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PREFACE

BACKGROUND

Fluid mechanics is an exciting and fascinating subject with unlimited practi-
cal applications ranging from microscopic biological systems to automobiles,
airplanes, and spacecraft propulsion. Fluid mechanics has also historically
been one of the most challenging subjects for undergraduate students because
proper analysis of fluid mechanics problems requires not only knowledge
of the concepts but also physical intuition and experience. Our hope is that
this book, through its careful explanations of concepts and its use of numer-
ous practical examples, sketches, figures, and photographs, bridges the gap
between knowledge and the proper application of that knowledge.

Fluid mechanics is a mature subject; the basic equations and approxima-
tions are well established and can be found in any introductory textbook. Our
book is distinguished from other introductory books because we present the
subject in a progressive order from simple to more difficult, building each
chapter upon foundations laid down in earlier chapters. We provide more dia-
grams and photographs that other books because fluid mechanics, is by its
nature, a highly visual subject. Only by illustrating the concepts discussed,
can students fully appreciate the mathematical significance of the material.

OBJECTIVES

This book has been written for the first fluid mechanics course for under-
graduate engineering students. There is sufficient material for a two-course
sequence, if desired. We assume that readers will have an adequate back-
ground in calculus, physics, engineering mechanics, and thermodynamics.
The objectives of this text are

* To present the basic principles and equations of fluid mechanics.

* To show numerous and diverse real-world engineering examples to
give the student the intuition necessary for correct application of fluid
mechanics principles in engineering applications.

* To develop an intuitive understanding of fluid mechanics by emphasiz-
ing the physics, and reinforcing that understanding through illustrative
figures and photographs.

The book contains enough material to allow considerable flexibility in teach-
ing the course. Aeronautics and aerospace engineers might emphasize poten-
tial flow, drag and lift, compressible flow, turbomachinery, and CFD, while
mechanical or civil engineering instructors might choose to emphasize pipe
flows and open-channel flows, respectively.

NEW TO THE THIRD EDITION

In this edition, the overall content and order of presentation has not changed
significantly except for the following: the visual impact of all figures and
photographs has been enhanced by a full color treatment. We also added new
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photographs throughout the book, often replacing existing diagrams with pho-
tographs in order to convey the practical real-life applications of the material.
Several new Application Spotlights have been added to the end of selected
chapters. These introduce students to industrial applications and exciting
research projects being conducted by leaders in the field about material pre-
sented in the chapter. We hope these motivate students to see the relevance
and application of the materials they are studying. New sections on Biofluids
have been added to Chapters 8 and 9, written by guest author Keefe Manning
of The Pennsylvania State University, along with bio-related examples and
homework problems in those chapters.

New solved example problems were added to some chapters and several
new end-of-chapter problems or modifications to existing problems were
made to make them more versatile and practical. Most significant is the addi-
tion of Fundamentals of Engineering (FE) exam-type problems to help students
prepare to take their Professional Engineering exams. Finally, the end-of-
chapter problems that require Computational Fluid Dynamics (CFD) have
been moved to the text website (www.mhhe.com/cengel) where updates
based on software or operating system changes can be better managed.

PHILOSOPHY AND GOAL

The Third Edition of Fluid Mechanics: Fundamentals and Applications has
the same goals and philosophy as the other texts by lead author Yunus Cengel.

e Communicates directly with tomorrow’s engineers in a simple yet
precise manner

e Leads students toward a clear understanding and firm grasp of the basic
principles of fluid mechanics

* Encourages creative thinking and development of a deeper understand-
ing and intuitive feel for fluid mechanics

» Isread by students with interest and enthusiasm rather than merely as a
guide to solve homework problems

The best way to learn is by practice. Special effort is made throughout the
book to reinforce the material that was presented earlier (in each chapter
as well as in material from previous chapters). Many of the illustrated
example problems and end-of-chapter problems are comprehensive and
encourage students to review and revisit concepts and intuitions gained
previously.

Throughout the book, we show examples generated by computational fluid
dynamics (CFD). We also provide an introductory chapter on the subject. Our
goal is not to teach the details about numerical algorithms associated with
CFD—this is more properly presented in a separate course. Rather, our intent
is to introduce undergraduate students to the capabilities and limitations of
CFD as an engineering tool. We use CFD solutions in much the same way
as experimental results are used from wind tunnel tests (i.e., to reinforce
understanding of the physics of fluid flows and to provide quality flow visual-
izations that help explain fluid behavior). With dozens of CFD end-of-chapter
problems posted on the website, instructors have ample opportunity to intro-
duce the basics of CFD throughout the course.



CONTENT AND ORGANIZATION

This book is organized into 15 chapters beginning with fundamental concepts
of fluids, fluid properties, and fluid flows and ending with an introduction to
computational fluid dynamics.

Chapter 1 provides a basic introduction to fluids, classifications of fluid
flow, control volume versus system formulations, dimensions, units,
significant digits, and problem-solving techniques.

Chapter 2 is devoted to fluid properties such as density, vapor pressure,
specific heats, speed of sound, viscosity, and surface tension.

Chapter 3 deals with fluid statics and pressure, including manometers
and barometers, hydrostatic forces on submerged surfaces, buoyancy
and stability, and fluids in rigid-body motion.

Chapter 4 covers topics related to fluid kinematics, such as the differ-
ences between Lagrangian and Eulerian descriptions of fluid flows, flow
patterns, flow visualization, vorticity and rotationality, and the Reynolds
transport theorem.

Chapter 5 introduces the fundamental conservation laws of mass,
momentum, and energy, with emphasis on the proper use of the mass,
Bernoulli, and energy equations and the engineering applications of
these equations.

Chapter 6 applies the Reynolds transport theorem to linear momentum
and angular momentum and emphasizes practical engineering applica-
tions of finite control volume momentum analysis.

Chapter 7 reinforces the concept of dimensional homogeneity and intro-
duces the Buckingham Pi theorem of dimensional analysis, dynamic
similarity, and the method of repeating variables—material that is useful
throughout the rest of the book and in many disciplines in science and
engineering.

Chapter 8 is devoted to flow in pipes and ducts. We discuss the dif-
ferences between laminar and turbulent flow, friction losses in pipes
and ducts, and minor losses in piping networks. We also explain how
to properly select a pump or fan to match a piping network. Finally, we
discuss various experimental devices that are used to measure flow rate
and velocity, and provide a brief introduction to biofluid mechanics.

Chapter 9 deals with differential analysis of fluid flow and includes der-
ivation and application of the continuity equation, the Cauchy equation,
and the Navier-Stokes equation. We also introduce the stream function
and describe its usefulness in analysis of fluid flows, and we provide a
brief introduction to biofluids. Finally, we point out some of the unique
aspects of differential analysis related to biofluid mechanics.

Chapter 10 discusses several approximations of the Navier—Stokes equa-
tion and provides example solutions for each approximation, including
creeping flow, inviscid flow, irrotational (potential) flow, and boundary
layers.

Chapter 11 covers forces on bodies (drag and lift), explaining the
distinction between friction and pressure drag, and providing drag
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coefficients for many common geometries. This chapter emphasizes
the practical application of wind tunnel measurements coupled with
dynamic similarity and dimensional analysis concepts introduced
earlier in Chapter 7.

e Chapter 12 extends fluid flow analysis to compressible flow, where the
behavior of gases is greatly affected by the Mach number. In this chapter,
the concepts of expansion waves, normal and oblique shock waves, and
choked flow are introduced.

e Chapter 13 deals with open-channel flow and some of the unique fea-
tures associated with the flow of liquids with a free surface, such as
surface waves and hydraulic jumps.

e Chapter 14 examines turbomachinery in more detail, including pumps,
fans, and turbines. An emphasis is placed on how pumps and turbines
work, rather than on their detailed design. We also discuss overall pump
and turbine design, based on dynamic similarity laws and simplified
velocity vector analyses.

e Chapter 15 describes the fundamental concepts of computational fluid
dyamics (CFD) and shows students how to use commercial CFD codes
as tools to solve complex fluid mechanics problems. We emphasize the
application of CFD rather than the algorithms used in CFD codes.

Each chapter contains a wealth of end-of-chapter homework problems.
Most of the problems that require calculation use the SI system of units, how-
ever about 20 percent use English units. A comprehensive set of appendices is
provided, giving the thermodynamic and fluid properties of several materials,
in addition to air and water, along with some useful plots and tables. Many of
the end-of-chapter problems require the use of material properties from the
appendices to enhance the realism of the problems.

LEARNING TOOLS
EMPHASIS ON PHYSICS

A distinctive feature of this book is its emphasis on the physical aspects
of the subject matter in addition to mathematical representations and
manipulations. The authors believe that the emphasis in undergraduate
education should remain on developing a sense of underlying physical
mechanisms and a mastery of solving practical problems that an engineer
is likely to face in the real world. Developing an intuitive understanding
should also make the course a more motivating and worthwhile experi-
ence for the students.

EFFECTIVE USE OF ASSOCIATION

An observant mind should have no difficulty understanding engineering
sciences. After all, the principles of engineering sciences are based on our
everyday experiences and experimental observations. Therefore, a physi-
cal, intuitive approach is used throughout this text. Frequently, parallels are
drawn between the subject matter and students’ everyday experiences so that
they can relate the subject matter to what they already know.



SELF-INSTRUCTING

The material in the text is introduced at a level that an average student can
follow comfortably. It speaks to students, not over students. In fact, it is self-
instructive. Noting that the principles of science are based on experimental
observations, most of the derivations in this text are largely based on physical
arguments, and thus they are easy to follow and understand.

EXTENSIVE USE OF ARTWORK AND PHOTOGRAPHS

Figures are important learning tools that help the students “get the picture,”
and the text makes effective use of graphics. It contains more figures, photo-
graphs, and illustrations than any other book in this category. Figures attract
attention and stimulate curiosity and interest. Most of the figures in this text
are intended to serve as a means of emphasizing some key concepts that
would otherwise go unnoticed; some serve as page summaries.

CONSISTENT COLOR SCHEME FOR FIGURES

The figures have a consistent color scheme applied for all arrows.

e Blue: (—>) motion related, like velocity vectors

e Green: (—>) force and pressure related, and torque
e Black: (—>) distance related arrows and dimensions
* Red: (—>) energy related, like heat and work

e Purple: (—>) acceleration and gravity vectors, vorticity, and
miscellaneous

NUMEROUS WORKED-OUT EXAMPLES

All chapters contain numerous worked-out examples that both clarify the
material and illustrate the use of basic principles in a context that helps devel-
ops the student’s intuition. An intuitive and systematic approach is used in
the solution of all example problems. The solution methodology starts with a
statement of the problem, and all objectives are identified. The assumptions
and approximations are then stated together with their justifications. Any
properties needed to solve the problem are listed separately. Numerical values
are used together with numbers to emphasize that without units, numbers are
meaningless. The significance of each example’s result is discussed following
the solution. This methodical approach is also followed and provided in the
solutions to the end-of-chapter problems, available to instructors.

A WEALTH OF REALISTIC END-OF-CHAPTER PROBLEMS

The end-of-chapter problems are grouped under specific topics to make
problem selection easier for both instructors and students. Within each
group of problems are Concept Questions, indicated by “C,” to check the
students’ level of understanding of basic concepts. Problems under Funda-
mentals of Engineering (FE) Exam Problems are designed to help students
prepare for the Fundamentals of Engineering exam, as they prepare
for their Professional Engineering license. The problems under Review
Problems are more comprehensive in nature and are not directly tied
to any specific section of a chapter—in some cases they require review
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of material learned in previous chapters. Problems designated as
Design and Essay are intended to encourage students to make engineering
judgments, to conduct independent exploration of topics of interest, and to
communicate their findings in a professional manner. Problems designated by
an “E” are in English units, and SI users can ignore them. Problems with the
icon are solved using EES, and complete solutions together with paramet-
ric studies are included the text website. Problems with the icon are com-
prehensive in nature and are intended to be solved with a computer, prefer-
ably using the EES software. Several economics- and safety-related problems
are incorporated throughout to enhance cost and safety awareness among
engineering students. Answers to selected problems are listed immediately
following the problem for convenience to students.

USE OF COMMON NOTATION

The use of different notation for the same quantities in different engineering
courses has long been a source of discontent and confusion. A student taking
both fluid mechanics and heat transfer, for example, has to use the notation Q
for volume flow rate in one course, and for heat transfer in the other. The need
to unify notation in engineering education has often been raised, even in some
reports of conferences sponsored by the National Science Foundation through
Foundation Coalitions, but little effort has been made to date in this regard.
For example, refer to the final report of the Mini-Conference on Energy Stem
Innovations, May 28 and 29, 2003, University of Wisconsin. In this text we
made a conscious effort to minimize this conflict by adopting the familiar
thermodynamic notation I/ for volume flow rate, thus reserving the notation
Q for heat transfer. Also, we consistently use an overdot to denote time rate.
We think that both students and instructors will appreciate this effort to pro-
mote a common notation.

A CHOICE OF SI ALONE OR SI/ENGLISH UNITS

In recognition of the fact that English units are still widely used in some
industries, both SI and English units are used in this text, with an emphasis on
SI. The material in this text can be covered using combined SI/English units
or SI units alone, depending on the preference of the instructor. The property
tables and charts in the appendices are presented in both units, except the ones
that involve dimensionless quantities. Problems, tables, and charts in English
units are designated by “E” after the number for easy recognition, and they
can be ignored easily by the SI users.

COMBINED COVERAGE OF BERNOULLI AND ENERGY EQUATIONS
The Bernoulli equation is one of the most frequently used equations in fluid
mechanics, but it is also one of the most misused. Therefore, it is important
to emphasize the limitations on the use of this idealized equation and to
show how to properly account for imperfections and irreversible losses. In
Chapter 5, we do this by introducing the energy equation right after the
Bernoulli equation and demonstrating how the solutions of many practical
engineering problems differ from those obtained using the Bernoulli equa-
tion. This helps students develop a realistic view of the Bernoulli equation.



A SEPARATE CHAPTER ON CFD

Commercial Computational Fluid Dynamics (CFD) codes are widely used
in engineering practice in the design and analysis of flow systems, and it has
become exceedingly important for engineers to have a solid understanding of
the fundamental aspects, capabilities, and limitations of CFD. Recognizing
that most undergraduate engineering curriculums do not have room for a full
course on CFD, a separate chapter is included here to make up for this defi-
ciency and to equip students with an adequate background on the strengths
and weaknesses of CFD.

APPLICATION SPOTLIGHTS

Throughout the book are highlighted examples called Application Spotlights
where a real-world application of fluid mechanics is shown. A unique fea-
ture of these special examples is that they are written by guest authors. The
Application Spotlights are designed to show students how fluid mechanics
has diverse applications in a wide variety of fields. They also include eye-
catching photographs from the guest authors’ research.

GLOSSARY OF FLUID MECHANICS TERMS

Throughout the chapters, when an important key term or concept is introduced
and defined, it appears in black boldface type. Fundamental fluid mechanics
terms and concepts appear in red boldface type, and these fundamental terms
also appear in a comprehensive end-of-book glossary developed by Professor
James Brasseur of The Pennsylvania State University. This unique glossary
is an excellent learning and review tool for students as they move forward
in their study of fluid mechanics. In addition, students can test their knowl-
edge of these fundamental terms by using the interactive flash cards and other
resources located on our accompanying website (www.mhhe.com/cengel).

CONVERSION FACTORS

Frequently used conversion factors, physical constants, and properties of air
and water at 20°C and atmospheric pressure are listed on the front inner cover
pages of the text for easy reference.

NOMENCLATURE
A list of the major symbols, subscripts, and superscripts used in the text are
listed on the inside back cover pages of the text for easy reference.

SUPPLEMENTS

These supplements are available to adopters of the book:

Text Website

Web support is provided for the book on the text specific website at www.
mhhe.com/cengel. Visit this robust site for book and supplement information,
errata, author information, and further resources for instructors and students.
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Engineering Equation Solver (EES)

Developed by Sanford Klein and William Beckman from the University of
Wisconsin—Madison, this software combines equation-solving capability and
engineering property data. EES can do optimization, parametric analysis,
and linear and nonlinear regression, and provides publication-quality plot-
ting capabilities. Thermodynamics and transport properties for air, water, and
many other fluids are built-in and EES allows the user to enter property data
or functional relationships.
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Online Resources for Students and Instructors

Online Resources available at www.mhhe.com/cengel

Your home page for teaching and studying fluid mechanics, the Fluid
Mechanics: Fundamentals and Applications text-specific website offers
resources for both instructors and students.

For the student, this website offer various resources, including:

m FE Exam Interactive Review Quizzes—chapter-based self-quizzes provide
hints for solutions and correct solution methods, and help students prepare
for the NCEES Fundamentals of Engineering Examination.

m Glossary of Key Terms in Fluid Mechanics—full text and chapter-based
glossaries.

m Weblinks—helpful weblinks to relevant fluid mechanics sites.

For the instructor, this password-protected website offers various resources,
including:

m Electronic Solutions Manual—provides PDF files with detailed solutions to
all text homework problems.

m Image Library—provide electronic files for text figures for easy integration
into your course presentations, exams, and assignments.

m Sample Syllabi—make it easier for you to map out your course using this
text for different course durations (one quarter, one semester, etc.) and for
different disciplines (ME approach, Civil approach, etc.).

m Transition Guides—compare coverage to other popular introductory
fluid mechanics books at the section level to aid transition to teaching
from our text.

m Links to ANSYS Workbench®, FLUENT FLOWLAB®, and EES (Engineering Equa-
tion Solver) download sites—the academic versions of these powerful soft-
ware programs are available free to departments of educational institutions
who adopt this text.

m CFD homework problems and solutions designed for use with various CFD
packages.

McGraw-Hill Connect® Engineering provides online presentation, assign-
ment, and assessment solutions. It connects your students with the tools and
resources they’ll need to achieve success. With Connect Engineering, you can
deliver assignments, quizzes, and tests online. A robust set of questions and
activities are presented and aligned with the textbook’s learning outcomes. As
an instructor, you can edit existing questions and author entirely new prob-
lems. Track individual student performance—by question, assignment, or
in relation to the class overall—with detailed grade reports. Integrate grade
reports easily with Learning Management Systems (LMS), such as WebCT
and Blackboard—and much more. ConnectPlus Engineering provides stu-
dents with all the advantages of Connect Engineering, plus 24/7 online access
to an eBook. This media-rich version of the book is available through the
McGraw-Hill Connect platform and allows seamless integration of text,
media, and assessments. To learn more, visit www.mcgrawhillconnect.com.
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INTRODUCTION AND
BASIC CONCEPTS

n this introductory chapter, we present the basic concepts commonly

used in the analysis of fluid flow. We start this chapter with a discussion

of the phases of matter and the numerous ways of classification of fluid
flow, such as viscous versus inviscid regions of flow, internal versus exter-
nal flow, compressible versus incompressible flow, laminar versus turbulent
flow, natural versus forced flow, and steady versus unsteady flow. We also
discuss the no-slip condition at solid—fluid interfaces and present a brief his-
tory of the development of fluid mechanics.

After presenting the concepts of system and control volume, we review
the unit systems that will be used. We then discuss how mathematical mod-
els for engineering problems are prepared and how to interpret the results
obtained from the analysis of such models. This is followed by a presenta-
tion of an intuitive systematic problem-solving technique that can be used as
a model in solving engineering problems. Finally, we discuss accuracy, pre-
cision, and significant digits in engineering measurements and calculations.

Schlieren image showing the thermal plume produced
by Professor Cimbala as he welcomes you to the
fascinating world of fluid mechanics.

Michael J. Hargather and Brent A. Craven, Penn State Gas
Dynamics Lab. Used by Permission.

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

] Understand the basic concepts
of fluid mechanics

[ ] Recognize the various types of
fluid flow problems encountered
in practice

(] Model engineering problems
and solve them in a systematic
manner

[ ] Have a working knowledge

of accuracy, precision, and
significant digits, and recognize
the importance of dimensional
homogeneity in engineering
calculations
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FIGURE 1-1

Fluid mechanics deals with liquids and
gases in motion or at rest.

© D. Falconer/PhotoLink/Getty RF
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FIGURE 1-2

Deformation of a rubber block placed
between two parallel plates under the
influence of a shear force. The shear
stress shown is that on the rubber—an
equal but opposite shear stress acts on
the upper plate.

1-1 = INTRODUCTION

Mechanics is the oldest physical science that deals with both stationary and
moving bodies under the influence of forces. The branch of mechanics that
deals with bodies at rest is called statics, while the branch that deals with
bodies in motion is called dynamics. The subcategory fluid mechanics is
defined as the science that deals with the behavior of fluids at rest (fluid
statics) or in motion (fluid dynamics), and the interaction of fluids with
solids or other fluids at the boundaries. Fluid mechanics is also referred to
as fluid dynamics by considering fluids at rest as a special case of motion
with zero velocity (Fig. 1-1).

Fluid mechanics itself is also divided into several categories. The study of
the motion of fluids that can be approximated as incompressible (such as lig-
uids, especially water, and gases at low speeds) is usually referred to as hydro-
dynamics. A subcategory of hydrodynamics is hydraulics, which deals with
liquid flows in pipes and open channels. Gas dynamics deals with the flow
of fluids that undergo significant density changes, such as the flow of gases
through nozzles at high speeds. The category aerodynamics deals with the
flow of gases (especially air) over bodies such as aircraft, rockets, and automo-
biles at high or low speeds. Some other specialized categories such as meteo-
rology, oceanography, and hydrology deal with naturally occurring flows.

What Is a Fluid?

You will recall from physics that a substance exists in three primary phases:
solid, liquid, and gas. (At very high temperatures, it also exists as plasma.)
A substance in the liquid or gas phase is referred to as a fluid. Distinction
between a solid and a fluid is made on the basis of the substance’s abil-
ity to resist an applied shear (or tangential) stress that tends to change its
shape. A solid can resist an applied shear stress by deforming, whereas a
fluid deforms continuously under the influence of a shear stress, no matter
how small. In solids, stress is proportional to strain, but in fluids, stress is
proportional to strain rate. When a constant shear force is applied, a solid
eventually stops deforming at some fixed strain angle, whereas a fluid never
stops deforming and approaches a constant rate of strain.

Consider a rectangular rubber block tightly placed between two plates. As
the upper plate is pulled with a force F* while the lower plate is held fixed,
the rubber block deforms, as shown in Fig. 1-2. The angle of deformation o
(called the shear strain or angular displacement) increases in proportion to
the applied force F. Assuming there is no slip between the rubber and the
plates, the upper surface of the rubber is displaced by an amount equal to
the displacement of the upper plate while the lower surface remains station-
ary. In equilibrium, the net force acting on the upper plate in the horizontal
direction must be zero, and thus a force equal and opposite to F must be
acting on the plate. This opposing force that develops at the plate—rubber
interface due to friction is expressed as F' = 7A, where 7 is the shear stress
and A is the contact area between the upper plate and the rubber. When the
force is removed, the rubber returns to its original position. This phenome-
non would also be observed with other solids such as a steel block provided
that the applied force does not exceed the elastic range. If this experiment
were repeated with a fluid (with two large parallel plates placed in a large
body of water, for example), the fluid layer in contact with the upper plate



would move with the plate continuously at the velocity of the plate no mat-
ter how small the force F. The fluid velocity would decrease with depth
because of friction between fluid layers, reaching zero at the lower plate.

You will recall from statics that stress is defined as force per unit area
and is determined by dividing the force by the area upon which it acts. The
normal component of a force acting on a surface per unit area is called the
normal stress, and the tangential component of a force acting on a surface
per unit area is called shear stress (Fig. 1-3). In a fluid at rest, the normal
stress is called pressure. A fluid at rest is at a state of zero shear stress.
When the walls are removed or a liquid container is tilted, a shear develops
as the liquid moves to re-establish a horizontal free surface.

In a liquid, groups of molecules can move relative to each other, but the
volume remains relatively constant because of the strong cohesive forces
between the molecules. As a result, a liquid takes the shape of the container it
is in, and it forms a free surface in a larger container in a gravitational field. A
gas, on the other hand, expands until it encounters the walls of the container
and fills the entire available space. This is because the gas molecules are
widely spaced, and the cohesive forces between them are very small. Unlike
liquids, a gas in an open container cannot form a free surface (Fig. 1-4).

Although solids and fluids are easily distinguished in most cases, this dis-
tinction is not so clear in some borderline cases. For example, asphalt appears
and behaves as a solid since it resists shear stress for short periods of time.
When these forces are exerted over extended periods of time, however, the
asphalt deforms slowly, behaving as a fluid. Some plastics, lead, and slurry
mixtures exhibit similar behavior. Such borderline cases are beyond the scope
of this text. The fluids we deal with in this text will be clearly recognizable as
fluids.

Intermolecular bonds are strongest in solids and weakest in gases. One
reason is that molecules in solids are closely packed together, whereas in
gases they are separated by relatively large distances (Fig. 1-5). The mole-
cules in a solid are arranged in a pattern that is repeated throughout. Because
of the small distances between molecules in a solid, the attractive forces of
molecules on each other are large and keep the molecules at fixed positions.
The molecular spacing in the liquid phase is not much different from that of
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The normal stress and shear stress at
the surface of a fluid element. For
fluids at rest, the shear stress is zero
and pressure is the only normal stress.
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Unlike a liquid, a gas does not form a
free surface, and it expands to fill the
entire available space.
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FIGURE 1-5

The arrangement of atoms in different phases: (@) molecules are at relatively fixed positions
in a solid, (b) groups of molecules move about each other in the liquid phase, and
(c) individual molecules move about at random in the gas phase.
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Pressure
gage

FIGURE 1-6

On a microscopic scale, pressure

is determined by the interaction of
individual gas molecules. However,
we can measure the pressure on a
macroscopic scale with a pressure

gage.

FIGURE 1-7

Fluid dynamics is used extensively in
the design of artificial hearts. Shown
here is the Penn State Electric Total
Artificial Heart.

Photo courtesy of the Biomedical Photography
Lab, Penn State Biomedical Engineering Institute.
Used by Permission.

the solid phase, except the molecules are no longer at fixed positions relative
to each other and they can rotate and translate freely. In a liquid, the inter-
molecular forces are weaker relative to solids, but still strong compared with
gases. The distances between molecules generally increase slightly as a solid
turns liquid, with water being a notable exception.

In the gas phase, the molecules are far apart from each other, and molecu-
lar ordering is nonexistent. Gas molecules move about at random, continu-
ally colliding with each other and the walls of the container in which they
are confined. Particularly at low densities, the intermolecular forces are very
small, and collisions are the only mode of interaction between the mole-
cules. Molecules in the gas phase are at a considerably higher energy level
than they are in the liquid or solid phase. Therefore, the gas must release a
large amount of its energy before it can condense or freeze.

Gas and vapor are often used as synonymous words. The vapor phase of
a substance is customarily called a gas when it is above the critical tempera-
ture. Vapor usually implies that the current phase is not far from a state of
condensation.

Any practical fluid system consists of a large number of molecules, and the
properties of the system naturally depend on the behavior of these molecules.
For example, the pressure of a gas in a container is the result of momentum
transfer between the molecules and the walls of the container. However, one
does not need to know the behavior of the gas molecules to determine the pres-
sure in the container. It is sufficient to attach a pressure gage to the container
(Fig. 1-6). This macroscopic or classical approach does not require a knowl-
edge of the behavior of individual molecules and provides a direct and easy
way to analyze engineering problems. The more elaborate microscopic or sta-
tistical approach, based on the average behavior of large groups of individual
molecules, is rather involved and is used in this text only in a supporting role.

Application Areas of Fluid Mechanics

It is important to develop a good understanding of the basic principles of
fluid mechanics, since fluid mechanics is widely used both in everyday
activities and in the design of modern engineering systems from vacuum
cleaners to supersonic aircraft. For example, fluid mechanics plays a vital
role in the human body. The heart is constantly pumping blood to all parts
of the human body through the arteries and veins, and the lungs are the sites
of airflow in alternating directions. All artificial hearts, breathing machines,
and dialysis systems are designed using fluid dynamics (Fig. 1-7).

An ordinary house is, in some respects, an exhibition hall filled with appli-
cations of fluid mechanics. The piping systems for water, natural gas, and
sewage for an individual house and the entire city are designed primarily on
the basis of fluid mechanics. The same is also true for the piping and ducting
network of heating and air-conditioning systems. A refrigerator involves tubes
through which the refrigerant flows, a compressor that pressurizes the refrig-
erant, and two heat exchangers where the refrigerant absorbs and rejects heat.
Fluid mechanics plays a major role in the design of all these components.
Even the operation of ordinary faucets is based on fluid mechanics.

We can also see numerous applications of fluid mechanics in an automo-
bile. All components associated with the transportation of the fuel from the
fuel tank to the cylinders—the fuel line, fuel pump, and fuel injectors or
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carburetors—as well as the mixing of the fuel and the air in the cylinders
and the purging of combustion gases in exhaust pipes—are analyzed using
fluid mechanics. Fluid mechanics is also used in the design of the heating
and air-conditioning system, the hydraulic brakes, the power steering, the
automatic transmission, the lubrication systems, the cooling system of the
engine block including the radiator and the water pump, and even the tires.
The sleek streamlined shape of recent model cars is the result of efforts to
minimize drag by using extensive analysis of flow over surfaces.

On a broader scale, fluid mechanics plays a major part in the design and
analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines,
biomedical devices, cooling systems for electronic components, and trans-
portation systems for moving water, crude oil, and natural gas. It is also
considered in the design of buildings, bridges, and even billboards to make
sure that the structures can withstand wind loading. Numerous natural phe-
nomena such as the rain cycle, weather patterns, the rise of ground water to
the tops of trees, winds, ocean waves, and currents in large water bodies are
also governed by the principles of fluid mechanics (Fig. 1-8).

Natural flows and weather Boats Aircraft and spacecraft
© Glen Allison/Betty RF © Doug Menuez/Getty RF © Photo Link/Getty RF

Power plants Human body Cars
© Malcom Fife/Getty RF © Ryan McVay/Getty RF © Mark Evans/Getty RF

Wind turbines Piping and plumbing systems Industrial applications
© F. Schussler/PhotoLink/Getty RF Photo by John M. Cimbala. Digital Vision/PunchStock

FIGURE 1-8
Some application areas of fluid mechanics.
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FIGURE 1-9

Segment of Pergamon pipeline.
Each clay pipe section was

13 to 18 cm in diameter.

Courtesy Gunther Garbrecht.
Used by permission.

FIGURE 1-10

A mine hoist powered
by a reversible water wheel.
G. Agricola, De Re Metalica, Basel, 1556.

1-2 = A BRIEF HISTORY OF FLUID MECHANICS'

One of the first engineering problems humankind faced as cities were devel-
oped was the supply of water for domestic use and irrigation of crops. Our
urban lifestyles can be retained only with abundant water, and it is clear
from archeology that every successful civilization of prehistory invested in
the construction and maintenance of water systems. The Roman aqueducts,
some of which are still in use, are the best known examples. However, per-
haps the most impressive engineering from a technical viewpoint was done
at the Hellenistic city of Pergamon in present-day Turkey. There, from 283 to
133 B, they built a series of pressurized lead and clay pipelines (Fig. 1-9),
up to 45 km long that operated at pressures exceeding 1.7 MPa (180 m of
head). Unfortunately, the names of almost all these early builders are lost to
history.

The earliest recognized contribution to fluid mechanics theory was made
by the Greek mathematician Archimedes (285-212 Bc). He formulated and
applied the buoyancy principle in history’s first nondestructive test to deter-
mine the gold content of the crown of King Hiero I. The Romans built great
aqueducts and educated many conquered people on the benefits of clean
water, but overall had a poor understanding of fluids theory. (Perhaps they
shouldn’t have killed Archimedes when they sacked Syracuse.)

During the Middle Ages, the application of fluid machinery slowly but
steadily expanded. Elegant piston pumps were developed for dewatering
mines, and the watermill and windmill were perfected to grind grain, forge
metal, and for other tasks. For the first time in recorded human history, sig-
nificant work was being done without the power of a muscle supplied by a
person or animal, and these inventions are generally credited with enabling
the later industrial revolution. Again the creators of most of the progress
are unknown, but the devices themselves were well documented by several
technical writers such as Georgius Agricola (Fig. 1-10).

The Renaissance brought continued development of fluid systems and
machines, but more importantly, the scientific method was perfected and
adopted throughout Europe. Simon Stevin (1548-1617), Galileo Galilei
(1564-1642), Edme Mariotte (1620-1684), and Evangelista Torricelli
(1608-1647) were among the first to apply the method to fluids as they
investigated hydrostatic pressure distributions and vacuums. That work was
integrated and refined by the brilliant mathematician and philosopher, Blaise
Pascal (1623-1662). The Italian monk, Benedetto Castelli (1577-1644) was
the first person to publish a statement of the continuity principle for flu-
ids. Besides formulating his equations of motion for solids, Sir Isaac New-
ton (1643—-1727) applied his laws to fluids and explored fluid inertia and
resistance, free jets, and viscosity. That effort was built upon by Daniel
Bernoulli (1700-1782), a Swiss, and his associate Leonard Euler (1707—
1783). Together, their work defined the energy and momentum equations.
Bernoulli’s 1738 classic treatise Hydrodynamica may be considered the first
fluid mechanics text. Finally, Jean d’Alembert (1717-1789) developed the
idea of velocity and acceleration components, a differential expression of

! This section is contributed by Professor Glenn Brown of Oklahoma State University.



continuity, and his “paradox” of zero resistance to steady uniform motion
over a body.

The development of fluid mechanics theory through the end of the eigh-
teenth century had little impact on engineering since fluid properties and
parameters were poorly quantified, and most theories were abstractions that
could not be quantified for design purposes. That was to change with the
development of the French school of engineering led by Riche de Prony
(1755-1839). Prony (still known for his brake to measure shaft power) and
his associates in Paris at the Ecole Polytechnique and the Ecole des Ponts
et Chaussées were the first to integrate calculus and scientific theory into
the engineering curriculum, which became the model for the rest of the
world. (So now you know whom to blame for your painful freshman year.)
Antonie Chezy (1718-1798), Louis Navier (1785-1836), Gaspard Coriolis
(1792-1843), Henry Darcy (1803-1858), and many other contributors to
fluid engineering and theory were students and/or instructors at the schools.

By the mid nineteenth century, fundamental advances were coming on
several fronts. The physician Jean Poiseuille (1799-1869) had accurately
measured flow in capillary tubes for multiple fluids, while in Germany
Gotthilf Hagen (1797-1884) had differentiated between laminar and turbu-
lent flow in pipes. In England, Lord Osborne Reynolds (1842—-1912) con-
tinued that work (Fig. 1-11) and developed the dimensionless number that
bears his name. Similarly, in parallel to the early work of Navier, George
Stokes (1819-1903) completed the general equation of fluid motion (with
friction) that takes their names. William Froude (1810-1879) almost single-
handedly developed the procedures and proved the value of physical model
testing. American expertise had become equal to the Europeans as demon-
strated by James Francis’ (1815-1892) and Lester Pelton’s (1829-1908)
pioneering work in turbines and Clemens Herschel’s (1842—-1930) invention
of the Venturi meter.

In addition to Reynolds and Stokes, many notable contributions were made
to fluid theory in the late nineteenth century by Irish and English scientists,
including William Thomson, Lord Kelvin (1824—-1907), William Strutt, Lord
Rayleigh (1842-1919), and Sir Horace Lamb (1849-1934). These individu-
als investigated a large number of problems, including dimensional analysis,
irrotational flow, vortex motion, cavitation, and waves. In a broader sense,
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FIGURE 1-11

Osborne Reynolds’ original apparatus
for demonstrating the onset of turbu-
lence in pipes, being operated

by John Lienhard at the University

of Manchester in 1975.

Photo courtesy of John Lienhard, University of
Houston. Used by permission.
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FIGURE 1-12
The Wright brothers take
flight at Kitty Hawk.

Library of Congress Prints & Photographs
Division [LC-DIG-ppprs-00626]

FIGURE 1-13

Old and new wind turbine technologies
north of Woodward, OK. The modern
turbines have 1.6 MW capacities.

Photo courtesy of the Oklahoma Wind Power
Initiative. Used by permission.

their work also explored the links between fluid mechanics, thermodynam-
ics, and heat transfer.

The dawn of the twentieth century brought two monumental developments.
First, in 1903, the self-taught Wright brothers (Wilbur, 1867-1912; Orville,
1871-1948) invented the airplane through application of theory and deter-
mined experimentation. Their primitive invention was complete and contained
all the major aspects of modern aircraft (Fig. 1-12). The Navier—Stokes equa-
tions were of little use up to this time because they were too difficult to solve.
In a pioneering paper in 1904, the German Ludwig Prandtl (1875-1953)
showed that fluid flows can be divided into a layer near the walls, the bound-
ary layer, where the friction effects are significant, and an outer layer where
such effects are negligible and the simplified Euler and Bernoulli equations
are applicable. His students, Theodor von Kidrmén (1881-1963), Paul Blasius
(1883-1970), Johann Nikuradse (1894—1979), and others, built on that theory
in both hydraulic and aerodynamic applications. (During World War 1II, both
sides benefited from the theory as Prandtl remained in Germany while his
best student, the Hungarian-born von Kdrmén, worked in America.)

The mid twentieth century could be considered a golden age of fluid
mechanics applications. Existing theories were adequate for the tasks at
hand, and fluid properties and parameters were well defined. These sup-
ported a huge expansion of the aeronautical, chemical, industrial, and
water resources sectors; each of which pushed fluid mechanics in new
directions. Fluid mechanics research and work in the late twentieth century
were dominated by the development of the digital computer in America.
The ability to solve large complex problems, such as global climate mod-
eling or the optimization of a turbine blade, has provided a benefit to our
society that the eighteenth-century developers of fluid mechanics could
never have imagined (Fig. 1-13). The principles presented in the following
pages have been applied to flows ranging from a moment at the micro-
scopic scale to 50 years of simulation for an entire river basin. It is truly
mind-boggling.

Where will fluid mechanics go in the twenty-first century and beyond?
Frankly, even a limited extrapolation beyond the present would be sheer folly.
However, if history tells us anything, it is that engineers will be applying
what they know to benefit society, researching what they don’t know, and
having a great time in the process.

1-3 = THE NO-SLIP CONDITION

Fluid flow is often confined by solid surfaces, and it is important to under-
stand how the presence of solid surfaces affects fluid flow. We know that
water in a river cannot flow through large rocks, and must go around them.
That is, the water velocity normal to the rock surface must be zero, and
water approaching the surface normally comes to a complete stop at the sur-
face. What is not as obvious is that water approaching the rock at any angle
also comes to a complete stop at the rock surface, and thus the tangential
velocity of water at the surface is also zero.

Consider the flow of a fluid in a stationary pipe or over a solid surface
that is nonporous (i.e., impermeable to the fluid). All experimental observa-
tions indicate that a fluid in motion comes to a complete stop at the surface



and assumes a zero velocity relative to the surface. That is, a fluid in direct
contact with a solid “sticks” to the surface, and there is no slip. This is
known as the no-slip condition. The fluid property responsible for the no-
slip condition and the development of the boundary layer is viscosity and is
discussed in Chap. 2.

The photograph in Fig. 1-14 clearly shows the evolution of a velocity
gradient as a result of the fluid sticking to the surface of a blunt nose. The
layer that sticks to the surface slows the adjacent fluid layer because of vis-
cous forces between the fluid layers, which slows the next layer, and so
on. A consequence of the no-slip condition is that all velocity profiles must
have zero values with respect to the surface at the points of contact between
a fluid and a solid surface (Fig. 1-15). Therefore, the no-slip condition is
responsible for the development of the velocity profile. The flow region
adjacent to the wall in which the viscous effects (and thus the velocity gra-
dients) are significant is called the boundary layer. Another consequence
of the no-slip condition is the surface drag, or skin friction drag, which is
the force a fluid exerts on a surface in the flow direction.

When a fluid is forced to flow over a curved surface, such as the back
side of a cylinder, the boundary layer may no longer remain attached to the
surface and separates from the surface—a process called flow separation
(Fig. 1-16). We emphasize that the no-slip condition applies everywhere
along the surface, even downstream of the separation point. Flow separation
is discussed in greater detail in Chap. 9.

A phenomenon similar to the no-slip condition occurs in heat transfer.
When two bodies at different temperatures are brought into contact, heat
transfer occurs such that both bodies assume the same temperature at the
points of contact. Therefore, a fluid and a solid surface have the same tem-
perature at the points of contact. This is known as no-temperature-jump
condition.

1-4 = CLASSIFICATION OF FLUID FLOWS

Earlier we defined fluid mechanics as the science that deals with the behav-
ior of fluids at rest or in motion, and the interaction of fluids with solids or
other fluids at the boundaries. There is a wide variety of fluid flow prob-
lems encountered in practice, and it is usually convenient to classify them
on the basis of some common characteristics to make it feasible to study
them in groups. There are many ways to classify fluid flow problems, and
here we present some general categories.

Separation point

FIGURE 1-16
Flow separation during flow over a curved surface.

From G. M. Homsy et al, “Multi-Media Fluid Mechanics,” Cambridge Univ.
Press (2001). ISBN 0-521-78748-3. Reprinted by permission.
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FIGURE 1-14

The development of a velocity profile
due to the no-slip condition as a fluid
flows over a blunt nose.

“Hunter Rouse: Laminar and Turbulent Flow Film.”
Copyright IIHR-Hydroscience & Engineering, The
University of lowa. Used by permission.

B Relative
Uniform velocities
approach of fluid layers
velocity, V
e
— Zero
— velocity
—_— g at the
— surface
Plate
FIGURE 1-15

A fluid flowing over a stationary
surface comes to a complete stop at
the surface because of the no-slip
condition.
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Inviscid flow

region

Inviscid flow
region

FIGURE 1-17

The flow of an originally uniform
fluid stream over a flat plate, and
the regions of viscous flow (next to
the plate on both sides) and inviscid
flow (away from the plate).

Fundamentals of Boundary Layers,
National Committee from Fluid Mechanics Films,
© Education Development Center.

FIGURE 1-18

External flow over a tennis ball, and
the turbulent wake region behind.
Courtesy NASA and Cislunar Aerospace, Inc.

Viscous versus Inviscid Regions of Flow

When two fluid layers move relative to each other, a friction force devel-
ops between them and the slower layer tries to slow down the faster layer.
This internal resistance to flow is quantified by the fluid property viscosity,
which is a measure of internal stickiness of the fluid. Viscosity is caused by
cohesive forces between the molecules in liquids and by molecular colli-
sions in gases. There is no fluid with zero viscosity, and thus all fluid flows
involve viscous effects to some degree. Flows in which the frictional effects
are significant are called viscous flows. However, in many flows of practi-
cal interest, there are regions (typically regions not close to solid surfaces)
where viscous forces are negligibly small compared to inertial or pressure
forces. Neglecting the viscous terms in such inviscid flow regions greatly
simplifies the analysis without much loss in accuracy.

The development of viscous and inviscid regions of flow as a result of
inserting a flat plate parallel into a fluid stream of uniform velocity is shown
in Fig. 1-17. The fluid sticks to the plate on both sides because of the no-slip
condition, and the thin boundary layer in which the viscous effects are signifi-
cant near the plate surface is the viscous flow region. The region of flow on
both sides away from the plate and largely unaffected by the presence of the
plate is the inviscid flow region.

Internal versus External Flow
A fluid flow is classified as being internal or external, depending on whether
the fluid flows in a confined space or over a surface. The flow of an
unbounded fluid over a surface such as a plate, a wire, or a pipe is external
flow. The flow in a pipe or duct is internal flow if the fluid is completely
bounded by solid surfaces. Water flow in a pipe, for example, is internal flow,
and airflow over a ball or over an exposed pipe during a windy day is external
flow (Fig. 1-18). The flow of liquids in a duct is called open-channel flow if
the duct is only partially filled with the liquid and there is a free surface. The
flows of water in rivers and irrigation ditches are examples of such flows.
Internal flows are dominated by the influence of viscosity throughout the
flow field. In external flows the viscous effects are limited to boundary lay-
ers near solid surfaces and to wake regions downstream of bodies.

Compressible versus Incompressible Flow

A flow is classified as being compressible or incompressible, depending
on the level of variation of density during flow. Incompressibility is an
approximation, in which the flow is said to be incompressible if the density
remains nearly constant throughout. Therefore, the volume of every portion
of fluid remains unchanged over the course of its motion when the flow is
approximated as incompressible.

The densities of liquids are essentially constant, and thus the flow of lig-
uids is typically incompressible. Therefore, liquids are usually referred to as
incompressible substances. A pressure of 210 atm, for example, causes the
density of liquid water at 1 atm to change by just 1 percent. Gases, on the
other hand, are highly compressible. A pressure change of just 0.01 atm, for
example, causes a change of 1 percent in the density of atmospheric air.



When analyzing rockets, spacecraft, and other systems that involve high-
speed gas flows (Fig. 1-19), the flow speed is often expressed in terms of
the dimensionless Mach number defined as

\% Speed of flow
Ma=—=—"—"—
¢ Speed of sound

where c is the speed of sound whose value is 346 m/s in air at room tempera-
ture at sea level. A flow is called sonic when Ma = 1, subsonic when Ma < 1,
supersonic when Ma > 1, and hypersonic when Ma >> 1. Dimensionless
parameters are discussed in detail in Chapter 7.

Liquid flows are incompressible to a high level of accuracy, but the level
of variation of density in gas flows and the consequent level of approxi-
mation made when modeling gas flows as incompressible depends on the
Mach number. Gas flows can often be approximated as incompressible if
the density changes are under about 5 percent, which is usually the case
when Ma < 0.3. Therefore, the compressibility effects of air at room tem-
perature can be neglected at speeds under about 100 m/s.

Small density changes of liquids corresponding to large pressure changes
can still have important consequences. The irritating “water hammer” in a
water pipe, for example, is caused by the vibrations of the pipe generated by
the reflection of pressure waves following the sudden closing of the valves.

Laminar versus Turbulent Flow

Some flows are smooth and orderly while others are rather chaotic. The
highly ordered fluid motion characterized by smooth layers of fluid is called
laminar. The word laminar comes from the movement of adjacent fluid
particles together in “laminae.” The flow of high-viscosity fluids such as
oils at low velocities is typically laminar. The highly disordered fluid motion
that typically occurs at high velocities and is characterized by velocity fluc-
tuations is called turbulent (Fig. 1-20). The flow of low-viscosity fluids
such as air at high velocities is typically turbulent. A flow that alternates
between being laminar and turbulent is called transitional. The experiments
conducted by Osborne Reynolds in the 1880s resulted in the establishment
of the dimensionless Reynolds number, Re, as the key parameter for the
determination of the flow regime in pipes (Chap. 8).

Natural (or Unforced) versus Forced Flow

A fluid flow is said to be natural or forced, depending on how the fluid
motion is initiated. In forced flow, a fluid is forced to flow over a surface
or in a pipe by external means such as a pump or a fan. In natural flows,
fluid motion is due to natural means such as the buoyancy effect, which
manifests itself as the rise of warmer (and thus lighter) fluid and the fall of
cooler (and thus denser) fluid (Fig. 1-21). In solar hot-water systems, for
example, the thermosiphoning effect is commonly used to replace pumps by
placing the water tank sufficiently above the solar collectors.
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FIGURE 1-19

Schlieren image of the spherical shock
wave produced by a bursting ballon

at the Penn State Gas Dynamics Lab.
Several secondary shocks are seen in
the air surrounding the ballon.

Photo by G. S. Settles, Penn State University. Used
by permission.

Laminar

‘ ‘

Transitional

|
l

Turbulent

FIGURE 1-20

Laminar, transitional, and turbulent
flows over a flat plate.

Courtesy ONERA, photograph by Werlé.
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FIGURE 1-21

In this schlieren image of a girl in
a swimming suit, the rise of lighter,
warmer air adjacent to her body
indicates that humans and warm-
blooded animals are surrounded by
thermal plumes of rising warm air.

G. S. Settles, Gas Dynamics Lab,
Penn State University. Used by permission.

FIGURE 1-22

Comparison of (a) instantaneous
snapshot of an unsteady flow, and
(b) long exposure picture of the
same flow.

Photos by Eric A. Paterson. Used by permission.

Steady versus Unsteady Flow

The terms steady and uniform are used frequently in engineering, and thus
it is important to have a clear understanding of their meanings. The term
steady implies no change of properties, velocity, temperature, etc., at a point
with time. The opposite of steady is unsteady. The term uniform implies no
change with location over a specified region. These meanings are consistent
with their everyday use (steady girlfriend, uniform distribution, etc.).

The terms unsteady and transient are often used interchangeably, but these
terms are not synonyms. In fluid mechanics, unsteady is the most general term
that applies to any flow that is not steady, but transient is typically used for
developing flows. When a rocket engine is fired up, for example, there are tran-
sient effects (the pressure builds up inside the rocket engine, the flow accelerates,
etc.) until the engine settles down and operates steadily. The term periodic refers
to the kind of unsteady flow in which the flow oscillates about a steady mean.

Many devices such as turbines, compressors, boilers, condensers, and heat
exchangers operate for long periods of time under the same conditions, and they
are classified as steady-flow devices. (Note that the flow field near the rotating
blades of a turbomachine is of course unsteady, but we consider the overall
flow field rather than the details at some localities when we classify devices.)
During steady flow, the fluid properties can change from point to point within
a device, but at any fixed point they remain constant. Therefore, the volume,
the mass, and the total energy content of a steady-flow device or flow section
remain constant in steady operation. A simple analogy is shown in Fig. 1-22.

Steady-flow conditions can be closely approximated by devices that are
intended for continuous operation such as turbines, pumps, boilers, con-
densers, and heat exchangers of power plants or refrigeration systems. Some
cyclic devices, such as reciprocating engines or compressors, do not sat-
isfy the steady-flow conditions since the flow at the inlets and the exits is

(a) )



pulsating and not steady. However, the fluid properties vary with time in a
periodic manner, and the flow through these devices can still be analyzed as
a steady-flow process by using time-averaged values for the properties.
Some fascinating visualizations of fluid flow are provided in the book An
Album of Fluid Motion by Milton Van Dyke (1982). A nice illustration of
an unsteady-flow field is shown in Fig. 1-23, taken from Van Dyke’s book.
Figure 1-23a is an instantaneous snapshot from a high-speed motion picture; it
reveals large, alternating, swirling, turbulent eddies that are shed into the peri-
odically oscillating wake from the blunt base of the object. The eddies produce
shock waves that move upstream alternately over the top and bottom surfaces
of the airfoil in an unsteady fashion. Figure 1-23b shows the same flow field,
but the film is exposed for a longer time so that the image is time averaged
over 12 cycles. The resulting time-averaged flow field appears “‘steady” since
the details of the unsteady oscillations have been lost in the long exposure.
One of the most important jobs of an engineer is to determine whether it is
sufficient to study only the time-averaged “steady” flow features of a problem,
or whether a more detailed study of the unsteady features is required. If the
engineer were interested only in the overall properties of the flow field (such
as the time-averaged drag coefficient, the mean velocity, and pressure fields), a
time-averaged description like that of Fig. 1-23b, time-averaged experimental
measurements, or an analytical or numerical calculation of the time-averaged
flow field would be sufficient. However, if the engineer were interested in details
about the unsteady-flow field, such as flow-induced vibrations, unsteady pres-
sure fluctuations, or the sound waves emitted from the turbulent eddies or the
shock waves, a time-averaged description of the flow field would be insufficient.
Most of the analytical and computational examples provided in this text-
book deal with steady or time-averaged flows, although we occasionally
point out some relevant unsteady-flow features as well when appropriate.

One-, Two-, and Three-Dimensional Flows
A flow field is best characterized by its velocity distribution, and thus a flow
is said to be one-, two-, or three-dimensional if the flow velocity varies in
one, two, or three primary dimensions, respectively. A typical fluid flow
involves a three-dimensional geometry, and the velocity may vary in all three
dimensions, rendering the flow three-dimensional [V (x, y, ) in rectangular
or V (r, 6, z) in cylindrical coordinates]. However, the variation of velocity in
certain directions can be small relative to the variation in other directions and
can be ignored with negligible error. In such cases, the flow can be modeled
conveniently as being one- or two-dimensional, which is easier to analyze.
Consider steady flow of a fluid entering from a large tank into a circular
pipe. The fluid velocity everywhere on the pipe surface is zero because of the
no-slip condition, and the flow is two-dimensional in the entrance region of
the pipe since the velocity changes in both the r- and z-directions, but not in
the 6-direction. The velocity profile develops fully and remains unchanged after
some distance from the inlet (about 10 pipe diameters in turbulent flow, and
less in laminar pipe flow, as in Fig. 1-24), and the flow in this region is said
to be fully developed. The fully developed flow in a circular pipe is one-dimen-
sional since the velocity varies in the radial r-direction but not in the angular
0- or axial z-directions, as shown in Fig. 1-24. That is, the velocity profile is
the same at any axial z-location, and it is symmetric about the axis of the pipe.
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(b)

FIGURE 1-23

Oscillating wake of a blunt-based
airfoil at Mach number 0.6. Photo (a)
is an instantaneous image, while
photo (b) is a long-exposure
(time-averaged) image.

(a) Dyment, A., Flodrops, J. P. & Gryson, P. 1982
in Flow Visualization II, W. Merzkirch, ed., 331—

336. Washington: Hemisphere. Used by permission
of Arthur Dyment.

(b) Dyment, A. & Gryson, P. 1978 in Inst. Méc.
Fluides Lille, No. 78-5. Used by permission of
Arthur Dyment.
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FIGURE 1-24

The development of the velocity
profile in a circular pipe. V = V(r, z)
and thus the flow is two-dimensional
in the entrance region, and becomes
one-dimensional downstream when
the velocity profile fully develops
and remains unchanged in the flow
direction, V = V(r).

FIGURE 1-25

Flow over a car antenna is
approximately two-dimensional
except near the top and bottom
of the antenna.
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FIGURE 1-26

Axisymmetric flow over a bullet.

SURROUNDINGS

BOUNDARY

FIGURE 1-27

System, surroundings, and boundary.
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Note that the dimensionality of the flow also depends on the choice of coor-
dinate system and its orientation. The pipe flow discussed, for example, is
one-dimensional in cylindrical coordinates, but two-dimensional in Cartesian
coordinates—illustrating the importance of choosing the most appropriate
coordinate system. Also note that even in this simple flow, the velocity cannot
be uniform across the cross section of the pipe because of the no-slip condi-
tion. However, at a well-rounded entrance to the pipe, the velocity profile may
be approximated as being nearly uniform across the pipe, since the velocity is
nearly constant at all radii except very close to the pipe wall.

A flow may be approximated as two-dimensional when the aspect ratio is
large and the flow does not change appreciably along the longer dimension. For
example, the flow of air over a car antenna can be considered two-dimensional
except near its ends since the antenna’s length is much greater than its diam-
eter, and the airflow hitting the antenna is fairly uniform (Fig. 1-25).

EXAMPLE 1-1 Axisymmetric Flow over a Bullet

Consider a bullet piercing through calm air during a short time interval in which m
the bullet's speed is nearly constant. Determine if the time-averaged airflow m
over the bullet during its flight is one-, two-, or three-dimensional (Fig. 1-26).

SOLUTION It is to be determined whether airflow over a bullet is one-, two-,
or three-dimensional.

Assumptions There are no significant winds and the bullet is not spinning.
Analysis The bullet possesses an axis of symmetry and is therefore an axi-
symmetric body. The airflow upstream of the bullet is parallel to this axis,
and we expect the time-averaged airflow to be rotationally symmetric about
the axis—such flows are said to be axisymmetric. The velocity in this case
varies with axial distance z and radial distance r, but not with angle 6. There-
fore, the time-averaged airflow over the bullet is two-dimensional.

Discussion While the time-averaged airflow is axisymmetric, the instantaneous
airflow is not, as illustrated in Fig. 1-23. In Cartesian coordinates, the flow
would be three-dimensional. Finally, many bullets also spin.

1-5 = SYSTEM AND CONTROL VOLUME

A system is defined as a quantity of matter or a region in space chosen for
study. The mass or region outside the system is called the surroundings.
The real or imaginary surface that separates the system from its surround-
ings is called the boundary (Fig. 1-27). The boundary of a system can be



fixed or movable. Note that the boundary is the contact surface shared by
both the system and the surroundings. Mathematically speaking, the bound-
ary has zero thickness, and thus it can neither contain any mass nor occupy
any volume in space.

Systems may be considered to be closed or open, depending on whether
a fixed mass or a volume in space is chosen for study. A closed system
(also known as a control mass or simply a system when the context makes
it clear) consists of a fixed amount of mass, and no mass can cross its
boundary. But energy, in the form of heat or work, can cross the boundary,
and the volume of a closed system does not have to be fixed. If, as a special
case, even energy is not allowed to cross the boundary, that system is called
an isolated system.

Consider the piston—cylinder device shown in Fig. 1-28. Let us say that
we would like to find out what happens to the enclosed gas when it is
heated. Since we are focusing our attention on the gas, it is our system. The
inner surfaces of the piston and the cylinder form the boundary, and since
no mass is crossing this boundary, it is a closed system. Notice that energy
may cross the boundary, and part of the boundary (the inner surface of the
piston, in this case) may move. Everything outside the gas, including the
piston and the cylinder, is the surroundings.

An open system, or a control volume, as it is often called, is a selected
region in space. It usually encloses a device that involves mass flow such as
a compressor, turbine, or nozzle. Flow through these devices is best stud-
ied by selecting the region within the device as the control volume. Both
mass and energy can cross the boundary (the control surface) of a control
volume.

A large number of engineering problems involve mass flow in and out
of an open system and, therefore, are modeled as control volumes. A water
heater, a car radiator, a turbine, and a compressor all involve mass flow
and should be analyzed as control volumes (open systems) instead of as
control masses (closed systems). In general, any arbitrary region in space
can be selected as a control volume. There are no concrete rules for the
selection of control volumes, but a wise choice certainly makes the analy-
sis much easier. If we were to analyze the flow of air through a nozzle, for
example, a good choice for the control volume would be the region within
the nozzle, or perhaps surrounding the entire nozzle.

A control volume can be fixed in size and shape, as in the case of a noz-
zle, or it may involve a moving boundary, as shown in Fig. 1-29. Most con-
trol volumes, however, have fixed boundaries and thus do not involve any
moving boundaries. A control volume may also involve heat and work inter-
actions just as a closed system, in addition to mass interaction.

1-6 = IMPORTANCE OF DIMENSIONS AND UNITS

Any physical quantity can be characterized by dimensions. The magnitudes
assigned to the dimensions are called units. Some basic dimensions such
as mass m, length L, time ¢, and temperature T are selected as primary or
fundamental dimensions, while others such as velocity V, energy E, and
volume V are expressed in terms of the primary dimensions and are called
secondary dimensions, or derived dimensions.

15

CHAPTER 1

Fixed
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FIGURE 1-28
A closed system with a moving
boundary.
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(a) A control volume (CV) with real and
imaginary boundaries

(b) A control volume (CV) with fixed and
moving boundaries as well as real and
imaginary boundaries

FIGURE 1-29

A control volume may involve
fixed, moving, real, and imaginary
boundaries.
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TABLE 1-1 A number of unit systems have been developed over the years. Despite
strong efforts in the scientific and engineering community to unify the
world with a single unit system, two sets of units are still in common use
today: the English system, which is also known as the United States Cus-

The seven fundamental (or primary)
dimensions and their units in SI

Dimension Unit tomary System (USCS), and the metric SI (from Le Systéme International
Length meter (m) d’ Unités), which is also known as the International System. The SI is a
Mass kilogram (kg) simple and logical system based on a decimal relationship between the vari-
Time second (s) ous units, and it is being used for scientific and engineering work in most of
Temperature kelvin (K) the industrialized nations, including England. The English system, however,
Electric current ampere (A) has no apparent systematic numerical base, and various units in this system
Amount of light candela (cd) are related to each other rather arbitrarily (12 in = 1 ft, 1 mile = 5280 ft,
Amount of matter mole (mol)

4 qt = 1 gal, etc.), which makes it confusing and difficult to learn. The
United States is the only industrialized country that has not yet fully con-
verted to the metric system.

The systematic efforts to develop a universally acceptable system of units
dates back to 1790 when the French National Assembly charged the French
Academy of Sciences to come up with such a unit system. An early version of
the metric system was soon developed in France, but it did not find universal
acceptance until 1875 when The Metric Convention Treaty was prepared and
signed by 17 nations, including the United States. In this international treaty,
meter and gram were established as the metric units for length and mass,
respectively, and a General Conference of Weights and Measures (CGPM) was
established that was to meet every six years. In 1960, the CGPM produced
the SI, which was based on six fundamental quantities, and their units were
adopted in 1954 at the Tenth General Conference of Weights and Measures:
meter (m) for length, kilogram (kg) for mass, second (s) for time, ampere (A)
for electric current, degree Kelvin (°K) for temperature, and candela (cd) for

Standard prefixes in S| units luminous intensity (amount of light). In 1971, the CGPM added a seventh

fundamental quantity and unit: mole (mol) for the amount of matter.

Multiple Prefix Based on the notational scheme introduced in 1967, the degree symbol
1024 yotta, Y was officially dropped from the absolute temperature unit, and all unit
102 zetta, Z names were to be written without capitalization even if they were derived
108 exa, E from proper names (Table 1-1). However, the abbreviation of a unit was
10% peta, P to be capitalized if the unit was derived from a proper name. For example,
10;2 tera, T the SI unit of force, which is named after Sir Isaac Newton (1647—-1723),
106 giga, G is newton (not Newton), and it is abbreviated as N. Also, the full name
183 Eqileogali i of a unit may be pluralized, but its abbreviation cannot. For example, the
102 hec{o, h length Qf an object can be. 5 m or 5 meters, not 5 ms or 5 meter. Finally, no
10! deka, da period is to be used in unit abbrev1at10ns.ur}less they appear at the end of a
10-1 deeh. @ sentence. For example, the proper abbreviation of meter is m (not m.).

102 cent’i, c The recent move toward the metric system in the United States seems to
1073 milli, m have started in 1968 when Congress, in response to what was happening
107 micro, u in the rest of the world, passed a Metric Study Act. Congress continued to
10°° nano, n promote a voluntary switch to the metric system by passing the Metric Con-
1071 pico, p version Act in 1975. A trade bill passed by Congress in 1988 set a Septem-
1071 femto, f ber 1992 deadline for all federal agencies to convert to the metric system.
10:;? e, However, the deadlines were relaxed later with no clear plans for the future.
1872 a ;?)E:g,’ ; As pointed out, the SI is based on a decimal relationship between units. The

prefixes used to express the multiples of the various units are listed in Table 1-2.




They are standard for all units, and the student is encouraged to memorize some
of them because of their widespread use (Fig. 1-30).

Some Sl and English Units

In SI, the units of mass, length, and time are the kilogram (kg), meter (m),
and second (s), respectively. The respective units in the English system are
the pound-mass (Ibm), foot (ft), and second (s). The pound symbol b is
actually the abbreviation of libra, which was the ancient Roman unit of
weight. The English retained this symbol even after the end of the Roman
occupation of Britain in 410. The mass and length units in the two systems
are related to each other by

11bm = 045359 kg
1 ft = 0.3048 m

In the English system, force is often considered to be one of the primary
dimensions and is assigned a nonderived unit. This is a source of confu-
sion and error that necessitates the use of a dimensional constant (g,) in
many formulas. To avoid this nuisance, we consider force to be a secondary
dimension whose unit is derived from Newton’s second law, i.e.,

Force = (Mass) (Acceleration)

or F = ma (1-1)

In SI, the force unit is the newton (N), and it is defined as the force required
to accelerate a mass of 1 kg at a rate of 1 m/s*. In the English system, the
force unit is the pound-force (Ibf) and is defined as the force required to
accelerate a mass of 32.174 Ibm (1 slug) at a rate of 1 fi/s*> (Fig. 1-31).
That is,

IN = lkgm/s®
1 1bf = 32.174 Ibm-ft/s>

A force of 1 N is roughly equivalent to the weight of a small apple
(m = 102 g), whereas a force of 1 Ibf is roughly equivalent to the weight of
four medium apples (m,, = 454 g), as shown in Fig. 1-32. Another force
unit in common use in many European countries is the kilogram-force (kgf),
which is the weight of 1 kg mass at sea level (1 kgf = 9.807 N).

The term weight is often incorrectly used to express mass, particularly
by the “weight watchers.” Unlike mass, weight W is a force. It is the gravi-
tational force applied to a body, and its magnitude is determined from an
equation based on Newton’s second law,

W=mg ([N) (1-2)

where m is the mass of the body, and g is the local gravitational accel-
eration (g is 9.807 m/s? or 32.174 ft/s> at sea level and 45° latitude). An
ordinary bathroom scale measures the gravitational force acting on a body.
The weight per unit volume of a substance is called the specific weight y
and is determined from y = pg, where p is density.
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FIGURE 1-30
The SI unit prefixes are used in all
branches of engineering.

a=1m/s?
m=1kg F=1IN
a=1ft/s?
m = 32.174 Ibm F=11bf

FIGURE 1-31
The definition of the force units.

1 kef

10 apples
m=1kg

4 apples
m = 11bm

FIGURE 1-32
The relative magnitudes of the force

units newton (N), kilogram-force
(kgf), and pound-force (1bf).
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FIGURE 1-33
A body weighing 150 Ibf on earth will
weigh only 25 1bf on the moon.

b
¢ =9.807 m/s? g =32.174 ft/s?

W=9.807 kg'm/s> W =32.174 Ibm-ft/s?
=9.807N =11Ibf

FIGURE 1-34
The weight of a unit mass at sea level.

FIGURE 1-35

A typical match yields about one Btu
(or one kJ) of energy if completely
burned.

Photo by John M. Cimbala.

The mass of a body remains the same regardless of its location in the uni-
verse. Its weight, however, changes with a change in gravitational accelera-
tion. A body weighs less on top of a mountain since g decreases (by a small
amount) with altitude. On the surface of the moon, an astronaut weighs
about one-sixth of what she or he normally weighs on earth (Fig. 1-33).

At sea level a mass of 1 kg weighs 9.807 N, as illustrated in Fig. 1-34. A
mass of 1 Ibm, however, weighs 1 Ibf, which misleads people to believe that
pound-mass and pound-force can be used interchangeably as pound (Ib),
which is a major source of error in the English system.

It should be noted that the gravity force acting on a mass is due to the
attraction between the masses, and thus it is proportional to the mag-
nitudes of the masses and inversely proportional to the square of the dis-
tance between them. Therefore, the gravitational acceleration g at a location
depends on the local density of the earth’s crust, the distance to the center
of the earth, and to a lesser extent, the positions of the moon and the sun.
The value of g varies with location from 9.8295 m/s? at 4500 m below sea
level to 7.3218 m/s? at 100,000 m above sea level. However, at altitudes up
to 30,000 m, the variation of g from the sea-level value of 9.807 m/s? is
less than 1 percent. Therefore, for most practical purposes, the gravitational
acceleration can be assumed to be constant at 9.807 m/s2, often rounded to
9.81 m/s%. It is interesting to note that the value of g increases with distance
below sea level, reaches a maximum at about 4500 m below sea level, and
then starts decreasing. (What do you think the value of g is at the center of
the earth?)

The primary cause of confusion between mass and weight is that mass is
usually measured indirectly by measuring the gravity force it exerts. This
approach also assumes that the forces exerted by other effects such as air
buoyancy and fluid motion are negligible. This is like measuring the dis-
tance to a star by measuring its red shift, or measuring the altitude of an
airplane by measuring barometric pressure. Both of these are also indirect
measurements. The correct direct way of measuring mass is to compare it
to a known mass. This is cumbersome, however, and it is mostly used for
calibration and measuring precious metals.

Work, which is a form of energy, can simply be defined as force times
distance; therefore, it has the unit “newton-meter (N-m),” which is called a
joule (J). That is,

1J=1Nm (1-3)

A more common unit for energy in SI is the kilojoule (1 kJ = 10° J). In the
English system, the energy unit is the Btu (British thermal unit), which is
defined as the energy required to raise the temperature of 1 Ibm of water at
68°F by 1°F. In the metric system, the amount of energy needed to raise the
temperature of 1 g of water at 14.5°C by 1°C is defined as 1 calorie (cal),
and 1 cal = 4.1868 J. The magnitudes of the kilojoule and Btu are very
nearly the same (1 Btu = 1.0551 kJ). Here is a good way to get a feel for
these units: If you light a typical match and let it burn itself out, it yields
approximately one Btu (or one kJ) of energy (Fig. 1-35).

The unit for time rate of energy is joule per second (J/s), which is called
a watt (W). In the case of work, the time rate of energy is called power.
A commonly used unit of power is horsepower (hp), which is equivalent



to 745.7 W. Electrical energy typically is expressed in the unit kilowatt-hour
(kWh), which is equivalent to 3600 kJ. An electric appliance with a rated
power of 1 kW consumes 1 kWh of electricity when running continu-
ously for one hour. When dealing with electric power generation, the units
kW and kWh are often confused. Note that kW or kJ/s is a unit of power,
whereas kWh is a unit of energy. Therefore, statements like “the new wind
turbine will generate 50 kW of electricity per year” are meaningless and
incorrect. A correct statement should be something like “the new wind tur-
bine with a rated power of 50 kW will generate 120,000 kWh of electricity
per year.”

Dimensional Homogeneity

We all know that you cannot add apples and oranges. But we somehow
manage to do it (by mistake, of course). In engineering, all equations must
be dimensionally homogeneous. That is, every term in an equation must
have the same dimensions. If, at some stage of an analysis, we find our-
selves in a position to add two quantities that have different dimensions
or units, it is a clear indication that we have made an error at an earlier
stage. So checking dimensions (or units) can serve as a valuable tool to
spot errors.

|
m EXAMPLE 1-2 Electric Power Generation by a Wind Turbhine

: A school is paying $0.09/kWh for electric power. To reduce its power bill,

m the school installs a wind turbine (Fig 1-36) with a rated power of 30 kW.
If the turbine operates 2200 hours per year at the rated power, determine
the amount of electric power generated by the wind turbine and the money
saved by the school per year.

SOLUTION A wind turbine is installed to generate electricity. The amount of
electric energy generated and the money saved per year are to be determined.
Analysis The wind turbine generates electric energy at a rate of 30 kW or
30 kJ/s. Then the total amount of electric energy generated per year becomes

Total energy = (Energy per unit time)(Time interval)
= (30 kW)(2200 h)
= 66,000 kWh

The money saved per year is the monetary value of this energy determined as

Money saved = (Total energy)(Unit cost of energy)
= (66,000 kWh)($0.09/kWh)
= $5940

Discussion The annual electric energy production also could be determined
in kJ by unit manipulations as

3600 s><l kJ/s

= 2.38 X 108k
1h 1kW> 38 0k

Total energy = (30 kW)(2200 h)(

which is equivalent to 66,000 kWh (1 kWh = 3600 kJ).
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FIGURE 1-36

A wind turbine, as discussed in
Example 1-2.

Photo by Andy Cimbala.
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We all know from experience that units can give terrible headaches if they
are not used carefully in solving a problem. However, with some attention
and skill, units can be used to our advantage. They can be used to check
formulas; sometimes they can even be used to derive formulas, as explained
in the following example.

[
EXAMPLE 1-3 Obtaining Formulas from Unit Considerations m
[
V=2m’ s A tank is filled with oil whose density is p = 850 kg/m3. If the volume of the g
p =850 l;g/m tank is V = 2 m3, determine the amount of mass m in the tank. ]
m=" ]
SOLUTION The volume of an oil tank is given. The mass of oil is to be
determined.
FIGURE 1._37 Assumptions Qil is a nearly incompressible substance and thus its density
Schematic for Example 1-3. s comsiaT

Analysis A sketch of the system just described is given in Fig. 1-37. Sup-
pose we forgot the formula that relates mass to density and volume. However,
we know that mass has the unit of kilograms. That is, whatever calculations
we do, we should end up with the unit of kilograms. Putting the given infor-
mation into perspective, we have

p =850kg/m* and V=2m?

LCAUTION! It is obvious that we can eliminate m® and end up with kg by multiplying
these two quantities. Therefore, the formula we are looking for should be
EVYERY TERM I a4

EQUATIOMN MUIST HAVE
THE SaME UMITS

m = pV
Thus,
m = (850 kg/m?)(2 m®) = 1700 kg

Discussion Note that this approach may not work for more complicated
formulas. Nondimensional constants also may be present in the formulas,
and these cannot be derived from unit considerations alone.

You should keep in mind that a formula that is not dimensionally homo-
geneous is definitely wrong (Fig. 1-38), but a dimensionally homogeneous
formula is not necessarily right.

Unity Conversion Ratios

FIGURE 1-38 Just as all nonprimary dimensions can be formed by suitable combina-
Always check the units in your tions of primary dimensions, all nonprimary units (secondary units) can be
calculations. formed by combinations of primary units. Force units, for example, can be

expressed as

m ft
N=%kg— and Ibf = 32.1741bm —
S S

They can also be expressed more conveniently as unity conversion ratios as

N | d Ibf |
— = and —————— =
kg-m/s? 32.174 lbm-ft/s>



Unity conversion ratios are identically equal to 1 and are unitless, and thus
such ratios (or their inverses) can be inserted conveniently into any calcu-
lation to properly convert units (Fig 1-39). You are encouraged to always
use unity conversion ratios such as those given here when converting units.
Some textbooks insert the archaic gravitational constant g. defined as
g. = 32.174 Ibm-ft/Ibf-s*> = kg-m/N-s> = 1 into equations in order to force
units to match. This practice leads to unnecessary confusion and is strongly
discouraged by the present authors. We recommend that you instead use
unity conversion ratios.

|
m EXAMPLE 14 The Weight of One Pound-Mass

[
m Using unity conversion ratios, show that 1.00 Ibm weighs 1.00 Ibf on earth
m (Fig. 1-40).

Solution A mass of 1.00 Ibm is subjected to standard earth gravity. Its
weight in Ibf is to be determined.

Assumptions Standard sea-level conditions are assumed.

Properties The gravitational constant is g = 32.174 ft/s?.

Analysis We apply Newton’s second law to calculate the weight (force) that
corresponds to the known mass and acceleration. The weight of any object
is equal to its mass times the local value of gravitational acceleration. Thus,

1 Ibf

—— | = 1.00 Ibf
32.174 lbm-ft/sz>

W = mg = (1.00 Ibm)(32.174 ft/sz)(

Discussion The quantity in large parentheses in this equation is a unity
conversion ratio. Mass is the same regardless of its location. However, on
some other planet with a different value of gravitational acceleration, the
weight of 1 Ibm would differ from that calculated here.

When you buy a box of breakfast cereal, the printing may say “Net
weight: One pound (454 grams).” (See Fig. 1-41.) Technically, this means
that the cereal inside the box weighs 1.00 1bf on earth and has a mass of
453.6 g (0.4536 kg). Using Newton’s second law, the actual weight of the
cereal on earth is

N >< 1 kg
1 kg:m/s*>/\ 1000 g

W = mg = (453.6 £)(9.81 m/sz)< ) = 449N

1-7 = MODELING IN ENGINEERING

An engineering device or process can be studied either experimentally (test-
ing and taking measurements) or analytically (by analysis or calculations).
The experimental approach has the advantage that we deal with the actual
physical system, and the desired quantity is determined by measurement,
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(32.174 lbm-ft/s2| |1 kg-m/s?
 1mr N

1W 1kJ 1 kPa

11/s) (1000 N-m | (1000 N/m2

0.3048 m | [ 1 min 1 Ibm
11t 60s ) |0.45359 kg

FIGURE 1-39

Every unity conversion ratio (as well
as its inverse) is exactly equal to one.
Shown here are a few commonly used
unity conversion ratios.

FIGURE 1-40
A mass of 1 Ibm weighs 1 Ibf on earth.
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Weight?

I thought gram
was a unit of mass!

mewm
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One poung

FIGURE 141
A quirk in the metric system of units.
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FIGURE 1-42
Mathematical modeling of physical

problems.

within the limits of experimental error. However, this approach is expen-
sive, time-consuming, and often impractical. Besides, the system we are
studying may not even exist. For example, the entire heating and plumbing
systems of a building must usually be sized before the building is actu-
ally built on the basis of the specifications given. The analytical approach
(including the numerical approach) has the advantage that it is fast and
inexpensive, but the results obtained are subject to the accuracy of the
assumptions, approximations, and idealizations made in the analysis.
In engineering studies, often a good compromise is reached by reduc-
ing the choices to just a few by analysis, and then verifying the findings
experimentally.

The descriptions of most scientific problems involve equations that relate
the changes in some key variables to each other. Usually the smaller the
increment chosen in the changing variables, the more general and accurate
the description. In the limiting case of infinitesimal or differential changes
in variables, we obtain differential equations that provide precise math-
ematical formulations for the physical principles and laws by represent-
ing the rates of change as derivatives. Therefore, differential equations are
used to investigate a wide variety of problems in sciences and engineering
(Fig. 1-42). However, many problems encountered in practice can be solved
without resorting to differential equations and the complications associated
with them.

The study of physical phenomena involves two important steps. In the
first step, all the variables that affect the phenomena are identified, reason-
able assumptions and approximations are made, and the interdependence
of these variables is studied. The relevant physical laws and principles are
invoked, and the problem is formulated mathematically. The equation itself
is very instructive as it shows the degree of dependence of some variables
on others, and the relative importance of various terms. In the second step,
the problem is solved using an appropriate approach, and the results are
interpreted.

Many processes that seem to occur in nature randomly and without any
order are, in fact, being governed by some visible or not-so-visible physi-
cal laws. Whether we notice them or not, these laws are there, governing
consistently and predictably over what seem to be ordinary events. Most of
these laws are well defined and well understood by scientists. This makes
it possible to predict the course of an event before it actually occurs or to
study various aspects of an event mathematically without actually running
expensive and time-consuming experiments. This is where the power of
analysis lies. Very accurate results to meaningful practical problems can be
obtained with relatively little effort by using a suitable and realistic mathe-
matical model. The preparation of such models requires an adequate knowl-
edge of the natural phenomena involved and the relevant laws, as well as
sound judgment. An unrealistic model will obviously give inaccurate and
thus unacceptable results.

An analyst working on an engineering problem often finds himself or her-
self in a position to make a choice between a very accurate but complex
model, and a simple but not-so-accurate model. The right choice depends
on the situation at hand. The right choice is usually the simplest model that
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Rotor disk

Ground

(a) Actual engineering problem (b) Minimum essential model of the engineering problem

FIGURE 143

Simplified models are often used in fluid mechanics to obtain approximate solutions to difficult engineering problems.
Here, the helicopter’s rotor is modeled by a disk, across which is imposed a sudden change in pressure. The helicopter’s
body is modeled by a simple ellipsoid. This simplified model yields the essential features of the overall air flow field in the

vicinity of the ground.
Photo by John M. Cimbala.

yields satisfactory results (Fig 1-43). Also, it is important to consider the
actual operating conditions when selecting equipment.

Preparing very accurate but complex models is usually not so difficult.
But such models are not much use to an analyst if they are very difficult
and time-consuming to solve. At the minimum, the model should reflect the
essential features of the physical problem it represents. There are many sig-
nificant real-world problems that can be analyzed with a simple model. But
it should always be kept in mind that the results obtained from an analysis
are at best as accurate as the assumptions made in simplifying the problem.
Therefore, the solution obtained should not be applied to situations for
which the original assumptions do not hold.

A solution that is not quite consistent with the observed nature of the
problem indicates that the mathematical model used is too crude. In that
case, a more realistic model should be prepared by eliminating one or more
of the questionable assumptions. This will result in a more complex problem
that, of course, is more difficult to solve. Thus any solution to a problem
should be interpreted within the context of its formulation.

1-8 = PROBLEM-SOLVING TECHNIQUE

The first step in learning any science is to grasp the fundamentals and to gain
a sound knowledge of it. The next step is to master the fundamentals by test-
ing this knowledge. This is done by solving significant real-world problems.
Solving such problems, especially complicated ones, requires a systematic
approach. By using a step-by-step approach, an engineer can reduce the
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SOLUTION solution of a complicated problem into the solution of a series of simple
/ problems (Fig. 1-44). When you are solving a problem, we recommend that
& you use the following steps zealously as applicable. This will help you avoid
%.ﬁ‘ T some of the common pitfalls associated with problem solving.
a L
> >
=  Step 1: Problem Statement
% In your own words, briefly state the problem, the key information given,
T T = and the quantities to be found. This is to make sure that you understand the
problem and the objectives before you attempt to solve the problem.
FIGURE 144

A step-by-step approach can greatly
simplify problem solving.

Step 2: Schematic

Draw a realistic sketch of the physical system involved, and list the relevant
information on the figure. The sketch does not have to be something elabo-
rate, but it should resemble the actual system and show the key features.
Indicate any energy and mass interactions with the surroundings. Listing
the given information on the sketch helps one to see the entire problem
at once. Also, check for properties that remain constant during a process

(such as temperature during an isothermal process), and indicate them on
o the sketch.

Given: Air temperature in Denver

Step 3: Assumptions and Approximations

State any appropriate assumptions and approximations made to simplify
the problem to make it possible to obtain a solution. Justify the ques-
tionable assumptions. Assume reasonable values for missing quantities

To be found: Density of air

Missing information: Atmospheric
pressure

Assumption #1: Take P = 1 atm

fe (Inappropriate. Ignores effect of
altitude. Will cause more than
15% error.)

effects such as weather.)

Assumption #2: Take P = 0.83 atm
(Appropriate. Ignores only minor

FIGURE 1-45

The assumptions made while solving

an engineering problem must be
reasonable and justifiable.

that are necessary. For example, in the absence of specific data for atmo-
spheric pressure, it can be taken to be 1 atm. However, it should be noted
in the analysis that the atmospheric pressure decreases with increasing
elevation. For example, it drops to 0.83 atm in Denver (elevation 1610 m)
(Fig. 1-45).

Step 4: Physical Laws

Apply all the relevant basic physical laws and principles (such as the con-
servation of mass), and reduce them to their simplest form by utilizing the
assumptions made. However, the region to which a physical law is applied
must be clearly identified first. For example, the increase in speed of water
flowing through a nozzle is analyzed by applying conservation of mass
between the inlet and outlet of the nozzle.

Step 5: Properties

Determine the unknown properties at known states necessary to solve the
problem from property relations or tables. List the properties separately, and
indicate their source, if applicable.

Step 6: Calculations

Substitute the known quantities into the simplified relations and perform the
calculations to determine the unknowns. Pay particular attention to the units
and unit cancellations, and remember that a dimensional quantity without a
unit is meaningless. Also, don’t give a false implication of high precision



by copying all the digits from the screen of the calculator—round the final
results to an appropriate number of significant digits (Section 1-10).

Step 7: Reasoning, Verification, and Discussion
Check to make sure that the results obtained are reasonable and intuitive,
and verify the validity of the questionable assumptions. Repeat the calcula-
tions that resulted in unreasonable values. For example, under the same test
conditions the aerodynamic drag acting on a car should nor increase after
streamlining the shape of the car (Fig. 1-46).

Also, point out the significance of the results, and discuss their implications.
State the conclusions that can be drawn from the results, and any recommen-
dations that can be made from them. Emphasize the limitations under which
the results are applicable, and caution against any possible misunderstand-
ings and using the results in situations where the underlying assumptions do
not apply. For example, if you determined that using a larger-diameter pipe
in a proposed pipeline will cost an additional $5000 in materials, but it will
reduce the annual pumping costs by $3000, indicate that the larger-diameter
pipeline will pay for its cost differential from the electricity it saves in less
than two years. However, also state that only additional material costs associ-
ated with the larger-diameter pipeline are considered in the analysis.

Keep in mind that the solutions you present to your instructors, and
any engineering analysis presented to others, is a form of communication.
Therefore neatness, organization, completeness, and visual appearance are
of utmost importance for maximum effectiveness (Fig 1-47). Besides, neat-
ness also serves as a great checking tool since it is very easy to spot errors
and inconsistencies in neat work. Carelessness and skipping steps to save
time often end up costing more time and unnecessary anxiety.

The approach described here is used in the solved example problems with-
out explicitly stating each step, as well as in the Solutions Manual of this
text. For some problems, some of the steps may not be applicable or neces-
sary. For example, often it is not practical to list the properties separately.
However, we cannot overemphasize the importance of a logical and orderly
approach to problem solving. Most difficulties encountered while solving a
problem are not due to a lack of knowledge; rather, they are due to a lack of
organization. You are strongly encouraged to follow these steps in problem
solving until you develop your own approach that works best for you.

1-9 = ENGINEERING SOFTWARE PACKAGES

You may be wondering why we are about to undertake an in-depth study of
the fundamentals of another engineering science. After all, almost all such
problems we are likely to encounter in practice can be solved using one
of several sophisticated software packages readily available in the market
today. These software packages not only give the desired numerical results,
but also supply the outputs in colorful graphical form for impressive presen-
tations. It is unthinkable to practice engineering today without using some
of these packages. This tremendous computing power available to us at the
touch of a button is both a blessing and a curse. It certainly enables engi-
neers to solve problems easily and quickly, but it also opens the door for
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Before streamlining

Unreasonable!  After streamlining

FIGURE 1-46

The results obtained from an
engineering analysis must be checked
for reasonableness.

FIGURE 1-47
Neatness and organization are highly
valued by employers.
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FIGURE 1-48

An excellent word-processing program
does not make a person a good writer;
it simply makes a good writer a more
efficient writer.

© Ingram Publishing RF

abuses and misinformation. In the hands of poorly educated people, these
software packages are as dangerous as sophisticated powerful weapons in
the hands of poorly trained soldiers.

Thinking that a person who can use the engineering software packages
without proper training in the fundamentals can practice engineering is like
thinking that a person who can use a wrench can work as a car mechanic. If
it were true that the engineering students do not need all these fundamental
courses they are taking because practically everything can be done by com-
puters quickly and easily, then it would also be true that the employers would
no longer need high-salaried engineers since any person who knows how
to use a word-processing program can also learn how to use those software
packages. However, the statistics show that the need for engineers is on the
rise, not on the decline, despite the availability of these powerful packages.

We should always remember that all the computing power and the engi-
neering software packages available today are just rools, and tools have
meaning only in the hands of masters. Having the best word-processing
program does not make a person a good writer, but it certainly makes the
job of a good writer much easier and makes the writer more productive
(Fig. 1-48). Hand calculators did not eliminate the need to teach our chil-
dren how to add or subtract, and sophisticated medical software packages
did not take the place of medical school training. Neither will engineering
software packages replace the traditional engineering education. They will
simply cause a shift in emphasis in the courses from mathematics to physics.
That is, more time will be spent in the classroom discussing the physical
aspects of the problems in greater detail, and less time on the mechanics of
solution procedures.

All these marvelous and powerful tools available today put an extra bur-
den on today’s engineers. They must still have a thorough understanding
of the fundamentals, develop a “feel” of the physical phenomena, be able
to put the data into proper perspective, and make sound engineering judg-
ments, just like their predecessors. However, they must do it much better,
and much faster, using more realistic models because of the powerful tools
available today. The engineers in the past had to rely on hand calculations,
slide rules, and later hand calculators and computers. Today they rely on
software packages. The easy access to such power and the possibility of a
simple misunderstanding or misinterpretation causing great damage make it
more important today than ever to have solid training in the fundamentals
of engineering. In this text we make an extra effort to put the emphasis on
developing an intuitive and physical understanding of natural phenomena
instead of on the mathematical details of solution procedures.

Engineering Equation Solver (EES)

EES is a program that solves systems of linear or nonlinear algebraic or
differential equations numerically. It has a large library of built-in thermo-
dynamic property functions as well as mathematical functions, and allows
the user to supply additional property data. Unlike some software packages,
EES does not solve engineering problems; it only solves the equations sup-
plied by the user. Therefore, the user must understand the problem and for-
mulate it by applying any relevant physical laws and relations. EES saves
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the user considerable time and effort by simply solving the resulting math-
ematical equations. This makes it possible to attempt significant engineering
problems not suitable for hand calculations and to conduct parametric stud-
ies quickly and conveniently. EES is a very powerful yet intuitive program
that is very easy to use, as shown in Example 1-5. The use and capabilities
of EES are explained in Appendix 3 on the text website.

|
m EXAMPLE 1-5 Solving a System of Equations with EES

[
m The difference of two numbers is 4, and the sum of the squares of these two
m numbers is equal to the sum of the numbers plus 20. Determine these two

B numbers.
SOLUTION Relations are given for the difference and the sum of the | B8 Equations Window =21
squares of two numbers. The two numbers are to be determined. " 5
Analysis We start the EES program by double-clicking on its icon, open a | ey 2=y 2D

new file, and type the following on the blank screen that appears: i I
S e

1 Main |
| . 5 s 2o

x-y=4
x"2+y " 2=x+y+20 e L i
I Unit Settings: 51 C kPa kJ mass deg
which is an exact mathematical expression of the problem statement with | y=1
x and y denoting the unknown numbers. The solution to this system of two
nonlinear equations with two unknowns is obtained by a single click on the

“calculator” icon on the taskbar. It gives (Fig. 1-49) BRI RRORIR R AREIR BRI

x=5 and y=1

Calculation time = .1 sec.

Discussion Note that all we did is formulate the problem as we would on
paper; EES took care of all the mathematical details of solution. Also note
that equations can be linear or nonlinear, and they can be entered in any FIGURE 1-49
order with unknowns on either side. Friendly equation solvers such as EES
allow the user to concentrate on the physics of the problem without worry-
ing about the mathematical complexities associated with the solution of the
resulting system of equations.

EES screen images for Example 1-5.

CFD Software

Computational fluid dynamics (CFD) is used extensively in engineering
and research, and we discuss CFD in detail in Chapter 15. We also show
example solutions from CFD throughout the textbook since CFD graphics
are great for illustrating flow streamlines, velocity, and pressure distribu-
tions, etc.— beyond what we are able to visualize in the laboratory. However,
because there are several different commercial CFD packages available
for users, and student access to these codes is highly dependent on depart-
mental licenses, we do not provide end-of-chapter CFD problems that are
tied to any particular CFD package. Instead, we provide some general
CFD problems in Chapter 15 , and we also maintain a website (see link
at www.mhhe.com/cengel) containing CFD problems that can be solved
with a number of different CFD programs. Students are encouraged to work
through some of these problems to become familiar with CFD.
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FIGURE 1-50

Illustration of accuracy versus
precision. Shooter A is more precise,
but less accurate, while shooter B is
more accurate, but less precise.

1-10 = ACCURACY, PRECISION,
AND SIGNIFICANT DIGITS

In engineering calculations, the supplied information is not known to more
than a certain number of significant digits, usually three digits. Conse-
quently, the results obtained cannot possibly be precise to more significant
digits. Reporting results in more significant digits implies greater precision
than exists, and it should be avoided.

Regardless of the system of units employed, engineers must be aware of
three principles that govern the proper use of numbers: accuracy, precision, and
significant digits. For engineering measurements, they are defined as follows:

e Accuracy error (inaccuracy) is the value of one reading minus the
true value. In general, accuracy of a set of measurements refers to the
closeness of the average reading to the true value. Accuracy is generally
associated with repeatable, fixed errors.

* Precision error is the value of one reading minus the average of readings.
In general, precision of a set of measurements refers to the fineness of the
resolution and the repeatability of the instrument. Precision is generally
associated with unrepeatable, random errors.

 Significant digits are digits that are relevant and meaningful.

A measurement or calculation can be very precise without being very
accurate, and vice versa. For example, suppose the true value of wind speed
is 25.00 m/s. Two anemometers A and B take five wind speed readings each:

Anemometer A: 25.50, 25.69, 25.52, 25.58, and 25.61 m/s. Average
of all readings = 25.58 m/s.

Anemometer B: 26.3, 24.5, 23.9, 26.8, and 23.6 m/s. Average of all
readings = 25.02 m/s.

Clearly, anemometer A is more precise, since none of the readings differs
by more than 0.11 m/s from the average. However, the average is 25.58 m/s,
0.58 m/s greater than the true wind speed; this indicates significant bias
error, also called constant error or systematic error. On the other hand,
anemometer B is not very precise, since its readings swing wildly from the
average; but its overall average is much closer to the true value. Hence,
anemometer B is more accurate than anemometer A, at least for this set of
readings, even though it is less precise. The difference between accuracy
and precision can be illustrated effectively by analogy to shooting arrows at
a target, as sketched in Fig. 1-50. Shooter A is very precise, but not very
accurate, while shooter B has better overall accuracy, but less precision.
Many engineers do not pay proper attention to the number of significant
digits in their calculations. The least significant numeral in a number implies
the precision of the measurement or calculation. For example, a result
written as 1.23 (three significant digits) implies that the result is precise to
within one digit in the second decimal place; i.e., the number is somewhere
between 1.22 and 1.24. Expressing this number with any more digits would
be misleading. The number of significant digits is most easily evaluated
when the number is written in exponential notation; the number of signifi-
cant digits can then simply be counted, including zeroes. Alternatively, the
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least significant digit can be underlined to indicate the author’s intent. Some  EFVYNE K]

examples are shown in Table 1-3. v L
When performing calculations or manipulations of several parameters, the el g it

final result is generally only as precise as the least precise parameter in the Number of
problem. For example, suppose A and B are multiplied to obtain C. If A = Exponential Significant
2.3601 (five significant digits), and B = 0.34 (two significant digits), then __Number __ Notation _ Digits
C = 0.80 (only two digits are significant in the final result). Note that most 12.3  1.23x 10! 3

students are tempted to write C = 0.802434, with six significant digits, since 123,000 1.23x10° 3
that is what is displayed on a calculator after multiplying these two numbers. 0.00123 1.23x10°° 3
Let’s analyze this simple example carefully. Suppose the exact value of 40,300 4.03x10* 3
B is 0.33501, which is read by the instrument as 0.34. Also suppose A is 40,300. 4.0300 x 10: 5
exactly 2.3601, as measured by a more accurate and precise instrument. In 0'00088(5)2 5'650g X %873 ‘21
this case, C = A X B = (0.79066 to five significant digits. Note that our first 6.006 6 i(( 103 1
answer, C = 0.80 is off by one digit in the second decimal place. Likewise,
if B is 0.34499, and is read by the instrument as 0.34, the product of A and
B would be 0.81421 to five significant digits. Our original answer of 0.80
is again off by one digit in the second decimal place. The main point here
is that 0.80 (to two significant digits) is the best one can expect from this
multiplication since, to begin with, one of the values had only two signifi-
cant digits. Another way of looking at this is to say that beyond the first two
digits in the answer, the rest of the digits are meaningless or not signifi-
cant. For example, if one reports what the calculator displays, 2.3601 times
0.34 equals 0.802434, the last four digits are meaningless. As shown, the | O
final result may lie between 0.79 and 0.81—any digits beyond the two sig-

Given: Volume: V=3.75L

nificant digits are not only meaningless, but misleading, since they imply to | © Density: p = 0.845 kg/L
the reader more precision than is really there. (3 significant digits)

As another example, consider a 3.75-L container filled with gasoline Also, 3.75 x 0.845 = 3.16875
whose density is 0.845 kg/L, and determine its mass. Probably the first
thought that comes to your mind is to multiply the volume and density Find: Mass: m = pV/ = 3.16875 kg

to obtain 3.16875 kg for the mass, which falsely implies that the mass so
determined is precise to six significant digits. In reality, however, the mass
cannot be more precise than three significant digits since both the volume
and the density are precise to three significant digits only. Therefore, the
result should be rounded to three significant digits, and the mass should be
reported to be 3.17 kg instead of what the calculator displays (Fig. 1-51).
The result 3.16875 kg would be correct only if the volume and density
were given to be 3.75000 L and 0.845000 kg/L, respectively. The value
3.75 L implies that we are fairly confident that the volume is precise within | O
+0.01 L, and it cannot be 3.74 or 3.76 L. However, the volume can be
3.746, 3.750, 3.753, etc., since they all round to 3.75 L.

You should also be aware that sometimes we knowingly introduce small FIGURE 1-51
errors in order to avoid the trouble of searching for more accurate data. A result with more significant digits
For example, when dealing with liquid water, we often use the value of than that of given data falsely implies
1000 kg/m? for density, which is the density value of pure water at 0°C. more precision.
Using this value at 75°C will result in an error of 2.5 percent since the den-
sity at this temperature is 975 kg/m®. The minerals and impurities in the
water will introduce additional error. This being the case, you should have
no reservation in rounding the final results to a reasonable number of sig-
nificant digits. Besides, having a few percent uncertainty in the results of
engineering analysis is usually the norm, not the exception.

O |Rounding to 3 significant digits:
m=3.17kg
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FIGURE 1-52

Photo for Example 1-6 for the
measurement of volume flow rate.
Photo by John M. Cimbala.

When writing intermediate results in a computation, it is advisable to
keep several “extra” digits to avoid round-off errors; however, the final
result should be written with the number of significant digits taken into
consideration. You must also keep in mind that a certain number of signifi-
cant digits of precision in the result does not necessarily imply the same
number of digits of overall accuracy. Bias error in one of the readings may,
for example, significantly reduce the overall accuracy of the result, perhaps
even rendering the last significant digit meaningless, and reducing the over-
all number of reliable digits by one. Experimentally determined values are
subject to measurement errors, and such errors are reflected in the results
obtained. For example, if the density of a substance has an uncertainty of
2 percent, then the mass determined using this density value will also have
an uncertainty of 2 percent.

Finally, when the number of significant digits is unknown, the accepted
engineering standard is three significant digits. Therefore, if the length of a
pipe is given to be 40 m, we will assume it to be 40.0 m in order to justify
using three significant digits in the final results.

EXAMPLE 1-6 Significant Digits and Volume Flow Rate

Jennifer is conducting an experiment that uses cooling water from a garden
hose. In order to calculate the volume flow rate of water through the hose,
she times how long it takes to fill a container (Fig. 1-52). The volume of
water collected is V = 1.1 gal in time period At = 45.62 s, as measured
with a stopwatch. Calculate the volume flow rate of water through the hose
in units of cubic meters per minute.

SOLUTION Volume flow rate is to be determined from measurements of
volume and time period.

Assumptions 1 Jennifer recorded her measurements properly, such that
the volume measurement is precise to two significant digits while the time
period is precise to four significant digits. 2 No water is lost due to splash-
ing out of the container.

Analysis Volume flow rate V is volume displaced per unit time and is
expressed as

. AV
Volume flow rate: V= A7

Substituting the measured values, the volume flow rate is determined to be

. 1lgal (3.7854 X 1073 m3) < 60 s
45.62's

- > = 5.5 X 10~3m>*/min
1 min

1 gal
Discussion The final result is listed to two significant digits since we can-
not be confident of any more precision than that. If this were an interme-
diate step in subsequent calculations, a few extra digits would be carried
along to avoid accumulated round-off error. In such a case, the volume flow
rate would be written as V = 5.4765 x 10-3 m3/min. Based on the given
information, we cannot say anything about the accuracy of our result, since
we have no information about systematic errors in either the volume mea-
surement or the time measurement.
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FIGURE 1-53

An instrument with many digits of
resolution (stopwatch c¢) may be less
accurate than an instrument with few
digits of resolution (stopwatch a).
What can you say about stopwatches b
and d?

Also keep in mind that good precision does not guarantee good accuracy.
For example, if the batteries in the stopwatch were weak, its accuracy could
be quite poor, yet the readout would still be displayed to four significant dig-

its of precision.

In common practice, precision is often associated with resolution, which
is a measure of how finely the instrument can report the measurement. For
example, a digital voltmeter with five digits on its display is said to be more
precise than a digital voltmeter with only three digits. However, the number
of displayed digits has nothing to do with the overall accuracy of the mea-
surement. An instrument can be very precise without being very accurate
when there are significant bias errors. Likewise, an instrument with very few
displayed digits can be more accurate than one with many digits (Fig. 1-53).

SUMMARY

In this chapter some basic concepts of fluid mechanics are
introduced and discussed. A substance in the liquid or gas
phase is referred to as a fluid. Fluid mechanics is the science
that deals with the behavior of fluids at rest or in motion
and the interaction of fluids with solids or other fluids at the
boundaries.

The flow of an unbounded fluid over a surface is external
flow, and the flow in a pipe or duct is internal flow if the
fluid is completely bounded by solid surfaces. A fluid
flow is classified as being compressible or incompressible,
depending on the density variation of the fluid during flow.
The densities of liquids are essentially constant, and thus the
flow of liquids is typically incompressible. The term steady
implies no change with time. The opposite of steady is
unsteady. The term uniform implies no change with location
over a specified region. A flow is said to be one-dimensional
when the properties or variables change in one dimension
only. A fluid in direct contact with a solid surface sticks to

the surface and there is no slip. This is known as the no-slip
condition, which leads to the formation of boundary layers
along solid surfaces. In this book we concentrate on steady
incompressible viscous flows—both internal and external.

A system of fixed mass is called a closed system, and a
system that involves mass transfer across its boundaries is
called an open system or control volume. A large number
of engineering problems involve mass flow in and out of a
system and are therefore modeled as control volumes.

In engineering calculations, it is important to pay particular
attention to the units of the quantities to avoid errors caused
by inconsistent units, and to follow a systematic approach. It
is also important to recognize that the information given is
not known to more than a certain number of significant digits,
and the results obtained cannot possibly be accurate to more
significant digits. The information given on dimensions and
units; problem-solving technique; and accuracy, precision,
and significant digits will be used throughout the entire text.
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(a) (b)

FIGURE 1-54

Comparison of the vortex structure
created by: (a) a water drop after
impacting a pool of water (inverted,
from Peck and Sigurdson, 1994), and
(b) an above-ground nuclear test in
Nevada in 1957 (U.S. Department of
Energy). The 2.6 mm drop was dyed
with fluorescent tracer and illuminated
by a strobe flash 50 ms after it had
fallen 35 mm and impacted the clear
pool. The drop was approximately
spherical at the time of impact with
the clear pool of water. Interruption of
a laser beam by the falling drop was
used to trigger a timer that controlled
the time of the strobe flash after impact
of the drop. Details of the careful
experimental procedure necessary to
create the drop photograph are given by
Peck and Sigurdson (1994) and Peck
et al. (1995). The tracers added to the
flow in the bomb case were primarily
heat and dust. The heat is from the orig-
inal fireball which for this particular
test (the “Priscilla” event of Operation
Plumbob) was large enough to reach
the ground from where the bomb was
initially suspended. Therefore, the
tracer’s initial geometric condition
was a sphere intersecting the ground.

(a) From Peck, B., and Sigurdson, L. W,,
Phys. Fluids, 6(2)(Part 1), 564, 1994.
Used by permission of the author.

(b) United States Department of Energy.
Photo from Lorenz Sigurdson.

O APPLICATION SPOTLIGHT

Guest Author: Lorenz Sigurdson, Vortex Fluid Dynamics Lab,
University of Alberta

Why do the two images in Fig. 1-54 look alike? Figure 1-545 shows an above-
ground nuclear test performed by the U.S. Department of Energy in 1957. An
atomic blast created a fireball on the order of 100 m in diameter. Expansion
is so quick that a compressible flow feature occurs: an expanding spherical
shock wave. The image shown in Fig. 1-54a is an everyday innocuous event:
an inverted image of a dye-stained water drop after it has fallen into a pool of
water, looking from below the pool surface. It could have fallen from your spoon
into a cup of coffee, or been a secondary splash after a raindrop hit a lake. Why
is there such a strong similarity between these two vastly different events? The
application of fundamental principles of fluid mechanics learned in this book
will help you understand much of the answer, although one can go much deeper.
The water has higher density (Chap. 2) than air, so the drop has experienced
negative buoyancy (Chap. 3) as it has fallen through the air before impact. The
fireball of hot gas is less dense than the cool air surrounding it, so it has posi-
tive buoyancy and rises. The shock wave (Chap. 12) reflecting from the ground
also imparts a positive upward force to the fireball. The primary structure at
the top of each image is called a vortex ring. This ring is a mini-tornado of
concentrated vorticity (Chap. 4) with the ends of the tornado looping around
to close on itself. The laws of kinematics (Chap. 4) tell us that this vortex ring
will carry the fluid in a direction toward the top of the page. This is expected in
both cases from the forces applied and the law of conservation of momentum
applied through a control volume analysis (Chap. 5). One could also analyze
this problem with differential analysis (Chaps. 9 and 10) or with computational
fluid dynamics (Chap. 15). But why does the shape of the tracer material look
so similar? This occurs if there is approximate geometric and kinematic simi-
larity (Chap. 7), and if the flow visualization (Chap. 4) technique is similar.
The passive tracers of heat and dust for the bomb, and fluorescent dye for the
drop, were introduced in a similar manner as noted in the figure caption.
Further knowledge of kinematics and vortex dynamics can help explain
the similarity of the vortex structure in the images to much greater detail, as
discussed by Sigurdson (1997) and Peck and Sigurdson (1994). Look at the
lobes dangling beneath the primary vortex ring, the striations in the “stalk,”
and the ring at the base of each structure. There is also topological similarity
of this structure to other vortex structures occurring in turbulence. Compari-
son of the drop and bomb has given us a better understanding of how turbu-
lent structures are created and evolve. What other secrets of fluid mechanics
are left to be revealed in explaining the similarity between these two flows?
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PROBLEMS®

Introduction, Classification, and System

1-1C  What is a fluid? How does it differ from a solid?
How does a gas differ from a liquid?

1-2C Consider the flow of air over the wings of an aircraft.
Is this flow internal or external? How about the flow of gases
through a jet engine?

1-3C Define incompressible flow and incompressible fluid.
Must the flow of a compressible fluid necessarily be treated
as compressible?

1-4C Define internal, external, and open-channel flows.

1-5C How is the Mach number of a flow defined? What
does a Mach number of 2 indicate?

1-6C When an airplane is flying at a constant speed rela-
tive to the ground, is it correct to say that the Mach number
of this airplane is also constant?

1-7C Consider the flow of air at a Mach number of 0.12.
Should this flow be approximated as being incompressible?

1-8C  What is the no-slip condition? What causes it?

1-9C What is forced flow? How does it differ from natural
flow? Is flow caused by winds forced or natural flow?

1-10C  What is a boundary layer? What causes a boundary
layer to develop?

1-11C What is the difference between the classical and the
statistical approaches?

1-12C

1-13C Define stress, normal stress, shear stress, and pressure.

What is a steady-flow process?

1-14C  When analyzing the acceleration of gases as they
flow through a nozzle, what would you choose as your sys-
tem? What type of system is this?

1-15C  When is a system a closed system, and when is it a
control volume?

1-16C You are trying to understand how a reciprocating air
compressor (a piston-cylinder device) works. What system
would you use? What type of system is this?

1-17C What are system, surroundings, and boundary?

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the icon are solved using EES, and complete
solutions together with parametric studies are included on the
text website. Problems with the icon are comprehensive in
nature and are intended to be solved with an equation solver
such as EES.

Mass, Force, and Units
1-18C Explain why the light-year has the dimension of length.
1-19C What is the difference between kg-mass and kg-force?

1-20C  What is the difference between pound-mass and
pound-force?

1-21C In a news article, it is stated that a recently devel-
oped geared turbofan engine produces 15,000 pounds of
thrust to propel the aircraft forward. Is “pound” mentioned
here Ibm or Ibf? Explain.

1-22C What is the net force acting on a car cruising at a
constant velocity of 70 km/h (a) on a level road and (b) on
an uphill road?

1-23 A 6-kg plastic tank that has a volume of 0.18 m? is
filled with liquid water. Assuming the density of water is
1000 kg/m?, determine the weight of the combined system.

1-24 What is the weight, in N, of an object with a mass of
200 kg at a location where g = 9.6 m/s??

1-25 What is the weight of a 1-kg substance in N, kN,
kg-m/s?, kgf, Ibm-ft/s?, and 1bf?

1-26 Determine the mass and the weight of the air contained
in a room whose dimensions are 6 m X 6 m X 8 m. Assume
the density of the air is 1.16 kg/m®.  Answers: 334.1 kg, 3277 N

1-27 While solving a problem, a person ends up with the
equation £ = 16 kJ + 7 kJ/kg at some stage. Here E is the
total energy and has the unit of kilojoules. Determine how to
correct the error and discuss what may have caused it.

1-28E A 195-Ibm astronaut took his bathroom scale
(a spring scale) and a beam scale (compares masses) to the
moon where the local gravity is g = 5.48 ft/s>. Determine
how much he will weigh (a) on the spring scale and (b) on
the beam scale. Answers: (a) 33.2 Ibf, (b) 195 Ibf

1-29 The acceleration of high-speed aircraft is sometimes
expressed in g’s (in multiples of the standard acceleration of
gravity). Determine the net force, in N, that a 90-kg man would
experience in an aircraft whose acceleration is 6 g’s.

1-30 AWy A 5-kg rock is thrown upward with a force of

Y€’ 150 N at a location where the local gravitational
acceleration is 9.79 m/s?. Determine the acceleration of the
rock, in m/s.

1-31 S\ Solve Prob. 1-30 using EES (or other) software.
<= Print out the entire solution, including the
numerical results with proper units.

1-32 The value of the gravitational acceleration g decreases
with elevation from 9.807 m/s” at sea level to 9.767 m/s* at
an altitude of 13,000 m, where large passenger planes cruise.
Determine the percent reduction in the weight of an airplane
cruising at 13,000 m relative to its weight at sea level.
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1-33 At 45° latitude, the gravitational acceleration as a
function of elevation z above sea level is given by g = a — bz,
where a = 9.807 m/s*> and b = 3.32 X 1076 s72 Determine
the height above sea level where the weight of an object will
decrease by 1 percent. Answer: 29,500 m

1-34 A 4-kW resistance heater in a water heater runs for
2 hours to raise the water temperature to the desired level.
Determine the amount of electric energy used in both kWh
and kJ.

1-35 The gas tank of a car is filled with a nozzle that dis-
charges gasoline at a constant flow rate. Based on unit con-
siderations of quantities, obtain a relation for the filling time
in terms of the volume V of the tank (in L) and the discharge
rate of gasoline (V, in L/s).

1-36 A pool of volume V (in m®) is to be filled with water
using a hose of diameter D (in m). If the average discharge
velocity is V (in m/s) and the filling time is ¢ (in s), obtain a
relation for the volume of the pool based on unit consider-
ations of quantities involved.

1-37 Based on unit considerations alone, show that the
power needed to accelerate a car of mass m (in kg) from rest
to velocity V (in m/s) in time interval ¢ (in s) is proportional
to mass and the square of the velocity of the car and inversely
proportional to the time interval.

1-38 An airplane flies horizontally at 70 m/s. Its propel-
ler delivers 1500 N of thrust (forward force) to overcome
aerodynamic drag (backward force). Using dimensional
reasoning and unity converstion ratios, calculate the use-
ful power delivered by the propeller in units of kW and
horsepower.

1-39 If the airplane of Problem 1-38 weighs 1450 Ibf, esti-
mate the lift force produced by the airplane’s wings (in 1bf
and newtons) when flying at 70.0 m/s.

1-40E The boom of a fire truck raises a fireman (and his
equipment—total weight 280 Ibf) 40 ft into the air to fight
a building fire. (@) Showing all your work and using unity
conversion ratios, calculate the work done by the boom on
the fireman in units of Btu. (b) If the useful power supplied
by the boom to lift the fireman is 3.50 hp, estimate how long
it takes to lift the fireman.

1-41 A man goes to a traditional market to buy a steak for
dinner. He finds a 12-oz steak (1 Ibm = 16 oz) for $3.15.
He then goes to the adjacent international market and finds a
320-g steak of identical quality for $3.30. Which steak is the
better buy?

1-42  Water at 20°C from a garden hose fills a 2.0 L con-
tainer in 2.85 s. Using unity converstion ratios and showing
all your work, calculate the volume flow rate in liters per
minute (Lpm) and the mass flow rate in kg/s.

1-43 A forklift raises a 90.5 kg crate 1.80 m. (a) Showing
all your work and using unity conversion ratios, calculate the

work done by the forklift on the crane, in units of kJ. (b) If it
takes 12.3 seconds to lift the crate, calculate the useful power
supplied to the crate in kilowatts.

Modeling and Solving Engineering Problems

1-44C When modeling an engineering process, how is the
right choice made between a simple but crude and a com-
plex but accurate model? Is the complex model necessarily a
better choice since it is more accurate?

1-45C What is the difference between the analytical and
experimental approach to engineering problems? Discuss the
advantages and disadvantages of each approach.

1-46C What is the importance of modeling in engineering?
How are the mathematical models for engineering processes
prepared?

1-47C What is the difference between precision and accuracy?
Can a measurement be very precise but inaccurate? Explain.

1-48C How do the differential equations in the study of a
physical problem arise?

1-49C What is the value of the engineering software pack-
ages in (a) engineering education and () engineering practice?

2x —y+z=9
3> +2y=27+2
xy + 2z =14

X —y2=105
3xy +y =46

real root of this equation

Xy —z=15

x =3y + xz= -2
4.2

xX+y—2z

Review Problems

1-54 The reactive force developed by a jet engine to push
an airplane forward is called thrust, and the thrust developed
by the engine of a Boeing 777 is about 85,000 1bf. Express
this thrust in N and kgf.



1-55 The weight of bodies may change somewhat from one
location to another as a result of the variation of the gravita-
tional acceleration g with elevation. Accounting for this varia-
tion using the relation in Prob. 1-33, determine the weight of
an 80.0-kg person at sea level (z = 0), in Denver (z = 1610 m),
and on the top of Mount Everest (z = 8848 m).

1-56E A student buys a 5000 Btu window air conditioner
for his apartment bedroom. He monitors it for one hour on
a hot day and determines that it operates approximately
60 percent of the time (duty cycle = 60 percent) to keep the
room at nearly constant temperature. (a) Showing all your
work and using unity conversion ratios, calculate the rate of
heat transfer into the bedroom through the walls, windows,
etc. in units of Btu/h and in units of kW. (b) If the energy
efficiency ratio (EER) of the air conditioner is 9.0 and elec-
tricity costs 7.5 cents per kilowatt-hr, calculate how much it
costs (in cents) for him to run the air conditioner for one hour.

1-57 For liquids, the dynamic viscosity w, which is a measure
of resistance against flow is approximated as u = al0”T~9,
where T is the absolute temperature, and a, b and ¢ are experi-
mental constants. Using the data listed in Table A-7 for metha-
nol at 20°C, 40°C and 60°C, determine the constant a, b and c.

1-58 An important design consideration in two-phase pipe
flow of solid-liquid mixtures is the terminal settling velocity
below, which the flow becomes unstable and eventually the
pipe becomes clogged. On the basis of extended transportation
tests, the terminal settling velocity of a solid particle in the rest
water given by V, = F, \/2¢D(S — 1), where F, is an experi-
mental coefficient, g the gravitational acceleration, D the pipe
diameter, and S the specific gravity of solid particle. What is the
dimension of F,? Is this equation dimensionally homogeneous?

1-59 Consider the flow of air through a wind turbine whose
blades sweep an area of diameter D (in m). The average air
velocity through the swept area is V (in m/s). On the bases of
the units of the quantities involved, show that the mass flow
rate of air (in kg/s) through the swept area is proportional to
air density, the wind velocity, and the square of the diameter
of the swept area.

1-60 The drag force exerted on a car by air depends on
a dimensionless drag coefficient, the density of air, the car
velocity, and the frontal area of the car. That is, F), = function
(Cbrag, Atron, P> V) Based on unit considerations alone, obtain
a relation for the drag force.

FIGURE P1-60
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Fundamentals of Engineering (FE) Exam Problems

1-61 The speed of an aircraft is given to be 260 m/s in air.
If the speed of sound at that location is 330 m/s, the flight of
aircraft is

(a) Sonic  (b) Subsonic (d) Hypersonic

1-62 The speed of an aircraft is given to be 1250 km/h.
If the speed of sound at that location is 315 m/s, the Mach
number is

(@)0.5 (b)0.85 (¢)1.0 (d)1.10 (e)1.20

1-63 If mass, heat, and work are not allowed to cross the
boundaries of a system, the system is called

(a) Isolated (b) Isothermal (c) Adiabatic (d) Control mass

(e) Control volume

(c¢) Supersonic

1-64 The weight of a 10-kg mass at sea level is
(@) 981 N (b)322kgf (c)98.1N (d) 10N (e)100 N

1-65 The weight of a 1-Ibm mass is
(a) 1 Iom-ft/s> (b) 9.81 Ibf (c) 9.81 N (d) 32.2 Ibf (e) 1 Ibf

1-66 One kJ is NOT equal to
(a) 1 kPa-m? (b) 1 kN-m (c) 0.001 MJ (d) 1000 J (e) 1 kg-m?/s*

1-67 Which is a unit for the amount of energy?
(a) Btu/h () kWh (c¢) kcal/h  (d) hp (e) kW

1-68 A hydroelectric power plant operates at its rated
power of 7 MW. If the plant has produced 26 million kWh of
electricity in a specified year, the number of hours the plant
has operated that year is

(@) 1125h (b)2460h (c) 2893 h (d)3714h (e) 8760 h

Design and Essay Problems

1-69 Write an essay on the various mass- and volume-
measurement devices used throughout history. Also, explain
the development of the modern units for mass and volume.

1-70  Search the Internet to find out how to properly add
or subtract numbers while taking into consideration the num-
ber of significant digits. Write a summary of the proper tech-
nique, then use the technique to solve the following cases: (a)
1.006 + 23.47, (b) 703,200 — 80.4, and (c) 4.6903 — 14.58.
Be careful to express your final answer to the appropriate
number of significant digits.
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PROPERTIES OF FLUIDS

n this chapter, we discuss properties that are encountered in the analy-

sis of fluid flow. First we discuss intensive and extensive properties and

define density and specific gravity. This is followed by a discussion of
the properties vapor pressure, energy and its various forms, the specific
heats of ideal gases and incompressible substances, the coefficient of com-
pressibility, and the speed of sound. Then we discuss the property viscos-
ity, which plays a dominant role in most aspects of fluid flow. Finally, we
present the property surface tension and determine the capillary rise from
static equilibrium conditions. The property pressure is discussed in Chap. 3
together with fluid statics.

A drop forms when liquid is forced out of a small tube.
The shape of the drop is determined by a balance of

pressure, gravity, and surface tension forces.
Royalty-Free/CORBIS ‘

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

(] Have a working knowledge of
the basic properties of fluids
and understand the continuum
approximation

Have a working knowledge of
viscosity and the consequences
of the frictional effects it causes
in fluid flow

(] Calculate the capillary rise (or

drop) in tubes due to the surface
tension effect
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FIGURE 2-1

Criterion to differentiate intensive and
extensive properties.

FIGURE 2-2

The length scale associated with most
flows, such as seagulls in flight, is
orders of magnitude larger than the
mean free path of the air molecules.
Therefore, here, and for all fluid flows
considered in this book, the continuum
idealization is appropriate.
PhotoLink/Getty RF

2-1 = INTRODUCTION

Any characteristic of a system is called a property. Some familiar proper-
ties are pressure P, temperature 7, volume V/, and mass m. The list can be
extended to include less familiar ones such as viscosity, thermal conductiv-
ity, modulus of elasticity, thermal expansion coefficient, electric resistivity,
and even velocity and elevation.

Properties are considered to be either intensive or extensive. Intensive
properties are those that are independent of the mass of the system, such
as temperature, pressure, and density. Extensive properties are those whose
values depend on the size—or extent—of the system. Total mass, total vol-
ume V, and total momentum are some examples of extensive properties. An
easy way to determine whether a property is intensive or extensive is to
divide the system into two equal parts with an imaginary partition, as shown
in Fig. 2—-1. Each part will have the same value of intensive properties as the
original system, but half the value of the extensive properties.

Generally, uppercase letters are used to denote extensive properties (with
mass m being a major exception), and lowercase letters are used for intensive
properties (with pressure P and temperature 7 being the obvious exceptions).

Extensive properties per unit mass are called specific properties. Some
examples of specific properties are specific volume (v = V/m) and specific
total energy (e = E/m).

The state of a system is described by its properties. But we know from
experience that we do not need to specify all the properties in order to fix
a state. Once the values of a sufficient number of properties are specified,
the rest of the properties assume certain values. That is, specifying a certain
number of properties is sufficient to fix a state. The number of properties
required to fix the state of a system is given by the state postulate: The
state of a simple compressible system is completely specified by two inde-
pendent, intensive properties.

Two properties are independent if one property can be varied while the
other one is held constant. Not all properties are independent, and some are
defined in terms of others, as explained in Section 2-2.

Continuum
A fluid is composed of molecules which may be widely spaced apart, espe-
cially in the gas phase. Yet it is convenient to disregard the atomic nature of
the fluid and view it as continuous, homogeneous matter with no holes, that
is, a continuum. The continuum idealization allows us to treat properties as
point functions and to assume that the properties vary continually in space
with no jump discontinuities. This idealization is valid as long as the size of
the system we deal with is large relative to the space between the molecules
(Fig. 2-2). This is the case in practically all problems, except some special-
ized ones. The continuum idealization is implicit in many statements we
make, such as “the density of water in a glass is the same at any point.”

To have a sense of the distances involved at the molecular level, consider
a container filled with oxygen at atmospheric conditions. The diameter of an
oxygen molecule is about 3 X 107! m and its mass is 5.3 X 1072° kg. Also,
the mean free path of oxygen at 1 atm pressure and 20°C is 6.3 X 1078 m.
That is, an oxygen molecule travels, on average, a distance of 6.3 X 107% m
(about 200 times its diameter) before it collides with another molecule.



Also, there are about 3 X 10'® molecules of oxygen in the tiny volume
of 1 mm? at 1 atm pressure and 20°C (Fig. 2-3). The continuum model
is applicable as long as the characteristic length of the system (such as its
diameter) is much larger than the mean free path of the molecules. At very
low pressure, e.g., at very high elevations, the mean free path may become
large (for example, it is about 0.1 m for atmospheric air at an elevation of
100 km). For such cases the rarefied gas flow theory should be used, and
the impact of individual molecules should be considered. In this text we
limit our consideration to substances that can be modeled as a continuum.

2-2 = DENSITY AND SPECIFIC GRAVITY

Density is defined as mass per unit volume (Fig. 2—4). That is,

Density: p = % (kg/m?) (2-1)
The reciprocal of density is the specific volume v, which is defined as volume
per unit mass. That is, v = U/m = 1/p. For a differential volume element of
mass 6m and volume oV, density can be expressed as p = om/dV.

The density of a substance, in general, depends on temperature and
pressure. The density of most gases is proportional to pressure and inversely
proportional to temperature. Liquids and solids, on the other hand, are
essentially incompressible substances, and the variation of their density with
pressure is usually negligible. At 20°C, for example, the density of water
changes from 998 kg/m? at 1 atm to 1003 kg/m? at 100 atm, a change of
just 0.5 percent. The density of liquids and solids depends more strongly
on temperature than it does on pressure. At 1 atm, for example, the density
of water changes from 998 kg/m? at 20°C to 975 kg/m? at 75°C, a change of
2.3 percent, which can still be neglected in many engineering analyses.

Sometimes the density of a substance is given relative to the density of a
well-known substance. Then it is called specific gravity, or relative density,
and is defined as the ratio of the density of a substance to the density of
some standard substance at a specified temperature (usually water at 4°C,
for which p; o = 1000 kg/m?). That is,

sG =P

=— 2-2
Pu,0 @2

Specific gravity:
Note that the specific gravity of a substance is a dimensionless quantity.
However, in SI units, the numerical value of the specific gravity of a sub-
stance is exactly equal to its density in g/cm? or kg/L (or 0.001 times the
density in kg/m?) since the density of water at 4°C is 1 g/cm® = 1 kg/L =
1000 kg/m?. The specific gravity of mercury at 20°C, for example, is 13.6.
Therefore, its density at 20°C is 13.6 g/cm® = 13.6 kg/L = 13,600 kg/m?>.
The specific gravities of some substances at 20°C are given in Table 2-1.
Note that substances with specific gravities less than 1 are lighter than
water, and thus they would float on water (if immiscible).

The weight of a unit volume of a substance is called specific weight or
weight density and is expressed as

Specific weight: v, = (N/m?) (2-3)

where g is the gravitational acceleration.

ps
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FIGURE 2-3

Despite the relatively large gaps
between molecules, a gas can usually
be treated as a continuum because of
the very large number of molecules
even in an extremely small volume.

FIGURE 24

Density is mass per unit volume;
specific volume is volume

per unit mass.

TABLE 2-1

The specific gravity of some
substances at 20°C and 1 atm
unless stated otherwise

Substance SG
Water 1.0
Blood (at 37°C) 1.06
Seawater 1.025
Gasoline 0.68
Ethyl alcohol 0.790
Mercury 13.6
Balsa wood 0.17
Dense oak wood 0.93
Gold 19.3
Bones 1.7-2.0
Ice (at 0°C) 0.916
Air 0.001204
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FIGURE 2-5

Air behaves as an ideal gas, even

at very high speeds. In this schlieren
image, a bullet traveling at about

the speed of sound bursts through
both sides of a balloon, forming two
expanding shock waves. The turbulent
wake of the bullet is also visible.

Photograph by Gary S. Settles, Penn State Gas
Dynamics Lab. Used by permission.

Recall from Chap. 1 that the densities of liquids are essentially constant,
and thus they can often be approximated as being incompressible substances
during most processes without sacrificing much in accuracy.

Density of Ideal Gases

Property tables provide very accurate and precise information about the
properties, but sometimes it is convenient to have some simple relations
among the properties that are sufficiently general and reasonably accurate.
Any equation that relates the pressure, temperature, and density (or specific
volume) of a substance is called an equation of state. The simplest and
best-known equation of state for substances in the gas phase is the ideal-gas
equation of state, expressed as

Pv=RT or P=pRT (2-4)

where P is the absolute pressure, V is the specific volume, T is the thermo-
dynamic (absolute) temperature, p is the density, and R is the gas constant.
The gas constant R is different for each gas and is determined from R =
R,/M, where R, is the universal gas constant whose value is R, = 8.314 kJ/
kmol-K = 1.986 Btu/lbmol-R, and M is the molar mass (also called molecu-
lar weight) of the gas. The values of R and M for several substances are
given in Table A—1.

The thermodynamic temperature scale in the SI is the Kelvin scale, and
the temperature unit on this scale is the kelvin, designated by K. In the Eng-
lish system, it is the Rankine scale, and the temperature unit on this scale is
the rankine, R. Various temperature scales are related to each other by

T(K)

T(°C) + 273.15 = T(R)/1.8 (2-5)

T(R)

TCF) + 459.67 = 1.8 T(K) (2-6)

It is common practice to round the constants 273.15 and 459.67 to 273 and
460, respectively, but we do not encourage this practice.

Equation 2—4, the ideal-gas equation of state, is also called simply the
ideal-gas relation, and a gas that obeys this relation is called an ideal gas.
For an ideal gas of volume V, mass m, and number of moles N = m/M, the
ideal-gas equation of state can also be written as PV = mRT or P\ = NR,T.
For a fixed mass m, writing the ideal-gas relation twice and simplifying, the
properties of an ideal gas at two different states are related to each other by
P VT, = P,V,IT,.

An ideal gas is a hypothetical substance that obeys the relation Pv = RT.
It has been experimentally observed that the ideal-gas relation closely
approximates the P-v-T behavior of real gases at low densities. At low pres-
sures and high temperatures, the density of a gas decreases and the gas
behaves like an ideal gas (Fig. 2-5). In the range of practical interest, many
familiar gases such as air, nitrogen, oxygen, hydrogen, helium, argon, neon,
and krypton and even heavier gases such as carbon dioxide can be treated
as ideal gases with negligible error (often less than 1 percent). Dense gases
such as water vapor in steam power plants and refrigerant vapor in refrig-
erators, air conditioners, and heat pumps, however, should not be treated as
ideal gases since they usually exist at a state near saturation.



|
m EXAMPLE 2-1 Density, Specific Gravity, and Mass of Air in a Room

[
m Determine the density, specific gravity, and mass of the air in a room whose
m dimensions are 4 m X 5 m X 6 m at 100 kPa and 25°C (Fig. 2-6).

SOLUTION The density, specific gravity, and mass of the air in a room are
to be determined.

Assumptions At specified conditions, air can be treated as an ideal gas.
Properties The gas constant of air is R = 0.287 kPa-m3/kg-K.

Analysis The density of the air is determined from the ideal-gas relation P =
pRT to be

P 100 kPa
T RT (0287 kPam¥kgK)(25 + 273.15) K
Then the specific gravity of the air becomes
sG o P _ 1.17 kg/m?
Puo 1000 kg/m?

Finally, the volume and the mass of the air in the room are

V = (4 m)(5m)(6 m) = 120 m?

m = pV = (1.17 kg/m?)(120 m*) = 140 kg
Discussion Note that we converted the temperature to (absolute) unit K from
(relative) unit °C before using it in the ideal-gas relation.

p = 1.17 kg/m’

= 0.00117

2-3 = VAPOR PRESSURE AND CAVITATION

It is well-established that temperature and pressure are dependent properties
for pure substances during phase-change processes, and there is one-to-one
correspondence between temperature and pressure. At a given pressure, the
temperature at which a pure substance changes phase is called the saturation
temperature 7. Likewise, at a given temperature, the pressure at which
a pure substance changes phase is called the saturation pressure P_,. At
an absolute pressure of 1 standard atmosphere (1 atm or 101.325 kPa), for
example, the saturation temperature of water is 100°C. Conversely, at a
temperature of 100°C, the saturation pressure of water is 1 atm.

The vapor pressure P, of a pure substance is defined as the pressure
exerted by its vapor in phase equilibrium with its liquid at a given tempera-
ture (Fig. 2-7). P, is a property of the pure substance, and turns out to be
identical to the saturation pressure P, of the liquid (P, = P,). We must be
careful not to confuse vapor pressure with partial pressure. Partial pressure
is defined as the pressure of a gas or vapor in a mixture with other gases.
For example, atmospheric air is a mixture of dry air and water vapor, and
atmospheric pressure is the sum of the partial pressure of dry air and the par-
tial pressure of water vapor. The partial pressure of water vapor constitutes
a small fraction (usually under 3 percent) of the atmospheric pressure since
air is mostly nitrogen and oxygen. The partial pressure of a vapor must be
less than or equal to the vapor pressure if there is no liquid present. However,
when both vapor and liquid are present and the system is in phase equilib-
rium, the partial pressure of the vapor must equal the vapor pressure, and
the system is said to be saturated. The rate of evaporation from open water
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Schematic for Example 2—-1.

Water molecules — vapor phase
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The vapor pressure (saturation
pressure) of a pure substance (e.g.,
water) is the pressure exerted by its
vapor molecules when the system is
in phase equilibrium with its liquid
molecules at a given temperature.
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bodies such as lakes is controlled by the difference between the vapor pres-
: sure and the partial pressure. For example, the vapor pressure of water at
Saturation (or vapor) pressure of 20°C is 2.34 kPa. Therefore, a bucket of water at 20°C left in a room with
aleifafiaiisthlicnbeialiies dry air at 1 atm will continue evaporating until one of two things happens:
y air a P g gs happ
Saturation the water evaporates away (there is not enough water to establish phase equi-
Temperature Pressure librium in the room), or the evaporation stops when the partial pressure of
T.°C Fan kPa the water vapor in the room rises to 2.34 kPa at which point phase equilib-
-10 0.260 rium is established.
-5 0.403 For phase-change processes between the liquid and vapor phases of a pure
0 0.611 substance, the saturation pressure and the vapor pressure are equivalent since
5 0.872 the vapor is pure. Note that the pressure value would be the same whether it is
10 — measured in the vapor or liquid phase (provided that it is measured at a loca-
15 1.71 . L . . .
>0 534 tion close to the liquid—vapor interface to avoid any hydrostatic effects). Vapor
o5 317 pressure increases with temperature. Thus, a substance at higher pressure boils
30 4.25 at higher temperature. For example, water boils at 134°C in a pressure cooker
40 7.38 operating at 3 atm absolute pressure, but it boils at 93°C in an ordinary pan at
50 12.35 a 2000-m elevation, where the atmospheric pressure is 0.8 atm. The saturation
100 101.3 (1 atm)  (or vapor) pressures are given in Appendices 1 and 2 for various substances.
150 475.8 An abridged table for water is given in Table 2-2 for easy reference.
200 1554 The reason for our interest in vapor pressure is the possibility of the liquid
288 Zg;i’ pressure in liquid-flow systems dropping below the vapor pressure at some

locations, and the resulting unplanned vaporization. For example, water at
10°C may vaporize and form bubbles at locations (such as the tip regions of
impellers or suction sides of pumps) where the pressure drops below 1.23 kPa.
The vapor bubbles (called cavitation bubbles since they form “cavities” in
the liquid) collapse as they are swept away from the low-pressure regions,
generating highly destructive, extremely high-pressure waves. This phenom-
enon, which is a common cause for drop in performance and even the erosion
of impeller blades, is called cavitation, and it is an important consideration in
the design of hydraulic turbines and pumps.

Cavitation must be avoided (or at least minimized) in most flow systems
since it reduces performance, generates annoying vibrations and noise, and
causes damage to equipment. We note that some flow systems use cavita-

FIGURE 2-8 tion to their advantage, e.g., high-speed “supercavitating” torpedoes. The
Cavitation damage on a 16-mm by pressure spikes resulting from the large number of bubbles collapsing near
23-mm aluminum sample tested at a solid surface over a long period of time may cause erosion, surface pit-
60 m/s for 2.5 hours. The sample was  ting, fatigue failure, and the eventual destruction of the components or
located at the cavity collapse region machinery (Fig. 2-8). The presence of cavitation in a flow system can be
downstream of a cavity generator sensed by its characteristic tumbling sound.

specifically designed to produce high
damage potential.

Photo by David Stinebring, ARL/Pennsylvania L
State University. Used by permission. EXAMPLE 2-2

Minimum Pressure to Avoid Cavitation

In a water distribution system, the temperature of water is observed to be g
as high as 30°C. Determine the minimum pressure allowed in the system to m
avoid cavitation.

SOLUTION The minimum pressure in a water distribution system to avoid
cavitation is to be determined.
Properties The vapor pressure of water at 30°C is 4.25 kPa (Table 2-2).



Analysis To avoid cavitation, the pressure anywhere in the flow should not
be allowed to drop below the vapor (or saturation) pressure at the given tem-
perature. That is,

P. = P.oswc = 425kPa

Therefore, the pressure should be maintained above 4.25 kPa everywhere in
the flow.

Discussion Note that the vapor pressure increases with increasing tempera-
ture, and thus the risk of cavitation is greater at higher fluid temperatures.

2-4 = ENERGY AND SPECIFIC HEATS

Energy can exist in numerous forms such as thermal, mechanical, kinetic,
potential, electrical, magnetic, chemical, and nuclear (Fig. 2-9) and their
sum constitutes the total energy E (or ¢ on a unit mass basis) of a system.
The forms of energy related to the molecular structure of a system and the
degree of the molecular activity are referred to as the microscopic energy.
The sum of all microscopic forms of energy is called the internal energy of
a system, and is denoted by U (or u on a unit mass basis).

The macroscopic energy of a system is related to motion and the influence
of some external effects such as gravity, magnetism, electricity, and surface
tension. The energy that a system possesses as a result of its motion is called
kinetic energy. When all parts of a system move with the same velocity, the
kinetic energy per unit mass is expressed as ke = V?/2 where V denotes the
velocity of the system relative to some fixed reference frame. The energy that
a system possesses as a result of its elevation in a gravitational field is called
potential energy and is expressed on a per-unit mass basis as pe = gz where
g is the gravitational acceleration and z is the elevation of the center of gravity
of the system relative to some arbitrarily selected reference plane.

In daily life, we frequently refer to the sensible and latent forms of inter-
nal energy as heat, and we talk about the heat content of bodies. In engi-
neering, however, those forms of energy are usually referred to as thermal
energy to prevent any confusion with heat transfer.

The international unit of energy is the joule (J) or kilojoule (1 kJ = 1000 J).
A joule is 1 N times 1 m. In the English system, the unit of energy is the
British thermal unit (Btu), which is defined as the energy needed to raise
the temperature of 1 lbm of water at 68°F by 1°F. The magnitudes of kJ
and Btu are almost identical (1 Btu = 1.0551 kJ). Another well-known
unit of energy is the calorie (1 cal = 4.1868 J), which is defined as the
energy needed to raise the temperature of 1 g of water at 14.5°C by 1°C.

In the analysis of systems that involve fluid flow, we frequently encounter
the combination of properties # and Pv. For convenience, this combination
is called enthalpy 4. That is,

P
Enthalpy: h=u+ Pv=u-+ ; (2-7)

where P/p is the flow energy, also called the flow work, which is the energy
per unit mass needed to move the fluid and maintain flow. In the energy
analysis of flowing fluids, it is convenient to treat the flow energy as part
of the energy of the fluid and to represent the microscopic energy of a fluid
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(b)

FIGURE 2-9

At least six different forms of energy
are encountered in bringing power
from a nuclear plant to your home,
nuclear, thermal, mechanical, kinetic,
magnetic, and electrical.

(a) © Creatas/PunchStock RF
(b) Comstock Images/Jupiterimages RF
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Stationary E -
fluid nergy = u
— Flowing — Energy =/
fluid
FIGURE 2-10

The internal energy u represents the
microscopic energy of a nonflowing
fluid per unit mass, whereas enthalpy
h represents the microscopic energy of
a flowing fluid per unit mass.

P, > P,

P

FIGURE 2-11

Fluids, like solids, compress when
the applied pressure is increased
from P, to P,.

stream by enthalpy & (Fig. 2-10). Note that enthalpy is a quantity per unit
mass, and thus it is a specific property.

In the absence of such effects as magnetic, electric, and surface tension, a
system is called a simple compressible system. The total energy of a simple
compressible system consists of three parts: internal, kinetic, and potential
energies. On a unit-mass basis, it is expressed as e = u + ke + pe. The
fluid entering or leaving a control volume possesses an additional form of
energy—the flow energy P/p. Then the total energy of a flowing fluid on a
unit-mass basis becomes

V2
howing = P/p + € =h + ke +pe=h+ > + gz (kJ/kg) (2-8)
where h = P/p + u is the enthalpy, V is the magnitude of velocity, and z is
the elevation of the system relative to some external reference point.

By using the enthalpy instead of the internal energy to represent the energy
of a flowing fluid, we do not need to be concerned about the flow work. The
energy associated with pushing the fluid is automatically taken care of by
enthalpy. In fact, this is the main reason for defining the property enthalpy.

The differential and finite changes in the internal energy and enthalpy of
an ideal gas can be expressed in terms of the specific heats as

du = c,dT  and dh = c,dT (2-9)

where ¢, and ¢, are the constant-volume and constant-pressure specific heats of
the ideal gas. Using specific heat values at the average temperature, the finite
changes in internal energy and enthalpy can be expressed approximately as

Au=c AT and Ah=c AT (2-10)

v,avg p.avg

For incompressible substances, the constant-volume and constant-pressure
specific heats are identical. Therefore, ¢, = ¢, = ¢ for liquids, and the
change in the internal energy of liquids can be expressed as Au = Cave AT.

Noting that p = constant for incompressible substances, the differenti-
ation of enthalpy » = u + Plp gives dh = du + dP/p. Integrating, the

enthalpy change becomes
Ah = Au + APlp = ¢, AT + APlp (2-11)

Therefore, Ah = Au = c,,, AT for constant-pressure processes, and Ah = AP/p
for constant-temperature processes in liquids.

2-5 = COMPRESSIBILITY AND SPEED OF SOUND
Coefficient of Compressibility

We know from experience that the volume (or density) of a fluid changes
with a change in its temperature or pressure. Fluids usually expand as they
are heated or depressurized and contract as they are cooled or pressurized.
But the amount of volume change is different for different fluids, and we
need to define properties that relate volume changes to the changes in pres-
sure and temperature. Two such properties are the bulk modulus of elasticity
and the coefficient of volume expansion f3.

It is a common observation that a fluid contracts when more pressure is
applied on it and expands when the pressure acting on it is reduced (Fig. 2-11).
That is, fluids act like elastic solids with respect to pressure. Therefore, in an
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analogous manner to Young’s modulus of elasticity for solids, it is appropriate
to define a coefficient of compressibility « (also called the bulk modulus of
compressibility or bulk modulus of elasticity) for fluids as

() = ™) oo -
= — —_ = _ a —
‘ v/ . ap /7
It can also be expressed approximately in terms of finite changes as
AP AP (T tant) (2-13)
= — = = constan -
Aviv  Aplp

Noting that Av/v or Ap/p is dimensionless, k must have the dimension of
pressure (Pa or psi). Also, the coefficient of compressibility represents the
change in pressure corresponding to a fractional change in volume or density
of the fluid while the temperature remains constant. Then it follows that the
coefficient of compressibility of a truly incompressible substance (v = constant)
is infinity.

A large value of k indicates that a large change in pressure is needed to
cause a small fractional change in volume, and thus a fluid with a large k
is essentially incompressible. This is typical for liquids, and explains why
liquids are usually considered to be incompressible. For example, the pres-
sure of water at normal atmospheric conditions must be raised to 210 atm
to compress it 1 percent, corresponding to a coefficient of compressibility
value of k = 21,000 atm.

Small density changes in liquids can still cause interesting phenomena in
piping systems such as the water hammer—characterized by a sound that
resembles the sound produced when a pipe is “hammered.” This occurs
when a liquid in a piping network encounters an abrupt flow restriction
(such as a closing valve) and is locally compressed. The acoustic waves
that are produced strike the pipe surfaces, bends, and valves as they propa-
gate and reflect along the pipe, causing the pipe to vibrate and produce the
familiar sound. In addition to the irritating sound, water hammering can be
quite destructive, leading to leaks or even structural damage. The effect can
be suppressed with a water hammer arrestor (Fig. 2-12), which is a volu-
metric chamber containing either a bellows or piston to absorb the shock. ()
For large pipes, a vertical tube called a surge tower often is used. A surge
tower has a free air surface at the top and is virtually maintenance free.

Note that volume and pressure are inversely proportional (volume
decreases as pressure is increased and thus dP/dv is a negative quantity),
and the negative sign in the definition (Eq. 2-12) ensures that k is a positive
quantity. Also, differentiating p = 1/v gives dp = —dv/v?, which can be
rearranged as

FIGURE 2-12

Water hammer arrestors:

(a) A large surge tower built to
protect the pipeline against
water hammer damage.

Photo by Arris S. Tijsseling, visitor
of the University of Adelaide, Australia.
dp dv Used by permission.

— = (2-14) (b) Much smaller arrestors used
P v for supplying water to a household

washing machine.
Photo provided courtesy of Oatey Co.

That is, the fractional changes in the specific volume and the density of a
fluid are equal in magnitude but opposite in sign.
For an ideal gas, P = pRT and (dP/dp); = RT = Plp, and thus

=P (P (2-15)

Kideal gas

Therefore, the coefficient of compressibility of an ideal gas is equal to its
absolute pressure, and the coefficient of compressibility of the gas increases
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with increasing pressure. Substituting k = P into the definition of the coef-
ficient of compressibility and rearranging gives
Ap AP
Ideal gas: —— = —— (T = constant) (2-16)
P P
Therefore, the percent increase of density of an ideal gas during isothermal
compression is equal to the percent increase in pressure.

For air at 1 atm pressure, k = P = 1 atm and a decrease of 1 percent in
volume (AV/V = —0.01) corresponds to an increase of AP = 0.01 atm in
pressure. But for air at 1000 atm, k = 1000 atm and a decrease of 1 percent
in volume corresponds to an increase of AP = 10 atm in pressure. Therefore,
a small fractional change in the volume of a gas can cause a large change in
pressure at very high pressures.

The inverse of the coefficient of compressibility is called the isothermal
compressibility « and is expressed as

1 1 (av 1 (adp
a=—=—|—| ==—= (1/Pa) (2-17)
K v\oP/, p\oP/,

The isothermal compressibility of a fluid represents the fractional change in
volume or density corresponding to a unit change in pressure.

R 2 awemays | COEfficient of Volume Expansion
hand The density of a fluid, in general, depends more strongly on temperature

than it does on pressure, and the variation of density with temperature is
responsible for numerous natural phenomena such as winds, currents in
oceans, rise of plumes in chimneys, the operation of hot-air balloons, heat
transfer by natural convection, and even the rise of hot air and thus the

Photograph by Gary S. Settles, Penn State Gas
Dynamics Lab. Used by permission.

_— phrase “heat rises” (Fig. 2-13). To quantify these effects, we need a prop-
i | erty that represents the variation of the density of a fluid with temperature at
av\
: (* constant pressure.
| aT)p ! p
:ZOOC-: ‘"2*1;6"‘ The property that provides that information is the coefficient of volume
100 kPa 100 kPa expansion (or volume expansivity) 3, defined as (Fig. 2-14)
1 kg 1 kg
1 fav 1 fap
(a) A substance with a large 8 B = ; ﬁ" B - 75 ﬁ" B (I/K) (2-18)
)
(BT P It can also be expressed approximately in terms of finite changes as
gAYV AP onstant P) (2-19)
— ~ = —-——" at constan =
e ] AT AT
20°C 21°C
100 kPa 100 kPa A large value of B for a fluid means a large change in density with tem-
1kg 1 kg perature, and the product 8 AT represents the fraction of volume change of

a fluid that corresponds to a temperature change of AT at constant pressure.

(b) A substance with a small 8 ; o .
It can be shown that the volume expansion coefficient of an ideal gas

FIGURE 2-14 (P = pRT) at a temperature 7 is equivalent to the inverse of the temperature:
The coefficient of volume expansion 1
is a measure of the change in volume Bideal gas = T (1/K) (2-20)

of a substance with temperature at
constant pressure. where T is the absolute temperature.



In the study of natural convection currents, the condition of the main fluid
body that surrounds the finite hot or cold regions is indicated by the sub-
script “infinity” to serve as a reminder that this is the value at a distance
where the presence of the hot or cold region is not felt. In such cases, the
volume expansion coefficient can be expressed approximately as

g P = )BT —T.) (2-21)
T, - T
where p., is the density and T, is the temperature of the quiescent fluid
away from the confined hot or cold fluid pocket.

We will see in Chap. 3 that natural convection currents are initiated by the
buoyancy force, which is proportional to the density difference, which is in turn
proportional to the temperature difference at constant pressure. Therefore, the
larger the temperature difference between the hot or cold fluid pocket and the
surrounding main fluid body, the larger the buoyancy force and thus the stron-
ger the natural convection currents. A related phenomenon sometimes occurs
when an aircraft flies near the speed of sound. The sudden drop in temperature
produces condensation of water vapor on a visible vapor cloud (Fig. 2-15).

The combined effects of pressure and temperature changes on the volume
change of a fluid can be determined by taking the specific volume to be a
function of 7" and P. Differentiating v = v(7, P) and using the definitions of
the compression and expansion coefficients o and 8 give

d ad
dv = <—V> T + (—V) dP = (BdT — a dP)v (2-22)
aT /), oP),
Then the fractional change in volume (or density) due to changes in pres-
sure and temperature can be expressed approximately as
Av Ap

2o 2P S gAT—a AP (2-23)
v P

| |
m EXAMPLE 2-3 Variation of Density with Temperature and Pressure

[

m Consider water initially at 20°C and 1 atm. Determine the final density of the

m water (a) if it is heated to 50°C at a constant pressure of 1 atm, and (b) if it
is compressed to 100-atm pressure at a constant temperature of 20°C. Take
the isothermal compressibility of water to be & = 4.80 X 1072 atm~1.

SOLUTION Water at a given temperature and pressure is considered. The
densities of water after it is heated and after it is compressed are to be
determined.

Assumptions 1 The coefficient of volume expansion and the isothermal
compressibility of water are constant in the given temperature range. 2 An
approximate analysis is performed by replacing differential changes in quan-
tities by finite changes.

Properties The density of water at 20°C and 1 atm pressure is p; =
998.0 kg/m3. The coefficient of volume expansion at the average tempera-
ture of (20 + 50)/2 = 35°C is B = 0.337 X 1073 K~!. The isothermal com-
pressibility of water is given to be & = 4.80 X 107° atm~1.

Analysis When differential quantities are replaced by differences and the
properties a and B are assumed to be constant, the change in density in
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FIGURE 2-15

Vapor cloud around an F/A-18F
Super Hornet as it flies near
the speed of sound.

U.S. Navy photo by Photographer’s Mate
3rd Class Jonathan Chandler.
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FIGURE 2-16

The variation of the coefficient of
volume expansion 3 of water with
temperature in the range of 20°C
to 50°C.

Data were generated and plotted using EES.
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FIGURE 2-17

Propagation of a small pressure wave

along a duct.

terms of the changes in pressure and temperature is expressed approximately
as (Eq. 2-23)

Ap =

(a) The change in density due to the change of temperature from 20°C to
50°C at constant pressure is

Ap = —Bp AT = —(0.337 X 10~3 K~ 1)(998 ke/m*)(50 — 20) K
= —10.0 kg/m?

ap AP — Bp AT

Noting that Ap = p, — p;, the density of water at 50°C and 1 atm is
p, = p, + Ap = 998.0 + (—10.0) = 988.0 kg/m’>

which is almost identical to the listed value of 988.1 kg/m3 at 50°C in
Table A-3. This is mostly due to B varying with temperature almost linearly,
as shown in Fig. 2-16.

(b) The change in density due to a change of pressure from 1 atm to
100 atm at constant temperature is

Ap = ap AP = (4.80 X 1073 atm™ (998 kg/m?)(100 — 1) atm = 4.7 kg/m’
Then the density of water at 100 atm and 20°C becomes
p, = p; + Ap = 998.0 + 4.7 = 1002.7 kg/m?

Discussion Note that the density of water decreases while being heated and
increases while being compressed, as expected. This problem can be solved
more accurately using differential analysis when functional forms of proper-
ties are available.

Speed of Sound and Mach Number

An important parameter in the study of compressible flow is the speed of
sound (or the sonic speed), defined as the speed at which an infinitesimally
small pressure wave travels through a medium. The pressure wave may be
caused by a small disturbance, which creates a slight rise in local pressure.

To obtain a relation for the speed of sound in a medium, consider a duct that
is filled with a fluid at rest, as shown in Fig. 2-17. A piston fitted in the duct
is now moved to the right with a constant incremental velocity dV, creating a
sonic wave. The wave front moves to the right through the fluid at the speed of
sound ¢ and separates the moving fluid adjacent to the piston from the fluid still
at rest. The fluid to the left of the wave front experiences an incremental change
in its thermodynamic properties, while the fluid on the right of the wave front
maintains its original thermodynamic properties, as shown in Fig. 2—17.

To simplify the analysis, consider a control volume that encloses the wave
front and moves with it, as shown in Fig. 2-18. To an observer traveling
with the wave front, the fluid to the right appears to be moving toward the
wave front with a speed of ¢ and the fluid to the left to be moving away
from the wave front with a speed of ¢ — dV. Of course, the observer sees
the control volume that encloses the wave front (and herself or himself) as
stationary, and the observer is witnessing a steady-flow process. The mass
balance for this single-stream, steady-flow process is expressed as

mrighl = My



or
pAc = (p + dp)A(c — dV)
By canceling the cross-sectional (or flow) area A and neglecting the higher-
order terms, this equation reduces to
cdp —pdV =20

No heat or work crosses the boundaries of the control volume during this
steady-flow process, and the potential energy change can be neglected. Then

the steady-flow energy balance e;, = e, becomes

c? (c — dV)?
+—=h+dh + —
h > h + dh 2
which yields
dh —cdV =20

where we have neglected the second-order term dV?2. The amplitude of the ordi-
nary sonic wave is very small and does not cause any appreciable change in
the pressure and temperature of the fluid. Therefore, the propagation of a sonic

wave is not only adiabatic but also very nearly isentropic. Then the thermody-
namic relation T'ds = dh — dP/p (see Cengel and Boles, 2011) reduces to

M():d _dl
P
or
_4r
op

dh

Combining the above equations yields the desired expression for the speed
of sound as

, _ dpP
ct = — at s = constant
dp
or
) P
ct=\|— (2-24)
ap/,

It is left as an exercise for the reader to show, by using thermodynamic
property relations, that Eq. 2-24 can also be written as

P
2= k(—) (2-25)
ap/r

where k = ¢,/c, is the specific heat ratio of the fluid. Note that the speed of
sound in a fluid is a function of the thermodynamic properties of that fluid
Fig. 2-19.

When the fluid is an ideal gas (P = pRT), the differentiation in Eq. 2-25
can be performed to yield

P 9(pRT

= k(—) = k[—(p )} = kRT
p/r ap Iy

or

¢ = VKRT (2-26)
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Control volume
traveling with
the wave front

h+ dh c—dV: : c h

P+ dP - :4—13

p+dp | ! p
FIGURE 2-18

Control volume moving with the small
pressure wave along a duct.

s

FIGURE 2-19

The speed of sound in air increases
with temperature. At typical outside
temperatures, c¢ is about 340 m/s. In

round numbers, therefore, the sound of
thunder from a lightning strike travels
about 1 km in 3 seconds. If you see
the lightning and then hear the thunder
less than 3 seconds later, you know
that the lightning is close, and it is
time to go indoors!

© Bear Dancer Studios/Mark Dierker
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FIGURE 2-20

The speed of sound changes with

temperature and varies with the fluid.
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FIGURE 2-21
The Mach number can be different

at different temperatures even if the
flight speed is the same.
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FIGURE 2-22

Schematic for Example 12—4.

Noting that the gas constant R has a fixed value for a specified ideal gas and
the specific heat ratio k of an ideal gas is, at most, a function of tempera-
ture, we see that the speed of sound in a specified ideal gas is a function of
temperature alone (Fig. 2-20).

A second important parameter in the analysis of compressible fluid flow
is the Mach number Ma, named after the Austrian physicist Ernst Mach
(1838-1916). It is the ratio of the actual speed of the fluid (or an object in
still fluid) to the speed of sound in the same fluid at the same state:

Vv

Ma = —
c

(2-27)

Note that the Mach number depends on the speed of sound, which depends
on the state of the fluid. Therefore, the Mach number of an aircraft cruising at
constant velocity in still air may be different at different locations (Fig. 2-21).
Fluid flow regimes are often described in terms of the flow Mach number.
The flow is called sonic when Ma = 1, subsonic when Ma < 1, supersonic
when Ma > 1, hypersonic when Ma >> 1, and transonic when Ma = 1.

|
EXAMPLE 2—4 Mach Number of Air Entering a Diffuser ]

[
Air enters a diffuser shown in Fig. 2-22 with a speed of 200 m/s. Determine g
(a) the speed of sound and (b) the Mach number at the diffuser inlet when m
the air temperature is 30°C.

SOLUTION Air enters a diffuser at high speed. The speed of sound and the
Mach number are to be determined at the diffuser inlet.

Assumption Air at the specified conditions behaves as an ideal gas.
Properties The gas constant of air is R = 0.287 kJ/kg-K, and its specific
heat ratio at 30°C is 1.4.

Analysis We note that the speed of sound in a gas varies with temperature,
which is given to be 30°C.

(a) The speed of sound in air at 30°C is determined from Eq. 2-26 to be

1000 m?/s?
¢ = VIRT = \/ (1.4)(0.287 kJ/kg-K)(303 K)<ms> = 349 m/s
1 kl/kg
(b) Then the Mach number becomes
200
Ma= ¥ = 200ms ooy
c 349 m/s

Discussion The flow at the diffuser inlet is subsonic since Ma < 1.

2-6 = VISCOSITY

When two solid bodies in contact move relative to each other, a friction
force develops at the contact surface in the direction opposite to motion.
To move a table on the floor, for example, we have to apply a force to the
table in the horizontal direction large enough to overcome the friction force.
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The magnitude of the force needed to move the table depends on the friction
coefficient between the table legs and the floor.

The situation is similar when a fluid moves relative to a solid or when two
fluids move relative to each other. We move with relative ease in air, but not
so in water. Moving in oil would be even more difficult, as can be observed
by the slower downward motion of a glass ball dropped in a tube filled with
oil. It appears that there is a property that represents the internal resistance of
a fluid to motion or the “fluidity,” and that property is the viscosity. The force
a flowing fluid exerts on a body in the flow direction is called the drag force,
and the magnitude of this force depends, in part, on viscosity (Fig. 2-23).

To obtain a relation for viscosity, consider a fluid layer between two very PJJZ
large parallel plates (or equivalently, two parallel plates immersed in a large
body of a fluid) separated by a distance € (Fig. 2-24). Now a constant par-
allel force F is applied to the upper plate while the lower plate is held fixed.
After the initial transients, it is observed that the upper plate moves continu- A fluid moving relative to a body

FIGURE 2-23

exerts a drag force on the body, partly
because of friction caused by viscosity.
© Digital Vision/Getty RF

ously under the influence of this force at a constant speed V. The fluid in
contact with the upper plate sticks to the plate surface and moves with it at
the same speed, and the shear stress 7 acting on this fluid layer is

= — 2-28
T " ( )
where A is the contact area between the plate and the fluid. Note that the |ﬂ, Area A
fluid layer deforms continuously under the influence of shear stress. NN )
L. . . u=V Force F

The fluid in contact with the lower plate assumes the velocity of that plate, et
which is zero (because of the no-slip condition—see Section 1-2). In steady y B/, clocy
laminar flow, the fluid velocity between the plates varies linearly between I
0 and V, and thus the velocity profile and the velocity gradient are T —0

d Vv i
u(y) = Yy vV oand au _ VvV (2-29) Velocity profile
¢ dy ¢ u= 7V
where y is the vertical distance from the lower plate.

During a differential time interval dt, the sides of fluid particles along a FIGURE 2-24
vertical line MN rotate through a differential angle dB while the upper plate The behavior of a fluid in laminar
moves a differential distance da = V dt. The angular displacement or defor- flow between two parallel plat.es
mation (or shear strain) can be expressed as when the upper plate moves with

a constant velocity.
4B ~ tandp = 94 =V _du (2-30)
=~ tan = — = —= — —,
¢ ¢ dy
Rearranging, the rate of deformation under the influence of shear stress 7
becomes
dB  du
— = (2-31)
dt dy

Thus we conclude that the rate of deformation of a fluid element is equiva-
lent to the velocity gradient du/dy. Further, it can be verified experimentally
that for most fluids the rate of deformation (and thus the velocity gradient)
is directly proportional to the shear stress 7,

dag du

T X —— or

— 2-32
i T X dy ( )
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The rate of deformation (velocity
gradient) of a Newtonian fluid is
proportional to shear stress, and
the constant of proportionality

is the viscosity.

Bingham
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[
2 Newtonian
=
-
g
<
17
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FIGURE 2-26

Variation of shear stress with the rate

of deformation for Newtonian and
non-Newtonian fluids (the slope of
a curve at a point is the apparent
viscosity of the fluid at that point).

Fluids for which the rate of deformation is linearly proportional to the shear
stress are called Newtonian fluids after Sir Isaac Newton, who expressed it first
in 1687. Most common fluids such as water, air, gasoline, and oils are Newtonian
fluids. Blood and liquid plastics are examples of non-Newtonian fluids.

In one-dimensional shear flow of Newtonian fluids, shear stress can be
expressed by the linear relationship

d
T = M—” (N/m?) (2-33)

Shear stress:
ear stress dy

where the constant of proportionality w is called the coefficient of viscosity
or the dynamic (or absolute) viscosity of the fluid, whose unit is kg/m-s, or
equivalently, N-s/m? (or Pa-s where Pa is the pressure unit pascal). A common
viscosity unit is poise, which is equivalent to 0.1 Pa-s (or centipoise, which is
one-hundredth of a poise). The viscosity of water at 20°C is 1.002 centipoise,
and thus the unit centipoise serves as a useful reference. A plot of shear stress
versus the rate of deformation (velocity gradient) for a Newtonian fluid is a
straight line whose slope is the viscosity of the fluid, as shown in Fig. 2-25.
Note that viscosity is independent of the rate of deformation for Newtonian
fluids. Since the rate of deformation is proportional to the strain rate, Fig. 2-25
reveals that viscosity is actually a coefficient in a stress—strain relationship.

The shear force acting on a Newtonian fluid layer (or, by Newton’s third
law, the force acting on the plate) is

du

Shear force: F=71A=pA E N) (2-34)
where again A is the contact area between the plate and the fluid. Then the
force F required to move the upper plate in Fig. 2-24 at a constant speed of
V while the lower plate remains stationary is

F= MA% (N) (2-35)
This relation can alternately be used to calculate u when the force F is
measured. Therefore, the experimental setup just described can be used to
measure the viscosity of fluids. Note that under identical conditions, the
force F would be very different for different fluids.

For non-Newtonian fluids, the relationship between shear stress and rate
of deformation is not linear, as shown in Fig. 2-26. The slope of the curve
on the 7 versus du/dy chart is referred to as the apparent viscosity of the
fluid. Fluids for which the apparent viscosity increases with the rate of
deformation (such as solutions with suspended starch or sand) are referred
to as dilatant or shear thickening fluids, and those that exhibit the oppo-
site behavior (the fluid becoming less viscous as it is sheared harder, such
as some paints, polymer solutions, and fluids with suspended particles) are
referred to as pseudoplastic or shear thinning fluids. Some materials such
as toothpaste can resist a finite shear stress and thus behave as a solid, but
deform continuously when the shear stress exceeds the yield stress and
behave as a fluid. Such materials are referred to as Bingham plastics after
Eugene C. Bingham (1878-1945), who did pioneering work on fluid viscos-
ity for the U.S. National Bureau of Standards in the early twentieth century.



In fluid mechanics and heat transfer, the ratio of dynamic viscosity to
density appears frequently. For convenience, this ratio is given the name
kinematic viscosity v and is expressed as ¥ = u/p. Two common units of
kinematic viscosity are m?/s and stoke (1 stoke = 1 cm?s = 0.0001 m?%/s).

In general, the viscosity of a fluid depends on both temperature and pres-
sure, although the dependence on pressure is rather weak. For liguids, both
the dynamic and kinematic viscosities are practically independent of pres-
sure, and any small variation with pressure is usually disregarded, except at
extremely high pressures. For gases, this is also the case for dynamic vis-
cosity (at low to moderate pressures), but not for kinematic viscosity since
the density of a gas is proportional to its pressure (Fig. 2-27).

The viscosity of a fluid is a measure of its “resistance to deformation.”
Viscosity is due to the internal frictional force that develops between differ-
ent layers of fluids as they are forced to move relative to each other.

The viscosity of a fluid is directly related to the pumping power needed to
transport a fluid in a pipe or to move a body (such as a car in air or a sub-
marine in the sea) through a fluid. Viscosity is caused by the cohesive forces
between the molecules in liquids and by the molecular collisions in gases,
and it varies greatly with temperature. The viscosity of liquids decreases
with temperature, whereas the viscosity of gases increases with temperature
(Fig. 2-28). This is because in a liquid the molecules possess more energy
at higher temperatures, and they can oppose the large cohesive intermolec-
ular forces more strongly. As a result, the energized liquid molecules can
move more freely.

In a gas, on the other hand, the intermolecular forces are negligible, and
the gas molecules at high temperatures move randomly at higher velocities.
This results in more molecular collisions per unit volume per unit time
and therefore in greater resistance to flow. The kinetic theory of gases predicts
the viscosity of gases to be proportional to the square root of temperature.
That is, py,, o V/T. This prediction is confirmed by practical observations,
but deviations for different gases need to be accounted for by incorporat-
ing some correction factors. The viscosity of gases is expressed as a func-
tion of temperature by the Sutherland correlation (from The U.S. Standard
Atmosphere) as

aTl/Z

1+ BT
where T is absolute temperature and a and b are experimentally determined
constants. Note that measuring viscosity at two different temperatures is
sufficient to determine these constants. For air at atmospheric conditions,
the values of these constants are a = 1.458 X 107¢ kg/(m-s-K"?) and
b = 110.4 K. The viscosity of gases is independent of pressure at low to
moderate pressures (from a few percent of 1 atm to several atm). But vis-
cosity increases at high pressures due to the increase in density.

For liquids, the viscosity is approximated as

Liquids: u = alo?T-o (2-37)

Gases: I (2-36)

where again T is absolute temperature and a, b, and ¢ are experimentally
determined constants. For water, using the values a = 2.414 X 107> N-s/m?2,
b = 2478 K, and ¢ = 140 K results in less than 2.5 percent error in viscosity
in the temperature range of 0°C to 370°C (Touloukian et al., 1975).
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®
Air at 20°C and 1 atm:

w=1.83x 1073 kg/m-s
v=1.52x10" m¥s

Air at 20°C and 4 atm:
w=1.83x 107 kg/m-s

v =0.380 x 10~ m?%/s

FIGURE 2-27

Dynamic viscosity, in general, does
not depend on pressure, but kinematic
viscosity does.

Viscosity

Liquids

Gases

Temperature

FIGURE 2-28

The viscosity of liquids decreases
and the viscosity of gases increases
with temperature.



TABLE 2-3

PROPERTIES OF FLUIDS

Dynamic viscosity of some fluids at
1 atm and 20°C (unless otherwise

stated)
Dynamic Viscosity
Fluid u, kg/m-s
Glycerin:
—20°C 134.0
0°C 10.5
20°C 1.52
40°C 0.31
Engine oil:
SAE 10W 0.10
SAE 10W30 0.17
SAE 30 0.29
SAE 50 0.86
Mercury 0.0015
Ethyl alcohol 0.0012
Water:
0°C 0.0018
20°C 0.0010
100°C (liquid) 0.00028
100°C (vapor) 0.000012
Blood, 37°C 0.00040
Gasoline 0.00029
Ammonia 0.00015
Air 0.000018
Hydrogen, 0°C 0.0000088

FIGURE 2-29

The variation of dynamic (absolute)
viscosity of common fluids with
temperature at 1 atm (1 N-s/m? =

1 kg/m-s = 0.020886 1bf-s/ft?).

Data from EES and F. M. White, Fluid Mechanics 7e.
Copyright © 2011 The McGraw-Hill Companies,

Inc. Used by permission.

The viscosities of some fluids at room temperature are listed in Table 2-3.
They are plotted against temperature in Fig. 2-29. Note that the viscosities
of different fluids differ by several orders of magnitude. Also note that it is
more difficult to move an object in a higher-viscosity fluid such as engine oil
than it is in a lower-viscosity fluid such as water. Liquids, in general, are
much more viscous than gases.

Consider a fluid layer of thickness € within a small gap between two con-
centric cylinders, such as the thin layer of oil in a journal bearing. The gap
between the cylinders can be modeled as two parallel flat plates separated by
the fluid. Noting that torque is T = FR (force times the moment arm, which
is the radius R of the inner cylinder in this case), the tangential velocity is
V = wR (angular velocity times the radius), and taking the wetted surface
area of the inner cylinder to be A = 27RL by disregarding the shear stress
acting on the two ends of the inner cylinder, torque can be expressed as

27RwL  4AmRnL
¢ By
where L is the length of the cylinder and 7 is the number of revolutions per

unit time, which is usually expressed in rpm (revolutions per minute). Note
that the angular distance traveled during one rotation is 27 rad, and thus the

T=FR=npn (2-38)
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relation between the angular velocity in rad/min and the rpm is @ = 2.
Equation 2-38 can be used to calculate the viscosity of a fluid by measuring
torque at a specified angular velocity. Therefore, two concentric cylinders
can be used as a viscometer, a device that measures viscosity.

|
m EXAMPLE 2-5 Determining the Viscosity of a Fluid

: The viscosity of a fluid is to be measured by a viscometer constructed of

m two 40-cm-long concentric cylinders (Fig. 2-30). The outer diameter of the

B inner cylinder is 12 cm, and the gap between the two cylinders is 0.15 cm.
The inner cylinder is rotated at 300 rpm, and the torque is measured to be
1.8 N-m. Determine the viscosity of the fluid.

Stationary
cylinder

SOLUTION The torque and the rpm of a double cylinder viscometer are
given. The viscosity of the fluid is to be determined.

Assumptions 1 The inner cylinder is completely submerged in the fluid.
2 The viscous effects on the two ends of the inner cylinder are negligible.
Analysis The velocity profile is linear only when the curvature effects are
negligible, and the profile can be approximated as being linear in this case
since ¢/R = 0.025 << 1. Solving Eq. 2-38 for viscosity and substituting the
given values, the viscosity of the fluid is determined to be

7 =300 rpm
Shaft

Fluid
T¢ 1.8 N-m)(0.0015 m
M= Rl ( )(1 1 ) = 0.158 N-s/m*
47%(0.06 m)3<300 —)( mm)(o.4 m) FIGURE 2-30
AN Schematic for Example 2-5
Discussion Viscosity is a strong function of temperature, and a viscosity (not to scale).

value without a corresponding temperature is of little usefulness. Therefore,
the temperature of the fluid should have also been measured during this
experiment, and reported with this calculation.

2-7 = SURFACE TENSION AND CAPILLARY EFFECT

It is often observed that a drop of blood forms a hump on a horizontal glass;
a drop of mercury forms a near-perfect sphere and can be rolled just like
a steel ball over a smooth surface; water droplets from rain or dew hang
from branches or leaves of trees; a liquid fuel injected into an engine forms a
mist of spherical droplets; water dripping from a leaky faucet falls as nearly
spherical droplets; a soap bubble released into the air forms a nearly spheri-
cal shape; and water beads up into small drops on flower petals (Fig. 2-31a).

In these and other observances, liquid droplets behave like small balloons
filled with the liquid, and the surface of the liquid acts like a stretched elas-
tic membrane under tension. The pulling force that causes this tension acts
parallel to the surface and is due to the attractive forces between the mol-
ecules of the liquid. The magnitude of this force per unit length is called
surface tension or coefficient of surface tension o and is usually expressed
in the unit N/m (or 1bf/ft in English units). This effect is also called surface
energy (per unit area) and is expressed in the equivalent unit of N-m/m? or
J/m?. In this case, o represents the stretching work that needs to be done to
increase the surface area of the liquid by a unit amount.
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FIGURE 2-31

Some consequences of surface tension:
(a) drops of water beading up on a leaf,
(b) a water strider sitting on top of the
surface of water, and (c) a color schlieren
image of the water strider revealing how
the water surface dips down where its feet
contact the water (it looks like two insects
but the second one is just a shadow).

(a) © Don Paulson Photography/Purestock/
SuperStock RF

(b) NPS Photo by Rosalie LaRue.

(c) Photo courtesy of G. S. Settles, Gas Dynamics
Lab, Penn State University, used by permission.

- A molecule
on the surface

— A molecule
/ inside the

liquid

FIGURE 2-32

Attractive forces acting on a liquid
molecule at the surface and deep
inside the liquid.

To visualize how surface tension arises, we present a microscopic view
in Fig. 2-32 by considering two liquid molecules, one at the surface and
one deep within the liquid body. The attractive forces applied on the inte-
rior molecule by the surrounding molecules balance each other because of
symmetry. But the attractive forces acting on the surface molecule are not
symmetric, and the attractive forces applied by the gas molecules above are
usually very small. Therefore, there is a net attractive force acting on the
molecule at the surface of the liquid, which tends to pull the molecules on
the surface toward the interior of the liquid. This force is balanced by the
repulsive forces from the molecules below the surface that are trying to be
compressed. The result is that the liquid minimizes its surface area. This is
the reason for the tendency of liquid droplets to attain a spherical shape,
which has the minimum surface area for a given volume.

You also may have observed, with amusement, that some insects can land
on water or even walk on water (Fig. 2-31b) and that small steel needles
can float on water. These phenomena are made possible by surface tension
which balances the weights of these objects.

To understand the surface tension effect better, consider a liquid film
(such as the film of a soap bubble) suspended on a U-shaped wire frame
with a movable side (Fig. 2—33). Normally, the liquid film tends to pull the
movable wire inward in order to minimize its surface area. A force F needs to
be applied on the movable wire in the opposite direction to balance this pull-
ing effect. Both sides of the thin film are surfaces exposed to air, and thus the
length along which the surface tension acts in this case is 2b. Then a force
balance on the movable wire gives F = 2bo, and thus the surface tension
can be expressed as

g, = — (2-39)

Note that for b = 0.5 m, the measured force F (in N) is simply the surface
tension in N/m. An apparatus of this kind with sufficient precision can be
used to measure the surface tension of various liquids.

In the U-shaped wire frame apparatus, the movable wire is pulled to
stretch the film and increase its surface area. When the movable wire is
pulled a distance Ax, the surface area increases by AA = 2b Ax, and the
work W done during this stretching process is

W = Force X Distance = F Ax = 2bo, Ax = o, AA

where we have assumed that the force remains constant over the small
distance. This result can also be interpreted as the surface energy of the
film is increased by an amount o, AA during this stretching process, which
is consistent with the alternative interpretation of o as surface energy per
unit area. This is similar to a rubber band having more potential (elastic)
energy after it is stretched further. In the case of liquid film, the work is
used to move liquid molecules from the interior parts to the surface against
the attraction forces of other molecules. Therefore, surface tension also can
be defined as the work done per unit increase in the surface area of the
liquid.

The surface tension varies greatly from substance to substance, and
with temperature for a given substance, as shown in Table 2—4. At 20°C,



for example, the surface tension is 0.073 N/m for water and 0.440 N/m for
mercury surrounded by atmospheric air. The surface tension of mercury is
large enough that mercury droplets form nearly spherical balls that can be
rolled like a solid ball on a smooth surface. The surface tension of a liq-
uid, in general, decreases with temperature and becomes zero at the critical
point (and thus there is no distinct liquid—vapor interface at temperatures
above the critical point). The effect of pressure on surface tension is usually
negligible.

The surface tension of a substance can be changed considerably by
impurities. Therefore, certain chemicals, called surfactants, can be added to
a liquid to decrease its surface tension. For example, soaps and detergents
lower the surface tension of water and enable it to penetrate the small open-
ings between fibers for more effective washing. But this also means that
devices whose operation depends on surface tension (such as heat pipes)
can be destroyed by the presence of impurities due to poor workmanship.

We speak of surface tension for liquids only at liquid-liquid or liquid—gas
interfaces. Therefore, it is imperative that the adjacent liquid or gas be spec-
ified when specifying surface tension. Surface tension determines the size
of the liquid droplets that form, and so a droplet that keeps growing by the
addition of more mass breaks down when the surface tension can no longer
hold it together. This is like a balloon that bursts while being inflated when
the pressure inside rises above the strength of the balloon material.

A curved interface indicates a pressure difference (or “pressure jump”)
across the interface with pressure being higher on the concave side.
Consider, for example, a droplet of liquid in air, an air (or other gas) bubble
in water, or a soap bubble in air. The excess pressure AP above atmospheric
pressure can be determined by considering a free-body diagram of half the
droplet or bubble (Fig. 2-34). Noting that surface tension acts along the cir-
cumference and the pressure acts on the area, horizontal force balances for
the droplet or air bubble and the soap bubble give

20
Droplet or air bubble:  (2mR)0; = (TR)APy e = APy = Py — P, = RS
(2-40)
O-S
Soap bubble:  2Q2wR)o, = (TR)AP 41 = APpupe = P — P, = (2-41)

where P; and P, are the pressures inside and outside the droplet or bubble,
respectively. When the droplet or bubble is in the atmosphere, P, is simply
atmospheric pressure. The extra factor of 2 in the force balance for the soap
bubble is due to the existence of a soap film with two surfaces (inner and
outer surfaces) and thus two circumferences in the cross section.

The excess pressure in a droplet of liquid in a gas (or a bubble of gas in a
liquid) can also be determined by considering a differential increase in the
radius of the droplet due to the addition of a differential amount of mass
and interpreting the surface tension as the increase in the surface energy per
unit area. Then the increase in the surface energy of the droplet during this
differential expansion process becomes

oW,

surface

= 0,dA = o,d4mR*) = 8wRo, dR
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Rigid wire frame

O,
Liquid film ¥ Wire

FIGURE 2-33

Stretching a liquid film with a
U-shaped wire, and the forces acting
on the movable wire of length b.

TABLE 2-4

Surface tension of some fluids in
air at 1 atm and 20°C (unless
otherwise stated)

Surface Tension

Fluid o, N/m*
TWater:

0°C 0.076
20°C 0.073
100°C 0.059
300°C 0.014
Glycerin 0.063
SAE 30 oil 0.035
Mercury 0.440
Ethyl alcohol 0.023
Blood, 37°C 0.058
Gasoline 0.022
Ammonia 0.021
Soap solution 0.025
Kerosene 0.028

* Multiply by 0.06852 to convert to Ibf/ft.
* See Appendices for more precise data for water.
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(27R)o;
@ (”RZ)APdroplet

(a) Half of a droplet or air bubble

2(27R)0;

(b) Half of a soap bubble

FIGURE 2-34
The free-body diagram of half of a

droplet or air bubble and half of a soap
bubble.

?
¢
Water Mercury
(a) Wetting (b) Nonwetting
fluid fluid
FIGURE 2-35

The contact angle for wetting and
nonwetting fluids.

FIGURE 2-36

The meniscus of colored water in a
4-mm-inner-diameter glass tube. Note
that the edge of the meniscus meets
the wall of the capillary tube at a very
small contact angle.

Photo by Gabrielle Tremblay. Used by permission.

The expansion work done during this differential process is determined by
multiplying the force by distance to obtain

oW,

expansion

= Force X Distance = FdR = (APA)dR = 4wR> AP dR

Equating the two expressions above gives AP = 20 /R, which is the
same relation obtained before and given in Eq. 2-40. Note that the excess
pressure in a droplet or bubble is inversely proportional to the radius.

Capillary Effect

Another interesting consequence of surface tension is the capillary effect,
which is the rise or fall of a liquid in a small-diameter tube inserted into the
liquid. Such narrow tubes or confined flow channels are called capillaries.
The rise of kerosene through a cotton wick inserted into the reservoir of
a kerosene lamp is due to this effect. The capillary effect is also partially
responsible for the rise of water to the top of tall trees. The curved free sur-
face of a liquid in a capillary tube is called the meniscus.

It is commonly observed that water in a glass container curves up slightly
at the edges where it touches the glass surface; but the opposite occurs for
mercury: it curves down at the edges (Fig. 2-35). This effect is usually
expressed by saying that water wets the glass (by sticking to it) while mer-
cury does not. The strength of the capillary effect is quantified by the contact
(or wetting) angle ¢, defined as the angle that the tangent to the liquid sur-
face makes with the solid surface at the point of contact. The surface tension
force acts along this tangent line toward the solid surface. A liquid is said to
wet the surface when ¢ < 90° and not to wet the surface when ¢ > 90°. In
atmospheric air, the contact angle of water (and most other organic liquids)
with glass is nearly zero, ¢ =~ 0° (Fig. 2-36). Therefore, the surface tension
force acts upward on water in a glass tube along the circumference, tending
to pull the water up. As a result, water rises in the tube until the weight of
the liquid in the tube above the liquid level of the reservoir balances the sur-
face tension force. The contact angle is 130° for mercury—glass and 26° for
kerosene—glass in air. Note that the contact angle, in general, is different in
different environments (such as another gas or liquid in place of air).

The phenomenon of the capillary effect can be explained microscopically
by considering cohesive forces (the forces between like molecules, such as
water and water) and adhesive forces (the forces between unlike molecules,
such as water and glass). The liquid molecules at the solid—liquid interface
are subjected to both cohesive forces by other liquid molecules and adhesive
forces by the molecules of the solid. The relative magnitudes of these forces
determine whether a liquid wets a solid surface or not. Obviously, the water
molecules are more strongly attracted to the glass molecules than they are to
other water molecules, and thus water tends to rise along the glass surface.
The opposite occurs for mercury, which causes the liquid surface near the
glass wall to be suppressed (Fig. 2-37).

The magnitude of the capillary rise in a circular tube can be determined
from a force balance on the cylindrical liquid column of height /4 in the tube
(Fig. 2-38). The bottom of the liquid column is at the same level as the free
surface of the reservoir, and thus the pressure there must be atmospheric
pressure. This balances the atmospheric pressure acting at the top surface of



the liquid column, and thus these two effects cancel each other. The weight
of the liquid column is approximately

W = mg = pVg = pg(mR*h)
Equating the vertical component of the surface tension force to the weight gives

W =F,

surface

— pg(mR*h) = 2mwRo cos ¢
Solving for & gives the capillary rise to be

Capillary rise: h = ﬂcos ¢ (R = constant) (2-42)
PgR

This relation is also valid for nonwetting liquids (such as mercury in glass)

and gives the capillary drop. In this case ¢ > 90° and thus cos ¢ < 0, which

makes & negative. Therefore, a negative value of capillary rise corresponds

to a capillary drop (Fig. 2-37).

Note that the capillary rise is inversely proportional to the radius of the
tube. Therefore, the thinner the tube is, the greater the rise (or fall) of the
liquid in the tube. In practice, the capillary effect for water is usually negli-
gible in tubes whose diameter is greater than 1 cm. When pressure measure-
ments are made using manometers and barometers, it is important to use
sufficiently large tubes to minimize the capillary effect. The capillary rise is
also inversely proportional to the density of the liquid, as expected. There-
fore, in general, lighter liquids experience greater capillary rises. Finally, it
should be kept in mind that Eq. 242 is derived for constant-diameter tubes
and should not be used for tubes of variable cross section.

|
m EXAMPLE 2-6 The Capillary Rise of Water in a Tube

:A 0.6-mm-diameter glass tube is inserted into water at 20°C in a cup.
m Determine the capillary rise of water in the tube (Fig. 2-39).
B
SOLUTION The rise of water in a slender tube as a result of the capillary
effect is to be determined.
Assumptions 1 There are no impurities in the water and no contamination
on the surfaces of the glass tube. 2 The experiment is conducted in atmo-
spheric air.
Properties The surface tension of water at 20°C is 0.073 N/m (Table 2-4).
The contact angle of water with glass is approximately 0° (from preceding
text). We take the density of liquid water to be 1000 kg/m3.
Analysis The capillary rise is determined directly from Eq. 2-42 by substi-
tuting the given values, yielding
20, 2(0.073 N/m)

h=——cos¢ = =
P8R (1000 kg/m?)(9.81 m/s?)(0.3 X 10~ >m)

lkg~m/52>

(cos 0°)< N

= 0.050 m = 5.0 cm

Therefore, water rises in the tube 5 cm above the liquid level in the cup.
Discussion Note that if the tube diameter were 1 cm, the capillary rise would
be 0.3 mm, which is hardly noticeable to the eye. Actually, the capillary rise
in a large-diameter tube occurs only at the rim. The center does not rise at all.
Therefore, the capillary effect can be ignored for large-diameter tubes.
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Meniscus

Meniscus

Mercury

FIGURE 2-37

The capillary rise of water and
the capillary fall of mercury in a
small-diameter glass tube.

2mRo;
\ ¢

0
- 1 ___ N
Liquid

FIGURE 2-38

The forces acting on a liquid column
that has risen in a tube due to the
capillary effect.
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FIGURE 2-39
Schematic for Example 2—6.
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FIGURE 240

Schematic for Example 2-7.

Water to
turbine

EXAMPLE 2-7 Using Capillary Rise to Generate Power in a
Hydraulic Turbine

Reconsider Example 2-6. Realizing that water rises by 5 cm under the influ-
ence of surface tension without requiring any energy input from an external
source, a person conceives the idea that power can be generated by drilling
a hole in the tube just below the water level and feeding the water spilling
out of the tube into a turbine (Fig. 2-40). The person takes this idea even
further by suggesting that a series of tube banks can be used for this pur-
pose and cascading can be incorporated to achieve practically feasible flow
rates and elevation differences. Determine if this idea has any merit.

SOLUTION Water that rises in tubes under the influence of the capillary
effect is to be used to generate power by feeding it into a turbine. The valid-
ity of this suggestion is to be evaluated.

Analysis The proposed system may appear like a stroke of genius, since
the commonly used hydroelectric power plants generate electric power by
simply capturing the potential energy of elevated water, and the capillary
rise provides the mechanism to raise the water to any desired height without
requiring any energy input.

When viewed from a thermodynamic point of view, the proposed sys-
tem immediately can be labeled as a perpetual motion machine (PMM) since
it continuously generates electric power without requiring any energy input.
That is, the proposed system creates energy, which is a clear violation of the
first law of thermodynamics or the conservation of energy principle, and it
does not warrant any further consideration. But the fundamental principle
of conservation of energy did not stop many from dreaming about being the
first to prove nature wrong, and to come up with a trick to permanently solve
the world’s energy problems. Therefore, the impossibility of the proposed
system should be demonstrated.

As you may recall from your physics courses (also to be discussed in
the next chapter), the pressure in a static fluid varies in the vertical direction
only and increases with increasing depth linearly. Then the pressure differ-
ence across the 5-cm-high water column in the tube becomes

APwater column in tube P2 B Pl = pwalergh

= (1000 kg/m)(9.81 m/s2)(0.05 m)<i>
S ' 1000 kg-m/s?

= 0.49 kN/m? ( = 0.005 atm)

That is, the pressure at the top of the water column in the tube is 0.005 atm
less than the pressure at the bottom. Noting that the pressure at the bottom
of the water column is atmospheric pressure (since it is at the same horizon-
tal line as the water surface in the cup) the pressure anywhere in the tube
is below atmospheric pressure with the difference reaching 0.005 atm at
the top. Therefore, if a hole is drilled in the tube, air will leak into the tube
rather than water leaking out.

Discussion The water column in the tube is motionless, and thus, there
cannot be any unbalanced force acting on it (zero net force). The force due
to the pressure difference across the meniscus between the atmospheric air
and the water at the top of water column is balanced by the surface tension.
If this surface-tension force were to disappear, the water in the tube would
drop down under the influence of atmospheric pressure to the level of the
free surface in the tube.



61

CHAPTER 2

SUMMARY

In this chapter various properties commonly used in fluid
mechanics are discussed. The mass-dependent properties
of a system are called extensive properties and the others,
intensive properties. Density is mass per unit volume, and
specific volume is volume per unit mass. The specific grav-
ity is defined as the ratio of the density of a substance to the
density of water at 4°C,

sG = 2

Pu,0
The ideal-gas equation of state is expressed as
P = pRT

where P is the absolute pressure, 7 is the thermodynamic tem-
perature, p is the density, and R is the gas constant.

At a given temperature, the pressure at which a pure sub-
stance changes phase is called the saturation pressure. For
phase-change processes between the liquid and vapor phases
of a pure substance, the saturation pressure is commonly
called the vapor pressure P,. Vapor bubbles that form in
the low-pressure regions in a liquid (a phenomenon called
cavitation) collapse as they are swept away from the low-
pressure regions, generating highly destructive, extremely
high-pressure waves.

Energy can exist in numerous forms, and their sum con-
stitutes the rotal energy E (or e on a unit-mass basis) of a
system. The sum of all microscopic forms of energy is called
the internal energy U of a system. The energy that a system
possesses as a result of its motion relative to some reference
frame is called kinetic energy expressed per unit mass as
ke = V?/2, and the energy that a system possesses as a result
of its elevation in a gravitational field is called potential
energy expressed per unit mass as pe = gz.

The compressibility effects in a fluid are represented by
the coefficient of compressibility k (also called the bulk mod-
ulus of elasticity) defined as

AP

() ) =
X ), o)y~ Auv

The property that represents the variation of the density of
a fluid with temperature at constant pressure is the volume
expansion coefficient (or volume expansivity) 3, defined as

_1 (i‘/) __l(ip) _
B_V aT),  p\aT/,

The velocity at which an infinitesimally small pressure
wave travels through a medium is the speed of sound. For an
ideal gas it is expressed as

c:@:m

Aplp
AT

The Mach number is the ratio of the actual speed of the fluid
to the speed of sound at the same state:

Vv

Ma = —

c

The flow is called sonic when Ma = 1, subsonic when
Ma < 1, supersonic when Ma > 1, hypersonic when
Ma >> 1, and transonic when Ma = 1.

The viscosity of a fluid is a measure of its resistance to
deformation. The tangential force per unit area is called
shear stress and is expressed for simple shear flow between
plates (one-dimensional flow) as

_ du
T yoa dy
where u is the coefficient of viscosity or the dynamic (or
absolute) viscosity of the fluid, u is the velocity component
in the flow direction, and y is the direction normal to the flow
direction. Fluids that obey this linear relationship are called
Newtonian fluids. The ratio of dynamic viscosity to density is
called the kinematic viscosity v.

The pulling effect on the liquid molecules at an interface
caused by the attractive forces of molecules per unit length
is called surface tension o . The excess pressure AP inside a
spherical droplet or soap bubble, respectively, is given by

20 4o

droplel:Pi_P()ZT and APsoapbubble:Pi_Po= R

AP

where P; and P, are the pressures inside and outside the droplet
or soap bubble. The rise or fall of a liquid in a small-diameter
tube inserted into the liquid due to surface tension is called the
capillary effect. The capillary rise or drop is given by

; 20, é
= — - COS
pgR

where ¢ is the contact angle. The capillary rise is inversely
proportional to the radius of the tube; for water, it is negli-
gible for tubes whose diameter is larger than about 1 cm.

Density and viscosity are two of the most fundamental
properties of fluids, and they are used extensively in the
chapters that follow. In Chap. 3, the effect of density on
the variation of pressure in a fluid is considered, and the
hydrostatic forces acting on surfaces are determined. In
Chap. 8, the pressure drop caused by viscous effects dur-
ing flow is calculated and used in the determination of the
pumping power requirements. Viscosity is also used as a key
property in the formulation and solutions of the equations of
fluid motion in Chaps. 9 and 10.
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FIGURE 241

(a) Vaporous cavitation occurs in
water that has very little entrained
gas, such as that found very deep in

a body of water. Cavitation bubbles
are formed when the speed of the
body—in this case the bulbulous bow
region of a surface ship sonar dome—
increases to the point where the local
static pressure falls below the vapor
pressure of the water. The cavitation
bubbles are filled essentially with
water vapor. This type of cavitation

is very violent and noisy. () On the
other hand, in shallow water, there is
much more entrained gas in the water
to act as cavitation nuclei. That’s
because of the proximity of the dome
to the atmosphere at the free surface.
The cavitation bubbles first appear at
a slower speed, and hence at a higher
local static pressure. They are predom-
inantly filled with the gases that are
entrained in the water, so this is known
as gaseous cavitation.

Reprinted by permission of G. C. Lauchle
and M. L. Billet, Penn State University.

Guest Authors: G. C. Lauchle and M. L. Billet,
Penn State University

=N APPLICATION SPOTLIGHT
~()

Cavitation is the rupture of a liquid, or of a fluid—solid interface, caused by
a reduction of the local static pressure produced by the dynamic action of
the fluid in the interior and/or boundaries of a liquid system. The rupture
is the formation of a visible bubble. Liquids, such as water, contain many
microscopic voids that act as cavitation nuclei. Cavitation occurs when these
nuclei grow to a significant, visible size. Although boiling is also the forma-
tion of voids in a liquid, we usually separate this phenomenon from cavi-
tation because it is caused by an increase in temperature, rather than by a
reduction in pressure. Cavitation can be used in beneficial ways, such as in
ultrasonic cleaners, etchers, and cutters. But more often than not, cavitation
is to be avoided in fluid flow applications because it spoils hydrodynamic
performance, it causes extremely loud noise and high vibration levels, and it
damages (erodes) the surfaces that support it. When cavitation bubbles enter
regions of high pressure and collapse, the underwater shock waves some-
times create minute amounts of light. This phenomenon is called sonolumi-
nescence.

Body cavitation is illustrated in Fig. 2-41. The body is a model of the under-
water bulbulous bow region of a surface ship. It is shaped this way because
located within it is a sound navigation and ranging (sonar) system that is
spherical in shape. This part of the surface ship is thus called a sonar dome. As
ship speeds get faster and faster some of these domes start to cavitate and the
noise created by the cavitation renders the sonar system useless. Naval archi-
tects and fluid dynamicists attempt to design these domes so that they will
not cavitate. Model-scale testing allows the engineer to see first hand whether
a given design provides improved cavitation performance. Because such tests
are conducted in water tunnels, the conditions of the test water should have
sufficient nuclei to model those conditions in which the prototype operates.
This assures that the effect of liquid tension (nuclei distribution) is minimized.
Important variables are the gas content level (nuclei distribution) of the water,
the temperature, and the hydrostatic pressure at which the body operates.
Cavitation first appears—as either the speed V is increased, or as the submer-
gence depth £ is decreased—at the minimum pressure point C, of the body.
Thus, good hydrodynamic design requires 2(P,, — P,)/pV?* > C, .. Where p
is density, P, = pgh is the reference to static pressure, C, is the pressure coef-
ficient (Chap. 7), and P, is the vapor pressure of water.
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PROBLEMS*

Density and Specific Gravity

2-1C For a substance, what is the difference between mass
and molar mass? How are these two related?

2-2C What is the difference between intensive and exten-
sive properties?

2-3C What is specific gravity? How is it related to density?
2-4C The specific weight of a system is defined as the
weight per unit volume (note that this definition violates the

normal specific property-naming convention). Is the specific
weight an extensive or intensive property?

2-5C What is the state postulate?

2-6C Under what conditions is the ideal-gas assumption
suitable for real gases?

2-7C What is the difference between R and R,? How are
these two related?

2-8 A fluid that occupies a volume of 24 L weighs
225 N at a location where the gravitational acceleration is
9.80 m/s?. Determine the mass of this fluid and its density.

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the icon are solved using EES, and complete
solutions together with parametric studies are included on the text
website. Problems with the E@‘ icon are comprehensive in nature
and are intended to be solved with an equation solver such as EES.

2-9 A 100-L container is filled with 1 kg of air at a tem-
perature of 27°C. What is the pressure in the container?

2-10E A mass of 1-lbm of argon is maintained at 200 psia
and 100°F in a tank. What is the volume of the tank?

2-11E  What is the specific volume of oxygen at 40 psia
and 80°F?

2-12E The air in an automobile tire with a volume of 2.60 ft3
is at 90°F and 20 psig. Determine the amount of air that must be
added to raise the pressure to the recommended value of 30 psig.
Assume the atmospheric pressure to be 14.6 psia and the tem-
perature and the volume to remain constant. Answer: 0.128 Ibm

2-13 The pressure in an automobile tire depends on the
temperature of the air in the tire. When the air temperature is
25°C, the pressure gage reads 210 kPa. If the volume of the

FIGURE P2-13
Stockbyte/Gettylmages
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tire is 0.025 m?, determine the pressure rise in the tire when
the air temperature in the tire rises to 50°C. Also, determine
the amount of air that must be bled off to restore pressure to
its original value at this temperature. Assume the atmospheric
pressure to be 100 kPa.

2-14 A spherical balloon with a diameter of 9 m is filled
with helium at 20°C and 200 kPa. Determine the mole num-
ber and the mass of the helium in the balloon. Answers:
31.3 kmol, 125 kg

2-15 @‘ Reconsider Prob. 2-14. Using EES (or other)

= software, investigate the effect of the balloon
diameter on the mass of helium contained in the balloon for
the pressures of (a) 100 kPa and (») 200 kPa. Let the diame-
ter vary from 5 m to 15 m. Plot the mass of helium against
the diameter for both cases.

2-16 A cylindrical tank of methanol has a mass of 40 kg
and a volume of 51 L. Determine the methanol’s weight, den-
sity, and specific gravity. Take the gravitational acceleration
to be 9.81 m/s2. Also, estimate how much force is needed to
accelerate this tank linearly at 0.25 m/s?.

2-17 The density of saturated liquid refrigerant—134a for
—20°C = T = 100°C is given in Table A—4. Using this value
develop an expression in the form p = aT? + bT + c for the
density of refrigerant—134a as a function of absolute tempera-
ture, and determine relative error for each data set.

2-18E A rigid tank contains 40 Ibm of air at 20 psia and
70°F. More air is added to the tank until the pressure and
temperature rise to 35 psia and 90°F, respectively. Determine
the amount of air added to the tank. Answer: 27.4 Ibm

The density of atmospheric air varies with eleva-

= tion, decreasing with increasing altitude. (@) Using
the data given in the table, obtain a relation for the variation
of density with elevation, and calculate the density at an ele-
vation of 7000 m. (b) Calculate the mass of the atmosphere
using the correlation you obtained. Assume the earth to be a
perfect sphere with a radius of 6377 km, and take the thick-
ness of the atmosphere to be 25 km.

r, km p,kg/m3
6377 1.225
6378 1.112
6379 1.007
6380 0.9093
6381 0.8194
6382 0.7364
6383 0.6601
6385 0.5258
6387 0.4135
6392 0.1948
6397 0.08891
6402 0.04008

Vapor Pressure and Cavitation
2-20C What is cavitation? What causes it?

2-21C Does water boil at higher temperatures at higher
pressures? Explain.

2-22C 1If the pressure of a substance is increased during a
boiling process, will the temperature also increase or will it
remain constant? Why?

2-23C What is vapor pressure? How is it related to satura-
tion pressure?

2-24E The analysis of a propeller that operates in water at
70°F shows that the pressure at the tips of the propeller drops
to 0.1 psia at high speeds. Determine if there is a danger of
cavitation for this propeller.

2-25 A pump is used to transport water to a higher reser-
voir. If the water temperature is 20°C, determine the lowest
pressure that can exist in the pump without cavitation.

2-26 In a piping system, the water temperature remains
under 30°C. Determine the minimum pressure allowed in the
system to avoid cavitation.

2-27 The analysis of a propeller that operates in water at
20°C shows that the pressure at the tips of the propeller drops
to 2 kPa at high speeds. Determine if there is a danger of
cavitation for this propeller.

Energy and Specific Heats

2-28C What is flow energy? Do fluids at rest possess any
flow energy?

2-29C How do the energies of a flowing fluid and a fluid
at rest compare? Name the specific forms of energy associ-
ated with each case.

2-30C What is the difference between the macroscopic and
microscopic forms of energy?

2-31C What is total energy? Identify the different forms of
energy that constitute the total energy.

2-32C List the forms of energy that contribute to the inter-
nal energy of a system.

2-33C How are heat, internal energy, and thermal energy
related to each other?

2-34C Using average specific heats, explain how internal
energy changes of ideal gases and incompressible substances
can be determined.

2-35C Using average specific heats, explain how enthalpy
changes of ideal gases and incompressible substances can be
determined.

2-36 Saturated water vapor at 150°C (enthalpy h =
2745.9 kJ/kg) flows in a pipe at 50 m/s at an elevation of
z = 10 m. Determine the total energy of vapor in J/kg rela-
tive to the ground level.



Compressibility

2-37C What does the coefficient of compressibility of a fluid
represent? How does it differ from isothermal compressibility?

2-38C What does the coefficient of volume expansion of
a fluid represent? How does it differ from the coefficient of
compressibility?

2-39C Can the coefficient of compressibility of a fluid be
negative? How about the coefficient of volume expansion?

2-40 Water at 15°C and 1 atm pressure is heated to 100°C
at constant pressure. Using coefficient of volume expansion
data, determine the change in the density of water.

Answer: —38.7 kg/m3

2-41 It is observed that the density of an ideal gas increases
by 10 percent when compressed isothermally from 10 atm to
11 atm. Determine the percent increase in density of the gas
if it is compressed isothermally from 1000 atm to 1001 atm.

2-42 Using the definition of the coefficient of volume
expansion and the expression By, g5 = 1/7, show that the
percent increase in the specific volume of an ideal gas during
isobaric expansion is equal to the percent increase in absolute
temperature.

2-43 Water at 1 atm pressure is compressed to 400 atm
pressure isothermally. Determine the increase in the density
of water. Take the isothermal compressibility of water to be
4.80 X 1073 atm™".

2-44 The volume of an ideal gas is to be reduced by half by
compressing it isothermally. Determine the required change in
pressure.

2-45 Saturated refrigerant-134a liquid at 10°C is cooled to
0°C at constant pressure. Using coefficient of volume expan-
sion data, determine the change in the density of the refrigerant.

2-46 A water tank is completely filled with liquid water
at 20°C. The tank material is such that it can withstand ten-
sion caused by a volume expansion of 0.8 percent. Determine
the maximum temperature rise allowed without jeopardizing
safety. For simplicity, assume 8 = constant = 3 at 40°C.

2-47 Repeat Prob. 2-46 for a volume expansion of 1.5 per-
cent for water.

2-48 The density of seawater at a free surface where the
pressure is 98 kPa is approximately 1030 kg/m?. Taking the
bulk modulus of elasticity of seawater to be 2.34 X 10° N/m?
and expressing variation of pressure with depth z as dP =
pg dz determine the density and pressure at a depth of 2500 m.
Disregard the effect of temperature.

2-49E Taking the coefficient of compressibility of water to
be 7 X 10° psia, determine the pressure increase required to
reduce the volume of water by (a) 1 percent and (b) 2 percent.

2-50E Ignoring any losses, estimate how much energy (in
units of Btu) is required to raise the temperature of water in a
75-gallon hot-water tank from 60°F to 110°F.
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2-51 Prove that the coefficient of volume expansion for an

ideal gas iS Bigeal gas = 1/T.

2-52 The ideal gas equation of state is very simple, but its

range of applicability is limited. A more accurate but compli-

cated equation is the Van der Waals equation of state given by
RT a

v—b V?

P =

where a and b are constants depending on critical pressure and
temperatures of the gas. Predict the coefficient of compress-
ibility of nitrogen gas at T = 175 K and v= 0.00375 m%/kg,
assuming the nitrogen to obey the Van der Waals equation of
state. Compare your result with the ideal gas value. Take a =
0.175 m®kPa/kg® and b = 0.00138 m’/kg for the given con-
ditions. The experimentally measured pressure of nitrogen is
10,000 kPa.

2-53 A frictionless piston-cylinder device contains 10 kg
of water at 20°C at atmospheric pressure. An external force
F is then applied on the piston until the pressure inside the
cylinder increases to 100 atm. Assuming the coefficient of
compressibility of water remains unchanged during the com-
pression; estimate the energy needed to compress the water
isothermally. Answer: 29.4 J

F
Water Pressure gauge
FIGURE P2-53

2-54 Reconsider Prob. 2-53. Assuming a linear pressure
increase during the compression, estimate the energy needed
to compress the water isothermally.

Speed of Sound

2-55C What is sound? How is it generated? How does it
travel? Can sound waves travel in a vacuum?

2-56C In which medium does a sound wave travel faster:
in cool air or in warm air?

2-57C In which medium will sound travel fastest for a
given temperature: air, helium, or argon?
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2-58C In which medium does a sound wave travel faster:
in air at 20°C and 1 atm or in air at 20°C and 5 atm?

2-59C Does the Mach number of a gas flowing at a con-
stant velocity remain constant? Explain.

2-60C s it realistic to approximate that the propagation of
sound waves is an isentropic process? Explain.

2-61C Is the sonic velocity in a specified medium a fixed
quantity, or does it change as the properties of the medium
change? Explain.

2-62 The Airbus A-340 passenger plane has a maximum
takeoff weight of about 260,000 kg, a length of 64 m, a wing
span of 60 m, a maximum cruising speed of 945 km/h, a
seating capacity of 271 passengers, a maximum cruising alti-
tude of 14,000 m, and a maximum range of 12,000 km. The
air temperature at the crusing altitude is about —60°C. Deter-
mine the Mach number of this plane for the stated limiting
conditions.

2-63 Carbon dioxide enters an adiabatic nozzle at 1200 K
with a velocity of 50 m/s and leaves at 400 K. Assuming
constant specific heats at room temperature, determine the
Mach number (a) at the inlet and (b) at the exit of the nozzle.
Assess the accuracy of the constant specific heat approximation.
Answers: (a) 0.0925, (b) 3.73

2-64 Nitrogen enters a steady-flow heat exchanger at
150 kPa, 10°C, and 100 m/s, and it receives heat in the
amount of 120 kJ/kg as it flows through it. Nitrogen leaves
the heat exchanger at 100 kPa with a velocity of 200 m/s.
Determine the Mach number of the nitrogen at the inlet and
the exit of the heat exchanger.

2-65 Assuming ideal gas behavior, determine the speed of
sound in refrigerant-134a at 0.9 MPa and 60°C.

2-66 Determine the speed of sound in air at (a) 300 K and
(b) 800 K. Also determine the Mach number of an aircraft
moving in air at a velocity of 330 m/s for both cases.

2-67E Steam flows through a device with a pressure of
120 psia, a temperature of 700°F, and a velocity of 900 ft/s.
Determine the Mach number of the steam at this state by
assuming ideal-gas behavior with k = 1.3.  Answer: 0.441

€\ Reconsider Prob. 2—-67E. Using EES (or other)
== software, compare the Mach number of steam
flow over the temperature range 350 to 700°F. Plot the Mach
number as a function of temperature.

2-69E Air expands isentropically from 170 psia and 200°F
to 60 psia. Calculate the ratio of the initial to final speed of
sound. Answer: 1.16

2-70 Air expands isentropically from 2.2 MPa and 77°C to
0.4 MPa. Calculate the ratio of the initial to the final speed of
sound. Answer: 1.28

2-71 Repeat Prob. 2-70 for helium gas.

2-72 The isentropic process for an ideal gas is expressed as
Pvk = constant. Using this process equation and the defini-
tion of the speed of sound (Eq. 2-24), obtain the expression
for the speed of sound for an ideal gas (Eq. 2-26).

Viscosity

2-73C What is viscosity? What is the cause of it in lig-
uids and in gases? Do liquids or gases have higher dynamic
viscosities?

2-74C What is a Newtonian fluid? Is water a Newtonian
fluid?

2-75C How does the kinematic viscosity of (a) liquids and
(b) gases vary with temperature?

2-76C How does the dynamic viscosity of (a) liquids and
(b) gases vary with temperature?

2-77C Consider two identical small glass balls dropped
into two identical containers, one filled with water and the
other with oil. Which ball will reach the bottom of the con-
tainer first? Why?

2-78E The viscosity of a fluid is to be measured by a vis-
cometer constructed of two 5-ft-long concentric cylinders. The
inner diameter of the outer cylinder is 6 in, and the gap between
the two cylinders is 0.035 in. The outer cylinder is rotated at
250 rpm, and the torque is measured to be 1.2 1bf-ft. Determine
the viscosity of the fluid. Answer: 0.000272 Ibf-s/ft?

2-79 A 50-cm X 30-cm X 20-cm block weighing 150 N is
to be moved at a constant velocity of 0.80 m/s on an inclined
surface with a friction coefficient of 0.27. (a) Determine
the force F that needs to be applied in the horizontal direc-
tion. (b) If a 0.40-mm-thick oil film with a dynamic viscos-
ity of 0.012 Pa-s is applied between the block and inclined
surface, determine the percent reduction in the required
force.

150 N l

FIGURE P2-79

2-80 Consider the flow of a fluid with viscosity u through
a circular pipe. The velocity profile in the pipe is given as
u(r) = u,,(1 — r/R"), where u,,, is the maximum flow
velocity, which occurs at the centerline; r is the radial dis-
tance from the centerline; and u(r) is the flow velocity at any
position r. Develop a relation for the drag force exerted on
the pipe wall by the fluid in the flow direction per unit length
of the pipe.



U(r) = Upay (1 — r1/RM)

FIGURE P2-80

2-81 A thin 30-cm X 30-cm flat plate is pulled at 3 m/s hori-
zontally through a 3.6-mm-thick oil layer sandwiched between
two plates, one stationary and the other moving at a constant
velocity of 0.3 m/s, as shown in Fig. P2-81. The dynamic viscosity
of the oil is 0.027 Pa-s. Assuming the velocity in each oil layer
to vary linearly, (a) plot the velocity profile and find the location
where the oil velocity is zero and (b) determine the force that
needs to be applied on the plate to maintain this motion.

Fixed wall

V=3m/s F

V,=0.3m/s
]

Moving wall

FIGURE P2-81

2-82 A rotating viscometer consists of two concentric
cylinders — an inner cylinder of radius R; rotating at angular
velocity (rotation rate) w,, and a stationary outer cylinder of
inside radius R,. In the tiny gap between the two cylinders
is the fluid of viscosity w. The length of the cylinders (into
the page in Fig. P2-82) is L. L is large such that end effects

Liquid: p, p

Rotating inner cylinder

Stationary outer cylinder

FIGURE P2-82
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are negligible (we can treat this as a two-dimensional prob-
lem). Torque (T) is required to rotate the inner cylinder at
constant speed. (@) Showing all of your work and algebra,
generate an approximate expression for T as a function of
the other variables. (b) Explain why your solution is only an
approximation. In particular, do you expect the velocity pro-
file in the gap to remain linear as the gap becomes larger and
larger (i.e., if the outer radius R, were to increase, all else
staying the same)?

2-83 The clutch system shown in Fig. P2—-83 is used to trans-
mit torque through a 2-mm-thick oil film with w = 0.38 N-s/m?
between two identical 30-cm-diameter disks. When the driv-
ing shaft rotates at a speed of 1450 rpm, the driven shaft is
observed to rotate at 1398 rpm. Assuming a linear velocity
profile for the oil film, determine the transmitted torque.

I\
Driving Driven
wwmy  shaft shaft  ywym
v 1 30 cm 2 mm v
——Wﬁ\ SAE 30W oil
FIGURE P2-83

= software, investigate the effect of oil film thick-
ness on the torque transmitted. Let the film thickness vary
from 0.1 mm to 10 mm. Plot your results, and state your
conclusions.

2-85 The dynamic viscosity of carbon dioxide at 50°C and
200°C are 1.612 X 107 Pa-s and 2.276 X 107> Pa-s, respec-
tively. Determine the constants a and b of Sutherland correla-
tion for carbon dioxide at atmospheric pressure. Then predict
the viscosity of carbon dioxide at 100°C and compare your
result against the value given in Table A-10.

2-86 One of the widely used correlations to describe the
variation of the viscosity of gases is the power-law equation
given by u/u, = (T/T,))", where u, and T, are the reference
viscosity and temperature, respectively. Using the power and
Sutherland laws, examine the variation of the air viscosity for
the temperature range 100°C (373 K) to 1000°C (1273 K).
Plot your results to compare with values listed in Table A-9.
Take the reference temperature as 0°C and n = 0.666 for the
atmospheric air.

2-87 For flow over a plate, the variation of velocity with
vertical distance y from the plate is given as u(y) = ay — by?
where a and b are constants. Obtain a relation for the wall
shear stress in terms of a, b, and .
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2-88 In regions far from the entrance, fluid flow through a
circular pipe is one dimensional, and the velocity profile for
laminar flow is given by u(r) = u,, (1 — r*R?), where R is
the radius of the pipe, r is the radial distance from the center of
the pipe, and u,,, is the maximum flow velocity, which occurs
at the center. Obtain (a) a relation for the drag force applied by
the fluid on a section of the pipe of length L and (b) the value
of the drag force for water flow at 20°C with R = 0.08 m,
L=30m, u,,, =3 m/s,and u = 0.0010 kg/m-s.

1

Vs 7

rT = $~X("umax
=4

FIGURE P2-88

2-89 Repeat Prob. 2-88 for u,, = 7m/s. Answer: (b) 2.64 N

2-90 A frustum-shaped body is rotating at a constant angu-
lar speed of 200 rad/s in a container filled with SAE 10W
oil at 20°C (u = 0.100 Pa-s), as shown in Fig. P2-90. If the
thickness of the oil film on all sides is 1.2 mm, determine
the power required to maintain this motion. Also determine
the reduction in the required power input when the oil tem-
perature rises to 80°C (u = 0.0078 Pa-s).

| | / Case

e J/ _ SAE 10W oil
D=12cm
L=12cm %

d={4cm

—— r

]
Mo
FIGURE P2-90

2-91 A rotating viscometer consists of two concentric
cylinders—a stationary inner cyliner of radius R; and an
outer cylinder of inside radius R, rotating at angular velocity
(rotation rate) w,. In the tiny gap between the two cylinders
is the fluid whose viscosity () is to be measured. The length

of the cylinders (into the page in Fig. P2-91) is L. L is large
such that end effects are negligible (we can treat this as a
two-dimensional problem). Torque (T) is required to rotate
the inner cylinder at constant speed. Showing all your work
and algebra, generate an approximate expression of T as a
function of the other variables.

Liquid: p, u

Stationary inner cylinder

Rotating outer cylinder

FIGURE P2-91

2-92 A large plate is pulled at a constant speed of U =
4 m/s over a fixed plate on 5-mm-thick engine oil film at
20°C. Assuming a half-parabolic velocity profile in the oil
film, as sketched, determine the shear stress developed on the
upper plate and its direction. What would happen if a linear
velocity profile were assumed?

y
U=4m/s
I )
h=5mm - 4 ; Engine oil
- 4
FIGURE P2-92

2-93 A cylinder of mass m slides down from rest in a verti-
cal tube whose inner surface is covered by a viscous oil of
film thickness 4. If the diameter and height of the cylinder are
D and L, respectively, derive an expression for the velocity of
the cylinder as a function of time, z. Discuss what will happen
as t — oo. Can this device serve as a viscometer?



Cylin L

Oil film, &

FIGURE P2-93

2-94 A thin plate moves between two parallel, horizontal,
stationary flat surfaces at a constant velocity of 5 m/s. The
two stationary surfaces are spaced 4 cm apart, and the medium
between them is filled with oil whose viscosity is 0.9 N-s/m.
The part of the plate immersed in oil at any given time is 2-m
long and 0.5-m wide. If the plate moves through the mid-plane
between the surfaces, determine the force required to maintain
this motion. What would your response be if the plate was 1 cm
from the bottom surface (4,) and 3 cm from the top surface (,)?

Stationary surface

hy V=>5m/s F

Stationary surface

FIGURE P2-94

2-95 Reconsider Prob. 2-94. If the viscosity of the oil
above the moving plate is 4 times that of the oil below the
plate, determine the distance of the plate from the bottom sur-
face (h,) that will minimize the force needed to pull the plate
between the two oils at constant velocity.

Surface Tension and Capillary Effect

2-96C What is surface tension? What is its cause? Why is
the surface tension also called surface energy?

2-97C A small-diameter tube is inserted into a liquid whose
contact angle is 110°. Will the level of liquid in the tube be
higher or lower than the level of the rest of the liquid? Explain.

2-98C What is the capillary effect? What is its cause? How
is it affected by the contact angle?
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2-99C Consider a soap bubble. Is the pressure inside the
bubble higher or lower than the pressure outside?

2-100C Is the capillary rise greater in small- or large-diameter
tubes?

2-101 Consider a 0.15-mm diameter air bubble in a liquid.
Determine the pressure difference between the inside and out-
side of the air bubble if the surface tension at the air-liquid
interface is (a) 0.080 N/m and (b) 0.12 N/m.

2-102E A 2.4-in-diameter soap bubble is to be enlarged by
blowing air into it. Taking the surface tension of soap solu-
tion to be 0.0027 Ibf/ft, determine the work input required to
inflate the bubble to a diameter of 2.7 in.

2-103 A 1.2-mm-diameter tube is inserted into an unknown
liquid whose density is 960 kg/m?, and it is observed that the
liquid rises 5 mm in the tube, making a contact angle of 15°.
Determine the surface tension of the liquid.

2-104 » Determine the gage pressure inside a soap bub-
€’ ble of diameter (a) 0.2 cm and (b) 5 cm at 20°C.
2-105E A 0.03-in-diameter glass tube is inserted into kero-

sene at 68°F. The contact angle of kerosene with a glass sur-
face is 26°. Determine the capillary rise of kerosene in the
tube. Answer: 0.65 in

— «—0.03 in
—
)
Y/ N
Kerosene

FIGURE P2-105E

2-106 The surface tension of a liquid is to be measured
using a liquid film suspended on a U-shaped wire frame with
an 8-cm-long movable side. If the force needed to move the
wire is 0.024 N, determine the surface tension of this liquid
in air.

2-107 A capillary tube of 1.2 mm diameter is immersed
vertically in water exposed to the atmosphere. Determine
how high water will rise in the tube. Take the contact angle at
the inner wall of the tube to be 6° and the surface tension to
be 1.00 N/m. Answer: 0.338 m

2-108 A capillary tube is immersed vertically in a water
container. Knowing that water starts to evaporate when the
pressure drops below 2 kPa, determine the maximum capil-
lary rise and tube diameter for this maximum-rise case. Take
the contact angle at the inner wall of the tube to be 6° and the
surface tension to be 1.00 N/m.
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2-109 Contrary to what you might expect, a solid steel ball
can float on water due to the surface tension effect. Deter-
mine the maximum diameter of a steel ball that would float
on water at 20°C. What would your answer be for an alumi-
num ball? Take the densities of steel and aluminum balls to
be 7800 kg/m? and 2700 kg/m?, respectively.

2-110 Nutrients dissolved in water are carried to upper
parts of plants by tiny tubes partly because of the capillary
effect. Determine how high the water solution will rise in a
tree in a 0.0026-mm-diameter tube as a result of the capil-
lary effect. Treat the solution as water at 20°C with a contact
Answer: 11.1 m

angle of 15°.

FIGURE P2-110

Review Probhlems

2-111 Derive a relation for the capillary rise of a liquid
between two large parallel plates a distance ¢ apart inserted
into the liquid vertically. Take the contact angle to be ¢.

2-112 Consider a 55-cm-long journal bearing that is lubri-
cated with oil whose viscosity is 0.1 kg/m-s at 20°C at the
beginning of operation and 0.008 kg/m-s at the anticipated
steady operating temperature of 80°C. The diameter of the
shaft is 8 cm, and the average gap between the shaft and the
journal is 0.08 cm. Determine the torque needed to overcome
the bearing friction initially and during steady operation
when the shaft is rotated at 1500 rpm.

2-113 The diameter of one arm of a U-tube is 5 mm while
the other arm is large. If the U-tube contains some water, and
both surfaces are exposed to atmospheric pressure, determine
the difference between the water levels in the two arms.

2-114 The combustion in a gasoline engine may be approxi-
mated by a constant volume heat addition process, and the
contents of the combustion chamber both before and after

combustion as air. The conditions are 1.80 MPa and 450°C
before the combustion and 1300°C after it. Determine the pres-
sure at the end of the combustion process. Answer: 3916 kPa

Combustion
chamber
1.80 MPa

450°C

T

FIGURE P2-114

2-115 A rigid tank contains an ideal gas at 300 kPa and
600 K. Half of the gas is withdrawn from the tank and the
gas is at 100 kPa at the end of the process. Determine (a) the
final temperature of the gas and (b) the final pressure if no
mass were withdrawn from the tank and the same final tem-
perature were reached at the end of the process.

2-116 The absolute pressure of an automobile tire is mea-
sured to be 320 kPa before a trip and 335 kPa after the trip.
Assuming the volume of the tire remains constant at 0.022 m?,
determine the percent increase in the absolute temperature of
the air in the tire.

2-117E The pressure on the suction side of pumps is typi-
cally low, and the surfaces on that side of the pump are sus-
ceptible to cavitation, especially at high fluid temperatures. If
the minimum pressure on the suction side of a water pump is
0.95 psia absolute, determine the maximum water tempera-
ture to avoid the danger of cavitation.

2-118 The composition of a liquid with suspended solid
particles is generally characterized by the fraction of solid
particles either by weight or mass, C; .., = m,/m,, or by vol-
ume, C, = V,/V, where m is mass and V is volume. The
subscripts s and m indicate solid and mixture, respectively.
Develop an expression for the specific gravity of a water-

based suspension in terms of C, and C,

§, mass s, vol*

2-119 The specific gravities of solids and carrier fluids of a
slurry are usually known, but the specific gravity of the slurry
depends on the concentration of the solid particles. Show that
the specific gravity of a water-based slurry can be expressed
in terms of the specific gravity of the solid SG, and the mass

concentration of the suspended solid particles C; . as
1
SG,, =
I + C n(1/SG, — 1)

2-120 A 10-m? tank contains nitrogen at 25°C and 800 kPa.
Some nitrogen is allowed to escape until the pressure in the
tank drops to 600 kPa. If the temperature at this point is 20°C,
determine the amount of nitrogen that has escaped. Answer:
21.5 kg



2-121 A closed tank is partially filled with water at 60°C.
If the air above the water is completely evacuated, determine
the absolute pressure in the evacuated space. Assume the
temperature to remain constant.

2-122 ‘ The variation of the dynamic viscosity of water
= with absolute temperature is given as

T, K wu, Pa-s
273.15 1.787 x 1073
278.15 1.519 x 1073
283.15 1.307 x 1073
293.15 1.002 x 103
303.15 7.975 X 10~*
313.15 6.529 x 1074
333.15 4.665 %X 1074
353.15 3.547 x 1074
373.15 2.828 x 1074

Using these tabulated data, develop a relation for viscosity
in the form of w = w(T) = A + BT + CT? + DT? + ET*.
Using the relation developed, predict the dynamic viscosity
of water at 50°C at which the reported value is 5.468 X 10~*
Pa-s. Compare your result with the results of Andrade’s equa-
tion, which is given in the form of u = D-e?7, where D and
B are constants whose values are to be determined using the
viscosity data given.

2-123 A newly produced pipe with diameter of 2 m and
length 15 m is to be tested at 10 MPa using water at 15°C.
After sealing both ends, the pipe is first filled with water and
then the pressure is increased by pumping additional water
into the test pipe until the test pressure is reached. Assuming
no deformation in the pipe, determine how much additional
water needs to be pumped into the pipe. Take the coefficient
of compressibility to be 2.10 X 10° Pa.  Answer: 224 kg

2-124 Although liquids, in general, are hard to compress,
the compressibility effect (variation in the density) may
become unavoidable at the great depths in the oceans due to
enormous pressure increase. At a certain depth the pressure is
reported to be 100 MPa and the average coefficient of com-
pressibility is about 2350 MPa.

(a) Taking the liquid density at the free surface to be p, =
1030 kg/m?, obtain an analytical relation between density and
pressure, and determine the density at the specified pressure.
Answer: 1074 kg/m3

(b) Use Eq. 2-13 to estimate the density for the specified
pressure and compare your result with that of part (a).

2-125 Consider laminar flow of a Newtonian fluid of vis-
cosity u between two parallel plates. The flow is one-dimen-
sional, and the velocity profile is given as u(y) = 4u,,,
[y/h — (y/h)?], where y is the vertical coordinate from the
bottom surface, s is the distance between the two plates,
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and u,,,, is the maximum flow velocity that occurs at mid-
plane. Develop a relation for the drag force exerted on both
plates by the fluid in the flow direction per unit area of the
plates.

U(y) = Sty [y/h — (/)]
[

) u

y T max

0

FIGURE P2-125

2-126 Two immiscible Newtonian liquids flow steadily
between two large parallel plates under the influence of an
applied pressure gradient. The lower plate is fixed while the
upper one is pulled with a constant velocity of U = 10 m/s.
The thickness, £, of each layer of fluid is 0.5 m. The velocity
profile for each layer is given by

V, =6+ ay — 3y -05=y=0

V,=b+cy — 92, 0=y=-05

where a, b, and ¢ are constants.

(a) Determine the values of constants a, b, and c.

(b) Develop an expression for the viscosity ratio, e.g., w,/n, =?

(c) Determine the forces and their directions exerted by the
liquids on both plates if u; = 107? Pa-s and each plate has a
surface area of 4 m>.

U=10m/s
R

Liquid 1

Liquid interface

Liquid 2

FIGURE P2-126

2-127 A shaft with a diameter of D = 80 mm and a length
of L = 400 mm, shown in Fig. P2-127 is pulled with a con-
stant velocity of U = 5 m/s through a bearing with variable
diameter. The clearance between shaft and bearing, which
varies from 4, = 1.2 mm to h, = 0.4 mm, is filled with a
Newtonian lubricant whose dynamic viscosity is 0.10 Pa-s.
Determine the force required to maintain the axial movement
of the shaft. Answer: 69 N
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FIGURE P2-127

2-128 Reconsider Prob. 2—127. The shaft now rotates with
a constant angular speed of n = 1450 rpm in a bearing with
variable diameter. The clearance between shaft and bearing,
which varies from 2; = 1.2 mm to #, = 0.4 mm, is filled with
a Newtonian lubricant whose dynamic viscosity is 0.1 Pa-s.
Determine the torque required to maintain the motion.

2-129 A 10-cm-diameter cylindrical shaft rotates inside a
40-cm-long 10.3-cm diameter bearing. The space between the
shaft and the bearing is completely filled with oil whose vis-
cosity at anticipated operating temperature is 0.300 N-s/m?.
Determine the power required to overcome friction when the
shaft rotates at a speed of (a) 600 rpm and (b) 1200 rpm.

2-130 Some rocks or bricks contain small air pockets in
them and have a spongy structure. Assuming the air spaces
form columns of an average diameter of 0.006 mm, deter-
mine how high water can rise in such a material. Take the
surface tension of the air—water interface in that material to
be 0.085 N/m.

Fundamentals of Engineering (FE) Exam Problems

2-131 The specific gravity of a fluid is specified to be 0.82.
The specific volume of this fluid is

(a) 0.00100 m¥kg (b) 0.00122 m¥/kg (c) 0.0082 m/kg
(d) 82 m¥kg (e) 820 m/kg

2-132 The specific gravity of mercury is 13.6. The specific
weight of mercury is

(a) 1.36 kN/m? (b) 9.81 kN/m? (c) 106 kN/m* (d) 133 kN/m?
(e) 13,600 kN/m?

2-133 An ideal gas flows in a pipe at 20°C. The density of
the gas is 1.9 kg/m? and its molar mass is 44 kg/kmol. The
pressure of the gas is

(a) 7 kPa (b) 72 kPa (c) 105 kPa (d) 460 kPa (e) 4630 kPa

2-134 A gas mixture consists of 3 kmol oxygen, 2 kmol
nitrogen, and 0.5 kmol water vapor. The total pressure of the
gas mixture is 100 kPa. The partial pressure of water vapor in
this gas mixture is

(a) 5 kPa (b) 9.1 kPa (c¢) 10 kPa (d) 22.7 kPa (e) 100 kPa

2-135 Liquid water vaporizes into water vapor as it flows
in the piping of a boiler. If the temperature of water in the
pipe is 180°C, the vapor pressure of the water in the pipe is

(a) 1002 kPa (b) 180 kPa (c) 101.3 kPa (d) 18 kPa (e) 100 kPa

2-136 In a water distribution system, the pressure of water
can be as low as 1.4 psia. The maximum temperature of
water allowed in the piping to avoid cavitation is

(a) 50°F (b) 77°F (c) 100°F (d) 113°F (e) 140°F

2-137 The thermal energy of a system refers to
(a) Sensible energy (b) Latent energy
(c) Sensible + latent energies (d) Enthalpy (e) Internal energy

2-138 The difference between the energies of a flowing and
stationary fluid per unit mass of the fluid is equal to

(a) Enthalpy (b) Flow energy (c) Sensible energy

(d) Kinetic energy (e) Internal energy

2-139 The pressure of water is increased from 100 kPa to
1200 kPa by a pump. The temperature of water also increases
by 0.15°C. The density of water is 1 kg/L and its specific
heat is ¢, = 4.18 kJ/kg-°C. The enthalpy change of the water
during this process is

(a) 1100 kJ/kg (b) 0.63 kJ/kg (c) 1.1 kI/kg (d) 1.73 kl/kg
(e) 4.2 kl/kg

2-140 The coefficient of compressibility of a truly incom-
pressible substance is
@0 ()05 (¢)1 (d) 100 (e) Infinity

2-141 The pressure of water at atmospheric pressure must
be raised to 210 atm to compress it by 1 percent. Then, the
coefficient of compressibility value of water is

(a) 209 atm (b) 20,900 atm (c) 21 atm (d) 0.21 atm

(e) 210,000 atm

2-142 When a liquid in a piping network encounters an
abrupt flow restriction (such as a closing valve), it is locally
compressed. The resulting acoustic waves that are produced
strike the pipe surfaces, bends, and valves as they propagate
and reflect along the pipe, causing the pipe to vibrate and
produce a familiar sound. This is known as

(a) Condensation (b) Cavitation (c) Water hammer

(d) Compression (e) Water arrest

2-143 The density of a fluid decreases by 5 percent at con-
stant pressure when its temperature increases by 10°C. The
coefficient of volume expansion of this fluid is

(@) 0.01 K~ (h) 0.005 K™ (¢) 0.1 K (d) 0.5 K ! (e) 5K!

2-144 Water is compressed from 100 kPa to 5000 kPa at con-
stant temperature. The initial density of water is 1000 kg/m3
and the isothermal compressibility of water is a =
4.8 X 1073 atm™! . The final density of the water is

(a) 1000 kg/m? (b) 1001.1 kg/m*  (c) 1002.3 kg/m?

(d) 1003.5 kg/m*®  (e) 997.4 kg/m?

2-145 The speed of a spacecraft is given to be 1250 km/h in
atmospheric air at —40°C. The Mach number of this flow is
(@359 ()0.85 (c)1.0 (d)1.13 (e)2.74

2-146 The dynamic viscosity of air at 20°C and 200 kPa is
1.83 X 1073 kg/m-s. The kinematic viscosity of air at this state is
(@) 0.525 X 107> m?%s  (b) 0.77 X 1075 m?¥s

() 1.47 X 1075 m¥s  (d)1.83 X 1075 m%s

(e) 0.380 X 1073 m?/s



2-147 A viscometer constructed of two 30-cm-long con-
centric cylinders is used to measure the viscosity of a fluid.
The outer diameter of the inner cylinder is 9 cm, and the gap
between the two cylinders is 0.18 cm. The inner cylinder is
rotated at 250 rpm, and the torque is measured to be 1.4 N-m.
The viscosity of the fluid is

(a) 0.0084 N-s/m> (b) 0.017 N-s/m?>
(d) 0.0049 N-s/m? (e) 0.56 N-s/m?

2-148 Which one is not a surface tension or surface energy
(per unit area) unit?
(a) Ibf/ft  (b) N'm/m? (c) Ibi/f> (d) J/m*> (e) Btu/ft®

2-149 The surface tension of soap water at 20°C is o, =
0.025 N/m. The gage pressure inside a soap bubble of diam-
eter 2 cm at 20°C is

(a)10Pa (b)5Pa (c)20Pa (d)40Pa (e)0.5Pa

2-150 A 0.4-mm-diameter glass tube is inserted into water
at 20°C in a cup. The surface tension of water at 20°C is o, =
0.073 N/m. The contact angle can be taken as zero degrees.
The capillary rise of water in the tube is

(@29cm (b)74cm (¢)5.1cm

(d)9.3 cm (e) 14.0 cm

(¢) 0.062 N-s/m?

Design and Essay Problems

2-151 Design an experiment to measure the viscosity of
liquids using a vertical funnel with a cylindrical reservoir of
height /2 and a narrow flow section of diameter D and length L.
Making appropriate assumptions, obtain a relation for viscos-
ity in terms of easily measurable quantities such as density
and volume flow rate.

2-152 Write an essay on the rise of the fluid to the top of
trees by capillary and other effects.

2-153 Write an essay on the oils used in car engines in dif-
ferent seasons and their viscosities.

2-154 Consider the flow of water through a clear tube. It is
sometimes possible to observe cavitation in the throat created
by pinching off the tube to a very small diameter as sketched.
We assume incompressible flow with negligible gravitational
effects and negligible irreversibilities. You will learn later
(Chap. 5) that as the duct cross-sectional area decreases, the
velocity increases and the pressure decreases according to

vi vi
VA =V,A, and P, + Py = P, + Y
respectively, where V| and V, are the average velocities through
cross-sectional areas A, and A,. Thus, both the maximum
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velocity and minimum pressure occur at the throat. (a) If the
water is at 20°C, the inlet pressure is 20.803 kPa, and the throat
diameter is one-twentieth of the inlet diameter, estimate the
minimum average inlet velocity at which cavitation is likely to
occur in the throat. (b) Repeat at a water temperature of 50°C.
Explain why the required inlet velocity is higher or lower than
that of part ().

v, Inlet v,
—_—— .
Py Py

Throat

FIGURE P2-154

2-155 Even though steel is about 7 to 8 times denser than
water, a steel paper clip or razor blade can be made to float
on water! Explain and discuss. Predict what would happen if
you mix some soap with the water.

FIGURE P2-155
Photo by John M. Cimbala.
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PRESSURE AND
FLUID STATICS

his chapter deals with forces applied by fluids at rest or in rigid-body

motion. The fluid property responsible for those forces is pressure,

which is a normal force exerted by a fluid per unit area. We start this
chapter with a detailed discussion of pressure, including absolute and gage
pressures, the pressure at a point, the variation of pressure with depth in a
gravitational field, the barometer, the manometer, and other pressure mea-
surement devices. This is followed by a discussion of the hydrostatic forces
applied on submerged bodies with plane or curved surfaces. We then con-
sider the buoyant force applied by fluids on submerged or floating bodies,
and discuss the stability of such bodies. Finally, we apply Newton’s second
law of motion to a body of fluid in motion that acts as a rigid body and ana-
lyze the variation of pressure in fluids that undergo linear acceleration and
in rotating containers. This chapter makes extensive use of force balances
for bodies in static equilibrium, and it would be helpful if the relevant topics
from statics are first reviewed.

John Ninomiya flying a cluster of 72 helium-filled
balloons over Temecula, California in April

of 2003. The helium balloons displace approximately
230 m? of air, providing the necessary buoyant force.
Don’t try this at home!

Photograph by Susan Dawson. Used by permission.

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to:

Determine the variation of
pressure in a fluid at rest

Calculate pressure using various
kinds of manometers

Calculate the forces and
moments exerted by a fluid
at rest on plane or curved
submerged surfaces

Analyze the stability of floating
and submerged bodies

Analyze the rigid-body motion of
fluids in containers during linear
acceleration or rotation
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FIGURE 3-1

The normal stress (or “pressure’)
on the feet of a chubby person is
much greater than on the feet of
a slim person.

FIGURE 3-2
Some basic pressure gages.

Dresser Instruments, Dresser, Inc. Used by
permission.

3-1 = PRESSURE

Pressure is defined as a normal force exerted by a fluid per unit area. We
speak of pressure only when we deal with a gas or a liquid. The counterpart
of pressure in solids is normal stress. Since pressure is defined as force per
unit area, it has the unit of newtons per square meter (N/m?), which is called
a pascal (Pa). That is,

1Pa = 1 N/m?

The pressure unit pascal is too small for most pressures encountered in
practice. Therefore, its multiples kilopascal (1 kPa = 103 Pa) and megapas-
cal (1 MPa = 10° Pa) are commonly used. Three other pressure units com-
monly used in practice, especially in Europe, are bar, standard atmosphere,
and kilogram-force per square centimeter:

1 bar = 10° Pa = 0.1 MPa = 100 kPa
1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars
1 kgf/cm? = 9.807 N/cm? = 9.807 X 10* N/m? = 9.807 X 10*Pa
= 0.9807 bar
= 0.9679 atm

Note the pressure units bar, atm, and kgf/cm? are almost equivalent to each
other. In the English system, the pressure unit is pound-force per square inch
(Ibf/in%, or psi), and 1 atm = 14.696 psi. The pressure units kgf/cm? and
Ibf/in? are also denoted by kg/cm? and Ib/in% respectively, and they are
commonly used in tire gages. It can be shown that 1 kgf/cm? = 14.223 psi.

Pressure is also used on solid surfaces as synonymous to normal stress,
which is the force acting perpendicular to the surface per unit area. For
example, a 150-pound person with a total foot imprint area of 50 in? exerts
a pressure of 150 Ibf/50 in> = 3.0 psi on the floor (Fig. 3—1). If the person
stands on one foot, the pressure doubles. If the person gains excessive
weight, he or she is likely to encounter foot discomfort because of the
increased pressure on the foot (the size of the bottom of the foot does not
change with weight gain). This also explains how a person can walk on
fresh snow without sinking by wearing large snowshoes, and how a person
cuts with little effort when using a sharp knife.

The actual pressure at a given position is called the absolute pressure,
and it is measured relative to absolute vacuum (i.e., absolute zero pressure).
Most pressure-measuring devices, however, are calibrated to read zero in the
atmosphere (Fig. 3-2), and so they indicate the difference between the abso-
lute pressure and the local atmospheric pressure. This difference is called
the gage pressure. P,,,. can be positive or negative, but pressures below
atmospheric pressure are sometimes called vacuum pressures and are mea-
sured by vacuum gages that indicate the difference between the atmospheric
pressure and the absolute pressure. Absolute, gage, and vacuum pressures

are related to each other by
P gage = Pabs

Pvac = Rum - des
This is illustrated in Fig. 3-3.

- P

atm

(3-1)
(3-2)



Pgage

atm atm

Absolute Absolute

vacuum vacuum

Like other pressure gages, the gage used to measure the air pressure in
an automobile tire reads the gage pressure. Therefore, the common reading
of 32.0 psi (2.25 kgf/cm?) indicates a pressure of 32.0 psi above the atmo-
spheric pressure. At a location where the atmospheric pressure is 14.3 psi,
for example, the absolute pressure in the tire is 32.0 + 14.3 = 46.3 psi.

In thermodynamic relations and tables, absolute pressure is almost always
used. Throughout this text, the pressure P will denote absolute pressure
unless specified otherwise. Often the letters “a” (for absolute pressure) and
“g” (for gage pressure) are added to pressure units (such as psia and psig) to
clarify what is meant.

| |
m EXAMPLE 3-1 Absolute Pressure of a Vacuum Chamber

[
m A vacuum gage connected to a chamber reads 5.8 psi at a location where

m the atmospheric pressure is 14.5 psi. Determine the absolute pressure in the
chamber.

SOLUTION The gage pressure of a vacuum chamber is given. The absolute
pressure in the chamber is to be determined.
Analysis The absolute pressure is easily determined from Eq. 3-2 to be

Puy = Py — Py = 145 — 58 = 8.7 psi

abs atm

Discussion Note that the /ocal value of the atmospheric pressure is used
when determining the absolute pressure.

Pressure at a Point

Pressure is the compressive force per unit area, and it gives the impression
of being a vector. However, pressure at any point in a fluid is the same in all
directions (Fig. 3—4). That is, it has magnitude but not a specific direction,
and thus it is a scalar quantity. This can be demonstrated by considering a
small wedge-shaped fluid element of unit length (Ay = 1 into the page) in
equilibrium, as shown in Fig. 3-5. The mean pressures at the three surfaces
are P, P,, and P, and the force acting on a surface is the product of mean
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FIGURE 3-3
Absolute, gage, and vacuum pressures.

FIGURE 3-4

Pressure is a scalar quantity, not a
vector; the pressure at a point in a fluid
is the same in all directions.
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FIGURE 3-5

Forces acting on a wedge-shaped fluid
element in equilibrium.

<

gage

FIGURE 3-6

The pressure of a fluid at rest
increases with depth (as a result
of added weight).

pressure and the surface area. From Newton’s second law, a force balance in
the x- and z-directions gives
> F, = ma, = 0: (3-3a)

ZFZ = ma, = 0:

P, AyAz — P;Aylsinf = 0
1
P, AyAx — Py Aylcos O — 5 P8 Ax Ay Az = 0 (3-3h)

where p is the density and W = mg = pg Ax Ay Az/2 is the weight of
the fluid element. Noting that the wedge is a right triangle, we have Ax =
I cos 0 and Az = [ sin 0. Substituting these geometric relations and dividing
Eq. 3-3a by Ay Az and Eq. 3-3b by Ax Ay gives

P —P;=0 (3-4a)

1
P2—P3—EpgAz=0

The last term in Eq. 3—4b drops out as Az — 0 and the wedge becomes
infinitesimal, and thus the fluid element shrinks to a point. Then combining
the results of these two relations gives

(3-4h)

P, =P,=P,=P (3-5)

regardless of the angle 6. We can repeat the analysis for an element in the
yz-plane and obtain a similar result. Thus we conclude that the pressure at
a point in a fluid has the same magnitude in all directions. This result is
applicable to fluids in motion as well as fluids at rest since pressure is a
scalar, not a vector.

Variation of Pressure with Depth

It will come as no surprise to you that pressure in a fluid at rest does not
change in the horizontal direction. This can be shown easily by considering
a thin horizontal layer of fluid and doing a force balance in any horizontal
direction. However, this is not the case in the vertical direction in a gravity
field. Pressure in a fluid increases with depth because more fluid rests on
deeper layers, and the effect of this “extra weight” on a deeper layer is bal-
anced by an increase in pressure (Fig. 3-06).

To obtain a relation for the variation of pressure with depth, consider a
rectangular fluid element of height Az, length Ax, and unit depth (Ay = 1
into the page) in equilibrium, as shown in Fig. 3-7. Assuming the density of
the fluid p to be constant, a force balance in the vertical z-direction gives

EFzzmaz=O: P, AxAy — P,Ax Ay — pg Ax Ay Az =0
where W = mg = pg Ax Ay Az is the weight of the fluid element and Az =
7, — z,. Dividing by Ax Ay and rearranging gives

AP =P, — P, = —pgAz = —v,Az (3-6)

where y, = pg is the specific weight of the fluid. Thus, we conclude that the
pressure difference between two points in a constant density fluid is propor-
tional to the vertical distance Az between the points and the density p of the
fluid. Noting the negative sign, pressure in a static fluid increases linearly
with depth. This is what a diver experiences when diving deeper in a lake.
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An easier equation to remember and apply between any two points in the

same fluid under hydrostatic conditions is
Prciow = Paove T p8IAZL = Py + v,AZI @-7 l?
P 2
where “below” refers to the point at lower elevation (deeper in the fluid) l l l l l l l l l l l l
and “above” refers to the point at higher elevation. If you use this equation %7 T Ax = T S
consistently, you should avoid sign errors. — i.i
For a given fluid, the vertical distance Az is sometimes used as a measure o Az l Y
of pressure, and it is called the pressure head. . — w —
We also conclude from Eq. 3-6 that for small to moderate distances, the ~'| 111111111
variation of pressure with height is negligible for gases because of their low ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ { ‘
density. The pressure in a tank containing a gas, for example, can be con- P,
sidered to be uniform since the weight of the gas is too small to make a B
significant difference. Also, the pressure in a room filled with air can be ©°
approximated as a constant (Fig. 3-8). FIGURE 3—7
If we take th.e “above” point to be at the fr.ee surface of a hgmd open to the Free-body diagram of a rectangular
atmosphere (Fig. 3-9), where the pressure is the atmospheric pressure P, fluid element in equilibrium.

then from Eq. 37 the pressure at a depth & below the free surface becomes

P=pP, +pgh or P, =pgh (3-8)

gage

Liquids are essentially incompressible substances, and thus the variation
of density with depth is negligible. This is also the case for gases when
the elevation change is not very large. The variation of density of liquids
or gases with temperature can be significant, however, and may need to
be considered when high accuracy is desired. Also, at great depths such as
those encountered in oceans, the change in the density of a liquid can be
significant because of the compression by the tremendous amount of liquid :
weight above. : r
The gravitational acceleration g varies from 9.807 m/s® at sea level to i }
9.764 m/s? at an elevation of 14,000 m where large passenger planes cruise. A :

This is a change of just 0.4 percent in this extreme case. Therefore, g can be
approximated as a constant with negligible error. Pygp = 1 atm
For fluids whose density changes significantly with elevation, a relation AIR
for the variation of pressure With elevation can _be .obtained by dividing (A 5-m-high room)
Eq. 3-6 by Az, and taking the limit as Az — 0. This yields
dP
d7z = —pg (3-9) Py oom = 1:006-atm
Note that dP is negative when dz is positive since pressure decreases in an
upward direction. When the variation of density with elevation is known, FIGURE 3-8
the pressure difference between any two points 1 and 2 can be determined In a room filled with a gas, the
by integration to be variation of pressure with
height is negligible.

2
AP =P, — P = *J pg dz (3-10)
I

For constant density and constant gravitational acceleration, this relation
reduces to Eq. 3-6, as expected.

Pressure in a fluid at rest is independent of the shape or cross section
of the container. It changes with the vertical distance, but remains constant
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above = ©atm

Pbelow = Patm + pgh

FIGURE 3-9

Pressure in a liquid at rest increases
linearly with distance from the free
surface.

atm

<

in other directions. Therefore, the pressure is the same at all points on a
horizontal plane in a given fluid. The Dutch mathematician Simon Stevin
(1548-1620) published in 1586 the principle illustrated in Fig. 3—10. Note
that the pressures at points A, B, C, D, E, F, and G are the same since
they are at the same depth, and they are interconnected by the same static
fluid. However, the pressures at points H and [ are not the same since these
two points cannot be interconnected by the same fluid (i.e., we cannot draw
a curve from point / to point H while remaining in the same fluid at all
times), although they are at the same depth. (Can you tell at which point the
pressure is higher?) Also notice that the pressure force exerted by the fluid
is always normal to the surface at the specified points.

A consequence of the pressure in a fluid remaining constant in the hori-
zontal direction is that the pressure applied to a confined fluid increases
the pressure throughout by the same amount. This is called Pascal’s law,
after Blaise Pascal (1623-1662). Pascal also knew that the force applied
by a fluid is proportional to the surface area. He realized that two hydrau-
lic cylinders of different areas could be connected, and the larger could be
used to exert a proportionally greater force than that applied to the smaller.
“Pascal’s machine” has been the source of many inventions that are a part
of our daily lives such as hydraulic brakes and lifts. This is what enables us
to lift a car easily by one arm, as shown in Fig. 3—11. Noting that P, = P,
since both pistons are at the same level (the effect of small height differ-
ences is negligible, especially at high pressures), the ratio of output force to
input force is determined to be

Fl F2 F2 AZ
p=pP - —Lt="2 4 22 (3-11)
Al A2 Fl Al

Py=Pp=Pc=Pp=Pp=Pp=Pg=Pyy+pgh
Py#P;

FIGURE 3-10

Water

Under hydrostatic conditions, the pressure is the same at all points on a horizontal plane in a given fluid regardless of
geometry, provided that the points are interconnected by the same fluid.



The area ratio A,/A, is called the ideal mechanical advantage of the hydraulic
lift. Using a hydraulic car jack with a piston area ratio of A,/A, = 100, for
example, a person can lift a 1000-kg car by applying a force of just 10 kgf
(= 90.8 N).

3-2 = PRESSURE MEASUREMENT DEVICES
The Barometer

Atmospheric pressure is measured by a device called a barometer; thus, the
atmospheric pressure is often referred to as the barometric pressure.

The Italian Evangelista Torricelli (1608—1647) was the first to conclu-
sively prove that the atmospheric pressure can be measured by inverting a
mercury-filled tube into a mercury container that is open to the atmosphere,
as shown in Fig. 3—12. The pressure at point B is equal to the atmospheric
pressure, and the pressure at point C can be taken to be zero since there is
only mercury vapor above point C and the pressure is very low relative to
P,., and can be neglected to an excellent approximation. Writing a force
balance in the vertical direction gives

P.. = pgh (3-12)

atm

where p is the density of mercury, g is the local gravitational acceleration,
and £ is the height of the mercury column above the free surface. Note that
the length and the cross-sectional area of the tube have no effect on the
height of the fluid column of a barometer (Fig. 3—13).

A frequently used pressure unit is the standard atmosphere, which is
defined as the pressure produced by a column of mercury 760 mm in height
at 0°C (py, = 13,595 kg/m?) under standard gravitational acceleration
(g = 9.807 m/s?). If water instead of mercury were used to measure the
standard atmospheric pressure, a water column of about 10.3 m would be
needed. Pressure is sometimes expressed (especially by weather forecasters)
in terms of the height of the mercury column. The standard atmospheric
pressure, for example, is 760 mmHg (29.92 inHg) at 0°C. The unit mmHg
is also called the torr in honor of Torricelli. Therefore, 1 atm = 760 torr
and 1 torr = 133.3 Pa.

Atmospheric pressure P, changes from 101.325 kPa at sea level to
89.88, 79.50, 54.05, 26.5, and 5.53 kPa at altitudes of 1000, 2000, 5000,
10,000, and 20,000 meters, respectively. The typical atmospheric pressure in
Denver (elevation = 1610 m), for example, is 83.4 kPa. Remember that the
atmospheric pressure at a location is simply the weight of the air above that
location per unit surface area. Therefore, it changes not only with elevation
but also with weather conditions.

The decline of atmospheric pressure with elevation has far-reaching rami-
fications in daily life. For example, cooking takes longer at high altitudes
since water boils at a lower temperature at lower atmospheric pressures.
Nose bleeding is a common experience at high altitudes since the difference
between the blood pressure and the atmospheric pressure is larger in this
case, and the delicate walls of veins in the nose are often unable to with-
stand this extra stress.

For a given temperature, the density of air is lower at high altitudes, and
thus a given volume contains less air and less oxygen. So it is no surprise
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FIGURE 3-11

Lifting of a large weight by

a small force by the application

of Pascal’s law. A common example is
a hydraulic jack.
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FIGURE 3-12
The basic barometer.
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FIGURE 3-13

The length or the cross-sectional area
of the tube has no effect on the height
of the fluid column of a barometer,
provided that the tube diameter is
large enough to avoid surface tension
(capillary) effects.

FIGURE 3-14

At high altitudes, a car engine
generates less power and a person
gets less oxygen because of the
lower density of air.

that we tire more easily and experience breathing problems at high altitudes.
To compensate for this effect, people living at higher altitudes develop more
efficient lungs. Similarly, a 2.0-L car engine will act like a 1.7-L car engine
at 1500 m altitude (unless it is turbocharged) because of the 15 percent drop
in pressure and thus 15 percent drop in the density of air (Fig. 3—14). A fan
or compressor will displace 15 percent less air at that altitude for the same
volume displacement rate. Therefore, larger cooling fans may need to be
selected for operation at high altitudes to ensure the specified mass flow
rate. The lower pressure and thus lower density also affects lift and drag:
airplanes need a longer runway at high altitudes to develop the required lift,
and they climb to very high altitudes for cruising in order to reduce drag
and thus achieve better fuel efficiency.

EXAMPLE 3-2 Measuring Atmospheric Pressure
with a Barometer

Determine the atmospheric pressure at a location where the barometric ®
reading is 740 mm Hg and the gravitational acceleration is g = 9.805 m/s?. §
Assume the temperature of mercury to be 10°C, at which its density is
13,570 kg/m3.

SOLUTION The barometric reading at a location in height of mercury col-
umn is given. The atmospheric pressure is to be determined.

Assumptions The temperature of mercury is assumed to be 10°C.

Properties The density of mercury is given to be 13,570 kg/m3.

Analysis From Eq. 3-12, the atmospheric pressure is determined to be

Pym = pgh

= (13,570 kg/m*)(9.805 m/s%)(0.740 m)< IN )( L kPa )
I : ' 1 kg-m/s2/\ 1000 N/m?

= 98.5 kPa

Discussion Note that density changes with temperature, and thus this effect
should be considered in calculations.

EXAMPLE 3-3 Gravity Driven Flow from an IV Bottle

Intravenous infusions usually are driven by gravity by hanging the fluid bot- g
tle at sufficient height to counteract the blood pressure in the vein and to m
force the fluid into the body (Fig. 3-15). The higher the bottle is raised, the
higher the flow rate of the fluid will be. (a) If it is observed that the fluid
and the blood pressures balance each other when the bottle is 1.2 m above
the arm level, determine the gage pressure of the blood. (b) If the gage pres-
sure of the fluid at the arm level needs to be 20 kPa for sufficient flow rate,
determine how high the bottle must be placed. Take the density of the fluid
to be 1020 kg/m3.

SOLUTION It is given that an IV fluid and the blood pressures balance each
other when the bottle is at a certain height. The gage pressure of the blood
and elevation of the bottle required to maintain flow at the desired rate are
to be determined.



Assumptions 1 The IV fluid is incompressible. 2 The IV bottle is open to
the atmosphere.

Properties The density of the IV fluid is given to be p = 1020 kg/m?3.
Analysis (a) Noting that the IV fluid and the blood pressures balance each
other when the bottle is 1.2 m above the arm level, the gage pressure of the
blood in the arm is simply equal to the gage pressure of the IV fluid at a
depth of 1.2 m,

Pgage, arm Pabs - Patm = pgharm—boltle

= (1020 kg/m*)9.81 m/s2)(1 20m)< LN )( L kP )
< : : 1000 kg-m/s2/\ 1 kN/m?

= 12.0 kPa

(b) To provide a gage pressure of 20 kPa at the arm level, the height of the
surface of the IV fluid in the bottle from the arm level is again determined
from P = pgharm—boltle to be

gage, arm

gage, arm
harmfbottlle - pg
_ 20 kPa (1000 kg-m/s2><1 kN/m2>
(1020 kg/m*)(9.81 m/sH\ 1 kN 1 kPa
=2.00m

Discussion Note that the height of the reservoir can be used to control flow
rates in gravity-driven flows. When there is flow, the pressure drop in the tube
due to frictional effects also should be considered. For a specified flow rate,
this requires raising the bottle a little higher to overcome the pressure drop.

EXAMPLE 3—4 Hydrostatic Pressure in a Solar Pond
with Variahle Density

Solar ponds are small artificial lakes of a few meters deep that are used to
store solar energy. The rise of heated (and thus less dense) water to the sur-
face is prevented by adding salt at the pond bottom. In a typical salt gradi-
ent solar pond, the density of water increases in the gradient zone, as shown
in Fig. 3-16, and the density can be expressed as

— 1+ 2 Zi
P = Po tan 4 H
where p, is the density on the water surface, s is the vertical distance mea-
sured downward from the top of the gradient zone (s = —z), and H is the
thickness of the gradient zone. For H = 4 m, p, = 1040 kg/m3, and a
thickness of 0.8 m for the surface zone, calculate the gage pressure at the
bottom of the gradient zone.

SOLUTION The variation of density of saline water in the gradient zone of a
solar pond with depth is given. The gage pressure at the bottom of the gradi-
ent zone is to be determined.

Assumptions The density in the surface zone of the pond is constant.
Properties The density of brine on the surface is given to be 1040 kg/m3.
Analysis We label the top and the bottom of the gradient zone as 1 and
2, respectively. Noting that the density of the surface zone is constant, the
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FIGURE 3-15
Schematic for Example 3-3.

Sun Increasing salinity
and density
po= 1040 kg/m’ .
~\ Surface zone | —0 /S

ST\ ; /
Jf: A Gradient zone

FIGURE 3-16
Schematic for Example 3—4.
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FIGURE 3-17

The variation of gage pressure with
depth in the gradient zone of the
solar pond.

FIGURE 3-18

A simple U-tube manometer, with
high pressure applied to the right side.
Photo by John M. Cimbala.

gage pressure at the bottom of the surface zone (which is the top of the
gradient zone) is

1 kN
P, = pgh, = (1040 kg/m?)(9.81 m/s?)(0.8 — | = 8.16 kP
1= Pl = ( g/m)(-81 m/s")( m)<1000 kg-m/S2) a
since 1 kN/m? = 1 kPa. Since s = —z, the differential change in hydrostatic
pressure across a vertical distance of ds is given by
dP = pgds

Integrating from the top of the gradient zone (point 1 where s = 0) to any
location s in the gradient zone (no subscript) gives

P—P1:Jpgds — P=P1+me/1+tan2<zlfl>gds
o o

Performing the integration gives the variation of gage pressure in the gradi-
ent zone to be

P—p + 4H . h_l(t T s)
= — SIn an — —
1 P8 4 H

Then the pressure at the bottom of the gradient zone (s = H = 4 m) becomes

P, = 8.16 kPa + (1040 kg/m?3)(9.81 m/s?) 4(4 m) | h—l(t 774)( 1 kN )
= 8. a m . m/s il BRI (— T -
2 : m 4 4\ 1000 kg:m/s?

= 54.0 kPa (gage)

Discussion The variation of gage pressure in the gradient zone with depth is
plotted in Fig. 3-17. The dashed line indicates the hydrostatic pressure for
the case of constant density at 1040 kg/m3 and is given for reference. Note
that the variation of pressure with depth is not linear when density varies
with depth. That is why integration was required.

The Manometer

We notice from Eq. 3-6 that an elevation change of —Az in a fluid at rest
corresponds to AP/pg, which suggests that a fluid column can be used to
measure pressure differences. A device based on this principle is called a
manometer, and it is commonly used to measure small and moderate pres-
sure differences. A manometer consists of a glass or plastic U-tube contain-
ing one or more fluids such as mercury, water, alcohol, or oil (Fig. 3-18).
To keep the size of the manometer to a manageable level, heavy fluids such
as mercury are used if large pressure differences are anticipated.

Consider the manometer shown in Fig. 3—-19 that is used to measure the
pressure in the tank. Since the gravitational effects of gases are negligible,
the pressure anywhere in the tank and at position 1 has the same value. Fur-
thermore, since pressure in a fluid does not vary in the horizontal direction
within a fluid, the pressure at point 2 is the same as the pressure at point 1,
P, =P,

The differential fluid column of height /4 is in static equilibrium, and it is
open to the atmosphere. Then the pressure at point 2 is determined directly
from Eq. 3-7 to be

Py = P, + pgh (3-13)



where p is the density of the manometer fluid in the tube. Note that the
cross-sectional area of the tube has no effect on the differential height A,
and thus the pressure exerted by the fluid. However, the diameter of the tube
should be large enough (more than several millimeters) to ensure that the
surface tension effect and thus the capillary rise is negligible.

|
m EXAMPLE 3-5 Measuring Pressure with a Manometer

: A manometer is used to measure the pressure of a gas in a tank. The fluid

m used has a specific gravity of 0.85, and the manometer column height is

B 55 cm, as shown in Fig. 3-20. If the local atmospheric pressure is 96 kPa,
determine the absolute pressure within the tank.

SOLUTION The reading of a manometer attached to a tank and the atmo-
spheric pressure are given. The absolute pressure in the tank is to be
determined.

Assumptions The density of the gas in the tank is much lower than the den-
sity of the manometer fluid.

Properties The specific gravity of the manometer fluid is given to be 0.85.
We take the standard density of water to be 1000 kg/m3.

Analysis The density of the fluid is obtained by multiplying its specific
gravity by the density of water,

p = SG (pyo) = (0.85)(1000 kg/m?) = 850 kg/m>
Then from Eq. 3-13,

P =Py, + pgh

IN 1 kPa
kPa + kg/m?)(9.81 m/s?)(0.
96 kPa + (850 kg/m>)(9.81 m/s)(0.55 In)(1 kg-m/s2><1000 N/m2)

= 100.6 kPa

Discussion Note that the gage pressure in the tank is 4.6 kPa.

Some manometers use a slanted or inclined tube in order to increase the
resolution (precision) when reading the fluid height. Such devices are called
inclined manometers.

Many engineering problems and some manometers involve multiple
immiscible fluids of different densities stacked on top of each other. Such
systems can be analyzed easily by remembering that (1) the pressure change
across a fluid column of height h is AP = pgh, (2) pressure increases
downward in a given fluid and decreases upward (i.e., Pyoyom = Pyop)s and
(3) two points at the same elevation in a continuous fluid at rest are at the
same pressure.

The last principle, which is a result of Pascal’s law, allows us to “jump”
from one fluid column to the next in manometers without worrying about
pressure change as long as we stay in the same continuous fluid and the
fluid is at rest. Then the pressure at any point can be determined by start-
ing with a point of known pressure and adding or subtracting pgh terms as
we advance toward the point of interest. For example, the pressure at the
bottom of the tank in Fig. 3-21 can be determined by starting at the free
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FIGURE 3-19
The basic manometer.

P =96kPa

atm

FIGURE 3-20
Schematic for Example 3-5.

atm 7

Fluid B (

Fluid 2 f

Fluid 3 f
3

. 4
FIGURE 3-21
In stacked-up fluid layers at rest, the

pressure change across each fluid
layer of density p and height 4 is pgh.
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A flow section surface where the pressure is P, , moving downward until we reach point 1
or flow device at the bottom, and setting the result equal to P;. It gives

Pyn t p18hy + paghy, + pighy = P,

In the special case of all fluids having the same density, this relation reduces
to Patm + pg(h] + h2 + hS) = Pl'

Manometers are particularly well-suited to measure pressure drops across
a horizontal flow section between two specified points due to the presence
of a device such as a valve or heat exchanger or any resistance to flow. This
is done by connecting the two legs of the manometer to these two points, as
shown in Fig. 3-22. The working fluid can be either a gas or a liquid whose
density is p,. The density of the manometer fluid is p,, and the differential
fluid height is 4. The two fluids must be immiscible, and p, must be greater

FIGURE 3-22 than p,.

Measuring the pressure drop across A relation for the pressure difference P, — P, can be obtained by starting
a flow section or a flow device by a at point 1 with P,, moving along the tube by adding or subtracting the pgh
differential manometer. terms until we reach point 2, and setting the result equal to P,:

Py + pigla + h) — p,gh — piga = P, 3-14

Note that we jumped from point A horizontally to point B and ignored the
part underneath since the pressure at both points is the same. Simplifying,

P, — P, = (p, — p)gh (3-15)

Note that the distance a must be included in the analysis even though it has
no effect on the result. Also, when the fluid flowing in the pipe is a gas,
then p, << p, and the relation in Eq. 3—15 simplifies to P, — P, = p,gh.

. |
/\ (-,{0” EXAMPLE 3-6 Measuring Pressure with a Multifluid Manometer m
. f \ |

Air The water in a tank is pressurized by air, and the pressure is measured by a g
1 multifluid manometer as shown in Fig. 3-23. The tank is located on a moun- m
° T tain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa.

Water Determine the air pressure in the tank if h; = 0.1 m, h, = 0.2 m, and

hy = 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3,
850 kg/m3, and 13,600 kg/m3, respectively.

SOLUTION The pressure in a pressurized water tank is measured by a multi-
fluid manometer. The air pressure in the tank is to be determined.
Assumption The air pressure in the tank is uniform (i.e., its variation with
elevation is negligible due to its low density), and thus we can determine the
M pressure at the air-water interface.
Properties The densities of water, oil, and mercury are given to be
1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.
FIGURE 3-23 Analysis Starting with the pressure at point 1 at the air-water interface,
moving along the tube by adding or subtracting the pgh terms until we reach
point 2, and setting the result equal to P,,, since the tube is open to the
atmosphere gives

lTI
|

—
Mercury

Schematic for Example 3-3; drawing
not to scale.

Py + pwalerghl + poilghz - pmercurygh3 =h=Fn



Solving for P, and substituting,
Py = Pyn = Pyaer8i = P8 t Prnereury8h3
= P g(pmercuryh3 = Pyatert — Poih)
85.6 kPa + (9.81 m/s?)[ (13,600 kg/m?)(0.35 m) — (1000 kg/m?)(0.1 m)

IN | kPa
— (850 kg/m*)(0.2
(850 ke/m)( m)](lkgm/sZ)(looo N/m2>

= 130 kPa

Discussion Note that jumping horizontally from one tube to the next and
realizing that pressure remains the same in the same fluid simplifies the
analysis considerably. Also note that mercury is a toxic fluid, and mercury
manometers and thermometers are being replaced by ones with safer fluids
because of the risk of exposure to mercury vapor during an accident.

EXAMPLE 3-7 Analyzing a Multifluid Manometer with EES

Reconsider the multifluid manometer discussed in Example 3-6. Determine
the air pressure in the tank using EES. Also determine what the differential
fluid height A3 would be for the same air pressure if the mercury in the last
column were replaced by seawater with a density of 1030 kg/mS3.

SOLUTION The pressure in a water tank is measured by a multifluid
manometer. The air pressure in the tank and the differential fluid height h;
if mercury is replaced by seawater are to be determined using EES.

Analysis We start the EES program, open a new file, and type the following
on the blank screen that appears (we express the atmospheric pressure in Pa
for unit consistency):

g=9.81
Patm=85600
h1=0.1; h2=0.2; h3=0.35
rw=1000; roil=850; rm=13600
P1+rw*g*hl+roil*g*h2 —rm*g*h3=Patm
Here P1 is the only unknown, and it is determined by EES to be
P, = 129647 Pa = 130 kPa

which is identical to the result obtained in Example 3-6. The height of the
fluid column h; when mercury is replaced by seawater is determined easily by
replacing “h3=0.35" by “P1=129647" and “rm=13600" by “rm=1030,”
and clicking on the calculator symbol. It gives

h, = 4.62m

Discussion Note that we used the screen like a paper pad and wrote down the
relevant information together with the applicable relations in an organized manner.
EES did the rest. Equations can be written on separate lines or on the same line
by separating them by semicolons, and blank or comment lines can be inserted
for readability. EES makes it very easy to ask “what if” questions and to perform
parametric studies, as explained in Appendix 3 on the text website.
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FIGURE 3-24

Various types of Bourdon tubes used
to measure pressure. They work on the
same principle as party noise-makers
(bottom photo) due to the flat tube
cross section.

(Bottom) Photo by John M. Cimbala.
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FIGURE 3-25

A deadweight tester is able to
measure extremely high pressures
(up to 10,000 psi in some
applications).

Other Pressure Measurement Devices

Another type of commonly used mechanical pressure measurement device
is the Bourdon tube, named after the French engineer and inventor Eugene
Bourdon (1808-1884), which consists of a bent, coiled, or twisted hollow
metal tube whose end is closed and connected to a dial indicator needle
(Fig. 3-24). When the tube is open to the atmosphere, the tube is unde-
flected, and the needle on the dial at this state is calibrated to read zero
(gage pressure). When the fluid inside the tube is pressurized, the tube
stretches and moves the needle in proportion to the applied pressure.

Electronics have made their way into every aspect of life, including pres-
sure measurement devices. Modern pressure sensors, called pressure trans-
ducers, use various techniques to convert the pressure effect to an electri-
cal effect such as a change in voltage, resistance, or capacitance. Pressure
transducers are smaller and faster, and they can be more sensitive, reliable,
and precise than their mechanical counterparts. They can measure pressures
from less than a millionth of 1 atm to several thousands of atm.

A wide variety of pressure transducers is available to measure gage, abso-
lute, and differential pressures in a wide range of applications. Gage pres-
sure transducers use the atmospheric pressure as a reference by venting the
back side of the pressure-sensing diaphragm to the atmosphere, and they
give a zero signal output at atmospheric pressure regardless of altitude.
Absolute pressure transducers are calibrated to have a zero signal output at
full vacuum. Differential pressure transducers measure the pressure difference
between two locations directly instead of using two pressure transducers
and taking their difference.

Strain-gage pressure transducers work by having a diaphragm deflect
between two chambers open to the pressure inputs. As the diaphragm
stretches in response to a change in pressure difference across it, the strain
gage stretches and a Wheatstone bridge circuit amplifies the output. A
capacitance transducer works similarly, but capacitance change is measured
instead of resistance change as the diaphragm stretches.

Piezoelectric transducers, also called solid-state pressure transducers,
work on the principle that an electric potential is generated in a crystalline
substance when it is subjected to mechanical pressure. This phenomenon,
first discovered by brothers Pierre and Jacques Curie in 1880, is called the
piezoelectric (or press-electric) effect. Piezoelectric pressure transducers
have a much faster frequency response compared to diaphragm units and
are very suitable for high-pressure applications, but they are generally not as
sensitive as diaphragm-type transducers, especially at low pressures.

Another type of mechanical pressure gage called a deadweight tester
is used primarily for calibration and can measure extremely high pres-
sures (Fig. 3-25). As its name implies, a deadweight tester measures pres-
sure directly through application of a weight that provides a force per unit
area—the fundamental definition of pressure. It is constructed with an inter-
nal chamber filled with a fluid (usually oil), along with a tight-fitting piston,
cylinder, and plunger. Weights are applied to the top of the piston, which
exerts a force on the oil in the chamber. The total force F acting on the oil
at the piston—oil interface is the sum of the weight of the piston plus the
applied weights. Since the piston cross-sectional area A, is known, the pres-
sure is calculated as P = F/A,. The only significant source of error is that



due to static friction along the interface between the piston and cylinder, but
even this error is usually negligibly small. The reference pressure port is
connected to either an unknown pressure that is to be measured or to a pres-
sure sensor that is to be calibrated.

3-3 = INTRODUCTION TO FLUID STATICS

Fluid statics deals with problems associated with fluids at rest. The fluid
can be either gaseous or liquid. Fluid statics is generally referred to as
hydrostatics when the fluid is a liquid and as aerostatics when the fluid
is a gas. In fluid statics, there is no relative motion between adjacent fluid
layers, and thus there are no shear (tangential) stresses in the fluid trying to
deform it. The only stress we deal with in fluid statics is the normal stress,
which is the pressure, and the variation of pressure is due only to the weight
of the fluid. Therefore, the topic of fluid statics has significance only in
gravity fields, and the force relations developed naturally involve the gravi-
tational acceleration g. The force exerted on a surface by a fluid at rest is
normal to the surface at the point of contact since there is no relative motion
between the fluid and the solid surface, and thus there are no shear forces
acting parallel to the surface.

Fluid statics is used to determine the forces acting on floating or sub-
merged bodies and the forces developed by devices like hydraulic presses
and car jacks. The design of many engineering systems such as water dams
and liquid storage tanks requires the determination of the forces acting on
their surfaces using fluid statics. The complete description of the resultant
hydrostatic force acting on a submerged surface requires the determination
of the magnitude, the direction, and the line of action of the force. In the
following two sections, we consider the forces acting on both plane and
curved surfaces of submerged bodies due to pressure.

3-4 = HYDROSTATIC FORCES ON
SUBMERGED PLANE SURFACES

A plate (such as a gate valve in a dam, the wall of a liquid storage tank, or
the hull of a ship at rest) is subjected to fluid pressure distributed over its
surface when exposed to a liquid (Fig. 3-26). On a plane surface, the hydro-
static forces form a system of parallel forces, and we often need to deter-
mine the magnitude of the force and its point of application, which is called
the center of pressure. In most cases, the other side of the plate is open to
the atmosphere (such as the dry side of a gate), and thus atmospheric pres-
sure acts on both sides of the plate, yielding a zero resultant. In such cases, it
is convenient to subtract atmospheric pressure and work with the gage pres-
sure only (Fig. 3-27). For example, P,,,. = pgh at the bottom of the lake.
Consider the top surface of a flat plate of arbitrary shape completely sub-
merged in a liquid, as shown in Fig. 3-28 together with its normal view.
The plane of this surface (normal to the page) intersects the horizontal free
surface at angle 6, and we take the line of intersection to be the x-axis (out
of the page). The absolute pressure above the liquid is P, which is the local
atmospheric pressure P, if the liquid is open to the atmosphere (but P,
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FIGURE 3-26

Hoover Dam.

Courtesy United States Department of the Interior,
Bureau of Reclamation-Lower Colorado Region.
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FIGURE 3-27

When analyzing hydrostatic forces on
submerged surfaces, the atmospheric
pressure can be subtracted for
simplicity when it acts on both

sides of the structure.
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FIGURE 3-28
Hydrostatic force on an inclined plane surface completely submerged in a liquid.
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FIGURE 3-29

The pressure at the centroid of a plane
surface is equivalent to the average
pressure on the surface.

may be different than P, if the space above the liquid is evacuated or pres-
surized). Then the absolute pressure at any point on the plate is

P =Py, + pgh = P, + pgysin@ (3-16)

where h is the vertical distance of the point from the free surface and y
is the distance of the point from the x-axis (from point O in Fig. 3-28).
The resultant hydrostatic force F acting on the surface is determined by
integrating the force P dA acting on a differential area dA over the entire
surface area,

Fp = JPdA:J(PO—i-pgysinO)dA =PRA +pgsin6[ydA (3-17)
A A A

But the first moment of area J y dA is related to the y-coordinate of the cen-

A
troid (or center) of the surface by
L J dA (3-18)
Ye A Ay

Substituting,
Fp= (P, + pgycsin®)A = (P, + pgho)A = P.A = P, A (3-19)

avg

where P = P, + pgh is the pressure at the centroid of the surface, which
is equivalent to the average pressure P, on the surface, and 2o = y sin 6
is the vertical distance of the centroid from the free surface of the liquid
(Fig. 3-29). Thus we conclude that:

The magnitude of the resultant force acting on a plane surface of a
completely submerged plate in a homogeneous (constant density) fluid
is equal to the product of the pressure P, at the centroid of the surface
and the area A of the surface (Fig. 3-30).

The pressure P, is usually atmospheric pressure, which can be ignored in
most force calculations since it acts on both sides of the plate. When this
is not the case, a practical way of accounting for the contribution of P, to



the resultant force is simply to add an equivalent depth h.y;, = Py/pg
to h; that is, to assume the presence of an additional liquid layer of thick-
ness Ay, on top of the liquid with absolute vacuum above.

Next we need to determine the line of action of the resultant force Fip.
Two parallel force systems are equivalent if they have the same magnitude
and the same moment about any point. The line of action of the resultant
hydrostatic force, in general, does not pass through the centroid of the sur-
face—it lies underneath where the pressure is higher. The point of intersec-
tion of the line of action of the resultant force and the surface is the center
of pressure. The vertical location of the line of action is determined by
equating the moment of the resultant force to the moment of the distributed
pressure force about the x-axis:

ypFr = fdeA = Jy(PO-i-pgysine)dA =POJydA +pgsin6Jy2dA
A A A A

or

Ypl'r = PyycA + pgsin01, , (3-20)
where y, is the distance of the center of pressure from the x-axis (point O
in Fig. 3-30)and I , = J y? dA is the second moment of area (also called

the area moment of inertiaf)1 about the x-axis. The second moments of area
are widely available for common shapes in engineering handbooks, but
they are usually given about the axes passing through the centroid of the
area. Fortunately, the second moments of area about two parallel axes are
related to each other by the parallel axis theorem, which in this case is
expressed as

Loo=1I.ct A (3-21)

X

where I . is the second moment of area about the x-axis passing through the
centroid of the area and y, (the y-coordinate of the centroid) is the distance
between the two parallel axes. Substituting the F relation from Eq. 3-19 and
the I, , relation from Eq. 3-21 into Eq. 3-20 and solving for y, yields

IU:C
+ — -
[yc + Py/(pg sin 0)]A

Yp = Yc (3-22a)
For P, = 0, which is usually the case when the atmospheric pressure is
ignored, it simplifies to

Ixx,C

YeA

Knowing yp, the vertical distance of the center of pressure from the free
surface is determined from A, = y, sin 6.

The I, - values for some common areas are given in Fig. 3-31. For areas
that possess symmetry about the y-axis, the center of pressure lies on the
y-axis directly below the centroid. The location of the center of pressure in
such cases is simply the point on the surface of the vertical plane of sym-
metry at a distance &, from the free surface.

Pressure acts normal to the surface, and the hydrostatic forces acting on
a flat plate of any shape form a volume whose base is the plate area and

Yp =Y t+ (3-22h)
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The resultant force acting on a plane
surface is equal to the product of the
pressure at the centroid of the surface
and the surface area, and its line of
action passes through the center of
pressure.
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Pressure prism

AN

FIGURE 3-32

The hydrostatic forces acting on a
plane surface form a pressure prism
whose base (left face) is the surface
and whose length is the pressure.

whose length is the linearly varying pressure, as shown in Fig. 3-32. This
virtual pressure prism has an interesting physical interpretation: its volume
is equal to the magnitude of the resultant hydrostatic force acting on the
plate since Fy = [ P dA, and the line of action of this force passes through
the centroid of this homogeneous prism. The projection of the centroid on
the plate is the pressure center. Therefore, with the concept of pressure
prism, the problem of describing the resultant hydrostatic force on a plane
surface reduces to finding the volume and the two coordinates of the cen-
troid of this pressure prism.

Special Case: Submerged Rectangular Plate

Consider a completely submerged rectangular flat plate of height b and
width ¢ tilted at an angle 6 from the horizontal and whose top edge is hori-
zontal and is at a distance s from the free surface along the plane of the
plate, as shown in Fig. 3-33a. The resultant hydrostatic force on the upper
surface is equal to the average pressure, which is the pressure at the mid-
point of the surface, times the surface area A. That is,

Tilted rectangular plate: Fp=P.A = [P, + pg(s + b/2)sin O]ab (3-23)
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Fg =[Py + pg(s + b/2) sin O]ab Fr =[Py + pg(s + bi2)]ab
(a) Tilted plate (b) Vertical plate
FIGURE 3-33
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Py

Fp=(Py+ pgh)ab

(c) Horizontal plate

Hydrostatic force acting on the top surface of a submerged rectangular plate for tilted, vertical, and horizontal cases.

The force acts at a vertical distance of s, = y, sin 6 from the free surface
directly beneath the centroid of the plate where, from Eq. 3-22a,
ab®/12
yp=s+ 5+ .
2 [s + b/2 + P,/(pg sin 0)]ab

b b?
=54+ -+ - (3-24)
2 12[s + b/2 + P, /(pg sin 0)]

When the upper edge of the plate is at the free surface and thus s = O,
Eq. 3-23 reduces to

Tilted rectangular plate (s = 0): Fp = [P, + pg(bsin 6)/2]ab (3-25)

For a completely submerged vertical plate (6§ = 90°) whose top edge is hori-
zontal, the hydrostatic force can be obtained by setting sin § = 1 (Fig. 3-33b)

Vertical rectangular plate: Fyp =[P, + pg(s + b/2)]ab (3-26)

Vertical rectangular plate (s = 0): Fp = (P, + pgbl/2)ab (3-27)

When the effect of P, is ignored since it acts on both sides of the plate, the
hydrostatic force on a vertical rectangular surface of height » whose top
edge is horizontal and at the free surface is Fr = pgab*?2 acting at a dis-
tance of 2b/3 from the free surface directly beneath the centroid of the plate.

The pressure distribution on a submerged horizontal surface is uniform,
and its magnitude is P = P, + pgh, where h is the distance of the surface
from the free surface. Therefore, the hydrostatic force acting on a horizontal
rectangular surface is

Horizontal rectangular plate: Fyp = (P, + pgh)ab (3-28)
and it acts through the midpoint of the plate (Fig. 3-32c¢).
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Y EXAMPLE 3-8 Hydrostatic Force Acting on the Door

of a Submerged Car
Lake

A heavy car plunges into a lake during an accident and lands at the bottom

[
|
[
[
[

of the lake on its wheels (Fig. 3-34). The door is 1.2 m high and 1 m wide, @&

and the top edge of the door is 8 m below the free surface of the water.

] Determine the hydrostatic force on the door and the location of the pressure

center, and discuss if the driver can open the door.

SOLUTION A car is submerged in water. The hydrostatic force on the door
is to be determined, and the likelihood of the driver opening the door is to
be assessed.

Assumptions 1 The bottom surface of the lake is horizontal. 2 The passen-
ger cabin is well-sealed so that no water leaks inside. 3 The door can be
approximated as a vertical rectangular plate. 4 The pressure in the passen-
ger cabin remains at atmospheric value since there is no water leaking in,
and thus no compression of the air inside. Therefore, atmospheric pressure
cancels out in the calculations since it acts on both sides of the door. 5 The
weight of the car is larger than the buoyant force acting on it.

FIGURE 3_34 Properties We take the density of lake water to be 1000 kg/m?3 throughout.
Schematic for Example 3-8. Analysis The average (gage) pressure on the door is the pressure value at
the centroid (midpoint) of the door and is determined to be

P, = P- = pgh. = pg(s + b/2)

avg

= (1000 kg/m?)(9.81 m/s?)(8 + 1.2/2 m)(&>
1000 kg-m/s?

= 84.4 KN/m?

Then the resultant hydrostatic force on the door becomes
[ = Pang = (844 kN/m?» (1 m X 1.2m) = 101.3 kN

The pressure center is directly under the midpoint of the door, and its dis-
tance from the surface of the lake is determined from Eq. 3-24 by setting
Py = 0, yielding

b b? 1.2 1.22
Vp=st-+——"—=8+—+——"—"——=86lm

2 12(s + b/2) 2 12(8 + 1.2/2)

Discussion A strong person can lift 100 kg, which is a weight of 981 N or
about 1 kN. Also, the person can apply the force at a point farthest from the
hinges (1 m farther) for maximum effect and generate a moment of 1 kN-m.
The resultant hydrostatic force acts under the midpoint of the door, and thus
a distance of 0.5 m from the hinges. This generates a moment of 50.6 kN-m,
which is about 50 times the moment the driver can possibly generate. There-
fore, it is impossible for the driver to open the door of the car. The driver’s
best bet is to let some water in (by rolling the window down a little, for
example) and to keep his or her head close to the ceiling. The driver should
be able to open the door shortly before the car is filled with water since at
that point the pressures on both sides of the door are nearly the same and
opening the door in water is almost as easy as opening it in air.



3-5 = HYDROSTATIC FORCES ON
SUBMERGED CURVED SURFACES

In many practical applications, submerged surfaces are not flat (Fig. 3-35).
For a submerged curved surface, the determination of the resultant hydro-
static force is more involved since it typically requires integration of the
pressure forces that change direction along the curved surface. The concept
of the pressure prism in this case is not much help either because of the
complicated shapes involved.

The easiest way to determine the resultant hydrostatic force F acting on
a two-dimensional curved surface is to determine the horizontal and verti-
cal components F; and F, separately. This is done by considering the free-
body diagram of the liquid block enclosed by the curved surface and the
two plane surfaces (one horizontal and one vertical) passing through the two
ends of the curved surface, as shown in Fig. 3-36. Note that the vertical
surface of the liquid block considered is simply the projection of the curved
surface on a vertical plane, and the horizontal surface is the projection of
the curved surface on a horizontal plane. The resultant force acting on the
curved solid surface is then equal and opposite to the force acting on the
curved liquid surface (Newton’s third law).

The force acting on the imaginary horizontal or vertical plane surface and
its line of action can be determined as discussed in Section 3—4. The weight
of the enclosed liquid block of volume V is simply W = pgV/, and it acts
downward through the centroid of this volume. Noting that the fluid block
is in static equilibrium, the force balances in the horizontal and vertical
directions give

Horizontal force component on curved surface: F,=F (3-29)

Vertical force component on curved surface: Fy=F =W (3-30)
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FIGURE 3-35

In many structures of practical
application, the submerged surfaces
are not flat, but curved as here at Glen
Canyon Dam in Utah and Arizona.
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FIGURE 3-36

Determination of the hydrostatic force acting on a submerged curved surface.
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Curved
surface

FIGURE 3-37

When a curved surface is above the
liquid, the weight of the liquid and the
vertical component of the hydrostatic
force act in the opposite directions.
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Resultant

force
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Circular
surface

FIGURE 3-38

The hydrostatic force acting on a
circular surface always passes
through the center of the circle since
the pressure forces are normal to the
surface and they all pass through
the center.

where the summation F,, = W is a vector addition (i.e., add magnitudes if
both act in the same direction and subtract if they act in opposite directions).
Thus, we conclude that

1. The horizontal component of the hydrostatic force acting on a curved
surface is equal (in both magnitude and the line of action) to the
hydrostatic force acting on the vertical projection of the curved surface.

2. The vertical component of the hydrostatic force acting on a curved
surface is equal to the hydrostatic force acting on the horizontal
projection of the curved surface, plus (minus, if acting in the opposite
direction) the weight of the fluid block.

The magnitude of the resultant hydrostatic force acting on the curved sur-
face is F, = VF} + F5, and the tangent of the angle it makes with the
horizontal is tan a = F/F}. The exact location of the line of action of the
resultant force (e.g., its distance from one of the end points of the curved
surface) can be determined by taking a moment about an appropriate point.
These discussions are valid for all curved surfaces regardless of whether
they are above or below the liquid. Note that in the case of a curved sur-
face above a liquid, the weight of the liquid is subtracted from the verti-
cal component of the hydrostatic force since they act in opposite directions
(Fig. 3-37).

When the curved surface is a circular arc (full circle or any part of it), the
resultant hydrostatic force acting on the surface always passes through
the center of the circle. This is because the pressure forces are normal to the
surface, and all lines normal to the surface of a circle pass through the cen-
ter of the circle. Thus, the pressure forces form a concurrent force system
at the center, which can be reduced to a single equivalent force at that point
(Fig. 3-38).

Finally, the hydrostatic force acting on a plane or curved surface submerged
in a multilayered fluid of different densities can be determined by consid-
ering different parts of surfaces in different fluids as different surfaces, find-
ing the force on each part, and then adding them using vector addition. For
a plane surface, it can be expressed as (Fig. 3-39)

Plane surface in a multilayered fluid: Fp = EFR,,. = EPC_ A (3-31)

where P ; = Py + p,ghc ; is the pressure at the centroid of the portion of
the surface in fluid 7 and A, is the area of the plate in that fluid. The line of
action of this equivalent force can be determined from the requirement that
the moment of the equivalent force about any point is equal to the sum of
the moments of the individual forces about the same point.

EXAMPLE 3-9 A Gravity-Controlled Cylindrical Gate

A long solid cylinder of radius 0.8 m hinged at point A is used as an auto- g
matic gate, as shown in Fig. 3-40. When the water level reaches 5 m, the m
gate opens by turning about the hinge at point A. Determine (a) the hydro- B
static force acting on the cylinder and its line of action when the gate opens
and (b) the weight of the cylinder per m length of the cylinder.



SOLUTION The height of a water reservoir is controlled by a cylindrical gate
hinged to the reservoir. The hydrostatic force on the cylinder and the weight
of the cylinder per m length are to be determined.

Assumptions 1 Friction at the hinge is negligible. 2 Atmospheric pressure
acts on both sides of the gate, and thus it cancels out.

Properties We take the density of water to be 1000 kg/m?3 throughout.
Analysis (a) We consider the free-body diagram of the liquid block enclosed
by the circular surface of the cylinder and its vertical and horizontal projec-
tions. The hydrostatic forces acting on the vertical and horizontal plane sur-
faces as well as the weight of the liquid block are determined as

Horizontal force on vertical surface:
Fy=F,= P, A= pghcA= pg(s + RI2)A

1 kN
= (1000 kg/m*)(9.81 m/s*)(4.2 + 0.8/2 m)(0.8 m X 1 m)<7>

1000 kg-m/s?
= 36.1 kN
Vertical force on horizontal surface (upward):
Fy = Pang = pghCA = pghbottomA

1 kKN
1 ke/m?)(9.81 2 d X 1 —
(1000 kg/m>)(9.81 m/s*)(5 m)(0.8 m m)<1000 kg-m/sz>
= 392 kN

Weight (downward) of fluid block for one m width into the page:
W = mg = pgV = pg(R*> — mR*/4)(1 m)

1 kN
1000 kg/m?)(9.81 m/s?)(0.8 m)*(1 — ar/4)(1 B — ]
( g/m’)( m/s%)(0.8 m)~( a/4)( m)<1000 kg.m/52>
= 1.3kN
Therefore, the net upward vertical force is

Fy=F, —W=392 - 13 = 379kN

Then the magnitude and direction of the hydrostatic force acting on the
cylindrical surface become

Fp= VF4 + F3 = V/36.12 + 37.9* = 523kN
tan 0 = F,/F, = 37.9/36.1 = 105 — 0 = 46 4°

Therefore, the magnitude of the hydrostatic force acting on the cylinder is
52.3 kN per m length of the cylinder, and its line of action passes through
the center of the cylinder making an angle 46.4° with the horizontal.

(b) When the water level is 5 m high, the gate is about to open and thus the
reaction force at the bottom of the cylinder is zero. Then the forces other
than those at the hinge acting on the cylinder are its weight, acting through
the center, and the hydrostatic force exerted by water. Taking a moment
about point A at the location of the hinge and equating it to zero gives

FeRsin@ — W, R =0 — W, = Fpsinf = (523 kN) sin 46.4° = 37.9 kN

cyl
Discussion The weight of the cylinder per m length is determined to be

37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m
length and to a density of 1921 kg/m3 for the material of the cylinder.
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FIGURE 3-39

The hydrostatic force on a surface
submerged in a multilayered fluid can
be determined by considering parts
of the surface in different fluids as
different surfaces.
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FIGURE 3-40

Schematic for Example 3-9 and
the free-body diagram of the liquid
underneath the cylinder.
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Pr8(s + A

FIGURE 3-41

A flat plate of uniform thickness &
submerged in a liquid parallel to the
free surface.

Fluid

FIGURE 3-42

The buoyant forces acting on a solid
body submerged in a fluid and on a
fluid body of the same shape at the
same depth are identical. The buoyant
force F acts upward through the
centroid C of the displaced volume
and is equal in magnitude to the
weight W of the displaced fluid, but
is opposite in direction. For a solid
of uniform density, its weight W,
also acts through the centroid, but its
magnitude is not necessarily equal
to that of the fluid it displaces. (Here
W, > W and thus W, > Fy; this solid
body would sink.)

3-6 = BUOYANCY AND STABILITY

It is a common experience that an object feels lighter and weighs less in
a liquid than it does in air. This can be demonstrated easily by weighing a
heavy object in water by a waterproof spring scale. Also, objects made of
wood or other light materials float on water. These and other observations
suggest that a fluid exerts an upward force on a body immersed in it. This
force that tends to lift the body is called the buoyant force and is denoted
by Fj.

The buoyant force is caused by the increase of pressure with depth in
a fluid. Consider, for example, a flat plate of thickness /# submerged in a
liquid of density p, parallel to the free surface, as shown in Fig. 3-41. The
area of the top (and also bottom) surface of the plate is A, and its distance
to the free surface is s. The gage pressures at the top and bottom surfaces
of the plate are p;gs and pyg(s + h), respectively. Then the hydrostatic force
Fy,, = psgsA acts downward on the top surface, and the larger force Fi, =
ps8(s + M)A acts upward on the bottom surface of the plate. The difference
between these two forces is a net upward force, which is the buoyant force,

FB = Fbottom - F

wp = Pr&(s + WA — prgsA = p,ghA = p;gV  (3-32)

where V = hA is the volume of the plate. But the relation p;gV/ is simply
the weight of the liquid whose volume is equal to the volume of the plate.
Thus, we conclude that the buoyant force acting on the plate is equal to the
weight of the liquid displaced by the plate. For a fluid with constant density,
the buoyant force is independent of the distance of the body from the free
surface. It is also independent of the density of the solid body.

The relation in Eq. 3-32 is developed for a simple geometry, but it is
valid for any body regardless of its shape. This can be shown mathemati-
cally by a force balance, or simply by this argument: Consider an arbitrarily
shaped solid body submerged in a fluid at rest and compare it to a body of
fluid of the same shape indicated by dashed lines at the same vertical loca-
tion (Fig. 3—42). The buoyant forces acting on these two bodies are the same
since the pressure distributions, which depend only on elevation, are the
same at the boundaries of both. The imaginary fluid body is in static equi-
librium, and thus the net force and net moment acting on it are zero. There-
fore, the upward buoyant force must be equal to the weight of the imaginary
fluid body whose volume is equal to the volume of the solid body. Further,
the weight and the buoyant force must have the same line of action to have
a zero moment. This is known as Archimedes’ principle, after the Greek
mathematician Archimedes (287-212 Bc), and is expressed as

The buoyant force acting on a body of uniform density immersed in a fluid
is equal to the weight of the fluid displaced by the body, and it acts upward
through the centroid of the displaced volume.

For floating bodies, the weight of the entire body must be equal to the
buoyant force, which is the weight of the fluid whose volume is equal to the
volume of the submerged portion of the floating body. That is,

Vsub pavg, body
Vtotal Pr

FB =W pfg Vsub = pavg. bodyngolal d (3-33)



Therefore, the submerged volume fraction of a floating body is equal to the
ratio of the average density of the body to the density of the fluid. Note
that when the density ratio is equal to or greater than one, the floating body
becomes completely submerged.

It follows from these discussions that a body immersed in a fluid (1) remains
at rest at any location in the fluid where its average density is equal to the den-
sity of the fluid, (2) sinks to the bottom when its average density is greater than
the density of the fluid, and (3) rises to the surface of the fluid and floats when
the average density of the body is less than the density of the fluid (Fig. 3-43).

The buoyant force is proportional to the density of the fluid, and thus we
might think that the buoyant force exerted by gases such as air is negligible.
This is certainly the case in general, but there are significant exceptions. For
example, the volume of a person is about 0.1 m?, and taking the density of
air to be 1.2 kg/m?, the buoyant force exerted by air on the person is

Fy = pgV = (12 kg/m*)(9.81 m/s)(0.1 m®) = 12N

The weight of an 80-kg person is 80 X 9.81 = 788 N. Therefore, ignoring
the buoyancy in this case results in an error in weight of just 0.15 percent,
which is negligible. But the buoyancy effects in gases dominate some impor-
tant natural phenomena such as the rise of warm air in a cooler environ-
ment and thus the onset of natural convection currents, the rise of hot-air or
helium balloons, and air movements in the atmosphere. A helium balloon,
for example, rises as a result of the buoyancy effect until it reaches an alti-
tude where the density of air (which decreases with altitude) equals the den-
sity of helium in the balloon—assuming the balloon does not burst by then,
and ignoring the weight of the balloon’s skin. Hot air balloons (Fig. 3-44)
work by similar principles.

Archimedes’ principle is also used in geology by considering the conti-
nents to be floating on a sea of magma.

|
m EXAMPLE 3-10 Measuring Specific Gravity by a Hydrometer

: If you have a seawater aquarium, you have probably used a small cylindrical

m glass tube with a lead-weight at its bottom to measure the salinity of the
water by simply watching how deep the tube sinks. Such a device that floats
in a vertical position and is used to measure the specific gravity of a liquid
is called a hydrometer (Fig. 3-45). The top part of the hydrometer extends
above the liquid surface, and the divisions on it allow one to read the spe-
cific gravity directly. The hydrometer is calibrated such that in pure water
it reads exactly 1.0 at the air-water interface. (a) Obtain a relation for the
specific gravity of a liquid as a function of distance Az from the mark cor-
responding to pure water and (b) determine the mass of lead that must be
poured into a 1-cm-diameter, 20-cm-long hydrometer if it is to float halfway
(the 10-cm mark) in pure water.

SOLUTION The specific gravity of a liquid is to be measured by a hydrom-
eter. A relation between specific gravity and the vertical distance from the
reference level is to be obtained, and the amount of lead that needs to be
added into the tube for a certain hydrometer is to be determined.

Assumptions 1 The weight of the glass tube is negligible relative to the
weight of the lead added. 2 The curvature of the tube bottom is disregarded.
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FIGURE 343

A solid body dropped into a fluid will
sink, float, or remain at rest at any point
in the fluid, depending on its average

density relative to the density of the
fluid.

FIGURE 3-44

The altitude of a hot air balloon

is controlled by the temperature
difference between the air inside and
outside the balloon, since warm air
is less dense than cold air. When the
balloon is neither rising nor falling,
the upward buoyant force exactly
balances the downward weight.
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Schematic for Example 3-10.
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FIGURE 3-46
Schematic for Example 3—11.

[
Properties We take the density of pure water to be 1000 kg/m3. u

Analysis (a) Noting that the hydrometer is in static equilibrium, the buoyant m
force Fg exerted by the liquid must always be equal to the weight W of the ®
hydrometer. In pure water (subscript w), we let the vertical distance between ™
the bottom of the hydrometer and the free surface of water be z,. Setting
Fg » = Win this case gives

Wiyao = Fpw = Pu8Vaw = P 8AZ, m

where A is the cross-sectional area of the tube, and p, is the density of pure
water.

In a fluid lighter than water (p; < p,), the hydrometer will sink deeper, and
the liquid level will be a distance of Az above z,. Again setting Fz = W gives

Wiyao = Fo.p = Pr&Ym = Pr8A(zy + A2) (2)

This relation is also valid for fluids heavier than water by taking Az to be a
negative quantity. Setting Egs. (1) and (2) here equal to each other since

the weight of the hydrometer is constant and rearranging gives
Pt <o
,8AZ, = A(zy + A7) - SG,=—=———
Pw8AZ Pfg(o ) Iy by 2z + Az

which is the relation between the specific gravity of the fluid and Az Note
that z, is constant for a given hydrometer and Az is negative for fluids
heavier than pure water.

(b) Disregarding the weight of the glass tube, the amount of lead that needs
to be added to the tube is determined from the requirement that the weight
of the lead be equal to the buoyant force. When the hydrometer is floating
with half of it submerged in water, the buoyant force acting on it is
Fp = p,8V

Equating Fz to the weight of lead gives

W= mg = pwgvsub
Solving for m and substituting, the mass of lead is determined to be
= p, (mR?h,) = (1000 kg/m*)[7(0.005 m)*(0.1 m)] = 0.00785 kg

Discussion Note that if the hydrometer were required to sink only 5 cm in
water, the required mass of lead would be one-half of this amount. Also, the
assumption that the weight of the glass tube is negligible is questionable
since the mass of lead is only 7.85 g.

m = p,V,

sub

[
EXAMPLE 3-11 Weight Loss of an Object in Seawater ]
A crane is used to lower weights into the sea (density = 1025 kg/m?3) for:
an underwater construction project (Fig. 3-46). Determine the tension in m
the rope of the crane due to a rectangular 0.4-m X 0.4-m X 3-m concrete B
block (density = 2300 kg/m3) when it is (a) suspended in the air and (b)
completely immersed in water.

SOLUTION A concrete block is lowered into the sea. The tension in the
rope is to be determined before and after the block is in water.



Assumptions 1 The buoyant force in air is negligible. 2 The weight of the
ropes is negligible.

Properties The densities are given to be 1025 kg/m3 for seawater and
2300 kg/m3 for concrete.

Analysis (a) Consider a free-body diagram of the concrete block. The forces
acting on the concrete block in air are its weight and the upward pull action
(tension) by the rope. These two forces must balance each other, and thus
the tension in the rope must be equal to the weight of the block:

V = (0.4 m)0.4 m)3m) = 048 m’

FT, air = W = pconcrelegv

1 kN
(2300 kg/m?)(9.81 m/s?)(0.48 m3)< > = 10.8 kN

1000 kg-m/s?

(b) When the block is immersed in water, there is the additional force of
buoyancy acting upward. The force balance in this case gives

1 kN
Fp = p, gV = (1025 kg/m*)(9.81 m/s?)(0.48 3<7>=4.8kN
5= prgV =( g/m?)(9.81 m/s7)(0.48 m") 1000 kgem/s?

FE

T, water

=W — F; =108 — 48 = 6.0 kN

Discussion Note that the weight of the concrete block, and thus the tension
of the rope, decreases by (10.8 — 6.0)/10.8 = 55 percent in water.

Stability of Inmersed and Floating Bodies

An important application of the buoyancy concept is the assessment of the
stability of immersed and floating bodies with no external attachments.
This topic is of great importance in the design of ships and submarines
(Fig. 3-47). Here we provide some general qualitative discussions on verti-
cal and rotational stability.

We use the classic “ball on the floor” analogy to explain the fundamental
concepts of stability and instability. Shown in Fig. 3-48 are three balls at rest
on the floor. Case (a) is stable since any small disturbance (someone moves
the ball to the right or left) generates a restoring force (due to gravity) that
returns it to its initial position. Case () is neutrally stable because if some-
one moves the ball to the right or left, it would stay put at its new location.
It has no tendency to move back to its original location, nor does it continue
to move away. Case (c) is a situation in which the ball may be at rest at the
moment, but any disturbance, even an infinitesimal one, causes the ball to
roll off the hill—it does not return to its original position; rather it diverges
from it. This situation is unstable. What about a case where the ball is on an
inclined floor? It is not appropriate to discuss stability for this case since the
ball is not in a state of equilibrium. In other words, it cannot be at rest and
would roll down the hill even without any disturbance.

For an immersed or floating body in static equilibrium, the weight and the
buoyant force acting on the body balance each other, and such bodies are
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FIGURE 3-47

For floating bodies such as ships,
stability is an important
consideration for safety.

© Corbis RF
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(a) Stable

@)

(b) Neutrally stable

(¢) Unstable

FIGURE 3-48
Stability is easily understood by
analyzing a ball on the floor.
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FIGURE 3-49

An immersed neutrally buoyant body
is (a) stable if the center of gravity G is
directly below the center of buoyancy B
of the body, (b) neutrally stable if G
and B are coincident, and (¢) unstable
if G is directly above B.

Restoring moment

Weight

FIGURE 3-50

When the center of gravity G of an
immersed neutrally buoyant body is
not vertically aligned with the center
of buoyancy B of the body, it is not in
an equilibrium state and would rotate
to its stable state, even without any
disturbance.

inherently stable in the vertical direction. If an immersed neutrally buoyant
body is raised or lowered to a different depth in an incompressible fluid, the
body will remain in equilibrium at that location. If a floating body is raised
or lowered somewhat by a vertical force, the body will return to its original
position as soon as the external effect is removed. Therefore, a floating body
possesses vertical stability, while an immersed neutrally buoyant body is neu-
trally stable since it does not return to its original position after a disturbance.

The rotational stability of an immersed body depends on the relative loca-
tions of the center of gravity G of the body and the center of buoyancy B,
which is the centroid of the displaced volume. An immersed body is sta-
ble if the body is bottom-heavy and thus point G is directly below point B
(Fig. 3-49a). A rotational disturbance of the body in such cases produces
a restoring moment to return the body to its original stable position. Thus,
a stable design for a submarine calls for the engines and the cabins for the
crew to be located at the lower half in order to shift the weight to the bot-
tom as much as possible. Hot-air or helium balloons (which can be viewed
as being immersed in air) are also stable since the heavy cage that carries
the load is at the bottom. An immersed body whose center of gravity G is
directly above point B is unstable, and any disturbance will cause this body
to turn upside down (Fig 3-49¢). A body for which G and B coincide is
neutrally stable (Fig 3—49b). This is the case for bodies whose density is
constant throughout. For such bodies, there is no tendency to overturn or
right themselves.

What about a case where the center of gravity is not vertically aligned
with the center of buoyancy, as in Fig. 3-50? It is not appropriate to discuss
stability for this case since the body is not in a state of equilibrium. In other
words, it cannot be at rest and would rotate toward its stable state even with-
out any disturbance. The restoring moment in the case shown in Fig. 3-50
is counterclockwise and causes the body to rotate counterclockwise so as
to align point G vertically with point B. Note that there may be some oscil-
lation, but eventually the body settles down at its stable equilibrium state
[case (a) of Fig. 3-49]. The initial stability of the body of Fig. 3-50 is anal-
ogous to that of the ball on an inclined floor. Can you predict what would
happen if the weight in the body of Fig. 3-50 were on the opposite side of
the body?

The rotational stability criteria are similar for floating bodies. Again, if the
floating body is bottom-heavy and thus the center of gravity G is directly
below the center of buoyancy B, the body is always stable. But unlike
immersed bodies, a floating body may still be stable when G is directly above
B (Fig. 3-51). This is because the centroid of the displaced volume shifts to
the side to a point B’ during a rotational disturbance while the center of grav-
ity G of the body remains unchanged. If point B’ is sufficiently far, these two
forces create a restoring moment and return the body to the original position.
A measure of stability for floating bodies is the metacentric height GM,
which is the distance between the center of gravity G and the metacenter
M—the intersection point of the lines of action of the buoyant force through
the body before and after rotation. The metacenter may be considered to be
a fixed point for most hull shapes for small rolling angles up to about 20°. A
floating body is stable if point M is above point G, and thus GM 1is positive,
and unstable if point M is below point G, and thus GM is negative. In the
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latter case, the weight and the buoyant force acting on the tilted body gener-
ate an overturning moment instead of a restoring moment, causing the body
to capsize. The length of the metacentric height GM above G is a measure of
the stability: the larger it is, the more stable is the floating body.

As already discussed, a boat can tilt to some maximum angle without
capsizing, but beyond that angle it overturns (and sinks). We make a final
analogy between the stability of floating objects and the stability of a ball
rolling along the floor. Namely, imagine the ball in a trough between two
hills (Fig. 3-52). The ball returns to its stable equilibrium position after
being perturbed—up to a limit. If the perturbation amplitude is too great,
the ball rolls down the opposite side of the hill and does not return to its
equilibrium position. This situation is described as stable up to some limit-
ing level of disturbance, but unstable beyond.

3-7 = FLUIDS IN RIGID-BODY MOTION

We showed in Section 3—1 that pressure at a given point has the same mag-
nitude in all directions, and thus it is a scalar function. In this section we
obtain relations for the variation of pressure in fluids moving like a solid
body with or without acceleration in the absence of any shear stresses (i.e.,
no motion between fluid layers relative to each other).

Many fluids such as milk and gasoline are transported in tankers. In an
accelerating tanker, the fluid rushes to the back, and some initial splashing
occurs. But then a new free surface (usually nonhorizontal) is formed, each
fluid particle assumes the same acceleration, and the entire fluid moves like
a rigid body. No shear stresses exist within the fluid body since there is no
deformation and thus no change in shape. Rigid-body motion of a fluid also
occurs when the fluid is contained in a tank that rotates about an axis.

Consider a differential rectangular fluid element of side lengths dx, dy,
and dz in the x-, y-, and z-directions, respectively, with the z-axis being
upward in the vertical direction (Fig. 3-53). Noting that the differential
fluid element behaves like a rigid body, Newton’s second law of motion for

this element can be expressed as
8F = dm-d (3-34)

where ém = p dV = p dx dy dz is the mass of the fluid element, a is the
acceleration, and SF is the net force acting on the element.
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FIGURE 3-51

A floating body is stable if the body is

(a) bottom-heavy and thus the center
of gravity G is below the centroid B
of the body, or () if the metacenter

M is above point G. However, the
body is (c) unstable if point M is
below point G.
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FIGURE 3-52

A ball in a trough between two hills
is stable for small disturbances, but
unstable for large disturbances.
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FIGURE 3-53

The surface and body forces acting
on a differential fluid element

in the vertical direction.
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The forces acting on the fluid element consist of body forces such as grav-
ity that act throughout the entire body of the element and are proportional
to the volume of the body (and also electrical and magnetic forces, which
will not be considered in this text), and surface forces such as the pressure
forces that act on the surface of the element and are proportional to the sur-
face area (shear stresses are also surface forces, but they do not apply in this
case since the relative positions of fluid elements remain unchanged). The
surface forces appear as the fluid element is isolated from its surroundings
for analysis, and the effect of the detached body is replaced by a force at
that location. Note that pressure represents the compressive force applied
on the fluid element by the surrounding fluid and is always normal to the
surface and inward toward the surface.

Taking the pressure at the center of the element to be P, the pressures at
the top and bottom surfaces of the element can be expressed as P + (dP/dz)
dz/2 and P — (9P/dz) dz/2, respectively. Noting that the pressure force act-
ing on a surface is equal to the average pressure multiplied by the surface
area, the net surface force acting on the element in the z-direction is the dif-
ference between the pressure forces acting on the bottom and top faces,

SF <P op dz)d d (P 4 oF dz)dxd P dydz  (3-35)
_(p_9Pdz) opP dz _ )
5z az 2 J az 2 Y az Yz

Similarly, the net surface forces in the x- and y-directions are
aP aP
O0F; .= ——dxdydz and O6F;, = ———dxdydz (3-36)
’ 0x " ay

Then the surface force (which is simply the pressure force) acting on the
entire element can be expressed in vector form as

8Fy = 8F i + 6F; ] + 8F K

P> 0P - 9P -
—|\—i+—j+ —k|dcdydz = —VPdxdydz (3-37)
ax dy a9z
where 7, 7, and k are the unit vectors in the x-, y-, and z-directions, respec-
tively, and
P~ 9P~ P

VP="7+ =]+ >k (3-38)
x ay 0z

is the pressure gradient. Note that V or “del” is a vector operator that is
used to express the gradients of a scalar function compactly in vector form.
Also, the gradient of a scalar function is expressed in a given direction and
thus it is a vector quantity.

The only body force acting on the fluid element is the weight of the element

acting in the negative z-direction, and it is expressed as 6Fy . = —gém =
—pg dx dy dz or in vector form as
BFB,Z = - gﬁmz = —pgdxdy dzk (3-39)

Then the total force acting on the element becomes

SF = 8F + 8F, = —(VP + pgk) dx dy dz (3-40)
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Substituting into Newton’s second law of motion SF = dm-d = p dx dy
dz-d and canceling dx dy dz, the general equation of motion for a fluid
that acts as a rigid body (no shear stresses) is determined to be

Rigid-body motion of fluids: VP + pgk = —pd (3-41)
Resolving the vectors into their components, this relation can be expressed
more explicitly as

oP -~ 9P - 9P

i+ + Kk +pgk=—plai+aj+ak (3-42) e T
ax ay 9z ) ‘

or, in scalar form in the three orthogonal directions as

. . aP oP oP
Accelerating fluids: — = —pa,, — = —pa,, and — = —p(g + a) (3-43)
0x T dy ’ 0z :
where a,, a, and a, are accelerations in the x-, y-, and z-directions, respec-
tively.

Special Case 1: Fluids at Rest
For fluids at rest or moving on a straight path at constant velocity, all com-
ponents of acceleration are zero, and the relations in Eqs. 3-43 reduce to

) oP oP dpP
Fluids at rest: — =0, — =0, and —pg (3-44)

ox %y dz FIGURE 3-54
A glass of water at rest is a special
case of a fluid in rigid-body motion.
If the glass of water were moving at
constant velocity in any direction,
the hydrostatic equations would

which confirm that, in fluids at rest, the pressure remains constant in any
horizontal direction (P is independent of x and y) and varies only in the
vertical direction as a result of gravity [and thus P = P(z)]. These relations
are applicable for both compressible and incompressible fluids (Fig. 3—54).

. . still apply.
SpeCIaI case 2: Free Fa“ Of a FIUId BOdy © Imagestate Media (John Foxx)/Imagestate RF
A freely falling body accelerates under the influence of gravity. When the
air resistance is negligible, the acceleration of the body equals the gravi-
tational acceleration, and acceleration in any horizontal direction is zero. =z z
Therefore, a, = a, = 0 and a, = —g. Then the equations of motion for
accelerating fluids (Eqs. 3—43) reduce to

- . aP  oP 9P ! P
Free-falling fluids: —=—=—=0 — P = constant (3-45)
ax ay 0z
h| Liquid, p h| Liquid, p
Therefore, in a frame of reference moving with the fluid, it behaves like
it is in an environment with zero gravity. (This is the situation in an orbit- < <
. .2 . P,=P, P, =P +2pgh
ing spacecraft, by the way. Gravity is not zero up there, despite what many l T

people think!) Also, the gage pressure in a drop of liquid in free fall is zero 4:="8 =8
throughout. (Actually, the gage pressure is slightly above zero due to sur-

face tension, which holds the drop intact.) ](.“) Free fall ofa  (b) Upward acceleration
. . . . L. iquid of aliquid with a, = +g
When the direction of motion is reversed and the fluid is forced to accel-
erate vertically with a, = +g by placing the fluid container in an elevator or FIGURE 3-55
a space vehicle propelled upward by a rocket engine, the pressure gradient The effect of acceleration on the
in the z-direction is dP/dz = —2pg. Therefore, the pressure difference across pressure of a liquid during free

a fluid layer now doubles relative to the stationary fluid case (Fig. 3-55). fall and upward acceleration.
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Rigid-body motion of a liquid in a
linearly accelerating tank. The system
behaves like a fluid at rest except that
g — d replaces g in the hydrostatic
equations.
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FIGURE 3-57

Lines of constant pressure (which
are the projections of the surfaces of
constant pressure on the xz-plane) in
a linearly accelerating liquid. Also
shown is the vertical rise.

Acceleration on a Straight Path

Consider a container partially filled with a liquid. The container is moving
on a straight path with a constant acceleration. We take the projection of the
path of motion on the horizontal plane to be the x-axis, and the projection
on the vertical plane to be the z-axis, as shown in Fig. 3-56. The x- and
z-components of acceleration are a, and a.. There is no movement in the
y-direction, and thus the acceleration in that direction is zero, a, = 0. Then
the equations of motion for accelerating fluids (Eqgs. 3—43) reduce to

aP oP

P
—pa, — =0, and —= —p(g + a) (3-46)
ay 9z )

Jax
Therefore, pressure is independent of y. Then the total differential of P = P(x, z),
which is (0P/dx)dx + (dP/9z) dz, becomes

dP = —pa,dx — p(g + a)dz (3-47)

For p = constant, the pressure difference between two points 1 and 2 in the
fluid is determined by integration to be

P, — P, = —pa(x, — x)) — p(g + a)(z, — z) (3-48)

Taking point 1 to be the origin (x = 0, z = 0) where the pressure is P, and
point 2 to be any point in the fluid (no subscript), the pressure distribution
is expressed as

Pressure variation: P =P, —pax — p(g + a)z (3-49)

The vertical rise (or drop) of the free surface at point 2 relative to point 1 is
determined by choosing both 1 and 2 on the free surface (so that P, = P,),
and solving Eq. 3-48 for z, — z; (Fig. 3-57),

(3-50)

a
Vertical rise of surface: Az, =z,—2,=—""—(@, —x))

g ta,
where z, is the z-coordinate of the liquid’s free surface. The equation for
surfaces of constant pressure, called isobars, is obtained from Eq. 3-47 by
setting d P = 0 and replacing z by z;,» Which is the z-coordinate (the ver-
tical distance) of the surface as a function of x. It gives

dzisobar a,
Surfaces of constant pressure: = - = constant (3-51)
dx g+ a

Thus we conclude that the isobars (including the free surface) in an incom-
pressible fluid with constant acceleration in linear motion are parallel sur-
faces whose slope in the xz-plane is

dzisobar a,

Slope = = - = —tan 6
ope I T+ a an

Slope of isobars: (3-52)
Obviously, the free surface of such a fluid is a plane surface, and it is
inclined unless a, = 0 (the acceleration is in the vertical direction only).
Also, conservation of mass, together with the assumption of incompressibility
(p = constant), requires that the volume of the fluid remain constant before
and during acceleration. Therefore, the rise of fluid level on one side must
be balanced by a drop of fluid level on the other side.
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|
m EXAMPLE 3-12 Overflow from a Water Tank During Acceleration

: An 80-cm-high fish tank of cross section 2 m X 0.6 m that is partially filled
m with water is to be transported on the back of a truck (Fig. 3-58). The truck a
accelerates from O to 90 km/h in 10 s. If it is desired that no water spills -
during acceleration, determine the allowable initial water height in the tank.
Would you recommend the tank to be aligned with the long or short side par- Az
allel to the direction of motion? .

SOLUTION A fish tank is to be transported on a truck. The allowable water
height to avoid spill of water during acceleration and the proper orientation
are to be determined.

Assumptions 1 The road is horizontal during acceleration so that accelera-
tion has no vertical component (a, = 0). 2 Effects of splashing, braking,
shifting gears, driving over bumps, climbing hills, etc., are assumed to be
secondary and are not considered. 3 The acceleration remains constant. b
Analysis We take the x-axis to be the direction of motion, the zaxis to be

the upward vertical direction, and the origin to be the lower left corner of the FIGURE 3-58
tank. Noting that the truck goes from O to 90 km/h in 10 s, the acceleration Schematic for Example 3—12.
of the truck is

Water 80 cm
tank

AV (90 — 0)km/h/ 1 m/s
a, = =

T Ar 10s \ 3.6 km/h

) = 2.5 m/s?

The tangent of the angle the free surface makes with the horizontal is

a, 25
g+a 981+0

z

tan 6 = = 0.255 (and thus 6 = 14.3°)

The maximum vertical rise of the free surface occurs at the back of the tank,
and the vertical midplane experiences no rise or drop during acceleration
since it is a plane of symmetry. Then the vertical rise at the back of the tank
relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:
Az, = (b/2)tan 0 = [(2 m)/2] X 0.255 = 0.255 m = 25.5 cm

Case 2: The short side is parallel to the direction of motion:

Az, = (b,/2) tan 6 = [(0.6 m)/2] X 0255 = 0.076 m = 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be
oriented such that its short side is parallel to the direction of motion. Emptying
the tank such that its free surface level drops just 7.6 cm in this case will
be adequate to avoid spilling during acceleration.

Discussion Note that the orientation of the tank is important in controlling
the vertical rise. Also, the analysis is valid for any fluid with constant den-
sity, not just water, since we used no information that pertains to water in
the solution.

Rotation in a Cylindrical Container
We know from experience that when a glass filled with water is rotated about
its axis, the fluid is forced outward as a result of the so-called centrifugal
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Axis of
rotation

db%
Free

surface

FIGURE 3-59
Rigid-body motion of a liquid in a
rotating vertical cylindrical container.

Free i l

FIGURE 3-60
Surfaces of constant pressure in a
rotating liquid.

force (but more properly explained in terms of centripetal acceleration), and
the free surface of the liquid becomes concave. This is known as the forced
vortex motion.

Consider a vertical cylindrical container partially filled with a liquid. The
container is now rotated about its axis at a constant angular velocity of w, as
shown in Fig. 3-59. After initial transients, the liquid will move as a rigid
body together with the container. There is no deformation, and thus there
can be no shear stress, and every fluid particle in the container moves with
the same angular velocity.

This problem is best analyzed in cylindrical coordinates (r, 0, z), with z
taken along the centerline of the container directed from the bottom toward
the free surface, since the shape of the container is a cylinder, and the fluid
particles undergo a circular motion. The centripetal acceleration of a fluid
particle rotating with a constant angular velocity of w at a distance r from
the axis of rotation is rw” and is directed radially toward the axis of rotation
(negative r-direction). That is, a, = —rw?. There is symmetry about the z-axis,
which is the axis of rotation, and thus there is no 6 dependence. Then P =
P(1;, 7) and a, = 0. Also, a, = 0 since there is no motion in the z-direction.

Then the equation of motion for accelerating fluids (Eq. 3—41) reduces to

) S ) P

P pro’, 0 0, and P
Then the total differential of P = P(r, z), which is dP = (dP/or)dr +
(0P/dz)dz, becomes

—pg (3-53)

dP = pro’dr — pg dz (3-54)

The equation for surfaces of constant pressure is obtained by setting dP = 0
and replacing z by zj.p,» Which is the z-value (the vertical distance) of the
surface as a function of r. It gives
dZi\, 2 ra)2
sobar _ v (3-55)
dr g
Integrating, the equation for the surfaces of constant pressure is determined

to be
(1)2

Surfaces of constant pressure: Zisobar — ?rz + C, (3-56)
8

which is the equation of a parabola. Thus we conclude that the surfaces of
constant pressure, including the free surface, are paraboloids of revolution
(Fig. 3-60).

The value of the integration constant C, is different for different parabo-
loids of constant pressure (i.e., for different isobars). For the free surface,
setting r = 0 in Eq. 3-56 gives z;,,,(0) = C, = h,, where 5, is the distance
of the free surface from the bottom of the container along the axis of rota-
tion (Fig. 3-59). Then the equation for the free surface becomes

2

=224 h (3-57)
= 2

where z; is the distance of the free surface from the bottom of the con-
tainer at radius r. The underlying assumption in this analysis is that there is



sufficient liquid in the container so that the entire bottom surface remains
covered with liquid.

The volume of a cylindrical shell element of radius r, height z, and thick-
ness dr is dV/ = 2mrz, dr. Then the volume of the paraboloid formed by the
free surface is

K B w? w’R?
V= J 2mzrdr = 2 J (? rr+ hc>r dr = 7TR2( 4 + hc) (3-58)
r 8

=0 r=0 \=§

Since mass is conserved and density is constant, this volume must be equal
to the original volume of the fluid in the container, which is

V = 7R, (3-59)

where A, is the original height of the fluid in the container with no rotation.
Setting these two volumes equal to each other, the height of the fluid along
the centerline of the cylindrical container becomes

»’R?
h.=h 3-60
Ly (3-60)
Then the equation of the free surface becomes
(1)2
Free surface: z, = hy — LT(R2 - 2r%) (3-61)
8

The paraboloid shape is independent of fluid properties, so the same free
surface equation applies to any liquid. For example, spinning liquid mercury
forms a parabolic mirror that is useful in astronomy (Fig. 3-61).

The maximum vertical height occurs at the edge where r = R, and the
maximum height difference between the edge and the center of the free sur-
face is determined by evaluating z, at ¥ = R and also at r = 0, and taking
their difference,

2
Maximum height difference: Az, e = 2(R) — z,(0) = %RZ (3-62)
: s g

When p = constant, the pressure difference between two points 1 and 2 in
the fluid is determined by integrating dP = prw? dr — pg dz. This yields
2
pw
Py =P =" =)~ psls — 2) (3-63)
Taking point 1 to be the origin (r = 0, z = 0) where the pressure is P, and
point 2 to be any point in the fluid (no subscript), the pressure distribution
is expressed as
- p’
Pressure variation: P=P,+ Trz — pgz (3-64)

Note that at a fixed radius, the pressure varies hydrostatically in the vertical
direction, as in a fluid at rest. For a fixed vertical distance z, the pressure
varies with the square of the radial distance r, increasing from the center-
line toward the outer edge. In any horizontal plane, the pressure difference
between the center and edge of the container of radius R is AP = pw?R?/2.
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FIGURE 3-61

The 6-meter spinning liquid-mercury
mirror of the Large Zenith Telescope
located near Vancouver, British
Columbia.

Photo courtesy of Paul Hickson, The University of
British Columbia. Used by permission.
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hy

FIGURE 3-62
Schematic for Example 3—13.

EXAMPLE 3-13 Rising of a Liquid During Rotation

A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig. 3-62,
is partially filled with 50-cm-high liquid whose density is 850 kg/m3. Now the
cylinder is rotated at a constant speed. Determine the rotational speed at which
the liquid will start spilling from the edges of the container.

SOLUTION A vertical cylindrical container partially filled with a liquid is
rotated. The angular speed at which the liquid will start spilling is to be
determined.

Assumptions 1 The increase in the rotational speed is very slow so that the
liquid in the container always acts as a rigid body. 2 The bottom surface of
the container remains covered with liquid during rotation (no dry spots).
Analysis Taking the center of the bottom surface of the rotating vertical
cylinder as the origin (r = 0, z = 0), the equation for the free surface of the
liquid is given as

2
w
Z, = hy — @(RZ - 2r?)

Then the vertical height of the liquid at the edge of the container where r =
R becomes
w’R?

4g

Z(R) = hy +

where hy = 0.5 m is the original height of the liquid before rotation. Just
before the liquid starts spilling, the height of the liquid at the edge of the
container equals the height of the container, and thus z(R) = H = 0.6 m.
Solving the last equation for w and substituting, the maximum rotational
speed of the container is determined to be

= 19.8 rad/s

B \/4g(H —hy) \/4(9.81 m/sH[0.6 — 0.5) m]
© R 0.1 m)?

Noting that one complete revolution corresponds to 27 rad, the rotational
speed of the container can also be expressed in terms of revolutions per
minute (rpm) as

. w 19.8 rad/s( 60 s
n=—=——|

= ) = 189 rpm
2 27t rad/rev

1 min

Therefore, the rotational speed of this container should be limited to 189 rpm
to avoid any spill of liquid as a result of the centrifugal effect.

Discussion Note that the analysis is valid for any liquid since the result is
independent of density or any other fluid property. We should also verify that
our assumption of no dry spots is valid. The liquid height at the center is

©) = h GEE
z(0) = hy — —— =04 m
0 4 g

Since z(0) is positive, our assumption is validated.



SUMMARY

111

CHAPTER 3

The normal force exerted by a fluid per unit area is called pres-
sure, and its SI unit is the pascal, 1 Pa = 1 N/m?. The pressure
relative to absolute vacuum is called the absolute pressure,
and the difference between the absolute pressure and the local
atmospheric pressure is called the gage pressure. Pressures
below atmospheric pressure are sometimes called vacuum pres-
sures. The absolute, gage, and vacuum pressures are related by

Pgage = Bibs = P
Pvac = Patm - Pabs = _Pgage

The pressure at a point in a fluid has the same magnitude in
all directions. The variation of pressure with elevation in a
fluid at rest is given by
dP
dz
where the positive z-direction is taken to be upward by con-
vention. When the density of the fluid is constant, the pres-
sure difference across a fluid layer of thickness Az is
Pioow = Papove T p8IAZI = Py + v, AZ

The absolute and gage pressures in a static liquid open to the
atmosphere at a depth & from the free surface are

P =Py, + pgh

P8

above above

and Py, = pgh

The pressure in a fluid at rest does not vary in the horizontal
direction. Pascal’s law states that the pressure applied to a
confined fluid increases the pressure throughout by the same
amount. The atmospheric pressure can be measured by a
barometer and is given by

Pym = pgh
where £ is the height of the liquid column.

Fluid statics deals with problems associated with fluids at
rest, and it is called hydrostatics when the fluid is a liquid.
The magnitude of the resultant force acting on a plane surface
of a completely submerged plate in a homogeneous fluid is
equal to the product of the pressure P at the centroid of the
surface and the area A of the surface and is expressed as

Fp = (Py + pgh)A = PcA = P, A

where h. = y. sin 0 is the vertical distance of the centroid
from the free surface of the liquid. The pressure P is usually
atmospheric pressure, which cancels out in most cases since
it acts on both sides of the plate. The point of intersection of
the line of action of the resultant force and the surface is the
center of pressure. The vertical location of the line of action
of the resultant force is given by

I

xx, C
+ .
[yc + Py/(pg sin 0)]A

where I, . is the second moment of area about the x-axis
passing through the centroid of the area.

Yp = Ve

A fluid exerts an upward force on a body immersed in it.

This force is called the buoyant force and is expressed as
Fy = prgV

where V/ is the volume of the body. This is known as
Archimedes’ principle and is expressed as: the buoyant force
acting on a body immersed in a fluid is equal to the weight
of the fluid displaced by the body; it acts upward through
the centroid of the displaced volume. In a fluid with constant
density, the buoyant force is independent of the distance of
the body from the free surface. For floating bodies, the sub-
merged volume fraction of the body is equal to the ratio of
the average density of the body to the density of the fluid.

The general equation of motion for a fluid that acts as a
rigid body is

VP + pgﬁ = —pd

When gravity is aligned in the —z-direction, it is expressed
in scalar form as

P

i —
ax pa ay

oP oP
~— = —pa, and g = —pg+ a)

where a,, a, and a, are accelerations in the x-, y-, and
z-directions, respectively. During linearly accelerating motion
in the xz-plane, the pressure distribution is expressed as

P=P,— pax — p(g + a)z

The surfaces of constant pressure (including the free surface)
in a liquid with constant acceleration in linear motion are
parallel surfaces whose slope in some xz-plane is

dzisobar a,

Sl = == = —tan 0
e dx g+ a an

During rigid-body motion of a liquid in a rotating cylinder,
the surfaces of constant pressure are paraboloids of revolu-
tion. The equation for the free surface is

2
®
Z, = hy — @(RZ - 2r?)

where z, is the distance of the free surface from the bottom
of the container at radius r and A, is the original height of
the fluid in the container with no rotation. The variation of

pressure in the liquid is expressed as
2

P=P0+%r2—pgz

where P, is the pressure at the origin (r = 0, z = 0).

Pressure is a fundamental property, and it is hard to imag-
ine a significant fluid flow problem that does not involve
pressure. Therefore, you will see this property in all chap-
ters in the rest of this book. The consideration of hydrostatic
forces acting on plane or curved surfaces, however, is mostly
limited to this chapter.
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PROBLEMS*

Pressure, Manometer, and Barometer

3-1C Someone claims that the absolute pressure in a liquid
of constant density doubles when the depth is doubled. Do
you agree? Explain.

3-2C A tiny steel cube is suspended in water by a string.
If the lengths of the sides of the cube are very small, how
would you compare the magnitudes of the pressures on the
top, bottom, and side surfaces of the cube?

3-3C Express Pascal’s law, and give a real-world example of it.

3-4C Consider two identical fans, one at sea level and the
other on top of a high mountain, running at identical speeds.
How would you compare (@) the volume flow rates and (b)
the mass flow rates of these two fans?

3-5C What is the difference between gage pressure and
absolute pressure?

3-6C Explain why some people experience nose bleeding and
some others experience shortness of breath at high elevations.

3-7 The piston of a vertical piston-cylinder device con-
taining a gas has a mass of 40 kg and a cross-sectional area
of 0.012 m? (Fig P3-7). The local atmospheric pressure is
95 kPa, and the gravitational acceleration is 9.81 m/s%. (a)
Determine the pressure inside the cylinder. (b) If some heat
is transferred to the gas and its volume is doubled, do you
expect the pressure inside the cylinder to change?

P =95kPa

atm

m=40kg

A =0.012 m’

FIGURE P3-7

* Problems designated by a “C” are concept questions, and students
are encouraged to answer them all. Problems designated by an “E”
are in English units, and the Sl users can ignore them. Problems
with the icon are solved using EES, and complete solutions
together with parametric studies are included on the text website.
Problems with the icon are comprehensive in nature and are
intended to be solved with an equation solver such as EES.

3-8 A vacuum gage connected to a chamber reads 36 kPa at
a location where the atmospheric pressure is 92 kPa. Deter-
mine the absolute pressure in the chamber.

3-9E The pressure at the exit of an air compressor is
150 psia. What is this pressure in kPa?

3-10E The pressure in a water line is 1500 kPa. What is
the line pressure in (a) 1bf/ft> units and () Ibf/in? (psi) units?

3-11E A manometer is used to measure the air pressure in a
tank. The fluid used has a specific gravity of 1.25, and the differ-
ential height between the two arms of the manometer is 28 in. If
the local atmospheric pressure is 12.7 psia, determine the abso-
lute pressure in the tank for the cases of the manometer arm with
the (a) higher and (b) lower fluid level being attached to the tank.

3-12 The water in a tank is pressurized by air, and the
pressure is measured by a multifluid manometer as shown in
Fig. P3—-12. Determine the gage pressure of air in the tank if
h, =04 m, h, = 0.6 m, and h; = 0.8 m. Take the densities
of water, oil, and mercury to be 1000 kg/m?, 850 kg/m?, and

13,600 kg/m?, respectively.
F{ oil

)

Air
i o
Water T

0o
1 }]

—)

Mercury M
FIGURE P3-12

3-13 Determine the atmospheric pressure at a location
where the barometric reading is 735 mmHg. Take the density
of mercury to be 13,600 kg/m?>.

3-14 The gage pressure in a liquid at a depth of 3 m is read
to be 28 kPa. Determine the gage pressure in the same liquid
at a depth of 12 m.



3-15 The absolute pressure in water at a depth of 8 m is
read to be 175 kPa. Determine (@) the local atmospheric pres-
sure, and (b) the absolute pressure at a depth of 8 m in a lig-
uid whose specific gravity is 0.78 at the same location.

3-16E Show that 1 kgf/cm? = 14.223 psi.

3-17E A 200-1b man has a total foot imprint area of 72 in>.
Determine the pressure this man exerts on the ground if (a)
he stands on both feet and (b) he stands on one foot.

3-18 Consider a 55-kg woman who has a total foot imprint
area of 400 cm?. She wishes to walk on the snow, but the snow
cannot withstand pressures greater than 0.5 kPa. Determine the
minimum size of the snowshoes needed (imprint area per shoe)
to enable her to walk on the snow without sinking.

3-19 A vacuum gage connected to a tank reads 45 kPa at a
location where the barometric reading is 755 mmHg. Determine
the absolute pressure in the tank. Take py, = 13,590 kg/m?.
Answer: 55.6 kPa

3-20E A pressure gage connected to a tank reads 50 psi at a
location where the barometric reading is 29.1 inHg. Determine
the absolute pressure in the tank. Take py, = 848.4 Ibm/ft>.
Answer: 64.3 psia

3-21 A pressure gage connected to a tank reads 500 kPa at
a location where the atmospheric pressure is 94 kPa. Deter-
mine the absolute pressure in the tank.

3-22 If the pressure inside a rubber balloon is 1500 mmHg,
what is this pressure in pounds-force per square inch (psi)?
Answer: 29.0 psi

3-23 The vacuum pressure of a condenser is given to be 80 kPa.
If the atmospheric pressure is 98 kPa, what is the gage pressure
and absolute pressure in kPa, kN/m? , Ibf/in?, psi, and mmHg.

3-24 Water from a reservoir is raised in a vertical tube
of internal diameter D = 30 cm under the influence of the
pulling force F of a piston. Determine the force needed to
raise the water to a height of 2~ = 1.5 m above the free sur-
face. What would your response be for 4 = 3 m? Also, taking
the atmospheric pressure to be 96 kPa, plot the absolute water
pressure at the piston face as i varies from 0 to 3 m.

F

Air

Water

FIGURE P3-24

3-25 The barometer of a mountain hiker reads 980 mbars
at the beginning of a hiking trip and 790 mbars at the end.
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Neglecting the effect of altitude on local gravitational accel-
eration, determine the vertical distance climbed. Assume an
average air density of 1.20 kg/m3.  Answer: 1614 m

3-26 The basic barometer can be used to measure the
height of a building. If the barometric readings at the top and
at the bottom of a building are 730 and 755 mmHg, respec-
tively, determine the height of the building. Assume an aver-
age air density of 1.18 kg/m?>.

Py, =730 mmHg

FIGURE P3-26

3-27 _ Solve Prob. 3-26 using EES (or other) software.
<= Print out the entire solution, including the
numerical results with proper units, and take the density of

mercury to be 13,600 kg/m?>.

3-28 Determine the pressure exerted on a diver at 20 m below the
free surface of the sea. Assume a barometric pressure of 101 kPa
and a specific gravity of 1.03 for seawater. Answer: 303 kPa

3-29E Determine the pressure exerted on the surface of a
submarine cruising 225 ft below the free surface of the sea.
Assume that the barometric pressure is 14.7 psia and the spe-
cific gravity of seawater is 1.03.

3-30 A gas is contained in a vertical, frictionless piston—
cylinder device. The piston has a mass of 4 kg and a cross-
sectional area of 35 cm?. A compressed spring above the pis-
ton exerts a force of 60 N on the piston. If the atmospheric
pressure is 95 kPa, determine the pressure inside the cylinder.
Answer: 123.4 kPa

e
>
>
S 60N
< Py = 95 kPa
g
> mp =4 kg
A =35cm?
P=2
FIGURE P3-30
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3-31 @‘ Reconsider Prob. 3-30. Using EES (or other) soft-
= ware, investigate the effect of the spring force in

the range of 0 to 500 N on the pressure inside the cylinder. Plot

the pressure against the spring force, and discuss the results.

3-32 %@f& Both a gage and a manometer are attached to a

gas tank to measure its pressure. If the reading on
the pressure gage is 65 kPa, determine the distance between
the two fluid levels of the manometer if the fluid is (a) mer-
cury (p = 13,600 kg/m?) or (b) water (p = 1000 kg/m?>).

P, =65kPa

FIGURE P3-32

= software, investigate the effect of the manometer
fluid density in the range of 800 to 13,000 kg/m? on the dif-
ferential fluid height of the manometer. Plot the differential
fluid height against the density, and discuss the results.

3-34 The variation of pressure P in a gas with density p is
is given by P = Cp" where C and n and are constants with
P = Pyand p = p, at elevation z = 0. Obtain a relation for the
variaton of P with elevation in terms of z, g, n, P, and p,,.

3-35 The system shown in the figure is used to accurately
measure the pressure changes when the pressure is increased

Pipe

Water

Ah

Glycerin, SG = 1.26

D =30 mm
[ |

d =3 mm

FIGURE P3-35

by AP in the water pipe. When Ak = 70 mm, what is the
change in the pipe pressure?

3-36 The manometer shown in the figure is designed to
measure pressures of up to a maximum of 100 Pa. If the
reading error is estimated to be *£0.5 mm, what should the
ratio of d/D be in order for the error associated with pressure
measurement not to exceed 2.5% of the full scale.

FIGURE P3-36

3-37 A manometer containing oil (p = 850 kg/m?) is
attached to a tank filled with air. If the oil-level difference
between the two columns is 150 cm and the atmospheric
pressure is 98 kPa, determine the absolute pressure of the air
in the tank. Answer: 111 kPa

3-38 A mercury manometer (p = 13,600 kg/m?) is con-
nected to an air duct to measure the pressure inside. The dif-
ference in the manometer levels is 10 mm, and the atmospheric
pressure is 100 kPa. (@) Judging from Fig. P3-38, determine
if the pressure in the duct is above or below the atmospheric
pressure. (b) Determine the absolute pressure in the duct.

AIR -

h =10 mm

FIGURE P3-38

3-39 Repeat Prob. 3-38 for a differential mercury height of
30 mm.

3-40 Blood pressure is usually measured by wrapping a
closed air-filled jacket equipped with a pressure gage around
the upper arm of a person at the level of the heart. Using a
mercury manometer and a stethoscope, the systolic pressure
(the maximum pressure when the heart is pumping) and the
diastolic pressure (the minimum pressure when the heart is rest-
ing) are measured in mmHg. The systolic and diastolic pres-
sures of a healthy person are about 120 mmHg and 80 mmHg,
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respectively, and are indicated as 120/80. Express both of these _— Air
gage pressures in kPa, psi, and meter water column. i
3-41 The maximum blood pressure in the upper arm of a 30 cm
healthy person is about 120 mmHg. If a vertical tube open to 20 L Sea-
the atmosphere is connected to the vein in the arm of the per- o waliEr
son, determine how high the blood will rise in the tube. Take
the density of the blood to be 1040 kg/m>.

F O | — Mercury

R W

FIGURE P3-45

3-46 Repeat Prob. 3-45 by replacing the air with oil whose
specific gravity is 0.72.

3-47E The pressure in a natural gas pipeline is measured by
the manometer shown in Fig. P3—47E with one of the arms
open to the atmosphere where the local atmospheric pressure
is 14.2 psia. Determine the absolute pressure in the pipeline.

+—H
Air 2in
FIGURE P3-41 T
N 1 ;
3-42 Consider a 1.73-m-tall man standing vertically in ?;ga 14 in
water and completely submerged in a pool. Determine the J )
difference between the pressures acting at the head and at the L 22in
toes of this man, in kPa. Ji:
3-43 Consider a U-tube whose arms are open to the atmo- |
sphere. Now water is poured into the U-tube from one arm,
and light oil (p = 790 kg/m?) from the other. One arm con- Mercury i -
tains 70-cm-high water, while the other arm contains both SG=13.6
fluids with an oil-to-water height ratio of 6. Determine the Water
height of each fluid in that arm. FIGURE P3-47E
T 3-48E Repeat Prob. 3—47E by replacing air by oil with a
specific gravity of 0.69.
0il 3-49 The gage pressure of the air in the tank shown in
70 cm Fig. P3-49 is measured to be 65 kPa. Determine the differen-
Water . .
tial height & of the mercury column.
R L —oil
FIGURE P3-43 65 kPa SG=0.72

3-44 The hydraulic lift in a car repair shop has an output
diameter of 40 cm and is to lift cars up to 1800 kg. Determine
the fluid gage pressure that must be maintained in the reservoir.

| — Mercury
SG=13.6

3-45 Freshwater and seawater flowing in parallel horizon-
tal pipelines are connected to each other by a double U-tube
manometer, as shown in Fig. P3—45. Determine the pressure
difference between the two pipelines. Take the density of sea-
water at that location to be p = 1035 kg/m?3. Can the air col-
umn be ignored in the analysis? FIGURE P3-49




116

PRESSURE AND FLUID STATICS

3-50 Repeat Prob. 3-49 for a gage pressure of 45 kPa.

3-51 The 500-kg load on the hydraulic lift shown in
Fig. P3-51 is to be raised by pouring oil (p = 780 kg/m?)
into a thin tube. Determine how high % should be in order to

begin to raise the weight.

h
1.2 m lem—+ —

FIGURE P3-51

3-52E Two oil tanks are connected to each other through
a manometer. If the difference between the mercury levels
in the two arms is 32 in, determine the pressure difference
between the two tanks. The densities of oil and mercury are
45 Ibm/ft} and 848 Ibm/ft3, respectively.

Oil Oil
P Py
—
10 in
32in
Mercury

FIGURE P3-52E

3-53 Pressure is often given in terms of a liquid column
and is expressed as “pressure head.” Express the standard
atmospheric pressure in terms of (a) mercury (SG = 13.6),
(b) water (SG = 1.0), and (¢) glycerin (SG = 1.26) columns.
Explain why we usually use mercury in manometers.

3-54 Two chambers with the same fluid at their base are
separated by a 30-cm-diameter piston whose weight is 25 N,
as shown in Fig. P3-54. Calculate the gage pressures in cham-
bers A and B.

Piston
A B
Air Air p |
50 cm
c | T o 'f
‘ 30 cm - 25 cm
E _ 3%em | ‘_ v
Water
- 90 cm >
FIGURE P3-54

3-55 Consider a double-fluid manometer attached to an air
pipe shown in Fig. P3-55. If the specific gravity of one fluid
is 13.55, determine the specific gravity of the other fluid for
the indicated absolute pressure of air. Take the atmospheric
pressure to be 100 kPa. Answer: 1.34

_40cm

SG,

22 cm

SG, =13.55

FIGURE P3-55

3-56 The pressure difference between an oil pipe and water
pipe is measured by a double-fluid manometer, as shown in



Fig. P3-56. For the given fluid heights and specific gravities,

calculate the pressure difference AP = Py, — P,.
) -
Glycerin
Water SG=1.26
SG=1.0 Oil
SG=0.88
55cm
10 cm
B
12 cm
20 cm
Mercury —_— .
SG=135
FIGURE P3-56

3-57 Consider the system shown in Fig. P3-57. If a change
of 0.9 kPa in the pressure of air causes the brine-mercury
interface in the right column to drop by 5 mm in the brine
level in the right column while the pressure in the brine pipe
remains constant, determine the ratio of A,/A,;.

Air
Water
Area, A,
Mercury Area, A,
SG =13.56 W
FIGURE P3-57

3-58 Two water tanks are connected to each other through
a mercury manometer with inclined tubes, as shown in
Fig. P3-58. If the pressure difference between the two tanks
is 20 kPa, calculate a and 6.
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Mercury
SG=13.6

FIGURE P3-58

3-59 Consider a hydraulic jack being used in a car repair
shop, as in Fig. P3-59. The pistons have an area of A, =
0.8 cm? and A, = 0.04 m% Hydraulic oil with a specific gravity
of 0.870 is pumped in as the small piston on the left side is
pushed up and down, slowly raising the larger piston on the
right side. A car that weighs 13,000 N is to be jacked up. (a) At
the beginning, when both pistons are at the same elevation
(h = 0), calculate the force F; in newtons required to hold
the weight of the car. (b) Repeat the calculation after the car
has been lifted two meters (2 = 2 m). Compare and discuss.

%_{

FIGURE P3-59

Hydraulic oil ~|
SG =0.870 £

Fluid Statics: Hydrostatic Forces on Plane
and Curved Surfaces

3-60C Define the resultant hydrostatic force acting on a
submerged surface, and the center of pressure.

3-61C Someone claims that she can determine the magni-
tude of the hydrostatic force acting on a plane surface sub-
merged in water regardless of its shape and orientation if she
knew the vertical distance of the centroid of the surface from
the free surface and the area of the surface. Is this a valid
claim? Explain.

3-62C A submerged horizontal flat plate is suspended in
water by a string attached at the centroid of its upper surface.
Now the plate is rotated 45° about an axis that passes through
its centroid. Discuss the change in the hydrostatic force act-
ing on the top surface of this plate as a result of this rotation.
Assume the plate remains submerged at all times.
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3-63C You may have noticed that dams are much thicker at
the bottom. Explain why dams are built that way.

3-64C Consider a submerged curved surface. Explain how
you would determine the horizontal component of the hydro-
static force acting on this surface.

3-65C Consider a submerged curved surface. Explain how
you would determine the vertical component of the hydro-
static force acting on this surface.

3-66C Consider a circular surface subjected to hydrostatic
forces by a constant density liquid. If the magnitudes of the
horizontal and vertical components of the resultant hydro-
static force are determined, explain how you would find the
line of action of this force.

3-67 Consider a heavy car submerged in water in a lake
with a flat bottom. The driver’s side door of the car is 1.1 m
high and 0.9 m wide, and the top edge of the door is 10 m
below the water surface. Determine the net force acting on
the door (normal to its surface) and the location of the pres-
sure center if (a) the car is well-sealed and it contains air at
atmospheric pressure and () the car is filled with water.

3-68E A long, solid cylinder of radius 2 ft hinged at point A
is used as an automatic gate, as shown in Fig. P3—-68E. When
the water level reaches 15 ft, the cylindrical gate opens by
turning about the hinge at point A. Determine (a) the hydro-
static force acting on the cylinder and its line of action when
the gate opens and (b) the weight of the cylinder per ft length
of the cylinder.

v
15 ft
2 ft
A
FIGURE P3-68E
3-69 Consider a 8-m-long, 8-m-wide, and 2-m-high

aboveground swimming pool that is filled with water to the
rim. (@) Determine the hydrostatic force on each wall and the
distance of the line of action of this force from the ground.
(b) If the height of the walls of the pool is doubled and the
pool is filled, will the hydrostatic force on each wall double
or quadruple? Why?  Answer: (a) 157 kN

3-70E Consider a 200-ft-high, 1200-ft-wide dam filled to
capacity. Determine (a) the hydrostatic force on the dam and

(b) the force per unit area of the dam near the top and near
the bottom.

3-71 A room in the lower level of a cruise ship has a
30-cm-diameter circular window. If the midpoint of the win-
dow is 4 m below the water surface, determine the hydro-
static force acting on the window, and the pressure center.
Take the specific gravity of seawater to be 1.025. Answers:
2840 N, 4.001 m

d I IV I I I I I I 9
AV
Sea
4 m )
) ) s ) ) ) )
J y 4 J J y 4 J y
L}Z})cm

FIGURE P3-71

3-72 The water side of the wall of a 70-m-long dam is a
quarter circle with a radius of 7 m. Determine the hydrostatic
force on the dam and its line of action when the dam is filled
to the rim.

3-73 For a gate width of 2 m into the paper (Fig. P3-73),
determine the force required to hold the gate ABC at its

location. Answer: 17.8 kN
SG =0.86 50 cm A
Hinge 10 cm
SG =123 80 cm
C
B
F
40 cm
FIGURE P3-73

3-74 Determine the resultant force acting on the 0.7-m-high
and 0.7-m-wide triangular gate shown in Fig. P3-74 and its
line of action.



FIGURE P3-74

3-75 A 6-m-high, 5-m-wide rectangular plate blocks the end
of a 5-m-deep freshwater channel, as shown in Fig. P3-75.
The plate is hinged about a horizontal axis along its upper edge
through a point A and is restrained from opening by a fixed ridge
at point B. Determine the force exerted on the plate by the ridge.

A
=
1m

A4 v
S5m
B
FIGURE P3-75

Reconsider Prob. 3-75. Using EES (or other)
= software, investigate the effect of water depth on
the force exerted on the plate by the ridge. Let the water
depth vary from O to 5 m in increments of 0.5 m. Tabulate
and plot your results.

3-77E The flow of water from a reservoir is controlled
by a 5-ft-wide L-shaped gate hinged at point A, as shown

—8 ft —»‘

/A‘ﬁﬁ,

T ,— Gate 15 ft

12 ft

N

FIGURE P3-77E
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in Fig. P3-77E. If it is desired that the gate open when the
water height is 12 ft, determine the mass of the required
weight W.  Answer: 30,900 Ibm

3-78E Repeat Prob. 3—77E for a water height of 8 ft.

3-79 A water trough of semicircular cross section of radius
0.6 m consists of two symmetric parts hinged to each other at
the bottom, as shown in Fig. P3-79. The two parts are held
together by a cable and turnbuckle placed every 3 m along
the length of the trough. Calculate the tension in each cable
when the trough is filled to the rim.

i 1.2m |
— Cable

€0

~

Hinge
FIGURE P3-79

3-80 A cylindrical tank is fully filled with water (Fig. P3-80).
In order to increase the flow from the tank, an additional
pressure is applied to the water surface by a compressor. For
P, =0, P, = 3 bar, and P, = 10 bar, calculate the hydro-
static force on the surface A exerted by water.

Air, Py
E Water level

<77

Water 80 cm A

[
FIGURE P3-80

3-81 An open settling tank shown in the figure contains a
liquid suspension. Determine the resultant force acting on the
gate and its line of action if the liquid density is 850 kg/m>.
Answers: 140 kN, 1.64 m from bottom

FIGURE P3-81
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3-82 From Prob. 3-81, knowing that the density of the
suspension depends on liquid depth and changes linearly
from 800 kg/m?® to 900 kg/m?® in the vertical direction,
determine the resultant force acting on the gate ABC, and
its line of action.

3-83 The 2.5 m X 8.1 m X 6 m tank shown below is filled
by oil of SG = 0.88. Determine (a) the magnitude and the
location of the line of action of the resultant force acting on
surface AB and (b) the pressure force acting on surface BD.
Will the force acting on surface BD equal the weight of the
oil in the tank? Explain.

3.5m
| §m 10 cm
! C
A i
2.5m
B 1D
FIGURE P3-83

3-84 The two sides of a V-shaped water trough are hinged
to each other at the bottom where they meet, as shown in
Fig. P3-84, making an angle of 45° with the ground from
both sides. Each side is 0.75 m wide, and the two parts are
held together by a cable and turnbuckle placed every 6 m
along the length of the trough. Calculate the tension in each
cable when the trough is filled to the rim. Answer: 5510 N

<

0.75m
45°

Cable

5°

\>/ \nge

FIGURE P3-84

3-85 Repeat Prob. 3-84 for the case of a partially filled
trough with a water height of 0.4 m directly above the hinge.

3-86 A retaining wall against a mud slide is to be con-
structed by placing 1.2-m-high and 0.25-m-wide rectangular
concrete blocks (p = 2700 kg/m?) side by side, as shown in
Fig. P3-86. The friction coefficient between the ground and
the concrete blocks is f = 0.4, and the density of the mud is
about 1400 kg/m3. There is concern that the concrete blocks
may slide or tip over the lower left edge as the mud level rises.

Determine the mud height at which (a) the blocks will over-
come friction and start sliding and (b) the blocks will tip over.

0.25m

1.2 m

FIGURE P3-86

3-87 Repeat Prob. 3-86 for 0.4-m-wide concrete blocks.

3-88 %@3 A 4-m-long quarter-circular gate of radius 3 m

and of negligible weight is hinged about its upper
edge A, as shown in Fig. P3—88. The gate controls the flow of
water over the ledge at B, where the gate is pressed by a spring.
Determine the minimum spring force required to keep the gate
closed when the water level rises to A at the upper edge of the gate.

1N

FIGURE P3-88

3-89 Repeat Prob. 3-88 for a radius of 4 m for the gate.
Answer: 314 kN

3-90 Consider a flat plate of thickness 7, width w into the
page, and length b submerged in water, as in Fig. P3-90. The
depth of water from the surface to the center of the plate is H,

FIGURE P3-90



and angle 0 is defined relative to the center of the plate.
(a) Generate an equation for the force I on the upper face of the
plate as a function of (at most) H, b, t, w, g, p, and 6. Ignore
atmospheric pressure. In other words, calculate the force that
is in addition to the force due to atmospheric pressure. (b) As
a test of your equation, let H = 1.25m, b = 1 m, t = 0.2 m,
w=1m, g = 9.807 m/s?, p = 998.3 kg/m?, and 0 = 30°. If
your equation is correct, you should get a force of 11.4 kN.

3-91 The weight of the gate separating the two fluids is

such that the system shown in Fig. P3-91 is at static equilib-
rium. If it is known that F,/F, = 1.70, determine h/H.

Fl
SG=0.86

H

SG=125 h

1)
o
N\

FIGURE P3-91
3-92 Consider a 1-m wide inclined gate of negligible

weight that separates water from another fluid. What would
be the volume of the concrete block (SG = 2.4) immersed in
water to keep the gate at the position shown? Disregard any
frictional effects.

Q 0.6 m
am A ater Carton
tetrachloride
ﬂ = 600 SG = 159

Y

2.5m

FIGURE P3-92

3-93 The parabolic shaped gate with a width of 2 m shown
in Fig. P3-93 is hinged at point B. Determine the force F
needed to keep the gate stationary.

A
:\ Water
'\ C
0il, SG = 1.5 i .
3m | M
|
l
D, x B
| |
| |
! 9m I
FIGURE P3-93
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Buoyancy

3-94C What is buoyant force? What causes it? What is the
magnitude of the buoyant force acting on a submerged body
whose volume is /? What are the direction and the line of
action of the buoyant force?

3-95C Consider two identical spherical balls submerged in
water at different depths. Will the buoyant forces acting on
these two balls be the same or different? Explain.

3-96C Consider two 5-cm-diameter spherical balls—one
made of aluminum, the other of iron—submerged in water.
Will the buoyant forces acting on these two balls be the same
or different? Explain.

3-97C Consider a 3-kg copper cube and a 3-kg copper
ball submerged in a liquid. Will the buoyant forces acting on
these two bodies be the same or different? Explain.

3-98C Discuss the stability of (a) a submerged and (b) a
floating body whose center of gravity is above the center of
buoyancy.

3-99 The density of a liquid is to be determined by an old
1-cm-diameter cylindrical hydrometer whose division marks
are completely wiped out. The hydrometer is first dropped
in water, and the water level is marked. The hydrometer is
then dropped into the other liquid, and it is observed that the
mark for water has risen 0.3 cm above the liquid—air inter-
face (Fig. P3-99). If the height of the original water mark is
12.3 c¢m, determine the density of the liquid.

—

Mark for
water

%
Tosem

Unknown T

liquid 12 cm

FIGURE P3-99

3-100E A crane is used to lower weights into a lake for an
underwater construction project. Determine the tension in the
rope of the crane due to a 3-ft-diameter spherical steel block
(density = 494 1bm/ft}) when it is (a) suspended in the air
and (b) completely immersed in water.

3-101 The volume and the average density of an irregu-
larly shaped body are to be determined by using a spring
scale. The body weighs 7200 N in air and 4790 N in water.
Determine the volume and the density of the body. State your
assumptions.
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3-102 Consider a large cubic ice block floating in seawater.
The specific gravities of ice and seawater are 0.92 and 1.025,
respectively. If a 25-cm-high portion of the ice block extends
above the surface of the water, determine the height of the ice
block below the surface. Answer: 2.19 m

:25 cm

e Cubic

ice block h

FIGURE P3-102

3-103 A spherical shell made of a material with a density
of 1600 kg/m? is placed in water. If the inner and outer radii
of the shell are R, = 5 cm, R, = 6 cm, determine the percent-
age of the shell’s total volume that would be submerged.

3-104 An inverted cone is placed in a water tank as shown.
If the weight of the cone is 16.5 N, what is the tensile force
in the cord connecting the cone to the bottom of the tank?

40 cm

10 cm

20 cm

Water

Cord

FIGURE P3-104

3-105 The weight of a body is usually measured by dis-
regarding buoyancy force applied by the air. Consider a
20-cm-diameter spherical body of density 7800 kg/m3. What
is the percentage error associated with the neglecting of air
buoyancy?

3-106 A 170-kg granite rock (p = 2700 kg/m?) is dropped
into a lake. A man dives in and tries to lift the rock. Deter-
mine how much force the man needs to apply to lift it from
the bottom of the lake. Do you think he can do it?

3-107 It is said that Archimedes discovered his principle
during a bath while thinking about how he could determine
if King Hiero’s crown was actually made of pure gold. While
in the bathtub, he conceived the idea that he could determine

the average density of an irregularly shaped object by weigh-
ing it in air and also in water. If the crown weighed 3.55 kgf
(= 34.8 N) in air and 3.25 kgf (= 31.9 N) in water, deter-
mine if the crown is made of pure gold. The density of gold
is 19,300 kg/m?. Discuss how you can solve this problem
without weighing the crown in water but by using an ordi-
nary bucket with no calibration for volume. You may weigh
anything in air.

3-108 The hull of a boat has a volume of 180 m?3, and the
total mass of the boat when empty is 8560 kg. Determine
how much load this boat can carry without sinking (a) in a
lake and (b) in seawater with a specific gravity of 1.03.

Fluids in Rigid-Body Motion

3-109C Under what conditions can a moving body of fluid
be treated as a rigid body?

3-110C Consider a glass of water. Compare the water pres-
sures at the bottom surface for the following cases: the glass
is (a) stationary, (b) moving up at constant velocity, (¢) mov-
ing down at constant velocity, and (d) moving horizontally at
constant velocity.

3-111C Consider two identical glasses of water, one sta-
tionary and the other moving on a horizontal plane with con-
stant acceleration. Assuming no splashing or spilling occurs,
which glass will have a higher pressure at the (a) front, (b)
midpoint, and (c) back of the bottom surface?

3-112C Consider a vertical cylindrical container partially
filled with water. Now the cylinder is rotated about its axis at
a specified angular velocity, and rigid-body motion is estab-
lished. Discuss how the pressure will be affected at the mid-
point and at the edges of the bottom surface due to rotation.

3-113 A water tank is being towed by a truck on a level
road, and the angle the free surface makes with the horizon-
tal is measured to be 12°. Determine the acceleration of the
truck.

3-114 Consider two water tanks filled with water. The first
tank is 8 m high and is stationary, while the second tank
is 2 m high and is moving upward with an acceleration of
5 m/s2. Which tank will have a higher pressure at the bottom?

3-115 A water tank is being towed on an uphill road that
makes 14° with the horizontal with a constant acceleration of
3.5 m/s? in the direction of motion. Determine the angle the
free surface of water makes with the horizontal. What would
your answer be if the direction of motion were downward on
the same road with the same acceleration?

3-116E A 3-ft-diameter vertical cylindrical tank open to the
atmosphere contains 1-ft-high water. The tank is now rotated
about the centerline, and the water level drops at the center
while it rises at the edges. Determine the angular velocity
at which the bottom of the tank will first be exposed. Also
determine the maximum water height at this moment.



FIGURE P3-116E

3-117 A 60-cm-high, 40-cm-diameter cylindrical water
tank is being transported on a level road. The highest accel-
eration anticipated is 4 m/s%. Determine the allowable initial
water height in the tank if no water is to spill out during
acceleration. Answer: 51.8 cm

3-118 A 30-cm-diameter, 90-cm-high vertical cylindrical
container is partially filled with 60-cm-high water. Now the
cylinder is rotated at a constant angular speed of 180 rpm.
Determine how much the liquid level at the center of the cyl-
inder will drop as a result of this rotational motion.

3-119 A fish tank that contains 60-cm-high water is moved
in the cabin of an elevator. Determine the pressure at the bot-
tom of the tank when the elevator is (a) stationary, (b) mov-
ing up with an upward acceleration of 3 m/s?, and (¢) moving
down with a downward acceleration of 3 m/s.

3-120 A 3-m-diameter vertical cylindrical milk tank rotates
at a constant rate of 12 rpm. If the pressure at the center of
the bottom surface is 130 kPa, determine the pressure at the
edge of the bottom surface of the tank. Take the density of
the milk to be 1030 kg/m?.

3-121 Consider a tank of rectangular cross-section partially
filled with a liquid placed on an inclined surface, as shown in the
figure. When frictional effects are negligible, show that the slope
of the liquid surface will be the same as the slope of the inclined
surface when the tank is released. What can you say about the
slope of the free surface when the friction is significant?

FIGURE P3-121

3-122 The bottom quarter of a vertical cylindrical tank of
total height 0.4 m and diameter 0.3 m is filled with a liquid
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(SG > 1, like glycerin) and the rest with water, as shown in
the figure. The tank is now rotated about its vertical axis at a
constant angular speed of w. Determine (a) the value of the
angular speed when the point P on the axis at the liquid-liquid
interface touches the bottom of the tank and (b) the amount
of water that would be spilled out at this angular speed.

<l

3h

h=0.1m

I S A I
w C
S

o
I
e
W
=

FIGURE P3-122

3-123 Milk with a density of 1020 kg/m? is transported on
a level road in a 9-m-long, 3-m-diameter cylindrical tanker.
The tanker is completely filled with milk (no air space), and it
accelerates at 4 m/s”. If the minimum pressure in the tanker is
100 kPa, determine the maximum pressure difference and the
location of the maximum pressure. Answer: 66.7 kPa

‘ 9m |

FIGURE P3-123
3-124 Repeat Prob. 3—123 for a deceleration of 2.5 m/s>.

3-125 The distance between the centers of the two arms of
a U-tube open to the atmosphere is 30 cm, and the U-tube
contains 20-cm-high alcohol in both arms. Now the U-tube is

QP

20 cm

30 cm

FIGURE P3-125
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rotated about the left arm at 4.2 rad/s. Determine the eleva-
tion difference between the fluid surfaces in the two arms.

3-126 A 1.2-m-diameter, 3-m-high sealed vertical cylinder is
completely filled with gasoline whose density is 740 kg/m>. The
tank is now rotated about its vertical axis at a rate of 70 rpm.
Determine () the difference between the pressures at the centers
of the bottom and top surfaces and (b) the difference between
the pressures at the center and the edge of the bottom surface.

D

120 m 3m

FIGURE P3-126

@‘ Reconsider Prob. 3—126. Using EES (or other)
<= software, investigate the effect of rotational
speed on the pressure difference between the center and the
edge of the bottom surface of the cylinder. Let the rotational
speed vary from O rpm to 500 rpm in increments of 50 rpm.
Tabulate and plot your results.

3-127

3-128E A 15-ft-long, 6-ft-high rectangular tank open to the
atmosphere is towed by a truck on a level road. The tank is filled
with water to a depth of 5 ft. Determine the maximum accelera-
tion or deceleration allowed if no water is to spill during towing.

3-129E An 8-ft-long tank open to the atmosphere initially
contains 3-ft-high water. It is being towed by a truck on a

Water

8 ft

FIGURE P3-129E

level road. The truck driver applies the brakes and the water
level at the front rises 0.5 ft above the initial level. Determine
the deceleration of the truck. Answer: 4.03 ft/s?

3-130 A 3-m-diameter, 7-m-long cylindrical tank is com-
pletely filled with water. The tank is pulled by a truck on a
level road with the 7-m-long axis being horizontal. Deter-
mine the pressure difference between the front and back ends
of the tank along a horizontal line when the truck (a) acceler-
ates at 3 m/s? and (b) decelerates at 4 m/s>.

3-131 The rectangular tank is filled with heavy oil (like
glycerin) at the bottom and water at the top, as shown in
the figure. The tank is now moved to the right horizontally
with a constant acceleration and Y% of water is spilled out
as a result from the back. Using geometrical considerations,
determine how high the point A at the back of the tank on
the oil-water interface will rise under this acceleration.
Answer: 0.25 m

1.0 m Water

0.5m Oil

FIGURE P3-131

3-132 A sealed box filled with a liquid shown in the figure
can be used to measure the acceleration of vehicles by mea-
suring the pressure at top point A at back of the box while
point B is kept at atmospheric pressure. Obtain a relation
between the pressure P, and the acceleration a.

Py

@
A | |8

L

FIGURE P3-132

3-133 A centrifugal pump consists simply of a shaft and
a few blades attached normally to the shaft. If the shaft
is rotated at a constant rate of 2400 rpm, what would the
theoretical pump head due to this rotation be? Take the impel-
ler diameter to be 35 cm and neglect the blade tip effects.
Answer: 98.5 m



3-134 A U-tube is rotating at a constant angular velocity of w.
The liquid (glycerin) rises to the levels shown in Fig. P3—134.
Obtain a relation for w in terms of g, A, and L.

3L

FIGURE P3-134

Review Prohlems

3-135 An air-conditioning system requires a 34-m-long
section of 12-cm-diameter ductwork to be laid underwa-
ter. Determine the upward force the water will exert on the
duct. Take the densities of air and water to be 1.3 kg/m? and
1000 kg/m3, respectively.

3-136 The 0.5-m-radius semi-circular gate shown in the
figure is hinged through the top edge AB. Find the required
force to be applied at the center of gravity to keep the gate
closed. Answer: 11.3 kN

P,i = 80 kPa (abs)

474 m

1
—_—

Glycerin
SG=1.26

FIGURE P3-136

3-137 If the rate of rotational speed of the 3-tube system
shown in Fig. P3-137 is w = 10 rad/s, determine the water
heights in each tube leg. At what rotational speed will the
middle tube be completely empty?
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h=15cm

‘ 20 cm

FIGURE P3-137

3-138 A 30-cm-diameter vertical cylindrical vessel is rotated
about its vertical axis at a constant angular velocity of 100 rad/s.
If the pressure at the midpoint of the inner top surface is
atmospheric pressure like the outer surface, determine the
total upward force acting upon the entire top surface inside
the cylinder.

3-139 Balloons are often filled with helium gas because it
weighs only about one-seventh of what air weighs under iden-
tical conditions. The buoyancy force, which can be expressed
as F, = p,i:8Viuioons Will push the balloon upward. If the bal-
loon has a diameter of 12 m and carries two people, 70 kg
each, determine the acceleration of the balloon when it is first
released. Assume the density of air is p = 1.16 kg/m3, and
neglect the weight of the ropes and the cage. Answer: 25.7 m/s?

m =140 kg

FIGURE P3-139

3-140 | Reconsider Prob. 3-139. Using EES (or other)

people carried in the balloon on acceleration. Plot the accelera-
tion against the number of people, and discuss the results.
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3-141 Determine the maximum amount of load, in kg, the
balloon described in Prob. 3—139 can carry. Answer: 521 kg

3-142E The pressure in a steam boiler is given to be
90 kgf/cm?. Express this pressure in psi, kPa, atm, and bars.

3-143 The basic barometer can be used as an altitude-
measuring device in airplanes. The ground control reports a
barometric reading of 760 mmHg while the pilot’s reading is
420 mmHg. Estimate the altitude of the plane from ground
level if the average air density is 1.20 kg/m?®.  Answer: 3853 m

3-144 The lower half of a 12-m-high cylindrical con-
tainer is filled with water (p = 1000 kg/m?) and the upper
half with oil that has a specific gravity of 0.85. Determine
the pressure difference between the top and bottom of the
cylinder. Answer: 109 kPa

O h=12m

Water

FIGURE P3-144

3-145 A vertical, frictionless piston—cylinder device contains
a gas at 500 kPa. The atmospheric pressure outside is 100 kPa,
and the piston area is 30 cm?. Determine the mass of the piston.

3-146 A pressure cooker cooks a lot faster than an ordinary
pan by maintaining a higher pressure and temperature inside.
The lid of a pressure cooker is well sealed, and steam can
escape only through an opening in the middle of the lid. A sep-

Petcock

A =3 mm?

FIGURE P3-146

arate metal piece, the petcock, sits on top of this opening and
prevents steam from escaping until the pressure force overcomes
the weight of the petcock. The periodic escape of the steam in
this manner prevents any potentially dangerous pressure buildup
and keeps the pressure inside at a constant value. Determine the
mass of the petcock of a pressure cooker whose operation pres-
sure is 120 kPa gage and has an opening cross-sectional area of
3 mm?. Assume an atmospheric pressure of 101 kPa, and draw
the free-body diagram of the petcock. Answer: 36.7 g

3-147 A glass tube is attached to a water pipe, as shown in
Fig. P3-147. If the water pressure at the bottom of the tube is
115 kPa and the local atmospheric pressure is 98 kPa, deter-
mine how high the water will rise in the tube, in m. Assume
g = 9.8 m/s? at that location and take the density of water to
be 1000 kg/m?>.

Pyn =98 kPa

Water —_—

FIGURE P3-147

3-148 The average atmospheric pressure on earth is
approximated as a function of altitude by the relation P, =
101.325 (1 — 0.022567)°2%, where P, is the atmospheric
pressure in kPa and z is the altitude in km with z = 0O at sea
level. Determine the approximate atmospheric pressures at
Atlanta (z = 306 m), Denver (z = 1610 m), Mexico City

(z = 2309 m), and the top of Mount Everest (z = 8848 m).

3-149 When measuring small pressure differences with a
manometer, often one arm of the manometer is inclined to
improve the accuracy of the reading. (The pressure differ-
ence is still proportional to the vertical distance and not the
actual length of the fluid along the tube.) The air pressure in

Air

FIGURE P3-149



a circular duct is to be measured using a manometer whose
open arm is inclined 25° from the horizontal, as shown in
Fig. P3-149. The density of the liquid in the manometer is
0.81 kg/L, and the vertical distance between the fluid levels in
the two arms of the manometer is 8 cm. Determine the gage
pressure of air in the duct and the length of the fluid column
in the inclined arm above the fluid level in the vertical arm.

3-150E Consider a U-tube whose arms are open to the
atmosphere. Now equal volumes of water and light oil
(p = 49.3 Ibm/ft?) are poured from different arms. A person
blows from the oil side of the U-tube until the contact surface
of the two fluids moves to the bottom of the U-tube, and thus
the liquid levels in the two arms are the same. If the fluid
height in each arm is 40 in, determine the gage pressure the
person exerts on the oil by blowing.

FIGURE P3-150E

3-151 An elastic air balloon having a diameter of 30 cm is
attached to the base of a container partially filled with water
at +4°C, as shown in Fig. P3-151. If the pressure of the
air above the water is gradually increased from 100 kPa to
1.6 MPa, will the force on the cable change? If so, what is
the percent change in the force? Assume the pressure on the

P, =100 kPa 0 cm

50 cm

Water

FIGURE P3-151
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free surface and the diameter of the balloon are related by
P = CD", where C is a constant and n = —2. The weight of
the balloon and the air in it is negligible. Answer: 98.4 percent

3-152 €\ Reconsider Prob. 3—151. Using EES (or other)

= software, investigate the effect of air pressure
above water on the cable force. Let this pressure vary from
0.5 MPa to 15 MPa. Plot the cable force versus the air
pressure.

3-153 A gasoline line is connected to a pressure gage
through a double-U manometer, as shown in Fig. P3-153. If
the reading of the pressure gage is 260 kPa, determine the
gage pressure of the gasoline line.

0il SG=0.79

Pyage = 260 kPa

Gasoline SG=0.70

FIGURE P3-153

3-154 Repeat Prob. 3-153 for a pressure gage reading of
330 kPa.

3-155E A water pipe is connected to a double-U manom-
eter as shown in Fig. P3—155E at a location where the local
atmospheric pressure is 14.2 psia. Determine the absolute
pressure at the center of the pipe.

0il SG=0.80
L /011 SG=0.80
T i
35in )
L Water 60 in 40in
pipe | i
I 15in
\‘)4Mercury
SG=13.6

FIGURE P3-155E

3-156 The pressure of water flowing through a pipe is mea-
sured by the arrangement shown in Fig. P3-156. For the val-
ues given, calculate the pressure in the pipe.
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Py=30kPa

SG=24

FIGURE P3-156

3-157 Consider a U-tube filled with mercury as shown in
Fig. P3-157. The diameter of the right arm of the U-tube is
D = 1.5 cm, and the diameter of the left arm is twice that.
Heavy oil with a specific gravity of 2.72 is poured into the left
arm, forcing some mercury from the left arm into the right
one. Determine the maximum amount of oil that can be added
into the left arm. Answer: 0.0884 L

Oil poured in here

SG = 2.72\ -

12 cm

2D D=15cm

D .
SN

Mercury
SG=13.6

FIGURE P3-157

3-158 1t is well known that the temperature of the atmo-
sphere varies with altitude. In the troposphere, which extends to
an altitude of 11 km, for example, the variation of temperature
can be approximated by T = T;, — Bz, where T}, is the temper-
ature at sea level, which can be taken to be 288.15 K, and 8 =
0.0065 K/m. The gravitational acceleration also changes with
altitude as g(z) = g,/(1 + 2/6,370,320)* where g, = 9.807 m/s’

and z is the elevation from sea level in m. Obtain a relation for
the variation of pressure in the troposphere (a) by ignoring and
(b) by considering the variation of g with altitude.

3-159 The variation of pressure with density in a thick gas
layer is given by P = Cp", where C and n are constants.
Noting that the pressure change across a differential fluid
layer of thickness dz in the vertical z-direction is given as
dP = —pg dz, obtain a relation for pressure as a function of
elevation z. Take the pressure and density at z = 0 to be P,
and p,, respectively.

3-160 A 3-m-high, 6-m-wide rectangular gate is hinged
at the top edge at A and is restrained by a fixed ridge at B.
Determine the hydrostatic force exerted on the gate by the
5-m-high water and the location of the pressure center.

<

!

2

|

m
Water T T A
m

L— Gate
| |l

FIGURE P3-160
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3-161 Repeat Prob. 3—160 for a total water height of 2 m.

3-162E A semicircular 40-ft-diameter tunnel is to be built
under a 150-ft-deep, 800-ft-long lake, as shown in Fig. P3-162E.
Determine the total hydrostatic force acting on the roof of

the tunnel.
Water T

150 ft

1<

Tunnel

| 40 ft |

FIGURE P3-162E

3-163 A 30-ton, 4-m-diameter hemispherical dome on a
level surface is filled with water, as shown in Fig. P3-163.
Someone claims that he can lift this dome by making use of
Pascal’s law by attaching a long tube to the top and filling
it with water. Determine the required height of water in the
tube to lift the dome. Disregard the weight of the tube and
the water in it.  Answer: 0.72 m



|

- 4m |

FIGURE P3-163

3-164 The water in a 25-m-deep reservoir is kept inside
by a 150-m-wide wall whose cross section is an equilateral
triangle, as shown in Fig. P3-164. Determine (a) the total
force (hydrostatic + atmospheric) acting on the inner surface
of the wall and its line of action and (b) the magnitude of the
horizontal component of this force. Take P,,, = 100 kPa.

Water

25 m

60° 60°

FIGURE P3-164

3-165 A U-tube contains water in the right arm, and
another liquid in the left arm. It is observed that when the
U-tube rotates at 50 rpm about an axis that is 15 cm from
the right arm and 5 cm from the left arm, the liquid levels in

18 cm

15cm

FIGURE P3-165
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both arms become the same, and the fluids meet at the axis
of rotation. Determine the density of the fluid in the left arm.

3-166 A 1-m-diameter, 2-m-high vertical cylinder is com-
pletely filled with gasoline whose density is 740 kg/m?. The
tank is now rotated about its vertical axis at a rate of 130 rpm,
while being accelerated upward at 5 m/s?. Determine (a) the
difference between the pressures at the centers of the bottom
and top surfaces and (b) the difference between the pressures
at the center and the edge of the bottom surface.

\F/__

FIGURE P3-166

3-167 A 5-m-long, 4-m-high tank contains 2.5-m-deep
water when not in motion and is open to the atmosphere
through a vent in the middle. The tank is now accelerated to
the right on a level surface at 2 m/s?. Determine the maxi-
mum pressure in the tank relative to the atmospheric pressure.
Answer: 29.5 kPa

Vent
1.5m
—_—
Water 2 m/s2
2.5m tank
5m

FIGURE P3-167

= software, investigate the effect of acceleration
on the slope of the free surface of water in the tank. Let the
acceleration vary from 0 m/s> to 15 m/s?> in increments of
1 m/s%. Tabulate and plot your results.
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3-169 A cylindrical container whose weight is 65 N is
inverted and pressed into the water, as shown in Fig. P3—169.
Determine the differential height /# of the manometer and the
force F needed to hold the container at the position shown.

:|:
h
) Manometer fluid
Air SG=2.1
D=25cm
v
l 20 cm Water

FIGURE P3-169

3-170 The average density of icebergs is about 917 kg/m?.
(a) Determine the percentage of the total volume of an iceberg
submerged in seawater of density 1042 kg/m?. (b) Although
icebergs are mostly submerged, they are observed to turn
over. Explain how this can happen. (Hint: Consider the tem-
peratures of icebergs and seawater.)

3-171 The density of a floating body can be determined by
tying weights to the body until both the body and the weights
are completely submerged, and then weighing them sepa-
rately in air. Consider a wood log that weighs 1540 N in air.
If it takes 34 kg of lead (p = 11,300 kg/m®) to completely
sink the log and the lead in water, determine the average den-
sity of the log.  Answer: 835 kg/m?

3-172 %@;g The 280-kg, 6-m-wide rectangular gate shown
in Fig. P3-172 is hinged at B and leans against
the floor at A making an angle of 45° with the horizontal.

<

-
0.5m

B
Water

45°

A

FIGURE P3-172

The gate is to be opened from its lower edge by applying a
normal force at its center. Determine the minimum force F
required to open the water gate. Answer: 626 kN

3-173 Repeat Prob. 3-172 for a water height of 0.8 m
above the hinge at B.

Fundamentals of Engineering (FE) Exam Problems

3-174 The absolute pressure in a tank is measured to be
35 kPa. If the atmospheric pressure is 100 kPa, the vacuum
pressure in the tank is

(a) 35kPa (b) 100 kPa (c) 135 psi

(d)0kPa (e) 65 kPa

3-175 The pressure difference between the top and bottom
of a water body with a depth of 10 m is (Take the density of
water to be 1000 kg/m?.)

(a) 98,100 kPa (D) 98.1 kPa (c) 100 kPa

(d) 10 kPa (e) 1.9 kPa

3-176 The gage pressure in a pipe is measured by a
manometer containing mercury (p = 13,600 kg/m?). The top
of the mercury is open to the atmosphere and the atmospheric
pressure is 100 kPa. If the mercury column height is 24 cm,
the gage pressure in the pipe is

(a) 32 kPa (b) 24 kPa (c) 76 kPa

(d) 124 kPa (e) 68 kPa

3-177 Consider a hydraulic car jack with a piston diam-
eter ratio of 9. A person can lift a 2000-kg car by applying
a force of

(@) 2000 N (b) 200 N (c) 19,620 N

(d)19.6 N (e) 18,000 N

3-178 The atmospheric pressure in a location is measured
by a mercury (p = 13,600 kg/m?) barometer. If the height of
the mercury column is 715 mm, the atmospheric pressure at
that location is

(a) 85.6 kPa (b) 93.7kPa (c) 95.4 kPa

(d) 100 kPa (e) 101 kPa

3-179 A manometer is used to measure the pressure of a
gas in a tank. The manometer fluid is water (p = 1000 kg/m?)
and the manometer column height is 1.8 m. If the local atmo-
spheric pressure is 100 kPa, the absolute pressure within the
tank is

(a) 17,760 kPa (b) 100 kPa (c) 180 kPa

(d) 101 kPa (e) 118 kPa

3-180 Consider the vertical rectangular wall of a water tank
with a width of 5 m and a height of 8 m. The other side of
the wall is open to the atmosphere. The resultant hydrostatic
force on this wall is

(a) 1570 KN (b) 2380 kN  (c) 2505 kKN

(d) 1410 kKN (e) 404 kKN



3-181 A vertical rectangular wall with a width of 20 m
and a height of 12 m is holding a 7-m-deep water body. The
resultant hydrostatic force acting on this wall is

(a) 1370 kKN (b) 4807 kN  (c) 8240 kN

(d) 9740 kKN (e) 11,670 kN

3-182 A vertical rectangular wall with a width of 20 m and
a height of 12 m is holding a 7-m-deep water body. The line
of action y, for the resultant hydrostatic force on this wall is
(disregard the atmospheric pressure)

(@5m ()40m (c)4.67m (d)9.67m (e)2.33m

3-183 A rectangular plate with a width of 16 m and a
height of 12 m is located 4 m below a water surface. The
plate is tilted and makes a 35° angle with the horizontal. The
resultant hydrostatic force acting on the top surface of this
plate is

(a) 10,800 kN  (b) 9745 kN
(d) 6400 kN  (e) 5190 kN

3-184 A 2-m-long and 3-m-wide horizontal rectangular
plate is submerged in water. The distance of the top surface
from the free surface is 5 m. The atmospheric pressure is
95 kPa. Considering atmospheric pressure, the hydrostatic
force acting on the top surface of this plate is

(a) 307 kN  (b) 688 kN (c) 747 kN

(d) 864 kKN (e) 2950 kN

3-185 A 1.8-m-diameter and 3.6-m-long cylindrical con-
tainer contains a fluid with a specific gravity of 0.73. The
container is positioned vertically and is full of the fluid.
Disregarding atmospheric pressure, the hydrostatic force
acting on the top and bottom surfaces of this container,
respectively, are

(a) OkN, 65.6 kN (b) 65.6 kN, 0 kN (c¢) 65.6 kN, 65.6 kN
(d) 25.5kN, O kN (e) 0 kN, 25.5 kN

3-186 Consider a 6-m-diameter spherical gate holding a
body of water whose height is equal to the diameter of the
gate. Atmospheric pressure acts on both sides of the gate. The
horizontal component of the hydrostatic force acting on this
curved surface is

(a) 709 kN  (b) 832 kN (c) 848 kN

(d) 972 kN (e) 1124 kN

3-187 Consider a 6-m-diameter spherical gate holding a
body of water whose height is equal to the diameter of the
gate. Atmospheric pressure acts on both sides of the gate.
The vertical component of the hydrostatic force acting on this
curved surface is

(@) 89 kN (D) 270 kN (c) 327 kN

(d) 416 kKN  (e) 505 kN

3-188 A 0.75-cm-diameter spherical object is completely
submerged in water. The buoyant force acting on this object is
(a) 13,000 N (b) 9835 N (c) 5460 N

(d)2167TN (e) 1267 N

(c) 8470 kN
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3-189 A 3-kg object with a density of 7500 kg/m? is placed
in water. The weight of this object in water is
(@) 294N (b)255N (¢)147N (d)30N ()3 N

3-190 A 7-m-diameter hot air balloon is neither rising nor
falling. The density of atmospheric air is 1.3 kg/m3. The total
mass of the balloon including the people on board is

(a)234kg (b)207kg (c) 180kg (d) 163kg (e) 134 kg

3-191 A 10-kg object with a density of 900 kg/m? is placed
in a fluid with a density of 1100 kg/m3. The fraction of the
volume of the object submerged in water is

(a) 0.637 (b) 0.716 (c) 0.818 (d)0.90 (e)1

3-192 Consider a cubical water tank with a side length of
3 m. The tank is half filled with water, and is open to the
atmosphere with a pressure of 100 kPa. Now, a truck carry-
ing this tank is accelerated at a rate of 5 m/s?. The maximum
pressure in the water is

(a) 115 kPa (b) 122 kPa (c) 129 kPa

(d) 137 kPa (e) 153 kPa

3-193 A 15-cm-diameter, 40-cm-high vertical cylindrical
container is partially filled with 25-cm-high water. Now the
cylinder is rotated at a constant speed of 20 rad/s. The maxi-
mum height difference between the edge and the center of the
free surface is

(@15cm (b)72cm (¢)54cm (d)9.5cm (e) 11 .5cm

3-194 A 20-cm-diameter, 40-cm-high vertical cylindrical
container is partially filled with 25-cm-high water. Now the
cylinder is rotated at a constant speed of 15 rad/s. The height
of water at the center of the cylinder is

(@)25cm (b)) 19.5cm  (¢) 22.7 cm

(d)17.7cm (e) 15 cm

3-195 A 15-cm-diameter, 50-cm-high vertical cylindrical
container is partially filled with 30-cm-high water. Now the
cylinder is rotated at a constant speed of 20 rad/s. The pres-
sure difference between the center and edge of the container
at the base surface is

(a) 7327 Pa  (b) 8750 Pa  (c) 9930 Pa

(d) 1045 Pa (e) 1125 Pa

Design and Essay Problems

3-196 Shoes are to be designed to enable people of up to
80 kg to walk on freshwater or seawater. The shoes are to be
made of blown plastic in the shape of a sphere, a (American)
football, or a loaf of French bread. Determine the equivalent
diameter of each shoe and comment on the proposed shapes
from the stability point of view. What is your assessment of
the marketability of these shoes?

3-197 The volume of a rock is to be determined without
using any volume measurement devices. Explain how you
would do this with a waterproof spring scale.
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3-198 The density of stainless steel is about 8000 kg/m? Added weights
(eight times denser than water), but a razor blade can float on
water, even with some added weights. The water is at 20°C.
The blade shown in the photograph is 4.3 cm long and
2.2 cm wide. For simplicity, the center cut-out area of the
razor blade has been taped so that only the outer edges of
the blade contribute to surface tension effects. Because the
razor blade has sharp corners, the contact angle is not rele-
vant. Rather, the limiting case is when the water contacts the
blade vertically as sketched (effective contact angle along
the edge of the blade is 180"). (a) Considering surface ten-
sion alone, estimate (in grams) how much total mass (razor
blade + weights placed on top of it) can be supported.
(b) Refine your analysis by considering that the razor blade
pushes the water down, and thus hydrostatic pressure effects
are also present. Hint: You will also need to know that due
to the curvature of the meniscus, the maximum possible
20

s

pg’

depth is h =

FIGURE P3-198
(Bottom) Photo by John M. Cimbala.



FLUID KINEMATICS

luid kinematics deals with describing the motion of fluids without nec-

essarily considering the forces and moments that cause the motion. In

this chapter, we introduce several kinematic concepts related to flow-
ing fluids. We discuss the material derivative and its role in transforming
the conservation equations from the Lagrangian description of fluid flow
(following a fluid particle) to the Eulerian description of fluid flow (per-
taining to a flow field). We then discuss various ways to visualize flow
fields—streamlines, streaklines, pathlines, timelines, optical methods schlie-
ren and shadowgraph, and surface methods; and we describe three ways to
plot flow data—profile plots, vector plots, and contour plots. We explain the
four fundamental kinematic properties of fluid motion and deformation—
rate of translation, rate of rotation, linear strain rate, and shear strain rate.
The concepts of vorticity, rotationality, and irrotationality in fluid flows are
then discussed. Finally, we discuss the Reynolds transport theorem (RTT),
emphasizing its role in transforming the equations of motion from those fol-
lowing a system to those pertaining to fluid flow into and out of a control
volume. The analogy between material derivative for infinitesimal fluid ele-
ments and RTT for finite control volumes is explained.

Satellite image of a hurricane near the Florida
coast; water droplets move with the air, enabling us
to visualize the counterclockwise swirling motion.
However, the major portion of the hurricane is
actually irrotational, while only the core (the eye
of the storm) is rotational.

© StockTrek/Getty RF

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

(] Understand the role of
the material derivative
in transforming between
Lagrangian and Eulerian
descriptions

[ ] Distinguish between various
types of flow visualizations
and methods of plotting the
characteristics of a fluid flow

(] Appreciate the many ways that
fluids move and deform

[ ] Distinguish between rotational
and irrotational regions of flow
based on the flow property
vorticity

[ Understand the usefulness of

the Reynolds transport theorem
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FIGURE 4-1

With a small number of objects,
such as billiard balls on a pool table,
individual objects can be tracked.

FIGURE 4-2

In the Lagrangian description, we
must keep track of the position and
velocity of individual particles.

4-1 = LAGRANGIAN AND EULERIAN DESCRIPTIONS

The subject called kinematics concerns the study of motion. In fluid dynam-
ics, fluid kinematics is the study of how fluids flow and how to describe fluid
motion. From a fundamental point of view, there are two distinct ways to
describe motion. The first and most familiar method is the one you learned
in high school physics—to follow the path of individual objects. For example,
we have all seen physics experiments in which a ball on a pool table or a
puck on an air hockey table collides with another ball or puck or with the wall
(Fig. 4-1). Newton’s laws are used to describe the motion of such objects,
and we can accurately predict where they go and how momentum and kinetic
energy are exchanged from one object to another. The kinematics of such
expenments involves keeping track of the position vector of each object, x 4>
x g - - - » and the velocity vector of each object, Vm VB, ..., as functions of
time (Flg 4-2). When this method is applied to a ﬂowmg ﬂuid, we call it
the Lagrangian description of fluid motion after the Italian mathematician
Joseph Louis Lagrange (1736—-1813). Lagrangian analysis is analogous to the
(closed) system analysis that you learned in thermodynamics; namely, we fol-
low a mass of fixed identity. The Lagrangian description requires us to track
the position and velocity of each individual fluid parcel, which we refer to as a
fluid particle, and take to be a parcel of fixed identity.

As you can imagine, this method of describing motion is much more dif-
ficult for fluids than for billiard balls! First of all we cannot easily define
and identify fluid particles as they move around. Secondly, a fluid is a
continuum (from a macroscopic point of view), so interactions between
fluid particles are not as easy to describe as are interactions between distinct
objects like billiard balls or air hockey pucks. Furthermore, the fluid par-
ticles continually deform as they move in the flow.

From a microscopic point of view, a fluid is composed of billions of
molecules that are continuously banging into one another, somewhat like
billiard balls; but the task of following even a subset of these molecules
is quite difficult, even for our fastest and largest computers. Nevertheless,
there are many practical applications of the Lagrangian description, such as
the tracking of passive scalars in a flow to model contaminant transport, rar-
efied gas dynamics calculations concerning reentry of a spaceship into the
earth’s atmosphere, and the development of flow visualization and measure-
ment systems based on particle tracking (as discussed in Section 4-2).

A more common method of describing fluid flow is the Eulerian descrip-
tion of fluid motion, named after the Swiss mathematician Leonhard Euler
(1707-1783). In the Eulerian description of fluid flow, a finite volume
called a flow domain or control volume is defined, through which fluid
flows in and out. Instead of tracking individual fluid particles, we define
field variables, functions of space and time, within the control volume.
The field variable at a particular location at a particular time is the value of
the variable for whichever fluid particle happens to occupy that location at
that time. For example, the pressure field is a scalar field variable; for gen-
eral unsteady three-dimensional fluid flow in Cartesian coordinates,

Pressure field: P = P(x,y,2,1) (4-1)

We define the velocity field as a vector field variable in similar fashion,

Velocity field: V=Vxyz? (4-2)



Likewise, the acceleration field is also a vector field variable,
Acceleration field: a=d(x,y,z1) (4-3)

Collectively, these (and other) field variables define the flow field. The veloc-
ity field of Eq. 4-2 is expanded in Cartesian coordinates (x, y, z), (i, j, k) as

V = (u, v, w) = u(x,y, z, t)? + v(x, y, 2, t)7' + wx, y, z, t)z (4-4)

A similar expansion can be performed for the acceleration field of Eq. 4-3. In the
Eulerian description, all such field variables are defined at any location (x, y, z)
in the control volume and at any instant in time ¢ (Fig. 4-3). In the Eulerian
description we don’t really care what happens to individual fluid particles; rather
we are concerned with the pressure, velocity, acceleration, etc., of whichever
fluid particle happens to be at the location of interest at the time of interest.

The difference between these two descriptions is made clearer by imagining
a person standing beside a river, measuring its properties. In the Lagrangian
approach, he throws in a probe that moves downstream with the water. In the
Eulerian approach, he anchors the probe at a fixed location in the water.

While there are many occasions in which the Lagrangian description is use-
ful, the Eulerian description is often more convenient for fluid mechanics appli-
cations. Furthermore, experimental measurements are generally more suited to
the Eulerian description. In a wind tunnel, for example, velocity or pressure
probes are usually placed at a fixed location in the flow, measuring V (x, y, z, 1)
or P(x, y, z, t). However, whereas the equations of motion in the Lagrangian
description following individual fluid particles are well known (e.g., Newton’s
second law), the equations of motion of fluid flow are not so readily apparent
in the Eulerian description and must be carefully derived. We do this for control
volume (integral) analysis via the Reynolds transport theorem at the end of this
chapter. We derive the differential equations of motion in Chap. 9.

|
m EXAMPLE 4-1 A Steady Two-Dimensional Velocity Field

[
m A steady, incompressible, two-dimensional velocity field is given by
m V=wv)=(05+08x)i + (1.5 —0.8y)j (1)
where the x- and y-coordinates are in meters and the magnitude of velocity is in
m/s. A stagnation point is defined as a point in the flow field where the velocity
is zero. (a) Determine if there are any stagnation points in this flow field and, if
so, where? (b) Sketch velocity vectors at several locations in the domain between
x=—-2mto2 mand y=0mto 5 m; qualitatively describe the flow field.

SOLUTION For the given velocity field, the location(s) of stagnation point(s)
are to be determined. Several velocity vectors are to be sketched and the
velocity field is to be described.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no zcomponent of velocity and no variation of v or v
with z

Analysis _ga) Since V is a vector, all its components must equal zero in
order for V itself to be zero. Using Eq. 4-4 and setting Eq. 1 equal to zero,

u=05+08r=0 — x=-0625m
v=15-08y=0 — y=1875m

Yes. There is one stagnation point located at x = —0.625 m, y = 1.875 m.

Stagnation point:

135
CHAPTER 4

Control volume

FIGURE 4-3

(a) In the Eulerian description, we
define field variables, such as the
pressure field and the velocity field,

at any location and instant in time.

(b) For example, the air speed probe
mounted under the wing of an airplane
measures the air speed at that location.
(Bottom) Photo by John M. Cimbala.
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Velocity vectors (blue arrows) for
the velocity field of Example 4-1.
The scale is shown by the top arrow,
and the solid black curves represent
the approximate shapes of some
streamlines, based on the calculated
velocity vectors. The stagnation point
is indicated by the blue circle. The
shaded region represents a portion of
the flow field that can approximate
flow into an inlet (Fig. 4-5).

Region in which the
velocity field is modeled

Streamlines

FIGURE 4-5

Flow field near the bell mouth inlet of
a hydroelectric dam; a portion of the
velocity field of Example 4-1 may be
used as a first-order approximation of
this physical flow field. The shaded
region corresponds to that of Fig. 4-4.

(b) The x- and y-components of velocity are calculated from Eq. 1 for several
(x, ) locations in the specified range. For example, at the point (x = 2 m,
y=3m), u= 2.10m/s and v = —0.900 m/s. The magnitude of velocity
(the speed) at that point is 2.28 m/s. At this and at an array of other loca-
tions, the velocity vector is constructed from its two components, the results
of which are shown in Fig. 4-4. The flow can be described as stagnation
point flow in which flow enters from the top and bottom and spreads out to
the right and left about a horizontal line of symmetry at y = 1.875 m. The
stagnation point of part (a) is indicated by the blue circle in Fig. 4-4.

If we look only at the shaded portion of Fig. 4-4, this flow field models a
converging, accelerating flow from the left to the right. Such a flow might be
encountered, for example, near the submerged bell mouth inlet of a hydro-
electric dam (Fig. 4-5). The useful portion of the given velocity field may be
thought of as a first-order approximation of the shaded portion of the physi-
cal flow field of Fig. 4-5.

Discussion 1t can be verified from the material in Chap. 9 that this flow
field is physically valid because it satisfies the differential equation for
conservation of mass.

Acceleration Field

As you should recall from your study of thermodynamics, the fundamen-
tal conservation laws (such as conservation of mass and the first law of
thermodynamics) are expressed for a system of fixed identity (also called
a closed system). In cases where analysis of a control volume (also called
an open system) is more convenient than system analysis, it is necessary to
rewrite these fundamental laws into forms applicable to the control volume.
The same principle applies here. In fact, there is a direct analogy between
systems versus control volumes in thermodynamics and Lagrangian versus
Eulerian descriptions in fluid dynamics. The equations of motion for fluid
flow (such as Newton’s second law) are written for a fluid particle, which
we also call a material particle. If we were to follow a particular fluid par-
ticle as it moves around in the flow, we would be employing the Lagrangian
description, and the equations of motion would be directly applicable.
For example, we would define the particle’s location in space in terms of
a material position vector (x,,icie(1): Yparicle(®): Zparicie(r)). However, some
mathematical manipulation is then necessary to convert the equations of
motion into forms applicable to the Eulerian description.

Consider, for example, Newton’s second law applied to our fluid particle,

—
—

=m particleapanicle

Newton’s second law: (4-5)

particle

where fpam»cle is the net force acting on the fluid particle, m,,;. 1s its mass,
and @, 18 its acceleration (Fig. 4-6). By definition, the acceleration of
the fluid particle is the time derivative of the particle’s velocity,

particle

dv
Acceleration of a fluid particle: a = (4-6)

particle dt

However, at any instant in time 7, the velocity of the particle is the same
as the local value of the velocity field at the location (X, icie(f)s Yparticte(1)

Zpariicle()) Of the particle, since the fluid particle moves with the fluid by



definition. In other WOl’dS Vparllcle(t) ( pamcle([) ypamcle([) Zpamcle([) t)
To take the time derivative in Eq. 4-6, we must therefore use the chain rule,
since the dependent variable (V) is a function of four independent variables

(xparlicle’ y particle> Zparlicle’ and t)’

—
—
deamcle dv dV(xpanicle’ ypanicle’ Zparlicle’ t)

q = pde AV
particle dt dt dt
ﬂﬂ n )% dxparticle T vV dyparticle + )% dzpanicle
ar dt ox particle dr 8y particle dt aZparticle dr

In Eq. 4-7, 9 is the partial derivative operator and d is the total derivative
operator. Consider the second term on the right-hand side of Eq. 4-7. Since
the acceleration is defined as that following a fluid particle (Lagrangian
description), the rate of change of the particle’s x-position with respect to
time is dx,, o /dt = u (Fig. 4-7), where u is the x-component of the veloc-
ity vector defined by Eq. 4-4. Similarly, dy,,q/df = v and dz,,q/dt = w.
Furthermore, at any instant in time under consideration, the material position
VeCtor (X, icles Yparticles Zpariicle) OF the fluid particle in the Lagrangian frame is
equal to the position vector (x, y, z) in the Eulerian frame. Equation 47 thus
becomes

. _dV_aV+ 67+ aV+ oV

aParticle(x7y’Zst) T a u ox v ay w a9z (4-8)

where we have also used the (obvious) fact that dt/dt = 1. Finally, at any
instant in time ¢, the acceleration field of Eq. 4-3 must equal the accelera-
tion of the fluid particle that happens to occupy the location (x, y, z) at that
time z. Why? Because the fluid particle is by definition accelerating with the
fluid flow. Hence, we may replace d . With a(x, y, z, t) in Egs. 4-7 and
4-8 to transform from the Lagrangian to the Eulerian frame of reference. In
vector form, Eq. 4-8 is written as

Acceleration of a fluid particle expressed as a field variable:

. v oV -
ax,y,z, ) = —=—+(V-V)V (4-9)
y dt ot

where V is the gradient operator or del operator, a vector operator that is
defined in Cartesian coordinates as

— dg a9 0 »8 - d
Gradient or del operator: V= (***) = +j—+ k — (4-10)
ax, dy, 0z ax ay
In Cartesian coordinates then, the components of the acceleration vector are
ou ou ou Ju
a =—+u—+uv—+w—

Yot ax ay 9z
. . v v Jv v
Cartesian coordinates: a,= — +u_—+v_—+ w_— (4-11)
’ ot ax ay az
ow ow aw ow
a =—+u—+tv—+w—
N ot ax ay 9z

The first term on the right-hand side of Eq. 4-9, 0V/dr, is called the local
acceleration and is nonzero only for unsteady flows. The second term,
(V V)V is called the advective acceleration (sometimes the convective
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Fluid particle at time 7

Fluid particle at time ¢ + dt

N

V.

particle

N
=V

N
aparticle

mparlicle

(Xparticles Yparticles Zparticle) ﬁparlicle
FIGURE 4-6

Newton’s second law applied to a
fluid particle; the acceleration vector
(purple arrow) is in the same direction
as the force vector (green arrow), but
the velocity vector (blue arrow) may
act in a different direction.

(xparticlc + dxparliclc’ ypartic]c + dypartic]c)
-
Fluid particle
at time 7 + dt

dy, particle | dx.

particle

Fluid particle at time ¢

(xparlicle’ Y particle)

FIGURE 4-7

When following a fluid particle, the
x-component of velocity, u, is defined
as dxp, i /dt. Similarly, v = dy,, . /dt
and w = dz,;/dt. Movement is
shown here only in two dimensions
for simplicity.
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FIGURE 4-8

Flow of water through the nozzle of

a garden hose illustrates that fluid par-
ticles may accelerate, even in a steady
flow. In this example, the exit speed
of the water is much higher than the
water speed in the hose, implying that
fluid particles have accelerated even
though the flow is steady.

FIGURE 4-9

Flow of water through the nozzle of
Example 4-2.

acceleration); this term can be nonzero even for steady flows. It accounts
for the effect of the fluid particle moving (advecting or convecting) to a
new location in the flow, where the velocity field is different. For example,
consider steady flow of water through a garden hose nozzle (Fig. 4-8). We
define steady in the Eulerian frame of reference to be when properties at
any point in the flow field do not change with respect to time. Since the
velocity at the exit of the nozzle is larger than that at the nozzle entrance,
fluid particles clearly accelerate, even though the flow is steady. The accel-
eration is nonzero because of the advective acceleration terms in Eq. 4-9.
Note that while the flow is steady from the point of view of a fixed observer
in the Eulerian reference frame, it is not steady from the Lagrangian refer-
ence frame moving with a fluid particle that enters the nozzle and acceler-
ates as it passes through the nozzle.

EXAMPLE 4-2 Acceleration of a Fluid Particle through a Nozzle

[ |
[
Nadeen is washing her car, using a nozzle similar to the one sketched in :
Fig. 4-8. The nozzle is 3.90 in (0.325 ft) long, with an inlet diameter of m
0.420 in (0.0350 ft) and an outlet diameter of 0.182 in (see Fig. 4-9). B
The volume flow rate through the garden hose (and through the nozzle) is
vV = 0.841 gal/min (0.00187 ft3/s), and the flow is steady. Estimate the
magnitude of the acceleration of a fluid particle moving down the centerline
of the nozzle.

SOLUTION The acceleration following a fluid particle down the center of a
nozzle is to be estimated.

Assumptions 1 The flow is steady and incompressible. 2 The x-direction is
taken along the centerline of the nozzle. 3 By symmetry, v = w = O along
the centerline, but v increases through the nozzle.

Analysis The flow is steady, so you may be tempted to say tiat the accel-
eration is zero. However, even though the local acceleration GVLGQigidenti—
cally zero for this steady flow field, the advective acceleration (V-V)V is not
zero. We first calculate the average x-component of velocity at the inlet and
outlet of the nozzle by dividing volume flow rate by cross-sectional area:

Inlet speed:

V4V 4000187 fi')s)
(00350 ft)?

= = 195 fi/s
T D:

inlet

Uiper =
' Ainlet
Similarly, the average outlet speed is u, = 10.4 ft/s. We now calculate
the acceleration two ways, with equivalent results. First, a simple average
value of acceleration in the x-direction is calculated based on the change in
speed divided by an estimate of the residence time of a fluid particle in the
nozzle, At = Ax/u,,, (Fig. 4-10). By the fundamental definition of accelera-
tion as the rate of change of velocity,
Au Usuet — Uinter Ugutier — Uinlet _ ugutlet B uiznlet

Method A: =— = =
emno %= Ar Ax/uy, 2 Ax/(u

+ ) a 2 Ax

outlet

The second method uses the equation for acceleration field components in
Cartesian coordinates, Eq. 4-11,



u u u ad Au
Method B: a, = K/-i— u—_— + U;‘/ + W%Z/ = Uy
t ax y Z EAx

Steady v = 0 along centerline w = 0 along centerline

Here we see that only one advective term is nonzero. We approximate the
average speed through the nozzle as the average of the inlet and outlet
speeds, and we use a first-order finite difference approximation (Fig. 4-11) for
the average value of derivative du/dx through the centerline of the nozzle:

2 — 7
Y Ty Uouget Uinlet

a = outlet inlet Youtlet — Uinlet _

* 2 Ax 2 Ax

The result of method B is identical to that of method A. Substitution of the
given values yields

Axial acceleration:

2 2 2 — 2
. Uguier — Uintet _ (10.4 ft/s) (1.95 ft/s) — 160 fi/s?

Discussion Fluid particles are accelerated through the nozzle at nearly
five times the acceleration of gravity (almost five g's)! This simple example
clearly illustrates that the acceleration of a fluid particle can be nonzero,
even in steady flow. Note that the acceleration is actually a point function,
whereas we have estimated a simple average acceleration through the entire
nozzle.

Material Derivative

The total derivative operator d/dt in Eq. 4-9 is given a special name, the
material derivative; it is assigned a special notation, D/Dt, in order to
emphasize that it is formed by following a fluid particle as it moves through
the flow field (Fig. 4-12). Other names for the material derivative include
total, particle, Lagrangian, Eulerian, and substantial derivative.

— + (V-V) (4-12)

Material derivative: —=—=
Dt dt ot

When we apply the material derivative of Eq. 4-12 to the velocity field, the
result is the acceleration field as expressed by Eq. 4-9, which is thus some-
times called the material acceleration,

D—V—ﬂ/—ﬂ+ﬁ§’ﬂ7 4-13)
Dt dt ot

Material acceleration: ax,y,z, 1) =
Equation 4-12 can also be applied to other fluid properties besides velocity,
both scalars and vectors. For example, the material derivative of pressure is
written as

DP _ dP _ 9P

Material derivati : == TP @
aterial aerwvaitive Ofpressure Dt dt ot ( )
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Fluid particle
at time 7 + At

Fluid particle
at time ¢

Ax

FIGURE 4-10

Residence time At is defined as the
time it takes for a fluid particle to
travel through the nozzle from inlet
to outlet (distance Ax).

FIGURE 4-11

A first-order finite difference
approximation for derivative dg/dx
is simply the change in dependent
variable (g) divided by the change
in independent variable (x).

t+3dt

FIGURE 4-12

The material derivative D/Dt is
defined by following a fluid particle
as it moves throughout the flow field.
In this illustration, the fluid particle is
accelerating to the right as it moves
up and to the right.
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Equation 4-14 represents the time rate of change of pressure following a
fluid particle as it moves through the flow and contains both local (unsteady)
and advective components (Fig. 4-13).

]
EXAMPLE 4-3 Material Acceleration of a Steady Velocity Field m

[
Consider the steady, incompressible, two-dimensional velocity field of g
Example 4-1. (a) Calculate the material acceleration at the point (x = 2 m, m
y = 3 m). (b) Sketch the material acceleration vectors at the same array of ®

FIGURE 4-13

The material derivative D/Dt is com-
posed of a local or unsteady part and a
convective or advective part.
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FIGURE 4-14

Acceleration vectors (purple arrows)
for the velocity field of Examples 4—1
and 4-3. The scale is shown by the
top arrow, and the solid black curves
represent the approximate shapes

of some streamlines, based on the
calculated velocity vectors (see

Fig. 4-4). The stagnation point is
indicated by the red circle.

x- and y-values as in Example 4-1.

SOLUTION For the given velocity field, the material acceleration vector is
to be calculated at a particular point and plotted at an array of locations in
the flow field.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no z-component of velocity and no variation of u or v
with z

Analysis (a) Using the velocity field of Eq. 1 of Example 4-1 and the equa-
tion for material acceleration components in Cartesian coordinates (Eq. 4-11),
we write expressions for the two nonzero components of the acceleration
vector:

u u u u
L a4 4= w— + w—
ot ax ay 0z

= 0+ (0.5 + 0.8x)(0.8) + (1.5 — 0.8y)(0) + 0 = (0.4 + 0.64x) m/s?
and

w v v w
a,=— + u— + v— + w—
Yoot ax dy 9z

= 0+ (0.5 + 0.8x)(0) + (1.5 — 0.8y)(—0.8) + 0 = (—1.2 + 0.64y) m/s?

At the point (x =2 m, y = 3 m), a, = 1.68 m/s? and a, = 0.720 m/s2.

(b) The equations in part (a) are applied to an array of x- and y-values in the
flow domain within the given limits, and the acceleration vectors are plotted
in Fig. 4-14.

Discussion The acceleration field is nonzero, even though the flow is
steady. Above the stagnation point (above y = 1.875 m), the acceleration
vectors plotted in Fig. 4-14 point upward, increasing in magnitude away
from the stagnation point. To the right of the stagnation point (to the right of
x = —0.625 m), the acceleration vectors point to the right, again increasing
in magnitude away from the stagnation point. This agrees qualitatively with
the velocity vectors of Fig. 4-4 and the streamlines sketched in Fig. 4-14;
namely, in the upper-right portion of the flow field, fluid particles are accel-
erated in the upper-right direction and therefore veer in the counterclock-
wise direction due to centripetal acceleration toward the upper right. The flow
below y = 1.875 m is a mirror image of the flow above this symmetry line,
and the flow to the left of x = —0.625 m is a mirror image of the flow to
the right of this symmetry line.



4-2 = FLOW PATTERNS AND FLOW
VISUALIZATION

While quantitative study of fluid dynamics requires advanced mathematics,
much can be learned from flow visualization—the visual examination of
flow field features. Flow visualization is useful not only in physical experi-
ments (Fig. 4-15), but in numerical solutions as well [computational fluid
dynamics (CFD)]. In fact, the very first thing an engineer using CFD does
after obtaining a numerical solution is simulate some form of flow visu-
alization, so that he or she can see the “whole picture” rather than merely
a list of numbers and quantitative data. Why? Because the human mind is
designed to rapidly process an incredible amount of visual information;
as they say, a picture is worth a thousand words. There are many types of
flow patterns that can be visualized, both physically (experimentally) and/or
computationally.

Streamlines and Streamtubes

A streamline is a curve that is everywhere tangent to the instantaneous local
velocity vector.

Streamlines are useful as indicators of the instantaneous direction of fluid
motion throughout the flow field. For example, regions of recirculating
flow and separation of a fluid off of a solid wall are easily identified by the
streamline pattern. Streamlines cannot be directly observed experimentally
except in steady flow fields, in which they are coincident with pathlines and
streaklines, to be discussed next. Mathematically, however, we can write a
simple expression for a streamline based on its definition.

Consider an infinitesimal arc length d7 = dxi + dyj +ﬁdzl? along a

streamline; d7 must be parallel to the local velocity vector V=ui + vj + wk
by definition of the streamline. By simple geometric arguments using simi-
lar triangles, we know that the components of d7 must be proportional to
those of V (Fig. 4-16). Hence,
Equation for a streamline: —=—=——= (4-15)
where dr is the magnitude of d7 and V is the speed, the magnitude of veloc-
ity vector V. Equation 4-15 is illustrated in two dimensions for simplicity
in Fig. 4-16. For a known velocity field, we integrate Eq. 4-15 to obtain
equations for the streamlines. In two dimensions, (x, y), (i, v), the following
differential equation is obtained:

d
= =2 (4-16)

Streamline in the xy-plane: < )
dx along a streamline u

In some simple cases, Eq. 4-16 may be solvable analytically; in the general
case, it must be solved numerically. In either case, an arbitrary constant of
integration appears. Each chosen value of the constant represents a different
streamline. The family of curves that satisfy Eq. 4-16 therefore represents
streamlines of the flow field.
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FIGURE 4-15

Spinning baseball.

The late F. N. M. Brown devoted many
years to developing and using smoke
visualization in wind tunnels at the
University of Notre Dame. Here the
flow speed is about 77 ft/s and the ball
is rotated at 630 rpm.

Photograph courtesy of T. J. Mueller.

Point (x + dx, y +dy)  V

N

Streamline dr
dy v
dx u
y Point (x, y)
X
FIGURE 4-16

For two-dimensional flow in the xy-
plane, arc length d7 = (dx, dy) along
a streamline is everywhere tangent to

the local instantaneous velocity vector
V= (u,v).
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FIGURE 4-17

Streamlines (solid black curves) for
the velocity field of Example 4-4;
velocity vectors of Fig. 4—4 (blue
arrows) are superimposed for
comparison.

Streamlines

Streamtube

FIGURE 4-18
A streamtube consists of a bundle of
individual streamlines.

EXAMPLE 44 Streamlines in the xy-Plane—An Analytical
Solution

For the steady, incompressible, two-dimensional velocity field of Example 4-1,
plot several streamlines in the right half of the flow (x > 0) and compare to
the velocity vectors plotted in Fig. 4-4.

SOLUTION An analytical expression for streamlines is to be generated and
plotted in the upper-right quadrant.
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no z-component of velocity and no variation of v or v
with z.
Analysis Equation 4-16 is applicable here; thus, along a streamline,

dy v 1.5 — 0.8y

dc  u 05+ 08x
We solve this differential equation by separation of variables:
dy _ dx J dy _ J dx
1.5 =08y 0.5 + 0.8x 1.5 — 0.8y 0.5 + 0.8x

After some algebra, we solve for y as a function of x along a streamline,

_ C
0.8(0.5 + 0.8x)

where C is a constant of integration that can be set to various values in order
to plot the streamlines. Several streamlines of the given flow field are shown
in Fig. 4-17.

Discussion The velocity vectors of Fig. 4-4 are superimposed on the stream-
lines of Fig. 4-17; the agreement is excellent in the sense that the velocity
vectors point everywhere tangent to the streamlines. Note that speed cannot
be determined directly from the streamlines alone.

y + 1.875

A streamtube consists of a bundle of streamlines (Fig. 4-18), much like
a communications cable consists of a bundle of fiber-optic cables. Since
streamlines are everywhere parallel to the local velocity, fluid cannot cross
a streamline by definition. By extension, fluid within a streamtube must
remain there and cannot cross the boundary of the streamtube. You must
keep in mind that both streamlines and streamtubes are instantaneous quan-
tities, defined at a particular instant in time according to the velocity field
at that instant. In an unsteady flow, the streamline pattern may change sig-
nificantly with time. Nevertheless, at any instant in time, the mass flow rate
passing through any cross-sectional slice of a given streamtube must remain
the same. For example, in a converging portion of an incompressible flow
field, the diameter of the streamtube must decrease as the velocity increases
in order to conserve mass (Fig. 4-19a). Likewise, the streamtube diameter
increases in diverging portions of an incompressible flow (Fig. 4-19b).

Pathlines

A pathline is the actual path traveled by an individual fluid particle over some
time period.



(b)

Pathlines are the easiest of the flow patterns to understand. A pathline is a
Lagrangian concept in that we simply follow the path of an individual fluid
particle as it moves around in the flow field (Fig. 4-20). Thus, a pathline is
the same as the fluid particle’s material position vector (Xp,qicie(t), Ypariicie(®),
Zparticle(1)), discussed in Section 4-1, traced out over some finite time inter-
val. In a physical experiment, you can imagine a tracer fluid particle that is
marked somehow—either by color or brightness—such that it is easily dis-
tinguishable from surrounding fluid particles. Now imagine a camera with
the shutter open for a certain time period, ¢, < t < t,,4, in which the par-
ticle’s path is recorded; the resulting curve is called a pathline. An intrigu-
ing example is shown in Fig. 4-21 for the case of waves moving along the
surface of water in a tank. Neutrally buoyant white tracer particles are
suspended in the water, and a time-exposure photograph is taken for one
complete wave period. The result is pathlines that are elliptical in shape,
showing that fluid particles bob up and down and forward and backward,
but return to their original position upon completion of one wave period;
there is no net forward motion. You may have experienced something simi-
lar while bobbing up and down on ocean waves at the beach.

A modern experimental technique called particle image velocimetry
(PIV) utilizes short segments of particle pathlines to measure the velocity
field over an entire plane in a flow (Adrian, 1991). (Recent advances also
extend the technique to three dimensions.) In PIV, tiny tracer particles are
suspended in the fluid, much like in Fig. 4-21. However, the flow is illu-
minated by two flashes of light (usually a light sheet from a laser as in
Fig. 4-22) to produce two bright spots (recorded by a camera) for each mov-
ing particle. Then, both the magnitude and direction of the velocity vector
at each particle location can be inferred, assuming that the tracer particles
are small enough that they move with the fluid. Modern digital photography
and fast computers have enabled PIV to be performed rapidly enough so
that unsteady features of a flow field can also be measured. PIV is discussed
in more detail in Chap. 8.
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FIGURE 4-19

In an incompressible flow field, a
streamtube (a) decreases in diameter
as the flow accelerates or converges
and (b) increases in diameter as the
flow decelerates or diverges.

Fluid particle at =,

start

Pathline o
-
Chdinnt N *

4

Fluid particle at r = 1,4

Fluid particle at some
intermediate time

FIGURE 4-20

A pathline is formed by following the
actual path of a fluid particle.

FIGURE 4-21

Pathlines produced by white
tracer particles suspended in water
and captured by time-exposure
photography; as waves pass
horizontally, each particle moves
in an elliptical path during one
wave period.

Wallet, A. & Ruellan, F. 1950, La Houille
Blanche 5:483-489. Used by permission.
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Stereo PIV measurements of the wing
tip vortex in the wake of a NACA-66
airfoil at angle of attack. Color contours
denote the local vorticity, normalized by
the minimum value, as indicated in the
color map. Vectors denote fluid motion
in the plane of measurement. The black
line denotes the location of the upstream
wing trailling edge. Coordinates are
normalized by the airfoil chord, and the
origin is the wing root.

Photo by Michael H. Krane, ARL-Penn State.

l Dye or smoke

Injected fluid particle

Streakline

FIGURE 4-23

A streakline is formed by continuous
introduction of dye or smoke from

a point in the flow. Labeled tracer
particles (1 through 8) were introduced
sequentially.

Pathlines can also be calculated numerically for a known velocity field.
Specifically, the location of the tracer particle is integrated over time from

some starting location X, and starting time 7, to some later time 7.

t
Tracer particle location at time t: X=Xt J Vt (4-17)
1

start

When Eq. 4-17 is calculated for ¢ between f,, and t,,4, a plot of X(7) is
the pathline of the fluid particle during that time interval, as illustrated in
Fig. 4-20. For some simple flow fields, Eq. 4-17 can be integrated analyti-
cally. For more complex flows, we must perform a numerical integration.

If the velocity field is steady, individual fluid particles follow streamlines.
Thus, for steady flow, pathlines are identical to streamlines.

Streaklines

A streakline is the locus of fluid particles that have passed sequentially
through a prescribed point in the flow.

Streaklines are the most common flow pattern generated in a physical
experiment. If you insert a small tube into a flow and introduce a continu-
ous stream of tracer fluid (dye in a water flow or smoke in an airflow), the
observed pattern is a streakline. Figure 4-23 shows a tracer being injected
into a free-stream flow containing an object, such as a wing. The circles
represent individual injected tracer fluid particles, released at a uniform
time interval. As the particles are forced out of the way by the object, they
accelerate around the shoulder of the object, as indicated by the increased
distance between individual tracer particles in that region. The streakline is
formed by connecting all the circles into a smooth curve. In physical experi-
ments in a wind or water tunnel, the smoke or dye is injected continuously,
not as individual particles, and the resulting flow pattern is by definition
a streakline. In Fig. 4-23, tracer particle 1 was released at an earlier time
than tracer particle 2, and so on. The location of an individual tracer par-
ticle is determined by the surrounding velocity field from the moment of
its injection into the flow until the present time. If the flow is unsteady,
the surrounding velocity field changes, and we cannot expect the resulting
streakline to resemble a streamline or pathline at any given instant in time.
However, if the flow is steady, streamlines, pathlines, and streaklines are
identical (Fig. 4-24).

Streaklines are often confused with streamlines or pathlines. While the
three flow patterns are identical in steady flow, they can be quite differ-
ent in unsteady flow. The main difference is that a streamline represents
an instantaneous flow pattern at a given instant in time, while a streakline
and a pathline are flow patterns that have some age and thus a time history
associated with them. A streakline is an instantaneous snapshot of a time-
integrated flow pattern. A pathline, on the other hand, is the time-exposed
flow path of an individual particle over some time period.

The time-integrative property of streaklines is vividly illustrated in an
experiment by Cimbala et al. (1988), reproduced here as Fig. 4-25. The
authors used a smoke wire for flow visualization in a wind tunnel. In opera-
tion, the smoke wire is a thin vertical wire that is coated with mineral oil.
The oil breaks up into beads along the length of the wire due to surface



tension effects. When an electric current heats the wire, each little bead of
oil produces a streakline of smoke. In Fig. 4-25a, streaklines are introduced
from a smoke wire located just downstream of a circular cylinder of diameter
D aligned normal to the plane of view. (When multiple streaklines are intro-
duced along a line, as in Fig. 4-25, we refer to this as a rake of streaklines.)
The Reynolds number of the flow is Re = pVD/u = 93. Because of unsteady
vortices shed in an alternating pattern from the cylinder, the smoke collects
into a clearly defined periodic pattern called a Karman vortex street. A
similar pattern can be seen at much larger scale in the air flow in the wake of
an island (Fig. 4-26).

From Fig. 4-25a alone, you may think that the shed vortices continue to
exist to several hundred diameters downstream of the cylinder. However, the
streakline pattern of this figure is misleading! In Fig. 4-25b, the smoke wire
is placed 150 diameters downstream of the cylinder. The resulting streaklines
are straight, indicating that the shed vortices have in reality disappeared by
this downstream distance. The flow is steady and parallel at this location, and
there are no more vortices; viscous diffusion has caused adjacent vortices of
opposite sign to cancel each other out by around 100 cylinder diameters. The
patterns of Fig. 4-25a near x/D = 150 are merely remnants of the vortex
street that existed upstream. The streaklines of Fig. 4-25b, however, show
the correct features of the flow at that location. The streaklines generated
at x/D = 150 are identical to streamlines or pathlines in that region of the
flow—straight, nearly horizontal lines—since the flow is steady there.

For a known velocity field, a streakline can be generated numerically. We
need to follow the paths of a continuous stream of tracer particles from the
time of their injection into the flow until the present time, using Eq. 4-17.
Mathematically, the location of a tracer particle is integrated over time
from the time of its injection ;.. to the present time 7, Equation 4-17
becomes

Poresent
Integrated tracer particle location: X = Yinjecli(m + J Vdt (4-18)
1,

inject

Cylinder

(b)

Cylinder

FIGURE 4-25

Smoke streaklines introduced by a smoke wire at two different locations in the
wake of a circular cylinder: (a) smoke wire just downstream of the cylinder and
(b) smoke wire located at x/D = 150. The time-integrative nature of streaklines
is clearly seen by comparing the two photographs.

Photos by John M. Cimbala.
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FIGURE 4-24

Streaklines produced by colored fluid
introduced upstream; since the flow is
steady, these streaklines are the same
as streamlines and pathlines.

Courtesy ONERA. Photograph by Werlé.

FIGURE 4-26

Karman vortices visible in the clouds
in the wake of Alexander Selkirk
Island in the southern Pacific Ocean.

Photo from Landsat 7 WRS Path 6
Row 83, center: -33.18, -79.99,
9/15/1999, earthobservatory.nasa.gov.
Courtesy of NASA.
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In a complex unsteady flow, the time integration must be performed numeri-
cally as the velocity field changes with time. When the locus of tracer par-
ticle locations at t = 1., is connected by a smooth curve, the result is the
desired streakline.
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FIGURE 4-27

Streamlines, pathlines, and streaklines
for the oscillating velocity field of
Example 4-5. The streaklines and
pathlines are wavy because of their
integrated time history, but the
streamlines are not wavy since they
represent an instantaneous snapshot
of the velocity field.

Timeline at 7 =0

Timeline

atr=t,

. ./
Timeline at t =13

FIGURE 4-28

Timelines are formed by marking

a line of fluid particles, and then
watching that line move (and deform)
through the flow field; timelines are
shownatt = 0, 7, t,, and £;.

EXAMPLE 4-5 Comparison of Flow Patterns in an Unsteady Flow

An unsteady, incompressible, two-dimensional velocity field is given by
V=(u0v)= (05 + 0.8%)i + (1.5 + 2.5 sin(wr) — 0.8y)/ M

where the angular frequency w is equal to 27 rad/s (a physical frequency of
1 Hz). This velocity field is identical to that of Eq. 1 of Example 4-1 except
for the additional periodic term in the v-component of velocity. In fact, since
the period of oscillation is 1 s, when time t is any integral multiple of 1 s
(t=0,% 1,3, 2,...5), the sine term in Eqg. 1 is zero and the velocity field
is instantaneously identical to that of Example 4-1. Physically, we imagine
flow into a large bell mouth inlet that is oscillating up and down at a fre-
quency of 1 Hz. Consider two complete cycles of flow from t = 0 s to t =
2 s. Compare instantaneous streamlines at t = 2 s to pathlines and streak-
lines generated during the time period from t = O sto t = 2 s.

SOLUTION Streamlines, pathlines, and streaklines are to be generated and
compared for the given unsteady velocity field.

Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional,
implying no z-component of velocity and no variation of u or v with z.
Analysis The instantaneous streamlines at ¢ = 2 s are identical to those
of Fig. 4-17, and several of them are replotted in Fig. 4-27. To simulate
pathlines, we use the Runge—Kutta numerical integration technique to march
in time from t = 0 s to t = 2 s, tracing the path of fluid particles released
at three locations: (x = 0.5 m, y = 0.5 m), (x = 0.5 m, y = 2.5 m), and
(x = 0.5 m, y = 4.5 m). These pathlines are shown in Fig. 4-27, along
with the streamlines. Finally, streaklines are simulated by following the paths
of many fluid tracer particles released at the given three locations at times
between t = O s and t = 2 s, and connecting the locus of their positions at
t = 2 s. These streaklines are also plotted in Fig. 4-27.

Discussion Since the flow is unsteady, the streamlines, pathlines, and
streaklines are not coincident. In fact, they differ significantly from each
other. Note that the streaklines and pathlines are wavy due to the undulating
v-component of velocity. Two complete periods of oscillation have occurred
between t = O s and t = 2 s, as verified by a careful look at the pathlines
and streaklines. The streamlines have no such waviness since they have no
time history; they represent an instantaneous snapshot of the velocity field
att=2s.

Timelines

A timeline is a set of adjacent fluid particles that were marked at the same
(earlier) instant in time.

Timelines are particularly useful in situations where the uniformity of a
flow (or lack thereof) is to be examined. Figure 4-28 illustrates timelines in
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a channel flow between two parallel walls. Because of friction at the walls,
the fluid velocity there is zero (the no-slip condition), and the top and bot-
tom of the timeline are anchored at their starting locations. In regions of
the flow away from the walls, the marked fluid particles move at the local
fluid velocity, deforming the timeline. In the example of Fig. 4-28, the
speed near the center of the channel is fairly uniform, but small deviations
tend to amplify with time as the timeline stretches. Timelines can be gener-
ated experimentally in a water channel through use of a hydrogen bubble
wire. When a short burst of electric current is sent through the cathode wire,
electrolysis of the water occurs and tiny hydrogen gas bubbles form at the
wire. Since the bubbles are so small, their buoyancy is nearly negligible,
and the bubbles follow the water flow nicely (Fig. 4-29).

Refractive Flow Visualization Techniques

Another category of flow visualization is based on the refractive property
of light waves. As you recall from your study of physics, the speed of light
through one material may differ somewhat from that in another material,
or even in the same material if its density changes. As light travels through
one fluid into a fluid with a different index of refraction, the light rays bend
(they are refracted).

There are two primary flow visualization techniques that utilize the
fact that the index of refraction in air (or other gases) varies with density.
They are the shadowgraph technique and the schlieren technique
(Settles, 2001). Interferometry is a visualization technique that utilizes the
related phase change of light as it passes through air of varying densities
as the basis for flow visualization and is not discussed here (see Merzkirch,
1987). All these techniques are useful for flow visualization in flow fields
where density changes from one location in the flow to another, such as nat-
ural convection flows (temperature differences cause the density variations),
mixing flows (fluid species cause the density variations), and supersonic
flows (shock waves and expansion waves cause the density variations).

Unlike flow visualizations involving streaklines, pathlines, and timelines,
the shadowgraph and schlieren methods do not require injection of a visible

FIGURE 4-29

Timelines produced by a hydrogen
bubble wire are used to visualize the
boundary layer velocity profile shape
along a flat plate. Flow is from left to
right, and the hydrogen bubble wire is
located to the left of the field of view.
Bubbles near the wall reveal a flow
instability that leads to turbulence.

Bippes, H. 1972 Sitzungsber, Heidelb. Akad. Wiss.
Math. Naturwiss. KL, no. 3, 103—180; NASA
TM-75243, 1978.




148
FLUID KINEMATICS

FIGURE 4-30

Shadowgram of a 14.3 mm sphere in
free flight through air at Ma = 3.0.
A shock wave is clearly visible in the
shadow as a dark band that curves
around the sphere and is called a
bow wave (see Chap. 12).

A. C. Charters, Air Flow Branch, U.S. Army Bal-
listic Research Laboratory.

FIGURE 4-31

Schlieren image of natural convection
due to a barbeque grill.

G. S. Settles, Gas Dynamics Lab, Penn State Uni-
versity. Used by permission.

tracer (smoke or dye). Rather, density differences and the refractive property
of light provide the necessary means for visualizing regions of activity in the
flow field, allowing us to “see the invisible.” The image (a shadowgram)
produced by the shadowgraph method is formed when the refracted rays of
light rearrange the shadow cast onto a viewing screen or camera focal plane,
causing bright or dark patterns to appear in the shadow. The dark patterns
indicate the location where the refracted rays originate, while the bright pat-
terns mark where these rays end up, and can be misleading. As a result, the
dark regions are less distorted than the bright regions and are more useful in
the interpretation of the shadowgram. In the shadowgram of Fig. 4-30, for
example, we can be confident of the shape and position of the bow shock
wave (the dark band), but the refracted bright light has distorted the front of
the sphere’s shadow.

A shadowgram is not a true optical image; it is, after all, merely a shadow.
A schlieren image, however, involves lenses (or mirrors) and a knife edge or
other cutoff device to block the refracted light and is a true focused optical
image. Schlieren imaging is more complicated to set up than is shadowgraphy
(see Settles, 2001 for details) but has a number of advantages. For example, a
schlieren image does not suffer from optical distortion by the refracted light
rays. Schlieren imaging is also more sensitive to weak density gradients such
as those caused by natural convection (Fig. 4-31) or by gradual phenomena
like expansion fans in supersonic flow. Color schlieren imaging techniques
have also been developed. Finally, one can adjust more components in a
schlieren setup, such as the location, orientation, and type of the cutoff device,
in order to produce an image that is most useful for the problem at hand.

Surface Flow Visualization Techniques

Finally, we briefly mention some flow visualization techniques that are useful
along solid surfaces. The direction of fluid flow immediately above a solid
surface can be visualized with tufts—short, flexible strings glued to the sur-
face at one end that point in the flow direction. Tufts are especially useful for
locating regions of flow separation, where the flow direction reverses.

A technique called surface oil visualization can be used for the same
purpose—oil placed on the surface forms streaks called friction lines that
indicate the direction of flow. If it rains lightly when your car is dirty (espe-
cially in the winter when salt is on the roads), you may have noticed streaks
along the hood and sides of the car, or even on the windshield. This is simi-
lar to what is observed with surface oil visualization.

Lastly, there are pressure-sensitive and temperature-sensitive paints that
enable researchers to observe the pressure or temperature distribution along
solid surfaces.

4-3 = PLOTS OF FLUID FLOW DATA

Regardless of how the results are obtained (analytically, experimentally,
or computationally), it is usually necessary to plot flow data in ways that
enable the reader to get a feel for how the flow properties vary in time
and/or space. You are already familiar with time plots, which are especially
useful in turbulent flows (e.g., a velocity component plotted as a function



of time), and xy-plots (e.g., pressure as a function of radius). In this sec-
tion, we discuss three additional types of plots that are useful in fluid
mechanics—profile plots, vector plots, and contour plots.

Profile Plots

A profile plot indicates how the value of a scalar property varies along some
desired direction in the flow field.

Profile plots are the simplest of the three to understand because they are like
the common xy-plots that you have generated since grade school. Namely,
you plot how one variable y varies as a function of a second variable x. In
fluid mechanics, profile plots of any scalar variable (pressure, temperature,
density, etc.) can be created, but the most common one used in this book is
the velocity profile plot. We note that since velocity is a vector quantity, we
usually plot either the magnitude of velocity or one of the components of
the velocity vector as a function of distance in some desired direction.

For example, one of the timelines in the boundary layer flow of Fig. 4-29
is converted into a velocity profile plot by recognizing that at a given instant
in time, the horizontal distance traveled by a hydrogen bubble at vertical
location y is proportional to the local x-component of velocity u. We plot
u as a function of y in Fig. 4-32. The values of u for the plot can also
be obtained analytically (see Chaps. 9 and 10), experimentally using PIV
or some kind of local velocity measurement device (see Chap. 8), or com-
putationally (see Chap. 15). Note that it is more physically meaningful in
this example to plot u on the abscissa (horizontal axis) rather than on the
ordinate (vertical axis) even though it is the dependent variable, since posi-
tion y is then in its proper orientation (up) rather than across.

Finally, it is common to add arrows to velocity profile plots to make them
more visually appealing, although no additional information is provided by
the arrows. If more than one component of velocity is plotted by the arrow,
the direction of the local velocity vector is indicated and the velocity profile
plot becomes a velocity vector plot.

Vector Plots

A vector plot is an array of arrows indicating the magnitude and direction of a
vector property at an instant in time.

While streamlines indicate the direction of the instantaneous velocity field,
they do not directly indicate the magnitude of the velocity (i.e., the speed).
A useful flow pattern for both experimental and computational fluid flows
is thus the vector plot, which consists of an array of arrows that indicate
both magnitude and direction of an instantaneous vector property. We have
already seen an example of a velocity vector plot in Fig. 44 and an accel-
eration vector plot in Fig. 4-14. These were generated analytically. Vector
plots can also be generated from experimentally obtained data (e.g., from
PIV measurements) or numerically from CFD calculations.

To further illustrate vector plots, we generate a two-dimensional flow
field consisting of free-stream flow impinging on a block of rectangular
cross section. We perform CFD calculations, and the results are shown in
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FIGURE 4-32

Profile plots of the horizontal com-
ponent of velocity as a function of
vertical distance; flow in the boundary
layer growing along a horizontal flat
plate: (a) standard profile plot and

(b) profile plot with arrows.
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FIGURE 4-33

Results of CFD calculations of flow
impinging on a block; (a) streamlines,
(b) velocity vector plot of the upper
half of the flow, and (¢) velocity vector
plot, close-up view revealing more
details in the separated flow region.

Fig. 4-33. Note that this flow is by nature turbulent and unsteady, but only
the long-time averaged results are calculated and displayed here. Stream-
lines are plotted in Fig. 4-33a; a view of the entire block and a large portion
of its wake is shown. The closed streamlines above and below the symmetry
plane indicate large recirculating eddies, one above and one below the line
of symmetry. A velocity vector plot is shown in Fig. 4-33b. (Only the upper
half of the flow is shown because of symmetry.) It is clear from this plot
that the flow accelerates around the upstream corner of the block, so much
so in fact that the boundary layer cannot negotiate the sharp corner and sep-
arates off the block, producing the large recirculating eddies downstream of
the block. (Note that these velocity vectors are time-averaged values; the
instantaneous vectors change in both magnitude and direction with time as
vortices are shed from the body, similar to those of Fig. 4-25a.) A close-up
view of the separated flow region is plotted in Fig. 4-33¢, where we verify
the reverse flow in the lower half of the large recirculating eddy.

The vectors of Fig. 4-33 are colored by velocity magnitude, but with
modern CFD codes and postprocessors, the vectors can be colored accord-
ing to some other flow property such as pressure (red for high pressure and
blue for low pressure) or temperature (red for hot and blue for cold). In this
manner, one can easily visualize not only the magnitude and direction of the
flow, but other properties as well, simultaneously.

Contour Plots

A contour plot shows curves of constant values of a scalar property (or magni-
tude of a vector property) at an instant in time.

If you do any hiking, you are familiar with contour maps of mountain
trails. The maps consist of a series of closed curves, each indicating a con-
stant elevation or altitude. Near the center of a group of such curves is the
mountain peak or valley; the actual peak or valley is a point on the map
showing the highest or lowest elevation. Such maps are useful in that not
only do you get a bird’s-eye view of the streams and trails, etc., but you
can also easily see your elevation and where the trail is flat or steep. In
fluid mechanics, the same principle is applied to various scalar flow proper-
ties; contour plots (also called isocontour plots) are generated of pressure,
temperature, velocity magnitude, species concentration, properties of turbu-
lence, etc. A contour plot can quickly reveal regions of high (or low) values
of the flow property being studied.

A contour plot may consist simply of curves indicating various levels of the
property; this is called a contour line plot. Alternatively, the contours can be
filled in with either colors or shades of gray; this is called a filled contour
plot. An example of pressure contours is shown in Fig. 4-34 for the same
flow as in Fig. 4-33. In Fig. 4-34a, filled contours are shown using color to
identify regions of different pressure levels—blue regions indicate low pres-
sure and red regions indicate high pressure. It is clear from this figure that the
pressure is highest at the front face of the block and lowest along the top of
the block in the separated zone. The pressure is also low in the wake of the
block, as expected. In Fig. 4-34b, the same pressure contours are shown, but
as a contour line plot with labeled levels of gage pressure in units of pascal.



In CFD, contour plots are often displayed in vivid colors with red usu-
ally indicating the highest value of the scalar and blue the lowest. A healthy
human eye can easily spot a red or blue region and thus locate regions
of high or low value of the flow property. Because of the pretty pictures
produced by CFD, computational fluid dynamics is sometimes given the
nickname “colorful fluid dynamics.”

4-4 = OTHER KINEMATIC DESCRIPTIONS
Types of Motion or Deformation of Fluid Elements

In fluid mechanics, as in solid mechanics, an element may undergo four
fundamental types of motion or deformation, as illustrated in two dimen-
sions in Fig. 4-35: (a) translation, (b) rotation, (c) linear strain (some-
times called extensional strain), and (d) shear strain. The study of fluid
dynamics is further complicated by the fact that all four types of motion or
deformation usually occur simultaneously. Because fluid elements may be
in constant motion, it is preferable in fluid dynamics to describe the motion
and deformation of fluid elements in terms of rates. In particular, we dis-
cuss velocity (rate of translation), angular velocity (rate of rotation), linear
strain rate (rate of linear strain), and shear strain rate (rate of shear strain).
In order for these deformation rates to be useful in the calculation of fluid
flows, we must express them in terms of velocity and derivatives of velocity.

Translation and rotation are easily understood since they are commonly
observed in the motion of solid particles such as billiard balls (Fig. 4-1). A
vector is required in order to fully describe the rate of translation in three
dimensions. The rate of translation vector is described mathematically as
the velocity vector. In Cartesian coordinates,

Rate of translation vector in Cartesian coordinates:

V=ui +vj+wk (4-19)
In Fig. 4-35a, the fluid element has moved in the positive horizontal (x)
direction; thus u is positive, while v (and w) are zero.

Rate of rotation (angular velocity) at a point is defined as the average
rotation rate of two initially perpendicular lines that intersect at that point.
In Fig. 4-35b, for example, consider the point at the bottom-left corner
of the initially square fluid element. The left edge and the bottom edge of
the element intersect at that point and are initially perpendicular. Both of
these lines rotate counterclockwise, which is the mathematically positive
direction. The angle between these two lines (or between any two initially
perpendicular lines on this fluid element) remains at 90° since solid body
rotation is illustrated in the figure. Therefore, both lines rotate at the same
rate, and the rate of rotation in the plane is simply the component of angular
velocity in that plane.

In the more general, but still two-dimensional case (Fig. 4-36), the fluid
particle translates and deforms as it rotates, and the rate of rotation is cal-
culated according to the definition given in the previous paragraph. Namely,
we begin at time #; with two initially perpendicular lines (lines a and b in
Fig. 4-36) that intersect at point P in the xy-plane. We follow these lines
as they move and rotate in an infinitesimal increment of time dt = t, — t,.
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Symmetry plane
(a)

Symmetry plane
(b)

FIGURE 4-34

Contour plots of the pressure field
due to flow impinging on a block,
as produced by CFD calculations;
only the upper half is shown due to
symmetry; (a) filled color contour
plot and (b) contour line plot where
pressure values are displayed in
units of Pa (pascals) gage pressure.
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Fundamental types of fluid element
motion or deformation: (a) translation,
(b) rotation, (¢) linear strain, and

(d) shear strain.
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FIGURE 4-36

For a fluid element that translates
and deforms as sketched, the rate of
rotation at point P is defined as the
average rotation rate of two initially
perpendicular lines (lines a and b).

At time f,, line a has rotated by angle «,, and line b has rotated by angle
o, and both lines have moved with the flow as sketched (both angle values
are given in radians and are shown mathematically positive in the sketch).
The average rotation angle is thus («a, + «,)/2, and the rate of rotation or
angular velocity in the xy-plane is equal to the time derivative of this aver-
age rotation angle,

Rate of rotation of fluid element about point P in Fig. 4-36:

d(a,+a 1 (av au)
w=—|"——)=2(—-— (4-20)
dt 2 2 \dx  dy

It is left as an exercise to prove the right side of Eq. 4-20 where we have writ-
ten w in terms of velocity components u and v in place of angles «, and o,

In three dimensions, we must define a vector for the rate of rotation at a
point in the flow since its magnitude may differ in each of the three dimen-
sions. Derivation of the rate of rotation vector in three dimensions can be
found in many fluid mechanics books such as Kundu and Cohen (2011) and
White (2005). The rate of rotation vector is equal to the angular velocity
vector and is expressed in Cartesian coordinates as

Rate of rotation vector in Cartesian coordinates:

- 1 (aw 80)7 1 ((m 8W)7 1 (81/ Em)a
o=—\——-—)i+t=|— - —|j+={— — — |k (4-21)
2\ dy 0z 2 \dz ax 2 \ox ay
Linear strain rate is defined as the rate of increase in length per unit
length. Mathematically, the linear strain rate of a fluid element depends
on the initial orientation or direction of the line segment upon which we
measure the linear strain. Thus, it cannot be expressed as a scalar or vector
quantity. Instead, we define linear strain rate in some arbitrary direction,
which we denote as the x,-direction. For example, line segment PQ in
Fig. 4-37 has an initial length of dx,, and it grows to line segment P'Q’
as shown. From the given definition and using the lengths marked in
Fig. 4-37, the linear strain rate in the x_-direction is

d (P'Q’ - PQ)
s Ll ¥

aa:dt

PQ
Length of P'Q’ in the x ,-direction Length of PQ in the x,-direction
(4-22)
( Yo e >d d d d
u, + — t + dx, — u,dt - X,
a F x,, a a a a 9 u,
dt dx, ax,

Length of PQ in the x -direction

In Cartesian coordinates, we normally take the x -direction as that of each of
the three coordinate axes, although we are not restricted to these directions.

Linear strain rate in Cartesian coordinates:
u v ow

g.= e, = €., (4-23)
T ax gy = az

For the more general case, the fluid element moves and deforms as sketched
in Fig. 4-36. It is left as an exercise to show that Eq. 4-23 is still valid for
the general case.



Solid objects such as wires, rods, and beams stretch when pulled. You
should recall from your study of engineering mechanics that when such an
object stretches in one direction, it usually shrinks in direction(s) normal to
that direction. The same is true of fluid elements. In Fig. 4-35c¢, the origi-
nally square fluid element stretches in the horizontal direction and shrinks
in the vertical direction. The linear strain rate is thus positive horizontally
and negative vertically.

If the flow is incompressible, the net volume of the fluid element must
remain constant; thus if the element stretches in one direction, it must shrink
by an appropriate amount in other direction(s) to compensate. The volume
of a compressible fluid element, however, may increase or decrease as its
density decreases or increases, respectively. (The mass of a fluid element
must remain constant, but since p = m/V, density and volume are inversely
proportional.) Consider for example a parcel of air in a cylinder being com-
pressed by a piston (Fig. 4-38); the volume of the fluid element decreases
while its density increases such that the fluid element’s mass is conserved.
The rate of increase of volume of a fluid element per unit volume is called
its volumetric strain rate or bulk strain rate. This kinematic property is
defined as positive when the volume increases. Another synonym of volu-
metric strain rate is rate of volumetric dilatation, which is easy to remem-
ber if you think about how the iris of your eye dilates (enlarges) when
exposed to dim light. It turns out that the volumetric strain rate is the sum of
the linear strain rates in three mutually orthogonal directions. In Cartesian
coordinates (Eq. 4-23), the volumetric strain rate is thus

Volumetric strain rate in Cartesian coordinates:

1 DV u v ow
R — = — 4+ —

w = (4-24)
0x ay 9z

In Eq. 4-24, the uppercase D notation is used to stress that we are talking
about the volume following a fluid element, that is to say, the material vol-
ume of the fluid element, as in Eq. 4-12.

The volumetric strain rate is zero in an incompressible flow.

Shear strain rate is a more difficult deformation rate to describe and
understand. Shear strain rate at a point is defined as half of the rate of
decrease of the angle between two initially perpendicular lines that intersect
at the point. (The reason for the half will become clear later when we com-
bine shear strain rate and linear strain rate into one tensor.) In Fig. 4-35d,
for example, the initially 90° angles at the lower-left corner and upper-right
corner of the square fluid element decrease; this is by definition a positive
shear strain. However, the angles at the upper-left and lower-right corners
of the square fluid element increase as the initially square fluid element
deforms; this is a negative shear strain. Obviously we cannot describe the
shear strain rate in terms of only one scalar quantity or even in terms of one
vector quantity for that matter. Rather, a full mathematical description of
shear strain rate requires its specification in any two mutually perpendicular
directions. In Cartesian coordinates, the axes themselves are the most obvi-
ous choice, although we are not restricted to these. Consider a fluid element
in two dimensions in the xy-plane. The element translates and deforms with
time as sketched in Fig. 4-39. Two initially mutually perpendicular lines
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FIGURE 4-37

Linear strain rate in some arbitrary
direction x,, is defined as the rate of
increase in length per unit length in
that direction. Linear strain rate would
be negative if the line segment length
were to decrease. Here we follow the
increase in length of line segment

PQ into line segment P'Q’, which
yields a positive linear strain rate.
Velocity components and distances are
truncated to first-order since dx,,

and dr are infinitesimally small.

| Air parcel

Time #

Time t,

FIGURE 4-38

Air being compressed by a piston
in a cylinder; the volume of a fluid
element in the cylinder decreases,
corresponding to a negative rate
of volumetric dilatation.
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(lines @ and b in the x- and y-directions, respectively) are followed. The
angle between these two lines decreases from 7/2 (90°) to the angle marked
a,, at t, in the sketch. It is left as an exercise to show that the shear strain
rate at point P for initially perpendicular lines in the x- and y-directions is
given by

Shear strain rate, initially perpendicular lines in the x- and y-directions:

! 1d 1 (ou ov
£, = — @, =+ — (4-25)
vl o« =ar ’ 2 dt 2 \dy  ox
a-b Fluid element
at time 7, Equation 4-25 can be easily extended to three dimensions. The shear strain
. rate is thus
P Shear strain rate in Cartesian coordinates:
Linea —u 1 (ou v 1 (ow  ou 1 (ov  ow
Fluid element y ey =7\ +— e, =-\"—+ e, =-|—+—) (4-26)
at time 1, - : 2\dy  ox 2\ ax az ’ 2\ 9z ay
Finally, it turns out that we can mathematically combine linear strain
FIGURE 4-39 Y y

rate and shear strain rate into one symmetric second-order tensor called the

For a fluid element that translates and strain rate tensor, which is a combination of Eqs. 4-23 and 4-26:

deforms as sketched, the shear strain
rate at point P is defined as half of the  Strain rate tensor in Cartesian coordinates:

rate of decrease of the angle between . ) . .
L. . . . du 1(ou ov 1 (ou ow
two initially perpendicular lines (lines — ——+ =) ==+
aand b). e 5 s ax 2 \dy ox 2\ 0z ax
o 1 /ov  ou v 1 /fov ow
g, =&, &, &= s\ -+ — — |\ + (4-27)
/ : S 2 \ox  dy ay 2\dz  dy
D' g, &, &,
o w T T 1 (aw au) 1 (aw au) aw
N Py P + .
Clec--" \\ 2\ ax az 2\ gy az dz

\\ ,93 The strain rate tensor obeys all the laws of mathematical tensors, such as

\\ i tensor invariants, transformation laws, and principal axes.

AT Figure 4-40 shows a general (although two-dimensional) situation in a
compressible fluid flow in which all possible motions and deformations
are present simultaneously. In particular, there is translation, rotation, lin-
ear strain, and shear strain. Because of the compressible nature of the fluid

c D . . S .
flow, there is also volumetric strain (dilatation). You should now have a bet-
ter appreciation of the inherent complexity of fluid dynamics, and the math-
ematical sophistication required to fully describe fluid motion.

A B

E%UR(E 41_40 ¢ illustratine translati EXAMPLE 4-6 Calculation of Kinematic Properties

d e ement HUstraung frans-ation, in a Two-Dimensional Flow
rotation, linear strain, shear strain, and
volumetric strain. Consider the steady, two-dimensional velocity field of Example 4-1:
V=(uv)=(05+08x)i + (1.5 — 08y)/ )

where lengths are in units of m, time in s, and velocities in m/s. There is a
stagnation point at (—0.625, 1.875) as shown in Fig. 4-41. Streamlines of
the flow are also plotted in Fig. 4-41. Calculate the various kinematic proper-
ties, namely, the rate of translation, rate of rotation, linear strain rate, shear
strain rate, and volumetric strain rate. Verify that this flow is incompressible.



SOLUTION We are to calculate several kinematic properties of a given
velocity field and verify that the flow is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional, implying
no z-component of velocity and no variation of v or v with z

Analysis By Eq. 4-19, the rate of translation is simply the velocity vector
itself, given by Eq. 1. Thus,

Rate of translation: u = 0.5 + 0.8x v=15-— 038y w=20 (2)

The rate of rotation is found from Eq. 4-21. In this case, since w = 0O
everywhere, and since neither u nor v vary with z the only nonzero compo-
nent of rotation rate is in the zdirection. Thus,

N 1/9 u \- 1 -
Rate of rotation: 0= E<§ = a;t>k = 5(0 -0k =0 3)

In this case, we see that there is no net rotation of fluid particles as they
move about. (This is a significant piece of information, to be discussed in
more detail later in this chapter and also in Chap. 10.)

Linear strain rates can be calculated in any arbitrary direction using
Eq. 4-23. In the x-, y-, and zdirections, the linear strain rates are
€ =afu=0.85*1 e, - —08s ! g =0 4)
XX ox yy ay bl
Thus, we predict that fluid particles stretch in the x-direction (positive linear
strain rate) and shrink in the y-direction (negative linear strain rate). This is
illustrated in Fig. 4-42, where we have marked an initially square parcel of
fluid centered at (0.25, 4.25). By integrating Eqgs. 2 with time, we calculate
the location of the four corners of the marked fluid after an elapsed time
of 1.5 s. Indeed this fluid parcel has stretched in the x-direction and has
shrunk in the y-direction as predicted.

Shear strain rate is determined from Eq. 4-26. Because of the two-
dimensionality, nonzero shear strain rates can occur only in the xy-plane.
Using lines parallel to the x- and y-axes as our initially perpendicular lines,

we calculate £y

1<a“+a”> Lo+o=o0 ®)
S A e _
Yo 2\dy  ax 2

Thus, there is no shear strain in this flow, as also indicated by Fig. 4-42.

Although the sample fluid particle deforms, it remains rectangular; its initially

90° corner angles remain at 90° throughout the time period of the calculation.
Finally, the volumetric strain rate is calculated from Eq. 4-24:

1 DV ) o
VD fxteyte.=08-08+0s"= ©

Since the volumetric strain rate is zero everywhere, we can say definitively
that fluid particles are neither dilating (expanding) nor shrinking (compress-
ing) in volume. Thus, we verify that this flow is indeed incompressible. In
Fig. 4-42, the area of the shaded fluid particle (and thus its volume since
it is a 2-D flow) remains constant as it moves and deforms in the flow field.
Discussion In this example it turns out that the linear strain rates (e, and ¢)
are nonzero, while the shear strain rates (e,, and its symmetric partner ¢,
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FIGURE 441
Streamlines for the velocity field
of Example 4—-6. The stagnation
point is indicated by the red circle
atx = —0.625 mand y = 1.875 m.
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FIGURE 442

Deformation of an initially square
parcel of marked fluid subjected to
the velocity field of Example 4-6 for
a time period of 1.5 s. The stagnation
point is indicated by the red circle at
x = —0.625mand y = 1.875 m, and
several streamlines are plotted.
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FIGURE 443
The direction of a vector cross product
is determined by the right-hand rule.

™y

gl

FIGURE 444

The vorticity vector is equal to twice
the angular velocity vector of a rotat-
ing fluid particle.

are zero. This means that the x- and y-axes of this flow field are the princi-
pal axes. The (two-dimensional) strain rate tensor in this orientation is thus

. <sﬁ sxy> _ (0.8 0 )S_] -
v € &y 0 -08

If we were to rotate the axes by some arbitrary angle, the new axes would not
be principal axes, and all four elements of the strain rate tensor would be
nonzero. You may recall rotating axes in your engineering mechanics classes
through use of Mohr’s circles to determine principal axes, maximum shear
strains, etc. Similar analyses are performed in fluid mechanics.

4-5 = VORTICITY AND ROTATIONALITY

We have already defined the rate of rotation vector of a fluid element (see
Eq. 4-21). A closely related kinematic property of great importance to the
analysis of fluid flows is the vorticity vector, defined mathematically as the
curl of the velocity vector V,

Vorticity vector: Z —VxV= curl(V) (4-28)

Physically, you can tell the direction of the vorticity vector by using the
right-hand rule for cross product (Fig. 4-43). The symbol { used for vortic-
ity is the Greek letter zeta. You should note that this symbol for vorticity is
not universal among fluid mechanics textbooks; some authors use the Greek
letter omega (w) while still others use uppercase omega ({)). In this book,
 is used to denote the rate of rotation vector (angular velocity vector) of a
fluid element. It turns out that the rate of rotation vector is equal to half of
the vorticity vector,

D [

- — 1 —
VXV = Ecurl(V) = (4-29)

N | =

Rate of rotation vector: =

Thus, vorticity is a measure of rotation of a fluid particle. Specifically,

Vorticity is equal to twice the angular velocity of a fluid particle (Fig. 4-44).

If the vorticity at a point in a flow field is nonzero, the fluid particle that hap-
pens to occupy that point in space is rotating; the flow in that region is called
rotational. Likewise, if the vorticity in a region of the flow is zero (or negligi-
bly small), fluid particles there are not rotating; the flow in that region is called
irrotational. Physically, fluid particles in a rotational region of flow rotate end
over end as they move along in the flow. For example, fluid particles within the
viscous boundary layer near a solid wall are rotational (and thus have nonzero
vorticity), while fluid particles outside the boundary layer are irrotational (and
their vorticity is zero). Both of these cases are illustrated in Fig. 4-45.

Rotation of fluid elements is associated with wakes, boundary layers, flow
through turbomachinery (fans, turbines, compressors, etc.), and flow with
heat transfer. The vorticity of a fluid element cannot change except through
the action of viscosity, nonuniform heating (temperature gradients), or other
nonuniform phenomena. Thus if a flow originates in an irrotational region,
it remains irrotational until some nonuniform process alters it. For example,
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air entering an inlet from quiescent (still) surroundings is irrotational and
remains so unless it encounters an object in its path or is subjected to non-
uniform heating. If a region of flow can be approximated as irrotational, the
equations of motion are greatly s1mp11f1ed as you will see in Chap. 10.

In Cartesian coordinates, (z j k) (x, y, ), and (u, v, w), Eq. 4-28 is
expanded as follows:

Vorticity vector in Cartesian coordinates:

> aw aw\-» u ow \ - v u '\ -
(=|\——-—)i+({—=———)i+|=—-—)k

dy a0z 0z 0x ax ay
If the flow is two-dimensional in the xy-plane, the z-component of velocity

(w) is zero and neither u nor v varies with z. Thus the first two components
of Eq. 4-30 are identically zero and the vorticity reduces to

(4-30)

Two-dimensional flow in Cartesian coordinates:

- v u \-
=|——-—Jk
¢ <6x ay>

Note that if a flow is two-dimensional in the xy-plane, the vorticity vector
must point in either the z- or —z-direction (Fig. 4—46).

(4-31)

|
m EXAMPLE 4-7

[

m Consider the CFD calculation of two-dimensional free-stream flow impinging

m on a block of rectangular cross section, as shown in Figs. 4-33 and 4-34.
Plot vorticity contours and discuss.

Vorticity Contours in a Two-Dimensional Flow

SOLUTION We are to calculate the vorticity field for a given velocity field
produced by CFD and then generate a contour plot of vorticity.

Analysis Since the flow is two-dimensional, the only nonzero component of
vorticity is in the zdirection, normal to the page in Figs. 4-33 and 4-34.
A contour plot of the zcomponent of vorticity for this flow field is shown in
Fig. 4-47. The blue region near the upper-left corner of the block indicates
large negative values of vorticity, implying clockwise rotation of fluid particles
in that region. This is due to the large velocity gradients encountered in this
portion of the flow field; the boundary layer separates off the wall at the corner
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FIGURE 4-45

The difference between rotational and
irrotational flow: fluid elements in a
rotational region of the flow rotate, but
those in an irrotational region of the
flow do not.

FIGURE 4-46

For two-dimensional flow in the
xy-plane, the vorticity vector always
points in the z- or —z-direction. In

this illustration, the flag-shaped fluid
particle rotates in the counterclockwise
direction as it moves in the xy-plane;
its vorticity points in the positive
z-direction as shown.

Symmetry plane

FIGURE 4-47

Contour plot of the vorticity field .
due to flow impinging on a block,

as produced by CFD calculations;
only the upper half is shown due to
symmetry. Blue regions represent
large negative vorticity, and red
regions represent large positive vorticity.
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of the body and forms a thin shear layer across which the velocity changes
rapidly. The concentration of vorticity in the shear layer diminishes as vortic-
ity diffuses downstream. The small red region near the top right corner of the
block represents a region of positive vorticity (counterclockwise rotation)—a
secondary flow pattern caused by the flow separation.

Discussion We expect the magnitude of vorticity to be highest in regions
where spatial derivatives of velocity are high (see Eq. 4-30). Close exami-
nation reveals that the blue region in Fig. 4-47 does indeed correspond to
large velocity gradients in Fig. 4-33. Keep in mind that the vorticity field of
Fig. 4-47 is time-averaged. The instantaneous flow field is in reality turbu-
lent and unsteady, and vortices are shed from the bluff body.

EXAMPLE 4-8 Determination of Rotationality
in a Two-Dimensional Flow

Consider the following steady, incompressible, two-dimensional velocity field:

[ |

[}

[}

[}

[}

] — — - [ ]
4 ,—“—| ] V=wv)=x* +(2xy— 1)j (1)
L Is this flow rotational or irrotational? Sketch some streamlines in the first

quadrant and discuss.

. t& \ \\ SOLUTION We are to determine whether a flow with a given velocity field
y At=0.25s is rotational or irrotational, and we are to draw some streamlines in the first
2] \ quadrant.
i @ Analysis Since the flow is two-dimensional, Eq. 4-31 is applicable. Thus,
: ] \ \%503 Vorticity: (= (ay = 8u>z = (—2y — O)E = —Zyz (2)
i 0x ay
0T Since the vorticity is nonzero, this flow is rotational. In Fig. 4-48 we plot
0 1 2 3 4 several streamlines of the flow in the first quadrant; we see that fluid moves
x downward and to the right. The translation and deformation of a fluid parcel
is also shown: at At = O, the fluid parcel is square, at At = 0.25 s, it has
FIGURE 4-48 moved and deformed, and at At = 0.50 s, the parcel has moved farther and
Deformation of an initially square is further deformed. In particular, the right-most portion of the fluid parcel
fluid parcel subjected to the velocity moves faster to the right and faster downward compared to the left-most por-
field of Example 48 for a time period tion, stretching the parcel in the x-direction and squashing it in the vertical
of 0.25 s and 0.50 s. Several streamlines direction. It is clear that there is also a net clockwise rotation of the fluid

are also plotted in the first quadrant. It parcel, which agrees with the result of Eq. 2.

is clear that this flow is rotational. Discussion From Eq. 4-29, individual fluid particles rotate at an angular
velocity equal to ® = —yk, half of the vorticity vector. Since ® is not con-
stant, this flow is not solid-body rotation. Rather, o is a linear function of y.
Further analysis reveals that this flow field is incompressible; the area (and
volume) of the shaded regions representing the fluid parcel in Fig. 4-48
remains constant at all three instants in time.

In cylindrical coordinates, (2,, Zg, gz), (r, 0, 2), and (u,, uy, u_), Eq. 4-28 is
expanded as

Vorticity vector in cylindrical coordinates:

- 1 du,  duy\_, du,  ou\_, 1/0(ruy)  ou,\_,
(=(-=- 2+ (L - =g, + | —2L—-—=L)e, @32
r 96 9z az ar r\ odr a0 ) -



For two-dimensional flow in the rf-plane, Eq. 4-32 reduces to

Two-dimensional flow in cylindrical coordinates:

> 1/ d(rug) au,>ﬁ
o Ry I 4-33
¢ r( ar a0 ¢ )

where £ is used as the unit vector in the z-direction in place of ¢ .. Note that
if a flow is two-dimensional in the rf-plane, the vorticity vector must point
in either the z- or —z-direction (Fig. 4-49).

Comparison of Two Circular Flows

Not all flows with circular streamlines are rotational. To illustrate this point,
we consider two incompressible, steady, two-dimensional flows, both of
which have circular streamlines in the r6-plane:

Flow A—solid-body rotation: u, =0 and u, = or (4-34)

Flow B—line vortex: u, =0 and u, = (4-35)

where w and K are constants. (Alert readers will note that u, in Eq. 4-35 is
infinite at » = 0, which is of course physically impossible; we ignore the
region close to the origin to avoid this problem.) Since the radial component
of velocity is zero in both cases, the streamlines are circles about the origin.
The velocity profiles for the two flows, along with their streamlines, are
sketched in Fig. 4-50. We now calculate and compare the vorticity field for
each of these flows, using Eq. 4-33.

. . - 1{d(wr? 5 N
Flow A—solid-body rotation: { = A\ T 0 )k = 2wk (4-36)
r
- 1[0 >
Flow B—line vortex: { = ;( gK) - O)k =0 (4-37)
r

Not surprisingly, the vorticity for solid-body rotation is nonzero. In fact, it is
a constant of magnitude twice the angular velocity and pointing in the same
direction. (This agrees with Eq. 4-29.) Flow A is rotational. Physically, this
means that individual fluid particles rotate as they revolve around the origin
(Fig. 4-50a). By contrast, the vorticity of the line vortex is zero everywhere
(except right at the origin, which is a mathematical singularity). Flow B is
irrotational. Physically, fluid particles do not rotate as they revolve in cir-
cles about the origin (Fig. 4-500).

A simple analogy can be made between flow A and a merry-go-round or
roundabout, and flow B and a Ferris wheel (Fig. 4-51). As children revolve
around a roundabout, they also rotate at the same angular velocity as that of
the ride itself. This is analogous to a rotational flow. In contrast, children on
a Ferris wheel always remain oriented in an upright position as they trace
out their circular path. This is analogous to an irrotational flow.
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FIGURE 4-49

For a two-dimensional flow in the
rf-plane, the vorticity vector always
points in the z (or —z) direction. In
this illustration, the flag-shaped fluid
particle rotates in the clockwise
direction as it moves in the r6-plane;
its vorticity points in the —z-direction
as shown.

Flow A Uy

FIGURE 4-50

Streamlines and velocity profiles for
(a) flow A, solid-body rotation and
(b) flow B, a line vortex. Flow A is

rotational, but flow B is irrotational
everywhere except at the origin.
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(a)
FIGURE 4-51

A simple analogy: (a) rotational circular flow is analogous to a roundabout, while (b) irrotational circular flow is

analogous to a Ferris wheel.

(a) Mc Graw-Hill Companies, Inc. Mark Dierker, photographer (b) © DAJ/Getty RF

Streamlines

FIGURE 4-52
Streamlines in the r6-plane for the
case of a line sink.

|
EXAMPLE 4-9 Determination of Rotationality of a Line Sink m

[

A simple two-dimensional velocity field called a line sink is often used to m
simulate fluid being sucked into a line along the z-axis. Suppose the volume m
flow rate per unit length along the z-axis, V/L, is known, where V is a nega-
tive quantity. In two dimensions in the rd-plane,
Line sink: = L L d =0 (1

ine sink: u, = P an Uy =
Draw several streamlines of the flow and calculate the vorticity. Is this flow
rotational or irrotational?

SOLUTION Streamlines of the given flow field are to be sketched and the
rotationality of the flow is to be determined.

Analysis Since there is only radial flow and no tangential flow, we know
immediately that all streamlines must be rays into the origin. Several stream-
lines are sketched in Fig. 4-52. The vorticity is calculated from Eq. 4-33:

- 1[3(ruy) 9 >» 1< a( v 1))»
— = —_ — = — - — | —— = 2
¢ r< o a0 )F =\ e\ 7))k 70 )

Since the vorticity vector is everywhere zero, this flow field is irrotational.
Discussion Many practical flow fields involving suction, such as flow into
inlets and hoods, can be approximated quite accurately by assuming irrota-
tional flow (Heinsohn and Cimbala, 2003).

4-6 = THE REYNOLDS TRANSPORT THEOREM

In thermodynamics and solid mechanics we often work with a system (also
called a closed system), defined as a quantity of matter of fixed identity. In
fluid dynamics, it is more common to work with a control volume (also



called an open system), defined as a region in space chosen for study. The
size and shape of a system may change during a process, but no mass
crosses its boundaries. A control volume, on the other hand, allows mass to
flow in or out across its boundaries, which are called the control surface.
A control volume may also move and deform during a process, but many
real-world applications involve fixed, nondeformable control volumes.

Figure 4-53 illustrates both a system and a control volume for the case of
deodorant being sprayed from a spray can. When analyzing the spraying pro-
cess, a natural choice for our analysis is either the moving, deforming fluid
(a system) or the volume bounded by the inner surfaces of the can (a control
volume). These two choices are identical before the deodorant is sprayed.
When some contents of the can are discharged, the system approach consid-
ers the discharged mass as part of the system and tracks it (a difficult job
indeed); thus the mass of the system remains constant. Conceptually, this is
equivalent to attaching a flat balloon to the nozzle of the can and letting the
spray inflate the balloon. The inner surface of the balloon now becomes part
of the boundary of the system. The control volume approach, however, is
not concerned at all with the deodorant that has escaped the can (other than
its properties at the exit), and thus the mass of the control volume decreases
during this process while its volume remains constant. Therefore, the system
approach treats the spraying process as an expansion of the system’s vol-
ume, whereas the control volume approach considers it as a fluid discharge
through the control surface of the fixed control volume.

Most principles of fluid mechanics are adopted from solid mechanics,
where the physical laws dealing with the time rates of change of extensive
properties are expressed for systems. In fluid mechanics, it is usually more
convenient to work with control volumes, and thus there is a need to relate
the changes in a control volume to the changes in a system. The relationship
between the time rates of change of an extensive property for a system and for
a control volume is expressed by the Reynolds transport theorem (RTT),
which provides the link between the system and control volume approaches
(Fig. 4-54). RTT is named after the English engineer, Osborne Reynolds
(1842-1912), who did much to advance its application in fluid mechanics.

The general form of the Reynolds transport theorem can be derived by
considering a system with an arbitrary shape and arbitrary interactions, but
the derivation is rather involved. To help you grasp the fundamental mean-
ing of the theorem, we derive it first in a straightforward manner using a
simple geometry and then generalize the results.

Consider flow from left to right through a diverging (expanding) portion
of a flow field as sketched in Fig. 4-55. The upper and lower bounds of the
fluid under consideration are streamlines of the flow, and we assume uniform
flow through any cross section between these two streamlines. We choose
the control volume to be fixed between sections (1) and (2) of the flow field.
Both (1) and (2) are normal to the direction of flow. At some initial time ¢,
the system coincides with the control volume, and thus the system and con-
trol volume are identical (the greenish-shaded region in Fig. 4-55). During
time interval Az, the system moves in the flow direction at uniform speeds
V, at section (1) and V, at section (2). The system at this later time is indi-
cated by the hatched region. The region uncovered by the system during
this motion is designated as section I (part of the CV), and the new region
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FIGURE 4-53

Two methods of analyzing the spray-
ing of deodorant from a spray can:

(a) We follow the fluid as it moves
and deforms. This is the system
approach—no mass crosses the
boundary, and the total mass of the
system remains fixed. (b) We consider
a fixed interior volume of the can. This
is the control volume approach—mass
crosses the boundary.

Control
volume

FIGURE 4-54

The Reynolds transport theorem
(RTT) provides a link between the
system approach and the control
volume approach.
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Control volume at time  + At
(CV remains fixed in time)

System (material volume)
and control volume at time ¢
(shaded region)

System at time  + At
(hatched region)

r’ \

I
11
~— \
) \
@

Inflow during At

_/./z///

Outflow during At

At time 7: Sys =CV
Attime t +At: Sys=CV —1+11

FIGURE 4-55

A moving system (hatched region) and
a fixed control volume (shaded region)
in a diverging portion of a flow field at
times ¢ and ¢ + At. The upper and lower
bounds are streamlines of the flow.

covered by the system is designated as section II (not part of the CV). There-
fore, at time ¢ + At, the system consists of the same fluid, but it occupies
the region CV — I + II. The control volume is fixed in space, and thus it
remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let » = B/m represent the corresponding intensive property.
Noting that extensive properties are additive, the extensive property B of the
system at times ¢ and ¢ + At is expressed as

B, = Bey,, (the system and CV concide at time 7)

sys, t
Bsys,t+Ar = BCV,t+Ar - BI,t+Ar + Bll,t+At

Subtracting the first equation from the second one and dividing by Ar gives

Bsys,t+Ar - Bsys,t _ BCV,H—Ar - BCV,t _ BI,H—A[ " Bl‘[,z+Ar
At At At At
Taking the limit as Az — 0, and using the definition of derivative, we get
dB. dB . .
sys cv
= - B +B (4-38)
df dl n out
or
dB dB
sys cv
dt = dt = bip\ VA + byp, VoA,

since

By iae = bimyia = Dip\Vy o = bipyV, At A,

By var = by a0 = 02po Vi iar = b,p,V, At A,
and

By - 5 bip,V, At A,

B. =B, = lim = lim =b,p,V, A
" YAr—S0  Ar Ar—0 At 1PV 4

. . BII 1+ Ar b2p2V2 AtAz

B = B, = lim - = lim ———=b,p,V, A
out 1T A0 At ALSO Ar P2V Ay

where A, and A, are the cross-sectional areas at locations 1 and 2. Equation 4-38
states that the time rate of change of the property B of the system is equal to the
time rate of change of B of the control volume plus the net flux of B out of the
control volume by mass crossing the control surface. This is the desired rela-
tion since it relates the change of a property of a system to the change of that
property for a control volume. Note that Eq. 4-38 applies at any instant in time,
where it is assumed that the system and the control volume occupy the same
space at that particular instant in time.

The influx B,, and outflux B, of the property B in this case are easy to
determine since there is only one inlet and one outlet, and the velocities are
approximately normal to the surfaces at sections (1) and (2). In general, how-
ever, we may have several inlet and outlet ports, and the velocity may not be
normal to the control surface at the point of entry. Also, the velocity may not
be uniform. To generalize the process, we consider a differential surface area
dA on the control surface and denote its unit outer normal by n. The flow
rate of property b through dA is pbV-n dA since the dot product V-1 gives
the normal component of the velocity. Then the net rate of outflow through
the entire control surface is determined by integration to be (Fig. 4-56)



B, =B, — B, = J pbV-#dA  (inflow if negative) (4-39)
CS

An important aspect of this relation is that it automatically subtracts the
inflow from the outflow, as explained next. The dot product of the velocity
Vector at a point on the control surface and the outer normal at that point is
Vi = |V||#|cos = |V]cos 6, where 6 is the angle between the velocity
vector and the outer normal, as shown in Fig. 4-57. For 6 < 90°, cos 6 > 0
and thus V-7 > 0 for outflow of mass from the control volume, and for
0 > 90° cos O < 0 and thus V-ii < 0 for inflow of mass into the control
volume. Therefore, the differential quantity prﬁ dA 1is positive for mass
flowing out of the control volume, and negative for mass flowing into the
control volume, and its integral over the entire control surface gives the rate
of net outflow of the property B by mass.

The properties within the control volume may vary with position, in
general. In such a case, the total amount of property B within the control
volume must be determined by integration:

By = J pbdV (4-40)
cv

The term dB/dt in Eq. 4-38 is thus equal to % J
cv
the time rate of change of the property B content of the control volume.
A positive value for dB/dt indicates an increase in the B content, and a
negative value indicates a decrease. Substituting Eqs. 4-39 and 440 into
Eq. 4-38 yields the Reynolds transport theorem, also known as the system-
to-control-volume transformation for a fixed control volume:

dB\’\ d
> = —f pbdV + J

Since the control volume is not moving or deforming with time, the time
derivative on the right-hand side can be moved inside the integral, since
the domain of integration does not change with time. (In other words, it is
irrelevant whether we differentiate or integrate first.) But the time derivative
in that case must be expressed as a partial derivative (9/0t) since density
and the quantity » may depend not only on time, but also on the position
within the control volume. Thus, an alternate form of the Reynolds transport
theorem for a fixed control volume is

pb dV, and represents

RTT, fixed CV: pbV-7i dA

(4-41)

B sys

dt

Alternate RTT, fixed CV: (4-42)

= [ ~(pb)dV + f pb V-7 dA
cv dt cs

It turns out that Eq. 4-42 is also valid for the most general case of a mov-

ing and/or deforming control volume, provided that velocity vector V is an

absolute velocity (as viewed from a fixed reference frame).

Next we consider yet another alternative form of the RTT. Equation 4-41
was derived for a fixed control volume. However, many practical systems
such as turbine and propeller blades involve nonfixed control volumes. For-
tunately, Eq. 441 is also valid for moving and/or deforming control vol-
umes provided that the absolute fluid velocity V in the last term is replaced
by the relative velocity V,,
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n
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n
Mass
leaving
Bnet Bout Bm = J pbV - 7 dA
cS
FIGURE 4-56

The integral of bpV -7 dA over the
control surface gives the net amount
of the property B flowing out of the
control volume (into the control
volume if it is negative) per unit time.

noy n
dA
9 dA 0
Outflow: Inflow: \7
0 <90° 0 >90°

V=Vl il cos 6=V cos 0

If 0 < 90°, then cos 6 > 0 (outflow).
If 6 > 90°, then cos 6 < 0 (inflow).
If 6 = 90°, then cos 0 = 0 (no flow).

FIGURE 4-57
Outflow and inflow of mass across the
differential area of a control surface.
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FIGURE 4-58

Relative velocity crossing a control
surface is found by vector addition
of the absolute velocity of the fluid
and the negative of the local velocity
of the control surface.

Absolute reference frame:

Control volume

Relative reference frame:

Control volume,

FIGURE 4-59

Reynolds transport theorem applied to
a control volume moving at constant
velocity.

Relative velocity: V, =V- Ves (4-43)

where Vg is the local velocity of the control surface (Fig. 4-58). The most
general form of the Reynolds transport theorem is thus

dB d

sys - -
=S pbdv+ | pbVeiida 4-44
di di va Lsp rh )

RTT, nonfixed CV:

Note that for a control volume that moves and/or deforms with time, the
time derivative is applied after integration in Eq. 4-44. As a simple example
of a moving control volume, consider a toy car moving at a constant abso-
lute velocity Vw = 10 km/h to the right. A high-speed jet of water (absolute
velocity = Vjet = 25 km/h to the right) strikes the back of the car and pro-
pels it (Fig. 4-59). If we draw a control volume around the car, the relative
velocity is ‘7, = 25 — 10 = 15 km/h to the right. This represents the veloc-
ity at which an observer moving with the control volume (moving with the
car) would observe the fluid crossing the control surface. In other words, V, is
the fluid velocity expressed relative to a coordinate system moving with the
control volume.

Finally, by application of the Leibniz theorem, it can be shown that the
Reynolds transport theorem for a general moving and/or deforming control
volume (Eq. 4-44) is equivalent to the form given by Eq. 442, which is
repeated here:

st /s d —
Alternate RTT, nonfixed CV: = = J —(pb)dV + j pbV-1dA  (4-45)

In contrast to Eq. 444, the velocity vector Vin Eq. 445 must be taken as
the absolute velocity (as viewed from a fixed reference frame) in order to
apply to a nonfixed control volume.

During steady flow, the amount of the property B within the control vol-
ume remains constant in time, and thus the time derivative in Eq. 4-44
becomes zero. Then the Reynolds transport theorem reduces to

st s - 5
RTT, steady flow: > = f pb V-1 dA (4-46)
dt cs

Note that unlike the control volume, the property B content of the system
may still change with time during a steady process. But in this case the
change must be equal to the net property transported by mass across the
control surface (an advective rather than an unsteady effect).

In most practical engineering applications of the RTT, fluid crosses the
boundary of the control volume at a finite number of well-defined inlets
and outlets (Fig. 4-60). In such cases, it is convenient to cut the control sur-
face directly across each inlet and outlet and replace the surface integral in
Eq. 444 with approximate algebraic expressions at each inlet and outlet
based on the average values of fluid properties crossing the boundary. We

define p,y,, b,y and V, ,, as the average values of p, b, and V,, respectively,

1
across an inlet or outlet of cross-sectional area A [e.g., b,,, = N b dA]. The
A

surface integrals in the RTT (Eq. 4-44), when applied over an inlet or outlet



of cross-sectional area A, are then approximated by pulling property b out of
the surface integral and replacing it with its average. This yields
j pbV, it dA = b,,, J pVieidA = by,
A A
where m, is the mass flow rate through the inlet or outlet relative to the
(moving) control surface. The approximation in this equation is exact when

property b is uniform over cross-sectional area A. Equation 4-44 thus
becomes

stys d
= — bdV + nb,, — n.b,. 4-47
ot o Sa, Tan, e

out for each outlet

for each inlet

In some applications, we may wish to rewrite Eq. 4-47 in terms of volume
(rather than mass) flow rate. In such cases, we make a further approxima-

tion that i, = p,,V, = p,,V, 4, A- This approximation is exact when fluid
density p is uniform over A. Equation 4-47 then reduces to

Approximate RTT for well-defined inlets and outlets:

(4-48)

dB sys d
= J pb dv + 2 pavgbavgvr, avg A — 2 pavgbavgvr,avg A
dt di CcvV out in

for each outlet for each inlet

Note that these approximations simplify the analysis greatly but may
not always be accurate, especially in cases where the velocity distribution
across the inlet or outlet is not very uniform (e.g., pipe flows; Fig. 4-60). In
particular, the control surface integral of Eq. 4—45 becomes nonlinear when
property b contains a velocity term (e.g., when applying RTT to the linear
momentum equation, b = V), and the approximation of Eq. 448 leads to
errors. Fortunately we can eliminate the errors by including correction fac-
tors in Eq. 448, as discussed in Chaps. 5 and 6.

Equations 4-47 and 4-48 apply to fixed or moving control volumes, but
as discussed previously, the relative velocity must be used for the case of a
nonfixed control volume. In Eq. 447 for example, the mass flow rate m, is
relative to the (moving) control surface, hence the r subscript.

*Alternate Derivation of the Reynolds
Transport Theorem

A more elegant mathematical derivation of the Reynolds transport theorem is
possible through use of the Leibniz theorem (see Kundu and Cohen, 2011).
You may be familiar with the one-dimensional version of this theorem,
which allows you to differentiate an integral whose limits of integration are
functions of the variable with which you need to differentiate (Fig. 4-61):

One-dimensional Leibniz theorem:

bew Gx, 1) d Jb G dx + db G(b, 1) da G(a, 1) (4-49)
— X, X = —dx — , 1) — — G(a,
dt ot dt

x=al(t) dl

a

* This section may be omitted without loss of continuity.
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FIGURE 4-60

An example control volume in which
there is one well-defined inlet (1) and
two well-defined outlets (2 and 3). In
such cases, the control surface integral
in the RTT can be more conveniently
written in terms of the average values
of fluid properties crossing each inlet
and outlet.

G(x, 1)

x=b(1)
J' G(x, 1) dx
X

=al(r)

a(r) b(r) *

FIGURE 4-61

The one-dimensional Leibniz theorem
is required when calculating the time
derivative of an integral (with respect
to x) for which the limits of the
integral are functions of time.
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j G(x,y,z, ) dV
V%)

t\/—\

G(x,y,2,1)

FIGURE 4-62

The three-dimensional Leibniz
theorem is required when calculating
the time derivative of a volume
integral for which the volume itself
moves and/or deforms with time. It
turns out that the three-dimensional
form of the Leibniz theorem can be
used in an alternative derivation of
the Reynolds transport theorem.

The Leibniz theorem takes into account the change of limits a(f) and b(f)
with respect to time, as well as the unsteady changes of integrand G(x, 1)
with time.

EXAMPLE 4-10 One-Dimensional Leibniz Integration

Reduce the following expression as far as possible:

d
F(t) = E

x=Ct
J e ¥ dx (1
x=0
SOLUTION F(?) is to be evaluated from the given expression.
Analysis We could try integrating first and then differentiating, but since
Eq. 1 is of the form of Eq. 4-49, we use the one-dimensional Leibniz theo-
rem. Here, Glx, = e (G is not a function of time in this simple exam-
ple). The limits of integration are a(f) = O and b(t) = Ct. Thus,

b
G db d »
F() = f —dx + —G(b, t) — jG(a, ) — F@) = Ce ‘" @
a ot dt —— dt
re 5= ) =
0 C e P’ 0

Discussion You are welcome to try to obtain the same solution without using
the Leibniz theorem.

In three dimensions, the Leibniz theorem for a volume integral is

Three-dimensional Leibniz theorem:

ij G(x,y, 2z, 1) dV = J a,—de + J GV,-il dA (4-50)
dr )y vy 9t A

where Uf) is a moving and/or deforming volume (a function of time), A(7)
is its surface (boundary), and V, is the absolute velocity of this (moving)
surface (Fig. 4-62). Equation 4-50 is valid for any volume, moving and/or
deforming arbitrarily in space and time. For consistency with the previous
analyses, we set integrand G to pb for application to fluid flow,

Three-dimensional Leibniz theorem applied to fluid flow:
d ad -
— pbdV = —(pb) dV + pbVy-n dA (4-51)
dt )y v 9f A

If we apply the Leibniz theorem to the special case of a material volume
(a system of fixed identity moving with the fluid flow), then \7A =V every-
where on the material surface since it moves with the fluid. Here V is the
local fluid velocity, and Eq. 4-51 becomes

Leibniz theorem applied to a material volume:

dj pav = L J a(b)dVJrJ bV -1l dA (4-52)
— | pbdV= =| - pbV-n
dt Jyy dt v 0t A

Equation 4-52 is valid at any instant in time 7. We define our control vol-
ume such that at this time ¢, the control volume and the system occupy the
same space; in other words, they are coincident. At some later time ¢ + Af,
the system has moved and deformed with the flow, but the control volume



may have moved and deformed differently (Fig. 4-63). The key, however, is
that at time t, the system (material volume) and control volume are one and
the same. Thus, the volume integral on the right-hand side of Eq. 4-52 can
be evaluated over the control volume at time t, and the surface integral can
be evaluated over the control surface at time t. Hence,

sys

B F) N
General RTT, nonfixed CV: = J —(pb)dV + J pbV-1 dA (4-53)
dt cv 0t cs

This expression is identical to that of Eq. 4-42 and is valid for an arbitrarily
shaped, moving, and/or deforming control volume at time 7. Keep in mind
that V in Eq. 4-53 is the absolute fluid velocity.

|
m EXAMPLE 4-11 Reynolds Transport Theorem

] in Terms of Relative Velocity
|

m Beginning with the Leibniz theorem and the general Reynolds transport theo-
rem for an arbitrarily moving and deforming control volume, Eq. 4-53, prove
that Eq. 4-44 is valid.

SOLUTION Equation 4-44 is to be proven.

Analysis The general three-dimensional version of the Leibniz theorem,
Eqg. 4-50, applies to any volume. We choose to apply it to the control vol-
ume of interest, which can be moving and/or deforming differently than the
material volume (Fig. 4-63). Setting G to pb, Eq. 4-50 becomes

d J -
—J pbdvzj —(pb)dv+f pbVies 71 dA )
dt cv CV ot CS

We solve Eq. 4-53 for the control volume integral,

f % (obydV s J bV-it dA @
—_— e — .n
oy 0t . dt cs &
Substituting Eq. 2 into Eq. 1, we get
d stys = -
*J pbdV = —— — J pbV-n dA + J pbVig-n dA (3)
dt Joy dt cs cs

Combining the last two terms and rearranging,

dB, 4
&t =—j pde+J
dt dt Joy c

pb(V — Vo)t dA @
S

But recall that the relative velocity is defined by Eq. 4-43. Thus,

: : 4By, d
RTT in terms of relative velocity: — | pbdV +
cv

= bV.wdA (5
d dt | s @

Discussion Equation 5 is indeed identical to Eq. 4-44, and the power and
elegance of the Leibniz theorem are demonstrated.

Relationship between Material Derivative and RTT

You may have noticed a similarity or analogy between the material derivative
discussed in Section 4-1 and the Reynolds transport theorem discussed here.
In fact, both analyses represent methods to transform from fundamentally
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System (material volume)
and control volume at time ¢

System at time 7 + At

Control volume at time 7 + At

FIGURE 4-63

The material volume (system) and
control volume occupy the same space
at time ¢ (the greenish shaded area),
but move and deform differently. At a
later time they are not coincident.
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Lagrangian D Eulerian
description Dt description
Control
System
analysis —| RTT volum.e
analysis
FIGURE 4-64

The Reynolds transport theorem for
finite volumes (integral analysis) is
analogous to the material derivative
for infinitesimal volumes (differential
analysis). In both cases, we transform
from a Lagrangian or system viewpoint
to an Eulerian or control volume

viewpoint.

SUMMARY

Lagrangian concepts to Eulerian interpretations of those concepts. While the
Reynolds transport theorem deals with finite-size control volumes and the
material derivative deals with infinitesimal fluid particles, the same funda-
mental physical interpretation applies to both (Fig. 4-64). In fact, the Reyn-
olds transport theorem can be thought of as the integral counterpart of the
material derivative. In either case, the total rate of change of some prop-
erty following an identified portion of fluid consists of two parts: There is
a local or unsteady part that accounts for changes in the flow field with
time (compare the first term on the right-hand side of Eq. 4-12 to that of
Eq. 4-45). There is also an advective part that accounts for the movement
of fluid from one region of the flow to another (compare the second term on
the right-hand sides of Eqgs. 4—12 and 4-45).

Just as the material derivative can be applied to any fluid property, scalar
or vector, the Reynolds transport theorem can be applied to any scalar or
vector property as well. In Chaps. 5 and 6, we apply the Reynolds transport
theorem to conservation of mass, energy, momentum, and angular momen-
tum by choosing parameter B to be mass, energy, momentum, and angular
momentum, respectively. In this fashion we can easily convert from the fun-
damental system conservation laws (Lagrangian viewpoint) to forms that are
valid and useful in a control volume analysis (Eulerian viewpoint).

Fluid kinematics is concerned with describing fluid motion,
without necessarily analyzing the forces responsible for such
motion. There are two fundamental descriptions of fluid
motion—Lagrangian and Eulerian. In a Lagrangian descrip-
tion, we follow individual fluid particles or collections of
fluid particles, while in the Eulerian description, we define
a control volume through which fluid flows in and out. We
transform equations of motion from Lagrangian to Eulerian
through use of the material derivative for infinitesimal fluid
particles and through use of the Reynolds transport theo-
rem (RTT) for systems of finite volume. For some extensive
property B or its corresponding intensive property b,
Material derivative: bb = b 4F (V-?)b
Dt or
General RTT, nonfixed CV:
dB

sys

a —>
=| —(pb)dV + bV-1 dA
o LV ar (pD) LSP n

In both equations, the total change of the property following a
fluid particle or following a system is composed of two parts:
a local (unsteady) part and an advective (movement) part.
There are various ways to visualize and analyze flow
fields—streamlines, streaklines, pathlines, timelines, surface
imaging, shadowgraphy, schlieren imaging, profile plots,

vector plots, and contour plots. We define each of these and
provide examples in this chapter. In general unsteady flow,
streamlines, streaklines, and pathlines differ, but in steady
flow, streamlines, streaklines, and pathlines are coincident.
Four fundamental rates of motion (deformation rates) are
required to fully describe the kinematics of a fluid flow: veloc-
ity (rate of translation), angular velocity (rate of rotation), lin-
ear strain rate, and shear strain rate. Vorticity is a property of
fluid flows that indicates the rotationality of fluid particles.

Vorticity vector: Z =V XV-= curl(V) =20

A region of flow is irrotational if the vorticity is zero in that
region.

The concepts learned in this chapter are used repeatedly
throughout the rest of the book. We use the RTT to transform
the conservation laws from closed systems to control volumes
in Chaps. 5 and 6, and again in Chap. 9 in the derivation of
the differential equations of fluid motion. The role of vortic-
ity and irrotationality is revisited in greater detail in Chap. 10
where we show that the irrotationality approximation leads
to greatly reduced complexity in the solution of fluid flows.
Finally, we use various types of flow visualization and data
plots to describe the kinematics of example flow fields in
nearly every chapter of this book.
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PP APPLICATION SPOTLIGHT

_ Guest Author: Ganesh Raman,

> llinois Institute of Technology

Fluidic actuators are devices that use fluid logic circuits to produce oscilla-
tory velocity or pressure perturbations in jets and shear layers for delaying
separation, enhancing mixing, and suppressing noise. Fluidic actuators are
potentially useful for shear flow control applications for many reasons: they
have no moving parts; they can produce perturbations that are controllable in
frequency, amplitude, and phase; they can operate in harsh thermal environ-
ments and are not susceptible to electromagnetic interference; and they are
easy to integrate into a functioning device. Although fluidics technology has
been around for many years, recent advances in miniaturization and micro-
fabrication have made them very attractive candidates for practical use. The
fluidic actuator produces a self-sustaining oscillatory flow using the princi-
ples of wall attachment and backflow that occur within miniature passages of
the device.

Figure 4—65 demonstrates the application of a fluidic actuator for jet thrust
vectoring. Fluidic thrust vectoring is important for future aircraft designs,
since they can improve maneuverability without the complexity of additional
surfaces near the nozzle exhaust. In the three images of Fig. 4-65, the pri-
mary jet exhausts from right to left and a single fluidic actuator is located at
the top. Figure 4-65a shows the unperturbed jet. Figures 4-65b and ¢ show
the vectoring effect at two fluidic actuation levels. Changes to the primary ®)
jet are characterized using particle image velocimetry (PIV). A simplified
explanation is as follows: In this technique tracer particles are introduced
into the flow and illuminated by a thin laser light sheet that is pulsed to
freeze particle motion. Laser light scattered by the particles is recorded at
two instances in time using a digital camera. Using a spatial cross correla-
tion, the local displacement vector is obtained. The results indicate that there
exists the potential for integrating multiple fluidic sub-elements into aircraft
components for improved performance.

Figure 4-65 is actually a combination vector plot and contour plot. Veloc-
ity vectors are superimposed on contour plots of velocity magnitude (speed).
The red regions represent high speeds, and the blue regions represent low
speeds.

FIGURE 4-65

References Time-averaged mean velocity field
Raman, G., Packiarajan, S., Papadopoulos, G., Weissman, C., and Raghu, S., “Jet of a fluidic actuator jet. Results are
Thrust Vectoring Using a Miniature Fluidic Oscillator,” ASME FEDSM 2001- from 150 PIV realizations, overlaid
18057, 2001. on an image of the seeded flow. Every
Raman, G., Raghu, S., and Bencic, T. J., “Cavity Resonance Suppression Using seventh and second velocity vector is
Miniature Fluidic Oscillators,” AIAA Paper 99-1900, 1999. shown in the horizontal and vertical

directions, respectively. The color
levels denote the magnitude of the
velocity field. (a) No actuation;

(b) single actuator operating at 3 psig;
(c) single actuator operating at 9 psig.

Courtesy Ganesh Raman, Illinois Institute of
Technology. Used by permission.
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PROBLEMS*

Introductory Problems

4-1C What does the word kinematics mean? Explain what
the study of fluid kinematics involves.

4-2C Briefly discuss the difference between derivative
operators d and 9. If the derivative du/dx appears in an equa-
tion, what does this imply about variable u?

4-3 Consider steady flow of water through an axisymmet-
ric garden hose nozzle (Fig. P4-3). Along the centerline of
the nozzle, the water speed increases from U, ance (O Ueyic
as sketched. Measurements reveal that the centerline water
speed increases parabolically through the nozzle. Write an
equation for centerline speed u(x), based on the parameters
given here, from x = 0 to x = L.

D

entrance D exit

FIGURE P4-3

* Problems designated by a “C” are concept questions, and students
are encouraged to answer them all. Problems designated by an “E”
are in English units, and the Sl users can ignore them. Problems
with the icon are solved using EES, and complete solutions
together with parametric studies are included on the text website.
Problems with the E,?N icon are comprehensive in nature and are
intended to be solved with an equation solver such as EES.

4-4 Consider the following steady, two-dimensional veloc-
ity field:

V= w,v) = (@ — (b — )i + (—2chy + 2c2xy)7
Is there a stagnation point in this flow field? If so, where is it?
4-5 A steady, two-dimensional velocity field is given by
V= (uv) = (—0.781 — 4.67x)i + (=3.54 + 4.67y)j
Calculate the location of the stagnation point.

4-6 Consider the following steady, two-dimensional veloc-
ity field:

V= (u0v) = (0.66 + 2.1x)i + (=2.7 — 2.1y)]

Is there a stagnation point in this flow field? If so, where is it?
Answer: Yes; x = —0.314, y = —1.29

Lagrangian and Eulerian Descriptions

4-7C What is the Eulerian description of fluid motion?
How does it differ from the Lagrangian description?

4-8C s the Lagrangian method of fluid flow analysis more
similar to study of a system or a control volume? Explain.

4-9C What is the Lagrangian description of fluid motion?

4-10C A stationary probe is placed in a fluid flow and
measures pressure and temperature as functions of time at

Flow

|

Probe

FIGURE P4-10C



one location in the flow (Fig. P4-10C). Is this a Lagrangian
or an Eulerian measurement? Explain.

4-11C A tiny neutrally buoyant electronic pressure probe is
released into the inlet pipe of a water pump and transmits 2000
pressure readings per second as it passes through the pump. Is
this a Lagrangian or an Eulerian measurement? Explain.

4-12C Define a steady flow field in the Eulerian reference
frame. In such a steady flow, is it possible for a fluid particle
to experience a nonzero acceleration?

4-13C List at least three other names for the material deriv-
ative, and write a brief explanation about why each name is
appropriate.

4-14C A weather balloon is launched into the atmosphere
by meteorologists. When the balloon reaches an altitude where
it is neutrally buoyant, it transmits information about weather
conditions to monitoring stations on the ground (Fig. P4-14C).
Is this a Lagrangian or an Eulerian measurement? Explain.

Helium-filled
weather balloon

Transmitting
instrumentation

FIGURE P4-14C

4-15C A Pitot-static probe can often be seen protrud-
ing from the underside of an airplane (Fig. P4-15C). As the

FIGURE P4-15C
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airplane flies, the probe measures relative wind speed. Is this
a Lagrangian or an Eulerian measurement? Explain.

4-16C Is the Eulerian method of fluid flow analysis more
similar to study of a system or a control volume? Explain.

4-17 Consider steady, incompressible, two-dimensional
flow through a converging duct (Fig. P4-17). A simple
approximate velocity field for this flow is

V=uv) = U, + bx)i — byj

where U is the horizontal speed at x = 0. Note that this
equation ignores viscous effects along the walls but is a rea-
sonable approximation throughout the majority of the flow
field. Calculate the material acceleration for fluid particles
passing through this duct. Give your answer in two ways:
(1) as acceliration components a, and a, and (2) as accelera-
tion vector a.

FIGURE P4-17

4-18 Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-17. The pressure
field is given by

P=p,— 23 2Wybx + P2+ y?)

where P, is the pressure at x = 0. Generate an expression for
the rate of change of pressure following a fluid particle.

4-19 A steady, incompressible, two-dimensional velocity
field is given by the following components in the xy-plane:

u =185+ 2.33x + 0.656y

v =0.754 — 2.18x — 2.33y

Calculate the acceleration field (find expressions for accelera-
tion components a, and ay), and calculate the acceleration at
the point (x, y) = (=1, 2). Answers: a, = 0.806, a, = 2.21
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4-20 A steady, incompressible, two-dimensional velocity
field is given by the following components in the xy-plane:

0.205 + 0.97x + 0.851y
—0.509 + 0.953x — 0.97y

u

v

Calculate the acceleration field (find expressions for accelera-
tion components a, and a,) and calculate the acceleration at
the point (x, y) = (2, 1.5).

4-21 The velocity field for a flow is given by

V=ui +vj + wk where u = 3x, v = —2y, w = 2z. Find
the streamline that will pass through the point (1, 1, 0).

4-22 Consider steady flow of air through the diffuser por-
tion of a wind tunnel (Fig. P4-22). Along the centerline of
the diffuser, the air speed decreases from u e 10 Ueyi, aS
sketched. Measurements reveal that the centerline air speed
decreases parabolically through the diffuser. Write an equa-
tion for centerline speed u(x), based on the parameters given
here, fromx = 0 to x = L.

D

entrance

!

1
1
1
1
1
x=

I
0 x=L

FIGURE P4-22

4-23 For the velocity field of Prob. 4-22, calculate the
fluid acceleration along the diffuser centerline as a function
of x and the given parameters. For L = 1.56 m, u ... =
24.3 m/s, and u,; = 16.8 m/s, calculate the acceleration at
x=0and x = 1.0 m. Answers: 0, —131 m/s?

4-24 A steady, incompressible, two-dimensional (in the
xy-plane) velocity field is given by
V= (0.523 — 1.88x + 3.94y)i + (—2.44 + 1.26x + 1.88y)]

Calculate the acceleration at the point (x, y) = (—1.55, 2.07).

4-25 For the velocity field of Prob. 4-3, calculate the fluid
acceleration along the nozzle centerline as a function of x and
the given parameters.

Flow Patterns and Flow Visualization

4-26C What is the definition of a pathline? What do path-
lines indicate?

4-27C Consider the visualization of flow over a 12° cone
in Fig. P4-27C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.

FIGURE P4-27C

Visualization of flow over a 12° cone at a 16° angle of
attack at a Reynolds number of 15,000. The visualization
is produced by colored fluid injected into water from ports
in the body.

Courtesy ONERA. Photograph by Werlé.

4-28C What is the definition of a streamline? What do
streamlines indicate?

4-29C What is the definition of a streakline? How do
streaklines differ from streamlines?

4-30C Consider the visualization of flow over a 15° delta
wing in Fig. P4-30C. Are we seeing streamlines, streaklines,
pathlines, or timelines? Explain.

FIGURE P4-30C

Visualization of flow over a 15° delta wing at a 20° angle
of attack at a Reynolds number of 20,000. The visualiza-
tion is produced by colored fluid injected into water from
ports on the underside of the wing.

Courtesy ONERA. Photograph by Werlé.

4-31C Consider the visualization of ground vortex flow in
Fig. P4-31C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.



FIGURE P4-31C

Visualization of ground vortex flow. A high-speed round air
jet impinges on the ground in the presence of a free-stream
flow of air from left to right. (The ground is at the bottom
of the picture.) The portion of the jet that travels upstream
forms a recirculating flow known as a ground vortex. The
visualization is produced by a smoke wire mounted verti-
cally to the left of the field of view.

Photo by John M. Cimbala.

4-32C Consider the visualization of flow over a sphere in
Fig. P4-32C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.

FIGURE P4-32C

Visualization of flow over a sphere at a Reynolds number
of 15,000. The visualization is produced by a time expo-
sure of air bubbles in water.

Courtesy ONERA. Photograph by Werlé.

4-33C What is the definition of a timeline? How can time-
lines be produced in a water channel? Name an application
where timelines are more useful than streaklines.

4-34C Consider a cross-sectional slice through an array of
heat exchanger tubes (Fig. P4-34C). For each desired piece
of information, choose which kind of flow visualization plot
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(vector plot or contour plot) would be most appropriate, and
explain why.

(a) The location of maximum fluid speed is to be visualized.
(b) Flow separation at the rear of the tubes is to be visualized.
(c¢) The temperature field throughout the plane is to be
visualized.

(d) The distribution of the vorticity component normal to the
plane is to be visualized.

0 0 &
0 0 o

FIGURE P4-34C

4-35 Converging duct flow (Fig. P4—17) is modeled by the
steady, two-dimensional velocity field of Prob. 4-17. Generate
an analytical expression for the flow streamlines.

Answer: y = C/(Uy + bx)

4—36 The velocity field of a flow is described by
= (4n)i + 5y + 3)] + (3t)k. What is the pathline of a
partlcle at a location (1 m, 2 m, 4 m) at time = 1 s?

4-37 Consider the following steady, incompressible, two-
dimensional velocity field:

= (u,v) = (4.35 + 0.656x)i + (—1.22 — 0.656y)]

Generate an analytical expression for the flow streamlines
and draw several streamlines in the upper-right quadrant from
x=0to5Sandy = 0to 6.

4-38 Consider the steady, incompressible, two-dimensional
velocity field of Prob. 4-37. Generate a velocity vector plot
in the upper-right quadrant from x = O to 5 and y = 0 to 6.

4-39 Consider the steady, incompressible, two-dimensional
velocity field of Prob. 4-37. Generate a vector plot of the
acceleration field in the upper-right quadrant from x = 0 to
Sandy = 0 to 6.

4-40 A steady, incompressible, two-dimensional velocity
field is given by

= (uv) = (1 +25x+ y)i + (=05 — 3x — 2.5y);

where the x- and y-coordinates are in m and the magnitude of
velocity is in m/s.

(a) Determine if there are any stagnation points in this flow
field, and if so, where they are.
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(b) Sketch velocity vectors at several locations in the upper-

right quadrant for x = 0 m to 4 m and y = 0 m to 4 m; quali-

tatively describe the flow field.

4-41 Consider the steady, incompressible, two-dimensional

velocity field of Prob. 4-40.

(a) Calculate the material acceleration at the point (x = 2 m,

y =3 m). Answers: a, = 8.50 m/s?, a, = 8.00 m/s?

(b) Sketch the material acceleration vectors at the same array

of x- and y-values as in Prob. 4—40.

4-42 The velocity field for solid-body rotation in the

rO-plane (Fig. P4-42) is given by
u. =0 Uy = wr

where w is the magnitude of the angular velocity (& points in

the z-direction). For the case with o = 1.5 s7!, plot a contour

plot of velocity magnitude (speed). Specifically, draw curves

of constant speed V = 0.5, 1.0, 1.5, 2.0, and 2.5 m/s. Be sure

to label these speeds on your plot.

Uy

(oo,
N7

FIGURE P4-42

4-43 The velocity field for a line vortex in the rf-plane
(Fig. P4-43) is given by
Uy = —

u, =0 p

where K is the line vortex strength. For the case with
K = 1.5 m/s?, plot a contour plot of velocity magnitude (speed).

Uy

o
N

FIGURE P4-43

Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5,
2.0, and 2.5 m/s. Be sure to label these speeds on your plot.

4-44 The velocity field for a line source in the rf-plane
(Fig. P4-44) is given by
m

2y
where m is the line source strength. For the case with m/(27) =
1.5 m?%s, plot a contour plot of velocity magnitude (speed).
Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5,
2.0, and 2.5 m/s. Be sure to label these speeds on your plot.

ug =0

ur

FIGURE P4-44

4-45 A very small circular cylinder of radius R, is rotating
at angular velocity w; inside a much larger concentric cyl-
inder of radius R, that is rotating at angular velocity w,. A
liquid of density p and viscosity wu is confined between the
two cylinders, as in Fig. P4-45. Gravitational and end effects
can be neglected (the flow is two-dimensional into the page).

Liquid: p, n

Inner cylinder

Outer cylinder

FIGURE P4-45



If w; = w, and a long time has passed, generate an expression
for the tangential velocity profile, u, as a function of (at most)
r, w, R, R, p, and u, where o = w; = w,. Also, calculate the
torque exerted by the fluid on the inner cylinder and on the
outer cylinder.

4-46 Consider the same two concentric cylinders of
Prob. 4-45. This time, however, the inner cylinder is rotat-
ing, but the outer cylinder is stationary. In the limit, as the
outer cylinder is very large compared to the inner cylinder
(imagine the inner cylinder spinning very fast while its radius
gets very small), what kind of flow does this approximate?
Explain. After a long time has passed, generate an expression
for the tangential velocity profile, namely u, as a function of
(at most) 7, w;, R;, R,, p, and u. Hint: Your answer may con-
tain an (unknown) constant, which can be obtained by speci-
fying a boundary condition at the inner cylinder surface.

4-47E Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-17. For the case in
which U, = 3.56 ft/s and b = 7.66 s™!, plot several stream-
lines from x = 0 ft to 5 ft and y = —2 ft to 2 ft. Be sure to
show the direction of the streamlines.

Motion and Deformation of Fluid Elements;
Vorticity and Rotationality

4-48C Explain the relationship between vorticity and rota-
tionality.

4-49C Name and briefly describe the four fundamental
types of motion or deformation of fluid particles.

4-50 Converging duct flow (Fig. P4-17) is modeled by
the steady, two-dimensional velocity field of Prob. 4-17.
Is this flow field rotational or irrotational? Show all your
work.  Answer: irrotational

4-51 Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-17. A fluid particle (A)
is located on the x-axis at x = x, at time ¢t = 0 (Fig. P4-51).

Fluid particle at
some later time ¢

Fluid particle at
time =0

FIGURE P4-51
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At some later time ¢, the fluid particle has moved downstream
with the flow to some new location x = x,,, as shown in the
figure. Since the flow is symmetric about the x-axis, the fluid
particle remains on the x-axis at all times. Generate an ana-
Iytical expression for the x-location of the fluid particle at
some arbitrary time ¢ in terms of its initial location x, and
constants U, and b. In other words, develop an expression
for x,.. (Hint: We know that u = dx,, ;. /dt following a fluid
particle. Plug in u, separate variables, and integrate.)

4-52 Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-17. Since the
flow is symmetric about the x-axis, line segment AB along
the x-axis remains on the axis, but stretches from length
& to length ¢ + A¢ as it flows along the channel center-
line (Fig. P4-52). Generate an analytical expression for the
change in length of the line segment, A¢. (Hint: Use the
result of Prob. 4-51.)  Answer: (xg — x,)(e’ — 1)

FIGURE P4-52

4-53 Using the results from Prob. 4-52 and the funda-
mental definition of linear strain rate (the rate of increase in
length per unit length), develop an expression for the linear
strain rate in the x-direction (g,,) of fluid particles located
on the centerline of the channel. Compare your result to the
general expression for e, in terms of the velocity field, i.e.,
&, = Ou/0x. (Hint: Take the limit as time ¢ — 0. You may
need to apply a truncated series expansion for e®.) Answer: b

4-54 Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-17. A fluid particle (A)
is located at x = x, and y = y, at time r = 0 (Fig. P4-54).
At some later time ¢, the fluid particle has moved down-
stream with the flow to some new location x = x,,, y = y,,
as shown in the figure. Generate an analytical expression
for the y-location of the fluid particle at arbitrary time ¢
in terms of its initial y-location y, and constant b. In other
words, develop an expression for y,. (Hint: We know that
U = dYpanice/dt following a fluid particle. Substitute the equa-
tion for v, separate variables, and integrate.) Answer: y,e~t
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Fluid particle at
some later time ¢

Fluid particle at
time =0

FIGURE P4-54

4-55 Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-17. As vertical line
segment AB moves downstream it shrinks from length 1 to
length m + An as sketched in Fig. P4-55. Generate an ana-
lytical expression for the change in length of the line seg-
ment, An. Note that the change in length, A, is negative.
(Hint: Use the result of Prob. 4-54.)

S

FIGURE P4-55

4-56 Using the results of Prob. 4-55 and the fundamental
definition of linear strain rate (the rate of increase in length
per unit length), develop an expression for the linear strain
rate in the y-direction (g,,) of fluid particles moving down the
channel. Compare your result to the general expression for
&,y in terms of the velocity field, i.e., &y = dv/dy. (Hint: Take
the limit as time # — 0. You may need to apply a truncated
series expansion for e,

4-57 Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-17. Use the equa-
tion for volumetric strain rate to verify that this flow field is
incompressible.

4-58 A general equation for a steady, two-dimensional
velocity field that is linear in both spatial directions (x and y) is

V= w,v) =W + ax + bly)? + (V+ax+ bzy)7

where U and V and the coefficients are constants. Their dimen-
sions are assumed to be appropriately defined. Calculate the
x- and y-components of the acceleration field.

4-59 For the velocity field of Prob. 4-58, what relationship
must exist between the coefficients to ensure that the flow
field is incompressible? Answer: a, + b, = 0

4-60 For the velocity field of Prob. 4-58, calculate the lin-
ear strain rates in the x- and y-directions. Answers: a;, b,

4-61 For the velocity field of Prob. 4-58, calculate the
shear strain rate in the xy-plane.

4-62 Combine your results from Probs. 4-60 and 4-61 to
form the two-dimensional strain rate tensor &; in the xy-plane,

I Sxy
€ i
SyX Syy

Under what conditions would the x- and y-axes be principal
axes? Answer: b, + a, =0

4-63 For the velocity field of Prob. 4-58, calculate the
vorticity vector. In which direction does the vorticity vector
point?  Answer: (a, — b;)k in z — direction

4-64 Consider steady, incompressible, two-dimensional shear
flow for which the velocity field is

V=uv)=(a+byi+0j

where a and b are constants. Sketched in Fig. P4-64 is a
small rectangular fluid particle of dimensions dx and dy at
time ¢. The fluid particle moves and deforms with the flow
such that at a later time (¢ + dr), the particle is no longer rect-
angular, as also shown in the figure. The initial location of
each corner of the fluid particle is labeled in Fig. P4—64. The
lower-left corner is at (x, y) at time ¢, where the x-component

Particle at time ¢

_ Particle at
7 time ¢ + dt
B (x+dx,y+dy)
dx dx
Samasd oA
: — // ///
1
., M
(x+dx,y)
L
X

FIGURE P4-64



of velocity is u = a + by. At the later time, this corner moves
to (x + u dt, y), or

(x + (a + by)dt,y)

(a) In similar fashion, calculate the location of each of the
other three corners of the fluid particle at time ¢ + dr.
(b) From the fundamental definition of linear strain rate (the
rate of increase in length per unit length), calculate linear
strain rates €, and g,,. Answers: 0, 0
(¢) Compare your results with those obtained from the equa-
tions for &,, and &, in Cartesian coordinates, i.e.,
ou o
g€, =T &,= —
T ax oy
4-65 Use two methods to verify that the flow of Prob. 4—-64
is incompressible: (a) by calculating the volume of the fluid
particle at both times, and (b) by calculating the volumetric
strain rate. Note that Prob. 4-64 should be completed before
this problem.

4-66 Consider the steady, incompressible, two-dimensional
flow field of Prob. 4-64. Using the results of Prob. 4-64(a),
do the following:

(a) From the fundamental definition of shear strain rate
(half of the rate of decrease of the angle between two initially
perpendicular lines that intersect at a point), calculate shear
strain rate g, in the xy-plane. (Hint: Use the lower edge and
the left edge of the fluid particle, which intersect at 90° at the
lower-left corner of the particle at the initial time.)

(b) Compare your results with those obtained from the equa-
tion for &, in Cartesian coordinates, i.e.,

1 au+av
e, =—|—+—
Yoo 2\dy  ax

Answers: (a) bl2, (b) b/2

4-67 Consider the steady, incompressible, two-dimensional
flow field of Prob. 4-64. Using the results of Prob. 4-64(a),
do the following:

(a) From the fundamental definition of the rate of rotation
(average rotation rate of two initially perpendicular lines that
intersect at a point), calculate the rate of rotation of the fluid
particle in the xy-plane, w,. (Hint: Use the lower edge and the
left edge of the fluid particle, which intersect at 90° at the
lower-left corner of the particle at the initial time.)

(b) Compare your results with those obtained from the equa-
tion for w_ in Cartesian coordinates, i.e.,

1<az/ au>
w==—(—-—
2 \ax  ay

Answers: (a) —bl2, (b) —b/2

4-68 From the results of Prob. 4-67,
(a) Is this flow rotational or irrotational?
(b) Calculate the z-component of vorticity for this flow field.
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4-69 A two-dimensional fluid element of dimensions dx
and dy translates and distorts as shown in Fig. P4-69 during
the infinitesimal time period dt = t, — t,. The velocity com-
ponents at point P at the initial time are « and v in the x- and
y-directions, respectively. Show that the magnitude of the rate
of rotation (angular velocity) about point P in the xy-plane is

1 <81/ au>
w=——-—
2 \ax  ay

\‘ oy, ! ///\\
\ 1y R
\\ //‘I \\ L7
B ¥ v L
I A/ '/
Line b —_{ i \aa
’ )
! P ¥ -\----L_
| Line a
Line b v
1ne B Fluid element
at time 7,
/2
Pl N 4
dx u y
Line a
Fluid element 53
at time #
FIGURE P4-69

4-70 A two-dimensional fluid element of dimensions dx
and dy translates and distorts as shown in Fig. P4-69 dur-
ing the infinitesimal time period dt = ¢, — t,. The velocity
components at point P at the initial time are u and v in the
x- and y-directions, respectively. Consider the line segment
PA in Fig. P4-69, and show that the magnitude of the linear
strain rate in the x-direction is
_du
T oy

4-71 A two-dimensional fluid element of dimensions dx
and dy translates and distorts as shown in Fig. P4-69 dur-
ing the infinitesimal time period dt = ¢, — t,. The velocity
components at point P at the initial time are u and v in the
x- and y-directions, respectively. Show that the magnitude of
the shear strain rate about point P in the xy-plane is

1 (ou v
sxv =\t
’ 2\dy ox

4-72 Consider a steady, two-dimensional, incompress-
ible flow field in the xy-plane. The linear strain rate in the
x-direction is 2.5 s~!. Calculate the linear strain rate in the
y-direction.
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4-73 A cylindrical tank of water rotates in solid-body rota-
tion, counterclockwise about its vertical axis (Fig. P4-73) at
angular speed n = 175 rpm. Calculate the vorticity of fluid
particles in the tank. Answer: 36.7 K rad/s

A
3
I Ttim >
Free i—» r
surface :
b
Liquid i
FIGURE P4-73

4-74 A cylindrical tank of water rotates about its verti-
cal axis (Fig. P4-73). A PIV system is used to measure the
vorticity field of the flow. The measured value of vorticity
in the z-direction is —45.4 rad/s and is constant to within
*0.5 percent everywhere that it is measured. Calculate the
angular speed of rotation of the tank in rpm. Is the tank rotat-
ing clockwise or counterclockwise about the vertical axis?

4-75 A cylindrical tank of radius r,;;, = 0.354 m rotates about
its vertical axis (Fig. P4-73). The tank is partially filled with
oil. The speed of the rim is 3.61 m/s in the counterclockwise
direction (looking from the top), and the tank has been spin-
ning long enough to be in solid-body rotation. For any fluid
particle in the tank, calculate the magnitude of the component
of vorticity in the vertical z-direction. Answer: 20.4 rad/s

4-76 Consider a two-dimensional, incompressible flow
field in which an initially square fluid particle moves and
deforms. The fluid particle dimension is a at time ¢ and is
aligned with the x- and y-axes as sketched in Fig. P4-76. At
some later time, the particle is still aligned with the x- and

FIGURE P4-76

y-axes, but has deformed into a rectangle of horizontal length
2a. What is the vertical length of the rectangular fluid par-
ticle at this later time?

4-77 Consider a two-dimensional, compressible flow field
in which an initially square fluid particle moves and deforms.
The fluid particle dimension is a at time ¢ and is aligned with
the x- and y-axes as sketched in Fig. P4-76. At some later
time, the particle is still aligned with the x- and y-axes but has
deformed into a rectangle of horizontal length 1.08a and verti-
cal length 0.903a. (The particle’s dimension in the z-direction
does not change since the flow is two-dimensional.) By what
percentage has the density of the fluid particle increased or
decreased?

4-78 Consider the following steady, three-dimensional veloc-
ity field:

‘7 = (u,v,w)
= (3.0 + 2.0x — y)i + (2.0x — 2.0y)] + (0.5xy)k

Calculate the vorticity vector as a function of space (x, y, 2).

4-79 Consider fully developed Couette flow—flow between
two infinite parallel plates separated by distance 4, with the
top plate moving and the bottom plate stationary as illustrated
in Fig. P4-79. The flow is steady, incompressible, and two-
dimensional in the xy-plane. The velocity field is given by

V= (o) = v%7+07

Is this flow rotational or irrotational? If it is rotational, cal-
culate the vorticity component in the z-direction. Do fluid
particles in this flow rotate clockwise or counterclockwise?
Answers: yes, —V/h, clockwise

FIGURE P4-79

4-80 For the Couette flow of Fig. P4-79, calculate the lin-
ear strain rates in the x- and y-directions, and calculate the
shear strain rate &,

4-81 Combine your results from Prob. 4-80 to form the
two-dimensional strain rate tensor g,

_ Exx sxv
& i -
8)’)‘ S.W

Are the x- and y-axes principal axes?



4-82 A steady, three-dimensional velocity field is given by
V= (u, v, w)
= (249 + 1.36x — 0.867y)i
+ (1.95x — 1.36y)] + (—0.458xy)k

Calculate the vorticity vector as a function of space variables
(.X, y7 Z)'
4-83 A steady, two-dimensional velocity field is given by
‘7 = (u, v)
= (2.85 + 1.26x — 0.896y)i
+ (345x + cx — 126y)]

Calculate constant ¢ such that the flow field is irrotational.
4-84 A steady, three-dimensional velocity field is given by
V = (135 + 2.78x + 0.754y + 4.212)7
+ (345 + cx — 278y + b2)]

+ (—421x — 1.899)K
Calculate constants » and ¢ such that the flow field is
irrotational.
4-85 A steady, three-dimensional velocity field is given by
V = (0.657 + 1.73x + 0.948y + az)i
+ (2,61 + cx + 191y + bg)j
+ (=2.73x — 3.66y — 3.642)k

Calculate constants a, b, and ¢ such that the flow field is
irrotational.

4-86E @ | Converging duct flow is modeled by the steady,
<= two-dimensional velocity field of Prob. 4-17.

For the case in which U, = 5.0 ft/s and b = 4.6 s™!, consider

Initially square fluid
particle at 7 = 0

Unknown shape and
location of fluid particle
at later time ¢

FIGURE P4-86E
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an initially square fluid particle of edge dimension 0.5 ft,
centered at x = 0.5 ft and y = 1.0 ft at t = O (Fig. P4-86E).
Carefully calculate and plot where the fluid particle will be
and what it will look like at time ¢ = 0.2 s later. Comment on
the fluid particle’s distortion. (Hint: Use the results of
Probs. 4-51 and 4-54.)

4-87E Based on the results of Prob. 4-86E, verify that this
converging duct flow field is indeed incompressible.

Reynolds Transport Theorem

4-88C Briefly explain the similarities and differences
between the material derivative and the Reynolds transport
theorem.

4-89C Briefly explain the purpose of the Reynolds trans-
port theorem (RTT). Write the RTT for extensive property B
as a “word equation,” explaining each term in your own
words.

4-90C True or false: For each statement, choose whether
the statement is true or false and discuss your answer briefly.

(a) The Reynolds transport theorem is useful for transform-
ing conservation equations from their naturally occurring
control volume forms to their system forms.

(b) The Reynolds transport theorem is applicable only to
nondeforming control volumes.

(¢) The Reynolds transport theorem can be applied to both
steady and unsteady flow fields.

(d) The Reynolds transport theorem can be applied to both

scalar and vector quantities. ”

4-91 Consider the integral o x2dx. Solve it two ways:
t
(a) Take the integral first and then the time derivative.

(b) Use Leibniz theorem. Compare your results.
2t

4-92 Solve the integral EJ x'dx as far as you are able.
t

4-93 Consider the general form of the Reynolds transport
theorem (RTT) given by

dBy, d J J .
=— bdV + bV-n dA
dt dt Joy P cs oty

where \7, is the velocity of the fluid relative to the control
surface. Let By, be the mass m of a closed system of fluid
particles. We know that for a system, dm/dt = 0 since no
mass can enter or leave the system by definition. Use the
given equation to derive the equation of conservation of mass

for a control volume.

4-94 Consider the general form of the Reynolds transport
theorem (RTT) as stated in Prob. 4-93. Let B, be the linear
momentum mV of a system of fluid particles. We know that

for a system, Newton’s second law is

F=m3=mf= -
2 dt dt sy
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Use the RTT and Newton’s second law to derive the linear
momentum equation for a control volume.

4-95 Consider the general form of the Reynolds transport
theorem (RTT) as stated in Prob. 4-93. Let B, be the angu-
lar momentum H = 7 X mV of a system of fluid particles,
where 7 is the moment arm. We know that for a system, con-
servation of angular momentum is

~ d o
EM—EHSYS

N
where 3 M is the net moment applied to the system. Use the
RTT and the above equation to derive the equation of conser-
vation of angular momentum for a control volume.

4-96 Reduce the following expression as far as possible:

d x=Bt .
Ft) = — 2 d
() dr LA: ¢ g

(Hint: Use the one-dimensional Leibniz theorem.) Answer:
Be Bt — Ae At

Review Prohlems

4-97 Consider a steady, two-dimensional flow field in the
xy-plane whose x-component of velocity is given by

u=a+ bkx— c)

where a, b, and ¢ are constants with appropriate dimensions.
Of what form does the y-component of velocity need to be in
order for the flow field to be incompressible? In other words,
generate an expression for v as a function of x, y, and the
constants of the given equation such that the flow is incom-
pressible.  Answer: —2b(x — ¢)y + f(X)

4-98 In a steady, two-dimensional flow field in the xy-
plane, the x-component of velocity is

u=ax + by + cx*

where a, b, and ¢ are constants with appropriate dimensions.
Generate a general expression for velocity component v such
that the flow field is incompressible.

4-99 Consider fully developed two-dimensional Poiseuille
flow—flow between two infinite parallel plates separated by
distance &, with both the top plate and bottom plate station-
ary, and a forced pressure gradient dP/dx driving the flow as
illustrated in Fig. P4-99. (dP/dx is constant and negative.)
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FIGURE P4-99

The flow is steady, incompressible, and two-dimensional in
the xy-plane. The velocity components are given by
1 dP

=—Z G2 —n
" 2w dx »)

v=20

where w is the fluid’s viscosity. Is this flow rotational or irro-
tational? If it is rotational, calculate the vorticity component
in the z-direction. Do fluid particles in this flow rotate clock-
wise or counterclockwise?

4-100 For the two-dimensional Poiseuille flow of Prob. 4-99,
calculate the linear strain rates in the x- and y-directions, and
calculate the shear strain rate &,,.

4-101 Combine your results from Prob. 4-100 to form the
two-dimensional strain rate tensor g; in the xy-plane,

_ [ € €y
g = -
8)’)‘ S,Vy

Are the x- and y-axes principal axes?

4-102 €\ Consider the two-dimensional Poiseuille flow of
== Prob. 4-99. The fluid between the plates is water
at 40°C. Let the gap height 2 = 1.6 mm and the pressure gra-
dient dP/dx = —230 N/m3. Calculate and plot seven pathlines
from r = 0 to ¢t = 10 s. The fluid particles are released at x = 0
and aty = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 mm.

4-103 %@?’g Consider the two-dimensional Poiseuille flow

of Prob. 4-99. The fluid between the plates is
water at 40°C. Let the gap height # = 1.6 mm and the pres-
sure gradient dP/dx = —230 N/m?. Calculate and plot seven
streaklines generated from a dye rake that introduces dye
streaks at x = 0 and at y = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and
1.4 mm (Fig. P4-103). The dye is introduced from ¢ = 0 to
t = 10 s, and the streaklines are to be plotted at ¢+ = 10 s.

Dye rake
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<=2 duced from t = 0 to r = 10 s, and the streak-

lines are to be plotted at = 12 s instead of 10 s.

&

<= Prob. 4-99. The fluid between the plates is water



at 40°C. Let the gap height # = 1.6 mm and the pressure gra-
dient dP/dx = —230 N/m3. Imagine a hydrogen bubble wire
stretched vertically through the channel at x = 0 (Fig. P4-106).
The wire is pulsed on and off such that bubbles are produced
periodically to create timelines. Five distinct timelines are gen-
erated at r = 0, 2.5, 5.0, 7.5, and 10.0 s. Calculate and plot
what these five timelines look like at time # = 12.5 s.

H, wire
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FIGURE P4-106

4—107 The velocity field of a flow is given by
= k(x* — yz)z — 2kxy J where k is a constant. If the radius
of curvature of a streamline is R = [1 + y'2]¥%|y"|, deter-
mine the normal acceleration of a particle (which is normal
to the streamline) passing through the position x = L, y = 2.

4-108 The velocity field for an incompressible flow is
given as V=5x — 20xy] + 100¢k . Determine if this flow
is steady. Also determine the velocity and acceleration of a
particle at (1, 3, 3) att = 0.2 s.

4-109 Consider fully developed axisymmetric Poiseuille
flow—flow in a round pipe of radius R (diameter D = 2R),
with a forced pressure gradient dP/dx driving the flow as
illustrated in Fig. P4-109. (dP/dx is constant and negative.)
The flow is steady, incompressible, and axisymmetric about
the x-axis. The velocity components are given by

- 2 R2 =0
S )

ug =0

where w is the fluid’s viscosity. Is this flow rotational or irro-
tational? If it is rotational, calculate the vorticity component
in the circumferential (@) direction and discuss the sign of the
rotation.

FIGURE P4-109

4-110 For the axisymmetric Poiseuille flow of Prob. 4-109,
calculate the linear strain rates in the x- and r-directions, and
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calculate the shear strain rate e,. The strain rate tensor in
cylindrical coordinates (r, 6, x) and (u,, up, u,), is

Ey &9 Epn

rr

i = | €or €0 Epx

er 8):9 e
ou, 1 ( ) <u9> 1 au,> 1 <au aux>
—(r—(—)+— +
ar 2 ar\r r 06 2\ ax ar
1 < 9 (“a) 1 au,> 10u, u, 1 <1 ou, 8u6>
=l=({r—(—)+— -+ = + —
2 ar \ r r 06 r 00 r 2 \r 90 ax
1 (au, ﬁul) 1 (1 du, au9> u,
2\ ax ar 2 \r a0 0x 0x
4-111 Combine your results from Prob. 4-110 to form the
axisymmetric strain rate tensor €y

— 8/‘/‘ SI‘X
g; =
8)()' SXX

Are the x- and r-axes principal axes?

4-112 We approximate the flow of air into a vacuum
cleaner attachment by the following velocity components in
the centerplane (the xy-plane):

— Ux X2+ yr+ P
“TTaL o+ 2x%y? 4+ 2x%% + y* — 2y%* + bt
and
_ Vy X2+ — B2
v =

7L x* + 2x%? 4 207 + y*t — 2y + bt

where b is the distance of the attachment above the floor, L
is the length of the attachment, and is the volume flow rate
of air being sucked up into the hose (Fig. P4-112). Deter-
mine the location of any stagnation point(s) in this flow field.
Answer: at the origin

FIGURE P4-112
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4-113 Consider the vacuum cleaner of Prob. 4-112. For the
case where b = 2.0 cm, L = 35 cm, and V = 0.1098 m’/s, cre-
ate a velocity vector plot in the upper half of the xy-plane from
x = —3cmto 3 cm and from y = 0 cm to 2.5 cm. Draw as
many vectors as you need to get a good feel of the flow field.
Note: The velocity is infinite at the point (x, y) = (0, 2.0 cm),
so do not attempt to draw a velocity vector at that point.

4-114 Consider the approximate velocity field given for
the vacuum cleaner of Prob. 4—-112. Calculate the flow speed
along the floor. Dust particles on the floor are most likely to
be sucked up by the vacuum cleaner at the location of maxi-
mum speed. Where is that location? Do you think the vacuum
cleaner will do a good job at sucking up dust directly below
the inlet (at the origin)? Why or why not?

4-115 In a steady, two-dimensional flow field in the xy-
plane, the x-component of velocity is

u = ax + by + cx*> — dxy

where a, b, ¢, and d are constants with appropriate dimen-
sions. Generate a general expression for velocity component
v such that the flow field is incompressible.

4-116 There are numerous occasions in which a fairly uni-
form free-stream flow encounters a long circular cylinder
aligned normal to the flow (Fig. P4-116). Examples include
air flowing around a car antenna, wind blowing against a
flag pole or telephone pole, wind hitting electrical wires, and
ocean currents impinging on the submerged round beams that
support oil platforms. In all these cases, the flow at the rear of
the cylinder is separated and unsteady, and usually turbulent.
However, the flow in the front half of the cylinder is much
more steady and predictable. In fact, except for a very thin
boundary layer near the cylinder surface, the flow field may
be approximated by the following steady, two-dimensional
velocity components in the xy- or rf-plane:

a’ a’
u, = Vcos 9(1 - 7) uy, = —Vsin 9(1 + 7)
r r

Is this flow field rotational or irrotational? Explain.

FIGURE P4-116

4-117 Consider the flow field of Prob. 4-116 (flow over
a circular cylinder). Consider only the front half of the flow
(x < 0). There is one stagnation point in the front half of the
flow field. Where is it? Give your answer in both cylindrical
(r, ) coordinates and Cartesian (x, y) coordinates.

4-118

@ | Consider the upstream half (x < 0) of the flow
= field of Prob. 4-116 (flow over a circular cylin-
der). We introduce a parameter called the stream function ¢,
which is constant along streamlines in two-dimensional flows
such as the one being considered here (Fig. P4-118). The
velocity field of Prob. 4-116 corresponds to a stream func-

tion given by
. a*
¢y =Vsinf|r — —
r

(a) Setting ¢ to a constant, generate an equation for a
streamline. (Hint: Use the quadratic rule to solve for r as a
function of 0.)

Streamlines

FIGURE P4-118

(b) For the particular case in which V = 1.00 m/s and cylinder
radius a = 10.0 cm, plot several streamlines in the upstream half
of the flow (90° < 6 < 270°). For consistency, plot in the range
—04m<x<0m, —0.2m <y < 0.2 m, with stream function
values evenly spaced between —0.16 m%/s and 0.16 m?%s.

4-119 Consider the flow field of Prob. 4-116 (flow over a
circular cylinder). Calculate the two linear strain rates in the
rf-plane; i.e., calculate g, and gy, Discuss whether fluid line
segments stretch (or shrink) in this flow field. (Hint: The strain
rate tensor in cylindrical coordinates is given in Prob. 4-110.)

4-120 Based on your results of Prob. 4-119, discuss the
compressibility (or incompressibility) of this flow. Answer:
flow is incompressible

4-121 Consider the flow field of Prob. 4-116 (flow over a
circular cylinder). Calculate €, the shear strain rate in the
rO-plane. Discuss whether fluid particles in this flow deform
with shear or not. (Hint: The strain rate tensor in cylindrical
coordinates is given in Prob. 4-110.)

Fundamentals of Engineering (FE) Exam Problems

4-122 A steady, incompressible, two-dimensional velocity
field is given by

V=(v)= 25— 1.6x)i + (0.7 + 1.6y)]

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The values of x and y at the stagna-
tion point, respectively, are

(a) 0.9375 m, 0.375 m (b) 1.563 m, —0.4375 m
(¢)25m,07m (d)0.731 m, 1.236 m (¢) —1.6 m, 0.8 m



4-123 Water is flowing in a 3-cm-diameter garden hose at
a rate of 30 L/min. A 20-cm nozzle is attached to the hose
which decreases the diameter to 1.2 cm. The magnitude of
the acceleration of a fluid particle moving down the center-
line of the nozzle is

(@) 9.81 m/s?  (b) 145 m/s?  (¢) 25.4 m/s*> (d) 39.1 m/s?
(e) 47.6 m/s?
4-124 A steady, incompressible, two-dimensional velocity

field is given by

V=(uv)= 25— 1.6x)i + (0.7 + 1.6y)]
where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The x-component of the accelera-
tion vector a, is
(a) 0.8y (b) —1.6x (c)2.5x — 1.6 (d)2.56x — 4
(e) 2.56x + 0.8y

4-125 A steady, incompressible, two-dimensional velocity
field is given by

V=(uv)= 25— 16x)i + (07 + 1.6y)]
where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The x- and y-component of mate-
rial acceleration a, and a, at the point (x = 1 m, y = 1 m),
respectively, in m/s?, are
(a) —1.44,3.68 (b) —1.6,1.5 (c)3.1,—1.32
(d) 256, —4 (e) —0.8, 1.6

4-126 A steady, incompressible, two-dimensional velocity
field is given by

V= (uv) =065+ 1707 + (1.3 — 1.7y)]
where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The y-component of the accelera-
tion vector a, is
(a) L7y (b) =17y (c)2.89y —2.21(d) 3.0x — 2.73
(e) 0.84y + 1.42

4-127 A steady, incompressible, two-dimensional velocity
field is given by

V=(uv) =065+ 1.70)i + (1.3 — 1.7y))
where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The x- and y-component of mate-
rial acceleration a, and a, at the point (x = 0 m, y = 0 m),
respectively, in m/s?, are
(a) 0.37, —1.85 (b) —1.7, 1.7 (c) 1.105, —2.21
d) 1.7, —1.7 (e) 0.65, 1.3

4-128 A steady, incompressible, two-dimensional velocity
field is given by

V= (uv) = (0.65+ 1707 + (1.3 — 1.7y)]
where the x- and y-coordinates are in meters and the magnitude
of velocity is in m/s. The x- and y-component of velocity u
and v at the point (x = 1 m, y = 2 m), respectively, in m/s, are
(a) 0.54, —2.31 (b) —1.9,0.75 (c¢) 0.598, —2.21
(d) 235, —2.1 (e)0.65, 1.3
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4-129 The actual path traveled by an individual fluid par-
ticle over some period is called a

(a) Pathline (b) Streamtube (c¢) Streamline

(d) Streakline (e) Timeline

4-130 The locus of fluid particles that have passed sequen-
tially through a prescribed point in the flow is called a

(a) Pathline (b) Streamtube (c¢) Streamline

(d) Streakline (e) Timeline

4-131 A curve that is everywhere tangent to the instanta-
neous local velocity vector is called a

(a) Pathline (b) Streamtube (c¢) Streamline

(d) Streakline (e) Timeline

4-132 An array of arrows indicating the magnitude and
direction of a vector property at an instant in time is called a
(a) Profiler plot (b) Vector plot (c¢) Contour plot

(d) Velocity plot (e) Time plot

4-133 The CFD stands for

(a) Compressible fluid dynamics
(b) Compressed flow domain

(¢) Circular flow dynamics

(d) Convective fluid dynamics
(e) Computational fluid dynamics

4-134 Which one is not a fundamental type of motion or
deformation an element may undergo in fluid mechanics?

(a) Rotation (b) Converging (c) Translation

(d) Linear strain  (e) Shear strain

4-135 A steady, incompressible, two-dimensional velocity
field is given by

V=(uv)= 25— 1.6x)i + (0.7 + 1.6y)]

where the x- and y-coordinates are in meters and the magnitude

of velocity is in m/s. The linear strain rate in the x-direction in
1

s lis

(@ —1.6 ()08 (c)1.6 (d)2.5 (e) —0.875

4-136 A steady, incompressible, two-dimensional velocity
field is given by

V=(uv)= 25— 16x)i + (0.7 + 1.6y)j

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The shear strain rate in s~ ! is
(@ —1.6 (b)1.6 ()25 (d)0.7 (e)0

4-137 A steady, two-dimensional velocity field is given by
V=)= 25— 1637 + (0.7 + 0.8y)]

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The volumetric strain rate in s~ ! is
(@0 ()32 (c)—08 (d)0.8 (e) —1.6

4-138 If the vorticity in a region of the flow is zero, the
flow is

(a) Motionless
(d) Irrotational

(b) Incompressible
(e) Rotational

(c) Compressible
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4-139 The angular velocity of a fluid particle is 20 rad/s.
The vorticity of this fluid particle is

(a) 20 rad/s (b) 40 rad/s (c) 80 rad/s
(e) 5 rad/s

4-140 A steady, incompressible, two-dimensional velocity
field is given by

(d) 10 rad/s

V= (uv) = (075 + 1.2x)7 + (225 — 1.2y)]

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The vorticity of this flow is

@0 () 129k (c) =12k (d)yk () —1.2xyk

4-141 A steady, incompressible, two-dimensional velocity
field is given by

V=)= Qxy+ 1)i +(—y* — 0.6)]

where the x- and y-coordinates are in meters and the magni-
tude of velocity is in m/s. The angular velocity of this flow is
(@0 (b) =29k (c)2yk (d) —2xk (e) —xk

4-142 A cart is moving at a constant absolute velocity
Ve = 5 km/h to the right. A high-speed jet of water at an
absolute velocity of Vi, = 15 km/h to the right strikes the
back of the car. The relative velocity of the water is

(a) 0 km/h (b) 5 km/h (¢) 10 km/h (d) 15 km/h (e) 20 km/h



BERNOULLI AND ENERGY
EQUATIONS

his chapter deals with three equations commonly used in fluid mechan-

ics: the mass, Bernoulli, and energy equations. The mass equation is an

expression of the conservation of mass principle. The Bernoulli equation
is concerned with the conservation of kinetic, potential, and flow energies of
a fluid stream and their conversion to each other in regions of flow where
net viscous forces are negligible and where other restrictive conditions apply.
The energy equation is a statement of the conservation of energy principle. In
fluid mechanics, it is convenient to separate mechanical energy from thermal
energy and to consider the conversion of mechanical energy to thermal energy
as a result of frictional effects as mechanical energy loss. Then the energy
equation becomes the mechanical energy balance.

We start this chapter with an overview of conservation principles and the
conservation of mass relation. This is followed by a discussion of various
forms of mechanical energy and the efficiency of mechanical work devices
such as pumps and turbines. Then we derive the Bernoulli equation by
applying Newton’s second law to a fluid element along a streamline and
demonstrate its use in a variety of applications. We continue with the devel-
opment of the energy equation in a form suitable for use in fluid mechanics
and introduce the concept of head loss. Finally, we apply the energy equa-
tion to various engineering systems.

Wind turbine “farms” are being constructed all
over the world to extract kinetic energy from

the wind and convert it to electrical energy.

The mass, energy, momentum, and angular
momentum balances are utilized in the design
of a wind turbine. The Bernoulli equation is also
useful in the preliminary design stage.

© J. Luke/PhotoLink/Getty RF

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

] Apply the conservation of mass
equation to balance the incom-
ing and outgoing flow rates in a
flow system

(] Recognize various forms of me-
chanical energy, and work with
energy conversion efficiencies

] Understand the use and limita-
tions of the Bernoulli equation,
and apply it to solve a variety of
fluid flow problems

[ ] Work with the energy equation
expressed in terms of heads, and
use it to determine turbine power
output and pumping power
requirements
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FIGURE 5-1

Many fluid flow devices such as this
Pelton wheel hydraulic turbine are
analyzed by applying the conservation
of mass and energy principles, along
with the linear momentum equation.

Courtesy of Hydro Tasmania, www.hydro.com.au.
Used by permission.

5-1 = INTRODUCTION

You are already familiar with numerous conservation laws such as the
laws of conservation of mass, conservation of energy, and conservation of
momentum. Historically, the conservation laws are first applied to a fixed
quantity of matter called a closed system or just a system, and then extended
to regions in space called control volumes. The conservation relations are
also called balance equations since any conserved quantity must balance
during a process. We now give a brief description of the conservation of
mass and energy relations, and the linear momentum equation (Fig. 5-1).

Conservation of Mass

The conservation of mass relation for a closed system undergoing a change
is expressed as mg, = constant or dm,/dt = 0, which is the statement that
the mass of the system remains constant during a process. For a control vol-
ume (CV), mass balance is expressed in rate form as

. dmcy
T Moy T dr (5-1

where n1;, and m,, are the total rates of mass flow into and out of the con-
trol volume, respectively, and dm/dt is the rate of change of mass within
the control volume boundaries. In fluid mechanics, the conservation of mass
relation written for a differential control volume is usually called the conti-
nuity equation. Conservation of mass is discussed in Section 5-2.

Conservation of mass: n;

The Linear Momentum Equation

The product of the mass and the velocity of a body is called the linear
momentum or just the momentum of the body, and the momentum of a rigid
body of mass m moving with a velocity V is mV. Newton’s second law states
that the acceleration of a body is proportional to the net force acting on it
and is inversely proportional to its mass, and that the rate of change of the
momentum of a body is equal to the net force acting on the body. Therefore,
the momentum of a system remains constant only when the net force acting
on it is zero, and thus the momentum of such systems is conserved. This
is known as the conservation of momentum principle. In fluid mechanics,
Newton’s second law is usually referred to as the linear momentum equation,
which is discussed in Chap. 6 together with the angular momentum equation.

Conservation of Energy

Energy can be transferred to or from a closed system by heat or work, and
the conservation of energy principle requires that the net energy transfer to
or from a system during a process be equal to the change in the energy con-
tent of the system. Control volumes involve energy transfer via mass flow
also, and the conservation of energy principle, also called the energy balance,
is expressed as

dECV

Conservation of energy: Ein - Eout i (5-2)

where Ein and Eout are the total rates of energy transfer into and out of the
control volume, respectively, and dE/dt is the rate of change of energy
within the control volume boundaries. In fluid mechanics, we usually limit




our consideration to mechanical forms of energy only. Conservation of
energy is discussed in Section 5-6.

5-2 = CONSERVATION OF MASS

The conservation of mass principle is one of the most fundamental prin-
ciples in nature. We are all familiar with this principle, and it is not difficult
to understand. A person does not have to be a rocket scientist to figure out
how much vinegar-and-oil dressing will be obtained by mixing 100 g of oil
with 25 g of vinegar. Even chemical equations are balanced on the basis of
the conservation of mass principle. When 16 kg of oxygen reacts with 2 kg
of hydrogen, 18 kg of water is formed (Fig. 5-2). In an electrolysis process,
the water separates back to 2 kg of hydrogen and 16 kg of oxygen.

Technically, mass is not exactly conserved. It turns out that mass m and
energy E can be converted to each other according to the well-known for-
mula proposed by Albert Einstein (1879-1955):

E = mc? (5-3)

where ¢ is the speed of light in a vacuum, which is ¢ = 2.9979 X 108 m/s.
This equation suggests that there is equivalence between mass and energy.
All physical and chemical systems exhibit energy interactions with their sur-
roundings, but the amount of energy involved is equivalent to an extremely
small mass compared to the system’s total mass. For example, when 1 kg
of liquid water is formed from oxygen and hydrogen at normal atmospheric
conditions, the amount of energy released is 15.8 MJ, which corresponds to
a mass of only 1.76 X 107! kg. However, in nuclear reactions, the mass
equivalence of the amount of energy interacted is a significant fraction of
the total mass involved. Therefore, in most engineering analyses, we con-
sider both mass and energy as conserved quantities.

For closed systems, the conservation of mass principle is implicitly used by
requiring that the mass of the system remain constant during a process. For
control volumes, however, mass can cross the boundaries, and so we must
keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates

The amount of mass flowing through a cross section per unit time is called
the mass flow rate and is denoted by m. The dot over a symbol is used to
indicate time rate of change.

A fluid flows into or out of a control volume, usually through pipes or
ducts. The differential mass flow rate of fluid flowing across a small area
element dA, in a cross section of a pipe is proportional to dA, itself, the fluid
density p, and the component of the flow velocity normal to dA, ., which we
denote as V,, and is expressed as (Fig. 5-3)

8 = pV, dA, (5-4)

Note that both é and d are used to indicate differential quantities, but & is
typically used for quantities (such as heat, work, and mass transfer) that are
path functions and have inexact differentials, while d is used for quantities
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2kg 16 kg 18 kg
H, |t o0, || mo
FIGURE 5-2

Mass is conserved even during
chemical reactions.

Control surface \

FIGURE 5-3

The normal velocity V, for a surface
is the component of velocity
perpendicular to the surface.
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Vavg :
! N
_____ ; )
FIGURE 54
Average velocity V,, is defined

as the average speed through a cross
section.

Cross section

FIGURE 5-5

The volume flow rate is the volume of
fluid flowing through a cross section
per unit time.

(such as properties) that are point functions and have exact differentials. For
flow through an annulus of inner radius », and outer radius r,, for example,

2
[
1

through the annulus), not m, — ;. For specified values of r; and r,, the
value of the integral of dA, is fixed (thus the names point function and exact
differential), but this is not the case for the integral of 6m (thus the names
path function and inexact differential).

The mass flow rate through the entire cross-sectional area of a pipe or
duct is obtained by integration:

m = J om = J pV,dA,  (kg/s)
A, A,

2
=A, — A, =} — r}) but J S = iy, (total mass flow rate
I

(5-5)

While Eq. 5-5 is always valid (in fact it is exact), it is not always practical
for engineering analyses because of the integral. We would like instead to
express mass flow rate in terms of average values over a cross section of the
pipe. In a general compressible flow, both p and V,, vary across the pipe. In
many practical applications, however, the density is essentially uniform over
the pipe cross section, and we can take p outside the integral of Eq. 5-5.
Velocity, however, is never uniform over a cross section of a pipe because
of the no-slip condition at the walls. Rather, the velocity varies from zero at
the walls to some maximum value at or near the centerline of the pipe. We
define the average velocity V,,, as the average value of V, across the entire
cross section of the pipe (Fig. 5-4),

1
Average velocity: Vg = fj V,dA. (5-6)

cJA,
where A, is the area of the cross section normal to the flow direction. Note
that if the speed were V,,, all through the cross section, the mass flow rate
would be identical to that obtained by integrating the actual velocity pro-
file. Thus for incompressible flow or even for compressible flow where p is
approximated as uniform across A, Eq. 5-5 becomes

m = pVy, A,  (kgls) (5-7)

For compressible flow, we can think of p as the bulk average density over the
cross section, and then Eq. 5-7 can be used as a reasonable approximation. For
simplicity, we drop the subscript on the average velocity. Unless otherwise
stated, V denotes the average velocity in the flow direction. Also, A, denotes
the cross-sectional area normal to the flow direction.

The volume of the fluid flowing through a cross section per unit time is
called the volume flow rate V (Fig. 5-5) and is given by
= VA,

V= J V,dA, = VA, = VA,  (m's) (5-8)
A,
An early form of Eq. 5-8 was published in 1628 by the Italian monk Benedetto
Castelli (circa 1577-1644). Note that many fluid mechanics textbooks use
0 instead of V for volume flow rate. We use V to avoid confusion with heat
transfer.
The mass and volume flow rates are related by

. v

D= o= 7

m=p y

(5-9)



where v is the specific volume. This relation is analogous to m = pV =
Vlv, which is the relation between the mass and the volume of a fluid in a
container.

Conservation of Mass Principle

The conservation of mass principle for a control volume can be expressed
as: The net mass transfer to or from a control volume during a time interval
At is equal to the net change (increase or decrease) of the total mass within
the control volume during At. That is,

< Total mass entering ) B ( Total mass leaving ) _ ( Net change of mass >
the CV during Az the CV during Az within the CV during At

or

My, = Moy = AIlnC\/ (kg) (5-10)

mn

where Amcy = mg,,; — My, 1S the change in the mass of the control volume

during the process (Fig. 5-6). It can also be expressed in rate form as

iy, — titg, = dmeyldt  (kgls) (5-11)

m

where n1;, and m,, are the total rates of mass flow into and out of the con-
trol volume, and dmgy/dt is the rate of change of mass within the control
volume boundaries. Equations 5-10 and 5-11 are often referred to as the
mass balance and are applicable to any control volume undergoing any
kind of process.

Consider a control volume of arbitrary shape, as shown in Fig. 5-7. The
mass of a differential volume dV/ within the control volume is dm = p dV.
The total mass within the control volume at any instant in time ¢ is deter-
mined by integration to be

Total mass within the CV: My = J pdV (5-12)
cv

Then the time rate of change of the amount of mass within the control volume
is expressed as

dmgy, _d

= — dV 5-13
dr a’tLVp 613

Rate of change of mass within the CV:

For the special case of no mass crossing the control surface (i.e., the con-
trol volume is a closed system), the conservation of mass principle reduces
to dmgy/dt = 0. This relation is valid whether the control volume is fixed,
moving, or deforming.

Now consider mass flow into or out of the control volume through a dif-
ferential area dA on the control surface of a fixed control volume. Let 7 be
the outward unit vector of dA normal to dA and V be the flow velocity at
dA relative to a fixed coordinate system, as shown in Fig. 5-7. In general,
the velocity may cross dA at an angle 6 off the normal of dA, and the mass
flow rate is proportional to the normal component of velocity V, = V
cos 6 ranging from a maximum outflow of V for 6 = 0 (flow is normal to
dA) to a minimum of zero for 6 = 90° (flow is tangent to dA) to a maximum
inflow of V for 6 = 180° (flow is normal to dA but in the opposite direction).
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FIGURE 5-6
Conservation of mass principle
for an ordinary bathtub.
\
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The differential control volume dV
and the differential control

surface dA used in the derivation of
the conservation of mass relation.
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The conservation of mass equation
is obtained by replacing B in the
Reynolds transport theorem by
mass m, and b by 1 (m per unit
mass = m/m = 1).

Making use of the concept of dot product of two vectors, the magnitude of
the normal component of velocity is

Normal component of velocity: V,=Vcos = Vi (5-14)

The mass flow rate through dA is proportional to the fluid density p, normal
velocity V,, and the flow area dA, and is expressed as

Differential mass flow rate:  ém = pV, dA = p(V cos 0)dA = p(\7~ﬁ) dA  (5-15)

The net flow rate into or out of the control volume through the entire con-
trol surface is obtained by integrating ém over the entire control surface,

Net mass flow rate: T, = J om = J pV, dA = J p(‘7~ﬁ) dA (5-16)
cs cs cs

Note that V, = Vi = Vcos 0 is positive for 8 < 90° (outflow) and nega-
tive for & > 90° (inflow). Therefore, the direction of flow is automatically
accounted for, and the surface integral in Eq. 5-16 directly gives the net
mass flow rate. A positive value for 1, indicates a net outflow of mass and
a negative value indicates a net inflow of mass.

Rearranging Eq. 5-11 as dmg/dt + m,, — ny, = 0, the conservation of
mass relation for a fixed control volume is then expressed as

General conservation of mass: iJ pdV + J p(\7-ﬁ) dA =0 (5-17)

dr Jey cs
It states that the time rate of change of mass within the control volume plus
the net mass flow rate through the control surface is equal to zero.

The general conservation of mass relation for a control volume can also
be derived using the Reynolds transport theorem (RTT) by taking the prop-
erty B to be the mass m (Chap. 4). Then we have b = 1 since dividing
mass by mass to get the property per unit mass gives unity. Also, the mass
of a closed system is constant, and thus its time derivative is zero. That is,
dmg,/dt = 0. Then the Reynolds transport equation reduces immediately to
Eq. 5-17, as shown in Fig. 5-8, and thus illustrates that the Reynolds trans-
port theorem is a very powerful tool indeed.

Splitting the surface integral in Eq. 5-17 into two parts—one for the out-
going flow streams (positive) and one for the incoming flow streams
(negative)—the general conservation of mass relation can also be expressed as

d
—J pdV + > plv,lA = > plv,|a=0 (5-18)
dt Ccv out in

where A represents the area for an inlet or outlet, and the summation signs
are used to emphasize that all the inlets and outlets are to be considered.
Using the definition of mass flow rate, Eq. 5-18 can also be expressed as

dmcy -

ij pdV = D — D or = D — X (5-19)
dr Jey in out dt in out

There is considerable flexibility in the selection of a control volume when
solving a problem. Many control volume choices are available, but some are
more convenient to work with. A control volume should not introduce any
unnecessary complications. A wise choice of a control volume can make the
solution of a seemingly complicated problem rather easy. A simple rule in
selecting a control volume is to make the control surface normal to the flow



at all locations where it crosses the fluid flow, whenever possible. This way
the dot product Vi simply becomes the magnitude of the velocity, and the

integral J p(V-ﬁ) dA becomes simply pVA (Fig. 5-9).
A

Moving or Deforming Control Volumes

Equations 5-17 and 5-19 are also valid for moving control volumes pro-
vided that the absolute velocity Vis replaced by the relative velocity V,
which is the fluid velocity relative to the control surface (Chap. 4). In the
case of a moving but nondeforming control volume, relative velocity is the
fluid velocity observed by a person moving with the control volume and
is expressed as V =V- VCS, where V is the fluid velocity and VCS is the
velocity of the control surface, both relative to a fixed point outside. Note
that this is a vector subtraction.

Some practical problems (such as the injection of medication through the
needle of a syringe by the forced motion of the plunger) involve deforming
control volumes. The conservation of mass relations developed can still be
used for such deforming control volumes provided that the velocity of the
fluid crossing a deforming part of the control surface is expressed relative to
the control surface (that is, the fluid velocity should be expressed relative to
a reference frame attached to the deforming part of the control surface). The
relative velocity in this case at any point on the control surface is expressed
again as V, = V — V, where V is the local velocity of the control surface
at that point relative to a fixed point outside the control volume.

Mass Balance for Steady-Flow Processes
During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (m¢, = constant). Then the con-
servation of mass principle requires that the total amount of mass entering a
control volume equal the total amount of mass leaving it. For a garden hose
nozzle in steady operation, for example, the amount of water entering the
nozzle per unit time is equal to the amount of water leaving it per unit time.
When dealing with steady-flow processes, we are not interested in the
amount of mass that flows in or out of a device over time; instead, we are
interested in the amount of mass flowing per unit time, that is, the mass flow
rate m. The conservation of mass principle for a general steady-flow system
with multiple inlets and outlets is expressed in rate form as (Fig. 5-10)

Steady flow: Em = Em (kg/s) (5-20)
out

It states that the total rate of mass entering a control volume is equal to the

total rate of mass leaving it.

Many engineering devices such as nozzles, diffusers, turbines, compres-
sors, and pumps involve a single stream (only one inlet and one outlet).
For these cases, we typically denote the inlet state by the subscript 1 and
the outlet state by the subscript 2, and drop the summation signs. Then
Eq. 5-20 reduces, for single-stream steady-flow systems, to

Steady flow (single stream): my =m, — p VA =p,V,A, (5-21)
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A control surface should always be
selected normal to the flow at all
locations where it crosses the fluid
flow to avoid complications, even
though the result is the same.
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FIGURE 5-10

Conservation of mass principle
for a two-inlet—one-outlet
steady-flow system.
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my=2kgls
V,=0.8 m¥/s

my =2 kgls
V,=14m%s
FIGURE 5-11

During a steady-flow process,
volume flow rates are not necessarily
conserved although mass flow

rates are.

FIGURE 5-12
Schematic for Example 5-1.
Photo by John M. Cimbala.

Special Case: Incompressible Flow

The conservation of mass relations can be simplified even further when the
fluid is incompressible, which is usually the case for liquids. Canceling the
density from both sides of the general steady-flow relation gives

Steady, incompressible flow: E V= E vV (ms) (5-22)

in out

For single-stream steady-flow systems Eq. 5-22 becomes

Steady, incompressible flow (single stream): ~ V, = U, =V A, = V,A, (5-23)

It should always be kept in mind that there is no such thing as a “conserva-
tion of volume” principle. Therefore, the volume flow rates into and out of
a steady-flow device may be different. The volume flow rate at the outlet of
an air compressor is much less than that at the inlet even though the mass
flow rate of air through the compressor is constant (Fig. 5-11). This is due
to the higher density of air at the compressor exit. For steady flow of lig-
uids, however, the volume flow rates remain nearly constant since liquids
are essentially incompressible (constant-density) substances. Water flow
through the nozzle of a garden hose is an example of the latter case.

The conservation of mass principle requires every bit of mass to be
accounted for during a process. If you can balance your checkbook (by
keeping track of deposits and withdrawals, or by simply observing the “con-
servation of money” principle), you should have no difficulty applying the
conservation of mass principle to engineering systems.

[
EXAMPLE 5-1 Water Flow through a Garden Hose Nozzle n
A garden hose attached with a nozzle is used to fill a 10-gal bucket. The:
inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle m
exit (Fig. 5-12). If it takes 50 s to fill the bucket with water, determine
(a) the volume and mass flow rates of water through the hose, and (b) the
average velocity of water at the nozzle exit.

SOLUTION A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is a nearly incompressible substance. 2 Flow through
the hose is steady. 3 There is no waste of water by splashing.

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

vV 10gal (3.7854L

T A1 50s

= 0.757 L/
1 gal > s

m = pV = (1 kg/L)(0.757 L/s) = 0.757 kg/s
(b) The cross-sectional area of the nozzle exit is

A, = mr? = m(0.4 cm)*> = 0.5027 cm? = 0.5027 X 10~ * m?



The volume flow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes

v V. 0757Lis ( Im?
¢ A, 05027 X 10~*m? \ 1000 L

e

) = 15.1 m/s

Discussion It can be shown that the average velocity in the hose is 2.4 m/s.
Therefore, the nozzle increases the water velocity by over six times.

EXAMPLE 5-2 Discharge of Water from a Tank

A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the
atmosphere is initially filled with water. Now the discharge plug near the
bottom of the tank is pulled out, and a water jet whose diameter is 0.5 in
streams out (Fig. 5-13). The average velocity of the jet is approximated as
V = V/2gh, where h is the height of water in the tank measured from the
center of the hole (a variable) and g is the gravitational acceleration. Deter-
mine how long it takes for the water level in the tank to drop to 2 ft from
the bottom.

SOLUTION The plug near the bottom of a water tank is pulled out. The
time it takes for half of the water in the tank to empty is to be determined.
Assumptions 1 Water is a nearly incompressible substance. 2 The distance
between the bottom of the tank and the center of the hole is negligible com-
pared to the total water height. 3 The gravitational acceleration is 32.2 ft/s?.
Analysis We take the volume occupied by water as the control volume. The
size of the control volume decreases in this case as the water level drops,
and thus this is a variable control volume. (We could also treat this as a
fixed control volume that consists of the interior volume of the tank by dis-
regarding the air that replaces the space vacated by the water.) This is obvi-
ously an unsteady-flow problem since the properties (such as the amount of
mass) within the control volume change with time.

The conservation of mass relation for a control volume undergoing any pro-
cess is given in rate form as

_ dmcy

mn out dt ( )

During this process no mass enters the control volume (m;, = 0), and the
mass flow rate of discharged water is

= pV2ghA

where A, = mD3%,/4 is the cross-sectional area of the jet, which is constant.
Noting that the density of water is constant, the mass of water in the tank
at any time is

Mgy = (pVA) @

out jet

Mey = pV = pAtankh @)

where A, = wD3,,/4 is the base area of the cylindrical tank. Substituting
Egs. 2 and 3 into the mass balance relation (Eq. 1) gives

d(pA ) (D2, /¥)dh
—pV2ghA,, = %—) —p\/2gh(wD2, /4) = p‘Tt“

CHAPTER 5

193

Air
[ VA
! |
: Water :
l :
! |
! |
! |
! I
! |
! |
! |
: : Djel
! I
o _____ J
} D[ank } T
FIGURE 5-13

Schematic for Example 5-2.
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FIGURE 5-14

Mechanical energy is a useful concept
for flows that do not involve significant
heat transfer or energy conversion,
such as the flow of gasoline from an
underground tank into a car.
Royalty-Free/CORBIS

Canceling the densities and other common terms and separating the vari-
ables give

dt = — D tzank dh
D \/2gh

Integrating from ¢t = O at which h = hy to t = t at which h = h, gives
Jtdt thank th dh t \/]/TO B \/}72 <Dlank>2

= —_——— — — =
o D2\ 2g b, Vh Vg2 D,

jet jet
Substituting, the time of discharge is determined to be

. Vaft— V2t (3 X 12in
V32272 ft/ \ 05in

Therefore, it takes 12.6 min after the discharge hole is unplugged for half of
the tank to be emptied.

Discussion Using the same relation with h, = O gives t = 43.1 min for
the discharge of the entire amount of water in the tank. Therefore, emptying
the bottom half of the tank takes much longer than emptying the top half.
This is due to the decrease in the average discharge velocity of water with
decreasing h.

2
> = 757 s = 12.6 min

5-3 = MECHANICAL ENERGY AND EFFICIENCY

Many fluid systems are designed to transport a fluid from one location
to another at a specified flow rate, velocity, and elevation difference, and
the system may generate mechanical work in a turbine or it may con-
sume mechanical work in a pump or fan during this process (Fig. 5-14).
These systems do not involve the conversion of nuclear, chemical, or ther-
mal energy to mechanical energy. Also, they do not involve heat transfer
in any significant amount, and they operate essentially at constant tempera-
ture. Such systems can be analyzed conveniently by considering only the
mechanical forms of energy and the frictional effects that cause the mechan-
ical energy to be lost (i.e., to be converted to thermal energy that usually
cannot be used for any useful purpose).

The mechanical energy is defined as the form of energy that can be con-
verted to mechanical work completely and directly by an ideal mechanical
device such as an ideal turbine. Kinetic and potential energies are the famil-
iar forms of mechanical energy. Thermal energy is not mechanical energy,
however, since it cannot be converted to work directly and completely (the
second law of thermodynamics).

A pump transfers mechanical energy to a fluid by raising its pressure, and
a turbine extracts mechanical energy from a fluid by dropping its pressure.
Therefore, the pressure of a flowing fluid is also associated with its mechan-
ical energy. In fact, the pressure unit Pa is equivalent to Pa = N/m? =
N-m/m3 = J/m3, which is energy per unit volume, and the product PV or its
equivalent P/p has the unit J/kg, which is energy per unit mass. Note that
pressure itself is not a form of energy. But a pressure force acting on a fluid
through a distance produces work, called flow work, in the amount of P/p
per unit mass. Flow work is expressed in terms of fluid properties, and it
is convenient to view it as part of the energy of a flowing fluid and call



it flow energy. Therefore, the mechanical energy of a flowing fluid can be
expressed on a unit-mass basis as

PV

where P/p is the flow energy, V?/2 is the kinetic energy, and gz is the poten-
tial energy of the fluid, all per unit mass. Then the mechanical energy
change of a fluid during incompressible flow becomes

W PR VISV

1
mech p 2 + g(ZZ - Zl)

(kJ/kg) (5-24)
Therefore, the mechanical energy of a fluid does not change during flow if
its pressure, density, velocity, and elevation remain constant. In the absence
of any irreversible losses, the mechanical energy change represents the
mechanical work supplied to the fluid (if Ae, .., > 0) or extracted from the
fluid (if Ae < 0). The maximum (ideal) power generated by a turbine,

for example, is Wma as shown in Fig. 5-15.

mech
x n./lAemech’
Consider a container of height % filled with water, as shown in Fig. 5-16,
with the reference level selected at the bottom surface. The gage pressure
and the potential energy per unit mass are, respectively, Py, 4, = 0 and
pe, = gh at point A at the free surface, and P,,,. 5 = pgh and pe; = 0 at
point B at the bottom of the container. An ideal hydraulic turbine at the
bottom elevation would produce the same work per unit mass wyi.c = 8h
whether it receives water (or any other fluid with constant density) from the
top or from the bottom of the container. Note that we are assuming ideal flow
(no irreversible losses) through the pipe leading from the tank to the turbine
and negligible kinetic energy at the turbine outlet. Therefore, the total avail-
able mechanical energy of water at the bottom is equivalent to that at the top.
The transfer of mechanical energy is usually accomplished by a rotating
shaft, and thus mechanical work is often referred to as shaft work. A pump or
a fan receives shaft work (usually from an electric motor) and transfers it
to the fluid as mechanical energy (less frictional losses). A turbine, on the
other hand, converts the mechanical energy of a fluid to shaft work. Because
of irreversibilities such as friction, mechanical energy cannot be converted
entirely from one mechanical form to another, and the mechanical efficiency
of a device or process is defined as
Mechanical energy output  Epecn. out E ech toss

=1—-——— (525
£ ( )

Mmech —

Mechanical energy input E

mech, in mech, in

A conversion efficiency o