the num-
ber of equations must equal the number of unknowns, and thus we need 
six more equations. These equations are called constitutive equations, and 
they enable us to write the components of the stress tensor in terms of the 
velocity field and pressure field.
 The first thing we do is separate the pressure stresses and the viscous 
stresses. When a fluid is at rest, the only stress acting at any surface of any 
fluid element is the local hydrostatic pressure P, which always acts inward 
and normal to the surface (Fig. 9–37). Thus, regardless of the orientation of 
the coordinate axes, for a fluid at rest the stress tensor reduces to

Fluid at rest: sij 5 £sxx sxy sxz

syx syy syz

szx szy szz

 5 £2P 0    0

0 2P    0

0 0 2P

  (9–52)

Hydrostatic pressure P in Eq. 9–52 is the same as the thermodynamic 
pressure with which we are familiar from our study of thermodynamics. P 
is related to temperature and density through some type of equation of state 
(e.g., the ideal gas law). As a side note, this further complicates a compress-
ible fluid flow analysis because we introduce yet another unknown, namely, 
temperature T. This new unknown requires another equation—the differential 
form of the energy equation—which is not discussed in this text.

y

z
x

dx

dz

dy

P

P

P

P

P

P

FIGURE 9–37
For fluids at rest, the only stress on 
a fluid element is the hydrostatic 
pressure, which always acts inward 
and normal to any surface.
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 When a fluid is moving, pressure still acts inwardly normal, but viscous 
stresses may also exist. We generalize Eq. 9–52 for moving fluids as

Moving fluids:

 sij 5 £sxx sxy sxz

syx syy syz

szx szy szz

 5 £2P 0    0

0 2P    0

0 0 2P  

1 £txx txy txz

tyx tyy tyz

tzx tzy tzz

 (9–53)

where we have introduced a new tensor, tij, called the viscous stress tensor 
or the deviatoric stress tensor. Mathematically, we have not helped the situ-
ation because we have replaced the six unknown components of sij with six 
unknown components of tij, and have added another unknown, pressure P. 
Fortunately, however, there are constitutive equations that express tij in 
terms of the velocity field and measurable fluid properties such as viscosity. 
The actual form of the constitutive relations depends on the type of fluid, as 
discussed shortly.
 As a side note, there are some subtleties associated with the pressure in 
Eq. 9–53. If the fluid is incompressible, we have no equation of state (it 
is replaced by the equation r 5 constant), and we can no longer define P 
as the thermodynamic pressure. Instead, we define P in Eq. 9–53 as the 
mechanical pressure,

Mechanical pressure: Pm 5 2
1

3
 (sxx 1 syy 1 szz) (9–54)

We see from Eq. 9–54 that mechanical pressure is the mean normal stress 
acting inwardly on a fluid element. It is therefore also called mean pressure 
by some authors. Thus, when dealing with incompressible fluid flows, pres-
sure variable P is always interpreted as the mechanical pressure Pm. For 
compressible flow fields however, pressure P in Eq. 9–53 is the thermody-
namic pressure, but the mean normal stress felt on the surfaces of a fluid 
element is not necessarily the same as P (pressure variable P and mechani-
cal pressure Pm are not necessarily equivalent). You are referred to Panton 
(1996) or Kundu et al., (2011) for a more detailed discussion of mechanical 
pressure.

Newtonian versus Non-Newtonian Fluids
The study of the deformation of flowing fluids is called rheology; the rhe-
ological behavior of various fluids is sketched in Fig. 9–38. In this text, 
we concentrate on Newtonian fluids, defined as fluids for which the shear 
stress is linearly proportional to the shear strain rate. Newtonian fluids 
(stress proportional to strain rate) are analogous to elastic solids (Hooke’s 
law: stress proportional to strain). Many common fluids, such as air and 
other gases, water, kerosene, gasoline, and other oil-based liquids, are New-
tonian fluids. Fluids for which the shear stress is not linearly related to the 
shear strain rate are called non-Newtonian fluids. Examples include slur-
ries and colloidal suspensions, polymer solutions, blood, paste, and cake 
batter. Some non-Newtonian fluids exhibit a “memory”—the shear stress 
depends not only on the local strain rate, but also on its history. A fluid that 
returns (either fully or partially) to its original shape after the applied stress 
is released is called viscoelastic.

Shear stress

Shear strain rate

Yield
stress

Shear 
thinning

Bingham 
plastic

Newtonian

Shear 
thickening

FIGURE 9–38
Rheological behavior of fluids—shear 
stress as a function of shear strain rate.
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 Some non-Newtonian fluids are called shear thinning fluids or 
pseudoplastic fluids, because the more the fluid is sheared, the less viscous 
it becomes. A good example is paint. Paint is very viscous when poured from 
the can or when picked up by a paintbrush, since the shear rate is small. How-
ever, as we apply the paint to the wall, the thin layer of paint between the 
paintbrush and the wall is subjected to a large shear rate, and it becomes much 
less viscous. Plastic fluids are those in which the shear thinning effect is 
extreme. In some fluids a finite stress called the yield stress is required before 
the fluid begins to flow at all; such fluids are called Bingham plastic fluids. 
Certain pastes such as acne cream and toothpaste are examples of Bingham 
plastic fluids. If you hold the tube upside down, the paste does not flow, even 
though there is a nonzero stress due to gravity. However, if you squeeze the 
tube (greatly increasing the stress), the paste flows like a very viscous fluid. 
Other fluids show the opposite effect and are called shear thickening fluids 
or dilatant fluids; the more the fluid is sheared, the more viscous it becomes. 
The best example is quicksand, a thick mixture of sand and water. As we all 
know from Hollywood movies, it is easy to move slowly through quicksand, 
since the viscosity is low; but if you panic and try to move quickly, the vis-
cous resistance increases considerably and you get “stuck” (Fig. 9–39). You 
can create your own quicksand by mixing two parts cornstarch with one part 
water—try it! Shear thickening fluids are used in some exercise equipment—
the faster you pull, the more resistance you encounter.

Derivation of the Navier–Stokes Equation 
for Incompressible, Isothermal Flow
From this point on, we limit our discussion to Newtonian fluids, where by 
definition the stress tensor is linearly proportional to the strain rate ten-
sor. The general result (for compressible flow) is rather involved and is not 
included here. Instead, we assume incompressible flow (r 5 constant). We 
also assume nearly isothermal flow—namely, that local changes in tem-
perature are small or nonexistent; this eliminates the need for a differential 
energy equation. A further consequence of the latter assumption is that fluid 
properties, such as dynamic viscosity m and kinematic viscosity n, are con-
stant as well (Fig. 9–40). With these assumptions, it can be shown (Kundu 
et al., 2011) that the viscous stress tensor reduces to

Viscous stress tensor for an incompressible Newtonian fluid with constant properties:

 tij 5 2meij (9–55)

where eij is the strain rate tensor defined in Chap. 4. Equation 9–55 shows 
that stress is linearly proportional to strain. In Cartesian coordinates, the 
nine components of the viscous stress tensor are listed, only six of which 
are independent due to symmetry:

tij 5 £txx txy txz

tyx tyy tyz

tzx tzy tzz

5 ¶ 2m 
0u
0x

 m¢ 0u
0y

1
0v
0x

            m¢ 0u
0z

1
0w
0x

      

 m¢ 0v
0x

1
0u
0y

2m 
0v
0y

      m¢ 0v
0z

1
0w
0y

 m¢ 0w
0x

1
0u
0z

m¢ 0w
0y

1
0v
0z

     2m 
0w
0z

             (9–56)

I think he
means

quicksand.

?

Help!
I fell into a

dilatant fluid!

FIGURE 9–39
When an engineer falls into quicksand 
(a dilatant fluid), the faster he tries 
to move, the more viscous the fluid 
becomes.

For a fluid flow that is bothFor a fluid flow that is both
incompressible and isothermal:incompressible and isothermal:
 • •    r = constant = constant
 • •    m = constant = constant
And therefore:And therefore:
 • •    n = constant = constant

FIGURE 9–40
The incompressible flow approxima-
tion implies constant density, and the 
isothermal approximation implies 
constant viscosity.
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In Cartesian coordinates the stress tensor of Eq. 9–53 thus becomes

sij 5 £2P 0 0

0 2P 0

0 0 2P

  1¶ 2m 
0u
0x

m¢ 0u
0y

1
0v
0x
  m¢ 0u

0z
1
0w
0x

 m¢ 0v
0x

1
0u
0y

2m 
0v
0y

       m¢ 0v
0z

1
0w
0y

 m¢ 0w
0x

1
0u
0z

m¢ 0w
0y

1
0v
0z

       2m 
0w
0z

             (9–57)

Now we substitute Eq. 9–57 into the three Cartesian components of 
Cauchy’s equation. Let’s consider the x-component first. Equation 9–51a 
becomes

r 

Du

Dt
5 2

0P
0x

1 rgx 1 2m  

02u

0x2 1 m  

0
0y

  ¢ 0v
0x

1
0u
0y

1 m  

0
0z

  ¢ 0w
0x

1
0u
0z

 (9–58)

Notice that since pressure consists of a normal stress only, it contributes 
only one term to Eq. 9–58. However, since the viscous stress tensor consists 
of both normal and shear stresses, it contributes three terms. (This is a direct 
result of taking the divergence of a second-order tensor, by the way.)
 We note that as long as the velocity components are smooth functions of 
x, y, and z, the order of differentiation is irrelevant. For example, the first 
part of the last term in Eq. 9–58 can be rewritten as

m  

0
0z

 ¢ 0w
0x

5 m  

0
0x

 ¢ 0w
0z

After some clever rearrangement of the viscous terms in Eq. 9–58,

 r 

Du

Dt
5 2 

0P
0x

1 rgx 1 m c 02u

0x2 1
0
0x

 
0u
0x

1
0
0x

 
0v
0y

1
02u

0y2 1
0
0x

 
0w
0z

1
02u

0z2 d
 5 2 

0P
0x

1 rgx 1 m c 0
0x

  ¢ 0u
0x

1
0v
0y

1
0w
0z

1
02u

0x2 1
02u

0y2 1
02u

0z2 d
The term in parentheses is zero because of the continuity equation for 
incompressible flow (Eq. 9–17). We also recognize the last three terms as 
the Laplacian of velocity component u in Cartesian coordinates (Fig. 9–41). 
Thus, we write the x-component of the momentum equation as

 r 

Du

Dt
5 2 

0P
0x

1 rgx 1 m=2u (9–59a)

Similarly, the y- and z-components of the momentum equation reduce to

 r 

Dy

Dt
5 2 

0P
0y

1 rgy 1 m=2v (9–59b)

and

 r 

Dw

Dt
5 2 

0P
0z

1 rgz 1 m=2w (9–59c)

respectively. Finally, we combine the three components into one vector 
equation; the result is the Navier–Stokes equation for incompressible flow 
with constant viscosity.

Δ

= + +∂2

∂x2

r
r

∂y2 ∂z2
∂2 ∂2

Cartesian coordinates:

Cylindrical  coordinates:

2

Δ

= ++∂1
∂r r2

∂21
∂u2

∂
∂r ∂z2

∂22

 The Laplacian Operator

a b

FIGURE 9–41
The Laplacian operator, shown here 

in both Cartesian and cylindrical 
coordinates, appears in the viscous 

term of the incompressible 
Navier–Stokes equation.
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Incompressible Navier–Stokes equation:

 
r 

DV
!

Dt
5 2=

!
P 1 rg

!
1 m=2V

!
 (9–60)

Although we derived the components of Eq. 9–60 in Cartesian coordi-
nates, the vector form of Eq. 9–60 is valid in any orthogonal coordinate 
system. This famous equation is named in honor of the French engineer 
Louis Marie Henri Navier (1785–1836) and the English mathematician Sir 
George Gabriel Stokes (1819–1903), who both developed the viscous terms, 
although independently of each other.
 The Navier–Stokes equation is the cornerstone of fluid mechanics 
(Fig. 9–42). It may look harmless enough, but it is an unsteady, nonlinear, 
second-order, partial differential equation. If we were able to solve this 
equation for flows of any geometry, this book would be about half as thick. 
Unfortunately, analytical solutions are unobtainable except for very simple 
flow fields. It is not too far from the truth to say that the rest of this book 
is devoted to solving Eq. 9–60! In fact, many researchers have spent their 
entire careers trying to solve the Navier–Stokes equation.
 Equation 9–60 has four unknowns (three velocity components and pres-
sure), yet it represents only three equations (three components since it is 
a vector equation). Obviously we need another equation to make the prob-
lem solvable. The fourth equation is the incompressible continuity equation 
(Eq. 9–16). Before we attempt to solve this set of differential equations, we 
need to choose a coordinate system and expand the equations in that coordi-
nate system.

Continuity and Navier–Stokes Equations 
in Cartesian Coordinates
The continuity equation (Eq. 9–16) and the Navier–Stokes equation 
(Eq. 9–60) are expanded in Cartesian coordinates (x, y, z) and (u, v, w):

Incompressible continuity equation:

 
0u
0x

1
0v
0y

1
0w
0z

5 0 (9–61a)

x-component of the incompressible Navier–Stokes equation:

r¢ 0u
0t

1 u 
0u
0x

1 v 
0u
0y

1 w 
0u
0z

5 2 

0P
0x

1 rgx 1 m¢ 02u

0x2 1
02u

0y2 1
02u

0z2  (9–61b)

y-component of the incompressible Navier–Stokes equation:

r¢ 0v
0t

1 u 
0v
0x

1 v 
0v
0y

1 w 
0v
0z

5 2 

0P
0y

1 rgy 1 m¢ 02v
0x2 1

02v
0y2 1

02v
0z2  (9–61c)

z-component of the incompressible Navier–Stokes equation:

r¢ 0w
0t

1 u 
0w
0x

1 v 
0w
0y

1 w 
0w
0z

5 2 

0P
0z

1 rgz 1 m¢ 02w

0x2 1
02w

0y2 1
02w

0z2  (9–61d)

FIGURE 9–42
The Navier–Stokes equation is the 
cornerstone of fluid mechanics.
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Continuity and Navier–Stokes Equations 
in Cylindrical Coordinates
The continuity equation (Eq. 9–16) and the Navier–Stokes equation 
(Eq. 9–60) are expanded in cylindrical coordinates (r, u, z) and (ur, uu, uz):

Incompressible continuity equation: 
1
r
 
0(rur)

0r
1

1
r
 
0(uu)
0u

1
0(uz)

0z
5 0 (9–62a)

r-component of the incompressible Navier–Stokes equation: 

r¢ 0ur

0t
1 ur 

0ur

0r
1

uu
r

 
0ur

0u
2

uu
2

r
1 uz 

0ur

0z

5 2 

0P
0r

1 rgr 1 m c 1r  
0
0r

 ¢r 
0ur

0r
2

ur

r2 1
1

r2 
02ur

0u2 2
2

r2 
0uu
0u

1
02ur

0z2 d  (9–62b)

u-component of the incompressible Navier–Stokes equation:

r¢ 0uu
0t

1 ur 
0uu
0r

1
uu
r

 
0uu
0u

1
uruu

r
1 uz 

0uu
0z

5 2 

1
r
 
0P
0u

1 rgu 1 m c 1
r
 
0
0r

 ¢r 
0uu
0r

2
uu
r2 1

1

r2 
02uu
0u2 1

2

r2 
0ur

0u
1
02uu
0z2 d  (9–62c)

z-component of the incompressible Navier–Stokes equation:

ra 0uz

0t
1 ur 

0uz

0r
1

uu
r

 
0uz

0u
1 uz 

0uz

0z
b

 5 2 

0P
0z

1 rgz 1 m c 1
r
 
0
0r
ar 
0uz

0r
b 1

1

r2 
02uz

0u2 1
02uz

0z2 d   (9–62d)

The first two viscous terms in Eqs. 9–62b and 9–62c can be manipulated to a dif-
ferent form that is often more useful when solving these equations (Fig. 9–43). 
The derivation is left as an exercise. The “extra” terms on both sides of the 
r- and u-components of the Navier–Stokes equation (Eqs. 9–62b and 9–62c) 
arise because of the special nature of cylindrical coordinates. Namely, as we 
move in the u-direction, the unit vector e

!
r also changes direction; thus the r- and 

u-components are coupled (Fig. 9–44). (This coupling effect is not present in 
Cartesian coordinates, and thus there are no “extra” terms in Eqs. 9–61.)
 For completeness, the six independent components of the viscous stress 
tensor are listed here in cylindrical coordinates,

 tij 5 ° trr tru trz

tur tuu tuz
tzr tzu tzz

¢   

 5 ¶ 2m 
0ur

0r
m cr 

0
0r

 auu
r
b 1

1
r
 
0ur

0u
d ma 0ur

0z
1
0uz

0r
b

m cr 
0
0r

auu
r
b 1

1
r
 
0ur

0u
d 2ma1

r
 
0uu
0u

1
ur

r
b ma 0uu

0z
1

1
r
 
0uz

0u
b

ma 0ur

0z
1
0uz

0r
b ma 0uu

0z
1

1
r
 
0uz

0u
b 2m 

0uz

0z

  (9–63)

y eu

x

→

eu
→

er

r2

r1

u2

u1

→

er
→

FIGURE 9–44
Unit vectors e

!
r and e

!
u in cylindrical 

coordinates are coupled: movement 
in the u-direction causes e

!
r to change 

direction, and leads to extra terms 
in the r- and u-components of the 

Navier–Stokes equation.

FIGURE 9–43
An alternative form for the 

first two viscous terms in 
the r- and u-components of 

the Navier–Stokes equation.

Alternative Form of the Viscous Terms

It can be shown that

and

∂ 1   2∂r
∂ur
∂r

ur

(rur)

r2
1
r

1
r

r

∂ 1      2∂r
∂
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∂ 1   2∂r
∂u
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(ru  )
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1
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9–6 ■  DIFFERENTIAL ANALYSIS 
OF FLUID FLOW PROBLEMS

In this section we show how to apply the differential equations of motion in 
both Cartesian and cylindrical coordinates. There are two types of problems 
for which the differential equations (continuity and Navier–Stokes) are useful:

•  Calculating the pressure field for a known velocity field

•  Calculating both the velocity and pressure fields for a flow of known 
geometry and known boundary conditions

For simplicity, we consider only incompressible flow, eliminating calcula-
tion of r as a variable. In addition, the form of the Navier–Stokes equa-
tion derived in Section 9–5 is valid only for Newtonian fluids with constant 
properties (viscosity, thermal conductivity, etc.). Finally, we assume negli-
gible temperature variations, so that T is not a variable. We are left with four 
variables or unknowns (pressure plus three components of velocity), and we 
have four differential equations (Fig. 9–45).

Calculation of the Pressure Field 
for a Known Velocity Field
The first set of examples involves calculation of the pressure field for a 
known velocity field. Since pressure does not appear in the continuity equa-
tion, we can theoretically generate a velocity field based solely on con-
servation of mass. However, since velocity appears in both the continuity 
equation and the Navier–Stokes equation, these two equations are coupled. 
In addition, pressure appears in all three components of the Navier–Stokes 
equation, and thus the velocity and pressure fields are also coupled. This 
intimate coupling between velocity and pressure enables us to calculate the 
pressure field for a known velocity field.

EXAMPLE 9–13     Calculating the Pressure Field 
in Cartesian Coordinates

Consider the steady, two-dimensional, incompressible velocity field of 

Example 9–9, namely, V
!
5 (u, v) 5 (ax 1 b)  i

!
1 (2ay 1 cx)  j

!
. Calculate the 

pressure as a function of x and y.

SOLUTION  For a given velocity field, we are to calculate the pressure field.

Assumptions  1 The flow is steady and incompressible. 2 The fluid has con-

stant properties. 3 The flow is two-dimensional in the xy-plane. 4 Gravity 

does not act in either the x- or y-direction.

Analysis  First we check whether the given velocity field satisfies the two-

dimensional, incompressible continuity equation:

 

0u
0x

1
0v
0y

1
0w
0z

5 a 2 a 5 0 (1)

 a 2a 0 (2-D) 

Three-Dimensional Incompressible Flow

Four variables or unknowns:

Four equations of motion:

 •  Pressure P
 •  Three components of velocity V

 •  Continuity,
   •V = 0

 •  Three components of Navier–Stokes,

DV
Dt

→ →

→

Δ → Δ

→ →

→

Δ

r = – P + rg + m 2V

FIGURE 9–45
A general three-dimensional but 
incompressible flow field with 
constant properties requires four 
equations to solve for four unknowns.
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Thus, continuity is indeed satisfied by the given velocity field. If continuity 

were not satisfied, we would stop our analysis—the given velocity field would 

not be physically possible, and we could not calculate a pressure field.

 Next, we consider the y-component of the Navier–Stokes equation:

r¢ 0v
0t

1 u 
0v
0x

1 v 
0v
0y

1 w 
0v
0z

5 2 

0P
0y

1 rgy 1 m¢ 02v
0x2 1

02v
0y2 1

02v
0z2

 0 (steady) (ax 1 b)c (2ay 1 cx)(2a) 0 (2-D) 0 0 0 0 (2-D) 

The y-momentum equation reduces to

 
0P
0y

5 r(2acx 2 bc 2 a2y 1 acx) 5 r(2bc 2 a2y) (2)

The y-momentum equation is satisfied if we can generate a pressure field 

that satisfies Eq. 2. In similar fashion, the x-momentum equation reduces to

 
0P
0x

5 r(2a2x 2 ab) (3)

The x-momentum equation is satisfied if we can generate a pressure field 

that satisfies Eq. 3.

 In order for a steady flow solution to exist, P cannot be a function of time. 

Furthermore, a physically realistic steady, incompressible flow field requires 

a pressure field P(x, y) that is a smooth function of x and y (there can be no 

sudden discontinuities in either P or a derivative of P ). Mathematically, this 

requires that the order of differentiation (x then y versus y then x) should 

not matter (Fig. 9–46). We check whether this is so by cross-differentiating 

Eqs. 2 and 3, respectively,

 

02P

0x 0y
5
0
0x

 ¢ 0P
0y

5 0  and  
02P

0y 0x
5

0
0y

 ¢ 0P
0x

5 0 (4)

Equation 4 shows that P is indeed a smooth function of x and y. Thus, 

the given velocity field satisfies the steady, two-dimensional, incompressible 

Navier–Stokes equation.

 If at this point in the analysis, the cross-differentiation of pressure were 

to yield two incompatible relationships (in other words if the equation in 

Fig. 9–46 were not satisfied) we would conclude that the given velocity field 

could not satisfy the steady, two-dimensional, incompressible Navier–Stokes 

equation, and we would abandon our attempt to calculate a steady pressure 

field.

 To calculate P (x, y), we partially integrate Eq. 2 (with respect to y )

Pressure field from y-momentum:

 P(x, y) 5 r¢2bcy 2
a2y2

2
1 g(x) (5)

Note that we add an arbitrary function of the other variable x rather than a 

constant of integration since this is a partial integration. We then take the 

partial derivative of Eq. 5 with respect to x to obtain

 

0P
0x

5 g9(x) 5 r(2a2x 2 ab) (6)

=∂2P
∂x x ∂y

∂2P
∂y y ∂x

P(x, yx, y) is a smooth function of ) is a smooth function of x and  and y 
only if the order of differentiationonly if the order of differentiation
does not matter:does not matter:

 Cross-Differentiation, Cross-Differentiation, xy-xy-PlanePlane

FIGURE 9–46
For a two-dimensional flow field in 

the xy-plane, cross-differentiation 
reveals whether pressure P is a 

smooth function.
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where we have equated our result to Eq. 3 for consistency. We now integrate 

Eq. 6 to obtain the function g (x):

 
g(x) 5 r¢2

a2x2

2
2 abx 1 C1 (7)

where C1 is an arbitrary constant of integration. Finally, we substitute Eq. 7 

into Eq. 5 to obtain our final expression for P (x , y ). The result is

 P(x, y) 5 r¢2a2x2

2
2

a2y2

2
2 abx 2 bcy 1 C1 (8)

Discussion  For practice, and as a check of our algebra, you should differ-

entiate Eq. 8 with respect to both y and x, and compare to Eqs. 2 and 3. 

In addition, try to obtain Eq. 8 by starting with Eq. 3 rather than Eq. 2; you 

should get the same answer.

 Notice that the final equation (Eq. 8) for pressure in Example 9–13 con-
tains an arbitrary constant C1. This illustrates an important point about the 
pressure field in an incompressible flow; namely,

The velocity field in an incompressible flow is not affected by the absolute 
magnitude of pressure, but only by pressure differences.

This should not be surprising if we look at the Navier–Stokes equation, 
where P appears only as a gradient, never by itself. Another way to explain 
this statement is that it is not the absolute magnitude of pressure that 
matters, but only pressure differences (Fig. 9–47). A direct result of the 
statement is that we can calculate the pressure field to within an arbitrary 
constant, but in order to determine that constant (C1 in Example 9–13), we 
must measure (or otherwise obtain) P somewhere in the flow field. In other 
words, we require a pressure boundary condition.
 We illustrate this point with an example generated using computational 
fluid dynamics (CFD), where the continuity and Navier–Stokes equations 
are solved numerically (Chap. 15). Consider downward flow of air through 
a channel in which there is a nonsymmetrical blockage (Fig. 9–48). (Note 
that the computational flow domain extends much further upstream and 
downstream than shown in Fig. 9–48.) We calculate two cases that are iden-
tical except for the pressure condition. In case 1 we set the gage pressure 
far downstream of the blockage to zero. In case 2 we set the pressure at 
the same location to 500 Pa gage pressure. The gage pressure at the top 
center of the field of view and at the bottom center of the field of view are 
shown in Fig. 9–48 for both cases, as generated by the two CFD solutions. 
You can see that the pressure field for case 2 is identical to that of case 1 
except that the pressure is everywhere increased by 500 Pa. Also shown in 
Fig. 9–48 are a velocity vector plot and a streamline plot for each case. The 
results are identical, confirming our statement that the velocity field is not 
affected by the absolute magnitude of the pressure, but only by pressure 
differences. Subtracting the pressure at the bottom from that at the top, we 
see that DP 5 12.784 Pa for both cases.
 The statement about pressure differences is not true for compressible flow 
fields, where P is the thermodynamic pressure rather than the mechanical 

DV
Dt

→→ Δ→

r =                   + rg + m 2V

FIGURE 9–47
Since pressure appears only as 
a gradient in the incompressible 
Navier–Stokes equation, the 
absolute magnitude of pressure 
is not relevant—only pressure 
differences matter.
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pressure. In such cases, P is coupled with density and temperature through 
an equation of state, and the absolute magnitude of pressure is important. 
A compressible flow solution requires not only mass and momentum equa-
tions, but also an energy equation and an equation of state.
 We take this opportunity to comment further about the CFD results shown 
in Fig. 9–48. You can learn a lot about the physics of fluid flow by study-
ing relatively simple flows like this. Notice that most of the pressure drop 
occurs across the throat of the channel where the flow is rapidly acceler-
ated. There is also flow separation downstream of the blockage; rapidly 
moving air  cannot turn around a sharp corner, and the flow separates off 
the walls as it exits the opening. The streamlines indicate large recirculating 
regions on both sides of the channel downstream of the blockage. Pressure 
is low in these recirculating regions. The velocity vectors indicate an inverse 
bell-shaped velocity profile exiting the opening—much like an exhaust jet. 
Because of the nonsymmetric nature of the geometry, the jet turns to the 
right, and the flow reattaches to the right wall much sooner than to the left 
wall. The pressure increases somewhat in the region where the jet impinges 
on the right wall, as you might expect. Finally, notice that as the air acceler-
ates to squeeze through the orifice, the streamlines converge (as discussed in 
Section 9–3). As the jet of air fans out downstream, the streamlines diverge 
somewhat. Notice also that the streamlines in the recirculating zones are very 
far apart, indicating that the velocities are relatively small there; this is veri-
fied by the velocity vector plots.
 Finally, we note that most CFD codes do not calculate pressure by inte-
gration of the Navier–Stokes equation as we have done in Example 9–13. 
Instead, some kind of pressure correction algorithm is used. Most of the 
commonly used algorithms work by combining the continuity and Navier–
Stokes equations in such a way that pressure appears in the continuity equa-
tion. The most popular pressure correction algorithms result in a form of 
Poisson’s equation for the change in pressure DP from one iteration (n) to 
the next (n 1 1),

Poisson’s equation for DP: =2(DP) 5 RHS(n) (9–64)

Then, as the computer iterates toward a solution, the modified continuity 
equation is used to “correct” the pressure field at iteration (n 1 1) from its 
values at iteration (n),

Correction for P: P(n11) 5 P(n) 1 DP 

Details associated with the development of pressure correction algorithms is 
beyond the scope of the present text. An example for two-dimensional flows 
is developed in Gerhart, Gross, and Hochstein (1992).

EXAMPLE 9–14     Calculating the Pressure Field 
in Cylindrical Coordinates

Consider the steady, two-dimensional, incompressible velocity field of 

Example 9–5 with function f (u, t) equal to 0. This represents a line vortex 

whose axis lies along the z-coordinate (Fig. 9–49). The velocity components are 

ur 5 0 and uu 5 K/r, where K is a constant. Calculate the pressure as a 

function of r and u.

P = –3.562 Pa gage
(a)

P = 9.222 Pa gage

P = 496.438 Pa gage
(b)

P = 509.222 Pa gage

FIGURE 9–48
Filled pressure contour plot, velocity 

vector plot, and streamlines for 
downward flow of air through a 

channel with blockage: (a) case 1; 
(b) case 2—identical to case 1, except 
P is everywhere increased by 500 Pa. 

On the contour plots, blue is low 
pressure and red is high pressure.
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SOLUTION  For a given velocity field, we are to calculate the pressure field.

Assumptions  1 The flow is steady. 2 The fluid is incompressible with con-

stant properties. 3 The flow is two-dimensional in the ru-plane. 4 Gravity 

does not act in either the r- or the u-direction.

Analysis  The flow field must satisfy both the continuity and the momentum 

equations, Eqs. 9–62. For steady, two-dimensional, incompressible flow,

 Incompressible continuity: 
1
r
 
0(rur)

0r
1

1
r
 
0(uu)
0u

1
0(uz)

0z
5 0

 0 0 0 

Thus, the incompressible continuity equation is satisfied. Now we look at the 

u component of the Navier–Stokes equation (Eq. 9–62c):

r§0uu
0t

1 ur 
0uu
0r

1
uu
r

 
0uu
0u

1
uruu

r
1 uz 

0uu
0z

 ¥
 

0 (steady)
 (0)¢2

K

r2
b  aK

r2
b(0) 

0 0 (2-D) 

5 2
1
r
 
0P
0u

1 rgu 1 m £1
r
 
0
0r

 ar 
0uu
0r

b 2
uu
r2 1

1

r2 
02uu
0u2 1

2

r2 
0ur

0u
1
02uu
0z2

 

0

 
K

r3
 

K

r3
 0 0 0 (2-D) 

The u-momentum equation therefore reduces to

u-momentum: 
0P
0u

5 0 (1)

Thus, the u-momentum equation is satisfied if we can generate an appropri-

ate pressure field that satisfies Eq. 1. In similar fashion, the r-momentum 

equation (Eq. 9–62b) reduces to

r-momentum: 
0P
0r

5 r 
K2

r3  (2)

Thus, the r-momentum equation is satisfied if we can generate a pressure 

field that satisfies Eq. 2.

 In order for a steady flow solution to exist, P cannot be a function of time. 

Furthermore, a physically realistic steady, incompressible flow field requires 

a pressure field P (r, u) that is a smooth function of r and u. Mathematically, 

this requires that the order of differentiation (r then u versus u then r ) should 

not matter (Fig. 9–50). We check whether this is so by cross-differentiating 

the pressure:

 

02P

0r 0u
5
0
0r

 a 0P
0u

b 5 0  and  
02P

0u 0r
5

0
0u

 a 0P
0r
b 5 0 (3)

Equation 3 shows that P is indeed a smooth function of r and u. Thus, 

the given velocity field satisfies the steady, two-dimensional, incompressible 

Navier– Stokes equation.

 We integrate Eq. 1 with respect to u to obtain an expression for P (r, u),

 Pressure field from u-momentum: P(r, u) 5 0 1 g(r) (4)

=∂2P
∂r r ∂u

∂2P
∂u ∂r

P(r, r, u) is a smooth function of ) is a smooth function of r and  and u 
only if the order of differentiationonly if the order of differentiation
does not matter:does not matter:

 Cross-Differentiation, Cross-Differentiation, ru-PlanePlane

FIGURE 9–50
For a two-dimensional flow field in 
the ru-plane, cross-differentiation 
reveals whether pressure P is a 
smooth function.

uu

r

uu =
K
r

ur = 0

FIGURE 9–49
Streamlines and velocity profiles for a 
line vortex.
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Note that we added an arbitrary function of the other variable r, rather than 

a constant of integration, since this is a partial integration. We take the par-

tial derivative of Eq. 4 with respect to r to obtain

 

0P
0r

5 g9(r) 5 r 
K2

r3  (5)

where we have equated our result to Eq. 2 for consistency. We integrate Eq. 5 

to obtain the function g (r):

 
g(r) 5 2

1

2
 r 

K2

r2 1 C (6)

where C is an arbitrary constant of integration. Finally, we substitute Eq. 6 

into Eq. 4 to obtain our final expression for P (r, u). The result is

 P(r, u) 5 2
1
2

 r 
K2

r 

2 1 C (7)

Thus the pressure field for a line vortex decreases like 1/r 2 as we approach 

the origin. (The origin itself is a singular point.) This flow field is a simplistic 

model of a tornado or hurricane, and the low pressure at the center is the 

“eye of the storm” (Fig. 9–51). We note that this flow field is irrotational, 

and thus Bernoulli’s equation can be used instead to calculate the pressure. 

If we call the pressure P` far away from the origin (r → `), where the local 

velocity approaches zero, Bernoulli’s equation shows that at any distance r 

from the origin,

Bernoulli equation: P 1
1

2
 rV 2 5 Pq  S  P 5 Pq 2

1

2
 r 

K2

r2  (8)

Equation 8 agrees with our solution (Eq. 7) from the Navier–Stokes equation 

if we set constant C equal to P`. A region of rotational flow near the origin 

would avoid the singularity there and would yield a more physically realistic 

model of a tornado.

Discussion  For practice, try to obtain Eq. 7 by starting with Eq. 2 rather 

than Eq. 1; you should get the same answer.

Exact Solutions of the Continuity 
and Navier–Stokes Equations
The remaining example problems in this section are exact solutions of the 
differential equation set consisting of the incompressible continuity and 
Navier–Stokes equations. As you will see, these problems are by necessity 
simple, so that they are solvable. Most of them assume infinite boundaries 
and fully developed conditions so that the advective terms on the left side 
of the Navier–Stokes equation disappear. In addition, they are laminar, two-
dimensional, and either steady or dependent on time in a predefined manner. 
There are six basic steps in the procedure used to solve these problems, as 
listed in Fig. 9–52. Step 2 is especially critical, since the boundary conditions 
determine the uniqueness of the solution. Step 4 is not possible analytically 
except for simple problems. In step 5, enough boundary conditions must be 
available to solve for all the constants of integration produced in step 4. Step 6 
involves verifying that all the differential equations and boundary conditions 

r

P∞ P

FIGURE 9–51
The two-dimensional line vortex 

is a simple approximation of a 
tornado; the lowest pressure is at the 

center of the vortex.

Step 1: Set up the problem and geometry
 (sketches are helpful), identifying all
 relevant dimensions and parameters.

Step 2: List all appropriate assumptions,
 approximations, simplifications, 
 and boundary conditions.

Step 5: Apply boundary conditions to
 solve for the constants of integration.

Step 6: Verify your results.

Step 4: Integrate the equations, leading to 
 one or more constants of integration.

Step 3: Simplify the differential equations 
 of motion (continuity and 
 Navier–Stokes) as much as possible.

FIGURE 9–52
Procedure for solving the 

incompressible continuity and 
Navier–Stokes equations.
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are satisfied. We advise you to follow these steps, even in cases where some 
of the steps seem trivial, in order to learn the procedure.
 While the examples shown here are simple, they adequately illustrate the 
procedure used to solve these differential equations. In Chap. 15 we discuss 
how computers have enabled us to solve the Navier–Stokes equations numeri-
cally for much more complicated flows using computational fluid dynamics 
(CFD). You will see that the same procedure is used there—specification of 
geometry, application of boundary conditions, integration of the differential 
equations, etc., although the steps are not always followed in the same order.

Boundary Conditions
Since boundary conditions are so critical to a proper solution, we discuss 
the types of boundary conditions that are commonly encountered in fluid 
flow analyses. The most-used boundary condition is the no-slip condition, 
which states that for a fluid in contact with a solid wall, the velocity of the 
fluid must equal that of the wall,

No-slip boundary condition:  V
!
fluid 5 V

!
wall (9–65)

In other words, as its name implies, there is no “slip” between the fluid and 
the wall. Fluid particles adjacent to the wall adhere to the surface of the wall 
and move at the same velocity as the wall. A special case of Eq. 9–65 is for a 
stationary wall with V

!
wall 5 0; the fluid adjacent to a stationary wall has zero 

velocity. For cases in which temperature effects are also considered, the tem-
perature of the fluid must equal that of the wall, i.e., Tfluid 5 Twall. You must 
be careful to assign the no-slip condition according to your chosen frame of 
reference. Consider, for example, the thin film of oil between a piston and 
its cylinder wall (Fig. 9–53). From a stationary frame of reference, the fluid 
adjacent to the cylinder is at rest, and the fluid adjacent to the moving piston 
has velocity V

!
fluid 5 V

!
wall 5 VP  j  

!
. From a frame of reference moving with the 

piston, however, the fluid adjacent to the piston has zero velocity, but the fluid 
adjacent to the cylinder has velocity V

!
fluid 5 V

!
wall 5 2VP  j  

!
. An exception to 

the no-slip condition occurs in rarefied gas flows, such as during reentry of a 
spaceship or in the study of motion of extremely small (submicron) particles. 
In such flows the air can actually slip along the wall, but these flows are 
beyond the scope of the present text.
 When two fluids (fluid A and fluid B) meet at an interface, the interface 
boundary conditions are

Interface boundary conditions:  V
!
A 5 V

!
B  and  ts, A 5 ts, B (9–66)

where, in addition to the condition that the velocities of the two fluids must 
be equal, the shear stress ts acting on a fluid particle adjacent to the interface 
in the direction parallel to the interface must also match between the two flu-
ids (Fig. 9–54). Note that in the figure, ts, A is drawn on the top of the fluid 
particle in fluid A, while ts, B is drawn on the bottom of the fluid particle 
in fluid B, and we have considered the direction of shear stress carefully. 
Because of the sign convention on shear stress, the direction of the arrows 
in Fig. 9–54 is opposite (a consequence of Newton’s third law). We note that 
although velocity is continuous across the interface, its slope is not. Also, if 
temperature effects are considered, TA 5 TB at the interface, but there may be 
a discontinuity in the slope of temperature at the interface as well.

VP

Cylinder

Oil film

Piston
Magnifying 
glass

y

x

FIGURE 9–53
A piston moving at speed VP in a 
cylinder. A thin film of oil is sheared 
between the piston and the cylinder; 
a magnified view of the oil film 
is shown. The no-slip boundary 
condition requires that the velocity 
of fluid adjacent to a wall equal that 
of the wall.

ts, B

ts, A

Fluid B

Fluid A

VA

→

VB

→

s
→n

→

FIGURE 9–54
At an interface between two fluids, 
the velocity of the two fluids must 
be equal. In addition, the shear stress 
parallel to the interface must be the 
same in both fluids.

437-514_cengel_ch09.indd   476 12/18/12   4:40 PM



477
CHAPTER 9

 What about pressure at an interface? If surface tension effects are neg-
ligible or if the interface is nearly flat, PA 5 PB. If the interface is sharply 
curved, however, as in the meniscus of liquid rising in a capillary tube, the 
pressure on one side of the interface can be substantially different than that 
on the other side. You should recall from Chap. 2 that the pressure jump 
across an interface is inversely proportional to the radius of curvature of the 
interface, as a result of surface tension effects.
 A degenerate form of the interface boundary condition occurs at the free 
surface of a liquid, meaning that fluid A is a liquid and fluid B is a gas (usu-
ally air). We illustrate a simple case in Fig. 9–55 where fluid A is liquid water 
and fluid B is air. The interface is flat and surface tension effects are negligi-
ble, but the water is moving horizontally (like water flowing in a calm river). 
In this case, the air and water velocities must match at the surface and the 
shear stress acting on a water particle on the surface of the water must equal 
that acting on an air particle just above the surface. According to Eq. 9–66,
Boundary conditions at water–air interface:

 uwater 5 uair  and  ts, water 5 mwater 
0u
0y

b
water

5 ts, air 5 mair 
0u
0y

b
air

 (9–67)

A quick glance at the fluid property tables reveals that mwater is over 50 times 
greater than mair . In order for the shear stresses to be equal, Eq. 9–67 requires 
that slope (−u/−y)air be more than 50 times greater than (−u/−y)water . Thus, it is 
reasonable to approximate the shear stress acting at the surface of the water as 
negligibly small compared to shear stresses elsewhere in the water. Another way 
to say this is that the moving water drags air along with it with little resistance 
from the air; in contrast, the air doesn’t slow down the water by any significant 
amount. In summary, for the case of a liquid in contact with a gas, and with 
negligible surface tension effects, the free- surface boundary conditions are
Free-surface boundary conditions: Pliquid 5 Pgas  and  ts, liquid > 0 (9–68)

 Other boundary conditions arise depending on the problem setup. For 
example, we often need to define inlet boundary conditions at a boundary 
of a flow domain where fluid enters the domain. Likewise, we define outlet 
boundary conditions at an outflow. Symmetry boundary conditions are 
useful along an axis or plane of symmetry. For example, the appropriate 
symmetry boundary conditions along a horizontal plane of symmetry are 
illustrated in Fig. 9–56. For unsteady flow problems we also need to define 
initial conditions (at the starting time, usually t 5 0).
 In Examples 9–15 through 9–19, we apply boundary conditions from 
Eqs. 9–65 through 9–68 where appropriate. These and other boundary con-
ditions are discussed in much greater detail in Chap. 15 where we apply 
them to CFD solutions.

EXAMPLE 9–15    Fully Developed Couette Flow

Consider steady, incompressible, laminar flow of a Newtonian fluid in the 

narrow gap between two infinite parallel plates (Fig. 9–57). The top plate is 

moving at speed V, and the bottom plate is stationary. The distance between 

these two plates is h, and gravity acts in the negative z-direction (into the 

page in Fig. 9–57). There is no applied pressure other than hydrostatic 

Fluid B—air

Fluid A—water

y

uair

∂u
∂y

uwater

u

x

air

∂u
∂y

water

b

b

FIGURE 9–55
Along a horizontal free surface 

of water and air, the water and air 
velocities must be equal and the shear 

stresses must match. However, since 
mair ,, mwater, a good approximation 

is that the shear stress at the water 
surface is negligibly small.

P = continuous

u

Symmetry plane

y

x
∂u
∂y

= 0

v = 0

FIGURE 9–56
Boundary conditions along a plane of 
symmetry are defined so as to ensure 
that the flow field on one side of the 
symmetry plane is a mirror image of 
that on the other side, as shown here 

for a horizontal symmetry plane.

h
y

V

x

Fluid: r, m

Moving plate

Fixed plate

FIGURE 9–57
Geometry of Example 9–15: viscous 

flow between two infinite plates; 
upper plate moving and lower 

plate stationary.
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pressure due to gravity. This flow is called Couette flow. Calculate the velocity 

and pressure fields, and estimate the shear force per unit area acting on the 

bottom plate.

SOLUTION  For a given geometry and set of boundary conditions, we are to 

calculate the velocity and pressure fields, and then estimate the shear force 

per unit area acting on the bottom plate.

Assumptions  1 The plates are infinite in x and z. 2 The flow is steady, i.e., −/−t 

of anything is zero. 3 This is a parallel flow (we assume that the y-component 

of velocity, v, is zero). 4 The fluid is incompressible and Newtonian with con-

stant properties, and the flow is laminar. 5 Pressure P 5 constant with respect 

to x. In other words, there is no applied pressure gradient pushing the flow in 

the x-direction; the flow establishes itself due to viscous stresses caused by 

the moving upper plate. 6 The velocity field is purely two-dimensional, mean-

ing here that w 5 0 and −/−z of any velocity component is zero. 7 Gravity acts 

in the negative z-direction (into the page in Fig. 9–57). We express this math-

ematically as g
!
5 2gk

!
, or gx 5 gy 5 0 and gz 52g.

Analysis  To obtain the velocity and pressure fields, we follow the step-by-

step procedure outlined in Fig. 9–52.

Step 1  Set up the problem and the geometry. See Fig. 9–57.

Step 2  List assumptions and boundary conditions. We have numbered 

and listed seven assumptions (above). The boundary conditions come 

from imposing the no-slip condition: (1) At the bottom plate (y 5 0), 

u 5 v 5 w 5 0. (2) At the top plate (y 5 h), u 5 V, v 5 0, and w 5 0.

Step 3  Simplify the differential equations. We start with the incompress-

ible continuity equation in Cartesian coordinates, Eq. 9–61a,

 

0u
0x
  1  

0v
0y
  1  

0w
0z

5 0  S  
0u
0x

5 0 (1)

 assumption 3 assumption 6

Equation 1 tells us that u is not a function of x. In other words, it doesn’t 

matter where we place our origin—the flow is the same at any x-location. The 

phrase fully developed is often used to describe this situation (Fig. 9–58). 

This can also be obtained directly from assumption 1, which tells us that 

there is nothing special about any x-location since the plates are infinite in 

length. Furthermore, since u is not a function of time (assumption 2) or z 

(assumption 6), we conclude that u is at most a function of y,

 Result of continuity: u 5 u(y) only (2)

We now simplify the x-momentum equation (Eq. 9–61b) as far as possible. 

It is good practice to list the reason for crossing out a term, as we do here:

ra 0u
0t
  1  u 

0u
0x
  1  v 

0u
0y
  1  w 

0u
0z
b 5 2

0P
0x
  1  rgx

 assumption 2 continuity assumption 3 assumption 6 assumption 5 
assumption 7 

 
1 ma 02u

0x2  1  
02u

0y2  1  
02u

0z2b  S  
d2u

dy2  5 0
 

(3)

 continuity assumption 6 

y

x

h

VV

x = x1 x = x2

FIGURE 9–58
A fully developed region of a flow 
field is a region where the velocity 
profile does not change with down-
stream distance. Fully developed 
flows are encountered in long, straight 
channels and pipes. Fully developed 
Couette flow is shown here—the 
velocity profile at x2 is identical to 
that at x1.
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Notice that the material acceleration (left-hand side of Eq. 3) is zero, 

implying that fluid particles are not accelerating in this flow field, neither 

by local (unsteady) acceleration, nor by advective acceleration. Since the 

advective acceleration terms make the Navier–Stokes equation nonlinear, 

this greatly simplifies the problem. In fact, all other terms in Eq. 3 have 

disappeared except for a lone viscous term, which must then itself equal 

zero. Also notice that we have changed from a partial derivative (−/−y) to a 

total derivative (d/dy) in Eq. 3 as a direct result of Eq. 2. We do not show 

the details here, but you can show in similar fashion that every term except 

the pressure term in the y-momentum equation (Eq. 9–61c) goes to zero, 

forcing that lone term to also be zero,

 
0P
0y

5 0 (4)

In other words, P is not a function of y. Since P is also not a function of 

time (assumption 2) or x (assumption 5), P is at most a function of z,

 Result of y-momentum: P 5 P(z) only (5)

Finally, by assumption 6 the z-component of the Navier–Stokes equation 

(Eq. 9–61d) simplifies to

 

0P
0z

5 2rg  S  
dP

dz
5 2rg (6)

where we used Eq. 5 to convert from a partial derivative to a total 

derivative.

Step 4  Solve the differential equations. Continuity and y-momentum have 

already been “solved,” resulting in Eqs. 2 and 5, respectively. Equation 3 

(x-momentum) is integrated twice to get

 u 5 C1y 1 C2 (7)

where C1 and C2 are constants of integration. Equation 6 (z-momentum) is 

integrated once, resulting in

 P 5 2rgz 1 C3 (8)

Step 5  Apply boundary conditions. We begin with Eq. 8. Since we have 

not specified boundary conditions for pressure, C3 remains an arbitrary 

constant. (Recall that for incompressible flow, the absolute pressure can be 

specified only if P is known somewhere in the flow.) For example, if we let 

P 5 P0 at z 5 0, then C3 5 P0 and Eq. 8 becomes

 Final solution for pressure field: P 5 P0 2 rgz (9)

Alert readers will notice that Eq. 9 represents a simple hydrostatic pressure 
distribution (pressure decreasing linearly as z increases). We conclude that, 

at least for this problem, hydrostatic pressure acts independently of the 

flow. More generally, we make the following statement (see also Fig. 9–59):

For incompressible flow fields without free surfaces, hydrostatic pressure 
does not contribute to the dynamics of the flow field.

In fact, in Chap. 10 we show how hydrostatic pressure can actually be 

removed from the equations of motion through use of a modified pressure.

z

x or y

Phydrostatic
g
→

FIGURE 9–59
For incompressible flow fields without 

free surfaces, hydrostatic pressure 
does not contribute to the dynamics 

of the flow field.
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 We next apply boundary conditions (1) and (2) from step 2 to obtain 

constants C1 and C2.

 Boundary condition (1): u 5 C1 3 0 1 C2 5 0  S  C2 5 0

and

 Boundary condition (2): u 5 C1 3 h 1 0 5 V  S  C1 5 V/h

Finally, Eq. 7 becomes

 Final result for velocity field: u 5 V 
y

h
  (10)

The velocity field reveals a simple linear velocity profile from u 5 0 at the 

bottom plate to u 5 V at the top plate, as sketched in Fig. 9–60.

Step 6  Verify the results. Using Eqs. 9 and 10, you can verify that all the 

differential equations and boundary conditions are satisfied.

 To calculate the shear force per unit area acting on the bottom plate, we 

consider a rectangular fluid element whose bottom face is in contact with 

the bottom plate (Fig 9–61). Mathematically positive viscous stresses are 

shown. In this case, these stresses are in the proper direction since fluid 

above the differential element pulls it to the right while the wall below the 

element pulls it to the left. From Eq. 9–56, we write out the components of 

the viscous stress tensor,

tij 5 ¶ 2m 
0u
0x

m¢ 0u
0y

1
0v
0x

      m¢ 0u
0z

1
0w
0x

 m¢ 0v
0x

1
0u
0y

2m 
0v
0y

      m¢ 0v
0z

1
0w
0y

 m¢ 0w
0x

1
0u
0z

m¢ 0w
0y

1
0v
0z

     2m 
0w
0z

           5 • 0 m
V

h
0

m 
V

h
0 0

0 0 0

   (11)

Since the dimensions of stress are force per unit area by definition, the force per 

unit area acting on the bottom face of the fluid element is equal to tyx 5 mV/h 

and acts in the negative x-direction, as sketched. The shear force per unit area 

on the wall is equal and opposite to this (Newton’s third law); hence,

 Shear force per unit area acting on the wall:  
F
!

A
5 m 

V
h

  i 

!
 (12)

The direction of this force agrees with our intuition; namely, the fluid tries to 

pull the bottom wall to the right, due to viscous effects (friction).

Discussion  The z-component of the linear momentum equation is uncou-

pled from the rest of the equations; this explains why we get a hydrostatic 

pressure distribution in the z-direction, even though the fluid is not static, 

but moving. Equation 11 reveals that the viscous stress tensor is constant 

everywhere in the flow field, not just at the bottom wall (notice that none of 

the components of tij is a function of location).

 You may be questioning the usefulness of the final results of 
Example 9–15. After all, when do we encounter two infinite parallel plates, 
one of which is moving? Actually there are several practical flows for 
which the Couette flow solution is a very good approximation. One such 
flow occurs inside a rotational viscometer (Fig. 9–62), an instrument used 

FIGURE 9–61
Stresses acting on a differential two-
dimensional rectangular fluid element 
whose bottom face is in contact with 
the bottom plate of Example 9–15.

FIGURE 9–60
The linear velocity profile of 
Example 9–15: Couette flow between 
parallel plates.

h
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x
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to measure viscosity. It is constructed of two concentric circular cylinders of 
length L—a solid, rotating inner cylinder of radius Ri and a hollow, station-
ary outer cylinder of radius Ro. (L is into the page in Fig. 9–62; the z-axis 
is out of the page.) The gap between the two cylinders is very small and 
contains the fluid whose viscosity is to be measured. The magnified region 
of Fig. 9–62 is a nearly identical setup as that of Fig. 9–57 since the gap is 
small, i.e. (Ro 2 Ri) ! Ro. In a viscosity measurement, the angular veloc-
ity of the inner cylinder, v, is measured, as is the applied torque, Tapplied, 
required to rotate the cylinder. From Example 9–15, we know that the vis-
cous shear stress acting on a fluid element adjacent to the inner cylinder is 
approximately equal to

 
t 5 tyx > m 

V

Ro 2 Ri

5 m 
vRi

Ro 2 Ri

 (9–69)

where the speed V of the moving upper plate in Fig. 9–57 is replaced by the 
counterclockwise speed vRi of the rotating wall of the inner cylinder. In the 
magnified region at the bottom of Fig. 9–62, t acts to the right on the fluid 
element adjacent to the inner cylinder wall; hence, the force per unit area 
acting on the inner cylinder at this location acts to the left with magnitude 
given by Eq. 9–69. The total clockwise torque acting on the inner cylinder 
wall due to fluid viscosity is thus equal to this shear stress times the wall 
area times the moment arm,

 
Tviscous 5 tARi > m 

vRi

Ro 2 Ri

 a2pRiLbRi (9–70)

Under steady conditions, the clockwise torque Tviscous is balanced by the 
applied counterclockwise torque Tapplied. Equating these and solving Eq. 9–70 
for the fluid viscosity yields

Viscosity of the fluid: m 5 Tapplied 
(Ro 2 Ri)

2pvR i
3L

 A similar analysis can be performed on an unloaded journal bearing in 
which a viscous oil flows in the small gap between the inner rotating shaft and 
the stationary outer housing. (When the bearing is loaded, the inner and outer 
cylinders cease to be concentric and a more involved analysis is required.)

EXAMPLE 9–16    Couette Flow with an Applied Pressure Gradient

Consider the same geometry as in Example 9–15, but instead of pressure 

being constant with respect to x, let there be an applied pressure gradient 

in the x-direction (Fig. 9–63). Specifically, let the pressure gradient in the 

x-direction, −P/−x, be some constant value given by

 Applied pressure gradient: 
0P
0x

5
P2 2 P1

x2 2 x1
5 constant (1)

where x1 and x2 are two arbitrary locations along the x-axis, and P1 and P2 

are the pressures at those two locations. Everything else is the same as for 

Example 9–15. (a) Calculate the velocity and pressure field. (b) Plot a family 

of velocity profiles in dimensionless form.

Fluid: r, m

Magnifying
glass

Rotating inner cylinder

Stationary outer cylinder

v

t

R0

Ri

FIGURE 9–62
A rotational viscometer; the inner 

cylinder rotates at angular velocity v, 
and a torque Tapplied is applied, from 

which the viscosity of the fluid 
is calculated.

h

x1

y

V

x

Fluid: r, m

Moving plate

Fixed plate

x2

P2P1

∂P
∂x

=
P2 – P1 
x2 – x1 

FIGURE 9–63
Geometry of Example 9–16: viscous 
flow between two infinite plates with 

a constant applied pressure gradient 
−P/−x; the upper plate is moving and 

the lower plate is stationary.
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SOLUTION  We are to calculate the velocity and pressure field for the flow 

sketched in Fig. 9–63 and plot a family of velocity profiles in dimensionless 

form.

Assumptions  The assumptions are identical to those of Example 9–15, 

except assumption 5 is replaced by the following: A constant pressure gra-

dient is applied in the x-direction such that pressure changes linearly with 

respect to x according to Eq. 1.

Analysis  (a) We follow the same procedure as in Example 9–15. Much of 

the algebra is identical, so to save space we discuss only the differences.

Step 1  See Fig. 9–63.

Step 2  Same as Example 9–15 except for assumption 5.

Step 3  The continuity equation is simplified in the same way as in 

Example 9–15,

 Result of continuity: u 5 u(y) only (2)

 The x-momentum equation is simplified in the same manner as in 

Example 9–15 except that the pressure gradient term remains. The result is

 Result of x-momentum: 
d2u

dy2 5
1
m

 
0P
0x

 (3)

 Likewise, the y-momentum and z-momentum equations simplify to

 Result of y-momentum: 
0P
0y

5 0 (4)

and

 Result of z-momentum: 
0P
0z

5 2rg (5)

We cannot convert from a partial derivative to a total derivative in Eq. 5, 

because P is a function of both x and z in this problem, unlike in 

Example 9–15 where P was a function of z only.

Step 4  We integrate Eq. 3 (x-momentum) twice, noting that −P/−x is a 

constant,

 Integration of x-momentum: u 5
1

2m
 
0P
0x

 y2 1 C1y 1 C2 (6)

where C1 and C2 are constants of integration. Equation 5 (z-momentum) is 

integrated once, resulting in

 Integration of z-momentum: P 5 2rgz 1 f  (x) (7)

Note that since P is now a function of both x and z, we add a function of x 

instead of a constant of integration in Eq. 7. This is a partial integration 

with respect to z, and we must be careful when performing partial integra-

tions (Fig. 9–64).

Step 5  From Eq. 7, we see that the pressure varies hydrostatically in the 

z-direction, and we have specified a linear change in pressure in the 

x-direction. Thus the function f (x) must equal a constant plus −P/−x times x. 

If we set P 5 P0 along the line x 5 0, z 5 0 (the y-axis), Eq. 7 becomes

 Final result for pressure field: P 5 P0 1
eP
ex

 x 2 rgz (8)

CAUTION! 
WHEN PERFORMING A

PARTIAL INTEGRATION,
ADD A FUNCTION OF THE

OTHER VARIABLE(S)

FIGURE 9–64
A caution about partial integration.
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We next apply the velocity boundary conditions (1) and (2) from step 2 of 

Example 9–15 to obtain constants C1 and C2.

 Boundary condition (1):

u 5
1

2m
 
0P
0x

3 0 1 C1 3 0 1 C2 5 0  S  C2 5 0

and

 Boundary condition (2):

 u 5
1

2m
 
0P
0x

 h2 1 C1 3 h 1 0 5 V  S  C1 5
V

h
2

1

2m
 
0P
0x

 h

Finally, Eq. 6 becomes

  u 5
Vy

h
1

1
2m

 
eP
ex

 (y2 2 hy) (9)

Equation 9 indicates that the velocity field consists of the superposition of 

two parts: a linear velocity profile from u 5 0 at the bottom plate to u 5 V 

at the top plate, and a parabolic distribution that depends on the magni-

tude of the applied pressure gradient. If the pressure gradient is zero, the 

parabolic portion of Eq. 9 disappears and the profile is linear, just as in 

Example 9–15; this is sketched as the dashed red line in Fig. 9–65. If the 

pressure gradient is negative (pressure decreasing in the x-direction, caus-

ing flow to be pushed from left to right), −P/−x , 0 and the velocity profile 

looks like the one sketched in Fig. 9–65. A special case is when V 5 0 (top 

plate stationary); the linear portion of Eq. 9 vanishes, and the velocity pro-

file is parabolic and symmetric about the center of the channel (y 5 h/2); 

this is sketched as the dotted line in Fig. 9–65.

Step 6  You can use Eqs. 8 and 9 to verify that all the differential equa-

tions and boundary conditions are satisfied.

(b) We use dimensional analysis to generate the dimensionless groups 

(P groups). We set up the problem in terms of velocity component u as a 

function of y, h, V, m, and −P/−x. There are six variables (including the depen-

dent variable u), and since there are three primary dimensions represented in 

the problem (mass, length, and time), we expect 6 2 3 5 3 dimensionless 

groups. When we pick h, V, and m as our repeating variables, we get the fol-

lowing result using the method of repeating variables (details are left for you 

to do on your own—this is a good review of Chap. 7 material):

 Result of dimensional analysis: 
u

V
5 f  ay

h
, 

h2

mV
 
0P
0x

b  (10)

Using these three dimensionless groups, we rewrite Eq. 9 as

 Dimensionless form of velocity field: u* 5 y* 1
1
2

 P*y*(y* 2 1) (11)

where the dimensionless parameters are

 u* 5
u

V
  y* 5

y

h
  P* 5

h2

mV
 
0P
0x

In Fig. 9–66, u* is plotted as a function of y* for several values of P*, using 

Eq. 11.

y

h

V

u(y)

x

FIGURE 9–65
The velocity profile of Example 9–16: 

Couette flow between parallel plates 
with an applied negative pressure 

gradient; the dashed red line indicates 
the profile for a zero pressure gradient, 
and the dotted line indicates the profile 

for a negative pressure gradient with 
the upper plate stationary (V 5 0).
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Discussion  When the result is nondimensionalized, we see that Eq. 11 rep-

resents a family of velocity profiles. We also see that when the pressure gra-

dient is positive (flow being pushed from right to left) and of sufficient mag-

nitude, we can have reverse flow in the bottom portion of the channel. For all 

cases, the boundary conditions reduce to u* 5 0 at y* 5 0 and u* 5 1 at 

y* 5 1. If there is a pressure gradient but both walls are stationary, the flow 

is called two-dimensional channel flow, or planar Poiseuille flow (Fig. 9–67). 

We note, however, that most authors reserve the name Poiseuille flow for 

fully developed pipe flow—the axisymmetric analog of two-dimensional chan-

nel flow (see Example 9–18).

EXAMPLE 9–17     Oil Film Flowing Down 
a Vertical Wall by Gravity

Consider steady, incompressible, parallel, laminar flow of a film of oil falling 

slowly down an infinite vertical wall (Fig. 9–68). The oil film thickness is h, 

and gravity acts in the negative z-direction (downward in Fig. 9–68). There 

is no applied (forced) pressure driving the flow—the oil falls by gravity alone. 

Calculate the velocity and pressure fields in the oil film and sketch the nor-

malized velocity profile. You may neglect changes in the hydrostatic pressure 

of the surrounding air.

SOLUTION  For a given geometry and set of boundary conditions, we are to 

calculate the velocity and pressure fields and plot the velocity profile.

Assumptions  1 The wall is infinite in the yz-plane (y is into the page for a 

right-handed coordinate system). 2 The flow is steady (all partial derivatives 

with respect to time are zero). 3 The flow is parallel (the x-component of 

velocity, u, is zero everywhere). 4 The fluid is incompressible and Newtonian 

with constant properties, and the flow is laminar. 5 Pressure P 5 Patm 5 

constant at the free surface. In other words, there is no applied pressure gra-

dient pushing the flow; the flow establishes itself due to a balance between 

gravitational forces and viscous forces. In addition, since there is no gravity 

force in the horizontal direction, P 5 Patm everywhere. 6 The velocity field is 

1

0.8

0.6

0.4

y* = y/h

0.2

0

–1.5 –1 –0.5 0
u* = u/V

0.5 1 2.51.5 2

P* = 15

10

5
0 –5

–10

–15P* = 15

10

5
0 –5

–10

–15

FIGURE 9–66
Nondimensional velocity profiles for 
Couette flow with an applied pressure 
gradient; profiles are shown for several 
values of nondimensional pressure 
gradient.

h
y

u(y)

x

FIGURE 9–67
The velocity profile for fully 
developed two-dimensional channel 
flow (planar Poiseuille flow).

h

z

x

g→

Oil film:
r, m

Fixed
wall

Air

P = Patm

FIGURE 9–68
Geometry of Example 9–17: a viscous 
film of oil falling by gravity along a 
vertical wall.
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purely two-dimensional, which implies that velocity component n 5 0 and all 

partial derivatives with respect to y are zero. 7 Gravity acts in the negative 

z-direction. We express this mathematically as g
!
5 2gk

!
, or gx 5 gy 5 0 and 

gz 5 2g.

Analysis  We obtain the velocity and pressure fields by following the step-by-

step procedure for differential fluid flow solutions. (Fig. 9–52).

Step 1  Set up the problem and the geometry. See Fig. 9–68.

Step 2  List assumptions and boundary conditions. We have listed seven 

assumptions. The boundary conditions are: (1) There is no slip at the wall; 

at x 5 0, u 5 v 5 w 5 0. (2) At the free surface (x 5 h), there is negligible 

shear (Eq. 9–68), which for a vertical free surface in this coordinate system 

means −w/−x 5 0 at x 5 h.

Step 3  Write out and simplify the differential equations. We start with the 

incompressible continuity equation in Cartesian coordinates,

 

0u
0x
  1  

0v
0y
  1  

0w
0z

5 0  S  
0w
0z

5 0 (1)

 assumption 3 assumption 6 

Equation 1 tells us that w is not a function of z; i.e., it doesn’t matter where 

we place our origin—the flow is the same at any z-location. In other words, 

the flow is fully developed. Since w is not a function of time (assumption 2), 

z (Eq. 1), or y (assumption 6), we conclude that w is at most a function of x,

 Result of continuity: w 5 w(x) only (2)

 We now simplify each component of the Navier–Stokes equation as far as 

possible. Since u 5 v 5 0 everywhere, and gravity does not act in the x- or 

y-directions, the x- and y-momentum equations are satisfied exactly (in fact 

all terms are zero in both equations). The z-momentum equation reduces to

  ra 0w
0t
  1  u 

0w
0x
  1  v 

0w
0y
  1  w 

0w
0z

b 5 2
0P
0z
  1  rgz

 assumption 2 assumption 3 assumption 6 continuity assumption 5 2rg 

  
1 ma 02w

0x2  1  
02w

0y2  1  
02w

0z2 b S 
d2w

dx2 5
rg

m
 (3)

 assumption 6 continuity 

The material acceleration (left side of Eq. 3) is zero, implying that fluid 

particles are not accelerating in this flow field, neither by local nor advec-

tive acceleration. Since the advective acceleration terms make the Navier–

Stokes equation nonlinear, this greatly simplifies the problem. We have 

changed from a partial derivative (−/−x) to a total derivative (d/dx) in Eq. 3 

as a direct result of Eq. 2, reducing the partial differential equation (PDE) 

to an ordinary differential equation (ODE). ODEs are of course much easier 

than PDEs to solve (Fig. 9–69).

Step 4  Solve the differential equations. The continuity and x- and 

y-momentum equations have already been “solved.” Equation 3 

(z-momentum) is integrated twice to get

 w 5
rg

2m
 x2 1 C1x 1 C2 (4)

NOTICE
 

If u = u(x) only,
change from
PDE to ODE:

∂u
∂x

du
dx

FIGURE 9–69
In Examples 9–15 through 9–18, 

the equations of motion are reduced 
from partial differential equations 
to ordinary differential equations, 

making them much easier to solve.
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Step 5  Apply boundary conditions. We apply boundary conditions (1) and 

(2) from step 2 to obtain constants C1 and C2,

 Boundary condition (1): w 5 0 1 0 1 C2 5 0  C2 5 0

and

 Boundary condition (2): 
dw

dx
b

x5h

5
rg

m
 h 1 C1 5 0 S C1 5 2

rgh

m

Finally, Eq. 4 becomes

 Velocity field: w 5
rg

2m
 x2 2

rg
m

 hx 5
rgx

2m
 (x 2 2h) (5)

 Since x , h in the film, w is negative everywhere, as expected (flow is 

downward). The pressure field is trivial; namely, P 5 Patm everywhere.

Step 6  Verify the results. You can verify that all the differential equations 

and boundary conditions are satisfied.

 We normalize Eq. 5 by inspection: we let x* 5 x/h and w* 5 wm/(rgh2). 

Equation 5 becomes

 Normalized velocity profile: w* 5
x*

2
 (x* 2 2) (6)

We plot the normalized velocity field in Fig. 9–70.

Discussion  The velocity profile has a large slope near the wall due to the 

no-slip condition there (w 5 0 at x 5 0), but zero slope at the free surface, 

where the boundary condition is zero shear stress (−w/−x 5 0 at x 5 h). 

We could have introduced a factor of 22 in the definition of w* so that w* 

would equal 1 instead of 21
2 at the free surface.

 The solution procedure used in Examples 9–15 through 9–17 in Car-
tesian coordinates can also be used in any other coordinate system. In 
Example 9–18 we present the classic problem of fully developed flow in a 
round pipe, for which we use cylindrical coordinates.

EXAMPLE 9–18     Fully Developed Flow in a Round 
Pipe—Poiseuille Flow

Consider steady, incompressible, laminar flow of a Newtonian fluid in an 

infinitely long round pipe of diameter D or radius R 5 D/2 (Fig. 9–71). We 

ignore the effects of gravity. A constant pressure gradient −P/−x is applied in 

the x-direction,

 Applied pressure gradient: 
0P
0x

5
P2 2 P1

x2 2 x1
5 constant (1)

where x1 and x2 are two arbitrary locations along the x-axis, and P1 and P2 

are the pressures at those two locations. Note that we adopt a modified 

cylindrical coordinate system here with x instead of z for the axial compo-

nent, namely, (r, u, x) and (ur, uu, u). Derive an expression for the velocity 

field inside the pipe and estimate the viscous shear force per unit surface 

area acting on the pipe wall.

Free surface

Wall

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

w*

0 0.2 0.4 0.6 0.8 1

x*

FIGURE 9–70
The normalized velocity profile of 
Example 9–17: an oil film falling 
down a vertical wall.

r

R P2P1

x1 x2

Fluid: r, m

Pipe wall

xD

∂x x2 – x1

P2 – P1∂P
=

V

FIGURE 9–71
Geometry of Example 9–18: steady 
laminar flow in a long round pipe with 
an applied pressure gradient −P/−x 
pushing fluid through the pipe. The 
pressure gradient is usually produced 
by a pump and/or gravity.
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SOLUTION  For flow inside a round pipe we are to calculate the velocity 

field, and then estimate the viscous shear stress acting on the pipe wall.

Assumptions  1 The pipe is infinitely long in the x-direction. 2 The flow is 

steady (all partial time derivatives are zero). 3 This is a parallel flow (the 

r-component of velocity, ur, is zero). 4 The fluid is incompressible and New-

tonian with constant properties, and the flow is laminar (Fig. 9–72). 5 A 

constant pressure gradient is applied in the x-direction such that pressure 

changes linearly with respect to x according to Eq. 1. 6 The velocity field is 

axisymmetric with no swirl, implying that uu 5 0 and all partial derivatives 

with respect to u are zero. 7 We ignore the effects of gravity.

Analysis  To obtain the velocity field, we follow the step-by-step procedure 

outlined in Fig. 9–52.

Step 1  Lay out the problem and the geometry. See Fig. 9–71.

Step 2  List assumptions and boundary conditions. We have listed seven 

assumptions. The first boundary condition comes from imposing the no-

slip condition at the pipe wall: (1) at r 5 R, V
!
5 0. The second boundary 

condition comes from the fact that the centerline of the pipe is an axis of 

symmetry: (2) at r 5 0, −u /−r 5 0.

Step 3  Write out and simplify the differential equations. We start with the 

incompressible continuity equation in cylindrical coordinates, a modified 

version of Eq. 9–62a,

  

1
r
 
0(rur)

0r
1

1
r
 
0(uu)
0u

1
0u
0x

5 0  S  
0u
0x

5 0 (2)

 assumption 3 assumption 6 

Equation 2 tells us that u is not a function of x. In other words, it doesn’t 

matter where we place our origin—the flow is the same at any x-location. 

This can also be inferred directly from assumption 1, which tells us that 

there is nothing special about any x-location since the pipe is infinite in 

length—the flow is fully developed. Furthermore, since u is not a function 

of time (assumption 2) or u (assumption 6), we conclude that u is at most 

a function of r,

 Result of continuity: u 5 u(r) only (3)

We now simplify the axial momentum equation (a modified version of 

Eq. 9–62d) as far as possible:

  r a 0u
0t
  1  ur 

0u
0r
  1  

uu
r

 
0u
0u
  1  u 

0u
0x
b

 assumption 2 assumption 3 assumption 6 continuity 

  5 2
0P
0x

1 rgx 1 ma1
r
 
0
0r
ar 
0u
0r
b 1

1

r2 
02u

0u2 1
02u

0x2b
 assumption 7 assumption 6 continuity 

or

  
1
r
 
d

dr
 ar 

du

dr
b 5

1
m

 
0P
0x

 (4)

As in Examples 9–15 through 9–17, the material acceleration (entire left 

side of the x-momentum equation) is zero, implying that fluid particles are 

FIGURE 9–72
Exact analytical solutions of the 

Navier-Stokes equations, as in the 
examples provided here, are not 
possible if the flow is turbulent.
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not accelerating at all in this flow field, and linearizing the Navier–Stokes 

equation (Fig. 9–73). We have replaced the partial derivative operators for 

the u-derivatives with total derivative operators because of Eq. 3.

 In similar fashion, every term in the r-momentum equation (Eq. 9–62b) 

except the pressure gradient term is zero, forcing that lone term to also 

be zero,

 r-momentum: 
0P
0r

5 0 (5)

In other words, P is not a function of r. Since P is also not a function of 

time (assumption 2) or u (assumption 6), P can be at most a function of x,

 Result of r-momentum: P 5 P(x) only (6)

Therefore, we replace the partial derivative operator for the pressure 

gradient in Eq. 4 by the total derivative operator since P varies only with 

x. Finally, all terms of the u-component of the Navier–Stokes equation 

(Eq. 9–62c) go to zero.

Step 4  Solve the differential equations. Continuity and r-momentum have 

already been “solved,” resulting in Eqs. 3 and 6, respectively. The 

u-momentum equation has vanished, and thus we are left with Eq. 4 

(x-momentum). After multiplying both sides by r, we integrate once to obtain

  r 
du

dr
5

r2

2m
 
dP

dx
1 C1 (7)

where C1 is a constant of integration. Note that the pressure gradient dP/dx 

is a constant here. Dividing both sides of Eq. 7 by r, we integrate a second 

time to get

  u 5
r2

4m
 
dP

dx
1 C1 ln r 1 C2 (8)

where C2 is a second constant of integration.

Step 5  Apply boundary conditions. First, we apply boundary condition (2) 

to Eq. 7,

 Boundary condition (2): 0 5 0 1 C1  S  C1 5 0

An alternative way to interpret this boundary condition is that u must 

remain finite at the centerline of the pipe. This is possible only if constant 

C1 is equal to 0, since ln(0) is undefined in Eq. 8. Now we apply boundary 

condition (1),

 Boundary condition (1):   u 5
R2

4m
 
dP

dx
1 0 1 C2 5 0 S C2 5 2

R2

4m
 
dP

dx

Finally, Eq. 8 becomes

 Axial velocity: u 5
1

4m
 
dP
dx

 (r2 2 R2) (9)

The axial velocity profile is thus in the shape of a paraboloid, as sketched 

in Fig. 9–74.

Step 6  Verify the results. You can verify that all the differential equations 

and boundary conditions are satisfied.

∂V
∂t

+ (V • )V      = – P + rg + m 2Vr
→

→→Δ→→ →Δ → Δ

The Navier–Stokes Equation

Nonlinear term

A B
FIGURE 9–73
For incompressible flow solutions 
in which the advective terms in the 
Navier–Stokes equation are zero, the 
equation becomes linear since the 
advective term is the only nonlinear 
term in the equation.

r

Ru(r)

V = uavg = umax/2

umax

u
x

D

FIGURE 9–74
Axial velocity profile of Example 9–18: 
steady laminar flow in a long round 
pipe with an applied constant-pressure 
gradient dP/dx pushing fluid through 
the pipe.
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 We calculate some other properties of fully developed laminar pipe flow as 

well. For example, the maximum axial velocity obviously occurs at the cen-

terline of the pipe (Fig. 9–74). Setting r 5 0 in Eq. 9 yields

 Maximum axial velocity: umax 5 2
R 2

4m
 
dP

dx
 (10)

The volume flow rate through the pipe is found by integrating Eq. 9 through 

a cross-section of the pipe,

  
V
#

5 #
2p

u50
 #

R

r50
 ur dr du 5

2p

4m
 
dP

dx
 #

R

r50
 (r2 2 R2)r dr 5 2

pR4

8m
 
dP

dx
 (11)

Since volume flow rate is also equal to the average axial velocity times cross-

sectional area, we easily determine the average axial velocity V:

 Average axial velocity: V 5
V
#

A
5

(2pR4/8m) (dP/dx)

pR2 5 2
R2

8m
 
dP

dx
 (12)

Comparing Eqs. 10 and 12 we see that for fully developed laminar pipe 

flow, the average axial velocity is equal to exactly half of the maximum axial 

velocity.

 To calculate the viscous shear force per unit surface area acting on the 

pipe wall, we consider a differential fluid element adjacent to the bottom 

portion of the pipe wall (Fig. 9–75). Pressure stresses and mathematically 

positive viscous stresses are shown. From Eq. 9–63 (modified for our coordi-

nate system), we write the viscous stress tensor as

  tij 5 £trr tru trx

tur tuu tux
txr txu txx

5 • 0 0 m 
0u
0r

0 0 0

m 
0u
0r

0 0

  (13)

We use Eq. 9 for u, and set r 5 R at the pipe wall; component trx of Eq. 13 

reduces to

 Viscous shear stress at the pipe wall: trx 5 m 
du

dr
5

R

2
 
dP

dx
 (14)

For flow from left to right, dP/dx is negative, so the viscous shear stress on 

the bottom of the fluid element at the wall is in the direction opposite to 

that indicated in Fig. 9–75. (This agrees with our intuition since the pipe 

wall exerts a retarding force on the fluid.) The shear force per unit area on 

the wall is equal and opposite to this; hence,

 Viscous shear force per unit area acting on the wall:  
 F
!

A
5 2

R
2

 
dP
dx

 i
!
 (15)

The direction of this force again agrees with our intuition; namely, the fluid 

tries to pull the bottom wall to the right, due to friction, when dP/dx is 

negative.

Discussion  Since du/dr 5 0 at the centerline of the pipe, trx 5 0 there. You 

are encouraged to try to obtain Eq. 15 by using a control volume approach 

instead, taking your control volume as the fluid in the pipe between any two 

Centerline

Pipe wall

dr

x

txr

trx

txr

trxtrx

dx

P

r

P

P + dP
dx

dx
2

P – dP
dx

dx
2

FIGURE 9–75
Pressure and viscous shear stresses 

acting on a differential fluid element 
whose bottom face is in contact 

with the pipe wall.
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x-locations, x1 and x2 (Fig. 9–76). You should get the same answer. (Hint: 

Since the flow is fully developed, the axial velocity profile at location 1 is iden-

tical to that at location 2.) Note that when the volume flow rate through the 

pipe exceeds a critical value, instabilities in the flow occur, and the solution 

presented here is no longer valid. Specifically, flow in the pipe becomes tur-

bulent rather than laminar; turbulent pipe flow is discussed in more detail in 

Chap. 8. This problem is also solved in Chap. 8 using an alternative approach.

 So far, all our Navier–Stokes solutions have been for steady flow. You 
can imagine how much more complicated the solutions must get if the flow 
is allowed to be unsteady, and the time derivative term in the Navier–Stokes 
equation does not disappear. Nevertheless, there are some unsteady flow prob-
lems that can be solved analytically. We present one of these in Example 9–19.

EXAMPLE 9–19    Sudden Motion of an Infinite Flat Plate

Consider a viscous Newtonian fluid on top of an infinite flat plate lying in the 

xy-plane at z 5 0 (Fig. 9–77). The fluid is at rest until time t 5 0, when the 

plate suddenly starts moving at speed V in the x-direction. Gravity acts in 

the 2z-direction. Determine the pressure and velocity fields.

SOLUTION  The velocity and pressure fields are to be calculated for the 

case of fluid on top of an infinite flat plate that suddenly starts moving.

Assumptions  1 The wall is infinite in the x- and y-directions; thus, nothing 

is special about any particular x- or y-location. 2 The flow is parallel every-

where (w 5 0). 3 Pressure P 5 constant with respect to x. In other words, 

there is no applied pressure gradient pushing the flow in the x-direction; 

flow occurs due to viscous stresses caused by the moving plate. 4 The fluid 

is incompressible and Newtonian with constant properties, and the flow is 

laminar. 5 The velocity field is two-dimensional in the xz-plane; therefore, 

v 5 0, and all partial derivatives with respect to y are zero. 6 Gravity acts in 

the 2z-direction.

Analysis  To obtain the velocity and pressure fields, we follow the step-by-

step procedure outlined in Fig. 9–52.

Step 1  Lay out the problem and the geometry. (See Fig. 9–77.)

Step 2  List assumptions and boundary conditions. We have listed six as-

sumptions. The boundary conditions are: (1) At t 5 0, u 5 0 everywhere 

(no flow until the plate starts moving); (2) at z 5 0, u 5 V for all values of 

x and y (no-slip condition at the plate); (3) as z → `, u 5 0 (far from the 

plate, the effect of the moving plate is not felt); and (4) at z 5 0, P 5 Pwall 

(the pressure at the wall is constant at any x- or y-location along the plate).

Step 3  Write out and simplify the differential equations. We start with the 

incompressible continuity equation in Cartesian coordinates (Eq. 9–61a),

  

0u
0x
  1  

0v
0y
  1  

0w
0z

5 0  S  
0u
0x

5 0 (1)

 assumption 5 assumption 2 

Equation 1 tells us that u is not a function of x. Furthermore, since u is not 

a function of y (assumption 5), we conclude that u is at most a function of 

z and t,

r

R P2P1

x1 x2

Fluid: r, m

Pipe wall

x

CV

dx x2 – x1

P2 – P1dP
=

FIGURE 9–76
Control volume used to obtain Eq. 15 
of Example 9–18 by an alternative 
method.

z

V

g = –gk
Fluid: r, m

x

→ →

Infinite flat plate

FIGURE 9–77
Geometry and setup for Example 9–19; 
the y-coordinate is into the page.
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 Result of continuity: u 5 u (z, t) only (2)

The y-momentum equation reduces to

  

0P
0y

5 0 (3)

by assumptions 5 and 6 (all terms with v, the y-component of velocity, 

vanish, and gravity does not act in the y -direction). Equation 3 simply 

tells us that pressure is not a function of y; hence,

 Result of y-momentum: P 5 P(z, t) only (4)

Similarly the z-momentum equation reduces to

  

0P
0z

5 2rg (5)

We now simplify the x-momentum equation (Eq. 9–61b) as far as possible.

 
ra 0u
0t
  1  u 

0u
0x
  1  v 

0u
0y
  1  w 

0u
0z
b 5 2

0P
0x
  1  rgx

 continuity assumption 5 assumption 2 assumption 3 assumption 6 

  
1 ma 02u

0x2  1  
02u

0y2 1
02u

0z2b  S  r 
0u
0t

5 m 
02u

0z
 (6)

 continuity assumption 5 

It is convenient to combine the viscosity and density into the kinematic 

viscosity, defined as n 5 m/r. Equation 6 reduces to the well-known one-
dimensional diffusion equation (Fig. 9–78),

 Result of x-momentum: 
0u
0t

5 n 
02u

0z2  (7)

Step 4  Solve the differential equations. Continuity and y-momentum have 

already been “solved,” resulting in Eqs. 2 and 4, respectively. Equation 5 

(z-momentum) is integrated once, resulting in

  P 5 2rgz 1 f (t) (8)

where we have added a function of time instead of a constant of integration 

since P is a function of two variables, z and t (see Eq. 4). Equation 7 

(x-momentum) is a linear partial differential equation whose solution is 

obtained by combining the two independent variables z and t into one 

independent variable. The result is called a similarity solution, the details 

of which are beyond the scope of this text. Note that the one-dimensional 

diffusion equation occurs in many other fields of engineering, such as 

diffusion of species (mass diffusion) and diffusion of heat (conduction); 

details about the solution can be found in books on these subjects. The 

solution of Eq. 7 is intimately tied to the boundary condition that the plate 

is impulsively started, and the result is

 Integration of x-momentum: u 5 C1 c1 2 erfa z

2"ntb d  (9)

where erf in Eq. 9 is the error function (Çengel, 2010), defined as

Error function: erf(j) 5
2"p #

j

0
 e2h2

dh (10)

Equation of the Day
 

 The 1-D Diffusion Equation

∂t

∂u
∂z2

∂2u
= n

FIGURE 9–78
The one-dimensional diffusion 

equation is linear, but it is a partial 
differential equation (PDE). It 

occurs in many fields of science 
and engineering.
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The error function is commonly used in probability theory and is plotted 

in Fig. 9–79. Tables of the error function can be found in many reference 

books, and some calculators and spreadsheets can calculate the error 

function directly. It is also provided as a function in the EES software that 

comes with this text.

Step 5  Apply boundary conditions. We begin with Eq. 8 for pressure. 

Boundary condition (4) requires that P 5 Pwall at z 5 0 for all times, and 

Eq. 8 becomes

 Boundary condition (4): P 5 0 1 f (t) 5 Pwall  S  f  (t) 5 Pwall

In other words, the arbitrary function of time, f(t), turns out not to be a 

function of time at all, but merely a constant. Thus,

 Final result for pressure field: P 5 Pwall 2 rgz (11)

which is simply hydrostatic pressure. We conclude that hydrostatic 

pressure acts independently of the flow. Boundary conditions (1) and (3) 

from step 2 have already been applied in order to obtain the solution of the 

x-momentum equation in step 4. Since erf(0) 5 0, the second boundary 

condition yields

 Boundary condition (2): u 5 C1(1 2 0) 5 V  S  C1 5 V

and Eq. 9 becomes

 Final result for velocity field: u 5 V c1 2 erfa z

2"nt
b d  (12)

Several velocity profiles are plotted in Fig. 9–80 for the specific case of 

water at room temperature (n 5 1.004 3 1026 m2/s) with V 5 1.0 m/s. 

At t 5 0, there is no flow. As time goes on, the motion of the plate is felt 

farther and farther into the fluid, as expected. Notice how long it takes 

for viscous diffusion to penetrate into the fluid—after 15 min of flow, the 

effect of the moving plate is not felt beyond about 10 cm above the plate!

 We define normalized variables u* and z* as

 Normalized variables: u* 5
u

V
  and  z* 5

z

2"nt
Then we rewrite Eq. 12 in terms of nondimensional parameters:

 Normalized velocity field: u* 5 1 2 erf(z*) (13)

The combination of unity minus the error function occurs often in en-

gineering and is given the special name complementary error function 

and symbol erfc. Thus Eq. 13 can also be written as

 Alternative form of the velocity field: u* 5 erfc(z*) (14)

The beauty of the normalization is that this one equation for u* as a 

function of z* is valid for any fluid (with any kinematic viscosity n) above a 

plate moving at any speed V and at any location z in the fluid at any time t! 

The normalized velocity profile of Eq. 13 is sketched in Fig. 9–81. All the 

profiles of Fig. 9–80 collapse into the single profile of Fig. 9–81; such a 

profile is called a similarity profile.

Step 6  Verify the results. You can verify that all the differential equations 

and boundary conditions are satisfied.

1
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0.4

erf(j)

0.2

0

0 0.5 1 1.5
j

2 2.5 3

FIGURE 9–79
The error function ranges from 0 at 
j 5 0 to 1 as j → `.
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FIGURE 9–80
Velocity profiles of Example 9–19: 
flow of water above an impulsively 
started infinite plate; n 5 1.004 3 
1026 m2/s and V 5 1.0 m/s.
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Discussion  The time required for momentum to diffuse into the fluid seems 

much longer than we would expect based on our intuition. This is because 

the solution presented here is valid only for laminar flow. It turns out that if 

the plate’s speed is large enough, or if there are significant vibrations in the 

plate or disturbances in the fluid, the flow will become turbulent. In a tur-

bulent flow, large eddies mix rapidly moving fluid near the wall with slowly 

moving fluid away from the wall. This mixing process occurs rather quickly, 

so that turbulent diffusion is usually orders of magnitude faster than laminar 

diffusion.

 Examples 9–15 through 9–19 are for incompressible laminar flow. The 
same set of differential equations (incompressible continuity and Navier– 
Stokes) is valid for incompressible turbulent flow. However, turbulent flow 
solutions are much more complicated because the flow contains disordered, 
unsteady, three-dimensional eddies that mix the fluid. Furthermore, these 
eddies may range in size over several orders of magnitude. In a turbulent 
flow field, none of the terms in the equations can be ignored (with the excep-
tion of the gravity term in some cases), and thus solutions can be obtained 
only through numerical computations. Computational fluid dynamics (CFD) 
is discussed in Chap. 15.

Differential Analysis of Biofluid Mechanics Flows*
In Example 9–18 we derived fully developed flow in a round pipe, or what is 
commonly referred to as Poiseuille flow. The solution to the Navier-Stokes 
equation for this particular example is quite straightforward but is based on 
a number of assumptions and approximations. These approximations hold 
true for standard pipe flow with most water systems, for example. However, 
when applied to blood flow in the human body, the approximations must 
be closely monitored and evaluated for their applicability. Traditionally as a 
first-order attempt, cardiovascular fluid dynamists have used the Poiseuille 
flow derivation to understand blood flow in arteries. This can provide the 
engineer with a first-order approximation for the velocity and flow rate, but 
if the engineer were interested in a more sophisticated and, frankly realistic, 
understanding of blood flow, it is important to examine the main approxi-
mations used to arrive at Poiseuille flow.
 Before delving in, let’s retain the basic approximations about the fluid, 
or blood in this case. The fluid will remain incompressible, the flow will 
continue to be laminar, and gravity remains negligible. The approximation 
of fully developed flow will also remain, though in reality this is not appli-
cable in the cardiovascular system. Based on only these approximations, 
this leaves the other main approximations of steady, parallel, axisymmetric 
Newtonian flow, and the pipe approximated as a rigid circular tube.
 Recall that the heart pumps blood continuously at an average rate of 
75 beats per minute for a healthy adult human at rest. As an example of 

3

2.5

2

1.5
z

2   nt

0

0 0.2 0.4 0.6
u/V

0.8 1

1

0.5

√

FIGURE 9–81
Normalized velocity profile of 

Example 9–19: laminar flow of a 
viscous fluid above an impulsively 

started infinite plate.

* This section was contributed by Professor Keefe Manning of Penn State University.
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the flow waveform generated by the ventricular contraction simulated in 
a mock circulatory system (Figure 9–82), the flow rate changes tempo-
rally for this 800 ms cycle. Therefore, fundamentally to model blood flow 
through the arteries, the steady flow approximation is inappropriate, mak-
ing modeling blood flow as Poiseuille flow unsuitable for just this one 
approximation alone. There is a rapid acceleration and deceleration of flow 
within a short time period (~300 ms). However, the wave propagation that 
is initiated at the heart diminishes with distance from it, and as the arteries 
become progressively smaller to the capillary level, the magnitude of pul-
satility decreases. When focused on the venous side as blood returns to the 
heart, the steady flow approximation can be applied with more confidence, 
but it should be noted that there remains flow disruption, in particular, from 
the lower limbs as venous valves (similar to heart valves) help bring blood 
back to the heart.
 The rigid, circular tube approximation is equally as inappropriate when 
applied to cardiovascular blood flow. As mentioned in Chapter 8, the blood 
vessels continually taper from the main vessel (the aorta) to smaller vessels 
(arteries, arterioles, and capillaries). There are no abrupt changes in diam-
eter as might be seen in a commercial piping network. Therefore, one geo-
metric consideration is the fact that a segment of blood vessel from one end 
to the other end will have a continual change in diameter. With respect to a 
circular tube cross-section, the vessels are not perfectly circular but rather 
more elliptical in their cross-section, so there is a major axis and minor axis. 
The most important approximation here that applies to Poiseuille flow is the 
fact that pipes are typically considered rigid. However, healthy vessels are 
not rigid; these structures are compliant and flexible. For example, the aorta 
emanating from the left ventricle can double in diameter to accommodate 
the sharp increase in blood volume during left ventricular ejection over a 
brief time period. One of the major exceptions to using this approximation is 
when studying pathologic states like atherosclerosis or studying blood flow 
in the elderly. The basic result of both is that the vessels will harden. In 
doing so, the rigidity approximation can be applied. There is also a secondary 
effect as the vessels harden, namely, the pulsatility of blood dampens more 

FIGURE 9–82
The flow waveform created during 
ejection from a ventricular assist 
device in a mock circulatory loop. 
This is similar to the waveform created 
during left ventricular ejection.
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quickly, which can influence the steady flow approximation in the arterioles 
in these particular patient populations.
 With respect to parallel flow and axisymmetric flow, these both can be 
invalidated as inappropriate approximations applied to blood flow, by focus-
ing on one location of the cardiovascular system. Considering the aorta in 
Figure 9–83 (ascending from the left ventricle, the aortic arch, and descend-
ing from the arch), there are significant changes in geometry that influ-
ence the flow field. What is commonly not displayed in two-dimensional 
pictures of the cardiovascular system (like Figure 8–82) is the fact that 
the aorta does not remain in one plane as typically depicted. Actually, the 
aorta (as one looks at another person) will start from the left ventricle and 
move towards the spinal column (towards the back of the person) moving 
the flow into other planes due to pure anatomy. What this geometry does is 
create Dean flow in this region. As a result, the flow that is created moving 

FIGURE 9–83
An anatomical figure illustrating 

the ascending aorta, aortic arch, and 
descending aorta coming from the 

left ventricle (on the backside of the 
heart in this view). The illustration 
demonstrates how the aorta moves 

toward the spinal cord.
McGraw-Hill Companies, Inc.

Ascending aorta

Descending aorta

Aortic arch
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around this bend and backwards, is a double helical swirling pattern (think 
about the DNA helix but the helixes are streamlines). With all this swirling, 
the approximations of parallel and axisymmetric flow are inappropriate. This 
is the most extreme case of flow in the human body (except for cases of 
pathology or with medical device intervention). The parallel and axisymmet-
ric flow approximations can be used with more confidence in the rest of the 
circulatory system.
 It should be mentioned that flow within the capillaries is not Poisueille 
flow since the red blood cells have to squeeze into these vessels and what 
results is a two-phase flow where a red blood cell is followed by plasma, 
which is in turn followed by a red blood cell; this continues, creating a 
unique flow field to facilitate oxygen and nutrient exchange. Finally, blood 
is not Newtonian, as illustrated in Example 9–20.

EXAMPLE 9–20     Fully Developed Flow in a Round Pipe with 
a Simple Blood Viscosity Model

Consider Example 9-18 and all the approximations to arrive at Poiseuille flow 

and the axial velocity profile shown in Fig. 9–74. In this example, we will 

change the basic assumption of a Newtonian fluid and instead use a non-

Newtonian fluid viscosity model. Blood behaves as a viscoelastic fluid but for 

our purposes, we assume a shear thinning or pseudoplastic model and apply 

a generalized power law viscosity model. The power law model effectively

comes from the viscous stress tensor and is trz 5 2m adu

dr
bn

 where we introduce 

a negative sign for direction, and where 0 < n < 1.

SOLUTION  We take Example 9-18 up to Equation 4 in that example:

1
r
 
d

dr
 ar 

du

dr
b 5

1
m

 
dP

dx
. Through rearrangement and one integration with respect

to r, we arrive at 
r

2
 
dP

dx
 5 m 

dP

dx
, which is also 

r

2
 
dP

dx
 5 m 

dP

dx
5 trz.

 Then we can equate the power law model to this as well, and arrive at a

new relationship, 
r

2
 
dP

dx
 5 2m adu

dr
bn

. When we move the negative sign to the

other side, multiple by 1/n on both sides, and solve for 
du

dr
, we arrive at

 
du

dr
5 a2

r

2m
 
dP

dx
b 1

n
.

 We integrate and then apply the second boundary condition from 

Example 9-18 (centerline of the pipe is an axis of symmetry). Our velocity 

then becomes

u 5
R
an11

n b
2 r

an11
n ban 1 1

n
b a 1

2m
 
dP

dx
b 1

n
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FIGURE 9–84
Assuming all values are the same in 

the velocity equations and the pipe is 
the same diameter, the pseudoplastic 

fluid causes the velocity profile 
to be more blunt compared to the 
parabolic profile generated for a 

Newtonian fluid.
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We now have a generalized velocity profile for a power law fluid or a type 

of non-Newtonian fluid, which might be a rudimentary model for blood. As 

mentioned, we approximate blood as a pseudoplastic fluid; as such, we arbi-

trarily set n 5 0.5. The actual velocity then becomes 

u 5
R3 2 r3

3
 a 1

2m
 
dP

dx
b2

Note that if we were to use n 5 1 instead, we would get the following, 

u 5 (R2 2 r2) a 1

4m
 
dP

dx
b, which is the axial velocity for a Newtonian fluid.

 We plot both the Newtonian and pseudoplastic velocity profiles in Fig. 9-84. 

Note how the viscosity alters the flow profile making it more blunt. To cal-

culate the volume flow rate, we integrate over the cross section of the pipe 

using the equation V
#

5 eR
0 2pru dr  and using the generalized form for u. Once 

we integrate and do some algebraic manipulation, our flow rate becomes

V
#

5
npR3

3n 1 1
 a R

2m
 
dP

dx
b 1

n

For our example pseudoplastic fluid (n 5 0.5), the flow rate simplifies to

V
#

5
pR5

5
 a 1

2m
 
dP

dx
b2

Discussion  When n 5 1, the general equation for volume flow rate reduces 

to that for Poiseuille flow, as it must.
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Guest Author: Minami Yoda, Georgia Institute of Technology

The boundary conditions for a fluid in contact with a solid states that 
there is no “slip” between the fluid and the solid. The boundary condi-
tion for a fluid in contact with a different fluid also states that there is no 
slip between the two fluids. Yet why would different substances—fluid and 
solid molecules, or molecules of different fluids—have the same behavior? 
The no-slip boundary condition is widely accepted because it has been ver-
ified by observation, and because measurements of quantities derived from 
the velocity field, such as the shear stress, are in agreement with a veloc-
ity profile that assumes that the tangential velocity component is zero at a 
stationary wall.
 Interestingly, Navier (of the Navier-Stokes equations) did not propose a 
no-slip boundary condition. He instead proposed the partial-slip boundary 
condition (Fig. 9–85) for a fluid in contact with a solid boundary: the fluid 
velocity component parallel to the wall at the wall, uf , is proportional to the 
fluid shear stress at the wall, ts:

 uf 5 bts 5 bmf 
0u
0y
b

f

 (1)

where the constant of proportionality b, which has dimensions of length, 
is called the slip length. The no-slip condition is the special case of Eq. 1 
where b 5 0. Although some recent studies in very small (< 0.1 mm diam-
eter) channels suggest that the no-slip condition may not hold within a few 
nanometers of the  wall (recall that 1 nm 5 1029 m 5 10 Ångstroms), the 
no-slip condition appears to be the correct boundary condition for a fluid in 
contact with a wall for a fluid that is a continuum.
 Nevertheless, engineers also exploit the no-slip boundary condition to 
reduce friction (or viscous) drag. As discussed in this Chapter, the no-slip 
boundary condition at a free surface, or a water-air interface, makes the vis-
cous stress ts, and thus the friction drag, very small in the liquid (Eq. 9-68). 
One way to create a free surface over a solid surface, like the hull of a ship, 
is to inject air to create a film of air that (at least partially) covers the hull sur-
face (Fig. 9–86). In theory, the drag on the ship, and hence its fuel consump-
tion, can be greatly reduced by creating a free-surface boundary condition 
over the ship hull. Maintaining a stable air film remains a major engineering 
challenge, however.

References
Lauga, E., Brenner, M. and Stone, H.,  “Microfluidics: The No-Slip Boundary 

Condition,” Springer Handbook of Experimental Fluid Mechanics (eds. 
C. Tropea, A. Yarin, J. F. Foss), Ch. 19, pp. 1219-1240, 2007.

http://www.nature.com/news/2008/080820/full/454924a.html

FIGURE 9–85
Navier’s partial-slip boundary 
condition.

APPLICATION SPOTLIGHT ■ The No-Slip Boundary Condition
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FIGURE 9–86
Proposed injection of air bubbles 
to form an air film over the bottom 
hull of a cargo ship [based on a 
picture courtesy of  Y. Murai and Y. 
Oishi, Hokkaido University and the 
Monohakobi Technology Institute 
(MTI), Nippon Yusen Kaisha (NYK) 
and NYK-Hinode Lines].
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SUMMARY

In this chapter we derive the differential forms of conser-
vation of mass (the continuity equation) and the linear 
momentum equation (the Navier–Stokes equation). For 
incompressible flow of a Newtonian fluid with constant 
properties, the continuity equation is

=
!
·V
!
5 0

and the Navier–Stokes equation is

r 
DV
!

Dt
5 2=

!
P 1 rg

!
1 m=2V

!

For incompressible two-dimensional flow, we also define the 
stream function c. In Cartesian coordinates,

u 5
0c
0y
  v 5 2

0c
0x

We show that the difference in the value of c from one 
streamline to another is equal to the volume flow rate per 

unit width between the two streamlines and that curves of 
constant c are streamlines of the flow.
 We provide several examples showing how the differential 
equations of fluid motion are used to generate an expression 
for the pressure field for a given velocity field and to gener-
ate expressions for both velocity and pressure fields for a flow 
with specified geometry and boundary conditions. The solution 
procedure learned here can be extended to much more compli-
cated flows whose solutions require the aid of a computer.
 The Navier–Stokes equation is the cornerstone of fluid 
mechanics. Although we know the necessary differential equa-
tions that describe fluid flow (continuity and Navier–Stokes), 
it is another matter to solve them. For some simple (usually 
infinite) geometries, the equations reduce to equations that 
we can solve analytically. For more complicated geometries, 
the equations are nonlinear, coupled, second-order, partial 
differential equations that cannot be solved with pencil and 
paper. We must then resort to either approximate solutions 
(Chap. 10) or numerical solutions (Chap. 15).

General and Mathematical Background Problems

9–1C  The divergence theorem is

#
V
 =
!
·G
!
 dv 5 BA

 G
!
·n
!
 dA

where G
!
 is a vector, V is a volume, and A is the surface area 

that encloses and defines the volume. Express the divergence 
theorem in words.

9–2C  Explain the fundamental differences between a flow 
domain and a control volume.

9–3C  What does it mean when we say that two or more 
differential equations are coupled?

9–4C  For a three-dimensional, unsteady, incompressible 
flow field in which temperature variations are insignificant, 
how many unknowns are there? List the equations required to 
solve for these unknowns.

PROBLEMS*

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Problems 

with the  icon are solved using EES, and complete solutions 

together with parametric studies are included on the text website. 

Problems with the  icon are comprehensive in nature and are 

intended to be solved with an equation solver such as EES.
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9–13  On many occasions we need to transform a velocity 
from Cartesian (x, y, z) coordinates to cylindrical (r, u, z) coor-
dinates (or vice versa). Using Fig. P9–13 as a guide, transform 
cylindrical velocity components (ur, uu, uz) into Carte sian 
velocity components (u, v, w). (Hint: Since the z-component 
of velocity remains the same in such a transformation, we 
need only to consider the xy-plane, as in Fig. P9–13.)

FIGURE P9–13
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ur

uu

u

v

u

V
→

9–14  Using Fig. P9–13 as a guide, transform Cartesian 
velocity components (u, v, w) into cylindrical velocity com-
ponents (ur, uu, uz). (Hint: Since the z-component of velocity 
remains the same in such a transformation, we need only to 
consider the xy-plane.)

9–15  Beth is studying a rotating flow in a wind tunnel. She 
measures the u and v components of velocity using a hot-wire 
anemometer. At x 5 0.40 m and y 5 0.20 m, u 5 10.3 m/s 
and v 5 25.6 m/s. Unfortunately, the data analysis program 
requires input in cylindrical coordinates (r, u) and (ur, uu). 
Help Beth transform her data into cylindrical coordinates. 
Specifically, calculate r, u, ur, and uu at the given data point.

9–16  A steady, two-dimensional, incompressible veloc-
ity field has Cartesian velocity components u 5 Cy/(x2 1 y2) 
and v 5 2Cx/(x2 1 y2), where C is a constant. Transform 
these Cartesian velocity components into cylindrical veloc-
ity components ur and uu, simplifying as much as possible. 
You should recognize this flow. What kind of flow is this? 

Answer: 0, 2C/r, line vortex

9–17  Consider a spiraling line vortex/sink flow in the xy- 
or ru-plane as sketched in Fig. P9–17. The two-dimensional 
cylindrical velocity components (ur, uu) for this flow field 
are ur 5 C/2pr and uu 5 G/2pr, where C and G are con-
stants (m is negative and G is positive). Transform these 
two-dimensional cylindrical velocity components into two-
dimensional Cartesian velocity components (u, v). Your final 
answer should contain no r or u—only x and y. As a check of 
your algebra, calculate V 2 using Cartesian coordinates, and 
compare to V 2 obtained from the given velocity components 
in cylindrical components.

9–5C  For an unsteady, compressible flow field that is 
two-dimensional in the x-y plane and in which temperature 
and density variations are significant, how many unknowns 
are there? List the equations required to solve for these 
unknowns. (Note: Assume other flow properties like viscos-
ity, thermal conductivity, etc., can be treated as constants.)

9–6C  For an unsteady, incompressible flow field that is 
two-dimensional in the x-y plane and in which temperature 
variations are insignificant, how many unknowns are there? 
List the equations required to solve for these unknowns.

9–7  Transform the position x
!
 5 (2, 4, 21) from Cartesian 

(x, y, z) coordinates to cylindrical (r, u, z) coordinates, includ-
ing units. The values of x

!
 are in units of meters.

9–8  Transform the position x 5 (5 m, p/3 radians, 1.27 
m) from cylindrical (r, u, z) coordinates to Cartesian (x, y, z) 
coordinates, including units. Write all three components of x

!
 

in units of meters.

9–9  A Taylor series expansion of function f (x) about some 
x-location x0 is given as

f (x0 1 dx) 5 f(x0) 1 a df

dx
b

x5x0

 dx 

 1
1

2!
 a d2f

dx2b
x5x0

 dx2 1
1

3!
 a d3f

dx3b
x5x0

 dx3 1 p

Consider the function f (x) 5 exp(x) 5 ex. Suppose we know 
the value of f (x) at x 5 x0, i.e., we know the value of f (x0), 
and we want to estimate the value of this function at some x 
location near x0. Generate the first four terms of the Taylor 
series expansion for the given function (up to order dx3 as 
in the above equation). For x0 5 0 and dx 5 20.1, use your 
truncated Taylor series expansion to estimate f (x0 1 dx). 
Compare your result with the exact value of e20.1. How many 
digits of accuracy do you achieve with your truncated Taylor 
series?

9–10  Let vector G
!
 be given by G

!
5 2xz i

!
2 1

2 x2 j
!
2 z2 k

!
.

Calculate the divergence of G
!
, and simplify as much as pos-

sible. Is there anything special about your result?  Answer: 0

9–11  The outer product of two vectors is a second-order 
tensor with nine components. In Cartesian coordinates, it is

 F
!
 G
!
5 CFxGx FxGy FxGz

FyGx FyGy FyGz

FzGx FzGy FzGz

S
The product rule applied to the divergence of the product of 
two vectors F

!
 and G

!
 is written as =

!
?(F
!
G
!
) 5 G

!
(=
!
?F
!
) 1 

(F
!
?=
!
)G
!
. Expand both sides of this equation in Cartesian 

coordinates and verify that it is correct.

9–12  Use the product rule of Prob. 9–11 to show that 
=
!
?(rV

!
  V
!
) 5 V

!
  =
!
?(rV

!
) 1 r(V

!
?=
!
)V
!
.

437-514_cengel_ch09.indd   500 12/18/12   4:40 PM



501
CHAPTER 9

Continuity Equation

9–21C  In this chapter we derive the continuity equation in two 
ways: by using the divergence theorem and by summing mass 
flow rates through each face of an infinitesimal control volume. 
Explain why the former is so much less involved than the latter.

9–22C  If a flow field is compressible, what can we say 
about the material derivative of density? What about if the 
flow field is incompressible?

9–23  Repeat Example 9–1 (gas compressed in a cylinder by 
a piston), but without using the continuity equation. Instead, 
consider the fundamental definition of density as mass divided 
by volume. Verify that Eq. 5 of Example 9–1 is correct.

9–24  The compressible form of the continuity equation is 
(−r/−t) 1 =

!
?(rV

!
) 5 0. Expand this equation as far as possible 

in Cartesian coordinates (x, y, z) and (u, v, w).

9–25  In Example 9–6 we derive the equation for volumetric 
strain rate, (1/V )(DV/Dt) 5 =

!
?V
!
. Write this as a word equa-

tion and discuss what happens to the volume of a fluid ele-
ment as it moves around in a compressible fluid flow field 
(Fig. P9–25).

FIGURE P9–25

Time = t1

Time = t2

Time = t3

9–26  Verify that the spiraling line vortex/sink flow in the 
ru-plane of Prob. 9–17 satisfies the two-dimensional incom-
pressible continuity equation. What happens to conservation 
of mass at the origin? Discuss.

9–27  Verify that the steady, two-dimensional, incompress-
ible velocity field of Prob. 9–16 satisfies the continuity equa-
tion. Stay in Cartesian coordinates and show all your work.

9–28  Consider the steady, two-dimensional velocity field 
given by V

!
 5 (u, v) 5 (1.6 1 1.8x)  i  

!
 1 (1.5 2 1.8y)  j  

!
. Verify 

that this flow field is incompressible.

9–29  Consider steady flow of water through an axisym-
metric garden hose nozzle (Fig. P9–29). The axial compo-
nent of velocity increases linearly from uz, entrance to  uz, exit as 
sketched. Between z 5 0 and z 5 L, the axial velocity com-
ponent is given by uz 5 uz,entrance 1 [(uz,exit 2 uz,entrance)/L]z.  
Generate an expression for the radial velocity component ur 
between z 5 0 and z 5 L. You may ignore frictional effects on 
the walls.

FIGURE P9–17

y

x

9–18E  Alex is measuring the time-averaged velocity 
components in a pump using a laser Doppler velocimeter 
(LDV). Since the laser beams are aligned with the radial and 
tangential directions of the pump, he measures the ur and uu 
com ponents of velocity. At r 5 5.20 in and u 5 30.0°, ur 5 
2.06 ft/s and uu 5 4.66 ft/s. Unfortunately, the data analysis 
program requires input in Cartesian coordinates (x, y) in feet 
and (u, v) in ft/s. Help Alex transform his data into Cartesian 
coordinates. Specifically, calculate x, y, u, and v at the given 
data point.

9–19  Let vector G
!
 be given by G

!
5 4xz   i

!
2 y2

  j
!
1 yz k

!
 

and let V be the volume of a cube of unit length with its cor-
ner at the origin, bounded by x 5 0 to 1, y 5 0 to 1, and 
z 5 0 to 1 (Fig. P9–19). Area A is the surface area of the 
cube. Perform both integrals of the divergence theorem and 
verify that they are equal. Show all your work.

FIGURE P9–19

1

1

1

x

y

z

A
V

9–20  The product rule can be applied to the divergence of 
scalar f times vector G

!
 as: =

!
?( fG

!
) 5 G

!
?=
!
f 1 f  =

!
? G
!
. Expand 

both sides of this equation in Cartesian coordinates and verify 
that it is correct.
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9–36  Imagine a steady, two-dimensional, incompressible 
flow that is purely radial in the xy- or ru-plane. In other 
words, velocity component ur is nonzero, but uu is zero every-
where (Fig. P9–36). What is the most general form of velocity 
component ur that does not violate conservation of mass?

FIGURE P9–36

y

x

r

ur

u

9–37  Two velocity components of a steady, incompressible 
flow field are known: u 5 2ax 1 bxy 1 cy2 and v 5 axz 2 byz2, 
where a, b, and c are constants. Velocity component w is miss-
ing. Generate an expression for w as a function of x, y, and z.

9–38  A two-dimensional diverging duct is being 
designed to diffuse the high-speed air exiting a 

wind tunnel. The x-axis is the centerline of the duct (it is 
symmetric about the x-axis), and the top and bottom walls are 
to be curved in such a way that the axial wind speed u 
decreases approximately linearly from u1 5 300 m/s at sec-
tion 1 to u2 5 100 m/s at section 2 (Fig. P9–38). Meanwhile, 
the air density r is to increase approximately linearly from 
r1 5 0.85 kg/m3 at section 1 to r2 5 1.2 kg/m3 at section 2. 
The diverging duct is 2.0 m long and is 1.60 m high at sec-
tion 1 (only the upper half is sketched in Fig. P9–38; the half-
height at section 1 is 0.80 m). (a) Predict the y-component of 
velocity, v(x, y), in the duct. (b) Plot the approximate shape 
of the duct, ignoring friction on the walls. (c) What should be 
the half-height of the duct at section 2?

FIGURE P9–38

y

x

Δx = 2.0 m

0.8 m

(1) (2)

Stream Function

9–39C  Consider two-dimensional flow in the xy-plane. 
What is the significance of the difference in value of stream 
function c from one streamline to another?

FIGURE P9–29

Dexit
Dentrance

uz, entrance

z uz, exit

z = Lz = 0

r

9–30  Consider the following steady, three-dimensional 
veloc ity field in Cartesian coordinates: V

!
 5 (u, v, w) 5 

(axy2 2 b) i  

!
 22cy3

 j  

!
 1 dxyk

→
, where a, b, c, and d are con-

stants. Under what conditions is this flow field incompress-
ible?  Answer: a 5 6c

9–31  Consider the following steady, three-dimensional velocity 
field in Cartesian coordinates: V

!
 5 (u, v, w) 5 (ax2y 1 b)  i  

!
 1 

cxy2
 j  

!
 1 dx2y k

→
 where a, b, c, and d are constants. Under what 

conditions is this flow field incompressible?

9–32  The u velocity component of a steady, two-dimensional, 
incompressible flow field is u 5 ax 1 b, where a and b are 
constants. Velocity component v is unknown. Generate an 
expression for v as a function of x and y.

9–33  Imagine a steady, two-dimensional, incompressible 
flow that is purely circular in the xy- or ru-plane. In other 
words, velocity component uu is nonzero, but ur is zero every-
where (Fig. P9–33). What is the most general form of velocity 
component uu that does not violate conservation of mass?

FIGURE P9–33

y

x

r
uu

u

9–34  The u velocity component of a steady, two-dimensional, 
incompressible flow field is u 5 ax 1 by, where a and b are 
constants. Velocity component v is unknown. Generate an 
expression for v as a function of x and y.  Answer: 2ay 1 f (x)

9–35  The u velocity component of a steady, two-dimensional, 
incompressible flow field is u 5 3ax2 2 2bxy, where a and b 
are constants. Velocity component v is unknown. Generate an 
expression for v as a function of x and y.
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9–46  Consider fully developed Couette flow—flow between 
two infinite parallel plates separated by distance h, with the 
top plate moving and the bottom plate stationary as illus-
trated in Fig. P9–46. The flow is steady, incompressible, and 
two-dimensional in the xy-plane. The velocity field is given by 
V
!
 5 (u, v) 5 (Vy/h) i  

!
 1 0  j  

!
. Generate an expression 

for stream function c along the vertical dashed line in 
Fig. P9–46. For convenience, let c 5 0 along the bottom wall 
of the channel. What is the value of c along the top wall?  

Answers: Vy2/2h, Vh/2

FIGURE P9–46

h
y

x

u =

V

y
V h

9–47  As a follow-up to Prob. 9–46, calculate the volume flow 
rate per unit width into the page of Fig. P9–46 from first prin-
ciples (integration of the velocity field). Compare your result 
to that obtained directly from the stream function. Discuss.

9–48E  Consider the Couette flow of Fig. P9–46. For the case 
in which V 5 10.0 ft/s and h 5 1.20 in, plot several streamlines 
using evenly spaced values of stream function. Are the stream-
lines themselves equally spaced? Discuss why or why not.

9–49  Consider fully developed, two-dimensional channel 
flow—flow between two infinite parallel plates separated by 
distance h, with both the top plate and bottom plate station-
ary, and a forced pressure gradient dP/dx driving the flow as 
illustrated in Fig. P9–49. (dP/dx is constant and negative.) The 
flow is steady, incompressible, and two-dimensional in the xy-
plane. The velocity components are given by u 5 (1/2m)(dP/dx)
(y2 2 hy) and v 5 0, where m is the fluid’s viscosity. Generate 
an expression for stream function c along the vertical dashed 
line in Fig. P9–49. For convenience, let c 5 0 along the bottom 
wall of the channel. What is the value of c along the top wall?

FIGURE P9–49

h
y

u(y)

x

9–50  As a follow-up to Prob. 9–49, calculate the volume flow 
rate per unit width into the page of Fig. P9–49 from first prin-
ciples (integration of the velocity field). Compare your result 
to that obtained directly from the stream function. Discuss.

9–40C  In CFD lingo, the stream function is often called a 
non-primitive variable, while velocity and pressure are called 
primitive variables. Why do you suppose this is the case?

9–41C  What restrictions or conditions are imposed on stream 
function c so that it exactly satisfies the two-dimensional 
incompressible continuity equation by definition? Why are 
these restrictions necessary?

9–42C  What is significant about curves of constant stream 
function? Explain why the stream function is useful in fluid 
mechanics.

9–43  Consider a steady, two-dimensional, incompress-
ible flow field called a uniform stream. The fluid speed 
is V everywhere, and the flow is aligned with the x-axis 
(Fig. P9–43). The Cartesian velocity components are u 5 V 
and v 5 0. Generate an expression for the stream function 
for this flow. Suppose V 5 6.94 m/s. If c2 is a horizontal 
line at y 5 0.5 m and the value of c along the x-axis is zero, 
calculate the volume flow rate per unit width (into the page 
of Fig. P9–43) between these two streamlines.

FIGURE P9–43

c0 = 0

c1

–c1

–c2

c2

y

V

x

9–44  A common flow encountered in practice is the cross-
flow of a fluid approaching a long cylinder of radius R at a 
free stream speed of U∞. For incompressible inviscid flow, the 
velocity field of the flow is given as 

ur 5 Uqa1 2
R2

r2 bcos u

uu 5 2Uqa1 1
R2

r2 bsin u

Show that the velocity field satisfies the continuity equa-
tion, and determine the stream function corresponding to this 
velocity field.

9–45  The stream function of an unsteady two-dimensional 
flow field is given by 

c 5
4x

y2 t

Sketch a few streamlines for the given flow on the x-y plane, 
and derive expressions for the velocity components u(x, y, t) 
and v(x, y, t). Also determine the pathlines at t 5 0.
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antenna, wind blowing against a flag pole or telephone pole, 
wind hitting electric wires, and ocean currents impinging on 
the submerged round beams that support oil platforms. In all 
these cases, the flow at the rear of the cylinder is separated 
and unsteady and usually turbulent. However, the flow in the 
front half of the cylinder is much more steady and predict-
able. In fact, except for a very thin boundary layer near the 
cylinder surface, the flow field can be approximated by the 
following steady, two-dimensional stream function in the 
xy- or ru-plane, with the cylinder centered at the origin: c 5 
V sin u(r 2 a2/r). Generate expressions for the radial and tan-
gential velocity components.

FIGURE P9–55

V
y

r = a

r

u

x

9–56  Consider steady, incompressible, axisymmetric flow 
(r, z) and (ur, uz) for which the stream function is defined as 
ur 5 2(1/r)(−c/−z) and uz 5 (1/r)(−c/−r). Verify that c so 
defined satisfies the continuity equation. What conditions or 
restrictions are required on c?

9–57  A uniform stream of speed V is inclined at angle a 
from the x-axis (Fig. P9–57). The flow is steady, two-dimen-
sional, and incompressible. The Cartesian velocity compo-
nents are u 5 V cos a and v 5 V sin a. Generate an expres-
sion for the stream function for this flow.

a

c0

c1

–c1

–c2

c2

y

V
x

FIGURE P9–57

9–58  A steady, two-dimensional, incompressible flow 
field in the xy-plane has the following stream function: c 5 
ax2 1 bxy 1 cy2, where a, b, and c are constants. (a) Obtain 
expressions for velocity components u and v. (b) Verify 
that the flow field satisfies the incompressible continuity 
equation.

9–59  For the velocity field of Prob. 9–58, plot stream-
lines c 5 0, 1, 2, 3, 4, 5, and 6 m2/s. Let con-

stants a, b, and c have the following values: a 5 0.50 s21, 

9–51  Consider the channel flow of Fig. P9–49. The fluid is 
water at 208C. For the case in which dP/dx 5 220,000 N/m3 
and h 5 1.20 mm, plot several streamlines using evenly 
spaced values of stream function. Are the streamlines them-
selves equally spaced? Discuss why or why not.

9–52  In the field of air pollution control, one often needs to 
sample the quality of a moving airstream. In such measure-
ments a sampling probe is aligned with the flow as sketched 
in Fig. P9–52. A suction pump draws air through the probe 
at volume flow rate V

#
 as sketched. For accurate sampling, 

the air speed through the probe should be the same as 
that of the airstream (isokinetic sampling). However, if the 
applied suction is too large, as sketched in Fig. P9–52, the 
air speed through the probe is greater than that of the air-
stream (super iso kinetic sampling). For simplicity consider a 
two-dimensional case in which the sampling probe height is 
h 5 4.58 mm and its width (into the page of Fig. P9–52) is 
W 5 39.5 mm. The values of the stream function corre-
sponding to the lower and upper dividing streamlines are 
cl 5 0.093 m2/s and cu 5 0.150 m2/s, respectively. Cal-
culate the volume flow rate through the probe (in units of 
m3/s) and the average speed of the air sucked through the 
probe.  Answers: 0.00225 m3/s, 12.4 m/s

FIGURE P9–52

Vfree stream

Sampling probe

Dividing streamlines

V
.

c = cu

c = cl

h
Vavg

9–53  Suppose the suction applied to the sampling probe of 
Prob. 9–52 were too weak instead of too strong. Sketch what 
the streamlines would look like in that case. What would you 
call this kind of sampling? Label the lower and upper divid-
ing streamlines.

9–54  Consider the air sampling probe of Prob. 9–52. If the 
upper and lower streamlines are 6.24 mm apart in the air-
stream far upstream of the probe, estimate the free stream 
speed Vfree stream.

9–55  There are numerous occasions in which a fairly uni-
form free-stream flow of speed V in the x-direction encoun-
ters a long circular cylinder of radius a aligned normal to the 
flow (Fig. P9–55). Examples include air flowing around a car 
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entrance and at the nozzle exit. (b) Plot several streamlines in 
the rz-plane inside the nozzle, and design the appropriate 
nozzle shape.

9–67  Flow separates at a sharp corner along a wall and 
forms a recirculating separation bubble as sketched in 
Fig. P9–67 (streamlines are shown). The value of the stream 
function at the wall is zero, and that of the uppermost 
streamline shown is some positive value cupper. Discuss the 
value of the stream function inside the separation bubble. In 
particular, is it positive or negative? Why? Where in the flow 
is c a minimum?

FIGURE P9–67

c = cupper

c = 0

Separation bubble

9–68  A graduate student is running a CFD code for his 
MS research project and generates a plot of flow streamlines 
(contours of constant stream function). The contours are of 
equally spaced values of stream function. Professor I. C. 
Flows looks at the plot and immediately points to a region of 
the flow and says, “Look how fast the flow is moving here!” 
What did Professor Flows notice about the streamlines in that 
region and how did she know that the flow was fast in that 
region?

9–69  Streaklines are shown in Fig. P9–69 for flow of water 
over the front portion of a blunt, axisymmetric cylinder aligned 
with the flow. Streaklines are generated by introducing air 
bubbles at evenly spaced points upstream of the field of view. 
Only the top half is shown since the flow is symmetric about 
the horizontal axis. Since the flow is steady, the streaklines are 
coincident with streamlines. Discuss how you can tell from the 
streamline pattern whether the flow speed in a particular region 
of the flow field is (relatively) large or small.

FIGURE P9–69
Courtesy ONERA. Photograph by Werlé.

b 5 21.3 s21, and c 5 0.50 s21. For consistency, plot stream-
lines between x 5 22 and 2 m, and y 5 24 and 4 m. Indi-
cate the direction of flow with arrows.

9–60  A steady, two-dimensional, incompressible flow 
field in the xy-plane has a stream function given by c 5 
ax2 2 by2 1 cx 1 dxy, where a, b, c, and d are constants. 
(a) Obtain expressions for velocity components u and v. 
(b) Verify that the flow field satisfies the incompressible conti-
nuity equation.

9–61  Repeat Prob. 9–60, except make up your own stream 
function. You may create any function c(x, y) that you desire, 
as long as it contains at least three terms and is not the same 
as an example or problem in this text. Discuss.

9–62  A steady, incompressible, two-dimensional CFD cal-
culation of flow through an asymmetric two-dimensional 
branching duct reveals the streamline pattern sketched in 
Fig. P9–62, where the values of c are in units of m2/s, and W is 
the width of the duct into the page. The values of stream func-
tion c on the duct walls are shown. What percentage of the flow 
goes through the upper branch of the duct?  Answer: 53.9%

FIGURE P9–62

c = 4.35

c = 2.03

c = 3.10
h

9–63  If the average velocity in the main branch of the duct of 
Prob. 9–62 is 13.4 m/s, calculate duct height h in units of cm. 
Obtain your result in two ways, showing all your work. You 
may use the results of Prob. 9–62 in only one of the methods.

9–64E  Consider a steady, two-dimensional, incompress-
ible flow field for which the u velocity component is u 5 
ax2 2 bxy, where a 5 0.45 (ft·s)21, and b 5 0.75 (ft·s)21. Let 
v 5 0 for all values of x when y 5 0 (that is, v 5 0 along 
the x-axis). Generate an expression for the stream function 
and plot some streamlines of the flow. For consistency, set 
c 5 0 along the x-axis, and plot in the range 0 , x , 3 ft 
and 0 , y , 4 ft.

9–65  Consider the garden hose nozzle of Prob. 9–29. Gen-
erate an expression for the stream function corresponding to 
this flow field.

9–66E  Consider the garden hose nozzle of Probs. 9–29 
and 9–65. Let the entrance and exit nozzle 

diameters be 0.50 and 0.14 in, respectively, and let the nozzle 
length be 2.0 in. The volume flow rate through the nozzle is 
2.0 gal/min. (a) Calculate the axial speeds (ft/s) at the nozzle 
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c

A

B
1.60

1.62

1.64

1.66

1.68

1.70

1.61

1.63

1.65

1.67

1.69

1.71

FIGURE P9–74

9–75  Time-averaged, turbulent, incompressible, two-
dimensional flow over a square block of dimension h 5 
1 m sitting on the ground is modeled with a computa-
tional fluid dynamics (CFD) code. A close-up view of flow 
streamlines (contours of constant stream function) is shown 
in Fig. P9–75. The fluid is air at room temperature. Note 
that contours of constant compressible stream function 
are plotted in Fig. P9–75, even though the flow itself is 
approximated as incompressible. Values of cr are in units 
of kg/m·s. (a) Draw an arrow on the plot to indicate the 
direction and relative magnitude of the velocity at point A. 
Repeat for point B. (b) What is the approximate speed of 
the air at point B? (Point B is between streamlines 5 and 6 
in Fig. P9–75.)

A
B

3 4 6
10

2
1

h
h

FIGURE P9–75

9–76  Consider steady, incompressible, two-dimensional 
flow due to a line source at the origin (Fig. P9–76). Fluid 
is created at the origin and spreads out radially in all direc-
tions in the xy-plane. The net volume flow rate of created 
fluid per unit width is V

#
/L  (into the page of Fig. P9–76), 

where L is the width of the line source into the page in 
Fig. P9–76. Since mass must be conserved everywhere except 
at the origin (a singular point), the volume flow rate per unit 
width through a circle of any radius r must also be V

#
/L . If 

we (arbitrarily) specify stream function c to be zero along 
the positive x-axis (u 5 0), what is the value of c along the 

9–70E  A sketch of flow streamlines (contours of constant 
stream function) is shown in Fig. P9–70E for steady, incom-
pressible, two-dimensional flow of air in a curved duct. 
(a) Draw arrows on the streamlines to indicate the direc-
tion of flow. (b) If h 5 1.58 in, what is the approximate 
speed of the air at point P? (c) Repeat part (b) if the fluid 
were water instead of air. Discuss.  Answers: (b) 0.99 ft/s, 

(c) 0.99 ft/s

P

h

c = 0.32 ft2/s

c = 0.45 ft2/s

FIGURE P9–70E

9–71  We briefly mention the compressible stream function 
cr in this chapter, defined in Cartesian coordinates as ru 5 
(−cr/−y) and rv 5 2(−cr/−x). What are the primary dimen-
sions of cr? Write the units of cr in primary SI units and in 
primary English units.

9–72  In Example 9–2, we provide expressions for u, v, and 
r for flow through a compressible converging duct. Generate 
an expression for the compressible stream function cr that 
describes this flow field. For consistency, set cr 5 0 along 
the x-axis.

9–73  In Prob. 9–38 we developed expressions for u, v, 
and r for flow through the compressible, two-

dimensional, diverging duct of a high-speed wind tunnel. 
Generate an expression for the compressible stream function 
cr that describes this flow field. For consistency, set cr 5 0 
along the x-axis. Plot several streamlines and verify that they 
agree with those you plotted in Prob. 9–38. What is the value 
of cr at the top wall of the diverging duct?

9–74  Steady, incompressible, two-dimensional flow over a 
newly designed small hydrofoil of chord length c 5 9.0 mm 
is modeled with a commercial computational fluid dynamics 
(CFD) code. A close-up view of flow streamlines (contours 
of constant stream function) is shown in Fig. P9–74. Values 
of the stream function are in units of m2/s. The fluid is water 
at room temperature. (a) Draw an arrow on the plot to indi-
cate the direction and relative magnitude of the velocity at 
point A. Repeat for point B. Discuss how your results can be 
used to explain how such a body creates lift. (b) What is the 
approximate speed of the air at point A? (Point A is between 
streamlines 1.65 and 1.66 in Fig. P9–74.)
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9–83C  The general control volume form of the linear momen-
tum equation is

#
CV

 rg
!
 dV 1 #

CS
 sij·n

!
 dA

 I II

5 #
CV

  
0
0t

 arV!b dV 1 #
CS

 arV!bV
!
·n
!
 dA

 III IV

Discuss the meaning of each term in this equation. The terms are 
labeled for convenience. Write the equation as a word equation.

9–84  Consider liquid in a cylindrical tank. Both the tank 
and the liquid rotate as a rigid body (Fig. P9–84). The free 
surface of the liquid is exposed to room air. Surface ten-
sion effects are negligible. Discuss the boundary conditions 
required to solve this problem. Specifically, what are the 
velocity boundary conditions in terms of cylindrical coordi-
nates (r, u, z) and velocity components (ur, uu, uz) at all sur-
faces, including the tank walls and the free surface? What 
pressure boundary conditions are appropriate for this flow 
field? Write mathematical equations for each boundary con-
dition and discuss.

Liquid

Free 
surface

r

z

v

r
g

R

P = Patm

→

FIGURE P9–84

 9–85  The rθ-component of the viscous stress tensor in 
cylindrical coordinates is

 tru 5 tur 5 m cr  
0
0r

 auu
r
b 1

1
r
 
0ur

0u
d  (1)

Some authors write this component instead as

 tru 5 tur 5 m c 1
r
 a 0ur

0u
2 uub 1

0uu
0r

d  (2)

Are these the same? In other words is Eq. 2 equivalent to Eq. 1, 
or do these other authors define their viscous stress tensor 
differently? Show all your work.

positive y-axis (u 5 908)? What is the value of c along the 
negative x-axis (u 5 1808)?

y

x

V
L r

ur

u

⋅

FIGURE P9–76

9–77  Repeat Prob. 9–76 for the case of a line sink instead 
of a line source. Let V

#
/L  be a positive value, but the flow is 

everywhere in the opposite direction.

Linear Momentum Equation, Boundary Conditions, 
and Applications

9–78C  What is mechanical pressure Pm, and how is it used 
in an incompressible flow solution?

9–79C  What are constitutive equations, and to which fluid 
mechanics equation are they applied?

9–80C  An airplane flies at constant velocity V
!
airplane 

(Fig. P9–80C). Discuss the velocity boundary conditions on 
the air adjacent to the surface of the airplane from two frames 
of reference: (a) standing on the ground, and (b) moving with 
the airplane. Likewise, what are the far-field velocity bound-
ary conditions of the air (far away from the airplane) in both 
frames of reference?

→
Vairplane

FIGURE P9–80C

9–81C  What is the main distinction between a Newtonian 
fluid and a non-Newtonian fluid? Name at least three Newto-
nian fluids and three non-Newtonian fluids.

9–82C  Define or describe each type of fluid: (a) viscoelas-
tic fluid, (b) pseudoplastic fluid, (c) dilatant fluid, (d) Bing-
ham plastic fluid.
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(Fig. P9–91). The distance between the walls is h, and gravity 
acts in the negative z-direction (downward in the figure). There 
is no applied (forced) pressure driving the flow—the fluid falls 
by gravity alone. The pressure is constant everywhere in the 
flow field. Calculate the velocity field and sketch the velocity 
profile using appropriate nondimensionalized variables.

h

z

x

g
→

Fluid:
r, m

Fixed
wall

Fixed
wall

FIGURE P9–91

9–92  For the fluid falling between two parallel vertical walls 
(Prob. 9–91), generate an expression for the volume flow rate 
per unit width (V

#
/L) as a function of r, m, h, and g. Compare 

your result to that of the same fluid falling along one vertical wall 
with a free surface replacing the second wall (Example 9–17), 
all else being equal. Discuss the differences and provide a 
physical explanation.  Answer: rgh3/12m downward

9–93  Repeat Example 9–17, except for the case in which 
the wall is inclined at angle a (Fig. P9–93). Generate expres-
sions for both the pressure and velocity fields. As a check, 
make sure that your result agrees with that of Example 9–17 
when a 5 908. [Hint: It is most convenient to use the (s, y, 
n) coordinate system with velocity components (us, v, un), 
where y is into the page in Fig. P9–93. Plot the dimensionless 
velocity profile us* versus n* for the case in which a 5 608.]

z

x

g
→

s

n

Fixed
wall

Air

P = Patm

Oil film:
r, m

h
a

FIGURE P9–93

9–86  Engine oil at T 5 608C is forced to flow between two 
very large, stationary, parallel flat plates separated by a thin 
gap height h 5 3.60 mm (Fig. P9–86). The plate dimensions 
are L 5 1.25 m and W 5 0.550 m. The outlet pressure is 
atmospheric, and the inlet pressure is 1 atm gage pressure. 
Estimate the volume flow rate of oil. Also calculate the 
Reynolds number of the oil flow, based on gap height h and 
average velocity V. Is the flow laminar or turbulent?  Answers: 

2.39 3 1023 m3/s, 51.8, laminar

y

x

h

L
W

V

Pout
Pin

FIGURE P9–86

9–87  Consider the steady, two-dimensional, incompressible 
velocity field, V

!
 5 (u, v) 5 (ax 1 b) i  

!
 1 (2ay 1 c)  j  

!
, where a, 

b, and c are constants. Calculate the pressure as a function of 
x and y.

9–88  Consider the following steady, two-dimensional, incom-
pressible velocity field: V

!
 5 (u, v) 5 (2ax2) i  

!
 1 (2axy)  j  

!
, where 

a is a constant. Calculate the pressure as a function of x and y.

9–89  Consider steady, two-dimensional, incompressible flow 
due to a spiraling line vortex/sink flow centered on the z-axis. 
Streamlines and velocity components are shown in Fig. P9–89. 
The velocity field is ur 5 C/r and uu 5 K/r, where C and K are 
constants. Calculate the pressure as a function of r and u.

uu

r

uu =
K
r

ur =
C
r

FIGURE P9–89

9–90  Consider the following steady, two-dimensional, incom-
pressible velocity field: V

!
 5 (u, v) 5 (ax 1 b)  i  

!
 1 (2ay 1 

cx2)  j  

!
, where a, b, and c are constants. Calculate the pressure 

as a function of x and y.  Answer: cannot be found

9–91  Consider steady, incompressible, parallel, laminar flow 
of a viscous fluid falling between two infinite vertical walls 
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cylinder wall. In other words, for a very tiny gap the velocity 
profile reduces to that of simple two-dimensional Couette 
flow. (Hint: Define y 5 Ro 2 r, h 5 gap thickness 5 Ro 2 Ri, 
and V 5 speed of the “upper plate” 5 Rivi.) (b) The outer 
cylinder radius approaches infinity, while the inner cylinder 
radius is very small. What kind of flow does this approach?

9–99  Repeat Prob. 9–96 for the more general case. Namely, 
let the inner cylinder rotate at angular velocity vi and let the 
outer cylinder rotate at angular velocity vo. All else is the 
same as Prob. 9–96. Generate an exact expression for veloc-
ity component uu as a function of radius r and the other 
parameters in the problem. Verify that when vo 5 0 your 
result simplifies to that of Prob. 9–96.

9–100  Analyze and discuss a limiting case of Prob. 9–99 
in which there is no inner cylinder (Ri 5 vi 5 0). Gener-
ate an expression for uu as a function of r. What kind 
of flow is this? Describe how this flow could be set up 
experimentally.  Answer: vor

9–101  Consider steady, incompressible, laminar flow of a 
Newtonian fluid in an infinitely long round pipe annulus of 
inner radius Ri and outer radius Ro (Fig. P9–101). Ignore the 
effects of gravity. A constant negative pressure gradient −P/−x 
is applied in the x-direction, (−P/dx) 5 (P2 2 P1)/(x2 2 x1), 
where x1 and x2 are two arbitrary locations along the x-axis, 
and P1 and P2 are the pressures at those two locations. The 
pressure gradient may be caused by a pump and/or gravity. 
Note that we adopt a modified cylindrical coordinate system 
here with x instead of z for the axial component, namely, 
(r, u, x) and (ur, uu, u). Derive an expression for the velocity 
field in the annular space in the pipe.

r

Ro P2P1 Ri

x1 x2

Fluid: r, m

Outer pipe wall

x

∂x x2 – x1

P2 – P1∂P
=

FIGURE P9–101

9–102  Consider again the pipe annulus sketched in 
Fig. P9–101. Assume that the pressure is constant everywhere 
(there is no forced pressure gradient driving the flow). How-
ever, let the inner cylinder be moving at steady velocity V to 
the right. The outer cylinder is stationary. (This is a kind of 
axisymmetric Couette flow.) Generate an expression for the 
x-component of velocity u as a function of r and the other 
parameters in the problem.

9–103  Repeat Prob. 9–102 except swap the stationary and 
moving cylinder. In particular, let the inner cylinder be 

9–94  For the falling oil film of Prob. 9–93, generate an 
expression for the volume flow rate per unit width of oil fall-
ing down the wall (V

#
/L) as a function of r, m, h, and g. Cal-

culate (V
#
/L) for an oil film of thickness 5.0 mm with r 5 

888 kg/m3 and m 5 0.80 kg/m · s.

9–95  The first two viscous terms in the u-component of the 

Navier–Stokes equation (Eq. 9–62c) are m c1
r
 
0
0r

 ar 
0uu
0r

b 2
uu
r2 d .

Expand this expression as far as possible using the product 
rule, yielding three terms. Now combine all three terms into 
one term. (Hint: Use the product rule in reverse—some trial 
and error may be required.)

9–96  An incompressible Newtonian liquid is confined 
between two concentric circular cylinders of infinite length—
a solid inner cylinder of radius Ri and a hollow, stationary 
outer cylinder of radius Ro (Fig. P9–95; the z-axis is out 
of the page). The inner cylinder rotates at angular velocity 
vi. The flow is steady, laminar, and two-dimensional in the 
ru-plane. The flow is also rotationally symmetric, meaning 
that nothing is a function of coordinate u (uu and P are func-
tions of radius r only). The flow is also circular, meaning that 
velocity component ur 5 0 everywhere. Generate an exact 
expression for velocity component uu as a function of radius r 
and the other parameters in the problem. You may ignore 
gravity. (Hint: The result of Prob. 9–95 is useful.)

Liquid: r, m

Rotating inner cylinder

Stationary outer cylinder

Ro

Ri

vi

FIGURE P9–96

9–97  Repeat Prob. 9–96, but let the inner cylinder be sta-
tionary and the outer cylinder rotate at angular velocity vo. 
Generate an exact solution for uu(r) using the step-by-step 
procedure discussed in this chapter.

9–98  Analyze and discuss two limiting cases of Prob. 9–96: 
(a) The gap is very small. Show that the velocity profile 
approaches linear from the outer cylinder wall to the inner 
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is no applied pressure gradient (−P/−x 5 0). Instead, the fluid 
flows down the pipe due to gravity alone. We adopt the coor-
dinate system shown, with x down the axis of the pipe. Derive 
an expression for the x-component of velocity u as a function 
of radius r and the other parameters of the problem. Calcu-
late the volume flow rate and average axial velocity through 
the pipe.  Answers: rg (sin a)(R2 2 r2)/4m, rg (sin a)pR4/8m, 

rg (sin a)R2/8m

9–106  A stirrer mixes liquid chemicals in a large tank 
(Fig. P9–106). The free surface of the liquid is exposed to 
room air. Surface tension effects are negligible. Discuss the 
boundary conditions required to solve this problem. Specifi-
cally, what are the velocity boundary conditions in terms of 
cylindrical coordinates (r, u, z) and velocity components 
(ur, uu, uz) at all surfaces, including the blades and the free 
surface? What pressure boundary conditions are appropriate 
for this flow field? Write mathematical equations for each 
boundary condition and discuss.

Free surface

z
r

v

r, m
Rtank

P = Patm

D

FIGURE P9–106

9–107  Repeat Prob. 9–106, but from a frame of reference 
rotating with the stirrer blades at angular velocity v.

Review Problems

9–108C  List the six steps used to solve the Navier–Stokes 
and continuity equations for incompressible flow with con-
stant fluid properties. (You should be able to do this without 
peeking at the chapter.)

9–109C  For each part, write the official name for the differ-
ential equation, discuss its restrictions, and describe what the 
equation represents physically.

(a) 
0r
0t

1 =
!
 ·(rV

!
 ) 5 0

(b) 
0
0t

 (rV
!
) 1 =

!
 ·(rV

!
 V
!
) 5 rg

!
1 =

!
 ·sij

(c) r 

DV
!

Dt
5 2=

!
P 1 rg

!
1 m=2V

!

9–110C  Explain why the incompressible flow approxima-
tion and the constant temperature approximation usually go 
hand in hand.

stationary, and let the outer cylinder be moving at steady 
velocity V to the right, all else being equal. Generate an 
expression for the x-component of velocity u as a function of 
r and the other parameters in the problem.

9–104  Consider a modified form of Couette flow in which 
there are two immiscible fluids sandwiched between two infi-
nitely long and wide, parallel flat plates (Fig. P9–104). The 
flow is steady, incompressible, parallel, and laminar. The top 
plate moves at velocity V to the right, and the bottom plate is 
stationary. Gravity acts in the 2z-direction (downward in the 
figure). There is no forced pressure gradient pushing the flu-
ids through the channel—the flow is set up solely by viscous 
effects created by the moving upper plate. You may ignore 
surface tension effects and assume that the interface is hori-
zontal. The pressure at the bottom of the flow (z 5 0) is 
equal to P0. (a) List all the appropriate boundary conditions 
on both velocity and pressure. (Hint: There are six required 
boundary conditions.) (b) Solve for the velocity field. (Hint: 
Split up the solution into two portions, one for each fluid. 
Generate expressions for u1 as a function of z and u2 as a 
function of z.) (c) Solve for the pressure field. (Hint: Again 
split up the solution. Solve for P1 and P2.) (d) Let fluid 1 
be water and let fluid 2 be unused engine oil, both at 808C. 
Also let h1 5 5.0 mm, h2 5 8.0 mm, and V 5 10.0 m/s. Plot u 
as a function of z across the entire channel. Discuss the 
results.

h2

h1

Interface

Moving wall

Fluid 2  r2, m2

Fluid 1  r1, m1z
x

V

FIGURE P9–104

9–105  Consider steady, incompressible, laminar flow of a 
Newtonian fluid in an infinitely long round pipe of diameter D 
or radius R 5 D/2 inclined at angle a (Fig. P9–105). There 

R

a

Fluid: r, m

Pipe wall

D

g

r

x

→

FIGURE P9–105
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D0

DL

Test 
section

Contraction

uz, 0 uz, L

z = Lz = 0

r

z

FIGURE P9–115E

9–116  Consider the following steady, three-dimensional 
velocity field in Cartesian coordinates: V

!
 5 (u, v, w) 5 

(axz2 2 by) i  

!
 1 cxyz  j  

!
 1 (dz3 1 exz2)k

→
, where a, b, c, d, 

and e are constants. Under what conditions is this flow field 
incompressible? What are the primary dimensions of con-
stants a, b, c, d, and e?

9–117  Simplify the Navier–Stokes equation as much as 
possible for the case of an incompressible liquid being accel-
erated as a rigid body in an arbitrary direction (Fig. P9–117). 
Gravity acts in the 2z-direction. Begin with the incompress-
ible vector form of the Navier–Stokes equation, explain how 
and why some terms can be simplified, and give your final 
result as a vector equation.

Free 
surface

Fluid
particle

Liquid

g→

a→

a→

FIGURE P9–117

9–118  Simplify the Navier–Stokes equation as much as 
possible for the case of incompressible hydrostatics, with 
gravity acting in the negative z-direction. Begin with the 
incompressible vector form of the Navier–Stokes equation, 
explain how and why some terms can be simplified, and give 
your final result as a vector equation.  Answer: =

→
P 5 2rgk

→

9–119  Bob uses a computational fluid dynamics code to 
model steady flow of an incompressible fluid through a two-
dimensional sudden contraction as sketched in Fig. P9–119. 
Channel height changes from H1 5 12.0 cm to H2 5 4.6 cm. 
Uniform velocity V

!
1 5 18.5i i  

!
 m/s is to be specified on the left 

boundary of the computational domain. The CFD code uses 

9–111C  For each statement, choose whether the statement 
is true or false and discuss your answer briefly. For each 
statement it is assumed that the proper boundary conditions 
and fluid properties are known.
(a) A general incompressible flow problem with constant 
fluid properties has four unknowns.
(b) A general compressible flow problem has five unknowns.
(c) For an incompressible fluid mechanics problem, the 
continuity equation and Cauchy’s equation provide enough 
equations to match the number of unknowns.
(d ) For an incompressible fluid mechanics problem involv-
ing a Newtonian fluid with constant properties, the continu-
ity equation and the Navier–Stokes equation provide enough 
equations to match the number of unknowns.

9–112C  Discuss the relationship between volumetric strain 
rate and the continuity equation. Base your discussion on 
fundamental definitions.

9–113  Repeat Example 9–17, except for the case in which 
the wall is moving upward at speed V. As a check, make 
sure that your result agrees with that of Example 9–17 when 
V 5 0. Nondimensionalize your velocity profile equation 
using the same normalization as in Example 9–17, and show 
that a Froude number and a Reynolds number emerge. Plot 
the profile w* versus x* for cases in which Fr 5 0.5 and 
Re 5 0.5, 1.0, and 5.0. Discuss.

9–114  For the falling oil film of Prob. 9–113, calculate the 
volume flow rate per unit width of oil falling down the wall 
(V
#
/L) as a function of wall speed V and the other parameters 

in the problem. Calculate the wall speed required such that 
there is no net volume flow of oil either up or down. Give 
your answer for V in terms of the other parameters in the 
problem, namely, r, m, h, and g. Calculate V for zero vol-
ume flow rate for an oil film of thickness 4.12 mm with r 5 
888 kg/m3 and m 5 0.801 kg/m·s.  Answer: 0.0615 m/s

9–115E  A group of students is designing a small, 
round (axisymmetric), low-speed wind tunnel 

for their senior design project (Fig. P9–115E). Their design 
calls for the axial component of velocity to increase linearly 
in the contraction section from uz, 0 to uz, L. The air speed 
through the test section is to be uz, L 5 120 ft/s. The length of 
the contraction is L 5 3.0 ft, and the entrance and exit diam-
eters of the contraction are D0 5 5.0 ft and DL 5 1.5 ft, 
respectively. The air is at standard temperature and pressure. 
(a) Verify that the flow can be approximated as incompress-
ible. (b) Generate an expression for the radial velocity com-
ponent ur between z 5 0 and z 5 L, staying in variable form. 
You may ignore frictional effects (boundary layers) on the 
walls. (c) Generate an expression for the stream function c as 
a function of r and z. (d) Plot some streamlines and design 
the shape of the contraction, assuming that frictional effects 
along the walls of the wind tunnel contraction are 
negligible.
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z

x

Streamlines

c = c3

c = c2

c = c1

c = c3

c = c2

c = c1

FIGURE P9–122

9–123  A block slides down a long, straight, inclined 
wall at speed V, riding on a thin film of oil of thickness h 
(Fig. P9–123). The weight of the block is W, and its surface 
area in contact with the oil film is A. Suppose V is measured, 
and W, A, angle a, and viscosity m are also known. Oil film 
thickness h is not known. (a) Generate an exact analytical 
expression for h as a function of the known parameters V, 
A, W, a, and m. (b) Use dimensional analysis to generate a 
dimensionless expression for h as a function of the given 
parameters. Construct a relationship between your P’s that 
matches the exact analytical expression of part (a).

A

h

r, m

a

g

V

→

FIGURE P9–123

9–124  Look up the definition of Poisson’s equation in one 
of your math textbooks or on the Internet. Write Poisson’s 
equation in standard form. How is Poisson’s equation similar 
to Laplace’s equation? How do these two equations differ?

9–125  Water flows down a long, straight, inclined pipe of 
diameter D and length L (Fig. P9–125). There is no forced 
pressure gradient between points 1 and 2; in other words, the 
water flows through the pipe by gravity alone, and P1 5 P2 5 
Patm. The flow is steady, fully developed, and laminar. We 
adopt a coordinate system in which x follows the axis of the 
pipe. (a) Use the control volume technique of Chap. 8 to gen-
erate an expression for average velocity V as a function of the 
given parameters r, g, D, Dz, m, and L. (b) Use differential 
analysis to generate an expression for V as a function of the 
given parameters. Compare with your result of part (a) and 
discuss. (c) Use dimensional analysis to generate a dimen-
sionless expression for V as a function of the given param-
eters. Construct a relationship between your P’s that matches 
the exact analytical expression.

a numerical scheme in which the stream function must be 
specified along all boundaries of the computational domain. 
As shown in Fig. P9–119, c is specified as zero along the 
entire bottom wall of the channel. (a) What value of c should 
Bob specify on the top wall of the channel? (b) How should 
Bob specify c on the left side of the computational domain? 
(c) Discuss how Bob might specify c on the right side of the 
computational domain.

H1

V1

H2

y

x

c = 0

FIGURE P9–119

9–120  For each of the listed equations, write down the 
equation in vector form and decide if it is linear or nonlinear. 
If it is nonlinear, which term(s) make it so? (a) incompress-
ible continuity equation, (b) compressible continuity equation, 
and (c) incompressible Navier–Stokes equation.

9–121  A boundary layer is a thin region near a wall in 
which viscous (frictional) forces are very important due to 
the no-slip boundary condition. The steady, incompressible, 
two-dimensional, boundary layer developing along a flat plate 
aligned with the free-stream flow is sketched in Fig. P9–121. 
The flow upstream of the plate is uniform, but boundary layer 
thickness d grows with x along the plate due to viscous effects. 
Sketch some streamlines, both within the boundary layer and 
above the boundary layer. Is d(x) a streamline? (Hint: Pay 
particular attention to the fact that for steady, incompressible, 
two-dimensional flow the volume flow rate per unit width 
between any two streamlines is constant.)

Boundary layer

y

x

V∞

d(x)

d(x)

FIGURE P9–121

9–122  Consider steady, two-dimensional, incompressible 
flow in the xz-plane rather than in the xy-plane. Curves of 
constant stream function are shown in Fig. P9–122. The non-
zero velocity components are (u, w). Define a stream function 
such that flow is from right to left in the xz-plane when c 
increases in the z-direction.
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flow rate assuming blood is a Bingham plastic fluid based on 
the shear stress relationship below. Plot the velocity profile 
of a Newtonian fluid, a pseudoplastic fluid, and a Bingham 
plastic fluid. How do they differ? Determine the flow rate 
assuming a Bingham plastic fluid.

trz 5 2m 
du

dr
1 ty

Fundamentals of Engineering (FE) Exam Problems

9–128  The continuity equation is also known as
(a) Conservation of mass (b) Conservation of energy
(c) Conservation of momentum (d ) Newton’s second law
(e) Cauchy’s equation

9–129  The Navier-Stokes equation is also known as
(a) Newton’s first law (b) Newton’s second law
(c) Newton’s third law (d ) Continuity equation
(e) Energy equation

9–130  Which choice is the general differential equation 
form of the continuity equation for a control volume?

(a) #
CS
rV
!
·n
!
 dA 5 0 (b) #

CV

0r
0t

 dV 1 #
CS
rV
!
·n
!
 dA 5 0

(c) =
!
 · (rV

!
) 5 0 (d ) 

0r
0t

1 =
!
·(rV

!
) 5 0

(e) None of these

9–131  Which choice is the differential, incompressible, two-
dimensional continuity equation in Cartesian coordinates?

(a) #
CS
rV
!
·n
!
 dA 5 0 (b) 

1
r
 
0(rur)

0r
1

1
r
 
0(uu)
0u

5 0

(c) =
!
·(rV

!
) 5 0 (d )=

!
·V
!
5 0

(e) 
0u
0x

1  
0v
0y

5 0

9–132  A steady velocity field is given by V
!
 5 (u, v, w) 5 

2ax2y i  

!
1 3bxy2

 j  

!
  1  cyk

→
, where a, b, and c are constants. 

Under what conditions is this flow field incompressible? 

(a) a 5 b (b) a 5 2b (c) 2a 5 23b

(d ) 3a 5 2b (e) a 5 2b

9–133  A steady, two-dimensional, incompressible flow field 
in the xy-plane has a stream function given by c 5 ax2 1 by2 1 cy, 
where a, b, and c are constants. The expression for the velocity 
component u is

(a) 2ax (b) 2by 1 c (c) 22ax

(d ) −2by 2 c (e) 2ax 1 2by 1 c

9–134  A steady, two-dimensional, incompressible flow field 
in the xy-plane has a stream function given by c 5 ax2 1 by2 1 cy, 
where a, b, and c are constants. The expression for the velocity 
component v is
(a) 2ax (b) 2by 1 c (c) 22ax (d ) 22by 2 c
(e) 2ax 1 2by 1 c

Δz

D

P1

P2

V

r, m
a

x L

g→

FIGURE P9–125

9–126  We approximate the flow of air into a vac-
uum cleaner’s floor attachment by the stream function  

c 5 
2V
#

2pL
  arctan 

sin 2u

cos 2u 1 b2/r2  in the center plane (the xy-

plane) in cylindrical coordinates, where L is the length of 
the attachment, b is the height of the attachment above 
the floor, and V

#
 is the volume flow rate of air being 

sucked into the hose. Shown in Fig. P9–124 is a three-
dimensional view with the floor in the xz-plane; we model 
a two-dimensional slice of the flow in the xy-plane through 
the centerline of the attachment. Note that we have (arbi-
trarily) set c 5 0 along the positive x-axis (u 5 0). 
(a) What are the primary dimensions of the given stream 
function? (b) Nondimensionalize the stream function by 
defining c* 5 (2pL/V

#
)c and r* 5 r/b. (c) Solve your non-

dimensionalized equation for r* as a function of c* and u. 
Use this equation to plot several nondimensional stream-
lines of the flow. For consistency, plot in the range 22 , 
x* , 2 and 0 , y* , 4, where x* 5 x/b and y* 5 y/b. 
(Hint: c* must be negative to yield the proper flow direction.)

FIGURE P9–126

Floor

V

y

L

z x
b

·

9–127  Taking all the Poiseuille flow approximations except 
that the fluid is Newtonian, determine the velocity profile and 
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(e) r 
DV
!

Dt
5 2=

!
P 1 rg

!
1 m=

!
2V
!

1 =
!
·V
!
5 0

9–137  Which choice is not correct regarding the Navier-
Stokes equation? 
(a) Nonlinear equation (b) Unsteady equation
(c) Second-order equation (d ) Partial differential equation
(e) None of these

9–138  In fluid flow analyses, which boundary condition 
can be expressed as V

!
fluid 5 V

!
wall

(a) No-slip (b) Interface (c) Free-surface
(d ) Symmetry (e) Inlet

9–135  If a fluid flow is both incompressible and isothermal, 
which property is not expected to be constant? 

(a) Temperature (b) Density (c) Dynamic viscosity
(d) Kinematic viscosity (e) Specific heat

9–136  Which choice is the incompressible Navier-Stokes 
equation with constant viscosity?

(a) r 
DV
!

Dt
1 =

!
P 2 rg

!
5 0 (b) 2=

!
P 1 rg

!
1 m=

!
2V
!
5 0

(c) r 
DV
!

Dt
5 2=

!
P 2 m=

!
2V
!

(d ) r 
DV
!

Dt
5 2=

!
P 1 rg

!
1 m=

!
2V
!
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A P P R O X I M AT E  S O L U T I O N S 
O F  T H E  N AV I E R – S T O K E S 
E Q U AT I O N

In this chapter we look at several approximations that eliminate term(s), 
reducing the Navier–Stokes equation to a simplified form that is more 
easily solvable. Sometimes these approximations are appropriate in 

a whole flow field, but in most cases, they are appropriate only in certain 
regions of the flow field. We first consider creeping flow, where the Reynolds 
number is so low that the viscous terms dominate (and eliminate) the inertial 
terms. Following that, we look at two approximations that are appropriate 
in regions of flow away from walls and wakes: inviscid flow and irrotational 
flow (also called potential flow). In these regions, the opposite holds; i.e., 
inertial terms dominate viscous terms. Finally, we discuss the boundary 
layer approximation, in which both inertial and viscous terms remain, but 
some of the viscous terms are negligible. This last approximation is appro-
priate at very high Reynolds numbers (the opposite of creeping flow) and 
near walls, the opposite of potential flow.

OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Appreciate why approximations 
are necessary to solve many 
fluid flow problems, and 
know when and where such 
approximations are appropriate

■ Understand the effects of the 
lack of inertial terms in the 
creeping flow approximation, 
including the disappearance 
of density from the equations

■ Understand superposition as 
a method of solving potential 
flow problems

■ Predict boundary layer thickness 
and other boundary layer 
properties

In this chapter, we discuss several 
approximations that simplify the Navier-

Stokes equation, including creeping flow, 
where viscous terms dominate inertial terms. 

The flow of lava from a volcano is an example 
of creeping flow—the viscosity of molten rock 

is so large that the Reynolds number is small 
even though the length scales are large.

StockTrek /Getty Images

    CHAPTER

10
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10–1 ■ INTRODUCTION
In Chap. 9, we derived the differential equation of linear momentum for 
an incompressible Newtonian fluid with constant properties—the Navier– 
Stokes equation. We showed some examples of analytical solutions to the 
continuity and Navier–Stockes equations for simple (usually infinite) geom-
etries, in which most of the terms in the component equations are eliminated 
and the resulting differential equations are analytically solvable. Unfortu-
nately, there aren’t very many known analytical solutions available in the 
literature; in fact, we can count the number of such solutions on the fingers 
of a few students. The vast majority of practical fluid mechanics problems 
cannot be solved analytically and require either (1) further approximations 
or (2) computer assistance. We consider option 1 here; option 2 is discussed in 
Chap. 15. For simplicity, we consider only incompressible flow of Newtonian 
fluids in this chapter.
 We emphasize first that the Navier–Stokes equation itself is not exact, but 
rather is a model of fluid flow that involves several inherent approximations 
(Newtonian fluid, constant thermodynamic and transport properties, etc.). 
Nevertheless, it is an excellent model and is the foundation of modern fluid 
mechanics. In this chapter we distinguish between “exact” solutions and 
approximate solutions (Fig. 10–1). The term exact is used when the solu-
tion starts with the full Navier–Stokes equation. The solutions discussed in 
Chap. 9 are exact solutions because we begin each of them with the full 
form of the equation. Some terms are eliminated in a specific problem due 
to the specified geometry or other simplifying assumptions in the prob-
lem. In a different solution, the terms that get eliminated may not be the 
same ones, but depend on the geometry and assumptions of that particular 
problem. We define an approximate solution, on the other hand, as one in 
which the Navier–Stokes equation is simplified in some region of the flow 
before we even start the solution. In other words, term(s) are eliminated a 
priori depending on the class of problem, which may differ from one region 
of the flow to another.
 For example, we have already discussed one approximation, namely, fluid 
statics (Chap. 3). This can be considered to be an approximation of the 
Navier–Stokes equation in a region of the flow field where the fluid velocity 
is not necessarily zero, but the fluid is nearly stagnant, and we neglect all 
terms involving velocity. In this approximation, the Navier–Stokes equation 
reduces to just two terms, pressure and gravity, i.e., =

!
P 5 rg

!
. The approxi-

mation is that the inertial and viscous terms in the Navier–Stokes equation 
are negligibly small compared to the pressure and gravity terms.
 Although approximations render the problem more tractable, there is a 
danger associated with any approximate solution. Namely, if the approxima-
tion is not appropriate to begin with, the solution will be incorrect—even 
if we perform all the mathematics correctly. Why? Because we start with 
equations that do not apply to the problem at hand. For example, we may 
solve a problem using the creeping flow approximation and obtain a solu-
tion that satisfies all assumptions and boundary conditions. However, if the 
Reynolds number of the flow is too high, the creeping flow approximation 
is inappropriate from the start, and our solution (regardless of how proud 
of it we may be) is not physically correct. Another common mistake is to 

“Exact” solution

Full Navier–Stokes equation

Analysis

Solution

Approximate solution

Analysis

Solution

Simplified Navier–Stokes equation

FIGURE 10–1
“Exact” solutions begin with the full 
Navier–Stokes equation, while 
approximate solutions begin with a 
simplified form of the Navier–Stokes 
equation right from the start.
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assume irrotational flow in regions of the flow where the assumption of 
irrotationality is not appropriate. The bottom line is that we must be very 
careful of the approximations we apply, and we should always verify and 
justify our approximations wherever possible.
 Finally, we stress that in most practical fluid flow problems, a particular 
approximation may be appropriate in a certain region of the flow field, but 
not in other regions, where a different approximation may perhaps be more 
appropriate. Figure 10–2 illustrates this point qualitatively for flow of a liq-
uid from one tank to another. The fluid statics approximation is appropriate 
in a region of the supply tank far away from the connecting pipe, and to a 
lesser extent in the receiving tank. The irrotational flow approximation is 
appropriate near the inlet to the connecting pipe and through the middle 
portion of the pipe where strong viscous effects are absent. Near the walls, 
the boundary layer approximation is appropriate. The flow in some regions 
does not meet the criteria for any approximations, and the full Navier– 
Stokes equation must be solved there (e.g., downstream of the pipe outlet in 
the receiving tank). How do we determine if an approximation is appropri-
ate? We do this by comparing the orders of magnitude of the various terms 
in the equations of motion to see if any terms are negligibly small compared 
to other terms.

10–2 ■  NONDIMENSIONALIZED EQUATIONS 
OF MOTION

Our goal in this section is to nondimensionalize the equations of motion so 
that we can properly compare the orders of magnitude of the various terms 
in the equations. We begin with the incompressible continuity equation,

 =
!
·V
!
5 0 (10–1)

and the vector form of the Navier–Stokes equation, valid for incompressible 
flow of a Newtonian fluid with constant properties,

 r 

DV
!

Dt
5 r c 0V!

0t
1 (V

!
·=
!
)V
!d 5 2=

!
P 1 rg

!
1 m=2V

!
 (10–2)

We introduce in Table 10–1 some characteristic (reference) scaling param-
eters that are used to nondimensionalize the equations of motion.

FIGURE 10–2
A particular approximation of 

the Navier–Stokes equation 
is appropriate only in certain 

regions of the flow field; other 
approximations may be appropriate 

in other regions of the flow field.

Supply tank Receiving tank

Boundary layer
region

Fluid statics
region

Fluid statics
region

Full Navier–
Stokes region

Irrotational flow
region
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 We then define several nondimensional variables and one nondimensional 
operator based on the scaling parameters in Table 10–1,

t* 5 ft      x 

!
 * 5

x 

!

L
  V

!
 * 5

V
!

V

 P* 5
P 2 Pq
P0 2 Pq

  g 

!
* 5

g 

!

g
  =

!
* 5 L=

!
 (10–3)

Notice that we define the nondimensional pressure variable in terms of a 
pressure difference, based on our discussion about pressure versus pressure 
differences in Chap. 9. Each of the starred quantities in Eq. 10–3 is nondi-
mensional. For example, although each component of the gradient operator 
§
→

 has dimensions of {L21}, each component of =
!
* has dimensions of {1} 

(Fig. 10–3). We substitute Eq. 10–3 into Eqs. 10–1 and 10–2, treating each 
term carefully. For example, =

!
 5 =

!
*/L and V

!
 5 V V

!
*, so the advective accelera-

tion term in Eq. 10–2 becomes

r(V
!
·=
!
)V
!
5 r aVV

!
*·
=
!
*

L
bVV

!
* 5
rV 2

L
 aV!*·=!*bV

!
*

 We perform similar algebra on each term in Eqs. 10–1 and 10–2. Equa-
tion 10–1 is rewritten in terms of nondimensional variables as

V

L
  =
!
*·V
!
* 5 0

After dividing both sides by V/L to make the equation dimensionless, we get

Nondimensionalized continuity:  =
!
*·V
!
* 5 0 (10–4)

Similarly, Eq. 10–2 is rewritten as

rVf  

0V
!
*

0t* 1
rV 2

L
aV!*·=!*bV

!
* 5 2

P0 2 Pq
L

  =
!
*P* 1 rgg 

!* 1
mV

L2   =*2V
!
*

which, after multiplication by the collection of constants L/(rV2) to make 
all the terms dimensionless, becomesc fL

V
d  0V!*
0t* 1 aV!*·= 

!
*bV

!
* 5 2 cP0 2 Pq

rV 2 d = 

!
*P* 1 c gL

V 2 d g 

!* 1 c m
rVL

d=*2V
!
* (10–5)

 Each of the terms in square brackets in Eq. 10–5 is a nondimensional 
grouping of parameters—a Pi group (Chap. 7). With the help of Table 7–5, 
we name each of these dimensionless parameters: The one on the left is the 

TABLE 10–1

Scaling parameters used to nondimensionalize the continuity and momentum 

equations, along with their primary dimensions

Scaling Parameter Description Primary Dimensions

L Characteristic length {L}

V Characteristic speed {Lt21}

f Characteristic frequency {t21}

P0 2 P` Reference pressure difference {mL21t22}

g Gravitational acceleration {Lt22}

FIGURE 10–3
The gradient operator is 
nondimensionalized by Eq. 10–3, 
regardless of our choice of 
coordinate system.
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Strouhal number, St 5 fL/V; the first one on the right is the Euler number, 
Eu 5 (P0 2 P`)/rV2; the second one on the right is the reciprocal of the 
square of the Froude number, Fr2 5 V2/gL; and the last one is the reciprocal 
of the Reynolds number, Re 5 rVL/m. Equation 10–5 thus becomes

Nondimensionalized Navier–Stokes:

 [St] 
0V
!
*

0t * 1 (V
!
*·=
!
*)V
!
* 52[Eu]=

!
* P* 1 c 1

Fr2 d g 

!* 1 c 1

Re
d=*2V

!
* (10–6)

 Before we discuss specific approximations in detail, there is much to 
comment about the nondimensionalized equation set consisting of Eqs. 10–4 
and 10–6:

• The nondimensionalized continuity equation contains no additional 
dimensionless parameters. Hence, Eq. 10–4 must be satisfied as is—we 
cannot simplify continuity further, because all the terms are of the same 
order of magnitude.

• The order of magnitude of the nondimensional variables is unity if they 
are nondimensionalized using a length, speed, frequency, etc., that are 
characteristic of the flow field. Thus, t* , 1, x 

!* , 1, V
!
* , 1, etc., where 

we use the notation , to denote order of magnitude. It follows that terms 
like (V

!
*?=
!
*)V
!
* and =

!
*P* in Eq. 10–6 are also order of magnitude unity 

and are the same order of magnitude as each other. Thus, the relative 
importance of the terms in Eq. 10–6 depends only on the relative magni-
tudes of the dimensionless parameters St, Eu, Fr, and Re. For example, if 
St and Eu are of order 1, but Fr and Re are very large, we may consider 
ignoring the gravitational and viscous terms in the Navier–Stokes equation.

• Since there are four dimensionless parameters in Eq. 10–6, dynamic 
similarity between a model and a prototype requires all four of these 
to be the same for the model and the prototype (Stmodel 5 Stprototype, 
Eumodel 5 Euprototype, Frmodel 5 Frprototype, and Remodel 5 Reprototype), as 
illustrated in Fig. 10–4.

• If the flow is steady, then f 5 0 and the Strouhal number drops out of the 
list of dimensionless parameters (St 5 0). The first term on the left side of 
Eq. 10–6 then disappears, as does its corresponding unsteady term −V

!
/−t in 

Eq. 10–2. If the characteristic frequency f is very small such that St ,, 1, 
the flow is called quasi-steady. This means that at any instant in time (or 
at any phase of a slow periodic cycle), we can solve the problem as if the 
flow were steady, and the unsteady term in Eq. 10–6 again drops out.

• The effect of gravity is usually important only in flows with free-surface 
effects (e.g., waves, ship motion, spillways from hydroelectric dams, flow 
of rivers). For many engineering problems there is no free surface (pipe 
flow, fully submerged flow around a submarine or torpedo, automobile 
motion, flight of airplanes, birds, insects, etc.). In such cases, the only 
effect of gravity on the flow dynamics is a hydrostatic pressure distribution 
in the vertical direction superposed on the pressure field due to the fluid 
flow. In other words,

For flows without free-surface effects, gravity does not affect the dynamics 
of the flow—its only effect is to superpose a hydrostatic pressure on the 
dynamic pressure field.

FIGURE 10–4
For complete dynamic similarity 

between prototype (subscript p) and 
model (subscript m), the model must 

be geometrically similar to the 
prototype, and (in general) all four 
dimensionless parameters, St, Eu, 

Fr, and Re, must match. As discussed 
in Chapter 7, however, this may not 
always be possible in a model test.

(Top) © James Gritz/Getty RF
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fp Vp

Stprototype, Euprototype, Frprototype, Reprototype

Prototype
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P∞, m
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Stmodel, Eumodel, Frmodel, Remodel
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• We define a modified pressure P9 that absorbs the effect of hydrostatic 
pressure. For the case in which z is defined vertically upward (opposite to 
the direction of the gravity vector), and in which we define some arbitrary 
reference datum plane at z 5 0,

Modified pressure: P9 5 P 1 rgz (10–7)

 The idea is to replace the two terms 2=
!
P 1 rg

!
 in Eq. 10–2 with one 

term 2=
!
P9 using the modified pressure of Eq. 10–7. The Navier–Stokes 

equation (Eq. 10–2) is written in modified form as

 r  

DV
!

Dt
5 r c 0V!

0t
1 (V

!
 ·=
!
)V
!d 5 2=

!
P9 1 m= 2V

!
 (10–8)

 With P replaced by P9, and with the gravity term removed from Eq. 10–2, 
the Froude number drops out of the list of dimensionless parameters. The 
advantage is that we can solve a form of the Navier–Stokes equation that 
has no gravity term. After solving the Navier–Stokes equation in terms 
of modified pressure P9, it is a simple matter to add back the hydrostatic 
pressure distribution using Eq. 10–7. An example is shown in Fig. 10–5 
for the case of two-dimensional Couette flow. Modified pressure is often 
used in computational fluid dynamics (CFD) codes to separate gravitational 
effects (hydrostatic pressure in the vertical direction) from fluid flow 
(dynamic) effects. Note that modified pressure should not be used in 
flows with free-surface effects.

 Now we are ready to make some approximations, in which we eliminate one 
or more of the terms in Eq. 10–2 by comparing the relative magnitudes of the 
dimensionless parameters associated with the corresponding terms in Eq. 10–6.

10–3 ■  THE CREEPING FLOW APPROXIMATION
Our first approximation is the class of fluid flow called creeping flow. 
Other names for this class of flow include Stokes flow and low Reynolds 
number flow. As the latter name implies, these are flows in which the 
Reynolds number is very small (Re ,, 1). By inspection of the definition 
of the Reynolds number, Re 5 rVL/m, we see that creeping flow is encoun-
tered when either r, V, or L is very small or viscosity is very large (or some 
combination of these). You encounter creeping flow when you pour syrup (a 
very viscous liquid) on your pancakes or when you dip a spoon into a jar of 
honey (also very viscous) to add to your tea (Fig. 10–6).
 Another example of creeping flow is all around us and inside us, although 
we can’t see it, namely, flow around microscopic organisms. Microorgan-
isms live their entire lives in the creeping flow regime since they are very 
small, their size being of order a few microns (1 mm 5 1026 m), and they 
move very slowly, even though they may move in air or swim in water with 
a viscosity that can hardly be classified as “large” (mair ≅ 1.8 3 1025 N·s/m2 
and mwater ≅ 1.0 3 1023 N·s/m2 at room temperature). Figure 10–7 shows a 
Salmonella bacterium swimming through water. The bacterium’s body is only 
about 1 mm long; its flagella (hairlike tails) extend several microns behind 
the body and serve as its propulsion mechanism. The Reynolds number 
associated with its motion is much smaller than 1.

P

P'

V

z

Hydrostatic 
pressure

g
→

x

(a)

P

P'

V

g
→

z

x

(b)

FIGURE 10–5
Pressure and modified pressure 
distribution on the right face of a fluid 
element in Couette flow between two 
infinite, parallel, horizontal plates: 
(a) z 5 0 at the bottom plate, and 
(b) z 5 0 at the top plate. The modified 
pressure P9 is constant, but the actual 
pressure P is not constant in either 
case. The shaded area in (b) represents 
the hydrostatic pressure component.

FIGURE 10–6
The slow flow of a very viscous 
liquid like honey is classified 
as creeping flow.
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 Creeping flow also occurs in the flow of lubricating oil in the very small 
gaps and channels of a lubricated bearing. In this case, the speeds may not 
be small, but the gap size is very small (on the order of tens of microns), 
and the viscosity is relatively large (moil , 1 N·s/m2 at room temperature).
 For simplicity, we assume that gravitational effects are negligible, or that 
they contribute only to a hydrostatic pressure component, as discussed previ-
ously. We also assume either steady flow or oscillating flow, with a Strouhal 
number of order unity (St , 1) or smaller, so that the unsteady acceleration term 
[St] −V

!
*/−t* is orders of magnitude smaller than the viscous term [1/Re]=

!
*2V
!
* 

(the Reynolds number is very small). The advective term in Eq. 10–6 is of 
order 1, (V

!
*?=
!
*)V
!
* , 1, so this term drops out as well. Thus, we ignore the 

entire left side of Eq. 10–6, which reduces to

Creeping flow approximation: [Eu]=
!
*P* > c 1

Re
d=*2V

!
* (10–9)

In words, pressure forces in the flow (left side) must be large enough to bal-
ance the (relatively) large viscous forces on the right side. However, since 
the nondimensional variables in Eq. 10–9 are of order 1, the only way for 
the two sides to balance is if Eu is of the same order of magnitude as 1/Re. 
Equating these,

[Eu] 5
P0 2 Pq
rV 2 , c 1

Re
d 5

m

rVL

After some algebra,

Pressure scale for creeping flow: P0 2 Pq ,
mV

L
 (10–10)

 Equation 10–10 reveals two interesting properties of creeping flow. First, 
we are used to inertially dominated flows, in which pressure differences 
scale like rV2 (e.g., the Bernoulli equation). Here, however, pressure differ-
ences scale like mV/L instead, since creeping flow is a viscously dominated 
flow. In fact, all the inertial terms of the Navier–Stokes equation disappear 
in creeping flow. Second, density has completely dropped out as a param-
eter in the Navier–Stokes equation (Fig. 10–8). We see this more clearly by 
writing the dimensional form of Eq. 10–9,

Approximate Navier–Stokes equation for creeping flow:  =
!
P > m=2V

!
 (10–11)

Alert readers may point out that density still has a minor role in creeping 
flow. Namely, it is needed in the calculation of the Reynolds number. How-
ever, once we have determined that Re is very small, density is no longer 
needed since it does not appear in Eq. 10–11. Density also pops up in the 
hydrostatic pressure term, but this effect is usually negligible in creeping 
flow, since the vertical distances involved are often measured in millime-
ters or micrometers. Besides, if there are no free-surface effects, we can use 
modified pressure instead of physical pressure in Eq. 10–11.
 Let’s discuss the lack of inertia terms in Eq. 10–11 in somewhat more 
detail. You rely on inertia when you swim (Fig. 10–9). For example, you 
take a stroke, and then you are able to glide for some distance before you 
need to take another stroke. When you swim, the inertial terms in the 
Navier–Stokes equation are much larger than the viscous terms, since the 

FIGURE 10–8
In the creeping flow approximation, 

density does not appear in the 
momentum equation.

Density?
What is
density?∇P     m∇2V

→→
>

FIGURE 10–7
(a) Salmonella typhimurium invading 

cultured human cells. 
(b) The bacterium Salmonella 

abortusequi swimming through water.
(a) NIAID, NIH, Rocky Mantain Laboratories 
(b) From Comparative Physiology Functional 
Aspects of Structural Materials: Proceedings 

of the International Conference on Comparative 
Physiology, Ascona, 1974, published by 

North-Holland Pub. Co., 1975.

(a)

(b)
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Reynolds number is very large. (Believe it or not, even extremely slow 
swimmers move at very large Reynolds numbers!)
 For microorganisms swimming in the creeping flow regime, however, 
there is negligible inertia, and thus no gliding is possible. In fact, the lack of 
inertial terms in Eq. 10–11 has a substantial impact on how microorganisms 
are designed to swim. A flapping tail like that of a dolphin would get them 
nowhere. Instead, their long, narrow tails (flagella) undulate in a sinusoidal 
motion to propel them forward, as illustrated in Fig. 10–10 for the case of a 
sperm. Without any inertia, the sperm does not move unless his tail is mov-
ing. The instant his tail stops, the sperm stops moving. If you have ever seen 
a video clip of swimming sperm or other microorganisms, you may have 
noticed how hard they have to work just to move a short distance. That is 
the nature of creeping flow, and it is due to the lack of inertia. Careful study 
of Fig. 10–10 reveals that the sperm’s tail has completed approximately two 
complete undulation cycles, yet the sperm’s head has moved to the left by 
only about two head lengths.
 It is very difficult for us humans to imagine moving in creeping flow con-
ditions, since we are so used to the effects of inertia. Some authors have 
suggested that you imagine trying to swim in a vat of honey. We suggest 
instead that you go to a fast-food restaurant where they have a children’s 
play area and watch a child play in a pool of plastic spheres (Fig. 10–11). 
When the child tries to “swim” among the balls (without touching the walls 
or the bottom), he or she can move forward only by certain snakelike wrig-
gling body motions. The instant the child stops wriggling, all motion stops, 
since there is negligible inertia. The child must work very hard to move for-
ward a short distance. There is a weak analogy between a child “swimming” 
in this kind of situation and a microorganism swimming in creeping flow 
conditions.
 We next discuss the lack of density in Eq. 10–11. At high Reynolds num-
bers, the aerodynamic drag on an object increases proportionally with r. 
(Denser fluids exert more pressure force on the body as the fluid impacts 
the body.) However, this is actually an inertial effect, and inertia is negli-
gible in creeping flow. In fact, aerodynamic drag cannot even be a function 
of density in a creeping flow, since density has disappeared from the 
Navier–Stokes equation. Example 10–1 illustrates this situation through the 
use of dimensional analysis.

EXAMPLE 10–1    Drag on an Object in Creeping Flow

Since density has vanished from the Navier–Stokes equation, aerodynamic 

drag on an object in creeping flow is a function only of its speed V, some 

characteristic length scale L of the object, and fluid viscosity m (Fig. 10–12). 

Use dimensional analysis to generate a relationship for FD as a function of 

these independent variables.

SOLUTION  We are to use dimensional analysis to generate a functional rela-

tionship between FD and variables V, L, and m.

Assumptions  1 We assume Re ,, 1 so that the creeping flow approximation 

applies. 2 Gravitational effects are irrelevant. 3 No parameters other than 

those listed in the problem statement are relevant to the problem.

FIGURE 10–9
A person swims at a very high 
Reynolds number, and inertial terms 
are large; thus the person is able to 
glide long distances without moving.

FIGURE 10–10
A sperm of the sea squirt Ciona 
swimming in seawater; flash 
photographs at 200 frames per second, 
with each image positioned directly 
below the one before it.
Courtesy of Professor Charlotte Omoto, Washington 
State University, School of Biological Sciences.

10 mm
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Analysis  We follow the step-by-step method of repeating variables discussed 

in Chap. 7; the details are left as an exercise. There are four parameters in 

this problem (n 5 4). There are three primary dimensions: mass, length, 

and time, so we set j 5 3 and use independent variables V, L, and m as our 

repeating variables. We expect only one Pi since k 5 n 2 j 5 4 2 3 5 1, 

and that Pi must equal a constant. The result is

FD 5 constant ~ mVL

Thus, we have shown that for creeping flow around any three-dimensional 

object, the aerodynamic drag force is simply a constant multiplied by mVL.

Discussion This result is significant, because all that is left to do is find the 

constant, which is a function only of the shape of the object.

Drag on a Sphere in Creeping Flow
As shown in Example 10–1, the drag force FD on a three-dimensional object 
of characteristic dimension L moving under creeping flow conditions at 
speed V through a fluid with viscosity m is FD 5 constant?mVL. Dimen-
sional analysis cannot predict the value of the constant, since it depends on 
the shape and orientation of the body in the flow field.
 For the particular case of a sphere, Eq. 10–11 can be solved analytically. 
The details are beyond the scope of this text, but can be found in graduate-
level fluid mechanics books (White, 2005; Panton, 2005). It turns out that 
the constant in the drag equation is equal to 3p if L is taken as the sphere’s 
diameter D (Fig. 10–13).

Drag force on a sphere in creeping flow: FD 5 3pmVD (10–12)

As a side note, two-thirds of this drag is due to viscous forces and the other 
one-third is due to pressure forces. This confirms that the viscous terms 
and the pressure terms in Eq. 10–11 are of the same order of magnitude, as 
mentioned previously.

EXAMPLE 10–2    Terminal Velocity of a Particle from a Volcano

A volcano has erupted, spewing stones, steam, and ash several thousand 

meters into the atmosphere (Fig. 10–14). After some time, the particles 

begin to settle to the ground. Consider a nearly spherical ash particle of 

diameter 50 mm, falling in air whose temperature is 2508C and whose pres-

sure is 55  kPa. The density of the particle is 1240 kg/m3. Estimate the 

terminal velocity of this particle at this altitude.

SOLUTION  We are to estimate the terminal velocity of a falling ash particle.

Assumptions  1 The Reynolds number is very small (we will need to verify 

this assumption after we obtain the solution). 2 The particle is spherical.

Properties  At the given temperature and pressure, the ideal gas law 

gives r 5 0.8588 kg/m3. Since viscosity is a very weak function of pres-

sure, we use the value at 2508C and atmospheric pressure, m 5 1.474 3
1025 kg/m·s.

Analysis  We treat the problem as quasi-steady. Once the falling particle 

has reached its terminal settling velocity, the net downward force (weight) 

FIGURE 10–11
A child trying to move in a pool of 

plastic balls is analogous to a 
microorganism trying to propel itself 

without the benefit of inertia.
Photo by Laura L. Pauley.

FIGURE 10–12
For creeping flow over a three-

dimensional object, the aerodynamic 
drag on the object does not depend on 

density, but only on speed V, some 
characteristic size of the object L, 

and fluid viscosity m.

V

L

m

FD

FIGURE 10–13
The aerodynamic drag on a sphere 

of diameter D in creeping flow 
is equal to 3pmVD.

V

m

FD

D
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balances the net upward force (aerodynamic drag 1 buoyancy), as illustrated 

in Fig. 10–15.

Downward force: Fdown 5 W 5 p 

D3

6
 rparticle 

g (1)

The aerodynamic drag force acting on the particle is obtained from Eq. 10–12, 

and the buoyancy force is the weight of the displaced air. Thus,

Upward force: Fup 5 FD 1 Fbuoyancy 5 3pmVD 1 p 

D3

6
 rair 

g (2)

We equate Eqs. 1 and 2, and solve for terminal velocity V,

 V 5
D2

18m
 (rparticle 2 rair)g 

 5
(50 3 1026 m)2

18(1.474 3 1025 kg/m·s)
 [(1240 2 0.8588) kg/m3](9.81 m/s2)

 5 0.115 m/s 

Finally, we verify that the Reynolds number is small enough that creeping 

flow is an appropriate approximation,

Re 5
rairVD

m
5

(0.8588 kg/m3)(0.115 m/s)(50 3 1026 m)

1.474 3 1025 kg/m·s
5 0.335

Thus the Reynolds number is less than 1, but certainly not much less than 1.

Discussion  Although the equation for creeping flow drag on a sphere (Eq. 10–12) 

was derived for a case with Re ,, 1, it turns out that the approximation is 

reasonable up to Re ≅ 1. A more involved calculation, including a Reynolds 

number correction and a correction based on the mean free path of air mole-

cules, yields a terminal velocity of 0.110 m/s (Heinsohn and Cimbala, 2003); 

the error of the creeping flow approximation is less than 5 percent.

 A consequence of the disappearance of density from the equations of 
motion for creeping flow is clearly seen in Example 10–2. Namely, air den-
sity is not important in any calculations except to verify that the Reynolds 
number is small. (Note that since rair is so small compared to rparticle, the 
buoyancy force could have been ignored with negligible loss of accuracy.) 
Suppose instead that the air density were one-half of the actual density in 
Example 10–2, but all other properties were unchanged. The terminal veloc-
ity would be the same (to three significant digits), except that the Reynolds 
number would be smaller by a factor of 2. Thus,

The terminal velocity of a dense, small particle in creeping flow conditions is 
nearly independent of fluid density, but highly dependent on fluid viscosity.

Since the viscosity of air varies with altitude by only about 25 percent, a 
small particle settles at nearly constant speed regardless of elevation, even 
though the air density increases by more than a factor of 10 as the particle 
falls from an altitude of 50,000 ft (15,000 m) to sea level.

FIGURE 10–14
Small ash particles spewed from 
a volcanic eruption settle slowly 
to the ground; the creeping flow 
approximation is reasonable for 
this type of flow field.

Terminal
velocity

V

FIGURE 10–15
A particle falling at a steady terminal 
velocity has no acceleration; therefore, 
its weight is balanced by aerodynamic 
drag and the buoyancy force acting on 
the particle.

V

rparticle

rair, mair

Fbuoyancy

D

FD

W
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 For nonspherical three-dimensional objects, the creeping flow aerody-
namic drag is still given by FD 5 constant?mVL; however, the constant is 
not 3p, but depends on both the shape and orientation of the body. The con-
stant can be thought of as a kind of drag coefficient for creeping flow.

10–4 ■  APPROXIMATION FOR INVISCID 
REGIONS OF FLOW

There is much confusion in the fluid mechanics literature about the word 
inviscid and the phrase inviscid flow. The apparent meaning of inviscid 
is not viscous. Inviscid flow would then seem to refer to flow of a fluid 
with no viscosity. However, that is not what is meant by the phrase inviscid 
flow! All fluids of engineering relevance have viscosity, regardless of the 
flow field. Authors who use the phrase inviscid flow actually mean flow 
of a viscous fluid in a region of the flow in which net viscous forces are 
negligible compared to pressure and/or inertial forces (Fig. 10–16). Some 
authors use the phrase “frictionless flow” as a synonym of inviscid flow. 
This causes more confusion, because even in regions of the flow where net 
viscous forces are negligible, friction still acts on fluid elements, and there 
may still be significant viscous stresses. It’s just that these stresses cancel 
each other out, leaving no significant net viscous force on fluid elements. 
It can be shown that significant viscous dissipation may also be present in 
such regions. As is discussed in Section 10–5, fluid elements in an irrotational 
region of the flow also have negligible net viscous forces—not because 
there is no friction, but because the frictional (viscous) stresses cancel each 
other out. Because of the confusion caused by the terminology, the present 
authors discourage use of the phrases “inviscid flow” and “frictionless flow.” 
Instead, we advocate use of the phrases inviscid regions of flow or regions of 
flow with negligible net viscous forces.
 Regardless of the terminology used, if net viscous forces are very small 
compared to inertial and/or pressure forces, the last term on the right side 
of Eq. 10–6 is negligible. This is true only if 1/Re is small. Thus, inviscid 
regions of flow are regions of high Reynolds number—the opposite of creep-
ing flow regions. In such regions, the Navier–Stokes equation (Eq. 10–2) loses 
its viscous term and reduces to the Euler equation,

Euler equation: r c 0V!
0t

1 (V
!
 · =
!
)V
!d 52=

!
P 1 rg

!
 (10–13)

The Euler equation is simply the Navier–Stokes equation with the viscous 
term neglected; it is an approximation of the Navier–Stokes equation.
 Because of the no-slip condition at solid walls, frictional forces are not 
negligible in a region of flow very near a solid wall. In such a region, 
called a boundary layer, the velocity gradients normal to the wall are large 
enough to offset the small value of 1/Re. An alternate explanation is that the 
characteristic length scale of the body (L) is no longer the most appropriate 
length scale inside a boundary layer and must be replaced by a much smaller 
length scale associated with the distance from the wall. When we define the 
Reynolds number with this smaller length scale, Re is no longer large, and 
the viscous term in the Navier–Stokes equation cannot be neglected.

FIGURE 10–16
An inviscid region of flow is a region 

where net viscous forces are negligible 
compared to inertial and/or pressure 
forces because the Reynolds number 

is large; the fluid itself is still a 
viscous fluid.

r, m

r       + (V • ∇)V  = –∇P + rg + m∇2V∂V
∂t

Streamlines

negligible

→
→ → → → →→  C D
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 A similar argument can be made in the wake of a body, where velocity 
gradients are relatively large and the viscous terms are not negligible com-
pared to inertial terms (Fig. 10–17). In practice, therefore, it turns out that

The Euler equation approximation is appropriate in high Reynolds number 
regions of the flow, where net viscous forces are negligible, away from walls 
and wakes.

 The term that is neglected in the Euler approximation of the Navier– Stokes 
equation (m§2V

!
) is the term that contains the highest-order derivatives of 

velocity. Mathematically, loss of this term reduces the number of boundary 
conditions that we can specify. It turns out that when we use the Euler equa-
tion approximation, we cannot specify the no-slip boundary condition at solid 
walls, although we still specify that fluid cannot flow through the wall (the 
wall is impermeable). Solutions of the Euler equation are therefore not physi-
cally meaningful near solid walls, since flow is allowed to slip there. Never-
theless, as we show in Section 10–6, the Euler equation is often used as the 
first step in a boundary layer approximation. Namely, the Euler equation is 
applied over the whole flow field, including regions close to walls and wakes, 
where we know the approximation is not appropriate. Then, a thin boundary 
layer is inserted in these regions as a correction to account for viscous effects.
 Finally, we point out that the Euler equation (Eq. 10–13) is sometimes 
used as a first approximation in CFD calculations in order to reduce CPU 
time (and cost).

Derivation of the Bernoulli Equation 
in Inviscid Regions of Flow
In Chap. 5, we derived the Bernoulli equation along a streamline. Here we 
show an alternative derivation based on the Euler equation. For simplicity, 
we assume steady incompressible flow. The advective term in Eq. 10–13 
can be rewritten through use of a vector identity,

Vector identity: (V
!
 · =
!
)V
!
5 =

!aV 2

2
b 2 V

!
3 (=

!
3 V

!
) (10–14)

where V is the magnitude of vector V
!
. We recognize the second term in 

parentheses on the right side as the vorticity vector z
→

 (see Chap. 4); thus,

(V
!
 · =
!
)V
!
5 =

!aV 2

2
b 2 V

!
3 z

!

and an alternate form of the steady Euler equation is written as

 =
!aV 2

2
b 2 V

!
3 z

!
5 2

=
!
P
r

1 g
!
5 =

!a2P
r
b 1 g

!
 (10–15)

where we have divided each term by the density and moved r within the 
gradient operator, since density is constant in an incompressible flow.
 We make the further assumption that gravity acts only in the 2z-direction 
(Fig. 10–18), so that

 g
!
5 2gk

!
5 2g=

!
z 5 =

!
(2gz) (10–16)

where we have used the fact that the gradient of coordinate z is unit vector k
→

 
in the z-direction. Note also that g is a constant, which allows us to move it 

FIGURE 10–17
The Euler equation is an 
approximation of the Navier–Stokes 
equation, appropriate only in regions 
of the flow where the Reynolds 
number is large and where net viscous 
forces are negligible compared to 
inertial and/or pressure forces.

Euler equation valid

Euler equation not valid

FIGURE 10–18
When gravity acts in the 2z-direction, 
gravity vector g

!
 can be written 

as =
!
(2gz).

i
∂z
∂x
0

z = vertical distance

k = unit vector in z-direction

Thus, g = –gk = –g z = (–gz)

(z) =
→

→

→

→

→

→

Δ

→Δ→Δ

j
∂z
∂y
0

→
k = k++

∂z
∂z
1

→ →

g
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(and the negative sign) within the gradient operator. We substitute Eq. 10–16 
into Eq. 10–15, and rearrange by combining three terms within one gradient 
operator,

  =
!aP
r

1
V 2

2
1 gzb 5 V

!
3 z

!
 (10–17)

 From the definition of the cross product of two vectors,  C
!
 5  A

!
 3  B

!
, the 

vector  C
!
 is perpendicular to both A

→
 and B

→
. The left side of Eq. 10–17 must 

therefore be a vector everywhere perpendicular to the local velocity vector 
V
!
, since V

!
 appears in the cross product on the right side of Eq. 10–17. Now 

consider flow along a three-dimensional streamline (Fig. 10–19), which by 
definition is everywhere parallel to the local velocity vector. At every point 
along the streamline, =

!
(P/r 1 V2/2 1 gz) must be perpendicular to the 

streamline. Now dust off your vector algebra book and recall that the gradi-
ent of a scalar points in the direction of maximum increase of the scalar. 
Furthermore, the gradient of a scalar is a vector that points perpendicular to 
an imaginary surface on which the scalar is constant. Thus, we argue that 
the scalar (P/r 1 V2/2 1 gz) must be constant along a streamline. This is 
true even if the flow is rotational (z

!
 Þ 0). Thus, we have derived a version 

of the steady incompressible Bernoulli equation, appropriate in regions 
of flow with negligible net viscous forces, i.e., in so-called inviscid 
regions of flow.

Steady incompressible Bernoulli equation in inviscid regions of flow:

 
P
r

1
V 2

2
1 gz 5 C 5 constant along streamlines (10–18)

Note that the Bernoulli “constant” C in Eq. 10–18 is constant only along a 
streamline; the constant may change from streamline to streamline.
 You may be wondering if it is physically possible to have a rotational 
region of flow that is also inviscid, since rotationality is usually caused by 
viscosity. Yes, it is possible, and we give one simple example—solid body 
rotation (Fig. 10–20). Although the rotation may have been generated by 
viscous forces, a region of flow in solid body rotation has no shear and 
no net viscous force; it is an inviscid region of flow, even though it is also 
rotational. As a consequence of the rotational nature of this flow field, 
Eq. 10–18 applies to every streamline in the flow, but the Bernoulli constant C 
differs from streamline to streamline, as illustrated in Fig. 10–20.

EXAMPLE 10–3    Pressure Field in Solid Body Rotation

A fluid is rotating as a rigid body (solid body rotation) around the z-axis as 

illustrated in Fig. 10–20. The steady incompressible velocity field is given by 

ur 5 0, uu 5 vr, and uz 5 0. The pressure at the origin is equal to P0. Cal-

culate the pressure field everywhere in the flow, and determine the Bernoulli 

constant along each streamline.

SOLUTION  For a given velocity field, we are to calculate the pressure field 

and the Bernoulli constant along each streamline.

FIGURE 10–19
Along a streamline, =

!
(P/r 1 V2/2 1 

gz) is a vector everywhere 
perpendicular to the streamline; 

hence, P/r 1 V2/2 1 gz is 
constant along the streamline.

Streamline

→

→

→

→

→→

Δ

r 2

V2 

Vz

P
+ + gz

x, i

z, k

y, j

a b

FIGURE 10–20
Solid body rotation is an example 

of an inviscid region of flow that is 
also rotational. The Bernoulli 

constant C differs from streamline 
to streamline but is constant along 

any particular streamline.

uu

uu = vr

r

P
r

+ + gz = C
V2

2

C = C1

C = C2

C = C3
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Assumptions  1 The flow is steady and incompressible. 2 Since there is no 

flow in the z- (vertical) direction, a hydrostatic pressure distribution exists in 

the vertical direction. 3 The entire flow field is approximated as an inviscid 

region of flow since viscous forces are zero. 4 There is no variation of any 

flow variable in the u-direction.

Analysis  Equation 10–18 can be applied directly because of assumption 3,

Bernoulli equation: P 5 rC 2
1

2
 rV 2 2 rgz (1)

where C is the Bernoulli constant that changes radially across streamlines as 

illustrated in Fig. 10–20. At any radial location r, V2 5 v2r2, and Eq. 1 becomes

 P 5 rC 2 r 
v2r2

2
2 rgz (2)

At the origin (r 5 0, z 5 0), the pressure is equal to P0 (from the given 

boundary condition). Thus we calculate C 5 C0 at the origin (r 5 0),

Boundary condition at the origin:  P0 5 rC0  S  C0 5
P0

r

But how can we find C at an arbitrary radial location r? Equation 2 alone 

is insufficient since both C and P are unknowns. The answer is that we 

must use the Euler equation. Since there is no free surface, we employ the 

modified pressure of Eq. 10–7. The r-component of the Euler equation in 

cylindrical coordinates (see Eq. 9–62b without the viscous terms) reduces to

 r-component of Euler equation: 
0P9
0r

5 r 
uu

2

r
5 rv2r (3)

where we have substituted the given value of uu. Since hydrostatic pressure 

is already included in the modified pressure, P 9 is not a function of z. By 

assumptions 1 and 4, respectively, P 9 is also not a function of t or u. Thus 

P 9 is a function of r only, and we replace the partial derivative in Eq. 3 with 

a total derivative. Integration yields

 Modified pressure field: P9 5 r 
v2r2

2
1 B1 (4)

where B1 is a constant of integration. At the origin, modified pressure P9 is 
equal to actual pressure P, since z 5 0 there. Thus, constant B1 is found by 

applying the known pressure boundary condition at the origin. It turns out 

therefore that B1 is equal to P0. We now convert Eq. 4 back to actual pres-

sure using Eq. 10–7, P 5 P 9 2 rgz,

Actual pressure field: P 5 r 
v2r2

2
1 P0 2 rgz (5)

At the reference datum plane (z 5 0), we plot nondimensional pressure as a 

function of nondimensional radius, where some arbitrary radial location r 5 R 

is chosen as a characteristic length scale in the flow (Fig. 10–21). The pres-

sure distribution is parabolic with respect to r.

 Finally, we equate Eqs. 2 and 5 to solve for C,

Bernoulli constant as a function of r: C 5
P0

r
1 v2r2 (6)

At the origin, C 5 C0 5 P0/r, which agrees with our previous calculation.

5

3.5

1.5

1

P – P0

rv2R2

0.5

0

0 0.5 1 1.5
r/R

2 2.5 3

2

4

4.5

2.5

3

FIGURE 10–21
Nondimensional pressure as a function 
of nondimensional radial location at 
zero elevation for a fluid in solid body 
rotation.
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Discussion  For a fluid in solid body rotation, the Bernoulli constant 

increases as r2. This is not surprising, since fluid particles move faster at 

larger values of r, and thus they possess more energy. In fact, Eq. 5 reveals 

that pressure itself increases as r2. Physically, the pressure gradient in the 

(inward) radial direction provides the centripetal force necessary to keep 

fluid particles revolving about the origin.

10–5 ■  THE IRROTATIONAL FLOW APPROXIMATION
As was pointed out in Chap. 4, there are regions of flow in which fluid par-
ticles have no net rotation; these regions are called irrotational. You must 
keep in mind that the assumption of irrotationality is an approximation, 
which may be appropriate in some regions of a flow field, but not in other 
regions (Fig. 10–22). In general, inviscid regions of flow far away from 
solid walls and wakes of bodies are also irrotational, although as pointed out 
previously, there are situations in which an inviscid region of flow may not 
be irrotational (e.g., solid body rotation). Solutions obtained for the class 
of flow defined by irrotationality are thus approximations of full Navier– 
Stokes solutions. Mathematically, the approximation is that vorticity is 
negligibly small,

Irrotational approximation: z
!
5 =

!
3 V

!
> 0 (10–19)

We now examine the effect of this approximation on both the continuity and 
momentum equations.

Continuity Equation
If you shake some more dust off your vector algebra book, you will find a 
vector identity concerning the curl of the gradient of any scalar function f, 
and hence the curl of any vector V

!
,

Vector identity:  =
!
3 =

!
f 5 0  Thus, if  =

!
3 V

!
5 0, then V

!
5 =

!
f. (10–20)

This can easily be proven in Cartesian coordinates (Fig. 10–23), but applies 
to any orthogonal coordinate system as long as f is a smooth function. In 
words, if the curl of a vector is zero, the vector can be expressed as the gra-
dient of a scalar function f, called the potential function. In fluid mechan-
ics, vector V

!
 is the velocity vector, the curl of which is the vorticity vector z

!
,

and thus we call f the velocity potential function. We write

For irrotational regions of flow: V
!
5 =

!
f  (10–21)

We should point out that the sign convention in Eq. 10–21 is not universal—in 
some fluid mechanics textbooks, a negative sign is inserted in the definition 
of the velocity potential function. We state Eq. 10–21 in words as follows:

In an irrotational region of flow, the velocity vector can be expressed as the 
gradient of a scalar function called the velocity potential function.

Regions of irrotational flow are therefore also called regions of potential 
flow. Note that we have not restricted ourselves to two-dimensional flows; 

FIGURE 10–22
The irrotational flow approximation is 
appropriate only in certain regions of 

the flow where the vorticity is 
negligible.

Irrotational flow region

Rotational flow region

FIGURE 10–23
The vector identity of Eq. 10–20 is 

easily proven by expanding the terms 
in Cartesian coordinates.

Proof of the vector identity:Proof of the vector identity:
 3 F 5 5 0

Expand in Cartesian coordinates,Expand in Cartesian coordinates,

The identity is proven if The identity is proven if F is a smooth is a smooth
function of function of x, , y, and , and z.

→Δ →Δ

3 f 5 5 
→Δ →Δ

i
∂2f

∂y ∂z
∂2f

∂z ∂y
→2 j

∂2f

∂z ∂x
∂2f

∂x ∂z
→21

k
∂2f

∂x ∂y
∂2f

∂y ∂x
→

2 5 5 01

a b a b
a b
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Eq. 10–21 is valid for three-dimensional flow fields, as long as the approxi-
mation of irrotationality is appropriate in the region of flow under study. In 
Cartesian coordinates,

 u 5
0f
0x
  v 5

0f
0y
  w 5

0f
0z

 (10–22)

and in cylindrical coordinates,

 ur 5
0f
0r
  uu 5

1
r
 
0f
0u
  uz 5

0f
0z

 (10–23)

 The usefulness of Eq. 10–21 becomes apparent when it is substituted into 
Eq. 10–1, the incompressible continuity equation: =

!
?V
!
 5 0 → =

!
?=
!
f 5 0, or

For irrotational regions of flow: =2f 5 0 (10–24)

where the Laplacian operator =2 is a scalar operator defined as =
!
?=
!
, and 

Eq. 10–24 is called the Laplace equation. We stress that Eq. 10–24 is valid 
only in regions where the irrotational flow approximation is reasonable 
(Fig. 10–24). In Cartesian coordinates,

=2f 5
02f

0x2 1
02f

0y2 1
02f

0z2 5 0

and in cylindrical coordinates,

=2f 5
1
r
 
0
0r
ar 
0f
0r

b 1
1

r2 
02f

0u2 1
02f

0z2 5 0

The beauty of this approximation is that we have combined three unknown 
velocity components (u, v, and w, or ur, uu, and uz, depending on our choice 
of coordinate system) into one unknown scalar variable f, eliminating two 
of the equations required for a solution (Fig. 10–25). Once we obtain a solu-
tion of Eq. 10–24 for f, we can calculate all three components of the velocity 
field using Eq. 10–22 or 10–23.
 The Laplace equation is well known since it shows up in several fields 
of physics, applied mathematics, and engineering. Various solution techniques, 
both analytical and numerical, are available in the literature. Solutions of the 
Laplace equation are dominated by the geometry (i.e., boundary conditions). 
Although Eq. 10–24 comes from conservation of mass, mass itself (or 
density, which is mass per unit volume) has dropped out of the equation 
altogether. With a given set of boundary conditions surrounding the entire 
irrotational region of the flow field, we can thus solve Eq. 10–24 for f, 
regardless of the fluid properties. Once we have calculated f, we can then 
calculate V

!
 everywhere in that region of the flow field (using Eq. 10–21), 

without ever having to solve the Navier–Stokes equation. The solution is 
valid for any incompressible fluid, regardless of its density or its viscosity, 
in regions of the flow in which the irrotational approximation is appropriate. 
 The solution is even valid instantaneously for an unsteady flow, since time 
does not appear in the incompressible continuity equation. In other words, 
at any instant in time, the incompressible flow field instantly adjusts itself 
so as to satisfy the Laplace equation and the boundary conditions that exist 
at that instant in time.

FIGURE 10–24
The Laplace equation for velocity 
potential function f is valid in both 
two and three dimensions and in any 
coordinate system, but only in 
irrotational regions of flow (generally 
away from walls and wakes).

�2f � 0

�2f � 0

FIGURE 10–25
In irrotational regions of flow, three 
unknown scalar components of the 
velocity vector are combined into one 
unknown scalar function—the velocity 
potential function.

General 3-D incompressible flow:
 •  Unknowns = u, v, w, and P
 •  Four equations required

Approximation

Irrotational region of flow:
 •  Unknowns = f and P
 •  Two equations required

515-563_cengel_ch10.indd   530 12/18/12   1:24 PM



531
CHAPTER 10

Momentum Equation
We now turn our attention to the differential linear momentum equation—
the Navier–Stokes equation (Eq. 10–2). We have just shown that in an irro-
tational region of flow, we can obtain the velocity field without application 
of the Navier–Stokes equation. Why then do we need it at all? The answer is 
that once we have established the velocity field through use of the velocity 
potential function, we use the Navier–Stokes equation to solve for the pres-
sure field. A simplified form of the Navier–Stokes equation is the second 
required equation mentioned in Fig. 10–25 for solution of two unknowns, 
f and P, in an irrotational region of flow.
 We begin our analysis by applying the irrotational flow approximation, 
(Eq. 10–21), to the viscous term of the Navier–Stokes equation (Eq. 10–2). 
Provided that f is a smooth function, that term becomes

m=2V
!
5 m=2(=

!
f) 5 m=

!
(=2f) 5 0

 0

where we have applied Eq. 10–24. Thus, the Navier–Stokes equation 
reduces to the Euler equation in irrotational regions of the flow,

For irrotational regions of flow: r c 0V!
0t

1 (V
!
 · =
!
)V
!d 52=

!
P 1 rg

!
 (10–25)

We emphasize that although we get the same Euler equation as we did for 
an inviscid region of flow (Eq. 10–13), the viscous term vanishes here for a 
different reason, namely, that the flow in this region is assumed to be irrota-
tional rather than inviscid (Fig. 10–26).

Derivation of the Bernoulli Equation 
in Irrotational Regions of Flow
In Section 10–4 we derived the Bernoulli equation along a streamline for 
inviscid regions of flow, based on the Euler equation. We now do a similar 
derivation beginning with Eq. 10–25 for irrotational regions of flow. For sim-
plicity, we again assume steady incompressible flow. We use the same vector 
identity used previously (Eq. 10–14), leading to the alternative form of the 
Euler equation of Eq. 10–15. Here, however, the vorticity vector z

!
 is negligi-

bly small since we are considering an irrotational region of flow (Eq. 10–19). 
Thus, for gravity acting in the negative z-direction, Eq. 10–17 reduces to

  =
!aP
r

1
V 2

2
1 gzb 5 0 (10–26)

We now argue that if the gradient of some scalar quantity (the quantity in 
parentheses in Eq. 10–26) is zero everywhere, the scalar quantity itself must 
be a constant. Thus, we generate the Bernoulli equation for irrotational 
regions of flow,

Steady incompressible Bernoulli equation in irrotational regions of flow:

 
P
r

1
V 2

2
1 gz 5 C 5 constant everywhere (10–27)

It is useful to compare Eqs. 10–18 and 10–27. In an inviscid region of flow, 
the Bernoulli equation holds along streamlines, and the Bernoulli constant 

V
FIGURE 10–26

An irrotational region of flow is a 
region where net viscous forces are 

negligible compared to inertial 
and/or pressure forces because of 

the irrotational approximation. All 
irrotational regions of flow are 

therefore also inviscid, but not all 
inviscid regions of flow are 

irrotational. The fluid itself is still a 
viscous fluid in either case.

r, m

r       + (V·∇)V  = –∇P + rg + m∇2V∂V
∂t

Streamlines

0

→
→ → → → →
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may change from streamline to streamline. In an irrotational region of flow, 
the Bernoulli constant is the same everywhere, so the Bernoulli equation 
holds everywhere in the irrotational region of flow, even across streamlines. 
Thus, the irrotational approximation is more restrictive than the inviscid 
approximation.
 A summary of the equations and solution procedure relevant to irrotational 
regions of flow is provided in Fig. 10–27. In a region of irrotational flow, the 
velocity field is obtained first by solution of the Laplace equation for veloc-
ity potential function f (Eq. 10–24), followed by application of Eq. 10–21 
to obtain the velocity field. To solve the Laplace equation, we must provide 
boundary conditions for f everywhere along the boundary of the flow field 
of interest. Once the velocity field is known, we use the Bernoulli equation 
(Eq. 10–27) to obtain the pressure field, where the Bernoulli constant C is 
obtained from a boundary condition on P somewhere in the flow.
 Example 10–4 illustrates a situation in which the flow field consists of 
two separate regions—an inviscid, rotational region and an inviscid, irrota-
tional region.

EXAMPLE 10–4    A Two-Region Model of a Tornado

A horizontal slice through a tornado (Fig. 10–28) is modeled by two distinct 

regions. The inner or core region (0 , r , R) is modeled by solid body 

rotation—a rotational but inviscid region of flow as discussed earlier. The 

outer region (r . R) is modeled as an irrotational region of flow. The flow 

is two-dimensional in the ru-plane, and the components of the velocity field 

V
!
 5 (ur, uu) are given by

 Velocity components: ur 5 0  uu 5 cvr

vR2

r

0 , r , R

r . R
 (1)

where v is the magnitude of the angular velocity in the inner region. The 

ambient pressure (far away from the tornado) is equal to P`. Calculate the 

pressure field in a horizontal slice of the tornado for 0 , r , `. What is 

the pressure at r 5 0? Plot the pressure and velocity fields.

SOLUTION  We are to calculate the pressure field P (r) in a horizontal radial 

slice through a tornado for which the velocity components are approximated by 

Eq. 1. We are also to calculate the pressure in this horizontal slice at r 5 0.

Assumptions  1 The flow is steady and incompressible. 2 Although R 

increases and v decreases with increasing elevation z, R and v are assumed 

to be constants when considering a particular horizontal slice. 3 The flow in 

the horizontal slice is two-dimensional in the ru-plane (no dependence on 

z and no w-component of velocity). 4 The effects of gravity are negligible 

within a particular horizontal slice (an additional hydrostatic pressure field 

exists in the z-direction, of course, but this does not affect the dynamics of 

the flow, as discussed previously).

Analysis  In the inner region, the Euler equation is an appropriate approxi-

mation of the Navier–Stokes equation, and the pressure field is found by 

integration. In Example 10–3 we showed that for solid body rotation,

Pressure field in inner region (r , R): P 5 r 
v2r2

2
1 P0 (2)

FIGURE 10–27
Flowchart for obtaining solutions 
in an irrotational region of flow. 
The velocity field is obtained from 
continuity and irrotationality, and 
then pressure is obtained from the 
Bernoulli equation.

Calculate f from continuity: ∇2f = 0

Calculate V from irrotationality: V = ∇f
→ → →

Calculate P from Bernoulli:

P
r

+ + gz = C
V2

2

FIGURE 10–28
A horizontal slice through a tornado 
can be modeled by two regions—an 
inviscid but rotational inner region of 
flow (r , R) and an irrotational outer 
region of flow (r . R).

Inner region

Outer region

r � R

x

r

P � P∞

u

y
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where P0 is the (unknown) pressure at r 5 0 and we have neglected the grav-

ity term. Since the outer region is a region of irrotational flow, the Bernoulli 

equation is appropriate and the Bernoulli constant is the same everywhere 

from r 5 R outward to r → `. The Bernoulli constant is found by applying 

the boundary condition far from the tornado, namely, as r → `, uu → 0 and 

P → P` (Fig. 10–29). Equation 10–27 yields

As r → `: 
P
r

 1  
V 2

2
  1  gz  5 C S C 5

Pq
r

 (3)

 P`/r V→0 as r→` assumption 4

The pressure field anywhere in the outer region is obtained by substituting 

the value of constant C from Eq. 3 into the Bernoulli equation (Eq. 10–27). 

Neglecting gravity,

In outer region (r . R): P 5 rC 2
1

2
 rV 2 5 Pq 2

1

2
 rV 2 (4)

We note that V2 5 uu
2. After substitution of Eq. 1 for uu, Eq. 4 reduces to

Pressure field in outer region (r . R): P 5 P` 2
r

2
 
v2R4

r2  (5)

At r 5 R, the interface between the inner and outer regions, the pressure 

must be continuous (no sudden jumps in P ), as illustrated in Fig. 10–30. 

Equating Eqs. 2 and 5 at this interface yields

Pressure at r 5 R: Pr5R 5 r 
v2R2

2
1 P0 5 Pq 2

r

2
 
v2R4

R2  (6)

from which the pressure P0 at r 5 0 is found,

Pressure at r 5 0: P0 5 P` 2 rv2R2 (7)

Equation 7 provides the value of pressure in the middle of the tornado—the 

eye of the storm. This is the lowest pressure in the flow field. Substitution 

of Eq. 7 into Eq. 2 enables us to rewrite Eq. 2 in terms of the given far-field 

ambient pressure P`,

In inner region (r , R): P 5 P` 2 rv2aR2 2
r2

2
b  (8)

Instead of plotting P as a function of r in this horizontal slice, we plot a 

nondimensional pressure distribution instead, so that the plot is valid for any 

horizontal slice. In terms of nondimensional variables,

Inner region (r , R):  
uu
vR

5
r

R
  

P 2 Pq
rv2R2 5

1

2
a r

R
b2

2 1 

Outer region (r . R): 
uu
vR

5
R
r
  

P 2 Pq
rv2R2 5 2

1

2
aR

r
b2

 (9)

Figure 10–31 shows both nondimensional tangential velocity and nondimen-

sional pressure as functions of nondimensional radial location.

Discussion  In the outer region, pressure increases as speed decreases—a 

direct result of the Bernoulli equation, which applies with the same Bernoulli 

constant everywhere in the outer region. You are encouraged to calculate P 

FF F

FIGURE 10–29
A good place to obtain boundary 

conditions for this problem is the far 
field; this is true for many problems 

in fluid mechanics.

Hint of the Day
 

Look to the far

field. There you 

may find what 

you seek.

FIGURE 10–30
For our model of the tornado to be 

valid, the pressure can have a 
discontinuity in slope at r 5 R, but 

cannot have a sudden jump of value 
there; (a) is valid, but (b) is not.

P

r

r = R

P

r

r = R

(a)

(b)
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in the outer region by an alternate method—direct integration of the Euler 

equation without use of the Bernoulli equation; you should get the same 

result. In the inner region, P increases parabolically with r even though 

speed also increases; this is because the Bernoulli constant changes from 

streamline to streamline (as also pointed out in Example 10–3). Notice that 

even though there is a discontinuity in the slope of tangential velocity at 

r /R 5 1, the pressure has a fairly smooth transition between the inner and 

outer regions. The pressure is lowest in the center of the tornado and rises 

to atmospheric pressure in the far field (Fig. 10–32). Finally, the flow in the 

inner region is rotational but inviscid, since viscosity plays no role in that 

region of the flow. The flow in the outer region is irrotational but viscous. 

Note, however, that viscosity still acts on fluid particles in the outer region. 

(Viscosity causes the fluid particles to shear and distort, even though the net 

viscous force on any fluid particle in the outer region is zero.)

Two-Dimensional Irrotational Regions of Flow
In irrotational regions of flow, Eqs. 10–24 and 10–21 apply for both two- 
and three-dimensional flow fields, and we solve for the velocity field in 
these regions by solving the Laplace equation for velocity potential func-
tion f. If the flow is also two-dimensional, we are able to make use of the 
stream function as well (Fig. 10–33). The two-dimensional approximation is 
not limited to flow in the xy-plane, nor is it limited to Cartesian coordinates. 
In fact, we can assume two-dimensionality in any region of the flow where 
only two directions of motion are important and where there is no signifi-
cant variation in the third direction. The two most common examples are 
planar flow (flow in a plane with negligible variation in the direction nor-
mal to the plane) and axisymmetric flow (flow in which there is rotational 
symmetry about some axis). We may also choose to work in Cartesian coor-
dinates, cylindrical coordinates, or spherical polar coordinates, depending 
on the geometry of the problem at hand.

FIGURE 10–31
Nondimensional tangential velocity 
distribution (blue curve) and 
nondimensional pressure distribution 
(black curve) along a horizontal radial 
slice through a tornado. The inner and 
outer regions of flow are marked.

Inner region

1

0.4

0

0

–0.2

–0.4

–0.6

–0.8

–1

0 1 2 3
r/R

4 5

0.6

0.8

0.2

P – P∞

rv2R2

Nondimensional pressure

uu
vR

Outer regionInner region

Nondimensional tangential velocity

FIGURE 10–32
The lowest pressure occurs at the 
center of the tornado, and the flow in 
that region can be approximated by 
solid body rotation.

Auntie
Em!
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Planar Irrotational Regions of Flow
We consider planar flow first, since it is the simplest. For a steady, incom-
pressible, planar, irrotational region of flow in the xy-plane in Cartesian 
coordinates (Fig. 10–34), the Laplace equation for f is

 =2f 5
02f

0x2 1
02f

0y2 5 0 (10–28)

For incompressible planar flow in the xy-plane, the stream function c is 
defined as (Chap. 9)

Stream function: u 5
0c
0y
  v 5 2

0c
0x

 (10–29)

Note that Eq. 10–29 holds whether the region of flow is rotational or irrota-
tional. In fact, the stream function is defined such that it always satisfies the 
continuity equation, regardless of rotationality. If we restrict our approxima-
tion to irrotational regions of flow, Eq. 10–19 must also hold; namely, the 
vorticity is zero or negligibly small. For general two-dimensional flow in 
the xy-plane, the z-component of vorticity is the only nonzero component. 
Thus, in an irrotational region of flow,

zz 5
0v
0x

2
0u
0y

5 0

Substitution of Eq. 10–29 into this equation yields

0
0x

 a2
0c
0x

b 2
0
0y

 a 0c
0y

b 5 2
02c

0x2 2
02c

0y2 5 0

We recognize the Laplacian operator in this latter equation. Thus,

 =2c 5
02c

0x2 1
02c

0y2 5 0 (10–30)

We conclude that the Laplace equation is applicable, not only for f (Eq. 10–28), 
but also for c (Eq. 10–30) in steady, incompressible, irrotational, planar 
regions of flow.
 Curves of constant values of c define streamlines of the flow, while 
curves of constant values of f define equipotential lines. (Note that some 
authors use the phrase equipotential lines to refer to both streamlines and 
lines of constant f rather than exclusively for lines of constant f.) In planar 
irrotational regions of flow, it turns out that streamlines intersect equipo-
tential lines at right angles, a condition known as mutual orthogonality 
(Fig. 10–35). In addition, the potential functions c and f are intimately 
related to each other—both satisfy the Laplace equation, and from either c 
or f we can determine the velocity field. Mathematicians call solutions of c 
and f harmonic functions, and c and f are called harmonic conjugates of 
each other. Although c and f are related, their origins are somewhat oppo-
site; it is perhaps best to say that c and f are complementary to each other:

•  The stream function is defined by continuity; the Laplace equation for c 
results from irrotationality.

•  The velocity potential is defined by irrotationality; the Laplace equation 
for f results from continuity.

FIGURE 10–33
Two-dimensional flow is a subset of 

three-dimensional flow; in two-
dimensional regions of flow we can 

define a stream function, but we 
cannot do so in three-dimensional 

flow. The velocity potential function, 
however, can be defined for any 

irrotational region of flow.

3-D irrotational region of flow: 
 •  V = ∇f
 •  ∇2f = 0
 •  Cannot define c

→ →

2-D irrotational region of flow: 
 •  V = ∇f
 •  ∇2f = 0
 •  Can also define c
    •  §2c 5 0

→ →

FIGURE 10–34
Velocity components and unit vectors 

in Cartesian coordinates for planar two-
dimensional flow in the xy-plane. There 

is no variation normal to this plane.

y

x

y

u

v

x

V
→

j
→

i
→
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In practice, we may perform a potential flow analysis using either c or f, 
and we should achieve the same results either way. However, it is often 
more convenient to use c, since boundary conditions on c are usually easier 
to specify.
 Planar flow in the xy-plane can also be described in cylindrical coordinates 
(r, u) and (ur, uu), as shown in Fig. 10–36. Again, there is no z-component 
of velocity, and velocity does not vary in the z-direction. In cylindrical 
coordinates,

Laplace equation, planar flow in (r, u): 
1
r
 
0
0r
ar 
0f
0r

b 1
1

r2 
02f

0u2 5 0 (10–31)

The stream function c for planar flow in Cartesian coordinates is defined 
by Eq. 10–29, and the irrotationality condition causes c to also satisfy the 
Laplace equation. In cylindrical coordinates we perform a similar analysis. 
Recall from Chap. 9,

Stream function: ur 5
1
r
 
0c
0u
  uu 5 2

0c
0r

 (10–32)

It is left as an exercise for you to show that the stream function defined by 
Eq. 10–32 also satisfies the Laplace equation in cylindrical coordinates for 
regions of two-dimensional planar irrotational flow. (Verify your results by 
replacing f by c in Eq. 10–31 to obtain the Laplace equation for the stream 
function.)

Axisymmetric Irrotational Regions of Flow
Axisymmetric flow is a special case of two-dimensional flow that can be 
described in either cylindrical coordinates or spherical polar coordinates. In 
cylindrical coordinates, r and z are the relevant spatial variables, and ur and uz 
are the nonzero velocity components (Fig. 10–37). There is no dependence 
on angle u since rotational symmetry is defined about the z-axis. This is a 
type of two-dimensional flow because there are only two independent spa-
tial variables, r and z. (Imagine rotating the radial component r in Fig. 10–37 
in the u-direction about the z-axis without changing the magnitude of r.) 
Because of rotational symmetry about the z-axis, the magnitudes of velocity 
components ur and uz remain unchanged after such a rotation. The Laplace 
equation for velocity potential f for the case of axisymmetric irrotational 
regions of flow in cylindrical coordinates is

1
r
 
0
0r

 ar 
0f
0r

b 1
02f

0z2 5 0

In order to obtain expressions for the stream function for axisymmetric flow, 
we begin with the incompressible continuity equation in r- and z-coordinates,

 
1
r
 
0
0r

 (rur) 1
0uz

0z
5 0 (10–33)

After some algebra, we define a stream function that identically satisfies 
Eq. 10–33,

Stream function: ur 5 2
1
r
 
0c
0z
  uz 5

1
r
 
0c
0r

FIGURE 10–35
In planar irrotational regions of flow, 
curves of constant f (equipotential 
lines) and curves of constant c 
(streamlines) are mutually orthogonal, 
meaning that they intersect at 908 
angles everywhere.

Streamlines

90°

Equipotential lines

FIGURE 10–36
Velocity components and unit vectors 
in cylindrical coordinates for planar 
flow in the ru-plane. There is no 
variation normal to this plane.
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Following the same procedure as for planar flow, we generate an equation 
for c for axisymmetric irrotational regions of flow by forcing the vorticity 
to be zero. In this case, only the u-component of vorticity is relevant since 
the velocity vector always lies in the rz-plane. Thus, in an irrotational region 
of flow,

0ur

0z
2
0uz

0r
5
0
0z

 a2
1
r
 
0c
0z

b 2
0
0r

 a1
r
 
0c
0r

b 5 0

After taking r outside the z-derivative (since r is not a function of z), we get

 r 
0
0r

 a1
r
 
0c
0r

b 1
02c

0z2 5 0 (10–34)

Note that Eq. 10–34 is not the same as the Laplace equation for c. You 
cannot use the Laplace equation for the stream function in axisymmetric 
irrotational regions of flow (Fig. 10–38).

For planar irrotational regions of flow, the Laplace equation is valid for both f 
and c; but for axisymmetric irrotational regions of flow, the Laplace equation 
is valid for f but not for c.

A direct consequence of this statement is that curves of constant c and 
curves of constant f in axisymmetric irrotational regions of flow are not 
mutually orthogonal. This is a fundamental difference between planar and 
axisymmetric flows. Finally, even though Eq. 10–34 is not the same as the 
Laplace equation, it is still a linear partial differential equation. This allows 
us to use the technique of superposition with either c or f when solving for 
the flow field in axisymmetric irrotational regions of flow. Superposition is 
discussed shortly.

Summary of Two-Dimensional Irrotational Regions of Flow
Equations for the velocity components for both planar and axisymmetric 
irrotational regions of flow are summarized in Table 10–2.

TABLE 10–2

Velocity components for steady, incompressible, irrotational, two-dimensional 

regions of flow in terms of velocity potential function and stream function in 

various coordinate systems

Description and  

Coordinate System Velocity Component 1 Velocity Component 2

Planar; Cartesian

coordinates u 5
0f
0x

5
0c
0y

 v 5
0f
0y

5 2
0c
0x

Planar; cylindrical

coordinates ur 5
0f
0r

5
1
r
 
0c
0u

 uu 5
1
r
 
0f
0u

5 2
0c
0r

Axisymmetric; 

cylindrical coordinates ur 5
0f
0r

5 2
1
r
 
0c
0z

 uz 5
0f
0z

5
1
r
 
0c
0r

FIGURE 10–37
Flow over an axisymmetric body in 

cylindrical coordinates with rotational 
symmetry about the z-axis. Neither the 
geometry nor the velocity field depend 

on u; and uu 5 0.

z

y

r

r

z

ur

uz

Rotational
symmetry

Axisymmetric
body

x
u

FIGURE 10–38
The equation for the stream function 

in axisymmetric irrotational flow 
(Eq. 10–34) is not the Laplace 

equation.

515-563_cengel_ch10.indd   537 12/18/12   1:24 PM



538
APPROXIMATE SOLUTIONS OF THE N–S EQ

Superposition in Irrotational Regions of Flow
Since the Laplace equation is a linear homogeneous differential equation, 
the linear combination of two or more solutions of the equation must also 
be a solution. For example, if f1 and f2 are each solutions of the Laplace 
equation, then Af1, (A 1 f1), (f1 1 f2), and (Af1 1 Bf2) are also solu-
tions, where A and B are arbitrary constants. By extension, you may combine 
several solutions of the Laplace equation, and the combination is guaranteed 
to also be a solution. If a region of irrotational flow is modeled by the sum 
of two or more separate irrotational flow fields, e.g., a source located in a 
free-stream flow, one can simply add the velocity potential functions for 
each individual flow to describe the combined flow field. This process of 
adding two or more known solutions to create a third, more complicated 
solution is known as superposition (Fig. 10–39).
 For the case of two-dimensional irrotational flow regions, a similar anal-
ysis can be performed using the stream function rather than the velocity 
potential function. We stress that the concept of superposition is useful, but 
is valid only for irrotational flow fields for which the equations for f and c 
are linear. You must be careful to ensure that the two flow fields you wish 
to add vectorially are both irrotational. For example, the flow field for a jet 
should never be added to the flow field for an inlet or for free-stream flow, 
because the velocity field associated with a jet is strongly affected by vis-
cosity, is not irrotational, and cannot be described by potential functions.
 It also turns out that since the potential function of the composite field is 
the sum of the potential functions of the individual flow fields, the velocity 
at any point in the composite field is the vector sum of the velocities of the 
individual flow fields. We prove this in Cartesian coordinates by considering 
a planar irrotational flow field that is the superposition of two independent 
planar irrotational flow fields denoted by subscripts 1 and 2. The composite 
velocity potential function is given by

Superposition of two irrotational flow fields: f 5 f1 1 f2

Using the equations for planar irrotational flow in Cartesian coordinates in 
Table 10–2, the x-component of velocity of the composite flow is

u 5
0f
0x

5
0(f1 1 f2)

0x
5
0f1

0x
1
0f2

0x
5 u1 1 u2

You can generate an analogous expression for v. Thus, superposition enables 
us to simply add the individual velocities vectorially at any location in the 
flow region to obtain the velocity of the composite flow field at that loca-
tion (Fig. 10–40).

Composite velocity field from superposition: V
!
5 V

!
1 1 V

!
2  (10–35)

Elementary Planar Irrotational Flows
Superposition enables us to add two or more simple irrotational flow solu-
tions to create a more complex (and hopefully more physically significant) 
flow field. It is therefore useful to establish a collection of elementary-
building block irrotational flows, with which we can construct a variety of 
more practical flows (Fig. 10–41). Elementary planar irrotational flows are 

FIGURE 10–39
Superposition is the process of adding 
two or more irrotational flow solutions 
together to generate a third (more 
complicated) solution.

f1  1  f2  5  f

1 5

FIGURE 10–40
In the superposition of two irrotational 
flow solutions, the two velocity 
vectors at any point in the flow region 
add vectorially to produce the 
composite velocity at that point.

� �

� �V1 V2 V
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described in xy- and/or ru-coordinates, depending on which pair is more 
useful in a particular problem.

Building Block 1—Uniform Stream
The simplest building block flow we can think of is a uniform stream of 
flow moving at constant velocity V in the x-direction (left to right). In terms 
of the velocity potential and stream function (Table 10–2),

Uniform stream: u 5
0f
0x

5
0c
0y

5 V  v 5
0f
0y

5 2
0c
0x

5 0

By integrating the first of these with respect to x, and then differentiating the 
result with respect to y, we generate an expression for the velocity potential 
function for a uniform stream,

f 5 Vx 1 f (y)  S  v 5
0f
0y

5 f 9(y) 5 0  S  f (y) 5 constant

The constant is arbitrary since velocity components are always derivatives 
of f. We set the constant equal to zero, knowing that we can always add an 
arbitrary constant later on if desired. Thus,

Velocity potential function for a uniform stream: f 5 Vx (10–36)

In a similar manner we generate an expression for the stream function for 
this elementary planar irrotational flow,

Stream function for a uniform stream: c 5 Vy (10–37)

Shown in Fig. 10–42 are several streamlines and equipotential lines for a 
uniform stream. Notice the mutual orthogonality.
 It is often convenient to express the stream function and velocity potential 
function in cylindrical coordinates rather than rectangular coordinates, par-
ticularly when superposing a uniform stream with some other planar irrota-
tional flow(s). The conversion relations are obtained from the geometry of 
Fig. 10–36,

 x 5 r cos u  y 5 r sin u  r 5 "x 2 1 y 2 (10–38)

From Eq. 10–38 and a bit of trigonometry, we derive relationships for u and v 
in terms of cylindrical coordinates,

Transformation: u 5 ur cos u 2 uu sin u  v 5 ur sin u 1 uu cos u (10–39)

In cylindrical coordinates, Eqs. 10–36 and 10–37 for f and c become

Uniform stream: f 5 Vr cos u  c 5 Vr sin u (10–40)

 We may modify the uniform stream so that the fluid flows uniformly at 
speed V at an angle of inclination a from the x-axis. For this situation, 
u 5 V cos a and v 5 V sin a as shown in Fig. 10–43. It is left as an exercise 
to show that the velocity potential function and stream function for a uniform 
stream inclined at angle a are

Uniform stream inclined at angle a:
 f 5 V(x cos a 1 y sin a)

 c 5 V(y cos a 2 x sin a) 
(10–41)

When necessary, Eq. 10–41 can easily be converted to cylindrical coordi-
nates through use of Eq. 10–38.

FIGURE 10–41
With superposition we build up a 

complicated irrotational flow field by 
adding together elementary “building 

block” irrotational flow fields.
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FIGURE 10–42
Streamlines (solid) and equipotential 

lines (dashed) for a uniform stream in 
the x-direction.
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FIGURE 10–43
Streamlines (solid) and equipotential 

lines (dashed) for a uniform stream 
inclined at angle a.
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Building Block 2—Line Source or Line Sink
Our second building block flow is a line source. Imagine a line segment of 
length L parallel to the z-axis, along which fluid emerges and flows uni-
formly outward in all directions normal to the line segment (Fig. 10–44). 
The total volume flow rate is equal to V

.
. As length L approaches infinity, 

the flow becomes two-dimensional in planes perpendicular to the line, and 
the line from which the fluid escapes is called a line source. For an infinite 
line, V

. 
also approaches infinity; thus, it is more convenient to consider the 

volume flow rate per unit depth, V
.
/L, called the line source strength (often 

given the symbol m).
 A line sink is the opposite of a line source; fluid flows into the line from 
all directions in planes normal to the axis of the line sink. By convention, 
positive V

.
/L signifies a line source and negative V

.
/L signifies a line sink.

 The simplest case occurs when the line source is located at the origin 
of the xy-plane, with the line itself lying along the z-axis. In the xy-plane, 
the line source looks like a point at the origin from which fluid is spewed 
outward in all directions in the plane (Fig. 10–45). At any radial distance r 
from the line source, the radial velocity component ur is found by applying 
conservation of mass. Namely, the entire volume flow rate per unit depth 
from the line source must pass through the circle defined by radius r. Thus,

 
V
#

L
5 2prur  ur 5

V
#
/L

2pr
 (10–42)

Clearly, ur decreases with increasing r as we would expect. Notice also that ur 
is infinite at the origin since r is zero in the denominator of Eq. 10–42. We 
call this a singular point or a singularity—it is certainly unphysical, but 
keep in mind that planar irrotational flow is merely an approximation, and 
the line source is still useful as a building block for superposition in irro-
tational flow. As long as we stay away from the immediate vicinity of the 
center of the line source, the rest of the flow field produced by superposi-
tion of a line source and other building block(s) may still be a good repre-
sentation of a region of irrotational flow in a physically realistic flow field.
 We now generate expressions for the velocity potential function and the 
stream function for a line source of strength V

.
/L. We use cylindrical coor-

dinates, beginning with Eq. 10–42 for ur and also recognize that uu is zero 
everywhere. Using Table 10–2, the velocity components are

Line source: ur 5
0f
0r

5
1
r
 
0c
0u

5
V
#
/L

2pr
  uu 5

1
r
 
0f
0u

5 2
0c
0r

5 0

To generate the stream function, we (arbitrarily) choose one of these equa-
tions (we choose the second one), integrate with respect to r, and then dif-
ferentiate with respect to the other variable u,

0c
0r

5 2uu 5 0  S  c 5 f (u)  S  
0c
0u

5 f 9(u) 5 rur 5
V
#
/L

2p

from which we integrate to obtain

f (u) 5
V
#
/L

2p
 u 1 constant

Again we set the arbitrary constant of integration equal to zero, since we 
can add back a constant as desired at any time without changing the flow. 

FIGURE 10–44
Fluid emerging uniformly from a 
finite line segment of length L. As L 
approaches infinity, the flow becomes 
a line source, and the xy-plane is taken 
as normal to the axis of the source.

L
y

x

xy-plane

z

FIGURE 10–45
Line source of strength V

.
/L located at 

the origin in the xy-plane; the total vol-
ume flow rate per unit depth through 
a circle of radius r must equal V

.
/L 

regardless of the value of r.

y

x

V/L r

ur

u
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After a similar analysis for f, we obtain the following expressions for a line 
source at the origin:

Line source at the origin: f 5
V
#
/L

2p
 ln r  and  c 5

V
#
/L

2p
 u (10–43)

 Several streamlines and equipotential lines are sketched for a line source 
in Fig. 10–46. As expected, the streamlines are rays (lines of constant u), 
and the equipotential lines are circles (lines of constant r). The streamlines 
and equipotential lines are mutually orthogonal everywhere except at the 
origin, which is a singular point.
 In situations where we would like to place a line source somewhere other than 
the origin, we must transform Eq. 10–43 carefully. Sketched in Fig. 10–47 is a 
source located at an arbitrary point (a, b) in the xy-plane. We define r1 as 
the distance from the source to some point P in the flow, where P is located at 
(x, y) or (r, u). Similarly, we define u1 as the angle from the source to point P, 
as measured from a line parallel to the x-axis. We analyze the flow as if the 
source were at a new origin at absolute location (a, b). Equations 10–43 for f 
and c are thus still usable, but r and u must be replaced by r1 and u1. Some 
trigonometry is required to convert r1 and u1 back to (x, y) or (r, u). In 
Cartesian coordinates, for example,

Line source at point (a, b):

 f 5
V
#
/L

2p
 ln r1 5

V
#
/L

2p
 ln "(x 2 a)2 1 (y 2 b)2

 c 5
V
#
/L

2p
 u1 5

V
#
/L

2p
 arctan  

y 2 b

x 2 a
 

(10–44)

EXAMPLE 10–5     Superposition of a Source 
and Sink of Equal Strength

Consider an irrotational region of flow composed of a line source of strength 

V
.
/L at location (2a, 0) and a line sink of the same strength (but opposite 

sign) at (a, 0), as sketched in Fig. 10–48. Generate an expression for the 

stream function in both Cartesian and cylindrical coordinates.

SOLUTION  We are to superpose a source and a sink, and generate an 

expression for c in both Cartesian and cylindrical coordinates.

Assumptions   The region of flow under consideration is incompressible and 

irrotational.

Analysis  We use Eq. 10–44 to obtain c for the source,

Line source at (2a, 0): c1 5
V
#
/L

2p
 u1  where  u1 5 arctan 

y

x 1 a
 (1)

Similarly for the sink,

Line sink at (a, 0): c2 5
2V
#
/L

2p
 u2  where  u2 5 arctan 

y

x 2 a
 (2)

Superposition enables us to simply add the two stream functions, Eqs. 1 and 2, 

to obtain the composite stream function,

Composite stream function: c 5 c1 1 c2 5
V
#
/L

2p
 (u1 2 u2) (3)

FIGURE 10–46
Streamlines (solid) and equipotential 

lines (dashed) for a line source of 
strength V

.
/L located at the origin in 

the xy-plane. 
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FIGURE 10–47
Line source of strength V

.
/L located 

at some arbitrary point (a, b) in the 
xy-plane.
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FIGURE 10–48
Superposition of a line source of 

strength V
.
/L at (2a, 0) and a line sink 

(source of strength 2V
.
/L) at (a, 0).
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We rearrange Eq. 3 and take the tangent of both sides to get

 tan 
2pc

V
#
/L

5 tan (u1 2 u2) 5
tan u1 2 tan u2

1 1 tan u1 
 tan u2

 (4)

where we have used a trigonometric identity (Fig. 10–49).

 We substitute Eqs. 1 and 2 for u1 and u2 and perform some algebra to 

obtain an expression for the stream function,

tan 
2pc

V
#
/L

5

y

x 1 a
2

y

x 2 a

1 1
y

x 1 a
 

y

x 2 a

5
22ay

x 2 1 y 2 2 a2

or, taking the arctangent of both sides,

Final result, Cartesian coordinates: c 5
2V
#
/L

2p
 arctan 

2ay

x2 1 y2 2 a2 (5)

We translate to cylindrical coordinates by using Eqs. 10–38,

Final result, cylindrical coordinates: c 5
2V
#
/L

2p
 arctan 

2ar sin u
r 2 2 a2  (6)

Discussion  If the source and sink were to switch places, the result would 

be the same, except that the negative sign on source strength V
.
/L would 

disappear.

Building Block 3—Line Vortex
Our third building block flow is a line vortex parallel to the z-axis. As with 
the previous building block, we start with the simple case in which the line 
vortex is located at the origin (Fig. 10–50). Again we use cylindrical coordi-
nates for convenience. The velocity components are

Line vortex: ur 5
0f
0r

5
1
r
 
0c
0u

5 0  uu 5
1
r
 
0f
0u

5 2
0c
0r

5
G

2pr
 (10–45)

where G is called the circulation or the vortex strength. Following the stan-
dard convention in mathematics, positive G represents a counterclockwise 
vortex, while negative G represents a clockwise vortex. It is left as an exer-
cise to integrate Eq. 10–45 to obtain expressions for the stream function and 
the velocity potential function,

Line vortex at the origin: f 5
G

2p
 u  c 5 2

G

2p
 ln r (10–46)

Comparing Eqs. 10–43 and 10–46, we see that a line source and line vortex 
are somewhat complementary in the sense that the expressions for f and c 
are reversed.
 For situations in which we would like to place the vortex somewhere other 
than the origin, we must transform Eq. 10–46 as we did for a line source. 
Sketched in Fig. 10–51 is a line vortex located at an arbitrary point (a, b) 

FIGURE 10–49
Some useful trigonometric identities.

Useful Trigonometric IdentitiesUseful Trigonometric Identities

sin(sin(a 1 b) ) 5 sin  sin a cos  cos b 1 co cos a sin sin b
cos(cos(a 1 b) ) 5 cos  cos a cos  cos b 2 sin  sin a sin sin b

tan(tan(a 1 b) ) 5      
tan tan a 1 tan tan b 

cot(cot(a 1 b) ) 5 
cot cot b cot  cot a – 1
1– tan tan a ta tanb

cot cot b 1 cot cot a

FIGURE 10–50
Line vortex of strength G located at the 
origin in the xy-plane.

u

uu

y
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L

FIGURE 10–51
Line vortex of strength G located 
at some arbitrary point (a, b) 
in the xy-plane.
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in the xy-plane. We define r1 and u1 as previously (Fig. 10–47). To obtain 
expressions for f and c, we replace r and u by r1 and u1 in Eqs. 10–46 
and then transform to regular coordinates, either Cartesian or cylindrical. In 
Cartesian coordinates,

Line vortex at point (a, b):

 f 5
G

2p
 u1 5

G

2p
 arctan  

y 2 b

x 2 a

 
c 5 2

G

2p
 ln r1 5 2

G

2p
 ln "(x 2 a)2 1 (y 2 b)2 

(10–47)

EXAMPLE 10–6     Velocity in a Flow Composed 
of Three Components

An irrotational region of flow is formed by superposing a line source of strength 

(V
.
/L)1 5 2.00 m2/s at (x, y ) 5 (0, 21), a line source of strength (V

.
/L)2 5 

21.00 m2/s at (x, y ) 5 (1, 21), and a line vortex of strength G 5 1.50 m2/s 

at (x, y ) 5 (1, 1), where all spatial coordinates are in meters. [Source num-

ber 2 is actually a sink, since (V
.
/L)2 is negative.] The locations of the three 

building blocks are shown in Fig. 10–52. Calculate the fluid velocity at the 

point (x, y ) 5 (1, 0).

SOLUTION  For the given superposition of two line sources and a vortex, we 

are to calculate the velocity at the point (x, y ) 5 (1, 0).

Assumptions  1 The region of flow being modeled is steady, incompressible, 

and irrotational. 2 The velocity at the location of each component is infinite 

(they are singularities), and the flow in the vicinity of each of these singulari-

ties is unphysical; however, these regions are ignored in the present analysis.

Analysis  There are several ways to solve this problem. We could sum the 

three stream functions using Eqs. 10–44 and 10–47, and then take deriva-

tives of the composite stream function to calculate the velocity components. 

Alternatively, we could do the same for velocity potential function. An easier 

approach is to recognize that velocity itself can be superposed; we simply 

add the velocity vectors induced by each of the three individual singularities to 

form the composite velocity at the given point. This is illustrated in Fig. 10–53. 

Since the vortex is located 1 m above the point (1, 0), the velocity induced 

by the vortex is to the right and has a magnitude of

 Vvortex 5
G

2prvortex

5
1.50 m2/s

2p(1.00 m)
5 0.239 m/s (1)

Similarly, the first source induces a velocity at point (1, 0) at a 458 angle 

from the x-axis as shown in Fig. 10–53. Its magnitude is

 Vsource 1 5
u (V
#
/L)1 u

2prsource 1

5
2.00 m2/s

2p("2 m)
5 0.225 m/s (2)

Finally, the second source (the sink) induces a velocity straight down with 

magnitude

 Vsource 2 5
u (V
#
/L)2 u

2prsource 2

5
u21.00 m2/s u
2p(1.00 m)

5 0.159 m/s (3)

FIGURE 10–52
Superposition of two line sources 

and a line vortex in the xy-plane 
(Example 10–6).
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We sum these velocities vectorially by completing the parallelograms, as 

illustrated in Fig. 10–54. Using Eq. 10–35, the resultant velocity is

 V
!
5 V

!
vortex   1    V

!
source 1 1   V

!
source 2 5 (0.398i

!
1 0 j

!
) m/s (4)

 0.239i
→

 m/s a0.225"2
 i 

!
1

0.225"2
 j
!b m/s

 
20.159 j

→
 m/s

The superposed velocity at point (1, 0) is 0.398 m/s to the right.
Discussion This example demonstrates that velocity can be superposed just as 

stream function or velocity potential function can be superposed. Superposi-

tion of velocity is valid in irrotational regions of flow because the differential 

equations for f and c are linear ; the linearity extends to their derivatives 

as well.

Building Block 4—Doublet
Our fourth and final building block flow is called a doublet. Although we 
treat it as a building block for use with superposition, the doublet itself is 
generated by superposition of two earlier building blocks, namely, a line 
source and a line sink of equal magnitude, as discussed in Example 10–5. 
The composite stream function was obtained in that example problem and 
the result is repeated here:

Composite stream function: c 5
2V
#
/L

2p
 arctan 

2ar sin u

r2 2 a2  (10–48)

Now imagine that the distance a from the origin to the source and from the 
origin to the sink approaches zero (Fig. 10–55). You should recall that arctan b 
approaches b for very small values of angle b in radians. Thus, as distance a 
approaches zero, Eq. 10–48 reduces to

Stream function as a → 0: cS
2a(V

#
/L)r sin u

p(r2 2 a2)
 (10–49)

If we shrink a while maintaining the same source and sink strengths (V
.
/L 

and 2V
.
/L), the source and sink cancel each other out when a 5 0, leav-

ing us with no flow at all. However, imagine that as the source and sink 
approach each other, their strength V

.
/L increases inversely with distance a 

such that the product a(V
.
/L) remains constant. In that case, r .. a at any 

point P except very close to the origin, and Eq. 10–49 reduces to

Doublet along the x-axis: c 5
2a(V

#
/L)
p

 
 sin u

r
5 2K 

sin u
r

 (10–50)

where we have defined doublet strength K 5 a(V
.
/L)/p for convenience. 

The velocity potential function is obtained in similar fashion,

Doublet along the x-axis: f 5 K 
cos  u

r
 (10–51)

Several streamlines and equipotential lines for a doublet are plotted in 
Fig. 10–56. It turns out that the streamlines are circles tangent to the x-axis, 
and the equipotential lines are circles tangent to the y-axis. The circles inter-
sect at 908 angles everywhere except at the origin, which is a singular point.

⎫⎪⎬⎪⎭ ⎫⎪⎬⎪⎭ ⎫⎪⎬⎪⎭

FIGURE 10–53
Induced velocity due to (a) the vortex, 
(b) source 1, and (c) source 2 (noting that 
source 2 is negative) (Example 10–6).
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FIGURE 10–54
Vector summation of the three induced 
velocities of Example 10–6.
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 If K is negative, the doublet is “backwards,” with the sink located at x 5 02 
(infinitesimally to the left of the origin) and the source located at x 5 01 
(infinitesimally to the right of the origin). In that case all the streamlines in 
Fig. 10–56 would be identical in shape, but the flow would be in the oppo-
site direction. It is left as an exercise to construct expressions for a doublet 
that is aligned at some angle a from the x-axis.

Irrotational Flows Formed by Superposition
Now that we have a set of building block irrotational flows, we are ready 
to construct some more interesting irrotational flow fields by the superpo-
sition technique. We limit our examples to planar flows in the xy-plane; 
examples of superposition with axisymmetric flows can be found in more 
advanced textbooks (e.g., Kundu et al., 2011; Panton, 2005; Heinsohn and 
Cimbala, 2003). Note that even though c for axisymmetric irrotational flow 
does not satisfy the Laplace equation, the differential equation for c 
(Eq. 10–34) is still linear, and thus superposition is still valid.

Superposition of a Line Sink and a Line Vortex
Our first example is superposition of a line source of strength V

.
/L (V

.
/L is 

a negative quantity in this example) and a line vortex of strength G, both 
located at the origin (Fig. 10–57). This represents a region of flow above 
a drain in a sink or bathtub where fluid spirals in toward the drain. We can 
superpose either c or f. We choose c and generate the composite stream 
function by adding c for a source (Eq. 10–43) and c for a line vortex 
(Eq. 10–46),

Superposition: c 5
V
#
/L

2p
  u 2

G

2p
  ln r (10–52)

To plot streamlines of the flow, we pick a value of c and then solve for 
either r as a function of u or u as a function of r. We choose the former; 
after some algebra we get

Streamlines: r 5 expa (V
#
/L)u 2 2pc

G
b  (10–53)

We pick some arbitrary values for V
.
/L and G so that we can generate a plot; 

namely, we set V
.
/L 5 21.00 m2/s and G 5 1.50 m2/s. Note that V

.
/L is 

negative for a sink. Also note that the units for V
.
/L and G are obtained eas-

ily since we know that the dimensions of stream function in planar flow are 
{length2/time}. Streamlines are calculated for several values of c using Eq. 10–53 
and are plotted in Fig. 10–58.
 The velocity components at any point in this irrotational flow are obtained 
by differentiating Eq. 10–52,

Velocity components: ur 5
1
r
 
0c
0u

5
V
#
/L

2pr
  uu 5 2

0c
0r

5
G

2pr

We notice that in this simple example, the radial velocity component is due 
entirely to the sink, since there is no contribution to radial velocity from the 
vortex. Similarly, the tangential velocity component is due entirely to the 
vortex. The composite velocity at any point in the flow is the vector sum of 
these two components, as sketched in Fig. 10–57.

FIGURE 10–55
A doublet is formed by superposition 
of a line source at (2a, 0) and a line 

sink at (a, 0); a decreases to zero while 
V
.
 /L increases to infinity such that the 

product aV
.
 /L remains constant.
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– –∞ V
•
/L →

FIGURE 10–56
Streamlines (solid) and equipotential 

lines (dashed) for a doublet of strength K 
located at the origin in the xy-plane 

and aligned with the x-axis.

r

x
K

y

u

–f1 f1

–c1

c1

–c2

c2

–c3

c3

–f2 f2–f3 f3

515-563_cengel_ch10.indd   545 12/18/12   1:24 PM



546
APPROXIMATE SOLUTIONS OF THE N–S EQ

Superposition of a Uniform Stream and a Doublet—
Flow over a Circular Cylinder
Our next example is a classic in the field of fluid mechanics, namely, the 
superposition of a uniform stream of speed V` and a doublet of strength K 
located at the origin (Fig. 10–59). We superpose the stream function by adding 
Eq. 10–40 for a uniform stream and Eq. 10–50 for a doublet at the origin. 
The composite stream function is thus

Superposition: c 5 Vq r  sin u 2 K  

sin u
r

 (10–54)

For convenience we set c 5 0 when r 5 a (the reason for this will soon 
become apparent). Equation 10–54 if then solved for doublet strength K,

Doublet strength: K 5 Vqa2

and Eq. 10–54 becomes

Alternate form of stream function: c 5 Vq sin uar 2
a2

r
b  (10–55)

It is clear from Eq. 10–55 that one of the streamlines (c 5 0) is a circle 
of radius a (Fig. 10–60). We can plot this and other streamlines by solving 
Eq. 10–55 for r as a function of u or vice versa. However, as you should be 
aware by now, it is usually better to present results in terms of nondimen-
sional parameters. By inspection, we define three nondimensional parameters,

 c* 5
c

Vq a
   r* 5

r
a
   u 

where angle u is already dimensionless. In terms of these parameters, Eq. 10–55 
is written as

 c* 5 sin uar* 2
1

r*
b  (10–56)

We solve Eq. 10–56 for r* as a function of u through use of the quadratic rule,

Nondimensional streamlines: r* 5
c* 6 "(c*)2 1 4 sin2 u

2 sin u
 (10–57)

Using Eq. 10–57, we plot several nondimensional streamlines in Fig. 10–61. 
Now you see why we chose the circle r 5 a (or r* 5 1) as the zero streamline—
this streamline can be thought of as a solid wall, and this flow represents 
potential flow over a circular cylinder. Not shown are streamlines inside the 
circle—they exist, but are of no concern to us.
 There are two stagnation points in this flow field, one at the nose of the 
cylinder and one at the tail. Streamlines near the stagnation points are far 
apart since the flow is very slow there. By contrast, streamlines near the top 
and bottom of the cylinder are close together, indicating regions of fast flow. 
Physically, fluid must accelerate around the cylinder since it is acting as an 
obstruction to the flow.
 Notice also that the flow is symmetric about both the x- and y-axes. While 
top-to-bottom symmetry is not surprising, fore-to-aft symmetry is perhaps 
unexpected, since we know that real flow around a cylinder generates a 

FIGURE 10–57
Superposition of a line source of 
strength V

.
/L and a line vortex of 

strength G located at the origin. Vector 
velocity addition is shown at some 
arbitrary location in the xy-plane.
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FIGURE 10–58
Streamlines created by superposition 
of a line sink and a line vortex at the 
origin. Values of c are in units of m2/s.
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FIGURE 10–59
Superposition of a uniform stream and 
a doublet; vector velocity addition is 
shown at some arbitrary location in 
the xy-plane.
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wake region behind the cylinder, and the streamlines are not symmetric. 
However, we must keep in mind that the results here are only approxima-
tions of a real flow. We have assumed irrotationality everywhere in the flow 
field, and we know that this approximation is not true near walls and in 
wake regions.
 We calculate the velocity components everywhere in the flow field by dif-
ferentiating Eq. 10–55,

ur 5
1
r
 
0c
0u

5 Vq cos ua1 2
a2

r2b  uu 5 2
0c
0r

5 2Vq sin ua1 1
a2

r2b  (10–58)

A special case is on the surface of the cylinder itself (r 5 a), where Eqs. 10–58 
reduce to

On the surface of the cylinder: ur 5 0  uu 5 22Vq sin u (10–59)

Since the no-slip condition at solid walls cannot be satisfied when making 
the irrotational approximation, there is slip at the cylinder wall. In fact, at the 
top of the cylinder (u 5 908), the fluid speed at the wall is twice that of the 
free stream.

EXAMPLE 10–7    Pressure Distribution on a Circular Cylinder

Using the irrotational flow approximation, calculate and plot the nondimen-

sional static pressure distribution on the surface of a circular cylinder of 

radius a in a uniform stream of speed V` (Fig. 10–62). Discuss the results. 

The pressure far away from the cylinder is P`.

SOLUTION  We are to calculate and plot the nondimensional static pressure 

distribution along the surface of a circular cylinder in a free-stream flow.

Assumptions  1 The region of flow being modeled is steady, incompressible, 

and irrotational. 2 The flow field is two-dimensional in the xy-plane.

Analysis  First of all, static pressure is the pressure that would be measured 

by a pressure probe moving with the fluid. Experimentally, we measure this 

pressure on a surface through use of a static pressure tap, which is basically 

a tiny hole drilled normal to the surface (Fig. 10–63). At the other end of 

the tap is a tube leading to a pressure measuring device. Experimental data 

of the static pressure distribution along the surface of a cylinder are avail-

able in the literature, and we compare our results to some of those experi-

mental data.

 From Chap. 7 we recognize that the appropriate nondimensional pressure 

is the pressure coefficient,

Pressure coefficient: Cp 5
P 2 Pq

1
2 rVq2

 (1)

Since the flow in the region of interest is irrotational, we use the Bernoulli 

equation (Eq. 10–27) to calculate the pressure anywhere in the flow field. 

Ignoring the effects of gravity,

Bernoulli equation: 
P
r

1
V 2

2
5 constant 5

Pq
r

1
V q

2

2
 (2)

FIGURE 10–60
Superposition of a uniform stream 

and a doublet yields a streamline 
that is a circle.

y

K

r = a

x

V∞ c = 0

FIGURE 10–61
Nondimensional streamlines created 

by superposition of a uniform 
stream and a doublet at the origin; 

c* 5 c/(V`a), Dc* 5 0.2, x* 5 x/a, 
and y* 5 y/a, where a is the 

cylinder radius.
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FIGURE 10–62
Planar flow over a circular cylinder 
of radius a immersed in a uniform 

stream of speed V` in the xy-plane. 
Angle b is defined from the front 

of the cylinder by convention.
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Rearranging Eq. 2 into the form of Eq. 1, we get

 Cp 5
P 2 Pq

1
2 rVq

2
5 1 2

V 2

Vq
2  (3)

We substitute our expression for tangential velocity on the cylinder surface, 

Eq. 10–59, since along the surface V2 5 uu
2; Eq. 3 becomes

Surface pressure coefficient: Cp 5 1 2
(22Vq sin u)2

Vq
2 5 1 2 4 sin2 u

In terms of angle b, defined from the front of the body (Fig. 10–62), we use 

the transformation b 5 p 2 u to obtain

Cp in terms of angle b: Cp 5 1 2 4 sin2 b (4)

We plot the pressure coefficient on the top half of the cylinder as a function 

of angle b in Fig. 10–64, solid blue curve. (Because of top–bottom symme-

try, there is no need to also plot the pressure distribution on the bottom half 

of the cylinder.) The first thing we notice is that the pressure distribution is 

symmetric fore and aft. This is not surprising since we already know that the 

streamlines are also symmetric fore and aft (Fig. 10–61).

 The front and rear stagnation points (at b 5 08 and 1808, respectively) are 

labeled SP on Fig. 10–64. The pressure coefficient is unity there, and these 

two points have the highest pressure in the entire flow field. In physical 

variables, static pressure P at the stagnation points is equal to P` 1 rV2
`/2. 

In other words, the full dynamic pressure (also called impact pressure) of the 

oncoming fluid is felt as a static pressure on the nose of the body as the 

fluid is decelerated to zero speed at the stagnation point. At the very top of 

the cylinder (b 5 908), the speed along the surface is twice the free-stream 

velocity (V 5 2V`), and the pressure coefficient is lowest there (Cp 5 23). 

Also marked on Fig. 10–64 are the two locations where Cp 5 0, namely at 

b 5 308 and 1508. At these locations, the static pressure along the surface 

is equal to that of the free stream (P 5 P`).

Discussion  Typical experimental data for laminar and turbulent flow over 

the surface of a circular cylinder are indicated by the green circles and red 

circles, respectively, in Fig. 10–64. It is clear that near the front of the cyl-

inder, the irrotational flow approximation is excellent. However, for b greater 

than about 608, and especially near the rear portion of the cylinder (right 

side of the plot), the irrotational flow results do not match well at all with 

experimental data. In fact, it turns out that for flow over bluff body shapes 

like this, the irrotational flow approximation usually does a fairly good job on 

the front half of the body, but a very poor job on the rear half of the body. 

The irrotational flow approximation agrees better with experimental turbulent 

data than with experimental laminar data; this is because flow separation 

occurs farther downstream for the case with a turbulent boundary layer, as 

discussed in more detail in Section 10–6.

 One immediate consequence of the symmetry of the pressure distribution 
in Fig. 10–64 is that there is no net pressure drag on the cylinder (pressure 
forces in the front half of the body are exactly balanced by those on the rear 
half of the body). In this irrotational flow approximation, the pressure fully 
recovers at the rear stagnation point, so that the pressure there is the same as 
that at the front stagnation point. We also predict that there is no net viscous 

FIGURE 10–63
Static pressure on a surface is 
measured through use of a static 
pressure tap connected to a pressure 
manometer or electronic pressure 
transducer.

Body surface

To pressure 
transducer

Flexible tubing

P

Pressure tap

P

Pressure tap

FIGURE 10–64
Pressure coefficient as a function of 
angle b along the surface of a circular 
cylinder; the solid blue curve is the 
irrotational flow approximation, green 
circles are from experimental data at 
Re 5 2 3 105 2 laminar boundary 
layer separation, and red circles are 
from typical experimental data at 
Re 5 7 3 105 2 turbulent boundary 
layer separation.
Data from Kundu et al., (2011).

90

1

0

–1

–2

–3

0 30 60 120 150 180

Free-stream
pressure

Cp

b, degrees

Front SP Rear SP

Top

515-563_cengel_ch10.indd   548 12/18/12   1:24 PM



549
CHAPTER 10

drag on the body, since we cannot specify the no-slip condition on the body 
surface when we make the irrotational approximation. Hence, the net aero-
dynamic drag on the cylinder in irrotational flow is identically zero. This is 
one example of a more general statement that applies to bodies of any shape 
(even unsymmetrical shapes) when the irrotational flow approximation is 
made, namely, the famous paradox first stated by Jean-le-Rond d’Alembert 
(1717–1783) in the year 1752:

D’Alembert’s paradox: With the irrotational flow approximation, the 
aerodynamic drag force on any nonlifting body of any shape immersed 
in a uniform stream is zero.

D’Alembert recognized the paradox of his statement, of course, knowing 
that there is aerodynamic drag on real bodies immersed in real fluids. In a 
real flow, the pressure on the back surface of the body is significantly less 
than that on the front surface, leading to a nonzero pressure drag on the 
body. This pressure difference is enhanced if the body is bluff and there 
is flow separation, as sketched in Fig. 10–65. Even for streamlined bodies, 
however (such as airplane wings at low angles of attack), the pressure near 
the back of the body never fully recovers. In addition, the no-slip condition 
on the body surface leads to a nonzero viscous drag as well. Thus, the irro-
tational flow approximation falls short in its prediction of aerodynamic drag 
for two reasons: it predicts no pressure drag and it predicts no viscous drag.
 The pressure distribution at the front end of any rounded body shape 
is qualitatively similar to that plotted in Fig. 10–64. Namely, the pressure 
at the front stagnation point (SP) is the highest pressure on the body: PSP 5
P` 1 rV2/2, where V is the free-stream velocity (we have dropped the sub-
script `), and Cp 5 1 there. Moving downstream along the body surface, 
pressure drops to some minimum value for which P is less than P` (Cp , 0). 
This point, where the velocity just above the body surface is largest and the 
pressure is smallest, is often called the aerodynamic shoulder of the body. 
Beyond the shoulder, the pressure slowly rises. With the irrotational flow 
approximation, the pressure always rises back to the dynamic pressure at the 
rear stagnation point, where Cp 5 1. However, in a real flow, the pressure 
never fully recovers, leading to pressure drag as discussed previously.
 Somewhere between the front stagnation point and the aerodynamic shoul-
der is a point on the body surface where the speed just above the body is 
equal to V, the pressure P is equal to P`, and Cp 5 0. This point is called 
the zero pressure point, where the phrase is obviously based on gage pres-
sure, not absolute pressure. At this point, the pressure acting normal to the 
body surface is the same (P 5 P`), regardless of how fast the body moves 
through the fluid. This fact is a factor in the location of fish eyes (Fig. 10–66). 
If a fish’s eye were located closer to its nose, the eye would experience an 
increase in water pressure as the fish swims—the faster it would swim, the 
higher the water pressure on its eye would be. This would cause the soft eye-
ball to distort, affecting the fish’s vision. Likewise, if the eye were located 
farther back, near the aerodynamic shoulder, the eye would experience a rela-
tive suction pressure when the fish would swim, again distorting its eyeball 
and blurring its vision. Experiments have revealed that the fish’s eye is instead 
located very close to the zero-pressure point where P 5 P`, and the fish can 
swim at any speed without distorting its vision. Incidentally, the back of the 

FIGURE 10–65
(a) D’Alembert’s paradox is that the 
aerodynamic drag on any nonlifting 

body of any shape is predicted to 
be zero when the irrotational flow 

approximation is invoked; (b) in real 
flows there is a nonzero drag on 

bodies immersed in a uniform stream.

Irrotational flow approximation

(a)

(b)

Real (rotational) flow field

Aerodynamic drag = 0

Aerodynamic drag ≠ 0

→

V

FD

V

FIGURE 10–66
A fish’s body is designed such that its 

eye is located near the zero-pressure 
point so that its vision is not distorted 
while it swims. Data shown are along 

the side of a bluefish. 
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gills is located near the aerodynamic shoulder so that the suction pressure 
there helps the fish to “exhale.” The heart is also located near this lowest-
pressure point to increase the heart’s stroke volume during rapid swimming.
 If we think about the irrotational flow approximation a little more closely, 
we realize that the circle we modeled as a solid cylinder in Example 10–7 is 
not really a solid wall at all—it is just a streamline in the flow field that we 
are modeling as a solid wall. The particular streamline we model as a solid 
wall just happens to be a circle. We could have just as easily picked some 
other streamline in the flow to model as a solid wall. Since flow cannot cross 
a streamline by definition, and since we cannot satisfy the no-slip condition 
at a wall, we state the following:

With the irrotational flow approximation, any streamline can be thought of as 
a solid wall.

For example, we can model any streamline in Fig. 10–61 as a solid wall. 
Let’s take the first streamline above the circle, and model it as a wall. (This 
streamline has a nondimensional value of c* 5 0.2.) Several streamlines are 
plotted in Fig. 10–67; we have not shown any streamlines below the stream-
line c* 5 0.2—they are still there, it’s just that we are no longer concerned 
with them. What kind of flow does this represent? Well, imagine wind flow-
ing over a hill; the irrotational approximation shown in Fig. 10–67 is rep-
resentative of this flow. We might expect inconsistencies very close to the 
ground, and perhaps on the downstream side of the hill, but the approxima-
tion is probably very good on the front side of the hill.
 You may have noticed a problem with this kind of superposition. Namely, 
we perform the superposition first, and then try to define some physical 
problems that might be modeled by the flow we generate. While useful as 
a learning tool, this technique is not always practical in real-life engineer-
ing. For example, it is unlikely that we will encounter a hill shaped exactly 
like the one modeled in Fig. 10–67. Instead, we usually already have a 
geometry and wish to model flow over or through this geometry. There are 
more sophisticated superposition techniques available that are better suited 
to engineering design and analysis. Namely, there are techniques in which 
numerous sources and sinks are placed at appropriate locations so as to model 
flow over a predetermined geometry. These techniques can even be extended 
to fully three-dimensional irrotational flow fields, but require a computer 
because of the amount of calculations involved (Kundu et al., 2011). 
We do not discuss these techniques here.

EXAMPLE 10–8  Flow into a Vacuum Cleaner Attachment

Consider the flow of air into the floor attachment nozzle of a typical house-

hold vacuum cleaner (Fig. 10–68a). The width of the nozzle inlet slot is w 5 

2.0  mm, and its length is L 5 35.0 cm. The slot is held a distance b 5 

2.0  cm above the floor, as shown. The total volume flow rate through the 

vacuum hose is V
.
 5 0.110 m3/s. Predict the flow field in the center plane 

of the attachment (the xy-plane in Fig. 10–68a). Specifically, plot several 

streamlines and calculate the velocity and pressure distribution along the 

x-axis. What is the maximum speed along the floor, and where does it occur? 

Where along the floor is the vacuum cleaner most effective?

FIGURE 10–67
The same nondimensionalized 
streamlines as in Fig. 10–61, except 
streamline c* 5 0.2 is modeled as a 
solid wall. This flow represents flow 
of air over a symmetric hill.
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FIGURE 10–68
Vacuum cleaner hose with floor 
attachment; (a) three-dimensional 
view with floor in the xz-plane, and 
(b) view of a slice in the xy-plane with 
suction modeled by a line sink.
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SOLUTION  We are to predict the flow field in the center plane of a vacuum 

cleaner attachment, plot velocity and pressure along the floor (x-axis), pre-

dict the location and value of the maximum velocity along the floor, and 

predict where along the floor the vacuum cleaner is most effective.

Assumptions  1 The flow is steady and incompressible. 2 The flow in the 

xy-plane is two-dimensional (planar). 3 The majority of the flow field is irro-

tational. 4 The room is infinitely large and free of air currents that might 

influence the flow.

Analysis  We approximate the slot on the vacuum cleaner attachment as a 

line sink (a line source with negative source strength), located at distance b 

above the x-axis, as sketched in Fig. 10–68b. With this approximation, we 

are ignoring the finite width of the slot (w); instead we model flow into the 

slot as flow into the line sink, which is simply a point in the xy-plane at (0, b). 

We are also ignoring any effects of the hose or the body of the attachment. 

The strength of the line source is obtained by dividing total volume flow rate 

by the length L of the slot,

Strength of line source: 
V
#

L
5

20.110 m3/s

0.35 m
5 20.314 m2/s (1)

where we include a negative sign since this is a sink instead of a source.

 Clearly this line sink by itself (Fig. 10–68b) is not sufficient to model 

the flow, since air would flow into the sink from all directions, including up 

through the floor. To avoid this problem, we add another elementary irrota-

tional flow (building block) to model the effect of the floor. A clever way to 

do this is through the method of images. With this technique, we place a 

second identical sink below the floor at point (0, 2b). We call this second 

sink the image sink. Since the x-axis is now a line of symmetry, the x-axis 

is itself a streamline of the flow, and hence can be thought of as the floor. 

The irrotational flow field to be analyzed is sketched in Fig. 10–69. Two 

sources of strength V
.
/L are shown. The top one is called the flow source, and 

represents suction into the vacuum cleaner attachment. The bottom one is 

the image source. Keep in mind that source strength V
.
/L is negative in this 

problem (Eq. 1), so that both sources are actually sinks.

 We use superposition to generate the stream function for the irrotational 

approximation of this flow field. The algebra here is similar to that of 

Example 10–5; in that case we had a source and a sink on the x-axis, while 

here we have two sources on the y-axis. We use Eq. 10–44 to obtain c for 

the flow source,

Line source at (0, b): c1 5
V
#
/L

2p
  u1  where u1 5 arctan  

y 2 b

x
 (2)

Similarly for the image source,

Line source at (0, 2b): c2 5
V
#
/L

2p
  u2  where u2 5 arctan  

y 1 b

x
 (3)

Superposition enables us to simply add the two stream functions, Eqs. 2 and 3, 

to obtain the composite stream function,

Composite stream function: c 5 c1 1 c2 5
V
#
/L

2p
  (u1 1 u2) (4)

FIGURE 10–69
Superposition of a line source of 

strength V
.
/L at (0, b) and a line source 

of the same strength at (0, 2b). The 
bottom source is a mirror image of 
the top source, making the x-axis a 

streamline.
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We rearrange Eq. 4 and take the tangent of both sides to get

 tan  

2pc

V
#
/L

5 tan(u1 1 u2) 5
tan u1 1 tan u2

1 2 tan u1tan u2

 (5)

where we have again used a trigonometric identity (Fig. 10–49).

 We substitute Eqs. 2 and 3 for u1 and u2 and perform some algebra to 

obtain our final expression for the stream function in Cartesian coordinates,

 c 5
V
#
/L

2p
 arctan 

2xy

x 2 2 y 2 1 b2 (6)

We translate to cylindrical coordinates using Eq. 10–38 and nondimension-

alize. After some algebra,

Nondimensional stream function: c* 5 arctan  

sin 2 u

cos 2 u 1 1/r*2 (7)

where c* 5 2pc/(V
.
/L), r* 5 r /b, and we used trigonometric identities from 

Fig. 10–49.

 Because of symmetry about the x-axis, all the air that is produced by the 

upper line source must remain above the x-axis. Likewise, all the image air 

that is produced at the lower line source must remain below the x-axis. If we 

were to color air from the upper (north) source blue, and air from the lower 

(south) source gray (Fig. 10–70), all the blue air would stay above the x-axis, 

and all the gray air would stay below the x-axis. Thus, the x-axis acts as 

a dividing streamline, separating the blue from the gray. Furthermore, recall 

from Chap. 9 that the difference in value of c from one streamline to the 

next in planar flow is equal to the volume flow rate per unit width flow-

ing between the two streamlines. We set c equal to zero along the positive 

x-axis. Following the left-side convention, introduced in Chap. 9, we know 

that c on the negative x-axis must equal the total volume flow rate per unit 

width produced by the upper line source, i.e., V
.
/L. Namely,

 c2x-axis 2 c1x-axis 5 V
#
/L  S  c*2x-axis 5 2p (8)

These streamlines are labeled in Fig. 10–70. In addition, the nondimen-

sional streamline c* 5 p is also labeled. It coincides with the y-axis since 

there is symmetry about that axis as well. The origin (0, 0) is a stagnation 

point, since the velocity induced by the lower source exactly cancels out that 

induced by the upper source.

 For the case of the vacuum cleaner being modeled here, the source 

strengths are negative (they are sinks). Thus, the direction of flow is reversed, 

and the values of c* are of opposite sign to those in Fig. 10–70. Using the 

left-side convention again, we plot the nondimensional stream function for 

22p , c* , 0 (Fig. 10–71). To do so, we solve Eq. 7 for r* as a function 

of u for various values of c*,

Nondimensional streamlines: r* 5 6Å tan c*

sin 2u 2 cos 2 u tan c*
 (9)

Only the upper half is plotted, since the lower half is symmetric and is 

merely the mirror image of the upper half. For the case of negative V
.
/L, air 

gets sucked into the vacuum cleaner from all directions as indicated by the 

arrows on the streamlines.

 To calculate the velocity distribution on the floor (the x-axis), we can either 

differentiate Eq. 6 and apply the definition of stream function for planar flow 

 0

v
FIGURE 10–70
The x-axis is the dividing streamline 
that separates air produced by the top 
source (blue) from air produced by the 
bottom source (gray).

y

x

c* = 0

c* = p

c* = 2p

•

V/L

•

V/L

FIGURE 10–71
Nondimensional streamlines for the 
two sources of Fig. 10–69 for the 
case in which the source strengths 
are negative (they are sinks). c* is 
incremented uniformly from 22p 
(negative x-axis) to 0 (positive x-axis), 
and only the upper half of the flow is 
shown. The flow is toward the sink at 
location (0, 1).
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(Eq. 10–29), or we can do a vector summation. The latter is simpler and is 

illustrated in Fig. 10–72 for an arbitrary location along the x-axis. The 

induced velocity from the upper source (or sink) has magnitude (V
.
/L)/(2pr1), 

and its direction is in line with r1 as shown. Because of symmetry, the 

induced velocity from the image source has identical magnitude, but its 

direction is in line with r2. The vector sum of these two induced velocities 

lies along the x-axis since the two horizontal components add together, but 

the two vertical components cancel each other out. After a bit of trigonom-

etry, we conclude that

Axial velocity along the x-axis: u 5 V 5
(V
#
/L)x

p(x2 1 b2)
 (10)

where V is the magnitude of the resultant velocity vector along the floor as 

sketched in Fig. 10–72. Since we have made the irrotational flow approxi-

mation, the Bernoulli equation can be used to generate the pressure field. 

Ignoring gravity,

Bernoulli equation: 
P
r

1
V 2

2
5 constant 5

Pq
r

1
V q

2

2
 (11)

To generate a pressure coefficient, we need a reference velocity for the 

denominator. Having none, we generate one from the known parameters, 

namely Vref 5 2(V
.
/L)/b, where we insert the negative sign to make Vref posi-

tive (since V
.
/L is negative for our model of the vacuum cleaner). Then we 

define Cp as

Pressure coefficient: Cp 5
P 2 Pq

1
2 rV ref

2
5 2

V 2

V ref
2 5 2

b2V 2

(V
#
/L)2

 (12)

where we have also applied Eq. 11. Substituting Eq. 10 for V, we get

 Cp 5 2
b2x2

p2(x2 1 b2)2 (13)

We introduce nondimensional variables for axial velocity and distance,

Nondimensional variables: u* 5
u

Vref

5 2
ub

V
#
/L

    x* 5
x

b
 (14)

We note that Cp is already nondimensional. In dimensionless form, Eqs. 10 and 

13 become

Along the floor: u* 5 2
1
p

 
x*

1 1 x*2  Cp 5 2a 1
p

 
x*

1 1 x*2b2

5 2u*2 (15)

Curves showing u* and Cp as functions of x* are plotted in Fig. 10–73.

 We see from Fig. 10–73 that u* increases slowly from 0 at x* 5 2` to a 

maximum value of about 0.159 at x* 5 21. The velocity is positive (to the 

right) for negative values of x* as expected since air is being sucked into the 

vacuum cleaner. As speed increases, pressure decreases; Cp is 0 at x 5 2` 

and decreases to its minimum value of about 20.0253 at x* 5 21. 

Between x* 5 21 and x* 5 0 the speed decreases to zero while the pres-

sure increases to zero at the stagnation point directly below the vacuum 

cleaner nozzle. To the right of the nozzle (positive values of x*), the velocity 

is antisymmetric, while the pressure is symmetric.

 The maximum speed (minimum pressure) along the floor occurs at 

x * 5 61, which is the same distance as the height of the nozzle above the 

 0
V

FIGURE 10–72
Vector sum of the velocities induced 

by the two sources; the resultant 
velocity is horizontal at any location 

on the x-axis due to symmetry.
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floor (Fig. 10– 74). In dimensional terms, the maximum speed along the floor 
occurs at x 5 6b, and the speed there is

Maximum speed along the floor:

 uu umax 5 2uu* umax

V
#
/L

b
5 20.159a20.314 m2/s

0.020 m
b 5 2.50 m/s (16)

 We expect that the vacuum cleaner is most effective at sucking up dirt 

from the floor when the speed along the floor is greatest and the pressure 

along the floor is lowest. Thus, contrary to what you may have thought, the 

best performance is not directly below the suction inlet, but rather at x 5 6b, 

as illustrated in Fig. 10–74.

Discussion  Notice that we never used the width w of the vacuum nozzle in 

our analysis, since a line sink has no length scale. You can convince yourself 

that a vacuum cleaner works best at x ≅ 6b by performing a simple experi-

ment with a vacuum cleaner and some small granular material (like sugar or 

salt) on a hard floor. It turns out that the irrotational approximation is quite 

realistic for flow into the inlet of a vacuum cleaner everywhere except very 

close to the floor, because the flow is rotational there.

 We conclude this section by emphasizing that although the irrotational 
flow approximation is mathematically simple, and velocity and pressure 
fields are easy to obtain, we must be very careful where we apply it. The 
irrotational flow approximation breaks down in regions of non-negligible 
vorticity, especially near solid walls, where fluid particles rotate because of 
viscous stresses caused by the no-slip condition at the wall. This leads us 
to the final section in this chapter (Section 10–6) in which we discuss the 
boundary layer approximation.

10–6 ■  THE BOUNDARY LAYER APPROXIMATION
As discussed in Sections 10–4 and 10–5, there are at least two flow situ-
ations in which the viscous term in the Navier–Stokes equation can be 
neglected. The first occurs in high Reynolds number regions of flow where 
net viscous forces are known to be negligible compared to inertial and/or 

FIGURE 10–73
Nondimensional axial velocity (blue 
curve) and pressure coefficient (green 
curve) along the floor below a vacuum 
cleaner modeled as an irrotational 
region of flow.
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pressure forces; we call these inviscid regions of flow. The second situation 
occurs when the vorticity is negligibly small; we call these irrotational or 
potential regions of flow. In either case, removal of the viscous terms from 
the Navier–Stokes equation yields the Euler equation (Eq. 10–13 and also 
Eq. 10–25). While the math is greatly simplified by dropping the viscous 
terms, there are some serious deficiencies associated with application of the 
Euler equation to practical engineering flow problems. High on the list of 
deficiencies is the inability to specify the no-slip condition at solid walls. 
This leads to unphysical results such as zero viscous shear forces on solid 
walls and zero aerodynamic drag on bodies immersed in a free stream. We 
can therefore think of the Euler equation and the Navier–Stokes equation 
as two mountains separated by a huge chasm (Fig. 10–75a). We make the 
following statement about the boundary layer approximation:

The boundary layer approximation bridges the gap between the Euler 
equation and the Navier–Stokes equation, and between the slip condition 
and the no-slip condition at solid walls (Fig. 10–75b).

 From a historical perspective, by the mid-1800s, the Navier–Stokes equa-
tion was known, but couldn’t be solved except for flows of very simple 
geometries. Meanwhile, mathematicians were able to obtain beautiful ana-
lytical solutions of the Euler equation and of the potential flow equations for 
flows of complex geometry, but their results were often physically mean-
ingless. Hence, the only reliable way to study fluid flows was empirically, 
i.e., with experiments. A major breakthrough in fluid mechanics occurred 
in 1904 when Ludwig Prandtl (1875–1953) introduced the boundary layer 
approximation. Prandtl’s idea was to divide the flow into two regions: an 
outer flow region that is inviscid and/or irrotational, and an inner flow 
region called a boundary layer—a very thin region of flow near a solid 
wall where viscous forces and rotationality cannot be ignored (Fig. 10–76). 
In the outer flow region, we use the continuity and Euler equations to obtain 
the outer flow velocity field, and the Bernoulli equation to obtain the pres-
sure field. Alternatively, if the outer flow region is irrotational, we may use 
the potential flow techniques discussed in Section 10–5 (e.g., superposition) 
to obtain the outer flow velocity field. In either case, we solve for the outer 
flow region first, and then fit in a thin boundary layer in regions where rota-
tionality and viscous forces cannot be neglected. Within the boundary layer 
we solve the boundary layer equations, to be discussed shortly. (Note 
that the boundary layer equations are themselves approximations of the full 
Navier–Stokes equation, as we will see.)
 The boundary layer approximation corrects some of the major deficien-
cies of the Euler equation by providing a way to enforce the no-slip con-
dition at solid walls. Hence, viscous shear forces can exist along walls, bodies 
immersed in a free stream can experience aerodynamic drag, and flow 
separation in regions of adverse pressure gradient can be predicted more 
accurately. The boundary layer concept therefore became the workhorse of 
engineering fluid mechanics throughout most of the 1900s. However, the 
advent of fast, inexpensive computers and computational fluid dynamics 
(CFO) software in the latter part of the twentieth century enabled numeri-
cal solution of the Navier–Stokes equation for flows of complex geome-
try. Today, therefore, it is no longer necessary to split the flow into outer 
flow regions and boundary layer regions—we can use CFD to solve the 

FIGURE 10–75
(a) A huge gap exists between the 

Euler equation (which allows slip at 
walls) and the Navier–Stokes equation 
(which supports the no-slip condition); 

(b) the boundary layer approximation 
bridges that gap.
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FIGURE 10–76
Prandtl’s boundary layer concept 
splits the flow into an outer flow 
region and a thin boundary layer 

region (not to scale).
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full set of equations of motion (continuity plus Navier–Stokes) throughout 
the whole flow field. Nevertheless, boundary layer theory is still useful in 
some engineering applications, since it takes much less time to arrive at a 
solution. In addition, there is a lot we can learn about the behavior of flow-
ing fluids by studying boundary layers. We stress again that boundary layer 
solutions are only approximations of full Navier–Stokes solutions, and we 
must be careful where we apply this or any approximation.
 The key to successful application of the boundary layer approximation 
is the assumption that the boundary layer is very thin. The classic example 
is a uniform stream flowing parallel to a long flat plate aligned with the 
x-axis. Boundary layer thickness d at some location x along the plate is 
sketched in Fig. 10–77. By convention, d is usually defined as the distance 
away from the wall at which the velocity component parallel to the wall is 
99 percent of the fluid speed outside the boundary layer. It turns out that for 
a given fluid and plate, the higher the free-stream speed V, the thinner the 
boundary layer (Fig. 10–77). In nondimensional terms, we define the Reynolds 
number based on distance x along the wall,

Reynolds number along a flat plate: Rex 5
rVx

m
5

Vx
n

 (10–60)

Hence,

At a given x-location, the higher the Reynolds number, the thinner the 
boundary layer.

In other words, the higher the Reynolds number, all else being equal, the more 
reliable the boundary layer approximation. We are confident that the boundary 
layer is thin when d ,, x (or, expressed nondimensionally, d/x ,, 1).
 The shape of the boundary layer profile can be obtained experimentally by 
flow visualization. An example is shown in Fig. 10–78 for a laminar boundary 
layer on a flat plate. Taken over 60 years ago by F. X. Wortmann, this is now 
considered a classic photograph of a laminar flat plate boundary layer profile. 

FIGURE 10–77
Flow of a uniform stream parallel 
to a flat plate (drawings not to scale): 
(a) Rex , 102, (b) Rex , 104. The 
larger the Reynolds number, the thinner 
the boundary layer along the plate at a 
given x-location.

y

d(x)

Rex ~ 102

V
x

(a)
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d(x)

Rex ~ 104
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FIGURE 10–78
Flow visualization of a laminar 
flat plate boundary layer profile. 
Photograph taken by F. X. Wortmann 
in 1953 as visualized with the tellurium 
method. Flow is from left to right, and 
the leading edge of the flat plate is far 
to the left of the field of view.
Wortmann, F. X. 1977 AGARD Conf. Proc. no. 
224, paper 12.
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The no-slip condition is clearly verified at the wall, and the smooth increase 
in flow speed away from the wall verifies that the flow is indeed laminar.
 Note that although we are discussing boundary layers in connection with 
the thin region near a solid wall, the boundary layer approximation is not 
limited to wall-bounded flow regions. The same equations may be applied 
to free shear layers such as jets, wakes, and mixing layers (Fig. 10–79), 
provided that the Reynolds number is sufficiently high that these regions are 
thin. The regions of these flow fields with non-negligible viscous forces and 
finite vorticity can also be considered to be boundary layers, even though a 
solid wall boundary may not even be present. Boundary layer thickness d(x) 
is labeled in each of the sketches in Fig. 10–79. As you can see, by con-
vention d is usually defined based on half of the total thickness of the free 
shear layer. We define d as the distance from the centerline to the edge of 
the boundary layer where the change in speed is 99 percent of the maximum 
change in speed from the centerline to the outer flow. Boundary layer thick-
ness is not a constant, but varies with downstream distance x. In the exam-
ples discussed here (flat plate, jet, wake, and mixing layer), d(x) increases 
with x. There are flow situations however, such as rapidly accelerating outer 
flow along a wall, in which d(x) decreases with x.
 A common misunderstanding among beginning students of fluid mechan-
ics is that the curve representing d as a function of x is a streamline of 
the flow—it is not! In Fig. 10–80 we sketch both streamlines and d(x) for 
the boundary layer growing on a flat plate. As the boundary layer thick-
ness grows downstream, streamlines passing through the boundary layer 
must diverge slightly upward in order to satisfy conservation of mass. The 
amount of this upward displacement is smaller than the growth of d(x). 
Since streamlines cross the curve d(x), d(x) is clearly not a streamline 
(streamlines cannot cross each other or else mass would not be conserved).
 For a laminar boundary layer growing on a flat plate, as in Fig. 10–80, 
boundary layer thickness d is at most a function of V, x, and fluid properties r 
and m. It is a simple exercise in dimensional analysis to show that d/x is a 
function of Rex. In fact, it turns out that d is proportional to the square root 
of Rex. You must note, however, that this result is valid only for a laminar 
boundary layer on a flat plate. As we move down the plate to larger and 
larger values of x, Rex increases linearly with x. At some point, infinitesi-
mal disturbances in the flow begin to grow, and the boundary layer cannot 
remain laminar—it begins a transition process toward turbulent flow. For a 
smooth flat plate with a uniform free stream, the transition process begins 
at a critical Reynolds number, Rex, critical ≅ 1 3 105, and continues until 
the boundary layer is fully turbulent at the transition Reynolds number, 
Rex,  transition ≅ 3 3 106 (Fig. 10–81). The transition process is quite compli-
cated, and details are beyond the scope of this text.

FIGURE 10–79
Three additional flow regions where 

the boundary layer approximation may 
be appropriate: (a) jets, (b) wakes, and 

(c) mixing layers.
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FIGURE 10–80
Comparison of streamlines and the 

curve representing d as a function of 
x for a flat plate boundary layer. Since 

streamlines cross the curve d(x), d(x) 
cannot itself be a streamline of the flow.
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 Note that in Fig. 10–81 the vertical scale has been greatly exaggerated, 
and the horizontal scale has been shortened (in reality, since Rex, transition ≅ 
30 times Rex, critical, the transitional region is much longer than indicated in 
the figure). To give you a better feel for how thin a boundary layer actually 
is, we have plotted d as a function of x to scale in Fig. 10–82. To gener-
ate the plot, we carefully selected the parameters such that Rex 5 100,000x 
regardless of the units of x. Thus, Rex, transition occurs at x ≅ 1 and Rex, critical 
occurs at x ≅ 30 in the plot. Notice how thin the boundary layer is and how 
long the transitional region is when plotted to scale.
 In real-life engineering flows, transition to turbulent flow usually occurs 
more abruptly and much earlier (at a lower value of Rex) than the values given 
for a smooth flat plate with a calm free stream. Factors such as roughness 
along the surface, free-stream disturbances, acoustic noise, flow unsteadi-
ness, vibrations, and curvature of the wall contribute to an earlier transition 
location. Because of this, an engineering critical Reynolds number of Rex, cr 5 
5 3 105 is often used to determine whether a boundary layer is most likely 
laminar (Rex ,  Rex,  cr) or most likely turbulent (Rex .  Rex,  cr). It is also 
common in heat transfer to use this value as the critical Re; in fact, relations 
for average friction and heat transfer coefficients are derived by assuming 
the flow to be laminar for Rex lower than Rex,  cr, and turbulent otherwise. 
The logic here is to ignore transition by treating the first part of transition 
as laminar and the remaining part as turbulent. We follow this convention 
throughout the rest of the book unless noted otherwise.
 The transition process is unsteady as well and is difficult to predict, even 
with modern CFD codes. In some cases, engineers install rough sandpaper 
or wires called trip wires along the surface, in order to force transition at a 
desired location (Fig. 10–83). The eddies from the trip wire cause enhanced 
local mixing and create disturbances that very quickly lead to a turbulent 
boundary layer. Again, the vertical scale in Fig. 10–83 is greatly exaggerated 
for illustrative purposes.

FIGURE 10–81
Transition of the laminar boundary 
layer on a flat plate into a fully 
turbulent boundary layer (not to scale).

Laminar
Rex > 105 Transitional Turbulent

Rex > 3 3 106
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FIGURE 10–82
Thickness of the boundary layer on 
a flat plate, drawn to scale. Laminar, 
transitional, and turbulent regions are 
indicated for the case of a smooth wall 
with calm free-stream conditions.
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FIGURE 10–83
A trip wire is often used to initiate 
early transition to turbulence in a 
boundary layer (not to scale).
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EXAMPLE 10–9    Laminar or Turbulent Boundary Layer?

Water flows over the fin of a small underwater vehicle at a speed of V 5 

6.0 mi/h (Fig. 10–84). The temperature of the water is 408F, and the chord 

length c of the fin is 1.6 ft. Is the boundary layer on the surface of the fin 

laminar or turbulent or transitional? 

SOLUTION  We are to assess whether the boundary layer on the surface of a 

fin is laminar or turbulent or transitional.

Assumptions  1 The flow is steady and incompressible. 2 The fin surface is 

smooth.

Properties  The density and viscosity of water at T 5 408F are 62.42 lbm/ft3 

and 1.038 3 1023 lbm/ft?s, respectively. The kinematic viscosity is thus 

n 5 1.663 3 1025 ft2/s.

Analysis  Although the fin is not a flat-plate, the flat plate boundary-layer 

values are useful as a reasonable first approximation to determine whether 

the boundary layer is laminar or turbulent. We calculate the Reynolds num-

ber at the trailing edge of the fin, using c as the approximate streamwise 

distance along the flat plate,

 Rex 5
Vx
n

5
(6.0 mi/h) (1.6 ft)

1.663 3 1025 ft2/s
 a5280 ft

mi
b a h

3600 s
b 5 8.47 3 105 (1)

The critical Reynolds number for transition to turbulence is 1 3 105 for the 

case of a smooth flat plate with very clean, low-noise free-stream conditions. 

Our Reynolds number is higher than this. The engineering value of the critical 

Reynolds number for real engineering flows is Rex,cr 5 5 3 105. Since Rex is 

greater than Rex,cr, but less than Rex,transition (30 3 105), the boundary layer is 
most likely transitional, but may be fully turbulent by the trailing edge of the fin.
Discussion  In a real-life situation, the free-stream flow is not very “clean”—

there are eddies and other disturbances, the fin surface is not perfectly 

smooth, and the vehicle may be vibrating. Thus, transition and turbulence 

are likely to occur much earlier than predicted for a smooth flat plate.

The Boundary Layer Equations
Now that we have a physical feel for boundary layers, we need the equations 
of motion to be used in boundary layer calculations—the boundary layer 
equations. For simplicity we consider only steady, two-dimensional flow in 
the xy-plane in Cartesian coordinates. The methodology used here can be 
extended, however, to axisymmetric boundary layers or to three-dimensional 
boundary layers in any coordinate system. We neglect gravity since we are 
not dealing with free surfaces or with buoyancy-driven flows (free convec-
tion flows), where gravitational effects dominate. We consider only laminar 
boundary layers; turbulent boundary layer equations are beyond the scope 
of this text. For the case of a boundary layer along a solid wall, we adopt 
a coordinate system in which x is everywhere parallel to the wall and y 
is everywhere normal to the wall (Fig. 10–85). This coordinate system is 
called a boundary layer coordinate system. When we solve the boundary 
layer equations, we do so at one x-location at a time, using this coordinate 
system locally, and it is locally orthogonal. It is not critical where we define 
x 5 0, but for flow over a body, as in Fig. 10–85, we typically set x 5 0 at 
the front stagnation point.

FIGURE 10–85
The boundary layer coordinate system 

for flow over a body; x follows the 
surface and is typically set to zero at 

the front stagnation point of the body, 
and y is everywhere normal to the 

surface locally.

FIGURE 10–84
Boundary layer growing along the 

fin of an underwater vehicle. 
Boundary layer thickness is 

exaggerated for clarity.
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 We begin with the nondimensionalized Navier–Stokes equation derived at 
the beginning of this chapter. With the unsteady term and the gravity term 
neglected, Eq. 10–6 becomes

 (V
!
*·=
!
*)V
!
* 5 2[Eu]=

!
*P* 1 c 1

Re
d =*2V

!
* (10–61)

The Euler number is of order unity, since pressure differences outside the 
boundary layer are determined by the Bernoulli equation and DP 5 P 2 P` 
, rV2. We note that V is a characteristic velocity scale of the outer flow, 
typically equal to the free-stream velocity for bodies immersed in a uniform 
flow. The characteristic length scale used in this nondimensionalization is L, 
some characteristic size of the body. For boundary layers, x is of order of 
magnitude L, and the Reynolds number in Eq. 10–61 can be thought of as 
Rex (Eq. 10–60). Rex is very large in typical applications of the boundary 
layer approximation. It would seem then that we could neglect the last term 
in Eq. 10–61 in boundary layers. However, doing so would result in the 
Euler equation, along with all its deficiencies discussed previously. So, we 
must keep at least some of the viscous terms in Eq. 10–61.
 How do we decide which terms to keep and which to neglect? To answer 
this question, we redo the nondimensionalization of the equations of motion 
based on appropriate length and velocity scales within the boundary layer. A 
magnified view of a portion of the boundary layer of Fig. 10–85 is sketched 
in Fig. 10–86. Since the order of magnitude of x is L, we use L as an appro-
priate length scale for distances in the streamwise direction and for deriva-
tives of velocity and pressure with respect to x. However, this length scale is 
much too large for derivatives with respect to y. It makes more sense to use d 
as the length scale for distances in the direction normal to the streamwise 
direction and for derivatives with respect to y. Similarly, while the charac-
teristic velocity scale is V for the whole flow field, it is more appropriate to 
use U as the characteristic velocity scale for boundary layers, where U is the 
magnitude of the velocity component parallel to the wall at a location just 
above the boundary layer (Fig. 10–86). U is in general a function of x. Thus, 
within the boundary layer at some value of x, the orders of magnitude are

 u , U  P 2 Pq , rU2  
0
0x
,

1

L
  

0
0y
,

1

d
 (10–62)

The order of magnitude of velocity component v is not specified in Eq. 10–62, 
but is instead obtained from the continuity equation. Applying the orders of 
magnitude in Eq. 10–62 to the incompressible continuity equation in two 
dimensions,

0u
0x

1
0v
0y

5 0  S  
U

L
,

v
d

 ,U/L ,v/d

Since the two terms have to balance each other, they must be of the same order 
of magnitude. Thus we obtain the order of magnitude of velocity component v,

 v ,
Ud

L
 (10–63)

Since d/L ,, 1 in a boundary layer (the boundary layer is very thin), we 
conclude that v ,, u in a boundary layer (Fig. 10–87). From Eqs. 10–62 

F F

FIGURE 10–86
Magnified view of the boundary layer 
along the surface of a body, showing 
length scales x and d and velocity 
scale U.
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FIGURE 10–87
Highly magnified view of the 
boundary layer along the surface 
of a body, showing that velocity 
component v is much smaller than u.
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and 10–63, we define the following nondimensional variables within the 
boundary layer:

x* 5
x

L
  y* 5

y

d
  u* 5

u

U
  v* 5

vL

Ud
  P* 5

P 2 Pq
rU2

Since we used appropriate scales, all these nondimensional variables are of 
order unity—i.e., they are normalized variables (Chap. 7).
 We now consider the x- and y-components of the Navier–Stokes equation. 
We substitute these nondimensional variables into the y-momentum equa-
tion, giving

u   
0v
0x
   1    v   

0v
0y
   5    2

1
r

 
0P
0y
   1    n 

02v
0x2   1    n 

02v
0y2

 
0
0x*

 
v*Ud

L2
 

0
0y*

 
v*Ud

Ld
 

1

r
 
0
0y*

 
P*rU2

d
 n 

02

0x*2
 
v*Ud

L3
 n 

02

0y*2
 
v*Ud

Ld2

After some algebra and after multiplying each term by L2/(U2d), we get

u* 
0v*

0x*
1 v* 

0v*

0y*
5 2aL

d
b2

 
0P*

0y*
1 a n

UL
b  
02v*

0x*2 1 a n
UL

b aL

d
b2

 
02v*

0y*2 (10–64)

Comparing terms in Eq. 10–64, the middle term on the right side is clearly 
orders of magnitude smaller than any other term since ReL 5 UL/n .. 1. 
For the same reason, the last term on the right is much smaller than the 
first term on the right. Neglecting these two terms leaves the two terms on 
the left and the first term on the right. However, since L .. d, the pressure 
gradient term is orders of magnitude greater than the advective terms on 
the left side of the equation. Thus, the only term left in Eq. 10–64 is the 
pressure term. Since no other term in the equation can balance that term, 
we have no choice but to set it equal to zero. Thus, the nondimensional 
y-momentum equation reduces to

0P*

0y*
> 0

or, in terms of the physical variables,

Normal pressure gradient through a boundary layer:  
0P
0y
> 0 (10–65)

In words, although pressure may vary along the wall (in the x-direction), 
there is negligible change in pressure in the direction normal to the wall. 
This is illustrated in Fig. 10–88. At x 5 x1, P 5 P1 at all values of y across 
the boundary layer from the wall to the outer flow. At some other x-location, 
x 5 x2, the pressure may have changed, but P 5 P2 at all values of y across 
that portion of the boundary layer.

The pressure across a boundary layer ( y-direction) is nearly constant.

 Physically, because the boundary layer is so thin, streamlines within the 
boundary layer have negligible curvature when observed at the scale of the 
boundary layer thickness. Curved streamlines require a centripetal accelera-
tion, which comes from a pressure gradient along the radius of curvature. 
Since the streamlines are not significantly curved in a thin boundary layer, 
there is no significant pressure gradient across the boundary layer.

FIGURE 10–88
Pressure may change along a 

boundary layer (x-direction), but the 
change in pressure across a boundary 

layer (y-direction) is negligible.
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 One immediate consequence of Eq. 10–65 and the statement just presented 
is that at any x-location along the wall, the pressure at the outer edge of the 
boundary layer (y ≅ d) is the same as that at the wall (y 5 0). This leads to 
a tremendous practical application; namely, the pressure at the outer edge of 
a boundary layer can be measured experimentally by a static pressure tap 
at the wall directly beneath the boundary layer (Fig. 10–89). Experimental-
ists routinely take advantage of this fortunate situation, and countless airfoil 
shapes for airplane wings and turbomachinery blades were tested with such 
pressure taps over the past century.
 The experimental pressure data shown in Fig. 10–64 for flow over a cir-
cular cylinder were measured with pressure taps at the cylinder’s surface, 
yet they are used to compare with the pressure calculated by the irrotational 
outer flow approximation. Such a comparison is valid, because the pressure 
obtained outside of the boundary layer (from the Euler equation or poten-
tial flow analysis coupled with the Bernoulli equation) applies all the way 
through the boundary layer to the wall.
 Returning to the development of the boundary layer equations, we use 
Eq. 10–65 to greatly simplify the x-component of the momentum equation. 
Specifically, since P is not a function of y, we replace −P/−x by dP/dx, 
where P is the value of pressure calculated from our outer flow approxima-
tion (using either continuity plus Euler, or the potential flow equations plus 
Bernoulli). The x-component of the Navier–Stokes equation becomes

u   
0u
0x
  1    v      

0u
0y
  5  2

1
r

 
dP

dx
  1   n 

02u

0x2  1   n 
02u

0y2

 
0
0x*

 
u*U

L
 

0
0y*

 
u*U

d
 

1

r
 
0
0x*

 
P*rU2

L
 v 

02

0x*2
 
u*U

L2
 v 

02

0y*2
 
u*U

d2

After some algebra, and after multiplying each term by L/U2, we get

 u* 
0u*

0x*
1 v* 

0u*

0y*
5 2

dP*

dx*
1 a n

UL
b 
02u*

0x*2 1 a n
UL

b aL

d
b2

 
02u*

0y*2 (10–66)

Comparing terms in Eq. 10–66, the middle term on the right side is clearly 
orders of magnitude smaller than the terms on the left side, since ReL 5 
UL/n .. 1. What about the last term on the right? If we neglect this term, 
we throw out all the viscous terms and are back to the Euler equation. 
Clearly this term must remain. Furthermore, since all the remaining terms in 
Eq. 10–66 are of order unity, the combination of parameters in parentheses 
in the last term on the right side of Eq. 10–66 must also be of order unity,a n

UL
b aL

d
b2

, 1

Again recognizing that ReL 5 UL/n, we see immediately that

 
d

L
,

1"ReL

 (10–67)

This confirms our previous statement that at a given streamwise location 
along the wall, the larger the Reynolds number, the thinner the boundary 
layer. If we substitute x for L in Eq. 10–67, we also conclude that for a 
laminar boundary layer on a flat plate, where U(x) 5 V 5 constant, d grows 
like the square root of x (Fig. 10–90).

FIGURE 10–89
The pressure in the irrotational region 
of flow outside of a boundary layer 
can be measured by static pressure 
taps in the surface of the wall. Two 
such pressure taps are sketched.
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FIGURE 10–90
An order-of-magnitude analysis of 
the laminar boundary layer equations 
along a flat plate reveals that d grows 
like !x (not to scale).
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 In terms of the original (physical) variables, Eq. 10–66 is written as

x-momentum boundary layer equation: u 
0u
0x

1 v 
0u
0y

5 2
1
r

 
dP

dx
1 n 

02u

0y2 (10–68)

Note that the last term in Eq. 10–68 is not negligible in the boundary layer, 
since the y-derivative of velocity gradient −u/−y is sufficiently large to offset 
the (typically small) value of kinematic viscosity n. Finally, since we know 
from our y-momentum equation analysis that the pressure across the bound-
ary layer is the same as that outside the boundary layer (Eq. 10–65), we 
apply the Bernoulli equation to the outer flow region. Differentiating with 
respect to x we get

 
P
r

1
1

2
U2 5 constant  S  

1
r

 
dP

dx
5 2U 

dU

dx
 (10–69)

where we note that both P and U are functions of x only, as illustrated in 
Fig. 10–91. Substitution of Eq. 10–69 into Eq. 10–68 yields

 u 
0u
0x

1 v 
0u
0y

5 U 
dU

dx
1 n 

02u

0y2 (10–70)

and we have eliminated pressure from the boundary layer equations.
 We summarize the set of equations of motion for a steady, incompress-
ible, laminar boundary layer in the xy-plane without significant gravitational 
effects,

Boundary layer equations:

   
0u
0x

1
0v
0y

5 0

  u 
0u
0x

1 v 
0u
0y

5 U 
dU

dx
1 n 

02u

0y2 
(10–71)

 Mathematically, the full Navier–Stokes equation is elliptic in space, which 
means that boundary conditions are required over the entire boundary of the 
flow domain. Physically, flow information is passed in all directions, both 
upstream and downstream. On the other hand, the x-momentum boundary 
layer equation (the second equation of Eq. 10–71) is parabolic. This means 
that we need to specify boundary conditions on only three sides of the (two-
dimensional) flow domain. Physically, flow information is not passed in the 
direction opposite to the flow (from downstream). This fact greatly reduces 
the level of difficulty in solving the boundary layer equations. Specifically, 
we don’t need to specify boundary conditions downstream, only upstream 
and on the top and bottom of the flow domain (Fig. 10–92). For a typical 
boundary layer problem along a wall, we specify the no-slip condition at 
the wall (u 5 v 5 0 at y 5 0), the outer flow condition at the edge of the 
boundary layer and beyond [u 5 U(x) as y → `], and a starting profile at 
some upstream location [u 5 ustarting(y) at x 5 xstarting, where xstarting may or 
may not be zero]. With these boundary conditions, we simply march down-
stream in the x-direction, solving the boundary layer equations as we go. 
This is particularly attractive for numerical boundary layer computations, 
because once we know the profile at one x-location (xi), we can march to 
the next x-location (xi11), and then use this newly calculated profile as the 
starting profile to march to the next x-location (xi12), etc.

FIGURE 10–91
Outer flow speed parallel to the wall 

is U(x) and is obtained from the outer 
flow pressure, P(x). This speed appears 

in the x-component of the boundary 
layer momentum equation, Eq. 10–70.

Boundary layer

Wall
P1

P2

x2 x
U1

x1
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P = P(x), U = U(x)

d(x)

FIGURE 10–92
The boundary layer equation set is 
parabolic, so boundary conditions 
need to be specified on only three 

sides of the flow domain.

No boundary conditions on
downstream edge of flow domain

Flow 
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u = U(x)

u = ustarting(y)

u = v = 0xstarting
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The Boundary Layer Procedure
When the boundary layer approximation is employed, we use a general step-
by-step procedure. We outline the procedure here and in condensed form 
in Fig. 10–93.

Step 1  Solve for the outer flow, ignoring the boundary layer (assuming 
that the region of flow outside the boundary layer is approximately 
inviscid and/or irrotational). Transform coordinates as necessary to 
obtain U(x).

Step 2  Assume a thin boundary layer—so thin, in fact, that it does not 
affect the outer flow solution of step 1.

Step 3  Solve the boundary layer equations (Eqs. 10–71), using 
appropriate boundary conditions: the no-slip boundary condition at the 
wall, u 5 v 5 0 at y 5 0; the known outer flow condition at the edge of 
the boundary layer, u → U(x) as y → `; and some known starting profile, 
u 5 ustarting(y) at x 5 xstarting.

Step 4  Calculate quantities of interest in the flow field. For example, 
once the boundary layer equations have been solved (step 3), we 
calculate d(x), shear stress along the wall, total skin friction drag, etc.

Step 5  Verify that the boundary layer approximations are appropriate. 
In other words, verify that the boundary layer is thin—otherwise the 
approximation is not justified.

 Before we do any examples, we list here some of the limitations of the 
boundary layer approximation. These are red flags to look for when per-
forming boundary layer calculations:

•  The boundary layer approximation breaks down if the Reynolds number 
is not large enough. How large is large enough? It depends on the desired 
accuracy of the approximation. Using Eq. 10–67 as a guideline, d/L , 0.03 
(3 percent) for ReL 5 1000, and d/L , 0.01 (1 percent) for ReL 5 10,000.

•  The assumption of zero pressure gradient in the y-direction (Eq. 10– 65)
breaks down if the wall curvature is of similar magnitude as d (Fig. 10–94). 
In such cases, centripetal acceleration effects due to streamline curvature 
cannot be ignored. Physically, the boundary layer is not thin enough for 
the approximation to be appropriate when d is not ,, R.

•  When the Reynolds number is too high, the boundary layer does not 
remain laminar, as discussed previously. The boundary layer approxima-
tion itself may still be appropriate, but Eqs. 10–71 are not valid if the flow 
is transitional or fully turbulent. As noted before, the laminar boundary 
layer on a smooth flat plate under clean flow conditions begins to 
transition toward turbulence at Rex ≅ 1 3 105. In practical engineering 
applications, walls may not be smooth and there may be vibrations, noise, 
and fluctuations in the free-stream flow above the wall, all of which 
contribute to an even earlier start of the transition process.

•  If flow separation occurs, the boundary layer approximation is no longer 
appropriate in the separated flow region. The main reason for this is that 
a separated flow region contains reverse flow, and the parabolic nature of 
the boundary layer equations is lost.

Boundary layer

Wall

U(x)

R

y

x

d

FIGURE 10–94
When the local radius of curvature of 
the wall (R) is small enough to be of 
the same magnitude as d, centripetal 
acceleration effects cannot be ignored 
and −P/−y Þ 0. The thin boundary 
layer approximation is not appropriate 
in such regions.

Step 1: Calculate U(x) (outer flow).

Step 2: Assume a thin boundary layer.

Step 3: Solve boundary layer equations.

Step 4: Calculate quantities of interest.

Step 5: Verify that boundary layer is thin.

FIGURE 10–93
Summary of the boundary layer 
procedure for steady, incompressible, 
two-dimensional boundary layers in 
the xy-plane.
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Infinitesimally thin flat plate

r, m, n
y

x

V

FIGURE 10–95
Setup for Example 10–10; flow of a

uniform stream parallel to a semi-
infinite flat plate along the x-axis.

Boundary
layer

y

x

U(x) = V

V

FIGURE 10–97
The boundary layer is so thin that 

it does not affect the outer flow; 
boundary layer thickness is 

exaggerated here for clarity.

y

x

U(x) = V

V

FIGURE 10–96
The outer flow of Example 10–10 is 

trivial since the x-axis is a streamline 
of the flow, and U(x) 5 V 5 constant.

EXAMPLE 10–10    Laminar Boundary Layer on a Flat Plate

A uniform free stream of speed V flows parallel to an infinitesimally thin 

semi-infinite flat plate as sketched in Fig. 10–95. The coordinate system is 

defined such that the plate begins at the origin. Since the flow is symmetric 

about the x-axis, only the upper half of the flow is considered. Calculate the 

boundary layer velocity profile along the plate and discuss.

SOLUTION  We are to calculate the boundary layer velocity profile (u as a 

function of x and y) as the laminar boundary layer grows along the flat plate.

Assumptions  1 The flow is steady, incompressible, and two-dimensional in 

the xy-plane. 2 The Reynolds number is high enough that the boundary layer 

approximation is reasonable. 3 The boundary layer remains laminar over the 

range of interest.

Analysis  We follow the step-by-step procedure outlined in Fig. 10–93.

Step 1  The outer flow is obtained by ignoring the boundary layer altogether, 

since it is assumed to be very, very thin. Recall that any streamline in an 

irrotational flow can be thought of as a wall since there is no flow through 

a streamline. In this case, the x-axis can be thought of as a streamline of 

uniform free-stream flow, one of our building block flows in Section 10–5; 

this streamline can also be thought of as an infinitesimally thin plate 

(Fig. 10–96). Thus,

Outer flow: U 1x 2 5 V 5 constant (1)

For convenience, we use U instead of U(x) from here on, since it is a 

constant.

Step 2  We assume a very thin boundary layer along the wall (Fig. 10–97). 

The key here is that the boundary layer is so thin that it has negligible 

effect on the outer flow calculated in step 1.

Step 3  We must now solve the boundary layer equations. We see from 

Eq. 1 that dU/dx 5 0; in other words, no pressure gradient term remains in 

the x-momentum boundary layer equation. This is why the boundary layer 

on a flat plate is often called a zero pressure gradient boundary layer. The 

continuity and x-momentum equations for the boundary layer (Eqs. 10–71) 

become

 
0u
0x

1
0v
0y

5 0  u 
0u
0x

1 v
0u
0y

5 n
02u

0y2 (2)

There are four required boundary conditions,

 u 5 0 at y 5 0  u 5 U as y Sq

 v 5 0 at y 5 0  u 5 U for all y at x 5 0 (3)

The last of the boundary conditions in Eq. 3 is the starting profile; we 

assume that the plate has not yet influenced the flow at the starting 

location of the plate (x 5 0).

 These equations and boundary conditions seem simple enough, but 

unfortunately no convenient analytical solution is available. However, a 

series solution of Eqs. 2 was obtained in 1908 by P. R. Heinrich Blasius 

(1883–1970). As a side note, Blasius was a Ph.D. student of Prandtl. 

In those days, of course, computers were not yet available, and all the 

calculations were performed by hand. Today we can solve these equations 
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FIGURE 10–98
A useful result of the similarity 
assumption is that the flow looks the 
same (is similar) regardless of how 
far we zoom in or out; (a) view from 
a distance, as a person might see, 
(b) close-up view, as an ant might see.

on a computer in a few seconds. The key to the solution is the assumption 

of similarity. In simple terms, similarity can be assumed here because there 

is no characteristic length scale in the geometry of the problem. Physically, 

since the plate is infinitely long in the x-direction, we always see the same 

flow pattern no matter how much we zoom in or zoom out (Fig. 10–98).

 Blasius introduced a similarity variable h that combines independent 

variables x and y into one nondimensional independent variable,

 h 5 yÅ U
nx

 (4)

and he solved for a nondimensionalized form of the x-component of 

velocity,

 f   9 5
u

U
5 function of h (5)

When we substitute Eqs. 4 and 5 into Eqs. 2, subjected to the boundary 

conditions of Eq. 3, we get an ordinary differential equation for non dimen-

sional speed f 9(h) 5 u/U as a function of similarity variable h. We use the 

popular Runge–Kutta numerical technique to obtain the results shown in 

Table 10–3 and in Fig. 10–99. Details of the numerical technique are 

beyond the scope of this text (see Heinsohn and Cimbala, 2003). There 

is also a small y-component of velocity v away from the wall, but v ,, u, 

and is not discussed here. The beauty of the similarity solution is that this 

one unique velocity profile shape applies to any x-location when plotted 

in similarity variables, as in Fig. 10–99. The agreement of the calculated 

profile shape in Fig. 10–99 to experimentally obtained data (circles in 

Fig. 10–99) and to the visualized profile shape of Fig. 10–78 is remarkable. 

The Blasius solution is a stunning success.

TABLE 10–3

Solution of the Blasius laminar flat plate boundary layer in similarity variables*

 h f 99 f 9 f  h f 99 f 9 f

 0.0 0.33206 0.00000 0.00000

 0.1 0.33205 0.03321 0.00166

 0.2 0.33198 0.06641 0.00664

 0.3 0.33181 0.09960 0.01494

 0.4 0.33147 0.13276 0.02656

 0.5 0.33091 0.16589 0.04149

 0.6 0.33008 0.19894 0.05973

 0.8 0.32739 0.26471 0.10611

 1.0 0.32301 0.32978 0.16557

 1.2 0.31659 0.39378 0.23795

 1.4 0.30787 0.45626 0.32298

 1.6 0.29666 0.51676 0.42032

 1.8 0.28293 0.57476 0.52952

 2.0 0.26675 0.62977 0.65002

 2.2 0.24835 0.68131 0.78119

 2.4 0.22809 0.72898 0.92229

 2.6 0.20645 0.77245 1.07250

 2.8 0.18401 0.81151 1.23098

 3.0 0.16136 0.84604 1.39681

 3.5 0.10777 0.91304 1.83770

 4.0 0.06423 0.95552 2.30574

 4.5 0.03398 0.97951 2.79013

 5.0 0.01591 0.99154 3.28327

 5.5 0.00658 0.99688 3.78057

 6.0 0.00240 0.99897 4.27962

 6.5 0.00077 0.99970 4.77932

 7.0 0.00022 0.99992 5.27923

 8.0 0.00001 1.00000 6.27921

 9.0 0.00000 1.00000 7.27921

 10.0 0.00000 1.00000 8.27921

* h is the similarity variable defined in Eq. 4 above, and function f (h) is solved using the Runge–Kutta numerical technique. Note that f 0 is proportional to the 

shear stress t, f 9 is proportional to the x-component of velocity in the boundary layer ( f 9 5 u/U), and f  itself is proportional to the stream function. f 9 is plotted 

as a function of h in Fig. 10–99.
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1

FIGURE 10–99
The Blasius profile in similarity 
variables for the boundary layer 

growing on a semi-infinite flat 
plate. Experimental data (circles) 

are at Rex 5 3.64 3 105.

Boundary layery

xtw tw tw tw

V d(x)
U(x) = V

u

(∂u/∂y)y = 0

FIGURE 10–100
For a laminar flat plate boundary layer, 

wall shear stress decays like x21/2 as 
the slope −u/−y at the wall decreases 
downstream. The front portion of the 

plate contributes more skin friction 
drag than does the rear portion.

Step 4  We next calculate several quantities of interest in this boundary 

layer. First, based on a numerical solution with finer resolution than that 

shown in Table 10–3, we find that u/U 5 0.990 at h ≅ 4.91. This 99 percent 

boundary layer thickness is sketched in Fig. 10–99. Using Eq. 4 and the 

definition of d, we conclude that y 5 d when

 h 5 4.91 5 Å U
nx

 d S 
d

x
5

4.91"Rex

 (6)

This result agrees qualitatively with Eq. 10–67, obtained from a simple 

order-of-magnitude analysis. The constant 4.91 in Eq. 6 is rounded to 5.0 

by many authors, but we prefer to express the result to three significant 

digits for consistency with other quantities obtained from the Blasius profile.

 Another quantity of interest is the shear stress at the wall tw,

 tw 5 m 
0u
0y
b

y50

 (7)

Sketched in Fig. 10–99 is the slope of the nondimensional velocity profile 

at the wall (y 5 0 and h 5 0). From our similarity results (Table 10–3), the 

nondimensional slope at the wall is

 
d (u/U)

dh
b
h50

5 f 0 (0) 5 0.332 (8)

After substitution of Eq. 8 into Eq. 7 and some algebra (transformation of 

similarity variables back to physical variables), we obtain

Shear stress in physical variables:  tw 5 0.332
rU2"Rex

 (9)

Thus, we see that the wall shear stress decays with x like x21/2, as sketched 

in Fig. 10–100. At x 5 0, Eq. 9 predicts that tw is infinite, which is 

unphysical. The boundary layer approximation is not appropriate at the 

leading edge (x 5 0), because the boundary layer thickness is not small 

compared to x. Furthermore, any real flat plate has finite thickness, and 

there is a stagnation point at the front of the plate, with the outer flow 

accelerating quickly to U(x) 5 V. We may ignore the region very close to 

x 5 0 without loss of accuracy in the rest of the flow.

 Equation 9 is nondimensionalized by defining a skin friction coefficient 
(also called a local friction coefficient),

Local friction coefficient, laminar flat plate:  Cf, x 5
tw

1
2rU2

5
0.664"Rex

 (10)

Notice that Eq. 10 for Cf, x has the same form as Eq. 6 for d/x, but with a 

different constant—both decay like the inverse of the square root of 

Reynolds number. In Chap. 11, we integrate Eq. 10 to obtain the total 

friction drag on a flat plate of length L.
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FIGURE 10–101
The boundary layer growing on the 
hood of a car. Boundary layer 
thickness is exaggerated for clarity.

V
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U(x) = VOuter flow
streamline
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d*(x)

y

d(x)

FIGURE 10–102
Displacement thickness defined by 
a streamline outside of the boundary 
layer. Boundary layer thickness is 
exaggerated.

Step 5  We need to verify that the boundary layer is thin. Consider the 

practical example of flow over the hood of your car (Fig. 10–101) while you 

are driving downtown at 20 mi/h on a hot day. The kinematic viscosity of 

the air is n 5 1.8 3 1024 ft2/s. We approximate the hood as a flat plate 

of length 3.5 ft moving horizontally at a speed of V 5 20 mi/h. First, we 

approximate the Reynolds number at the end of the hood using Eq. 10–60,

Rex 5
Vx
n

5
(20 mi/h) (3.5 ft)

1.8 3 1024  ft2/s
 a5280 ft

mi
b  a h

3600 s
b 5 5.7 3 105

Since Rex is very close to the ballpark critical Reynolds number, Rex, cr 5
5 3 105, the assumption of laminar flow may or may not be appropriate. 

Nevertheless, we use Eq. 6 to estimate the thickness of the boundary layer, 

assuming that the flow remains laminar,

 d 5
4.91x"Rex

5
4.91(3.5 ft)"5.7 3 105

 a12 in

ft
b 5 0.27 in (11)

By the end of the hood the boundary layer is only about a quarter of an 

inch thick, and our assumption of a very thin boundary layer is verified.

Discussion  The Blasius boundary layer solution is valid only for flow over 

a flat plate perfectly aligned with the flow. However, it is often used as a 

quick approximation for the boundary layer developing along solid walls that 

are not necessarily flat nor exactly parallel to the flow, as in the car hood. 

As illustrated in step 5, it is not difficult in practical engineering problems 

to achieve Reynolds numbers greater than the critical value for transition 

to turbulence. You must be careful not to apply the laminar boundary layer 

solution presented here when the boundary layer becomes turbulent.

Displacement Thickness
As was shown in Fig. 10–80, streamlines within and outside a boundary 
layer must bend slightly outward away from the wall in order to satisfy con-
servation of mass as the boundary layer thickness grows downstream. This 
is because the y-component of velocity, v, is small but finite and positive. 
Outside of the boundary layer, the outer flow is affected by this deflection 
of the streamlines. We define displacement thickness d* as the distance 
that a streamline just outside of the boundary layer is deflected, as sketched 
in Fig. 10–102.

Displacement thickness is the distance that a streamline just outside 
of the boundary layer is deflected away from the wall due to the effect 
of the boundary layer.

 We generate an expression for d* for the boundary layer along a flat plate 
by performing a control volume analysis using conservation of mass. The 
details are left as an exercise for the reader; the result at any x-location 
along the plate is

Displacement thickness: d* 5 #
q

0
 a1 2

u

U
b dy (10–72)

Note that the upper limit of the integral in Eq. 10–72 is shown as `, but 
since u 5 U everywhere above the boundary layer, it is necessary to integrate 
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only out to some finite distance above d. Obviously d* grows with x as the 
boundary layer grows (Fig. 10–103). For a laminar flat plate, we integrate 
the numerical (Blasius) solution of Example 10–10 to obtain

Displacement thickness, laminar flat plate:  
d*
x

5
1.72"Rex

 (10–73)

The equation for d* is the same as that for d, but with a different constant. 
In fact, for laminar flow over a flat plate, d* at any x-location turns out to be 
approximately three times smaller than d at that same x-location (Fig. 10–103).
 There is an alternative way to explain the physical meaning of d* that turns 
out to be more useful for practical engineering applications. Namely, we can 
think of displacement thickness as an imaginary or apparent increase in thick-
ness of the wall from the point of view of the inviscid and/or irrotational outer 
flow region. For our flat plate example, the outer flow no longer “sees” an 
infinitesimally thin flat plate; rather it sees a finite-thickness plate shaped like 
the displacement thickness of Eq. 10–73, as illustrated in Fig. 10–104.

Displacement thickness is the imaginary increase in thickness of the wall, as 
seen by the outer flow, due to the effect of the growing boundary layer.

 If we were to solve the Euler equation for the flow around this imaginary 
thicker plate, the outer flow velocity component U(x) would differ from the 
original calculation. We could then use this apparent U(x) to improve our 
boundary layer analysis. You can imagine a modification to the boundary 
layer procedure of Fig. 10–93 in which we go through the first four steps, 
calculate d*(x), and then go back to step 1, this time using the imaginary 
(thicker) body shape to calculate an apparent U(x). Following this, we re-solve 
the boundary layer equations. We could repeat the loop as many times as 
necessary until convergence. In this way, the outer flow and the boundary 
layer would be more consistent with each other.
 The usefulness of this interpretation of displacement thickness becomes 
obvious if we consider uniform flow entering a channel bounded by two 
parallel walls (Fig. 10–105). As the boundary layers grow on the upper 
and lower walls, the irrotational core flow must accelerate to satisfy con-
servation of mass (Fig. 10–105a). From the point of view of the core flow 
between the boundary layers, the boundary layers cause the channel walls to 
appear to converge—the apparent distance between the walls decreases as x 
increases. This imaginary increase in thickness of one of the walls is equal 
to d*(x), and the apparent U(x) of the core flow must increase accordingly, 
as sketched, to satisfy conservation of mass.

V

Boundary layer
x

U(x) = V
y

d(x)
d*(x)

FIGURE 10–103
For a laminar flat plate boundary 

layer, the displacement thickness is 
roughly one-third of the 99 percent 

boundary layer thickness.

V

Boundary layer
x

Apparent U(x)
y

d(x)

d*(x)

Actual wall

Apparent wall

FIGURE 10–104
The boundary layer affects the 

irrotational outer flow in such a 
way that the wall appears to take the 
shape of the displacement thickness. 

The apparent U(x) differs from 
the original approximation 

because of the “thicker” wall.

FIGURE 10–105
The effect of boundary layer growth 
on flow entering a two-dimensional 

channel: the irrotational flow between 
the top and bottom boundary layers 

accelerates as indicated by (a) actual 
velocity profiles, and (b) change in 

apparent core flow due to the 
displacement thickness of the 

boundary layer (boundary layers 
greatly exaggerated for clarity).
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Flow
straighteners

V

Diffuser

SilencerTest
section Fan

FIGURE 10–106
Schematic diagram of the wind tunnel 
of Example 10–11.

(a) (b)

R R – d*

d*

FIGURE 10–107
Cross-sectional views of the test 
section of the wind tunnel of 
Example 10–11: (a) beginning of test 
section and (b) end of test section.

EXAMPLE 10–11     Displacement Thickness in the Design 
of a Wind Tunnel

A small low-speed wind tunnel (Fig. 10–106) is being designed for calibra-

tion of hot wires. The air is at 198C. The test section of the wind tunnel is 

30 cm in diameter and 30 cm in length. The flow through the test section 

must be as uniform as possible. The wind tunnel speed ranges from 1 to 

8 m/s, and the design is to be optimized for an air speed of V 5 4.0 m/s 

through the test section. (a) For the case of nearly uniform flow at 4.0 m/s 

at the test section inlet, by how much will the centerline air speed acceler-

ate by the end of the test section? (b) Recommend a design that will lead to 

a more uniform test section flow.

SOLUTION  The acceleration of air through the round test section of a wind 

tunnel is to be calculated, and a redesign of the test section is to be recom-

mended.

Assumptions  1 The flow is steady and incompressible. 2 The walls are 

smooth, and disturbances and vibrations are kept to a minimum. 3 The 

boundary layer is laminar.

Properties  The kinematic viscosity of air at 198C is n 5 1.507 3 1025 m2/s.

Analysis  (a) The Reynolds number at the end of the test section is 

approximately

Rex 5
Vx
n

5
(4.0 m/s)(0.30 m)

1.507 3 1025 m2/s
5 7.96 3 104

Since Rex is lower than the engineering critical Reynolds number, Rex, cr 5
5 3 105, and is even lower than Rex, critical 5 1 3 105, and since the walls 

are smooth and the flow is clean, we may assume that the boundary layer on 

the wall remains laminar throughout the length of the test section. As the 

boundary layer grows along the wall of the wind tunnel test section, air in the 

region of irrotational flow in the central portion of the test section accelerates 

as in Fig. 10–105 in order to satisfy conservation of mass. We use Eq. 10–73 

to estimate the displacement thickness at the end of the test section,

 d* >
1.72x"Rex

5
1.72(0.30 m)"7.96 3 104

5 1.83 3 1023 m 5 1.83 mm (1)

Two cross-sectional views of the test section are sketched in Fig. 10–107, 

one at the beginning and one at the end of the test section. The effective 

radius at the end of the test section is reduced by d* as calculated by Eq. 1. 

We apply conservation of mass to calculate the average air speed at the end 

of the test section,

 Vend Aend 5 Vbeginning Abeginning S Vend 5 Vbeginning 
pR2

p(R 2 d*)2 (2)

which yields

 Vend 5 (4.0 m/s) 
(0.15 m)2

(0.15 m 2 1.83 3 1023 m)2 5 4.10 m/s (3)

Thus the air speed increases by approximately 2.5 percent through the test 

section, due to the effect of displacement thickness.

(b) What recommendation can we make for a better design? One possibility 

is to design the test section as a slowly diverging duct, rather than as a 
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FIGURE 10–108
A diverging test section would 

eliminate flow acceleration due to the 
displacement effect of the boundary 

layer: (a) actual flow and (b) apparent 
irrotational core flow.
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x

Outer flow
streamline

d*(x)
y

Boundary layer

d(x)

U(x) = V

FD, x

u
Y

FIGURE 10–109
A control volume is defined by the 

thick dashed line, bounded above by 
a streamline outside of the boundary 
layer, and bounded below by the flat 
plate; FD, x is the viscous force of the 

plate acting on the control volume.

straight-walled cylinder (Fig. 10–108). If the radius were designed so as to 

increase like d*(x) along the length of the test section, the displacement 

effect of the boundary layer would be eliminated, and the test section air 

speed would remain fairly constant. Note that there is still a boundary layer 

growing on the wall, as illustrated in Fig. 10–108. However, the core flow 

speed outside the boundary layer remains constant, unlike the situation of 

Fig. 10–105. The diverging wall recommendation would work well at the 

design operating condition of 4.0 m/s and would help somewhat at other 

flow speeds. Another option is to apply suction along the wall of the test 

section in order to remove some of the air along the wall. The advantage 

of this design is that the suction can be carefully adjusted as wind tunnel 

speed is varied so as to ensure constant air speed through the test section at 

any operating condition. This recommendation is the more complicated, and 

probably more expensive, option.

Discussion  Wind tunnels have been constructed that use either the diverging 

wall option or the wall suction option to carefully control the uniformity of the 

air speed through the wind tunnel test section. The same displacement thick-

ness technique is applied to larger wind tunnels, where the boundary layer is 

turbulent; however, a different equation for d*(x) is required.

Momentum Thickness
Another measure of boundary layer thickness is momentum thickness, 
commonly given the symbol u. Momentum thickness is best explained 
by analyzing the control volume of Fig. 10–109 for a flat plate boundary 
layer. Since the bottom of the control volume is the plate itself, no mass or 
momentum can cross that surface. The top of the control volume is taken as 
a streamline of the outer flow. Since no flow can cross a streamline, there 
can be no mass or momentum flux across the upper surface of the control 
volume. When we apply conservation of mass to this control volume, we 
find that the mass flow entering the control volume from the left (at x 5 0) 
must equal the mass flow exiting from the right (at some arbitrary location x
along the plate),

 0 5 #
CS

 rV
!
·n
!
 dA 5 wr #

Y1d*

0
 u dy 2 wr #

Y

0
 U dy (10–74)

 at location x at x 5 0

where w is the width into the page in Fig. 10–109, which we take arbitrarily as 
unit width, and Y is the distance from the plate to the outer streamline at x 5 0, 
as indicated in Fig. 10–109. Since u 5 U 5 constant everywhere along the 
left surface of the control volume, and since u 5 U between y 5 Y and y 5 
Y 1 d* along the right surface of the control volume, Eq. 10–74 reduces to

 #
Y

0
 (U 2 u) dy 5 Ud* (10–75)

Physically, the mass flow deficit within the boundary layer (the lower blue-
shaded region in Fig. 10–109) is replaced by a chunk of free-stream flow of 
thickness d* (the upper blue-shaded region in Fig. 10–109). Equation 10–75 
verifies that these two shaded regions have the same area. We zoom in to 
show these areas more clearly in Fig. 10–110.
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 Now consider the x-component of the control volume momentum equa-
tion. Since no momentum crosses the upper or lower control surfaces, the 
net force acting on the control volume must equal the momentum flux exit-
ing the control volume minus that entering the control volume,

Conservation of x-momentum for the control volume:

 aFx 5 2FD, x 5 #
CS

 ruV
!
·n
!
 dA 5 rw #

Y1d*

0
 u2 dy 2 rw#

Y

0
 U2 dy (10–76)

 at location x at x 5 0

where FD, x is the drag force due to friction on the plate from x 5 0 to loca-
tion x. After some algebra, including substitution of Eq. 10–75, Eq. 10–76 
reduces to

 FD, x 5 rw #
Y

0
 u(U 2 u) dy (10–77)

Finally, we define momentum thickness u such that the viscous drag force 
on the plate per unit width into the page is equal to rU2 times u, i.e.,

 
FD, x

w
5 r #

Y

0
 u (U 2 u) dy ; rU2u (10–78)

In words,

Momentum thickness is defined as the loss of momentum flux per unit width 
divided by rU2 due to the presence of the growing boundary layer.

Equation 10–78 reduces to

 u 5 #
Y

0
 
u

U
 a1 2

u

U
b dy (10–79)

Streamline height Y can be any value, as long as the streamline taken as 
the upper surface of the control volume is above the boundary layer. Since 
u 5 U for any y greater than Y, we may replace Y by infinity in Eq. 10–79 
with no change in the value of u,

Momentum thickness: u 5 #
q

0
 
u

U
 a1 2

u

U
b dy (10–80)

 For the specific case of the Blasius solution for a laminar flat plate bound-
ary layer (Example 10–10), we integrate Eq. 10–80 numerically to obtain

Momentum thickness, laminar flat plate:  
u

x
5

0.664"Rex

 (10–81)

We note that the equation for u is the same as that for d or for d* but with a 
different constant. In fact, for laminar flow over a flat plate, u turns out to be 
approximately 13.5 percent of d at any x-location, as indicated in Fig. 10–111.
It is no coincidence that u/x (Eq. 10–81) is identical to Cf, x (Eq. 10 of 
Example 10–10)—both are derived from skin friction drag on the plate.

Turbulent Flat Plate Boundary Layer
It is beyond the scope of this text to derive or attempt to solve the turbulent 
flow boundary layer equations. Expressions for the boundary layer profile 

Free-stream
mass flow Mass flow

deficit due 
to boundary
layer

Wall

x

d*(x)

d(x)
u

U(x)
y

x

FIGURE 10–110
Comparison of the area under the 
boundary layer profile, representing 
the mass flow deficit, and the area 
generated by a chunk of free-stream 
fluid of thickness d*. To satisfy 
conservation of mass, these two 
areas must be identical.

V

x

U(x) = V

Boundary layer

d*(x)
d(x)

y

u(x)

FIGURE 10–111
For a laminar flat plate boundary 
layer, displacement thickness is 
35.0 percent of d, and momentum 
thickness is 13.5 percent of d.
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shape and other properties of the turbulent boundary layer are obtained 
empirically (or at best semi-empirically), since we cannot solve the bound-
ary layer equations for turbulent flow. Note also that turbulent flows are 
inherently unsteady, and the instantaneous velocity profile shape varies with 
time (Fig. 10–112). Thus, all turbulent expressions discussed here represent 
time-averaged values. One common empirical approximation for the time-
averaged velocity profile of a turbulent flat plate boundary layer is the 
one-seventh-power law,

 
u

U
> ay

d
b1/ 7

 for y # d,  S  
u

U
> 1 for y . d (10–82)

 Note that in the approximation of Eq. 10–82, d is not the 99 percent 
boundary layer thickness, but rather the actual edge of the boundary layer, 
unlike the definition of d for laminar flow. Equation 10–82 is plotted in 
Fig. 10–113. For comparison, the laminar flat plate boundary layer profile 
(a numerical solution of the Blasius equations Fig. 10–99) is also plotted in 
Fig. 10–113, using y/d for the vertical axis in place of similarity variable h. 
You can see that if the laminar and turbulent boundary layers were the 
same thickness, the turbulent one would be much fuller than the laminar 
one. In other words, the turbulent boundary layer would “hug” the wall 
more closely, filling the boundary layer with higher-speed flow close to the 
wall. This is due to the large turbulent eddies that transport high-speed fluid 
from the outer part of the boundary layer down to the lower parts of the 
boundary layer (and vice versa). In other words, a turbulent boundary layer 
has a much greater degree of mixing when compared to a laminar bound-
ary layer. In the laminar case, fluid mixes slowly due to viscous diffusion. 
However, the large eddies in a turbulent flow promote much more rapid and 
thorough mixing.
 The approximate turbulent boundary layer velocity profile shape of Eq. 10–82 
is not physically meaningful very close to the wall (y → 0) since it predicts 
that the slope (−u/−y) is infinite at y 5 0. While the slope at the wall is 
very large for a turbulent boundary layer, it is nevertheless finite. This large 
slope at the wall leads to a very high wall shear stress, tw 5 m(−u/−y)y50,
and, therefore, correspondingly high skin friction along the surface of the 
plate (as compared to a laminar boundary layer of the same thickness). The 
skin friction drag produced by both laminar and turbulent boundary layers is 
discussed in greater detail in Chap. 11.
 A nondimensionalized plot such as that of Fig. 10–113 is somewhat mis-
leading, since the turbulent boundary layer would actually be much thicker 
than the corresponding laminar boundary layer at the same Reynolds number. 
This fact is illustrated in physical variables in Example 10–12.
 We compare in Table 10–4 expressions for d, d*, u, and Cf, x for lami-
nar and turbulent boundary layers on a smooth flat plate. The turbulent 
expressions are based on the one-seventh-power law of Eq. 10–82. Note 
that the expressions in Table 10–4 for the turbulent flat plate boundary layer 
are valid only for a very smooth surface. Even a small amount of surface 
roughness greatly affects properties of the turbulent boundary layer, such 
as momentum thickness and local skin friction coefficient. The effect of 
surface roughness on a turbulent flat plate boundary layer is discussed in 
greater detail in Chap. 11.

y

U0
u

d

FIGURE 10–112
Illustration of the unsteadiness of a 
turbulent boundary layer; the thin, 
wavy black lines are instantaneous 
profiles, and the thick blue line is a 

long time-averaged profile.

1.2

0.8

1

0.6

0.4

—
d

0.2

0

0 0.2 0.4 0.6
u/U

0.8 1

y

Laminar

Turbulent

FIGURE 10–113
Comparison of laminar and turbulent 

flat plate boundary layer profiles, 
nondimensionalized by boundary 

layer thickness.
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EXAMPLE 10–12     Comparison of Laminar 
and Turbulent Boundary Layers

Air at 208C flows at V 5 10.0 m/s over a smooth flat plate of length 

L 5 1.52 m (Fig. 10–114). (a) Plot and compare the laminar and turbulent 

boundary layer profiles in physical variables (u as a function of y) at x 5 L. 

(b)  Compare the values of local skin friction coefficient for the two cases at 

x 5 L. (c) Plot and compare the growth of the laminar and turbulent boundary 

layers.

SOLUTION  We are to compare laminar versus turbulent boundary layer pro-

files, local skin friction coefficient, and boundary layer thickness at the end 

of a flat plate.

Assumptions  1 The plate is smooth, and the free stream is calm and uni-

form. 2 The flow is steady in the mean. 3 The plate is infinitesimally thin 

and is aligned parallel to the free stream.

Properties  The kinematic viscosity of air at 208C is n 5 1.516 3 1025 m2/s.

Analysis  (a) First we calculate the Reynolds number at x 5 L,

Rex 5
Vx
n

5
(10.0 m/s)(1.52 m)

1.516 3 1025 m2/s
5 1.00 3 106

This value of Rex is in the transitional region between laminar and turbulent, 

according to Fig. 10–81. Thus, a comparison between the laminar and tur-

bulent velocity profiles is appropriate. For the laminar case, we multiply the 

y/d values of Fig. 10–113 by dlaminar, where

 dlaminar 5
4.91x"Rex

5
4.91(1520 mm)"1.00 3 106

5 7.46  mm (1)

y

x
L

V

dlaminar

dturbulent U(x) = V

FIGURE 10–114
Comparison of laminar and turbulent 
boundary layers for flow of air over a 
flat plate for Example 10–12 (bound-
ary layer thickness exaggerated).

TABLE 10–4

Summary of expressions for laminar and turbulent boundary layers on a smooth 

flat plate aligned parallel to a uniform stream*

  (a) (b)

Property Laminar Turbulent(†) Turbulent(‡)

Boundary layer thickness 
d

x
5

4.91"Rex

 
d

x
>

0.16

(Rex)
1/7 

d

x
>

0.38

(Rex)
1/5

Displacement thickness 
d*
x

5
1.72"Rex

 
d*
x
>

0.020

(Rex)
1/7 

d*
x
>

0.048

(Rex)
1/5

Momentum thickness 
u

x
5

0.664"Rex

 
u

x
>

0.016

(Rex)
1/7 

u

x
>

0.037

(Rex)
1/5

Local skin friction coefficient Cf, x 5
0.664"Rex

 Cf, x >
0.027

(Rex)
1/7 Cf, x >

0.059

(Rex)
1/5

* Laminar values are exact and are listed to three significant digits, but turbulent values are listed to only 

two significant digits due to the large uncertainty affiliated with all turbulent flow fields.

† Obtained from one-seventh-power law.

‡ Obtained from one-seventh-power law combined with empirical data for turbulent flow through smooth 

pipes.
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This gives us y-values in units of mm. Similarly, we multiply the u/U values 

of Fig. 10–113 by U (U 5 V 5 10.0 m/s) to obtain u in units of m/s. We 

plot the laminar boundary layer profile in physical variables in Fig. 10–115.

 We calculate the turbulent boundary layer thickness at this same x-location 

using the equation provided in Table 10–4, column (a),

 dturbulent >
0.16x

(Rex)
1/7 5

0.16(1520 mm)

(1.00 3 106)1/7 5 34 mm (2)

[The value of dturbulent based on column (b) of Table 10–4 is somewhat higher, 

namely 36 mm.] Comparing Eqs. 1 and 2, we see that the turbulent bound-

ary layer is about 4.5 times thicker than the laminar boundary layer at a 

Reynolds number of 1.0 3 106. The turbulent boundary layer velocity profile 

of Eq. 10–82 is converted to physical variables and plotted in Fig. 10–115

for comparison with the laminar profile. The two most striking features of 

Fig. 10–115 are (1) the turbulent boundary layer is much thicker than the 

laminar one, and (2) the slope of u versus y near the wall is much steeper 

for the turbulent case. (Keep in mind, of course, that very close to the wall 

the one-seventh-power law does not adequately represent the actual turbu-

lent boundary layer profile.)

(b) We use the expressions in Table 10–4 to compare the local skin friction 

coefficient for the two cases. For the laminar boundary layer,

 Cf, x, laminar 5
0.664"Rex

5
0.664"1.00 3 106

5 6.64 3 1024  (3)

and for the turbulent boundary layer, column (a),

 Cf, x, turbulent >
0.027

(Rex)
1/7 5

0.027

(1.00 3 106)1/7 5 3.8 3 1023 (4)

Comparing Eqs. 3 and 4, the turbulent skin friction value is more than five 

times larger than the laminar value. If we had used the other expression 

for turbulent skin friction coefficient, column (b) of Table 10–4, we would 

have obtained Cf, x, turbulent 5 3.7 3 1023, very close to the value calculated 

in Eq. 4.

(c) The turbulent calculation assumes that the boundary layer is turbulent 

from the beginning of the plate. In reality, there is a region of laminar flow, 

followed by a transition region, and then finally a turbulent region, as illus-

trated in Fig. 10–81. Nevertheless, it is interesting to compare how dlaminar 

and dturbulent grow as functions of x for this flow, assuming either all laminar 

flow or all turbulent flow. Using the expressions in Table 10–4, both of these 

are plotted in Fig. 10–116 for comparison.
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FIGURE 10–115
Comparison of laminar and turbulent 

flat plate boundary layer profiles 
in physical variables at the same 

x-location. The Reynolds number is 
Rex 5 1.0 3 106.
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FIGURE 10–116
Comparison of the growth of a 

laminar boundary layer and a 
turbulent boundary layer for the 

flat plate of Example 10–12.
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Discussion  The ordinate in Fig. 10–116 is in mm, while the abscissa is in m 

for clarity—the boundary layer is incredibly thin, even for the turbulent case. 

The difference between the turbulent (a) and (b) cases (see Table 10–4) is 

explained by discrepancies between empirical curve fits and semi-empirical 

approximations used to obtain the expressions in Table 10–4. This reinforces 

our decision to report turbulent boundary layer values to at most two signifi-

cant digits. The real value of d will most likely lie somewhere between the 

laminar and turbulent values plotted in Fig. 10–116 since the Reynolds num-

ber by the end of the plate is within the transitional region.

 The one-seventh-power law is not the only turbulent boundary layer approx-
imation used by fluid mechanicians. Another common approximation is the 
log law, a semi-empirical expression that turns out to be valid not only for flat 
plate boundary layers but also for fully developed turbulent pipe flow velocity 
profiles (Chap. 8). In fact, the log law turns out to be applicable for nearly all 
wall-bounded turbulent boundary layers, not just flow over a flat plate. (This 
fortunate situation enables us to employ the log law approximation close to 
solid walls in computational fluid dynamics codes, as discussed in Chap. 15.) 
The log law is commonly expressed in variables nondimensionalized by a 
characteristic velocity called the friction velocity u*. (Note that most authors 
use u* instead of u*. We use a subscript to distinguish u*, a dimensional quan-
tity, from u*, which we use to indicate a nondimensional velocity.)

The log law: 
u
u*

5
1
k

  ln  

yu*

n
1 B (10–83)

where

Friction velocity: u* 5 Åtw

r
 (10–84)

and k and B are constants; their usual values are k 5 0.40 to 0.41 and B 5 5.0 
to 5.5. Unfortunately, the log law suffers from the fact that it does not work 
very close to the wall (ln 0 is undefined). It also deviates from experimental 
values close to the boundary layer edge. Nevertheless, Eq. 10–83 applies 
across a significant portion of the turbulent flat plate boundary layer and is 
useful because it relates the velocity profile shape to the local value of wall 
shear stress through Eq. 10–84.
 A clever expression that is valid all the way to the wall was created by D. 
B. Spalding in 1961 and is called Spalding’s law of the wall,

 
yu*

n
5

u
u*

1 e2kB cek(u/u*) 2 1 2 k(u/u*) 2  
[k(u/u*)]

2

2
2

[k (u/u*)]
3

6
d  (10–85)

While Eq. 10-85 does a better job than Eq. 10-83 very close to the wall, nei-
ther equation is valid in the outer portion of the boundary layer, often called 
the outer layer or turbulent layer. Coles (1956) introduced an empirical 
formula called the wake function or the law of the wake that fits the data 
nicely in this region. Coles’ equation is added to the log law, yielding what 
some call the wall-wake law,

 
u

u* 5
1
k

  ln  

yu*

n
1 B 1

2P
k

 W a  

y

d
 b  (10–86)
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FIGURE 10–117
The turbulent boundary layer 

generated by flow of air over a flat 
plate for Example 10–13 (boundary 

layer thickness exaggerated).
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FIGURE 10–118
Comparison of turbulent flat plate 

boundary layer profile expressions in 
physical variables at Rex 5 1.0 3 107: 
one-seventh-power approximation, log 

law, and Spalding’s law of the wall.

Where Π 5 0.44 for a flat plate boundary layer, and several expressions for 
W have been suggested, all of which smoothly change from 0 at the wall 
(y/δ 5 0) to 1 at the outer edge of the boundary layer (y/δ 5 1). One popular 
expression is

 W ay

d
b 5 sin2 ap

2
ay

d
bb   for  

y

d
, 1 (10–87)

EXAMPLE 10–13     Comparison of Turbulent Boundary 
Layer Profile Equations

Air at 208C flows at V 5 10.0 m/s over a smooth flat plate of length 

L 5 15.2 m (Fig. 10–117). Plot the turbulent boundary layer profile in physical

variables (u as a function of y) at x 5 L. Compare the profile generated by the 

one-seventh-power law, the log law, and Spalding’s law of the wall, assuming 

that the boundary layer is fully turbulent from the beginning of the plate.

SOLUTION  We are to plot the mean boundary layer profile u( y) at the end 

of a flat plate using three different approximations.

Assumptions  1 The plate is smooth, but there are free-stream fluctuations 

that tend to cause the boundary layer to transition to turbulence sooner than 

usual—the boundary layer is turbulent from the beginning of the plate. 2 

The flow is steady in the mean. 3 The plate is infinitesimally thin and is 

aligned parallel to the free stream.

Properties  The kinematic viscosity of air at 208C is n 5 1.516 3 1025 m2/s.

Analysis  First we calculate the Reynolds number at x 5 L,

Rex 5
Vx
n

5
(10.0 m/s)(15.2 m)

1.516 3 1025 m2/s
5 1.00 3 107

This value of Rex is well above the transitional Reynolds number for a flat 

plate boundary layer (Fig. 10–81), so the assumption of turbulent flow from 

the beginning of the plate is reasonable.

 Using the column (a) values of Table 10–4, we estimate the boundary 

layer thickness and the local skin friction coefficient at the end of the plate,

 d >
0.16x

(Rex)
1/7 5 0.240 m  Cf, x >

0.027

(Rex)
1/7 5 2.70 3 1023 (1)

We calculate the friction velocity by using its definition (Eq. 10–84) and the 

definition of Cf, x (left part of Eq. 10 of Example 10–10),

 u* 5 Åtw

r
5 UÅCf, x

2
5 (10.0 m/s) Å2.70 3 1023

2
5 0.367 m/s (2)

where U 5 constant 5 V everywhere for a flat plate. It is trivial to generate a 

plot of the one-seventh-power law (Eq. 10–82), but the log law (Eq. 10–83) 

is implicit for u as a function of y. Instead, we solve Eq. 10–83 for y as a 

function of u,

 y 5
n

u* 

 ek(u/u* 2B) (3)

Since we know that u varies from 0 at the wall to U at the boundary layer 

edge, we are able to plot the log law velocity profile in physical variables 

using Eq. 3. Finally, Spalding’s law of the wall (Eq. 10–85) is also written in 

terms of y as a function of u. We plot all three profiles on the same plot for 

comparison (Fig. 10–118). All three are close, and we cannot distinguish the 

log law from Spalding’s law on this scale.
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 Instead of a physical variable plot with linear axes as in Fig. 10–118, a semi-log 

plot of nondimensional variables is often drawn to magnify the near-wall region. 

The most common notation in the boundary layer literature for the nondimen-

sional variables is y1 and u1 (inner variables or law of the wall variables), where

Law of the wall variables:   y1 5
yu*

n
  u1 5

u
u*

 (4)

As you can see, y1 is a type of Reynolds number, and friction velocity u* is used 

to nondimensionalize both y and u. Figure 10–118 is redrawn in Fig. 10–119

using law of the wall variables. The differences between the three approxima-

tions, especially near the wall, are much clearer when plotted in this fashion. 

Typical experimental data are also plotted in Fig. 10–119 for comparison. 

Spalding’s formula does the best job overall and is the only expression that 

follows experimental data near the wall. In the outer part of the boundary 

layer, the experimental values of u1 level off beyond some value of y1, as 

does the one-seventh-power law. However, both the log law and Spalding’s 

formula continue indefinitely as a straight line on this semi-log plot.

Discussion  Also plotted in Fig. 10–119 is the linear equation u1 5 y1. The 

region very close to the wall (0 , y1 , 5 or 6) is called the viscous sublayer. 
In this region, turbulent fluctuations are suppressed due to the close proxim-

ity of the wall, and the velocity profile is nearly linear. Other names for this 

region are linear sublayer and laminar sublayer. We see that Spalding’s equa-

tion captures the viscous sublayer and blends smoothly into the log law. Nei-

ther the one-seventh-power law nor the log law are valid this close to the wall.

Boundary Layers with Pressure Gradients
So far we have spent most of our discussion on flat plate boundary lay-
ers. Of more practical concern for engineers are boundary layers on walls 
of arbitrary shape. These include external flows over bodies immersed in a 
free stream (Fig. 10–120a), as well as some internal flows like the walls of 
wind tunnels and other large ducts in which boundary layers develop along 
the walls (Fig. 10–120b). Just as with the zero pressure gradient flat plate 
boundary layer discussed earlier, boundary layers with nonzero pressure
gradients may be laminar or turbulent. We often use the flat plate boundary layer
results as ballpark estimates for such things as location of transition to turbulence, 

30

20

10

0

y+

Log law

Spalding

104103102101

u+

u+ = y+

Experimental data

Wall-wake law

1/7th power
FIGURE 10–119
Comparison of turbulent flat plate 
boundary layer profile expressions 
in law of the wall variables at Rex 5
1.0 3 107: one-seventh-power 
approximation, log law, Spalding’s 
law of the wall, and wall-wake law. 
Typical experimental data and the 
viscous sublayer equation (u1 5 y1) 
are also shown for comparison.

Boundary layer

Boundary layer

(a)

(b)

FIGURE 10–120
Boundary layers with nonzero pressure
gradients occur in both external flows 
and internal flows: (a) boundary layer
developing along the fuselage of an
airplane and into the wake, and 
(b) boundary layer growing on the 
wall of a diffuser (boundary layer 
thickness exaggerated in both cases).
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boundary layer thickness, skin friction, etc. However, when more accuracy is 
needed we must solve the boundary layer equations (Eqs. 10–71 for the steady, 
laminar, two-dimensional case) using the procedure outlined in Fig. 10–93. 
The analysis is harder than that for a flat plate since the pressure gradient term 
(U dU/dx) in the x-momentum equation is nonzero. Such an analysis can 
quickly get quite involved, especially for the case of three-dimensional flows. 
Therefore, we discuss only some qualitative features of boundary layers with 
pressure gradients, leaving detailed solutions of the boundary layer equations to 
higher-level fluid mechanics textbooks (e.g., Panton, 2005, and White, 2005).
 First some terminology. When the flow in the inviscid and/or irrotational outer 
flow region (outside of the boundary layer) accelerates, U(x) increases and P(x) 
decreases. We refer to this as a favorable pressure gradient. It is favorable or 
desirable because the boundary layer in such an accelerating flow is usually 
thin, hugs closely to the wall, and therefore is not likely to separate from the 
wall. When the outer flow decelerates, U(x) decreases, P(x) increases, and we 
have an unfavorable or adverse pressure gradient. As its name implies, this 
condition is not desirable because the boundary layer is usually thicker, does not 
hug closely to the wall, and is much more likely to separate from the wall.
 In a typical external flow, such as flow over an airplane wing (Fig. 10–121),
the boundary layer in the front portion of the body is subjected to a favorable
pressure gradient, while that in the rear portion is subjected to an adverse 
pressure gradient. If the adverse pressure gradient is strong enough (dP/dx 5
2U dU/dx is large), the boundary layer is likely to separate off the wall. 
Examples of flow separation are shown in Fig. 10–122 for both external and 
internal flows. In Fig. 10–122a is sketched an airfoil at a moderate angle of 
attack. The boundary layer remains attached over the entire lower surface 
of the airfoil, but it separates somewhere near the rear of the upper sur-
face as sketched. The closed streamline indicates a region of recirculating 
flow called a separation bubble. As pointed out previously, the boundary 
layer equations are parabolic, meaning that no information can be passed 
upstream from the downstream boundary. However, separation leads to 
reverse flow near the wall, destroying the parabolic nature of the flow field, 
and rendering the boundary layer equations inapplicable.

The boundary layer equations are not valid downstream of a separation point 
because of reverse flow in the separation bubble.

In such cases, the full Navier–Stokes equations must be used in place of 
the boundary layer approximation. From the point of view of the boundary 
layer procedure of Fig. 10–93, the procedure breaks down because the outer 
flow calculated in step 1 is no longer valid when separation occurs, espe-
cially beyond the separation point (compare Fig. 10–121 to Fig. 10–122a).
 Figure 10–122b shows the classic case of an airfoil at too high of an angle 
of attack, in which the separation point moves near the front of the airfoil; 

Favorable

Adverse

FIGURE 10–121
The boundary layer along a body 

immersed in a free stream is typically 
exposed to a favorable pressure 

gradient in the front portion of the 
body and an adverse pressure gradient 

in the rear portion of the body.

Separation point Separation point Separation point

(a) (b) (c)

FIGURE 10–122
Examples of boundary layer 

separation in regions of adverse 
pressure gradient: (a) an airplane 

wing at a moderate angle of attack, 
(b) the same wing at a high angle 

of attack (a stalled wing), and (c) a 
wide-angle diffuser in which the 

boundary layer cannot remain 
attached and separates on one side.
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the separation bubble covers nearly the entire upper surface of the airfoil—a 
condition known as stall. Stall is accompanied by a loss of lift and a marked 
increase in aerodynamic drag, as discussed in more detail in Chap. 11. Flow 
separation may also occur in internal flows, such as in the adverse pressure 
gradient region of a diffuser (Fig. 10–122c). As sketched, separation often 
occurs asymmetrically on one side of the diffuser only. As with an airfoil 
with flow separation, the outer flow calculation in the diffuser is no longer 
meaningful, and the boundary layer equations are not valid. Flow separation 
in a diffuser leads to a significant decrease of pressure recovery, and such 
conditions in a diffuser are also referred to as stall conditions.
 We can learn a lot about the velocity profile shape under various pressure 
gradient conditions by examining the boundary layer momentum equation 
right at the wall. Since the velocity is zero at the wall (no-slip condition), 
the entire left side of Eq. 10–71b disappears, leaving only the pressure gra-
dient term and the viscous term, which must balance,

At the wall: n  a 02u

0y2b
y50

5 2U  

dU

dx
5

1
r

 
dP

dx
 (10–88)

Under favorable pressure gradient conditions (accelerating outer flow), dU/dx 
is positive, and by Eq. 10–88, the second derivative of u at the wall is 
negative, i.e., (−2u/−y2)y50 , 0. We know that −2u/−y2 must remain negative 
as u approaches U(x) at the edge of the boundary layer. Thus, we expect 
the velocity profile across the boundary layer to be rounded, without any 
inflection point, as sketched in Fig. 10–123a. Under zero pressure gradient 
conditions, (−2u/−y2)y50 is zero, implying a linear growth of u with respect 
to y near the wall, as sketched in Fig. 10–123b. (This is verified by the Bla-
sius boundary layer profile for the zero pressure gradient boundary layer on 
a flat plate, as shown in Fig. 10–99.) For adverse pressure gradients, dU/dx 
is negative and Eq. 10–86 demands that (−2u/−y2)y50 be positive. However, 
since −2u/−y2 must be negative as u approaches U(x) at the edge of the 
boundary layer, there has to be an inflection point (−2u/−y2 5 0) somewhere 
in the boundary layer, as illustrated in Fig. 10–123c.
 The first derivative of u with respect to y at the wall is directly proportional 
to tw, the wall shear stress [tw 5 m (−u/−y)y50]. Comparison of (−u/−y)y50 in 
Fig. 10–123a through c reveals that tw is largest for favorable pressure gradients 
and smallest for adverse pressure gradients. Boundary layer thickness increases 
as the pressure gradient changes sign, as also illustrated in Fig. 10–123.
If the adverse pressure gradient is large enough, (−u/−y)y50 becomes zero 
(Fig. 10–123d); this location along a wall is the separation point, beyond 
which there is reverse flow and a separation bubble (Fig. 10–123e). Notice 
that beyond the separation point tw is negative due to the negative value of 
(−u/−y)y50. As mentioned previously, the boundary layer equations break 
down in regions of reverse flow. Thus, the boundary layer approximation 
may be appropriate up to the separation point, but not beyond.
 We use computational fluid dynamics (CFD) to illustrate flow separation 
for the case of flow over a bump along a wall. The flow is steady and two-
dimensional, and Fig. 10–124a shows outer flow streamlines generated by a 
solution of the Euler equation. Without the viscous terms there is no separation,
and the streamlines are symmetric fore and aft. As indicated on the figure, 
the front portion of the bump experiences an accelerating flow and hence a 

x

d(x) u

U(x)
y

tw
x

d(x) u

U(x)

y

tw

x

d(x) u

U(x)
y

tw
x

d(x) u

U(x)

y

tw = 0

x

d(x)
u

U(x)

y

tw

(a) (b)

(c)

(e)

(d)

Reverse flow

FIGURE 10–123
Comparison of boundary layer profile 
shape as a function of pressure gradient 
(dP/dx 5 2U dU/dx): (a) favorable, 
(b) zero, (c) mild adverse, (d) critical 
adverse (separation point), and (e) large 
adverse; inflection points are indicated 
by red circles, and wall shear stress 
tw 5 m (−u/−y)y50 is sketched for 
each case.
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Flow direction

(a)

(d)

Favorable

Bump surface

Adverse

Approximate location
of separation point

Reverse flow

Flow direction

(b)

Separation bubble

Reverse flow

Approximate location
of separation point

Bump surface

(c)

Approximate location
of separation point

Reverse flow

Dividing
streamline

FIGURE 10–124
CFD calculations of flow over a 

two-dimensional bump: (a) solution 
of the Euler equation with outer 

flow streamlines plotted (no 
flow separation), (b) laminar flow 

solution showing flow separation on 
the downstream side of the bump, 

(c) close-up view of streamlines near 
the separation point, and (d) close-up 

view of velocity vectors, same 
view as (c). The dashed red line is a 

dividing streamline – fluid below 
this streamline is “trapped” in the 

recirculating separation bubble.
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favorable pressure gradient. The rear portion experiences a decelerating flow 
and an adverse pressure gradient. When the full (laminar) Navier–Stokes 
equation is solved, the viscous terms lead to flow separation off the rear end 
of the bump, as seen in Fig. 10–124b. Keep in mind that this is a Navier–
Stokes solution, not a boundary layer solution; nevertheless it illustrates the 
process of flow separation in the boundary layer. The approximate location 
of the separation point is indicated in Fig. 10–124b, and the dashed red line 
is a type of dividing streamline. Fluid below this streamline is caught in the 
separation bubble, while fluid above this streamline continues downstream. A 
close-up view of streamlines is shown in Fig. 10–124c, and velocity vectors 
are plotted in Fig. 10–124d using the same close-up view. Reverse flow in the 
lower portion of the separation bubble is clearly visible. Also, there is a strong 
y-component of velocity beyond the separation point, and the outer flow is no 
longer nearly parallel to the wall. In fact, the separated outer flow is nothing 
like the original outer flow of Fig. 10–124a. This is typical and represents 
a serious deficiency in the boundary layer approach. Namely, the boundary 
layer equations may be able to predict the location of the separation point 
fairly well, but cannot predict anything beyond the separation point. In some 
cases the outer flow changes significantly upstream of the separation point as 
well, and the boundary layer approximation gives erroneous results.

The boundary layer approximation is only as good as the outer flow solution; 
if the outer flow is significantly altered by flow separation, the boundary layer 
approximation is erroneous.

 The boundary layers sketched in Fig. 10–123 and the flow separation 
velocity vectors plotted in Fig. 10–124 are for laminar flow. Turbulent 
boundary layers have qualitatively similar behavior, although as discussed 
previously, the mean velocity profile of a turbulent boundary layer is much 
fuller than a laminar boundary layer under similar conditions. Thus a stron-
ger adverse pressure gradient is required to separate a turbulent boundary 
layer. We make the following general statement:

Turbulent boundary layers are more resistant to flow separation than are 
laminar boundary layers exposed to the same adverse pressure gradient.

Experimental evidence for this statement is shown in Fig. 10–125, in which 
the outer flow is attempting a sharp turn through a 208 angle. The laminar 

FIGURE 10–125
Flow visualization comparison of 
laminar and turbulent boundary layers 
in an adverse pressure gradient; flow 
is from left to right. (a) The laminar 
boundary layer separates at the corner, 
but (b) the turbulent one does not. 
Photographs taken by M. R. Head 
in 1982 as visualized with titanium 
tetrachloride.
Head, M. R. 1982 in Flow Visualization II, 
W. Merzkirch, ed., pp. 399–403. Washington: 
Hemisphere.

(a)

(b)
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boundary layer (Fig. 10–125a) cannot negotiate the sharp turn, and separates 
at the corner. The turbulent boundary layer on the other hand (Fig. 10–125b) 
manages to remain attached around the sharp corner.
 As another example, flow over the same bump as that of Fig. 10–124 is 
recalculated, but with turbulence modeled in the simulation. Streamlines 
generated by the turbulent CFD calculation are shown in Fig. 10–126. 
Notice that the turbulent boundary layer remains attached (no flow separa-
tion), in contrast to the laminar boundary layer that separates off the rear 
portion of the bump. In the turbulent case, the outer flow Euler solution 
(Fig. 10–124a) is a reasonable approximation over the entire bump since 
there is no flow separation and since the boundary layer remains very thin.
 A similar situation occurs for flow over bluff objects like spheres. A 
smooth golf ball, for example, would maintain a laminar boundary layer on 
its surface, and the boundary layer would separate fairly easily, leading to 
large aerodynamic drag. Golf balls have dimples (a type of surface rough-
ness) in order to create an early transition to a turbulent boundary layer. 
Flow still separates from the golf ball surface, but much farther downstream 
in the boundary layer, resulting in significantly reduced aerodynamic drag. 
This is discussed in more detail in Chap. 11.

The Momentum Integral Technique 
for Boundary Layers
In many practical engineering applications, we do not need to know all the 
details inside the boundary layer; rather we seek reasonable estimates of 
gross features of the boundary layer such as boundary layer thickness and 
skin friction coefficient. The momentum integral technique utilizes a con-
trol volume approach to obtain such quantitative approximations of bound-
ary layer properties along surfaces with zero or nonzero pressure gradients. 
The momentum integral technique is straightforward, and in some applications 
does not require use of a computer. It is valid for both laminar and turbulent 
boundary layers.
 We begin with the control volume sketched in Fig. 10–127. The bottom of 
the control volume is the wall at y 5 0, and the top is at y 5 Y, high enough 
to enclose the entire height of the boundary layer. The control volume is an 
infinitesimally thin slice of width dx in the x-direction. In accordance with 

Outer flow

Bump surface

FIGURE 10–126
CFD calculation of turbulent flow over 
the same bump as that of Fig. 10–124. 

Compared to the laminar result of 
Fig. 10–124b, the turbulent boundary 

layer is more resistant to flow 
separation and does not separate in 

the adverse pressure gradient region 
in the rear portion of the bump.

tw

U(x)

d(x)

Y

u

d(x + dx)

y

CV

BL

x
dx

Pleft face

Pright face

x + dx

FIGURE 10–127
Control volume (dashed red line) 

used in derivation of the 
momentum integral equation.
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the boundary layer approximation, −P/−y 5 0, so we assume that pressure P 
acts along the entire left face of the control volume,

Pleft face 5 P

In the general case with nonzero pressure gradient, the pressure on the right 
face of the control volume differs from that on the left face. Using a first-
order truncated Taylor series approximation (Chap. 9), we set

Pright face 5 P 1
dP

dx
  dx

In a similar manner we write the incoming mass flow rate through the left 
face as

 m# left face 5 rw #
Y

0
 u dy (10–89)

and the outgoing mass through the right face as

 m# right face 5 rw c#Y

0
 u dy 1

d

dx
 a#Y

0
 u dyb  dx d  (10–90)

where w is the width of the control volume into the page in Fig. 10–127. If 
you prefer, you can set w to unit width; it will cancel out later anyway.
 Since Eq. 10–90 differs from Eq. 10–89, and since no flow crosses the 
bottom of the control volume (the wall), mass must flow into or out of the 
top face of the control volume. We illustrate this in Fig. 10–128 for the case 
of a growing boundary layer in which m

.
 right face , m

.
 left face, and m

.
 top is posi-

tive (mass flows out). Conservation of mass over the control volume yields

 m# top 5 2rw  

d

dx
  a#Y

0
 u dyb  dx (10–91)

 We now apply conservation of x-momentum for the chosen control vol-
ume. The x-momentum is brought in through the left face and is removed 
through the right and top faces of the control volume. The net momentum 
flux out of the control volume must be balanced by the force due to the 
shear stress acting on the control volume by the wall and the net pressure 
force on the control surface, as shown in Fig. 10–127. The steady control 
volume x-momentum equation is thus

aFx, body 1   aFx, surface

ignore gravity YwP 2 YwaP 1
dP

dx
  dxb 2 w dx tw

5 #
left face

 ruV
!
·n
!
 dA 1 #

right face
 ruV

!
·n
!
 dA 1 #

top
 ruV

!
·n
!
 dA 

 2rw#
Y

0
 u2 dy rw c#Y

0
 u2 dy 1

d

dx
 a#Y

0
 u2 dyb dx d  m

#
topU

where the momentum flux through the top surface of the control volume is 
taken as the mass flow rate through that surface times U. Some of the terms 
cancel, and we rewrite the equation as

 2Y  

dP

dx
2 tw 5 r  

d

dx
 a#Y

0
 u2 dyb 2 rU  

d

dx
 a#Y

0
 u dyb  (10–92)

mtop

BL

y

x
dx

x + dx

⋅

mright face
⋅mleft face

⋅

FIGURE 10–128
Mass flow balance on the control 
volume of Fig. 10–127.
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where we have used Eq. 10–89 for m# top, and w and dx cancel from each 
remaining term. For convenience we note that Y 5 eY

0
 dy. From the outer flow

(Euler equation), dP/dx 5 2rU dU/dx. After dividing each term in Eq. 10–90
by density r, we get

 U   
dU

dx
 #

Y

0
 dy 2

tw

r
5

d

dx
 a#Y

0
 u2 dyb 2 U 

d

dx
 a#Y

0
 u dyb  (10–93)

We simplify Eq. 10–93 by utilizing the product rule of differentiation in 
reverse (Fig. 10–129). After some rearrangement, Eq. 10–91 becomes

d

dx
 a#Y

0
 u(U 2 u) dyb 1

dU

dx
 #

Y

0
 (U 2 u) dy 5

tw

r

where we are able to put U inside the integrals since at any given x-location, 
U is constant with respect to y (U is a function of x only).
 We multiply and divide the first term by U2 and the second term by U to get

 
d

dx
 aU2 #

q

0
 
u

U
 a1 2

u

U
b dyb 1 U  

dU

dx
 #
q

0
 a1 2

u

U
b dy 5

tw

r
 (10–94)

where we have also substituted infinity in place of Y in the upper limit of 
each integral since u 5 U for all y greater than Y, and thus the value of the 
integral does not change by this substitution.
 We previously defined displacement thickness d* (Eq. 10–72) and 
momentum thickness u (Eq. 10–80) for a flat plate boundary layer. In the 
general case with nonzero pressure gradient, we define d* and u in the same 
way, except we use the local value of outer flow velocity, U 5 U(x), at 
a given x-location in place of the constant U since U now varies with x. 
Equation 10–94 is thus written in more compact form as

Kármán integral equation:   
d

dx
 (U2 u) 1 U   

dU

dx
   d* 5

tw

r
 (10–95)

Equation 10–95 is called the Kármán integral equation in honor of Theodor 
von Kármán (1881–1963), a student of Prandtl, who was the first to derive 
the equation in 1921.
 An alternate form of Eq. 10–95 is obtained by performing the product 
rule on the first term, dividing by U2, and rearranging,

Kármán integral equation, alternative form: 
Cf, x

2
5

du

dx
1 (2 1 H) 

u

U
 
dU

dx
 (10–96)

where we define shape factor H as

Shape factor: H 5
d*

u
 (10–97)

and local skin friction coefficient Cf, x as

Local skin friction coefficient: Cf, x 5
tw

1
2 rU2

 (10–98)

Note that both H and Cf, x are functions of x for the general case of a bound-
ary layer with a nonzero pressure gradient developing along a surface.

Product rule:Product rule:

dxdx

d
U U                                                                                                                 u dy    u dy    =

U

U

dxdx

dUdU

Product rule in reverse:Product rule in reverse:

dxdx

dUdU

#
Y

0

Y

0 #
Y

0

#
Y

0

#
Y

0
#

Y

0

a b
a b

a b
a b

dxdx

d #
    
u dy    u dy    +

dxdx

d
      u dy    u dy    =

dxdx

d
U   U   u dy    u dy    –       

 
u dyu dy

       u dyu dy

FIGURE 10–129
The product rule is utilized in reverse 

in the derivation of the momentum 
integral equation.
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 We emphasize again that the derivation of the Kármán integral equation and 
Eqs. 10–95 through 10–98 are valid for any steady incompressible boundary 
layer along a wall, regardless of whether the boundary layer is laminar, turbu-
lent, or somewhere in between. For the special case of the boundary layer on 
a flat plate, U(x) 5 U 5 constant, and Eq. 10–96 reduces to

Kármán integral equation, flat plat boundary layer:  Cf, x 5 2 
du

dx
 (10–99)

EXAMPLE 10–14     Flat Plate Boundary Layer Analysis 
Using the Kármán Integral Equation

Suppose we know only two things about the turbulent boundary layer over a 

flat plate, namely, the local skin friction coefficient (Fig. 10–130),

 Cf, x >
0.027

(Rex)
1/7 (1)

and the one-seventh-power law approximation for the boundary layer profile 

shape,

 
u

U
> ay

d
b1/7

  for y # d  
u

U
> 1 for y . d (2)

Using the definitions of displacement thickness and momentum thickness 

and employing the Kármán integral equation, estimate how d, d*, and u vary 

with x.

SOLUTION  We are to estimate d, d*, and u based on Eqs 1 and 2.

Assumptions  1 The flow is turbulent, but steady in the mean. 2 The plate is 

thin and is aligned parallel to the free stream, so that U(x) 5 V 5 constant.

Analysis  First we substitute Eq. 2 into Eq. 10–80 and integrate to find 

momentum thickness,

 u 5 #
q

0
 
u

U
a1 2

u

U
b dy 5 #

d

0
ay

d
b1/7a1 2 ay

d
b1/7b  

dy 5
7

72
 d (3)

Similarly, we find displacement thickness by integrating Eq. 10–72,

 d* 5 #
q

0
 a1 2

u

U
b dy 5 #

d

0
 a1 2 ay

d
b1/7b  

dy 5
1

8
 d (4)

The Kármán integral equation reduces to Eq. 10–97 for a flat plate boundary 

layer. We substitute Eq. 3 into Eq. 10–97 and rearrange to get

Cf, x 5 2 
du

dx
5

14

72
 
dd

dx

from which

 
dd

dx
5

72

14
 Cf, x 5

72

14
 0.027(Rex)

21/7 (5)

where we have substituted Eq. 1 for the local skin friction coefficient. 

Equation 5 can be integrated directly, yielding

Boundary layer thickness: 
d

x
@ 0.16

(Rex)
1/7 (6)

V

x

U(x) = V

d

y

u

Cf, x

d(x)

FIGURE 10–130
The turbulent boundary layer 
generated by flow over a flat plate 
for Example 10–14 (boundary layer 
thickness exaggerated).
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Finally, substitution of Eqs. 3 and 4 into Eq. 6 gives approximations for d* 

and u,

Displacement thickness: 
d*
x
@ 0.020

(Rex)
1/7 (7)

and

Momentum thickness: 
u

x
@ 0.016

(Rex)
1/7 (8)

Discussion  The results agree with the expressions given in column (a) of 

Table 10–4 to two significant digits. Indeed, many of the expressions in 

Table 10–4 were generated with the help of the Kármán integral equation.

 While fairly simple to use, the momentum integral technique suffers from 
a serious deficiency. Namely, we must know (or guess) the boundary layer 
profile shape in order to apply the Kármán integral equation (Fig. 10–131). 
For the case of boundary layers with pressure gradients, boundary layer 
shape changes with x (as illustrated in Fig. 10–123), further complicating 
the analysis. Fortunately, the shape of the velocity profile does not need to 
be known precisely, since integration is very forgiving. Several techniques 
have been developed that utilize the Kármán integral equation to predict 
gross features of the boundary layer. Some of these techniques, such as 
Thwaite’s method, do a very good job for laminar boundary layers. Unfortu-
nately, the techniques that have been proposed for turbulent boundary layers 
have not been as successful. Many of the techniques require the assistance 
of a computer and are beyond the scope of the present textbook.

EXAMPLE 10–15     Drag on the Wall of a Wind 
Tunnel Test Section

A boundary layer develops along the walls of a rectangular wind tunnel. The 

air is at 208C and atmospheric pressure. The boundary layer starts upstream 

of the contraction and grows into the test section (Fig. 10–132). By the time 

it reaches the test section, the boundary layer is fully turbulent. The boundary 

layer profile and its thickness are measured at both the beginning (x 5 x1) 

and the end (x 5 x2) of the bottom wall of the wind tunnel test section. The 

test section is 1.8 m long and 0.50 m wide (into the page in Fig. 10–132). 

The following measurements are made:

 d1 5 4.2  cm  d2 5 7.7  cm  V 5 10.0 m/s (1)

At both locations the boundary layer profile fits better to a one-eighth-power 

law approximation than to the standard one-seventh-power law approximation,

 
u

U
> ay

d
b1/8

 for y # d  
u

U
> 1 for y . d (2)

Estimate the total skin friction drag force FD acting on the bottom wall of the 

wind tunnel test section.

SOLUTION  We are to estimate the skin friction drag force on the bottom 

wall of the test section of the wind tunnel (between x 5 x1 and x 5 x2).

CAUTION
 

INTEGRATION
REQUIRED

FIGURE 10–131
Integration of a known (or assumed) 

velocity profile is required when using 
the Kármán integral equation.

d(x)

d1

d2BL

y

Contraction

Test section

Boundary layer

u FD

x1

x
x2

x1

V

x2

U(x) = V

Diffuser

(a)

(b)

FIGURE 10–132
Boundary layer developing along the 
wind tunnel walls of Example 10–15: 

(a) overall view, and (b) close-up view 
of the bottom wall of the test section 

(boundary layer thickness 
exaggerated).
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Properties  For air at 208C, n 5 1.516 3 1025 m2/s and r 5 1.204 kg/m3.

Assumptions  1 The flow is steady in the mean. 2 The wind tunnel walls 

diverge slightly to ensure that U(x) 5 V 5 constant.

Analysis  First we substitute Eq. 2 into Eq. 10–80 and integrate to find 

momentum thickness u,

 u 5 #
q

0
 
u

U
 a1 2

u

U
b dy 5 #

d

0
 ay

d
b1/8 c1 2 ay

d
b1/8 d  dy 5

4

45
 d (3)

The Kármán integral equation reduces to Eq. 10–97 for a flat plate boundary 

layer. In terms of the shear stress along the wall, Eq. 10–97 is

 tw 5
1

2
 rU2Cf, x 5 rU2 

du

dx
 (4)

We integrate Eq. 4 from x 5 x1 to x 5 x2 to find the skin friction drag force,

 FD 5 w #
x2

x1

 tw dx 5 wrU2 #
x2

x1

 
du

dx
 dx 5 wrU2(u2 2 u1) (5)

where w is the width of the wall into the page in Fig. 10–132. After substi-

tution of Eq. 3 into Eq. 5 we obtain

 FD 5 wrU2 
4

45
 (d2 2 d1) (6)

Finally, substitution of the given numerical values into Eq. 6 yields the drag 

force,

FD 5 (0.50 m)(1.204 kg/m3)(10.0 m/s)2 
4

45
 (0.077 2 0.042) m a s2·N

kg·m
b 5 0.19 N

Discussion  This is a very small force since the newton is itself a small unit 

of force. The Kármán integral equation would be more difficult to apply if 

the outer flow velocity U (x) were not constant.

 We end this chapter with some illuminating results from CFD calculations 
of flow over a two-dimensional, infinitesimally thin flat plate aligned with 
the free stream (Fig. 10–133). In all cases the plate is 1 m long (L 5 1 m),
and the fluid is air with constant properties r 5 1.23 kg/m3 and m 5 1.79 3 
1025 kg/m·s. We vary free-stream velocity V so that the Reynolds number 
at the end of the plate (ReL 5 rVL/m) ranges from 1021 (creeping flow) 
to 105 (laminar but ready to start transitioning to turbulent). All cases are 
incompressible, steady, laminar Navier–Stokes solutions generated by a 
commercial CFD code. In Fig. 10–134, we plot velocity vectors for four 
Reynolds number cases at three x-locations: x 5 0 (beginning of the plate), 
x 5 0.5 m (middle of the plate), and x 5 1 m (end of the plate). We also 
plot streamlines in the vicinity of the plate for each case.
 In Fig. 10–134a, ReL 5 0.1, and the creeping flow approximation is rea-
sonable. The flow field is nearly symmetric fore and aft—typical of creep-
ing flow over symmetric bodies. Notice how the flow diverges around the 
plate as if it were of finite thickness. This is due to the large displacement 
effect caused by viscosity and the no-slip condition. In essence, the flow 

Flat plate
Fluid properties

V

y

xL

r, μ

FIGURE 10–133
Flow over an infinitesimally thin flat 
plate of length L. CFD calculations 
are reported for ReL ranging from 
1021 to 105.
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Plate

(a) ReL = 1 3 10–1

(b) ReL = 1 3 101

(c) ReL = 1 3 103

(d) ReL = 1 3 105

y

xL

FIGURE 10–134
CFD calculations of steady, 

incompressible, two-dimensional 
laminar flow from left to right over a

1-m-long flat plate of infinitesimal 
thickness; velocity vectors are shown 

in the left column at three locations 
along the plate, and streamlines near 

the plate are shown in the right 
column. ReL 5 (a) 0.1, (b) 10, 

(c) 1000, and (d) 100,000; only the 
upper half of the flow field is solved—

the lower half is a mirror image. 
The computational domain extends 

hundreds of plate lengths beyond what 
is shown here in order to approximate 

“infinite” far-field conditions at the 
edges of the computational domain.
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velocity near the plate is so small that the rest of the flow “sees” it as a 
blockage around which the flow must be diverted. The y-component of 
velocity is significant near both the front and rear of the plate. Finally, the 
influence of the plate extends tens of plate lengths in all directions into the 
rest of the flow, which is also typical of creeping flows.
 The Reynolds number is increased by two orders of magnitude to ReL 5 10 
in the results shown in Fig. 10–134b. This Reynolds number is too high to 
be considered creeping flow, but too low for the boundary layer approxima-
tion to be appropriate. We notice some of the same features as those of the 
lower Reynolds number case, such as a large displacement of the stream-
lines and a significant y-component of velocity near the front and rear of 
the plate. The displacement effect is not as strong, however, and the flow 
is no longer symmetric fore and aft. We are seeing the effects of inertia as 
fluid leaves the end of the flat plate; inertia sweeps fluid into the developing 
wake behind the plate. The influence of the plate on the rest of the flow is 
still large, but much less so than for the flow at ReL 5 0.1.
 In Fig. 10–134c are shown results of the CFD calculations at ReL 5 1000,
another increase of two orders of magnitude. At this Reynolds number, 
inertial effects are starting to dominate over viscous effects throughout the 
majority of the flow field, and we can start calling this a boundary layer 
(albeit a fairly thick one). In Fig. 10–135 we calculate the boundary layer 
thickness using the laminar expression given in Table 10–4. The pre-
dicted value of d(L) is about 15 percent of the plate length at ReL 5 1000, 
which is in reasonable agreement with the velocity vector plot at x 5 L 
in Fig. 10–134c. Compared to the lower Reynolds number cases of 
Fig. 10–134a and b, the displacement effect is greatly reduced and any trace 
of fore–aft symmetry is gone.
 Finally, the Reynolds number is once again increased by two orders of 
magnitude to ReL 5 100,000 in the results shown in Fig. 10–134d. There 
is no question about the appropriateness of the boundary layer approxima-
tion at this large Reynolds number. The CFD results show an extremely thin 
boundary layer with negligible effect on the outer flow. The streamlines of 
Fig. 10–134d are nearly parallel everywhere, and you must look closely 
to see the thin wake region behind the plate. The streamlines in the wake 
are slightly farther apart there than in the rest of the flow because in the 
wake region, the velocity is significantly less than the free-stream velocity.
The y-component of velocity is negligible, as is expected in a very thin 
boundary layer, since the displacement thickness is so small.
 Profiles of the x-component of velocity are plotted in Fig. 10–136 for 
each of the four Reynolds numbers of Fig. 10–134, plus some additional 
cases at other values of ReL. We use a log scale for the vertical axis 
(y in units of m), since y spans several orders of magnitude. We nondi-
mensionalize the abscissa as u/U so that the velocity profile shapes can 
be compared. All the profiles have a somewhat similar shape when plotted 
in this fashion. However, we notice that some of the profiles have a sig-
nificant velocity overshoot (u . U) near the outer portion of the velocity 
profile. This is a direct result of the displacement effect and the effect 
of inertia as discussed before. At very low values of ReL (ReL # 100), 
where the displacement effect is most prominent, the velocity overshoot 
is almost nonexistent. This is explained by the lack of inertia at these low 

d(L) =  
4.91(1 m)

  = 0.155 m
1000

xL

V
U(x) = V

FIGURE 10–135
Calculation of boundary layer 
thickness for a laminar boundary 
layer on a flat plate at ReL 5 1000. 
This result is compared to the CFD-
generated velocity profile at x 5 L 
shown in Fig. 10–134c at this same 
Reynolds number.
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Reynolds numbers. Without inertia, there is no mechanism to accelerate 
the flow around the plate; rather, viscosity retards the flow everywhere 
in the vicinity of the plate, and the influence of the plate extends tens of 
plate lengths beyond the plate in all directions. For example, at ReL 5 1021, u 
does not reach 99 percent of U until y ≅ 320 m—more than 300 plate 
lengths above the plate! At moderate values of the Reynolds number (ReL 
between about 101 and 104), the displacement effect is significant, and 
inertial terms are no longer negligible. Hence, fluid is able to accelerate 
around the plate and the velocity overshoot is significant. For example, 
the maximum velocity overshoot is about 5 percent at ReL 5 102. At very 
high values of the Reynolds number (ReL $ 105), inertial terms domi-
nate viscous terms, and the boundary layer is so thin that the displacement 
effect is almost negligible. The small displacement effect leads to very 
small velocity overshoot. For example, at ReL 5 106 the maximum velocity 
overshoot is only about 0.4 percent. Beyond ReL 5 106, laminar flow is 
no longer physically realistic, and the CFD calculations would need to 
include the effects of turbulence.

1000

100

10

1y, m

0.1

0.01

0.001

0 0.2 0.4 0.6
u/U

0.8 1 1.2

ReL = 10–1

100

101

102

106

103

105

104

FIGURE 10–136
CFD calculations of steady, 

incompressible, two-dimensional 
laminar flow over a flat plate of 

infinitesimal thickness: nondimensional 
x velocity component u/U at the 

end of the plate (x 5 L) is plotted
 against vertical distance from the 

plate, y. Prominent velocity overshoot 
is observed at moderate Reynolds 

numbers, but disappears at very low 
and very high values of ReL.

SUMMARY

Since the Navier–Stokes equation is difficult to solve, 
approx imations are often used for practical engineering anal-
yses. As with any approximation, however, we must be sure 
that the approximation is appropriate in the region of flow 
being analyzed. In this chapter we examine several approxi-
mations and show examples of flow situations in which they 
are useful. First we nondimensionalize the Navier–Stokes 
equation, yielding several nondimensional parameters: the 
Strouhal number (St), Froude number (Fr), Euler number 
(Eu), and Reynolds number (Re). Furthermore, for flows 

without free-surface effects, the hydrostatic pressure com-
ponent due to gravity can be incorporated into a modified 
pressure P9, effectively eliminating the gravity term (and 
the Froude number) from the Navier–Stokes equation. The 
nondimensionalized Navier–Stokes equation with modified 
pressure is

[St] 
0V
!
*

0t*
1 (V

!
* · =

!
*)V
!
* 5 2[Eu]=

!
*P9* 1 c 1

Re
d=!*2V

!
*
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When the nondimensional variables (indicated by *) are of 
order of magnitude unity, the relative importance of each 
term in the equation depends on the relative magnitude of 
the nondimensional parameters.
 For regions of flow in which the Reynolds number is very 
small, the last term in the equation dominates the terms on the 
left side, and hence pressure forces must balance viscous forces. 
If we ignore inertial forces completely, we make the creeping 
flow approximation, and the Navier–Stokes equation reduces to

 =
!
P9 > m=2V

!

Creeping flow is foreign to our everyday observations since 
our bodies, our automobiles, etc., move about at relatively 
high Reynolds numbers. The lack of inertia in the creeping 
flow approximation leads to some very interesting peculiari-
ties, as discussed in this chapter.
 We define inviscid regions of flow as regions where the 
viscous terms are negligible compared to the inertial terms 
(opposite of creeping flow). In such regions of flow the 
Navier–Stokes equation reduces to the Euler equation,

ra 0V!
0t

1 (V
!
 · =
!
)V
!b 5 2=

!
P9

In inviscid regions of flow, the Euler equation can be manip-
ulated to derive the Bernoulli equation, valid along stream-
lines of the flow.
 Regions of flow in which individual fluid particles do 
not rotate are called irrotational regions of flow. In such 
regions, the vorticity of fluid particles is negligibly small, 
and the viscous term in the Navier–Stokes equation can be 
neglected, leaving us again with the Euler equation. In addi-
tion, the Bernoulli equation becomes less restrictive, since 
the Bernoulli constant is the same everywhere, not just along 
streamlines. A nice feature of irrotational flow is that ele-
mentary flow solutions (building block flows) can be added 
together to generate more complicated flow solutions, a pro-
cess known as superposition.
 Since the Euler equation cannot support the no-slip bound-
ary condition at solid walls, the boundary layer approximation

is useful as a bridge between an Euler equation approximation 
and a full Navier–Stokes solution. We assume that an invis-
cid and/or irrotational outer flow exists everywhere except 
in very thin regions close to solid walls or within wakes, 
jets, and mixing layers. The boundary layer approximation 
is appropriate for high Reynolds number flows. However, we 
recognize that no matter how large the Reynolds number, 
viscous terms in the Navier–Stokes equation are still impor-
tant within the thin boundary layer, where the flow is rota-
tional and viscous. The boundary layer equation for steady, 
incompressible, two-dimensional, laminar flow are

0u
0x

1
0v
0y

5 0  and  u  

0u
0x

1 v  
0u
0y

5 U  

dU

dx
1 n  

02u

0y2

We define several measures of boundary layer thickness, 
including the 99 percent thickness d, the displacement thick-
ness d*, and the momentum thickness u. These quantities can be 
calculated exactly for a laminar boundary layer growing along 
a flat plate, under conditions of zero pressure gradient. As the 
Reynolds number increases down the plate, the boundary layer 
transitions to turbulence; semi-empirical expressions are given 
in this chapter for a turbulent flat plate boundary layer.
 The Kármán integral equation is valid for both laminar 
and turbulent boundary layers exposed to arbitrary nonzero 
pressure gradients,

d

dx
 (U2u) 1 U  

dU

dx
  d* 5

tw

r

This equation is useful for “back of the envelope” estima-
tions of gross boundary layer properties such as boundary 
layer thickness and skin friction.
 The approximations presented in this chapter are applied to 
many practical problems in engineering. Potential flow analy-
sis is useful for calculation of airfoil lift (Chap. 11). We utilize 
the inviscid approximation in the analysis of compressible flow 
(Chap. 12), open-channel flow (Chap. 13), and turbo machinery 
(Chap. 14). In cases where these approximations are not justi-
fied, or where more precise calculations are required, the con-
tinuity and Navier–Stokes equations are solved numerically 
using CFD (Chap. 15).
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Droplet formation is a complex interaction of inertial, surface tension, and 
viscous forces. The actual break-off of a drop from a stream of liquid, 
although studied for almost 200 years, has still not been fully explained. 
Droplet-on Demand (DoD) is used for such diverse applications as ink-
jet printing and DNA analysis in microscale “lab-on-a-chip” devices. DoD 
requires very uniform droplet sizes, controlled velocities and trajectories, 
and a high rate of sequential droplet formation. For example, in ink-jet print-
ing, the typical size of a droplet is 25 to 50 microns (barely visible with the 
naked eye), the velocities are on the order of 10 m/s, and the droplet forma-
tion rate can be higher than 20,000 per second.
 The most common method for forming droplets involves accelerating a 
stream of liquid, and then allowing surface tension to induce an instability in 
the stream, which breaks up into individual droplets. In 1879, Lord Rayleigh 
developed a classical theory for the instability associated with this break-up; 
his theory is still widely used today to define droplet break-up conditions. A 
small perturbation to the surface of the liquid stream sets up an undulating 
pattern along the length of the stream, which causes the stream to break up 
into droplets whose size is determined by the radius of the stream and the sur-
face tension of the liquid. However, most DoD systems rely on acceleration 
of the stream with time-dependent forcing functions in the form of a pressure 
wave exerted at the inlet of a nozzle. If the pressure wave is very rapid, vis-
cous effects at the walls are negligible, and the potential flow approximation 
can be used to predict the flow.
 Two important nondimensional parameters in DoD are the Ohnesorge number 
Oh 5 m/(rssa)1/2 and the Weber number We 5 rVa/ss, where a is the radius 
of the nozzle, ss is the surface tension, and V is the velocity. The Ohnesorge 
number determines when viscous forces are important relative to surface ten-
sion forces. In addition, the nondimensional pressure required to form an 
unstable fluid stream, Pc 5 Pa/ss, is called the capillary pressure, and the 
associated capillary time scale for droplets to form is tc 5 (ra/ss)

1/2. When Oh 
is small, the potential flow approximation is applicable, and the surface shape 
is controlled by a balance between surface tension and fluid acceleration.
 Example surfaces of flow emerging from a nozzle are shown in Fig. 10–137a 
and b. Surface shape depends on the pressure amplitude and the time scale of 
the perturbation, and is predicted well using the potential flow approximation. 
When the pressure is large enough and the pulse is fast enough, the surface 
ripples, and the center forms a jet stream that eventually breaks off into a drop-
let (Fig. 10–137c). An area of active research is how to control the size and 
velocity of these droplets, while producing thousands per second.

References
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APPLICATION SPOTLIGHT ■ Droplet Formation

FIGURE 10–137
Droplet formation starts when a 

surface becomes unstable to a pressure 
pulse. Shown here are water surfaces 

in (a) an 800-micron orifice disturbed 
by a 5000-Hz pulse and (b) a 
1200-micron orifice disturbed 

by an 8100-Hz pulse. Reflection 
from the surface causes the image 
to appear as if the surface wave is 

both up and down. The wave 
is axisymmetric, at least for 

small-amplitude pressure pulses. 
The higher the frequency, the shorter 

the wavelength and the smaller the 
central node. The size of the central 

node defines the diameter of the liquid 
jet, which then breaks up into a 

droplet. (c) Droplet formation from 
a high-frequency pressure pulse 

ejected from a 50-micron-diameter 
orifice. The center liquid stream 

produces the droplet and is only about 
25 percent of the orifice diameter. 
Ideally, a single droplet forms, but 
unwanted, “satellite” droplets are 

often generated along with the 
main droplet.

Courtesy James A. Liburdy and Brian Daniels, 
Oregon State University. Used by permission.

(a)

(b)

(c)
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PROBLEMS*

Introductory Problems and Modified Pressure

10–1C  Discuss how nondimensionalization of the Navier– 
Stokes equation is helpful in obtaining approximate solutions. 
Give an example.

10–2C  A box fan sits on the floor of a very large room 
(Fig. P10–2C). Label regions of the flow field that may be 
approximated as static. Label regions in which the irrota-
tional approximation is likely to be appropriate. Label regions 
where the boundary layer approximation may be appropriate. 
Finally, label regions in which the full Navier– Stokes equa-
tion most likely needs to be solved (i.e., regions where no 
approximation is appropriate).

10–7C  What is the most important criterion for use of the 
modified pressure P9 rather than the thermodynamic pressure 
P in a solution of the Navier–Stokes equation?

10–8C  What is the most significant danger associated with 
an approximate solution of the Navier–Stokes equation? 
Give an example that is different than the ones given in this 
chapter.

10–9  Write out the three components of the Navier–Stokes 
equation in Cartesian coordinates in terms of modified pres-
sure. Insert the definition of modified pressure and show that 
the x-, y-, and z-components are identical to those in terms 
of regular pressure. What is the advantage of using modified 
pressure?

10–10  Consider steady, incompressible, laminar, fully 
developed, planar Poiseuille flow between two parallel, 
horizontal plates (velocity and pressure profiles are shown 
in Fig. P10–10). At some horizontal location x 5 x1, the 
pressure varies linearly with vertical distance z, as sketched. 
Choose an appropriate datum plane (z 5 0), sketch the pro-
file of modi fied pressure all along the vertical slice, and 
shade in the region representing the hydrostatic pressure 
component. Discuss.

x

x1

 u 

P

g

FIGURE P10–10

10–11  Consider the planar Poiseuille flow of Prob. 10–10. 
Discuss how modified pressure varies with downstream dis-
tance x. In other words, does modified pressure increase, stay 
the same, or decrease with x? If P9 increases or decreases 
with x, how does it do so (e.g., linearly, quadratically, expo-
nentially)? Use a sketch to illustrate your answer.

10–12  In Chap. 9 (Example 9–15), we generated an 
“exact” solution of the Navier–Stokes equation for fully 
developed Couette flow between two horizontal flat plates 
(Fig. P10–12), with gravity acting in the negative z-direction
(into the page of Fig. P10–12). We used the actual pressure 
in that example. Repeat the solution for the x-component
of velocity u and pressure P, but use the modified pressure 
in your  equations. The pressure is P0 at z 5 0. Show 
that you get the same result as previously. Discuss.
Answers: u 5 Vy/h, P 5 P0 2 rgz

Box fan

FIGURE P10–2C

10–3C  Explain the difference between an “exact” solution 
of the Navier–Stokes equation (as discussed in Chap. 9) and 
an approximate solution (as discussed in this chapter).

10–4C  Which nondimensional parameter in the nondimen-
sionalized Navier–Stokes equation is eliminated by use of 
modified pressure instead of actual pressure? Explain.

10–5C  What criteria can you use to determine whether an 
approximation of the Navier–Stokes equation is appropriate 
or not? Explain.

10–6C  In the nondimensionalized incompressible Navier– 
Stokes equation (Eq. 10–6), there are four nondimensional 
parameters. Name each one, explain its physical significance 
(e.g., the ratio of pressure forces to viscous forces), and dis-
cuss what it means physically when the parameter is very 
small or very large.

* Problems designated by a “C” are concept questions, and 

students are encouraged to answer them all. Problems designated 

by an “E” are in English units, and the SI users can ignore them. 

Problems with the  icon are solved using EES, and complete 

solutions together with parametric studies are included on the 

text website. Problems with the  icon are comprehensive in 

nature and are intended to be solved with an equation solver 

such as EES.
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FIGURE P10–14
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P at a 
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10–15  In Example 9–18 we solved the Navier–Stokes equa-
tion for steady, fully developed, laminar flow in a round pipe 
(Poiseuille flow), neglecting gravity. Now, add back the effect 
of gravity by re-solving that same problem, but use modified 
pressure P9 instead of actual pressure P. Specifically, calcu-
late the actual pressure field and the velocity field. Assume 
the pipe is horizontal, and let the datum plane z 5 0 be at 
some arbitrary distance under the pipe. Is the actual pressure 
at the top of the pipe greater than, equal to, or less than that 
at the bottom of the pipe? Discuss.

Creeping Flow

10–16C  Discuss why fluid density has negligible influence 
on the aerodynamic drag on a particle moving in the creeping 
flow regime.

10–17C  Write a one-word description of each of the five 
terms in the incompressible Navier–Stokes equation,

r  

0V
!

0t 1 r(V
!
 ·=
!
)V
!
5 2=

!
P 1 rg

!
1 m=2V

!

 I II III IV V

When the creeping flow approximation is made, only two of 
the five terms remain. Which two terms remain, and why is 
this significant?

10–18  A person drops 3 aluminum balls of diameters 2 mm, 
4 mm, and 10 mm into a tank filled with glycerin at 22°C 
(m 5 1 kg·m/s), and measured the terminal velocities to be 
3.2 mm/s, 12.8 mm/s, and 60.4 mm/s, respectively. The 
measurements are to be compared with theory using Stokes 
law for drag force acting on a spherical object of diameter D 
expressed as FD 5 3pm DV for Re << 1. Compare experi-
mental velocities values with those predicted theoretically.

10–19  Repeat Prob. 10–18 by considering the general form 
of the Stokes law expressed as FD 5 3pm DV 1 (9p/16)rV2D2.

10–20  The viscosity of clover honey is listed as a function 
of temperature in Table P10–20. The specific gravity of the 
honey is about 1.42 and is not a strong function of tempera-
ture. The honey is squeezed through a small hole of diameter 
D 5 6.0 mm in the lid of an inverted honey jar. The room 
and the honey are at T 5 208C. Estimate the maximum speed 
of the honey through the hole such that the flow can be 

h
y, v

x, u

V

Fluid: r, m

Moving plate

Fixed plate

FIGURE P10–12

10–13  Consider flow of water through a small hole in the 
bottom of a large cylindrical tank (Fig. P10–13). The flow 
is laminar everywhere. Jet diameter d is much smaller than 
tank diameter D, but D is of the same order of magnitude as 
tank height H. Carrie reasons that she can use the fluid statics 
approximation everywhere in the tank except near the hole, 
but wants to validate this approximation mathematically. She 
lets the characteristic velocity scale in the tank be V 5 Vtank. 
The characteristic length scale is tank height H, the charac-
teristic time is the time required to drain the tank tdrain, and 
the reference pressure difference is rgH (pressure difference 
from the water surface to the bottom of the tank, assuming 
fluid statics). Substitute all these scales into the nondimen-
sionalized incompressible Navier–Stokes equation (Eq. 10–6) 
and verify by order-of-magnitude analysis that for d ,, D, 
only the pressure and gravity terms remain. In particular, 
compare the order of magnitude of each term and each of the 
four nondimensional parameters St, Eu, Fr, and Re. (Hint: 
Vjet , !gH.) Under what criteria is Carrie’s approximation 
appropriate?

FIGURE P10–13

D

d

H
Vtank

Vjet

r, m g
→

10–14  A flow field is simulated by a computational fluid 
dynamics code that uses the modified pressure in its calcu-
lations. A profile of modified pressure along a vertical slice 
through the flow is sketched in Fig. P10–14. The actual pres-
sure at a point midway through the slice is known, as indi-
cated on Fig. P10–14. Sketch the profile of actual pressure all 
along the vertical slice. Discuss.
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approximated as creeping flow. (Assume that Re must be less 
than 0.1 for the creeping flow approximation to be appropriate.) 
Repeat your calculation if the temperature is 508C. Discuss.  
Answers: 0.22 m/s, 0.012 m/s

10–21  A good swimmer can swim 100 m in about a min-
ute. If a swimmer’s body is 1.85 m long, how many body 
lengths does he swim per second? Repeat the calculation for 
the sperm of Fig. 10–10. In other words, how many body 
lengths does the sperm swim per second? Use the sperm’s 
whole body length, not just that of his head, for the calcula-
tion. Compare the two results and discuss.

10–22  A drop of water in a rain cloud has diameter D 5 
42.5  mm (Fig. P10–22). The air temperature is 258C, and 
its pressure is standard atmospheric pressure. How fast does 
the air have to move vertically so that the drop will remain 
suspended in the air?  Answer: 0.0531 m/s

V

D r, m

FIGURE P10–22

10–23  A slipper-pad bearing (Fig. P10–23) is often encoun-
tered in lubrication problems. Oil flows between two blocks; 
the upper one is stationary, and the lower one is moving in this 
case. The drawing is not to scale; in actuality, h ,, L. The 
thin gap between the blocks converges with increasing x. 
Specifically, gap height h decreases linearly from h0 at x 5 0
to hL at x 5 L. Typically, the gap height length scale h0 is 
much smaller than the axial length scale L. This problem is 
more complicated than simple Couette flow between parallel 
plates because of the changing gap height. In particular, axial 
velocity component u is a function of both x and y, and pres-
sure P varies nonlinearly from P 5 P0 at x 5 0 to P 5 PL at 
x 5 L. (−P/−x is not constant). Gravity forces are negligible 

in this flow field, which we approximate as two-dimensional, 
steady, and laminar. In fact, since h is so small and oil is so vis-
cous, the creeping flow approximations are used in the analy-
sis of such lubrication problems. Let the characteristic length 
scale associated with x be L, and let that associated with y be h0 
(x , L and y , h0). Let u , V. Assuming creeping flow, gener-
ate a characteristic scale for pressure difference DP 5 P 2 P0
in terms of L, h0, m, and V.  Answer: mVL /h0

2

y
x

L

h0
h(x)

u(x, y)
m hL

V

FIGURE P10–23

10–24  Consider the slipper-pad bearing of Prob. 10–23. 
(a) Generate a characteristic scale for v, the y-component of 
velocity. (b) Perform an order-of-magnitude analysis to com-
pare the inertial terms to the pressure and viscous terms in 
the x-momentum equation. Show that when the gap is small 
(h0 ,, L) and the Reynolds number is small (Re 5 rVh0/m 
,, 1), the creeping flow approximation is appropriate. (c) 
Show that when h0 ,, L, the creeping flow equations may 
still be appropriate even if the Reynolds number (Re 5 rVh0/m) 
is not less than 1. Explain.  Answer: (a) Vh0/L

10–25  Consider again the slipper-pad bearing of Prob. 10–23. 
Perform an order-of-magnitude analysis on the y-momentum 
equation, and write the final form of the y-momentum equa-
tion. (Hint: You will need the results of Probs. 10–23 and 
10–24.) What can you say about pressure gradient −P/−y?

10–26  Consider again the slipper-pad bearing of Prob. 10–23. 
(a) List appropriate boundary conditions on u. (b) Solve the 
creeping flow approximation of the x-momentum equation to 
obtain an expression for u as a function of y (and indirectly as 
a function of x through h and dP/dx, which are functions of x). 
You may assume that P is not a function of y. Your final expres-
sion should be written as u(x, y) 5 f (y, h, dP/dx, V, and m).
Name the two distinct components of the velocity profile 
in your result. (c) Nondimensionalize your expression for u 
using these appropriate scales: x* 5 x/L, y* 5 y/h0, h* 5
h/h0, u* 5 u/V, and P* 5 (P 2 P0)h0

2/mVL.

10–27  Consider the slipper-pad bearing of Fig. P10–27. The 
drawing is not to scale; in actuality, h ,, L. This case differs 
from that of Prob. 10–23 in that h(x) is not linear; rather h is 
some known, arbitrary function of x. Write an expression for 
axial velocity component u as a function of y, h, dP/dx, V, 
and m. Discuss any differences between this result and that 
of Prob. 10–26.

TABLE P10–20

Viscosity of clover honey at 16 percent moisture content

 T, 8C m, poise*

 14 600

 20 190

 30  65

 40  20

 50  10

 70   3

* Poise 5 g/cm·s.

Data from Airborne Honey, Ltd., www.airborne.co.nz.
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L

h0

h(x)u(x, y) m hL

V

FIGURE P10–27

10–28  For the slipper-pad bearing of Prob. 10–23, use the 
continuity equation, appropriate boundary conditions, and the 
one-dimensional Leibniz theorem (see Chap. 4) to show that 
d

dx
 #

h

0
 u dy 5 0.

10–29  Combine the results of Probs. 10–26 and 10–28 to 
show that for a two-dimensional slipper-pad bearing, pressure

gradient dP/dx is related to gap height h by 
d

dx
 ah3

  
dP

dx
b 5

 6mU  
dh

dx
. This is the steady, two-dimensional form of the

more general Reynolds equation for lubrication (Panton, 
2005).

10–30  Consider flow through a two-dimensional slipper-
pad bearing with linearly decreasing gap height from h0 to hL
(Fig. P10–23), namely, h 5 h0 1 ax, where a is the nondimen-
sional convergence of the gap, a 5 (hL 2 h0)/L. We note that 
tan a ≅ a for very small values of a. Thus, a is approximately 
the angle of convergence of the upper plate in Fig. P10–23 
(a is negative for this case). Assume that the oil is exposed to 
atmospheric pressure at both ends of the slipper-pad, so that 
P 5 P0 5 Patm at x 5 0 and P 5 PL 5 Patm at x 5 L. Integrate 
the Reynolds equation (Prob. 10–29) for this slipper-pad bear-
ing to generate an expression for P as a function of x.

10–31E  A slipper-pad bearing with linearly decreasing 
gap height (Fig. P10–23) is being designed 

for an amusement park ride. Its dimensions are h0 5 1/1000 
in (2.54 3 1025 m), hL 5 1/2000 in (1.27 3 1025 m), and 
L 5 1.0 in (0.0254 m). The lower plate moves at speed 
V 5 10.0 ft/s (3.048 m/s) relative to the upper plate. The oil is 
engine oil at 408C. Both ends of the slipper-pad are exposed 
to atmospheric pressure, as in Prob. 10–30. (a) Calculate 
the convergence a, and verify that tan a ≅ a for this case. 
(b) Calculate the gage pressure halfway along the slipper-pad 
(at x 5 0.5 in). Comment on the magnitude of the gage pres-
sure. (c)  Plot P* as a function of x*, where x* 5 x/L and 
P* 5 (P 2 Patm)h0

2/mVL. (d) Approximately how many pounds 
(lbf) of weight (load) can this slipper-pad bearing support if it 
is b 5 6.0 in deep (into the page of Fig. P10–23)?

10–32  Discuss what happens when the oil temperature 
increases significantly as the slipper-pad bearing of Prob. 10–31E 

is subjected to constant use at the amusement park. In particular, 
would the load-carrying capacity increase or decrease? Why?

10–33  Is the slipper-pad flow of Prob. 10–31E in the creep-
ing flow regime? Discuss. Are the results reasonable?

10–34  We saw in Prob. 10–31E that a slipper-pad bear-
ing can support a large load. If the load were to 

increase, the gap height would decrease, thereby increasing the 
pressure in the gap. In this sense, the slipper-pad bearing is 
“self-adjusting” to varying loads. If the load increases by a fac-
tor of 2, calculate how much the gap height decreases. Specifi-
cally, calculate the new value of h0 and the percentage change. 
Assume that the slope of the upper plate and all other parame-
ters and dimensions stay the same as those in Prob. 10–31E.

10–35  Estimate the speed at which you would need to swim 
in room temperature water to be in the creeping flow regime. 
(An order-of-magnitude estimate will suffice.) Discuss.

10–36  For each case, calculate an appropriate Reynolds 
number and indicate whether the flow can be approximated 
by the creeping flow equations. (a) A microorganism of 
diameter 5.0 mm swims in room temperature water at a speed 
of 0.25 mm/s. (b) Engine oil at 1408C flows in the small gap 
of a lubricated automobile bearing. The gap is 0.0012 mm 
thick, and the characteristic velocity is 15 m/s. (c) A fog 
droplet of diameter 10 mm falls through 308C air at a speed 
of 2.5 mm/s.

10–37  Estimate the speed and Reynolds number of the 
sperm shown in Fig. 10–10. Is this microorganism swimming 
under creeping flow conditions? Assume it is swimming in 
room-temperature water.

Inviscid Flow

10–38C  What is the main difference between the steady, 
incompressible Bernoulli equation for irrotational regions of 
flow, and the steady incompressible Bernoulli equation for 
rotational but inviscid regions of flow?

10–39C  In what way is the Euler equation an approxima-
tion of the Navier–Stokes equation? Where in a flow field is 
the Euler equation an appropriate approximation?

10–40  In a certain region of steady, two-dimensional, incom-
pressible flow, the velocity field is given by V

!
 5 (u, v) 5

(ax 1 b) i  

!
 1 (2ay 1 cx)  j  

!
. Show that this region of flow can 

be considered inviscid.

10–41  In the derivation of the Bernoulli equation for 
regions of inviscid flow, we rewrite the steady, incompress-
ible Euler equation into a form showing that the gradient of 
three scalar terms is equal to the velocity vector crossed with 
the vorticity vector, noting that z is vertically upward,

=
!
 aP
r

1
V 2

2
1 gzb 5 V

!
3 z

!

We then employ some arguments about the direction of the 
gradient vector and the direction of the cross product of two 
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vectors to show that the sum of the three scalar terms must 
be constant along a streamline. In this problem you will use 
a different approach to achieve the same result. Namely, 
take the dot product of both sides of the Euler equation with 
velocity vector V

!
 and apply some fundamental rules about the 

dot product of two vectors. Sketches may be helpful.

10–42  Write out the components of the Euler equation as 
far as possible in Cartesian coordinates (x, y, z) and (u, v, w). 
Assume gravity acts in some arbitrary direction.

10–43  Write out the components of the Euler equation as 
far as possible in cylindrical coordinates (r, u, z) and (ur, uu, uz). 
Assume gravity acts in some arbitrary direction.

10–44  Water at T 5 208C rotates as a rigid body about the 
z-axis in a spinning cylindrical container (Fig. P10–44). There 
are no viscous stresses since the water moves as a solid body; 
thus the Euler equation is appropriate. (We neglect viscous 
stresses caused by air acting on the water surface.) Integrate 
the Euler equation to generate an expression for pressure as a 
function of r and z everywhere in the water. Write an equation 
for the shape of the free surface (zsurface as a function of r).
(Hint: P 5 Patm everywhere on the free surface. The flow is rota-
tionally symmetric about the z-axis.)  Answer: zsurface 5 v2r2/2g

everywhere, generate an expression for ur as a function of r, 
R, and ur(R) only. Sketch what the velocity profile at radius 
r would look like if friction were not neglected (i.e., a real 
flow) at the same volume flow rate.

10–48  In the derivation of the Bernoulli equation for 
regions of inviscid flow, we use the vector identity

(V
!
·=
!
 )V
!
5 = 

!aV 2

2
b 2 V

!
3 (=

!
3 V

!
)

Show that this vector identity is satisfied for the case of 
velocity vector V

!
 in Cartesian coordinates, i.e., V

!
 5 u i  

!
 1 

v j  

!
 1 w k 

!
. For full credit, expand each term as far as possible 

and show all your work.

Irrotational (Potential) Flow

10–49C  What is D’Alembert’s paradox? Why is it a paradox?

10–50C  Consider the flow field produced by a hair dryer 
(Fig. P10–50C). Identify regions of this flow field that can 
be approximated as irrotational, and those for which the irrota-
tional flow approximation would not be appropriate (rotational 
flow regions).

10–45  Repeat Prob. 10–44, except let the rotating fluid be 
engine oil at 608C. Discuss.

10–46  Using the results of Prob. 10–44, calculate the 
Bernoulli constant as a function of radial coordinate r.

Answer: 
Patm

r  1 v2r2

10–47  Consider steady, incompressible, two-dimensional 
flow of fluid into a converging duct with straight walls 
(Fig. P10–47). The volume flow rate is V

#
, and the velocity is 

in the radial direction only, with ur a function of r only. Let b 
be the width into the page. At the inlet into the converging duct 
(r 5  R), ur is known; ur 5 ur(R). Assuming inviscid flow 

Water

Free 
surface

r

z

v

R

P = Patm

uu = vr

ur = uz = 0

FIGURE P10–44

r = R

r

ur(r) Δu

FIGURE P10–47

FIGURE P10–50C

10–51C  In an irrotational region of flow, the velocity field 
can be calculated without need of the momentum equation by 
solving the Laplace equation for velocity potential function f, 
and then solving for the components of V

!
 from the defini-

tion of f, namely, V
!
 5 =

!
f. Discuss the role of the momen-

tum equation in an irrotational region of flow.

10–52C  A subtle point, often missed by students of fluid 
mechanics (and even their professors!), is that an inviscid 
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10–58  Consider an irrotational line source of strength V
.
/L

in the xy- or ru-plane. The velocity components are ur 5
0f
0r

5

1
r
 
0c
0u

5
V
#
/L

2pr
 and uu 5

1
r
 
0f
0u

5 2
0c
0r

5 0. In this chapter, we

started with the equation for uu to generate expressions for the 
velocity potential function and the stream function for the line 
source. Repeat the analysis, except start with the equation for 
ur, showing all your work.

10–59  Consider a steady, two-dimensional, incompress-
ible, irrotational velocity field specified by its velocity 
potential function, f 5 3(x2 2 y2) 1 4xy 2 2x 2 5y 1 2. 
(a) Calculate velocity components u and v. (b) Verify that the 
velocity field is irrotational in the region in which f applies. 
(c) Generate an expression for the stream function in this region.

10–60  Consider a steady, two-dimensional, incompressible, 
irrotational velocity field specified by its velocity potential 
function, f 5 4(x2 2 y2) 1 6x 2 4y. (a) Calculate veloc-
ity components u and v. (b) Verify that the velocity field is 
irrotational in the region in which f applies. (c) Generate an 
expression for the stream function in this region.

10–61  Consider a planar irrotational region of flow in the 
ru-plane. Show that stream function c satisfies the Laplace 
equation in cylindrical coordinates.

10–62  In this chapter, we describe axisymmetric irrotational 
flow in terms of cylindrical coordinates r and z and velocity 
components ur and uz. An alternative description of axisymmet-
ric flow arises if we use spherical polar coordinates and set the 
x-axis as the axis of symmetry. The two relevant directional 
components are now r and u, and their corresponding veloc-
ity components are ur and uu. In this coordinate system, radial 
location r is the distance from the origin, and polar angle u is 
the angle of inclination between the radial vector and the axis 
of rotational symmetry (the x-axis), as sketched in Fig. P10–62;

region of flow is not the same as an irratational (potential) 
region of flow (Fig. P10–52C). Discuss the differences and 
similarities between these two approximations. Give an 
example of each.

10–53C  What flow property determines whether a region of 
flow is rotational or irrotational? Discuss.

10–54  Write the Bernoulli equation, and discuss how it dif-
fers between an inviscid, rotational region of flow and a viscous, 
irrotational region of flow. Which case is more restrictive 
(in regards to the Bernoulli equation)?

10–55  Streamlines in a steady, two-dimensional, incom-
pressible flow field are sketched in Fig. P10–55. The flow in 
the region shown is also approximated as irrotational. Sketch 
what a few equipotential curves (curves of constant potential 
function) might look like in this flow field. Explain how you 
arrive at the curves you sketch.

Streamlines

FIGURE P10–55

Inviscid?
Irrotational? ?

FIGURE P10–52C

10–56  Consider the following steady, two-dimensional, incom-
pressible velocity field: V

!
 5 (u, v) 5 (ax 1 b) i  

!
 1 (2ay 1 c)  j  

!
.

Is this flow field irrotational? If so, generate an expression for 
the velocity potential function.  Answers: Yes, a(x2 2 y2)/2 1

bx 1 cy 1 constant

10–57  Consider the following steady, two-dimensional,
incom pressible velocity field: V

!
 5  (u,  v) 5  (1

2ay2  1  b) i  

!
 1 

(axy 1 c)  j  

!
. Is this flow field irrotational? If so, generate an 

expression for the velocity potential function.

Rotational
symmetry

y or z

r ur

uu

Axisymmetric
body

u

x

f

FIGURE P10–62
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a slice defining the ru-plane is shown. This is a type of two-
dimensional flow because there are only two independent spa-
tial variables, r and u. In other words, a solution of the velocity 
and pressure fields in any ru-plane is sufficient to characterize 
the entire region of axisymmetric irrotational flow. Write the 
Laplace equation for f in spherical polar coordinates, valid in 
regions of axisymmetric irrotational flow. (Hint: You may con-
sult a textbook on vector analysis.)

10–63  Show that the incompressible continuity equation for

axisymmetric flow in spherical polar coordinates, 
1
r
 
0
0r

 (r2ur)

1 
1

sin u
 
0
0u

 (uu sin  u) 5 0, is identically satisfied by a stream

function defined as ur 5 2
1

r2 sin  u
 
0c
0u

 and uu 5
1

r sin u
 
0c
0r

, so 

long as c is a smooth function of r and u.

10–64  Consider a uniform stream of magnitude V inclined 
at angle a (Fig. P10–64). Assuming incompressible planar 
irrotational flow, find the velocity potential function and the 
stream function. Show all your work.  Answers: f 5 Vx cosa 1

Vy sina, c 5 Vy cosa 2 Vx sina

coordinates. Showing all your algebra, verify that the Laplace 
equation is valid in an irrotational region of flow.

10–68  Consider an irrotational line vortex of strength G in

the xy- or ru-plane. The velocity components are ur 5
0f
0r

5

1
r
 
0c
0u

5 0 and uu 5
1
r
 
0f
0u

5 2
0c
0r

5
G

2pr
. Generate expres-

sions for the velocity potential function and the stream func-
tion for the line vortex, showing all your work.

10–69  Water at atmospheric pressure and temperature (r 5 
998.2 kg/m3, and m 5 1.003 3 1023 kg/m?s) at free stream 
velocity V 5 0.100481 m/s flows over a two-dimensional cir-
cular cylinder of diameter d 5 1.00 m. Approximate the flow 
as potential flow. (a) Calculate the Reynolds number, based on 
cylinder diameter. Is Re large enough that potential flow should 
be a reasonable approximation? (b) Estimate the minimum and 
maximum speeds |V|min and |V|max (speed is the magnitude of 
velocity) and the maximum and minimum pressure difference 
P 2 P` in the flow, along with their respective locations.

10–70  The stream function for steady, incompressible, two-
dimensional flow over a circular cylinder of radius a and free-
stream velocity V` is c 5 V` sinu(r 2 a2/r) for the case in which 
the flow field is approximated as irrotational (Fig. P10–70).
Generate an expression for the velocity potential function f for 
this flow as a function of r and u, and parameters V` and a.

y

x
V a

FIGURE P10–64

y

a

V∞
r

u

x

FIGURE P10–70
10–65  Consider the following steady, two-dimensional, 
incompressible velocity field: V

!
 5  (u,  v) 5  (1

2ay2  1  b) i  

!
 1 

(axy2 1 c)  j  

!
. Is this flow field irrotational? If so, generate an 

expression for the velocity potential function.

10–66  In an irrotational region of flow, we write the velocity
vector as the gradient of the scalar velocity potential func-
tion, V

!
 5 =

!
f. The components of V

!
 in cylindrical coordi-

nates, (r, u, z) and (ur, uu, uz), are

 ur 5
0f
0r

   uu 5
1
r
 
0f
0u

    uz 5
0f
0z

 

From Chap. 9, we also write the components of the vorticity

vector in cylindrical coordinates as zr 5
1
r
 
0uz

0u
2
0uu
0z

,

zu 5
0ur

0z
2
0uz

0r
, and zz 5

1
r

 
0
0r

AruuB 2
1
r
 
0ur

0u
. Substitute the

velocity components into the vorticity components to show 
that all three components of the vorticity vector are indeed 
zero in an irrotational region of flow.

10–67  Substitute the components of the velocity vector 
given in Prob. 10–66 into the Laplace equation in cylindrical 

10–71  Superpose a uniform stream of velocity V` and a line 
source of strength V

#
/L at the origin. This generates potential 

flow over a two-dimensional half-body called the Rankine 
half-body (Fig. P10–71). One unique streamline is the dividing
streamline that forms a dividing line between free-stream 
fluid coming from the left and fluid coming from the source. 
(a) Generate an equation for the dividing stream function
cdividing as a function of V

#
/L. (Hint: The dividing streamline inter-

sects the stagnation point at the nose of the body.) (b) Generate
an expression for half-height b as a function of V` and V

#
/L. 

(Hint: Consider the flow far downstream.) (c) Generate an equa-
tion for the dividing stream function in the form of r as a func-
tion of u, V`, and V

#
/L. (d) Generate an expression for stagnation

point distance a as a function of V` and V
#
/L. (e) Generate an 

expression for (V/V`)2 (the squared nondimensional velocity 
magnitude) anywhere in the flow as a function of a, r, and u.
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Boundary Layers

10–72C  We usually think of boundary layers as occurring 
along solid walls. However, there are other flow situations in 
which the boundary layer approximation is also appropriate. 
Name three such flows, and explain why the boundary layer 
approximation is appropriate.

10–73C  For each statement, choose whether the statement is 
true or false and discuss your answer briefly. These statements 
concern a laminar boundary layer on a flat plate (Fig. P10–73C).
(a) At a given x-location, if the Reynolds number were to 
increase, the boundary layer thickness would also increase. 
(b) As outer flow velocity increases, so does the boundary 
layer thickness.
(c) As the fluid viscosity increases, so does the boundary 
layer thickness.
(d) As the fluid density increases, so does the boundary layer 
thickness.

V`

y

a

b

x

FIGURE P10–71

y

U(x) = V

d(x)

Outer flow

Boundary layer

V x

FIGURE P10–73C

V y U(x) = V

x

d(x)

Boundary layer

FIGURE P10–75C

10–76C  What is a trip wire, and what is its purpose?

10–77C  Discuss the implication of an inflection point in a 
boundary layer profile. Specifically, does the existence of an 
inflection point infer a favorable or adverse pressure gradi-
ent? Explain.

10–78C  Compare flow separation for a laminar versus tur-
bulent boundary layer. Specifically, which case is more resist-
ant to flow separation? Why? Based on your answer, explain 
why golf balls have dimples.

10–79C  In your own words, summarize the five steps of the 
boundary layer procedure.

10–80C  In your own words, list at least three “red flags” 
to look out for when performing laminar boundary layer 
calculations.

10–81C  Two definitions of displacement thickness are given 
in this chapter. Write both definitions in your own words. For 
the laminar boundary layer growing on a flat plate, which is 
larger—boundary layer thickness d or displacement thick-
ness d*? Discuss.

10–82C  Explain the difference between a favorable and an 
adverse pressure gradient in a boundary layer. In which case 
does the pressure increase downstream? Why?

10–83  On a hot day (T 5 30°C), a truck moves along the 
highway at 29.1 m/s. The flat side of the truck is treated as a 
simple, smooth flat–plate boundary layer, to first approxima-
tion. Estimate the x-location along the plate where the boundary
layer begins to transition to turbulence. How far downstream 
from the beginning of the plate do you expect the boundary 
layer to become fully turbulent? Give both answers to one 
significant digit.

10–84E  A boat moves through water (T 5 40°F), at 26.0 
mi/h. A flat portion of the boat hull is 2.4 ft long, and is 
treated as a simple smooth flat plate boundary layer, to first 
approximation. Is the boundary layer on this flat part of the 
hull laminar, transitional, or turbulent? Discuss.

10–85  Air flows parallel to a speed limit sign along the 
highway at speed V 5 8.5 m/s. The temperature of the air is 
25°C, and the width W of the sign parallel to the flow direc-
tion (i.e., its length) is 0.45 m. Is the boundary layer on the 
sign laminar or turbulent or transitional?

10–86E  Air flows through the test section of a small wind 
tunnel at speed V 5 7.5 ft/s. The temperature of the air is 
80°F, and the length of the wind tunnel test section is 1.5 ft.

10–74C  In this chapter, we make a statement that the 
boundary layer approximation “bridges the gap” between the 
Euler equation and the Navier–Stokes equation. Explain.

10–75C  A laminar boundary layer growing along a flat 
plate is sketched in Fig. P10–75C. Several velocity profiles 
and the boundary layer thickness d(x) are also shown. Sketch 
several streamlines in this flow field. Is the curve represent-
ing d(x) a streamline?
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10–92  A laminar flow wind tunnel has a test section that is 
30 cm in diameter and 80 cm in length. The air is at 20°C. 
At a uniform air speed of 2.0 m/s at the test section inlet, by 
how much will the centerline air speed accelerate by the end 
of the test section?  Answer: Approx. 6%

10–93  Repeat the calculation of Prob. 10–92, except for a 
test section of square rather than round cross section, with a 
30 cm 3 30 cm cross section and a length of 80 cm. Com-
pare the result to that of Prob. 10–92 and discuss.

10–94  Air at 20°C flows at V 5 8.5 m/s parallel to a flat 
plate (Fig. P10–94). The front of the plate is well rounded, and 
the plate is 40 cm long. The plate thickness is h 5 0.75 cm, 
but because of boundary layer displacement effects, the flow 
outside the boundary layer “sees” a plate that has larger 
apparent thickness. Calculate the apparent thickness of the 
plate (include both sides) at downstream distance x 5 10 cm.  
Answer: 0.895 cm

Assume that the boundary layer thickness is negligible 
prior to the start of the test section. Is the boundary layer 
along the test section wall laminar or turbulent or transi-
tional?  Answer: laminar

10–87  Static pressure P is measured at two locations 
along the wall of a laminar boundary layer (Fig. P10–87).
The measured pressures are P1 and P2, and the distance 
between the taps is small compared to the characteristic 
body dimension (Dx 5 x2 2 x1 ,, L). The outer flow 
velocity above the boundary layer at point 1 is U1. The fluid 
density and viscosity are r and m, respectively. Generate 
an approximate expression for U2, the outer flow velocity 
above the boundary layer at point 2, in terms of P1, P2, Dx, 
U1, r, and m.

V h

x

FIGURE P10–94

10–88  Consider two pressure taps along the wall of a lami-
nar boundary layer as in Fig. P10–87. The fluid is air at 25°C, 
U1 5 10.3 m/s, and the static pressure P1 is 2.44 Pa greater 
than static pressure P2, as measured by a very sensitive dif-
ferential pressure transducer. Is outer flow velocity U2 greater 
than, equal to, or less than outer flow velocity U1? Explain. 
Estimate U2.  Answers: Less than, 10.1 m/s

10–89  Consider the Blasius solution for a laminar flat plate 
boundary layer. The nondimensional slope at the wall is 
given by Eq. 8 of Example 10–10. Transform this result to 
physical variables, and show that Eq. 9 of Example 10–10 
is correct.

10–90E  For the small wind tunnel of Prob. 10–86E, assume 
the flow remains laminar, and estimate the boundary layer 
thickness, the displacement thickness, and the momentum 
thickness of the boundary layer at the end of the test section. 
Give your answers in inches, compare the three results, and 
discuss.

10–91  Calculate the value of shape factor H for the lim-
iting case of a boundary layer that is infinitesimally thin 
(Fig. P10–91). This value of H is the minimum possible 
value.

Wall

Pressure taps

Boundary
layer

Outer flow

x
x2

P1 P2

x1

P2

P1

U1

U2

d

FIGURE P10–87

10–95E  A small, axisymmetric, low-speed wind tunnel is 
built to calibrate hot wires. The diameter of the test section 
is 6.68 in, and its length is 10.0 in. The air is at 70°F. At a 
uniform air speed of 5.0 ft/s at the test section inlet, by how 
much will the centerline air speed accelerate by the end of 
the test section? What should the engineers do to eliminate 
this acceleration?

10–96E  Air at 70°F flows parallel to a smooth, thin, flat 
plate at 15.5 ft/s. The plate is 10.6 ft long. Determine whether 
the boundary layer on the plate is most likely laminar, tur-
bulent, or somewhere in between (transitional). Compare 
the boundary layer thickness at the end of the plate for two
cases: (a) the boundary layer is laminar everywhere, and 
(b) the boundary layer is turbulent everywhere. Discuss.

10–97  In order to avoid boundary layer interference, engi-
neers design a “boundary layer scoop” to skim off the bound-
ary layer in a large wind tunnel (Fig. P10–97). The scoop is 
constructed of thin sheet metal. The air is at 20°C, and flows 

U(x)

x

FIGURE P10–91
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at V 5 45.0 m/s. How high (dimension h) should the scoop 
be at downstream distance x 5 1.45 m?

10–98  Air at 208C flows at V 5 80.0 m/s over a 
smooth flat plate of length L 5 17.5 m. Plot 

the turbulent boundary layer profile in physical variables (u as
a function of y) at x 5 L. Compare the profile generated by 
the one-seventh-power law, the log law, and Spalding’s law 
of the wall, assuming that the boundary layer is fully turbu-
lent from the beginning of the plate.

10–99  The streamwise velocity component of a steady, 
incompressible, laminar, flat plate boundary layer of boundary 
layer thickness d is approximated by the simple linear expres-
sion, u 5 Uy/d for y , d, and u 5 U for y . d (Fig. P10–99). 
Generate expressions for displacement thickness and momen-
tum thickness as functions of d, based on this linear approxi-
mation. Compare the approximate values of d*/d and u/d to 
the values of d*/d and u/d obtained from the Blasius solution.  
Answers: 0.500, 0.167

10–102  One dimension of a rectangular flat plate is twice 
the other. Air at uniform speed flows parallel to the plate, and 
a laminar boundary layer forms on both sides of the plate. 
Which orientation—long dimension parallel to the wind
(Fig. P10–102a) or short dimension parallel to the wind
(Fig. P10–102b)—has the higher drag? Explain.

(a)

(b)

V

V

FIGURE P10–102

x
Boundary layer

d(x)

V

FIGURE P10–106E

V h

x

FIGURE P10–97

10–100  For the linear approximation of Prob. 10–99, 
use the definition of local skin friction coefficient and the 
Kármán integral equation to generate an expression for 
d/x. Compare your result to the Blasius expression for d/x. 
(Note: You will need the results of Prob. 10–99 to do this 
problem.)

10–101  Compare shape factor H (defined in Eq. 10–95) 
for a laminar versus a turbulent boundary layer on a flat 
plate, assuming that the turbulent boundary layer is turbulent 
from the beginning of the plate. Discuss. Specifically, why 
do you suppose H is called a “shape factor”?  Answers: 2.59, 

1.25 to 1.30

U(x) = V

d(x)

x

V

FIGURE P10–99

10–103  Integrate Eq. 5 to obtain Eq. 6 of Example 10–14, 
showing all your work.

10–104  Consider a turbulent boundary layer on a flat plate. 
Suppose only two things are known: Cf, x ≅ 0.059 · (Rex)

21/5 
and u ≅ 0.097d. Use the Kármán integral equation to generate 
an expression for d/x, and compare your result to column (b) 
of Table 10–4.

10–105  Air at 308C flows at a uniform speed of 35.0 m/s 
along a smooth flat plate. Calculate the approximate x-location 
along the plate where the boundary layer begins the transition 
process toward turbulence. At approximately what x-location 
along the plate is the boundary layer likely to be fully turbulent? 

Answers: 4 to 5 cm, 1 to 2 m

10–106E  An aluminum canoe moves horizontally along the 
surface of a lake at 3.5 mi/h (Fig. P10–106E). The temperature 
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10–111  Calculate the nine components of the viscous stress 
tensor in cylindrical coordinates (see Chap. 9) for the veloc-
ity field of Prob. 10–110. Discuss.

10–112  Water falls down a vertical pipe by gravity alone. 
The flow between vertical locations z1 and z2 is fully 
developed, and velocity profiles at these two locations are 
sketched in Fig. P10–112. Since there is no forced pressure 
gradient, pressure P is constant everywhere in the flow 
(P 5 Patm). Calculate the modified pressure at locations z1 
and z2. Sketch profiles of modified pressure at locations 
z1 and z2. Discuss.

of the lake water is 508F. The bottom of the canoe is 20 ft 
long and is flat. Is the boundary layer on the canoe bottom 
laminar or turbulent? 

Review Problems

10–107C  For each statement, choose whether the statement 
is true or false, and discuss your answer briefly.
(a) The velocity potential function can be defined for three-
dimensional flows.
(b) The vorticity must be zero in order for the stream function 
to be defined.
(c) The vorticity must be zero in order for the velocity poten-
tial function to be defined.
(d) The stream function can be defined only for two-dimensional 
flow fields.

10–108  In this chapter, we discuss solid body rotation 
(Fig. P10–108) as an example of an inviscid flow that is also 
rotational. The velocity components are ur 5 0, uu 5 vr, and 
uz 5 0. Compute the viscous term of the u-component of the 
Navier–Stokes equation, and discuss. Verify that this velocity 
field is indeed rotational by computing the z-component of 
vorticity.  Answer: zz 5 2v

uu

uu = vr

r

FIGURE P10–108

10–109  Calculate the nine components of the viscous stress 
tensor in cylindrical coordinates (see Chap. 9) for the veloc-
ity field of Prob. 10–108. Discuss your results.

10–110  In this chapter, we discuss the line vortex 
(Fig. P10–110) as an example of an irrotational flow field. 
The velocity components are ur 5 0, uu 5 G/(2pr), and 
uz 5 0. Compute the viscous term of the u-component of the 
Navier–Stokes equation, and discuss. Verify that this velocity 
field is indeed irrotational by computing the z-component of 
vorticity.

z

z = z1

z = z2

g→

FIGURE P10–112

uu

r

2pr

L
uu =

FIGURE P10–110

10–113  Suppose the vertical pipe of Prob. 10–112 is now 
horizontal instead. In order to achieve the same volume flow 
rate as that of Prob. 10–112, we must supply a forced pres-
sure gradient. Calculate the required pressure drop between 
two axial locations in the pipe that are the same distance 
apart as z2 and z1 of Fig. P10–112. How does modified pres-
sure P9 change between the vertical and horizontal cases?
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10–115  The streamwise velocity component of a steady, 
incompressible, laminar, flat plate boundary layer of bound-
ary layer thickness d is approximated by the sine wave pro-
file of Prob. 10–114. Generate expressions for displacement 
thickness and momentum thickness as functions of d, based 
on this sine wave approximation. Compare the approximate 
values of d*/d and u/d to the values of d*/d and u/d obtained 
from the Blasius solution.

10–116  For the sine wave approximation of Prob. 10–114, use 
the definition of local skin friction coefficient and the Kármán 
integral equation to generate an expression for d/x. Compare 
your result to the Blasius expression for d/x. (Note: You will 
also need the results of Prob. 10–115 to do this problem.)

Fundamentals of Engineering (FE) Exam Problems

10–117  If the fluid velocity is zero in a flow field, the 
Navier-Stokes equation becomes

(a) =
!
P 2 rg

!
5 0

(b) 2=
!
P 1 rg

!
1 m=

!
2 V
!
5 0

(c) r 

DV
!

Dt
5 2=

!
P 1 m=

!
2 V
!

(d ) r 

DV
!

Dt
5 2=

!
P 1 rg

!
1 m=

!
2 V
!

(e) r 

DV
!

Dt
1 =

!
P 2 rg

!
5 0

10–118  Which choice is not a scaling parameter used to non-
dimensionalize the equations of motion? 
(a) Characteristic length, L (b) Characteristic speed, V
(c) Characteristic viscosity, μ (d ) Characteristic frequency, f
(e) Gravitational acceleration, g

10–119  Which choice is not a nondimensional variable defined 
to nondimensionalize the equations of motion?

(a) t* 5 ft (b) x
!
* 5

x
!

L
 (c) V

!
* 5

V
!

V

(d ) g
!
* 5

g
!

g
 (e) P* 5

P

P0

10–120  Which dimensionless parameter does not appear in 
the nondimensionalized Navier-Stokes equation? 
(a) Reynolds number (b) Prandtl number
(c) Strouhal number (d ) Euler number (e) Froude number

10–121  Which dimensionless parameter is zero in the non-
dimensionalized Navier-Stokes equation when the flow is 
quasi-steady? 
(a) Euler number (b) Prandtl number (c) Froude number
(d ) Strouhal number (e) Reynolds number

10–122  If pressure P is replaced by modified pressure P9 5
P 1 ρgz in the nondimensionalized Navier-Stokes equation, 
which dimensionless parameter drops out? 
(a) Froude number (b) Reynolds number
(c) Strouhal number (d ) Euler number
(e) Prandtl number

10–123  In creeping flow, the value of Reynolds number is 
typically 

(a) Re , 1 (b) Re ,, 1 (c) Re . 1
(d ) Re .. 1 (e) Re 5 0

10–124  Which equation is the proper approximate Navier-
Stokes equation in dimensional form for creeping flow?

(a) =
!
P 2 rg

!
5 0

(b) 2=
!
P 1 m=

!
2 V
!
5 0

(c) 2=
!
P 1 rg

!
1 m=

!
2V
!
5 0

(d ) r 

DV
!

Dt
5 2=

!
P 1 rg

!
1 m=

!
2 V
!

(e) r 

DV
!

Dt
1 =

!
P 2 rg

!
5 0

10–125  For creeping flow over a three-dimensional object, 
the aerodynamic drag on the object does not depend on 
(a) Velocity, V (b) Fluid viscosity, μ (c) Characteristic 
length, L (d ) Fluid density, ρ (e) None of these

10–126  Consider a spherical ash particle of diameter 65 μm,
falling from a volcano at a high elevation in air whose tem-
perature is 2508C and whose pressure is 55 kPa. The density
of air is 0.8588 kg/m3 and its viscosity is 1.474 3 1025 kg/m?s.

U(x) = V

d(x)

x

V

FIGURE P10–114

10–114  The Blasius boundary layer profile is an exact 
solution of the boundary layer equations for 

flow over a flat plate. However, the results are somewhat 
cumbersome to use, since the data appear in tabular form (the 
solution is numerical). Thus, a simple sine wave approxima-
tion (Fig. P10–114) is often used in place of the Blasius solu-

tion, namely, u(y) > U sin ap
2

 
y

d
b for y , d, and u 5 U for 

y ,, d, where d is the boundary layer thickness. Plot the 
Blasius profile and the sine wave approximation on the same 
plot, in nondimensional form (u/U versus y/d), and compare. 
Is the sine wave profile a reasonable approximation?
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The density of the particle is 1240 kg/m3. The drag force on a 
sphere in creeping flow is given by FD 5 3πμVD. The terminal
velocity of this particle at this altitude is 
(a) 0.096 m/s (b) 0.123 m/s (c) 0.194 m/s
(d ) 0.225 m/s (e) 0.276 m/s

10–127  Which statement is not correct regarding inviscid 
regions of flow? 
(a) Inertial forces are not negligible.
(b) Pressure forces are not negligible.
(c) Reynolds number is large.
(d ) Not valid in boundary layers and wakes.
(e) Solid body rotation of a fluid is an example.

10–128  For which regions of flow is the Laplace equation 

=
!
2f 5 0 applicable? 

(a) Irrotational (b) Inviscid (c) Boundary layer
(d ) Wake (e) Creeping

10–129  A very thin region of flow near a solid wall where 
viscous forces and rotationality cannot be ignored is called
(a) Inviscid region of flow (b) Irrotational flow
(c) Boundary layer (d ) Outer flow region
(e) Creeping flow

10–130  Which one of the following is not a flow region 
where the boundary layer approximation may be appropriate?
(a) Jet (b) Inviscid region (c) Wake (d ) Mixing layer
(e) Thin region near a solid wall

10–131  Which statement is not correct regarding the bound-
ary layer approximation? 
(a) The higher the Reynolds number, the thinner the bound-
ary layer.
(b) The boundary layer approximation may be appropriate for 
free shear layers.
(c) The boundary layer equations are approximations of the 
Navier-Stokes equation.
(d ) The curve representing boundary layer thickness δ as a 
function of x is a streamline.
(e) The boundary layer approximation bridges the gap between 
the Euler equation and the Navier-Stokes equation.

10–132  For a laminar boundary layer growing on a horizontal 
flat plate, the boundary layer thickness δ  is not a function of 
(a) Velocity, V (b) Distance from the leading edge, x
(c) Fluid density, ρ (d ) Fluid viscosity, μ
(e) Gravitational acceleration, g

10–133  For flow along a flat plate with x being the distance 
from the leading edge, the boundary layer thickness grows like

(a) x (b) !x (c) x2 (d ) 1/x (e) 1/x2

10–134  Air flows at 258C with a velocity of 3 m/s in a wind 
tunnel whose test section is 25 cm long. The displacement 
thickness at the end of the test section is (the kinematic vis-
cosity of air is 1.562 3 1025 m2/s).
(a) 0.955 mm (b) 1.18 mm (c) 1.33 mm
(d ) 1.70 mm (e) 1.96 mm

10–135  Air flows at 258C with a velocity of 6 m/s over a 
flat plate whose length is 40 cm. The momentum thickness 
at the center of the plate is (the kinematic viscosity of air is 
1.562 3 1025 m2/s).
(a) 0.479 mm (b) 0.678 mm (c) 0.832 mm
(d ) 1.08 mm (e) 1.34 mm

10–136  Water flows at 208C with a velocity of 1.1 m/s 
over a flat plate whose length is 15 cm. The boundary 
layer thickness at the end of the plate is (the density and 
viscosity of water are 998 kg/m3 and 1.002 3 103 kg/m.s, 
respectively).
(a) 1.14 mm (b) 1.35 mm (c) 1.56 mm
(d ) 1.82 mm (e) 2.09 mm

10–137  Air flows at 158C with a velocity of 12 m/s over a 
flat plate whose length is 80 cm. Using one-seventh power 
law of the turbulent flow, what is the boundary layer thick-
ness at the end of the plate? (The kinematic viscosity of air is 
1.470 3 1025 m2/s.)
(a) 1.54 cm (b) 1.89 cm (c) 2.16 cm
(d ) 2.45 cm (e) 2.82 cm

10–138  Air at 158C flows at 10 m/s over a flat plate of 
length 2 m. Using one-seventh power law of the turbulent 
flow, what is the ratio of local skin friction coefficient for the 
turbulent and laminar flow cases? (The kinematic viscosity of 
air is 1.470 3 1025 m2/s.)
(a) 1.25 (b) 3.72 (c) 6.31
(d ) 8.64 (e) 12.0

Design and Essay Problem

10–139  Explain why there is a significant velocity over-
shoot for the midrange values of the Reynolds number in the 
velocity profiles of Fig. 10–136, but not for the very small 
values of Re or for the very large values of Re.
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E X T E R N A L  F L O W: 
D R A G  A N D  L I F T

In this chapter we consider external flow—flow over bodies that are 
im mersed in a fluid, with emphasis on the resulting lift and drag forces. 
In external flow, the viscous effects are confined to a portion of the flow 

field such as the boundary layers and wakes, which are surrounded by an 
outer flow region that involves small velocity and temperature gradients.
 When a fluid moves over a solid body, it exerts pressure forces normal 
to the surface and shear forces parallel to the surface of the body. We are 
usually interested in the resultant of the pressure and shear forces acting 
on the body rather than the details of the distributions of these forces along 
the entire surface of the body. The component of the resultant pressure and 
shear forces that acts in the flow direction is called the drag force (or just 
drag), and the component that acts normal to the flow direction is called the 
lift force (or just lift).
 We start this chapter with a discussion of drag and lift, and explore the 
concepts of pressure drag, friction drag, and flow separation. We continue 
with the drag coefficients of various two- and three-dimensional geometries 
encountered in practice and determine the drag force using experimentally 
determined drag coefficients. We then examine the development of the 
velocity boundary layer during parallel flow over a flat surface, and develop 
relations for the skin friction and drag 
coefficients for flow over flat plates, 
cylinders, and spheres. Finally, we dis-
cuss the lift developed by airfoils and the 
factors that affect the lift characteristics 
of bodies.

607

OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Have an intuitive understanding 
of the various physical 
phenomena associated with 
external flow such as drag, 
friction and pressure drag, 
drag reduction, and lift

■ Calculate the drag force 
associated with flow over 
common geometries

■ Understand the effects of flow 
regime on the drag coefficients 
associated with flow over 
cylinders and spheres

■ Understand the fundamentals of 
flow over airfoils, and calculate 
the drag and lift forces acting on 
airfoils

The wake of a Boeing 767 disrupts the top 
of a cumulus cloud and clearly shows the 

counter-rotating trailing vortices. 
Photo by Steve Morris, used by permission.

11
    CHAPTER
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EXTERNAL FLOW: DRAG AND LIFT

11–1 ■  INTRODUCTION
Fluid flow over solid bodies frequently occurs in practice, and it is responsi-
ble for numerous physical phenomena such as the drag force acting on auto-
mobiles, power lines, trees, and underwater pipelines; the lift developed by 
bird or airplane wings; upward draft of rain, snow, hail, and dust particles in 
high winds; the transportation of red blood cells by blood flow; the entrain-
ment and disbursement of liquid droplets by sprays; the vibration and noise 
generated by bodies moving in a fluid; and the power generated by wind 
turbines (Fig. 11–1). Therefore, developing a good understanding of exter-
nal flow is important in the design of many engineering systems such as 
aircraft, automobiles, buildings, ships, submarines, and all kinds of turbines. 
Late-model cars, for example, have been designed with particular empha-
sis on aerodynamics. This has resulted in significant reductions in fuel 
consumption and noise, and considerable improvement in handling.
 Sometimes a fluid moves over a stationary body (such as the wind blow-
ing over a building), and other times a body moves through a quiescent fluid 
(such as a car moving through air). These two seemingly different processes 
are equivalent to each other; what matters is the relative motion between the 
fluid and the body. Such motions are conveniently analyzed by fixing the 
coordinate system on the body and are referred to as flow over bodies or
external flow. The aerodynamic aspects of different airplane wing designs, 
for example, are studied conveniently in a lab by placing the wings in a 
wind tunnel and blowing air over them by large fans. Also, a flow can be 
classified as being steady or unsteady, depending on the reference frame 
selected. Flow around an airplane, for example, is always unsteady with 
respect to the ground, but it is steady with respect to a frame of reference 
moving with the airplane at cruise conditions.
 The flow fields and geometries for most external flow problems are too 
complicated to be solved analytically, and thus we have to rely on correla-
tions based on experimental data. The availability of high-speed computers 
has made it possible to conduct a series of “numerical experiments” quickly 
by solving the governing equations numerically (Chap. 15), and to resort to 
the expensive and time-consuming testing and experimentation only in the 
final stages of design. Such testing is done in wind tunnels. H. F. Phillips 
(1845–1912) built the first wind tunnel in 1894 and measured lift and drag. 
In this chapter we mostly rely on relations developed experimentally.
 The velocity of the fluid approaching a body is called the free-stream 
velocity and is denoted by V. It is also denoted by u` or U` when the flow 
is aligned with the x-axis since u is used to denote the x-component of 
velocity. The fluid velocity ranges from zero at the body surface (the no-
slip condition) to the free-stream value away from the body surface, and the 
subscript “infinity” serves as a reminder that this is the value at a distance 
where the presence of the body is not felt. The free-stream velocity may 
vary with location and time (e.g., the wind blowing past a building). But in 
the design and analysis, the free-stream velocity is usually assumed to be 
uniform and steady for convenience, and this is what we do in this chapter.
 The shape of a body has a profound influence on the flow over the body 
and the velocity field. The flow over a body is said to be two-dimensional 
when the body is very long and of constant cross section and the flow is 
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(a) (b) (c)

(d) (e)

( f) (g)

FIGURE 11–1
Flow over bodies is commonly encountered in practice.

(a) Royalty-Free/CORBIS; (b) Imagestate Media/John Foxx RF; (c) © IT Stock/age fotostock RF; 
(d ) Royalty-Free/CORBIS; (e) © StockTrek/Superstock RF; 

( f ) Royalty-Free/CORBIS; (g) © Roy H. Photography/Getty RF
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normal to the body. The wind blowing over a long pipe perpendicular 
to its axis is an example of two-dimensional flow. Note that the velocity 
component in the axial direction is zero in this case, and thus the velocity is 
two-dimensional.
 The two-dimensional idealization is appropriate when the body is suffi-
ciently long so that the end effects are negligible and the approach flow is 
uniform. Another simplification occurs when the body possesses rotational 
symmetry about an axis in the flow direction. The flow in this case is also 
two-dimensional and is said to be axisymmetric. A bullet piercing through 
air is an example of axisymmetric flow. The velocity in this case varies with 
the axial distance x and the radial distance r. Flow over a body that cannot 
be modeled as two-dimensional or axisymmetric, such as flow over a car, is 
three-dimensional (Fig. 11–2).
 Flow over bodies can also be classified as incompressible flows (e.g., flows
over automobiles, submarines, and buildings) and compressible flows (e.g., 
flows over high-speed aircraft, rockets, and missiles). Compressibility effects 
are negligible at low velocities (flows with Ma & 0.3), and such flows can be 
treated as incompressible with little loss in accuracy. Compressible flow is 
discussed in Chap. 12, and flows that involve partially immersed bodies with 
a free surface (such as a ship cruising in water) are beyond the scope of this 
introductory text.
 Bodies subjected to fluid flow are classified as being streamlined or bluff, 
depending on their overall shape. A body is said to be streamlined if a con-
scious effort is made to align its shape with the anticipated streamlines in 
the flow. Streamlined bodies such as race cars and airplanes appear to be 
contoured and sleek. Otherwise, a body (such as a building) tends to block 
the flow and is said to be bluff or blunt. Usually it is much easier to force 
a streamlined body through a fluid, and thus streamlining has been of great 
importance in the design of vehicles and airplanes (Fig. 11–3).

11–2 ■  DRAG AND LIFT
It is a common experience that a body meets some resistance when it is
forced to move through a fluid, especially a liquid. As you may have 
noticed, it is very difficult to walk in water because of the much greater 
resistance it offers to motion compared to air. Also, you may have seen 
high winds knocking down trees, power lines, and even trailers and felt the 
strong “push” the wind exerts on your body (Fig. 11–4). You experience the 
same feeling when you extend your arm out of the window of a moving 
car. A fluid may exert forces and moments on a body in and about various 
directions. The force a flowing fluid exerts on a body in the flow direction 
is called drag. The drag force can be measured directly by simply attaching 
the body subjected to fluid flow to a calibrated spring and measuring the 
displacement in the flow direction (just like measuring weight with a spring 
scale). More sophisticated drag-measuring devices, called drag balances, use 
flexible beams fitted with strain gages to measure the drag electronically.
 Drag is usually an undesirable effect, like friction, and we do our best to 
minimize it. Reduction of drag is closely associated with the reduction of 
fuel consumption in automobiles, submarines, and aircraft; improved safety 
and durability of structures subjected to high winds; and reduction of noise 

Wind

FIGURE 11–2
Two-dimensional, axisymmetric, 
and three-dimensional flows.
(a) Photo by John M. Cimbala; (b) © CorbisRF
(c) Hannu Liivaar/Alamy.

Long cylinder (2-D)

Bullet (axisymmetric)

Car (3-D) 

(a) 

(b) 

(c) 
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and vibration. But in some cases drag produces a beneficial effect and we 
try to maximize it. Friction, for example, is a “life saver” in the brakes of 
automobiles. Likewise, it is the drag that makes it possible for people to 
parachute, for pollens to fly to distant locations, and for us all to enjoy the 
waves of the oceans and the relaxing movements of the leaves of trees.
 A stationary fluid exerts only normal pressure forces on the surface of a 
body immersed in it. A moving fluid, however, also exerts tangential shear 
forces on the surface because of the no-slip condition caused by viscous 
effects. Both of these forces, in general, have components in the direction of 
flow, and thus the drag force is due to the combined effects of pressure and 
wall shear forces in the flow direction. The components of the pressure and 
wall shear forces in the direction normal to the flow tend to move the body 
in that direction, and their sum is called lift.
 For two-dimensional flows, the resultant of the pressure and shear forces 
can be split into two components: one in the direction of flow, which is the 
drag force, and another in the direction normal to flow, which is the lift, as 
shown in Fig. 11–5. For three-dimensional flows, there is also a side force 
component in the direction normal to the page that tends to move the body 
in that direction.
 The fluid forces may also generate moments and cause the body to rotate. 
The moment about the flow direction is called the rolling moment, the 
moment about the lift direction is called the yawing moment, and the moment 
about the side force direction is called the pitching moment. For bodies that 
possess symmetry about the lift–drag plane such as cars, airplanes, and ships, 
the time-averaged side force, yawing moment, and rolling moment are zero 
when the wind and wave forces are aligned with the body. What remain for 
such bodies are the drag and lift forces and the pitching moment. For axisym-
metric bodies aligned with the flow, such as a bullet, the only time-averaged 
force exerted by the fluid on the body is the drag force.
 The pressure and shear forces acting on a differential area dA on the sur-
face are PdA and tw dA, respectively. The differential drag force and the lift 
force acting on dA in two-dimensional flow are (Fig. 11–5)

 dFD 5 2P dA cos u 1 tw dA  sin u (11–1)

and

 dFL 5 2P dA sin u 2 tw dA  cos u (11–2)

where u is the angle that the outer normal of dA makes with the positive 
flow direction. The total drag and lift forces acting on the body are deter-
mined by integrating Eqs. 11–1 and 11–2 over the entire surface of the body,

Drag force: FD 5 #
A

 dFD 5 #
A

 (2P cos u 1 tw sin u) dA (11–3)

and

Lift force: FL 5 #
A

 dFL 5 2#
A

 (P sin u 1 tw cos u) dA  (11–4)

These are the equations used to predict the net drag and lift forces on bodies 
when the flow is simulated on a computer (Chap. 15). However, when we 
perform experimental analyses, Eqs. 11–3 and 11–4 are not practical since 
the detailed distributions of pressure and shear forces are difficult to obtain 

FIGURE 11–4
High winds knock down trees, power 

lines, and even people as a result of 
the drag force.

70 hp60 mi/h

50 hp60 mi/h

FIGURE 11–3
It is much easier to force a streamlined 
body than a blunt body through a fluid.
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by measurements. Fortunately, this information is often not needed. Usually 
all we need to know is the resultant drag force and lift acting on the entire 
body, which can be measured directly and easily in a wind tunnel.
 Equations 11–1 and 11–2 show that both the skin friction (wall shear) and 
pressure, in general, contribute to the drag and the lift. In the special case of 
a thin flat plate aligned parallel to the flow direction, the drag force depends 
on the wall shear only and is independent of pressure since u 5 908. When 
the flat plate is placed normal to the flow direction, however, the drag force 
depends on the pressure only and is independent of wall shear since the 
shear stress in this case acts in the direction normal to flow and u 5 08 
(Fig. 11–6). If the flat plate is tilted at an angle relative to the flow direc-
tion, then the drag force depends on both the pressure and the shear stress.
 The wings of airplanes are shaped and positioned specifically to generate 
lift with minimal drag. This is done by maintaining an angle of attack during 
cruising, as shown in Fig. 11–7. Both lift and drag are strong functions of the 
angle of attack, as we discuss later in this chapter. The pressure difference 
between the top and bottom surfaces of the wing generates an upward force 
that tends to lift the wing and thus the airplane to which it is connected. For 
slender bodies such as wings, the shear force acts nearly parallel to the flow 
direction, and thus its contribution to the lift is small. The drag force for such 
slender bodies is mostly due to shear forces (the skin friction).
 The drag and lift forces depend on the density r of the fluid, the upstream 
velocity V, and the size, shape, and orientation of the body, among other 
things, and it is not practical to list these forces for a variety of situations. 
Instead, it is more convenient to work with appropriate dimensionless 
numbers that represent the drag and lift characteristics of the body. These 
numbers are the drag coefficient CD, and the lift coefficient CL, and they 
are defined as

Drag coefficient: CD 5
FD

1
2rV

2A
 (11–5)

Lift coefficient: CL 5
FL

1
2rV

2A
 (11–6)

where A is ordinarily the frontal area (the area projected on a plane normal 
to the direction of flow) of the body. In other words, A is the area seen by a 
person looking at the body from the direction of the approaching fluid. The 
frontal area of a cylinder of diameter D and length L, for example, is A 5 LD.
In lift and drag calculations of some thin bodies, such as airfoils, A is taken 
to be the planform area, which is the area seen by a person looking at the 
body from above in a direction normal to the body. The drag and lift coef-
ficients are primarily functions of the shape of the body, but in some cases 
they also depend on the Reynolds number and the surface roughness. The 
term 1

2rV2 in Eqs. 11– 5 and 11–6 is the dynamic pressure.
 The local drag and lift coefficients vary along the surface as a result of the 
changes in the velocity boundary layer in the flow direction. We are usually 
interested in the drag and lift forces for the entire surface, which can be deter-
mined using the average drag and lift coefficients. Therefore, we present 
correlations for both local (identified with the subscript x) and average drag 
and lift coefficients. When relations for local drag and lift coefficients for a 

Boundary layer
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FIGURE 11–6
(a) Drag force acting on a flat plate 
parallel to the flow depends on wall 
shear only. (b) Drag force acting 
on a flat plate normal to the flow 
depends on the pressure only and is 
independent of the wall shear, which 
acts normal to the free-stream flow.
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FIGURE 11–5
The pressure and viscous forces acting 
on a two-dimensional body and the 
resultant lift and drag forces.
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WVterminal

FD

FD = W – FB

(No acceleration) 

FB

FIGURE 11–8
During a free fall, a body reaches its 

terminal velocity when the drag force 
equals the weight of the body minus 

the buoyant force.

Wind tunnel
60 mi/h

FD

FIGURE 11–9
Schematic for Example 11–1.

Lift

Drag

V

FIGURE 11–7
Airplane wings are shaped and 

positioned to generate sufficient lift 
during flight while keeping drag at 

a minimum. Pressures above and 
below atmospheric pressure are 

indicated by plus and minus signs, 
respectively.

surface of length L are available, the average drag and lift coefficients for 
the entire surface are determined by integration from

 CD 5
1

L
 #

L

0
 CD, x dx (11–7)

and

 CL 5
1

L
 #

L

0
 CL, x dx (11–8)

 The forces acting on a falling body are usually the drag force, the buoyant 
force, and the weight of the body. When a body is dropped into the atmosphere 
or a lake, it first accelerates under the influence of its weight. The motion of 
the body is resisted by the drag force, which acts in the direction opposite to 
motion. As the velocity of the body increases, so does the drag force. This 
continues until all the forces balance each other and the net force acting on the 
body (and thus its acceleration) is zero. Then the velocity of the body remains 
constant during the rest of its fall if the properties of the fluid in the path of the 
body remain essentially constant. This is the maximum velocity a falling body 
can attain and is called the terminal velocity (Fig. 11–8). 

EXAMPLE 11–1    Measuring the Drag Coefficient of a Car

The drag coefficient of a car at the design conditions of 1 atm, 708F, and 

60 mi/h is to be determined experimentally in a large wind tunnel in a full-

scale test (Fig. 11–9). The frontal area of the car is 22.26 ft2. If the force 

acting on the car in the flow direction is measured to be 68 lbf, determine 

the drag coefficient of this car.

SOLUTION  The drag force acting on a car is measured in a wind tunnel. 

The drag coefficient of the car at test conditions is to be determined.

Assumptions  1 The flow of air is steady and incompressible. 2 The cross 

section of the tunnel is large enough to simulate free flow over the car. 

3 The bottom of the tunnel is also moving at the speed of air to approximate 

actual driving conditions or this effect is negligible.

Properties  The density of air at 1 atm and 708F is r 5 0.07489 lbm/ft3.

Analysis  The drag force acting on a body and the drag coefficient are 

given by

FD 5 CD A 
rV 2

2
  and  CD 5

2FD

rAV 2

where A is the frontal area. Substituting and noting that 1 mi/h 5 1.467 ft/s, 

the drag coefficient of the car is determined to be

CD 5
2 3 (68 lbf)

(0.07489 lbm/ft3)(22.26 ft2)(60 3 1.467 ft/s)2 a32.2 lbm·ft/s2

1 lbf
b 5 0.34

Discussion  Note that the drag coefficient depends on the design conditions, 

and its value may be different at different conditions such as the Reynolds 

number. Therefore, the published drag coefficients of different vehicles can be 

compared meaningfully only if they are determined under dynamically similar 

conditions or if Reynolds number independence is demonstrated (Chap. 7). 

This shows the importance of developing standard testing procedures.
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11–3 ■  FRICTION AND PRESSURE DRAG
As mentioned in Section 11–2, the drag force is the net force exerted by a 
fluid on a body in the direction of flow due to the combined effects of wall 
shear and pressure forces. It is often instructive to separate the two effects, 
and study them separately.
 The part of drag that is due directly to wall shear stress tw is called the 
skin friction drag (or just friction drag FD, friction) since it is caused by fric-
tional effects, and the part that is due directly to pressure P is called the 
pressure drag (also called the form drag because of its strong dependence 
on the form or shape of the body). The friction and pressure drag coeffi-
cients are defined as

 CD, friction 5
FD, friction

1
2rV 2A

  and  CD, pressure 5
FD, pressure

1
2rV 2A

 (11–9)

When the friction and pressure drag coefficients (based on the same area A) 
or forces are available, the total drag coefficient or drag force is determined 
by simply adding them,

 CD 5 CD, friction 1 CD, pressure  and  FD 5 FD, friction 1 FD, pressure (11–10)

 The friction drag is the component of the wall shear force in the direction 
of flow, and thus it depends on the orientation of the body as well as the 
magnitude of the wall shear stress tw. The friction drag is zero for a flat 
surface normal to the flow, and maximum for a flat surface parallel to the 
flow since the friction drag in this case equals the total shear force on the 
surface. Therefore, for parallel flow over a flat surface, the drag coefficient 
is equal to the friction drag coefficient, or simply the friction coefficient. 
Friction drag is a strong function of viscosity, and increases with increas-
ing viscosity.
 The Reynolds number is inversely proportional to the viscosity of the 
fluid. Therefore, the contribution of friction drag to total drag for blunt 
bodies is less at higher Reynolds numbers and may be negligible at very 
high Reynolds numbers. The drag in such cases is mostly due to pressure 
drag. At low Reynolds numbers, most drag is due to friction drag. This is 
especially the case for highly streamlined bodies such as airfoils. The fric-
tion drag is also proportional to the surface area. Therefore, bodies with 
a larger surface area experience a larger friction drag. Large commercial 
airplanes, for example, reduce their total surface area and thus their drag 
by retracting their wing extensions when they reach cruising altitudes to 
save fuel. The friction drag coefficient is independent of surface roughness 
in laminar flow, but is a strong function of surface roughness in turbulent 
flow due to surface roughness elements protruding further into the bound-
ary layer. The friction drag coefficient is analogous to the friction factor in 
pipe flow discussed in Chap. 8, and its value depends on the flow regime.
 The pressure drag is proportional to the frontal area and to the difference 
between the pressures acting on the front and back of the immersed body. 
Therefore, the pressure drag is usually dominant for blunt bodies, small 
for streamlined bodies such as airfoils, and zero for thin flat plates paral-
lel to the flow (Fig. 11–10). The pressure drag becomes most significant 

FIGURE 11–10
Drag is due entirely to friction drag 
for a flat plate parallel to the flow; 
it is due entirely to pressure drag for a 
flat plate normal to the flow; and it is 
due to both (but mostly pressure drag) 
for a cylinder normal to the flow. The 
total drag coefficient CD is lowest for a 
parallel flat plate, highest for a vertical 
flat plate, and in between (but close 
to that of a vertical flat plate) for a 
cylinder. 
From G. M. Homsy, et al. (2004).
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when the velocity of the fluid is too high for the fluid to be able to follow 
the curvature of the body, and thus the fluid separates from the body at 
some point and creates a very low pressure region in the back. The pres-
sure drag in this case is due to the large pressure difference between the 
front and back sides of the body.

Reducing Drag by Streamlining
The first thought that comes to mind to reduce drag is to streamline a 
body in order to reduce flow separation and thus to reduce pressure drag. 
Even car salespeople are quick to point out the low drag coefficients of 
their cars, owing to streamlining. But streamlining has opposite effects 
on pressure and friction drag forces. It decreases pressure drag by delay-
ing boundary layer separation and thus reducing the pressure difference 
between the front and back of the body and increases the friction drag by 
increasing the surface area. The end result depends on which effect domi-
nates. Therefore, any optimization study to reduce the drag of a body must 
consider both effects and must attempt to minimize the sum of the two, 
as shown in Fig. 11–11. The minimum total drag occurs at D/L 5 0.25
for the case shown in Fig. 11–11. For the case of a circular cylinder with 
the same thickness as the streamlined shape of Fig. 11–11, the drag coef-
ficient would be about five times as much. Therefore, it is possible to 
reduce the drag of a cylindrical component to nearly one-fifth by the use 
of proper fairings.
 The effect of streamlining on the drag coefficient is described best by 
considering long elliptical cylinders with different aspect (or length-to- 
thickness) ratios L/D, where L is the length in the flow direction and D 
is the thickness, as shown in Fig. 11–12. Note that the drag coefficient 
decreases drastically as the ellipse becomes slimmer. For the special 
case of L/D 5 1 (a circular cylinder), the drag coefficient is CD > 1 
at this Reynolds number. As the aspect ratio is decreased and the cylin-
der resembles a flat plate, the drag coefficient increases to 1.9, the value 
for a flat plate normal to flow. Note that the curve becomes nearly flat 
for aspect ratios greater than about 4. Therefore, for a given diameter D, 
elliptical shapes with an aspect ratio of about L/D > 4 usually offer a 
good compromise between the total drag coefficient and length L. The 
reduction in the drag coefficient at high aspect ratios is primarily due to 
the boundary layer staying attached to the surface longer and the result-
ing pressure recovery. The pressure drag on an elliptical cylinder with an 
aspect ratio of 4 or greater is negligible (less than 2 percent of total drag 
at this Reynolds number).
 As the aspect ratio of an elliptical cylinder is increased by flattening it 
(i.e., decreasing D while holding L constant), the drag coefficient starts 
increasing and tends to infinity as L/D S  ` (i.e., as the ellipse resem-
bles a flat plate parallel to flow). This is due to the frontal area, which 
appears in the denominator in the definition of CD, approaching zero. It 
does not mean that the drag force increases drastically (actually, the drag 
force decreases) as the body becomes flat. This shows that the frontal area 
is inappropriate for use in the drag force relations for slim bodies such as 
thin airfoils and flat plates. In such cases, the drag coefficient is defined 
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The variation of friction, pressure, 
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two-dimensional streamlined strut 
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The variation of the drag coefficient of a 
long elliptical cylinder with aspect ratio. 
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Wake
region

FIGURE 11–15
Flow separation and the wake region 

for flow over a tennis ball.
Courtesy NASA and Cislunar Aerospace, Inc.

on the basis of the planform area, which is simply the surface area of one 
side (top or bottom) of a flat plate parallel to the flow. This is quite appro-
priate since for slim bodies the drag is almost entirely due to friction drag, 
which is proportional to the surface area.
 Streamlining has the added benefit of reducing vibration and noise. 
Streamlining should be considered only for bluff bodies that are subjected 
to high-velocity fluid flow (and thus high Reynolds numbers) for which 
flow separation is a real possibility. It is not necessary for bodies that typi-
cally involve low Reynolds number flows (e.g., creeping flows in which 
Re , 1) as discussed in Chap. 10, since the drag in those cases is almost 
entirely due to friction drag, and streamlining would only increase the sur-
face area and thus the total drag. Therefore, careless streamlining may actu-
ally increase drag instead of decreasing it.

Flow Separation
When driving on country roads, it is a common safety measure to slow 
down at sharp turns in order to avoid being thrown off the road. Many driv-
ers have learned the hard way that a car refuses to comply when forced 
to turn curves at excessive speeds. We can view this phenomenon as “the 
separation of cars” from roads. This phenomenon is also observed when fast 
vehicles jump off hills. At low velocities, the wheels of the vehicle always 
remain in contact with the road surface. But at high velocities, the vehicle 
is too fast to follow the curvature of the road and takes off at the hill, losing 
contact with the road.
 A fluid acts much the same way when forced to flow over a curved surface 
at high velocities. A fluid follows the front portion of the curved surface with 
no problem, but it has difficulty remaining attached to the surface on the back 
side. At sufficiently high velocities, the fluid stream detaches itself from the 
surface of the body. This is called flow separation (Fig. 11–13). Flow can 
separate from a surface even if it is fully submerged in a liquid or immersed 
in a gas (Fig. 11–14). The location of the separation point depends on sev-
eral factors such as the Reynolds number, the surface roughness, and the level 
of fluctuations in the free stream, and it is usually difficult to predict exactly 
where separation will occur unless there are sharp corners or abrupt changes 
in the shape of the solid surface.
 When a fluid separates from a body, it forms a separated region between 
the body and the fluid stream. This low-pressure region behind the body 
where recirculating and backflows occur is called the separated region. 
The larger the separated region, the larger the pressure drag. The effects 
of flow separation are felt far downstream in the form of reduced velocity 
(relative to the upstream velocity). The region of flow trailing the body where 
the effects of the body on velocity are felt is called the wake (Fig. 11–15). 
The separated region comes to an end when the two flow streams reattach. 
Therefore, the separated region is an enclosed volume, whereas the wake 
keeps growing behind the body until the fluid in the wake region regains 
its velocity and the velocity profile becomes nearly flat again. Viscous and 
rotational effects are the most significant in the boundary layer, the sepa-
rated region, and the wake.

Separation point

FIGURE 11–13
Flow separation in a waterfall.

Separated flow region

Separation point Reattachment point

FIGURE 11–14
Flow separation over a backward-
facing step along a wall.
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 The occurrence of separation is not limited to bluff bodies. Complete 
separation over the entire back surface may also occur on a streamlined 
body such as an airplane wing at a sufficiently large angle of attack 
(larger than about 158 for most airfoils), which is the angle the incoming 
fluid stream makes with the chord (the line that connects the nose and the 
trailing edge) of the wing. Flow separation on the top surface of a wing 
reduces lift drastically and may cause the airplane to stall. Stalling has 
been blamed for many airplane accidents and loss of efficiencies in tur-
bomachinery (Fig. 11–16).
 Note that drag and lift are strongly dependent on the shape of the body, 
and any effect that causes the shape to change has a profound effect on the 
drag and lift. For example, snow accumulation and ice formation on airplane 
wings may change the shape of the wings sufficiently to cause significant 
loss of lift. This phenomenon has caused many airplanes to lose altitude and 
crash and many others to abort takeoff. Therefore, it has become a routine 
safety measure to check for ice or snow buildup on critical components of 
airplanes before takeoff in bad weather. This is especially important for air-
planes that have waited a long time on the runway before takeoff because of 
heavy traffic.
 An important consequence of flow separation is the formation and shed-
ding of circulating fluid structures, called vortices, in the wake region. The 
periodic generation of these vortices downstream is referred to as vortex 
shedding. This phenomenon usually occurs during normal flow over long 
cylinders or spheres for Re * 90. The vibrations generated by vortices 
near the body may cause the body to resonate to dangerous levels if the 
frequency of the vortices is close to the natural frequency of the body—a 
situation that must be avoided in the design of equipment that is subjected 
to high-velocity fluid flow such as the wings of airplanes and suspended 
bridges subjected to steady high winds.

11–4 ■  DRAG COEFFICIENTS 
OF COMMON GEOMETRIES

The concept of drag has important consequences in daily life, and the drag 
behavior of various natural and human-made bodies is characterized by their 
drag coefficients measured under typical operating conditions. Although 
drag is caused by two different effects (friction and pressure), it is usu-
ally difficult to determine them separately. Besides, in most cases, we are 
interested in the total drag rather than the individual drag components, and 
thus usually the total drag coefficient is reported. The determination of drag 
coefficients has been the topic of numerous studies (mostly experimental), 
and there is a huge amount of drag coefficient data in the literature for just 
about any geometry of practical interest.
 The drag coefficient, in general, depends on the Reynolds number, espe-
cially for Reynolds numbers below about 104. At higher Reynolds num-
bers, the drag coefficients for most geometries remain essentially constant 
(Fig. 11–17). This is due to the flow at high Reynolds numbers becoming 
fully turbulent. However, this is not the case for rounded bodies such as 

(a) 5°

(b) 15°

(c) 30°

FL

FL

FL

FD

FD

FD

FIGURE 11–16
At large angles of attack (usually 

larger than 158), flow may separate 
completely from the top surface of an 

airfoil, reducing lift drastically and 
causing the airfoil to stall.

From G. M. Homsy, et al. (2004).
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CD = 24/Re CD = 22.2/Re

CD = 20.4/Re CD = 13.6/Re

D

Sphere Hemisphere

Circular disk
(normal to flow)

Circular disk
(parallel to flow)

D
D

D

V
V

VV

FIGURE 11–18
Drag coefficients CD at low Reynolds 
numbers (Re & 1 where Re 5 VD/n 
and A 5 pD2/4).

circular cylinders and spheres, as we discuss later in this section. The reported 
drag coefficients are usually applicable only to flows at high Reynolds 
numbers.
 The drag coefficient exhibits different behavior in the low (creeping), 
moderate (laminar), and high (turbulent) regions of the Reynolds number. 
The inertia effects are negligible in low Reynolds number flows (Re & 1), 
called creeping flows (Chap. 10), and the fluid wraps around the body 
smoothly. The drag coefficient in this case is inversely proportional to the 
Reynolds number, and for a sphere it is determined to be

Sphere: CD 5
24

Re
  (Re & 1) (11–11)

Then the drag force acting on a spherical object at low Reynolds numbers 
becomes

 FD 5 CD A
rV 2

2
5

24

Re
 A 
rV 2

2
5

24

rVD/m
 
pD2

4
 
rV 2

2
5 3pmVD (11–12)

which is known as Stokes law, after British mathematician and physicist 
G. G. Stokes (1819–1903). This relation shows that at very low Reynolds
numbers, the drag force acting on spherical objects is proportional to 
the diameter, the velocity, and the viscosity of the fluid. This relation is 
often applicable to dust particles in the air and suspended solid particles 
in water.
 The drag coefficients for low Reynolds number flows past some other 
geometries are given in Fig. 11–18. Note that at low Reynolds num-
bers, the shape of the body does not have a major influence on the drag 
coefficient.
 The drag coefficients for various two- and three-dimensional bodies are 
given in Tables 11–1 and 11–2 for large Reynolds numbers. We make sev-
eral observations from these tables about the drag coefficient at high Reyn-
olds numbers. First of all, the orientation of the body relative to the direc-
tion of flow has a major influence on the drag coefficient. For example, the 
drag coefficient for flow over a hemisphere is 0.4 when the spherical side 
faces the flow, but it increases threefold to 1.2 when the flat side faces the 
flow (Fig. 11–19).
 For blunt bodies with sharp corners, such as flow over a rectangular 
block or a flat plate normal to the flow, separation occurs at the edges of 
the front and back surfaces, with no significant change in the character 
of flow. Therefore, the drag coefficient of such bodies is nearly indepen-
dent of the Reynolds number. Note that the drag coefficient of a long 
rectangular rod is reduced almost by half from 2.2 to 1.2 by rounding 
the corners.

Biological Systems and Drag
The concept of drag also has important consequences for biological sys-
tems. For example, the bodies of fish, especially the ones that swim fast 
for long distances (such as dolphins), are highly streamlined to minimize 

101 102 103 104 105 106

2.0

1.5

1.0

0.5

0

CD

Re

Disk

V

FIGURE 11–17
The drag coefficients for most 
geometries (but not all) remain 
essentially constant at Reynolds 
numbers above about 104.
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drag (the drag coefficient of dolphins based on the wetted skin area is 
about 0.0035, comparable to the value for a flat plate in turbulent flow). 
So it is no surprise that we build submarines that mimic large fish. Tropi-
cal fish with fascinating beauty and elegance, on the other hand, swim 
short distances only. Obviously grace, not high speed and drag, was the 
primary consideration in their design. Birds teach us a lesson on drag 
reduction by extending their beak forward and folding their feet backward

TABLE 11–1

Drag coefficients CD of various two-dimensional bodies for Re . 104 based on the frontal area A 5 bD, where b is the 

length in direction normal to the page (for use in the drag force relation FD 5 CDArV 2/2 where V  is the upstream velocity)

Square rod Rectangular rod

  L/D CD

  0.0* 1.9

  0.1 1.9

  0.5 2.5

  1.0 2.2

  2.0 1.7

  3.0 1.3

* Corresponds to thin plate

  L/D CD

  0.5 1.2

  1.0 0.9

  2.0 0.7

  4.0 0.7

Circular rod (cylinder) Elliptical rod

CD

  L/D Laminar Turbulent

  2 0.60 0.20

  4 0.35 0.15

  8 0.25 0.10

Equilateral triangular rod Semicircular shell Semicircular rod

V

V

CD = 1.2

D CD = 1.7

D

D
Sharp corners:

CD = 2.2

D
V

V

Round corners
(r/D = 0.2):

CD = 1.2

r

D

D

L

L

V

V

Sharp
corners:

Round
front edge:

D
V

Laminar:
CD = 1.2

Turbulent:
CD = 0.3

D

L

V

D
V

V

CD = 1.5

CD = 2.0D

CD = 2.3

D CD = 1.2

DV

V
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(continues)

TABLE 11–2

Representative drag coefficients CD for various three-dimensional bodies based on the frontal area for Re . 104 unless 

stated otherwise (for use in the drag force relation FD 5 CDArV 2/2 where V  is the upstream velocity)

Cube, A 5 D2 Thin circular disk, A 5 pD2/4 Cone (for u 5 308), A 5 pD2/4

Sphere, A 5 pD2/4 Ellipsoid, A 5 pD2/4

CD

  L/D Laminar Turbulent

   Re & 2 3 105 Re * 2 3 106

  0.75 0.5 0.2

  1 0.5 0.2

  2 0.3 0.1

  4 0.3 0.1

  8 0.2 0.1

Hemisphere, A 5 pD2/4 Finite cylinder, vertical, A 5 LD Finite cylinder, horizontal, A 5 pD2/4

  L/D CD L/D CD

   1 0.6 0.5 1.1

   2 0.7 1 0.9

   5 0.8 2 0.9

  10 0.9 4 0.9

  40 1.0 8 1.0

  ` 1.2

 Values are for laminar flow
 (Re & 2 3 105)

Streamlined body, A 5 pD2/4 Parachute, A 5 pD2/4 Tree, A 5 frontal area

   V, m/s CD

   10 0.4–1.2

   20 0.3–1.0

   30 0.2–0.7

CCCCDDDCC  == === 1.31.3.33311

D
V

A = frontal area

 

D
V

CDC  = 1.05

D
V

CDC  = 1.1 DV CDC  = 0.5

D

L

V

CDC = 0.4D

CDC  = 1.2D
V

V

L

D

V

D

L

V

Laminar:
Re     2    105

CDC  = 0.5
TurbTT ulent:

Re     2    106

CDC   0.2

DV

See Fig. 11–36 for CD vs. Re 

for smooth and rough spheres.

D
V

CDC  = 0.04

V

L

D

Rectangular plate, A 5 LD

CD 5 1.10 1 0.02 (L/D 1 D/L) 

for 1/30 , (L/D) , 30
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TABLE 11–2 (Cont inued)

Person (average) Bikes

Semitrailer, A 5 frontal area Automotive, A 5 frontal area High-rise buildings, A 5 frontal area

V

A = 5.5 ft2 = 0.51 m2

CDC  = 1.1

Racing:
A = 3.9 ft2 = 0.36 m2

CCCCDC  = 0.9

Drafting:
A = 3.9 ft2 = 0.36 m2

CCCCCDDC  = 0.50

With fairing:WW
A = 5.0 ft2 = 0.46 m2

CDC  = 0.12

Upright:

CDC  = 0.9 CDC  = 0.5

Standing: CDA 5 9 ft2 5 0.84 m2

Sitting: CDA 5 6 ft2 5 0.56 m2

CEN_4

Without fairing:
CD = 0.96

With fairing:
CD = 0.76

Minivan:
CDC  = 0.4

Passenger car
or sports car:

CDC  = 0.3

CCDC ≈≈ 1 0 to 1 4 1.0 to 1.4

VVVVV

during flight (Fig. 11–20). Airplanes, which look somewhat like large birds,
retract their wheels after takeoff in order to reduce drag and thus fuel 
consumption.
 The flexible structure of plants enables them to reduce drag at high winds 
by changing their shapes. Large flat leaves, for example, curl into a low-drag 
conical shape at high wind speeds, while tree branches cluster to reduce 
drag. Flexible trunks bend under the influence of the wind to reduce drag, 
and the bending moment is lowered by reducing frontal area.
 If you watch the Olympic games, you have probably observed many 
instances of conscious effort by the competitors to reduce drag. Some exam-
ples: During 100-m running, the runners hold their fingers together and 
straight and move their hands parallel to the direction of motion to reduce 
the drag on their hands. Swimmers with long hair cover their head with 
a tight and smooth cover to reduce head drag. They also wear well-fitting 
one-piece swimming suits. Horse and bicycle riders lean forward as much 
as they can to reduce drag (by reducing both the drag coefficient and frontal 
area). Speed skiers do the same thing.

Drag Coefficients of Vehicles
The term drag coefficient is commonly used in various areas of daily life. 
Car manufacturers try to attract consumers by pointing out the low drag 
coefficients of their cars (Fig. 11–21). The drag coefficients of vehicles 
range from about 1.0 for large semitrailers to 0.4 for minivans and 0.3 for 

CD = 0.4

A hemisphere at two different orientations
for Re > 104

CD = 1.2

V

V

FIGURE 11–19
The drag coefficient of a body may 
change drastically by changing the 
body’s orientation (and thus shape) 

relative to the direction of flow.
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FIGURE 11–22
Streamlines around an aerodynamically 
designed modern car closely resemble 
the streamlines around the car in 
the ideal potential flow (assumes 
negligible friction), except near 
the rear end, resulting in a low 
drag coefficient.
From G. M. Homsy, et al. (2004).

FIGURE 11–21
This sleek-looking Toyota Prius has a 
drag coefficient of 0.26—one of the 
lowest for a passenger car.
Courtesy Toyota.

passenger cars. In general, the more blunt the vehicle, the higher the drag 
coefficient. Installing a fairing reduces the drag coefficient of tractor-trailer 
rigs by about 20 percent by making the frontal surface more streamlined. As 
a rule of thumb, the percentage of fuel savings due to reduced drag is about 
half the percentage of drag reduction at highway speeds.
 When the effect of the road on air motion is disregarded, the ideal shape 
of a vehicle is the basic teardrop, with a drag coefficient of about 0.1 for 
the turbulent flow case. But this shape needs to be modified to accommo-
date several necessary external components such as wheels, mirrors, axles, 
and door handles. Also, the vehicle must be high enough for comfort 
and there must be a minimum clearance from the road. Further, a vehicle 
cannot be too long to fit in garages and parking spaces. Controlling the mate-
rial and manufacturing costs requires minimizing or eliminating any “dead” 
volume that cannot be utilized. The result is a shape that resembles more 
a box than a teardrop, and this was the shape of early cars with a drag coef-
ficient of about 0.8 in the 1920s. This wasn’t a problem in those days since 
the velocities were low, fuel was cheap, and drag was not a major design 
consideration.
 The average drag coefficients of cars dropped to about 0.70 in the 1940s, 
to 0.55 in the 1970s, to 0.45 in the 1980s, and to 0.30 in the 1990s as a 
result of improved manufacturing techniques for metal forming and paying 
more attention to the shape of the car and streamlining (Fig. 11–22). The 
drag coefficient for well-built racing cars is about 0.2, but this is achieved 
after making the comfort of drivers a secondary consideration. Noting that 
the theoretical lower limit of CD is about 0.1 and the value for racing cars is 
0.2, it appears that there is only a little room for further improvement in the 
drag coefficient of passenger cars from the current value of about 0.3. The 
drag coefficient of a Mazda 3, for example, is 0.29. For trucks and buses, 
the drag coefficient can be reduced further by optimizing the front and rear 
contours (by rounding, for example) to the extent it is practical while keep-
ing the overall length of the vehicle the same.
 When traveling as a group, a sneaky way of reducing drag is drafting, 
a phenomenon well known by bicycle riders and car racers. It involves 
ap proach ing a moving body from behind and being drafted into the low-
pressure re gion in the rear of the body. The drag coefficient of a racing 
bicyclist, for ex ample, is reduced from 0.9 to 0.5 (Table 11–2) by drafting, 
as also shown in Fig. 11–23.
 We also can help reduce the overall drag of a vehicle and thus fuel con-
sumption by being more conscientious drivers. For example, drag force is 
proportional to the square of velocity. Therefore, driving over the speed 
limit on the highways not only increases the chances of getting speed-
ing tickets or getting into an accident, but it also increases the amount of 
fuel consumption per mile. Therefore, driving at moderate speeds is safe 
and economical. Also, anything that extends from the car, even an arm, 
increases the drag coefficient. Driving with the windows rolled down also 
increases the drag and fuel consumption. At highway speeds, a driver can 
often save fuel in hot weather by running the air conditioner instead of 
driving with the windows rolled down. For many low-drag automobiles, 
the turbulence and additional drag generated by open windows consume 

FIGURE 11–20
Birds teach us a lesson on drag 
reduction by extending their beak 
forward and folding their feet 
backward during flight.
Photodisc/Getty Images
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FIGURE 11–23
The drag coefficients of bodies 

following other moving bodies closely 
is reduced considerably due to drafting 

(i.e., entering into the low pressure 
region created by the body 

in front).
Getty Images

FIGURE 11–24
Schematic for Example 11–2.

more fuel than does the air conditioner, but this is not the case for high-
drag vehicles.

Superposition
The shapes of many bodies encountered in practice are not simple. But such 
bodies can be treated conveniently in drag force calculations by considering 
them to be composed of two or more simple bodies. A satellite dish mounted 
on a roof with a cylindrical bar, for example, can be considered to be a com-
bination of a hemispherical body and a cylinder. Then the drag coefficient of 
the body can be determined approximately by using superposition. Such a 
simplistic approach does not account for the effects of components on each 
other, and thus the results obtained should be interpreted accordingly.

EXAMPLE 11–2     Effect of Frontal Area on Fuel 
Efficiency of a Car

Two common methods of improving fuel efficiency of a vehicle are to reduce 

the drag coefficient and the frontal area of the vehicle. Consider a car 

(Fig. 11–24) whose width (W ) and height (H ) are 1.85 m and 1.70 m, 

respectively, with a drag coefficient of 0.30. Determine the amount of fuel 

and money saved per year as a result of reducing the car height to 1.55 m 

while keeping its width the same. Assume the car is driven 18,000 km a year 

at an average speed of 95 km/h. Take the density and price of gasoline to 

be 0.74 kg/L and $0.95/L, respectively. Also take the density of air to be 

1.20 kg/m3, the heating value of gasoline to be 44,000 kJ/kg, and the over-

all efficiency of the car’s drive train to be 30 percent.

SOLUTION  The frontal area of a car is reduced by redesigning it. The result-

ing fuel and money savings per year are to be determined.

Assumptions  1 The car is driven 18,000 km a year at an average speed of 

95 km/h. 2 The effect of reduction of the frontal area on the drag coefficient 

is negligible.

Properties  The densities of air and gasoline are given to be 1.20 kg/m3 

and 0.74 kg/L, respectively. The heating value of gasoline is given to be 

44,000 kJ/kg. 

Analysis  The drag force acting on a body is

FD 5 CD A 
rV 2

2

where A is the frontal area of the body. The drag force acting on the car 

before redesigning is

  FD 5 0.3(1.85 3 1.70 m2) 
(1.20 kg/m3)(95 km/h)2

2
 a 1 m/s

3.6 km/h
b2a 1 N

1 kg·m/s2b
 5 394 N
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Noting that work is force times distance, the amount of work done to 

overcome this drag force and the required energy input for a distance of 

18,000 km are

 Wdrag 5 FD L 5 (394 N)(18,000 km/year)a1000 m

1 km
b a 1 kJ

1000 N·m
b

  5 7.092 3 106 kJ/year

  Ein 5
Wdrag

hcar
5

7.092 3 106 kJ/year

0.30
5 2.364 3 107 kJ/year

The amount and the cost of the fuel that supplies this much energy are 

Amount of fuel 5
mfuel

rfuel
5

Ein/HV
rfuel

5
(2.364 3 107 kJ/year)/(44,000 kJ/kg)

0.74 kg/L

 5 726 L/year 

 Cost 5 (Amount of fuel)(Unit cost) 5 (726 L/year)($0.95/L) 5 $690/year

That is, the car uses about 730 liters of gasoline at a total cost of about 

$690 per year to overcome the drag.

 The drag force and the work done to overcome it are directly proportional 

to the frontal area. Then the percent reduction in the fuel consumption due 

to reducing the frontal area is equal to the percent reduction in the frontal 

area:

 Reduction ratio 5
A 2 Anew

A
5

H 2 Hnew

H
5

1.7021.55

1.70
5 0.0882

Amount reduction 5 (Reduction ratio)(Amount)

Fuel reduction 5 0.0882(726 L/year) 5 64 L/year

 Cost reduction 5 (Reduction ratio)(Cost) 5 0.0882($690/year) 5 $61/year

Therefore, reducing the car’s height reduces the fuel consumption due to 

drag by nearly 9 percent.

Discussion  Answers are given to 2 significant digits. This example dem-

onstrates that significant reductions in drag and fuel consumption can 

be achieved by reducing the frontal area of a vehicle as well as its drag 

coefficient.

 Example 11–2 is indicative of the tremendous amount of effort put into 
redesigning various parts of cars such as the window moldings, the door 
handles, the windshield, and the front and rear ends in order to reduce aero-
dynamic drag. For a car moving on a level road at constant speed, the power 
developed by the engine is used to overcome rolling resistance, friction 
between moving components, aerodynamic drag, and driving the auxiliary 
equipment. The aerodynamic drag is negligible at low speeds, but becomes 
significant at speeds above about 30 mi/h. Reduction of the frontal area of 
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the cars (to the dislike of tall drivers) has also contributed greatly to the 
reduction of drag and fuel consumption.

11–5 ■  PARALLEL FLOW OVER FLAT PLATES
Consider the flow of a fluid over a flat plate, as shown in Fig. 11–25. 
Surfaces that are slightly contoured (such as turbine blades) also can be 
approximated as flat plates with reasonable accuracy. The x-coordinate is 
measured along the plate surface from the leading edge of the plate in the 
direction of the flow, and y is measured from the surface in the normal 
direction. The fluid approaches the plate in the x-direction with a uniform 
velocity V, which is equivalent to the velocity over the plate away from 
the surface.
 For the sake of discussion, we consider the fluid to consist of adjacent 
layers piled on top of each other. The velocity of the particles in the first 
fluid layer adjacent to the plate is zero because of the no-slip condition. 
This motionless layer slows down the particles of the neighboring fluid 
layer as a result of friction between the particles of these two adjoining fluid 
layers at different velocities. This fluid layer then slows down the molecules 
of the next layer, and so on. Thus, the presence of the plate is felt up to 
some normal distance d from the plate beyond which the free-stream veloc-
ity remains virtually unchanged. As a result, the x-component of the fluid 
velocity, u, varies from 0 at y 5 0 to nearly V (typically 0.99V) at y 5 d 
(Fig. 11–26).
 The region of the flow above the plate bounded by d in which the effects 
of the viscous shearing forces caused by fluid viscosity are felt is called 
the velocity boundary layer. The boundary layer thickness d is typically 
defined as the distance y from the surface at which u 5 0.99V.
 The hypothetical line of u 5 0.99V divides the flow over a plate into two 
regions: the boundary layer region, in which the viscous effects and the 
velocity changes are significant, and the irrotational flow region, in which 
the frictional effects are negligible and the velocity remains essentially 
constant.

Laminar boundary
layer

Transition
region

Turbulent boundary
layer

y

x
0

xcr

Turbulent
layer

Overlap layer
Buffer layer
Viscous sublayer

V

V

V

Boundary layer thickness, d

FIGURE 11–25
The development of the boundary layer for flow over a flat plate, and the different flow regimes.

Not to scale.
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Relative
velocities
of fluid layers

0.99V
Zero
velocity
at the
surface

V

d

V

FIGURE 11–26
The development of a boundary 
layer on a surface is due to the 
no-slip condition and friction.

Flow over a flat plate

rV
2
    2

FD, pressure = 0

FD = FD, friction = Ff = Cf A

CD, pressure = 0

CD = CD, friction = Cf

FIGURE 11–27
For parallel flow over a flat plate, the 
pressure drag is zero, and thus the 
drag coefficient is equal to the friction 
coefficient and the drag force is equal 
to the friction force.

 For parallel flow over a flat plate, the pressure drag is zero, and thus the 
drag coefficient is equal to the friction drag coefficient, or simply the friction 
coefficient (Fig. 11–27). That is,

Flat plate: CD 5 CD, friction 5 Cf  (11–13)

Once the average friction coefficient Cf is available, the drag (or friction) 
force over the surface is determined from

Friction force on a flat plate: FD 5 Ff 5 1
2Cf ArV

2 (11–14)

where A is the surface area of the plate exposed to fluid flow. When both 
sides of a thin plate are subjected to flow, A becomes the total area of the top 
and bottom surfaces. Note that both the average friction coefficient Cf and the 
local friction coefficient Cf, x, in general, vary with location along the surface.
 Typical average velocity profiles in laminar and turbulent flow are sketched 
in Fig. 11–25. Note that the velocity profile in turbulent flow is much fuller 
than that in laminar flow, with a sharp drop near the surface. The turbulent 
boundary layer can be considered to consist of four regions, characterized 
by the distance from the wall. The very thin layer next to the wall where 
viscous effects are dominant is the viscous sublayer. The velocity profile in 
this layer is very nearly linear, and the flow is nearly parallel. Next to the 
viscous sublayer is the buffer layer, in which turbulent effects are becoming 
significant, but the flow is still dominated by viscous effects. Above the buf-
fer layer is the overlap layer, in which the turbulent effects are much more 
significant, but still not dominant. Above that is the turbulent (or outer) 
layer in which turbulent effects dominate over viscous effects. Note that the 
turbulent boundary layer profile on a flat plate closely resembles the bound-
ary layer profile in fully developed turbulent pipe flow (Chap. 8). 
 The transition from laminar to turbulent flow depends on the surface 
geometry, surface roughness, upstream velocity, surface temperature, and the 
type of fluid, among other things, and is best characterized by the Reynolds 
number. The Reynolds number at a distance x from the leading edge of a 
flat plate is expressed as

 Rex 5
rVx

m
5

Vx
n

 (11–15)

where V is the upstream velocity and x is the characteristic length of the 
geometry, which, for a flat plate, is the length of the plate in the flow direc-
tion. Note that unlike pipe flow, the Reynolds number varies for a flat plate 
along the flow, reaching ReL 5 VL/n at the end of the plate. For any point 
on a flat plate, the characteristic length is the distance x of the point from 
the leading edge in the flow direction.
 For flow over a smooth flat plate, transition from laminar to turbulent 
begins at about Re ù 1 3 105, but does not become fully turbulent before 
the Reynolds number reaches much higher values, typically around 3 3 106 

(Chap. 10). In engineering analysis, a generally accepted value for the criti-
cal Reynolds number is

Rex, cr 5
rVxcr

m
5 5 3 105

The actual value of the engineering critical Reynolds number for a flat plate 
may vary somewhat from about 105 to 3 3 106 depending on the surface 
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roughness, the turbulence level, and the variation of pressure along the sur-
face, as discussed in more detail in Chap. 10.

Friction Coefficient
The friction coefficient for laminar flow over a flat plate can be determined 
theoretically by solving the conservation of mass and linear momentum 
equations numerically (Chap. 10). For turbulent flow, however, it must be 
determined experimentally and expressed by empirical correlations.
 The local friction coefficient varies along the surface of the flat plate as a 
result of the changes in the velocity boundary layer in the flow direction. We 
are usually interested in the drag force on the entire surface, which can be 
determined using the average friction coefficient. But sometimes we are also 
interested in the drag force at a certain location, and in such cases, we need to 
know the local value of the friction coefficient. With this in mind, we present 
correlations for both local (identified with the subscript x) and average fric-
tion coefficients over a flat plate for laminar, turbulent, and combined laminar 
and turbulent flow conditions. Once the local values are available, the average
friction coefficient for the entire plate is determined by integration as

 Cf 5
1

L
 #

L

0
 Cf, x dx (11–16)

Based on analysis, the boundary layer thickness and the local friction coef-
ficient at location x for laminar flow over a flat plate were determined in 
Chap. 10 to be

Laminar: d 5
4.91x

Re1/2
x

  and  Cf, x 5
0.664

Re1/2
x

,  Rex & 5 3 105 (11–17)

The corresponding relations for turbulent flow are

Turbulent:  d 5
0.38x

Re1/5
x

  and  Cf, x 5
0.059

Re1/5
x

,  5 3 105 & Rex & 107 (11–18)

where x is the distance from the leading edge of the plate and Rex 5 Vx/n is 
the Reynolds number at location x. Note that Cf, x is proportional to 1/Rex

1/2 
and thus to x21/2 for laminar flow and it is proportional to x21/5 for turbulent 
flow. In either case, Cf, x is infinite at the leading edge (x 5 0), and therefore 
Eqs. 11–17 and 11–18 are not valid close to the leading edge. The variation 
of the boundary layer thickness d and the friction coefficient Cf, x along a 
flat plate is sketched in Fig. 11–28. The local friction coefficients are higher 
in turbulent flow than they are in laminar flow because of the intense mix-
ing that occurs in the turbulent boundary layer. Note that Cf, x reaches its 
highest values when the flow becomes fully turbulent, and then decreases 
by a factor of x21/5 in the flow direction, as shown in the figure.
 The average friction coefficient over the entire plate is determined by 
substituting Eqs. 11–17 and 11–18 into Eq. 11–16 and performing the inte-
grations (Fig. 11–29). We get

Laminar: Cf 5
1.33

Re1/2
L

  ReL & 5 3 105 (11–19)

Turbulent: Cf 5
0.074

Re1/5
L

  5 3 105 & ReL & 107 (11–20)

Laminar Transition Turbulent

Cf, x
Cf,x

V

d

x

FIGURE 11–28
The variation of the local friction 

coefficient for flow over a flat plate. 
Note that the vertical scale of the 

boundary layer is greatly exaggerated 
in this sketch.
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FIGURE 11–29
The average friction coefficient over 

a surface is determined by integrating 
the local friction coefficient over the 

entire surface. The values shown 
here are for a laminar flat plate 

boundary layer.
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 Relative Friction

 Roughness, Coefficient,

 e/L Cf

 0.0* 0.0029

 1 3 1025 0.0032

 1 3 1024 0.0049

 1 3 1023 0.0084

* Smooth surface for Re 5 107. Others 

calculated from Eq. 11–23 for fully rough 

flow.

FIGURE 11–30
For turbulent flow, surface roughness 
may cause the friction coefficient to 
increase severalfold.

The first of these relations gives the average friction coefficient for the 
entire plate when the flow is laminar over the entire plate. The second rela-
tion gives the average friction coefficient for the entire plate only when the 
flow is turbulent over the entire plate, or when the laminar flow region of 
the plate is negligibly small relative to the turbulent flow region (that is, 
xcr ,, L where the length of the plate xcr over which the flow is laminar is 
determined from Recr 5 5 3 105 5 Vxcr /n).
 In some cases, a flat plate is sufficiently long for the flow to become tur-
bulent, but not long enough to disregard the laminar flow region. In such 
cases, the average friction coefficient over the entire plate is determined by 
performing the integration in Eq. 11–16 over two parts: the laminar region 
0 # x # xcr and the turbulent region xcr , x # L as

 Cf 5
1

L
a#xcr

0
 Cf, x, laminar  dx 1 #

L

xcr

 Cf, x, turbulent  dxb  (11–21)

Note that we included the transition region with the turbulent region. Again 
taking the critical Reynolds number to be Recr 5 5 3 105 and performing 
these integrations after substituting the indicated expressions, the average 
friction coefficient over the entire plate is determined to be

 Cf 5
0.074

Re1/5
L

2
1742

ReL

  5 3 105 & ReL & 107 (11–22)

The constants in this relation would be different for different critical Reynolds 
numbers. Also, the surfaces are assumed to be smooth, and the free stream 
to be of very low turbulence intensity. For laminar flow, the friction coef-
ficient depends on only the Reynolds number, and the surface roughness has 
no effect. For turbulent flow, however, surface roughness causes the friction 
coefficient to increase severalfold, to the point that in the fully rough turbulent 
regime the friction coefficient is a function of surface roughness alone and is 
independent of the Reynolds number (Fig. 11–30). This is analogous to flow 
in pipes.
 A curve fit of experimental data for the average friction coefficient in this 
regime is given by Schlichting (1979) as

Fully rough turbulent regime: Cf 5 a1.89 2 1.62 log 
e

L
b22.5

 (11–23)

where e is the surface roughness and L is the length of the plate in the flow 
direction. In the absence of a better one, this relation can be used for turbu-
lent flow on rough surfaces for Re . 106, especially when e/L . 1024.
 Friction coefficients Cf for parallel flow over smooth and rough flat plates 
are plotted in Fig. 11–31 for both laminar and turbulent flows. Note that Cf 
increases severalfold with roughness in turbulent flow. Also note that Cf is 
independent of the Reynolds number in the fully rough region. This chart is 
the flat-plate analog of the Moody chart for pipe flows.

EXAMPLE 11–3    Flow of Hot Oil over a Flat Plate

Engine oil at 408C flows over a 5-m-long flat plate with a free-stream veloc-

ity of 2 m/s (Fig. 11–32). Determine the drag force acting on the top side of  

the plate per unit width.
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SOLUTION  Engine oil flows over a flat plate. The drag force per unit width 

of the plate is to be determined.

Assumptions  1 The flow is steady and incompressible. 2 The critical Reyn-

olds number is Recr 5 5 3 105.

Properties  The density and kinematic viscosity of engine oil at 408C are 

r 5 876 kg/m3 and n 5 2.485 3 1024 m2/s.

Analysis  Noting that L 5 5 m, the Reynolds number at the end of the 

plate is

ReL 5
VL
n

5
(2 m/s)(5 m)

2.485 3 1024 m2/s
5 4.024 3 104

which is less than the critical Reynolds number. Thus we have laminar flow 

over the entire plate, and the average friction coefficient is (Fig. 11–29)

Cf 5 1.328Re20.5
L 5 1.328 3 (4.024 3 104)20.5 5 0.00662

Noting that the pressure drag is zero and thus CD 5 Cf for parallel flow over 

a flat plate, the drag force acting on the plate per unit width becomes

FD 5 Cf A
rV 2

2
5 0.00662(5 3 1 m2) 

(876 kg/m3)(2 m/s)2

2
 a 1 N

1 kg·m/s2b 5 58.0 N

The total drag force acting on the entire plate can be determined by multi-

plying the value just obtained by the width of the plate.

Discussion  The force per unit width corresponds to the weight of a mass of 

about 6 kg. Therefore, a person who applies an equal and opposite force to 

the plate to keep it from moving will feel like he or she is using as much 

force as is necessary to hold a 6-kg mass from dropping.
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0.002

106 107 109
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L = 300
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5000

e

FIGURE 11–31
Friction coefficient for parallel flow 

over smooth and rough flat plates.
Data from White (2010).

L = 5 m

  = 2 m/s

Oil A

V

FIGURE 11–32
Schematic for Example 11–3.

11–6 ■  FLOW OVER CYLINDERS AND SPHERES
Flow over cylinders and spheres is frequently encountered in practice. 
For example, the tubes in a shell-and-tube heat exchanger involve both 
internal flow through the tubes and external flow over the tubes, and 
both flows must be considered in the analysis of the heat exchanger. 
Also, many sports such as soccer, tennis, and golf involve flow over 
spherical balls.
 The characteristic length for a circular cylinder or sphere is taken to be the 
external diameter D. Thus, the Reynolds number is defined as Re 5  VD/n 
where V is the uniform velocity of the fluid as it approaches the cylinder or 
sphere. The critical Reynolds number for flow across a circular cylinder or 
sphere is about Recr ù 2 3 105. That is, the boundary layer remains laminar 
for about Re & 2 3 105, is transitional for 2 3 105 & Re & 2 3 106, and 
becomes fully turbulent for Re * 2 3 106.
 Cross-flow over a cylinder exhibits complex flow patterns, as shown in 
Fig. 11–33. The fluid approaching the cylinder branches out and encircles 
the cylinder, forming a boundary layer that wraps around the cylinder. 
The fluid particles on the midplane strike the cylinder at the stagnation 
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FIGURE 11–33
Laminar boundary layer separation 
with a turbulent wake; flow over a 
circular cylinder at Re 5 2000.
Courtesy ONERA, photograph by Werlé.

point, bringing the fluid to a complete stop and thus raising the pressure 
at that point. The pressure decreases in the flow direction while the fluid 
velocity increases.
 At very low upstream velocities (Re & 1), the fluid completely wraps 
around the cylinder and the two arms of the fluid meet on the rear side 
of the cylinder in an orderly manner. Thus, the fluid follows the curvature 
of the cylinder. At higher velocities, the fluid still hugs the cylinder on the 
frontal side, but it is too fast to remain attached to the surface as it approaches 
the top (or bottom) of the cylinder. As a result, the boundary layer detaches 
from the surface, forming a separation region behind the cylinder. Flow in 
the wake region is characterized by periodic vortex formation and pressures 
much lower than the stagnation point pressure.
 The nature of the flow across a cylinder or sphere strongly affects the 
total drag coefficient CD. Both the friction drag and the pressure drag can 
be significant. The high pressure in the vicinity of the stagnation point and 
the low pressure on the opposite side in the wake produce a net force on 
the body in the direction of flow. The drag force is primarily due to fric-
tion drag at low Reynolds numbers (Re & 10) and to pressure drag at high 
Reynolds numbers (Re * 5000). Both effects are significant at intermediate 
Reynolds numbers.
 The average drag coefficients CD for cross-flow over a smooth single 
circular cylinder and a sphere are given in Fig. 11–34. The curves exhibit 
different behaviors in different ranges of Reynolds numbers:

• For Re & 1, we have creeping flow (Chap. 10), and the drag coefficient 
decreases with increasing Reynolds number. For a sphere, it is CD 5 
24/Re. There is no flow separation in this regime.

• At about Re ù 10, separation starts occurring on the rear of the body 
with vortex shedding starting at about Re ù 90. The region of separa-
tion increases with increasing Reynolds number up to about Re ù 103. 
At this point, the drag is mostly (about 95 percent) due to pressure drag. 
The drag coefficient continues to decrease with increasing Reynolds 
number in this range of 10 & Re & 103. (A decrease in the drag coeffi-
cient does not necessarily indicate a decrease in drag. The drag force is 
proportional to the square of the velocity, and the increase in velocity at 
higher Reynolds numbers usually more than offsets the decrease in the 
drag coefficient.)
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• In the moderate range of 103 & Re & 105, the drag coefficient remains 
relatively constant. This behavior is characteristic of bluff bodies. 
The flow in the boundary layer is laminar in this range, but the flow in 
the separated region past the cylinder or sphere is highly turbulent with a 
wide turbulent wake.

• There is a sudden drop in the drag coefficient somewhere in the range of 
105 & Re & 106 (usually, at about 2 3 105). This large reduction in CD is 
due to the flow in the boundary layer becoming turbulent, which moves 
the separation point further on the rear of the body, reducing the size of 
the wake and thus the magnitude of the pressure drag. This is in contrast 
to streamlined bodies, which experience an increase in the drag coef-
ficient (mostly due to friction drag) when the boundary layer becomes 
turbulent.

• There is a “transitional” regime for 2 3 105 & Re & 2 3 106, in which 
CD dips to a minimum value and then slowly rises to its final turbulent 
value.

 Flow separation occurs at about u ù 808 (measured from the front stag-
nation point of a cylinder) when the boundary layer is laminar and at 
about u ù 1408 when it is turbulent (Fig. 11–35). The delay of separation 
in turbulent flow is caused by the rapid fluctuations of the fluid in the 
transverse direction, which enables the turbulent boundary layer to travel 
farther along the surface before separation occurs, resulting in a narrower 
wake and a smaller pressure drag. Keep in mind that turbulent flow has a 
fuller velocity profile as compared to the laminar case, and thus it requires 
a stronger adverse pressure gradient to overcome the additional momen-
tum close to the wall. In the range of Reynolds numbers where the flow 
changes from laminar to turbulent, even the drag force FD decreases as the 
velocity (and thus the Reynolds number) increases. This results in a sud-
den decrease in drag of a flying body (sometimes called the drag crisis) 
and instabilities in flight.

400
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Re
105 106

Smooth sphere

Smooth cylinder

FIGURE 11–34
Average drag coefficient for 

cross-flow over a smooth circular 
cylinder and a smooth sphere.

Data from H. Schlichting.

FIGURE 11–35
Flow visualization of flow over 

(a) a smooth sphere at Re 5 15,000, 
and (b) a sphere at Re 5 30,000 with 

a trip wire. The delay of boundary 
layer separation is clearly seen by 

comparing the two photographs.
Courtesy ONERA, photograph by Werlé.

(a)

(b)
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FIGURE 11–36
The effect of surface roughness on the 
drag coefficient of a sphere.
Data from Blevins (1984).

Effect of Surface Roughness
We mentioned earlier that surface roughness, in general, increases the 
drag coefficient in turbulent flow. This is especially the case for stream-
lined bodies. For blunt bodies such as a circular cylinder or sphere, how-
ever, an increase in the surface roughness may actually decrease the drag 
coefficient, as shown in Fig. 11–36 for a sphere. This is done by tripping 
the boundary layer into turbulence at a lower Reynolds number, and thus 
delaying flow separation, causing the fluid to close in behind the body, 
narrowing the wake, and reducing pressure drag considerably. This results 
in a much smaller drag coefficient and thus drag force for a rough-sur-
faced cylinder or sphere in a certain range of Reynolds number compared 
to a smooth one of identical size at the same velocity. At Re 5 2 3 105, 
for example, CD ù 0.1 for a rough sphere with e/D 5  0.0015, whereas 
CD ù 0.5 for a smooth one. Therefore, the drag coefficient in this case is 
reduced by a factor of 5 by simply roughening the surface. Note, however, 
that at Re 5 106, CD ù 0.4 for a very rough sphere while CD ù 0.1 for the 
smooth one. Obviously, roughening the sphere in this case increases the 
drag by a factor of 4 (Fig. 11–37).
 The preceding discussion shows that roughening the surface can be used to 
great advantage in reducing drag, but it can also backfire on us if we are not 
careful—specifically, if we do not operate in the right range of the Reynolds 
number. With this consideration, golf balls are intentionally roughened to 
induce turbulence at a lower Reynolds number to take advantage of the sharp 
drop in the drag coefficient at the onset of turbulence in the boundary layer 
(the typical velocity range of golf balls is 15 to 150 m/s, and the Reynolds 
number is less than 4 3 105). The critical Reynolds number of dimpled golf 
balls is about 4 3 104. The occurrence of turbulent flow at this Reynolds 
number reduces the drag coefficient of a golf ball by about half, as shown in 
Fig. 11–36. For a given hit, this means a longer distance for the ball. Experi-
enced golfers also give the ball a spin during the hit, which helps the rough 
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CD

 Smooth Rough Surface,

Re Surface e/D 5 0.0015

2 3 105 0.5 0.1

106 0.1 0.4

FIGURE 11–37
Surface roughness may increase or 

decrease the drag coefficient of a 
spherical object, depending on the 

value of the Reynolds number.

River

30 m

Pipe

FIGURE 11–38
Schematic for Example 11–4.

ball develop a lift and thus travel higher and farther. A similar argument can 
be given for a tennis ball. For a table tennis ball, however, the speeds are 
slower and the ball is smaller—it never reaches the turbulent range. There-
fore, the surfaces of table tennis balls are smooth.
 Once the drag coefficient is available, the drag force acting on a body 
in cross-flow is determined from Eq. 11–5 where A is the frontal area 
(A 5 LD for a cylinder of length L and A 5 pD2/4 for a sphere). It should 
be kept in mind that free-stream turbulence and disturbances by other 
bodies in the flow (such as flow over tube bundles) may affect the drag 
coefficient significantly.

EXAMPLE 11–4    Drag Force Acting on a Pipe in a River

A 2.2-cm-outer-diameter pipe is to span across a river at a 30-m-wide sec-

tion while being completely immersed in water (Fig. 11–38). The average 

flow velocity of water is 4 m/s and the water temperature is 158C. Determine 

the drag force exerted on the pipe by the river.

SOLUTION  A pipe is submerged in a river. The drag force that acts on the 

pipe is to be determined.

Assumptions  1 The outer surface of the pipe is smooth so that Fig. 11–34 

can be used to determine the drag coefficient. 2 Water flow in the river is 

steady. 3 The direction of water flow is normal to the pipe. 4 Turbulence in 

river flow is not considered.

Properties  The density and dynamic viscosity of water at 158C are 

r 5 999.1 kg/m3 and m 5 1.138 3 1023 kg/m·s.

Analysis  Noting that D 5 0.022 m, the Reynolds number is

Re 5
VD
n

5
rVD

m
5

(999.1 kg/m3)(4 m/s)(0.022 m)

1.138 3 1023 kg/m·s
5 7.73 3 104

The drag coefficient corresponding to this value is, from Fig. 11–34, CD 5 1.0.

Also, the frontal area for flow past a cylinder is A 5 LD. Then the drag force 

acting on the pipe becomes

 FD 5 CD A 
rV 2

2
5 1.0(30 3 0.022 m2) 

(999.1 kg/m3)(4 m/s)2

2
a 1 N

1 kg·m/s2b
 5 5275 N > 5300 N

Discussion  Note that this force is equivalent to the weight of a mass over 

500 kg. Therefore, the drag force the river exerts on the pipe is equiva-

lent to hanging a total of over 500 kg in mass on the pipe supported at 

its ends 30  m apart. The necessary precautions should be taken if the 

pipe cannot support this force. If the river were to flow at a faster speed 

or if turbulent fluctuations in the river were more significant, the drag 

force would be even larger. Unsteady forces on the pipe might then be 

significant.

607-658_cengel_ch11.indd   633 12/18/12   4:37 PM



634
EXTERNAL FLOW: DRAG AND LIFT

Planform
area, bc

Angle of
attack

Chord, c

Span, b

FL

FD

a

FIGURE 11–39
Definition of various terms associated 
with an airfoil.

FL

V
a

FD

Direction of
wall shear

Direction
of lift

FIGURE 11–40
For airfoils, the contribution of 
viscous effects to lift is usually 
negligible since wall shear is parallel 
to the surfaces and thus nearly normal 
to the direction of lift.

11–7 ■  LIFT
Lift was defined earlier as the component of the net force (due to viscous 
and pressure forces) that is perpendicular to the flow direction, and the lift 
coefficient was expressed in Eq. 11 –6 as

 CL 5
FL

1
2rV

2A
 

where A in this case is normally the planform area, which is the area that 
would be seen by a person looking at the body from above in a direction 
normal to the body, and V is the upstream velocity of the fluid (or, equiva-
lently, the velocity of a flying body in a quiescent fluid). For an airfoil of 
width (or span) b and chord length c (the length between the leading and 
trailing edges), the planform area is A 5 bc. The distance between the two 
ends of a wing or airfoil is called the wingspan or just the span. For an 
aircraft, the wingspan is taken to be the total distance between the tips of 
the two wings, which includes the width of the fuselage between the wings 
(Fig. 11–39). The average lift per unit planform area FL/A is called the wing 
loading, which is simply the ratio of the weight of the aircraft to the plan-
form area of the wings (since lift equals weight when flying at constant 
altitude).
 Airplane flight is based on lift, and thus developing a better understand-
ing of lift as well as improving the lift characteristics of bodies have been 
the focus of numerous studies. Our emphasis in this section is on devices 
such as airfoils that are specifically designed to generate lift while keeping 
the drag at a minimum. But it should be kept in mind that some devices 
such as  spoilers and inverted airfoils on racing cars are designed for the 
opposite purpose of avoiding lift or even generating negative lift to improve 
traction and control (some early race cars actually “took off” at high speeds 
as a result of the lift produced, which alerted the engineers to come up with 
ways to reduce lift in their design).
 For devices that are intended to generate lift such as airfoils, the con-
tribution of viscous effects to lift is usually negligible since the bodies are 
streamlined, and wall shear is parallel to the surfaces of such devices and 
thus nearly normal to the direction of lift (Fig. 11–40). Therefore, lift in 
practice can be approximated as due entirely to the pressure distribution on 
the surfaces of the body, and thus the shape of the body has the primary 
influence on lift. Then the primary consideration in the design of airfoils is 
minimizing the average pressure at the upper surface while maximizing it at 
the lower surface. The Bernoulli equation can be used as a guide in identify-
ing the high- and low-pressure regions: Pressure is low at locations where 
the flow velocity is high, and pressure is high at locations where the flow 
velocity is low. Also, at moderate angles of attack, lift is practically inde-
pendent of the surface roughness since roughness affects the wall shear, not 
the pressure. The contribution of shear to lift is significant only for very 
small (lightweight) bodies that fly at low velocities (and thus low Reynolds 
numbers).
 Noting that the contribution of viscous effects to lift is negligible, we 
should be able to determine the lift acting on an airfoil by simply integrating 
the pressure distribution around the airfoil. The pressure changes in the flow 
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direction along the surface, but it remains essentially constant through the 
boundary layer in a direction normal to the surface (Chap. 10). Therefore, 
it seems reasonable to ignore the very thin boundary layer on the airfoil 
and calculate the pressure distribution around the airfoil from the relatively 
simple potential flow theory (zero vorticity, irrotational flow) for which net 
viscous forces are zero for flow past an airfoil.
 The flow fields obtained from such calculations are sketched in Fig. 11–41
for both symmetrical and nonsymmetrical airfoils by ignoring the thin 
boundary layer. At zero angle of attack, the lift produced by the symmetrical 
airfoil is zero, as expected because of symmetry, and the stagnation points 
are at the leading and trailing edges. For the nonsymmetrical airfoil, which 
is at a small angle of attack, the front stagnation point has moved down 
below the leading edge, and the rear stagnation point has moved up to the 
upper surface close to the trailing edge. To our surprise, the lift produced 
is calculated again to be zero—a clear contradiction of experimental obser-
vations and measurements. Obviously, the theory needs to be modified to 
bring it in line with the observed phenomenon.
 The source of inconsistency is the rear stagnation point being at the upper 
surface instead of the trailing edge. This requires the lower side fluid to 
make a nearly U-turn and flow around the sharp trailing edge toward the 
stagnation point while remaining attached to the surface, which is a physi-
cal impossibility since the observed phenomenon is the separation of flow 
at sharp turns (imagine a car attempting to make this turn at high speed). 
Therefore, the lower side fluid separates smoothly off the trailing edge, and 
the upper side fluid responds by pushing the rear stagnation point down-
stream. In fact, the stagnation point at the upper surface moves all the way 
to the trailing edge. This way the two flow streams from the top and the 
bottom sides of the airfoil meet at the trailing edge, yielding a smooth flow 
downstream parallel to the sharp trailing edge. Lift is generated because the 
flow velocity at the top surface is higher, and thus the pressure on that sur-
face is lower due to the Bernoulli effect.
 The potential flow theory and the observed phenomenon can be reconciled 
as follows: Flow starts out as predicted by theory, with no lift, but the lower 
fluid stream separates at the trailing edge when the velocity reaches a certain 
value. This forces the separated upper fluid stream to close in at the trail-
ing edge, initiating clockwise circulation around the airfoil. This clockwise 
circulation increases the velocity of the upper stream while decreasing that 
of the lower stream, causing lift. A starting vortex of opposite sign (coun-
terclockwise circulation) is then shed downstream (Fig. 11–42), and smooth 
streamlined flow is established over the airfoil. When the potential flow the-
ory is modified by the addition of an appropriate amount of circulation to 
move the stagnation point down to the trailing edge, excellent agreement is 
obtained between theory and experiment for both the flow field and the lift.
 It is desirable for airfoils to generate the most lift while producing the 
least drag. Therefore, a measure of performance for airfoils is the lift-to-
drag ratio, which is equivalent to the ratio of the lift-to-drag coefficients 
CL/CD. This information is provided either by plotting CL versus CD for dif-
ferent values of the angle of attack (a lift–drag polar) or by plotting the ratio 
CL/CD versus the angle of attack. The latter is done for a particular airfoil 
design in Fig. 11–43. Note that the CL/CD ratio increases with the angle of 

(a) Irrotational flow past a symmetrical
airfoil (zero lift)

Stagnation
points

(b) Irrotational flow past a
nonsymmetrical airfoil (zero lift)

Stagnation
points

(c) Actual flow past a
nonsymmetrical airfoil (positive lift)

Stagnation
points

FIGURE 11–41
Irrotational and actual flow past 

symmetrical and nonsymmetrical 
two-dimensional airfoils.

Clockwise
circulation

Counterclockwise
circulation

Starting
vortex

FIGURE 11–42
Shortly after a sudden increase in 

angle of attack, a counterclockwise 
starting vortex is shed from the airfoil, 

while clockwise circulation appears 
around the airfoil, causing lift to 

be generated.
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NACA 64(1) – 412 airfoil
Re = 7 × 105

FIGURE 11–43
The variation of the lift-to-drag 
ratio with angle of attack for a 
two-dimensional airfoil.
Data from Abbott, von Doenhoff, and Stivers (1945).

FIGURE 11–44
The lift and drag characteristics of an 
airfoil during takeoff and landing are 
changed by changing the shape of the 
airfoil by the use of movable flaps.
Photos by Yunus Çengel. (a) Flaps extended (landing) (b) Flaps retracted (cruising)

attack until the airfoil stalls, and the value of the lift-to-drag ratio can be of 
the order of 100 for a two-dimensional airfoil.
 One obvious way to change the lift and drag characteristics of an airfoil is
to change the angle of attack. On an airplane, for example, the entire plane 
is pitched up to increase lift, since the wings are fixed relative to the fuse-
lage. Another approach is to change the shape of the airfoil by the use of 
movable leading edge and trailing edge flaps, as is commonly done in mod-
ern large aircraft (Fig. 11–44). The flaps are used to alter the shape of the 
wings during takeoff and landing to maximize lift and to enable the aircraft 
to land or take off at low speeds. The increase in drag during this takeoff 
and landing is not much of a concern because of the relatively short time 
periods involved. Once at cruising altitude, the flaps are retracted, and the 
wing is returned to its “normal” shape with minimal drag coefficient and 
adequate lift coefficient to minimize fuel consumption while cruising at a 
constant altitude. Note that even a small lift coefficient can generate a large 
lift force during normal operation because of the large cruising velocities of 
aircraft and the proportionality of lift to the square of flow velocity.
 The effects of flaps on the lift and drag coefficients are shown in Fig. 11–45 
for an airfoil. Note that the maximum lift coefficient increases from about 
1.5 for the airfoil with no flaps to 3.5 for the double-slotted flap case. But 
also note that the maximum drag coefficient increases from about 0.06 for 
the airfoil with no flaps to about 0.3 for the double-slotted flap case. This is 
a fivefold increase in the drag coefficient, and the engines must work much 
harder to provide the necessary thrust to overcome this drag. The angle of 
attack of the flaps can be increased to maximize the lift coefficient. Also, the 
flaps extend the chord length, and thus enlarge the wing area A. The Boeing 
727 uses a triple-slotted flap at the trailing edge and a slot at the leading edge.
 The minimum flight velocity is determined from the requirement that the 
total weight W of the aircraft be equal to lift and CL 5 CL, max. That is,

 W 5 FL 5 1
2 CL, max rV

2
min A  S  Vmin 5 Å 2W

rCL, max A
 (11–24)

For a given weight, the landing or takeoff speed can be minimized by maxi-
mizing the product of the lift coefficient and the wing area, CL, maxA. One way 
of doing that is to use flaps, as already discussed. Another way is to control the 
boundary layer, which can be accomplished simply by leaving flow sections 
(slots) between the flaps, as shown in Fig. 11–46. Slots are used to prevent 
the separation of the boundary layer from the upper surface of the wings and 
the flaps. This is done by allowing air to move from the high-pressure region 
under the wing into the low-pressure region at the top surface. Note that the lift 
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coefficient reaches its maximum value CL 5 CL, max, and thus the flight velocity 
reaches its minimum, at stall conditions, which is a region of unstable opera-
tion and must be avoided. The Federal Aviation Administration (FAA) does not 
allow operation below 1.2 times the stall speed for safety.
 Another thing we notice from this equation is that the minimum velocity 
for takeoff or landing is inversely proportional to the square root of den-
sity. Noting that air density decreases with altitude (by about 15 percent at 
1500 m), longer runways are required at airports at higher altitudes such 
as Denver to accommodate higher minimum takeoff and landing velocities. 
The situation becomes even more critical on hot summer days since the 
density of air is inversely proportional to temperature.
 The development of efficient (low-drag) airfoils was the subject of intense 
experimental investigations in the 1930s. These airfoils were standardized 
by the National Advisory Committee for Aeronautics (NACA, which is now 
NASA), and extensive lists of data on lift coefficients were reported. The 
variation of the lift coefficient CL with angle of attack for two 2-D (infinite 
span) airfoils (NACA 0012 and NACA 2412) is given in Fig. 11–47. We 
make the following observations from this figure:

• The lift coefficient increases almost linearly with angle of attack a, 
reaches a maximum at about a 5 168, and then starts to decrease sharply. 
This decrease of lift with further increase in the angle of attack is called 
stall, and it is caused by flow separation and the formation of a wide wake 
region over the top surface of the airfoil. Stall is highly undesirable since 
it also increases drag.

• At zero angle of attack (a 5 08), the lift coefficient is zero for symmetrical 
airfoils but nonzero for nonsymmetrical ones with greater curvature at the 
top surface. Therefore, planes with symmetrical wing sections must fly with 
their wings at higher angles of attack in order to produce the same lift.

• The lift coefficient is increased by severalfold by adjusting the angle of attack 
(from 0.25 at a 5 08 for the nonsymmetrical airfoil to 1.25 at a 5 108).

• The drag coefficient also increases with angle of attack, often 
exponentially (Fig. 11–48). Therefore, large angles of attack should 
be used sparingly for short periods of time for fuel efficiency.

0 5–5 2010

3.48

CLmax

CL

CDAngle of attack,    (deg.)a
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2.0
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1.0

0.5

Slotted flap

Clean (no flap)

Double-slotted
flapDouble-slotted

flap

2.67

Slotted flap

1.52

Clean (no flap)
FIGURE 11–45

Effect of flaps on the lift and drag 
coefficients of an airfoil.

Data from Abbott and von Doenhoff, for 
NACA 23012 (1959).

Wing

Slot

Flap

FIGURE 11–46
A flapped airfoil with a slot to prevent 

the separation of the boundary layer 
from the upper surface and to increase 

the lift coefficient.
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Finite-Span Wings and Induced Drag
For airplane wings and other airfoils of finite span, the end effects at the 
tips become important because of the fluid leakage between the lower and 
upper surfaces. The pressure difference between the lower surface (high-
pressure region) and the upper surface (low-pressure region) drives the fluid 
at the tips upward while the fluid is swept toward the back because of the 
relative motion between the fluid and the wing. This results in a swirling 
motion that spirals along the flow, called the tip vortex, at the tips of both 
wings. Vortices are also formed along the airfoil between the tips of the 
wings. These distributed vortices collect toward the edges after being 
shed from the trailing edges of the wings and combine with the tip vorti-
ces to form two streaks of powerful trailing vortices along the tips of the 
wings (Fig. 11–49). Trailing vortices generated by large aircraft persist for 
a long time for long distances (over 10 km) before they gradually disappear 
due to viscous dissipation. Such vortices and the accompanying downdraft 
are strong enough to cause a small aircraft to lose control and flip over if 
it flies through the wake of a larger aircraft. Therefore, following a large 
aircraft closely (within 10 km) poses a real danger for smaller aircraft. This 
issue is the controlling factor that governs the spacing of aircraft at take-
off, which limits the flight capacity at airports. In nature, this effect is used 
to advantage by birds that migrate in V-formation by utilizing the updraft 
generated by the bird in front. It has been determined that the birds in a 
typical flock can fly to their destination in V-formation with one-third less 
energy. Military jets also occasionally fly in V-formation for the same reason 
(Fig. 11–50).
 Tip vortices that interact with the free stream impose forces on the wing 
tips in all directions, including the flow direction. The component of the 
force in the flow direction adds to drag and is called induced drag. The 
total drag of a wing is then the sum of the induced drag (3-D effects) and 
the drag of the airfoil section (2-D effects).
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V
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NACA 0012 section

NACA 2412 section

FIGURE 11–47
The variation of the lift coefficient 
with angle of attack for a symmetrical 
and a nonsymmetrical airfoil.
Data from Abbott (1945, 1959).
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FIGURE 11–48
The variation of the drag coefficient 
of an airfoil with angle of attack.
Data from Abbott and von Doenhoff (1959).
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 The ratio of the square of the average span of an airfoil to the planform 
area is called the aspect ratio. For an airfoil with a rectangular planform of 
chord c and span b, it is expressed as

 AR 5
b2

A
5

b2

bc
5

b
c

 (11–25)

Therefore, the aspect ratio is a measure of how (relatively) narrow an airfoil 
is in the flow direction. The lift coefficient of wings, in general, increases 
while the drag coefficient decreases with increasing aspect ratio. This is 
because a long narrow wing (large aspect ratio) has a shorter tip length 
and thus smaller tip losses and smaller induced drag than a short and wide 
wing of the same planform area. Therefore, bodies with large aspect ratios 
fly more efficiently, but they are less maneuverable because of their larger 
moment of inertia (owing to the greater distance from the center). Bodies 
with smaller aspect ratios maneuver better since the wings are closer to the 
central part. So it is no surprise that fighter planes (and fighter birds like 
falcons) have short and wide wings while large commercial planes (and 
soaring birds like albatrosses) have long and narrow wings.
 The end effects can be minimized by attaching endplates or winglets at 
the tips of the wings perpendicular to the top surface. The endplates func-
tion by blocking some of the leakage around the wing tips, which results in 
a considerable reduction in the strength of the tip vortices and the induced 
drag. Wing tip feathers on birds fan out for the same purpose (Fig. 11–51).

Lift Generated by Spinning
You have probably experienced giving a spin to a tennis ball or making a 
drop shot on a tennis or ping-pong ball by giving a fore spin in order to 
alter the lift characteristics and cause the ball to produce a more desirable 
trajectory and bounce of the shot. Golf, soccer, and baseball players also 
utilize spin in their games. The phenomenon of producing lift by the rota-
tion of a solid body is called the Magnus effect after the German scientist 
Heinrich Magnus (1802–1870), who was the first to study the lift of rotating 
bodies, which is illustrated in Fig. 11–52 for the simplified case of irrota-
tional (potential) flow. When the ball is not spinning, the lift is zero because 
of top–bottom symmetry. But when the cylinder is rotated about its axis, the 
cylinder drags some fluid around because of the no-slip condition and the 
flow field reflects the superposition of the spinning and nonspinning flows. 
The stagnation points shift down, and the flow is no longer symmetric about 
the horizontal plane that passes through the center of the cylinder. The aver-
age pressure on the upper half is less than the average pressure on the lower 
half because of the Bernoulli effect, and thus there is a net upward force 
(lift) acting on the cylinder. A similar argument can be given for the lift 
generated on a spinning ball.
 The effect of the rate of rotation on the lift and drag coefficients of a smooth 
sphere is shown in Fig. 11–53. Note that the lift coefficient strongly depends 
on the rate of rotation, especially at low angular velocities. The effect of the 
rate of rotation on the drag coefficient is small. Roughness also affects the 
drag and lift coefficients. In a certain range of Reynolds number, roughness 
produces the desirable effect of increasing the lift coefficient while decreasing 

FIGURE 11–49
Trailing vortices visualized in various 
ways: (a) Smoke streaklines in a wind 

tunnel show vortex cores leaving the 
trailing edge of a rectangular wing; 

(b) Four contrails initially formed by 
condensation of water vapor in the 
low pressure region behind the jet 
engines eventually merge into the 

two counter-rotating trailing vortices 
that persist very far downstream; (c) 

A crop duster flies through smoky air 
which swirls around in one of the tip 

vortices from the aircraft’s wing.

(a)

(b)

(c)

(a) Courtesy of the Parabolic Press, Stanford, 
California; (b) Geostock/Getty Images; 

(c) NASA Langley Research Center
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FIGURE 11–50
(a) Geese flying in their characteristic 
V-formation to save energy. 
(b) Military jets imitating nature.
(a) © Royalty-Free/CORBIS 
(b) © Charles Smith/Corbis RF

FIGURE 11–51
Induced drag is reduced by 
(a) wing tip feathers on bird wings 
and (b) endplates or other 
disruptions on airplane wings.
(a) © Jeremy Woodhouse/Getty RF; (b) Courtesy of 
Jacques Noel, Schempp-Hirth. Used by permission.

(b) Winglets are used on this sailplane to reduce 
induced drag.

(a) A bearded vulture with its wing feathers 
fanned out during flight.

the drag coefficient. Therefore, golf balls with the right amount of roughness 
travel higher and farther than smooth balls for the same hit.

EXAMPLE 11–5    Lift and Drag of a Commercial Airplane

A commercial airplane has a total mass of 70,000 kg and a wing planform 

area of 150 m2 (Fig. 11–54). The plane has a cruising speed of 558 km/h 

and a cruising altitude of 12,000 m, where the air density is 0.312 kg/m3. 

The plane has double-slotted flaps for use during takeoff and landing, but it 

cruises with all flaps retracted. Assuming the lift and the drag characteristics 

of the wings can be approximated by NACA 23012 (Fig. 11–45), determine 

(a) the minimum safe speed for takeoff and landing with and without extend-

ing the flaps, (b) the angle of attack to cruise steadily at the cruising alti-

tude, and (c) the power that needs to be supplied to provide enough thrust 

to overcome wing drag.

SOLUTION  The cruising conditions of a passenger plane and its wing char-

acteristics are given. The minimum safe landing and takeoff speeds, the 

angle of attack during cruising, and the power required are to be determined.

Assumptions  1 The drag and lift produced by parts of the plane other 

than the wings, such as the fuselage are not considered. 2 The wings are 

assumed to be two-dimensional airfoil sections, and the tip effects of the 

wings are not considered. 3 The lift and the drag characteristics of the wings 

are approximated by NACA 23012 so that Fig. 11–45 is applicable. 4 The 

average density of air on the ground is 1.20 kg/m3.

Properties  The density of air is 1.20 kg/m3 on the ground and 0.312 kg/m3 

at cruising altitude. The maximum lift coefficient CL, max of the wing is 3.48 

and 1.52 with and without flaps, respectively (Fig. 11–45).

Analysis  (a) The weight and cruising speed of the airplane are

 W 5 mg 5 (70,000 kg)(9.81 m/s2)a 1 N

1 kg·m/s2b 5 686,700 N

 V 5 (558 km/h)a 1 m/s

3.6 km/h
b 5 155 m/s

The minimum velocities corresponding to the stall conditions without and 

with flaps, respectively, are obtained from Eq. 11–24,

 Vmin 1 5 Å 2W

rCL, max 1A
5 Å 2(686,700 N)

(1.2 kg/m3)(1.52)(150 m2)
 a1 kg·m/s2

1 N
b 5 70.9 m/s

 Vmin 2 5 Å 2W

rCL, max 2A
5 Å 2(686,700 N)

(1.2 kg/m3)(3.48)(150 m2)
 a1 kg·m/s2

1 N
b 5 46.8 m/s

Then the “safe” minimum velocities to avoid the stall region are obtained by 

multiplying the values above by 1.2:

 Without flaps: Vmin 1, safe 5 1.2Vmin 1 5 1.2(70.9 m/s) 5 85.1 m/s 5 306 km/h

 With flaps: Vmin 2, safe 5 1.2Vmin 2 5 1.2(46.8 m/s) 5 56.2 m/s 5 202 km/h

since 1 m/s 5 3.6 km/h. Note that the use of flaps allows the plane to take 

off and land at considerably lower velocities, and thus on a shorter runway.
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(b) Potential flow over a rotating cylinder(a) Potential flow over a stationary cylinder

FIGURE 11–52
Generation of lift on a rotating circular 

cylinder for the case of “idealized” 
potential flow (the actual flow 
involves flow separation in the 

wake region).

(b) When an aircraft is cruising steadily at a constant altitude, the lift 

must be equal to the weight of the aircraft, FL 5 W. Then the lift 

coefficient is 

CL 5
FL

1
2 r V 2A

5
686,700 N

1
2 (0.312 kg/m3)(155 m/s)2(150 m2)

a1 kg·m/s2

1 N
b 5 1.22

For the case with no flaps, the angle of attack corresponding to this value of 

CL is determined from Fig. 11–45 to be a ù 10 8.

(c) When the aircraft is cruising steadily at a constant altitude, the net force 

acting on the aircraft is zero, and thus thrust provided by the engines must 

be equal to the drag force. The drag coefficient corresponding to the cruis-

ing lift coefficient of 1.22 is determined from Fig. 11–45 to be CD ù 0.03 

for the case with no flaps. Then the drag force acting on the wings becomes

FD 5 CD A 
rV 2

2
5 (0.03)(150 m2)

(0.312 kg/m3)(155 m/s)2

2
a 1 kN

1000 kg·m/s2b
 5 16.9 kN 

Noting that power is force times velocity (distance per unit time), the power 

required to overcome this drag is equal to the thrust times the cruising 

velocity:

Power 5 Thrust 3 Velocity 5 FDV 5 (16.9 kN)(155 m/s)a 1 kW

1 kN·m/s
b

 5 2620 kW 

Therefore, the engines must supply 2620 kW of power to overcome the drag 

on the wings during cruising. For a propulsion efficiency of 30 percent (i.e., 

30 percent of the energy of the fuel is utilized to propel the aircraft), the 

plane requires energy input at a rate of 8730 kJ/s.

Discussion  The power determined is the power to overcome the drag that acts 

on the wings only and does not include the drag that acts on the remaining 

parts of the aircraft (the fuselage, the tail, etc.). Therefore, the total power 

required during cruising will be much greater. Also, it does not consider 

induced drag, which can be dominant during takeoff when the angle of attack 

is high (Fig. 11–45 is for a 2-D airfoil, and does not include 3-D effects).
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FIGURE 11–53
The variation of lift and drag 
coefficients of a smooth sphere with 
the nondimensional rate of rotation 
for Re 5 VD/n 5 6 3 104.
Data from Goldstein (1938).

558 km/h

70,000 kg

12,000 m

150 m2, double-flapped

FIGURE 11–54
Schematic for Example 11–5.

EXAMPLE 11–6    Effect of Spin on a Tennis Ball

A tennis ball with a mass of 0.125 lbm and a diameter of 2.52 in is hit at 

45 mi/h with a backspin of 4800 rpm (Fig. 11–55). Determine if the ball 

will fall or rise under the combined effect of gravity and lift due to spinning 

shortly after being hit in air at 1 atm and 808F.

SOLUTION  A tennis ball is hit with a backspin. It is to be determined 

whether the ball will fall or rise after being hit.

Assumptions  1 The surface of the ball is smooth enough for Fig. 11–53 to 

be applicable (this is a stretch for a tennis ball). 2 The ball is hit horizon-

tally so that it starts its motion horizontally.

Properties  The density and kinematic viscosity of air at 1 atm and 808F are 

r 5 0.07350 lbm/ft3 and n 5 1.697 3 1024 ft2/s.

Analysis  The ball is hit horizontally, and thus it would normally fall under 

the effect of gravity without the spin. The backspin generates a lift, and the 

ball will rise if the lift is greater than the weight of the ball. The lift is deter-

mined from

FL 5 CL A 

rV 2

2

where A is the frontal area of the ball, which is A 5 pD 2/4. The translational 

and angular velocities of the ball are

 V 5 (45 mi/h)a5280 ft

1 mi
b a 1 h

3600 s
b 5 66 ft/s

 v 5 (4800 rev/min)a2p rad

1 rev
b a1 min

60 s
b 5 502 rad/s

Then, the nondimensional rate of rotation is

vD

2V
5

(502 rad/s)(2.52/12 ft)

2(66 ft/s)
5 0.80 rad

From Fig. 11–53, the lift coefficient corresponding to this value is 

CL 5 0.21. Then the lift force acting on the ball is

 FL 5 (0.21) 

p(2.52/12 ft)2

4
 
(0.0735 lbm/ft3)(66 ft/s)2

2
a 1 lbf

32.2 lbm·ft/s2b
 5 0.036 lbf

The weight of the ball is

W 5 mg 5 (0.125 lbm)(32.2 ft/s2)a 1 lbf

32.2 lbm·ft/s2b 5 0.125 lbf

which is more than the lift. Therefore, the ball will drop under the combined 

effect of gravity and lift due to spinning with a net force of 0.125 2 0.036 5
0.089 lbf.

Discussion  This example shows that the ball can be hit much farther by giv-

ing it a backspin. Note that a topspin has the opposite effect (negative lift) 

and speeds up the drop of the ball to the ground. Also, the Reynolds number 

for this problem is 8 3 104, which is sufficiently close to the 6 3 104 for 

which Fig. 11–53 is prepared.
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45 mi/h

4800 rpm

Ball
m = 0.125 lbm

FIGURE 11–55
Schematic for Example 11–6.

 Also keep in mind that although some spin may increase the distance trav-

eled by a ball, there is an optimal spin that is a function of launch angle, 

as most golfers are now more aware. Too much spin decreases distance by 

introducing more induced drag.

 No discussion on lift and drag would be complete without mentioning 
the contributions of Wilbur (1867–1912) and Orville (1871–1948) Wright. 
The Wright Brothers are truly the most impressive engineering team of all 
time. Self-taught, they were well informed of the contemporary theory and 
practice in aeronautics. They both corresponded with other leaders in the 
field and published in technical journals. While they cannot be credited with 
developing the concepts of lift and drag, they used them to achieve the first 
powered, manned, heavier-than-air, controlled flight (Fig. 11–56). They 
succeeded, while so many before them failed, because they evaluated and 
designed parts separately. Before the Wrights, experimenters were building 
and testing whole airplanes. While intuitively appealing, the approach did 
not allow the determination of how to make the craft better. When a flight 
lasts only a moment, you can only guess at the weakness in the design. 
Thus, a new craft did not necessarily perform any better than its predeces-
sor. Testing was simply one belly flop followed by another. The Wrights 
changed all that. They studied each part using scale and full-size models 
in wind tunnels and in the field. Well before the first powered flyer was 
assembled, they knew the area required for their best wing shape to sup-
port a plane carrying a man and the engine horsepower required to provide 
adequate thrust with their improved impeller. The Wright Brothers not 
only showed the world how to fly, they showed engineers how to use the 
equations presented here to design even better aircraft.

FIGURE 11–56
The Wright Brothers take flight at 

Kitty Hawk.
Library of Congress Prints & Photographs 

Division [LC-DIG-ppprs-00626].

SUMMARY

In this chapter, we study flow of fluids over immersed bodies
with emphasis on the resulting lift and drag forces. A fluid 
may exert forces and moments on a body in and about vari-
ous directions. The force a flowing fluid exerts on a body in 
the flow direction is called drag while that in the direction 
normal to the flow is called lift. The part of drag that is due 
directly to wall shear stress tw is called the skin friction drag 
since it is caused by frictional effects, and the part that is 
due directly to pressure P is called the pressure drag or form 
drag because of its strong dependence on the form or shape 
of the body.
 The drag coefficient CD and the lift coefficient CL are 
dimensionless numbers that represent the drag and the lift 
characteristics of a body and are defined as

CD 5
FD

1
2rV

2A
  and  CL 5

FL
1
2rV 2A

where A is usually the frontal area (the area projected on a 
plane normal to the direction of flow) of the body. For plates 
and airfoils, A is taken to be the planform area, which is the 
area that would be seen by a person looking at the body from 
directly above. The drag coefficient, in general, depends on 
the Reynolds number, especially for Reynolds numbers below 
104. At higher Reynolds numbers, the drag coefficients for 
many geometries remain essentially constant.
 A body is said to be streamlined if a conscious effort is 
made to align its shape with the anticipated streamlines in 
the flow in order to reduce drag. Otherwise, a body (such as 
a building) tends to block the flow and is said to be bluff. At 
sufficiently high velocities, the fluid stream detaches itself 
from the surface of the body. This is called flow separa-
tion. When a fluid stream separates from the body, it forms 
a separated region between the body and the fluid stream. 
Separation may also occur on a streamlined body such as an 
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 1. I. H. Abbott. “The Drag of Two Streamline Bodies as 
Affected by Protuberances and Appendages,” NACA 
Report 451, 1932.

 2. I. H. Abbott and A. E. von Doenhoff. Theory of Wing 
Sections, Including a Summary of Airfoil Data. New York: 
Dover, 1959.

airplane wing at a sufficiently large angle of attack, which 
is the angle the incoming fluid stream makes with the chord 
(the line that connects the nose and the end) of the body. 
Flow separation on the top surface of a wing reduces lift 
drastically and may cause the airplane to stall.
 The region of flow above a surface in which the effects of 
the viscous shearing forces caused by fluid viscosity are felt 
is called the velocity boundary layer or just the boundary 
layer. The thickness of the boundary layer, d, is defined as 
the distance from the surface at which the velocity is 0.99V. 
The hypothetical line of velocity 0.99V divides the flow over 
a plate into two regions: the boundary layer region, in which 
the viscous effects and the velocity changes are significant, 
and the irrotational outer flow region, in which the frictional 
effects are negligible and the velocity remains essentially 
constant.
 For external flow, the Reynolds number is expressed as

ReL 5
rVL

m
5

VL
n

where V is the upstream velocity and L is the characteristic 
length of the geometry, which is the length of the plate in 
the flow direction for a flat plate and the diameter D for a 
cylinder or sphere. The average friction coefficients over an 
entire flat plate are

Laminar flow: Cf 5
1.33

Re1/2
L

  ReL & 5 3 105

Turbulent flow: Cf 5
0.074

Re1/5
L

  5 3 105 & ReL & 107

If the flow is approximated as laminar up to the engineer-
ing critical number of Recr 5 5 3 105, and then turbulent 
beyond, the average friction coefficient over the entire flat 
plate becomes

Cf 5
0.074

Re1/5
L

2
1742

ReL

  5 3 105 & ReL & 107

A curve fit of experimental data for the average friction 
coefficient in the fully rough turbulent regime is

Rough surface: Cf 5 a1.89 2 1.62 log 
e

L
b22.5

where e is the surface roughness and L is the length of the 
plate in the flow direction. In the absence of a better one, 
this relation can be used for turbulent flow on rough surfaces 
for Re . 106, especially when e/L . 1024.
 Surface roughness, in general, increases the drag coefficient 
in turbulent flow. For bluff bodies such as a circular cylin-
der or sphere, however, an increase in the surface roughness 
may decrease the drag coefficient. This is done by tripping 
the flow into turbulence at a lower Reynolds number, and thus 
causing the fluid to close in behind the body, narrowing the 
wake and reducing pressure drag considerably.
 It is desirable for airfoils to generate the most lift while 
producing the least drag. Therefore, a measure of perfor-
mance for airfoils is the lift-to-drag ratio, CL/CD.
 The minimum safe flight velocity of an aircraft is deter-
mined from

Vmin 5 Å 2W

rCL, max A

For a given weight, the landing or takeoff speed can be mini-
mized by maximizing the product of the lift coefficient and 
the wing area, CL, maxA.
 For airplane wings and other airfoils of finite span, the 
pressure difference between the lower and the upper surfaces 
drives the fluid at the tips upward. This results in swirling 
eddies, called tip vortices. Tip vortices that interact with the 
free stream impose forces on the wing tips in all directions, 
including the flow direction. The component of the force in 
the flow direction adds to drag and is called induced drag. The 
total drag of a wing is then the sum of the induced drag (3-D 
effects) and the drag of the airfoil section (2-D effects).
 It is observed that lift develops when a cylinder or sphere 
in flow is rotated at a sufficiently high rate. The phenome-
non of producing lift by the rotation of a solid body is called 
the Magnus effect.
 Some external flows, complete with flow details including 
plots of velocity fields, are solved using computational fluid 
dynamics, and presented in Chap. 15.

 3. I. H. Abbott, A. E. von Doenhoff, and L. S. Stivers. 
“Summary of Airfoil Data,” NACA Report 824, Langley 
Field, VA, 1945.

 4. J. D. Anderson. Fundamentals of Aerodynamics, 5th ed. 
New York: McGraw-Hill, 2010.
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FIGURE 11–58
Microelectrokinetic actuator array 
(MEKA-5) with 25,600 individual 

actuators at 325-mm spacing for full-
scale hydronautical drag reduction. 

Close-up of a single unit cell (top) and 
partial view of the full array (bottom).

Guest Author: Werner J. A. Dahm, The University 
of Michigan

A reduction of just a few percent in the drag that acts on an air vehicle, a 
naval surface vehicle, or an undersea vehicle can translate into large reduc-
tions in fuel weight and operating costs, or increases in vehicle range and 
payload. One approach to achieve such drag reduction is to actively con-
trol naturally occurring streamwise vortices in the viscous sublayer of the 
turbulent boundary layer at the vehicle surface. The thin viscous sublayer 
at the base of any turbulent boundary layer is a powerful nonlinear system, 
capable of amplifying small microactuator-induced perturbations into large 
reductions in the vehicle drag. Numerous experimental, computational, and 
theoretical studies have shown that reductions of 15 to 25 percent in the wall 
shear stress are possible by properly controlling these sublayer structures. 
The challenge has been to develop large, dense arrays of microactuators that 
can manipulate these structures to achieve drag reduction on practical aero-
nautical and hydronautical vehicles (Fig. 11–57). The sublayer structures 
are typically a few hundred microns, and thus well matched to the scale of 
microelectromechanical systems (MEMS).
 Figure 11–58 shows an example of one type of such microscale actua-
tor array based on the electrokinetic principle that is potentially suitable 
for active sublayer control on real vehicles. Electrokinetic flow provides a 
way to move small amounts of fluid on very fast time scales in very small 
devices. The actuators impulsively displace a fixed volume of fluid between 
the wall and the viscous sublayer in a manner that counteracts the effect of 
the sublayer vortices. A system architecture based on independent unit cells, 
appropriate for large arrays of such microactuators, provides greatly reduced 
control processing requirements within individual unit cells, which consist of 
a relatively small number of individual sensors and actuators. Fundamental 
consideration of the scaling principles governing electrokinetic flow, as well 
as the sublayer structure and dynamics and microfabrication technologies, 
have been used to develop and produce full-scale electrokinetic microactua-
tor arrays that can meet many of the requirements for active sublayer control 
of turbulent boundary layers under real-vehicle conditions. 
 Such microelectrokinetic actuator (MEKA) arrays, when fabricated with 
wall shear stress sensors also based on microelectromechanical systems fab-
rication, may in the future allow engineers to achieve dramatic reductions in 
the drag acting on practical aeronautical and hydronautical vehicles.
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FIGURE 11–57
Drag-reducing microactuator arrays 

on the hull of a submarine. Shown 
is the system architecture with tiles 

composed of unit cells containing 
sensors and actuators.
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Drag, Lift, and Drag Coefficients

11–1C  Which bicyclist is more likely to go faster: one who 
keeps his head and his body in the most upright position or 
one who leans down and brings his body closer to his knees? 
Why?

11–2C  Consider laminar flow over a flat plate. How does 
the local friction coefficient change with position?

11–3C  Define the frontal area of a body subjected to exter-
nal flow. When is it appropriate to use the frontal area in drag 
and lift calculations?

11–4C  Define the planform area of a body subjected to 
external flow. When is it appropriate to use the planform area 
in drag and lift calculations?

11–5C  Explain when an external flow is two-dimensional, 
three-dimensional, and axisymmetric. What type of flow is 
the flow of air over a car?

11–6C  What is the difference between the upstream veloc-
ity and the free-stream velocity? For what types of flow are 
these two velocities equal to each other?

11–7C  What is the difference between streamlined and 
bluff bodies? Is a tennis ball a streamlined or bluff body?

11–8C  Name some applications in which a large drag is 
desired.

11–9C  What is drag? What causes it? Why do we usually 
try to minimize it?

11–10C  What is lift? What causes it? Does wall shear con-
tribute to the lift?

11–11C  During flow over a given body, the drag force, 
the upstream velocity, and the fluid density are measured. 
Explain how you would determine the drag coefficient. What 
area would you use in the calculations?

11–12C  During flow over a given slender body such 
as a wing, the lift force, the upstream velocity, and the 
fluid density are measured. Explain how you would deter-
mine the lift coefficient. What area would you use in the 
calculations?

11–13C  What is terminal velocity? How is it determined?

11–14C  What is the difference between skin friction drag 
and pressure drag? Which is usually more significant for 
slender bodies such as airfoils?

11–15C  What is the effect of surface roughness on the fric-
tion drag coefficient in laminar and turbulent flows?

11–16C  What is the effect of streamlining on (a) friction 
drag and (b) pressure drag? Does the total drag acting on a 
body necessarily decrease as a result of streamlining? Explain.

11–17C  What is flow separation? What causes it? What is 
the effect of flow separation on the drag coefficient?

11–18C  What is drafting? How does it affect the drag coef-
ficient of the drafted body?

PROBLEMS*

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Problems 

with the  icon are solved using EES, and complete solutions 

together with parametric studies are included on the text website. 

Problems with the  icon are comprehensive in nature and are 

intended to be solved with an equation solver such as EES.
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11–25E  To reduce the drag coefficient and thus to improve 
the fuel efficiency, the frontal area of a car is to be reduced. 
Determine the amount of fuel and money saved per year as a 
result of reducing the frontal area from 18 to 15 ft2. Assume the 
car is driven 12,000 mi a year at an average speed of 55 mi/h. 
Take the density and price of gasoline to be 50  lbm/ft3 and 
$3.10/gal, respectively; the density of air to be 0.075 lbm/ft3, 
the heating value of gasoline to be 20,000 Btu/lbm; and the 
overall efficiency of the engine to be 30 percent.

11–26E  Reconsider Prob. 11–25E. Using EES (or 
other) software, investigate the effect of fron-

tal area on the annual fuel consumption of the car. Let the 
frontal area vary from 10 to 30 ft2 in increments of 2 ft2. Tab-
ulate and plot the results.

11–27  A circular sign has a diameter of 50 cm and is 
subjected to normal winds up to 150 km/h at 

108C and 100 kPa. Determine the drag force acting on the 
sign. Also determine the bending moment at the bottom of its 
pole whose height from the ground to the bottom of the sign 
is 1.5 m. Disregard the drag on the pole.

1.5 m

150 km/h SIGNSIGN

FIGURE P11–27

11–28E  Bill gets a job delivering pizzas. The pizza com-
pany makes him mount a sign on the roof of his car. The 
frontal area of the sign is A 5 0.612 ft2, and he estimates 
the drag coefficient to be CD 5 0.94 at nearly all air speeds. 
Estimate how much additional money it costs Bill per year in 
fuel to drive with the sign on his roof compared to without 
the sign. Use the following additional information: He drives 
about 10,000 miles per year at an average speed of 45 mph. 
The overall car efficiency is 0.332, rfuel 5 50.2 lbm/ft3, and 
the heating value of the fuel is 1.53 3 107 ft . lbf/lbm. The 
fuel costs $3.50 per gallon.  Use standard air properties. Be 
careful with unit conversions.

11–29  Advertisement signs are commonly carried by taxi-
cabs for additional income, but they also increase the fuel cost. 
Consider a sign that consists of a 0.30-m-high, 0.9-m-wide, 
and 0.9-m-long rectangular block mounted on top of a taxicab 
such that the sign has a frontal area of 0.3 m by 0.9 m from 
all four sides. Determine the increase in the annual fuel cost 
of this taxicab due to this sign. Assume the taxicab is driven 
60,000 km a year at an average speed of 50 km/h and the over-
all efficiency of the engine is 28 percent. Take the density, 

11–19C  In general, how does the drag coefficient vary with 
the Reynolds number at (a) low and moderate Reynolds num-
bers and (b) at high Reynolds numbers (Re . 104)?

11–20C  Fairings are attached to the front and back of a 
cylindrical body to make it look more streamlined. What is the 
effect of this modification on the (a) friction drag, (b)  pres-
sure drag, and (c) total drag? Assume the Reynolds number is 
high enough so that the flow is turbulent for both cases.

FIGURE P11–20C

Fairings

Cylinder

V

11–21  The drag coefficient of a car at the design conditions 
of 1 atm, 258C, and 90 km/h is to be determined experimen-
tally in a large wind tunnel in a full-scale test. The height and 
width of the car are 1.25 m and 1.65 m, respectively. If the 
horizontal force acting on the car is measured to be 220 N, 
determine the total drag coefficient of this car.  Answer: 0.29

11–22  The resultant of the pressure and wall shear forces 
acting on a body is measured to be 580 N, making 358 with 
the direction of flow. Determine the drag and the lift forces 
acting on the body.

35°

FR = 580 N
V

FIGURE P11–22

11–23  During a high Reynolds number experiment, the total 
drag force acting on a spherical body of diameter D 5 12 cm 
subjected to airflow at 1 atm and 58C is measured to be 5.2 N. 
The pressure drag acting on the body is calculated by integrat-
ing the pressure distribution (measured by the use of pressure 
sensors throughout the surface) to be 4.9  N. Determine the 
friction drag coefficient of the sphere.  Answer: 0.0115

11–24  A car is moving at a constant velocity of 110 km/h. 
Determine the upstream velocity to be used in fluid flow 
analysis if (a) the air is calm, (b) wind is blowing against 
the direction of motion of the car at 30 km/h, and (c) wind 
is blowing in the same direction of motion of the car at 
30 km/h.
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9 m

0.75 m

2 m

2.5 m

FIGURE P11–33

11–34  A 70-kg bicyclist is riding her 15-kg bicycle down-
hill on a road with a slope of 88 without pedaling or braking. 
The bicyclist has a frontal area of 0.45 m2 and a drag coef-
ficient of 1.1 in the upright position, and a frontal area of 
0.4 m2 and a drag coefficient of 0.9 in the racing position. 
Disregarding the rolling resistance and friction at the bear-
ings, determine the terminal velocity of the bicyclist for both 
positions. Take the air density to be 1.25 kg/m3.  Answers: 

70 km/h, 82 km/h

11–35  A wind turbine with two or four hollow hemispheri-
cal cups connected to a pivot is commonly used to measure 
wind speed. Consider a wind turbine with four 8-cm-diameter 
cups with a center-to-center distance of 40 cm, as shown in 
Fig. P11–35. The pivot is stuck as a result of some malfunc-
tion, and the cups stop rotating. For a wind speed of 15 m/s 
and air density of 1.25 kg/m3, determine the maximum torque 
this turbine applies on the pivot.

40 cm

FIGURE P11–35

11–36  Reconsider Prob. 11–35. Using EES (or other) 
software, investigate the effect of wind speed 

on the torque applied on the pivot. Let the wind speed vary 
from 0 to 50 m/s in increments of 5 m/s. Tabulate and plot 
the results.

unit price, and heating value of gasoline to be 0.72  kg/L, 
$1.10/L, and 42,000 kJ/kg, respectively, and the density of air 
to be 1.25 kg/m3.

TAXI

Pa’s Pizza

FIGURE P11–29

11–30E  At highway speeds, about half of the power gener-
ated by the car’s engine is used to overcome aerodynamic drag, 
and thus the fuel consumption is nearly proportional to the 
drag force on a level road. Determine the percentage increase 
in fuel consumption of a car per unit time when a person who 
normally drives at 55 mi/h now starts driving at 75 mi/h.

11–31  A submarine can be treated as an ellipsoid with a 
diameter of 5 m and a length of 25 m. Determine the power 
required for this submarine to cruise horizontally and steadily 
at 40 km/h in seawater whose density is 1025 kg/m3. Also 
determine the power required to tow this submarine in air 
whose density is 1.30 kg/m3. Assume the flow is turbulent in 
both cases.

40 km/h
Submarine

FIGURE P11–31

11–32E  Wind loading is a primary consideration in the 
design of the supporting mechanisms of billboards, as evi-
denced by many billboards being knocked down during high 
winds. Determine the wind force acting on an 12-ft-high, 
20-ft-wide billboard due to 55-mi/h winds in the normal 
direction when the atmospheric conditions are 14.3 psia and 
408F.  Answer: 2170 lbf

11–33  During major windstorms, high vehicles such as RVs 
and semis may be thrown off the road and boxcars off their 
tracks, especially when they are empty and in open areas. 
Consider a 5000-kg semi that is 9 m long, 2.5 m high, and 
2 m wide. The distance between the bottom of the truck and 
the road is 0.75 m. Now the truck is exposed to winds from 
its side surface. Determine the wind velocity that will tip the 
truck over to its side. Take the air density to be 1.1 kg/m3 and 
assume the weight to be uniformly distributed.
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inside to be 150 kg/m3 and taking the air density to be 
1.25 kg/m3, estimate the wind velocity during the night when 
the can was tipped over. Take the drag coefficient of the can 
to be 0.7.  Answer: 159 km/h

11–42  A 6-mm-diameter plastic sphere whose density is 
1150 kg/m3 is dropped into water at 208C. Determine the ter-
minal velocity of the sphere in water.

11–43  A 7-m-diameter hot air balloon that has a total mass 
of 350 kg is standing still in air on a windless day. The bal-
loon is suddenly subjected to 40 km/h winds. Determine the 
initial acceleration of the balloon in the horizontal direction.

11–44E  The drag coefficient of a vehicle increases when its 
windows are rolled down or its sunroof is opened. A sports 
car has a frontal area of 18 ft2 and a drag coefficient of 0.32 
when the windows and sunroof are closed. The drag coeffi-
cient increases to 0.41 when the sunroof is open. Determine 
the additional power consumption of the car when the sunroof 
is opened at (a) 35 mi/h and (b) 70 mi/h. Take the density of 
air to be 0.075 lbm/ft3.

Sunroof
closed

Sunroof
openCD 5 0.32

CD 5 0.41

FIGURE P11–44E

11–45  To reduce the drag coefficient and thus to improve 
the fuel efficiency of cars, the design of side rearview mir-
rors has changed drastically in recent decades from a simple 
circular plate to a streamlined shape. Determine the amount 
of fuel and money saved per year as a result of replacing a 
13-cm-diameter flat mirror by one with a hemispherical back, 
as shown in the figure. Assume the car is driven 24,000 km 
a year at an average speed of 95 km/h. Take the density and 
price of gasoline to be 0.75 kg/L and $0.90/L, respectively; 
the heating value of gasoline to be 44,000 kJ/kg; and the 
overall efficiency of the engine to be 30 percent.

11–37E  A 5-ft-diameter spherical tank completely sub-
merged in freshwater is being towed by a ship at 12 ft/s. 
Assuming turbulent flow, determine the required towing power.

11–38  During steady motion of a vehicle on a level road, 
the power delivered to the wheels is used to overcome aero-
dynamic drag and rolling resistance (the product of the rolling 
resistance coefficient and the weight of the vehicle), assum-
ing the friction at the bearings of the wheels is negligible. 
Consider a car that has a total mass of 950 kg, a drag coef-
ficient of 0.32, a frontal area of 1.8 m2, and a rolling resis-
tance coefficient of 0.04. The maximum power the engine 
can deliver to the wheels is 80 kW. Determine (a) the speed 
at which the rolling resistance is equal to the aerodynamic 
drag force and (b) the maximum speed of this car. Take the 
air density to be 1.20 kg/m3.

11–39  Reconsider Prob. 11–38. Using EES (or other) 
software, investigate the effect of car speed on 

the required power to overcome (a) rolling resistance, (b) the 
aerodynamic drag, and (c) their combined effect. Let the car 
speed vary from 0 to 150 km/h in increments of 15 km/h. 
Tabulate and plot the results.

11–40  Suzy likes to drive with a silly sun ball on her car 
antenna. The frontal area of the ball is A 5 2.08 3 1023 m2. 
As gas prices rise, her husband is concerned that she is wasting 
fuel because of the additional drag on the ball. He runs a quick 
test in the wind tunnel at his university and measures the drag 
coefficient to be CD 5 0.87 at nearly all air speeds. Estimate 
how many liters of fuel she wastes per year by having this ball 
on her antenna. Use the following additional information: She 
drives about 15,000 km per year at an average speed of 20.8 m/s. 
The overall car efficiency is 0.312, rfuel 5 0.802 kg/L, and 
the heating value of the fuel is 44,020 kJ/kg. Use standard air 
properties. Is the amount of wasted fuel significant?

Photo by Suzanne Cimbala.

FIGURE P11–40

11–41  An 0.90-m-diameter, 1.1-m-high garbage can is 
found in the morning tipped over due to high winds dur-
ing the night. Assuming the average density of the garbage 
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11–53  The forming section of a plastics plant puts out a 
continuous sheet of plastic that is 1.2 m wide and 2 mm thick 
at a rate of 18 m/min. The sheet is subjected to airflow at 
a velocity of 4 m/s on both top and bottom surfaces normal 
to the direction of motion of the sheet. The width of the air 
cooling section is such that a fixed point on the plastic sheet 
passes through that section in 2 s. Using properties of air at 
1 atm and 608C, determine the drag force the air exerts on the 
plastic sheet in the direction of airflow.

Air 
4 m/s

Plastic
sheet

18 m/min

FIGURE P11–53

11–54E  Light oil at 758F flows over a 22-ft-long flat plate 
with a free-stream velocity of 6 ft/s. Determine the total drag 
force per unit width of the plate.

11–55E  Consider a refrigeration truck traveling at 70 mi/h 
at a location where the air is at 1 atm and 808F. The refrig-
erated compartment of the truck can be considered to be a 
9-ft-wide, 8-ft-high, and 20-ft-long rectangular box. Assum-
ing the airflow over the entire outer surface to be turbulent 
and attached (no flow separation), determine the drag force 
acting on the top and side surfaces and the power required to 
overcome this drag.

20 ft

Refrigeration
truck8 ft

Air, 80°F
V 5 70 mi/h

FIGURE P11–55E

11–56E  Reconsider Prob. 11–55E. Using EES (or 
other) software, investigate the effect of truck 

speed on the total drag force acting on the top and side 

D = 13 cm

D = 13 cm

Flat mirror
95 km/h

Rounded
mirror
95 km/h

FIGURE P11–45

Flow over Flat Plates

11–46C  How is the average friction coefficient determined 
in flow over a flat plate?

11–47C  What fluid property is responsible for the develop-
ment of the velocity boundary layer? What is the effect of the 
velocity on the thickness of the boundary layer?

11–48C  What does the friction coefficient represent in flow 
over a flat plate? How is it related to the drag force acting on 
the plate?

11–49  Consider laminar flow of a fluid over a flat plate. 
Now the free-stream velocity of the fluid is tripled. Deter-
mine the change in the drag force on the plate. Assume the 
flow to remain laminar.  Answer: A 5.20-fold increase

11–50  The local atmospheric pressure in Denver, Colorado 
(elevation 1610 m) is 83.4 kPa. Air at this pressure and at 
258C flows with a velocity of 9 m/s over a 2.5-m 3 5-m flat 
plate. Determine the drag force acting on the top surface of 
the plate if the air flows parallel to the (a) 5-m-long side and 
(b) the 2.5-m-long side.

11–51  The top surface of the passenger car of a train mov-
ing at a velocity of 95 km/h is 2.1 m wide and 8 m long. If 
the outdoor air is at 1 atm and 258C, determine the drag force 
acting on the top surface of the car.

95 km/hAir
25°C

FIGURE P11–51

11–52E  Air at 708F flows over a 10-ft-long flat plate 
at 25 ft/s. Determine the local friction coeffi-

cient at intervals of 1 ft and plot the results against the dis-
tance from the leading edge.
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Flow across Cylinders and Spheres

11–61C  Why is flow separation in flow over cylinders 
delayed when the boundary layer is turbulent?

11–62C  In flow over bluff bodies such as a cylinder, how 
does the pressure drag differ from the friction drag?

11–63C  In flow over cylinders, why does the drag coef-
ficient suddenly drop when the boundary layer becomes 
turbulent? Isn’t turbulence supposed to increase the drag 
coefficient instead of decreasing it?

11–64  A 0.1-mm-diameter dust particle whose density is 
2.1 g/cm3 is observed to be suspended in the air at 1 atm and 
258C at a fixed point. Estimate the updraft velocity of air 
motion at that location. Assume Stokes law to be applicable. 
Is this a valid assumption?  Answer: 0.62 m/s

11–65  A long 5-cm-diameter steam pipe passes through 
some area open to the wind. Determine the drag force acting 
on the pipe per unit of its length when the air is at 1 atm and 
108C and the wind is blowing across the pipe at a speed of 
50 km/h.

11–66  Consider 0.8-cm-diameter hail that is falling freely 
in atmospheric air at 1 atm and 58C. Determine the terminal 
velocity of the hail. Take the density of hail to be 910 kg/m3.

11–67E  A 1.2-in-outer-diameter pipe is to span across 
a river at a 140-ft-wide section while being completely 
immersed in water. The average flow velocity of the water is 
10 ft/s, and its temperature is 708F. Determine the drag force 
exerted on the pipe by the river.  Answer: 1490 lbf

11–68  Dust particles of diameter 0.06 mm and density 
1.6 g/cm3 are unsettled during high winds and rise to a height 
of 200 m by the time things calm down. Estimate how long it 
takes for the dust particles to fall back to the ground in still air 
at 1 atm and 308C, and their velocity. Disregard the initial tran-
sient period during which the dust particles accelerate to their 
terminal velocity, and assume Stokes law to be applicable.

11–69  A 2-m-long, 0.2-m-diameter cylindrical pine log 
(density 5 513 kg/m3) is suspended by a crane 

in the horizontal position. The log is subjected to normal winds 

surfaces, and the power required to overcome it. Let the truck 
speed vary from 0 to 100 mi/h in increments of 10 mi/h. 
Tabulate and plot the results. 

11–57  Air at 258C and 1 atm is flowing over a long flat 
plate with a velocity of 8 m/s. Determine the distance from 
the leading edge of the plate where the flow becomes turbu-
lent, and the thickness of the boundary layer at that location.

11–58  Repeat Prob. 11–57 for water.

11–59  During a winter day, wind at 55 km/h, 58C, and 1 atm 
is blowing parallel to a 4-m-high and 10-m-long wall of a 
house. Approximating the wall surfaces as smooth, deter-
mine the friction drag acting on the wall. What would your 
answer be if the wind velocity has doubled? How realistic is 
it to treat the flow over side wall surfaces as flow over a flat 
plate?  Answers: 16 N, 58 N

Air
5°C

55 km/h

10 m

4 m

FIGURE P11–59

11–60  The weight of a thin flat plate 50 cm 3 50 cm in 
size is balanced by a counterweight that has a mass of 2 kg, 
as shown in Fig. P11–60. Now a fan is turned on, and air 
at 1 atm and 258C flows downward over both surfaces of 
the plate (front and back in the sketch) with a free-stream 
velocity of 10 m/s. Determine the mass of the counter-
weight that needs to be added in order to balance the plate 
in this case.

50 cm

50 cm

Plate

Air
25°C, 10 m/s

FIGURE P11–60

θ

40 km/h

2 m

0.2 m

FIGURE P11–69
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mass of 3.1 g and a diameter of 4.2 cm. Assume the air is at 
1 atm and 258C.

Lift

11–73C  Why is the contribution of viscous effects to lift 
usually negligible for airfoils?

11–74C  Air is flowing past a symmetrical airfoil at an 
angle of attack of 58. Is the (a) lift and (b) drag acting on the 
airfoil zero or nonzero?

11–75C  What is stall? What causes an airfoil to stall? Why 
are commercial aircraft not allowed to fly at conditions near 
stall?

11–76C  Air is flowing past a nonsymmetrical airfoil at 
zero angle of attack. Is the (a) lift and (b) drag acting on the 
airfoil zero or nonzero?

11–77C  Air is flowing past a symmetrical airfoil at zero 
angle of attack. Is the (a) lift and (b) drag acting on the air-
foil zero or nonzero?

11–78C  Both the lift and the drag of an airfoil increase with 
an increase in the angle of attack. In general, which increases 
at a higher rate, the lift or the drag?

11–79C  Why are flaps used at the leading and trailing 
edges of the wings of large aircraft during takeoff and land-
ing? Can an aircraft take off or land without them?

11–80C  Air is flowing past a spherical ball. Is the lift 
exerted on the ball zero or nonzero? Answer the same ques-
tion if the ball is spinning.

11–81C  What is the effect of wing tip vortices (the air cir-
culation from the lower part of the wings to the upper part) 
on the drag and the lift?

11–82C  What is induced drag on wings? Can induced drag 
be minimized by using long and narrow wings or short and 
wide wings?

11–83C  Explain why endplates or winglets are added to 
some airplane wings.

11–84C  How do flaps affect the lift and the drag of wings?

11–85  A small aircraft has a wing area of 35 m2, a lift coef-
ficient of 0.45 at takeoff settings, and a total mass of 4000 kg. 
Determine (a) the takeoff speed of this aircraft at sea level 
at standard atmospheric conditions, (b) the wing loading, and 
(c) the required power to maintain a constant cruising speed 
of 300 km/h for a cruising drag coefficient of 0.035.

11–86  Consider an aircraft that takes off at 260 km/h when 
it is fully loaded. If the weight of the aircraft is increased by 
10 percent as a result of overloading, determine the speed at 
which the overloaded aircraft will take off.  Answer: 273 km/h

11–87  Consider an airplane whose takeoff speed is 220 km/h 
and that takes 15 s to take off at sea level. For an airport at an 

of 40 km/h at 58C and 88 kPa. Disregarding the weight of the 
cable and its drag, determine the angle u the cable will make 
with the horizontal and the tension on the cable.

11–70  A 6-mm-diameter electrical transmission line is 
exposed to windy air. Determine the drag force exerted on a 
160-m-long section of the wire during a windy day when the 
air is at 1 atm and 158C and the wind is blowing across the 
transmission line at 65 km/h.

11–71E  A person extends his uncovered arms into the 
windy air outside at 1 atm and 608F and 25 mi/h in order to 
feel nature closely. Treating the arm as a 2-ft-long and 4-in-
diameter cylinder, determine the combined drag force on both 
arms.  Answer: 2.12 lbf

Air
60°F, 25 mi/h

FIGURE P11–71E

11–72  One of the popular demonstrations in science muse-
ums involves the suspension of a ping-pong ball by an 
upward air jet. Children are amused by the ball always com-
ing back to the center when it is pushed by a finger to the 
side of the jet. Explain this phenomenon using the Bernoulli 
equation. Also determine the velocity of air if the ball has a 

Ball

Air jet

FIGURE P11–72
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backspin of 4200 rpm. Determine if the ball falls or rises 
under the combined effect of gravity and lift due to spinning 
shortly after hitting. Assume air is at 1 atm and 258C.

11–92E  A 2.4-in-diameter smooth ball rotating at 500 rpm 
is dropped in a water stream at 608F flowing at 4 ft/s. Deter-
mine the lift and the drag force acting on the ball when it is 
first dropped in the water.

11–93  The NACA 64(l)–412 airfoil has a lift-to-drag ratio 
of 50 at 08 angle of attack, as shown in Fig. 11–43. At what 
angle of attack does this ratio increase to 80?

11–94  Consider a light plane that has a total weight of 
11,000 N and a wing area of 39 m2 and whose wings resem-
ble the NACA 23012 airfoil with no flaps. Using data from 
Fig. 11–45, determine the takeoff speed at an angle of attack of 
58 at sea level. Also determine the stall speed.  Answers: 99.7 km/h, 

62.7 km/h

11–95  A small airplane has a total mass of 1800 kg and a 
wing area of 42 m2. Determine the lift and drag coefficients 
of this airplane while cruising at an altitude of 4000 m at 
a constant speed of 280 km/h and generating 190 kW of 
power.

11–96  An airplane has a mass of 50,000 kg, a wing 
area of 300 m2, a maximum lift coefficient of 

3.2, and a cruising drag coefficient of 0.03 at an altitude of 
12,000 m. Determine (a) the takeoff speed at sea level, 
assuming it is 20 percent over the stall speed, and (b) the 
thrust that the engines must deliver for a cruising speed of 
700 km/h.

Review Problems

11–97  Consider a blimp that can be approximated as a 
3-m diameter, 8-m long ellipsoid and is connected to the 
ground. On a windless day, the rope tension due to the net 
buoyancy effect is measured to be 120 N. Determine the rope 
tension when there are 50 km/h winds blowing along the 
blimp (parallel to the blimp axis).

FIGURE P11–97

elevation of 1600 m (such as Denver), determine (a) the take-
off speed, (b) the takeoff time, and (c) the additional runway 
length required for this airplane. Assume constant accelera-
tion for both cases.

220 km/h

FIGURE P11–87

11–88E  An airplane is consuming fuel at a rate of 7 gal/
min when cruising at a constant altitude of 10,000 ft at con-
stant speed. Assuming the drag coefficient and the engine 
efficiency to remain the same, determine the rate of fuel con-
sumption at an altitude of 30,000 ft at the same speed.

11–89  A jumbo jet airplane has a mass of about 400,000 kg 
when fully loaded with over 400 passengers and takes off at 
a speed of 250 km/h. Determine the takeoff speed when the 
airplane has 100 empty seats. Assume each passenger with 
luggage is 140 kg and the wing and flap settings are main-
tained the same.  Answer: 246 km/h

11–90  Reconsider Prob. 11–89. Using EES (or other) 
software, investigate the effect of passenger 

count on the takeoff speed of the aircraft. Let the number of 
passengers vary from 0 to 500 in increments of 50. Tabulate 
and plot the results. 

11–91  A tennis ball with a mass of 57 g and a diameter 
of 6.4 cm is hit with an initial velocity of 105 km/h and a 

4200 rpm

105 km/h

FIGURE P11–91
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11–101  Reconsider Prob. 11–100. Using EES (or 
other) software, investigate the effect of boat 

speed on the drag force acting on the bottom surface of the 
boat, and the power needed to overcome it. Let the boat 
speed vary from 0 to 100 km/h in increments of 10 km/h. 
Tabulate and plot the results.

11–102  The cylindrical chimney of a factory has an exter-
nal diameter of 1.1 m and is 20 m high. Determine the bend-
ing moment at the base of the chimney when winds at 110 
km/h are blowing across it. Take the atmospheric conditions 
to be 208C and 1 atm.

11–103E  The passenger compartment of a minivan travel-
ing at 50 mi/h in ambient air at 1 atm and 808F is modeled as 
a 4.5-ft-high, 6-ft-wide, and 11-ft-long rectangular box. The 
airflow over the exterior surfaces is assumed to be turbulent 
because of the intense vibrations involved. Determine the 
drag force acting on the top and the two side surfaces of the 
van and the power required to overcome it.

Air
50 mi/h

80°F

FIGURE P11–103E

11–104E  A commercial airplane has a total mass of 
150,000 lbm and a wing planform area of 

1800 ft2. The plane has a cruising speed of 550 mi/h and a 
cruising altitude of 38,000 ft where the air density is 
0.0208  lbm/ft3. The plane has double-slotted flaps for use 
during takeoff and landing, but it cruises with all flaps 
retracted. Assuming the lift and drag characteristics of the 
wings can be approximated by NACA 23012, determine 
(a)  the minimum safe speed for takeoff and landing with 
and without extending the flaps, (b)  the angle of attack to 
cruise steadily at the cruising altitude, and (c)  the power 
that needs to be supplied to provide enough thrust to over-
come drag. Take the air density on the ground to be 
0.075 lbm/ft3.

11–105  An automotive engine can be approximated as a 
0.4-m-high, 0.60-m-wide, and 0.7-m-long rectangular block. 
The ambient air is at 1 atm and 158C. Determine the drag 
force acting on the bottom surface of the engine block as 
the car travels at a velocity of 120 km/h. Assume the flow to 
be turbulent over the entire surface because of the constant 
agitation of the engine block.  Answer: 1.22 N

11–98  A 1.2-m-external-diameter spherical tank is located 
outdoors at 1 atm and 258C and is subjected to winds at 
48  km/h. Determine the drag force exerted on it by the 
wind.  Answer: 16.7 N

11–99  A 2-m-high, 4-m-wide rectangular advertisement 
panel is attached to a 4-m-wide, 0.15-m-high rectangular con-
crete block (density 5 2300 kg/m3) by two 5-cm-diameter, 
4-m-high (exposed part) poles, as shown in Fig. P11–99. If 
the sign is to withstand 150 km/h winds from any direction, 
determine (a) the maximum drag force on the panel, (b)  the 
drag force acting on the poles, and (c) the minimum length L 
of the concrete block for the panel to resist the winds. Take 
the density of air to be 1.30 kg/m3.

0.15 m

Concrete

4 m

4 m

4 m

2 m

L

FIGURE P11–99

11–100  A plastic boat whose bottom surface can be approx-
imated as a 1.5-m-wide, 2-m-long flat surface is to move 
through water at 158C at speeds up to 45 km/h. Determine 
the friction drag exerted on the boat by the water and the 
power needed to overcome it.

45 km/h

FIGURE P11–100
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3 m 0.5 m

FIGURE P11–107

11–108  A 9-cm-diameter smooth sports ball has a veloc-
ity of 36  km/h during a typical hit. Determine the percent 
increase in the drag coefficient if the ball is given a spin of 
3500 rpm in air at 1 atm and 258C.

11–109  Calculate the thickness of the boundary layer 
during flow over a 2.5-m-long flat plate at 

intervals of 25 cm and plot the boundary layer over the plate 
for the flow of (a) air, (b) water, and (c) engine oil at 1 atm 
and 208C at an upstream velocity of 3 m/s.

11–110  A 17,000-kg tractor-trailer rig has a frontal area of 
9.2 m2, a drag coefficient of 0.96, a rolling resistance coef-
ficient of 0.05 (multiplying the weight of a vehicle by the 
rolling resistance coefficient gives the rolling resistance), a 
bearing friction resistance of 350 N, and a maximum speed 
of 110 km/h on a level road during steady cruising in calm 
weather with an air density of 1.25 kg/m3. Now a fairing is 
installed to the front of the rig to suppress separation and to 
streamline the flow to the top surface, and the drag coeffi-
cient is reduced to 0.76. Determine the maximum speed of 
the rig with the fairing.  Answer: 133 km/h

11–111E  Janie likes to drive with a tennis ball on her car 
antenna. The ball diameter is D 5 2.62 in and its equiva-
lent roughness factor is e/D 5 1.5 3 1023. Her friends tell 
her she is wasting gas because of the additional drag on the 

Air
120 km/h

15°C

Engine
block

FIGURE P11–105

11–106  A paratrooper and his 8-m-diameter parachute weigh 
950 N. Taking the average air density to be 1.2 kg/m3, deter-
mine the terminal velocity of the paratrooper.  Answer: 4.9 m/s

8 m

950 N

FIGURE P11–106

11–107  It is proposed to meet the water needs of a recrea-
tional vehicle (RV) by installing a 3-m-long, 0.5-m-diameter 
cylindrical tank on top of the vehicle. Determine the addi-
tional power requirement of the RV at a speed of 80 km/h 
when the tank is installed such that its circular surfaces 
face (a) the front and back (as sketched) and (b) the sides 
of the RV. Assume atmospheric conditions are 87 kPa and 
208C.  Answers: (a) 1.05 kW, (b) 6.77 kW

FIGURE P11–111E
Photo by John M. Cimbala.
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the terminal velocity of the object in that fluid. This can 
be done by plotting the distance traveled against time and 
observing when the curve becomes linear. During such an 
experiment a 3-mm-diameter glass ball (r 5 2500 kg/m3) is 
dropped into a fluid whose density is 875 kg/m3, and the ter-
minal velocity is measured to be 0.12 m/s. Disregarding the 
wall effects, determine the viscosity of the fluid.

Fundamentals of Engineering (FE) Exam Problems

11–117  Which quantities are physical phenomena associ-
ated with fluid flow over bodies?
I.  Drag force acting on automobiles
II. The lift developed by airplane wings
III. Upward draft of rain and snow
IV. Power generated by wind turbines
(a) I and II (b) I and III (c) II and III
(d ) I, II, and III (e) I, II, III, and IV

11–118  The sum of the components of the pressure and 
wall shear forces in the direction normal to the flow is called
(a) Drag (b) Friction (c) Lift (d ) Bluff (e) Blunt

11–119  A car is moving at a speed of 70 km/h in air at 
208C. The frontal area of the car is 2.4 m2. If the drag force 
acting on the car in the flow direction is 205 N, the drag 
coefficient of the car is
(a) 0.312 (b) 0.337 (c) 0.354 (d ) 0.375 (e) 0.391

11–120  A person is driving his motorcycle at a speed of 
110 km/h in air at 208C. The frontal area of the motorcycle 
and driver is 0.75 m2. If the drag coefficient under these con-
ditions is estimated to be 0.90, the drag force acting on the 
car in the flow direction is
(a) 379 N (b) 220 N (c) 283 N (d ) 308 N (e) 450 N

11–121  The manufacturer of a car reduces the drag coef-
ficient of the car from 0.38 to 0.33 as a result of some 
modifications in its shape and design. If, on average, the 
aerodynamic drag accounts for 20 percent of the fuel con-
sumption, the percent reduction in the fuel consumption of 
the car due to reducing the drag coefficient is  
(a) 15% (b) 13% (c) 6.6% (d ) 2.6% (e) 1.3%

11–122  The region of flow trailing the body where the 
effects of the body are felt is called
(a) Wake (b) Separated region (c) Stall
(d ) Vortice (e) Irrotational

11–123  The turbulent boundary layer can be considered to 
consist of four regions. Which choice is not one of them?
(a) Buffer layer (b) Overlap layer (c) Transition layer
(d ) Viscous layer (e) Turbulent layer

11–124  Water at 108C flows over a 1.1-m-long flat plate 
with a velocity of 0.55 m/s. If the width of the plate is 
2.5 m, calculate the drag force acting on the top side of 
the plate. (Water properties at 108C are: r 5 999.7 kg/m3, 
m 5 1.307 3 1023 kg/m·s.)
(a) 0.46 N (b) 0.81 N (c) 2.75 N (d ) 4.16 N (e) 6.32 N

ball. Estimate how much money (in dollars) she wastes per 
year by driving around with this tennis ball on her antenna. 
Use the following additional information: She drives mostly 
on the highway, about 16,000 miles per year at an aver-
age speed of 55 mph. The overall car efficiency is 0.308, 
rfuel 5 50.2 lbm/ft3, and the heating value of the fuel is 
1.47 3 107 ft·lbf/lbm. The fuel costs $4.00 per gallon. Use 
standard air properties. Be careful with unit conversions. 
Should Janie remove the tennis ball?

11–112  During an experiment, three aluminum balls 
(rs 5  2600  kg/m3) having diameters 2, 4, and 10 mm, 
respectively, are dropped into a tank filled with glycerin 
at 228C (rf 5  1274  kg/m3 and m 5  1  kg/m·s). The termi-
nal settling velocities of the balls are measured to be 3.2, 
12.8, and 60.4  mm/s, respectively. Compare these values 
with the velocities predicted by Stokes law for drag force 
FD 5 3pmDV, which is valid for very low Reynolds numbers 
(Re ,, 1). Determine the error involved for each case and 
assess the accuracy of Stokes law. 

11–113  Repeat Prob. 11–112 by considering the more 
general form of Stokes law expressed as FD 5 3pmDV 1 
(9p/16)rV2D2 where r is the fluid density.

11–114  A small aluminum ball with D 5 2 mm and 
rs 5 2700 kg/m3 is dropped into a large container filled with 
oil at 408C (rf 5 876 kg/m3 and m 5 0.2177 kg/m·s). The 
Reynolds number is expected to be low and thus Stokes law 
for drag force FD 5 3pmDV to be applicable. Show that the 
variation of velocity with time can be expressed as V 5 (a/b)
(1 2 e2bt ) where a 5 g(1 2 rf  /rs) and b 5 18m/(rsD

2). Plot 
the variation of velocity with time, and calculate the time it 
takes for the ball to reach 99 percent of its terminal velocity.

11–115  Engine oil at 408C is flowing over a long flat 
plate with a velocity of 6 m/s. Determine the 

distance xcr from the leading edge of the plate where the flow 
becomes turbulent, and calculate and plot the thickness of the 
boundary layer over a length of 2xcr.

11–116  Stokes law can be used to determine the viscosity 
of a fluid by dropping a spherical object in it and measuring 

0.12 m/s
Glass
ball

FIGURE P11–116
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11–130  An airplane is cruising at a velocity of 800 km/h 
in air whose density is 0.526 kg/m3. The airplane has a wing 
planform area of 90 m2. The lift and drag coefficients on 
cruising conditions are estimated to be 2.0 and 0.06, respec-
tively. The power that needs to be supplied to provide enough 
trust to overcome wing drag is
(a) 9760 kW (b) 11,300 kW (c) 15,600 kW
(d ) 18,200 kW (e) 22,600 kW

Design and Essay Problems

11–131  Write a report on the history of the reduction of the 
drag coefficients of cars and obtain the drag coefficient data for 
some recent car models from the catalogs of car manufacturers 
or from the Internet. 

11–132  Write a report on the flaps used at the leading and 
trailing edges of the wings of large commercial aircraft. 
Discuss how the flaps affect the drag and lift coefficients dur-
ing takeoff and landing.

11–133  Large commercial airplanes cruise at high altitudes 
(up to about 40,000 ft) to save fuel. Discuss how flying at 
high altitudes reduces drag and saves fuel. Also discuss why 
small planes fly at relatively low altitudes. 

11–134  Many drivers turn off their air conditioners and 
roll down the car windows in hopes of saving fuel. But it is 
claimed that this apparent “free cooling” actually increases 
the fuel consumption of some cars. Investigate this matter 
and write a report on which practice saves gasoline under 
what conditions.

11–125  Water at 108C flows over a 3.75-m-long flat plate 
with a velocity of 1.15 m/s. If the width of the plate is 
6.5 m, calculate the average friction coefficient over the 
entire plate. (Water properties at 108C are: r 5 999.7 kg/m3, 
m 5 1.307 3 1023 kg/m·s.)
(a) 0.00508 (b) 0.00447 (c) 0.00302 (d ) 0.00367
(e) 0.00315

11–126  Air at 308C flows over a 3.0-cm-outer-diameter, 
45-m-long pipe with a velocity of 6 m/s. Calculate the drag 
force exerted on the pipe by the air. (Air properties at 308C 
are: r 5 1.164 kg/m3, n 5 1.608 3 1025 m2/s.) 
(a) 19.3 N (b) 36.8 N (c) 49.3 N (d ) 53.9 N (e) 60.1 N

11–127  A 0.8-m-outer-diameter spherical tank is com-
pletely submerged in a flowing water stream at a velocity of 
2.5 m/s. Calculate the drag force acting on the tank. (Water 
properties are: r 5 998.0 kg/m3, m 5 1.002 3 1023 kg/m·s.) 
(a) 878 N (b) 627 N (c) 545 N (d ) 356 N (e) 220 N

11–128  An airplane has a total mass of 18,000 kg and a wing 
planform area of 35 m2. The density of air at the ground is 
1.2 kg/m3. The maximum lift coefficient is 3.48. The minimum 
safe speed for takeoff and landing while extending the flaps is
(a) 305 km/h (b) 173 km/h (c) 194 km/h
(d ) 212 km/h (e) 246 km/h

11–129  An airplane has a total mass of 35,000 kg and 
a wing planform area of 65 m2. The airplane is cruising at 
10,000 m altitude with a velocity of 1100 km/h. The density 
of air on cruising altitude is 0.414 kg/m3. The lift coefficient 
of this airplane at the cruising altitude is
(a) 0.273 (b) 0.290 (c) 0.456 (d ) 0.874 (e) 1.22
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C O M P R E S S I B L E  F L O W

For the most part, we have limited our consideration so far to flows for which 
density variations and thus compressibility effects are negligible. In this 
chapter, we lift this limitation and consider flows that involve significant 

changes in density. Such flows are called compressible flows, and they are 
frequently encountered in devices that involve the flow of gases at very high 
speeds. Compressible flow combines fluid dynamics and thermodynamics 
in that both are necessary to the development of the required theoretical back-
ground. In this chapter, we develop the general relations associated with com-
pressible flows for an ideal gas with constant specific heats.
 We start this chapter by reviewing the concepts of stagnation state, speed of 
sound, and Mach number for compressible flows. The relationships between the 
static and stagnation fluid properties are developed for isentropic flows of 
ideal gases, and they are expressed as functions of specific heat ratios and 
the Mach number. The effects of area changes for one-dimensional isentropic 
subsonic and supersonic flows are discussed. These effects are illustrated by 
considering the isentropic flow through converging and converging–diverging 
nozzles. The concept of shock waves and the variation of flow properties 
across normal and oblique shock waves are discussed. Finally, we consider 
the effects of friction and heat transfer on compressible flows and develop 
relations for property changes.

    CHAPTER

12
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Appreciate the consequences 
of compressibility in gas flow

■ Understand why a nozzle must 
have a diverging section to 
accelerate a gas to supersonic 
speeds

■ Predict the occurrence of shocks 
and calculate property changes 
across a shock wave

■ Understand the effects of 
friction and heat transfer 
on compressible flows

High-speed color schlieren image of the bursting of 
a toy balloon overfilled with compressed air. This 

1-microsecond exposure captures the shattered balloon 
skin and reveals the bubble of compressed air inside 
beginning to expand. The balloon burst also drives a 

weak spherical shock wave, visible here as a circle 
surrounding the balloon. The silhouette of the 

photographer’s hand on the air valve can be seen at 
center right. 

Photo by G. S. Settles, Penn State University. Used by permission.
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12–1 ■  STAGNATION PROPERTIES
When analyzing control volumes, we find it very convenient to combine the 
internal energy and the flow energy of a fluid into a single term, enthalpy, 
defined per unit mass as h 5 u 1 P/r. Whenever the kinetic and poten-
tial energies of the fluid are negligible, as is often the case, the enthalpy 
represents the total energy of a fluid. For high-speed flows, such as those 
encountered in jet engines (Fig. 12–1), the potential energy of the fluid is 
still negligible, but the kinetic energy is not. In such cases, it is convenient 
to combine the enthalpy and the kinetic energy of the fluid into a single 
term called stagnation (or total) enthalpy h0, defined per unit mass as

 h0 5 h 1
V 2

2
  (kJ/kg) (12–1)

When the potential energy of the fluid is negligible, the stagnation enthalpy 
represents the total energy of a flowing fluid stream per unit mass. Thus it 
simplifies the thermodynamic analysis of high-speed flows.
 Throughout this chapter the ordinary enthalpy h is referred to as the 
static enthalpy, whenever necessary, to distinguish it from the stagnation 
enthalpy. Notice that the stagnation enthalpy is a combination property of 
a fluid, just like the static enthalpy, and these two enthalpies are identical 
when the kinetic energy of the fluid is negligible.
 Consider the steady flow of a fluid through a duct such as a nozzle, dif-
fuser, or some other flow passage where the flow takes place adiabatically 
and with no shaft or electrical work, as shown in Fig. 12–2. Assuming the 
fluid experiences little or no change in its elevation and its potential energy, 
the energy balance relation (E

.
in 5 E

.
out) for this single-stream steady-flow 

device reduces to

 h1 1
V 2

1

2
5 h2 1

V 2
2

2
 (12–2)

or

 h01 5 h02 (12–3)

That is, in the absence of any heat and work interactions and any changes in 
potential energy, the stagnation enthalpy of a fluid remains constant during 
a steady-flow process. Flows through nozzles and diffusers usually satisfy 
these conditions, and any increase in fluid velocity in these devices creates 
an equivalent decrease in the static enthalpy of the fluid.
 If the fluid were brought to a complete stop, then the velocity at state 2 
would be zero and Eq. 12–2 would become

h1 1
V 2

1

2
5 h2 5 h02

Thus the stagnation enthalpy represents the enthalpy of a fluid when it is 
brought to rest adiabatically.
 During a stagnation process, the kinetic energy of a fluid is converted to 
enthalpy (internal energy 1 flow energy), which results in an increase in the 
fluid temperature and pressure. The properties of a fluid at the stagnation 
state are called stagnation properties (stagnation temperature, stagnation 

(a)

FIGURE 12–2
Steady flow of a fluid through an 
adiabatic duct.

h02 =

h1

V1
h01 h01

h2

V2
Control
volume

Turbine

Combustion
chamber

Exhaust
nozzle

Fan Compressors

FIGURE 12–1
Aircraft and jet engines involve high 
speeds, and thus the kinetic energy 
term should always be considered 
when analyzing them.
(a) © Corbis RF; (b) Photo courtesy of United 
Technologies Corporation/Pratt & Whitney. 
Used by permission. All rights reserved.

(b)
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pressure, stagnation density, etc.). The stagnation state and the stagnation 
properties are indicated by the subscript 0.
 The stagnation state is called the isentropic stagnation state when 
the stagnation process is reversible as well as adiabatic (i.e., isentropic). 
The entropy of a fluid remains constant during an isentropic stagnation 
process. The actual (irreversible) and isentropic stagnation processes 
are shown on an h-s diagram in Fig. 12–3. Notice that the stagnation 
enthalpy of the fluid (and the stagnation temperature if the fluid is an ideal 
gas) is the same for both cases. However, the actual stagnation pressure is 
lower than the isentropic stagnation pressure since entropy increases during 
the actual stagnation process as a result of fluid friction. Many stagnation 
processes are approximated to be isentropic, and isentropic stagnation prop-
erties are simply referred to as stagnation properties.
 When the fluid is approximated as an ideal gas with constant specific 
heats, its enthalpy can be replaced by cpT and Eq. 12–1 is expressed as

cpT0 5 cpT 1
V 2

2
or

 T0 5 T 1
V 2

2cp

 (12–4)

Here, T0 is called the stagnation (or total) temperature, and it represents 
the temperature an ideal gas attains when it is brought to rest adiabatically. 
The term V2/2cp corresponds to the temperature rise during such a process 
and is called the dynamic temperature. For example, the dynamic tem-
perature of air flowing at 100 m/s is (100 m/s)2/(2 3 1.005 kJ/kg·K) 5 5.0 K. 
Therefore, when air at 300 K and 100 m/s is brought to rest adiabatically 
(at the tip of a temperature probe, for example), its temperature rises to the 
stagnation value of 305 K (Fig. 12–4). Note that for low-speed flows, the 
stagnation and static (or ordinary) temperatures are practically the same. 
But for high-speed flows, the temperature measured by a stationary probe 
placed in the fluid (the stagnation temperature) may be significantly higher 
than the static temperature of the fluid.
 The pressure a fluid attains when brought to rest isentropically is called 
the stagnation pressure P0. For ideal gases with constant specific heats, P0 
is related to the static pressure of the fluid by

 
P0

P
5 aT0

T
bk/(k21)

 (12–5)

By noting that r 5 1/v and using the isentropic relation Pv k 5 P0v 0
k, the 

ratio of the stagnation density to static density is expressed as

 
r0

r
5 aT0

T
b1/(k21)

 (12–6)

When stagnation enthalpies are used, there is no need to refer explicitly 
to kinetic energy. Then the energy balance E

.
in 5 E

.
out for a single-stream, 

steady-flow device can be expressed as

 qin 1 win 1 (h01 1 gz1) 5 qout 1 wout 1 (h02 1 gz2) (12–7)

FIGURE 12–3
The actual state, actual stagnation 

state, and isentropic stagnation state 
of a fluid on an h-s diagram.

s

Actual state

h

Isentropic
stagnation
state

P 0
P 0,

ac
t

Actual
stagnation
state

h

V

0

h

P

2

2

FIGURE 12–4
The temperature of an ideal gas 

flowing at a velocity V rises by V2/2cp 
when it is brought to a complete stop.

Temperature
rise during
stagnation

AIR
100 m/s

305 K

300 K
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where h01 and h02 are the stagnation enthalpies at states 1 and 2, respectively. 
When the fluid is an ideal gas with constant specific heats, Eq. 12–7 becomes

 (qin 2 qout) 1 (win 2 wout) 5 cp(T02 2 T01) 1 g(z2 2 z1) (12–8)

where T01 and T02 are the stagnation temperatures.
 Notice that kinetic energy terms do not explicitly appear in Eqs. 12–7 and 
12–8, but the stagnation enthalpy terms account for their contribution.

EXAMPLE 12–1    Compression of High-Speed Air in an Aircraft

An aircraft is flying at a cruising speed of 250 m/s at an altitude of 5000 m 

where the atmospheric pressure is 54.05 kPa and the ambient air tempera-

ture is 255.7 K. The ambient air is first decelerated in a diffuser before 

it enters the compressor (Fig. 12–5). Approximating both the diffuser and 

the compressor to be isentropic, determine (a) the stagnation pressure at the 

compressor inlet and (b) the required compressor work per unit mass if the 

stagnation pressure ratio of the compressor is 8.

SOLUTION  High-speed air enters the diffuser and the compressor of an air-

craft. The stagnation pressure of the air and the compressor work input are 

to be determined.

Assumptions  1 Both the diffuser and the compressor are isentropic. 2 Air is 

an ideal gas with constant specific heats at room temperature.

Properties  The constant-pressure specific heat cp and the specific heat ratio k 

of air at room temperature are

cp 5 1.005 kJ/kg·K  and  k 5 1.4

Analysis  (a) Under isentropic conditions, the stagnation pressure at the 

compressor inlet (diffuser exit) can be determined from Eq. 12–5. However, 

first we need to find the stagnation temperature T01 at the compressor inlet. 

Under the stated assumptions, T01 is determined from Eq. 12–4 to be

 T01 5 T1 1
V 2

1

2cp

5 255.7 K 1
(250 m/s)2

(2)(1.005 kJ/kg·K)
 a 1 kJ/kg

1000 m2/s2b
 5 286.8 K

Then from Eq. 12–5,

 P01 5 P1aT01

T1

bk/(k21)

5 (54.05 kPa)a286.8 K

255.7 K
b1.4/(1.421)

 5 80.77 kPa

That is, the temperature of air would increase by 31.1°C and the pressure 

by 26.72 kPa as air is decelerated from 250 m/s to zero velocity. These 

increases in the temperature and pressure of air are due to the conversion of 

the kinetic energy into enthalpy.

(b) To determine the compressor work, we need to know the stagnation 

temperature of air at the compressor exit T02. The stagnation pressure ratio 

across the compressor P02/P01 is specified to be 8. Since the compression 

process is approximated as isentropic, T02 can be determined from the ideal-gas 

isentropic relation (Eq. 12–5):

T02 5 T01aP02

P01

b (k21)/k

5 (286.8 K)(8)(1.421)/1.4 5 519.5 K

Compressor

T1

P01
T01

P02
T02

 = 255.7 K

V1 = 250 m/s

P1 = 54.05 kPa

Diffuser

Aircraft
engine

FIGURE 12–5
Schematic for Example 12–1.
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Disregarding potential energy changes and heat transfer, the compressor 

work per unit mass of air is determined from Eq. 12–8:

 win 5 cp(T02 2 T01)

 5 (1.005 kJ/kg·K)(519.5 K 2 286.8 K)

 5 233.9 kJ/kg

Thus the work supplied to the compressor is 233.9 kJ/kg.

Discussion  Notice that using stagnation properties automatically accounts 

for any changes in the kinetic energy of a fluid stream.

12–2 ■  ONE-DIMENSIONAL ISENTROPIC FLOW
An important parameter in the study of compressible flow is the speed of 
sound c, which was shown in Chap. 2 to be related to other fluid properties as

 c 5 "(0P/0r)s (12–9)

or

 c 5 "k(0P/0r)T (12–10)

For an ideal gas it simplifies to

 c 5 "kRT  (12–11)

where k is the specific heat ratio of the gas and R is the specific gas constant. The 
ratio of the speed of the flow to the speed of sound is the dimensionless Mach 
number Ma,

 Ma 5
V
c

 (12–12)

During fluid flow through many devices such as nozzles, diffusers, and 
turbine blade passages, flow quantities vary primarily in the flow direction 
only, and the flow can be approximated as one-dimensional isentropic flow 
with good accuracy. Therefore, it merits special consideration. Before pre-
senting a formal discussion of one-dimensional isentropic flow, we illustrate 
some important aspects of it with an example.

EXAMPLE 12–2    Gas Flow through a Converging–Diverging Duct

Carbon dioxide flows steadily through a varying cross-sectional area duct 

such as a nozzle shown in Fig. 12–6 at a mass flow rate of 3.00 kg/s. The 

carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with 

a low velocity, and it expands in the nozzle to an exit pressure of 200 kPa. 

The duct is designed so that the flow can be approximated as isentropic. 

Determine the density, velocity, flow area, and Mach number at each loca-

tion along the duct that corresponds to an overall pressure drop of 200 kPa.

SOLUTION  Carbon dioxide enters a varying cross-sectional area duct at 

specified conditions. The flow properties are to be determined along the duct.

FIGURE 12–6
Schematic for Example 12–2.

1400

Stagnation
region:
1400 kPa
200°C
CO2

1000

   � 3.00 kg/s

767 200
P, kPa

m⋅
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Assumptions  1 Carbon dioxide is an ideal gas with constant specific heats 

at room temperature. 2 Flow through the duct is steady, one-dimensional, 

and isentropic.

Properties  For simplicity we use cp 5 0.846 kJ/kg·K and k 5 1.289 throughout 

the calculations, which are the constant-pressure specific heat and specific 

heat ratio values of carbon dioxide at room temperature. The gas constant of 

carbon dioxide is R 5 0.1889 kJ/kg·K.

Analysis  We note that the inlet temperature is nearly equal to the stagna-

tion temperature since the inlet velocity is small. The flow is isentropic, and 

thus the stagnation temperature and pressure throughout the duct remain 

constant. Therefore,

T0 > T1 5 2008C 5 473 K

and

P0 > P1 5 1400 kPa

 To illustrate the solution procedure, we calculate the desired properties 

at the location where the pressure is 1200 kPa, the first location that cor-

responds to a pressure drop of 200 kPa.

 From Eq. 12–5,

T 5 T0a P

P0

b (k21)/k

5 (473 K)a1200 kPa

1400 kPa
b (1.28921)/1.289

5 457 K

From Eq. 12–4,

 V 5 "2cp(T0 2 T)

 5 Å2(0.846 kJ/kg·K)(473 K 2 457 K)a1000 m2/s3

1 kJ/kg
b

 5 164.5 m/s > 164 m/s

From the ideal-gas relation,

r 5
P

RT
5

1200 kPa

(0.1889 kPa·m3/kg·K)(457 K)
5 13.9 kg/m3

From the mass flow rate relation,

A 5
m
#

rV
5

3.00 kg/s

(13.9 kg/m3)(164.5 m/s)
5 13.1 3 1024 m2 5 13.1 cm2

From Eqs. 12–11 and 12–12,

 c 5 "kRT 5 Å(1.289)(0.1889 kJ/kg·K)(457 K)a1000 m2/s2

1 kJ/kg
b 5 333.6 m/s

 Ma 5
V
c

5
164.5 m/s

333.6 m/s
5 0.493

The results for the other pressure steps are summarized in Table 12–1 and 

are plotted in Fig. 12–7.

Discussion  Note that as the pressure decreases, the temperature and speed 

of sound decrease while the fluid velocity and Mach number increase in the 

flow direction. The density decreases slowly at first and rapidly later as the 

fluid velocity increases.

FIGURE 12–7
Variation of normalized fluid 
properties and cross-sectional area 
along a duct as the pressure drops 
from 1400 to 200 kPa.
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 We note from Example 12–2 that the flow area decreases with decreasing 
pressure down to a critical-pressure value where the Mach number is unity, 
and then it begins to increase with further reductions in pressure. The Mach 
number is unity at the location of smallest flow area, called the throat 
(Fig. 12–8). Note that the velocity of the fluid keeps increasing after pass-
ing the throat although the flow area increases rapidly in that region. This 
increase in velocity past the throat is due to the rapid decrease in the fluid 
density. The flow area of the duct considered in this example first decreases 
and then increases. Such ducts are called converging–diverging nozzles. 
These nozzles are used to accelerate gases to supersonic speeds and should 
not be confused with Venturi nozzles, which are used strictly for incom-
pressible flow. The first use of such a nozzle occurred in 1893 in a steam 
turbine designed by a Swedish engineer, Carl G. B. de Laval (1845–1913), 
and therefore converging–diverging nozzles are often called Laval nozzles.

Variation of Fluid Velocity with Flow Area
It is clear from Example 12–2 that the couplings among the velocity, den-
sity, and flow areas for isentropic duct flow are rather complex. In the 
remainder of this section we investigate these couplings more thoroughly, 
and we develop relations for the variation of static-to-stagnation property 
ratios with the Mach number for pressure, temperature, and density.
 We begin our investigation by seeking relationships among the pressure, tem-
perature, density, velocity, flow area, and Mach number for one-dimensional 
isentropic flow. Consider the mass balance for a steady-flow process:

m# 5 rAV 5 constant

Differentiating and dividing the resultant equation by the mass flow rate, we 
obtain

 
dr

r
1

dA

A
1

dV

V
5 0 (12–13)

Neglecting the potential energy, the energy balance for an isentropic flow with 
no work interactions is expressed in differential form as (Fig. 12–9)

 
dP
r

1 V dV 5 0 (12–14)

FIGURE 12–8
The cross section of a nozzle at the 

smallest flow area is called the throat.

Fluid

Converging–diverging nozzle

Throat

Converging nozzle

Throat

Fluid

FIGURE 12–9
Derivation of the differential form 
of the energy equation for steady 

isentropic flow.

0 (isentropic)

dP

CONSERVATION OF ENERGY
(steady flow, w = 0, q = 0, Δpe = 0)

h1 +
V 2

2
1 = h2 +

V 2

2
2

or

h +
V 2

2
= constant

Differentiate,

dh + V  dV  = 0
Also,

= dh –  dP

dh  =  dP r

r

= 1

Substitute,
dP

 + V  dV  = 0

T ds 

TABLE 12–1

Variation of fluid properties in flow direction in the duct described in Example 12–2 

for m?  5 3 kg/s 5 constant

 P, kPa T, K V, m/s r, kg/m3 c, m/s A, cm2 Ma

 1400 473 0 15.7 339.4 ` 0

 1200 457 164.5 13.9 333.6 13.1 0.493

 1000 439 240.7 12.1 326.9 10.3 0.736

 800 417 306.6 10.1 318.8 9.64 0.962

 767* 413 317.2 9.82 317.2 9.63 1.000

 600 391 371.4 8.12 308.7 10.0 1.203

 400 357 441.9 5.93 295.0 11.5 1.498

 200 306 530.9 3.46 272.9 16.3 1.946

* 767 kPa is the critical pressure where the local Mach number is unity.
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This relation is also the differential form of Bernoulli’s equation when 
changes in potential energy are negligible, which is a form of Newton’s sec-
ond law of motion for steady-flow control volumes. Combining Eqs. 12–13 
and 12–14 gives

 

dA

A
5

dP
r

 a 1

V 2 2
dr

dP
b  (12–15)

Rearranging Eq. 12–9 as (−r/−P)s 5 1/c2 and substituting into Eq. 12–15 
yield

 

dA

A
5

dP

rV 2 (1 2 Ma2) (12–16)

 This is an important relation for isentropic flow in ducts since it describes 
the variation of pressure with flow area. We note that A, r, and V are positive 
quantities. For subsonic flow (Ma , 1), the term 1 2 Ma2 is positive; and 
thus dA and dP must have the same sign. That is, the pressure of the fluid 
must increase as the flow area of the duct increases and must decrease as the 
flow area of the duct decreases. Thus, at subsonic velocities, the pressure 
decreases in converging ducts (subsonic nozzles) and increases in diverging 
ducts (subsonic diffusers).
 In supersonic flow (Ma . 1), the term 1 2 Ma2 is negative, and thus dA 
and dP must have opposite signs. That is, the pressure of the fluid must 
increase as the flow area of the duct decreases and must decrease as the 
flow area of the duct increases. Thus, at supersonic velocities, the pressure 
decreases in diverging ducts (supersonic nozzles) and increases in converg-
ing ducts (supersonic diffusers).
 Another important relation for the isentropic flow of a fluid is obtained by 
substituting rV 5 2dP/dV from Eq. 12–14 into Eq. 12–16:

 
dA

A
5 2

dV

V
 (1 2 Ma2) (12–17)

This equation governs the shape of a nozzle or a diffuser in subsonic or 
supersonic isentropic flow. Noting that A and V are positive quantities, we 
conclude the following:

 For subsonic flow (Ma , 1),    
dA

dV
, 0 

 For supersonic flow (Ma . 1),   
dA

dV
. 0 

 For sonic flow (Ma 5 1),    
dA

dV
5 0 

Thus the proper shape of a nozzle depends on the highest velocity desired 
relative to the sonic velocity. To accelerate a fluid, we must use a converging 
nozzle at subsonic velocities and a diverging nozzle at supersonic velocities. 
The velocities encountered in most familiar applications are well below the 
sonic velocity, and thus it is natural that we visualize a nozzle as a con-
verging duct. However, the highest velocity we can achieve by a converging 
nozzle is the sonic velocity, which occurs at the exit of the nozzle. If we 
extend the converging nozzle by further decreasing the flow area, in hopes 
of accelerating the fluid to supersonic velocities, as shown in Fig. 12–10, 

P0, T0

Ma

Ma

Ma

B = 1

(sonic)

Attachment

A < 1

B
A

P0, T0 A = 1

(sonic)

A

Converging
nozzle

Converging
nozzle

FIGURE 12–10
We cannot attain supersonic velocities 
by extending the converging section 
of a converging nozzle. Doing so will 
only move the sonic cross section 
farther downstream and decrease the 
mass flow rate.
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we are up for disappointment. Now the sonic velocity will occur at the exit 
of the converging extension, instead of the exit of the original nozzle, and 
the mass flow rate through the nozzle will decrease because of the reduced 
exit area.
 Based on Eq. 12–16, which is an expression of the conservation of 
mass and energy principles, we must add a diverging section to a con-
verging nozzle to accelerate a fluid to supersonic velocities. The result is a 
converging– diverging nozzle. The fluid first passes through a subsonic 
(converging) section, where the Mach number increases as the flow 
area of the nozzle decreases, and then reaches the value of unity at the 
nozzle throat. The fluid continues to accelerate as it passes through a 
supersonic (diverging) section. Noting that m. 5 rAV for steady flow, we 
see that the large decrease in density makes acceleration in the diverg-
ing section possible. An example of this type of flow is the flow of hot 
combustion gases through a nozzle in a gas turbine.
 The opposite process occurs in the engine inlet of a supersonic aircraft. 
The fluid is decelerated by passing it first through a supersonic diffuser, 
which has a flow area that decreases in the flow direction. Ideally, the flow 
reaches a Mach number of unity at the diffuser throat. The fluid is further 
decelerated in a subsonic diffuser, which has a flow area that increases in 
the flow direction, as shown in Fig. 12–11.

Property Relations for Isentropic Flow 
of Ideal Gases
Next we develop relations between the static properties and stagnation 
properties of an ideal gas in terms of the specific heat ratio k and the Mach 
number Ma. We assume the flow is isentropic and the gas has constant 
specific heats.

FIGURE 12–11
Variation of flow properties 

in subsonic and supersonic nozzles 
and diffusers.

Subsonic nozzle

(a) Subsonic flow

Ma < 1

Supersonic diffuser

Ma > 1

Supersonic nozzle

Ma > 1

Subsonic diffuser

Ma < 1

(b) Supersonic flow

P decreases
V increases

Ma increases
T decreases
r decreases

P decreases
V increases

Ma increases
T decreases
r decreases

P increases
V decreases

Ma decreases
T increases
r increases

P increases
V decreases

Ma decreases
T increases
r increases
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 The temperature T of an ideal gas anywhere in the flow is related to the 
stagnation temperature T0 through Eq. 12–4:

T0 5 T 1
V 2

2cp

or

T0

T
5 1 1

V 2

2cpT

Noting that cp 5 kR/(k 2 1), c2 5 kRT, and Ma 5 V/c, we see that

V 2

2cpT
5

V 2

2[kR/(k 2 1)]T
5 ak 2 1

2
bV 2

c2 5 ak 2 1

2
bMa2

Substitution yields

 

T0

T
5 1 1 ak 2 1

2
bMa2 (12–18)

which is the desired relation between T0 and T.
 The ratio of the stagnation to static pressure is obtained by substituting 
Eq. 12–18 into Eq. 12–5:

 

P0

P
5 c1 1 ak 2 1

2
bMa2 d k/(k 21)

 (12–19)

The ratio of the stagnation to static density is obtained by substituting 
Eq. 12–18 into Eq. 12–6:

 
r0

r
5 c1 1 ak 2 1

2
bMa2 d 1/(k 21)

 (12–20)

Numerical values of T/T0, P/P0, and r/r0 are listed versus the Mach number 
in Table A–13 for k 5 1.4, which are very useful for practical compressible 
flow calculations involving air.
 The properties of a fluid at a location where the Mach number is unity (the 
throat) are called critical properties, and the ratios in Eqs. (12–18) through 
(12–20) are called critical ratios when Ma 5 1 (Fig. 12–12). It is standard 
practice in the analysis of compressible flow to let the superscript asterisk (*) 
represent the critical values. Setting Ma 5 1 in Eqs. 12–18 through 12–20 
yields

 
T*

T0

5
2

k 1 1
 (12–21)

 
P*

P0

5 a 2

k 1 1
bk/(k21)

 (12–22)

 
r*

r0
5 a 2

k 1 1
b1/(k21)

 (12–23)

These ratios are evaluated for various values of k and are listed in 
Table 12–2. The critical properties of compressible flow should not be con-
fused with the thermodynamic properties of substances at the critical point 
(such as the critical temperature Tc and critical pressure Pc).

FIGURE 12–12
When Mat 5 1, the properties at the 
nozzle throat are the critical 
properties.
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TABLE 12–2

The critical-pressure, critical-temperature, and critical-density ratios for 

isentropic flow of some ideal gases

 Superheated Hot products  Monatomic

 steam, of combustion, Air, gases,

 k 5 1.3 k 5 1.33 k 5 1.4 k 5 1.667

P*

P0

 0.5457 0.5404 0.5283 0.4871

T*

T0

 0.8696 0.8584 0.8333 0.7499

r*

r0

 0.6276 0.6295 0.6340 0.6495

EXAMPLE 12–3    Critical Temperature and Pressure in Gas Flow

Calculate the critical pressure and temperature of carbon dioxide for the flow 

conditions described in Example 12–2 (Fig. 12–13).

SOLUTION  For the flow discussed in Example 12–2, the critical pressure 

and temperature are to be calculated.

Assumptions  1 The flow is steady, adiabatic, and one-dimensional. 2 Carbon 

dioxide is an ideal gas with constant specific heats.

Properties  The specific heat ratio of carbon dioxide at room temperature is 

k 5 1.289.

Analysis  The ratios of critical to stagnation temperature and pressure are 

determined to be

 
T *

T0

5
2

k 1 1
5

2

1.289 1 1
5 0.8737

 
P*

P0

5 a 2

k 1 1
bk/(k21)

5 a 2

1.289 1 1
b1.289/(1.28921)

5 0.5477

Noting that the stagnation temperature and pressure are, from Example 12–2, 

T0 5 473 K and P0 5 1400 kPa, we see that the critical temperature and 

pressure in this case are

 T* 5 0.8737T0 5 (0.8737)(473 K) 5 413 K

 P* 5 0.5477P0 5 (0.5477)(1400 kPa) 5 767 kPa

Discussion  Note that these values agree with those listed in the 5th row of 

Table 12–1, as expected. Also, property values other than these at the throat 

would indicate that the flow is not critical, and the Mach number is not unity.

12–3 ■  ISENTROPIC FLOW THROUGH NOZZLES
Converging or converging–diverging nozzles are found in many engineering 
applications including steam and gas turbines, aircraft and spacecraft propul-
sion systems, and even industrial blasting nozzles and torch nozzles. In this 
section we consider the effects of back pressure (i.e., the pressure applied 

T *
P *

= 473 K

= 1.4 MPa
CO2T0 

P0 

FIGURE 12–13
Schematic for Example 12–3.
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at the nozzle discharge region) on the exit velocity, the mass flow rate, and 
the pressure distribution along the nozzle.

Converging Nozzles
Consider the subsonic flow through a converging nozzle as shown in Fig. 12–14. 
The nozzle inlet is attached to a reservoir at pressure Pr and temperature Tr. 
The reservoir is sufficiently large so that the nozzle inlet velocity is negligi-
ble. Since the fluid velocity in the reservoir is zero and the flow through the 
nozzle is approximated as isentropic, the stagnation pressure and stagnation 
temperature of the fluid at any cross section through the nozzle are equal to 
the reservoir pressure and temperature, respectively.
 Now we begin to reduce the back pressure and observe the resulting 
effects on the pressure distribution along the length of the nozzle, as shown 
in Fig. 12–14. If the back pressure Pb is equal to P1, which is equal to Pr, 
there is no flow and the pressure distribution is uniform along the nozzle. 
When the back pressure is reduced to P2, the exit plane pressure Pe also 
drops to P2. This causes the pressure along the nozzle to decrease in the 
flow direction.
 When the back pressure is reduced to P3 (5 P*, which is the pressure 
required to increase the fluid velocity to the speed of sound at the exit plane 
or throat), the mass flow reaches a maximum value and the flow is said to 
be choked. Further reduction of the back pressure to level P4 or below does 
not result in additional changes in the pressure distribution, or anything else 
along the nozzle length.
 Under steady-flow conditions, the mass flow rate through the nozzle is 
constant and is expressed as

m# 5 rAV 5 a P

RT
bA(Ma"kRT) 5 PAMaÅ k

RT

Solving for T from Eq. 12–18 and for P from Eq. 12–19 and substituting,

 
m# 5

AMaP0"k/(RT0)

[1 1 (k 2 1)Ma2/2](k 11)/[2(k 21)] (12–24)

Thus the mass flow rate of a particular fluid through a nozzle is a function 
of the stagnation properties of the fluid, the flow area, and the Mach number. 
Equation 12–24 is valid at any cross section, and thus m

.
 can be evaluated at 

any location along the length of the nozzle.
 For a specified flow area A and stagnation properties T0 and P0, the maxi-
mum mass flow rate can be determined by differentiating Eq. 12–24 with 
respect to Ma and setting the result equal to zero. It yields Ma 5 1. Since 
the only location in a nozzle where the Mach number can be unity is the 
location of minimum flow area (the throat), the mass flow rate through a 
nozzle is a maximum when Ma 5 1 at the throat. Denoting this area by A*, 
we obtain an expression for the maximum mass flow rate by substituting 
Ma 5 1 in Eq. 12–24:

 m
#

max 5 A*P0Å k

RT0

 a 2

k 1 1
b (k 11)/[2(k 21)]

 (12–25)

FIGURE 12–14
The effect of back pressure on the 
pressure distribution along a 
converging nozzle.
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Thus, for a particular ideal gas, the maximum mass flow rate through a nozzle 
with a given throat area is fixed by the stagnation pressure and temperature 
of the inlet flow. The flow rate can be controlled by changing the stagna-
tion pressure or temperature, and thus a converging nozzle can be used as a 
flowmeter. The flow rate can also be controlled, of course, by varying the 
throat area. This principle is very important for chemical processes, medical 
devices, flowmeters, and anywhere the mass flux of a gas must be known 
and controlled.
 A plot of m

.
 versus Pb/P0 for a converging nozzle is shown in Fig. 12–15. 

Notice that the mass flow rate increases with decreasing Pb/P0, reaches a 
maximum at Pb 5 P*, and remains constant for Pb/P0 values less than this 
critical ratio. Also illustrated on this figure is the effect of back pressure on 
the nozzle exit pressure Pe. We observe that

Pe 5 ePb for Pb $ P*

P*  for Pb , P*

 To summarize, for all back pressures lower than the critical pressure P*, the 
pressure at the exit plane of the converging nozzle Pe is equal to P*, the Mach 
number at the exit plane is unity, and the mass flow rate is the maximum (or 
choked) flow rate. Because the velocity of the flow is sonic at the throat for 
the maximum flow rate, a back pressure lower than the critical pressure can-
not be sensed in the nozzle upstream flow and does not affect the flow rate.
 The effects of the stagnation temperature T0 and stagnation pressure P0 on 
the mass flow rate through a converging nozzle are illustrated in Fig. 12–16 
where the mass flow rate is plotted against the static-to-stagnation pressure 
ratio at the throat Pt/P0. An increase in P0 (or a decrease of T0) will increase 
the mass flow rate through the converging nozzle; a decrease in P0 (or an 
increase in T0) will decrease it. We could also conclude this by carefully 
observing Eqs. 12–24 and 12–25.
 A relation for the variation of flow area A through the nozzle relative to 
throat area A* can be obtained by combining Eqs. 12–24 and 12–25 for the 
same mass flow rate and stagnation properties of a particular fluid. This yields

 
A

A*
5

1

Ma
c a 2

k 1 1
b a1 1

k 2 1

2
 Ma2b d (k 11)/[2(k 21)]

 (12–26)

Table A–13 gives values of A/A* as a function of the Mach number for air 
(k 5 1.4). There is one value of A/A* for each value of the Mach number, 
but there are two possible values of the Mach number for each value of 
A/A*—one for subsonic flow and another for supersonic flow.
 Another parameter sometimes used in the analysis of one-dimensional 
isentropic flow of ideal gases is Ma*, which is the ratio of the local velocity 
to the speed of sound at the throat:

 Ma* 5
V

c*
 (12–27)

Equation 12–27 can also be expressed as

Ma* 5
V
c

  
c

c*
5

Ma c

c*
5

Ma"kRT"kRT*
5 MaÅ T

T*

FIGURE 12–15
The effect of back pressure Pb on the 

mass flow rate m
.
 and the exit pressure 

Pe of a converging nozzle.
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where Ma is the local Mach number, T is the local temperature, and T* is 
the critical temperature. Solving for T from Eq. 12–18 and for T* from 
Eq. 12–21 and substituting, we get

 Ma* 5 MaÅ k 1 1

2 1 (k 2 1)Ma2 (12–28)

Values of Ma* are also listed in Table A–13 versus the Mach number for 
k 5 1.4 (Fig. 12–17). Note that the parameter Ma* differs from the Mach 
number Ma in that Ma* is the local velocity nondimensionalized with 
respect to the sonic velocity at the throat, whereas Ma is the local velocity 
nondimensionalized with respect to the local sonic velocity. (Recall that the 
sonic velocity in a nozzle varies with temperature and thus with location.)

EXAMPLE 12–4    Effect of Back Pressure on Mass Flow Rate

Air at 1 MPa and 600°C enters a converging nozzle, shown in Fig. 12–18, 

with a velocity of 150 m/s. Determine the mass flow rate through the nozzle 

for a nozzle throat area of 50 cm2 when the back pressure is (a) 0.7 MPa 

and (b) 0.4 MPa.

SOLUTION  Air enters a converging nozzle. The mass flow rate of air through 

the nozzle is to be determined for different back pressures. 

Assumptions  1 Air is an ideal gas with constant specific heats at room tem-

perature. 2 Flow through the nozzle is steady, one-dimensional, and isentropic.

Properties  The constant pressure specific heat and the specific heat ratio of 

air are cp 5 1.005 kJ/kg?K and k 5 1.4.

Analysis  We use the subscripts i and t to represent the properties at the 

nozzle inlet and the throat, respectively. The stagnation temperature and 

pressure at the nozzle inlet are determined from Eqs. 12–4 and 12–5:

 T0i 5 Ti 1
V 2

i

2cp

5 873 K 1
(150 m/s)2

2(1.005 kJ/kg·K)
 a 1 kJ/kg

1000 m2/s2b 5 884 K

 P0i 5 PiaT0i

Ti

bk/(k21)

5 (1 MPa)a884 K

873 K
b1.4/(1.421)

5 1.045 MPa

These stagnation temperature and pressure values remain constant through-

out the nozzle since the flow is assumed to be isentropic. That is,

T0 5 T0i 5 884 K  and  P0 5 P0i 5 1.045 MPa

The critical-pressure ratio is determined from Table 12–2 (or Eq. 12–22) to 

be P*/P0 5 0.5283.

(a) The back pressure ratio for this case is

Pb

P0

5
0.7 MPa

1.045 MPa
5 0.670

which is greater than the critical-pressure ratio, 0.5283. Thus the exit plane 

pressure (or throat pressure Pt) is equal to the back pressure in this case. 

That is, Pt 5 Pb 5 0.7 MPa, and Pt /P0 5 0.670. Therefore, the flow is not 

choked. From Table A–13 at Pt /P0 5 0.670, we read Mat 5 0.778 and Tt /T0 5
0.892.

FIGURE 12–17
Various property ratios for isentropic 
flow through nozzles and diffusers are 
listed in Table A–13 for k 5 1.4 (air) 
for convenience.
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FIGURE 12–18
Schematic for Example 12–4.
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 The mass flow rate through the nozzle can be calculated from Eq. 12–24. 

But it can also be determined in a step-by-step manner as follows:

 Tt 5 0.892T0 5 0.892(884 K) 5 788.5 K

 rt 5
Pt

RTt

5
700 kPa

(0.287 kPa·m3/kg·K)(788.5 K)
5 3.093 kg/m3

 Vt 5 Matct 5 Mat"kRTt

 5 (0.778)Å(1.4)(0.287 kJ/kg·K)(788.5 K) a1000 m2/s2

1 kJ/kg
b

 5 437.9 m/s

Thus,

m# 5 rt AtVt 5 (3.093 kg/m3)(50 3 1024 m2)(437.9 m/s) 5 6.77 kg/s

(b) The back pressure ratio for this case is

Pb

P0

5
0.4 MPa

1.045 MPa
5 0.383

which is less than the critical-pressure ratio, 0.5283. Therefore, sonic condi-

tions exist at the exit plane (throat) of the nozzle, and Ma 5 1. The flow is 

choked in this case, and the mass flow rate through the nozzle is calculated 

from Eq. 12–25:

 m# 5 A*P0Å k

RT0

a 2

k 1 1
b (k11)/[2(k21)]

 

 5 (50 3 1024 m2)(1045 kPa)Å 1.4

(0.287 kJ/kg·K)(884 K)
 a 2

1.4 1 1
b2.4/0.8

 5 7.10 kg/s

since kPa·m2!kJ/kg 5 !1000 kg/s.
Discussion  This is the maximum mass flow rate through the nozzle for the 

specified inlet conditions and nozzle throat area.

EXAMPLE 12–5    Air Loss from a Flat Tire

Air in an automobile tire is maintained at a pressure of 220 kPa (gage) in an 

environment where the atmospheric pressure is 94 kPa. The air in the tire is 

at the ambient temperature of 258C. A 4-mm-diameter leak develops in the 

tire as a result of an accident (Fig. 12–19). Approximating the flow as isen-

tropic determine the initial mass flow rate of air through the leak.

SOLUTION  A leak develops in an automobile tire as a result of an accident. 

The initial mass flow rate of air through the leak is to be determined. 

Assumptions  1 Air is an ideal gas with constant specific heats. 2 Flow of air 

through the hole is isentropic.

FIGURE 12–19
Schematic for Example 12–5.

Air

T = 25°C
Pg = 220 kPa
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Properties  The specific gas constant of air is R 5 0.287 kPa?m3/kg?K. The 

specific heat ratio of air at room temperature is k 5 1.4.

Analysis  The absolute pressure in the tire is

 P 5 Pgage 1 Patm 5 220 1 94 5 314 kPa

The critical pressure is (from Table 12–2)

 P* 5 0.5283Po 5 (0.5283)(314 kPa) 5 166 kPa . 94 kPa

Therefore, the flow is choked, and the velocity at the exit of the hole is the 

sonic speed. Then the flow properties at the exit become

 r0 5
P0

RT0

5
314 kPa

(0.287 kPa·m3/ kg·K)(298 K)
5 3.671 kg/m3 

 r* 5 ra 2

k 1 1
b1/(k21)

5 (3.671 kg/m3)a 2

1.4 1 1
b1/(1.421)

5 2.327 kg/m3 

 T* 5
2

k 1 1
T0 5

2

1.4 1 1
(298 K) 5 248.3 K 

 V 5 c 5 "kRT* 5 Å(1.4)(0.287 kJ/kg·K)a1000 m2/s2

1 kJ/kg
b(248.3 K)  

 5 315.9 m/s 

Then the initial mass flow rate through the hole is

m# 5 rAV 5 (2.327 kg/m3)[p(0.004 m)2/4](315.9 m/s) 5 0.00924 kg/s

5 0.554 kg/min

Discussion  The mass flow rate decreases with time as the pressure inside 

the tire drops.

Converging–Diverging Nozzles
When we think of nozzles, we ordinarily think of flow passages whose 
cross-sectional area decreases in the flow direction. However, the highest 
velocity to which a fluid can be accelerated in a converging nozzle is lim-
ited to the sonic velocity (Ma 5 1), which occurs at the exit plane (throat) 
of the nozzle. Accelerating a fluid to supersonic velocities (Ma . 1) can 
be accomplished only by attaching a diverging flow section to the subsonic 
nozzle at the throat. The resulting combined flow section is a converging– 
diverging nozzle, which is standard equipment in supersonic aircraft and 
rocket propulsion (Fig. 12–20).
 Forcing a fluid through a converging–diverging nozzle is no guarantee 
that the fluid will be accelerated to a supersonic velocity. In fact, the fluid 
may find itself decelerating in the diverging section instead of accelerating 
if the back pressure is not in the right range. The state of the nozzle flow 
is determined by the overall pressure ratio Pb /P0. Therefore, for given inlet 
conditions, the flow through a converging–diverging nozzle is governed by 
the back pressure Pb, as will be explained.
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 Consider the converging–diverging nozzle shown in Fig. 12–21. A fluid 
enters the nozzle with a low velocity at stagnation pressure P0. When Pb 5 P0 
(case A), there is no flow through the nozzle. This is expected since the flow 
in a nozzle is driven by the pressure difference between the nozzle inlet and 
the exit. Now let us examine what happens as the back pressure is lowered.

 1. When P0 . Pb . PC, the flow remains subsonic throughout the nozzle, and 
the mass flow is less than that for choked flow. The fluid velocity increases 
in the first (converging) section and reaches a maximum at the throat 
(but Ma , 1). However, most of the gain in velocity is lost in the second 
(diverging) section of the nozzle, which acts as a diffuser. The pressure 
decreases in the converging section, reaches a minimum at the throat, 
and increases at the expense of velocity in the diverging section.

 2. When Pb 5 PC, the throat pressure becomes P* and the fluid achieves 
sonic velocity at the throat. But the diverging section of the nozzle still acts 
as a diffuser, slowing the fluid to subsonic velocities. The mass flow rate 
that was increasing with decreasing Pb also reaches its maximum value. 
Recall that P* is the lowest pressure that can be obtained at the throat, 
and the sonic velocity is the highest velocity that can be achieved with 
a converging nozzle. Thus, lowering Pb further has no influence on the 
fluid flow in the converging part of the nozzle or the mass flow rate 
through the nozzle. However, it does influence the character of the flow 
in the diverging section.

 3. When PC . Pb . PE, the fluid that achieved a sonic velocity at the throat 
continues accelerating to supersonic velocities in the diverging section as 
the pressure decreases. This acceleration comes to a sudden stop, however, 
as a normal shock develops at a section between the throat and the exit 
plane, which causes a sudden drop in velocity to subsonic levels and a 
sudden increase in pressure. The fluid then continues to decelerate further 

Nozzle

FuelOxidizer
Combustion chamber

FIGURE 12–20
Converging–diverging nozzles are commonly used in rocket engines to provide high thrust.

(Right) NASA
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FIGURE 12–21
The effects of back pressure on the 
flow through a converging–diverging 
nozzle.

in the remaining part of the converging–diverging nozzle. Flow through the 
shock is highly irreversible, and thus it cannot be approximated as isentropic. 
The normal shock moves downstream away from the throat as Pb is 
decreased, and it approaches the nozzle exit plane as Pb approaches PE.

   When Pb 5 PE, the normal shock forms at the exit plane of the nozzle. 
The flow is supersonic through the entire diverging section in this case, 
and it can be approximated as isentropic. However, the fluid velocity 
drops to subsonic levels just before leaving the nozzle as it crosses the 
normal shock. Normal shock waves are discussed in Section 12–4.

 4. When PE . Pb . 0, the flow in the diverging section is supersonic, 
and the fluid expands to PF at the nozzle exit with no normal shock 
forming within the nozzle. Thus, the flow through the nozzle can be 
approximated as isentropic. When Pb 5 PF, no shocks occur within or 
outside the nozzle. When Pb , PF, irreversible mixing and expansion 
waves occur downstream of the exit plane of the nozzle. When Pb . PF, 
however, the pressure of the fluid increases from PF to Pb irreversibly in 
the wake of the nozzle exit, creating what are called oblique shocks.
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EXAMPLE 12–6    Airflow through a Converging–Diverging Nozzle

Air enters a converging–diverging nozzle, shown in Fig. 12–22, at 1.0 MPa 

and 800 K with negligible velocity. The flow is steady, one-dimensional, 

and isentropic with k 5 1.4. For an exit Mach number of Ma 5 2 and a 

throat area of 20 cm2, determine (a) the throat conditions, (b) the exit plane 

conditions, including the exit area, and (c) the mass flow rate through the 

nozzle.

SOLUTION  Air flows through a converging–diverging nozzle. The throat and 

the exit conditions and the mass flow rate are to be determined.

Assumptions  1 Air is an ideal gas with constant specific heats at room tem-

perature. 2 Flow through the nozzle is steady, one-dimensional, and isentropic.

Properties  The specific heat ratio of air is given to be k 5 1.4. The gas con-

stant of air is 0.287 kJ/kg?K.

Analysis  The exit Mach number is given to be 2. Therefore, the flow must be 

sonic at the throat and supersonic in the diverging section of the nozzle. Since 

the inlet velocity is negligible, the stagnation pressure and stagnation tem-

perature are the same as the inlet temperature and pressure, P0 5 1.0 MPa 

and T0 5 800 K. Assuming ideal-gas behavior, the stagnation density is

r0 5
P0

RT0

5
1000 kPa

(0.287 kPa·m3/kg·K)(800 K)
5 4.355 kg/m3

(a) At the throat of the nozzle Ma 5 1, and from Table A–13 we read

P*

P0

5 0.5283  
T*

T0

5 0.8333  
r*

r0
5 0.6339

Thus,

 P* 5 0.5283P0 5 (0.5283)(1.0 MPa) 5 0.5283 MPa

 T* 5 0.8333T0 5 (0.8333)(800 K) 5 666.6 K

 r* 5 0.6339r0 5 (0.6339)(4.355 kg/m3) 5 2.761 kg/m3

Also,

 V* 5 c* 5 "kRT* 5 Å(1.4)(0.287 kJ/kg·K)(666.6 K) a1000 m2/s2

1 kJ/kg
b

 5 517.5 m/s

(b) Since the flow is isentropic, the properties at the exit plane can also be 

calculated by using data from Table A–13. For Ma 5 2 we read

Pe

P0

5 0.1278 
Te

T0

5 0.5556 
re

r0
5 0.2300 Mae* 5 1.6330 

Ae

A*
5 1.6875

Thus,

 Pe 5 0.1278P0 5 (0.1278)(1.0 MPa) 5 0.1278 MPa

 Te 5 0.5556T0 5 (0.5556)(800 K) 5 444.5 K

 re 5 0.2300r0 5 (0.2300)(4.355 kg/m3) 5 1.002 kg/m3

 Ae 5 1.6875A* 5 (1.6875)(20 cm2) 5 33.75 cm2

FIGURE 12–22
Schematic for Example 12–6.

At = 20 cm2

T0 = 800 K
Mae = 2P0 = 1.0 MPa 

Vi ≅ 0
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and

 Ve 5 Mae*c* 5 (1.6330)(517.5 m/s) 5 845.1 m/s

The nozzle exit velocity could also be determined from Ve 5 Maece, where ce 

is the speed of sound at the exit conditions:

 Ve 5 Maece 5 Mae"kRTe 5 2Å(1.4)(0.287 kJ/kg·K)(444.5 K) a1000 m2/s2

1 kJ/kg
b

 5 845.2 m/s

(c) Since the flow is steady, the mass flow rate of the fluid is the same at all 

sections of the nozzle. Thus it may be calculated by using properties at any 

cross section of the nozzle. Using the properties at the throat, we find that 

the mass flow rate is

m# 5 r*A*V* 5 (2.761 kg/m3)(20 3 1024 m2)(517.5 m/s) 5 2.86 kg/s

Discussion  Note that this is the highest possible mass flow rate that can 

flow through this nozzle for the specified inlet conditions.

12–4 ■  SHOCK WAVES AND EXPANSION WAVES
We discussed in Chap. 2 that sound waves are caused by infinitesimally 
small pressure disturbances, and they travel through a medium at the speed 
of sound. We have also seen in the present chapter that for some back pres-
sure values, abrupt changes in fluid properties occur in a very thin section 
of a converging–diverging nozzle under supersonic flow conditions, creating 
a shock wave. It is of interest to study the conditions under which shock 
waves develop and how they affect the flow.

Normal Shocks
First we consider shock waves that occur in a plane normal to the direction 
of flow, called normal shock waves. The flow process through the shock 
wave is highly irreversible and cannot be approximated as being isentropic.
 Next we follow the footsteps of Pierre Laplace (1749–1827), G. F. Bernhard 
Riemann (1826–1866), William Rankine (1820–1872), Pierre Henry Hugo niot 
(1851–1887), Lord Rayleigh (1842–1919), and G.  I. Taylor (1886– 1975) 
and develop relationships for the flow properties before and after the shock. 
We do this by applying the conservation of mass, momentum, and energy 
relations as well as some property relations to a stationary control volume 
that contains the shock, as shown in Fig. 12–23. The normal shock waves 
are extremely thin, so the entrance and exit flow areas for the control vol-
ume are approximately equal (Fig 12–24).
 We assume steady flow with no heat and work interactions and no poten-
tial energy changes. Denoting the properties upstream of the shock by the 
subscript 1 and those downstream of the shock by 2, we have the following:

Conservation of mass: r1AV1 5 r2AV2 (12–29)

or

r1V1 5 r2V2

FIGURE 12–23
Control volume for flow across a 
normal shock wave.

Control
volume

Flow

Ma1 . 1 P
V1

s

Shock wave

P
V2

1 2

1 2

1 2

1 2

hh

s
r r

Ma2 , 1

FIGURE 12–24
Schlieren image of a normal shock in 
a Laval nozzle. The Mach number in 
the nozzle just upstream (to the left) of 
the shock wave is about 1.3. Boundary 
layers distort the shape of the normal 
shock near the walls and lead to flow 
separation beneath the shock.
Photo by G. S. Settles, Penn State University. Used 
by permission.
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Conservation of energy: h1 1
V 2

1

2
5 h2 1

V 2
2

2
 (12–30)

or

 h01 5 h02 (12–31)

Linear momentum equation: Rearranging Eq. 12–14 and integrating yield

 A(P1 2 P2) 5 m# (V2 2 V1) (12–32)

Increase of entropy: s2 2 s1 $ 0 (12–33)

 We can combine the conservation of mass and energy relations into a single 
equation and plot it on an h-s diagram, using property relations. The resul-
tant curve is called the Fanno line, and it is the locus of states that have the 
same value of stagnation enthalpy and mass flux (mass flow per unit flow 
area). Likewise, combining the conservation of mass and momentum equa-
tions into a single equation and plotting it on the h-s diagram yield a curve 
called the Rayleigh line. Both these lines are shown on the h-s diagram 
in Fig. 12–25. As proved later in Example 12–7, the points of maximum 
entropy on these lines (points a and b) correspond to Ma 5 1. The state on 
the upper part of each curve is subsonic and on the lower part supersonic.
 The Fanno and Rayleigh lines intersect at two points (points 1 and 2), 
which represent the two states at which all three conservation equations are 
satisfied. One of these (state 1) corresponds to the state before the shock, 
and the other (state 2) corresponds to the state after the shock. Note that the 
flow is supersonic before the shock and subsonic afterward. Therefore the flow 
must change from supersonic to subsonic if a shock is to occur. The larger 
the Mach number before the shock, the stronger the shock will be. In the 
limiting case of Ma 5 1, the shock wave simply becomes a sound wave. 
Notice from Fig. 12–25 that entropy increases, s2 . s1. This is expected 
since the flow through the shock is adiabatic but irreversible.
 The conservation of energy principle (Eq. 12–31) requires that the stag-
nation enthalpy remain constant across the shock; h01 5 h02. For ideal gases 
h 5 h(T), and thus

 T01 5 T02 (12–34)

That is, the stagnation temperature of an ideal gas also remains constant 
across the shock. Note, however, that the stagnation pressure decreases 
across the shock because of the irreversibilities, while the ordinary (static) 
temperature rises drastically because of the conversion of kinetic energy 
into enthalpy due to a large drop in fluid velocity (see Fig. 12–26).
 We now develop relations between various properties before and after the 
shock for an ideal gas with constant specific heats. A relation for the ratio of 
the static temperatures T2/T1 is obtained by applying Eq. 12–18 twice:

T01

T1

5 1 1 ak 2 1

2
bMa2

1  and  
T02

T2

5 1 1 ak 2 1

2
bMa2

2

Dividing the first equation by the second one and noting that T01 5 T02, 
we have

 

T2

T1

5
1 1 Ma2

1(k 2 1)/2

1 1 Ma2
2(k 2 1)/2

 (12–35)

FIGURE 12–25
The h-s diagram for flow across a 

normal shock.
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From the ideal-gas equation of state,

r1 5
P1

RT1

  and  r2 5
P2

RT2

Substituting these into the conservation of mass relation r1V1 5 r2V2 and 
noting that Ma 5 V/c and c 5 !kRT , we have

 

T2

T1

5
P2V2

P1V1

5
P2Ma2c2

P1Ma1c1

5
P2Ma2"T2

P1Ma1"T1

5 aP2

P1

b2

 aMa2

Ma1

b2

 (12–36)

Combining Eqs. 12–35 and 12–36 gives the pressure ratio across the shock:

Fanno line:
 

 
P2

P1

5
Ma1"1 1 Ma2

1(k 2 1)/2

Ma2"1 1 Ma2
2(k 2 1)/2

 (12–37)

 Equation 12–37 is a combination of the conservation of mass and energy 
equations; thus, it is also the equation of the Fanno line for an ideal gas with 
constant specific heats. A similar relation for the Rayleigh line is obtained 
by combining the conservation of mass and momentum equations. From 
Eq. 12–32,

P1 2 P2 5
m#

A
 (V2 2 V1) 5 r2V

2
2 2 r1V

2
1

However,

rV 2 5 a P

RT
b(Ma c)2 5 a P

RT
b (Ma"kRT)2 5 Pk Ma2

Thus,

P1(1 1 kMa2
1) 5 P2(1 1 kMa2

2)

or

Rayleigh line: 
P2

P1

5
1 1 kMa2

1

1 1 kMa2
2

 (12–38)

Combining Eqs. 12–37 and 12–38 yields

 Ma2
2 5

Ma2
1 1 2/(k 2 1)

2Ma2
1 k/(k 2 1) 2 1

 (12–39)

This represents the intersections of the Fanno and Rayleigh lines and relates 
the Mach number upstream of the shock to that downstream of the shock.
 The occurrence of shock waves is not limited to supersonic nozzles only. 
This phenomenon is also observed at the engine inlet of supersonic aircraft, 
where the air passes through a shock and decelerates to subsonic veloci-
ties before entering the diffuser of the engine (Fig. 12–27). Explosions also 
produce powerful expanding spherical normal shocks, which can be very 
destructive (Fig. 12–28).
 Various flow property ratios across the shock are listed in Table A–14 for 
an ideal gas with k 5 1.4. Inspection of this table reveals that Ma2 (the Mach 

FIGURE 12–27
The air inlet of a supersonic fighter jet 
is designed such that a shock wave at 
the inlet decelerates the air to subsonic 
velocities, increasing the pressure and 
temperature of the air before it enters 
the engine.
© StockTrek/Getty RF

659-724_cengel_ch12.indd   680 12/19/12   11:08 AM



681
CHAPTER 12

number after the shock) is always less than 1 and that the larger the super-
sonic Mach number before the shock, the smaller the subsonic Mach number 
after the shock. Also, we see that the static pressure, temperature, and density 
all increase after the shock while the stagnation pressure decreases.
 The entropy change across the shock is obtained by applying the entropy-
change equation for an ideal gas across the shock:

 s2 2 s1 5 cP ln 
T2

T1

2 R ln 
P2

P1

 (12–40)

which can be expressed in terms of k, R, and Ma1 by using the relations 
developed earlier in this section. A plot of nondimensional entropy change 
across the normal shock (s2 2 s1)/R versus Ma1 is shown in Fig. 12–29. 
Since the flow across the shock is adiabatic and irreversible, the second law 
of thermodynamics requires that the entropy increase across the shock wave. 
Thus, a shock wave cannot exist for values of Ma1 less than unity where the 
entropy change would be negative. For adiabatic flows, shock waves can 
exist only for supersonic flows, Ma1 . 1.

EXAMPLE 12–7     The Point of Maximum Entropy 
on the Fanno Line

Show that the point of maximum entropy on the Fanno line (point a of 

Fig. 12–25) for the adiabatic steady flow of a fluid in a duct corresponds to 

the sonic velocity, Ma 5 1.

SOLUTION  It is to be shown that the point of maximum entropy on the 

Fanno line for steady adiabatic flow corresponds to sonic velocity.

Assumption  The flow is steady, adiabatic, and one-dimensional.

FIGURE 12–28
Schlieren image of the blast wave 

(expanding spherical normal shock) 
produced by the explosion of a 

firecracker. The shock expanded 
radially outward in all directions at a 
supersonic speed that decreased with 

radius from the center of the explosion. 
A microphone sensed the sudden 

change in pressure of the passing shock 
wave and triggered the microsecond 

flashlamp that exposed the photograph.
StockTrek /Getty Images

FIGURE 12–29
Entropy change across a 

normal shock.
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Analysis  In the absence of any heat and work interactions and potential 

energy changes, the steady-flow energy equation reduces to

h 1
V 2

2
5 constant

Differentiating yields

dh 1 V dV 5 0

For a very thin shock with negligible change of duct area across the shock, the 

steady-flow continuity (conservation of mass) equation is expressed as

rV 5 constant

Differentiating, we have

r dV 1 V dr 5 0

Solving for dV gives

dV 5 2V 
dr

r

Combining this with the energy equation, we have

dh 2 V 2 
dr

r
5 0

which is the equation for the Fanno line in differential form. At point a (the 

point of maximum entropy) ds 5 0. Then from the second T ds relation (T ds 5 

dh 2 v dP ) we have dh 5 v dP 5 dP/r. Substituting yields

dP
r

2 V 2  
dr

r
5 0  at s 5  constant

Solving for V, we have

V 5 a 0P
0r

b
s

1/2

which is the relation for the speed of sound, Eq. 12–9. Thus V 5 c and the 

proof is complete.

EXAMPLE 12–8    Shock Wave in a Converging–Diverging Nozzle

If the air flowing through the converging–diverging nozzle of Example 12–6 

experiences a normal shock wave at the nozzle exit plane (Fig. 12–30), 

determine the following after the shock: (a) the stagnation pressure, static 

pressure, static temperature, and static density; (b) the entropy change 

across the shock; (c) the exit velocity; and (d ) the mass flow rate through the 

nozzle. Approximate the flow as steady, one-dimensional, and isentropic with 

k 5 1.4 from the nozzle inlet to the shock location.

SOLUTION  Air flowing through a converging–diverging nozzle experiences a 

normal shock at the exit. The effect of the shock wave on various properties 

is to be determined.

T1 = 444.5 K

Ma1 = 2
P01 = 1.0 MPa

P1 = 0.1278 MPa

r1 = 1.002 kg/m3

Shock wave

1 2
m = 2.86 kg/s·

FIGURE 12–30
Schematic for Example 12–8.
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Assumptions  1 Air is an ideal gas with constant specific heats at room tem-

perature. 2 Flow through the nozzle is steady, one-dimensional, and isentro-

pic before the shock occurs. 3 The shock wave occurs at the exit plane.

Properties  The constant-pressure specific heat and the specific heat ratio 

of air are cp 5 1.005 kJ/kg·K and k 5 1.4. The gas constant of air is 

0.287 kJ/kg?K.

Analysis  (a) The fluid properties at the exit of the nozzle just before the 

shock (denoted by subscript 1) are those evaluated in Example 12–6 at the 

nozzle exit to be

P01 5 1.0 MPa  P1 5 0.1278 MPa T1 5 444.5 K  r1 5 1.002 kg/m3

The fluid properties after the shock (denoted by subscript 2) are related to 

those before the shock through the functions listed in Table A–14. For Ma1 5 

2.0, we read

Ma2 5 0.5774  
P02

P01

5 0.7209  
P2

P1

5 4.5000  
T2

T1

5 1.6875  
r2

r1

5 2.6667

Then the stagnation pressure P02, static pressure P2, static temperature T2, 

and static density r2 after the shock are

 P02 5 0.7209P01 5 (0.7209)(1.0 MPa) 5 0.721 MPa

 P2 5 4.5000P1 5 (4.5000)(0.1278 MPa) 5 0.575 MPa

 T2 5 1.6875T1 5 (1.6875)(444.5 K) 5 750 K

 r2 5 2.6667r1 5 (2.6667)(1.002 kg/m3) 5 2.67 kg/m3

(b) The entropy change across the shock is

 s2 2 s1 5 cr ln 
T2

T1

2 R ln 
P2

P1

 5 (1.005 kJ/kg·K) ln (1.6875) 2  (0.287 kJ/kg·K) ln (4.5000)

 5 0.0942 kJ/kg·K

Thus, the entropy of the air increases as it passes through a normal shock, 

which is highly irreversible.

(c) The air velocity after the shock is determined from V2 5 Ma2c2, where c2 

is the speed of sound at the exit conditions after the shock:

 V2 5 Ma2c2 5 Ma2"kRT2

 5 (0.5774)Å(1.4)(0.287 kJ/kg·K)(750.1 K)a1000 m2/s2

1 kJ/kg
b

 5 317 m/s

(d ) The mass flow rate through a converging–diverging nozzle with sonic condi-

tions at the throat is not affected by the presence of shock waves in the nozzle. 

Therefore, the mass flow rate in this case is the same as that determined in 

Example 12–6:

m# 5 2.86 kg/s

Discussion  This result can easily be verified by using property values at the 

nozzle exit after the shock at all Mach numbers significantly greater than unity.
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 Example 12–8 illustrates that the stagnation pressure and velocity decrease 
while the static pressure, temperature, density, and entropy increase across 
the shock (Fig. 12–31). The rise in the temperature of the fluid downstream 
of a shock wave is of major concern to the aerospace engineer because it 
creates heat transfer problems on the leading edges of wings and nose cones 
of space reentry vehicles and the recently proposed hypersonic space planes. 
Overheating, in fact, led to the tragic loss of the space shuttle Columbia in 
February of 2003 as it was reentering earth’s atmosphere.

Oblique Shocks
Not all shock waves are normal shocks (perpendicular to the flow direction). 
For example, when the space shuttle travels at supersonic speeds through the 
atmosphere, it produces a complicated shock pattern consisting of inclined 
shock waves called oblique shocks (Fig. 12–32). As you can see, some por-
tions of an oblique shock are curved, while other portions are straight.
 First, we consider straight oblique shocks, like that produced when a uni-
form supersonic flow (Ma1 . 1) impinges on a slender, two-dimensional 
wedge of half-angle d (Fig. 12–33). Since information about the wedge can-
not travel upstream in a supersonic flow, the fluid “knows” nothing about 
the wedge until it hits the nose. At that point, since the fluid cannot flow 
through the wedge, it turns suddenly through an angle called the turning 
angle or deflection angle u. The result is a straight oblique shock wave, 
aligned at shock angle or wave angle b, measured relative to the oncoming 
flow (Fig. 12–34). To conserve mass, b must obviously be greater than d. 
Since the Reynolds number of supersonic flows is typically large, the 
boundary layer growing along the wedge is very thin, and we ignore its 
effects. The flow therefore turns by the same angle as the wedge; namely, 
deflection angle u is equal to wedge half-angle d. If we take into account 
the displacement thickness effect of the boundary layer (Chap. 10), the 
deflection angle u of the oblique shock turns out to be slightly greater than 
wedge half-angle d.

FIGURE 12–31
When a lion tamer cracks his whip, 
a weak spherical shock wave forms 
near the tip and spreads out radially; 
the pressure inside the expanding 
shock wave is higher than ambient air 
pressure, and this is what causes the 
crack when the shock wave reaches 
the lion’s ear.
© Joshua Ets-Hokin/Getty RF

FIGURE 12–32
Schlieren image of a small model of 
the space shuttle orbiter being tested at 
Mach 3 in the supersonic wind tunnel 
of the Penn State Gas Dynamics Lab. 
Several oblique shocks are seen in the 
air surrounding the spacecraft.
© Joshua Ets-Hokin/Getty Images
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 Like normal shocks, the Mach number decreases across an oblique shock, 
and oblique shocks are possible only if the upstream flow is supersonic. 
However, unlike normal shocks, in which the downstream Mach number 
is always subsonic, Ma2 downstream of an oblique shock can be subsonic, 
sonic, or supersonic, depending on the upstream Mach number Ma1 and the 
turning angle.
 We analyze a straight oblique shock in Fig. 12–34 by decomposing the 
velocity vectors upstream and downstream of the shock into normal and 
tangential components, and considering a small control volume around the 
shock. Upstream of the shock, all fluid properties (velocity, density, pres-
sure, etc.) along the lower left face of the control volume are identical to 
those along the upper right face. The same is true downstream of the shock. 
Therefore, the mass flow rates entering and leaving those two faces cancel 
each other out, and conservation of mass reduces to

 r1V1, n A 5 r2V2, n A  S   r1V1, n 5 r2V2, n (12–41)

where A is the area of the control surface that is parallel to the shock. Since 
A is the same on either side of the shock, it has dropped out of Eq. 12–41.
 As you might expect, the tangential component of velocity (parallel to the 
oblique shock) does not change across the shock, i.e., V1, t 5 V2, t. This is 
easily proven by applying the tangential momentum equation to the control 
volume.
 When we apply conservation of momentum in the direction normal to the 
oblique shock, the only forces are pressure forces, and we get

P1 A 2 P2 A 5 rV2, n AV2, n 2 rV1, n AV1, n  S   P1 2 P2 5 r2V
2
2, n 2 r1V

2
1, n (12–42)

Finally, since there is no work done by the control volume and no heat trans-
fer into or out of the control volume, stagnation enthalpy does not change 
across an oblique shock, and conservation of energy yields

h01 5 h02 5 h0  S   h1 1
1

2
 V 2

1, n 1
1

2
 V 2

1, t 5 h2 1
1

2
 V 2

2, n 1
1

2
 V 2

2, t

But since V1, t 5 V2, t, this equation reduces to

 h1 1
1

2
 V 2

1, n 5 h2 1
1

2
 V 2

2, n (12–43)

Careful comparison reveals that the equations for conservation of mass, 
momentum, and energy (Eqs. 12–41 through 12–43) across an oblique shock 
are identical to those across a normal shock, except that they are written in 
terms of the normal velocity component only. Therefore, the normal shock 
relations derived previously apply to oblique shocks as well, but must be writ-
ten in terms of Mach numbers Ma1, n and Ma2, n normal to the oblique shock. 
This is most easily visualized by rotating the velocity vectors in Fig. 12–34 by 
angle p/2 2 b, so that the oblique shock appears to be vertical (Fig. 12–35). 
Trigonometry yields

 Ma1, n 5 Ma1 sin b  and  Ma2, n 5 Ma2 sin(b 2 u) (12–44)

where Ma1, n 5 V1, n/c1 and Ma2, n 5 V2, n/c2. From the point of view shown 
in Fig. 12–35, we see what looks like a normal shock, but with some super-
posed tangential flow “coming along for the ride.” Thus,

FIGURE 12–34
Velocity vectors through an oblique 

shock of shock angle b and deflection 
angle u.

→

V2, n

Oblique
shock

Control
volume

V1, n

V1

→
V2

V1, t
P1 P2

V2, t

u

b

FIGURE 12–33
An oblique shock of shock angle b 

formed by a slender, two-dimensional 
wedge of half-angle d. The flow is 

turned by deflection angle u 
downstream of the shock, and the 

Mach number decreases.

d
b

u
Ma1

Ma1

Ma2
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shock
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All the equations, shock tables, etc., for normal shocks apply to oblique 
shocks as well, provided that we use only the normal components of the 
Mach number.

In fact, you may think of normal shocks as special oblique shocks in 
which shock angle b 5 p/2, or 908. We recognize immediately that an 
oblique shock can exist only if Ma1, n . 1 and Ma2, n , 1. The normal 
shock equations appropriate for oblique shocks in an ideal gas are summa-
rized in Fig. 12–36 in terms of Ma1, n.
 For known shock angle b and known upstream Mach number Ma1, we 
use the first part of Eq. 12–44 to calculate Ma1, n, and then use the normal 
shock tables (or their corresponding equations) to obtain Ma2, n. If we also 
knew the deflection angle u, we could calculate Ma2 from the second part of 
Eq. 12–44. But, in a typical application, we know either b or u, but not both. 
Fortunately, a bit more algebra provides us with a relationship between u, 
b, and Ma1. We begin by noting that tan b 5 V1, n/V1, t and tan(b 2 u) 5 
V2, n/V2, t (Fig. 12–35). But since V1, t 5 V2, t, we combine these two expres-
sions to yield

 
V2, n

V1, n

5
tan(b 2 u)

tan b
5

2 1 (k 2 1)Ma2
1, n

(k 1 1)Ma2
1, n

5
2 1 (k 2 1)Ma2

1 sin2 b

(k 1 1)Ma2
1 sin2 b

 (12–45)

where we have also used Eq. 12–44 and the fourth equation of Fig. 12–36. 
We apply trigonometric identities for cos 2b and tan(b 2 u), namely,

cos 2b 5 cos2 b 2 sin2 b  and  tan(b 2 u) 5
tan b 2 tan u

1 1 tan b tan u

After some algebra, Eq. 12–45 reduces to

The u-b-Ma relationship: tan u 5
2 cot b(Ma2

1 sin2  b 2 1)

Ma2
1(k 1 cos 2b) 1 2

 (12–46)

 Equation 12–46 provides deflection angle u as a unique function of shock 
angle b, specific heat ratio k, and upstream Mach number Ma1. For air 
(k 5 1.4), we plot u versus b for several values of Ma1 in Fig. 12–37. We 
note that this plot is often presented with the axes reversed (b versus u) in 
compressible flow textbooks, since, physically, shock angle b is determined 
by deflection angle u.
 Much can be learned by studying Fig. 12–37, and we list some observa-
tions here:

• Figure 12–37 displays the full range of possible shock waves at a given 
free-stream Mach number, from the weakest to the strongest. For any 
value of Mach number Ma1 greater than 1, the possible values of u range 
from u 5 08 at some value of b between 0 and 908, to a maximum value 
u 5 umax at an intermediate value of b, and then back to u 5 08 at b 5 908. 
Straight oblique shocks for u or b outside of this range cannot and do not 
exist. At Ma1 5 1.5, for example, straight oblique shocks cannot exist in 
air with shock angle b less than about 428, nor with deflection angle u 
greater than about 128. If the wedge half-angle is greater than umax, the 
shock becomes curved and detaches from the nose of the wedge, forming 
what is called a detached oblique shock or a bow wave (Fig. 12–38). 
The shock angle b of the detached shock is 908 at the nose, but b decreases 

FIGURE 12–35
The same velocity vectors of Fig. 12–34, 
but rotated by angle p/2 2 b, so that 
the oblique shock is vertical. Normal 
Mach numbers Ma1, n and Ma2, n are 
also defined.
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FIGURE 12–36
Relationships across an oblique shock 
for an ideal gas in terms of the normal 
component of upstream Mach number 
Ma1, n.

P02
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5 c (k 1 1)Ma1, n

2
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2
dk/(k21) c (k 1 1)

2k Ma2
1, n2 k 1 1

d1/(k21)

T2

T1
5 [2 1 (k 2 1)Ma1, n

2 ] 
2k Ma1, n

2 2 k 1 1

(k 1 1)2Ma1, n
2

r2

r1
5

V1, n

V2, n
5

(k 1 1)Ma1, n
2

2 1 (k 2 1)Ma1, n
2

P2

P1
5

2k Ma1, n
2 2 k 1 1

k 1 1

Ma 2, n 5B
(k 2 1)Ma1, n

2 1 2

2k Ma1, n
2 2 k 1 1

h01 5 h02  →→  T01 5 T02
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as the shock curves downstream. Detached shocks are much more com-
plicated than simple straight oblique shocks to analyze. In fact, no simple 
solutions exist, and prediction of detached shocks requires computational 
methods (Chap. 15).

• Similar oblique shock behavior is observed in axisymmetric flow over 
cones, as in Fig. 12–39, although the u-b-Ma relationship for axisymmetric 
flows differs from that of Eq. 12–46.

• When supersonic flow impinges on a blunt (or bluff) body—a body without 
a sharply pointed nose, the wedge half-angle d at the nose is 908, and an 
attached oblique shock cannot exist, regardless of Mach number. In fact, 
a detached oblique shock occurs in front of all such blunt-nosed bodies, 
whether two-dimensional, axisymmetric, or fully three-dimensional. For 
example, a detached oblique shock is seen in front of the space shuttle 
model in Fig. 12–32 and in front of a sphere in Fig. 12–40.

• While u is a unique function of Ma1 and b for a given value of k, there are 
two possible values of b for u , umax. The dashed red line in Fig. 12–37 
passes through the locus of umax values, dividing the shocks into weak 
oblique shocks (the smaller value of b) and strong oblique shocks (the 
larger value of b). At a given value of u, the weak shock is more common 
and is “preferred” by the flow unless the downstream pressure conditions 
are high enough for the formation of a strong shock.

• For a given upstream Mach number Ma1, there is a unique value of u for 
which the downstream Mach number Ma2 is exactly 1. The dashed green 
line in Fig. 12–37 passes through the locus of values where Ma2 5 1. To 
the left of this line, Ma2 . 1, and to the right of this line, Ma2 , 1. Down-
stream sonic conditions occur on the weak shock side of the plot, with u 
very close to umax. Thus, the flow downstream of a strong oblique shock is 
always subsonic (Ma2 , 1). The flow downstream of a weak oblique shock 
remains supersonic, except for a narrow range of u just below umax, where it 
is subsonic, although it is still called a weak oblique shock.

• As the upstream Mach number approaches infinity, straight oblique 
shocks become possible for any b between 0 and 908, but the maximum 
possible turning angle for k 5 1.4 (air) is umax > 45.68, which occurs at 

FIGURE 12–37
The dependence of straight oblique 

shock deflection angle u on shock 
angle b for several values of upstream 

Mach number Ma1. Calculations are 
for an ideal gas with k 5 1.4. The 
dashed red line connects points of 

maximum deflection angle (u 5 umax). 
Weak oblique shocks are to the left of 
this line, while strong oblique shocks 

are to the right of this line. The dashed 
green line connects points where the 

downstream Mach number is sonic 
(Ma2 5 1). Supersonic downstream 
flow (Ma2 . 1) is to the left of this 

line, while subsonic downstream flow 
(Ma2 , 1) is to the right of this line.
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FIGURE 12–38
A detached oblique shock occurs 

upstream of a two-dimensional wedge 
of half-angle d when d is greater than 

the maximum possible deflection 
angle u. A shock of this kind is called 

a bow wave because of its resemblance 
to the water wave that forms at the 

bow of a ship.

Ma1

Detached
oblique
shock

d � umax
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b 5 67.88. Straight oblique shocks with turning angles above this value of 
umax are not possible, regardless of the Mach number.

• For a given value of upstream Mach number, there are two shock angles 
where there is no turning of the flow (u 5 08): the strong case, b 5 908, 
corresponds to a normal shock, and the weak case, b 5 bmin, represents 
the weakest possible oblique shock at that Mach number, which is called 
a Mach wave. Mach waves are caused, for example, by very small non-
uniformities on the walls of a supersonic wind tunnel (several can be 
seen in Figs. 12–32 and 12–39). Mach waves have no effect on the flow, 
since the shock is vanishingly weak. In fact, in the limit, Mach waves 
are isentropic. The shock angle for Mach waves is a unique function of 
the Mach number and is given the symbol m, not to be confused with the 
coefficient of viscosity. Angle m is called the Mach angle and is found 
by setting u equal to zero in Eq. 12–46, solving for b 5 m, and taking the 
smaller root. We get

 Mach angle: m 5 sin21(1/Ma1) (12–47)

 Since the specific heat ratio appears only in the denominator of Eq. 12–46, 
m is independent of k. Thus, we can estimate the Mach number of any 
supersonic flow simply by measuring the Mach angle and applying 
Eq. 12–47.

Prandtl–Meyer Expansion Waves
We now address situations where supersonic flow is turned in the opposite 
direction, such as in the upper portion of a two-dimensional wedge at an 
angle of attack greater than its half-angle d (Fig. 12–41). We refer to this type 
of flow as an expanding flow, whereas a flow that produces an oblique shock 
may be called a compressing flow. As previously, the flow changes direction 
to conserve mass. However, unlike a compressing flow, an expanding flow 
does not result in a shock wave. Rather, a continuous expanding region called 
an expansion fan appears, composed of an infinite number of Mach waves 
called Prandtl–Meyer expansion waves. In other words, the flow does not 
turn suddenly, as through a shock, but gradually—each successive Mach 
wave turns the flow by an infinitesimal amount. Since each individual expan-
sion wave is nearly isentropic, the flow across the entire expansion fan is also 
nearly isentropic. The Mach number downstream of the expansion increases 
(Ma2 . Ma1), while pressure, density, and temperature decrease, just as they 
do in the supersonic (expanding) portion of a converging–diverging nozzle.

FIGURE 12–39
Still frames from schlieren video-
graphy illustrating the detachment 
of an oblique shock from a cone 
with increasing cone half-angle d 
in air at Mach 3. At (a) d 5 208 
and (b) d 5 408, the oblique shock 
remains attached, but by (c) d 5 608, 
the oblique shock has detached, 
forming a bow wave.
Photos by G. S. Settles, Penn State University. 
Used by permission.

 (a) (b) (c)

Ma1

d

d = 20° d = 40° d = 60°

FIGURE 12–40
Shadowgram of a 12-in-diameter sphere 
in free flight through air at Ma 5 1.53. 
The flow is subsonic behind the part 
of the bow wave that is ahead of the 
sphere and over its surface back to 
about 458. At about 908 the laminar 
boundary layer separates through 
an oblique shock wave and quickly 
becomes turbulent. The fluctuating 
wake generates a system of weak 
disturbances that merge into the 
second “recompression” shock wave.
Photo by A. C. Charters, as found in 
Van Dyke (1982).
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 Prandtl–Meyer expansion waves are inclined at the local Mach angle m, 
as sketched in Fig. 12–41. The Mach angle of the first expansion wave 
is easily determined as m1 5 sin21(1/Ma1). Similarly, m2 5 sin21(1/Ma2), 
where we must be careful to measure the angle relative to the new direction of 
flow downstream of the expansion, namely, parallel to the upper wall of the 
wedge in Fig. 12–41 if we neglect the influence of the boundary layer along 
the wall. But how do we determine Ma2? It turns out that the turning angle u 
across the expansion fan can be calculated by integration, making use of the 
isentropic flow relationships. For an ideal gas, the result is (Anderson, 2003),

Turning angle across an expansion fan: u 5 n(Ma2) 2 n(Ma1) (12–48)

where n(Ma) is an angle called the Prandtl–Meyer function (not to be con-
fused with the kinematic viscosity),

 
n(Ma) 5 Åk 1 1

k 2 1
 tan21aÅk 2 1

k 1 1
 (Ma2 2 1)b 2 tan21a"Ma2 2 1b  (12–49)

Note that n(Ma) is an angle, and can be calculated in either degrees or radians. 
Physically, n(Ma) is the angle through which the flow must expand, starting 
with n 5 0 at Ma 5 1, in order to reach a supersonic Mach number, Ma . 1.
 To find Ma2 for known values of Ma1, k, and u, we calculate n(Ma1) from 
Eq. 12–49, n(Ma2) from Eq. 12–48, and then Ma2 from Eq. 12–49, noting 
that the last step involves solving an implicit equation for Ma2. Since there 
is no heat transfer or work, and the flow can be approximated as isentropic 
through the expansion, T0 and P0 remain constant, and we use the isentropic 
flow relations derived previously to calculate other flow properties down-
stream of the expansion, such as T2, r2, and P2.
 Prandtl–Meyer expansion fans also occur in axisymmetric supersonic 
flows, as in the corners and trailing edges of a cone-cylinder (Fig. 12–42). 
Some very complex and, to some of us, beautiful interactions involving both 

FIGURE 12–41
An expansion fan in the upper 

portion of the flow formed by a 
two-dimensional wedge at an angle 
of attack in a supersonic flow. The 

flow is turned by angle u, and 
the Mach number increases across 

the expansion fan. Mach angles 
upstream and downstream of the 

expansion fan are indicated. Only 
three expansion waves are shown for 

simplicity, but in fact, there are an 
infinite number of them. (An oblique 

shock is also present in the bottom 
portion of this flow.)

d

u
Ma1 . 1

m1
m2

Ma2

Expansion
waves

Oblique
shock

FIGURE 12–42
(a) A cone-cylinder of 12.58 half-angle in a Mach number 1.84 flow. The boundary layer 

becomes turbulent shortly downstream of the nose, generating Mach waves that are 
visible in this shadowgraph. Expansion waves are seen at the corners and at the 

trailing edge of the cone. (b) A similar pattern for Mach 3 flow over an 118 2-D wedge.
(a) Photo by A. C. Charters, as found in Van Dyke (1982).(b) Photo by G. S. Settles, Penn State University. Used by permission.

(a) (b)
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shock waves and expansion waves occur in the supersonic jet produced by 
an “overexpanded” nozzle, as in Fig. 12–43. When such patterns are visible in 
the exhaust of a jet engine, pilots refer to it as a “tiger tail.” Analysis of such 
flows is beyond the scope of the present text; interested readers are referred 
to compressible flow textbooks such as Thompson (1972), Leipmann and 
Roshko (2001), and Anderson (2003).

FIGURE 12–43
The complex interactions between 

shock waves and expansion waves in 
an “overexpanded” supersonic jet. 

(a) The flow is visualized by a 
schlieren-like differential interferogram. 
(b) Color shlieren image. (c) Tiger tail 

shock pattern.
(a) Photo by H. Oertel sen. Reproduced by courtesy 

of the French-German Research Institute of Saint-
Louis, ISL. Used with permission. (b) Photo by 

G. S. Settles, Penn State University. Used by 
permission. (c) Photo courtesy of Joint Strike 

Fighter Program, Department of Defense.

(a)

(b)

(c)
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EXAMPLE 12–9     Estimation of the Mach Number 
from Mach Lines

Estimate the Mach number of the free-stream flow upstream of the space 

shuttle in Fig. 12–32 from the figure alone. Compare with the known value 

of Mach number provided in the figure caption.

SOLUTION  We are to estimate the Mach number from a figure and compare 

it to the known value.

Analysis  Using a protractor, we measure the angle of the Mach lines 

in the free-stream flow: m > 19°. The Mach number is obtained from 

Eq. 12–47,

m 5 sin21a 1

Ma1

b   S   Ma1 5
1

sin 198
  S   Ma1 5 3.07

Our estimated Mach number agrees with the experimental value of 3.0 6 0.1.

Discussion  The result is independent of the fluid properties.

EXAMPLE 12–10    Oblique Shock Calculations

Supersonic air at Ma1 5 2.0 and 75.0 kPa impinges on a two-dimensional 

wedge of half-angle d 5 10° (Fig. 12–44). Calculate the two possible oblique 

shock angles, bweak and bstrong, that could be formed by this wedge. For each 

case, calculate the pressure and Mach number downstream of the oblique 

shock, compare, and discuss.

SOLUTION  We are to calculate the shock angle, Mach number, and pressure 

downstream of the weak and strong oblique shock formed by a two-dimensional 

wedge.

Assumptions  1 The flow is steady. 2 The boundary layer on the wedge is 

very thin.

Properties  The fluid is air with k 5 1.4.

Analysis  Because of assumption 2, we approximate the oblique shock 

deflection angle as equal to the wedge half-angle, i.e., u > d 5 10°. With 

Ma1 5 2.0 and u 5 10°, we solve Eq. 12–46 for the two possible values of 

oblique shock angle b: Bweak 5 39.3° and Bstrong 5 83.7°. From these values, 

we use the first part of Eq. 12–44 to calculate upstream normal Mach 

number Ma1, n,

Weak shock: Ma1, n 5 Ma1 sin b  S   Ma1, n 5 2.0 sin 39.38 5 1.267

and

Strong shock: Ma1, n 5 Ma1 sin b  S   Ma1, n 5 2.0 sin 83.78 5 1.988

We substitute these values of Ma1, n into the second equation of Fig. 12–36 

to calculate the downstream normal Mach number Ma2,n. For the weak 

shock, Ma2, n 5 0.8032, and for the strong shock, Ma2, n 5 0.5794. We also 

calculate the downstream pressure for each case, using the third equation of 

Fig. 12–36, which gives

FIGURE 12–44
Two possible oblique shock angles, 
(a) bweak and (b) bstrong, formed by a 

two-dimensional wedge of half-angle 
d 5 108.

Ma1

Strong
shock

d 5 10°

bstrong

(a)

(b)

Ma1

Weak
shock

d 5 10°
bweak
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Weak shock:

P2

P1

5
2k Ma2

1, n 2 k 1 1

k 1 1
 S  P2 5 (75.0 kPa)

2(1.4)(1.267)2 2 1.4 1 1

1.4 1 1
5 128 kPa

and

Strong shock:

P2

P1

5
2k Ma2

1, n 2 k 1 1

k 1 1
 S  P2 5 (75.0 kPa)

2(1.4)(1.988)2 2 1.4 1 1

1.4 1 1
5 333 kPa

Finally, we use the second part of Eq. 12–44 to calculate the downstream 

Mach number,

Weak shock: Ma2 5
Ma2, n

sin(b 2 u)
5

0.8032

sin(39.38 2 108)
5 1.64

and

Strong shock: Ma2 5
Ma2, n

sin(b 2 u)
5

0.5794

sin(83.78 2 108)
5 0.604

The changes in Mach number and pressure across the strong shock are much 

greater than the changes across the weak shock, as expected.

Discussion  Since Eq. 12–46 is implicit in b, we solve it by an iterative 

approach or with an equation solver such as EES. For both the weak and 

strong oblique shock cases, Ma1, n is supersonic and Ma2, n is subsonic. How-

ever, Ma2 is supersonic across the weak oblique shock, but subsonic across 

the strong oblique shock. We could also use the normal shock tables in place 

of the equations, but with loss of precision.

EXAMPLE 12–11    Prandtl–Meyer Expansion Wave Calculations

Supersonic air at Ma1 5 2.0 and 230 kPa flows parallel to a flat wall that 

suddenly expands by d 5 10° (Fig. 12–45). Ignoring any effects caused by 

the boundary layer along the wall, calculate downstream Mach number Ma2 

and pressure P2.

SOLUTION  We are to calculate the Mach number and pressure downstream 

of a sudden expansion along a wall.

Assumptions  1 The flow is steady. 2 The boundary layer on the wall is very 

thin.

Properties  The fluid is air with k 5 1.4.

Analysis  Because of assumption 2, we approximate the total deflection 

angle as equal to the wall expansion angle, i.e., u > d 5 10°. With Ma1 5 

2.0, we solve Eq. 12–49 for the upstream Prandtl–Meyer function,

 n(Ma) 5 Åk 1 1

k 2 1
 tan21aÅk 2 1

k 1 1
 (Ma2 2 1)b 2 tan21a"Ma2 2 1b  

5 Å1.4 1 1

1.4 2 1
 tan21aÅ1.4 2 1

1.4 1 1
 (2.02 2 1)b 2 tan21 A"2.02 2 1 B 5 26.388

FIGURE 12–45
An expansion fan caused by the 
sudden expansion of a wall with 
d 5 108.

Ma1 5 2.0

Ma2

d 5 10°

u
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Next, we use Eq. 12–48 to calculate the downstream Prandtl–Meyer 

function,

u 5 n(Ma2) 2 n(Ma1)  S   n(Ma2) 5 u 1 n(Ma1) 5 108 1 26.388 5 36.388

Ma2 is found by solving Eq. 12–49, which is implicit—an equation solver 

is helpful. We get Ma2 5 2.38. There are also compressible flow calcula-

tors on the Internet that solve these implicit equations, along with both 

normal and oblique shock equations; e.g., see www.aoe.vt.edu/~devenpor/

aoe3114/calc.html.

 We use the isentropic relations to calculate the downstream pressure,

P2 5
P2/P0

P1/P0

 P1 5

c1 1 ak 2 1

2
bMa2

2 d2k/(k 21)c1 1 ak 2 1

2
bMa2

1 d2k/(k 21)
 (230 kPa) 5 126 kPa

Since this is an expansion, Mach number increases and pressure decreases, 

as expected.

Discussion  We could also solve for downstream temperature, density, etc., 

using the appropriate isentropic relations.

12–5 ■  DUCT FLOW WITH HEAT TRANSFER AND 
NEGLIGIBLE FRICTION (RAYLEIGH FLOW)

So far we have limited our consideration mostly to isentropic flow, also 
called reversible adiabatic flow since it involves no heat transfer and no 
irreversibilities such as friction. Many compressible flow problems encoun-
tered in practice involve chemical reactions such as combustion, nuclear 
reactions, evaporation, and condensation as well as heat gain or heat loss 
through the duct wall. Such problems are difficult to analyze exactly since 
they may involve significant changes in chemical composition during flow, 
and the conversion of latent, chemical, and nuclear energies to thermal 
energy (Fig. 12–46).
 The essential features of such complex flows can still be captured by 
a simple analysis by modeling the generation or absorption of thermal 
energy as heat transfer through the duct wall at the same rate and disre-
garding any changes in chemical composition. This simplified problem 
is still too complicated for an elementary treatment of the topic since the 
flow may involve friction, variations in duct area, and multidimensional 
effects. In this section, we limit our consideration to one-dimensional 
flow in a duct of constant cross-sectional area with negligible frictional 
effects.
 Consider steady one-dimensional flow of an ideal gas with constant 
specific heats through a constant-area duct with heat transfer, but with 
negligible friction. Such flows are referred to as Rayleigh flows after 
Lord Rayleigh (1842–1919). The conservation of mass, momentum, and 

FIGURE 12–46
Many practical compressible flow 

problems involve combustion, which 
may be modeled as heat gain through 

the duct wall.

Fuel nozzles or spray bars

Flame holders

Air inlet
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energy equations for the control volume shown in Fig. 12–47 are written 
as follows:

Continuity equation  Noting that the duct cross-sectional area A is 
constant, the relation m

.
1 5 m

.
2 or r1A1V1 5 r2 A2V2 reduces to

 r1V1 5 r2V2 (12–50)

x-Momentum equation  Noting that the frictional effects are negligible 
and thus there are no shear forces, and assuming there are no external 

 and body forces, the momentum equation aF
S

5 a
out
bm
#
V
S

2 a
in
bm
#
V
S

 

 in the flow (or x-) direction becomes a balance between static pressure 
forces and momentum transfer. Noting that the flows are high speed 
and turbulent and we are ignoring friction, the momentum flux correc-
tion factor is approximately 1 (b > 1) and thus can be neglected. Then,

P1A1 2 P2A2 5 m# V2 2 m# V1 S  P1 2 P2 5 (r2V2)V2 2 (r1V1)V1

or

 P1 1 r1V
2
1 5 P2 1 r2V

2
2 (12–51)

Energy equation  The control volume involves no shear, shaft, or other 
forms of work, and the potential energy change is negligible. If the 
rate of heat transfer is Q

.
 and the heat transfer per unit mass of fluid 

is q 5 Q
. 
/m

.
, the steady-flow energy balance E

.
in 5 E

.
out becomes

 
Q
#

1 m# ah1 1
V 2

1

2
b 5 m# ah2 1

V 2
2

2
b  S   q 1 h1 1

V 2
1

2
5 h2 1

V 2
2

2
 (12–52)

For an ideal gas with constant specific heats, Dh 5 cp DT, and thus

 
q 5 cp(T2 2 T1) 1

V 2
2 2 V 2

1

2
 (12–53)

or

 q 5 h02 2 h01 5 cp(T02 2 T01) (12–54)

Therefore, the stagnation enthalpy h0 and stagnation temperature T0 
change during Rayleigh flow (both increase when heat is transferred to 
the fluid and thus q is positive, and both decrease when heat is trans-
ferred from the fluid and thus q is negative).

Entropy change  In the absence of any irreversibilities such as friction, 
the entropy of a system changes by heat transfer only: it increases with 
heat gain, and decreases with heat loss. Entropy is a property and thus 
a state function, and the entropy change of an ideal gas with constant 
specific heats during a change of state from 1 to 2 is given by

 
s2 2 s1 5 cp ln 

T2

T1

2 R ln 
P2

P1

 (12–55)

FIGURE 12–47
Control volume for flow in a 
constant-area duct with heat 
transfer and negligible friction.

P1, T1, r1 P2, T2, r2

V1

Control
volume

Q
.

V2
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 The entropy of a fluid may increase or decrease during Rayleigh flow, 
depending on the direction of heat transfer.

Equation of state  Noting that P 5 rRT, the properties P, r, and T of an 
ideal gas at states 1 and 2 are related to each other by

 

P1

r1T1

5
P2

r2T2

 (12–56)

 Consider a gas with known properties R, k, and cp. For a specified inlet 
state 1, the inlet properties P1, T1, r1, V1, and s1 are known. The five exit 
properties P2, T2, r2, V2, and s2 can be determined from Equations 12–50, 
12–51, 12–53, 12–55, and 12–56 for any specified value of heat transfer q. 
When the velocity and temperature are known, the Mach number can be 
determined from Ma 5 V /c 5 V /!kRT.
 Obviously there is an infinite number of possible downstream states 2 
corresponding to a given upstream state 1. A practical way of determining 
these downstream states is to assume various values of T2, and calculate 
all other properties as well as the heat transfer q for each assumed T2 from 
Eqs. 12–50 through 12–56. Plotting the results on a T-s diagram gives a 
curve passing through the specified inlet state, as shown in Fig. 12–48. The 
plot of Rayleigh flow on a T-s diagram is called the Rayleigh line, and 
several important observations can be made from this plot and the results of 
the calculations:

 1. All the states that satisfy the conservation of mass, momentum, and 
energy equations as well as the property relations are on the Rayleigh 
line. Therefore, for a given initial state, the fluid cannot exist at any 
downstream state outside the Rayleigh line on a T-s diagram. In fact, the 
Rayleigh line is the locus of all physically attainable downstream states 
corresponding to an initial state.

 2. Entropy increases with heat gain, and thus we proceed to the right on 
the Rayleigh line as heat is transferred to the fluid. The Mach number 
is Ma 5 1 at point a, which is the point of maximum entropy (see 
Example 12–12 for proof). The states on the upper arm of the Rayleigh 
line above point a are subsonic, and the states on the lower arm below 
point a are supersonic. Therefore, a process proceeds to the right on 
the Rayleigh line with heat addition and to the left with heat rejection 
regardless of the initial value of the Mach number.

 3. Heating increases the Mach number for subsonic flow, but decreases 
it for supersonic flow. The flow Mach number approaches Ma 5 1 in 
both cases (from 0 in subsonic flow and from ` in supersonic flow) 
during heating.

 4. It is clear from the energy balance q 5 cp(T02 2 T01) that heating 
increases the stagnation temperature T0 for both subsonic and 
supersonic flows, and cooling decreases it. (The maximum value of 
T0 occurs at Ma 5 1.) This is also the case for the static temperature 
T except for the narrow Mach number range of 1/!k , Ma , 1 in 
subsonic flow (see Example 12–12). Both temperature and the Mach 

FIGURE 12–48
T-s diagram for flow in a constant-area 

duct with heat transfer and negligible 
friction (Rayleigh flow).

Mab = 1/   k

Maa = 1
Ma � 1

Ma � 1

Cooling 
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Cooling 
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Heating 
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Heating 
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Tmax
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T

a

b
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number increase with heating in subsonic flow, but T reaches a maxi-
mum Tmax at Ma 5 1/!k  (which is 0.845 for air), and then decreases. 
It may seem peculiar that the temperature of a fluid drops as heat is 
transferred to it. But this is no more peculiar than the fluid velocity 
increasing in the diverging section of a converging–diverging nozzle. 
The cooling effect in this region is due to the large increase in the fluid 
velocity and the accompanying drop in temperature in accordance 
with the relation T0 5 T 1 V 2/2cp. Note also that heat rejection in 
the region 1/!k , Ma , 1 causes the fluid temperature to increase 
(Fig. 12–49).

 5. The momentum equation P 1 KV 5 constant, where K 5 rV 5 constant 
(from the continuity equation), reveals that velocity and static pressure 
have opposite trends. Therefore, static pressure decreases with heat gain 
in subsonic flow (since velocity and the Mach number increase), but 
increases with heat gain in supersonic flow (since velocity and the 
Mach number decrease).

 6. The continuity equation rV 5 constant indicates that density and 
velocity are inversely proportional. Therefore, density decreases with 
heat transfer to the fluid in subsonic flow (since velocity and the Mach 
number increase), but increases with heat gain in supersonic flow (since 
velocity and the Mach number decrease).

 7. On the left half of Fig. 12–48, the lower arm of the Rayleigh line is 
steeper than the upper arm (in terms of s as a function of T ), which 
indicates that the entropy change corresponding to a specified tem-
perature change (and thus a given amount of heat transfer) is larger in 
supersonic flow.

 The effects of heating and cooling on the properties of Rayleigh flow 
are listed in Table 12–3. Note that heating or cooling has opposite effects 
on most properties. Also, the stagnation pressure decreases during heating 
and increases during cooling regardless of whether the flow is subsonic or 
supersonic.

TABLE 12–3

The effects of heating and cooling on the properties of Rayleigh flow

 Heating Cooling

Property Subsonic Supersonic Subsonic Supersonic

Velocity, V Increase Decrease Decrease Increase

Mach number, Ma Increase Decrease Decrease Increase

Stagnation temperature, T0 Increase Increase Decrease Decrease

Temperature, T Increase for Ma , 1/k1/2 Increase Decrease for Ma , 1/k1/2  Decrease

 Decrease for Ma . 1/k1/2  Increase for Ma . 1/k1/2

Density, r Decrease Increase Increase Decrease

Stagnation pressure, P0 Decrease Decrease Increase Increase

Pressure, P Decrease Increase Increase Decrease

Entropy, s Increase Increase Decrease Decrease

FIGURE 12–49
During heating, fluid temperature 
always increases if the Rayleigh flow 
is supersonic, but the temperature may 
actually drop if the flow is subsonic.

T01

Supersonic
flow

Heating

T02 . T01

T1 T2 . T1

T01

Subsonic
flow

Heating

T02 . T01
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T2 . T1 or
T2 , T1
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EXAMPLE 12–12    Extrema of Rayleigh Line

Consider the T-s diagram of Rayleigh flow, as shown in Fig. 12–50. Using 

the differential forms of the conservation equations and property relations, 

show that the Mach number is Maa 5 1 at the point of maximum entropy 

(point a), and Mab 5 1!k at the point of maximum temperature (point b).

SOLUTION  It is to be shown that Maa 5 1 at the point of maximum entropy 

and Mab 5 1!k at the point of maximum temperature on the Rayleigh line.

Assumptions  The assumptions associated with Rayleigh flow (i.e., steady 

one-dimensional flow of an ideal gas with constant properties through a con-

stant cross-sectional area duct with negligible frictional effects) are valid.

Analysis  The differential forms of the continuity (rV 5 constant), momentum 

[rearranged as P 1 (rV )V 5 constant], ideal gas (P 5 rRT ), and enthalpy 

change (Dh 5 cp DT ) equations are expressed as

 
 rV 5 constant S r dV 1 V  dr 5 0 S 

dr

r
5 2

dV

V
 (1)

 
 P 1 (rV)V 5 constant S dP 1 (rV ) dV 5 0 S 

dP

dV
5 2rV  (2)

 
 P 5 rRT S dP 5 rR dT 1 RT dr S 

dP

P
5

dT

T
1

dr

r
 (3)

 The differential form of the entropy change relation (Eq. 12–40) of an ideal 

gas with constant specific heats is

 
ds 5 cp 

dT

T
 2  R 

dP

P
 (4)

Substituting Eq. 3 into Eq. 4 gives

 
ds 5 cp

dT

T
2 RadT

T
1

dr

r
b 5 (cp 2 R)

dT

T
2 R

dr

r
5

R

k 2 1
  
dT

T
2 R

dr

r
 (5)

since

cp 2 R 5 cV  →  kcV 2 R 5 cV  →  cV 5 R /(k 2 1)

Dividing both sides of Eq. 5 by dT and combining with Eq. 1,

 

ds

dT
5

R

T(k 2 1)
1

R

V
  
dV

dT
 (6)

Dividing Eq. 3 by d V and combining it with Eqs. 1 and 2 give, after rear-

ranging,

 

dT

dV
5

T

V
2

V

R
 (7)

Substituting Eq. 7 into Eq. 6 and rearranging,

 

ds

dT
5

R

T(k 2 1)
1

R

T 2 V 2/R
5

R(kRT 2 V 2)

T(k 2 1)(RT 2 V 2)
 (8)

Setting ds/dT 5 0 and solving the resulting equation R(kRT 2 V2) 5 0 for V 

give the velocity at point a to be

 
Va 5 "kRTa  and  Maa 5

V a

ca

5
"kRTa"kRTa

5 1 (9)

FIGURE 12–50
The T-s diagram of Rayleigh flow 

considered in Example 12–12.

smax

Tmax

Ma , 1
5 0

Ma . 1

� �

T

a
a

b

b
ds
dT

s

5 0� �dT
ds
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Therefore, sonic conditions exist at point a, and thus the Mach number is 1.

 Setting dT /ds 5 (ds /dT )21 5 0 and solving the resulting equation

T (k 2 1) 3 (RT 2 V2) 5 0 for velocity at point b give

 
Vb 5 "RTb  and  Mab 5

V b

cb

5
"RTb"kRTb

5
1"k

 (10)

Therefore, the Mach number at point b is Mab 5 1!k. For air, k 5 1.4 and 

thus Mab 5 0.845.

Discussion  Note that in Rayleigh flow, sonic conditions are reached as the 

entropy reaches its maximum value, and maximum temperature occurs during 

subsonic flow.

EXAMPLE 12–13    Effect of Heat Transfer on Flow Velocity

Starting with the differential form of the energy equation, show that the flow 

velocity increases with heat addition in subsonic Rayleigh flow, but decreases 

in supersonic Rayleigh flow.

SOLUTION  It is to be shown that flow velocity increases with heat addition 

in subsonic Rayleigh flow and that the opposite occurs in supersonic flow.

Assumptions  1 The assumptions associated with Rayleigh flow are valid. 

2 There are no work interactions and potential energy changes are negligible.

Analysis  Consider heat transfer to the fluid in the differential amount of dq. 

The differential forms of the energy equations are expressed as

 
dq 5 dh0 5 d ah 1

V 2

2
b 5 cp dT 1 V dV  (1)

Dividing by cpT and factoring out d V/V give

 

dq

cpT
5

dT

T
1

V dV

cpT
5

dV

V
 a V

dV
  
dT

T
1

(k 2 1)V 2

kRT
b  (2)

where we also used cp 5 kR/ (k 2 1). Noting that Ma2 5 V2/c2 5 V2/kRT and 

using Eq. 7 for dT/dV from Example 12–12 give

 

dq

cpT
5

dV

V
 aV

T
 aT

V
 2

V

R
b 1 (k 2 1)Ma2b 5

dV

V
 a12

V 2

TR
1 k Ma2 2 Ma2b  (3)

Canceling the two middle terms in Eq. 3 since V2/TR 5 k Ma2 and rearranging 

give the desired relation,

 

dV

V
5
dq

cpT
 

1

(1 2 Ma2)
 (4)

In subsonic flow, 1 2 Ma2 . 0 and thus heat transfer and velocity change 

have the same sign. As a result, heating the fluid (dq . 0) increases the 

flow velocity while cooling decreases it. In supersonic flow, however, 

1 2 Ma2 , 0 and heat transfer and velocity change have opposite signs. As 
a result, heating the fluid (dq + 0) decreases the flow velocity while cooling 
increases it (Fig. 12–51).

Discussion  Note that heating the fluid has the opposite effect on flow velocity 

in subsonic and supersonic Rayleigh flows.

FIGURE 12–51
Heating increases the flow velocity 
in subsonic flow, but decreases it in 
supersonic flow.

Supersonic
flow

V1 V2 , V1

Subsonic
flow

dq

dq

V1 V2 . V1
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Property Relations for Rayleigh Flow
It is often desirable to express the variations in properties in terms of the Mach 
number Ma. Noting that Ma 5 V/c 5 V /!kRT and thus V 5 Ma!kRT,

 rV 2 5 rkRTMa2 5 kPMa2 (12–57)

since P 5 rRT. Substituting into the momentum equation (Eq. 12–51) gives 
P1 1 kP1Ma1

2 5 P2 1 kP2Ma2
2, which can be rearranged as

 

P2

P1

5
1 1 kMa2

1

1 1 kMa2
2

 (12–58)

Again utilizing V 5 Ma!kRT, the continuity equation r1V1 5 r2V2 is 
expressed as

 
r1

r2
5

V2

V1

5
Ma2"kRT2

Ma1"kRT1

5
Ma2"T2

Ma1"T1

 (12–59)

Then the ideal-gas relation (Eq. 12–56) becomes

 

T2

T1

5
P2

P1

 

r1

r2
5 a1 1 kMa2

1

1 1 kMa2
2

 b a Ma2"T2

Ma1"T1

b  (12–60)

Solving Eq. 12–60 for the temperature ratio T2/T1 gives

 

T2

T1

5 aMa2(1 1 kMa2
1)

Ma1(1 1 kMa2
2)
b2

 (12–61)

Substituting this relation into Eq. 12–59 gives the density or velocity ratio as

 

r2

r1
5

V1

V2

5
Ma2

1(1 1 kMa2
2)

Ma2
2(1 1 kMa2

1)
 (12–62)

 Flow properties at sonic conditions are usually easy to determine, and 
thus the critical state corresponding to Ma 5 1 serves as a convenient reference 
point in compressible flow. Taking state 2 to be the sonic state (Ma2 5 1, and 
superscript * is used) and state 1 to be any state (no subscript), the property 
relations in Eqs. 12–58, 12–61, and 12–62 reduce to (Fig. 12–52)

P

P*
5

1 1 k

1 1 kMa2  
T

T*
5 aMa(1 1 k)

1 1 kMa2 b2

  and  
V

V*
5
r*

r
5

(1 1 k)Ma2

1 1 kMa2  (12–63)

 Similar relations can be obtained for dimensionless stagnation tempera-
ture and stagnation pressure as follows:

 
T0

T*
0

5
T0

T
  

T

T*
  

T*

T*
0

5 a1 1
k 2 1

2
 Ma2b aMa(1 1 k)

1 1 kMa2 b2a1 1
k 2 1

2
b21

 (12–64)

which simplifies to

 

T0

T0*
5

(k 1 1)Ma2[2 1 (k 2 1)Ma2]

(1 1 kMa2)2  (12–65)

FIGURE 12–52
Summary of relations for Rayleigh 

flow.

V

V*
r*

r
��

(1(1 � k)M)Ma2

1 � kMaMa2

P

P*
�

1 � k

1 � kMaMa2

T

T*
� aMa(Ma(1 � k)

1 � kMaMa2
b 2

P0

P0*
�

k � 1

1 � kMaMa2
a2 � (k � 1)Ma1)Ma2

k � 1
b k/(/(k�1)1)

T0

T0*
�

(k � 1)Ma1)Ma2[2[2 � (k � 1)Ma1)Ma2]

(1(1 � kMaMa2)2

�
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Also,

P0

P*
0

5
P0

P
  

P

P*
  

P*

P*
0

5 a1 1
k 2 1

2
 Ma2bk/(k 21)a 1 1 k

1 1 kMa2b a1 1
k 2 1

2
b2k/(k21)

 (12–66)

which simplifies to

 

P0

P*
0

5
k 1 1

1 1 kMa2 a2 1 (k 2 1)Ma2

k 1 1
bk/(k21)

 (12–67)

 The five relations in Eqs. 12–63, 12–65, and 12–67 enable us to calculate 
the dimensionless pressure, temperature, density, velocity, stagnation tem-
perature, and stagnation pressure for Rayleigh flow of an ideal gas with a 
specified k for any given Mach number. Representative results are given in 
tabular and graphical form in Table A–15 for k 5 1.4.

Choked Rayleigh Flow
It is clear from the earlier discussions that subsonic Rayleigh flow in a duct 
may accelerate to sonic velocity (Ma 5 1) with heating. What happens if 
we continue to heat the fluid? Does the fluid continue to accelerate to super-
sonic velocities? An examination of the Rayleigh line indicates that the fluid 
at the critical state of Ma 5 1 cannot be accelerated to supersonic velocities 
by heating. Therefore, the flow is choked. This is analogous to not being 
able to accelerate a fluid to supersonic velocities in a converging nozzle by 
simply extending the converging flow section. If we keep heating the fluid, 
we will simply move the critical state further downstream and reduce the 
flow rate since fluid density at the critical state will now be lower. There-
fore, for a given inlet state, the corresponding critical state fixes the maxi-
mum possible heat transfer for steady flow (Fig. 12–53). That is,

 qmax 5 h*
0 2 h01 5 cp(T *

0 2 T01) (12–68)

Further heat transfer causes choking and thus the inlet state to change (e.g., 
inlet velocity will decrease), and the flow no longer follows the same 
Rayleigh line. Cooling the subsonic Rayleigh flow reduces the velocity, and 
the Mach number approaches zero as the temperature approaches absolute 
zero. Note that the stagnation temperature T0 is maximum at the critical 
state of Ma 5 1.
 In supersonic Rayleigh flow, heating decreases the flow velocity. Further 
heating simply increases the temperature and moves the critical state farther 
downstream, resulting in a reduction in the mass flow rate of the fluid. It 
may seem like supersonic Rayleigh flow can be cooled indefinitely, but it 
turns out that there is a limit. Taking the limit of Eq. 12–65 as the Mach 
number approaches infinity gives

 
limMaSq  

T0

T *
0

5 1 2
1

k 2 (12–69)

which yields T0/T*
0 5 0.49 for k 5 1.4. Therefore, if the critical stagnation 

temperature is 1000 K, air cannot be cooled below 490 K in Rayleigh flow. 
Physically this means that the flow velocity reaches infinity by the time the 
temperature reaches 490 K—a physical impossibility. When supersonic flow 
cannot be sustained, the flow undergoes a normal shock wave and becomes 
subsonic.

FIGURE 12–53
For a given inlet state, the maximum 
possible heat transfer occurs when 
sonic conditions are reached at the 
exit state.

T01

Rayleigh
flow

Choked
flow

qmax

T02 5 T01

T1 T2 5 T*

*
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EXAMPLE 12–14    Rayleigh Flow in a Tubular Combustor

A combustion chamber consists of tubular combustors of 15-cm diameter. 

Compressed air enters the tubes at 550 K, 480 kPa, and 80 m/s (Fig. 12–54). 

Fuel with a heating value of 42,000 kJ/kg is injected into the air and is 

burned with an air–fuel mass ratio of 40. Approximating combustion as a 

heat transfer process to air, determine the temperature, pressure, velocity, 

and Mach number at the exit of the combustion chamber.

SOLUTION  Fuel is burned in a tubular combustion chamber with com-

pressed air. The exit temperature, pressure, velocity, and Mach number are 

to be determined.

Assumptions  1 The assumptions associated with Rayleigh flow (i.e., steady 

one-dimensional flow of an ideal gas with constant properties through a 

 constant cross-sectional area duct with negligible frictional effects) are valid. 

2 Combustion is complete, and it is treated as a heat addition process, with 

no change in the chemical composition of the flow. 3 The increase in mass 

flow rate due to fuel injection is disregarded.

Properties  We take the properties of air to be k 5 1.4, cp 5 1.005 kJ/kg·K, 

and R 5 0.287 kJ/kg·K.

Analysis  The inlet density and mass flow rate of air are

 r1 5
P1

RT1

5
480 kPa

(0.287 kJ/kg·K)(550 K)
5 3.041 kg/m3

 m# air 5 r1A1V 1 5 (3.041 kg/m3) [p(0.15 m)2/4](80 m/s) 5 4.299 kg/s

The mass flow rate of fuel and the rate of heat transfer are

 m# fuel 5
m# air

AF
5

4.299 kg/s

40
5 0.1075 kg/s 

 Q
#

5 m# fuel HV 5 (0.1075 kg/s)(42,000 kJ/kg) 5 4514 kW 

 q 5
Q
#

m# air

5
4514 kJ/s

4.299 kg/s
5 1050 kJ/kg 

The stagnation temperature and Mach number at the inlet are

 T01 5 T1 1
V 2

1

2cp

5 550 K 1
(80 m/s)2

2(1.005 kJ/kg·K)
 a 1 kJ/kg

1000 m2/s2b 5 553.2 K

 c1 5 "kRT1 5 Å(1.4)(0.287 kJ/kg·K)(550 K)a1000 m2/s2

1 kJ/kg
b 5 470.1 m/s

 Ma1 5
V 1

c1

5
80 m/s

470.1 m/s
5 0.1702

The exit stagnation temperature is, from the energy equation q 5 cp (T02 2 T01),

T02 5 T01 1
q

cp

5 553.2 K 1
1050 kJ/kg

1.005 kJ/kg·K
5 1598 K

FIGURE 12–54
Schematic of the combustor tube 

analyzed in Example 12–14.

Combustor
tube

P1 5 480 kPa
P2, T2, V2T1 5 550 K

V1 5 80 m/s

Q
.
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The maximum value of stagnation temperature T *0 occurs at Ma 5 1, and 

its value can be determined from Table A–15 or from Eq. 12–65. At Ma1 5 

0.1702 we read T0 /T *0 5 0.1291. Therefore,

T*
0 5

T01

0.1291
5

553.2 K

0.1291
5 4284 K

The stagnation temperature ratio at the exit state and the Mach number 

corresponding to it are, from Table A–15,

T02

T*
0

5
1598 K

4284 K
5 0.3730 S  Ma2 5 0.3142 > 0.314

The Rayleigh flow functions corresponding to the inlet and exit Mach numbers 

are (Table A–15):

 Ma1 5 0.1702:  
T1

T*
5 0.1541  

P1

P*
5 2.3065  

V 1

V*
5 0.0668

 Ma2 5 0.3142:    
T2

T*
5 0.4389    

P2

P*
5 2.1086    

V2

V*
5 0.2082

Then the exit temperature, pressure, and velocity are determined to be

T2

T1

5
T2/T*

T1/T*
 5

0.4389

0.1541
5 2.848 S  T2 5 2.848T1 5 2.848(550 K) 5 1570 K

P2

P1

5
P2/P*

P1/P*
5

2.1086

2.3065
5 0.9142S P2 5 0.9142P1 5 0.9142(480 kPa) 5 439 kPa

V2

V1

5
V2/V*

V1/V*
5

0.2082

0.0668
5 3.117 S  V2 5 3.117V1 5 3.117(80 m/s) 5 249 m/s

Discussion  Note that the temperature and velocity increase and pressure 

decreases during this subsonic Rayleigh flow with heating, as expected. This 

problem can also be solved using appropriate relations instead of tabulated 

values, which can likewise be coded for convenient computer solutions.

12–6 ■  ADIABATIC DUCT FLOW 
WITH FRICTION (FANNO FLOW)

Wall friction associated with high-speed flow through short devices with 
large cross-sectional areas such as large nozzles is often negligible, and 
flow through such devices can be approximated as being frictionless. 
But wall friction is significant and should be considered when studying 
flows through long flow sections, such as long ducts, especially when the 
cross-sectional area is small. In this section we consider compressible flow 
with significant wall friction but negligible heat transfer in ducts of constant 
cross-sectional area.
 Consider steady, one-dimensional, adiabatic flow of an ideal gas with con-
stant specific heats through a constant-area duct with significant frictional 
effects. Such flows are referred to as Fanno flows. The conservation of 
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mass, momentum, and energy equations for the control volume shown in 
Fig. 12–55 are written as follows:

Continuity equation  Noting that the duct cross-sectional area A is 
constant (and thus A1 5 A2 5 Ac), the relation m

.
1 5 m

.
2 or r1A1V1 5 

r2A2V2 reduces to

 r1V1 5 r2V2 S  rV 5 constant (12–70)

x-Momentum equation  Denoting the friction force exerted on the 
fluid by the inner surface of the duct by Ffriction and assuming there 
are no other external and body forces, the momentum equation 

 aF
S

5 a
out

 bm# V
S

2 a
in
bm# V

S
 in the flow direction can be expressed as

 P1A 2 P2 A 2 Ffriction 5 m# V 2 2 m# V 1 S  P1 2 P2 2
Ffriction

A
 5 (r2V2)V2 2 (r1V1)V1

 where even though there is friction at the walls, and the velocity 
profiles are not uniform, we approximate the momentum flux 
correction factor b as 1 for simplicity since the flow is usually fully 
developed and turbulent. The equation is rewritten as

 
P1 1 r1V

2
1 5 P2 1 r2V

2
2 1

Ffriction

A
 (12–71)

Energy equation  The control volume involves no heat or work 
interactions and the potential energy change is negligible. Then the 
steady-flow energy balance E

.
in 5 E

.
out becomes

 
h1 1

V 2
1

2
5 h2 1

V 2
2

2
 S h01 5 h02 S  h0 5 h 1

V 2

2
5 constant (12–72)

 For an ideal gas with constant specific heats, Dh 5 cp DT and thus

T1 1
V 2

1

2cp

5 T2 1
V 2

2

2cp

 S T01 5 T02 S  T0 5 T 1
V 2

2cp

5 constant (12–73)

 Therefore, the stagnation enthalpy h0 and stagnation temperature T0 
remain constant during Fanno flow.

Entropy change  In the absence of any heat transfer, the entropy of a 
system can be changed only by irreversibilities such as friction, whose 
effect is always to increase entropy. Therefore, the entropy of the fluid 
must increase during Fanno flow. The entropy change in this case is 
equivalent to entropy increase or entropy generation, and for an ideal 
gas with constant specific heats it is expressed as

 
s2 2 s1 5 cp ln 

T2

T1

2 R ln 
P2

P1

. 0 (12–74)

FIGURE 12–55
Control volume for adiabatic flow in a 

constant-area duct with friction.

V1 V2

Control
volume

Ffriction
x

P2, T2, r2P1, T1, r1

A1 5 A2 5 A

659-724_cengel_ch12.indd   703 12/19/12   11:08 AM



704
COMPRESSIBLE FLOW

Equation of state  Noting that P 5 rRT, the properties P, r, and T of an 
ideal gas at states 1 and 2 are related to each other by

 

P1

r1T1

5
P2

r2T2

 (12–75)

 Consider a gas with known properties R, k, and cp flowing in a duct of 
constant cross-sectional area A. For a specified inlet state 1, the inlet proper-
ties P1, T1, r1, V1, and s1 are known. The five exit properties P2, T2, r2, V2, 
and s2 can be determined from Eqs. 12–70 through 12–75 for any specified 
value of the friction force Ffriction. Knowing the velocity and temperature, we 
can also determine the Mach number at the inlet and the exit from the rela-
tion Ma 5 V /c 5 V !kRT.
 Obviously there is an infinite number of possible downstream states 2 
corresponding to a given upstream state 1. A practical way of determining 
these downstream states is to assume various values of T2, and calculate all 
other properties as well as the friction force for each assumed T2 from 
Eqs. 12–70 through 12–75. Plotting the results on a T-s diagram gives a curve 
passing through the specified inlet state, as shown in Fig. 12–56. The plot of 
Fanno flow on a T-s diagram is called the Fanno line, and several important 
observations can be made from this plot and the results of calculations:

 1. All states that satisfy the conservation of mass, momentum, and energy 
equations as well as the property relations are on the Fanno line. 
Therefore, for a given inlet state, the fluid cannot exist at any 
downstream state outside the Fanno line on a T-s diagram. In fact, the 
Fanno line is the locus of all possible downstream states corresponding 
to an initial state. Note that if there were no friction, the flow properties 
would have remained constant along the duct during Fanno flow.

 2. Friction causes entropy to increase, and thus a process always proceeds 
to the right along the Fanno line. At the point of maximum entropy, the 
Mach number is Ma 5 1. All states on the upper part of the Fanno line 
are subsonic, and all states on the lower part are supersonic.

 3. Friction increases the Mach number for subsonic Fanno flow, but 
decreases it for supersonic Fanno flow. The Mach number approaches 
unity (Ma 5 1) in both cases.

 4. The energy balance requires that stagnation temperature T0 5 
T 1 V2/2cp remain constant during Fanno flow. But the actual tempera-
ture may change. Velocity increases and thus temperature decreases 
during subsonic flow, but the opposite occurs during supersonic flow 
(Fig. 12–57).

 5. The continuity equation rV 5 constant indicates that density and 
velocity are inversely proportional. Therefore, the effect of friction is 
to decrease density in subsonic flow (since velocity and Mach number 
increase), but to increase it in supersonic flow (since velocity and Mach 
number decrease).

 The effects of friction on the properties of Fanno flow are listed in 
Table 12–4. Note that frictional effects on most properties in subsonic 
flow are opposite to those in supersonic flow. However, the effect of friction 
is to always decrease stagnation pressure, regardless of whether the flow is 

FIGURE 12–56
T-s diagram for adiabatic frictional 
flow in a constant-area duct (Fanno 
flow). Numerical values are for air 
with k 5 1.4 and inlet conditions 
of T1 5 500 K, P1 5 600 kPa, 
V1 5 80 m/s, and an assigned 
value of s1 5 0.

0 0.1

Ma � 1

0.2 0.3
200

300

400

500
1

T, K

s, kJ/kg•K

Ma � 1
and s � smax

Ma � 1

FIGURE 12–57
Friction causes the Mach number 
to increase and the temperature to 
decrease in subsonic Fanno flow, but 
it does the opposite in supersonic 
Fanno flow.
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flow

Ffriction

T2 , T1T1

Ma2 . Ma1Ma1
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Ffriction
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subsonic or supersonic. But friction has no effect on stagnation temperature 
since friction simply causes the mechanical energy to be converted to an 
equivalent amount of thermal energy.

Property Relations for Fanno Flow
In compressible flow, it is convenient to express the variation of properties 
in terms of Mach number, and Fanno flow is no exception. However, Fanno 
flow involves the friction force, which is proportional to the square of the 
velocity even when the friction factor is constant. But in compressible flow, 
velocity varies significantly along the flow, and thus it is necessary to per-
form a differential analysis to account for the variation of the friction force 
properly. We begin by obtaining the differential forms of the conservation 
equations and property relations.

Continuity equation  The differential form of the continuity equation is 
obtained by differentiating the continuity relation rV 5 constant and 
rearranging,

 
r dV 1 V dr 5 0 S 

dr

r
5 2

dV

V
 (12–76)

x-Momentum equation  Noting that m
.
1 5 m

.
2 5 m

.
 5 rAV 

and A1 5 A2 5 A, applying the momentum equation 

 
aF

S
5 a

out
bm
#
V
S

2 a
in
bm
#
V
S

 to the differential control volume 

 in Fig. 12–58 gives

PAc 2 (P 1 dP)A 2 dFfriction 5 m# (V 1 dV ) 2 m# V

 where we have again approximated the momentum flux correction 
factor b as 1. This equation simplifies to

 
2dPA 2 dFfriction 5 rAV  dV  or  dP 1

dFfriction

A
1 rV  dV 5 0 (12–77)

TABLE 12–4

The effects of friction on the properties of Fanno flow

 Property Subsonic Supersonic

 Velocity, V Increase Decrease

 Mach number, Ma Increase Decrease

 Stagnation temperature, T0 Constant Constant

 Temperature, T Decrease Increase

 Density, r Decrease Increase

 Stagnation pressure, P0 Decrease Decrease

 Pressure, P Decrease Increase

 Entropy, s Increase Increase

FIGURE 12–58
Differential control volume for 

adiabatic flow in a constant-area 
duct with friction.

V V 1 dV
r r 1 dr

dx

Differential
control
volume

dFfriction

P
T

P 1 dP
T 1 dT

A1 5 A2 5 A
x
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 The friction force is related to the wall shear stress tw and the local 
friction factor fx by

 
dFfriction 5 tw dAs 5 tw p dx 5 a fx

8
 rV 2b  

4A

Dh

 dx 5
fx

2
 
 A  dx

Dh

 rV  2 (12–78)

 where dx is the length of the flow section, p is the perimeter, and Dh 5 
4A/p is the hydraulic diameter of the duct (note that Dh reduces to 
ordinary diameter D for a duct of circular cross section). Substituting,

 
dP 1

rV 2 fx

2Dh

 dx 1 rV dV 5 0 (12–79)

 Noting that V 5 Ma!kRT and P 5 rRT, we have rV2 5 rkRTMa2 5 
kPMa2 and rV 5 kPMa2/V. Substituting into Eq. 12–79,

 

1

kMa2  
dP

P
1

fx

2Dh

 dx 1
dV

V
5 0 (12–80)

Energy equation  Noting that cp 5 kR/(k 2 1) and V2 5 Ma2kRT, 
the energy equation T0 5 constant or T 1 V2/2cp 5 constant is 
expressed as

 
T0 5 T a1 1

k 2 1

2
 Ma2b 5 constant (12–81)

 Differentiating and rearranging give

 

dT

T
5 2

2(k 2 1)Ma2

2 1 (k 2 1)Ma2 

dMa

Ma
 (12–82)

 which is an expression for the differential change in temperature in 
terms of a differential change in Mach number.

Mach number  The Mach number relation for ideal gases can be 
expressed as V2 5 Ma2kRT. Differentiating and rearranging give

  2V dV 5 2MakRT dMa 1 kRMa2 dT  S  (12–83)

 2V dV 5 2
V 2

Ma
 dMa 1

V 2

T
 dT

 Dividing each term by 2V2 and rearranging,

 

dV

V
5

dMa

Ma
1

1

2
 
dT

T
 (12–84)

 Combining Eq. 12–84 with Eq. 12–82 gives the velocity change in 
terms of the Mach number as

dV

V
5

dMa

Ma
2

(k 2 1)Ma2

2 1 (k 2 1)Ma2  
dMa

Ma
  or  

dV

V
5

2

2 1 (k 2 1)Ma2  
dMa

Ma
 (12–85)

Ideal gas  The differential form of the ideal-gas equation is obtained by 
differentiating the equation P 5 rRT,

 
 dP 5 rR dT 1 RT dr S 

dP

P
5

dT

T
1

dr

r
 (12–86)
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 Combining with the continuity equation (Eq. 12–76) gives

 

dP

P
5

dT

T
2

dV

V
 (12–87)

 Now combining with Eqs. 12–82 and 12–84 gives

 

dP

P
5 2

2 1 2(k 2 1)Ma2

2 1 (k 2 1)Ma2   
dMa

Ma
 (12–88)

 which is an expression for differential changes in P with Ma.

 Substituting Eqs. 12–85 and 12–88 into 12–80 and simplifying give the 
differential equation for the variation of the Mach number with x as

 

fx

Dh

 dx 5
4(1 2 Ma2)

kMa3 [2 1 (k 2 1)Ma2]
  dMa (12–89)

Considering that all Fanno flows tend to Ma 5 1, it is again convenient 
to use the critical point (i.e., the sonic state) as the reference point and to 
express flow properties relative to the critical point properties, even if the 
actual flow never reaches the critical point. Integrating Eq. 12–89 from any 
state (Ma 5 Ma and x 5 x) to the critical state (Ma 5 1 and x 5 xcr) gives

 

fL*

Dh

5
1 2 Ma2

kMa2 1
k 1 1

2k
 ln 

(k 1 1)Ma2

2 1 (k 2 1)Ma2 (12–90)

where f is the average friction factor between x and xcr, which is assumed to 
be constant, and L* 5 xcr 2 x is the channel length required for the Mach 
number to reach unity under the influence of wall friction. Therefore, L* 
represents the distance between a given section where the Mach number is 
Ma and a section (an imaginary section if the duct is not long enough to 
reach Ma 5 1) where sonic conditions occur (Fig. 12–59).
 Note that the value of fL*/Dh is fixed for a given Mach number, and thus 
values of fL*/Dh can be tabulated versus Ma for a specified k. Also, the value 
of duct length L* needed to reach sonic conditions (or the “sonic length”) 
is inversely proportional to the friction factor. Therefore, for a given Mach 
number, L* is large for ducts with smooth surfaces and small for ducts with 
rough surfaces.
 The actual duct length L between two sections where the Mach numbers 
are Ma1 and Ma2 can be determined from

 

fL

Dh

5 a fL*

Dh

 b
1

2 a fL*

Dh

 b
2

 (12–91)

The average friction factor f, in general, is different in different parts of 
the duct. If f is approximated as constant for the entire duct (including the 
hypothetical extension part to the sonic state), then Eq. 12–91 simplifies to

 L 5 L*
1 2 L*

2  ( f 5 constant) (12–92)

Therefore, Eq. 12–90 can be used for short ducts that never reach Ma 5 1 
as well as long ones with Ma 5 1 at the exit.
 The friction factor depends on the Reynolds number Re 5 rVDh/m, 
which varies along the duct, and the roughness ratio e/Dh of the surface. The 
variation of Re is mild, however, since rV 5 constant (from continuity), 
and any change in Re is due to the variation of viscosity with temperature. 

FIGURE 12–59
The length L* represents the distance 

between a given section where the 
Mach number is Ma and a real or 

imaginary section where Ma* 5 1.

Hypothetical duct
extension to
sonic state

Sonic state
as reference

point

Ma Ma* 5 1
P

T*T
P*

V V*

x

L*

L
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Therefore, it is a reasonable approximation to evaluate f from the Moody 
chart or Colebrook equation discussed in Chap. 8 at the average Reynolds 
number and to treat it as a constant. This is the case for subsonic flow since 
the temperature changes involved are relatively small. The treatment of 
the friction factor for supersonic flow is beyond the scope of this text. The 
Colebrook equation is implicit in f, and thus it is more convenient to use the 
explicit Haaland relation expressed as

 

1"f
> 21.8 log c 6.9

Re
1 ae/D

3.7
b1.11 d  (12–93)

 The Reynolds numbers encountered in compressible flow are typically 
high, and at very high Reynolds numbers (fully rough turbulent flow) the 
friction factor is independent of the Reynolds number. For Re → `, the 
Colebrook equation reduces to 1!f 5 22.0 log [(e/Dh)/3.7].
 Relations for other flow properties can be determined similarly by inte-
grating the dP/P, dT/T, and dV/V relations from Eqs. 12–79, 12–82, and 
12–85, respectively, from any state (no subscript and Mach number Ma) to 
the sonic state (with a superscript asterisk and Ma 5 1) with the following 
results (Fig. 12–60):

 

P

P*
5

1

Ma
 a k 1 1

2 1 (k 2 1)Ma2b1/2

 (12–94)

 

T

T*
5

k 1 1

2 1 (k 2 1)Ma2  (12–95)

 

V

V*
5
r*

r
5 Maa k 1 1

2 1 (k 2 1)Ma2b1/2

 (12–96)

 A similar relation can be obtained for the dimensionless stagnation pres-
sure as follows:

P0

P*
0

5
P0

P
 

P

P*
 

P*

P*
0

5 a1 1
k 21

2
 Ma2bk/(k 21)

 
1

Ma
a k 1 1

2 1 (k 21)Ma2b1/2 a1 1
k 2 1

2
b2k/(k21)

which simplifies to

 

P0

P*
0

5
r0

r*
0

5
1

Ma
a2 1 (k 2 1)Ma2

k 1 1
b (k11)/[2(k21)]

  (12–97)

Note that the stagnation temperature T0 is constant for Fanno flow, and thus 
T0 /T*

0 5 1 everywhere along the duct.
 Eqs. 12–90 through 12–97 enable us to calculate the dimensionless pressure, 
temperature, density, velocity, stagnation pressure, and fL*/Dh for Fanno flow 
of an ideal gas with a specified k for any given Mach number. Representative 
results are given in tabular and graphical form in Table A–16 for k 5 1.4.

Choked Fanno Flow
It is clear from the previous discussions that friction causes subsonic Fanno 
flow in a constant-area duct to accelerate toward sonic velocity, and the Mach 
number becomes exactly unity at the exit for a certain duct length. This duct 
length is referred to as the maximum length, the sonic length, or the critical 
length, and is denoted by L*. You may be curious to know what happens if 
we extend the duct length beyond L*. In particular, does the flow accelerate to 

FIGURE 12–60
Summary of relations for Fanno flow.

fL*

Dh
5

1 2 Ma2

kMa2 1
k 1 1

2k
 ln 

(k 1 1)Ma2

2 1 (k 2 1)Ma2

V
V*

5
r*

r
5 Maa k 1 1

2 1 (k 2 1)Ma2b 1/2

P
P*

5
1

Ma
a k 1 1

2 1 (k 2 1)Ma2b 1/2

T
T*

5
k 1 1

2 1 (k 2 1)Ma2

P0

P0*
5
r0

r0*
5

1
Ma
a2 1 (k 2 1)Ma2

k 1 1
b (k11)/[2(k21)]
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supersonic velocities? The answer to this question is a definite no since at 
Ma 5 1 the flow is at the point of maximum entropy, and proceeding along 
the Fanno line to the supersonic region would require the entropy of the fluid 
to decrease—a violation of the second law of thermodynamics. (Note that the 
exit state must remain on the Fanno line to satisfy all conservation require-
ments.) Therefore, the flow is choked. This again is analogous to not being 
able to accelerate a gas to supersonic velocities in a converging nozzle by 
simply extending the converging flow section. If we extend the duct length 
beyond L* anyway, we simply move the critical state further downstream and 
reduce the flow rate. This causes the inlet state to change (e.g., inlet velocity 
decreases), and the flow shifts to a different Fanno line. Further increase in 
duct length further decreases the inlet velocity and thus the mass flow rate.
 Friction causes supersonic Fanno flow in a constant-area duct to deceler-
ate and the Mach number to decrease toward unity. Therefore, the exit Mach 
number again becomes Ma 5 1 if the duct length is L*, as in subsonic 
flow. But unlike subsonic flow, increasing the duct length beyond L* cannot 
choke the flow since it is already choked. Instead, it causes a normal shock 
to occur at such a location that the continuing subsonic flow becomes sonic 
again exactly at the duct exit (Fig. 12–61). As the duct length increases, the 
location of the normal shock moves further upstream. Eventually, the shock 
occurs at the duct inlet. Further increase in duct length moves the shock to 
the diverging section of the converging–diverging nozzle that originally gen-
erates the supersonic flow, but the mass flow rate still remains unaffected 
since the mass flow rate is fixed by the sonic conditions at the throat of the 
nozzle, and it does not change unless the conditions at the throat change.

EXAMPLE 12–15    Choked Fanno Flow in a Duct

Air enters a 3-cm-diameter smooth adiabatic duct at Ma1 5 0.4, T1 5 300 K, 

and P1 5 150 kPa (Fig. 12–62). If the Mach number at the duct exit is 1, 

determine the duct length and temperature, pressure, and velocity at the duct 

exit. Also determine the percentage of stagnation pressure lost in the duct.

SOLUTION  Air enters a constant-area adiabatic duct at a specified state 

and leaves at the sonic state. The duct length, exit temperature, pressure, 

velocity, and the percentage of stagnation pressure lost in the duct are to be 

determined.

Assumptions  1 The assumptions associated with Fanno flow (i.e., steady, 

frictional flow of an ideal gas with constant properties through a constant 

cross-sectional area adiabatic duct) are valid. 2 The friction factor is constant 

along the duct.

Properties  We take the properties of air to be k 5 1.4, cp 5 1.005 kJ/kg·K, 

R 5 0.287 kJ/kg·K, and n 5 1.58 3 1025 m2/s.

Analysis  We first determine the inlet velocity and the inlet Reynolds number,

 c1 5 "kRT1 5 Å(1.4)(0.287 kJ/kg·K)(300 K)a1000 m2/s2

1 kJ/kg
b 5 347 m/s

 V1 5 Ma1c1 5 0.4(347 m/s) 5 139 m/s

 Re1 5
V 1D

n
5

(139 m/s)(0.03 m)

1.58 3 1025 m2/s
5 2.637 3 105

Ma . 1

Converging–
diverging

nozzle
Normal
shock

Duct
inlet

Duct
exit

Ma , 1

Ma 5 1

FIGURE 12–61
If duct length L is greater than L*, 

supersonic Fanno flow is always sonic 
at the duct exit. Extending the duct 
will only move the location of the 

normal shock further upstream.

P1 � 150 kPa

T1 � 300 K

Ma1 � 0.4

Ma2 � 1

T*

P*

V*
D � 3 cm

L1
*

FIGURE 12–62
Schematic for Example 12–15.
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The friction factor is determined from the Colebrook equation,

1"f
5 22.0 logae/D

3.7
1

2.51

Re"f
 b S  

1"f
5 22.0 loga 0

3.7
1

2.51

2.637 3 105"f
 b

Its solution is

f 5 0.0148

The Fanno flow functions corresponding to the inlet Mach number of 0.4 are 

(Table A–16):

P01

P*
0

5 1.5901 
T1

T*
5 1.1628 

P1

P*
5 2.6958 

V1

V*
5 0.4313 

fL*
1

D
5 2.3085

Noting that * denotes sonic conditions, which exist at the exit state, the duct 

length and the exit temperature, pressure, and velocity are determined to be

 L*
1 5

2.3085D

f
5

2.3085(0.03 m)

0.0148
5 4.68 m

 T* 5
T1

1.1628
5

300 K

1.1628
5 258 K

 P* 5
P1

2.6958
5

150 kPa

2.6958
5 55.6 kPa

 V* 5
V1

0.4313
5

139 m/s

0.4313
5 322 m/s

Thus, for the given friction factor, the duct length must be 4.68 m for the 

Mach number to reach Ma 5 1 at the duct exit. The fraction of inlet stagna-

tion pressure P01 lost in the duct due to friction is

P01 2 P*
0

P01

5 1 2
P*0
P01

5 1 2
1

1.5901
5 0.371 or 37.1%

Discussion  This problem can also be solved using appropriate relations 

instead of tabulated values for the Fanno functions. Also, we determined 

the friction factor at the inlet conditions and assumed it to remain con-

stant along the duct. To check the validity of this assumption, we calculate 

the friction factor at the outlet conditions. It can be shown that the friction 

factor at the duct outlet is 0.0121—a drop of 18 percent, which is large. 

Therefore, we should repeat the calculations using the average value of the 

friction factor (0.0148 1 0.0121)/2 5 0.0135. This would give the duct 

length to be L*1 5 2.3085(0.03m)/0.0135 5 5.13 m, and we take this to be 

the required duct length.

EXAMPLE 12–16    Exit Conditions of Fanno Flow in a Duct

Air enters a 27-m-long 5-cm-diameter adiabatic duct at V1 5 85 m/s, T1 5 

450 K, and P1 5 220 kPa (Fig. 12–63). The average friction factor for the 

duct is estimated to be 0.023. Determine the Mach number at the duct exit 

and the mass flow rate of air.

SOLUTION  Air enters a constant-area adiabatic duct of given length at a spec-

ified state. The exit Mach number and the mass flow rate are to be determined.

Hypothetical duct
extension to
sonic state

Exit
Ma2

Ma* 5 1
T*

T1 5 450 K

P1 5 220 kPa

P*
V1 5 85 m/s V*

x

L 5 27 m

L1
*

L2
*

FIGURE 12–63
Schematic for Example 12–16.

659-724_cengel_ch12.indd   710 12/19/12   11:08 AM



711
CHAPTER 12

Assumptions  1 The assumptions associated with Fanno flow (i.e., steady, 

frictional flow of an ideal gas with constant properties through a constant 

cross-sectional area adiabatic duct) are valid. 2 The friction factor is constant 

along the duct.

Properties  We take the properties of air to be k 5 1.4, cp 5 1.005 kJ/kg·K, 

and R 5 0.287 kJ/kg·K.

Analysis  The first thing we need to know is whether the flow is choked at 

the exit or not. Therefore, we first determine the inlet Mach number and the 

corresponding value of the function fL*/Dh,

 c1 5 "kRT1 5 Å(1.4)(0.287 kJ/kg·K)(450 K)a1000 m2/s2

1 kJ/kg
b 5 425 m/s

 Ma1 5
V 1

c1

5
85 m/s

425 m/s
5 0.200

Corresponding to this Mach number we read, from Table A–16, (fL*/Dh)1 5 

14.5333. Also, using the actual duct length L, we have

fL

Dh

5
(0.023)(27 m)

0.05 m
5 12.42 , 14.5333

Therefore, flow is not choked and the exit Mach number is less than 1. The 

function fL*/Dh at the exit state is calculated from Eq. 12–91,a fL*

Dh

b
2

5 a fL*

Dh

b
1

2
fL

Dh

5 14.5333 2 12.42 5 2.1133

The Mach number corresponding to this value of fL*/D is 0.42, obtained 

from Table A–16. Therefore, the Mach number at the duct exit is

Ma2 5 0.420

The mass flow rate of air is determined from the inlet conditions to be

 r1 5
P1

RT1

5
220 kPa

(0.287 kJ/kg·K)(450 K)
 a 1 kJ

1 kPa·m3b 5 1.703 kg/m3

 m# air 5 r1A1V 1 5 (1.703 kg/m3) [p(0.05 m)2/4] (85 m/s) 5 0.284 kg/s

Discussion  Note that it takes a duct length of 27 m for the Mach number 

to increase from 0.20 to 0.42, but only 4.6 m to increase from 0.42 to 1. 

Therefore, the Mach number rises at a much higher rate as sonic conditions 

are approached.

 To gain some insight, let’s determine the lengths corresponding to fL*/Dh 

values at the inlet and the exit states. Noting that f is assumed to be constant 

for the entire duct, the maximum (or sonic) duct lengths at the inlet and exit 

states are

 Lmax, 1 5 L*
1 5 14.5333 

Dh

f
5 14.5333 

0.05 m

0.023
5 31.6 m

 Lmax, 2 5 L*
2 5 2.1133 

Dh

f
5 2.1133 

0.05 m

0.023
5 4.59 m

(or, Lmax, 2 5 Lmax, 1 2 L 5 31.6 2 27 5 4.6 m). Therefore, the flow would 

reach sonic conditions if a 4.6-m-long section were added to the existing duct.
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FIGURE 12–65
Shadowgram of the swept interaction 
generated by a fin mounted on a flat 
plate at Mach 3.5. The oblique shock 
wave generated by the fin (at top of 
image) bifurcates into a “l-foot” 
beneath which the boundary layer 
separates and rolls up. The airflow 
through the l-foot above the separation 
zone forms a supersonic “jet” that 
curves downward and impinges upon 
the wall. This three-dimensional 
interaction required a special optical 
technique known as conical 
shadowgraphy to visualize the flow.
Photo by F. S. Alvi and G. S. Settles.

FIGURE 12–64
Normal shock wave above the wing 
of an L-1011 commercial jet aircraft 
in transonic flight, made visible by 
background distortion of low clouds 
over the Pacific Ocean.
U.S. Govt. photo by Carla Thomas, NASA Dryden 
Research Center.

Guest Author: Gary S. Settles, The Pennsylvania State University

Shock waves and boundary layers are among nature’s most incompatible 
phenomena. Boundary layers, as described in Chap. 10, are susceptible 
to separation from aerodynamic surfaces wherever strong adverse pressure 
gradients occur. Shock waves, on the other hand, produce very strong 
adverse pressure gradients, since a finite rise in static pressure occurs 
across a shock wave over a negligibly short streamwise distance. Thus, 
when a boundary layer encounters a shock wave, a complicated flow pattern 
develops and the boundary layer often separates from the surface to which 
it was attached.
 There are important cases in high-speed flight and wind tunnel testing 
where such a clash is unavoidable. For example, commercial jet transport 
aircraft cruise in the bottom edge of the transonic flow regime, where the air-
flow over their wings actually goes supersonic and then returns to subsonic 
flow through a normal shock wave (Fig. 12–64). If such an aircraft flies sig-
nificantly faster than its design cruise Mach number, serious aerodynamic 
disturbances arise due to shock-wave/boundary-layer interactions causing 
flow separation on the wings. This phenomenon thus limits the speed of pas-
senger aircraft around the world. Some military aircraft are designed to avoid 
this limit and fly supersonically, but shock-wave/boundary-layer interactions 
are still limiting factors in their engine air inlets.
 The interaction of a shock wave and a boundary layer is a type of viscous–
inviscid interaction in which the viscous flow in the boundary layer encounters 
the essentially inviscid shock wave generated in the free stream. The bound-
ary layer is slowed and thickened by the shock and may separate. The shock, 
on the other hand, bifurcates when flow separation occurs (Fig. 12–65). 
Mutual changes in both the shock and the boundary layer continue until an 
equilibrium condition is reached. Depending upon boundary conditions, the 
interaction can vary in either two or three dimensions and may be steady or 
unsteady.
 Such a strongly interacting flow is difficult to analyze, and no simple 
solutions exist. Moreover, in most of the problems of practical interest, the 
boundary layer in question is turbulent. Modern computational methods are 
able to predict many features of these flows by supercomputer solutions of 
the Reynolds-averaged Navier–Stokes equations. Wind tunnel experiments 
play a key role in guiding and validating such computations. Overall, the 
shock-wave/boundary-layer interaction has become one of the pacing problems 
of modern fluid dynamics research.
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SUMMARY

In this chapter the effects of compressibility on gas flow are 
examined. When dealing with compressible flow, it is conve-
nient to combine the enthalpy and the kinetic energy of the 
fluid into a single term called stagnation (or total) enthalpy 
h0, defined as

h0 5 h 1
V 2

2

The properties of a fluid at the stagnation state are called 
stagnation properties and are indicated by the subscript zero. 
The stagnation temperature of an ideal gas with constant 
specific heats is

T0 5 T 1
V 2

2cp

which represents the temperature an ideal gas would attain 
if it is brought to rest adiabatically. The stagnation proper-
ties of an ideal gas are related to the static properties of the 
fluid by

P0

P
5 aT0

T
bk/(k21)

  and  
r0

r
5 aT0

T
b1/(k 21)

The velocity at which an infinitesimally small pressure wave 
travels through a medium is the speed of sound. For an ideal 
gas it is expressed as

c 5 Åa 0P
0r

b
s

5 "kRT

The Mach number is the ratio of the actual velocity of the 
fluid to the speed of sound at the same state:

Ma 5
V
c

The flow is called sonic when Ma 5 1, subsonic when Ma 
, 1, supersonic when Ma . 1, hypersonic when Ma .. 1, 
and transonic when Ma > 1.
 Nozzles whose flow area decreases in the flow direction 
are called converging nozzles. Nozzles whose flow area first 
decreases and then increases are called converging–diverging 
nozzles. The location of the smallest flow area of a nozzle is 
called the throat. The highest velocity to which a fluid can 
be accelerated in a converging nozzle is the sonic velocity. 
Accelerating a fluid to supersonic velocities is possible only 
in converging–diverging nozzles. In all supersonic converging–
diverging nozzles, the flow velocity at the throat is the velocity 
of sound.
 The ratios of the stagnation to static properties for ideal 
gases with constant specific heats can be expressed in terms 
of the Mach number as

 
T0

T
5 1 1 ak 2 1

2
bMa2 

 
P0

P
5 c1 1 ak 2 1

2
bMa2 d k/(k 21)

 

and  
r0

r
5 c1 1 ak 2 1

2
bMa2 d 1/(k 21)

 

When Ma 5 1, the resulting static-to-stagnation property 
ratios for the temperature, pressure, and density are called 
critical ratios and are denoted by the superscript asterisk:

 
T*

T0

5
2

k 1 1
  

P*

P0

5 a 2

k 1 1
bk/(k21)

 

 and  
r*

r0
5 a 2

k 1 1
b1/(k21)

  

The pressure outside the exit plane of a nozzle is called the 
back pressure. For all back pressures lower than P*, the 
pressure at the exit plane of the converging nozzle is equal 
to P*, the Mach number at the exit plane is unity, and the 
mass flow rate is the maximum (or choked) flow rate.
 In some range of back pressure, the fluid that achieved a 
sonic velocity at the throat of a converging–diverging nozzle 
and is accelerating to supersonic velocities in the diverging 
section experiences a normal shock, which causes a sudden 
rise in pressure and temperature and a sudden drop in veloc-
ity to subsonic levels. Flow through the shock is highly irre-
versible, and thus it cannot be approximated as isentropic. The 
properties of an ideal gas with constant specific heats before 
(subscript 1) and after (subscript 2) a shock are related by

 T01 5 T02  Ma2 5 Å (k 2 1)Ma2
1 1 2

2kMa2
1 2 k 1 1

 

 
T2

T1

5
2 1 Ma2

1(k 2 1)

2 1 Ma2
2(k 2 1)

 

 and  
P2

P1

5
1 1 kMa2

1

1 1 kMa2
2

5
2kMa2

1 2 k 1 1

k 1 1
 

These equations also hold across an oblique shock, provided 
that the component of the Mach number normal to the oblique 
shock is used in place of the Mach number.
 Steady one-dimensional flow of an ideal gas with constant 
specific heats through a constant-area duct with heat transfer 
and negligible friction is referred to as Rayleigh flow. The 
property relations and curves for Rayleigh flow are given in 
Table A–15. Heat transfer during Rayleigh flow are deter-
mined from

q 5 cp(T02 2 T01) 5 cp(T2 2 T1) 1
V 2

2 2 V 2
1

2
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 Steady, frictional, and adiabatic flow of an ideal gas with 
constant specific heats through a constant-area duct is referred 
to as Fanno flow. The channel length required for the Mach 
number to reach unity under the influence of wall friction is 
denoted by L* and is expressed as

fL*

Dh

5
1 2 Ma2

kMa2 1
k 1 1

2k
 ln 

(k 1 1)Ma2

2 1 (k 2 1)Ma2

where f is the average friction factor. The duct length 
between two sections where the Mach numbers are Ma1 and 
Ma2 is determined from

fL

Dh

5 a fL*

Dh

 b
1

2 a fL*

Dh

 b
2

During Fanno flow, the stagnation temperature T0 remains 
constant. Other property relations and curves for Fanno flow 
are given in Table A–16.
 This chapter provides an overview of compressible flow 
and is intended to motivate the interested student to under-
take a more in-depth study of this exciting subject. Some 
compressible flows are analyzed in Chap. 15 using computa-
tional fluid dynamics.
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Stagnation Properties

12–1C  A high-speed aircraft is cruising in still air. How 
does the temperature of air at the nose of the aircraft differ 
from the temperature of air at some distance from the 
aircraft?

12–2C  What is dynamic temperature?

12–3C  In air-conditioning applications, the temperature of 
air is measured by inserting a probe into the flow stream. 
Thus, the probe actually measures the stagnation temperature. 
Does this cause any significant error?

12–4  Air flows through a device such that the stagnation 
pressure is 0.6 MPa, the stagnation temperature is 4008C, 
and the velocity is 570 m/s. Determine the static pressure and 
temperature of the air at this state.  Answers: 519 K, 0.231 MPa

12–5  Air at 320 K is flowing in a duct at a velocity of (a) 1, 
(b) 10, (c) 100, and (d) 1000 m/s. Determine the tempera-
ture that a stationary probe inserted into the duct will read for 
each case.

12–6  Calculate the stagnation temperature and pressure for 
the following substances flowing through a duct: (a) helium at 

PROBLEMS*
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0.25 MPa, 508C, and 240 m/s; (b) nitrogen at 0.15 MPa, 508C, 
and 300 m/s; and (c) steam at 0.1 MPa, 3508C, and 480 m/s.

12–7  Determine the stagnation temperature and stagnation 
pressure of air that is flowing at 36 kPa, 238 K, and 325 m/s. 
Answers: 291 K, 72.4 kPa

12–8E  Steam flows through a device with a stagnation 
pressure of 120 psia, a stagnation temperature of 7008F, and 
a velocity of 900 ft/s. Assuming ideal-gas behavior, determine 
the static pressure and temperature of the steam at this state.

12–9  Air enters a compressor with a stagnation pressure of 
100 kPa and a stagnation temperature of 358C, and it is com-
pressed to a stagnation pressure of 900 kPa. Assuming the 
compression process to be isentropic, determine the power 
input to the compressor for a mass flow rate of 0.04 kg/s. 
Answer: 10.8 kW

12–10  Products of combustion enter a gas turbine with a 
stagnation pressure of 0.75 MPa and a stagnation temperature 
of 6908C, and they expand to a stagnation pressure of 100 kPa. 
Taking k 5 1.33 and R 5 0.287 kJ/kg·K for the products of 
combustion, and assuming the expansion process to be isen-
tropic, determine the power output of the turbine per unit 
mass flow.

One-Dimensional Isentropic Flow
12–11C  Is it possible to accelerate a gas to a supersonic 
velocity in a converging nozzle? Explain.

12–12C  A gas initially at a subsonic velocity enters an adi-
abatic diverging duct. Discuss how this affects (a) the veloc-
ity, (b) the temperature, (c) the pressure, and (d) the density 
of the fluid.

12–13C  A gas at a specified stagnation temperature and 
pressure is accelerated to Ma 5 2 in a converging–diverging 
nozzle and to Ma 5 3 in another nozzle. What can you say 
about the pressures at the throats of these two nozzles?

12–14C  A gas initially at a supersonic velocity enters an 
adiabatic converging duct. Discuss how this affects (a) the 
velocity, (b) the temperature, (c) the pressure, and (d) the 
density of the fluid.

12–15C  A gas initially at a supersonic velocity enters an 
adiabatic diverging duct. Discuss how this affects (a) the 
velocity, (b) the temperature, (c) the pressure, and (d) the 
density of the fluid.

12–16C  Consider a converging nozzle with sonic speed at 
the exit plane. Now the nozzle exit area is reduced while the 
nozzle inlet conditions are maintained constant. What will 
happen to (a) the exit velocity and (b) the mass flow rate 
through the nozzle?

12–17C  A gas initially at a subsonic velocity enters an 
adiabatic converging duct. Discuss how this affects (a) the 
velocity, (b) the temperature, (c) the pressure, and (d) the 
density of the fluid.

12–18  Helium enters a converging–diverging nozzle at 
0.7  MPa, 800 K, and 100 m/s. What are the lowest temper-
ature and pressure that can be obtained at the throat of the 
nozzle?

12–19  Consider a large commercial airplane cruising at a 
speed of 1050 km/h in air at an altitude of 10 km where the 
standard air temperature is 2508C. Determine if the speed of 
this airplane is subsonic or supersonic.

12–20  Calculate the critical temperature, pressure, and den-
sity of (a) air at 200 kPa, 1008C, and 250 m/s, and (b) helium 
at 200 kPa, 408C, and 300 m/s.

12–21E  Air at 25 psia, 3208F, and Mach number Ma 5 0.7 
flows through a duct. Calculate the velocity and the stag nation 
pressure, temperature, and density of air.  Answers: 958 ft/s, 

856 R, 34.7 psia, 0.109 lbm/ft3

12–22  Air enters a converging–diverging nozzle at a pressure 
of 1200 kPa with negligible velocity. What is the lowest pressure 
that can be obtained at the throat of the nozzle? Answer: 634 kPa

12–23  In March 2004, NASA successfully launched an 
experimental supersonic-combustion ramjet engine (called a 
scramjet) that reached a record-setting Mach number of 7. 
Taking the air temperature to be 2208C, determine the speed 
of this engine. Answer: 8040 km/h

12–24E  Reconsider the scram jet engine discussed in 
Prob. 12–23. Determine the speed of this engine in miles 
per hour corresponding to a Mach number of 7 in air at a 
temperature of 08F.

12–25  Air at 200 kPa, 1008C, and Mach number Ma 5 0.8 
flows through a duct. Calculate the velocity and the stagna-
tion pressure, temperature, and density of the air.

12–26  Reconsider Prob. 12–25. Using EES (or other) 
software, study the effect of Mach numbers in 

the range 0.1 to 2 on the velocity, stagnation pressure, tem-
perature, and density of air. Plot each parameter as a function 
of the Mach number.

12–27  An aircraft is designed to cruise at Mach number 
Ma 5 1.1 at 12,000 m where the atmospheric temperature 
is 236.15 K. Determine the stagnation temperature on the 
leading edge of the wing.

12–28  Quiescent carbon dioxide at 1200 kPa and 600 K is 
accelerated isentropically to a Mach number of 0.6. Deter-
mine the temperature and pressure of the carbon dioxide after 
acceleration.  Answers: 570 K, 957 kPa

Isentropic Flow through Nozzles
12–29C  Is it possible to accelerate a fluid to supersonic 
velocities with a velocity other than the sonic velocity at the 
throat? Explain

12–30C  What would happen if we tried to further accelerate 
a supersonic fluid with a diverging diffuser?
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12–31C  How does the parameter Ma* differ from the Mach 
number Ma?

12–32C  Consider subsonic flow in a converging nozzle 
with specified conditions at the nozzle inlet and critical pres-
sure at the nozzle exit. What is the effect of dropping the 
back pressure well below the critical pressure on (a) the exit 
velocity, (b) the exit pressure, and (c) the mass flow rate 
through the nozzle?

12–33C  Consider a converging nozzle and a converging– 
diverging nozzle having the same throat areas. For the same 
inlet conditions, how would you compare the mass flow rates 
through these two nozzles?

12–34C  Consider gas flow through a converging nozzle with 
specified inlet conditions. We know that the highest velocity the 
fluid can have at the nozzle exit is the sonic velocity, at which 
point the mass flow rate through the nozzle is a maximum. If 
it were possible to achieve hypersonic velocities at the nozzle 
exit, how would it affect the mass flow rate through the nozzle?

12–35C  Consider subsonic flow in a converging nozzle with 
fixed inlet conditions. What is the effect of dropping the back 
pressure to the critical pressure on (a) the exit velocity, (b) the 
exit pressure, and (c) the mass flow rate through the nozzle?

12–36C  Consider the isentropic flow of a fluid through a 
converging–diverging nozzle with a subsonic velocity at the 
throat. How does the diverging section affect (a) the velocity, 
(b) the pressure, and (c) the mass flow rate of the fluid?

12–37C  What would happen if we attempted to decelerate 
a supersonic fluid with a diverging diffuser?

12–38  Nitrogen enters a converging–diverging nozzle at 700 kPa 
and 400 K with a negligible velocity. Determine the critical 
velocity, pressure, temperature, and density in the nozzle.

12–39  For an ideal gas obtain an expression for the ratio 
of the speed of sound where Ma 5 1 to the speed of sound 
based on the stagnation temperature, c*/c0.

12–40  Air enters a converging–diverging nozzle at 1.2 MPa 
with a negligible velocity. Approximating the flow as isentro-
pic, determine the back pressure that would result in an exit 
Mach number of 1.8.  Answer: 209 kPa

12–41E  Air enters a nozzle at 30 psia, 630 R, and a velocity 
of 450 ft/s. Approximating the flow as isentropic, determine 
the pressure and temperature of air at a location where the air 
velocity equals the speed of sound. What is the ratio of the 
area at this location to the entrance area?  Answers: 539 R, 

17.4 psia, 0.574

12–42  An ideal gas flows through a passage that first con-
verges and then diverges during an adiabatic, reversible, 
steady-flow process. For subsonic flow at the inlet, sketch the 
variation of pressure, velocity, and Mach number along the 
length of the nozzle when the Mach number at the minimum 
flow area is equal to unity.

12–43  Repeat Prob. 12–42 for supersonic flow at the inlet.

12–44  Explain why the maximum flow rate per unit area 
for a given ideal gas depends only on P0  /!T0. For an ideal 
gas with k 5 1.4 and R 5 0.287 kJ/kg·K, find the constant a 
such that m# /A* 5 aP0 /!T 0.

12–45  An ideal gas with k 5 1.4 is flowing through a noz-
zle such that the Mach number is 1.8 where the flow area is 
36 cm2. Approximating the flow as isentropic, determine the 
flow area at the location where the Mach number is 0.9.

12–46  Repeat Prob. 12–45 for an ideal gas with k 5 1.33.

12–47E  Air enters a converging–diverging nozzle of a 
supersonic wind tunnel at 150 psia and 1008F with a low 
velocity. The flow area of the test section is equal to the exit 
area of the nozzle, which is 5 ft2. Calculate the pressure, tem-
perature, velocity, and mass flow rate in the test section for 
a Mach number Ma 5 2. Explain why the air must be very 
dry for this application.  Answers: 19.1 psia, 311 R, 1729 ft/s, 

1435 lbm/s

12–48  Air enters a nozzle at 0.5 MPa, 420 K, and a velocity 
of 110 m/s. Approximating the flow as isentropic, determine 
the pressure and temperature of air at a location where the air 
velocity equals the speed of sound. What is the ratio of the 
area at this location to the entrance area?  Answers: 355 K, 

278 kPa, 0.428

12–49  Repeat Prob. 12–48 assuming the entrance velocity 
is negligible.

12–50  Air at 900 kPa and 400 K enters a converging 
nozzle with a negligible velocity. The throat 

area of the nozzle is 10 cm2. Approximating the flow as isen-
tropic, calculate and plot the exit pressure, the exit velocity, 
and the mass flow rate versus the back pressure Pb for 0.9 $ 
Pb $ 0.1 MPa.

12–51  Reconsider Prob. 12–50. Using EES (or other) 
software, solve the problem for the inlet condi-

tions of 0.8 MPa and 1200 K.

Shock Waves and Expansion Waves

12–52C  Are the isentropic relations of ideal gases appli-
cable for flows across (a) normal shock waves, (b) oblique 
shock waves, and (c) Prandtl–Meyer expansion waves?

12–53C  What do the states on the Fanno line and the 
Rayleigh line represent? What do the intersection points of 
these two curves represent?

12–54C  It is claimed that an oblique shock can be analyzed 
like a normal shock provided that the normal component of 
velocity (normal to the shock surface) is used in the analysis. 
Do you agree with this claim?

12–55C  How does the normal shock affect (a) the fluid 
velocity, (b) the static temperature, (c) the stagnation temper-
ature, (d ) the static pressure, and (e) the stagnation pressure?
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12–56C  How do oblique shocks occur? How do oblique 
shocks differ from normal shocks?

12–57C  For an oblique shock to occur, does the upstream 
flow have to be supersonic? Does the flow downstream of an 
oblique shock have to be subsonic?

12–58C  Can the Mach number of a fluid be greater than 1 
after a normal shock wave? Explain.

12–59C  Consider supersonic airflow approaching the nose 
of a two-dimensional wedge and experiencing an oblique 
shock. Under what conditions does an oblique shock detach 
from the nose of the wedge and form a bow wave? What is 
the numerical value of the shock angle of the detached shock 
at the nose?

12–60C  Consider supersonic flow impinging on the rounded 
nose of an aircraft. Is the oblique shock that forms in front of 
the nose an attached or a detached shock? Explain.

12–61C  Can a shock wave develop in the converging section 
of a converging–diverging nozzle? Explain.

12–62  Air enters a normal shock at 26 kPa, 230 K, and 
815 m/s. Calculate the stagnation pressure and Mach number 
upstream of the shock, as well as pressure, temperature, 
velocity, Mach number, and stagnation pressure downstream 
of the shock.

12–63  Calculate the entropy change of air across the nor-
mal shock wave in Problem 12–62.  Answer: 0.242 kJ/kg·K

12–64  For an ideal gas flowing through a normal shock, 
develop a relation for V2/V1 in terms of k, Ma1, and Ma2.

12–65  Air enters a converging–diverging nozzle with low 
velocity at 2.0 MPa and 1008C. If the exit area of the nozzle 
is 3.5 times the throat area, what must the back pressure be 
to produce a normal shock at the exit plane of the nozzle? 
Answer: 0.661 MPa

12–66  What must the back pressure be in Prob. 12–65 for a 
normal shock to occur at a location where the cross-sectional 
area is twice the throat area?

12–67E  Air flowing steadily in a nozzle experiences a 
normal shock at a Mach number of Ma 5 2.5. 

If the pressure and temperature of air are 10.0 psia and 
440.5 R, respectively, upstream of the shock, calculate the 
pressure, temperature, velocity, Mach number, and stagnation 
pressure downstream of the shock. Compare these results to 
those for helium undergoing a normal shock under the same 
conditions.

12–68E  Reconsider Prob. 12–67E. Using EES (or 
other) software, study the effects of both air 

and helium flowing steadily in a nozzle when there is a nor-
mal shock at a Mach number in the range 2 , Ma1 , 3.5. In 
addition to the required information, calculate the entropy 
change of the air and helium across the normal shock. Tabu-
late the results in a parametric table.

12–69  Air enters a converging–diverging nozzle of a super-
sonic wind tunnel at 1 MPa and 300 K with a low velocity. 
If a normal shock wave occurs at the exit plane of the noz-
zle at Ma 5 2.4, determine the pressure, temperature, Mach 
number, velocity, and stagnation pressure after the shock 
wave.  Answers: 448 kPa, 284 K, 0.523, 177 m/s, 540 kPa

12–70  Using EES (or other) software, calculate and 
plot the entropy change of air across the normal 

shock for upstream Mach numbers between 0.5 and 1.5 in 
increments of 0.1. Explain why normal shock waves can 
occur only for upstream Mach numbers greater than Ma 5 1.

12–71  Consider supersonic airflow approaching the nose 
of a two-dimensional wedge at a Mach number of 5. Using 
Fig. 12–37, determine the minimum shock angle and the 
maximum deflection angle a straight oblique shock can have.

12–72  Air flowing at 32 kPa, 240 K, and Ma1 5  3.6 is 
forced to undergo an expansion turn of 158. Determine the 
Mach number, pressure, and  temperature of air after the 
expansion.  Answers: 4.81, 6.65 kPa, 153 K

12–73  Consider the supersonic flow of air at upstream con-
ditions of 70 kPa and 260 K and a Mach number of 2.4 over 
a two-dimensional wedge of half-angle 108. If the axis of 
the wedge is tilted 258 with respect to the upstream air flow, 
determine the downstream Mach number, pressure, and tem-
perature above the wedge.  Answers: 3.105, 23.8 kPa, 191 K

Ma1 5 2.4

Ma2

25°
10°

FIGURE P12–73

12–74  Reconsider Prob. 12–73. Determine the downstream 
Mach number,  pressure, and temperature below the wedge for 
a strong oblique shock for an upstream Mach number of 5.

12–75E  Air at 12 psia, 308F, and a Mach number of 2.0 is 
forced to turn upward by a ramp that makes an 88 angle off 
the flow direction. As a result, a weak oblique shock forms. 
Determine the wave angle, Mach number, pressure, and tem-
perature after the shock.

12–76E  Air flowing at 8 psia, 480 R, and Ma1 5 2.0 is forced 
to undergo a compression turn of 158. Determine the Mach 
number, pressure, and  temperature of air after the compression.

12–77  Air flowing at 60 kPa, 240 K, and a Mach number of 
3.4 impinges on a two-dimensional wedge of half-angle 88. 
Determine the two possible oblique shock angles, bweak and 
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12–89  Repeat Prob. 12–88 for a heat transfer rate of 300 kJ/s.

12–90E  Air flows with negligible friction through a 4-in-
diameter duct at a rate of 5 lbm/s. The temperature and pres-
sure at the inlet are T1 5 800 R and P1 5 30 psia, and the 
Mach number at the exit is Ma2 5 1. Determine the rate of 
heat transfer and the pressure drop for this section of the duct.

12–91  Air enters an approximately frictionless duct with 
V1 5 70 m/s, T1 5 600 K, and P1 5 350 kPa. 

Letting the exit temperature T2 vary from 600 to 5000 K, 
evaluate the entropy change at intervals of 200 K, and plot 
the Rayleigh line on a T-s diagram.

12–92E  Air is heated as it flows through a 6 in 3 6 in square 
duct with negligible friction. At the inlet, air is at T1 5 700 R, 
P1 5 80 psia, and V1 5 260 ft/s. Determine the rate at which 
heat must be transferred to the air to choke the flow at the duct 
exit, and the entropy change of air during this process.

12–93  Air enters a rectangular duct at T1 5 300 K, P1 5 
420  kPa, and Ma1 5 2. Heat is transferred to the air in the 
amount of 55 kJ/kg as it flows through the duct. Disregarding 
frictional losses, determine the temperature and Mach number 
at the duct exit.  Answers: 386 K, 1.64

bstrong, that could be formed by this wedge. For each case, 
calculate the pressure, temperature, and Mach number down-
stream of the oblique shock.

12–78  Air flowing steadily in a nozzle experiences a nor-
mal shock at a Mach number of Ma 5 2.6. If the pressure 
and temperature of air are 58 kPa and  270 K, respectively, 
upstream of the shock, calculate the pressure, temperature, 
velocity, Mach number, and stagnation pressure downstream 
of the shock. Compare these results to those for helium under-
going a normal shock under the same conditions.

12–79  Calculate the entropy changes of air and helium across 
the normal shock wave in Prob. 12–78.

Duct Flow with Heat Transfer and Negligible Friction 
(Rayleigh Flow)

12–80C  What is the effect of heating the fluid on the flow 
velocity in subsonic Rayleigh flow? Answer the same ques-
tions for supersonic Rayleigh flow.

12–81C  On a T-s diagram of Rayleigh flow, what do the 
points on the Rayleigh line represent?

12–82C  What is the effect of heat gain and heat loss on the 
entropy of the fluid during Rayleigh flow?

12–83C  Consider subsonic Rayleigh flow of air with a 
Mach number of 0.92. Heat is now transferred to the fluid 
and the Mach number increases to 0.95. Does the tempera-
ture T of the fluid increase, decrease, or remain constant dur-
ing this process? How about the stagnation temperature T0?

12–84C  What is the characteristic aspect of Rayleigh flow? 
What are the main assumptions associated with Rayleigh flow?

12–85C  Consider subsonic Rayleigh flow that is acceler-
ated to sonic velocity (Ma 5 1) at the duct exit by heating. If 
the fluid continues to be heated, will the flow at duct exit be 
supersonic, subsonic, or remain sonic?

12–86  Argon gas enters a constant cross-sectional area duct 
at Ma1 5 0.2, P1 5 320 kPa, and T1 5 400 K at a rate of 
1.2 kg/s. Disregarding frictional losses,  determine the highest 
rate of heat transfer to the argon without reducing the mass 
flow rate.

12–87  Air is heated as it flows subsonically through a duct. 
When the amount of heat transfer reaches 67 kJ/kg, the flow 
is observed to be choked, and the velocity and the static pres-
sure are measured to be 680 m/s and 270 kPa. Disregarding 
 frictional losses, determine the velocity, static temperature, 
and static pressure at the duct inlet.

12–88  Compressed air from the compressor of a gas turbine 
enters the combustion chamber at T1 5 700 K, P1 5 600 kPa, 
and Ma1 5 0.2 at a rate of 0.3 kg/s. Via combustion, heat is 
transferred to the air at a rate of 150 kJ/s as it flows through 
the duct with negligible friction. Determine the Mach number 
at the duct exit, and the drop in stagnation pressure P01 2 P02 
during this process.  Answers: 0.271, 12.7 kPa

FIGURE P12–95

Combustor
tube

Fuel

P1 5 380 kPa
T1 5 450 K

V1 5 55 m/s

Ma2 5 0.8

Air

55 kJ/kg

P1 � 420 kPa

T1 � 300 K

Ma1 � 2

FIGURE P12–93

12–94  Repeat Prob. 12–93 assuming air is cooled in the 
amount of 55 kJ/kg.

12–95  Consider a 16-cm-diameter tubular combustion 
chamber. Air enters the tube at 450 K, 380 kPa, and 55 m/s. 
Fuel with a heating value of 39,000 kJ/kg is burned by spray-
ing it into the air. If the exit Mach number is 0.8, determine 
the rate at which the fuel is burned and the exit temperature. 
Assume complete combustion and disregard the increase in 
the mass flow rate due to the fuel mass.

12–96  Consider supersonic flow of air through a 7-cm-diameter 
duct with negligible friction. Air enters the duct at Ma1 5 1.8, 

659-724_cengel_ch12.indd   718 12/21/12   3:54 PM



719
CHAPTER 12

P01 5 140 kPa, and T01 5 600 K, and it is decelerated by heat-
ing. Determine the highest temperature that air can be heated by 
heat addition while the mass flow rate remains constant.

Adiabatic Duct Flow with Friction (Fanno Flow)

12–97C  What is the effect of friction on flow velocity in 
subsonic Fanno flow? Answer the same question for super-
sonic Fanno flow.

12–98C  On a T-s diagram of Fanno flow, what do the 
points on the Fanno line represent?

12–99C  What is the effect of friction on the entropy of the 
fluid during Fanno flow?

12–100C  Consider supersonic Fanno flow that is deceler-
ated to sonic velocity (Ma 5 1) at the duct exit as a result of 
frictional effects. If the duct length is increased further, will 
the flow at the duct exit be supersonic, subsonic, or remain 
sonic? Will the mass flow rate of the fluid increase, decrease, 
or remain constant as a result of increasing the duct length?

12–101C  Consider supersonic Fanno flow of air with an inlet 
Mach number of 1.8. If the Mach number decreases to 1.2 at 
the duct exit as a result of friction, does the (a) stagnation tem-
perature T0, (b) stagnation pressure P0, and (c) entropy s of the 
fluid increase, decrease, or remain constant during this process?

12–102C  What is the characteristic aspect of Fanno flow? 
What are the main approximations associated with Fanno flow?

12–103C  Consider subsonic Fanno flow accelerated to 
sonic velocity (Ma 5 1) at the duct exit as a result of fric-
tional effects. If the duct length is increased further, will 
the flow at the duct exit be supersonic, subsonic, or remain 
sonic? Will the mass flow rate of the fluid increase, decrease, 
or remain constant as a result of increasing the duct length?

12–104C  Consider subsonic Fanno flow of air with an inlet 
Mach number of 0.70. If the Mach number increases to 0.90 at 
the duct exit as a result of friction, will the (a) stagnation tem-
perature T0, (b) stagnation pressure P0, and (c) entropy s of the 
fluid increase, decrease, or remain constant during this process?

12–105  Air enters a 12-cm-diameter adiabatic duct at Ma1 5 
0.4, T1 5 550 K, and P1 5 200 kPa. The average friction factor 
for the duct is estimated to be 0.021. If the Mach number at 
the duct exit is 0.8, determine the duct length, temperature, 
pressure, and velocity at the duct exit.

12–106  Air enters a 15-m-long, 4-cm-diameter adiabatic 
duct at V1 5 70 m/s, T1 5 500 K, and P1 5 300 kPa. The 
average friction factor for the duct is estimated to be 0.023. 
Determine the Mach number at the duct exit, the exit velocity, 
and the mass flow rate of air.

12–107  Air enters a 5-cm-diameter, 4-m-long adiabatic duct 
with inlet conditions of Ma1 5 2.8, T1 5 380 K, and P1  5 
80 kPa. It is observed that a normal shock occurs at a loca-
tion 3 m from the inlet. Taking the average friction factor to 
be 0.007, determine the velocity, temperature, and pressure at 
the duct exit.  Answers: 572 m/s, 813 K, 328 kPa

L

P1 5 200 kPa

T1 5 550 K

Ma1 5 0.4

Ma2 5 0.8

FIGURE P12–105

FIGURE P12–107

L1 � 3 m

P1 � 80 kPa

T1 � 380 K

Ma1 � 2.8

Normal
shock

12–108E  Helium gas with k 5 1.667 enters a 6-in-diameter 
duct at Ma1 5 0.2, P1 5 60 psia, and T1 5 600 R. For an 
average friction factor of 0.025, determine the maximum duct 
length that will not cause the mass flow rate of helium to be 
reduced.  Answer: 291 ft

12–109  Air enters a 15-cm-diameter adiabatic duct with 
inlet conditions of V1 5 150 m/s, T1 5 500 K, and P1 5 200 kPa. 
For an average friction factor of 0.014, determine the duct 
length from the inlet where the inlet velocity doubles. Also 
determine the pressure drop along that section of the duct.

12–110E  Air flows through a 6-in-diameter, 50-ft-long adi-
abatic duct with inlet conditions of V1 5 500 ft/s, T01 5 650 R, 
and P1 5  50  psia. For an average friction factor of 0.02, 
determine the velocity, temperature, and pressure at the exit 
of the duct.

12–111  Consider subsonic airflow through a 20-cm-
diameter adiabatic duct with inlet conditions 

of T1 5 330 K, P1 5 180 kPa, and Ma1 5 0.1. Taking the 
average friction factor to be 0.02, determine the duct length 
required to accelerate the flow to a Mach number of unity. 
Also, calculate the duct length at Mach number intervals of 
0.1, and plot the duct length against the Mach number for 
0.1 # Ma # 1. Discuss the results.

12–112  Repeat Prob. 12–111 for helium gas.

12–113  Argon gas with k 5 1.667, cp 5 0.5203 kJ/kg·K, 
and R 5 0.2081 kJ/kg·K enters an 8-cm-

diameter adiabatic duct with V1 5 70 m/s, T1 5 520 K, and 
P1 5 350 kPa. Taking the average friction factor to be 0.005 
and letting the exit temperature T2 vary from 540 K to 400 K, 
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evaluate the entropy change at intervals of 10 K, and plot the 
Fanno line on a T-s diagram.

12–114  Air in a room at T0 5 300 K and P0 5 100 kPa is 
drawn steadily by a vacuum pump through a 1.4-cm-diameter, 
35-cm-long adiabatic tube equipped with a converging nozzle 
at the inlet. The flow in the nozzle section can be approxi-
mated as isentropic, and the average friction factor for the 
duct can be taken to be 0.018. Determine the maximum mass 
flow rate of air that can be sucked through this tube and the 
Mach number at the tube inlet.  Answers: 0.0305 kg/s, 0.611

Explain the effect of heating and area changes on the velocity 
of an ideal gas in steady flow for (a)  subsonic flow and (b) 
supersonic flow.

12–123  A subsonic airplane is flying at a 5000-m altitude 
where the atmospheric conditions are 54 kPa and 256  K. A 
Pitot static probe measures the difference between the static 
and stagnation pressures to be 16 kPa. Calculate the speed of 
the airplane and the flight Mach number.  Answers: 199 m/s, 

0.620

12–124  Derive an expression for the speed of sound based 
on van der Waals’ equation of state P 5 RT(v 2 b) 2 a/v2. 
Using this relation, determine the speed of sound in carbon 
dioxide at 808C and 320 kPa, and compare your result to that 
obtained by assuming ideal-gas behavior. The van der Waals 
constants for carbon dioxide are a 5 364.3 kPa·m6/kmol2 and 
b 5 0.0427 m3/kmol.

12–125  Helium enters a nozzle at 0.6 MPa, 560 K, and a 
velocity of 120 m/s. Assuming isentropic flow, determine the 
pressure and temperature of helium at a location where the 
velocity equals the speed of sound. What is the ratio of the area 
at this location to the entrance area?

12–126  Repeat Problem 12–125 assuming the entrance 
velocity is negligible.

12–127  Air at 0.9 MPa and 400 K enters a converging 
nozzle with a velocity of 180 m/s. The throat 

area is 10 cm2. Assuming isentropic flow, calculate and plot 
the mass flow rate through the nozzle, the exit velocity, the 
exit Mach number, and the exit pressure–stagnation pressure 
ratio versus the back pressure–stagnation pressure ratio for a 
back pressure range of 0.9 $ Pb $ 0.1 MPa.

12–128  Nitrogen enters a duct with varying flow area at 
400 K, 100 kPa, and a Mach number of 0.3. Assuming a 
steady, isentropic flow, determine the temperature, pressure, 
and Mach number at a location where the flow area has been 
reduced by 20 percent.

12–129  Repeat Prob. 12–128 for an inlet Mach number of 0.5.

12–130  Nitrogen enters a converging–diverging nozzle at 
620 kPa and 310 K with a negligible velocity, and it experi-
ences a normal shock at a location where the Mach number 
is Ma 5 3.0. Calculate the pressure, temperature, velocity, 
Mach number, and stagnation pressure downstream of the 
shock. Compare these results to those of air undergoing a 
normal shock at the same conditions.

12–131  An aircraft flies with a Mach number Ma1 5 0.9 at 
an altitude of 7000 m where the pressure is 41.1 kPa and the 
temperature is 242.7 K. The diffuser at the engine inlet has 
an exit Mach number of Ma2 5 0.3. For a mass flow rate of 
38 kg/s, determine the static pressure rise across the diffuser 
and the exit area.

12–132  Consider an equimolar mixture of oxygen and 
nitrogen. Determine the critical temperature, pressure, and 

L 5 35 cm

P0 5 100 kPa
T0 5 300 K

Vacuum
pump

D 5 1.4 cm

FIGURE P12–114

12–115  Repeat Prob. 12–114 for a friction factor of 0.025 
and a tube length of 1 m.

Review Problems

12–116  The thrust developed by the engine of a Boeing 777 
is about 380 kN. Assuming choked flow in the nozzles, deter-
mine the mass flow rate of air through the nozzle. Take the 
ambient conditions to be 220 K and 40 kPa.

12–117  A stationary temperature probe inserted into a duct 
where air is flowing at 190 m/s reads 858C. What is the actual 
temperature of the air?  Answer: 67.08C

12–118  Nitrogen enters a steady-flow heat exchanger at 
150 kPa, 108C, and 100 m/s, and it receives heat in the amount 
of 150 kJ/kg as it flows through it. The nitrogen leaves the 
heat exchanger at 100 kPa with a velocity of 200 m/s. Deter-
mine the stagnation pressure and temperature of the nitrogen 
at the inlet and exit states.

12–119  Plot the mass flow parameter m# "RT0 /(AP0) versus 
the Mach number for k 5 1.2, 1.4, and 1.6 in the range of 
0 # Ma # 1.

12–120  Obtain Eq. 12–10 by starting with Eq. 12–9 and 
using the cyclic rule and the thermodynamic property relations
cp

T
5 a 0s

0T
b

P

  and  
cv

T
5 a 0s

0T
b

v

.

12–121  For ideal gases undergoing isentropic flows, obtain 
expressions for P/P*, T/T*, and r/r* as functions of k and Ma.

12–122  Using Eqs. 12–4, 12–13, and 12–14, verify that for 
the steady flow of ideal gases dT0/T 5 dA/A 1 (1 2 Ma2) dV/V. 
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density for stagnation temperature and pressure of 550 K 
and 350 kPa.

12–133E  Helium expands in a nozzle from 220 psia, 740 R, 
and negligible velocity to 15 psia. Calculate the throat and exit 
areas for a mass flow rate of 0.2 lbm/s, assuming the nozzle 
is isentropic. Why must this nozzle be converging–diverging?

12–134  Using the EES software and the relations in 
Table A–13, calculate the one-dimensional 

compressible flow functions for an ideal gas with k 5 1.667, 
and present your results by duplicating Table A–13.

12–135  Using the EES software and the relations in 
Table A–14, calculate the one-dimensional 

normal shock functions for an ideal gas with k 5 1.667, and 
present your results by duplicating Table A–14.

12–136  Helium expands in a nozzle from 1 MPa, 500 K, 
and negligible velocity to 0.1 MPa. Calculate the throat and 
exit areas for a mass flow rate of 0.46 kg/s, assuming the 
nozzle is isentropic. Why must this nozzle be converging– 
diverging?  Answers: 6.46 cm2, 10.8 cm2

12–137  In compressible flow, velocity measurements with a 
Pitot probe can be grossly in error if relations developed for 
incompressible flow are used. Therefore, it is essential that 
compressible flow relations be used when evaluating flow 
velocity from Pitot probe measurements. Consider super-
sonic flow of air through a channel. A probe inserted into the 
flow causes a shock wave to occur upstream of the probe, 
and it measures the stagnation pressure and temperature to 
be 620  kPa and 340 K, respectively. If the static pressure 
upstream is 110 kPa, determine the flow velocity.

as isentropic. The static pressure is measured to be 87 kPa at 
the tube inlet and 55 kPa at the tube exit. Determine the mass 
flow rate of air through the duct, the air velocity at the duct 
exit, and the average friction factor for the duct.

12–141  Air enters a 5.5-cm-diameter adiabatic duct with 
inlet conditions of Ma1 5 2.2, T1 5 250 K, and P1 5 70 kPa, 
and exits at a Mach number of Ma2 5 1.8. Taking the aver-
age friction factor to be 0.03, determine the velocity, temper-
ature, and pressure at the exit.

12–142  Consider supersonic airflow through a 12-cm-
diameter adiabatic duct with inlet conditions 

of T1 5 500 K, P1 5 80 kPa, and Ma1 5 3. Taking the aver-
age friction factor to be 0.03, determine the duct length 
required to decelerate the flow to a Mach number of unity. 
Also, calculate the duct length at Mach number intervals of 
0.25, and plot the duct length against the Mach number for 
1 # Ma # 3. Discuss the results.

12–143  Air is heated as it flows subsonically through a 
10 cm 3 10 cm square duct. The properties of air at the inlet 
are maintained at Ma1 5 0.6, P1 5 350 kPa, and T1 5 420 K 
at all times. Disregarding frictional losses, determine the 
highest rate of heat transfer to the air in the duct without 
affecting the inlet conditions.  Answer: 716 kW

Shock
wave

P1 � 110 kPa

P02 � 620 kPa

T02 � 340 K

FIGURE P12–137

12–138  Using EES (or other) software and the rela-
tions given in Table A–14, generate the one-

dimensional normal shock functions by varying the upstream 
Mach number from 1 to 10 in increments of 0.5 for air with 
k 5 1.4.

12–139  Repeat Prob. 12–138 for methane with 
k 5 1.3.

12–140  Air in a room at T0 5 290 K and P0 5 90 kPa is 
to be drawn by a vacuum pump through a 3-cm-diameter, 
2-m-long adiabatic tube equipped with a converging nozzle at 
the inlet. The flow in the nozzle section can be approximated 

P1 5 350 kPa

T1 5 420 K

Ma1 5 0.6

Qmax

FIGURE P12–143

12–144  Repeat Prob. 12–143 for helium.

12–145  Air is accelerated as it is heated in a duct with neg-
ligible friction. Air enters at V1 5 100 m/s, T1 5 400 K, and 
P1 5 35 kPa and the exits at a Mach number of Ma2 5 0.8. 
Determine the heat transfer to the air, in kJ/kg. Also deter-
mine the maximum amount of heat transfer without reducing 
the mass flow rate of air.

12–146  Air at sonic conditions and at static temperature 
and pressure of 340 K and 250 kPa, respectively, is to be 
accelerated to a Mach number of 1.6 by cooling it as it flows 
through a channel with constant cross-sectional area. Disre-
garding frictional effects, determine the required heat transfer 
from the air, in kJ/kg.  Answer: 47.5 kJ/kg

12–147  Combustion gases with an average specific heat 
ratio of k 5 1.33 and a gas constant of R 5 0.280 kJ/kg?K 
enter a 10-cm-diameter adiabatic duct with inlet conditions of 
Ma1 5 2, T1 5 510 K, and P1 5 180 kPa. If a normal shock 
occurs at a location 2 m from the inlet, determine the velocity, 
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12–157  An aircraft is reported to be cruising in still air at 
2208C and 40 kPa at a Mach number of 0.86. The velocity 
of the aircraft is
(a) 91 m/s (b) 220 m/s (c) 186 m/s (d ) 280 m/s
(e) 378 m/s

12–158  Air is flowing in a wind tunnel at 128C and 66 kPa 
at a velocity of 230 m/s. The Mach number of the flow is
(a) 0.54 m/s (b) 0.87 m/s (c) 3.3 m/s (d ) 0.36 m/s
(e) 0.68 m/s

12–159  Consider a converging nozzle with a low velocity at 
the inlet and sonic velocity at the exit plane. Now the nozzle 
exit diameter is reduced by half while the nozzle inlet tem-
perature and pressure are maintained the same. The nozzle 
exit velocity will
(a) remain the same (b) double (c) quadruple
(d ) go down by half (e) go down by one-fourth

12–160  Air is approaching a converging–diverging nozzle 
with a low velocity at 128C and 200 kPa, and it leaves the 
nozzle at a supersonic velocity. The velocity of air at the 
throat of the nozzle is
(a) 338 m/s (b) 309 m/s (c) 280 m/s (d ) 256 m/s
(e) 95 m/s

12–161  Argon gas is approaching a converging–diverging 
nozzle with a low velocity at 208C and 120 kPa, and it leaves 
the nozzle at a supersonic velocity. If the cross-sectional area 
of the throat is 0.015 m2, the mass flow rate of argon through 
the nozzle is
(a) 0.41 kg/s (b) 3.4 kg/s (c) 5.3 kg/s (d ) 17 kg/s
(e) 22 kg/s

12–162  Carbon dioxide enters a converging–diverging noz-
zle at 60 m/s, 3108C, and 300 kPa, and it leaves the nozzle at 
a supersonic velocity. The velocity of carbon dioxide at the 
throat of the nozzle is
(a) 125 m/s (b) 225 m/s (c) 312 m/s (d ) 353 m/s 
(e) 377 m/s

12–163  Consider gas flow through a converging–diverging 
nozzle. Of the five following statements, select the one that 
is incorrect:
(a)  The fluid velocity at the throat can never exceed the speed 

of sound.
(b)  If the fluid velocity at the throat is below the speed of 

sound, the diversion section will act like a diffuser.
(c)  If the fluid enters the diverging section with a Mach 

number greater than one, the flow at the nozzle exit will 
be supersonic.

(d )  There will be no flow through the nozzle if the back pres-
sure equals the stagnation pressure.

(e)  The fluid velocity decreases, the entropy increases, and 
stagnation enthalpy remains constant during flow through 
a normal shock.

temperature, and pressure at the duct exit. Take the average 
friction factor of the duct to be 0.010.

12–148  Air is cooled as it flows through a 20-cm-diameter 
duct. The inlet conditions are Ma1 5 1.2, T01 5 350 K, and 
P01 5 240 kPa and the exit Mach number is Ma2 5 2.0. Disre-
garding frictional effects, determine the rate of cooling of air.

12–149  Air is flowing through a 6-cm-diameter adia-
batic duct with inlet conditions of V1 5 

120 m/s, T1 5 400 K, and P1 5 100 kPa and an exit Mach 
number of Ma2 5 1. To study the effect of duct length on the 
mass flow rate and the inlet velocity, the duct is now extended 
until its length is doubled while P1 and T1 are held constant. 
Taking the average friction factor to be 0.02, calculate the mass 
flow rate, and the inlet velocity, for various extension lengths, 
and plot them against the extension length. Discuss the results.

12–150  Using EES (or other) software, determine the 
shape of a converging–diverging nozzle for air 

for a mass flow rate of 3 kg/s and inlet stagnation conditions 
of 1400 kPa and 2008C. Approximate the flow as isentropic. 
Repeat the calculations for 50-kPa increments of pressure 
drop to an exit pressure of 100 kPa. Plot the nozzle to scale. 
Also, calculate and plot the Mach number along the nozzle.

12–151  Steam at 6.0 MPa and 700 K enters a converg-
ing nozzle with a negligible velocity. The noz-

zle throat area is 8  cm2. Approximating the flow as isentro-
pic, plot the exit pressure, the exit velocity, and the mass flow 
rate through the nozzle versus the back pressure Pb for 6.0 $ 
Pb $ 3.0 MPa. Treat the steam as an ideal gas with k 5 1.3, 
cp 5 1.872 kJ/kg·K, and R 5 0.462 kJ/kg·K.

12–152  Find the expression for the ratio of the stagnation 
pressure after a shock wave to the static pressure before the 
shock wave as a function of k and the Mach number upstream 
of the shock wave Ma1.

12–153  Using EES (or other) software and the rela-
tions given in Table A–13, calculate the one-

dimensional isentropic compressible-flow functions by varying 
the upstream Mach number from 1 to 10 in increments of 0.5 
for air with k 5 1.4.

12–154  Repeat Prob. 12–153 for methane with 
k 5 1.3.

Fundamentals of Engineering (FE) Exam Problems
12–155  An aircraft is cruising in still air at 58C at a veloc-
ity of 400 m/s. The air temperature at the nose of the aircraft 
where stagnation occurs is
(a) 58C (b) 258C (c) 558C (d ) 808C (e) 858C

12–156  Air is flowing in a wind tunnel at 258C, 80 kPa, 
and 250 m/s. The stagnation pressure at the location of a probe 
inserted into the flow section is
(a) 87 kPa (b) 93 kPa (c) 113 kPa (d ) 119 kPa
(e) 125 kPa
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12–164  Combustion gases with k 5 1.33 enter a converging 
nozzle at stagnation temperature and pressure of 3508C and 
400 kPa, and are discharged into the atmospheric air at 208C 
and 100 kPa. The lowest pressure that will occur within the 
nozzle is
(a) 13 kPa (b) 100 kPa (c) 216 kPa (d ) 290 kPa
(e) 315 kPa

Design and Essay Problems

12–165  Find out if there is a supersonic wind tunnel on 
your campus. If there is, obtain the dimensions of the wind 
tunnel and the temperatures and pressures as well as the 
Mach number at several locations during operation. For what 
typical experiments is the wind tunnel used?

12–166  Assuming you have a thermometer and a device to 
measure the speed of sound in a gas, explain how you can 
determine the mole fraction of helium in a mixture of helium 
gas and air.

12–167  Design a 1-m-long cylindrical wind tunnel whose 
diameter is 25 cm operating at a Mach number of 1.8. Atmo-
spheric air enters the wind tunnel through a converging– 
diverging nozzle where it is accelerated to supersonic veloci-
ties. Air leaves the tunnel through a converging–diverging 
diffuser where it is decelerated to a very low velocity before 
entering the fan section. Disregard any irreversibilities. Specify 
the temperatures and pressures at several locations as well as 
the mass flow rate of air at steady-flow conditions. Why is 
it often necessary to dehumidify the air before it enters the 
wind tunnel?

P0
Ma 5 1.8 D 5 25 cm

T0

FIGURE P12–167
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O P E N - C H A N N E L  F L O W

Open-channel flow implies flow in a channel open to the atmosphere, 
but flow in a conduit is also open-channel flow if the liquid does not 
fill the conduit completely, and thus there is a free surface. An open-

channel flow involves liquids only (typically water or wastewater) exposed to 
a gas (usually air, which is at atmospheric pressure).
 Flow in pipes is driven by gravity and/or a pressure difference, whereas 
flow in a channel is driven naturally by gravity. Water flow in a river, for 
example, is driven by the upstream and downstream elevation difference. The 
flow rate in an open channel is established by the dynamic balance between 
gravity and friction. Inertia of the flowing liquid also becomes important 
in unsteady flow. The free surface coincides with the hydraulic grade line 
(HGL) and the pressure is constant along the free surface. But the height of 
the free surface from the channel bottom and thus all dimensions of the flow 
cross-section along the channel are not known a priori—they change along 
with average flow velocity.
 In this chapter we present the basic principles of open-channel flows and 
the associated correlations for steady one-dimensional flow in channels of 
common cross sections. Detailed informa-
tion can be obtained from several books 
written on the topic, some of which are 
listed in the references.

725

OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Understand how flow in open 
channels differs from pressurized 
flow in pipes

■ Learn the different flow regimes 
in open channels and their 
characteristics

■ Predict if hydraulic jumps are to 
occur during flow, and calculate 
the fraction of energy dissipated 
during hydraulic jumps

■ Understand how flow rates in 
open channels are measured 
using sluice gates and weirs

    CHAPTER

13

Any flow of a liquid with a free surface is a 
type of open-channel flow. In this photograph, 

the Nicholson River meanders through 
northern Australia.

© Digital Vision/Getty RF
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(a)

(b)

FIGURE 13–1
Natural and human-made open-
channel flows are characterized by a 
free surface open to the atmosphere.
(a) © Doug Sherman/Geofile RF;
(b) Royalty-Free/CORBIS

2.0
1.5
1.0
0.5

FIGURE 13–2
Typical constant axial velocity 
contours in an open channel of 
trapezoidal cross section; values are 
relative to the average velocity.

13–1 ■  CLASSIFICATION OF 
OPEN-CHANNEL FLOWS

Open-channel flow refers to the flow of liquids in channels open to the 
atmosphere or in partially filled conduits and is characterized by the pres-
ence of a liquid–gas interface called the free surface (Fig. 13–1). Most natu-
ral flows encountered in practice, such as the flow of water in creeks, 
rivers, and floods, as well as the draining of rainwater off highways, park-
ing lots, and roofs are open-channel flows. Human-made open-channel 
flow systems include irrigation systems, sewer lines, drainage ditches, and 
gutters, and the design of such systems is an important application area of 
engineering.
 In an open channel, the flow velocity is zero at the side and bottom surfaces 
because of the no-slip condition, and maximum at the midplane for sym-
metric geometries, typically somewhat below the free surface, as shown in 
Fig. 13–2. (Because of secondary flows that occur even in straight channels 
when they are narrow, the maximum axial velocity occurs below the free sur-
face, typically within the top 25 percent of depth.) Furthermore, flow velocity
also varies in the flow direction in most cases. Therefore, the velocity dis-
tribution (and thus flow) in open channels is, in general, three-dimensional. 
In engineering practice, however, the equations are written in terms of the 
average velocity at a cross section of the channel. Since the average velocity 
varies only with streamwise distance x, V is a one-dimensional variable. The 
one-dimensionality makes it possible to solve significant real-world problems 
in a simple manner by hand calculations, and we restrict our consideration in 
this chapter to flows with one-dimensional average velocity. Despite its sim-
plicity, the one-dimensional equations provide remarkably accurate results 
and are commonly used in practice.
 The no-slip condition on the channel walls gives rise to velocity gradients, 
and wall shear stress tw develops along the wetted surfaces. The wall shear 
stress varies along the wetted perimeter at a given cross section and offers 
resistance to flow. The magnitude of this resistance depends on the viscosity 
of the fluid as well as the velocity gradients at the wall surface, which in 
turn depend on wall roughness.
 Open-channel flows are also classified as being steady or unsteady. A flow 
is said to be steady if there is no change with time at a given location. The 
representative quantity in open-channel flows is the flow depth (or alter-
nately, the average velocity), which may vary along the channel. The flow 
is said to be steady if the flow depth does not vary with time at any given 
location along the channel (although it may vary from one location to 
another). Otherwise, the flow is unsteady. In this chapter we deal with 
steady flow only.

Uniform and Varied Flows
Flow in open channels is also classified as being uniform or nonuniform 
(also called varied ), depending on how the flow depth y (the distance of the 
free surface from the bottom of the channel measured in the vertical direc-
tion) varies along the channel. The flow in a channel is said to be uniform 
if the flow depth (and thus the average velocity) remains constant. Other-
wise, the flow is said to be nonuniform or varied, indicating that the flow 
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depth varies with distance in the flow direction. Uniform flow conditions 
are commonly encountered in practice in long straight sections of channels 
with constant slope, constant roughness, and constant cross section.
 In open channels of constant slope and constant cross section, the liquid 
accelerates until the head loss due to frictional effects equals the elevation 
drop. The liquid at this point reaches its terminal velocity, and uniform flow 
is established. The flow remains uniform as long as the slope, cross section, 
and surface roughness of the channel remain unchanged. The flow depth in 
uniform flow is called the normal depth yn, which is an important charac-
teristic parameter for open-channel flows (Fig. 13–3).
 The presence of an obstruction in the channel, such as a gate or a change 
in slope or cross section, causes the flow depth to vary, and thus the flow 
to become varied or nonuniform. Such varied flows are common in both 
natural and human-made open channels such as rivers, irrigation systems, 
and sewer lines. The varied flow is called rapidly varied flow (RVF) if the 
flow depth changes markedly over a relatively short distance in the flow 
direction (such as the flow of water past a partially open gate or over a 
falls), and gradually varied flow (GVF) if the flow depth changes gradu-
ally over a long distance along the channel. A gradually varied flow region 
typically occurs between rapidly varied and uniform flow regions, as shown 
in Fig. 13–4.
 In gradually varied flows, we can work with the one-dimensional average 
velocity just as we can with uniform flows. However, average velocity is not 
always the most useful or most appropriate parameter for rapidly varying 
flows. Therefore, the analysis of rapidly varied flows is rather complicated, 
especially when the flow is unsteady (such as the breaking of waves on the 
shore). For a known discharge rate, the flow height in a gradually varied 
flow region (i.e., the profile of the free surface) in a specified open chan-
nel can be determined in a step-by-step manner by starting the analysis at 
a cross section where the flow conditions are known, and evaluating head 
loss, elevation drop, and then the average velocity for each step.

Laminar and Turbulent Flows in Channels
Like pipe flow, open-channel flow can be laminar, transitional, or turbulent, 
depending on the value of the Reynolds number expressed as

 Re 5
rVRh

m
5

VRh

n
 (13–1)

V 5 constant

Slope: S0 5 constant

y 5 yn 5 constant

Uniform flow

FIGURE 13–3
For uniform flow in an open channel, 
the flow depth y and the average flow 

velocity V remain constant.

GVFUF RVF GVF UF

FIGURE 13–4
Uniform flow (UF), gradually varied 
flow (GVF), and rapidly varied flow 

(RVF) in an open channel.
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Here V is the average liquid velocity, n is the kinematic viscosity, and Rh is 
the hydraulic radius defined as the ratio of the cross-sectional flow area Ac 
and the wetted perimeter p,

Hydraulic radius: Rh 5
Ac

p
  (m) (13–2)

Considering that open channels come with rather irregular cross sections, 
the hydraulic radius serves as the characteristic dimension and brings uni-
formity to the treatment of open channels. Also, the Reynolds number is 
constant for the entire uniform flow section of an open channel.
 You might expect that the hydraulic radius would be defined as half 
the hydraulic diameter, but this is unfortunately not the case. Recall that the 
hydraulic diameter Dh for pipe flow is defined as Dh 5 4Ac/p so that 
the hydraulic diameter reduces to the pipe diameter for circular pipes. The 
relation between hydraulic radius and hydraulic diameter is

Hydraulic diameter: Dh 5
4Ac

p
5 4Rh (13–3)

So, we see that the hydraulic radius is in fact one-fourth, rather than one-
half, of the hydraulic diameter (Fig. 13–5).
 Therefore, a Reynolds number based on the hydraulic radius is one-fourth 
of the Reynolds number based on hydraulic diameter as the characteris-
tic dimension. So it will come as no surprise that the flow is laminar for 
Re & 2000 in pipe flow, but for Re & 500 in open-channel flow. Also, open-
channel flow is usually turbulent for Re * 2500 and transitional for 500 & 
Re & 2500. Laminar flow is encountered when a thin layer of water (such 
as the rainwater draining off a road or parking lot) flows at a low velocity.
 The kinematic viscosity of water at 208C is 1.00 3 1026 m2/s, and the 
average flow velocity in open channels is usually above 0.5 m/s. Also, the 
hydraulic radius is usually greater than 0.1 m. Therefore, the Reynolds num-
ber associated with water flow in open channels is typically above 50,000, 
and thus the flow is almost always turbulent.
 Note that the wetted perimeter includes the sides and the bottom of the 
channel in contact with the liquid—it does not include the free surface and 
the parts of the sides exposed to air. For example, the wetted perimeter and the 
cross-sectional flow area for a rectangular channel of height h and width b 
containing water of depth y are p 5 b 1 2y and Ac 5 yb, respectively. 
Then,

Rectangular channel: Rh 5
Ac

p
5

yb

b 1 2y
5

y

1 1 2y/b
 (13–4)

As another example, the hydraulic radius for the drainage of water of depth y 
off a parking lot of width b is (Fig. 13–6)

Liquid layer of thickness y: Rh 5
Ac

p
5

yb

b 1 2y
>

yb

b
> y (13–5)

since b .. y. Therefore, the hydraulic radius for the flow of a liquid film 
over a large surface is simply the thickness of the liquid layer.

I’ve known since grade school 
that radius is half of diameter. 
Now they tell me that hydraulic 
radius is one-fourth of hydraulic 
diameter!

??
?

FIGURE 13–5
The relationship between the hydraulic 
radius and hydraulic diameter is not 
what you might expect.
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13–2 ■  FROUDE NUMBER AND WAVE SPEED
Open-channel flow is also classified as subcritical, critical, or supercritical, 
depending on the value of the dimensionless Froude number mentioned in 
Chap. 7 and defined as

Froude number: Fr 5
V"gLc

 (13–6)

where g is the gravitational acceleration, V is the average liquid velocity 
at a cross section, and Lc is the characteristic length. Lc is taken to be the 
flow depth y for wide rectangular channels, and Fr 5 V/!gy. The Froude 
number is an important parameter that governs the character of flow in open 
channels. The flow is classified as

 Fr , 1  Subcritical or tranquil flow

 Fr 5 1  Critical flow (13–7)

 Fr . 1  Supercritical or rapid flow

y

RR

u

Ac 5 R2(u 2 sin u cos u)

u 2 sin u cos u
2u

u

Ac
p

p 5 2Ru

Rh 5 R5

y(b 1 y/tan u)
b 1 2y/sin u

Ac
pRh 5 5

yb
b 1 2y

Ac
p

y
1 1 2y/bRh 5 5 5

y

b

yb
b 1 2y

y V b

(b) Trapezoidal channel

(d) Liquid film of thickness y

(a) Circular channel (u in rad)

(c) Rectangular channel

Ac
p

yb
bRh 5 y5

b

y

b

FIGURE 13–6
Hydraulic radius relations for various 

open-channel geometries.
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 This resembles the classification of compressible flow with respect to the 
Mach number: subsonic for Ma , 1, sonic for Ma 5 1, and supersonic for 
Ma . 1 (Fig. 13–7). Indeed, the denominator of the Froude number has 
the dimensions of velocity, and it represents the speed c0 at which a small 
disturbance travels in still liquid, as shown later in this section. Therefore, 
in analogy to the Mach number, the Froude number is expressed as the ratio 
of the flow speed to the wave speed, Fr 5 V/c0, just as the Mach number is 
expressed as the ratio of the flow speed to the sound speed, Ma 5 V/c.
 The Froude number can also be thought of as the square root of the ratio 
of inertia (or dynamic) force to gravity force (or weight). This is demon-
strated by multiplying both the numerator and the denominator of the square 
of the Froude number V 2/gLc by rA, where r is density and A is a represen-
tative area, which gives

 Fr2 5
V 

2

gL c

 

rA

rA
5

2(1
2rV 2A)

mg
r

Inertia force

Gravity force
 (13–8)

Here LcA represents volume, rLcA is the mass of this fluid volume, and mg 
is the weight. The numerator is twice the inertial force 1

2rV 2A, which can be 
thought of as the dynamic pressure 1

2rV 2 times the cross-sectional area, A. 
Therefore, the flow in an open channel is dominated by inertial forces when 
the Froude number is large and by gravity forces when the Froude number 
is small.
 It follows that at low flow velocities (Fr , 1), a small disturbance trav-
els upstream (with a velocity c0 2 V relative to a stationary observer) and 
affects the upstream conditions. This is called subcritical or tranquil flow. 
But at high flow velocities (Fr . 1), a small disturbance cannot travel 
upstream (in fact, the wave is washed downstream at a velocity of V 2 c0 
relative to a stationary observer) and thus the upstream conditions cannot 
be influenced by the downstream conditions. This is called supercritical or 
rapid flow, and the flow in this case is controlled by the upstream condi-
tions. Therefore, a surface wave travels upstream when Fr , 1, is swept 
downstream when Fr . 1, and appears frozen on the surface when Fr 5 1. 
Also, when the water is shallow compared to the wavelength of the disturbance, 
the surface wave speed increases with flow depth y, and thus a surface distur-
bance propagates much faster in deep channels than it does in shallow ones.
 Consider the flow of a liquid in an open rectangular channel of cross-
sectional area Ac with volume flow rate V

#
. When the flow is critical, 

Fr 5 1 and the average flow velocity is V 5 !gyc, where yc is the 
critical depth. Noting that V

#
5 AcV 5 Ac!gyc, the critical depth is 

expressed as

Critical depth (general): yc 5
V
#

2

gA2
c

 (13–9)

For a rectangular channel of width b we have Ac 5 byc, and the critical 
depth relation reduces to

Critical depth (rectangular): yc 5 a V
#

  

2

gb2b1/3

 (13–10)

The liquid depth is y . yc for subcritical flow and y , yc for supercritical 
flow (Fig. 13–8).

CompressibleCompressible
FlowFlow

Open-ChannelOpen-Channel
FlowFlow

Ma Ma � V/c FrFr � V/c0

MaMa � 1  Subsonic1  Subsonic Fr Fr � 1  Subcritical 1  Subcritical
MaMa � 1  Sonic1  Sonic Fr Fr � 1  Critical 1  Critical
MaMa � 1  Supersonic1  Supersonic Fr Fr � 1  Supercritical 1  Supercritical

V � speed of flow speed of flow
c � �kRTkRT � speed of sound (ideal gas) speed of sound (ideal gas)

c0 � �gygy � speed of wave (liquid) speed of wave (liquid)

FIGURE 13–7
Analogy between the Mach number 
for compressible flow and the Froude 
number for open-channel flow.

Subcritical flow: y . yc

Supercritical flow: y , yc

yc y

yc

y

FIGURE 13–8
Definitions of subcritical flow and 
supercritical flow in terms of critical 
depth.
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 As in compressible flow, a liquid can accelerate from subcritical to 
supercritical flow. Of course, it can also decelerate from supercritical to 
subcritical flow, and it can do so by undergoing a shock. The shock in 
this case is called a hydraulic jump, which corresponds to a normal shock 
in compressible flow. Therefore, the analogy between open-channel flow and 
compressible flow is remarkable.

Speed of Surface Waves
We are all familiar with the waves forming on the free surfaces of oceans, 
lakes, rivers, and even swimming pools. The surface waves can be very 
high, like the ones we see on the oceans, or barely noticeable. Some are 
smooth; some break on the surface. A basic understanding of wave motion 
is necessary for the study of certain aspects of open-channel flow, and here 
we present a brief description. A detailed treatment of wave motion can be 
found in numerous books written on the subject.
 An important parameter in the study of open-channel flow is the wave 
speed c0, which is the speed at which a surface disturbance travels through 
a liquid. Consider a long, wide channel that initially contains a still liquid 
of height y. One end of the channel is moved with speed dV, generating a 
surface wave of height dy propagating at a speed of c0 into the still liquid, as 
shown in Fig. 13–9a.
 Now consider a control volume that encloses the wave front and moves 
with it, as shown in Fig. 13–9b. To an observer traveling with the wave 
front, the liquid to the right appears to be moving toward the wave front 
with speed c0 and the liquid to the left appears to be moving away from the 
wave front with speed c0 2 dV. Of course the observer would think the con-
trol volume that encloses the wave front (and herself or himself) is station-
ary, and he or she would be witnessing a steady-flow process.
 The steady-flow mass balance m

.
1 5 m

.
2 (or the continuity relation) for this 

control volume of width b is expressed as

 rc0  
yb 5 r(c0 2 dV)(y 1 dy)b  S  dV 5 c0 

dy

y 1 dy
 (13–11)

We make the following approximations: (1) the velocity is nearly constant 
across the channel and thus the momentum flux correction factors (b1 and 
b2) are one, (2) the distance across the wave is short and thus friction at the 
bottom surface and air drag at the top are negligible, (3) the dynamic effects 
are negligible and thus the pressure in the liquid varies hydrostatically; in 
terms of gage pressure, P1, avg 5 rgh1, avg 5 rg(y/2) and P2, avg 5 rgh2, avg 5
rg(y 1 dy)/2, (4) the mass flow rate is constant with m

.
1 5 m

.
2 5 rc0yb, 

and (5) there are no external forces or body forces and thus the only forces 
acting on the control volume in the horizontal x-direction are the pressure

forces. Then, the momentum equation aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!
 in the 

x-direction becomes a balance between hydrostatic pressure forces and 
momentum transfer,

 P2, avg A2 2 P1, avg A1 5 m# (2V2) 2 m# (2V1) (13–12)

Moving
plate

Moving
wavefront

(a) Generation and propagation of a wave

Still
liquid

y

c0

dy

dV

y

Control
volume

(b) Control volume relative to an observer
traveling with the wave, with gage pressure
distributions shown

c0c02dV

dy

rgyrg(y 1 dy) (1)(2)

FIGURE 13–9
The generation and analysis of a wave 

in an open channel.
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Note that both the inlet and the outlet average velocities are negative since 
they are in the negative x-direction. Substituting,

 
rg(y 1 dy)2b

2
2
rgy2b

2
5 rc0yb(2c0 1 dV) 2 rc0yb(2c0) (13–13)

or,

 ga1 1
dy

2y
b dy 5 c0 dV  (13–14)

Combining the momentum and continuity relations and rearranging give

 c2
0 5 gya1 1

dy

y
b a1 1

dy

2y
b  (13–15)

Therefore, the wave speed c0 is proportional to the wave height dy. For 
infinitesimal surface waves, dy ,, y and thus

Infinitesimal surface waves: c0 5 "gy (13–16)

Therefore, the speed of infinitesimal surface waves is proportional to the 
square root of liquid depth. Again note that this analysis is valid only for 
shallow liquid bodies, such as those encountered in open channels. Other-
wise, the wave speed is independent of liquid depth for deep bodies of 
liquid, such as the oceans. The wave speed can also be determined by using 
the energy balance relation instead of the momentum equation together with 
the continuity relation. Note that the waves eventually die out because of the 
viscous effects that are neglected in the analysis. Also, for flow in channels 
of non-rectangular cross-section, the hydraulic depth defined as yh 5 Ac/Lt 
where Lt is the top width of the flow section should be used in the calcula-
tion of Froude number in place of the flow depth y. For a half-full circular 
channel, for example, the hydraulic depth is yh 5 (pR2/2)/2R 5 pR/4.
 We know from experience that when a rock is thrown into a lake, the con-
centric waves that form propagate evenly in all directions and vanish after 
some distance. But when the rock is thrown into a river, the upstream side 
of the wave moves upstream if the flow is tranquil or subcritical (V , c0), 
moves downstream if the flow is rapid or supercritical (V . c0), and remains 
stationary at the location where it is formed if the flow is critical (V 5 c0).
 You may be wondering why we pay so much attention to flow being 
subcritical or supercritical. The reason is that the character of the flow is 
strongly influenced by this phenomenon. For example, a rock at the riverbed 
may cause the water level at that location to rise or to drop, depending on 
whether the flow is subcritical or supercritical. Also, the liquid level drops 
gradually in the flow direction in subcritical flow, but a sudden rise in liquid 
level, called a hydraulic jump, may occur in supercritical flow (Fr . 1) as 
the flow decelerates to subcritical (Fr , 1) velocities.
 This phenomenon can occur downstream of a sluice gate as shown in 
Fig.  13–10. The liquid approaches the gate with a subcritical velocity, but 
the upstream liquid level is sufficiently high to accelerate the liquid to a 
supercritical level as it passes through the gate (just like a gas flowing in a 
converging–diverging nozzle). But if the downstream section of the channel 
is not sufficiently sloped down, it cannot maintain this supercritical veloc-
ity, and the liquid jumps up to a higher level with a larger cross-sectional area, 
and thus to a lower subcritical velocity. Finally, the flow in rivers, canals, and 

Subcritical
flow

Sluice
gate

Hydraulic
jump

Supercritical
flow

Subcritical
flow

FIGURE 13–10
Supercritical flow through a sluice 
gate.

FIGURE 13–11
A hydraulic jump can be observed on 
a dinner plate when (a) it is right-side-
up, but not when (b) it is upside down.
Photos by Abel Po-Ya Chuang. Used by permission.

(a)

(b)
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irrigation systems is typically subcritical. But the flow past sluice gates and 
spillways is typically supercritical.
 You can create a beautiful hydraulic jump the next time you wash dishes 
(Fig. 13–11). Let the water from the faucet hit the middle of a dinner plate. As 
the water spreads out radially, its depth decreases and the flow is supercritical. 
Eventually, a hydraulic jump occurs, which you can see as a sudden increase 
in water depth. Try it!

13–3 ■  SPECIFIC ENERGY
Consider the flow of a liquid in a channel at a cross section where the flow 
depth is y, the average flow velocity is V, and the elevation of the bottom 
of the channel at that location relative to some reference datum is z. For 
simplicity, we ignore the variation of liquid speed over the cross section and 
assume the speed to be V everywhere. The total mechanical energy of this 
liquid in the channel in terms of heads is expressed as (Fig. 13–12)

 H 5 z 1
P
rg

1
V 

2

2g
5 z 1 y 1

V 
2

2g
 (13–17)

where z is the elevation head, P/rg 5 y is the gage pressure head, and V2/2g 
is the velocity or dynamic head. The total energy as expressed in Eq. 13–17 
is not a realistic representation of the true energy of a flowing fluid since 
the choice of the reference datum and thus the value of the elevation head z 
is rather arbitrary. The intrinsic energy of a fluid at a cross section is repre-
sented more realistically if the reference datum is taken to be the bottom of 
the channel so that z 5 0 there. Then the total mechanical energy of a fluid 
in terms of heads becomes the sum of the pressure and dynamic heads. The 
sum of the pressure and dynamic heads of a liquid in an open channel is 
called the specific energy Es and is expressed as (Bakhmeteff, 1932)

 Es 5 y 1
V 

2

2g
 (13–18)

as shown in Fig. 13–12.
 Consider flow in an open channel of rectangular cross section and of 
constant width b. Noting that the volume flow rate is V

#
 5 AcV 5 ybV, the 

average flow velocity is

 V 5
V
#

yb
 (13–19)

Substituting into Eq. 13–18, the specific energy becomes

 Es 5 y 1
V
#

 
2

2gb2y2 (13–20)

This equation is very instructive as it shows the variation of the specific 
energy with flow depth. During steady flow in an open channel the flow 
rate is constant, and a plot of Es versus y for constant V

#
 and b is given in 

Fig. 13–13. We observe the following from this figure:

• The distance from a point on the vertical y-axis to the curve represents the 
specific energy at that y-value. The part between the Es 5 y line and the 
curve corresponds to dynamic head (or kinetic energy head) of the liquid, 
and the remaining part to pressure head (or potential energy head).

z

y
Es

V2

2g

Energy line

Reference datum

FIGURE 13–12
The specific energy Es of a liquid in an 

open channel is the total mechanical 
energy (expressed as a head) relative 

to the bottom of the channel.

y

EsEs, min

Es 5 y

Subcritical
flow, Fr , 1

Fr 5 1

Critical
depth

Supercritical
flow, Fr . 1yc

y

V2

2g

.
V 5 constant

FIGURE 13–13
Variation of specific energy Es with 

depth y for a specified flow rate.
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• The specific energy tends to infinity as y → 0 (due to the velocity 
approaching infinity), and it becomes equal to flow depth y for large 
values of y (due to the velocity and thus the kinetic energy becoming 
very small). The specific energy reaches a minimum value Es, min at some 
intermediate point, called the critical point, characterized by the critical 
depth yc and critical velocity Vc. The minimum specific energy is also 
called the critical energy.

• There is a minimum specific energy Es, min required to support the specified 
flow rate V

#
. Therefore, Es cannot be below Es, min for a given V

#
.

• A horizontal line intersects the specific energy curve at one point only, 
and thus a fixed value of flow depth corresponds to a fixed value of 
specific energy. This is expected since the velocity has a fixed value 
when V

#
, b, and y are specified. However, for Es . Es, min, a vertical line 

intersects the curve at two points, indicating that a flow can have two 
different depths (and thus two different velocities) corresponding to a 
fixed value of specific energy. These two depths are called alternate 
depths. For flow through a sluice gate with negligible frictional losses 
(and thus Es 5 constant), the upper depth corresponds to the upstream 
flow, and the lower depth to the downstream flow (Fig. 13–14).

• A small change in specific energy near the critical point causes a large 
difference between alternate depths and may cause violent fluctuations in 
flow level. Therefore, operation near the critical point should be avoided 
in the design of open channels.

 The value of the minimum specific energy and the critical depth at which 
it occurs is determined by differentiating Es from Eq. 13–20 with respect to y 
for constant b and V

#
, and setting the derivative equal to zero:

 
dEs

dy
5

d

dy
 ay 1

V
#

2

2gb2y2b 5 1 2
V
#

2

gb2y3 5 0 (13–21)

Solving for y, which is the critical flow depth yc, gives

 yc 5 a V
#

 
2

 gb 
2b1/3

 (13–22)

The flow rate at the critical point can be expressed as V
#
 5 ycbVc. Substitut-

ing, the critical velocity is determined to be

 Vc 5 "gyc (13–23)

which is the wave speed. The Froude number at this point is

 Fr 5
V"gy

5
Vc"gyc

5 1 (13–24)

indicating that the point of minimum specific energy is indeed the critical 
point, and the flow becomes critical when the specific energy reaches its 
minimum value.
 It follows that the flow is subcritical at lower flow velocities and thus 
higher flow depths (the upper arm of the curve in Fig. 13–13), supercritical at 
higher velo cities and thus lower flow depths (the lower arm of the curve), and 
critical at the critical point (the point of minimum specific energy).

y1
V1

Sluice gate

V2y2

FIGURE 13–14
A sluice gate illustrates alternate 
depths—the deep liquid upstream of 
the sluice gate and the shallow liquid 
downstream of the sluice gate.
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 Noting that Vc 5 !gyc, the minimum (or critical) specific energy can be 
expressed in terms of the critical depth alone as

 Es, min 5 yc 1
V 

2
c

2g
5 yc 1

gyc

2g
5

3

2
 yc (13–25)

 In uniform flow, the flow depth and the flow velocity, and thus the specific 
energy, remain constant since Es 5 y 1 V 

2/2g. The head loss is made up by 
the decline in elevation (the channel is sloped downward in the flow direc-
tion). In nonuniform flow, however, the specific energy may increase or 
decrease, depending on the slope of the channel and the frictional losses. If 
the decline in elevation across a flow section is more than the head loss in 
that section, for example, the specific energy increases by an amount equal 
to the difference between elevation drop and head loss. The specific energy 
concept is a particularly useful tool when studying varied flows.

EXAMPLE 13–1    Character of Flow and Alternate Depth

Water is flowing steadily in a 0.4-m-wide rectangular open channel at a rate 

of 0.2 m3/s (Fig. 13–15). If the flow depth is 0.15 m, determine the flow 

velocity and if the flow is subcritical or supercritical. Also determine the 

alternate flow depth if the character of flow were to change.

SOLUTION  Water flow in a rectangular open channel is considered. The char-

acter of flow, the flow velocity, and the alternate depth are to be determined. 

Assumptions  The specific energy is constant.

Analysis  The average flow velocity is determined from

V 5
V
#

Ac

5
V
#

yb
5

0.2 m3/s

(0.15 m)(0.4 m)
5 3.33 m/s

The critical depth for this flow is

yc 5 a V
#

 
2

 gb2b1/3

5 a (0.2 m3/s)2

(9.81 m/s2)(0.4 m)2b1/3

5 0.294 m

Therefore, the flow is supercritical since the actual flow depth is y 5 0.15 m, 

and y , yc. Another way to determine the character of flow is to calculate 

the Froude number,

Fr 5
V!gy

5
3.33 m/s"(9.81 m/s2)(0.15 m)

5 2.75

Again the flow is supercritical since Fr . 1. The specific energy for the 

given conditions is

Es1 5 y1 1
V
#

2

2gb2y2
1

5 (0.15 m) 1
(0.2 m3/s)2

2(9.81 m/s2)(0.4 m)2(0.15 m)2 5 0.7163 m

Then the alternate depth is determined from Es1 5 Es2 to be

Es2 5 y2 1
V
#

2

2gb2y2
2

  S  0.7163 m 5 y2 1
(0.2 m3/s)2

2(9.81 m/s2)(0.4 m)2y 2
2

Solving for y2 gives the alternate depth to be y2 5 0.69 m. Therefore, if the 

character of flow were to change from supercritical to subcritical while holding 

the specific energy constant, the flow depth would rise from 0.15 to 0.69 m.

0.2 m3/s

0.15 m

0.4 m

FIGURE 13–15
Schematic for Example 13–1.
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Discussion  Note that if the water underwent a hydraulic jump at constant 

specific energy (the frictional losses being equal to the drop in elevation), 

the flow depth would rise to 0.69 m, assuming of course that the side walls 

of the channel are high enough.

13–4 ■  CONSERVATION OF MASS 
AND ENERGY EQUATIONS

Open-channel flows involve liquids whose densities are nearly constant, 
and thus the one-dimensional steady-flow conservation of mass equation is 
ex pressed as

 V
#

5 AcV 5 constant (13–26)

That is, the product of the flow cross section and the average flow velocity 
remains constant throughout the channel. Equation 13–26 between two sec-
tions along the channel is expressed as

Continuity equation: Ac1V1 5 Ac2V2 (13–27)

which is identical to the steady-flow conservation of mass equation for liquid 
flow in a pipe. Note that both the flow cross section and the average flow 
velocity may vary during flow, but, as stated, their product remains constant.
 To determine the total energy of a liquid flowing in an open channel rela-
tive to a reference datum, as shown in Fig. 13–16, consider a point A in the 
liquid at a distance a from the free surface (and thus a distance y 2 a from 
the channel bottom). Noting that the elevation, pressure (hydrostatic pressure 
relative to the free surface), and velocity at point A are zA 5 z 1 (y 2 a), 
PA 5 rga, and VA 5 V, respectively, the total energy of the liquid in terms 
of heads is

 HA 5 zA 1
PA

rg
1

V 2
A

2g
5 z 1 (y 2 a) 1

rga

rg
1

V 2

2g
5 z 1 y 1

V 2

2g
 (13–28)

which is independent of the location of the point A at a cross section. There-
fore, the total mechanical energy of a liquid at any cross section of an open 
channel can be expressed in terms of heads as

 H 5 z 1 y 1
V 

2

2g
 (13–29)

where y is the flow depth, z is the elevation of the channel bottom, and V is the 
average flow velocity. Then the one-dimensional energy equation for open-
channel flow between an upstream section 1 and a downstream section 2 
is written as

Energy equation: z1 1 y1 1
V 

2
1

2g
5 z2 1 y2 1

V 
2
2

2g
1 hL (13–30)

The head loss hL due to frictional effects is expressed as in pipe flow as

 hL 5 f 
L

Dh

 
V 2

2g
5 f 

L

Rh

 
V 

2

8g
 (13–31)

where f is the average friction factor and L is the length of channel between 
sections 1 and 2. The relation Dh 5 4Rh should be observed when using the 
hydraulic radius instead of the hydraulic diameter.

z

Ay

y � a

a

V2

V

2g

Energy line
H � z � y �

Reference datum

V2

2g

FIGURE 13–16
The total energy of a liquid flowing in 
an open channel.
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 Flow in open channels is gravity driven, and thus a typical channel is 
slightly sloped down. The slope of the bottom of the channel is expressed as

 S0 5 tan a 5
z1 2 z2

x2 2 x1
>

z1 2 z2

L
 (13–32)

where a is the angle the channel bottom makes with the horizontal. In 
general, the bottom slope S0 is very small, and thus the channel bottom is 
nearly horizontal. Therefore, L ù x2 2 x1, where x is the distance in the 
horizontal direction. Also, the flow depth y, which is measured in the verti-
cal direction, can be taken to be the depth normal to the channel bottom 
with negligible error.
 If the channel bottom is straight so that the bottom slope is constant, the 
vertical drop between sections 1 and 2 can be expressed as z1 2 z2 5 S0L. 
Then the energy equation (Eq. 13–30) becomes

Energy equation: y1 1
V 

2
1

2g
1 S0L 5 y2 1

V 
2
2

2g
1 hL (13–33)

This equation has the advantage that it is independent of a reference datum 
for elevation.
 In the design of open-channel systems, the bottom slope is selected such 
that it provides adequate elevation drop to overcome the frictional head loss 
and thus to maintain flow at the desired rate. Therefore, there is a close con-
nection between the head loss and the bottom slope, and it makes sense to 
express the head loss as a slope (or the tangent of an angle). This is done by 
defining a friction slope as

Friction slope: Sf 5
hL

L
 (13–34)

Then the energy equation is written as

Energy equation: y1 1
V 

2
1

2g
5 y2 1

V 
2
2

2g
1 (Sf 2 S0)L (13–35)

Note that the friction slope is equal to the bottom slope when the head loss 
is equal to the elevation drop. That is, Sf 5 S0 when hL 5 z1 2 z2.
 Figure 13–17 also shows the energy line, which is a distance z 1 y 1 
V 2/2g (total mechanical energy of the liquid expressed as a head) above 
the horizontal reference datum. The energy line is typically sloped down 
like the channel itself as a result of frictional losses, the vertical drop being 
equal to the head loss hL and thus the slope being the same as the friction 
slope. Note that if there were no head loss, the energy line would be hori-
zontal even when the channel is not. The elevation and velocity heads (z 1 y 
and V 2/2g) would then be able to convert to each other during flow in this 
case, but their sum would remain constant.

13–5 ■  UNIFORM FLOW IN CHANNELS
We mentioned in Sec. 13–1 that flow in a channel is called uniform flow if the 
flow depth (and thus the average flow velocity since V

#
 5 AcV 5 constant 

in steady flow) remains constant. Uniform flow conditions are commonly 
encountered in practice in long straight runs of channels with constant slope, 

a

z

V2

V2

V1

L

2g

x1 x2

y1
y2

z1 z2

Energy line

Horizontal
reference datum

(1)
(2)

Slope: S0 5 constant

x

V2

hL

2

1

2g

FIGURE 13–17
The total energy of a liquid at two 

sections of an open channel.
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constant cross section, and constant surface lining. In the design of open 
channels, it is very desirable to have uniform flow in the majority of the 
system since this means having a channel of constant wall height, which is 
easier to design and build.
 The flow depth in uniform flow is called the normal depth yn, and the 
average flow velocity is called the uniform-flow velocity V0. The flow 
remains uniform as long as the slope, cross section, and surface roughness 
of the channel remain unchanged (Fig. 13–18). When the bottom slope is 
increased, the flow velocity increases and the flow depth decreases. There-
fore, a new uniform flow is established with a new (lower) flow depth. The 
opposite occurs if the bottom slope is decreased.
 During flow in open channels of constant slope S0, constant cross section Ac, 
and constant surface friction factor f, the terminal velocity is reached and 
thus uniform flow is established when the head loss equals the elevation 
drop. Therefore,

 hL 5 f 
L

Dh

 
V 

2

2g
  or S0L 5 f 

L

Rh

 
V 

2
0

8g
 (13–36)

since hL 5 S0L in uniform flow and Dh 5 4Rh. Solving the second relation 
for V0, the uniform-flow velocity and the flow rate are determined to be

 V0 5 C"S0Rh  and  V
#

5 CAc"S0Rh (13–37)

where

 C 5 "8g/f  (13–38)

is called the Chezy coefficient. The Eqs. 13–37 and the coefficient C are 
named in honor of the French engineer Antoine Chezy (1718–1798), who 
first proposed a similar relationship in about 1769. The Chezy coefficient is a 
dimensional quantity, and its value ranges from about 30 m1/2/s for small 
channels with rough surfaces to 90 m1/2/s for large channels with smooth 
surfaces (or, 60 ft1/2/s to 160 ft1/2/s in English units).
 The Chezy coefficient can be determined in a straightforward manner 
from Eq. 13–38 by first determining the friction factor f as done for pipe 
flow in Chap. 8 from the Moody chart or the Colebrook equation for the 
fully rough turbulent limit (Re → `),

 f 5 [2.0 log(14.8Rh /e)]
22 (13–39)

Here, e is the mean surface roughness. Note that open-channel flow is typi-
cally turbulent, and the flow is fully developed by the time uniform flow is 
established. Therefore, it is reasonable to use the friction factor relation for 
fully developed turbulent flow. Also, at large Reynolds numbers, the friction 
factor curves corresponding to specified relative roughness are nearly hori-
zontal, and thus the friction factor is independent of the Reynolds number. 
The flow in that region is called fully rough turbulent flow (Chap. 8).
 Since the introduction of the Chezy equations, considerable effort has 
been devoted by numerous investigators to the development of simpler 
empirical relations for the average velocity and flow rate. The most widely 
used equation was developed independently by the Frenchman Philippe-
Gaspard Gauckler (1826–1905) in 1868 and the Irishman Robert Manning 
(1816–1897) in 1889.

a

z

x1 x2

y1
y2

z1 z2

(1)
(2)

Slope: S0 5 tan a 5 constant

Head loss 5 elevation loss
hL 5 z1 2 z2 5 S0L

x2 2 x1 5 

V1 5 V2 5 V0
y1 5 y2 5 yn

x

Lcosa> L

FIGURE 13–18
In uniform flow, the flow depth y, 
the average flow velocity V, and the 
bottom slope S0 remain constant, and 
the head loss equals the elevation loss, 
hL 5 z1 2 z2 5 SfL  5 S0L.

725-786_cengel_ch13.indd   738 12/19/12   11:00 AM



739
CHAPTER 13

 Both Gauckler and Manning made recommendations that the constant in 
the Chezy equation be expressed as

 C 5
a
n

 R1/6
h  (13–40)

where n is called the Manning coefficient, whose value depends on the 
roughness of the channel surfaces. Substituting into Eqs. 13–37 gives the fol-
lowing empirical relations known as the Manning equations (also referred 
to as Gauckler–Manning equations since they were first proposed by 
Gauckler) for the uniform-flow velocity and the flow rate,

Uniform flow: V0 5
a
n

 R2/3
h S1/2

0   and  V
#

5
a
n

 AcR
2/3
h S 1/2

0  (13–41)

The factor a is a dimensional constant whose value in SI units is a 5 1 m1/3/s. 
Noting that 1 m 5 3.2808 ft, its value in English units is

 a 5 1 m1/3/s 5 (3.2808 ft)1/3/s 5 1.486 ft1/3/s (13–42)

Note that the bottom slope S0 and the Manning coefficient n are dimension-
less quantities, and Eqs. 13–41 give the velocity in m/s and the flow rate 
in m3/s in SI units when Rh is expressed in m. (The corresponding units in 
English units are ft/s and ft3/s when Rh is expressed in ft.)
 Experimentally determined values of n are given in Table 13–1 for numer-
ous natural and artificial channels. More extensive tables are available in the 
literature. Note that the value of n varies from 0.010 for a glass channel to 
0.150 for a floodplain laden with trees (15 times that of a glass channel). 
There is considerable uncertainty in the value of n, especially in natural 
channels, as you would expect, since no two channels are exactly alike. The 
scatter can be 20 percent or more. Nevertheless, coefficient n is approxi-
mated as being independent of the size and shape of the channel—it varies 
only with the surface roughness.

Critical Uniform Flow
Flow through an open channel becomes critical flow when the Froude num-
ber Fr 5 1 and thus the flow speed equals the wave speed Vc 5 !gyc, 
where yc is the critical flow depth, defined previously (Eq. 13–9). When 
the volume flow rate V

#
, the channel slope S0, and the Manning coefficient n 

are known, the normal flow depth yn can be determined from the Manning 
equation (Eq. 13–41). However, since Ac and Rh are both functions of yn, 
the equation often ends up being implicit in yn and requires a numerical 
(or trial and error) approach to solve. If yn 5 yc, the flow is uniform critical 
flow, and bottom slope S0 equals the critical slope Sc in this case. When flow 
depth yn is known instead of the flow rate V

#
, the flow rate can be determined 

from the Manning equation and the critical flow depth from Eq. 13–9. 
Again the flow is critical only if yn 5 yc.
 During uniform critical flow, S0 5 Sc and yn 5 yc. Replacing V

#
 and S0 in 

the Manning equation by V
#

5 Ac!gyc and Sc, respectively, and solving for Sc 
gives the following general relation for the critical slope,

Critical slope (general): Sc 5
gn2yc 

a2R4/3
h

 (13–43)

TABLE 13–1

Mean values of the Manning 

coefficient n for water flow in 

open channels*

From Chow (1959).

Wall Material n

A. Artificially lined channels

 Glass 0.010

 Brass 0.011

 Steel, smooth 0.012

 Steel, painted 0.014

 Steel, riveted 0.015

 Cast iron 0.013

 Concrete, finished 0.012

 Concrete, unfinished 0.014

 Wood, planed 0.012

 Wood, unplaned 0.013

 Clay tile 0.014

 Brickwork 0.015

 Asphalt 0.016

 Corrugated metal 0.022

 Rubble masonry 0.025

B. Excavated earth channels

 Clean 0.022

 Gravelly 0.025

 Weedy 0.030

 Stony, cobbles 0.035

C. Natural channels

 Clean and straight 0.030

 Sluggish with deep pools 0.040

 Major rivers 0.035

 Mountain streams 0.050

D. Floodplains

 Pasture, farmland 0.035

 Light brush 0.050

 Heavy brush 0.075

 Trees 0.150

* The uncertainty in n can be 6 20 percent or 

more.
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For film flow or flow in a wide rectangular channel with b .. yc, Eq. 13–43 
simplifies to

Critical slope (b .. yc): Sc 5
gn2

a2y1/3
c

 (13–44)

This equation gives the slope necessary to maintain a critical flow of depth yc 
in a wide rectangular channel having a Manning coefficient of n.

Superposition Method for Nonuniform Perimeters
The surface roughness and thus the Manning coefficient for most natural and 
some human-made channels vary along the wetted perimeter and even along 
the channel. A river, for example, may have a stony bottom for its regular 
bed but a surface covered with bushes for its extended floodplain. There are 
several methods for solving such problems, either by finding an effective 
Manning coefficient n for the entire channel cross section, or by consider-
ing the channel in subsections and applying the superposition principle. For 
example, a channel cross section can be divided into N subsections, each 
with its own uniform Manning coefficient and flow rate. When determining 
the perimeter of a section, only the wetted portion of the boundary for that 
section is considered, and the imaginary boundaries are ignored. The flow 
rate through the channel is the sum of the flow rates through all the sections, 
as illustrated in Example 13–4.

EXAMPLE 13–2    Flow Rate in an Open Channel in Uniform Flow 

Water is flowing in a weedy excavated earth channel of trapezoidal cross 

section with a bottom width of 0.8 m, trapezoid angle of 608, and a bottom 

slope angle of 0.38, as shown in Fig. 13–19. If the flow depth is measured 

to be 0.52 m, determine the flow rate of water through the channel. What 

would your answer be if the bottom angle were 18? 

SOLUTION  Water is flowing in a weedy trapezoidal channel of given dimen-

sions. The flow rate corresponding to a measured value of flow depth is to 

be determined. 

Assumptions  1 The flow is steady and uniform. 2 The bottom slope is constant. 

3 The roughness of the wetted surface of the channel and thus the friction 

coefficient are constant.

Properties  The Manning coefficient for an open channel with weedy surfaces 

is n 5 0.030.

Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 

channel are

 Ac 5 yab 1
y

tan u
b 5 (0.52 m)a0.8 m 1

0.52 m

tan 608
b 5 0.5721 m2

 p 5 b 1
2y

sin u
5 0.8 m 1

2 3 0.52 m

sin 608
5 2.001 m

 Rh 5
Ac

p
5

0.5721 m2

2.991 m
5 0.2859 m

The bottom slope of the channel is

S0 5 tan a 5 tan 0.38 5 0.005236

y � 0.52 m

u � 60°

b � 0.8 m

FIGURE 13–19
Schematic for Example 13–2.
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y

b � 4 ft

V � 51 ft3/s
.

FIGURE 13–20
Schematic for Example 13–3.

Then the flow rate through the channel is determined from the Manning 

equation to be

V
#

5
a
n

 AcR
2/3
h S1/2

0 5
1 m1/3/s

0.030
(0.5721 m2)(0.2859 m)2/3(0.005236)1/2 5 0.60 m3/s

The flow rate for a bottom angle of 18 is determined by using S0 5 tan 

a 5 tan 18 5 0.01746 in the last relation. It gives V
#
 5 1.1 m3/s.

Discussion  Note that the flow rate is a strong function of the bottom angle. 

Also, there is considerable uncertainty in the value of the Manning coef-

ficient, and thus in the flow rate calculated. A 10 percent uncertainty in n 

results in a 10 percent uncertainty in the flow rate. Final answers are there-

fore given to only two significant digits.

EXAMPLE 13–3    The Height of a Rectangular Channel

Water is to be transported in an unfinished-concrete rectangular channel 

with a bottom width of 4 ft at a rate of 51 ft3/s. The terrain is such that 

the channel bottom drops 2 ft per 1000 ft length. Determine the minimum 

height of the channel under uniform-flow conditions (Fig. 13–20). What 

would your answer be if the bottom drop is just 1 ft per 1000 ft length?

SOLUTION  Water is flowing in an unfinished-concrete rectangular channel 

with a specified bottom width. The minimum channel height corresponding 

to a specified flow rate is to be determined.

Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-

stant. 3 The roughness of the wetted surface of the channel and thus the 

friction coefficient are constant.

Properties  The Manning coefficient for an open channel with unfinished-

concrete surfaces is n 5 0.014.

Analysis  The cross-sectional area, perimeter, and hydraulic radius of the 

channel are

Ac 5 by 5 (4 ft)y  p 5 b 1 2y 5 (4 ft) 1 2y  Rh 5
Ac

p
5

4y

4 1 2y

The bottom slope of the channel is S0 5 2/1000 5 0.002. Using the Manning 

equation, the flow rate through the channel is expressed as

 V
#

5
a
n

AcR
2/3
h S1/2

0

 51 ft3/s 5
1.486 ft1/3/s

0.014
 (4y ft2)a 4y

4 1 2y
 ftb2/3

(0.002)1/2

which is a nonlinear equation in y. Using an equation solver such as EES or 

an itirative approach, the flow depth is determined to be

y 5 2.5 ft

If the bottom drop were just 1 ft per 1000 ft length, the bottom slope would 

be S0 5 0.001, and the flow depth would be y 5 3.3 ft.
Discussion  Note that y is the flow depth, and thus this is the minimum 

value for the channel height. Also, there is considerable uncertainty in the 

value of the Manning coefficient n, and this should be considered when 

deciding the height of the channel to be built.
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EXAMPLE 13–4    Channels with Nonuniform Roughness

Water flows in a channel whose bottom slope is 0.003 and whose cross sec-

tion is shown in Fig. 13–21. The dimensions and the Manning coefficients 

for the surfaces of different subsections are also given on the figure. Deter-

mine the flow rate through the channel and the effective Manning coefficient 

for the channel.

SOLUTION  Water is flowing through a channel with nonuniform surface 

properties. The flow rate and the effective Manning coefficient are to be 

determined.

Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-

stant. 3 The Manning coefficients do not vary along the channel.

Analysis  The channel involves two parts with different roughnesses, and 

thus it is appropriate to divide the channel into two subsections as indi-

cated in Fig. 13–21. The flow rate for each subsection is determined from 

the Manning equation, and the total flow rate is determined by adding 

them up.

 The side length of the triangular channel is s 5 !32 1 32 5 4.243 m. Then 

the flow area, perimeter, and hydraulic radius for each subsection and the 

entire channel become

 Subsection 1:

 Ac1 5 21 m2  p1 5 10.486 m  Rh1 5
Ac1

p1
5

21 m2

10.486 m
5 2.00 m 

 Subsection 2: 

 Ac2 5 16 m2  p2 5 10 m  Rh2 5
Ac2

p2
5

16 m2

10 m
5 1.60 m

 Entire channel:

 Ac 5 37 m2  p 5 20.486 m  Rh 5
Ac

p
5

37 m2

20.486 m
5 1.806 m

Using the Manning equation for each subsection, the total flow rate through 

the channel is determined to be

 V
#

5 V
#
1 1 V

#
2 5

a
n1

Ac1R
2/3
h1 S1/2

0 1
a
n2

Ac2R
2/3
h2 S1/2

0

 5 (1 m1/3/s) c (21 m2)(2 m)2/3

0.030
1

(16 m2)(1.60 m)2/3

0.050
d (0.003)1/2

 5 84.8 m3/s > 85 m3/s

6 m

3 m

2 m

8 m

Light brush
n2 5 0.050

Clean natural
channel

n1 5 0.030 s

1 2

FIGURE 13–21
Schematic for Example 13–4.
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Knowing the total flow rate, the effective Manning coefficient for the entire 

channel is determined from the Manning equation,

neff 5
aAcR

2/3
h S 1/2

0

V
# 5

(1 m1/3/s)(37 m2)(1.806 m)2/3(0.003)1/2

84.8 m3/s
5 0.035

Discussion  The effective Manning coefficient neff of the channel turns out to 

lie between the two n values, as expected. The weighted average of the Man-

ning coefficient of the channel is navg 5 (n1p1 1 n2p2)/p 5 0.040, which is 

quite different than neff. Therefore, using a weighted average Manning coeffi-

cient for the entire channel may be tempting, but it would not be so accurate.

13–6 ■  BEST HYDRAULIC CROSS SECTIONS
Open-channel systems are usually designed to transport a liquid to a loca-
tion at a lower elevation at a specified rate under the influence of gravity at 
the lowest possible cost. Noting that no energy input is required, the cost of 
an open-channel system consists primarily of the initial construction cost, 
which is proportional to the physical size of the system. Therefore, for a 
given channel length, the perimeter of the channel is representative of the 
system cost, and it should be kept to a minimum in order to minimize the 
size and thus the cost of the system.
 From another perspective, resistance to flow is due to wall shear stress tw 
and the wall area, which is equivalent to the wetted perimeter per unit chan-
nel length. Therefore, for a given flow cross-sectional area Ac, the smaller 
the wetted perimeter p, the smaller the resistance force, and thus the larger 
the average velocity and the flow rate.
 From yet another perspective, for a specified channel geometry with a spec-
ified bottom slope S0 and surface lining (and thus the roughness coefficient n), 
the flow velocity is given by the Manning formula as V 5 aR2/3

h S1/2
0 /n. There-

fore, the flow velocity increases with the hydraulic radius, and the hydraulic 
radius must be maximized (and thus the perimeter must be minimized since 
Rh 5 Ac/p) in order to maximize the average flow velocity or the flow rate 
per unit cross-sectional area. Thus we conclude the following:

The best hydraulic cross section for an open channel is the one with the 
maximum hydraulic radius or, equivalently, the one with the minimum wetted 
perimeter for a specified cross-sectional area.

 The shape with the minimal perimeter per unit area is a circle. Therefore, 
on the basis of minimum flow resistance, the best cross section for an open 
channel is a semicircular one (Fig. 13–22). However, it is usually cheaper to 
construct an open channel with straight sides (such as channels with trap-
ezoidal or rectangular cross sections) instead of semicircular ones, and the 
general shape of the channel may be specified a priori. Thus it makes sense 
to analyze each geometric shape separately for the best cross section.
 As a motivational example, consider a rectangular channel of finished 
concrete (n 5 0.012) of width b and flow depth y with a bottom slope of 18 
(Fig. 13–23). To determine the effects of the aspect ratio y/b on the hydraulic 
radius Rh and the flow rate V

#
 for a cross-sectional area of 1 m2, Rh and V

#
 are 

R
y

FIGURE 13–22
The best hydraulic cross section for 

an open channel is a semicircular one 
since it has the minimum wetted 

perimeter for a specified cross-
sectional area, and thus the minimum 

flow resistance.

y

b

FIGURE 13–23
A rectangular open channel of width 

b and flow depth y. For a given 
cross-sectional area, the highest 
flow rate occurs when y 5 b/2.
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evaluated from the Manning formula. The results are tabulated in Table 13–2 
and plotted in Fig. 13–24 for aspect ratios from 0.1 to 5. We observe from 
this table and the plot that the flow rate V

#
 increases as the flow aspect ratio 

y/b is increased, reaches a maximum at y/b 5 0.5, and then starts to decrease 
(the numerical values for V

#
 can also be interpreted as the flow velocities in 

m/s since Ac 5 1 m2). We see the same trend for the hydraulic radius, but the 
opposite trend for the wetted perimeter p. These results confirm that the best 
cross section for a given shape is the one with the maximum hydraulic radius, 
or equivalently, the one with the minimum perimeter.

TABLE 13–2

Variation of the hydraulic radius Rh and the flow rate V
#
 with aspect ratio y /b for 

a rectangular channel with Ac 5 1 m2, S0 5 tan 18, and n 5 0.012

 Aspect Channel Flow  Hydraulic Flow Rate

 Ratio Width Depth Perimeter Radius V
#
,

 y/b b, m y, m p, m Rh, m m3/s

 0.1 3.162 0.316 3.795 0.264 4.53

 0.2 2.236 0.447 3.130 0.319 5.14

 0.3 1.826 0.548 2.921 0.342 5.39

 0.4 1.581 0.632 2.846 0.351 5.48

 0.5 1.414 0.707 2.828 0.354 5.50

 0.6 1.291 0.775 2.840 0.352 5.49

 0.7 1.195 0.837 2.869 0.349 5.45

 0.8 1.118 0.894 2.907 0.344 5.41

 0.9 1.054 0.949 2.951 0.339 5.35

 1.0 1.000 1.000 3.000 0.333 5.29

 1.5 0.816 1.225 3.266 0.306 5.00

 2.0 0.707 1.414 3.536 0.283 4.74

 3.0 0.577 1.732 4.041 0.247 4.34

 4.0 0.500 2.000 4.500 0.222 4.04

 5.0 0.447 2.236 4.919 0.203 3.81

0
3.75

4.15

4.55

4.95

5.35

5.75

1 2 3

Aspect ratio r 5 y/b

Fl
ow

 r
at

e 
V

, m
3 /s

.

4 5

FIGURE 13–24
Variation of the flow rate in a 
rectangular channel with aspect ratio 
r 5 y/b for Ac 5 1 m2 and S0 5 tan 18.
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Rectangular Channels
Consider liquid flow in an open channel of rectangular cross section of 
width b and flow depth y. The cross-sectional area and the wetted perimeter 
at a flow section are

 Ac 5 yb  and  p 5 b 1 2y (13–45)

Solving the first relation of Eq. 13–45 for b and substituting it into the second 
relation give

 p 5
Ac

y
1 2y (13–46)

Now we apply the criterion that the best hydraulic cross section for an open 
channel is the one with the minimum wetted perimeter for a given cross-
sectional area. Taking the derivative of p with respect to y while holding Ac 
constant gives

 
dp

dy
5 2

Ac

y2 1 2 5 2
by

y2 1 2 5 2
b
y

1 2 (13–47)

Setting dp/dy 5 0 and solving for y, the criterion for the best hydraulic 
cross section is determined to be

Best hydraulic cross section (rectangular channel): y 5
b

2
 (13–48)

Therefore, a rectangular open channel should be designed such that the liquid 
height is half the channel width to minimize flow resistance or to maximize the 
flow rate for a given cross-sectional area. This also minimizes the perimeter 
and thus the construction costs. This result confirms the finding from Table 
13–2 that y 5 b/2 gives the best cross section.

Trapezoidal Channels
Now consider liquid flow in an open channel of trapezoidal cross section 
of bottom width b, flow depth y, and trapezoid angle u measured from the 
horizontal, as shown in Fig. 13–25. The cross-sectional area and the wetted 
perimeter at a flow section are

 Ac 5 ab 1
y

tan u
by  and  p 5 b 1

2y

sin u
 (13–49)

Solving the first relation of Eq. 13–49 for b and substituting it into the 
second relation give

 p 5
Ac

y
2

y

tan u
1

2y

sin u
 (13–50)

Taking the derivative of p with respect to y while holding Ac and u constant 
gives

 
dp

dy
5 2

Ac

y2 2
1

tan u
1

2

sin u
5 2

b 1 y/tan u

y
2

1

tan u
1

2

sin u
 (13–51)

Setting dp/dy 5 0 and solving for y, the criterion for the best hydraulic 
cross section for any specified trapezoid angle u is determined to be

Best hydraulic cross section (trapezoidal channel): y 5
b sin u

2(1 2 cos u)
 (13–52)

y

u

b

Rh � �
Ac
p

y(b � y/tan u)
b � 2y/sin u

s

FIGURE 13–25
Parameters for a trapezoidal channel.
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For the special case of u 5 908 (a rectangular channel), this relation reduces 
to y 5 b/2, as expected.
 The hydraulic radius Rh for a trapezoidal channel can be expressed as

 Rh 5
Ac

p
5

y(b 1 y/tan u)

b 1 2y/sin u
5

y(b sin u 1 y  cos u)

b sin u 1 2y
 (13–53)

Rearranging Eq. 13–52 as bsin u 5 2y(1 2 cos u), substituting into Eq. 13–53 
and simplifying, the hydraulic radius for a trapezoidal channel with the best 
cross section becomes

Hydraulic radius for the best cross section:  Rh 5
y

2
 (13–54)

Therefore, the hydraulic radius is half the flow depth for trapezoidal chan-
nels with the best cross section regardless of the trapezoid angle u.
 Similarly, the trapezoid angle for the best hydraulic cross section is deter-
mined by taking the derivative of p (Eq. 13–50) with respect to u while 
holding Ac and y constant, setting dp/du 5 0, and solving the resulting equa-
tion for u. This gives

Best trapezoid angle: u 5 608 (13–55)

Substituting the best trapezoid angle u 5 608 into the best hydraulic cross 
section relation y 5 b sin u/(2 2 2 cos u) gives

Best flow depth for u 5 608: y 5
"3

2
 b (13–56)

Then the length of the side edge of the flow section and the flow area become

  s 5
y

sin 608
5

b"3/2"3/2
5 b (13–57)

  p 5 3b (13–58)

  Ac 5 ab 1
y

tan u
by 5 ab 1

b"3/2

tan 608
b(b"3/2) 5

3"3

4
 b2 (13–59)

since tan 608 5 "3. Therefore, the best cross section for trapezoidal chan-
nels is half of a hexagon (Fig. 13–26). This is not surprising since a hexagon 
closely approximates a circle, and a half-hexagon has the least perimeter per 
unit cross-sectional area of all trapezoidal channels.
 Best hydraulic cross sections for other channel shapes can be determined 
in a similar manner. For example, the best hydraulic cross section for a 
circular channel of diameter D can be shown to be y 5 D/2.

EXAMPLE 13–5    Best Cross Section of an Open Channel

Water is to be transported at a rate of 2 m3/s in uniform flow in an open 

channel whose surfaces are asphalt lined. The bottom slope is 0.001. Deter-

mine the dimensions of the best cross section if the shape of the channel is 

(a) rectangular and (b) trapezoidal (Fig. 13–27).

y

b

b

Rh � b�
y
2

3
4

b�
3
2

Ac � b23
4

3

60

FIGURE 13–26
The best cross section for trapezoidal 
channels is half of a hexagon.
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SOLUTION  Water is to be transported in an open channel at a specified 

rate. The best channel dimensions are to be determined for rectangular and 

trapezoidal shapes.

Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-

stant. 3 The roughness of the wetted surface of the channel and thus the 

friction coefficient are constant.

Properties  The Manning coefficient for an open channel with asphalt lining 

is n 5 0.016.

Analysis  (a) The best cross section for a rectangular channel occurs when 

the flow height is half the channel width, y 5 b/2. Then the cross-sectional 

area, perimeter, and hydraulic radius of the channel are

Ac 5 by 5
b2

2
  p 5 b 1 2y 5 2b  Rh 5

Ac

p
5

b

4

Substituting into the Manning equation,

V
#

5
a
n

 AcR
2/3
h S1/2

0   S  b 5 a2nV
#
42/3

a"S0

b3/8

5 a2(0.016)(2 m3/s)42/3

(1 m1/3/s)"0.001
b3/8

which gives b 5 1.84 m. Therefore, Ac 5 1.70 m2, p 5 3.68 m, and the 

dimensions of the best rectangular channel are

b 5 1.84 m  and  y 5 0.92 m

(b) The best cross section for a trapezoidal channel occurs when the trap-

ezoid angle is 608 and flow height is y 5 b!3/2. Then,

Ac 5 y(b 1 b cos u) 5 0.5"3b2(1 1 cos 608) 5 0.75"3b2

p 5 3b  Rh 5
y

2
5

"3

4
 b

Substituting into the Manning equation,

V
#

5
a
n

 AcR
2/3
h S1/2

0   S  b 5 a (0.016)(2 m3/s)

0.75"3("3/4)2/3(1 m1/3/s)"0.001
b3/8

which yields b 5 1.12 m. Therefore, Ac 5 1.64 m2, p 5 3.37 m, and the 

dimensions of the best trapezoidal channel are

b 5 1.12 m  y 5 0.973 m  and  u 5 608

Discussion  Note that the trapezoidal cross section is better since it has a 

smaller perimeter (3.37 m versus 3.68 m) and thus lower construction cost. 

This is why many man-made waterways are trapezoidal in shape (Fig. 13–28). 

However, the average velocity through the trapezoidal channel is larger since 

Ac is smaller.

13–7 ■  GRADUALLY VARIED FLOW
To this point we considered uniform flow during which the flow depth y and 
the flow velocity V remain constant. In this section we consider gradually 
varied flow (GVF), which is a form of steady nonuniform flow characterized 
by gradual variations in flow depth and velocity (small slopes and no abrupt 
changes) and a free surface that always remains smooth (no discontinuities 
or zigzags). Flows that involve rapid changes in flow depth and velocity, 
called rapidly varied flows (RVF), are considered in Section 13–8. A change 

y

b

b

b�
3
2

�
b
2y � 

b

b
2

60

FIGURE 13–27
Schematic for Example 13–5.

FIGURE 13–28
Many man-made water channels 
are trapezoidal in shape because 

of low construction cost and 
good performance.

(a) © Pixtal/AGE Fotostock RF; 
(b) Photo by Bryan Lewis. 

(a)

(b)
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in the bottom slope or cross section of a channel or an obstruction in the 
path of flow may cause the uniform flow in a channel to become gradually 
or rapidly varied flow.
 Rapidly varied flows occur over a short section of the channel with rel-
atively small surface area, and thus frictional losses associated with wall 
shear are negligible. Head losses in RVF are highly localized and are due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are 
primarily due to frictional effects along the channel and can be determined 
from the Manning formula.
 In gradually varied flow, the flow depth and velocity vary slowly, and the 
free surface is stable. This makes it possible to formulate the variation of 
flow depth along the channel on the basis of the conservation of mass and 
energy principles and to obtain relations for the profile of the free surface.
 In uniform flow, the slope of the energy line is equal to the slope of the bot-
tom surface. Therefore, the friction slope equals the bottom slope, Sf 5 S0. 
In gradually varied flow, however, these slopes are different (Fig. 13–29).
 Consider steady flow in a rectangular open channel of width b, and 
assume any variation in the bottom slope and water depth to be rather 
gradual. We again write the equations in terms of average velocity V and 
approximate the pressure distribution as hydrostatic. From Eq. 13–17, the 
total head of the liquid at any cross section is H 5 zb 1 y 1 V 2/2g, where zb 
is the vertical distance of the bottom surface from the reference datum. 
Differentiating H with respect to x gives

 
dH

dx
5

d

dx
 azb 1 y 1

V 
2

2g
b 5

dzb

dx
1

dy

dx
1

V
g

 
dV

dx
 (13–60)

But H is the total energy of the liquid and thus dH/dx is the slope of the 
energy line (a negative quantity), which is equal to the negative of the friction 
slope, as shown in Fig. 13–29. Also, dzb /dx is the negative of the bottom 
slope. Therefore,

 
dH

dx
5 2

dhL

dx
5 2Sf  and  

dzb

dx
5 2S0 (13–61)

Substituting Eqs. 13–61 into Eq. 13–60 gives

 S0 2 Sf 5
dy

dx
1

V
g

 
dV

dx
 (13–62)

The conservation of mass equation for steady flow in a rectangular channel 
is V
#
 5 ybV 5 constant. Differentiating with respect to x gives

 0 5 bV  
dy

dx
1 yb 

dV

dx
  S  

dV

dx
5 2

V
y

 
dy

dx
 (13–63)

Substituting Eq. 13–63 into Eq. 13–62 and noting that V/!gy is the Froude 
number,

 S0 2 Sf 5
dy

dx
2

V 2

gy
 
dy

dx
5

dy

dx
2 Fr2 

dy

dx
 (13–64)

Solving for dy/dx gives the desired relation for the rate of change of flow 
depth (or the surface profile) in gradually varied flow in an open channel,

The GVF equation: 
dy

dx
5

S0 2 Sf

1 2 Fr2 (13–65)

z , H

V2

V 1 dV

y 1 dy

V

2g

x x 1 dx

y

zb

dx

zb 1 dzb

Energy line, H

Friction slope SfHorizontal

Horizontal
reference datum

Bottom slope S0

x

dhL

(V 1 dV)2

2g

FIGURE 13–29
Variation of properties over a 
differential flow section in an open 
channel under conditions of gradually 
varied flow (GVF).
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FIGURE 13–30
A slow-moving river of approximately 

constant depth and cross section, 
such as the Chicago River shown 

here, is an example of uniform 
flow with S0 < Sf  and dy/dx < 0.

© Hisham F. Ibrahim/Getty RF

which is analogous to the variation of flow area as a function of the Mach 
number in compressible flow. This relation is derived for a rectangular chan-
nel, but it is also valid for channels of other constant cross sections provided 
that the Froude number is expressed accordingly. An analytical or numerical 
solution of this differential equation gives the flow depth y as a function of x 
for a given set of parameters, and the function y(x) is the surface profile.
 The general trend of flow depth—whether it increases, decreases, or 
remains constant along the channel—depends on the sign of dy/dx, which 
depends on the signs of the numerator and the denominator of Eq. 13–65. 
The Froude number is always positive and so is the friction slope Sf 
(except  for the idealized case of flow with negligible frictional effects for 
which both hL and Sf are zero). The bottom slope S0 is positive for down-
ward-sloping sections (typically the case), zero for horizontal sections, and 
negative for upward-sloping sections of a channel (adverse flow). The flow 
depth increases when dy/dx . 0, decreases when dy/dx , 0, and remains 
constant (and thus the free surface is parallel to the channel bottom, as in 
uniform flow) when dy/dx 5 0 and thus S0 5 Sf (Fig. 13–30). For specified 
values of S0 and Sf, the term dy/dx may be positive or negative, depending on 
whether the Froude number is less than or greater than 1. Therefore, the flow 
behavior is opposite in subcritical and supercritical flows. For S0 2 Sf . 0, 
for example, the flow depth increases in the flow direction in subcritical 
flow, but it decreases in supercritical flow.
 The determination of the sign of the denominator 1 2 Fr2 is easy: it is 
positive for subcritical flow (Fr , 1), and negative for supercritical flow 
(Fr . 1). But the sign of the numerator depends on the relative magnitudes 
of S0 and Sf. Note that the friction slope Sf is always positive, and its value 
is equal to the channel slope S0 in uniform flow, y 5 yn. The friction slope 
is a quantity that varies with streamwise distance, and is calculated from 
the Manning equation, based upon the depth at each streamwise location, 
as demonstrated in Example 13–6. Noting that head loss increases with 
increasing velocity, and that the velocity is inversely proportional to flow 
depth for a given flow rate, Sf . S0 and thus S0 2 Sf , 0 when y , yn, and 
Sf , S0 and thus S0 2 Sf . 0 when y . yn. The numerator S0 2 Sf is always 
negative for horizontal (S0 5 0) and upward-sloping (S0 , 0) channels, and 
thus the flow depth decreases in the flow direction during subcritical flows 
in such channels.

Liquid Surface Profiles in Open Channels, y(x)
Open-channel systems are designed and built on the basis of the projected 
flow depths along the channel. Therefore, it is important to be able to pre-
dict the flow depth for a specified flow rate and specified channel geometry. 
A plot of flow depth versus downstream distance is the surface profile y(x) 
of the flow. The general characteristics of surface profiles for gradually var-
ied flow depend on the bottom slope and flow depth relative to the critical 
and normal depths.
 A typical open channel involves various sections of different bottom 
slopes S0 and different flow regimes, and thus various sections of different 
surface profiles. For example, the general shape of the surface profile in a 
downward-sloping section of a channel is different than that in an upward-
sloping section. Likewise, the profile in subcritical flow is different than the 
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profile in supercritical flow. Unlike uniform flow that does not involve iner-
tial forces, gradually varied flow involves acceleration and deceleration of 
liquid, and the surface profile reflects the dynamic balance between liquid 
weight, shear force, and inertial effects.
 Each surface profile is identified by a letter that indicates the slope of 
the channel and by a number that indicates flow depth relative to the criti-
cal depth yc and normal depth yn. The slope of the channel can be steep 
(S), critical (C), mild (M), horizontal (H), or adverse (A) (Fig. 13–31). The 
channel slope is said to be mild if yn . yc, steep if yn , yc, critical if yn 5 yc, 
horizontal if S0 5 0 (zero bottom slope), and adverse if S0 , 0 (nega-
tive slope). Note that a liquid flows uphill in an open channel that has an 
adverse slope.
 The classification of a channel section depends on the flow rate and the 
channel cross section as well as the slope of the channel bottom. A channel 
section that is classified to have a mild slope for one flow may have a steep 
slope for another flow, and even a critical slope for a third flow. Therefore, 
we need to calculate the critical depth yc and the normal depth yn before we 
can assess the slope.
 The number designation indicates the initial position of the liquid surface for 
a given channel slope relative to the surface levels in critical and uniform flows, 
as shown in Fig. 13–32. A surface profile is designated by 1 if the flow depth 
is above both critical and normal depths ( y . yc and y . yn), by 2 if the flow 
depth is between the two ( yn . y . yc or yn , y , yc), and by 3 if the flow 
depth is below both the critical and normal depths ( y , yc and y , yn). There-
fore, three different profiles are possible for a specified type of channel slope. 
But for channels with zero or adverse slopes, type 1 flow cannot exist since 
the flow can never be uniform in horizontal and upward channels, and thus 
normal depth is not defined. Also, type 2 flow does not exist for channels with 
critical slope since normal and critical depths are identical in this case.
 The five classes of slopes and the three types of initial positions discussed 
give a total of 12 distinct configurations for surface profiles in GVF, all tabu-
lated and sketched in Table 13–3. The Froude number is also given for each 
case, with Fr . 1 for y , yc, as well as the sign of the slope dy/dx of the 
surface profile determined from Eq. 13–65, dy/dx 5 (S0 2 Sf)/(1 2 Fr2). Note 
that dy/dx . 0, and thus the flow depth increases in the flow direction when 
both S0 2 Sf and 1 2 Fr2 are positive or negative. Otherwise dy/dx , 0 and 
the flow depth decreases. In type 1 flows, the flow depth increases in the 
flow direction and the surface profile approaches the horizontal plane asymp-
totically. In type 2 flows, the flow depth decreases and the surface profile 
approaches the lower of yc or yn. In type 3 flows, the flow depth increases and 
the surface profile approaches the lower of yc or yn. These trends in surface 
profiles continue as long as there is no change in bottom slope or roughness.
 Consider the case in Table 13–3 designated M1 (mild channel slope and 
y . yn . yc). The flow is subcritical since y . yc and thus Fr , 1 and 
1 2 Fr2 . 0. Also, Sf , S0 and thus S0 2 Sf . 0 since y . yn, and thus 
the flow velocity is less than the velocity in normal flow. Therefore, the 
slope of the surface profile dy/dx 5 (S0 2 Sf)/(1 2 Fr2) . 0, and the 
flow depth y increases in the flow direction. But as y increases, the flow 
velocity decreases, and thus Sf and Fr approach zero. Consequently, dy/dx 
approaches S0 and the rate of increase in flow depth becomes equal to the 
channel slope. This requires the surface profile to become horizontal at 

Horizontal

A

S

H

M

C

Mild

Steep

Critical

Adverse

FIGURE 13–31
Designation of the letters S, C, M, H, 
and A for liquid surface profiles for 
different types of slopes.

3

Channel bottom

Free surface in
critical flow

Free surface in
uniform flow

yn

yc

y

2

1

FIGURE 13–32
Designation of the numbers 1, 2, and 3 
for liquid surface profiles based on the 
value of the flow depth relative to the 
normal and critical depths.
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TABLE 13–3

Classification of surface profiles in gradually varied flow. The vertical scale is greatly exaggerated.

Channel Profile  Froude Profile Surface

Slope Notation Flow Depth Number Slope Profile

Steep (S)  yc . yn S1 y . yc Fr , 1 
dy

dx
. 0

          

S0 , Sc

 S2 yn , y , yc Fr . 1 
dy

dx
, 0

 S3 y , yn Fr . 1 
dy

dx
. 0

Critical (C)  yc 5 yn C1 y . yc Fr , 1 
dy

dx
. 0

           

S0 , Sc

 C3 y , yc Fr . 1 
dy

dx
. 0

Mild (M)  yc , yn M1 y . yn Fr , 1 
dy

dx
. 0

         

S0 , Sc

 M2 yc , y , yn Fr , 1 
dy

dx
, 0

   M3 y , yc Fr . 1 
dy

dx
. 0

Horizontal (H)  yn → ` H2 y . yc Fr , 1 
dy

dx
, 0

              

S0 5 0

 H3 y , yc Fr . 1 
dy

dx
. 0

  

Adverse (A)  S0 , 0 A2 y . yc Fr , 1 
dy

dx
, 0

            

yn: does

 A3 y , yc Fr . 1 
dy

dx
. 0 not exist

yn

yc

Channel bottom, S0 � Sc

S1

S2

S3

Horizontal

yc � yn

Channel bottom, S0 � Sc

C1

C3

Horizontal

yc

Channel bottom, S0 � 0

A2

A3

yc

Channel bottom, S0 � 0

H2

H3

Normal
depth

SurfaceSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaSurfaS rfaS ffffffffffSu
profilepppppr y(x)

Starting
point

Horizontal

yn

M1

yc Critical
depth

Channel bottom, S0 � Sc

M2

M3

S2

S1

S1

S3

C1
C3

M3
M2

M1

H2

H2
H3

A2

A3

A2
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large y. Then we conclude that the M1 surface profile first rises in the 
flow direction and then tends to a horizontal asymptote.
 As y → yc in subcritical flow (such as M2, H2, and A2), we have Fr → 1 
and 1 2 Fr2 → 0, and thus the slope dy/dx tends to negative infinity. But as 
y → yc in supercritical flow (such as M3, H3, and A3), we have Fr → 1 and 
1 2 Fr2 → 0, and thus the slope dy/dx, which is a positive quantity, tends to 
infinity. That is, the free surface rises almost vertically and the flow depth 
increases very rapidly. This cannot be sustained physically, and the free 
surface breaks down. The result is a hydraulic jump. The one-dimensional 
approximation is no longer applicable when this happens.

Some Representative Surface Profiles
A typical open-channel system involves several sections of different slopes, 
with connections called transitions, and thus the overall surface profile of 
the flow is a continuous profile made up of the individual profiles described 
earlier. Some representative surface profiles commonly encountered in open 
channels, including some composite profiles, are given in Fig. 13–33. For 
each case, the change in surface profile is caused by a change in channel 
geometry such as an abrupt change in slope or an obstruction in the flow 
such as a sluice gate. More composite profiles can be found in specialized 
books listed in the references. A point on a surface profile represents the 
flow height at that point that satisfies the mass, momentum, and energy con-
servation relations. Note that dy/dx ,, 1 and S0 ,, 1 in gradually varied 
flow, and the slopes of both the channels and the surface profiles in these 
sketches are highly exaggerated for better visualization. Many channels and 
surface profiles would appear nearly horizontal if drawn to scale.
 Figure 13–33a shows the surface profile for gradually varied flow in a 
channel with mild slope and a sluice gate. The subcritical upstream flow 
(note that the flow is subcritical since the slope is mild) slows down as it 
approaches the gate (such as a river approaching a dam) and the liquid level 
rises. The flow past the gate is supercritical (since the height of the opening 
is less than the critical depth). Therefore, the surface profile is M1 before 
the gate and M3 after the gate prior to the hydraulic jump.
 A section of an open channel may have a negative slope and involve 
uphill flow, as shown in Fig. 13–33b. Flow with an adverse slope cannot be 
maintained unless the inertia forces overcome the gravity and viscous forces 
that oppose the fluid motion. Therefore, an uphill channel section must be 
followed by a downhill section or a free outfall. For subcritical flow with 
an adverse slope approaching a sluice gate, the flow depth decreases as the 
gate is approached, yielding an A2 profile. Flow past the gate is typically 
supercritical, yielding an A3 profile prior to the hydraulic jump.
 The open-channel section in Fig. 13–33c involves a slope change from 
steep to less steep. The flow velocity in the less steep part is lower (a smaller 
elevation drop to drive the flow), and thus the flow depth is higher when 
uniform flow is established again. Noting that uniform flow with steep slope 
must be supercritical (y , yc), the flow depth increases from the initial to 
the new uniform level smoothly through an S3 profile.
 Figure 13–33d shows a composite surface profile for an open channel 
that involves various flow sections. Initially the slope is mild, and the flow 
is uniform and subcritical. Then the slope changes to steep, and the flow

725-786_cengel_ch13.indd   752 12/19/12   11:00 AM



753
CHAPTER 13

becomes supercritical when uniform flow is established. The critical depth 
occurs at the break in grade. The change of slope is accompanied by a 
smooth decrease in flow depth through an M2 profile at the end of the mild 
section, and through an S2 profile at the beginning of the steep section. In 
the horizontal section, the flow depth increases first smoothly through an H3 
profile, and then rapidly during a hydraulic jump. The flow depth then 
decreases through an H2 profile as the liquid accelerates toward the end 

yn1

yc

yc

yn2

(a) Flow through a sluice gate in an open channel with mild slope

(b) Flow through a sluice gate in an open channel with adverse slope and free outfall

(c) Uniform supercritical flow changing from steep to less steep slope

(d) Uniform subcritical flow changing from mild
to steep to horizontal slope with free outfall

Mild

Adverse

Uniform flow

Uniform flow

Less steep

Horizontal

Free
outfall

Hydraulic
jump

Uniform
flow

Uniform
flow

H3
H2

M2

S2

Steep

Mild

Steep

Uniform
flow

Uniform
flow

Hydraulic
jump

Hydraulic
jump

M1

A2

A3

A2

M3

yn2

yn2
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yc

yn1

yc

yn1

y , yn2

S3

FIGURE 13–33
Some common surface profiles 

encountered in open-channel flow. 
All flows are from left to right.
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of the channel to a free outfall. The flow becomes critical before reaching 
the end of the channel, and the outfall controls the upstream flow past the 
hydraulic jump. The outfalling flow stream is supercritical. Note that uniform 
flow cannot be established in a horizontal channel since the gravity force 
has no component in the flow direction, and the flow is inertia-driven.

Numerical Solution of Surface Profile
The prediction of the surface profile y(x) is an important part of the design 
of open-channel systems. A good starting point for the determination of the 
surface profile is the identification of the points along the channel, called 
the control points, at which the flow depth can be calculated from a knowl-
edge of flow rate. For example, the flow depth at a section of a rectangular 
channel where critical flow occurs, called the critical point, is determined 
from yc 5 (V

#
2/gb2)1/3. The normal depth yn, which is the flow depth reached 

when uniform flow is established, also serves as a control point. Once flow 
depths at control points are available, the surface profile upstream or down-
stream is determined usually by numerical integration of the nonlinear dif-
ferential equation (Eq. 13–65, repeated here)

 
dy

dx
5

S0 2 Sf

1 2 Fr2 (13–66)

The friction slope Sf is determined from the uniform-flow conditions, and 
the Froude number from a relation appropriate for the channel cross section.

EXAMPLE 13–6    Gradually Varied Flow with M1 Surface Profile

Gradually varied flow of water in a wide rectangular channel with a per-unit-

width flow rate of 1 m3/s?m and a Manning coefficient of n 5 0.02 is con-

sidered. The slope of the channel is 0.001, and at the location x 5 0, the 

flow depth is measured to be 0.8 m. (a) Determine the normal and critical 

depths of the flow and classify the water surface profile, and (b) calculate 

the flow depth y at x 5 1000 m by integrating the GVF equation numerically 

over the range 0 # x # 1000 m. Repeat part (b) to obtain the flow depths 

for different x values, and plot the surface profile (Fig. 13–34).

SOLUTION  Gradually varied flow of water in a wide rectangular channel is 

considered. The normal and critical flow depths, the flow type, and the flow 

depth at a specified location are to be determined, and the surface profile is 

to be plotted.

Assumptions  1 The channel is wide, and the flow is gradually varied. 2 The 

bottom slope is constant. 3 The roughness of the wetted surface of the chan-

nel and thus the friction coefficient are constant.

Properties  The Manning coefficient of the channel is given to be n 5 0.02.

Analysis  (a) The channel is said to be wide, and thus the hydraulic radius is 

equal to the flow depth, Rh > y. Knowing the flow rate per unit width (b 5 1 m), 

the normal depth is determined from the Manning equation to be

V
#

5
a
n

AcR
2/3
h S1/2

0 5
a
n

(yb)y2/3S 1/2
0 5

a
n

by5/3S 1/2
0

yn 5 a (V
#
/b)n

aS1/2
0

b3/5

5 a (1 m2/s)(0.02)

(1 m1/3/s)(0.001)1/2b3/5

5 0.76 m

y

y0 5 0.8 m

0

Bottom slope, S0 5 0.001

FIGURE 13–34
Schematic for Example 13–6.
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The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
V
#

2

g(by)2 S yc 5 a (V
#
/b)2

g
b1/3

5 a (1 m2/s)2

(9.81 m/s2)
b1/3

5 0.47 m

Noting that yc , yn , y at x 5 0, we see from Table 13-3 that the water 

surface profile during this GVF is classified as M1.

(b) Knowing the initial condition y (0) 5 0.8 m, the flow depth y at any x 

location is determined by numerical integration of the GVF equation

dy

dx
5

S0 2 Sf

1 2 Fr2

where the Froude number for a wide rectangular channel is

Fr 5
V"gy

5
V
#
/by"gy

5
V
#
/b"gy3

and the friction slop is determined from the uniform-flow equation by setting 

S0 5 Sf,

V
#

5
a
n

by5/3S1/2
f S Sf 5 a (V

#
/b)n

ay5/3 b2

5
(V
#
/b)2n2

a2y10/3

Substituting, the GVF equation for a wide rectangular channel becomes

dy

dx
5

S0 2 (V
#
/b)2n2/(a2y10/3)

1 2 (V
#
/b)2/(gy3)

which is highly nonlinear, and thus it is difficult (if not impossible) to inte-

grate analytically. Fortunately, nowadays solving nonlinear differential equa-

tions by integrating such nonlinear equations numerically using a program 

like EES or Matlab is easy. With this mind, the solution of the nonlinear 

first order differential equation subject to the initial condition y (x1) 5 y1 is 

ex pressed as

y 5 y1 1 #
x2

x1

f(x,y)dx where f(x,y) 5
S0 2 (V

#
/b)2n2/(a2y10/3)

1 2 (V
#
/b)2/(gy3)

and where y 5 y(x) is the water depth at the specified location x. For given 

numerical values, this problem can be solved using EES as follows:

Vol 5 1 “m^3/s, volume flow rate per unit width, b 5 1 m”

b 5 1 “m, width of channel”

n 5 0.02 “Manning coefficient”

S_0 5 0.001 “slope of channel”

g 5 9.81 “gravitational acceleration, m/s^2”

x1 5 0; y1=0.8 “m, initial condition”

x2 5 1000 “m, length of channel”

f_xy 5 (S_0-((Vol/b)^2*n^2/y(10/3)))/(1-(Vol/b)^2/(g*y^3)) “the GVF equation 

to be integrated”

y 5 y1+integral(f_xy, x, x1, x2) “integral equation with automatic step size.”

Copying the mini program above into a blank EES screen and calculating 

gives the water depth at a location of 1000 m,

y(x2) 5 y(1000 m) 5 1.44 m

Distance along
the channel, m

0
100    
200    
300    
400    
500    
600    
700    
800    
900    

1000      

Water
depth, m

0.80
0.82
0.86
0.90
0.96
1.03
1.10
1.18
1.26
1.35
1.44

y,
 m

1000800400
x, m

2000 600

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

y

yn

yc

FIGURE 13–35
Flow depth and surface profile for 

the GVF problem discussed in 
Example 13–6.
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Note that the built-in function “integral” performs integrations numerically 

between specified limits using an automatically adjusted step size. Water 

depths at different locations along the channel are obtained by repeating the 

calculations at different x2 values. Plotting the results gives the surface pro-

file, as shown in Fig. 13–34. Using the curve-fit feature of EES, we can even 

curve-fit the flow depth data into the following second-order polynomial,

yapprox(x) 5 0.7930 1 0.0002789x 1 3.7727 3 1027x2

It can be shown that the flow depth results obtained from this curve-fit 

formula do not differ from tabulated data by more than 1 percent.

Discussion  The graphical result confirms the quantitative prediction from 

Table 13–3 that an M1 profile should yield increasing water depth in the 

downstream direction. This problem can also be solved using other programs, 

like Matlab, using the code given in Fig. 13–36.

EXAMPLE 13–7    Classification of Channel Slope

Water is flowing uniformly in a rectangular open channel with unfinished-

concrete surfaces. The channel width is 6 m, the flow depth is 2 m, and 

the bottom slope is 0.004. Determine if the channel should be classified as 

mild, critical, or steep for this flow (Fig. 13–37).

SOLUTION  Water is flowing uniformly in an open channel. It is to be deter-

mined whether the channel slope is mild, critical, or steep for this flow.

Assumptions  1 The flow is steady and uniform. 2 The bottom slope is con-

stant. 3 The roughness of the wetted surface of the channel and thus the 

friction coefficient are constant.

Properties  The Manning coefficient for an open channel with unfinished-

concrete surfaces is n 5 0.014.

Analysis  The cross-sectional area, perimeter, and hydraulic radius are

 Ac 5 yb 5 (2 m)(6 m) 5 12 m2

 p 5 b 1 2y 5 6 m 1 2(2 m) 5 10 m

 Rh 5
Ac

p
5

12 m2

10 m
5 1.2 m

The flow rate is determined from the Manning equation to be

V
#

5
a
n

 AcR
2/3
h S1/2

0 5
1 m1/3/s

0.014
 (12 m2)(1.2 m)2/3(0.004)1/2 5 61.2 m3/s

Noting that the flow is uniform, the specified flow rate is the normal depth 

and thus y 5 yn 5 2 m. The critical depth for this flow is

yc 5
V
#

2

gA2
c

5
(61.2 m3/s)2

(9.81 m/s2)(12 m2)2 5 2.65 m

This channel at these flow conditions is classified as steep since yn , yc, 

and the flow is supercritical.

Discussion  If the flow depth were greater than 2.65 m, the channel slope 

would be said to be mild. Therefore, the bottom slope alone is not sufficient 

to classify a downhill channel as being mild, critical, or steep.

clear all

domain=[0 1000]; % limits on integral

s0=.001; % channel slope

n=.02; % Manning roughness

q=1; % per-unit-width flowrate

g=9.81; % gravity (SI)

y0=.8; % initial condition on depth

[X,Y]=ode45(‘simple_flow_derivative’, 

[domain(1) domain (end)],y0,

[],s0,n,q,g,domain);

plot (X, Y, ‘k’)

axis([0 1000 0 max(Y)])

xlabel(‘x (m)’);ylabel(‘y (m)’);

**************

function

yprime=simple_flow_

derivative(x,y,flag,s0, n,q,g, (domain)

yprime=(s0-n.^2*q.^2./y.^(10/3))./(1- 

q.^2/g./y.^3);

FIGURE 13–36
A Matlab program for solving the 
GVF problem of Example 13–6.

�
b
2

b � 6 m

S0 � 0.004

y � 2 m

FIGURE 13–37
Schematic for Example 13–7.
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13–8 ■  RAPIDLY VARIED FLOW 
AND THE HYDRAULIC JUMP

Recall that flow in open channels is called rapidly varied flow (RVF) if 
the flow depth changes markedly over a relatively short distance in the flow 
direction (Fig. 13–38). Such flows occur in sluice gates, broad- or sharp-
crested weirs, waterfalls, and the transition sections of channels for expan-
sion and contraction. A change in the cross section of the channel is one 
cause of rapidly varied flow. But some rapidly varied flows, such as flow 
through a sluice gate, occur even in regions where the channel cross section 
is constant.
 Rapidly varied flows are typically complicated by the fact that they may 
involve significant multidimensional and transient effects, backflows, and 
flow separation (Fig. 13–39). Therefore, rapidly varied flows are usually 
studied experimentally or numerically. But despite these complexities, it is 
still possible to analyze some rapidly varied flows using the one-dimensional 
flow approximation with reasonable accuracy.
 The flow in steep channels may be supercritical, and the flow must change 
to subcritical if the channel can no longer sustain supercritical flow due to a 
reduced slope of the channel or increased frictional effects. Any such change 
from supercritical to subcritical flow occurs through a hydraulic jump. 
A hydraulic jump involves considerable mixing and agitation, and thus a 
significant amount of mechanical energy dissipation.
 Consider steady flow through a control volume that encloses the hydraulic 
jump, as shown in Fig. 13–39. To make a simple analysis possible, we make 
the following approximations:

 1. The velocity is nearly constant across the channel at sections 1 and 2, 
and therefore the momentum-flux correction factors are b1 5 b2 ù 1.

 2. The pressure in the liquid varies hydrostatically, and we consider gage 
pressure only since atmospheric pressure acts on all surfaces and its 
effect cancels out.

 3. The wall shear stress and its associated losses are negligible relative 
to the losses that occur during the hydraulic jump due to the intense 
agitation.

 4. The channel is wide and horizontal.
 5. There are no external or body forces other than gravity.

 For a channel of width b, the conservation of mass relation m
.

2 5 m
.

1 is 
expressed as ry1bV1 5 ry2bV2 or

 y1V1 5 y2V2 (13–67)

Noting that the only forces acting on the control volume in the horizontal 

x-direction are the pressure forces, the momentum equation aF
S

5 a
out
bm# V

S
 2

 a
in
bm# V

S
 in the x-direction becomes a balance between hydrostatic pressure 

forces and momentum transfer,

 P1, avg A1 2 P2, avg A2 5 m# V2 2 m# V1 (13–68)

FIGURE 13–38
Rapidly varied flow occurs when there 
is a sudden change in flow, such as an 

abrupt change in cross section.

FIGURE 13–39
When riding the rapids, a kayaker 

encounters several features of both 
gradually varied flow (GVF) and 

rapidly varied flow (RVF), with the 
latter being more exciting.

© Karl Weatherly/Getty RF
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where P1, avg 5 rgy1/2 and P2, avg 5 rgy2/2. For a channel width of b, we have 
A1 5 y1b, A2 5 y2b, and m

.
 5 m

.
2 5 m

.
1 5 rA1V1 5 ry1bV1. Substituting and 

simplifying, the momentum equation reduces to

 y2
1 2 y2

2 5
2y1V1

g
 (V2 2 V1) (13–69)

Eliminating V2 by using V2 5 (y1/y2)V1 from Eq. 13–67 gives

 y2
1 2 y2

2 5
2y1V 1

2

gy2
 (y1 2 y2) (13–70)

Canceling the common factor y1 2 y2 from both sides and rearranging give

 ay2

y1
b2

1
y2

y1
2 2Fr2

1 5 0 (13–71)

where Fr1 5 V1/!gy1. This is a quadratic equation for y2/y1, and it has two 
roots—one negative and one positive. Noting that y2/y1 cannot be negative 
since both y2 and y1 are positive quantities, the depth ratio y2/y1 is deter-
mined to be

Depth ratio: 
y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B (13–72)

The energy equation (Eq. 13–30) for this horizontal flow section is

 y1 1
V 

2
1

2g
5 y2 1

V 
2
2

2g
1 hL (13–73)

Noting that V2 5 (y1/y2)V1 and Fr1 5 V1 /!gy1, the head loss associated 
with a hydraulic jump is expressed as

 hL 5 y1 2 y2 1
V 2

1 2 V 2
2

2g
5 y1 2 y2 1

y1Fr2
1

2
 a1 2

y2
1

y2
2

b  (13–74)

The energy line for a hydraulic jump is shown in Fig. 13–40. The drop in the 
energy line across the jump represents the head loss hL associated with the 
jump.
 For given values of Fr1 and y1, the downstream flow depth y2 and the head 
loss hL can be calculated from Eqs. 13–72 and 13–74, respectively. Plotting 
hL against Fr1 would reveal that hL becomes negative for Fr1 , 1, which 
is impossible (it would correspond to negative entropy generation, which 
would be a violation of the second law of thermodynamics). Thus we con-
clude that the upstream flow must be supercritical (Fr1 . 1) for a hydrau-
lic jump to occur. In other words, it is impossible for subcritical flow to 
undergo a hydraulic jump. This is analogous to gas flow having to be super-
sonic (Mach number greater than 1) to undergo a shock wave.
 Head loss is a measure of the mechanical energy dissipated via inter-
nal fluid friction, and head loss is usually undesirable as it represents the 
mechanical energy wasted. But sometimes hydraulic jumps are designed 
in conjunction with stilling basins and spillways of dams, and it is desir-
able to waste as much of the mechanical energy as possible to minimize the 
mechanical energy of the water and thus its potential to cause damage. This 
is done by first producing supercritical flow by converting high pressure to 
high linear velocity, and then allowing the flow to agitate and dissipate part 

x

EsEs1

Es2 5 y2 1
V 2

2g

y

rgy1

hL

y1

y2

V2

V1

Energy lineControl
volume

(1) (2)

1

2

Subcritical

Supercritical

rgy2

2

FIGURE 13–40
Schematic and flow depth-specific 
energy diagram for a hydraulic jump 
(specific energy decreases).
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of its kinetic energy as it breaks down and decelerates to a subcritical veloc-
ity. Therefore, a measure of performance of a hydraulic jump is its fraction 
of energy dissipation.
 The specific energy of the liquid before the hydraulic jump is Es1 5 
y1 1 V 1

2/2g. Then the energy dissipation ratio (Fig. 13–41) is defined as

 Energy dissipation ratio 5
hL

Es1

5
hL

y1 1 V 2
1/2g

5
hL

y1(1 1 Fr2
1/2)

 (13–75)

The fraction of energy dissipation ranges from just a few percent for weak 
hydraulic jumps (Fr1 , 2) to 85 percent for strong jumps (Fr1 . 9).
 Unlike a normal shock in gas flow, which occurs at a cross section and 
thus has negligible thickness, the hydraulic jump occurs over a considerable 
channel length. In the Froude number range of practical interest, the length 
of the hydraulic jump is observed to be 4 to 7 times the downstream flow 
depth y2.
 Experimental studies indicate that hydraulic jumps can be classified into 
five categories as shown in Table 13–4, depending primarily on the value of 
the upstream Froude number Fr1. For Fr1 somewhat higher than 1, the liquid 
rises slightly during the hydraulic jump, producing standing waves. At larger 
Fr1, highly damaging oscillating waves occur. The desirable range of Froude 
numbers is 4.5 , Fr1 , 9, which produces stable and well-balanced steady 
waves with high levels of energy dissipation within the jump. Hydraulic 
jumps with Fr1 . 9 produce very rough waves. The depth ratio y2/y1 ranges 
from slightly over 1 for undular jumps that are mild and involve small rises 
in surface level to over 12 for strong jumps that are rough and involve high 
rises in surface level.
 In this section we limit our consideration to wide horizontal rectangular 
channels so that edge and gravity effects are negligible. Hydraulic jumps in 
nonrectangular and sloped channels behave similarly, but the flow charac-
teristics and thus the relations for depth ratio, head loss, jump length, and 
dissipation ratio are different.

EXAMPLE 13–8    Hydraulic Jump

Water discharging into a 10-m-wide rectangular horizontal channel from a 

sluice gate is observed to have undergone a hydraulic jump. The flow depth 

and velocity before the jump are 0.8 m and 7 m/s, respectively. Determine 

(a) the flow depth and the Froude number after the jump, (b) the head loss 

and the energy dissipation ratio, and (c) the wasted power production poten-

tial due to the hydraulic jump (Fig. 13–42).

SOLUTION  Water at a specified depth and velocity undergoes a hydraulic 

jump in a horizontal channel. The depth and Froude number after the jump, 

the head loss and the dissipation ratio, and the wasted power potential are 

to be determined.

Assumptions  1 The flow is steady or quasi-steady. 2 The channel is suffi-

ciently wide so that the end effects are negligible.

Properties  The density of water is 1000 kg/m3.

hL

y1

y2
V2

V1

V 2

2g

Energy line

Dissipation ratio � �
hL

Es1

hL

y1 � V 2/2g

(1) (2)

V 2

2g
2

1

1

FIGURE 13–41
The energy dissipation ratio represents 

the fraction of mechanical energy 
dissipated during a hydraulic jump.

hL

V1 � 7 m/s V2

y1 � 0.8 m
y2

Energy line

(1) (2)

FIGURE 13–42
Schematic for Example 13–8.
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Analysis  (a) The Froude number before the hydraulic jump is

Fr1 5
V1"gy1

5
7 m/s"(9.81 m/s2)(0.8 m)

5 2.50

which is greater than 1. Therefore, the flow is indeed supercritical before the 

jump. The flow depth, velocity, and Froude number after the jump are

 y2 5 0.5y1A21 1 "1 1 8Fr2
1 B 5 0.5(0.8 m) A21 1 "1 1 8 3 2.502 B 5 2.46 m

 V2 5
y1

y2
V1 5

0.8 m

2.46 m
 (7 m/s) 5 2.28 m/s

 Fr2 5
V2"gy2

5
2.28 m/s"(9.81 m/s2)(2.46 m)

5 0.464

TABLE 13–4

Classification of hydraulic jumps

Source: U.S. Bureau of Reclamation (1955).

  Depth Fraction of 

 Upstream Ratio Energy  Surface

 Fr1 y2/y1 Dissipation Description Profile

 ,1 1 0  Impossible jump. Would violate the 

second law of thermodynamics.

 1–1.7 1–2 ,5%  Undular jump (or standing wave). 

Small rise in surface level. Low energy 

dissipation. Surface rollers develop 

near Fr 5 1.7.

 1.7–2.5 2–3.1  5–15%  Weak jump. Surface rising smoothly, 

with small rollers. Low energy 

dissipation.

 2.5–4.5 3.1–5.9 15–45%  Oscillating jump. Pulsations caused by 

jets entering at the bottom generate 

large waves that can travel for miles 

and damage earth banks. Should be 

avoided in the design of stilling basins.

 4.5–9 5.9–12 45–70%  Steady jump. Stable, well-balanced, 

and insensitive to downstream 

conditions. Intense eddy motion and 

high level of energy dissipation within 

the jump. Recommended range 

for design.

 .9 .12 70–85%  Strong jump. Rough and intermittent. 

Very effective energy dissipation, but 

may be uneconomical compared to 

other designs because of the larger water 

heights involved.
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Note that the flow depth triples and the Froude number reduces to about 

one-fifth after the jump.

(b) The head loss is determined from the energy equation to be

hL 5 y1 2 y2 1
V 

2
1 2 V 

2
2

2g
5 (0.8 m) 2 (2.46 m) 1

(7 m/s)2 2 (2.28 m/s)2

2(9.81 m/s2)

 5 0.572 m 

The specific energy of water before the jump and the dissipation ratio are

 Es1 5 y1 1
V 

2
1

2g
5 (0.8 m) 1

(7 m/s)2

2(9.81 m/s2)
5 3.30 m

 Dissipation ratio 5
hL

Es1

5
0.572 m

3.30 m
5 0.173

Therefore, 17.3 percent of the available head (or mechanical energy) of the 

liquid is wasted (converted to thermal energy) as a result of frictional effects 

during this hydraulic jump.

(c) The mass flow rate of water is

m
#

5 rV
#

5 rby1V1 5 (1000 kg/m3)(0.8 m)(10 m)(7 m/s) 5 56,000 kg/s

Then the power dissipation corresponding to a head loss of 0.572 m becomes

 E
#
dissipated 5 m# ghL 5 (56,000 kg/s)(9.81 m/s2)(0.572 m)a 1 N

1 kg·m/s2b
 5 314,000 N·m/s 5 314 kW

Discussion  The results show that the hydraulic jump is a highly dissipative 

process, wasting 314 kW of power production potential in this case. That is, 

if the water were routed to a hydraulic turbine instead of being released from 

the sluice gate, up to 314 kW of power could be generated. But this poten-

tial is converted to useless thermal energy instead of useful power, causing a 

water temperature rise of

DT 5
E
#
dissipated

m# cp

5
314 kJ/s

(56,000 kg/s)(4.18 kJ/kg·8C)
5 0.00138C

Note that a 314-kW resistance heater would cause the same temperature 

rise for water flowing at a rate of 56,000 kg/s.

13–9 ■  FLOW CONTROL AND MEASUREMENT
The flow rate in pipes and ducts is controlled by various kinds of valves. 
Liquid flow in open channels, however, is not confined, and thus the flow 
rate is controlled by partially blocking the channel. This is done by either 
allowing the liquid to flow over the obstruction or under it. An obstruction 
that allows the liquid to flow over it is called a weir (Fig. 13–43), and an 
obstruction with an adjustable opening at the bottom that allows the liquid 
to flow underneath it is called an underflow gate. Such devices can be used 
to control the flow rate through the channel as well as to measure it.

FIGURE 13–43
A weir is a flow control device 
in which the water flows over 

the obstruction.
(a) © Design Pics RF/The Irish Image 

Collection/Getty RF; (b) Photo courtesy 
of Bryan Lewis.

(a)

(b)
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Underflow Gates
There are numerous types of underflow gates to control the flow rate, each 
with certain advantages and disadvantages. Underflow gates are located at 
the bottom of a wall, dam, or an open channel. Two common types of such 
gates, the sluice gate and the drum gate, are shown in Fig. 13–44. A sluice 
gate is typically vertical and has a plane surface, whereas a drum gate has a 
circular cross section with a streamlined surface.
 When the gate is partially opened, the upstream liquid accelerates as it 
approaches the gate, reaches critical speed at the gate, and accelerates further 
to supercritical speeds past the gate. Therefore, an underflow gate is analo-
gous to a converging–diverging nozzle in gas dynamics. The discharge from 
an underflow gate is called a free outflow if the liquid jet streaming out of the 
gate is open to the atmosphere (Fig. 13–44a), and it is called a drowned (or 
submerged ) outflow if the discharged liquid flashes back and submerges the 
jet (Fig. 13–44b). In drowned flow, the liquid jet undergoes a hydraulic jump, 
and thus the downstream flow is subcritical. Also, drowned outflow in volves 
a high level of turbulence and backflow, and thus a large head loss hL.
 The flow depth-specific energy diagram for flow through underflow gates with 
free and drowned outflow is given in Fig. 13–45. Note that the specific energy 
remains constant for idealized gates with negligible frictional effects (from 
point 1 to point 2a), but decreases for actual gates. The downstream is supercriti-
cal for a gate with free outflow (point 2b), but subcritical for one with drowned 
outflow (point 2c) since a drowned outflow also involves a hydraulic jump to
subcritical flow, which involves considerable mixing and energy dissipation.
 Approximating the frictional effects as negligible and the upstream (or 
reservoir) velocity to be low, it can be shown by using the Bernoulli equa-
tion that the discharge velocity of a free jet is (see Chap. 5 for details)

 V 5 "2gy1 (13–76)

The frictional effects can be accounted for by modifying this relation with 
a discharge coefficient Cd. Then the discharge velocity at the gate and the 
flow rate become

 V 5 Cd"2gy1  and  V
#

5 Cdba"2gy1 (13–77)

where b and a are the width and the height of the gate opening, respectively.

y1

a

V1

(b) Sluice gate with drowned outflow

Sluice gate

V2y2

y1

a

V1

(a) Sluice gate with free outflow

Sluice gate

Vena contracta

V2y2

y1
V1

(c) Drum gate

V2y2

Drum

FIGURE 13–44
Common types of underflow gates to control flow rate.

Es

Es1 5 y1 1

Es1 5 Es2a

V 2

2g

y

2a2b

1

2c

Subcritical
flow

Drowned
outflow

Frictionless
gate

Supercritical
flow

1

FIGURE 13–45
Schematic and flow depth-specific 
energy diagram for flow through 
underflow gates.

725-786_cengel_ch13.indd   762 12/19/12   11:00 AM



763
CHAPTER 13

0
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y1/a
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Free outflow

Drowned outflow
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FIGURE 13–46
Discharge coefficients for drowned 

and free discharge from 
underflow gates.

Data from Henderson, Open Channel Flow, 
1st Edition, © 1966. Reprinted by permission of 

Pearson Education, Inc., Upper Saddle River, NJ.

y1 � 3 m

a � 0.25 m

y2 � 1.5 m

Sluice gate

FIGURE 13–47
Schematic for Example 13–9.

 The discharge coefficient Cd 5 1 for idealized flow, but Cd , 1 for actual 
flow through the gates. Experimentally determined values of Cd for under-
flow gates are plotted in Fig. 13–46 as functions of the contraction coef-
ficient y2/a and the depth ratio y1/a. Note that most values of Cd for free 
outflow from a vertical sluice gate range between 0.5 and 0.6. The Cd values 
drop sharply for drowned outflow, as expected, and the flow rate decreases 
for the same upstream conditions. For a given value of y1/a, the value of Cd 
decreases with increasing y2/a.

EXAMPLE 13–9    Sluice Gate with Drowned Outflow

Water is released from a 3-m-deep reservoir into a 6-m-wide open channel 

through a sluice gate with a 0.25-m-high opening at the channel bottom. The 

flow depth after all turbulence subsides is measured to be 1.5 m. Determine 

the rate of discharge (Fig. 13–47).

SOLUTION  Water is released from a reservoir through a sluice gate into 

an open channel. For specified flow depths, the rate of discharge is to be 

determined.

Assumptions  1 The flow is steady in the mean. 2 The channel is sufficiently 

wide so that the end effects are negligible.

Analysis  The depth ratio y1/a and the contraction coefficient y2/a are

y1

a
5

3 m

0.25 m
5 12  and  

y2

a
5

1.5 m

0.25 m
5 6
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The corresponding discharge coefficient is determined from Fig. 13–46 to be 

Cd 5 0.47. Then the discharge rate becomes

V
#

5 Cdba"2gy1 5 0.47(6 m)(0.25 m)"2(9.81 m/s2)(3 m) 5 5.41 m3/s

Discussion  In the case of free flow, the discharge coefficient would be Cd 5 

0.59, with a corresponding flow rate of 6.78 m3/s. Therefore, the flow rate 

decreases considerably when the outflow is drowned.

Overflow Gates
Recall that the total mechanical energy of a liquid at any cross section of an 
open channel can be expressed in terms of heads as H 5 zb 1 y 1 V 2/2g, 
where y is the flow depth, zb is the elevation of the channel bottom, and V 
is the average flow velocity. During flow with negligible frictional effects 
(head loss hL 5 0), the total mechanical energy remains constant, and the 
one-dimensional energy equation for open-channel flow between upstream 
section 1 and downstream section 2 is written as

 zb1 1 y1 1
V 

2
1

2g
5 zb2 1 y2 1

V 
2
2

2g
  or  Es1 5 Dzb 1 Es2 (13–78)

where Es 5 y 1 V 2/2g is the specific energy and Dzb 5 zb2 2 zb1 is the 
elevation of the bottom point of flow at section 2 relative to that at section 1. 
Therefore, the specific energy of a liquid stream increases by |Dzb| during 
downhill flow (note that Dzb is negative for channels inclined down), 
decreases by Dzb during uphill flow, and remains constant during horizontal 
flow. (The specific energy also decreases by hL for all cases if the frictional 
effects are not negligible.)
 For a channel of constant width b, V

#
 5 AcV 5 byV 5 constant in steady 

flow and V 5 V
#
/Ac. Then the specific energy becomes

 Es 5 y 1
V
#

2

2gb2y2 (13–79)

The variation of the specific energy Es with flow depth y for steady flow 
in a channel of constant width b is replotted in Fig. 13–48. This diagram is 
extremely valuable as it shows the allowable states during flow. Once the 
upstream conditions at a flow section 1 are specified, the state of the liquid 
at any section 2 on an Es–y diagram must fall on a point on the specific 
energy curve that passes through point 1.

Flow over a Bump with Negligible Friction
Now consider steady flow with negligible friction over a bump of height Dzb 
in a horizontal channel of constant width b, as shown in Fig. 13–47. The 
energy equation in this case is, from Eq. 13–78,

 Es2 5 Es1 2 Dzb (13–80)

Therefore, the specific energy of the liquid decreases by Dzb as it flows over 
the bump, and the state of the liquid on the Es–y diagram shifts to the left by 

Es

yc

Emin

Es 5 y

V 2

2g

y

y
Supercritical
flow, Fr . 1

Fr 5 1
Critical
depth

Subcritical
flow, Fr , 1

V 5 constant
.

FIGURE 13–48
Variation of specific energy Es with 
depth y for a specified flow rate in 
a channel of constant width.
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Dzb, as shown in Fig. 13–49. The conservation of mass equation for a chan-
nel of large width is y2V2 5 y1V1 and thus V2 5 ( y1/y2)V1. Then the specific 
energy of the liquid over the bump can be expressed as

 Es2 5 y2 1
V 

2
2

2g
  S  Es1 2 Dzb 5 y2 1

V 
2
1

2g
 
y2

1

y2
2

 (13–81)

Rearranging,

 y3
2 2 (Es1 2 Dzb)y

2
2 1

V 2
1

2g
 y2

1 5 0 (13–82)

which is a third-degree polynomial equation in y2 and thus has three solu-
tions. Disregarding the negative solution, it appears that the flow depth over 
the bump can have two values.
 Now the curious question is, does the liquid level rise or drop over the 
bump? Our intuition says the entire liquid body will follow the bump and 
thus the liquid surface will rise over the bump, but this is not necessarily so. 
Noting that specific energy is the sum of the flow depth and dynamic head, 
either scenario is possible, depending on how the velocity changes. The Es–y 
diagram in Fig. 13–49 gives us the definite answer: If the flow before the 
bump is subcritical (state 1a), the flow depth y2 decreases (state 2a). If the 
decrease in flow depth is greater than the bump height (i.e., y1 2 y2 . Dzb), 
the free surface is suppressed. But if the flow is supercritical as it approaches 
the bump (state 1b), the flow depth rises over the bump (state 2b), creating a 
bump along the free surface.
 The situation is reversed if the channel has a depression of depth Dzb 
instead of a bump: The specific energy in this case increases (so that state 2 
is to the right of state 1 on the Es–y diagram) since Dzb is negative. There-
fore, the flow depth increases if the approach flow is subcritical and 
decreases if it is supercritical.
 Now let’s reconsider flow over a bump with negligible friction, as dis-
cussed earlier. As the height of the bump Dzb is increased, point 2 (either 2a 
or 2b for sub- or supercritical flow) continues shifting to the left on the Es–y 
diagram, until finally reaching the critical point. That is, the flow over the 
bump is critical when the bump height is Dzc 5 Es1 2 Esc 5 Es1 2 Emin, and 
the specific energy of the liquid reaches its minimum level.
 The question that comes to mind is, what happens if the bump height is 
increased further? Does the specific energy of the liquid continue decreas-
ing? The answer to this question is a resounding no since the liquid is 
already at its minimum energy level, and its energy cannot decrease any 
further. In other words, the liquid is already at the furthest left point on 
the Es–y diagram, and no point further left can satisfy conservation of mass 
and energy and the momentum equation. Therefore, the flow must remain 
critical. The flow at this state is said to be choked. In gas dynamics, this is 
analogous to the flow in a converging nozzle accelerating as the back pres-
sure is lowered, and reaching the speed of sound at the nozzle exit when 
the back pressure reaches the critical pressure. But the nozzle exit velocity 
remains at the sonic level no matter how much the back pressure is lowered. 
Here again, the flow is choked.

EsEmin 5 Ec

y

Dzb Supercritical
flow

Subcritical
flow

2b

2a

1a

1b

V2V1

y1 y2

Dzb

Subcritical
upstream flow

Supercritical
upstream flow

Bump

FIGURE 13–49
Schematic and flow depth-specific 

energy diagram for flow over a bump 
for subcritical and supercritical 

upstream flows.
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Broad-Crested Weir
The discussions on flow over a high bump can be summarized as follows: 
The flow over a sufficiently high obstruction in an open channel is always 
critical. Such obstructions placed intentionally in an open channel to mea-
sure the flow rate are called weirs. Therefore, the flow velocity over a suffi-
ciently broad weir is the critical velocity, which is expressed as V 5 !gyc, 
where yc is the critical depth. Then the flow rate over a weir of width b is 
ex pressed as

 V
#

5 AcV 5 ycb"gyc 5 bg1/2y3/2
c  (13–83)

 A broad-crested weir is a rectangular block of height Pw and length Lw 
that has a horizontal crest over which critical flow occurs (Fig. 13–50). The 
upstream head above the top surface of the weir is called the weir head and 
is denoted by H. To obtain a relation for the critical depth yc in terms of 
weir head H, we write the energy equation between a section upstream and 
a section over the weir for flow with negligible friction as

 H 1 Pw 1
V 

2
1

2g
5 yc 1 Pw 1

V 2
c

2g
 (13–84)

Cancelling Pw from both sides and substituting Vc 5 !gyc give

 yc 5
2

3
 aH 1

V 
2
1

2g
b  (13–85)

Substituting into Eq. 13–83, the flow rate for this idealized flow case with 
negligible friction is determined to be

 V
#
ideal 5 b"ga2

3
b3/2aH 1

V  
2
1

2g
b3/2

 (13–86)

This relation shows the functional dependence of the flow rate on the flow 
parameters, but it overpredicts the flow rate by several percent because it 
does not consider the frictional effects. These effects are typically accounted 
for by modifying the theoretical relation (Eq. 13–86) with an experimentally 
determined weir discharge coefficient Cwd as

Broad-crested weir: V
#

5 Cwd, broadb"ga2

3
b3/2aH 1

V  
2
1

2g
b3/2

 (13–87)

where reasonably accurate values of discharge coefficients for broad-crested 
weirs can be obtained from (Chow, 1959)

 Cwd, broad 5
0.65"1 1 H/Pw

 (13–88)

More accurate but complicated relations for Cwd, broad are also available in 
the literature (e.g., Ackers, 1978). Also, the upstream velocity V1 is usu-
ally very low, and it can be disregarded. This is especially the case for high 
weirs. Then the flow rate is approximated as

Broad-crested weir with low V1: V
#
> Cwd, broadb"ga2

3
b3/2

H 3/2 (13–89)

V1

Pw

H
Discharge

Vc

Lw

yc

Broad-crested
weir

FIGURE 13–50
Flow over a broad-crested weir.
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 It should always be kept in mind that the basic requirement for the use 
of Eqs. 13–87 to 13–89 is the establishment of critical flow above the weir, 
and this puts some limitations on the weir length Lw. If the weir is too long 
(Lw . 12H), wall shear effects dominate and cause the flow over the weir to 
be subcritical. If the weir is too short (Lw , 2H ), the liquid may not be able 
to accelerate to critical velocity. Based on observations, the proper length of 
the broad-crested weir is 2H , Lw , 12H. Note that a weir that is too long 
for one flow may be too short for another flow, depending on the value of 
the weir head H. Therefore, the range of flow rates should be known before 
a weir can be selected.

Sharp-Crested Weirs
A sharp-crested weir is a vertical plate placed in a channel that forces the 
liquid to flow through an opening to measure the flow rate. The type of the 
weir is characterized by the shape of the opening. A vertical thin plate with 
a straight top edge is referred to as rectangular weir since the cross section 
of the flow over it is rectangular; a weir with a triangular opening is referred 
to as a triangular weir; etc.
 Upstream flow is subcritical and becomes critical as it approaches the 
weir. The liquid continues to accelerate and discharges as a supercritical flow 
stream that resembles a free jet. The reason for acceleration is the steady 
decline in the elevation of the free surface, and the conversion of this ele-
vation head into velocity head. The flow-rate correlations given below are 
based on the free overfall of liquid discharge past the weir, called a nappe, 
being clear from the weir. It may be necessary to ventilate the space under 
the nappe to assure atmospheric pressure underneath. Empirical relations for 
drowned weirs are also available.
 Consider the flow of a liquid over a sharp-crested weir placed in a hori-
zontal channel, as shown in Fig. 13–51. For simplicity, the velocity upstream 
of the weir is approximated as being nearly constant through vertical cross 
section 1. The total energy of the upstream liquid expressed as a head rela-
tive to the channel bottom is the specific energy, which is the sum of the 
flow depth and the velocity head. That is, y1 1 V 1

2/2g, where y1 5 H 1 Pw. 
The flow over the weir is not one-dimensional since the liquid undergoes 
large changes in velocity and direction over the weir. But the pressure 
within the nappe is atmospheric.
 A simple relation for the variation of liquid velocity over the weir is 
ob tained by assuming negligible friction and writing the Bernoulli equation 
between a point in upstream flow (point 1) and a point over the weir at a 
distance h from the upstream liquid level as

 H 1 Pw 1
V 2

1

2g
5 (H 1 Pw 2 h) 1

u2
2

2g
 (13–90)

Cancelling the common terms and solving for u2, the idealized velocity dis-
tribution over the weir is determined to be

 u2 5 "2gh 1 V 2
1 (13–91)

In reality, the liquid surface level drops somewhat over the weir as the liquid 
starts its free overfall (the drawdown effect at the top) and the flow separation 
at the top edge of the weir further narrows the nappe (the contraction effect 

y

x

V1

u2(h)
h

Nappe

Weir
(2)

(1)

H

Pw

2
1

FIGURE 13–51
Flow over a sharp-crested weir.
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at the bottom). As a result, the flow height over the weir is considerably 
smaller than H. When the drawdown and contraction effects are disregarded 
for simplicity, the flow rate is obtained by integrating the product of the 
flow velocity and the differential flow area over the entire flow area,

 V
#

5 #
Ac

 u2 dAc2 5 #
H

h50
 "2gh 1 V 

2
1 w dh (13–92)

where w is the width of the flow area at distance h from the upstream free 
surface.
 In general, w is a function of h. But for a rectangular weir, w 5 b, which 
is constant. Then the integration can be performed easily, and the flow rate 
for a rectangular weir for idealized flow with negligible friction and negli-
gible drawdown and contraction effects is determined to be

 V
#
ideal 5

2

3
 b"2g c aH 1

V  
2
1

2g
b3/2

2 aV  
2
1

2g
b3/2 d  (13–93)

When the weir height is large relative to the weir head (Pw .. H), the 
upstream velocity V1 is low and the upstream velocity head can be neglected. 
That is, V 1

2/2g ,, H. Then,

 V
#
ideal, rec >

2

3
 b"2gH3/2 (13–94)

Therefore, the flow rate can be determined from knowledge of two geometric 
quantities: the crest width b and the weir head H, which is the vertical dis-
tance between the weir crest and the upstream free surface.
 This simplified analysis gives the general form of the flow-rate relation, 
but it needs to be modified to account for the frictional and surface tension 
effects, which play a secondary role, as well as the drawdown and contrac-
tion effects. Again this is done by multiplying the ideal flow-rate relations by 
an experimentally determined weir discharge coefficient Cwd. Then the flow 
rate for a sharp-crested rectangular weir is expressed as

Sharp-crested rectangular weir: V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2 (13–95)

where, from Ref. 1 (Ackers, 1978),

 Cwd, rec 5 0.598 1 0.0897
H

Pw

  for  
H

Pw

# 2 (13–96)

This formula is applicable over a wide range of upstream Reynolds number 
defined as Re 5 V1H/n. More precise but also more complex correlations 
are also available in the literature. Note that Eq. 13–95 is valid for full-width 
rectangular weirs. If the width of the weir is less than the channel width so 
that the flow is forced to contract, an additional coefficient for contraction 
correction should be incorporated to properly account for this effect.
 Another type of sharp-crested weir commonly used for flow measurement 
is the triangular weir (also called the V-notch weir) shown in Fig. 13–52. 
The triangular weir has the advantage that it maintains a high weir head H 
even for small flow rates because of the decreasing flow area with decreasing H, 
and thus it can be used to measure a wide range of flow rates accurately.
 From geometric consideration, the notch width can be expressed as 
w 5 2(H 2 h) tan(u/2), where u is the V-notch angle. Substituting into 
Eq. 13–92 and performing the integration give the ideal flow rate for a 
triangular weir to be

Upstream free
surface

Weir
plate

u
H

w h

Pw

FIGURE 13–52
A triangular (or V-notch) sharp-crested 
weir plate geometry. The view is from 
downstream looking upstream.
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 V
#
ideal, tri 5

8

15
 tanau

2
b"2gH 5/2 (13–97)

where we again neglected the upstream velocity head. The frictional and 
other dissipative effects are again accounted for conveniently by multiplying 
the ideal flow rate by a weir discharge coefficient. Then the flow rate for a 
sharp-crested triangular weir becomes

Sharp-crested triangular weir: V
#

5 Cwd, tri

8

15
 tanau

2
b"2gH 5/2 (13–98)

where the values of Cwd, tri typically range between 0.58 and 0.62. Therefore, 
the fluid friction, the constriction of flow area, and other dissipative effects 
cause the flow rate through the V-notch to decrease by about 40 percent 
compared to the ideal case. For most practical cases (H . 0.2 m and
458 ,  u  , 1208), the value of the weir discharge coefficient is about
Cwd, tri 5 0.58. More precise values are available in the literature.

EXAMPLE 13–10    Subcritical Flow over a Bump

Water flowing in a wide horizontal open channel encounters a 15-cm-high 

bump at the bottom of the channel. If the flow depth is 0.80 m and the 

velocity is 1.2 m/s before the bump, determine if the water surface is 

depressed over the bump (Fig. 13–53) and if so, by how much.

SOLUTION  Water flowing in a horizontal open channel encounters a bump. 

It will be determined if the water surface is depressed over the bump.

Assumptions  1 The flow is steady. 2 Frictional effects are negligible so that 

there is no dissipation of mechanical energy. 3 The channel is sufficiently 

wide so that the end effects are negligible.

Analysis  The upstream Froude number and the critical depth are

 Fr1 5
V1"gy1

5
1.2 m/s"(9.81 m2/s)(0.80 m)

5 0.428

yc 5 a 
V
#
2

gb2b1/3

5 a(by1V1)
2

gb2 b1/3

5 ay2
1V 

2
1

g
b1/3

5 a(0.8 m)2(1.2 m/s)2

9.81 m/s2 b1/3

5 0.455 m

The flow is subcritical since Fr , 1 and therefore the flow depth decreases 

over the bump. The upstream specific energy is

Es1 5 y1 1
V 2

1

2g
5 (0.80 m) 1

(1.2 m/s)2

2(9.81 m/s2)
5 0.873 m

The flow depth over the bump is determined from

y3
2 2 (Es1 2 Dzb)y

2
2 1

V 
2
1

2g
 y2

1 5 0

Substituting,

y3
2 2 (0.873 2 0.15 m)y2

2 1
(1.2 m/s)2

2(9.81 m/s2)
 (0.80 m)2 5 0

or

y3
2 2 0.723y2

2 1 0.0470 5 0

EsEs1Es2

y2

y1

y

Dzb

Subcritical
flow2

1

V1 5 1.2 m/s

y1 5 0.80 m y2
Dzb 5 0.15 m

Depression
over the bump

Bump

FIGURE 13–53
Schematic and flow depth-specific 

energy diagram for Example 13–10.
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Using an equation solver, the three roots of this equation are determined 

to be 0.59 m, 0.36 m, and 20.22 m. We discard the negative solution as 

physically impossible. We also eliminate the solution 0.36 m since it is less 

than the critical depth, and it can occur only in supercritical flow. Thus the 

only meaningful solution for flow depth over the bump is y2 5 0.59 m. Then 

the distance of the water surface over the bump from the channel bottom is 

Dzb 1 y2 5 0.15 1 0.59 5 0.74 m, which is less than y1 5 0.80 m. There-

fore, the water surface is depressed over the bump in the amount of

Depression 5 y1 2 (
 
y2 1 Dzb) 5 0.80 2 (0.59 1 0.15) 5 0.06 m

Discussion  Note that having y2 , y1 does not necessarily indicate that the 

water surface is depressed (it may still rise over the bump). The surface is 

depressed over the bump only when the difference y1 2 y2 is larger than 

the bump height Dzb. Also, the actual value of depression may be differ-

ent than 0.06 m because of the frictional effects that are neglected in the 

analysis.

EXAMPLE 13–11    Measuring Flow Rate by a Weir

The flow rate of water in a 5-m-wide horizontal open channel is being mea-

sured with a 0.60-m-high sharp-crested rectangular weir of equal width. If the 

water depth upstream is 1.5 m, determine the flow rate of water (Fig. 13–54).

SOLUTION  The water depth upstream of a horizontal open channel equip-

ped with a sharp-crested rectangular weir is measured. The flow rate is to be 

determined.

Assumptions  1 The flow is steady. 2 The upstream velocity head is negligi-

ble. 3 The channel is sufficiently wide so that the end effects are negligible.

Analysis  The weir head is

H 5 y1 2 Pw 5 1.5 2 0.60 5 0.90 m

The discharge coefficient of the weir is

Cwd, rec 5 0.598 1 0.0897 
H

Pw

5 0.598 1 0.0897 
0.90

0.60
5 0.733

The condition H/Pw , 2 is satisfied since 0.9/0.6 5 1.5. Then the water 

flow rate through the channel becomes

 V
#
rec 5 Cwd, rec 

2

3
 b"2gH 3/2

 5 (0.733) 
2

3
 (5 m)"2(9.81 m/s2)(0.90 m)3/2

 5 9.24 m3/s

Discussion  The upstream velocity and the upstream velocity head are

V1 5
V
#

by1

5
9.24 m3/s

(5 m)(1.5 m)
5 1.23 m/s  and  

V 2
1

2g
5

(1.23 m/s)2

2(9.81 m/s2)
5 0.077 m

This is 8.6 percent of the weir head, which is significant. When the upstream 

velocity head is considered, the flow rate becomes 10.2 m3/s, which is about 

10 percent higher than the value determined. Therefore, it is good practice 

to consider the upstream velocity head unless the weir height Pw is very large 

relative to the weir head H.

V1

Sharp-crested
rectangular weir

y1 � 1.5 m

Pw � 0.60 m

b � 5 m

FIGURE 13–54
Schematic for Example 13–11.
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Bridge scour is the most common cause of bridge failure in the United States 
(Wardhana and Hadipriono, 2003). Bridge scour is the erosion of a stream 
or river channel bed in the vicinity of a bridge, including erosion around the 
bridge piers and abutments as well as the erosion and lowering of the entire 
channel bed. Scour around bridge foundations has been a leading cause of 
bridge failure for the nearly 400,000 bridges over waterways in the United 
States. A few recent examples of the damage that can be caused by high 
flows in rivers at bridges illustrate the magnitude of the problem. During the 
1993 flood in the upper Mississippi and lower Missouri river basins, at least 
22 of the 28 bridge failures were due to scour, at an estimated cost of more 
than $8 million (Kamojjala et al., 1994). During the “Super Flood” in Ten-
nessee in 2010 in which more than 30 counties were declared major disaster 
areas, flooding in Tennessee’s rivers caused scour and embankment erosion 
at 587 bridges and resulted in the closure of more than 50 bridges. In the 
fall of 2011, Hurricane Irene and Tropical Storm Lee in the mid-Atlantic 
and northeast U.S. caused flooding in rivers that resulted in numerous bridge 
failures and damage to bridges due to scour.
 The mechanics of scour at bridge piers has been studied in laboratories 
and computer models. The primary mechanism is thought to be due to a 
“horseshoe” vortex that forms during floods as an adverse pressure gradi-
ent caused by the pier drives a portion of the approach flow downward just 
ahead of the pier (Arneson et al, 2012). The rate of erosion of the scour hole 
is directly associated with the magnitude of the downflow, which is directly 
related to the velocity of the approaching river flow. The strong vortex lifts 
the sediment out of the hole and deposits it downstream in the wake vor-
tex. The result is a deep hole upstream of the bridge pier that can cause the 
bridge foundation to become unstable.
 Protecting bridge piers over rivers and streams against the damaging flood-
waters remains a major challenge for states across the country. Flood flows in 
channels have enormous capacity to move sediment and rock; thus, traditional 
protection, such as riprap, is often not sufficient. There has been considerable 
research on the use of vanes and similar structures in the river channel to help 
direct the flow around the bridge piers and abutments and provide a smoother 
transition of the flow through the bridge opening (Johnson et al, 2010).
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APPLICATION SPOTLIGHT ■ Bridge Scour

FIGURE 13–55
A scour hole developed around this 

bridge pier near San Diego during 
high flows in the river channel.

Photo by Peggy Johnson, Penn State, 
used by permission.

FIGURE 13–56
Scour that developed around the bridge 

foundation during a 50 year flood in 
1996 caused this bridge to fail in 

central PA. A temporary metal bridge 
was placed across the opening while a 

new bridge was being designed.
Photo by Peggy Johnson, Penn State, 

used by permission.
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SUMMARY

Open-channel flow refers to the flow of liquids in channels 
open to the atmosphere or in partially filled conduits. The flow 
in a channel is said to be uniform if the flow depth (and thus 
the average velocity) remains constant. Otherwise, the flow 
is said to be nonuniform or varied. The hydraulic radius is 
defined as Rh 5 Ac/p. The dimensionless Froude number is 
defined as

Fr 5
V"gLc

5
V"gy

The flow is classified as subcritical for Fr , 1, critical for 
Fr 5 1, and supercritical for Fr . 1. Flow depth in critical 
flow is called the critical depth and is expressed as

yc 5
V
#

 
2

gA2
c

  or  yc 5 a V
#

 
2

 gb2b1/3

where b is the channel width for wide channels.
 The speed at which a surface disturbance travels through 
a liquid of depth y is the wave speed c0, which is expressed 
as c0 5 !gy. The total mechanical energy of a liquid in a 
channel is expressed in terms of heads as

H 5 zb 1 y 1
V 

2

2g

where zb is the elevation head, P/rg 5 y is the pressure head, 
and V 2/2g is the velocity head. The sum of the pressure and 
dynamic heads is called the specific energy Es,

Es 5 y 1
V 

2

2g

The conservation of mass equation is Ac1V1 5 Ac2V2. The 
energy equation is expressed as

y1 1
V 

2
1

2g
1 S0L 5 y2 1

V 
2
2

2g
1 hL

Here hL is the head loss and S0 5 tan u is the bottom slope 
of a channel. The friction slope is defined as Sf 5 hL/L.
 The flow depth in uniform flow is called the normal depth 
yn, and the average flow velocity is called the uniform-flow 
velocity V0. The velocity and flow rate in uniform flow are 
given by

V0 5
a
n

R2/3
h S1/2

0   and  V
#

5
a
n

AcR
2/3
h S 1/2

0

where n is the Manning coefficient whose value depends on 
the roughness of the channel surfaces, and a 5 1 m1/3/s 5 
(3.2808 ft)1/3/s 5 1.486 ft1/3/s. If yn 5 yc, the flow is uniform 
critical flow, and the bottom slope S0 equals the critical slope 
Sc expressed as

Sc 5
gn2yc

a2R4/3
h

  which simplifies to  Sc 5
gn2

a2y1/3
c

for film flow or flow in a wide rectangular channel with 
b .. yc.
 The best hydraulic cross section for an open channel is 
the one with the maximum hydraulic radius, or equivalently, 
the one with the minimum wetted perimeter for a specified 
cross-sectional area. The criteria for best hydraulic cross 
section for a rectangular channel is y 5 b/2. The best cross 
section for trapezoidal channels is half of a hexagon.
 In gradually varied flow (GVF), the flow depth changes 
gradually and smoothly with downstream distance. The surface 
profile y(x) is calculated by integrating the GVF equation,

dy

dx
5

S0 2 Sf

1 2 Fr2

 In rapidly varied flow (RVF), the flow depth changes 
markedly over a relatively short distance in the flow direc-
tion. Any change from supercritical to subcritical flow 
occurs through a hydraulic jump, which is a highly dissipa-
tive process. The depth ratio y2/y1, head loss, and energy dis-
sipation ratio during hydraulic jump are expressed as

y2

y1
5 0.5 A21 1 "1 1 8Fr2

1 B
 hL 5 y1 2 y2 1

V 
2
1 2 V 

2
2

2g
 

 5 y1 2 y2 1
y1Fr2

1

2
a1 2

y2
1

y2
2

b 

Dissipation ratio 5
hL

Es1

5
hL

y1 1 V 
2
1/2g

 

 5
hL

y1(1 1 Fr2
1 /2)

 

 An obstruction that allows the liquid to flow over it is called 
a weir, and an obstruction with an adjustable opening at the 
bottom that allows the liquid to flow underneath it is called an 
underflow gate. The flow rate through a sluice gate is given by

V
#

5 Cdba"2gy1

where b and a are the width and the height of the gate open-
ing, respectively, and Cd is the discharge coefficient, which 
accounts for the frictional effects.
 A broad-crested weir is a rectangular block that has a hor-
izontal crest over which critical flow occurs. The upstream 
head above the top surface of the weir is called the weir 
head, H. The flow rate is expressed as

V
#

5 Cwd, broadb"ga2

3
b3/2aH 1

V 2
1

2g
b3/2

where the discharge coefficient is
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Cwd, broad 5
0.65"1 1 H/Pw

The flow rate for a sharp-crested rectangular weir is 
expressed as

V
#
rec 5 Cwd, rec

2

3
b"2gH 3/2

where

Cwd, rec 5 0.598 1 0.0897
H

Pw

  for 
H

Pw

# 2

For a sharp-crested triangular weir, the flow rate is given as

V
#

5 Cwd, tri

8

15
  tanau

2
b"2gH 5/2

where the values of Cwd,  tri typically range between 0.58 
and 0.62.
 Open-channel analysis is commonly used in the design 
of sewer systems, irrigation systems, floodways, and dams. 
Some open-channel flows are analyzed in Chap. 15 using 
computational fluid dynamics (CFD).
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Classification, Froude Number, and Wave Speed

13–1C  What is normal depth? Explain how it is established 
in open channels.

13–2C  How does the pressure change along the free surface 
in an open-channel flow?

13–3C  Consider steady fully developed flow in an open 
channel of rectangular cross section with a constant slope of 58 
for the bottom surface. Will the slope of the free surface also 
be 58? Explain.

13–4C  What causes the flow in an open channel to be var-
ied (or nonuniform)? How does rapidly varied flow differ 
from gradually varied flow?

13–5C  What is the driving force for flow in an open chan-
nel? How is the flow rate in an open channel established?

13–6C  How does uniform flow differ from nonuniform 
flow in open channels? In what kind of channels is uniform 
flow observed?

13–7C  Given the average flow velocity and the flow depth, 
explain how you would determine if the flow in open chan-
nels is tranquil, critical, or rapid.

13–8C  The flow in an open channel is observed to have 
undergone a hydraulic jump. Is the flow upstream from the 
jump necessarily supercritical? Is the flow downstream from 
the jump necessarily subcritical?

13–9C  What is critical depth in open-channel flow? For a 
given average flow velocity, how is it determined?

13–10C  What is the Froude number? How is it defined? 
What is its physical significance?

13–11  A single wave is initiated in a sea by a strong jolt 
during an earthquake. Taking the average water depth to be 
2  km and the density of seawater to be 1.030 kg/m3, deter-
mine the speed of propagation of this wave.

PROBLEMS*

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Problems 

with the  icon are solved using EES, and complete solutions 

together with parametric studies are included on the text website. 

Problems with the  icon are comprehensive in nature and are 

intended to be solved with an equation solver such as EES.
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0.75 m

R � 1.5 m

FIGURE P13–19

13–12  Consider the flow of water in a wide channel. Deter-
mine the speed of a small disturbance in the flow if the flow 
depth is (a) 25 cm and (b) 80 cm. What would your answer 
be if the fluid were oil?

13–13  Water at 158C is flowing uniformly in a 2-m-wide 
rectangular channel at an average velocity of 1.5 m/s. If the 
water depth is 24 cm, determine whether the flow is subcriti-
cal or supercritical.  Answer: subcritical

13–14  After heavy rain, water flows on a concrete surface 
at an average velocity of 1.3 m/s. If the water depth is 2 cm, 
determine whether the flow is subcritical or supercritical.

13–15E  Water at 708F is flowing uniformly in a wide rect-
angular channel at an average velocity of 6 ft/s. If the water 
depth is 0.5 ft, determine (a) whether the flow is laminar 
or turbulent and (b) whether the flow is subcritical or 
supercritical.

13–16  Water at 208C is flowing uniformly in a wide rectan-
gular channel at an average velocity of 1.5 m/s. If the water 
depth is 0.16 m, determine (a) whether the flow is lami-
nar or turbulent and (b) whether the flow is subcritical or 
supercritical.

13–17  Water at 108C flows in a 3-m-diameter circular chan-
nel half-full at an average velocity of 2.5 m/s. Determine the 
hydraulic radius, the Reynolds number, and the flow regime 
(laminar or turbulent).

13–18  Repeat Prob. 13–17 for a channel diameter of 2 m.

13–19  Water at 208C flows in a partially full 3-m-diameter 
circular channel at an average velocity of 2 m/s. If the maxi-
mum water depth is 0.75 m, determine the hydraulic radius, 
the Reynolds number, and the flow regime.

13–22C  Consider steady flow of a liquid through a wide 
rectangular channel. It is claimed that the energy line of flow 
is parallel to the channel bottom when the frictional losses 
are negligible. Do you agree?

13–23C  Consider steady one-dimensional flow through 
a wide rectangular channel. Someone claims that the total 
mechanical energy of the fluid at the free surface of a cross 
section is equal to that of the fluid at the channel bottom of 
the same cross section. Do you agree? Explain.

13–24C  How is the total mechanical energy of a fluid dur-
ing steady one-dimensional flow through a wide rectangular 
channel expressed in terms of heads? How is it related to the 
specific energy of the fluid?

13–25C  Express the one-dimensional energy equation 
for open-channel flow between an upstream section 1 and 
downstream section 2, and explain how the head loss can be 
determined.

13–26C  For a given flow rate through an open channel, the 
variation of specific energy with flow depth is studied. One 
person claims that the specific energy of the fluid will be 
minimum when the flow is critical, but another person claims 
that the specific energy will be minimum when the flow is 
subcritical. What is your opinion?

13–27C  Consider steady supercritical flow of water through 
an open rectangular channel at a constant flow rate. Someone 
claims that the larger is the flow depth, the larger the specific 
energy of water. Do you agree? Explain.

13–28C  During steady and uniform flow through an open 
channel of rectangular cross section, a person claims that the 
specific energy of the fluid remains constant. A second per-
son claims that the specific energy decreases along the flow 
because of the frictional effects and thus head loss. With 
which person do you agree? Explain.

13–29C  How is the friction slope defined? Under what con-
ditions is it equal to the bottom slope of an open channel?

13–30  Water at 158C flows at a depth of 0.4 m with 
an average velocity of 6 m/s in a rectangular 

channel. Determine (a) the critical depth, (b) the alternate 
depth, and (c) the minimum specific energy.

13–31  Water at 108C flows in a 6-m-wide rectangular chan-
nel at a depth of 0.55 m and a flow rate of 12 m3/s. Determine 
(a) the critical depth, (b) whether the flow is subcritical 
or supercritical, and (c) the alternate depth.  Answers: 

(a) 0.742 m, (b) supercritical, (c) 1.03 m

13–32E  Water at 658F flows at a depth of 1.4 ft with an 
average velocity of 20 ft/s in a wide rectangular channel. 
Determine (a) the Froude number, (b) the critical depth, 
and (c) whether the flow is subcritical or supercritical. What 
would your response be if the flow depth were 0.2 ft?

13–33E  Repeat Prob. 13–32E for an average velocity of 
10 ft/s.

Specific Energy and the Energy Equation

13–20C  Consider steady flow of water through two identi-
cal open rectangular channels at identical flow rates. If the 
flow in one channel is subcritical and in the other supercriti-
cal, can the specific energies of the water in these two chan-
nels be identical? Explain.

13–21C  How is the specific energy of a fluid flowing in an 
open channel defined in terms of heads?
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13–34  Water flows steadily in a 1.4-m-wide rectangular 
channel at a rate of 0.7 m3/s. If the flow depth is 0.40 m, 
determine the flow velocity and if the flow is subcritical or 
supercritical. Also determine the alternate flow depth if the 
character of flow were to change.
13–35  Water at 208C flows at a depth of 0.4 m with an 
average velocity of 4 m/s in a rectangular channel. Determine 
the specific energy of the water and whether the flow is sub-
critical or supercritical.

13–36  Water flows half-full through a hexagonal channel 
of bottom width 2 m at a rate of 60 m3/s. Determine (a) the 
average velocity and (b) whether the flow is subcritical and 
supercritical.

13–37  Repeat Prob. 13–36 for a flow rate of 30 m3/s.

13–38  Water flows half-full through a 50-cm-diameter steel 
channel at an average velocity of 2.8 m/s. Determine the volume 
flow rate and whether the flow is subcritical or supercritical.

13–39  Water flows through a 2-m-wide rectangular chan-
nel with an average velocity of 5 m/s. If the flow is critical, 
determine the flow rate of water.  Answer: 25.5 m3/s

Uniform Flow and Best Hydraulic Cross Sections
13–40C  When is the flow in an open channel said to be 
uniform? Under what conditions will the flow in an open 
channel remain uniform?

13–41C  Which is a better hydraulic cross section for an 
open channel: one with a small or a large hydraulic radius?

13–42C  Which is the best hydraulic cross section for an 
open channel: (a) circular, (b) rectangular, (c) trapezoidal, or 
(d ) triangular?

13–43C  The best hydraulic cross section for a rectangular 
open channel is one whose fluid height is (a) half, (b) twice, 
(c) equal to, or (d ) one-third the channel width.

13–44C  The best hydraulic cross section for a trapezoidal 
channel of base width b is one for which the length of the side 
edge of the flow section is (a) b, (b) b/2, (c) 2b, or (d) !3b.

13–45C  During uniform flow in an open channel, someone 
claims that the head loss can be determined by simply multi-
plying the bottom slope by the channel length. Can it be this 
simple? Explain.

13–46C  Consider uniform flow through a wide rectangular 
channel. If the bottom slope is increased, the flow depth will 
(a) increase, (b) decrease, or (c) remain constant.

13–47  Consider uniform flow through an open channel 
lined with bricks with a Manning coefficient of n 5 0.015. 
If the Manning coefficient doubles (n 5 0.030) as a result of 
some algae growth on surfaces while the flow cross section 
remains constant, the flow rate will (a) double, (b) decrease 
by a factor of !2, (c) remain unchanged, (d) decrease by 
half, or (e) decrease by a factor of 21/3.

13–48  Water flows uniformly half-full in a 2-m-diameter 
circular channel that is laid on a grade of 1.5 m/km. If the 
channel is made of finished concrete, determine the flow rate 
of the water.

13–49  Water is flowing uniformly in a finished-concrete 
channel of trapezoidal cross section with a bottom width of 
0.8 m, trapezoid angle of 508, and a bottom angle of 0.48. If 
the flow depth is measured to be 0.52 m, determine the flow 
rate of water through the channel.

y � 0.52 m

u � 50°

b � 0.8 m

FIGURE P13–49

2.2 m

12 m

6 m

FIGURE P13–53

13–50E  A 3-ft-diameter semicircular channel made of 
unfinished concrete is to transport water to a distance of 1 mi 
uniformly. If the flow rate is to reach 90 ft3/s when the 
channel is full, determine the minimum elevation difference 
across the channel.

13–51  During uniform flow in open channels, the flow 
velocity and the flow rate can be determined from the 
 Manning equations expressed as V0 5 (a/n)Rh

2/3S0
1/2 and V

#
 5 

(a/n)AcRh
2/3S0

1/2. What is the value and dimension of the con-
stant a in these equations in SI units? Also, explain how the 
Manning coefficient n can be determined when the friction 
factor f is known.

13–52  Show that for uniform critical flow, the general

critical slope relation Sc 5
gn2yc

a2R4/3
h

 reduces to Sc 5
gn2

a2y1/3
c

 for

film flow with b .. yc.

13–53  A trapezoidal channel with a bottom width of 6 m, 
free surface width of 12 m, and flow depth of 2.2 m dis-
charges water at a rate of 120 m3/s. If the surfaces of the 
channel are lined with asphalt (n 5 0.016), determine the 
elevation drop of the channel per km.  Answer: 5.61 m
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1.5 m
R � 1 m

FIGURE P13–61

13–54  Reconsider Prob. 13–53. If the maximum flow 
height the channel can accommodate is 3.2 m, determine the 
maximum flow rate through the channel.

13–55  Consider water flow through two identical channels 
with square flow sections of 4 m 3 4 m. Now the two channels 
are combined, forming a 8-m-wide channel. The flow rate 
is adjusted so that the flow depth remains constant at 4 m. 
Determine the percent increase in flow rate as a result of 
combining the channels.

13–58  A clean-earth trapezoidal channel with a bottom 
width of 1.8 m and a side surface slope of 1:1 is to drain 
water uniformly at a rate of 8 m3/s to a distance of 1 km. If 
the flow depth is not to exceed 1.2 m, determine the required 
elevation drop.  Answer: 3.90 m

13–59  A water draining system with a constant slope of 
0.0025 is to be built of three circular channels made of fin-
ished concrete. Two of the channels have a diameter of 1.8 m 
and drain into the third channel. If all channels are to run 
half-full and the losses at the junction are negligible, deter-
mine the diameter of the third channel.  Answer: 2.33 m

13–60  Water flows in a channel whose bottom slope is 
0.002 and whose cross section is as shown in Fig. P13–60. 
The dimensions and the Manning coefficients for the surfaces 
of different subsections are also given on the figure. Determine 
the flow rate through the channel and the effective Manning 
coefficient for the channel.

4 m

4 m

4 m

4 m

FIGURE P13–55

13–56  A cast iron V-shaped water channel shown in 
Fig. P13–56 has a bottom slope of 0.58. For a flow depth of 
0.75 m at the center, determine the discharge rate in uniform 
flow. Answer: 1.03 m3/s

13–61  A 2-m-internal-diameter circular steel storm drain 
(n 5 0.012) is to discharge water uniformly at a rate of 12 m3/s 
to a distance of 1 km. If the maximum depth is to be 1.5 m, 
determine the required elevation drop.

13–62  Water is to be transported at a rate of 10 m3/s in 
uniform flow in an open channel whose surfaces are asphalt 
lined. The bottom slope is 0.0015. Determine the dimensions 
of the best cross section if the shape of the channel is (a) cir-
cular of diameter D, (b) rectangular of bottom width b, and (c) 
trap e zoidal of bottom width b.

20° 20°
0.75 m

FIGURE P13–56

13–57E  Water is to be transported in a cast iron rectangular 
channel with a bottom width of 6 ft at a rate of 70 ft3/s. 
The terrain is such that the channel bottom drops 1.5 ft per 
1000 ft length. Determine the minimum height of the channel 
under uniform-flow conditions.

y

b � 6 ft

V � 70 ft3/s
.

FIGURE P13–57E

6 m

1.5 m

2 m

2 m

10 m

Light brush
n2 5 0.050

Concrete
channel

n1 5 0.014

1 2

FIGURE P13–60
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the flow depth will (a) increase, (b) remain constant, or (c) 
decrease in the flow direction.

13–75C  Consider steady flow of water in a downward-
sloped channel of rectangular cross section. If the flow is 
subcritical and the flow depth is greater than the normal 
depth ( y . yn), the flow depth will (a) increase, (b) remain 
constant, or (c) decrease in the flow direction.

13–76C  Consider steady flow of water in a horizontal chan-
nel of rectangular cross section. If the flow is supercritical, 
the flow depth will (a) increase, (b) remain constant, or (c) 
decrease in the flow direction.

13–77C  Consider steady flow of water in a downward-
sloped channel of rectangular cross section. If the flow is 
subcritical and the flow depth is less than the normal depth 
( y  ,  yn), the flow depth will (a) increase, (b) remain con-
stant, or (c) decrease in the flow direction.

13–78  Water is flowing in a 908 V-shaped cast iron channel 
with a bottom slope of 0.002 at a rate of 3 m3/s. Determine if 
the slope of this channel should be classified as mild, critical, 
or steep for this flow.  Answer: mild

13–79  Consider uniform water flow in a wide brick channel 
of slope 0.48. Determine the range of flow depth for which 
the channel is classified as being steep.

13–80E  Consider the flow of water through a 12-ft-wide 
unfinished-concrete rectangular channel with a bottom slope 
of 0.58. If the flow rate is 300 ft3/s, determine if the slope of 
this channel is mild, critical, or steep. Also, for a flow depth 
of 3 ft, classify the surface profile while the flow develops.

13–81  Water flows uniformly in a rectangular channel with 
finished-concrete surfaces. The channel width is 3 m, the flow 
depth is 1.2 m, and the bottom slope is 0.002. Determine if the 
channel should be classified as mild, critical, or steep for this flow.

13–63  Consider uniform flow in an asphalt-lined rect-
angular channel with a flow area of 2 m2 and a 

bottom slope of 0.0003. By varying the depth-to-width ratio 
y/b from 0.1 to 2.0, calculate and plot the flow rate, and con-
firm that the best flow cross section occurs when the flow 
depth-to-width ratio is 0.5.

13–64E  A rectangular channel with a bottom slope of 
0.0004 is to be built to transport water at a rate of 750 ft3/s. 
Determine the best dimensions of the channel if it is to be 
made of (a) unfinished concrete and (b) finished concrete.  
Answer: (a) 16.6 ft 3 8.28 ft, (b) 15.6 ft 3 7.81 ft

13–65E  Repeat Prob. 13–64E for a flow rate of 650 ft3/s.

13–66  A trapezoidal channel made of unfinished concrete 
has a bottom slope of 18, base width of 5 m, and a side sur-
face slope of 1:1, as shown in Fig. P13–55. For a flow rate of 
25 m3/s, determine the normal depth h.

y � 1.2 m

b � 3 m

FIGURE P13–81

13–82  Water discharging into an 8-m-wide rectangular 
horizontal channel from a sluice gate is observed 

to have undergone a hydraulic jump. The flow depth and 
velocity before the jump are 1.2 m and 9 m/s, respectively. 
Determine (a) the flow depth and the Froude number after 
the jump, (b) the head loss and the dissipation ratio, and (c) the 
mechanical energy dissipated by the hydraulic jump.

45° 45°

5 m

h

FIGURE P13–66

13–67  Repeat Prob. 13–66 for a weedy excavated earth 
channel with n 5 0.030.

Gradually and Rapidly Varied Flows and Hydraulic Jump

13–68C  How does gradually varied flow (GVF) differ from 
rapidly varied flow (RVF)?

13–69C  How does nonuniform or varied flow differ from 
uniform flow?

13–70C  Someone claims that frictional losses associated 
with wall shear on surfaces can be neglected in the analysis 
of rapidly varied flow, but should be considered in the analy-
sis of gradually varied flow. Do you agree with this claim? 
Justify your answer.

13–71C  Consider steady flow of water in an upward-sloped 
channel of rectangular cross section. If the flow is supercriti-
cal, the flow depth will (a) increase, (b) remain constant, or 
(c) decrease in the flow direction.

13–72C  Is it possible for subcritical flow to undergo a 
hydraulic jump? Explain.

13–73C  Why is the hydraulic jump sometimes used to dis-
sipate mechanical energy? How is the energy dissipation ratio 
for a hydraulic jump defined?

13–74C  Consider steady flow of water in a horizontal chan-
nel of rectangular cross section. If the flow is subcritical, 
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13–83  Consider the flow of water in a 10-m-wide channel 
at a rate of 70 m3/s and a flow depth of 0.50 m. The water 
now undergoes a hydraulic jump, and the flow depth after 
the jump is measured to be 4 m. Determine the mechanical 
power wasted during this jump.  Answer: 4.35 MW

13–84  The flow depth and velocity of water after undergo-
ing a hydraulic jump are measured to be 1.1 m and 1.75 m/s, 
respectively. Determine the flow depth and velocity before 
the jump, and the fraction of mechanical energy dissipated.

13–85E  Water flowing in a wide channel at a depth of 2 ft 
and a velocity of 40 ft/s undergoes a hydraulic jump. Deter-
mine the flow depth, velocity, and Froude number after the 
jump, and the head loss associated with the jump.

13–86  Consider uniform flow of water in a wide 
rectangular channel with a per-unit-width 

flow rate of 1.5 m3/s?m and a Manning coefficient of 0.03. 
The slope of the channel is 0.0005. (a) Calculate the normal 
and critical depths of the flow and determine if the uniform 
flow is subcritical or supercritical. (b) Next, a dam is 
installed (at x 5 0) in order to impound a reservoir of water 
upstream. This raises the water surface profile upstream, 
creating a “backwater” curve (Fig. P13–86). The new water 

V1 � 9 m/s V2

y1 � 1.2 m
y2

(1) (2)

FIGURE P13–82

depth just upstream of the dam is 2.5 m. Determine how far 
upstream of the dam the “reservoir” extends. You may con-
sider the reservoir boundary to be the point at which the 
water depth is within 5% of the original uniform water 
depth.  Answer: 3500 m

13–87  Water flowing in a wide horizontal channel at a flow 
depth of 56 cm and an average velocity of 9 m/s undergoes a 
hydraulic jump. Determine the head loss associated with the 
hydraulic jump.

13–88  During a hydraulic jump in a wide channel, the flow 
depth increases from 0.6 to 3 m. Determine the velocities and 
Froude numbers before and after the jump, and the energy 
dissipation ratio.

13–89  Consider gradually varied flow over a bump in 
a wide channel, as shown in Fig. P13–89. The 

initial flow velocity is 0.75 m/s, the initial flow depth is 1 m, 
the Manning parameter is 0.02, and the elevation of the chan-
nel bottom is prescribed to be

zb 5 Dzb exp[20.001(x2100)2]

where the maximum bump height Dzb is equal to 0.15 m and 
the crest of the bump is located at x 5 100 m. (a) Calculate 
and plot the critical depth of the flow and (where it exists) 
the normal depth of the flow. (b) Integrate the GVF equation 
over the range 0 # x # 200 m, and comment on the observed 
behavior of the free surface in light of the classification 
scheme presented in Table 13–3.

yn

Before

yn

After

x 5 0

FIGURE P13–86

y1 5 1 m

100 m

x 5 0

FIGURE P13–89

13–90  Consider a wide rectangular water channel 
with a per-unit-width flow rate of 5 m3/s?m 

and a Manning coefficient of n 5 0.02. The channel is com-
prised of a 100 m length having a slope of S01 5 0.01 fol-
lowed by a 100 m length having a slope of S02 5 0.02. 
(a) Calculate the normal and critical depths for the two 
channel segments. (b) Given an initial water depth of 1.25 m, 
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13–91  Repeat Problem 13–90 for the case of an initial 
water depth of 0.75 m instead of 1.25 m.

13–92  While the GVF equation cannot be used to pre-
dict a hydraulic jump directly, it can be coupled 

with the ideal hydraulic jump depth ratio equation in order to 
help locate the position at which a jump will occur in a chan-
nel. Consider a jump created in a wide (Rh < y) horizontal 
(S0 5 0) laboratory flume having a length of 3 m and a Man-
ning coefficient of 0.009. The supercritical flow under the 
head gate has an initial depth of 0.01 m at x 5 0. The tailgate 
results in an overflow depth of 0.08 m at x 5 3 m. The per-
unit-width flow rate is 0.025 m3/s?m. (a) Calculate the critical 
depth of the flow and verify that the initial and final flows are 
supercritical and subcritical, respectively. (b) Determine the 
location of the hydraulic jump. Hint: integrate the GVF equa-
tion from x 5 0 to a “guessed” location of the jump, apply 
the jump depth-ratio equation, and integrate the GVF equa-
tion using this new initial condition from the jump location to 
x 5 3 m. If you do not obtain the desired overflow depth, try 
a new jump location.  Answer: 1.80m

y0 

x � 0

FIGURE P13–90

For the case of a wide rectangular channel, show that this can 
be reduced to the following form, which explicitly shows the 
importance of the relationship between y, yn, and yc:

dy

dx
5

S0[1 2 ( yn /y)10/3]

1 2 ( yc /y)3

13–94E  Consider gradually varied flow of water in a 
20-ft wide rectangular channel with a flow 

rate of 300 ft3/s and a Manning coefficient of 0.008. The 
slope of the channel is 0.01, and at the location x 5 0, 
the mean flow speed is measured to be 5.2 ft/s. Determine the 
classification of the water surface profile, and, by integrating 
the GVF equation numerically, calculate the flow depth y at 
(a) x 5 500 ft, (b) 1000 ft, and (c) 2000 ft.

yf 5 0.08 m 
y0 5 0.01 m 

x 5 0 x 5 3

Jump

FIGURE P13–92

V0 � 5.2 ft/s 

y0

y

x0

S0 � 0.01

FIGURE P13–94E

13–95  Consider gradually varied flow of water in a 
wide rectangular irrigation channel with a per-

unit-width flow rate of 5m3/s?m, a slope of 0.01, and a Man-
ning coefficient of 0.02. The flow is initially at uniform 
depth. At a given location, x 5 0, the flow enters a 200m 
length of channel where lack of maintenance has re sulted in a 
channel roughnness of 0.03. Following this stretch of chan-
nel, the roughness returns to the initial (maintained) value. 
(a) Calculate the normal and critical depths of the flow for 
the two distinct segments. (b) Numerically solve the gradu-
ally varied flow equation over the range 0 # x # 400 m. Plot 
your solution (i.e., y vs. x) and comment about the behavior 
of the water surface.

FIGURE P13–95

yn1
Rough
surface

Smoother
surface

200 m0 x 200 m

calculate and graph the water surface profile over the full 
200 m extent of the channel. Also classify the two channel 
segments (M1, A2, etc.).

13–93  Consider the gradually varied flow equation,

dy

dx
5

S0 2 Sf

1 2 Fr2
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Flow Control and Measurement in Channels

13–96C  What is a sharp-crested weir? On what basis are 
the sharp-crested weirs classified?

13–97C  What is the basic principle of operation of a broad-
crested weir used to measure flow rate through an open 
channel?

13–98C  For sluice gates, how is the discharge coefficient 
Cd defined? What are typical values of Cd for sluice gates 
with free outflow? What is the value of Cd for the idealized 
frictionless flow through the gate?

13–99C  Consider steady frictionless flow over a bump of 
height Dz in a horizontal channel of constant width b. Will 
the flow depth y increase, decrease, or remain constant 
as the fluid flows over the bump? Assume the flow to be 
subcritical.

13–100C  Consider the flow of a liquid over a bump during 
subcritical flow in an open channel. The specific energy and 
the flow depth decrease over the bump as the bump height is 
increased. What will the character of flow be when the spe-
cific energy reaches its minimum value? Will the flow become 
supercritical if the bump height is increased even further?

13–101C  Draw a flow depth-specific energy diagram for 
flow through underwater gates, and indicate the flow through 
the gate for cases of (a) frictionless gate, (b) sluice gate 
with free outflow, and (c) sluice gate with drowned outflow 
(including the hydraulic jump back to subcritical flow).

13–102  Consider uniform water flow in a wide rectangular 
channel with a depth of 2 m made of unfinished concrete laid 
on a slope of 0.0022. Determine the flow rate of water per m 
width of channel. Now water flows over a 15-cm-high bump. 
If the water surface over the bump remains flat (no rise or 
drop), determine the change in discharge rate of water per 
meter width of the channel. (Hint: Investigate if a flat surface 
over the bump is physically possible.)

13–103  Water flowing in a wide channel encounters a 
22-cm-high bump at the bottom of the channel. If the flow 
depth is 1.2 m and the velocity is 2.5 m/s before the bump, 
determine if the flow is choked over the bump, and discuss.

13–104  Consider the uniform flow of water in a wide chan-
nel with a velocity of 8 m/s and flow depth of 0.8 m. Now 
water flows over a 30-cm-high bump. Determine the change 
(increase or decrease) in the water surface level over the 
bump. Also determine if the flow over the bump is sub- or 
supercritical.

13–105  Water is released from a 12-m-deep reservoir into a 
6-m-wide open channel through a sluice gate with a 1-m-high 
opening at the channel bottom. If the flow depth downstream 
from the gate is measured to be 3 m, determine the rate of 
discharge through the gate.

a � 1 m

Sluice gate

y2 � 3 m

y1 � 12 m

FIGURE P13–105

V1 � 2.5 m/s

y1 � 1.2 m y2
�zb � 0.22 m

Depression
over the bump

Bump

FIGURE P13–103

13–106E  A full-width sharp-crested weir is to be used to 
measure the flow rate of water in a 7-ft-wide rectangular 
channel. The maximum flow rate through the channel is 
180  ft3/s, and the flow depth upstream from the weir is 
not to exceed 3 ft. Determine the appropriate height of 
the weir.

13–107  The flow rate of water in a 10-m-wide horizontal 
channel is being measured using a 1.3-m-high sharp-crested 
rectangular weir that spans across the channel. If the water 
depth upstream is 3.4 m, determine the flow rate of water.  
Answer: 66.8 m3/s

V1

Sharp-crested
rectangular weir

y1 � 3.4 m

Pw � 1.3 m

FIGURE P13–107
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13–108  Repeat Prob. 13–107 for the case of a weir height 
of 1.6 m.

13–109  Water flows over a 2-m-high sharp-crested rectan-
gular weir. The flow depth upstream of the weir is 3 m, and 
water is discharged from the weir into an unfinished-concrete 
channel of equal width where uniform-flow conditions are 
established. If no hydraulic jump is to occur in the down-
stream flow, determine the maximum slope of the down-
stream channel.

13–110E  Water flows through a sluice gate with a 1.1-ft-
high opening and is discharged with free outflow. If the 
upstream flow depth is 5 ft, determine the flow rate per unit 
width and the Froude number downstream the gate.

13–111E  Repeat Prob. 13–110E for the case of a drowned 
gate with a downstream flow depth of 3.3 ft.

13–112  Water is to be discharged from an 8-m-deep lake 
into a channel through a sluice gate with a 5-m  wide and 
0.6-m-high opening at the bottom. If the flow depth down-
stream from the gate is measured to be 4 m, determine the 
rate of discharge through the gate.

13–113E  Consider water flow through a wide channel at a 
flow depth of 8 ft. Now water flows through a sluice gate 
with a 1-ft-high opening, and the freely discharged outflow 
subsequently undergoes a hydraulic jump. Disregarding any 
losses associated with the sluice gate itself, determine the 
flow depth and velocities before and after the jump, and the 
fraction of mechanical energy dissipated during the jump.

13–114  The flow rate of water flowing in a 5-m-wide chan-
nel is to be measured with a sharp-crested triangular weir 
0.5  m above the channel bottom with a notch angle of 808. 
If the flow depth upstream from the weir is 1.5 m, determine 
the flow rate of water through the channel. Take the weir dis-
charge coefficient to be 0.60.  Answer: 1.19 m3/s

(u 5 508) is used instead, determine the percent reduction 
in the flow rate. Assume the water depth in the lake and the 
weir discharge coefficient remain unchanged.

13–117  A 0.80-m-high broad-crested weir is used to mea-
sure the flow rate of water in a 5-m-wide rectangular chan-
nel. The flow depth well upstream from the weir is 1.8 m. 
Determine the flow rate through the channel and the mini-
mum flow depth above the weir.

13–115  Repeat Prob. 13–114 for an upstream flow depth 
of 0.90 m.

13–116  A sharp-crested triangular weir with a notch angle 
of 1008 is used to measure the discharge rate of water from a 
large lake into a spillway. If a weir with half the notch angle 

13–118  Repeat Prob. 13–117 for an upstream flow depth 
of 1.4 m.

13–119  Consider uniform water flow in a wide channel 
made of unfinished concrete laid on a slope of 0.0022. Now 
water flows over a 15-cm-high bump. If the flow over the 
bump is exactly critical (Fr 5 1), determine the flow rate 
and the flow depth over the bump per m width.  Answers: 

20.3 m3/s, 3.48 m

0.5 m

5 m

Weir
plate

1 m 80°

Upstream
free surface

FIGURE P13–114

Discharge

1.8 m

0.80 m Broad-crested 
weir

FIGURE P13–117

y1 y2

�zb � 15 cm

Bump

Slope � 0.0022

FIGURE P13–119

13–120  Consider water flow over a 0.80-m-high suffi-
ciently long broad-crested weir. If the minimum flow depth 
above the weir is measured to be 0.50 m, determine the flow 
rate per meter width of channel and the flow depth upstream 
of the weir.

13–121  The flow rate of water through a 8-m-wide (into 
the paper) channel is controlled by a sluice gate. If the flow 
depths are measured to be 0.9 and 0.25 m upstream and 
downstream from the gates, respectively, determine the flow 
rate and the Froude number downstream from the gate.
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Review Problems
13–122  Water flows in a canal at an average velocity of 
4 m/s. Determine if the flow is subcritical or supercritical for 
flow depths of (a) 0.2 m, (b) 2 m, and (c) 1.63 m.

13–123  A trapezoidal channel with a bottom width of 4 m 
and a side slope of 458 discharges water at a rate of 18 m3/s. 
If the flow depth is 0.6 m, determine if the flow is subcritical 
or supercritical.

13–124  A 5-m-wide rectangular channel lined with 
finished concrete is to be designed to trans-

port water to a distance of 1 km at a rate of 12 m3/s. Using 
EES (or other) software, investigate the effect of bottom 
slope on flow depth (and thus on the required channel height). 
Let the bottom angle vary from 0.5 to 108 in increments of 
0.58. Tabulate and plot the flow depth against the bottom 
angle, and discuss the results.

13–125  Repeat Prob. 13–124 for a trapezoidal channel 
that has a base width of 5 m and a side surface 

angle of 458.

13–126  A trapezoidal channel with brick lining has a bottom 
slope of 0.001 and a base width of 4 m, and the side surfaces 
are angled 258 from the horizontal, as shown in Fig. P13–126. 
If the normal depth is measured to be 1.5 m, estimate the flow 
rate of water through the channel.  Answer: 22.5 m3/s

13–128  A rectangular channel with a bottom width of 7 m 
discharges water at a rate of 45 m3/s. Determine the flow 
depth below which the flow is supercritical.  Answer: 1.62 m

13–129  Consider a 1-m-internal-diameter water channel 
made of finished concrete (n 5 0.012). The channel slope is 
0.002. For a flow depth of 0.32 m at the center, determine the 
flow rate of water through the channel.  Answer: 0.258 m3/s

13–130  Reconsider Prob. 13–129. By varying the 
flow depth-to-radius ratio y/R from 0.1 to 1.9 

while holding the flow area constant and evaluating the flow 
rate, show that the best cross section for flow through a circu-
lar channel occurs when the channel is half-full. Tabulate and 
plot your results.

13–131  Consider the flow of water through a parabolic 
notch shown in Fig. P13–131. Develop a relation for the 
flow rate, and calculate its numerical value for the ideal case 
in which the flow velocity is given by Torricelli’s equation 
V 5 !2g(H 2 y). Answer: 0.123 m3/s

25˚ 25˚

4 m

1.5 m

FIGURE P13–126

0.32 m

R � 0.5 m

FIGURE P13–129

y

x

H � 0.5 m

b � 0.4 m

y � cx2

FIGURE P13–131

13–132  Water flows in a channel whose bottom slope is 
0.58 and whose cross section is as shown in Fig. P13–132. 
The dimensions and the Manning coefficients for the sur-
faces of different subsections are also given on the figure. 
Determine the flow rate through the channel and the effective 
Manning coefficient for the channel.

Sluice gate

y2 5 0.25 m

y1 5 0.90 m

FIGURE P13–121

13–127  Water flows through a 2.2-m-wide rectangular chan-
nel with a Manning coefficient of n 5 0.012. If the water is 0.9 m 
deep and the bottom slope of the channel is 0.68, determine the 
rate of discharge of the channel in uniform flow.
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u u
y

FIGURE P13–134

6 m

1 m

1 m

10 m

Heavy brush
n2 � 0.075

Clean earth
channel

n1 � 0.022

FIGURE P13–132

13–133  Consider two identical channels, one rectangular of 
bottom width b and one circular of diameter D, with identi-
cal flow rates, bottom slopes, and surface linings. If the flow 
height in the rectangular channel is also b and the circular 
channel is flowing half-full, determine the relation between 
b and D.

13–134  Consider water flow through a V-shaped channel. 
Determine the angle u the channel makes from the horizontal 
for which the flow is most efficient.

13–135  The flow rate of water in a 6-m-wide rectangular 
channel is to be measured using a 1.1-m-high sharp-crested 
rectangular weir that spans across the channel. If the head 
above the weir crest is 0.60 m upstream from the weir, deter-
mine the flow rate of water.

13–136E  A rectangular channel with unfinished concrete 
surfaces is to be built to discharge water uniformly at a rate of 
200 ft3/s. For the case of best cross section, determine 
the bottom width of the channel if the available vertical 
drop is (a) 5 and (b) 10 ft per mile.  Answers: (a)  8.58 ft, 

(b) 7.54 ft

13–137E  Repeat Prob. 13–136E for the case of a trapezoi-
dal channel of best cross section.

13–138E  Consider two identical 15-ft-wide rectangular 
channels each equipped with a 3-ft-high full-width weir, 
except that the weir is sharp-crested in one channel and 
broad-crested in the other. For a flow depth of 5  ft in both 
channels, determine the flow rate through each channel.  
Answers: 149 ft3/s, 66.0 ft3/s

13–139  In practice, the V-notch is commonly used to 
measure flow rate in open channels. Using the 

idealized Torricelli’s equation V 5 !2g(H 2 y) for velocity, 
develop a relation for the flow rate through the V-notch in 

terms of the angle u. Also, show the variation of the flow rate 
with u by evaluating the flow rate for u 5 25, 40, 60, and 
758, and plotting the results.

13–140  Water flows uniformly half-full in a 3.2-m-diameter 
circular channel laid with a slope of 0.004. If the flow rate 
of water is measured to be 4.5 m3/s, determine the Manning 
coefficient of the channel and the Froude number.  Answers: 

0.0487, 0.319

13–141  Consider water flow through a wide rectangular 
channel undergoing a hydraulic jump. Show that the ratio 
of the Froude numbers before and after the jump can be 
expressed in terms of flow depths y1 and y2 before and after 
the jump, respectively, as

Fr1/Fr2 5 "(y2/y1)
3.

13–142  A sluice gate with free outflow is used to control the 
discharge rate of water through a channel. Determine the flow 
rate per unit width when the gate is raised to yield a gap of 
50 cm and the upstream flow depth is measured to be 2.8 m. 
Also determine the flow depth and the velocity downstream.

13–143  Water flowing in a wide channel at a flow depth of 
45 cm and an average velocity of 8 m/s undergoes a hydraulic 
jump. Determine the fraction of the mechanical energy of the 
fluid dissipated during this jump.  Answer: 36.9 percent

13–144  Water flowing through a sluice gate undergoes a 
hydraulic jump, as shown in Fig. P13–144. The velocity of 
the water is 1.25 m/s before reaching the gate and 4 m/s after 

u

H � 25 cm

y

FIGURE P13–139

y3 � 3 m

y1

y2

V1 � 1.25 m/s

V3 � 4 m/s

Sluice gate

FIGURE P13–144
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the jump. Determine the flow rate of water through the gate 
per meter of width, the flow depths y1 and y2, and the energy 
dissipation ratio of the jump.

13–145  Repeat Prob. 13–144 for a velocity of 3.2 m/s 
after the hydraulic jump.

13–146  Water is discharged from a 5-m-deep lake into a fin-
ished concrete channel with a bottom slope of 0.004 through 
a sluice gate with a 0.5-m-high opening at the bottom. Shortly 
after supercritical uniform-flow conditions are established, the 
water undergoes a hydraulic jump. Determine the flow depth, 
velocity, and Froude number after the jump. Disregard the 
bottom slope when analyzing the hydraulic jump.

13–147  Water is discharged from a dam into a wide spill-
way to avoid overflow and to reduce the risk of flooding. 
A large fraction of the destructive power of the water is dissi-
pated by a hydraulic jump during which the water depth rises 
from 0.70 to 5.0 m. Determine the velocities of water before 
and after the jump, and the mechanical power dissipated per 
meter width of the spillway.

13–148  Water flowing in a wide horizontal channel 
approaches a 20-cm-high bump with a velocity of 1.25 m/s 
and a flow depth of 1.8 m. Determine the velocity, flow 
depth, and Froude number over the bump.

13–153  Water flows in a rectangular open channel of width 
5 m at a rate of 7.5 m3/s. The critical depth for this flow is
(a) 5 m (b) 2.5 m (c) 1.5 m (d ) 0.96 m (e) 0.61 m

13–154  Water flows in a rectangular open channel of width 
0.6 m at a rate of 0.25 m3/s. If the flow depth is 0.2 m, what is 
the alternate flow depth if the character of flow were to change?
(a) 0.2 m (b) 0.26 m (c) 0.35 m (d ) 0.6 m (e) 0.8 m

13–155  Water flows in a 6-m-wide rectangular open chan-
nel at a rate of 55 m3/s. If the flow depth is 2.4 m, the Froude 
number is
(a) 0.531 (b) 0.787 (c) 1.0 (d ) 1.72 (e) 2.65

13–156  Water flows in a clean and straight natural chan-
nel of rectangular cross section with a bottom width of 
0.75 m and a bottom slope angle of 0.68. If the flow depth 
is 0.15 m, the flow rate of water through the channel is
(a) 0.0317 m3/s (b) 0.05 m3/s (c) 0.0674 m3/s
(d ) 0.0866 m3/s (e) 1.14 m3/s

13–157  Water is to be transported in a finished-concrete 
rectangular channel with a bottom width of 1.2 m at a rate 
of 5 m3/s. The channel bottom drops 1 m per 500 m length. 
The minimum height of the channel under uniform-flow 
conditions is
(a) 1.9 m (b) 1.5 m (c) 1.2 m (d ) 0.92 m (e) 0.60 m

13–158  Water is to be transported in a 4-m-wide rectan-
gular open channel. The flow depth to maximize the flow 
rate is
(a) 1 m (b) 2 m (c) 4 m (d ) 6 m (e) 8 m

13–159  Water is to be transported in a clay tile lined 
rectangular channel at a rate of 0.8 m3/s. The channel bot-
tom slope is 0.0015. The width of the channel for the best 
cross section is
(a) 0.68 m (b) 1.33 m (c) 1.63 m
(d ) 0.98 m (e) 1.15 m

13–160  Water is to be transported in a clay tile lined 
trapezoidal channel at a rate of 0.8 m3/s. The channel bot-
tom slope is 0.0015. The width of the channel for the best 
cross section is
(a) 0.48 m (b) 0.70 m (c) 0.84 m
(d ) 0.95 m (e) 1.22 m

13–161  Water flows uniformly in a finished-concrete 
rectangular channel with a bottom width of 0.85 m. The 
flow depth is 0.4 m and the bottom slope is 0.003. The 
channel should be classified as
(a) Steep (b) Critical (c) Mild (d ) Horizontal 
(e) Adverse

13–162  Water discharges into a rectangular horizontal 
channel from a sluice gate and undergoes a hydraulic jump. 
The channel is 25-m-wide and the flow depth and velocity 
before the jump are 2 m and 9 m/s, respectively. The flow 
depth after the jump is
(a) 1.26 m (b) 2 m (c) 3.61 m (d ) 4.83 m (e) 6.55 m

V2

y2

V1 � 1.25 m/s 20 cm

y1 � 1.8 m

FIGURE P13–148

13–149  Reconsider Prob. 13–148. Determine the bump 
height for which the flow over the bump is critical (Fr 5 1).

Fundamentals of Engineering (FE) Exam Problems

13–150  Which choices are examples of open-channel flow?
I.  Flow of water in rivers
II. Draining of rainwater off highways
III. Upward draft of rain and snow
IV. Sewer lines
(a) I and II (b) I and III (c) II and III
(d ) I, II, and IV (e) I, II, III, and IV

13–151  If the flow depth remains constant in an open-channel 
flow, the flow is called
(a) Uniform flow (b) Steady flow (c) Varied flow
(d ) Unsteady flow (e) Laminar flow

13–152  Consider water flow in a rectangular open channel 
of height 2 m and width 5 m containing water of depth 1.5 m. 
The hydraulic radius for this flow is
(a) 0.47 m (b) 0.94 m (c) 1.5 m (d ) 3.8 m (e) 5 m
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13–163  Water discharges into a rectangular horizontal 
channel from a sluice gate and undergoes a hydraulic jump. 
The flow depth and velocity before the jump are 1.25 m and 
6 m/s, respectively. The percentage available head loss due to 
the hydraulic jump is
(a) 4.7% (b) 6.2% (c) 8.5% (d ) 13.9% (e) 17.4%

13–164  Water discharges into a 7-m-wide rectangular hori-
zontal channel from a sluice gate and undergoes a hydraulic 
jump. The flow depth and velocity before the jump are 0.65 m 
and 5 m/s, respectively. The wasted power potential due to 
the hydraulic jump is
(a) 158 kW  (b) 112 kW (c) 67.3 kW
(d ) 50.4 kW (e) 37.6 kW

13–165  Water is released from a 0.8-m-deep reservoir 
into a 4-m-wide open channel through a sluice gate with a 
0.1-m-high opening at the channel bottom. The flow depth 
after all turbulence subsides is 0.5 m. The rate of discharge is
(a) 0.92 m3/s (b) 0.79 m3/s (c) 0.66 m3/s
(d ) 0.47 m3/s (e) 0.34 m3/s

13–166  The flow rate of water in a 3-m-wide horizontal open 
channel is being measured with a 0.4-m-high sharp-crested 

rectangular weir of equal width. If the water depth upstream 
is 0.9 m, the flow rate of water is  
(a) 1.37 m3/s (b) 2.22 m3/s (c) 3.06 m3/s
(d ) 4.68 m3/s (e) 5.11 m3/s

Design and Essay Problems

13–167  Using catalogs or websites, obtain information 
from three different weir manufacturers. Compare the differ-
ent weir designs, and discuss the advantages and disadvan-
tages of each design. Indicate the applications for which each 
design is best suited.

13–168  Consider water flow in the range of 10 to 15 m3/s 
through a horizontal section of a 5-m-wide rectangular 
channel. A rectangular or triangular thin-plate weir is to be 
installed to measure the flow rate. If the water depth is to 
remain under 2 m at all times, specify the type and dimen-
sions of an appropriate weir. What would your response be if 
the flow range were 0 to 15 m3/s?
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T U R B O M A C H I N E RY

In this chapter we discuss the basic principles of a common and impor-
tant application of fluid mechanics, turbomachinery. First we classify 
turbomachines into two broad categories, pumps and turbines. Then we 

discuss both of these turbomachines in more detail, mostly qualitatively, 
explaining the basic principles of their operation. We emphasize prelimi-
nary design and overall performance of turbomachines rather than detailed 
design. In addition, we discuss how to properly match the requirements of 
a fluid flow system to the performance characteristics of a turbomachine. 
A significant portion of this chapter is devoted to turbomachinery scaling 
laws—a practical application of dimensional analysis. We show how the 
scaling laws are used in the design of new turbomachines that are geometri-
cally similar to existing ones.

787

14
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Identify various types of pumps 
and turbines, and understand 
how they work

■ Apply dimensional analysis to 
design new pumps or turbines 
that are geometrically similar to 
existing pumps or turbines

■ Perform basic vector analysis of 
the flow into and out of pumps 
and turbines

■ Use specific speed for 
preliminary design and selection 
of pumps and turbines

     CHAPTER

The jet engines on modern commercial airplanes 
are highly complex turbomachines that include 
both pump (compressor) and turbine sections.

© Stockbyte/PunchStock RF
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14–1 ■  CLASSIFICATIONS AND TERMINOLOGY
There are two broad categories of turbomachinery, pumps and turbines. 
The word pump is a general term for any fluid machine that adds energy to 
a fluid. Some authors call pumps energy absorbing devices since energy is 
supplied to them, and they transfer most of that energy to the fluid, usually 
via a rotating shaft (Fig. 14–1a). The increase in fluid energy is usually felt 
as an increase in the pressure of the fluid. Turbines, on the other hand, are 
energy producing devices—they extract energy from the fluid and transfer 
most of that energy to some form of mechanical energy output, typically in 
the form of a rotating shaft (Fig. 14–1b). The fluid at the outlet of a turbine 
suffers an energy loss, typically in the form of a loss of pressure.
 An ordinary person may think that the energy supplied to a pump 
increases the speed of fluid passing through the pump and that a turbine 
extracts energy from the fluid by slowing it down. This is not necessar-
ily the case. Consider a control volume surrounding a pump (Fig. 14–2). 
We assume steady conditions. By this we mean that neither the mass flow 
rate nor the rotational speed of the rotating blades changes with time. (The 
detailed flow field near the rotating blades inside the pump is not steady of 
course, but control volume analysis is not concerned with details inside the 
control volume.) By conservation of mass, we know that the mass flow rate 
into the pump must equal the mass flow rate out of the pump. If the flow is 
incompressible, the volume flow rates at the inlet and outlet must be equal 
as well. Furthermore, if the diameter of the outlet is the same as that of the 
inlet, conservation of mass requires that the average speed across the outlet 
must be identical to the average speed across the inlet. In other words, the 
pump does not necessarily increase the speed of the fluid passing through 
it; rather, it increases the pressure of the fluid. Of course, if the pump were 
turned off, there might be no flow at all. So, the pump does increase fluid 
speed compared to the case of no pump in the system. However, in terms 
of changes from the inlet to the outlet across the pump, fluid speed is not 
necessarily increased. (The output speed may even be lower than the input 
speed if the outlet diameter is larger than that of the inlet.)

The purpose of a pump is to add energy to a fluid, resulting in an increase 
in fluid pressure, not necessarily an increase of fluid speed across 
the pump.

An analogous statement is made about the purpose of a turbine:

The purpose of a turbine is to extract energy from a fluid, resulting in a 
decrease of fluid pressure, not necessarily a decrease of fluid speed across 
the turbine.

 Fluid machines that move liquids are called pumps, but there are several 
other names for machines that move gases (Fig. 14–3). A fan is a gas pump 
with relatively low pressure rise and high flow rate. Examples include ceil-
ing fans, house fans, and propellers. A blower is a gas pump with relatively 
moderate to high pressure rise and moderate to high flow rate. Examples 
include centrifugal blowers and squirrel cage blowers in automobile ven-
tilation systems, furnaces, and leaf blowers. A compressor is a gas pump 
designed to deliver a very high pressure rise, typically at low to moderate 
flow rates. Examples include air compressors that run pneumatic tools and 

Pump Flow out

Energy supplied, Eout > Ein

(a)

Flow in

Ein Eout

Turbine Flow out

Energy extracted, Eout < Ein

(b)

Flow in

Ein Eout

v

v

FIGURE 14–1
(a) A pump supplies energy to a fluid, 
while (b) a turbine extracts energy 
from a fluid.

Pump
Pout

Vout

Pin

Vin

Din
Control volume

Dout

v

FIGURE 14–2
For the case of steady flow, 
conservation of mass requires that 
the mass flow rate out of a pump 
must equal the mass flow rate into the 
pump; for incompressible flow with 
equal inlet and outlet cross-sectional 
areas (Dout 5 Din), we conclude that 
Vout 5 Vin, but Pout . Pin.

P  Low  Medium  High

 High  Medium  Low

 Fan  Blower  Compressor

Δ
•

V

FIGURE 14–3
When used with gases, pumps are 
called fans, blowers, or compressors, 
depending on the relative values of 
pressure rise and volume flow rate.
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inflate tires at automobile service stations, and refrigerant compressors used 
in heat pumps, refrigerators, and air conditioners.
 Pumps and turbines in which energy is supplied or extracted by a rotat-
ing shaft are properly called turbomachines, since the Latin prefix turbo 
means “spin.” Not all pumps or turbines utilize a rotating shaft, however. 
The hand-operated air pump you use to inflate the tires of your bicycle is 
a prime example (Fig. 14–4a). The up and down reciprocating motion of a 
plunger or piston replaces the rotating shaft in this type of pump, and it is 
more proper to call it simply a fluid machine instead of a turbomachine. 
An old-fashioned well pump operates in a similar manner to pump water 
instead of air (Fig. 14–4b). Nevertheless, the words turbomachine and tur-
bomachinery are often used in the literature to refer to all types of pumps 
and turbines regardless of whether they utilize a rotating shaft or not.
 Fluid machines may also be broadly classified as either positive-displace-
ment machines or dynamic machines, based on the manner in which energy 
transfer occurs. In positive-displacement machines, fluid is directed into a 
closed volume. Energy transfer to the fluid is accomplished by movement 
of the boundary of the closed volume, causing the volume to expand or 
contract, thereby sucking fluid in or squeezing fluid out, respectively. Your 
heart is a good example of a positive-displacement pump (Fig. 14–5a). It 
is designed with one-way valves that open to let blood in as heart cham-
bers expand, and other one-way valves that open as blood is pushed out of 
those chambers when they contract. An example of a positive-displacement 
turbine is the common water meter in your house (Fig. 14–5b), in which 
water forces itself into a closed chamber of expanding volume connected to 
an output shaft that turns as water enters the chamber. The boundary of the 
volume then collapses, turning the output shaft some more, and letting the 
water continue on its way to your sink, shower, etc. The water meter records 
each 360° rotation of the output shaft, and the meter is precisely calibrated 
to the known volume of fluid in the chamber.

FIGURE 14–4
Not all pumps have a rotating shaft; 

(a) energy is supplied to this manual 
tire pump by the up and down motion 

of a person’s arm to pump air; (b) a 
similar mechanism is used to pump 

water with an old-fashioned 
well pump.

(a) Photo by Andrew Cimbala, with permission. 
(b) © Bear Dancer Studios/Mark Dierker.

(a) (b)

FIGURE 14–5
(a) The human heart is an example of 

a positive-displacement pump; 
blood is pumped by expansion 

and contraction of heart chambers 
called ventricles. (b) The common 

water meter in your house is an 
example of a positive-displacement 

turbine; water fills and exits a 
chamber of known volume for each 

revolution of the output shaft.
(b) Courtesy of Badger Meter, Inc. 

Used by permission.
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 In dynamic machines, there is no closed volume; instead, rotating blades 
supply or extract energy to or from the fluid. For pumps, these rotating 
blades are called impeller blades, while for turbines, the rotating blades 
are called runner blades or buckets. Examples of dynamic pumps include 
enclosed pumps and ducted pumps (those with casings around the blades 
such as the water pump in your car’s engine), and open pumps (those with-
out casings such as the ceiling fan in your house, the propeller on an air-
plane, or the rotor on a helicopter). Examples of dynamic turbines include 
enclosed turbines, such as the hydroturbine that extracts energy from water 
in a hydroelectric dam, and open turbines such as the wind turbine that 
extracts energy from the wind (Fig. 14–6).

14–2 ■ PUMPS
Some fundamental parameters are used to analyze the performance of 
a pump. The mass flow rate m

.
 of fluid through the pump is an obvious 

primary pump performance parameter. For incompressible flow, it is more 
common to use volume flow rate rather than mass flow rate. In the tur-
bomachinery industry, volume flow rate is called capacity and is simply 
mass flow rate divided by fluid density,

Volume flow rate (capacity): V
#

5
m#

r
 (14–1)

The performance of a pump is characterized additionally by its net head H, 
defined as the change in Bernoulli head between the inlet and outlet of the 
pump,

Net head: H 5 a P
rg

1
V 2

2g
1 zb

out

2 a P
rg

1
V 2

2g
1 zb

in

 (14–2)

The dimension of net head is length, and it is often listed as an equivalent 
column height of water, even for a pump that is not pumping water.
 For the case in which a liquid is being pumped, the Bernoulli head at the 
inlet is equivalent to the energy grade line at the inlet, EGLin, obtained by 
aligning a Pitot probe in the center of the flow as illustrated in Fig. 14–7. 
The energy grade line at the outlet EGLout is obtained in the same manner, 
as also illustrated in the figure. In the general case, the outlet of the pump 
may be at a different elevation than the inlet, and its diameter and average 
speed may not be the same as those at the inlet. Regardless of these differ-
ences, net head H is equal to the difference between EGLout and EGLin,

Net head for a liquid pump: H 5 EGLout 2 EGLin

 Consider the special case of incompressible flow through a pump in 
which the inlet and outlet diameters are identical, and there is no change in 
elevation. Equation 14–2 reduces to

Special case with Dout 5 Din and zout 5 zin: H 5
Pout 2 Pin

rg

For this simplified case, net head is simply the pressure rise across the pump 
expressed as a head (column height of the fluid).

FIGURE 14–6
A wind turbine is a good example of a 
dynamic machine of the open type; air 
turns the blades, and the output shaft 
drives an electric generator.
The Wind Turbine Company. Used by permission.
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 Net head is proportional to the useful power actually delivered to the 
fluid. It is traditional to call this power the water horsepower, even if the 
fluid being pumped is not water, and even if the power is not measured in 
units of horsepower. By dimensional reasoning, we must multiply the net 
head of Eq. 14–2 by mass flow rate and gravitational acceleration to obtain 
dimensions of power. Thus,

Water horsepower: W
#

water horsepower 5 m# gH 5 rgV
#
H (14–3)

All pumps suffer from irreversible losses due to friction, internal leakage, 
flow separation on blade surfaces, turbulent dissipation, etc. Therefore, the 
mechanical energy supplied to the pump must be larger than W

.
water horsepower. 

In pump terminology, the external power supplied to the pump is called the 
brake horsepower, which we abbreviate as bhp. For the typical case of a 
rotating shaft supplying the brake horsepower,

Brake horsepower: bhp 5 W
#

shaft 5 vTshaft (14–4)

where v is the rotational speed of the shaft (rad/s) and Tshaft is the torque 
supplied to the shaft. We define pump efficiency hpump as the ratio of useful 
power to supplied power,

Pump efficiency: hpump 5
W
#

water horsepower

W
#

shaft

5
W
#

water horsepower

bhp
5
rgV
#
H

vTshaft

 (14–5)

Pump Performance Curves and Matching 
a Pump to a Piping System
The maximum volume flow rate through a pump occurs when its net head 
is zero, H 5 0; this flow rate is called the pump’s free delivery. The free 
delivery condition is achieved when there is no flow restriction at the pump 
inlet or outlet—in other words when there is no load on the pump. At this 
operating point, V

.
 is large, but H is zero; the pump’s efficiency is zero 

because the pump is doing no useful work, as is clear from Eq. 14–5. At 
the other extreme, the shutoff head is the net head that occurs when the 
volume flow rate is zero, V

.
 5 0, and is achieved when the outlet port of 

the pump is blocked off. Under these conditions, H is large but V
.
 is zero; 

the pump’s efficiency (Eq. 14–5) is again zero, because the pump is doing 
no useful work. Between these two extremes, from shutoff to free delivery, 
the pump’s net head may increase from its shutoff value somewhat as the 
flow rate increases, but H must eventually decrease to zero as the volume 
flow rate increases to its free delivery value. The pump’s efficiency reaches 
its maximum value somewhere between the shutoff condition and the free 
delivery condition; this operating point of maximum efficiency is appropri-
ately called the best efficiency point (BEP), and is notated by an asterisk 
(H*, V

.
*, bhp*). Curves of H, hpump, and bhp as functions of V

.
 are called 

pump performance curves (or characteristic curves, Chap. 8); typical 
curves at one rotational speed are plotted in Fig. 14–8. The pump perfor-
mance curves change with rotational speed.
 It is important to realize that for steady conditions, a pump can operate 
only along its performance curve. Thus, the operating point of a piping 

v

H

Datum plane (z = 0)

Pump

EGLoutEGLin bhp

Pout

Vout

Pin

Vin
zin

zout

Din

Dout

FIGURE 14–7
The net head of a pump, H, is defined 
as the change in Bernoulli head from 

inlet to outlet; for a liquid, this is 
equivalent to the change in the energy 

grade line, H 5 EGLout 2 EGLin, 
relative to some arbitrary datum plane; 

bhp is the brake horsepower, the 
external power supplied to the pump.
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system is determined by matching system requirements (required net head) 
to pump performance (available net head). In a typical application, Hrequired 
and Havailable match at one unique value of flow rate—this is the operating 
point or duty point of the system.

The steady operating point of a piping system is established at the volume 
flow rate where Hrequired 5 Havailable.

For a given piping system with its major and minor losses, elevation 
changes, etc., the required net head increases with volume flow rate. On the 
other hand, the available net head of most pumps decreases with flow rate, 
as in Fig. 14–8, at least over the majority of its recommended operating 
range. Hence, the system curve and the pump performance curve intersect 
as sketched in Fig. 14–9, and this establishes the operating point. If we are 
lucky, the operating point is at or near the best efficiency point of the pump. 
In most cases, however, as illustrated in Fig. 14–9, the pump does not run 
at its optimum efficiency. If efficiency is of major concern, the pump should 
be carefully selected (or a new pump should be designed) such that the 
operating point is as close to the best efficiency point as possible. In some 
cases it may be possible to change the shaft rotation speed so that an exist-
ing pump can operate much closer to its design point (best efficiency point).
 There are unfortunate situations where the system curve and the pump 
performance curve intersect at more than one operating point. This can 
occur when a pump that has a dip in its net head performance curve is mated 
to a system that has a fairly flat system curve, as illustrated in Fig. 14–10. 
Although rare, such situations are possible and should be avoided, because 
the system may “hunt” for an operating point, leading to an unsteady-flow 
situation.
 It is fairly straightforward to match a piping system to a pump, once we 
realize that the term for useful pump head (hpump, u) that we used in the head 
form of the energy equation (Chap. 5) is the same as the net head (H) used 
in the present chapter. Consider, for example, a general piping system with 
elevation change, major and minor losses, and fluid acceleration (Fig. 14–11). 
We begin by solving the energy equation for the required net head Hrequired,

 Hrequired 5 hpump, u 5
P2 2 P1

rg
1
a2V 2

2 2 a1V 1
2

2g
1 (z2 2 z1) 1 hL, total (14–6)

where we assume that there is no turbine in the system, although that term 
can be added back in, if necessary. We have also included the kinetic energy 
correction factors in Eq. 14–6 for greater accuracy, even though it is com-
mon practice in the turbomachinery industry to ignore them (a1 and a2 are 
often assumed to be unity since the flow is turbulent).
 Equation 14–6 is evaluated from the inlet of the piping system (point 1, 
upstream of the pump) to the outlet of the piping system (point 2, down-
stream of the pump). Equation 14–6 agrees with our intuition, because it 
tells us that the useful pump head delivered to the fluid does four things:

• It increases the static pressure of the fluid from point 1 to point 2 (first 
term on the right).

• It increases the dynamic pressure (kinetic energy) of the fluid from point 
1 to point 2 (second term on the right).

0

0

Shutoff head

Free delivery

BEP

bhp

bhp*

H

H*

hpump

H
, h

pu
m

p,
 o

r 
bh

p

•
V *

•
V

FIGURE 14–8
Typical pump performance curves for 
a centrifugal pump with backward-
inclined blades; the curve shapes for 
other types of pumps may differ, and 
the curves change as shaft rotation 
speed is changed.

0

0

System 
curve

Pump performance curve

Operating
point

BEP

Havailable

H

Hrequired

•
V

FIGURE 14–9
The operating point of a piping system 
is established as the volume flow rate 
where the system curve and the pump 
performance curve intersect.
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• It raises the elevation (potential energy) of the fluid from point 1 to point 2 
(third term on the right).

• It overcomes irreversible head losses in the piping system (last term on 
the right).

In a general system, the change in static pressure, dynamic pressure, and 
elevation may be either positive or negative, while irreversible head losses 
are always positive. In many mechanical and civil engineering problems in 
which the fluid is a liquid, the elevation term is important, but when the 
fluid is a gas, such as in ventilation and air pollution control problems, the 
elevation term is almost always negligible.
 To match a pump to a system, and to determine the operating point, we 
equate Hrequired of Eq. 14–6 to Havailable, which is the (typically known) net 
head of the pump as a function of volume flow rate.

Operating point: Hrequired 5 Havailable (14–7)

The most common situation is that an engineer selects a pump that is some-
what heftier than actually required. The volume flow rate through the piping 
system is then a bit larger than needed, and a valve or damper is installed in 
the line so that the flow rate can be decreased as necessary.

EXAMPLE 14–1    Operating Point of a Fan in a Ventilation System

A local ventilation system (hood and exhaust duct) is used to remove air 

and contaminants produced by a dry-cleaning operation (Fig. 14–12). The 

duct is round and is constructed of galvanized steel with longitudinal seams 

and with joints every 30 in (0.76 m). The inner diameter (ID) of the duct 

is D 5  9.06 in (0.230 m), and its total length is L 5 44.0 ft (13.4 m). 

There are five CD3-9 elbows along the duct. The equivalent roughness height 

of this duct is 0.15 mm, and each elbow has a minor (local) loss coef-

ficient of KL 5 C0 5 0.21. Note the notation C0 for minor loss coefficient, 

commonly used in the ventilation industry (ASHRAE, 2001). To ensure ade-

quate ventilation, the minimum required volume flow rate through the duct 

is V
.
 5  600  cfm (cubic feet per minute), or 0.283 m3/s at 25°C. Litera-

ture from the hood manufacturer lists the hood entry loss coefficient as 1.3 

based on duct velocity. When the damper is fully open, its loss coefficient is 

1.8. A centrifugal fan with 9.0-in inlet and outlet diameters is available. Its 

performance data are shown in Table 14–1, as listed by the manufacturer. 

Predict the operating point of this local ventilation system, and draw a plot 

of required and available fan pressure rise as functions of volume flow rate. 

Is the chosen fan adequate?

SOLUTION  We are to estimate the operating point for a given fan and duct 

system and to plot required and available fan pressure rise as functions of 

volume flow rate. We are then to determine if the selected fan is adequate.

Assumptions  1 The flow is steady. 2 The concentration of contaminants in 

the air is low; the fluid properties are those of air alone. 3 The flow at the 

outlet is fully developed turbulent pipe flow with a 5 1.05.

Properties  For air at 25°C, n 5 1.562 3 1025 m2/s and r 5 1.184 kg/m3. 

Standard atmospheric pressure is Patm 5 101.3 kPa.

H

Possible
operating

points

Havailable

Hrequired

0
0

•
V

FIGURE 14–10
Situations in which there can be 

more than one unique operating point 
should be avoided. In such cases a 

different pump should be used.

z2 – z1

z1

V2

V1 � 0

Pump

Valve

Valve

z2

1

2

Reservoir

FIGURE 14–11
Equation 14–6 emphasizes the role of 

a pump in a piping system; namely, 
it increases (or decreases) the static 

pressure, dynamic pressure, and 
elevation of the fluid, and it overcomes 

irreversible losses.
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Analysis  We apply the steady energy equation in head form (Eq. 14–6) from 

point 1 in the stagnant air region in the room to point 2 at the duct outlet,

 Hrequired 5
P2 2 P1

rg
1
a2V 2

2 2 a1V 1
2

2g
1 (z2 2 z1) 1 hL, total (1)

 

In Eq. 1 we may ignore the air speed at point 1 since it was chosen (wisely) 

far enough away from the hood inlet so that the air is nearly stagnant. At 

point 1, we let P1 5 Patm. At point 2, P2 is then equal to Patm 2 rg (z2 2 z1) 

since the jet discharges into stagnant outside air at higher elevation z2 on 

the roof of the building. Thus, the pressure terms cancel with the elevation 

terms, and Eq. 1 reduces to

 Required net head: Hrequired 5
a2V 2

2

2g
1 hL, total (2)

 The total head loss in Eq. 2 is a combination of major and minor losses 

and depends on volume flow rate. Since the duct diameter is constant,

 Total irreversible head loss: hL, total 5 af 
L

D
1 aKLbV 2

2g
 (3)

The dimensionless roughness factor is e/D 5 (0.15 mm)/(230 mm) 5 

6.52 3 1024. The Reynolds number of the air flowing through the duct is

 Reynolds number: Re 5
DV
n

5
D
n

 
4V
#

pD2 5
4V
#

npD
 (4)

The Reynolds number varies with volume flow rate. At the minimum required 

flow rate, the air speed through the duct is V 5 V2 5 6.81 m/s, and the 

Reynolds number is

Re 5
4(0.283 m3/s)

(1.562 3 1025 m2/s)p(0.230 m)
5 1.00 3 105

From the Moody chart (or the Colebrook equation) at this Reynolds number 

and roughness factor, the friction factor is f 5 0.0209. The sum of all the 

minor loss coefficients is

 Minor losses: aKL 5 1.3 1 5(0.21) 1 1.8 5 4.15 (5)

Substituting these values at the minimum required flow rate into Eq. 2, the 

required net head of the fan at the minimum flow rate is

 
 Hrequired 5 aa2 1 f 

L

D
1 aKLbV 2

2g
 

 
 5 a1.05 1 0.0209 

13.4 m

0.230 m
1 4.15b (6.81 m/s)2

2(9.81 m/s2)
5 15.2 m of air (6)

Note that the head is expressed naturally in units of equivalent column 

height of the pumped fluid, which is air in this case. We convert to an equiv-

alent column height of water by multiplying by the ratio of air density to 

water density,

Damper

Fan

Hood

z2

z1

2

1

•
V

FIGURE 14–12
The local ventilation system for 
Example 14–1, showing the fan 
and all minor losses.

TABLE 14–1

Manufacturer’s performance data for 

the fan of Example 14–1*

  Havailable, 

 V
.
, cfm inches H2O

 0 0.90

 250 0.95

 500 0.90

 750 0.75

 1000 0.40

 1200 0.0

* Note that the head data are listed as inches of 

water, even though air is the fluid. This is common 

practice in the ventilation industry.
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Hrequired, inches of water 5 Hrequired, air 

rair

rwater
 

 
 5 (15.2 m) 

1.184 kg/m3

998.0 kg/m3 a 1 in

0.0254 m
b

  5 0.709 inches of water  (7)

We repeat the calculations at several values of volume flow rate, and com-

pare to the available net head of the fan in Fig. 14–13. The operating point 

is at a volume flow rate of about 650 cfm, at which both the required and 

available net head equal about 0.83 inches of water. We conclude that the 
chosen fan is more than adequate for the job.
Discussion  The purchased fan is somewhat more powerful than required, 

yielding a higher flow rate than necessary. The difference is small and is 

acceptable; the butterfly damper valve could be partially closed to cut back 

the flow rate to 600 cfm if necessary. For safety reasons, it is clearly bet-

ter to oversize than undersize a fan when used with an air pollution control 

system.

 It is common practice in the pump industry to offer several choices of 
impeller diameter for a single pump casing. There are several reasons for 
this: (1) to save manufacturing costs, (2) to enable capacity increase by 
simple impeller replacement, (3) to standardize installation mountings, and 
(4) to enable reuse of equipment for a different application. When plotting 
the performance of such a “family” of pumps, pump manufacturers do not 
plot separate curves of H, hpump, and bhp for each impeller diameter in the 
form sketched in Fig. 14–8. Instead, they prefer to combine the performance 
curves of an entire family of pumps of different impeller diameters onto a 
single plot (Fig. 14–14). Specifically, they plot a curve of H as a function 
of V

.
 for each impeller diameter in the same way as in Fig. 14–8, but cre-

ate contour lines of constant efficiency, by drawing smooth curves through 
points that have the same value of hpump for the various choices of impel-
ler diameter. Contour lines of constant bhp are often drawn on the same 
plot in similar fashion. An example is provided in Fig. 14–15 for a family 
of centrifugal pumps manufactured by Taco, Inc. In this case, five impeller 
diameters are available, but the identical pump casing is used for all five 
options. As seen in Fig. 14–15, pump manufacturers do not always plot their 
pumps’ performance curves all the way to free delivery. This is because the 
pumps are usually not operated there due to the low values of net head and 
efficiency. If higher values of flow rate and/or net head are required, the 
customer should step up to the next larger casing size, or consider using 
additional pumps in series or parallel.
 It is clear from the performance plot of Fig. 14–15 that for a given pump 
casing, the larger the impeller, the higher the maximum achievable effi-
ciency. Why then would anyone buy the smaller impeller pump? To answer 
this question, we must recognize that the customer’s application requires a 
certain combination of flow rate and net head. If the requirements match a 
particular impeller diameter, it may be more cost effective to sacrifice pump 
efficiency in order to satisfy these requirements.
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EXAMPLE 14–2    Selection of Pump Impeller Size

A washing operation at a power plant requires 370 gallons per minute (gpm) 

of water. The required net head is about 24 ft at this flow rate. A newly 

hired engineer looks through some catalogs and decides to purchase the 

8.25-in impeller option of the Taco Model 4013 FI Series centrifugal pump 

of Fig. 14–15. If the pump operates at 1160 rpm, as specified in the per-

formance plot, she reasons, its performance curve intersects 370 gpm at 

H 5 24 ft. The chief engineer, who is very concerned about efficiency, 

glances at the performance curves and notes that the efficiency of this pump 

at this operating point is only 70 percent. He sees that the 12.75-in impel-

ler option achieves a higher efficiency (about 76.5 percent) at the same 

flow rate. He notes that a throttle valve can be installed downstream of 

the pump to increase the required net head so that the pump operates at 

this higher efficiency. He asks the junior engineer to justify her choice of 

impeller diameter. Namely, he asks her to calculate which impeller option 

(8.25-in or 12.75-in) would need the least amount of electricity to operate 

(Fig. 14–16). Perform the comparison and discuss.
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FIGURE 14–15
Example of a manufacturer’s performance plot for a family of centrifugal pumps. Each pump has the same casing, but a 
different impeller diameter.
Courtesy of Taco, Inc., Cranston, RI. Used by permission.
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SOLUTION  For a given flow rate and net head, we are to calculate which 

impeller size uses the least amount of power, and we are to discuss our 

results.

Assumptions  1 The water is at 70°F. 2 The flow requirements (volume flow 

rate and head) are constant.

Properties  For water at 70°F, r 5 62.30 lbm/ft3.

Analysis  From the contours of brake horsepower that are shown on the per-

formance plot of Fig. 14–15, the junior engineer estimates that the pump 

with the smaller impeller requires about 3.2 hp from the motor. She verifies 

this estimate by using Eq. 14–5,

Required bhp for the 8.25-in impeller option:

 bhp 5
rgV
#
H

hpump
5

(62.30 lbm/ft3)(32.2 ft/s2)(370 gal/min)(24 ft)

0.70

 3 a0.1337 ft3

gal
b a lbf

32.2 lbm·ft/s2b a1 min

60 s
b a hp·s

550 ft·lbf
b 5 3.20 hp

Similarly, the larger-diameter impeller option requires

 Required bhp for the 12.75-in impeller option: bhp 5 8.78 hp

using the operating point of that pump, namely, V
.
 5 370 gpm, H 5 72.0 ft, 

and hpump 5 76.5 percent (Fig. 14–15). Clearly, the smaller-diameter impeller 
option is the better choice in spite of its lower efficiency, because it uses less 
than half the power.
Discussion  Although the larger impeller pump would operate at a somewhat 

higher value of efficiency, it would deliver about 72 ft of net head at the 

required flow rate. This is overkill, and the throttle valve would be required 

to make up the difference between this net head and the required flow head 

of 24 ft of water. A throttle valve does nothing more than waste mechanical 

energy, however; so the gain in efficiency of the pump is more than offset by 

losses through the throttle valve. If the flow head or capacity requirements 

increase at some time in the future, a larger impeller can be purchased for 

the same casing.

Pump Cavitation and Net Positive Suction Head
When pumping liquids, it is possible for the local pressure inside the pump 
to fall below the vapor pressure of the liquid, Pv. (Pv is also called the 
saturation pressure Psat and is listed in thermodynamics tables as a func-
tion of saturation temperature.) When P , Pv, vapor-filled bubbles called 
cavitation bubbles appear. In other words, the liquid boils locally, typically 
on the suction side of the rotating impeller blades where the pressure is lowest 
(Fig. 14–17). After the cavitation bubbles are formed, they are transported 
through the pump to regions where the pressure is higher, causing rapid col-
lapse of the bubbles. It is this collapse of the bubbles that is undesirable, since 
it causes noise, vibration, reduced efficiency, and most importantly, damage 
to the impeller blades. Repeated bubble collapse near a blade surface leads to 
pitting or erosion of the blade and eventually catastrophic blade failure.
 To avoid cavitation, we must ensure that the local pressure everywhere 
inside the pump stays above the vapor pressure. Since pressure is most easily 

Is she trying to tell me 
that the less efficient 
pump can actually 
save on energy costs?

FIGURE 14–16
In some applications, a less efficient 

pump from the same family of pumps 
may require less energy to operate. An 
even better choice, however, would be 

a pump whose best efficiency point 
occurs at the required operating point 

of the pump, but such a pump is not 
always commercially available.
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measured (or estimated) at the inlet of the pump, cavitation criteria are typi-
cally specified at the pump inlet. It is useful to employ a flow parameter 
called net positive suction head (NPSH), defined as the difference between 
the pump’s inlet stagnation pressure head and the vapor pressure head,

Net positive suction head: NPSH 5 a 
P
rg

1
V 2

2g
b

pump inlet

2
Pv

rg
 (14–8)

 Pump manufacturers test their pumps for cavitation in a pump test facility 
by varying the volume flow rate and inlet pressure in a controlled manner. 
Specifically, at a given flow rate and liquid temperature, the pressure at the 
pump inlet is slowly lowered until cavitation occurs somewhere inside the 
pump. The value of NPSH is calculated using Eq. 14–8 and is recorded at 
this operating condition. The process is repeated at several other flow rates, 
and the pump manufacturer then publishes a performance parameter called 
the required net positive suction head (NPSHrequired), defined as the mini-
mum NPSH necessary to avoid cavitation in the pump. The measured value 
of NPSHrequired varies with volume flow rate, and therefore NPSHrequired is 
often plotted on the same pump performance curve as net head (Fig. 14–18). 
When expressed properly in units of head of the liquid being pumped, 
NPSHrequired is independent of the type of liquid. However, if the required 
net positive suction head is expressed for a particular liquid in pressure units 
such as pascals or psi, the engineer must be careful to convert this pressure 
to the equivalent column height of the actual liquid being pumped. Note that 
since NPSHrequired is usually much smaller than H over the majority of the 
performance curve, it is often plotted on a separate expanded vertical axis for 
clarity (see Fig. 14–15) or as contour lines when being shown for a family 
of pumps. NPSHrequired typically increases with volume flow rate, although 
for some pumps it decreases with V

.
 at low flow rates where the pump is not 

operating very efficiently, as sketched in Fig. 14–18.
 In order to ensure that a pump does not cavitate, the actual or available 
NPSH must be greater than NPSHrequired. It is important to note that the value 
of NPSH varies not only with flow rate, but also with liquid temperature, 
since Pv is a function of temperature. NPSH also depends on the type of liq-
uid being pumped, since there is a unique Pv versus T curve for each liquid. 
Since irreversible head losses through the piping system upstream of the inlet 
increase with flow rate, the pump inlet stagnation pressure head decreases 
with flow rate. Therefore, the value of NPSH decreases with V

.
, as sketched 

in Fig. 14–19. By identifying the volume flow rate at which the curves of 
actual NPSH and NPSHrequired intersect, we estimate the maximum volume 
flow rate that can be delivered by the pump without cavitation (Fig. 14–19).

EXAMPLE 14–3    Maximum Flow Rate to Avoid Pump Cavitation

The 11.25-in impeller option of the Taco Model 4013 FI Series centrifugal 

pump of Fig. 14–15 is used to pump water at 25°C from a reservoir whose 

surface is 4.0 ft above the centerline of the pump inlet (Fig. 14–20). The 

piping system from the reservoir to the pump consists of 10.5 ft of cast iron 

pipe with an ID of 4.0 in and an average inner roughness height of 0.02 in. 

There are several minor losses: a sharp-edged inlet (KL 5 0.5), three flanged 

Pressure
side

Suction
side

Impeller
blade

Cavitation
bubbles form

Cavitation
bubbles collapse

v

FIGURE 14–17
Cavitation bubbles forming and 
collapsing on the suction side of an 
impeller blade.
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FIGURE 14–18
Typical pump performance curve 
in which net head and required net 
positive suction head are plotted 
versus volume flow rate.
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FIGURE 14–19
The volume flow rate at which the 
actual NPSH and the required NPSH 
intersect represents the maximum flow 
rate that can be delivered by the pump 
without the occurrence of cavitation.
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smooth 90° regular elbows (KL 5 0.3 each), and a fully open flanged globe 

valve (KL 5 6.0). Estimate the maximum volume flow rate (in units of gpm) 

that can be pumped without cavitation. If the water were warmer, would 

this maximum flow rate increase or decrease? Why? Discuss how you might 

increase the maximum flow rate while still avoiding cavitation.

SOLUTION  For a given pump and piping system we are to estimate the 

maximum volume flow rate that can be pumped without cavitation. We are 

also to discuss the effect of water temperature and how we might increase 

the maximum flow rate. 

Assumptions  1 The flow is steady. 2 The liquid is incompressible. 3 The 

flow at the pump inlet is turbulent and fully developed, with a 5 1.05.

Properties  For water at T 5 25°C, r 5 997.0 kg/m3, m 5 8.91 3 1024 kg/m · s, 

and Pv 5 3.169 kPa. Standard atmospheric pressure is Patm 5 101.3 kPa.

Analysis  We apply the steady energy equation in head form along a stream-

line from point 1 at the reservoir surface to point 2 at the pump inlet,

 
P1

rg
1
a1V 1

2

2g
1 z1 1 hpump, u 5

P2

rg
1
a2V 2

2

2g
1 z2 1 hturbine, e 1 hL, total (1)

In Eq. 1 we have ignored the water speed at the reservoir surface (V1 ≅ 0). 

There is no turbine in the piping system. Also, although there is a pump in 

the system, there is no pump between points 1 and 2; hence the pump head 

term also drops out. We solve Eq. 1 for P2/rg, which is the pump inlet pres-

sure expressed as a head,

 Pump inlet pressure head: 
P2

rg
5

Patm

rg
1 (z1 2 z2) 2

a2V 2
2

2g
2 hL, total (2)

Note that in Eq. 2, we have recognized that P1 5 Patm since the reservoir 

surface is exposed to atmospheric pressure.

 The available net positive suction head at the pump inlet is obtained from 

Eq. 14–8. After substitution of Eq. 2, we get

 Available NPSH: NPSH 5
Patm 2 Pv

rg
1 (z1 2 z2) 2 hL, total 2

(a2 2 1)V 2
2

2g
 (3)

Since we know Patm, Pv, and the elevation difference, all that remains is to 

estimate the total irreversible head loss through the piping system, which 

depends on volume flow rate. Since the pipe diameter is constant,

 Irreversible head loss: hL, total 5 af 
L

D
1 aKLbV 2

2g
 (4)

The rest of the problem is most easily solved on a computer. For a given 

volume flow rate, we calculate speed V and Reynolds number Re. From Re and 

the known pipe roughness, we use the Moody chart (or the Colebrook equation) 

to obtain friction factor f. The sum of all the minor loss coefficients is

 Minor losses: aKL 5 0.5 1 3 3 0.3 1 6.0 5 7.4 (5)

 We make one calculation by hand for illustrative purposes. At V
.
 5 400 gpm 

(0.02523 m3/s), the average speed of water through the pipe is

 
V 5

V
#

A
5

4V
#

pD2 5
4(0.02523 m3/s)

p(4.0 in)2 a 1 in

0.0254 m
b2

5 3.112 m/s (6)

z2

Pump

Inlet
piping
system

Valve 2

z1

1

Reservoir

FIGURE 14–20
Inlet piping system from the 

reservoir (1) to the pump inlet (2) 
for Example 14–3.
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which produces a Reynolds number of Re 5 rVD/m 5 3.538 3 105. At this 

Reynolds number, and with roughness factor e/D 5 0.005, the Colebrook 

equation yields f 5 0.0306. Substituting the given properties, along with 

f, D, L, and Eqs. 4, 5, and 6, into Eq. 3, we calculate the available net 

positive suction head at this flow rate,

 
 NPSH 5

(10,300 2 3169) N/m2

(997.0 kg/m3)(9.81 m/s2)
akg·m/s2

N
b 1 1.219 m

 
 2 a0.0306 

10.5 ft

0.3333 ft
1 7.4 2 (1.05 2 1)b 

(3.112 m/s)2

2(9.81 m/s2)

  5 7.148 m 5 23.5 ft  (7)

The required net positive suction head is obtained from Fig. 14–15. At our 

example flow rate of 400 gpm, NPSHrequired is just above 4.0 ft. Since the 

actual NPSH is much higher than this, we need not worry about cavitation at 

this flow rate. We use EES (or a spreadsheet) to calculate NPSH as a func-

tion of volume flow rate, and the results are plotted in Fig. 14–21. It is clear 

from this plot that at 25°C, cavitation occurs at flow rates above approximately 
600 gpm—close to the free delivery.

 If the water were warmer than 25°C, the vapor pressure would increase, 

the viscosity would decrease, and the density would decrease slightly. 

The calculations are repeated at T 5 60°C, at which r 5 983.3 kg/m3, 

m 5 4.67 3 1024 kg/m · s, and Pv 5 19.94 kPa. The results are also plotted 

in Fig. 14–21, where we see that the maximum volume flow rate without cavi-
tation decreases with temperature (to about 555 gpm at 60°C). This decrease 

agrees with our intuition, since warmer water is already closer to its boiling 

point from the start.

 Finally, how can we increase the maximum flow rate? Any modification 

that increases the available NPSH helps. We can raise the height of the 

reservoir surface (to increase the hydrostatic head). We can reroute the pip-

ing so that only one elbow is necessary and replace the globe valve with a 

ball valve (to decrease the minor losses). We can increase the diameter of 

the pipe and decrease the surface roughness (to decrease the major losses). 

In this particular problem, the minor losses have the greatest influence, but 

in many problems, the major losses are more significant, and increasing the 

pipe diameter is most effective. That is one reason why many centrifugal 

pumps have a larger inlet diameter than outlet diameter.

Discussion  Note that NPSHrequired does not depend on water temperature, 

but the actual or available NPSH decreases with temperature (Fig. 14–21).

Pumps in Series and Parallel
When faced with the need to increase volume flow rate or pressure rise by 
a small amount, you might consider adding an additional smaller pump in 
series or in parallel with the original pump. While series or parallel arrange-
ment is acceptable for some applications, arranging dissimilar pumps in 
series or in parallel may lead to problems, especially if one pump is much 
larger than the other (Fig. 14–22). A better course of action is to increase 
the original pump’s speed and/or input power (larger electric motor), replace 
the impeller with a larger one, or replace the entire pump with a larger one. 
The logic for this decision can be seen from the pump performance curves, 
realizing that pressure rise and volume flow rate are related. Arranging 
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FIGURE 14–21
Net positive suction head as a function 
of volume flow rate for the pump of 
Example 14–3 at two temperatures. 
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rates greater than the point where the 
available and required values of NPSH 
intersect.
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FIGURE 14–22
Arranging two very dissimilar pumps 
in (a) series or (b) parallel can 
sometimes lead to problems.
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dissimilar pumps in series may create problems because the volume flow 
rate through each pump must be the same, but the overall pressure rise is 
equal to the pressure rise of one pump plus that of the other. If the pumps 
have widely different performance curves, the smaller pump may be forced 
to operate beyond its free delivery flow rate, whereupon it acts like a head 
loss, reducing the total volume flow rate. Arranging dissimilar pumps in 
parallel may create problems because the overall pressure rise must be the 
same, but the net volume flow rate is the sum of that through each branch. 
If the pumps are not sized properly, the smaller pump may not be able to 
handle the large head imposed on it, and the flow in its branch could actu-
ally be reversed; this would inadvertently reduce the overall pressure rise. 
In either case, the power supplied to the smaller pump would be wasted.
 Keeping these cautions in mind, there are many applications where two or 
more similar (usually identical) pumps are operated in series or in parallel. 
When operated in series, the combined net head is simply the sum of the 
net heads of each pump (at a given volume flow rate),

Combined net head for n pumps in series: Hcombined 5 an
i51

Hi (14–9)

Equation 14–9 is illustrated in Fig. 14–23 for three pumps in series. In this 
example, pump 3 is the strongest and pump 1 is the weakest. The shutoff 
head of the three pumps combined in series is equal to the sum of the shut-
off head of each individual pump. For low values of volume flow rate, the 
net head of the three pumps in series is equal to H1 1 H2 1 H3. Beyond the 
free delivery of pump 1 (to the right of the first vertical dashed red line in 
Fig. 14–23), pump 1 should be shut off and bypassed. Otherwise it would be 
running beyond its maximum designed operating point, and the pump or its 
motor could be damaged. Furthermore, the net head across this pump would 
be negative as previously discussed, contributing to a net loss in the system. 
With pump 1 bypassed, the combined net head becomes H2 1 H3. Simi-
larly, beyond the free delivery of pump 2, that pump should also be shut 
off and bypassed, and the combined net head is then equal to H3 alone, as 
indicated to the right of the second vertical dashed gray line in Fig. 14–23. 

0

0

H

Combined net head

Pump 1 should
be shut off and
bypassed

Pump 1 Pump 2
Pump 3

Pump 2 
should
be shut
off and
bypassed

H1 + H2 + H3

H2 + H3

H3 only

Shutoff head of combined pumps

Free delivery of combined pumps
•

V

FIGURE 14–23
Pump performance curve (dark blue) 
for three dissimilar pumps in series. 

At low values of volume flow rate, the 
combined net head is equal to the sum 
of the net head of each pump by itself. 

However, to avoid pump damage 
and loss of combined net head, any 
individual pump should be shut off 

and bypassed at flow rates larger than 
that pump’s free delivery, as indicated 
by the vertical dashed red lines. If the 
three pumps were identical, it would 

not be necessary to turn off any of the 
pumps, since the free delivery of each 

pump would occur at the same volume 
flow rate.
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In this case, the combined free delivery is the same as that of pump 3 alone, 
assuming that the other two pumps are bypassed.
 When two or more identical (or similar) pumps are operated in parallel, 
their individual volume flow rates (rather than net heads) are summed,

Combined capacity for n pumps in parallel: V
#

combined 5 an
i51

V
#

i (14–10)

As an example, consider the same three pumps, but arranged in parallel 
rather than in series. The combined pump performance curve is shown in 
Fig. 14–24. The free delivery of the three combined pumps is equal to the 
sum of the free delivery of each individual pump. For low values of net 
head, the capacity of the three pumps in parallel is equal to V

.
1 1 V

.
2 1 V

.
3. 

Above the shutoff head of pump 1 (above the first horizontal dashed red 
line in Fig. 14–24), pump 1 should be shut off and its branch should be 
blocked (with a valve). Otherwise it would be running beyond its maximum 
designed operating point, and the pump or its motor could be damaged. Fur-
thermore, the volume flow rate through this pump would be negative as pre-
viously discussed, contributing to a net loss in the system. With pump 1 shut 
off and blocked, the combined capacity becomes V

.
2 1 V

.
3. Similarly, above 

the shutoff head of pump 2, that pump should also be shut off and blocked. 
The combined capacity is then equal to V

.
3 alone, as indicated above, the 

second horizontal dashed gray line in Fig. 14–24. In this case, the combined 
shutoff head is the same as that of pump 3 alone, assuming that the other 
two pumps are shut off and their branches are blocked.
 In practice, several pumps may be combined in parallel to deliver a large 
volume flow rate (Fig. 14–25). Examples include banks of pumps used to 
circulate water in cooling towers and chilled water loops (Wright, 1999). 
Ideally all the pumps should be identical so that we don’t need to worry 
about shutting any of them off (Fig. 14–24). Also, it is wise to install 
check valves in each branch so that when a pump needs to be shut down 

Pump 3

0

0

H
Shutoff head of combined pumps

Free delivery of combined pumps
.

 V

⋅
 V3 only

 V2 +  V3
⋅ ⋅ Pump 1 should

be shut off

 V1 +  V2 +  V3
⋅ ⋅ ⋅

Pump 1

Pump 2

Combined capacity

Pump 2 should be shut off

FIGURE 14–24
Pump performance curve (dark blue) for 
three pumps in parallel. At a low value 
of net head, the combined capacity 
is equal to the sum of the capacity of 
each pump by itself. However, to avoid 
pump damage and loss of combined 
capacity, any individual pump should 
be shut off at net heads larger than that 
pump’s shutoff head, as indicated by 
the horizontal dashed gray lines. That 
pump’s branch should also be blocked 
with a valve to avoid reverse flow. If the 
three pumps were identical, it would 
not be necessary to turn off any of the 
pumps, since the shutoff head of each 
pump would occur at the same net head.
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(for maintenance or when the required flow rate is low), backflow through 
the pump is avoided. Note that the extra valves and piping required for a 
parallel pump network add additional head losses to the system; thus the 
overall performance of the combined pumps suffers somewhat.

Positive-Displacement Pumps
People have designed numerous positive-displacement pumps throughout the 
centuries. In each design, fluid is sucked into an expanding volume and then 
pushed along as that volume contracts, but the mechanism that causes this 
change in volume differs greatly among the various designs. Some designs 
are very simple, like the flexible-tube peristaltic pump (Fig. 14–26a) that 
compresses a tube by small wheels, pushing the fluid along. (This mecha-
nism is somewhat similar to peristalsis in your esophagus or intestines, 
where muscles rather than wheels compress the tube.) Others are more com-
plex, using rotating cams with synchronized lobes (Fig. 14–26b), interlock-
ing gears (Fig. 14–26c), or screws (Fig. 14–26d). Positive-displacement 
pumps are ideal for high-pressure applications like pumping viscous liquids 
or thick slurries, and for applications where precise amounts of liquid are to 
be dispensed or metered, as in medical applications.

FIGURE 14–25
Several identical pumps are often run 

in a parallel configuration so that a 
large volume flow rate can be achieved 
when necessary. Three parallel pumps 

are shown.
Courtesy of Goulds Pumps, ITT Corporation. 

Used by permission.
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(a) (b)

(c) (d)

FIGURE 14–26
Examples of positive-displacement 
pumps: (a) flexible-tube peristaltic 
pump, (b) three-lobe rotary pump, 
(c) gear pump, and (d) double screw 
pump.
Adapted from F. M. White, Fluid Mechanics 4/e. 
Copyright © 1999. The McGraw-Hill Companies, 
Inc. With permission.

In

45° 90° 135°

Out

180°

FIGURE 14–27
Four phases (one-eighth of a turn 
apart) in the operation of a two-lobe 
rotary pump, a type of positive-
displacement pump. The blue region 
represents a chunk of fluid pushed 
through the top rotor, while the red 
region represents a chunk of fluid 
pushed through the bottom rotor, 
which rotates in the opposite direction. 
Flow is from left to right.

 To illustrate the operation of a positive-displacement pump, we sketch four 
phases of half of a cycle of a simple rotary pump with two lobes on each 
rotor (Fig. 14–27). The two rotors are synchronized by an external gear box 
so as to rotate at the same angular speed, but in opposite directions. In the dia-
gram, the top rotor turns clockwise and the bottom rotor turns counterclock-
wise, sucking in fluid from the left and discharging it to the right. A white dot 
is drawn on one lobe of each rotor to help you visualize the rotation.
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 Gaps exist between the rotors and the housing and between the lobes 
of the rotors themselves, as illustrated (and exaggerated) in Fig. 14–27. 
Fluid can leak through these gaps, reducing the pump’s efficiency. High-
viscosity fluids cannot penetrate the gaps as easily; hence the net head 
(and efficiency) of a rotary pump generally increases with fluid viscosity, as 
shown in Fig. 14–28. This is one reason why rotary pumps (and other types of 
positive-displacement pumps) are a good choice for pumping highly viscous 
fluids and slurries. They are used, for example, as automobile engine oil 
pumps and in the foods industry to pump heavy liquids like syrup, tomato 
paste, and chocolate, and slurries like soups.
 The pump performance curve (net head versus capacity) of a rotary pump 
is nearly vertical throughout its recommended operating range, since the 
capacity is fairly constant regardless of load at a given rotational speed 
(Fig. 14–28). However, as indicated by the dashed blue curve in Fig. 14–28, at 
very high values of net head, corresponding to very high pump outlet pres-
sure, leaks become more severe, even for high-viscosity fluids. In addition, 
the motor driving the pump cannot overcome the large torque caused by this 
high outlet pressure, and the motor begins to suffer stall or overload, which 
may burn out the motor. Therefore, rotary pump manufacturers do not rec-
ommend operation of the pump above a certain maximum net head, which 
is typically well below the shutoff head. The pump performance curves sup-
plied by the manufacturer often do not even show the pump’s performance 
outside of its recommended operating range.
 Positive-displacement pumps have many advantages over dynamic pumps. 
For example, a positive-displacement pump is better able to handle shear 
sensitive liquids since the induced shear is much less than that of a dynamic 
pump operating at similar pressure and flow rate. Blood is a shear sensitive 
liquid, and this is one reason why positive-displacement pumps are used 
for artificial hearts. A well-sealed positive-displacement pump can create 
a significant vacuum pressure at its inlet, even when dry, and is thus able 
to lift a liquid from several meters below the pump. We refer to this kind 
of pump as a self-priming pump (Fig. 14–29). Finally, the rotor(s) of a 
positive- displacement pump run at lower speeds than the rotor (impeller) of 
a dynamic pump at similar loads, extending the useful lifetime of seals, etc.
 There are some disadvantages of positive-displacement pumps as well. 
Their volume flow rate cannot be changed unless the rotation rate is 
changed. (This is not as simple as it sounds, since most AC electric motors 
are designed to operate at one or more fixed rotational speeds.) They cre-
ate very high pressure at the outlet side, and if the outlet becomes blocked, 
ruptures may occur or electric motors may overheat, as previously discussed. 
Overpressure protection (e.g., a pressure-relief valve) is often required for 
this reason. Because of their design, positive-displacement pumps sometimes 
deliver a pulsating flow, which may be unacceptable for some applications.
 Analysis of positive-displacement pumps is fairly straightforward. From 
the geometry of the pump, we calculate the closed volume (Vclosed) that is 
filled (and expelled) for every n rotations of the shaft. Volume flow rate is 
then equal to rotation rate n

.
 times Vclosed divided by n,

Volume flow rate, positive-displacement pump: V
#

5 n#  
Vclosed

n
 (14–11)

0

0 Free delivery

Maximum
recommended
net head

Recommended
operating range

Increasing
viscosity

H

Shutoff headShutoff head

•

FIGURE 14–28
Comparison of the pump performance 

curves of a rotary pump operating 
at the same speed, but with fluids of 

various viscosities. To avoid motor 
overload the pump should not be 

operated in the shaded region.

OutSelf-priming
pump

Hose

In

FIGURE 14–29
A pump that can lift a liquid even 

when the pump itself is “empty” is 
called a self-priming pump.
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EXAMPLE 14–4     Volume Flow Rate through 
a Positive-Displacement Pump

A two-lobe rotary positive-displacement pump, similar to that of Fig. 14–27, 

moves 0.45 cm3 of SAE 30 motor oil in each lobe volume Vlobe, as sketched 

in Fig. 14–30. Calculate the volume flow rate of oil for the case where 

n
.
 5 900 rpm.

SOLUTION  We are to calculate the volume flow rate of oil through a positive-

displacement pump for given values of lobe volume and rotation rate.

Assumptions  1 The flow is steady in the mean. 2 There are no leaks in 

the gaps between lobes or between lobes and the casing. 3 The oil is 

incompressible.

Analysis  By studying Fig. 14–27, we see that for half of a rotation (180° 

for n 5 0.5 rotations) of the two counter-rotating shafts, the total volume of 

oil pumped is Vclosed 5 2Vlobe. The volume flow rate is then calculated from 

Eq. 14–11,

V
#

5 n
#
 
Vclosed

n
5 (900 rot/min)

2(0.45 cm3)

0.5 rot
5 1620 cm3/min

Discussion  If there were leaks in the pump, the volume flow rate would be 

lower. The oil’s density is not needed for calculation of the volume flow rate. 

However, the higher the fluid density, the higher the required shaft torque 

and brake horsepower.

Dynamic Pumps
There are three main types of dynamic pumps that involve rotating blades 
called impeller blades or rotor blades, which impart momentum to the 
fluid. For this reason they are sometimes called rotodynamic pumps or 
simply rotary pumps (not to be confused with rotary positive-displacement 
pumps, which use the same name). There are also some nonrotary dynamic 
pumps, such as jet pumps and electromagnetic pumps; these are not dis-
cussed in this text. Rotary pumps are classified by the manner in which flow 
exits the pump: centrifugal flow, axial flow, and mixed flow (Fig. 14–31). In 
a centrifugal-flow pump, fluid enters axially (in the same direction as the 
axis of the rotating shaft) in the center of the pump, but is discharged radi-
ally (or tangentially) along the outer radius of the pump casing. For this rea-
son centrifugal pumps are also called radial-flow pumps. In an axial-flow 
pump, fluid enters and leaves axially, typically along the outer portion of 
the pump because of blockage by the shaft, motor, hub, etc. A mixed-flow 
pump is intermediate between centrifugal and axial, with the flow enter-
ing axially, not necessarily in the center, but leaving at some angle between 
radially and axially.

Centrifugal Pumps
Centrifugal pumps and blowers can be easily identified by their snail-shaped 
casing, called the scroll (Fig. 14–32). They are found all around your 
home—in dishwashers, hot tubs, clothes washers and dryers, hairdryers, 

In Out
⋅⋅

FIGURE 14–30
The two-lobe rotary pump of 
Example 14–4. Flow is from left 
to right.

(a)

(b)

(c)

Impeller shroud

Blade

Flow out

Flow in

v

v

Blade

Impeller shroud

Impeller hub

Flow out

Flow out

Flow in

v

Blade

Flow in

FIGURE 14–31
The impeller (rotating portion) of 
the three main categories of dynamic 
pumps: (a) centrifugal flow, (b) mixed 
flow, and (c) axial flow.

787-878_cengel_ch14.indd   806 12/21/12   1:22 PM



807
CHAPTER 14

vacuum cleaners, kitchen exhaust hoods, bathroom exhaust fans, leaf blow-
ers, furnaces, etc. They are used in cars—the water pump in the engine, 
the air blower in the heater/air conditioner unit, etc. Centrifugal pumps are 
ubiquitous in industry as well; they are used in building ventilation systems, 
washing operations, cooling ponds and cooling towers, and in numerous 
other industrial operations in which fluids are pumped. 
 A schematic diagram of a centrifugal pump is shown in Fig. 14–33. Note 
that a shroud often surrounds the impeller blades to increase blade stiffness. 
In pump terminology, the rotating assembly that consists of the shaft, the 
hub, the impeller blades, and the impeller shroud is called the impeller or 
rotor. Fluid enters axially through the hollow middle portion of the pump 
(the eye), after which it encounters the rotating blades. It acquires tangen-
tial and radial velocity by momentum transfer with the impeller blades, and 
acquires additional radial velocity by so-called centrifugal forces, which are 
actually a lack of sufficient centripetal forces to sustain circular motion. 
The flow leaves the impeller after gaining both speed and pressure as it is 
flung radially outward into the scroll (also called the volute). As sketched in 
Fig. 14–33, the scroll is a snail-shaped diffuser whose purpose is to decel-
erate the fast-moving fluid leaving the trailing edges of the impeller blades, 
thereby further increasing the fluid’s pressure, and to combine and direct 
the flow from all the blade passages toward a common outlet. As mentioned 
previously, if the flow is steady in the mean, if the fluid is incompressible, 
and if the inlet and outlet diameters are the same, the average flow speed 
at the outlet is identical to that at the inlet. Thus, it is not necessarily the 
speed, but the pressure that increases from inlet to outlet through a centrifu-
gal pump.
 There are three types of centrifugal pump that warrant discussion, based 
on impeller blade geometry, as sketched in Fig. 14–34: backward-inclined 
blades, radial blades, and forward-inclined blades. Centrifugal pumps with 
backward-inclined blades (Fig. 14–34a) are the most common. These 
yield the highest efficiency of the three because fluid flows into and out of 
the blade passages with the least amount of turning. Sometimes the blades 
are airfoil shaped, yielding similar performance but even higher efficiency. 
The pressure rise is intermediate between the other two types of centrifugal 

Impeller 
shroud

Impeller Eye

Vout,
Pout

Pin Vin

b1

r1

v

b2

Scroll
Side view Frontal view

Casing

Shaft

In

Out

r2

v

In

Impeller 
blade
Impeller 
blade

FIGURE 14–33
Side view and frontal view of a typical 
centrifugal pump. Fluid enters axially 

in the middle of the pump (the eye), 
is flung around to the outside by the 
rotating blade assembly (impeller), 

is diffused in the expanding diffuser 
(scroll), and is discharged out the side 

of the pump. We define r1 and r2 as 
the radial locations of the impeller 
blade inlet and outlet, respectively; 
b1 and b2 are the axial blade widths 

at the impeller blade inlet and outlet, 
respectively.

FIGURE 14–32
A typical centrifugal blower with its 

characteristic snail-shaped scroll. 
Courtesy of The New York Blower Company, 

Willowbrook, IL. Used by permission.
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pumps. Centrifugal pumps with radial blades (also called straight blades, 
Fig. 14–34b) have the simplest geometry and produce the largest pressure 
rise of the three for a wide range of volume flow rates, but the pressure rise 
decreases rapidly after the point of maximum efficiency. Centrifugal pumps 
with forward-inclined blades (Fig. 14–34c) produce a pressure rise that is 
nearly constant, albeit lower than that of radial or backward-inclined blades, 
over a wide range of volume flow rates. Forward-inclined centrifugal pumps 
generally have more blades, but the blades are smaller, as sketched in 
Fig. 14–34c. Centrifugal pumps with forward-inclined blades generally have 
a lower maximum efficiency than do straight-bladed pumps. Radial and 
backward-inclined centrifugal pumps are preferred for applications where 
one needs to provide volume flow rate and pressure rise within a narrow 
range of values. If a wider range of volume flow rates and/or pressure rises 
are desired, the performance of radial pumps and backward-inclined pumps 
may not be able to satisfy the new requirements; these types of pumps are 
less forgiving (less robust). The performance of forward-inclined pumps is 
more forgiving and accommodates a wider variation, at the cost of lower 
efficiency and less pressure rise per unit of input power. If a pump is needed 
to produce large pressure rise over a wide range of volume flow rates, the 
forward-inclined centrifugal pump is attractive.
 Net head and brake horsepower performance curves for these three types 
of centrifugal pump are compared in Fig. 14–34d. The curves have been 
adjusted such that each pump achieves the same free delivery (maximum 
volume flow rate at zero net head). Note that these are qualitative sketches 
for comparison purposes only—actual measured performance curves may 
differ significantly in shape, depending on details of the pump design.
 For any inclination of the impeller blades (backward, radial, or forward), 
we can analyze the velocity vectors through the blades. The actual flow field 
is unsteady, fully three-dimensional, and perhaps compressible. For simplic-
ity in our analysis we consider steady flow in both the absolute reference 
frame and in the relative frame of reference rotating with the impeller. We 
consider only incompressible flow, and we consider only the radial or nor-
mal velocity component (subscript n) and the circumferential or tangential 
velocity component (subscript t) from blade inlet to blade outlet. We do not 
consider the axial velocity component (to the right in Fig. 14–35 and into 
the page in the frontal view of Fig. 14–33). In other words, although there 
is a nonzero axial component of velocity through the impeller, it does not 
enter our analysis. A close-up side view of a simplified centrifugal pump 
is sketched in Fig. 14–35, where we define V1, n and V2, n as the average 
normal components of velocity at radii r1 and r2, respectively. Although a 
gap is shown between the blade and the casing, we assume in our simplified 
analysis that no leakage occurs in these gaps.
 The volume flow rate V

.
 entering the eye of the pump passes through the 

circumferential cross-sectional area defined by width b1 at radius r1. Conser-
vation of mass requires that this same volume flow rate must pass through 
the circumferential cross-sectional area defined by width b2 at radius r2. 
Using the average normal velocity components V1, n and V2, n defined in 
Fig. 14–35, we write

Volume flow rate: V
#

5 2pr1b1V1, n 5 2pr2b2V2, n (14–12)

0
0

bhp

Radial

Backward
Forward

H

H or bhp

(d)

(c)

(b)

(a)

v

v

v

•
V

FIGURE 14–34
The three main types of centrifugal 
pumps are those with (a) backward-
inclined blades, (b) radial blades, 
and (c) forward-inclined blades; 
(d) comparison of net head and brake 
horsepower performance curves for 
the three types of centrifugal pumps.
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from which we obtain

 V2, n 5 V1, n 
r1b1

r2b2

 (14–13)

It is clear from Eq. 14–13 that V2, n may be less than, equal to, or greater 
than V1, n, depending on the values of b and r at the two radii.
 We sketch a close-up frontal view of one impeller blade in Fig. 14–36, 
where we show both radial and tangential velocity components. We have 
drawn a backward-inclined blade, but the same analysis holds for blades of 
any inclination. The inlet of the blade (at radius r1) moves at tangential veloc-
ity vr1. Likewise, the outlet of the blade moves at tangential velocity vr2. It 
is clear from Fig. 14–36 that these two tangential velocities differ not only in 
magnitude, but also in direction, because of the inclination of the blade. We 
define leading edge angle b1 as the blade angle relative to the reverse tan-
gential direction at radius r1. In like manner we define trailing edge angle b2 
as the blade angle relative to the reverse tangential direction at radius r2.
 We now make a significant simplifying approximation. We assume that 
the flow impinges on the blade parallel to the blade’s leading edge and 
exits the blade parallel to the blade’s trailing edge. In other words,

We assume that the flow is everywhere tangent to the blade surface when 
viewed from a reference frame rotating with the blade.

At the inlet, this approximation is sometimes called the shockless entry 
condition, not to be confused with shock waves (Chap. 12). Rather, the 
terminology implies smooth flow into the impeller blade without a sudden 
turning “shock.” Inherent in this approximation is the assumption that there 
is no flow separation anywhere along the blade surface. If the centrifugal 
pump operates at or near its design conditions, this assumption is valid. 
However, when the pump operates far off design conditions, the flow may 
separate off the blade surface (typically on the suction side where there are 
adverse pressure gradients), and our simplified analysis breaks down.
 Velocity vectors V

!
1, relative and V

!
2, relative are drawn in Fig. 14–36 parallel to 

the blade surface, in accordance with our simplifying assumption. These are 
the velocity vectors seen from the relative reference frame of an observer 
moving with the rotating blade. When we vectorially add tangential veloc-
ity vr1 (the velocity of the blade at radius r1) to V

!
1, relative by completing the 

parallelogram as sketched in Fig. 14–36, the resultant vector is the absolute 
fluid velocity V

!
1 at the blade inlet. In exactly similar fashion, we obtain V

!
2, 

the absolute fluid velocity at the blade outlet (also sketched in Fig. 14–36). 
For completeness, normal velocity components V1, n and V2, n are also shown 
in Fig. 14–36. Notice that these normal velocity components are indepen-
dent of which frame of reference we use, absolute or relative.
 To evaluate the torque on the rotating shaft, we apply the angular momen-
tum relation for a control volume, as discussed in Chap. 6. We choose a 
control volume surrounding the impeller blades, from radius r1 to radius r2, 
as sketched in Fig. 14–37. We also introduce in Fig. 14–37 angles a1 and 
a2, defined as the angle of departure of the absolute velocity vector from 
the normal direction at radii r1 and r2, respectively. In keeping with the con-
cept of treating a control volume like a “black box,” we ignore details of 
individual impeller blades. Instead we make the approximation that flow 

Impeller
blade

In
Shaft

V1, n

V2, n

b2

b1

Vin, Pin,
r1

r2

CasingScroll

Out

v

•
V

FIGURE 14–35
Close-up side view of the simplified 

centrifugal flow pump used for 
elementary analysis of the velocity 

vectors; V1, n and V2, n are defined 
as the average normal (radial) 

components of velocity at radii r1 
and r2, respectively.

V2, n

V2, t

V1, n

V2, relative

V2, relative
→

→ V1, relative
→

V2

→
V1

vr1

vr2

v

r2

b2

b2

b2

b1

b1

r1

FIGURE 14–36
Close-up frontal view of the simplified 

centrifugal flow pump used for 
elementary analysis of the velocity 

vectors. Absolute velocity vectors of 
the fluid are shown as bold arrows. It 

is assumed that the flow is everywhere 
tangent to the blade surface when 

viewed from a reference frame 
rotating with the blade, as indicated 

by the relative velocity vectors.
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enters the control volume with uniform absolute velocity V
!
1 around the 

entire circumference at radius r1 and exits with uniform absolute velocity V
!
2 

around the entire circumference at radius r2.
 Since moment of momentum is defined as the cross product r

→
 3 V

!
, only 

the tangential components of V
!
1 and V

!
2 are relevant to the shaft torque. 

These are shown as V1, t and V2, t in Fig. 14–37. It turns out that shaft torque 
is equal to the change in moment of momentum from inlet to outlet, as 
given by the Euler turbomachine equation (also called Euler’s turbine 
formula), derived in Chap. 6,

Euler turbomachine equation: Tshaft 5 rV
#
(r2V 2, t 2 r1V 1, t) (14–14)

Or, in terms of angles a1 and a2 and the magnitudes of the absolute velocity 
vectors,

Alternative form, Euler turbomachine equation:

 Tshaft 5 rV
#
(r2V 2 sin a2 2 r1V 1 sin a1) (14–15)

 In our simplified analysis there are no irreversible losses. Hence, pump 
efficiency hpump 5 1, implying that water horsepower W

.
water horsepower and 

brake horsepower bhp are the same. Using Eqs. 14–3 and 14–4,

 bhp 5 vTshaft 5 rvV
#
(r2V 2, t 2 r1V 1, t) 5 W

#
water horsepower 5 rgV

#
H (14–16)

which is solved for net head H,

Net head: H 5
1
g

 (vr2V2, t 2 vr1V1, t) (14–17)

EXAMPLE 14–5    Idealized Blower Performance

A centrifugal blower rotates at n
.
 5 1750 rpm (183.3 rad/s). Air enters the 

impeller normal to the blades (a1 5 0°) and exits at an angle of 40° from 

radial (a2 5 40°) as sketched in Fig. 14–38. The inlet radius is r1 5 4.0 cm, 

and the inlet blade width b1 5 5.2 cm. The outlet radius is r2 5 8.0 cm, 

and the outlet blade width b2 5 2.3 cm. The volume flow rate is 0.13 m3/s. 

For the idealized case, i.e., 100 percent efficiency, calculate the net head 

produced by this blower in equivalent millimeters of water column height. 

Also calculate the required brake horsepower in watts.

SOLUTION  We are to calculate the brake horsepower and net head of an 

idealized blower at a given volume flow rate and rotation rate.

Assumptions  1 The flow is steady in the mean. 2 There are no leaks in the 

gaps between rotor blades and blower casing. 3 The air flow is incompress-

ible. 4 The efficiency of the blower is 100 percent (no irreversible losses).

Properties  We take the density of air to be rair 5 1.20 kg/m3.

Analysis  Since the volume flow rate (capacity) is given, we calculate the 

normal velocity components at the inlet using Eq. 14–12,

 V1, n 5
V
#

2pr1b1

5
0.13 m3/s

2p(0.040 m)(0.052 m)
5 9.947 m/s (1)

V1 5 V1, n, and V1, t 5 0, since a1 5 0°. Similarly, V2, n 5 11.24 m/s, and

 V2, t 5 V2, n tan a2 5 (11.24 m/s) tan(408) 5 9.435 m/s (2)

V1, n

V2, n

V1, t

r2

r1

a2

a1

V2, t

V2

→

V1

→

Control 
volume Shaft

Tshaft = torque supplied
 to shaft

v

FIGURE 14–37
Control volume (shaded) used for 
angular momentum analysis of a 
centrifugal pump; absolute tangential 
velocity components V1, t and V2, t are 
labeled.

V2, n

r2

r1

a2

V2, t

V2

→

V1

→

Control 
volume

v

FIGURE 14–38
Control volume and absolute velocity 
vectors for the centrifugal blower of 
Example 14–5. The view is along the 
blower axis.
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Now we use Eq. 14–17 to predict the net head,

 H 5
v

g
 (r2V2, t 2 r1V1, t ) 5

183.3 rad/s

9.81 m/s2  (0.080 m)(9.435 m/s) 5 14.1 m (3)

 0

Note that the net head of Eq. 3 is in meters of air, the pumped fluid. To 

convert to pressure in units of equivalent millimeters of water column, we 

multiply by the ratio of air density to water density,

 Hwater column 5 H 
rair

rwater
 

 
 5 (14.1 m) 

1.20 kg/m3

998 kg/m3 a1000 mm

1 m
b 5 17.0 mm of water (4)

Finally, we use Eq. 14–16 to predict the required brake horsepower,

 
 bhp 5 rgV

#
H 5 (1.20 kg/m3)(9.81 m/s2)(0.13 m3/s)(14.1 m)a W·s

kg·m/s2b
  5 21.6 W  (5)

Discussion  Note the unit conversion in Eq. 5 from kilograms, meters, and 

seconds to watts; this conversion turns out to be useful in many turboma-

chinery calculations. The actual net head delivered to the air will be lower 

than that predicted by Eq. 3 due to inefficiencies. Similarly, actual brake 

horsepower will be higher than that predicted by Eq. 5 due to inefficiencies 

in the blower, friction on the shaft, etc.

 In order to design the shape of the impeller blades, we must use trigonom-
etry to obtain expressions for V1, t and V2, t in terms of blade angles b1 and 
b2. Applying the law of cosines (Fig. 14–39) to the triangle in Fig. 14–36 
formed by absolute velocity vector V

!
2, relative velocity vector V

!
2, relative, and 

the tangential velocity of the blade at radius r2 (of magnitude vr2) we get

 V 2
2 5 V 2

2, relative 1 v2r2
2 2 2vr2V 2, relative cos  b2 (14–18)

But we also see from Fig. 14–36 that

V2, relative cos  b2 5 vr2 2 V 2, t

Substitution of this equation into Eq. 14–18 yields

 
vr2V2, t 5

1

2
 (V 2

2 2 V 2
2, relative 1 v2r2

2) (14–19)

A similar equation results for the blade inlet (change all subscripts 2 in 
Eq. 14–19 to subscript 1). Substitution of these into Eq. 14–17 yields

Net head: H 5
1

2g
 [(V 2

2 2 V 1
2) 1 (v2r2

2 2 v2r1
2) 2 (V 2

2, relative 2 V 2
1, relative)] (14–20)

In words, Eq. 14–20 states that in the ideal case (no irreversible losses), the 
net head is proportional to the change in absolute kinetic energy plus the 
rotor-tip kinetic energy change minus the change in relative kinetic energy 
from inlet to outlet of the impeller. Finally, equating Eq. 14–20 and Eq. 14–2, 

F

Law of Cosines

c2 = a2 + b2 – 2ab cos C

A
B
C a

b

c

FIGURE 14–39
The law of cosines is utilized in the 

analysis of a centrifugal pump.
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where we set subscript 2 as the outflow and subscript 1 as the inflow, we 
see that

 
a 

P
rg

1
V 2

relative

2g
2
v2r2

2g
1 zb

out

5 a 
P
rg

1
V 2

relative

2g
2
v2r2

2g
1 zb

in

 (14–21)

 Note that we are not limited to analysis of only the inlet and outlet. In 
fact, we may apply Eq. 14–21 to any two radii along the impeller. In general 
then, we write an equation that is commonly called the Bernoulli equation 
in a rotating reference frame:

 

P
rg

1
V 2

relative

2g
2
v2r2

2g
1 z 5 constant (14–22)

We see that Eq. 14–22 is the same as the usual Bernoulli equation, except that 
since the speed used is the relative speed (in the rotating reference frame), an 
“extra” term (the third term on the left of Eq. 14–22) appears in the equation 
to account for rotational effects (Fig. 14–40). We emphasize that Eq. 14–22 is 
an approximation, valid only for the ideal case in which there are no irrevers-
ible losses through the impeller. Nevertheless, it is valuable as a first-order 
approximation for flow through the impeller of a centrifugal pump.
 We now examine Eq. 14–17, the equation for net head, more closely. 
Since the term containing V1, t carries a negative sign, we obtain the maxi-
mum H by setting V1, t to zero. (We are assuming that there is no mecha-
nism in the eye of the pump that can generate a negative value of V1, t.) 
Thus, a first-order approximation for the design condition of the pump is 
to set V1, t 5 0. In other words, we select the blade inlet angle b1 such that 
the flow into the impeller blade is purely radial from an absolute reference 
frame, and V1, n 5 V1. The velocity vectors at r 5 r1 in Fig. 14–36 are mag-
nified and redrawn in Fig. 14–41. Using some trigonometry we see that

 V1, t 5 vr1 2
V1, n

tan  b1

 (14–23)

A similar expression is obtained for V2, t (replace subscript 1 by 2), or in 
fact for any radius between r1 and r2. When V1, t 5 0 and V1, n 5 V1,

 vr1 5
V1, n

tan b1

 (14–24)

Finally, combining Eq. 14–24 with Eq. 14–12, we have an expression for 
volume flow rate as a function of inlet blade angle b1 and rotational speed,

 V
#

5 2pb1vr1
2 tan  b1 (14–25)

Equation 14–25 can be used for preliminary design of the impeller blade 
shape as illustrated by Example 14–6.

EXAMPLE 14–6    Preliminary Design of a Centrifugal Pump

A centrifugal pump is being designed to pump liquid refrigerant R-134a at 

room temperature and atmospheric pressure. The impeller inlet and outlet 

radii are r1 5 100 and r2 5 180 mm, respectively (Fig. 14–42). The impeller 

Vrelative
→

V

Absolute Rotating

→

v

r r

v

FIGURE 14–40
For the approximation of flow through 
an impeller with no irreversible losses, 
it is often more convenient to work 
with a relative frame of reference 
rotating with the impeller; in that 
case, the Bernoulli equation gets 
an additional term, as indicated in 
Eq. 14–22.

V1, t

V1, n

V1, relative
→

→
V1

vr1

v

b1

b1

r1

FIGURE 14–41
Close-up frontal view of the velocity 
vectors at the impeller blade inlet. 
The absolute velocity vector is shown 
as a bold arrow.
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inlet and outlet widths are b1 5 50 and b2 5 30 mm (into the page of 

Fig. 14–42). The pump is to deliver 0.25 m3/s of the liquid at a net head 

of 14.5 m when the impeller rotates at 1720 rpm. Design the blade shape 

for the case in which these operating conditions are the design conditions of 

the pump (V1, t 5 0, as sketched in the figure); specifically, calculate angles 

b1 and b2, and discuss the shape of the blade. Also predict the horsepower 

required by the pump.

SOLUTION  For a given flow rate, net head, and dimensions of a centrifugal 

pump, we are to design the blade shape (leading and trailing edge angles). 

We are also to estimate the horsepower required by the pump.

Assumptions  1 The flow is steady. 2 The liquid is incompressible. 3 There are 

no irreversible losses through the impeller. 4 This is only a preliminary design.

Properties  For refrigerant R-134a at T 5 20°C, vf 5 0.0008157 m3/kg. 

Thus r 5 1/vf 5 1226 kg/m3.

Analysis  We calculate the required water horsepower from Eq. 14–3,

 W
#

water horsepower 5 rgV
#
H 

 5 (1226 kg/m3)(9.81 m/s2)(0.25 m3/s)(14.5 m)a W·s

kg·m/s2b
 5 43,600 W 

The required brake horsepower will be greater than this in a real pump. 

However, in keeping with the approximations for this preliminary design, 

we assume 100 percent efficiency such that bhp is approximately equal to 

W
.

water horsepower,

bhp > W
#

water horsepower 5 43,600 Wa hp

745.7 W
b 5 58.5 hp

We report the final result to two significant digits in keeping with the preci-

sion of the given quantities; thus, bhp < 59 horsepower.
 In all calculations with rotation, we need to convert the rotational speed 

from n
.
 (rpm) to v (rad/s), as illustrated in Fig. 14–43,

 
v 5 1720 

rot

min 
a2p rad

rot
b a1 min

60 s
b 5 180.1 rad/s (1)

We calculate the blade inlet angle using Eq. 14–25,

b1 5 arctan a V
#

2pb1vr1
2b 5 arctan a 0.25 m3/s

2p(0.050 m)(180.1 rad/s)(0.10 m)2b 5 23.88

 We find b2 by utilizing the equations derived earlier for our elementary 

analysis. First, for the design condition in which V1, t 5 0, Eq. 14–17 

reduces to

 Net head: H 5
1
g

 (vr2V2, t 2 vr1V1, t ) 5
vr2V2, t

g
 0

from which we calculate the tangential velocity component,

 V2, t 5
gH

vr2
 (2)

F

V2, n

V2, relative

→

→
V1, relative
→

V2

→
V1

vr1

vr2

v

r2

b2

b2

b1

b1

r1

FIGURE 14–42
Relative and absolute velocity vectors 

and geometry for the centrifugal pump 
impeller design of Example 14–6.

CAUTION
 

Always convert
rotation rate

from rpm
to radians

per second.

FIGURE 14–43
Proper unit conversion requires the 

units of rotation rate to be rad/s.
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Using Eq. 14–12, we calculate the normal velocity component,

 V2, n 5
V
#

2pr2b2

 (3)

Next, we perform the same trigonometry used to derive Eq. 14–23, but on 

the trailing edge of the blade rather than the leading edge. The result is

V2, t 5 vr2 2
V2, n

tan b2

from which we finally solve for b2,

 
b2 5 arctan a V 2, n

vr2 2 V 2, t

b  (4)

After substitution of Eqs. 2 and 3 into Eq. 4, and insertion of the numerical 

values, we obtain

b2 5 14.78

We report the final results to only two significant digits. Thus our preliminary 

design requires backward-inclined impeller blades with b1 ≅ 24° and b2 ≅ 15°.
 Once we know the leading and trailing edge blade angles, we design the 

detailed shape of the impeller blade by smoothly varying blade angle b from 

b1 to b2 as radius increases from r1 to r2. As sketched in Fig. 14–44, the 

blade can be of various shapes while still keeping b1 ≅ 24° and b2 ≅ 15°, 

depending on how we vary b with the radius. In the figure, all three blades 

begin at the same location (zero absolute angle) at radius r1; the leading 

edge angle for all three blades is b1 5 24°. The medium length blade (the 

brown one in Fig. 14–44) is constructed by varying b linearly with r. Its trail-

ing edge intercepts radius r2 at an absolute angle of approximately 93°. The 

longer blade (the black one in the figure) is constructed by varying b more 

rapidly near r1 than near r2. In other words, the blade curvature is more 

pronounced near its leading edge than near its trailing edge. It intercepts 

the outer radius at an absolute angle of about 114°. Finally, the shortest 

blade (the blue blade in Fig. 14–44) has less blade curvature near its lead-

ing edge, but more pronounced curvature near its trailing edge. It intercepts 

r2 at an absolute angle of approximately 77°. It is not immediately obvious 

which blade shape is best.

Discussion  Keep in mind that this is a preliminary design in which irrevers-

ible losses are ignored. A real pump would have losses, and the required 

brake horsepower would be higher (perhaps 20 to 30 percent higher) than 

the value estimated here. In a real pump with losses, a shorter blade has less 

skin friction drag, but the normal stresses on the blade are larger because 

the flow is turned more sharply near the trailing edge where the velocities 

are largest; this may lead to structural problems if the blades are not very 

thick, especially when pumping dense liquids. A longer blade has higher 

skin friction drag, but lower normal stresses. In addition, you can see from 

a simple blade volume estimate in Fig. 14–44 that for the same number of 

blades, the longer the blades, the more flow blockage, since the blades are 

of finite thickness. In addition, the displacement thickness effect of bound-

ary layers growing along the blade surfaces (Chap. 10) leads to even more 

pronounced blockage for the long blades. Obviously some engineering opti-

mization is required to determine the exact shape of the blade.

r1

r2

b2

b1

v

b2

b2

FIGURE 14–44
Three possible blade shapes for the 
centrifugal pump impeller design 
of Example 14–6. All three blades 
have leading edge angle b1 5 24° 
and trailing edge angle b2 5 15°, 
but differ in how b is varied with the 
radius. The drawing is to scale.
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 How many blades should we use in an impeller? If we use too few blades, 
circulatory flow loss will be high. Circulatory flow loss occurs because 
there is a finite number of blades. Recall that in our preliminary analysis, 
we assume a uniform tangential velocity V2, t around the entire circumfer-
ence of the outlet of the control volume (Fig. 14–37). This is strictly cor-
rect only if we have an infinite number of infinitesimally thin blades. In a 
real pump, of course, the number of blades is finite, and the blades are not 
infinitesimally thin. As a result, the tangential component of the absolute 
velocity vector is not uniform, but drops off in the spaces between blades 
as illustrated in Fig. 14–45a. The net result is an effectively smaller value 
of V2, t, which in turn decreases the actual net head. This loss of net head 
(and pump efficiency) is called circulatory flow loss. On the other hand, if 
we have too many blades (as in Fig. 14–45b) there will be excessive flow 
blockage losses and losses due to the growing boundary layers, again lead-
ing to nonuniform flow speeds at the outer radius of the pump and lower net 
head and efficiency. These losses are called passage losses. The bottom line 
is that some engineering optimization is necessary in order to choose both 
the blade shape and number of blades. Such analysis is beyond the scope 
of the present text. A quick perusal through the turbomachinery literature 
shows that 11, 14, and 16 are common numbers of rotor blades for medium-
sized centrifugal pumps.
 Once we have designed the pump for specified net head and flow rate 
(design conditions), we can estimate its net head at conditions away from 
design conditions. In other words, keeping b1, b2, r1, r2, b1, b2, and v fixed, 
we vary the volume flow rate above and below the design flow rate. We have 
all the equations: Eq. 14–17 for net head H in terms of absolute tangential 
velocity components V1, t and V2, t, Eq. 14–23 for V1, t and V2, t as functions 
of absolute normal velocity components V1, n and V2, n, and Eq. 14–12 for 
V1, n and V2, n as functions of volume flow rate V

.
. In Fig. 14–46 we combine 

these equations to generate a plot of H versus V
.
 for the pump designed in 

Example 14–6. The solid blue line is the predicted performance, based on 
our preliminary analysis. The predicted performance curve is nearly linear 
with V

.
 both above and below design conditions since the term vr1V1, t in 

Eq. 14–17 is small compared to the term vr2V2, t. Recall that at the predicted 
design conditions, we had set V1, t 5 0. For volume flow rates higher than 
this, V1, t is predicted by Eq. 14–23 to be negative. In keeping with our pre-
vious assumptions, however, it is not possible to have negative values of 
V1, t. Thus, the slope of the predicted performance curve changes suddenly 
beyond the design conditions.
 Also sketched in Fig. 14–46 is the actual performance of this centrifugal 
pump. While the predicted performance is close to the actual performance 
at design conditions, the two curves deviate substantially away from design 
conditions. At all volume flow rates, the actual net head is lower than the 
predicted net head. This is due to irreversible effects such as friction along 
blade surfaces, leakage of fluid between the blades and the casing, prerota-
tion (swirl) of fluid in the region of the eye, flow separation on the leading 
edges of the blades (shock losses) or in the expanding portions of the flow 
passages, circulatory flow loss, passage loss, and irreversible dissipation of 
swirling eddies in the volute, among other things.

(b)

v

(a)

V2, t

v

FIGURE 14-45
(a) A centrifugal pump impeller with 

too few blades leads to excessive 
circulatory flow loss—the tangential 
velocity at outer radius r2 is smaller 

in the gaps between blades than 
at the trailing edges of the blades 

(absolute tangential velocity vectors 
are shown). (b) On the other hand, 

since real impeller blades have finite 
thickness, an impeller with too many 
blades leads to passage losses due to 

excessive flow blockage and large 
skin friction drag (velocity vectors 

in a frame of reference rotating with 
the impeller are shown exiting one 
blade row). The bottom line is that 

pump engineers must optimize both 
blade shape and number of blades.
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Axial Pumps
Axial pumps do not utilize so-called centrifugal forces. Instead, the impeller 
blades behave more like the wing of an airplane (Fig. 14–47), producing lift 
by changing the momentum of the fluid as they rotate. The rotor of a heli-
copter, for example, is a type of axial-flow pump (Fig. 14–48). The lift force 
on the blade is caused by pressure differences between the top and bottom 
surfaces of the blade, and the change in flow direction leads to downwash 
(a column of descending air) through the rotor plane. From a time-averaged 
perspective, there is a pressure jump across the rotor plane that induces a 
downward airflow (Fig. 14 –48).
 Imagine turning the rotor plane vertically; we now have a propeller 
(Fig. 14–49a). Both the helicopter rotor and the airplane propeller are exam-
ples of open axial-flow fans, since there is no duct or casing around the 
tips of the blades. The common window fan you install in your bedroom 
window in the summer operates under the same principles, but the goal is 
to blow air rather than to provide a force. Be assured, however, that there is 
a net force acting on the fan housing. If air is blown from left to right, the 
force on the fan acts to the left, and the fan is held down by the window 
sash. The casing around the house fan also acts as a short duct, which helps 
to direct the flow and eliminate some losses at the blade tips. The small 
cooling fan inside your computer is typically an axial-flow fan; it looks 
like a miniature window fan (Fig. 14–49b) and is an example of a ducted 
axial-flow fan.
 If you look closely at the airplane propeller blade in Fig. 14–49a, the 
rotor blade of a helicopter, the propeller blade of a radio-controlled model 
airplane, or even the blade of a well-designed window fan, you will notice 
some twist in the blade. Specifically, the airfoil at a cross section near the 
hub or root of the blade is at a higher pitch angle (u) than the airfoil at 
a cross section near the tip, uroot . utip (Fig. 14–50). This is because the 
tangential speed of the blade increases linearly with radius,

 uu 5 vr (14–26)

At a given radius then, the velocity V
!
relative of the air relative to the blade is 

estimated to first order as the vector sum of inlet velocity V
!
in and the nega-

tive of blade velocity V
!
blade,

 V
S

relative > V
S

in 2 V
S

blade (14–27)

where the magnitude of V
!
blade is equal to the tangential blade speed uu, as 

given by Eq. 14–26. The direction of V
!
blade is tangential to the rotational 

path of the blade. At the blade position sketched in Fig. 14–50, V
!
blade is to 

the left.
 In Fig. 14–51 we compute V

!
relative graphically using Eq. 14–27 at two 

radii—the root radius and the tip radius of the rotor blade sketched in 
Fig. 14–50. As you can see, the relative angle of attack a is the same in 
either case. In fact, the amount of twist is determined by setting pitch angle u 
such that a is the same at any radius.
 Note also that the magnitude of the relative velocity V

!
relative increases 

from the root to the tip. It follows that the dynamic pressure encountered by 

30

25

20

15H, m
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5

0

0.2 0.25
, m3/s

0.3

Actual
performance

Predicted
performance

Irreversible 
losses

Design
conditions

•
V

FIGURE 14-46
Net head as a function of volume flow 
rate for the pump of Example 14-6. 
The difference between predicted 
and actual performance is due to 
unaccounted irreversibilities in the 
prediction.

FL

Streamlines

FIGURE 14-47
The blades of an axial-flow pump 
behave like the wing of an airplane. 
The air is turned downward by the 
wing as it generates lift force FL.

LiftDownwash Low P
High P

FIGURE 14-48
Downwash and pressure rise across 
the rotor plane of a helicopter, which 
is a type of axial-flow pump.
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cross sections of the blade increases with radius, and the lift force per unit 
width into the page in Fig. 14–51 also increases with radius. Propellers tend 
to be narrower at the root and wider toward the tip in order to take advan-
tage of the larger lift contribution available toward the tip. At the very tip, 
however, the blade is usually rounded off to avoid excessive induced drag 
(Chap. 11) that would exist if the blade were simply chopped off abruptly as 
in Fig. 14–50. 
 Equation 14–27 is not exact for several reasons. First, the rotating motion 
of the rotor introduces some swirl to the airflow (Fig. 14–52). This reduces 
the effective tangential speed of the blade relative to the incoming air. Sec-
ond, since the hub of the rotor is of finite size, the air accelerates around 
it, causing the air speed to increase locally at cross sections of the blade 
close to the root. Third, the axis of the rotor or propeller may not be aligned 
exactly parallel to the incoming air. Finally, the air speed itself is not easily 
determined because it turns out that the air accelerates as it approaches the 

FIGURE 14–49
Axial-flow fans may be open or 

ducted: (a) a propeller is an open 
fan, and (b) a computer cooling 

fan is a ducted fan.
Photos by John M. Cimbala.(a) (b)

Hub

Inlet
direction

v
Vin

→

Root
uu = vr

utip

uroot

Tip

FIGURE 14–50
A well-designed rotor blade or 

propeller blade has twist, as shown by 
the blue cross-sectional slices through 

one of the three blades; blade pitch 
angle u is higher at the root than at 

the tip because the tangential speed 
of the blade increases with radius.

FIGURE 14–51
Graphical computation of vector 
V
!
relative at two radii: (a) root, and 

(b) tip of the rotor blade sketched 
in Fig. 14–50.

→

→

→

Vrelative

Vblade

→
Vrelative

Vin→
Vin

uroot

utip

→
Vblade

a

a
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787-878_cengel_ch14.indd   817 12/21/12   1:22 PM



818
TURBOMACHINERY

whirling rotor. There are methods available to approximate these and other 
secondary effects, but they are beyond the scope of the present text. The 
first-order approximation given by Eq. 14–27 is adequate for preliminary 
rotor and propeller design, as illustrated in Example 14–7.

EXAMPLE 14–7    Calculation of Twist in an Airplane Propeller

Suppose you are designing the propeller of a radio-controlled model airplane. 

The overall diameter of the propeller is 34.0 cm, and the hub assembly 

diameter is 5.5 cm (Fig. 14–53). The propeller rotates at 1700 rpm, and 

the airfoil chosen for the propeller cross section achieves its maximum effi-

ciency at an angle of attack of 14°. When the airplane flies at 30 mi/h 

(13.4 m/s), calculate the blade pitch angle from the root to the tip of the 

blade such that a 5 14° everywhere along the propeller blade.

SOLUTION  We are to calculate blade pitch angle u from the root to the 

tip of the propeller such that the angle of attack is a 5 14° at every radius 

along the propeller blade.

Assumptions  1 The air at these low speeds is incompressible. 2 We neglect 

the secondary effects of swirl and acceleration of the air as it approaches 

the propeller; i.e., the magnitude of V
→ 

in is approximated to be equal to the 

speed of the aircraft. 3 The airplane flies level, such that the propeller axis 

is parallel to the incoming air velocity.

Analysis  The velocity of the air relative to the blade is approximated to first 

order at any radius by using Eq. 14–27. A sketch of the velocity vectors 

at  some arbitrary radius r is shown in Fig. 14–54. From the geometry we 

see that

 Pitch angle at arbitrary radius r: u 5 a 1 f (1)

and

 
f 5 arctan 

uV
!
in u

uV
!
blade u

5 arctan 
uV
!
in u
vr

 (2)

where we have also used Eq. 14–26 for the blade speed at radius r. At the 

root (r 5 Dhub/2 5 2.75 cm), Eq. 2 becomes

u5 a1 f5 148 1 arctan c 13.4 m/s

(1700 rot/min)(0.0275 m)
a 1 rot

2p rad
b a60 s

min
b d 5 83.98

Similarly, the pitch angle at the tip (r 5 Dpropeller/2 5 17.0 cm) is

u 5 a 1 f 5 148 1 arctan c 13.4 m/s

(1700 rot/min)(0.17 m)
a 1 rot

2p rad
b a60 s

min
b d 5 37.98

At radii between the root and the tip, Eqs. 1 and 2 are used to calculate u 

as a function of r. Results are plotted in Fig. 14–55.

Discussion  The pitch angle is not linear because of the arctangent function 

in Eq. 2.

v

FIGURE 14–52
The rotating blades of a rotor or propeller 
induce swirl in the surrounding fluid.

v

Vblade
→

Vin

Dhub

Dpropeller

→
Airplane

nose

FIGURE 14–53
Setup for the design of the model airplane 
propeller of Example 14–7, not to scale.

a

u

f

Vrelative

→

Vin

→ –Vblade

→

FIGURE 14–54
Velocity vectors at some arbitrary radius r 
of the propeller of Example 14–7.
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 Airplane propellers have variable pitch, meaning that the pitch of the 
entire blade can be adjusted by rotating the blades through mechanical 
linkages in the hub. For example, when a propeller-driven airplane is sit-
ting at the airport, warming up its engines at high rpm, why does it not 
start moving? Well, for one thing, the brakes are being applied. But more 
importantly, propeller pitch is adjusted so that the average angle of attack 
of the airfoil cross sections is nearly zero—little or no net thrust is pro-
vided. While the airplane taxies to the runway, the pitch is adjusted so as 
to produce a small amount of thrust. As the plane takes off, the engine 
rpm is high, and the blade pitch is adjusted such that the propeller delivers 
maximum thrust. In many cases the pitch can even be adjusted “backward” 
(negative angle of attack) to provide reverse thrust to slow down the 
airplane after landing.
 We plot qualitative performance curves for a typical propeller fan in 
Fig. 14–56. Unlike centrifugal fans, brake horsepower tends to decrease 
with flow rate. In addition, the efficiency curve leans more to the right com-
pared to that of centrifugal fans (see Fig. 14–8). The result is that efficiency 
drops off rapidly for volume flow rates higher than that at the best effi-
ciency point. The net head curve also decreases continuously with flow rate 
(although there are some wiggles), and its shape is much different than that 
of a centrifugal flow fan. If the head requirements are not severe, propeller 
fans can be operated beyond the point of maximum efficiency to achieve 
higher volume flow rates. Since bhp decreases at high values of V

.
, there is 

not a power penalty when the fan is run at high flow rates. For this reason 
it is tempting to install a slightly undersized fan and push it beyond its best 
efficiency point. At the other extreme, if operated below its maximum effi-
ciency point, the flow may be noisy and unstable, which indicates that the 
fan may be oversized (larger than necessary). For these reasons, it is usually 
best to run a propeller fan at, or slightly above, its maximum efficiency 
point.
 When used to move flow in a duct, a single-impeller axial-flow fan is 
called a tube-axial fan (Fig. 14–57a). In many practical engineering appli-
cations of axial-flow fans, such as exhaust fans in kitchens, building venti-
lation duct fans, fume hood fans, and automotive radiator cooling fans, the 
swirling flow produced by the rotating blades (Fig. 14–57a) is of no con-
cern. But the swirling motion and increased turbulence intensity can con-
tinue for quite some distance downstream, and there are applications where 
swirl (or its affiliated noise and turbulence) is highly undesirable. Examples 
include wind tunnel fans, torpedo fans, and some specialized mine shaft 
ventilation fans. There are two basic designs that largely eliminate swirl: 
A second rotor that rotates in the opposite direction can be added in series 
with the existing rotor to form a pair of counter-rotating rotor blades; such 
a fan is called a counter-rotating axial-flow fan (Fig. 14–57b). The swirl 
caused by the upstream rotor is cancelled by an opposite swirl caused by the 
downstream rotor. Alternatively, a set of stator blades can be added either 
upstream or downstream of the rotating impeller. As implied by their name, 
stator blades are stationary (nonrotating) guide vanes that simply redirect 
the fluid. An axial-flow fan with a set of rotor blades (the impeller or the 
rotor) and a set of stator blades called vanes (the stator) is called a vane-
axial fan (Fig. 14–57c). The stator blade design of the vane-axial fan is 
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FIGURE 14–55
Blade pitch angle as a function 

of radius for the propeller of 
Example 14–7.
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Typical fan performance curves for a 

propeller (axial-flow) fan.

787-878_cengel_ch14.indd   819 12/21/12   1:22 PM



820
TURBOMACHINERY

much simpler and less expensive to implement than is the counter-rotating 
axial-flow fan design.
 The swirling fluid downstream of a tube-axial fan wastes kinetic energy 
and has a high level of turbulence; the vane-axial fan partially recovers this 
wasted kinetic energy and reduces the level of turbulence. Vane-axial fans 
are thus both quieter and more energy efficient than tube-axial fans. A prop-
erly designed counter-rotating axial-flow fan may be even quieter and more 
energy efficient. Furthermore, since there are two sets of rotating blades, a 
higher pressure rise can be obtained with the counter-rotating design. The 
construction of a counter-rotating axial-flow fan is more complex, of course, 
requiring either two synchronized motors or a gear box.
 Axial-flow fans can be either belt driven or direct drive. The motor of a 
direct-drive vane-axial fan is mounted in the middle of the duct. It is com-
mon practice (and good design) to use the stator blades to provide physi-
cal support for the motor. Photographs of a belt-driven tube-axial fan and a 
direct-drive vane-axial fan are provided in Fig. 14–58. The stator blades of 
the vane-axial fan can be seen behind (downstream of) the rotor blades in 
Fig. 14–58b. An alternative design is to place the stator blades upstream of 
the impeller, imparting preswirl to the fluid. The swirl caused by the rotat-
ing impeller blades then removes this preswirl.
 It is fairly straightforward to design the shape of the blades in all these 
axial-flow fan designs, at least to first order. For simplicity, we assume 
thin blades (e.g., blades made out of sheet metal) rather than airfoil-shaped 
blades. Consider, for example, a vane-axial flow fan with rotor blades 
upstream of stator blades (Fig. 14–59). The distance between the rotor and 
stator has been exaggerated in this figure to enable velocity vectors to be 
drawn between the blades. The hub radius of the stator is assumed to be 
the same as the hub radius of the rotor so that the cross-sectional area of 
flow remains constant. As we did previously with the propeller, we consider 
the cross section of one impeller blade as it passes vertically in front of us. 
Since there are multiple blades, the next blade passes by shortly thereafter. 
At a chosen radius r, we make the two-dimensional approximation that the 

Impeller Hub

(a)

(b)

Motor

v

Impeller 1

Impeller 2 Gear box

(c)

Hub Motor

v

v

Impeller

Stator

Hub Motor

v

v

FIGURE 14–57
A tube-axial fan (a) imparts swirl to 
the exiting fluid, while (b) a counter-
rotating axial-flow fan and (c) a vane-
axial fan are designed to remove the 
swirl.

(a)

FIGURE 14–58
Axial-flow fans: (a) a belt-driven 
tube-axial fan without stator blades, 
and (b) a direct-drive vane-axial fan 
with stator blades to reduce swirl and 
improve efficiency.
(a) © PennBarry 2012. Used by permission. 
(b) Photo courtesy of Howden. Used by permission. (b)
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blades pass by as an infinite series of two-dimensional blades called a blade 
row or cascade. A similar assumption is made for the stator blades, even 
though they are stationary. Both blade rows are sketched in Fig. 14–59.
 In Fig. 14–59b, the velocity vectors are seen from an absolute reference 
frame, i.e., that of a fixed observer looking horizontally at the vane-axial 
flow fan. Flow enters from the left at speed Vin in the horizontal (axial) 
direction. The rotor blade row moves at constant speed vr vertically 
upward in this reference frame, as indicated. Flow is turned by these mov-
ing blades and leaves the trailing edge upward and to the right as indicated 
in Fig. 14–59b as vector V

!
rt. (The subscript notation indicates rotor trailing 

edge.) To find the magnitude and direction of V
!
rt, we redraw the blade rows 

and vectors in a relative reference frame (the frame of reference of the rotat-
ing rotor blade) in Fig. 14–59c. This reference frame is obtained by sub-
tracting the rotor blade velocity (adding a vector of magnitude vr pointing 
vertically downward) from all velocity vectors. As shown in Fig. 14–59c, 
the velocity vector relative to the leading edge of the rotor blade is V

!
in, relative, 

calculated as the vector sum of V
!
in and the downward vector of magnitude 

vr. We adjust the pitch of the rotor blade such that V
!
in, relative is parallel (tan-

gential) to the leading edge of the rotor blade at this cross section.
 Flow is turned by the rotor blade. We assume that the flow leaving the 
rotor blade is parallel to the blade’s trailing edge (from the relative refer-
ence frame), as sketched in Fig. 14–59c as vector V

!
rt, relative. We also know 

that the horizontal (axial) component of V
!
rt, relative must equal V

!
in in order to 

conserve mass. Note that we are assuming incompressible flow and constant 
flow area normal to the page in Fig. 14–59. Thus, the axial component of 
velocity must be everywhere equal to Vin. This piece of information estab-
lishes the magnitude of vector V

!
rt, relative, which is not the same as the magni-

tude of V
!
in, relative. Returning to the absolute reference frame of Fig. 14–59b, 

absolute velocity V
!
rt is calculated as the vector sum of V

!
rt, relative and the 

vertically upward vector of magnitude vr.
 Finally, the stator blade is designed such that V

!
rt is parallel to the leading 

edge of the stator blade. The flow is once again turned, this time by the sta-
tor blade. Its trailing edge is horizontal so that the flow leaves axially (with-
out any swirl). The final outflow velocity must be identical to the inflow 
velocity by conservation of mass if we assume incompressible flow and 
constant flow area normal to the page. In other words, V

!
out 5 V

!
in. For com-

pleteness, the outflow velocity in the relative reference frame is sketched in 
Fig. 14–59c. We also see that V

!
out, relative 5 V

!
in, relative.

 Now imagine repeating this analysis for all radii from the hub to the tip. 
As with the propeller, we would design our blades with some twist since 
the value of vr increases with radius. A modest improvement in efficiency 
can be gained at design conditions by using airfoils instead of sheet metal 
blades; the improvement is more significant at off-design conditions.
 If there are, say, seven rotor blades in a vane-axial fan, how many sta-
tor blades should there be? You might at first say seven so that the stator 
matches the rotor—but this would be a very poor design! Why? Because 
at the instant in time when one blade of the rotor passes directly in front of 
a stator blade, all six of its brothers would do the same. Each stator blade 
would simultaneously encounter the disturbed flow in the wake of a rotor 
blade. The resulting flow would be both pulsating and noisy, and the entire 

Rotor
blade row

(a)

(c)

(b)

v

Stator
blade row

Vin

→

Vrt

→

Vrt,relative

→

Vrt,relative

→

Vin,relative

→

Vout,relative

→

Vout

→

Vout

→

r

Vin

→

Vin

→

Vin

→

Vout

→

vr

vr

vr

vr

vr

FIGURE 14–59
Analysis of a vane-axial flow fan at 
radius r using the two-dimensional 

blade row approximation; (a) overall 
view, (b) absolute reference frame, 

and (c) reference frame relative to the 
rotating rotor blades (impeller).
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unit would vibrate severely. Instead, it is good design practice to choose 
the number of stator blades such that it has no common denominator with 
the number of rotor blades. Combinations like seven and eight, seven and 
nine, six and seven, or nine and eleven are good choices. Combinations like 
eight and ten (common denominator of two) or nine and twelve (common 
denominator of three) are not good choices.
 We plot the performance curves of a typical vane-axial flow fan in 
Fig. 14–60. The general shapes are very similar to those of a propeller fan 
(Fig. 14–56), and you are referred to the discussion there. After all, a vane-
axial flow fan is really the same as a propeller fan or tube-axial flow fan 
except for the additional stator blades that straighten the flow and tend to 
smooth out the performance curves.
 As discussed previously, an axial-flow fan delivers high volume flow 
rate, but fairly low pressure rise. Some applications require both high flow 
rate and high pressure rise. In such cases, several stator–rotor pairs can 
be combined in series, typically with a common shaft and common hub 
(Fig. 14–61). When two or more rotor–stator pairs are combined like this 
we call it a multistage axial-flow pump. A blade row analysis similar to 
the one of Fig. 14–59 is applied to each successive stage. The details of the 
analysis can get complicated, however, because of compressibility effects 
and because the flow area from the hub to the tip may not remain con-
stant. In a multistage axial-flow compressor, for example, the flow area 
decreases downstream. The blades of each successive stage get smaller as 
the air gets further compressed. In a multistage axial-flow turbine, the 
flow area typically grows downstream as pressure is lost in each successive 
stage of the turbine.
 One well-known example of a turbomachine that utilizes both multistage 
axial-flow compressors and multistage axial-flow turbines is the turbofan 
engine used to power modern commercial airplanes. A cutaway schematic 

Rotor 1 Rotor 2

Stator 1

v

Stator 2

Rotating hub

Shaft

FIGURE 14–61
A multistage axial-flow pump consists 
of two or more rotor–stator pairs.

Fan
Bypass air

Combustion
chamber

Low pressure
turbine

Exhaust

High pressure
turbineHigh pressure

compressor

Low pressure
compressor

FIGURE 14–62
Pratt & Whitney PW4000 turbofan 
engine; an example of a multistage 
axial-flow turbomachine.
Photo courtesy of United Technologies 
Corporation/Pratt & Whitney. Used by permission. 
All rights reserved.
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FIGURE 14–60
Typical fan performance curves for a 
vane-axial flow fan.
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diagram of a turbofan engine is shown in Fig. 14–62. Some of the air passes 
through the fan, which delivers thrust much like a propeller. The rest of 
the air passes through a low-pressure compressor, a high-pressure compres-
sor, a combustion chamber, a high-pressure turbine, and then finally a low-
pressure turbine. The air and products of combustion are then exhausted 
at high speed to provide even more thrust. Computational fluid dynamics 
(CFD) codes are obviously quite useful in the design of such complex tur-
bomachines (Chap. 15).

EXAMPLE 14–8     Design of a Vane-Axial Flow Fan 
for a Wind Tunnel

A vane-axial flow fan is being designed to power a wind tunnel. There must 

not be any swirl in the flow downstream of the fan. It is decided that the sta-

tor blades should be upstream of the rotor blades (Fig. 14–63) to protect the 

impeller blades from damage by objects that might accidentally get blown 

into the fan. To reduce expenses, both the stator and rotor blades are to be 

constructed of sheet metal. The leading edge of each stator blade is aligned 

axially (bsl 5 0.0°) and its trailing edge is at angle bst 5 60.0° from the axis 

as shown in the sketch. (The subscript notation “sl” indicates stator leading 

edge and “st” indicates stator trailing edge.) There are 16 stator blades. At 

design conditions, the axial-flow speed through the blades is 47.1 m/s, and 

the impeller rotates at 1750 rpm. At radius r 5 0.40 m, calculate the lead-

ing and trailing edge angles of the rotor blade, and sketch the shape of the 

blade. How many rotor blades should there be?

SOLUTION  For given flow conditions and stator blade shape at a given 

radius, we are to design the rotor blade. Specifically, we are to calculate the 

leading and trailing edge angles of the rotor blade and sketch its shape. We 

are also to decide how many rotor blades to construct.

Assumptions  1 The air is nearly incompressible. 2 The flow area between the 

hub and tip is constant. 3 Two-dimensional blade row analysis is appropriate.

Analysis  First we analyze flow through the stator from an absolute refer-

ence frame, using the two-dimensional approximation of a cascade (blade 

row) of stator blades (Fig. 14–64). Flow enters axially (horizontally) and is 

turned 60.0° downward. Since the axial component of velocity must remain 

constant to conserve mass, the magnitude of the velocity leaving the trailing 

edge of the stator, V
→

st, is calculated as

 
Vst 5

V in

cos  bst

5
47.1 m/s

cos (60.08)
5 94.2 m/s (1)

The direction of V
→

st is assumed to be that of the stator trailing edge. In other 

words, we assume that the flow turns nicely through the blade row and exits 

parallel to the trailing edge of the blade, as shown in Fig. 14–64.

 We convert V
→

st to the relative reference frame moving with the rotor blades. 

At a radius of 0.40 m, the tangential velocity of the rotor blades is

 uu 5 vr 5 (1750 rot/min)a2p rad

rot
b a1 min

60 s
b(0.40 m) 5 73.30 m/s (2)

Rotor

v

Stator

Vout

→
Vin

bst

Hub and motor

→ r

vr

? ?

FIGURE 14–63
Schematic diagram of the vane-axial 

flow fan of Example 14–8. The stator 
precedes the rotor, and the shape of 

the rotor blade is unknown—it is to be 
designed.

Vin

→

Vin

→

Vst

→

Stator blade row

bst

bst

FIGURE 14–64
Velocity vector analysis of the 

stator blade row of the vane-axial 
flow fan of Example 14–8; absolute 

reference frame.
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Since the rotor blade row moves upward in Fig. 14–63, we add a downward 

velocity with magnitude given by Eq. 2 to translate V
→

st into the rotating 

reference frame sketched in Fig. 14–65. The angle of the leading edge of 

the rotor, brl, is calculated by using trigonometry,

 brl 5 arctan  
vr 1 V in tan bst

V in

 
 5 arctan  

(73.30 m/s) 1 (47.1 m/s) tan (60.08)

47.1 m/s
5 73.098 (3)

 The air must now be turned by the rotor blade row in such a way that it 

leaves the trailing edge of the rotor blade at a zero angle (axially, no swirl) 

from an absolute reference frame. This determines the rotor’s trailing edge 

angle, brt. Specifically, when we add an upward velocity of magnitude vr 

(Eq. 2) to the relative velocity exiting the trailing edge of the rotor, V
→

rt, relative, 

we convert back to the absolute reference frame, and obtain V
→

rt, the veloc-

ity leaving the rotor trailing edge. It is this velocity, V
→

rt, that must be axial 

(horizontal). Furthermore, to conserve mass, V
→

rt must equal V
→

in since we are 

assuming incompressible flow. Working backwards, we construct V
→

rt, relative in 

Fig. 14–66. Trigonometry reveals that

 
brt 5 arctan  

vr

V in

5 arctan  
73.30 m/s

47.1 m/s
5 57.288 (4)

 We conclude that the rotor blade at this radius has a leading edge angle 

of about 73.1° (Eq. 3) and a trailing edge angle of about 57.3° (Eq. 4). A 

sketch of the rotor blade at this radius is provided in Fig. 14–65; the total 

curvature is small, being less than 16° from leading to trailing edge.

 Finally, to avoid interaction of the stator blade wakes with the rotor blade 

leading edges, we choose the number of rotor blades such that it has no 

common denominator with the number of stator blades. Since there are 16 

stator blades, we pick a number like 13, 15, or 17 rotor blades. Choosing 14 

would not be appropriate since it shares a common denominator of 2 with 

the number 16. Choosing 12 would be worse since it shares both 2 and 4 as 

common denominators.

Discussion  We can repeat the calculation for all radii from hub to tip, com-

pleting the design of the entire rotor. There would be twist, as discussed 

previously.

14–3 ■  PUMP SCALING LAWS

Dimensional Analysis
Turbomachinery provides a very practical example of the power and useful-
ness of dimensional analysis (Chap. 7). We apply the method of repeating 
variables to the relationship between gravity times net head (gH) and pump 
properties such as volume flow rate (V

.
); some characteristic length, typi-

cally the diameter of the impeller blades (D); blade surface roughness height (e); 
and impeller rotational speed (v), along with fluid properties density (r) 
and viscosity (m). Note that we treat the group gH as one variable. 

vr

brt

brl

Vrt,relative

→

Vst,relative

→

Vst

→

Rotor blade row

FIGURE 14–65
Analysis of the stator trailing edge 
velocity of Example 14-8 as it 
impinges on the rotor leading edge; 
relative reference frame.

Vrt = Vin

→ →

Vrt,relative

→

brt

vr

FIGURE 14–66
Analysis of the rotor trailing edge 
velocity of Example 14-8; absolute 
reference frame.
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The dimensionless Pi groups are shown in Fig. 14–67; the result is the fol-
lowing relationship involving dimensionless parameters:

 

gH

v2D2 5 function of a V
#

vD3,  
rvD2

m
,  
e

D
b  (14–28)

 A similar analysis with input brake horsepower as a function of the same 
variables results in

 

bhp

rv3D5 5 function of a V
#

vD3,  
rvD2

m
,  
e

D
b  (14–29)

The second dimensionless parameter (or P group) on the right side of 
both Eqs. 14–28 and 14–29 is obviously a Reynolds number since vD is a 
characteristic velocity,

Re 5
rvD2

m

The third P on the right is the nondimensional roughness parameter. The 
three new dimensionless groups in these two equations are given symbols 
and named as follows:

Dimensionless pump parameters:

 
 CH 5 Head coefficient 5

gH

v2D2

 
 CQ 5 Capacity coefficient 5

V
#

vD3 (14–30)

 
 CP 5 Power coefficient 5

bhp

rv3D5

Note the subscript Q in the symbol for capacity coefficient. This comes 
from the nomenclature found in many fluid mechanics and turbomachinery 
textbooks that Q rather than V

.
 is the volume flow rate through the pump. 

We use the notation CQ for consistency with turbomachinery convention, 
even though we use V

.
 for volume flow rate to avoid confusion with heat 

transfer.
 When pumping liquids, cavitation may be of concern, and we need 
another dimensionless parameter related to the required net positive suction 
head. Fortunately, we can simply substitute NPSHrequired in place of H in 
the dimensional analysis, since they have identical dimensions (length). The 
result is

 CNPSH 5 Suction head coefficient 5
gNPSHrequired

v2D2  (14–31)

 Other variables, such as gap thickness between blade tips and pump 
housing and blade thickness, can be added to the dimensional analysis if 
necessary. Fortunately, these variables typically are of only minor impor-
tance and are not considered here. In fact, you may argue that two pumps 
are not even strictly geometrically similar unless gap thickness, blade thick-
ness, and surface roughness scale geometrically.

v

D

bhp

, r, m
•

V

gH = ƒ( , D, e, v, r, m)

k = n – j = 7 – 3 = 4 Π’s expected.

e

Π1 =
gH

v2D2

•
V

•
V

•
V

Π2 =
vD3

Π3 =
m

rvD2
Π4 =

D
e

FIGURE 14–67
Dimensional analysis of a pump.
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 Relationships derived by dimensional analysis, such as Eqs. 14–28 and 
14–29, are interpreted as follows: If two pumps, A and B, are geometrically 
similar (pump A is geometrically proportional to pump B, although they 
may be of different sizes), and if the independent P’s are equal to each 
other (in this case if CQ, A 5 CQ, B, ReA 5 ReB, and eA/DA 5 eB/DB), then 
the dependent P’s are guaranteed to also be equal to each other as well. In 
particular, CH, A 5 CH, B from Eq. 14–28 and CP, A 5 CP, B from Eq. 14–29. 
If such conditions are established, the two pumps are said to be dynamically 
similar (Fig. 14–68). When dynamic similarity is achieved, the operating 
point on the pump performance curve of pump A and the corresponding 
operating point on the pump performance curve of pump B are said to be 
homologous.
 The requirement of equality of all three of the independent dimension-
less parameters can be relaxed somewhat. If the Reynolds numbers of both 
pump A and pump B exceed several thousand, turbulent flow conditions 
exist inside the pump. It turns out that for turbulent flow, if the values of 
ReA and ReB are not equal, but not too far apart, dynamic similarity between 
the two pumps is still a reasonable approximation. This fortunate condi-
tion is due to Reynolds number independence (Chap. 7). (Note that if the 
pumps operate in the laminar regime, or at low Re, the Reynolds number 
must usually remain as a scaling parameter.) In most cases of practical tur-
bomachinery engineering analysis, the effect of differences in the roughness 
parameter is also small, unless the roughness differences are large, as when 
one is scaling from a very small pump to a very large pump (or vice versa). 
Thus, for many practical problems, we may neglect the effect of both Re 
and e/D. Equations 14–28 and 14–29 then reduce to

 CH > function of CQ  CP > function of CQ (14–32)

 As always, dimensional analysis cannot predict the shape of the functional 
relationships of Eq. 14–32, but once these relationships are obtained for a 
particular pump, they can be generalized for geometrically similar pumps 
that are of different diameters, operate at different rotational speeds and flow 
rates, and operate even with fluids of different density and viscosity.
 We transform Eq. 14–5 for pump efficiency into a function of the dimen-
sionless parameters of Eq. 14–30,

 hpump 5
r(V
#
)(gH)

bhp
5
r(vD3CQ)(v2D2CH)

rv3D5CP

5
CQCH

CP

> function of CQ (14–33)

Since hpump is already dimensionless, it is another dimensionless pump 
parameter all by itself. Note that since Eq. 14–33 reveals that hpump can be 
formed by the combination of three other P’s, hpump is not necessary for 
pump scaling. It is, however, certainly a useful parameter. Since CH, CP, 
and hpump are approximated as functions only of CQ, we often plot these 
three parameters as functions of CQ on the same plot, generating a set of 
nondimensional pump performance curves. An example is provided in 
Fig. 14–69 for the case of a typical centrifugal pump. The curve shapes for 
other types of pumps would, of course, be different.
 The simplified similarity laws of Eqs. 14–32 and 14–33 break down when 
the full-scale prototype is significantly larger than its model (Fig. 14–70); 
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•
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•
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B, rB, mB
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V

FIGURE 14–68
Dimensional analysis is useful for 
scaling two geometrically similar 
pumps. If all the dimensionless pump 
parameters of pump A are equivalent 
to those of pump B, the two pumps are 
dynamically similar.

CH

CH*

CP*CP
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FIGURE 14–69
When plotted in terms of 

dimensionless pump parameters, the 
performance curves of all pumps in 

a family of geometrically similar 
pumps collapse onto one set of 

nondimensional pump performance 
curves. Values at the best efficiency 

point are indicated by asterisks.
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the prototype’s performance is generally better. There are several reasons 
for this: The prototype pump often operates at high Reynolds numbers that 
are not achievable in the laboratory. We know from the Moody chart that the 
friction factor decreases with Re, as does boundary layer thickness. Hence, 
the influence of viscous boundary layers is less significant as pump size 
increases, since the boundary layers occupy a less significant percentage 
of the flow path through the impeller. In addition, the relative roughness 
(e/D) on the surfaces of the prototype impeller blades may be significantly 
smaller than that on the model pump blades unless the model surfaces are 
micropolished. Finally, large full-scale pumps have smaller tip clearances 
relative to the blade diameter; therefore, tip losses and leakage are less sig-
nificant. Some empirical equations have been developed to account for the 
increase in efficiency between a small model and a full-scale prototype. One 
such equation was suggested by Moody (1926) for turbines, but it can be 
used as a first-order correction for pumps as well,

Moody efficiency correction equation for pumps:

 hpump, prototype > 1 2 (1 2 hpump, model)a Dmodel

Dprototype

b1/5

 (14–34)

Pump Specific Speed
Another useful dimensionless parameter called pump specific speed (NSp) 
is formed by a combination of parameters CQ and CH:

Pump specific speed: NSp 5
C Q 

 1/2

CH 3/4 5
(V
#
/vD3)1/2

(gH/v2D2)3/4 5
vV
#

1/2

(gH)3/4 (14–35)

If all engineers watched their units carefully, NSp would always be listed as 
a dimensionless parameter. Unfortunately, practicing engineers have grown 
accustomed to using inconsistent units in Eq. 14–35, which renders the per-
fectly fine dimensionless parameter NSp into a cumbersome dimensional 
quantity (Fig. 14–71). Further confusion results because some engineers 
prefer units of rotations per minute (rpm) for rotational speed, while oth-
ers use rotations per second (Hz), the latter being more common in Europe. 
In addition, practicing engineers in the United States typically ignore the 
gravitational constant in the definition of NSp. In this book, we add sub-
scripts “Eur” or “US” to NSp in order to distinguish the dimensional forms 
of pump specific speed from the nondimensional form. In the United States, 
it is customary to write H in units of feet (net head expressed as an equiva-
lent column height of the fluid being pumped), V

.
 in units of gallons per 

minute (gpm), and rotation rate in terms of n
.
 (rpm) instead of v (rad/s). 

Using Eq. 14–35 we define

Pump specific speed, customary U.S. units: NSp, US 5
(n
#
, rpm)(V

#
, gpm)1/2

(H, ft)3/4  (14–36)

In Europe it is customary to write H in units of meters (and to include 
g 5  9.81  m/s2 in the equation), V

.
 in units of m3/s, and rotation rate n

.
 in 

Dprototype

Protoype

Dmodel

Scale model

•

Vmodel

•

Vprototype

FIGURE 14–70
When a small-scale model is tested 
to predict the performance of a full-
scale prototype pump, the measured 

efficiency of the model is typically 
somewhat lower than that of the 
prototype. Empirical correction 

equations such as Eq. 14–34 have 
been developed to account for the 
improvement of pump efficiency 

with pump size.

You did what? Why would you 
turn a dimensionless parameter 
into a dimensional quantity? 
That’s the exact opposite of 
what you should be doing!

FIGURE 14–71
Even though pump specific speed is a 

dimensionless parameter, it is common 
practice to write it as a dimensional 

quantity using an inconsistent 
set of units.
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units of rotations per second (Hz) instead of v (rad/s) or n
.
 (rpm). Using 

Eq. 14–35 we define

Pump specific speed, customary European units:

 NSp, Eur 5
(n
#
, Hz)(V

#
, m3/s)1/2

(gH, m2/s2)3/4  (14–37)

 The conversions between these three forms of pump specific speed are pro-
vided as ratios for your convenience in Fig. 14–72. When you become a prac-
ticing engineer, you will need to be very careful that you know which form of 
pump specific speed is being used, although it may not always be obvious.
 Technically, pump specific speed could be applied at any operating condi-
tion and would just be another function of CQ. That is not how it is typically 
used, however. Instead, it is common to define pump specific speed at only 
one operating point, namely, the best efficiency point (BEP) of the pump. 
The result is a single number that characterizes the pump.

Pump specific speed is used to characterize the operation of a pump at its 
optimum conditions (best efficiency point) and is useful for preliminary pump 
selection and/or design.

As plotted in Fig. 14–73, centrifugal pumps perform optimally for NSp near 1, 
while mixed-flow and axial pumps perform best at NSp near 2 and 5, respec-
tively. It turns out that if NSp is less than about 1.5, a centrifugal pump is the 
best choice. If NSp is between about 1.5 and 3.5, a mixed-flow pump is a bet-
ter choice. When NSp is greater than about 3.5, an axial pump should be used. 
These ranges are indicated in Fig. 14–73 in terms of NSp, NSp, US, and NSp, Eur. 
Sketches of the blade types are also provided on the plot for reference.

EXAMPLE 14–9     Using Pump Specific Speed 
for Preliminary Pump Design

A pump is being designed to deliver 320 gpm of gasoline at room tem-

perature. The required net head is 23.5 ft (of gasoline). It has already been 

determined that the pump shaft is to rotate at 1170 rpm. Calculate the 

pump specific speed in both nondimensional form and customary U.S. form. 

Based on your result, decide which kind of dynamic pump would be most 

suitable for this application.

SOLUTION  We are to calculate pump specific speed and then determine 

whether a centrifugal, mixed-flow, or axial pump would be the best choice 

for this particular application.

Assumptions  1 The pump operates near its best efficiency point. 2 The 

maximum efficiency versus pump specific speed curve follows Fig. 14–73 

reasonably well.

Analysis   First, we calculate pump specific speed in customary U.S. units,

 NSp, US 5
(1170 rpm)(320 gpm)1/2

(23.5 ft)3/4 5 1960 (1)

Conversion ratios

NSp

NSp, US

NSp, US = 2734
NSp

NSp
= 2p

NSp, Eur

NSp, Eur =
NSp

1

2p

NSp, Eur = 5.822 3 10–5

NSp, US

NSp,US = 17,180
NSp, Eur

= 3.658 3 10–4

FIGURE 14–72
Conversions between the 
dimensionless, conventional U.S., and 
conventional European definitions 
of pump specific speed. Numerical 
values are given to four significant 
digits. The conversions for NSp, US 
assume standard earth gravity.
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We convert to normalized pump specific speed using the conversion factor 

given in Fig. 14–72,

 NSp 5 NSp, USa NSp

NSp, US

b 5 1960(3.658 3 1024) 5 0.717 (2)

Using either Eq. 1 or 2, Fig. 14–73 shows that a centrifugal flow pump is the 
most suitable choice.
Discussion  Notice that the properties of the fluid never entered our calcula-

tions. The fact that we are pumping gasoline rather than some other liquid 

like water is irrelevant. However, the brake horsepower required to run the 

pump does depend on the fluid density.

Affinity Laws
We have developed dimensionless groups that are useful for relating any 
two pumps that are both geometrically similar and dynamically similar. It is 
convenient to summarize the similarity relationships as ratios. Some authors 
call these relationships similarity rules, while others call them affinity 
laws. For any two homologous states A and B,

  
V
#
B

V
#
A

5
vB

vA
aDB

DA

b3

 (14–38a)

Affinity laws:  
HB

HA

5 avB

vA
b2aDB

DA

b2

 (14–38b)

 
 
bhpB

bhpA

5
rB

rA
avB

vA
b3aDB

DA

b5

 (14–38c)

Equations 14–38 apply to both pumps and turbines. States A and B can 
be any two homologous states between any two geometrically similar tur-
bomachines, or even between two homologous states of the same machine. 
Examples include changing rotational speed or pumping a different fluid 
with the same pump. For the simple case of a given pump in which v is 
varied, but the same fluid is pumped, DA 5 DB, and rA 5 rB. In such a 

1

0.7

0.5

0.1 0.2 1
NSp

NSp, Eur

2 5 10

0.8

0.9

0.6

0.5

0.05 0.1 0.2 0.5 10.02

20,00010,000500020001000500

hmax

Centrifugal Mixed Axial

NSp, US

FIGURE 14–73
Maximum efficiency as a function of 

pump specific speed for the three main 
types of dynamic pump. The hori-

zontal scales show nondimensional 
pump specific speed (NSp), pump 

specific speed in customary U.S. units 
(NSp, US), and pump specific speed in 
customary European units (NSp, Eur).
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case, Eqs. 14–38 reduce to the forms shown in Fig. 14–74. A mnemonic has 
been developed to help us remember the exponent on v, as indicated in the 
figure. Note also that anywhere there is a ratio of two rotational speeds (v), 
we may substitute the appropriate values of rpm (n.) instead, since the con-
version is the same in both the numerator and the denominator.
 The pump affinity laws are quite useful as a design tool. In particular, 
suppose the performance curves of an existing pump are known, and the 
pump operates with reasonable efficiency and reliability. The pump manu-
facturer decides to design a new, larger pump for other applications, e.g., 
to pump a much heavier fluid or to deliver a substantially greater net head. 
Rather than starting from scratch, engineers often simply scale up an exist-
ing design. The pump affinity laws enable such scaling to be accomplished 
with a minimal amount of effort.

EXAMPLE 14–10    The Effects of Doubling Pump Speed

Professor Seymour Fluids uses a small closed-loop water tunnel to perform 

flow visualization research. He would like to double the water speed in the 

test section of the tunnel and realizes that the least expensive way to do this 

is to double the rotational speed of the flow pump. What he doesn’t realize 

is how much more powerful the new electric motor will need to be! If Pro-

fessor Fluids doubles the flow speed, by approximately what factor will the 

motor power need to be increased?

SOLUTION  For a doubling of v, we are to calculate by what factor the 

power to the pump motor must increase.

Assumptions  1 The water remains at the same temperature. 2 After dou-

bling pump speed, the pump runs at conditions homologous to the original 

conditions.

Analysis  Since neither diameter nor density has changed, Eq. 14–38c 

reduces to

 Ratio of required shaft power: 
bhpB

bhpA

5 avB

vA
b3

 (1)

Setting vB 5 2vA in Eq. 1 gives bhpB 5 8bhpA. Thus the power to the pump motor 
must be increased by a factor of 8. A similar analysis using Eq. 14–38b shows 

that the pump’s net head increases by a factor of 4. As seen in Fig. 14–75, 

both net head and power increase rapidly as pump speed is increased.

Discussion  The result is only approximate since we have not included any 

analysis of the piping system. While doubling the flow speed through the 

pump increases available head by a factor of 4, doubling the flow speed 

through the water tunnel does not necessarily increase the required head of 

the system by the same factor of 4 (e.g., the friction factor decreases with 

the Reynolds number except at very high values of Re). In other words, our 

assumption 2 is not necessarily correct. The system will, of course, adjust 

to an operating point at which required and available heads match, but this 

point will not necessarily be homologous with the original operating point. 

Nevertheless, the approximation is useful as a first-order result. Professor 

Fluids may also need to be concerned with the possibility of cavitation at the 

higher speed.

V: Volume 
 flow rate

H: Head

 VB
⋅

 VA
⋅

vB
1

vA
=

nB
⋅
⋅

nA

1
=

HB

HA

vB
2 ⋅

vA
=

nB
⋅nA

2
=

P: Power bhpB

bhpA

vB
3 ⋅

vA
=

nB
⋅nA

3
=

a b a b

a b a b

a b a b

FIGURE 14–74
When the affinity laws are applied 
to a single pump in which the only 
thing that is varied is shaft rotational 
speed v, or shaft rpm, n

.
, Eqs. 14–38 

reduce to those shown above, for 
which a mnemonic can be used to 
help us remember the exponent on v 
(or on n

.
):

Very Hard Problems are as easy as 
1, 2, 3.

14

4

0

0 0.5 1.5
vB/vA

2.5

6

12

10

8

2

1 2

bhpB
bhpA

HB
HA

bhpB
bhpA

HB
HA

FIGURE 14–75
When the speed of a pump is 
increased, net head increases rapidly; 
brake horsepower increases even 
more rapidly.
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EXAMPLE 14–11    Design of a New Geometrically Similar Pump

After graduation, you work for a pump manufacturing company. One of your 

company’s best-selling products is a water pump, which we shall call pump A. 

Its impeller diameter is DA 5 6.0 cm, and its performance data when oper-

ating at n
.
A 5 1725 rpm (vA 5 180.6 rad/s) are shown in Table 14–2. The 

marketing research department is recommending that the company design 

a new product, namely, a larger pump (which we shall call pump B) that 

will be used to pump liquid refrigerant R-134a at room temperature. The 

pump is to be designed such that its best efficiency point occurs as close 

as possible to a volume flow rate of V
.
B 5 2400 cm3/s and at a net head 

of HB 5 450 cm (of R-134a). The chief engineer (your boss) tells you to 

perform some preliminary analyses using pump scaling laws to determine 

if a geometrically scaled-up pump could be designed and built to meet 

the given requirements. (a) Plot the performance curves of pump A in both 

dimensional and dimensionless form, and identify the best efficiency point. 

(b) Calculate the required pump diameter DB, rotational speed n
.
B, and brake 

horsepower bhpB for the new product.

SOLUTION  (a) For a given table of pump performance data for a water pump, 

we are to plot both dimensional and dimensionless performance curves and 

identify the BEP. (b) We are to design a new geometrically similar pump for 

refrigerant R-134a that operates at its BEP at given design conditions.

Assumptions  1 The new pump can be manufactured so as to be geometrically 

similar to the existing pump. 2 Both liquids (water and refrigerant R-134a) are 

incompressible. 3 Both pumps operate under steady conditions.

Properties  At room temperature (20°C), the density of water is rwater 5 

998.0 kg/m3 and that of refrigerant R-134a is rR-134a 5 1226 kg/m3.

Analysis  (a) First, we apply a second-order least-squares polynomial curve 

fit to the data of Table 14–2 to obtain smooth pump performance curves. 

These are plotted in Fig. 14–76, along with a curve for brake horsepower, 

which is obtained from Eq. 14–5. A sample calculation, including unit 

conversions, is shown in Eq. 1 for the data at V
.
A 5 500 cm3/s, which is 

approximately the best efficiency point:

 bhpA 5
rwatergV

#
AHA

hpump,A

 
5

(998.0 kg/m3)(9.81 m/s2)(500 cm3/s)(150 cm)

0.81
 a 1 m

100 cm
b4a W·s

kg·m/s2b
 5 9.07 W (1)

Note that the actual value of bhpA plotted in Fig. 14–76 at V
.
A 5 500 cm3/s 

differs slightly from that of Eq. 1 due to the fact that the least-squares curve 

fit smoothes out scatter in the original tabulated data.

 Next we use Eqs. 14–30 to convert the dimensional data of Table 14–2 

into nondimensional pump similarity parameters. Sample calculations are 

shown in Eqs. 2 through 4 at the same operating point as before (at the 

approximate location of the BEP). At V
.
A 5 500 cm3/s the capacity coeffi-

cient is approximately

 
CQ 5

V
#

vD3 5
500 cm3/s

(180.6 rad/s)(6.0 cm)3 5 0.0128 (2)
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FIGURE 14–76
Data points and smoothed dimensional 

pump performance curves for the 
water pump of Example 14–11.

TABLE 14–2

Manufacturer’s performance data 

for a water pump operating at 

1725 rpm and room temperature 

(Example 14–11)*

 V
.
, cm3/s H, cm hpump, %

 100 180 32

 200 185 54

 300 175 70

 400 170 79

 500 150 81

 600  95 66

 700  54 38

* Net head is in centimeters of water.
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The head coefficient at this flow rate is approximately

 
CH 5

gH

v2D2 5
(9.81 m/s2)(1.50 m)

(180.6 rad/s)2(0.060 m)2 5 0.125 (3)

Finally, the power coefficient at V
.
A 5 500 cm3/s is approximately

 
CP 5

bhp

rv3D5 5
9.07 W

(998 kg/m3)(180.6 rad/s)3(0.060 m)5 akg·m/s2

W·s
b 5 0.00198 (4)

These calculations are repeated (with the aid of a spreadsheet) at values 

of V
.
A between 100 and 700 cm3/s. The curve-fitted data are used so that 

the normalized pump performance curves are smooth; they are plotted 

in Fig. 14–77. Note that hpump is plotted as a fraction rather than as a 

percentage. In addition, in order to fit all three curves on one plot with a 

single ordinate, and with the abscissa centered nearly around unity, we have 

multiplied CQ by 100, CH by 10, and CP by 100. You will find that these 

scaling factors work well for a wide range of pumps, from very small to very 

large. A vertical line at the BEP is also sketched in Fig. 14–77 from the 

smoothed data. The curve-fitted data yield the following nondimensional 

pump performance parameters at the BEP:

 CQ* 5 0.0112  CH* 5 0.133  CP* 5 0.00184  h*pump 5 0.812 (5)

(b) We design the new pump such that its best efficiency point is homolo-

gous with the BEP of the original pump, but with a different fluid, a different 

pump diameter, and a different rotational speed. Using the values identi-

fied in Eq. 5, we use Eqs. 14–30 to obtain the operating conditions of the 

new pump. Namely, since both V
.
B and HB are known (design conditions), we 

solve simultaneously for DB and vB. After some algebra in which we elimi-

nate vB, we calculate the design diameter for pump B,

 
DB 5 a V

#
B
2CH*

(CQ*)2gHB

b1/4

5 a (0.0024 m3/s)2(0.133)

(0.0112)2(9.81 m/s2)(4.50 m)
b1/4

5 0.108 m (6)

In other words, pump A needs to be scaled up by a factor of DB/DA 5
10.8 cm/6.0 cm 5 1.80. With the value of DB known, we return to Eqs. 14–30 

to solve for vB, the design rotational speed for pump B,

 vB 5
V
#
B

(CQ*)DB
3 5

0.0024 m3/s

(0.0112)(0.108 m)3 5 168 rad/s  S n
#
B 5 1610 rpm (7)

Finally, the required brake horsepower for pump B is calculated from 

Eqs. 14–30,

  bhpB 5 (CP*)rBvB
3 DB

5

  5 (0.00184)(1226 kg/m3)(168 rad/s)3(0.108 m)5a W·s

kg·m2/s
b 5 160 W (8)

 An alternative approach is to use the affinity laws directly, eliminating 

some intermediate steps. We solve Eqs. 14–38a and b for DB by eliminating 

1.6

0.6

0

0 0.5 1.5
CQ 3 100

2

0.8

1.4

1.2

1

0.4

0.2

1

hpump

CH 3 10

CP 3 100

BEP

FIGURE 14–77
Smoothed nondimensional pump 
performance curves for the pumps of 
Example 14–11; BEP is estimated as 
the operating point where hpump is a 
maximum.
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the ratio vB/vA. We then plug in the known value of DA and the curve-fitted 

values of V
.
A and HA at the BEP (Fig. 14–78). The result agrees with those 

calculated before. In a similar manner we can calculate vB and bhpB.

Discussion  Although the desired value of vB has been calculated precisely, 

a practical issue is that it is difficult (if not impossible) to find an elec-

tric motor that rotates at exactly the desired rpm. Standard single-phase, 

60-Hz, 120-V AC electric motors typically run at 1725 or 3450 rpm. Thus, 

we may not be able to meet the rpm requirement with a direct-drive pump. 

Of course, if the pump is belt-driven or if there is a gear box or a frequency 

controller, we can easily adjust the configuration to yield the desired rotation 

rate. Another option is that since vB is only slightly smaller than vA, we drive 

the new pump at standard motor speed (1725 rpm), providing a somewhat 

stronger pump than necessary. The disadvantage of this option is that the 

new pump would then operate at a point not exactly at the BEP.

14–4 ■  TURBINES
Turbines have been used for centuries to convert freely available mechanical 
energy from rivers and wind into useful mechanical work, usually through 
a rotating shaft. Whereas the rotating part of a pump is called the impeller, 
the rotating part of a hydroturbine is called the runner. When the working 
fluid is water, the turbomachines are called hydraulic turbines or hydro-
turbines. When the working fluid is air, and energy is extracted from the 
wind, the machine is properly called a wind turbine. The word windmill 
should technically be applied only when the mechanical energy output is 
used to grind grain, as in ancient times (Fig. 14–79). However, most people 
use the word windmill to describe any wind turbine, whether used to grind 
grain, pump water, or generate electricity. In coal or nuclear power plants, 
the working fluid is usually steam; hence, the turbomachines that convert 
energy from the steam into mechanical energy of a rotating shaft are called 
steam turbines. A more generic name for turbines that employ a compress-
ible gas as the working fluid is gas turbine. (The turbine in a modern com-
mercial jet engine is a type of gas turbine.)
 In general, energy-producing turbines have somewhat higher overall effi-
ciencies than do energy-absorbing pumps. Large hydroturbines, for example, 
achieve overall efficiencies above 95 percent, while the best efficiency of 
large pumps is a little more than 90 percent. There are several reasons for this. 
First, pumps normally operate at higher rotational speeds than do turbines; 
therefore, shear stresses and frictional losses are higher. Second, conver-
sion of kinetic energy into flow energy (pumps) has inherently higher losses 
than does the reverse (turbines). You can think of it this way: Since pressure 
rises across a pump (adverse pressure gradient), but drops across a turbine 
(favorable pressure gradient), boundary layers are less likely to separate in a 
turbine than in a pump. Third, turbines (especially hydroturbines) are often 
much larger than pumps, and viscous losses become less important as size 
increases. Finally, while pumps often operate over a wide range of flow rates, 
most electricity-generating turbines run within a narrower operating range and 
at a controlled constant speed; they can therefore be designed to operate most 

From the afom the affinity laws,inity laws,

DB = D = DA
HA

HB

B
•

V

A
•

V

= (6.0 cm)= (6.0 cm)

= 10.8 cm= 10.8 cm

159.3 cm159.3 cm

450 cm450 cm

2400 2400 
cmcm3

s
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s438438
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FIGURE 14–78
The affinity laws are manipulated to 

obtain an expression for the new 
pump diameter DB. vB and bhpB 

can be obtained in similar fashion 
(not shown).

FIGURE 14–79
A restored windmill in Brewster, MA, 

that was used in the 1800s to grind 
grain. (Note that the blades must 
be covered to function.) Modern 

“windmills” that generate electricity 
are more properly called wind 

turbines.
© Visions of America/Joe Sohm/

Photodisc/Getty Images

787-878_cengel_ch14.indd   833 12/21/12   1:22 PM



834
TURBOMACHINERY

efficiently at those conditions. In the United States, the standard AC electrical 
supply is 60 Hz (3600 cycles per minute); thus most wind, water, and steam 
turbines operate at speeds that are natural fractions of this, namely, 7200 rpm 
divided by the number of poles on the generator, usually an even number. 
Large hydroturbines usually operate at low speeds like 7200/60 5 120 rpm 
or 7200/48 5 150 rpm. Gas turbines used for power generation run at much 
higher speeds, some up to 7200/2 5 3600 rpm!
 As with pumps, we classify turbines into two broad categories, positive 
displacement and dynamic. For the most part, positive-displacement turbines 
are small devices used for volume flow rate measurement, while dynamic 
turbines range from tiny to huge and are used for both flow measurement 
and power production. We provide details about both of these categories.

Positive-Displacement Turbines
A positive-displacement turbine may be thought of as a positive-
displacement pump running backward—as fluid pushes into a closed 
volume, it turns a shaft or displaces a reciprocating rod. The closed volume 
of fluid is then pushed out as more fluid enters the device. There is a net 
head loss through the positive-displacement turbine; in other words, energy 
is extracted from the flowing fluid and is turned into mechanical energy. 
However, positive-displacement turbines are generally not used for power 
production, but rather for flow rate or flow volume measurement.
 The most common example is the water meter in your house (Fig. 14–80). 
Many commercial water meters use a nutating disc that wobbles and spins as 
water flows through the meter. The disc has a sphere in its center with appro-
priate linkages that transfer the eccentric spinning motion of the nutating disc 
into rotation of a shaft. The volume of fluid that passes through the device 
per 360o rotation of the shaft is known precisely, and thus the total volume 
of water used is recorded by the device. When water is flowing at moderate 
speed from a spigot in your house, you can sometimes hear a bubbly sound 
coming from the water meter—this is the sound of the nutating disc wobbling 
inside the meter. There are, of course, other positive-displacement turbine 
designs, just as there are various designs of positive-displacement pumps.

Dynamic Turbines
Dynamic turbines are used both as flow measuring devices and as power 
generators. For example, meteorologists use a three-cup anemometer to mea-
sure wind speed (Fig. 14–81a). Experimental fluid mechanics researchers 
use small turbines of various shapes (most of which look like small propel-
lers) to measure air speed or water speed (Chap. 8). In these applications, 
the shaft power output and the efficiency of the turbine are of little concern. 
Rather, these instruments are designed such that their rotational speed can 
be accurately calibrated to the speed of the fluid. Then, by electronically 
counting the number of blade rotations per second, the speed of the fluid is 
calculated and displayed by the device.
 A novel application of a dynamic turbine is shown in Fig. 14–81b. NASA 
researchers mounted turbines at the wing tips of a Piper PA28 research aircraft 
to extract energy from wing tip vortices (Chap. 11); the extracted energy was 
converted to electricity to be used for on-board power requirements.

FIGURE 14–80
The nutating disc fluid flowmeter is a 
type of positive-displacement turbine 
used to measure volume flow rate: 
(a) cutaway view and (b) diagram 
showing motion of the nutating disc. 
This type of flowmeter is commonly 
used as a water meter in homes. 
Photo courtesy of Niagara Meters, 
Spartanburg, SC.

(a)

Shaft
Linkage

Flow outFlow in

(b)

v

Nutating disc

787-878_cengel_ch14.indd   834 12/21/12   1:22 PM



835
CHAPTER 14

 In this chapter, we emphasize large dynamic turbines that are designed to 
produce electricity. Most of our discussion concerns hydroturbines that utilize 
the large elevation change across a dam to generate electricity, and wind tur-
bines that generate electricity from blades rotated by the wind. There are two 
basic types of dynamic turbine—impulse and reaction, each of which are dis-
cussed in some detail. Comparing the two power-producing dynamic turbines, 
impulse turbines require a higher head, but can operate with a smaller volume 
flow rate. Reaction turbines can operate with much less head, but require a 
higher volume flow rate.

Impulse Turbines
In an impulse turbine, the fluid is sent through a nozzle so that most of 
its available mechanical energy is converted into kinetic energy. The high-
speed jet then impinges on bucket-shaped vanes that transfer energy to the 
turbine shaft, as sketched in Fig. 14–82. The modern and most efficient type 
of impulse turbine was invented by Lester A. Pelton (1829–1908) in 1878, 
and the rotating wheel is now called a Pelton wheel in his honor. The buck-
ets of a Pelton wheel are designed so as to split the flow in half, and turn 
the flow nearly 180° around (with respect to a frame of reference moving 
with the bucket), as illustrated in Fig. 14–82b. According to legend, Pelton 
modeled the splitter ridge shape after the nostrils of a cow’s nose. A portion 
of the outermost part of each bucket is cut out so that the majority of the jet 
can pass through the bucket that is not aligned with the jet (bucket n 1 1 
in Fig. 14–82a) to reach the most aligned bucket (bucket n in Fig. 14–82a). 
In this way, the maximum amount of momentum from the jet is utilized. 
These details are seen in a photograph of a Pelton wheel (Fig. 14–83). 
Figure 14–84 shows a Pelton wheel in operation; the splitting and turning of 
the water jet is clearly seen.
 We analyze the power output of a Pelton wheel turbine by using the Euler 
turbomachine equation. The power output of the shaft is equal to vTshaft, 
where Tshaft is given by Eq. 14–14,

Euler turbomachine equation for a turbine:

 W
#

shaft 5 vTshaft 5 rvV
#
(r2V 2, t 2 r1V 1, t) (14–39)

FIGURE 14–81
Examples of dynamic turbines: 

(a) a typical three-cup anemometer 
used to measure wind speed, and 

(b) a Piper PA28 research airplane 
with turbines designed to extract 

energy from the wing tip vortices.
(a) © matthias engelien/Alamy. (b) NASA Langley 

Research Center.
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FIGURE 14–82
Schematic diagram of a Pelton-type 
impulse turbine; the turbine shaft is 
turned when high-speed fluid from 

one or more jets impinges on buckets 
mounted to the turbine shaft. (a) Side 

view, absolute reference frame, and 
(b) bottom view of a cross section of 

bucket n, rotating reference frame.

(a) (b)
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 We must be careful of negative signs since this is an energy-producing 
rather than an energy-absorbing device. For turbines, it is conventional to 
define point 2 as the inlet and point 1 as the outlet. The center of the bucket 
moves at tangential velocity rv, as illustrated in Fig. 14–82. We simplify the 
analysis by assuming that since there is an opening in the outermost part of 
each bucket, the entire jet strikes the bucket that happens to be at the direct 
bottom of the wheel at the instant of time under consideration (bucket n in 
Fig. 14–82a). Furthermore, since both the size of the bucket and the diameter 
of the water jet are small compared to the wheel radius, we approximate r1 

FIGURE 14–83
A close-up view of a Pelton wheel 
showing the detailed design of the 
buckets; the electrical generator is 
on the right. This Pelton wheel is on 
display at the Waddamana Power 
Station Museum near Bothwell, 
Tasmania.
Courtesy of Hydro Tasmania, www.hydro.com.au. 
Used by permission.

FIGURE 14–84
A view from the bottom of an 
operating Pelton wheel illustrating 
the splitting and turning of the water 
jet in the bucket. The water jet enters 
from the left, and the Pelton wheel is 
turning to the right.
Courtesy of VA TECH HYDRO. Used by 
permission.
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and r2 as equal to r. Finally, we make the approximation that the water is 
turned through angle b without losing any speed; in the relative frame of 
reference moving with the bucket, the relative exit speed is thus Vj 2 rv 
(the same as the relative inlet speed) as sketched in Fig. 14–82b. Return-
ing to the absolute reference frame, which is necessary for the application 
of Eq. 14–39, the tangential component of velocity at the inlet, V2, t, is sim-
ply the jet speed itself, Vj. We construct a velocity diagram in Fig. 14–85 
as an aid in calculating the tangential component of absolute velocity at the 
outlet, V1, t. After some trigonometry, which you can verify after noting that 
sin (b 2 90°) 5 2cos b,

V1, t 5 rv 1 (Vj 2 rv) cos b

Upon substitution of this equation, Eq. 14–39 yields

W
#

shaft 5 rrvV
#
{Vj 2 [rv 1 (Vj 2 rv)cos b]}

which simplifies to

Output shaft power: W
#

shaft 5 rrvV
#
(Vj 2 rv)(1 2 cos b) (14–40)

Obviously, the maximum power is achieved theoretically if b 5 180°. 
However, if that were the case, the water exiting one bucket would strike 
the back side of its neighbor coming along behind it, reducing the gener-
ated torque and power. It turns out that in practice, the maximum power is 
achieved by reducing b to around 160° to 165°. The efficiency factor due to 
b being less than 180° is

Efficiency factor due to b: hb 5
W
#

shaft, actual

W
#

shaft, ideal

5
1 2 cos  b

1 2 cos (1808)
 (14–41)

When b 5 160°, for example, hb 5 0.97—a loss of only about 3 percent.
 Finally, we see from Eq. 14–40 that the shaft power output W

.
shaft is zero 

if rv 5 0 (wheel not turning at all). W
.
shaft is also zero if rv 5 Vj (bucket 

moving at the jet speed). Somewhere in between these two extremes lies the 
optimum wheel speed. By setting the derivative of Eq. 14–40 with respect 
to rv to zero, we find that this occurs when rv 5 Vj  / 2 (bucket moving at 
half the jet speed, as shown in Fig. 14–86).
 For an actual Pelton wheel turbine, there are other losses besides that 
reflected in Eq. 14–41: mechanical friction, aerodynamic drag on the buck-
ets, friction along the inside walls of the buckets, nonalignment of the jet 
and bucket as the bucket turns, backsplashing, and nozzle losses. Even 
so, the efficiency of a well-designed Pelton wheel turbine can approach 
90 percent. In other words, up to 90 percent of the available mechanical 
energy of the water is converted to rotating shaft energy.

Reaction Turbines
The other main type of energy-producing hydroturbine is the reaction 
turbine, which consists of fixed guide vanes called stay vanes, adjustable 
guide vanes called wicket gates, and rotating blades called runner blades 
(Fig. 14–87). Flow enters tangentially at high pressure, is turned toward 

Splitter
ridge

b

rv

Vj –rv

Vj –rv

V1 
→

V1,t 

FIGURE 14–85
Velocity diagram of flow into and out 
of a Pelton wheel bucket. We translate 

outflow velocity from the moving 
reference frame to the absolute 

reference frame by adding the speed of 
the bucket (rv) to the right.

rv
VjVj 2

= —–

Shaft

Nozzle

v = —–
r

Vj

2r

FIGURE 14–86
The theoretical maximum power 

achievable by a Pelton turbine occurs 
when the wheel rotates at v 5 Vj/(2r), 
i.e., when the bucket moves at half the 

speed of the water jet.
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the runner by the stay vanes as it moves along the spiral casing or volute, 
and then passes through the wicket gates with a large tangential velocity 
component. Momentum is exchanged between the fluid and the runner as 
the runner rotates, and there is a large pressure drop. Unlike the impulse 
turbine, the water completely fills the casing of a reaction turbine. For this 
reason, a reaction turbine generally produces more power than an impulse 
turbine of the same diameter, net head, and volume flow rate. The angle of 
the wicket gates is adjustable so as to control the volume flow rate through 
the runner. (In most designs the wicket gates can close on each other, cut-
ting off the flow of water into the runner.) At design conditions the flow 
leaving the wicket gates impinges parallel to the runner blade leading edge 
(from a rotating frame of reference) to avoid shock losses. Note that in a 
good design, the number of wicket gates does not share a common denomi-
nator with the number of runner blades. Otherwise there would be severe 
vibration caused by simultaneous impingement of two or more wicket 
gate wakes onto the leading edges of the runner blades. For example, in 
Fig. 14–87 there are 17 runner blades and 20 wicket gates. These are typi-
cal numbers for many large reaction hydroturbines, as shown in the pho-
tographs in Figs. 14–89 and 14–90. The number of stay vanes and wicket 
gates is usually the same (there are 20 stay vanes in Fig. 14–87). This is 
not a problem since neither of them rotate, and unsteady wake interaction 
is not an issue.
 There are two main types of reaction turbine—Francis and Kaplan. The 
Francis turbine is somewhat similar in geometry to a centrifugal or mixed-
flow pump, but with the flow in the opposite direction. Note, however, that 
a typical pump running backward would not be a very efficient turbine. The 
Francis turbine is named in honor of James B. Francis (1815–1892), who 
developed the design in the 1840s. In contrast, the Kaplan turbine is some-
what like an axial-flow fan running backward. If you have ever seen a win-
dow fan start spinning in the wrong direction when a gust of wind blows 
through the window, you can visualize the basic operating principle of a 
Kaplan turbine. The Kaplan turbine is named in honor of its inventor, Viktor 
Kaplan (1876–1934). There are actually several subcategories of both Fran-
cis and Kaplan turbines, and the terminology used in the hydroturbine field 
is not always standard.
 Recall that we classify dynamic pumps according to the angle at which 
the flow exits the impeller blade—centrifugal (radial), mixed flow, or axial 
(see Fig. 14–31). In a similar but reversed manner, we classify reaction tur-
bines according to the angle that the flow enters the runner (Fig. 14–88). If 
the flow enters the runner radially as in Fig. 14–88a, the turbine is called 
a Francis radial-flow turbine (see also Fig. 14–87). If the flow enters the 
runner at some angle between radial and axial (Fig. 14–88b), the turbine is 
called a Francis mixed-flow turbine. The latter design is more common. 
Some hydroturbine engineers use the term “Francis turbine” only when 
there is a band on the runner as in Fig. 14–88b. Francis turbines are most 
suited for heads that lie between the high heads of Pelton wheel turbines 
and the low heads of Kaplan turbines. A typical large Francis turbine may 
have 16 or more runner blades and can achieve a turbine efficiency of 90 to 
95 percent. If the runner has no band, and flow enters the runner partially 
turned, it is called a propeller mixed-flow turbine or simply a mixed-flow 

r

•

b1

r1

v

b2

Top view

Side view

Stay vanes
Wicket
gates

Runner 
blades

Band

Shaft

Draft tube

Volute

Out

Vout, Pout

Vin, Pin

r2

In

Out
v

FIGURE 14–87
A reaction turbine differs significantly 
from an impulse turbine; instead of 
using water jets, a volute is filled with 
swirling water that drives the runner. 
For hydroturbine applications, the 
axis is typically vertical. Top and side 
views are shown, including the fixed 
stay vanes and adjustable wicket gates.
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turbine (Fig. 14–88c). Finally, if the flow is turned completely axially 
before entering the runner (Fig. 14–88d), the turbine is called an axial-flow 
turbine. The runners of an axial-flow turbine typically have only three to 
eight blades, a lot fewer than Francis turbines. Of these there are two types: 
Kaplan turbines and propeller turbines. Kaplan turbines are called double 
regulated because the flow rate is controlled in two ways—by turning the 
wicket gates and by adjusting the pitch on the runner blades. Propeller 
turbines are nearly identical to Kaplan turbines except that the blades are 
fixed (pitch is not adjustable), and the flow rate is regulated only by the 
wicket gates (single regulated). Compared to the Pelton and Francis tur-
bines, Kaplan turbines and propeller turbines are most suited for low head, 
high volume flow rate conditions. Their efficiencies rival those of Francis 
turbines and may be as high as 94 percent.
 Figure 14–89 is a photograph of the radial-flow runner of a Francis radial-
flow turbine. The workers are shown to give you an idea of how large the 
runners are in a hydroelectric power plant. Figure 14–90 is a photograph of 
the mixed-flow runner of a Francis turbine, and Fig. 14–91 is a photograph 
of an axial-flow propeller turbine. The view is from the inlet (top).
 We sketch in Fig. 14–92 a typical hydroelectric dam that utilizes Francis 
reaction turbines to generate electricity. The overall or gross head Hgross is 
defined as the elevation difference between the reservoir surface upstream 
of the dam and the surface of the water exiting the dam, Hgross 5 zA 2 zE. 
If there were no irreversible losses anywhere in the system, the maximum 
amount of power that could be generated per turbine would be

Ideal power production: W
#

ideal 5 rgV
#
Hgross (14–42)

Of course, there are irreversible losses throughout the system, so the power 
actually produced is lower than the ideal power given by Eq. 14–42.

v

v

v

v

(a)

Hub

Wicket
gate

(b)

(c) (d)

Crown Crown

Hub

Stay vane
Band Band

FIGURE 14–88
The distinguishing characteristics 

of the four subcategories of reaction 
turbines: (a) Francis radial flow, 

(b) Francis mixed flow, (c) propeller 
mixed flow, and (d) propeller axial 
flow. The main difference between 

(b) and (c) is that Francis mixed-flow 
runners have a band that rotates with 

the runner, while propeller mixed-flow 
runners do not. There are two types of 
propeller mixed-flow turbines: Kaplan 
turbines have adjustable pitch blades, 
while propeller turbines do not. Note 
that the terminology used here is not 

universal among turbomachinery 
textbooks nor among hydroturbine 

manufacturers.

FIGURE 14–89
The runner of a Francis radial-flow 

turbine used at the Round Butte 
hydroelectric power station in Madras, 

OR. There are 17 runner blades of 
outer diameter 11.8 ft (3.60 m). The 

turbine rotates at 180 rpm and produces 
119 MW of power at a volume flow rate 

of 127 m3/s from a net head of 105 m.
Courtesy of American Hydro Corporation, York, 

PA. Used by permission.
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 We follow the flow of water through the whole system of Fig. 14–92, 
defining terms and discussing losses along the way. We start at point A 
upstream of the dam where the water is still, at atmospheric pressure, and 
at its highest elevation, zA. Water flows at volume flow rate V

.
 through a 

large tube through the dam called the penstock. Flow to the penstock can 
be cut off by closing a large gate valve called a head gate at the penstock 
inlet. If we were to insert a Pitot probe at point B at the end of the pen-
stock just before the turbine, as illustrated in Fig. 14–92, the water in the 
tube would rise to a column height equal to the energy grade line EGLin 
at the inlet of the turbine. This column height is lower than the water level 
at point A, due to irreversible losses in the penstock and its inlet. The flow 
then passes through the turbine, which is connected by a shaft to the electric 
generator. Note that the electric generator itself has irreversible losses. From 
a fluid mechanics perspective, however, we are interested only in the losses 
through the turbine and downstream of the turbine.
 After passing through the turbine runner, the exiting fluid (point C) still 
has appreciable kinetic energy, and perhaps swirl. To recover some of this 
kinetic energy (which would otherwise be wasted), the flow enters an 
expanding area diffuser called a draft tube, which turns the flow horizon-
tally and slows down the flow speed, while increasing the pressure prior 
to discharge into the downstream water, called the tailrace. If we were to 
imagine another Pitot probe at point D (the exit of the draft tube), the water 
in the tube would rise to a column height equal to the energy grade line 
labeled EGLout in Fig. 14–92. Since the draft tube is considered to be an 

FIGURE 14–90
The runner of a Francis mixed-flow 
turbine used at the Smith Mountain 
hydroelectric power station in 
Roanoke, VA. There are 17 runner 
blades of outer diameter 20.3 ft 
(6.19 m). The turbine rotates at 
100 rpm and produces 194 MW 
of power at a volume flow rate of 
375 m3/s from a net head of 54.9 m.
Courtesy of American Hydro Corporation, York, 
PA. Used by permission.

FIGURE 14–91
The five-bladed propeller turbine used 
at the Warwick hydroelectric power 
station in Cordele, GA. There are five 
runner blades of outer diameter 12.7 ft 
(3.87 m). The turbine rotates at 
100 rpm and produces 5.37 MW of 
power at a volume flow rate of 63.7 m3/s 
from a net head of 9.75 m.
Photo courtesy of Weir American Hydro 
Corporation, York, PA. Used by permission.
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integral part of the turbine assembly, the net head across the turbine is spec-
ified as the difference between EGLin and EGLout,

Net head for a hydraulic turbine: H 5 EGLin 2 EGLout (14–43)

In words,

The net head of a turbine is defined as the difference between the energy 
grade line just upstream of the turbine and the energy grade line at the exit 
of the draft tube.

 At the draft tube exit (point D) the flow speed is significantly slower than 
that at point C upstream of the draft tube; however, it is finite. All the kinetic 
energy leaving the draft tube is dissipated in the tailrace. This represents an 
irreversible head loss and is the reason why EGLout is higher than the eleva-
tion of the tailrace surface, zE. Nevertheless, significant pressure recovery 
occurs in a well-designed draft tube. The draft tube causes the pressure at 
the outlet of the runner (point C) to decrease below atmospheric pressure, 
thereby enabling the turbine to utilize the available head most efficiently. 
In other words, the draft tube causes the pressure at the runner outlet to be 
lower than it would have been without the draft tube—increasing the change 
in pressure from the inlet to the outlet of the turbine. Designers must be 
careful, however, because subatmospheric pressures may lead to cavitation, 
which is undesirable for many reasons, as discussed previously.
 If we were interested in the net efficiency of the entire hydroelectric plant, 
we would define this efficiency as the ratio of actual electric power pro-
duced to ideal power (Eq. 14–42), based on gross head. Of more concern 
in this chapter is the efficiency of the turbine itself. By convention, turbine 
efficiency is based on net head H rather than gross head Hgross. Specifically, 
hturbine is defined as the ratio of brake horsepower output (actual turbine 

Generator

Shaft

Turbine

Tailrace

Draft tube

Arbitrary datum plane (z = 0)

B

D

E

Power station

Dam

Head gate
(open)

Penstock

A

C

Net
head 

H

Gross
head
Hgross

EGLout

⋅
 V

EGLin

zE

zA

FIGURE 14–92
Typical setup and terminology 

for a hydroelectric plant that 
utilizes a Francis turbine to generate 
electricity; drawing not to scale. The 
Pitot probes are shown for illustrative 

purposes only.
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output shaft power) to water horsepower (power extracted from the water 
flowing through the turbine),

Turbine efficiency: hturbine 5
W
#

shaft

W
#

water horsepower

5
bhp

rgHV
#  (14–44)

Note that turbine efficiency hturbine is the reciprocal of pump efficiency hpump, 
since bhp is the actual output instead of the required input (Fig. 14–93).
 Note also that we are considering only one turbine at a time in this discus-
sion. Most large hydroelectric power plants have several turbines arranged 
in parallel. This offers the power company the opportunity to turn off some 
of the turbines during times of low power demand and for maintenance. 
Hoover Dam in Boulder City, Nevada, for example, has 17 parallel turbines, 
15 of which are identical large Francis turbines that can produce approxi-
mately 130 MW of electricity each (Fig. 14–94). The maximum gross 
head is 590 ft (180 m). The total peak power production of the power plant 
exceeds 2 GW (2000 MW).
 We perform preliminary design and analysis of turbines in the same 
way we did previously for pumps, using the Euler turbomachine equa-
tion and velocity diagrams. In fact, we keep the same notation, namely r1 
for the inner radius and r2 for the outer radius of the rotating blades. 
For a turbine, however, the flow direction is opposite to that of a pump, 
so the inlet is at radius r2 and the outlet is at radius r1. For a first-order 
analysis we approximate the blades as being infinitesimally thin. We also 
assume that the blades are aligned such that the flow is always tangent to 
the blade surface, and we ignore viscous effects (boundary layers) at the 
surfaces. Higher-order corrections are best obtained with a computational 
fluid dynamics code.
 Consider for example the top view of the Francis turbine of Fig. 14–87. 
Velocity vectors are drawn in Fig. 14–95 for both the absolute reference 

h = efficiency =
actual output

required input

hpump = =
Wwater horsepower
⋅

Wshaft
⋅

rgHV 
⋅

bhp

hturbine = =
Wwater horsepower
⋅

Wshaft
⋅

bhp

Thus, for a pump,

and for a turbine,

Efficiency is always defined as

rgHV 
⋅

FIGURE 14–93
By definition, efficiency must always 
be less than unity. The efficiency 
of a turbine is the reciprocal of the 
efficiency of a pump.

FIGURE 14–94
(a) An aerial view of Hoover Dam and 
(b) the top (visible) portion of several 
of the parallel electric generators 
driven by hydraulic turbines 
at Hoover Dam.
(a) © Corbis RF (b) © Brand X Pictures RF (a) (b)
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frame and the relative reference frame rotating with the runner. Beginning 
with the stationary guide vane (thick black line in Fig. 14–95), the flow 
is turned so that it strikes the runner blade (thick brown line) at absolute 
velocity V

!
2. But the runner blade is rotating counterclockwise, and at radius 

r2 it moves tangentially to the lower left at speed vr2. To translate into the 
rotating reference frame, we form the vector sum of V

!
2 and the negative 

of vr2, as shown in the sketch. The resultant is vector V
!
2, relative, which is 

parallel to the runner blade leading edge (angle b2 from the tangent line of 
circle r2). The tangential component V2, t, of the absolute velocity vector V

!
2 

is required for the Euler turbomachine equation (Eq. 14–39). After some 
trigonometry,

Runner leading edge: V2, t 5 vr2 2
V2, n

tan  b2

 (14–45)

 Following the flow along the runner blade in the relative (rotating) ref-
erence frame, we see that the flow is turned such that it exits parallel to 
the trailing edge of the runner blade (angle b1 from the tangent line of 
circle r1). Finally, to translate back to the absolute reference frame we vec-
torially add V

!
1, relative and blade speed vr1, which acts to the left as sketched 

in Fig. 14–96. The resultant is absolute vector V
!
1. Since mass must be 

conserved, the normal components of the absolute velocity vectors V1, n 
and V2, n are related through Eq. 14–12, where axial blade widths b1 and 
b2 are defined in Fig. 14–87. After some trigonometry (which turns out to 
be identical to that at the leading edge), we generate an expression for the 
tangential component V1, t of absolute velocity vector V

!
1 for use in the Euler 

turbomachine equation,

Runner trailing edge: V1, t 5 vr1 2
V1, n

tan  b1

 (14–46)

Alert readers will notice that Eq. 14–46 for a turbine is identical to Eq. 14–23 
for a pump. This is not just fortuitous, but results from the fact that the 
velocity vectors, angles, etc., are defined in the same way for a turbine as 
for a pump except that everything is flowing in the opposite direction.
 For some hydroturbine runner applications, high power/high flow opera-
tion can result in V1, t , 0. Here the runner blade turns the flow so much 
that the flow at the runner outlet rotates in the direction opposite to runner 
rotation, a situation called reverse swirl (Fig. 14–97). The Euler turboma-
chine equation predicts that maximum power is obtained when V1, t , 0, 
so we suspect that reverse swirl should be part of a good turbine design. 
In practice, however, it has been found that the best efficiency operation 
of most hydroturbines occurs when the runner imparts a small amount of 
with-rotation swirl to the flow exiting the runner (swirl in the same direc-
tion as runner rotation). This improves draft tube performance. A large 
amount of swirl (either reverse or with-rotation) is not desirable, because it 
leads to much higher losses in the draft tube. (High swirl velocities result in 
“wasted” kinetic energy.) Obviously, much fine tuning needs to be done in 
order to design the most efficient hydroturbine system (including the draft 
tube as an integral component) within imposed design constraints. Also 
keep in mind that the flow is three-dimensional; there is an axial component 

vr2

v

V2, relative

V2, t

V2, n

r1

r2

→

V2

→

b2

FIGURE 14–95
Relative and absolute velocity vectors 

and geometry for the outer radius 
of the runner of a Francis turbine. 

Absolute velocity vectors are bold.

v

V2, relative

r1

vr1

r2

→

V1, relative

→
V1

→

V2

→

b1

FIGURE 14–96
Relative and absolute velocity vectors 

and geometry for the inner radius 
of the runner of a Francis turbine. 

Absolute velocity vectors are bold.
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of the velocity as the flow is turned into the draft tube, and there are differ-
ences in velocity in the circumferential direction as well. It doesn’t take long 
before you realize that computer simulation tools are enormously useful to 
turbine designers. In fact, with the help of modern CFD codes, the efficiency 
of hydroturbines has increased to the point where retrofits of old turbines in 
hydroelectric plants are economically wise and common. An example CFD 
output is shown in Fig. 14–98 for a Francis mixed-flow turbine.

EXAMPLE 14–12     Effect of Component Efficiencies on Plant 
Efficiency

A hydroelectric power plant is being designed. The gross head from the res-

ervoir to the tailrace is 1065 ft, and the volume flow rate of water through 

each turbine is 203,000 gpm at 70°F. There are 12 identical parallel tur-

bines, each with an efficiency of 95.2 percent, and all other mechanical 

energy losses (through the penstock, etc.) are estimated to reduce the output 

by 3.5 percent. The generator itself has an efficiency of 94.5 percent. Esti-

mate the electric power production from the plant in MW.

SOLUTION  We are to estimate the power production from a hydroelectric 

plant.

Properties  The density of water at T 5 70°F is 62.30 lbm/ft3.

v

Reverse swirl

FIGURE 14–97
In some Francis mixed-flow turbines, 
high-power, high-volume flow rate 
conditions sometimes lead to reverse 
swirl, in which the flow exiting 
the runner swirls in the direction 
opposite to that of the runner itself, 
as sketched here. 

FIGURE 14–98
Contour plot of the static pressure 
distribution on runner blade surfaces 
as calculated by CFD; pressure is in 
pascals. Shown is a 17-blade Francis 
mixed-flow turbine runner that rotates 
counterclockwise about the z-axis. 
Only one blade passage is modeled, 
but the image is reproduced 16 times 
due to the symmetry. The highest 
pressures (red regions) are encountered 
near the leading edges of the pressure 
surfaces of the runner, while the 
lowest pressures (blue regions) occur 
on the suction surface of the runner 
near the trailing edge. 
Photo courtesy of Weir American Hydro 
Corporation, York, PA. Used by permission.
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Analysis  The ideal power produced by one hydroturbine is

  W
#

ideal 5 rgV
#
Hgross 

  5 (62.30 lbm/ft3)(32.2 ft/s2)(203,000 gal/min)(1065 ft) 

 
3 a lbf·s2

32.2 lbm·ft
b a0.1337 

ft3

gal
b a1.356 W

ft·lbf/s
b a1 min

60 s
b a1 MW

106 W
b

 

  5 40.70 MW

But inefficiencies in the turbine, the generator, and the rest of the system 

reduce the actual electrical power output. For each turbine,

 W
#

electrical 5 W
#

idealhturbinehgeneratorhother 5 (40.70 MW)(0.952)(0.945)(1 2 0.035)

 5 35.3 MW

Finally, since there are 12 turbines in parallel, the total power produced is

 W
#

total electrical 5 12 W
#

electrical 5 12(35.3 MW) 5 424 MW

Discussion  A small improvement in any of the efficiencies ends up increas-

ing the power output and it thus increases the power company’s profitability.

EXAMPLE 14–13    Hydroturbine Design

A retrofit Francis radial-flow hydroturbine is being designed to replace an 

old turbine in a hydroelectric dam. The new turbine must meet the follow-

ing design restrictions in order to properly couple with the existing setup: 

The runner inlet radius is r2 5 8.20 ft (2.50 m) and its outlet radius is 

r1 5 5.80 ft (1.77 m). The runner blade widths are b2 5 3.00 ft (0.914 m) 

and b1 5 8.60 ft (2.62 m) at the inlet and outlet, respectively. The runner 

must rotate at n
.
 5 120 rpm (v 5 12.57 rad/s) to turn the 60-Hz electric 

generator. The wicket gates turn the flow by angle a2 5 33° from radial at 

the runner inlet, and the flow at the runner outlet is to have angle a1 between 

210° and 10° from radial (Fig. 14–99) for proper flow through the draft tube. 

The volume flow rate at design conditions is 9.50 3 106 gpm (599 m3/s), 

and the gross head provided by the dam is Hgross 5 303 ft (92.4  m). 

(a) Calculate the inlet and outlet runner blade angles b2 and b1, respectively, 

and predict the power output and required net head if irreversible losses 

are neglected for the case with a1 5 10° from radial (with-rotation swirl). 

(b) Repeat the calculations for the case with a1 5 0° from radial (no swirl). 

(c) Repeat the calculations for the case with a1 5 210° from radial (reverse 

swirl).

SOLUTION  For a given set of hydroturbine design criteria we are to cal-

culate runner blade angles, required net head, and power output for three 

cases—two with swirl and one without swirl at the runner outlet.

Assumptions  1 The flow is steady. 2 The fluid is water at 20°C. 3 The 

blades are infinitesimally thin. 4 The flow is everywhere tangent to the run-

ner blades. 5 We neglect irreversible losses through the turbine.

Properties  For water at 20°C, r 5 998.0 kg/m3.

a2

a1

r2

r1

Control volume

V1

v

→

V2
→

V1, n

V1, t

V2,  t

V2 n

FIGURE 14–99
Top view of the absolute velocities and 
flow angles associated with the runner 
of a Francis turbine being designed for 
a hydroelectric dam (Example 14-13). 

The control volume is from the inlet to 
the outlet of the runner.

v

r1

a1

a2

b1

b2

r2

V1
→

V2
→

FIGURE 14–100
Sketch of the runner blade design of 

Example 14-13, top view. A guide 
vane and absolute velocity vectors are 

also shown.
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Analysis  (a) We solve for the normal component of velocity at the inlet 

using Eq. 14–12,

 
V2, n 5

V
#

2pr2b2

5
599 m3/s

2p(2.50 m)(0.914 m)
5 41.7 m/s

 
(1)

Using Fig. 14–99 as a guide, the tangential velocity component at the inlet is

 V2, t 5 V2, n tan a2 5 (41.7 m/s) tan 338 5 27.1 m/s (2)

We now solve Eq. 14–45 for the runner leading edge angle b2,

b2 5 arctana V2, n

vr2 2 V2, t

b
  

5 arctan a 41.7 m/s

(12.57 rad/s)(2.50 m) 2 27.1 m/s
b 5 84.18 (3)

Equations 1 through 3 are repeated for the runner outlet, with the following 

results: 

 Runner outlet: V1, n 5 20.6 m/s,  V 1, t 5 3.63 m/s,  b1 5 47.98 (4)

The top view of this runner blade is sketched (to scale) in Fig. 14–100.

 Using Eqs. 2 and 4, the shaft output power is estimated from the Euler 

turbomachine equation, Eq. 14–39,

  W
#

shaft 5 rvV
#
(r2V2, t 2 r1V1, t) 5 (998.0 kg/m3)(12.57 rads/s)(599 m3/s)

 3 [(2.50 m)(27.2 m/s) 2 (1.77 m)(3.63 m/s)]a MW·s

106 kg·m2/s2b
  5 461 MW 5 6.18 3 105 hp  (5)

Finally, we calculate the required net head using Eq. 14–44, assuming that 

hturbine 5 100 percent since we are ignoring irreversibilities,

H 5
bhp

rgV
# 5

461 MW

(998.0 kg/m3)(9.81 m/s2)(599 m3/s)
a106 kg·m2/s2

MW·s
b 5 78.6 m (6)

(b) When we repeat the calculations with no swirl at the runner outlet 

(a1 5 0°), the runner blade trailing edge angle reduces to 42.8°, and the 

output power increases to 509 MW (6.83 3 105 hp). The required net head 

increases to 86.8 m.
(c) When we repeat the calculations with reverse swirl at the runner outlet 

(a1 5 210°), the runner blade trailing edge angle reduces to 38.5°, and the 

output power increases to 557 MW (7.47 3 105 hp). The required net head 

increases to 95.0 m. A plot of power and net head as a function of runner 

outlet flow angle a1 is shown in Fig. 14–101. You can see that both bhp and 

H increase with decreasing a1.

Discussion  The theoretical output power increases by about 10 percent by 

eliminating swirl from the runner outlet and by nearly another 10 percent 

when there is 10° of reverse swirl. However, the gross head available from 

the dam is only 92.4 m. Thus, the reverse swirl case of part (c) is clearly 

impossible, since the predicted net head is required to be greater than Hgross. 

Keep in mind that this is a preliminary design in which we are neglect-

ing irreversibilities. The actual output power will be lower and the actual 

required net head will be higher than the values predicted here.
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0

–20 –10 0 10 20
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300

400

500
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bhp

H
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FIGURE 14–101
Ideal required net head and brake 
horsepower output as functions of 
runner outlet flow angle for the turbine 
of Example 14–13.
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Gas and Steam Turbines
Most of our discussion so far has concerned hydroturbines. We now discuss 
turbines that are designed for use with gases, like combustion products or 
steam. In a coal or nuclear power plant, high-pressure steam is produced by 
a boiler and then sent to a steam turbine to produce electricity. Because of 
reheat, regeneration, and other efforts to increase overall efficiency, these 
steam turbines typically have two stages (high pressure and low pressure). 
Most power plant steam turbines are multistage axial-flow devices like that 
shown in Fig. 14–102. Not shown are the stator vanes (called nozzles) that 
direct the flow between each set of turbine blades (called buckets). Analysis 
of axial-flow turbines is very similar to that of axial-flow fans, as discussed 
in Section 14–2, and is not repeated here.
 Similar axial-flow turbines are used in jet aircraft engines (Fig. 14–62) 
and gas turbine generators (Fig. 14–103). A gas turbine generator is similar 
to a jet engine except that instead of providing thrust, the turbomachine is 
designed to transfer as much of the fuel’s energy as possible into the rotat-
ing shaft, which is connected to an electric generator. Gas turbines used 
for power generation are typically much larger than jet engines, of course, 
since they are ground-based. As with hydroturbines, a significant gain in 
efficiency is realized as overall turbine size increases.

Wind Turbines*

As global demand for energy increases, the supply of fossil fuels dimin-
ishes and the price of energy continues to rise. To keep up with global 
energy demand, renewable sources of energy such as solar, wind, wave, 
tidal, hydroelectric, and geothermal must be tapped more extensively. In 
this section we concentrate on wind turbines used to generate electricity. We 
note the distinction between the terms windmill used for mechanical power 
generation (grinding grain, pumping water, etc.) and wind turbine used for 
electrical power generation, although technically both devices are turbines 
since they extract energy from the fluid. Although the wind is “free” and 
renewable, modern wind turbines are expensive and suffer from one obvi-
ous disadvantage compared to most other power generation devices – they 
produce power only when the wind is blowing, and the power output of 
a wind turbine is thus inherently unsteady. Furthermore and equally obvi-
ous is the fact that wind turbines need to be located where the wind blows, 
which is often far from traditional power grids, requiring construction of 
new high-voltage power lines. Nevertheless, wind turbines are expected to 
play an ever-increasing role in the global supply of energy for the foresee-
able future.
 Numerous innovative wind turbine designs have been proposed and tested 
over the centuries as sketched in Fig. 14–104. We generally categorize wind 
turbines by the orientation of their axis of rotation: horizontal axis wind 
turbines (HAWTs) and vertical axis wind turbines (VAWTs). An alterna-
tive way to categorize them is by the mechanism that provides torque to the 
rotating shaft: lift or drag. So far, none of the VAWT designs or drag-type 

* Much of the material for this section is condensed from Manwell et al. (2010), and the 

authors acknowledge Professors J. F. Manwell, J. G. McGowan, and A. L. Rogers for their 

help in reviewing this section.

FIGURE 14–103
The rotor assembly of the MS7001F gas 

turbine being lowered into the bottom 
half of the gas turbine casing. Flow is 

from right to left, with the upstream 
set of rotor blades (called blades) 

comprising the multistage compressor 
and the downstream set of rotor 

blades (called buckets) comprising the 
multistage turbine. Compressor stator 

blades (called vanes) and turbine stator 
blades (called nozzles) can be seen in the 

bottom half of the gas turbine casing. 
This gas turbine spins at 3600 rpm and 

produces over 135 MW of power. 
Courtesy of GE Energy. 

FIGURE 14–102
The turbine blades (called buckets) 

of a typical two-stage steam turbine 
used in a coal or nuclear power plant. 

The flow is from left to right, with the 
high-pressure stage on the left and the 

low-pressure stage on the right.
© Brand X Pictures/PunchStock
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FIGURE 14–104
Various wind turbine designs and their categorization. Adapted from Manwell et al. (2010).
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designs has achieved the efficiency or success of the lift-type HAWT. This 
is why the vast majority of wind turbines being built around the world are 
of this type, often in clusters affectionately called wind farms (Fig. 14–105). 
For this reason, the lift-type HAWT is the only type of wind turbine dis-
cussed in any detail in this section. [See Manwell et al. (2010) for a detailed 
discussion as to why drag-type devices have inherently lower efficiency 
than lift-type devices.]
 Every wind turbine has a characteristic power performance curve; a typi-
cal one is sketched in Fig. 14–106, in which electrical power output is plot-
ted as a function of wind speed V at the height of the turbine’s axis. We 
identify three key locations on the wind-speed scale:

• Cut-in speed is the minimum wind speed at which useful power can be 
generated.

• Rated speed is the wind speed that delivers the rated power, usually the 
maximum power.

• Cut-out speed is the maximum wind speed at which the wind turbine 
is designed to produce power. At wind speeds greater than the cut-out 
speed, the turbine blades are stopped by some type of braking mecha-
nism to avoid damage and for safety issues. The short section of dashed 
blue line indicates the power that would be produced if cut-out were not 
implemented.

 The design of HAWT turbine blades includes tapering and twist to maxi-
mize performance and is similar to the design of axial flow fans (propel-
lers), as discussed in Section 14–2 and is not repeated here. The design of 
turbine blade twist, for example, is nearly identical to the design of propel-
ler blade twist, as in Example 14–7, and the blade pitch angle decreases 
from hub to tip in much the same manner as that of a propeller. While the 
fluid mechanics of wind turbine design is critical, the power performance 
curve also is influenced by the electrical generator, the gearbox, and struc-
tural issues. Inefficiencies appear in every component of course, as in all 
machines.
 We define the disk area A of a wind turbine as the area normal to the 
wind direction swept out by the turbine blades as they rotate (Fig. 14–107). 
The available wind power W

.
available in the disk area is calculated as the rate 

of change of kinetic energy of the wind,

 W
#

available 5
d(1

2mV 2)

dt
5

1

2
V 2dm

dt
5

1

2
V 2m
#

5
1

2
V 2rVA 5

1

2
rV 3A (14–47)

We notice immediately that the available wind power is proportional to the 
disk area—doubling the turbine blade diameter exposes the wind turbine to 
four times as much available wind power.
 For comparison of various wind turbines and locations, it is more useful 
to think in terms of the available wind power per unit area, which we call 
the wind power density, typically in units of W/m2,

Wind power density: 
W
#

available

A
5

1

2
 rV 3 (14–48)

(a)

(b)

FIGURE 14–105
(a) Wind farms are popping up 
all over the world to help reduce 
the global demand for fossil fuels. 
(b) Some wind turbines are even 
being installed on buildings!  (These 
three turbines are on a building at the 
Bahrain World Trade Center.)
(a) © Digital Vision/Punchstock RF 
(b) © Adam Jam/Getty Images
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Thus,

• The wind power density is directly proportional to air density—cold air 
has a larger wind power density than warm air blowing at the same speed, 
although this effect is not as significant as wind speed. 

• The wind power density is proportional to the cube of the wind speed—
doubling the wind speed increases the wind power density by a factor 
of 8. It should be obvious then why wind farms are located where the 
wind speed is high!

Equation 14–48 is an instantaneous equation. As we all know, however, 
wind speed varies greatly throughout the day and throughout the year. For 
this reason, it is useful to define the average wind power density in 
terms of annual average wind speed V, based on hourly averages as

Average wind power density: 
W
#

available

A
5

1

2
 ravgV 

3Ke (14–49)

where Ke is a correction factor called the energy pattern factor. In prin-
ciple, it is analogous to the kinetic energy factor a that we use in control 
volume analyses (Chap. 5). Ke is defined as

 
Ke 5

1

NV 3aN
i51

V i
3 (14–50)

where N 5 8760, which is the number of hours in a year. As a general 
rule of thumb, a location is considered poor for construction of wind tur-
bines if the average wind power density is less than about 100 W/m2, good 
if it is around 400 W/m2, and great if it is greater than about 700 W/m2. 
Other  factors affect the choice of a wind turbine site, such as atmospheric 
turbulence intensity, terrain, obstacles (buildings, trees, etc.), environmental 
impact, etc. See Manwell, et al. (2010) for further details.
 For analysis purposes, we consider a given wind speed V and define the 
aerodynamic efficiency of a wind turbine as the fraction of available wind 
power that is extracted by the turbine blades. This efficiency is commonly 
called the power coefficient, CP,

Power coefficient: Cp 5
W
#

rotor shaft output

W
#

available

5  
W
#

rotor shaft output

1
2 rV 3 A

 (14–51)

It is fairly simple to calculate the maximum possible power coefficient for a 
wind turbine, and this was first done by Albert Betz (1885–1968) in the mid 
1920s. We consider two control volumes surrounding the disk area—a large 
control volume and a small control volume—as sketched in Fig. 14–108, 
with upstream wind speed V taken as V1.
 The axisymmetric stream tube (enclosed by streamlines as drawn on the 
top and bottom of Fig. 14–108) can be thought of as forming an imaginary 
“duct” for the flow of air through the turbine. The control volume momen-
tum equation for the large control volume for steady flow is

 aF
S

5 a
out
bm
#
V
S

2 a
in
bm
#
V
S

 

FIGURE 14–106
Typical qualitative wind-turbine power 
performance curve with definitions of 

cut-in, rated, and cut-out speeds.

Cut-in speed

Rated
speed

Cut-out speedWind speed, V

•

Welectrical

FIGURE 14–107
The disk area of a wind turbine is 

defined as the swept area or frontal 
area of the turbine as “seen” by the 

oncoming wind, as sketched here 
in red. The disk area is (a) circular 

for a horizontal axis turbine and 
(b) rectangular for a vertical axis turbine.

(a) © Construction Photography/Corbis RF
(b) © VisionofAmerica/Joe Sohm/Photodisc/Getty RF

(a)

(b)
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and is analyzed in the streamwise (x) direction. Since locations 1 and 2 are 
sufficiently far from the turbine, we take P1 5 P2 5 Patm, yielding no net 
pressure force on the control volume. We approximate the velocities at the 
inlet (1) and outlet (2) to be uniform at V1 and V2, respectively; and the 
momentum flux correction factors are thus b1 5 b2 5 1. The momentum 
equation reduces to

 FR 5 m# V2 2 m# V1 5 m# (V2 2 V1) (14–52)

 The smaller control volume in Fig. 14–108 encloses the turbine, but 
A3 5 A4 5 A, since this control volume is infinitesimally thin in the limit 
(we approximate the turbine as a disk). Since the air is considered to be 
incompressible, V3 5 V4. However, the wind turbine extracts energy from 
the air, causing a pressure drop. Thus, P3 2 P4. When we apply the stream-
wise component of the control volume momentum equation on the small 
control volume, we get

 FR 1 P3A 2 P4A 5 0 S FR 5 (P4 2 P3)A (14–53)

The Bernoulli equation is certainly not applicable across the turbine, since it 
is extracting energy from the air. However, it is a reasonable approximation 
between locations 1 and 3 and between locations 4 and 2:

 
P1

rg
1

V 1
2

2g
1 z1 5

P3

rg
1

V 3
2

2g
1 z3 and 

P4

rg
1

V 4
2

2g
1 z4 5

P2

rg
1

V 2
2

2g
1 z2 

In this ideal analysis, the pressure starts at atmospheric pressure far 
upstream (P1 5 Patm), rises smoothly from P1 to P3, drops suddenly from 
P3 to P4 across the turbine disk, and then rises smoothly from P4 to P2, 
ending at atmospheric pressure far downstream (P2 5 Patm) (Fig. 14–109). 
We add Eqs. 14–52 and 14–53, setting P1 5 P2 5 Patm and V3 5 V4. In 
addition, since the wind turbine is horizontally inclined, z1 5 z2 5 z3 5 z4 
(gravitational effects are negligible in air anyway). After some algebra, this 
yields

 
V 1

2 2 V 2
2

2
5

P3 2 P4

r
 (14–54)

Substituting m# 5 rV3A into Eq. 14–52 and then combining the result with 
Eqs. 14–53 and 14–54 yields

 V3 5
V1 1 V2

2
 (14–55)

Thus, we conclude that the average velocity of the air through an ideal wind 
turbine is the arithmetic average of the far upstream and far downstream 
velocities. Of course, the validity of this result is limited by the applicability 
of the Bernoulli equation.
 For convenience, we define a new variable a as the fractional loss of 
velocity from far upstream to the turbine disk as

 a 5
V1 2 V3

V1

 (14–56)

FIGURE 14–108
The large and small control volumes 
for analysis of ideal wind turbine 
performance bounded by an 
axisymmetric diverging stream tube.
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FIGURE 14–109
Qualitative sketch of average 
streamwise velocity and pressure 
profiles through a wind turbine.
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The velocity through the turbine thus becomes V3 5 V1(1 2 a), and the 
mass flow rate through the turbine becomes m

#  5 rAV3 5 rAV1(1 2 a). 
Combining this expression for V3 with Eq. 14–55 yields

 V2 5 V1(1 2 2a) (14–57)

For an ideal wind turbine without irreversible losses such as friction, the 
power generated by the turbine is simply the difference between the incom-
ing and outgoing kinetic energies. Performing some algebra, we get

 W
#

ideal 5 m#
V 1

2 2 V 2
2

2
5 rAV 1(1 2 a)

V 1
2 2 V 1

2(1 2 2a)2

2
5 2rAV 1

3a(1 2 a)2 (14–58)

Again assuming no irreversible losses in transferring power from the turbine 
to the turbine shaft, the efficiency of the wind turbine is expressed as the 
power coefficient defined in Eq. 14–51 as

 CP 5
W
#

rotor shaft output

1
2 rV 1

3A
5

W
#

ideal
1
2 rV 1

3A
5

2 rAV 1
3a(1 2 a)2

1
2 rV 1

3A
5 4a(1 2 a)2 (14–59)

Finally, as any good engineer knows, we calculate the maximum possible 
value of CP by setting dCP/da 5 0 and solving for a (Fig. 14–110). This 
yields a 5 1 or 1/3, and the details are left as an exercise. Since a 5 1 is 
the trivial case (no power generated), we conclude that a must equal 1/3 for 
maximum possible power coefficient. Substituting a 5 1/3 into Eq. 14–59 
gives

 CP, max 5 4
1

3
a1 2

1

3
b2

5
16

27
> 0.5926 (14–60)

This value of CP, max represents the maximum possible power coefficient of 
any wind turbine and is known as the Betz limit. All real wind turbines 
have a maximum achievable power coefficient less than this due to irrevers-
ible losses which have been ignored in this ideal analysis.
 Figure 14–111 shows power coefficient CP as a function of the ratio of 
turbine blade tip speed vR to wind speed V for several types of wind tur-
bines, where v is the angular velocity of the wind turbine blades and R 
is their radius. From this plot, we see that an ideal propeller-type wind 
turbine approaches the Betz limit as vR/V approaches infinity. However, 
the power coefficient of real wind turbines reaches a maximum at some 
finite value of vR/V and then drops beyond that. In practice, three primary 
effects lead to a maximum achievable power coefficient that is lower than 
the Betz limit:

• Rotation of the wake behind the rotor (swirl)

• Finite number of rotor blades and their associated tip losses (tip vortices 
are generated in the wake of rotor blades for the same reason they are gen-
erated on finite airplane wings since both produce “lift”) (see Chap. 11)

• Non-zero aerodynamic drag on the rotor blades (frictional drag as well as 
induced drag–see Chap. 11)

Day 1, Lesson 1

To find the max or min
of y(x), set dy/dx = 0

and solve for x.

FIGURE 14–110
The use of derivatives to calculate 

minima or maxima is one of the first 
things that engineers learn.
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See Manwell, et al. (2010) for further discussion about how to account for 
these losses.
 In addition, mechanical losses due to shaft friction lead to even lower 
maximum achievable power coefficients. Other mechanical and electrical 
losses in the gearbox, generator, etc., also reduce the overall wind turbine 
efficiency, as previously mentioned. As seen in Fig. 14–111, the “best” wind 
turbine is the high-speed HAWT, and that is why you see this type of wind 
turbine being installed throughout the world. In summary, wind turbines 
provide a “green” alternative to fossil fuels, and as the price of fossil fuels 
rises, wind turbines will become more commonplace.

EXAMPLE 14–14    Power Generated by a Wind Turbine

To save money, a school plans to generate some of their own electricity using 

a HAWT wind turbine on top of a hill where it is fairly windy. As a conser-

vative estimate based on the data of Fig. 14–111, they hope to achieve a 

power coefficient of 40 percent. The combined efficiency of the gearbox and 

generator is estimated to be 85 percent. If the diameter of the wind tur-

bine disk is 12.5 m, estimate the electrical power production when the wind 

blows at 10.0 m/s.

SOLUTION  We are to estimate the power generated by a wind turbine.

Assumptions  1 The power coefficient is 0.40 and the combined efficiency 

of the gearbox and generator is 0.85. 2 The air is at 20ºC.

Properties  At 20ºC, the air density is 1.204 kg/m3.

Analysis  From the definition of power coefficient,

W
#

rotor shaft output 5 CP 
1

2
 rV 3 A 5  CP 

1

2
 rV 3(pD2/4)

FIGURE 14–111
Performance (power coefficient) 
of various types of wind turbines 
as a function of the ratio of turbine 
blade tip speed to wind speed. So 
far, no design has achieved better 
performance than the horizontal axis 
wind turbine (HAWT). Adapted from 
Robinson (1981, Ref. 10). 
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But the actual electrical power produced is lower than this because of gear-

box and generator inefficiencies,

W
#

electrical output 5 hgearbox/generator 
CPprV  

3D2

8

 5 (0.85)  

(0.40)pa1.204 
kg

m3b a10.0 
m
s
b3

(12.5 m)2

8
a N

kg·m/s2b a W

N·m/s
b

 5 25118 W > 25 kW

Discussion  We give the final answer to two significant digits since we  cannot 

expect any better than that, based on the given information and approxima-

tions. To give you a feel for how much electrical power this is, consider that a 

typical hair dryer draws around 1500 W, so this is enough power to run more 

than 16 hair dryers simultaneously. The school would need to do a cost analy-

sis to calculate how long it would take for the wind turbine to pay for itself 

considering the reduction in electricity purchased from the power company.

14–5 ■   TURBINE SCALING LAWS

Dimensionless Turbine Parameters
We define dimensionless groups (Pi groups) for turbines in much the same 
way as we did in Section 14–3 for pumps. Neglecting Reynolds number and 
roughness effects, we deal with the same dimensional variables: gravity times 
net head (gH), volume flow rate (V

. 
), some characteristic diameter of the tur-

bine (D), runner rotational speed (v), output brake horsepower (bhp), and 
fluid density (r), as illustrated in Fig. 14–112. In fact, the dimensional analy-
sis is identical whether analyzing a pump or a turbine, except for the fact that 
for turbines, we take bhp instead of V

.
 as the independent variable. In addition, 

hturbine (Eq. 14–44) is used in place of hpump as the non dimensional efficiency. 
A summary of the dimensionless parameters is provided here:

Dimensionless turbine parameters:

  CH 5 Head coefficient 5
gH

v2D2  CQ 5 Capacity coefficient 5
V
#

vD3

  (14–61)

 
 CP 5 Power coefficient 5

bhp

rv3D5  hturbine 5 Turbine efficiency 5
bhp

rgHV
#

When plotting turbine performance curves, we use CP instead of CQ as the 
independent parameter. In other words, CH and CQ are functions of CP, and 
hturbine is thus also a function of CP, since

 
hturbine 5

CP

CQCH

5 function of CP (14–62)

The affinity laws (Eqs. 14–38) can be applied to turbines as well as to 
pumps, allowing us to scale turbines up or down in size (Fig. 14–113). 

bhp

Drunner

Ddischarge

H = net head

v

r
•

V

FIGURE 14–112
The main variables used for 

dimensional analysis of a turbine. 
The characteristic turbine diameter D 
is typically either the runner diameter 

Drunner or the discharge diameter 
Ddischarge. 

787-878_cengel_ch14.indd   855 12/21/12   1:24 PM



856
TURBOMACHINERY

We also use the affinity laws to predict the performance of a given turbine 
operating at different speeds and flow rates in the same way as we did pre-
viously for pumps.
 The simple similarity laws are strictly valid only if the model and the pro-
totype operate at identical Reynolds numbers and are exactly geometrically 
similar (including relative surface roughness and tip clearance). Unfortu-
nately, it is not always possible to satisfy all these criteria when performing 
model tests, because the Reynolds number achievable in the model tests is 
generally much smaller than that of the prototype, and the model surfaces 
have larger relative roughness and tip clearances. When the full-scale pro-
totype is significantly larger than its model, the prototype’s performance is 
generally better, for the same reasons discussed previously for pumps. Some 
empirical equations have been developed to account for the increase in effi-
ciency between a small model and a full-scale prototype. One such equation 
was suggested by Moody (1926), and can be used as a first-order correction,

Moody efficiency correction equation for turbines:

 hturbine, prototype > 1 2 (1 2 hturbine, model)a Dmodel

Dprototype

b1/5

 (14–63)

Note that Eq. 14–63 is also used as a first-order correction when scaling 
model pumps to full scale (Eq. 14–34).
 In practice, hydroturbine engineers generally find that the actual increase 
in efficiency from model to prototype is only about two-thirds of the increase 
given by Eq. 14–63. For example, suppose the efficiency of a one-tenth scale 
model is 93.2 percent. Equation 14–63 predicts a full-scale efficiency of 
95.7 percent, or an increase of 2.5 percent. In practice, we expect only about 
two-thirds of this increase, or 93.2 1 2.5(2/3) 5 94.9 percent. Some more 
advanced correction equations are available from the International Electro-
technical Commission (IEC), a worldwide organization for standardization.

EXAMPLE 14–15    Application of Turbine Affinity Laws

A Francis turbine is being designed for a hydroelectric dam. Instead of start-

ing from scratch, the engineers decide to geometrically scale up a previously 

designed hydroturbine that has an excellent performance history. The existing 

turbine (turbine A) has diameter DA 5 2.05 m, and spins at n
.
A 5 120 rpm 

(vA 5 12.57 rad/s). At its best efficiency point, V
.
A 5 350 m3/s, HA 5 75.0 m 

of water, and bhpA 5 242 MW. The new turbine (turbine B) is for a larger 

facility. Its generator will spin at the same speed (120 rpm), but its net head 

will be higher (HB 5 104 m). Calculate the diameter of the new turbine such 

that it operates most efficiently, and calculate V
.
B, bhpB, and hturbine, B.

SOLUTION  We are to design a new hydroturbine by scaling up an exist-

ing hydroturbine. Specifically we are to calculate the new turbine diameter, 

volume flow rate, and brake horsepower.

Assumptions  1 The new turbine is geometrically similar to the existing tur-

bine. 2 Reynolds number effects and roughness effects are negligible. 3 The 

new penstock is also geometrically similar to the existing penstock so that 

the flow entering the new turbine (velocity profile, turbulence intensity, etc.) 

is similar to that of the existing turbine.

bhpB

HB = net head

vB

rB

B

DB

•

V

bhpATurbine A

Turbine B

HA = net head

vA

rA

A

DA

•

V

FIGURE 14–113
Dimensional analysis is useful for 
scaling two geometrically similar 
turbines. If all the dimensionless 
turbine parameters of turbine A are 
equivalent to those of turbine B, the 
two turbines are dynamically similar.
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Properties  The density of water at 20°C is r 5 998.0 kg/m3.

Analysis  Since the new turbine (B) is dynamically similar to the existing 

turbine (A), we are concerned with only one particular homologous oper-

ating point of both turbines, namely, the best efficiency point. We solve 

Eq. 14–38b for DB,

 DB 5 DAÅHB

HA

 
n# A
n# B

5 (2.05m) Å 104 m

75.0 m
 
120 rpm

120 rpm
5 2.41 m

We then solve Eq. 14–38a for V
.
B,

V
#
B 5 V

#
Aan
#
B

n# A
b aDB

DA

b3

5 (350 m3/s)a120 rpm

120 rpm
b a2.41 m

2.05 m
b3

5 572 m3/s

Finally, we solve Eq. 14–38c for bhpB,

 bhpB 5 bhpAarB

rA
b an
#
B

n# A
b3aDB

DA

b5

 5 (242 MW)a998.0 kg/m3

998.0 kg/m3b a120 rpm

120 rpm
b3a2.41 m

2.05 m
b5

5 548 MW

 As a check, we calculate the dimensionless turbine parameters of 

Eq. 14–61 for both turbines to show that these two operating points are 

indeed homologous, and the turbine efficiency is calculated to be 0.942 for 

both turbines (Fig. 14–114). As discussed previously, however, total dynamic 

similarity may not actually be achieved between the two turbines because 

of scale effects (larger turbines generally have higher efficiency). The diam-

eter of the new turbine is about 18 percent greater than that of the exist-

ing turbine, so the increase in efficiency due to turbine size should not be 

significant. We verify this by using the Moody efficiency correction equation 

(Eq. 14–63), considering turbine A as the “model” and B as the “prototype,”

Efficiency correction:

 hturbine, B > 1 2 (1 2 hturbine, A)aDA

DB

b1/5

5 1 2 (1 2 0.942)a2.05 m

2.41 m
b1/5

5 0.944

or 94.4 percent. Indeed, the first-order correction yields a predicted effi-

ciency for the larger turbine that is only a fraction of a percent greater than 

that of the smaller turbine.

Discussion  If the flow entering the new turbine from the penstock were not 

similar to that of the existing turbine (e.g., velocity profile and turbulence 

intensity), we could not expect exact dynamic similarity.

Turbine Specific Speed
In our discussion of pump scaling laws (Sec. 14–3), we defined another  useful 
dimensionless parameter, pump specific speed (NSp), based on CQ and CH. 
We could use the same definition of specific speed for turbines, but since CP 
rather than CQ is the independent dimensionless parameter for turbines, we 
define turbine specific speed (NSt) differently, namely, in terms of CP and CH,

Turbine specific speed:

 NSt 5
C P

1/2

C H
5/4 5

(bhp/rv3D5)1/2

(gH/v2D2)5/4 5
v(bhp)1/2

r1/2(gH)5/4 (14–64)

CH, A = CH, B = = 1.11
gH

v2D2

CP, A = CP, B = = 3.38
bhp

rv3D5

CQ, A = CQ, B = = 3.23
vD3

⋅

hturbine, A = hturbine, B = = 94.2%
bhp

⋅

FIGURE 14–114
Dimensionless turbine parameters 

for both turbines of Example 14–15. 
Since the two turbines operate 

at homologous points, their 
dimensionless parameters must match.
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Turbine specific speed is also called power specific speed in some textbooks. 
It is left as an exercise to compare the definitions of pump specific speed 
(Eq. 14–35) and turbine specific speed (Eq. 14–64) in order to show that

Relationship between NSt and NSp: NSt 5 NSp"hturbine (14–65)

Note that Eq. 14–51 does not apply to a pump running backward as a tur-
bine or vice versa. There are applications in which the same turbomachine 
is used as both a pump and a turbine; these devices are appropriately called 
pump–turbines. For example, a coal or nuclear power plant may pump 
water to a higher elevation during times of low power demand, and then run 
that water through the same turbomachine (operating as a turbine) during 
times of high power demand (Fig. 14–115). Such facilities often take advan-
tage of natural elevation differences at mountainous sites and can achieve 
significant gross heads (upward of 1000 ft) without construction of a dam. 
A photograph of a pump–turbine is shown in Fig. 14–116.
 Note that there are inefficiencies in the pump–turbine when operating as 
a pump and also when operating as a turbine. Moreover, since one turboma-
chine must be designed to operate as both a pump and a turbine, neither 
hpump nor hturbine are as high as they would be for a dedicated pump or tur-
bine. Nevertheless, the overall efficiency of this type of energy storage is 
around 80 percent for a well-designed pump–turbine unit.
 In practice, the pump–turbine may operate at a different flow rate and rpm 
when it is acting as a turbine compared to when it is acting as a pump, since 
the best efficiency point of the turbine is not necessarily the same as that of 
the pump. However, for the simple case in which the flow rate and rpm are the 
same for both the pump and turbine operations, we use Eqs. 14–35 and 14–64 
to compare pump specific speed and turbine specific speed. After some algebra,

Pump–turbine specific speed relationship at same flow rate and rpm:

 
NSt 5 NSp"hturbine a Hpump

Hturbine

b3/4

5 NSp(hturbine)
5/4(hpump)

3/4a bhppump

bhpturbine

b3/4

 (14–66)

Motor/generator
(acting as a motor)

Motor/generator
(acting as a generator)

(a)

(b)

Pump–turbine
(acting as a turbine)

Pump–turbine
(acting as a pump)

FIGURE 14–115
A pump–turbine is used by some 
power plants for energy storage: 
(a) water is pumped by the pump– 
turbine during periods of low demand 
for power, and (b) electricity is 
generated by the pump–turbine during 
periods of high demand for power.

FIGURE 14–116
The runner of a pump–turbine used 
at the Yards Creek pumped storage 
station in Blairstown, NJ. There are 
seven runner blades of outer diameter 
17.3 ft (5.27 m). The turbine rotates 
at 240 rpm and produces 112 MW 
of power at a volume flow rate of 
56.6 m3/s from a net head of 221 m.
Courtesy of American Hydro Corporation, York, PA. 
Used by permission.
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 We previously discussed some problems with the units of pump specific 
speed. Unfortunately, these same problems also occur with turbine specific 
speed. Namely, although NSt is by definition a dimensionless parameter, 
practicing engineers have grown accustomed to using inconsistent units that 
transform NSt into a cumbersome dimensional quantity. In the United States, 
most turbine engineers write the rotational speed in units of rotations per 
minute (rpm), bhp in units of horsepower, and H in units of feet. Further-
more, they ignore gravitational constant g and density r in the definition of 
NSt. (The turbine is assumed to operate on earth and the working fluid is 
assumed to be water.) We define

Turbine specific speed, customary U.S. units:

 NSt, US 5
(n# , rpm) (bhp, hp)1/2

(H, ft)5/4  (14–67)

There is some discrepancy in the turbomachinery literature over the con-
versions between the two forms of turbine specific speed. To convert 
NSt,  US to NSt we divide by g5/4 and r1/2, and then use conversion ratios to 
cancel all units. We set g 5 32.174 ft/s2 and assume water at density r 5 
62.40 lbm/ft3. When done properly by converting v to rad/s, the conversion 
is NSt, US 5 0.02301NSt or NSt 5 43.46NSt, US. However, some authors convert 
v to rotations per second, introducing a factor of 2p in the conversion, i.e., 
NSt, US 5 0.003662NSt or NSt 5 273.1NSt, US. The former conversion is more 
common and is summarized in Fig. 14–117.
 There is also a metric or SI version of turbine specific speed that is 
becoming more popular these days and is preferred by many hydroturbine 
designers. It is defined in the same way as the customary U.S. pump spe-
cific speed (Eq. 14–36), except that SI units are used (m3/s instead of gpm 
and m instead of ft),

 
NSt, SI 5

(n# , rpm)(V
#
, m3/s)1/2

(H, m)3/4
 

(14–68)

We may call this capacity specific speed to distinguish it from power specific 
speed (Eq. 14–64). One advantage is that NSt, SI can be compared more directly 
to pump specific speed and is thus useful for analyzing pump-turbines. It is 
less useful, however, to compare NSt, SI to previously published values of NSt or 
NSt, US because of the fundamental difference between their definitions.
 Technically, turbine specific speed could be applied at any operating con-
dition and would just be another function of CP. That is not how it is typi-
cally used, however. Instead, it is common to define turbine specific speed 
only at the best efficiency point (BEP) of the turbine. The result is a single 
number that characterizes the turbine.

Turbine specific speed is used to characterize the operation of a turbine at 
its optimum conditions (best efficiency point) and is useful for preliminary 
turbine selection.

As plotted in Fig. 14–118, impulse turbines perform optimally for NSt near 
0.15, while Francis turbines and Kaplan or propeller turbines perform best 
at NSt near 1 and 2.5, respectively. It turns out that if NSt is less than about 
0.3, an impulse turbine is the best choice. If NSt is between about 0.3 and 2, 
a  Francis turbine is a better choice. When NSt is greater than about 2, a 

Conversion ratios

NSt = 0.02301
NSt, US

NSt, US = 43.46
NSt

FIGURE 14–117
Conversions between the 

dimensionless and the conventional 
U.S. definitions of turbine specific 

speed. Numerical values are given to 
four significant digits. The conversions 

assume earth gravity and water as the 
working fluid.
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Kaplan or propeller turbine should be used. These ranges are indicated in 
Fig. 14–118 in terms of NSt and NSt, US.

EXAMPLE 14–16    Turbine Specific Speed

Calculate and compare the turbine specific speed for both the small (A) and 

large (B) turbines of Example 14–15.

SOLUTION  The turbine specific speed of two dynamically similar turbines 

is to be compared.

Properties  The density of water at T 5 20°C is r 5 998.0 kg/m3.

Analysis  We calculate the dimensionless turbine specific speed for turbine A,

 NSt, A 5
vA(bhpA)1/2

rA
1/2(gHA)5/4

 5
(12.57 rad/s)(242 3 106 W)1/2

(998.0 kg/m3)1/2[(9.81 m/s2)(75.0 m)]5/4 akg·m/s2

W·s
b1/2

5 1.615 > 1.62

and for turbine B,

 NSt, B 5
vB(bhpB)1/2

rB
1/2(gHB)5/4

 5
(12.57 rad/s)(548 3 106 W)1/2

(998.0 kg/m3)1/2 [(9.81 m/s2)(104 m)]5/4 akg·m/s2

W·s
b1/2

5 1.615 > 1.62

We see that the turbine specific speeds of the two turbines are the same. As 

a check of our algebra we calculate NSt in Fig. 14–119 a different way using 

its definition in terms of CP and CH (Eq. 14–64). The result is the same 

(except for roundoff error). Finally, we calculate the turbine specific speed in 

customary U.S. units from the conversions of Fig. 14–117,

NSt, US, A 5 NSt, US, B 5 43.46NSt 5 (43.46)(1.615) 5 70.2

Discussion  Since turbines A and B operate at homologous points, it is no 

surprise that their turbine specific speeds are the same. In fact, if they 

weren’t the same, it would be a sure sign of an algebraic or calculation error. 

From Fig. 14–118, a Francis turbine is indeed the appropriate choice for a 

turbine specific speed of 1.6.

1

0.7

0.5

0.01
NSt

NSt, US

10

0.8

0.9

0.6

0.02 0.05 0.1 0.2 0.5 1

1 2 5 10 20 50 100 200

2 5

hmax

Kaplan/propellerFrancis
Impulse

FIGURE 14–118
Maximum efficiency as a function 
of turbine specific speed for the 
three main types of dynamic turbine. 
Horizontal scales show nondimensional 
turbine specific speed (NSt) and turbine 
specific speed in customary U.S. 
units (NSt, US). Sketches of the blade 
types are also provided on the plot for 
reference.

NStSt =
CP

CH

=
(3.38)(3.38)1/21/2

(1.11)(1.11)5/45/4
= 1.61= 1.61

1/21/2

5/45/4

Turbine Specific Speed:Turbine Specific Speed:

FIGURE 14–119
Calculation of turbine specific speed 
using the dimensionless parameters 
CP and CH for Example 14–16. (See 
Fig. 14–114 for values of CP and CH 
for turbine A and turbine B.)
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Guest Author: Werner J. A. Dahm, The University of 
Michigan

The very high rotation rates at which small gas turbine engines operate, often 
approaching 100,000 rpm, allow rotary centrifugal atomizers to create the 
liquid fuel spray that is burned in the combustor. Note that a 10-cm-diameter 
atomizer rotating at 30,000 rpm imparts 490,000 m/s2 of acceleration 
(50,000 g) to the liquid fuel, which allows such fuel atomizers to potentially 
produce very small drop sizes.
 The actual drop sizes depend on the fluid properties, including the liquid 
and gas densities rL and rG, the viscosities mL and mG, and the liquid–gas 
surface tension ss. Figure 14–120 shows such a rotary atomizer rotating at 
rate v, with radial channels in the rim at nominal radius R ; (R1 1 R2)/2. 
Fuel flows into the channels due to the acceleration Rv2 and forms a liquid 
film on the channel walls. The large acceleration leads to a typical film thick-
ness t of only about 10 mm. The channel shape is chosen to produce desir-
able atomization performance. For a given shape, the resulting drop sizes 
depend on the cross-flow velocity Vc ; Rv into which the film issues at the 
channel exit, together with the liquid and gas properties. From these, there 
are four dimensionless groups that determine the atomization performance: 
the liquid–gas density and viscosity ratios r ; [rL/rG] and m ; [mL/mG], the 
film Weber number Wet ; [rGVc

2t/ss], and the Ohnesorge number Oht ; 
[mL/(rLsst)

1/2].
 Note that Wet gives the characteristic ratio of the aerodynamic forces 
that the gas exerts on the liquid film to the surface tension forces that act 
on the liquid surface, while Oht gives the ratio of the viscous forces in 
the liquid film to the surface tension forces that act on the film. Together 
these express the relative importance of the three main physical effects 
involved in the atomization process: inertia, viscous diffusion, and surface 
tension.
 Figure 14–121 shows examples of the resulting liquid breakup process for 
several channel shapes and rotation rates, visualized using 10-ns pulsed-laser 
photography. The drop sizes turn out to be relatively insensitive to changes 
in the Ohnesorge number, since the values for practical fuel atomizers are in 
the limit Oht ,, 1 and thus viscous effects are relatively unimportant. The 
Weber number, however, remains crucial since surface tension and inertia 
effects dominate the atomization process. At small Wet, the liquid undergoes 
subcritical breakup in which surface tension pulls the thin liquid film into a 
single column that subsequently breaks up to form relatively large drops. At 
supercritical values of Wet, the thin liquid film breaks up aerodynamically 
into fine drop sizes on the order of the film thickness t. From results such as 
these, engineers can successfully develop rotary fuel atomizers for practical 
applications.

Reference
Dahm, W. J. A., Patel, P. R., and Lerg, B. H., “Visualization and Fundamental 

Analysis of Liquid Atomization by Fuel Slingers in Small Gas Turbines,” AIAA 
Paper No. 2002-3183, AIAA, Washington, DC, 2002.

APPLICATION SPOTLIGHT ■ Rotary Fuel Atomizers

(a) (b)

t

d

t
d

Fuel:
rL, mL 

v

R2

R1

FIGURE 14–120
Schematic diagram of (a) a rotary 

fuel atomizer, and (b) a close-up 
of the liquid fuel film along the 

channel walls.

FIGURE 14–121
Visualizations of liquid breakup 

by rotary fuel atomizers, showing 
subcritical breakup at relatively low 

values of Wet (top), for which surface 
tension effects are sufficiently strong 

relative to inertia to pull the thin 
liquid film into large columns; and 

supercritical breakup at higher values 
of Wet (bottom), for which inertia 

dominates over surface tension and the 
thin film breaks into fine droplets.

Reprinted by permission of Werner J. A. Dahm, 
University of Michigan.
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SUMMARY

We classify turbomachinery into two broad categories, pumps 
and turbines. The word pump is a general term for any fluid 
machine that adds energy to a fluid. We explain how this 
energy transfer occurs for several types of pump designs—
both positive-displacement pumps and dynamic pumps. The 
word turbine refers to a fluid machine that extracts energy 
from a fluid. There are also positive-displacement turbines 
and dynamic turbines of several varieties.
 The most useful equation for preliminary turbomachinery 
design is the Euler turbomachine equation,

Tshaft 5 rV
#
(r2V 2, t 2 r1V 1, t)

Note that for pumps, the inlet and outlet are at radii r1 and r2, 
respectively, while for turbines, the inlet is at radius r2 and the 
outlet is at radius r1. We show several examples where blade 
shapes for both pumps and turbines are designed based on 
desired flow velocities. Then, using the Euler turbomachine 
equation, the performance of the turbomachine is predicted.
 The turbomachinery scaling laws illustrate a practical 
application of dimensional analysis. The scaling laws are 
used in the design of new turbomachines that are geometri-
cally similar to existing turbomachines. For both pumps and 
turbines, the main dimensionless parameters are head coef-
ficient, capacity coefficient, and power coefficient, defined 
respectively as

CH 5
gH

v2D2  CQ 5
V
#

vD3  CP 5
bhp

rv3D5

In addition to these, we define pump efficiency and turbine 
efficiency as reciprocals of each other,

hpump 5
W
#

water horsepower

W
#

shaft

5
rgV
#
H

bhp

hturbine 5
W
#

shaft

W
#

water horsepower

5
bhp

rgV
#
H

Finally, two other useful dimensionless parameters called 
pump specific speed and turbine specific speed are defined, 
respectively, as

NSp 5
C Q

1/2

C H
3/4 5

vV
#

1/2

(gH)3/4  NSt 5
C P

1/2

C H
5/4 5

v(bhp)1/2

r1/2(gH)5/4

These parameters are useful for preliminary design and for 
selection of the type of pump or turbine that is most appro-
priate for a given application.
 We discuss the basic design features of both hydroturbines 
and wind turbines. For the latter we derive an upper limit to 
the power coefficient, namely the Betz limit,

CP, max 5 4
1

3
a1 2

1

3
b2

5
16

27
> 0.5926

 Turbomachinery design assimilates knowledge from sev-
eral key areas of fluid mechanics, including mass, energy, 
and momentum analysis (Chaps. 5 and 6); dimensional 
analysis and modeling (Chap. 7); flow in pipes (Chap. 8); 
differential analysis (Chaps. 9 and 10); and aerodynamics 
(Chap. 11). In addition, for gas turbines and other types of 
turbomachines that involve gases, compressible flow analysis 
(Chap. 12) is required. Finally, computational fluid dynam-
ics (Chap. 15) plays an ever-increasing role in the design of 
highly efficient turbomachines.
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General Problems

14–1C  List at least two common examples of fans, of blow-
ers, and of compressors.

14–2C  What are the primary differences between fans, 
blowers, and compressors? Discuss in terms of pressure rise 
and volume flow rate.

14–3C  What is the more common term for an energy- 
producing turbomachine? How about an energy-absorbing 
turbomachine? Explain this terminology. In particular, from 
which frame of reference are these terms defined—that of the 
fluid or that of the surroundings?

14–4C  Discuss the primary difference between a positive-
displacement turbomachine and a dynamic turbomachine. 
Give an example of each for both pumps and turbines.

14–5C  Explain why there is an “extra” term in the Ber-
noulli equation in a rotating reference frame.

14–6C  For a turbine, discuss the difference between brake 
horsepower and water horsepower, and also define turbine 
efficiency in terms of these quantities.

14–7C  For a pump, discuss the difference between brake 
horsepower and water horsepower, and also define pump 
efficiency in terms of these quantities.

14–8  An air compressor increases the pressure (Pout . Pin) 
and the density (rout . rin) of the air passing through it 
(Fig. P14–8). For the case in which the outlet and inlet diam-
eters are equal (Dout 5 Din), how does average air speed 
change across the compressor? In particular, is Vout less than, 
equal to, or greater than Vin? Explain.  Answer: less than

FIGURE P14–8

Compressor
Pout

rout, Vout

Pin

rin, Vin

Din Dout

14–9  A water pump increases the pressure of the water 
passing through it (Fig. P14–9). The flow is assumed to be 
incompressible. For each of the three cases listed below, how 
does average water speed change across the pump? In par-
ticular, is Vout less than, equal to, or greater than Vin? Show 
your equations, and explain.

(a) Outlet diameter is less than inlet diameter (Dout , Din)

(b) Outlet and inlet diameters are equal (Dout 5 Din)

(c) Outlet diameter is greater than inlet diameter (Dout . Din)

Pump
Pout

Vout

Pin

Vin

Din

Dout

FIGURE P14–9

Pumps

14–10C  Define net positive suction head and required 
net positive suction head, and explain how these two quan-
tities are used to ensure that cavitation does not occur in a 
pump.

14–11C  For each statement about centrifugal pumps, 
choose whether the statement is true or false, and discuss 
your answer briefly:

(a) A centrifugal pump with radial blades has higher 
efficiency than the same pump with backward-inclined 
blades.

(b) A centrifugal pump with radial blades produces a larger 
pressure rise than the same pump with backward- or forward-
inclined blades over a wide range of V

.
.

(c) A centrifugal pump with forward-inclined blades is a 
good choice when one needs to provide a large pressure rise 
over a wide range of volume flow rates.

(d) A centrifugal pump with forward-inclined blades would 
most likely have less blades than a pump of the same size 
with backward-inclined or radial blades.

14–12C  Figure P14–12C shows two possible locations 
for a water pump in a piping system that pumps water from 
the lower tank to the upper tank. Which location is better? 
Why?

PROBLEMS*

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Problems 

with the  icon are solved using EES, and complete solutions 

together with parametric studies are included on the text website. 

Problems with the  icon are comprehensive in nature and are 

intended to be solved with an equation solver such as EES.
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cavitation in the pump, for the same liquid, temperature, and 
volume flow rate.

14–16C  Consider a typical centrifugal liquid pump. For 
each statement, choose whether the statement is true or false, 
and discuss your answer briefly:

(a) V
.
 at the pump’s free delivery is greater than V

.
 at its best 

efficiency point.

(b) At the pump’s shutoff head, the pump efficiency is zero.

(c) At the pump’s best efficiency point, its net head is at its 
maximum value.

(d) At the pump’s free delivery, the pump efficiency is zero.

14–17C  Explain why it is usually not wise to arrange two 
(or more) dissimilar pumps in series or in parallel.

14–18C  Consider steady, incompressible flow through two 
identical pumps (pumps 1 and 2), either in series or in paral-
lel. For each statement, choose whether the statement is true 
or false, and discuss your answer briefly:

(a) The volume flow rate through the two pumps in series is 
equal to V

.
1 1 V

.
2.

(b) The overall net head across the two pumps in series is 
equal to H1 1 H2.

(c) The volume flow rate through the two pumps in parallel 
is equal to V

.
1 1 V

.
2.

(d) The overall net head across the two pumps in parallel is 
equal to H1 1 H2.

14–19C  In Fig. P14–19C is shown a plot of pump net head 
as a function of pump volume flow rate, or capacity. On the 
figure, label the shutoff head, the free delivery, the pump per-
formance curve, the system curve, and the operating point.

H

0
0 •

FIGURE P14–19C

14–20  Suppose the pump of Fig. P14–19C is situated 
between two water tanks with their free surfaces open to the 
atmosphere. Which free surface is at a higher elevation—the 
one corresponding to the tank supplying water to the pump 
inlet, or the one corresponding to the tank connected to the 

Pump

Valve

Option (a)

Option (b)

Valve

Reservoir

Reservoir

Pump

Valve

Valve

Reservoir

Reservoir

FIGURE P14–12C

14–13C  There are three main categories of dynamic pumps. 
List and define them.

14–14C  Consider flow through a water pump. For each 
statement, choose whether the statement is true or false, and 
discuss your answer briefly:

(a) The faster the flow through the pump, the more likely 
that cavitation will occur.

(b) As water temperature increases, NPSHrequired also 
increases.

(c) As water temperature increases, the available NPSH also 
increases.

(d) As water temperature increases, cavitation is less likely 
to occur.

14–15C  Write the equation that defines actual (available) 
net positive suction head NPSH. From this definition, dis-
cuss at least five ways you can decrease the likelihood of 
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14–24  Suppose the pump of Fig. P14–23 is operating at free 
delivery conditions. The pipe, both upstream and downstream 
of the pump, has an inner diameter of 2.0 cm and nearly zero 
roughness. The minor loss coefficient associated with the sharp 
inlet is 0.50, each valve has a minor loss coefficient of 2.4, and 
each of the three elbows has a minor loss coefficient of 0.90. 
The contraction at the exit reduces the diameter by a factor of 
0.60 (60% of the pipe diameter), and the minor loss coefficient 
of the contraction is 0.15. Note that this minor loss coefficient 
is based on the average exit velocity, not the average velocity 
through the pipe itself. The total length of pipe is 8.75 m, and 
the elevation difference is (z1 2 z2) 5 4.6 m. Estimate the vol-
ume flow rate through this piping system.  Answer: 34.4 Lpm

14–25  Repeat Prob. 14–24, but with a rough pipe—pipe 
roughness e 5 0.12 mm. Assume that a modified pump is 
used, such that the new pump operates at its free delivery 
conditions, just as in Prob. 14–24. Assume all other dimen-
sions and parameters are the same as in that problem. Do 
your results agree with intuition? Explain.

14–26  Consider the piping system of Fig. P14–23, with 
all the dimensions, parameters, minor loss coef-

ficients, etc., of Prob. 14–24. The pump’s performance follows 
a parabolic curve fit, Havailable 5 H0 2 aV

. 
2, where H0 5 19.8 m 

is the pump’s shutoff head, and a 5  0.00426  m/(Lpm)2 is a 
coefficient of the curve fit. Estimate the operating volume 
flow rate V

.
 in Lpm (liters per minute), and compare with that 

of Prob. 14–24. Discuss.

14–27  Repeat Prob. 14–26, but instead of a smooth 
pipe, let the pipe roughness 5 0.12 mm.  Com-

pare to the smooth pipe case and discuss—does the result 
agree with your intuition?

14–28  The performance data for a centrifugal water pump 
are shown in Table P14–28 for water at 20°C (Lpm 5 
liters per minute). (a) For each row of data, calculate the 
pump efficiency (percent). Show all units and unit conver-
sions for full credit. (b) Estimate the volume flow rate (Lpm) 
and net head (m) at the BEP of the pump.

TABLE P14–28

 V
.
, Lpm H, m bhp, W

  0.0 47.5 133

  6.0 46.2 142

 12.0 42.5 153

 18.0 36.2 164

 24.0 26.2 172

 30.0 15.0 174

 36.0  0.0 174

14–29  For the centrifugal water pump of Prob. 14–28, 
plot the pump’s performance data: H (m), bhp 

(W), and hpump (percent) as functions of V
.
 (Lpm), using 

pump outlet? Justify your answer through use of the energy 
equation between the two free surfaces.

14–21  Suppose the pump of Fig. P14–19C is situated 
between two large water tanks with their free surfaces open 
to the atmosphere. Explain qualitatively what would happen 
to the pump performance curve if the free surface of the out-
let tank were raised in elevation, all else being equal. Repeat 
for the system curve. What would happen to the operating 
point—would the volume flow rate at the operating point 
decrease, increase, or remain the same? Indicate the change 
on a qualitative plot of H versus V

.
, and discuss. (Hint: Use 

the energy equation between the free surface of the tank 
upstream of the pump and the free surface of the tank down-
stream of the pump.)

14–22  Suppose the pump of Fig. P14–19C is situated 
between two large water tanks with their free surfaces open 
to the atmosphere. Explain qualitatively what would hap-
pen to the pump performance curve if a valve in the piping 
system were changed from 100 percent open to 50 percent 
open, all else being equal. Repeat for the system curve. What 
would happen to the operating point—would the volume flow 
rate at the operating point decrease, increase, or remain the 
same? Indicate the change on a qualitative plot of H versus 
V
.
, and discuss. (Hint: Use the energy equation between the 

free surface of the upstream tank and the free surface of the 
downstream tank.)  Answer: decrease

14–23  Consider the flow system sketched in Fig. P14–23. 
The fluid is water, and the pump is a centrifugal pump. Gen-
erate a qualitative plot of the pump net head as a function of 
the pump capacity. On the figure, label the shutoff head, the 
free delivery, the pump performance curve, the system curve, 
and the operating point. (Hint: Carefully consider the required 
net head at conditions of zero flow rate.)

z1

V2

V1  0

Pump

z2

1

2

Reservoir

FIGURE P14–23

787-878_cengel_ch14.indd   865 12/21/12   6:23 PM



866
TURBOMACHINERY

 Hrequired 5 (z2 2 z1) 1 bV
. 

2, where elevation difference 
z2 2  z1 5 11.3 ft, and coefficient b 5 0.00986 ft/(gpm)2. 
Estimate the operating point of the system, namely, V

.
operating 

(gpm) and Hoperating (ft).  Answers: 13.5 gpm, 13.1 ft

14–35  Suppose you are looking into purchasing a 
water pump with the performance data shown 

in Table P14–35. Your supervisor asks for some more infor-
mation about the pump. (a) Estimate the shutoff head H0 and 
the free delivery V

.
max of the pump. [Hint: Perform a least-

squares curve fit (regression analysis) of Havailable versus V
. 

2, 
and calculate the best-fit values of coefficients H0 and a that 
translate the tabulated data of Table P14–35 into the para-
bolic expression, Havailable 5 H0 2 aV

. 
2. From these coeffi-

cients, estimate the free delivery of the pump.] (b) The 
application requires 57.0 Lpm of flow at a pressure rise 
across the pump of 5.8 psi. Is this pump capable of meeting 
the requirements? Explain.

TABLE P14–35

 V
.
, Lpm H, m

 20 21

 30 18.4

 40 14

 50 7.6

14–36  The performance data of a water pump follow the 
curve fit Havailable 5 H0 2 aV

. 
2, where the pump’s shutoff head 

H0 5 7.46 m, coefficient a 5 0.0453 m/(Lpm)2, the units of 
pump head H are meters, and the units of V

.
 are liters per min-

ute (Lpm). The pump is used to pump water from one large res-
ervoir to another large reservoir at a higher elevation. The free 
surfaces of both reservoirs are exposed to atmospheric pressure. 
The system curve simplifies to Hrequired 5 (z2 2 z1) 1 bV

. 
2, 

where elevation difference z2 2 z1 5 3.52 m, and coefficient 
b 5 0.0261 m/(Lpm)2. Calculate the operating point of the 
pump (V

.
operating and Hoperating) in appropriate units (Lpm and 

meters, respectively).  Answers: 7.43 Lpm, 4.96 m

14–37  For the application at hand, the flow rate of 
Prob. 14–36 is not adequate. At least 9 Lpm is required. 
Repeat Prob. 14–36 for a more powerful pump with H0 5 8.13 m 
and a 5 0.0297 m/(Lpm)2. Calculate the percentage improve-
ment in flow rate compared to the original pump. Is this pump 
able to deliver the required flow rate?

14–38E  A manufacturer of small water pumps lists the per-
formance data for a family of its pumps as a parabolic curve 
fit, Havailable 5 H0 2 aV

. 
2, where H0 is the pump’s shutoff head 

and a is a coefficient. Both H0 and a are listed in a table for the 
pump family, along with the pump’s free delivery. The pump 
head is given in units of feet of water column, and capacity 
is given in units of gallons per minute. (a) What are the units 
of coefficient a? (b) Generate an expression for the  pump’s 

symbols only (no lines). Perform linear least-squares polyno-
mial curve fits for all three parameters, and plot the fitted 
curves as lines (no symbols) on the same plot. For consis-
tency, use a first-order curve fit for H as a function of V

. 
2, use 

a second-order curve fit for bhp as a function of both V
.
 and 

V
. 

2, and use a third-order curve fit for hpump as a function of 
V
.
, V

. 
2, and V

. 
3. List all curve-fitted equations and coefficients 

(with units) for full credit. Calculate the BEP of the pump 
based on the curve-fitted expressions.

14–30  Suppose the pump of Probs. 14–28 and 14–29 is 
used in a piping system that has the system requirement 
 Hrequired 5 (z2 2 z1) 1 bV

. 
2, where the elevation difference 

z2 2 z1 5 21.7 m, and coefficient b 5 0.0185 m/(Lpm)2. 
Estimate the operating point of the system, namely, V

.
operating 

(Lpm) and Hoperating (m).

14–31E  The performance data for a centrifugal water pump 
are shown in Table P14–31E for water at 77°F (gpm 5 
gallons per minute). (a) For each row of data, calculate the 
pump efficiency (percent). Show all units and unit conver-
sions for full credit. (b) Estimate the volume flow rate (gpm) 
and net head (ft) at the BEP of the pump.

TABLE P14–31E

 V
.
, gpm H, ft bhp, hp

 0.0 19.0 0.06

 4.0 18.5 0.064

 8.0 17.0 0.069

 12.0 14.5 0.074

 16.0 10.5 0.079

 20.0 6.0 0.08

 24.0 0.0 0.078

14–32E  Transform each column of the pump performance 
data of Prob. 14–31E to metric units: V

.
 into Lpm (liters per 

minute), H into m, and bhp into W. Calculate the pump effi-
ciency (percent) using these metric values, and compare to 
that of Prob. 14–31E.

14–33E  For the centrifugal water pump of Prob. 14–31E, 
plot the pump’s performance data: H (ft), bhp 

(hp), and hpump (percent) as functions of V
.
 (gpm), using sym-

bols only (no lines). Perform linear least-squares polynomial 
curve fits for all three parameters, and plot the fitted curves 
as lines (no symbols) on the same plot. For consistency, use a 
first-order curve fit for H as a function of V

. 
2, use a second-

order curve fit for bhp as a function of both V
.
 and V

. 
2, and use 

a third-order curve fit for hpump as a function of V
.
, V

.
 2, and V

.
 3. 

List all curve-fitted equations and coefficients (with units) for 
full credit. Calculate the BEP of the pump based on the 
curve-fitted expressions.

14–34E  Suppose the pump of Probs. 14–31E and 14–33E 
is used in a piping system that has the system requirement 
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14–41E  Suppose that the two reservoirs in Prob. 14–39E 
are 1000 ft farther apart horizontally, but at the same eleva-
tions. All the constants and parameters are identical to those 
of Prob. 14–39E except that the total pipe length is 562 ft 
instead of 124 ft. Calculate the volume flow rate for this case 
and compare with the result of Prob. 14–39E. Discuss.

14–42E  Paul realizes that the pump being used in 
Prob. 14–39E is not well-matched for this 

application, since its shutoff head (125 ft) is much larger than 
its required net head (less than 30 ft), and its capacity is fairly 
low. In other words, this pump is designed for high-head, 
low-capacity applications, whereas the application at hand is 
fairly low-head, and a higher capacity is desired. Paul tries to 
convince his supervisor that a less expensive pump, with 
lower shutoff head but higher free delivery, would result in a 
significantly increased flow rate between the two reservoirs. 
Paul looks through some online brochures, and finds a pump 
with the performance data shown in Table P14–42E. His 
supervisor asks him to predict the volume flow rate between 
the two reservoirs if the existing pump were replaced with 
the new pump. (a) Perform a least-squares curve fit (regres-
sion analysis) of Havailable versus V

. 
2, and calculate the best-fit 

values of coefficients H0 and a that translate the tabulated 
data of Table P14–42E into the parabolic expression 
Havailable 5 H0 2 aV

. 
2. Plot the data points as  symbols and the 

curve fit as a line for comparison. (b) Estimate the operating 
volume flow rate of the new pump if it were to replace the 
existing pump, all else being equal. Compare to the result of 
Prob. 14–39E and discuss. Is Paul correct? (c) Generate a plot 
of required net head and available net head as functions of 
volume flow rate and indicate the operating point on the plot.

TABLE P14–42E

 V
.
, gpm H, ft

  0 38

  4 37

  8 34

 12 29

 16 21

 20 12

 24  0

14–43  A water pump is used to pump water from one large 
reservoir to another large reservoir that is at a higher elevation. 
The free surfaces of both reservoirs are exposed to atmospheric 
pressure, as sketched in Fig. P14–43. The dimensions and minor 
loss coefficients are provided in the figure. The pump’s perfor-
mance is approximated by the expression Havailable 5 H0 2 aV

. 
2, 

where shutoff head H0 5 24.4 m of water column, coefficient 
a 5 0.0678 m/Lpm2, available pump head Havailable is in units 
of meters of water column, and capacity V

.
 is in units of liters 

per minute (Lpm). Estimate the capacity delivered by the 
pump.  Answer: 11.6 Lpm

free delivery V
. 
max in terms of H0 and a. (c) Suppose one of 

the manufacturer’s pumps is used to pump water from one 
large reservoir to another at a higher elevation. The free sur-
faces of both reservoirs are exposed to atmospheric pressure. 
The system curve simplifies to Hrequired 5 (z2 2 z1) 1 bV

. 
2. 

Calculate the operating point of the pump (V
. 

operating and 
Hoperating) in terms of H0, a, b, and elevation difference z2 2 z1.

14–39E  A water pump is used to pump water from one large 
reservoir to another large reservoir that is at a higher elevation. 
The free surfaces of both reservoirs are exposed to atmo-
spheric pressure, as sketched in Fig. P14–39E. The dimen-
sions and minor loss coefficients are provided in the figure. 
The pump’s performance is approximated by the expression 
Havailable 5 H0 2 aV

. 
2, where the shutoff head H0  5 125 ft 

of water column, coefficient a 5 2.50 ft/gpm2, available 
pump head Havailable is in units of feet of water column, and 
capacity V

.
 is in units of gallons per minute (gpm). Estimate 

the capacity delivered by the pump.  Answer: 6.34 gpm

z2 – z1

z1

V1 � 0

Pump

Valve 1

Valve 2

 z2 – z1  = 22.0 ft (elevation difference)
 D  = 1.20 in (pipe diameter)
KL, entrance = 0.50 (pipe entrance)
KL, valve 1  = 2.0 (valve 1)
 KL, valve 2  = 6.8 (valve 2)
 KL, elbow  = 0.34 (each elbow—there are 3)
 KL, exit  = 1.05 (pipe exit)
  L  = 124 ft (total pipe length)

e   = 0.0011 in (pipe roughness)

z2

1

Reservoir

V2 � 02

Reservoir

D

FIGURE P14–39E

14–40E  For the pump and piping system of Prob. 14–39E, 
plot the required pump head Hrequired (ft of water column) as a 
function of volume flow rate V

.
 (gpm). On the same plot, com-

pare the available pump head Havailable versus V
.
, and mark the 

operating point. Discuss.
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as functions of volume flow rate, and indicate the operating 
point on the plot.

TABLE P14–46

 V
.
, Lpm H, m

  0 46.5

  5 46

 10 42

 15 37

 20 29

 25 16.5

 30 0

14–47  Calculate the volume flow rate between the reser-
voirs of Prob. 14–43 for the case in which the pipe diameter 
is doubled, all else remaining the same. Discuss.

14–48  Comparing the results of Probs. 14–43 and 14–47, 
the volume flow rate increases as expected when one dou-
bles the inner diameter of the pipe. One might expect that the 
Reynolds number increases as well. Does it? Explain.

14–49  Repeat Prob. 14–43, but neglect all minor losses. 
Compare the volume flow rate with that of Prob. 14–43. Are 
minor losses important in this problem? Discuss.

14–50  Consider the pump and piping system of 
Prob. 14–43. Suppose that the lower reservoir 

is huge, and its surface does not change elevation, but the 
upper reservoir is not so big, and its surface rises slowly as 
the reservoir fills. Generate a curve of volume flow rate V

.
 

(Lpm) as a function of z2 2 z1 in the range 0 to the value of 
z2 2 z1 at which the pump ceases to pump any more water. At 
what value of z2 2 z1 does this occur? Is the curve linear? 
Why or why not? What would happen if z2 2 z1 were greater 
than this value? Explain.

14–51  A local ventilation system (a hood and duct system) 
is used to remove air and contaminants from a pharmaceuti-
cal lab (Fig. P14–51). The inner diameter (ID) of the duct is 
D 5 150 mm, its average roughness is 0.15 mm, and its total 
length is L 5 24.5 m. There are three elbows along the duct, 
each with a minor loss coefficient of 0.21. Literature from 
the hood manufacturer lists the hood entry loss coefficient as 
3.3 based on duct velocity. When the damper is fully open, 
its loss coefficient is 1.8. The minor loss coefficient through 
the 90° tee is 0.36. Finally, a one-way valve is installed to 
prevent contaminants from a second hood from flowing 
“backward” into the room. The minor loss coefficient of the 
(open) one-way valve is 6.6. The performance data of the fan 
fit a parabolic curve of the form Havailable 5 H0 2 aV

. 
2, where 

shutoff head H0 5 60.0 mm of water column, coefficient a 5 
2.50 3 1027 mm of water column per (Lpm)2, available head 
Havailable is in units of mm of water column, and capacity V

.
 is 

in units of Lpm of air. Estimate the volume flow rate in Lpm 
through this ventilation system.  Answer: 7090 Lpm

Pump

z2 – z1

z1

V1 � 0

Valve

 z2 – z1  = 7.85 m (elevation difference)
 D  = 2.03 cm (pipe diameter)
KL, entrance = 0.50 (pipe entrance)
KL, valve    = 17.5 (valve)
 KL, elbow  = 0.92 (each elbow—there are 5)
 KL, exit  = 1.05 (pipe exit)
 L  = 176.5 m (total pipe length)

e  = 0.25 mm (pipe roughness)

z2

1

Reservoir

V2 � 02

Reservoir

D

FIGURE P14–43

14–44  For the pump and piping system of Prob. 14–43, 
plot required pump head Hrequired (m of water column) as a 
function of volume flow rate V

.
 (Lpm). On the same plot, 

compare available pump head Havailable versus V
.
, and mark the 

operating point. Discuss.

14–45  Suppose that the free surface of the inlet reservoir in 
Prob. 14–43 is 3.0 m lower in elevation, such that z2 2 z1 5 
10.85  m. All the constants and parameters are identical to 
those of Prob. 14–43 except for the elevation difference. Cal-
culate the volume flow rate for this case and compare with 
the result of Prob. 14–43. Discuss.

14–46  April’s supervisor asks her to find a replace-
ment pump that will increase the flow rate 

through the piping system of Prob. 14–43 by a factor of 2 or 
greater. April looks through some online brochures, and finds 
a pump with the performance data shown in Table P14–46. 
All dimensions and parameters remain the same as in 
Prob. 14–43—only the pump is changed. (a) Perform a least-
squares curve fit (regression analysis) of Havailable versus V

. 
2, 

and calculate the best-fit values of coefficients H0 and a that 
translate the tabulated data of Table P14–46 into the para-
bolic expression Havailable 5 H0 2 aV

. 
2. Plot the data points as 

symbols and the curve fit as a line for comparison. (b)  Use 
the expression obtained in part (a) to estimate the operating 
volume flow rate of the new pump if it were to replace the 
existing pump, all else being equal. Compare to the result of 
Prob. 14–43 and discuss. Has April achieved her goal? 
(c) Generate a plot of required net head and available net head 
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inches of water column, and capacity V
.
 is in units of stan-

dard cubic feet per minute (SCFM, at 77°F). Estimate the 
volume flow rate in SCFM through this ventilation system.  
Answer: 452 SCFM

Damper

Fan

Hood

2

z11

z2

FIGURE P14–55E

14–56E  For the duct system and fan of Prob. 14–55E, par-
tially closing the damper would decrease the flow rate. All 
else being unchanged, estimate the minor loss coefficient of 
the damper required to decrease the volume flow rate by a 
factor of 3.

14–57E  Repeat Prob. 14–55E, ignoring all minor losses. 
How important are the minor losses in this problem? Discuss.

14–58E  A centrifugal pump is used to pump water at 77°F 
from a reservoir whose surface is 20.0 ft above the centerline 
of the pump inlet (Fig. P14–58E). The piping system consists 
of 67.5 ft of PVC pipe with an ID of 1.2 in and negligible aver-
age inner roughness height. The length of pipe from the bot-
tom of the lower reservoir to the pump inlet is 12.0 ft. There 
are several minor losses in the piping system: a sharp-edged 
inlet (KL 5 0.5), two flanged smooth 90° regular elbows (KL 5 
0.3 each), two fully open flanged globe valves (KL 5 6.0 
each), and an exit loss into the upper reservoir (KL 5 1.05). 
The pump’s required net positive suction head is pro-
vided by the manufacturer as a curve fit: NPSHrequired 5
1.0  ft 1 (0.0054 ft/gpm2)V

. 
2, where volume flow rate is in 

gpm. Estimate the maximum volume flow rate (in units of 
gpm) that can be pumped without cavitation.

T = 25°C
P = 1 atm

Fan

z2

2

One-way valve
90° Tee

Branch from 
another hood

Damper

Hood

z11

FIGURE P14–51

14–52  For the duct system of Prob. 14–51, plot required fan 
head Hrequired (mm of water column) as a function of volume flow 
rate V

.
 (Lpm). On the same plot, compare available fan head 

Havailable versus V
.
, and mark the operating point. Discuss.

14–53  Repeat Prob. 14–51, ignoring all minor losses. How 
important are the minor losses in this problem? Discuss.

14–54  Suppose the one-way valve of Fig. P14–51 malfunc-
tions due to corrosion and is stuck in its fully closed position 
(no air can get through). The fan is on, and all other condi-
tions are identical to those of Prob. 14–51. Calculate the gage 
pressure (in pascals and in mm of water column) at a point 
just downstream of the fan. Repeat for a point just upstream 
of the one-way valve.

14–55E  A local ventilation system (a hood and duct sys-
tem) is used to remove air and contaminants produced by a 
welding operation (Fig. P14–55E). The inner diameter (ID) 
of the duct is D 5 9.06 in, its average roughness is 0.0059 in, 
and its total length is L 5 34.0 ft. There are three elbows 
along the duct, each with a minor loss coefficient of 0.21. 
Literature from the hood manufacturer lists the hood entry 
loss coefficient as 4.6 based on duct velocity. When the 
damper is fully open, its loss coefficient is 1.8. A squirrel 
cage centrifugal fan with a 9.0-in inlet is available. Its per-
formance data fit a parabolic curve of the form Havailable 5 
H0 2 aV

. 
2, where shutoff head H0 5 2.30 inches of water 

column, coefficient a 5 8.50 3 1026 inches of water 
column per (SCFM)2, available head Havailable is in units of 
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volume flow rate at which cavitation occurs in the pump 
increase or decrease with the larger pipe? Discuss.

14–63E  The two-lobe rotary pump of Fig. P14–63E moves 
0.110 gal of a coal slurry in each lobe volume V

. 
lobe. Calcu-

late the volume flow rate of the slurry (in gpm) for the case 
where n

.
 5 175 rpm.  Answer: 77.0 gpm

In Out
⋅
 V

⋅
 V

 Vlobe

FIGURE P14–63E

14–64E  Repeat Prob. 14–63E for the case in which the 
pump has three lobes on each rotor instead of two, and  
V
. 

lobe 5 0.0825 gal.

14–65  A two-lobe rotary positive-displacement pump, simi-
lar to that of Fig. 14–30, moves 3.64 cm3 of tomato paste 
in each lobe volume V

. 
lobe. Calculate the volume flow rate of 

tomato paste for the case where n
.
 5 336 rpm.

14–66  Consider the gear pump of Fig. 14–26c. Suppose 
the volume of fluid confined between two gear teeth is 
0.350 cm3. How much fluid volume is pumped per rotation?  
Answer: 9.80 cm3

14–67  A centrifugal pump rotates at n
.
 5 750 rpm. Water 

enters the impeller normal to the blades (a1 5 0°) and exits 
at an angle of 35° from radial (a2 5 35°). The inlet radius 
is r1 5 12.0 cm, at which the blade width b1 5 18.0 cm. 
The outlet radius is r2 5 24.0 cm, at which the blade width 
b2 5  16.2  cm. The volume flow rate is 0.573 m3/s. Assum-
ing 100 percent efficiency, calculate the net head produced by 
this pump in cm of water column height. Also calculate the 
required brake horsepower in W.

14–68  Suppose the pump of Prob. 14–67 has some swirl at 
the inlet such that a1 5 7° instead of 0°. Calculate the net 
head and required horsepower and compare to Prob. 14–67. 
Discuss. In particular, is the angle at which the fluid impinges 
on the impeller blade a critical parameter in the design of 
centrifugal pumps?

14–69  Suppose the pump of Prob. 14–67 has some reverse 
swirl at the inlet such that a1 5 210° instead of 0°. Cal-
culate the net head and required horsepower and compare 
to Prob. 14–67. Discuss. In particular, is the angle at which 
the fluid impinges on the impeller blade a critical parameter 
in the design of centrifugal pumps? Does a small amount of 

Reservoir

Reservoir

Valve

Valve Pump

z3 – z1

z3

z1

z2

3

1

2

FIGURE P14–58E

14–59E  Repeat Prob. 14–58E, but at a water temperature of 
113°F. Discuss.

14–60  A self-priming centrifugal pump is used to pump 
water at 25°C from a reservoir whose surface is 2.2 m above 
the centerline of the pump inlet (Fig. P14–60). The pipe is 
PVC pipe with an ID of 24.0 mm and negligible average inner 
roughness height. The pipe length from the submerged pipe 
inlet to the pump inlet is 2.8 m. There are only two minor 
losses in the piping system from the pipe inlet to the pump 
inlet: a sharp-edged reentrant inlet (KL 5 0.85), and a flanged 
smooth 90° regular elbow (KL 5 0.3). The pump’s required 
net positive suction head is provided by the manufacturer 
as a curve fit: NPSHrequired 5 2.2 m 1  (0.0013 m/Lpm2)V

. 
2, 

where volume flow rate is in Lpm. Estimate the maximum 
volume flow rate (in units of Lpm) that can be pumped with-
out cavitation.

Reservoir

z2

z1

z2 – z1
1

Pump

2

FIGURE P14–60

14–61  Repeat Prob. 14–60, but at a water temperature of 
80°C. Repeat for 90°C. Discuss.

14–62  Repeat Prob. 14–60, but with the pipe diameter 
increased by a factor of 2 (all else being equal). Does the 
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14–74C  Name and briefly describe the differences between 
the two basic types of dynamic turbine.

14–75C  Discuss the meaning of reverse swirl in reaction 
hydroturbines, and explain why some reverse swirl may be 
desirable. Use an equation to support your answer. Why is it 
not wise to have too much reverse swirl?

14–76C  Give at least two reasons why turbines often have 
greater efficiencies than do pumps.

14–77C  Briefly discuss the main difference in the way that 
dynamic pumps and reaction turbines are classified as cen-
trifugal (radial), mixed flow, or axial.

14–78  A hydroelectric plant has 14 identical Francis turbines, 
a gross head of 284 m, and a volume flow rate of 13.6 m3/s 
through each turbine. The water is at 25°C. The efficiencies 
are hturbine 5 95.9%, hgenerator 5 94.2%, and hother 5 95.6%, 
where hother accounts for all other mechanical energy losses. 
Estimate the electrical power production from this plant 
in MW.

14–79  A Pelton wheel is used to produce hydroelectric 
power. The average radius of the wheel is 1.83 m, and the 
jet velocity is 102 m/s from a nozzle of exit diameter equal 
to 10.0 cm. The turning angle of the buckets is b 5 165°. 
(a)  Calculate the volume flow rate through the turbine in 
m3/s. (b)  What is the optimum rotation rate (in rpm) of the 
wheel (for maximum power)? (c)  Calculate the output shaft 
power in MW if the efficiency of the turbine is 82 percent.  
Answers: (a) 0.801 m3/s, (b) 266 rpm, (c) 3.35 MW

14–80  Some engineers are evaluating potential sites for a 
small hydroelectric dam. At one such site, the gross head is 
340 m, and they estimate that the volume flow rate of water 
through each turbine would be 0.95 m3/s. Estimate the ideal 
power production per turbine in MW.

14–81  Prove that for a given jet speed, volume flow rate, 
turning angle, and wheel radius, the maximum shaft power 
produced by a Pelton wheel occurs when the turbine bucket 
moves at half the jet speed.

14–82  Wind (r 5 1.204 kg/m3) blows through a HAWT 
wind turbine. The turbine diameter is 45.0 m. The combined 
efficiency of the gearbox and generator is 88 percent. (a) For 
a realistic power coefficient of 0.42, estimate the electrical 
power production when the wind blows at 7.8 m/s. (b) Repeat 
and compare using the Betz limit, assuming the same gear-
box and generator. 

14–83  A Francis radial-flow hydroturbine is being 
designed with the following dimensions: r2 5 2.00 m, r1 5 
1.42 m, b2 5 0.731 m, and b1 5 2.20 m. The runner rotates 
at n

.
 5  180  rpm. The wicket gates turn the flow by angle 

a2 5 30° from radial at the runner inlet, and the flow at the 
runner outlet is at angle a1 5 10° from radial (Fig. P14–83). 
The volume flow rate at design conditions is 340 m3/s, and 
the gross head provided by the dam is Hgross 5 90.0 m. 

reverse swirl increase or decrease the net head of the pump—
in other words, is it desirable? Note: Keep in mind that we 
are neglecting losses here.

14–70  A vane-axial flow fan is being designed with the 
stator blades upstream of the rotor blades (Fig. P14–70). To 
reduce expenses, both the stator and rotor blades are to be 
constructed of sheet metal. The stator blade is a simple cir-
cular arc with its leading edge aligned axially and its trail-
ing edge at angle bst 5 26.6° from the axis as shown in the 
sketch. (The subscript notation indicates stator trailing edge.) 
There are 18 stator blades. At design conditions, the axial-
flow speed through the blades is 31.4 m/s, and the impeller 
rotates at 1800 rpm. At a radius of 0.50 m, calculate the lead-
ing and trailing edge angles of the rotor blade, and sketch the 
shape of the blade. How many rotor blades should there be?

Rotor

v

Stator

Vout

→
Vin

bst

Hub and motor

→ r

vr

? ? ?

FIGURE P14–70

14–71  Two water pumps are arranged in series. The per-
formance data for both pumps follow the parabolic curve fit 
Havailable 5 H0 2 aV

. 
2. For pump 1, H0 5 6.33 m and coef-

ficient a 5 0.0633 m/Lpm2; for pump 2, H0 5 9.25 m and 
coefficient a 5 0.0472 m/Lpm2. In either case, the units 
of net pump head H are m, and the units of capacity V

.
 are 

Lpm. Calculate the combined shutoff head and free deliv-
ery of the two pumps working together in series. At what 
volume flow rate should pump 1 be shut off and bypassed? 
Explain.  Answers: 15.6 m, 14.0 Lpm, 10.0 Lpm

14–72  The same two water pumps of Prob. 14–71 are 
arranged in parallel. Calculate the shutoff head and free 
delivery of the two pumps working together in parallel. At 
what combined net head should pump 1 be shut off and 
bypassed? Explain.

Turbines

14–73C  What is a draft tube, and what is its purpose? 
Describe what would happen if turbomachinery designers did 
not pay attention to the design of the draft tube.
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conditions is 4.70 3 106 gpm. Irreversible losses are neglected 
in this preliminary analysis. Calculate the angle a2 through 
which the wicket gates should turn the flow, where a2 is mea-
sured from the radial direction at the runner inlet (Fig. P14–83). 
Calculate the swirl angle a1, where a1 is measured from the 
radial direction at the runner outlet (Fig. P14–83). Does this 
turbine have forward or reverse swirl? Predict the power output 
(hp) and required net head (ft).

14–87E  Using EES or other software, adjust the runner 
blade trailing edge angle b1 of Prob. 14–86E, 

keeping all other parameters the same, such that there is no 
swirl at the turbine outlet. Report b1 and the corresponding 
shaft power.

14–88  A simple single-stage axial turbine is being designed 
to produce power from water flowing through a tube as in 
Fig. P14–88. We approximate both the stator and rotor as thin 
(bent sheet metal). The 16 stator (upstream) blades have 
bsl 5 0° and bst 5 50.3°, where subscripts “sl” and “st” mean 
stator leading edge and stator trailing edge, respectively. 
At design conditions, the axial flow speed is 8.31 m/s, the 
rotor turns at 360 rpm, and it is desired that there be no swirl 
downstream of the turbine. At a radius of 0.324 m, calculate 
angles brl and brt (rotor leading and trailing edge angles), 
sketch what the rotor vanes should look like, and specify how 
many rotor vanes there should be.

Rotor

v

Stator

VoutVin

Hub and Generator

r

vr

? ? ?

bst

→ →

FIGURE P14–88

14–89  In the section on wind turbines, an expression was 
derived for the ideal power coefficient of a wind turbine, 
CP 5 4a(1 2 a)2. Prove that the maximum possible power 
coefficient occurs when a 5 1/3.

14–90E  A hydroelectric power plant is being designed. The 
gross head from the reservoir to the tailrace is 859 ft, and the 
volume flow rate of water through each turbine is 189,400 gpm 
at 50°F. There are 10 identical parallel turbines, each with an 
efficiency of 96.3 percent, and all other mechanical energy 
losses (through the penstock, etc.) are estimated to reduce the 
output by 3.6 percent. The generator itself has an efficiency 

For the preliminary design, irreversible losses are neglected. 
Calculate the inlet and outlet runner blade angles b2 and b1, 
respectively, and predict the power output (MW) and required 
net head (m). Is the design feasible?

a2

a1

r2

r1

Control volume

V1

v

→

V2
→

V1, n

V1, t

V2, t

V2, n

FIGURE P14–83

14–84  Reconsider Prob. 14–83. Using EES (or other) 
software, investigate the effect of the runner 

outlet angle a1 on the required net head and the output power. 
Let the outlet angle vary from 220° to 20° in increments of 
1°, and plot your results. Determine the minimum possible 
value of a1 such that the flow does not violate the laws of 
thermodynamics.

14–85  A Francis radial-flow hydroturbine has the following 
dimensions, where location 2 is the inlet and location 1 is 
the outlet: r2 5 2.00 m, r1 5 1.30 m, b2 5 0.85 m, and b1 5 
2.10  m. The runner blade angles are b2 5 71.4° and b1 5 
15.3° at the turbine inlet and outlet, respectively. The runner 
rotates at n

.
 5 160 rpm. The volume flow rate at design con-

ditions is 80.0 m3/s. Irreversible losses are neglected in this 
preliminary analysis. Calculate the angle a2 through which 
the wicket gates should turn the flow, where a2 is measured 
from the radial direction at the runner inlet (Fig. P14–83). 
Calculate the swirl angle a1, where a1 is measured from the 
radial direction at the runner outlet (Fig. P14–83). Does this 
turbine have forward or reverse swirl? Predict the power out-
put (MW) and required net head (m).

14–86E  A Francis radial-flow hydroturbine has the follow-
ing dimensions, where location 2 is the inlet and location 
1 is the outlet: r2 5 6.60 ft, r1 5 4.40 ft, b2 5 2.60 ft, and 
b1 5  7.20  ft. The runner blade angles are b2 5 82° and 
b1 5 46° at the turbine inlet and outlet, respectively. The run-
ner rotates at n

.
 5 120 rpm. The volume flow rate at design 
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14–99  Len is asked to design a small water pump for an 
aquarium. The pump should deliver 14.0 Lpm of water at a 
net head of 1.5 m at its best efficiency point. A motor that 
spins at 1200 rpm is available. What kind of pump (cen-
trifugal, mixed, or axial) should Len design? Show all your 
calculations and justify your choice. Estimate the maximum 
pump efficiency Len can hope for with this pump.  Answers: 

centrifugal, 81.0%

14–100  Consider the pump of Prob. 14–99. Suppose the 
pump is modified by attaching a different motor, for which 
the rpm is 1800 rpm. If the pumps operate at homologous 
points (namely, at the BEP) for both cases, predict the vol-
ume flow rate and net head of the modified pump. Calculate 
the pump specific speed of the modified pump, and compare 
to that of the original pump. Discuss.

14–101  A large water pump is being designed for a nuclear 
reactor. The pump should deliver 2500 gpm of water at a net 
head of 45 ft at its best efficiency point. A motor that spins at 
300 rpm is available. What kind of pump (centrifugal, mixed, 
or axial) should be designed? Show all your calculations and 
justify your choice. Estimate the maximum pump efficiency 
that can be hoped for with this pump. Estimate the power 
(brake horsepower) required to run the pump.

14–102  Consider the pump of Prob. 14–43. The pump 
diameter is 1.80 cm, and it operates at n

.
 5 4200 rpm. Non-

dimensionalize the pump performance curve, i.e., plot CH 
versus CQ. Show sample calculations of CH and CQ at V

.
 5 

14.0 Lpm.

14–103  Calculate the pump specific speed of the pump 
of Prob. 14–102 at the best efficiency point for the case in 
which the BEP occurs at 14.0 Lpm. Provide answers in both 
dimensionless form and in customary U.S. units. What kind 
of pump is it?  Answers: 0.199, 545, centrifugal

14–104  Verify that turbine specific speed and pump specific 
speed are related as follows: NSt 5 NSp!hturbine.

14–105  Consider a pump–turbine that operates both as a 
pump and as a turbine. Under conditions in which the rota-
tional speed v and the volume flow rate V

.
 are the same for 

the pump and the turbine, verify that turbine specific speed 
and pump specific speed are related as

 NSt 5 NSp"hturbine a Hpump

Hturbine

b3/4

 

 5 NSp(hturbine)
5/4(hpump)

3/4a bhppump

bhpturbine

b3/4

 

14–106  Apply the necessary conversion factors to prove the 
relationship between dimensionless turbine specific speed and 
conventional U.S. turbine specific speed, NSt 5 43.46NSt,  US. 
Note that we assume water as the fluid and standard earth 
gravity.

of 93.9 percent. Estimate the electric power production from 
the plant in MW.

14–91  The average wind speed at a proposed HAWT wind 
farm site is 12.5 m/s. The power coefficient of each wind 
turbine is predicted to be 0.41, and the combined efficiency 
of the gearbox and generator is 92 percent. Each wind tur-
bine must produce 2.5 MW of electrical power when the 
wind blows at 12.5 m/s. (a) Calculate the required diam-
eter of each turbine disk. Take the average air density to be 
r 5 1.2 kg/m3. (b) If 30 such turbines are built on the site 
and an average home in the area consumes approximately 
1.5 kW of electrical power, estimate how many homes can be 
powered by this wind farm, assuming an additional efficiency 
of 96 percent to account for the powerline losses.

Pump and Turbine Scaling Laws

14–92C  Pump specific speed and turbine specific speed are 
“extra” parameters that are not necessary in the scaling laws 
for pumps and turbines. Explain, then, their purpose.

14–93C  For each statement, choose whether the statement 
is true or false, and discuss your answer briefly:

(a) If the rpm of a pump is doubled, all else staying 
the same, the capacity of the pump goes up by a factor of 
about 2.

(b) If the rpm of a pump is doubled, all else staying the same, 
the net head of the pump goes up by a factor of about 2.

(c) If the rpm of a pump is doubled, all else staying the same, 
the required shaft power goes up by a factor of about 4.

(d) If the rpm of a turbine is doubled, all else staying the 
same, the output shaft power of the turbine goes up by a fac-
tor of about 8.

14–94C  Discuss which dimensionless pump performance 
parameter is typically used as the independent parameter. 
Repeat for turbines instead of pumps. Explain.

14–95C  Look up the word affinity in a dictionary. Why 
do you suppose some engineers refer to the turbomachinery 
scaling laws as affinity laws?

14–96  Consider the fan of Prob. 14–51. The fan diameter 
is 30.0 cm, and it operates at n

.
 5 600 rpm. Nondimensional-

ize the fan performance curve, i.e., plot CH versus CQ. Show 
sample calculations of CH and CQ at V

.
 5 13,600 Lpm.

14–97  Calculate the fan specific speed of the fan of 
Probs. 14–51 and 14–96 at the best efficiency point for 
the case in which the BEP occurs at 13,600 Lpm. Provide 
answers in both dimensionless form and in customary U.S. 
units. What kind of fan is it?

14–98  Calculate the pump specific speed of the pump of 
Example 14–11 at its best efficiency point. Provide answers 
in both dimensionless form and in customary U.S. units. 
What kind of pump is it?
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prototype typically yields higher efficiency than does the 
model. Estimate the actual efficiency of the prototype tur-
bine. Briefly explain the higher efficiency.

Review Problems

14–118C  What is a pump–turbine? Discuss an application 
where a pump–turbine is useful.

14–119C  The common water meter found in most homes 
can be thought of as a type of turbine, since it extracts energy 
from the flowing water to rotate the shaft connected to the 
volume-counting mechanism (Fig. P14–119C). From the 
point of view of a piping system, however (Chap. 8), what 
kind of device is a water meter? Explain.

Water meter

FIGURE P14–119C

14–120C  For each statement, choose whether the statement 
is true or false, and discuss your answer briefly:

(a) A gear pump is a type of positive-displacement pump.

(b) A rotary pump is a type of positive-displacement pump.

(c) The pump performance curve (net head versus capacity) 
of a positive-displacement pump is nearly vertical through-
out its recommended operating range at a given rotational 
speed.

(d) At a given rotational speed, the net head of a positive-
displacement pump decreases with fluid viscosity.

14–121  For two dynamically similar pumps, manipu-
late the dimensionless pump parameters to show that 
DB 5  DA(HA/HB)1/4(V

. 
B/V

. 
A)1/2. Does the same relationship 

apply to two dynamically similar turbines?

14–122  For two dynamically similar turbines, manipu-
late the dimensionless turbine parameters to show that 
DB 5  DA(HA/HB)3/4(rA/rB)1/2(bhpB/bhpA)1/2. Does the same 
relationship apply to two dynamically similar pumps?

14–123  A group of engineers is designing a new hydro-
turbine by scaling up an existing one. The existing tur-
bine (turbine A) has diameter DA 5 1.50 m, and spins at 
n
.
A 5  150  rpm. At its best efficiency point, V

. 
A 5 162 m3/s, 

HA 5  90.0  m of water, and bhpA 5 132 MW. The new 
turbine (turbine B) will spin at 105 rpm, and its net head will 
be HB 5  95  m. Calculate the diameter of the new turbine 
such that it operates most efficiently, and calculate V

. 
B and 

bhpB.  Answers: 2.20 m, 359 m3/s, 308 MW

14–107  Calculate the turbine specific speed of the turbine 
in Prob. 14–83. Provide answers in both dimensionless form 
and in customary U.S. units. Is it in the normal range for a 
Francis turbine? If not, what type of turbine would be more 
appropriate?

14–108  Calculate the turbine specific speed of the Smith 
Mountain hydroturbine of Fig 14–90. Does it fall within the 
range of NSt appropriate for that type of turbine?

14–109  Calculate the turbine specific speed of the Warwick 
hydroturbine of Fig 14–91. Does it fall within the range of 
NSt appropriate for that type of turbine?

14–110  Calculate the turbine specific speed of the turbine of 
Example 14–13 for the case where a1 5 10°. Provide answers 
in both dimensionless form and in customary U.S. units. Is it 
in the normal range for a Francis turbine? If not, what type of 
turbine would be more appropriate?

14–111  Calculate the turbine specific speed of the turbine 
in Prob. 14–85. Provide answers in both dimensionless form 
and in customary U.S. units. Is it in the normal range for a 
Francis turbine? If not, what type of turbine would be more 
appropriate?

14–112E  Calculate the turbine specific speed of the turbine 
in Prob. 14–86E using customary U.S. units. Is it in the nor-
mal range for a Francis turbine? If not, what type of turbine 
would be more appropriate?

14–113  Calculate the turbine specific speed of the Round 
Butte hydroturbine of Fig 14–89. Does it fall within the range 
of NSt appropriate for that type of turbine?

14–114  A one-fifth scale model of a water turbine is 
tested in a laboratory at T 5 20°C. The diameter of the 
model is 8.0  cm, its volume flow rate is 25.5 m3/h, it spins 
at 1500  rpm, and it operates with a net head of 15.0 m. At 
its best efficiency point, it delivers 720 W of shaft power. 
Calculate the efficiency of the model turbine. What is the 
most likely kind of turbine being tested?  Answers: 69.2%,

impulse

14–115  The prototype turbine corresponding to the one-
fifth scale model turbine discussed in Prob. 14–114 is to 
operate across a net head of 50 m. Determine the appropri-
ate rpm and volume flow rate for best efficiency. Predict the 
brake horsepower output of the prototype turbine, assuming 
exact geometric similarity.

14–116  Prove that the model turbine (Prob. 14–114) and 
the prototype turbine (Prob. 14–115) operate at homologous 
points by comparing turbine efficiency and turbine specific 
speed for both cases.

14–117  In Prob. 14–116, we scaled up the model tur-
bine test results to the full-scale prototype assuming exact 
dynamic similarity. However, as discussed in the text, a large 
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14–133  Water enters the pump of a steam power plant at 
20 kPa and 508C at a rate of 0.15 m3/s. The diameter of the 
pipe at the pump inlet is 0.25 m. What is the net positive 
suction head (NPSH) at the pump inlet?  
(a) 2.14 m (b) 1.89 m (c) 1.66 m (d ) 1.42 m (e) 1.26 m

14–134  Which quantities are added when two pumps are 
connected in series and parallel?
(a) Series: Pressure change. Parallel: Net head
(b) Series: Net head. Parallel: Pressure change
(c) Series: Net head. Parallel: Flow rate
(d) Series: Flow rate. Parallel: Net head
(e) Series: Flow rate. Parallel: Pressure change

14–135  Three pumps are connected in series. According to 
pump performance curves, the free delivery of each pump is 
as follows:

Pump 1: 1600 L/min Pump 2: 2200 L/min
Pump 3: 2800 L/min

If the flow rate for this pump system is 2500 L/min, which 
pump(s) should be shut off?
(a) Pump 1 (b) Pump 2 (c) Pump 3 (d ) Pumps 1 and 2 
(e) Pumps 2 and 3 

14–136  Three pumps are connected in parallel. According 
to pump performance curves, the shutoff head of each pump 
is as follows:

Pump 1: 7 m Pump 2: 10 m Pump 3: 15 m

If the net head for this pump system is 9 m, which pump(s) 
should be shut off?
(a) Pump 1 (b) Pump 2 (c) Pump 3 (d ) Pumps 1 and 2
(e) Pumps 2 and 3

14–137  A two-lobe rotary positive-displacement pump 
moves 0.60 cm3 of motor oil in each lobe volume. For every 
908 of rotation of the shaft, one lobe volume is pumped. If 
the rotation rate is 550 rpm, the volume flow rate of oil is
(a) 330 cm3/min (b) 660 cm3/min (c) 1320 cm3/min
(d) 2640 cm3/min (e) 3550 cm3/min

14–138  The snail-shaped casing of centrifugal pumps is 
called
(a) Rotor (b) Scroll (c) Volute (d ) Impeller (e) Shroud

14–139  A centrifugal blower rotates at 1400 rpm. Air enters 
the impeller normal to the blades (a1 5 08) and exits at an 
angle of 258 (a2 5 258). The inlet radius is r1 5 6.5 cm, 
and the inlet blade width b1 5 8.5 cm. The outlet radius and 
blade width are r2 5 12 cm and b2 5 4.5 cm, respectively. 
The volume flow rate is 0.22 m3/s. What is the net head 
produced by this blower in meters of air?
(a) 12.3 m (b) 3.9 m (c) 8.8 m (d) 5.4 m (e) 16.4 m

14–140  A pump is designed to deliver 9500 L/min of 
water at a required head of 8 m. The pump shaft rotates 

14–124  Calculate and compare the efficiency of the two 
turbines of Prob. 14–123. They should be the same since we 
are assuming dynamic similarity. However, the larger turbine 
will actually be slightly more efficient than the smaller tur-
bine. Use the Moody efficiency correction equation to predict 
the actual expected efficiency of the new turbine. Discuss.

14–125  Calculate and compare the turbine specific speed 
for both the small (A) and large (B) turbines of Prob. 14–123. 
What kind of turbine are these most likely to be?

Fundamentals of Engineering (FE) Exam Problems

14–126  Which turbomachine is designed to deliver a very 
high pressure rise, typically at low to moderate flow rates?
(a) Compressor (b) Blower (c) Turbine (d ) Pump 
(e) Fan

14–127  In the turbomachinery industry, capacity refers to
(a) Power (b) Mass flow rate (c) Volume flow rate
(d) Net head (e) Energy grade line

14–128  A pump increases the pressure of water from 
100 kPa to 3 MPa at a rate of 0.5 m3/min. The inlet and out-
let diameters are identical and there is no change in elevation 
across the pump. If the efficiency of the pump is 77 percent, 
the power supplied to the pump is
(a) 18.5 kW (b) 21.8 kW (c) 24.2 kW (d ) 27.6 kW 
(e) 31.4 kW

14–129  A pump increases the pressure of water from 
100 kPa to 900 kPa to an elevation of 35 m. The inlet and 
outlet diameters are identical. The net head of the pump is
(a) 143 m (b) 117 m (c) 91 m (d) 70 m (e) 35 m

14–130  The brake horsepower and water horsepower of a 
pump are determined to be 15 kW and 12 kW, respectively. If 
the flow rate of water to the pump under these conditions is 
0.05 m3/s, the total head loss of the pump is
(a) 11.5 m (b) 9.3 m (c) 7.7 m (d ) 6.1 m (e) 4.9 m

14–131  In the pump performance curve, the point at which 
the net head is zero is called
(a) Best efficiency point (b) Free delivery (c) Shutoff head 
(d ) Operating point (e) Duty point

14–132  A power plant requires 940 L/min of water. The 
required net head is 5 m at this flow rate. An examination 
of pump performance curves indicates that two centrifugal 
pumps with different impeller diameters can deliver this flow 
rate. The pump with an impeller diameter of 203 mm has a 
pump efficiency of 73 percent and delivers 10 m of net head. 
The pump with an impeller diameter of 111 mm has a lower 
pump efficiency of 67 percent and delivers 5 m of net head. 
What is the ratio of the required brake horse power (bhp) of 
the pump with 203-mm-diameter impeller to that of the pump 
with 111-mm-diameter impeller?
(a) 0.45 (b) 0.68 (c) 0.86 (d) 1.84 (e) 2.11
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14–151  A new hydraulic turbine is to be designed to be 
similar to an existing turbine with following parameters 
at its best efficiency point: DA 5 3 m, n

.
A 5 90 rpm, V

.
A

 
5 

200 m3/s, HA 5 55 m, bhpA 5 100 MW. The new turbine 
will have a speed of 110 rpm and the net head will be 40 m. 
What is the bhp of the new turbine such that it operates most 
efficiently?
(a) 17.6 MW (b) 23.5 MW (c) 30.2 MW (d ) 40.0 MW 
(e) 53.7 MW

14–152  A hydraulic turbine operates at the following param-
eters at its best efficiency point: n

.
 5 90 rpm, V

.
 5 200 m3/s, 

H 5 55 m, bhp 5 100 MW. The turbine specific speed of 
this turbine is
(a) 0.71 (b) 0.18 (c) 1.57 (d ) 2.32 (e) 1.15

Design and Essay Problem

14–153  Develop a general-purpose computer appli-
cation (using EES or other software) that 

employs the affinity laws to design a new pump (B) that is 
dynamically similar to a given pump (A). The inputs for 
pump A are diameter, net head, capacity, density, rotational 
speed, and pump efficiency. The inputs for pump B are 
density (rB may differ from rA), desired net head, and 
desired capacity. The outputs for pump B are diameter, rota-
tional speed, and required shaft power. Test your program 
using the following inputs: DA 5 5.0 cm, HA 5 120 cm, 
V
. 

A 5  400  cm3/s, rA 5  998.0 kg/m3, n
.
A 5 1725 rpm, 

hpump, A 5 81 percent, rB 5 1226 kg/m3, HB 5 450 cm, and 
V
. 

B 5  2400  cm3/s. Verify your results manually.  Answers: 

DB 5 8.80 cm, n
.
B 5 1898 rpm, and bhpB 5 160 W

14–154  Experiments on an existing pump (A) yield 
the following BEP data: DA 5 10.0 cm, HA 5

210  cm, V
. 

A 5 1350 cm3/s, rA 5 998.0 kg/m3, n
.
A 5

1500  rpm, hpump,  A 5 87 percent. You are to design a new 
pump (B) that has the following requirements: 
rB 5  998.0  kg/m3, HB 5 570  cm, and V

. 
B 5 3670 cm3/s. 

Apply the computer program you developed in Prob. 14–153 to 
calculate DB (cm), n

.
B (rpm), and bhpB (W). Also calculate the 

pump specific speed. What kind of pump is this (most likely)?

14–155  Develop a general-purpose computer applica-
tion (using EES or other software) that 

employs the affinity laws to design a new turbine (B) that is 
dynamically similar to a given turbine (A). The inputs for tur-
bine A are diameter, net head, capacity, density, rotational 
speed, and brake horsepower. The inputs for turbine B are 
density (rB may differ from rA), available net head, and rota-
tional speed. The outputs for turbine B are diameter, capacity, 
and brake horsepower. Test your program using the following 
inputs: DA 5 1.40 m, HA 5 80.0 m, V

. 
A 5 162 m3/s, 

rA 5  998.0  kg/m3, n
.
A 5 150 rpm, bhpA 5 118 MW, rB 5 

998.0  kg/m3, HB 5 95.0  m, and n
.
B 5 120 rpm. Verify your 

at 1500 rpm. The pump specific speed in nondimensional 
form is
(a) 0.377 (b) 0.540 (c) 1.13 (d ) 1.48 (e) 1.84

14–141  The net head delivered by a pump at a rotational 
speed of 1000 rpm is 10 m. If the rotational speed is doubled, 
the net head delivered will be
(a) 5 m (b) 10 m (c) 20 m (d ) 40 m (e) 80 m

14–142  The rotating part of a turbine is called
(a) Propeller (b) Scroll (c) Blade ro (d ) Impeller 
(e) Runner

14–143  Which choice is correct for the comparison of the 
operation of impulse and reaction turbines?
(a) Impulse: Higher flow rate
(b) Impulse: Higher head (c) Reaction: Higher head
(d) Reaction: Smaller flow rate (e) None of these

14–144  Which turbine type is an impulse turbine?
(a) Kaplan (b) Francis (c) Pelton
(d) Propeller (e) Centrifugal

14–145  A turbine is placed at the bottom of a 20-m-high 
water body. Water flows through the turbine at a rate of 
30 m3/s. If the shaft power delivered by the turbine is 5 MW, 
the turbine efficiency is
(a) 85% (b) 79% (c) 88% (d ) 74% (e) 82%

14–146  A hydroelectric power plant is to be built at a dam 
with a gross head of 200 m. The head losses in the head gate 
and penstock are estimated to be 6 m. The flow rate through 
the turbine is 18,000 L/min. The efficiencies of the turbine 
and the generator are 88 percent and 96 percent, respectively. 
The electricity production from this turbine is 
(a) 6910 kW (b) 6750 kW (c) 6430 kW (d ) 6170 kW 
(e) 5890 kW

14–147  In a hydroelectric power plant, water flows through 
a large tube through the dam. This tube is called a 
(a) Tailrace (b) Draft tube (c) Runner (d ) Penstock
(e) Propeller 

14–148  In wind turbines, the minimum wind speed at 
which useful power can be generated is called the
(a) Rated speed (b) Cut-in speed (c) Cut-out speed
(d) Available speed (e) Betz speed

14–149  A wind turbine is installed in a location where 
the wind blows at 8 m/s. The air temperature is 108C and 
the diameter of turbine blade is 30 m. If the overall turbine-
generator efficiency is 35 percent, the electrical power pro-
duction is 
(a) 79 kW (b) 109 kW (c) 142 kW (d ) 154 kW 
(e) 225 kW

14–150  The available power from a wind turbine is calcu-
lated to be 50 kW when the wind speed is 5 m/s. If the wind 
velocity is doubled, the available wind power becomes
(a) 50 kW (b) 100 kW (c) 200 kW (d ) 400 kW 
(e) 800 kW
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and bhpB (MW). Also calculate the turbine specific speed. 
What kind of turbine is this (most likely)?

14–157  Calculate and compare the efficiency of the 
two turbines of Prob. 14–156. They should be 

the same since we are assuming dynamic similarity. How-
ever, the larger turbine will actually be slightly more efficient 
than the smaller turbine. Use the Moody efficiency correction 
equation to predict the actual expected efficiency of the new 
turbine. Discuss.

results manually.  Answers: DB 5 1.91 m, V
. 

B 5  328  m3/s, 

and bhpB 5 283 MW

14–156  Experiments on an existing turbine (A) yield 
the following data: DA 5 86.0 cm, HA 5 

22.0 m, V
. 

A 5 69.5 m3/s, rA 5 998.0 kg/m3, n
.
A 5 240  rpm, 

bhpA 5 11.4 MW. You are to design a new turbine (B) that 
has the following requirements: rB 5  998.0  kg/m3, HB 5 
95.0 m, and n

.
B 5 210 rpm. Apply the computer program you 

developed in Prob. 14–155 to calculate DB (m), V
. 

B (m3/s), 
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I N T R O D U C T I O N 
T O  C O M P U TAT I O N A L 
F L U I D  D Y N A M I C S

A brief introduction to computational fluid dynamics (CFD) is pre-
sented in this chapter. While any intelligent, computer-literate 
person can run a CFD code, the results he or she obtains may not 

be physically correct. In fact, if the grid is not properly generated, or if the 
boundary conditions or flow parameters are improperly applied, the results 
may even be completely erroneous. Therefore, the goal of this chapter is to 
present guidelines about how to generate a grid, how to specify boundary 
conditions, and how to determine if the computer output is meaningful. We 
stress the application of CFD to engineering problems, rather than details 
about grid generation techniques, discretization schemes, CFD algorithms, 
or numerical stability.
 The examples presented here have been obtained with the commercial 
computational fluid dynamics code ANSYS-FLUENT. Other CFD codes 
would yield similar, but not identical results. Sample CFD solutions are 
shown for incompressible and compressible laminar and turbulent flows, 
flows with heat transfer, and flows with free surfaces. As always, one learns 
best by hands-on practice. For this reason, 
we provide several homework problems 
that utilize many additional CFD prob-
lems are provided or the books website at 
www.mhhe.com/cengel.

879

Objectives

When you finish reading this chapter, you 
should be able to

■ Understand the importance of 
a high-quality, good resolution 
mesh

■ Apply appropriate boundary 
conditions to computational 
domains

■ Understand how to apply CFD to 
basic engineering problems and 
how to determine whether the 
output is physically meaningful

■ Realize that you need much 
further study and practice to use 
CFD successfully

Flow over a male swimmer simulated using 
the ANSYS-FLUENT CFD code. The 

image shows simulated oil flow lines along 
the surface of the body. Flow separation 

in the region of the neck is visible.
Photo used with the permission of the owner, 

Speedo International Limited.
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15–1 ■  INTRODUCTION AND FUNDAMENTALS

Motivation
There are two fundamental approaches to design and analysis of engineering 
systems that involve fluid flow: experimentation and calculation. The former 
typically involves construction of models that are tested in wind tunnels or 
other facilities (Chap. 7), while the latter involves solution of differential equa-
tions, either analytically (Chaps. 9 and 10) or computationally. In the present 
chapter, we provide a brief introduction to computational fluid dynamics 
(CFD), the field of study devoted to solution of the equations of fluid flow 
through use of a computer (or, more recently, several computers working in 
parallel). Modern engineers apply both experimental and CFD analyses, and 
the two complement each other. For example, engineers may obtain global 
properties, such as lift, drag, pressure drop, or power, experimentally, but use 
CFD to obtain details about the flow field, such as shear stresses, velocity and 
pressure profiles (Fig. 15–1), and flow streamlines. In addition, experimental 
data are often used to validate CFD solutions by matching the computation-
ally and experimentally determined global quantities. CFD is then employed 
to shorten the design cycle through carefully controlled parametric studies, 
thereby reducing the required amount of experimental testing.
 The current state of computational fluid dynamics is that CFD can handle 
laminar flows with ease, but turbulent flows of practical engineering interest 
are impossible to solve without invoking turbulence models. Unfortunately, 
no turbulence model is universal, and a turbulent CFD solution is only as 
good as the appropriateness of the turbulence model. In spite of this limi-
tation, the standard turbulence models yield reasonable results for many 
practical engineering problems.
 There are several aspects of CFD that are not covered in this chapter—
grid generation techniques, numerical algorithms, finite difference and finite 
volume schemes, stability issues, turbulence modeling, etc. You need to 
study these topics in order to fully understand both the capabilities and limi-
tations of computational fluid dynamics. In this chapter, we merely scratch 
the surface of this exciting field. Our goal is to present the fundamentals of 
CFD from a user’s point of view, providing guidelines about how to gener-
ate a grid, how to specify boundary conditions, and how to determine if the 
computer output is physically meaningful.
 We begin this section by presenting the differential equations of fluid flow 
that are to be solved, and then we outline a solution procedure. Subsequent 
sections of this chapter are devoted to example CFD solutions for laminar 
flow, turbulent flow, flows with heat transfer, compressible flow, and open-
channel flow.

Equations of Motion
For steady laminar flow of a viscous, incompressible, Newtonian fluid with-
out free-surface effects, the equations of motion are the continuity equation

 =
S 

·V
S

5 0 (15–1)

and the Navier–Stokes equation

 (V
S

·=
S

)V
S

5 2
1
r
=
S

P91 n=2V
S

 (15–2)

FIGURE 15–1
CFD calculations of the ascent of the 
space shuttle launch vehicle (SSLV). 
The grid consists of more than 
16 million points, and filled pressure 
contours are shown. Free-stream 
conditions are Ma 5 1.25, and the 
angle of attack is 23.38.
NASA/Photo by Ray J. Gomez. Used by permission.
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Strictly speaking, Eq. 15–1 is a conservation equation, while Eq. 15–2 is a 
transport equation that represents transport of linear momentum through-
out the computational domain. In Eqs. 15–1 and 15–2, V

!
 is the velocity 

of the fluid, r is its density, and n is its kinematic viscosity (n 5 m/r). 
The lack of free-surface effects enables us to use the modified pressure P9, 
thereby eliminating the gravity term from Eq. 15–2 (see Chap. 10). Note that 
Eq. 15–1 is a scalar equation, while Eq. 15–2 is a vector equation. Equa-
tions 15–1 and 15–2 apply only to incompressible flows in which we also 
assume that both r and n are constants. Thus, for three-dimensional flow in 
Cartesian coordinates, there are four coupled differential equations for four 
unknowns, u, v, w, and P9 (Fig. 15–2). If the flow were compressible, 
Eqs. 15–1 and 15–2 would need to be modified appropriately, as discussed 
in Section 15–5. Liquid flows can almost always be treated as incompressible, 
and for many gas flows, the gas is at a low enough Mach number that it 
behaves as a nearly incompressible fluid.

Solution Procedure
To solve Eqs. 15–1 and 15–2 numerically, the following steps are performed. 
Note that the order of some of the steps (particularly steps 2 through 5) is 
interchangeable.

 1. A computational domain is chosen, and a grid (also called a mesh) is 
generated; the domain is divided into many small elements called cells. 
For two-dimensional (2-D) domains, the cells are areas, while for three-
dimensional (3-D) domains the cells are volumes (Fig. 15–3). You can 
think of each cell as a tiny control volume in which discretized versions 
of the conservation equations are solved. Note that we limit our discussion 
here to cell-centered finite volume CFD codes. The quality of a CFD 
solution is highly dependent on the quality of the grid. Therefore, you 
are advised to make sure that your grid is of high quality before 
proceeding to the next step (Fig. 15–4).

 2. Boundary conditions are specified on each edge of the computational 
domain (2-D flows) or on each face of the domain (3-D flows).

 3. The type of fluid (water, air, gasoline, etc.) is specified, along with 
fluid properties (temperature, density, viscosity, etc.). Many CFD codes 

FIGURE 15–2
The equations of motion to be solved 

by CFD for the case of steady, 
incompressible, laminar flow of a 

Newtonian fluid with constant 
properties and without free-surface 

effects. A Cartesian coordinate system 
is used. There are four equations and 

four unknowns: u, v, w, and P9.

FIGURE 15–3
A computational domain is the region 

in space in which the equations of 
motion are solved by CFD. A cell is 
a small subset of the computational 

domain. Shown are (a) a two-
dimensional domain and quadrilateral 

cell, and (b) a three-dimensional 
domain and hexahedral cell. The 

boundaries of a 2-D domain are called 
edges, while those of a 3-D domain 

are called faces.

Computational
domain

Cell

Cell

Boundaries

Boundaries

Computational
domain

(b)(a)
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have built-in property databases for common fluids, making this step 
relatively painless.

 4. Numerical parameters and solution algorithms are selected. These are 
specific to each CFD code and are not discussed here. The default 
settings of most modern CFD codes are appropriate for the simple 
problems discussed in this chapter.

 5. Starting values for all flow field variables are specified for each cell. 
These are initial conditions, which may or may not be correct, but are 
necessary as a starting point, so that the iteration process may proceed 
(step 6). We note that for proper unsteady-flow calculations, the initial 
conditions must be correct.

 6. Beginning with the initial guesses, discretized forms of Eqs. 15–1 and 
15–2 are solved iteratively, usually at the center of each cell. If one were 
to put all the terms of Eq. 15–2 on one side of the equation, the solution 
would be “exact” when the sum of these terms, defined as the residual, 
is zero for every cell in the domain. In a CFD solution, however, the 
sum is never identically zero, but (hopefully) decreases with progressive 
iterations. A residual can be thought of as a measure of how much the 
solution to a given transport equation deviates from exact, and you 
monitor the average residual associated with each transport equation to 
help determine when the solution has converged. Sometimes hundreds 
or even thousands of iterations are required to converge on a final 
solution, and the residuals may decrease by several orders of magnitude.

 7. Once the solution has converged, flow field variables such as velocity 
and pressure are plotted and analyzed graphically. You can also define 
and analyze additional custom functions that are formed by algebraic 
combinations of flow field variables. Most commercial CFD codes have 
built in postprocessors, designed for quick graphical analysis of the 
flow field. There are also stand-alone postprocessor software packages 
available for this purpose. Since the graphics output is often displayed 
in vivid colors, CFD has earned the nickname colorful fluid dynamics.

 8. Global properties of the flow field, such as pressure drop, and integral 
properties, such as forces (lift and drag) and moments acting on a body, 
are calculated from the converged solution (Fig. 15–5). With most CFD 
codes, this can also be done “on the fly” as the iterations proceed. In many 
cases, in fact, it is wise to monitor these quantities along with the residuals 
during the iteration process; when a solution has converged, the global and 
integral properties should settle down to constant values as well.

 For unsteady flow, a physical time step is specified, appropriate initial 
conditions are assigned, and an iteration loop is carried out to solve the 
transport equations to simulate changes in the flow field over this small 
span of time. Since the changes between time steps are small, a relatively 
small number of iterations (on the order of tens) is usually required between 
each time step. Upon convergence of this “inner loop,” the code marches 
to the next time step. If a flow has a steady-state solution, that solution is 
sometimes easier to find by marching in time—after enough time has past, 
the flow field variables settle down to their steady-state values. Most CFD 
codes take advantage of this fact by internally specifying a pseudo-time step 
(artificial time) and marching toward a steady-state solution. In such cases, 

FL

FD

M

FIGURE 15–5
Global and integral properties of 
a flow, such as forces and moments on 
an object, are calculated after a CFD 
solution has converged. They can also 
be calculated during the iteration 
process to monitor convergence.

FIGURE 15–4
A quality grid is essential to a quality 
CFD simulation.

NOTICE
 

Do not proceed with
CFD calculations
until you have 

generated a high-
quality grid.
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the pseudo-time step can even be different for different cells in the computa-
tional domain and can be tuned appropriately to decrease convergence time.
 Other “tricks” are often used to reduce computation time, such as multi-
gridding, in which the flow field variables are updated first on a coarse grid 
so that gross features of the flow are quickly established. That solution is 
then interpolated to finer and finer grids, the final grid being the one speci-
fied by the user (Fig. 15–6). In some commercial CFD codes, several layers 
of multigridding may occur “behind the scenes” during the iteration pro-
cess, without user input (or awareness). You can learn more about computa-
tional algorithms and other numerical techniques that improve convergence 
by reading books devoted to computational methods, such as Tannehill, 
Anderson, and Pletcher (2012).

Additional Equations of Motion
If energy conversion or heat transfer is important in the problem, another 
transport equation, the energy equation, must also be solved. If tempera-
ture differences lead to significant changes in density, an equation of state 
(such as the ideal-gas law) is used. If buoyancy is important, the effect of 
temperature on density is reflected in the gravity term (which must then be 
separated from the modified pressure term in Eq. 15–2).
 For a given set of boundary conditions, a laminar flow CFD solution 
approaches an “exact” solution, limited only by the accuracy of the discret-
ization scheme used for the equations of motion, the level of convergence, 
and the degree to which the grid is resolved. The same would be true of a 
turbulent flow simulation if the grid could be fine enough to resolve all the 
unsteady, three-dimensional turbulent eddies. Unfortunately, this kind of direct 
simulation of turbulent flow is usually not possible for practical engineering 
applications due to computer limitations. Instead, additional approximations 
are made in the form of turbulence models so that turbulent flow solutions 
are possible. The turbulence models generate additional transport equations 
that model the enhanced mixing and diffusion of turbulence; these additional 
transport equations must be solved along with those of mass and momentum. 
Turbulence modeling is discussed in more detail in Section 15–3.
 Modern CFD codes include options for calculation of particle trajecto-
ries, species transport, heat transfer, and turbulence. The codes are easy to 
use, and solutions can be obtained without knowledge about the equations 
or their limitations. Herein lies the danger of CFD: When in the hands of 
someone without knowledge of fluid mechanics, erroneous results are likely 
to occur (Fig. 15–7). It is critical that users of CFD possess some funda-
mental knowledge of fluid mechanics so that they can discern whether a 
CFD solution makes physical sense or not.

Grid Generation and Grid Independence
The first step (and arguably the most important step) in a CFD solution is 
generation of a grid that defines the cells on which flow variables (velocity, 
pressure, etc.) are calculated throughout the computational domain. Modern 
commercial CFD codes come with their own grid generators, and third-party 
grid generation programs are also available. The grids used in this chapter 
are generated with ANSYS-FLUENT’s grid generation package.

FIGURE 15–7
CFD solutions are easy to obtain, and 

the graphical outputs can be beautiful; 
but correct answers depend on correct 

inputs and knowledge about the 
flow field.

FIGURE 15–6
With multigridding, solutions of the 

equations of motion are obtained 
on a coarse grid first, followed by 

successively finer grids. This speeds 
up convergence.
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 Many CFD codes can run with either structured or unstructured grids. 
A structured grid consists of planar cells with four edges (2-D) or volu-
metric cells with six faces (3-D). Although the cells may be distorted from 
rectangular, each cell is numbered according to indices (i, j, k) that do not 
necessarily correspond to coordinates x, y, and z. An illustration of a 2-D 
structured grid is shown in Fig. 15–8. To construct this grid, nine nodes 
are specified on the top and bottom edges; these nodes correspond to eight 
intervals along these edges. Similarly, five nodes are specified on the left 
and right edges, corresponding to four intervals along these edges. The 
intervals correspond to i 5 1 through 8 and j 5 1 through 4, and are num-
bered and marked in Fig. 15–8. An internal grid is then generated by con-
necting nodes one-for-one across the domain such that rows ( j 5 constant) 
and columns (i 5 constant) are clearly defined, even though the cells them-
selves may be distorted (not necessarily rectangular). In a 2-D structured 
grid, each cell is uniquely specified by an index pair (i, j). For example, the 
shaded cell in Fig. 15–8 is at (i 5 4, j 5 3). You should be aware that some 
CFD codes number nodes rather than intervals.
 An unstructured grid consists of cells of various shapes, but typically 
triangles or quadrilaterals (2-D) and tetrahedrons or hexahedrons (3-D) are 
used. Two unstructured grids for the same domain as that of Fig. 15–8 are 
generated, using the same interval distribution on the edges; these grids are 
shown in Fig. 15–9. Unlike the structured grid, one cannot uniquely identify 
cells in the unstructured grid by indices i and j; instead, cells are numbered 
in some other fashion internally in the CFD code.
 For complex geometries, an unstructured grid is usually much easier for the 
user of the grid generation code to create. However, there are some advan-
tages to structured grids. For example, some (usually older) CFD codes are 
written specifically for structured grids; these codes converge more rapidly, 
and often more accurately, by utilizing the index feature of structured grids. 
For modern general-purpose CFD codes that can handle both structured 
and unstructured grids, however, this is no longer an issue. More impor-
tantly, fewer cells are usually generated with a structured grid than with an 
unstructured grid. In Fig. 15–8, for example, the structured grid has 8 3 4 5
32 cells, while the unstructured triangular grid of Fig. 15–9a has 76 cells, 
and the unstructured quadrilateral grid has 38 cells, even though the identi-
cal node distribution is applied at the edges in all three cases. In boundary 
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j = 4

i = 1 2

2

3

3

1

4 5 6 7 8

x

FIGURE 15–8
Sample structured 2-D grid with nine 
nodes and eight intervals on the top 
and bottom edges, and five nodes and 
four intervals on the left and right 
edges. Indices i and j are shown. 
The red cell is at (i 5 4, j 5 3).

y

Unstructured triangular grid

(a) (b)
x

y

Unstructured quadrilateral grid

x

FIGURE 15–9
Sample 2-D unstructured grids with 
nine nodes and eight intervals on the 
top and bottom edges, and five nodes 
and four intervals on the left and right 
edges. These grids use the same node 
distribution as that of Fig. 15–8: 
(a) unstructured triangular grid, and 
(b) unstructured quadrilateral grid. 
The red cell in the upper right corner 
of (a) is moderately skewed.
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layers, where flow variables change rapidly normal to the wall and highly 
resolved grids are required close to the wall, structured grids enable much 
finer resolution than do unstructured grids for the same number of cells. This 
can be seen by comparing the grids of Figs. 15–8 and 15–9 near the far right 
edge. The cells of the structured grid are thin and tightly packed near the 
right edge, while those of the unstructured grids are not.
 We must emphasize that regardless of the type of grid you choose (struc-
tured or unstructured, quadrilateral or triangular, etc.), it is the quality of the 
grid that is most critical for reliable CFD solutions. In particular, you must 
always be careful that individual cells are not highly skewed, as this can 
lead to convergence difficulties and inaccuracies in the numerical solution. 
The shaded cell in Fig. 15–9a is an example of a cell with moderately high 
skewness, defined as the departure from symmetry. There are various kinds 
of skewness, for both two- and three-dimensional cells. Three-dimensional 
cell skewness is beyond the scope of the present textbook—the type of 
skewness most appropriate for two-dimensional cells is equiangle skewness, 
defined as

Equiangle skewness: QEAS 5 MAX a umax 2 uequal

1808 2 uequal

, 
uequal 2 umin

uequal

b  (15–3)

where umin and umax are the minimum and maximum angles (in degrees) 
between any two edges of the cell, and uequal is the angle between any two 
edges of an ideal equilateral cell with the same number of edges. For trian-
gular cells uequal 5 608 and for quadrilateral cells uequal 5 908. You can show 
by Eq. 15–3 that 0 , QEAS , 1 for any 2-D cell. By definition, an equilat-
eral triangle has zero skewness. In the same way, a square or rectangle has 
zero skewness. A grossly distorted triangular or quadrilateral element may 
have unacceptably high skewness (Fig. 15–10). Some grid generation codes 
use numerical schemes to smooth the grid so as to minimize skewness.
 Other factors affect the quality of the grid as well. For example, abrupt 
changes in cell size can lead to numerical or convergence difficulties in the 
CFD code. Also, cells with a very large aspect ratio can sometimes cause 
problems. While you can often minimize the cell count by using a struc-
tured grid instead of an unstructured grid, a structured grid is not always 
the best choice, depending on the shape of the computational domain. You 
must always be cognizant of grid quality. Keep in mind that a high-quality 
unstructured grid is better than a poor-quality structured grid. An example 
is shown in Fig. 15–11 for the case of a computational domain with a small 

(a) Triangular cells

Zero skewness High skewness

High skewnessZero skewness

(b) Quadrilateral cells

FIGURE 15–10
Skewness is shown in two dimensions: 

(a) an equilateral triangle has zero 
skewness, but a highly distorted 

triangle has high skewness. 
(b) Similarly, a rectangle has zero 

skewness, but a highly distorted 
quadrilateral cell has high skewness.

(a) (b)

(c) (d)

FIGURE 15–11
Comparison of four 2-D grids for 
a highly distorted computational 

domain: (a) structured 8 3 8 grid 
with 64 cells and (QEAS)max 5 0.83, 
(b) unstructured triangular grid with 

70 cells and (QEAS)max 5 0.76, 
(c) unstructured quadrilateral grid 

with 67 cells and (QEAS)max 5 0.87, 
and (d) hybrid grid with 62 cells and 

(QEAS)max 5 0.76.
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acute angle at the upper-right corner. For this example we have adjusted the 
node distribution so that the grid in any case contains between 60 and 70 cells 
for direct comparison. The structured grid (Fig. 15–11a) has 8 3 8 5 64 cells; 
but even after smoothing, the maximum equiangle skewness is 0.83—cells 
near the upper right corner are highly skewed. The unstructured triangular 
grid (Fig. 15–11b) has 70 cells, but the maximum skewness is reduced to 
0.76. More importantly, the overall skewness is lower throughout the entire 
computational domain. The unstructured quad grid (Fig. 15–11c) has 67 
cells. Although the overall skewness is better than that of the structured 
mesh, the maximum skewness is 0.87—higher than that of the structured 
mesh. The hybrid grid shown in Fig. 15–11d is discussed shortly.
 Situations arise in which a structured grid is preferred (e.g., the CFD 
code requires structured grids, boundary layer zones need high resolu-
tion, or the simulation is pushing the limits of available computer mem-
ory). Generation of a structured grid is straightforward for geometries with 
straight edges. All we need to do is divide the computational domain into 
four-sided (2-D) or six-sided (3-D) blocks or zones. Inside each block, we 
generate a structured grid (Fig. 15–12a). Such an analysis is called multi-
block analysis. For more complicated geometries with curved surfaces, we 
need to determine how the computational domain can be divided into indi-
vidual blocks that may or may not have flat edges (2-D) or faces (3-D). A 
two-dimensional example involving circular arcs is shown in Fig. 15–12b. 
Most CFD codes require that the nodes match on the common edges and 
faces between blocks.
 Many commercial CFD codes allow you to split the edges or faces of 
a block and assign different boundary conditions to each segment of the 
edge or face. In Fig. 15–12a for example, the left edge of block 2 is split 
about two-thirds of the way up to accommodate the junction with block 1. 
The lower segment of this edge is a wall, and the upper segment of this 
edge is an interior edge. (These and other boundary conditions are discussed 
shortly.) A similar situation occurs on the right edge of block 2 and on the 
top edge of block 3. Some CFD codes accept only elementary blocks, 
namely, blocks whose edges or faces cannot be split. For example, the 
four-block grid of Fig. 15–12a requires seven elementary blocks under this 
limitation (Fig. 15–13). The total number of cells is the same, which you 
can verify. Finally, for CFD codes that allow blocks with split edges or 
faces, we can sometimes combine two or more blocks into one. For exam-
ple, it is left as an exercise to show how the structured grid of Fig. 5-11b 
can be simplified to just three nonelementary blocks.
 When developing the block topology with complicated geometries as in 
Fig. 15–12b, the goal is to create blocks in such a way that no cells in the 
grid are highly skewed. In addition, cell size should not change abruptly 
in any direction, and the blocking topology should lend itself to clustering 
cells near solid walls so that boundary layers can be resolved. With practice 
you can master the art of creating sophisticated multiblock structured grids. 
Multiblock grids are necessary for structured grids of complex geometry. 
They may also be used with unstructured grids, but are not necessary since 
the cells can accommodate complex geometries.
 Finally, a hybrid grid is one that combines regions or blocks of struc-
tured and unstructured grids. For example, you can mate a structured grid 

FIGURE 15–12
Examples of structured grids 
generated for multiblock CFD 
analysis: (a) a simple 2-D 
computational domain composed of 
rectangular four-sided blocks, and 
(b) a more complicated 2-D domain 
with curved surfaces, but again 
composed of four-sided blocks and 
quadrilateral cells. The number 
of i- and j-intervals is shown in 
parentheses for each block. There 
are, of course, acceptable alternative 
ways to divide these computational 
domains into blocks.

(a)

Block 1 
(12 3 8)

Block 2 
(10 3 21)

Block 3 
(9 3 5)

Block 4 
(3 3 5)

Block 4 
(5 3 16)

(b)

Block 6 
(8 3 16)

Block 5 
(5 3 8)

Block 1 
(12 3 8)

Block 2 
(5 3 16)

Block 3
(5 3 8)
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block close to a wall with an unstructured grid block outside of the region 
of influence of the boundary layer. A hybrid grid is often used to enable 
high resolution near a wall without requiring high resolution away from the 
wall (Fig. 15–14). When generating any type of grid (structured, unstruc-
tured, or hybrid), you must always be careful that individual cells are not 
highly skewed. For example, none of the cells in Fig. 15–14 has any signifi-
cant skewness. Another example of a hybrid grid is shown in Fig. 15–11d. 
Here we have split the computational domain into two blocks. The four-
sided block on the left is meshed with a structured grid, while the three-
sided block on the right is meshed with an unstructured triangular grid. 
The maximum skewness is 0.76, the same as that of the unstructured tri-
angular grid of Fig. 15–11b, but the total number of cells is reduced from 
70 to 62.
 Computational domains with very small angles like the one shown in 
Fig. 15–11 are difficult to mesh at the sharp corner, regardless of the type of 
cells used. One way to avoid large values of skewness at a sharp corner is to 
simply chop off or round off the sharp corner. This can be done very close to 
the corner so that the geometric modification is imperceptible from an overall 
view and has little if any effect on the flow, yet greatly improves the perfor-
mance of the CFD code by reducing the skewness. For example, the trouble-
some sharp corner of the computational domain of Fig. 15–11 is chopped off 
and replotted in Fig. 15–15. Through use of multiblocking and hybrid grids, 
the grid shown in Fig. 15–15 has 62 cells and a maximum skewness of only 
0.53—a vast improvement over any of the grids in Fig. 15–11.
 The examples shown here are for two dimensions. In three dimensions, 
you can still choose between structured, unstructured, and hybrid grids. If 
a four-sided 2-D face with structured cells is swept in the third dimension, 
a fully structured 3-D mesh is produced, consisting of hexahedral cells 
(n 5 6 faces per cell). When a 2-D face with unstructured triangular cells is 
swept in the third direction, the 3-D mesh can consist of prism cells (n 5 5 
faces per cell) or tetrahedral cells (n 5 4 faces per cell—like a pyramid). 
These are illustrated in Fig. 15–16. When a hexahedral mesh is impracti-
cal to apply (e.g., complex geometry), a tetrahedral mesh (also called a tet 
mesh) is a common alternative approach. Automatic grid generation codes 
often generate a tet mesh by default. However, just as in the 2-D case, a 3-D 
unstructured tet mesh results in greater overall cell count than a structured 
hexahedral mesh with the same resolution along boundaries.
 The most recent enhancement in grid generation is the use of polyhedral 
meshes. As the name implies, such a mesh consists of cells of many faces, 
called polyhedral cells. Some modern grid generators can create unstruc-
tured three-dimensional meshes with a mixture of n-sided cells, where n 

Block 7 
(3 3 5)

Block 2 (10 3 8)

Block 1 
(12 3 8)

Block 3 
(10 3 8)

Block 4 
(10 3 5)

Block 5 
(6 3 5)

Block 6 
(3 3 5)

FIGURE 15–13
The multiblock grid of Fig. 15–12a 

modified for a CFD code that can 
handle only elementary blocks.

Structured

Structured

Unstructured

FIGURE 15–14
Sample two-dimensional hybrid grid 
near a curved surface; two structured 
regions and one unstructured region 

are labeled.

(a) (b)

FIGURE 15–15
Hybrid grid for the computational 

domain of Fig. 15–11 with the sharp 
corner chopped off: (a) overall 

view—the grid contains 62 cells with 
(QEAS)max 5 0.53, (b) magnified view 

of the chopped off corner.

879-938_cengel_ch15.indd   887 12/21/12   5:37 PM



888
COMPUTATIONAL FLUID DYNAMICS

can be any integer greater than 3. An example polyhedral mesh is shown in 
Fig. 15–17. In some codes, the polyhedral cells are formed by merg-
ing tetrahedral cells, reducing total cell count. This saves a significant 
amount of computer memory and speeds up the CFD calculations. Overall 
cell-count reductions (and corresponding CPU time savings) by a factor 
of as much as 5 have been reported without compromising solution accu-
racy. Another advantage of polyhedral meshes is that cell skewness can be 
reduced, improving the overall mesh quality and also speeding up conver-
gence. Finally, polyhedral cells with large n have many more neighbor cells 
than do simple tetrahedral or prism cells. This is advantageous for tasks 
such as calculating gradients (derivatives) of flow parameters—details are 
beyond the level of the present text.
 Generation of a good grid is often tedious and time consuming; engineers 
who use CFD on a regular basis will agree that grid generation usually takes 
more of their time than does the CFD solution itself (engineer’s time, not 
CPU time). However, time spent generating a good grid is time well spent, 
since the CFD results will be more reliable and may converge more rapidly 
(Fig. 15–18). A high-quality grid is critical to an accurate CFD solution; 
a poorly resolved or low-quality grid may even lead to an incorrect solu-
tion. It is important, therefore, for users of CFD to test if their solution is 
grid independent. The standard method to test for grid independence is to 
increase the resolution (by a factor of 2 in all directions if feasible) and 
repeat the simulation. If the results do not change appreciably, the original 
grid is probably adequate. If, on the other hand, there are significant differ-
ences between the two solutions, the original grid is likely of inadequate 
resolution. In such a case, an even finer grid should be tried until the grid 
is adequately resolved. This method of testing for grid independence is time 
consuming, and unfortunately, not always feasible, especially for large engi-
neering problems in which the solution pushes computer resources to their 
limits. In a 2-D simulation, if one doubles the number of intervals on each 
edge, the number of cells increases by a factor of 22 5 4; the required com-
putation time for the CFD solution also increases by approximately a factor 
of 4. For three-dimensional flows, doubling the number of intervals in each 
direction increases the cell count by a factor of 23 5 8. You can see how 
grid independence studies can easily get beyond the range of a computer’s 
memory capacity and/or CPU availability. If you cannot double the number 
of intervals because of computer limitations, a good rule of thumb is that 
you should increase the number of intervals by at least 20 percent in all 
directions to test for grid independence.
 On a final note about grid generation, the trend in CFD today is auto-
mated grid generation, coupled with automated grid refinement based on 
error estimates. Yet even in the face of these emerging trends, it is critical 
that you understand how the grid impacts the CFD solution.

Boundary Conditions
While the equations of motion, the computational domain, and even the grid 
may be the same for two CFD calculations, the type of flow that is modeled 
is determined by the imposed boundary conditions. Appropriate boundary 
conditions are required in order to obtain an accurate CFD solution 

FIGURE 15–16
Examples of three-dimensional cells: 
(a) hexahedral, (b) prism, and (c) 
tetrahedral, along with the number of 
faces n for each case.

(a) n = 6

(b) n = 5

(c) n = 4

FIGURE 15–17
This Formula 1 car is modeled using a 
polyhedral mesh to reduce cell count 
and simulation time and is simulated 
using the ANSYS-FLUENT CFD 
code. The image depicts shaded 
pressure contours on the car body 
(red color indicating higher 
pressure) and pathlines over the body 
(shaded by time). Because of the 
symmetry between the right and left 
sides of the car, the analysis is 
performed on only half of the car; the 
results depict a mirror image (about the 
center plane) of the solution domain.
Photo courtesy of ANSYS.
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FIGURE 15–18
Time spent generating a good grid is 

time well spent.

Wall

Computational domain OutletInlet

Wall

FIGURE 15–19
Boundary conditions must be carefully 

applied at all boundaries of the 
computational domain. Appropriate 
boundary conditions are required in 

order to obtain an accurate CFD 
solution.

(Fig. 15–19). There are several types of boundary conditions available; the 
most relevant ones are listed and briefly described in the following. The names 
are those used by ANSYS-FLUENT; other CFD codes may use somewhat 
different terminology, and the details of their boundary conditions may differ. 
In the descriptions given, the words face or plane are used, implying three-
dimensional flow. For a two-dimensional flow, the word edge or line should 
be substituted for face or plane.

Wall Boundary Conditions
The simplest boundary condition is that of a wall. Since fluid cannot pass 
through a wall, the normal component of velocity is set to zero relative to 
the wall along a face on which the wall boundary condition is prescribed. 
In addition, because of the no-slip condition, we usually set the tangential 
component of velocity at a stationary wall to zero as well. In Fig. 15–19, 
for example, the upper and lower edges of this simple domain are spec-
ified as wall boundary conditions with no slip. If the energy equation is 
being solved, either wall temperature or wall heat flux must also be speci-
fied (but not both; see Section 15–4). If a turbulence model is being used, 
turbulence transport equations are solved, and wall roughness may need to 
be specified, since turbulent boundary layers are influenced greatly by the 
roughness of the wall. In addition, you must choose among various kinds of 
turbulence wall treatments (wall functions, etc.). These turbulence options 
are beyond the scope of the present text (see Wilcox, 2006); fortunately the 
default options of most modern CFD codes are sufficient for many applica-
tions involving turbulent flow.
 Moving walls and walls with specified shear stresses can also be simulated 
in many CFD codes. There are situations where we desire to let the fluid 
slip along the wall (we call this an “inviscid wall”). For example, we can 
specify a zero-shear-stress wall boundary condition along the free surface of 
a swimming pool or hot tub when simulating such a flow (Fig. 15–20). Note 
that with this simplification, the fluid is allowed to “slip” along the surface, 
since the viscous shear stress caused by the air above it is negligibly small 
(Chap. 9). When making this approximation, however, surface waves and 
their associated pressure fluctuations cannot be taken into account.

Inflow/Outflow Boundary Conditions
There are several options at the boundaries through which fluid enters the 
computational domain (inflow) or leaves the domain (outflow). They are 
generally categorized as either velocity-specified conditions or pressure-
specified conditions. At a velocity inlet, we specify the velocity of the 
incoming flow along the inlet face. If energy and/or turbulence equations are 
being solved, the temperature and/or turbulence properties of the incoming 
flow need to be specified as well.
 At a pressure inlet, we specify the total pressure along the inlet face (for 
example, flow coming into the computational domain from a pressurized 
tank of known pressure or from the far field where the ambient pressure is 
known). At a pressure outlet, fluid flows out of the computational domain. 
We specify the static pressure along the outlet face; in many cases this is 
atmospheric pressure (zero gage pressure). For example, the pressure is 
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atmospheric at the outlet of a subsonic exhaust pipe open to ambient air 
(Fig. 15–21). Flow properties, such as temperature, and turbulence proper-
ties are also specified at pressure inlets and pressure outlets. For outlets, 
however, these properties are not used unless the solution demands reverse 
flow across the outlet. Reverse flow at a pressure outlet is usually an indi-
cation that the computational domain is not large enough. If reverse flow 
warnings persist as the CFD solution iterates, the computational domain 
should be extended.
 Pressure is not specified at a velocity inlet, as this would lead to math-
ematical overspecification, since pressure and velocity are coupled in the 
equations of motion. Rather, pressure at a velocity inlet adjusts itself to 
match the rest of the flow field. In similar fashion, velocity is not specified 
at a pressure inlet or outlet, as this would also lead to mathematical over-
specification. Rather, velocity at a pressure-specified boundary condition 
adjusts itself to match the rest of the flow field (Fig. 15–22).
 Another option at an outlet of the computational domain is the outflow 
boundary condition. At an outflow boundary, no flow properties are speci-
fied; instead, flow properties such as velocity, turbulence quantities, and 
temperature are forced to have zero gradients normal to the outflow face 
(Fig. 15–23). For example, if a duct is sufficiently long so that the flow 
is fully developed at the outlet, the outflow boundary condition would be 
appropriate, since velocity does not change in the direction normal to the 
outlet face. Note that the flow direction is not constrained to be perpendic-
ular to the outflow boundary, as also illustrated in Fig. 15–23. If the flow 
is still developing, but the pressure at the outlet is known, a pressure outlet 
boundary condition would be more appropriate than an outflow boundary 
condition. The outflow boundary condition is often preferred over the pres-
sure outlet in rotating flows since the swirling motion leads to radial pressure 
gradients that are not easily handled by a pressure outlet.
 A common situation in a simple CFD application is to specify one or 
more velocity inlets along portions of the boundary of the computational 
domain, and one or more pressure outlets or outflows at other portions of 

PoutPin

Pressure inlet; Pin specified Pressure outlet; Pout specified

Outlet velocity
calculated, not
specified

Inlet velocity
calculated, not
specified

Computational
domain

FIGURE 15–22
At a pressure inlet or a pressure outlet, we specify the pressure on the face, but 
we cannot specify the velocity through the face. As the CFD solution converges, 
the velocity adjusts itself such that the prescribed pressure boundary conditions 
are satisfied.

The free surface is approximated as
a wall boundary condition with slip
(zero shear stress).

Velocity 
inlet

Standard no-slip wall
boundary condition

Pressure outlet
Pout

Vin

Computational 
domain

FIGURE 15–20
The standard wall boundary condition 
is imposed on stationary solid 
boundaries, where we also impose 
either a wall temperature or a wall heat 
flux. The shear stress along the wall 
can be set to zero to simulate the free 
surface of a liquid, as shown here for 
the case of a swimming pool. There 
is slip along this “wall” that simulates 
the free surface (in contact with air).

Pressure outlet

Pout = Patm

FIGURE 15–21
When modeling an incompressible 
flow field, with the outlet of a pipe or 
duct exposed to ambient air, the proper 
boundary condition is a pressure outlet 
with Pout 5 Patm. Shown here is the 
tail pipe of an automobile. 
Photo by Po-Ya Abel Chuang. Used by permission.
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the boundary, with walls defining the geometry of the rest of the computa-
tional domain. For example, in our swimming pool (Fig. 15–20), we set 
the left-most face of the computational domain as a velocity inlet and the 
bottom-most face as a pressure outlet. The rest of the faces are walls, with 
the free surface modeled as a wall with zero shear stress.
 Finally, for compressible flow simulations, the inlet and outlet boundary 
conditions are further complicated by introduction of Riemann invariants and 
characteristic variables related to incoming and outgoing waves, discussion 
of which is beyond the scope of the present text. Fortunately, many CFD 
codes have a pressure far field boundary condition for compressible flows. 
This boundary condition is used to specify the Mach number, pressure, and 
temperature at an inlet. The same boundary condition can be applied at an 
outlet; when flow exits the computational domain, flow variables at the out-
let are extrapolated from the interior of the domain. Again, you must ensure 
that there is no reverse flow at an outlet.

Miscellaneous Boundary Conditions
Some boundaries of a computational domain are neither walls nor inlets or 
outlets, but rather enforce some kind of symmetry or periodicity. For exam-
ple, the periodic boundary condition is useful when the geometry involves 
repetition. Flow field variables along one face of a periodic boundary are 
numerically linked to a second face of identical shape (and in most CFD 
codes, also identical face mesh). Thus, flow leaving (crossing) the first 
periodic boundary can be imagined as entering (crossing) the second peri-
odic boundary with identical properties (velocity, pressure, temperature, 
etc.). Periodic boundary conditions always occur in pairs and are useful 
for flows with repetitive geometries, such as flow between the blades of 
a turbomachine or through an array of heat exchanger tubes (Fig. 15–24). 
The periodic boundary condition enables us to work with a computational 
domain that is much smaller than the full flow field, thereby conserving 
computer resources. In Fig. 15–24, you can imagine an infinite number of 
repeated domains (dashed lines) above and below the actual computational 
domain (the light blue shaded region). Periodic boundary conditions must 
be specified as either translational (periodicity applied to two parallel 
faces, as in Fig. 15–24) or rotational (periodicity applied to two radially 
oriented faces). The region of flow between two neighboring blades of a 
fan (a flow passage) is an example of a rotationally periodic domain (see 
Fig. 15–58).
 The symmetry boundary condition forces flow field variables to be mir-
ror-imaged across a symmetry plane. Mathematically, gradients of most 
flow field variables in the direction normal to the symmetry plane are set 
to zero across the plane of symmetry, although some variables are specified 
as even functions and some as odd functions across a symmetry bound-
ary condition. For physical flows with one or more symmetry planes, this 
boundary condition enables us to model a portion of the physical flow 
domain, thereby conserving computer resources. The symmetry bound-
ary differs from the periodic boundary in that no “partner” boundary is 
required for the symmetry case. In addition, fluid can flow parallel to a 
symmetry boundary, but not through a symmetry boundary, whereas flow 

u

x

Outflow
boundary

FIGURE 15–23
At an outflow boundary condition, the 
gradient or slope of velocity normal to 
the outflow face is zero, as illustrated 

here for u as a function of x along a 
horizontal line. Note that neither 

pressure nor velocity are specified at 
an outflow boundary.

Computational domain

Periodic

Periodic

OutIn

FIGURE 15–24
The periodic boundary condition is 

imposed on two identical faces. 
Whatever happens at one of the 

faces must also happen at its 
periodic partner face, as illustrated 

by the velocity vectors crossing 
the periodic faces.
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can cross a periodic boundary. Consider, for example, flow across an 
array of heat exchanger tubes (Fig. 15–24). If we assume that no flow 
crosses the periodic boundaries of that computational domain, we can use 
symmetry boundary conditions instead. Alert readers will notice that we 
can even cut the size of the computational domain in half by wise choice of 
symmetry planes (Fig. 15–25).
 For axisymmetric flows, the axis boundary condition is applied to a 
straight edge that represents the axis of symmetry (Fig. 15–26a). Fluid can 
flow parallel to the axis, but cannot flow through the axis. The axisymmet-
ric option enables us to solve the flow in only two dimensions, as sketched 
in Fig. 15–26b. The computational domain is simply a rectangle in the 
xy-plane; you can imagine rotating this plane about the x-axis to generate 
the axisymmetry. In the case of swirling axisymmetric flows, fluid may also 
flow tangentially in a circular path around the axis of symmetry. Swirling 
axisymmetric flows are sometimes called rotationally symmetric.

Internal Boundary Conditions
The final classification of boundary conditions is imposed on faces or edges 
that do not define a boundary of the computational domain, but rather exist 
inside the domain. When an interior boundary condition is specified on a 
face, flow crosses through the face without any user-forced changes, just as 
it would cross from one interior cell to another (Fig. 15–27). This boundary 
condition is necessary for situations in which the computational domain is 
divided into separate blocks or zones, and enables communication between 
blocks. We have found this boundary condition to be useful for postprocess-
ing as well, since a predefined face is present in the flow field, on whose 
surface we can plot velocity vectors, pressure contours, etc. In more sophis-
ticated CFD applications in which there is a sliding or rotating mesh, the 
interface between the two blocks is called upon to smoothly transfer infor-
mation from one block to another.

Out

Symmetry

Symmetry

Computational domain
In

FIGURE 15–25
The symmetry boundary condition is 
imposed on a face so that the flow 
across that face is a mirror image of 
the calculated flow. We sketch 
imaginary domains (dashed lines) 
above and below the computational 
domain (the light blue shaded region) 
in which the velocity vectors are 
mirror images of those in the 
computational domain. In this heat 
exchanger example, the left face of 
the domain is a velocity inlet, the right 
face is a pressure outlet or outflow 
outlet, the cylinders are walls, and 
both the top and bottom faces are 
symmetry planes.

FIGURE 15–26
The axis boundary condition is applied 
to the axis of symmetry (here the 
x-axis) in an axisymmetric flow, 
since there is rotational symmetry 
about that axis. (a) A slice defining 
the xy- or ru-plane is shown, and 
the velocity components can be 
either (u, v) or (ur, uu). (b) The 
computational domain (light blue 
shaded region) for this problem is 
reduced to a plane in two dimensions 
(x and y). In many CFD codes, x and y 
are used as axisymmetric coordinates, 
with y being understood as the 
distance from the x-axis.
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 The fan boundary condition is specified on a plane across which a sudden 
pressure increase (or decrease) is to be assigned. This boundary condition is 
similar to an interior boundary condition except for the forced pressure rise. 
The CFD code does not solve the detailed, unsteady flow field through indi-
vidual fan blades, but simply models the plane as an infinitesimally thin fan 
that changes the pressure across the plane. The fan boundary condition is 
useful, for example, as a simple model of a fan inside a duct (Fig. 15–27), a 
ceiling fan in a room, or the propeller or jet engine that provides thrust to an 
airplane. If the pressure rise across the fan is specified as zero, this bound-
ary condition behaves the same as an interior boundary condition.

Practice Makes Perfect
The best way to learn computational fluid dynamics is through examples 
and practice. You are encouraged to experiment with various grids, bound-
ary conditions, numerical parameters, etc., in order to get a feel for CFD. 
Before tackling a complicated problem, it is best to solve simpler problems, 
especially ones for which analytical or empirical solutions are known (for 
comparison and verification). For this reason, dozens of practice problems 
are provided on the book’s website.
 In the following sections, we solve several example problems of general 
engineering interest to illustrate many of the capabilities and limitations 
of CFD. We start with laminar flows, and then provide some introductory 
turbulent flow examples. Finally we provide examples of flows with heat 
transfer, compressible flows, and liquid flows with free surfaces.

15–2 ■  LAMINAR CFD CALCULATIONS
Computational fluid dynamics does an excellent job at computing incom-
pressible, steady or unsteady, laminar flow, provided that the grid is well 
resolved and the boundary conditions are properly specified. We show several 
simple examples of laminar flow solutions, paying particular attention to 
grid resolution and appropriate application of boundary conditions. In all 
examples in this section, the flows are incompressible and two-dimensional 
(or axisymmetric).

Pipe Flow Entrance Region at Re 5 500
Consider flow of room-temperature water inside a smooth round pipe of 
length L 5 40.0 cm and diameter D 5 1.00 cm. We assume that the water 
enters at a uniform speed equal to V 5 0.05024 m/s. The kinematic viscos-
ity of the water is n 5 1.005 3 1026 m2/s, producing a Reynolds number of 
Re 5 VD/n 5 500. We assume incompressible, steady, laminar flow. We are 
interested in the entrance region in which the flow gradually becomes fully 
developed. Because of the axisymmetry, we set up a computational domain 
that is a two-dimensional slice from the axis to the wall, rather than a three-
dimensional cylindrical volume (Fig. 15–28). We generate six structured 
grids for this computational domain: very coarse (40 intervals in the axial 
direction 3 8 intervals in the radial direction), coarse (80 3 16), medium 
(160 3 32), fine (320 3 64), very fine (640 3 128), and ultrafine (1280 3 
256). (Note that the number of intervals is doubled in both directions for 
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FIGURE 15–27
The fan boundary condition imposes 
an abrupt change in pressure across 

the fan face to simulate an axial-flow 
fan in a duct. When the specified 

pressure rise is zero, the fan boundary 
condition degenerates to an interior 

boundary condition.
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FIGURE 15–28
Because of axisymmetry about the 

x-axis, flow through a round pipe can 
be solved computationally with a two-

dimensional slice through the pipe 
from r 5 0 to D/2. The computational 

domain is the light blue shaded region, 
and the drawing is not to scale. 

Boundary conditions are indicated.
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each successive grid; the number of computational cells increases by a factor 
of 4 for each grid.) In all cases the nodes are evenly distributed axially, but 
are concentrated near the wall radially, since we expect larger velocity gra-
dients near the pipe wall. Close-up views of the first three of these grids are 
shown in Fig. 15–29.
 We run the CFD program ANSYS-FLUENT in double precision for all 
six cases. (Double precision arithmetic is not always necessary for engineer-
ing calculations—we use it here to obtain the best possible precision in our 
comparisons.) Since the flow is laminar, incompressible, and axisymmet-
ric, only three transport equations are solved—continuity, x-momentum, and 
y-momentum. Note that coordinate y is used in the CFD code instead of r 
as the distance from the axis of rotation (Fig. 15–26). The CFD code is 
run until convergence (all the residuals level off). Recall that a residual is a 
measure of how much the solution to a given transport equation deviates 
from exact; the lower the residual, the better the convergence. For the very 
coarse grid case, this occurs in about 500 iterations, and the residuals level 
off to less than 10212 (relative to their initial values). The decay of the resid-
uals is plotted in Fig. 15–30 for the very coarse case. Note that for more 
complicated flow problems with finer grids, you cannot always expect such 
low residuals; in some CFD solutions, the residuals level off at much higher 
values, like 1023.
 We define P1 as the average pressure at an axial location one pipe diam-
eter downstream of the inlet. Similarly we define P20 at 20 pipe diameters. 
The average axial pressure drop from 1 to 20 diameters is thus DP 5 
P1 2 P20, and is equal to 4.404 Pa (to four significant digits of preci-
sion) for the very coarse grid case. Centerline pressure and axial velocity 
are plotted in Fig. 15–31a as functions of downstream distance. The solution 
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FIGURE 15–30
Decay of the residuals with iteration 
number for the very coarse grid 
laminar pipe flow solution (double 
precision arithmetic).

(a)

(b)

(c)

FIGURE 15–29
Portions of the three coarsest 
structured grids generated for the 
laminar pipe flow example: (a) very 
coarse (40 3 8), (b) coarse (80 3 16), 
and (c) medium (160 3 32). The 
number of computational cells is 320, 
1280, and 5120, respectively. In each 
view, the pipe wall is at the top and 
the pipe axis is at the bottom, as in 
Fig. 15–28.
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appears to be physically reasonable. We see the increase of centerline 
axial velocity to conserve mass as the boundary layer on the pipe wall 
grows downstream. We see a sharp drop in pressure near the pipe entrance 
where viscous shear stresses on the pipe wall are highest. The pressure drop 
approaches linear toward the end of the entrance region where the flow 
is nearly fully developed, as expected. Finally, we compare in Fig. 15–31b 
the axial velocity profile at the end of the pipe to the known analytical 
solution for fully developed laminar pipe flow (see Chap. 8). The agreement 
is excellent, especially considering that there are only eight intervals in the 
radial direction.
 Is this CFD solution grid independent? To find out, we repeat the calcu-
lations using the coarse, medium, fine, very fine, and ultrafine grids. The 
convergence of the residuals is qualitatively similar to that of Fig. 15–30 for 
all cases, but CPU time increases significantly as grid resolution improves, 
and the levels of the final residuals are not as low as those of the coarse 
resolution case. The number of iterations required until convergence also 
increases with improved grid resolution. The pressure drop from x/D 5 1 
to 20 is listed in Table 15–1 for all six cases. DP is also plotted as a func-
tion of number of cells in Fig. 15–32. We see that even the very coarse 
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FIGURE 15–31
CFD results for the very coarse 

grid laminar pipe flow simulation: 
(a) development of centerline pressure 

and centerline axial velocity with 
downstream distance, and (b) axial 

velocity profile at pipe outlet 
compared to analytical prediction.

TABLE 15–1

Pressure drop from x /D 5 1 to 20 for the various 

grid resolution cases in the entrance flow region 

of axisymmetric pipe flow

Case Number of Cells DP, Pa

Very coarse 320 4.404

Coarse 1280 3.983

Medium 5120 3.998

Fine 20,480 4.016

Very fine 81,920 4.033

Ultrafine 327,680 4.035
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FIGURE 15–32
Calculated pressure drop from x /D 5 1

to 20 in the entrance flow region 
of axisymmetric pipe flow as a 

function of number of cells.
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grid does a reasonable job at predicting DP. The difference in pressure drop 
from the very coarse grid to the ultrafine grid is less than 10 percent. Thus, 
the very coarse grid may be adequate for some engineering calculations. If 
greater precision is needed, however, we must use a finer grid. We see grid 
independence to three significant digits by the very fine case. The change in 
DP from the very fine grid to the ultrafine grid is less than 0.07 percent—a 
grid as finely resolved as the ultrafine grid is unnecessary in any practical 
engineering analysis.
 The most significant differences between the six cases occur very close 
to the pipe entrance, where pressure gradients and velocity gradients are 
largest. In fact, there is a singularity at the inlet, where the axial velocity 
changes suddenly from V to zero at the wall because of the no-slip con-
dition. We plot in Fig. 15–33 contour plots of normalized axial velocity, 
u/V near the pipe entrance. We see that although global properties of the 
flow field (like overall pressure drop) vary by only a few percent as the grid 
is refined, details of the flow field (like the velocity contours shown here) 
change considerably with grid resolution. You can see that as the grid is 
continually refined, the axial velocity contour shapes become smoother and 
more well defined. The greatest differences in the contour shapes occur near 
the pipe wall.
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FIGURE 15–33
Normalized axial velocity contours 
(u/V) for the laminar pipe flow 
example. Shown is a close-up view 
of the entrance region of the pipe for 
each of the first four grids: (a) very 
coarse (40 3 8), (b) coarse (80 3 16), 
(c) medium (160 3 32), and (d ) fine 
(320 3 64).
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Flow around a Circular Cylinder at Re 5 150
To illustrate that reliable CFD results require correct problem formulation, 
consider the seemingly simple problem of steady, incompressible, two-
dimensional flow of air over a circular cylinder of diameter D 5 2.0 cm 
(Fig. 15–34). The two-dimensional computational domain used for this 
simulation is sketched in Fig. 15–35. Only the upper half of the flow field 
is solved, due to symmetry along the bottom edge of the computational 
domain; a symmetry boundary condition is specified along this edge to ensure 
that no flow crosses the plane of symmetry. With this boundary condition 
imposed, the required computational domain size is reduced by a factor of 2. 
A stationary, no-slip wall boundary condition is applied at the cylinder sur-
face. The left half of the far field outer edge of the domain has a velocity 
inlet boundary condition, on which is specified the velocity components u 5 V 
and v 5 0. A pressure outlet boundary condition is specified along the 
right half of the outer edge of the domain. (The gage pressure there is set 
to zero, but since the velocity field in an incompressible CFD code depends 
only on pressure differences, not absolute value of pressure, the value of 
pressure specified for the pressure outlet boundary condition is irrelevant.)
 Three two-dimensional structured grids are generated for comparison: coarse 
(30 radial intervals 3 60 intervals along the cylinder surface 5 1800 cells), 
medium (60 3 120 5 7200 cells), and fine (120 3 240 5 28,800 cells), as 
seen in Fig. 15–36. Note that only a small portion of the computational domain 
is shown here; the full domain extends 15 cylinder diameters outward from the 
origin, and the cells get progressively larger further away from the cylinder.
 We apply a free-stream flow of air at a temperature of 258C, at standard 
atmospheric pressure, and at velocity V 5 0.1096 m/s from left to right 
around this circular cylinder. The Reynolds number of the flow, based on 
cylinder diameter (D 5 2.0 cm), is thus Re 5 rVD/m 5 150. Experiments 
at this Reynolds number reveal that the boundary layer is laminar and sepa-
rates almost 108 before the top of the cylinder, at a > 828 from the front 
stagnation point. The wake also remains laminar. Experimentally measured 
values of drag coefficient at this Reynolds number show much discrepancy 
in the literature; the range is from CD > 1.1 to 1.4, and the differences are 
most likely due to the quality of the free-stream and three-dimensional 
effects (oblique vortex shedding, etc.). (Recall that CD 5 2FD /rV 2A, where A 
is the frontal area of the cylinder, and A 5 D times the span of the cylinder, 
taken as unit length in a two-dimensional CFD calculation.)
 CFD solutions are obtained for each of the three grids shown in Fig. 15–36, 
assuming steady laminar flow. All three cases converge without problems, but 
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D
V

FIGURE 15–34
Flow of fluid at free-stream speed V 

over a two-dimensional circular 
cylinder of diameter D.
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(velocity inlet)
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(pressure outlet)Computational
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FIGURE 15–35
Computational domain (light blue 

shaded region) used to simulate steady 
two-dimensional flow over a circular 
cylinder (not to scale). It is assumed 
that the flow is symmetric about the 
x-axis. Applied boundary conditions 

are shown for each edge in 
parentheses. We also define a, the 
angle measured along the cylinder 

surface from the front stagnation point.
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(a)

(b)

(c)

FIGURE 15–36
Structured two-dimensional grids 
around the upper half of a circular 
cylinder: (a) coarse (30 3 60), 
(b) medium (60 3 120), and (c) fine 
(120 3 240). The bottom edge is a 
line of symmetry. Only a portion of 
each computational domain is 
shown—the domain extends well 
beyond the portion shown here.
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the results do not necessarily agree with physical intuition or with experimen-
tal data. Streamlines are shown in Fig. 15–37 for the three grid resolutions. In 
all cases, the image is mirrored about the symmetry line so that even though 
only the top half of the flow field is solved, the full flow field is displayed.
 For the coarse resolution case (Fig. 15–37a), the boundary layer separates 
at a 5 1208, well past the top of the cylinder, and CD is 1.00. The boundary 
layer is not well enough resolved to yield the proper boundary layer separation 
point, and the drag is somewhat smaller than it should be. Two large counter-
rotating separation bubbles are seen in the wake; they stretch several cylin-
der diameters downstream. For the medium resolution case (Fig. 15–37b), 
the flow field is significantly different. The boundary layer separates a little 
further upstream at a 5 1108, which is more in line with the experimental 
results, but CD has decreased to about 0.982—further away from the experi-
mental value. The separation bubbles in the cylinder’s wake have grown much 
longer than those of the coarse grid case. Does refining the grid even further 
improve the numerical results? Figure 15–37c shows streamlines for the fine 
resolution case. The results look qualitatively similar to those of the medium 
resolution case, with a 5 1098, but the drag coefficient is even smaller (CD 5 
0.977), and the separation bubbles are even longer. A fourth calculation (not 
shown) at even finer grid resolution shows the same trend—the separation 
bubbles stretch downstream and the drag coefficient decreases somewhat.
 Shown in Fig. 15–38 is a contour plot of tangential velocity component 
(uu) for the medium resolution case. We plot values of uu over a very small 
range around zero, so that we can clearly see where along the cylinder the 
flow changes direction. This is thus a clever way to locate the separation 
point along a cylinder wall. Note that this works only for a circular cylinder 
because of its unique geometry. A more general way to determine the separa-
tion point is to identify the point along the wall where the wall shear stress tw 
is zero; this technique works for bodies of any shape. From Fig. 15–38, we 
see that the boundary layer separates at an angle of a 5 1108 from the front 
stagnation point, much further downstream than the experimentally obtained 
value of 828. In fact, all our CFD results predict boundary layer separation 
on the rear side rather than the front side of the cylinder.
 These CFD results are unphysical—such elongated separation bubbles 
could not remain stable in a real flow situation, the separation point is too far 
downstream, and the drag coefficient is too low compared to experimental 
data. Furthermore, repeated grid refinement does not lead to better results as 
we would hope; on the contrary, the results get worse with grid refinement. 
Why do these CFD simulations yield such poor agreement with experiment? 
The answer is twofold:

 1. We have forced the CFD solution to be steady, when in fact flow over 
a circular cylinder at this Reynolds number is not steady. Experiments 
show that a periodic Kármán vortex street forms behind the cylinder 
(Tritton, 1977; see also Fig. 4–25 of this text).

 2. All three cases in Fig. 15–37 are solved for the upper half-plane only, 
and symmetry is enforced about the x-axis. In reality, flow over a circular 
cylinder is highly nonsymmetric; vortices are shed alternately from the 
top and the bottom of the cylinder, forming the Kármán vortex street.

 To correct both of these problems, we need to run an unsteady CFD simu-
lation with a full grid (top and bottom)—without imposing the symmetry 
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FIGURE 15–37
Streamlines produced by steady-state 

CFD calculations of flow over a circular 
cylinder at Re 5 150: (a) coarse grid 

(30 3 60), (b) medium grid (60 3 120), 
and (c) fine grid (120 3 240). Note 
that only the top half of the flow is 

calculated—the bottom half is displayed 
as a mirror image of the top.
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FIGURE 15–38
Contour plot of tangential velocity 

component uu for flow over a circular 
cylinder at Re 5 150 and for the medium 
grid resolution case (60 3 120). Values 

in the range 21024 , uu , 1024 m/s are 
plotted, so as to reveal the precise location 
of boundary layer separation, i.e., where 
uu changes sign just outside the cylinder 
wall, as sketched. For this case, the flow 

separates at a 5 1108.
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condition. We run the simulation as an unsteady two-dimensional laminar 
flow, using the computational domain sketched in Fig. 15–39. The top and 
bottom (far field) edges are specified as a periodic boundary condition pair 
so that nonsymmetric oscillations in the wake are not suppressed (flow can 
cross these boundaries as necessary). The far field boundaries are also very 
far away (75 to 200 cylinder diameters), so that their effect on the calcula-
tions is insignificant.
 The mesh is very fine near the cylinder to resolve the boundary layer. The 
grid is also fine in the wake region to resolve the shed vortices as they travel 
downstream. For this particular simulation, we use a hybrid grid somewhat 
like that shown in Fig. 15–14. The fluid is air, the cylinder diameter is 1.0 m, 
and the free-stream air speed is set to 0.00219 m/s. These values produce a 
Reynolds number of 150 based on cylinder diameter. Note that the Reynolds 
number is the important parameter in this problem—the choices of D, V, and 
type of fluid are not critical, so long as they produce the desired Reynolds 
number (Fig. 15–40).
 As we march in time, small nonuniformities in the flow field amplify, 
and the flow becomes unsteady and antisymmetric with respect to the 
x-axis. A Kármán vortex street forms naturally. After sufficient CPU time, 
the simulated flow settles into a periodic vortex shedding pattern, much like 
the real flow. A contour plot of vorticity at one instant in time is shown in 
Fig. 15–41, along with a photograph showing streaklines of the same flow 
obtained experimentally in a wind tunnel. It is clear from the CFD simulation 
that the Kármán vortices decay downstream, since the magnitude of vortic-
ity in the vortices decreases with downstream distance. This decay is partly 
physical (viscous), and partly artificial (numerical dissipation). Nevertheless, 
physical experiments verify the decay of the Kármán vortices. The decay is 
not so obvious in the streakline photograph (Fig. 15–41b); this is due to the 
time-integrating property of streaklines, as was pointed out in Chap. 4. A 
close-up view of vortices shedding from the cylinder at a particular instant in 
time is shown in Fig. 15–42, again with a comparison between CFD results 

Far field inflow
(velocity inlet)

Far field edge
(periodic)

Far field edge
(periodic)

Far field outflow
(pressure outlet)Cylinder surface

(wall)

75D
200D
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D

y

x

FIGURE 15–39
Computational domain (light blue 
shaded region) used to simulate 
unsteady, two-dimensional, laminar 
flow over a circular cylinder (not to 
scale). Applied boundary conditions 
are in parentheses.

=Re =
rVD
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Reynolds number is defined as

for flow at free-stream speed V
over a circular cylinder of
diameter D in a fluid of density r
and dynamic viscosity m
(kinematic viscosity n).

FIGURE 15–40
In an incompressible CFD simulation 
of flow around a cylinder, the choice 
of free-stream speed, cylinder 
diameter, or even type of fluid is not 
critical, provided that the desired 
Reynolds number is achieved.
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FIGURE 15–41
Laminar flow in the wake of a circular 

cylinder at Re > 150: (a) an 
instantaneous snapshot of vorticity 

contours produced by CFD, and 
(b) time-integrated streaklines 

produced by a smoke wire located at 
x/D 5 5. The vorticity contours show 

that Kármán vortices decay rapidly 
in the wake, whereas the streaklines 

retain a “memory” of their history 
from upstream, making it appear that 

the vortices continue for a great 
distance downstream.

Photo from Cimbala et al., 1988.
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FIGURE 15–42
Close-up view of vortices shedding 

from a circular cylinder: 
(a) instantaneous vorticity contour 

plot produced by CFD at Re 5 150, 
and (b) dye streaklines produced by 

dye introduced at the cylinder surface 
at Re 5 140. An animated version of 

this CFD picture is available on the 
book’s website.

Photo (b) reprinted by permission 
of Sadatoshi Taneda.
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and experimental results—this time from experiments in a water channel. An 
animated version of Fig. 15–42 is provided on the book’s website so that you 
can watch the dynamic process of vortex shedding.
 We compare the CFD results to experimental results in Table 15–2. The 
calculated time-averaged drag coefficient on the cylinder is 1.14. As men-
tioned previously, experimental values of CD at this Reynolds number vary 
from about 1.1 to 1.4, so the agreement is within the experimental scatter. 
Note that the present simulation is two-dimensional, inhibiting any kind 
of oblique vortex shedding or other three-dimensional nonuniformities. 
This may be why our calculated drag coefficient is on the lower end of the 
reported experimental range. The Strouhal number of the Kármán vortex 
street is defined as

Strouhal number: St 5
fshedding D

V
 (15–4)

where fshedding is the shedding frequency of the vortex street. From our CFD 
simulation, we calculate St 5 0.16. The experimentally obtained value of 
Strouhal number at this Reynolds number is about 0.18 (Williamson, 1989), 
so again the agreement is reasonable, although the CFD results are a bit 
low compared to experiment. Perhaps a finer grid would help somewhat, 
but the major reason for the discrepancy is more likely due to unavoidable 
three-dimensional effects in the experiments, which are not present in these 
two-dimensional simulations. Overall this CFD simulation is a success, as it 
captures all the major physical phenomena in the flow field.
 This exercise with “simple” laminar flow over a circular cylinder has dem-
onstrated some of the capabilities of CFD, but has also revealed several aspects 
of CFD about which one must be cautious. Poor grid resolution can lead to 
incorrect solutions, particularly with respect to boundary layer separation, but 
continued refinement of the grid does not necessarily lead to more physically 
correct results, particularly if the boundary conditions are not set appropriately 
(Fig. 15–43). For example, forced numerical flow symmetry is not always 
wise, even for cases in which the physical geometry is entirely symmetric.

Symmetric geometry does not guarantee symmetric flow.

In addition, forced steady flow may yield incorrect results when the flow is 
inherently unstable and/or oscillatory. Likewise, forced two-dimensionality 
may yield incorrect results when the flow is inherently three-dimensional.
 How then can we ensure that a laminar CFD calculation is correct? Only 
by systematic study of the effects of computational domain size, grid resolu-
tion, boundary conditions, flow regime (steady or unsteady, 2-D or 3-D, etc.), 
along with experimental validation. As with most other areas of engineering, 
experience is of paramount importance.

15–3 ■  TURBULENT CFD CALCULATIONS
CFD simulations of turbulent flow are much more difficult than those of 
laminar flow, even for cases in which the flow field is steady in the mean 
(statisticians refer to this condition as stationary). The reason is that the 
finer features of the turbulent flow field are always unsteady and three-
dimensional—random, swirling, vortical structures called turbulent eddies 

FIGURE 15–43
Poor grid resolution can lead to 
incorrect CFD results, but a finer grid 
does not guarantee a more physically 
correct solution. If the boundary 
conditions are not specified properly, 
the results may be unphysical, 
regardless of how fine the grid.

TABLE 15–2

Comparison of CFD results and 

experimental results for unsteady 

laminar flow over a circular cylinder 

at Re 5 150*

 CD St

Experiment 1.1 to 1.4 0.18

CFD 1.14 0.16

* The main cause of the disagreement is most 

likely due to three-dimensional effects rather 

than grid resolution or numerical issues.

879-938_cengel_ch15.indd   902 12/20/12   12:23 PM



903
CHAPTER 15

of all orientations arise in a turbulent flow (Fig. 15–44). Some CFD calcula-
tions use a technique called direct numerical simulation (DNS), in which 
an attempt is made to resolve the unsteady motion of all the scales of the 
turbulent flow. However, the size difference and the time scale difference 
between the largest and smallest eddies can be several orders of magnitude 
(L .. h in Fig. 15–44). Furthermore, these differences increase with the 
Reynolds number (Tennekes and Lumley, 1972), making DNS calculations 
of turbulent flows even more difficult as the Reynolds number increases. 
DNS solutions require extremely fine, fully three-dimensional grids, large 
computers, and an enormous amount of CPU time. With today’s computers, 
DNS results are not yet feasible for practical high Reynolds number turbu-
lent flows of engineering interest such as flow over a full-scale airplane. 
This situation is not expected to change for several more decades, even if 
the fantastic rate of computer improvement continues at today’s pace.
 Thus, we find it necessary to make some simplifying assumptions in order 
to simulate complex, high Reynolds number, turbulent flow fields. The next 
level below DNS is large eddy simulation (LES). With this technique, large 
unsteady features of the turbulent eddies are resolved, while small-scale dis-
sipative turbulent eddies are modeled (Fig. 15–45). The basic assumption 
is that the smaller turbulent eddies are isotropic; i.e., it is assumed that the 
small eddies are independent of coordinate system orientation and always 
behave in a statistically similar and predictable way, regardless of the tur-
bulent flow field. LES requires significantly less computer resources than 
does DNS, because we eliminate the need to resolve the smallest eddies in 
the flow field. In spite of this, the computer requirements for practical engi-
neering analysis and design are nevertheless still formidable using today’s 
technology. Further discussion about DNS and LES is beyond the scope of 
the present text, but these are areas of much current research.
 The next lower level of sophistication is to model all the unsteady tur-
bulent eddies with some kind of turbulence model. No attempt is made to 
resolve the unsteady features of any of the turbulent eddies, not even the 
largest ones (Fig. 15–46). Instead, mathematical models are employed to 
take into account the enhanced mixing and diffusion caused by turbulent 
eddies. For simplicity, we consider only steady (that is, stationary), incom-
pressible flow. When using a turbulence model, the steady Navier–Stokes 
equation (Eq. 15–2) is replaced by what is called the Reynolds-averaged 
Navier–Stokes (RANS) equation, shown here for steady (stationary), 
incompressible, turbulent flow,

Steady RANS equation: (V
S

·=
S

)V
S

5 2
1
r
=
S

P9 1 n=2 V
S

1 =
S 

· (tij, turbulent) (15–5)

Compared to Eq. 15–2, there is an additional term on the right side of Eq. 15–5 
that accounts for the turbulent fluctuations. tij, turbulent is a tensor known as 
the specific Reynolds stress tensor, so named because it acts in a similar 
fashion as the viscous stress tensor tij (Chap. 9). In Cartesian coordinates, 
tij, turbulent is

 tij, turbulent 5 2£ u92 u9v9 u9w9
u9v9 v92 v9w9
u9w9 v9w9 w92

 (15–6)

h

L

FIGURE 15–44
All turbulent flows, even those that are 

steady in the mean (stationary), 
contain unsteady, three-dimensional 

turbulent eddies of various sizes. 
Shown is the average velocity profile 
and some of the eddies; the smallest 

turbulent eddies (size h) are orders of 
magnitude smaller than the largest 

turbulent eddies (size L). Direct 
numerical simulation (DNS) is a CFD 

technique that simulates all relevant 
turbulent eddies in the flow.

FIGURE 15–45
Large eddy simulation (LES) is a 
simplification of direct numerical 

simulation in which only the large 
turbulent eddies are resolved—the 

small eddies are modeled, significantly 
reducing computer requirements. 

Shown is the average velocity profile 
and the resolved eddies.
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where the overbar indicates the time average of the product of two fluctu-
ating velocity components and primes denote fluctuating velocity compo-
nents. Since the Reynolds stress is symmetric, six (rather than nine) addi-
tional unknowns are introduced into the problem. These new unknowns are 
modeled in various ways by turbulence models. A detailed description of 
turbulence models is beyond the scope of this text; you are referred to 
Wilcox (2006) or Chen and Jaw (1998) for further discussion.
 There are many turbulence models in use today, including algebraic, one-
equation, two-equation, and Reynolds stress models. Three of the most pop-
ular turbulence models are the k-e model, the k-v model, and the q-v model. 
These so-called two-equation turbulence models add two more transport 
equations, which must be solved simultaneously with the equations of mass 
and linear momentum (and also energy if this equation is being used). Along 
with the two additional transport equations that must be solved when using 
a two-equation turbulence model, two additional boundary conditions must 
be specified for the turbulence properties at inlets and at outlets. (Note that 
the properties specified at outlets are not used unless reverse flow is encoun-
tered at the outlet.) For example, in the k-e model you may specify both k 
(turbulent kinetic energy) and e (turbulent dissipation rate). However, 
appropriate values of these variables are not always known. A more useful 
option is to specify turbulence intensity I (ratio of characteristic turbulent 
eddy velocity to free-stream velocity or some other characteristic or aver-
age velocity) and turbulent length scale , (characteristic length scale of 
the energy-containing turbulent eddies). If detailed turbulence data are not 
available, a good rule of thumb at inlets is to set I to 10 percent and to set , 
to one-half of some characteristic length scale in the flow field (Fig. 15–47).
 We emphasize that turbulence models are approximations that rely heavily 
on empirical constants for mathematical closure of the equations. The 
models are calibrated with the aid of direct numerical simulation and exper-
imental data obtained from simple flow fields like flat plate boundary lay-
ers, shear layers, and isotropic decaying turbulence downstream of screens. 
Unfortunately, no turbulence model is universal, meaning that although 
the model works well for flows similar to those used for calibration, it is 
not guaranteed to yield a physically correct solution when applied to gen-
eral turbulent flow fields, especially those involving flow separation and 
reattachment and/or large-scale unsteadiness.

Turbulent flow CFD solutions are only as good as the appropriateness and 
validity of the turbulence model used in the calculations.

We emphasize also that this statement remains true regardless of how fine 
we make the computational grid. When applying CFD to laminar flows, we 
can usually improve the physical accuracy of the simulation by refining 
the grid (provided that the boundary conditions are properly specified, of 
course). This is not always the case for turbulent flow CFD analyses using 
turbulence models, even when the boundary conditions are correct. While 
a refined grid produces better numerical accuracy, the physical accuracy 
of the solution is always limited by the physical accuracy of the turbulence 
model itself.
 With these cautions in mind, we now present some practical examples of 
CFD calculations of turbulent flow fields. In all the turbulent flow examples 

FIGURE 15–46
When a turbulence model is used in 
a CFD calculation, all the turbulent 
eddies are modeled, and only 
Reynolds-averaged flow properties 
are calculated. Shown is the average 
velocity profile. There are no resolved 
turbulent eddies.

• V
• I
• O

Velocity inlet:

DD

FIGURE 15–47
A useful rule of thumb for turbulence 
properties at a pressure inlet or 
velocity inlet boundary condition is to 
specify a turbulence intensity of 
10 percent and a turbulent length scale 
of one-half of some characteristic 
length scale in the problem (, 5 D/2).
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discussed in this chapter, we employ the k-e turbulence model with wall 
functions. This model is the default turbulence model in many commercial 
CFD codes such as ANSYS-FLUENT. In all cases we assume stationary 
flow; no attempt is made to model unsteady features of the flow, such as 
vortex shedding in the wake of a bluff body. It is assumed that the tur-
bulence model accounts for all the inherent unsteadiness due to turbu-
lent eddies in the flow field. Note that unsteady (nonstationary) turbulent 
flows are also solvable with turbulence models, through the use of time-
marching schemes (unsteady RANS calculations), but only when the time 
scale of the unsteadiness is much longer than that of individual turbulent 
eddies. For example, suppose you are calculating the forces and moments 
on a blimp during a gust of wind (Fig. 15–48). At the inlet boundary, you 
would impose the time-varying wind velocity and turbulence levels, and an 
unsteady turbulent flow solution could then be calculated using turbulence 
models. The large-scale, overall features of the flow (flow separation, forces 
and moments on the body, etc.) would be unsteady, but the fine-scale fea-
tures of the turbulent boundary layer, for example, would be modeled by the 
quasi-steady turbulence model.

Flow around a Circular Cylinder at Re 5 10,000
As our first example of a turbulent flow CFD solution, we calculate flow 
over a circular cylinder at Re 5 10,000. For illustration, we use the same 
two-dimensional computational domain that was used for the laminar cylin-
der flow calculations, as sketched in Fig. 15–35. As with the laminar flow 
calculation, only the upper half of the flow field is solved here, due to sym-
metry along the bottom edge of the computational domain. We use the same 
three grids used for the laminar flow case as well—coarse, medium, and 
fine resolution (Fig. 15–36). We point out, however, that grids designed for 
turbulent flow calculations (especially those employing turbulence models 
with wall functions) are generally not the same as those designed for lami-
nar flow of the same geometry, particularly near walls.
 We apply a free-stream flow of air at 258C and at velocity V 5 7.304 m/s 
from left to right around this circular cylinder. The Reynolds number of the 
flow, based on cylinder diameter (D 5 2.0 cm), is approximately 10,000. 
Experiments at this Reynolds number reveal that the boundary layer is lam-
inar and separates several degrees upstream of the top of the cylinder (at 
a > 828). The wake, however, is turbulent; such a mixture of laminar and 
turbulent flow is particularly difficult for CFD codes. The measured drag 
coefficient at this Reynolds number is CD > 1.15 (Tritton, 1977). CFD solu-
tions are obtained for each of the three grids, assuming stationary (steady 
in the mean) turbulent flow. We employ the k-e turbulence model with wall 
functions. The inlet turbulence level is set to 10 percent with a length scale 
of 0.01 m (half of the cylinder diameter). All three cases converge nicely. 
Streamlines are plotted in Fig. 15–49 for the three grid resolution cases. In 
each plot, the image is mirrored about the symmetry line so that even though 
only the top half of the flow field is solved, the full flow field is visualized.
 For the coarse resolution case (Fig. 15–49a), the boundary layer separates 
well past the top of the cylinder, at a g, 1408. Furthermore, the drag coef-
ficient CD is only 0.647, almost a factor of 2 smaller than it should be. Let’s 

FL

FD
V(t)

FIGURE 15–48
While most CFD calculations with 

turbulence models are stationary 
(steady in the mean), it is also possible 

to calculate unsteady turbulent flow 
fields using turbulence models. In 

the case of flow over a body, we may 
impose unsteady boundary conditions 

and march in time to predict gross 
features of the unsteady flow field.

879-938_cengel_ch15.indd   905 12/20/12   12:23 PM



906
COMPUTATIONAL FLUID DYNAMICS

see if a finer mesh improves the agreement with experimental data. For the 
medium resolution case (Fig. 15–49b), the flow field is significantly different. 
The boundary layer separates nearer to the top of the cylinder, at a 5 1048, 
and CD has increased to about 0.742—closer, but still significantly less than 
the experimental value. We also notice that the recirculating eddies in the 
cylinder’s wake have grown in length by nearly a factor of 2 compared to 
those of the coarse grid case. Figure 15–49c shows streamlines for the fine 
resolution case. The results look very similar to those of the medium resolu-
tion case, and the drag coefficient has increased only slightly (CD 5 0.753). 
The boundary layer separation point for this case is at a 5 1028.
 Further grid refinement (not shown) does not change the results signifi-
cantly from those of the fine grid case. In other words, the fine grid appears 
to be sufficiently resolved, yet the results do not agree with experiment. 
Why? There are several problems with our calculations: we are modeling a 
steady flow, even though the actual physical flow is unsteady; we are enforc-
ing symmetry about the x-axis, even though the physical flow is unsymmetric 
(a Kármán vortex street can be observed in experiments at this Reynolds 
number); and we are using a turbulence model instead of resolving all the 
small eddies of the turbulent flow. Another significant source of error in 
our calculations is that the CFD code is run with turbulence turned on in 
order to reasonably model the wake region, which is turbulent; however, 
the boundary layer on the cylinder surface is actually still laminar. The pre-
dicted location of the separation point downstream of the top of the cylinder 
is more in line with turbulent boundary layer separation, which does not 
occur until much higher values of Reynolds number (after the “drag crisis” 
at Re greater than 2 3 105).
 The bottom line is that CFD codes have a hard time in the transitional regime 
between laminar and turbulent flow, and when there is a mixture of laminar 
and turbulent flow in the same computational domain. In fact, most commer-
cial CFD codes give the user a choice between laminar and turbulent—there 
is no “middle ground.” In the present calculations, we model the boundary 
layer as turbulent, even though the physical boundary layer is laminar; it is 
not surprising, then, that the results of our calculations do not agree well 
with experiment. If we would have instead specified laminar flow over the 
entire computational domain, the CFD results would have been even worse 
(less physical).
 Is there any way around this problem of poor physical accuracy for the 
case of mixed laminar and turbulent flow? Perhaps. In some CFD codes you 
can specify the flow to be laminar or turbulent in different regions of the 
flow. But even then, the transitional process from laminar to turbulent flow 
is somewhat abrupt, again not physically correct. Furthermore, you would 
need to know where the transition takes place in advance—this defeats 
the purpose of a stand-alone CFD calculation for fluid flow prediction. 
Advanced wall treatment models are being generated that may some day 
do a better job in the transitional region. In addition, some new turbulence 
models are being developed that are better tuned to low Reynolds number 
turbulence. Transition is an area of active research in CFD.
 In summary, we cannot accurately model the mixed laminar/turbulent 
flow problem of flow over a circular cylinder at Re , 10,000 using standard 
turbulence models and the steady Reynolds-averaged Navier–Stokes (RANS) 

(a)

(b)

(c)

FIGURE 15–49
Streamlines produced by CFD 
calculations of stationary turbulent 
flow over a circular cylinder at 
Re 5 10,000: (a) coarse grid (30 3 60), 
(b) medium grid (60 3 120), and 
(c) fine grid (120 3 240). Note 
that only the top half of the flow 
is calculated—the bottom half is 
displayed as a mirror image of the top.
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equation. It appears that accurate results can be obtained only through use 
of time-accurate (unsteady RANS), LES, or DNS solutions that are orders 
of magnitude more computationally demanding.

Flow around a Circular Cylinder at Re 5 107

As a final cylinder example, we use CFD to calculate flow over a circular 
cylinder at Re 5 107—well beyond the drag crisis. The cylinder for this 
case is of 1.0 m diameter, and the fluid is water. The free-stream velocity 
is 10.05 m/s. At this value of Reynolds number the experimentally mea-
sured value of drag coefficient is around 0.7 (Tritton, 1977). The bound-
ary layer is turbulent at the separation point, which occurs at around 1208. 
Thus we do not have the mixed laminar/turbulent boundary layer problem 
as in the lower Reynolds number example—the boundary layer is turbulent 
everywhere except near the nose of the cylinder, and we should expect bet-
ter results from the CFD predictions. We use a two-dimensional half-grid 
similar to that of the fine resolution case of the previous examples, but the 
mesh near the cylinder wall is adapted appropriately for this high Reynolds 
number. As previously, we use the k-e turbulence model with wall functions. 
The inlet turbulence level is set to 10 percent with a length scale of 0.5 m. 
Unfortunately, the drag coefficient is calculated to be 0.262—less than half 
of the experimental value at this Reynolds number. Streamlines are shown 
in Fig. 15–50. The boundary layer separates a bit too far downstream, at 
a 5 1298. There are several possible reasons for the discrepancy. We are 
forcing the simulated flow to be steady and symmetric, whereas the actual 
flow is neither, due to vortex shedding. (Vortices are shed even at high 
Reynolds numbers.) In addition, the turbulence model and its near wall 
treatment (wall functions) may not be capturing the proper physics of the 
flow field. Again we must conclude that accurate results for flow over a cir-
cular cylinder can be obtained only through use of a full grid rather than a 
half grid, and with time-accurate (unsteady RANS), LES, or DNS solutions 
that are orders of magnitude more computationally demanding.

Design of the Stator for a Vane-Axial Flow Fan
The next turbulent flow CFD example involves design of the stator for a 
vane-axial flow fan that is to be used to drive a wind tunnel. The overall fan 
diameter is D 5 1.0 m, and the design point of the fan is at an axial-flow 
speed of V 5 50 m/s. The stator vanes span from radius r 5 rhub 5 0.25 m 
at the hub to r 5 rtip 5 0.50 m at the tip. The stator vanes are upstream of 
the rotor blades in this design (Fig. 15–51). A preliminary stator vane shape 
is chosen that has a trailing edge angle of bst 5 638 and a chord length of 
20 cm. At any value of radius r, the actual amount of turning depends on 
the number of stator vanes—we expect that the fewer the number of vanes, 
the smaller the average angle at which the flow is turned by the stator vanes 
because of the greater spacing between vanes. It is our goal to determine the 
minimum number of stator vanes required so that the flow impinging on the 
leading edges of the rotor blades (located one chord length downstream of 
the stator vane trailing edges) is turned at an average angle of at least 458. 
We also require there to be no significant flow separation from the stator 
vane surface.

FIGURE 15–50
Streamlines produced by CFD 

calculations of stationary turbulent 
flow over a circular cylinder at 

Re 5 107. Unfortunately, the predicted 
drag coefficient is still not accurate for 

this case.

Rotor

v

Stator

V

bst

Hub and motor

Vane tip

Vane hub

r

D

vr

FIGURE 15–51
Schematic diagram of the vane-axial 

flow fan being designed. The stator 
precedes the rotor, and the flow 
through the stator vanes is to be 

modeled with CFD.
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 As a first approximation, we model the stator vanes at any desired value 
of r as a two-dimensional cascade of vanes (see Chap. 14). Each vane is 
separated by blade spacing s at this radius, as defined in Fig. 15–52. We 
use CFD to predict the maximum allowable value of s, from which we esti-
mate the minimum number of stator vanes that meet the given requirements 
of the design.
 Since the flow through the two-dimensional cascade of stator vanes is infi-
nitely periodic in the y-direction, we need to model only one flow passage 
through the vanes, specifying two pairs of periodic boundary conditions on 
the top and bottom edges of the computational domain (Fig. 15–53). We run 
six cases, each with a different value of blade spacing. We choose s 5 10, 
20, 30, 40, 50, and 60 cm, and generate a structured grid for each of these 
values of blade spacing. The grid for the case with s 5 20 cm is shown in 
Fig. 15–54; the other grids are similar, but more intervals are specified in 
the y-direction as s increases. Notice how we have made the grid spacing 
fine near the pressure and suction surfaces so that the boundary layer on 
these surfaces can be better resolved. We specify V 5 50 m/s at the velocity 
inlet, zero gage pressure at the pressure outlet, and a smooth wall boundary 
condition with no slip at both the pressure and suction surfaces. Since we 
are modeling the flow with a turbulence model (k-e with wall functions), 
we must also specify turbulence properties at the velocity inlet. For these 
simulations we specify a turbulence intensity of 10 percent and a turbulence 
length scale of 0.01 m (1.0 cm).
 We run the CFD calculations long enough to converge as far as possible 
for all six cases, and we plot streamlines in Fig. 15–55 for six blade spac-
ings: s 5 10, 20, 30, 40, 50, and 60 cm. Although we solve for flow through 
only one flow passage, we plot several duplicate flow passages, stacked 
one on top of the other, in order to visualize the flow field as a periodic 
cascade. The streamlines for the first three cases look very similar at first 
glance, but closer inspection reveals that the average angle of flow down-
stream of the trailing edge of the stator vane decreases with s. (We define 

(b)(a)

y

r

D

s at r = rtip

rhub

rtip

x

s

s

c

s

FIGURE 15–52
Definition of blade spacing s: 
(a) frontal view of the stator, and 
(b) the stator modeled as a two-
dimensional cascade in edge view. 
Twelve radial stator vanes are shown 
in the frontal view, but the actual 
number of vanes is to be determined. 
Three stator vanes are shown in the 
cascade, but the actual cascade 
consists of an infinite number of 
vanes, each displaced by blade 
spacing s, which increases with 
radius r. The two-dimensional 
cascade is an approximation of the 
three-dimensional flow at one value 
of radius r and blade spacing s. 
Chord length c is defined as the 
horizontal length of the stator vane.

V

Translationally
periodic 2

Velocity
inlet
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periodic 1

Pressure 
surface

Pressure 
outlet

Suction 
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FIGURE 15–53
Computational domain (light blue 
shaded region) defined by one flow 
passage through two stator vanes. The 
top wall of the passage is the pressure 
surface, and the bottom wall is the 
suction surface. Two translationally 
periodic pairs are defined: periodic 1 
upstream and periodic 2 downstream.
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flow angle b relative to horizontal as sketched in Fig. 15–55a.) Also, the 
gap (white space) between the wall and the closest streamline to the suction 
surface increases in size as s increases, indicating that the flow speed in that 
region decreases. In fact, it turns out that the boundary layer on the suction 
surface of the stator vane must resist an ever-increasingly adverse pressure 
gradient (decelerating flow speed and positive pressure gradient) as blade 
spacing is increased. At large enough s, the boundary layer on the suction 
surface cannot withstand the severely adverse pressure gradient and sepa-
rates off the wall. For s 5 40, 50, and 60 cm (Fig. 15–55d through f ), flow 
separation off the suction surface is clearly seen in these streamline plots. 
Furthermore, the severity of the flow separation increases with s. This is not 
unexpected if we imagine the limit as s S `. In that case, the stator vane is 
isolated from its neighbors, and we surely expect massive flow separation 
since the vane has such a high degree of camber.
 We list average outlet flow angle bavg, average outlet flow speed Vavg, and 
predicted drag force on a stator vane per unit depth FD /b in Table 15–3 as 
functions of blade spacing s. (Depth b is into the page of Fig. 15–55 and is 
assumed to be 1 m in two-dimensional calculations such as these.) While 
bavg and Vavg decrease continuously with s, FD /b first rises to a maximum 
for the s 5 20 cm case, and then decreases from there on.
 You may recall from the previously stated design criteria for this exam-
ple that the average outlet flow angle must be greater than 458, and there 
must be no significant flow separation. From our CFD results, it appears that 
both of these criteria break down somewhere between s 5 30 and 40 cm. 
We obtain a better picture of flow separation by plotting vorticity contours 
(Fig. 15–56). In these color contour plots, blue represents large negative 
vorticity (clockwise rotation), red represents large positive vorticity (coun-
terclockwise rotation), and green is zero vorticity. When the boundary layer 
remains attached, we expect the vorticity to be concentrated within thin 

FIGURE 15–54
Structured grid for the two-

dimensional stator vane cascade at 
blade spacing s 5 20 cm. The outflow 

region in the wake of the vanes is 
intentionally longer than that at the 

inlet to avoid backflow at the pressure 
outlet in case of flow separation on the 
suction surface of the stator vane. The 
outlet is one chord length downstream 

of the stator vane trailing edges; the 
outlet is also the location of the leading 
edges of the rotor blades (not shown).

TABLE 15–3

Variation of average outlet flow 

angle bavg, average outlet flow 

speed Vavg, and predicted drag 

force per unit depth FD /b as 

functions of blade spacing s*

 bavg,  Vavg, FD /b,

s, cm degrees m/s N/m

10 60.8 103 554

20 56.1 89.6 722

30 49.7 77.4 694

40 43.2 68.6 612

50 37.2 62.7 538

60 32.3 59.1 489

* All calculated values are reported to three 

significant digits. The CFD calculations are 

performed using the k-e turbulence model 

with wall functions.
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(a) (b)

FIGURE 15–56
Vorticity contour plots produced 
by CFD calculations of stationary 
turbulent flow through a stator 
vane flow passage: blade spacing 
(a) s 5 30 cm and (b) s 5 40 cm. 
The flow field is largely irrotational 
(zero vorticity) except in the thin 
boundary layer along the walls and in 
the wake region. However, when the 
boundary layer separates, as in case 
(b), the vorticity spreads throughout 
the separated flow region.

(a) (b)

(c) (d)

(e) (f)

b

FIGURE 15–55
Streamlines produced by CFD 
calculations of stationary turbulent 
flow through a stator vane flow 
passage: (a) blade spacing s 5 10, 
(b) 20, (c) 30, (d ) 40, (e) 50, and 
( f ) 60 cm. The CFD calculations are 
performed using the k-e turbulence 
model with wall functions. Flow 
angle b is defined in image (a) as 
the average angle of flow, relative to 
horizontal, just downstream of the 
trailing edge of the stator vane.
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boundary layers along the stator vane surfaces, as is the case in Fig. 15–56a 
for s 5 30 cm. When the boundary layer separates, however, the vorticity 
suddenly spreads out away from the suction surface, as seen in Fig. 15–56b 
for s 5 40 cm. These results verify that significant flow separation occurs 
somewhere between s 5 30 and 40 cm. As a side note, notice how the vor-
ticity is concentrated not only in the boundary layer, but also in the wake for 
both cases shown in Fig. 15–56.
 Finally, we compare velocity vector plots in Fig. 15–57 for three cases: 
s 5 20, 40, and 60 cm. We generate several equally spaced parallel lines 
in the computational domain; each line is tilted at 458 from the horizontal. 
Velocity vectors are then plotted along each of these parallel lines. When 
s 5 20 cm (Fig. 15–57a), the boundary layer remains attached on both the 
suction and pressure surfaces of the stator vane all the way to its trailing 
edge. When s 5 40 cm (Fig. 15–57b), flow separation and reverse flow along 
the suction surface appears. When s 5 60 cm (Fig. 15–57c), the separa-
tion bubble and the reverse flow region have grown – this is a “dead” flow 
region, in which the air speeds are very small. In all cases, the flow on the 
pressure surface (lower left side) of the stator vane remains attached.
 How many vanes (N) does a blade spacing of s 5 30 cm represent? We 
can easily calculate N by noting that at the vane tip (r 5 rtip 5 D/2 5 50 cm), 
where s is largest, the total available circumference (C) is

Available circumference: C 5 2prtip 5 pD (15–7)

The number of vanes that can be placed within this circumference with a 
blade spacing of s 5 30 cm is thus

Maximum number of vanes: N 5
C
s

5
pD

s
5
p(100 cm)

30 cm
5 10.5 (15–8)

Obviously we can have only an integer value of N, so we conclude from our 
preliminary analysis that we should have at least 10 or 11 stator vanes.
 How good is our approximation of the stator as a two-dimensional cas-
cade of vanes? To answer this question, we perform a full three-dimensional 
CFD analysis of the stator. Again, we take advantage of the periodicity by 
modeling only one flow passage—a three-dimensional passage between two 
radial stator vanes (Fig. 15–58). We choose N 5 10 stator vanes by specify-
ing an angle of periodicity of 360/10 5 368. From Eq. 15–8, this represents 
s 5 31.4 at the vane tips and s 5 15.7 at the hub, for an average value of 
savg 5 23.6. We generate a hexagonal structured grid in a computational 
domain bounded by a velocity inlet, an outflow outlet, a section of cylindri-
cal wall at the hub and another at the tip, the pressure surface of the vane, 
the suction surface of the vane, and two pairs of periodic boundary condi-
tions. In this three-dimensional case, the periodic boundaries are rotationally 
periodic instead of translationally periodic. Note that we use an out-
flow boundary condition rather than a pressure outlet boundary condition, 
because we expect the swirling motion to produce a radial pressure distribu-
tion on the outlet face. The grid is finer near the walls than elsewhere (as 
usual), to better resolve the boundary layer. The incoming velocity, turbu-
lence level, turbulence model, etc., are all the same as those used for the 

(a)

(b)

(c)

FIGURE 15–57
Velocity vectors produced by CFD 
calculations of stationary turbulent 

flow through a stator vane flow 
passage: blade spacing s 5 (a) 20 cm, 

(b) 40 cm, and (c) 60 cm.
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two-dimensional approximation. The total number of computational cells is 
almost 800,000.
 Pressure contours on the stator vane surfaces and on the inner cylindri-
cal wall are plotted in Fig. 15–59. This view is from the same angle as that 
of Fig. 15–60, but we have zoomed out and duplicated the computational 
domain nine times circumferentially about the axis of rotation (the x-axis) 
for a total of 10 flow passages to aid in visualization of the flow field. You 
can see that the pressure is higher (red) on the pressure surface than on the 
suction surface (blue). You can also see an overall drop in pressure along 
the hub surface from upstream to downstream of the stator. The change in 
average pressure from the inlet to the outlet is calculated to be 3.29 kPa.

Outflow
outlet

Inner
cylinder

wall

Rotationally
periodic 2

Rotationally
periodic 1

Suction
surface

Pressure
surface

Velocity
inlet

Outer
cylinder

wall

V

xz

y

FIGURE 15–58
Three-dimensional computational 
domain defined by one flow passage 
through two stator vanes for N 5 10 
(angle between vanes 5 368). The 
computational domain volume is 
defined between the pressure and 
suction surfaces of the stator vanes, 
between the inner and outer cylinder 
walls, and from the inlet to the outlet. 
Two pairs of rotationally periodic 
boundary conditions are defined as 
shown.
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FIGURE 15–59
Pressure contour plot produced by 
three-dimensional CFD calculations 
of stationary turbulent flow through a 
stator vane flow passage. Pressure is 
shown in N/m2 on the vane surfaces 
and the inner cylinder wall (the hub). 
Outlines of the inlet and outlet are also 
shown for clarity. Although only one 
flow passage is modeled in the CFD 
calculations, we duplicate the image 
circumferentially around the x-axis 
nine times to visualize the entire stator 
flow field. In this image, high pressures 
(as on the pressure surfaces of the 
vanes) are red, while low pressures 
(as on the suction surfaces of the vanes, 
especially near the hub) are blue.
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 To compare our three-dimensional results directly with the two-dimensional 
approximation, we run one additional two-dimensional case at the average 
blade spacing, s 5 savg 5 23.6 cm. A comparison between the two- and three-
dimensional cases is shown in Table 15–4. From the three-dimensional calcu-
lation, the net axial force on one stator vane is FD 5 183 N. We compare this 
to the two-dimensional value by converting to force per unit depth (force 
per unit span of the stator vane). Since the stator vane spans 0.25 m, FD /b 5
(183 N)/(0.25 m) 5 732 N/m. The corresponding two-dimensional value 
from Table 15–4 is FD /b 5 724 N/m, so the agreement is very good (> 1 
percent difference). The average speed at the outlet of the three-dimensional 
domain is Vavg 5 84.7 m/s, almost identical to the two-dimensional value of 
84.8 m/s in Table 15–4. The two-dimensional approximation differs by less 
than 1 percent. Finally, the average outlet flow angle bavg obtained from our 
full three-dimensional calculation is 53.38, which easily meets the design cri-
terion of 458. We compare this to the two-dimensional approximation of 53.98 
in Table 15–4; the agreement is again around 1 percent.
 Contours of tangential velocity component at the outlet of the computational 
domain are plotted in Fig. 15–60. We see that the tangential velocity distribution 
is not uniform; it decreases as we move radially outward from hub to tip as we 
should expect, since blade spacing s increases from hub to tip. We also find (not 
shown here) that the outflow pressure increases radially from hub to tip. This 
also agrees with our intuition, since we know that a radial pressure gradient is 
required to sustain a tangential flow—the pressure rise with increasing radius 
provides the centripetal acceleration necessary to turn the flow about the x-axis.
 Another comparison can be made between the three-dimensional and two-
dimensional calculations by plotting vorticity contours in a slice through the 

TABLE 15–4

CFD results for flow through a 

stator vane flow passage: the two-

dimensional cascade approximation 

at the average blade spacing, 

(s 5 savg 5 23.6 cm) is compared 

to the full three-dimensional 

calculation*

 2-D,

 s 5 23.6 cm Full 3-D

bavg 53.98 53.38
Vavg, m/s 84.8 84.7

FD /b, N/m 724 732

* Values are shown to three significant digits.
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FIGURE 15–60
Tangential velocity contour plot 

produced by three-dimensional CFD 
calculations of stationary turbulent 

flow through a stator vane flow 
passage. The tangential velocity 

component is shown in m/s at the 
outlet of the computational domain 

(and also on the vane surfaces, where 
the velocity is zero). An outline of 

the inlet to the computational domain 
is also shown for clarity. Although 

only one flow passage is modeled, we 
duplicate the image circumferentially 

around the x-axis nine times to 
visualize the entire stator flow field. 
In this image, the tangential velocity 
ranges from 0 (blue) to 90 m/s (red).
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Outlet
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FIGURE 15–61
Vorticity contour plots produced by 
three-dimensional stationary turbulent 
CFD calculations of flow through a 
stator vane flow passage: (a) a slice 
near the hub or root of the vanes and 
(b) a slice near the tip of the vanes. 
Contours of z-vorticity are plotted, 
since the faces are nearly perpendicular 
to the z-axis. In these images, blue 
regions (as in the upper half of the 
wake and in the flow separation zone) 
represent negative (clockwise) 
z-vorticity, while red regions 
(as in the lower half of the wake) 
represent positive (counterclockwise) 
z-vorticity. Near the hub, there is no 
sign of flow separation, but near the 
tip, there is some indication of flow 
separation near the trailing edge of 
the suction side of the vane. Also 
shown are arrows indicating how the 
periodic boundary condition works. 
Flow leaving the bottom of the 
periodic boundary enters at the same 
speed and direction into the top of the 
periodic boundary. Outflow angle b is 
larger near the hub than near the tip 
of the stator vanes, because blade 
spacing s is smaller at the hub than at 
the tip, and also because of the mild 
flow separation near the tip.

computational domain within the flow passage between vanes. Two such slices 
are created—a slice close to the hub and a slice close to the tip, and vorticity 
contours are plotted in Fig. 15–61. In both slices, the vorticity is confined to 
the thin boundary layer and wake. There is no flow separation near the hub, 
but we see that near the tip, the flow has just begun to separate on the suction 
surface near the trailing edge of the stator vane. Notice that the air leaves the 
trailing edge of the vane at a steeper angle at the hub than at the tip. This also 
agrees with our two-dimensional approximation (and our intuition), since blade 
spacing s at the hub (15.7 cm) is smaller than s at the tip (31.4 cm).
 In conclusion, the approximation of this three-dimensional stator as a 
two-dimensional cascade of stator vanes turns out to be quite good overall, 
particularly for preliminary analysis. The discrepancy between the two- and 
three-dimensional calculations for gross flow features, such as force on the 
vane, outlet flow angle, etc., is around 1 percent or less for all reported quan-
tities. It is therefore no wonder that the two-dimensional cascade approach is 
such a popular approximation in turbomachinery design. The more detailed 
three-dimensional analysis gives us confidence that a stator with 10 vanes is 
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sufficient to meet the imposed design criteria for this axial-flow fan. How-
ever, our three-dimensional calculations have revealed a small separated 
region near the tip of the stator vane. It may be wise to apply some twist to 
the stator vanes (reduce the pitch angle or angle of attack toward the tip) in 
order to avoid this separation. (Twist is discussed in more detail in Chap. 14.) 
Alternatively, we can increase the number of stator vanes to 11 or 12 to 
hopefully eliminate flow separation at the vane tips.
 As a final comment on this example flow field, all the calculations were 
performed in a fixed coordinate system. Modern CFD codes contain options 
for modeling zones in the flow field with rotating coordinate systems so that 
similar analyses can be performed on rotor blades as well as on stator vanes.

15–4 ■  CFD WITH HEAT TRANSFER
By coupling the differential form of the energy equation with the equa-
tions of fluid motion, we can use a computational fluid dynamics code to 
calculate properties associated with heat transfer (e.g., temperature distri-
butions or rate of heat transfer from a solid surface to a fluid). Since the 
energy equation is a scalar equation, only one extra transport equation (typi-
cally for either temperature or enthalpy) is required, and the computational 
expense (CPU time and RAM requirements) is not increased significantly. 
Heat transfer capability is built into most commercially available CFD 
codes, since many practical problems in engineering involve both fluid flow 
and heat transfer. As mentioned previously, additional boundary conditions 
related to heat transfer need to be specified. At solid wall boundaries, we 
may specify either wall temperature Twall (K) or the wall heat flux q

.
wall (W/m2), 

defined as the rate of heat transfer per unit area from the wall to the fluid 
(but not both at the same time, as illustrated in Fig. 15–62). When we model 
a zone in a computational domain as a solid body that involves the gen-
eration of thermal energy via electric heating (as in electronic components) 
or chemical or nuclear reactions (as in nuclear fuel rods), we may instead 
specify the heat generation rate per unit volume g

.
 (W/m3) within the solid 

since the ratio of the total heat generation rate to the exposed surface area 
must equal the average wall heat flux. In that case, neither Twall nor q

.
wall is 

specified; both converge to values that match the specified heat generation 
rate. In addition, the temperature distribution inside the solid object itself can 
then be calculated. Other boundary conditions (such as those associated with 
radiation heat transfer) may also be applied in CFD codes.
 In this section we do not go into details about the equations of motion or 
the numerical techniques used to solve them. Rather, we show some basic 
examples that illustrate the capability of CFD to calculate practical flows of 
engineering interest that involve heat transfer.

Temperature Rise through 
a Cross-Flow Heat Exchanger
Consider flow of cool air through a series of hot tubes as sketched in 
Fig. 15–63. In heat exchanger terminology, this geometrical configuration 
is called a cross-flow heat exchanger. If the airflow were to enter horizon-
tally (a 5 0) at all times, we could cut the computational domain in half 

Fluid

Solid

(a)

Fluid

Solid

Twall
specified

Twall
computed

qwall
computed

(b)

.

qwall
specified

.

FIGURE 15–62
At a wall boundary, we may specify 

either (a) the wall temperature or 
(b) the wall heat flux, but not both, 

as this would be mathematically 
overspecified.

Computational domain

a

3D

D Translationally
periodic

Translationally
periodic

OutIn
3D

FIGURE 15–63
The computational domain (light blue 

shaded region) used to model turbulent 
flow through a cross-flow heat 

exchanger. Flow enters from the left 
at angle a from the horizontal.
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FIGURE 15–64
Close-up view of the structured grid 
near one of the cross-flow heat 
exchanger tubes. The grid is fine 
near the tube walls so that the wall 
boundary layer can be better resolved.

FIGURE 15–65
Temperature contour plots produced 
by CFD calculations of stationary 
turbulent flow through a cross-flow 
heat exchanger at a 5 08 with smooth 
tubes. Contours range from 300 K 
(blue) to 315 K (red) or higher (white). 
The average air temperature at the 
outlet increases by 5.51 K compared 
to the inlet air temperature. Note that 
although the calculations are 
performed in the computational 
domain of Fig. 15–63, the image is 
duplicated here three times for 
purposes of illustration.

and apply symmetry boundary conditions on the top and bottom edges of 
the domain (see Fig. 15–25). In the case under consideration, however, we 
allow the airflow to enter the computational domain at some angle (a Þ 0). 
Thus, we impose translationally periodic boundary conditions on the top 
and bottom edges of the domain as sketched in Fig. 15–63. We set the inlet 
air temperature to 300 K and the surface temperature of each tube to 500 K. 
The diameter of the tubes and the speed of the air are chosen such that the 
Reynolds number is approximately 1 3 105 based on tube diameter. The 
tube surfaces are assumed to be hydrodynamically smooth (zero roughness) 
in this first set of calculations. The hot tubes are staggered as sketched in 
Fig. 15–63 and are spaced three diameters apart both horizontally and verti-
cally. We assume two-dimensional stationary turbulent flow without gravity 
effects and set the turbulence intensity of the inlet air to 10 percent. We run 
two cases for comparison: a 5 0 and 108. Our goal is to see whether the 
heat transfer to the air is enhanced or inhibited by a nonzero value of a. 
Which case do you think will provide greater heat transfer?
 We generate a two-dimensional, multiblock, structured grid with very fine 
resolution near the tube walls as shown in Fig. 15–64, and we run the CFD 
code to convergence for both cases. Temperature contours are shown for the 
a 5 08 case in Fig. 15–65, and for the a 5 108 case in Fig. 15–66. The 
average rise of air temperature leaving the outlet of the control volume for 
the case with a 5 08 is 5.51 K, while that for a 5 108 is 5.65 K. Thus we 
conclude that the off-axis inlet flow leads to more effective heating of the air, 
although the improvement is only about 2.5 percent. We compute a third case 
(not shown) in which a 5 08 but the turbulence intensity of the incoming air 
is increased to 25 percent. This leads to improved mixing, and the average air 
temperature rise from inlet to outlet increases by about 6.5 percent to 5.87 K.
 Finally, we study the effect of rough tube surfaces. We model the tube 
walls as rough surfaces with a characteristic roughness height of 0.01 m 
(1 percent of cylinder diameter). Note that we had to coarsen the grid some-
what near each tube so that the distance from the center of the closest com-
putational cell to the wall is greater than the roughness height; otherwise the 
roughness model in the CFD code is unphysical. The flow inlet angle is set to 
a 5 08 for this case, and flow conditions are identical to those of Fig. 15–65. 
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Temperature contours are plotted in Fig. 15–67. Pure white regions in the con-
tour plot represent locations where the air temperature is greater than 315 K. 
The average air temperature rise from inlet to outlet is 14.48 K, a 163 percent 
increase over the smooth wall case at a 5 08. Thus we see that wall rough-
ness is a critical parameter in turbulent flows. This example provides some 
insight as to why the tubes in heat exchangers are often purposely roughened.

Cooling of an Array of Integrated Circuit Chips
In electronics equipment, instrumentation, and computers, electronic com-
ponents, such as integrated circuits (ICs or “chips”), resistors, transistors, 
diodes, and capacitors, are soldered onto printed circuit boards (PCBs). 
The PCBs are often stacked in rows as sketched in Fig. 15–68. Because 
many of these electronic components must dissipate heat, cooling air is 
often blown through the air gap between each pair of PCBs to keep the 
components from getting too hot. Consider the design of a PCB for an outer 
space application. Several identical PCBs are to be stacked as in Fig. 15–68. 
Each PCB is 10 cm high and 30 cm long, and the spacing between boards is 

FIGURE 15–66
Temperature contour plots produced 

by CFD calculations of stationary 
turbulent flow through a cross-flow 

heat exchanger at a 5 108 with smooth 
tubes. Contours range from 300 K 

(blue) to 315 K (red) or higher (white). 
The average air temperature at the 

outlet increases by 5.65 K compared 
to the inlet air temperature. Thus, 

off-axis inlet flow (a 5 108) yields a 
DT that is 2.5 percent higher than that 

for the on-axis inlet flow (a 5 08).

FIGURE 15–67
Temperature contour plots produced 

by CFD calculations of stationary 
turbulent flow through a cross-flow 

heat exchanger at a 5 08 with rough 
tubes (average wall roughness equal to 
1 percent of tube diameter; wall functions 

utilized in the CFD calculations). 
Contours range from 300 K (blue) to 

315 K (red) or higher (white). The 
average air temperature at the outlet 

increases by 14.48 K compared to the 
inlet air temperature. Thus, even this 

small amount of surface roughness 
yields a DT that is 163 percent higher 

than that for the case with smooth tubes.
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2.0 cm. Cooling air enters the gap between the PCBs at a speed of 2.60 m/s 
and a temperature of 308C. The electrical engineers must fit eight identical 
ICs on a 10 cm 3 15 cm portion of each board. Each of the ICs dissipates 
6.24 W of heat: 5.40 W from its top surface and 0.84 W from its sides. 
(There is assumed to be no heat transfer from the bottom of the chip to the 
PCB.) The rest of the components on the board have negligible heat trans-
fer compared to that from the eight ICs. To ensure adequate performance, 
the average temperature on the chip surface should not exceed 1508C, and 
the maximum temperature anywhere on the surface of the chip should not 
exceed 1808C. Each chip is 2.5 cm wide, 4.5 cm long, and 0.50 cm thick. 
The electrical engineers come up with two possible configurations of the 
eight chips on the PCB as sketched in Fig. 15–69: in the long configuration, 
the chips are aligned with their long dimension parallel to the flow, and 
in the short configuration, the chips are aligned with their short dimension 
parallel to the flow. The chips are staggered in both cases to enhance cool-
ing. We are to determine which arrangement leads to the lower maximum 
surface temperature on the chips, and whether the electrical engineers will 
meet the surface temperature requirements.
 For each configuration, we define a three-dimensional computational 
domain consisting of a single flow passage through the air gap between two 
PCBs (Fig. 15–70). We generate a structured hexagonal grid with 267,520 
cells for each configuration. The Reynolds number based on the 2.0 cm gap 
between boards is about 3600. If this were a simple two-dimensional chan-
nel flow, this Reynolds number would be barely high enough to establish 
turbulent flow. However, since the surfaces leading up to the velocity inlet 
are very rough, the flow is most likely turbulent. We note that low Reyn-
olds number turbulent flows are challenging for most turbulence models, 
since the models are calibrated at high Reynolds numbers. Nevertheless, we 
assume stationary turbulent flow and employ the k-e turbulence model with 
wall functions. While the absolute accuracy of these calculations may be 
suspect because of the low Reynolds number, comparisons between the long 
and short configurations should be reasonable. We ignore buoyancy effects 
in the calculations since this is a space application. The inlet is specified as 

PCB

IC

FIGURE 15–68
Four printed circuit boards (PCBs) 
stacked in rows, with air blown in 
between each PCB to provide cooling.

Long
configuration

Short
configuration

FIGURE 15–69
Two possible configurations of 
the eight ICs on the PCB: long 
configuration and short configuration. 
Without peeking ahead, which 
configuration do you think will offer 
the best cooling to the chips?
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FIGURE 15–70
Computational domains for the chip 

cooling example. Air flowing through 
the gap between two PCBs is modeled. 
Two separate grids are generated, one 

for the long configuration and one 
for the short configuration. Chips 1 
through 8 are labeled for reference. 
The surfaces of these chips transfer 

heat to the air; all other walls are 
adiabatic.

a velocity inlet (air) with V 5 2.60 m/s and T` 5 308C; we set the inlet 
turbulence intensity to 20 percent and the turbulent length scale to 1.0 mm. 
The outlet is a pressure outlet at zero gage pressure. The PCB is modeled 
as a smooth adiabatic wall (zero heat transfer from the wall to the air). The 
top and sides of the computational domain are also approximated as smooth 
adiabatic walls.
 Based on the given chip dimensions, the surface area of the top of a chip 
is 4.5 cm 3 2.5 cm 5 11.25 cm2. The total surface area of the four sides of 
the chip is 7.0 cm2. From the given heat transfer rates, we calculate the rate 
of heat transfer per unit area from the top surface of each chip,

q# top 5
5.4 W

11.25 cm2 5 0.48 W/cm2

So, we model the top surface of each chip as a smooth wall with a surface 
heat flux of 4800 W/m2 from the wall to the air. Similarly, the rate of heat 
transfer per unit area from the sides of each chip is

q
#
sides 5

0.84 W

7.0 cm2 5 0.12 W/cm2

Since the sides of the chip have electrical leads, we model each side sur-
face of each chip as a rough wall with an equivalent roughness height of 
0.50 mm and a surface heat flux of 1200 W/m2 from the wall to the air.
 The CFD code ANSYS-FLUENT is run for each case to convergence. 
Results are summarized in Table 15–5, and temperature contours are plot-
ted in Figs. 15–71 and 15–72. The average temperature on the top surfaces 
of the chips is about the same for either configuration (144.48C for the long 
case and 144.78C for the short case) and is below the recommended limit of 
1508C. There is more of a difference in average temperature on the side sur-
faces of the chips, however (84.28C for the long case and 91.48C for the short 
case), although these values are well below the limit. Of greatest concern are 
the maximum temperatures. For the long configuration, Tmax 5 187.58C and 
occurs on the top surface of chip 7 (the middle chip of the last row). For the 
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short configuration, Tmax 5 182.18C and occurs close to midboard on the top 
surfaces of chips 7 and 8 (the two chips in the last row). For both configura-
tions these values exceed the recommended limit of 1808C, although not by 
much. The short configuration does a better job at cooling the top surfaces 
of the chips, but at the expense of a slightly larger pressure drop and poorer 
cooling along the side surfaces of the chips.
 Notice from Table 15–5 that the average change in air temperature from 
inlet to outlet is identical for both configurations (7.838C). This should not 
be surprising, because the total rate of heat transferred from the chips to 
the air is the same regardless of chip configuration. In fact, in a CFD anal-
ysis it is wise to check values like this—if average DT were not the same 
between the two configurations, we would suspect some kind of error in our 
calculations.

TABLE 15–5

Comparison of CFD results for the chip cooling example, long 

and short configurations

 Long Short

Tmax, top surfaces of chips 187.58C 182.18C
Tavg, top surfaces of chips 144.58C 144.78C
Tmax, side surfaces of chips 154.08C 170.68C
Tavg, side surfaces of chips 84.28C 91.48C
Average DT, inlet to outlet 7.838C 7.838C
Average DP, inlet to outlet 25.14 Pa 25.58 Pa
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Tmax = 460.7 K

FIGURE 15–71
CFD results for the chip cooling 
example, long configuration: 
temperature contours as viewed from 
directly above the chip surfaces, 
with T values in K on the legend. 
The location of maximum surface 
temperature is indicated, it occurs near 
the end of chip 7. Red regions near 
the leading edges of chips 1, 2, and 3 
are also seen, indicating high surface 
temperatures at those locations.
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FIGURE 15–72
CFD results for the chip cooling 

example, short configuration: 
temperature contours as viewed from 
directly above the chip surfaces, with 

T values in K on the legend. The 
same temperature scale is used here 

as in Fig. 15–71. The locations of 
maximum surface temperature are 

indicated; they occur near the end of 
chips 7 and 8 near the center of the 
PCB. Red regions near the leading 

edges of chips 1 and 2 are also seen, 
indicating high surface temperatures 

at those locations.

 We point out many other interesting features of these flow fields. For 
either configuration, the average surface temperature on the downstream 
chips is greater than that on the upstream chips. This makes sense physi-
cally, since the first chips receive the coolest air, while those downstream 
are cooled by air that has already been warmed up somewhat. We notice 
that the front chips (1, 2, and 3 in the long configuration and 1 and 2 in 
the short configuration) have regions of high temperature just downstream 
of their leading edges. A close-up view of the temperature distribution on 
one of these chips is shown in Fig. 15–73a. Why is the temperature so 
high there? It turns out that the flow separates off the sharp corner at the 
front of the chip and forms a recirculating eddy called a separation bubble 
on the top of the chip (Fig. 15–73b). The air speed is slow in that region, 
especially along the reattachment line where the flow reattaches to the 
surface. The slow air speed leads to a local “hot spot” in that region of the 
chip surface since convective cooling is minimal there. Finally, we notice 
in Fig. 15–73a that downstream of the separation bubble, T increases down 
the chip surface. There are two reasons for this: (1) the air warms up as 
it travels down the chip, and (2) the boundary layer on the chip surface 
grows downstream. The larger the boundary layer thickness, the lower the 
air speed near the surface, and thus the lower the amount of convective 
cooling at the surface.
 In summary, our CFD calculations have predicted that the short configura-
tion leads to a lower value of maximum temperature on the chip surfaces 
and appears at first glance to be the preferred configuration for heat trans-
fer. However, the short configuration demands a higher pressure drop at the 
same volume flow rate (Table 15–5). For a given cooling fan, this additional 
pressure drop would shift the operating point of the fan to a lower volume 
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flow rate (Chap. 14), decreasing the cooling effect. It is not known whether 
this shift would be enough to favor the long configuration—more informa-
tion about the fan and more analysis would be required. The bottom line 
in either case is that there is not sufficient cooling to keep the chip surface 
temperature below 1808C everywhere on every chip. To rectify the situa-
tion, we recommend that the designers spread the eight hot chips over the 
entire PCB rather than in the limited 10 cm 3 15 cm area of the board. 
The increased space between chips should result in sufficient cooling for the 
given flow rate. Another option is to install a more powerful fan that would 
increase the speed of the inlet air.

15–5 ■  COMPRESSIBLE FLOW CFD CALCULATIONS
All the examples discussed in this chapter so far have been for incompress-
ible flow (r 5 constant). When the flow is compressible, density is no longer 
a constant, but becomes an additional variable in the equation set. We limit 
our discussion here to ideal gases. When we apply the ideal-gas law, we 
introduce yet another unknown, namely, temperature T. Hence, the energy 
equation must be solved along with the compressible forms of the equa-
tions of conservation of mass and conservation of momentum (Fig. 15–74). 
In addition, fluid properties, such as viscosity and thermal conductivity, are 
no longer necessarily treated as constants, since they are functions of tem-
perature; thus, they appear inside the derivative operators in the differen-
tial equations of Fig. 15–74. While the equation set looks ominous, many 
commercially available CFD codes are able to handle compressible flow 
problems, including shock waves.
 When solving compressible flow problems with CFD, the boundary con-
ditions are somewhat different than those of incompressible flow. For exam-
ple, at a pressure inlet we need to specify both stagnation pressure and static 
pressure, along with stagnation temperature. A special boundary condition 
(called pressure far field in ANSYS-FLUENT) is also available for com-
pressible flows. With this boundary condition, we specify the Mach number, 
the static pressure, and the temperature; it can be applied to both inlets and 
outlets and is well-suited for supersonic external flows.
 The equations of Fig. 15–74 are for laminar flow, whereas many com-
pressible flow problems occur at high flow speeds in which the flow is 
turbulent. Therefore, the equations of Fig. 15–74 must be modified accord-
ingly (into the RANS equation set) to include a turbulence model, and more 
transport equations must be added, as discussed previously. The equations 
then get quite long and complicated and are not included here. Fortunately, 
in many situations, we can approximate the flow as inviscid, eliminating the 
viscous terms from the equations of Fig. 15–74 (the Navier–Stokes equation 
reduces to the Euler equation). As we shall see, the inviscid flow approxi-
mation turns out to be quite good for many practical high-speed flows, since 
the boundary layers along walls are very thin at high Reynolds numbers. In 
fact, compressible CFD calculations can predict flow features that are often 
quite difficult to obtain experimentally. For example, many experimental 
measurement techniques require optical access, which is limited in three-
dimensional flows, and even in some axisymmetric flows. CFD is not lim-
ited in this way.

Chip 2, long configuration

Cooling air

Region of
high T

Approximate
location of

reattachment line

Separation bubble

(a)

(b)

FIGURE 15–73
(a) Close-up top view of temperature 
contours on the surface of chip 2 of 
the long configuration. The region 
of high temperature is outlined. 
Temperature contour levels are the 
same as in Fig. 15–71. (b) An even 
closer view (an edge view) of 
streamlines outlining the separation 
bubble in that region. The approximate 
location of the reattachment line on 
the chip surface is also shown.
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FIGURE 15–74
The equations of motion for the case of steady, compressible, laminar flow of a Newtonian fluid in Cartesian coordinates. 

There are six equations and six unknowns: r, u, v, w, T, and P. Five of the equations are nonlinear partial differential 
equations, while the ideal-gas law is an algebraic equation. R is the specific ideal-gas constant, l is the second 

coefficient of viscosity, often set equal to 22m/3; cp is the specific heat at constant pressure; k is the thermal conductivity; 
b is the coefficient of thermal expansion, and F is the dissipation function, given by White (2005) as
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Compressible Flow through 
a Converging–Diverging Nozzle
For our first example, we consider compressible flow of air through an 
axisymmetric converging–diverging nozzle. The computational domain is 
shown in Fig. 15–75. The inlet radius is 0.10 m, the throat radius is 0.075 m, 
and the outlet radius is 0.12 m. The axial distance from the inlet to the 
throat is 0.30 m—the same as the axial distance from the throat to the out-
let. A structured grid with approximately 12,000 quadrilateral cells is used 
in the calculations. At the pressure inlet boundary, the stagnation pressure 
P0, inlet is set to 220 kPa (absolute), the static pressure Pinlet is set to 210 kPa, 
and the stagnation temperature T0, inlet is set to 300 K. For the first case, we 
set the static pressure Pb at the pressure outlet boundary to 50.0 kPa 
(Pb/P0, inlet 5 0.227)—low enough that the flow is supersonic through the 
entire diverging section of the nozzle, without any normal shocks in the 
nozzle. This back pressure ratio corresponds to a value between cases E and 
F in Fig. 12–22, in which a complex shock pattern occurs downstream of the 
nozzle exit; these shock waves do not influence the flow in the nozzle itself, 
since the flow exiting the nozzle is supersonic. We do not attempt to model 
the flow downstream of the nozzle exit.

Pressure
inlet

Pressure
outlet

Wall

Axis

FIGURE 15–75
Computational domain for 

compressible flow through a 
converging–diverging nozzle. Since 
the flow is axisymmetric, only one 

two-dimensional slice is needed for 
the CFD solution.

879-938_cengel_ch15.indd   923 12/20/12   12:23 PM



924
COMPUTATIONAL FLUID DYNAMICS

 The CFD code is run to convergence in its steady, inviscid, compressible 
flow mode. The average values of the Mach number Ma and pressure ratio 
P/P0, inlet are calculated at 25 axial locations along the converging–diverging 
nozzle (every 0.025 m) and are plotted in Fig. 15–76a. The results match 
almost perfectly with the predictions of one-dimensional isentropic flow 
(Chap. 12). At the throat (x 5 0.30 m), the average Mach number is 0.997, 
and the average value of P/P0, inlet is 0.530. One-dimensional isentropic flow 
theory predicts Ma 5 1 and P/P0, inlet 5 0.528 at the throat. The small dis-
crepancies between CFD and theory are due to the fact that the computed 
flow is not one-dimensional, since there is a radial velocity component and, 
therefore, a radial variation of the Mach number and static pressure. Care-
ful examination of the Mach number contour lines of Fig. 15–76b reveal 
that they are curved, not straight as would be predicted by one-dimensional 
isentropic theory. The sonic line (Ma 5 1) is identified for clarity in the 
figure. Although Ma 5 1 right at the wall of the throat, sonic conditions 
along the axis of the nozzle are not reached until somewhat downstream of 
the throat.
 Next, we run a series of cases in which back pressure Pb is varied, while 
keeping all other boundary conditions fixed. Results for three cases are 

Ma

Ma

P
P0, inlet

P/P0, inlet

0.6 

0.5

0.3

0.4
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0.1
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0.8

0.7

0.0

0.5
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FIGURE 15–76
CFD results for steady, adiabatic, 
inviscid compressible flow through an 
axisymmetric converging–diverging 
nozzle: (a) calculated average Mach 
number and pressure ratio at 25 axial 
locations (circles), compared to 
predictions from isentropic, one-
dimensional compressible flow theory 
(solid lines); (b) Mach number 
contours, ranging from Ma 5 0.3 
(blue) to 2.7 (red). Although only the 
top half is calculated, a mirror image 
about the x-axis is shown for clarity. 
The sonic line (Ma 5 1) is also 
highlighted. It is parabolic rather than 
straight in this axisymmetric flow due 
to the radial component of velocity, 
as discussed in Schreier (1982).
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Shock

(a)

Shock

(b)

(c)

Shock

FIGURE 15–77
CFD results for steady, adiabatic, 

inviscid, compressible flow through 
a converging-diverging nozzle: 

contours of stagnation pressure ratio 
P0 /P0, inlet are shown for Pb /P0, inlet 5 

(a) 0.455; (b) 0.682; and (c) 0.909. 
Since stagnation pressure is constant 
upstream of the shock and decreases 

suddenly across the shock, it serves as 
a convenient indicator of the location 

and strength of the normal shock in 
the nozzle. In these contour plots, 

P0 /P0, inlet ranges from 0.5 (blue) to 
1.01 (red). It is clear from the colors

downstream of the shock that the 
farther downstream the shock, 
the stronger the shock (larger 

magnitude of stagnation pressure 
drop across the shock). We also note 

the shape of the shocks—curved 
rather than straight, because of the 

radial component of velocity.

shown in Fig. 15–77: Pb 5 (a) 100, (b) 150, and (c) 200 kPa, i.e., Pb/P0, inlet 5
(a) 0.455, (b) 0.682, and (c) 0.909, respectively. For all three cases, a nor-
mal shock occurs in the diverging portion of the nozzle. Furthermore, as 
back pressure increases, the shock moves upstream toward the throat, and 
decreases in strength. Since the flow is choked at the throat, the mass flow 
rate is identical in all three cases (and also in the previous case shown in 
Fig. 15–76). We notice that the normal shock is not straight, but rather is 
curved due to the radial component of velocity, as previously mentioned.
 For case (b), in which Pb/P0, inlet 5 0.682, the average values of the 
Mach number and pressure ratio P/P0, inlet are calculated at 25 axial loca-
tions along the converging–diverging nozzle (every 0.025 m), and are 
plotted in Fig. 15–78. For comparison with theory, the one-dimensional 
isentropic flow relations are used upstream and downstream of the shock, 
and the normal shock relations are used to calculate the pressure jump across 
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the shock (Chap. 12). To match the specified back pressure, one-dimensional 
analysis requires that the normal shock be located at x 5 0.4436 m, account-
ing for the change in both P0 and A* across the shock. The agreement between 
CFD calculations and one-dimensional theory is again excellent. The small 
discrepancy in both the pressure and the Mach number just downstream of 
the shock is attributed to the curved shape of the shock (Fig. 15–77b), as 
discussed previously. In addition, the shock in the CFD calculations is not 
infinitesimally thin, as predicted by one-dimensional theory, but is spread 
out over a few computational cells. The latter inaccuracy can be reduced 
somewhat by refining the grid in the area of the shock wave (not shown).
 The previous CFD calculations are for steady, inviscid, adiabatic flow. 
When there are no shock waves (Fig. 15–76), the flow is also isentropic, 
since it is both adiabatic and reversible (no irreversible losses). However, 
when a shock wave exists in the flow field (Fig. 15–77), the flow is no lon-
ger isentropic since there are irreversible losses across the shock, although it 
is still adiabatic.
 One final CFD case is run in which two additional irreversibilities are 
included, namely, friction and turbulence. We modify case (b) of Fig. 15–77 
by running a steady, adiabatic, turbulent case using the k-e turbulence model 
with wall functions. The turbulence intensity at the inlet is set to 10 percent 
with a turbulence length scale of 0.050 m. A contour plot of P/P0, inlet is 
shown in Fig. 15–79, using the same color contour scale as in Fig. 15–77. 
Comparison of Figs. 15–77b and 15–79 reveals that the shock wave for the 
turbulent case occurs further upstream and is therefore somewhat weaker. 
In addition, the stagnation pressure is small in a very thin region along 
the channel walls. This is due to frictional losses in the thin boundary 
layer. Turbulent and viscous irreversibilities in the boundary layer region 
are responsible for this decrease in stagnation pressure. Furthermore, 
the boundary layer separates just downstream of the shock, leading to more 
irreversibilities. A close-up view of velocity vectors in the vicinity of the 
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FIGURE 15–78
Mach number and pressure ratio as 
functions of axial distance along a 
converging–diverging nozzle for the 
case in which Pb /P0, inlet 5 0.682. 
Averaged CFD results at 25 axial 
locations (circles) for steady, inviscid, 
adiabatic, compressible flow are 
compared to predictions from 
one-dimensional compressible 
flow theory (solid lines).
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Shock

Boundary layer
irreversibilities

Flow separation

FIGURE 15–79
CFD results for stationary, adiabatic, 
turbulent, compressible flow through 

a converging–diverging nozzle. 
Contours of stagnation pressure ratio 
P0 /P0,inlet are shown for the case with 

Pb /P0, inlet 5 0.682, the same back 
pressure and color scale as that of 
Fig. 15–77b. Flow separation and 

irreversibilities in the boundary layer 
are identified.

Shock

FIGURE 15–80
Close-up view of velocity vectors and 

stagnation pressure contours in the 
vicinity of the separated flow region 

of Fig. 15–79. The sudden decrease in 
velocity magnitude across the shock 
is seen, as is the reverse flow region 

downstream of the shock.

y

x
u

Pressure
far field

Wedge 
(wall)

Symmetry

FIGURE 15–81
Computational domain and boundary 
conditions for compressible flow over 

a wedge of half-angle u. Since the 
flow is symmetric about the x-axis, 

only the upper half is modeled in the 
CFD analysis.

separation point along the wall is shown in Fig. 15–80. We note that this case 
does not converge well and is inherently unsteady; the interaction between 
shock waves and boundary layers is a very difficult task for CFD. Because 
we use wall functions, flow details within the turbulent boundary layer are 
not resolved in this CFD calculation. Experiments reveal, however, that the 
shock wave interacts much more significantly with the boundary layer, pro-
ducing “l-feet,” as discussed in the Application Spotlight of Chap. 12.
 Finally, we compare the mass flow rate for this viscous, turbulent case to 
that of the inviscid case, and find that m

.
 has decreased by about 0.7 percent. 

Why? As discussed in Chap. 10, a boundary layer along a wall impacts 
the outer flow such that the wall appears to be thicker by an amount equal 
to the displacement thickness d*. The effective throat area is thus reduced 
somewhat by the presence of the boundary layer, leading to a reduction in 
mass flow rate through the converging–diverging nozzle. The effect is small 
in this example since the boundary layers are so thin relative to the dimen-
sions of the nozzle, and it turns out that the inviscid approximation is quite 
good (less than one percent error).

Oblique Shocks over a Wedge
For our final compressible flow example, we model steady, adiabatic, two-
dimensional, inviscid, compressible flow of air over a wedge of half-angle u 
(Fig. 15–81). Since the flow has top–bottom symmetry, we model only the 
upper half of the flow and use a symmetry boundary condition along the 
bottom edge. We run three cases: u 5 10, 20, and 308, at an inlet Mach 
number of 2.0. CFD results are shown in Fig. 15–82 for all three cases. In 
the CFD plots, a mirror image of the computational domain is projected 
across the line of symmetry for clarity.
 For the 108 case (Fig. 15–82a), a straight oblique shock originating at the 
apex of the wedge is observed, as also predicted by inviscid theory. The 
flow turns across the oblique shock by 108 so that it is parallel to the wedge 
wall. The shock angle b predicted by inviscid theory is 39.318, and the pre-
dicted Mach number downstream of the shock is 1.64. Measurements with 
a protractor on Fig. 15–82a yield b > 408, and the CFD calculation of the 
Mach number downstream of the shock is 1.64; the agreement with theory 
is thus excellent.
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 For the 208 case (Fig. 15–82b), the CFD calculations yield a Mach 
number of 1.21 downstream of the shock. The shock angle measured from 
the CFD calculations is about 548. Inviscid theory predicts a Mach number 
of 1.21 and a shock angle of 53.48, so again the agreement between theory 
and CFD is excellent. Since the shock for the 208 case is at a steeper angle 
(closer to a normal shock), it is stronger than the shock for the 108 case, as 
indicated by the redder coloring in the Mach contours downstream of the 
shock for the 208 case.
 At Mach number 2.0 in air, inviscid theory predicts that a straight oblique 
shock can form up to a maximum wedge half-angle of about 238 (Chap. 12). 
At wedge half-angles greater than this, the shock must move upstream of 
the wedge (become detached), forming a detached shock, which takes the 
shape of a bow wave (Chap. 12). The CFD results at u 5 308 (Fig. 15–82c) 
show that this is indeed the case. The portion of the detached shock just 
upstream of the leading edge is a normal shock, and thus the flow down-
stream of that portion of the shock is subsonic. As the shock curves back-
ward, it becomes progressively weaker, and the Mach number downstream 
of the shock increases, as indicated by the coloring.

15–6 ■  OPEN-CHANNEL FLOW CFD CALCULATIONS
So far, all our examples have been for one single-phase fluid (air or water). 
However, many commercially available CFD codes can handle flow of a 
mixture of gases (e.g., carbon monoxide in air), flow with two phases of the 
same fluid (e.g., steam and liquid water), and even flow of two fluids of dif-
ferent phase (e.g., liquid water and gaseous air). The latter case is of interest 
in this section, namely, the flow of water with a free surface, above which is 
gaseous air, i.e., open-channel flow. We present here some simple examples 
of CFD solutions of open-channel flows.

u =10°
b

(a)

Ma2Ma1

Oblique
shock

(b)

u = 20°

Ma2Ma1

b

Oblique
shock

(c)

u = 30°

Ma1 Ma2

Detached
shock

FIGURE 15–82
CFD results (Mach number contours) for steady, adiabatic, inviscid, compressible flow at Ma1 5 2.0 over a wedge 
of half-angle u 5 (a) 108, (b) 208, and (c) 308. The Mach number contours range from Ma 5 0.2 (blue) to 2.0 (red) 
in all cases. For the two smaller wedge half-angles, an attached weak oblique shock forms at the leading edge of the 
wedge, but for the 308 case, a detached shock (bow wave) forms ahead of the wedge. Shock strength increases with u, 
as indicated by the color change downstream of the shock as u increases.
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Pressure
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FIGURE 15–83
Computational domain for steady, 
incompressible, two-dimensional 

flow of water over a bump along the 
bottom of a channel, with boundary 
conditions identified. Two fluids are 

modeled in the flow field—liquid 
water and air above the free surface 
of the water. Liquid depth yinlet and 

inlet speed Vinlet are specified.

(a)

(b)

(c)

FIGURE 15–84
CFD results for incompressible, two-

dimensional flow of water over a 
bump along the channel bottom. 

Phase contours are plotted, where 
blue indicates liquid water and 

white indicates gaseous air: 
(a) subcritical-to-subcritical, 

(b) supercritical-to-supercritical, 
and (c) subcritical-to-supercritical.

Flow over a Bump on the Bottom of a Channel
Consider a two-dimensional channel with a flat, horizontal bottom. At a certain 
location along the bottom of the channel, there is a smooth bump, 1.0 m 
long and 0.10 m high at its center (Fig. 15–83). The velocity inlet is split 
into two parts—the lower part for liquid water and the upper part for air. 
In the CFD calculations, the inlet velocity of both the air and the water is 
specified as Vinlet. The water depth at the inlet of the computational domain 
is specified as yinlet, but the location of the water surface in the rest of the 
domain is calculated. The flow is modeled as inviscid.
 We consider cases with both subcritical and supercritical inlets (Chap. 13). 
Results from the CFD calculations are shown in Fig. 15–84 for three cases 
for comparison. For the first case (Fig. 15–84a), yinlet is specified as 0.30 m, 
and  Vinlet is specified as 0.50 m/s. The corresponding Froude number is cal-
culated to be

Froude number: Fr 5
V inlet"gy inlet

5
0.50 m/s"(9.81 m/s2)(0.30 m)

5 0.291

Since Fr , 1, the flow at the inlet is subcritical, and the liquid surface dips 
slightly above the bump (Fig. 15–84a). The flow remains subcritical down-
stream of the bump, and the liquid surface height slowly rises back to its 
prebump level. The flow is thus subcritical everywhere.
 For the second case (Fig. 15–84b), yinlet is specified as 0.50 m, and Vinlet is 
specified as 4.0 m/s. The corresponding Froude number is calculated to be 
1.81. Since Fr . 1, the flow at the inlet is supercritical, and the liquid sur-
face rises above the bump (Fig. 15–84b). Far downstream, the liquid depth 
returns to 0.50 m, and the average velocity returns to 4.0 m/s, yielding Fr 5 
1.81—the same as at the inlet. Thus, this flow is supercritical everywhere.
 Finally, we show results for a third case (Fig. 15–84c) in which the flow 
entering the channel is subcritical (yinlet 5 0.50 m, Vinlet 5 1.0 m/s, and 
Fr 5 0.452). In this case, the water surface dips downward over the bump, 
as expected for subcritical flow. However, on the downstream side of the 
bump, youtlet 5 0.25 m, Voutlet 5 2.0 m/s, and Fr 5 1.28. Thus, this flow 
starts subcritical, but changes to supercritical downstream of the bump. 
If the domain had extended further downstream, we would likely see a 
hydraulic jump that would bring the Froude number back below unity 
(subcritical).
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FIGURE 15–85
Computational domain for steady, 
incompressible, two-dimensional flow 
of water through a sluice gate, with 
boundary conditions identified. Two 
fluids are modeled in the flow field—
liquid water, and air above the free 
surface of the water. Liquid depth yinlet 
and inlet speed Vinlet are specified.

Sluice gate Hydraulic jump

(b)

(a)

FIGURE 15–86
CFD results for incompressible, two-
dimensional flow of water through a 
sluice gate in an open channel. Phase 
contours are plotted, where blue 
indicates liquid water and white 
indicates gaseous air: (a) overall view 
of the sluice gate and hydraulic jump, 
and (b) close-up view of the hydraulic 
jump. The flow is highly unsteady, and 
these are instantaneous snapshots at an 
arbitrary time.

Flow through a Sluice Gate (Hydraulic Jump)
As a final example, we consider a two-dimensional channel with a flat, 
horizontal bottom, but this time with a sluice gate (Fig. 15–85). The water 
depth at the inlet of the computational domain is specified as yinlet, and the 
inlet flow velocity is specified as Vinlet. The bottom of the sluice gate is at 
distance a from the channel bottom. The flow is modeled as inviscid.
 We run the CFD code with yinlet 5 12.0 m and Vinlet 5 0.833 m/s, yield-
ing an inlet Froude number of Frinlet 5 0.0768 (subcritical). The bottom of 
the sluice gate is at a 5 0.125 m from the channel bottom. Results from the 
CFD calculations are shown in Fig. 15–86. After the water passes under 
the sluice gate, its average velocity increases to 12.8 m/s, and its depth 
decreases to y 5 0.78 m. Thus, Fr 5 4.63 (supercritical) downstream of the 
sluice gate and upstream of the hydraulic jump. Some distance downstream, 
we see a hydraulic jump in which the average water depth increases to 
y 5 3.54 m, and the average water velocity decreases to 2.82 m/s. The Froude 
number downstream of the hydraulic jump is thus Fr 5 0.478 (subcritical). 
We notice that the downstream water depth is significantly lower than that 
upstream of the sluice gate, indicating relatively large dissipation through 
the hydraulic jump and a corresponding decrease in the specific energy of 
the flow (Chap. 13). The analogy between specific energy loss through a 
hydraulic jump in open-channel flow and stagnation pressure loss through a 
shock wave in compressible flow is reinforced.
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FIGURE 15–88
Computer simulation of fluid motions 
within the stomach (velocity vectors) 

from peristaltic antral contraction 
waves (Fig. 15–87), and the release 

of a drug (red trail) from an extended 
release tablet (red circle).

Developed by Anupam Pal and James Brasseur. 
Used by permission.

Guest Authors: James G. Brasseur and Anupam Pal, 
The Pennsylvania State University

The mechanical function of the stomach (called gastric “motility”) is central to 
proper nutrition, reliable drug delivery, and many gastric dysfunctions such 
as gastroparesis. Figure 15–87 shows a magnetic resonance image (MRI) 
of the stomach. The stomach is a mixer, a grinder, a storage chamber, and 
a sophisticated pump that controls the release of liquid and solid gastric con-
tent into the small intestines where nutrient uptake occurs. Nutrient release 
is controlled by the opening and closing of a valve at the end of the stomach 
(the pylorus) and the time variations in pressure difference between the stom-
ach and duodenum. Gastric pressure is controlled by muscle tension over the 
stomach wall and peristaltic contraction waves that pass through the antrum 
(Fig. 15–87). These antral peristaltic contraction waves also break down food 
particles and mix material within the stomach, both food and drugs. It is cur-
rently impossible, however, to measure the mixing fluid motions in the human 
stomach. The MRI, for example, gives only an outline of special magnetized 
fluid within the stomach. In order to study these invisible fluid motions and 
their effects, we have developed a computer model of the stomach using com-
putational fluid dynamics.
 The mathematics underlying our computational model is derived from 
the laws of fluid mechanics. The model is a way of extending MRI mea-
surements of time-evolving stomach geometry to the fluid motions within. 
Whereas computer models cannot describe the full complexity of gastric 
physiology, they have the great advantage of allowing controlled systematic 
variation of parameters, so sensitivities that cannot be measured experimen-
tally can be studied computationally. Our virtual stomach applies a numeri-
cal method called the “lattice Boltzmann” algorithm that is well suited to 
fluid flows in complex geometries, and the boundary conditions are obtained 
from MRI data. In Fig. 15–88 we predict the motions, breakdown, and 
mixing of 1-cm-size extended-release drug tablets in the stomach. In this 
numerical experiment the drug tablet is denser than the surrounding highly 
viscous meal. We predict that the antral peristaltic waves generate recirculat-
ing eddies and retropulsive “jets” within the stomach, which in turn generate 
high shear stresses that wear away the tablet surface and release the drug. 
The drug then mixes by the same fluid motions that release the drug. We 
find that gastric fluid motions and mixing depend on the details of the time 
variations in stomach geometry and pylorus.
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APPLICATION SPOTLIGHT ■ A Virtual Stomach

FIGURE 15–87
Magnetic resonance image of the 

human stomach in vivo at one instant 
in time showing peristaltic (i.e., 

propagating) contraction waves (CW) 
in the end region of the stomach (the 

antrum). The pylorus is a sphincter, or 
valve, that allows nutrients into the 

duodenum (small intestines).
Developed by Anupam Pal and James Brasseur. 

Used by permission.

Antral CW
Antrum

Pylorus

879-938_cengel_ch15.indd   931 12/20/12   12:23 PM



932
COMPUTATIONAL FLUID DYNAMICS

SUMMARY

Although neither as ubiquitous as spreadsheets, nor as easy 
to use as mathematical solvers, computational fluid dynam-
ics codes are continually improving and are becoming more 
commonplace. Once the realm of specialized scientists who 
wrote their own codes and used supercomputers, commer-
cial CFD codes with numerous features and user-friendly 
interfaces can now be obtained for personal computers at 
a reasonable cost and are available to engineers of all dis-
ciplines. As shown in this chapter, however, a poor grid, 
improper choice of laminar versus turbulent flow, inappro-
priate boundary conditions, and/or any of a number of other 
miscues can lead to CFD solutions that are physically incor-
rect, even though the colorful graphical output always looks 
pretty. Therefore, it is imperative that CFD users be well 
grounded in the fundamentals of fluid mechanics in order to 
avoid erroneous answers from a CFD simulation. In addi-
tion, appropriate comparisons should be made to experi-
mental data whenever possible to validate CFD predictions. 
Bearing these cautions in mind, CFD has enormous potential 
for diverse applications involving fluid flows.
 We show examples of both laminar and turbulent CFD solu-
tions. For incompressible laminar flow, computational fluid 
dynamics does an excellent job, even for unsteady flows with 
separation. In fact, laminar CFD solutions are “exact” to the 
extent that they are limited by grid resolution and boundary 
conditions. Unfortunately, many flows of practical engineering 
interest are turbulent, not laminar. Direct numerical simu-
lation (DNS) has great potential for simulation of complex 
turbulent flow fields, and algorithms for solving the equations of 
motion (the three-dimensional continuity and Navier–Stokes 
equations) are well established. However, resolution of all 

the fine scales of a high Reynolds number complex turbulent 
flow requires computers that are orders of magnitude faster 
than today’s fastest machines. It will be decades before com-
puters advance to the point where DNS is useful for practical 
engineering problems. In the meantime, the best we can do is 
employ turbulence models, which are semi-empirical transport 
equations that model (rather than solve) the increased mixing 
and diffusion caused by turbulent eddies. When running CFD 
codes that utilize turbulence models, we must be careful that 
we have a fine-enough mesh and that all boundary conditions 
are properly applied. In the end, however, regardless of how 
fine the mesh, or how valid the boundary conditions, turbulent 
CFD results are only as good as the turbulence model used. 
Nevertheless, while no turbulence model is universal (applica-
ble to all turbulent flows), we obtain reasonable performance 
for many practical flow simulations.
 We also demonstrate in this chapter that CFD can yield 
useful results for flows with heat transfer, compressible 
flows, and open-channel flows. In all cases, however, users 
of CFD must be careful that they choose an appropriate 
computational domain, apply proper boundary conditions, 
generate a good grid, and use the proper models and approx-
imations. As computers continue to become faster and more 
powerful, CFD will take on an ever-increasing role in design 
and analysis of complex engineering systems.
 We have only scratched the surface of computational fluid 
dynamics in this brief chapter. In order to become proficient 
and competent at CFD, you must take advanced courses of 
study in numerical methods, fluid mechanics, turbulence, 
and heat transfer. We hope that, if nothing else, this chapter 
has spurred you on to further study of this exciting topic.
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PROBLEMS*

Fundamentals, Grid Generation, and Boundary 
Conditions

15–1C  A CFD code is used to solve a two-dimensional (x 
and y), incompressible, laminar flow without free surfaces. 
The fluid is Newtonian. Appropriate boundary conditions are 
used. List the variables (unknowns) in the problem, and list 
the corresponding equations to be solved by the computer.

15–2C  Write a brief (a few sentences) definition and 
description of each of the following, and provide example(s) 
if helpful: (a) computational domain, (b) mesh, (c) transport 
equation, (d) coupled equations.

15–3C  What is the difference between a node and an interval 
and how are they related to cells? In Fig. P15–3C, how many 
nodes and how many intervals are on each edge?

of the cylinder only. Explain why the downstream edge of 
the computational domain should be further from the cylinder 
than the upstream edge.

FIGURE P15–3C

BC to be specified
on this edge

FIGURE P15–10C

15–4C  For the two-dimensional computational domain of 
Fig. P15–3C, with the given node distribution, sketch a sim-
ple structured grid using four-sided cells and sketch a simple 
unstructured grid using three-sided cells. How many cells are 
in each? Discuss.

15–5C  For the two-dimensional computational domain 
of Fig. P15–3C, with the given node distribution, sketch a 
simple structured grid using four-sided cells and sketch a 
simple unstructured polyhedral grid using at least one of 
each: 3-sided, 4-sided, and 5-sided cells. Try to avoid large 
skewness. Compare the cell count for each case and discuss 
your results.

15–6C  Summarize the eight steps involved in a typical 
CFD analysis of a steady, laminar flow field.

15–7C  Suppose you are using CFD to simulate flow 
through a duct in which there is a circular cylinder as 
in Fig. P15–7C. The duct is long, but to save computer 
resources you choose a computational domain in the vicinity 

Computational domain

In Out

FIGURE P15–7C

15–8C  Write a brief (a few sentences) discussion about the 
significance of each of the following in regards to an iterative 
CFD solution: (a) initial conditions, (b) residual, (c) iteration, 
(d) postprocessing.

15–9C  Briefly discuss how each of the following is used by 
CFD codes to speed up the iteration process: (a) multigrid-
ding and (b) artificial time.

15–10C  Of the boundary conditions discussed in this chap-
ter, list all the boundary conditions that may be applied to 
the right edge of the two-dimensional computational domain 
sketched in Fig. P15–10C. Why can’t the other boundary 
conditions be applied to this edge?

15–11C  What is the standard method to test for adequate 
grid resolution when using CFD?

15–12C  What is the difference between a pressure inlet and 
a velocity inlet boundary condition? Explain why you cannot 
specify both pressure and velocity at a velocity inlet bound-
ary condition or at a pressure inlet boundary condition.

15–13C  An incompressible CFD code is used to simulate 
the flow of air through a two-dimensional rectangular chan-
nel (Fig. P15–13C). The computational domain consists of 
four blocks, as indicated. Flow enters block 4 from the upper 
right and exits block 1 to the left as shown. Inlet velocity V 
is known and outlet pressure Pout is also known. Label the 
boundary conditions that should be applied to every edge of 
every block of this computational domain.

* Problems designated by a “C” are concept questions, and students 

are encouraged to answer them all. Problems designated by an “E” 

are in English units, and the SI users can ignore them. Additional 

CFD problems are posted on the text website.
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15–14C  Consider Prob. 15–13C again, except let the 
boundary condition on the common edge between blocks 1 
and 2 be a fan with a specified pressure rise from right to 
left across the fan. Suppose an incompressible CFD code is 
run for both cases (with and without the fan). All else being 
equal, will the pressure at the inlet increase or decrease? 
Why? What will happen to the velocity at the outlet? Explain.

15–15C  List six boundary conditions that are used with 
CFD to solve incompressible fluid flow problems. For each 
one, provide a brief description and give an example of how 
that boundary condition is used.

15–16  A CFD code is used to simulate flow over a two-
dimensional airfoil at an angle of attack. A portion of the 
computational domain near the airfoil is outlined in Fig. P15–16 
(the computational domain extends well beyond the region 
outlined by the dashed line). Sketch a coarse structured grid 
using four-sided cells and sketch a coarse unstructured grid 
using three-sided cells in the region shown. Be sure to cluster 
the cells where appropriate. Discuss the advantages and 
disadvantages of each grid type.

also known. Generate the blocking for a structured grid using 
four-sided blocks, and sketch a coarse grid using four-sided 
cells, being sure to cluster cells near walls. Also be careful to 
avoid highly skewed cells. Label the boundary conditions that 
should be applied to every edge of every block of your com-
putational domain. (Hint: Six to seven blocks are sufficient.)

FIGURE P15–16

15–17  For the airfoil of Prob. 15–16, sketch a coarse hybrid 
grid and explain the advantages of such a grid.

15–18  An incompressible CFD code is used to simulate the 
flow of water through a two-dimensional rectangular channel 
in which there is a circular cylinder (Fig. P15–18). A time-
averaged turbulent flow solution is generated using a turbu-
lence model. Top–bottom symmetry about the cylinder is 
assumed. Flow enters from the left and exits to the right as 
shown. Inlet velocity V is known, and outlet pressure Pout is 

V

In Out Pout

FIGURE P15–18

Pout

InV Out

FIGURE P15–19

15–19  An incompressible CFD code is used to simulate 
the flow of gasoline through a two-dimensional rectangular 
channel in which there is a large circular settling chamber 
(Fig. P15–19). Flow enters from the left and exits to the right 
as shown. A time-averaged turbulent flow solution is gen-
erated using a turbulence model. Top–bottom symmetry is 
assumed. Inlet velocity V is known, and outlet pressure Pout is 
also known. Generate the blocking for a structured grid using 
four-sided blocks, and sketch a coarse grid using four-sided 
cells, being sure to cluster cells near walls. Also be careful 
to avoid highly skewed cells. Label the boundary conditions 
that should be applied to every edge of every block of your 
computational domain.

Block 1

Block 2

Block 3

Block 4
In

Out

V
Pout

FIGURE P15–13C

15–20  Redraw the structured multiblock grid of Fig. 15–12b 
for the case in which your CFD code can handle only elemen-
tary blocks. Renumber all the blocks and indicate how many 
i- and j-intervals are contained in each block. How many ele-
mentary blocks do you end up with? Add up all the cells, and 
verify that the total number of cells does not change.

15–21  Suppose your CFD code can handle nonelementary 
blocks. Combine as many blocks of Fig. 15–12b as you can. 
The only restriction is that in any one block, the number of 
i-intervals and the number of j-intervals must be constants. 
Show that you can create a structured grid with only three 
nonelementary blocks. Renumber all the blocks and indicate 
how many i- and j-intervals are contained in each block. Add 
up all the cells and verify that the total number of cells does 
not change.
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15–22  A new heat exchanger is being designed with the 
goal of mixing the fluid downstream of each stage as thor-
oughly as possible. Anita comes up with a design whose 
cross section for one stage is sketched in Fig. P15–22. The 
geometry extends periodically up and down beyond the region 
shown here. She uses several dozen rectangular tubes inclined 
at a high angle of attack to ensure that the flow separates and 
mixes in the wakes. The performance of this geometry is to 
be tested using two-dimensional time-averaged CFD simula-
tions with a turbulence model, and the results will be com-
pared to those of competing geometries. Sketch the simplest 
possible computational domain that can be used to simulate 
this flow. Label and indicate all boundary conditions on your 
diagram. Discuss. 15–26  Sketch a structured multiblock grid with four-

sided elementary blocks for the computational domain of 
Prob. 15–25. Each block is to have four-sided structured cells, 
but you do not have to sketch the grid, just the block topology. 
Try to make all the blocks as rectangular as possible to avoid 
highly skewed cells in the corners. Assume that the CFD code 
requires that the node distribution on periodic pairs of edges 
be identical (the two edges of a periodic pair are “linked” in 
the grid generation process). Also assume that the CFD code 
does not allow a block’s edges to be split for application of 
boundary conditions.

General CFD Problems*

15–27  Consider the two-dimensional wye of Fig. P15–27. 
Dimensions are in meters, and the drawing is not to scale. 
Incompressible flow enters from the left, and splits into two 
parts. Generate three coarse grids, with identical node distribu-
tions on all edges of the computational domain: (a) structured 
multiblock grid, (b) unstructured triangular grid, and (c) unstruc-
tured quadrilateral grid. Compare the number of cells in each 
case and comment about the quality of the grid in each case.

FIGURE P15–22

15–23  Sketch a coarse structured multiblock grid with four-
sided elementary blocks and four-sided cells for the computa-
tional domain of Prob. 15–22.

15–24  Anita runs a CFD code using the computational 
domain and grid developed in Probs. 15–22 and 15–23. 
Unfortunately, the CFD code has a difficult time converging 
and Anita realizes that there is reverse flow at the outlet (far 
right edge of the computational domain). Explain why there 
is reverse flow, and discuss what Anita should do to correct 
the problem.

15–25  As a follow-up to the heat exchanger design of 
Prob. 15–22, suppose Anita’s design is chosen based on the 
results of a preliminary single-stage CFD analysis. Now she is 
asked to simulate two stages of the heat exchanger. The second 
row of rectangular tubes is staggered and inclined oppositely 
to that of the first row to promote mixing (Fig. P15–25). 
The geometry extends periodically up and down beyond the 
region shown here. Sketch a computational domain that can 
be used to simulate this flow. Label and indicate all boundary 
conditions on your diagram. Discuss.

FIGURE P15–25

* These problems require CFD software, although not any particular 

brand. Students must do the following problems “from scratch,” 

including generation of an appropriate mesh.

15–28  Choose one of the grids generated in Prob. 15–27, 
and run a CFD solution for laminar flow of air with a uniform 
inlet velocity of 0.02 m/s. Set the outlet pressure at both out-
lets to the same value, and calculate the pressure drop through 

(2, 1)(0, 1)

(0, 0) (5, 0)

(5, 0.5)

(4.5, 3.5)

(2.5, 0.5)

(5, 3)

FIGURE P15–27
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15–36  Repeat Prob. 15–35, except create a three-dimensional 
room, with an air supply and an air return in the ceiling. 
Compare the two-dimensional results of Prob. 15–35 with 
the more realistic three-dimensional results of this problem. 
Discuss.

15–37  Generate a computational domain to study compress-
ible flow of air through a converging nozzle with atmospheric 
pressure at the nozzle exit (Fig. P15–37). The nozzle walls 
may be approximated as inviscid (zero shear stress). Run 
several cases with various values of inlet pressure. How much 
inlet pressure is required to choke the flow? What happens if 
the inlet pressure is higher than this value? Discuss.

the wye. Also calculate the percentage of the inlet flow that 
goes out of each branch. Generate a plot of streamlines.

15–29  Repeat Prob. 15–28, except for turbulent flow of air 
with a uniform inlet velocity of 10.0 m/s. In addition, set the 
turbulence intensity at the inlet to 10 percent with a turbulent 
length scale of 0.5 m. Use the k-e turbulence model with wall 
functions. Set the outlet pressure at both outlets to the same 
value, and calculate the pressure drop through the wye. Also 
calculate the percentage of the inlet flow that goes out of 
each branch. Generate a plot of streamlines. Compare results 
with those of laminar flow (Prob. 15–28).

15–30  Generate a computational domain to study the lami-
nar boundary layer growing on a flat plate at Re 5 10,000. 
Generate a very coarse mesh, and then continually refine the 
mesh until the solution becomes grid independent. Discuss.

15–31  Repeat Prob. 15–30, except for a turbulent boundary 
layer at Re 5 106. Discuss.

15–32  Generate a computational domain to study ventila-
tion in a room (Fig. P15–32). Specifically, generate a rectan-
gular room with a velocity inlet in the ceiling to model the 
supply air, and a pressure outlet in the ceiling to model the 
return air. You may make a two-dimensional approximation 
for simplicity (the room is infinitely long in the direction nor-
mal to the page in Fig. P15–32). Use a structured rectangular 
grid. Plot streamlines and velocity vectors. Discuss.

Air supply Air return

FIGURE P15–32

15–38  Repeat Prob. 15–37, except remove the inviscid flow 
approximation. Instead, let the flow be turbulent, with smooth, 
no-slip walls. Compare your results to those of Prob. 15–37. 
What is the major effect of friction in this problem? Discuss.

15–39  Generate a computational domain to study incom-
pressible, laminar flow over a two-dimensional streamlined 
body (Fig. P15–39). Generate various body shapes, and cal-
culate the drag coefficient for each shape. What is the small-
est value of CD that you can achieve? (Note: For fun, this 
problem can be turned into a contest between students. Who 
can generate the lowest-drag body shape?)

15–40  Repeat Prob. 15–39, except for an axisymmetric, 
rather than a two-dimensional, body. Compare to the two-
dimensional case. For the same sectional slice shape, which 
has the lower drag coefficient? Discuss.

15–33  Repeat Prob. 15–32, except use an unstructured trian-
gular grid, keeping everything else the same. Do you get the 
same results as those of Prob. 15–32? Compare and discuss.

15–34  Repeat Prob. 15–32, except move the supply and/or 
return vents to various locations in the ceiling. Compare and 
discuss.

15–35  Choose one of the room geometries of Probs. 15–32 
and 15–34, and add the energy equation to the calculations. 
In particular, model a room with air-conditioning, by specify-
ing the supply air as cool (T 5 188C), while the walls, floor, 
and ceiling are warm (T 5 268C). Adjust the supply air speed 
until the average temperature in the room is as close as pos-
sible to 228C. How much ventilation (in terms of number of 
room air volume changes per hour) is required to cool this 
room to an average temperature of 228C? Discuss.

Pressure
outlet

Pressure
inlet

FIGURE P15–37

Body

FD

V

FIGURE P15–39
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Ma

Bump

?

FIGURE P15–42

15–41  Repeat Prob. 15–40, except for turbulent, rather than 
laminar, flow. Compare to the laminar case. Which has the 
lower drag coefficient? Discuss.

15–42  Generate a computational domain to study Mach 
waves in a two-dimensional supersonic channel (Fig. P15–42). 
Specifically, the domain should consist of a simple rectangu-
lar channel with a supersonic inlet (Ma 5 2.0), and with a 
very small bump on the lower wall. Using air with the invis-
cid flow approximation, generate a Mach wave, as sketched. 
Measure the Mach angle, and compare with theory (Chap. 12). 
Also discuss what happens when the Mach wave hits the oppo-
site wall. Does it disappear, or does it reflect, and if so, what 
is the reflection angle? Discuss.

(a) Discuss one way that Gerry could improve his computa-
tional domain and grid so that he would get the same results 
in approximately half the computer time.
(b) There may be a fundamental flaw in how Gerry has 
set up his computational domain. What is it? Discuss what 
should be different about Gerry’s setup.

15–43  Repeat Prob. 15–42, except for several values of the 
Mach number, ranging from 1.10 to 3.0. Plot the calculated 
Mach angle as a function of Mach number and compare to 
the theoretical Mach angle (Chap. 12). Discuss.

Review Problems

15–44C  For each statement, choose whether the statement 
is true or false, and discuss your answer briefly:
(a) The physical validity of a CFD solution always improves 
as the grid is refined.
(b) The x-component of the Navier–Stokes equation is an 
example of a transport equation.
(c) For the same number of nodes in a two-dimensional 
mesh, a structured grid typically has fewer cells than an 
unstructured triangular grid.
(d ) A time-averaged turbulent flow CFD solution is only as 
good as the turbulence model used in the calculations.

15–45C  In Prob. 15–19 we take advantage of top–bottom 
symmetry when constructing our computational domain and 
grid. Why can’t we also take advantage of the right–left sym-
metry in this exercise? Repeat the discussion for the case of 
potential flow.

15–46C  Gerry creates the computational domain sketched 
in Fig. P15–46C to simulate flow through a sudden contrac-
tion in a two-dimensional duct. He is interested in the time-
averaged pressure drop and the minor loss coefficient created 
by the sudden contraction. Gerry generates a grid and calcu-
lates the flow with a CFD code, assuming steady, turbulent, 
incompressible flow (with a turbulence model).

15–47C  Think about modern high-speed, large-memory 
computer systems. What feature of such computers lends itself 
nicely to the solution of CFD problems using a multiblock grid 
with approximately equal numbers of cells in each individual 
block? Discuss.

15–48C  What is the difference between multigridding and 
multiblocking? Discuss how each may be used to speed up a 
CFD calculation. Can these two be applied together?

15–49C  Suppose you have a fairly complex geometry and 
a CFD code that can handle unstructured grids with triangu-
lar cells. Your grid generation code can create an unstructured 
grid very quickly. Give some reasons why it might be wiser 
to take the time to create a multiblock structured grid instead. 
In other words, is it worth the effort? Discuss.

15–50  Generate a computational domain and grid, and 
calculate flow through the single-stage heat exchanger of 
Prob. 15–22, with the heating elements set at a 458 angle of 
attack with respect to horizontal. Set the inlet air temperature 
to 208C, and the wall temperature of the heating elements to 
1208C. Calculate the average air temperature at the outlet.

15–51  Repeat the calculations of Prob. 15–50 for several 
angles of attack of the heating elements, from 0 (horizon-
tal) to 908 (vertical). Use identical inlet conditions and wall 
conditions for each case. Which angle of attack provides the 
most heat transfer to the air? Specifically, which angle of 
attack yields the highest average outlet temperature?

15–52  Generate a computational domain and grid, and calcu-
late flow through the two-stage heat exchanger of Prob. 15–25, 
with the heating elements of the first stage set at a 458 angle of 
attack with respect to horizontal, and those of the second stage 
set to an angle of attack of 2458. Set the inlet air temperature 
to 208C, and the wall temperature of the heating elements to 
1208C. Calculate the average air temperature at the outlet.

15–53  Repeat the calculations of Prob. 15–52 for several 
angles of attack of the heating elements, from 0 (horizontal) 
to 908 (vertical). Use identical inlet conditions and wall 

OutIn

FIGURE P15–46C
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conditions for each case. Note that the second stage of heat-
ing elements should always be set to an angle of attack that 
is the negative of that of the first stage. Which angle of attack 
provides the most heat transfer to the air? Specifically, which 
angle of attack yields the highest average outlet temperature? 
Is this the same angle as calculated for the single-stage heat 
exchanger of Prob. 15–51? Discuss.

15–54  Generate a computational domain and grid, and cal-
culate stationary turbulent flow over a spinning circular 
cylinder (Fig. P15–54). In which direction is the side force on 
the body—up or down? Explain. Plot streamlines in the flow. 
Where is the upstream stagnation point?

15–57  For the slot flow of Prob. 15–56, change to laminar 
flow instead of inviscid flow, and recompute the flow field. 
Compare your results to the inviscid flow case and to the 
potential flow case of Chap. 10. Plot contours of vorticity. 
Where is the irrotational flow approximation appropriate? 
Discuss.

15–58  Generate a computational domain and grid, and cal-
culate the flow of air into a two-dimensional vacuum cleaner 
inlet (Fig. P15–58), using the inviscid flow approximation in 
the CFD code. Compare your results with those predicted in 
Chap. 10 for potential flow. Discuss.

V

v

D

FIGURE P15–54

15–55  For the spinning cylinder of Fig. P15–54, generate a 
dimensionless parameter for rotational speed relative to free-
stream speed (combine variables v, D, and V into a nondi-
mensional Pi group). Repeat the calculations of Prob. 15–54 
for several values of angular velocity v. Use identical inlet 
conditions for each case. Plot lift and drag coefficients as 
functions of your dimensionless parameter. Discuss.

15–56  Consider the flow of air into a two-dimensional slot 
along the floor of a large room, where the floor is coincident 
with the x-axis (Fig. P15–56). Generate an appropriate compu-
tational domain and grid. Using the inviscid flow approxima-
tion in the CFD code, calculate vertical velocity component y 
as a function of distance away from the slot along the y-axis. 
Compare with the potential flow results of Chap. 10 for flow 
into a line sink. Discuss.

15–59  For the vacuum cleaner of Prob. 15–58, change to 
laminar flow instead of inviscid flow, and recompute the flow 
field. Compare your results to the inviscid flow case and to 
the potential flow case of Chap. 10. Discuss.
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APPENDIX

* Most properties in the tables are obtained from the property database of EES, and the 

original sources are listed under the tables. Properties are often listed to more significant 

digits than the claimed accuracy for the purpose of minimizing accumulated round-off error 

in hand calculations and ensuring a close match with the results obtained with EES.
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TABLE A–1

Molar mass, gas constant, and ideal-gas specfic heats of some substances

 
Molar Mass Gas Constant

 Specific Heat Data at 258C

Substance M, kg /kmol R, kJ/kg·K* cp, kJ/kg·K cv, kJ/kg·K k 5 cp /cv

Air 28.97 0.2870 1.005 0.7180 1.400

Ammonia, NH3 17.03 0.4882 2.093 1.605 1.304

Argon, Ar 39.95 0.2081 0.5203 0.3122 1.667

Bromine, Br2 159.81 0.05202 0.2253 0.1732 1.300

Isobutane, C4H10 58.12 0.1430 1.663 1.520 1.094

n-Butane, C4H10 58.12 0.1430 1.694 1.551 1.092

Carbon dioxide, CO2 44.01 0.1889 0.8439 0.6550 1.288

Carbon monoxide, CO 28.01 0.2968 1.039 0.7417 1.400

Chlorine, Cl2 70.905 0.1173 0.4781 0.3608 1.325

Chlorodifluoromethane (R-22), CHClF2 86.47 0.09615 0.6496 0.5535 1.174

Ethane, C2H6 30.070 0.2765 1.744 1.468 1.188

Ethylene, C2H4 28.054 0.2964 1.527 1.231 1.241

Fluorine, F2 38.00 0.2187 0.8237 0.6050 1.362

Helium, He 4.003 2.077 5.193 3.116 1.667

n-Heptane, C7H16 100.20 0.08297 1.649 1.566 1.053

n-Hexane, C6H14 86.18 0.09647 1.654 1.558 1.062

Hydrogen, H2 2.016 4.124 14.30 10.18 1.405

Krypton, Kr 83.80 0.09921 0.2480 0.1488 1.667

Methane, CH4 16.04 0.5182 2.226 1.708 1.303

Neon, Ne 20.183 0.4119 1.030 0.6180 1.667

Nitrogen, N2 28.01 0.2968 1.040 0.7429 1.400

Nitric oxide, NO 30.006 0.2771 0.9992 0.7221 1.384

Nitrogen dioxide, NO2 46.006 0.1889 0.8060 0.6171 1.306

Oxygen, O2 32.00 0.2598 0.9180 0.6582 1.395

n-Pentane, C5H12 72.15 0.1152 1.664 1.549 1.074

Propane, C3H8 44.097 0.1885 1.669 1.480 1.127

Propylene, C3H6 42.08 0.1976 1.531 1.333 1.148

Steam, H2O 18.015 0.4615 1.865 1.403 1.329

Sulfur dioxide, SO2 64.06 0.1298 0.6228 0.4930 1.263

Tetrachloromethane, CCl4 153.82 0.05405 0.5415 0.4875 1.111

Tetrafluoroethane (R-134a), C2H2F4 102.03 0.08149 0.8334 0.7519 1.108

Trifluoroethane (R-143a), C2H3F3 84.04 0.09893 0.9291 0.8302 1.119

Xenon, Xe 131.30 0.06332 0.1583 0.09499 1.667

* The unit kJ/kg·K is equivalent to kPa·m3/kg·K. The gas constant is calculated from R 5 Ru /M, where Ru 5 8.31447 kJ/kmol·K is the universal gas constant 

and M is the molar mass.

Source: Specific heat values are obtained primarily from the property routines prepared by The National Institute of Standards and Technology (NIST), 

Gaithersburg, MD.
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TABLE A–2

Boiling and freezing point properties

 Boiling Data at 1 atm Freezing Data Liquid Properties

 Normal Latent Heat of  Latent Heat   Specific

 Boiling Vaporization Freezing of Fusion Temperature, Density Heat

Substance Point, 8C hfg, kJ/kg Point, 8C hif, kJ/kg 8C r, kg/m3 cp, kJ/kg·K

Ammonia 233.3 1357 277.7 322.4 233.3 682 4.43

     220 665 4.52

     0 639 4.60

     25 602 4.80

Argon 2185.9 161.6 2189.3 28 2185.6 1394 1.14

Benzene 80.2 394 5.5 126 20 879 1.72

Brine (20% sodium

chloride by mass) 103.9 — 217.4 — 20 1150 3.11

n-Butane 20.5 385.2 2138.5 80.3 20.5 601 2.31

Carbon dioxide 278.4* 230.5 (at 08C) 256.6  0 298 0.59

Ethanol 78.2 838.3 2114.2 109 25 783 2.46

Ethyl alcohol 78.6 855 2156 108 20 789 2.84

Ethylene glycol 198.1 800.1 210.8 181.1 20 1109 2.84

Glycerine 179.9 974 18.9 200.6 20 1261 2.32

Helium 2268.9 22.8 — — 2268.9 146.2 22.8

Hydrogen 2252.8 445.7 2259.2 59.5 2252.8 70.7 10.0

Isobutane 211.7 367.1 2160 105.7 211.7 593.8 2.28

Kerosene 204–293 251 224.9 — 20 820 2.00

Mercury 356.7 294.7 238.9 11.4 25 13,560 0.139

Methane 2161.5 510.4 2182.2 58.4 2161.5 423 3.49

     2100 301 5.79

Methanol 64.5 1100 297.7 99.2 25 787 2.55

Nitrogen 2195.8 198.6 2210 25.3 2195.8 809 2.06

     2160 596 2.97

Octane 124.8 306.3 257.5 180.7 20 703 2.10

Oil (light)     25 910 1.80

Oxygen 2183 212.7 2218.8 13.7 2183 1141 1.71

Petroleum — 230–384   20 640 2.0

Propane 242.1 427.8 2187.7 80.0 242.1 581 2.25

     0 529 2.53

     50 449 3.13

Refrigerant-134a 226.1 216.8 296.6 — 250 1443 1.23

     226.1 1374 1.27

     0 1295 1.34

     25 1207 1.43

Water 100 2257 0.0 333.7 0 1000 4.22

     25 997 4.18

     50 988 4.18

     75 975 4.19

     100 958 4.22

* Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature 

of carbon dioxide is the triple-point temperature of 256.58C.)
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TABLE A–3

Properties of saturated water

       
Volume

   
Enthalpy

 Specific Thermal  Prandtl 
Expansion Surface

 
Saturation

 Density 
of

 Heat Conductivity Dynamic Viscosity Number  
Coefficient Tension,

Temp. Pressure
 r, kg/m3 

Vaporization
 cp, J/kg·K k, W/m·K m, kg/m·s Pr 

b, 1/K N/m

T, 8C Psat, kPa Liquid Vapor hfg, kJ/kg Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

  0.01 0.6113 999.8 0.0048 2501 4217 1854 0.561 0.0171 1.792 3 1023 0.922 3 1025 13.5 1.00 20.068 3 1023 0.0756

  5 0.8721 999.9 0.0068 2490 4205 1857 0.571 0.0173 1.519 3 1023 0.934 3 1025 11.2 1.00 0.015 3 1023 0.0749

 10 1.2276 999.7 0.0094 2478 4194 1862 0.580 0.0176 1.307 3 1023 0.946 3 1025 9.45 1.00 0.733 3 1023 0.0742

 15 1.7051 999.1 0.0128 2466 4186 1863 0.589 0.0179 1.138 3 1023 0.959 3 1025 8.09 1.00 0.138 3 1023 0.0735

 20 2.339 998.0 0.0173 2454 4182 1867 0.598 0.0182 1.002 3 1023 0.973 3 1025 7.01 1.00 0.195 3 1023 0.0727

 25 3.169 997.0 0.0231 2442 4180 1870 0.607 0.0186 0.891 3 1023 0.987 3 1025 6.14 1.00 0.247 3 1023 0.0720

 30 4.246 996.0 0.0304 2431 4178 1875 0.615 0.0189 0.798 3 1023 1.001 3 1025 5.42 1.00 0.294 3 1023 0.0712

 35 5.628 994.0 0.0397 2419 4178 1880 0.623 0.0192 0.720 3 1023 1.016 3 1025 4.83 1.00 0.337 3 1023 0.0704

 40 7.384 992.1 0.0512 2407 4179 1885 0.631 0.0196 0.653 3 1023 1.031 3 1025 4.32 1.00 0.377 3 1023 0.0696

 45 9.593 990.1 0.0655 2395 4180 1892 0.637 0.0200 0.596 3 1023 1.046 3 1025 3.91 1.00 0.415 3 1023 0.0688

 50 12.35 988.1 0.0831 2383 4181 1900 0.644 0.0204 0.547 3 1023 1.062 3 1025 3.55 1.00 0.451 3 1023 0.0679

 55 15.76 985.2 0.1045 2371 4183 1908 0.649 0.0208 0.504 3 1023 1.077 3 1025 3.25 1.00 0.484 3 1023 0.0671

 60 19.94 983.3 0.1304 2359 4185 1916 0.654 0.0212 0.467 3 1023 1.093 3 1025 2.99 1.00 0.517 3 1023 0.0662

 65 25.03 980.4 0.1614 2346 4187 1926 0.659 0.0216 0.433 3 1023 1.110 3 1025 2.75 1.00 0.548 3 1023 0.0654

 70 31.19 977.5 0.1983 2334 4190 1936 0.663 0.0221 0.404 3 1023 1.126 3 1025 2.55 1.00 0.578 3 1023 0.0645

 75 38.58 974.7 0.2421 2321 4193 1948 0.667 0.0225 0.378 3 1023 1.142 3 1025 2.38 1.00 0.607 3 1023 0.0636

 80 47.39 971.8 0.2935 2309 4197 1962 0.670 0.0230 0.355 3 1023 1.159 3 1025 2.22 1.00 0.653 3 1023 0.0627

 85 57.83 968.1 0.3536 2296 4201 1977 0.673 0.0235 0.333 3 1023 1.176 3 1025 2.08 1.00 0.670 3 1023 0.0617

 90 70.14 965.3 0.4235 2283 4206 1993 0.675 0.0240 0.315 3 1023 1.193 3 1025 1.96 1.00 0.702 3 1023 0.0608

 95 84.55 961.5 0.5045 2270 4212 2010 0.677 0.0246 0.297 3 1023 1.210 3 1025 1.85 1.00 0.716 3 1023 0.0599

100 101.33 957.9 0.5978 2257 4217 2029 0.679 0.0251 0.282 3 1023 1.227 3 1025 1.75 1.00 0.750 3 1023 0.0589

110 143.27 950.6 0.8263 2230 4229 2071 0.682 0.0262 0.255 3 1023 1.261 3 1025 1.58 1.00 0.798 3 1023 0.0570

120 198.53 943.4 1.121 2203 4244 2120 0.683 0.0275 0.232 3 1023 1.296 3 1025 1.44 1.00 0.858 3 1023 0.0550

130 270.1 934.6 1.496 2174 4263 2177 0.684 0.0288 0.213 3 1023 1.330 3 1025 1.33 1.01 0.913 3 1023 0.0529

140 361.3 921.7 1.965 2145 4286 2244 0.683 0.0301 0.197 3 1023 1.365 3 1025 1.24 1.02 0.970 3 1023 0.0509

150 475.8 916.6 2.546 2114 4311 2314 0.682 0.0316 0.183 3 1023 1.399 3 1025 1.16 1.02 1.025 3 1023 0.0487

160 617.8 907.4 3.256 2083 4340 2420 0.680 0.0331 0.170 3 1023 1.434 3 1025 1.09 1.05 1.145 3 1023 0.0466

170 791.7 897.7 4.119 2050 4370 2490 0.677 0.0347 0.160 3 1023 1.468 3 1025 1.03 1.05 1.178 3 1023 0.0444

180 1,002.1 887.3 5.153 2015 4410 2590 0.673 0.0364 0.150 3 1023 1.502 3 1025 0.983 1.07 1.210 3 1023 0.0422

190 1,254.4 876.4 6.388 1979 4460 2710 0.669 0.0382 0.142 3 1023 1.537 3 1025 0.947 1.09 1.280 3 1023 0.0399

200 1,553.8 864.3 7.852 1941 4500 2840 0.663 0.0401 0.134 3 1023 1.571 3 1025 0.910 1.11 1.350 3 1023 0.0377

220 2,318 840.3 11.60 1859 4610 3110 0.650 0.0442 0.122 3 1023 1.641 3 1025 0.865 1.15 1.520 3 1023 0.0331

240 3,344 813.7 16.73 1767 4760 3520 0.632 0.0487 0.111 3 1023 1.712 3 1025 0.836 1.24 1.720 3 1023 0.0284

260 4,688 783.7 23.69 1663 4970 4070 0.609 0.0540 0.102 3 1023 1.788 3 1025 0.832 1.35 2.000 3 1023 0.0237

280 6,412 750.8 33.15 1544 5280 4835 0.581 0.0605 0.094 3 1023 1.870 3 1025 0.854 1.49 2.380 3 1023 0.0190

300 8,581 713.8 46.15 1405 5750 5980 0.548 0.0695 0.086 3 1023 1.965 3 1025 0.902 1.69 2.950 3 1023 0.0144

320 11,274 667.1 64.57 1239 6540 7900 0.509 0.0836 0.078 3 1023 2.084 3 1025 1.00 1.97  0.0099

340 14,586 610.5 92.62 1028 8240 11,870 0.469 0.110 0.070 3 1023 2.255 3 1025 1.23 2.43  0.0056

360 18,651 528.3 144.0  720 14,690 25,800 0.427 0.178 0.060 3 1023 2.571 3 1025 2.06 3.73  0.0019

374.14 22,090 317.0 317.0    0 —  —   —  — 0.043 3 1023 4.313 3 1025    0

Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m /r and a 5 k/rcp 5 n/Pr. The temperatures 0.018C, 

1008C, and 374.148C are the triple-, boiling-, and critical-point temperatures of water, respectively. The properties listed above (except the vapor density) 

can be used at any pressure with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg·8C for specific heat is equivalent to kJ/kg·K, and the unit W/m·8C for thermal conductivity is equivalent to W/m·K.

Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), 

pp. 1291–1322. Other data are obtained from various sources or calculated.
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TABLE A–4

Properties of saturated refrigerant-134a

       
Volume

   
Enthalpy

 Specific Thermal  Prandtl 
Expansion Surface

 
Saturation

 Density 
of

 Heat Conductivity Dynamic Viscosity Number  
Coefficient Tension,

Temp. Pressure
 r, kg/m3 

Vaporization
 cp, J/kg·K k, W/m·K m, kg/m·s Pr 

b, 1/K N/m

T, 8C P, kPa Liquid Vapor hfg, kJ/kg Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

 240 51.2 1418 2.773 225.9 1254 748.6 0.1101 0.00811 4.878 3 1024 2.550 3 1026 5.558 0.235 0.00205 0.01760

 235 66.2 1403 3.524 222.7 1264 764.1 0.1084 0.00862 4.509 3 1024 3.003 3 1026 5.257 0.266 0.00209 0.01682

 230 84.4 1389 4.429 219.5 1273 780.2 0.1066 0.00913 4.178 3 1024 3.504 3 1026 4.992 0.299 0.00215 0.01604

 225 106.5 1374 5.509 216.3 1283 797.2 0.1047 0.00963 3.882 3 1024 4.054 3 1026 4.757 0.335 0.00220 0.01527

 220 132.8 1359 6.787 213.0 1294 814.9 0.1028 0.01013 3.614 3 1024 4.651 3 1026 4.548 0.374 0.00227 0.01451

 215 164.0 1343 8.288 209.5 1306 833.5 0.1009 0.01063 3.371 3 1024 5.295 3 1026 4.363 0.415 0.00233 0.01376

 210 200.7 1327 10.04 206.0 1318 853.1 0.0989 0.01112 3.150 3 1024 5.982 3 1026 4.198 0.459 0.00241 0.01302

 25 243.5 1311 12.07 202.4 1330 873.8 0.0968 0.01161 2.947 3 1024 6.709 3 1026 4.051 0.505 0.00249 0.01229

 0 293.0 1295 14.42 198.7 1344 895.6 0.0947 0.01210 2.761 3 1024 7.471 3 1026 3.919 0.553 0.00258 0.01156

 5 349.9 1278 17.12 194.8 1358 918.7 0.0925 0.01259 2.589 3 1024 8.264 3 1026 3.802 0.603 0.00269 0.01084

 10 414.9 1261 20.22 190.8 1374 943.2 0.0903 0.01308 2.430 3 1024 9.081 3 1026 3.697 0.655 0.00280 0.01014

 15 488.7 1244 23.75 186.6 1390 969.4 0.0880 0.01357 2.281 3 1024 9.915 3 1026 3.604 0.708 0.00293 0.00944

 20 572.1 1226 27.77 182.3 1408 997.6 0.0856 0.01406 2.142 3 1024 1.075 3 1025 3.521 0.763 0.00307 0.00876

 25 665.8 1207 32.34 177.8 1427 1028 0.0833 0.01456 2.012 3 1024 1.160 3 1025 3.448 0.819 0.00324 0.00808

 30 770.6 1188 37.53 173.1 1448 1061 0.0808 0.01507 1.888 3 1024 1.244 3 1025 3.383 0.877 0.00342 0.00742

 35 887.5 1168 43.41 168.2 1471 1098 0.0783 0.01558 1.772 3 1024 1.327 3 1025 3.328 0.935 0.00364 0.00677

 40 1017.1 1147 50.08 163.0 1498 1138 0.0757 0.01610 1.660 3 1024 1.408 3 1025 3.285 0.995 0.00390 0.00613

 45 1160.5 1125 57.66 157.6 1529 1184 0.0731 0.01664 1.554 3 1024 1.486 3 1025 3.253 1.058 0.00420 0.00550

 50 1318.6 1102 66.27 151.8 1566 1237 0.0704 0.01720 1.453 3 1024 1.562 3 1025 3.231 1.123 0.00456 0.00489

 55 1492.3 1078 76.11 145.7 1608 1298 0.0676 0.01777 1.355 3 1024 1.634 3 1025 3.223 1.193 0.00500 0.00429

 60 1682.8 1053 87.38 139.1 1659 1372 0.0647 0.01838 1.260 3 1024 1.704 3 1025 3.229 1.272 0.00554 0.00372

 65 1891.0 1026 100.4 132.1 1722 1462 0.0618 0.01902 1.167 3 1024 1.771 3 1025 3.255 1.362 0.00624 0.00315

 70 2118.2 996.2 115.6 124.4 1801 1577 0.0587 0.01972 1.077 3 1024 1.839 3 1025 3.307 1.471 0.00716 0.00261

 75 2365.8 964 133.6 115.9 1907 1731 0.0555 0.02048 9.891 3 1025 1.908 3 1025 3.400 1.612 0.00843 0.00209

 80 2635.2 928.2 155.3 106.4 2056 1948 0.0521 0.02133 9.011 3 1025 1.982 3 1025 3.558 1.810 0.01031 0.00160

 85 2928.2 887.1 182.3 95.4 2287 2281 0.0484 0.02233 8.124 3 1025 2.071 3 1025 3.837 2.116 0.01336 0.00114

 90 3246.9 837.7 217.8 82.2 2701 2865 0.0444 0.02357 7.203 3 1025 2.187 3 1025 4.385 2.658 0.01911 0.00071

 95 3594.1 772.5 269.3 64.9 3675 4144 0.0396 0.02544 6.190 3 1025 2.370 3 1025 5.746 3.862 0.03343 0.00033

 100 3975.1 651.7 376.3 33.9 7959 8785 0.0322 0.02989 4.765 3 1025 2.833 3 1025 11.77 8.326 0.10047 0.00004

Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m/r and a 5 k/rcp 5 n/Pr. The properties listed here (except 

the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg·8C for specific heat is equivalent to kJ/kg·K, and the unit W/m·8C for thermal conductivity is equivalent to W/m·K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tillner-Roth and H. D. Baehr, “An International 

Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 

70 MPa,” J. Phys. Chem, Ref. Data, Vol. 23, No. 5, 1994; M. J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, “Viscosity and Thermal Conductivity of 

Halogenated Methane and Ethane Refrigerants,” IJR, Vol. 22, pp. 525–535, 1999; NIST REFPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, 

and A. P. Peskin, Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303, 1995).
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TABLE A–5

Properties of saturated ammonia

       Volume

   Enthalpy 
Specific Thermal  Prandtl

 Expansion Surface

 Saturation 
Density

 of 
Heat Conductivity Dynamic Viscosity Number 

 Coefficient Tension,

Temp. Pressure 
r, kg/m3

 Vaporization 
cp, J/kg·K k, W/m·K m, kg/m·s Pr

 b, 1/K N/m

T, 8C P, kPa Liquid Vapor hfg, kJ/kg Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

 240 71.66 690.2 0.6435 1389 4414 2242 — 0.01792 2.926 3 1024 7.957 3 1026 — 0.9955 0.00176 0.03565

 230 119.4 677.8 1.037 1360 4465 2322 — 0.01898 2.630 3 1024 8.311 3 1026 — 1.017 0.00185 0.03341

 225 151.5 671.5 1.296 1345 4489 2369 0.5968 0.01957 2.492 3 1024 8.490 3 1026 1.875 1.028 0.00190 0.03229

 220 190.1 665.1 1.603 1329 4514 2420 0.5853 0.02015 2.361 3 1024 8.669 3 1026 1.821 1.041 0.00194 0.03118

 215 236.2 658.6 1.966 1313 4538 2476 0.5737 0.02075 2.236 3 1024 8.851 3 1026 1.769 1.056 0.00199 0.03007

 210 290.8 652.1 2.391 1297 4564 2536 0.5621 0.02138 2.117 3 1024 9.034 3 1026 1.718 1.072 0.00205 0.02896

 25 354.9 645.4 2.886 1280 4589 2601 0.5505 0.02203 2.003 3 1024 9.218 3 1026 1.670 1.089 0.00210 0.02786

 0 429.6 638.6 3.458 1262 4617 2672 0.5390 0.02270 1.896 3 1024 9.405 3 1026 1.624 1.107 0.00216 0.02676

 5 516 631.7 4.116 1244 4645 2749 0.5274 0.02341 1.794 3 1024 9.593 3 1026 1.580 1.126 0.00223 0.02566

 10 615.3 624.6 4.870 1226 4676 2831 0.5158 0.02415 1.697 3 1024 9.784 3 1026 1.539 1.147 0.00230 0.02457

 15 728.8 617.5 5.729 1206 4709 2920 0.5042 0.02492 1.606 3 1024 9.978 3 1026 1.500 1.169 0.00237 0.02348

 20 857.8 610.2 6.705 1186 4745 3016 0.4927 0.02573 1.519 3 1024 1.017 3 1025 1.463 1.193 0.00245 0.02240

 25 1003 602.8 7.809 1166 4784 3120 0.4811 0.02658 1.438 3 1024 1.037 3 1025 1.430 1.218 0.00254 0.02132

 30 1167 595.2 9.055 1144 4828 3232 0.4695 0.02748 1.361 3 1024 1.057 3 1025 1.399 1.244 0.00264 0.02024

 35 1351 587.4 10.46 1122 4877 3354 0.4579 0.02843 1.288 3 1024 1.078 3 1025 1.372 1.272 0.00275 0.01917

 40 1555 579.4 12.03 1099 4932 3486 0.4464 0.02943 1.219 3 1024 1.099 3 1025 1.347 1.303 0.00287 0.01810

 45 1782 571.3 13.8 1075 4993 3631 0.4348 0.03049 1.155 3 1024 1.121 3 1025 1.327 1.335 0.00301 0.01704

 50 2033 562.9 15.78 1051 5063 3790 0.4232 0.03162 1.094 3 1024 1.143 3 1025 1.310 1.371 0.00316 0.01598

 55 2310 554.2 18.00 1025 5143 3967 0.4116 0.03283 1.037 3 1024 1.166 3 1025 1.297 1.409 0.00334 0.01493

 60 2614 545.2 20.48 997.4 5234 4163 0.4001 0.03412 9.846 3 1025 1.189 3 1025 1.288 1.452 0.00354 0.01389

 65 2948 536.0 23.26 968.9 5340 4384 0.3885 0.03550 9.347 3 1025 1.213 3 1025 1.285 1.499 0.00377 0.01285

 70 3312 526.3 26.39 939.0 5463 4634 0.3769 0.03700 8.879 3 1025 1.238 3 1025 1.287 1.551 0.00404 0.01181

 75 3709 516.2 29.90 907.5 5608 4923 0.3653 0.03862 8.440 3 1025 1.264 3 1025 1.296 1.612 0.00436 0.01079

 80 4141 505.7 33.87 874.1 5780 5260 0.3538 0.04038 8.030 3 1025 1.292 3 1025 1.312 1.683 0.00474 0.00977

 85 4609 494.5 38.36 838.6 5988 5659 0.3422 0.04232 7.645 3 1025 1.322 3 1025 1.338 1.768 0.00521 0.00876

 90 5116 482.8 43.48 800.6 6242 6142 0.3306 0.04447 7.284 3 1025 1.354 3 1025 1.375 1.871 0.00579 0.00776

 95 5665 470.2 49.35 759.8 6561 6740 0.3190 0.04687 6.946 3 1025 1.389 3 1025 1.429 1.999 0.00652 0.00677

 100 6257 456.6 56.15 715.5 6972 7503 0.3075 0.04958 6.628 3 1025 1.429 3 1025 1.503 2.163 0.00749 0.00579

Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m/r and a 5 k/rcp 5 n/Pr. The properties listed here (except 

the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg·8C for specific heat is equivalent to kJ/kg·K, and the unit W/m·8C for thermal conductivity is equivalent to W/m·K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Tillner-Roth, Harms-Watzenberg, and Baehr, “Eine 

neue Fundamentalgleichung fur Ammoniak,” DKV-Tagungsbericht 20:167–181, 1993; Liley and Desai, “Thermophysical Properties of Refrigerants,” ASHRAE, 

1993, ISBN 1-1883413-10-9.
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TABLE A–6

Properties of saturated propane

       Volume

   Enthalpy 
Specific Thermal  Prandtl

 Expansion Surface

 Saturation 
Density

 of 
Heat Conductivity Dynamic Viscosity Number 

 Coefficient Tension,

Temp. Pressure 
r, kg/m3

 Vaporization 
cp, J/kg·K k, W/m·K m, kg/m·s Pr

 b, 1/K N/m

T, 8C P, kPa Liquid Vapor hfg, kJ/kg Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

 2120 0.4053 664.7 0.01408 498.3 2003 1115 0.1802 0.00589 6.136 3 1024 4.372 3 1026 6.820 0.827 0.00153 0.02630

2110 1.157 654.5 0.03776 489.3 2021 1148 0.1738 0.00645 5.054 3 1024 4.625 3 1026 5.878 0.822 0.00157 0.02486

2100 2.881 644.2 0.08872 480.4 2044 1183 0.1672 0.00705 4.252 3 1024 4.881 3 1026 5.195 0.819 0.00161 0.02344

 290 6.406 633.8 0.1870 471.5 2070 1221 0.1606 0.00769 3.635 3 1024 5.143 3 1026 4.686 0.817 0.00166 0.02202

 280 12.97 623.2 0.3602 462.4 2100 1263 0.1539 0.00836 3.149 3 1024 5.409 3 1026 4.297 0.817 0.00171 0.02062

 270 24.26 612.5 0.6439 453.1 2134 1308 0.1472 0.00908 2.755 3 1024 5.680 3 1026 3.994 0.818 0.00177 0.01923

 260 42.46 601.5 1.081 443.5 2173 1358 0.1407 0.00985 2.430 3 1024 5.956 3 1026 3.755 0.821 0.00184 0.01785

 250 70.24 590.3 1.724 433.6 2217 1412 0.1343 0.01067 2.158 3 1024 6.239 3 1026 3.563 0.825 0.00192 0.01649

 240 110.7 578.8 2.629 423.1 2258 1471 0.1281 0.01155 1.926 3 1024 6.529 3 1026 3.395 0.831 0.00201 0.01515

 230 167.3 567.0 3.864 412.1 2310 1535 0.1221 0.01250 1.726 3 1024 6.827 3 1026 3.266 0.839 0.00213 0.01382

 220 243.8 554.7 5.503 400.3 2368 1605 0.1163 0.01351 1.551 3 1024 7.136 3 1026 3.158 0.848 0.00226 0.01251

 210 344.4 542.0 7.635 387.8 2433 1682 0.1107 0.01459 1.397 3 1024 7.457 3 1026 3.069 0.860 0.00242 0.01122

 0 473.3 528.7 10.36 374.2 2507 1768 0.1054 0.01576 1.259 3 1024 7.794 3 1026 2.996 0.875 0.00262 0.00996

 5 549.8 521.8 11.99 367.0 2547 1814 0.1028 0.01637 1.195 3 1024 7.970 3 1026 2.964 0.883 0.00273 0.00934

 10 635.1 514.7 13.81 359.5 2590 1864 0.1002 0.01701 1.135 3 1024 8.151 3 1026 2.935 0.893 0.00286 0.00872

 15 729.8 507.5 15.85 351.7 2637 1917 0.0977 0.01767 1.077 3 1024 8.339 3 1026 2.909 0.905 0.00301 0.00811

 20 834.4 500.0 18.13 343.4 2688 1974 0.0952 0.01836 1.022 3 1024 8.534 3 1026 2.886 0.918 0.00318 0.00751

 25 949.7 492.2 20.68 334.8 2742 2036 0.0928 0.01908 9.702 3 1025 8.738 3 1026 2.866 0.933 0.00337 0.00691

 30 1076 484.2 23.53 325.8 2802 2104 0.0904 0.01982 9.197 3 1025 8.952 3 1026 2.850 0.950 0.00358 0.00633

 35 1215 475.8 26.72 316.2 2869 2179 0.0881 0.02061 8.710 3 1025 9.178 3 1026 2.837 0.971 0.00384 0.00575

 40 1366 467.1 30.29 306.1 2943 2264 0.0857 0.02142 8.240 3 1025 9.417 3 1026 2.828 0.995 0.00413 0.00518

 45 1530 458.0 34.29 295.3 3026 2361 0.0834 0.02228 7.785 3 1025 9.674 3 1026 2.824 1.025 0.00448 0.00463

 50 1708 448.5 38.79 283.9 3122 2473 0.0811 0.02319 7.343 3 1025 9.950 3 1026 2.826 1.061 0.00491 0.00408

 60 2110 427.5 49.66 258.4 3283 2769 0.0765 0.02517 6.487 3 1025 1.058 3 1025 2.784 1.164 0.00609 0.00303

 70 2580 403.2 64.02 228.0 3595 3241 0.0717 0.02746 5.649 3 1025 1.138 3 1025 2.834 1.343 0.00811 0.00204

 80 3127 373.0 84.28 189.7 4501 4173 0.0663 0.03029 4.790 3 1025 1.249 3 1025 3.251 1.722 0.01248 0.00114

 90 3769 329.1 118.6 133.2 6977 7239 0.0595 0.03441 3.807 3 1025 1.448 3 1025 4.465 3.047 0.02847 0.00037

Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m/r and a 5 k/rcp 5 n/Pr. The properties listed here (except 

the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg·8C for specific heat is equivalent to kJ/kg·K, and the unit W/m·8C for thermal conductivity is equivalent to W/m·K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, “Fundamental Equations 

of State,” Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely, “Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and 

Normal Butane,” J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G.R. Somayajulu, “A Generalized Equation for Surface Tension from the Triple-Point to the 

Critical-Point,” International Journal of Thermophysics, Vol. 9, No. 4, 1988.
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TABLE A–7

Properties of liquids

         Volume

   Specific Thermal Thermal Dynamic Kinematic Prandtl Expansion

 Temp. Density Heat cp, Conductivity Diffusivity Viscosity Viscosity Number Coeff. 

 T, 8C r, kg/m3 J/kg·K k, W/m·K a, m2/s m, kg/m·s n, m2/s Pr b, 1/K

Methane (CH4)

 2160 420.2 3492 0.1863 1.270 3 1027 1.133 3 1024 2.699 3 1027 2.126 0.00352

 2150 405.0 3580 0.1703 1.174 3 1027 9.169 3 1025 2.264 3 1027 1.927 0.00391

 2140 388.8 3700 0.1550 1.077 3 1027 7.551 3 1025 1.942 3 1027 1.803 0.00444

 2130 371.1 3875 0.1402 9.749 3 1028 6.288 3 1025 1.694 3 1027 1.738 0.00520

 2120 351.4 4146 0.1258 8.634 3 1028 5.257 3 1025 1.496 3 1027 1.732 0.00637

 2110 328.8 4611 0.1115 7.356 3 1028 4.377 3 1025 1.331 3 1027 1.810 0.00841

 2100 301.0 5578 0.0967 5.761 3 1028 3.577 3 1025 1.188 3 1027 2.063 0.01282

 290 261.7 8902 0.0797 3.423 3 1028 2.761 3 1025 1.055 3 1027 3.082 0.02922

Methanol [CH3(OH)]

 20 788.4 2515 0.1987 1.002 3 1027 5.857 3 1024 7.429 3 1027 7.414 0.00118

 30 779.1 2577 0.1980 9.862 3 1028 5.088 3 1024 6.531 3 1027 6.622 0.00120

 40 769.6 2644 0.1972 9.690 3 1028 4.460 3 1024 5.795 3 1027 5.980 0.00123

 50 760.1 2718 0.1965 9.509 3 1028 3.942 3 1024 5.185 3 1027 5.453 0.00127

 60 750.4 2798 0.1957 9.320 3 1028 3.510 3 1024 4.677 3 1027 5.018 0.00132

 70 740.4 2885 0.1950 9.128 3 1028 3.146 3 1024 4.250 3 1027 4.655 0.00137

Isobutane (R600a)

 2100 683.8 1881 0.1383 1.075 3 1027 9.305 3 1024 1.360 3 1026 12.65 0.00142

 275 659.3 1970 0.1357 1.044 3 1027 5.624 3 1024 8.531 3 1027 8.167 0.00150

 250 634.3 2069 0.1283 9.773 3 1028 3.769 3 1024 5.942 3 1027 6.079 0.00161

 225 608.2 2180 0.1181 8.906 3 1028 2.688 3 1024 4.420 3 1027 4.963 0.00177

 0 580.6 2306 0.1068 7.974 3 1028 1.993 3 1024 3.432 3 1027 4.304 0.00199

 25 550.7 2455 0.0956 7.069 3 1028 1.510 3 1024 2.743 3 1027 3.880 0.00232

 50 517.3 2640 0.0851 6.233 3 1028 1.155 3 1024 2.233 3 1027 3.582 0.00286

 75 478.5 2896 0.0757 5.460 3 1028 8.785 3 1025 1.836 3 1027 3.363 0.00385

 100 429.6 3361 0.0669 4.634 3 1028 6.483 3 1025 1.509 3 1027 3.256 0.00628

Glycerin

 0 1276 2262 0.2820 9.773 3 1028 10.49 8.219 3 1023 84,101

 5 1273 2288 0.2835 9.732 3 1028 6.730 5.287 3 1023 54,327

 10 1270 2320 0.2846 9.662 3 1028 4.241 3.339 3 1023 34,561

 15 1267 2354 0.2856 9.576 3 1028 2.496 1.970 3 1023 20,570

 20 1264 2386 0.2860 9.484 3 1028 1.519 1.201 3 1023 12,671

 25 1261 2416 0.2860 9.388 3 1028 0.9934 7.878 3 1024 8,392

 30 1258 2447 0.2860 9.291 3 1028 0.6582 5.232 3 1024 5,631

 35 1255 2478 0.2860 9.195 3 1028 0.4347 3.464 3 1024 3,767

 40 1252 2513 0.2863 9.101 3 1028 0.3073 2.455 3 1024 2,697

Engine Oil (unused)

 0 899.0 1797 0.1469 9.097 3 1028 3.814 4.242 3 1023 46,636 0.00070

 20 888.1 1881 0.1450 8.680 3 1028 0.8374 9.429 3 1024 10,863 0.00070

 40 876.0 1964 0.1444 8.391 3 1028 0.2177 2.485 3 1024 2,962 0.00070

 60 863.9 2048 0.1404 7.934 3 1028 0.07399 8.565 3 1025 1,080 0.00070

 80 852.0 2132 0.1380 7.599 3 1028 0.03232 3.794 3 1025 499.3 0.00070

 100 840.0 2220 0.1367 7.330 3 1028 0.01718 2.046 3 1025 279.1 0.00070

 120 828.9 2308 0.1347 7.042 3 1028 0.01029 1.241 3 1025 176.3 0.00070

 140 816.8 2395 0.1330 6.798 3 1028 0.006558 8.029 3 1026 118.1 0.00070

 150 810.3 2441 0.1327 6.708 3 1028 0.005344 6.595 3 1026 98.31 0.00070

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
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TABLE A–8

Properties of liquid metals

         Volume

   Specific Thermal Thermal Dynamic Kinematic Prandtl Expansion

 Temp. Density Heat cp, Conductivity Diffusivity Viscosity Viscosity Number Coeff.

T, 8C r, kg/m3 J/kg·K k, W/m·K a, m2/s m, kg/m·s n, m2/s Pr b, 1/K

Mercury (Hg) Melting Point: 2398C

 0 13595 140.4 8.18200 4.287 3 1026 1.687 3 1023 1.241 3 1027 0.0289 1.810 3 1024

 25 13534 139.4 8.51533 4.514 3 1026 1.534 3 1023 1.133 3 1027 0.0251 1.810 3 1024

 50 13473 138.6 8.83632 4.734 3 1026 1.423 3 1023 1.056 3 1027 0.0223 1.810 3 1024

 75 13412 137.8 9.15632 4.956 3 1026 1.316 3 1023 9.819 3 1028 0.0198 1.810 3 1024

 100 13351 137.1 9.46706 5.170 3 1026 1.245 3 1023 9.326 3 1028 0.0180 1.810 3 1024

 150 13231 136.1 10.07780 5.595 3 1026 1.126 3 1023 8.514 3 1028 0.0152 1.810 3 1024

 200 13112 135.5 10.65465 5.996 3 1026 1.043 3 1023 7.959 3 1028 0.0133 1.815 3 1024

 250 12993 135.3 11.18150 6.363 3 1026 9.820 3 1024 7.558 3 1028 0.0119 1.829 3 1024

 300 12873 135.3 11.68150 6.705 3 1026 9.336 3 1024 7.252 3 1028 0.0108 1.854 3 1024

Bismuth (Bi) Melting Point: 2718C

 350 9969 146.0 16.28 1.118 3 1025 1.540 3 1023 1.545 3 1027 0.01381

 400 9908 148.2 16.10 1.096 3 1025 1.422 3 1023 1.436 3 1027 0.01310

 500 9785 152.8 15.74 1.052 3 1025 1.188 3 1023 1.215 3 1027 0.01154

 600 9663 157.3 15.60 1.026 3 1025 1.013 3 1023 1.048 3 1027 0.01022

 700 9540 161.8 15.60 1.010 3 1025 8.736 3 1024 9.157 3 1028 0.00906

Lead (Pb) Melting Point: 327 8C

 400 10506 158 15.97 9.623 3 1026 2.277 3 1023 2.167 3 1027 0.02252

 450 10449 156 15.74 9.649 3 1026 2.065 3 1023 1.976 3 1027 0.02048

 500 10390 155 15.54 9.651 3 1026 1.884 3 1023 1.814 3 1027 0.01879

 550 10329 155 15.39 9.610 3 1026 1.758 3 1023 1.702 3 1027 0.01771

 600 10267 155 15.23 9.568 3 1026 1.632 3 1023 1.589 3 1027 0.01661

 650 10206 155 15.07 9.526 3 1026 1.505 3 1023 1.475 3 1027 0.01549

 700 10145 155 14.91 9.483 3 1026 1.379 3 1023 1.360 3 1027 0.01434

Sodium (Na) Melting Point: 98 8C

 100 927.3 1378 85.84 6.718 3 1025 6.892 3 1024 7.432 3 1027 0.01106

 200 902.5 1349 80.84 6.639 3 1025 5.385 3 1024 5.967 3 1027 0.008987

 300 877.8 1320 75.84 6.544 3 1025 3.878 3 1024 4.418 3 1027 0.006751

 400 853.0 1296 71.20 6.437 3 1025 2.720 3 1024 3.188 3 1027 0.004953

 500 828.5 1284 67.41 6.335 3 1025 2.411 3 1024 2.909 3 1027 0.004593

 600 804.0 1272 63.63 6.220 3 1025 2.101 3 1024 2.614 3 1027 0.004202

Potassium (K) Melting Point: 64 8C

 200 795.2 790.8 43.99 6.995 3 1025 3.350 3 1024 4.213 3 1027 0.006023

 300 771.6 772.8 42.01 7.045 3 1025 2.667 3 1024 3.456 3 1027 0.004906

 400 748.0 754.8 40.03 7.090 3 1025 1.984 3 1024 2.652 3 1027 0.00374

 500 723.9 750.0 37.81 6.964 3 1025 1.668 3 1024 2.304 3 1027 0.003309

 600 699.6 750.0 35.50 6.765 3 1025 1.487 3 1024 2.126 3 1027 0.003143

Sodium–Potassium (%22Na-%78K) Melting Point: 2118C

 100 847.3 944.4 25.64 3.205 3 1025 5.707 3 1024 6.736 3 1027 0.02102

 200 823.2 922.5 26.27 3.459 3 1025 4.587 3 1024 5.572 3 1027 0.01611

 300 799.1 900.6 26.89 3.736 3 1025 3.467 3 1024 4.339 3 1027 0.01161

 400 775.0 879.0 27.50 4.037 3 1025 2.357 3 1024 3.041 3 1027 0.00753

 500 751.5 880.1 27.89 4.217 3 1025 2.108 3 1024 2.805 3 1027 0.00665

 600 728.0 881.2 28.28 4.408 3 1025 1.859 3 1024 2.553 3 1027 0.00579

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
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TABLE A–9

Properties of air at 1 atm pressure

   Specific Thermal Thermal Dynamic Kinematic Prandtl

 Temp. Density Heat cp Conductivity Diffusivity Viscosity Viscosity Number

 T, 8C r, kg/m3 J/kg·K k, W/m·K a, m2/s m, kg/m·s n, m2/s Pr

 2150 2.866  983 0.01171 4.158 3 1026 8.636 3 1026 3.013 3 1026 0.7246

 2100 2.038  966 0.01582 8.036 3 1026 1.189 3 1026 5.837 3 1026 0.7263

 250 1.582  999 0.01979 1.252 3 1025 1.474 3 1025 9.319 3 1026 0.7440

 240 1.514 1002 0.02057 1.356 3 1025 1.527 3 1025 1.008 3 1025 0.7436

 230 1.451 1004 0.02134 1.465 3 1025 1.579 3 1025 1.087 3 1025 0.7425

 220 1.394 1005 0.02211 1.578 3 1025 1.630 3 1025 1.169 3 1025 0.7408

 210 1.341 1006 0.02288 1.696 3 1025 1.680 3 1025 1.252 3 1025 0.7387

 0 1.292 1006 0.02364 1.818 3 1025 1.729 3 1025 1.338 3 1025 0.7362

 5 1.269 1006 0.02401 1.880 3 1025 1.754 3 1025 1.382 3 1025 0.7350

 10 1.246 1006 0.02439 1.944 3 1025 1.778 3 1025 1.426 3 1025 0.7336

 15 1.225 1007 0.02476 2.009 3 1025 1.802 3 1025 1.470 3 1025 0.7323

 20 1.204 1007 0.02514 2.074 3 1025 1.825 3 1025 1.516 3 1025 0.7309

 25 1.184 1007 0.02551 2.141 3 1025 1.849 3 1025 1.562 3 1025 0.7296

 30 1.164 1007 0.02588 2.208 3 1025 1.872 3 1025 1.608 3 1025 0.7282

 35 1.145 1007 0.02625 2.277 3 1025 1.895 3 1025 1.655 3 1025 0.7268

 40 1.127 1007 0.02662 2.346 3 1025 1.918 3 1025 1.702 3 1025 0.7255

 45 1.109 1007 0.02699 2.416 3 1025 1.941 3 1025 1.750 3 1025 0.7241

 50 1.092 1007 0.02735 2.487 3 1025 1.963 3 1025 1.798 3 1025 0.7228

 60 1.059 1007 0.02808 2.632 3 1025 2.008 3 1025 1.896 3 1025 0.7202

 70 1.028 1007 0.02881 2.780 3 1025 2.052 3 1025 1.995 3 1025 0.7177

 80 0.9994 1008 0.02953 2.931 3 1025 2.096 3 1025 2.097 3 1025 0.7154

 90 0.9718 1008 0.03024 3.086 3 1025 2.139 3 1025 2.201 3 1025 0.7132

 100 0.9458 1009 0.03095 3.243 3 1025 2.181 3 1025 2.306 3 1025 0.7111

 120 0.8977 1011 0.03235 3.565 3 1025 2.264 3 1025 2.522 3 1025 0.7073

 140 0.8542 1013 0.03374 3.898 3 1025 2.345 3 1025 2.745 3 1025 0.7041

 160 0.8148 1016 0.03511 4.241 3 1025 2.420 3 1025 2.975 3 1025 0.7014

 180 0.7788 1019 0.03646 4.593 3 1025 2.504 3 1025 3.212 3 1025 0.6992

 200 0.7459 1023 0.03779 4.954 3 1025 2.577 3 1025 3.455 3 1025 0.6974

 250 0.6746 1033 0.04104 5.890 3 1025 2.760 3 1025 4.091 3 1025 0.6946

 300 0.6158 1044 0.04418 6.871 3 1025 2.934 3 1025 4.765 3 1025 0.6935

 350 0.5664 1056 0.04721 7.892 3 1025 3.101 3 1025 5.475 3 1025 0.6937

 400 0.5243 1069 0.05015 8.951 3 1025 3.261 3 1025 6.219 3 1025 0.6948

 450 0.4880 1081 0.05298 1.004 3 1024 3.415 3 1025 6.997 3 1025 0.6965

 500 0.4565 1093 0.05572 1.117 3 1024 3.563 3 1025 7.806 3 1025 0.6986

 600 0.4042 1115 0.06093 1.352 3 1024 3.846 3 1025 9.515 3 1025 0.7037

 700 0.3627 1135 0.06581 1.598 3 1024 4.111 3 1025 1.133 3 1024 0.7092

 800 0.3289 1153 0.07037 1.855 3 1024 4.362 3 1025 1.326 3 1024 0.7149

 900 0.3008 1169 0.07465 2.122 3 1024 4.600 3 1025 1.529 3 1024 0.7206

 1000 0.2772 1184 0.07868 2.398 3 1024 4.826 3 1025 1.741 3 1024 0.7260

 1500 0.1990 1234 0.09599 3.908 3 1024 5.817 3 1025 2.922 3 1024 0.7478

 2000 0.1553 1264 0.11113 5.664 3 1024 6.630 3 1025 4.270 3 1024 0.7539

Note: For ideal gases, the properties cp, k, m, and Pr are independent of pressure. The properties r, n, and a at a pressure P (in atm) other than 1 atm are deter-

mined by multiplying the values of r at the given temperature by P and by dividing n and a by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 198; and 

Thermophysical Properties of Matter, Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, 

and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.
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TABLE A–10

Properties of gases at 1 atm pressure

   Specific Thermal Thermal Dynamic Kinematic Prandtl

 Temp. Density Heat cp Conductivity Diffusivity Viscosity Viscosity Number

 T, 8C r, kg/m3 J/kg·K k, W/m·K a, m2/s m, kg/m·s n, m2/s Pr

Carbon Dioxide, CO2

 250 2.4035 746 0.01051 5.860 3 1026 1.129 3 1025 4.699 3 1026 0.8019

 0 1.9635 811 0.01456 9.141 3 1026 1.375 3 1025 7.003 3 1026 0.7661

 50 1.6597 866.6 0.01858 1.291 3 1025 1.612 3 1025 9.714 3 1026 0.7520

 100 1.4373 914.8 0.02257 1.716 3 1025 1.841 3 1025 1.281 3 1025 0.7464

 150 1.2675 957.4 0.02652 2.186 3 1025 2.063 3 1025 1.627 3 1025 0.7445

 200 1.1336 995.2 0.03044 2.698 3 1025 2.276 3 1025 2.008 3 1025 0.7442

 300 0.9358 1060 0.03814 3.847 3 1025 2.682 3 1025 2.866 3 1025 0.7450

 400 0.7968 1112 0.04565 5.151 3 1025 3.061 3 1025 3.842 3 1025 0.7458

 500 0.6937 1156 0.05293 6.600 3 1025 3.416 3 1025 4.924 3 1025 0.7460

 1000 0.4213 1292 0.08491 1.560 3 1024 4.898 3 1025 1.162 3 1024 0.7455

 1500 0.3025 1356 0.10688 2.606 3 1024 6.106 3 1025 2.019 3 1024 0.7745

 2000 0.2359 1387 0.11522 3.521 3 1024 7.322 3 1025 3.103 3 1024 0.8815

Carbon Monoxide, CO

 250 1.5297 1081 0.01901 1.149 3 1025 1.378 3 1025 9.012 3 1026 0.7840

 0 1.2497 1048 0.02278 1.739 3 1025 1.629 3 1025 1.303 3 1025 0.7499

 50 1.0563 1039 0.02641 2.407 3 1025 1.863 3 1025 1.764 3 1025 0.7328

 100 0.9148 1041 0.02992 3.142 3 1025 2.080 3 1025 2.274 3 1025 0.7239

 150 0.8067 1049 0.03330 3.936 3 1025 2.283 3 1025 2.830 3 1025 0.7191

 200 0.7214 1060 0.03656 4.782 3 1025 2.472 3 1025 3.426 3 1025 0.7164

 300 0.5956 1085 0.04277 6.619 3 1025 2.812 3 1025 4.722 3 1025 0.7134

 400 0.5071 1111 0.04860 8.628 3 1025 3.111 3 1025 6.136 3 1025 0.7111

 500 0.4415 1135 0.05412 1.079 3 1024 3.379 3 1025 7.653 3 1025 0.7087

 1000 0.2681 1226 0.07894 2.401 3 1024 4.557 3 1025 1.700 3 1024 0.7080

 1500 0.1925 1279 0.10458 4.246 3 1024 6.321 3 1025 3.284 3 1024 0.7733

 2000 0.1502 1309 0.13833 7.034 3 1024 9.826 3 1025 6.543 3 1024 0.9302

Methane, CH4

 250 0.8761 2243 0.02367 1.204 3 1025 8.564 3 1026 9.774 3 1026 0.8116

 0 0.7158 2217 0.03042 1.917 3 1025 1.028 3 1025 1.436 3 1025 0.7494

 50 0.6050 2302 0.03766 2.704 3 1025 1.191 3 1025 1.969 3 1025 0.7282

 100 0.5240 2443 0.04534 3.543 3 1025 1.345 3 1025 2.567 3 1025 0.7247

 150 0.4620 2611 0.05344 4.431 3 1025 1.491 3 1025 3.227 3 1025 0.7284

 200 0.4132 2791 0.06194 5.370 3 1025 1.630 3 1025 3.944 3 1025 0.7344

 300 0.3411 3158 0.07996 7.422 3 1025 1.886 3 1025 5.529 3 1025 0.7450

 400 0.2904 3510 0.09918 9.727 3 1025 2.119 3 1025 7.297 3 1025 0.7501

 500 0.2529 3836 0.11933 1.230 3 1024 2.334 3 1025 9.228 3 1025 0.7502

 1000 0.1536 5042 0.22562 2.914 3 1024 3.281 3 1025 2.136 3 1024 0.7331

 1500 0.1103 5701 0.31857 5.068 3 1024 4.434 3 1025 4.022 3 1024 0.7936

 2000 0.0860 6001 0.36750 7.120 3 1024 6.360 3 1025 7.395 3 1024 1.0386

Hydrogen, H2

 250 0.11010 12635 0.1404 1.009 3 1024 7.293 3 1026 6.624 3 1025 0.6562

 0 0.08995 13920 0.1652 1.319 3 1024 8.391 3 1026 9.329 3 1025 0.7071

 50 0.07603 14349 0.1881 1.724 3 1024 9.427 3 1026 1.240 3 1024 0.7191

 100 0.06584 14473 0.2095 2.199 3 1024 1.041 3 1025 1.582 3 1024 0.7196

 150 0.05806 14492 0.2296 2.729 3 1024 1.136 3 1025 1.957 3 1024 0.7174

 200 0.05193 14482 0.2486 3.306 3 1024 1.228 3 1025 2.365 3 1024 0.7155

 300 0.04287 14481 0.2843 4.580 3 1024 1.403 3 1025 3.274 3 1024 0.7149

 400 0.03650 14540 0.3180 5.992 3 1024 1.570 3 1025 4.302 3 1024 0.7179

 500 0.03178 14653 0.3509 7.535 3 1024 1.730 3 1025 5.443 3 1024 0.7224

 1000 0.01930 15577 0.5206 1.732 3 1023 2.455 3 1025 1.272 3 1023 0.7345

 1500 0.01386 16553 0.6581 2.869 3 1023 3.099 3 1025 2.237 3 1023 0.7795

 2000 0.01081 17400 0.5480 2.914 3 1023 3.690 3 1025 3.414 3 1023 1.1717

(Continued)
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TABLE A–10

Properties of gases at 1 atm pressure (Continued)

   Specific Thermal Thermal Dynamic Kinematic Prandtl

 Temp. Density Heat cp Conductivity Diffusivity Viscosity Viscosity Number

 T, 8C r, kg/m3 J/kg·K k, W/m·K a, m2/s m, kg/m·s n, m2/s Pr

Nitrogen, N2

 250 1.5299 957.3 0.02001 1.366 3 1025 1.390 3 1025 9.091 3 1026 0.6655

 0 1.2498 1035 0.02384 1.843 3 1025 1.640 3 1025 1.312 3 1025 0.7121

 50 1.0564 1042 0.02746 2.494 3 1025 1.874 3 1025 1.774 3 1025 0.7114

 100 0.9149 1041 0.03090 3.244 3 1025 2.094 3 1025 2.289 3 1025 0.7056

 150 0.8068 1043 0.03416 4.058 3 1025 2.300 3 1025 2.851 3 1025 0.7025

 200 0.7215 1050 0.03727 4.921 3 1025 2.494 3 1025 3.457 3 1025 0.7025

 300 0.5956 1070 0.04309 6.758 3 1025 2.849 3 1025 4.783 3 1025 0.7078

 400 0.5072 1095 0.04848 8.727 3 1025 3.166 3 1025 6.242 3 1025 0.7153

 500 0.4416 1120 0.05358 1.083 3 1024 3.451 3 1025 7.816 3 1025 0.7215

 1000 0.2681 1213 0.07938 2.440 3 1024 4.594 3 1025 1.713 3 1024 0.7022

 1500 0.1925 1266 0.11793 4.839 3 1024 5.562 3 1025 2.889 3 1024 0.5969

 2000 0.1502 1297 0.18590 9.543 3 1024 6.426 3 1025 4.278 3 1024 0.4483

Oxygen, O2

 250 1.7475 984.4 0.02067 1.201 3 1025 1.616 3 1025 9.246 3 1026 0.7694

 0 1.4277 928.7 0.02472 1.865 3 1025 1.916 3 1025 1.342 3 1025 0.7198

 50 1.2068 921.7 0.02867 2.577 3 1025 2.194 3 1025 1.818 3 1025 0.7053

 100 1.0451 931.8 0.03254 3.342 3 1025 2.451 3 1025 2.346 3 1025 0.7019

 150 0.9216 947.6 0.03637 4.164 3 1025 2.694 3 1025 2.923 3 1025 0.7019

 200 0.8242 964.7 0.04014 5.048 3 1025 2.923 3 1025 3.546 3 1025 0.7025

 300 0.6804 997.1 0.04751 7.003 3 1025 3.350 3 1025 4.923 3 1025 0.7030

 400 0.5793 1025 0.05463 9.204 3 1025 3.744 3 1025 6.463 3 1025 0.7023

 500 0.5044 1048 0.06148 1.163 3 1024 4.114 3 1025 8.156 3 1025 0.7010

 1000 0.3063 1121 0.09198 2.678 3 1024 5.732 3 1025 1.871 3 1024 0.6986

 1500 0.2199 1165 0.11901 4.643 3 1024 7.133 3 1025 3.243 3 1024 0.6985

 2000 0.1716 1201 0.14705 7.139 3 1024 8.417 3 1025 4.907 3 1024 0.6873

Water Vapor, H2O

 250 0.9839 1892 0.01353 7.271 3 1026 7.187 3 1026 7.305 3 1026 1.0047

 0 0.8038 1874 0.01673 1.110 3 1025 8.956 3 1026 1.114 3 1025 1.0033

 50 0.6794 1874 0.02032 1.596 3 1025 1.078 3 1025 1.587 3 1025 0.9944

 100 0.5884 1887 0.02429 2.187 3 1025 1.265 3 1025 2.150 3 1025 0.9830

 150 0.5189 1908 0.02861 2.890 3 1025 1.456 3 1025 2.806 3 1025 0.9712

 200 0.4640 1935 0.03326 3.705 3 1025 1.650 3 1025 3.556 3 1025 0.9599

 300 0.3831 1997 0.04345 5.680 3 1025 2.045 3 1025 5.340 3 1025 0.9401

 400 0.3262 2066 0.05467 8.114 3 1025 2.446 3 1025 7.498 3 1025 0.9240

 500 0.2840 2137 0.06677 1.100 3 1024 2.847 3 1025 1.002 3 1024 0.9108

 1000 0.1725 2471 0.13623 3.196 3 1024 4.762 3 1025 2.761 3 1024 0.8639

 1500 0.1238 2736 0.21301 6.288 3 1024 6.411 3 1025 5.177 3 1024 0.8233

 2000 0.0966 2928 0.29183 1.032 3 1023 7.808 3 1025 8.084 3 1024 0.7833

Note: For ideal gases, the properties cp, k, m, and Pr are independent of pressure. The properties r, n, and a at a pressure P (in atm) other than 1 atm are 

determined by multiplying the values of r at the given temperature by P and by dividing n and a by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
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TABLE A–11

Properties of the atmosphere at high altitude

     Speed of   Thermal

 Altitude, Temperature, Pressure, Gravity Sound, Density, Viscosity Conductivity,

 m 8C kPa g, m/s2 m/s kg/m3 m, kg/m·s W/m·K

 0 15.00 101.33 9.807 340.3 1.225 1.789 3 1025 0.0253

 200 13.70 98.95 9.806 339.5 1.202 1.783 3 1025 0.0252

 400 12.40 96.61 9.805 338.8 1.179 1.777 3 1025 0.0252

 600 11.10 94.32 9.805 338.0 1.156 1.771 3 1025 0.0251

 800 9.80 92.08 9.804 337.2 1.134 1.764 3 1025 0.0250

 1000 8.50 89.88 9.804 336.4 1.112 1.758 3 1025 0.0249

 1200 7.20 87.72 9.803 335.7 1.090 1.752 3 1025 0.0248

 1400 5.90 85.60 9.802 334.9 1.069 1.745 3 1025 0.0247

 1600 4.60 83.53 9.802 334.1 1.048 1.739 3 1025 0.0245

 1800 3.30 81.49 9.801 333.3 1.027 1.732 3 1025 0.0244

 2000 2.00 79.50 9.800 332.5 1.007 1.726 3 1025 0.0243

 2200 0.70 77.55 9.800 331.7 0.987 1.720 3 1025 0.0242

 2400 20.59 75.63 9.799 331.0 0.967 1.713 3 1025 0.0241

 2600 21.89 73.76 9.799 330.2 0.947 1.707 3 1025 0.0240

 2800 23.19 71.92 9.798 329.4 0.928 1.700 3 1025 0.0239

 3000 24.49 70.12 9.797 328.6 0.909 1.694 3 1025 0.0238

 3200 25.79 68.36 9.797 327.8 0.891 1.687 3 1025 0.0237

 3400 27.09 66.63 9.796 327.0 0.872 1.681 3 1025 0.0236

 3600 28.39 64.94 9.796 326.2 0.854 1.674 3 1025 0.0235

 3800 29.69 63.28 9.795 325.4 0.837 1.668 3 1025 0.0234

 4000 210.98 61.66 9.794 324.6 0.819 1.661 3 1025 0.0233

 4200 212.3 60.07 9.794 323.8 0.802 1.655 3 1025 0.0232

 4400 213.6 58.52 9.793 323.0 0.785 1.648 3 1025 0.0231

 4600 214.9 57.00 9.793 322.2 0.769 1.642 3 1025 0.0230

 4800 216.2 55.51 9.792 321.4 0.752 1.635 3 1025 0.0229

 5000 217.5 54.05 9.791 320.5 0.736 1.628 3 1025 0.0228

 5200 218.8 52.62 9.791 319.7 0.721 1.622 3 1025 0.0227

 5400 220.1 51.23 9.790 318.9 0.705 1.615 3 1025 0.0226

 5600 221.4 49.86 9.789 318.1 0.690 1.608 3 1025 0.0224

 5800 222.7 48.52 9.785 317.3 0.675 1.602 3 1025 0.0223

 6000 224.0 47.22 9.788 316.5 0.660 1.595 3 1025 0.0222

 6200 225.3 45.94 9.788 315.6 0.646 1.588 3 1025 0.0221

 6400 226.6 44.69 9.787 314.8 0.631 1.582 3 1025 0.0220

 6600 227.9 43.47 9.786 314.0 0.617 1.575 3 1025 0.0219

 6800 229.2 42.27 9.785 313.1 0.604 1.568 3 1025 0.0218

 7000 230.5 41.11 9.785 312.3 0.590 1.561 3 1025 0.0217

 8000 236.9 35.65 9.782 308.1 0.526 1.527 3 1025 0.0212

 9000 243.4 30.80 9.779 303.8 0.467 1.493 3 1025 0.0206

 10,000 249.9 26.50 9.776 299.5 0.414 1.458 3 1025 0.0201

 12,000 256.5 19.40 9.770 295.1 0.312 1.422 3 1025 0.0195

 14,000 256.5 14.17 9.764 295.1 0.228 1.422 3 1025 0.0195

 16,000 256.5 10.53 9.758 295.1 0.166 1.422 3 1025 0.0195

 18,000 256.5 7.57 9.751 295.1 0.122 1.422 3 1025 0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 458 latitude and varies 

with the time of the year and the weather patterns. The conditions at sea level (z 5 0) are taken to be P 5 101.325 kPa, T 5 158C, r 5 1.2250 kg/m3, 

g 5 9.80665 m2/s.
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 Ma* 5 MaÅ k 1 1

2 1 (k 2 1)Ma2
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c a 2

k 1 1
b a1 1

k 2 1

2
 Ma2bd 0.5(k11)/(k21)
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2
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5 a1 1
k 2 1

2
 Ma2b21

TABLE A–13

One-dimensional isentropic compressible flow functions for an ideal 

gas with k 5 1.4

 Ma Ma* A/A* P/P0 r/r0 T/T0

 0 0 ` 1.0000 1.0000 1.0000

 0.1 0.1094 5.8218 0.9930 0.9950 0.9980

 0.2 0.2182 2.9635 0.9725 0.9803 0.9921

 0.3 0.3257 2.0351 0.9395 0.9564 0.9823

 0.4 0.4313 1.5901 0.8956 0.9243 0.9690

 0.5 0.5345 1.3398 0.8430 0.8852 0.9524

 0.6 0.6348 1.1882 0.7840 0.8405 0.9328

 0.7 0.7318 1.0944 0.7209 0.7916 0.9107

 0.8 0.8251 1.0382 0.6560 0.7400 0.8865

 0.9 0.9146 1.0089 0.5913 0.6870 0.8606

 1.0 1.0000 1.0000 0.5283 0.6339 0.8333

 1.2 1.1583 1.0304 0.4124 0.5311 0.7764

 1.4 1.2999 1.1149 0.3142 0.4374 0.7184

 1.6 1.4254 1.2502 0.2353 0.3557 0.6614

 1.8 1.5360 1.4390 0.1740 0.2868 0.6068

 2.0 1.6330 1.6875 0.1278 0.2300 0.5556

 2.2 1.7179 2.0050 0.0935 0.1841 0.5081

 2.4 1.7922 2.4031 0.0684 0.1472 0.4647

 2.6 1.8571 2.8960 0.0501 0.1179 0.4252

 2.8 1.9140 3.5001 0.0368 0.0946 0.3894

 3.0 1.9640 4.2346 0.0272 0.0760 0.3571

 5.0 2.2361 25.000 0.0019 0.0113 0.1667

 ~ 2.2495 ~ 0 0 0
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TABLE A–14

One-dimensional normal shock functions for an ideal gas with k 5 1.4

 Ma1 Ma2 P2/P1 r2/r1 T2/T1 P02/P01 P02/P1

 1.0 1.0000 1.0000 1.0000 1.0000 1.0000  1.8929

 1.1 0.9118 1.2450 1.1691 1.0649 0.9989  2.1328

 1.2 0.8422 1.5133 1.3416 1.1280 0.9928  2.4075

 1.3 0.7860 1.8050 1.5157 1.1909 0.9794  2.7136

 1.4 0.7397 2.1200 1.6897 1.2547 0.9582  3.0492

 1.5 0.7011 2.4583 1.8621 1.3202 0.9298  3.4133

 1.6 0.6684 2.8200 2.0317 1.3880 0.8952  3.8050

 1.7 0.6405 3.2050 2.1977 1.4583 0.8557  4.2238

 1.8 0.6165 3.6133 2.3592 1.5316 0.8127  4.6695

 1.9 0.5956 4.0450 2.5157 1.6079 0.7674  5.1418

 2.0 0.5774 4.5000 2.6667 1.6875 0.7209  5.6404

 2.1 0.5613 4.9783 2.8119 1.7705 0.6742  6.1654

 2.2 0.5471 5.4800 2.9512 1.8569 0.6281  6.7165

 2.3 0.5344 6.0050 3.0845 1.9468 0.5833  7.2937

 2.4 0.5231 6.5533 3.2119 2.0403 0.5401  7.8969

 2.5 0.5130 7.1250 3.3333 2.1375 0.4990  8.5261

 2.6 0.5039 7.7200 3.4490 2.2383 0.4601  9.1813

 2.7 0.4956 8.3383 3.5590 2.3429 0.4236  9.8624

 2.8 0.4882 8.9800 3.6636 2.4512 0.3895 10.5694

 2.9 0.4814 9.6450 3.7629 2.5632 0.3577 11.3022

 3.0 0.4752 10.3333 3.8571 2.6790 0.3283 12.0610

 4.0 0.4350 18.5000 4.5714 4.0469 0.1388 21.0681

 5.0 0.4152 29.000 5.0000 5.8000 0.0617 32.6335

 ` 0.3780 ` 6.0000 ` 0 `
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TABLE A–15

Rayleigh flow functions for an ideal gas with k 5 1.4

 Ma T0/T0* P0/P0* T/T* P/P* V/V*

 0.0 0.0000 1.2679 0.0000 2.4000 0.0000

 0.1 0.0468 1.2591 0.0560 2.3669 0.0237

 0.2 0.1736 1.2346 0.2066 2.2727 0.0909

 0.3 0.3469 1.1985 0.4089 2.1314 0.1918

 0.4 0.5290 1.1566 0.6151 1.9608 0.3137

 0.5 0.6914 1.1141 0.7901 1.7778 0.4444

 0.6 0.8189 1.0753 0.9167 1.5957 0.5745

 0.7 0.9085 1.0431 0.9929 1.4235 0.6975

 0.8 0.9639 1.0193 1.0255 1.2658 0.8101

 0.9 0.9921 1.0049 1.0245 1.1246 0.9110

 1.0 1.0000 1.0000 1.0000 1.0000 1.0000

 1.2 0.9787 1.0194 0.9118 0.7958 1.1459

 1.4 0.9343 1.0777 0.8054 0.6410 1.2564

 1.6 0.8842 1.1756 0.7017 0.5236 1.3403

 1.8 0.8363 1.3159 0.6089 0.4335 1.4046

 2.0 0.7934 1.5031 0.5289 0.3636 1.4545

 2.2 0.7561 1.7434 0.4611 0.3086 1.4938

 2.4 0.7242 2.0451 0.4038 0.2648 1.5252

 2.6 0.6970 2.4177 0.3556 0.2294 1.5505

 2.8 0.6738 2.8731 0.3149 0.2004 1.5711

 3.0 0.6540 3.4245 0.2803 0.1765 1.5882
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TABLE A–16

Fanno flow functions for an ideal gas with k 5 1.4

 Ma P0/P0* T/T* P/P* V/V* fL*/D

 0.0 ` 1.2000 ` 0.0000 `
 0.1 5.8218 1.1976 10.9435 0.1094 66.9216

 0.2 2.9635 1.1905  5.4554 0.2182 14.5333

 0.3 2.0351 1.1788  3.6191 0.3257  5.2993

 0.4 1.5901 1.1628  2.6958 0.4313  2.3085

 0.5 1.3398 1.1429  2.1381 0.5345  1.0691

 0.6 1.1882 1.1194  1.7634 0.6348  0.4908

 0.7 1.0944 1.0929  1.4935 0.7318  0.2081

 0.8 1.0382 1.0638  1.2893 0.8251  0.0723

 0.9 1.0089 1.0327  1.1291 0.9146  0.0145

 1.0 1.0000 1.0000  1.0000 1.0000  0.0000

 1.2 1.0304 0.9317  0.8044 1.1583  0.0336

 1.4 1.1149 0.8621  0.6632 1.2999  0.0997

 1.6 1.2502 0.7937  0.5568 1.4254  0.1724

 1.8 1.4390 0.7282  0.4741 1.5360  0.2419

 2.0 1.6875 0.6667  0.4082 1.6330  0.3050

 2.2 2.0050 0.6098  0.3549 1.7179  0.3609

 2.4 2.4031 0.5576  0.3111 1.7922  0.4099

 2.6 2.8960 0.5102  0.2747 1.8571  0.4526

 2.8 3.5001 0.4673  0.2441 1.9140  0.4898

 3.0 4.2346 0.4286  0.2182 1.9640  0.5222
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TABLE A–1E

Molar mass, gas constant, and ideal-gas specific heats of some substances

 Gas Constant R* Specific Heat Data at 778F

 Molar Mass, Btu/ psia·ft3/ cp, cV,

Substance M, lbm/lbmol lbm·R lbm·R Btu/lbm·R Btu/lbm·R k 5 cp/cV

Air 28.97 0.06855 0.3704 0.2400 0.1715 1.400

Ammonia, NH3 17.03 0.1166 0.6301 0.4999 0.3834 1.304

Argon, Ar 39.95 0.04970 0.2686 0.1243 0.07457 1.667

Bromine, Br2 159.81 0.01242 0.06714 0.0538 0.04137 1.300

Isobutane, C4H10 58.12 0.03415 0.1846 0.3972 0.3631 1.094

n-Butane, C4H10 58.12 0.03415 0.1846 0.4046 0.3705 1.092

Carbon dioxide, CO2 44.01 0.04512 0.2438 0.2016 0.1564 1.288

Carbon monoxide, CO 28.01 0.07089 0.3831 0.2482 0.1772 1.400

Chlorine, Cl2 70.905 0.02802 0.1514 0.1142 0.08618 1.325

Chlorodifluoromethane (R-22), CHClF2 86.47 0.02297 0.1241 0.1552 0.1322 1.174

Ethane, C2H6 30.070 0.06604 0.3569 0.4166 0.3506 1.188

Ethylene, C2H4 28.054 0.07079 0.3826 0.3647 0.2940 1.241

Fluorine, F2 38.00 0.05224 0.2823 0.1967 0.1445 1.362

Helium, He 4.003 0.4961 2.681 1.2403 0.7442 1.667

n-Heptane, C7H16 100.20 0.01982 0.1071 0.3939 0.3740 1.053

n-Hexane, C6H14 86.18 0.02304 0.1245 0.3951 0.3721 1.062

Hydrogen, H2 2.016 0.9850 5.323 3.416 2.431 1.405

Krypton, Kr 83.80 0.02370 0.1281 0.05923 0.03554 1.667

Methane, CH4 16.04 0.1238 0.6688 0.5317 0.4080 1.303

Neon, Ne 20.183 0.09838 0.5316 0.2460 0.1476 1.667

Nitrogen, N2 28.01 0.07089 0.3831 0.2484 0.1774 1.400

Nitric oxide, NO 30.006 0.06618 0.3577 0.2387 0.1725 1.384

Nitrogen dioxide, NO2 46.006 0.04512 0.2438 0.1925 0.1474 1.306

Oxygen, O2 32.00 0.06205 0.3353 0.2193 0.1572 1.395

n-Pentane, C5H12 72.15 0.02752 0.1487 0.3974 0.3700 1.074

Propane, C3H8 44.097 0.04502 0.2433 0.3986 0.3535 1.127

Propylene, C3H6 42.08 0.04720 0.2550 0.3657 0.3184 1.148

Steam, H2O 18.015 0.1102 0.5957 0.4455 0.3351 1.329

Sulfur dioxide, SO2 64.06 0.03100 0.1675 0.1488 0.1178 1.263

Tetrachloromethane, CCl4 153.82 0.01291 0.06976 0.1293 0.1164 1.111

Tetrafluoroethane (R-134a), C2H2F4 102.03 0.01946 0.1052 0.1991 0.1796 1.108

Trifluoroethane (R-143a), C2H3F3 84.04 0.02363 0.1277 0.2219 0.1983 1.119

Xenon, Xe 131.30 0.01512 0.08173 0.03781 0.02269 1.667

*The gas constant is calculated from R 5 Ru/M, where Ru 5 1.9859 Btu/lbmol·R 5 10.732 psia·ft3/lbmol·R is the universal gas constant and M is the molar 

mass.

Source: Specific heat values are mostly obtained from the property routines prepared by The National Institute of Standards and Technology (NIST), 

Gaithersburg, MD.
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TABLE A–2E

Boiling and freezing point properties

 Boiling Data at 1 atm Freezing Data Liquid Properties

 Normal Latent Heat of  Latent Heat   Specific

 Boiling Vaporization Freezing of Fusion Tempera- Density Heat cp, 

Substance Point, 8F hfg, Btu/lbm Point, 8F hif, Btu/lbm ture, 8F r, lbm/ft3 Btu/lbm·R

Ammonia 227.9 24.54 2107.9 138.6 227.9 42.6 1.06

     0 41.3 1.083

     40 39.5 1.103

     80 37.5 1.135

Argon 2302.6 69.5 2308.7 12.0 2302.6 87.0 0.272

Benzene 176.4 169.4 41.9 54.2 68 54.9 0.411

Brine (20% sodium

  chloride by mass) 219.0 — 0.7 — 68 71.8 0.743

n-Butane 31.1 165.6 2217.3 34.5 31.1 37.5 0.552

Carbon dioxide 2109.2* 99.6 (at 328F) 269.8 — 32 57.8 0.583

Ethanol 172.8 360.5 2173.6 46.9 77 48.9 0.588

Ethyl alcohol 173.5 368 2248.8 46.4 68 49.3 0.678

Ethylene glycol 388.6 344.0 12.6 77.9 68 69.2 0.678

Glycerine 355.8 419 66.0 86.3 68 78.7 0.554

Helium 2452.1 9.80 — — 2452.1 9.13 5.45

Hydrogen 2423.0 191.7 2434.5 25.6 2423.0 4.41 2.39

Isobutane 10.9 157.8 2255.5 45.5 10.9 37.1 0.545

Kerosene 399–559 108 212.8 — 68 51.2 0.478

Mercury 674.1 126.7 238.0 4.90 77 847 0.033

Methane 2258.7 219.6 296.0 25.1 2258.7 26.4 0.834

     2160 20.0 1.074

Methanol 148.1 473 2143.9 42.7 77 49.1 0.609

Nitrogen 2320.4 85.4 2346.0 10.9 2320.4 50.5 0.492

     2260 38.2 0.643

Octane 256.6 131.7 271.5 77.9 68 43.9 0.502

Oil (light) — —   77 56.8 0.430

Oxygen 2297.3 91.5 2361.8 5.9 2297.3 71.2 0.408

Petroleum — 99–165   68 40.0 0.478

Propane 243.7 184.0 2305.8 34.4 243.7 36.3 0.538

     32 33.0 0.604

     100 29.4 0.673

Refrigerant-134a 215.0 93.2 2141.9 — 240 88.5 0.283

     215 86.0 0.294

     32 80.9 0.318

     90 73.6 0.348

Water 212 970.5 32 143.5 32 62.4 1.01

     90 62.1 1.00

     150 61.2 1.00

     212 59.8 1.01

*Sublimation temperature. (At pressures below the triple-point pressure of 75.1 psia, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature 

of carbon dioxide is the triple-point temperature of 269.88F.)
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TABLE A–3E

Properties of saturated water

        Volume
    

Enthalpy
 Specific Thermal  Prandtl 

Expansion Surface
  

Saturation
 Density 

of
 Heat Conductivity Dynamic Viscosity Number  

Coefficient Tension,

 Temp. Pressure
 r, lbm/ft3 

Vaporization
 cp, Btu/lbm·R k, Btu/h·ft·R m, lbm/ft·s Pr 

b, 1/R lbf/ft

T, 8F Psat, psia Liquid Vapor hfg, Btu/lbm  Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

 32.02 0.0887 62.41 0.00030 1075 1.010 0.446 0.324 0.0099 1.204 3 1023 6.194 3 1026 13.5 1.00 20.038 3 1023 0.00518

 40 0.1217 62.42 0.00034 1071 1.004 0.447 0.329 0.0100 1.038 3 1023 6.278 3 1026 11.4 1.01 0.003 3 1023 0.00514

 50 0.1780 62.41 0.00059 1065 1.000 0.448 0.335 0.0102 8.781 3 1024 6.361 3 1026 9.44 1.01 0.047 3 1023 0.00509

 60 0.2563 62.36 0.00083 1060 0.999 0.449 0.341 0.0104 7.536 3 1024 6.444 3 1026 7.95 1.00 0.080 3 1023 0.00503

 70 0.3632 62.30 0.00115 1054 0.999 0.450 0.347 0.0106 6.556 3 1024 6.556 3 1026 6.79 1.00 0.115 3 1023 0.00497

 80 0.5073 62.22 0.00158 1048 0.999 0.451 0.352 0.0108 5.764 3 1024 6.667 3 1026 5.89 1.00 0.145 3 1023 0.00491

 90 0.6988 62.12 0.00214 1043 0.999 0.453 0.358 0.0110 5.117 3 1024 6.778 3 1026 5.14 1.00 0.174 3 1023 0.00485

 100 0.9503 62.00 0.00286 1037 0.999 0.454 0.363 0.0112 4.578 3 1024 6.889 3 1026 4.54 1.01 0.200 3 1023 0.00479

 110 1.2763 61.86 0.00377 1031 0.999 0.456 0.367 0.0115 4.128 3 1024 7.000 3 1026 4.05 1.00 0.224 3 1023 0.00473

 120 1.6945 61.71 0.00493 1026 0.999 0.458 0.371 0.0117 3.744 3 1024 7.111 3 1026 3.63 1.00 0.246 3 1023 0.00467

 130 2.225 61.55 0.00636 1020 0.999 0.460 0.375 0.0120 3.417 3 1024 7.222 3 1026 3.28 1.00 0.267 3 1023 0.00460

 140 2.892 61.38 0.00814 1014 0.999 0.463 0.378 0.0122 3.136 3 1024 7.333 3 1026 2.98 1.00 0.287 3 1023 0.00454

 150 3.722 61.19 0.0103 1008 1.000 0.465 0.381 0.0125 2.889 3 1024 7.472 3 1026 2.73 1.00 0.306 3 1023 0.00447

 160 4.745 60.99 0.0129 1002 1.000 0.468 0.384 0.0128 2.675 3 1024 7.583 3 1026 2.51 1.00 0.325 3 1023 0.00440

 170 5.996 60.79 0.0161 996 1.001 0.472 0.386 0.0131 2.483 3 1024 7.722 3 1026 2.90 1.00 0.346 3 1023 0.00434

 180 7.515 60.57 0.0199 990 1.002 0.475 0.388 0.0134 2.317 3 1024 7.833 3 1026 2.15 1.00 0.367 3 1023 0.00427

 190 9.343 60.35 0.0244 984 1.004 0.479 0.390 0.0137 2.169 3 1024 7.972 3 1026 2.01 1.00 0.382 3 1023 0.00420

 200 11.53 60.12 0.0297 978 1.005 0.483 0.391 0.0141 2.036 3 1024 8.083 3 1026 1.88 1.00 0.395 3 1023 0.00412

 210 14.125 59.87 0.0359 972 1.007 0.487 0.392 0.0144 1.917 3 1024 8.222 3 1026 1.77 1.00 0.412 3 1023 0.00405

 212 14.698 59.82 0.0373 970 1.007 0.488 0.392 0.0145 1.894 3 1024 8.250 3 1026 1.75 1.00 0.417 3 1023 0.00404

 220 17.19 59.62 0.0432 965 1.009 0.492 0.393 0.0148 1.808 31024 8.333 3 1026 1.67 1.00 0.429 3 1023 0.00398

 230 20.78 59.36 0.0516 959 1.011 0.497 0.394 0.0152 1.711 3 1024 8.472 3 1026 1.58 1.00 0.443 3 1023 0.00390

 240 24.97 59.09 0.0612 952 1.013 0.503 0.394 0.0156 1.625 3 1024 8.611 3 1026 1.50 1.00 0.462 3 1023 0.00383

 250 29.82 58.82 0.0723 946 1.015 0.509 0.395 0.0160 1.544 3 1024 8.611 3 1026 1.43 1.00 0.480 3 1023 0.00375

 260 35.42 58.53 0.0850 939 1.018 0.516 0.395 0.0164 1.472 3 1024 8.861 3 1026 1.37 1.00 0.497 3 1023 0.00367

 270 41.85 58.24 0.0993 932 1.020 0.523 0.395 0.0168 1.406 3 1024 9.000 3 1026 1.31 1.01 0.514 3 1023 0.00360

 280 49.18 57.94 0.1156 925 1.023 0.530 0.395 0.0172 1.344 3 1024 9.111 3 1026 1.25 1.01 0.532 3 1023 0.00352

 290 57.53 57.63 0.3390 918 1.026 0.538 0.395 0.0177 1.289 3 1024 9.250 3 1026 1.21 1.01 0.549 3 1023 0.00344

 300 66.98 57.31 0.1545 910 1.029 0.547 0.394 0.0182 1.236 3 1024 9.389 3 1026 1.16 1.02 0.566 3 1023 0.00336

 320 89.60 56.65 0.2033 895 1.036 0.567 0.393 0.0191 1.144 3 1024 9.639 3 1026 1.09 1.03 0.636 3 1023 0.00319

 340 117.93 55.95 0.2637 880 1.044 0.590 0.391 0.0202 1.063 3 1024 9.889 3 1026 1.02 1.04 0.656 3 1023 0.00303

 360 152.92 55.22 0.3377 863 1.054 0.617 0.389 0.0213 9.972 3 1025 1.013 3 1025 0.973 1.06 0.681 3 1023 0.00286

 380 195.60 54.46 0.4275 845 1.065 0.647 0.385 0.0224 9.361 3 1025 1.041 3 1025 0.932 1.08 0.720 3 1023 0.00269

 400 241.1 53.65 0.5359 827 1.078 0.683 0.382 0.0237 8.833 3 1025 1.066 3 1025 0.893 1.11 0.771 3 1023 0.00251

 450 422.1 51.46 0.9082 775 1.121 0.799 0.370 0.0271 7.722 3 1025 1.130 3 1025 0.842 1.20 0.912 3 1023 0.00207

 500 680.0 48.95 1.479 715 1.188 0.972 0.352 0.0312 6.833 3 1025 1.200 3 1025 0.830 1.35 1.111 3 1023 0.00162

 550 1046.7 45.96 4.268 641 1.298 1.247 0.329 0.0368 6.083 3 1025 1.280 3 1025 0.864 1.56 1.445 3 1023 0.00118

 600 1541 42.32 3.736 550 1.509 1.759 0.299 0.0461 5.389 3 1025 1.380 3 1025 0.979 1.90 1.885 3 1023 0.00074

 650 2210 37.31 6.152 422 2.086 3.103 0.267 0.0677 4.639 3 1025 1.542 3 1025 1.30 2.54  0.00034

 700 3090 27.28 13.44 168 13.80 25.90 0.254 0.1964 3.417 3 1025 2.044 3 1025 6.68 9.71  0.00002

 705.44 3204 19.79 19.79 0 ` ` ` ` 2.897 3 1025 2.897 3 1025    0

Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m/r and a 5 k/rcp 5 n/Pr. The temperatures 32.028F, 

2128F, and 705.448F are the triple-, boiling-, and critical-point temperatures of water, respectively. All properties listed above (except the vapor density) can be 

used at any pressure with negligible error except at temperatures near the critical-point value.

Note 2: The unit Btu/lbm·8F for specific heat is equivalent to Btu/lbm·R, and the unit Btu/h·ft·8F for thermal conductivity is equivalent to Btu/h·ft·R.

Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), 

pp. 1291–1322. Other data are obtained from various sources or calculated.
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TABLE A–4E

Properties of saturated refrigerant-134a

        Volume
    

Enthalpy
 Specific Thermal  Prandtl 

Expansion Surface
  

Saturation
 Density 

of
 Heat Conductivity Dynamic Viscosity Number  

Coefficient Tension,

 Temp. Pressure
 r, lbm/ft3 

Vaporization
 cp, Btu/lbm·R k, Btu/h·ft·R m, lbm/ft·s Pr 

b, 1/R lbf/ft

T, 8F P, psia Liquid Vapor hfg, Btu/lbm Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

 240 7.4 88.51 0.1731 97.1 0.2996 0.1788 0.0636 0.00466 3.278 3 1024 1.714 3 1026 5.558 0.237 0.00114 0.001206

 230 9.9 87.5 0.2258 95.6 0.3021 0.1829 0.0626 0.00497 3.004 3 1024 2.053 3 1026 5.226 0.272 0.00117 0.001146

 220 12.9 86.48 0.2905 94.1 0.3046 0.1872 0.0613 0.00529 2.762 3 1024 2.433 3 1026 4.937 0.310 0.00120 0.001087

 210 16.6 85.44 0.3691 92.5 0.3074 0.1918 0.0602 0.00559 2.546 3 1024 2.856 3 1026 4.684 0.352 0.00124 0.001029

 0 21.2 84.38 0.4635 90.9 0.3103 0.1966 0.0589 0.00589 2.354 3 1024 3.314 3 1026 4.463 0.398 0.00128 0.000972

 10 26.6 83.31 0.5761 89.3 0.3134 0.2017 0.0576 0.00619 2.181 3 1024 3.811 3 1026 4.269 0.447 0.00132 0.000915

 20 33.1 82.2 0.7094 87.5 0.3167 0.2070 0.0563 0.00648 2.024 3 1024 4.342 3 1026 4.098 0.500 0.00137 0.000859

 30 40.8 81.08 0.866 85.8 0.3203 0.2127 0.0550 0.00676 1.883 3 1024 4.906 3 1026 3.947 0.555 0.00142 0.000803

 40 49.8 79.92 1.049 83.9 0.3240 0.2188 0.0536 0.00704 1.752 3 1024 5.494 3 1026 3.814 0.614 0.00149 0.000749

 50 60.2 78.73 1.262 82.0 0.3281 0.2253 0.0522 0.00732 1.633 3 1024 6.103 3 1026 3.697 0.677 0.00156 0.000695

 60 72.2 77.51 1.509 80.0 0.3325 0.2323 0.0507 0.00758 1.522 3 1024 6.725 3 1026 3.594 0.742 0.00163 0.000642

 70 85.9 76.25 1.794 78.0 0.3372 0.2398 0.0492 0.00785 1.420 3 1024 7.356 3 1026 3.504 0.810 0.00173 0.000590

 80 101.4 74.94 2.122 75.8 0.3424 0.2481 0.0476 0.00810 1.324 3 1024 7.986 3 1026 3.425 0.880 0.00183 0.000538

 90 119.1 73.59 2.5 73.5 0.3481 0.2572 0.0460 0.00835 1.234 3 1024 8.611 3 1026 3.357 0.955 0.00195 0.000488

 100 138.9 72.17 2.935 71.1 0.3548 0.2674 0.0444 0.00860 1.149 3 1024 9.222 3 1026 3.303 1.032 0.00210 0.000439

 110 161.2 70.69 3.435 68.5 0.3627 0.2790 0.0427 0.00884 1.068 3 1024 9.814 3 1026 3.262 1.115 0.00227 0.000391

 120 186.0 69.13 4.012 65.8 0.3719 0.2925 0.0410 0.00908 9.911 3 1025 1.038 3 1025 3.235 1.204 0.00248 0.000344

 130 213.5 67.48 4.679 62.9 0.3829 0.3083 0.0392 0.00931 9.175 3 1025 1.092 3 1025 3.223 1.303 0.00275 0.000299

 140 244.1 65.72 5.455 59.8 0.3963 0.3276 0.0374 0.00954 8.464 3 1025 1.144 3 1025 3.229 1.416 0.00308 0.000255

 150 277.8 63.83 6.367 56.4 0.4131 0.3520 0.0355 0.00976 7.778 3 1025 1.195 3 1025 3.259 1.551 0.00351 0.000212

 160 314.9 61.76 7.45 52.7 0.4352 0.3839 0.0335 0.00998 7.108 3 1025 1.245 3 1025 3.324 1.725 0.00411 0.000171

 170 355.8 59.47 8.762 48.5 0.4659 0.4286 0.0314 0.01020 6.450 3 1025 1.298 3 1025 3.443 1.963 0.00498 0.000132

 180 400.7 56.85 10.4 43.7 0.5123 0.4960 0.0292 0.01041 5.792 3 1025 1.356 3 1025 3.661 2.327 0.00637 0.000095

 190 449.9 53.75 12.53 38.0 0.5929 0.6112 0.0267 0.01063 5.119 3 1025 1.431 3 1025 4.090 2.964 0.00891 0.000061

 200 504.0 49.75 15.57 30.7 0.7717 0.8544 0.0239 0.01085 4.397 3 1025 1.544 3 1025 5.119 4.376 0.01490 0.000031

 210 563.8 43.19 21.18 18.9 1.4786 1.6683 0.0199 0.01110 3.483 3 1025 1.787 3 1025 9.311 9.669 0.04021 0.000006

Note 1:  Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m/r and a 5 k/rcp 5 n/Pr. The properties listed here 

(except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit Btu/lbm·8F for specific heat is equivalent to Btu/lbm·R, and the unit Btu/h·ft·8F for thermal conductivity is equivalent to Btu/h·ft·R.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tillner-Roth and H. D. Baehr, “An International 

Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 

70 MPa,” J. Phys. Chem. Ref. Data, Vol. 23, No. 5, 1994; M. J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, “Viscosity and Thermal Conductivity of 

Halogenated Methane and Ethane Refrigerants,” IJR, Vol. 22, pp. 525–535, 1999; NIST REFPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, 

and A. P. Peskin, Physicial and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303, 1995).
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TABLE A–5E

Properties of saturated ammonia

        Volume
    

Enthalpy
 Specific Thermal  Prandtl 

Expansion Surface
  

Saturation
 Density 

of
 Heat Conductivity Dynamic Viscosity Number  

Coefficient Tension,

 Temp. Pressure
 r, lbm/ft3 

Vaporization
 cp, Btu/lbm·R k, Btu/h·ft·R m, lbm/ft·s Pr 

b, 1/R lbf/ft

T, 8F P, psia Liquid Vapor hfg, Btu/lbm Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

 240 10.4 43.08 0.0402 597.0 1.0542 0.5354 — 0.01026 1.966 3 1024 5.342 3 1026 — 1.003 0.00098 0.002443

 230 13.9 42.66 0.0527 590.2 1.0610 0.5457 — 0.01057 1.853 3 1024 5.472 3 1026 — 1.017 0.00101 0.002357

 220 18.3 42.33 0.0681 583.2 1.0677 0.5571 0.3501 0.01089 1.746 3 1024 5.600 3 1026 1.917 1.031 0.00103 0.002272

 210 23.7 41.79 0.0869 575.9 1.0742 0.5698 0.3426 0.01121 1.645 3 1024 5.731 3 1026 1.856 1.048 0.00106 0.002187

 0 30.4 41.34 0.1097 568.4 1.0807 0.5838 0.3352 0.01154 1.549 3 1024 5.861 3 1026 1.797 1.068 0.00109 0.002103

 10 38.5 40.89 0.1370 560.7 1.0873 0.5992 0.3278 0.01187 1.458 3 1024 5.994 31026 1.740 1.089 0.00112 0.002018

 20 48.2 40.43 0.1694 552.6 1.0941 0.6160 0.3203 0.01220 1.371 3 1024 6.125 31026 1.686 1.113 0.00116 0.001934

 30 59.8 39.96 0.2075 544.4 1.1012 0.6344 0.3129 0.01254 1.290 3 1024 6.256 31026 1.634 1.140 0.00119 0.001850

 40 73.4 39.48 0.2521 535.8 1.1087 0.6544 0.3055 0.01288 1.213 3 1024 6.389 31026 1.585 1.168 0.00123 0.001767

 50 89.2 38.99 0.3040 526.9 1.1168 0.6762 0.2980 0.01323 1.140 3 1024 6.522 31026 1.539 1.200 0.00128 0.001684

 60 107.7 38.50 0.3641 517.7 1.1256 0.6999 0.2906 0.01358 1.072 3 1024 6.656 31026 1.495 1.234 0.00132 0.001601

 70 128.9 37.99 0.4332 508.1 1.1353 0.7257 0.2832 0.01394 1.008 3 1024 6.786 31026 1.456 1.272 0.00137 0.001518

 80 153.2 37.47 0.5124 498.2 1.1461 0.7539 0.2757 0.01431 9.486 3 1025 6.922 31026 1.419 1.313 0.00143 0.001436

 90 180.8 36.94 0.6029 487.8 1.1582 0.7846 0.2683 0.01468 8.922 3 1025 7.056 31026 1.387 1.358 0.00149 0.001354

 100 212.0 36.40 0.7060 477.0 1.1719 0.8183 0.2609 0.01505 8.397 3 1025 7.189 31026 1.358 1.407 0.00156 0.001273

 110 247.2 35.83 0.8233 465.8 1.1875 0.8554 0.2535 0.01543 7.903 3 1025 7.325 3 1026 1.333 1.461 0.00164 0.001192

 120 286.5 35.26 0.9564 454.1 1.2054 0.8965 0.2460 0.01582 7.444 3 1025 7.458 3 1026 1.313 1.522 0.00174 0.001111

 130 330.4 34.66 1.1074 441.7 1.2261 0.9425 0.2386 0.01621 7.017 3 1025 7.594 3 1026 1.298 1.589 0.00184 0.001031

 140 379.2 34.04 1.2786 428.8 1.2502 0.9943 0.2312 0.01661 6.617 3 1025 7.731 3 1026 1.288 1.666 0.00196 0.000951

 150 433.2 33.39 1.4730 415.2 1.2785 1.0533 0.2237 0.01702 6.244 3 1025 7.867 3 1026 1.285 1.753 0.00211 0.000872

 160 492.7 32.72 1.6940 400.8 1.3120 1.1214 0.2163 0.01744 5.900 3 1025 8.006 3 1026 1.288 1.853 0.00228 0.000794

 170 558.2 32.01 1.9460 385.4 1.3523 1.2012 0.2089 0.01786 5.578 3 1025 8.142 3 1026 1.300 1.971 0.00249 0.000716

 180 630.1 31.26 2.2346 369.1 1.4015 1.2965 0.2014 0.01829 5.278 3 1025 8.281 3 1026 1.322 2.113 0.00274 0.000638

 190 708.6 30.47 2.5670 351.6 1.4624 1.4128 0.1940 0.01874 5.000 3 1025 8.419 3 1026 1.357 2.286 0.00306 0.000562

 200 794.4 29.62 2.9527 332.7 1.5397 1.5586 0.1866 0.01919 4.742 3 1025 8.561 3 1026 1.409 2.503 0.00348 0.000486

 210 887.9 28.70 3.4053 312.0 1.6411 1.7473 0.1791 0.01966 4.500 3 1025 8.703 3 1026 1.484 2.784 0.00403 0.000411

 220 989.5 27.69 3.9440 289.2 1.7798 2.0022 0.1717 0.02015 4.275 3 1025 8.844 3 1026 1.595 3.164 0.00480 0.000338

 230 1099.8 25.57 4.5987 263.5 1.9824 2.3659 0.1643 0.02065 4.064 3 1025 8.989 31026 1.765 3.707 0.00594 0.000265

 240 1219.4 25.28 5.4197 234.0 2.3100 2.9264 0.1568 0.02119 3.864 3 1025 9.136 31026 2.049 4.542 0.00784 0.000194

Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m/r and a 5 k/rcp 5 n/Pr. The properties listed here (except 

the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit Btu/lbm·8F for specific heat is equivalent to Btu/lbm·R, and the unit Btu/h·ft·8F for thermal conductivity is equivalent to Btu/h·ft·R.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Tillner-Roth, Harms-Watzenterg, and Baehr, “Eine 

neue Fundamentalgleichung fur Ammoniak,” DKV-Tagungsbericht 20: 167–181, 1993; Liley and Desai, “Thermophysical Properties of Refrigerants,” ASHRAE, 

1993, ISBN 1-1883413-10-9.
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TABLE A–6E

Properties of saturated propane

        Volume
    

Enthalpy
 Specific Thermal  Prandtl 

Expansion Surface
  

Saturation
 Density 

of
 Heat Conductivity Dynamic Viscosity Number  

Coefficient Tension,

 Temp. Pressure
 r, lbm/ft3 

Vaporization
 cp, Btu/lbm·R k, Btu/h·ft·R m, lbm/ft·s Pr 

b, 1/R lbf/ft

 T, 8F P, psia Liquid Vapor hfg, Btu/lbm Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid

 2200 0.0201 42.06 0.0003 217.7 0.4750 0.2595 0.1073 0.00313 5.012 3 1024 2.789 3 1026 7.991 0.833 0.00083 0.001890

 2180 0.0752 41.36 0.0011 213.4 0.4793 0.2680 0.1033 0.00347 3.941 3 1024 2.975 3 1026 6.582 0.826 0.00086 0.001780

 2160 0.2307 40.65 0.0032 209.1 0.4845 0.2769 0.0992 0.00384 3.199 3 1024 3.164 3 1026 5.626 0.821 0.00088 0.001671

 2140 0.6037 39.93 0.0078 204.8 0.4907 0.2866 0.0949 0.00423 2.660 3 1024 3.358 3 1026 4.951 0.818 0.00091 0.001563

 2120 1.389 39.20 0.0170 200.5 0.4982 0.2971 0.0906 0.00465 2.252 3 1024 3.556 3 1026 4.457 0.817 0.00094 0.001455

 2100 2.878 38.46 0.0334 196.1 0.5069 0.3087 0.0863 0.00511 1.934 3 1024 3.756 3 1026 4.087 0.817 0.00097 0.001349

 290 4.006 38.08 0.0453 193.9 0.5117 0.3150 0.0842 0.00534 1.799 3 1024 3.858 3 1026 3.936 0.819 0.00099 0.001297

 280 5.467 37.70 0.0605 191.6 0.5169 0.3215 0.0821 0.00559 1.678 3 1024 3.961 3 1026 3.803 0.820 0.00101 0.001244

 270 7.327 37.32 0.0793 189.3 0.5224 0.3284 0.0800 0.00585 1.569 3 1024 4.067 3 1026 3.686 0.822 0.00104 0.001192

 260 9.657 36.93 0.1024 186.9 0.5283 0.3357 0.0780 0.00611 1.469 3 1024 4.172 3 1026 3.582 0.825 0.00106 0.001140

 250 12.54 36.54 0.1305 184.4 0.5345 0.3433 0.0760 0.00639 1.378 3 1024 4.278 3 1026 3.490 0.828 0.00109 0.001089

 240 16.05 36.13 0.1641 181.9 0.5392 0.3513 0.0740 0.00668 1.294 3 1024 4.386 3 1026 3.395 0.831 0.00112 0.001038

 230 20.29 35.73 0.2041 179.3 0.5460 0.3596 0.0721 0.00697 1.217 3 1024 4.497 3 1026 3.320 0.835 0.00115 0.000987

 220 25.34 35.31 0.2512 176.6 0.5531 0.3684 0.0702 0.00728 1.146 3 1024 4.611 3 1026 3.253 0.840 0.00119 0.000937

 210 31.3 34.89 0.3063 173.8 0.5607 0.3776 0.0683 0.00761 1.079 3 1024 4.725 3 1026 3.192 0.845 0.00123 0.000887

 0 38.28 34.46 0.3703 170.9 0.5689 0.3874 0.0665 0.00794 1.018 3 1024 4.842 3 1026 3.137 0.850 0.00127 0.000838

 10 46.38 34.02 0.4441 167.9 0.5775 0.3976 0.0647 0.00829 9.606 3 1025 4.961 3 1026 3.088 0.857 0.00132 0.000789

 20 55.7 33.56 0.5289 164.8 0.5867 0.4084 0.0629 0.00865 9.067 3 1025 5.086 3 1026 3.043 0.864 0.00138 0.000740

 30 66.35 33.10 0.6259 161.6 0.5966 0.4199 0.0612 0.00903 8.561 3 1025 5.211 3 1026 3.003 0.873 0.00144 0.000692

 40 78.45 32.62 0.7365 158.1 0.6072 0.4321 0.0595 0.00942 8.081 3 1025 5.342 3 1026 2.967 0.882 0.00151 0.000644

 50 92.12 32.13 0.8621 154.6 0.6187 0.4452 0.0579 0.00983 7.631 3 1025 5.478 3 1026 2.935 0.893 0.00159 0.000597

 60 107.5 31.63 1.0046 150.8 0.6311 0.4593 0.0563 0.01025 7.200 3 1025 5.617 3 1026 2.906 0.906 0.00168 0.000551

 70 124.6 31.11 1.1659 146.8 0.6447 0.4746 0.0547 0.01070 6.794 3 1025 5.764 3 1026 2.881 0.921 0.00179 0.000505

 80 143.7 30.56 1.3484 142.7 0.6596 0.4915 0.0532 0.01116 6.406 3 1025 5.919 3 1026 2.860 0.938 0.00191 0.000460

 90 164.8 30.00 1.5549 138.2 0.6762 0.5103 0.0517 0.01165 6.033 3 1025 6.081 3 1026 2.843 0.959 0.00205 0.000416

 100 188.1 29.41 1.7887 133.6 0.6947 0.5315 0.0501 0.01217 5.675 3 1025 6.256 3 1026 2.831 0.984 0.00222 0.000372

 120 241.8 28.13 2.3562 123.2 0.7403 0.5844 0.0472 0.01328 5.000 3 1025 6.644 3 1026 2.825 1.052 0.00267 0.000288

 140 306.1 26.69 3.1003 111.1 0.7841 0.6613 0.0442 0.01454 4.358 3 1025 7.111 3 1026 2.784 1.164 0.00338 0.000208

 160 382.4 24.98 4.1145  96.4 0.8696 0.7911 0.0411 0.01603 3.733 3 1025 7.719 3 1026 2.845 1.371 0.00459 0.000133

 180 472.9 22.79 5.6265  77.1 1.1436 1.0813 0.0376 0.01793 3.083 3 1025 8.617 3 1026 3.380 1.870 0.00791 0.000065

Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n 5 m/r and a 5 k/rcp 5 n/Pr. The properties listed here (except 

the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit Btu/lbm·8F for specific heat is equivalent to Btu/lbm·R, and the unit Btu/h·ft·8F for thermal conductivity is equivalent to Btu/h·ft·R.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, “Fundamental Equations 

of State,” Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely, “Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and 

Normal Butane,” J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G. R. Somayajulu, “A Generalized Equation for Surface Tension from the Triple-Point to the 

Critical-Point,” International Journal of Thermophysics, Vol. 9, No. 4, 1988.
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TABLE A–7E

Properties of liquids

         Volume

   Specific Thermal Thermal Dynamic Kinematic Prandtl Expansion

 Temp. Density Heat cp, Conductivity Diffusivity Viscosity Viscosity Number Coeff. b,

 T, 8F r, lbm/ft3 Btu/lbm·R k, Btu/h·ft·R a, ft2/s m, lbm/ft·s n, ft2/s Pr 1/R

Methane (CH4)

 2280 27.41 0.8152 0.1205 1.497 3 1026 1.057 3 1024 3.857 3 1026 2.575 0.00175

 2260 26.43 0.8301 0.1097 1.389 3 1026 8.014 3 1025 3.032 3 1026 2.183 0.00192

 2240 25.39 0.8523 0.0994 1.276 3 1026 6.303 3 1025 2.482 3 1026 1.945 0.00215

 2220 24.27 0.8838 0.0896 1.159 3 1026 5.075 3 1025 2.091 3 1026 1.803 0.00247

 2200 23.04 0.9314 0.0801 1.036 3 1026 4.142 3 1025 1.798 3 1026 1.734 0.00295

 2180 21.64 1.010 0.0709 9.008 3 1027 3.394 3 1025 1.568 3 1026 1.741 0.00374

 2160 19.99 1.158 0.0616 7.397 3 1027 2.758 3 1025 1.379 3 1026 1.865 0.00526

 2140 17.84 1.542 0.0518 5.234 3 1027 2.168 3 1025 1.215 3 1026 2.322 0.00943

Methanol [CH3(OH)]

 70 49.15 0.6024 0.1148 1.076 3 1026 3.872 3 1024 7.879 3 1026 7.317 0.000656

 90 48.50 0.6189 0.1143 1.057 3 1026 3.317 3 1024 6.840 3 1026 6.468 0.000671

 110 47.85 0.6373 0.1138 1.036 3 1026 2.872 3 1024 6.005 3 1026 5.793 0.000691

 130 47.18 0.6576 0.1133 1.014 3 1026 2.513 3 1024 5.326 3 1026 5.250 0.000716

 150 46.50 0.6796 0.1128 9.918 3 1027 2.218 3 1024 4.769 3 1026 4.808 0.000749

 170 45.80 0.7035 0.1124 9.687 3 1027 1.973 3 1024 4.308 3 1026 4.447 0.000789

Isobutane (R600a)

 2150 42.75 0.4483 0.0799 1.157 3 1026 6.417 3 1024 1.500 3 1025 12.96 0.000785

 2100 41.06 0.4721 0.0782 1.120 3 1026 3.669 3 1024 8.939 3 1026 7.977 0.000836

 250 39.31 0.4986 0.0731 1.036 3 1026 2.376 3 1024 6.043 3 1026 5.830 0.000908

 0 37.48 0.5289 0.0664 9.299 3 1027 1.651 3 1024 4.406 3 1026 4.738 0.001012

 50 35.52 0.5643 0.0591 8.187 3 1027 1.196 3 1024 3.368 3 1026 4.114 0.001169

 100 33.35 0.6075 0.0521 7.139 3 1027 8.847 3 1025 2.653 3 1026 3.716 0.001421

 150 30.84 0.6656 0.0457 6.188 3 1027 6.558 3 1025 2.127 3 1026 3.437 0.001883

 200 27.73 0.7635 0.0400 5.249 3 1027 4.750 3 1025 1.713 3 1026 3.264 0.002970

Glycerin

 32 79.65 0.5402 0.163 1.052 3 1026 7.047 0.08847 84101

 40 79.49 0.5458 0.1637 1.048 3 1026 4.803 0.06042 57655

 50 79.28 0.5541 0.1645 1.040 3 1026 2.850 0.03594 34561

 60 79.07 0.5632 0.1651 1.029 3 1026 1.547 0.01956 18995

 70 78.86 0.5715 0.1652 1.018 3 1026 0.9422 0.01195 11730

 80 78.66 0.5794 0.1652 1.007 3 1026 0.5497 0.00699 6941

 90 78.45 0.5878 0.1652 9.955 3 1027 0.3756 0.004787 4809

 100 78.24 0.5964 0.1653 9.841 3 1027 0.2277 0.00291 2957

Engine Oil (unused)

 32 56.12 0.4291 0.0849 9.792 3 1027 2.563 4.566 3 1022 46636 0.000389

 50 55.79 0.4395 0.08338 9.448 3 1027 1.210 2.169 3 1022 22963 0.000389

 75 55.3 0.4531 0.08378 9.288 3 1027 0.4286 7.751 3 1023 8345 0.000389

 100 54.77 0.4669 0.08367 9.089 3 1027 0.1630 2.977 3 1023 3275 0.000389

 125 54.24 0.4809 0.08207 8.740 3 1027 7.617 3 1022 1.404 3 1023 1607 0.000389

 150 53.73 0.4946 0.08046 8.411 3 1027 3.833 3 1022 7.135 3 1024 848.3 0.000389

 200 52.68 0.5231 0.07936 7.999 3 1027 1.405 3 1022 2.668 3 1024 333.6 0.000389

 250 51.71 0.5523 0.07776 7.563 3 1027 6.744 3 1023 1.304 3 1024 172.5 0.000389

 300 50.63 0.5818 0.07673 7.236 3 1027 3.661 3 1023 7.232 3 1025 99.94 0.000389

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
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TABLE A–8E

Properties of liquid metals

         Volume

   Specific Thermal Thermal Dynamic Kinematic Prandtl Expansion

 Temp. Density Heat cp, Conductivity Diffusivity Viscosity Viscosity Number Coeff. b,

 T, 8F r, lbm/ft3 Btu/lbm·R k, Btu/h·ft·R a, ft2/s m, lbm/ft·s n, ft2/s Pr 1/R

Mercury (Hg) Melting Point: 2388F

 32 848.7 0.03353 4.727 4.614 3 1025 1.133 3 1023 1.335 3 1026 0.02895 1.005 3 1024

 50 847.2 0.03344 4.805 4.712 3 1025 1.092 3 1023 1.289 3 1026 0.02737 1.005 3 1024

 100 842.9 0.03319 5.015 4.980 3 1025 9.919 3 1024 1.176 3 1026 0.02363 1.005 3 1024

 150 838.7 0.03298 5.221 5.244 3 1025 9.122 3 1024 1.087 3 1026 0.02074 1.005 3 1024

 200 834.5 0.03279 5.422 5.504 3 1025 8.492 3 1024 1.017 3 1026 0.01849 1.005 3 1024

 300 826.2 0.03252 5.815 6.013 3 1025 7.583 3 1024 9.180 3 1027 0.01527 1.005 3 1024

 400 817.9 0.03236 6.184 6.491 3 1025 6.972 3 1024 8.524 3 1027 0.01313 1.008 3 1024

 500 809.6 0.03230 6.518 6.924 3 1025 6.525 3 1024 8.061 3 1027 0.01164 1.018 3 1024

 600 801.3 0.03235 6.839 7.329 3 1025 6.186 3 1024 7.719 3 1027 0.01053 1.035 3 1024

Bismuth (Bi) Melting Point: 5208F

 700 620.7 0.03509 9.361 1.193 3 1024 1.001 3 1023 1.614 3 1026 0.01352

 800 616.5 0.03569 9.245 1.167 3 1024 9.142 3 1024 1.482 3 1026 0.01271

 900 612.2 0.0363 9.129 1.141 3 1024 8.267 3 1024 1.350 3 1026 0.01183

 1000 608.0 0.0369 9.014 1.116 3 1024 7.392 3 1024 1.215 3 1026 0.0109

 1100 603.7 0.0375 9.014 1.105 3 1024 6.872 3 1024 1.138 3 1026 0.01029

Lead (Pb) Melting Point: 6218F

 700 658 0.03797 9.302 1.034 3 1024 1.612 3 1023 2.450 3 1026 0.02369

 800 654 0.03750 9.157 1.037 3 1024 1.453 3 1023 2.223 3 1026 0.02143

 900 650 0.03702 9.013 1.040 3 1024 1.296 3 1023 1.994 3 1026 0.01917

 1000 645.7 0.03702 8.912 1.035 3 1024 1.202 3 1023 1.862 3 1026 0.01798

 1100 641.5 0.03702 8.810 1.030 3 1024 1.108 3 1023 1.727 3 1026 0.01676

 1200 637.2 0.03702 8.709 1.025 3 1024 1.013 3 1023 1.590 3 1026 0.01551

Sodium (Na) Melting Point: 2088F

 300 57.13 0.3258 48.19 7.192 3 1024 4.136 3 1024 7.239 3 1026 0.01007

 400 56.28 0.3219 46.58 7.142 3 1024 3.572 3 1024 6.350 3 1026 0.008891

 500 55.42 0.3181 44.98 7.087 3 1024 3.011 3 1024 5.433 3 1026 0.007667

 600 54.56 0.3143 43.37 7.026 3 1024 2.448 3 1024 4.488 3 1026 0.006387

 800 52.85 0.3089 40.55 6.901 3 1024 1.772 3 1024 3.354 3 1026 0.004860

 1000 51.14 0.3057 38.12 6.773 3 1024 1.541 3 1024 3.014 3 1026 0.004449

Potassium (K) Melting Point: 1478F

 300 50.40 0.1911 26.00 7.500 3 1024 2.486 3 1024 4.933 3 1026 0.006577

 400 49.58 0.1887 25.37 7.532 3 1024 2.231 3 1024 4.500 3 1026 0.005975

 500 48.76 0.1863 24.73 7.562 3 1024 1.976 3 1024 4.052 3 1026 0.005359

 600 47.94 0.1839 24.09 7.591 3 1024 1.721 3 1024 3.589 3 1026 0.004728

 800 46.31 0.1791 22.82 7.643 3 1024 1.210 3 1024 2.614 3 1026 0.003420

 1000 44.62 0.1791 21.34 7.417 3 1024 1.075 3 1024 2.409 3 1026 0.003248

Sodium–Potassium (%22Na–%78K) Melting Point: 128F

 200 52.99 0.2259 14.79 3.432 3 1024 3.886 3 1024 7.331 3 1026 0.02136

 300 52.16 0.2230 14.99 3.580 3 1024 3.467 3 1024 6.647 3 1026 0.01857

 400 51.32 0.2201 15.19 3.735 3 1024 3.050 3 1024 5.940 3 1026 0.0159

 600 49.65 0.2143 15.59 4.070 3 1024 2.213 3 1024 4.456 3 1026 0.01095

 800 47.99 0.2100 15.95 4.396 3 1024 1.539 3 1024 3.207 3 1026 0.007296

 1000 46.36 0.2103 16.20 4.615 3 1024 1.353 3 1024 2.919 3 1026 0.006324

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
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TABLE A–9E

Properties of air at 1 atm pressure

   Specific Thermal Thermal Dynamic Kinematic Prandtl

 Temp. Density Heat cp, Conductivity Diffusivity Viscosity Viscosity Number

 T, 8F r, lbm/ft3 Btu/lbm·R k, Btu/h·ft·R a, ft2/s m, lbm/ft·s n, ft2/s Pr

 2300 0.24844 0.5072 0.00508 1.119 3 1025 4.039 3 1026 1.625 3 1025 1.4501

 2200 0.15276 0.2247 0.00778 6.294 3 1025 6.772 3 1026 4.433 3 1025 0.7042

 2100 0.11029 0.2360 0.01037 1.106 3 1024 9.042 3 1026 8.197 3 1025 0.7404

 250 0.09683 0.2389 0.01164 1.397 3 1024 1.006 3 1025 1.039 3 1024 0.7439

 0 0.08630 0.2401 0.01288 1.726 3 1024 1.102 3 1025 1.278 3 1024 0.7403

 10 0.08446 0.2402 0.01312 1.797 3 1024 1.121 3 1025 1.328 3 1024 0.7391

 20 0.08270 0.2403 0.01336 1.868 3 1024 1.140 3 1025 1.379 3 1024 0.7378

 30 0.08101 0.2403 0.01361 1.942 3 1024 1.158 3 1025 1.430 3 1024 0.7365

 40 0.07939 0.2404 0.01385 2.016 3 1024 1.176 3 1025 1.482 3 1024 0.7350

 50 0.07783 0.2404 0.01409 2.092 3 1024 1.194 3 1025 1.535 3 1024 0.7336

 60 0.07633 0.2404 0.01433 2.169 3 1024 1.212 3 1025 1.588 3 1024 0.7321

 70 0.07489 0.2404 0.01457 2.248 3 1024 1.230 3 1025 1.643 3 1024 0.7306

 80 0.07350 0.2404 0.01481 2.328 3 1024 1.247 3 1025 1.697 3 1024 0.7290

 90 0.07217 0.2404 0.01505 2.409 3 1024 1.265 3 1025 1.753 3 1024 0.7275

 100 0.07088 0.2405 0.01529 2.491 3 1024 1.281 3 1025 1.809 3 1024 0.7260

 110 0.06963 0.2405 0.01552 2.575 3 1024 1.299 3 1025 1.866 3 1024 0.7245

 120 0.06843 0.2405 0.01576 2.660 3 1024 1.316 3 1025 1.923 3 1024 0.7230

 130 0.06727 0.2405 0.01599 2.746 3 1024 1.332 3 1025 1.981 3 1024 0.7216

 140 0.06615 0.2406 0.01623 2.833 3 1024 1.349 3 1025 2.040 3 1024 0.7202

 150 0.06507 0.2406 0.01646 2.921 3 1024 1.365 3 1025 2.099 3 1024 0.7188

 160 0.06402 0.2406 0.01669 3.010 3 1024 1.382 3 1025 2.159 3 1024 0.7174

 170 0.06300 0.2407 0.01692 3.100 3 1024 1.398 3 1025 2.220 3 1024 0.7161

 180 0.06201 0.2408 0.01715 3.191 3 1024 1.414 3 1025 2.281 3 1024 0.7148

 190 0.06106 0.2408 0.01738 3.284 3 1024 1.430 3 1025 2.343 3 1024 0.7136

 200 0.06013 0.2409 0.01761 3.377 3 1024 1.446 3 1025 2.406 3 1024 0.7124

 250 0.05590 0.2415 0.01874 3.857 3 1024 1.524 3 1025 2.727 3 1024 0.7071

 300 0.05222 0.2423 0.01985 4.358 3 1024 1.599 3 1025 3.063 3 1024 0.7028

 350 0.04899 0.2433 0.02094 4.879 3 1024 1.672 3 1025 3.413 3 1024 0.6995

 400 0.04614 0.2445 0.02200 5.419 3 1024 1.743 3 1025 3.777 3 1024 0.6971

 450 0.04361 0.2458 0.02305 5.974 3 1024 1.812 3 1025 4.154 3 1024 0.6953

 500 0.04134 0.2472 0.02408 6.546 3 1024 1.878 3 1025 4.544 3 1024 0.6942

 600 0.03743 0.2503 0.02608 7.732 3 1024 2.007 3 1025 5.361 3 1024 0.6934

 700 0.03421 0.2535 0.02800 8.970 3 1024 2.129 3 1025 6.225 3 1024 0.6940

 800 0.03149 0.2568 0.02986 1.025 3 1023 2.247 3 1025 7.134 3 1024 0.6956

 900 0.02917 0.2599 0.03164 1.158 3 1023 2.359 3 1025 8.087 3 1024 0.6978

 1000 0.02718 0.2630 0.03336 1.296 3 1023 2.467 3 1025 9.080 3 1024 0.7004

 1500 0.02024 0.2761 0.04106 2.041 3 1023 2.957 3 1025 1.460 3 1023 0.7158

 2000 0.01613 0.2855 0.04752 2.867 3 1023 3.379 3 1025 2.095 3 1023 0.7308

 2500 0.01340 0.2922 0.05309 3.765 3 1023 3.750 3 1025 2.798 3 1023 0.7432

 3000 0.01147 0.2972 0.05811 4.737 3 1023 4.082 3 1025 3.560 3 1023 0.7516

 3500 0.01002 0.3010 0.06293 5.797 3 1023 4.381 3 1025 4.373 3 1023 0.7543

 4000 0.00889 0.3040 0.06789 6.975 3 1023 4.651 3 1025 5.229 3 1023 0.7497

Note: For ideal gases, the properties cp, k, m, and Pr are independent of pressure. The properties r, n, and a at a pressure P (in atm) other than 1 atm are 

determined by multiplying the values of r at the given temperature by P and by dividing n and a by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 198; and 

Thermophysical Properties of Matter, Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, 

and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.
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TABLE A–10E

Properties of gases at 1 atm pressure

   Specific Thermal Thermal Dynamic Kinematic Prandtl

 Temp. Density Heat cp, Conductivity Diffusivity Viscosity Viscosity Number

 T, 8F r, lbm/ft3 Btu/lbm·R k, Btu/h·ft·R a, ft2/s m, lbm/ft·s n, ft2/s Pr

Carbon Dioxide, CO2

 250 0.14712 0.1797 0.00628 6.600 3 1025 7.739 3 1026 5.261 3 1025 0.7970

 0 0.13111 0.1885 0.00758 8.522 3 1025 8.661 3 1026 6.606 3 1025 0.7751

 50 0.11825 0.1965 0.00888 1.061 3 1024 9.564 3 1026 8.086 3 1025 0.7621

 100 0.10769 0.2039 0.01017 1.286 3 1024 1.045 3 1025 9.703 3 1025 0.7543

 200 0.09136 0.2171 0.01273 1.784 3 1024 1.217 3 1025 1.332 3 1024 0.7469

 300 0.07934 0.2284 0.01528 2.341 3 1024 1.382 3 1025 1.743 3 1024 0.7445

 500 0.06280 0.2473 0.02027 3.626 3 1024 1.696 3 1025 2.700 3 1024 0.7446

 1000 0.04129 0.2796 0.03213 7.733 3 1024 2.381 3 1025 5.767 3 1024 0.7458

 1500 0.03075 0.2995 0.04281 1.290 3 1023 2.956 3 1025 9.610 3 1024 0.7445

 2000 0.02450 0.3124 0.05193 1.885 3 1023 3.451 3 1025 1.408 3 1023 0.7474

Carbon Monoxide, CO

 250 0.09363 0.2571 0.01118 1.290 3 1024 9.419 3 1026 1.005 3 1024 0.7798

 0 0.08345 0.2523 0.01240 1.636 3 1024 1.036 3 1025 1.242 3 1024 0.7593

 50 0.07526 0.2496 0.01359 2.009 3 1024 1.127 3 1025 1.498 3 1024 0.7454

 100 0.06854 0.2484 0.01476 2.408 3 1024 1.214 3 1025 1.772 3 1024 0.7359

 200 0.05815 0.2485 0.01702 3.273 3 1024 1.379 3 1025 2.372 3 1024 0.7247

 300 0.05049 0.2505 0.01920 4.217 3 1024 1.531 3 1025 3.032 3 1024 0.7191

 500 0.03997 0.2567 0.02331 6.311 3 1024 1.802 3 1025 4.508 3 1024 0.7143

 1000 0.02628 0.2732 0.03243 1.254 3 1023 2.334 3 1025 8.881 3 1024 0.7078

 1500 0.01957 0.2862 0.04049 2.008 3 1023 2.766 3 1025 1.413 3 1023 0.7038

 2000 0.01559 0.2958 0.04822 2.903 3 1023 3.231 3 1025 2.072 3 1023 0.7136

Methane, CH4

 250 0.05363 0.5335 0.01401 1.360 3 1024 5.861 3 1026 1.092 3 1024 0.8033

 0 0.04779 0.5277 0.01616 1.780 3 1024 6.506 3 1026 1.361 3 1024 0.7649

 50 0.04311 0.5320 0.01839 2.228 3 1024 7.133 3 1026 1.655 3 1024 0.7428

 100 0.03925 0.5433 0.02071 2.698 3 1024 7.742 3 1026 1.972 3 1024 0.7311

 200 0.03330 0.5784 0.02559 3.690 3 1024 8.906 3 1026 2.674 3 1024 0.7245

 300 0.02892 0.6226 0.03077 4.748 3 1024 1.000 3 1025 3.457 3 1024 0.7283

 500 0.02289 0.7194 0.04195 7.075 3 1024 1.200 3 1025 5.244 3 1024 0.7412

 1000 0.01505 0.9438 0.07346 1.436 3 1023 1.620 3 1025 1.076 3 1023 0.7491

 1500 0.01121 1.1162 0.10766 2.390 3 1023 1.974 3 1025 1.760 3 1023 0.7366

 2000 0.00893 1.2419 0.14151 3.544 3 1023 2.327 3 1025 2.605 3 1023 0.7353

Hydrogen, H2

 250 0.00674 3.0603 0.08246 1.110 3 1023 4.969 3 1026 7.373 3 1024 0.6638

 0 0.00601 3.2508 0.09049 1.287 3 1023 5.381 3 1026 8.960 3 1024 0.6960

 50 0.00542 3.3553 0.09818 1.500 3 1023 5.781 3 1026 1.067 3 1023 0.7112

 100 0.00493 3.4118 0.10555 1.742 3 1023 6.167 3 1026 1.250 3 1023 0.7177

 200 0.00419 3.4549 0.11946 2.295 3 1023 6.911 3 1026 1.652 3 1023 0.7197

 300 0.00363 3.4613 0.13241 2.924 3 1023 7.622 3 1026 2.098 3 1023 0.7174

 500 0.00288 3.4572 0.15620 4.363 3 1023 8.967 3 1026 3.117 3 1023 0.7146

 1000 0.00189 3.5127 0.20989 8.776 3 1023 1.201 3 1025 6.354 3 1023 0.7241

 1500 0.00141 3.6317 0.26381 1.432 3 1022 1.477 3 1025 1.048 3 1022 0.7323

 2000 0.00112 3.7656 0.31923 2.098 3 1022 1.734 3 1025 1.544 3 1022 0.7362

(Continued)
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TABLE A–10E

Properties of gases at 1 atm pressure (Continued)

   Specific Thermal Thermal Dynamic Kinematic Prandtl

 Temp. Density Heat cp, Conductivity Diffusivity Viscosity Viscosity Number

 T, 8F r, lbm/ft3 Btu/lbm·R k, Btu/h·ft·R a, ft2/s m, lbm/ft·s n, ft2/s Pr

Nitrogen, N2

 250 0.09364 0.2320 0.01176 1.504 3 1024 9.500 3 1026 1.014 3 1024 0.6746

 0 0.08346 0.2441 0.01300 1.773 3 1024 1.043 3 1025 1.251 3 1024 0.7056

 50 0.07527 0.2480 0.01420 2.113 3 1024 1.134 3 1025 1.507 3 1024 0.7133

 100 0.06854 0.2489 0.01537 2.502 3 1024 1.221 3 1025 1.783 3 1024 0.7126

 200 0.05815 0.2487 0.01760 3.379 3 1024 1.388 3 1025 2.387 3 1024 0.7062

 300 0.05050 0.2492 0.01970 4.349 3 1024 1.543 3 1025 3.055 3 1024 0.7025

 500 0.03997 0.2535 0.02359 6.466 3 1024 1.823 3 1025 4.559 3 1024 0.7051

 1000 0.02628 0.2697 0.03204 1.255 3 1023 2.387 3 1025 9.083 3 1024 0.7232

 1500 0.01958 0.2831 0.04002 2.006 3 1023 2.829 3 1025 1.445 3 1023 0.7202

 2000 0.01560 0.2927 0.04918 2.992 3 1023 3.212 3 1025 2.059 3 1023 0.6882

Oxygen, O2

 250 0.10697 0.2331 0.01216 1.355 3 1024 1.104 3 1025 1.032 3 1024 0.7622

 0 0.09533 0.2245 0.01346 1.747 3 1024 1.218 3 1025 1.277 3 1024 0.7312

 50 0.08598 0.2209 0.01475 2.157 3 1024 1.326 3 1025 1.543 3 1024 0.7152

 100 0.07830 0.2200 0.01601 2.582 3 1024 1.429 3 1025 1.826 3 1024 0.7072

 200 0.06643 0.2221 0.01851 3.484 3 1024 1.625 3 1025 2.446 3 1024 0.7020

 300 0.05768 0.2262 0.02096 4.463 3 1024 1.806 3 1025 3.132 3 1024 0.7018

 500 0.04566 0.2352 0.02577 6.665 3 1024 2.139 3 1025 4.685 3 1024 0.7029

 1000 0.03002 0.2520 0.03698 1.357 3 1023 2.855 3 1025 9.509 3 1024 0.7005

 1500 0.02236 0.2626 0.04701 2.224 3 1023 3.474 3 1025 1.553 3 1023 0.6985

 2000 0.01782 0.2701 0.05614 3.241 3 1023 4.035 3 1025 2.265 3 1023 0.6988

Water Vapor, H2O

 250 0.06022 0.4512 0.00797 8.153 3 1025 4.933 3 1026 8.192 3 1025 1.0050

 0 0.05367 0.4484 0.00898 1.036 3 1024 5.592 3 1026 1.041 3 1024 1.0049

 50 0.04841 0.4472 0.01006 1.291 3 1024 6.261 3 1026 1.293 3 1024 1.0018

 100 0.04408 0.4473 0.01121 1.579 3 1024 6.942 3 1026 1.574 3 1024 0.9969

 200 0.03740 0.4503 0.01372 2.263 3 1024 8.333 3 1026 2.228 3 1024 0.9845

 300 0.03248 0.4557 0.01648 3.093 3 1024 9.756 3 1026 3.004 3 1024 0.9713

 500 0.02571 0.4707 0.02267 5.204 3 1024 1.267 3 1025 4.931 3 1024 0.9475

 1000 0.01690 0.5167 0.04134 1.314 3 1023 2.014 3 1025 1.191 3 1023 0.9063

 1500 0.01259 0.5625 0.06315 2.477 3 1023 2.742 3 1025 2.178 3 1023 0.8793

 2000 0.01003 0.6034 0.08681 3.984 3 1023 3.422 3 1025 3.411 3 1023 0.8563

Note: For ideal gases, the properties cp, k, m, and Pr are independent of pressure. The properties r, n, and a at a pressure P (in atm) other than 1 atm are 

determined by multiplying the values of r at the given temperature by P and by dividing n and a by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
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TABLE A–11E

Properties of the atmosphere at high altitude

     Speed of   Thermal

 Altitude, Temperature, Pressure, Gravity, Sound, Density, Viscosity Conductivity,

 ft 8F psia g, ft/s2 ft/s lbm/ft3 m, lbm/ft·s Btu/h·ft·R

 0 59.00 14.7 32.174 1116 0.07647 1.202 3 1025 0.0146

 500 57.22 14.4 32.173 1115 0.07536 1.199 3 1025 0.0146

 1000 55.43 14.2 32.171 1113 0.07426 1.196 3 1025 0.0146

 1500 53.65 13.9 32.169 1111 0.07317 1.193 3 1025 0.0145

 2000 51.87 13.7 32.168 1109 0.07210 1.190 3 1025 0.0145

 2500 50.09 13.4 32.166 1107 0.07104 1.186 3 1025 0.0144

 3000 48.30 13.2 32.165 1105 0.06998 1.183 3 1025 0.0144

 3500 46.52 12.9 32.163 1103 0.06985 1.180 3 1025 0.0143

 4000 44.74 12.7 32.162 1101 0.06792 1.177 3 1025 0.0143

 4500 42.96 12.5 32.160 1099 0.06690 1.173 3 1025 0.0142

 5000 41.17 12.2 32.159 1097 0.06590 1.170 3 1025 0.0142

 5500 39.39 12.0 32.157 1095 0.06491 1.167 3 1025 0.0141

 6000 37.61 11.8 32.156 1093 0.06393 1.164 3 1025 0.0141

 6500 35.83 11.6 32.154 1091 0.06296 1.160 3 1025 0.0141

 7000 34.05 11.3 32.152 1089 0.06200 1.157 3 1025 0.0140

 7500 32.26 11.1 32.151 1087 0.06105 1.154 3 1025 0.0140

 8000 30.48 10.9 32.149 1085 0.06012 1.150 3 1025 0.0139

 8500 28.70 10.7 32.148 1083 0.05919 1.147 3 1025 0.0139

 9000 26.92 10.5 32.146 1081 0.05828 1.144 3 1025 0.0138

 9500 25.14 10.3 32.145 1079 0.05738 1.140 3 1025 0.0138

 10,000 23.36 10.1 32.145 1077 0.05648 1.137 3 1025 0.0137

 11,000 19.79 9.72 32.140 1073 0.05473 1.130 3 1025 0.0136

 12,000 16.23 9.34 32.137 1069 0.05302 1.124 3 1025 0.0136

 13,000 12.67 8.99 32.134 1065 0.05135 1.117 3 1025 0.0135

 14,000 9.12 8.63 32.131 1061 0.04973 1.110 3 1025 0.0134

 15,000 5.55 8.29 32.128 1057 0.04814 1.104 3 1025 0.0133

 16,000 11.99 7.97 32.125 1053 0.04659 1.097 3 1025 0.0132

 17,000 21.58 7.65 32.122 1049 0.04508 1.090 3 1025 0.0132

 18,000 25.14 7.34 32.119 1045 0.04361 1.083 3 1025 0.0130

 19,000 28.70 7.05 32.115 1041 0.04217 1.076 3 1025 0.0129

 20,000 212.2 6.76 32.112 1037 0.04077 1.070 3 1025 0.0128

 22,000 219.4 6.21 32.106 1029 0.03808 1.056 3 1025 0.0126

 24,000 226.5 5.70 32.100 1020 0.03553 1.042 3 1025 0.0124

 26,000 233.6 5.22 32.094 1012 0.03311 1.028 3 1025 0.0122

 28,000 240.7 4.78 32.088 1003 0.03082 1.014 3 1025 0.0121

 30,000 247.8 4.37 32.082  995 0.02866 1.000 3 1025 0.0119

 32,000 254.9 3.99 32.08  987 0.02661 0.986 3 1025 0.0117

 34,000 262.0 3.63 32.07  978 0.02468 0.971 3 1025 0.0115

 36,000 269.2 3.30 32.06  969 0.02285 0.956 3 1025 0.0113

 38,000 269.7 3.05 32.06  968 0.02079 0.955 3 1025 0.0113

 40,000 269.7 2.73 32.05  968 0.01890 0.955 3 1025 0.0113

 45,000 269.7 2.148 32.04  968 0.01487 0.955 3 1025 0.0113

 50,000 269.7 1.691 32.02  968 0.01171 0.955 3 1025 0.0113

 55,000 269.7 1.332 32.00  968 0.00922 0.955 3 1025 0.0113

 60,000 269.7 1.048 31.99  968 0.00726 0.955 3 1025 0.0113

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 458 latitude and varies with 

the time of the year and the weather patterns. The conditions at sea level (z 5 D) are taken to be P 5 14.696 psia, T 5 598F, r 5 0.076474 lbm/ft3, 

g 5 32.1741 ft2/s.
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Note: Boldface color glossary terms correspond to boldface 
color terms in the text. Italics indicates a term defined else-
where in the glossary.
 Boldface terms without page numbers are concepts that are 
not defined in the text but are defined or cross-referenced in 
the glossary for students to review.

absolute pressure: See stress, pressure stress. Contrast with 
gage pressure.
absolute viscosity: See viscosity.
acceleration field: See field.
adiabatic process: A process with no heat transfer.
advective acceleration: In order to reduce confusion of 
terminology in flows where buoyancy forces generate convec-
tive fluid motions, the term “convective acceleration” is often 
replaced with the term “advective acceleration.”
aerodynamics: The application of fluid dynamics to air, 
land, and water-going vehicles. Often the term is specifically 
applied to the flow surrounding, and forces and moments on, 
flight vehicles in air, as opposed to vehicles in water or other 
liquids (hydrodynamics).
angle of attack: The angle between an airfoil or wing and 
the free-stream flow velocity vector.
average: An area/volume/time average of a fluid property is 
the integral of the property over an area/volume/time period 
divided by the corresponding area/volume/time period. Also 
called mean.
axisymmetric flow: A flow that when specified appropri-
ately using cylindrical coordinates (r, u, x) does not vary in 
the azimuthal (u) direction. Thus, all partial derivatives in u 
are zero. The flow is therefore either one-dimensional or two-
dimensional (see also dimensionality and planar flow).

barometer: A device that measures atmospheric pressure.
basic dimensions: See dimensions.
Bernoulli equation: A useful reduction of conservation 
of momentum (and conservation of energy) that describes 
a balance between pressure (flow work), velocity (kinetic 
energy), and position of fluid particles relative to the gravity 
vector (potential energy) in regions of a fluid flow where 
frictional force on fluid particles is negligible compared to 
pressure force in that region of the flow (see inviscid flow). 

There are multiple forms of the Bernoulli equation for 
incompressible vs. compressible, steady vs. nonsteady, 
and derivations through Newton’s law vs. the first law of 
thermodynamics. The most commonly used forms are for 
steady incompressible fluid flow derived through conserva-
tion of momentum.
bluff (or blunt) body: A moving object with a blunt rear 
portion. Bluff bodies have wakes resulting from massive 
flow separation over the rear of the body.
boundary condition: In solving for flow field variables 
(velocity, temperature) from governing equations, it is neces-
sary to mathematically specify a function of the variable at 
the surface. These mathematical statements are called bound-
ary conditions. The no-slip condition that the flow velocity 
must equal the surface velocity at the surface is an example 
of a boundary condition that is used with the Navier–Stokes 
equation to solve for the velocity field.
boundary layer: At high Reynolds numbers relatively thin 
“boundary layers” exist in the flow adjacent to surfaces 
where the flow is brought to rest (see no-slip condition). 
Boundary layers are characterized by high shear with the 
highest velocities away from the surface. Frictional force, 
viscous stress, and vorticity are significant in boundary 
layers. The approximate form of the two components of 
the Navier– Stokes equation, simplified by neglecting the 
terms that are small within the boundary layer, are called 
the boundary layer equations. The associated approximation 
based on the existence of thin boundary layers surrounded 
by irrotational or inviscid flow is called the boundary layer 
approximation.
boundary layer approximation: See boundary layer.
boundary layer equations: See boundary layer.
boundary layer thickness measures: Different measures of 
the thickness of a boundary layer as a function of downstream 
distance are used in fluid flow analyses. These are:

boundary layer thickness: The full thickness of the 
viscous layer that defines the boundary layer, from the 
surface to the edge. Defining the edge is difficult to do 
precisely, so the “edge” of the boundary layer is often 
defined as the point where the boundary layer velocity 
is a large fraction of the free-stream velocity (e.g., d99 
is the distance from the surface to the point where the 
streamwise velocity component is 99 percent of the 
free-stream velocity).
displacement thickness: A boundary layer thickness 
measure that quantifies the deflection of fluid streamlines 
in the direction away from the surface as a result 

Note: This glossary covers boldface color terms found in Chapters 1 

to 11.

Guest Author: James G. Brasseur, The Pennsylvania State University
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of friction-induced reduction in mass flow adjacent to the 
surface. Displacement thickness (d*) is a measure of 
the thickness of this mass flow rate deficit layer. In all 
boundary layers, d* , d.
momentum thickness: A measure of the layer of highest 
deficit in momentum flow rate adjacent to the surface as 
a result of frictional resisting force (shear stress). Because 
Newton’s second law states that force equals time rate of 
momentum change, momentum thickness u is proportional 
to surface shear stress. In all boundary layers, u , d*.

Buckingham Pi theorem: A mathematical theorem used in 
dimensional analysis that predicts the number of nondimen-
sional groups that must be functionally related from a set of 
dimensional parameters that are thought to be functionally 
related.
buffer layer: The part of a turbulent boundary layer, close 
to the wall, lying between the viscous and inertial sublayers. 
This thin layer is a transition from the friction-dominated 
layer adjacent to the wall where viscous stresses are large, to 
the inertial layer where turbulent stresses are large compared 
to viscous stresses.
bulk modulus of elasticity: See compressibility.
buoyant force: The net upward hydrostatic pressure force 
acting on an object submerged, or partially submerged, in 
a fluid.

cavitation: The formation of vapor bubbles in a liquid as a 
result of pressure going below the vapor pressure.
center of pressure: The effective point of application of 
pressure distributed over a surface. This is the point where 
a counteracting force (equal to integrated pressure) must be 
placed for the net moment from pressure about that point to 
be zero.
centripetal acceleration: Acceleration associated with the 
change in the direction of the velocity (vector) of a material 
particle.
closed system: See system.
coefficient of compressibility: See compressibility.
compressibility: The extent to which a fluid particle changes 
volume when subjected to either a change in pressure or a 
change in temperature.

bulk modulus of elasticity: Synonymous with coefficient 
of compressibility.
coefficient of compressibility: The ratio of pressure 
change to relative change in volume of a fluid particle. 
This coefficient quantifies compressibility in response to 
pressure change, an important effect in high Mach number 
flows.
coefficient of volume expansion: The ratio of relative 
density change to change in temperature of a fluid particle. 
This coefficient quantifies compressibility in response to 
temperature change.

computational fluid dynamics (CFD): The application of 
the conservation laws with boundary and initial conditions 
in mathematical discretized form to estimate field variables 
quantitatively on a discretized grid (or mesh) spanning part 
of the flow field.
conservation laws: The fundamental principles upon which 
all engineering analysis is based, whereby the material 
properties of mass, momentum, energy, and entropy can 
change only in balance with other physical properties involving 
forces, work, and heat transfer. These laws are predictive 
when written in mathematical form and appropriately combined 
with boundary conditions, initial conditions, and constitutive 
relationships.

conservation of energy principle: This is the first law 
of thermodynamics, a fundamental law of physics stating 
that the time rate of change of total energy of a fixed mass 
(system) is balanced by the net rate at which work is 
done on the mass and heat energy is transferred to the mass.
 Note: To mathematically convert the time derivative of 
mass, momentum, and energy of fluid mass in a system 
to that in a control volume, one applies the Reynolds 
transport theorem.
conservation of mass principle: A fundamental law 
of physics stating that a volume always containing the 
same atoms and molecules (system) must always contain 
the same mass. Thus the time rate of change of mass of a 
system is zero. This law of physics must be revised when 
matter moves at speeds approaching the speed of light so 
that mass and energy can be exchanged as per Einstein’s 
laws of relativity.
conservation of momentum: This is Newton’s second 
law of motion, a fundamental law of physics stating that the 
time rate of change of momentum of a fixed mass (system) 
is balanced by the net sum of all forces applied to the mass.

constitutive equations: An empirical relationship between 
a physical variable in a conservation law of physics and other 
physical variables in the equation that are to be predicted. For 
example, the energy equation written for temperature includes 
the heat flux vector. It is known from experiments that heat 
flux for most common materials is accurately approximated 
as proportional to the gradient in temperature (this is called 
Fourier’s law). In Newton’s law written for a fluid particle, 
the viscous stress tensor (see stress) must be written as a 
function of velocity to solve the equation. The most common 
constitutive relationship for viscous stress is that for a Newto-
nian fluid. See also rheology.
continuity equation: Mathematical form of conservation 
of mass applied to a fluid particle in a flow.
continuum: Treatment of matter as a continuous (without 
holes) distribution of finite mass differential volume elements. 
Each volume element must contain huge numbers of mol-
ecules so that the macroscopic effect of the molecules can be 
modeled without considering individual molecules.
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contour plot: Also called an isocontour plot, this is 
a way of plotting data as lines of constant variable through a 
flow field. Streamlines, for example, may be identified 
as lines of constant stream function in two-dimensional 
incompressible steady flows.

control mass: See system.

control volume: A volume specified for analysis where 
flow enters and/or exits through some portion(s) of the volume 
surface. Also called an open system (see system).

convective acceleration: Synonymous with advective 
acceleration, this term must be added to the partial time 
derivative of velocity to properly quantify the acceleration 
of a fluid particle within an Eulerian frame of reference. For 
example, a fluid particle moving through a contraction in a 
steady flow speeds up as it moves, yet the time derivative is 
zero. The additional convective acceleration term required to 
quantify fluid acceleration (e.g., in Newton’s second law) is 
called the convective derivative. See also Eulerian description, 
Lagrangian description, material derivative, and steady flow.

convective derivative: See material derivative and 
convective acceleration.

creeping flow: Fluid flow in which frictional forces domi-
nate fluid accelerations to the point that the flow can be well 
modeled with the acceleration term in Newton’s second law 
set to zero. Such flows are characterized by Reynolds num-
bers that are small compared to 1 (Re ,, 1). Since Reynolds 
number typically can be written as characteristic velocity 
times characteristic length divided by kinematic viscosity 
(VL /n), creeping flows are often slow-moving flows around 
very small objects (e.g., sedimentation of dust particles in 
air or motion of spermatozoa in water), or with very viscous 
fluids (e.g., glacier and tar flows). Also called Stokes flow.

deformation rate: See strain rate.

derived dimensions: See dimensions.

deviatoric stress tensor: Another term for viscous stress 
tensor. See stress.

differential analysis: Analysis at a point in the flow 
(as opposed to over a control volume).

differential volume/area/length: A small volume dV , area 
dA, or length dx in the limit of the volume/area/length shrink-
ing to a point. Derivatives are often produced in this limit. 
(Note that d is sometimes written as D or d.)

dimensional analysis: A process of analysis based solely 
on the variables of relevance to the flow system under study, 
the dimensions of the variables, and dimensional homogene-
ity. After determining the other variables on which a variable 
of interest depends (e.g., drag on a car depends on the speed 
and size of the car, fluid viscosity, fluid density, and surface 
roughness), one applies the principle of dimensional homoge-
neity with the Buckingham Pi theorem to relate an appropri-
ately nondimensionalized variable of interest (e.g., drag) with 

the other variables appropriately nondimen sionalized (e.g., 
Reynolds numbers, roughness ratio, and Mach number).
dimensional homogeneity: The requirement that summed 
terms must have the same dimensions (e.g., rV2, pressure P, 
and shear stress txy are dimensionally homogeneous while 
power, specific enthalpy h, and Pm

.
 are not). Dimensional 

homogeneity is the basis of dimensional analysis.
dimensionality: The number of spatial coordinates in whose 
direction velocity components and/or other variables vary for 
a specified coordinate system. For example, fully developed 
flow in a tube is one-dimensional (1-D) in the radial direction 
r since the only nonzero velocity component (the axial, or x-, 
component) is constant in the x- and u-directions, but varies 
in the r-direction. Planar flows are two-dimensional (2-D). 
Flows over bluff bodies such as cars, airplanes, and buildings 
are three-dimensional (3-D). Spatial derivatives are nonzero 
only in the directions of dimensionality.
dimensions: The required specification of a physical quan-
tity beyond its numerical value. See also units.

derived (or secondary) dimensions: Combinations of 
fundamental dimensions. Examples of derived dimensions 
are: velocity (L/t), stress or pressure (F/L2 5 m/(Lt2), 
energy or work (mL2/t2 5 FL), density (m/L3), specific 
weight (F/L3), and specific gravity (unitless).
fundamental (primary, basic) dimensions: Mass (m), 
length (L), time (t), temperature (T), electrical current (I ), 
amount of light (C), and amount of matter (N) without 
reference to a specific system of units. Note that the force 
dimension is obtained through Newton’s law as F 5 mL/t2 
(thus, the mass dimension can be replaced with a force 
dimension by replacing m with Ft2/L).

drag coefficient: Nondimensional drag given by the drag 
force on an object nondimensionalized by dynamic pressure 
of the free-stream flow times frontal area of the object:

CD ;
FD

1
2 rV 2A

Note that at high Reynolds numbers (Re .. 1), CD is a 
normalized variable, whereas at Re ,, 1, CD is 
nondimensional but is not normalized (see normalization). 
See also lift coefficient.
drag force: The force on an object opposing the motion of 
the object. In a frame of reference moving with the object, 
this is the force on the object in the direction of flow. There 
are multiple components to drag force:

friction drag: The part of the drag on an object resulting 
from integrated surface shear stress in the direction of 
flow relative to the object.
induced drag: The component of the drag force on a 
finite-span wing that is “induced” by lift and associated 
with the tip vortices that form at the tips of the wing and 
“downwash” behind the wing.
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pressure (or form) drag: The part of the drag on an 
object resulting from integrated surface pressure in the 
direction of flow relative to the object. Larger pressure on 
the front of a moving bluff body (such as a car) relative to 
the rear results from massive flow separation and wake 
formation at the rear.

dynamic pressure: When the Bernoulli equation in incom-
pressible steady flow and/or the conservation of energy equa-
tion along a streamline are written in forms where each term 
in the equations has the dimensions force/area, dynamic pres-
sure is the kinetic energy (per unit volume) term (i.e., 12rV 2).

dynamic similarity: See similarity.
dynamic viscosity: See viscosity.
dynamics: When contrasted with statics the term refers 
to the application of Newton’s second law of motion to 
moving matter. When contrasted with kinematics the term 
refers to forces or accelerations through Newton’s law force 
balances.

eddy viscosity: See turbulence models.
efficiency: A ratio that describes levels of losses of useful 
power obtained from a device. Efficiency of 1 implies no 
losses in the particular function of the device for which a 
particular definition of efficiency is designed. For example, 
mechanical efficiency of a pump is defined as the ratio of 
useful mechanical power transferred to the flow by the pump 
to the mechanical energy, or shaft work, required to drive the 
pump. Pump-motor efficiency of a pump is defined as the 
ratio of useful mechanical power transferred to the flow over 
the electrical power required to drive the pump. Pump-motor 
efficiency, therefore, includes additional losses and is thus 
lower than mechanical pump efficiency.
energy: A state of matter described by the first law of 
thermodynamics that can be altered at the macroscopic level 
by work, and at the microscopic level through adjustments in 
thermal energy.

flow energy: Synonymous with flow work. The work 
associated with pressure acting on a flowing fluid.
heat (transfer): The term “heat” is generally used synon-
ymously with thermal energy. Heat transfer is the transfer 
of thermal energy from one physical location to another.
internal energy: Forms of energy arising from the 
microscopic motions of molecules and atoms, and from 
the structure and motions of the subatomic particles com-
prising the atoms and molecules, within matter.
kinetic energy: Macroscopic (or mechanical) form of 
energy arising from the speed of matter relative to an 
inertial frame of reference.
mechanical energy: The nonthermal components of 
energy; examples include kinetic and potential energy.
potential energy: A mechanical form of energy that 
changes as a result of macroscopic displacement of matter 
relative to the gravitational vector.

thermal energy: Internal energy associated with micro-
scopic motions of molecules and atoms. For single-phase 
systems, it is the energy represented by temperature.
total energy: Sum of all forms of energy. Total energy 
is the sum of kinetic, potential, and internal energies. 
Equivalently, total energy is the sum of mechanical and 
thermal energies.
work energy: The integral of force over the distance in 
which a mass is moved by the force. Work is energy 
associated with the movement of matter by a force.

energy grade line: See grade lines.

English system: See units.

entry length: The entry flow region in a pipe or duct flow 
where the wall boundary layers are thickening toward the 
center with axial distance x of the duct, so that axial deriva-
tives are nonzero. As with the fully developed region, the 
hydrodynamic entry length involves growth of a velocity 
boundary layer, and the thermal entry length involves growth 
of a temperature boundary layer.
Eulerian derivative: See material derivative.

Eulerian description: In contrast with a Lagrangian de-
scription, an Eulerian analysis of fluid flow is developed from 
a frame of reference through which the fluid particles move. 
In this frame the acceleration of fluid particles is not simply 
the time derivative of fluid velocity, and must include another 
term, called convective acceleration, to describe the change 
in velocity of fluid particles as they move through a velocity 
field. Note that velocity fields are always defined in an Eule-
rian frame of reference.
extensional strain rate: See strain rate.

extensive property: A fluid property that depends on total 
volume or total mass (e.g., total internal energy). See inten-
sive property.

field: The representation of a flow variable as a function of 
Eulerian coordinates (x, y, z). For example, the velocity and 
acceleration fields are the fluid velocity and acceleration 
vectors (V

!
, a
!
) as functions of position (x, y, z) in the Eulerian 

description at a specified time t.
flow field: The field of flow variables. Generally, this 
term refers to the velocity field, but it may also mean all 
field variables in a fluid flow.

first law of thermodynamics: See conservation laws, con-
servation of energy.

flow separation: A phenomenon where a boundary layer 
adjacent to a surface is forced to leave, or “separate” from, 
the surface due to “adverse” pressure forces (i.e., increas-
ing pressure) in the flow direction. Flow separation occurs in 
regions of high surface curvature, for example, at the rear of 
an automobile and other bluff bodies.

flow work: The work term in first law of thermodynamics 
applied to fluid flow associated with pressure forces on the 
flow. See energy, flow energy.
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fluid: A material that when sheared deforms continuously in 
time during the period that shear forces are applied. By con-
trast, shear forces applied to a solid cause the material either 
to deform to a fixed static position (after which deforma-
tion stops), or cause the material to fracture. Consequently, 
whereas solid deformations are generally analyzed using 
strain and shear, fluid flows are analyzed using rates of strain 
and shear (see strain rate).

fluid mechanics/dynamics: The study and analysis of fluids 
through the macroscopic conservation laws of physics, i.e., 
conservation of mass, momentum (Newton’s second law), and 
energy (first law of thermodynamics), and the second law of 
thermodynamics.

fluid particle/element: A differential particle, or element, 
embedded in a fluid flow containing always the same atoms 
and molecules. Thus a fluid particle has fixed mass dm and 
moves with the flow with local flow velocity V

!
, accel eration 

a
!
particle 5 DV

!
/Dt and trajectory (xparticle(t), yparticle (t), tparticle 

(t)). See also material derivative, material particle, material 
position vector, and pathline.

forced flow: Flow resulting from an externally applied 
force. Examples include liquid flow through tubes driven 
by a pump and fan-driven airflow for cooling computer 
components. Natural flows, in contrast, result from internal 
buoyancy forces driven by temperature (i.e., density) varia-
tions within a fluid in the presence of a gravitational field. 
Examples include buoyant plumes around a human body or in 
the atmosphere.

friction/frictional: See Newtonian fluid, viscosity, and 
viscous force.

friction factor: It can be shown from dimensional 
analysis and conservation of momentum applied to a steady 
fully developed pipe flow that the frictional contribution to the 
pressure drop along the pipe, nondimensionalized by flow 
dynamic pressure (1

2rV
2
avg), is proportional to the length-to-

diameter ratio (L /D) of the pipe. The proportionality factor f 
is called the friction factor. The friction factor is quantified 
from experiment (turbulent flow) and theory (laminar flow) in 
empirical relationships, and in the Moody chart, as a function 
of the Reynolds number and nondimensional roughness. 
Conservation of momentum shows that the friction factor is 
proportional to the nondimensional wall shear stress (i.e., the 
skin friction).

frictionless flow: Mathematical treatments of fluid flows 
sometimes use conservation of momentum and energy equa-
tions without the frictional terms. Such mathematical treat-
ments “assume” that the flow is “frictionless,” implying 
no viscous force (Newton’s second law), nor viscous 
dissipation ( first law of thermodynamics). However, no real 
fluid flow of engineering interest can exist without viscous 
forces, dissipation, and/or head losses in regions of practical 
importance. The engineer should always identify the flow 

regions where frictional effects are concentrated. When 
developing models for prediction, the engineer should 
consider the role of these viscous regions in the prediction 
of variables of interest and should estimate levels of er-
ror in simplified treatments of the viscous regions. In high 
Reynolds number flows, frictional regions include boundary 
layers, wakes, jets, shear layers, and flow regions surround-
ing vortices.

Froude number: An order-of-magnitude estimate of the 
ratio of the inertial term in Newton’s law of motion to the 
gravity force term. The Froude number is an important 
nondimensional group in free-surface flows, as is generally 
the case in channels, rivers, surface flows, etc.

fully developed: Used by itself, the term is generally un-
derstood to imply hydrodynamically fully developed, a flow 
region where the velocity field is constant along a specified 
direction in the flow. In the fully developed region of pipe or 
duct flow, the velocity field is constant in the axial direction, 
x (i.e., it is independent of x), so that x-derivatives of velocity 
are zero in the fully developed region. There also exists the 
concept of “thermally fully developed” for the temperature 
field; however, unlike hydrodynamically fully developed 
regions where both the magnitude and shape of the velocity 
profile are constant in x, in thermally fully developed regions 
only the shape of the temperature profile is constant in x. See 
also entry length.

fundamental dimensions: See dimensions.

gage pressure: Pressure (P) relative to atmospheric pressure 
(Patm). That is, Pgage 5 P 2 Patm. See also stress, pressure 
stress. Thus Pgage . 0 or Pgage , 0 is simply the pressure 
above or below atmospheric pressure.

gas dynamics: The study and analysis of gases and vapors 
through the macroscopic conservation laws of physics (see 
fluid mechanics/dynamics).

geometric similarity: See similarity.

grade lines: Lines of head summations.

energy grade line: Line describing the sum of pressure 
head, velocity head, and elevation head. See head.

hydraulic grade line: Line describing the sum of 
pressure head and elevation head. See head.

Hagen–Poiseuille flow: See Poiseuille flow.
head: A quantity (pressure, kinetic energy, etc.) expressed 
as an equivalent column height of a fluid. Conservation of 
energy for steady flow written for a control volume surrounding 
a central streamline with one inlet and one outlet, or shrunk to a 
streamline, can be written such that each term has the dimen-
sions of length. Each of these terms is called a head term:

elevation head: The term in the head form of conser-
vation of energy (see head) involving distance in the 
direction opposite to the gravitational vector relative to a 
predefined datum (z).
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head loss: The term in the head form of conservation 
of energy (see head) that contains frictional losses and 
other irreversibilities. Without this term, the energy 
equation for streamlines becomes the Bernoulli equation 
in head form.

pressure head: The term in the head form of conserva-
tion of energy (see head) involving pressure (P/rg).

velocity head: The (kinetic energy) term in the head form 
of conservation of energy (see head) involving velocity 
(V2/2g).

heat: See energy.

hot-film anemometer: Similar to a hot-wire anemometer 
except using a metallic film rather than a wire; used primarily 
for liquid flows. The measurement portion of a hot-film probe 
is generally larger and more rugged than that of a hot-wire 
probe.

hot-wire anemometer: A device used to measure a veloc-
ity component locally in a gas flow based on the relationship 
between the flow around a thin heated wire (the hot wire), 
temperature of the wire, and heating of the wire resulting 
from a current. See also hot-film anemometer.

hydraulic grade line: See grade lines.

hydraulics: The hydrodynamics of liquid and vapor flow in 
pipes, ducts, and open channels. Examples include water 
piping systems and ventilation systems.

hydrodynamic entry length: See entry length.

hydrodynamically fully developed: See fully developed.

hydrodynamics: The study and analysis of liquids through 
the macroscopic conservation laws of physics (see fluid 
mechanics/dynamics). The term is sometimes applied to 
incompressible vapor and gas flows, but when the fluid is air, 
the term aerodynamics is generally used instead.

hydrostatic pressure: The component of pressure varia-
tion in a fluid flow that would exist in the absence of flow as 
a result of gravitational body force. This term appears in the 
hydrostatic equation and in the Bernoulli equation. See also 
dynamic and static pressure.

hypersonic: An order of magnitude or more above the speed 
of sound (Mach number .. 1).

ideal fluid: See perfect fluid.

ideal gas: A gas at low enough density and/or high enough 
temperature that (a) density, pressure, and temperature are 
related by the ideal-gas equation of state, P 5 rRT, and 
(b) specific internal energy and enthalpy are functions only 
of temperature.

incompressible flow: A fluid flow where variations in den-
sity are sufficiently small to be negligible. Flows are gener-
ally incompressible either because the fluid is incompressible 
(liquids) or because the Mach number is low (roughly , 0.3).

induced drag: See drag force.

inertia/inertial: The acceleration term in Newton’s sec-
ond law, or effects related to this term. Thus, a flow with 
higher inertia requires larger deceleration to be brought 
to rest.
inertial sublayer: A highly turbulent part of a turbulent 
boundary layer, close to the wall but just outside the viscous 
sublayer and buffer layer, where turbulent stresses are large 
compared to viscous stresses.

intensive property: A fluid property that is independent of 
total volume or total mass (i.e., an extensive property per unit 
mass or sometimes per unit volume).
internal energy: See energy.

inviscid (region of) flow: Region of a fluid flow where 
viscous forces are sufficiently small relative to other forces 
(typically, pressure force) on fluid particles in that region of 
the flow to be neglected in Newton’s second law of motion to 
a good level of approximation (compare with viscous flow). 
See also frictionless flow. An inviscid region of flow is not 
necessarily irrotational.

irrotational (region of) flow: A region of a flow with negli-
gible vorticity (i.e., fluid particle rotation). Also called potential 
flow. An irrotational region of flow is also inviscid.

isocontour plot: See contour plot.

jet: A friction-dominated region issuing from a tube or 
orifice and formed by surface boundary layers that have been 
swept behind by the mean velocity. Jets are characterized by 
high shear with the highest velocities in the center of the jet 
and lowest velocities at the edges. Frictional force, viscous 
stress, and vorticity are significant in jets.

Kármán vortex street: The two-dimensional alternating 
unsteady pattern of vortices that is commonly observed 
behind circular cylinders in a flow (e.g., the vortex street 
behind wires in the wind is responsible for the distinct tone 
sometimes heard).
kinematic similarity: See similarity.
kinematic viscosity: Fluid viscosity divided by density.
kinematics: In contrast with dynamics, the kinematic aspects 
of a fluid flow are those that do not directly involve Newton’s 
second law force balance. Kinematics refers to descriptions 
and mathematical derivations based only on conservation 
of mass (continuity) and definitions related to flow and 
deformation.
kinetic energy: See energy.
kinetic energy correction factor: Control volume analy-
sis of the conservation of energy equation applied to tubes 
contains area integrals of kinetic energy flux. The integrals 
are often approximated as proportional to kinetic energy 
formed with area-averaged velocity, Vavg. The inaccuracy 
in this approximation can be significant, so a kinetic energy 
correction factor, a, multiplies the term to improve the 
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approximation. The correction a depends on the shape of 
the velocity profile, is largest for laminar profiles (Poiseuille 
flow), and is closest to 1 in turbulent pipe flows at very high 
Reynolds numbers.

Lagrangian derivative: See material derivative.
Lagrangian description: In contrast with the Eulerian 
description, a Lagrangian analysis is developed from a frame 
of reference attached to moving material particles. For 
example, solid particle acceleration in the standard Newton’s 
second law form, F

!
 5 ma

!
, is in a coordinate system that 

moves with the particle so that acceleration a
!
 is given by the 

time derivative of particle velocity. This is the typical 
analytical approach used for analysis of the motion of solid 
objects.
laminar flow: A stable well-ordered state of fluid flow in 
which all pairs of adjacent fluid particles move alongside one 
another forming laminates. A flow that is not laminar is either 
turbulent or transitional to turbulence, which occurs above a 
critical Reynolds number.
laser Doppler velocimetry (LDV): Also called laser 
Doppler anemometry (LDA). A technique for measuring a 
velocity component locally in a flow based on the Doppler 
shift associated with the passage of small particles in the flow 
through the small target volume formed by the crossing of 
two laser beams. Unlike hot-wire and hot-film anemometry 
and like particle image velocimetry, there is no interference 
to the flow.
lift coefficient: Nondimensional lift given by the lift force 
on a lifting object (such as an airfoil or wing) nondimension-
alized by dynamic pressure of the free-stream flow times 
planform area of the object:

CL ;
FL

1
2rV

2A

Note that at high Reynolds numbers (Re .. 1), CL is a 
normalized variable, whereas at Re ,, 1, CL is 
nondimensional but is not normalized (see normalization). 
See also drag coefficient.
lift force: The net aerodynamic force on an object perpen-
dicular to the motion of the object.
linear strain rate: Synonymous with extensional strain rate. 
See strain rate.
losses: Frictional head losses in pipe flows are separated into 
those losses in the fully developed pipe flow regions of a pip-
ing network, the major losses, plus head losses in other flow 
regions of the network, the minor losses. Minor loss regions 
include entry lengths, pipe couplings, bends, valves, etc. It is 
not unusual for minor losses to be larger than major losses.

Mach number: Nondimensional ratio of the characteristic 
speed of the flow to the speed of sound. Mach number 

characterizes the level of compressibility in response to pres-
sure variations in the flow.
major losses: See losses.

manometer: A device that measures pressure based on 
hydrostatic pressure principles in liquids.
material acceleration: The acceleration of a fluid particle 
at the point (x, y, z) in a flow at time t. This is given by the 
material derivative of fluid velocity: DV

!
(x, y, z, t)/Dt.

material derivative: Synonymous terms are total derivative, 
substantial derivative, and particle derivative. These terms 
mean the time rate of change of fluid variables (tempera-
ture, velocity, etc.) moving with a fluid particle. Thus, the 
material derivative of temperature at a point (x, y, z) at time 
t is the time derivative of temperature attached to a moving 
fluid particle at the point (x, y, z) in the flow at the time t. In 
a Lagrangian frame of reference (i.e., a frame attached to the 
moving particle), particle temperature Tparticle depends only on 
time, so a time derivative is a total derivative dTparticle(t)/dt. In 
an Eulerian frame, the temperature field T(x, y, z, t) depends 
on both position (x, y, z) and time t, so the material derivative 
must include both a partial derivative in time and a convective 
derivative: dTparticle(t)/dt ; DT(x, y, z, t)/Dt 5 −T/−t 1 V

!
?=
!
T. 

See also field.

material particle: A differential particle, or element, that 
contains always the same atoms and molecules. Thus a mate-
rial particle has fixed mass dm. In a fluid flow, this is the 
same as a fluid particle.

material position vector: A vector [xparticle(t), yparticle(t), 
zparticle(t)] that defines the location of a material particle as a 
function of time. Thus the material position vector in a fluid 
flow defines the trajectory of a fluid particle in time.
mean: Synonymous with average.

mechanical energy: See energy.

mechanics: The study and analysis of matter through the 
macroscopic conservation laws of physics (mass, momentum, 
energy, second law).
minor losses: See losses.

mixing length: See turbulence models.

momentum: The momentum of a material particle (or fluid 
particle) is the mass of the material particle times its velocity. 
The momentum of a macroscopic volume of material particles 
is the integrated momentum per unit volume over the volume, 
where momentum per unit volume is the density of the 
material particle times its velocity. Note that momentum is 
a vector.
momentum flux correction factor: A correction factor 
added to correct for approximations made in the simplifica-
tion of the area integrals for the momentum flux terms in the 
control volume form of conservation of momentum.
Moody chart: A commonly used plot of the friction factor 
as a function of the Reynolds number and roughness param-
eter for fully developed pipe flow. The chart is a combination 
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of flow theory for laminar flow with a graphical representa-
tion of an empirical formula by Colebrook to a large set of 
experimental data for turbulent pipe flow of various values of 
“sandpaper” roughness.

natural flow: Contrast with forced flow.
Navier–Stokes equation: Newton’s second law of fluid mo-
tion (or conservation of momentum) written for a fluid particle 
(the differential form) with the viscous stress tensor replaced 
by the constitutive relationship between stress and strain rate 
for Newtonian fluids. Thus the Navier–Stokes equation is 
simply Newton’s law written for Newtonian fluids.
Newtonian fluid: When a fluid is subjected to a shear stress, 
the fluid continuously changes shape (deformation). If the 
fluid is Newtonian, the rate of deformation (i.e., strain rate) 
is proportional to the applied shear stress and the constant of 
proportionality is called viscosity. In general flows, the rate 
of deformation of a fluid particle is described mathematically 
by a strain rate tensor and the stress by a stress tensor. In 
flows of Newtonian fluids, the stress tensor is proportional 
to the strain rate tensor, and the constant of proportionality is 
called viscosity. Most common fluids (water, oil, gasoline, air, 
most gases and vapors) without particles or large molecules in 
suspension are Newtonian.
Newton’s second law: See conservation of momentum.
nondimensionalization: The process of making a dimen-
sional variable dimensionless by dividing the variable by 
a scaling parameter (a single variable or a combination of 
variables) that has the same dimensions. For example, the 
surface pressure on a moving ball might be nondimensionalized 
by dividing it by rV 2, where r is fluid density and V is free-
stream velocity. See also normalization.
non-Newtonian fluid: A non-Newtonian fluid is one that 
deforms at a rate that is not linearly proportional to the stress 
causing the deformation. Depending on the manner in which 
viscosity varies with strain rate, non-Newtonian fluids can 
be labeled shear thinning (viscosity decreases with increasing 
strain rate), shear thickening (viscosity increases with increas-
ing strain rate), and viscoelastic (when the shearing forces 
are removed, the fluid particles return partially to an earlier 
shape). Suspensions and liquids with long-chain molecules 
are generally non-Newtonian. See also Newtonian fluid and 
viscosity.
normal stress: See stress.
normalization: A particular nondimensionalization where 
the scaling parameter is chosen so that the nondimensional-
ized variable attains a maximum value that is of order 1 (say, 
within roughly 0.5 to 2). Normalization is more restrictive 
(and more difficult to do properly) than nondimensionaliza-
tion. For example, P/(rV2) discussed under nondimensional-
ization is also normalized pressure on a flying baseball (where 
Reynolds number Re ..1), but is simply nondimensionalization 

of surface pressure on a small glass bead dropping slowly 
through honey (where Re ,, 1).
no-slip condition: The requirement that at the interface 
between a fluid and a solid surface, the fluid velocity and 
surface velocity are equal. Thus if the surface is fixed, the 
fluid must obey the boundary condition that fluid velocity 5 0 
at the surface.

one-dimensional: See dimensionality.
open system: Same as control volume.

particle derivative: See material derivative.
particle image velocimetry (PIV): A technique for measur-
ing a velocity component locally in a flow based on tracking 
the movement of small particles in the flow over a  short time 
using pulsed lasers. Unlike hot-wire and hot-film anemometry 
and like laser Doppler velocimetry, there is no interference to 
the flow.
pathline: A curve mapping the trajectory of a fluid particle 
as it travels through a flow over a period of time. Mathemati-
cally, this is the curve through the points mapped out by the 
material position vector [xparticle(t), yparticle(t), zparticle(t)] over 
a defined period of time. Thus, pathlines are formed over 
time, and each fluid particle has its own pathline. In a steady 
flow, fluid particles move along streamlines, so pathlines and 
streamlines coincide. In a nonsteady flow, however, pathlines 
and streamlines are generally very different. Contrast with 
streamline.
perfect fluid: Also called an ideal fluid, the concept of a 
fictitious fluid that can flow in the absence of all frictional 
effects. There is no such thing as a perfect fluid, even as an 
approximation, so the engineer need not consider the concept 
further.
periodic: An unsteady flow in which the flow oscillates 
about a steady mean.
Pitot-static probe: A device used to measure fluid velocity 
through the application of the Bernoulli equation with simul-
taneous measurement of static and stagnation pressures. 
Also called a Pitot-Darcy probe.

planar flow: A two-dimensional flow with two nonzero 
components of velocity in Cartesian coordinates that vary 
only in the two coordinate directions of the flow. Thus, all 
partial derivatives perpendicular to the plane of the flow are 
zero. See also axisymmetric flow and dimensionality.

Poiseuille flow: Fully developed laminar flow in a pipe or 
duct. Also called Hagen–Poiseuille flow. The mathematical 
model relationships for Poiseuille flow relating the flow rate 
and/or velocity profile to the pressure drop along the pipe/
duct, fluid viscosity and geometry are sometimes referred to 
as Poiseuille’s law (although strictly not a “law” of mechan-
ics). The velocity profile of all Poiseuille flows is parabolic, 
and the rate of axial pressure drop is constant.
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Poiseuille’s law: See Poiseuille flow.

potential energy: See energy.

potential flow: Synonymous with irrotational flow. This is 
a region of a flow with negligible vorticity (i.e., fluid particle 
rotation). In such regions, a velocity potential 
function exists (thus the name).

potential function: If a region of a flow has zero vorticity 
(fluid particle spin), the velocity vector in that region can be 
written as the gradient of a scalar function called the velocity 
potential function, or simply the potential function. In prac-
tice, potential functions are often used to model flow regions 
where vorticity levels are small but not necessarily zero.

power: Work per unit time; time rate at which work is done.

pressure: See stress.

pressure force: As applicable to Newton’s second law, this 
is the force acting on a fluid particle that arises from spatial 
gradients in pressure within the flow. See also stress, 
pressure stress.

pressure work: See flow work.

primary dimension: See dimensions.

profile plot: A graphical representation of the spatial varia-
tion of a fluid property (temperature, pressure, strain rate, 
etc.) through a region of a fluid flow. A profile plot defines 
property variations in part of a field (e.g., a temperature 
profile might define the variation of temperature along a line 
within the temperature field).

velocity profile: The spatial variation in a velocity 
component or vector through a region of a fluid flow. For 
example, in a pipe flow the velocity profile generally de-
fines the variation in axial velocity with radius across the 
pipe cross section, while a boundary layer velocity profile 
generally defines variation in axial velocity normal to the 
surface. The velocity profile is part of a velocity field.

quasi-steady flow: See steady flow.

Reynolds number: An order-of-magnitude estimate of the 
ratio of the following two terms in Newton’s second law of 
motion over a region of the flow: the inertial (or acceleration) 
term over the viscous force term. Most but not all Reynolds 
numbers can be written as an appropriate characteristic veloc-
ity V times a characteristic length scale L consistent with 
the velocity V, divided by the kinematic viscosity n of the 
fluid: Re 5 VL/n. The Reynolds number is arguably the most 
important nondimensional similarity parameter in fluid flow 
analysis since it gives a rough estimate of the importance of 
frictional force in the overall flow.

Reynolds stress: Velocity components (and other variables) 
in turbulent flows are separated into mean plus fluctuat-
ing components. When the equation for mean streamwise 

velocity component is derived from the Navier– Stokes 
equation, six new terms appear given by fluid density 
times the averaged product of two velocity components. 
Because these terms have the same units as stress (force/
area), they are called turbulent stresses or Reynolds 
stresses (in memory of Osborne Reynolds who first 
quantified turbulent variables as mean + fluctuation). Just 
as viscous stresses can be written as a tensor (or matrix), 
we define a Reynolds stress tensor with Reynolds normal 
stress components and Reynolds shear stress components. 
Although Reynolds stresses are not true stresses, they have 
qualitatively similar effects as do viscous stresses, but as a 
result of the large chaotic vortical motions of turbulence 
rather than the microscopic molecular motions that underlie 
viscous stresses.

Reynolds transport theorem: The mathematical relationship 
between the time rate of change of a fluid property in a system 
(volume of fixed mass moving with the flow) and the time 
rate of change of a fluid property in a control volume (vol-
ume, usually fixed in space, with fluid mass moving across 
its surface). This finite volume expression is closely related to 
the material (time) derivative of a fluid property attached to a 
moving fluid particle. See also conservation laws.

rheology: The study and mathematical representation of the 
deformation of different fluids in response to surface forces, 
or stress. The mathematical relationships between stress and 
deformation rate (or strain rate) are called constitutive equa-
tions. The Newtonian relationship between stress and strain 
rate is the simplest example of a rheological constitutive 
equation. See also Newtonian and non-Newtonian fluid.

rotation rate: The angular velocity, or rate of spin, of a fluid 
particle (a vector, with units rad/s, given by 1/2 the curl of the 
velocity vector). See also vorticity.

rotational flow: Synonymous with vortical flow, this term 
describes a flow field, or a region of a flow field, with signifi-
cant levels of vorticity.

saturation pressure: The pressure at which the phase of a 
simple compressible substance changes between liquid and 
vapor at fixed temperature.

saturation temperature: The temperature at which the 
phase of a simple compressible substance changes between 
liquid and vapor at fixed pressure.

scaling parameter: A single variable, or a combination of 
variables, that is chosen to nondimensionalize a variable of 
interest. See also nondimensionalization and normalization.

schlieren technique: An experimental technique to visualize 
flows based on the refraction of light from varying 
fluid density. The illuminance level in a schlieren image 
responds to the first spatial derivative of density.

secondary dimensions: See dimensions.
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shadowgraph technique: An experimental technique to 
visualize flows based on the refraction of light from varying 
fluid density. The illuminance level in a shadowgraph image 
responds to the second spatial derivative of density.

shear: Refers to gradients (derivatives) in velocity components 
in directions normal to the velocity component.

shear force: See stress, shear stress.

shear layer: A quasi two-dimensional flow region with 
a high gradient in streamwise velocity component in the 
transverse flow direction. Shear layers are inherently 
viscous and vortical in nature.

shear rate: The gradient in streamwise velocity in the 
direction perpendicular to the velocity. Thus, if streamwise 
(x) velocity u varies in y, the shear rate is du/dy. The term 
is applied to shear flows, where shear rate is twice the 
shear strain rate. See also strain rate.

shear strain: See strain rate.

shear stress: See stress, shear stress.

shear thickening fluid: See non-Newtonian fluid.

shear thinning fluid: See non-Newtonian fluid.

SI system: See units.

similarity: The principle that allows one to quantitatively 
relate one flow to another when certain conditions are met. 
Geometric similarity, for example, must be true before one 
can hope for kinematic or dynamic similarity. The quantita-
tive relationship that relates one flow to another is developed 
using a combination of dimensional analysis and data 
(generally, experimental, but also numerical or theoretical).

dynamic similarity: If two objects are geometrically 
and kinematically similar, then if the ratios of all forces 
(pressure, viscous stress, gravity force, etc.) between a 
point in the flow surrounding one object, and the same 
point scaled appropriately in the flow surrounding the 
other object, are all the same at all corresponding pairs 
of points, the flow is dynamically similar.

geometric similarity: Two objects of different size are 
geometrically similar if they have the same geometrical 
shape (i.e., if all dimensions of one are a constant multiple 
of the corresponding dimensions of the other).

kinematic similarity: If two objects are geometrically 
similar, then if the ratios of all velocity components be-
tween a point in the flow surrounding one object, and the 
same point scaled appropriately in the flow surrounding 
the other object, are all the same at all corresponding pairs 
of points, the flow is kinematically similar.

skin friction: Surface shear stress tw nondimensionalized by 
an appropriate dynamic pressure 12rV

2. Also called the skin 
friction coefficient, Cf.

solid: A material that when sheared either deforms to a fixed 
static position (after which deformation stops) or fractures. 
See also fluid.

sonic: At the speed of sound (Mach number 5 1).

specific gravity: Fluid density nondimensionalized by 
the density of liquid water at 48C and atmospheric pressure 
(1 g/cm3 or 1000 kg/m3). Thus, specific gravity, SG 5 r/rwater.

specific weight: The weight of a fluid per unit volume, 
i.e., fluid density times acceleration due to gravity (specific 
weight, g ; rg).

spin: See rotation rate and vorticity.

stability: A general term that refers to the tendency of a 
material particle or object (fluid or solid) to move away from 
or return when displaced slightly from its original position.

neutrally stable: See stability. When displaced slightly, 
the particle or object will remain in its displaced position.

stable: See stability. When displaced slightly, the particle 
or object will return to its original position.

unstable: See stability. When displaced slightly, the 
particle or object will continue to move from its original 
position.

stagnation point: A point in a fluid flow where the velocity 
goes to zero. For example, the point on the streamline that 
intersects the nose of a moving projectile is a stagnation point.

stall: The phenomenon of massive flow separation from 
the surface of a wing when angle of attack exceeds a criti-
cal value, and consequent dramatic loss of lift and increase 
in drag. A plane in stall drops rapidly and must have its nose 
brought down to reestablish attached boundary layer flow and 
regenerate lift and reduce drag.

static pressure: Another term for pressure, used in context 
with the Bernoulli equation to distinguish it from dynamic 
pressure.

statics: The mechanical study and analysis of material that is 
fully at rest in a specific frame of reference.

steady flow: A flow in which all fluid variables (velocity, 
pressure, density, temperature, etc.) at all fixed points in the 
flow are constant in time (but generally vary from place to 
place). Thus, in steady flows all partial derivatives in time are 
zero. Flows that are not precisely steady but that change suf-
ficiently slowly in time to neglect time derivative terms with 
relatively little error are called quasi-steady.

Stokes flow: See creeping flow.

strain: See strain rate.

strain rate: Strain rate can also be called deformation rate. 
This is the rate at which a fluid particle deforms (i.e., changes 
shape) at a given position and time in a fluid flow. To fully 
quantify all possible changes in shape of a three-dimensional 
fluid particle require six numbers. Mathemat ically, these are 
the six independent components of a second-rank symmetric 
strain rate tensor, generally written as a symmetric 3 3 3 
matrix. Strain is time-integrated strain rate and describes de-
formation of a fluid particle after a period of time. See stress.
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extensional strain rate: The components of strain rate 
that describe elongation or compression of a fluid par-
ticle in one of the three coordinate directions. These are 
the three diagonal elements of the strain rate tensor. The 
definition of extensional strain depends on one’s choice of 
coordinate axes. Also called linear strain rate.

shear strain rate: The components of strain rate that de-
scribe deformation of a fluid particle in response to shear 
changing an angle between planes mutually perpendicular 
to the three coordinate axes. These are the off-diagonal 
elements of the strain rate tensor. The definition of shear 
strain depends on one’s choice of coordinate axes.

volumetric strain rate: Rate of change of volume of a 
fluid particle per unit volume. Also called bulk strain rate 
and rate of volumetric dilatation.

streakline: Used in flow visualization of fluid flows, this is 
a curve defined over time by the release of a marker (dye or 
smoke) from a fixed point in the flow. Contrast with pathline 
and streamline. In a steady flow, streamlines, pathlines, and 
streaklines all coincide. In a nonsteady flow, however, these 
sets of curves are each different from one another.

stream function: The two velocity components in a two-
dimensional steady incompressible flow can be defined in 
terms of a single two-dimensional function c that automati-
cally satisfies conservation of mass (the continuity equation), 
reducing the solution of the two-component velocity field to 
the solution of this single stream function. This is done by 
writing the two velocity components as spatial derivatives 
of the stream function. A wonderful property of the stream 
function is that (iso)contours of constant c define streamlines 
in the flow.

streamline: A curve that is everywhere tangent to a velocity 
vector in a fluid velocity field at a fixed instant in time. Thus, 
the streamlines indicate the direction of the fluid motions at 
each point. In a steady flow, streamlines are constant in time 
and fluid particles move along streamlines. In a nonsteady 
flow the streamlines change with time and fluid particles do 
not move along streamlines. Contrast with pathline.

streamtube: A bundle of streamlines. A streamtube is usu-
ally envisioned as a surface formed by an infinite number of 
streamlines initiated within the flow on a circular circuit and 
tending to form a tubelike surface in some region of the flow.

stress: A component of a force distributed over an area is 
written as the integral of a stress over that area. Thus, stress 
is the force component dFi on a differential area element 
divided by the area of the element dAj (in the limit dAj → 0), 
where i and j indicate a coordinate direction x, y, or z. Stress 
sij 5 dFi/dAj is therefore a force component per unit area in 
the i-direction on surface j. To obtain the surface force from 
stress, one integrates stress over the corresponding surface 
area. Mathematically, there are six independent components 
of a second-rank symmetric stress tensor, generally written as 
a symmetric 3 3 3 matrix.

normal stress: A stress (force component per unit area) 
that acts perpendicular to the area. Therefore sxx, syy, and 
szz are normal stresses. The normal force over a surface is 
the net force from shear stress, given by integrating the 
shear stress over the surface area. The normal stresses are 
the diagonal elements of the stress tensor.

pressure stress: In a fluid at rest all stresses are 
normal stresses and all stresses act inward on a surface. 
At a fixed point, the three normal stresses are equal and 
the magnitude of these equal normal stresses is called 
pressure. Thus, in a static fluid sxx 5 syy 5 szz  5 2P, 
where P is pressure. In a moving fluid, stresses in addition 
to pressure are viscous stresses. A pressure force on a 
surface is the pressure stress integrated over the surface. 
The pressure force per unit volume on a fluid particle for 
Newton’s second law, however, is the negative of the 
gradient (spatial derivatives) of pressure at that point.

Reynolds stress: See Reynolds stress.

shear stress: A stress (force component per unit area) that 
acts tangent to the area. Therefore, sxy, syx, sxz, szx, syz, 
and szy are shear stresses. The shear force over a surface 
is the net force from shear stress, given by integrating the 
shear stress over the surface area. The shear stresses are 
the off-diagonal elements of the stress tensor.

turbulent stress: See Reynolds stress.

viscous stress: Flow creates stresses in the fluid that are 
in addition to hydrostatic pressure stresses. These 
additional stresses are viscous since they arise from 
friction-induced fluid deformations within the flow. For 
example, sxx 5 2P 1 txx, syy 5 2P 1 tyy, and szz 5
2P 1 tzz, where txx, tyy, and tzz are viscous normal stresses. 
All shear stresses result from friction in a flow and are 
therefore viscous stresses. A viscous force on a surface is 
a viscous stress integrated over the surface. The viscous 
force per unit volume on a fluid particle for Newton’s 
second law, however, is the divergence (spatial derivatives) 
of the viscous stress tensor at that point.

stress tensor: See stress.

subsonic: Below the speed of sound (Mach number , 1).

substantial derivative: See material derivative.

supersonic: Above the speed of sound (Mach number . 1).

surface tension: The force per unit length at a liquid– vapor 
or liquid–liquid interface resulting from the imbalance in 
attractive forces among like liquid molecules at the interface.

system: Usually when the word system is used by itself, closed 
system is implied, in contrast with a control volume or open system.

closed system: A volume specified for analysis that en-
closes always the same fluid particles. Therefore, no 
flow crosses any part of the volume’s surface and a closed 
system must move with the flow. Note that Newton’s law 
analysis of solid particles is generally a closed system 
analysis, sometimes referred to as a free body.
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open system: A volume specified for analysis where flow 
crosses at least part of the volume’s surface. Also called a 
control volume.

thermal energy: See energy.

three-dimensional: See dimensionality.

timeline: Used for visualization of fluid flows, this is a curve 
defined at some instant in time by the release of a marker 
from a line in the flow at some earlier instant in time. The 
timeline, often used to approximate a velocity profile in a 
laboratory flow, is very different from streaklines, pathlines, 
and streamlines.

tip vortex: Vortex formed off each tip of an airplane wing as 
a byproduct of lift. Synonymous with trailing vortex. See also 
induced drag.

total derivative: See material derivative.

total energy: See energy.

trailing vortex: See tip vortex.

trajectory: See pathline.

transient period: A time-dependent period of flow evolution 
leading to a new equilibrium period that is generally, but not 
necessarily, steady. An example is the start-up period after a 
jet engine is switched on, leading to a steady (equilibrium) 
jet flow.

transitional flow: An unstable vortical fluid flow at a Reyn-
olds number higher than a critical value that is large relative 
to 1, but is not sufficiently high that the flow has reached a 
fully turbulent flow state. Transitional flows often oscillate 
randomly between laminar and turbulent states.

turbulence models: Constitutive model relationships be-
tween Reynolds stresses and the mean velocity field in 
turbulent flows. Such model equations are necessary to solve 
the equation for mean velocity. A simple and widely used 
modeled form for the Reynolds stresses is to write them 
like the Newtonian relationship for viscous stresses, as 
proportional to the mean strain rate, with the proportionality 
being a turbulent viscosity or eddy viscosity. However, unlike 
Newtonian fluids, the eddy viscosity is a strong function 
of the flow itself, and the different ways in which eddy 
viscosity is modeled as a function of other calculated flow 
field variables constitute different eddy viscosity models. 
One traditional approach to modeling eddy viscosity is in 
terms of a mixing length, which is made proportional to a 
length set by the flow.

turbulent flow: An unstable disordered state of vortical fluid 
flow that is inherently unsteady and that contains eddying mo-
tions over a wide range of sizes (or scales). Turbulent flows 
are always at Reynolds numbers above a critical value that is 
large relative to 1. Mixing is hugely enhanced, surface shear 
stresses are much higher, and head loss is greatly increased in 
turbulent flows as compared to corresponding laminar flows.

turbulent stress: See Reynolds stress.
turbulent viscosity: See turbulence models.
two-dimensional: See dimensionality.

units: A specific system to quantify numerically the dimen-
sions of a physical quantity. The most common systems of 
units are SI (kg, N, m, s), English (lbm, lbf, ft, s), BGS (slug, 
lb, ft, s), and cgs (g, dyne, cm, s). See also dimensions.
unsteady flow: A flow in which at least one variable at a 
fixed point in the flow changes with time. Thus, in unsteady 
flows a partial derivative in time is nonzero for at least one 
point in the flow.

vapor pressure: The pressure below which a fluid, at a 
given temperature, will exist in the vapor state. See also cavi-
tation and saturation pressure.

velocity: A vector that quantifies the rate of change in 
position and the direction of motion of a material particle.

velocity field: See field.

velocity profile: See profile plots.

viscoelastic fluid: See non-Newtonian fluid.

viscosity: See Newtonian fluid. Viscosity is a property of a 
fluid that quantifies the ratio of shear stress to rate of defor-
mation (strain rate) of a fluid particle. (Therefore viscosity 
has the dimensions of stress/strain rate, or Ft/L2 5 m/Lt.) 
Qualitatively, viscosity quantifies the level by which a par-
ticular fluid resists deformation when subjected to shear 
stress (frictional resistance or friction). Viscosity is a 
measured property of a fluid and is a function of temperature. 
For Newtonian fluids, viscosity is independent of the rate of 
applied stress and strain rate. The viscous nature of non-
Newtonian fluids is more difficult to quantify in part because 
viscosity varies with strain rate. The terms absolute viscosity, 
dynamic viscosity, and viscosity are synonymous. See also 
kinematic viscosity.

viscous (regions of) flow: Regions of a fluid flow where vis-
cous forces are significant relative to other forces (typically, 
pressure force) on fluid particles in that region of the flow, 
and therefore cannot be neglected in Newton’s second law of 
motion (compare with inviscid flow).

viscous (or frictional) force: As applicable to Newton’s 
second law, this is the force acting on a fluid particle that 
arises from spatial gradients in viscous (or frictional) stresses 
within the flow. The viscous force on a surface is the viscous 
stress integrated over the surface. See also stress, viscous 
stress.

viscous stress tensor: See stress. Also called the 
deviatoric stress tensor.

viscous sublayer: The part of a turbulent boundary layer 
adjacent to the surface that contains the highest viscous 
stresses. The velocity gradient in this layer adjacent to the 
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wall is exceptionally high. See also inertial layer and 
buffer layer.
vortex: A local structure in a fluid flow characterized by a 
concentration of vorticity (i.e., fluid particle spin or rotation) 
in a tubular core with circular streamlines around the core 
axis. A tornado, hurricane, and bathtub vortex are common 
examples of vortices. Turbulent flow is filled with small 
vortices of various sizes, strengths, and orientations.
vortical flow: Synonymous with rotational flow, this term 
describes a flow field, or a region of a flow field, with 
significant levels of vorticity.

vorticity: Twice the angular velocity, or rate of spin, of a 
fluid particle (a vector, with units rad/s, given by the curl 
of the velocity vector). See also rotation rate.

wake: The friction-dominated region behind a body formed 
by surface boundary layers that are swept to the rear by the 
free-stream velocity. Wakes are characterized by high shear 
with the lowest velocities in the center of the wake and high-
est velocities at the edges. Frictional force, viscous stress, and 
vorticity are significant in wakes.
work: See energy.
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Abscissa, 149
Absolute (dynamic) viscosity, 52, 54
Absolute pressure, 76–77, 90
Absolute temperature (T ), 46–47
Absolute velocity, 164, 191, 245–246
Acceleration (a), 106–107, 135, 136–140, 

199–200, 265, 561
advective (convective), 137–138
Bernoulli equation and, 199–200
centripetal, 265, 561
convective (advective), 137–138
Euclidean fl ow description, 135, 136–139
fi eld (vector), 135, 136–139
fi rst-order difference approximation,139
fl uid (material) fl ow, 135–140, 199–200
fl uid rigid-body motion, 106–107
gradient (del) operator, 137
Lagrangian description, 136–139
local, 137
material (derivative of), 139–140
material (fl uid) particles, 136–138
material position vectors, 136–137
Newton’s second law for, 136
normal (an), 199
partial derivative operator (d), 137
particle streamlines (paths) of, 199
point function, as a, 139
residence time, 138–139
rotation and, 265
straight path, 106–107
streamwise (as), 199
total derivative operator (d ), 137

Accuracy error, 28–30
Adhesive forces, 58
Adiabatic duct fl ow, 702–711. 

See also Fanno fl ow
Adiabatic process, 215
Advective (convective) acceleration, 137–138
Aerodynamic drag, 302–303, 548–550
Aerodynamic drag coeffi cient, 322–323
Aerodynamic shoulder, 549–550
Aerodynamics, study of, 2
Affi nity laws, 829–830
Air, properties of at 1 atm pressure, 948, 966
Air fl ow, 14, 40–41. See also Ideal gases
Aircraft, 578–583, 612–613, 616–617, 634–643, 

662–663, 674–688, 688–693, 816–819
airfoils, 634–638
angle of attack (a), 612, 617
back pressure (Pb) effects, 674–678
blade twist for, 816–818
boundary layer approximation for, 578–583
compression of air in, 662–663
converging–diverging nozzles, 675–678
drag force on, 612–613
effi ciency of, 637–638
fi nite-span wings, 638–639
fl aps, 636–637
fl ow fi elds, 637
fl ow separation, 578–583, 616–617
induced drag and, 638–639
lift force, 612–613, 634–643
lift-to-drag ratio, 635–636

National Advisory Committee for Aeronautics 
(NACA) standards for, 637–638

normal shockwaves, 675–676
oblique shockwaves, 676
open axial-fl ow fans, 816, 816–819
pitch angle (u), 816–819
Prandtl–Meyer expansion waves, 688–693
pressure forces acting on, 612–613, 634–635
pressure gradient effects, 578–583
propellers (rotor), 816–819
propulsion, 674–678
reverse thrust of, 819
rotor airfl ow swirl, 817–818
separation bubble, 579–580
separation point, 580–581
shock (wave) angle (d), 684–685
stall conditions, 580, 616, 637
starting vortex, 635
takeoff and landing speeds, 636–637
turning (defl ective) angle (u), 684–685
variable pitch, 819
viscous forces acting on, 612–613, 634–635
vortex shedding, 617
wings, 612–613, 617, 634–639
wingspan (span), 634
Wright Brothers’ impact on, 643

Airfoils, 634–638. See also Aircraft
Alternate depth, 734
Ammonia saturation properties, 944, 962
Ampere (A), unit of, 16
Analytical problem approaches, 21–22
Anemometers, 402–404. See also Flow rate
Angle of attack (a), 315, 612, 617, 634–637
Angle of deformation (a), 2
Angle valves, 375, 380
Angular displacement (a), 2
Angular momentum, 244–245, 263–273

conservation of, 245
equations, 244–245, 264–267
external forces and, 265–268
Euler’s turbine formula for, 269–270
fi xed control volume (CV), 267
moment, 266
moment forces (F ) of, 264–265
momentum analysis and, 244–245, 263–265
Newton’s second law and, 244–245
no external moments, 268
radial-fl ow devices, 269–270
Reynolds transport theorem (RTM) and, 266
rotation (v) and, 244–245, 263–265
steady fl ow, 267–268

Angular velocity (rate of rotation), 151–152, 
264–265

Apparent viscosity, 52
Approximate solutions, 515–616. See also 

Navier–Stokes equation
Archimedes number (Ar), 309
Area, moments of, 90–91
Aspect ratio (AR), 309, 639
Atmosphere properties at high altitudes, 951, 962
Atmospheric pressure (Patm), 81–83, 89–90, 249
Available wind power (Wavailable), 850–851
Average velocity (Vavg), 188, 348–349

Axial-fl ow turbine, 839
Axial pumps, 806, 816–824
Axisymmetric fl ow, 14, 457, 534, 536–537, 

610, 687–688

Back pressure (Pb), 669–678
Backward-inclined blades, 807–808
Ball valve, 380
Barometers, 81–84
Barometric pressure (Patm), 81–83
Beam splitter, 405
Bends, pipe fl ow losses at, 377–380
Bernoulli equation, 199–214, 221, 294, 

392–393, 526–527, 531–534, 812
acceleration of fl uid particles and, 199–200
applications of, 207–214
approximation solutions using, 526–527, 

531–534
boundary layers and wake regions for, 199
compressible fl ow, 200–202
dimensional homogeneity of, 294
energy grade line (EGL), 205–207
fl uid particle acceleration and path, 199–200
frictionless fl ow and, 199, 204
hydraulic grade line (HGL), 205–207
impeller rotation, 812
incompressible fl ow, 201, 205, 221
internal fl ow rate from, 392–393
inviscid fl ow regions and, 199, 526–527
irrotational fl ow regions, 531–534
law of thermodynamics for, 202, 221
limitations on use of, 204–205
linear momentum for, 199–201
mechanical energy balance, 201–202, 207
Navier–Stokes equation and, 526–527, 

531–534
negligible viscous effects and, 204
Newton’s second law for, 200–202
negligible heat transfer and, 205
no shaft work and, 204–205
pressure representation, 202–204
rotating reference frame, 812
stagnation pressure, 203–204
steady fl ow, 199–202, 204
streamlines and, 199–200, 202–205
unsteady, compressible fl ow, 202
vector identity for, 526–527
velocity measurement using, 392–393

Bernoulli head, 790
Best effi ciency point (BEP), 791
Betz limit, 853–854
Bias error, 28
Bingham plastic fl uids, 466
Biofl uid mechanics, 408–416, 493–497

blood fl ow studies, 410–415
cardiovascular system, 408–410
differential analysis of fl ow, 493–497
fl ow measurement and, 408–416
particle image velocimetry (PIV) for, 410, 416
Poiseuille fl ow comparisons, 493–496
pulsatile pediatric ventricular device (PVAD) 

for, 410–411
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Biological systems, drag coeffi cient (CD), 618–621
Biot number (Bi), 309
Blades, 806–809, 815–823, 907–915. 

See also Runners
Blasius similarity variable (h), 565–567
Blockage, 321
Blood fl ow studies, 410–415
Blower, 788
Bluff (blunt) bodies, 610
Body cavitation, 62
Body forces, 104–105, 246–249
Boiling properties, 941, 959
Bond number, 309
Boundary conditions, 14–15, 161, 214–215, 

438, 475–477, 888–893
axis, 892
closed system, 14–15
computational fl uid dynamics (CFD) use of, 

888–893
continuity equations, 475–477
control surface, 161
control volume (CV), 15, 161
differential analysis use of, 438, 475–477
energy transfer and, 214–215
exact solution for equations using, 475–477
fan, 892
fl ow passage (fan), 891
fl uid fl ow systems and, 14–15
free-surface, 477
infl ow/outfl ow, 889–890
initial, 477
inlet, 477
interface, 476
interior, 892–893
Navier–Stokes equations, 475–477
no-slip, 476
open systems, 15
outlet, 477
periodic, 891
pressure far fi eld, 891
pressure inlet/outlet, 889–890
reverse fl ow, 890
rotational, 891
symmetry, 477, 891–892
translational, 891
velocity inlet, 889
wall functions, 889
water–air interface, 477

Boundary layers, 7, 9, 199, 351–352, 364–367, 
525–526, 554–591, 625–627, 712

approximation, 525–526, 554–591
arbitrary shapes, 578–583
Bernoulli equation for, 199, 
Blasius similarity variable (h) for, 565–567
buffer, 364–365, 626
computational fl uid dynamics (CFD) 

calculations for, 580–583, 588–591
coordinate system, 559
curvature and, 561–562
displacement thickness (d*), 568–571, 574
equations, 555, 559–563
external parallel fl ow, 625–627
fl at plates, 556–558, 572–578, 583–591
fl ow region and, 9, 526–527
free shear layers and, 557
historical signifi cance of, 7
inertial sublayer, 364
internal fl ow, 351–352
inviscid regions of fl ow, 525–526, 554–555
irrotational (core) regions of fl ow, 351, 625
laminar fl ow, 557–572

logarithmic (log) law for, 366, 576
momentum integral technique for, 583–591
momentum thickness (u), 571–572, 574
Navier–Stokes equation for, 525–526, 

560–563
no slip condition and, 525–526, 555
one-seventh-power law for, 366, 573–574
outer (turbulent), 364–366, 626
overlap (transition), 364–366, 626
pressure gradient for, 561–562, 564–565, 

578–583
procedure for approximation, 564–568
profi le comparisons, 573–578
regions, 351–352, 554–591, 625–627
Reynolds number (Re) for, 557–559
shock wave interactions, 712
Spaulding’s law of the wall for, 365–366, 

576, 578
thickness (d), 556, 562–564, 574, 625
transitional fl ow, 557–559
turbulent fl ow, 364–367, 557–558, 

572–578
velocity profi le for, 351–352, 364–367
viscous sublayer, 364–367, 626
wall-wake law for, 576–577
zero pressure gradient, 561, 564–565

Bourdon tube, 88
Bow wave, 686–687, 928
Brake horsepower (bhp), 791
Bridge scour, 771
British thermal unit (btu), unit of, 18, 43
Broad-crested weir, 766–767
Buckets, 790
Buckingham Pi theorem, 303–319
Buffer layer, 364–365, 626
Bulk modulus of elasticity (k), 44–46
Bumps, open-channel fl ow, 764–765, 929
Buoyancy, 32, 47, 98–103

Calorie (cal), unit of, 18, 43
Candela (cd), unit of, 16
Capacity (volume fl ow rate), 790, 805–806
Capillary effect, 58–60
Cardiovascular system, 408–410
Cartesian coordinates, 13–14, 157, 247–249, 

440–442, 445, 450–456, 468, 470–472
continuity equation in, 440–442, 445, 468
control volume (CV) and, 247–249
differential analysis applications, 470–472
fl uid fl ow dimensions, 13–14
gravitational forces in, 247
Navier–Stokes equation in, 468
rotational fl ow, 157
stream functions in, 450–456
vorticity in, 157

Cauchy’s equation, 459–464
Cavitation, 41–43, 62, 207, 797–800

avoidance of, 797–800
bubbles, 42, 797–798
net positive suction head (NPSH) for, 

798–800
pumps and, 797–800
saturation pressure (Psat) and, 41–43, 797–798
saturation temperature (Tsat) and, 41–43
sonar dome study of, 63
sonoluminescence, 63
vapor pressure (PV) and, 41–43, 797
vaporous (gaseous), 63

Cavitation number (Ca), 309
Centrifugal pumps, 806–815

Centripetal acceleration and force, 265, 561
Centroid, 91–92
Channels, 727–729, 737–759, 771

hydraulic cross sections for, 728–729
hydraulic diameter (Dh), 728
hydraulic radius (Rh) for, 728–729
open-channel fl ow and, 727–729, 737–759, 

771
rectangular, 745
trapezoidal, 745–746

Characteristic (performance) curves, 383–384, 
791–797

Chezy coeffi cient (C), 738–739
Choked fl ow, 670, 700, 708–711, 765
Circular fl uid fl ows, comparison of, 159–160
Circular pipe fl ow, 348, 353–357, 952
Circulatory fl ow loss, 815
Closed system, 14–15
Closed volume, 805–806
Cohesive forces, 58
Colebrook equation, 367–368
Compressible fl ow, 10–11, 44–50, 200–202, 

439–445, 610, 659–723, 953–956
adiabatic, 702–711
aircraft and, 662–663, 674–688
Bernoulli equation and, 200–202
bulk modulus of elasticity (k), 44–46
CFD calculations for, 922–928
choked, 670, 700, 708–711
compressing fl ow, 678–688
computational fl uid mechanics (CFD) for, 

922–928
continuity equations for, 439–445
converging nozzles, 665, 670–674
density and, 10–11, 46–47, 667–669
external, 610
Fanno fl ow, 702–711, 956
friction and, 702–711
heat transfer (Q) and, 693–702
ideal gases, 45–46, 663, 667–669, 693–702, 

953–956
isentropic, 663–678, 953
Mach number (Ma) for, 11, 50, 663–669, 

670–672
nozzles for, 665–678, 923–927
one-dimensional, 663–669, 953–954
Prandtl–Meyer expansion waves, 688–693
property tables for, 953–956
Rayleigh fl ow, 693–702, 955
shock waves, 675–688, 712, 927–928
sonic, 11, 50, 666–667
speed of sound (c) and, 11, 48–50, 663–665
stagnation properties of, 660–663, 704–705
steady, 200–201
subsonic, 11, 50, 666–667, 687
supersonic, 11, 50, 666–667, 687
three-dimensional, 610
transonic, 50
viscous-inviscid interactions, 712

Compressible stream function (cr), 458–459
Compressing fl ow, 678–688. See also Shock 

waves
Compressive force, 77–78
Compressors, 788–789
Computational fl uid dynamics (CFD), 27, 32, 

141, 149–151, 318–319, 406, 472–473, 
580–583, 588–591, 879–938

boundary conditions for, 888–893
boundary layer approximation, 580–583, 

588–591
bumps, calculations for fl ow over, 929
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cells, 881–882, 887–888
compressible fl ow calculations, 922–928
computational domain for, 881
continuity equation solution, 472–473
contour plots, 150–151, 916–917, 924–928,
converging–diverging nozzle fl ow 

calculations, 923–927
creeping fl ow approximation, 588–591
cross-fl ow heat exchanger, 915–917
cylinders, calculations of fl ow around, 897–

902, 905–907
differential analysis using, 472–473
direct numerical simulations (DHS), 903
engineering software use, 27, 32
equations of motion solutions, 880–883
Euler equation solution, 580–581
fl ow separation, 580–583, 921–922
fl ow visualization and, 141, 582
grids, 883–888
heat transfer calculations, 915–922
hydraulic jump calculations, 930
integrated circuit (IC) chips, 917–922
laminar fl ow calculations, 893–902
magnetic resonance image (MRI) 

simulations, 931
multigridding for, 883
oblique shock wave calculations, 927–928
open-channel fl ow calculations, 928–930
particle image velocimetry (PIV) for, 406
pipe fl ow calculations, 893–896
plots for fl ow data, 149–151, 916–917, 

924–928
postprocessors for, 882
pressure correction algorithms for, 473
pressure gradients, 580–583
pressure contour plots, 924–928
residual of terms, 882
stator blade (vane) design, 907–915
turbulence models, 903–905
turbulent fl ow calculations, 902–915
vector plots, 149–150
velocity overshoot and, 590–591

Conservation of energy, see Energy (E)
Conservation of mass, see Continuity 

equations; Mass (m)
Constant error, 28
Constitutive equations, 464–465. See also 

Navier–Stokes equation
Contact angle (f), 58
Continuity equation, 186, 438–450, 468–469, 

475–493, 517–518, 529–530, 694, 703, 
880

boundary conditions for, 475–477
Cartesian coordinates, 440–442, 468
compressible fl ow, 439–445
computational fl uid dynamics (CFD) 

solution to, 472–473, 880
conservation of mass and, 186, 438–450
cylindrical coordinates, 442–443, 444–445, 469
differential analysis using, 470–493
divergence (Gauss’) theorem for, 439–440, 

443–444
exact solutions of, 475–493
Fanno fl ow
incompressible fl ow, 443–445
infi nitesimal control volume and, 440–443
irrotational fl ow, 529–530
Laplacian operator (∇) for, 530
continuity equation for, 529–530
material element (derivative) for, 443–444, 

463–464

Navier–Stokes equation coupled with, 
475–493

Rayleigh fl ow, 694
steady, compressible fl ow, 444–445
Taylor series expansion for, 440–443
velocity potential function (f) and, 529–530

Continuum, 38–39, 134
Contour plots, 150–151, 916–917, 924–928
Contracted/inner (dot) product, 248
Control mass, 15
Control points, 754
Control volume (CV), 15, 32, 134–134, 160–168, 

186–187, 189–191, 217–219, 245–251, 
267, 440–443, 460–463, 583–591, 809–
810, 851–854

analysis, 32
atmospheric pressure acting on, 249
body forces, 246–248
boundary (fi xed position) of, 15, 161
Cauchy’s equation derived using, 460–463
closed system relationship to, 160–162
conservation of energy and, 186–187, 217–219
conservation of mass (mCV) and, 186, 

189–191, 440–443
continuity equation derived using, 440–443
deforming, 191, 245–246
energy transfer and, 217–219
extensive property of, 162
fi xed, 163, 217–219, 245, 250, 267
forces acting on, 246–249
gravity acting on, 247
infi nitesimal, 440–443, 460–463
Leibniz theorem for, 165–167
material derivative and, 167–168
momentum analysis of, 245–249, 267
relative velocity of, 163–165, 191, 245–246
Reynolds transport theorem (RTT) for, 

160–168
selection of, 245–246
steady fl ow, 251
stress tensor for, 247–249
surface forces, 246–248
Taylor series expansion for, 440–441, 462
unit outer normal of, 162–163
velocity (moving) of, 245–246
vortex structures, 32
wind turbine power, 851–854

Convective (advective) acceleration, 137–138
Converging–diverging nozzles, 665, 674–678, 

923–927
back pressure (Pb) effects, 675–678
isentropic fl ow though, 674–678
supersonic fl ow and, 674, 678–681

Converging nozzles, 665, 670–673
back pressure (Pb) effects, 670–674
choked fl ow, 670
isentropic fl ow though, 670–674
Mach number (Ma) and, 665, 670–672

Couette fl ow, 477–484
Counter-rotating axial-fl ow fans, 819–820
Coupled equations, 438, 470–475
Creeping fl ow, 520–525, 588–591

approximation, 520–525, 588–591
CFD calculations for, 588–591
drag force on a sphere in, 523–525
Navier–Stokes equation for, 520–525
Reynolds number (Re) for, 520–522
terminal velocity of, 523–524

Critical depth (yc), 730, 734
Critical energy, 724
Critical fl ow, 729–732, 739–737

Critical property values (*), 668–669
Critical ratios, 668
Critical Reynolds number (Recr), 350, 557–559
Critical uniform fl ow, 736–740
Critical velocity (Vc), 734
Cross-fl ow heat exchanger, 915–917
Curvature of boundary layer, 561–562
Curved surfaces, hydrostatic forces on, 95–97
Cut-in and cut-out speeds, 850
Cylinders, 629–633, 897–902, 905–907

CFD calculations for fl ow around, 897–902, 
905–907

drag force on, 629–633
external diameter (D), 629
external fl ow over, 629–633
fl ow separation, 631
Kármán vortex street formation, 899–902
laminar fl ow around, 897–902
Reynolds number (Re) for, 629–633
stagnation points, 629–631
surface roughness effects, 632–633
turbulent fl ow around, 905–907

Cylindrical coordinates, 13–14, 107–110, 158–159, 
442–445, 457–458, 469, 473–475

continuity equation in, 442–445, 469
differential analysis in, 442–445, 457–458, 

469, 473–475
fl uid fl ow dimensions, 13–14
Navier–Stokes equation in, 469
stream functions in, 457–458
vorticity in, 158–159

d’Alembert’s paradox, 548–549
Darcy friction factor ( f ), 309, 317, 355–356, 

358, 367–369, 952
dimensional analysis use of, 317
laminar fl ow analysis, 355–356
Moody charts for, 367–369, 952
pipe cross sections and, 358
pipe fl ow and, 952
ratio of signifi cance, 309
relative roughness (e/D) and, 367–369
turbulent fl ow analysis, 367–369

Deadweight testers, 88–89
Deformation, 2, 151–156

angle of (a), 2
fl uid kinematic properties of, 151–156
linear strain rate, 151–153
rates of fl ow, 2, 151–156
rotation, rate of, 151–152
shear strain rate, 153–154
volumetric (bulk) strain rate, 153

Density (r), 10–11, 32, 39–41, 46–47, 
667–669, 850–851

compressible fl ow and, 10–11, 46–47, 
667–669

critical, 667–669
fl uid properties of, 39–41
ideal gases, 40–41, 667–669
isentropic fl ow, 667–669
Mach number (Ma) and, 11, 668
specifi c gravity (SG) and, 39, 41
volume expansion (b) and, 46–47
vortex structure and, 32
wind power, 850–851

Dependent Π (Pi), 300–301
Depth, pressure variation with, 78–81
Derivatives, study of, 22
Derived (secondary) dimensions, 15
Detached oblique shock wave, 686–687, 928
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Deviatoric (viscous) stress tensor, 465–467
Differential analysis, 32, 437–514, 515–606, 

705–708
applications of, 470–497
approximate solutions of, 515–606
biofl uid mechanics fl ows, 493–497
boundary conditions for, 438, 475–477
Cartesian coordinates, 440–442, 450–456, 

468, 470–472
Cauchy’s equation for, 459–464
compressible fl ow, 439–445
computational fl uid dynamics (CFD) for, 

472–473
conservation of mass and, 438–450
constitutive equations for, 464–465
continuity equation for, 438–450, 468–469, 

475–493
Couette fl ow, 477–484
coupled equations, 438, 470–475
cylindrical coordinates, 442–445, 457–458, 

469, 473–475
differential linear momentum equation, 

459–464
divergence (Gauss’) theorem for, 439–440, 

443–444, 459–460
error function (erf), 491–492
exact solutions for, 475–493
Fanno fl ow, friction effects and, 705–708
fl ow domain, 438
incompressible fl ow, 443–445, 466–468
infi nitesimal control volume for, 440–443, 

460–463
Navier–Stokes equation for, 464–469, 

475–493, 515–606
Poiseuille fl ow, 484–490, 493–496
pressure fi eld calculation, 470–475
similarity solution for, 491
steady fl ow, 470–490
stream functions (c) for, 450–459
stress tensors (s) for, 459–460, 465
Taylor series expansion for, 440–441
unsteady fl ow, 490–493
viscosity (m) of fl uids, 480–481

Differential equations, use of, 22
Differential manometer, 85–86
Diffusers for minor loses, 379
Dilatant (shear thickening) fl uids, 52, 466
Dimensional analysis, 291–345, 824–827, 

855–857
Froude number (Fr), 296–299, 323–325
geometric similarity, 299–300
incomplete similarity, 320–323
insect fl ight and, 326
inspectional analysis, 294–299
kinematic similarity, 299–300
method of repeating variables, 303–319
models and prototypes for, 299–303, 320–325
nondimensional equations for, 294–299
nondimensional parameters, 294–319
scaling laws, 824–827, 855–857
pumps, 824–827
repeating variables, method of, 303–319
Reynolds number (Re), 320–326
similarity of models and prototypes, 299–303
turbines, 855–857
units and, 292

Dimensional homogeneity, 19–20, 293–299
Bernoulli equation example of, 294
Froude number (Fr) for, 296–299
inspectional analysis and, 294–299

law of, 293
nondimensionalization of equations, 294–299
nondimensional parameters, 294–296
normalized equations, 294
pure constants, 295
scaling parameters, 295–296
units and, 19–20

Dimensional variables, 294
Dimensionless (nondimensional) variables, 295
Dimensions, 15–16, 292
Direct numerical simulations (DNS), 903
Discharge coeffi cient (Cd), 393–394, 762–764
Disk area (A), 850–851
Displacement thickness (d*), 568–571
Distorted fl ow models, 323–325
Divergence (Gauss’) theorem, 439–440, 

443–444, 459–460
Dividing streamline, 552, 581–582
Doppler-effect ultrasonic fl owmeters, 399–401
Double-regulated turbine, 839
Doublet, 544–545, 546–547
Downwash, 816
Draft tube, 840
Drafting for drag reduction, 622–623
Drag coeffi cient (CD), 309, 320–323, 525, 

612–625, 630–631
aerodynamic, 322–323
average, 612–613
biological systems and, 618–621
creeping fl ow, 525
drafting, 622–623
drag reduction and, 615–616
external fl ow and, 612–614, 617–625, 

630–631
frontal area, 612
planform area, 612
dynamic pressure, 612
ratio of signifi cance, 309
Reynolds number for, 320–323, 617–618
Stokes law, 618
streamlining effects on, 615–616
superposition of, 623–625
surface roughness effects, 612, 614–615, 

626–628, 632–633
three-dimensional bodies, 611, 620–621
total, 617–618
two-dimensional bodies, 611–612, 619
vehicles, 621–623

Drag force (FD), 51, 302–303, 523–525, 
548–550, 587–588, 610–617, 629–633, 
638–639, 645

aerodynamic, 302–303, 548–550
angle of attack (a), 612, 617
balance and, 302–303
creeping fl ow approximation and, 523–525
cylinders with external fl ow over, 629–633
d’Alembert’s paradox, 548–549
differential analysis of, 302–303
external fl ow and, 610–617, 638–639
fl at plates with external fl ow over, 612, 

625–629
fl ow separation, 616–617
friction and, 51, 612, 614–617
incompressible fl ow and, 610–617, 638–639
induced, 638–639
irrotational fl ow and, 548–550
lift force and, 610–613, 638–639
lift-to-drag ratio, 638–639
pressure, 612–613, 614–617
skin friction (wall shear), 567, 612, 614

spheres and, 523–525, 629–633
streamlining, 615–616
surface roughness effects, 612, 614–615, 

626–628, 632–633
vehicles, 621–623
wing design and, 612–613

Droplet-on Demand (DoD), 593
Drum gate, 762
Ducted axial-fl ow fan, 816–817, 819–824
Ducted pumps, 790
Ducts, 348, 358, 663–665, 693–711. See 

Converging-diverging nozzles; Pipe fl ow
Dynamic machines, 790, 806–824, 834–855
Dynamic pressure, 202–203, 612
Dynamic similarity, 300–301, 315–316, 318–319
Dynamic temperature, 667
Dynamic (absolute) viscosity, 52, 54
Dynamics, study of, 2

Eckert number (Ec), 309
Eddies, 361–364, 902–903
Eddy (turbulent) viscosity, 363–364
Edge of computational domain (2-D fl ow), 881
Effi ciency (h), 195–197, 381–390, 637–638, 

791–797, 815, 841–842
aircraft, 637–638
best effi ciency point (BEP), 791
centrifugal pumps, 815
characteristic (performance) curves for, 

383–384
circulatory fl ow loss, 815
combined (overall), 196–197
generator, 196
impeller blades and, 815
mechanical, 195–197
motor, 196
operating point, 384, 792–796
passage losses, 815
performance (characteristic) curves, 

383–384, 791–797
piping systems and pump selection, 

381–390, 791–797
pump, 196, 383–390, 791–797
pump–motor, 383–384
reaction turbines, 841–842
turbine, 196, 383, 815, 841–842

Elbows, pipe fl ow losses at, 377–380
Electromagnetic fl owmeters, 401–402
Elevation head, 205
Enclosed pumps and turbines, 790
Energy (E), 38, 43–44, 186–187, 194–199, 

214–228, 403–404, 693–702, 703, 
733–737. See also Heat transfer; Power

conservation of, 186–187, 198–199, 
214–228, 736–737

control volume (CV) and, 186, 217–219
enthalpy (h), 43–44
Fanno fl ow, 703
fi rst law of thermodynamics, 214
fl ow work (P/r), 43–44, 194–195, 218–219
fl uid properties of, 43–44
friction slope (Sf ) and, 737
heat (Q), transfer by, 215, 693–702
incompressible fl ow, analysis of, 221–222
internal (U), 43
loss, 216, 219–221
kinetic (ke), 43, 195
kinetic energy correction factor (a), 221–222
macroscopic, 43
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mechanical (Emech), 194–199, 215–228
microscopic, 43
open-channel fl ow, 733–737
potential (pe), 43, 195
Rayleigh fl ow, 694–702
single-stream devices, 219
specifi c, 733–736
specifi c heats and, 43–44
specifi c total (e), 38, 44
steady fl ows, analysis of, 219–221
thermal, 43
total, 43–44
units of, 43
work, transfer by, 215–219

Energy absorbing devices, 788. See also Pumps
Energy dissipation ratio, 759
Energy grade line (EGL), 205–207, 790, 840–841
Energy pattern factor (Ke), 851
Energy producing devices, 788. See also Turbines
Engineering Equation Solver (EES), 26–27
Engineering software packages, 25–27
English system of units, 16–19, 292, 957–969
Enthalpy (h), 43–44, 660–662

compressed fl ow and, 660–662
energy and, 43–44
ideal gas, 661
stagnation and, 660–662
total, 660–662

Entrance region, 351–352, 893–896
Entropy change, 694–695, 703
Entry length, 352–353
Equations, 40, 105–106, 108, 185–242, 

244–245, 249–250, 264–267, 269–270, 
293–299, 437–514, 517–520, 555, 559–
563, 880–883

angular momentum, 244–245, 264–267
approximate solutions for, 517–520
Bernoulli, 199–214
boundary layer, 555, 559–563
Cauchy’s, 459–464
computational fl uid dynamic (CFD) 

solution, 880–883
conservation of momentum principle, 186
continuity, 438–450, 468–469, 475–493, 880
coupled, 438, 470–475
differential analysis, 437–514
dimensional homogeneity and, 293–299
effi ciency, 194–199
energy, 186–187, 194–199, 214–228
Euler’s turbine formula, 269–270
ideal gases, 40
inspectional analysis of, 294–299
linear momentum, 186, 244–245, 249–250
mass, 186, 187–194
motion, 105–106, 108, 517–520, 880–883
Navier–Stokes, 464–469, 475–493, 880
nondimensionalization of, 294–299, 517–520
normalized, 294
of state, 40
Taylor series expansion, 440–441

Equipotential lines, 535–536
Equivalent length (Lequiv), 375
Equivalent roughness (e), 368
Errors, 28–31, 88–89, 221–222, 251–253, 491–492
Euler equation, 525–526, 531, 580–581
Euler number (Eu), 309, 519
Eulerian description, 134–140, 167–168

acceleration fi eld (vector), 135, 136–139
fi eld variables, 134–136
fl ow domain (control volume), 134

fl ow fi eld, 135
gradient (del) operator, 137
material (substantial) derivative, 139–140, 

167–168
material position vectors, 136–137
partial derivative operator (d), 137
pressure fi eld (scalar), 134
Reynolds transport theorem (RTM) and, 

167–168
total derivative operator (d ), 137
vector variables, 134–135
velocity fi eld (vector), 134

Euler’s turbine formula, 269–270
Euler’s turbomachine equation, 810
Expanding fl ow, 688–693
Expansion fan, 688–689
Experimental problem approaches, 21–22
Extensional (linear) strain, 151
Extensive property of fl uid fl ow, 38, 162
External diameter (D), 629
External fl ow, 10, 607–657, 678–693

aircraft, 612–613, 616–617, 634–643
angle of attack (a), 612, 617
axisymmetric, 610
bluff (blunt) bodies, 610
compressible, 610, 678–693
cylinders, over, 629–633
drag coeffi cient (CD), 612–614, 617–625, 

630–631
drag force (FD), 610–617, 638–639
drag reduction, 610–611, 615–616, 645
fl at plates, over, 612, 625–629
fl ow fi elds for, 608–610
fl ow separation, 616–617, 630–631
free-stream velocity, 608
friction and, 612, 614–617, 625–629
incompressible, 610–657
internal fl ow compared to, 10
lift force, 610–613, 634–643
parallel, 625–629
Prandtl–Meyer expansion waves, 688–690
resultant forces of, 607
Reynolds number (Re) for, 612, 617–618, 

629–631
shock waves, 678–693, 712
spheres, over, 629–633
stagnation points, 629–631, 635, 639
streamlined bodies, 610, 614–616
surface roughness effects, 612, 614–615, 

626–628, 632–633
three-dimensional bodies, 610, 611, 620–621
two-dimensional bodies, 608, 610, 

611–612, 619
External forces, 249–250, 254–255, 265–268

Face of computational domain (3-D fl ow), 881
Fanning friction factor (Cf), 309, 317, 355–356
Fanno fl ow, 702–711, 956

choked,708–711
continuity equation for, 703, 705
differential analysis of, 705–708
energy equation for, 703, 705
entropy change of, 703
equation of state for, 704
friction effects on, 704–705
ideal-gases,702–711, 956
Mach number (Ma) for, 704–705
maximum duct (sonic or critical) length, 

707–708

momentum equation for, 703–705
property functions, 956
property relations of, 705–708
Reynolds number (Re) for, 707–708
T-s diagrams for, 704–705

Fanno line (curve), 679–682
Fans, 788, 816–817, 819–824, 907–915

axial pumps, 788, 816, 819–824
blade row (cascade), 821
CFD model for, 907–915
counter-rotating, 819–820
ducted-axial fl ow, 816–817, 819–824
open-axial fl ow, 816
stator blades (vanes), 819–822, 907–915
tube-axial, 819–824
vane-axial, 819–820, 907–915

Field variables, 134–136
Finite-span wings, 638–639
First-order difference approximation,139
Flaps, lift effects from, 636–637
Flat plate analysis, 89–92, 98, 556–558, 

572–578, 583–591, 612, 625–629
boundary layer approximation of, 556–558, 

572–578, 583–591
boundary layer regions, 625–627
buffer layer, 626
buoyant force on, 98
drag force and, 612, 625–629
external fl ow over, 612, 625–629
friction coeffi cient for, 627–629
hydrostatic forces on, 89–92
irrotational fl ow region, 625
Kármán integral equation, 585–588
laminar fl ow and, 556–558
momentum integral technique for, 583–591
overlap layer, 626
parallel fl ow over, 625–629
Reynolds number (Re) for, 626–628
skin friction and, 612
surface, 89–92
surface roughness and, 628
turbulent fl ow and, 572–578
turbulent layer, 626
velocity boundary layer, 625
viscous sublayer, 626

Flow depth, 726–727, 751
Flow domain (control volume), 134, 438
Flow fi eld regions, 9–10, 156–157, 199, 273–274, 

350–352, 517, 525–591, 608–610
Flow rate, 187–189, 191, 367–370, 391–416, 

670–674, 805–806, 808–809
discharge coeffi cient (Cd) for, 393–394
Doppler-effect ultrasonic fl owmeters, 

399–401
electromagnetic fl owmeters, 401–402
fl owmeters, 392–402
internal fl ow, 367–370, 391–408
isentropic nozzle fl ow, 670–674
King’s law for energy balance, 403–404
laser Doppler velocimetry (LDV), 

404–406
mass (m), 187–188, 191, 670–674
obstruction fl owmeters, 392–396
paddlewheel fl owmeters, 397–398
particle image velocimetry (PIV), 406–408, 

410, 416
pipe length and, 369–370
Pitot formula for, 392
Pitot probes, 391–392
positive displacement fl owmeters, 396
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Flow rate (continued)
pump capacity, 805–806, 808–809
Strouhal number (St) for, 402
thermal anemometers, 402–404
turbine (propeller) fl owmeters, 397
ultrasonic fl owmeters, 399–401
variable-area fl owmeters (rotameters), 398
velocimetry, 404–408
velocity measurement, 391–408
volume, 188–189, 391, 805–806, 808–809
vortex fl owmeters, 402

Flow separation, 9, 578–583, 616–617, 
630–631, 921–922

angle of attack (a), 612, 617
boundary layer approximation for, 578–583
CFD calculations for, 921–922
friction drag and, 616–617
pressure drag and, 616–617
pressure gradient effects, 578–583

Flow visualization, 32, 141–148, 582, 631
Flow work (P/r), 43–44, 194–195, 218–219
Flowmeters, 392–402. See also Flow rate
Fluctuating components of turbulent fl ow, 

361–362
Fluid, defi ned, 2
Fluid fl ow, 1–35, 52–54, 133–184, 191–195, 

199–214, 250–273, 299–303, 312–325, 
347–436, 437–514, 663–669, 726, 
880, 882

acceleration of, 135–140, 199–200
accuracy of measurements, 28–30
analysis, 1–35
Bernoulli equation applications of, 199–214
biofl uid mechanics, 408–416
boundary layers, 8–9, 351–352, 364–367
circular, 159–160
classifi cation of, 9–14
compressible, 10–11, 200–202
control volume, 15, 160–168
differential analysis of, 32, 437–514
engineering software packages for, 25–27
Eulerian description, 134–140
external, 10
fi eld variables, 134–136
forced, 11
forces (F) and, 2–3
frictionless, 199, 204
fully developed (one-dimensional), 13–14
global properties of, CFD, 880, 882
incompressible, 10–11, 192–194, 201, 205, 221
internal, 10, 347–436
inviscid, 10, 199
irrotational, 156–157
Lagrangian description, 134–140
laminar, 11, 349–361
modeling (mathematical), 21–23
molecular structure and, 3–4
natural (unforced), 11
no-slip condition, 8–9
no-temperature-jump condition, 9
one-dimensional (fully developed), 13–14, 

663–669
precision of measurements, 28–29
problem-solving technique, 23–25
Reynolds transport theorem (RTM) for, 

160–168
rotational (v), 151–152, 156–159
signifi cant digits and, 28–31
steady, 12–13, 191, 199–202, 251, 253–254
strain rate and, 2–3

streaklines, 144–146
streamlines, 141–142
systems, 14–15
three-dimensional, 13–14
turbulent, 11, 349–353, 361–374
two-dimensional, 13–14
units of measurement, 15–21
unsteady, 12–13, 202, 726
viscous, 10

Fluid kinematics, 133–184
acceleration fi eld (vector), 135, 136–139
angular velocity (rate of rotation), 151–152
circular fl ows, comparison of, 159–160
deformation of fl ow, 151–156
Eulerian description, 134–140, 167–168
Lagrangian description, 134–140, 167–168
linear strain rate (e), 151–153
material derivative, 139–140, 167–168
motion of fl ow, 151–160
pathline, 142–144
plots, 148–151
refractive fl ow visualization, 147–148
Reynolds transport theorem (RTM), 160–168
rotation, 151–152, 156–160
streaklines, 144–146
streamlines, 141–142
surface fl ow visualization, 148
timelines, 146–147
translation, 151
velocity vector (rate of translation), 134, 151
vorticity, 156–160

Fluid machines, see Turbomachines
Fluid mechanics, 2, 4–5, 6–8, 14–15, 21–31, 

185–242, 243–289, 291–345
applications of, 4–5
Bernoulli equation, 199–214, 221
categories of, 2
dimensional analysis, 291–345
effi ciency (h), 195–197
energy (E ), conservation of, 186–187, 198–

199, 214–228
energy grade line, 205–207
engineering and, 21–31
equations for, 185–242
fl ow systems, 14–15, 243–289, 293
history of, 6–8
hydraulic grade line, 205–207
linear momentum, 186
mass (M) conservation of, 186, 187–194
mechanical energy, 194–199, 201–202, 207, 

215–228
momentum analysis, 243–289

Fluid properties, 37–73
capillary effect, 58–60
cavitation, 41–43, 62
compressibility (k), 44–50
continuum, 38–39
density, 39–41
energy, 43–44
equations of state, 40
ideal gases, 40–41
saturation and, 41–43
specifi c gravity (SG), 39, 41
specifi c heats, 43–44
speed of sound, 48–50
state postulate for, 38
surface tension, 55–60
vapor pressure, 41–43
viscosity, 50–55
volume expansion, 46–48

Fluid statics, 75–131. See also Pressure
buoyancy, 98–103

Force (F), 2–4, 10, 17–19, 50–52, 58–59, 76–81, 
89–103, 104–105, 216–219, 244–250, 
254–255, 264–267, 607–617, 634–643

adhesive, 58
angular momentum and, 244–245, 264–266
body, 104–105, 246–248
buoyant, 98–103
capillary effect and, 58–59
centripetal, 265
cohesive, 58
compressive, 77–78
control volume, acting on, 246–250
drag, 51, 610–617, 638–639
external, 249–250, 254–255, 265–267
fl ow and, 2–4, 249–250, 254–255
friction, 10, 50–51
gravity as, 18, 247
hydrostatic, 89–97
intermolecular (pressure), 3–4
lift, 51, 610–613, 634–643
linear momentum and, 249–250, 254–255
moment of, 265–266
momentum analysis and, 244–250, 

254–255, 264–267
net, 244–245
pressure and, 76–81, 216–219
resultant, 90–91, 95–96, 607
rigid-body motion, 104–105
shear, 52
stresses and, 2–3
surface, 104–105, 246–248
thrust, 254–255
units of, 17–19
viscosity and, 10, 50–52
weight as, 17–18
work as, 18–19, 216–219

Forced fl ow, 11
Forward-inclined blades, 808
Fourier number (Fo), 309
Fractional factorial test matrix, 319
Francis turbine, 838–864
Free delivery, 384, 791
Free shear layers, approximation of, 557
Free-stream velocity, 608
Free-surface boundary conditions, 477
Free-surface fl ow, 323–325
Freezing point properties, 941, 959
Friction, 10, 50–51, 199, 204, 348–349, 

355–356, 358, 365, 367–369, 567, 612, 
614–617, 625–629, 702–711, 952

absence of (frictionless) in fl ow, 199, 204
coeffi cient, 355–356, 614–615, 627–629
Darcy friction factor (f), 355–356, 367–369
drag, 612, 614–617, 625–629
equivalent roughness and, 368
external fl ow, effects on, 612, 614–617, 

625–629
factor ( f ), 355–356, 358, 614, 952
Fanning friction factor, 309, 317, 355–356
Fanno fl ow, 702–711
fl ow separation, 616–617
force, 10, 50–51, 199, 204
internal fl ow and, 348–349
laminar fl ow and, 355–356, 358
local coeffi cient, 567
Moody chart for pipe fl ow, 367–369, 952
parallel fl ow on fl at plates, 625–629
pipe fl ow and, 348–349, 355–356, 358
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relative roughness (e/D) and, 367–369
skin (wall shear), 567, 612, 614
streamlining, 615–616
surface roughness and, 612, 614–615, 628
turbulent fl ow and, 365, 367–368, 576
velocity, 365, 576
viscosity (m) and, 10, 50–51

Friction lines, 148
Friction slope (Sf), 737, 751
Frictionless fl ow, 199, 204
Fringe lines, 405
Frontal area, 612
Froude number (Fr), 296–299, 309, 323–325, 

519, 729–730, 750–751, 929–930
CFD calculations using, 929–930
critical depth of, 730
critical fl ow, 729–730
dimensional analysis using, 323–325
free-surface fl ow, 323–325
Navier–Stokes nondimensionalization 

using, 519
nondimensionalization using parameter of, 

296–299
open-channel fl ow, 729–730, 929–930
ratio of signifi cance, 309
subcritical (tranquil) fl ow and, 729–730
supercritical (rapid) fl ow and, 729–730
surface profi les, 750–751
wave speed (c0) and, 729–730

Full dynamic pressure, 548
Full factorial test matrix, 319
Fully developed fl ow, 13–14. See also 

One-dimensional fl ow
Fundamental (primary) dimensions, 15, 292

Gage pressure (Pgage), 76–77, 82–83
Gas dynamics, 2
Gas turbines, 833, 847
Gaseous cavitation, 62
Gases, 3–4, 53–54, 99, 940, 948, 958, 967. 

See also Air; Ideal gases
Gate valves, 374, 380
Gates, 761–770, 930. See also Flow control
Gaukler-Manning equations, 738–739
Gauss’ (divergence) theorem, 439–440, 

443–444, 459–460
General Conference of Weights and Measures 

(CGMP), 16
Generator effi ciency (hgenerator), 196
Geometric similarity, 299–300
Geometric similarity, 32 
Global properties of fl ow, 880, 882
Globe valve, 380
Gradient (del) operator, 137
Gradually varied fl ow (GVF), 727, 747–756
Grashof number (Gr), 309
Gravity, 18, 39, 41, 102–103, 247, 357–358, 

461, 519, 526–527
buoyancy and, 102–103
Cauchy’s equation and, 461
center of, 102
control volume, acting on, 247
force of, 18, 247
hydrostatic pressure and, 519
inviscid fl ow regions and, 526–527
laminar fl ow, effects of on, 357–358
metacentric height, 102–103
specifi c (SG), 39, 41
stability and, 102–103

Grids, 881–883, 883–888
equiangle skewness, 885
face (3-D fl ow), 881
generation, 883–888
hexahedral cells, 887–888
hybrid, 886–887
independence, 888
intervals, 884
multiblock analysis using, 886–887
nodes, 884
polyhedral meshes, 887–888
prism cells, 887–888
skewness, 885
structured, 884, 886
tetrahedral cells, 887–888
three-dimensional (3-D), 881, 886–887
two-dimensional (2-D), 881, 885–887
unstructured, 884–885

Gross head (Hgross), 839

Harmonic functions, 535–537
Head gate, 840
Head loss (hL), 220–221, 348, 356–357, 

369–370, 375–376, 736–737, 758–759
head loss (hL), 736–737, 758–759
friction slope (Sf) for, 737
internal fl ow, 348, 356–357, 369–370, 

375–376
irreversible, 220–221
laminar fl ow, 356–357
minor losses, 375–376
open-channel fl ow, 736–737, 758–759
steady fl ow analysis and, 220–221
total, 375–376
turbulent fl ow, 369–370

Heads (h), 79, 205–207, 221, 383–384, 790, 
791–800, 839–842

Bernoulli, 790
cavitation and, 797–800
elevation, 205
energy grade line and, 205–207, 790, 

840–841
gross for, 839, 841
hydraulic grade line, 205–207
net (total), 205, 790–795, 841–842
net positive suction, 798–800
piping system effi ciency and, 383–384, 

791–797 
pressure, 79, 205
pump, 221, 384, 792–793
pump performance and, 790–797
required net, 792–793
shutoff, 384, 791–792
turbine, 221, 383–384
turbine performance and, 839–842
useful pump, 792
velocity, 205

Heat transfer (Q), 43, 205, 215, 693–702, 
915–922

CFD calculations for, 915–922
compressible duct fl ow, 693–702
cross-fl ow heat exchanger, 915–917
energy (E) transfer and, 43, 215
integrated circuit (IC) chips, cooling of, 

917–922
negligible effects of, 205
printed circuit boards (PCB) and,917–922
rate, 215, 919
Rayleigh fl ow, 693–702

reattachment line, 921–922
separation bubbles, 921–922
temperature contour plots, 916–917
thermal energy compared to, 43, 215

Homologous operating points, 826
Horizontal axis wind turbines (HAWTs), 847–850
Horsepower (hp), unit of, 18–19
Hot fi lm anemometers, 403
Hot wire anemometers, 403–404
Hydraulic cross sections, 728–729
Hydraulic depth (yh), 732–733
Hydraulic diameter (Dh), 350, 728
Hydraulic grade line (HGL), 205–207
Hydraulic jump, 731–733, 757–761, 930
Hydraulic radius (Rh), 728–729
Hydraulic turbines, 833
Hydraulics, study of, 2
Hydrodynamic entrance region, 351–352
Hydrodynamic entry length (Lh), 351–353
Hydrodynamics, 2
Hydrogen bubble wire, 147
Hydrostatics, 83–84, 89–97, 464, 479, 519–520

absolute pressure, 76–77, 90
area, moments of, 90–91
atmospheric pressure, 89–90
center of pressure (point of application), 89–91
centroid, 91–92
curved surfaces, 95–97
inertia, moments of, 91–92
forces, 89–97
gravity effects on, 519
magnitude, 90–91, 96
modifi ed pressure and, 520
multilayered fl uid and, 96
nondimensionalized equations and, 519–520
rectangular plates, 92–94
plane surfaces, 89–92
pressure distribution, 479, 519
pressure, 83–84, 464
pressure prism, 91–92
resultant forces (FR), 90–91, 95–96
submerged surfaces, 89–97

Hypersonic fl ow, 11, 50

Ideal gases, 40–41, 44–46, 661, 663–665, 
667–669, 693–711, 940, 953–956, 958

compressibility of (k), 45–46
compressible fl ow of, 45–46, 661, 663–665, 

667–669, 693–702, 953–956
converging-diverging duct fl ow of, 663–665
critical property values (*), 668–669
density of, 40–41
duct fl ow, 693–702
energy of, 44
energy equation for, 694, 703
equation of state, 40, 695, 704
enthalpy of, 661
Fanno fl ow, 702–711, 956
fl uid properties of, 44–46
isentropic fl ow, 663–665, 667–669, 953
Mach number (Ma) for, 663–665, 667–669
property relations, 699–700, 705–708
property tables for, 940, 953–956, 958
fl ow property variations, 667–669
Rayleigh fl ow, 693–702, 955
shock functions for, 954
specifi c heat of, 44, 667–669, 940, 958
speed of sound (c) for, 663
volume expansion (b) of, 46
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Image sink, 551
Immersed bodies, buoyancy of, 101–103
Impact pressure, 548
Impellers (rotor), 806–808, 811–812, 819–822

axial pumps, 819–822
backward-inclined blades, 807–808
centrifugal pumps, 806–807, 811–812
forward-inclined blades, 808
radial (straight) blades, 808
shroud, 807
stator blades (vanes) for, 819–822

Impulse turbines, 835–837
Impurities, 57
In series pipes, 381–382
Inclined manometer, 85
Inclined pipe fl ow, 357–358
Incomplete similarity, 320–323
Incompressible fl ow, 10–11, 44, 192–194, 201, 

205, 221–222, 443–445, 466–468, 
610–613, 634–643. See also External fl ow

Bernoulli equation for, 201–202, 205, 221
compressible fl ow compared to, 10–11
conservation of mass and, 192–194, 443–445
continuity equations for, 443–445
determination of, 44
differential analysis of, 443–445, 466–468
drag force and, 610–617, 638–639
energy analysis of, 221–222
external, 610–657
isothermal, 466–468
kinetic energy correction factor (a), 221–222
lift force and, 610–613, 634–643
mass balance for, 192–194
material elements and, 443–444
Navier–Stokes equation for, 466–468
separation, 630–631
specifi c heat of, 44
steady, 201–202, 221
streamlined bodies, 610, 614–616
surface roughness effects, 626–628, 632–633
three-dimensional, 610, 611
two-dimensional, 608, 610, 611–612

Independent Π (Pi), 300–301
Induced drag, 638–639
Inertia, moments of, 91–92
Inertial sublayer, 364
Infi nitesimal control volume, 440–443, 460–463
Initial boundary conditions, 477
Inlet and outlet fl ow, 164–165, 251, 254
Inlet boundary conditions, 477
Inner fl ow region, 555. See also Boundary layers
Insect fl ight, dimensional analysis and, 326
Insertion electromagnetic fl owmeter, 401
Inspectional analysis, 294–299
Integral properties of fl ow, 882
Integrated circuit chips (ICs), 917–922
Intensive property of fl uid fl ow, 38, 162
Interface boundary conditions, 476
Interferometry, 147
Intermolecular bonds (pressure), 3–4
Internal energy (U), 43
Internal fl ow, 10, 347–436

Bernoulli equation for, 392–393
biofl uid mechanics, 408–416
Colebrook equation for, 367–374
ducts, 348, 358
entrance region, 351–352
entry length, 352–353
external fl ow compared to, 10
fl ow rate, 369–370
friction effects on, 348–349

gravity effects on, 357–358
head loss (hL), 348, 356–357, 369–370, 

375–376
laminar, 349–361
measurement of velocity, 391–408
minor losses, 374–381
Moody chart for, 367–374
pipes, 348–349, 351–390
Hagen-Poiseuille fl ow, 356
pressure drop (ΔP), 348, 355–357, 369
pumps, 381–390
Reynolds number (Re) for, 350–351
transitional, 349–351
tubes, 348
turbulent, 349–353, 361–374
valves and, 364–365, 367
velocity of, 348–349, 357–358, 364–367, 

391–408
International System (SI) of units, 16–19, 292, 

939–965
Interrogation regions, PIV, 407
Inviscid fl ow, 10, 199, 525–529

approximation, 525–529
Bernoulli equation for, 199, 526–527
boundary layers and, 525–526
Euler equation for, 525–526
gravity effects on, 526–527
Navier–Stokes equation and, 525–529

Irrotational fl ow, 156–157, 351, 529–554, 625
aerodynamic drag and, 548–550
approximation, 529–554
axisymmetric regions, 534, 536–537
Bernoulli equation for regions of, 

531–534
boundary layers and, 351, 625
circular, 156–157
circulation (vortex strength) of, 542–543, 

545–546
continuity equation for, 529–530
core region, 351
d’Alembert’s paradox, 548–549
doublet of, 544–545, 546–547
doublet strength of, 544–545
equipotential lines for, 535–536
Euler equation for, 531
external parallel fl ow, 625
harmonic functions for, 535–537
Laplace equation for, 530, 535–537
Laplacian operator for, 530
line sink of, 540–542, 545
line source of, 540–542
line vortex of, 542–543, 545
momentum equation for, 531
Navier–Stokes equations for, 529–554
planar regions, 534–537, 538–554
regions of potential fl ow, 351, 529–530
stream functions for, 535–537, 545–547
superposition of, 538, 545–554
two-dimensional regions of, 534–537
uniform stream of, 539, 546–549
velocity components for, 537
velocity potential function for, 529–530, 

535–537
vortex strength (circulation) of, 542–543, 

545–546
vorticity (z) of, 156–157
zero pressure point of, 549–550

Isentropic fl ow, 663–678, 953
Isobars, 106
Isolated system, 15
Isothermal compressibility (a), 46

Jakob number (Ja), 309
Joule (J), unit of, 18, 43

Kaplan turbine, 838–839
Kármán integral equation, 585–588
Kármán vortex street, 145, 900–902
Kelvin (°K) temperature scale, 16, 40
Kilogram (kg), unit of, 16–17
Kilojoule (kj), unit of, 43
Kilopascal (kPa), unit of, 76
Kilowatt-hour (kWh), unit of, 19
Kinematic eddy (turbulent) viscosity, 363–364
Kinematic similarity, 32, 299–300
Kinematic viscosity (n), 53
Kinematics, laws of, 32. See also Fluid kinematics
Kinetic energy (ke), 43, 194–195, 265
Kinetic energy correction factor (a), 221–222, 

357
Knudsen number (Kn), 309

Lagrangian description, 134–140, 167–168
Laminar fl ow, 11, 349–361, 556–572, 578–583, 

727–729, 893–902
Blasius similarity variable (h) for, 565–567
boundary layer approximation, 556–572, 

578–583
circular pipe, 353–357
computational fl uid dynamic (CFD) 

calculations, 580–583, 893–902
cylinders, CFD calculations for fl ow around, 

897–902
Darcy friction factor ( f ), 355–356
dividing streamline, 581–582
entrance region, 351–352, 893–896
entry length, 352–353
fl at plate boundary layer, 556–558
fl ow separation, 580–583
fl uid behavior (fl ow regime) of, 349–351
friction factor ( f ), 355–356, 358
fully developed, 335–355
head loss (hL), 356–357
hydraulic diameter and radius for, 728–729
hydrodynamic entry length (Lh), 352–353
inclined pipes, 357–358
internal, 349–361
kinetic energy correction factor (a) for, 357
Navier–Stokes equation for, 559–563
noncircular pipes, 358
open-channel fl ow, 727–729
pipe fl ow, CFD calculations for, 893–896
Pouseuille’s law for, 356
pressure drop (ΔP), 355–357
pressure gradient effects, 578–583
pressure loss (ΔPL), 355
Reynolds number (Re) for, 350–351, 556, 

727–729
skin (local) friction coeffi cient for, 567
transition to turbulent, 349–351, 557–558
turbulent fl ow compared to, 557–559, 

580–583
velocity profi le for, 351–352, 353–355
zero pressure gradient, 561, 564–565

Laplace equation for irrotational fl ow, 530, 
535–537

Laplacian operator (∇), 530
Large eddy simulation (LES), 903
Laser Doppler anemometry (LDA), 404
Laser Doppler velocimetry (LDV), 404–406, 410
Laval nozzles, 665, 678
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Law of the wall, 365–366, 576, 578
Leading edge angle, 809, 843
Leading edge fl aps, 636
Leibniz theorem, 165–167
Lewis number (Le), 309
Lift coeffi cient, 309, 314–315, 612–613, 

634–637
Lift force, 313–316, 610–613, 634–643

airfoils, 634–639
angle of attack, 315, 612, 634–637
aspect ratio (AR) for, 639
dimensional analysis of, 313–316
drag and, 610–613, 638–639
fi nite-span wings, 638–639
fl aps, effects from, 636–637
frontal area, 612
incompressible fl ow and, 610–613, 634–643
induced drag and, 638–639
lift-to-drag ratio, 635–636
Mach number (Ma) and, 315–316
Magnus effect, 639–643
planform area, 313, 612, 639
pressure effects on, 634–635
spinning, generation of by, 639–643
stagnation points, 635, 639
stall conditions, 637
starting vortex, 635
takeoff and landing speeds, 636–637
viscous effects on, 634–635
wing prototype for, 313–316

Lift-to-drag ratio, 635–636
Line of action, 91
Line (contour) plot, 150–151
Line sink, 160, 540–542, 545
Line source, 540–542
Line source strength, 540–541
Line vortex, 542–543, 545
Linear momentum, 186, 199–201, 244, 

249–263, 459–464
Cauchy’s equation for, 459–464
conservation of, 199, 244
control volume (CV), 250–251, 459–460
differential analysis and, 459–464
divergence theorem for, 459–460
energy balance and, 199–200
equation, 186, 244, 249–250
external forces and, 249–250, 254–255
momentum analysis and, 244, 249–263
momentum-fl ux correction factor (b), 251–253
Newton’s second law as, 200, 244, 249–250
no external forces and, 254–255
Reynolds transport theorem for, 250
steady fl ow, 251, 253–254
thrust, 254–255
uniform fl ow, 251

Linear strain rate (e), 151–153
Liquids, 3–4, 53–60, 946, 964

properties of, 946, 964
viscosity of, 53–54

Local acceleration, 137
Local friction coeffi cient, 567
Logarithmic (log) law, 366, 576
Loss (resistance) coeffi cient (KL), 374–379
Loss of energy in transfer, 216, 219–221

Mach angle (m), 688
Mach number (Ma), 11, 50, 310, 315–316, 

663–669, 670–672, 679–681, 685–688, 
688–689, 691, 695–696, 704

back pressure (Pb) and, 669–678

compressible fl ow, 663–669, 670–672, 679–
681, 685–688, 688–689

converging nozzles, 665, 670–672
converging–diverging nozzles, 665
critical property values (*), 668–669
dimensional analysis use of, 315–316
estimation of, 691
Fanno fl ow, 704
hypersonic fl ow, 50
ideal gases, 663–665, 667–669, 695–696, 704
isentropic fl ow, 663–669, 672
lift force analysis and, 315–316
nozzle shapes and, 665–669
Rayleigh fl ow, 695–696
shock waves and, 679–681, 685–688
sonic fl ow, 50, 666–667
subsonic fl ow, 50, 666–667, 687
supersonic fl ow, 50, 666–667, 687
transonic fl ow, 50
unity, 665–665, 668

Mach wave, 688
Macroscopic energy, 43
Magnetic resonance image (MRI) simulations, 931
Magnitude, 90–91, 96
Magnus effect, 639–643
Manning coeffi cient (n), 739
Mass (m), 21, 165, 186, 187–194, 349, 382, 393, 

438–450, 670–674, 736, 790, 940, 958
absolute velocity for, 191
average velocity for, 188, 349
balance, 189, 191–194, 393
conservation of, 186, 187–194, 349, 382, 

438–450, 736
continuity equations for, 186, 438–450
control volume, 186, 189–191, 440–443
differential analysis and, 438–450
divergence (Gauss’) theorem for, 439–440
incompressible fl ow, 192–194
molar (M), 940, 958
open-channel fl ow, 736
pipe fl ow analysis and, 382
principle of conservation, 189–191
pumps, 790
relative velocity for, 191
steady-fl ow processes, 191
Taylor series expansion for, 440–441
time rate of change, 187
volume fl ow rate and, 188–189, 790
weight and, 21

Material acceleration, 139–140
Material derivative, 139–140, 167–168, 

443–444, 463–464
acceleration, 139–140
Cauchy’s equation and, 463–464
continuity equation and, 443–444
control volume and, 167–168
differential analysis using, 443–444, 463–464
fl uid particle fl ow and, 139–140
pressure, 139–140
Reynolds transport theorem (RTM) and, 

167–168
Material element, 443–444, 463–464
Material (fl uid) particles, 134, 136–138
Material position vectors, 136–137
Material volume, 165–167
Mean pressure (Pm), 465
Mechanical energy (Emech), 194–199, 201–202, 

207, 215–228
conversion of, 195–197
effi ciency, 195–197
energy grade line (EGL), 207

fl ow energy, 195
fl ow work, 194–195, 218–129
head loss, 220–221
hydraulic grade line (HGL), 207
irreversible losses, 220–221
kinetic energy and, 194–195
loss, 216, 219–221
potential energy and, 194–195
power transfer from, 215–217
pressure forces (Wpressure) and, 216–219
shaft work (Wshaft) as, 195–196, 199, 216
steady fl ows, analysis of, 219–228
transfer of, 195–197, 205–228

Mechanical pressure (Pm), 465
Mechanics, study of, 2
Megapascal (MPa), unit of, 76
Meniscus, 58
Mesh, see Grids
Metacentric height (GM), 102–103
Metals, properties of liquid, 947, 965
Meter (m), unit of, 16–17
Microelectrokinetic actuator arrays (MEKA), 645
Micromechanical systems (MEMS), 645
Microscopic energy, 43
Minor losses, 374–381
Mixed-fl ow pumps, 790
Mixed-fl ow turbines, 838–840
Mixing length (lm), 364
Models, 299–303. See also Dimensional 

analysis; Similarity
Modifi ed pressure (P’), 520
Molar mass (M), 940, 958
Mole (mol), unit of, 16
Moment forces (F), 264–265
Moments, 90–92, 102

area, 90–91
inertia, 91–92
restoring, 102

Momentum, 186, 244, 531, 571–572, 583–591, 
694, 703–705

approximation solution using, 531
conservation of, 186, 244
equation, 531, 694, 703–705
Fanno fl ow, 703–705
integral technique, 583–591
irrotational fl ow, 531
Rayleigh fl ow, 694
thickness (u), 571–572

Momentum analysis, 243–289
angular momentum and, 244–245, 263–273
atmospheric pressure (Patm) and, 249
body forces, 246–248
conservation of momentum, 244–245
control volume (CV), forces acting on, 

246–249
gravity and, 247
linear momentum and, 244, 249–263
net forces and, 244–245
Newton’s laws and, 244–245
Reynolds transport theorem (RTM) for, 250
right-hand rule for, 266
rotational motion and, 244–245, 247–248, 

263–265
surface forces, 246–248
tensors for, 247–248
thrust, 254–255
torque, 263–264
vortex shedding, 273–274

Momentum-fl ux correction factor (b), 
251–253

Moody chart, 367–374, 952
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Motion, 103–110, 134–140, 151–168, 199–200, 
243–289, 464–465, 880–883. See also 
Continuity equation; Navier–Stokes 
equation

acceleration (a), 106–107, 135, 136–139, 
199–200, 265

angular momentum, 244–245, 263–273
angular velocity, 151–152
Bernoulli’s equation and, 199–200
circular, 159–160
computational fl uid dynamics (CFD) 

solutions, 880–883
constitutive equations for, 464–465
deformation rates of fl ow, 151–156
equations of, 105–106, 108
Eulerian description, 134–140, 167–168
fi eld variables, 134–136
fl uid fl ow, 149–160
Lagrangian description, 134–140, 167–168
linear momentum, 199–200, 244, 249–263
material (substantial) derivative, 139–140
momentum analysis, 243–289
Newton’s laws of, 103, 136, 244–245
Reynolds transport theorem (RTM), 160–168
rigid bodies, fl uids in, 103–110
rotation (v), 107–110, 151–152, 156–159, 

244–245, 247–248, 263–265
thrust, 254–255
torque, 263–264
translation (velocity vector), 134, 151

Motor effi ciency (hmotor), 196
Moving belt, 302
Multilayered fl uid, hydrostatics and, 96
Multistage axial-fl ow turbomachines, 

822–823, 847
Mutual orthogonality, 535–536

National Advisory Committee for Aeronautics 
(NACA) standards, 637–638

Natural (unforced) fl ow, 11
Navier–Stokes equation, 464–469, 475–493, 

515–606, 903
approximate solutions of, 515–606
boundary conditions for, 475–477
boundary layer approximation, 525–526, 

560–563
Cartesian coordinates of, 468
exact and approximate solution comparison, 

516–517
computational fl uid dynamics (CFD) 

solution to, 472–473, 580–583
constitutive equations for, 464–465
continuity equation coupled with, 475–493
creeping fl ow, 520–525, 588–591
cylindrical coordinates of, 469
differential analysis using, 475–493
Euler equation for, 525–526, 531, 580–581
Euler number for, 519
exact solutions of, 475–493
Froude number for, 519
incompressible, isothermal fl ow, 466–468
inviscid fl ow regions, 525–529
irrotational fl ow, 529–554
Laplacian operator for, 530
modifi ed pressure and, 520
Newtonian versus non-Newtonian fl uids, 

465–466
nondimensionalization of equations for, 

517–520

Reynolds-averaged Navier-Stokes (RANS) 
equation, 903

Reynolds number (Re) for, 519, 520–522, 524
scaling parameters for, 517–518
Strouhal number (St) for, 519
velocity components for, 467–468
viscous (deviatoric) stress tensor for, 465–467

Net (total) head (H), 205, 790–795, 841–842
Net positive suction head (NPSH), 798–800
Neutrally stable, 101–102
Newton (N), unit of, 16–17
Newtonian fl uids, 52, 465–466
Newton’s laws of motion, 17, 78, 103, 136, 

200–202, 244–245, 249–250, 463–464
Non-Newtonian fl uids, 465–466
Noncircular pipe fl ow, 348
Nondimensional equations, 294–299, 517–520

approximate solution using, 517–520
Buckingham Pi theorem, 303–319
computational fl uid dynamics (CFD) 

prediction for, 318–319
continuity, 517–518
Euler number (Eu) for, 519
Froude number (Fr), 296–299, 519
generation of, 303–319
independent Π (Pi), 300–301
motion, 517–520
Navier–Stokes, 519–520
parameters for, 294–319, 518–519
persons honored by, 311
Pi (Π) grouping parameters, 300–319, 516–517
process for (nondimensionalization), 

294–299, 517–520
ratios of signifi cance, 309–310
repeating parameters, 304–306, 312, 314
Reynolds number (Re), 301, 315–318
scaling parameters, 295–296, 517–518
similarity of model and prototype using, 

300–303
Strouhal number (St) for, 519

Nonfi xed control volume, 164
Normal acceleration (an), 199
Normal depth (yn), 727, 738
Normal shock waves, 675–676, 678–684
Normal stress (s), 3, 247
Normalized equations, 294
No-slip boundary condition, 8–9, 51, 476, 

498–500, 525–526, 555
No-temperature-jump condition, 9
Nozzle meter, 393–394
Nozzles, 379, 665–678, 837–838, 923–927
Nusselt number (Nu), 310
Nutating discs, 834
Nutating disk fl owmeters, 396

Oblique shock waves, 676, 684–688, 691–692, 
927–928

back pressure (Pb) and, 676
bow wave, 686–687, 928
calculations for, 691–692
CFD calculations for, 927–928
detached, 686–687, 928
isentropic fl ow and, 676, 688
Mach angle, 688
Mach number for, 685–688
Mach wave, 688
strong, 687
turning (defl ective) angle, 684–685
wedges, over a, 927–928

Obstruction fl owmeters, 392–396
Ohnesorge number (Oh), 593
One-dimensional (fully developed) fl ow, 13–14, 

351–352, 353–355, 663–669, 953–954
compressible, 663–669, 953–954
entrance region for, 13, 351–352
fl ow functions, 953
fl uid velocity variation, 665–667
hydrodynamically fully developed region, 

351–352
ideal gases, 663–665, 667–669, 953–954
isentropic, 663–669, 953
laminar, 353–355
property functions for, 953–954
radial direction of, 13–14
shock functions, 954
velocity profi le for, 13–14, 351–352, 

353–355
One-dimensional variables, 726
One-seventh-power law velocity profi le, 366, 

573–574
Open pumps and turbines, 790
Open system, see Control volume (CV)
Open-channel fl ow, 10, 725–785, 928–930

bridge scour, 771
bumps, 764–765, 929
CFD calculations for, 928–930
channels, 727–729, 737–747, 771
choked, 765
classifi cation of, 726–729
conservation of mass, 736
critical depth (yc) of, 730, 734
critical, 729–732, 436–740
discharge coeffi cient (Cd) for, 762–764
energy equations for, 736–737
fl ow control and measurement, 761–770
fl ow depth, 726–727
friction slope (Sf) of, 737
Froude number (Fr) for, 729–730, 929–930
gates,761–770, 930
gradually varied fl ow (GVF), 727, 747–756
head loss (hL), 736–737, 758–759
hydraulic cross sections, 743–747
hydraulic depth (yh), 732–733
hydraulic diameter (Dh), 728
hydraulic jump, 731–733, 757–761, 930
hydraulic radius (Rh) for, 728–729
laminar, 727–728
one-dimensional variables for, 726
rapidly varied fl ow (RVF), 727, 757–761
Reynolds number (Re) for, 727–728
slope (S) of, 737, 748–752
specifi c energy (Es) of, 733–736
steady/unsteady determination, 726
subcritical (tranquil), 729–732
supercritical (rapid), 729–732
surface profi les, 749–756
surface waves, 731–733
turbulent, 727–728
uniform (UF), 726–727, 737–743
varied (nonuniform), 726–727, 740–743
wave speed (c0), 729–733
weirs, 761, 766–770

Operating (duty) point, 384, 792–793, 826
Ordinary differential equations (ODE), 485
Ordinate, 149
Orifi ce meter, 393–394
Outer (turbulent) layer, 364–366, 626
Outer fl ow region, 555. See also Inviscid fl ow; 

Irrotational fl ow
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Outlet boundary conditions, 477
Overfl ow gates, 764–770
Overlap (transition) layer, 364–366, 626

Paddlewheel fl owmeters, 397–398
Parabloids of revolution, 108–109
Parabolic velocity profi le, 351–352, 354–355
Parallel axis theorem, 91
Parallel pipe fl ow, 382
Parameters, see Nondimensional equations
Partial derivative operator (d), 137
Partial differential equations (PDE), 485
Partial pressure, 41
Particle image velocimetry (PIV), 143, 

406–408, 410, 416
Pascal (Pa), unit of, 52, 76
Pascal’s law, 80–81, 85–86
Passage losses, 815
Path functions, 187–188
Pathlines, 142–144
Peclet number (Pe), 310
Pelton wheel, 835–837
Penstock, 840
Performance (characteristic) curves, 383–384, 

791–797
Pi (Π) grouping parameters, 300–319, 

518–519
Piezoelectric transducers, 88
Piezometer (tube), 203
Pipe fl ow, 348–349, 351–390, 791–797, 

893–896, 952
analysis of networks for,381–382
bend sections, 377–380
CFD calculations for, 893–896
circular, 348, 353–357, 952
conservation of mass for, 382
Darcy friction factor for, 355–356, 

367–368
diameter (D) problems, 369–370
effi ciency (h) of, 381–390, 791–797
elbow sections, 377–380
entrance region, 351–352, 893–896
entry length, 352–353
equivalent length, 375
equivalent roughness and, 368
friction effects on, 348–349, 355–356, 

367–369
friction factor for, 355–356, 358, 952
in series, 381–382
inclined, 357–358
internal, 348–349, 351–390
kinetic energy correction factor for, 357
laminar, 351–361, 893–896
loss (resistance) coeffi cient (KL), 374–379
minor losses, 374–381
Moody chart for, 367–374, 952
noncircular shapes, 348
parallel, 382
pump effi ciency and, 383–390, 791–797
relative roughness of, 367–369
sizes of pipe for, 369
sudden expansion, 379
systems (networks), 381–390, 791–797
turbulent, 361–374
valves for, 374–375, 378, 380
velocity in, 384–385
velocity profi le for, 351–352, 353–355, 

364–367
vena contracta region, 376

Pitch angle (u), 816–819
Pitching moment, 611
Pitot formula for fl ow rate, 392
Pitot probes, 391–392
Pitot tube, 203
Pitot-static probes, 391–392
Planar fl ow, 457, 484, 534–537, 538–554

doublet of, 544–545, 546–547
harmonic functions for, 535–537
irrotational regions of, 534–537, 538–554
line sink of, 540–542, 545
line source of, 540–542
line vortex of, 542–543, 545
Poiseuille fl ow, 484
singular point (singularity) of, 540–541
stream functions for, 457, 535–537, 545–547
superposition of, 538, 545–554
two-dimensional, 534–537
uniform stream of, 539, 546–549
velocity potential function for, 535–537

Plane surfaces, 89–94, 98
Planform area, 313, 612, 639
Plastic fl uids, 466
Plots, 148–151, 916–917, 924–928

abscissa, 149
computational fl uid dynamics (CFD) use of, 

149–151, 916–917, 924–928
contour, 150–151, 916–917, 924–928
fl uid fl ow data using, 148–151
ordinate, 149
pressure contour, CFD, 924–928
profi le, 149
temperature, 916–917
vector, 149–150

Poise, unit of, 52
Poiseuille fl ow, 484–490, 493–496
Poisson’s equation, 473
Polar coordinates, see Cylindrical coordinates
Position vector, 134
Positive-displacement machines, 396, 789, 

803–806, 834, 834
closed volume for, 805–806
fl owmeters, 396
fl uid fl ow in, 803–806
nutating discs, 834
peristaltic pumps, 803–804
pumps, 789, 803–806
rotary pumps, 804–805
self-priming pumps, 805
turbines, 789, 834
water meters, 834

Potential energy, 43, 194–195
Potential fl ow, see Irrotational fl ow
Potential function (f), 529–530, 535–537
Pound-force (lbf), unit of, 17–18, 76
Pound-mass (lbm), unit of, 17–18
Pouseuille’s law, 356
Power, 18–19, 215–217, 847–855

available wind power (Wavailable) for, 850–851
Betz limit, 853–854
coeffi cient, 851, 853–854
energy pattern factor, 851
wind power density, 850–851
wind turbines, 847–855

Power-law velocity profi le, 366–367, 496–497
Power number (NP), 310
Prandtl equation, 368
Prandtl number (Pr), 310
Prandtl–Meyer expansion waves, 688–693. 

See also Expanding fl ow

Prandtl–Meyer function, 689
Precision error, 28–29
Pressure (P), 3–4, 41–44, 75–131, 139–140, 

202–204, 216–219, 249, 464–465, 470–
475, 519–520, 547–550, 593, 612–617, 
634–635, 661–662, 667–678, 705, 
924–928

absolute, 76–77, 90
aerodynamic drag, 548–550
aerostatics, 89
aircraft wing design and, 612–613
atmospheric, 81–83, 89–90, 249
back, 669–678
barometric, 81–83
Bernoulli equation representation, 202–204
buoyant force, 98–103
capillary, 593
calibration for, 88–89
center of pressure (point of application), 

89–91
choked fl ow from, 670
compressible fl ow, 661–662, 669–678, 705, 

924–928
compressive force as, 77–78
constitutive equations for, 464–465
contour plots, CFD, 924–928
critical, 667–669
depth, variation of with, 78–81
drag affected by, 612–617
differential analysis of fi elds, 470–475
dynamic, 202–203, 612
external fl ow and, 612–617, 634–634
fl ow separation and, 616–617
fl ow work (P/r), 43–44, 218–219
force as, 76–81, 216–219
fl uid fl ow and, 3–4, 202–204
fl uid statics and, 75–131
full dynamic, 548
gage, 76–77, 82–83
hydrostatic, 83–84, 464, 519–520
hydrostatic forces and, 89–97
ideal gases, 644–646
irrotational fl ow, 547–550
isentropic nozzle fl ow and, 669–678
lift affected by, 612–613, 634–635
Mach number (Ma) and, 669–678
material derivative of, 139–140
measurement of, 4, 81–89, 203–204
mechanical, 465
modifi ed, 520
Navier–Stokes equation and, 464–465, 

470–475
nondimensionalized equations and, 519–520
normal force as, 76–77
partial, 41
Pascal’s law for, 80–81, 85–86
power from work of, 216–217
prism, 91–92
rigid-body motion of fl uids and, 103–110
saturation, 41–43
scalar quantity of, 77–78
shock waves from, 675–678
stability and, 98–103
stagnation (P0), 203–204, 661–662, 705
static, 202–203
streamlining, 615–616
superposition and, 547–550
thermodynamic (hydrostatic), 464
total, 203
units of, 76–77
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Pressure (continued)
vacuum, 76–77
vapor, 41–43
work by, 216–219

Pressure coeffi cient (CP), 310, 523, 547–549
Pressure correction algorithms, CFD, 473
Pressure drop (ΔP), 348, 355–357, 369–370, 382
Pressure fi eld (scalar), 134
Pressure gradient, 104, 561–562, 564–565, 

578–583
boundary layer approximation with, 

561–562, 564–565, 578–583
computational fl uid dynamics (CFD) 

calculations for, 580–583
curvature and, 561–562
dividing streamline, 581–582
favorable, 579
fl ow separation, 578–583
reverse fl ow and, 579–580, 582
rigid-body motion, 104
separation bubble, 579–580
stall condition, 580
unfavorable (adverse), 579
velocity profi le of, 580
zero, 561, 564–565

Pressure head, 79, 205
Pressure loss (ΔPL), 355
Pressure transducers, 88
Preswirl, 820
Primary (fundamental) dimensions, 15–16, 292
Problem-solving technique, 23–25
Profi le plots, 149
Propane saturation properties, 945, 963
Propellers (rotor), 816–819, 839–840
Property, defi ned, 38
Prototypes, 299–303. See also Dimensional 

analysis; Similarity
Pseudoplastic (shear thinning) fl uids, 52, 466
Pulsatile pediatric ventricular device (PVAD), 

410–411
Pump–motor effi ciency, 383–384
Pump–turbines, 858
Pumps, 196, 221, 381–390, 788–790, 790–833

affi nity laws, 829–830
axial, 806, 816–824
best effi ciency point (BEP), 791
blower, 788
brake horsepower (bhp), 791
capacity (volume fl ow rate) for, 790, 805–806
cavitation and, 797–800
centrifugal, 806–815
compressors, 788–789
dimensional analysis for, 824–827
ducted, 790
dynamic, 790, 806–824
effi ciency, 196, 383–390, 791–797
enclosed, 790
energy absorbing devices, as, 788
energy grade line (EGL), 790
fans, 788, 816, 819–824
fl ow analysis for selection of, 381–382
fl ow rate curves for, 383–384
free delivery, 384, 791
head, 221, 383–384, 792–793
impellers, 790, 806–808, 811–812, 819–822
in-series systems, 381–382, 800–803
internal fl ow and, 381–390
mass fl ow rate for, 790
net head for, 790–791
net positive suction head (NPSH), 798–800
open, 790

operating (duty) point, 384, 792–793, 826
parallel systems, 382, 800–803
performance (characteristic) curves, 

383–384, 791–797
piping networks and, 383–390791–797
positive-displacement, 789, 803–806
Reynolds number (Re) for, 825–826
rotary (rotodynamic), 806
scaling laws, 824–833
selection of, 381–390, 791–797
shutoff head, 384, 791–792
specifi c speed, 827–829
system (demand) curve, 383–384
volume fl ow rate (capacity), 790

Pure constants, 295

Quasi-steady fl ow, 519

Radial (straight) blades, 808
Radial-fl ow devices, 269–270, 806–815, 

838–839. See also Centrifugal pumps
Rake of streaklines, 145
Rankine temperature scale, 40
Rapidly varied fl ow, 727, 757–761
Rarifi ed gas fl ow theory, 39
Rate of rotation (angular velocity), 151–152
Rated speed, 850
Rayleigh fl ow, 693–702, 955

choked, 700
continuity equation for, 694
control volume energy equations for, 694–695
effects of heating and cooling on, 696
energy balance equations, 694
entropy change of, 694–695
equation of state for, 695
heat transfer and, 693–702
heating and cooling effects on, 696
ideal gases, 693–702
Mach number (Ma) and properties of, 695–696
momentum equation for, 694
property functions for, 955
property relations for, 699–700

Rayleigh line (curve), 679–680, 695
Rayleigh number, 310
Reaction turbines, 837–846

axial-fl ow, 839
double-regulated, 839
draft tube, 840
effi ciency of, 841–842
Francis, 838–864
effi ciency of, 841–842
energy grade line (EGL), 840–841
gross head for, 839
head gate, 840
Kaplan, 838–839
mixed-fl ow, 838–840
net head, 841–842
propeller, 839–840
radial-fl ow, 838–839
runner blades (rotor), 837–839, 843–846
single-regulated, 839
stay vanes, 837–838
tailrace, 840
volute, 838
wicket gates, 837–838

Reattachment line, 921–922
Rectangular hydraulic cross sections, 745
Refractive fl ow visualization, 147–148
Refrigerant-134a saturation properties, 943, 961

Regression analysis, 320
Relative density, 39
Relative roughness (e/D), 367–369
Relative velocity, 163–165, 191, 245–246
Repeating variables, method of, 303–319
Required net head, (Hrequired), 792–793
Residence time, 138–139
Resistance (loss) coeffi cient (KL), 374–379
Restoring moment, 102
Resultant forces (FR), 90–91, 95–96, 607
Reverse fl ow, 579–580, 582
Reverse swirl, 843–844
Reverse thrust, 819
Reversible adiabatic fl ow, see Isentropic fl ow
Revolution, see Rotation
Revolutions per minute, 264–165
Reynolds-averaged Navier-Stokes (RANS) 

equation, 903
Reynolds number (Re), 11, 301, 310, 315–318, 

320–326, 350–351, 519, 520–522, 524, 
557–559, 617–618, 626–633, 707–708, 
727–729

aerodynamic drag coeffi cient of, 322–323
boundary layer approximation, 557–559
creeping fl ow approximation and, 520–522, 

524
critical, 350, 557–559
cylinders, 629–633
dimensional analysis use of, 301, 315–318, 

320–326
drag coeffi cient (CD) and, 320–303, 617–618
external fl ow, 612, 617–618, 629–631
Fanno fl ow, 707–708
fl at plate analysis, 626–628
free-surface fl ow, 323–325
hydraulic diameter for, 350, 728
hydraulic radius for, 728–729
incomplete similarity, 320–321
independent fl ow, 321–322
insect fl ight and, 326
internal fl ow, 350–351
Mach number (Ma) and, 315–316
Navier–Stokes nondimensionalization using, 519
open-channel fl ow, 727–729
ratio of signifi cance, 310
spheres, 629–633
Stokes law, 618
surface roughness and, 626–628, 632–633
transition, 557–559
transitional fl ow and, 350–351, 557–559

Reynolds (turbulent) stresses, 363
Reynolds transport theorem (RTM), 160–168, 

250, 266
angular momentum, 266
closed/open system relationships, 160–162
control volume (CV) approach, 160–168
extensive fl ow properties, 162
fi xed control volume, 163
inlet and outlet crossings, 164–165
intensive fl ow properties, 162
Leibniz theorem and, 165–167
linear momentum, 250
mass fl ow rate and, 165
material derivative and, 167–168
material volume applications, 165–167
momentum analysis and, 250, 266
relative velocity for, 163–165
streamlines of fl ow and, 161–162
system-to-control volume transformation, 163
nonfi xed control volume, 164
unit outer normal for, 162–163
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Richardson number (Ri), 310
Right-hand rule, 266
Rigid-body motion, 103–110

acceleration (a) on a straight path, 106–107
body forces for, 104–105
equations of motion for, 105–106, 108
fl uids at rest, 105
fl uids in, 103–110
forced vortex motion, 107–108
free-fall of a fl uid body, 105
isobars, 106
Newton’s second law of motion for, 103
parabloids of revolution, 108–109
pressure gradient, 104
rotation in cylindrical containers, 107–110
surface forces for, 104–105

Rocket propulsion, 675–688. See also Aircraft; 
Shock waves

Rolling moment, 611
Rotameters (variable-area fl owmeters), 398
Rotary fuel atomizers, 861
Rotary (rotodynamic) pumps, 806. See also 

Dynamic machines
Rotation (v), 107–110, 151–152, 156–159, 

244–245, 247–248, 263–265
angular momentum and, 244–245, 263–265
angular velocity, 151–152, 264–265
Cartesian coordinates for, 157, 247–248
centripetal acceleration and force, 265
control volume (CV) surface forces, 247–248
cylindrical containers, fl uid in, 107–110
cylindrical coordinates for, 158–159
forced vortex motion, 107–108
kinetic energy and, 265
momentum analysis and, 244–245, 247–248
parabloids of revolution, 108–109
rate of, 151–152
rigid-body motion of fl uids, 107–110
shaft power and, 264–265
tensor notation for, 247–248
torque, 263–264
vorticity (z) and, 156–159

Rotation swirl, 843–844
Rotational stability, 102
Rotational viscometer, 480–481
Runners, 790, 833, 837–839, 843–844, 847

band, 838–839
blades, 790, 837–839, 843–846
buckets, 790, 847
gas and steam turbines, 847
leading edge (angle), 843
reaction turbines, 837–839, 843–844
reverse swirl, 843–844
rotation swirl, 843–844
trailing edge (angle), 843

Saturation, 41–43, 797–798, 942–945, 960–963
ammonia properties, 944, 962
cavitation and, 41–43, 797–798
fl uid properties and, 41–43
pressure, 41–43, 797–798
propane properties, 945, 963
refrigerant-134a properties, 943, 961
temperature, 41–42
vapor pressure and, 41–43
water properties, 942, 960

Scaling laws, 824–833, 855–860
affi nity laws, 829–830
dimensional analysis for, 824–827, 855–857
homologous operating points, 826

performance (characteristic) curves for, 826
pumps, 824–833
Reynolds number (Re) and, 825–826
similarity ratios and, 825–826, 829–830
specifi c speed (NSp or NSt), 827–829, 857–860
turbines, 855–860
turbomachinery, 824–833, 855–860

Scaling parameters, 295–296, 517–518
Schlieren images, 678, 684
Schlieren technique, 147–148
Schmidt number (Sc), 310
Scroll (diffuser), 806–807
Second (s), unit of, 16–17
Secondary (derived) dimensions, 15
Seeding particles (seeds), 4016
Separation bubble, 579–580, 921–922
Shadowgraph technique, 147–148
Shaft work, 195–196, 199, 204–205, 216, 

264–265. See also Mechanical energy
effi ciency of, 195–196
energy transfer (Wshaft) by, 216
mechanical energy as, 195–196, 199

Shape factor (H), 585
Sharp-crested weir, 767–770
Shear force (F), 52
Shear strain (e), 2, 151, 153–154
Shear stress (t), 2–3, 52, 247, 363–364
Shear thinning and thickening fl uids, 466
Sherwood number (Sh), 310
Shock (wave) angle (d), 684–685
Shock waves, 32, 445, 675–688, 712, 

927–928, 954
aircraft and rocket propulsion, 675–688
axisymmetric fl ow, 687–688
back pressure (Pb) and, 675–678
boundary layer interactions, 712
bow wave, 686–687, 928
CFD calculations for, 927–928
compressible fl ow and, 675–678, 712, 

927–928
continuity equation for, 445
converging–diverging nozzles and, 675–678
detached oblique, 686–687, 928
Fanno line (curve), 679–682
ideal gas, 954
incompressible fl ow and, 445
isentropic fl ow, 675–678
Mach angle (m), 688
Mach number (Ma) for, 679–681, 685–688
normal, 675–676, 678–684
oblique, 676, 684–688, 927–928
property functions for, 954
Rayleigh line (curve), 679–680
Schlieren images, 678, 684
shock (wave) angle (d), 684–685
turning (defl ective) angle, 684–685
viscous-inviscid interactions, 712
vorticity, 32

Shockless entry condition, 809
Shutoff head, 384, 791–792
Signifi cant digits, 28–31
Similarity, 299–303, 315–316, 320–323, 491, 

565–567, 825–826, 829–830
characteristics of, 299–303
dimensional analysis for, 299–303, 

315–316, 318–319
dynamic, 300–301, 315–316, 318–319
geometric, 299–300
incomplete, 320–323
kinematic, 299–300
models and prototypes, 299–303, 320–323

pumps, 825–826, 829–830
scaling laws, 825–826, 829–830
ratios and, 825–826, 829–830
solution, 491
variable (h), 565–567

Single-regulated turbines, 839
Single-stream devices, 219
Single-stream systems, 254
Singular point (singularity), 540–541
Skin friction coeffi cient, 567, 585
Skin friction (surface) drag, 9
Slope (S), 498, 727, 737–740, 748–754

adverse, 750–751, 753
classifi cation of, 750–751, 756
critical (Sc), 739–740
friction (Sf), 737, 751
gradually varied fl ow (GVF), 748–749
length, 498
mild, 750–751, 753
open-channel fl ow, 727, 737–740, 748–752
steep, 750–751, 753
surface profi les and, 749–752
transition connections, 752–754
uniform fl ow, 727, 738–739, 753

Sluice gate, 762, 930
Smoke wire, 144–145
Software packages for engineering, 25–27
Solid phase, 3–4
Sonar dome, 62
Sonic fl ow, 11, 50, 666–667
Sonic speed, see Speed of sound
Sonoluminescence, 62
Sound navigation and ranging (sonar), 62
Specifi c energy (E), 733–735
Specifi c gravity (SG), 39, 41
Specifi c heat, 43–44, 310, 667–669, 940, 958

energy and, 43–44
ideal gases, 940, 958
isentropic gas fl ow and, 667–669
Mach number (Ma) relationships, 667–669

Specifi c properties, 38
Specifi c Reynolds stress tensor, 903–904
Specifi c speed (NSp or NSt), 827–829, 857–860
Specifi c total energy (e), 38, 44
Specifi c volume (v), 39
Specifi c weight (gs), 17, 39
Speed of sound (c), 11, 48–50, 315–316, 663–665

analysis of, 48–50
compressible fl ow and, 11, 48–50, 663–665
fl ow direction variations, 665
fl uid fl ow regimes, 11, 48–50
ideal gas, 663
isentropic fl ow, 663–665
lift on a wing and, 315–316
Mach number (Ma) for, 11, 50, 663–665

Speeds for takeoff and landing, 636–637
Spheres, 523–525, 629–633

creeping fl ow approximation, 525–525
drag force on, 523–525, 629–633
external diameter (D), 629
external fl ow over, 629–633
fl ow separation, 631
Reynolds number (Re) for, 524, 629–633
stagnation points, 629–631
surface roughness effects, 632–633

Spinning, generation of by lift, 639–643
Stability, 101–103

buoyancy and, 101–103
center of gravity and, 102
metacentric height, 102–103
rotational, 102
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Stagnation, 203–204, 629–631, 635, 639, 
660–663, 667–669, 704–705

enthalpy, 660–662
external fl ow and, 629–631, 635, 639
friction effects on, 704–705
isentropic ideal gas fl ow properties, 667–669
isentropic state, 661
lift force and, 635, 639
Mach number (Ma) relationships, 667–669
points, 204, 629–631, 635, 639
pressure, 203–204, 661–662, 705
properties of, 660–663, 705
specifi c heat, 667–669
spheres, fl ow over and, 629–631
streamline, 204
temperature, 661–662, 705

Stall conditions, 580, 617, 637
Stanton number (St), 310
Starting vortex, 635
State postulate, 38
Static enthalpy (h), 660
Static pressure, 202–203
Static pressure tap, 203, 547
Statics, study of, 2
Stator blades (vanes), 819–822, 907–915
Stay vanes, 837–838
Steady fl ow, 12–13, 191, 199–202, 204, 

219–221, 251, 253–254, 267–268, 
444–445, 470–490, 726

angular momentum of, 267–268
Bernoulli equation for, 199–202, 204
compressible, 200–202, 219–221, 444–445
continuity equation for, 444–445
devices, 12
differential analysis of, 470–490
energy analysis of, 219–221
energy losses in, 219–221
ideal (no mechanical loss), 219
incompressible, 201–202, 221
inlet/outlet crossings, 251, 254
irreversible head loss, 220–221
linear momentum of, 251, 253–254
mass balance for, 191
mechanical energy balance, 220–221
open-channel fl ow, 726
real (mechanical loss), 219
single-stream devices, 219
unsteady fl ow compared to, 12–13

Steam turbines, 833, 847
Stoke, unit of, 53
Stokes fl ow, 520. See also Creeping fl ow
Stokes law, 618
Stokes number (Stk or St), 310
Straight path, fl uid acceleration on, 106–107
Strain (e), 2, 151–154
Strain-gage pressure transducers, 88
Streaklines, 144–146
Stream functions (ψ), 450–459, 535–537, 

545–547
axisymmetric fl ow, 457, 536–537
Cartesian coordinates, 450–456
compressible (ψr), 458–459
cylindrical coordinates, 457–458
differential analysis and, 450–459
irrotational fl ow, 535–537, 545–547
mutual orthogonality of, 535–536
planar fl ow, 457, 535–537, 545–547
streamlines and, 451–456
velocity potential function and, 535–536

Streamlined bodies, 610, 614–616

Streamlines, 141–142, 161–162, 199–200, 
202–205, 451–456, 552, 615–616

Bernoulli’s equation and, 199–200, 202–205
dividing, 552
drag reduction by, 615–616
fl ow visualization using, 141–142
force balance across, 202
nondimensional, 552
particle acceleration and, 199–200
Reynolds transport theorem (RTT) and, 

161–162
stagnation, 204
stream functions and, 451–456
superposition of irrotational fl ow and, 552

Streamtubes, 142
Streamwise acceleration (as), 199
Stress (s), 2–3, 52, 247–249, 363–364, 

459–460, 465–467
control volume (CV) and, 247–249
differential analysis and, 459–460, 

465–467
fl ow and, 2–3
normal (s), 3, 247
Reynolds (turbulent), 363–364
shear (t), 2–3, 52, 247, 363–364
tensor (s), 247–249, 459–460, 465
turbulent shear (tturb), 363–364
viscous (deviatoric) tensor, 465–467
yield, 466

Strouhal number (St or Sr), 273, 310, 402, 
519, 902

Kármán vortex street, 902
Navier–Stokes nondimensionalization 

using, 519
ratio of signifi cance, 310
vortex fl owmeters use of, 402
vortex shedding use of, 273

Subcritical (tranquil) fl ow, 729–732
Submerged bodies, 89–101

buoyancy of, 98–101
curved surfaces, 95–97
hydrostatics of, 89–97
plane surfaces, 89–94, 98

Subsonic fl ow, 11, 50, 666–667, 687
downstream, 687
Mach number (Ma) for, 11, 50, 666–667

Substantial derivative, see Material derivative
Sudden expansion, 379
Supercritical (rapid) fl ow, 729–732
Superposition, 538, 545–554, 623–625, 740

aerodynamic drag and, 548–550
approximation solutions using, 538, 

545–554
d’Alembert’s paradox, 548–549

dividing streamline for, 552
drag coeffi cient (CD), 623–625
fl ow over a circular cylinder, 546–554
irrotational fl ow, 538, 545–554
line sink and line vortex, 545
method of images for, 551
open-channel fl ow, 740
planar fl ow, 538, 545–554
pressure coeffi cient (Cp) for, 547–549
two-dimensional fl ow, 538
uniform fl ow with nonuniform parameters, 

740
uniform stream and doublet, 546–554
velocity of composite fl ow fi eld from, 538

Supersonic fl ow, 11, 50, 666–667, 674, 
678–681, 687

downstream, 687
Mach number (Ma) for, 11, 50, 666–667
shock waves from, 674, 678–681

Surface (skin friction) drag, 9, 567, 612, 614
Surface forces, 104–105, 246–248
Surface oil visualization, 148
Surface profi les, 749–756
Surface roughness, 612, 614–615, 626–628, 

632–633
Surface tension (ss), 55–60

capillary effect and, 58–60
contact angle (f), 58
fl uid properties of, 55–58
impurities and, 57
meniscus, 58
work by expansion (Wexpansion), 57–58
visualization of, 56

Surface waves, open-channel fl ow, 731–733
Surfactants, 57
Surge tower, 45
Swirl, 817–818, 820, 843–844
Symmetry boundary conditions, 477, 891–892
System (demand) curve 383–384
Systematic error, 28
Systems, 14–21, 160–168, 243–289, 293. 

See also Pipe fl ow
boundary conditions for, 14–15
closed, 14–15
closed and open relationships, 160–162
control mass, 15
control volume (CV), 15, 160–165
dimensions of, 15, 19–20
isolated, 15
Leibniz theorem for, 165–167
material derivative and, 167–168
material volume, 166–168
momentum analysis of, 243–289
open, 15
relative velocity of, 163–165
Reynolds transport theorem (RTT) for, 

160–168
single-stream, 254
surroundings of, 14
total energy of, 293
units of, 15–21

System-to-control volume transformation, 163

T-s diagrams, 695–696, 704–705
Tailrace, 840
Taylor series expansion, 440–441
Temperature (T ), 16, 41–42, 46–47, 667, 

661–662, 668–669, 705, 915–922
absolute, 46–47
cavitation and, 41–43
computational fl uid mechanics (CFD) for, 

915–922
contour plots, 916–917
cooling integrated circuit chips (ICs), 

917–922
critical (T*), 668–669
dynamic, 667
ideal gases, 661–662
Kelvin (°K) scale, 16, 40
Mach number (Ma) and, 668–669
Rankine (R) scale, 40
rise in cross-fl ow heat exchanger, 915–917
saturation, 41–42
stagnation, 661–662, 705
volume expansion (b) and, 46–47
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Tensors, 154, 247–249
contracted (inner) product of, 248
control volume and, 247–249
fl uid element deformation and, 154
notation, 247
strain rate, 154
stress, 247–249

Terminal velocity, 523–524, 613
Thermal anemometers, 402–404
Thermal energy, 43, 215
Thermodynamics, fi rst law of, 202, 221
Thickness (d), boundary layers, 556, 562–564, 

574, 625
Three-dimensional bodies, drag coeffi cients 

(CD) for, 611, 620–621
Three-dimensional (3-D) CFD grids, 881, 886–887
Three-dimensional fl ow, 13–14
Throat size of nozzles, 665, 668, 672
Thrust (force), 254–255, 819
Time rate of change, 187
Timelines, 146–147
Tip vortex, 638
Torque, 263–264. See also Angular momentum
Total derivative operator (d), 137
Total energy (E), 43–44
Total enthalpy, (h0), 660–662
Total head (H) of fl ow, 205–206
Total head loss (hL), 375–376
Total pressure, 203
Tracer particles, 143–144
Trailing edge angle, 809, 843
Trailing edge fl aps, 636
Trailing vortices, 638–639
Transducers, 88
Transient fl ow, 12
Transit-time ultrasonic fl owmeter, 399
Transition connections, 752–754
Transition Reynolds number, 557–559
Transitional fl ow, 11, 349–351, 557–559
Translation, rate of, 151
Transonic fl ow, 50
Trapezoidal hydraulic cross sections, 745–746
Trip wires, 558
Tube-axial fans, 819–824
Tubes, 348. See also Pipe fl ow
Tufts, 148
Turbine (propeller) fl owmeters, 397
Turbines, 196, 221, 380, 788–790, 833–860

dimensional analysis for, 855–857
dynamic, 834–855
effi ciency (hturbine), 196, 380, 815, 841–842
enclosed, 790
energy grade line (EGL), 840–841
energy producing devices, as, 788
gas, 833, 847
gross head for, 839
head (hturbine), 221, 383–384
hydraulic, 833
impulse, 835–837
net head for, 841–842
open, 790
positive-displacement, 790, 834
power coeffi cient, 851, 853–854
reaction, 837–846
runners, 790, 833, 837–839
scaling laws, 855–860
specifi c speed, 857–860
steam, 833, 847
turbomachinery, as, 788–790, 843–855
wind, 833, 847–855

Turbofan engine, 822–823
Turbomachinery, 265, 787–877

angular momentum equation for, 265
classifi cations of, 788–790
dynamic machines, 790, 806–824, 834–855
energy grade line (EGL), 790, 840–841
multistage, 822–823, 847
positive-displacement machines, 789, 803–

806, 834
pump–turbines, 858
pumps, 788–790, 790–833
rotary fuel atomizers, 861
scaling laws, 824–833, 855–860
turbines, 788–790, 833–860

Turbulence dissipation rate (e), 904
Turbulence intensity (I), 904
Turbulence kinetic energy (k), 904
Turbulent fl ow, 11, 253, 349–353, 361–374, 

557–558, 572–583, 727–728, 902–915
boundary layer approximation, 557–558, 

572–583
buffer layer, 364–365
Colebrook equation for, 367–368
computational fl uid dynamics (CFD) 

calculations, 580–583, 902–915
cylinders, CFD calculations for fl ow around, 

905–907
Darcy friction factor for, 367–368
direct numerical simulations (DNS) for, 903
eddies, 361–364, 902–903
eddy viscosity of, 363–364
entrance region, 351–352
entry length, 352–353
fl at-plate boundary layer, 572–578
fl ow separation, 580–583
fl ow visualization, 582
fl uctuating components of, 361–362
fl uid behavior (fl ow regime) of, 349–351
free shear layers, 557
friction velocity of, 365
head loss (hL), 369–370
hydraulic diameter and radius for, 728–729
hydrodynamic entry length (Lh), 353
internal, 349–353, 361–374
kinematic eddy viscosity of, 363–364
laminar fl ow compared to, 557–559, 580–583
large eddy simulation (LES) for, 903
law of the wall, 365–366, 576, 578
logarithmic (log) law, 366, 576
mixing length, 364
momentum-fl ux correction factor for, 253
Moody chart for, 367–374
Navier–Stokes equation for, 557–558, 572–578
one-seventh-power law for, 366, 573–574
open-channel fl ow, 727–728
outer (turbulent) layer, 364–366
overlap (transition) layer, 364–366
pipes, 361–374
power-law velocity profi le for, 366–367
Prandtl equation for, 368
pressure drop (ΔP), 369
pressure gradient effects, 578–583
Reynolds number (Re) for, 350–351, 727–728
Reynolds (turbulent) stresses, 363–364
shear stress (tturb) of, 363–364
Spaulding’s law of the wall, 576, 578
stator design, CFD model for, 907–915
transitional fl ow to, 349–351, 557–558
trip wires for transition, 558
turbulence models for, 903–905

vane-axial fl ow fan, CFD model for, 
907–915

velocity defect law, 366
velocity profi le for, 351–352, 364–367
viscous length, 365
viscous sublayer, 364–367
von Kármán equation for, 368–369

Turbulent length scale (l), 904
Turning (defl ective) angle (u), 684–685
Twist on propeller blades, 816–818
Two-dimensional bodies, drag coeffi cients (CD) 

for, 612–613, 619
Two-dimensional (2-D) CFD grids, 881, 885–887
Two-dimensional fl ow, 13–14, 534–537, 608, 

610–613

Ultrasonic fl owmeters, 399–401
Underfl ow gates, 761–764
Uniform fl ow, 12, 251, 539, 546–549, 726–727, 

737–743
Chezy coeffi cient for, 738–739
critical, 736–740
Gaukler-Manning equations for, 738–739
irrotational fl ow, 539, 546–549
linear momentum of, 251
Manning coeffi cient for, 739
normal depth for, 727, 738
open-channel fl ow, 726–727, 737–743
stream of, 539, 546–549
superposition for nonuniform parameters of, 

740
varied (nonuniform) fl ow compared to, 

726–727
velocity (V0), 738

Unit outer normal, 162–163
United States Customary System (USCS) of 

units, 16–19
Units of measurement, 15–21, 43, 52, 53, 

76–77, 292, 827–828, 859–860
dimensional homogeneity and, 19–20
dimensions and, 15, 292
energy, 43
English system, 16–19, 292
General Conference of Weights and 

Measures (CGMP), 16
importance of, 15–19
International System (SI), 16–19, 292
pressure, 76–77
specifi c speed, 827–828, 859–860
United States Customary System (USCS), 

16–19
unity conversion ratios, 20–21
viscosity (m), 52, 53

Unity conversion ratios, 20–21
Universal (turbulent) velocity profi le, 366
Universal gas constant (Ru), 40
Unstable situations, 101–102
Unsteady fl ow, 12–13, 202, 490–493, 726
Useful pump head, (hpump, u), 792

Vacuum pressure, 76–77
Valves for pipe fl ow, 374–375, 378, 380
Vane-axial fan, 819–820, 907–915
Vanes, 819–822, 837–838
Vapor phase, 4
Vapor pressure (Pv), 41–43, 797
Vaporous cavitation, 62
Variable-area fl owmeters (rotameters), 398
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Variable pitch, 819
Varied (nonuniform) fl ow, 726–727, 740–743
Vector identity, 526–527
Vector plots, 149–150
Vector variables, 134–135
Vehicles, drag coeffi cient (CD) for, 621–623
Velocimetry, 404–408. See also Flow rate
Velocity (V), 51–52, 151–152, 163–165, 188, 

245–246, 264–265, 348–349, 357–358, 
364–367, 391–408, 523–524, 537, 576, 
608, 610, 612–613, 665–667, 734

absolute, 164, 191, 245–246
angular (rate of rotation), 151–152, 264–265
average, 188, 348–349
conservation of mass and, 188, 191, 349
control volume, 163–165, 245–246
critical, 734
external fl ow, 608, 610, 612–613
fl ow rate and, 391–408
fl uid motion and, 151–152
free-stream, 608
friction, 365, 576
internal fl ow, 348–349, 357–358, 364–367, 

391–408
isentropic fl ow, variations in, 665–667
Mach number (Ma) and, 665–667
measurement of, 391–408
nozzle shapes and, 665–667
relative, 163–165, 191, 245–246
Reynolds transport theorem (RTT), 163–165
rotation and, 151–152, 264–265
terminal, 523–524, 613
two-dimensional irrotational fl ow, 

components for, 537
viscosity and, 51–52

Velocity boundary layer, 351
Velocity defect law, 366
Velocity fi eld (vector), 134
Velocity gradient, 51–52
Velocity head, 205
Velocity overshoot, 590–591
Velocity potential function (f), 529–530, 

535–537
Velocity profi le, 13–14, 51, 351–352, 353–355, 

364–367, 573–578, 738
boundary layer approximation, 573–578
boundary layer development, 351–352, 

364–367
boundary layer profi le comparisons, 573–578
entrance region and, 351–352
fl at (full), 351–352, 365
internal (pipe) fl ow, 351–352, 353–355, 

364–367
laminar fl ow, 351–352, 353–355
logarithmic (log) law, 366, 576
one-dimensional (fully developed) fl ow, 

13–14, 351–352
one-seventh-power law, 366, 573–574
parabolic, 351–352, 354
power-law velocity profi le for, 366–367
Spaulding’s law of the wall, 365–366, 576, 578
turbulent fl ow, 351–352, 364–367, 573–578
uniform-fl ow, 738
universal, 366
velocity defect law, 366
viscosity and, 51, 364–367

viscous length, 365
viscous sublayer, 364–367
wall-wake law, 576–577

Velocity vector (rate of translation), 134, 151
Vena contracta region, 376
Venturi meter, 393–394
Venturi nozzles, 665
Vertical axis wind turbines (VAWTs), 847, 849
Viscoelastic fl uid, 465
Viscometer, 55
Viscosity (m), 9, 11, 50–55, 204, 363–364, 

480–481, 612
apparent, 52
coeffi cient of, 52–54
differential analysis for, 480–481
dilatant (shear thickening) fl uids, 52
drag force and, 51, 612
dynamic (absolute), 52, 54
eddy, 363–364
fl uid fl ow and, 9, 11, 52–54
fl uid properties of, 50–55
friction force and, 10, 50–51
gases, 53–54
kinematic, 53
kinematic eddy, 363–364
liquids, 53–54
Newtonian fl uids and, 52
negligible effects of, 204
no-slip condition and, 9, 51
pseudoplastic (shear thinning) fl uids, 52
Reynolds number (Re) and, 11
rotational viscometer for, 480–481
shear force and, 52
turbulent pipe fl ow and, 363–364
units for, 52, 53
velocity gradient of, 51–52
velocity profi le for, 51

Viscous fl ow, 10, 612–613, 634–635
Viscous-inviscid interactions, 712
Viscous length, 365
Viscous (deviatoric) stress tensor, 465–467
Viscous sublayer, 364–367, 626
Volume (V), 39, 46–47, 165–167, 186, 

188–189, 790, 805–806. See also 
Control volume (CV)

capacity, 790, 805–806
closed, 805–806
conservation of mass and, 188–189
expansion (b), coeffi cient of, 46–47
fl ow rate, 188–189, 790, 805–806, 808–809
Leibniz theorem for, 165–167
linear momentum and, 186
material, 166–167
pumps, 790, 805–806, 808–809
specifi c volume, 39

Volumetric (bulk) strain rate, 153
Volute, 838
von Kármán equation, 368–369
Vortex fl ood formation and damages, 771
Vortex fl owmeters, 402
Vortex motion, forced, 107–108
Vortex shedding, 273–274, 617
Vortex strength (circulation) (Γ) of, 542–543, 

545–546
Vortices, 32, 144–145, 900–902
Vorticity (z), 32, 156–159

Wake, fl ow region of, 199, 273–274
Wake function, 576–577
Wall-wake law, 576–577
Water–air interface boundary conditions, 

477
Water hammer, 45
Water meters, 834
Water saturation properties, 942, 960
Watt (W), unit of, 18–19
Wave (shock) angle (d), 684–685
Wave speed (c0), 729–733
Weber number (We), 310, 313, 593
Wedges, oblique shock waves over, 

927–928
Weight (W), 17–18, 21, 39
Weirs, 761, 766–770. See also Flow control
Wicket gates, 837–838
Wind power density, 850–851
Wind tunnels, 313–316, 320–323, 823–824

lift determination using, 313–316
testing, 320–323
vane-axial fl ow fan design for, 823–824

Wind turbines, 833, 847–855
available wind power for, 850–851
Betz limit, 853–854
disk area for, 850–851
energy pattern factor, 851
horizontal axis, 847–850
power coeffi cient, 851, 853–854
rated speed, 850
vertical axis, 847, 849
wind power density, 850–851

Wings, 612–613, 617, 634–639
endplates, 639–640
external fl ow effi ciency, 612–613
fi nite-span, 638–639
fl aps, 636–637
fl ow fi elds, 635
ice and snow loads, 617
lift force, 612–613, 634–639
loading, 634
shape, 612–613
tip vortex, 638
trailing vortices, 638–639
winglets, 639–640
wingspan (span), 634

Wingspan (span), 634
Work (W), 18–19, 43–44, 57–58, 194–195, 

215–219
by expansion, 57–58
energy transfer by, 215–129
fl ow, 43–44, 194–195, 218–219
mechanical energy and, 194–195
power as, 18–19, 215–216
pressure force, 216–219
shaft, 216
surface tension and, 57–58
units of, 18–19

Yawing moment, 611
Yield stress, 466

Zero pressure gradient, 561, 564–565
Zero pressure point, 549–550

985-1000_cengel_index.indd   1000 12/20/12   5:35 PM



(I
 

!\1
nn

ni
ng

 co
ns

uw
 .. m

1 1
l/s

: h
cig

.h
t f

ro
rn

 
C,,

..t
~~J

I 
Su

ct
io

n 
he

ad
 c

oe
ff

ic
ie

nt
 

Fo
 

Fo
ur

ie
r 

nu
n1

bc
r 

clu
uu

x:
I b

ot
to

m
 to

 b
ot

to
m

 o
f s

lu
ic

e 
g:

nt
c. 

n1
 

C
P

 
C

en
te

r o
f p

re
ss

ur
e 

Fr
 

Fr
ou

dc
 n

un
1b

cr
 

II
."

 
A

cc
cl

cm
tio

n
 o.

od
 it

S 
11u

1g
.n

iru
dc

. n
\/s

2 
c,

 
Pr

es
su

re
 co

ef
fic

ie
n

t 
F

, 
M

ag
ni

tu
de

 o
f t

en
sio

n 
fo

rc
e,

 N
 

A
.A

, 
A

re
3.

 1n
2: 

cr
os

s-
sc

ct
io

n3
1 

at
e3

. 0
12

 
c,

 
Po

\\'
C

r c
oe

ff
ic

ie
nt

 
ii. 

g 
G

ra
vi

ta
tio

na
l n

cc
cl

ct
al

io
n 

an
d 

its
 

A
t 

A
rc

hi
1n

ed
es

 n
u1

nl
x'

r 
C

u 
C

ap
ac

i1
y 

co
cf

lic
ic

ot
 

m
ag

ni
tu

de
. 1

u/
s2 

A
R 

A
sp

cc
l r

:u
io

 
cs

 
C

oo
uo

l s
w

fa
"'

 
i: 

H
ea

t 1
co

cr
at

io
n 

m
tc

 p
er

 u
nh

 v
ol

un
lC

, 
b 

\V
id

th
 o

r O
th

er
 d

is
ta

ne
c.

 n
1: 

in
te

ns
iv

e 
W

/m
 

pr
op

er
ty

 in
 R

T
T

 a
na

ly
si

s:
 n

ub
om

a<
bi

nc
ry

 
C

V
 

C
oo

ttO
I 

'-o
lu

m
c 

G
 

C
em

cr
 o

f !
ll

"•
it

y 
bl

3d
c 

\\
'id

th
. m

 
c .

.. 
\V

ci
r d

is
<h

:u
gc

 c
oc

ff
ic

ic
tlt

 
G

M
 

M
eu

cc
nt

ri
c 

he
ig

ht
. m

 
bb

p 
B

r:t
kc

 h
or

se
po

w
er

, h
p 

or
 kW

 
D

0
<

d
 

D
i:i

m
er

er
. m

 (d
 ty

pi
ca

lly
 f0

< 
•s

m
al

le
r 

G
r 

G
ra

sb
of

 n
um

be
r 

di
am

cl
cr

 th
an

 D
) 

8 
C

en
te

r o
f b

o
o

)'
llD

C
)'

: e
xt

en
si

ve
 p

ro
pe

rty
 in

 
D

,..
 

s
~
 d

iff
us

io
n 

t«
ff

ie
it

nt
. m

?/i
 

h 
Sp

cc
ili

c a
nh

at
py

. t
ll
q

; h
ci

yu
, m

; h
ea

d,
 

R
T

T
 "'

31
ys

is
 

m
: c

on
\•c

ct
iv

c 
he

at
 tn

LD
S.

fc
r (

l()
C

fft
ci

cn
t. 

B
i 

Bi
oc

 n
um

be
r 

D
, 

H
yd

ra
uU

c 
di

am
et

er
. m

 
W

/m
1 ·

K
 

B
o 

B
on

d 
nu

m
be

r 
D

, 
P

an
ic

lc
 d

i:u
nc

te
t. 

m
 

hh
 

L
at

en
t b

ea
t o

f ,
,.p

or
iz

ol
io

n.
 k

J/
kg

 
c 

Sp
ec

if
ic

 hc
.'!

t f
or

 in
co

m
pr

es
&

ib
lc

 
t 

Sp
ec

if
ic

 to
ta

l e
ne

rg
y.

 k
J/

kg
 

"• 
H

C3
d 

lo
ss

, m
 

su
bs

t:>
nc

c.
 k

Jil
<g

 · K
; s

pe
ed

 o
f s

ou
nd

. m
is:

 
~.
 t:

, 
U

ni
t v

ec
to

r 
i.n

 r
· a

nd
 0

-<
ilr

cc
Li

on
. 

H
 

B
ou

nd
ar

y 
lo

yc
r s

ha
pe

 fa
ct

or
; h

ei
gh

t. 
m

: 
sp

ee
d 

of
 li

gh
t i

n 
a 

\'a
cu

um
. n

lls
; 

re
sp

ec
tiv

el
y 

ne
t b

ea
d 

o
f a

 p
u1

np
 o

r 
tu

rb
in

e,
 m

: 
to

ca
l 

ch
or

d 
le

ng
th

 o
f a

n 
ai

rf
oi

l. 
m

 
E

 
V

ol
ta

ge
. v

 
en

er
gy

 o
f 3

 li
qu

id
 in

 o
pe

n-
ch

an
ne

l f
lo

w
. 

Co
 

W
av

o 
sp

ee
d,

 r
u/

s 
E.

E 
T

ot
al

 e
ne

rg
y,

 k
J;

 a
nd

 m
te

 o
f e

ne
rg

y.
 k

J/
s 

~
 

ex
pr

es
se

d 
as

 a
 h

ea
d,

 rn
: w

ei
r h

ea
d.

 n
t 

c, 
C

on
st

an
t-

pr
es

su
re

 sp
cc

if
ic

 h
co

t, 
kJ

/k
g·

 K
 

Il
e 

E.
ck

cr
t n

un
ib

er
 

II
.f

l 
M

on
1c

1u
 o

f 1
11o

nl
C1

1t
u1

n 
an

d
 its

 n
\l\

gn
itu

de
. 

C
v

 
C

on
st

an
t-v

ol
um

e 
sp

ec
if

ic
 b

ea
t. 

kJ
/k

g·
K

 
N

·1
n·

s 
llG

L
 

E
ne

rg
y 

gm
dc

 l
in

e.
 m

 
H

G
L

 
H

yd
rn

ul
ic

 g
ra

de
 li

ne
. n

1 
c 

O
hn

en
si

on
 o

f t
he

 3
J'O

OU
nt

 o
f l

ig
h1

 
£,

 
Sp

ec
if

ic
 c

ne
tg

.y
 in

 o
pc

n.
.ch

:tn
nc

l n
ow

s. 
1n

 
c 

l)
cm

ou
lli

 c
on

st
:u

u.
 tr

?J
i-

or
 m

lt
'· L

. 
Eu

 
E

ul
er

 n
um

be
r 

ll
,,

_
 

G
ro

ss
 h

c:
i.d

 a
ct

in
g 

on
 n

 tu
rb

in
e. 

nt
 

de
pe

nd
in

g 
oo

 tb
c 

fo
rm

 o
f 6

cr
no

ul
li 

Fr
cq

lJC
JlC

y.
 c

yc
lc

s/
s:

 B
la

si
us

 b
o\

ln
do

ry
 

i 
In

de
x 

o
f i

nt
er

va
ls

 in
 o

 C
FO

 g
rid

 (
ty

pi
ca

lly
 

cq
u3

lio
o:

 C
be

zy
 c

oe
ff

ic
ie

nt
. m

 1 n1
-s

~ 
I 

in
 .t

"-
di

rt
t1

io
n)

 
ci

rc
um

fe
re

nc
e. 

m
 

l•
ye

r d
cp

co
dc

nt
 s

im
ilo

rit
y 

v:
ui

ob
lc

 
i 

U
ni

t \
'cc

to
r 

in
 .c

-<
ltr

CC
do

n 
C

a 
C

av
ita

liO
ll 

nu
m

be
r 

/.I
. 

D
:>

rc
y 

fr
ia

io
o 

fa
ct

or
. a

n
d

 lo
ca

l 
D

>n
:y

 
I 

O
im

cf
ts

jo
a 

of
 el

ec
tr

ic
 C

W
TC

m
 

fr
ic

tio
n 

fa
ct

or
 

C
0
.C

.,
, 

O
m

g 
co

cf
fic

ie
tt

t:
 J

OC
31

 d
ra

g 
co

ef
fic

ie
nt

 
i. 

F
 

Fo
cc

c 
an

d 
ii

s 
m

ag
ni

tu
de

. N
 

I 
~1
om
eo
t 

o
f i

ne
rt

ia
. N

·n
i ·s

2: 
cu

rr
en

t..
 A

; 
c,

 
D

is
ch

ar
ge

 c
oe

ff
ic

ie
nt

 
tw

1>
ul

cn
cc

 in
te

ns
ity

 
c,.

 c,
.. 

F.
nn

in
g 

fr
ic

tio
n 

fa
ct

or
 o

r s
ki

n 
fr

ic
tio

n 
F

• 
M

•g
ni

ru
dc

of
bu

oy
an

cy
 fo

rc
e.

 N
 

I.
, 

Se
co

nd
 m

on
lC

nt
 o

r 
in

er
tia

. n
t4 

co
cf

fie
ie

nt
; J

oc
al

 sk
in

 fr
ie

liO
O

 c
oc

ffi
ci

cn
1 

Fo
 

M
 og

ni
ru

dc
 o

f d
ra

g 
fo

rc
e.

 N
 

j 
R

ed
uc

tio
n 

in
 B

uc
ki

ng
ha

m
 P

i t
he

or
em

; 
c,,

 
H

ea
d 

oo
cf

fi
ci

cn
t 

F1
 

M
 ag

ni
ru

dc
 o

f d
ra

g 
fo

rc
e 

du
e 

to
 f

ri
ct

io
n.

 N
 

in
de

x 
o

r i
nt

er
va

ls
 in

 1
 C

FO
 g

rid
 (

ty
pi

ca
lly

 
c,

. c
, ...

 
un

 co
ef

fic
ie

nt
: l

oc
al

 li
fi

 co
cf

fic
iC

J1
l 

F•
 

M
ag

ni
tu

de
 o

rH
n 

fo
rc

e.
 N

 
i.n

 y
·d

ir
oc

tio
n)

 



~
 

U
ni

t v
ec

to
r 

in
 y

.d
ir

cc
ci

on
 

N
,,

 
l'

w
ti

n
c 

sp
ec

if
ic

 s
pe

ed
 

Sh
 

Sh
er

w
oo

d 
11

um
be

r 
J l•

 
Jn

ko
b 

nu
m

be
r 

N
u 

N
us

.se
ll 

nu
m

be
r 

SP
 

Pr
op

cn
y 

nc
 a

 st
og

na
tio

o 
po

in
t 

k 
S
~
i
f
i
c
 h

c:
u 

nu
io

: e
xp

ec
te

d 
nu

n1
bc

r o
f 

p 
W

cn
cd

 p
er

im
et

er
. m

 
St

 
St

an
to

n 
nu

1u
bc

r: 
S1

.ro
uh

:1
J n

un
1b

cr
 

I 
si

n 
B

uc
ki

ng
h.

\m
 P

i t
hc

or
cm

: 
th

er
m

al
 

pc
 

Sp
ec

if
ic

 p
o1

en
tia

l e
nc

rg
y.

 lt
lll

:g
 

S
tk

 
Si

ok
cs

 n
um

be
r 

co
nd

uc
1h

•i1
y,

 \V
/m

· K
: 1

ur
bu

lc
ot

 k
in

et
ic

 
P

.P
' 

Pl
"e

ss
ur

e a
n

d
 m

cd
if

ic
d 
~
<
u
r
c
.
 N

!rr
i' 

l 
Dh

nc
ns

i()
C)

 o
f l

iln
c 

en
er

gy
 p

er
 u

ni
l m

as
s.

 m
1 /s

2:
 in

de
x 

o
f 

or
 P

o 
I 

T
iJ

nc
.s 

in
te

rv
al

s 
in

• C
FO

 g
ri

d 
(1

yp
ic

al
ly

 in
 

:-
d

ir
cc

1i
on

) 
PE

 
P0

tc
nt

ia
l c

nc
rg

y.
 lt

l 
T

 
O

in
>C

ns
ion

 o
f t

cn
1p

cn
uu

rc
 

r 
U

ni
t \

'O
do

r i
n 

:.-
di

nx
:c

io
n 

Pe
 

Pe
cl

e1
 n

um
be

r 
T

 
Tc

m
p<

10
1u

rc
. 'C

 o
r K

 
kc

 
Sp

ec
if

ic
 k

in
c1

ic
 c

nc
rg

y.
 lt

lll
:g

 
P

..
.,

 
G

ag
e 

pr
es

su
re

. N
im

' o
r P

a 
T,

 T
 

T
or

qu
e 

an
d 

ilS
 m

ag
ni

1u
de

. N
·m

 
K

 
D

oo
bl

c1
 5

trc
ng

lh
. r

ri'
!s

 
P

. 
M

C
<h

ao
ic

al
 p

ce
ss

w
c.

 N
im

' o
r P

a 
u 

Sp
ec

if
ic

 in
lc

m
al

 c
nc

rg
y.

 lt
lf

ts
: C

an
cs

ia
n 

K
E

 
K

in
et

ic
 c

nc
rg

y.
 lt

l 
P

r 
Pr

an
dl

l n
um

be
r 

\'C
Jo

c1
1y

 co
m

po
nc

nc
 io

 .r
-d

ir
ec

ci
oo

. m
is

 

K
L 

~1
in

or
 lo

ss
 c

oc
fft

ei
cn

1 
P

,.
.o

rP
.,. 

S:
m

m
1t

io
o 

pr
c$

$U
rc

 o
r \

'a
p

o
r 
pr

es
su

re
. k

P
a 

u.
 

l'n
ct

io
n 

\'C
lo

ci
1y

 in
 n

ut
>u

le
n1

 b
ou

nc
bt

y 

K
A

 
K

nu
ds

en
 n

um
be

r 
p

_ 
V

ac
uu

m
 p

re
ss

ur
e.

 N
/m

2 «
 P

a 
la

ye
r. 

m
is

 

t 
L

<n
gl

h 
or

 d
is

ta
nc

e.
 m

: n
ut

>u
lc

m
 lc

ng
lh

 
P.

 
W

ci
r b

ci
gl

ll.
 m

 
u,

 
C

yb
.n

dn
ca

l \
'C

lo
cic

y 
co

m
po

ne
nt

 in
 

r-
d l

tt'
C

tio
n.

 m
is

 
sc

al
e.

 0
1

 
q 

H
ea

t t
nn

sf
cr

 p
er

 u
ni

t m
as

s.
 lt

l/k
g 

C
yh

nd
nc

al
 \'

cl
oc

i1
y 

co
m

po
oc

n1
 in

 
L 

D
im

en
si

on
 o

f l
eo

gl
h 

q 
H

ea
t O

ux
 (

ra
lc

 o
f h

ea
l t

nn
sf

er
 p

er
 u

ni
 I 

•• 
11

-d
irc

ct
io

o.
 m

is
 

L 
L<

ng
lll

 o
r d

is1
:1

0C
C.

 m
 

ar
<

3)
. W

 Im
' 

C
yh

nd
ri

ca
l \

'c
lo

ci
ty

 co
m

po
nc

n1
 in

 
Q

.Q
 

T
ot

al
 h

ea
l t

nn
sf

cr
. l

tl:
 a

nd
 ra

ce
 o

f b
ea

t 
u,

 
L

e
 

L
ew

is
 n

um
be

r 
tr

an
sf

er
. \

\'
o

r 
k

W
 

:-
di

to
ct

io
o.

 m
is

 
L,

 
C

bc
nl

 lc
og

lh
 o

f a
n 

lli
rf

oi
l. 

m
: 

Q
 ..
. 

E
qu

ia
ng

le
 sk

ew
ne

ss
 in

 a
 C

FO
 g

rid
 

u 
In

te
rn

al
 e

ne
rg

y.
 lt

J:
 .H

om
po

nc
n1

 o
f 

ch
:1

rn
c:

1c
ris

lic
 lc

n&
lh

. m
 

ve
lo

ci
ty

 o
ul

Si
dc

 •
 b

oo
nd

ar
y 

la
ye

r (
pa

ra
lle

l 
L,

 
H

yd
rc

dy
nn

m
ie

 e
nt

ry
 lc

ng
1h

. m
 

;, ,
 

M
O

lll
<!

nl
 il

llD
 an

d 
its

 tM
gn

ilu
dc

. m
: m

di
al

 
10

 th
e 

w
al

l).
 m

/s
 

co
or

di
na

te
. m

: r
ad

iu
s.

 ru
 

L.
 

W
ei

r l
en

gt
h.

 0
1 

v 
Ct

Lr
tcs

in
n 

ve
lo

ci
ty

 c
o1

np
oo

co
t i

n 
R

 
G

os
 c

on
st

>n
l. 

ltl
/k

g·
K

: r
ad

iu
s.

 m
: 

y-
di

rc
c1

io
n.

 n
ils

 
Il

l 
O

i1
nc

ns
io

n 
o

f n
ia

ss
 

cl
cc

lri
C

3.
l r

cs
is

1a
nc

c,
 f

l 
Sp

c<
:if

ic 
vo

lu
1n

c. 
u1

lfk
g 

n
i,

,;
, 

M
ns

s. 
kg

: n
nd

 m
m

 fl
ow

 n
uc

. k
g/

s 
v 

R
n 

R
ay

lc
ig

ll 
nu

m
be

r 
v.

li 
V0

Ju
1n

c.
 1

n '
: :

lJ
ld

 \1 0
1U

lU
C

 fl
ow

 rt
'U

C.
 1

n3
/s

 
M

 
M

ol
ar

 nL
\S

S,
 k

sJ
l:m

o
l 

R
e 

Re
yn

ol
ds

 n
um

be
r 

ii. 
v 

V
cl

oc
lly

 n
nd

 it
s 

m
•ll

Jl
ilu

dc
 (s

pe
ed

). 
m

is
: 

... 
M

o1
nc

11
1 o

f f
on

:c
 A

nd
 ll

$ 
nu

,g
.n

itu
dc

, 
M

.M
 

R,
 

H
yd

ra
ul

ic
 m

di
us

. 1
n

 
Bv

cr
Bg

e 
vc

lo
ci

1y
. m

.ls
 

N
·n

i 
R

i 
R

ic
ha

rd
so

n
 n

ur
nb

cr
 

v.
 

U
ni

fo
rn

1·
00

\V
 \'

cl
oc

lty
 in

 op
en

-c
ha

nn
c.I

 
M

n 
M

nc
h 

nu
.1n

bc
r 

R,
 

U
ni

ve
rs

al
 g

as
 c

on
s1

an
t. 

kJ
/k

n1
ol

·K
 

no
\V

, r
n/

S 
n 

N
u1

ub
cr

 o
f p

.'\r
.U

ne
1c

rs
 in

 J
lu

ck
in

gh
ru

u 
Pi

 
$ 

Su
bm

er
ge

d 
di

Sl
nn

ce
 a

lo
ng

 li
le

 p
la

ne
 o

f 
... 

\V
or

k 
pe

r 
un

ic 
1n1

•ss
. k

J!
k.

g;
 C

ru
tc

si
nn

 
tll

eo
rc

1n
: J

i.1
n.n

n.i
ng

 c
oe

ff
ic

ie
nt

 
a 

pl
at

e.
 Jn

: d
ist

an
ce

 a
lo

ng
 a

 su
rf

ac
e 

or
 

vc
lo

ci
1y

 co
1n

p0
nc

n1
 in

 z
·d

ir
cc

tio
n.

 m
is:

 
n.

t'i
 

N
u1

nb
er

 o
f r

ou
ui

on
s:

 a
nd

 r
ot

e 
or

 ro
ta

tio
n.

 
sll

:C
nD

lli
ne

. m
: s

pe
ci

fi
c 

cn
iro

py
. k

Jl
l:g

·K
: 

w
id

th
. n

1 
rp

m
 

fr
i.n

ge
 s

pa
ci

ng
 in

 L
D

V
. m

: i
ur

bo
m

:ie
hi

nc
ry

 
IV

 
\V

ci
gt

n.
 N

: 
w

·id
lh

. 1
11

 
ii
 

Un
i1 

no
nn

al
 v

ec
to

r 
bl

ad
e 

sp
ac

in
g.

 m
 

IV
,\

~ 
W

or
k 

uo
ns

re
r. 

lt
l:

 a
nd

 r
ni

e 
o

f w
or

t 
N

 
D

ln
1c

ns
io

n 
o

f 1
bc

 iu
no

un
l o

f n
ut

tie
r 

s.
 

Sl
op

e 
of

lh
e 

bo
«o

m
 o

f a
cl

w
m

el
 in

 
(p

ow
er

). 
W

 o
r k

W
 

N
 

N
um

be
r o

f m
ol
tl

. m
ol

 o
r k

ru
ol

; n
um

be
r 

op
cn

<b
ru

m
cl

 O
ow

 
W

e 
W

eb
er

 n
um

be
r 

o
f b

la
de

s 
in

 a
 lu

rb
om

ac
hi

nc
 

S
e 

Sc
bm

id
1 

nu
m

be
r 

C
on

cs
iM

 co
or

dl
na

1e
 (u

su
al

ly
 1

0 l
he

 
S

, 
C

ri
tic

al
 s

lo
pe

 in
 o

pe
n-

ch
an

ne
l 

O
ow

 
x 

N
, 

Po
v:

cr
 n

um
be

r 
ng

ll1
). 

m
 

N
PS

H
 

N
et

 p
os

i1
j\'

c s
uc

tio
n 

he
ad

. m
 

s, 
Fr

ic
tio

n 
sl

op
e 

in
 o

pe
n-

ch
an

ne
l 

flo
w

 
; 

Po
sit

io
n 

\-C
C

lo
r.

 m
 

N
s;

 
Pu

m
p 

sp
ec

if
ic

 s
pe

ed
 

SG
 

Sp
ec

if
ic

 g
ra

•i
ty

 



y 
C

ar
te

si
an

 c
oo

nl
in

•t
e 

(U
SU

21
iy 

up
 o

r i
nt

o 
I)

 
A

ng
)e

 o
r a

ng
uf

ar
 c

oo
ro

uu
1c

: b
ou

nd
ar

y 
m

u
 

~
1
-
u
i
m
u
m
 v

al
ue

 
th

e 
po

gc
). 

m
: d

cp
lh

 o
f l

iq
ui

d 
in

 o
pe

n-
la

~·
er

 m
om

cn
1w

n 
th

ic
kn

es
s.

 m
: p

itc
h 

an
g)

c 
m

cc
h 

M
cc

h3
ni

a.
I p

«>
p<

i1
y 

ch
an

ne
l f

lo
w

. m
 

o
f a

 tu
rb

om
ac

bi
ne

ry
 b

lo
dc

: !
ur

ni
ng

 o
r 

m
in

 
~f
tn
in
1u
m 

va
lu

e 
Y

. 
N

on
na

! d
ep

th
 in

 o
pc

:n
<h

an
nc

l O
O

\\'.
 m

 
d~

Oc
cl

io
o 

an
g)

c 
of

 o
bl

iq
ue

 sh
oc

k 
• 

N
om

ul
 c

om
po

oe
n•

 
: 

C
ln

cs
i•

n 
co

or
di

nn
1e

 (u
su

nl
ly

 u
p)

. m
 

p 
D

en
si

ty
. k

gl
m

' 
p 

A
ct

in
g 

al
 th

e 
cc

n1
cr

 o
f p

re
ss

ur
e 

u 
N

on
n.a

l S
tt

ts
s. 

N
fln

2 
Pr

op
cn

y 
o

f a
 p

ro
10

1y
pc

: p
ro

pc
ny

 o
f•

 
G

re
ek

 le
tte

rs
 

Sl
l'C

ss
 te

ns
or

. N
/rn

1 
p 

u
~ 

pa
rti

cl
e:

 p
ro

pc
ny

 o
f 3

 p
iS

IO
O 

a 
A

n&
lc

: •
•&

le
 o

f a
na

ck
: k

in
ci

ic
 c

.nc
rg

y 
u,

 
Su

rf
oc

c 
te

ns
io

n.
 N

/J
n 

R
 

R
cs

u
ltn

ol
 

oo
m

xt
io

o 
fa

ct
or

. l
hc

nn
al

 d
iff

us
iv

ity
. m

1 /o
: 

T
 

Sb
ca

r S
trc

SS
. N

h
ri

' 
R

cl
al

iv
c 

(m
ov

in
g 

fra
n>

e 
o

f r
cf

cn
:n

cc
) 

is
ol

hc
nn

:il
 c

om
pr

es
.si

bi
lic

y.
 k

Pa
 .. 1 

r 
o

ra
tm

-1 
T

f 
V

i$
co

us
 s

uc
ss

 1
co

so
c (

al
so

 c
al

le
d 

sl
le

ar
 

re
c 

R
cc

ta
ng

uf
ar

 p
«>

p<
i1

y 
a.

a 
A

ng
ul

ar
 o

cc
cl

cr
at

io
n 

an
d 

its
 m

ag
ni

tu
de

. 
S

U
C

$
S

 lc
m

G
<)

. N
im

' 
rl 

Pr
op

er
ty

 o
f l

hc
 ro

to
r ~
i
o
g
 e

dg
e 

s-
? 

T
f.

-
Sp

ec
ifi

c 
R

cy
oo

kl
s 

W
"C

SS
 te

ns
or

. m
?/.

s2 
n 

Pr
op

cn
y 

o
f l

hc
 ro

to
r n

il
in

g
 ed

ge
 

f3 
C

oc
tft

e;i
cn

t o
f '

'o
lu

m
e e

xp
an

sio
n.

. K
-1 ; 

.....
 

A
l1

gu
la

r "
cl

oc
ity

 \
tt

to
r a

nd
 i1

s 
s 

A
ct

in
g 

on
 a

 su
rf

ac
e 

ru
om

cn
tu

n1
-n

ux
 ()

()f
t'C

Ct
io

n 
fx

to
r:

 a
n&

Je
: 

m
ag

ni
tu

de
. r

ad
ls

: a
ng

ul
or

 fr
oq

uc
nc

y.
 r

ad
/s

 
P

ro
pe

rty
 o

to
 so

lid
 

di
ar

nc
te

t r
at

io
 in

 o
bs

ll\
Jc

tio
n 

no
w

m
et

cr
s: 

"' 
St

re
.a

m
 f

un
ct

io
n.

 n
{1 /s

 
, 

ob
liq

ue
 sh

oc
k 

••
&

le
: i

ur
t>

om
ac

bi
nc

iy
 

••• 
Sn

cu
m

tio
n 

p.r
op

cn
y:

 p
ro

pc
ny

 o
f n

 sa
te

lli
te

 
bl

ad
e 

an
gl

e 
(.' 

V
or

tic
ity

 \'C
Cl

or
 n

od
 i1

$ 
1n

a:
gn

itu
dc

, s
-1 

sl
 

Pr
op

cn
y 

o
f l

hc
 st

ai
or

 le
ad

in
g 

ed
ge

 
a 

B
ou

nd
ar

y 
la

ye
r 
th
ic
kn

es
.~

 .. n
1: 

di
st

an
ce

 
S

I 
Pr

op
cn

y 
o

f l
hc

 s1
ai

or
 tr

ai
lin

g 
ed

ge
 

bc
rw

cc
.n

 Sl
l'C

:U
nl

in
es

. m
: a

ng
Je

: s
u1

al
l 

S
ub

sc
rip

ts
 

su
b 

Su
bm

er
ge

d 
po

rti
on

 
ch

an
ge

 in
• q

u3
n1

ily
 

0
0

 
P

ro
pc

ny
 o

f t
he

 f
ar

 fi
e.I

d 
S•

 
Bo

un
da

ry
 la

ye
r d

ts
pl

oc
cm

cn
l t

hi
ck

ne
ss

. m
 

0 
S
t
~
t
i
o
n
 p

ro
pc

ny
: 

pr
op

cn
y 

a1
 th

e 
or

ig
in

 
sy

s 
P

cn
ai

ni
ng

 10
 a

 sy
st

em
 

M
ea

n 
su

Jf
oc

c 
ro

u&
hn

cS
S.

 m
: t

w
bu

lc
o1

 
or

 a
t a

 r
c(

cn
:o

c:
c 

po
in

t 
I 

T
an

ge
nt

ia
l c

om
po

oc
nl

 
" 

di
ss

ip
at

io
o 

ra
te

. m
'l

$1
 

ab
s 

A
bs

ol
ut

e 
tri

 
T

ria
ng

)u
l:u

 p
ro

p
e

rt
y 

"• 
St

ra
in

 ra
te

 te
ns

or
. s

 .. ,
 

au
n 

A
an

os
ph

cr
ic

 
tu

rl>
 

Pr
op

er
ty

 o
f a

 tw
bu

lc
ol

 !
lo

w
 

<I>
 

O
iss

ip
al

JO
O

 fu
nc

tio
n.

 k
g

/o
rs

' 
""'

 
A

 ''c
ra

gc
 q

ua
nt

i1
y 

" 
U

se
fu

l p
or

tio
n 

</>
 

A
ng

)c
: v

cl
oc

ily
 p

ot
en

lio
l f

un
ct

io
n.

 m
'is

 
b 

Pr
op

cn
y 

o
f l

hc
 1>

3c
k 

or
 ex

it 
of

 a 
no

zz
le

. 
v 

A
ct

in
g 

\'c
ni

ca
lly

 
y,

 
Sp

ec
if

ic
 w

ci
gh

l. 
N

im
' 

e.
g .

. b
ac

k 
pr

es
su

re
 P

• 
v 

Pr
op

er
ty

 o
f a

 v
ap

or
 

r 
C

ir
cu

ltn
io

n 
or

 v
or

te
x 

sl
rc

ng
tb

. 0
11 /s

 
c 

A
ct

in
g 

al
 th

e 
cc

nl
tO

id
 

vn
c 

V
ac

uu
1n

 

'I
 

E
ff

ic
ie

nc
y:

 O
ln

si
us

 b
ou

nd
ar

y 
la

ye
r 

c 
Pe

rt
ai

ni
ng

 to
 a

 cr
os

s 
se

ct
io

n 
w

 
Pr

op
cn

y 
31

 a
 w

al
l 

in
de

pe
nd

en
t s

im
ila

ri
ty

 v
ar

ia
bl

e 
er

 
C

ri
ti

ca
l p

ro
pc

ny
 

" 
Bu

ll<
 m

od
ul

us
 o

f c
om

pr
cs

si
bi

lit
y.

 l<
Pa

 
C

L
 

Pc
na

io
.in

g 
to

 th
e 

cc
nt

cr
U

nc
 

S
up

er
sc

rip
ts

 
or

 :u
m

: l
og

 1
3~

' c
on

.u
an

t i
n 

1u
rb

ul
cn

t 
cs

 
Pe

rt
ai

ni
ng

 to
 a

 c
oo

tro
l 

su
rf

oc
c 

-
(O

\'C
rb

ar
) 

A
 \'C

ru
gc

d 
qu

30
lit

y 
bo

un
da

ry
 l•

yc
r 

C
V

 
Pe

na
in

in
g 

to
 a

 co
al

t'O
l \

'O
lu

m
c 

• (
O

•u
d

o
t)

 
Q

ua
nt

ity
 p

er
 u

ni
t t

im
e:

 ti
m

e 
dc

ri
\·a

1j
\·c

 
,\

 
M

ca
n 

fro
c 

p>
lh

 le
ng

th
. m

: W
O

\'C
lc

ng
lh

. m
: 

Pr
op

er
ty

 a1
 a

n 
ex

it:
 e

.'l
ln

ct
cd

 p
or

lio
n 

• (
pr

im
e)

 
A

uc
tu

at
in

g 
qu

an
tit

y;
 d

tr
i,·

at
i\'

C
 o

f a
 

sc
co

od
 co

cf
fic

ic
n1

 o
f v

is
co

si
ty

. k
gi

m
·s

 
• 

\•:
.u

ia
bl

c:
 m

od
ifi

ed
 ''

ar
ia

bl
c 

µ,
 

V
is

co
si

1y
. k

&
fm

-s
: M

ac
h 

an
sl

e 
cf

f 
E

!f
C

C
ti

\'C
 p

ro
pe

rty
 

• 
N

on
di

m
cn

si
on

al
 p

ro
pc

ny
: s

on
ic

 p
ro

pc
ny

 
v 

K
in

cr
M

ttc
 v

i.s
co

si1
y 

m
':/

s 
I 

Pr
op

er
ty

 o
f•

 n
ui

d.
 u

su
nl

ly
 o

f a
 li

qu
id

 
+

 
Lo

w
 o

(t
h

c 
\\

'a
ll 

va
ri

ab
le

 in
 n

1(
bu

lc
nl

 
11

(M
a)

 
Pm

nd
tl-

M
cy

cr
 fu

nc
tio

n 
fo

r e
xp

an
sio

n 
II

 
A

ct
in

g 
ho

ri
zo

m
al

ly
 

bo
un

da
ry

 ln
ye

r 
\\

'i.
l \

'C
S

. 
de

g.
ro

es
 o

r 
m

d 
I ru

n
 

Pr
io

pc
ny

 o
f n

 lr
un

in
M

 n
o\

V 
...

 (o
vc

rn
rr

ow
)V

cc
1o

rq
uM

tit
y 

n 
N

on
di

.J
nc

ns
io

nn
l p

.1.
mn

lC
tc

t i
n 

di
m

en
sio

na
l 

I,
 

Po
rt

io
n 

lo
s1

 b
y 

tr
rc

,•c
rs

ib
ili

lic
s 

an
al

ys
is

 
m

 
P

ro
pe

rt
y 

o
f n

 m
od

e.I
 



Conversion Factors 

DIMENSION 

Acceleration 

Area 

Density 

Energy, heat, WOtk, 
and specific energy 

Force 

Length 

Mass 

Power 

Pressure 0< st.ress, 
and pressure 
expressed as 
a head 

Specific heat 

Specific volume 

Temperature 

Velocity 

Viscosity. dynamic 

METRIC 

I mis2 • 100 cmis2 

1 m2 • 104 cm2 • 106 mm2 • 10- & km2 

I g/cm' • 11\g/l • 1000 kg/m3 

1 kJ • 1000 J • 1000 N · m • 1 kPa • m3 
1 kJ/kg - 1000 m>fs2 
I kWh • 3600 kJ 

IN • l kg · m/s2 • 105 dyne 
I kgj • 9.80665 N 

1 m • 100 cm • 1000 mm • 106 µm 
l km • lOOOm 

1 kg • 1000 g 
I metric ton - I 000 kg 

IW • lJ/s 
1 kW • 1000 W • 1 kJ/s 
1 hp' • 745.7 W 

l Pa • 1 N/m2 
1 kPa - 103 Pa - 10- 3 MPa 
I atm • 101.325 kPa • 1.01325 bar 

• 760 mm Hg at o·c 
• 1.03323 kgj/cm2 

1 mm Hg • 0.1333 kPa 

1 kJ/kg · •c • I kJ/kg · K 
• I J/g · •c 

J ml/kg • 1000 Ukg 
- 1000 cm3/g 

71Kl • 7l9Cl + 273.15 
:.1 llKl - :.1 n•c) 

I mis • 3.60 km/h 

I kg/m • s • 1 N • sim2 • 1 Pa· s • 10 poise 

xact convers1or fac or IJGf\\·een meinc and Eno .sh u1 ts 

:Mecnar tlOt'SePQ',.,er The eU?etOC31 hotsepo-.o,er s 1 ~n w be exac;tly 7-'6 W 

METRIC/ENGLISH 

1 mis2 • 3.2808 ftis2 
1 fVs2 • 0.3048• mis°' 
I m2 • 1550 in2 • 10.764 112 
1 tt2 - 144 i n• • 0.09290304" m2 

1 g/cm3 • 62.428 lbmift3 - 0.036127 lbm/in3 

I lbmfln3 • 1728 lbm/113 
1 kg/m3 • 0.062428 lbmJft3 

1 kJ • 0.94 782 Btu 
I Btu • 1.055056 kJ 

- 5.40395 psia · ft3 - 778.169 lbf ·fl 
1 Btullbm • 25,037 ft2/$l • 2.326" kJ/kg 
1 kWh • 3412.14 Btu 

I N • 0.22481 lbf 
I lbf • 32.174 l bm ·IVS' • 4.44822 N 
I lbf • I slug · ftis2 

1 m • 39.370 in • 3.2808 ft • 1.0926 yd 
1 It - 12 in • 0.3048" m 
1 mile • 5280 ft • 1.6093 km 
l in • 2.54"' cm 

1 kg • 2.2046226 lbm 
1 lbm • 0.45359237" kg 
1 ounce • 28.3495 g 
1 slug • 32.174 lbm • 14.5939 kg 
1 short ton - 2000 lbm - 907.1847 kg 

1 kW • 3412.14 Btu/h • 1.341 hp 
• 737 .56 lbf · IVs 

1 hp • 550 lbf · IVs • O. 7068 Sluis 
- 42.41 Btu/min • 2544.5 Btu/h 
• 0.74570 kW 

1 Bluth • 1.055056 kJ/h 

1 Pa • 1.4504 x 10-• psi 
- 0.020886 lbfilt 2 

1 psi • 144 l bflft2 • 6.894757 kPa 
1 aim - 14.696 psi 

- 29.92 i nches Hg at 30' F 
1 inch Hg • 13.60 inches H,0 • 3.387 kPa 

1 Btullbm • °F • 4.1868 kJ/kg • •c 
1 Btullbmol · R • 4.1868 kJ/kmol • K 
1 kJ/kg . •c - 0.23885 Blu/lbm . °F 

• 0.23885 Btu/lbm • R 

1 m3/kg • 16.02 tt3flbm 
1 ft3/ lbm - 0.062428 m3/kg 

7lR) • ll' F) + 459.67 • 1.87lK) 
71' F) • 1.8 7l' C) + 32 
:.\ ll' FJ • :.\ ltRJ • 1.8' :.\ 71K) 

I mis • 3.2808 ft/s • 2.237 mi/h 
1 mi/h • 1.46667 IVs 
I mi/h - 1.6093 km/h 

1 kg/m • s - 2419.1 lbmifl • h 
• 0.020886 lbf • sif12 
- 0.67197 lbm/ft. s 



DIMENSION METRIC 

Viscosity, kinematic 1 m2/s • l O' cm2/s 
I stoke - I cm2/s - 10-' m2/s 

Volume I m' - 1000 L - 10• cm3 (CC) 

Volume flow rate I m3/s - 60,000 Umin - 10• cm•/s 

Cl IV .. JC or .... ~n 'nt;tnc and Eng' sh units 

Some Physical Constants 

PHYSICAL CONSTANT 

Standard acceleration of gravity 
Standard atmospheric pressure 

Universal gas constant 

Commonly Used Properties 

PROPERTY 

Air at 20'C (68'FJ and l atm 

Specific gas constant• 

Specific heat ratio 

Specific heats 

Speed of sound 

Density 

Viscosity 

Kinematic viscosity 

Liquid water at 20'C (68' FJ and l aim 

Specific heat (c = c,. = c.,,l 

Density 

Viscosity 

Kinematic viscosity 

• lnd~pendent of preMule or tem.Petature 

METRIC 

g = 9.80665 m1s2 
P.,m = I atm = 101.325 kPa 

= 1.01325 bar 
= 760 mm Hg (O' C) 
= 10.3323 m H20 (4' Cl 

Ru= 8 .3 1447 kJ/kmol • K 
= 8.31447 kN • m/kmol · K 

METRIC 

R111 = 0.2870 kJ/kg · K 
= 287 .0 m2/s2 · K 

k = c,tc.,, = l.40 

Cp = 1.007 kJ/kg · K 
= 1007 m2fs2 · K 

c.,, = 0.7200 kJ/kg • K 
= 720.0 m2Js2 • K 

c = 343.2 mis = 1236 km/h 

p = 1.204 kglm3 

µ. = 1.825 x 10-s kglm · s 

" = 1.516 x 10-s m•ts 

c = 4.182 kJ/kg • K 
= 4182 m2/s2 • K 

p = 998.0 kglm3 

µ. = 1.002 x 10-l kglm · s 

v = 1.004 x 10-• m2/s 

METRIC/ENGLISH 

I m•ts • 10.764 ft2/s • 3.875 x 104 tt•lh 
I m2/s - 10.764 112/s 

I m3 - 6.1024 x 10" in' - 35.315 ft' 
- 264.17 gal (U.S.) 

I U.S. gallon • 231 inl • 3.7854 L 
I fl ounce - 29.5735 cm3 - 0.0295735 L 
I U.S. gallon • 128 fl ounces 

I m'ls • 15,850 gal/min • 35.315 tt'ls 
• 2118.9 ft'lmin (CFM) 

ENGLISH 

g = 32.174 ftfs2 
P.,m = 1 atm = 14.696 psia 

= 2116.2 lbf/ft2 
= 29.9213 inches Hg (32' F) 
= 406. 78 inches tt,0 (39.2' F) 

Ru = I. 9859 Btu/lbmol • R 
= 1545.37 ft · lbf/lbmol • R 

ENGLISH 

R_,, = 0.06855 Blu/lbm · R 
= 53.34 ft · lbfnbm · R 
= 1716 tt2/s2. R 

k = c,tc. = 1.40 

Cp = 0.2404 Btu/lbm • R 
= 187.l ft · lbf/lbm · R 
= 6019 ft2/s2 · R 

c.,, = 0.1719 Btu/lbm • R 
= 133.8 ft · lbf/lbm · R 
= 4304 ft2/s2 · R 

c = 1126 ft/s = 767 .7 milh 

p = 0.07518 lbm/ft3 

µ. = 1.227 x 10-s lbm/11 . s 

" = 1.632 x 10·• rt•ts 

c = 0.9989 8tu/lbm · R 
= 777 .3 ft · lbf/lbm · R 
= 25,009 lt2/s2 · R 

p = 62.30 lbm/tt3 

µ. = 6.733 x 10-• lbm/ft . s 

" = 1.081 x 10-s ft2/s 



Errata Sheet for Fluid Mechanics: Fundamentals and Applications, Ed. 3 – Çengel and Cimbala 
Latest update: 10/29/2013 

This is a list of errors (and enhancements) in the textbook. If you find any additional errors in the book, or have suggestions for 
improvement, please contact John M. Cimbala at 814-863-2739 or jmc6@psu.edu to report it. [By way of acknowledgment, 
the person (other than the authors) who first reports an error is listed in brackets, unless requested otherwise.] 

Note: First check the copyright page to see which printing you have. As new printings are made, the errors and enhancements 
from previous printings will have been fixed. The errors are listed according to printing number in reverse chronological order to 
save you time.  

For each printing, we categorize the changes as major errors, minor errors, or enhancements:
Major errors are important and significant (e.g., incorrect equations or numerical values) – these must be changed.
Minor errors are spelling or typo errors and other minor changes – these may be skipped without impacting understanding 
of the material.
Enhancements are changes that clarify something and/or help you to understand the material better (e.g., improvements to a 
figure or wording changes) – these may be skipped since they are not really errors, but are useful changes that enhance 
understanding of the material.

Corrections in the first printing (January 2013) – “1 2 3 4 5 6 7 8 9 0 DOW/DOW 1 0 9 8 7 6 5 4 3” on the copyright page. 
These will be corrected in the 2nd printing. Make these changes only if you have the 1st printing of the book.

Major Errors in the First Printing 
p. 65, Prob. 2-40, line 1: Change “100” to “95”; otherwise the given answer is incorrect. [Jan Huang] 
p. 672, Fig. 12-18: The sketch is fine, but the labels are incorrect. Replace the entire left set of labels with “Pi, Ti, Vi”, where 
the values of these inlet properties are defined in the problem statement. Also replace the entire right set of labels with “Pb,
At”, where throat area is defined in the problem statement, and back pressure is varied. [Mehmet Kanoglu] 
p. 722, Prob. 12-157: Change “(d) 280 m/s” to “(d) 274 m/s”. [Mehmet Kanoglu] 

Minor Errors in the First Printing 
p. 416, Caption for Figure 8-89: Change “MRI-PIV measurements” to “MRI-PCV (Phase Contrast Velocimetry) 
measurements”. [Jean Hertzberg] 

Enhancements to the First Printing 
None reported yet. 
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