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Preface

This book is based on a one-term course in fluid mechanics originally taught
in the Department of Mathematics of the University of California, Berkeley,
during the spring of 1978. The goal of the course was not to provide an
exhaustive account of fluid mechanics, nor to assess the engineering value
of various approximation procedures. The goals were:

• to present some of the basic ideas of fluid mechanics in a mathemat-
ically attractive manner (which does not mean “fully rigorous”);

• to present the physical background and motivation for some construc-
tions that have been used in recent mathematical and numerical work
on the Navier–Stokes equations and on hyperbolic systems; and

• to interest some of the students in this beautiful and difficult subject.

This third edition has incorporated a number of updates and revisions,
but the spirit and scope of the original book are unaltered.

The book is divided into three chapters. The first chapter contains an el-
ementary derivation of the equations; the concept of vorticity is introduced
at an early stage. The second chapter contains a discussion of potential
flow, vortex motion, and boundary layers. A construction of boundary lay-
ers using vortex sheets and random walks is presented. The third chapter
contains an analysis of one-dimensional gas flow from a mildly modern
point of view. Weak solutions, Riemann problems, Glimm’s scheme, and
combustion waves are discussed.

The style is informal and no attempt is made to hide the authors’ bi-
ases and personal interests. Moreover, references are limited and are by no
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means exhaustive. We list below some general references that have been
useful for us and some that contain fairly extensive bibliographies. Refer-
ences relevant to specific points are made directly in the text.

R. Abraham, J. E. Marsden, and T. S. Ratiu [1988] Manifolds, Tensor Analysis and
Applications, Springer-Verlag: Applied Mathematical Sciences Series, Volume 75.

G. K. Batchelor [1967] An Introduction to Fluid Dynamics, Cambridge Univ. Press.

G. Birkhoff [1960] Hydrodynamics, a Study in Logic, Fact and Similitude, Princeton
Univ. Press.

A. J. Chorin [1976] Lectures on Turbulence Theory, Publish or Perish.

A. J. Chorin [1989] Computational Fluid Mechanics, Academic Press, New York.

A. J. Chorin [1994] Vorticity and Turbulence, Applied Mathematical Sciences, 103,
Springer-Verlag.

R. Courant and K. O. Friedrichs [1948] Supersonic Flow and Shock Waves, Wiley-
Interscience.

P. Garabedian [1960] Partial Differential Equations, McGraw-Hill, reprinted by Dover.

S. Goldstein [1965] Modern Developments in Fluid Mechanics, Dover.

K. Gustafson and J. Sethian [1991] Vortex Flows, SIAM.

O. A. Ladyzhenskaya [1969] The Mathematical Theory of Viscous Incompressible Flow ,
Gordon and Breach.

L. D. Landau and E. M. Lifshitz [1968] Fluid Mechanics, Pergamon.

P. D. Lax [1972] Hyperbolic Systems of Conservation Laws and the Mathematical The-
ory of Shock Waves, SIAM.
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Several Space Variables, Springer-Verlag: Applied Mathematical Sciences Series
53.

J. E. Marsden and T. J. R. Hughes [1994] The Mathematical Foundations of Elasticity,
Prentice-Hall, 1983. Reprinted with corrections, Dover, 1994.

J. E. Marsden and T. S. Ratiu [1994] Mechanics and Symmetry, Texts in Applied
Mathematics, 17, Springer-Verlag.

R. E. Meyer [1971] Introduction to Mathematical Fluid Dynamics, Wiley, reprinted by
Dover.

K. Milne–Thomson [1968] Theoretical Hydrodynamics, Macmillan.

C. S. Peskin [1976] Mathematical Aspects of Heart Physiology, New York Univ. Lecture
Notes.

S. Schlichting [1960] Boundary Layer Theory, McGraw-Hill.

L. A. Segel [1977] Mathematics Applied to Continuum Mechanics, Macmillian.

J. Serrin [1959] Mathematical Principles of Classical Fluid Mechanics, Handbuch der
Physik, VIII/1, Springer-Verlag.

R. Temam [1977] Navier–Stokes Equations, North-Holland.
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1
The Equations of Motion

In this chapter we develop the basic equations of fluid mechanics. These
equations are derived from the conservation laws of mass, momentum, and
energy. We begin with the simplest assumptions, leading to Euler’s equa-
tions for a perfect fluid. These assumptions are relaxed in the third sec-
tion to allow for viscous effects that arise from the molecular transport of
momentum. Throughout the book we emphasize the intuitive and mathe-
matical aspects of vorticity; this job is begun in the second section of this
chapter.

1.1 Euler’s Equations

Let D be a region in two- or three-dimensional space filled with a fluid.
Our object is to describe the motion of such a fluid. Let x ∈ D be a point
in D and consider the particle of fluid moving through x at time t. Relative
to standard Euclidean coordinates in space, we write x = (x, y, z). Imagine
a particle (think of a particle of dust suspended) in the fluid; this particle
traverses a well-defined trajectory. Let u(x, t) denote the velocity of the
particle of fluid that is moving through x at time t. Thus, for each fixed
time, u is a vector field on D, as in Figure 1.1.1. We call u the (spatial)
velocity field of the fluid.

For each time t, assume that the fluid has a well-defined mass density
ρ(x, t). Thus, if W is any subregion of D, the mass of fluid in W at time t
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D

trajectory of fluid particle

u(x,t)x

Figure 1.1.1. Fluid particles flowing in a region D.

is given by

m(W, t) =
∫

W

ρ(x, t) dV,

where dV is the volume element in the plane or in space.

In what follows we shall assume that the functions u and ρ (and others to
be introduced later) are smooth enough so that the standard operations of
calculus may be performed on them. This assumption is open to criticism
and indeed we shall come back and analyze it in detail later.

The assumption that ρ exists is a continuum assumption . Clearly, it
does not hold if the molecular structure of matter is taken into account.
For most macroscopic phenomena occurring in nature, it is believed that
this assumption is extremely accurate.

Our derivation of the equations is based on three basic principles:

i mass is neither created nor destroyed ;

ii the rate of change of momentum of a portion of the fluid equals the
force applied to it (Newton’s second law);

iii energy is neither created nor destroyed.

Let us treat these three principles in turn.

i Conservation of Mass

Let W be a fixed subregion of D (W does not change with time). The rate
of change of mass in W is

d

dt
m(W, t) =

d

dt

∫
W

ρ(x, t) dV =
∫

W

∂ρ

∂t
(x, t) dV.
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Let ∂W denote the boundary of W , assumed to be smooth; let n denote
the unit outward normal defined at points of ∂W ; and let dA denote the
area element on ∂W . The volume flow rate across ∂W per unit area is u · n
and the mass flow rate per unit area is ρu · n (see Figure 1.1.2).

portion of the
boundary of W

u

n

Figure 1.1.2. The mass crossing the boundary ∂W per unit time equals the
surface integral of ρu · n over ∂W.

The principle of conservation of mass can be more precisely stated as
follows: The rate of increase of mass in W equals the rate at which mass is
crossing ∂W in the inward direction; i.e.,

d

dt

∫
W

ρ dV = −
∫

∂W

ρu · n dA.

This is the integral form of the law of conservation of mass. By
the divergence theorem, this statement is equivalent to

∫
W

[
∂ρ

∂t
+ div(ρu)

]
dV = 0.

Because this is to hold for all W , it is equivalent to

∂ρ

∂t
+ div(ρu) = 0.

The last equation is the differential form of the law of conservation
of mass, also known as the continuity equation.

If ρ and u are not smooth enough to justify the steps that lead to the
differential form of the law of conservation of mass, then the integral form
is the one to use.
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ii Balance of Momentum

Let x(t) = (x(t), y(t), z(t)) be the path followed by a fluid particle, so that
the velocity field is given by

u(x(t), y(t), z(t), t) = (ẋ(t), ẏ(t), ż(t)),

that is,

u(x(t), t) =
dx
dt

(t).

This and the calculation following explicitly use standard Euclidean co-
ordinates in space (delete z for plane flow).1

The acceleration of a fluid particle is given by

a(t) =
d2

dt2
x(t) =

d

dt
u(x(t), y(t), z(t), t).

By the chain rule, this becomes

a(t) =
∂u
∂x

ẋ +
∂u
∂y

ẏ +
∂u
∂z

ż +
∂u
∂t

.

Using the notation

ux =
∂u
∂x

, ut =
∂u
∂t

, etc.,

and
u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)),

we obtain
a(t) = uux + vuy + wuz + ut,

which we also write as

a(t) = ∂tu + u · ∇u,

where
∂tu =

∂u
∂t

and u · ∇ = u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

1Care must be used if other coordinate systems (such as spherical or cylindrical) are
employed. Other coordinate systems can be handled in two ways: first, one can proceed
more intrinsically by developing intrinsic (i.e., coordinate free) formulas that are valid in
any coordinate system, or, second, one can do all the derivations in Euclidean coordinates
and transform final results to other coordinate systems at the end by using the chain
rule. The second approach is clearly faster, although intellectually less satisfying. See
Abraham, Marsden and Ratiu [1988] (listed in the front matter) for information on the
former approach. For reasons of economy we shall do most of our calculations in standard
Euclidean coordinates.
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We call
D

Dt
= ∂t + u · ∇

the material derivative ; it takes into account the fact that the fluid is
moving and that the positions of fluid particles change with time. Indeed,
if f(x, y, z, t) is any function of position and time (scalar or vector), then
by the chain rule,

d

dt
f(x(t), y(t), z(t), t) = ∂tf + u · ∇f =

Df

Dt
(x(t), y(t), z(t), t).

For any continuum, forces acting on a piece of material are of two types.
First, there are forces of stress, whereby the piece of material is acted on
by forces across its surface by the rest of the continuum. Second, there are
external, or body, forces such as gravity or a magnetic field, which exert
a force per unit volume on the continuum. The clear isolation of surface
forces of stress in a continuum is usually attributed to Cauchy.

Later, we shall examine stresses more generally, but for now let us define
an ideal fluid as one with the following property: For any motion of the
fluid there is a function p(x, t) called the pressure such that if S is a
surface in the fluid with a chosen unit normal n, the force of stress exerted
across the surface S per unit area at x ∈ S at time t is p(x, t)n; i.e.,

force across S per unit area = p(x, t)n.

Note that the force is in the direction n and that the force acts orthogonally
to the surface S; that is, there are no tangential forces (see Figure 1.1.3).

force across   S = pn

n

S

Figure 1.1.3. Pressure forces across a surface S.

Of course, the concept of an ideal fluid as a mathematical definition is
not subject to dispute. However, the physical relevance of the notion (or
mathematical theorems we deduce from it) must be checked by experiment.
As we shall see later, ideal fluids exclude many interesting real physical
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phenomena, but nevertheless form a crucial component of a more complete
theory.

Intuitively, the absence of tangential forces implies that there is no way
for rotation to start in a fluid, nor, if it is there at the beginning, to stop.
This idea will be amplified in the next section. However, even here we can
detect physical trouble for ideal fluids because of the abundance of rotation
in real fluids (near the oars of a rowboat, in tornadoes, etc.).

If W is a region in the fluid at a particular instant of time t, the total
force exerted on the fluid inside W by means of stress on its boundary is

S∂W = {force on W} = −
∫

∂W

pn dA

(negative because n points outward). If e is any fixed vector in space, the
divergence theorem gives

e · S∂W = −
∫

∂W

pe · n dA = −
∫

W

div(pe) dV = −
∫

W

(grad p) · e dV.

Thus,

S∂W = −
∫

W

grad p dV.

If b(x, t) denotes the given body force per unit mass, the total body
force is

B =
∫

W

ρb dV.

Thus, on any piece of fluid material,

force per unit volume = −grad p + ρb.

By Newton’s second law (force = mass × acceleration) we are led to the
differential form of the law of balance of momentum :

ρ
Du
Dt

= − grad p + ρb. (BM1)

Next we shall derive an integral form of balance of momentum in two
ways. We derive it first as a deduction from the differential form and second
from basic principles.

From balance of momentum in differential form, we have

ρ
∂u
∂t

= −ρ(u · ∇)u −∇p + ρb

and so, using the equation of continuity,

∂

∂t
(ρu) = −div(ρu)u − ρ(u · ∇)u −∇p + ρb.
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If e is any fixed vector in space, one checks that

e · ∂

∂t
(ρu) = −div(ρu)u · e − ρ(u · ∇)u · e − (∇p) · e + ρb · e

= −div(pe + ρu(u · e)) + ρb · e.

Therefore, if W is a fixed volume in space, the rate of change of momentum
in direction e in W is

e · d

dt

∫
W

ρu dV = −
∫

∂W

(pe + ρu(e · u)) · n dA +
∫

W

ρb · e dV

by the divergence theorem. Thus, the integral form of balance of momentum
becomes:

d

dt

∫
W

ρu dV = −
∫

∂W

(pn + ρu(u · n)) dA +
∫

W

ρb dV. (BM2)

The quantity pn+ρu(u·n) is the momentum flux per unit area crossing
∂W , where n is the unit outward normal to ∂W .

This derivation of the integral balance law for momentum proceeded via
the differential law. With an eye to assuming as little differentiability as
possible, it is useful to proceed to the integral law directly and, as with con-
servation of mass, derive the differential form from it. To do this carefully
requires us to introduce some useful notions.

As earlier, let D denote the region in which the fluid is moving. Let x ∈ D
and let us write ϕ(x, t) for the trajectory followed by the particle that is at
point x at time t = 0. We will assume ϕ is smooth enough so the following
manipulations are legitimate and for fixed t, ϕ is an invertible mapping.
Let ϕt denote the map x �→ ϕ(x, t); that is, with fixed t, this map advances
each fluid particle from its position at time t = 0 to its position at time t.
Here, of course, the subscript does not denote differentiation. We call ϕ the
fluid flow map. If W is a region in D, then ϕt(W ) = Wt is the volume
W moving with the fluid . See Figure 1.1.4.

The “primitive” integral form of balance of momentum states that

d

dt

∫
Wt

ρu dV = S∂Wt +
∫

Wt

ρb dV, (BM3)

that is, the rate of change of momentum of a moving piece of fluid equals
the total force (surface stresses plus body forces) acting on it.

These two forms of balance of momentum (BM1) and (BM3) are equiv-
alent . To prove this, we use the change of variables theorem to write

d

dt

∫
Wt

ρu dV =
d

dt

∫
W

(ρu)(ϕ(x, t), t)J(x, t) dV,
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D

W

Wt

moving fluid

t  = 0
t

Figure 1.1.4. Wt is the image of W as particles of fluid in W flow for time t.

where J(x, t) is the Jacobian determinant of the map ϕt. Because the vol-
ume is fixed at its initial position, we may differentiate under the integral
sign. Note that

∂

∂t
(ρu)(ϕ(x, t), t) =

(
D

Dt
ρu

)
(ϕ(x, t), t)

is the material derivative, as was shown earlier. (If you prefer, this equality
says that D/Dt is differentiation following the fluid.) Next, we learn how
to differentiate J(x, t).

Lemma

∂

∂t
J(x, t) = J(x, t)[div u(ϕ(x, t), t)].

Proof Write the components of ϕ as ξ(x, t), η(x, t), and ζ(x, t). First, ob-
serve that

∂

∂t
ϕ(x, t) = u(ϕ(x, t), t),

by definition of the velocity field of the fluid.
The determinant J can be differentiated by recalling that the determi-

nant of a matrix is multilinear in the columns (or rows). Thus, holding x



1.1 Euler’s Equations 9

fixed throughout, we have

∂

∂t
J =




∂

∂t

∂ξ

∂x

∂η

∂x

∂ζ

∂x

∂

∂t

∂ξ

∂y

∂η

∂y

∂ζ

∂y

∂

∂t

∂ξ

∂z

∂η

∂z

∂ζ

∂z




+




∂ξ

∂x

∂

∂t

∂η

∂x

∂ζ

∂x

∂ξ

∂y

∂

∂t

∂η

∂y

∂ζ

∂y

∂ξ

∂z

∂

∂t

∂η

∂z

∂ζ

∂z




+




∂ξ

∂x

∂η

∂x

∂

∂t

∂ζ

∂x

∂ξ

∂y

∂η

∂y

∂

∂t

∂ζ

∂y

∂ξ

∂z

∂η

∂z

∂

∂t

∂ζ

∂z




.

Now write

∂

∂t

∂ξ

∂x
=

∂

∂x

∂ξ

∂t
=

∂

∂x
u(ϕ(x, t), t),

∂

∂t

∂ξ

∂y
=

∂

∂y

∂ξ

∂t
=

∂

∂y
u(ϕ(x, t), t),

...

∂

∂t

∂ζ

∂z
=

∂

∂z

∂ζ

∂t
=

∂

∂z
w(ϕ(x, t), t).

The components u, v, and w of u in this expression are functions of x, y,
and z through ϕ(x, t); therefore,

∂

∂x
u(ϕ(x, t), t) =

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
+

∂u

∂ζ

∂ζ

∂x
,

...

∂

∂z
w(ϕ(x, t), t) =

∂w

∂ξ

∂ξ

∂z
+

∂w

∂η

∂η

∂z
+

∂w

∂ζ

∂ζ

∂z
.

When these are substituted into the above expression for ∂J/∂t, one gets
for the respective terms

∂u

∂x
J +

∂v

∂y
J +

∂w

∂z
J = (div u)J. �
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From this lemma, we get

d

dt

∫
Wt

ρu dV =
∫

W

{(
D

Dt
ρu

)
(ϕ(x, t), t) + (ρu)(div u)(ϕ(x, t), t)

}
× J(x, t) dV

=
∫

Wt

{
D

Dt
(ρu) + (ρ div u)u

}
dV,

where the change of variables theorem was again used. By conservation of
mass,

D

Dt
ρ + ρ div u =

∂ρ

∂t
+ div(ρu) = 0,

and thus
d

dt

∫
Wt

ρu dV =
∫

Wt

ρ
Du
Dt

dV.

In fact, this argument proves the following theorem.

Transport Theorem For any function f of x and t, we have

d

dt

∫
Wt

ρf dV =
∫

Wt

ρ
Df

Dt
dV.

In a similar way, one can derive a form of the transport theorem without
a mass density factor included, namely,

d

dt

∫
Wt

f dV =
∫

Wt

(
∂f

∂t
+ div(fu)

)
dV.

If W , and hence, Wt, is arbitrary and the integrands are continuous, we
have proved that the “primitive” integral form of balance of momentum is
equivalent to the differential form (BM1). Hence, all three forms of balance
of momentum—(BM1), (BM2), and (BM3)—are mutually equivalent. As
an exercise, the reader should derive the two integral forms of balance of
momentum directly from each other.

The lemma ∂J/∂t = (div u)J is also useful in understanding incompress-
ibility. In terms of the notation introduced earlier, we call a flow incom-
pressible if for any fluid subregion W ,

volume(Wt) =
∫

Wt

dV = constant in t.
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Thus, incompressibility is equivalent to

0 =
d

dt

∫
Wt

dV =
d

dt

∫
W

J dV =
∫

W

(div u)J dV =
∫

Wt

(div u) dV

for all moving regions Wt. Thus, the following are equivalent:

(i) the fluid is incompressible;

(ii) divu = 0;

(iii) J ≡ 1.

From the equation of continuity

∂ρ

∂t
+ div(ρu) = 0, i.e.,

Dρ

Dt
+ ρ div u = 0,

and the fact that ρ > 0, we see that a fluid is incompressible if and only if
Dρ/Dt = 0, that is, the mass density is constant following the fluid . If the
fluid is homogeneous, that is, ρ = constant in space, it also follows that the
flow is incompressible if and only if ρ is constant in time. Problems involving
inhomogeneous incompressible flow occur, for example, in oceanography.

We shall now “solve” the equation of continuity by expressing ρ in terms
of its value at t = 0, the flow map ϕ(x, t), and its Jacobian J(x, t). Indeed,
set f = 1 in the transport theorem and conclude the equivalent condition
for mass conservation,

d

dt

∫
Wt

ρ dV = 0

and thus, ∫
Wt

ρ(x, t)dV =
∫

W0

ρ(x, 0) dV.

Changing variables, we obtain∫
W0

ρ(ϕ(x, t), t)J(x, t) dV =
∫

W0

ρ(x, 0) dV.

Because W0 is arbitrary, we get

ρ(ϕ(x, t), t)J(x, t) = ρ(x, 0)

as another form of mass conservation. As a corollary, a fluid that is homoge-
neous at t = 0 but is compressible will generally not remain homogeneous.
However, the fluid will remain homogeneous if it is incompressible. The
example ϕ((x, y, z), t) = ((1 + t)x, y, z) has J((x, y, z), t) = 1 + t so the
flow is not incompressible, yet for ρ((x, y, z), t) = 1/(1 + t), one has mass
conservation and homogeneity for all time.
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iii Conservation of Energy

So far we have developed the equations

ρ
Du
Dt

= − grad p + ρb (balance of momentum)

and
Dρ

Dt
+ ρ div u = 0 (conservation of mass).

These are four equations if we work in 3-dimensional space (or n + 1 equa-
tions if we work in n-dimensional space), because the equation for Du/Dt
is a vector equation composed of three scalar equations. However, we have
five functions: u, ρ, and p. Thus, one might suspect that to specify the fluid
motion completely, one more equation is needed. This is in fact true, and
conservation of energy will supply the necessary equation in fluid mechan-
ics. This situation is more complicated for general continua, and issues of
general thermodynamics would need to be discussed for a complete treat-
ment. We shall confine ourselves to two special cases here, and later we
shall treat another case for an ideal gas.

For fluid moving in a domain D, with velocity field u, the kinetic energy
contained in a region W ⊂ D is

Ekinetic =
1
2

∫
W

ρ‖u‖2 dV

where ‖u‖2 = (u2 + v2 + w2) is the square length of the vector function u.
We assume that the total energy of the fluid can be written as

Etotal = Ekinetic + Einternal

where Einternal is the internal energy , which is energy we cannot “see”
on a macroscopic scale, and derives from sources such as intermolecular
potentials and internal molecular vibrations. If energy is pumped into the
fluid or if we allow the fluid to do work, Etotal will change.

The rate of change of kinetic energy of a moving portion Wt of fluid is
calculated using the transport theorem as follows:

d

dt
Ekinetic =

d

dt

[
1
2

∫
Wt

ρ‖u‖2 dV

]

=
1
2

∫
Wt

ρ
D‖u‖2

Dt
dV

=
∫

Wt

ρ

(
u ·

(
∂u
∂t

+ (u · ∇)u
))

dV.
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Here we have used the following Euclidean coordinate calculation

1
2

D

Dt
‖u‖2 =

1
2

∂

∂t
(u2 + v2 + w2) +

1
2

(
u

∂

∂x
(u2 + v2 + w2)

+ v
∂

∂y
(u2 + v2 + w2) + w

∂

∂z
(u2 + v2 + w2)

)

= u
∂u

∂t
+ v

∂v

∂t
+ w

∂w

∂t
+ u

(
u

∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x

)

+ v

(
u

∂u

∂y
+ v

∂v

∂y
+ w

∂w

∂y

)
+ w

(
u

∂u

∂z
+ v

∂v

∂z
+ w

∂w

∂z

)

= u · ∂u
∂t

+ u · (u · ∇)u).

A general discussion of energy conservation requires more thermodynam-
ics than we shall need. We limit ourselves here to two examples of energy
conservation; a third will be given in Chapter 3.

1 Incompressible Flows

Here we assume all the energy is kinetic and that the rate of change of
kinetic energy in a portion of fluid equals the rate at which the pressure
and body forces do work:

d

dt
Ekinetic = −

∫
∂Wt

pu · n dA +
∫

Wt

ρu · b dV.

By the divergence theorem and our previous formulas, this becomes∫
Wt

ρ

{
u ·

(
∂u
∂t

+ u · ∇u
)}

dV = −
∫

Wt

(div(pu) − ρu · b) dV

= −
∫

Wt

(u · ∇p − ρu · b) dV

because div u = 0. The preceding equation is also a consequence of balance
of momentum. This argument, in addition, shows that if we assume E =
Ekinetic, then the fluid must be incompressible (unless p = 0). In summary,
in this incompressible case, the Euler equations are:

ρ
Du
Dt

= − grad p + ρb

Dρ

Dt
= 0

div u = 0

with the boundary conditions

u · n = 0 on ∂D.
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2 Isentropic Fluids

A compressible flow will be called isentropic if there is a function w, called
the enthalpy , such that

gradw =
1
ρ

grad p.

This terminology comes from thermodynamics. We shall not need a detailed
discussion of thermodynamics concepts in this book, and so it is omitted,
except for a brief discussion of entropy in Chapter 3 in the context of ideal
gases. For the readers’ convenience, we just make a few general comments.

In thermodynamics one has the following basic quantities, each of which
is a function of x, t depending on a given flow:

p = pressure

ρ = density

T = temperature

s = entropy

w = enthalpy (per unit mass)
ε = w − (p/ρ) = internal energy (per unit mass).

These quantities are related by the First Law of Thermodynamics,
which we accept as a basic principle:2

dw = T ds +
1
ρ

dp (TD1)

The first law is a statement of conservation of energy; a statement equiva-
lent to (TD1) is, as is readily verified,

dε = T ds +
p

ρ2
dρ. (TD2)

If the pressure is a function of ρ only, then the flow is clearly isentropic
with s as a constant (hence the name isentropic) and

w =
∫ ρ p′(λ)

λ
dλ,

which is the integrated version of dw = dp/ρ (see TD1). As above, the
internal energy ε = w− (p/ρ) then satisfies dε = (pdρ)/ρ2 (see TD2) or, as
a function of ρ,

p = ρ2 ∂ε

∂p
, or ε =

∫ ρ p(λ)
λ2

dλ.

2A. Sommerfeld [1964] Thermodynamics and Statistical Mechanics, reprinted by Aca-
demic Press, Chapters 1 and 4.
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For isentropic flows with p a function of ρ, the integral form of energy
balance reads as follows: The rate of change of energy in a portion of fluid
equals the rate at which work is done on it :

d

dt
Etotal =

d

dt

∫
Wt

(
1
2ρ‖u‖2 + ρε

)
dV

=
∫

Wt

ρu · b dV −
∫

∂Wt

pu · n dA.

(BE)

This follows from balance of momentum using our earlier expression for
(d/dt)Ekinetic, the transport theorem, and p = ρ2∂ε/∂ρ. Alternatively, one
can start with the assumption that p is a function of ρ and then (BE)
and balance of mass and momentum implies that p = ρ2∂ε/∂ρ , which is
equivalent to dw = dp/ρ, as we have seen.3

Euler’s equations for isentropic flow are thus

∂u
∂t

+ (u · ∇)u = −∇w + b,

∂ρ

∂t
+ div(ρu) = 0

in D, and
u · n = 0

on ∂D (or u · n = V · n if ∂D is moving with velocity V).
Later, we will see that in general these equations lead to a well-posed

initial value problem only if p′(ρ) > 0. This agrees with the common expe-
rience that increasing the surrounding pressure on a volume of fluid causes
a decrease in occupied volume and hence an increase in density.

Gases can often be viewed as isentropic, with

p = Aργ ,

where A and γ are constants and γ ≥ 1. Here,

w =
∫ ρ γAsγ−1

s
ds =

γAργ−1

γ − 1
and ε =

Aργ−1

γ − 1
.

Cases 1 and 2 above are rather opposite. For instance, if ρ = ρ0 is a
constant for an incompressible fluid, then clearly p cannot be an invertible
function of ρ. However, the case ρ = constant may be regarded as a limiting
case p′(ρ) → ∞. In case 2, p is an explicit function of ρ (and therefore

3One can carry this even further and use balance of energy and its invariance under
Euclidean motions to derive balance of momentum and mass, a result of Green and
Naghdi. See Marsden and Hughes [1994] for a proof and extensions of the result that
include formulas such as p = p2∂ε/∂p amongst the consequences as well.
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depends on u through the coupling of ρ and u in the equation of continuity);
in case 1, p is implicitly determined by the condition divu = 0. We shall
discuss these points again later.

Finally, notice that in neither case 1 or 2 is the possibility of a loss of
kinetic energy due to friction taken into account. This will be discussed at
length in §1.3.

Given a fluid flow with velocity field u(x, t), a streamline at a fixed
time is an integral curve of u; that is, if x(s) is a streamline at the instant
t, it is a curve parametrized by a variable, say s, that satisfies

dx
ds

= u(x(s), t), t fixed.

We define a fixed trajectory to be the curve traced out by a particle
as time progresses, as explained at the beginning of this section. Thus, a
trajectory is a solution of the differential equation

dx
dt

= u(x(t), t)

with suitable initial conditions. If u is independent of t (i.e., ∂tu = 0),
streamlines and trajectories coincide. In this case, the flow is called sta-
tionary.

Bernoulli’s Theorem In stationary isentropic flows and in the absence
of external forces, the quantity

1
2‖u‖

2 + w

is constant along streamlines. The same holds for homogeneous (ρ = con-
stant in space = ρ0) incompressible flow with w replaced by p/ρ0. The
conclusions remain true if a force b is present and is conservative; i.e.,
b = −∇ϕ for some function ϕ, with w replaced by w + ϕ.

Proof From the table of vector identities at the back of the book, one
has

1
2∇(‖u‖2) = (u · ∇)u + u × (∇× u).

Because the flow is steady, the equations of motion give

(u · ∇)u = −∇w

and so
∇

(
1
2‖u‖

2 + w
)

= u × (∇× u).

Let x(s) be a streamline. Then

1
2

(
‖u‖2 + w

) ∣∣x(s2)

x(s1)
=

∫ x(s2)

x(s1)

∇
(

1
2‖u‖

2 + w
)
· x′(s) ds

=
∫ x(s2)

x(s1)

(u × (∇× u)) · x′(s) ds = 0
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because x′(s) = u(x(s)) is orthogonal to u × (∇× u). �

See Exercise 1.1-3 at the end of this section for another view of why the
combination 1

2‖u‖2 + w is the correct quantity in Bernoulli’s theorem.
We conclude this section with an example that shows the limitations of

the assumptions we have made so far.

Example Consider a fluid-filled channel, as in Figure 1.1.5.

���� ����	
���

���

��� � �� ���

��� � ��

	������ ��
� �� � ��

�

�

��

Figure 1.1.5. Fluid flow in a channel.

Suppose that the pressure p1 at x = 0 is larger than that at x = L
so the fluid is pushed from left to right. We seek a solution of Euler’s
incompressible homogeneous equations in the form

u(x, y, t) = (u(x, t), 0) and p(x, y, t) = p(x).

Incompressibility implies ∂xu = 0. Thus, Euler’s equations become ρ0∂tu =
−∂xp. This implies that ∂2

xp = 0, and so

p(x) = p1 −
(

p1 − p2

L

)
x.

Substitution into ρ0∂tu = −∂xp and integration yields

u =
p1 − p2

ρ0L
t + constant.

This solution suggests that the velocity in channel flow with a constant
pressure gradient increases indefinitely. Of course, this cannot be the case
in a real flow; however, in our modeling, we have not yet taken friction into
account. The situation will be remedied in §1.3. �

Exercises


 Exercise 1.1-1 Prove the following properties of the material derivative
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(i)
D

Dt
(f + g) =

Df

Dt
+

Dg

Dt
,

(ii)
D

Dt
(f · g) = f

Dg

Dt
+ g

Df

Dt
(Leibniz or product rule),

(iii)
D

Dt
(h ◦ g) = (h′ ◦ g)

Dg

Dt
(chain rule).


 Exercise 1.1-2 Use the transport theorem to establish the following
formula of Reynolds:

d

dt

∫
Wt

f(x, t) dV =
∫

Wt

∂f

∂t
(x, t) dV +

∫
∂Wt

fu · n dA.

Interpret the result physically.


 Exercise 1.1-3 Consider isentropic flow without any body force. Show
that for a fixed volume W in space (not moving with the flow).

d

dt

∫
W

(
1
2ρ‖u‖2 + ρε

)
dV = −

∫
∂W

ρ
(

1
2‖u‖

2 + w
)
u · n dA.

Use this to justify the term energy flux vector for the vector function
ρu

(
1
2‖u‖2 + w

)
and compare with Bernoulli’s theorem.

1.2 Rotation and Vorticity

If the velocity field of a fluid is u = (u, v, w), then its curl,

ξ = ∇× u = (∂yw − ∂zv, ∂zu − ∂xw, ∂xv − ∂yu)

is called the vorticity field of the flow.
We shall now demonstrate that in a small neighborhood of each point

of the fluid, u is the sum of a (rigid) translation, a deformation (defined
later), and a (rigid) rotation with rotation vector ξ/2. This is in fact a
general statement about vector fields u on R

3; the specific features of fluid
mechanics are irrelevant for this discussion. Let x be a point in R

3, and let
y = x + h be a nearby point. What we shall prove is that

u(y) = u(x) + D(x) · h + 1
2ξ(x) × h + O(h2), (1.2.1)

where D(x) is a symmetric 3 × 3 matrix and h2 = ‖h‖2 is the squared
length of h. We shall discuss the meaning of the several terms later.

Proof of Formula (1.2.1) Let

∇u =


 ∂xu ∂yu ∂zu

∂xv ∂yv ∂zv
∂xw ∂yw ∂zw



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denote the Jacobian matrix of u. By Taylor’s theorem,

u(y) = u(x) + ∇u(x) · h + O(h2), (1.2.2)

where ∇u(x) · h is a matrix multiplication, with h regarded as a column
vector. Let

D = 1
2

[
∇u + (∇u)T

]
,

where T denotes the transpose, and

S = 1
2

[
∇u − (∇u)T

]
.

Thus,
∇u = D + S. (1.2.3)

It is easy to check that the coordinate expression for S is

S =
1
2


 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0




and that
S · h = 1

2ξ × h, (1.2.4)

where ξ = (ξ1, ξ2, ξ3). Substitution of (1.2.3) and (1.2.4) into (1.2.2) yields
(1.2.1). �

Because D is a symmetric matrix,

D(x) · h = gradh ψ(x,h),

where ψ is the quadratic form associated with D; i.e.,

ψ(x,h) = 1
2 〈D(x) · h,h〉,

where 〈 , 〉 is the inner product of R
3. We call D the deformation tensor.

We now discuss its physical interpretation. Because D is symmetric, there
is, for x fixed, an orthonormal basis ẽ1, ẽ2, ẽ3 in which D is diagonal:

D =


 d1 0 0

0 d2 0
0 0 d3


 .

Keep x fixed and consider the original vector field as a function of y. The
motion of the fluid is described by the equations

dy
dt

= u(y).

If we ignore all terms in (1.2.1) except D · h, we find

dy
dt

= D · h, i.e.,
dh
dt

= D · h.
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This vector equation is equivalent to three linear differential equations that
separate in the basis ẽ1, ẽ2, ẽ3 :

dh̃i

dt
= dih̃i, i = 1, 2, 3.

The rate of change of a unit length along the ẽi axis at t = 0 is thus di.
The vector field D · h is thus merely expanding or contracting along each
of the axes ẽi—hence, the name “deformation.” The rate of change of the
volume of a box with sides of length h̃1, h̃2, h̃3 parallel to the ẽ1, ẽ2, ẽ3 axes
is

d

dt
(h̃1h̃2h̃3) =

[
dh̃1

dt

]
h̃2h̃3 + h̃1

[
dh̃2

dt

]
h̃3 + h̃1h̃2

[
dh̃3

dt

]

= (d1 + d2 + d3)(h̃1h̃2h̃3).

However, the trace of a matrix is invariant under orthogonal transforma-
tions. Hence,

d1 + d2 + d3 = trace of D = trace of 1
2

(
(∇u) + (∇u)T

)
= div u.

This confirms the fact proved in §1.1 that volume elements change at a rate
proportional to divu. Of course, the constant vector field u(x) in formula
(1.2.1) induces a flow that is merely a translation by u(x). The other term,
1
2ξ(x) × h, induces a flow

dh
dt

= 1
2ξ(x) × h, (x fixed).

The solution of this linear differential equation is, by elementary vector
calculus,

h(t) = R(t, ξ(x))h(0),

where R(t, ξ(x)) is the matrix that represents a rotation through an angle
t about the axis ξ(x) (in the oriented sense). Because rigid motion leaves
volumes invariant, the divergence of 1

2ξ(x) × h is zero, as may also be
checked by noting that S has zero trace. This completes our derivation and
discussion of the decomposition (1.2.1).

We remarked in §1.1 that our assumptions so far have precluded any
tangential forces, and thus any mechanism for starting or stopping rota-
tion. Thus, intuitively, we might expect rotation to be conserved. Because
rotation is intimately related to the vorticity as we have just shown, we can
expect the vorticity to be involved. We shall now prove that this is so.

Let C be a simple closed contour in the fluid at t = 0. Let Ct be the
contour carried along by the flow. In other words,

Ct = ϕt(C),
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Ct

C

D

Figure 1.2.1. Kelvin’s circulation theorem.

where ϕt is the fluid flow map discussed in §1.1 (see Figure 1.2.1).
The circulation around Ct is defined to be the line integral

ΓCt
=

∮
Ct

u · ds.

Kelvin’s Circulation Theorem For isentropic flow without external
forces, the circulation, ΓCt is constant in time.

For example, we note that if the fluid moves in such a way that Ct

shrinks in size, then the “angular” velocity around Ct increases. The proof
of Kelvin’s circulation theorem is based on a version of the transport the-
orem for curves.

Lemma Let u be the velocity field of a flow and C a closed loop, with Ct

= ϕt(C) the loop transported by the flow (Figure 1.2.1). Then

d

dt

∫
Ct

u · ds =
∫

Ct

Du
Dt

ds. (1.2.5)

Proof Let x(s) be a parametrization of the loop C, 0 ≤ s ≤ 1. Then a
parameterization of Ct is ϕ(x(s), t), 0 ≤ s ≤ 1. Thus, by definition of the
line integral and the material derivative,

d

dt

∫
Ct

u · ds =
d

dt

∫ 1

0

u(ϕ(x(s), t), t) · ∂

∂s
ϕ(x(s), t) ds

=
∫ 1

0

Du
Dt

(ϕ(x(s), t), t) · ∂

∂s
ϕ(x(s), t) ds

+
∫ 1

0

u(ϕ(x(s), t), t) · ∂

∂t

∂

∂s
ϕ(x(s), t) ds.
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Because ∂ϕ/∂t = u, the second term equals

∫ 1

0

u(ϕ(x(s), t), t) · ∂

∂s
u(ϕ(x(s), t), t) ds

=
1
2

∫ 1

0

∂

∂s
(u · u)(ϕ(x(s), t), t) ds = 0

(since Ct is closed). The first term equals∫
Ct

Du
Dt

ds,

so the lemma is proved. �

Proof of the Circulation Theorem Using the lemma and the fact that
Du/Dt = −∇w (the flow is isentropic and without external forces), we find

d

dt
ΓCt

=
d

dt

∫
Ct

u ds =
∫

Ct

Du
Dt

ds

= −
∫

Ct

∇w · ds = 0 (since Ct is closed). �

We now use Stokes’ theorem, which will bring in the vorticity. If Σ is
a surface whose boundary is an oriented closed oriented contour C, then
Stokes’ theorem yields (see Figure 1.2.2)

ΓC =
∫

C

u · ds =
∫∫

Σ

(∇× u) · n dA =
∫∫

Σ

ξ · dA.

dA = n dA

C

Σ

Figure 1.2.2. The circulation around C is the integral of the vorticity over Σ.

Thus, as a corollary of the circulation theorem, we can conclude that the
flux of vorticity across a surface moving with the fluid is constant in time.
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u

x

ξ

S

vortex sheet

flow

x

ξ

L

vortex line

Figure 1.2.3. Vortex sheets and lines remain so under the flow.

By definition, a vortex sheet (or vortex line) is a surface S (or a
curve L) that is tangent to the vorticity vector ξ at each of its points
(Figure 1.2.3).

Proposition If a surface (or curve) moves with the flow of an isentropic
fluid and is a vortex sheet (or line) at t = 0, then it remains so for all
time.

Proof Let n be the unit normal to S, so that at t = 0, ξ · n = 0 by
hypothesis. By the circulation theorem, the flux of ξ across any portion
S̃ ⊂ S at a later time is also zero, i.e.,∫∫

S̃t

ξ · n dA = 0.

It follows that ξ · n = 0 identically on St, so S remains a vortex sheet.
One can show (using the implicit function theorem) that if ξ(x) �= 0,

then, locally, a vortex line is the intersection of two vortex sheets. �

Next, we show that the vorticity (per unit mass), that is, ω = ξ/ρ, is
propagated by the flow (see Figure 1.2.4). This fact can also be used to
give another proof of the preceding theorem. We assume we are in three
dimensions; the two-dimensional case will be discussed later.

Proposition For isentropic flow (in the absence of external forces) with
ξ = ∇× u and ω = ξ/ρ, we have

Dω

Dt
− (ω · ∇)u = 0 (1.2.6)
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ω at time 0

x

ω is dragged by the flow

ϕ(x,t�)

ω at time t

Figure 1.2.4. The vorticity is transported by the Jacobian matrix of the flow
map.

and
ω(ϕ(x, t), t) = ∇ϕt(x) · ω(x, 0), (1.2.7)

where ϕt is the flow map (see §1.1) and ∇ϕt is its Jacobian matrix.

Proof Start with the following vector identity (see the table of vector
identities at the back of the book)

1
2∇(u · u) = u × curlu + (u · ∇)u.

Substituting this into the equations of motion yields

∂u
∂t

+ 1
2∇(u · u) − u × curlu = −∇w.

Taking the curl and using the identity ∇×∇f = 0 gives

∂ξ

∂t
− curl(u × ξ) = 0.

Using the identity (also from the back of the book)

curl(F × G) = F div G − G div F + (G · ∇)F − (F · ∇)G

for the curl of a vector product, gives

∂ξ

∂t
− [ (u(∇ · ξ) − ξ(∇ · u) + ξ · ∇)u − (u · ∇)ξ ] = 0,

that is,
Dξ

Dt
− (ξ · ∇)u + ξ(∇ · u) = 0, (1.2.8)

since ξ is divergence free. Also,

Dω

Dt
=

D

Dt

(
ξ

ρ

)
=

1
ρ

Dξ

Dt
+

ξ

ρ
(∇ · u) (1.2.9)

by the continuity equation. Substitution of (1.2.8) into (1.2.9) yields (1.2.6).
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To prove (1.2.7), let

F(x, t) = ω(ϕ(x, t), t) and G(x, t) = ∇ϕt(x) · ω(x, 0).

By (1.2.6), ∂F/∂t = (F · ∇)u. On the other hand, by the chain rule:

∂G
∂t

= ∇
[
∂ϕ

∂t
(x, t)

]
· ω(x, 0) = ∇(u(ϕ(x, t), t)) · ω(x, 0)

= (∇u) · ∇ϕt(x) · ω(x, 0) = (G · ∇)u

Thus, F and G satisfy the same linear first-order differential equation.
Because they coincide at t = 0 and solutions are unique, they are equal. �

The reader may wish to compare (1.2.7) with the formula

ρ(x, 0) = ρ(ϕ(x, t), t)J(x, t) (1.2.10)

proved in §1.1.
As an exercise, we invite the reader to prove the preservation of vortex

sheets and lines by the flow using (1.2.7) and (1.2.10).

For two-dimensional flow, where u = (u, v, 0), ξ has only one component;
ξ = (0, 0, ξ). The circulation theorem now states that if Σt is any region in
the plane that is moving with the fluid, then∫

Σt

ξ dA = constant in time. (1.2.11)

In fact, one can say more using (1.2.7). In two dimensions, (1.2.7) specializes
to

ξ

ρ
(ϕ(x, t), t) =

ξ

ρ
(x, 0), (1.2.7)′

that is, ξ/ρ is propagated as a scalar by the flow. Employing (1.2.10) and
the change of variables theorem gives (1.2.11) as a special case.

In three-dimensional flows, the relation (1.2.7) allows rather complicated
behavior. We shall now discuss the three-dimensional geometry a bit fur-
ther.

A vortex tube consists of a two-dimensional surface S that is nowhere
tangent to ξ, with vortex lines drawn through each point of the bounding
curve C of S. These vortex lines are integral curves of ξ and are extended
as far as possible in each direction. See Figure 1.2.5.

In fluid mechanics it is customary to be sloppy about this definition and
make tacit assumptions to the effect that the tube really “looks like” a tube.
More precisely, we assume S is diffeomorphic to a disc (i.e., related to a
disc by a one-to-one invertible differentiable transformation) and that the
resulting tube is diffeomorphic to the product of the disc and the real line.
This tacitly assumes that ξ has no zeros (of course, ξ could have zeros!).
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S

vortex line

C

Figure 1.2.5. A vortex tube consists of vortex lines drawn through points of C.

Helmholtz’s Theorem Assume the fluid is isentropic. Then

(a) If C1 and C2 are any two curves encircling the vortex tube, then∫
C1

u · ds =
∫

C2

u · ds.

This common value is called the strength of the vortex tube.

(b) The strength of the vortex tube is constant in time, as the tube moves
with the fluid.

Proof (a) Let C1 and C2 be oriented as in Figure 1.2.6.

S

C 

C

S

V  = region enclosed

2

2

S1

1

Figure 1.2.6. A vortex tube enclosed between two curves, C1 and C2.

The lateral surface of the vortex tube enclosed between C1 and C2 is
denoted by S, and the end faces with boundaries C1 and C2 are denoted
by S1 and S2, respectively. Since ξ is tangent to the lateral surface, S is a



1.2 Rotation and Vorticity 27

vortex sheet. Let V denote the region of the vortex tube between C1 and
C2 and Σ = S ∪ S1 ∪ S2 denote the boundary of V . By Gauss’ theorem,

0 =
∫

V

∇ · ξ dx =
∫

Σ

ξ · dA =
∫

S1∪S2

ξ · dA +
∫

S

ξ · dA.

By Stokes’ theorem∫
C1

u · ds =
∫

S1

ξ · dA and
∫

C2

u · ds = −
∫

S2

ξ · dA,

so (a) holds. Part (b) now follows from Kelvin’s circulation theorem. �

Observe that if a vortex tube gets stretched and its cross-sectional area
decreases, then the magnitude of ξ must increase. Thus, the stretching of
vortex tubes can increase vorticity, but it cannot create it.

A vortex tube with nonzero strength cannot “end” in the interior of the
fluid. It either forms a ring (such as the smoke from a cigarette), extends to
infinity, or is attached to a solid boundary. The usual argument supporting
this statement goes like this: suppose the tube ended at a certain cross
section S, inside the fluid. Because the tube cannot be extended, we must
have ξ = 0 on C1. Thus, the strength is zero—a contradiction.

This “proof” is hopelessly incomplete. First of all, why should a vortex
tube end in a nice regular way on a surface? Why can’t it split in two, as
in Figure 1.2.7? There is no a priori reason why this sort of thing cannot
happen unless we merely exclude it by tacit assumption.4. In particular,
note that the assertion often made that a vortex line cannot end in the
fluid is clearly false if we allow ξ to have zeros and probably is false even
if ξ has no zeros (an orbit of a vector field can wander around forever
without accumulating at an endpoint—as with a line with irrational slope
on a torus)

Thus, our assertion about vortex tubes “ending” is correct if we interpret
“ending” properly. But the reader is cautioned that this may not be all that
can happen, and that this time-honored statement is not at all a proved
theorem.

The difference between the two-dimensional and three-dimensional con-
servation laws for vorticity is very important. The conservation of vorticity
(1.2.7)′ in two dimensions is a helpful tool in establishing a rigorous theory
of existence and uniqueness of the Euler (and later Navier–Stokes) equa-
tions. The lack of the same kind of conservation in three dimensions is a
major obstacle to the rigorous understanding of crucial properties of the
solutions of the equations of fluid dynamics. The main point here is to get
existence theorems for all time. At the moment, it is known only in two
dimension that all time smooth solutions exist.

4H. Lamb [1895] Mathematical Theory of the Motion of Fluids, Cambridge Univ.
Press, p. 149.
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this vortex line ends at P

S

a zero of ξ

C1
C

C2
P

Figure 1.2.7. Can this be a vortex tube generated by S? Is the circulation around
C1 equal to that around C2?

Our last main goal in this section is to develop the vorticity equation
somewhat further for the important special case of incompressible flow. For
two-dimensional homogeneous incompressible flow, the vorticity equa-
tion is

Dξ

Dt
= ∂tξ + (u · ∇)ξ = 0, (1.2.12)

where ξ = ξ(x, y, t) = ∂xv−∂yu is the (scalar) vorticity field of the flow and
u, v are the components of u. Assume that the flow is contained in some
plane domain D with a fixed boundary ∂D, with the boundary condition

u · n = 0 on ∂D, (1.2.13)

where n is the unit outward normal to ∂D. Let us assume D is simply
connected (i.e., has no “holes”). Then, by incompressibility, ∂xu = −∂yv,
and so from vector calculus there is a scalar function ψ(x, y, t) on D unique
up to an additive constant such that

u = ∂yψ and v = −∂xψ. (1.2.14)

The function ψ is the stream function for fixed t; streamlines lie on level
curves of ψ. Indeed, let (x(s), y(s)) be a streamline, so x′ = u(x, y) and
y′ = v(x, y). Then

d

ds
ψ(x(s), y(s), t) = ∂xψ · x′ + ∂yψ · y′ = −vu + uv = 0.

In particular, by (1.2.13), ∂D lies on a level curve of ψ, and we can adjust
the constant so that

ψ(x, y, t) = 0 for (x, y) ∈ ∂D.

This convention and (1.2.14) determine ψ uniquely. (∂D need not be a
whole streamline, but can be composed of streamlines separated by zeros
of u, that is, by stagnation points.) The scalar vorticity is now given by

ξ = ∂xv − ∂yu = −∂2
xψ − ∂2

yψ = −∆ψ,
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where ∆ = ∂2
x + ∂2

y is the Laplace operator in the plane.
We can summarize the equations for ξ for two-dimensional incompressible

flow as follows:

Dξ
Dt ≡ ∂tξ + (u · ∇)ξ = 0,

∆ψ = −ξ,

with
ψ = 0 on ∂D,

and with
u = ∂yψ and v = −∂xψ.




(1.2.15)

These equations completely determine the flow. Note that given ξ, the
function ψ is determined by ∆ψ = −ξ and the boundary conditions, and
hence u by the last equations in (1.2.15). Thus, ξ completely determines
∂tξ and hence the evolution of ξ and, through it, ψ and u.

Another remark is useful:

(u · ∇)ξ = u∂xξ + v∂yξ = (∂yψ)(∂xξ) − (∂xψ)(∂yξ)

= det
[

∂xξ ∂yξ
∂xψ ∂yψ

]
= J(ξ, ψ),

the Jacobian of ξ and ψ. Thus, the flow is stationary (time independent) if
and only if ξ and ψ are functionally dependent. (If functional dependence
holds at one instant it will hold for all time as a consequence.)

Example Suppose at t = 0 the stream function ψ(x, y) is a function
only of the radial distance r = (x2 + y2)1/2. Thus, the streamlines are
concentric circles. Write ψ(x, y) = ψ(r) and assume ψr > 0. The velocity
vector is given by

u = ∂yψ = ∂rψ∂yr =
y

r
∂rψ, (1.2.16)

v = −∂xψ = −∂rψ∂xr = −x

r
∂rψ, (1.2.17)

that is, u is tangent to the circle of radius r with magnitude |∂rψ| and
oriented clockwise if ψr > 0 and counterclockwise if ψr < 0. Next, observe
that

ξ = −∆ψ = −1
r

∂

∂r

(
r
∂ψ

∂r

)
,

a function of r alone. Because ψr �= 0, r is a function of ψ so ξ is also
a function of ψ. Thus, J(ξ, ψ) = 0. Hence, motion in concentric circles
with u defined as above is a solution of the two-dimensional stationary
incompressible equations of ideal flow.
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For three-dimensional incompressible ideal flow, the analogue of (1.2.15)
is

Dξ

Dt
− (ξ · ∇)u = 0,

∆A = −ξ, div A = 0,

u = ∇× A.




(1.2.18)

Here we used ∇·u = 0 to write u = ∇×A, where div A = 0. (This requires
not that D be simply connected, but that it not have any “solid holes” in
it; for instance, if D is convex, this will hold.) Then

ξ = curlu = curl(curlA) = −∆A + ∇(div A) = −∆A.

One of the troubles with (1.2.18) is that given ξ, the vector field A is not
uniquely determined (we cannot impose boundary condition such as A = 0
on ∂D because A need not be constant on ∂D as was the case with ψ). �

Exercises


 Exercise 1.2-1 Derive a formula akin to the transport theorem and
Kelvin’s circulation theorem for

d

dt

∫
St

v · n dA,

where St is a moving surface and v is a vector field.


 Exercise 1.2-2 Couette flow. Let Ω be the region between two concen-
tric cylinders of radii R1 and R2, where R1 < R2. Define v in cylindrical
coordinates by

vr = 0, vz = 0,

and
vθ =

A

r
+ Br,

where

A = −R2
1R

2
2(ω2 − ω1)

R2
2 − R1

2

and B = −R2
1 ω1 − R2

2 ω2

R2
2 − R2

1

.

Show that

(i) v is a stationary solution of Euler’s equations with ρ = 1;

(ii) ω = ∇× v = (0, 0, 2B);

(iii) the deformation tensor is

D = − A

r2

[
0 1
1 0

]

and discuss its physical meaning;
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(iv) the angular velocity of the flow on the two cylinders is ω1 and ω2.

1.3 The Navier–Stokes Equations

In §1.1 we defined an ideal fluid as one in which forces across a surface were
normal to that surface. We now consider more general fluids. To understand
the need for the generalization beyond the examples already given, consider
the situation shown in Figure 1.3.1. Here the velocity field u is parallel to
a surface S but jumps in magnitude either suddenly or rapidly as we cross
S. If the forces are all normal to S, there will be no transfer of momentum
between the fluid volumes denoted by B and B′ in Figure 1.3.1. However, if
we remember the kinetic theory of matter, we see that this is actually un-
reasonable. Faster molecules from above S will diffuse across S and impart
momentum to the fluid below, and, likewise, slower molecules from below
S will diffuse across S to slow down the fluid above S. For reasonably fast
changes in velocity over short distance, this effect is important.5

B

B'

S

u

u

Figure 1.3.1. Faster molecules in B′ can diffuse across S and impart momentum
to B.

We thus change our previous definition. Instead of assuming that

force on S per unit area = −p(x, t)n,

where n is the normal to S, we now assume that

force on S per unit area = −p(x, t)n + σ(x, t) · n, (1.3.1)

where σ is a matrix called the stress tensor, about which some assump-
tions will have to be made. The new feature is that σ ·n need not be parallel
to n. The separation of the forces into pressure and other forces in (1.3.1)
is somewhat ambiguous because σ ·n may contain a component parallel to
n. This issue will be resolved later when we give a more definite functional
form to σ.

5For more information, see J. Jeans [1867] An Introduction to the Kinetic Theory of
Gases, Cambridge Univ. Press.



32 1 The Equations of Motion

As before, Newton’s second law states that the rate of change of any
moving portion of fluid Wt equals the force acting on it (balance of mo-
mentum):

d

dt

∫
Wt

ρu dV = −
∫

∂Wt

(p · n − σ · n) dA

(compare (BM3) in §1.1). Thus, we see that σ modifies the transport
of momentum across the boundary of Wt. We will choose σ so that it
approximates in a reasonable way the transport of momentum by molecular
motion.

One can legitimately ask why the force (1.3.1) acting on S should be a
linear function of n. In fact, if one just assumes the force is a continuous
function of n, then, using balance of momentum, one can prove it is linear
in n. This result is called Cauchy’s Theorem .6

Our assumptions on σ are as follows:

1. σ depends linearly on the velocity gradients ∇u that is, σ is related
to ∇u by some linear transformation at each point.

2. σ is invariant under rigid body rotations, that is, if U is an orthogonal
matrix,

σ(U · ∇u · U−1) = U · σ(∇u) · U−1.

This is reasonable, because when a fluid undergoes a rigid body ro-
tation, there should be no diffusion of momentum.

3. σ is symmetric. This property can be deduced as a consequence of
balance of angular momentum.7

Since σ is symmetric, if follows from properties 1 and 2 that σ can depend
only on the symmetric part of ∇u; that is, on the deformation D. Because
σ is a linear function of D, σ and D commute and so can be simultaneously
diagonalized. Thus, the eigenvalues of σ are linear functions of those of D.
By property 2, they must also be symmetric because we can choose U to
permute two eigenvalues of D (by rotating through an angle π/2 about an
eigenvector), and this must permute the corresponding eigenvalues of σ.
The only linear functions that are symmetric in this sense are of the form

σi = λ(d1 + d2 + d3) + 2µdi, i = 1, 2, 3,

where σi are the eigenvalues of σ, and di are those of D. This defines the
constants λ and µ. Recalling that d1 +d2 +d3 = div u, we can use property
2 to transform σi back to the usual basis and deduce that

σ = λ(div u)I + 2µD, (1.3.2)

6For a proof and further references, see, for example, Marsden and Hughes [1994].
7Op. cit.
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where I is the identity. We can rewrite this by putting all the trace in one
term:

σ = 2µ[D − 1
3 (div u)I] + ζ(div u)I (1.3.2)′

where µ is the first coefficient of viscosity , and ζ = λ + 2
3µ is the

second coefficient of viscosity.
If we employ the transport theorem and the divergence theorem, as we

did in connection with (BM3), balance of momentum yields the Navier–
Stokes equations,

ρ
Du
Dt

= −∇p + (λ + µ)∇(div u) + µ∆u (1.3.3)

where

∆u =
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u

is the Laplacian of u. Together with the equation of continuity and an
energy equation, (1.3.3) completely describes the flow of a compressible
viscous fluid.

In the case of incompressible homogeneous flow ρ = ρ0 = constant, the
complete set of equations becomes the Navier–Stokes equations for
incompressible flow,

Du
Dt

= − grad p′ + ν∆u

div u = 0
(1.3.4)

where ν = µ/ρ0 is the coefficient of kinematic viscosity , and p′ = p/ρ0.
These equations are supplemented by boundary conditions. For Euler’s

equations for ideal flow we use u · n = 0, that is, fluid does not cross the
boundary but may move tangentially to the boundary. For the Navier–
Stokes equations, the extra term ν∆u raises the number of derivatives
of u involved from one to two. For both experimental and mathematical
reasons, this is accompanied by an increase in the number of boundary
conditions. For instance, on a solid wall at rest we add the condition that
the tangential velocity also be zero (the “no-slip condition”), so the full
boundary conditions are simply

u = 0 on solid walls at rest.

The mathematical need for extra boundary conditions hinges on their
role in proving that the equations are well posed; that is, that a unique
solution exists and depends continuously on the initial data. In three di-
mensions, it is known that smooth solutions to the incompressible equations



34 1 The Equations of Motion

exist for a short time and depend continuously on the initial data.8 It is a
major open problem in fluid mechanics to prove or disprove that solutions
of the incompressible equations exist for all time. In two dimensions, solu-
tions are known to exist for all time, for both viscous and inviscid flow9. In
any case, adding the tangential boundary condition is crucial for viscous
flow.

The physical need for the extra boundary conditions comes from sim-
ple experiments involving flow past a solid wall. For example, if dye is
injected into flow down a pipe and is carefully watched near the bound-
ary, one sees that the velocity approaches zero at the boundary to a high
degree of precision. The no-slip condition is also reasonable if one contem-
plates the physical mechanism responsible for the viscous terms, namely,
molecular diffusion. Our opening example indicates that molecular inter-
action between the solid wall with zero tangential velocity (or zero average
velocity on the molecular level) should impart the same condition to the
immediately adjacent fluid.

Another crucial feature of the boundary condition u = 0 is that it pro-
vides a mechanism by which a boundary can produce vorticity in the fluid.
We shall describe this in some detail in Chapter 2.

Next, we shall discuss some scaling properties of the Navier–Stokes equa-
tions with the aim of introducing a parameter (the Reynolds number) that
measures the effect of viscosity on the flow.

For a given problem, let L be a characteristic length and U a char-
acteristic velocity . These numbers are chosen in a somewhat arbitrary
way. For example, if we consider flow past a sphere, L could be either the
radius or the diameter of the sphere, and U could be the magnitude of the
fluid velocity at infinity. L and U are merely reasonable length and velocity
scales typical of the flow at hand. Their choice then determines a time scale
by T = L/U .

We can measure x,u, and t as fractions of these scales, by changing
variables and introducing the following dimensionless quantities

u′ =
u
U

, x′ =
x
L

, and t′ =
t

T
.

The x component of the (homogeneous) incompressible Navier–Stokes
equation is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν

[
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

]
.

8For a review of much of what is known, see O. A. Ladyzhenskaya [1969] The Mathe-
matical Theory of Viscous Incompressible Flow , Gordon and Breach. See also R. Temam
[1977] Navier–Stokes Equations, North Holland.

9Op. cit. and W. Wolibner, Math. Zeit. 37 [1933], 698–726; V. Judovich, Mat. Sb.
N.S. 64 [1964], 562–588; and T. Kato, Arch. Rational Mech. Anal. 25 [1967], 188–200.
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The change of variables produces

∂(u′U)
∂t′

∂t′

∂t
+ Uu′ ∂(u′U)

∂x′
∂x′

∂x
+ Uv′

∂(u′U)
∂y′

∂y′

∂y
+ Uw′ ∂(u′U)

∂z′
∂w′

∂z

= − 1
ρ0

∂p

∂x′
∂x′

∂x
+ ν

[
∂2(u′U)
∂(Lx′)2

+
∂2(u′U)
∂(Ly′)2

+
∂2(u′U)
∂(Lz′)2

]
,

[
U2

L

] [
∂u′

∂t′
+ u′ ∂u′

∂x′ + v′
∂u′

∂y′ + w′ ∂u′

∂z′

]

= −
[
U2

L

]
∂(p/(ρ0U

2))
∂x′ +

[
U

L2

]
ν

[
∂2u′

∂x′2 +
∂2u′

∂y′2 +
∂2u′

∂z′2

]
.

Similar equations hold for the y and z components. If we combine all
three components and divide out by U2/L, we obtain

∂u′

∂t′
+ (u′ · ∇′)u′ = − gradp′ +

ν

LU
∆′u′, (1.3.5)

where p′ = p/(ρ0U
2). Incompressibility still reads

div u′ = 0.

The equations (1.3.5) are the Navier–Stokes equations in dimensionless
variables. We define the Reynolds number R to be the dimensionless
number

R =
LU

ν
.

For example, consider two flows past two spheres centered at the origin
but with differing radii, one with a fluid where U∞ = 10 km/hr past a
sphere of radius 10 m and the other with the same fluid but with U∞ =
100 km/hr and radius = 1 m. If we choose L to be the radius and U to
be the velocity U∞ at infinity, then the Reynolds number is the same for
each flow. The equations satisfied by the dimensionless variables are thus
identical for the two flows.

Two flows with the same geometry and the same Reynolds number are
called similar . More precisely, let u1 and u2 be two flows on regions D1

and D2 that are related by a scale factor λ so that L1 = λL2. Let choices
of U1 and U2 be made for each flow, and let the viscosities be ν1 and ν2

respectively. If

R1 = R2, i.e.,
L1U1

ν1
=

L2U2

ν2
,

then the dimensionless velocity fields u′
1 and u′

2 satisfy exactly the same
equation on the same region. Thus, we can conclude that u1 may be ob-
tained from a suitably rescaled solution u2; in other words, u1 and u2 are
similar.
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This idea of the similarity of flows is used in the design of experimental
models. For example, suppose we are contemplating a new design for an
aircraft wing and we wish to know the behavior of a fluid flow around it.
Rather than build the wing itself, it may be faster and more economical to
perform the initial tests on a scaled-down version. We design our model so
that it has the same geometry as the full-scale wing and we choose values
for the undisturbed velocity, coefficient of viscosity, and so on, such that
the Reynolds number for the flow in our experiment matches that of the
actual flow. We can then expect the results of our experiment to be relevant
to the actual flow over the full-scale wing.

We shall be especially interested in cases where R is large. We stress
that one cannot say that if ν is small, then viscous effects are unimportant,
because such a comment fails to consider the other dimensions of the prob-
lem, that is, “ν is small” is not a physically meaningful statement unless
some scaling is chosen, but “1/R is small” is a meaningful statement.

As with incompressible ideal flow, the pressure p in incompressible vis-
cous flow is determined through the equation divu = 0. We now shall
explore the role of the pressure in incompressible flow in more depth. Let
D be a region in space (or in the plane) with smooth boundary ∂D.

We shall use the following decomposition theorem.

Helmholtz–Hodge Decomposition Theorem A vector field w on D
can be uniquely decomposed in the form

w = u + grad p, (1.3.6)

where u has zero divergence and is parallel to ∂D; that is, u ·n = 0 on ∂D.

Proof First of all, we establish the orthogonality relation∫
D

u · grad p dV = 0.

Indeed, by the identity

div(pu) = (div u)p + u · grad p,

the divergence theorem, and divu = 0, we get∫
D

u · grad p dV =
∫

D

div(pu) dV =
∫

∂D

pu · n dA = 0,

because u · n = 0 on ∂D. We use this orthogonality to prove uniqueness.
Suppose the w = u1 + grad p1 = u2 + grad p2. Then

0 = u1 − u2 + grad(p1 − p2).
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Taking the inner product with u1 − u2 and integrating, we get

0 =
∫

D

{
‖u1 − u2‖2 + (u1 − u2) · grad(p1 − p2)

}
dV =

∫
D

‖u1 − u2‖2 dV

by the orthogonality relation. It follows that u1 = u2, and so, grad p1 =
grad p2 (which is the same thing as p1 = p2 + constant).

If w = u + grad p, notice that div w = div grad p = ∆p and that w ·n =
n · grad p. We use this remark to prove existence. Indeed, given w, let p be
defined by the solution to the Neumann problem

∆p = div w in D, with
∂p

∂n
= w · n on ∂D.

It is known10 that the solution to this problem exists and is unique up to
the addition of a constant to p. With this choice of p, define u = w−grad p.
Then, clearly u has the desired properties divu = 0, and also u · n = 0 by
construction of p. �

The situation is shown schematically in Figure 1.3.2.

gradient fields

vector fields that are divergence
free and parallel to the boundary

Figure 1.3.2. Decomposing a vector field into a divergence-free and gradient
part.

It is natural to introduce the operator P, an orthogonal projection op-
erator, which maps w onto its divergence-free part u. By the preceding
theorem, P is well defined. Notice that by construction P is a linear opera-
tor and that

w = Pw + grad p. (1.3.7)

Also notice that
Pu = u

10See R. Courant and D. Hilbert [1953], Methods of Mathematical Physics, Wiley.
The equation ∆p = f, ∂p/∂n = g has a solution unique up to a constant if and only if∫

D fdV =
∫

∂D g dA. The divergence theorem ensures that this condition is satisfied in
our case.
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provided divu = 0 and u · n = 0, and that

P(grad p) = 0.

Now we apply these ideas to the incompressible Navier–Stokes equations
(1.3.5). If we apply the operator P to both sides, we obtain

P(∂tu + grad p) = P

(
−(u · ∇)u +

1
R

∆u
)

.

Because u is divergence-free and vanishes on the boundary, the same is
true of ∂tu (if u is smooth enough). Thus, by (1.3.7), P∂tu = ∂tu. Because
P(grad p) = 0, we get

∂tu = P

(
−u · ∇u +

1
R

∆u
)

. (1.3.8)

Although ∆u is divergence free, it need not be parallel to the boundary
and so we cannot simply write P∆u = 0. This form (1.3.8) of the Navier–
Stokes equations eliminates the pressure and expresses ∂tu in terms of u
alone. The pressure can then be recovered as the gradient part of

−u · ∇u +
1
R

∆u.

This form (1.3.8) of the equations is not only of theoretical interest, shed-
ding light on the role of the pressure, but is of practical interest for numer-
ical algorithms.11

The pressure in compressible flows is conceptually different than in in-
compressible flows just as it was in ideal flow. If we think of viscous flow as
ideal flow with viscous effects added on, it is not unreasonable to assume
that p is still a function of ρ.

A note of caution is appropriate here. The expressions for p(ρ) used
in practical situations are often borrowed from the science of equilibrium
thermodynamics. It is not obvious that p as defined here (through equation
(1.3.1)) is identical to p as defined in that other science. Not all quantities
called p are equal. The use of expressions from equilibrium thermodynamics
requires an additional physical justification, which is indeed often available,
but which should not be forgotten.

According to the analysis given earlier, the pressure p in incompressible
flow is determined by the equation of continuity divu = 0. To see why this

11See, for instance, A. J. Chorin, Math. Comp. 23 [1969], 341-353 for algorithms,
and D. Ebin and J. E. Marsden, Ann. of Math. 92 [1970], 102–163 for a theoretical
investigation of the projection operator and the use of material coordinates.
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is physically reasonable, consider a compressible flow with p = p(ρ), where
p′(ρ) > 0. If fluid flows into a given fixed volume V , the density in V will
increase, and if p′(ρ) > 0, then p in V will also increase. If either the change
in ρ is large enough or p′(ρ) is large enough, −grad p at the boundary of
V will begin to point away from V , and through the term −grad p in the
equation for ∂tu, this will cause the fluid to flow away from V . Thus, the
pressure controls and moderates the variations in density. If the density is
to remain invariant, this must be accomplished by an appropriate p, that
is, div u = 0 determines p.

In the Navier–Stokes equations for a viscous incompressible fluid, namely,

∂tu + (u · ∇)u = −∇p +
1
R

∆u,

we call
1
R

∆u, the diffusion or dissipation term,

and
(u · ∇)u, the inertia or convective term.

The equations say that u is convected subject to pressure forces and, at the
same time, is dissipated. Suppose R is very small. If we write the equations
in the form ∂tu = P(−u · ∇u + 1

R∆u), we see that they are approximated
by

∂tu = P

(
1
R

∆u
)

,

that is,

∂tu = − grad p +
1
R

∆u and divu = 0,

which are the Stokes’ equations for incompressible flow. These are lin-
ear equations of “parabolic” type. For small R (i.e., slow velocity, large
viscosity, or small bodies), the solution of the Stokes equation provides a
good approximation to the solution of the Navier–Stokes equations. Later,
we shall mostly be interested in flows with the large R; for these the in-
ertial term is important and in some sense is dominant. We hesitate and
say “in some sense” because no matter how small (1/R)∆u may be, it still
produces a large effect, namely, the change in boundary conditions from
u · n = 0 when (1/R)∆u is absent to u = 0 when it is present.

There is a major difference between the ideal and viscous flow with regard
to the energy of the fluid. The viscous terms provide a mechanism by
which macroscopic energy can be converted into internal energy. General
principles of thermodynamics state that this energy transfer is one-way. In
particular, for incompressible flow, we should have

d

dt
Ekinetic ≤ 0. (1.3.9)
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We calculate (d/dt)Ekinetic for incompressible viscous flow using the
transport theorem, as we did in §1.1. We get

d

dt
Ekinetic =

d

dt
1
2

∫
D

ρ‖u‖2dV =
∫

D

ρu · Du
Dt

dV

=
∫

D

(
−u · ∇p +

1
R

u · ∆u
)

dV,

by (1.3.3) and divu = 0. Because u is orthogonal to grad p, we get

d

dt
Ekinetic =

1
R

∫
D

u · ∆u dV.

The vector identity div(fV) = f div V + V · ∇f gives

∇ · (u∇u + v∇v + w∇w)
= ∇u · ∇u + ∇v · ∇v + ∇w · ∇w + u∆u + v∆v + w∆w.

This equation, the divergence theorem, and the boundary condition u = 0
on ∂D enable us to simplify the expression for (d/dt)Ekinetic to

d

dt
Ekinetic = −µ

∫
D

‖∇u‖2 dV, (1.3.10)

where ‖∇u‖2 = ∇u · ∇u = ‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2. Notice that (1.3.9)
and (1.3.10) are compatible exactly when µ ≥ 0 (or, equivalently, ν ≥ 0 or
0 < R ≤ ∞). In other words, there is no such thing as “negative viscosity.”

A similar analysis for compressible flow and making use of (1.3.2)’ leads
to the inequalities

µ ≥ 0 and λ + 2
3µ ≥ 0

and with σ given by (1.3.2).12

At the end of §1.1 we noted that ideal flow in a channel leads to unrea-
sonable results. We now reconsider this example with viscous effects.

Example Consider stationary viscous incompressible flow between two
stationary plates located at y = 0 and y = 1, as shown in Figure 1.3.3. We
seek a solution for which u(x, y) = (u(x, y), 0) and p is only a function of
x, with p1 = p(0), p2 = p(L), and p1 > p2, so the fluid is “pushed” in the
positive x direction. The incompressible Navier–Stokes equations are

∂xu = 0 (incompressibility)

and

0 = −u ∂xu − ∂xp +
1
R

[
∂2

xu + ∂2
yu

]

12See, for example, S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-uniform Gases, Cambridge University Press, 1958.
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with boundary conditions u(x, 0) = u(x, 1) = 0. Because ∂xu = 0, u is only
a function of y and thus, writing u(x, y) = u(y), we obtain

p′ =
1
R

u′′.

flow direction

pressure = p pressure = p
x

y

x �= Lx �= 0

y �= 0

y �= 1
fixed wall

fixed wall
21

Figure 1.3.3. Flow between two parallel plates; the fluid is pushed from left to
right and correspondingly, p1 > p2.

Because each side depends on different variables,

p′ = constant,
1
R

u′′ = constant.

Integration gives

p(x) = p1 −
∆p

L
x, ∆p = p1 − p2,

and

u(y) = y(1 − y)R
∆p

2L
.

Notice that the velocity profile is a parabola (Figure 1.3.4).
The presence of viscosity allows the pressure forces to be balanced by

the term 1
Ru′′(y) and allows the fluid to achieve a stationary state. We saw

that this was not possible for ideal flow. �

Next we consider the vorticity equation for (homogeneous) viscous in-
compressible flow. In the two-dimensional case we proved in §1.2 (see
equation (1.2.12)) that for isentropic ideal plane flow, Dξ/Dt = 0. The
derivation is readily modified to cover viscous incompressible flow; the re-
sult is

Dξ

Dt
=

1
R

∆ξ. (1.3.11)

This shows that the vorticity is diffused by viscosity as well as being tran-
ported by the flow. Introduce the stream function ψ(x, y, t) by means of
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x

y

u(y)

y = 1

Figure 1.3.4. Viscous flow between two plates.

(1.2.15)2 and (1.2.15)3 as before. We saw that we could impose the bound-
ary condition ψ = 0 on ∂D. Now, however, the no-slip condition u = 0 on
∂D implies that

∂xψ = 0 = ∂yψ on ∂D

by (1.2.15)3. Because ψ = 0 on ∂D implies that the tangential derivative
of ψ on ∂D vanishes, we get the extra boundary condition

∂ψ

∂n
= 0 on ∂D

This extra condition should be somewhat mystifying; certainly we cannot
impose it when we solve ∆ψ = −ξ, ψ = 0 on ∂D, because this problem
already has a solution. Thus, it is not clear how to get the system

Dξ

Dt
=

1
R

∆ξ,

∆ψ = −ξ, ψ = 0 on ∂D,

u = ∂yψ, v = −∂xψ




(1.3.12)

to work. We shall study this problem in §2.2.

For three-dimensional viscous incompressible flow, the vorticity equation
is

Dξ

Dt
− (ξ · ∇)u =

1
R

∆ξ. (1.3.13)

Thus, vorticity is convected, stretched, and diffused. (The left-hand side of
(1.3.13) is called the Lie derivative . It is this combination, rather than
each term separately , that makes coordinate independent sense.) Here the
problems with getting a system like (1.3.12) are even worse; even in the
isentropic case we had trouble with (1.2.16) because of boundary condi-
tions.

For viscous flow, circulation is no longer a constant of the motion. One
might suspect from (1.3.13) that if ξ = 0 at t = 0, then ξ = 0 for all time.
However, this is not true: viscous flow allows for the generation of vorticity.
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This is possible because of the difference in boundary conditions between
ideal and viscous flows. The mechanism of vorticity generation is related
to the difficulties with the boundary conditions in equations (1.3.12) and
will be discussed in §2.2.

For many of our discussions we have made the assumption of incompress-
ibility. We now give a heuristic analysis of when such an assumption will be
reasonable and when, instead, the compressible equations should be used.
We shall do this in the context of isentropic stationary flows for simplicity.
Assume that we have an equation of state

p = p(ρ), p′(ρ) > 0.

Define
c =

√
p′(ρ).

For reasons that will become clear later, c is called the sound speed of
the fluid. Thus, we have

c2dρ = dp. (1.3.14)

Let u = ‖u‖ be the flow speed. One calls M = u/c the (local) Mach
number of the flow; it is a function of position in the flow. From Bernoulli’s
theorem proved in §1.1,

u2

2
+

∫
dp

ρ(p)
= constant on streamlines. (1.3.15)

Also, differentiating the continuity equation in the form (1.2.10) along
streamlines gives

0 = Jdρ + ρ dJ, (1.3.16)

where J is the Jacobian of the flow map. Combining (1.3.14), (1.3.15), and
(1.3.16) we get

dJ

J
= −M

du

c
.

The flow will be approximately incompressible if J changes only by a small
amount along streamlines. Thus, a steady flow can be viewed as incom-
pressible if the flow speed is much less than the sound speed,

u � c, i.e., M � 1,

or if changes in the speed along streamlines are very small compared to the
sound speed.

For example, for equations of state of the kind associated with ideal
gases,

p = Aργ , γ > 1,
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we have

c =
√

γp

ρ

so the flow will be approximately incompressible if γ is very large.
For nonsteady flow one also needs to know that

l

τ
� c,

where l is a characteristic length and τ is a characteristic time over which
the flow picture changes appreciably.13 The presence of viscosity does not
alter these conclusions significantly.

Exercises


 Exercise 1.3-1 Find a stationary viscous incompressible flow in a circular
pipe with radius a > 0 and with pressure gradient ∇p.


 Exercise 1.3-2 Show that the incompressible Navier–Stokes equations
in cylindrical coordinates are

(i) ρ

(
Dvr

Dt
− v2

θ

r

)
= ρfr −

∂p

∂r
+ µ

(
∆vr −

vr

r2
− 2

r2

∂vθ

∂θ

)
.

(ii) ρ

(
Dvθ

Dt
+

vrvθ

r

)
= ρfθ −

1∂p

r∂θ
+ µ

(
∆vθ +

2∂v2

r2∂θ
− vθ

r2

)
.

(iii) ρ
Dvz

Dt
= ρfz −

∂p

∂z
+ µ∆vz,

where ∆ =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂θ2
+

∂2

∂z2

and
D

Dt
=

∂

∂t
+ vr

∂

∂r
+

vθ

r

∂

∂θ
+ vz

∂

∂z
.


 Exercise 1.3-3 Flow in an infinite pipe.

(i) Poiseuille flow . Work in cylindrical coordinates with a pipe of ra-
dius a aligned along the z-axis. The no-slip boundary condition is

13Theoretical work on the limit c → ∞ is given by D. Ebin, Ann. Math. 141 [1977],
105, and S. Klainerman and A. Majda, Comm. Pure Appl. Math., 35 [1982], 629. Algo-
rithms for solving the equations for incompressible flow by exploiting the regularity of
the limit c → ∞ can be found in A. J. Chorin, J. Comp. Phys.12 [1967], 1.
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v = 0 when r = a. Assume the solution takes the form p = Cz, C
constant, vz = vz(r), and vr = vθ = 0. Using Exercise 1.3-2, obtain

C = µ∆vz = µ

(
1
r

∂

∂r

(
r
∂vz

∂r

))
.

Integration yields

vz = − C

4µ
r2 + A log r + B,

where A, B are constants. Because we require that the solution be
bounded, A must be 0, because log r → −∞ as r → 0. Use the
no-slip condition to determine B and obtain

vz =
C

4µ
(a2 − r2).

(ii) Show that the mass flow rate Q =
∫

s
ρvz dA through the pipe is

Q = ρπCa4/8µ. This is the so-called fourth-power law.

(iii) Determine the pressure on the walls.


 Exercise 1.3-4 Compute the solution to the problem of stationary vis-
cous flow between two concentric cylinders and determine the pressure on
the walls. (Hint: Proceed as above, but retain the log term.)
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2
Potential Flow
and Slightly Viscous Flow

The goal of this chapter is to present a deeper study of the relationship
between viscous and nonviscous flows. We begin with a more detailed study
of inviscid irrotational flows, that is, potential flows. Then we go on to
study boundary layers, where the main difference between slightly viscous
and inviscid flows originates.

This is further developed in the third section using probabilistic methods.
For most of this chapter we will study incompressible flows. A detailed
study of some special compressible flows is the subject of Chapter 3.

2.1 Potential Flow

Throughout this section, all flows are understood to be ideal (i.e., invis-
cid); in other words, either incompressible and nonviscous or isentropic
and nonviscous. Although we allow both, our main emphasis will be on the
incompressible case.

A flow with zero vorticity is called irrotational . For ideal flow, this
holds for all time if it holds at one time by the results of §1.2. An inviscid,
irrotational flow is called a potential flow . A domain D is called simply
connected if any continuous closed curve in D can be continuously shrunk
to a point without leaving D. For example, in space, the exterior of a solid
sphere is simply connected, whereas in the plane the exterior of a solid disc
is not simply connected.
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For irrotational flow in a simply connected region D, there is a scalar
function ϕ(x, t) on D called the velocity potential such that for each t,
u = gradϕ. In particular, it follows that the circulation around any closed
curve C in D is zero. Using the identity

(u · ∇)u = 1
2∇

(
‖u‖2

)
− u × (∇× u), (2.1.1)

we can write the equations for isentropic potential flow in the form

∂tu + 1
2∇(‖u‖2) = − gradw,

where w is the enthalpy, as in §1.1. Substituting u = gradϕ, we obtain

grad
(
∂tϕ + 1

2‖u‖
2 + w

)
= 0,

and thus
∂tϕ + 1

2‖u‖
2 + w = constant in space. (2.1.2)

In particular, if the flow is stationary,

1
2‖u‖

2 + w = constant in space.

For the last equation to hold, simple connectivity of D is unnecessary. The
version of Bernoulli’s theorem given in §1.1 concluded that 1

2‖u‖2 + w
was constant on streamlines. The stronger conclusion here results from the
additional irrotational hypothesis, ξ = 0. For homogeneous incompressible
ideal flow, note that w = p/ρ0 from the definition of w.

For potential flow in nonsimply connected domains, it can occur that the
circulation ΓC around a closed curve C is nonzero. For instance, consider

u =
( −y

x2 + y2
,

x

x2 + y2

)

outside the origin. If the contour C can be deformed within D to another
contour C ′, then ΓC = ΓC′ ; see Figure 2.1.1.

The reason is that basically C ∪C ′ forms the boundary of a surface Σ in
D. Stokes’ theorem then gives∫

Σ

ξ · dA =
∫

C

u · ds −
∫

C′
u · ds = ΓC − ΓC′

and because ξ = 0 in D, we get ΓC = ΓC′ . (A more careful argument
proving the invariance of ΓC under deformation is given in books on com-
plex variables.) Notice that from §1.2, the circulation around a curve is
constant in time. Thus, the circulation around an obstacle in the plane is
well-defined and is constant in time.

Next, consider incompressible potential flow in a simply connected do-
main D. From u = gradϕ and divu = 0, we have

∆ϕ = 0.
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C

C'

Σ

Figure 2.1.1. The circulations about C and C′ are equal if the flow is potential
in Σ.

Let the velocity of ∂D be specified as V, so

u · n = V · n.

Thus, ϕ solves the Neumann problem:

∆ϕ = 0,
∂ϕ

∂n
= V · n. (2.1.3)

If ϕ is a solution, then u = gradϕ is a solution of the stationary homoge-
neous Euler equations, i.e.,

ρ(u · ∇)u = − grad p,

div u = 0,

u · n = V · n on ∂D,

(2.1.4)

where p = −ρ‖u‖2/2. This follows from the identity (2.1.1). Therefore,
solutions of (2.1.3) are in one-to-one correspondence with irrotational so-
lutions of (2.1.4) (with ϕ determined only up to an additive constant) on
simply connected regions. This observation leads to the following.

Theorem Let D be a simply connected, bounded region with prescribed
velocity V on ∂D. Then

i there is exactly one potential homogeneous incompressible flow (sat-
isfying (2.1.4)) in D if and only if

∫
∂D

V · n dA = 0;

ii this flow is the minimizer of the kinetic energy function

Ekinetic =
1
2

∫
D

ρ ‖u‖2 dV,

among all divergence-free vector fields u′ on D satisfying u′ ·n = V·n.
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Proof

i The Neumann problem (2.1.3) has a solution if and only if the obvious
necessary condition

∫
∂D

V ·n dA = 0 holds, as was mentioned earlier.
We can demonstrate the uniqueness of u directly as follows: Let u
and u′ be two solutions, and let v = u − u′, ψ = ϕ − ϕ′. Then
∆ψ = 0, ∂ψ/∂n = 0, and v = gradψ. Hence,∫

D

div(ψv) dV =
∫

D

v · gradψ dV +
∫

D

ψ div v dV =
∫

D

v · v dV.

On the other hand,∫
D

div(ψv) dV =
∫

∂D

ψv · n dA = 0.

Thus,
∫

D
‖v‖2dV = 0 and v = 0, that is, u = u′.

ii Let u solve (2.1.4) and let u′ be divergence free and u′ = n = V · n.
Let v = u − u′; then div v = 0 and v · n = 0 on ∂D. Therefore,

Ekinetic − E′
kinetic = 1

2

∫
D

ρ(‖u‖2 − ‖u′‖2) dV

= − 1
2

∫
D

ρ‖u − u′‖2dV +
∫

D

ρ(u − u′) · u dV

≤
∫

D

ρv · gradϕ dV = 0.

The last equality follows by the orthogonality relation proved in §1.3.
Thus,

Ekinetic ≤ E′
kinetic

as claimed. �

Notice, in particular, that the only incompressible potential flow in a
bounded region with fixed boundary is the trivial flow u = 0. For un-
bounded regions this is not true without a careful specification of what
can happen at infinity; the above uniqueness proof is valid only if the inte-
gration by parts (i.e., use of the divergence theorem) can be justified. For
example, in polar coordinates in the plane,

ϕ(r, θ) =
(

r +
1
r

)
cos θ

solves (2.1.3) with ∂ϕ/∂n = 0 on the unit circle and on the x-axis. It
represents a nontrivial irrotational potential flow on the simply connected
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streamlinesD

y

x

Figure 2.1.2. Potential flow in the upper half-plane outside the unit circle.

region D shown in Figure 2.1.2. This flow may be arrived at by the methods
of complex variables to which we will now turn.

Incompressible potential flow is very special, but is a key building block
for understanding complicated flows. For plane flows the methods of com-
plex variables are useful tools.

Let D be a region in the plane and suppose u = (u, v) is incompressible,
that is,

∂u

∂x
+

∂v

∂y
= 0 (2.1.5)

and is irrotational, that is,

∂u

∂y
− ∂v

∂x
= 0. (2.1.6)

Let
F = u − iv, (2.1.7)

which is called the complex velocity. Equations (2.1.5) and (2.1.6) are ex-
actly the Cauchy-Riemann equations for F , and so F is an analytic function
on D. Conversely, given any analytic function F , u = Re F and v = −Im F
define an incompressible (stationary) potential flow.

If F has a primitive, F = dW/dz, then we call W the complex poten-
tial . (If one allows multivalued functions, W will always exist, but such
a convention could cause confusion.) Write W = ϕ + iψ. Then (2.1.7) is
equivalent to

u = ∂xϕ = ∂yψ and v = ∂yϕ = −∂xψ,

that is, u = gradϕ and ψ is the stream function. In what follows, however,
we do not and must not assume a (single-valued) W exists.

Consider a flow in the exterior of an obstacle B (Figure 2.1.3).
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n

D

B

Figure 2.1.3. Flow around an obstacle.

The force on the body equals the force exerted on ∂B by the pressure,
that is,

F = −
∫

∂B
pn ds, (2.1.8)

which means that for any fixed vector a,

F · a = −
∫

∂B
pn · a ds.

Formula (2.1.8) was already discussed at length in §1.1. We next prove a
theorem that gives a convenient expression for F .

Blasius’ Theorem For incompressible potential flow exterior to a body
B (with rigid boundary) and complex velocity F , the force F on the body is
given by

F =
−iρ

2

[∫
∂B

F 2 dz

]
(2.1.9)

where the overbar denotes complex conjugation and where the vector F
is identified with a complex number in the standard way ; i.e., (x, y) is
identified with z = x + iy.

Proof If dz = dx + i dy represents an infinitesimal displacement along
the boundary curve C = ∂B, then (1/i)dz = dy − i dx represents a normal
displacement. Thus, by (2.1.8)

F = −
∫

C

p dy + i

∫
C

p dx = i

∫
C

p(dx + i dy).

As we observed in (2.1.4),

p =
−ρ(u2 + v2)

2
, and therefore F =

−iρ

2

∫
C

(u2 + v2) dz.
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On the other hand, F 2 = (u − iv)2 = u2 − v2 − 2iuv, and because u is
parallel to the boundary, we get u dy = v dx. Thus,

F 2dz = (u2 − v2 − 2iuv)(dx + i dy) = (u2 + v2)(dx − i dy),

and because u2 + v2 is real, F 2 dz = (u2 + v2) dz. �

This formula will be used to prove the following (Figure 2.1.4):

U
U

U

B

F

Figure 2.1.4. The Kutta–Joukowski theorem gives the force exerted on B.

Kutta–Joukowski Theorem Consider incompressible potential flow ex-
terior to a region B. Let the velocity field approach the constant value
(U, V ) = U at infinity. Then the force exerted on B is given by

F = −ρΓC‖U‖n, (2.1.10)

where ΓC is the circulation around B and n is a unit vector orthogonal
to U.

Proof By assumption, the complex velocity F is an analytic function
outside the body B. It may therefore, be expanded in a Laurent series.
Because F tends to a constant U at infinity, no positive powers of z can
occur in the expansion. In other words, F has the form

F = a0 +
a1

z
+

a2

z2
+

a3

z3
+ · · ·

valid outside any disc centered at the origin and containing B. Because U
is the velocity at infinity, a0 = U − iV . By Cauchy’s theorem,∫

C

F dz = 2πa1i,

where C = ∂B. (The integral is unchanged if we change C to a circle of
large radius.) However,∫

C

F dz =
∫

C

(u − iv)(dx + i dy) =
∫

C

u dx + v dy =
∫

C

u · ds = ΓC
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because u dy = v dx, i.e., u is parallel to ∂B. Therefore,

a1 =
ΓC

2πi
.

Squaring F gives the Laurent expansion

F 2 = a2
0 +

2a0a1

z
+

2a0a2 + a2
1

z2
+ · · · .

By Blasius’ theorem and Cauchy’s theorem,

F = − iρ

2

∫
C

F 2 dz = − iρ

2
· (2πi · 2a0a1) = ρΓC(V − iU)

which proves the theorem. �

Notice that the force exerted on the body B by the flow is normal to the
direction of flow and is proportional to the circulation around the body. In
any case, the body experiences no drag (i.e., no force opposing the flow)
in contradiction with our intuition and with experiment. The difficulty,
of course, stems from the fact that we have neglected viscosity. (We shall
remedy this in the succeeding two sections.) Even worse, if ΓC = 0, there is
no net force on the body at all, a fact hard to reconcile with our intuition
even for ideal flow. This result is called d’Alembert’s paradox.

Example 1 For a complex number α = U − iV , let W (z) = αz. Thus,
F (x) = α, so the velocity field is u = (U, V ). This is two-dimensional flow
moving with constant velocity in the direction (U, V ). �

Example 2 Let B be the disc of radius a > 0 centered at the origin in
the complex plane, and let

W (z) = U

(
z +

a2

z

)
(2.1.11)

for a positive constant U . The complex velocity is

F (z) = W ′(z) = U

(
1 − a2

z2

)
, (2.1.12)

which approaches U at ∞. The velocity potential ϕ and the stream function
ψ are determined by W = ϕ + iψ . To verify that the flow is tangent to
the circle |z| = a, we need only to show that ψ = constant when |z| = a.
In fact, for |z|2 = zz̄ = a2, we have from (2.1.1),

W (z) = U(z + z̄),

so W is real on |z| = a, that is, ψ = 0 on |z| = a. The flow is shown in
Figure 2.1.5.
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x

y

A

B

C

D

ϕ = constantψ = constant

velocity = u

B

Figure 2.1.5. Potential flow around a disc.

From (2.1.12) with z = aeiθ, that is, z on ∂B, we find

F (z) = U

(
1 − a2

a2e2iθ

)
= U(1 − cos 2θ + i sin 2θ).

Thus, the velocity is zero at A and C; that is, A and C are stagnation points.
The velocity reaches a maximum at B and D. By Bernoulli’s theorem, we
can write

p = −ρ

2
‖u‖2 + constant;

thus, the pressure at A and C is maximum and is a minimum at B and D.
The disc has zero circulation because F = W ′ and W is single-valued.

If W is any analytic function defined in the whole plane, then

W̃ (z) = W (z) + W

(
a2

z

)
, |z| ≥ a

is a potential describing a flow exterior to the disc of radius a > 0, but
possibly with a more complicated behavior at infinity. This is proved along
the same lines as in the argument just presented. �

Example 3 In §1.2 we proved that choosing ψ to be an arbitrary in-
creasing function of r alone yields a flow that is incompressible and has
vorticity ξ = −∆ψ. If we can arrange for ψ to be the imaginary part of an
analytic function, then the flow will be irrotational as well. The function

W (z) =
Γ

2πi
log z (2.1.13)
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has this property, because log z = log |z| + i arg z. Of course, W (z) is not
single-valued, but the complex velocity

F (z) =
Γ

2πiz
(2.1.14)

is analytic and single-valued outside z = 0. The circulation is indeed Γ.
Note that the velocity field is zero at infinity. For incompressible potential
flow about a disc of radius a centered at z0, we need only choose

W (z) =
Γ

2πi
log(z − z0).

The boundary conditions are satisfied because ψ is constant on any circle
centered at z0 (see Figure 2.1.6). The incompressible potential flow with

W (z) =
Γ

2πi
log(z − z0)

will be called a potential vortex at z0. �

ψ = constant

ϕ = constant

a
z 0

B

Figure 2.1.6. Potential vortex flow centered at z0.

Example 4 We combine Examples 2 and 3 by forming

W (z) = U

(
z +

a2

z

)
+

Γ
2πi

log z, (2.1.15)

where |z| ≥ a. Because ψ is constant on the boundary for each flow sep-
arately, it is also true for W given by (2.1.15). Thus, we get an incom-
pressible potential flow on the exterior of the disc |z| ≤ a with circulation
Γ around the disc. The velocity field is (U, 0) at infinity (therefore, the
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Kutta–Joukowski theorem applies). On the surface of the disc the velocity
u = gradϕ is tangent to the disc and is given in magnitude by

velocity =
1
r

∂ϕ

∂θ

∣∣∣∣
r=a

.

Here ϕ = ReW , so that

ϕ(r, θ) = U cos θ

(
r +

a2

r

)
+

Γθ

2π
,

and thus

velocity =
1
a

∂ϕ

∂θ

∣∣∣∣
r=a

= −2U sin θ +
Γ

2πa
.

If |Γ| < 4πa U , there are two stagnation points A and C defined by

sin θ =
Γ

4πaU

on the boundary, where the pressure is highest. See Figure 2.1.7.

A

B

C
D

U
Γ

Jerry’s Books

Figure 2.1.7. Flow around a disc with circulation.

This example helps to explain the Kutta–Joukowski theorem; note that
the vertical lift may be attributed to the higher pressure at A and C. The
symmetry in the y-axis means that there is no drag. �

D’Alembert’s Paradox in Three Dimensions In the case of steady
incompressible potential flow around an obstacle in three dimensions with
constant velocity U at infinity, not only can there be no drag, there can be
no lift either.
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The difference with the two-dimensional case is explained by the fact
that the exterior of a body in three-space is simply connected, whereas this
is not true in two dimensions. We will not present the detailed proof of
d’Alembert’s paradox here, but we can give the idea.

Recall that the solution of ∆ϕ = −ρ in space is

ϕ(x) =
1
4π

∫
ρ(y)

‖x − y‖ dV (y),

that is, ϕ is the potential due to a charge distribution ρ. Notice that if ρ is
concentrated in a finite region, then

ϕ(x) = O

(
1
r

)
,

where r = ‖x‖, that is,

|ϕ(x)| ≤ constant
r

for large r. In fact, as we know physically, ϕ(x) ≈ Q/4πr for r large, where
Q =

∫
ρ(y) dV (y) is the total charge. If Q = 0, then ϕ(x) = O(1/r2)

because the first term in the expansion in powers of 1/r is now missing.
For an incompressible potential flow there will be a potential ϕ, that is,

u = gradϕ (because the exterior of the body is simply connected). The
potential satisfies

∆ϕ = 0, ∇ϕ = U at ∞,

and
∂ϕ

∂n
= 0 on the boundary of the obstacle.

The solution here can then be shown to satisfy

ϕ(x) = U · x + O

(
1
r

)

as in the potential case above. However, there is an integral condition anal-
ogous to Q = 0, namely, the net outflow at ∞ should be zero. This means

ϕ(x) = U · x + O

(
1
r2

)
.

Hence,
u = U + O(r−3). (2.1.16)

Because p = −ρv2/2, we also have p = p0 + O(r−3). (To see that this is
true, write ‖u‖2 = U2 + (u − U) · (u + U)). The force on the body B is

F = −
∫

∂B
pn dA.
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Let Σ be a surface containing B. Because u · n = 0 on ∂B and the flow
is steady, equation (BM3) from §1.1 applied to the region between B and
Σ shows that

F = −
∫

Σ

(ρ(u · n)u + pn) dA.

We are free to choose Σ to be a sphere of large radius R enclosing the
obstacle. Then

F = −
∫

Σ

(p0n + ρ(U · n)U) dA + (area Σ) · O(R−3)

= 0 + O(R−1) → 0 as R → ∞.

Hence, F = 0.
One may verify d’Alembert’s paradox directly for flow past a sphere of

radius a > 0. In this case

ϕ = − a3

2r2
U · n + x · U,

where n = x
‖x‖ , and

u = − a3

2r2
[3n(U · n) − U] + U,

where U is the velocity at infinity. We leave the detailed verification to the
reader.1 �

Next we will discuss a possible mechanism, ultimately to be justified by
the presence of viscosity, by which one can avoid d’Alembert’s paradox. An
effort to resolve the paradox is of course prompted by the fact that real
bodies in fluids do experience drag.

By an almost potential flow , we mean a flow in which vorticity is
concentrated in some thin layers of fluid; the flow is potential outside these
thin layers, but there is a mechanism for producing vorticity near bound-
aries. For example, one can postulate that the flow past the obstacle shown
in Figure 2.1.8 produces an almost potential flow with vorticity produced
at the boundary and concentrated on two streamlines emanating from the
body.

We image different potential flows in the two regions separated by these
streamlines with the velocity field discontinuous across them. For such a
model, the Kutta–Joukowski theorem does not apply and the drag may be
different from zero. There are a number of situations in engineering where
real flows can be usefully idealized as “nearly potential.” These situations
arise in particular when one considers “streamlined” bodies, that is, bodies

1See L. Landau and E. Lifschitz [1959] Fluid Mechanics, Pergamon, p. 34 for more
information.
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potential flow

potential
flow

ξ ≠ 0

ξ ≠ 0

Figure 2.1.8. Almost potential flow has vorticity concentrated on two curves.

so shaped as to reduce their drag. The discussion of such bodies, their
design, and the validity of potential approximation to the flow around them
are outside the scope of this book.

Next we shall examine a model of incompressible inviscid flow inspired
by the idea of an almost potential flow and Example 3.

We imagine the vorticity in a fluid is concentrated in N vortices (i.e.,
points at which the vorticity field is singular), located at x1,x2, . . . ,xN in
the plane (Figure 2.1.9). The stream function of the jth vortex, ignoring
the other vortices for a moment, is by Example 3,

ψj(x) = −Γj

2π
log ‖x − xj‖. (2.1.17)

x2 x1

x3
x4

Figure 2.1.9. The flow generated by point vortices in the plane.

As the fluid moves according to Euler’s equations, the circulations Γj as-
sociated with each vortex will remain constant. The vorticity field produced
by the jth vortex can be written as

ξj = −∆ψj = Γjδ(x − xj),

where δ is the Dirac δ function. This equation arises from the fact, which
we just accept, that the Green’s function for the Laplacian in the plane
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is
G(x,x′) =

1
2π

log ‖x − x′‖,

that is, G satisfies
∆xG(x,x′) = δ(x − x′).

The solution of ∆ψ = −ξ is then given by the superposition

ψ(x) = −
∫

ξ(x′)G(x − x′) dx′

which in our case reduces to ψ(x) =
∑N

j=1 ψj(x), where

ψj(x) = − 1
2π

Γj log ‖x − xj‖.

The velocity field induced by the jth vortex (again ignoring the other
vortices) is given by

uj = (∂yψj ,−∂xψj) =
(
−Γj

2π

(
y − yj

r2

)
,
Γj

2π

(
x − xj

r2

))
, (2.1.18)

where r = ‖x − xj‖. Let the vortices all move according to the velocity
field

u(x, t) =
N∑

j=1

uj(x, t),

where uj is given by (2.1.18) except we now allow, as we must, the centers
of the vortices xj , j = 1, . . . , N to move. Each one ought to move as if
convected by the net velocity field of the other vortices. Therefore, by
(2.1.18), xj moves according to the equations

dxj

dt
= − 1

2π

∑
i �=j

Γi(yj − yi)
r2
ij

and
dyj

dt
=

1
2π

∑
i �=j

Γi(xj − xi)
r2
ij

, (2.1.19)

where rij = ‖xi − xj‖.
Let us summarize the construction of the flows we are considering: choose

constants Γ1, . . . ,ΓN and initial points x1 = (x1, y1), . . . ,xN = (xN , yN )
in the plane. Let these points move according to the equations (2.1.19).
Define uj by (2.1.18) and let

u(x, t) = −
N∑

j=1

uj(x, t).

This construction produces formal solutions of Euler’s equation (“formal”
because the meaning of δ-function solutions of nonlinear equations is not
obvious). These solutions have the property that the circulation theorem
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is satisfied. If C is a contour containing l vortices at x1,x2, . . . ,xl , then
ΓC = −

∑l
i=1 Γi and ΓC is invariant under the flow. However, the relation-

ship between these solutions and bona fide solutions of Euler’s equations is
not readily apparent. Such a relationship can, however, be established rig-
orously and such vortex systems do contain significant information about
the solutions of Euler’s equations under a wide variety of conditions.2

An important property of the equations is that they form a Hamilto-
nian system . Define

H = − 1
4π

∑
i �=j

ΓiΓj log ‖xi − xj‖. (2.1.20)

First of all, it is easy to check that (2.1.19) is equivalent to

Γj
dxj

dt
=

∂H

∂yj
, Γj

dyj

dt
= − ∂H

∂xj
, (2.1.21)

where j = 1, . . . , N (there is no sum on j). Introduce the new variables

x′
i =

√
|Γi|xi, y′

i =
√
|Γi| sgn(Γi)yi, i = 1, . . . , N,

where sgn(Γi) is 1 if Γi > 0, and is −1 otherwise. Then (2.1.19) is equivalent
to the following system of Hamiltonian equations

dx′
i

dt
=

∂H

∂y′
i

,
dy′

i

dt
= −∂H

∂x′
i

, i = 1, . . . , N, (2.1.22)

with Hamiltonian H and generalized coordinates (x′
i, y

′
i). As in elementary

mechanics,

dH

dt
=

N∑
i=1

∂H

∂x′
i

dx′
i

dt
+

N∑
i=1

∂H

∂y′
i

dy′
i

dt
= 0,

that is, H is a constant of the motion. A consequence of this fact is that if
the vortices all have the same sign they cannot collide. If ‖xi−xj‖ �= 0, i �= j
at t = 0, then this remains so for all time because if ‖xi − xj‖ → 0, H
becomes infinite.

This Hamiltonian system is of importance in understanding how vorticity
evolves and organizes itself.3

2See C. Anderson and C. Greengard, On Vortex Methods, SIAM J. Sci. Statist. Com-
put. 22 [1985], 413.

3The Euler equations themselves form a Hamiltonian system (this is explained, along
with references, in R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd
Edition [1978]), and the Hamiltonian nature of the vortex approximation is consistent
with this. See also J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices and
Clebsch variables for incompressible fluids, Physica 7D [1983], 305–323.
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Let us now generalize the situation and imagine our N vortices moving in
a domain D with boundary ∂D. We can go through the same construction
as before, but we have to modify the flow uj of the jth vortex in such a
way that u · n = 0, that is, the boundary conditions appropriate to the
Euler equations hold. We can arrange this by adding a potential flow vj to
uj such that uj ·n = −vj ·n on ∂D. In other words, we choose the stream
function ψj for the jth vortex to solve

∆ψj = −ξj = −Γjδ(x − xj) with
∂ψj

∂n
= 0 on ∂D.

This is equivalent to requiring ψj(x) = −ΓjG(x,xj) where G is the Green’s
function for the Neumann problem for the region D. This procedure will
appropriately modify the function (1/2π) log ‖x−xj‖ and allow the analysis
to go through as before.

For example, suppose D is the upper half-plane y ≥ 0. Then we get G
by the reflection principle:

G(x,xj) =
1
2π

(log ‖x − xj‖ + log ‖x − x̂j‖) ,

where x̂j = (xj ,−yj) is the reflection of xj across the x-axis (see Fig-
ure 2.1.10). For the Neumann-Green’s functions for other regions the reader
may consult textbooks on partial differential equations.

x

y
(x,y�)

(xi ,–yi�)

(xi ,yi�) motion
of the
vortex D �: y  > 0

Γ

–Γ

Figure 2.1.10. The stream function at (x, y) is the superposition of those due to
vortices with opposite circulations located at (xi, yi) and (xi,−yi).
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Consider again Euler’s equations in the form

∆ψ = −ξ, u = ∂yψ, v = −∂xψ,
Dξ

Dt
= 0.

One can write
ψ = −

∫
ξ(x′)G(x,x′) dx′,

where G(x,x′) = 1
2π log ‖x − x′‖, and set u = ∂yψ, v = −∂xψ. The re-

sulting equations resemble the equations just derived for a system of point
vortices. The integral for ψ here resembles the formula for ψ in the point
vortex system somewhat as an integral resembles one of its Riemann sum
approximations. This suggests that an ideal incompressible flow can be ap-
proximated by the motion of a system of point vortices. There are in fact
theorems along these lines.4 Vortex systems provide both a useful heuris-
tic tool in the analysis of the general properties of the solutions of Euler’s
equations, and a useful starting point for the construction of practical al-
gorithms for solving these equations in specific situations.

One can ask if there is a similar construction in three dimensions. First of
all, one can seek an analogue of the superposition of stream functions from
point potential vortices. Given u satisfying div u = 0, there is a vector field
A such that div A = 0 and such that u = curlA, and therefore ∆A = −ξ.
In three dimensions, Green’s function for the Laplacian is given by

G(x,x′) = − 1
4π

1
‖x − x′‖ , x �= x′.

Then we can represent A in terms of ξ by

A = − 1
4π

∫
ξ(x′)

s
dV (x′),

where s = ‖x − x′‖, and where dV (x′) is the usual volume element in
space. It is easy to check that A defined by the above integral satisfies the
normalization condition divA = 0. Thus, because u = curlA, we obtain

u(x) =
1
4π

∫
s × ξ′

s3
dV (x′),

where s = x − x and ξ′ = ξ(x′). Suppose that we have a vortex line C
in space with circulation Γ (see Figure 2.1.11) and we assume that the

4The discrete vortex method is discussed in L. Onsager, Nuovo Cimento 6 (Suppl.)
[1949], 229; A. J. Chorin, J. Fluid Mech. 57 [1973], 781; and A. J. Chorin, SIAM J. Sci.
Statist. Comput. 1 [1980], 1. Convergence of solutions of the discrete vortex equations
to solutions of Euler’s equations as N → ∞ is discussed in O. H. Hald, SIAM J. Nu-
mer. Anal. 16 [1979], 726; T. Beale and A. Majda, Math. Comp. 39 [1982], 1–28, 29–52;
and K. Gustafson and J. Sethian, Vortex Flows, SIAM Publications, 1991.
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vorticity field ξ is concentrated on C only, that is, the flow is potential
outside the filament C. Then u(x) can be written as

u(x) =
1
4π

∫
C

s × Γ ds
s3

where ds is the line element on C.

Figure 2.1.11. The flow induced by a vortex filament.

Exercises


 Exercise 2.1-1 If f : D → D′ is a conformal transformation (an analytic
function that is one to one and onto), it can be used to transform one
complex potential to another. Use f(z) = z+a2/z (which takes the exterior
of the disc of radius a in the upper half-plane to the upper half-plane) and
the complex potential in the upper half-plane to generate formula (2.1.11).


 Exercise 2.1-2 Let F (z) = z2 be a complex potential in the first quad-
rant. Sketch some streamlines and the curves φ = constant, ψ = constant,
where F = φ + iψ . What is the force exerted on the walls?


 Exercise 2.1-3 Use conformal maps to find a formula for potential flow
over the plate in Figure 2.1.12. What is the force exerted on this plate?


 Exercise 2.1-4 Let a spherical object move through a fluid in R
3. For

slow velocities, assume Stokes’ equations apply. Take the point of view
that the object is stationary and the fluid streams by. The setup for the
boundary value problem is as follows: given U = (U, 0, 0), U constant, find
u and p such that Stokes’ equation holds in the region exterior to a sphere
of radius R, u = 0 on the boundary of the sphere and u = U at infinity. The
solution to this problem (in spherical coordinates centered in the object)
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x

y

(0,L)

Figure 2.1.12. Flow over a vertical plate.

is called Stokes’ Flow:

u = −3
4
R

U + n(U · n)
r

− 1
4
R3 U − 3n(U · n)

r3
+ U,

p = p0 −
3
2
ν

U · n
r2

R, (2.1.23)

where p0 is constant and n = r/r .

(a) Verify this solution.

(b) Show that the drag is 6πRνU and there is no lift.

(c) Show there is net outflow at infinity (an infinite wake).


 Exercise 2.1-5 Because of the difficulties in Exercise 2.1-4, Oseen in
1910 suggested that Stokes’ equations be replaced by

−ν∆u + (U · ∇)u = −1
ρ

grad p,

with div u = 0, where u represents the true velocity minus U. This amounts
to linearizing the Navier–Stokes equations about U, whereas Stokes’ equa-
tions may be viewed as a linearization about 0. One would thus conjecture
that Oseen’s equations are good where the flow is close to the free stream
velocity U (away from the sphere) and that Stokes’ equations are good
where the velocity is 0 (near the sphere). The solution of Oseen’s equa-
tions in the region exterior to a sphere in R

3 can be found in Lamb’s book.
Show that drag on the sphere for the Oseen solution is F = 6πRUν(1+ 3

8R),
where R = UR/ν is the Reynolds number. Thus, there is a difference of
the order R in the Stokes and Oseen drag forces.

Notes on Exercise 2.1-4 and Exercise 2.1-5: If D is bounded with
smooth boundary, then there exists at most one solution to Stokes’ equa-
tions. See Ladyzhenskaya’s book listed in the Preface. In the exterior of a
bounded region in R

3 there exists a unique solution to Stokes’ equations.
The situation in R

2 is different; in fact, we have the following strange sit-
uation:
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Stokes’ Paradox There is no solution to Stokes’ equations in R
2 in the

region exterior to a disc (with reasonable boundary conditions).5

Stokes’ paradox does not apply to the Oseen or Navier–Stokes equations
in R

2 or R
3. However, Filon in 1927 pointed out that for other reasons

Oseen’s equations also lead to unacceptable results. The example he gives
is a skewed ellipse in a free stream. Computation of the moment exerted on
the ellipse reveals that it is infinite! This is not so surprising in view of the
fact that Oseen’s equations represent linearization about the free stream.
One cannot expect them to give good results around the obstacle because
the equations contain errors there of order U2.

2.2 Boundary Layers

Consider the Navier–Stokes equations

∂tu + (u · �)u = − grad p +
1
R

� u,

div u = 0,

u = 0 on ∂D,


 (2.2.1)

and assume the Reynolds number R is large. We ask how different a flow
governed by (2.2.1) is from one governed by the Euler equations for incom-
pressible ideal flow:

∂tu + (u · �)u = − grad p,

div u = 0,

u · n = 0 on ∂D.


 (2.2.2)

Imagine that both flows coincide at t = 0 and, say, are irrotational, that
is, ξ = 0. Thus, under (2.2.2) the flow stays irrotational, and thus is a
potential flow. However, we claim that the presence of the (small) viscosity
term (1/R) � u and the difference in the boundary conditions have the
following effects:

1. The flow governed by (2.2.2) is drastically modified near the wall in
a region with thickness proportional to 1/

√
R.

2. The region in which the flow is modified may separate from the
boundary.

3. This separation will act as a source of vorticity.

5See Birkhoff’s book, and J. Heywood, Arch. Rational Mech. Anal. 37 [1970], 48–60,
and Acta Math. 129 [1972], 11–34.
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Whereas the region referred to in 1 gets arbitrarily small as R increases,
its effects via 2 and 3 may persist and not diminish in the limit R → ∞. A
model for the first effect is given in the following:

Example 1 Consider the equation

dy

dx
= a, y(1) = 1, (2.2.3)

where a is a constant and x ranges between x = 0 and x = 1. The solution
of (2.2.3) is clearly

y = a(x − 1) + 1.

Now add a “viscosity” term and a boundary condition to (2.2.3) as fol-
lows:

ε
d2y

dx2
+

dy

dx
= a, with y(0) = 0, y(1) = 1. (2.2.4)

As with the Navier–Stokes and Euler equations, (2.2.4) differs from
(2.2.3) by the addition of a small constant times a higher-order term, as well
as by the necessary addition of an extra boundary condition. The solution
of (2.2.4) is verified to be

y =
1 − a

1 − e−1/ε

(
1 − e−x/ε

)
+ ax.

For 0 < a < 1, y is graphed in Figure 2.2.1.

x
x  = 1

y

y  = 1

y  = 1 – a

solution with ε = 0

solution with ε > 0

ε

Figure 2.2.1. Comparing solutions of (2.2.3) and (2.2.4).

For ε small and x > ε, the two solutions are close together. The region
where they are drastically different is confined to the interval [0, ε], which
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we can refer to as the boundary layer . Note that as ε → 0, the boundary
layer shrinks to zero, but the maximum difference between the solutions
remains constant. �

Next we consider a special case in which (2.2.1) and (2.2.2) can be solved
and the boundary layer can be seen explicitly.

Example 2 Consider two-dimensional flow in the upper half-plane y ≥ 0,
and suppose the boundary y = 0 (“the plate”) is rigid and the velocity at
y = ∞ is parallel to the x-axis and has magnitude U . See Figure 2.2.2.

rigid plate

x

y

U

Figure 2.2.2. Flow over a flat plate.

We seek a flow satisfying (2.2.1) that is parallel to the plate and indepen-
dent of x, that is, u has the form u = (u(y, t), 0), and, with constant pres-
sure, so grad p = 0. The appropriate solution of Euler’s equations (2.2.2) is
the solution u(x, y, t) = (U, 0).

The boundary conditions for (2.2.1) are

u(0, t) = 0 and u(∞, t) = U.

Under the preceding conditions, u·∇u = u∂xu+v∂yu = 0, and so equation
(2.2.1) reduces to

∂u

∂t
= ν

∂2u

∂y2
, (2.2.5)

where ν = 1
R . We can eliminate one variable by the following scaling argu-

ment: If L and T are length and time scales, respectively, the transformation
y′ = y/L, t′ = t/T brings (2.2.5) to the form

∂u

∂t′
=

νT

L2

∂2u

∂y′2 . (2.2.6)

If L2/T = 1, then (2.2.5) and (2.2.6) are the same equation and the bound-
ary conditions are unaltered as well. Thus, if equation (2.2.6) with the
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preceding boundary conditions has a unique solution, we must have

u

(
y

L
,

t

T

)
= u(y, t) if L2 = t.

Picking T = t and L =
√

t , we obtain

u

(
y√
t
, 1

)
= u(y, t).

Thus, u depends only on y and t through the combination y/
√

t. Set η =
y/(2

√
νt) and let u(y, t) = Uf(η). Then, substitution in (2.2.5) yields the

equation

f ′′(η) + 2ηf ′(η) = 0 with f(∞) = 1, f(0) = 0. (2.2.7)

Integration of f ′′ + 2ηf ′ = 0 gives

f ′(η) = ce−η2
, c a constant.

The solution of (2.2.7), shown in Figure 2.2.3, is

u = U erf(η),

where the error function is defined by

erf(η) =
2√
π

∫ η

0

e−s2
ds.

0 1 2 3 4

0.2U

0.4U

0.6U

0.8U

U

η

boundary layer

u

Figure 2.2.3. The boundary layer has thickness proportional to (t/R)1/2.

In matching the boundary condition at infinity, we have used the follow-
ing basic identity for the error function:∫ ∞

0

e−s2
ds =

√
π

2
.
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The graph of u as a function of y for fixed t > 0 is obtained by rescaling the
above graph. The region in which u departs significantly from the constant
Euler flow is again called the boundary layer and is illustrated in the
figure. By the preceding scaling argument, this thickness is proportional
to

√
νt =

√
t/
√

R . Thus, for fixed time, the boundary layer decreases as
1/
√

R , which was our first contention. �

Our second contention was that the modified flow in the boundary layer
may separate from the body.

We can give a heuristic argument justifying this contention by consider-
ing potential flow around a cylinder (Figure 2.2.4). By Bernoulli’s theorem,

x

y

A

B

C

D

Figure 2.2.4. Illustration for the discussion of separation.

the highest pressure on the boundary occurs at the stagnation points A and
C. These points are, in effect, points of high potential energy. As a fluid
particle moves from A to B, its pressure drops and its velocity increases.
As it moves from B to C it recoups its pressure and loses velocity. This
is similar to the following situation: As a perfect frictionless bicycle goes
down a hill into a valley, its momentum will enable it to climb another hill
of equal height. Imagine a boundary layer is created in the flow. Within
this layer the fluid is slowed down by friction. Therefore, fluid traversing
the arc AC near the boundary may not have enough kinetic energy left to
reach point C. It will leave the boundary somewhere between A and C.

This argument only hints at what is, in reality, very complicated. For
instance, the presence of viscosity near the boundary not only slows the
fluid down by frictional forces, but it destroys the validity of Bernoulli’s
theorem! Nevertheless, the preceding argument probably does have some
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merit; in fact, experiments show that flows really can undergo boundary
layer separation.

Our third contention was that the boundary layer produces vorticity.
To see this, imagine flow near the boundary, as shown in Figure 2.2.5.

A B

CD

y

x
circulation

Figure 2.2.5. Vorticity is produced near the boundary.

The circulation around the contour ABCD is∫
ABCD

u · ds =
∫

DA

v dy +
∫

AB

u dx −
∫

CB

v dy −
∫

DC

u dx.

Because u = 0 on the boundary, ∂xu = 0; so, by div u = 0, ∂yv = 0. Thus,
because v = 0 on the boundary, v is small near the boundary. Let us, in
fact, assume more specifically that v is small compared to the value of u
along AB and that u is nearly zero along DC. (Near points of separation
these assumptions might not be valid.) Thus,∫

ABCD

u · ds ∼=
∫

AB

u dx > 0

and so the flow has circulation and therefore vorticity.

Next we shall make some approximations in the Navier–Stokes equations
that seem to be intuitively reasonable near the boundary, away from points
of separation. This will yield the Prandtl boundary layer equations.

We now consider two-dimensional incompressible homogeneous flow in
the upper half-plane y > 0. We write the Navier–Stokes equations as

∂tu + u ∂xu + v ∂yu = −∂xp +
1
R

∆u,

∂tv + u ∂xv + v ∂yv = −∂yp +
1
R

∆v,

∂xu + ∂yv = 0,

u = v = 0 on ∂D.




(2.2.8)
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Let us assume that the Reynolds number R is large and that a boundary
layer of thickness δ develops. From our previous discussions, we expect that
δ ∼ 1/

√
R , where ∼ means “of the same order as.” See Figure 2.2.6.

boundary layer

x

y

main flow

δ

Figure 2.2.6. The boundary layer thickness δ is of order 1/R1/2.

We also expect, as discussed earlier, v to be small in the boundary layer.
We want to perform a change of variables that will focus attention on the
thin layer near the wall in which viscous effects are important. The layer
is thin, of order δ. Write y′ = y/δ, so that when y varies between 0 and
δ, y′ varies between 0 and 1. We expect that u is of order 1 at a distance
of order δ from the wall, because at the edge of the layer, the flow should
be effectively inviscid by definition (we are focusing on the region where
the viscous effects are important). We claim that v is small at a distance δ
from the wall. Indeed, at the wall, v = 0 and so inside the fluid,

v(x, y) ≈ v(x, 0) + y
∂v

∂y
= y

∂v

∂y
;

y is of order δ at most, and ∂v/∂y is of order 1 because

∂v

∂y
+

∂u

∂x
= 0

and

∂u

∂x
is of order 1.

Thus, we perform the change of variables

x′ = x, y′ =
y

δ
, t′ = t, u′ = u, v′ =

v

δ
, p′ = p.
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Equations (2.2.8) become

∂t′u
′ + u′ ∂x′u′ + v′ ∂y′u′

= −∂x′p′ +
1
R

(
∂2

x′u′ +
1
δ2

∂2
y′u′

)
,

δ ∂t′v
′ + δu′ ∂x′v′ + δv′ ∂y′v′

= −1
δ
∂y′p′ +

1
R

(
δ ∂2

x′v′ +
δ

δ2
∂2

y′v′
)

,

∂x′u′ + ∂y′v′ = 0,

u′ = v′ = 0 on the x-axis.




(2.2.9)

We now collect the largest terms in each equation and eliminate the
lower-order ones. If we had not known that δ ∼ 1/

√
R, we would have

been able to deduce it from the scaled equation. Indeed, the purpose of
the change of variables y′ = y/δ, etc., is to focus attention on the region
in which the viscous wall effects are important and in which the transition
from the wall region to the outer region takes place. If δ is smaller than
O(1/

√
R), then only the viscous effects survive as the dominant terms in

our equation (2.2.9)1, and so we are looking too close to the wall. If δ is
larger than O(1/

√
R) the viscous effects disappear altogether and we are

looking at a region that is too large. Thus, δ = O(1/
√

R) is the only choice.
From these arguments, it is plausible to believe that in the boundary layer,
a good approximation to the Navier–Stokes equations is achieved by the
following equations:

∂tu + u ∂xu + v ∂yu = −∂xp +
1
R

∂2
yu,

∂yp = 0,

∂xu + ∂yv = 0,

u = 0 = v on the x-axis.




(2.2.10)

These are called the Prandtl boundary layer equations.
One usually hopes, or assumes, that the following is true: If u(x, y, t) is a

solution of the Navier–Stokes equations and up(x, y, t) is the corresponding
solution of the boundary layer equations with the same initial conditions,
then for some constant α > 0 and some constant C,

‖u(x, y, t) − up(x, y, t)‖ ≤ C

Rα

for 0 ≤ y ≤ δ as R → ∞. Here ‖ · ‖ is a norm (to be found) on the space
of velocity fields. The boundary layer equations have been quite success-
ful and so one expects some estimate like this to be valid, at least under



2.2 Boundary Layers 75

some reasonable conditions. While some partial results verify this,6 a full
mathematical proof under satisfactory hypotheses is not available.

Let us derive a few consequences of the boundary layer equations (2.2.10).
First of all, (2.2.10)2 implies that p is a function of x alone. This implies that
if the pressure has been determined outside the boundary layer, (2.2.10)2
determines it inside the boundary layer.

Secondly, let us derive an equation for the propagation of vorticity in the
boundary layer. From the derivation of the equations, we see that ∂xv is to
be neglected in comparison to ∂yu, and thus we have

ξ = ∂xv − ∂yu = −∂yu.

Therefore, from (2.2.10)1,

∂tξ = −∂y ∂tu = −∂y

(
−∂xp +

1
R

∂2
yu − u ∂xu − v ∂yu

)

=
1
R

∂2
yξ − v ∂yξ − u ∂xξ + (∂xu + ∂yv)∂yu

=
1
R

∂2
yξ − v ∂yξ − u ∂xξ,

because ∂xu + ∂yv = 0. Thus,

Dξ

Dt
=

1
R

∂2
yξ (2.2.11)

describes the propagation of vorticity in the boundary layer. We can inter-
pret (2.2.11) by saying that the vorticity is convected downstream and, at
the same time, is diffused vertically into the fluid. For the full Navier–Stokes
equations in two dimensions, recall that

Dξ

Dt
=

1
R

∆ξ

(see equation (1.3.11) of Chapter 1). In the boundary layer approximation
(2.2.11) only the y part of the Laplacian has survived. Notice also that in
the full equations we recover u from ξ by the equations

∆ψ = −ξ with ψ = 0 on ∂D,

and
u = ∂yψ, v = −∂xψ

6See O. A. Oleinik, Soviet Math. Dokl. [1968], for existence and uniqueness theorems.
P. C. Fife (Arch. Rational Mech. Anal. 28 [1968], 184) has proved the above estimate
for α = 1/2 assuming a forward pressure gradient, steady flow, and some other technical
conditions. The boundary layer equations for curved boundaries are more complicated
(see below and S. L. Goldstein, Modern Developments in Fluid Mechanics (two volumes),
Dover [1965]). To the authors’ knowledge, no theorems of existence or approximation
have been proved in this case.
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(see equation (1.3.12) of Chapter 1). In the boundary layer approximation
the situation is much simpler:

ξ = −∂yu, so u = −
∫ y

0

ξ dy.

Notice that the flow past the flat plate described at the beginning of
this section is not only a solution of the Navier–Stokes equations but is a
solution of the Prandtl equations as well. That solution was

u(y, t) = Uerf
(

y

2
√

νt

)
.

The vorticity for this flow ξ = −∂yu is shown in Figure 2.2.7. The vorticity
is everywhere negative corresponding to clockwise circulation, which agrees
with our intuition.

y

ξ

δ

Figure 2.2.7. Vorticity in the boundary layer.

Our derivation of the boundary layer equations assumed the wall was flat.
For curved walls one can imagine using coordinate systems with y = 0 on
the wall and x = constant giving the normal to the wall. One can show (see
the Goldstein reference in the preceding footnote) that (2.2.10)1, (2.2.10)3
and (2.2.10)4 are unaltered, but (2.2.10)2 should be modified to

ku2 = ∂yp, (2.2.10)′2

where k is the curvature of the wall. See Figure 2.2.8.
This means that p is no longer a function of x alone. Of course, for δ

small (R large) and fixed curvature of the wall, the pressure change across
the boundary layer is negligible. However, (2.2.10)′2 may still be significant
in affecting the dependence of p on x.

We have not yet discussed what boundary conditions should (or could)
be imposed on the solution of the Prandtl equations beyond those at the
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y

x
wall

boundary layer δ

Figure 2.2.8. Boundary layer for a curved wall.

wall, u = v = 0; these boundary conditions are essential for the derivation
of the equations to make sense. We shall see later that far from the body,
we may impose u but not v. Boundary conditions may also be required on
the left and on the right. For a discussion, see the next section.

Now we want to discuss how a knowledge of boundary layer theory might
be useful in constructing solutions of the Navier–Stokes equations. The
overall method is to use the Prandtl equations in the boundary layer, the
inviscid equations outside the boundary layer, and to try to match these
two solutions to produce an approximate solution to the Navier–Stokes
equations. To carry out such a program, there are several alternative pro-
cedures, four of which are listed here.

Strategy 1 Match the actual velocity field u of the two solutions at a
distance δ ∼ 1/

√
R from the wall (Figure 2.2.9).

Prandtl solution

x

y

Euler solution

u

u

δ

match u here

Figure 2.2.9. Matching solutions of the Euler and Prandtl equations.

Difficulties On the line y = δ the flows may not be parallel, so matching
u or some other flow quantity may not be easy.
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Strategy 2 Require that the Euler solution outside the layer and the
Prandtl solution match as R → ∞. As R → ∞, the layer becomes thin-
ner; we can impose v at the boundary for the Euler equations, but we
cannot impose u. We can impose u at the edge of the layer and obtain a
solution of the Prandtl equations, but we cannot impose v. We may wish
to identify the vertical velocity v at the edge of the layer obtained from
the Prandtl equations with the boundary condition required for the Euler
equations, and conversely, use the tangential velocity v obtained from the
Euler equations as the velocity at the edge of the layer imposed on the
Prandtl equations.

Difficulties The calculations are difficult, and the results are insuffi-
ciently informative when separation occurs (see below).

Strategy 3 We can match the inner (boundary layer) and outer (Euler)
solutions over a region whose height is of order 1/Ra, 0 < a < 1/2 (Fig-
ure 2.2.10). The matching can be done by some smooth transition between
the Euler and Prandtl solutions.

boundary layer
x

solutions agree

inviscid region

1/R1/2

1/Rα

Figure 2.2.10. Matching method in strategy 3.

Difficulties The calculations are enormously complicated and require
choices (of a for example) for which a rationale is not always readily avail-
able.

Strategy 4 As both the Euler and Prandtl equations are solved and
matched by some method, check (by means of a computer) whether or
not the assumptions underlying the derivation of the Prandtl equations are
valid. If not, modify the equations.

Difficulties Same matching problems as before, but also modified bound-
ary layer equations might be needed.
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Techniques such as these are in fact fairly extensively developed in the
literature.7 The scope of the difficulties involved, both theoretical and prac-
tical, should be evident.

It is observed experimentally that when a boundary layer develops near
the surface of an obstacle, the streamlines may break away from the bound-
ary. This phenomenon is called boundary layer separation . Figure 2.2.11
shows a typical velocity profile near the point of separation. Contempla-
tion of this velocity field shows that it is plausible to identify the point of
separation C with points where the circulation vanishes:

∂u

∂n

∣∣∣∣
C

= ξ = 0.

There are, however, no known theorems that apply to this situation that
guarantee such points must correspond to separation points.

separation line

back flow

separation
point

u u u u

n

A B C D

Figure 2.2.11. Separation of the boundary layer.

The phenomenon of separation can be used to justify our model of al-
most potential flow introduced in the previous section (see Figure 2.1.8).
The two curves of vorticity springing from the boundary are imagined to
arise from boundary layer separation. One would hope that boundary layer
theory would predict the strength of these vortex lines and their points
of separation. Near the boundary, one should also be able to compute the
pressure and hence the form drag

−
∫

boundary

pn ds.

This is the drag due to actual pressure forces on the obstacle. There will
also be a skin drag due to frictional forces in the boundary layer. These

7See, for instance, M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic
Press.
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two give the total drag. If one computes the drag from a nearly potential
approximation, the skin drag turns out to be zero, because Euler’s equations
do not take into account the viscous forces. For large R, the skin drag is
very often negligible compared to the form drag.

Example This example concerns steady boundary layer flow on a flat
plate of infinite width. Consider a flat plate on the xz plane with its leading
edge coinciding with x = 0, as shown in Figure 2.2.12. Let the y-axis be
normal to the plate so that the fluid lies in the domain given by y > 0
and the flow is two dimensional. We then let the plate be washed by a
steady uniform flow of velocity U in the positive x-direction. We assume
that a steady boundary layer is developed after a short distance off the
leading edge. Because the pressure is uniform outside the boundary layer,
it is reasonable to seek a solution satisfying ∂xp = 0 in the boundary layer.
Because ∂xp = 0, p is a constant everywhere. Hence, the steady boundary
layer equations are

u ∂xu + v ∂yu = ν ∂2
yu,

∂xu + ∂yv = 0.
(2.2.12)

(Here we have written ν instead of 1/R.) The boundary conditions are
given by

u(x, 0) = 0 for x > 0,

v(x, 0) = 0 for x > 0,

u(x, y) → U as y → ∞.

Because the flow is incompressible, there is a stream function related to u
by the usual equations

u = ∂yψ, v = −∂xψ.

We assume ψ to be of the form

ψ(x, y) =
√

νUx f(η),

where

η = y

√
U

νx
.

This form may be derived through the use of a scaling argument similar to
the one used earlier in §2.1. Thus,

u = Uf ′(η), v =
1
2

√
Uν

x
(ηf ′(η) − f(η)). (2.2.13)

Substituting u, v from (2.2.13) into (2.2.12) and using the boundary con-
ditions, we find the equations

ff ′′ + 2f ′′′ = 0 (2.2.14)
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with boundary conditions

f(0) = f ′(0) = 0, f ′(∞) = 1.

Equation (2.2.14) has a numerically computable solution. In the fluid so-
lution given by (2.2.13), notice that the velocity u depends only on η. The
level curves of u are exactly the lines where η = constant. But level curves
of η are of the form y2 = (constant)x, that is, parabolas, as shown in
Figure 2.2.12. �

main flow

velocity profile
for u

level curve
for u

U

U

leading edge
0

plate x

y

Figure 2.2.12. Boundary layer flow over a flat plate.

Exercises


 Exercise 2.2-1 Show that the solution of

εy′′ − y = 0

in the interval (−1, 1) with the boundary conditions

y(−1) = 0, y(1) = 1

is

y(x) =
e(1+x)/

√
ε − e−(1+x)/

√
ε

e2/
√

ε − e−2/
√

ε
.

Plot the graph of y(x) for ε = 0.1, 0.01 and 0.001.


 Exercise 2.2-2 Derive the solution in Exercise 2.2-1 from that for (2.2.4)
in the text by a scaling argument.


 Exercise 2.2-3 Plot the shape of the graph of the function f(η) that
solves (2.2.14) with f(0) = f ′(0) = 0, f ′(∞) = 1.
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2.3 Vortex Sheets

This section describes a simple version of an algorithm for modifying a
flow described by the Euler equations near the boundary to simulate the
effects of boundary layers and thereby obtain an approximation to the
Navier–Stokes equations. The method utilizes some concepts from prob-
ability theory, so we begin by summarizing some relevant facts, mostly
without proofs.8

The possible outcomes of an experiment (such as throwing a die) form the
points in a sample space S. A subset E of S is called an event . We assume
that to each event is assigned a probability P (E), a number between 0
and 1 which intuitively represents the fraction of times an outcome in E
will occur if the experiment is repeated many times. We assume, therefore,
that P (S) = 1. Moreover, if two events, E1 and E2, are disjoint, that is,
E1 ∩E2 = ∅, then P (E1 ∪E2) = P (E1) + P (E2). (Technically, we assume
P is a measure on S with total mass 1.) Two events, E1 and E2, are called
independent if

P (E1 ∩ E2) = P (E1) · P (E2).

Intuitively, two events are independent if the occurrence of one of them
has no effect on the probability of the occurrence of the other one. (For
instance, in the toss of two dice marked #1 and #2, the events “a two on
#1” and “a three or a four on #2” are independent.)

A random variable is a mapping

η : S → R,

interpreted as a number attached to the outcome of an experiment. The
expectation or mean of η is defined by

E(η) =
∫

S

η dP.

For instance, if S = {s1, . . . , sN} and the probability of si occurring is pi,
then

E(η) =
n∑

i=1

η(si)pi

Suppose there is a function f on the real line such that the probability
of η lying between a and b is

∫ b

a
f(x) dx, that is,

P ({s ∈ S | η(s) ∈ [a, b]}) =
∫ b

a

f(x) dx.

8For details see, for instance, J. Lamperti [1966] Probability: A Survey of the Math-
ematical Theory, Benjamin.
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Then we say that η has the probability density function f . Clearly,∫ ∞
−∞ f(x) dx = 1. Also, one can show that

E(η) =
∫ ∞

−∞
xf(x) dx.

The variance of η is defined by

Var(η) = E
(
[η − E(η)]2

)
= E(η2) − [E(η)]2

and the standard deviation by

σ(η) =
√

Var(η).

Two random variables, η1 and η2, are called independent if for any two
sets A1, A2 in the real line R, the events

{s ∈ S | η1(s) ∈ A1} and {s ∈ S | η2(s) ∈ A2}

are independent. For independent random variables, one has

E(η1η2) = E(η1)E(η2)

and

Var(η1 + η2) = Var(η1) + Var(η2).

(From the definition,E(η1 + η2) = E(η1) + E(η2) is always true.)
The law of large numbers states that if η1, η2, . . . , ηn are random

variables that are independent and have the same mean and variance as η,
then

E(η) = lim
n→∞

1
n

n∑
i=1

ηi.

Part of the theorem is that the right-hand side is a constant. This result
sheds light on our intuition that E(η) is the average value of η when the
experiment is repeated many times. The meaning of the standard deviation
is illuminated by Tchebysheff’s inequality : If σ is the standard deviation
of η,

P ({s ∈ S | |η(s) − E(η)| ≥ kσ}) ≤ 1
k2

for any number k > 0. For example, the probability that η will deviate
from its mean by more than two standard deviations is at most 1/4.

If a random variable η has the probability density function

f(x) =
1√

2πσ2
e−(x−a)2/2σ2

,
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we say that η is Gaussian . One can check that E(η) = a and Var(η) = σ2.
If η1 and η2 are independent Gaussian random variables, then η1 + η2 is
Gaussian as well. The central limit theorem states that if η1, η2, . . .
are independent random variables with mean 0 and variance σ2, then the
probability density function of (1/

√
n)(η1 + · · · + ηn) converges to that

of a Gaussian with mean 0 and variance σ2 as n → ∞. For instance,
if measurement errors arise from a large number of independent random
variables, the errors can be expected to have a Gaussian distribution. In
many problems, however, one does not get a Gaussian distribution for the
errors because they arise from nonindependent sources.

Next we show how Gaussian random variables can be used in the study
of the heat equation for an infinite rod:

vt = νvxx, −∞ < x < ∞, t ≥ 0. (2.3.1)

Here v represents the temperature in the rod as a function of x and t, and
ν represents the conductivity of the rod. If v is given at t = 0, then (2.3.1)
determines it for t ≥ 0. If initially v(x, 0) = δ(x), a delta function at the
origin, then the solution of (2.2.1) is given by

G(x, t) =
1√

4πνt
exp

(−x2

4νt

)
. (2.3.2)

This is the Green’s function for the heat equation (see any textbook on
partial differential equations).

We can interpret the function (2.3.2) from a probabilistic point of view
in two ways as follows.

Method 1 Fix time at t, and place N particles at the origin. Let each of
the particles “jump” by sampling the Gaussian distribution with mean zero
and variance 2νt. Thus, the probability that a particle will land between x
and x + dx is

1√
4πνt

exp
(−x2

4νt

)
dx.

If we repeat this with a large number of particles, we find

lim
N→∞

number of particles between
x and x + dx at time t

N dx
=

1√
4πνt

exp
(−x2

4νt

)
. (2.3.3)

It is convenient to think of each particle as having mass 1/N , so the total
mass is unity.

Method 2 We split up the time interval [0, t] into l pieces, each with
length �t = t/l, and carry out the procedure in a step-by-step manner.
Again, place N particles at the origin. Let them undergo a random walk,
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that is, the position of the ith particle at time m∆t (i = 1, . . . , N ;m =
1, . . . , l) is

xm+1
i = xm

i + ηm
i , (2.3.4)

x0
i = 0,

where ηm
i are independent Gaussian random variables, each with mean 0

and variance 2ν∆t. The final displacement of the ith particle is the sum
of its displacements, and has a Gaussian distribution with mean 0 and
variance l × 2ν∆t = 2νt. Thus, the distribution of particles at time t is
given again by formula (2.3.3), and methods 1 and 2 are equivalent.

Next consider the solution v(x, t) of the heat equation with given initial
data v(x, 0) = f(x). The solution is

v(x, t) =
∫ ∞

−∞
G(x, x′, t)f(x′) dx′, (2.3.5)

where

G(x, x′, t) =
1√

4πνt
exp

(−(x − x′)2

4νt

)
.

This general solution has a probabilistic interpretation as well. Instead of
starting N particles at the origin, start N randomly spaced particles on
the line, at positions, say, x0

i , i = 1, . . . , N , and assign to the ith particle
the mass

f(x0
i )

N
.

Let these particles perform a random walk as in (2.3.4)1, keeping their mass
fixed. Then after l steps as in method 2, the expected distribution of mass
on the real line approximates (2.3.5).

In this process the total mass of the particles remains constant. This
corresponds to the fact that

∂t

∫ ∞

−∞
v(x, t) dx = ν

∫ ∞

−∞
vxx(x, t) dx = 0

(assuming vx → 0 as x → ±∞). Of course, one’s intuitive feeling that the
solutions of the heat equation decay is also correct. Indeed,

∂t

∫ ∞

−∞
v2(x, t) dx =

∫ ∞

−∞
2νvvxx dx = −2ν

∫ ∞

−∞
(vx)2 dx < 0.

The decay of
∫

v2dx (which occurs while
∫

v dx remains constant) is ac-
complished by spreading. As time advances, the maxima of the solution
decay and the variation of the solution decreases. To see intuitively why
the integral of v2 decreases, consider the two functions

v1 =

{
2, − 1

2 ≤ x ≤ 1
2

0, elsewhere
and v2 =

{
1, −1 ≤ x ≤ 1
0, elsewhere

.
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The function v2 is more “spread out” than v1. This is reflected by the
calculations ∫

v2 dx =
∫

v1 dx = 2,

but ∫
v2
2 dx = 2 and

∫
v2
1 dx = 4.

Note that as time unfolds, the variance of the random walk that is used to
construct the solution increases, whereas the integral of v2, which is related
to the variance of v, decreases. The variance of the random walk increases
as the solution spreads out, whereas the integral of v2 decreases because
the range of values assumed by v decreases.

Next consider the heat equation on the halfline x ≤ 0 with boundary
condition v(0, t) = 0. The Green’s function for this problem is

G∗(x, x′, t) = G(x, x′, t) − G(x,−x′, t), (2.3.6)

where G(x, x′, t) is given by (2.3.5)2. That is, G∗ satisfies

G∗(0, x′, t) = 0, G∗(x, x′, 0) = δ(x − x′),

and
∂tG

∗(x, x′, t) = ν∂2
xG∗(x, x′, t).

The solution of
vt = νvxx, x ≤ 0, t > 0,

with
v(x, 0) = f(x) and v(0, t) = 0

is given in terms of the initial data and the Green’s function by

v(x, t) =
∫ ∞

−∞
G∗(x, x′, t)f(x′) dx′. (2.3.7)

The random walk interpretation for (2.3.6) is obtained by superposing
the random walks that generate Green’s function for the whole line; namely,
the distribution G∗(x, x′, t) is obtained by starting N particles with weight
1/N at x′ and N with weight −1/N at −x′, and letting them all walk by,
say, method 2. There is an analogous interpretation for (2.3.7), as shown
in Figure 2.3.1.

Random walk methods will now be applied to vortex sheets. Consider
flow past an infinite flat plate at rest. In §2.2 (see Figure 2.2.3), we saw
that the flow is

u = u(y, t), v = 0,
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G(x, x', t)

–G(x, –x', t)

–x'x'
x

x

x

–x'x'

G*(x, –x', t)

Figure 2.3.1. Green’s function G∗ is obtained by superimposing two random
walks.

where
u = U erf(η), with η =

y√
4νt

, (2.3.8)

and the vorticity is

ξ = − U√
4νt

exp
(−y2

4νt

)
. (2.3.9)

The velocity and vorticity satisfy

ut = νuyy, u(0, t) = 0, u(∞, t) = U, ξt = νξyy. (2.3.10)

The boundary conditions for the vorticity are not explicit; they must be
determined from the fact that the velocity vanishes on the boundary.

To reconstruct this solution using random walks, we define a vortex
sheet of intensity ξ as follows. As in Figure 2.3.2, it consists of a flow
parallel to the x-axis such that u jumps by the amount ξ as y crosses a
line, say y = y0; that is,

u(y0+) − u(y0−) = −ξ.

The flow described by equation (2.3.8) near the boundary looks as shown
in Figure 2.3.3.

As t → 0+, the solution approaches the constant value U for y > 0 and
yet u = 0 on the x-axis; that is, as t → 0+, the solution approaches a
vortex sheet on the x-axis with intensity −U . We replace this vortex sheet
by N “smaller” vortex sheets, each of intensity −2U/N . Allow each of these
smaller vortex sheets to undergo a random walk in the y-direction of the
form

ym+1
i = ym

i + ηm
i , y0

i = 0,

where ηm
i is chosen from a Gaussian distribution with mean zero and vari-

ance 2ν∆t, where, as in method 2, ∆t = t/l, m = 1, 2, . . . , l. We claim
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x

y

y0

u(y0
+)

u(y0
–)

Figure 2.3.2. A vortex sheet in the plane: u jumps across the line y = y0.

x

y

u = U

boundary layer

Figure 2.3.3. The flow (2.3.8).

that for N large the distribution of vorticity constructed this way and the
resulting velocity

u(y, t) = U +
∫ ∞

y

ξ(y, t) dy (2.3.11)

satisfy the correct equations (2.3.10). That ξ and hence u satisfy the heat
equation follows from our random walk solution of the heat equation. What
requires explanation is why u should vanish on the boundary. To see this,
note that on the average, half the vortex sheets are above the x-axis and half
below, because they started on the x-axis and the Gaussian distribution
has mean zero. Thus,

u(0, t) = U +
∫ ∞

0

ξ(y, t) dy,

or, in our discrete version, we have on the average

u(0, t) = U +
N/2∑
i=1

ξi.
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But the intensity of the ith vortex sheet is ξi = −2U/N , and therefore
u(0, t) = 0. (By symmetry in the x-axis the random walks below the x-axis
can be ignored; whenever a vortex sheet crosses the x-axis from above, we
can “reflect” it back. On the average, this will balance those vortex sheets
that would have crossed the x-axis from below during the course of their
random walk. This device can save half the computational effort.)

The random walk method based on vortex sheets will now be generalized
to the solution of the Prandtl boundary layer equations:

ξt + uξx + vξy = νξyy,

∂xu + ∂yv = 0,

with u = 0 = v on the x-axis (the boundary of the region), y ≥ 0, and
u(∞) = U. (We shall see shortly why v cannot be prescribed at ∞.)

The overall flow will be approximated at t = 0 by a collection of N
vortex sheets of finite width h, extending from xi −h/2 to xi +h/2 with y-
coordinate yi and with strength ξi. This approximation is in the same spirit
as the point vortex approximation discussed in §2.1 (see Figure 2.3.4).

x

y

h

xi

yi ξi

Figure 2.3.4. A collection of vortex sheets.

To move these sheets, we divide the time [0, t] into l parts of duration
∆t = t/l and proceed in a step-by-step manner. The advancement in time
from time t to t + ∆t takes place by means of the following algorithm:

i The vortices move according to a discrete approximation to the Euler
flow

∂tξ + uξx + vξy = 0, ∂xu + ∂yv = 0.

ii Vorticity is added by placing new vortex sheets on the boundary so
that the resulting flow has u = 0 = v on the boundary (creation of
vorticity).
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iii The vortex sheets undergo a random walk as described in the flat
plate example (including reflections) to approximate the solution of
the equation

ξt = νξyy

and preserve the boundary conditions u = 0 = v.

iv Time is advanced by ∆t and one goes back to step i of the procedure,
etc., until time t is reached.

Notice that the number of vortex sheets will increase in time; this corre-
sponds to the fact that vorticity is created in boundary layers.

We now give some more details on this procedure. First, we discuss how
the vortex sheets move according to the Euler flow. The velocity field sat-
isfies (see §2.2):

u(x, y) = u(∞) −
∫ ∞

y

∂u

∂y
dy = u(∞) +

∫ ∞

y

ξ dy,

or in a discrete version, the velocity of the ith vortex is

u(xi, yi) = u(∞) +
∑

j

ξj , (2.3.12)

where the sum is over all vortex sheets such that yj > yi and |xi−xj | < h/2;
that is, all vortex sheets whose “shadow” (on the x-axis) engulfs (xi, yi); see
Figure 2.3.5. Equation (2.3.12) determines the u-component of the velocity
field produced by the vortex sheets.

x

y

(xi,yi)

(xk,yk)

(xj,yj)

shadow

Figure 2.3.5. Vortex sheets and their shadows.

From incompressibility and the boundary condition v(x, 0, t) = 0, we find

v(x, y, t) = v(x, 0, t) +
∫ y

0

ux(x, s, t) ds = ∂x

∫ y

0

u(x, s, t) ds.
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This equation determines v in terms of u (and shows why we could not
prescribe v at ∞). A discrete evaluation of y may be given by

v(x, y, t) = − 1
h

[∫ y

0

u

(
x +

h

2
, s, t

)
ds

−
∫ y

0

u

(
x − h

2
, s, t

)
ds

]
. (2.3.13)

A more useful approximation is given by rewriting (2.3.13) directly in terms
of the vortex strengths ξj , namely,

vi(xi, yi, t) =
1
h

(Ii
+ − Ii

−), (2.3.14)

where
Ii
+(xi, yi) =

∑
+

y∗
j ξj ,

and
Ii
−(xi, yi) =

∑
−

y∗
j ξj .

with
y∗

j = min(yj , yi).

Here
∑

+ means that one is to sum over all j �= i for which∣∣∣∣xj −
(

xi +
h

2

)∣∣∣∣ <
h

2
,

and
∑

− means sum over all j for which∣∣∣∣xj −
(

xi −
h

2

)∣∣∣∣ <
h

2
.

The expression (2.3.14) comes about by remembering that as we move
vertically from the x-axis, u remains constant and then jumps by an amount
−ξj when a vortex sheet of strength ξj is crossed. This leads us directly
from (2.3.13) to (2.3.14).

We can summarize all this by saying that in our first step of the algorithm
the ith vortex sheet is moved by

xm+1
i = xm

i + ui∆t ym+1
i = ym

i + vi∆t, (2.3.15)

where ui is given by (2.3.12) and vi by (2.3.14). The new velocity field
is now determined by the same vortex sheets, but at their new positions.
This new velocity field satisfies v = 0 on the x-axis by construction, and
u(∞) = U . However, because the vortex sheets move, even if u = 0 on
the x-axis at the beginning of the procedure, it need not remain so. This
is another aspect of the main fact we are dealing with: The boundary
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conditions for the Euler equations, u · n = 0, are different from those for
the Navier–Stokes or Prandtl equations, u = 0.

The purpose of the second step in our procedure is to correct the bound-
ary condition. This may be done as follows: Divide the x-axis into segments
of length h, and suppose that at the center Pl of one of these segments
u = ul �= 0. Then at Pl place one (or more) vortex sheets, the sum of
whose intensities is 2ul. This will guarantee that (on the average) u = 0 on
the x-axis in the new flow.

In the third step in our procedure, we add a random y component to
positions (xi, yi) of the existing (as well as of the newly created) vortex
sheets:

xm+1
i = xm

i + ui∆t ym+1
i = ym

i + vi∆t + ηm
i , (2.3.16)

where ηm
i are Gaussian random variables with mean 0 and variance 2ν∆t.

Intuitively, the vortex sheets move about in ideal flow together with a
random y component simulating viscous diffusion. Vortex sheets newly cre-
ated to accommodate the boundary conditions diffuse out from the bound-
ary by means of the random component and then get swept downstream
by the main flow. This mechanism then has all the features a boundary
layer should have as we discussed at the beginning of §2.2.9

Consider the problem of flow past a semi-infinite flat plate, situated on
the positive x-axis (Figure 2.3.6). Far enough along the positive x-axis, say
at x = x2, most of the vortex sheets that move downstream are replaced
by vortex sheets coming from the left. Thus, there is little need to create
much vorticity at x2.

However, at x1 (called the leading edge) any vortex sheet is immedi-
ately swept downstream by the flow with no replacement. Thus, we are
constantly forced to create more vortex sheets at x = x1 to satisfy the no-
slip condition. One can see that most of the vorticity in the flow is created
at the leading edge.

In a time ∆t, how far does a vortex sheet move? In the x direction the
displacement is proportional to (∆t); in the y direction the displacement
is (∆t)vi + ηm

i . The standard deviation tells us the length of the average
“jump.” Thus,

average jump in y direction ∼=
√

var ∼
√

∆t.

9The generation of vorticity is discussed is G. K. Batchelor [1967] An Introduction to
Fluid Mechanics, Cambridge Univ. Press; J. Lighthill [1963] “Introduction to Boundary
Layer Theory”, in Laminar Boundary Layers, edited by L. Rosenhead, Oxford Univ.
Press. The vortex sheet model is due to A. J. Chorin, J. Comp. Phys. 27 [1978], 428.
Some theoretical aspects are found in A. J. Chorin, T. J. R. Hughes, M. J. McCracken,
and J. E. Marsden, Comm. Pure. Appl. Math. 31 [1978], 205; C. Anderson, J. Comp.
Phys., 80 [1989], 72; C. Marchioro and M. Pulvirenti, Vortex Methods in 2-Dimensional
Fluid Mechanics, Springer-Verlag, [1984]; K. Gustafson and J. Sethian, Vortex Flows,
SIAM Publications [1991].
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x

y

x1 x2

U

Figure 2.3.6. Vortex sheets get created and swept downstream.

The term (∆t)vi is also proportional to
√

∆t, as can be seen from equation
(2.3.14) and the fact that I+ and I− contain ys as factors. Suppose the
flow is stationary; we may regard t as a parameter and we may eliminate
it to find

vertical displacement ∼
√

horizontal displacement.

This shows that the structure of the boundary on a semi-infinite flat plate
is parabolic, as was derived earlier.

Finally, we ask, are there more general constructions available, similar
to this vortex sheet construction? For Euler’s equations, we have already
described the model of point vortices satisfying

dxi

dt
=

∂H

∂yi
,

dyi

dt
= −∂H

∂xi
,

where 4πH = ΣΓiΓj log rij . This is a system of ordinary differential equa-
tions; we can add a random term to take care of the diffusion as with the
boundary layer equations. Indeed, this construction has been carried out
and one can conceivably use it to study the convergence of the Navier–
Stokes equations to Prandtl’s equations, boundary layer separation, and
other questions of interest. In three dimensions a possible construction
might use vortex filaments, but a discussion of these constructions is out-
side the scope of this book. These ideas are the starting points for the
construction of practical numerical algorithms.

There is a way of writing the above general scheme for solving the Navier–
Stokes equations that sheds light on the mathematical structure of this
and related methods.10 The methods are related to some basic facts about

10Some additional references, in addition to those in the preceding footnote, are A.
J. Chorin, J. Fluid Mech. 57 [1973], 785–796, J. E. Marsden, Bull. Amer. Math. Soc.
80 [1974], 154–158, G. Benfatto and M. Pulvirenti, Convergence of the Chorin-Marsden
product formula in the half-plane, Comm. Math. Phys. 106 [1986], 427–458, and J. E.
Marsden, Lectures on Mechanics, Cambridge University Press, [1992].
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algorithms and our purpose is just to provide a hint about them.
Consider first a differential equation

ẋ = X(x) (2.3.17)

on R
n (eventually replaced by a more general space). To solve this equation,

a computer would move a point forward during a time step ∆t = τ accord-
ing to some rule. More precisely, an algorithm is a collection of maps
Fτ : R

n → R
n. The associated iterative process is denoted xk+1 = Fτ (xk).

To be consistent with (2.3.17) one requires

d

dτ
Fτ (x)

∣∣∣∣
τ=0

= X(x). (2.3.18)

Under some additional hypotheses one can establish convergence of the
algorithm, namely,

lim
n→∞

(Ft/n)nx0 = x(t), (2.3.19)

where x(t) is the solution of (2.3.17) with initial condition x0. Of course,
questions of rate of convergence and efficiency of the algorithm are impor-
tant in practice, but are not discussed here.

An important simple case is the following. Consider solving the linear
system

ẋ = Ax + Bx, (2.3.20)

where A and B are n × n matrices. The solution is

x(t) = et(A+B)x0, (2.3.21)

where
eC = I + C + 1

2C2 + 1
3!C

3 + · · ·
However, it may be easier to solve the equation by breaking it into two
pieces: ẋ = Ax and ẋ = Bx and solving these successively. Doing so leads
to the algorithm

Fτx = eτAeτBx,

and yields the basic formula

et(A+B) = lim
n→∞

(etA/netB/n)n (2.3.22)

(sometimes called the Lie–Trotter product formula). More generally,
consider solving a nonlinear equation

ẋ = X(x) + Y (x). (2.3.23)

Let Ht(x0) denote the solution of (2.3.23) with initial condition x0, so we
thereby define a map Ht : R

n → R
n, called the flow map. Let Kt and Lt
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be the corresponding flow maps for ẋ = X(x) and ẋ = Y (x). Then (2.3.22)
generalizes to

Ht(x0) = lim
n→∞

(Kt/n ◦ Lt/n)n(x0), (2.3.24)

where the power n indicates repeated composition.
It is tempting to apply (2.3.24) to the Navier–Stokes equations, where

Kt is the flow of the Stokes equation and Lt the flow of the Euler equations.
First of all, consider the case of regions with no boundary (e.g., this occurs
for the case of spatially periodic flows in the plane or space). In this case,
the method works quite well and was used by Ebin and Marsden in 1970
to show the convergence in a suitable sense of the solutions of the Navier–
Stokes equations to the Euler equations as the viscosity ν → 0.

If a boundary is present, we need to modify the scheme because of the
boundary conditions, as has been explained. Translated into a product
formula, the modified scheme reads as follows.

Ht(u) = lim
n→∞

(Kt/n ◦ Φt/n ◦ Lt/n)nu. (2.3.25)

Here,

• u is a divergence-free vector field, u = 0, on the boundary ∂Ω of the
region Ω in question;

• Lt is the flow of the Euler equation (boundary conditions u parallel
to ∂Ω), which may be solved approximately by a vortex method;

• Kt is the flow of the Stokes equation (boundary conditions u = 0 on
∂Ω), solved for example by a random walk procedure on vorticity;

• Φt is a “vorticity creation operator” that maps a u ‖ ∂Ω to a u = 0
on ∂Ω by adding on a suitably constructed vorticity field to u whose
backflow cancels u on ∂Ω; and

• Ht is the flow of the Navier–Stokes equations.

Convergence of (2.3.25) in reasonable generality is not yet proven, al-
though special cases are given in the cited references. What formula (2.3.25)
does is to make explicit the intuitive idea that vorticity is created on the
boundary because of the difference in the boundary conditions between the
Euler and Navier–Stokes equations, and that if the Reynolds number is high
this vorticity is swept downstream by the Euler flow to form a structured
or turbulent wake. The references should be consulted for details.

2.4 Remarks on Stability and Bifurcation

If R is the Reynold’s number, then limit R → 0 corresponds to slow or
viscous flow. The other extreme, the limit R → ∞ concerns very fast or only
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slightly viscous flow. The situation for intermediate values of R involves
many interesting transitions, or changes of flow pattern, and is the subject
of much research by mathematicians and engineers alike. Here we shall
give a few informal comments using the subject of nonlinear dynamics,
complementing topics already discussed in this chapter. The concept of
stability plays a central role in this discussion, so we begin with this concept.

Let P be R
n (more generally a Banach or Hilbert space of functions),

and let Ft denote a flow of a differential equation ẋ = X(x) on P ; that is,

d

dt
Ft(x) = X(Ft(x), t),

where x ∈ P and t ≥ 0. Assume that we have a good existence and unique-
ness theorem. If X is independent of t, we say it is autonomous, and if
x0 is such that X(x0) = 0, we call x0 a fixed point of X. It follows from
the initial condition F0(x0) = x0 and uniqueness of solutions that x0 is a
fixed point of X, i.e.,

Ft(x0) = x0.

Definition A point x0 is an asymptotically stable fixed point of the
vector field X if there is a neighborhood U ⊂ P of x0 such that if x ∈ U ,
then Ft(x) → x0 as t → ∞. In the sequel we shall refer to such a point
simply as a stable point . If one can choose U = P , we say that x0 is
globally stable. See Figure 2.4.1.

p2
p1 p3

x

y

Figure 2.4.1. A system with two asymptotically stable points.

Next we give a basic stability result of Liapunov11 that is based on com-
puting the spectrum of the linearization.

11For the proof, see for example, M. Hirsch and S. Smale [1974] Differential Equations,
Dynamical Systems, and Linear Algebra, Academic Press, or the book by Abraham,
Marsden, and Ratiu listed in the Preface.
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Liapunov Stability Theorem Let x0 be a fixed point of a smooth au-
tonomous vector field X on P = R

n. Then x0 is a stable point if the
eigenvalues of the n × n matrix DX(x0) of partial derivatives of X have
real parts < 0.

Example Suppose we have a linear autonomous system, that is, X = A,
an n×n real matrix, which we assume for simplicity is diagonalizable. Then
the solution of

d

dt
Ft(x) = A · Ft(x), F0(x) = x

is Ft(x) = etAx, where etA =
∑∞

i=o tiAi/i!. This series is absolutely con-
vergent. Transforming to coordinates that diagonalize A, we get

A = diag(λ1, . . . , λn)

and so
etA = diag(etλ1 , . . . , etλn)

where λ1, . . . , λn are the eigenvalues of A (they occur in conjugate pairs
because A is real). This indicates why the stability theorem is true, namely,
if Re(λi) < 0, i = l, . . . , n, then the matrix etA converges to the zero matrix
as t → ∞. Observe that for the linear case, consideration of neighborhoods
is unnecessary. �

The preceding example is helpful in understanding the nonlinear case as
well. To see this, expand X by Taylor’s formula about x0:

X(x) = X(x0) + DX(x0) · (x − x0) + θ(x − x0),

where X(x0) = 0, θ(x−x0) is o(‖x−x0‖), and ‖ ·‖ is the norm on P . Thus,
for x sufficiently close to x0, the term DX(x0) dominates the behavior of
the flow of X.

The stability theorem requires that the spectrum of the matrix DX(x0)
lies entirely in the strict left half-plane of the complex plane C for x0 to be
stable.

Exercise Consider the vector field

Xµ(x, y) = (y, µ(1 − x2)y − x)

on R
2. Determine if the fixed point (0, 0) is stable or unstable for various

values of µ. �

We shall now examine how these concepts enable us to study the sta-
bility of solutions of the Navier–Stokes equations. Consider the example of
flow in a pipe and assume v0 is a stationary solution of the Navier–Stokes
equations, for example, the Poiseuille solution (Exercise 1.3-3). We are in-
terested in what happens when v0 is perturbed, that is, when v0 → v0 +δv.
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Note that the disturbed solution of the Navier–Stokes equations, v0 + δv,
will not be a stationary solution. This is part of our notion of stability, that
is, v0 is stationary corresponding to v0 being a fixed point of a vector field
on the space of all possible solutions of the Navier–Stokes equations, which
we shall denote by P . For the present example, P would consist of the
set of all divergence-free velocity fields satisfying the appropriate boundary
conditions. The Navier–Stokes equations determine the dynamics on this
space P of velocity fields. We write

dv

dt
= X(v), v a curve in P,

where X does not depend on time unless the boundary conditions or body
force are time dependent. In this abstract notation, the Navier–Stokes equa-
tions, boundary conditions, divergence-free condition, and so on, look like
an ordinary differential equation. In the present circumstances X is an un-
bounded operator. However, we can still apply the stability concepts for
dynamical systems on R

n, due to the following conditions:

(1) The preceding equation really does determine the dynamics on P .
This follows from the short t-interval existence and the uniqueness
theorem for the Navier–Stokes equations.

(2) The stability theorem really works for the Navier–Stokes equations.12

For condition (2), DX is obtained via differentiation and DX(v0) is a linear
differential operator. Its spectrum will consist of infinitely many eigenvalues
or it may be continuous. For v0 to be stable the entire spectrum must lie
in the left half-plane of C. For example, flow in a pipe and Couette flow
are stable (in fact globally stable) if the Reynolds number is not too big.

Sometimes one is interested in the loss of stability of flows as the Reynolds
number R is increased. In general, any such qualitative change in the na-
ture of a flow is called a bifurcation. In this regard we consider X to be
parametrized by R and study the behavior of the spectrum of DX(v0) as a
function of this parameter. As R is increased, we anticipate that conjugate
pairs of eigenvalues of DX(v0) may drift across the imaginary axis. In this
case stability is lost and an oscillation develops.

A major result dealing with this situation is given by the following the-
orem of Poincaré, Andronov, and Hopf.13

12See for example, D. Joseph, Stability of Fluid Motion, I, II, Springer-Verlag and for
the Euler equations, V. Arnold and B. Khersin, Topological Methods in Hydrodynamics,
Springer-Verlag, 1997, and references therein.

13References are J. E. Marsden and M. McCracken The Hopf Bifurcation, Springer
Applied Mathematics Series, Vol. 19 [1976]; D. Sattinger Lectures on Stability and Bi-
furcation Theory, Springer Lecture Notes 309 [1973]. Books that approach this subject
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Hopf Bifurcation Theorem (Nontechnical version) Let Xµ be a vector
field (depending on a parameter µ) possessing a fixed point x0 for all µ.
Assume the eigenvalues of DXµ(x0) are in the left half-plane of C for
µ < µ0, where µ0 is fixed. Assume that as µ is increased, a single conjugate
pair λ(µ), λ(µ) of eigenvalues crosses the imaginary axis with nonzero speed
at µ = µ0 (Figure 2.4.2 ). Then there is a family of closed orbits of X near
µ0. If the point x0 is stable for Xµ0 , then the closed orbits appear for µ > µ0

and are stable. For each µ > µ0, near µ0, there is one corresponding stable
closed orbit and its period is approximately equal to Im(λ(µ0)/2π).

Re λ

Im λ

C

spectrum of the
linearization at equilibrium

Figure 2.4.2. A pair of eigenvalues crosses the imaginary axis in the Hopf bifur-
cation.

Roughly speaking, what this means is that when stability is lost, a stable
point is replaced by a stable closed orbit. Translated to the case of fluid
mechanics this means that a stationary solution (fixed point) of the Navier–
Stokes equations is replaced by a periodic solution (stable closed orbit). For
example, consider the case of flow around a cylinder. As R is increased,
the stationary solution becomes unstable and goes to a stable periodic
solution—the wiggly wake depicted in Figure 2.4.3. Such a development of
periodic oscillations is the main content of the Hopf bifurcation theorem.
It applies to a wide variety of physical and biological phenomena, and this
ubiquity leads one to strongly suspect it is the mechanism underlying even
complex fluid dynamical phenomena like the singing of transmission lines
in a strengthening wind.

We say that a bifurcation has occurred when R reaches a critical value
where stability is lost and is replaced by oscillations. The term is used
generally when sudden qualitative changes occur. In Hopf’s theorem the

from a more physical point of view are C. C. Lin, The Theory of Hydrodynamic Stability,
Cambridge [1955], and S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability,
Oxford [1961].
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Figure 2.4.3. The development of patterns like this is related to bifurcation,
stability loss and symmetry breaking.

stability analysis fails at µ0 and stability must be determined by “higher-
order” analysis; that is, the stability theorem, based on first-order analysis
just fails at µ = µ0. How to do this is discussed in the cited references.
One should also note that in highly symmetrical situations such a Couette
flow, the hypotheses of Hopf’s theorem (simplicity of the eigenvalues, or the
nonzero speed assumption) can fail. In this context the theory of bifurcation
with symmetry is needed.14

As R is increased, additional bifurcations and more complex motions
can occur. It is still not clear how one might set useful information about
turbulent flows from this approach, but for some complex flows like Taylor-
Couette flow the approach has been very successful.

14See Marsden and Hughes [1994]; M. Golubitsky, I. Stewart and D. Schaeffer Symme-
try and Groups in Bifurcation Theory, Vol. II, Springer-Verlag [1988]; and P. Chossat and
G. Iooss, The Taylor-Couette Problem, Springer Applied Math. Sciences Series [1991]
for further information and references.
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3
Gas Flow in One Dimension

In this chapter we discuss compressible flow in one dimension. In the first
section we develop the geometry of characteristics and in the second we in-
troduce the notion of a weak solution and the entropy condition for shocks.
In the third section we discuss the Riemann problem, that is, a flow problem
with particular discontinuous initial data. A general construction, due to
Glimm, which uses the solution of Riemann problems to produce solutions
of arbitrary problems, is then presented. This construction is the basis of
both some existence proofs and some methods of numerical computation in
gas dynamics. In the final section we generalize the discussion to the flow
of a gas that allows chemical energy release, such as occurs in combustion.

3.1 Characteristics

One-dimensional isentropic flow with an equation of state p = p(ρ) is de-
scribed by the following equations derived in §1.1:

ut + uux = −px

ρ
,

ρt + uρx + ρux = 0.


 (3.1.1)

Define c =
√

p′(ρ) (assuming p′(ρ) > 0) and note that px = p′(ρ)ρx by the
chain rule. Thus, the first equation in (3.1.1) becomes

ut + uux = −c2 ρx

ρ
.
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Before proceeding, let us explain why c is called the sound speed . Sound
can be viewed as a small disturbance in an otherwise motionless gas, due
to density changes. Let

u = u′ and ρ = ρ0 + ρ′,

where u′ and ρ′ are small and ρ0 is constant. Correspondingly, neglecting
products of small quantities, we have

p = p0 +
∂p

∂ρ
ρ′ = p0 + c2ρ′ and c2 =

∂p

∂ρ
(ρ0) = constant.

Substitution of these expressions in (3.1.1) gives

u′
t + u′u′

x = −c2 ρ′x
ρ

and ρ′t + uρ′x + ρu′
x = 0.

To first order (i.e., neglecting again squares of small quantities) these be-
come the linearized equations

ρ0u
′
t = −c2ρ′x and ρ′t + ρ0u

′
x = 0.

Eliminating u′ by differentiating the first equation in x and the second in
t, we get

ρ′tt = c2ρ′xx,

which is the wave equation. A basic fact about this equation is that the
general solution is

ϕ(x + ct) + ψ(x − ct),

that is, small disturbances (“sound waves”) propagate with speed c.
If we define

A =
[

u ρ
c2/ρ u

]
,

then (3.1.1) becomes (
ρ
u

)
t

+ A

(
ρ
u

)
x

= 0. (3.1.2)

Notice that the eigenvalues of A are u + c and u − c. Equation (3.1.2) is
a special case of a first-order quasilinear hyperbolic system in one
dimension, that is, a special case of the system

ut + A(x, t,u)ux = B(x, t,u), (3.1.3)

where u = u(x, t) is an n-component vector function of x and t, and A is
an n× n matrix function of x, t, and u that has n distinct real eigenvalues
and hence n linearly independent eigenvectors (i.e., as a real matrix, A is
diagonalizable). The nonlinearity of (3.1.3) is reflected in the dependence
of A or B on the unknown vector u. We shall now examine systems of the
form (3.1.3).
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Example 1 Consider the single linear equation

vt − vx = 0. (3.1.4)

Given initial data v(x, 0) = f(x), the solution is

v(x, t) = f(x + t).

Thus, v is a wave, with shape f , traveling with unit speed to the left on
the x-axis. On the lines x+ t = constant, v is constant. Thus, we can think
of information from the initial data as being propagated along these lines.
These lines are called the characteristics of equation (3.1.4). If initial
data are given on a curve C that is transverse to the characteristics (i.e.,
nowhere tangent to them), then (3.1.4) is solved by setting v(x0, t0) = the
value of the initial data on the curve C at the point where C intersects the
characteristic through (x0, t0). See Figure 3.1.1. If initial data are given on

(x0, t0)

t

x

C

Figure 3.1.1. Characteristics intersecting the curve C.

a curve not transverse to the characteristics, such as on a characteristic
itself, then the equation does not necessarily have a solution. �

Example 2 Consider the general single linear homogeneous equation

vt + a(x, t)vx = 0. (3.1.5)

This time the characteristics are the curves t = t(s), x = x(s), satisfying

dt

ds
= 1,

dx

ds
= a(x, t). (3.1.6)

If a(x, t) is smooth, these curves exist (at least locally) and never inter-
sect without being coincident, by the existence and uniqueness theorem for
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ordinary differential equations. Let us verify that, as in the first example,
solutions are constant along characteristics. Indeed, if x = x(s), t = t(s) is
a characteristic and v satisfies (3.1.5), then by the chain rule,

d

ds
v(x(s), t(s)) = vx

dx

ds
+ vt

dt

ds
= vt + a(x, t)vx = 0.

Thus, if initial data is given on a curve C that is transverse to the charac-
teristics, we can assert as before that v(x0, t0) = the initial data at point
P in Figure 3.1.2. If the data are given on a curve that is not transverse to
the characteristics, a solution does not necessarily exist. �

(x0, t0)

P

t

x

characteristics

Figure 3.1.2. Characteristics of a variable coefficient linear equation are nonin-
tersecting curves.

Example 3 Consider the generalization of (3.1.5) to the inhomogeneous
equation

vt + a(x, t)vx = b(x, t), (3.1.7)

and define the characteristics by the same equations (3.1.6). This time

d

ds
v(x(s), t(s)) = b(x, t),

and so, as the right-hand side is known,

v(x(s), t(s)) = v(x(s1), t(s1)) +
∫ s

s1

b(x(α), t(α)) dα,

which again determines v off any curve C if initial data is given on C and
C is transverse to the characteristics. �
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Example 4 As a nonlinear example, consider the equation

ut + uux = 0. (3.1.8)

Let us search for curves x(s), t(s) along which u is constant. By the chain
rule,

d

ds
u(x(s), t(s)) = ux

dx

ds
+ ut

dt

ds
.

Thus, we should choose

dt

ds
= 1,

dx

ds
= u.

Thus, the characteristics depend on u. Along the curve defined by dt/ds = 1
and dx/ds = u, we have du/ds = 0; that is, u is constant. The situation is
similar to the one in the linear case, except for the following crucial fact:
characteristics can now intersect. This is easy to see directly; if u = constant
on a characteristic, then dt/ds = 1, dx/ds = u is a straight line, and such
lines issuing from different points can indeed intersect (see Figure 3.1.3). It
is also easy to see in principle why the nonlinear case differs from the linear
case. In the linear case, the characteristics are determined by two ordinary
differential equations

dt

ds
= 1,

dx

ds
= a(x, t).

If a(x, t) is reasonably smooth, the solution of these equations through a
given point (x0, t0) is unique, and thus the characteristics cannot intersect.
In the nonlinear case, the characteristics are determined by three equations
(in the special case above, dt/ds = 1, dx/ds = u, du/ds = 0). The solution
of these equations through (x0, t0, u0) is still unique, but the characteristics
in the (x, t) plane are the projections of the three-dimensional solutions
of the system on that plane, and thus they may indeed intersect. When
such intersection occurs, our method of solution by following characteristics
breaks down and the solution is no longer uniquely determined. We shall
resolve this problem in the next section. �

Now we return to the system (3.1.3) and define its characteristics. Setting
B = 0 for simplicity, the rate of change of u along a curve (x(s), t(s)) is

du
ds

= ut
dt

ds
+ ux

dx

ds
=

[
−A(x, t,u)

dt

ds
+

dx

ds

]
ux. (3.1.9)

We define a characteristic to be a curve with the following property: if
data are given on that curve, the differential equation does not determine
the solution at any point not on the characteristic. (The data may also
fail to be consistent, but we do not make this fact a part of the definition.)
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(x0, t0)

t

x

characteristics

(x1,0) (x2,0)

Figure 3.1.3. The characteristics of a nonlinear equation may intersect.

One can readily check that all the examples of characteristics we have given
meet this definition. If the characteristic is not parallel to the x-axis, this
means we cannot determine ux from knowledge of u on the curve. From
(3.1.9) this will happen if

−A(x, t, u)
dt

ds
+

dx

ds
I

is a singular matrix, that is, if

dt

ds
= 1 and

dx

ds
= λ(x, t,u), (3.1.10)

where λ(x, t,u) is an eigenvalue of A(x, t,u). Notice that there are n char-
acteristics through each point and that the characteristics depend on u.

If a change of variables is made on the dependent variable u that has
a nonzero Jacobian, then A is changed by a similarity transformation,
and thus the eigenvalues and hence the characteristics are unchanged. If
a change of variables is made on the independent variables (x, t) (with
nonzero Jacobian), then this change maps characteristics onto characteris-
tics of the transformed problem.

If C is a curve transverse to all the characteristics, then

−A
dt

ds
+

dx

ds

will be invertible, and from (3.1.9),

ux =
[
−A

dt

ds
+

dx

ds

]−1

us,
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so we can propagate u off C. Thus, it is reasonable to expect (and indeed
it is true) that initial data on C uniquely determine a solution near C. (We
have to say “near” because, as in Example 4, characteristics for the same
eigenvalue can intersect.) In this general case we cannot expect u to be
constant along characteristics. However, we might seek functions f1, . . . , fn

of u that are constant along the characteristics associated with the eigen-
values λ1, . . . , λn. Indeed, suppose we can find a function f associated with
an eigenvalue λ with the property that

AT ∂f

∂u
= λ

∂f

∂u
, (3.1.11)

that is, ∂f/∂u is an eigenvector of the transpose of A. We claim that f is
constant along the corresponding characteristic. Such functions f are called
the Riemann invariants of the equation. To prove our contention, write
out (3.1.11) in components:

n∑
k=1

Aki
∂f

∂uk
= λ

∂f

∂ui
, (3.1.12)

where u = (u1, . . . , un). Now differentiate f along a curve satisfying (3.1.10):

∂f

∂s
=

n∑
k=1

∂f

∂uk

∂uk

∂s
=

n∑
k=1

∂f

∂uk

[
∂uk

∂t
+

∂uk

∂x

dx

ds

]

=
n∑

k=1

[
∂f

∂uk

[
−

n∑
i=1

Aki
∂ui

∂x
+ λ

∂uk

∂x

]]

=
n∑

k=1

−
n∑

i=1

Aki
∂f

∂uk

∂ui

∂x
+

n∑
k=1

λ
∂f

∂uk

∂uk

∂x
.

This is zero by virtue of (3.1.12).
Thus, if n functions f = (f1, . . . , fn) are found that are constant along

characteristics, we may invert them to express u in terms of the f ′s and
hope in this way to be able to determine explicitly the characteristics in
terms of the initial data alone. An example will be given later to show that
this can sometimes be done.

Let us now see these ideas work for the equations of gas dynamics (3.1.1),
written in the form (3.1.2) with u = (ρ, u). Because the eigenvalues of A
are u ± c, the characteristics are the curves

C+ :
dx

dt
= u + c and C− :

dx

dt
= u − c. (3.1.13)

To find the Riemann invariants we use (3.1.11). We seek eigenvectors of
AT with eigenvalues u ± c; that is, vectors (h±, k±) such that[

u c2/ρ
ρ u

] [
h±
k±

]
= (u ± c)

[
h±
k±

]
.
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This is easy to do: one finds[
h±
k±

]
=

[
±c/ρ

1

]
.

Thus, the Riemann invariants are found by inspection to be

Γ± = u ±
∫

c(ρ)
ρ

dρ, (3.1.14)

that is,
∂Γ±
∂ρ

= h±,
∂Γ±
∂u

= k±,

as required by (3.1.11). Thus, Γ± are constant along the ± characteristics,
respectively.

The fact that Γ+ (resp. Γ−) is constant on C+ (resp. C−) does not in
itself enable us to integrate the characteristic equations. The trouble is
that Γ+ need not be constant on C−, and Γ− need not be constant on
C+; if they were, then by inverting (3.1.14), u and ρ would be constant on
characteristics and the characteristics would be straight lines. If, by some
device, the characteristics can be found, then the equations can be solved
as follows: From (x, t) follow the ± characteristics back to the curve on
which initial data are prescribed to determine Γ± via (3.1.14). Using these
values, solve (3.1.14) for (u, ρ) and the result will be the value of (u, ρ) at
(x, t).

Of course, as in Example 4 there may be difficulties with two C+ char-
acteristics crossing. There may also be boundary conditions that have to
be taken into account.

We now discuss a different method for obtaining the Riemann invariants.
Consider the change of variables u = u(x, t), ρ = ρ(x, t) from the (x, t) plane
to the (ρ, u) plane and assume it is invertible (with nonzero Jacobian) so x
and t may be regarded as functions of ρ and u. This is called the hodograph
transformation.

Because the transformations (x, t) �→ (ρ, u) and (ρ, u) �→ (x, t) are in-
verses, their Jacobian matrices are inverses:[

ρx ρt

ux ut

]
=

[
xρ xu

tρ tu

]−1

=
1
J

[
tu −xu

−tρ xρ

]
,

where J = xρtu − xutρ �= 0. Substitution into (3.1.1) yields a linear hy-
perbolic system with independent variables (ρ, u) and dependent variables
(x, t) as follows:

xρ − utρ +
c2

ρ
tu = 0,

ρtρ + xu − utu = 0,



3.1 Characteristics 109

that is, [
x
t

]
ρ

+
[

1 u/ρ
0 ρ−1

] [
0 c2/ρ
1 −u

] [
x
t

]
u

= 0.

The eigenvalues of the coefficient matrix[
1 u/ρ
0 ρ−1

] [
0 c2/ρ
1 −u

]
=

1
ρ

[
u c2 − u2

1 −u

]

are easily computed to be λ = ±c/ρ . Thus, the characteristics in the (ρ, u)
plane are

du

dρ
= ± c

ρ
,

that is,

u ±
∫

c(ρ)
ρ

dρ = constant.

Thus, we recover the fact that Γ± = constant defines the characteristics;
that is, we recover the Riemann invariants obtained earlier.

As we saw earlier, it may be difficult to determine the characteristics
in a general flow. However, in special circumstances, the characteristics
are straight lines. We now introduce some terminology relevant to this
situation.

A state of a gas is a pair of values (ρ, u). A constant state is a region
in the (x, t) plane in which ρ and u are constant. A simple wave is a
region in the (x, t) plane in which one of Γ+,Γ− is constant. If it is Γ+ that
is constant, we refer to the region as a Γ+ simple wave . A Γ− simple
wave is defined analogously.

In a Γ+ simple wave, both Γ− and Γ+ are constant along C− character-
istics by definition of Γ− . From (3.1.14), u and c are constant too, and so
C− is a straight line. Similarly, in a Γ− simple wave, the C+ characteristics
are straight lines.

Consider a constant state S that is bounded by a smooth curve σ in
the (x, t) plane, as shown in Figure 3.1.4. (We implicitly assume that S is
the largest region on which (ρ, u) are constant, that is, the region across σ
exterior to S is not a constant state.) Because we are assuming c �= 0, then
the C+ and C− characteristics are not parallel at any point. Therefore,
at any point P of σ, one of C+ or C− must cross σ. Suppose that C+

crosses σ. Now Γ+ is constant along each C+ characteristic and is constant
throughout S. Therefore, assuming u and ρ are smooth enough, Γ+ will
be constant on a region exterior to S. Thus there is a portion of the (x, t)
plane adjoining S that is a Γ+ (or Γ−) simple wave. If at some point along
σ, the other characteristic C− was not equal to σ, it would cross it (again
assuming smoothness) and so Γ− would be constant on some region exterior
to S. That region would thus be a constant state. Therefore, the boundary
of a constant state is composed of straight lines.
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constant
state

S

σ

C+

P

Figure 3.1.4. Characteristics crossing the boundary of a constant state at P .

We will now give an example that shows the usefulness of the preceding
observations. Consider an infinitely long tube extending along the x-axis.
We assume that gas fills the half-tube x > 0 with a piston situated at
x = 0, and that the gas is in a motionless state with a constant density ρ0

(Figure 3.1.5). At t = 0, we start pulling the piston to the left so that the

piston gas in constant state   
u = 0,   ρ = ρ0

tube (cut-out)

x = 0 x > 0

Figure 3.1.5. Gas in a tube with a piston at t = 0.

piston follows a path x = x(t) for t > 0 in the (x, t) plane (Figure 3.1.6).
As a result the gas is set into motion. Because the gas is originally mo-

tionless with uniform density ρ0, there is a constant state I in the (x, t)
plane where the C± characteristics have constant slope ±c(ρ0). The Rie-
mann invariants in I are

Γ0
± = ±

∫ ρ0

a

c(s)
s

ds = constant.

The boundary of I is a straight C+ characteristic that must emanate
from the origin. This is readily seen from the fact that two distinct C+

characteristics in a Γ− wave cannot intersect at t > 0. If they did, they
would coincide. The C− characteristics of I penetrate into the adjoining
region II, and they can be traced at most as far as the piston path. Hence,
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t

x
0

piston path
x = x(t)

constant state   
u = 0,   ρ = ρ0

particle path

I

II
slope = c(ρ0)

C–

C+

Figure 3.1.6. Dynamics of the gas in the piston.

the region must be a Γ− simple wave (part of it may also be a constant
state). The C+ characteristics in the region II are all straight lines. In
particular, if the piston is withdrawn with a constant velocity U (which is
negative), that is, x(t) = Ut, then we claim that the density of the gas is
constant along the piston path (Figure 3.1.7). To prove this fact, pick any

left boundary

right boundary

I = Sr
constant state   
u = 0,   ρ = ρ0

particle path

piston path
x = Ut

II

constant state   
St  = III

C+

x

C–

Figure 3.1.7. Piston pulled with constant (negative velocity).

point B on the piston path. The gas particle at B moves with velocity U .
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Because Γ−(B) = Γ0
−, we have

∫ ρ(B)

a

c(ρ)
ρ

dρ = U − Γ0
− = constant. (3.1.15)

This is possible only if ρ(B) is constant along the piston path, because
c(ρ) and ρ are positive. Hence, the Riemann invariant Γ+, which is equal
to U + (U − Γ0

−) on the piston path, is a constant independent of any
C+ characteristics issuing from the piston path. Thus, there is a constant
state III adjacent to the piston path. The other boundary of III must be a
straight C+ characteristic, which issues from the origin. The constant states
I and III enclose a region II which must be a Γ− simple wave. Because
the boundary of II consists of straight C+ characteristics issuing from the
origin, all C+ characteristics of II intersect at the origin.

A simple wave whose straight characteristics intersect at a point on the
x-axis is called a centered rarefaction wave . We justify this terminology
by noting the following fact: From (3.1.15),

∫ ρ(B)

ρ0

c(ρ)
ρ

dρ =
∫ ρ(B)

a

c(ρ)
ρ

dρ + Γ0
− = U < 0.

Because c(ρ) and ρ are positive, we must have ρ(B) < ρ0 (i.e., in Fig-
ure 3.1.7 the gas is rarefied when the gas state passes through II from I to
III ).

We can carry out the explicit construction of the solution to the piston
problem at any point (x, t) in the special case of “γ law gas” whose equation
of state is given by p = Aργ , A, γ = constants, γ > 1.

The sound speed in such a gas is

c =

√
dp

dρ
=

√
Aγργ−1 =

√
γp

ρ
, (3.1.16)

and the Riemann invariants are

Γ± = u ±
∫

c(ρ)
ρ

dρ = u ± 2
γ − 1

c.

We call the constant state I the right state Sr. In this state

ur = 0, ρr = ρ0, pr = Aργ
0 , and cr =

√
γpr

ρ0
.

We call state III the left state Sl and in it (u, ρ, p, c) have constant values,
say (ul, ρl, pl, cl). Obviously, ul = U . From

Γ− = U − 2
γ − 1

cl = ur −
2

γ − 1
cr = − 2

γ − 1
cr,
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we can determine cl and hence the entire left state from (3.1.16). Because we
know cl, the left boundary of the rarefaction wave is given by x = (U +cl)t.
Finally, if (x, t) is a point inside the rarefaction, then

u + c =
x

t
, (3.1.17)

since the C+ characteristic through (x, t) is a straight line issuing from the
origin. On the other hand, the rarefaction is a Γ− simple wave, and

Γ− = u − 2
γ − 1

c = ur −
2

γ + 1
cr. (3.1.18)

Relations (3.1.17) and (3.1.18) yield

u(x, t) =
2

γ + 1

(x

t
− cr

)
,

c(x, t) =
(

γ − 1
γ + 1

) (
x

t
+

2
γ + 1

cr

)
.

We now use (3.1.16) and p = Aργ to obtain ρ(x, t) and p(x, t). Thus we
have constructed the gas flow at every point (x, t).

Two constant states, S1 and S2, are said to be connected by a Γ−
rarefaction wave if the configuration shown in Figure 3.1.8 is a solution
of the differential equations for gas flow.

S2 S1

t

x

Figure 3.1.8. Two constant states connected by a rarefaction wave.

Remember that in a Γ− simple wave, the C+ characteristics are straight
lines. The configuration in Figure 3.1.8 depicts two constant states, S1 and
S2, connected by a Γ− rarefaction wave. We ask the question: Given a state
S1, that is, given values ρ1 and u1, what are the possible states S2 that can
be connected to S1 by means of a centered rarefaction wave? We are only
interested in states S2 whose density ρ2 is less than ρ1; this corresponds to
the situation created when a piston moves to the left. For this discussion,
we assume the relation p = Aργ .

Choose p2 such that 0 < p2 < p1. We claim that p2 will uniquely deter-
mine the state S2 that can be connected to S1 by a centered rarefaction
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wave. Given p2, we find ρ2 from the relation p2 = Aργ
2 . Given S1, we know

ρ1 and u1 and thus can compute

Γ− = u1 −
2

γ − 1
c(ρ1),

which is constant in S1. Because Γ− is constant throughout the centered
rarefaction, we have

u2 −
2

γ − 1
c(ρ2) = u1 −

2
γ − 1

c(ρ1).

This determines u2 and hence the constant state S2.
How far can these C+ characteristics in Figure 3.1.8 fan out? The answer

is seen from the relation

Γ− = u − 2
γ − 1

c(ρ);

that is, when ρ is zero we must stop.
The methods developed so far cannot deal with the case of a piston

being pushed in. In such a case, our C+ characteristics would soon collide,
as shown in Figure 3.1.9.

piston path

collision

x

t

S1

Figure 3.1.9. The characteristics can collide if the piston is pushed in.

When the characteristics collide, the solutions become multiple valued
and thus, as presented so far, meaningless. To deal with this situation we
will modify our approach and introduce the concept of a “weak solution”
in the next section.
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3.2 Shocks

To deal with the crossing of characteristics and the formation of shocks, we
introduce some concepts from thermodynamics and the notion of a weak
solution.

We begin with a brief review of relevant parts of thermodynamics for
ideal flow.1 We assume there is a specific internal energy function ε (“spe-
cific” means “per unit mass”). For example, as we saw in §1.1, for ideal
gases,

ε =
p

ρ

(
1

γ − 1

)
.

The total energy per unit volume is

e = 1
2ρu2 + ρε.

Assuming that heat does not enter the fluid domain from its boundaries,
the total energy can only be reduced when the fluid does work. The work
done by a fluid volume W per unit time is

−
∫

∂w

pu · n dA

where n is the outward unit normal to ∂W and dA is the area element.
This must equal the rate of change of energy in W :

∂t

∫
W

e dV = −
∫

∂W

pu · n dA = −
∫

W

div(pu) dV.

By the transport theorem in §1.1, this integral form is equivalent to the
differential equation

∂te + div(eu) + div(pu) = 0.

that is,
∂te + div((e + p)u) = 0,

In one dimension this becomes

∂te + ((e + p)u)x = 0. (3.2.1)

Let us check that (3.2.1) indeed holds for an ideal gas. Here we choose

p = Aργ and ε =
p

ρ

1
γ − 1

;

1For an “axiomatic” treatment, see Marsden and Hughes [1994]. See also L. Malvern
[1969] Introduction to the Mechanics of a Continuous Medium, Prentice-Hall.
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then (3.2.1) reads

∂t

(
1
2ρ u2 +

p

γ − 1

)
+

((
1
2ρ u2 +

p

γ − 1
+ p

)
u

)
x

= 0.

Substituting p = Aργ and the equation of motion ut + uux = −px/ρ, we
see that this equation is indeed satisfied, as long as u and ρ are smooth.

The energy equation (3.2.1) is called the first law of thermodynam-
ics. We regard it as one of the basic equations. Our system, thus enlarged,
becomes

ρt + uρx + ρux = 0,

ut + uux +
px

ρ
= 0,

et + ((e + p)u)x = 0.


 (3.2.2)

When shocks form, discontinuities develop and so the meaning of equa-
tions (3.2.2) has to be carefully considered. Later we shall examine in detail
why it is desirable to work with (3.2.2). For instance, for a gas (for which
e = 1

2ρ u2 + p/(γ − 1)) we shall see that (3.2.2) can be meaningful even
when p = Aργ breaks down. Physically, it is reasonable to concentrate on
the system (3.2.2) because it expresses conservation of mass, momentum,
and energy. We remark that the system (3.2.2) has no Riemann invariants
in general.

The second law of thermodynamics in the form of a mathematically
reasonable postulate about shock waves will be introduced later. In ther-
modynamics, the second law asserts the existence of an “entropy” η that
has the property Dη/Dt ≥ 0; η increases when energy is converted from
kinetic to internal energy. In works on thermodynamics, η is related to the
other variables, for example, to specific heats. For an ideal gas, one can
show that

η = [ constant ] log(pρ−γ).

If η is increasing, we cannot have p = Aργ , where A is a constant. When
shocks form, η increases and p = Aργ must be abandoned. However, a
suitable formulation of equations (3.2.2) will continue to make sense. We
turn to this formulation next.

We now introduce the concept of a “weak solution” that will allow dis-
continuous solutions. The basic idea behind weak solutions is to go back
to the integral formulation of the equations; this may remain valid when
there is not enough differentiability to justify the differential form.2

2For a general mathematical reference, see P. D. Lax [1973] Hyperbolic Systems of
Conservation Laws and the Mathematical Theory of Shock Waves, Conference Board
of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No.
11. Society for Industrial and Applied Mathematics, Philadelphia, Pa., v+48 pp.
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Let us begin by considering general nonlinear general equations in con-
servation form, that is, of the form

ut + (f(u))x = 0. (3.2.3)

Example The equation ut + uux = 0 was discussed in the previous sec-
tion. It may be written in the conservation form ut +

(
1
2u2

)
x

= 0. However,
it can also be written as (

1
2u2

)
t
+

(
1
3u3

)
x

= 0.

The results one gets may depend on which conservation form is chosen.
Usually, physical considerations will dictate which one is appropriate. �

Let F = (f(u), u) and note that (3.2.3) is equivalent to

Div F = 0,

where Div(f1, f2) = (f1)x +(f2)t is the space-time divergence . Let ϕ be
a smooth function with compact support in the (x, t) plane (i.e., ϕ vanishes
outside a compact set). Then (3.2.3) is equivalent to∫

ϕ · Div F dx dt = 0,

for all such test functions ϕ. Integrating by parts (which is justified be-
cause ϕ has compact support),∫

Gradϕ · F dx dt = 0. (3.2.4)

where Gradϕ = (ϕx, ϕt) is the space-time gradient of ϕ. If u is smooth
(3.2.3) and (3.2.4) are equivalent, but if u is not smooth, (3.2.4) can make
sense even when (3.2.3) does not.

We define a weak solution of (3.2.3) to be a function u that satisfies
(3.2.4) for all smooth ϕ with compact support.

A slightly different formulation of (3.2.4) may be used to take into ac-
count the initial conditions, say u(x, 0) = q(x). Namely, we can replace the
integration over all of space-time by integration over the half-space t ≥ 0.
Then during integration by parts we pick up a boundary term:∫

t≥0

∫
x

Gradϕ · F dx dt +
∫ ∞

−∞
ϕ(x, 0) q (x) dx = 0. (3.2.5)

If ϕ has support away from the x-axis (i.e., ϕ = 0 on the x-axis) then
(3.2.5) reduces to (3.2.4).

So far we have the differential form of equation (3.2.3) and the weak form
(3.2.4). We also have an integral form corresponding to the integral form of
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the equations of motion discussed in §1.1. Here it expresses “conservation
of u.” Indeed, consider an interval W = [a, b] on the x-axis; from (3.2.3),

d

dt

∫
W

u dx =
∫

W

ut dx = −
∫

W

(f(u))x dx.

Thus,

d

dt

∫ b

a

u dx = −f(u)

∣∣∣∣∣
b

a

.

In particular, note that if u → 0 at ±∞, then
∫ ∞
−∞ u dx is conserved in the

literal sense:
d

dt

∫ ∞

−∞
u dx = 0.

A weak solution does not have to be differentiable. Note, however, that a
function that satisfies the integral form of the equation of motion does not
have to be differentiable either, and the integral forms in fluid mechanics are
in fact the basic laws we are working with, while weak solutions are merely
convenient mathematical tools. A natural question to ask is: Does a weak
solution necessarily satisfy the integral form of the equation? The answer
is yes, and, therefore, weak solutions are in fact the objects we are looking
for. (Note that the answer is, in general, affirmative only if the conserved
quantities are the same in the integral forms and in the conservation forms
of the equations.)

The proof of the fact that weak solutions satisfy the integral form of
the equation is reasonably straightforward. Let ψD be the characteristic
function of the domain D over which the integral form of the equation is
used; i.e, ψD(x, t) = 1 if (x, t) ∈ D, while ψD(x, t) = 0 if (x, t) is not inD.
Substitute ψD instead of ϕ into equation (3.2.4). Some straightforward
manipulation of improper functions will yield the desired integral form.
However, ψD is not an acceptable test function ϕ because it is not smooth.
Despite this, one can find sequences of acceptable test functions ϕn(x, t)
such that ∫

ϕn(x, t) div F dx dt →
∫

ψD(x, t) div F dx dt,

as n → ∞ for all piecewise smooth F. During this process, one must account
carefully for lines on which F is not smooth. We omit the details.

We now investigate properties of weak solutions of the conservation law
ut + f(u)x = 0 near a jump discontinuity. Let u be a weak solution with a
jump discontinuity across a smooth curve Σ in the (x, t) plane. Let ϕ be a
smooth function vanishing outside the region S shown in Figure 3.2.1.
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S1

S2

S

Σ

t

x

n

Figure 3.2.1. A weak solution may have a jump discontinuity across the curve Σ.

Write S = S1 ∪ S2 as shown in the figure. Then

0 =
∫

Gradϕ · F dx dt

=
∫

S1

Gradϕ · F dx dt +
∫

S2

Gradϕ · F dx dt. (3.2.6)

Let us assume that u is smooth in each of regions S1 and S2. Thus∫
S1

gradϕ · F dx dt =
∫

S1

div(ϕF) dx dt −
∫

S1

ϕ Div F dx dt

=
∫

Σ

ϕF · n ds dt −
∫

S1

ϕ Div F dx dt.

In region S1 where u is smooth, Div F = 0, and therefore∫
S1

Gradϕ · F dx dt =
∫

Σ

ϕF1 · n ds,

where in the integral over Σ, F1 means u is evaluated by taking the limit
from region S1. Similarly, one has∫

S2

Gradϕ · F dx dt = −
∫

Σ

ϕF2 · n ds.

The minus sign occurs because the outward normal n for S1 is the inward
normal for S2. Substitution into (3.2.6) yields∫

Σ

ϕ(F1 − F2) · n ds = 0.
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Because this is valid for all ϕ,

[F · n] = 0 on Σ, (3.2.7)

where [F · n] = F1 · n − F2 · n denotes the jump in F · n across Σ.
Let Σ be parametrized by x = x(t) so s = dx/dt is the speed of the

discontinuity. Then

n =
(1,−s)√
s2 + 1

and F = (f(u), u);

thus, (3.2.7) becomes

−s[u] + [f(u)] = 0 on Σ (3.2.8)

where again [ ] denotes the jump in a quantity produced when (x, t) crosses
from S1 to S2.

Equation (3.2.8) is the constraint that the assumed weak form of the
equations (3.2.4) imposes on the values of u on both sides of a discontinuity.
Also,

∫
u dx is conserved if the differential form of the equation is satisfied

whenever u is smooth, and (3.2.8) is satisfied across any discontinuity. It
is, of course, assumed that all discontinuities are jump discontinuities. A
function u that satisfies the differential equations where possible and (3.2.8)
across a jump discontinuity satisfies the integral form and the weak form
of the equations.

What we have just done works just as well for systems of conservation
laws, that is, equations of the form

(ui)t + (fi(u1, . . . , un))x = 0, i = 1, . . . , n

for a vector unknown u = (u1, . . . , un). Setting Fi = (fi(u), ui), these may
be rewritten as

Div Fi = 0, i = 1, . . . , n.

The comments on the single equation case then carry over verbatim, equa-
tion by equation, to the case of systems. In particular, each component
ui represents a conserved quantity of the system in the sense spelled out
earlier.

As an example of a system of conservation laws, consider the equations
of isentropic gas flow:

ρt + (ρu)x = 0, ut + uux +
px

ρ
= 0.

They can be written in conservation form if one writes the second equation
in terms of the momentum m = ρu. One gets

ρt + mx = 0,

mt +
(

m2

ρ
+ p

)
x

= 0.


 (3.2.9)
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In this system we assume p = p(ρ). We can drop this assumption p = p(ρ)
if we add the energy equation

et + ((e + p)u)x = 0,

where e = ρε + 1
2ρu2 and ε is given, for example, by

ε =
p

ρ

1
γ − 1

.

In summary, using the energy equation, we have the system of conserva-
tion laws

ρt + mx = 0,

mt +
(

m2

ρ
+ p

)
x

= 0,

et +
(

(e + p)
m

ρ

)
x

= 0.




(3.2.10)

The system (3.2.9) together with p = Aργ will not have the same weak
solutions as (3.2.10) together with

e = 1
2ρu2 + ρε, ε =

p

ρ

1
γ − 1

.

It is believed on physical grounds that the condition of conservation of en-
ergy is more fundamental than p = Aργ and that, indeed, A may depend
on the entropy and thus may not be constant. Therefore, we adopt the sys-
tem (3.2.10) as our basic system of conservation laws. There are problems,
however (e.g., in the theory of water waves), where systems such as the
2×2 system with p = Aργ are appropriate. Physical considerations dictate
which quantities must be conserved.

From the jump conditions (3.2.8) applied to the system of conservation
laws (3.2.10) we find that the jump relations across a discontinuity Σ in
the (x, t) plane with velocity dx/dt = s are given as follows:

s[ρ] = [m],

s[m] =
[
m2

ρ
+ p

]
,

s[e] = [(e + p)u].




(3.2.11)

These are called the Rankine–Hugoniot relations. The first two equa-
tions in (3.2.11) are called the mechanical jump relations.

The equations of fluid mechanics, like those of classical particle mechan-
ics, are Galilean invariant. Therefore, it is legitimate to transform variables
to a coordinate system moving with uniform velocity. It is convenient to
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t

x

back(1) front(0)

shock

Figure 3.2.2. The shock in moving coordinates.

pick a coordinate system whose velocity at some fixed time t0, say t0 = 0,
equals that of the discontinuity and such that the discontinuity is at x = 0
at t = 0. See Figure 3.2.2.

In this coordinate system, the Rankine–Hugoniot relations at the origin
become

ρ0u0 = ρ1u1,

ρ0u
2
0 + p0 = ρ1u

2
1 + p1,

(e0 + p0)u0 = (e1 + p1)u1,


 (3.2.12)

where the subscripts indicate the different sides (0) or (1) of the disconti-
nuity.

Let M = ρ0u0 = ρ1u1. If M = 0 we call the discontinuity a contact
discontinuity or a slip line . Because u0 = u1 = 0, these discontinuities
move with the fluid. From (3.2.12)2, p0 = p1, but in general ρ0 �= ρ1.

If M �= 0, we call the discontinuity a shock . Because u0 �= 0, u1 �= 0,
gas is crossing the shock, or, equivalently, the shock, is moving through the
gas. The side that consists of gas that has not crossed the shock is called
the front of the shock, and we identify it by a subscript 0. The other side,
denoted by a subscript 1, is called the back .

Some simple algebraic identities for a shock may be derived from the
Rankine–Hugoniot relations. From (3.2.12)1 and (3.2.12)2,

Mu0 + p0 = Mu1 + p1, i .e., M = − p0 − p1

u0 − u1
. (3.2.13)

Substituting u0 = M/ρ0 = Mτ0 and u1 = M/ρ1 = Mτ1, where τ = 1/ρ is
the specific volume, into (3.2.13) gives

M2 = −p0 − p1

τ0 − τ1
. (3.2.14)



3.2 Shocks 123

If we write M2 = M · M = (ρ0 u0) (ρ1 u1) and τ = 1/ρ , (3.2.14) becomes

u0 u1 =
p0 − p1

ρ0 − ρ1
. (3.2.15)

The identities (3.2.13), (3.2.14), and (3.2.15) are consequences of the me-
chanical jump relations only. To bring in the energy, combine (3.2.12)1 with
(3.2.12)3 to give

e0τ0 − e1 τ1 = p1 τ1 − p0 τ0.

However,

e0τ0 − e1τ1 =
(

1
2ρ0u

2
0 + ρ0ε0

)
τ0 −

(
1
2ρ1u

2
1 + ρ1ε1

)
τ1

= 1
2 (u0 − u1)(u0 + u1) + ε0 − ε1

= −p0 − p1

2M
(Mτ0 + Mτ1) + (ε0 − ε1)

(from (3.2.12)1 and (3.2.13))

= (ε0 − ε1) −
p0 − p1

2
(τ0 + τ1).

Thus,

ε1 − ε0 +
p0 + p1

2
(τ1 − τ0) = 0. (3.2.16)

This relation is called the Hugoniot equation for the shock. Notice that
it depends only on p and τ and not on u. Define the Hugoniot function
with center (τ0, p0) to be

H(τ, p) = ε(τ, p) − ε(τ0, p0) +
p0 + p

2
(τ − τ0)

so that (3.2.16) may be written as H(τ1, p1) = 0.
For a “γ-law gas” for which

ε =
1

γ − 1
pτ,

it is easily checked that H(τ, p) is given by

2µ2H(τ, p) = (τ − µ2τ0) p − (τ0 − µ2τ) p0,

where
µ2 =

γ − 1
γ + 1

.

In this case, the curve H(τ, p) = 0 is the hyperbola shown in Figure 3.2.3.
The Hugoniot equation states that (τ1, p1) lies on this hyperbola. The

hyperbola represents all possible states that can be connected to the state
(τ0, p0) through a shock. Notice from (3.2.14) that −M2 is the slope of the
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p
H(τ,p) = 0

(τ1,p1)

(τ0,p0)

µ2τ0

–µ2p0

τ

Figure 3.2.3. The Hugoniot curve H(τ, p) = 0.

line through (τ1, p1) and (τ0, p0) and that this then determines u0 and u1

via (3.2.12)1. Because the curve pρ−γ = p0ρ
−γ
0 , that is, pτγ = p0τ

γ
0 does

not coincide with the curve H(τ, p) = 0, we will not have pρ−γ = constant
across a shock, in general. Similarly, if we had insisted on (3.2.9) and pρ−γ

= constant, we would have obtained shocks for which energy conservation
would have been violated.

Further conditions must be imposed on weak solutions of conservation
laws to select a unique, physically correct solution. The next example
demonstrates nonuniqueness with ut + uux = 0.

Example Consider the conservation law

ut +
(

u2

2

)
x

= 0. (3.2.17)

Recall from §3.1 that its characteristics are straight lines and that u is
constant along them. Consider the initial data

u(x, 0) =

{
0, if x ≥ 0;
1, if x < 0.

The corresponding characteristics are shown in Figure 3.2.4(a).
To keep the characteristics from crossing, we introduce a shock with

propagation speed

s =

[
1
2u2

]
[u]

=
1
2

(see equation (3.2.8)). We thus get a globally defined weak solution by
letting u = 1 to the left (behind) of the shock and u = 0 to the right (in
front) of the shock. See Figure 3.2.4(b).
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(b)characteristics(a)

x

t
shock; s = 1/2

u = 1 u = 0

x

t

Figure 3.2.4. Characteristics for the initial data u = 0 if x ≥ 0 and u = 1 if
x < 0.

Next consider the initial data

u(x, 0) =

{
1, if x ≥ 0;
0, if x < 0.

The characteristics, shown in Figure 3.2.5(a), do not fill out the (x, t) plane.

(a)

x

t
u = 0

s = 1/2t

x

(b)

u = 0

u = 1

(c)

u = 1

u = 0 t

x

rarefaction fan

Figure 3.2.5. Characteristics for the initial data u = 1 if x ≥ 0 and u = 0 if
x < 0.
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The figure shows two ways to find a globally defined weak solution. We
shall introduce a condition that excludes the solution (b) of Figure 3.2.5. �

Consider the characteristics of our problem and consider a shock (i.e.,
a discontinuity that satisfies the jump condition −s[u] +

[
1
2u2

]
= 0) . It

is easy to see that the following is true: Through every point on the path
of the shock in the (x, t) plane one can draw two characteristics, one on
each side of the shock; and either both of them can be traced back to
the initial line or both of them can be traced upwards to the “future,”
that is, toward larger t. In either case, the shock is needed to avoid having
characteristics intersect and create a multivalued solution. We say that this
shock separates the characteristics. (We shall work out an example more
general than 3.2.17 in greater detail later.) A shock is said to obey the
entropy condition if the two characteristics that intersect on each point
can be traced backward to the initial line, as in Figure 3.2.4(b). A shock
that does not obey the entropy condition is called a rarefaction shock .
We shall allow only shocks that do obey the entropy condition and exclude
solutions such as those in Figure 3.2.5(b). This restriction will make the
weak solution of the problem unique. The reason for the name “entropy
condition” will appear later. The entropy condition can be viewed as a
causality condition: The shock is determined by the given data, and not by
future events.3

We shall formulate shortly the general entropy condition for shocks in
systems of conservation laws. Before doing so, we list some of the reasons
rarefaction shocks are excluded in gas dynamics.

1. If a rarefaction shock is allowed, then the problem will not have a
unique solution.

2. A solution that includes rarefaction shocks need not depend continu-
ously on the initial data. Specifically, in the neighborhood of a rarefaction
shock, we can specify u on the left, u on the right, and s; the only required
relation is the jump condition; u is not constrained by the initial data.
Thus, we can alter the solution without altering the initial data.

3. When we write the equations of gas dynamics in hyperbolic form, we
neglect the viscosity. The hidden assumption is that the effect of viscosity
should be small. As an example, we consider the viscous equation

ut +
(

u2

2

)
x

= ν uxx, ν > 0 (3.2.18)

3See P. D. Lax [1973] Hyperbolic Systems of Conservation Laws and the Mathemat-
ical Theory of Shock Waves, Conference Board of the Mathematical Sciences Regional
Conference Series in Applied Mathematics, No. 11. Society for Industrial and Applied
Mathematics, Philadelphia, Pa., v+48 pp.
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corresponding to the conservation law (3.2.17). Let the solution of (3.2.18)
be uν and let u0 be the solution of (3.2.17) with the same initial data. Then
the hidden assumption is

lim
ν→0+

uν = u0.

In fact, one can show that limν→0+ uν is a weak solution of the inviscid
equation (3.2.17), and one can also show that only solutions of (3.2.17)
satisfying the entropy condition are the limits of the corresponding viscous
solutions. We will omit the proof.4

4. We have seen that the quantity
∫

u(x, t) dx is conserved for a solution
of the conservation law (3.2.17). One can show that the “energy,” that is,∫

u2(x, t) dx, cannot increase for a weak solution whose shocks satisfy the
entropy condition. To make this plausible, consider a solution u(x, t); we
define its variation at t to be

var(u(x, t)) = sup
∑

n

|u(xn, t) − u(xn−1, t)|

where the sup is taken over all the possible partitions {x1, . . . , xN} of the
x-axis. (A partition is a finite division of the x-axis, −∞ < x1 < · · · <
xN < ∞.) We assume that var(u(x, 0)) < ∞ initially. Then, because a
smooth solution is propagated along characteristics from the initial data,
var(u) is invariant for smooth solutions (see Figure 3.2.6).

characteristics

var(u(x,t0)) < var(u(x,0))
(a) 

shock satisfying the
entropy condition

t

x0 y1 y2

t0

x

t

0

t0

var(u(x,t0)) = var(u(x,0))
(b) 

Figure 3.2.6. The variation is decreasing for a shock satisfying the entropy con-
dition.

However, if u(x, t) has a shock satisfying the entropy condition, u(x, t)
loses a part of its initial variation at any time when this shock is present.
Therefore, the variation var(u) cannot increase. This fact implies that

4See E. Hopf, Comm. Pure Appl. Math. 4 [1950], 201.
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∫
u2(x, t) dx cannot increase. This is not the case with a rarefaction shock.

A similar situation holds for the equations of gas dynamics.

5. In the case of the equations of gas dynamics, rarefaction shocks violate
basic thermodynamic principles.

We now formulate the entropy condition for systems of conservation laws.
Consider an n-component system ut + (f(u))x = 0. Using the chain rule,
we can write ut + A(u)ux = 0, where A(u) is the Jacobian matrix of f .
We assume this is hyperbolic in the sense of the previous section so A(u)
has n real eigenvalues λ1, λ2, . . . , λn. Correspondingly, we have n families
of characteristics given by the curves

dxi

dt
= λi, i = 1, . . . , n.

For example, in the one-dimensional case we have considered, n = 1 and
λ1 = λ = u. In the two-component case of isentropic flow, we have two
families of characteristics, C+ and C−, associated with λ1,2 = u± c. In the
3 × 3 system of gas dynamics, λ1 = u + c, λ2 = u − c, λ3 = u, and we
have three corresponding families, C+, C−, and C0, respectively.

A shock is said to separate characteristics of a given family if

i it satisfies the jump conditions;

ii through every point of the trajectory of the shock in (x, t) plane one
can draw two characteristics of the family, one on each side of the
shock; and

iii either both characteristics can be traced back to the initial line or
they can both be traced upwards toward increasing t. (We shall see
later that it is a property of the gas dynamic equations that each
shock separates either the C+ or the C− family.)

The entropy condition for systems of conservation laws is the following:
A shock satisfies the entropy condition if, when it separates characteristics
of one family, the characteristics on each side can be traced back to the
initial data. We shall allow only shocks that satisfy the entropy condition.
(Some authors call a discontinuity a shock only if the entropy condition is
satisfied.)

A shock for gas dynamics is called compressive if the pressure behind
the shock is larger than the pressure in front of the shock. Thus, in a
compressive shock the pressure is raised as a fluid particle crosses the shock.

We next show that for a γ-law gas a shock is compressive if and only
if it satisfies the entropy condition. To demonstrate this, we proceed in a
number of steps.
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Step 1 The velocity of a shock is larger than the sound speed (i.e., is su-
personic) on one side and is smaller than the sound speed (i.e., is subsonic)
on the other.

To see this, consider the Hugoniot relation

e0τ0 + p0τ0 = e1τ1 + p1τ1

derived in the course of establishing equation (3.2.16). We can rewrite it as
1
2u2

0 + ε0 + p0τ0 = 1
2u2

1 + ε1 + p1τ1.

Substituting

µ2 =
γ − 1
γ + 1

, ε =
pτ

γ − 1
, and c2 = γ p τ,

we get
µ2u2

0 + (1 − µ2)c2
0 = µ2u1 + (1 − µ2)c2

1. (3.2.19)

Let c2
∗ denote the common value of both sides so that

(1 − µ2)(u2
0 − c2

0) = u2
0 − c2

∗

and
(1 − µ2)(u2

1 − c2
1) = u2

1 − c2
∗.

However, µ2 < 1 because γ > 1, and so

|u0| > c0 if and only if |u0| > c∗ (3.2.20)

and
|u1| > c1 if and only if |u1| > c∗

Rewrite the expression for c2
∗ as follows: by definition,

ρ1c
2
∗ = ρ1[µ2u2

1 + (1 − µ2)γp1τ1] = ρ1µ
2u2

1 + (1 − µ2)γp1.

Because (1 − µ2)γ = 1 + µ2,

ρ1c
2
∗ = ρ1µ

2u2
1 + (1 + µ2)p1.

From (3.2.12)2 we get
ρ1c

2
∗ = µ2P + p1

where P = ρ0u
2
0 + p0 = ρ1u

2
1 + p1. Similarly, ρ0c

2
∗ = µ2P + p0. Eliminating

P yields

c2
∗ =

p1 − p0

ρ1 − ρ0
.

From (3.2.15) we then get
c2
∗ = u0u1. (3.2.21)

This is called the Prandtl relation . It follows that |u1| > c∗ implies
|u0| < c∗, and vice versa. Together with (3.2.20), this proves our contention
in Step 1.
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Step 2 Determination of the family of characteristics separated by a
shock.

Consider a shock facing to the right, that is, its front is on its right, its
back is on its left, and fluid crosses it from right to left. The characteristics
for our system (3.2.10) are given by

dx

dt
= u + c (the C+ characteristic)

dx

dt
= u − c (the C− characteristic)

and

dx

dt
= u (the C0 characteristic)

The shock cannot separate C0 characteristics. Indeed, by our conventions,
the velocity u0 in front of the shock is negative; by the jump relation
ρ0u0 = ρ1u1, we see that u1 is negative as well. Therefore, the configuration
of the C0 characteristics is such that on the left (labeled with a (1)) the
characteristics go to the future and on the right (labeled with a (0)) they
go to the past (see Figure 3.2.7), and so the shock does not separate them.

The right-facing shock cannot separate C− characteristics either. Indeed,
because u0 < 0, we have u1 < 0 as well and u0 − c < 0, u1 − c < 0; thus,
one has a picture qualitatively similar to that shown in Figure 3.2.7 for C0

characteristics.

shock

x

t

C0 characteristics

Figure 3.2.7. The appearance of C0 characteristics separated by a shock.

Thus, a right-facing shock can only separate C+ characteristics. (Simi-
larly, a left-facing shock separates C− characteristics.)

Step 3 A shock is compressive if and only if ρ0 < ρ1.

Indeed, a shock is compressive when p1 > p0 by definition. From the
jump condition we get ρ0u0 = ρ1u1, and thus u1 and u0 are both negative
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for a right-facing shock. From (3.2.19),

c2
∗ =

p1 − p0

ρ1 − ρ0
> 0;

therefore, p1 − p0 and ρ1 − ρ0 have the same sign, as required. A similar
argument yields the same conclusion for a left-facing shock.

Step 4 A noncompressive shock violates the entropy condition.

A shock is noncompressive when ρ1 < ρ0, from Step 3. From the jump
condition ρ0u0 = ρ1u1 we have u1 < u0 < 0. Subject to the Hugoniot
constraint

H(τ, p) = 0,

and using implicit differentiation, one sees that

c =
√

γp

ρ

is an increasing function of ρ. From ρ1 < ρ0 and u1 < u0 < 0, we get the
inequality

u1 + c(ρ1) < u0 + c(ρ0).

From Step 1, it follows that

|u1| > c(ρ1), |u0| < c(ρ0), u1 + c(ρ1) < 0, and u0 + c(ρ0) > 0.

Thus, the configuration of the slopes of the C+ characteristics have the
form shown in Figure 3.2.8. This clearly violates the entropy condition.

shock

x

t

= u1 + c(ρ1) < 0
dx
dt

= u0 + c(ρ0) > 0dx
dt

Figure 3.2.8. The C+ characteristics for a noncompressive shock.

Step 5 A compressive shock obeys the entropy condition.
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Here ρ1 > ρ0 and u0 < u1 < 0. Thus, c(ρ1) > c(ρ0) and u1 + c(ρ1) >
u0 + c(ρ0). By Step 1 and Prandtl’s relation we must have

|u0| > c(ρ0) and |u1| < c(ρ1)

so that
u1 + c(ρ1) > 0 and u0 + c(ρ0) < 0.

Thus, the characteristics have the appearance shown in Figure 3.2.9, and
therefore the entropy condition is satisfied.

shock

x

t

= u0 + c0 < 0
dx
dt

= u1 + c1 > 0dx
dt

Figure 3.2.9. The appearance of the characteristics for a compressive shock.

We note again that if the front side were the left side, then the shock
would separate the C− characteristics, but the same conclusion would be
reached.

This completes the proof of our original contention that compressive
shocks for a γ–law gas obey the entropy condition.

We remarked earlier that the thermodynamic entropy can be shown to
be an increasing function of pρ−γ and that the entropy should increase
across a shock. This is easy to see by consulting Figure 3.2.10.

Indeed, the curve H(τ, p) = 0 through (τ0, p0) is drawn as well as the
curves pρ−γ = constant; one sees that pρ−γ increases as we move along
H(τ, p) = 0 in the direction of increasing p.

Thus, for a γ-law gas, we see that the geometric entropy condition we
have seen so far and the condition on entropy that one can obtain from
thermodynamics, happen to coincide. We shall see in §3.4 that this is not
always the case. The geometric condition is a stronger condition and may be
needed for the construction of a unique solution even under circumstances
where thermodynamics has little to say. We already saw such an example
in the equation ut + uux = 0.

We close this section with two remarks.
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τ

p

(τ0,p0)
compressive
shocks

increasing  pρ–γ

pρ–γ = constant

Figure 3.2.10. Entropy is an increasing function of pρ−γ and increases across a
shock.

Remark 1 As long as the solution of our system of equations is smooth,
the initial value problem is reversible. For example consider the conserva-
tion law ut + (u2/2)x = 0. If the solution is smooth for all t satisfying
0 ≤ t ≤ T , and if we know the solution u(x, t), then by the change of
variables u = −u, t = −t we may solve backward to recover the initial data
u(x, 0).

As soon as our solution becomes discontinuous, then the reversibility of
the solution is lost. Consider a solution with prescribed initial data u(x, 0),
where the characteristics first collide at time T1; see Figure 3.2.11. At a later

t

T1

x
A B

Figure 3.2.11. If characteristics collide at time T1, the system loses its reversibil-
ity.
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time T > T1, it will be impossible to uniquely reconstruct the initial data
prescribed between A and B, because the characteristics containing these
initial data have been “swallowed up” by the shock. Thus, the information
between A and B is “lost,” which confirms the notion that an increase in
entropy means that information has been lost. �

Remark 2 In the case of nonconstant pρ−γ , we say that a state of a gas
is a set of three values S = (ρ, u, p). We ask the question: What constant
states can be connected to a given state by a shock? (see Figure 3.2.12.) �

p

S = (ρl,ul,pl)

S = (ρr,ur,pr)

τ

Figure 3.2.12. Can the left and right states be connected by a shock?

The Hugoniot relation yields a curve on which lie states that can be
connected to Sr = (ρr, ur, pr) by a shock; the curve represents the set
of possible transitions. Furthermore, a shock that separates two constant
states must be a straight line in the (x, t) plane, because both [f(u)] and
[u] are constant in time and s[u] + [f(u)] = 0, thus s = constant. Define a
centered wave to be either a straight line shock or an isentropic centered
rarefaction.

Then, given a right state Sr, and a pressure pl ≥ 0 in a left state Sl,
we can find pl , ul such that Sl is connected to Sr by a centered wave. If
pl > pr, we can find a straight line shock connecting the two states, and if
pl ≤ pr, we can find a centered rarefaction wave that connects them.
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3.3 The Riemann Problem

The conservation laws for a γ-law gas were shown in the previous section
to be

ρt + (ρ u)x = 0,

(ρ u)t + (ρ u2 + p)x = 0, (3.3.1)
et + ((e + p)u)x = 0,

where e = 1
2ρ u2 + p/(γ − 1). The state of the gas is a vector

u =


 ρ

u
e


 .

The Riemann problem is the initial value problem for (3.3.1) with special
initial data of the form

u(x, 0) =

{
ur, x ≥ 0,

ul, x ≤ 0,

where

ur =


 ρr

ur

er


 and ul =


 ρl

ul

el




are two constant states of the gas. The special case in which the velocity
components vanish, that is, ur = 0 and ul = 0, is called a shock tube
problem.

The main objective of this section is to show how to solve the Riemann
problem and how to use the solution to construct the solution of (3.3.1)
with general initial data.

Consider a change of variables

x′ = Lx, t′ = Lt,

where L > 0. Clearly this leaves the form of equations (3.3.1) unchanged
and the initial data are unchanged as well. Thus, if we assume that the
solution is unique, then

u(x, t) = u(x′, t′) = u (xL, tL) = u
(x

t

)
, t > 0.

Thus, the solution of the Riemann problem is constant along straight lines
issuing from the origin in the (x, t) plane. Because hyperbolic equations
have a finite speed of propagation of data, we conclude that at any instant,
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the state of the gas is ur far enough to the right and is ul far enough to
the left. Let the corresponding regions in the (x, t) plane be denoted Sr

and Sl, respectively. From the results of §3.1, the boundary of Sr is either
a C+ characteristic of (3.3.1) or a jump discontinuity emanating from the
origin. A similar statement holds for Sl .

We will now give a plausible reason why Sr can be connected to Sl through
a right-centered wave, a constant state I, a slip line, a constant state II ,
and a left-centered wave (see Figure 3.3.1). Recall from the end of the previ-
ous section that a centered wave is either a centered isentropic rarefaction
wave or a shock. We now sharpen our definitions slightly. A right-centered
wave is a wave that is either a shock wave facing to the right or an isen-
tropic centered rarefaction wave in which Γ− is constant.

right-centered wave

x

left-centered wave

constant
state I

constant
state II

t

ul ur

= u*
dx
dt

slip line

Sr
Sl

0

{
Figure 3.3.1. The constant states Sr and Sl connected through constant states,
a slip line, and a left-centered wave.

Similarly, a left-centered wave is a wave that is either a shock wave
facing to the left or a Γ+ isentropic rarefaction. From the discussion at
the end of the previous section, given a right state Sr, we can find a one-
parameter family of constant states I (parametrized by the pressure, for
example), which can be connected to Sr by a right-centered wave. Note
that because Sr is a constant state, pρ−γ is a constant in Sr, and if the
right wave is a rarefaction, pρ−γ is also constant in that rarefaction; thus,
it is consistent to allow only isentropic rarefaction waves in the definition of
a right-centered wave. Because the density is the only quantity that can be
discontinuous across a slip line, we have a two-parameter family of constant
states II that can be connected through a slip line, a constant state I, and a
right-centered wave to Sr. Continuing once more, we get a three-parameter
family of states that can be connected to Sr by a left-centered wave, a
constant state II , a slip line, a constant state I, and a right-centered wave.
The question is whether or not we can choose the parameters so that we
end up with the desired constant state ul. If we can, we have a solution of
the Riemann problem. If ul and ur are close enough, one can demonstrate
the result by means of the implicit function theorem. To demonstrate the
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result for general ul and ur (for a γ-law gas), let p∗ and u∗ denote the
pressure and velocity of the constant states I and II , respectively. Define
the quantities

Mr = − pr − p∗
ur − u∗

, Ml = − pl − p∗
ul − u∗

(see formula (3.2.13)). We claim that these quantities are functions of p∗
only, that is, Mr = Mr(p∗) and Ml = Ml(p∗). To prove this claim, we
assume first that the right wave is a shock. Then p∗ > pr. From (3.2.14),

M2
r = −pr − p∗

τr − τl
(3.3.2)

where τl is the specific volume of the constant state I. The Hugoniot equa-
tion (3.2.16) gives

(τl − µ2τr)p∗ = (τr − µ2τl)pr

where µ2 = (γ − 1)/(γ + 1). Therefore,

τl = τr
pr + µ2 p∗
µ2pr + p∗

.

Thus, using (3.3.2),

M2
r = ρr

(
µ2

1 − µ2
pr +

1
1 − µ2

p∗

)
.

This shows that Mr is a function of p∗ only, because the state Sr is known
from the initial data. If the right wave is not a shock, it is a centered
rarefaction wave. Of course, the same argument applies to Ml. On the
other hand, from the definition of Mr and Ml,

u∗ = u∗(Mr) = ur +
pr − p∗

Mr
,

u∗ = u∗(Ml) = ul +
pl − p∗

Ml
,

Because u∗ is continuous across the slip line, we must have

u∗(Mr) = u∗(Ml).

This is an equation for p∗. Some elementary algebra shows that this equa-
tion has a unique real solution p∗ (for a γ-law gas). Hence, the Riemann
problem can be solved. In particular, in the case of the shock tube problem,
one of the waves must be a shock and the other a rarefaction wave. The
position of the slip line determines which one is the shock. If the slip line
moves with positive velocity, that is, in the positive x-direction, then it acts
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as if it were a piston pushing into the gas in the positive x-axis. Therefore,
the right wave must be a shock, and the left wave is a rarefaction.5

Suppose now that we have arbitrary initial data u(x, 0) = f(x) for the
equation (3.3.1) where we assume f to be of compact support for con-
venience. We will use the preceding solution of the Riemann problem to
construct a family of approximate solutions that converge to a solution of
our initial value problem for (3.3.1). The x-axis and the t-axis are divided
into intervals of length h and k, respectively. The approximate solution is
to be computed at the mesh points (ih, jk) and

((
i + 1

2

)
h,

(
j + 1

2

)
k
)
. We

let
uj

i and uj+1/2
i+1/2

approximate

u(ih, jk) and u
((

i + 1
2

)
h,

(
j + 1

2

)
k
)
,

respectively. Thus, initially,

u0
i = f(ih), |i| = 0, 1, 2, . . . .

(See Figure 3.3.2.)

Pi

x–2h –h 0 h 2h

h
2

3h
2

h
2

–3h
2

–

u1/2u1/2u1/2
–1/2

t = k

t = k/2

t

u–1
1 u1

1u0
1

u2
0u1

0u0
0u–1

0u–2
0

Figure 3.3.2. Construction of the solution of (3.3.1) for general initial data.

The method described next permits us to advance by a time step k.
Suppose we have already constructed the values of uj

i at time t = jk for
each i. To compute uj+1/2

i+1/2 , we consider the Riemann problem for (3.3.1)
with the initial data

u(x, 0) =

{
uj

i , x <
(
i + 1

2

)
h;

uj
i+1, x ≥

(
i + 1

2

)
h.

5This solution is given in S. K. Godunov, Mat. Sbornik 47 [1957], 537. See also P.
D. Lax, Comm. Pure Appl. Math. 10 [1957], 537.
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Let v(x, t) be the solution to this Riemann problem. We will define

uj+1/2
i+1/2

to be a randomly chosen value of v(x, k/2) on the interval ih ≤ x ≤ (i+1)h.
For this purpose, define

Λj = max
i

(∣∣∣uj
i

∣∣∣ + cj
i

)

where uj
i is the velocity component of uj

i and cj
i is the corresponding sound

speed obtained from the formula c =
√

γp/ρ .
We require that the time step k satisfy the Courant–Friedrichs–Lewy

condition
Λjk ≤ h for all j. (3.3.3)

We pick a random variable θ equidistributed in [−1/2, 1/2], that is, θ has
the probability density function that takes the value 1 in [−1/2, 1/2], and
is zero otherwise. Then we define

uj+1/2
i+1/2 = v(Pi),

where Pi = ((i + 1/2)h + θh, j + k/2). Therefore, we have obtained the
approximate values

uj+1/2
i+1/2 at time t =

(
j + 1

2

)
k.

With exactly the same construction (which involves another independent
random variable θ equidistributed in [−1/2, 1/2]), we can advance a further
half-time step to get the approximate values

uj+1
i at time t = (j + 1)k.

Thus, we have constructed an approximate solution. We note that condition
(3.3.3) is necessary to ensure that, at each half-time step construction, the
centered waves generated by each Riemann problem will not interact. When
the total variation (as defined in §3.2) of the initial data f(x) is sufficiently
small, it can be shown that the time step k can always be chosen to satisfy
(3.3.3), and that the approximate solution tends to a weak solution of
our initial value problem as h tends to zero.6 Computational experience
seems to support the belief that the approximate solutions converge to the
solution for all data.7

6See J. Glimm, “Solution in the large of hyperbolic conservation laws,” Comm. Pure
Appl. Math. 18 [1965], 69.

7A. J. Chorin, “Random choice solution of hyperbolic systems,” J. Comp. Phys. 22
[1976], 519.
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We will now give some simple examples to illustrate this construction.
Consider the single linear equation

vt = vx, with v(0) = f(x).

We already know that the solution is v(x, t) = f(x + t). The initial data
propagate along the characteristics with speed 1. Thus, Λj = 1 in each step
of our construction, and the Courant–Friedrichs–Lewy condition (3.3.3)
becomes

k ≤ h.

We will carry out the construction under this condition. To compute

vj+1/2
i+1/2 from vj

i and vj
i+1,

we consider the Riemann problem

v(x, 0) = vj
i for x <

(
i + 1

2

)
h,

and
v(x, 0) = vj+1

i for x ≥
(
i + 1

2

)
h,

The initial discontinuity propagates along the characteristic passing through
the point

(
(i + 1

2 ) h, 0
)
, as in Figure 3.3.3.

x
x = ih + (1/2)hih (i+1)h

t

t = k/2Pi vj + 1/2vi + 1/2

characteristic
with slope –1

vj vi vj vi +1

Figure 3.3.3. The Riemann problem for vt = vx.

Hence, if the randomly chosen point Pi lies to the right of the character-
istic, then

vj+1/2
i+1/2 = vj

i+1,

that is, the solution moves h/2 to the left. Because this characteristic in-
tersects the line t = k/2 at the point((

i +
1
2

)
h − k

2
,

k

2

)
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and θ is uniformly distributed, Pi lies to the right of the characteristic with
probability (h + k)/(2h) and lies to the left with probability (h − k)/(2h).
Therefore, after 2n steps, the approximate value vn

i at x = ih and t = nk
comes from the initial disturbance f at the position x − Xn, where

Xn =
2n∑

j=1

ηj ,

and ηj are independent, identically distributed random variables with the
probability distribution

Prob
[
ηj = −h

2

]
=

1
2h

(h + k),

and

Prob
[
ηj =

h

2

]
=

1
2h

(h − k).

The expectation and the variance of η = ηj are

E[η] =
1
2h

(h + k)
[
−h

2

]
+

1
2h

(h − k)
h

2
= −k

2
,

and
Var[η] = E[η2] − (E[η])2 = 1

4

(
h2 − k2

)
.

Hence,

E[Xn] =
2n∑

j=1

E[ηj ] = −nk = −t,

and

Var[Xn] =
2n∑

j=1

Var[ηj ] =
n

2
(
h2 − k2

)
=

k

2

[
h2

k2
− 1

]
t.

If we keep the ratio h/k constant, Var[Xn] tends to zero for fixed t as h
tends to zero. Thus, we have shown that the solution constructed by this
random choice method tends to the correct solution as h tends to zero.

As another example, we apply this construction directly to a Riemann
problem. Consider a Riemann problem for (3.3.1) with initial data

u(x, 0) =

{
ur for x ≥ 0,

ul for x < 0.

We assume that corresponding regions Sr and Sl can be connected by a
shock propagating with speed s. When we divide the x-axis into pieces of
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shock

State  Sr

State  Sl

–2h –h h 2h0

t = k/2

x

t

Figure 3.3.4. Breaking a Riemann problem into smaller ones.

length h, we have only one nontrivial Riemann problem at each half-time
step construction (see Figure 3.3.4).

This nontrivial Riemann problem is also solved by connecting Sr to Sl

with the appropriate connecting shock. Hence, the argument given for a
single linear equation shows that the discontinuity of the approximate so-
lution is at a position whose expected value is correct, and that the variance
of the position also tends to zero as h tends to zero, that is, the approxi-
mate solution tends to the correct solution. A similar conclusion applies to
the case where Sr can be connected to Sl either by a centered rarefaction
wave or by a slip line. Thus, we obtain the conclusion that, if we apply
this random choice method directly to the simplest Riemann problems, the
approximate solutions tend to the correct solution as h tends to zero. Note
that even if the flow is not isentropic, that is, pρ−γ �= constant, the con-
struction uses Riemann problems in which pρ−γ = constant on either side
of the slip line in the absence of a shock.

The construction just presented is the basis of Glimm’s existence proof
for hyperbolic systems.8 For the 2×2 isentropic flow equations, other meth-
ods of proof are available.9

A major component in the Glimm construction is the solution of the
Riemann problem. We have offered a construction of a solution of the Rie-
mann problem but have said nothing about its uniqueness. The existence
and uniqueness of the solution of the Riemann problem for gas dynamics
subject to an appropriate formulation of the entropy condition have been

8J. Glimm, Loc. cit.
9See, for example, R. DiPerna, “Convergence of the Viscosity Method for Isentropic

Gas Dynamics,” Comm. Math. Phys., 91 [1983], 1.
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established.10

It is worth noting that not very much is known rigorously about the
solutions of the equation of gas dynamics in more than one space variable.
(See Majda’s book listed in the Preface for some information.)

Glimm’s construction is also the basis for numerical algorithms.11 The
strategy for picking the numbers θ is the determining factor in the accuracy
of these algorithms.

3.4 Combustion Waves

This section examines some additional features of conservation laws and
applies them to a modified system of gas dynamic equations that allows
for combustion. We shall begin by studying a single conservation law

ut + (f(u))x = 0 (3.4.1)

and concentrate on the information the shape of the graph of f gives about
discontinuities. Later, we generalize the results to systems and apply them
to our specific system. We examine in four steps the cases where the graph
of f is straight, concave up, concave down, and, finally, neither concave up
nor down.

Case 1 f is linear ; that is, f(u) = au, a = constant.
Here (3.4.1) becomes

ut + aux = 0 (3.4.2)

whose characteristics are the straight lines dx/dt = a. Because the char-
acteristics do not intersect, smooth initial data propagate to a smooth
solution; in fact, the solution with u(x, 0) = ϕ(x) is

u(x, t) = ϕ(x − at).

However, discontinuities in the initial data are propagated along charac-
teristics. This result is also a consequence of our formula for the speed of
the discontinuity (see equation (3.2.8))

s =
f(ul) − f(ur)

ul − ur
= a,

where ul is the value of u to the left of the discontinuity and ur that
to the right. In particular, a discontinuity must be a characteristic. See
Figure 3.4.1.

10See T. P. Liu, “The Riemann Problem for General Systems of Conservation Laws,”
J. Differential Equations, 18 [1975], 218.

11See A. J. Chorin, “Random Choice Solution of Hyperbolic Systems,” J. Comp.
Phys., 22 [1976], 517.
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Σ: speed = a

f (u) = aut

 ul  ur

f

x x

(ul, f (ul))

(ur, f (ur))

Figure 3.4.1. If f is linear, discontinuities move along characteristics.

Case 2 f is concave up; that is, fuu > 0. (An example is ut +uux = 0,
whose characteristics are again straight lines, as we showed in §3.2, and
where f(u) = u2/2.)

The characteristics of (3.4.2) are given by

dx

dt
= f ′(u)

because (3.4.1) is equivalent to

ut + f ′(u)ux = 0

in the region where u is smooth. We still have

s =
f(ul) − f(ur)

ul − ur

which, by the mean value theorem, gives s = f ′(ξ) for some ξ between ul

and ur. See Figure 3.4.2.
Let us examine the two possibilities ur < ul and ul < ur separately.

Because fuu > 0, f ′ is increasing. Thus, if ul < ur, f
′(ul) < s < f ′(ur) and

1
f ′(ul)

>
1
s

>
1

f ′(ur)
.

Thus, the slopes of the characteristics have the configuration shown in
Figure 3.4.3.

We get a shock configuration that violates the entropy condition. Thus,
if ul < ur these states should not be connected by a shock; a rarefaction
fan must be used.

On the other hand, if ur < ul, then f ′(ur) < s < f ′(ul) and

1
f ′(ur)

> s >
1

f ′(ul)
.

This time the characteristics enter the discontinuity as in Figure 3.4.4,
which is consistent with the entropy condition.
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slope of chord = speed
of discontinuity

x

f

ulur

Figure 3.4.2. The discontinuity speed in the case f is concave up.

Σ
t

x

1
f '(ul)

slope =

1
f '(ur)

slope =

Figure 3.4.3. The slopes of the characteristics for f concave up and ul < ur.

Case 3 f is concave down, that is, fuu < 0. An argument similar to
that of case 2 shows that for a shock we must have ul < ur and for a
rarefaction fan, ur < ul .

In either case 2 or case 3, note that the discontinuity separates the
characteristics. If either fuu < 0 or fuu > 0, f is called convex.

Case 4 This is the general case in which f is neither linear nor concave
up nor concave down. Given ul and ur, define the linear function l(u) by

l(u) =
f(ul) − f(ur)

ul − ur
(u − ul) + f(ul),

that is, the graph of l is the straight line through the pair of points
(ur, f(ur)) and (ul, f(ul)). If the graph of f is concave up on an inter-
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x

1
f '(ul)

slope =

1
f '(ur)

slope =

f (u)

Figure 3.4.4. The slopes of the characteristics for f concave up and ur < ul.

val [a, b] containing both ur and ul, then by elementary calculus,

l(u) > f(u)

whereas
l(u) < f(u)

if f is concave down.
For general f , one has the following theorem:12 Solutions exist, are

unique, and depend continuously on the initial data (in a certain function
space) if one allows only discontinuities that satisfy:

(a) if ur > ul, then l(u) ≤ f(u) for all u ∈ [ul, ur]; and

(b) if ur < ul, then l(u) ≥ f(u) for all u ∈ [ur, ul].

This is known as Oleinik’s condition (E).

In summary, if f is convex (concave up or concave down), elementary
calculus shows that a discontinuity allowed by the condition separates the
characteristics; that is, two characteristics cross the graph of the disconti-
nuity at each point of the (x, t) plane, and either they both point forward
in time or they can both be traced backward in time. The entropy condi-
tion rules out the former possibility. One can readily verify that Oleinik’s
condition (E) rules out the same shocks as the entropy condition; for ex-
ample, if fuu > 0, condition (E) requires that ur < ul across a shock. If
f is not convex, condition (E) is a generalization of the entropy condition;
indeed, if f is not convex, it is not obvious exactly what our earlier entropy
condition does or does not allow. Condition (E) forbids in particular shocks
that move faster or slower than the characteristics on both of their sides.

12O. A. Oleinik, “Existence of Solutions for a Simple Hyperbolic Equation,” Amer.
Math. Soc. Transl. Ser. 2, 285 [1965], 33.
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Notice that a discontinuity can satisfy part (a) of Oleinik’s theorem with-
out f being concave down on the whole interval [ul, ur], as in Figure 3.4.5.

u

f (u)

(ul, f (ul))

(ur, f (ur))

Figure 3.4.5. A situation obeying (a) of Oleinik’s condition.

Consider next a situation in which the line joining the point (ul, f(ul))
to (ur, f(ur)) is neither wholly above nor wholly below the graph of f , so
Oleinik’s condition (E) is violated; see Figure 3.4.6.

u

f (u)

(ul, f (ul))

(ur, f (ur))

Figure 3.4.6. A situation violating Oleinik’s condition.

Thus, we cannot connect ur and ul by means of a single shock. One can
also show13 that they cannot be connected by a single rarefaction fan. One
can prove, however, that the gap between ur and ul can be bridged by a

13See Oleinik, Loc. cit.
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compound wave consisting of shocks, rarefaction fans, and slip lines, all
consistent with the entropy condition.

We now consider systems of conservation laws. Recall from §3.1 that
we have a family of characteristics associated with each eigenvalue of the
coefficient matrix A(u) when our equations are written in hyperbolic form
(3.1.3). For gas dynamics we have defined the families C+, C−, C0 of char-
acteristics. We say that a family of characteristics crosses a discontinuity
that satisfies the jump conditions if through every point of the graph of the
discontinuity in the (x, t) plane, one can draw only one characteristic of
that family, with that characteristic being traceable backward in time on
one side and forward in time on the other. Intuitively, a family of charac-
teristics crosses a discontinuity that is not needed to prevent characteristics
of that family from intersecting.

A family of characteristics is called linearly degenerate if a discontinu-
ity that satisfies the jump conditions can coincide with a member of that
family. For example, the C0 family is linearly degenerate, because a slip
line is also a C0 characteristic. We said earlier that a discontinuity sepa-
rated a family of characteristics if through each point of the graph of the
discontinuity in the (x, t) plane there exist two characteristics, with the two
of them either traceable back in time or forward in time. (Slip lines do not
separate the C0 characteristics, nor are they crossed by them.) A family
of characteristics is called convex if, whenever a discontinuity is allowed
by the algebraic jump conditions, it is either crossed by the family or it
separates the family. If a family of characteristics is convex, the entropy
condition rules out discontinuities crossed by characteristics that can be
traced forward in time. The Prandtl relation

u0u1 = c2
∗

derived in §3.2 shows that the C+ and C− characteristics of gas dynamics
for a γ-law gas are convex families. Thus, these equations admit only two
kinds of discontinuities: discontinuities that separate either the C+ or the
C− family of characteristics, and linearly degenerate slip lines.

A system of conservation laws is said to be convex if all the discon-
tinuities allowed by the jump conditions separate one (and only one) of
the families of characteristics and if all the families are convex. A single
equation can be readily seen to be convex in this sense if and only if f(u)
is convex. The system of isentropic gas dynamic equations (i.e., pρ−γ =
constant) is thus convex, because it has only the C+ and C− families of
characteristics, both of which are convex.

A system of conservation laws is said to be linearly degenerate if at
least one of its families of characteristics is linearly degenerate and the oth-
ers are convex. Thus, the 3×3 system of gas dynamics is linearly degenerate
because the C0 family is linearly degenerate.

In other cases, the system is called nonconvex , and compound waves are
needed to connect states and construct a solution of the Riemann problem
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(and thus of the initial value problem). Examples of nonconvex systems are
provided by the equations of gas dynamics with combustion, to which we
turn next.14

The equations of gas dynamics with combustion are

ρt + (ρ u)x = 0,

(ρ u)t + (ρ u2 + p)x = 0,

et + ((e + p)u)x = 0,

(3.4.3)

where
e = 1

2ρ u2 + ρ ε and ε =
pτ

γ − 1
+ q.

The only modification from the gas dynamic equations for a γ-law gas that
we have already studied is the presence of the term q in the energy density;
we have yet to specify q. The term q represents chemical energy that can
change due to burning. We assume here for simplicity that q takes only two
values:

q =

{
q0, if the gas is unburned,
q1, if the gas is burned,

(3.4.4)

where q0 and q1 are constants. To complete our model, we assume that
the burning reaction occurs when some threshold is reached as follows:
Let T = p/ρ measure the temperature . We assume that the gas burns
when T ≥ Tc for a constant Tc called the ignition temperature . Let
∆ = q1 − q0; the reaction is called exothermic if ∆ < 0, that is, q1 < q0,
and is endothermic if ∆ > 0, that is, q1 > q0. The third equation in (3.4.3)
asserts that the “total” energy is conserved, where the “total” energy is
the sum of the kinetic energy, the internal energy, and a chemical energy,
part of which can be released through a process we shall call “burning” or
“combustion.”

In this model we have neglected viscous effects, heat conduction, and
radiative heat transfer. Of these the most serious is the exclusion of the
effects of heat conduction.15 We also assume that the “combustion” only
occurs once; after the gas is burned, it stays burned. We have already
assumed in writing (3.4.3) that we are dealing with a γ-law gas where γ is
the same for both burned and unburned gas. This is not normally realistic,
but the mathematics in the more general situation is essentially the same as
in our simplified situation. We shall furthermore assume that the region in
which combustion occurs (and in which q changes from q0 to q1) is infinitely
thin, and that the transition occurs instantaneously.

14Another interesting nonconvex physical system is analyzed in A. J. Chorin, Comm.
Math. Phys. 91 [1983], 103.

15For the equations for flow with finite conduction and reaction rates, see F. A.
Williams [1965] Combustion Theory, Addison-Wesley.
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We can picture the gas as spread along the x-axis; at any instant some
sections of the gas are burned (q = q1) and others are not (q = q0). The
lines between them will be associated with discontinuities Σ in the flow. A
discontinuity across which ∆ �= 0 is called a reaction front or a combus-
tion front.

The jump relations across a discontinuity Σ are given by the relations
described previously. In a frame moving with the discontinuity, they read:

[ρu] = 0,[
ρu2 + p

]
= 0,

[(e + p)u] = 0.

Letting M = ρ u, we derive

M2 =
p1 − p1

τ0 − τ1
(3.4.5)

as before (see equation (3.2.14)). We can eliminate u1 and u2 from the
equation to obtain a Hugoniot relation by the methods of §3.2. We still
define the Hugoniot function with center (τ0, p0) to be

H(τ, p) = ε − ε0 +
τ0 − τ

2
(p0 + p). (3.4.6)

so the energy jump condition becomes

H(τ1, pl) = 0.

We can rewrite (3.4.6) as

2µ2H(τ, p) = p(τ − µ2τ0) − p0(τ0 − µ2τ) + 2µ2∆,

where
µ2 =

γ − 1
γ + 1

.

This differs from our expression in §3.2 by the term 2µ2∆. In particular,
note that a state cannot be connected to itself by a reaction front because
H(τ0, p0) = ∆. There can be discontinuities that are not reaction fronts
(∆ = 0), in which case our analysis in §3.2 applies. For a given ∆ �= 0, we
still call the curve H(τ, p) = 0 the Hugoniot curve . It is the locus of all
possible states that can be connected to the given state (τ0, p0).

We shall now discuss reaction fronts for exothermic reactions; that is,
∆ < 0. In this case the state (τ0, p0) lies below the hyperbola representing
the Hugoniot curve, as Figure 3.4.7 shows.

One portion of the Hugoniot curve (from A to B) is omitted because the
states in it correspond to negative M2 (by (3.4.5)), which is an impossi-
bility. The remaining part of the curve is divided into two branches. The
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p0

τ

A

p

B

Rayleigh line

I = strong detonation

II = weak detonation

III = weak deflagration

IV = strong deflagration

CJ1 = Chapman-Jouguet detonation

CJ2 = Chapman-Jouguet deflagration

Rayleigh
line

(τ0,p0)

τ0

the Hugoniot curve

Figure 3.4.7. For exothermic reactions, (τ0, ρ0) lies below the Hugoniot curve.

upper branch, which corresponds to a compressive reaction front (p > p0),
is called the detonation branch . The lower branch, which corresponds to
an expansive reaction front (p < p0), is called the deflagration branch .
The lines through (τ0, p0) tangent to the Hugoniot curve are called the
Rayleigh lines, and the points of tangency CJ1 and CJ2 are called the
Chapman–Jouguet points. These points divide the Hugoniot curve fur-
ther into four subbranches. The part I above CJ1 is called the strong
detonation branch, the part II between CJ1 and A the weak detona-
tion branch. Similarly, the part III between B and CJ2 is called the weak
deflagration branch, the part IV below CJ2 the strong deflagration
branch. We will discuss each branch separately, and thus exclude some
branches on the basis of an analogue of Oleinik’s condition (E), that is, by
a geometrical entropy condition.

Consider a constant state S corresponding to a point (τ1, p1) that lies
on the Hugoniot curve, that is, it is possible to connect S and (τ0, p0) by
a chemical reaction front. Depending on the position of S, we consider the
following cases:

Case 1 S lies in the strong detonation branch, that is,

p1 > pCJ1

(See Figure 3.4.8).
We can connect S to (τ0, p0) by a strong detonation front. One can show

by the argument in §3.2 that the gas flow relative to the reaction front is
supersonic in the front and subsonic in the back, that is,

|u0| > |u1| < c1.
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strong
detonation

x

t

C0

C0

C–

C–

C+

C+

state S

state (τ0,p0)

0

Figure 3.4.8. A state S on the strong detonation branch.

Therefore, if the strong detonation front faces in the positive x direction,
it separates the C+ characteristics, as the figure shows. The other two
families of characteristics cross the reaction front. Thus, the geometry of
the characteristics in the strong detonation case is similar to what it is in
the case of a shock. Hence, the pressure in the back state is sufficient to
determine the back state from the front state.

Case 2 S = CJ1, that is,
p1 = pCJ1

(See Figure 3.4.9).
In this case the velocity relative to the reaction front is supersonic in the

front and sonic in the back, that is,

|u0| > c0 and |u1| = c1.

Thus, the Chapman–Jouguet reaction front, when observed from the burn-
ed gas state, is one of the characteristics (of C+ or C− family). The condi-
tion |u1| = c1 enables us to determine the back state from the front state
without further assumption.

Case 3 S lies in the weak detonation branch, that is,

pCJ1 > p1 ≥ pA

(See Figure 3.4.10).
In this case one can show that the gas flow relative to the reaction front

is faster than the sound speed on either side.
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Figure 3.4.9. A state S corresponding to the Chapman Jouguet point CJ1.
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Figure 3.4.10. A state S on the weak detonation branch.

Each family of characteristics crosses the reaction front, as Figure 3.4.10
shows. This violates the analogue of Oleinik’s condition (E). Instead of con-
necting S and (τ0, p0) by a single wave front, we use a compound wave to
connect them. We connect (τ0, p0) first to the Chapman–Jouguet detona-
tion and followed by an isentropic-centered rarefaction wave to reach the
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state S. This compound wave is possible because the Chapman–Jouguet
detonation moves with sound speed with respect to the gas flow in its back
side. If we adopt this compound wave to connect them, the pressure is S
and the state (τ0, p0, u0) will determine S completely. If weak detonations
are not excluded, the solution of the initial value problem is not unique;
indeed, the state S can then be connected to a state with a pressure p0

by either a weak detonation or a CJ detonation followed by a rarefaction.
The exclusion of the weak detonation is analogous to the exclusion of dis-
continuities that move faster than the characteristics on both their sides
by means of condition (E).

Case 4 S lies in the weak deflagration branch, that is,

p0 ≥ p1 > pCJ2

(See Figure 3.4.11).

weak deflagration

x

t

C0 C–

C+

state S

state (τ0,p0)

0

C0
C–

C+

Figure 3.4.11. A state S on the weak deflagration branch.

One can show that the reaction front moves with respect to the gas slower
than the sound speed on both sides. This is an indeterminate case. One can
determine the solution uniquely only by taking into account heat conduc-
tion and a finite reaction rate. In the limiting case of no heat conduction
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(which we have assumed here), it can be shown16 that the only weak de-
flagration that can occur is one across which the pressure is constant and
there is no mass flow, that is, this deflagration is indistinguishable from a
slip line. Thus, only in the case where p1 = p0 can the state S be connected
to (τ0, p0) by a weak deflagration.

Case 5 S lies in the strong deflagration branch, that is,

p1 < pCJ2

(See Figure 3.4.12).

strong deflagration

x

t

C0
C–

state S

state (τ0,p0)

0

C0C–

C+

C+

Figure 3.4.12. A state S on the strong deflagration branch.

Then the gas flow relative to the reaction front is subsonic in the front
side and supersonic in the back side. If this strong deflagration moves in
the positive x direction, it separates the C+ characteristics. However, this
separation does not satisfy the geometric entropy condition, although the
strong deflagration is consistent with the conservation laws. Thus, we must
exclude strong deflagrations.

Note that we have excluded weak detonations and strong detonations
by means of plausible geometrical entropy conditions; neither one could be

16See A. J. Chorin, “Random choice methods with applications to reacting gas flow,”
J. Comp. Phys., 25 [1977], 253.
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excluded by the requirement that the physical entropy should increase as
the gas crosses the discontinuity. They could, of course, be excluded by
other considerations of a plausible physical nature. (The theory of such
waves is still in a state of development.)17

These considerations permit us to propose a solution for the Riemann
problem for the system (3.4.3). We define a centered wave to be either a
shock, a centered rarefaction, a strong detonation, or the compound wave
consisting of the Chapman–Jouguet detonation followed by a centered rar-
efaction. A Riemann problem for the system (3.4.3) is an initial value
problem for (3.4.3) with initial data of the form


ρ
u
e
q


 = Sr, if x ≥ 0;

and 


ρ
u
e
q


 = Sl, if x < 0,

where Sr and Sl are two constant states of the gas. We claim that the Rie-
mann problem is solvable by connecting Sr to Sl through a right-centered
wave, a constant state I , a slip line, a constant state II , and a left-centered
wave (Figure 3.4.13)

The argument is similar to the case of an inert gas (§3.3). If we can
determine the constant state I from Sr and a given pressure p∗ in I, we
can proceed as in §3.3 to get an algebraic equation for p∗ through the
continuity of the velocity across the slip line, and hence obtain a solution
to the Riemann problem. For this purpose, we assume first that Sr is in an
unburned state. If constant state I is in an unburned state, we are back to
the case of inert gas. If constant state I is in a burned state, we can connect
I to Sr by a centered wave depending on the position of p∗ in the Hugoniot
curve with center Sr. The critical criterion is whether the temperature T
computed in the constant state I exceeds the ignition temperature Tc or
not. One can actually show that there is a consistent way of solving the
Riemann problem.18 If Sr contains burned gas, the constant state I also
contains burned gas, because the burning can occur only once.

17A. Bourlioux, A. Majda, and V. Roytburd, “Theoretical and numerical structures
for unstable one dimensional detonations,” SIAM J. Appl. Math., 51,[1991], 303–343. P.
Colella, A. Majda, and V. Roytburd, “Theoretical and numerical structure of reactive
shock waves,” SIAM J. Sci. Comput., 1, [1980], 1059–1080.

18See A. J. Chorin, Random choice methods with applications to reacting gas flow, J.
Comp. Phys., 25 [1977], 253 for the details.
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x

constant
state I

0

t

right-centered waveleft-centered wave

constant
state II

slip line

SrSl

Figure 3.4.13. The Riemann problem for the gas flow with combustion.

Having solved the Riemann problem, we can use the random choice
method described in §3.2 and §3.3 to obtain the approximate solutions
for the general initial value problem for the system (3.4.3). Results similar
to those in §3.3 can be expected. We need not repeat the construction.

Vector Identities

The following gives some general formulas that are useful for calculations
with vector fields in R

3.
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1. ∇(f + g) = ∇f + ∇g

2. ∇(cf) = c∇f , for a constant c

3. ∇(fg) = f∇g + g∇f

4. ∇
(

f

g

)
=

g∇f − f∇
g2

5. div(F + G) = div F + div G

6. curl(F + G) = curlF + curlG

7. ∇(F · G) = (F · ∇)G + (G · ∇)F + F × curlG + G × curlF

8. div(fF) = f div F + F · ∇f

9. div(F × G) = G · curlF − F · curlG

10. div curlF = 0

11. curl(fF) = f curlF + ∇f × F

12. curl(F × G) = F div G − G div F + (G · ∇)F − (F · ∇)G

13. curl curlF = grad div F −∇2F

14. curl∇f = 0

15. ∇(F · F) = 2(F · ∇)F + 2F × (curlF)

16. ∇2(fg) = f∇2g + g∇2f + 2(∇f · ∇g)

17. div(∇f ×∇g) = 0

18. ∇ · (f∇g − g∇f) = f∇2g − g∇2f

19. H · (F × G) = G · (H × F) = F · (G × H)

20. H · ((F ×∇) × G) = ((H · ∇)G) · F − (H · F)(∇ · G)

21. F × (G × H) = (F · H)G − H(F · G)

Notes.

In identity 7, V = (F·∇)G has components Vi = F·(∇Gi), for i = 1, 2, 3,
where G = (G1, G2, G3).

In identity 13, the vector field ∇2F has components ∇2Fi, where F =
(F1, F2, F3).

In identity 20, (F×∇)×G means ∇ is to operate only on G in the following
way: To calculate (F × ∇) × G, we define (F × ∇) × G = U × G
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where we define U = F ×∇ by:

U = F ×∇ =

∣∣∣∣∣∣∣∣∣

i j k

F1 F2 F3

∂

∂x

∂

∂y

∂

∂z

∣∣∣∣∣∣∣∣∣
.
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acceleration of a fluid particle, 4
algorithm, 94
almost potential flow, 59
asymptotically stable, 97
autonomous, 97

back, 124
balance of momentum, 4, 6, 12

differential form, 6
integral form, 7

Bernoulli’s theorem, 16, 48, 55, 71
bifurcation, 99, 100
Blasius’ theorem, 52
body

force, 6
force on, 52

boundary
condition, 34, 41
layer, 67, 68

approximation, 76
equation, 75
separation, 79
thickness, 71
vorticity in, 76

layer separation, 71

burning, 152

Cauchy’s theorem, 32
centered

rarefaction wave, 114
wave, 137, 138, 158

central limit theorem, 84
channel flow, 17
Chapman–Jouguet points, 154
characteristic, 103, 105, 108

intersecting, 106, 108
length, 35
linearly degenerate, 150
velocity, 35

chemical energy, 151
circulation, 21, 48, 57
coefficients of viscosity, 33
combustion, 103, 152

front, 152
wave, 145

complex
potential, 51
variables methods, 51
velocity, 51, 53

compressible
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flow, 14, 33, 103
compressive shock, 131, 134
concave up, 146
conformal transformation, 65
connected

state, 115
wave, 115

conservation
law, 122, 129, 145
of energy, 12
of mass, 2, 12
of vorticity, 28

consistency of an algorithm, 94
constant state, 111
contact discontinuity, 124
continuity equation, 3
continuum assumption, 2
convective term, 40
convergence of an algorithm, 94
convex characterisitics, 151
Couette flow, 31
Courant–Friedrichs–Lewy condition,

141
cylindrical coordinates, 45

d’Alembert’s paradox, 54
in 3d, 58

decompostion theorem, 37
deflagration branch, 154
deformation, 18

tensor, 19, 31
degenerate

linearly, 151
density, 1, 14
derivative

material, 5
detonation branch, 154
differential

form, 120
form of mass conservation, 3

diffusion, 39
discontinuity, 121, 146, 148

separating, 148
disjoint, 82

event, 82

dissipation term, 39
divergence

free part, 38
space-time, 119

downstream, 93
drag, 54, 57, 60, 66

form, 80
skin, 80

dynamics, 96

endothermic, 152
energy, 12

equation, 118
flux, 18
internal, 12, 117
kinetic, 12
per unit volume, 117

enthalpy, 14
entropy, 14, 118, 158

condition, 127, 130, 133, 157
equation

continuity, 3
differential form, 120
Euler, 13, 15
heat, 84
Hugoniot, 125
Navier–Stokes, 34
of state, 44
Prandtl, 75
Stokes’, 40
vorticity, 24
weak form, 120

error function, 70
Euler equation, 13, 15, 49, 78, 94,

96
event, 82

disjoint, 82
exothermic, 152
expectation, 82, 143

field
velocity, 1
vorticity, 18

filament, 65
Filon’s paradox, 67
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first
coefficient of viscosity, 33
law of thermodynamics, 14,

118
fixed point, 97
flat plate, 69
flow, 14

almost potential, 59
around a disk, 55
around a half circle, 51
around an obstacle, 52
between plates, 41
between two plates, 42
compressible, 14, 33
Couette, 31
gas, 103
homogeneous, 11, 48
ideal, 48
in a channel, 17
in a pipe, 45
in the half-plane, 69
in the upper half-plane, 51
incompressible, 10
induced by a vortex filament,

65
irrotational, 47
isentropic, 14, 15
map, 7, 95
over a plate, 66
past a sphere, 59
Poiseuille, 45
potential, 47, 48
potential around a disk, 55
potential vortex, 56
stationary, 29, 49
supplementary region half-plane,

51
fluid

flow map, 7
ideal, 5
particle, 4
velocity, 1
viscous, 33

flux, 7
of vorticity, 22

force, 5, 53
on a body, 52

form drag, 80
fourth power law, 46
front, 124
function

error, 70
Green’s, 61, 86

gamma
law gas, 114, 118, 125, 131,

139
simple wave, 111

gas
dynamics, 103, 111
flow, 103
ideal, 118, 125, 131, 139

Gaussian, 84
generation of vorticity, 43
geometric entropy condition, 135
Glimm’s existence proof, 145
global stability, 97
gradient part, 38
Green’s function, 61, 63, 64, 86

half-plane flow, 69
Hamiltonian system, 62
heat equation, 84, 86
Helmholtz

decomposition theorem, 37
theorem, 26, 37

Hodge theorem, 37
hodograph transformation, 110
homogeneous, 11

flow, 48
Hopf bifurcation theorem, 99
Hugoniot

curve, 126, 153
equation, 125, 139
function, 125, 153

hyperbolic, 104

ideal
flow, 48
fluid, 5, 31
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gas, 44, 118, 125, 131, 139
ignition temperature, 152
incompressible, 11

approximately, 44
flow, 10, 13, 34

independent, 82
random variables, 83

integral
form, 120
form of balance of momen-

tum, 7
form of mass conservation, 3

intensity of a vortex sheet, 88
internal energy, 12, 40, 117
invariant

Riemann, 109
irrotational, 47
isentropic

flow, 14, 15
fluids, 14
gas flow, 122

Jacobian, 8
matrix, 24

jump, 122
discontinuity, 121, 122
relations, 124

Kelvin’s circulation theorem, 21
kinematic viscosity, 34
kinetic energy, 12, 40, 49
Kutta–Joukowski theorem, 53

law
conservation, 129, 145
of large numbers, 83

layer
boundary, 67, 71

leading edge, 93
left

-centered wave, 138
state, 115

length
characteristic, 35

Liapunov stability theorem, 97

Lie derivative, 43
Lie–Trotter product formula, 95
line

vortex, 22
linearly degenerate, 150, 151

Mach number, 44
mass

conservation, 11
density, 1
flow rate, 46

matching solutions, 78
material derivative, 5, 18
mean, 82
mechanical jump relations, 124
momentum

balance of, 6
flux, 7

moving with the fluid, 7

Navier–Stokes equation, 31, 33, 38,
67, 77, 94, 95

Neumann problem, 37, 49, 63
Newton’s second law, 2, 6
no-slip condition, 34, 43
noncompressive shock, 133
nonconvex, 151
nonlinear dynamics, 96

obstacle, 58
flow around, 52

Oleinik’s condition, 149, 154
orthogonal projection, 38
oscillations, 100
Oseen’s equation, 66

paradox
d’Alembert, 54, 58
Filon, 67
Stokes, 67

pipe flow, 45
piston, 111
plate, 80

flow between, 41
flow over, 66, 69
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flow past, 87
point vortices, 60
Poiseuille flow, 45
potential

complex, 51
flow, 47, 48, 51, 56, 58

almost, 59
flow around a disk, 55
velocity, 48
vortex, 56
vortex flow, 56

Prandtl
boundary layer equation, 73,

75
equation, 78, 94
relation, 132, 151

pressure, 5, 14
probability, 82

density function, 83
theory, 82

product formula, 95
projection operator, 38

quasilinear, 104

random
choice method, 144, 159
variable, 82, 141

Gaussian, 84
walk, 85, 88, 96

Rankine–Hugoniot relations, 124
rarefaction

fan, 148
shock, 127, 129
wave, 114

Rayleigh lines, 154
reaction

endothermic, 152
exothermic, 152
front, 152

reversibility, 136
Reynolds number, 36, 96
Riemann

invariant, 109, 110, 113

problem, 103, 137, 139, 144,
158, 159

right
-centered wave, 138
state, 115

rigid rotation, 18
rotation, 18

sample space, 82
scaling argument, 81
second

coefficient of viscosity, 33
law, 118

separate characteristics, 130
separated, 150
separation

boundary, 68, 71, 79
shadow of a vortex sheet, 90
sheet

vortex, 22
shock, 117, 124

back, 124
compressive, 131, 133
front, 124
noncompressive, 133
rarefaction, 127, 129
separating, 130
tube problem, 137

similar flows, 36
simple wave, 111
simply connected, 47
skin drag, 80
slightly viscous flow, 47
slip line, 124, 138, 140
sound speed, 44, 104, 131
space-time divergence, 119
spatial velocity field, 1
speed

discontinuity, 147
sphere

flow past, 59, 66
stability, 96
stable point, 97
stagnation point, 29, 55
standard deviation, 83
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state, 111, 136, 137
connected, 115
equation of, 44

stationary, 49
flow, 16, 58
flow criterion, 29

steady flow, 58
Stokes

equation, 40, 67, 96
flow, 66
paradox, 67

stream function, 29, 43, 54, 80
streamline, 16, 29, 44
strength of a vortex tube, 26
stress tensor, 32
stretched, 27
strong

deflagration, 154
detonation, 154

subsonic, 131, 157
supersonic, 131
symmetry, 101

tangential
boundary condition, 34
forces, 5

Tchebysheff’s inequality, 84
temperature, 14, 152
test functions, 119
theorem

Bernoulli’s, 16
Blasius’, 52
Cauchy’s, 32
central limit, 84
Helmholtz, 26
Helmholtz–Hodge, 37
Kelvin circulation, 21
Kutta–Joukowski, 53
transport, 10

thermodynamics, 14, 118
first law, 14, 118

thickness
boundary layer, 71, 73

total force, 8
trajectory, 16

transfer of momentum, 31
transformation

hodograph, 110
translation, 18
transport theorem, 10, 18, 117
tube

vortex, 26

upper half-plane
flow in, 51

variance, 83, 143
variation, 129
velocity

characteristic, 35
complex, 51
field, 1
potential, 48, 51
profile, 42

viscosity, 129
coefficients, 33
kinematic, 34

viscous fluid, 33
vortex, 61

filament, 65
line, 22
potential, 56
sheet, 22, 82, 87
sheet intensity, 88
tube, 26
tube, strength of, 26

vortices
point, 60

vorticity, 18, 63
conservation, 28
creation operator, 96
equation, 28
generation of, 43
in boundary layer, 76
transport, 23

wave
centered, 137
connected, 115
left-centered, 138
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rarefaction, 114
right-centered, 138
simple, 111

weak
deflagration, 154
detonation, 154
solution, 118, 119
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